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Zdzislaw Pawlak [11] introduced the notion of rough sets, in 
the year 1982. The theory of rough sets has emerged as another 
maj or mathematical approach for managing uncertainty that arises 
from inexact, noisy or incomplete information. Later on, in 
connection with algebraic structures, R. Biswas and S. Nanda [1] 
gave the notion of rough subgroups, and N. I(uroki [6] introduced 
the rough ideals in semigroups and gave some properties of the 
lower and the upper approximations in the semigroups. 

In this diss~rtation we have introduced the concept of rough 
subsets in LA-semigroups, which extends the notion of LA­
selnigroup by including the algebraic structures in rough sets and 
studied some of their properties. This dissertation consists of three 
chapters. The first chapter contains some basic definitions, results 
and examples of LA-selnigroups which are relevant to our work. In 
second chapter, we have discussed preliminaries of rough sets and 
presented the equivalence relation on a set X and then presented the 
lower and the upper approximation of a subset and also presented 
the properties of approximations. In third chapter, we have defined 
rough subsets in LA-semigroup with respect to the congruence 
defined in LA-semigroup and discussed some of its properties. 
Rough ideals over the LA -semigroups are defined in natural way 
and rough sets with respect to idempotent congruences are also 
defined. We have also defined rough m-systems in LA-semigroups. 
Lastly, we have defined rough ideals in the quotient LA-semigroups. 
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Chapter 1 

Fundamental Concepts 

In this introductory chapter we present a brief summary of basic definitions and preliminary 

results of LA-semigroups which will be of our great help in further pursuits. 

1.1 LA-semigroups, Basic Definitions and Examples 

Definition 1 (4] A groupoid (S , ·) is called a left almost semigroup, abbreviated as an LA­

semigroup, ~f it satisfies left invertive law: 

(a . b)·c=(c·b)·a foralla , b,cES. 

Similarly, a groupoid (S, .) is called a right almost semigroup , abbreviated as an RA-semigroup, 

~f it satisfies the right invertive law: 

a·(b·c)=c.(b.a) foralla,b,cES . 

LA-semigroups are also known as AG-groupoids. 

Example 2 (4] The set S = {x, y, z}, under "." defined below in the form of Cayley table is 
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an LA-semigr01ip. 

x y z 

x x y z 

y z x y 

z y z x 

Example 3 {7j Let (Z, +) denote the commutative group of integers 1inder addition. Define a 

binary operation "*" in Z as follows: 

a * b = b - a fo r all a, b E Z . 

where "-"denotes the ordinary subtraction of integers . Then (Z, *) is an LA-semigroup, because 

(a*b)*c 

(c*b)*a 

So (a*b)*c 

(b - a) * c = c - (b - a) = c - b + a 

(b - c) * a = a - (b - c) = a - b + c = c - b + a 

(c*b)*a 

Example 4 {7j Let (~, +) denote the group of real numbers under ordinary addition. Define 

a binary operation "*" in ~ as follows: 

a * b = b - a for all a, b E R 

where "- "denotes the ordinary subtraction of real numbers. Then (~, *) is an LA-semigroup. 

Theorem 5 (7j Let (S, ·) be a commutative group with identity e. Let "*" be a binary operation 

defined in S as follows: 

a*b=ba-1 or (a *b=a- 1b) for all a, bES. 

Then (S, *) is an LA-semigroup with left identity e. 
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Proof. Let a , b, e E S. Then 

(ba -1) * e 

e (ba- 1 r 1 

e (ab- 1
) 

Q,b- 1e, beca.use S is a commuta.tive group . 

Also (e * b) * a = (be -1) * CL 

= a (be -1 ) -1 = a (eb -1 ) 

CLb-
1e, because S is a commutat.ive group. 

Thus (a * b) * e = (e * b) * a. Hence (S, *) is an Lfl-semigro up, As 

-1 

e * CL o.e 

CLe = a for all CL E S . 

It follows tha.t e is the left identity in (S,~) • 

Remark 6 The Lfl-semigro'llp (S, *) 'is Teferred to as an Lfl-sem'igTO'l/p defined by I;he cO'I7L'In:u­

tative group (S, ,). 

D efinition 7 [5] A nonempty subset B of an Lfl-semigroup S 'is ca.lled an LA-slI.bsem'igroup 

of S if BB ~ B. 

D efinition 8 [9] An element a of 0.'/1, LA-se'l71.'igTo'up S 'is co.lled (/.'/1 idempotent -if a. =--= 02 . 

Example 9 ['ll Let S = {e, f , CL, b, e} be an LA-sem'igTo'llp S 'with mult·i.pi'ieai'iun defined by the 

4 



Cayley table. 

e 1 a b c 

e e 1 a b c 

J 1 1 1 b c 

a a 1 e b c 

b c c c f b 

c b b b c 1 

Here e and 1 are idempotents in S. 

Theorem 10 (4J In an LA-semigroup S 

(ab) (cd) = (ac) (bd) lor all a, b, c, dES. 

Proof. Let a, b, c, dES. Then 

(ab) (cd) {(cd) b} a 

{(bd) c} a 

(ac) (bd) . 

The law (ab) (cd) = (ac) (bd) for all a, b, c, dES, is known as medial law. _ 

Theorem 11 (7J If an LA-semigroup S has left identity e, then it is unique. 

Proof. If there exists another left identity say 1, then 

el = 1 and le = e 

and 

1 = el = (ee) 1 = (je) e = ee = e. 

This completes the proof. _ 

Following is an example of an LA-semigroup with left identity. 
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Example 12 [4} Let S' = {:r:,:y, z} be an LA -seTn.igm'U.]l wd/i. the m:nUiplica/:io'fl q'ivc'fl ';''11. I.he 

follow'ing table. 

x x 

y z 

z y 

S is 0.71, LA-semigTO'U,p with left 'iclentity :c. 

z 

x y 

Lemma 13 [8} If S' 'is 0.71, LA-semigmnp w'ith left identdy e, then 

Proof. If 0., b, c E S, then 

This completes the proof. _ 

a (bc) = b(ac) for all a,b,c E S. 

a (bc) (eo.) (be) :::= (eb) (o.c) 

b (ac) . 

Definition 14 [8} An LA-se'l7vigTO'llp S' is called (L locally (LssoC'ia.l ·i.ve LA -sem:ig7'O'llfJ ·if a.nd on,ly 

'if (aa)a = a(aa) for all a E S. 

Theorem 15 [1} If an LA-semigTOup S ha.s the right 'ident'ity e, then e is 0.150 (J. left identity 

and hence is the 'identity 'in S. 

Theorem 16 [1) An LA-scm·igTO'u.p S '/lIith rigId iclenl'it.,lj e, is (/. com:III:II.1.o.t:i'oc sem:i.9TO'II.]! with 

-ide'lttity. 

Lemma 17 [5) If S is a.n LA-semigro'U.p 'With left icientdy e, then SS = S' and S' = eS' = S'e. 

Proof. Suppose S' is an LA-semigroup with left identity e and XES, then 

x e:.t: E S'S' and so S' <:;;; S'S'. that is 

S' SS' 
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Now using the facts e5' = 5', 5'5' = 5' and left invert.ive law . 

5e = (55) e =-: (e5) 5 = 5S = S 

Hence 5 = eS = 5'e. _ 

Remark 18 [Sj If S is a.n LA-sem.ig'l'OvpW'ith left 'ident-ity e , the'll S :...-:: S'2 , /)'I/.t e071:I' e'rse is no!; 

necessa.Tily tTv,e. 

Definition 19 [2j Let S a.nd 5' be two LA-sem'igro'tGps. A ,/,I/,apping f: S - ) ,5" 'is sa.id to be 

homomorphism if 

f (ab) = f (a) f (b) fO T all a, b E 5'. 

We denote by e' the icl.entdy of 5' . 

Defind'ion 20 {2j Let f and g be bin({.ry Tel(l.t.-i.on$ on an LA-8e'f7l:ignJUp 5'. Then th.e P'l'Oc/.'lI,c/, 

f og of f and 9 is defin ed a.s follows: 

fog = {(a,b) E 5 x S: (3 e E 5) (a ,e) E f a.nd (b,c) E g } 

Assume f and g a:f"e congT'll.enee 'l"elat'ions on (1.'17, LA-sernigm'llp 5. The1/, fog 'i.::; 0. con[JT"u.eT/.ce 'if 

and only if fog = gof. 

Defin'ition 21 [2j If X and Y be any two sets a.nd f : X -) Y 'is a map , then 

fof -1 

is an equ'ivalenee Tel({ot-iu n . 

{ (x ,y) E X x X: (3 Z E X) (x,z) E f , (y , z) E f } 

{(.:e, y) E X x X: f( :e) = f(y)} 

Remark 22 [2j The eq·v,ivalenee relation fof - 1 is wlled the ke'l"ne l of f, and 'We 'Write fof 

-1 = ker f . 

D efinition 23 [gj Let 5' be an LA-semigr01~p . A 'f"e lat-ion p on the set 5 is called lefl c01npu,tible 

-if 
( faT all s, t. a E 5) (s , t) E P imp l-i. es (0,8, at) E p, 
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and 'is called Tight co·m.p(f,t'ible if 

(foT all s,t , CL E S) (s , t) E p 'inLpl-ies (.sa,to.) E p, 

It 'is called compatible if 

(faT all s , t , s',t' E S) (.) , t) E P and (s' : t') E P imlJ l'ies (s 8' , a') E (J. 

A left (Tight) compat'ible eq'u.ivalence Telation 'is called left (right) C01l.g1'1/,ence. A compo.l;ible 

eqzL'lvalence Telation is called a congr"uence Te/a.t'ion. 

