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Abstract 

 

Carbon-heteroatom bonds are enormously found in both natural and synthetic products 

which play vital role in polymer chemistry, material science, agriculture and 

pharmaceutical industry. Due to prevalence of these bonds, development of new and 

efficient methods for their construction is of great significance. Transition metal catalysis 

has revolutionized the way these bonds are formed. Number of methodologies has been 

developed to form C-heteroatom bonds employing transition metals as catalysts. 

Transition metal mediated cross-coupling reactions to form C-N, C-O and C-S bonds 

have been greatly improved by using ligands. Mono-amides of dipicolinic acid are 

discovered to efficiently act as ligands for copper catalyzed C-N and C-S cross coupling 

reactions. These ligands are highly stable.  

Mono-amide of ethylamine was found to be the most efficient ligand after the careful 

screening of all the available mono-amides of dipicolinic acid. Best working conditions 

for mono-amide of ethylamine were found after successful screening of each reaction 

parameter such as solvent, base, temperature and molar ratio of base. The scope of newly 

discovered catalytic system was investigated by the arylation of various amides and 

aromatic thiols using differently substituted iodobenzenes. All the coupled products were 

obtained in good to excellent yields. Synthesized products were characterized by physical 

and spectroscopic techniques. 
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CHAPTER-1 

INTRODUCTION 

 

Carbon-nitrogen, carbon-oxygen and carbon-sulfur bonds are an integral part of many 

compounds that show tremendous biological activities¹⁻⁵. Due to ubiquity of these bonds 

in natural and synthetic compounds, there has always been a need to discover mild, 

general and efficient methodologies for the formation of these carbon-heteroatom 

bonds⁶᾿⁷. Traditionally, nucleophilic aromatic substitution reactions were used for the 

formation of aryl-N, aryl-O and aryl-S bonds, which in turn required electron-deficient 

aryl halides along with strong nucleophiles and nitrogen as a leaving group; in short, 

activated substrates were used by the classical methods⁸᾿⁹. 

Development of transition-metal catalysis was a great breakthrough in the field of 

synthetic organic chemistry as it enabled the chemists to carry out carbon-heteroatom 

bond synthesis under milder conditions¹⁰⁻¹³. Most popular amongst these transition-metal 

catalyzed methods are the ones that utilize palladium and copper as a catalyst¹⁴. 

1.1. Transition Metals as Catalysts 

A catalyst is a substance that accelerates the rate of a reaction without being used up itself 

in the process. Catalysts are pretty important for many reactions as without them many of 

the industrial processes would be rendered commercially uneconomical. 

Transition metals make very good catalysts¹⁵, these are divided into two broad categories 

which are homogenous and heterogeneous catalysts. 

I) Homogenous Catalysts: 

A catalyst that exists in the same phase as the reactants is called a homogenous catalyst 

and this type of catalysis classified as homogenous catalysis¹⁶. Some well-known 

examples of homogenous catalysis include hydroformylation¹⁷ and transfer 

hydrogenation¹⁸ as well as certain kind of Ziegler-Natta polymerization¹⁹ and 
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hydrogenation²⁰. Homogenous catalysts have also been employed in a variety of 

industrial processes such as: 

a) Monsanto process, which is an industrial process for manufacturing of acetic acid 

by catalytic carbonylation of methanol and “rhodium’’ is employed as a catalyst 

in this method²¹. 

b) Cativa process, which is based on an “iridium’’ containing catalyst, and is also 

used for the production of acetic acid through the carbonylation of methanol²². 

c) Wacker process is the first organomatellic and organopalladium reaction applied 

on an industrial scale. It involves oxidation of ethylene to acetaldehyde by oxygen 

in water using ‘’tetrachloropalladate’’ as a catalyst²³. 

II) Heterogeneous Catalysts: 

If the catalyst is present in a different phase as the reactants, it is called heterogeneous 

catalyst and this type of catalysis is termed as heterogeneous catalysis²⁴. Heterogeneous 

catalyst is often employed in industry due to ease of its separation from the products²⁵. 

Examples are as following: 

a) Synthesis of phenethylamine by the reduction of nitriles employs “Raney nickel’’ as a 

catalyst²⁶. 

CN NH2

H2, 2000psi

Raney nickel

NH3, 130 oC

83%  

b) Formation of sulfuric acid in contact process makes use of “vanadium oxide’’as a 

catalyst²⁷. 

SO2(g)  +  1/2O2(g) SO3(g)
V2O5

 

c) Reforming of naphtha, utilizes “platinum or rhenium’’ on silica or silica-alumina 

support base²⁸. 
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H3C CH3

CH3

+ 4H2

Pt or Re

 

Transition metals belong to the d-block of periodic table and they contain partially filled 

d-orbitals²⁹. Transition metals are considered as good catalysts because they can lend 

electrons or withdraw electrons from the reagent depending upon the nature of reaction. 

The ability of transition metals to exist in a variety of oxidation states, to interchange 

between different oxidation states, ability to form complexes and be a good source of 

electrons makes them a catalyst of choice. Incomplete d-orbitals allow the metal to 

facilitate the exchange of electrons. Transition metals can both give and except electrons 

easily³⁰. 

Transition metals act by forming complexes with the reagents. Transition metals undergo 

oxidation or reduction to supply electrons if the transition state of the reaction demands 

electrons as well as the transition metals can hold excess electron density in case of 

excess buildup of electrons, thereby helping the reaction to take place³¹. 

Transition metals contain nine orbitals (one s, three p and five d) possessing suitable 

energies and geometrical features for bonding to maximum of nine ligands to attain 

maximum of 18 electrons according to 18-electron rule³². Transition metals can form 

covalent as well as coordinate covalent bond to the ligands. If all of the nine orbitals of 

the metal are completely filled, it is termed as coordinately saturated. Such a metal is 

resistant towards nucleophilic attack, so ligand replacement occurs by SN1 type 

mechanism that is a ligand leaves before the attachment of another ligand and therefore 

metal converts to a 16-electron system. This switching between 16 and 18-electron 

system provides a driving force for a catalytic cycle³⁰. 

Recently modern synthetic methodologies are at their primitive stages and still there is a 

long way to go in order to develop efficient, high yielding, selective, economical and safe 

methods for the synthesis of fundamentally synthesizable compounds and transition metal 

catalysis has a great potential to help synthetic chemists in this regard³³. 
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1.2.  Cross-Coupling Reactions 

Metal catalyzed cross-coupling reactions are the one that join two molecular fragments 

using metal as a catalyst. The 2010 Nobel Prize in chemistry was awarded to pioneers of 

palladium-catalyzed carbon-carbon cross coupling reactions first disclosed over 40 years 

ago. Since then cross coupling reactions have become a staple of modern organic 

synthesis and have been developed for virtually every element in the first and second row 

of the p-block of the periodic table. Common examples of the transition metals used in 

cross coupling reactions include palladium³⁴, copper³⁵, nickel³⁶ and iron³⁷. In general 

when cross-coupling reactions unite two fragments, one fragment serves as the 

electrophile while the other one as nucleophile. The elementary steps of a catalytic cycle 

are as following³⁸: 

a) Oxidative addition, a metal inserts into σ-bond of the electrophile, this step 

increases the formal oxidation state of the metal and increases the number of 

ligands bound to the metal. 

b) Transmetallation (ligand exchange), the nucleophile replaces ligand on a metal. 

After transmetallation, both molecular fragments to be coupled are bound to the 

metal. 

c) Reductive elimination, the actual bond forming event that makes the organic 

product. Reductive elimination extrude the new organic molecule with both 

molecular fragments  united by a σ-bond, leaving the metal in its original 

oxidation state and ready to start the catalytic cycle again. 

The backbone of many organic compounds is composed of C-C bonds but the presence of 

heteroatom often derives the function of these molecules such as oxygen, nitrogen and 

sulfur which are held by C-heteroatom bonds in these compounds for example almost all 

natural products, pharmaceuticals and polymers contain ketone, ester or ether C-O bonds 

and C-N bonds of amine. Heterocyclic compounds containing C-O, C-N and C-S bonds 

in their ring structures find their applications in almost all areas of chemistry³⁹⁻⁴² (Figure 

1.1, Figure 1.2). 
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Figure 1.1. Synthetically important compounds containing C-heteroatom bonds 
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Figure 1.2. C-heteroatom bond containing drugs and insecticides 
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1.3.  Emergence of Transition Metal Catalyzed Cross-Coupling 

Reactions 

Tremendous work of Grignard on organomagnesium reagents⁴³ and synthesis of diethyl 

zinc by Frankland⁴⁴ in 1849 initiated the progress of modern organometallic chemistry. 

Some useful applications of nearly every metal present in periodic table have been 

demonstrated in synthetic organic chemistry.  Selectivity and reactivity of organometallic 

reagent can be tuned according to the nature of the metal employed in a particular 

reaction. Development of transition metal catalysis during the last few years has brought 

a revolution in the field of synthetic organic chemistry for the formation of C-C and C-

heteroatom bonds. 

Many transition metals are effective promoters for the cross-coupling reactions such as 

palladium³⁴, nickel³⁶, iron³⁷, ruthenium⁴⁵, rhodium⁴⁶ and copper³⁵. Transition metals 

posses low ionization energies. Compared to s- and p-orbitals, the d-orbitals is located 

farther away from nucleus so d-electrons are held quite loosely by the nucleus, therefore 

it is the d-electrons that make transition metals, special. The importance of transition 

metal chemistry is evident by the three Nobel prizes in chemistry to Ei-ichi Negishi, 

Akira Suzuki and Richard F.Heck for their pioneering work on the development of Pd-

catalyzed cross-coupling reactions. 

At the beginning of the 20th century, Fritz Ullmann and Irma Goldberg started off their 

pioneering work on copper catalyzed coupling reactions for the formation of aryl-C, aryl-

O and aryl-N bonds. For the very first time they used unactivated aryl halides⁴⁷⁻⁴⁹. 

Ullmann was the first one to carry out copper catalyzed diaryl ether synthesis⁴⁷ᶜ while 

copper catalyzed aryl amination and aryl amidation were both carried out by Goldberg³⁶, 

unintentionally using bidentate-coordinating substrate (Scheme 1.1). 
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 Cu, K

2-2.5hrs,210 oC

Br

90% (Ullmann,1905)

NH2

H
N

 Cu,K2CO3

3hrs,210 oC

Br
Ph-NO2

CO2HCO2H

99% (Goldberg,1906)

 Cu,NaOAc

3hrs,210 oC

Br
Ph-NO2

OH O

N
H

OH O

NH2

56% (Goldberg,1906)

OH
O

 

Scheme 1.1 Ullmann ether synthesis, Goldberg amination and Goldberg amidation 

These reactions found their way into a number of industrial applications. However harsh 

reaction conditions particularly high temperatures have always been major restrictions of 

Ullmann and Goldberg protocol⁴⁷᾿⁴⁸. Most importantly with the evolution of green 

chemistry, the use of stoichiometric amount of copper, a heavy metal, in order to obtain 

high yield must be considered a major drawback⁵⁰. 

1.4. Palladium-Catalyzed Amination Reactions 

At the end of last century, the palladium based methodologies set out to solace the 

synthetic problems faced by the copper based approaches, initiated by Migita and mainly 

pushed by the efforts of Buchwald and Hartwig. Through the numerous efforts of these 

and other research groups, palladium catalysis came out to be the most sustainable and 

robust method for carrying out carbon-heteroatom bond formations⁵¹⁻⁵⁵. 

In 1983, Migita, Kosugi and co-workers carried out Pd (0)-catalyzed amination of 

bromobenzenes using tin amides as nucleophiles⁵⁶ (Scheme 1.2). 
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NBu3Sn N

PdCl2(P(o-tolyl)3)2

C6H5CH3 , 100 oC

16-81% Yield

Br

RR

 

Scheme 1.2. First example of Pd-catalyzed aryl amine coupling 

In 1984, Dale L. Boger and James S. Panek reported an example of C-N bond formation 

while working on the synthesis of lavendamycin making use of stoichiometric 

Pd(PPh₃)₄⁵⁷ (Scheme 1.3.). 

N COOMeMeOOC

H2N CH3

Br

N

HN
CH3

COOMe
MeOOC

1.5eq Pd (PPh3)4

THF, 80 oC, 21h

84%  

Scheme 1.3. Pd-catalyzed synthesis of lavendamycin 

Buchwald and Hartwig in 1984, independently developed Pd (0)-catalyzed reactions 

which directly employed amines as nucleophiles in the presence of bases to synthesize 

variously substituted amines. These Pd-catalyzed amination reactions are popularly 

recognized as Buchwald-Hartwig amination reactions⁵⁸ (Scheme 1.4). 

Br NHR2 NR2

PdCl2(P(o-tolyl)3)2
or

Pd2(dba)3

NaOtBu or LiHMDS

Toluene or THF

55-100 oC

R R

55-88% Yield  

Scheme 1.4. Buchwald-Hartwig amination reactions 

Buchwald and Hartwig,in their initial work, got succeeded to carry out amination of 

bromoarenes via secondary amines but found that, amination using primary amines was 

problematic due to the side reactions involving bis-arylation and β-hydride elimination. 
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Studies were therefore carried out to develop new ligands in order to solve these 

problems. Discovery of bidentate-phosphine ligands came out to be a major breakthrough 

in the development of palladium-catalysis⁵⁹᾿⁶⁰. Buchwald and Hartwig reported vast 

improvement in yield and scope by the use of phosphine ligands (Scheme 1.5). 

Me

Br

MeO

n-HexNH2 BINAP, NaOtBu

  toluene, 80 oC

          6h

Pd2(dba)3

Me

MeO

H
N

Hex

95%

Me

Br

BINAP, NaOtBu

  toluene, 80 oC

         4h

Pd2(dba)3

Me

N

Me

NMeHN

NMe

Me

98%

Br

     NaOtBu

toluene, 100 oC

         3h

(dppf)PdCl2

Ph

O

H2N
CH3

CH3

H
N

Ph

O

CH3

CH3

84%

Scheme1.5. Pd-catalyzed amination of bromoarenes 

 

Fe

P

P

dppf

PPh2

PPh2

BINAP
 

 

Figure 1.3. Structures of phosphine ligands 
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Buchwald proposed the ineffectiveness of mono-dentate ligands in the amination 

reactions of aryl iodides because they resulted in the formation of more stable iodide 

dimmers. Some experiments suggested that the steric difference of Br and I is also 

important (Figure 1.4). Pd-P and Pd-C rotation barriers were found to be greater for the 

large sized halides⁶¹. 

Pd

Pd

ArL

Ar L

Pd

Br Br

Pd

ArL

Ar L

I Imore labile than

 

Figure 1.4. Palladium dimmers in catalytic cycle 

Moreover nucleophilic bases tend to cleave triflates into phenols at the rate competitive 

to reductive elimination⁶² (Scheme 1.6). 

OTf Pd2(dba)3 / P(o-tolyl)3

H
N

< 5% Yield

H3CO H3CONaOtBu, toluene

reflux

H2N

OTf Pd2(dba)3 / P(o-tolyl)3
N

HN

< 5% Yield

Me MeNaOtBu, toluene

reflux

 

Scheme 1.6. Pd-catalyzed amination of triflates 

The solution for these two challenging substrates (aryl iodides and triflates) lied in the 

use of bidentate phosphine ligand⁶³⁻⁶⁵ (Scheme 1.7, 1.8). 
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OTf Pd2(dba)3 / dppf
H
N

 92% Yield

H3CO
H3CONaOtBu, toluene

85 oC

H2N

OTf Pd2(dba)3 / dppf N

HN

75% Yield

Me Me
NaOtBu, toluene

85 oC
 

Scheme 1.7. Pd-catalyzed amination of triflates using dppf ligand 

I Pd2(dba)3 / BINAP
H
N

 88% Yield

H3C H3CNaOtBu, toluene, r.t

H2N

Pd2(dba)3 / BINAP N

 90% Yield

t-BuNaOtBu, Dioxane, r.t

I

t-Bu

HN
Ph

Me

Me

 

Scheme 1.8 Pd-catalyzed amination of substituted iodobenzenes using BINAP ligand 

 Due to the tremendous efforts made by Buchwald and Hartwig, and through the 

numerous contributions made by other research groups Pd-catalysis got developed as the 

most sustainable and robust methodology for carrying out C-C and C-heteroatom bond 

transformations and ligand designing played a major role in this development⁶⁶ (Figure 

1.5). 
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Figure 1.5. Structures of carbene and phosphine based ligands used in Pd-catalysis 

Although the palladium based methodologies are much developed to date, yet it is not 

rare to find the substrates that are not compatible with Pd-catalysis. There are also certain 

functional groups that are not tolerated in Pd-based methods such as amides, alcohols and 

carboxylic acids. Apart from these, other drawbacks include high cost of palladium, air 

and moisture sensitivity⁶⁷ of the ligands used and difficult removal of palladium residues 

during the workup of the reaction⁶⁸. 

