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Preface

The modular group generated by two linear fractional transformations, u : z 7�!

�1
z
and v : z 7�! z � 1

z
, satisfying the relations u2 = v3 = 1 [46]. The linear transformation

t : z 7! 1

z
inverts u and v, i,e, t2 = (vt)2 = (ut)2 = 1 and extends PSL(2; Z) to PGL (2;Z).

In [72] a condition for the existence of t is explained.

G. Higman introduced coset diagrams for.PSL(2; Z) and PGL (2;Z) : Since then,

these have been used in several ways, particularly for �nding the subgroups which arise

as homomorphic images or quotients of PGL (2;Z). The coset diagrams of the action of

PSL (2;Z) represent permutation representations of homomorphic images. In these coset

diagrams the three cycles of the homomorphic image of v, say �v, are represented by small

triangles � whose vertices are permuted counter-clockwise, any two vertices which are

interchanged by homomorphic image of u, say �u, are joined by an edge � �, and �t is denoted

by symmetry along the vertical line. The �xed points of �u and �v, if they exist are denoted

by heavy dots. The �xed points of �t lies on the vertical line of symmetry.

A real quadratic irrational �eld is denoted by Q
�p

d
�
, where d is a square free

positive integer. If � =
�
a1 + b1

p
d
�
�c1 is an element of Q

�p
d
�
, where a1; b1; c1; d; are

integers, then � has a unique representation such that a1;
�
a21 � d

�
�c1 and c1 are relatively

prime. It is possible that �; and and its algebraic conjugate �� =
�
a1 �

p
d
�
�c1 have

opposite signs. In this case � is called an ambiguous number by Q. Mushtaq in [69].

The coset diagrams of the action of PSL (2;Z) on Q
�p

d
�
depict interesting re-

sults. It is shown in [69] that for a �xed value of d, there is only one circuit in the coset

diagram of the orbit, corresponding to each �.
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Any homomorphism �1 : PGL (2;Z) ! PGL (2; q) give rise to an action on

PL (Fq) : We denote the generators (�) �1; (�) �1 and (t) �1 by ��; �� and �t: If neither of

the generators �, � and t lies in the kernel of �1; so that ��, �� and �t are of order 2, 3

and 2 respectively, then �1 is said to be a non-degenerate homomorphism: In addition to

these relations, if another relation (����)k = 1 is satis�ed by it, then it has been proved

in [74] that the conjugacy classes of non-degenerate homomorphisms of PGL (2;Z) into

PGL (2; q) correspond into one to one way with the conjugacy classes of �1 and an element

� of Fq: That is, the actions of PGL (2;Z) on PL (Fq) are parametrized by the elements

of Fq: This further means that there is a unique coset diagram, for each conjugacy class

corresponding to � 2 Fq. Finally, by assigning a parameter � 2 Fq to the conjugacy class of

�1, there exists a polynomial f(�) such that for each root �i of this polynomial, a triplet ��;

��; �t 2 PGL(2; q) satis�es the relations of the triangle group

�(2; 3; k) =
D
��; ��; �t : ��2 = ��3 = (�t)2 = (����)k = (���t)2 = (���t)2 = 1

E
:

Hence, we can obtain the triangle groups �(2; 3; k) through the process of parametrization.

The generalized triangle group has the presentation


u; v : ur; vs;W k

�
;where r; s; k

are integers greater than 1, and W = u�1v�1 :::u�kv�k , where k > 1; 0 < �i < r and

0 < �i < s for all i. These groups are obtained by natural generalization of�(r; s; k) de�ned

by the presentations
D
u; v : ur = vs = (uv)k = 1

E
, where r; s and k are integers greater than

one.

It was shown in [37] that G is in�nite if 1r +
1
s +

1
k � 1 provided r � 3 or k � 3

and s � 6, or (r; s; k) = (4; 5; 2): This was generalized in [4], where it was shown that G is

in�nite whenever 1r +
1
s +

1
k � 1 . A proof of this last fact can be seen in [101].
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A generalized triangle group may be in�nite when 1
r +

1
s +

1
k > 1. The complete

classi�cation of �nite generalized triangle groups is given in 1995 by J. Howie in [39] and

later by L. Levai, G. Rosenberger, and B. Souvignier in [57] which are fourteen in number.

As there are fourteen, generalized triangle groups classi�ed as �nite [39], our area

of interest is the set of groups which are homomorphic images or quotients of PSL(2;Z).

Out of these fourteen only eight groups are quotients of the modular group. In this study,

we have extended parametrization of the action of PSL(2;Z) on PL(Fp), where p is a

prime number, to obtain the �nite generalized triangle groups
D
��2 = ��3 =

�
������������2

�3
= 1
E

by this parametrization. By parametrization of action of PGL(2;Z) on PL(Fp) we have

obtained the coset diagrams of

D
��2 = ��3 =

�
������������2

�3
= 1
E

for all � 2 Fp.

This thesis is comprised of six chapters. The �rst chapter consists of some basic

de�nitions and concepts along with examples. We have given brief introduction of linear

groups, the modular and the extended modular group, real quadratic irrational �elds, �nite

�elds, coset diagrams, triangle groups, and generalized triangle groups.

In the second chapter, we show that entries of a matrix representing the element

g =
�
(�v)m1

�
�v2
�m2
�l
where l � 1 of PSL (2;Z) =



�; v : �2 = v3 = 1

�
are denominators

of the convergents of the continued fractions related to the circuits of type (m1;m2) ; for all

m1;m2 2 N:We also investigate �xed points of a particular class of circuits of type (m1;m2)

and identify location of the Pisot numbers in a circuit of a coset diagram of the action of

PSL (2;Z) on Q
�p

d
�
[ f1g, where d is a non-square positive integer.
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In the third chapter we attempt to classify all those subgroups of the homomor-

phic image of PSL (2;Z) which are depicted by coset diagrams containing circuits of the

type (m1; m2).

In the fourth chapter we devise a special parametrization of the action of modular

group PSL(2;Z) on PL(Fp), where p is prime, to obtain the generalized triangle groups

D
��2 = ��3 =

�
������������2

�k
= 1
E

and by parametrization we obtain the coset diagrams of

D
��2 = ��3 =

�
������������2

�k
= 1
E

for all � 2 Fp.

In the �fth chapter we investigate the action of PSL(2;Z) on PL(F7n) for di¤erent

values of n, where n 2 N, which yields PSL(2; 7). The coset diagrams for this action are

obtained, by which the transitivity of the action is inspected in detail by �nding all the

orbits of the action. The orbits of the coset diagrams and the structure of prototypical D168

Schwarzite [48], are closely related to each other. So, we investigate in detail the relation

of these coset diagram with the carbon allotrope structures with negative curvature D168

Schwarzite. Their relation reveals that the diagrammatic structure of these orbits is similar

to the structure of hypothetical carbon allotrope D56 Protoschwarzite which has a C56 unit

cell.

In the last chapter, we investigate the actions of the modular group PSL(2;Z)

on PL(F11m) for di¤erent values of m; where m 2 N and draw coset diagrams for various

orbits and prove some interesting results regarding the number of orbits that occur.
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Chapter 1

De�nitions and Concepts

This chapter comprises of some basic de�nitions along examples. We have included

linear groups, modular and extended modular group, real quadratic irrational �elds, �nite

�elds, coset diagram, triangle groups, and generalized triangle groups.

1.1 Fields

1.1.1 Quadratic Fields

The solution of some quadratic equation with coe¢ cients from rational numbers

is called a quadratic irrational number. They are expressed as
�
a1 + b1

p
d
�
�c1; where

a1; b1; c1 are integers and d is a positive square-free integer. For a given d; they form a �eld

of quadratic irrational numbers and it is de�ned as real quadratic irrational �eld.

A quadratic �eld is denoted by Q
�p

d
�
, where d is a square-free positive integer.

If d > 0, Q
�p

d
�
is said to be a real quadratic �eld, and if d < 0 it is called an imaginary

quadratic �eld. The set of algebraic integers of Q
�p

d
�
is fa1 + b1

p
d : a1; b1 2 Zg if d � 2
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or 3(mod 4), and fa1 + b1
p
d=2 : a1; b1 2 Z; a1 � b1 (mod 2)g if d � 1(mod 4) [65].

Each real quadratic irrational number is expressed uniquely as
�
a1 +

p
d
�
�c1,

where d is a square-free positive integer and gcd(a1;
�
a21 � d

�
�c1; c1) = 1. The algebraic

conjugate of �; is de�ned as �� =
�
a1 �

p
d
�
�c1: If � and �� are both of negative (positive),

then � is said to be a totally negative (positive) number. The element � is said to be an

ambiguous number if both � and �� are of opposite signs (see [69]).

It is notable that the square-free integers are such type of integers which are not

divisible by any perfect square, except 1.

1.1.2 Finite Fields

Fields having �nite number of elements are of great importance in di¤erent branches

of mathematics, like projective geometry, group theory, number theory, and many more.

The most familiar examples of these type of �elds are �elds of integer modulo p, Zp, for

some prime p. For an integer s1 > 0 and a prime p, there is a �eld with ps1 elements. The

�elds with other than ps1 elements do not exist. The �eld with q = ps1 number of elements

is denoted as Fq (or GF (q)).

The ring structure on the ring of integers modulo n, Zn = Z=nZ, is induced by

the ring Z. If n equals some prime p, then the structure Zp is a �eld. Likewise (Zp)s1 =

f(c0; c1; c2; :::; cs1�1) : ci 2 Zp} is also a �eld. This �eld is obtained by associating the

sequence (c0; c1; c2; :::; cs1�1) with some polynomial f (t) = c0 + c1t + c2t
2 + ::: + cr�1ts1�1

in Zp[t]:

Let g(t) be an irreducible polynomial in Zp[t] of degree s1: To construct a �eld

with ps1 elements we have to select g(t) in such a manner that all non-zero elements of the
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�eld are the powers of t such that t
s1�1 = 1; where 1 is the multiplicative identity. This

�eld is known as a Galois �eld and is denoted by GF (ps1) over Fps1 .

For instance, F33 is obtained by taking an irreducible polynomial g(t) = t3 + t2 +

2t+ 1 over Z3: The elements of F33 are given in the table below.

S.No GFÝ33 Þ ¨3ßtà S.No GFÝ33 Þ ¨3ßtà

1 0 0 15 t13 2

2 1 1 16 t14 2t
3 t t 17 t15 2t2

4 t2 t2 18 t16 t2 + 2t + 1

5 t3 2t2 + t + 2 19 t17 t2 + 2t + 2

6 t4 2t2 + t + 1 20 t18 t2 + 2

7 t5 2t2 + 1 21 t19 2t2 + 2

8 t6 t2 + 1 22 t20 t2 + t + 1

9 t7 2t2 + 2t + 2 23 t21 2t + 2

10 t8 t + 1 24 t22 2t2 + 2t
11 t9 t2 + 1 25 t23 2t + 1

12 t10 t + 2 26 t24 2t2 + t
13 t11 t2 + 2t 27 t25 2t2 + 2t + 1

14 t12 t2 + t + 2

The relevant properties are as follows:

(i) The �nite �eld F containing q elements is isomorphic to a Galois �eld GF (q).

Speci�cally, the �eld structure does not depend upon the selection of the irreducible poly-

nomial g(t):
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(ii)GF (ps1) is a cyclic group having order ps1 � 1 under multiplication. The gen-

erating element of GF (ps1) is known as primitive element.

1.1.3 Projective Lines

The space containing the set of all one dimensional subspaces of F 2 with natural

action of PGL (2; Fp) on it, is denoted by PG (1; Fp) ; and is called projective line. If U is

a subspace of F 2 of dimension one then either U = f(x1; 0) : x1 2 Fpg or U is generated by

(x1; 1) for some x1 2 Fp: So PG (1; Fp) is identi�ed with Fp [f1g using the map:

f(x1; 1) : x1 2 Fpg ! x1

and

f(0; 1) : x1 2 Fpg ! 1

Every single coordinate is associated with every element of PG (1; Fp). The coordinate of

the subspace of F 2 generated by (y1; z1) is y1=z1 with the convention that y1=0 = 1; for

y1 6= 0. Let q = ps1 for some positive integer s1. Then PL (Fq) consists of the elements of

Fq with an extra element 1: Particularly, for s1 = 1, Fq = Fp = f0; 1; 2; 3; :::; p� 1g.

The group PGL (2; Fp) naturally acts on PG (1; Fp) in the following manner: let0BB@c e

d f

1CCA be a non-singular matrix of PGL (2; Fp), then

(y1; z1)

0BB@c e

d f

1CCA = (cy1 + ez1; dy1 + fz1)

or

y1=z1 !
cy1 + ez1
dy1 + fz1

=
c (y1=z1) + e

d (y1=z1) + f
:
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de�nes the action of PGL (2; Fp) on PG (1; Fp). The group of transformations

Tcedf : z !
cx1 + e

dx1 + f
:

is thus the linear fractional group acting on Fp [ f1g, the projective line over Fp.

1.2 Linear Groups

The importance of linear groups is well known because of their in�uence and

applications in di¤erent �elds of science such as chemistry, physics and many others.

There is a relationship between linear groups, Galois theory, and the theory of

Lie groups. Their connection with Galois theory leads to the classical groups over Fq and

soluble groups. These groups are used widely in the group representations theory, in the

study of polynomials and in spatial symmetries of vector spaces.

Consider an n dimensional vector space U over a �eld F . Then HomF (U; U), the

set of all linear transformations of U forms a vector space which also posses the ring struc-

ture. The multiplicative identity of HomF (U; U) is identity mapping I on U: An element

� of HomF (U; U) is known to be invertible if there exists a mapping � in HomF (U; U)

such that �� = �� = I: This forms a group of all invertible elements of HomF (U; U). This

group is known to be the general linear group of degree n, and is denoted by GLn (U) or

GL (n;U) :

The set of all matrices of order n � n with entries from F is Mn (F ). This set

is directly linked with HomF (U; U), that is, both HomF (U; U) and Mn (F ) posses lin-

ear associative algebras so they are isomorphic. The n dimensional general linear group

GL (n; F ) of all invertible matrices of order n� n; is isomorphic to GLn (U).
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The most important subgroups of GL (n; F ) is the special linear group, denoted

by SL (n; F ) and presented as SL (n; F ) = f[cij ] : cij 2 F; i; j = 1; 2; det ([cij ]) = 1g : The

importance of SL (n; F ) is associated with the fact that in a two dimensional lattice, bases

ff1; f2g and fe1; e2g are correlated by the following equations:

f1 = a1e1 + c1e2

f2 = b1e1 + d1e2

where a1d1 � b1c1 = �1 and a1, b1, c1, d1 2 F: It is necessary that the orientation from f1

to f2 is same as that from e1 to e2 to obtain a1d1 � b1c1 = 1:

1.2.1 Modular Group and Lobachevsky Plane

The modular group, denoted by PSL (2;Z), is the quotient group of SL (2;Z) by

its center, thus PSL (2;Z) �= SL (2;Z) =N; where N =

8>><>>:
2664 �1 0

0 �1

3775 ;
2664 1 0

0 1

3775
9>>=>>; :

The fundamental domain can be observed as the shaded region of the modular
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region.

The upper half plane is known as the model of Lobachevsky plane f(�; �) : �; � 2

C; � > 0g and the orientation is persevered by the motion in it and is considered as trans-

formation z = �az+�b
�cz+�d

; where �a �d � �b�c = 1 and �a; �d; �b and �c are in R: Consider the action

of PSL (2;Z) on upper half plane. Then in Lobachevsky plane, the modular group is con-

sidered as a discrete group of motions. Therefore, PSL (2;Z) is a group generated by two

linear transformations � : z 7�! �1
z
and � : z 7�! z � 1

z
such that �2 = �3 = 1 [29]. Thus

PSL (2;Z) can also be seen as a free product of the two cyclic groups < � : �2 = 1 > and

< � : �3 = 1 >. That is, PSL (2;Z) �= C2 � C3:

The linear transformation t : z 7! 1

z
inverts � and �, that is, t2 = (�t)2 = (�t)2 = 1

and extends PSL(2; Z) to PGL (2;Z). In [72] a condition for the existence of t in the action

of modular group on PL (Fq), is obtained.

Let p is a prime and q = pn, then the group PGL (2; q) is the group of all trans-
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formations z = �az+�b
�cz+�d

; where �a; �d; �b and �c 2 Fq, and �a �d��b�c 6= 0: PSL (2; q) is a subgroup of

PGL (2; q) ; consisting of all those linear fractional transformations z = �az+�b
�cz+�d

; where �a; �d; �b

and �c 2 Fq, and �a �d� �b�c is a non-zero square in Fq:

The order of the PSL (n; q) is:

jPSL (n; q)j = 1

(n; q � 1)q
n(n�1)=2 �q2 � 1� �q3 � 1� ::: (qn � 1) :

Many mathematicians worked independently on linear fractional groups in several �elds. J.