D efinition 24 (9j A congT'uence p on S 'is called complete congT'lI.ence 'if 

D efin it ion 25 (.9j If p is 0. cong'/"u.ence Telation on an LA-semig'f'O'l/.p S, then 'We caT/. rl.e[t:ne 0. 

binaTY opemtion in Sf p 'in a natv,TO.1 'Way as 

(ap)(bp) = (ab)p. 

The left inveTi'ive law holds 'i.n Sf p. 

Definition 26 A congTv,ence Telation (J on a:1? LA-sem'igT'Oup S is called an 'idempotent COT/.­

gnLence if the quotient LJ1-semigT'O'LLp Sf p 'is an idempotent LA-sem:igro'l/.p. 

T heorem 27 (2/ Let S o:n.d T be two LA-scm:igTO'lI.ps. and f : S -.~ T he (/. /wm.omorph.is'l11. 

ami 

K = ker f = {( x, Y) E S x S : f (x) = f (y) } 

'is congnLence Telation on S . Also K is ca.lled /.;eTnel of .f. 
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1.2 Ideals in LA-semigroups 

D efinition 28 [5] Let S be nn LA-sem:i.[j'rQ'Up. A 'rIonempl:y s'UuseL f of S is co.lI.p.d (/. left (Tight) 

ideal of S if S [ ~ [ (IS <;;;; I), and is called an ideal if 'it is a left (/.nd (t. T·i.ght. ideoL 

Intersection of any family of left (right) ideals of an LA-semigroup S is either empty or a 

left (right) ideal of S. If A is a non empt.y subset. of S, then intersection of all left (right.) ideals 

of S which contains A is a left (right) ideal of S containing.4. . Of course this is the smallest left. 

(right) ideal of S containing A and is called left (right.) ideal of S generated by A . If A = {a} , 

a singleton subset of S, t hen the left (right) ideal of S generated by A is called pri ncipal left 

(r ight) ideal of S generated by A. 

Union of left (right) ideals of an LA-semigroup S is a left (right.) ideal of S. 

Theorem 2B [12] 1f S is a'll LA-se'llI:i.g'lD"lIP wit,1i. left. ident,il,lJ e, t;henfol 0, <= S. Sa is (/, pTincipal 

left 'ideal of S genemtecl by a. 

Proof. We have to prove that S (Sa) ~ Sa. 

Let x, yES, then by using left invertive law and medial law, we obtain 

::z; (ya) 

This implies that 

(ex) (:yo.) 

((yo,) x) e 

((ya) (ex)) e 

((ye) (CLX)) e 

= (e (ax)) (ye) 

((1,;7;) (ye) 

= (Cye) x) a E Sa 

S (Sa) ~ Sa 

Also a = eo. E So.. If [ is a left ideal of S containing a then Sa ~ [ . 

Hence Sa is the principal left ideal of S generahxl by a. 
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Proposition 30 [12} Let S be an LA-semigrozLp with left identity e. Then as U Sa is the 

smallest right ideal contain'ing a. 

Proof. To show as USa is the smallest right ideal containing a. 

(aSUSa)S 

Now (as) S 

and (Sa) S 

(as) S U (Sa) S 

(SS) a ~ Sa 

(Sa) (eS) 

(Se) (as) By medial law 

C S (as) = (eS) (as) = a (SS) ~ as 

So (as USa) S C Sa U as = as USa. 

Thus as U Sa is a right ideal of S. It is clear that a is contained in as U Sa. Now let R be any 

right ideal of S containing a. Then 

as C RS ~ R implies as ~ R (1.1 ) 

Also Sa (SS) a = (as) S ~ (RS) S ~ RS ~ R 

This implies Sa C R ' (1.2) 

By (1.1) and (1.2) , as U Sa ~ R. Hence as U Sa is the smallest right ideal containing a. _ 

Definition 31 [5} ff B is an LA-subsemigroup of S, then B is said to be a bi-ideal of S ~f 

(BS)B ~ B. 

Definition 32 [5] An ideal P of an LA-semigrozLp S is called prime ~f AB ~ P implies that 

either A ~ P or B ~ P, for all ideal A and B of S. Prime ideal can also be defined as, an ideal 

P of an LA-semigroup S is called pr'ime ideal of S such that ab E P for some a, b E S impl'ies 

a E P or bE P. 

Definition 33 [5) An ideal P of an LA-semigroup S 'is called semiprime ~f [2 ~ P implies 

that [ ~ P, for any ideal [ of S. Semiprime ideal can also be defined as, a subset P of an 

LA-semigrozLp S is called semiprime 4 a2 E P (a E S) 'implies a E P. 

10 



Definition 34. (5/ Lei P he 0. leII. i.de({.! of 1/.'/1. L··\ -sem:i.l]·f·()·UP 5', P is CIIlled q·/f.I/.S'i-Ji7i'/ll.e i.deal if 

JOT left 'ideals A, B of S s·u,chth,(f./ AB ~ P, we !i.({,'/le A ~ P aT' B ~ P. 

Definition 35 (5] A nonempty s·u.bset A of an LA-sem'ig'f'O'lLp S is called an 'i,nterio'" 'ideal of S 

if (SA)S ~ A . 

Defmition 36 (5] An id.eal I of an LA-sem'igTO'Up S 'is ca.lled idem,potent 'U J'2 = I. 

Proposition 37 [5] Jf S is an LA-semigTO'llp with left identity e, then, eve'''y right 'ideal is 0. 

left 'ideal. 

Proof. Let I be a right ideal of Sand s E S, 'i E I . Then by left illverti ve law , we have 

8'i. = (es) 'i. =: (is) e E f 

Hence I is a left ideal. _ 

Lemma 38 (5] If I 'is a T'ight ideal of an, LA-sem'igTOup S wdh left -iclentil;y e, then 12 'is an 

ideal of S . 

Proof. By Proposition 37, I becomes a left ideal. So jf T E 12 t.hen x = ij where 'i , ) E I. 

Now using left invertive law and definit ion of left. ideals, we have 

:!:s = (ij) s = (sj) 'i, E II = /2 

This implies that 12 is a right ideal and by Proposition 37, J2 becomes a left ideal. _ 

1.3 M-Systems in LA-semigroups 

Definition 39 (10] A subset M of an LA- sernig7'Ou.p S is cu.lled aT/. '/I/.-system. if fu '" a., b E Ai, 

theTe ex'ists some x 'in S s1lch that a( ~cb) E J..i. A s'llbset B of LA-semigTOlip S is calleel a p­

system 'if for every b in B there eX'ists some x in S such that b( xb) E B. Every 'ideal is obviozlsly 

an m-system and a p-system. Clearly every left ideal is an m -system. 

11 



Example 40 Let 8 = {I, 2, 3, 4, 5} be an LA-semigrol~p defined by the following table 

1 2 3 4 5 

1 1 1 1 1 1 

2 1 1 1 1 1 

3 1 1 5 3 4 

4 1 1 4 5 ') 
oJ 

5 1 1 3 4 5 

Here (8,.) is an LA-semigroup and A = {I} and B = {1,3,4,5} are m-systems in 8. 

Proposition 41 [10] Each m-system is a p-system. 

Proof. Let a E M. Then there exists x in S such that a(xa) E M implying t hat M is a 

P-system. _ 

Lemma 42 [10] Every right ideal of an LA-semigroup 8 with left identity e is a P-system. 

Proof. Let I be a right ideal of 8. Then by Proposition 37, I becomes an ideal of 8 . If 

i E I then i(xi) E I for all x E 8 . Hence I is a P-system. _ 
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Chapter 2 

Rough Sets 

In this chapter we shall discuss the concept of rough sets which was given by Zdzislaw Pawlak 

in 1982 in his paper [11]. 

2.1 Basic Concepts in Rough Sets 

In this section, we will define some concepts related to rough set theory given by Zdzislaw 

Pawlak. 

Definition 43 Suppose U be the set of objects, called the universe and an indiscernibility rela­

tion R ~ U x U, for the sake of simplicity we assume that R such that xRy ~f and only ~f (x, y) 

is in R. R is an equivalence relation ~f it satisfies the following properties: 

i) Reflexive Property: (x, x) is in R for all x in U. 

ii) Symmetric Property: ~f (x, y) is in R, then (y, x) is in R. 

iii) Transitive Property: ~f (x, y) and (y, z) are in R, then (x, z) is in R . 

Definition 44 A partition P of U is a family of nonempty subsets of U s'1£ch that each element 

of U is contained in exactly one element of P. 
n 

i) U = UUi 
i=l 

ii) Ui n Uj = ¢, for all i i= j. 

13 



D efinition 45 (11] Th e 'ind'iscC'rn:ib'ility Telal:ion: 

Rough set theory is based on the incliscemibili ty relation. Let us denot.e :;r Ry , if we cannot 

discern .1: and y by t.heir properties then R is called an indiscernibili t.y relat.ion on U. Usually 

indiscernibili ty relations are assumed to be equivalences. The equivalence class of :1: E U, such 

that [xlR = {y E U : xRy}, consists of objects indiscernib le from x. The incliscel'llibili t.y relation 

IND (P), is defined as follows 

IND (P ) = {(x , y) E U x U : for all a E P, o.(T) = o.(y)}, here P is partition P of U 

In simple words, two objects are indiscernible if "ve can not discern between t.hem , because 

they do not differ enough. The indiscernib ili ty relation defines a partit ion in U. 

