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Preface

The modular group generated by two linear fractional transformations, v : z —

z—1
— and v : z — ——— satisfying the relations u? = v® = 1 [46]. The linear transformation
z z

t:z— % inverts u and v, i,e, > = (vt)? = (ut)® = 1 and extends PSL(2, Z) to PGL (2, 7).
In [72] a condition for the existence of ¢ is explained.

G. Higman introduced coset diagrams for.PSL(2, Z) and PGL (2,Z) . Since then,
these have been used in several ways, particularly for finding the subgroups which arise
as homomorphic images or quotients of PGL (2,Z). The coset diagrams of the action of
PSL(2,7Z) represent permutation representations of homomorphic images. In these coset
diagrams the three cycles of the homomorphic image of v, say v, are represented by small
triangles A whose vertices are permuted counter-clockwise, any two vertices which are
interchanged by homomorphic image of u, say @, are joined by an edge ——, and ¢ is denoted
by symmetry along the vertical line. The fixed points of @ and v, if they exist are denoted
by heavy dots. The fixed points of ¢ lies on the vertical line of symmetry.

A real quadratic irrational field is denoted by Q (\/&), where d is a square free
positive integer. If a = (al + by \/&) /c1 is an element of QQ (\/ﬁ), where a1, b1, c1,d, are
integers, then « has a unique representation such that aq, (a% — d) /c1 and ¢ are relatively
prime. It is possible that «, and and its algebraic conjugate a = (a1 — ﬁ) /¢1 have
opposite signs. In this case « is called an ambiguous number by Q. Mushtaq in [69].

The coset diagrams of the action of PSL (2,Z) on Q <\/&) depict interesting re-
sults. It is shown in [69] that for a fixed value of d, there is only one circuit in the coset

diagram of the orbit, corresponding to each a.



Any homomorphism p; : PGL(2,Z) — PGL(2,q) give rise to an action on
PL(F,). We denote the generators (u)p;, (v)p; and (t) p; by i, 7 and ¢. If neither of
the generators p, v and ¢ lies in the kernel of p;, so that i, 7 and t are of order 2, 3
and 2 respectively, then p; is said to be a non-degenerate homomorphism. In addition to
these relations, if another relation (fiz)F = 1 is satisfied by it, then it has been proved
in [74] that the conjugacy classes of non-degenerate homomorphisms of PGL (2,7Z) into
PGL (2,q) correspond into one to one way with the conjugacy classes of p; and an element
6 of Fy,. That is, the actions of PGL (2,Z) on PL (F,) are parametrized by the elements
of Fy. This further means that there is a unique coset diagram, for each conjugacy class
corresponding to § € F,. Finally, by assigning a parameter 6 € Fj to the conjugacy class of
p1, there exists a polynomial f(#) such that for each root ; of this polynomial, a triplet fi,

v, t € PGL(2,q) satisfies the relations of the triangle group
A@23.k) = (002 =7 = (@) = () = (71 = (D)* = 1).

Hence, we can obtain the triangle groups A (2, 3, k) through the process of parametrization.

The generalized triangle group has the presentation <u, v:u, v, Wk> ,wherer, s, k
are integers greater than 1, and W = u®vf1. u®vPr, where k > 1,0 < o < r and
0 < ; < sfor all i. These groups are obtained by natural generalization of A (7, s, k) defined
by the presentations <u, viu =v8 = (uv)k = 1>, where 7, s and k are integers greater than
one.

It was shown in [37] that G is infinite if % + % + % <1 provided r >3 or k>3
and s > 6, or (r, s,k) = (4,5,2). This was generalized in [4], where it was shown that G is

infinite whenever 1 + 1 4+ 2 <1 . A proof of this last fact can be seen in [101].



A generalized triangle group may be infinite when % + % + % > 1. The complete
classification of finite generalized triangle groups is given in 1995 by J. Howie in [39] and
later by L. Levai, G. Rosenberger, and B. Souvignier in [57] which are fourteen in number.

As there are fourteen, generalized triangle groups classified as finite [39], our area
of interest is the set of groups which are homomorphic images or quotients of PSL(2;7Z).
Out of these fourteen only eight groups are quotients of the modular group. In this study,
we have extended parametrization of the action of PSL(2;7Z) on PL(F},), where p is a
by this parametrization. By parametrization of action of PGL(2;Z) on PL(F),) we have

obtained the coset diagrams of

for all 0 € F,.

This thesis is comprised of six chapters. The first chapter consists of some basic
definitions and concepts along with examples. We have given brief introduction of linear
groups, the modular and the extended modular group, real quadratic irrational fields, finite
fields, coset diagrams, triangle groups, and generalized triangle groups.