A. Serret in 1866 [89], worked on the homomorphisms of general linear group of divisor 2 by

following the pattern of E. Galios. A. Cayley in 1964 utilized it to �nd di¤erent properties

of linear fractional transformations [105].

There is a well known classical relationship between the continued fractions and an

action of PSL (2;Z) on real line. Many articles have been published upon the relationship

between continued fraction and the geodesics on modular surface and have signi�cance in

the theory of approximation of real numbers by rationals [[7], [63]]. In [70], a connection

between orbits of modular group and reduced inde�nite binary quadratic forms has been

established. In [77], using the action of modular group on real quadratic �elds, the Lucas

and Fibonacci numbers are determined. In [76], Pell numbers and Pell Lucas Numbers are

found through the action of PSL (2;Z).

1.3 Coset Diagrams

The idea of using coset graphs, for depicting group actions, has a rich and long

history. Coset graphs give us method to analyze a large range of topological and algebraic

properties of di¤erent structures. For the analysis of groups that are �nitely generated,
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graphical methods are explicitly used. Many important results are proved using graphical

techniques as in [13, 15, 27]. For �nite groups of small order, the coset graphs show the

similar information as multiplication tables seen in [93] and [96]. They depict the same

properties but in a more e¤ective manner [95].

The concept of coset graphs for groups was �rst introduced in 1878 by A. Cayley

[15]. After that in 1893; A. Hurwitz took coset graphs as a tool for representing groups. H.

Maschke [66], in 1896 made use of Cayley�s graphs in proving some useful results concerning

representation of the �nite groups, specially related to the groups of rotation of regular

bodies in 3 and 4-dimensional space. In 1910, the Cayley�s diagrams were reinvented by M.

Dhen. Later, H. W. Kuhn [52] and O. Schreier [27] also used graphical methods to prove

several results.

A. Cayley [15], by using coset graph of a given group with known generators illus-

trated the multiplication table of a group, and used di¤erent colours for di¤erent generators

to draw the edges of the graph linked with those generators. The Cayley�s diagram is a

coset graph of a speci�c group where elements of the group are represented by vertices,

which can also be seen as cosets of the identity subgroup f1g: O. Schreier [27] made gen-

eralization of this idea by taking into consideration the coset graph with vertices to be the

cosets of a particular subgroup. H. S. M. Coxeter and W. J. Moser [27] in 1965, made use

of both Schreier�s and Cayley�s diagrams for proving signi�cant results about groups that

are �nitely generated.

G. Higman, in 1978; de�ned coset diagrams for describing the actions of PSL (2;Z)

and PGL (2;Z) (see [21, 22, 68, 72, 73, 74]). M. D. E. Conder in [21] and [25] showed that
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all but �nitely many alternating groups are Hurwitz group by using special coset diagrams.

Coset diagrams of the action of PSL (2;Z) are signi�cant in several ways. Using

colours can be avoided for PSL (2;Z) because of the nature of these two generators that is

�2 = �3 = 1. Since �2 = 1; the generator � is depicted by an edge which directs its both

vertices towards each other. For the generator � with �3 = 1, it is required to di¤erentiate

� and �2: Hence the cycles of � of length 3 are portrayed by triangles, with the convention

that � permutes each vertex of a triangle anti-clockwise. This nature of the diagram makes

the � � edges and � � edges di¤erent. The �xed points of � and � are denoted by heavy

dots.

For example, take the action of PGL (2;Z) acting on PL (F31) illustrated by

� (!) = �1
! ; � (!) =

!�1
! , where ! 2 PL (F31) : Then there is the following permutation

representation of � and �

�� = (1; 30)(2; 15)(3; 10)(4; 23)(5; 6)(7; 22)(8; 27)(9; 24)(11; 14)(12; 18)

(13; 19)(16; 29)(17; 20)(21; 28)(25; 26)(0;1);

�� = (0;1; 1)(2; 16; 30)(3; 11; 15)(4; 24; 10)(5; 7; 23)(6)(8; 28; 22)(9; 25; 27)

(12; 19; 14)(13; 20; 18)(17; 21; 29)(26):
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The action yield the following coset diagram:

W. W. Stothers [96], in 1977 studied the subgroups of �(2; 3; 7) using coset dia-

grams. To a subgroup of �(2; 3; 7) having �nite index; he linked (a; b; e; f; h) a quintuple

where a; b; e; f; h 2 Z+ with a � 1 and a = 84 (b� 1) + 21e + 28f + 36h: It is also shown,

except for three exceptions, that every quintuple ful�lling these conditions is associated to

a subgroup. This was done by using coset diagrams and a technique of combining di¤erent

or same diagrams through handles.

Q. Mushtaq [68] worked extensively on the modular group using coset diagrams
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as a basic technique and devised many important results ([?, 71, 46]). It is proved in [46]

that coset diagram in the action of PSL(2;Z) on rational projective line is connected and

transitive. It is also shown that the linear fractional transformations � and � generate

PSL(2;Z) and that �2 = �3 = 1 are de�ning relations for PSL(2;Z) using coset diagrams:

Coset diagrams also used to show that ambiguous numbers exist and they exist excessively

in an orbit when PSL(2;Z) acts on real quadratic �elds.

In 1983; the actions of PSL(2;Z) on di¤erent sets are studied and proved that for

each value of � 2 Fq, with q to be a power of a prime, a coset diagram of the action of

PGL(2;Z) over PL(Fq) can be drawn [68]. In [71], Q. Mushtaq found a condition for the

existence of a speci�c fragment in a coset diagram. That is he established a useful relation

between a polynomial with coe¢ cients from Z and a coset diagram containing the fragment.

Q. Mushtaq and F. Shaheen [79] proved the existence of some special circuits in

the coset diagrams under action of a group with the presentationD
�; �; t : �2 = �n = t2 = (�t)2 = (�t)2 = 1

E
on projective lines over the Galois �elds.

Later on, Higman�s question was answered for permutation representation of the symmetric

and hyperbolic tessellation by using coset diagrams in [81]. M. D. E. Conder and Q. Mush-

taq separately worked on the solutions of several identi�cation problems with the help of

these diagrams.

Coset diagrams are helpful in providing diagrammatic explanations of di¤erent

concepts of combinatorial group theory including the Reidemeister-Schreier procedure, and

to prove the theorem by Ree-Singerman regarding the cyclic structure for a transitive group

of generating-permutations. To construct the in�nite families of �nite quotients of a partic-
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ular group with �nite presentation, similar methodology is helpful. For �nding torsion-free

subgroups of certain groups with �nite presentation the coset diagrams have proved to be of

great help for constructing the small volume hyperbolic 3-manifolds which show interesting

behaviours. Coset diagrams can also be helpful in the formation of arc-transitive graphs

and maximal automorphism groups of Riemann surface [25].

1.4 Triangle Groups

Triangle groups and their importance is explained in [27]. The relation between the

triangle groups and PSL (2;Z) is that, in certain cases they arise as quotients of PSL (2;Z).

Triangle groups can be presented as

�(r; s; k) =
D
u; v : ur = vs = (uv)k = 1

E
where r; s; k > 1 and r; s; k 2 Z (for details, see [27]).

The triangle groups �(r; s; k) are known to be �nite precisely when  = 1
r +

1
s +

1
k � 1 > 0, and the groups obtained are A4; S4; D2n; and Cn: If  = 1

r +
1
s +

1
k � 1 = 0;

then (r; s; k) = (2; 4; 4) ; (3; 3; 3) ; or (2; 3; 6) : In this case �(r; s; k) is soluble but in�nite.

The triangle groups �(r; s; k) are in�nite if and only if  = 1
r +

1
s +

1
k � 1 � 0.

A triangle group �(r; s; k) is a re�ection group which means it is generated by

the re�ections of the three edges of the triangle through angles �=r; �=s and �=k. The

group �(r; s; k) is spherical if  = 1
r +

1
s +

1
k � 1 < 0; if  = 1

r +
1
s +

1
k � 1 = 0, then the

group �(r; s; k) obtained is Euclidean. If  = 1
r +

1
s +

1
k � 1 > 0 then the group �(r; s; k)

is hyperbolic.

The triangle groups �(2; 3; k) are signi�cant as they arise as homomorphic images
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or quotients of PSL (2;Z). For k � 6; the order of the triangle group is in�nite. When

k � 5; then hyperbolic triangle groups �(2; 3; k) are A4, S4; A5; f1g and S3 ([59, 74, 106]).

�(2; 3; 6) is an in�nite soluble group for k = 6. It contains free abelian group as

derived subgroup which is generated by two elements whose related factor-derived group is

cyclic group having order 6 [74]. When k = 7, �(2; 3; k) becomes the Hurwitz group which

is widely studied by many mathematicians in [24, 60, 64, 73, 96].

1.4.1 Generalized Triangle Groups

The generalized triangle group has the presentation


u; v : ur; vs;W k

�
; where

r; s; k are integers greater than 1, and W = u�1v�1 :::u�kv�k , where k > 1; 0 < �i < r

and 0 < �i < s for all i These groups are obtained by natural generalization of the triangle

groups �(r; s; k) de�ned by the presentations
D
u; v : ur = vs = (uv)k = 1

E
, where r; s and

k are integers greater than one.

It is proved in [4] and [35], that if G =


u; v : ur; vs;W k

�
, then there is a homo-

morphism 	: G ! PSL(2;C) such that 	(u), 	(v) and 	(W ) are of orders r; s and k

respectively. Almost at the same time Boyer in his paper [12] presents that there exist a

homomorphism from G ! SO(3) which posses the same property. He also proved that G

is an in�nite group if no two of r; s; k are equal to 2 and maxfr; s; kg � 6, with some

restrictions on W .

It is shown in [37] that G is in�nite if 1r +
1
s +

1
k � 1 provided r � 3 or k � 3 and

s � 6, or (r; s; k) = (4; 5; 2): This is generalized in [4], where it was shown in [101] that G

is in�nite whenever 1r +
1
s +

1
k � 1.

A generalized triangle group may be in�nite when 1
r +

1
s +

1
k > 1. The �nite



21

generalized groups with presentation
D
u; v : ur; vs;

�
u�1v�1 :::u�kv�k

�kE
, are determined for

k � 3 in [36]. In [17], it is shown that for k = 1 the group is a �nite triangle group. The cases

are also determined for r = 2; k = 3 or 4 in [58], r = 2; k = 2 in [83], and, if (r; s) = (2; 3),

for kt � 12 in [23] which are all �nite generalized triangle groups.

The complete classi�cation of �nite generalized triangle groups is given in 1995 by

J. Howie in [39] and later by L. Levai, G. Rosenberger, and B. Souvignier in [57]. The list

of all �nite generalized triangle groups is given below:

(1)
D
u; v j u2; v3;

�
uvuvuv2uv2

�2E
; of order 576;

(2)
D
u; v j u2; v3;

�
uvuvuv2

�3E
; of order 1440;

(3)
D
u; v j u3; v3;

�
uvuv2

�2E �= A5 � C3; of order 180;

(4)
D
u; v j u3; v3;

�
uvu2v2

�2E
; of order 288;

(5)
D
u; v j u2; v5;

�
uvuv2

�2E
; of order 120;

(6)
D
u; v j u2; v5;

�
uvuvuv4

�2E
; of order 1200;

(7)
D
u; v j u2; v5;

�
uvuv2uv4

�2E
; of order 1200;

(8)
D
u; v j u2; v4;

�
uvuvuv3

�2E
; of order 192;

(9)
D
u; v j u2; v3;

�
uvuv2

�2E
; of order 24;

(10)
D
u; v j u2; v3;

�
uvuvuv2

�2E
; of order 48;

(11)
D
u; v j u2; v3;

�
uvuvuvuv2

�2E
; of order 120;

(12)
D
u; v j u2; v3;

�
uvuvuv2uvuv2

�2E
; of order 720;

(13)
D
u; v j u2; v3;

�
uvuvuvuvuv2uv2

�2E
; of order 2880;

(14)
D
u; v j u2; v3;

�
uvuvuvuv2uv2uvuv2uv2

�2E
: of order 17694720:
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1.4.2 Hurwitz Groups

Any non-trivial quotient of an abstract triangle group �(2; 3; 7) with the �nite

presentation �(2; 3; 7) =
D
u; v j u2 = v3 = (uv)7 = [u; v] = 1

E
is called a Hurwitz group: It

means that a �nite group with two generators u and v which satisfy relations u2 = v3 =

(uv)7 = 1 is a Hurwitz group. In 1893; Hurwitz�s theorem originated the importance of

such groups.

In 1990; M. D. E. Conder wrote a review on Hurwitz groups [24] and at that time

the only �nite simple groups identi�ed as Hurwitz groups were the Ree groups 2G2(3p);

where p is an odd prime, all but 64 of the alternating groups An, 11 of the 26 sporadic �nite

simple groups. It is also known that the remaining 15 sporadic �nite simple groups were

not Hurwitz groups and only for q = 2; PSL(3; q) is a Hurwitz group.

In the recent times, the groups of Lie types are objects of attention. G. Malle in

[64] shows that the Chevalley group G2(q); for every prime power q � 5, is a Hurwitz group

and the Ree group 2G2(3
2m+1); for every m � 1; is a Hurwitz group. Furthermore, it is

also proved that the groups G2(2), G2(3), G2(4) and 2G2(3) are not Hurwitz groups, but

can be viewed as factor groups of PSL(2;Z):

It is shown for �intermediate�ranks in [60] that for all prime powers q and 93 values

of n < 287; SL(n; q) is a Hurwitz group, and this result is extended by M. V. Semirnov

by using (2; 3; 7)�generation of alternating groups to another 60 values of n � 287 in [54].

Particularly, SL(49; q) for all q; are now known to be Hurwitz groups.

The method used in [60] is described very attractively in the review chapter in

[100], later on, this approach is used by N. Semernov in his paper [88], to show that Dn
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type Weyl groups contains subgroups which are Hurwitz groups for all suitably large values

of n. A totally di¤erent method is presented by authors in [82] to obtain representations

with zero characteristic of (2; 3; 7) up to degree 7. This approach is taken to obtain Hurwitz

groups which is embedded as subgroups of GL(n;R) for some n � 7 and for an appropriate

ring R.

A. Macbeath give a pleasant description of his work on Hurwitz groups and its

action on the surfaces and curves in [61]. A very interesting work is done by M. Streit in

[98], by investigating the Hurwitz groups and associated complex algebraic curves with it.

The action of automorphisms were considered by K. Magaard and H. Volklein in

[62] on the set of Weierstrass points of a Hurwitz curves and proved that the action in not

transitive when genus g > 1: Later, it is shown that it acts transitively for g = 3 in [91],

and for g = 7 in [33]). In 2004; R. Vogeler in [103], develops a method for encoding and

classifying the conjugacy classes of hyperbolic transformations in �(2; 3; 7). Further this

work was extended to determine a large preliminary portion of the spectrum for �(2; 3; 7)

and therefore for Hurwitz surfaces in [104].

1.5 Pisot Numbers

A real algebraic integer � > 1 is called a Pisot number if all its conjugates lie in

the circle of radius 1. The set of all such numbers is denoted by S and is a closed set in

the real line as mentioned in [84] and [90]. For investigation of S; a powerful method is

introduced in [32] by J. Dufresony and C. Pisot to obtain all numbers in S in [1; t
0
+ e];

where 0 < e < 0:0004 and t
0
= (1 + 51=2)=2: It is shown that the smallest accumulation
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point �r of S is also an isolated point of S. Later, this method is practiced to explore the

consecutive resultant sets of S as explained in [2], [8], [31] and [42].

The set of Salem numbers is symbolized by T which consists of all algebraic integers

{ > 1 for which all other conjugates lie on or in the circle of radius one, such that at least

one of the conjugate lies on the circle. Thus R. Salem in [85] gives a reciprocal equation is

satis�ed by { with the property that its roots { and {�1 lie on the circle of radius 1. A

small number of Salem numbers are known as compared to Pisot numbers [9].

T. Vijayaraghava proves in [102] that the set S has in�nite number of accumulation

points. R. Salem shows in [84] that S contains derived sets of any �nite order.

Elements of S are studied in a neighbourhood of a accumulation point of S by D.

W. Boyer in [11]. He analyzes the in�nite tree = related to S in which paths to in�nity,

bounded by one, on the circle of radius one, correspond to certain rational functions.
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Chapter 2

Pisot numbers and circuits of type

(m1;m2)

In this chapter we show that coe¢ cients of a matrix representing the element

g =
�
(�v)m1

�
�v2
�m2
�l
where l � 1 of PSL (2;Z) =



�; v : �2 = v3 = 1

�
are denominators

of the convergents of the continued fractions related to the circuits of type (m1;m2) ; for all

m1;m2 2 N:We also investigate �xed points of a particular class of circuits of type (m1;m2)

and identify location of the Pisot numbers in a circuit of a coset diagram for the action of

the modular group PSL (2;Z) on Q
�p

d
�
[ f1g, where d is a non-square positive integer.