Example 46 Example of indisceTnib'ility: 

Given an information system is 

----------.~- . __ .-----------

U Headache 

1 yes 

2 yes 

3 yes 

4 yes 

5 no 

6 no 
-

7 no 

8 no 

Here the possible ii1discernibility relat.ions are 

IL1cliscernib ili loy relation for HEADACHE: 

Temperat.ure 

normal 

high 

normal 

very high 

high 
._--

very high 

high 
--

very high 

---
Flu 

r--
no 

yes 

no 

no 

no 
---

yes 
1---

yes 
--

yes 

R = { ('i,j) E U xU : HEAD(-i.) = HEAD (j) } 

The parti t.ion by HEADACHE: 

IND({HEADACHE}) = {{ 1,2,3,4},{5,6,7,8}} 

Indiscernibility relation for TEMPERATURE: 

R = (( 'i,j) E U xU : TEMP(i) = TE1"\-1P (j)} 

The partition by TEl'vIPERATURE: 

1,,:( 



IN O( {TEM PERATURE}) = {{l. 3}. {2, .5 , 7} , {4 , Ci. 8}} 

Indiscel'llibility relation for HEADACHE and TEjI,(PEH.ATUli..E: 

R = {(i,j) E U xU: NTU) = NT(j)} 

The partition by HEADACHE and TEMPERATURE: 

IN D( {II EAD}, {TEMP}) = {{I , 3}, {2} , {4} , {5, 7}, {6 , 8}} 

2.2 Set Approximations 

Definition 47 [11] Lowe'f' apP'T'Oximat'ion of a s'u,bsei: 

The lmver approximation of a set X ~ U with respect to R is the sd. of' all objects, which 

can be for certain classified as X with respect to R (are certainly X with respect to R). From 

the different. representations of an equivalence relation, we obtain three constr uctive definitions 

of lower approximat.ion 

i) R_(X) = {x E U : [;CJR ~ X} 

i'i) R_ (X) = U [x] R 

[.r:JR<;;X 

iii) R_(X) = U{A E U/R: A ~ X} where [X]R = {:y : xR:y} 

i) is element based definition, ii) is granule based definition, and iii) is subsystem based 

definition. 

Definition 48 [11] Uppe'f' app'T'Ox'i:mat'ion oJ a s'u.bset: 

The upper approximation of a set X \·vit.h resp ect. to R is the set of all objec:ts\\'hic:h can 

be possibly classified as X with respect to R (are possibly X in view of R). From the different 

representations of an equivalence relation , we obtain three constructive definitions of upper 

ap proximation 

i) R-(X) = {;c E U : [:GJR n X 1- q;} 

ii) R-(X) = U [X]R 
[xJ RnX ioifJ 

ii'i) R-(X) = n{A E U/R: AnX 1- ¢} ,,,,here [:Z:]R = {:y : xRy} 

i) is element based definition, ii) is granule based definition , and iii) is subsyst em based 

definition. 
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The lower and upper approximat.ions , iL , R- : 2u -, 2u . can be int.erpret.ed as a pair of 

unary set-t.heoret.ic operat.ors. They are dual operators in the sense that IL(X) = (R-(."YC))C 

and R- eX) = (R_ (XC))C , where Xc is set complemen t. of X. The pair (U, R) is called approx­

imation space. 

Definition 49 [14J Boundary Region. 

It is the collection of elementary sets defined by: 

BND(X) = R-(.X) - R_()() 

These set.s are included in R-Upp er but. not: in R-Lower approximat-.ions . 

Based on the lower and upper approximat.ions of a set X <; U, t.he uni verse U can be divided 

into three disjoint regions , the positive region POS(X) , the negative region NEC(X), and t.he 

boundary region BND(X): 

POS(X) = R_(.X) ; 

NEC(X) = U- R-(X) = (R - (X))C; 

BND(X) = R-(X) - R_(.X) 

As we can see from the granule based definition, approximations are expressed in terms of 

granules of knowledge . The lower approximation of a set is union of all granules which are 

ent.irely included in the set , t.he upper approximat.ion is unio!l of' all granules whid ! have 110n­

empt.y intersection wit.h t.he sd., the boundary region of set is the dir-rel'ence iJet.wee!\ the upper 

and the lower approximation. 
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This definition is clearly depicted in Figure 1 

Boundary r~g:lofl 

Fig. 1: IlIlIs/ration of cile bOlil/deu)' region ofJ'Ollgh sei 

Figure 1 illustrates the approximation of a set X, and the positive, negative and boundary 

regions. Each small square represents an equivalence class. The upper approximation of a set 

X is the union of the positive and boundary regions, namely, R-(X) = POS(X)U BND(X) . 

Example 50 Consider a set U = {I , 2, 3, 4, 5, 6} as a universal set. Define R to be an equiva­

lence relation such that, for an equivalence relation R on U : 

lR1, 2R2, 2R3, 3R2, 3R3, 4R4, 5R6, 6R5, 5R5 , 6R6 

The equivalence relation induces four equivalence classes, which are the subsets C1 = {1} , 

C2 = {2,3}, C3 = {4}, C4 = {5,6}, here we want to characterize the set D = {3,4,5} with 

respect to R. For this we have 

I C 1 I 

C2 C C; 
-) 

C 4 -- ----------' 
\ 
D 
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C1 is definitely outside 

R_ (D) = {4} = C3, C3 definitely inside . 

R- (D) = {2, 3, 4, 5, 6} = C2 U C3 U C4 

C2UC4 = {2,3,5,6} is the boundary region of D. 

Example 51 Consider the information system given ,in the table below 

Numbers Code 

1 (0 ,0,1) 

2 (0,1,1) 

3 (0,1,1) 

4 (0,1,1) 

5 (1 , 0,0) 

6 (1,0 ,0) 

7 (1,1,0) 

8 (1,1,0) 

9 (1,1,0) 

Now indiscernibility/equivalence relation on U is R = {(i,j) E U xU: Code(i) = Code(j)} , 

now here 

R(l) = {l} 

R(2) = R(3) = R(4) = {2, 3, 4} = C2 

R(5) = R(6) = {5 , 6} = C3 

R(7) = R(8) = R(9) = {7, 8, 9} = C4 

here C1 , C2, C3 and C4 are equivalence classes 

1 

--6 5 
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Now take D = {2, 5, 6, 7, 8}, approximations of Dare 

1 

R _ (D) = {5, 6} = C1, 03 defi nite ly in::;idc . 

R- (D ) = {2 , 3, 4,5,6,7,8, 9} = C2 U C~1 U C4 

C2 U C4 = {2, 3, 4, 7, 8, 9} is the boundary region of D. 

And clearly 0 1 is outside. 

2.3 Properties of Approxin~ations 

Approximations have the following properties: [ll] 

1) R _ (X) ~ X ~ R- (X) 

2) R _ (¢) = ¢ = R- (¢) ; R _ (U) = U = R- (U) 

3) R- (X U Y) = R- (X) U R-(Y) 

4) R_ (X U Y) "2 R_ (X) U R-CY) 

5) R- (X n Y) ~ R- (X) n R-(Y) 

6) R_ (X n Y) = R_ (X) n R_(Y) 

7) X ~ Y implies R _ (X) ~ R_ (Y) , R- (X) ~ R- (Y) 

8) R _ (-X) = -R- (X) 

9) R- (-X) = -R_ (X) 

10) R_R_ (X) = R- R_ (X) = R_ (X) 

11 ) R- R - (X) = R_R- (X) = R- (X) 

It is easily seen that approximations are in fact interior and closure operat ions in a t.opology 

generated by data. 
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Definition 52 A s1lbset X of U 'is called CT'isp when ils bo'undary Teg'ion 'is empty i. e. R_ (X) = 

R-(X) . 

Definition 53 (ll) Let S be a 'lmiversal set and let R be a'/7. eq'll:i:ua.le7lcc '/'(~l(l.ti()n 011 S, t.he'll Ihc 

set X s;:; S is ca.llecl a TOugh 'With respect to R if R _ (X) i- R - U()· 

Another definition is 

Definition 54 (l4) A s1/,bset defined thTough 'its lower and uppeT appmximat'ions 'is ca.llecl a 

11.Ol{,g l1 set. That 'is. when the bO'll.nda:ry 'region is u. '1wne'll1-1)/.Y set (R_(X) f R-(.X)). 

Exalnp le 55 COllside7' a sei U .= {7Je'f'l.: /JuIJk. hay} as 1/./I.llivCTSO.l sd. !l.eJi:nc I? I,() /)(' {/fl 

eq'll:ivalence 7'eiat;ion .'i'neh t/w.t R = {(pe'l I., pen), (boo/.; , bag): (/JU,V, booh: ), (i)()oA:. /}()oh) , (bag, h! I,y ) } , 

now here we will chamcie'r'ize all the subsets of U with respect to R , Lhe eq'llivo.le'nce Telo.t'i.on 

induces two equ'ivalence classes {pen}, {book , bag}. 

P(U) = {¢, {pen }, {book} , {bag} , {peT/', book:}, {pen, bag}, {book , bay}. U} is the set. of all 

subsets of U, now 

R_ (¢) = ¢ 

R_ ( {pen}) = {pen} 

R_ ({book}) = ¢ 

R_ ( { b(Lg }) = ¢ 

R_ ( {pen. hOOA:} ) = {7Ien } 

11._ ({pen, bay}) = {peT/,} 

R_ ( {book , bag}) = {book , bay} 

R_ (U) = U 

R-(¢) = ¢ 

R- ( {pen}) = {pen } 

R - ({book}) = {book, bag} 

R-( {bag}) = {book, bag } 

R-({pen,book}) = U 

R-({pen , bag}) = U 

R-({book , bag}) = {book , bag} 
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Now here it is clear that 

R_ ({book}) =I R- ({book}) 

R_({bag}) =I R-({bag}) 

R_ ( {pen, book}) i= R- ( {pen, book}) 

R _ ({pen, bag}) =I R - ({pen, bag}) 

So {book} , {bag}, {pen, book} and {pen, bag} are rough sets with respect to R , and {pen}, 

{book, bag} are crisp sets. 