In the second chapter, we show that entries of a matrix representing the element
g = ((po)™ (;wQ)m2)l where | > 1 of PSL(2,Z) = (p,v: p? =v3 = 1) are denominators
of the convergents of the continued fractions related to the circuits of type (my, mg), for all
m1,me € N. We also investigate fixed points of a particular class of circuits of type (mq, ms2)
and identify location of the Pisot numbers in a circuit of a coset diagram of the action of

PSL(2,Z) on Q (\/&) U {00}, where d is a non-square positive integer.



In the third chapter we attempt to classify all those subgroups of the homomor-
phic image of PSL (2,7) which are depicted by coset diagrams containing circuits of the
type (mq, ma).

In the fourth chapter we devise a special parametrization of the action of modular

group PSL(2,7Z) on PL(F),), where p is prime, to obtain the generalized triangle groups
</12 =7 = (;117/117/1;72)]“ = 1>

and by parametrization we obtain the coset diagrams of

for all 0 € F),.

In the fifth chapter we investigate the action of PSL(2,Z) on PL(Frx) for different
values of n, where n € N, which yields PSL(2,7). The coset diagrams for this action are
obtained, by which the transitivity of the action is inspected in detail by finding all the
orbits of the action. The orbits of the coset diagrams and the structure of prototypical D168
Schwarzite [48], are closely related to each other. So, we investigate in detail the relation
of these coset diagram with the carbon allotrope structures with negative curvature D168
Schwarzite. Their relation reveals that the diagrammatic structure of these orbits is similar
to the structure of hypothetical carbon allotrope D56 Protoschwarzite which has a Csg unit
cell.

In the last chapter, we investigate the actions of the modular group PSL(2,7Z)
on PL(Fyym) for different values of m, where m € N and draw coset diagrams for various

orbits and prove some interesting results regarding the number of orbits that occur.



Chapter 1

Definitions and Concepts

This chapter comprises of some basic definitions along examples. We have included
linear groups, modular and extended modular group, real quadratic irrational fields, finite

fields, coset diagram, triangle groups, and generalized triangle groups.

1.1 Fields

1.1.1 Quadratic Fields

The solution of some quadratic equation with coefficients from rational numbers
is called a quadratic irrational number. They are expressed as (a1 + blx/&) /c1, where
ai1,b1,cy are integers and d is a positive square-free integer. For a given d, they form a field
of quadratic irrational numbers and it is defined as real quadratic irrational field.

A quadratic field is denoted by Q (\/&), where d is a square-free positive integer.
If d>0,Q (\/&) is said to be a real quadratic field, and if d < 0 it is called an imaginary

quadratic field. The set of algebraic integers of Q (\/&) is {a1 + bivd:ay,b € Z}ifd=2



or 3(mod4), and {a; + bl\/g/Q ta1,b1 €7Z, a1 = by (mod2)} if d = 1(mod 4) [65].

Fach real quadratic irrational number is expressed uniquely as (al + \/3) /e,
where d is a square-free positive integer and ged(as, (a% — d) /c1,¢1) = 1. The algebraic
conjugate of a, is defined as a = <a1 — \/&) /c1. If & and @ are both of negative (positive),
then « is said to be a totally negative (positive) number. The element « is said to be an
ambiguous number if both o and @ are of opposite signs (see [69]).

It is notable that the square-free integers are such type of integers which are not

divisible by any perfect square, except 1.

1.1.2 Finite Fields

Fields having finite number of elements are of great importance in different branches
of mathematics, like projective geometry, group theory, number theory, and many more.
The most familiar examples of these type of fields are fields of integer modulo p, Z,, for
some prime p. For an integer s; > 0 and a prime p, there is a field with p** elements. The
fields with other than p®! elements do not exist. The field with ¢ = p*! number of elements
is denoted as Fy (or GF(q)).

The ring structure on the ring of integers modulo n, Z, = Z/nZ, is induced by
the ring Z. If n equals some prime p, then the structure Z, is a field. Likewise (Z))*' =
{(co,c1,¢2,...,¢6,—-1) = ¢ € Zp} is also a field. This field is obtained by associating the
sequence (cg, €1, €2, ..., Cs;—1) With some polynomial f (t) = ¢o + c1t + ot + . 4 cpqtrL
in Z,t].

Let g(t) be an irreducible polynomial in Z,[t] of degree s;. To construct a field

with p*! elements we have to select g(¢) in such a manner that all non-zero elements of the



field are the powers of ¢ such that £17 = 1, where 1 is the multiplicative identity. This
field is known as a Galois field and is denoted by GF (p*') over Fps: .
For instance, Fjs is obtained by taking an irreducible polynomial g(t) = t> + t2 +

2t + 1 over Zs3. The elements of F33 are given in the table below.