2.1 Introduction

By L. Euler, every real number has continued fractions � = �1 +
1

�2+
1

�3+::::

which

is in�nite for irrational numbers and �nite for rationals. The continued fractions can also

be represented as � = 1 +
1
2+

1
3+::::

or � = [1; 2; :::]: The irrationals whose continued
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fractions repeat after a certain stage such that � = [�1;�2; :::; �m;�m+1; �m+2; :::; �m+q] are

the quadratic irrational numbers with

2664 Bk Bk�1

Hk Hk�1

3775, where Bk = [�1;�2; :::; �k] and Hk =
[�2;�3; ::; �k] are continuants of the convergent

Bk
Hk
. J. L. Lagrange proved the converse: if

� is a quadratic irrational, then the regular continued fraction expansion is periodic [28].

2.1.1 Circuits and Words

If � = f�o; n1; �1; n2; :::; nk; �kg is an alternating sequence of vertices and edges

of a coset diagram then � is a path in the diagram joining �o and �k if ni joins �i�1

and �i for each i and ni 6= nj (i 6= j). A path of triangle and edges is a word in which

initial and terminal vertices are same, is called a circuit. For a sequence of positive integers

�1; �2; �3; :::; �2k the word g = (�v)
�1
�
�v2
��2 (�v)�3 ::: ��v2��2k where �i > 0 �xes � vertex,

is represented by (�1; �2; �3; :::; �2k). Such a circuit evolves an element of and �xes a speci�c

vertex on the circuit.
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It is important to mention some relevant results here which are proved by Q.

Mushtaq in [?] for later use.

Theorem 1 Every element of PSL (2;Z) ; except the (group theoretic) conjugates of � and

v�1 and (�v)n ; n > 0; has a real quadratic irrational number as a �xed point.

Theorem 2 Ambiguous numbers in the coset diagram for the orbit of � form a single

circuit and it is the only circuit contained in it.

It is also note worthy from a result by Q. Mushtaq [69] that for every real quadratic

irrational number under the action of PSL (2;Z) on Q
�p

d
�
[f1g ; the value of d remains

the same. Thus, if there is a real quadratic irrational number � we �nd a circuit in the

orbit of � under the action of PSL (2;Z) :

2.2 Circuits of type (m1;m2) and relation with Pisot numbers

Consider circuits of the type (m1; m2) where m1;m2 2 N and means that there

are m1 triangles with one vertex outside the circuit and m2 triangles with one vertex inside

the circuit: Let h 2 PSL(2;Z) be an element related to the circuit (m1; m2) of the form

h =
�
�v2
�m2 (�v)m1

�
�v2
�m2 (�v)m1

�
�v2
�m2 (�v)m1 ::: (�v)m1

=
��
�v2
�m2 (�v)m1

�l
:

Then:

Theorem 3 If � be an ambiguous number and
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h =
��
�v2
�m2 (�v)m1

�l 2 PSL(2;Z) �xes �; so that the orbit of � contains the

circuit (m1; m2; m1; :::; m2)| {z }
2l

; then the matrix M (h) has trace tr (M (h)) = m1J3l+1 +

2J3l�1; and l � 1:

Proof. As � : ! ! �1=! and v : ! ! (! � 1) =!; so �v : ! ! ! + 1 and �v2 :

! ! != (! + 1) ; we have M ((�v)m1) =

2664 1 m1

0 1

3775. Therefore

M
��
�v2
�m2
�
=

2664 1 0

m2 1

3775 and

A =M
�
�v2
�m2M ((�v)m1) =

2664 1 0

m2 1

3775
2664 1 m1

0 1

3775

=

2664 1 m1

m2 1 +m2m1

3775 =
2664 J2 J3

J4 J5

3775.

This implies that A2 =

2664 1 +m2m1 2m1 +m2m1

2m2 +m
2
2m1 m2

2m
2
1 + 3m2m1 + 1

3775 =

2664 J5 J6

J7 J8

3775

and A3 =

2664 m2
2m

2
1 + 3m2m1 + 1 m2

2m
3
1 + 4m2m

2
1 + 3m1

m3
2m

2
1 + 4m

2
2m1 + 3m2 m3

2m
3
1 + 5m

2
2m

2
1 + 6m2m1 + 1

3775

=

2664 J8 J9

J10 J11

3775 :

Hence Al =

2664 J3l�1 J3l

J3l+1 J3l+2

3775 ;
where

J3l = m1J3l�1 + J3l�3
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J3l+1 = m2J3l�1 + J3l�2

J3l+2 = m1J3l+1 + J3l�1; for k � 3 and J0 = J1 = 0; J2 = 1:

It is then immediate that Tr
�
Al
�
= J3l�1 + J3l+2 = m1J3l+1 + 2J3l�1: The deter-

minant of Al; that is of M (h) ; must be 1 being determinant of an element of PSL(2;Z);

which is given by

��������
J3l�1 J3l

J3l+1 J3l+2

�������� = 1: The entries of A
l are the denominators of convergent

for continued fractions corresponding to the circuits (m1;m2) and powers of A (h) satisfying

the recurrence relation

Al = (1 +m1m2)
�
Al�1 +A

�
+m1m2

�
Al�2 +Al�3 + :::+A2

�
� I

By considering the circuits of coset diagrams, one may start with (�v)m1 : So the

element g =
�
(�v)m1

�
�v2
�m2
�l
is considered instead of h =

��
�v2
�m2 (�v)m1

�l
; where l � 1;

of PSL(2;Z): Therefore

B =M
�
(�v)m1

�
�v2
�m2
�
=

2664 1 m1

0 1

3775
2664 1 0

m2 1

3775 =
2664 1 +m2m1 m1

m2 1

3775

=

2664 J5 J3

J4 J2

3775 :

Thus, inductively matrix Bl =

2664 J3l+2 J3l

J3l+1 J3l�1

3775 ; where l � 1:
The matrix for

�
�v2
�m2 (�v)m1 then turns out to be

M (g) = Bl =

2664 J3l�1 J3l

J3l+1 J3l+2

3775 ; having the same trace and determinant as of
M (h) and satisfying the recurrence relation

Bl = (1 +m1m2)
�
Bl�1 +B

�
+m1m2

�
Bl�2 +Bl�3 + :::+B2

�
� I: Also matrices



30

2664 1 +m2m1 m1

m2 1

3775 and
2664 1 m1

m 1 +m2m1

3775 ; having the same eigen values , given by the
roots �1 and �2 of �2�(m2m1 + 2)�+1 = 0 where �1 = 1+

m2m1+
p
m2
2m

2
1+4m2m1

2 = 1+�1 =

(�1)
2

4m2m1
and �2 = 1+

m2m1�
p
m2
2m

2
1+4m2m1

2 = 1+ ��1 =
(��1)

2

m2m1
; �1 =

m2m1+
p
m2
2m

2
1+4m2m1

2 and

��1 is its algebraic conjugate.

Proposition 4 If � 2 Q
�p

d
�
; and h =

��
�v2
�m2 (�v)m1

�l
or

g =
�
(�v)m1

�
�v2
�m2
�l
are elements of PSL(2;Z) �xing �, then orbit of � contains

the circuit of type (m1; m2; m1; :::; m2)| {z }
2l

and � = m1�
�1
1 ; m1

��
�1
1�

or � = �1
m1
;
��1
m1

�
, so d = m2

2m
2
1 + 4m2m1. If h or g acts on Q

�p
d
�
; then the

circuit in the coset diagram contains only 2 (m2 +m1) ambiguous numbers.

Proof. Let � 2 Q
�p

d
�
: If h =

��
�v2
�m2 (�v)m1

�l
�xes �; then J3l�1�+J3l

J3l+1�+J3l+2
= �;

so that J3l+1�2 + (J3l+2 � J3l�1)�� J3l = 0: This implies that

J3l�1
�
m2�

2 �m2m1��m1

�
= 0; for m1;m2; l � 1:

Hence � = m2m1�
p
d

2m2
; where d = m2

2m
2
1 + 4m2m1; and the elements �xed by h are

�1
m2
�m1 =

m2m1+
p
d

2m2
= m1�

�1
1 and �2

m2
�m1 =

m2m1�
p
d1

2m2
= m1

��
�1
1 ; where

�1 =
m2m1+

p
d

2 and ��1 is its algebraic conjugate: On the other hand, if g =�
(xy)m1

�
xy2
�m2
�l
�xes � 2 Q

�p
d
�
; then J3l+2�+J3l

J3l+1�+J3l�1
= �: That is

J3l�1
�
m2�

2 +m2m1� �m1

�
= 0: Hence � = �m2m1�

p
d

2m : This also implies that

d = m2
2m

2
1+4m2m1 and the elements �xed by g are

�1
m2
= �m2m1+

p
d

2m2
and

��1
m2
= �m2m1�

p
d

2m2
:

If the generators � and v of PSL(2;Z) act on Q
�p

d
�
; where d = m2

2m
2
1+4m2m1

then the circuit related to h or g is reduced to
��
�v2
�m2 (�v)m1

�
or
�
(�v)m1

�
�v2
�m2
�
and

hence contains only 2 (m1 +m2) ambiguous numbers.
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We illustrate this proposition with the example given below.

Example 5 Let h1 =
�
(�v)2

�
�v2
�3�3 be an element of PSL (2; Z) and � 2 Q�pd� be

�xed by h1: The polynomial corresponding to h1 is 3�2 + 6� � 2 = 0 which is the same as

that of the element (�v)2
�
�v2
�3related to the circuit (2; 3) :

Clearly the following circuit contains 10 ambiguous numbers.

(3- 15  )/215 /3(3+ 15  )/3

(3- 15  )/2

(1+ 15  )/7

(1- 15  )/2

(3+ 15  ) /3

15 /3-

(1+ 15  )/7
(1- 15  )/2

Remark 6 In the action of PSL(2;Z) on Q
�p

d
�
[ f1g ; then the circuit corresponding

to h (or g) reduces to
�
�v2
�m2 (�v)m1

�
or (�v)m1

�
�v2
�m2
�
:

Now considering the class of circuits of type ( �m1; 1) representing the elements

g1 =
�
�v2
�
(�v) �m1 of PSL (2;Z), we have the following important result.

Theorem 7 In the action of PSL (2;Z) on Q
�p

d
�
, the elements �xed by words of type��

�v2
�
(�v) �m1

�
are Pisot numbers.

Proof. Let g1 =
�
�v2
�
(�v) �m1 2 PSL (2;Z) corresponding to ( �m1; 1) �xes � 2
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Q
�p

d
�
. This means �2 � �m1� � �m1 = 0 and thus we have � =

�m1�
p
�m2
1+4 �m1

2 : Consider

� =
�m1+

p
�m2
1+4 �m1

2 and its algebraic conjugate �� =
�m1�

p
�m2
1+4 �m1

2 .

As
p
�m2
1 + 4 �m1 > �m1 this implies that �m1 +

p
�m2
1 + 4 �m1 > 2 �m1, for all �m1 �

1: So
�m1+

p
�m2
1+4 �m1

2 = � > 1; for all m1 � 1:

Now �m2
1 + 4 �m1 < ( �m1 + 2)

2 : This implies that � �m1 +
p
�m2
1 + 4 �m1 < 2: Thus���� �m1�

p
�m2
1+4 �m1

2

���� = j��j < 1:
Hence � is a Pisot number.

Remark 8 If we consider element other than
��
�v2
�
(�v) �m1

�
; the resulting numbers will

not be Pisot numbers.

In the following, a list which describes the types of circuits, �xed vertices on the

circuits, number of triangles on the circuits, discriminant and mod value of conjugate of

�xed vertices of circuits is given.
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Type of

circuit

No. of

triangles

on the

circuit

Fixed

vertex

J

Disc |J# | < 1

1, 1 2 1+ 5
2 5 0.61803398875

2, 1 3 1 + 3 3 0.73205080757

3, 1 4 3+ 21
2 21 0.79128784748

Ý4,1Þ 5 2 + 2 2 8 0.82842712475

5, 1 6 5+ 45
2 45 0.85410196625

6, 1 7 3 + 15 15 0.43649167310

7, 1 8 7+ 77
2 77 0.88748219369

8, 1 9 4 + 14 14 0.12917130661

Ý9,1Þ 10 9+ 85
2 85 0.10977228646

. . . . .

. . . . .

. . . . .

Ý1,m1 Þ 1 + m1
m8 1+ m8 1

2+4m8 1

2 m8 1
2 + 4m8 1 0.5 m8 1 ? m8 1

2 + 4m8 1



34

(1; 1)

(1; 2)

(1; 3)



35

:

:

:

(1;m1)

2.3 Conclusion

By Theorem 3, matrices representing the element h or g of PSL (2;Z) are matrices

whose entries are denominators of the convergents of the continued fractions related to the

circuits of type (m1;m2) ; for all m1;m2 2 N: If an element h or g of PSL (2;Z) acts on

Q
�p

d
�
; then m1�

�1
1 ; m1

��
�1
1

�
or �1

m1
;
��1
m1

�
where �1 =

m2m1+
p
m2
2m

2
1+4m2m1

2 ; are the �xed

points and the corresponding reduced circuit is obtained in the coset diagram containing

only 2 (m1 +m2) ambiguous numbers. The only element of type g1 =
��
�v2
�
(�v) �m1

�
of
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PSL (2;Z) corresponding to the circuits (m1; 1) where m1 2 N; gives Pisot numbers as �xed

points. In case of elements other than
��
�v2
�
(�v) �m1

�
; �xed points are not Pisot numbers.
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Chapter 3

A class of triangle subgroups of

PSL (2; p) related to circuits of type

(m1; m2)

Coset diagrams for PSL (2;Z) when acting on PL (Fq) are composed of various

types of well-de�ned fragments which are themselves composed of simple and non-periodic

circuits connected together in a speci�ed way. In this chapter, we attempt to classify

all those subgroups of the homomorphic image of PSL (2;Z) which are depicted by coset

diagrams containing circuits of the type (m1; m2).

3.1 Introduction

In [69], Q. Mushtaq proves that orbits of the action of PSL (2;Z) on Q�
�p

d
�
=

Q
�p

d
�
[f1g where d is a square free integer, contain ambiguous numbers. Coset diagrams
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for this action give a useful connection between orbits and the way these ambiguous numbers

are located in orbits. In the following therefore, for the sake of completeness we explain

coset diagrams as in [68].

3.1.1 Coset Diagrams and Fragments

The coset diagram for PSL (2; Z) is represented by diagram �C :

�C

which is obtained by replacing every vertex in a tree of valence three by a triangle. The

coset diagram for PSL (2;Z) either in its regular representation, or in the representation

for which a point stabilizer is hti ; is exactly the same, except that one has to pick out an

axis of symmetry. In the case �1C ; where the representation is regular, the axis of symmetry
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contains no vertices, where as in the case �2C , where the representation is not regular, that

is for which the a point stabilizer is hti ; the line of symmetry contains two adjacent vertices.

Let �̂ is a vertex in �C and �̂0 is a vertex of graph �0C . It is always possible that

for any vertex �̂ in �C is joined to �̂ by a unique path �̂ if we do not allow consecutive

� � edges or consecutive � � edges. There is a related path in �0C , starting with �̂
0 and

having � � edges where �̂ does and positive ( or negative ) � � edges where �̂ does. This

path ends at a point �̂
0
, exclusively determined by �̂: Thus there is a mapping � from �C to

�0C ; in which ��edges correspond to ��edges, and positive ��edges to positive ��edges.

If �C and �0C are same then this map is one to one. If �̂ 6= �̂ maps on to �̂0, the path from

�̂ to �̂ in �C maps on to a circuit in �0C : The elements of PSL (2;Z) are vertices of �C . If

ĝ 2 PSL (2;Z) is labelling �̂0; then �̂0 maps onto �̂0 if and only if ĝ belongs to the stabilizer

of �̂0 in the representation of PSL (2; Z) on which �0C is the diagram. Thus circuits in the

diagram �0C correspond to the elements of PSL (2;Z) containing �xed points.

For example the circuit related to ĝ1 = (��)
�
��2

�2 and ĝ2 = ���2�3 (��) attains
the following form
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�1

�2

respectively. If ĝ1 and ĝ2 both have a �xed vertex �̂0 then by connecting these two

circuits.the fragment �3 is obtained.
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�3

Then �̂0 also �xed by ĝ1ĝ2: But �0C contains a non simple circuit related to ĝ1ĝ2, which is

given by �4:

�4

By  we mean a non-simple fragment obtained by connecting, non trivial, non

periodic, simple circuits. Q. Mushtaq proves in [69] that each orbit of the action always

contains a single circuit and each vertex on the circuit is in fact an ambiguous number.