Example 56 Let (U, R) is an approximation space, where U = {Xl, X2, x3, ... , xs} and an equiv­

alence relation R with the follow'ing eq1livalence classes: 

El = {Xl ,X4,XS } 

E2 = {X2 , X5, X7 } 

E3 = {X3} 

E4 = {X6} 

Let X = {X3,X5 } and Y = {X3,X6} 

R_(X) = {X3} and R-(X) = {X2,X3,X5,xd 

R_(Y) = {X3, X6} and R-(Y) = {X3, X6} 

So R(X) = ({X3}, {X2,X3,X5,X7}) is a rough set and R(Y) is a crisp set. 

Example 57 [141 This example 'illustrates the main ideas developed so far, consider a universe 

consisting of three elements U = {I, 2, 3} and an eq1livalence relation R on U: 

IRI , 2R2 , IR3 , 3RI, 3R3 

The equivalence relation induces two equivalence classes [IJR = [3JR = {I , 3}, [2JR = {2}, 

now P(U) = {¢, {I}, {2}, {3}, {I, 2}, {I, 3} , {2, 3} , U} is the set of all subsets of U. The following 

table summarizes the lower and upper approximations, the positive , negative and boundary 
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regions for all subsets of U. 

X R_(X) R-(X) POS(X) NEG(X) BND(X) 

¢ ¢ ¢ ¢ U ¢ 

{I} ¢ {l,3} ¢ {2} {l,3} 

{2} {2} {2} {2} {l,3} ¢ 

{3} ¢ {l,3} ¢ {2} {l,3} 

{l,2} {2} U {2} ¢ {l,3} 

{l,3} {l,3} {l,3} {l,3} {2} ¢ 

{2,3} {2} U {2} ¢ {l,3} 

U U U U ¢ ¢ 

Now it is clear from the table that 

R_( {I}) oF R-( {I}) 

R_({3} ) i R-({3}) 

R_({l,2}) i R-( {I, 2}) 

R_( {2, 3}) i R-({2,3}) 

So {I}, {3}, {l,2}, {2,3} are rough sets with respect to R, and {2}, {l ,3} are crisp sets with 

respect to R. 

Two subsets X and Y of the universe U will be equal if R_(X) = R_(Y) and R-(X) = 

R-(Y) . 
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Chapter 3 

Roughness in LA-semigroups 

In t.his chapter we have clefilled rough subset.s in LA-se.llligl'ol.lps and st.ueli ed some of their 

properties . \lVe have also defined rough ideals in an LA-semigroup and also defined rough 

M-Systems. Lastly, we have defined the rough ideals in the quotient. LA-semigroup. 

Throughout the chapt.er S will denote an LA-semigroup unless st.ated otherwise. 

3.1 Rough Subsets in LA-semigroups 

Definition 58 Let p be a congruence relation on an LA-sem:igr'O'll.p S. Let A be (f, 1Lonem.pty 

subset of S. Then the sets 

p_(A) = {x E S : [x]p ~ A} 

a.nd 

are called p-lower and p-'llpper appTox'imat'ions of A 'f'espect'ively. 

D efinition 59 Let 1LS denote the set of all subsets of S by P( S). For a nonempty subset A of 

S, 
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is called a TOugh set with respect to p OT simply a p-T01/.gh sv,bset of P(S) x P(S) ~f 

Example 60 Let S = {I, 2, 3, 4, 5} be an LA -s emigr01~p defined by the following table 

1 2 3 4 5 

1 1 1 1 1 1 

2 1 1 1 1 1 

3 1 1 5 3 4 

4 1 1 4 5 3 

5 1 1 3 4 5 

Let us define a congruence p on S by 

p = {(I , 1) , (2,2), (3 , 3), (4,4), (5, 5), (3,4), (4 ,3 ), (3,5), (5,3), (4,5), (5, 4)} 

p-congruence classes are [l Jp = {I}, [2]p = {2}, [3]p = [4J p = [5]p = {3 ,4,5}, let A = {2,4} be 

a subset of S, then 

p_(A) = {2} and p- (A) = {2, 3, 4, 5} 

are respectively the p-lower and p-uppeT appTO~L'imations of A and here p_ (A) =I- p- (A), So 

p(A) = ({2}, {2 , 3,4,5}) 

is a TOugh set. 

Proposition 61 Let p and <p be congT1~ence relations on an LA-semigT01~p S . If A and Bare 

nonempty subsets of S, then the following hold: 

(1) p_(A) ~ A ~ p-(A); 

(2) p-(A U B) = p- (A) U p- (B ); 

(3) p_(A n B) = p_(A) n p_(B); 

(4) A ~ B implies p_(A) ~ p_(B); 
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(5) AS;;; B implies p-(A) S;;; p-(B); 

(6) p_ (A U B) ~ p_(A) U p_(B); 

(7) p-(A n B) S;;; p-(A) n p-(B); 

(8) p S;;; 'P implies p_(A) ~ 'P_(A); 

(9) p S;;; 'P implies p- (A) S;;; 'P- (A); 

Proof. (1) If a E p_(A), then a E [alp S;;; A. Hence p_(A) S;;; A. Next , if a E A, then, since 

a E [alp, we have [alp n A f. 1;, and so a E p-(A). Thus AS;;; p-(A) . 

(2) Note that 

a E p-(A U B) {=::} [alp n (A U B) f. 1; 

Thus 

(3) Note that 

<===> ([alp n A) U ([alp n B) f. ¢ 

{=::} [alp n A f. 1; or [alp n B f. 1; 

{=::} a E p-(A) or a E p-(B) 

{=::} a E p- (A) U p- (B), 

a E p_(A n B) {=::} [alp S;;; An B 

Thus 

{=::} [alp S;;; A and [alp S;;; B 

{=::} a E p_(A) and a E p_(B) 

{=::} aEp_(A)np_(B) 

(4) Since A S;;; B if and only if An B = A, by (3) we have 

This implies that 
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(5) Since A ~ B if and only if A u B = B, by (2) we have 

This implies that 

p-(A) ~ p-(B) . 

(6) Since A ~ AUB and B ~ AUB , by (4) we have 

which yields 

(7) Since An B ~ A and An B ~ B, by (5) we have 

which yields 

(8) Since p ~ <p, then for each a E S we have 

[alp = {x E S, (x,a) E p} 

If a E <p_ (A) then [aJ'P ~ A. But p ~ <p, then 

Thus a E p_(A). Hence 

(9) Let a be any element of p-(A). Then there exists x E [aJp n A . Then, since p ~ <p, we 
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have 

x E [alp ~ raj,!, 

and x E A. Thus x E raj,!, n A and so a E cp-(A) . Therefore 

This completes the proof. _ 

Proposition 62 Let p be a congT"tlenCe relation on an LA-semigroup S, then 

Proof. The proof is straight forward. _ 

Proposition 63 Let p be a congrtlence relation on an LA-semigrollp S. If A and BaTe 

nonempty subsets of S, then 

Proof. Let c be any element of p-(A)p-(B). Then c = ab with a E p-(A) and bE p-(B). 

'1'hlls tnere exist elements x, yES, such that 

x .E [aJp n A and y E [bJp n B. 

Thus x E [aJp, y E [bJp , x E A and y E B. Since p is a congruence on S 

Since xy E AB, we have 

xy E [ab]p n AB 

and so ab E p-(AB). Thus we have 
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This completes the proof. _ 

Proposition 64 Let p be a complete congruence relation on an LA-semigrozlp S. If A and B 

are nonempty subsets of S, then 

Proof. Let c be any element of p_(A)p_(B). Then c = ab with a E p_(A) and bE p_(B) . 

Thus we have 

[alp ~ A and [b]p ~ B. 

Since p is complete congruence on S, we have 

and so ab E p_(AB). Thus 

This completes the proof. _ 

Theorem 65 Let p and <p be congmence relations on an LA-semigrozlp S. If A is a nonempty 

wbset of S, then 

Proof. Note that p n <p is also a congruence relation on S. Let c E (p n <p)-(A). Then 

[c]pn<p n Ai- ¢Y. 

Then there exists an element a E [c]pn<p n A. Since (a, c) E p n <p, we have 

(a, c) E P and (a,c) E <p 

Thus we have a E [c]p and a E [c]IO' Since a E A, we have 

a E [c]p, a E A and a E [c]IO' a E A. 
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This implies that 

and so 

Thus we obtain that 

This completes the proof. _ 

a E [c]p n A and a E [c]<p n A 

[c]p n A =I- ¢ and [c]<p n A =I- ¢ 

c E p-(A) and c E <p-(A), 

Theorem 66 Let p and <p be congruence relations 0'11, an LA-sem'igrOltp S. If A is a nonempty 

subset of S, then 

Proof. Since p n <p s;:; p and p n <p s;:; <p, which implies that 

This completes the proof. _ 

In paper [6] it is given that 

Next we show that the converse of the above theorem is not true. For this, we take an example 
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Example 67 We consider an LA-semigroup S = {I, 2, 3, 4, 5} with the following Cayley table 

1 234 5 

1 1 234 5 

22224 5 

332 14 5 

4 5 5 5 2 4 

5 4 4 4 5 2 

Let 1LS define congrtLences p and cp on S by 

p = {(I, I) , (2 , 2), (3, 3), (4,4), (5, 5), (I, 2), (2, I), (1,3), (3 , I), (2,3) , (3 , 2)} 

and the p-congrtLence classes are [l]p = [2]p = [3]p = {I, 2, 3}, [4]p = {4}, [5]p = {5}, 

cp = {( 1, 1) (2 , 2) , (3, 3), (4,4) (5, 5), (2, 4), (4, 2), (2, 5), (5, 2) , (4, 5), (5, 4) } 

and the cp-congmence classes are [2] <p = [4] <p = [5]<p = {2,4, 5}, [1] <,0 = {I} , [3]<,0 = {3} 

p n cp = {(I , I) , (2,2), (3,3), (4,4), (5, 5)} 

Let A = {2,4, 5} be a nonempty subset of 5, then 

This implies that 

Hence 

(pncp)_(A) = {2,4,5} 

p_ (A) = {4, 5} and (cp)_(A) = {2, 4, 5} 

==? p_(A) n (cp)_(A) = {4,5} 
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3.2 Rough Ideals in LA-semigroups 

Definition 68 Let p be a congruence relation on an LA-semigroup S. Then a nonempty slbbset 

A of S is called an upper rough LA-slbbsemigroup of S ~f p- (A) is an LA-subsemigroup of S, 

and A is called an upper rough left (right , two-sided) ideal of S 'd p- (A) 'is a left (right, two-sided) 

ideal of S. 