All above mentioned deficiencies of palladium, prompted researchers to think of some 

other alternatives of this expensive methodology, so they started considering Nickel and 

Copper once again. 

1.5.  Nickel as a Catalyst in Cross Coupling Reactions 

Nickel-catalysis has seen tremendous development during the last decade⁶⁹. Certain key 

properties of nickel such as ease of access to multiple oxidation states and facile 

oxidative addition have resulted in the development of a range of innovative reactions. 

In 1972 Kumada⁷⁰᾿⁷¹ and Corriu independently reported the cross-coupling of C (sp²)-

halides using organometallic compounds, thus by employing Nickel phosphine as a 

catalyst the reaction of chlorobenzene with EtMgBr resulted in almost quantitative yield 

of the product (Scheme 1.9). 
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Cl

EtMgBr

NiCl2(dppf)
  (1 mol%)

THF , reflux , 24h

Et

98%  

Scheme 1.9. Ni-catalyzed alkylation of chlorobenzene 

Nickel catalysts are inexpensive and show high efficiency even when used with less 

reactive substrates in cross-coupling reactions. For instance, desired biaryl product was 

obtained in good yield by the NiCl₂(dppf) catalyzed cross-coupling of aryl borates with 

aryl chlorides/mesylates in the presence of butyl lithium, phosphines or zinc metal as a 

co-reductant (Scheme 1.10). 

B(OH)2 Cl

OMe OMe

NiCl2(dppf) , 4BuLi

K3PO4 , Dioxane

80 oC
94%  

Scheme 1.10. Ni-catalyzed coupling reaction of aryl borates with aryl chlorides 

Aryl arenesulfonates and aryl mesylates are cross-coupled with aryl boronic acids in 

Suzuki type cross-coupling reactions in dioxane or THF, using Ni (0) as a catalyst. Ni (0) 

possesses higher nucleophilicity than Pd (0), hence arenesulfonates and aryl mesylates, 

despite of their low reactivity undergo oxidative addition in presence of Ni (0) 

complexes⁷². The Ni (II) species that results from oxidative addition reacts with another 

aryl mesylate in the presence of zinc to form symmetrical homocoupled biaryls (Scheme 

1.11). 

C

NiCl2(PPh3)2 , Zn

Et4 Ni , THF

67 oC , 10h

OMs

H3C

O

C

H3C

O

C

O

CH3

> 99%  

Scheme 1.11. Homocoupled biaryls synthesis using NiCl₂(PPh₃)₂ as catalyst 

In 1995 Percec′s group reported that a catalyst comprising of Ni(0) species incorporating 

the 1,1′-bis(diphenylphosphino)ferrocene, this dppf ligand is effective in carrying out 



15 
 

cross coupling reactions⁷³. Thus by using 10 mol% NiCl₂ (dppf), 3.0 equivalents of 

K₃PO₄ and 1.7 equivalents of Zn in presence of THF at 67 ᵒC, moderate yields were 

obtained with high selectivity (Scheme 1.12). 

B(OH)2C

NiCl2(dppf) , Zn

K3PO4 , THF

67 oC , 24h

OMs

H3C

O
C

H3C

O

51%  

Scheme 1.12. Ni-catalyzed cross-coupling reaction of aryl borate with aryl mesylate 

Homocoupled product was formed only in traces. Thus by only a slight change in 

reaction conditions that is substitution of dppf for PPh₃ along with addition of K₃PO₄ and 

phenyl boronic acid virtually closed the pathway leading towards homocoupled product. 

This result is a first example of making use of Ni catalyst in Suzuki reaction.  

Ni catalyzed Kumada reaction was also reported in 1995 by the Percec′s group⁷⁴ (Figure 

1.6).  

OMs XMg
R R'

NiCl2(dppf)

Zn , THF , r.t , 10h R R'

R= p-CH3, O-CH3, p-OCH3

R'= p-CH3, O-CH3, p-OCH3

X= Br, I

X= Br, 46% X= Br, 53%

CH3 OCH3

 

Figure 1.6. Scope of Ni-catalyzed kumada reaction 

In 2001, Herrmann′s group reported the first successful cross-coupling of C-F 

electrophile⁷⁵ (scheme 1.13). 
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F BrMg

R1 R2

N N

BF4

5 mol% NiII(acac)2 + L

THF , r.t , 18h R1 R2

38-98%

L  

Scheme 1.13. Ni-catalyzed cross-coupling reaction of substituted flourobenzenes 

Nickel catalyzed aryl amination has received much less attention as compared to Pd-

catalyzed amination reactions. Majority of the reported reactions need reducing agents 

which are incompatible with many functional groups. 

The reaction of pyrrolidine with 1-chloro-4-trifluoromethylbenzene in the presence of 

catalytic amount of Ni(acac)₂ and 1,10-phenanthroline, employing 

polymethylhydrosiloxane (PMHS)⁷⁶ as a reducing agent yielded  84%  product (Scheme 

1.14). 

HNClF3C NF3C

NN

Ni(acac)2 (0.1 mol%)

Ligand (0.2 mol%)

NaOtBu (1.4 equiv)

PMHS (0.8 equiv)

Dioxane , 100 oC , 12h
84% Ligand

 

Scheme 1.14. Ni-catalyzed arylation of pyrrolidine in presence of phenanthroline 

Triarylamines were synthesized by the reaction of aryl bromides/ iodides with diaryl 

amines using Ni as a catalyst. In this reaction Ni (0)-Ni (II) shuttle in catalytic cycle and 

can be affected by the Ni(II)-(δ-aryl) complexes/ PPh₃/ NaH system for the cross-

coupling reaction⁷⁷ (Scheme 1.15). 
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N
Ar

Ar
H X

R

N

R

Ar

Ar

Ni(PPh3)2(1-naphthyl)Cl
          
            (5 mol%)

PPh3(10 mol%)

NaH , Toluene  

Scheme 1.15. Ni-catalyzed triarylamines synthesis 

1.6.  Copper as a Catalyst 

Copper has been an ancestor of palladium in cross coupling reactions. Copper catalyzed 

Ullmann and Goldberg reactions served well for C-O, C-N and C-S bond formation⁷⁸. 

However, copper suffered an increased degree of neglect after the tremendous 

development of palladium catalyzed processes⁷⁹᾿⁸⁰. Synthesis of arylamines by Ullmann 

and Goldberg reaction was the last stronghold of copper, which was also captured by the 

robust development of Pd-catalyzed amination reactions. However, it was not that easy to 

get rid of copper. Its earth abundance, ease of handling, stability and most importantly 

low price present it as a better alternative of palladium which is evident by a steady 

increase in its use during the last few years. Copper can help carrying out cross-coupling 

reactions in a way quite similar to palladium further it is more useful and versatile than its 

closest neighbour in the periodic table that is nickel. 

For copper, the ease of accessibility to four oxidation states from 0 to +3 is the major 

character that distinguishes it from palladium which exists in only two stable oxidation 

states, 0 and +2. Palladium can also exist in +1, +3 and +4 oxidation state but these are 

extremely rare and play no significant role in coupling reactions⁸¹. Most likely, +1 and +3 

oxidation states serve the catalytic cycle of copper in cross coupling reactions. Another 

notable feature of copper is its accessibility to odd-electron state which implies that 

copper can also take part in redox single electron processes, so an alternative free radical 

mechanism must also be considered. Sandmeyer reaction is believed to follow such 

mechanism where arenediazonium salts are used as electrophilic reagents in copper 

mediated nucleophilic substitution reactions.⁸²⁻⁸⁵ 
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RX   +   Cu (I)    →   R ̇ + X⁻ + Cu (II) 

R ̇    +    Nu⁻      →    RNu    +    e⁻ 

One of the drawbacks of classical Ullmann and Goldberg reaction was the poor solubility 

of copper salts in the reaction medium.  Certain observations made by scientists led to the 

idea that traditional copper-based protocols could be improved if copper could be made 

more soluble in the reaction medium. Some of the observations are enlisted over here: 

1) Harold Weingarten, in 1964 reported that, in the coupling of potassium phenoxide 

and bromobenzene, presence of a diester as an impurity in the solvent lead to an 

increased reaction rate⁸⁶. He believed that this diester helped making copper 

soluble in reaction medium. 

2) In 1987, Paine reported that soluble cuprous ions are catalytically active species 

in Ullmann reaction⁸⁷. 

3) In 1993 Capdevielle noticed increased rate of copper-catalyzed methanolysis of 

aryl bromides by the use of various esters⁸⁸. 

All these observations show that it is very much possible to increase the yield of classical 

Ullmann reaction by carefully controlling the conditions. 

Buchwald in 1997 reported the cross-coupling of aryl bromides with phenols using 

toluene as a solvent at 110 ᵒC. He used soluble copper complex, copper (I) 

trifluromethanesulfonate-benzene with ethyl acetate and 1-naphthoic acid as the additives 

and Cs₂CO₃ was employed as a base⁸⁹. This synthesis of diaryl ethers is exemplified by 

the following aspects: 

a) Use of copper in catalytic amount rather than stoichiometric amount, used for 

traditional copper-based methodologies. 

b) The use of expensive and air sensitive ligands is avoided, required in palladium-

based catalysis. 

In 1999, rate enhancement effects of 1, 10-phenanthroline was reported in the copper-

catalyzed synthesis of triarylamines by Goodbrand⁹⁰. 
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Based on these observations the researchers started considering use of Cu(I) complexes 

as catalysts for cross-coupling reactions. These complexes bear ligands that have been 

proved to be effective as additives in copper catalyzed coupling reactions as well as these 

complexes are soluble in variety of organic solvents, helping to increase the solubility of 

copper in reaction medium. 

1.6.1. Copper Catalyzed C-O Bond Formation 

In 1998, research groups of Chan⁹¹, Evans⁹² and Lam⁹³ independently reported the 

copper assisted arylation reactions for the formation of C-N and C-O bonds. These 

groups successfully devised milder methods for the construction of these C-heteroatom 

bonds (Scheme 1.16).  

XH B

OH

HO

R

X

R

Cu(OAc)2

Base

Solvent

1-4 days
X= O, NH  

Scheme 1.16.Cu-catalyzed C-heteroatom bond formation 

They discovered new conditions showing that, the use of Cu (OAc)₂,  heteroatom donor 

and boronic acid, were ideal to effect  classical Ullmann condensation. Chan and co-

workers reported four examples of the synthesis of unsymmetrical tri-substituted diaryl 

ethers using two phenolic substrates. Both of these phenolic substrates underwent 

efficient cross-coupling with ortho substituted, electron-rich and electronically-poor 

boronic acids (Scheme 1.17). 
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OH B

OH

HO

R

O

R

Cu(OAc)2

NEt3CH2Cl2 ,

r.t

(1-2 equiv)

R= H, Me, OMe
40-73%

OH B

OH

HO

F

O

F

Cu(OAc)2

NEt3CH2Cl2 ,

r.t

(1-2equiv)

78%

Cl

I I

Cl

 

Scheme 1.17. Cu-catalyzed arylation of substituted phenols 

Evans and co-workers further evaluated the limitations and scope of the new 

stoichiometric copper-assisted procedure⁹⁴ (table 1.1). 

Table 1.1 Optimization of conditions for arylation of 4-i-propyl phenol 

OH B

OH

HO
OCu(OAc)2

NEt3CH2Cl2 ,

r.t

(1.0 equiv)

22-71%

(1-10 equiv)

4 Å M.S ,
1.0 equiv

Cu(OAc)2Atmosphere

Ar

Ar

air

air

O2

NEt3 equiv.

5

1

10

1

10

equiv.

1

1

1

1

1

22

34

41

71

71

Yield %

 

They confirmed that reaction conditions mentioned above worked well in most of the 

cases. They reported that Cu(OAc)₂ was an optimal Cu(II) source and the use of other 

copper salts such as Cu(NO₃)₂, Cu(OCOCF₃)₂, Cu(OPiv)₂ and Cu(acac)₂ resulted in 
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inferior results. Neither did the use of CuCl₂, Cu(ClO₄)₂, Cu(OTf)₂ and CuSO₄  resulted 

in the formation of significant coupled product. It was observed that during the progress 

of the reaction significant amount of diphenyl ether and phenol were produced which 

might be due to the formation of water molecules during the course of reaction. Boronic 

acid could be the reason of this water formation. Boronic acid forms trimeric triaryl 

boroxine that may then take part in the reaction. Thus use of molecular sieves results in 

yield enhancement. It was reported that all type of electronically and structurally diverse 

phenols and boronic acids underwent efficient cross-coupling reactions to afford products 

in almost quantitative yields (table 1.2).  

Table 1.2. Scope Cu-catalyzed diaryl ether synthesis 

OH B

OH

HO
O

Cu(OAc)2

NEt3CH2Cl2 ,

r.t

(1.0 equiv)

52-95%

(1-2 equiv)

4 Å M.S ,

R1 R2 R1 R2

 

NEt3 equiv.

95

87

85

70

Yield %R1 R2

p-tBu

p-tBu

p-tBu

o-Cl

o-Cl

o-Cl

o-OMe

o-OMe

o-OMe

H

p-Me

p-OMe

H

p-Me

p-F

p-F

p-OMe

o-Me

95

61

97

82

52

1.5

2.0

2.0

2.0

1.0

2.0

1.0

2.0

1.0

 

Sharpless, Petrassi and Kelly reported that N-hydroxyimides can also participate as 

nucleophilic reaction partner in copper-assisted arylation reactions. Coupling of various 

boronic acids with N-hydroxyimides was investigated at slightly modified conditions 

using 1,2-dichloroethane as a solvent with ambient air and molecular sieves. The coupled 
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product could be further converted to corresponding o-arylhydroxylamine after 

hydrazinolysis in methanol⁹⁵ (scheme 1.18). 

B

OH

HO
Cu-salt

pyridineC2H4Cl2 ,

r.t

(1.0 equiv)

4 Å M.S ,

N

O

O

OH N

O

O

O

R

R

NH2NH2

MeOH/CHCl3

RO
H2N

2.0 equiv

R= OMe    99%

R= CF3      77%  

Scheme 1.18. Cu-catalyzed arylation of N-hydroxyimides and synthesis of o-

arylhydroxylamine 

The potential for the catalytic variant was observed during the synthesis of product (A). 

The product was obtained in low yield by using catalytic amount of Cu(OAc)₂ in DCM, 

in the presence of triethylamine under argon or oxygen⁹⁶ (scheme 1.19). 

OH B

OH

HO
OCu (OAc)2

NEt3CH2Cl2 ,

4 Å M.S , r.t

(10 mol%)

(A)  

Scheme 1.19. Diaryl ether synthesis using copper in catalytic amount 

Lam and co-workers made an improvement in the catalytic version by using a co-oxidant 

in the cross-coupling of p-tolylboronic acid with the phenol (B). The best yield (79%) 

was obtained when oxygen was used as oxidant however, it was also possible to use [{Cu 

(μ-OH) (TMEDA)}₂]Cl₂/oxygen,  pyridinium N-oxide (1.1equiv)/air or TEMPO (1.1 

equiv)/air in the presence of Cu(OAc)₂⁹⁷ (scheme 1.20). 
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OH B
HO

OH
O

10-20 mol% Cu salt

Pyridine , CH2Cl2

r.t ,  4 Å M.S

TEMPO, air, PNP, O2

2.0 equiv(B)  

Scheme 1.20. Cu-catalyzed diaryl ether synthesis aided by co-oxidant 

Lam and co-workers reported that vinyl boronic acids could also function as coupling 

partner in C-O bond forming reactions⁹⁷ (Scheme 1.21). 