SNo | GF(3%)| Z3]t] SNo | GF(3%)| Z3]t]

1 0 0 15 |t® 2

2 1 1 16 |t 2t

3 it t 17 |t 2t?

4 |t t2 18 |t t2+2t+1
5 3 202 +t+2 119tV t24+2t+2
6 |t 22 +t+1 |20 '8 t2 42
7t 212 +1 21 |t 2242

g8 |t t2+1 22 |t20 t2+t+1
9 |t A2+2t+2/23  |t% 2t+2

10 |t8 t+1 24 |t% 22+ 2t
11 t° t2+1 25 |t%8 2t+1

12 |tY t+2 26 |t¥# 2t2 +t

13 |ttt t2 + 2t 27 [t 22+ 2t+1
14 |12 t2+t+2

The relevant properties are as follows:
(7) The finite field F' containing ¢ elements is isomorphic to a Galois field GF(q).
Specifically, the field structure does not depend upon the selection of the irreducible poly-

nomial g(t).
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(19) GF(p*') is a cyclic group having order p*' — 1 under multiplication. The gen-

erating element of GF(p®!) is known as primitive element.

1.1.3 Projective Lines

The space containing the set of all one dimensional subspaces of F? with natural
action of PGL (2, F}) on it, is denoted by PG (1, F},), and is called projective line. If U is
a subspace of F? of dimension one then either U = {(z1,0) : 21 € F,} or U is generated by

(x1,1) for some 1 € Fp. So PG (1, F}) is identified with F,, U{oco} using the map:
{(z1,1) 121 € F} — a1

and

{(0,1) : 21 € Fp} — o0

Every single coordinate is associated with every element of PG (1, F},). The coordinate of
the subspace of F? generated by (y1,21) is y1/21 with the convention that y;/0 = oo, for
y1 # 0. Let ¢ = p** for some positive integer s;. Then PL (F,) consists of the elements of
F,, with an extra element co. Particularly, for s1 =1, F, = F}, = {0,1,2,3,...,p — 1}.

The group PGL (2, F},) naturally acts on PG (1, F},) in the following manner: let

c e
be a non-singular matrix of PGL (2, F},), then
d f
c e
(y1,21) = (cy1 + ez1,dyr + fz1)
d f
or

cptexn c(yi/=1)+e
dyi+ fz1 d(yp/z)+ f

y1/z1 —
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defines the action of PGL (2, F},) on PG (1, F,). The group of transformations

cr1 +e

Teedr : _—
cedf %77 dri + f

is thus the linear fractional group acting on F), U {oo}, the projective line over F,.

1.2 Linear Groups

The importance of linear groups is well known because of their influence and
applications in different fields of science such as chemistry, physics and many others.

There is a relationship between linear groups, Galois theory, and the theory of
Lie groups. Their connection with Galois theory leads to the classical groups over Fj and
soluble groups. These groups are used widely in the group representations theory, in the
study of polynomials and in spatial symmetries of vector spaces.

Consider an n dimensional vector space U over a field F'. Then Homp (U, U), the
set of all linear transformations of U forms a vector space which also posses the ring struc-
ture. The multiplicative identity of Homp (U, U) is identity mapping I on U. An element
o of Homp (U, U) is known to be invertible if there exists a mapping 6 in Homp (U, U)
such that 00 = do = I. This forms a group of all invertible elements of Hompg (U, U). This
group is known to be the general linear group of degree n, and is denoted by GL,, (U) or
GL (n,U).

The set of all matrices of order n x n with entries from F' is M, (F'). This set
is directly linked with Homp (U, U), that is, both Homp (U, U) and M, (F') posses lin-
ear associative algebras so they are isomorphic. The n dimensional general linear group

GL (n, F) of all invertible matrices of order n x n, is isomorphic to GL,, (U).
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The most important subgroups of GL (n, F') is the special linear group, denoted
by SL (n, F) and presented as SL (n, F) = {[cij] : ¢i;j € F, 4,5 = 1,2, det ([c;j]) = 1}. The
importance of SL (n, F) is associated with the fact that in a two dimensional lattice, bases

{f1, f2} and {e1, e2} are correlated by the following equations:

h

aije1 + cies

fo = bier+dies

where a1dy — bicy = £1 and aq, by, c1, di € F. It is necessary that the orientation from f;

to f5 is same as that from e; to ex to obtain aijdy — bicy = 1.

1.2.1 Modular Group and Lobachevsky Plane

The modular group, denoted by PSL (2,7Z), is the quotient group of SL (2,7Z) by

-1 0 1 0
its center, thus PSL (2,Z) = SL(2,Z) /N, where N = ,
0 -1 01

The fundamental domain can be observed as the shaded region of the modular
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region.