Theorem 69 Let p and <p be congruence relations on an LA-semigroup S slbch that po<p = <pop, 

If A is an LA-subsemigr01Gp of S, then 

Proof. Let c be any element of p-(A)<p-(A). Then c = ab where a E p-(A) and bE <p-(A). 

Then there exist elements x, yES, such that 

Thus x E [aJp , y E [bJ'f' , and x, yEA. Since A is an LA-subsemigroup of S, we have xy E A 

Then (x , a) E p and (y, b) E <p, and since p and <p be congruence relations , we have 

(xy, ay) E p and (ay, ab) E <p 

Thus we have 

(xy, ab) E p 0 <p 

and so xy E [abJpo'f" Therefore we have 

xy E [abJpo'f' n A, 

which yields 

c = ab E (p 0 <p)- (A) 

Thus we obtain 
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This completes the proof. • 

Theorem 70 Let p be a congruence relation on an LA-semigrol£p 5, then 

(1) If A is an LA-subsemigroup of S, then A is an upper rough LA-subsemigroup of 5. 

(2) If A is a left [right , two-sided] ideal of 5, then A is an upper rough left [right, two-sided] 

ideal of 5. 

Proof. (1) Let A be an LA-subsemigroup of 5. Then we have 

Then it follows from Proposition 63 that 

This means that p-(A) is an LA-subsemigroup of 5, that is, A is an upper rough LA-subsemigroup 

of S. 

(2) Let A be a left ideal of S, that is, SA ~ A. Note that p-(5) = S. Then by Proposition 

63 , we have 

This means that p-(A) is a left ideal of S, that is, A is an upper rough left ideal of S. The 

other cases can be seen in a similar way. This completes the proof. • 

The above theorem shows that the notion of an upper rough LA-subsemigroup [left ideal, 

right ideal, two-sided ideal] is an extended notion of a usual LA-subsemigroup [left ideal, right 

ideal, two-sided ideal] of an LA-semigroup. The following example shows that the converse of 

above theorem does not hold in general. 
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Example 71 Let S = {1, 2, 3,4, 5} be an LA -sem'igroup with the follow'ing m'ultipl'ication table: 

1 2 3 4 5 

1 1 2 4 4 5 

2 5 4 4 4 4 

3 4 4 4 4 4 

4 4 4 4 4 4 

5 2 4 4 4 4 

Let p be a congmence relation on S, such that the p-congmence classes are the subsets {l}, {3}, 

{2, 4, 5}. Then for A = {2, 4} ~ S, p-(A) = {2, 4, 5}, and here 

{2,4}S = {4,5} ct {2, 4} and S{2,4} = {2,4} 

but {2,4,5}S= S{2,4,5} = {2,4,5} 

This means that the set {2,4,5} is a two-sided ideal of S. It is clear that A = {2 ,4} is not a 

two-sided ideal of S. ThzLs A = {2, 4} is an upper rozLgh ideal but it is not an ideal. 

Theorem 72 Let p be a complete congmence relation on an LA-semigrozLp S, then 

(1) Let A be an LA-subsemigroup of S, then p_(A) is, if it is nonempty, an LA-subsemigroup 

of S, 

(2) Let A be a left [right, two-sided] ideal of S, then p_(A) is, if it is nonempty, a left [right, 

two-sided] ideal of S. 

Proof. (1) Since A is an LA-subsemigroup of S, by Proposition 64, we have 

This means that p_ (A) is , if it is nonempty, an LA-subsemigroup of S. 

(2) Let A be a left ideal of S, that is, SA ~ A, Note that p_(S) = S, Then by Proposition 

64, we have 
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This means that p_ (A) is, if it is nonempty, a left ideal of S. The other cases can be seen in a 

similar way. This completes the proof. _ 

The following example shows that the converse of above theorem does not hold in general. 

Example 73 Let S = {I, 2, 3, 4, 5} be an LA-s·ubsemigro'U.p w'ith the following multiplication 

table: 

1 2 3 4 5 

1 5 2 1 2 3 

2 2 2 2 2 2 

3 3 2 5 2 1 

4 2 2 2 2 2 

5 1 2 3 2 5 

Let p be a complete congruence relation on S , sttch that the p-congruence classes are the subsets 

{l ,3,5}, {2}, {4}, then for A = {1 ,2} ~ S, p_(A) = {2}, and here 

{2}S ~ S{2} = {2} 

but {I, 2}S = S{l, 2} = {I, 2,3, 5} rJ; {I, 2} 

This means that the set {2} is a two-sided 'ideal of S . It is clear that A = {1,2} is not a 

two-sided ideal of S. Thus A = {I , 2} is a lower TOugh ideal but it is not an ideal. 

Theorem 74 Let p be a congruence relation on an LA-semigTO'up S. rr A and B are a right 

ideal and a left ideal of S, respect'ively, then 

Proof. Since A is a right ideal of S, AB ~ AS ~ A, and since B is a left ideal of S , 

AB ~ SB ~ B , thus AB ~ An B. Then it follows from Proposition 61(5) and Proposition 

61(7) that 

Which completes the proof. _ 
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Theorem 75 Let p be a congruence Telation on an LA-semigTollp S . If A and B aTe a. T'ight 

ideal and a left ideal of S, Tespective ly, then 

Proof. Since A is a right ideal of S, AB ~ AS ~ A, and since B is a left ideal of S, 

AB ~ SB ~ B, thus AB ~ An B. Then it follows from Proposit ion 61(3) and Proposition 

61(4) that 

which implies that 

T his completes the proof. _ 

T heorem 76 Let p be a congruence Telation on an LA-semigmup S with left identity, ~f A is 

a Tight ideal of S, then 

(1) p-(A) is a left ideal of S. 

(2) If p is complete then, p_ (A) is a left ideal of S. 

Proof. (1) Let S be an LA-semi group with left identity, and A is a right ideal of S , so by 

Theorem 70(2) , p-(A) is a right ideal of S, such that 

Let so. E Sp-(A) for s E S and a E p-(A). Now 

so. (es)a 

= (as) e by left invertive law 

As p- (A) is right ideal , so 
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Therefore we have 

Hence 

This implies that 

This shows that p- (A) is left ideal. By using Theorem 72(2), the proof of (2) can be seen in a 

similar way. This completes t.he proo f. _ 

Le mn1a 77 L et (J be 0. C01 I.,q·/"l/.ence Tr:!- i a.{.-ion 0'/1. II. local.ly o.8s0cio./;-i.'Ue LA -Se.·III.iIj'f'lJ'U.p 5', then f OT 

a. nonempty s'u.uset A of 5', 

(1) [p-(A)] lt ~ p-(AI1 ) for all 17, E N . 

(2) If p is complete t. hen , [p_(A) ]"1 ~ p_(Alt) for all 17, E N. 

Proof. (1) Let A be a nonempty subset. of S, then for n = 2, and by Proposit. ion 63, we get. 

Now for 17, = 3, we get 

Suppose t. hat the result is true for n = k -1, sllch that [p- (A)J":-l ~ p-(fl"-l), t.hen for n = k, 

we get 

Hence this shows that [p-(A)]k ~ p-(Ak). This implies t.hat. [p-(A)t ~ p-(AI1) is t rue for all 

n EN. By using P roposit ion 64, the proof of (2) can be seen in a similar way. Th is completes 

the proof. 

T h eorem 78 Let p be a congTu.ence Telat'ion on a.n L A-se'l7l,'igroup 5', let A be 0. left. ideal of 5', 

then 
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(1) A 2 is an upper rough right ideal of S. 

(2) If p is complete then , A 2 is a lower rough right ideal of S. 

Proof. (1) Let A be left ideal of an LA-semigroup S. Now 

p-(A2)S 

c 

c 

Hence we get 

p-(A2)p-(S) 

p-Vl 2S) 

p-[(AA)S] 

p-[(SA)A] 

p-(AA) 

p-(A 2 ) 

(by Proposition 63) 

(left. invertive law) 

(because S A ~ A) 

This shows that A 2 is an upper rough right ideal of S. By using Proposit.ion 64, the proof of 

(2) can be seen in a similar way. This completes the proof. II 

It can be prove that if A be a left ideal of a locally associat.ive LA-semigroup t.hen An is an 

upper rough right ideal and also a lower rough right. ideal of S for all 'n E N\ {I} . 

Theorem 79 Let p be a congruence relat'i.on on an LA-sem:i.gToll,p S with left identity, lei, A be 

a left 'ideal of S, then 

(1) A 2 is an upper l'Ough ideal of S. 

(2) If p is complete then, A2 is a lower rough ideal of S 

Proof. (1) Let A be left ideal of an LA-semigl'OujJ S. By Theore m 78(1) , we get t.hat p-Vl 2 ) 
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is a right ideal of S. Now 

Sp-(A2) 

c 

= 

= 

c 

= 

Hence we get 

p-(S)p-(A2) 

p-(SA2) 

p-[S(AA)] 

p-[A(SA)] 

p-(AA) 

p-(A2) 

(by Proposition 63) 

(by Lemma 13) 

(because SA <;;; A) 

This shows that A2 is an upper rough ideal of S. By using Proposition 64 and Theorem 78(2), 

the proof of (2) can be seen in a similar way. This completes the proof. • 

Theorem 80 Let p be a congruence relation on an LA-semigroup S, let A be a left ideal of S, 

then 

(1) [p-(A)]2 is a right ideal of S. 