The coset diagrams for the action of PSL (2;Z) on Q�
�p

d
�
are in�nite. They
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become �nite when the action of PSL (2;Z) on Q�
�p

d
�
is transformed into the action of

PSL (2;Z) on PL(Fq) naturally. The orbits get merged and circuits become fragments.

The coset diagram D (�; q) is obtained through the procedure described in [74] for every �

in Fq: The following result establish as a condition which proves the existence of  or its

homomorphic image D (�; q) :

Theorem 9 Given a fragment ; there is a polynomial f in Z [z] such that

(i) if the fragment  occurs in D (�; q) then f (�) = 0

(ii) If f (�) = 0 then the fragment or a homomorphic image of it occurs in D (�; q)

or in PL (Fq) :

3.2 Results and discussions

Consider two circuits of type (n1;m1) and (n2;m2) where m1;m2; n1; n2 � 1.

Each circuit corresponds to an element of PSL (2;Z). The words corresponding to these

circuits are w1 = (��)n1
�
��2

�m1 and w2 =
�
��2

�n2 (��)m2 respectively. If X and Y are

the matrices representing � and � of PGL (2; q) and satisfying the relations

X2 = Y 3 = �I (3.1)

where I is the identity matrix and � is a scalar, then w1; w2 and w1w2 are represented as

follows in terms of X and Y :

W1 = (XY )
n1
�
XY 2

�m1

W2 =
�
XY 2

�n2 (XY )m2

W1W2 = (XY )
n1
�
XY 2

�n2+m1 (XY )m2 :
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Here we take �� and �� to be represented asX =

2664 a1 k1c1

c1 �a1

3775 ; Y =
2664 d1 k1f1

f1 �d1 � 1

3775
where a1; c1; d1; f1; k1 2 Fq: We write

a21 + k1c
2
1 = �� 6= 0

and require that

d21 + d1 + k1f
2
1 + 1 = 0

These elements certainly satisfy relations (3:1) : The trace of matrix representing ���� is

r = a (2d1 + 1) + 2k1c1f1 and � = �
�
a21 + k1c

2
1

�
is the determinant. As det (X) = � and

tr (X) = 0; So

X2 +�I = 0 (3.2)

and, det (Y ) = 1 and tr (Y ) = �1; we have

Y 2 + Y + I = 0 (3.3)

Further more, � = det (XY ) and r = tr (XY ) ; so, we have

(XY )2 + r (XY ) + �I = 0 (3.4)

and by equations (3:2)� (3:3) give

XYX = rX +�I +�Y (3.5)

Y XY = X + rY (3.6)

Y X = rI �X �XY (3.7)

By using equations (3:2) to (3:7) ;
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W1 = (�1)n1+2
 1X
k=0

kX
l=0

C
n1�(l+2)
l C

m1�(k+2�l)
k�l rn1+m1�(2k+2)�k+1

!
I+

(�1)m1+1

266664
0BBBB@
�

1X
k=0

kX
l=0

C
n1�(l+2)
l C

m1�(k+1�l)
k�l

�
1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+1�l)
k�l

1CCCCA rn1+m1�(2k+3)�k

377775X

+(�1)m1

 1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+2�l)
k�l rn1+m1�(2k+2)�k+1

!
Y

+(�1)m1+1

2666666666666664

8>>>>>>>>>><>>>>>>>>>>:

�

0BBBB@
1X
k=0

kX
l=0

C
n1�(l+2)
l C

m1�(k+1�l)
k�l

+
1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+2�l)
k�l

1CCCCA
�

1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+1�l)
k�l

9>>>>>>>>>>=>>>>>>>>>>;
rn1+m1�(2k+3)�k

3777777777777775
XY

W2 = (�1)n2+1

0BBB@
1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0

�
C
m2�(k0+1�l0)
k0�l0 � Cm2�(k0+2�l0)

k0�l0
�

rn2+m2�(2k0+2)�k
0+1

1CCCA I

+(�1)n2+1
 1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0 C

m2�(k0+2�l0)
k0�l0 rn2+m2�(2k0+3)�k

0+1

!
X

+(�1)n2+1
 1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0 C

m2�(k0+1�l0)
k0�l0 rn2+m2�(2k0+2)�k

0+1

!
Y

+(�1)n2+1

26666666664

0BBBBB@
�

1X
k0=0

k0X
l0=0

C
n2�(l0+2)
l0 C

m2�(k0+1�l0)
k0�l0

+
1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0

�
�C

m2�(k0+2�l0)
k0�l0 � Cm2�(k0+2�l0)

k0�l0
�
1CCCCCA

rn2+m2�(2k0+3)�k
0+1

37777777775
XY

�̂i�s and �̂i�s are the coe¢ cients of XY , Y;X and I in W1 and W2 where i =

0; 1; 2; 3:

�̂0 = (�1)n1+2
 1X
k=0

kX
l=0

C
n1�(l+2)
l C

m1�(k+2�l)
k�l rn1+m1�(2k+2)�k+1

!
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�̂1 = (�1)m1+1

266664
0BBBB@
�

1X
k=0

kX
l=0

C
n1�(l+2)
l C

m1�(k+1�l)
k�l

�
1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+1�l)
k�l

1CCCCA rn1+m1�(2k+3)�k

377775
�̂2 = (�1)m1

 1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+2�l)
k�l rn1+m1�(2k+2)�k+1

!

�̂3 = (�1)m1+1

2666666666666664

8>>>>>>>>>><>>>>>>>>>>:

�

0BBBB@
1X
k=0

kX
l=0

C
n1�(l+2)
l C

m1�(k+1�l)
k�l

+

1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+2�l)
k�l

1CCCCA
�

1X
k=0

kX
l=0

C
n1�(l+1)
l C

m1�(k+1�l)
k�l

9>>>>>>>>>>=>>>>>>>>>>;
rn1+m1�(2k+3)�k

3777777777777775

�̂0 = (�1)n2+1

0BBB@
1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0

�
C
m2�(k0+1�l0)
k0�l0 � Cm2�(k0+2�l0)

k0�l0
�

rn2+m2�(2k0+2)�k
0+1

1CCCA
�̂1 = (�1)n2+1

 1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0 C

m2�(k0+2�l0)
k0�l0 rn2+m2�(2k0+3)�k

0+1

!

�̂2 = (�1)n2+1
 1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0 C

m2�(k0+1�l0)
k0�l0 rn2+m2�(2k0+2)�k

0+1

!

�̂3 = (�1)n2+1

26666666664

0BBBBB@
�

1X
k0=0

k0X
l0=0

C
n2�(l0+2)
l0 C

m2�(k0+1�l0)
k0�l0

+
1X
k0=0

k0X
l0=0

C
n2�(l0+1)
l0

�
�C

m2�(k0+2�l0)
k0�l0 � Cm2�(k0+2�l0)

k0�l0
�
1CCCCCA

rn2+m2�(2k0+3)�k
0+1

37777777775
Here �̂i and �̂i for i = 0; 1; 2; 3 are terms involving � and r. Since ~v = ~vw1 and

~v = ~vw2; so matrices W1 and W2 have a common eigen vector .Thus the algebra generated

by W1 and W2 has dimension 3: Whereas the algebra generated by W1W2;W2;W1and I is

linearly dependent as given in [71].
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Using equations (3:2) to (3:7), we have

W1W2 = �̂0I + �̂1X + �̂2Y + �̂3XY (3.8)

where �̂i for i = 0; 1; 2; 3 is calculated in terms of �̂i�s and �̂i�s again by using equations (3:2)

to (3:7) :The condition that W1W2;W2;W1and I are linearly dependent [71], is expressed

as

������������

�̂1 �̂2 �̂3

�̂1 �̂2 �̂3

�̂1 �̂2 �̂3

������������
= 0 (3.9)

If we calculate �̂1; �̂2; �̂3 in terms of �̂i�s and �̂i�s and put in (3:9), we get�
�̂2�̂3 � �̂3�̂2

�2
+�

�
�̂3�̂1 � �̂1�̂3

�2
+
�
�̂1�̂2 � �̂2�̂1

�2
+r
�
�̂2�̂3 � �̂3�̂2

��
�̂3�̂1 � �̂1�̂3

�
+
�
�̂2�̂3 � �̂3�̂2

��
�̂1�̂2 � �̂2�̂1

�
= 0 (3:10)

By substituting these values in equation (3:10) one obtains a polynomial f (�) :

Remark 10 Consider non-periodic simple circuits of type (n1;m1) and (n2;m2) corre-

sponding to the elements g1 = (����)n1
�
�����1

�m1 and g2 =
�
�����1

�n2 (����)m2 respectively,

of PGL (2;Z) : One obtains a fragment by joining these circuits in such a way that this

fragment will �x both ĝ1 and ĝ2 on a common �xed vertex. This fragment yields a poly-

nomial f (�) which is obtained by using the method developed in [71]: The roots of f (�) in

an appropriate �nite �eld Fp where p is a prime number. Corresponding to each �; where

� is a zero of f (�), we use theorem in [74] to obtain a triplet ��; ��; �t of linear fractional

transformations such that (��)2 = (��)3 = (�t)2 = (���t)2 = ( ���t)2 = 1 and (����)p�1 = 1
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or (����)p = 1: That is, we obtain groups PSL (2; p) ; PSL (2; p)�C2; �(2; 3; 6) ; S3; A5 or

A4: For  : PGL (2;Z) ! PGL (2; p) with parameters

� = 0 h��; ��; �ti ~=S3

� = 1 h��; ��; �ti ~=A4

� = 2 h��; ��; �ti ~=S4

and

� = 3 h��; ��; �ti ~=�(2; 3; 6)

In all other cases

h��; ��; �ti ~=PSL (2; p) or PSL (2; p) � C2

3.3 Conclusion

Coset diagrams for PSL (2;Z) when acting on Fp where p is a prime, are composed

of various types of well-de�ned fragments which are themselves composed of simple and non-

periodic circuits connected together in a speci�ed way. We considered non-periodic simple

circuits of type (n1;m1) and (n2;m2) corresponding to the elements g1 = (��)n1
�
��2

�m1

and g2 =
�
��2

�n2 (��)m2 respectively, of PGL (2;Z) : We obtained a fragment by joining

these circuits in such a way that both ĝ1 and ĝ2 have a common �xed vertex in this fragment.

This fragment yield a polynomial f (�) which is obtained by using the method introduced

in [71]: We obtain the roots of f (�) in an appropriate �nite �eld Fp where p is a prime.

Corresponding to each �; where � is a zero of f (�), we use theorem in [74] to obtain a triplet
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��; ��; �t such that (��)2 = (��)3 = (�t)2 = (���t)2 = (���t)2 = 1 and (����)p�1 = 1 or (����)p = 1: Thus

groups PSL (2; p) � C2; PSL (2; p) ; �(2; 3; 6) ; S3; A5 or A4; are obtained.
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Chapter 4

Generalized triangle groups as a

homomorphic image of PSL (2;Z)

In this chapter we extend the parametrization of actions of the modular group

PSL(2; Z) on PL(Fp), for various prime numbers p to obtain the generalized triangle

groups, namely
D
��; �� : ��2 = ��3 =

�
������������2

�k
= 1
E
and by the parametrization we obtain

coset diagrams of
D
��; �� : ��2 = ��3 =

�
������������2

�k
= 1
E
for all � 2 Fp. We have also obtained

the coset diagrams for three �nite generalized triangle groups
D
u; v : u2 = v3 =

�
uvuvuv2

�2
= 1
E
,D

u; v : u2 = v3 =
�
uvuvuv2uv2

�2
= 1
E
and

D
u; v : u2 = v3 =

�
uvuv2

�2
= 1
E
by taking � =

0 as a parameter.

4.1 Introduction

In [83] G. Rosenberger conjectures that all generalized triangle groups satisfy the

Tits Alternative. It is generally known that for a generalized triangle group < u; v :
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ur; vs; wk > the Tits Alternative holds with the exception when (r; s; k) is of the form

(2; s; 2) where s = 3; 4; 5; 6; 10; 12; 15; 20; 30; 60 or one the forms (r; s; k) = (3; 3; 2); (3; 4; 2);

and (3; 5; 2) [38]. In [40] it is shown that the Tits Alternative holds in the cases (r; s; k) =

(2; s; 2) for q = 6; 10; 12; 15; 20; 30; 60: In [80], Q. Mushtaq and F. Shaheen studied factor

groups of the abstract group �6;6;6 through coset diagrams by prameterizing its actions. The

abstract group �r;s;k is de�ned for any positive integers r; s; k as

D
�; �; t : �2 = �k = t2 = (��)r = (�t)2 = (��t)s = 1

E
In [39] fourteen generalized triangle groups are classi�ed as �nite. Out of these

fourteen only eight groups are quotients of the modular groups. Our aim is to obtain the

coset diagrams of the action of the modular group on a projective line over a �nite �eld,

through parametrization. In this way we obtain one of these eight �nite generalized triangle

groups
D
�; � : u2 = v3 = (w)3 = 1

E
of order 1440, where w = ������2.

4.1.1 Parametrization

Any homomorphism �1 : PGL (2;Z) ! PGL (2; q) give rise to an action on

PL (Fq) : We denote the generators (�) �1; (�) �1 and (t) �1 by ��; �� and �t: If neither of

the generators � and � and t lies in the kernel of �1; so that ��, �� and �t are of order 2, 3 and

2 respectively; then �1 is called a non-degenerate homomorphism. It is proved in [74] that

the conjugacy classes of non-degenerate homomorphism of PGL (2;Z) into PGL (2; q) are

into one to one way with the conjugacy classes of non-trivial elements of PGL (2; q) : This of

course parametrizes the conjugacy classes of homomorphism �1 : PGL (2;Z)! PGL (2; q)

are parametrized except for � = 0; 3 2 Fq:
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If �1 is a such homomorphism, and X; Y and T denote matrices of PGL (2; q)

yielding the elements ��; �� and �t in PGL (2; q). The matrices X; Y and T are

X =

2664 a1 k1c1

c1 �a1

3775 ; Y =
2664 d1 k1f1

f1 �d1 � 1

3775 and T =
2664 0 �k1

1 0

3775
where a1; c1; d1; f1; k1 2 Fq:

This gives �
�a21 � k1c21

�
= � 6= 0

and require that

d21 + d1 + k1f
2
1 = �1 (4.2)

This yields elements satisfying the relations X2 = �
0
1I; Y

3 = �
0
2I and T

2 = �
0
3I, where I is

the identity matrix and �
0
1; �

0
2 and �

0
3 are non zero scalers. The non-degenerate homomor-

phism �1 is determined by ����: So, we must check the conjugacy class of ����. The trace of

matrix XY is

r = a1 (2d1 + 1) + 2k1c1f1 (4.3)

If tr (TXY ) = k1s; then

s = 2a1f1 � c1 (2d1 + 1) (4.4)

so that

3� = r2 + k1s
2 (4.5)

and set

� =
r2

�
(4.6)

Thus, for known values of q and � and by using the equations (4:1) to (4:6) ; the matrices

T; Y and X can be found:
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Action of PGL (2;Z) on PL (Fq) through �1 is shown by a coset diagram. The

coset diagram D (�; q) depicts the conjugacy class of actions of PGL (2;Z) on PL (Fq)

corresponding to � 2 Fq:

We explain the above discussion with the help of an example.

Example 11 Let � = 4 and q = 17:

By equation (4:6) ; � = r2

� and � = 4 implies that r2 = 4�: We can choose � = 1

so that r = �2: Let r = 2 and substituting the values of � and r in equation (4:5) to get

s2 = �1
k1
: Choosing k1 = 1, we get s = �4: choosing s = 4: Similarly by choosing d1 = 0,

we get f1 = 4: Putting the values of k1; s; d1 and f1 in equations (4:3) and (4:4) and solving

these equations, a1 = 0 and c1 = 13: Thus

X =

2664 0 13

13 0

3775 and Y =
2664 0 4

4 �1

3775 and T =
2664 0 �1

1 0

3775
So, � (z0) = 1

z0 and � (z
0) = 4

4z0�1 : The permutation representation of �� and �� is

as follows.