" / ! | . %, i
.-" "'. .-"- MELI ¥ ._.- 'h'. .I_.-' 'H.‘_
% ] 1 ! | LY LY
J 1 .__-" L | _.-'. \ ._.-'- .
T e e W L L e N A
| i 2™ = H','___"'_ S 'H\_ QB " . _w. ___.-"' ’ ___-"' ) _"-._.L.
frr T by B | e ¥ o e "x_" LY H s “'\- ="
""'h.-:" A e ,ﬂ-"",...- '~.+ Tl -, .-::.:-.f:-_-}ﬁ
r T 'l"'-.-'l:".l'f'n. ol ‘“r-'i‘- o o, t’i'.'n iy l".'.". f:‘l'-f.lih-: ..-:'."" i, 'l"."f.'l".ﬂ'.'n..
=d =15 =1 =0, 3 -4 1 1.5 ]

The upper half plane is known as the model of Lobachevsky plane {(u,v) : p, v €

C,v > 0} and the orientation is persevered by the motion in it and is considered as trans-

dz+

i’ where 4d — bé = 1 and a, d b and ¢ are in R. Consider the action

formation z =
of PSL (2,7Z) on upper half plane. Then in Lobachevsky plane, the modular group is con-
sidered as a discrete group of motions. Therefore, PSL (2,7Z) is a group generated by two

-1 z
linear transformations p: z — — and v : z ——
z

—1 such that y? = v® =1 [29]. Thus
PSL (2,7) can also be seen as a free product of the two cyclic groups < p: u?2 = 1 > and
<v:v3=1>. Thatis, PSL(2,Z) = Cy * C3.

The linear transformation ¢ : z — % inverts p and v, that is, 12 = (vt)? = (ut)* = 1
and extends PSL(2, Z) to PGL (2,7Z). In [72] a condition for the existence of ¢ in the action
of modular group on PL (Fy), is obtained.

Let p is a prime and ¢ = p", then the group PGL (2,q) is the group of all trans-
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formations z = Zj_‘fl,, where d, d, band ¢ € Fy, and ad—bé # 0. PSL (2, q) is a subgroup of

dz+b

i where a, d, b
cz

PGL (2,q), consisting of all those linear fractional transformations z =
and ¢ € Fj, and 4d — bé is a non-zero square in Fj,.

The order of the PSL (n,q) is:

1

|[PSL (n,q)| = g1

q"("_l)/2 (q2 — 1) (q3 — 1) (" =1).

Many mathematicians worked independently on linear fractional groups in several fields. J.
A. Serret in 1866 [89], worked on the homomorphisms of general linear group of divisor 2 by
following the pattern of E. Galios. A. Cayley in 1964 utilized it to find different properties
of linear fractional transformations [105].

There is a well known classical relationship between the continued fractions and an
action of PSL (2,7Z) on real line. Many articles have been published upon the relationship
between continued fraction and the geodesics on modular surface and have significance in
the theory of approximation of real numbers by rationals [[7], [63]]. In [70], a connection
between orbits of modular group and reduced indefinite binary quadratic forms has been
established. In [77], using the action of modular group on real quadratic fields, the Lucas
and Fibonacci numbers are determined. In [76], Pell numbers and Pell Lucas Numbers are

found through the action of PSL (2,7Z).

1.3 Coset Diagrams

The idea of using coset graphs, for depicting group actions, has a rich and long
history. Coset graphs give us method to analyze a large range of topological and algebraic

properties of different structures. For the analysis of groups that are finitely generated,
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graphical methods are explicitly used. Many important results are proved using graphical
techniques as in [13, 15, 27]. For finite groups of small order, the coset graphs show the
similar information as multiplication tables seen in [93] and [96]. They depict the same
properties but in a more effective manner [95].

The concept of coset graphs for groups was first introduced in 1878 by A. Cayley
[15]. After that in 1893, A. Hurwitz took coset graphs as a tool for representing groups. H.
Maschke [66], in 1896 made use of Cayley’s graphs in proving some useful results concerning
representation of the finite groups, specially related to the groups of rotation of regular
bodies in 3 and 4-dimensional space. In 1910, the Cayley’s diagrams were reinvented by M.
Dhen. Later, H. W. Kuhn [52] and O. Schreier [27] also used graphical methods to prove
several results.

A. Cayley [15], by using coset graph of a given group with known generators illus-
trated the multiplication table of a group, and used different colours for different generators
to draw the edges of the graph linked with those generators. The Cayley’s diagram is a
coset graph of a specific group where elements of the group are represented by vertices,
which can also be seen as cosets of the identity subgroup {1}. O. Schreier [27] made gen-
eralization of this idea by taking into consideration the coset graph with vertices to be the
cosets of a particular subgroup. H. S. M. Coxeter and W. J. Moser [27] in 1965, made use
of both Schreier’s and Cayley’s diagrams for proving significant results about groups that
are finitely generated.