(2) If p is complete then, [p_(A)]2 is a right ideal of S. 

Proof. (1) Let A be a left ideal of an LA-semigroup S. Now 

[p-(A)]2 S 

[p-(A)]2 p-(S) 

[p-(A) p-(A)] p-(S) 

[p-(S) p-(A)] p-(A) 

C p-(SA) p-(A) 

p-(A) p-(A) 

[p-(A)]2 
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Hence we get 

This shows that [p-(A)J2 is a right ideal of S. By using Proposition 64, the proof of (2) can be 

seen in a similar way. This completes the proof. _ 

It can be proved that. if A be a left ideal of a locally associative LA-semigrollp then [p-(A)J" 

and [p_(A)Jn are right. ideals of S for all n E N\{l}. 

Theorern 81 Let p be a cong'r'lience Telal;-ion on an LA-sem:i.gm'll.p S wi.th left 'identity. If A -is 

a left ideal of S, then 

(1) [p-(A)j2 is an ideal of S. 

(2) If p is c:ornp lete then. [p_( Jl.) j2 is all ielea l of S. 

Proof. This follows from Theorem 80(1) and Proposition 63. II 

3.3 Rough Bi-ideals and Rough Interior-ideals in LA-semigroups 

Definition 82 A subset A of an LA-sem'igTollp S 'is called a p-upper (p-lowe1j rov.gh b'i-'icleo.l 

of S -if p-(A)[p_(A)] 'is (l, b'i.-ideal of S, 

Theorem 83 Let p be a congnt.ence -relntion on a:n LA -sem:igTO'lI.Ji S. rl A 'is a IFi-ideal of S, 

then it is 0. p-llppeT -rough bi-ideal of s, 

Proof. Let. A be a bi-ideal of S . Then by ProPOSitiOll 63, we have 

(p-(A)S)p-(A) (p-(A)p-(S))p-(A) 

C p- ((AS)A) 

C p- (A). 

From this and Theorem 70(1), we obtain that p-(A) is a bi-ideal of S, that is , A is a {J-upper 

rough bi-ideal of S. This completes the proof. _ 

The following example shows that. the converse of this theorem do(~s not. holel ill general. 
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Example 84 Let S = {I , 2, 3,4, 5} be an LA-sem'igrol(,p with the follow'ing m1tltiplication table: 

I 2 3 4 5 

I I 2 4 4 5 

2 5 4 4 4 4 

3 4 4 4 4 4 

4 4 4 4 4 4 

5 2 4 4 4 4 

Let p be a congnlence relation on S such that p-congme-nce classes are the subsets {I} , {3} , {2 , 4, 5}, 

then for A = {I , 4} ~ s, p-(A) = {I, 2, 4, 5} . Here 

({I ,2,4, 5}S){I,2,4, 5} = {I,2,4,5} 

but ({ I, 4}S){I,4} = {I,2,4,5 } ~ {I ,4} 

I t is clear that p-(A) is a bi-ideal of S. It is also clear that the LA-subsemigroup {I ,4} of S is 

not a bi-ideal of S. 

Theorem 85 Let p be a complete congr:uence relation on an LA-semigro1lp S. If A is a bi-ideal 

of S, then p_(A) is, ~f it is nonempty, a bi-ideal of S. 

Proof. Let A be a bi-ideal of S, then by Proposition 64, we have 

(p_ (A)p_ (S) )p_ (A) 

C p_((AS)A) 

C p_(A). 

Prom this and Theorem 72(1), we obtain that p_(A) is, ~f it is nonempty, a bi-ideal of S. This 

completes the proof. • 

The following example shows that the converse of this theorem does not hold in general. 
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Example 86 Let S = {I, 2, 3, 4,5} be an LA-semigTO'llp with the following multiplication ta.ble: 

1 2 3 4 5 

1 5 2 1 2 3 

2 2 2 2 2 2 

3 3 2 5 2 1 

4 2 2 2 2 2 

5 1 2 3 2 5 

Let p be a complete congll~ence relation on S such that p-congruence classes are the st~bsets 

{I, 3, 5}, {2}, {4}, then for A = {2, 5} ~ S, p_(A) = {2}. Here 

({2}S){2} = {2} 

but ({2,5}S){2,5} = {1,2,3,5} ~ {2,5} 

It is clear that p_ (A) is a bi-ideal of S. It is also clear that the LA-subsemigroup {2, 5} of S is 

not a bi-ideal of S. 

Definition 87 A subset A of an LA-semigrot~p S is called a p-upper [p-lowerj rough interior­

ideal of S ~f p-(A)[p_(A)] is an interior-ideal of S. 

Theorem 88 Let p be a congruence relation on an LA-semigrot~p S. If A is an interior-ideal 

of S, then it is a p-t~pper rough interior-ideal of S. 

Proof. Let A be an interior-ideal of S, then by Proposition 63, we have 

(p- (S)p- (A) )p- (S) 

C p-((SA)S) 

C p-(A). 

We obtain that p-(A) is an interior-ideal of S, that is, A is a p-upper rough interior-ideal of S. 

This completes the proof. • 

The following example shows that t he converse of above theorem does not hold in general. 
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Exarnple 89 Let S = {I, 2, 3,4, 5} be an LA-semig'rOup with the following l11,1{,lt'iplication table: 

1 2 3 4 5 

1 1 4 4 4 4 

2 4 3 5 4 2 

3 4 2 3 4 5 

4 4 4 4 4 4 

5 4 5 2 4 3 

Let p be a congruence relat'ion on S such that p-congruence classes are the sllbsets {I}, {4}, {2, 3, 5}, 

then for A = {2, 4} ~ S , p-(A) = {2,3,4,5}. Here 

(S{2,3 , 4,5})S = {2,3 ,4,5} 

but (S{2 ,4})S= {2,3, 4,5} ~ {2,4} 

It is clear that p- (A) is an interior-ideal of S but the sllbset A of S is not an interior-ideal of 

S. 

Theorem 90 Let p be a complete congTtlenCe relat'ion on an LA-semigroup S. If A 2S an 

interior-ideal of S , then p_ (A) is, ~f it is nonempty, an inte'rior-ideal of s, 

Proof. Let A be an interior-ideal of S , then by Proposition 64, we have 

(p_ (S)p_ (A) )p_ (S) 

C p_((SA)S) 

C p_(A). 

W e obtain that p_(A) is, ~f it is nonempty, an interior-ideal of S. This completes the proof. • 

The following example shows that the converse of above theorem does not hold in general. 
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Example 91 Let S = {I, 2, 3, 4} be an LA-semigroup w'ith the following mult'iplication table: 

1 2 3 4 

1 1 2 3 4 

2 3 1 2 4 

3 2 3 1 4 

4 4 4 4 4 

Let p be a complete congruence relation on S such that p-congruence classes are the sttbsets 

{I, 2, 3}, {4} , then for A = {2, 4} ~ S, p_(A) = {4}. Here 

(S{4})S = {4} 

btd (S{2,4})S= {1,2,3,4} 1; {2 ,4} 

It is clear that p_ (A) is an interior-ideal of S but the subset A of S is not an inter'ior-ideal of 

S. 

3.4 Rough Prime and Rough Semiprime Ideals in LA-semigroups 

Definition 92 Let p be a congruence relat'ion on an LA-semigrottp S I then a subset A of S is 

called a lower [an upper] rough prime ideal of S if P _ (A) [p- (A) J is a prime ideal of S. 

Theorem 93 Let p be a complete congruence relation on an LA-semigroup S. 1f A is a prime 

ideal of S, then A is an upper rough prime ideal of S. 

Proof. Since A is a prime ideal of S, then by Theorem 70(2), we know that p-(A) is an 

ideal of S. Let 

xy E p-(A) for some x, yES 

then 

Now there exist x' E [xJp and y' E [yJp such that x'y' E [xyJp n A, so x'y' E A. Since A is a 
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prime ideal, we have Xl E A or y' E A. Thus 

Xl E [xl p n A or y' E [Ylp n A 

So 

[xl p n A 1- ¢ or [Ylp n A i- cP, 

and so x E p-(A) or y E p-(A). Therefore p-(A) is a prime ideal of S .• 

The following example shows that the converse of the above theorem does not hold in 

general. 

Example 94 Let S = {I , 2, 3, 4, 5} be an L A -semigT01lp with the f ollow'ing 'multiplication table: 

I 2 3 4 5 

I 4 4 2 4 5 

2 4 4 I 4 5 

3 I 2 3 4 5 

4 4 4 4 4 5 

5 5 5 5 5 5 

Let p be a complete congT'ltence relation on S such that p-congruence classes are the subsets 

{I,2,3,4},{5}, then for A = {4,5} ~ s, p-(A) = {I , 2,3,4, 5} . It is clear that p-(A) is a 

prime ideal of S. The ideal A is not a prime ideal for I . 2 = 4 E A but I tt A and 2 tt A. 

Theorem 95 Let p be a complete congT'llenCe relation on an L A-semigroup S and A a prime 

ideal of S, then p _ (A) is, ~f it is non empty , a prime ideal of S. 