�� = (0 1)(2 9)(3 6)(4 13)(5 7)(8 15)(10 12)(11 14)(16)(1)

�� = (0 13 1)(1 7 14)(2 3 5)(4 15 9)(6 12 16)(8 10 11)

�t = (0 1)(1 16)(2 8)(3 11)(4)(5 10)(6 14)(7 12)(9 15)(13)

The associated coset diagram D (4; 17) is:
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0

13

4

15 9
2 5

3

7

14

1

10 8

11

12 16

6

4.2 Parametrization of generalized triangle groups

Lemma 12 Homomorphism �1 has two conjugacy classes and ������������
2 has order 2; and

two others in which �t����2�������� is of order 2:

Proof. Let w = ������������2 be of order 2, with ��2 = ��3 = (������������2)2 = 1 such

that ��; �� produce a group having order 48 and �t normalizes < �� >, and in this case it is

characteristic in < ������������2 >. That is, actually maps PGL(2;Z) into the normalizer in

PGL(2; q) of a cyclic group of order 3. The normalizer of this group is of order 48. We can

take �� to be �xed element of order 3. Any more conjugation can occur within N(< �� >).

In this group there are two classes of non-central involutions, and we select ��. Then ���t is

of order 2 and it centralizes �� and ��. It is the particular non-trivial element of the centre

of N(< �� >). Thus there are just two conjugacy classes of non-degenerate homomorphisms
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in which w is of order 2.

As the dual �1 and �2 maps �; �; t onto ���t; ��; �t; therefore
�
������������2

�
�2 =

���t�����t�����t��2 = �t(t����2��������)�t: If t����2�������� is of order 2, so is (������������2)�2. Hence there are

only two conjugacy classes of non- degenerate homomorphisms: in which one ������������2 is

of order 2 and the other in which t����2�������� is of order 2.

Theorem 13 Any non trivial element g of PGL(2; q), and its order is other than 2 or 3,

which is the image of w = ������������2 under the homomorphism of PGL(2;Z).

Proof. We look for elements ��; �� and �t of PGL(2; q) satisfying the relations

��2 = ��3 = ( �t)2 =
�
������������2

�k
= (���t)2 = (���t)2 = 1 (4.7)

Take ��; �� and �t to be represented by X =

2664 a1 k1c1

c �a1

3775 ;

Y =

2664 d1 k1f1

f1 �d1 � 1

3775 and T =

2664 0 �k1

1 0

3775 where a1; c1; d1; k1; f1 2 Fq with

k1 6= 0. We shall take � as the determinant of matrix X

det(X) = �a21 � k1c21 = �

Now we require the determinant of matrix Y to be 1, that is

d21 + d1 + k1f
2
1 + 1 = 0

This clearly yields the elements which satisfy the relations ��2 = ��3 =
�
������������2

�k
=

(���t)2 = (���t)2 = 1: Therefore we just check the conjugacy class of w = ������������2:
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Theorem 14 The conjugacy classes of homomorphisms from PSL (2;Z) to PL (Fq) ; which

gives
D
�2 = �3 =

�
������2

�k
= 1
E
as a homomorphic image of PSL (2; q) ; are parame-

trized by the elements of Fq:

Proof. let w = ������� = ������2

If X and Y are the matrices representing ��, �� and �t of PGL (2; q) and satisfying

the relations

(��)2 = (��)3 = �I

Then w is represented as:

M = Y 2XYXYX

Here we take ��, �� and �t to be represented asX =

2664 a1 k1c1

c �a1

3775 ; Y =
2664 d1 k1f1

f1 �d1 � 1

3775

and T =

2664 0 �k1

1 0

3775 where a1; c1; d1; k1; f1 2 Fq: We write
det (X) = a21 � k1c21 = � 6= 0

and require that

d21 + d1 + k1f
2
1 + 1 = 0

This gives the elements which satisfy the relations (4:1) :We note that matrixXY representing

���� has the trace

r = a1 (2d1 + 1) + 2k1c1f1

because det (Y ) = 1: This means that det (X) = � and tr (X) = 0; Then by using equations

(3:2)� (3:7) in Chapter 3, the matrix M is expressed linearly, as
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M = (r�� r3)I + (0)X � r�Y + (��+ r2)XY

trM = (r�� r3)trI � r�trY + (��+ r2)trXY

trM = 2(r�� 1r3)� r�(�1) + (��+ 1r2) (r)

trM = 2r�� r3 (4.8)

This implies

trM = r
�
2�� r2

�
this gives

trM

r
=
�
2�� r2

�
and

r2 = 2�� trM

r
(4.9)

r2 �� = �� trM

r

implies that

r2 � 3� = ��� trM

r
: (4.11)

Now

TM = (r�� r3)TI + (0)TX � r�TY + (��+ r2)TXY

tr (TM) = (��+ r2) (trTXY )

tr (TM) = (��+ r2) (trTXY )

tr (TM) = (�� trM

r
) (trTXY ) : (4.12)
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As

(trTXY ) = k1s

and

k1s
2 + r2 = 3�) k1s =

3�� r2
s

(4.13)

using this value in equation (4:12)

tr (TM) = (�� trM

r
)

�
3�� r2

s

�
=
1

sr
(r�� trM

r
)
�
3�� r2

�
using equation (4:11) ; we get

=
1

sr
(r�� trM)

�
�+

trM

r

�
=

1

sr2
(r�� trM) (r�+ trM)

=
1

sr2
(r2�2 � (trM)2)

tr (TM) =
1

sr2
(r2�2 � (trM)2) (4.14)

We illustrate this theorem by an example.

Example 15 For the action of PSL (2;Z) on PL (F7) for � = 1 of F7.

By equation (4:6) ; � = (trM)2

(detM) and detM = 1

Let trM = 1: As det(M) = �3 implies that �3 = 1:

This gives � = 1; �1+i
p
3

2 ; �1�i
p
3

2 : Taking � = 1 and by equation (4:8) ; trM =

2r�� r3 implies 1 = 2r � r3 ) r3 � 2r + 1 = 0: Hence r = 1; �1+
p
5

2 ; �1�
p
5

2 :Take r = 1

and by equation (4:14) ; tr (TM) = 1
s (1� 1) = 0:
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This shows tr (TM) = 0: Let s = 1; then k1s2 + r2 = 3� implying k1 + 1 = 3 or

k1 = 2: Take d1 = 2; then d21+ d1+ k1f
2
1 +1 = 0 or f1 = 0: Now r = a1 (2d1 + 1)+ 2k1c1f1

implies that a1 = 3 and s = 2a1f1 � c1 (2d1 + 1) ; that is c1 = 4:

So the matrices

X =

2664 3 1

4 4

3775 and Y =
2664 2 0

0 4

3775 and T =
2664 0 �2

1 0

3775
give

� (z0) = 3z0+1
4z0+4 ; � (z

0) = z0

�2 and �t =
�2
z0 :

Thus ��, �� and �t are

�� = (0 2) (1 4) (3 5) (6 1)

�� = (1 4 2) (3 5 6) (0) (1)

�t = (0 1)(1 5)(2 6)(3 4)

The associated coset diagram is:

2

41

0

6

35

4.3 Parametric equations for � = 0

We consider the parametrization of the homomorphisms of the actions for the

group
D
�2 = �3 =

�
������2

�3
= 1
E
in the section (4:2) for all the elements of the �eld

Fq. In this section we consider case of � = 0 not only for the aforementioned group
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but also for two other �nite generalized triangle groups
D
�2 = �3 =

�
����2

�2
= 1
E
andD

�2 = �3 =
�
������2��2

�2
= 1
E
which are quotients of the modular group from the list of

fourteen �nite generalized triangle groups.

4.3.1 The group
D
�2 = �3 = (������2)

2
= 1
E

Let w = ������2; then by equations (4:1) � (4:14) are parametric equations for

� = 0:

We consider the action of PGL(2;Z) on PL(F7) and draw a coset diagram for

� = 0 2 F7: Then

�� (z0) = 2z0+4
4z0�2 ; �� (z

0) = �2z0
3 and �t = �1

z0 :

Thus ��, �� and �t are

�� = (0 5) (1 3) (2 6) (4 1)

�� = (1 4 2) (3 5 6) (0) (1)

�t = (0 1)(1 6)(2 3)(5 4)

where z0 2 PL(F7): The associated coset diagram D (0; 7) is:
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1
42

3

5
60

4.3.2 The group
D
�2 = �3 = (������2��2)

2
= 1
E

Let w = ������2��2: Then the group
D
�2 = �3 = (w)2 = 1

E
represents a �nite

generalized triangle groups of order 576.

The word w is presented asM = Y Y XY Y XY XYX with the same matrices X;Y

and T . By equations (3:2) � (3:7) of Chapter 3; and matrix M is expressed as

M = (�2 � 2r2�+ r4)I + (r�)X + r2�Y + (2r�+ r3)XY;

where

trM = (�2 � 2r2�+ r4)tr (I) + (r�) trX + r2�trY + (2r�+ r3)trXY: (4.15)

As Tr (I) = 2; T r (X) = 0; T r (Y ) = �1 and Tr (XY ) = r: Thus equation (4:15)

implies that

TrM = 2�2 � 3r2�+ r4
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that is

3�� r2 = 1

r2
�
2�2 � tr (M)

�
(4.16)

Also

Tr (TM) = (2r�+ r3)Tr (TXY )

By equations (4:1)� (4:5), we get

Tr (TM) =
1

sr

�
2�2 � Tr (M)

�
(2�� r2) (4.17)

Now, we consider the action of PGL(2;Z) on PL(F17) and draw its corresponding

coset diagram.

Assuming � = 0 2 F17, then by equations (4:1)�(4:5) and equations (4:15)�(4:17),

��; �� and �t are:

�� (z0) = 12
7z0 ; �� (z

0) = 3z0+11
9z0�4 and �t =

�9
z0 : Thus ��, �� and �t are

�� = (0 1) (1 9) (2 13) (4 15) (5 12)

(6 10) (7 11) (8 16) (3) (14)

�� = (0 10 12) (1 14 16) (3 8 9)

(4 11 1) (5 15 13) (6 7 12)

�t = (0 1)(1 8)(2 4)(3 14) (6 7)

(9 16) (10 11) (13 15) (5) (12)

where z0 2 PL(F17):

The associated coset diagram D (0; 17) is:
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3

8

9

1

14

16

0

1012

4 1115

13 5

7

12 6

4.3.3 The group
D
�2 = �3 = (����2)

2
= 1
E

Let w = ����2; then the group
D
�2 = �3 = (w)2 = 1

E
represents a �nite general-

ized triangle groups of order 24. The word w can be presented as M = Y 2XYX with the

same matrices X;Y and T then by equations (3:2) � (3:7) given in Chapter 3, the matrix

M is expressed as

M = �r2I + (0)X ��Y + rXY

TrM =
�
�r2

�
TrI + (0)TrX ��TrY + (r)TrXY (4.18)

As Tr (I) = 2; T r (X) = 0; T r (Y ) = �1 and Tr (XY ) = r; thus equation (4:18)

implies that
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TrM = �� r2 (4.19)

Also

Tr (TM) = (r) trXY

By equations (4:1)� (4:5) and equation (4:19), we get

Tr (TM) =
r

s
(2�� Tr (M)) (4.20)

Assuming � = 0 2 F7, then by equations (4:18) � (4:20) and equations(4:15) �

(4:17), we get ��; �� and �t respectively are:

� (z0) = 3z0+1
4z0�3 ; � (z

0) = �2z0
3 and �t = �2

z0 :

Thus ��, �� and �t are

�� = (0 2) (1 4) (3 5) (6 1)

�� = (1 4 2) (3 5 6) (0) (1)

�t = (0 1)(1 5)(2 6)(3 4); where z0 2 PL(F7):

The associated coset diagram D (0; 7) is:

2

41

0

6

35
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4.4 Conclusion

In this work we extended the parametrization of action of PSL (2;Z) for that

triangle group �(2; 3; k) [74] to �nite generalized triangle groups given by J. Howie in

[39]. We considered only eight groups out of fourteen �nite generalized triangle groups

which are quotients of PSL (2;Z) : We obtained coset diagrams of action of PSL (2;Z) on

PL (Fp) through parametrization which yield one of these eight �nite generalized triangle

groups, particularly
D
�; � : �2 = v3 = (w)k = 1

E
of order 1440; where w = ������2: We

also analyzed coset diagrams for parameter � = 0 for three other �nite generalized trian-

gle groups
D
�; � : �2 = v3 =

�
������2

�2
= 1
E
,
D
�; � : �2 = v3 =

�
������2��2

�2
= 1
E
andD

�; � : �2 = v3 =
�
����2

�2
= 1
E
:
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Chapter 5

PSL(2; 7) and carbon allotrope D168

Schwarzite

Coset diagrams for PGL(2;Z), introduced by G. Higman in late sixties are used

in understanding spatial symmetry of Fullerene molecules. We discuss their relation with

the carbon allotrope structures with negative curvature D168 Schwarzite. We investigate

actions of PSL(2;Z) on PL(F7n) for di¤erent values of n; where n 2 N; and draw coset

diagrams for various orbits and prove some interesting results regarding the number of

orbits that occur. We draw coset diagrams depicting meaningfully their relationship with

the carbon allotrope structures with negative curvature D168 Schwarzite. Some related

topological aspects of these diagrams are also highlighted.
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5.1 Introduction

The use of point groups in chemistry is a well known application of group theory

which portray the spatial symmetry of molecules [44, 45]. In this context the groups of the

regular polyhedra are speci�cally noteworthy in view of their high symmetry. R. B. King

discussed in [49] that these regular polyhedral groups are subgroups of larger permutation

groups, which themselves are subgroups of the corresponding symmetric groups Sn. This

methodology utilizes classical mathematics, which is by and large new to scienti�c experts.

Of speci�c pertinence to chemists in [48] that these groups may be utilized to depict carbon

allotrope structures with negative curvature built from hexagons and heptagons of sp2-

hybridized carbon atoms [48, 19, 94].

PSL(2; p) contains a special subset of groups for p = 5; 7; 11, in perspective of their

speci�c structure of permutations. In three dimensional space the pollakispolyhedral groups

can be viewed as multiples of regular polyhedral symmetry groups[19]. In this chapter we

are interested in PSL(2; 7) having order 168 and is 7O the heptakisoctahedral group. It

has a subgroup of index 7 which is the octahedral group �O�and has many applications

in physics and chemistry. The rotational symmetry of an idealization of the �plumber�s

nightmare�is PSL(2; 7), which is a representation for carbon allotropes �Schwarzite�[56].

Geometrical models, for the group PSL(2; 7) or heptakisoctahedral group of order

168 depict its transitive permutations on sets of 7 and 8 objects. A set of seven objects

permuted transitively by the group PSL(2; 7) can be acquired when an equilateral triangle

and a inscribed circle form the seven-point-seven-line geometry presented in D3 symmetry

[48]( Fig1).
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D
E
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G
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Fig1 : Seven point - Seven line geometry

The seven collineations (AEB;AGC;BFC;BDG;ADF;EFG;CDE) preserved

by the permutations of the seven vertex labels form the group PSL(2; 7). Note here that in

this presentation the six straight lines making the three altitudes and the three edges of the

triangle and the inscribed circle are treated on an equal basis. Eight objects permuted tran-

sitively by the heptakisoctahedral group are the vertex labels of a cuboid of D2 point group

symmetry which give a set of 168 nonsuperimposable cuboids, form the group PSL(2; 7):

In analogy to the connection between the tetrahedral and icosahedral group, the octahe-

dral rotation group O can be obtained from the heptakisoctahedral group or PSL(2; 7) by
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erasing all seven-fold symmetry elements [19].

The regular genus�3 Klein map group is an other representation of PSL(2; 7). Its

high symmetry in association with the theory of multivalued functions is studied in [49].

This map shows the transitivity on a 7� set, when sevenfold symmetry elements removed,

seven octahedral structures are obtained which contain eight vertices. The relation of carbon

structures with negative-curvature and this group is given in [1, 18].

PSL(2; 7) is important to analyze the permutational symmetry ofD168 Schwarzite.

Infact the prototypical role of D168 in Schwarzite series and C60 in fullerene series relate

that the carbon atoms in their structure and the order of corresponding transitive permu-

tational group are same. The structure of D168 is derived from a unit cell of 24 heptagons

embedded in a surface of genus 3: These of 24 heptagons has 56 vertices. Every heptagon

contains 7 vertices and three heptagons are connected with each other with one vertex.

In�nite minimal surfaces with minimal Gaussian curvature and surfaces with genus 3 are

discussed in [48].
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Fig2 : Klein graph

This Fig 2 (discussed by Klein in [50]) portrays an open network of full heptagons

or their portions that can be modi�ed into a negative curvature of genus 3. The unit cell with

24 heptagons, 84 edges and 56 vertices has an Euler�s characteristic which corresponds to the

genus 3: A carbon allotropes with such type of structure is known as D56 protoschwarzite.
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This carbon allotrope structure leads to D168 structure, which is discussed in details in

[48].

5.2 Action of G on PL(F7n)

In this section we discuss the action of G = PSL(2;Z) on PL(F7n) where n 2 N:

We use of coset diagrams to inspect the properties of this action and the orbits of the group

thus obtained.