G. Higman, in 1978, defined coset diagrams for describing the actions of PSL (2,Z)

and PGL (2,7) (see [21, 22, 68, 72, 73, 74]). M. D. E. Conder in [21] and [25] showed that
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all but finitely many alternating groups are Hurwitz group by using special coset diagrams.

Coset diagrams of the action of PSL (2,7Z) are significant in several ways. Using
colours can be avoided for PSL (2,7Z) because of the nature of these two generators that is
pu? =13 = 1. Since pu? = 1, the generator p is depicted by an edge which directs its both
vertices towards each other. For the generator v with v3 = 1, it is required to differentiate
v and 2. Hence the cycles of v of length 3 are portrayed by triangles, with the convention
that v permutes each vertex of a triangle anti-clockwise. This nature of the diagram makes
the p — edges and v — edges different. The fixed points of y and v are denoted by heavy
dots.

For example, take the action of PGL (2,Z) acting on PL (F3;) illustrated by
p(w) = =t v(w) = 2L where w € PL(F31). Then there is the following permutation
representation of y and v

i = (1,30)(2,15)(3,10)(4, 23)(5, 6)(7, 22)(8, 27)(9, 24)(11, 14) (12, 18)

(13,19)(16,29)(17,20)(21, 28)(25,26)(0, 00),

7 = (0,00,1)(2,16,30)(3, 11, 15)(4, 24, 10)(5, 7, 23)(6)(8, 28, 22)(9, 25, 27)

(12,19, 14)(13,20, 18)(17, 21, 29)(26).
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The action yield the following coset diagram:

19 18

2L 27

5 30 2|

o J

|| 19 2 16 29 1/

W. W. Stothers [96], in 1977 studied the subgroups of A (2,3,7) using coset dia-
grams. To a subgroup of A (2,3,7) having finite index, he linked (a, b, e, f, h) a quintuple
where a,b,e, f,h € Z* with a > 1 and a = 84 (b — 1) + 21le + 28 + 36h. It is also shown,
except for three exceptions, that every quintuple fulfilling these conditions is associated to
a subgroup. This was done by using coset diagrams and a technique of combining different
or same diagrams through handles.

Q. Mushtaq [68] worked extensively on the modular group using coset diagrams



18

as a basic technique and devised many important results ([?, 71, 46]). It is proved in [46]
that coset diagram in the action of PSL(2,7Z) on rational projective line is connected and
transitive. It is also shown that the linear fractional transformations p and v generate
PSL(2,7) and that pu? = v3 = 1 are defining relations for PSL(2,7Z) using coset diagrams.
Coset diagrams also used to show that ambiguous numbers exist and they exist excessively
in an orbit when PSL(2,Z) acts on real quadratic fields.

In 1983, the actions of PSL(2,Z) on different sets are studied and proved that for
each value of § € F,, with ¢ to be a power of a prime, a coset diagram of the action of
PGL(2,Z) over PL(Fy) can be drawn [68]. In [71], Q. Mushtaq found a condition for the
existence of a specific fragment in a coset diagram. That is he established a useful relation
between a polynomial with coefficients from Z and a coset diagram containing the fragment.

Q. Mushtaq and F. Shaheen [79] proved the existence of some special circuits in
the coset diagrams under action of a group with the presentation

<,u, vit:p =" =12 = (ut)? = (vt)? = 1> on projective lines over the Galois fields.
Later on, Higman’s question was answered for permutation representation of the symmetric
and hyperbolic tessellation by using coset diagrams in [81]. M. D. E. Conder and Q. Mush-
taq separately worked on the solutions of several identification problems with the help of
these diagrams.

Coset diagrams are helpful in providing diagrammatic explanations of different
concepts of combinatorial group theory including the Reidemeister-Schreier procedure, and
to prove the theorem by Ree-Singerman regarding the cyclic structure for a transitive group

of generating-permutations. To construct the infinite families of finite quotients of a partic-
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ular group with finite presentation, similar methodology is helpful. For finding torsion-free
subgroups of certain groups with finite presentation the coset diagrams have proved to be of
great help for constructing the small volume hyperbolic 3-manifolds which show interesting
behaviours. Coset diagrams can also be helpful in the formation of arc-transitive graphs

and maximal automorphism groups of Riemann surface [25].

1.4 Triangle Groups

Triangle groups and their importance is explained in [27]. The relation between the
triangle groups and PSL (2,7) is that, in certain cases they arise as quotients of PSL (2,7Z).

Triangle groups can be presented as
A(ry5,k) = (uv s = = (un)* =1)

where r, s,k > 1 and r, s,k € Z (for details, see [27]).