OH OCu(OAc)2

NEt3CH2Cl2 ,

r.t

(1.1 equiv)

67%
4 Å M.S ,2.0 equiv

co-oxidant: air

B
HO

OH

 

Scheme 1.21. Cu-catalyzed cross-coupling reaction of styryl boronic acid 

1.6.1.1. Aryl Halides as Aryl Donors in C-O Bond Formation 

The introduction of Cs₂CO₃ as a base by Buchwald and co-workers for Ullmann 

arylation has led to much better results and much better procedures for diaryl ether 

synthesis by the coupling of aryl bromides or iodides with variety of phenols⁹⁸. Ethyl 

acetate was found to be necessary as catalytic additive in these reactions. An equimolar 

amount of 1-naphthoic acid was required for the reaction of unreactive phenols. 

Transformation was greatly facilitated by the use of molecular sieves. Arylation of 

hindered or less reactive phenols via unactivated aryl halides was now possible under 

these new conditions (Figure 1.7). 
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Figure 1.7. Scope of Cu-catalyzed diaryl ether synthesis 

Use of 2,2,6,6-tetramethylheptane-3,5-dione (TMHD) as an additive along with Cs₂CO₃ 

as a base, resulted in high reaction rate of Cu-catalyzed diaryl ether synthesis⁹⁹. The 

ligand, TMHD worked well with Cs₂CO₃ while gave no significant results with other 

bases (figure 1.8). 
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Figure 1.8. Scope of Cu-catalyzed diaryl ether synthesis using TMHD as a ligand 
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1.6.2.   Copper-Catalyzed C-N Bond Forming Reactions 

Copper-assisted arylation of amines has been known for a century, as classical Ullmann 

reaction¹⁰⁰. This reaction required harsh conditions such as prolonged heating and long 

reaction time in presence of Cu(I) or Cu(II) salt, Cu bronze or oxides of Cu in polar high 

boiling solvents. Emergence of Pd-catalyzed amination was a major breakthrough in the 

chemistry of amines. A resurgence of interest in more practical and much cheaper Cu-

catalysis has been brought about by the use of variety of ligands which can modulate the 

reactivity of a catalyst and thus make it possible to achieve more effective and versatile 

catalytic system. 

1.6.2.1.  Boronic Acids as Aryl Donors in Cu-Catalyzed C-N Cross 

Coupling Reactions 

Chan-Evans-Lam coupling had been applied in the cross-coupling reactions of nitrogen 

containing heterocycles and resulted in a good yield of N-arylated heteroarenes (Scheme 

1.22).This reaction could be carried out under mild reaction conditions and in the 

presence of air. Use of DMF as a solvent gave good yield as compared to DMSO, ethyl 

acetate and toluene¹⁰¹. 

N
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R N
N
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r.t, air, 2 day
1 eq R = CF3     71%

       CH3    72%
       CH3O  62%

 

BR
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N
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R N
N

R = CF3     45%
       CH3    76%
       CH3O  64%

 

Scheme 1.22. Cu-catalyzed C-O cross coupling reactions of hetero aryls 
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Enantiomerically pure α-amino esters when treated with p-tolylboronic acid using 

Cu(OAc)₂ as a catalyst under mild reaction conditions give Enantiomerically pure 

product at room temperature¹ᵒ² (Scheme 1.23). 

B

H3C
H3C

H
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OH
O

O

H2N O

OR CH3
R

CH3Cu(OAc)2

NEt3, DCM

Yield: 17-67%

ee: 93.9-99.8%  

Scheme 1.23. Cu-catalyzed arylation of α-amino esters 

9-N-purines react with arylboronic acids to yield antimicrobial purines in the presence of 

Cu(OAc)₂ and molecular sieves. Phenanthroline is used as a ligand in this reaction¹ᵒ³. 

Electron donating and electron withdrawing groups on arylboronic acid are tolerated very 

well (Scheme 1.24). 

N

N N
H

N

Y

X

B

R1

R2

OH

HO

Cu(OAc)2 (1 equiv)

Phenanthroline (2 equiv)

4 Å M.S

DCM, r.t, 4 days

N

N N

N

Y

X

R2
R1

N

N N

N

R2
R1

O

Antimicrobial Purine  

Scheme1.24. Cu-catalyzed synthesis of antimicrobial purines 
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1.6.2.2.  Aryl Halides as Aryl Donors in Cu-catalyzed C-N coupling Reactions 

The most important contribution for the introduction of general Ullmann type reaction of 

amines was made by Buchwald and co-workers¹⁰⁴ᵃ. The first modern version was the 

reports that the arylation of imidazoles could be efficiently catalyzed by Cu (OTf)₂ which 

rejuvenated the area of research as indicated by an enrichment of scientific literature by 

increasing number of reports¹⁰⁴ᵇ (Figure 1.9). 

X
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R1 R2

Cu(OTf)2.C6H6(10 mol%)
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dba(10 mol%), Cs2CO3
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N
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N

N

N

N

N

N

N

N

N

N

N

N

MeO

F3C

97% 96% 94%

91%94%62%
 

Figure 1.9. Scope of Cu-catalyzed arylation of imidazole 

“Hole conducting” triaryl amines were prepared by Goodbrand and Hu in presence of 

[Cu(phen)(PPh₃)Br] as an accelerating ligand¹⁰⁵ (scheme 1.25). 
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Scheme 1.25. [Cu(phen)(PPh₃)Br] catalyzed synthesis of triaryl amines 

A significant breakthrough in the modified Ullmann condensation was brought about by 

Fukuyama and co-workers. They reported an efficient intramolecular cyclization rout to 

tetrahydroquinoline (C) and dihydroindoles (D) at room temperature by using a 

combination of CuI and CsOAc¹⁰⁶ (Scheme 1.26). 
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Scheme 1.26. Cu-catalyzed intramolecular C-N coupling reactions 
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Venkataraman reported the use of soluble and air-stable Cu (I) catalysts E and F in the 

synthesis of triaryl amines from diaryl amines¹⁰⁷. The synthesis of these stable copper 

complexes was inspired by the observations that soluble cuprous ions are the active 

catalytic species in Ullmann condensation reactions (figure 1.10). 

N N

Cu

BrPh3P

(E)

N N

Cu

BrPh3P

(F)

 

Figure 1.10. Complexes of copper salts with phenanthrolines 

In mediating N-arylation the catalyst F was found to be twice as efficient as catalyst E 

and its use was reported in triaryl amines synthesis (Scheme 1.27). 
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Scheme 1.27. [Cu(neocup)(PPh₃)Br] catalyzed triaryl amine synthesis 

A systematic study was carried out on mono and bidentate ligands 1-21 for their ability to 

form active copper catalyst with CuI in the reaction of aniline with iodobenzene for the 

synthesis of triphenylamine (Scheme 1.28). 
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NH2 I N
H
N

CuI(5 mol%)

Ligand(10 mol%)

KOtBu, Toluene

135 oC, 14h desired product byproduct  

Scheme 1.28. Cu-catalyzed arylation of aniline to form triphenylamine 

Amongst all these ligands, pyridines and quinolines were shown to be less efficient 

ligands. PPh₃ accelerated the reaction rate only when PPh₃ /Cu ratio was greater than 2:1 

while the dppf came out to be the most efficient ligand amongst all chelating 

bisphosphanes. The highest yield and selectivity was obtained in the presence of 2, 2′-

bipyridine (Figure 1.11). 
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Figure 1.11. Collection of mono and bi-dentate ligands used for the synthesis of 

triphenylamine 

In 2002 Buchwald and co-workers made a significant breakthrough in the aryl amidation 

reaction, classically known as Goldberg reaction. They introduced diamines as ligands 

for the amidation of aryl iodides and bromides¹⁰⁸. These diamine-based ligands are the 
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most popular and efficient amongst all the ligands that have been designed so far (Figure 

1.12). 
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Figure 1.12. Diamine-based ligands 

The diamine skeleton has pronounced effect on the ability to facilitate copper-catalyzed 

coupling reactions¹⁰⁹. The steric bulk and degree of substitution on the diamine play the 

most critical role in bringing about the aryl amidation. The N, N′-dimethyl ethylene 

diamine (24) and N, N′-dimethyl cyclohexane diamine (32) show the higher 

activity¹⁰⁹᾽¹¹⁰as compared to the unsubstituted ones. The presence of bulky substituents 

such as ethyl and isopropyl group hinders the activity.  An increase in the number of 

substituents on nitrogen centre renders the ligand completely inactive e.g. tetramethyl 

ethylene diamine (TMEDA) (Figure 1.13). 
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Figure 1.13. Critical features of diamine-based ligands 

The nature of the base plays the most important role in the amidation of aryl iodides and 

bromides. Amidation of aryl iodides proceeds best in the presence of K₃PO₄ while the 

aryl bromides react faster when K₂CO₃ is employed as a base¹¹¹. The obvious reason 

behind this interesting phenomenon is the fact that the rate of deprotonation of amide 

must be equal to the rate of amidation reaction. If deprotonated amide is formed in excess 

it would hinder the catalytic cycle presumably due to the formation of an unreactive 

multiply ligated cuprate complex (figure 1.14). 
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Figure 1.14. Formation of multiply ligated cuprate complex 

Buchwald and co-workers also reported that diamine-based ligands help increasing the 

reaction rate of C-N coupling reactions by preventing the multiple ligations of amide to 

the copper¹¹²⁻¹¹³ thus inhibiting copper from catalyst poisoning (figure 1.15). 
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Figure 1.15. Mechanism followed by diamine-based ligands 
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Buchwald and co-workers also reported the N-arylation of indoles, using a diamine-based 

ligand i.e. trans-N,N-dimethyl cyclohexane diamine¹¹⁴. All the desired products were 

obtained in good to excellent yield. 
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N N
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Figure 1.16. Scope of Cu-catalyzed N-arylation of indoles using trans N, N-dimethyl 

cyclohexane diamine as a ligand 

Variety of diols has been reported to efficiently act as ligands for copper-catalyzed C-N 

coupling reactions. 

 



36 
 

HO OHHO OH HO
OH

HO Me

OH

HO OMe

OH

O

OH

HO OH

OH

OH

HO
OH

HO

OH

OH

 

Figure 1.17. A collection of diol-based ligands used in Cu-catalyzed reactions 

Amongst the diol ligands, the ethylene glycol was reported to be the most efficient one. 

All the products were obtained in good yields without any need to protect reaction 

mixture from moisture and air. 

NH2

I

H
N

CuI (10 mol%)

Ligand (200 mol%)

K3PO4 (200 mol%)

i-PrOH, 80 oC, 18h

HO OH

Ligand

N
H

N
H N

H
N
H

N
H

Me

O
N

Cl

HO

84% 97% 79%

95% 70%  

Figure 1.18. Scope of Cu-catalyzed N-arylation of iodobenzene using ethylene glycol as 

ligand. 

Buchwald and co-workers reported a range of phenol ligands for the N-arylation of 

primary alkyl amines¹¹⁵ (Figure 1.19). 
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Figure 1.19. Collection of differently substituted phenol-ligands 

N, N-diethylsalicylamide (46) was observed to be the most efficient amongst all the 

phenol ligands that were screened, in terms of yield and conversion. Variety of heteroaryl 

and ortho-substituted substrates gave satisfactory yields (Figure 1.20). This method 

worked well for primary amines but secondary amines gave poor yields under these 

conditions.  Both K₂CO₃ and K₃PO₄ were found to be effective but the use of amine 

bases such as DBU and DABCO resulted in poor results. 
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Figure 1.20. Substrate scope of Cu-catalyzed N-arylation of differently substituted 

iodobenzenes using phenol ligand 

Coupling of aryl halides has also been reported with α-amino acids¹¹⁶. The accelerating 

effect of these α-amino acids has allowed Ullmann condensation to take place at lower 

temperatures than those under classical experimental conditions (Figure 1.21). 

 

 

 

 



39 
 

I

H2N COOH

R
H
N

COOH

RCuI (10 mol%)

K2CO3 (150 mol%)

DMA, 90 oC, 48h

H
N

COOH

H
N

COOH

H
N

COOH

H
N

COOH

H
N

COOH

OH

SMe

NH

92%

60%

76%

73%

81%

 

Figure 1.21. Cu-catalyzed arylation of α-amino acids 

1, 4-diiodobenzene was reported to be a good electrophile by Ma and co-workers in 

arylation reaction with β-aminoester (53). Although the reaction time was quite longer (2 

days) but it resulted in good yield and no diamination product was formed as a side 

product. The product (54) was used as a key intermediate in order to get (56) that were 

converted to martinellic acid, a natural product¹¹⁷ (Scheme 1.29). 
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Scheme 1.29. Cu-catalyzed arylation of β-amino ester leading towards the synthesis of 

martinellic acid 

Ma and co-workers reported that amino acids can also act as ligands for other 

nucleophiles instead of themselves, in C-N coupling reactions. Encouraged by this report 

W.Deng and co-workers in 2004 systematically studied the effects of amino acids as 

ligands in copper-catalyzed amidation reactions¹¹⁸. They screened seven different amino 
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acids for the arylation of caprolactam via iodobenzene. The yields they obtained for 

different ligands are given in the table 1.3. 

Table 1.3. Screening of different amino acids as ligands 

I
HN

O

N

OCuI ( 5 mol%)

ligand (20 m0l%)

K3PO4 (200 mol%)

Dioxane, 100 oC, 24h  

Amino acid Structure %Yield

Glycine
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Lysine
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H2N
OH

O

OH

O

NH2

OH

O

NH2

OH

O

NH2

OH

O

OH

O

H3C

NH2

HS

H2N

N
H

H2N

NH

H2N
-Alanine

97

92

98

99

99

97

 

Glycine was further used as a ligand to carry out coupling reactions of aryl halides with 

variety of different amides using 5 mol% CuI, 20 mol% glycine, 2 equivalent K₃PO₄ in 

dioxane at 100 ᵒC for 24 hours. Respective yields are shown in the table 1.4. 
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  Table 1.4   Yields of amidation reactions carried out using glycine as ligand 

Aryl Halide Amide %Yield

Cl

Br

I

H3CO

I

H3CO

I

H3CO

I

I

Br

HN

O

HN

O

HN

O

HN

O

HN

O

HN

O

O

NH2

H3C

26

62

98

71

98

93

95

 

 

Mechanism of copper-catalyzed coupling reactions is not very well understood¹¹⁹. 

W.Deng and co-workers have proposed the following mechanism for amino acid 

catalyzed coupling reaction. According to the mechanism, the role of ligand is either to 

stabilize the Cu (III) intermediate or to promote the oxidative addition aryl iodide to Cu 

(I) species. This mechanism also explains that why it is the amide nitrogen and not the 

amino group of amino acid, that participate in the coupling reaction. It is so because the 
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amide nitrogen in the Cu (III) complex is more reactive due to its anionic nature whereas 

the amino (NH₂) group of amino acid ligand is neutral¹¹⁸᾽¹¹⁹ (Figure 1.22). 
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Figure 1.22.Proposed mechanism of Cu-catalyzed arylation using amino acids as ligand 

1.7. Copper-Catalyzed C-S Coupling Reactions 

C-S bond forming reactions are much less studied transformations as compared to the 

literature available for the C-O and C-N coupling reactions. The need for the 

development of carbon-sulfur bond forming reactions is endorsed by the prevalence of 

diary sulfides in natural and synthetic compounds that exhibit activities against HIV, 

Alzheimer’s disease, cancer and asthma¹²⁰⁻¹²⁵. 
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Figure 1.23. Pharmaceutically important drugs containing C-S bonds as their integral 

part 

Methods used to synthesize aryl sulfides without the aid of transition metals are 

inefficient and exhibit low functional group tolerance. Some of these methods required 

nucleophilic aromatic substitution, nucleophilic attack on disulfides and metal-mediated 

reduction of disulfides. Transition metal catalysis has been realized to be an indispensible 

tool for the development of efficient methods to synthesize aryl sulfides. Two main 

challenges faced by the synthetic chemists, working with sulfur containing compounds 

are: 

a) Remarkable self-coordination ability of sulfur that results in the formation of 

diphenyl disulfide instead of desired product. 

b) Strong coordination of sulfur with the transition metal which plague the activity 

of metal catalyst and results in catalyst-poisoning¹²⁶. 