5.2.1 Action of G on PL(F7)

Consider �G as a group generated by �� and ��; where �� and �� are the permutation

representations of � and � after the action of G on PL(F7n) for n 2 N: Taking n = 1, the

action of G on PL(F7) gives

�� = (0 1) (1 6) (2 3) (4 5) and �� = (1 0 1) (2 4 6) (3) (5) :This yields

the following coset diagram 1, which can be graphically represented as:
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1

This diagram is a representation of the well known simple group of order 168 [20]:

5.2.2 Action of G on PL(F72)

We consider now the group G acting on PL(F72): An irreducible polynomial of

degree 2 in F72 is t
2 + 2t+ 3. The elements of F49 are of the form t0 + t1�; where ti 2 Z7;

for i = 0; 1:

Let � be the 48th root of unity of F49 satisfying �2 = 5� + 4: When G acts on

PL(F72); � and � have the following permutation representation:

�� = (0 1)
�
1 �24

� �
� �23

� �
�2 �22

� �
�3 �21

� �
�4 �20

� �
�5 �19

�
�
�6 �18

� �
�7 �17

� �
�8 �16

� �
�9 �15

� �
�10 �14

� �
�11 �13

� �
�12 �12

�
�
�25 �47

� �
�26 �46

� �
�27 �45

� �
�28 �44

� �
�29 �43

� �
�30 �42

�
�
�31 �41

� �
�32 �40

� �
�33 �39

� �
�34 �38

� �
�35 �37

� �
�36 �36

�
and

�� = (1 0 1)
�
� �2 �21

� �
�3 �7 �14

� �
�4 �31 �37

� �
�5 �13 �6

� �
�8
�
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�
�9 �30 �33

� �
�10 �36 �26

� �
�11 �17 �44

� �
�12 �38 �22

� �
�40
�

�
�16 �32 �24

� �
�15 �18 �39

�
(�19 �28 �25)

�
�20 �29 �23

� �
�27 �46 �47

�
�
�35 �43 �42

� �
�34 �41 �45

�
which yield the following two orbits 1 and 2:

2 can be graphically represented as:

2

This coset diagram represents a group of order 168 [20] and consists of two orbits

1 and 2:
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5.2.3 Action of G on PL(F73)

Let �3 + 6� + 2 be the irreducible polynomial in F73 : The �eld has elements of

type �0 + �1� + �2�
2; where �i 2 Z7; for i = 0; 1; 2: Let � be the 342th primitive root of

unity satisfying �3 = � + 5 of F343: When G acts on PL(F73), � and � have the following

permutation representation:

�� = (0 1)
�
1 �171

� �
� �170

� �
�2 �169

� �
�3 �168

� �
�4 �167

� �
�5 �166

�
�
�6 �165

� �
�7 �164

� �
�8 �163

� �
�9 �162

� �
�10 �161

� �
�11 �160

� �
�12 �159

�
�
�13 �158

� �
�14 �157

� �
�15 �156

� �
�16 �155

� �
�17 �154

� �
�18 �153

� �
�19 �152

�
�
�20 �40

� �
�21 �151

� �
�22 �150

� �
�23 �149

� �
�24 �148

� �
�25 �147

� �
�26 �146

�
�
�27 �145

� �
�28 �144

� �
�29 �143

� �
�30 �142

� �
�31 �141

� �
�32 �140

� �
�33 �139

�
�
�34 �138

� �
�35 �137

� �
�36 �136

� �
�37 �135

� �
�38 �134

� �
�39 �133

� �
�40 �132

�
�
�41 �131

� �
�42 �130

� �
�43 �129

� �
�44 �128

� �
�45 �127

� �
�46 �126

� �
�47 �125

�
�
�48 �124

� �
�49 �123

� �
�50 �122

� �
�51 �121

� �
�52 �120

� �
�53 �119

� �
�54 �118

�
�
�55 �117

� �
�56 �116

� �
�57 �115

� �
�58 �114

� �
�59 �113

� �
�60 �112

� �
�61 �111

�
�
�62 �110

� �
�63 �109

� �
�64 �108

� �
�65 �107

� �
�66 �106

� �
�67 �105

� �
�68 �104

�
�
�69 �103

� �
�70 �102

� �
�71 �101

� �
�72 �100

� �
�73 �99

� �
�74 �98

� �
�75 �97

�
�
�76 �96

� �
�77 �95

� �
�78 �94

� �
�79 �93

� �
�80 �92

� �
�81 �91

� �
�82 �90

�
�
�82 �89

� �
�83 �88

� �
�84 �87

� �
�85 �86

� �
�172 �341

� �
�173 �340

� �
�174 �339

�
�
�175 �338

� �
�176 �337

� �
�177 �336

� �
�178 �335

� �
�179 �334

� �
�180 �333

�
�
�181 �332

� �
�182 �331

� �
�183 �330

� �
�184 �329

� �
�185 �328

� �
�186 �327

�
�
�187 �326

� �
�188 �325

� �
�189 �324

� �
�190 �323

� �
�191 �322

� �
�192 �321

�
�
�193 �320

� �
�194 �319

� �
�195 �318

� �
�196 �317

� �
�197 �316

� �
�198 �315

�
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�
�199 �314

� �
�200 �313

� �
�201 �312

� �
�202 �311

� �
�203 �310

� �
�204 �309

�
�
�205 �308

� �
�206 �307

� �
�207 �306

� �
�208 �305

� �
�209 �304

� �
�210 �303

�
�
�211 �302

� �
�212 �301

� �
�213 �300

� �
�214 �299

� �
�215 �298

� �
�216 �297

�
�
�217 �296

� �
�218 �295

� �
�219 �294

� �
�220 �293

� �
�221 �292

� �
�222 �291

�
�
�223 �290

� �
�224 �289

� �
�225 �288

� �
�226 �287

� �
�227 �286

� �
�228 �285

�
�
�229 �284

� �
�230 �283

� �
�231 �282

� �
�232 �281

� �
�233 �180

� �
�234 �279

�
�
�235 �278

� �
�236 �277

� �
�237 �276

� �
�238 �275

� �
�239 �274

� �
�240 �273

�
�
�241 �272

� �
�242 �271

� �
�243 �270

� �
�244 �269

� �
�245 �268

� �
�246 �267

�
�
�247 �266

� �
�248 �265

� �
�249 �264

� �
�250 �263

� �
�251 �262

� �
�252 �261

�
�
�253 �260

� �
�254 �259

� �
�255 �258

� �
�256 �257

�
and

�� = (1 0 1)
�
� �12 �158

� �
�341 �184 �330

� �
�2 �54 �115

� �
�340 �227 �288

�
�
�3 �277 �233

� �
�339 �109 �65

� �
�4 �292 �217

� �
�338 �125 �50

� �
�5 �271 �237

�
�
�337 �105 �71

� �
�220 �287 �6

�
(�336 �122 �55)

�
�7 �84 �80

� �
�335 �262 �258

�
�
�9 �236 �268

� �
�333 �74 �106

� �
�8 �314 �191

� �
�334 �151 �28

�
(�10 �329 �174)�

�332 �168 �13
� �
�11 �128 �32

� �
�331 �310 �214

� �
�14 �36 �121

�
(�328 �221 �306)�

�59 �15 �97
� �
�327 �245 �283

� �
�16 �62 �93

� �
�326 �249 �280

�
(�17 �67 �87)�

�325 �255 �275
� �
�18 �273 �222

� �
�324 �120 �69

� �
�19 �253 �241

�
(�323 �101 �89)�

�20 �234 �259
� �
�322 �83 �108

� �
�21 �229 �263

� �
�321 �79 �113

�
(�22 �316 �175)�

�318 �148 �47
� �
�320 �167 �26

� �
�23 �281 �209

� �
�57
� �
�285

� �
�27 �76 �68

�
�
�315 �274 �266

� �
�29 �82 �60

� �
�313 �282 �260

�
(�30 �185 �298)

�
�312 �44 �157

�
�
�31 �196 �286

� �
�311 �56 �146

� �
�33 �250 �230

�
(�309 �42 �92)

�
�34 �210 �269

�
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�
�307 �51 �155

�
(�37 �296 �180)

�
�305 �162 �46

� �
�38 �45 �88

� �
�304 �254 �297

�
�
�39 �276 �198

�
(�303 �144 �66)

�
�40 �242 �231

� �
�302 �111 �100

� �
�41 �178 �249

�
�
�301 �48 �164

�
(�42 �172 �299)

�
�300 �170 �43

� �
�58 �279 �176

� �
�284 �166 �63

�
�
�70 �251 �192

� �
�272 �150 �91

�
(�49 �246 �218)

�
�293 �124 �96

� �
�72 �202 �239

�
�
�270 �103 �140

� �
�75 �215 �223

�
(�267 �119 �127)

�
�77 �212 �224

� �
�265 �118 �130

�
�
�78 �203 �232

� �
�264 �110 �139

�
(�85 �181 �247)

�
�257 �95 �161

� �
�86 �289 �138

�
�
�256 �204 �53

� �
�81 �225 �207

�
(�261 �135 �117)

�
�90 �244 �179

� �
�252 �163 �98

�
�
�99 �278 �136

� �
�243 �206 �64

�
(�104 �169 �240)

�
�238 �102 �173

� �
�107 �195 �211

�
�
�235 �181 �147

� �
�116 �200 �197

�
(�226 �145 �142)

�
�134 �189 �190

� �
�208 �152 �153

�
�
�129 �165 �219

� �
�213 �123 �177

�
(�26 �201 �186)

�
�216 �150 �141

� �
�137 �193 �183

�
�
�205 �159 �149

� �
�154 �160 �199

�
(�188 �143 �182)

�
�171 �228 �114

� �
�308 �73 �132

�
�
�35 �187 �291

�
We have following orbits 1 and 3: The graphical representation of 3 is:
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3

This coset diagram represents a group of order 168 [20] and consists of two orbits

1 and two copies of 3:

The orbit 3 with 24 heptagons has 56 triangles where each triangle is shared

by three heptagons, (24)(7) =2 + 56 (3) = 252 edges, 168 vertices and 24 + 56 = 80 faces.

Thus has Euler�s characteristics (168� 252 + 80) = �4 which corresponds to genus 3: The
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diagrammatic structure of this orbit is similar to the structure of D168 Schwazite as both

have same genus. Also total number of carbon atoms in D168 schwarzite structure and the

order of permutational group obtained are same.

5.2.4 Action of G on PL(F7n)

Similarly we can draw coset diagrams for the action of G on PL(F7n) for any

n 2 N; because the orbits of the action contain no new coset diagrams for the orbits other

than 1, 2 and 3 in the coset diagram. In this section we show that the action of G on

PL(F7n) evolves PSL (2; 7) : We also prove some relevant results.

Theorem 16 If PSL (2;Z) acts on PL(F7n); then

�G = < ��; �� : (��)2 = (��)3 = (����)7 = [�� ��]4 = 1 > �= PSL (2; 7) :

Proof. Indeed the actions considered are homomorphisms from PSL (2; 7) to

Sym(m); form = 8; 42; 168; whose images are transitive subgroups. Obviously these images

are isomorphic to PSL (2; 7) ; since this group is simple.

Existence of �xed points of �� and �� in these coset diagrams play an important role

which is evident in the subsequent discussion.

Theorem 17 If G acts on PL(F7n), then

(1) �xed points of �� exist only for even n:

(2) �xed points of �� exist for all n:

Proof. (1) When n is even, 7n+1 are the total number of elements in PL(F7n).

As we have 7n � 1 (mod 4) and the permutation �� is composed of two cycles leaving one

element which becomes a �xed point of ��:
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(2) (!) � = (! � 1) =! implies (! � 1) =! = !; that is !2 � ! + 1 = 0: So

! � 3; 5 (mod 7) are the �xed points of �� which exist for all n:

Remark 18 The action of G on PL(F7n) gives three types of orbits 1; 2 and 3.

The orbit 1 consists of 8 elements. �
(q�1)=6 and �5(q�1)=6 are �xed points of �� in 1

where q = 7n: All coset diagrams for this action contain 1 for all n and �
(q�1)=4, �3(q�1)=4

are �xed points of �� which lie in the orbit 2 consisting of 42 elements. This orbit exists

in the coset diagram only for even n: The third orbit 3 consists of 168 vertices but it does

not contain any �xed points of �� or ��: It exists in a coset diagram always in the form of

symmetric pairs for all n > 3:

Remark 19 Let < � : �7
n�1 = 1 > be a cyclic group of F7n : Then,

(i) the �xed points of �� are �(7
n�1)=4 and �3(7

n�1)=4;

(ii) the �xed points of �� are �(7
n�1)=6 and �5(7

n�1)=6; and

(iii) 0; 1; 2; 3; 4; 5; 6 and1 are the vertices of 1; where 2 = �(7
n�1)=3; 4 = �2(7

n�1)=3 and

6 = �(7
n�1)=2:

Lemma 20 The conjugacy class equation of �G is

���G�� = ��Z ��G��� + 6X
r=1

hr = 1 + 21 + 56 + 42 + 24 + 24; where Z
�
�G
�
is the centre of

�G and hr = jxrj =
���G : N�G (xr)

�� for any element xr in the xrth�conjugacy class and
N�G (xr) is the centralizer of an element xr in �G:

Proof. The group obtained by the action of PSL (2;Z) on PL(F7n) is isomorphic

to PSL (2; 7) by theorem (19) : So the elements of PSL (2; 7) are of orders 1; 2; 3; 4 and

7: Since the orbit 1 lies in all the coset diagram for the action of PSL (2;Z) on PL(F7n);
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we consider that orbit which, by remark (21) and remark (22) ; consists of eight elements

which are 0; 1; 2; 3; 4; 5; 6; and 1: There are six conjugacy classes of �G which partitions �G:

The only element which commutes with all other elements of �G is the identity element only.

So 167 elements are left of order 2; 3; 4 and 7. The element (1 2)(3 4)(5 1)(6 7) of order

2 forms a conjugacy class containing the following 21 elements:

(1 2)(3 4)(5 1)(6 7); (1 2)(3 6)(4 5)(7 1); (1 2)(3 1)(4 7)(5 6); (1 3)(2 4)(5 6)

(7 1); (1 3)(2 5)(4 7)(6 1); (1 3)(2 1)(4 6)(5 7); (1 4)(2 3)(5 7)(6 1); (1 4)(2 5)

(31)(6 7); (1 4)(2 6)(3 7)(51); (1 5)(2 4)(3 7)(61); (1 5)(2 6)(3 4)(71); (1 5)

(2 7)(3 6)(4 1); (1 6)(2 5)(3 7)(4 1); (1 6)(2 7)(3 1)(4 5); (1 6)(2 1)(3 5)(4 7);

(1 7)(2 3)(4 6)(5 1); (1 7)(2 6)(3 5)(4 1); (1 7)(2 1)(3 4)(5 6); (1 1)(2 3)(4 5)

(6 7); (1 1)(2 4)(3 6)(5 7); (1 1)(2 7)(3 5)(4 6):

The element (3 5 7)(4 6 1) of order three forms the conjugacy class containing

the following 56 elements: (3 5 7)(4 6 1); (3 7 5)(4 1 6); (2 3 4)(5 1 7); (2 3 1)(4 6 7);

(2 4 3)(5 7 1); (2 4 5)(3 1 6); (2 5 4)(3 6 1); (2 5 6)(3 7 4); (2 6 7)(4 1 5);

( 6 5)(3 4 7); (2 7 6)(4 51); (2 71)(3 6 5); (21 3)(4 7 6); (21 7)(3 5 6); (1 2 3)

(5 6 7); (1 2 4)(6 71); (1 2 5)(3 71); (1 2 6)(3 41); (1 2 7)(3 4 5); (1 21)(4 5 6);

(1 3 2)(5 7 6); (1 3 4)(51 6); (1 31)(4 5 7); (1 3 6)(2 7 4); (1 3 5)(21 4); (1 3 7)

(21 6); (1 4 2)(61 7); (1 4 3)(5 61); (1 4 5)(3 7 6); (1 4 6)(2 3 5); (1 41)(2 3 7);

(1 4 7)(21 5); (1 5 2)(31 7); (1 5 6)(41 7); (1 5 4)(3 6 7); (1 51)(2 3 6); (1 5 3)

(2 41); (1 5 7)(2 4 6); (1 6 2)(31 4); (1 6 5)(4 71); (1 6 7)(31 5); (1 6 3)(2 4 7);

(1 6 4)(2 5 3); (1 61)(2 5 7); (1 7 2)(3 5 4); (1 7 6)(3 51); (1 71)(3 6 4); (1 7 4)

(2 51); (1 7 3)(2 61); (1 7 5)(2 6 4); (11 2)(4 6 5); (11 3)(4 7 5); (11 7)(3 4 6);
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(1 1 5)(2 6 3); (1 1 4)(2 7 3); (1 1 6)(2 7 5):