Proof. Since A is a prime ideal of S, by Theorem 72(2) , we know that p_ (A) is an ideal of 

S. Let 

xy E P _ (A) for some x, YES, 

then 
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Suppose that x ~ p_ (A) and V ~ p_ (A). This implies that [x]p 1= A and [V]p 1= A, there exist 

a E [x]p and b E [V]p such that a, b ~ A. Thus 

Since A is a prime ideal, we have a E A or b E A. It contradicts the supposition. This means 

that p_ (A) is, if it is nonempty, a prime ideal of S. • 

We call A a rough prime ideal of S if it is both a lower and an upper rough prime ideal of S. 

The following example shows that the converse of the above theorem does not hold in general. 

Example 96 Let S = {I, 2, 3,4, 5} be an LA-semigroZLp w-ith the following muli'iphcut'ion table: 

I 2 3 4 5 

I I 2 3 4 5 

2 4 3 3 3 5 

3 3 3 3 3 5 

4 2 3 3 3 5 

5 5 5 5 5 5 

Let p be a complete congruence relat'ion on S such that p-congruence classes are the subsets 

{I, 2, 3, 4}, {5}, then for A = {3, 5} ~ S, p_(A) = {5}. It is clear that p_(A) is a prime ideal 

of S. The ideal A is not a prime 'ideal for 2 . 4 = 3 E A b'ut 2 ~ A and 4 ~ A. 

Definition 97 Let p be a congruence relation on an LA-semigTO'ltp S, then a subset A of S is 

called an upper [lower} TOugh semiprime ideal of S ~f p-(A) [p_(A)] is a semiprime ideal of S. 

Theorem 98 Let p be a complete congruence relation on an LA-sem'igr01Lp S. rr A is a semi­

prime ideal of S then A is an upper rough sem'ipr'ime ideal of S. 

Proof. Since A is a semiprime ideal of S, then by Theorem 70(2), we know that p-(A) is 

an ideal of S. Let x 2 E p- (A) for some XES, then 
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Now there exist y E [x]p such that yy E [x]p[x]p n A, so yy = y2 E A. Since A is a semiprime 

ideal, we have yEA. Thus 

so x E p-(A). Therefore p-(A) is a semiprime ideal of S .• 

It can be seen from Example 94, that, for A = {4, 5} ~ S, p- (A) = {l, 2, 3, 4, 5} . It is clear 

that p- (A) is a semiprime ideal of S. The ideal A is not a semiprime ideal for 22 = 4 E A but 

2 ~ A. This shows that the converse of above theorem does not hold in general. 

Theorem 99 Let p be a complete congruence relation on an LA-sem·igTOv.p S and A a semi­

prime ideal of S, then p_(A) is, ~f it is nonempty, a semiprime ideal of S. 

Proof. Since A is a semiprime ideal of S, by Theorem 72(2), we know that p_(A) is an 

ideal of S. Let x2 E p_(A) for some xES, then 

We suppose that p_ (A) is not a semiprime ideal, then there exist xES such that x2 E p_ (A) 

but x ~ p_(A). Thus [x]p ct. A, then there exist 

y E [x]p but y ~ A 

Thus 

Since A is a semiprime ideal, we have yEA. It contradicts the supposition. This means that 

p_(A) is, if it is non-empty, a semiprime ideal of S .• 

It can be seen from Example 96, that, for A = {3, 5} ~ S, p_(A) = {5}. It is clear that 

p_(A) is a semiprime ideal of S. The ideal A is not a semiprime ideal for 42 = 3 E A but 4 ~ A. 

This shows that the converse of above theorem does not hold in general. 
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3.5 Rough Sets with Respect to Idempotent Congruences 

Lemma 100 Let p be an idempotent congruence relation on an LA-semigroup S. rr A is a 

nonempty subset of S, then p-(A) is sem'iprime. 

Proof. Let a2 E p- (A). Then, since p is idempotent congruence, 

This implies that a E p-(A). Therefore p-(A) is semiprime. _ 

Theorem 101 Let p be an 'idempotent congntence Telation on an LA-semigroup S. rr A and 

Bare nonempty subsets of S, then 

Proof. Let c be any element of p- (A) n p- (B). Then 

[c]p n A =J ¢ and [c]p n B =J ¢ 

Thus there exist elements a, bE S such that a E [c]p, a E A, bE [c]p, and bE B. Then, since p 

is an idempotent congruence on S, so 

And since ab E AB, we have 

ab E [c]p nAB. 

This implies that c E p-(AB). Thus we obtain that 

This completes the proof. _ 
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Theorem 102 Let p be an idempotent COT/,gr'Llence relation on an LA-semigTOlI,p S. If A and 

Bare nonempty s1Lbsets of S) then 

Proof. Let c be any element of p_ (A) n p_(B). Then c E p_(A) and c E p_(B) . Thus 

[cJp ~ A and [cJp ~ B . Since p is an idempotent congruence, we have 

which yields C E p_(A). Therefore we obtain that 

This completes the proof. _ 

Theorem 103 L et p be an idempotent congnLence relation on an LA-semigro1Lp S. If A and 

B are a right ideal and 0, left 'ideal of S) respectively, then 

Proof. This follows from Theorem 74, that 

and also follows from Theorem 101, that 

hence it follows 

This completes the proof. _ 
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Theorem 104 Let p be U'/1. 'idempotent cong'("ne'l1ce '(dation on an LA-::w'Jn:ig'f'()'up S . IJ A and 

B aTe a T'ight ,ideal u:n.d a le.fL ,ideal oj S, 'respectively , then 

Proof. This follows from Theorem 75, that 

and also follows from Theorem 102 

hence it. follows 

This completes the proof. _ 

3.6 Rough M-Systems in LA-semigroups 

Defmition 105 A sll,uset Af oj an LA-sem'igTOu.p 5' ,is ca.lled 0. p-'IIppe'(' [p-lowe.rj To'(/,gh TTl,­

system 'in S 'iJ p- (.M)[p _ (.11,1) j is an m-system in 5'. 

Theorem 106 Let p be (/, congru.ence '('ela.t'ion on an LA -se1l7:iyTO'Up S , if !If ,is an Tn-system, in 

S, then 111 is an 'llppe'r TOugh m-system ,in S. 

Proof. Let M is an m-system in S. Let p , q E p-(M), then 

[pjp n ld f- ¢ and [qjp nAIf- ¢ 

Let a E lPjp n M and b E [q](J n 1'\1, then a E [pjp, a E 111 , b E [q]p and b E Ai. Since Al is an 

m-systel1l so there exist r E 5', such that a(Tb) E 111. And also 
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Now we have 

Hence 

This implies that 

Hence 

a(rb) E [pJp([rJp[qJp) 

C [pJp[rqJp 

C [p(rq)Jp 

a(rb) E [p(rq)Jp 

a(rb) E [p(rq)Jp n M 

[p(rq)Jp n M i- ~ 

This means that !VI is an upper rough m-system in S. This completes the proof. • 

The following example shows that the converse of above theorem does not hold in general. 

Example 107 Let S = {1,2,3,4,5} be an LA-semigroll.p with the following 7nll,ltiplicat'ion 

table: 

1 2 3 4 5 

1 4 4 4 4 4 

2 4 4 4 4 4 

3 4 4 4 4 4 

4 4 4 4 4 4 

5 4 4 3 4 4 

Let p be a congr'uence relation on S s'uch that p-cong'T"uence classes are the subsets {l}, {2}, 

{3, 4}, {5} , then for A = {2, 3} ~ S, p-(A) = {2, 3, 4}, so now 

S{2,3,4} {3,4} ~ {2,3,4} and {2 ,3,4}S = {4} ~ {2,3,4} 

bld S{2,3} = {3,4} i {2, 3} and {2, 3}S = {4} i {2,3} 
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It is clear that p- (A) 'is an ideal and we know that every ideal 'is an m-system so p- (A) is a'l1, 

m-system in S but A is not an m-system in S because A 'is not an ideal a:nd also there does not 

exist any a E S such that x(ay) E A for x, YEA. 

Now the lower approximation of an m-system is not an m-system in general. For this we 

take an example 

Example 108 Let S {l,2,3,4,5} be an LA-semigroup with the fallowing mIdtipl'ication 

table: 

1 2 3 4 5 

1 1 2 4 4 5 

2 5 4 4 4 4 

3 4 4 4 4 4 

4 4 4 4 4 4 

5 2 4 4 4 4 

Let p be a congruence relation on S such that the p-congruence classes are the subsets {I}, {3}, 

{2,4,5}. Then for A = {3,4} ~ S, p_(A) = {3}, and here 

{3,4}S = {4} and S{3 ,4} = {4} 

bId {3}S = S{3} = {4} 1= {3} 

This shows that the set {3, 4} is an m-system of S but {3} not an m-system of S. Th·us A = {3, 4} 

is an m-system but Twt lower rough m-system. 

Here, if we take a complete congruence p on S, them the lower approximation of an m­

system il/[ is an m-system if ].II is also a left ideal, but this case is generally true by Theorem 

72(2) . 

Theorem 109 Let p be a congruence relation on an LA-semigroup S, '4 A is an LA-s'Llbsemigroup 

of S, then 

(1) p-(A) is an m-system in S. 

(2) If p is complete then, p_ (A) is an m-system in S. 
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Proof. (1) Let A is an LA-subsemigroup of S , then by Theorem 70(1) , p- (A) is an LA­

subsemigroup of S. Let a,b E p-(A), then 

This means that p-(A) is an m-system in S. By using Theorem 72(1), we can prove (2) in a 

similar way. This completes the proof. _ 

3.7 Rough Sets in the Quotient LA-semigroup 

Definition 110 Let p be a congruence relation on an LA-semigroup S and A be a SlLbset of S. 

The lower and upper approximations can be presented in an equivalent form as shown below, 

p_(A)1 P = {[x]p E Sip: [x]p ~ A} 

p-(A)lp = {[x]p E Sip: [x]p n Ai- ¢} 

Now we disC1Lss these sets as Sllbsets of a qlLOtient LA-semigroup Sip of an LA-semigrollp S. 