The progress to develop the catalytic systems which are able to withstand the catalyst 

deactivation is on its way. Over the last decade copper has emerged as a viable catalyst 

for carrying out C-S coupling reactions. Palomo and co-workers reported the use of CuBr 

with phosphazine base to catalyze the arylation of thiol, using iodobenzene¹²⁷. Despite of 

high catalyst loading and high cost of base this reaction was efficient and established the 

basis of Cu-catalyzed carbon-sulfur coupling reactions (Scheme 1.29). 
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Scheme 1.30. Cu-catalyzed arylation of thiol using phosphazine base 

The phosphazine was regarded as a special type of base that may also act as chelating 

ligand for copper. 

The first practical synthesis of aryl sulfides using Cu as a catalyst was reported by 

Buchwald. Ethylene glycol was used as ligand to stabilize copper during the course of 

reaction¹²⁸ (Figure 1.24). 
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Figure 1.24. Cu-catalyzed thioether synthesis using ethylene glycol ligand 

Ranu and co-workers reported a highly regioselective process for the arylation of thiols 

by using alumina-supported copper catalyst¹²⁹, which has previously been employed in 

the etherification and amination reactions. Under this protocol, reactivity of a copper 
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catalyst is significantly changed by simply changing the base. The use of Cs₂CO₃ allows 

the coupling of bromoarenes with thiols in the presence of aryl iodides. Switching the 

base to K₂CO₃ results in the chemoselective thiation of aryl iodides. This 

chemoselectivity is attributed to the ability of Cs₂CO₃, a strong base, to polarize the aryl 

bromide bond and allow Cu to undergo more facile oxidative addition. Notably, under 

these conditions, aryl amine is also not coupled with aryl bromide (Scheme 1.31). 
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Scheme 1.31. Cu-catalyzed arylation of thiol using alumina-supported copper catalyst 

A new reaction sequence for the arylation of sulfinic acid using aryl iodides to synthesize 

diaryl and methyl aryl sulfones was reported by Baskin and Wang¹³⁰. A wide range of 

functional groups are tolerated by this procedure but its scope is limited by the fact that 

aryl bromides do not react. The utility of this procedure relies heavily upon the ease of 

access to sulfinic acid salts (Figure 1.25). 
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Figure 1.25. Cu-catalyzed arylation of sulfinic acids 
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Chiosis et al. carried out S-arylation of 8-mercaptoadenine with iodoarenes using CuI-

Neocuproine system in DMF at 110 ᵒC¹³¹ (Figure 1.26). 
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Figure 1.26. Scope of S-arylation of 8-mercaptoadenine 

An efficient methodology for the arylation of thiols was developed by Shingare and co-

workers, using a tripodal ligand, tris-(2-aminoethyl) amine¹³² (Scheme 1.32). 
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X= I, Br

R1 = H, OCH3, CH3, Cl
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R1 R2

S

R1 R2

 

 

Scheme 1.32.Cu-catalyzed arylation of thiol using tris-(2-aminoethyl) amine as ligand 

Chen and co-workers reported N, N-dioxide as an effective ligand to carry out thiation of 

aryl iodides¹³³, using cesium carbonate as a base in DME at 80 ᵒC (figure 1.27). 
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Figure 1.27. Cu-catalyzed arylation of thiophenols using N, N-dioxide as a ligand 
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Concluding Remarks 

It is evident from literature survey that major development witnessed by synthetic organic 

chemistry is credited to transition metal catalysis. For the last few decades transition 

metal catalysis has emerged as one of the most indispensable tools for carrying out 

carbon-heteroatom bond forming reactions. Different methods utilize different transition 

metals as catalysts, among these Pd, Ni, Ru, and Cu are most extensively used to catalyze 

C-C and C-heteroatom bond forming reactions. Use of Copper salts as catalyst has been 

known for more than a century since the findings of Ullmann and Goldberg. However, 

copper chemistry had been neglected for an extended period of time after the stupendous 

development of palladium-based procedures. Deficiencies of Pd-catalysis forced 

synthetic chemists to reconsider copper as a catalyst of choice. Various research groups 

have put their efforts to make these classical reactions work under milder conditions, 

mainly by the use of ligands. Ligand designing has played a vital role in the ongoing 

progress of Cu-catalysis and most promising results in this field have been demonstrated 

by Buchwald research group. Although the ligand designing for Cu-catalyzed procedures 

is at its infancy, still a variety of ligands is available which could be used for an efficient 

C-O, C-N and C-S bond construction. 
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Plan of Work 

Taking into consideration, the coordination ability of 2, 6-pyridine dicarboxylic acid also 

known as dipicolinic acid (DPA), it was planned to work out a new class of ligands by 

exploiting this chelation ability of DPA and to contribute towards the growing avalanche 

of ligands for copper catalyzed C-N and C-S coupling reactions. This idea was made to 

work by the synthesis of mono-amides of dipicolinic acid and their subsequent use to 

carry out arylation of amides and thiols in order to check the scope of this catalytic 

system (Cu (I) / mono-amide of DPA). It was also aimed to find out the most efficient 

mono-amide after the careful screening of all the available mono amides and to optimize 

reaction conditions for this mono-amide. 

The present study consists of two parts. First part includes the arylation of cyclic and 

acyclic amides by mono and di-substituted iodobenzenes (modified Goldberg reaction) 
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Scheme 1.33. Cu-catalyzed arylation of cyclic amide 
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Scheme 1.34. Cu-catalyzed arylation of acyclic amides 

The second part includes the arylation of aromatic and hetero aromatic mono and bicyclic 

thiols by using the same variously substituted iodobenzens. 
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Scheme 1.35. Cu-catalyzed arylation of thiophenols 
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Scheme 1.36. Cu-catalyzed arylation of hetero aromatic mono cyclic thiols 
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Scheme 1.37. Cu-catalyzed arylation of bicyclic hetero aromatic thiols. 
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CHAPTER-2 

RESULTS AND DISCUSSION 

 

A wide range of compounds showing biological as well as many other useful properties 

contain either C-N or C-S bond as their integral part or sometimes a molecule comprises 

of both of these bond types. The prevalence of these bonds in a wide range of useful 

compounds demands mild, general and efficient methodologies for their construction. 

Classical Ullmann and Goldberg reactions for carbon-heteroatom bond synthesis could 

not gain much popularity to be used on large scale due to harsh reaction conditions. 

Development of the methodologies that could work under mild conditions was a major 

goal of synthetic chemists and accomplishment of this goal is largely attributed to the 

emergence of transition metal catalysis. Copper based procedures got neglected due to 

remarkable development of Pd-based methods.  High cost and limited scope of Pd-

catalysis helped copper, regain its lost field which was further backed by the observations 

that Cu-based methodologies could be made more efficient by increasing solubility of 

copper salts in the reaction medium. Observations that certain additives increase 

solubility of copper salts resulted in the deliberate addition of additives to increase yield. 

Since then different research groups have discovered and designed different classes of 

ligands that played a pivotal role towards the progress of Cu-catalysis and the process is 

still continued. Neutral bi- and tridentate chelators are used in variety of reaction 

protocols. The variety of donor combination include O, O-, N, N-, O,N-, N, O, N- and 

O,N,N- chelators. The wide choice of ligands increases the potential for optimization and 

fine-tuning of the given transformation. Apart from increasing solubility, ligands stabilize 

the metal catalyst during the course of reaction and control most of the properties of a 

metal-ligand complex. Phenanthrolines, amino acids, diol, phenols and diamine based 

ligands have been discovered so far for copper-catalyzed C-N and C-S coupling reactions 

and still there is much room for the development of inexpensive, experimentally simple 

and environmentally benign procedures. 
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2.1. Mono-Amides of Dipicolinic Acid 

Dipicolinic acid possesses high coordination power and is reportedly known to form 

complexes with transition metals and lanthanides¹³⁴. Amides of DPA are of great interest 

for their potential applications in catalysis and coordination chemistry and retain inherent 

chelation ability of DPA. Mono-amides DPA are quite rare but they show tremendous 

coordination ability. keeping in mind this high chelating power, we decided to use newly 

synthesized mono amides of dipicolinic acid as ligands for C-N and C-S cross coupling 

reactions, which were synthesized as novel compounds  by one of my seniors as a part of 

his research project¹³⁵ (Figure 2.1). 
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Figure 2.1. Mono-amides of Dipicolinic Acid 
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2.2.  Arylation of Amides (Modified Goldberg Coupling Reaction) 

The study of the use of mono-amides as new ligands for C-N and C-S coupling reactions 

began with the screening of all above mentioned amides for their coordination ability. 

2.2.1. Ligand Screening 

To carry out the ligand screening, cross coupling reaction of iodobenzene with 2-

pyrolidinone was used as a model reaction in the presence of 5 mol% CuI, 10 mol% 

ligand, 200 mol% K₂CO₃ in THF at 100 ᵒC for 24 hours.   

A controlled reaction was also setup under the same conditions as the model reaction but 

without the addition of any ligand. This controlled reaction gave no product and both of 

the reactants were present in the reaction mixture as such which showed that ligand is 

necessary for the successful completion of reaction and to get desired coupled product 

(Scheme 2.1). 

CuI (5 mol%)

K2CO3 (2 eq)

THF (0.5M)

24h100 oC ,
120 mol%100 mol%

I

HN

O

N

O

No Reaction

 

Scheme 2.1.  Controlled Reaction. 

The results of ligand screening showed that both, steric and electronic factors control the 

activity of mono-amides as ligands and there is always a compromise between these two 

factors in controlling the yield of a reaction e.g. mono-amide of butylamine gave highest 

yield while mono-amide of cyclohexyl amine resulted in only 15% yield the reason might 

be the steric hinderance faced by the metal during complex formation due to the axial 

hydrogens of cyclohexane ring.  Mono-amide of 2,4,6-trimethylaniline gave 36% yield 

while that of toluene resulted in 23 % yield, the reason might be the increased electron 

density due to three electron donating groups in case of 2,4,6-trimethylaniline. In case of 

mono-amide of 2,6-diethylaniline yield decreased to 29% as compared to ligand (a). 

Although ethyl group is more activating than methyl group but it also offers more steric 

hindrance during the course of reaction. Amongst anilines substituted at ortho position, 
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mono-amide of trifluroaniline gave highest yield as compared to ortho methoxy and 

ortho methylaniline; the reason might be the decreased steric hindrance in case of -CF₃ 

group due to small size of fluorine. The most anomalous behavior was shown by mono-

amide of o-chloroaniline. It resulted in highest yield as compared to p-chloroaniline while 

in case of flouroanilines, p-fluoraniline gave better yield as compared to o-fluoroanilines. 

diamide of DPA ( p) gave no reaction due to increased steric hindrance offered by two 

aromatic rings of aniline. .  Use of the mono-amide of ethylamine i.e. 6-(butylcarbamoyl) 

picolinic acid gave the coupled product in highest yield .Apart from using mono-amides 

of DPA as a ligands, diester of dipicolinic acid, diamide of dipicolinic acid and 

dipicolinic acid itself without any further modification were also investigated for their 

ligand activity. Diacid and diester resulted in quite low yield while use of the diamide as 

a ligand gave no reaction at all, probably due to high sterics. 

  (Scheme 2.3). 
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Figure 2.2. a) Model reaction b) results of ligand screening. 

2.2.2. Scope of Reaction 

Scope of the reaction was checked by the amidation of mono-substituted iodobenzenes, 

using mono-amide of butyl amine as a ligand (Figure 2.3). 
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Figure 2.3. Scope of arylation of 2-pyrrolidinone using mono-amide of butyl amine as 

ligand. 

Substitution of -NO₂ group on benzene ring resulted in good yield whereas the 

substitution of -OCH₃ group decreased the yield. The most obvious reason for this 

deference in yield is the fact that substitution of -NO₂ group on the benzene ring, makes 

the ring electron-deficient and hence make oxidative addition of copper-catalyst across 

Ar-I bond more facile. Amidation of 4-methoxy iodobenzene resulted in only 19% yield 

so it was decided to optimize reaction conditions for this substrate. 

2.2.3.  Reaction Conditions Optimization 

Amidation of 4-methoxy iodobenzene was optimized using 2-pyrolidinone 120 mol% and 

4-methoxy iodobenzene as a limiting reactant with 5 mol% CuI, 10 mol% ligand, 2 

equivalents of K₂CO₃ in THF solvent at 100 ᵒC for 24 hours, as initial conditions. 

Optimization was started with solvent screening. 

2.2.3.(a) Solvent Screening 

As the solvent plays a vital role in increasing or decreasing the efficiency of a reaction, it 

was decided to take start with solvent screening. Detailed literature survey showed that 

most commonly used solvents for C-N coupling reactions are toluene, THF, dioxane and 

DMF. We also performed solvent screening using these solvents (table 2.1). 
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Table 2.1.   Solvent screening for Cu-catalyzed amidation of 4-methoxy iodobenzene 

CuI (5 mol%)

Ligand-b (10 mol%)

K2CO3 (2 eq)

Solvent (0.5M)

24h100oC ,
120 mol%100 mol%

I
HN

O

N

O

H3CO H3CO

N

OH

O

HN

O

Ligand-b

 

ENTRY SOLVENT YIELD (%) 

1 THF 19 

2 Toluene 10 

3 Dioxane 17 

 

Use of toluene as a solvent resulted in decreased yield probably due to its non polar 

nature it was not able to completely solubilize the ligand which possesses a polar acid 

group. Dioxane and THF gave comparable yields. As THF gave relatively higher yield, it 

was decided to proceed temperature screening using THF as a solvent. 

2.2.3.(b)   Temperature Screening Using THF as a Solvent 

Temperature plays a very important role in determining the efficiency of the reaction. 

Increase in temperature generally increases the kinetic energy of molecules and hence 

reaction rate is also increased but sometimes increase in temperature results in decreased 

yield due the decomposition of any one of the components of reaction mixture. Thus it 

important to find out an optimum temperature for a given type of reaction. 
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Table 2.2.  Temperature screening in THF 

CuI (5 mol%)

Ligand-b (10 mol%)

K2CO3 (2 eq)

THF (0.5M)

24h

Temperature
120 mol%100 mol%

I
HN

O

N

O

H3CO H3CO
N

OH

O

HN

O

Ligand-b

 

ENTRY TEMP (ᵒC) YIELD (%) 

1 100 19 

2 110 15 

3 120 11 

 

Results of temperature screening showed that increasing temperature by 10 ᵒC resulted in 

decreased yield. Increasing temperature up to 120 ᵒC decreased the yield further. As the 

boiling point of THF is 66 ᵒC, it could be speculated that increasing temperature up to 

110 ᵒC and further, caused decomposition of THF and resulted in decreased yield of the 

reaction (Table2.2). 

2.2.3.(c)   Temperature Screening Using Dioxane as a Solvent 

During the solvent screening, along with THF, the other promising candidate for further 

screening was dioxane so we decided to carry out temperature screening in dioxane as 

well. The results of temperature screening are given in the table 2.3. It is evident from the 

table that yield got increased by increasing temperature up to 120 ᵒC. Increasing 

temperature further up to 130 ᵒC resulted in significance increase in yield. This increase 

in yield could be attributed to the polar nature of dioxane. Due to its polar nature, it could 

solubilize ligand pretty well and hence make the reaction more efficient. Boiling point of 

dioxane is 101ᵒC so it can tolerate increase in temperature up to 120 ᵒC and more. 
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Table 2.3. Solvent screening in dioxane. 

CuI (5 mol%)

Ligand-b (10 mol%)

K2CO3 (2 eq)

Dioxane (0.5M)

24h

Temperature
120 mol%100 mol%

I
HN

O

N

O

H3CO H3CO
N

OH

O

HN

O

Ligand-b

 

ENTRY TEMP(ᵒC) YIELD (%) 

1 100 19 

2 110 41 

3 120 60 

4 130 62 

 

After all the ligand screening done for 4-methoxy iodobenzene, maximum yield that could 

be achieved was 62%. At this point, keeping in mind the optimized ligand structure of 

diamine-based ligand, it was decided to decrease the chain length of the amide part of 

mono-amide of dipicolinic acid, which we believed would help us to increase the yield of 

iodoarenes substituted with electron-donating groups due to decrease in steric hindrance 

by decreasing length of alkyl chain  (Table 2.3). 