The class of element (1 2 3 5)(4 1 7 6); of order 4; consists of the following 42

elements: (1 2 3 5)(4 1 7 6); (1 2 4 6)(3 1 7 5); (1 2 5 7)(3 1 6 4); (1 2 6 1)(3 7 5 4);

(1 2 7 3)(4 1 6 5); (1 2 1 4)(3 7 6 5); (1 3 7 2)(4 5 6 1); (1 3 6 7)(2 4 5 1);

(1 3 1 5)(2 4 7 6); (1 3 2 6)(4 7 5 1); (1 3 4 1)(2 7 5 6); (1 3 5 4)(2 7 6 1);

(1 4 1 2)(3 5 6 7); (1 4 7 1)(2 5 6 3); (1 4 3 6)(2 5 1 7); (1 4 2 7)(3 5 1 6);

(1 4 5 3)(2 1 6 7); (1 4 6 5)(2 1 7 3); (1 5 3 2)(4 6 7 1); (1 5 6 4)(2 3 7 1);

(1 5 7 6)(2 3 1 4); (1 5 1 3)(2 6 7 4); (1 5 4 7)(2 6 3 1); (1 5 2 1)(3 7 4 6);

(1 6 4 2)(3 5 7 1); (1 6 2 3)(4 1 5 7); (1 6 7 5)(2 4 1 3); (1 6 1 7)(2 4 3 5);

(1 6 5 1)(2 7 4 3); (1 6 3 4)(2 7 1 5); (1 7 5 2)(3 4 6 1); (1 7 2 4)(3 6 1 5);

(1 7 1 6)(2 5 3 4); (1 7 3 1)(2 5 4 6); (1 7 6 3)(2 1 5 4); (1 7 4 5)(2 1 3 6);

(1 1 6 2)(3 4 5 7); (1 1 5 6)(2 3 4 7); (1 1 7 4)(2 3 6 5); (1 1 2 5)(3 6 4 7);

(1 1 4 3)(2 6 5 7); (1 1 3 7)(2 6 4 5):

There are two conjugacy classes of order 7, each containing 24 elements. The class

for element (2 3 5 4 7 1 6); contains the following 24 elements:

(2 5 7 6 3 41); (2 7 31 5 6 4); (1 2 3 61 4 7); (1 2 51 4 6 3); (1 2 7 4 61 5);

(1 3 4 6 7 2 5); (1 3 5 2 6 7 1); (1 3 1 7 2 6 4); (1 4 7 5 3 6 2); (1 4 1 3 6 5 7);

(1 4 2 6 5 31); (1 5 61 3 2 7); (1 5 4 3 21 6); (1 5 7 21 3 4); (1 6 3 7 51 2);

(1 6 4 5 1 7 3); (1 6 2 1 7 5 4); (1 7 1 4 5 2 3); (1 7 3 2 4 5 6); (1 7 6 5 2 4 1);

(1 1 5 3 7 4 2); (1 1 6 7 4 3 5); (1 1 2 4 3 7 6); (2 3 5 4 7 1 6):

The class of order 7 for the element (2 4 6 5 1 3 7), also consists of following 24

elements: (2 4 6 5 1 3 7); (2 6 1 7 4 5 3); (2 1 4 3 6 7 5); (1 2 4 7 3 5 1);
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(1 2 6 3 5 7 4); (1 2 1 5 7 3 6); (1 3 6 4 1 5 2); (1 3 7 1 5 4 6); (1 3 2 5 4 1 7);

(1 4 5 7 1 2 6); (1 4 6 2 7 1 3); (1 4 3 1 2 7 5); (1 5 1 6 4 7 2); (1 5 3 4 7 6 1);

(1 5 2 7 6 4 3); (1 6 1 2 3 4 5); (1 6 5 4 2 3 7); (1 6 7 3 4 2 1); (1 7 4 1 6 3 2);

(1 7 5 6 3 1 4); (1 7 2 3 1 6 5); (1 1 3 5 6 2 4); (1 1 7 6 2 5 3); (1 1 4 2 5 6 7):

Theorem 21 If G acts on PL(F7n); then

(i)
��OrbPL(F7n ) ��G��� = 1 + (7n+1)�8

168 if n is odd,

(ii)
��OrbPL(F7n ) ��G��� = 2 + (7n+1)�50

168 if n is even.

Proof. By Remark 21, when n is odd, then the orbit 1 composed of 8 vertices

exists for all n. So (7n + 1)�8 elements of PL(F7n) are left: By Theorem 19; �G is isomorphic

to PSL (2; 7) containing elements of orders 2; 3; 4; 7 and the identity element. Theorem 20

shows that for odd n; there is no �xed point of ��. So there are 21 elements of order 2 which

do not �x any element of PSL (2; 7) : Also, when n is odd, 7n � 3 (mod 4) and so there

are 42 elements of order 4 which do not �x any element. By Theorem 19; �xed points of

�� exist for all n: Therefore there are 56 elements of order 3 �xing 2 elements. Moreover,

7n+1 � 1 (mod 7) so there are 24+24 = 48 elements of order 7 which �x one element because

PSL (2; 7) contains two conjugacy classes of order 7: All (7n + 1) elements of PL(F7n) are

�xed by the identity element: By Frobenius-Burnside lemma [41], the number of orbits

including 1 are��OrbPL(F7n ) ��G��� = 1

j�Gj

 P
g2�G

���FixPL(F7n ) (g)���
!

= 1
168 (21� 0 + 42� 0 + 56� 2 + 48� 1 + 1� (7

n + 1))

= 1 + (7n+1)�8
168 :
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By Remark 21; when n is even, 1 containing 8 and 2 containing 42 vertices, are

two orbits. Only when n is even, 2 exists in coset diagram. So (7
n + 1) � 50 elements of

PL(F7n) are left: By Theorem 20 when n is even, �xed points of �� exist so 21 elements of

order 2 �x two elements. When n is even we have 7n � 1 (mod 4). Therefore 42 elements

of order 4 �x 2 elements. Fixed points of �� exist for all n so 56 elements of order 3 �x two

elements. In addition 7n + 1 � 1 (mod 7) ; so 48 elements of order 7 are �xing one element

and all (7n + 1) elements are �xed by the identity element. By Frobenius-Burnside lemma

[41], the number of orbits including 1 are��OrbPL(F7n ) ��G��� = 1

j�Gj

 P
g2�G

���FixPL(F7n ) (g)���
!

= 1
168 (21� 2 + 42� 2 + 56� 2 + 48� 1 + 1� (7

n + 1))

= 2 + (7n+1)�50
168

Now, we have the following corollary.

Corollary 22 The action of G on PL(F7n) is intransitive.

Remark 23 (1) If n is odd, we have 1+ (7n+1)�8
168 number of orbits, including one orbit 1

containing 8 vertices. leftover elements are evenly divided into (7n+1)�8
168 number of orbits.

All of these orbits are copies of 3 consisting of 168 vertices.

(2) If n is even, we have 2 + (7n+1)�50
168 number of orbits. One of these orbits is

1 containing 8 vertices and the other is 2 containing 42 vertices. Remaining elements

are evenly divided into (7n+1)�8
168 number of orbits. These (7n+1)�8

168 orbits are copies of 3

containing 168 vertices.

Theorem 24 pn = f p+ l:p (p� 1) + s:p(p
2�1)
2 g for any prime p:
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Proof. For n = 1; pn = p and for n = 2; we have p2 = p + p (p� 1) : Suppose

for n = k; it is true; that is pk = fp + l:p (p� 1) + s:
p(p2�1)

2 g; where l = 0 if n is odd,

l = 1 if n is even and s = 0 for n < 3:

Next for n = k + 1; consider pk:p = f p+ l:p (p� 1) + s:p(p
2�1)
2 g:p: Then pk+1 =

f p2 + l:p2 (p� 1) + s:
p2(p2�1)

2 g = p + p (p� 1) + l:p (p� 1) � l:p
�
p2 � 1

�
+ s:

p2(p2�1)
2 =

p+ (1 + l) fp (p� 1)g+ (sp� 2l)p(p
2�1)
2 = p+ l

0
:p (p� 1) + s0

�
p(p2�1)

2

�
:

Therefore it is true for n = k + 1: Hence it is true for all values of n:

5.3 Conclusion

The group PSL(2; 7) is an important group of order 168 and has many applica-

tions in carbon chemistry. It is useful to understand and analyze the structure of graphite

and fullerenes having surface of negative curvature due to its link with polymeric carbon

allotropes having unusually low density. We analyzed that the coset diagrams for the ac-

tion of PGL(2;Z) or PSL(2;Z) on PL (F7n) ; are a diagrammatic view of D168 Schwarzite:

The total number of orbits that exist in coset diagram are 1 + (7n+1)�8
168 if n is odd and

2+ (7n+1)�50
168 if n is even. The orbits of the coset diagram are closely related to the structure

of D168 Schwarzite. The transitive action of G on a set of 7 elements for n = 1 gives us an

orbit 1 having 8 vertices and also has octahedral "O" symmetry. It is
7O heptakisoctahe-

dral group [6]. For n = 2, G acts on PL (F49) intransitively obtaining two orbits 1 and 2

containing 8 and 42 elements respectively and representing heptakisoctahedral group. When

G acts on PL (F7n) for n > 3; we obtain orbits 1, 2 and copies of 3. The orbit 3 and

D168 Shwarzite are topologically same as both have genus 3: The total number of carbon
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atoms in D168 schwarzite structure and the order of permutational group obtained are also

same.
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Chapter 6

PSL(2; 11) and C60 graph

In this chapter we investigate the actions of the modular group PSL(2;Z) on the

projective line over �nite �elds PL(F11m) for di¤erent values of m; where m 2 N and draw

coset diagrams for various orbits and prove some interesting results regarding the number

of orbits that occur.

6.1 Introduction

To determine the properties of molecules the use of point groups, is a well known

technique and there is a immense literature on this subject. For a particular non-trivial

molecule the group involved is the molecule symmetry group, which upto conjugacy can be

regarded as a �nite subgroup of O(3).

The groups PSL(2; 5); PSL(2; 7) and PSL(2; 11) form a special subset of PSL(2; p)

These groups have a particular permutational structure, so in three dimensional (3D) space

they are viewed as multiples of the symmetry groups of the regular polyhedra. These groups
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are also called the pollakispolyhedral groups [19]. PSL(2; 5) correspond to the pentakiste-

trahedral, 5T , and and PSL(2; 7) correspond to heptakisoctahedral group, 7O and have

applications in physics and chemistry. PSL(2; 5) is the rotation group of the icosahedron

and fullerene C60. PSL(2; 7) is the rotational symmetry group of D168 schwarzite an al-

lotrope of carbon. The third group PSL(2; 11) forms the undecakisicosahedral group, 11I.

PSL(2; 11) is more interesting than the �rst two groups, also de�nes trivalent frameworks

and so has application to other hypothetical high-genus forms of carbon. M. Deza [56] stud-

ied realization of 11I as the symmetry group of a 60-vertex regular map of genus 26. The

connection between the skeleton of C60 and this map is very important to this realization.

Applications of PSL(2; 11) in chemistry or physics up to now are limited. In view of the

inherent relations between this group and the icosahedral lattice, this powerful symmetry

in near future can be predictable to look directly in the description of physical occurrences.

6.2 Action of G on PL(F11m)

In this section we discuss the action ofG = PSL(2;Z) on PL(F11m) where m 2 N:

We make use of coset diagrams to inspect the properties of this action and the orbits of the

group thus obtained.

6.2.1 Action of G on PL(F11)

Consider �G1 is a group generated by �� and ��; where �� and �� are the permutation

representations of � and � after the action of G on PL(F11m) for m 2 N: Taking m = 1,

we get
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�� = (0 1) (1 10) (2 5) (3 7) (4 8) (6 9) and

�� = (1 0 1) (2 6 10) (3 8 5) (4 9 7) : The associated coset diagram is

$1; which is graphically represented as:

$1

0

1

10

2 6

5

3

8

4

9
7

$1

This diagram represents simple group of order 660 [20].

6.2.2 Action of G on PL(F112)

An irreducible polynomial of degree 2 in F112 is  
2 +  + 7. The action of G on

PL(F112) gives elements of F121 of the form  0 +  1}; where  j 2 Z11; for j = 0; 1:
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Let } be the primitive root of GF (121) satisfying }2 = 5}+ 4: When G acts on

PL(F112); the permutation representation of � and � is:

�� = (0 1)
�
1 }60

� �
}1 }59

� �
}2 }58

� �
}3 }57

� �
}4 }56

� �
}5 }55

�
�
}6 }54

� �
}7 }53

� �
}8 }52

� �
}9 }51

� �
}10 }50

� �
}11 }49

� �
}12 }48

�
�
}13 }47

� �
}14 }46

� �
}15 }45

� �
}16 }44

� �
}17 }43

� �
}18 }42

� �
}19 }41

�
�
}20 }40

� �
}21 }39

� �
}22 }38

� �
}23 }37

� �
}24 }36

� �
}25 }35

� �
}26 }34

�
�
}27 }33

� �
}28 }32

� �
}29 }31

� �
}30
� �
}90
� �
}61 }119

� �
}62 }118

� �
}63 }117

�
�
}64 }116

� �
}65 }115

� �
}66 }114

� �
}67 }113

� �
}68 }112

� �
}69 }111

� �
}70 }110

�
�
}71 }109

� �
}72 }108

� �
}73 }107

� �
}74 }106

� �
}75 }105

� �
}76 }104

� �
}77 }103

�
�
}78 }102

� �
}79 }101

� �
}80 }100

� �
}81 }99

� �
}82 }98

� �
}83 }97

� �
}84 }96

�
�
}85 }95

� �
}86 }94

� �
}87 }93

� �
}88 }92

� �
}89 }91

�
and

�� = (1 0 1)
�
}1 }87 }92

� �
}119 }28 }33

� �
}2 }37 }21

� �
}118 }99 }83

�
�
}3 }109 }68

� �
}117 }52 }11

� �
}4 }101 }75

� �
}116 }45 }19

� �
}5 }78 }97

�
�
}115 }23 }42

� �
}6 }16 }38

� �
}7 }39 }14

� �
}113 }106 }81

� �
}8 }35 }17

�
�
}112 }103 }85

� �
}36 }84 }60

� �
}9 }73 }98

� �
}111 }22 }47

� �
}10 }91 }79

�
�
}110 }41 }29

� �
}12 }72 }96

� �
}108 }24 }48

� �
}13 }102 }65

� �
}107 }55 }18

�
�
}15 }89 }76

� �
}105 }44 }31

� �
}26 }80 }74

� �
}94 }46 }40

� �
}27 }90 }63

�
�
}93 }97 }30

� �
}34 }77 }69

� �
}86 }51 }43

� �
}49 }61 }70

� �
}71 }50 }59

�
�
}53 }95 }32

� �
}67 }88 }25

� �
}56 }58 }66

� �
}64 }54 }62

� �
}20
� �
}100

�
which yield orbits $1 and $2: Graphically $2 can be represented as:
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$2

This coset diagram is a representation of a group of order 660 [20] and contains

two orbits $1 and $2:

6.2.3 Action of G on PL(F113)

let �3 + �2 + 3 be the irreducible polynomial in F113 for m = 3: The elements are

of type �0 + �1}+ �2}2; where �j 2 Z11; for j = 0; 1; 2: Let } be the 1330th primitive root
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of unity satisfying }3 = } + 5 of F1331: The permutation representation of � and � under

the action of G on PL(F112) is

�� = �� = (0 1)
�
1 }665

� �
} }664

� �
}2 }663

� �
}3 }662

� �
}4 }661

� �
}5 }660

�
�
}6 }659

� �
}7 }658

� �
}8 }657

� �
}9 }656

� �
}10 }655

� �
}11 }654

� �
}12 }653

�
�
}13 }652

� �
}14 }651

� �
}15 }650

� �
}16 }649

� �
}17 }648

� �
}18 }647

� �
}19 }646

�
�
}20 }645

� �
}21 }644

� �
}22 }643

� �
}23 }642

� �
}24 }641

� �
}25 }640

� �
}26 }639

�
�
}27 }638

� �
}28 }637

� �
}29 }636

� �
}30 }635

� �
}30 }635

� �
}31 }634

� �
}32 }633

�
�
}33 }632

� �
}34 }631

� �
}35 }630

� �
}36 }629

� �
}37 }628

� �
}38 }627

� �
}39 }626

�
�
}40 }625

� �
}41 }624

� �
}42 }623

� �
}43 }622

� �
}44 }621

� �
}45 }620

� �
}46 }619

�
�
}47 }618

� �
}48 }617

� �
}49 }616

� �
}50 }615

� �
}51 }614

� �
}52 }613

� �
}53 }612

�
�
}53 }612

� �
}54 }611

� �
}55 }610

� �
}56 }609

� �
}57 }608

� �
}58 }607

� �
}59 }606

�
�
}60 }605

� �
}61 }604

� �
}62 }603

� �
}63 }602

� �
}64 }601

� �
}65 }600

� �
}66 }599

�
�
}67 }598

� �
}68 }597

� �
}69 }596

� �
}70 }595

� �
}71 }594

� �
}72 }593

� �
}73 }592

�
�
}74 }591

� �
}75 }590

� �
}76 }589

� �
}77 }588

� �
}78 }587

� �
}79 }586

� �
}80 }585

�
�
}81 }584

� �
}82 }583

� �
}83 }582

� �
}84 }581

� �
}85 }580

� �
}86 }579

� �
}87 }578

�
�
}88 }577

� �
}89 }576

� �
}90 }575

� �
}91 }574

� �
}92 }573

� �
}93 }572

� �
}94 }571

�
�
}95 }570

� �
}96 }569

� �
}97 }568

� �
}98 }567

� �
}99 }566

� �
}100 }565

� �
}101 }564

�
�
}102 }563

� �
}103 }562

� �
}104 }561

� �
}105 }560

� �
}106 }559

� �
}107 }558

�
�
}108 }557

� �
}109 }556

� �
}110 }555

� �
}111 }554

� �
}112 }553

� �
}113 }552

�
�
}114 }551

� �
}115 }550

� �
}116 }549

� �
}117 }548

� �
}118 }547

� �
}119 }546

�
�
}120 }545

� �
}121 }544

� �
}122 }543

� �
}123 }542

� �
}124 }541

� �
}125 }540

�
�
}126 }539

� �
}127 }538

� �
}128 }537

� �
}129 }536

� �
}130 }535

� �
}131 }534

�
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�
}132 }533

� �
}133 }532

� �
}134 }531

� �
}135 }530

� �
}136 }529

� �
}137 }528

�
�
}138 }527

� �
}139 }526

� �
}140 }525

� �
}141 }524

� �
}142 }523

� �
}143 }522

�
�
}144 }521

� �
}145 }520

� �
}146 }519

� �
}147 }518

� �
}148 }517

� �
}149 }516

�
�
}150 }515

� �
}151 }514

� �
}152 }513

� �
}153 }512

� �
}154 }511

� �
}155 }510

�
�
}156 }509

� �
}157 }508

� �
}158 }507

� �
}159 }506

� �
}160 }505

� �
}161 }504

�
�
}162 }503

� �
}163 }502

� �
}164 }501

� �
}165 }500

� �
}166 }499

� �
}167 }498

�
�
}168 }497

� �
}169 }496

� �
}170 }495

� �
}171 }494

� �
}172 }493

� �
}173 }492

�
�
}174 }491

� �
}175 }490

� �
}176 }489

� �
}177 }488

� �
}178 }487

� �
}179 }486

�
�
}180 }485

� �
}181 }484

� �
}182 }483

� �
}183 }482

� �
}184 }481

� �
}185 }480

�
�
}186 }479

� �
}187 }478

� �
}188 }477

� �
}189 }476

� �
}190 }475

� �
}191 }474

�
�
}192 }473

� �
}193 }472

� �
}194 }471

� �
}195 }470

� �
}196 }469

� �
}197 }468

�
�
}198 }467

� �
}199 }466

� �
}200 }465

� �
}201 }464

� �
}202 }463

� �
}203 }462

�
�
}204 }461

� �
}205 }460

� �
}206 }459

� �
}207 }458

� �
}208 }457

� �
}209 }456

�
�
}210 }455

� �
}211 }454

� �
}212 }453

� �
}213 }452

� �
}214 }451

� �
}215 }450

�
�
}216 }449

� �
}217 }448

� �
}218 }447

� �
}219 }446

� �
}220 }445

� �
}221 }444

�
�
}222 }443

� �
}223 }442

� �
}224 }441

� �
}225 }440

� �
}226 }439

� �
}227 }438

�
�
}228 }437

� �
}229 }436

� �
}230 }435

� �
}231 }434

� �
}232 }433

� �
}233 }432

�
�
}234 }431

� �
}235 }430

� �
}236 }429

� �
}237 }428

� �
}238 }427

� �
}239 }426

�
�
}240 }425

� �
}241 }424

� �
}242 }423

� �
}243 }422

� �
}244 }421

� �
}245 }420

�
�
}246 }419

� �
}247 }418

� �
}248 }417

� �
}249 }416

� �
}250 }415

� �
}251 }414

�
�
}252 }413

� �
}253 }412

� �
}254 }411

� �
}255 }410

� �
}256 }409

� �
}257 }408

�
�
}258 }407

� �
}259 }406

� �
}260 }405

� �
}261 }404

� �
}262 }403

� �
}263 }402

�
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�
}264 }401

� �
}265 }400

� �
}266 }399

� �
}267 }398

� �
}268 }397

� �
}269 }396

�
�
}270 }395

� �
}271 }394

� �
}272 }393

� �
}273 }392

� �
}274 }391

� �
}275 }390

�
�
}276 }389

� �
}277 }388

� �
}278 }387

� �
}279 }386

� �
}280 }385

� �
}281 }384

�
�
}282 }383

� �
}283 }382

� �
}284 }381

� �
}285 }380

� �
}286 }379

� �
}287 }378

�
�
}288 }377

� �
}289 }376

� �
}290 }375

� �
}291 }374

� �
}292 }373

� �
}293 }372

�
�
}294 }371

� �
}295 }370

� �
}296 }369

� �
}297 }368

� �
}298 }367

� �
}299 }366

�
�
}300 }365

� �
}301 }364

� �
}302 }363

� �
}303 }362

� �
}304 }361

� �
}305 }360

�
�
}306 }359

� �
}307 }358

� �
}308 }357

� �
}309 }356

� �
}310 }355

� �
}311 }354

�
�
}312 }353

� �
}313 }352

� �
}314 }351

� �
}315 }350

� �
}316 }349

� �
}317 }348

�
�
}318 }347

� �
}319 }346

� �
}320 }345

� �
}321 }344

� �
}322 }343

� �
}323 }342

�
�
}324 }341

� �
}325 }340

� �
}326 }339

� �
}327 }338

� �
}328 }337

� �
}329 }336

�
�
}330 }335

� �
}331 }334

� �
}332 }333

� �
}666 }1329

� �
}667 }1328

� �
}668 }1327

�
�
}669 }1326

� �
}670 }1325

� �
}671 }1324

� �
}672 }1323

� �
}673 }1332

� �
}674 }1331

�
�
}675 }1320

� �
}676 }1319

� �
}677 }1318

� �
}678 }1317

� �
}679 }1316

� �
}680 }1315

�
�
}681 }1314

� �
}682 }1313

� �
}683 }1312

� �
}684 }1311

� �
}685 }1310

� �
}686 }1309

�
�
}687 }1308

� �
}688 }1307

� �
}689 }1306

� �
}690 }1305

� �
}691 }1304

� �
}692 }1303

�
�
}693 }1302

� �
}694 }1301

� �
}695 }1300

� �
}696 }1299

� �
}697 }1298

� �
}698 }1297

�
�
}699 }1296

� �
}700 }1295

� �
}701 }1294

� �
}702 }1293

� �
}703 }1292

� �
}704 }1291

�
�
}705 }1290

� �
}706 }1289

� �
}707 }1288

� �
}708 }1287

� �
}709 }1286

� �
}710 }1285

�
�
}711 }1284

� �
}712 }1283

� �
}713 }1282

� �
}714 }1281

� �
}715 }1280

� �
}716 }1279

�
�
}717 }1278

� �
}718 }1277

� �
}719 }1276

� �
}720 }1275

� �
}721 }1274

� �
}722 }1273

�
�
}723 }1272

� �
}724 }1271

� �
}725 }1270

� �
}726 }1269

� �
}727 }1268

� �
}728 }1267

�
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�
}729 }1266

� �
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}376 }639 }980

� �
}954 }350 }691

�
�
}377 }777 }841

� �
}953 }489 }553

� �
}380 }742 }873

� �
}950 }457 }588

�
�
}389 }784 }822

� �
}941 }508 }546

� �
}390 }876 }729

� �
}940 }601 }454

�
�
}397 }917 }681

� �
}933 }649 }413

� �
}404 }690 }901

� �
}926 }429 }640

�
�
}405 }849 }741

� �
}925 }589 }481

� �
}410 }878 }707

� �
}920 }623 }452

�
�
}417 }893 }685

� �
}913 }645 }437

� �
}6 }1031 }958

� �
}1324 }372 }299

�
�
}22 }562 }81

� �
}1309 }267 }419

� �
}24 }791 }1180

� �
}1307 }1109 }909

�
�
}208 }726 }1061

� �
}1122 }269 }604

� �
}441 }753 }801

� �
}889 }529 }577

�
�
}436 }692 }867

� �
}894 }463 }638

� �
}445 }817 }733

� �
}885 }597 }513

�
�
}447 }734 }814

� �
}883 }516 }596

� �
}461 }732 }802

� �
}869 }528 }598

�
�
}474 }709 }812

� �
}856 }518 }621

� �
}475 }750 }770

� �
}855 }560 }580

�
�
}482 }740 }773

� �
}848 }557 }590

� �
}483 }677 }835

� �
}847 }495 }653

�
�
}486 }790 }719

� �
}844 }611 }540

� �
}501 }774 }720

� �
}829 }610 }556

�
�
}507 }751 }737

� �
}823 }593 }579

� �
}511 }704 }780

� �
}819 }550 }626

�
�
}537 }722 }736

� �
}793 }594 }608

� �
}555 }785 }655

� �
}775 }675 }545

�
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�
}559 }660 }776

� �
}771 }554 }670

� �
}668 }700 }727

� �
}762 }603 }630

�
�
}563 }760 }672

� �
}767 }658 }570

� �
}643 }778 }574

� �
}687 }756 }552

�
�
}612 }703 }680

� �
}718 }650 }627

�
Under the action of G on PL(F113), we get two orbits $1 and $3: Graphical

representation of $3 is:
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$3

This coset diagram also represents a group of order 660 [20] and contains two

orbits $1 and $3:
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6.2.4 Action of G on PL(F11m)

Similarly we can draw coset diagrams for the action of G on PL(F11m) for any

m 2 N; because the orbits of the action contain no new coset diagrams for the orbits other

than $1; $2 and $3 in the coset diagram. In this section we show that the actions of G on

PL(F11m) evolves PSL (2; 11) : We also prove some relevant results.

Theorem 25 If G acts on PL(F11m); m 2 N

�G1 =< ��; �� : (��)2 = (��)3 = (����)11 = (����)4
�
�����1

�5
= 1 >�= PSL (2; 11) :

Proof. Indeed the actions considered are homomorphisms from PSL (2; 11) to

Sym(m); for m = 12; 110; 660; whose images are transitive subgroups. Obviously these

images are isomorphic to PSL (2; 11) ; since this group is simple.

Existence of �xed points of �� and �� in these coset diagrams play an important role

which will be evident in the subsequent discussion.

Theorem 26 If G acts on PL(F11m), then �xed points of �� and �� exist only for even m:

Proof. Whenm is even, 11m+1 are the total number of elements in PL(F11m). As

we have 11m � 1 (mod 4) and the permutation �� composed of two cycles leaving one element

which becomes a �xed point of ��: Also we have 11m � 1 (mod 3) and the permutation ��

composed of three cycles leaving two elements which are �xed points of ��:

Remark 27 The action of G on PL(F11m) gives three types of orbits namely $1, $2 and

$3:

The orbit $1 consist of 12 elements. All coset diagrams for this action contain $1

for all m: }(11
m�1)=4 and }3(11

m�1)=4 are �xed points of �� and }(11
m�1)=6 and �5(11

m�1)=6
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are �xed points of �� which lie in the orbit $2 consisting of 110 elements. This orbit exists

in coset diagram only for even m: The third orbit $3 consist of 660 vertices but it does not

contain any �xed points of �� or ��: It exists in coset diagram always in the form of symmetric

pairs for all m > 3:

Remark 28 Let < } : }11
m�1 = 1 > be the cyclic subgroup of F11m : Then,

(i) the �xed points of �� are }(11
m�1)=4 and }3(11

m�1)=4;

(ii) the �xed points are �� are }(11
m�1)=6 and �5(11

m�1)=6; and

(iii) 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 and 1 are the vertices of $1:

Lemma 29 The conjugacy class equation of �G1 is

���G1

�� = ��Z ��G1

���+ 8X
r1=1

h0r1 = 1+ 55+ 110+ 132+ 132+ 110+ 60+ 60; where Z
�
�G1

�
denotes the centre of �G1 and h0r1 = jxr1 j =

���G1: N�G1
(xr1)

�� for any element xr1 in the
xr1th�conjugacy class and N�G1

(xr1) is the centralizer of an element xr1 in �G1:

Proof. The group obtained by the action of PSL (2;Z) on PL(F11m) is isomorphic

to PSL (2; 11) by Theorem 28: So the elements of PSL (2; 11) are of order 1; 2; 3; 5; 6 and

11: Since the orbit $1 lies in all the coset diagram for the action of PSL (2;Z) on PL(F11m):

We consider that orbit which, by Remark 30 and Remark 31; consist of twelve elements

which are 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 and 1: There are eight conjugacy classes of �G1 which

partitions �G1: The only element which commutes with all other elements of �G1 is the

identity element only. So 659 elements are left of order 2; 3; 5; 6 and 11. The element

(1 2)(3 4)(5 12)(6 11)(7 10)(8 9) of order 2 forms a conjugacy class containing 55 elements.

The element (1 2 3)(4 8 12)(5 10 9)(6 11 7) of order 3 forms the conjugacy class containing
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110 elements. There are two classes of order 5 each containing 132 elements. So there

are 264 elements on the whole in both classes of order 5: The class of order 6 contain 110

elements. There are two conjugacy classes of order 11, each containing 60 elements. So

both classes contain 120 elements of order 11:

Theorem 30 If G acts on PL(F7n); then

(i)
��OrbPL(F11m ) ��G1

��� = 1 + (11m+1)�12
660 if m is odd,

(ii)
��OrbPL(F11m ) ��G1

��� = 2 + (11m+1)�122
168 if m is even.

Proof. By Remark 28, whenm is odd, the orbit $1 composed of 12 vertices, exists

for allm. So (11m + 1)�12 elements of PL(F11m) are left: By Theorem 26; �G1 is isomorphic

to PSL (2; 11) containing elements of orders 2; 3; 5; 6; 11 and the identity element. Theorem

(27) shows that for odd m; there is no �xed point of �� and ��. So, by Theorem 27 the total

number of orbits for odd m is:��OrbPL(F11m ) ��G1

��� = 1 + (11m+1)�12
660 :

By Remark 28; when m is even, $1 containing 12 and $2 containing 110 vertices,

are two orbits. Only when m is even, $2 exists in coset diagram. So (11m + 1) � 122

elements of PL(F11m) are left: By Theorem 29 when m is even, �xed points of �� and ��

exist. So, by Lemma 30 and Theorem 27; the total number of orbits for even m is:��OrbPL(F11m ) ��G1

��� = 2 + (11m+1)�122
660

Thus we have the subsequent result.

Corollary 31 The action of G on PL(F11m) is intransitive.

Remark 32 (1) If m is odd, we have 1 + (11m+1)�12
660 number of orbits, including one orbit



105

$1 containing 12 vertices. Remaining elements are evenly divided into
(11m+1)�12

660 number

of orbits. All of these orbits are copies of $3 consisting of 660 vertices.

(2) If m is even, we have 2 + (11m+1)�122
660 number of orbits. One of these orbits is

$1 containing 12 vertices and the other is $2 containing 110 vertices. Remaining elements

are evenly divided into (11m+1)�122
660 number of orbits. All these orbits are copies of $3

containing 660 vertices.

6.3 Conclusion

The group PSL(2; 11) is an important group of order 660 and has many applica-

tions in carbon chemistry. This group is useful to understand and analyze the structure

of graphite and fullerenes. We analyzed the coset diagrams for the action of PGL(2;Z)

or PSL(2;Z) on PL (F11m) : The total number of orbits that exist in coset diagram are

1+ (11m+1)�12
660 if m is odd and 2+ (11m+1)�122

660 if m is even. The transitive action of G on a

set of 11 elements for m = 1 gives us an orbit $1 having 12 vertices. It is 11I undecakisicosa-

hedral group [56]. For m = 2, G acts on PL (F121) intransitively obtaining two orbits $1

and $2 containing 12 and 110 elements respectively and representing undecakisicosahedral

group. When G acts on PL (F11m) for m > 3; we obtain orbits $1, $2 and copies of $3.
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