The triangle groups A (r, s, k) are known to be finite precisely when v = % + % +
% — 1 > 0, and the groups obtained are A4, S4, Doy, and C,. If v = % + % + % —1=0,
then (r,s,k) = (2,4,4), (3,3,3), or (2,3,6). In this case A(r,s, k) is soluble but infinite.
The triangle groups A (r, s, k) are infinite if and only if v = % + % + % —1<0.

A triangle group A (7, s,k) is a reflection group which means it is generated by
the reflections of the three edges of the triangle through angles «/r, m/s and 7w/k. The
group A (r, s, k) is spherical if v = %—i—%—i—%—l <0,ify = %—i—%—i—%—l = 0, then the
group A (r, s, k) obtained is Fuclidean. If v = % +14 % — 1 > 0 then the group A (r, s, k)
is hyperbolic.

The triangle groups A (2, 3, k) are significant as they arise as homomorphic images
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or quotients of PSL (2,Z). For k > 6, the order of the triangle group is infinite. When
k < 5, then hyperbolic triangle groups A(2, 3, k) are A4, Sy, As, {1} and S5 ([59, 74, 106]).

A (2,3,6) is an infinite soluble group for £ = 6. It contains free abelian group as
derived subgroup which is generated by two elements whose related factor-derived group is
cyclic group having order 6 [74]. When k =7, A (2, 3, k) becomes the Hurwitz group which

is widely studied by many mathematicians in [24, 60, 64, 73, 96].

1.4.1 Generalized Triangle Groups

The generalized triangle group has the presentation <u,v : uT,US,Wk>, where
r, s, k are integers greater than 1, and W = u®vf1 .. w0l where k > 1,0 < oy < 7
and 0 < 8, < s for all ¢ These groups are obtained by natural generalization of the triangle
groups A (1, s, k) defined by the presentations <u, viu =0 = (uv)k = 1>, where 7, s and
k are integers greater than one.

It is proved in [4] and [35], that if G = <u,v cu”, v, Wk>, then there is a homo-
morphism ¥: G — PSL(2,C) such that ¥ (u), ¥ (v) and U(W) are of orders r,s and k
respectively. Almost at the same time Boyer in his paper [12] presents that there exist a
homomorphism from G — SO(3) which posses the same property. He also proved that G
is an infinite group if no two of r, s, k are equal to 2 and max{r, s, k} > 6, with some
restrictions on W.

It is shown in [37] that G is infinite if % + % + % <1 provided r > 3 or k > 3 and
s >6,or (r, s,k) = (4,5,2). This is generalized in [4], where it was shown in [101] that G
is infinite whenever % + % + % <1.

A generalized triangle group may be infinite when % + % + % > 1. The finite
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generalized groups with presentation <u, v:u', v, ( ur P o vﬁk)k>, are determined for
k > 3in [36]. In [17], it is shown that for £ = 1 the group is a finite triangle group. The cases
are also determined for r =2,k =3 or 4 in [58], r = 2,k = 2 in [83], and, if (r,s) = (2, 3),
for kt < 12 in [23] which are all finite generalized triangle groups.

The complete classification of finite generalized triangle groups is given in 1995 by
J. Howie in [39] and later by L. Levai, G. Rosenberger, and B. Souvignier in [57]. The list
of all finite generalized triangle groups is given below:

(1) <u v | u?, 03, (wwuvuvu )2> , of order 576;
u, v | u?,v3, uvuvuv2)3> , of order 1440;
u,v | ud, 03, (vouv )2> As x Cs, of order 180;

3

2
u,v | ud, v, uquUQ) >, of order 288;

2 0P, uvuvuv4) >, of order 1200;

8
4
ﬁ

u,v | u?, v, (vouvuw )2> , of order 1200;

(
(
(
(
v | u2, 05, (wwur? )2> of order 120;
(
(
v | 12, vt (wwwur?) > of order 192;
(

{
{
{
(5) {
(6) (
7) <
(
{

u,v | u?, 03, (vouv ) > of order 24;

3

u,v | u?, 03, (vouvuv ) > of order 48;

3

u, v | u?, v3, (uwvuvuvuv ) > of order 120;

3

( (
( (
12) <u,v | u2, 03, (wuvuvuvu )2> , of order 720;
( (
( (

3

2
u, v | u?, v3, (wvuvuvuvuw uv2) >, of order 2880;

3

u,v | u?, 03, (vvuvuvuvuvtuvuv?u? )2> . of order 17694720.
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1.4.2 Hurwitz Groups

Any non-trivial quotient of an abstract triangle group A(2,3,7) with the finite
presentation A(2,3,7) = <u, v | u? =03 = (w)" = [u,0] = 1> is called a Hurwitz group. It
means that a finite group with two generators u and v which satisfy relations u? = v3 =
(uww)” = 1 is a Hurwitz group. In 1893, Hurwitz’s theorem originated the importance of
such groups.