2.3.   Synthesis of Mono-amide of Ethylamine 

Mono-amide of ethylamine [6-(ethylcarbamoyl) picolinic acid] was synthesized with a 

view to decrease steric hindrance of the ligand. Decreasing chain length of alkyl group of 

amine would cause mono-amide to offer less steric hindrance and thus helps in effective 

coordination with CuI. 
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Scheme 2.2. Scheme for the synthesis of mono-amide of ethylamine 

2.3.1. Characterization of Mono-amide of Ethylamine Using IR 

Spectroscopy 

Table 2.4.  IR data for the synthesis of mono-amide of ethylamine. 

N
O

OH

O

HN CH3  

Functional 

group 

O-H 

(acid) 

-NH- C=O (acid) 

 

C=O (amide) 

 

C-H (sp³) 

 

Frequency (ῡ) 

(cm⁻¹) 

3400-2416 3262 1728 1649 1361 

 

Table 2.4 shows the characteristic stretching frequencies of the functional groups found 

in mono-amide of ethylamine. A broad band ranging from 3400-2416 cm⁻¹ corresponds 

to –OH group of acid. Presence of absorption band with the sharp end at 3262 cm⁻¹ 

indicates the presence of -NH- group, this characteristic band confirms the formation of 



62 
 

amide. Absorption band for the carbonyl of carboxylic acid appears at 1728 cm⁻¹ while 

the band for carbonyl of amide appears at 1649 cm⁻¹.  Appearance of two different 

absorption bands for carbonyl moiety, one corresponding to acid while other 

corresponding to amide shows that the dipicolinic acid has been converted to its mono-

amide. The characteristic absorption bands for C-H (SP³) appears around 1361 cm⁻¹ and 

2870 cm⁻¹. 

After the synthesis of mono-amide of ethylamine, it was used as a ligand to carry out 

amidation of 4-methoxy iodobenzene. The conditions used were the same, used for the 

ligand screening i.e. 5 mol% CuI, 10 mol% ligand, 2 equivalents of K₂CO₃ in THF at 

100⁰C for 24h (Scheme 2.3). 

CuI (5 mol%)

Ligand (10 mol%)

K2CO3 (2 eq)

THF (0.5M)

24h100oC ,
120 mol%100 mol%

I
HN

O

N

O

H3CO H3CO

64% yield

 

Scheme 2.3. Arylation of 2-pyrrolidinone using mono-amide of ethylamine as ligand. 

The use of newly synthesized ligand (mono-amide of ethylamine), enhanced the yield up 

to 64%, which was only 19% when mono-amide of butyl amine was used as a ligand 

under the same set of conditions. Hence the idea of using sterically less demanding 

mono-amide went up to our expectations really well. 

Use of mono-amide of ethylamine resulted in 64% yield of the coupled product under the 

given set of conditions; it was important to find out the conditions for this ligand under 

which it works best so screening of different reaction parameters was done in order to 

find out the optimum working conditions for mono-amide of ethylamine. 

2.3.2.  Reaction Conditions Optimization 

The parameters which were screened for the amidation of 4-methoxy iodobenzene using 

mono-amide of DPA with ethylamine, included base, solvent and temperature. 
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2.3.2.(a) Base Screening 

The optimization of the reaction conditions with new ligand was started with base 

screening. The most commonly used bases for C-heteroatom coupling reactions include 

K₂CO₃, K₃PO₄ and Cs₂CO₃ so base screening was carried out using these three bases. 

Same reaction was carried out using different bases while all other factors were kept 

constant (Table 2.5). 

Table 2.5. Base screening for Cu-catalyzed amidation of 4-methoxy iodobenzene 

CuI (5 mol%)

Ligand (10 mol%)

Base (2 eq)

THF (0.5M)

24h100oC ,
120 mol%100 mol%

I
HN

O

N

O

H3CO H3CO

 

ENTRY BASE YIELD (%) 

1 K₃PO₄ 70 

2 K₂CO₃ 64 

3 Cs₂CO₃ 78 

 

Use of K₃PO₄ improved the yield from 64% to 70%. Yield increased up to 78% when 

Cs₂CO₃ was added as a base. The obvious reason for this increase is the fact that a strong 

base increased the rate of deprotonation of amide and cesium salts are also more soluble 

in organic media as compared to potassium salts. Iodide is a very good leaving group so 

the rate of deprotonation of amide and rate of amidation of aryl iodide, both proceeded at 

the same rate, making the whole process rapid, helping to increase the rate of reaction 

which subsequently resulted in increased yield. 
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2.3.2.(b)    Solvent Screening 

Table 2.6. Solvent screening for Cu-catalyzed amidation of 4-meyhoxy iodobenzenes 

I N
CuI (5 mol%)

Ligand (10 mol%)

Cs2CO3 (2 eq)

Solvent (0.5M)

24h100oC ,

H3CO

HN

O
O

H3CO

100 mol% 120 mol%  

 

ENTRY SOLVENT YIELD (%) 

1 DMF 34 

2 Toluene 30 

3 THF 78 

4 Dioxane 71 

 

The results shown in the table 2.5 are almost similar to the solvent screening done in case 

of mono-amide of butyl amine (table 2.1).  Use of both highly polar solvent DMF and 

non polar solvent toluene decreased the yield whereas THF and dioxane again gave 

comparative yields. Although DMF is more polar than dioxane but still it resulted in the 

decreased yield of the reaction because it gets decomposed at 100 ᵒC or higher 

temperatures. As in case of ligand screening for butyl amine, THF was chosen first for 

further temperature screening (Table 2.6). 
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2.3.2.(c)    Temperature Screening Using THF as a Solvent 

Table 2.7. Temperature screening for Cu-catalyzed amidation of 4-methoxy iodobenzene 

        

I N
CuI (5 mol%)

Ligand (10 mol%)

Cs2CO3 (2 eq)

THF  (0.5M)

24h

Temperature

H3CO

HN

O
O

H3CO
100 mol% 120 mol%

 

ENTRY TEMP (ᵒC) YIELD (%) 

1 90 71 

2 100 78 

3 110 75 

4 120 52 

 

Again by increasing temperature up to 120 ᵒC, the yield of the coupled product got 

decreased to 52%. Whereas decreasing temperature from 100 ᵒC to 90 ᵒC also resulted in 

decreased yield. The reason might be that at low temperature the reaction does not get 

enough kinetic energy to proceed at satisfactory rate (Table 2.7). 
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2.3.2.(d)  Temperature Screening Using Dioxane as a Solvent 

Table 2.8. Temperature screening in dioxane 

   

I N
CuI (5 mol%)

Ligand (10 mol%)

Cs2CO3 (2 eq)

Dioxane  (0.5M)

24h

Temperature

H3CO

HN

O
O

H3CO
100 mol% 120 mol%

 

ENTRY TEMP (ᵒC) YIELD (%) 

1 100 65 

2 110 97 

3 120 99 

 

An increase of temperature from 100 ᵒC to 110 ᵒC resulted in tremendous increase in 

yield. Almost quantitative yield was obtained when temperature was increased up to 120 

ᵒC (Table 2.8). 
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2.3.2.(e)   Effect of Base Concentration on the Reaction 

Table 2.9. Effect of changing base concentration on the amidation of 4-methoxy 

iodobenzene 

I N
CuI (5 mol%)

Ligand (10 mol%)

Cs2CO3 (XX mol%)

Dioxane  (0.5M)

24h120oC ,

H3CO

HN

O
O

H3CO
100 mol% 120 mol%

 

ENTRY mol% YIELD (%) 

1 100 91 

2 200 99 

3 300 99 

 

After optimizing dioxane as a best solvent and Cs₂CO₃ as best base for the reaction, the 

concentration of the base was screened by increasing and decreasing concentration from 

initial 200 mol%. Results of base concentration screening showed that decreasing base 

concentration to 100 mol% decreased the yield. Increasing base concentration up to 300 

mol% was ineffective as shown in table 2.8. The optimum concentration was found to be 

the initial 200 mol% (Table 2.8). 

2.3.3. Reaction Scope for the Amidation of Variously Substituted 

Iodobenzenes  

After the successful base, solvent and temperature screening, the optimum conditions for 

the N-arylation of 2-pyrolidinone were found to be 5 mol% CuI,10 mol% ligand (mono-

amide of ethylamine), 200 mol% Cs₂CO₃ in dioxane solvent at 120 ᵒC for 24 hours. With 

the optimized conditions in hand, the scope of the reaction was investigated for the 

amidation of mono and di-substituted iodobenzenes using cyclic and acyclic amides. 

N
O

OH

O

HN CH3

Ligand
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2.3.3.1. Amidation of Mono-substituted Iodobenzenes using 2-

Pyrrolidinone 

Amidation of mono-substituted  iodobenzene was carried out using 100 mol% 

iodobenzenes, 120 mol%  2-pyrolidinone, 5 mol% CuI, 10 mol% ligand, 200 mol% 

Cs₂CO₃ in dioxane at 120 ᵒC for 24 hours. All the coupled products were obtained in 

excellent yields irrespective of the substituent present on the benzene ring (Figure 2.4). 

          

I

HN

O CuI (5 mol%)
Ligand  (10 mol%)

Cs2CO3 (2eq)

Dioxane (0.5M)

24h120oC ,

N

O

100 mol% 120 mol%

R R

 

 

 

 

Yield 

 

Figure 2.4. Amidation of mono-substitute iodobenzenes 

2.3.3.2.    Effect of Changing Catalyst and Ligand Loading on the 

Amidation of Mono-substituted Iodobenzenes 

Amidation of mono-substituted iodobenzenes was also carried out under low 

concentration of copper and ligand in order to investigate the efficiency of the catalytic 

system. Concentration of CuI was decreased from 5 mol% to 2 mol% and ligand 

concentration was decreased from 10 mol% to 4 mol%. 

 

N
O

OH

O

HN CH3

Ligand

N

O

99%

N

H3C

O

98%

N

H3CO

O

99%

O2N

N

O

99%



69 
 

         

I

HN

O
CuI (2 mol%)

Ligand  (4 mol%)

Cs2CO3 (2eq)

Dioxane (0.5M)

24h120oC ,

N

O

100 mol% 120 mol%

R
R

N
O

OH

O

HN CH3

Ligand  

 

 

 

Yield 

Figure 2.5. Cu-catalyzed amidation of mono-substituted iodobenzenes at low catalyst 

and ligand concentration. 

2.3.3.3. Cu-catalyzed Amidation of Di-substituted Iodobenzenes using  

2-Pyrolidinone 

N-arylation of 2-pyrolidinone was also carried out using di-substituted iodobenzenes 

under the same conditions used for the amidation of mono-substituted iodobenzenes. 

Coupled products were obtained in fair to good yields (Figure 2.6) 
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  yield 

Figure 2.6. Cu-catalyzed amidation of di-substituted iodobenzenes 

When 2-nitro-4-methoxy iodobenzene was used yield was 90% while the use of 2-

methoxy-4-nitro iodobenzene decreased the yield to 78%. This difference in results is 

attributed to the strong electron donating effect of -OCH₃ group, which when substituted 

at ortho position effects the reaction more as compared to when it is substituted at para 

position. Yield is high in case of  3-nitro-4-chloro iodobenzene but it got decreased when 

2-nitro-4-chlorobenzene was used, most probably due to steric hindrance offered by -

NO₂ group at ortho position of iodobenzene. 

2.3.3.4.  Effect of Lowering Catalyst and Ligand Concentration on the 

Amidation of Di-substituted Iodobenzenes 

Amidation of di-substituted iodobenzenes was also carried out at low catalyst and ligand 

concentration using 2 mol% CuI and 4 mol% ligand. Results are shown in the figure 2.7. 
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yield 

Figure 2.7. Amidation of di-substituted iodobenzenes under low concentration of CuI 

and  ligand 

2.3.3.5.    Amidation of Mono and Di-substituted Iodobenzenes Using 

Acyclic Amides 

In order to extend the scope of newly devised catalytic system, arylation of both mono 

and di-substituted iodobenzenes was carried out using acyclic amides such as acetamide 

and benzamide. Reaction conditions were comprised of 5 mol% CuI, 10 mol% ligand and 

2 equivalents of Cs₂CO₃ in dioxane at 120 ᵒC for 24 hours. All the coupled products 

were obtained in fair to good yields (Figure 2.8). 
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Figure 2.8.   Cu-catalyzed N-arylation of acetamide and benzamide 

It is evident from the figure 2.8 that the yields of N-arylation of acyclic amides are lower 

than that of cyclic amides. The reason of this disparity might be explained by the 

structural difference of cyclic and acyclic amides. Structure of cyclic amides is rigid 

hence the orbital containing the lone pair of nitrogen is not in perfect alignment with the 
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π* orbital of the carbonyl moiety so the lone pair of nitrogen cannot be put into the π* 

orbital of carbonyl group. This lone pair of electrons remains on the nitrogen and is 

available for donation, making cyclic amides good nucleophiles. In case of acyclic 

amides, the orbital containing lone pair of nitrogen and π* orbital of carbonyl group are 

in perfect alignment for the delocalization of lone pair of electrons from nitrogen to 

carbonyl. This delocalization of electrons results in lowering the nucleophilicity of 

acyclic amides. 

2.3.4.    Proposed Mechanism of Cu-catalyzed C-N Coupling Reactions 

Mechanistically Cu-catalyzed coupling reactions are not very well understood. There is 

not a single mechanism upon which all the scientists are unanimously agreed. Different 

research groups have proposed different mechanisms depending on their observations. 

Mechanism proposed for the catalytic system, used in the present study is shown in the 

Figure 2.9. 
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Figure 2.9.   Proposed mechanism for the arylation of amides 

Catalytic cycle begins with a formation of an in situ complex between CuI and the ligand 

followed by the oxidative addition of this copper complex across aryl iodide. Oxidation 

state of Cu changes from +1 to +3 after oxidative addition step. Ligation of amide with 

the complex takes place after the deprotonation of amide via base. Regeneration of the 

active catalytic Cu (I) species is viable through C-N bond reductive elimination to afford 

the desired product. 
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2.3.5.     Characterization of Products of C-N Coupling Reactions 

2.3.5.1.   Characterization by Physical Parameters 

Physical state, melting point, Rf value and yield of all the synthesized compounds are 

entabulated over here. All the products of C-N coupling reactions are solid and are 

colorless to yellow in color.  

Table 2.10.  Physical data of  products of arylation of cyclic amide. 

N

O

X

 

 

Code 

 

X 

 

Color 

 

m.point 

 

Rf* 

 

Yield (%) 

CuI/L* CuI/L*** 

1a H White solid 105-109 ᵒC 0.5 99 85 

1b 4-NO₂ Pale yellow 

solid 

122-126 ᵒC 0.33 98 81 

1c 4-OCH₃ White solid 113-115 ᵒC 0.30 99 75 

1d 4-CH₃ White solid 96-98 ᵒC 0.51 99 73 

1e 2-NO₂, 4-

OCH₃ 

Pale yellow 

solid 

88-89 ᵒC 0.18 88 66 

1f 2-NO₂, 4-

Cl 

Light 

Brown 

solid 

41-45 ᵒC 0.29 54 38 

1g 3-NO₂,4-

Cl 

Pale yellow 

solid 

133-135 ᵒC 0.49 90 69 

1h 2-OCH₃, 

4-NO₂ 

Brown 

solid 

142-145 ᵒC 0.18 78 55 

*n-Hexane : Ethyl acetate 1:1, Silica gel-60F₂₅₄ under UV light at 254 nm. 
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** CuI (5 mol %), Ligand (10 mol %). 