Theorem 111 Let p be a congruence relation on an LA-semigroup S. If A is an LA-sllbsemigroup 

of S , then p- (A)I p is an LA-subsemigroup of Sip. 

Proof. Let [x]p and [Y]p be any elements of p- (A)I p. Then 

[X]p n A i- ¢ and [Y]p n A i- ¢. 

Thus there exist elements a, b E S such that 

a E [x]p n A and b E [Y]p n A . 

Then a E [x]p, a E A, b E [Y]p and b E A. Then ab E [x]p[y]p . Since A is an LA-subsemigroup 

of S, we have ab E A. Thus ab E [x]p[Y]p n A, so [x]p[Y]p n A i- ¢. This means that [x]p[Y]p E 

p-(A)lp. Therefore p-(A)lp is an LA-subsemigroup of Sip. This completes the proof. _ 
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Theorem 112 Let p be a congruence relation on an LA-semigroll]J S, an,d A be an LA­

sllbsemigrou]J of S. Then p _ (A) I p is, ~f it is nonem]Jty, an LA -subsemigrollp of Sip· 

Proof. Let [xl p and [Ylp be any elements of p_ (A) I p. Then 

[xl p ~ A and [Ylp ~ A 

Since A is an LA-subsemigroup of S, we have 

and so [xjp[yjp E p_(A)lp. This means that p_(A)lp is, if it is nonempty, an LA-subsemigroup 

of Sip. This completes the proof. _ 

Theorem 113 Let p be a congruence relation on an LA-semigTOu]J S. rr A is a left [right, 

two-sided] ideal of S, then p-(A)lp is a left [right, two-sided] ideal of Sip. 

Proof. Assume that A is a left ideal of S. Let [xl p and [sjp b e any elements of p-(A)I p and 

SI p, respectively. Then [xjp n A :I 0, so there exists an element a E [xJp n A. Thus a E [xJp 

and a EA. Then, since A is a left ideal of S, for t E [sjp, we have 

ta E [s J pA ~ S A ~ A 

Since ta E [sJp[xJp, we have 

ta E [s]p[xJ P n A 

Which implies that 

Thus [sjp[xjp E p- (A)lp. This means that p-(A)lp is a left ideal of Sip. The other cases can 

be seen in a similar way. This completes the proof. _ 

Theorem 114 Let p be a congruence relation on an LA-semigroll]J S. Let A be a left [right, 

two-s'ided] ideal of S. Then p_(A)lp is, ~f-it is nonempty, a left [right, two-s'ided] ideal of Sip. 

53 



Proof. Let A be a left ideal of S. Let [xJp and [sJp be any elements of p_(A)1 p and Sip, 

respectively. Then [xJp ~ A. Since A is a left ideal of S, we have 

Thus 

This means that p_ (A)I p is, if it is nonempty, a left ideal of Sip. The other cases can be seen 

in a similar way. This completes the proof. • 

Theorem 115 Let p be a congr'uence relation on an LA-semigrollp S. rt' A is a bi-'ideal of S, 

then p-(A)lp is a bi-ideal of Sip. 

Proof. Let [xJp and [Ylp be any elements of p- (A)I p and [sJp be any element of SI p. Then 

and so there exist elements a, b E S such that 

Thus a E [xJp, a E A , b E [ylp , and b E A. Let t be element of [sJp . Then, since A is a bi-ideal 

of S, so 

(at)b E (A[sJp)A ~ (AS)A ~ A. 

Since (at)b E ([xJp[sJp)[yJp, we have (at)b E ([xlp[sJp)[yJ P n A. So ([xJp[slp)[yJp n A "I cp. This 

implies ([xJp[sJp)[yJp E p-(A)I p. Then it follows from this and Theorem Ill, that p-(A)I pis 

a bi-ideal of Sip. This completes the proof. _ 

Theorem 116 Let p be a congmence relation on an LA-semigr01Lp S. Let A be a b'i-ideal of 

S. Then p_(A)lp is, '~fit is nonempty, a bi-ideal of Sip. 
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Proof. Let [x]p and [Y]p be any elements of p_(A)1 p and [s]p be any element of Sip. Then 

[X]p ~ A and [Y]p ~ A 

Then for [s]p , we have 

Thus ([x]p[s]p)[y]p E p_(A)1 p. Then it follows from this and Theorem 112 that p_(A)1 p is, if 

it is nonempty, a bi-ideal of Sip. This completes the proof. _ 

Theorem 117 Let p be a congmence relation on an LA-semigro1lp S. If A is an 'interior ideal 

of S, then p-(A)lp is an interior ideal of Sip. 

Proof. Let [x]p be any element of p-(A)I p, and let [s]p and [t]p be any elements of Sip. 

Then [x]p n A =1= cp , and so there exist element a E S such that a E [x]p n A. Thus a E [x]p, 

a E A. Let Sl and t1 be any elements of [s]p and [t]p. Then, since A is interior ideal of S, so 

Since (sla)t1 E ([s]p[x]p)[t]p , we have (sla)t1 E ([s]p[x]p)[t]p n A. So ([s]p[x]p)[t]p n A =1= cp . This 

implies ([s]p[x]p)[t]p E p-(A)lp. Then it implies that p-(A)/p is an interior ideal of Sip. This 

completes the proof. _ 

Theorem 118 Let p be a congruence relation on an LA-semigroup S. Let A be an interior 

ideal of S. Then p _ (A) / p 'is, ~f it is nonempty, an interior ideal of S / p. 

Proof. Let [x]p be any element of p_(A)/ p, and let [s]p and [t]p be any elements of Sip. 

Then [x]p ~ A, now for [s]p and [t]p, we have 

Thus ([s]p[x]p)[t]p E p_(A)lp. Then it implies that p_(A)/p is , if it is nonempty, an interior 

ideal of Sip. This completes the proof. _ 
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Theorem 119 Let p be a c07nplete congruence relation on an LA-semigroup S, rf A is an 

upper rough prime ideal of S, then p-(A)I p is a prime ideal of SI p. 

Proof. Since A is an upper rough ideal of S, by Theorem 113, we know that p- (A)I p is an 

ideal of Sip. Suppose 

then [xyjp n A =f. cp. Thus xy E p-(A). Since A is an upper rough ideal of S, that is p-(A) is a 

prime ideal, we have 

Hence 

Therefore p-(A)lp is a prime ideal of Sip . This completes the proof. -

Theorem 120 Let p be a complete congr-uence relation on an LA-semigro'llp S, rt A 'is a lower 

r01Ggh pr-ime ideal of S , then p _ (A) I p is a prim,e ideal of Sip. 

Proof. Since A is a lower rough ideal of S, by Theorem 114, we know that p_(A)lp is an 

ideal of Sip. Suppose 

[xjp[yjp = [xyjp E p_ (A)1 p for some [xjp, [yjp E Sip 

then [xyjp ~ A. Thus xy E p_(A). Since A is a lower rough ideal of S, that is p_(A) is a prime 

ideal, we have 

x E p_(A) or y E p_(A) 

Hence 

[xjp E p_(A)lp or [yjp E p_(A)lp. 

Therefore p_(A)1 p is a prime ideal of Sip. This completes the proof. _ 

Theorem 121 Let p be a complete congruence relation on an LA-semigroup S, rf A is an 

upper rough semip'rime ideal of S, then p-(A)lp is a semiprime ideal of Sip. 
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Proof. Since A is an upp er rough ideal of S, by Theorem 113, we know that p- (A)I p is an 

ideal of Sip. Suppose 

then [x2]p n A =1= ¢. Thus x2 E p- (A) . Since p- (A) is a semiprime ideal, we have x E p- (A). 

Hence [x]p E p-(A)I p. Therefore p- (A)I p is a semiprime ideal of Sip. This completes the 

proof. _ 

Theorem 122 Let p be a complete congruence relat'ion on an LA-sem'igT01lp S, ff A 'is a lower 

ro'tlgh semiprime 'ideal of S, then p _ (A) I p is a semiprime ideal of Sip· 

Proof. Since A is a lower rough ideal of S, by Theorem 114, we know that p_ (A)I p is an 

ideal of SI p. Suppose 

then [x2]p ~ A. Thus x2 E p_(A) . Since p_(A) is a semiprime ideal, we have x E p_(A). Hence 

[x]p E p_(A)lp. Therefore p_(A)lp is a semiprime ideal of Sip. This completes the proof. _ 

Theorem 123 Let p be a complete congruence relation on an LA-sem'igr01lp S. ff M is an 

'upper rough m-system in S, then p-(JvI)lp is an m-system of Sip. 

Proof. Suppose [x]p, [Y]p E p- (M)I p, then 

[x]p n M =1= 1; and [Y]p n M =1= 1;. 

Thus x E p-(M) and y E p-(JvI). Since p-(M) is an m-system, so for some a E S, [alp E Sip , 

we have x(ay) E p-(lVI). Hence [x(ay)]p n M =1= 1;, we have 

Therefore p- (i'VI) I p is an m-system in Sip. This completes the proof. _ 
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Theorem 124 Let p be a complete congr'u.ence relation on an LA -semigT'O'ttp S. If M is a 

lower rough m-system, in S, then p _ (NI) I p is a:n m-system, in Sip. 

Proof. Suppose [xl p, [Ylp E p_(M)1 p, then 

[xl p ~ M and [Ylp ~ M 

we have 

x E p_(M) and y E p_(M) 

As p_(M) is an m-system of S, so for a E S, [alp E Sip, we have x(ay) E p_(M), Hence 

[x(aY)lp ~ M, This implies that 

[x(aY)lp E p_(Jl1)lp 

[xlp([alp[Ylp) E p_ (M)I p 

Therefore p_(M)1 p is an m-system in Sip. This completes the proof. _ 
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