In 1990, M. D. E. Conder wrote a review on Hurwitz groups [24] and at that time
the only finite simple groups identified as Hurwitz groups were the Ree groups 2G2(3p),
where p is an odd prime, all but 64 of the alternating groups A,,, 11 of the 26 sporadic finite
simple groups. It is also known that the remaining 15 sporadic finite simple groups were
not Hurwitz groups and only for ¢ = 2, PSL(3,q) is a Hurwitz group.

In the recent times, the groups of Lie types are objects of attention. G. Malle in
[64] shows that the Chevalley group Ga(q), for every prime power ¢ > 5, is a Hurwitz group
and the Ree group 2G5(32™*1), for every m > 1, is a Hurwitz group. Furthermore, it is
also proved that the groups Ga(2), G2(3), G2(4) and 2G2(3) are not Hurwitz groups, but
can be viewed as factor groups of PSL(2,Z).

It is shown for ‘intermediate’ ranks in [60] that for all prime powers ¢ and 93 values
of n < 287, SL(n,q) is a Hurwitz group, and this result is extended by M. V. Semirnov
by using (2,3, 7)—generation of alternating groups to another 60 values of n < 287 in [54].
Particularly, SL(49, q) for all ¢, are now known to be Hurwitz groups.

The method used in [60] is described very attractively in the review chapter in

[100], later on, this approach is used by N. Semernov in his paper [88], to show that D,
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type Weyl groups contains subgroups which are Hurwitz groups for all suitably large values
of n. A totally different method is presented by authors in [82] to obtain representations
with zero characteristic of (2,3, 7) up to degree 7. This approach is taken to obtain Hurwitz
groups which is embedded as subgroups of GL(n, R) for some n < 7 and for an appropriate
ring R.

A. Macbeath give a pleasant description of his work on Hurwitz groups and its
action on the surfaces and curves in [61]. A very interesting work is done by M. Streit in
[98], by investigating the Hurwitz groups and associated complex algebraic curves with it.

The action of automorphisms were considered by K. Magaard and H. Volklein in
[62] on the set of Weierstrass points of a Hurwitz curves and proved that the action in not
transitive when genus g > 1. Later, it is shown that it acts transitively for ¢ = 3 in [91],
and for g = 7 in [33]). In 2004, R. Vogeler in [103], develops a method for encoding and
classifying the conjugacy classes of hyperbolic transformations in A(2,3,7). Further this
work was extended to determine a large preliminary portion of the spectrum for A(2,3,7)

and therefore for Hurwitz surfaces in [104].

1.5 Pisot Numbers

A real algebraic integer 8 > 1 is called a Pisot number if all its conjugates lie in
the circle of radius 1. The set of all such numbers is denoted by S and is a closed set in
the real line as mentioned in [84] and [90]. For investigation of S, a powerful method is
introduced in [32] by J. Dufresony and C. Pisot to obtain all numbers in S in [1,t + €],

where 0 < e < 0.0004 and ¢ = (1 + 51/2)/2. It is shown that the smallest accumulation
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point 7 of S is also an isolated point of S. Later, this method is practiced to explore the
consecutive resultant sets of S as explained in [2], [8], [31] and [42].

The set of Salem numbers is symbolized by T which consists of all algebraic integers
s > 1 for which all other conjugates lie on or in the circle of radius one, such that at least
one of the conjugate lies on the circle. Thus R. Salem in [85] gives a reciprocal equation is
satisfied by 2¢ with the property that its roots s and 2! lie on the circle of radius 1. A
small number of Salem numbers are known as compared to Pisot numbers [9].

T. Vijayaraghava proves in [102] that the set S has infinite number of accumulation
points. R. Salem shows in [84] that S contains derived sets of any finite order.

Elements of S are studied in a neighbourhood of a accumulation point of S by D.
W. Boyer in [11]. He analyzes the infinite tree J related to S in which paths to infinity,

bounded by one, on the circle of radius one, correspond to certain rational functions.
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Chapter 2

Pisot numbers and circuits of type
(m1,ma)

In this chapter we show that coefficients of a matrix representing the element
g = ((po)™ (/w2)m2)l where [ > 1 of PSL(2,Z) = (p,v: p*> = v® = 1) are denominators
of the convergents of the continued fractions related to the circuits of type (mq, ms), for all
mi,mg € N. We also investigate fixed points of a particular class of circuits of type (m1,ms2)
and identify location of the Pisot numbers in a circuit of a coset diagram for the action of

the modular group PSL (2,7Z) on Q (\/E) U {oc}, where d is a non-square positive integer.