*** CuI (2 mol %), Ligand (4 mol %). 

Table 2.11.  Physical data of products of arylation of primary acyclic amides        

H
N

R

O

X
 

Code R X Color m.p Rf* Yield (%) 

2a CH₃ H White solid 113-115 ᵒC 0.47 75 

2b Ph H White solid 162-163 ᵒC 0.84 79 

2c CH₃ 4-NO₂ Yellow solid 208-211ᵒC 0.14 72 

2d Ph 4-NO₂ Orange solid 190-19 1ᵒC 0.43 80 

2e CH₃ 4-OCH₃ White solid 130-132 ᵒC 0.11 40 

2f Ph 4-OCH₃ White solid 153-157 ᵒC 0.34 73 

2g CH₃ 4-CH₃ White solid 150-152 ᵒC 0.53 40 

2h Ph 4-CH₃ White solid 154-157 ᵒC 0.82 60 

2i CH₃ 3-NO₂,4-Cl Brown solid 138-140 ᵒC 0.34 53 

2j Ph 3-NO₂,4-Cl Yellow solid 155-156 ᵒC 0.83 81 

          *n-Hexane : Ethyl acetate 1:1, Silica gel-60F₂₅₄ under UV light at 254 nm. 

2.3.5.2.  Characterization by ¹H NMR Spectroscopy 

 The synthesized compounds were characterized by ¹H NMR spectroscopy. Table 2.12 

and 2.13 are showing ¹H NMR data of all the products of C-N cross-coupling reactions. 
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Table 2.12. ¹H NMR data of arylation of 2-pyrrolidinone. 

N

O

X

1

2

3

4
5

1'

2'

3'

 

                         1a             1d                   1e                     1f              1g 

          X =         H           4-CH₃      2-NO₂, 4-OCH₃    2-NO₂,4-Cl   3-NO₂,4-Cl      

                                                                                            

comp δ (ppm), Integration, multiplicity and coupling constants (J ; Hz) 

 

protons 

Ar-H 1′ 2′ 3′ X 

 

1a 

7.62 (d, J = 7.8 

Hz, 2 H), 7.39 - 

7.41(m, 2 H), 

7.16 (t, 1 H) 

 

3.88 (t, J 

= 6.9 Hz, 

2H) 

 

2.18 (quint, 

J = 7.2 Hz, 

2 H) 

 

2.63 (t, J = 

6.9 Hz, 2 H) 

 

₋₋₋ 

 

 

1d 

 

7.49 (d, J = 8.4 

Hz, 2 H), 7.16 

(d, J = 8.1 Hz, 2 

H) 

 

3.82 (t, J 

= 6.9 Hz, 

2 H) 

 

2.18 (quint, 

J = 7.2 Hz, 

2 H) 

 

 

 

2.58 (t, J = 

7.8 Hz, 2 H) 

 

2.33 (s, 

3 H) 

 

 

1e 

7.52 (d, J = 2.8 

Hz, 1 H), 7.31 - 

7.27(m, 1 H), 

7.21 - 7.15 (m, 

1 H) 

 

3.84 (t, J 

= 6.9 Hz, 

2 H) 

 

2.11 (quint, 

J = 7.2 Hz,  

2H) 

 

2.26 (t, J = 

7.6 Hz, 2 H) 

 

3.88 (s, 

3 H) 
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1f 

 

7.97 (d, J = 2.40 

Hz, 1 H), 7.60 

(dd, J = 

8.59, 2.40 Hz, 1 

H), 7.30 (d, J = 

8.59 Hz, 1 H) 

 

3.92 (t, 

6.9 Hz, 2 

H 

 

2.66 (quint, 

7.4 Hz, 2 H) 

 

2.23 (t, 7.6 

Hz,  2 H) 

 

 

₋₋₋ 

 

 

1g 

8.19 (d, J = 2.7 

Hz, 1 H), 

7.91(dd, J = 

9,2.7 Hz, 1 H), 

7.51 (dd, J = 

13.2, 4.2 Hz, 1 

H) 

 

3.88 (t, J 

= 6.9 Hz,  

2H) 

 

2.68 (quint, 

7.3 Hz, 2 H) 

 

2.20 (t, J = 7.5 

Hz, 2H) 

 

₋₋₋ 

 

¹H NMR data reported in the table 2.12 is in complete agreement with the structure of 

coupled products. In all compounds, two protons next to nitrogen on the 2-pyrrolidinone 

ring indicated as 1′ are the most deshielded ones amongst all the protons of 2- 

pyrrolidinone ring due to the resonance of lone pair of electrons on nitrogen towards 

benzene ring. Deshielding of protons indicated at position 3′ is caused by the diamagnetic 

anisotropy of carbonyl group. There is no such deshielding effect present for protons at 

position 2′ so they are little shielded as compared to H-1′ and H-3′. In all these 

compounds, absence of the signal for amide proton (-NH-) confirms the formation of C-N 

bond between pyrolidinone and iodobenzene.  For compounds 1a, chemical shift values 

of the aromatic protons are very close to each other and depend up on the substituent at 

position 4 and 2 on the benzene ring. Protons present at the ortho position of benzene 

ring in compound 1a are shielded due to resonance of lone pair of nitrogen. Resonance 

effect also cause shielding of para protons while meta protons are not affected by 

resonance. Ortho protons are shielded in 1d, 1e, 1f and 1g as well. The most deshielded 

protons in the aromatic region are the ones which are next to nitro (-NO₂) group. 
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Table 2.13   ¹ H NMR data of arylation of acyclic amides. 

H
N O

R
X

 

                                                              2f                  2g 

                                              X =       OCH₃             CH₃ 

                                               R =                            OCH₃ 

                                                               

 

Comp. 

δ (ppm), Integration, multiplicity and coupling constants (J ; Hz) 

 

protons 

Ar-H -NH- R X 

 

2f 

7.75 (d, J = 9.1 Hz, 

2H), 6.92 (d, J = 9.1 

Hz, 2H) 

9.40 (s , 1H, 

NH) 

 

8.02 - 7.95(m, 5H) 

 

3.79 (s, 3H) 

 

2g 

8.18 (d, J = 8.5 Hz, 

2H), 7.61 (d, J = 8.2 

Hz, 2H) 

9.88 (s, 1H, 

NH) 

 

2.89 (s, 3H) 

 

2.75 (s,3H) 

 

¹H NMR data shown in table 2.13 confirms the arylation of acyclic amides. As in the case 

of 2-pyrolidinone, the amide proton is the most deshielded one. Unlike that of 2-

pyrolidinone, the ortho protons are not shielded by the resonance of lone pair of nitrogen 

because in this case the lone pair of nitrogen is in a perfect position to resonate towards 

carbonyl group. So the ortho protons appear at higher chemical shift value as compared 

to meta protons. Signals for the protons of -OCH₃ and -CH₃ group appear at the chemical 

shift value of 3.79 ppm and 2.75 ppm respectively. 

 

1'
2'

3'

4'

5'
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2.3.5.3. Characterization by ¹³C NMR 

 

Table 2.14.   ¹³C NMR data of C-N coupled products 

N

O

X

1
2

3

4
5

1' 2'

3'

4'

6

 

                                    1a                 1e                     1f              1g 

                    X =          H       2-NO₂,4-OCH₃    2-NO₂,4-Cl   3-NO₂,4-Cl    

 

Comp. δ (ppm), Integration, multiplicity and coupling constants (J ; Hz) 

 

carbons 

C-1 C-2,C-3, 

C-5, C-6 

C-4 C-

1′(C=O) 

C-2′ C-3′ C-4′ X 

 

 

1a 

 

 

146.4 

129.4,134.

2,139.4, 

128.8, 

124.5, 

119.9 

 

 

124.5 

 

 

175.1 

 

 

32.7 

 

 

18.0. 

 

 

48.8 

 

 

--- 

 

1e 

 

146.4 

129.4,125.

0,120.1, 

110.2 

 

158.6 

 

175.1 

 

31.0 

 

19.0 

 

50.4 

 

56.0 

 

 

1f 

 

 

133.7 

133.7, 

133.1, 

130.7, 

128.4, 

125.7 

 

 

130.7 

 

 

 

175.1 

 

 

31.1 

 

 

19.0. 

 

 

50.1 

 

 

--- 
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1g 

 

140.7 

149.1, 

130.1,128.

9, 117.1 

 

125.4 

 

174.8 

 

33.4 

 

19.1. 

 

50.1 

 

--- 

 

¹³C NMR data shown in the table 2.14 confirms the formation of desired compounds. The 

carbon of the carbonyl group is the most deshielded one in all the compounds. The trend 

of chemical shift values for the carbons (C-2′, C-3′and C-4′) of 2-pyrolidinone ring is the 

same as we observed in the ¹H NMR. Ipso carbon is the most deshielded carbon of the 

aromatic region in all the compounds mentioned in the table except compound 1e, in 

which C-4 is the most deshielded carbon of the benzene ring due to presence of 

electronegative oxygen atom of methoxy group. 

Table 2.15.  ¹³C NMR data of arylation of acyclic amides. 

                                                  

H
N O

R

1
2

3

5
6

7

X 4
 

            2f                   2g 

X =       OCH₃             CH₃ 

R =                             OCH₃ 

 

 

Comp. 

δ (ppm), Integration, multiplicity and coupling constants (J ; Hz) 

carbons 

C-1 C-2,C-3,C-

5,C-6 

C-4 C-7(C=O) R X 

2f 129.2 122.7, 114.6 157.1 166.0 136.5, 133.4, 

132.1, 128.2 

55.7 

1'
2'

3'

4'

5'
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2g 

 

137.8 

133.9, 132.2, 

129.9, 129.2, 

128.3 

 

 

136.4 

 

166.1 

 

21.1 

 

20.9 

 

 

¹³C NMR data of compounds 2f and 2g confirms their formation. Signal resonating 

around 166 ppm in both of the products corresponds to the carbonyl carbon of amide. C-4 

in compound 2f resonates at higher chemical shift value than the ipso carbon probably 

due to the presence of electronegative oxygen atom of -OCH₃ group while in case of 

compound 2g, C-4 appears up field than C-1 due to electron donating effect of –CH₃ 

group. Although methoxy group is a strong electron donating group but carbon having 

methoxy group as a substituent resonates down field because it is directly attached to 

oxygen atom that shows electron withdrawing inductive effect. In compound 2f, the 

aromatic carbons of phenyl ring (C-1′to C-6′) of benzamide resonates down field as 

compared to carbons (C-1 to C-6) benzene ring due to diamagnetic anisotropy of 

carbonyl group located next to phenyl ring. 

2.4.  Copper-catalyzed C-S coupling Reactions for the Arylation of 

Thiols 

Mono-amides of dipicolinic acid were also used as ligands for C-S coupling reactions in 

order to extend the scope of newly discovered catalytic system to more than one type of 

carbon-heteroatom bond forming reactions as there are only few ligands that could be 

employed for more than one type of coupling reactions. 

As sulfur is a strong nucleophile compared to nitrogen, mono-amide of DPA with 2-

chloroaniline was decided to be used as a ligand, which was shown to be a little less 

efficient than the mono-amide of DPA with butyl amine during  the ligand screening for 

C-N coupling reactions. The idea behind using this ligand was the fact that the strong 

nucleophilicity of sulfur may compensate for the low efficiency of mono-amide of 2-

chloroaniline. To check this idea arylation of thiophenol was chosen as a model reaction 
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using 5 mol% CuI, 10 mol% ligand, 200 mol% K₂CO₃ in THF solvent at 100⁰C for 24 

hours (Scheme 2.4). 

SH S
CuI (5 mol%)

Ligand (10 mol%)

K2CO3 (2 eq)

THF (0.5M)

24hrs

100 oC
97%

I

120 mol% 100 mol%

 

 

 

 

 

Scheme 2.4. Cu-catalyzed arylation of thiophenol using mono-amide of DPA as a ligand 

2.4.1. Reaction Scope of the Cu-catalyzed Arylation of Thiophenol 

As the model reaction resulted in an excellent yield, same ligand was employed to check 

the scope of this catalytic system for the mono-substituted iodobenzenes (Figure 2.10). 
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Figure 2.10. Thiation of mono-substituted iodobenzenes 

All the iodobenzenes gave good yields except 4-nitro iodobenzene. In arylation of 

thiophenol with 4-nitro iodobenzene, diphenyldisulfide was also formed as a byproduct 

along with the desired product. 

 

 

 

Formation of diphenyldisulfide showed the inefficiency of the catalytic system. The 

present catalytic system is not efficient enough to prevent the self coordination of sulfur 

to form S-S bond in case of  4-nitro iodobenzene hence the idea of using mono-amide of 

DPA with 4-chloroaniline as a ligand for C-S coupling reactions did not go well. Thiation 

of 4-nitro iodobenzene was carried out under the newly devised catalytic system which 

was used for the N-arylation of amides. 
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2.4.2.  Effect of Changing Catalytic System 

As the idea of using mono-amide of 4-chloroaniline did not work and resulted in the 

formation of byproduct diphenyldisulfide in case of 4-nitro iodobenzene. It was decided 

to use the catalytic system that was devised for the amidation of variously substituted 

iodobenzenes for the arylation of thiophenol via 4-nitroiodobenzene, in order to check 

whether this catalytic system does help to reduce the byproduct formation or not thus 

thiation of 4-nitro iodobenzene was carried out using 5 mol% CuI, 10 mol% ligand and 2 

equivalents of Cs₂CO₃ in dioxane at 100 ᵒC for 24 hours (Scheme 2.5). 

 

 

  

 

Scheme 2.5. Cu-catalyzed arylation of thiol using mono-amide of ethylamine as ligand 

The yield of the reaction was improved from 51% to 86% under new conditions, showing 

that this catalytic system worked really well in reducing self coupling of thiophenol and 

can withstand the catalyst poisoning caused by the coordination of sulfur with copper 

metal. 

2.4.3.  Scope of Cu-catalyzed Arylation of Thiophenols Using Mono 

and Di-substituted Iodobenzenes 

Arylation of substituted and unsubstituted thiophenols was carried out to extend the scope 

of this catalytic system for C-S coupling reactions as well. 
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2.4.3.1. Cu-catalyzed Arylation of Thiophenols using Mono-substituted   

Iodobenzenes 

Arylation of substituted and unsubstituted thiophenols was carried out to extend the scope 

of our catalytic system. All the desired products were obtained in good to excellent yield. 

The substitution of -NH₂ group on thiophenol ring was expected to increase the yield of 

the reaction due to electron donating nature of -NH₂ group, but the yield got decreased. 

The reason for little decrease in yield in case of 2-amino thiophenol and 4-amino 

thiophenol might be the fact that -NH₂ can also act as a nucleophile which results in the 

formation of C-N coupled side product. Since sulfur is a stronger nucleophile compared 

to nitrogen, the major product is C-S coupled product. Use of naphthalene-2-thiol also 

afforded the desired product in excellent yield (Figure 2.11). 
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Figure 2.11.   Cu-catalyzed arylation of substituted and unsubstituted thiophenols 

2.4.3.2.    Cu-catalyzed Thiation of Di-substituted Iodobenzenes 

Cu(I) catalyzed synthesis of thioethers was carried out using 120 mol% thiophenol, 100 

mol% di-substituted iodobenzene, 5 mol% CuI,10 mol% ligand and 2 equivalents of 
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Cs₂CO₃ in dioxane at 120 ᵒC for 24 hours. All the coupled products were obtained in 

good to excellent yields irrespective of the nature of substituents and their respective 

position on the iodobenzene ring (Figure 2.12). 
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Figure 2.12. Cu-catalyzed thiation of di-substituted iodobenzenes 

2.4.3.3.    Cu-catalyzed Arylation of Hetero Aromatic Thiols 

Hetero aromatic thiols coupled to haloarenes are found in many biologically active 

compounds therefore it was important to find out that how well, the catalytic system 

discussed in the present study, works with these type of coupling reactions. For this 

purpose arylation of three different hetero aromatic thiols was carried out using 

iodobenzene and 3-nitro-4-chloro iodobenzene. These hetero aromatic thiols included 
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pyridine-2-thiol (Scheme 2.18), 5-chloro benzothiazole and benzo imidazole-2-thiol 

(Scheme 2.19). All these substrates afforded appreciable yield of desired products. 
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Figure 2.13. Cu-catalyzed arylation of 2-thiol pyridine 
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Figure 2.14. Cu-catalyzed arylation of 5-chloro benzothiazole 
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Figure 2.15.  Cu-catalyzed arylation of benzo imidazole-2-thiol 

2.4.4. Proposed Mechanism for the Arylation of Thiols 

A plausible mechanism has been proposed for the arylation of thiols. The sequence of 

events is same as arylation of amides (Figure 9.16). 
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Figure 2.16. Proposed mechanism of arylation of thiols 

 

 

 

 



92 
 

2.4.5.    Characterization of C-S Coupled Products 

2.4.5.1. Characterization by Physical Parameters 

 

Table 2.16.  Physical data of products of arylation of thiophenols 

S

R1 R1
 

Code X₁ X₂ Color Rf Yield (%) 

3a H H Colorless liquid 0.6* quantitative 

3b H 4-CH₃ Colorless liquid 0.61* quantitative 

3c H 4-OCH₃ Colorless liquid 0.06* 93 

3d 4-NH₂ 4-OCH₃ Dark brown sticky 

solid 

0.06′ 75 

3e 2-NH₂ 4-OCH₃ Dark purple sticky 

solid 

0.16′ 69 

3f 2-NH₂ 4-CH₃ Brown sticky solid 0.37′ 70 

3g 4-NH₂ 4-NO₂ Pale yellow solid 0.09′ 83 

3h 4-NH₂ H Brown sticky solid 0.11′ 89 

3i 2-NH₂ H Dark green sticky 

solid 

0.09′ 79 

3j Ph H Sticky white solid 0.81′ 98 

3k H 4-NO₂ Orange solid 0.05* 86 

3l H 3-NO₂,4-Cl Pale yellow solid 0.51′ 98 

3m 4-NH₂ 3-NO₂,4-Cl Dark brown sticky 

solid 

0.1′ 84 

3n H 2-OCH₃,4-

NO₂ 

Yellow solid 0.08′ 94 

3o Ph 2-NO₂,4-

OCH₃ 

Yellow sticky solid 0.19′ 94 
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3p Ph 3-NO₂,4-Cl Pale Yellow sticky 

solid 

0.47′ 98 

3q H 2-NO₂,4-Cl Yellow solid 0.56′ 96 

3r H 2-NO₂,4-

OCH₃ 

Light yellow sticky 

solid 

0.27′ 95 

            *n-Hexane, Silica gel-60-F₂₅₄ under UV light at 254 nm. 

             ′n-hexane: Ethylacetate 95: 5 

Table 2.17.  Physical data of products of arylation of mono cyclic hetero aromatic thiols. 

N

S

X

 

Comp. X Color Rf* Yield (%) 

3s H Colorless liquid 0.41 91% 

3t 3-NO₂,4-Cl Pale yellow solid 0.13 90% 

            *n-Hexane : Ethyl acetate 9:1, silica gel-60F₂₅₄ under UV light at 254 nm. 

     Table  2.18.Physical data of products of arylation of bi cyclic hetero aromatic thiols. 

X

N
S

R1

R2  

Comp. X R₁ R₂ Color Rf* Yield 

(%) 

3u S Cl H Off white sticky solid 0.42 60 

3v S Cl 3-NO₂,4-Cl Pale yellow solid 0.41 58 

3w N H H White sticky solid 0.14 92 

3x N H 3-NO₂,4-Cl Pale yellow solid 0.12 91 

            *n-Hexane : Ethyl acetate 9:1, Silica gel-60F₂₅₄ under UV light at 254 nm. 
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2.4.5.2.  Characterization by ¹H NMR 

Table 2.19. ¹H NMR data of arylation of thiophenols 

S12

3
4

5

1'
2'

3'
4'

5'X1

X2

 

3a             3b            3c            3k         3n 

X₁ =       H             CH₃        OCH₃        NO₂     NO₂ 

X₂ =       H               H              H            H       OCH₃ 

Code δ (ppm), Integration, multiplicity and coupling constants (J ; Hz) 

 

protons 

Ar-H X₁ X₂ 

3a δ (ppm): 7.26-7.57 (m, 10H) ₋₋₋ ₋₋₋ 

3b 7.16 – 7.36 (m, 9H) 2.39 (s, 1H) ₋₋₋ 

 

3c 

7.44 -7.49 (m, 2H), 7.15 - 7.31 (m, 5H), 

6.92 – 6.97 (m, 2H) 

 

3.85 (s, 3H). 

 

₋₋₋ 

 

 

3k 

8.07 (dd, J = 2.1,9 Hz, 2H), 7.51(dd, J = 

1.2, 11.4 Hz, 2H), 7.45-7.48 (m, 3H), 7.18 

(dd, J = 2.7,9.6 Hz, 2H) 

 

 

₋₋₋ 

 

 

₋₋₋ 

 

3n 

8.06 (dd, J = 2.7, 9 Hz, 1H), 7.70 (d, J = 

2.7, Hz, 1H), 7.28-7.52 (m, 5H), 6.92 (d, J 

= 9 Hz, 1H) 

 

₋₋₋ 

 

4.01 (s, 3H). 

 

¹H NMR data of the products of arylation of thiols shown in the table is in complete 

agreement with their structures. The chemical shift values of the aromatic protons of both 

the phenyl rings are very close to each other so it is very difficult to assign chemical shift 

values to these protons separately. In compound 3a and 3b all the aromatic protons 
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appear in a very close range so all of these are integrated together.  In compound 3c  

protons H-2 and H-4 appears up field as compared to protons H-1 and H-5 due to strong 

electron donating effect of -OCH₃ group hence protons ortho to methoxy group are 

shielded while protons meta  to methoxy group remain unaffected. In compound 3c, H-2 

and H-4 appears around 8.07 ppm due to the presence of strong electron withdrawing -

NO₂ group at position 4. In compound 3n, H-4 resonates at 8.06 ppm while H-2 resonates 

at 7.70 ppm because it is ortho to both -NO₂ and -OCH₃ group. 

2.4.5.3. Characterization by ¹³C NMR 

Table 2.20. ¹³C NMR data of arylation of thiophenols                                                                              

S

X1

X2

12
3

4
5

6

1'
2'

4'
5'

6'

3'

 

                                           3a             3b            3c            3k         3n           

                              X₁ =       H             CH₃        OCH₃        NO₂     NO₂ 

                              X₂ =       H               H              H            H       OCH₃ 

Comp. δ (ppm), Integration, multiplicity and coupling constants (J ; Hz) 

 

carbons 

C₁ C₁’ C₂ - C₆ X₁ X₂ 

3a 135.8 135.8 131.1, 129.2, 129.1, 127.5, 127.2 ₋₋₋ ₋₋₋ 

3b 137.6 137.1 131.3, 131.3, 130.1, 129.7, 

129.0, 127.5, 126.4 

21.1 ₋₋₋ 

 

3c 

 

128.1 

 

138.6 

 

159.8, 135.4, 128.9, 125.7, 

124.2, 115.0 

 

 

 

55.40 

 

₋₋₋ 
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3k 

 

145.3 

 

134.8 

 

148.5, 130.8, 130.0, 129.7, 

126.6, 124.0 

 

 

 

₋₋₋ 

 

₋₋₋ 

3n 123.1 134.1 160.4, 141.8, 130.6, 129.9, 

129.1, 128.9, 123.6, , 109.6 

₋₋₋ 56.8 

 

¹³C NMR values are in complete agreement with the structure of C-S coupled products. It 

is very difficult to differentiate between the chemical shift values of aromatic carbons of 

both phenyl rings except when they are in close proximity to some substituent. In 

compound 3a and 3b, ipso carbons resonate down field while both in 3 c and 3 k, signal 

for C-4 appears at higher chemical shift value than the rest of carbons. In compound 3n, 

C-2 resonates up field as compared to C-4 because C-2 is next to methoxy (-OCH₃) 

group while C-4 is attached to nitro (-NO₂) group which makes C-4 deshielded and 

shields the carbons next to it  through space effect. Both oxygen of -NO₂ group push 

electrons towards carbon centre due to mutual repulsion between electrons in the space. 
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Conclusion 

We have embarked on a project aiming at the development of the new ligands that are 

easy to synthesize, are of low cost and efficient in carrying out carbon-heteroatom cross-

coupling reactions. Amide derivatives of dipicolinic acid were chosen to be investigated 

for their ability to work as ligands. It was found that CuI/6-(ethylcarbamoyl) picolinic 

acid can efficiently catalyze the coupling of aryl iodides with cyclic and acyclic amides. 

After this discovery it was found that this copper-assisted catalytic system based on 

mono-amide of ethylamine as a ligand could also be used to carry out the C-S cross-

coupling reactions as well.  

Reaction conditions were optimized for this new catalytic system and it was found that it 

worked best when 2 equivalents of Cs₂CO₃ are used as a base in 0.5 M dioxane at 120ᵒC 

for 24 hours. Substrate scope for this catalytic system was investigated for both C-N and 

C-S coupling reactions. This newly devised catalytic system was found compatible with 

number of functional groups substituted on the substrates used. Arylation of secondary 

cyclic amides, primary acyclic amides, thiophenols, hetero aromatic mono and bicyclic 

thiols using differently substituted iodobenzenes, resulted in appreciable yields of desired 

coupled products. 

The mono-amide derivatives of dipicolinic acid are highly stable and retain the high 

coordination ability of parent dipicolinic acid, therefore the discovery of this class of 

ligands is a valuable addition towards the growing field of ligand designing for Cu-

catalyzed cross-coupling reactions. The catalytic system, discussed in the present study is 

highly general, inexpensive and environmentally benign. Although in present work, the 

use of mono-amides of DPA is restricted only to C-N and C-S coupling reactions but 

these ligands got a high potential to be used for other type of couplings especially C-O 

coupling reactions.  

All the coupled products synthesized as a part of present study, were purified through 

flash column chromatograph and characterized by ¹H NMR and ¹³C NMR while the 

synthesis of mono-amide of ethylamine was confirmed by employing IR spectroscopy 
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CHAPTER-3 

EXPERIMENTAL 

3.1. General Consideration 

Clean and oven-dried apparatus was used to carry out all the reactions. Inert atmosphere 

of argon/nitrogen was used for all the reactions to be performed in non-aqueous solvents. 

Reactions were performed using dried-distilled solvents. Purification of commercially 

available reagents was carried out when found necessary. 13 x 100 mm oven-dried Pyrex 

sealed glass tubes were used for transition metal catalyzed reactions and  freshly distilled 

solvents were used for carrying out these cross-coupling reactions. Pyridine-2,6-

dicarboylic acid was purchased from Merck and employed for the synthesis of mono-

amides of pyridine-2,6-dicarboxylic acid. Anhydrous magnesium sulphate /sodium 

sulphate was used for drying combined organic layers obtained after solvent extraction. 

Progress of the reactions was monitored by thin layer chromatography (TLC) 0.2 mm 

pre-coated plates of Merck silica gel-60 F₂₅₄ were used for this purpose. UV- active spots 

were analyzed under UV lamp working at the wavelength of 254 nm. Different staining 

reagents such as ninhydrin, potassium permanganate (KMnO₄), anisaldehyde, poly 

phosphomolybdic acid (PMA) and iodine vapors were employed according to the 

functional groups contained in a molecule, for visualizing UV-inactive spots. Almost all 

the products were purified through flash column chromatography using silica-gel 60 F of 

200-300 mesh size as a stationary phase. 

3.2. Instrumentation 

Gallenkamp melting point apparatus (MP-D) was used to take melting points of solid 

compounds. IR spectrum was recorded using schimadzu fourier transform model 270 1R 

spectrophotometer with the facility of attenuated total reflectance and absorption 

frequencies were reported in reciprocal centimeter (cm⁻¹) units. Bruker Avance 300 MHz 

spectrophotometer was used for recording 1H NMR and 13C NMR spectra of the 

synhthesized compounds. Coupling constants (J) were mentioned in Hertz (Hz) units 

while chemical shift values were quoted in delta (δ) units. 
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3.3. Drying and Distillation of Organic Solvents 

All the organic solvents employed in reactions must be moisture free for the successful 

completion of a reaction. Different drying reagents were employed for drying organic 

solvents followed by distillation. A brief overview is given over here describing the 

drying and distillation of the solvents, commonly employed in organic synthesis. 

3.3.1. 1, 4-Dioxane  (b.p. 101 ᵒC) 

Drying of 1,4-dioxane is very difficult due to its complete miscibility with water. 

Calcium chloride (CaCl₂) was used to dry 1,4-dioxane. This pre-dried dioxane was 

refluxed in sodium metal with benzophenone and stored over activated 3 Å molecular 

sieves. 

3.3.2. Toluene (b.p. 110.6 ᵒC) 

Toluene was pre-dried using calcium hydride (CaH₂). Pre-dried toluene was refluxed 

with sodium metal using benzophenone as an indicator, until color changed to deep blue. 

Distilled toluene was stored using activated 3 Å molecular sieves.  

3.3.3. Tetrahydrofuran (b.p. 66 ᵒC)  

Analytical grade tetrahydrofuran was refluxed with sodium metal using benzophenone as 

an indicator until deep blue color appeared. Freshly distilled THF was used each time for 

setting up highly moisture sensitive transition metal catalyzed coupling reactions. 

3.3.4. Dichloromethane (b.p. 39.6 ᵒC) 

DCM is easy to dry due to its low water content. It was distilled by refluxing over 

calcium hydride and stored over activated 3 Å molecular sieves. 

3.3.5. Chloroform (b.p. 61.2 ᵒC) 

Calcium hydride is a effective desiccant for drying chloroform. CHCl₃ was distilled over 

CaH₂ and was stored, using 3 Å activated molecular sieves. 

3.3.6. DMF (b.p. 153 ᵒC) 

DMF is stirred over Calcium hydride overnight and then it is filtered and distilled at 

reduced pressure. Distilled DMF is stored over activated 3 Å molecular sieves. 
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3.3.7. Methanol (b.p. 64.7 ᵒC) 

In order to dry methanol, magnesium (Mg) metal in presence of iodine (I₂) was used as a 

desiccant. It was refluxed until color turns milky white and stored over activated 3 Å 

molecular sieves. 

3.4. Procedure for the Synthesis of Mono-amides of Dipicolinc acid 

With Ethylamine 

Step-1: Synthesis of methyl di-ester of dipicolinic acid 

Pyridine-2,6-dicarboxylic acid (3.3g, 20 m.moles) was refluxed with thionyl chloride 

(3.48mL, 48m.mol) After 4 hours of reflux thionyl chloride was distilled off and 40 mL 

dried methanol was added to the reaction mixture containing di-chloride of dipicolinic 

acid to synthesize di-ester of dipicolinic acid. Excess methanol was evaporated under 

reduced pressure. Crystalline diester of dipicolinic acid was obtained in 85% yield after 

solvent extraction.  

Step- 2: Synthesis of mono-ester of dipicolinic acid  

Diester (2.54g, 13 m.moles) was dissolved in methanol (120mL) and selectively 

hydrolyzed by the drop wise addition of 0.5 M aqueous solution of sodium hydroxide 

(NaOH). The reaction was monitored with TLC using 10% methanol in chloroform as a 

mobile phase. After the completion of the reaction (in 6 hours), the reaction mixture was 

concentrated under reduced pressure on rotary evaporator. Mono-ester of dipicolinic acid 

was obtained in 65% yield after multistep solvent extraction. 

Step-3: Synthesis of amide of mono-ester of dipicolinic acid 

 Mono-ester of dipicolinic acid (2g, 11 m.moles) was dissolved in dried-distilled 

chloroform (40mL) and thionyl chloride (1.92mL) was added to it. After refluxing the 

reaction mixture for 4-5 hours, excess thionyl chloride was distilled off to get mono-

chloride mono-ester of dipicolinic acid that was dissolved in dried-distilled chloroform 

and 2 equivalents of CH₃CH₂NH₂ were added to it. This reaction mixture was refluxed 

over night. The progress of the reaction was checked using TLC. After the completion of 
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reaction, chloroform was evaporated under reduced pressure and solidified product was 

afforded in 81% yield after solvent extraction using ethyl acetate as organic layer. 

Step-4: Synthesis of amide of dipicolinic acid  

 Monoester monoamide (11.03m.moles) of DPA was then dissolved in dry methanol (40 

mL) and hydrolyzed using aqueous solution of sodium hydroxide for 6 hours. Excess of 

methanol was evaporated under reduced pressure and crystalline, white colored mono-

amide of DPA was obtained in 74% yield after solvent extraction using ethyl acetate as 

an organic layer. 

Yield: 74%,  m.p: 102-104 ᵒC, Rf : 0.1 (Chloroform/Methanol, 9:1) 

IR: (�̅�, cm-1) = 3400-2416 (O-H), 3262 (-NH-), 1728 (C=O acid), 1649 (C=O amide), 

1361, 2870 (C-H sp³). 

3.5. General Procedure for the N-arylation of Cyclic and Acyclic 

Amides 

A 13x100 mm oven-dried Pyrex glass sealed tube, equipped with magnetic stirrer was 

charged with amide (120 mol %), iodobenzene (100 mol %), Cs₂CO₃ (200 mol %), CuI 

(5 mol %) and ligand (10 mol %). After the addition of dioxane (0.5 M), the aperture of 

the sealed tube was covered with rubber septum and purged using an argon flow for few 

minutes. After purging, the septum was replaced by Teflon-coated screw cap quickly. 

The reaction mixture was stirred at 120 ᵒC for 24 hours. After the completion of time the 

sealed tube is allowed to attain room temperature and TLC is taken to check whether the 

reaction has been completed or not. The dioxane was evaporated under reduced pressure. 

Pure coupled product was obtained by purification through flash column chromatography 

on silica gel as stationary phase using n-hexane/ethyl acetate (85:15) as eluting solvent 

system. All the coupled products were solid, ranging from colorless to dark brown color. 
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1-phenylpyrrolidin-2-one  (1a) 

White solid, Yield: 99%, m.p : 105-109 ᵒC, Rf Value: 0.5 (n-Hexane : Ethyl acetate 1:1). 

¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 7.8 Hz, 2 H), 7.39 - 7.41 (m, 2 H), 7.16 (m, 1 

H), 3.88 (t, 2 H), 2.63 (t, J = 6.9 Hz, 2 H), 2.18 (quint, J = 7.2 Hz, 2 H); ¹³C NMR (75 

MHz, CDCl₃) δ 175.1, 158.6, 146.4, 129.4,174.2, 139.4, 128.8, 124.5, 119.9, 48.8, 32.7, 

18.0. 

 

1-(4-nitrophenyl)pyrrolidin-2-one  (1b) 

White solid, Yield: 99%, m.p : 122-126 ᵒC, Rf  Value: 0.33 (n-Hexane : Ethyl acetate 

1:1). 

 

1-(4-methoxyphenyl)pyrrolidin-2-one  (1c) 

White solid, Yield: 99%, m.p : 113-115 ᵒC, Rf  Value: 0.30 (n-Hexane : Ethyl acetate 

1:1). 

 

1-(4-methylphenyl)pyrrolidin-2-one  (1d) 

White solid, Yield: 98%, m.p : 96-98 ᵒC, Rf  Value: 0.51 (n-Hexane : Ethyl acetate 1:1). 

¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2 H), 7.16 (d, J = 8.1 Hz, 2 H), 3.82 

(t, J = 6.9 Hz, 2 H), 2.58 (t, J = 7.8 Hz, 2 H), 2.33 (s, 3 H), 2.08-2.18 (quint, 2 H). 

 

1-(4-methoxy-2-nitrophenyl)pyrrolidin-2-one  (1e) 

White solid, Yield: 88%, m.p : 88-89 ᵒC, Rf  Value: 0.18(n-Hexane : Ethyl acetate 1:1). 

¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 2.8 Hz, 1 H), 7.31 - 7.27(m, 1 H), 7.21 - 7.15 

(m, 1 H), 3.88 (s, 3 H), 3.84 (t, J = 6.9 Hz, 2 H), 2.59 - 2.49 (quint, 2H), 2.26 (t, J = 7.6 
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Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 175.1, 158.6, 146.4, 129.4,125.0, 120.1, 110.2, 

56.0, 50.4, 31.0, 19.0. 

 

1-(4-chloro-2-nitrophenyl)pyrrolidin-2-one  (1f) 

Yellow solid, Yield: 54%, m.p : 41-45ᵒC, Rf  Value: 0.29 (n-Hexane : Ethyl acetate 1:1). 

¹H NMR (300 MHz, CDCl₃) δ(ppm): 7.97 (d, J = 2.40 Hz, 1 H), 7.60 (dd, J =8.59, 2.40 

Hz, 1 H), 7.30 (d, J = 8.59 Hz, 1 H), 3.92 - 3.83 (m, 2 H), 2.61 - 2.50 (m, 2 H),2.34 - 2.21 

(m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ(ppm):175.1, 145.8, 133.7, 133.1, 130.7,128.4, 

125.7, 50.1, 31.1, 19.0. 

 

1-(4-chloro-3-nitrophenyl)pyrrolidin-2-one  (1g) 

Bright yellow solid, Yield: 90%, m.p : 133-135ᵒC, Rf  Value: 0.49 (n-Hexane : Ethyl 

acetate 1:1). 

¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.19 (d, J = 2.7 Hz, 1 H), 7.91(dd, J = 9,2.7 Hz, 1 

H), 7.51 (dd, J = 13.2, 4.2 Hz, 1 H), 3.88 (t, J = 6.9 Hz,  2H), 2.68-2.63 (m, 2 H), 2.20 (t, 

J = 7.5 Hz, 2H).  ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 174.8, 149.1, 140.7, 130.1,128.9, 

125.4, 117.1, 50.1, 33.4, 19.1. 

 

1-(2-methoxy-4-nitrophenyl)pyrrolidin-2-one  (1h) 

White solid, Yield: 78%, m.p : 142-145ᵒC, Rf  Value: 0.18 (n-Hexane : Ethyl acetate 

1:1). 

 

N-phenylacetamide  (2a) 

White solid, Yield: 75%, m.p : 113-115ᵒC, Rf  Value: 0.47 (n-Hexane : Ethyl acetate 

1:1). 
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N-phenylbenzamide  (2b) 

White solid, Yield: 79%, m.p : 162-163 ᵒC, Rf  Value: 0.84 (n-Hexane : Ethyl acetate 

1:1). 

 

N-(4-nitrophenyl)acetamide  (2c) 

yellow solid, Yield: 72%, m.p : 208-211 ᵒC, Rf  Value: 0.14 (n-Hexane : Ethyl acetate 

1:1). 

 

N-(4-nitrophenyl)benzamide  (2d) 

orange solid, Yield: 80%, m.p : 190-191ᵒC, Rf Value: 0.43 (n-Hexane : Ethyl acetate 

1:1). 

 

N-(4-methoxyphenyl)acetamide  (2e) 

White solid, Yield: 40%, m.p : 130-132 ᵒC, Rf  Value: 0.11 (n-Hexane : Ethyl acetate 

1:1). 

 

N-(4-methoxyphenyl)benzamide  (2f) 

White solid, Yield: 73%, m.p : 153-157 ᵒC, Rf Value: 0.34 (n-Hexane : Ethyl acetate 

1:1). 

 ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.40 (b, 1H, NH), 8.02 - 7.95 (m, 2H), 7.75 (d, J 

= 9.1 Hz, 2H), 7.59 - 7.44 (m, 3H), 6.92 (d, J = 9.1 Hz, 2H), 3.79 (s,3H). ¹³C NMR (75 

MHz, CDCl₃) δ (ppm): 166.0, 157.1, 136.5, 133.4, 132.1,129.2, 128.2, 122.7, 114.6, 

55.7. 
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N-(4-methylphenyl)acetamide  (2g) 

White solid, Yield: 40%, m.p : 150-152 ᵒC, Rf  Value: 0.53 (n-Hexane : Ethyl acetate 

1:1). 

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.88 (b, 1H, NH), 8.18 (d, J = 8.5 Hz, 2H), 2.89 

(S, 3H), 7.61 (d, J = 8.2 Hz, 2H), 2.75 (s, 3H).  ¹³CNMR (75 MHz, CDCl₃) δ (ppm): 

166.1, 137.8, 136.4, 133.9, 132.2, 129.9, 129.2, 128.3, 20.9. 

 

N-(4-methylphenyl)benzamide  (2h) 

Brown solid, Yield: 60%, m.p : 154-157 ᵒC, Rf  Value: 0.82 (n-Hexane : Ethyl acetate 

1:1). 

 

N-(4-chloro-3-nitrophenyl)acetamide  (2i) 

Yellow solid, Yield: 53%, m.p : 138-140 ᵒC, Rf  Value: 0.34 (n-Hexane : Ethyl acetate 

1:1). 

 

N-(4-chloro-3-nitrophenyl)benzamide (2j) 

White solid, Yield: 81%, m.p : 155-156 ᵒC, Rf  Value: 0.83 (n-Hexane : Ethyl acetate 

1:1). 

3.6. General Procedure for the Arylation of Aromatic and Hetero 

Aromatic Thiols 

  A 13x100 mm oven-dried Pyrex glass tube, equipped with magnetic bar was charged 

with thiophenol (120 mol %), iodobenzene (100 mol %), Cs₂CO₃ (200 mol %), CuI (5 

mol %) and ligand (10 mol %). After the addition of dioxane (0.5 M), the aperture of the 

sealed tube was covered with rubber septum and purged using an argon flow for few 

minutes. After purging, the septum was replaced by teflon-coated screw cap quickly. The 
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reaction mixture was stirred at 120 ᵒC for 24 hours. After the completion of time the 

sealed tube was allowed to attain room temperature and TLC was taken to check whether 

the reaction has been completed or not. The dioxane was evaporated under reduced 

pressure. Pure coupled product was obtained by purification through flash column 

chromatography on silica gel as stationary phase using 5% ethyl acetate in n-hexane as a 

mobile phase. Most of the coupled products were liquid while few of them were sticky 

solids as well, ranging from colorless to brown and purple in color. 

Diphenyl sulfide  (3a) 

Colorless liquid, Yield: quantitative, Rf  Value: 0.6 (n-Hexane only). 

¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.26-7.57 (m, 10H).  ¹³CNMR (75 MHz, CDCl₃) 

δ (ppm): 135.84, 131.10, 129.2, 129.1, 127.5, 127.2. 

 

4-methylphenyl phenyl sulfide  (3b) 

Colorless liquid, Yield: quantitative, Rf  Value: 0.61 (n-Hexane only). 

 

¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.16 – 7.36 (m, 9H), 2.39 (s, 1H). ¹³CNMR (75 

MHz, CDCl₃) δ (ppm): 137.6, 137.1, 132.3, 131.3, 130.1, 129.7, 129.0, 127.5, 126.4, 

21.1. 

 

4-methoxyphenyl phenyl sulfide  (3c) 

Colorless liquid, Yield: 93%, Rf  Value: 0.06 (n-Hexane). 

¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.44 -7.49 (m, 2H), 7.15 - 7.31 (m, 5H), 6.92 - 

6.97 (m, 2H), 3.85 (s, 3H).  ¹³CNMR (75 MHz, CDCl₃) δ (ppm): 159.8, 138.6, 135.4, 

128.9, 128.1, 125.7, 124.2, 115.0, 55.4. 
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4-(4-methoxyphenyl thio) benzenamine  (3d) 

Dark brown sticky solid, Yield: 75%, Rf  Value: 0.06 (n-Hexane : Ethyl acetate 95:5). 

 

2-(4-methoxyphenyl thio) benzenamine  (3e) 

Dark purple sticky solid, Yield: 69%, Rf  Value: 0.16 (n-Hexane : Ethyl acetate 95:5). 

 

2-(4-methylphenyl thio) benzenamine  (3f) 

Brown sticky solid, Yield: 70%, Rf  Value: 0.37 (n-Hexane : Ethyl acetate 95:5). 

 

4-(4-nitrophenyl thio) benzenamine  (3g) 

Pale yellow solid, Yield: 83%, Rf  Value: 0.09 (n-Hexane : Ethyl acetate 95:5). 

 

4-(phenyl thio) benzenamine  (3h) 

Brown sticky solid, Yield: 89%, Rf  Value: 0.11 (n-Hexane : Ethyl acetate 95:5). 

 

2-(phenyl thio) benzenamine    (3i) 

Dark green sticky solid, Yield: 79%, Rf  Value: 0.09 (n-Hexane : Ethyl acetate 95:5). 

 

Naphthalene-2-yl (phenyl) sulfide  (3j) 

White sticky solid, Yield: 98%, Rf  Value: 0.81 (n-Hexane : Ethyl acetate 95:5). 
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4-nitrophenyl phenyl sulfide  (3k) 

Pale yellow solid, Yield: 86%, Rf  Value: 0.05 (n-Hexane). 

¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.07 (dd, J = 2.1,9 Hz, 2H), 7.51(dd, J = 1.2, 11.4 

Hz, 2H), 7.45-7.48 (m, 3H), 7.18 (dd, J = 2.7,9.6 Hz, 2H).  ¹³CNMR (75 MHz, CDCl₃) δ 

(ppm): 148.5, 145.3, 134.8, 130.8, 130.0, 129.7, 126.6, 124.0. 

4-chloro-3-nitrophenyl phenyl sulfide  (3l) 

Pale yellow solid, Yield: 98%, Rf  Value: 0.51 (n-Hexane : Ethyl acetate 95:5). 

 

4-(4-chloro-3-nitrophenyl thio) benzenamine  (3m) 

Dark brown sticky solid, Yield: 84%, Rf  Value: 0.1 (n-Hexane : Ethyl acetate 95:5). 

 

2-methoxy-4-nitrophenyl phenyl sulfide    (3n) 

Yellow solid, Yield: 94%, Rf Value: 0.08 (n-Hexane : Ethyl acetate 95:5).  

¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.06 (dd, J = 2.7, 9 Hz, 1H), 7.70 (d, J = 2.7, Hz, 

1H), 7.28-7.52 (m, 5H), 6.92 (d, J = 9 Hz, 1H), 4.01 (s, 3H).  ¹³CNMR (75 MHz, 

CDCl₃) δ (ppm): 160.4, 141.8, 134.1, 130.6, 129.9, 129.1, 128.9, 123.6, 123.1, 109.6, 

56.8. 

 

(4-methoxy-2-nitrophenyl)(naphthalen-2-yl) sulfide    (3o) 

Yellow sticky solid, Yield: 94%, Rf  Value: 0.19 (n-Hexane : Ethyl acetate 95:5). 

 

(4-chloro-3-nitrophenyl)(naphthalen-2-yl) sulfide  (3p) 

Pale yellow sticky solid, Yield: 98%, Rf  Value: 0.47 (n-Hexane : Ethyl acetate 95:5). 
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 2-nitro-4-chlorophenyl phenyl sulfide  (3q)     

Yellow solid, Yield: 96%, Rf  Value: 0.56 (n-Hexane : Ethyl acetate 95:5). 

 

 4-methoxy-2-nitrophenyl phenyl sulfide  (3r) 

Light yellow sticky solid, Yield: 95%, Rf  Value: 0.27 (n-Hexane : Ethyl acetate 95:5). 

 

3-(phenyl thio) pyridine  (3s) 

 Colorless liquid, Yield: 91%, Rf  Value: 0.41 (n-Hexane : Ethyl acetate  9:1). 

 

3-(4-chloro-3-nitrophenyl thio) pyridine  (3t) 

Pale yellow solid, Yield: 90%, Rf  Value: 0.13 (n-Hexane : Ethyl acetate  9:1). 

 

5-chloro-2-(phenyl thio) benzothiazole (3u) 

Off white sticky solid, Yield: 60%, Rf  Value: 0.42 (n-Hexane : Ethyl acetate  9:1). 

 

5-chloro-2-(4-chloro-3-nitrophenyl thio) benzothiazole (3v) 

Pale yellow solid, Yield: 58%, Rf  Value: 0.41 (n-Hexane : Ethyl acetate  9:1). 

 

2-(phenyl thio) benzimidazole (3w) 

White sticky solid, Yield: 60%, Rf  Value: 0.14 (n-Hexane : Ethyl acetate  9:1). 
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2-(4-chloro-3-nitrophenyl thio) benzimidazole (3x) 

Pale yellow solid, Yield: 91%, Rf  Value: 0.12 (n-Hexane : Ethyl acetate  9:1). 
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