2.1 Introduction

— 1 which

By L. Euler, every real number has continued fractions § = my o
2 71'3+4.4.

is infinite for irrational numbers and finite for rationals. The continued fractions can also

1

_ _1
be represented as § = v + ToF Yo

or § = [v1;73,-..]- The irrationals whose continued
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fractions repeat after a certain stage such that 6 = [m1; 72, ..., T Tm+1, Tm12, - Tmtq) are

By Bg—1
the quadratic irrational numbers with , where By, = [m1; 72, ..., 7| and H =

Hy Hjp_

[ra; T3, .., k] are continuants of the convergent %' J. L. Lagrange proved the converse: if

J is a quadratic irrational, then the regular continued fraction expansion is periodic [28].

2.1.1 Circuits and Words

If p = {o,,n1,01,n9,...,n%, 0k} is an alternating sequence of vertices and edges
of a coset diagram then p is a path in the diagram joining o, and oy if n; joins o;_1
and o; for each ¢ and n; # n; (i # j). A path of triangle and edges is a word in which
initial and terminal vertices are same, is called a circuit. For a sequence of positive integers
N1, M2, M35 - oy the word g = (o)™ (pv?)™ (pv)"s ... (pw?)"* where n; > 0 fixes o vertex,
is represented by (1, 72,M3, ..., Max,). Such a circuit evolves an element of and fixes a specific

vertex on the circuit.

AA A
- Y'Y Y
>

AL AP

P

>
Y -~
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It is important to mention some relevant results here which are proved by Q.

Mushtaq in [?] for later use.

Theorem 1 Every element of PSL (2,7), except the (group theoretic) conjugates of p and

vt and ()™, n > 0, has a real quadratic irrational number as a fized point.

Theorem 2 Ambiguous numbers in the coset diagram for the orbit of o form a single

circuit and it is the only circuit contained in it.

It is also note worthy from a result by Q. Mushtaq [69] that for every real quadratic
irrational number under the action of PSL (2,Z) on Q (\/E) U{oo}, the value of d remains
the same. Thus, if there is a real quadratic irrational number a we find a circuit in the

orbit of o under the action of PSL (2,Z).

2.2 Circuits of type (m1, my) and relation with Pisot numbers

Consider circuits of the type (mi, mg) where mi,my € N and means that there
are m triangles with one vertex outside the circuit and mo triangles with one vertex inside

the circuit. Let h € PSL(2,Z) be an element related to the circuit (mq, msz) of the form

ho= (po?)™ (o)™ ()™ (uo)™ (w0®)™ (uo)™ ... (po)™

= ()™ (™)’
Then:

Theorem 3 If o be an ambiguous number and
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h = ((,uv2)m2 (/w)ml)l € PSL(2,7) fizes a, so that the orbit of o contains the

circuit (mi, ma, mi,..., mz), then the matrizc M (h) has trace tr (M (h)) = miJs41 +

21
2J3l_1, and [ Z 1.

Proof. Asp:w — —1/wand v:w — (w—1)/w, s0 pv : w — w+ 1 and pv? :

1 mq
w— w/(w+1), we have M ((uv)™) = . Therefore
0 1
. 1 0
M ((;wg) 2) = and
meo 1

1 mq J2 J3
mo 14+ momy Jy s
1+ mamq 2my + mamy Js Je
This implies that A% = =
2mg +m3amy  m3m? + 3mamy + 1 Jr Jg
m3m? + 3mams + 1 m3m3 + dmam? + 3my

and A3 =

m3m3 + 4mimq + 3me mim3 + 5mim?2 + 6mamy + 1

Js Jy
Jio Ju
J3i—1 J3
Hence Al = ,
J341 J342
where

J3p = myJ3—1 + J31-3
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J3i41 =madg—1 + J3-2
Jaipo = myJsp1 + Jg—1, for k>3 and Jop=J; =0, Jo = 1.
It is then immediate that Tr (Al) = J31—1 + Jaip2 = miJsp1 + 2J3-1. The deter-

minant of A’, that is of M (h), must be 1 being determinant of an element of PSL(2,Z),

Jai—1 Ja
which is given by = 1. The entries of A! are the denominators of convergent

J3i41 3142
for continued fractions corresponding to the circuits (m1,mg) and powers of A (h) satisfying

the recurrence relation

A= (1+mimg) (A7 4+ A) + myimg (A2 + A3+ L+ A% — 1 m

By considering the circuits of coset diagrams, one may start with (uv)™ . So the
element g = ((pv)™ (/wZ)mQ)l is considered instead of h = ((;wz)m2 (/w)ml)l , wherel > 1,

of PSL(2,Z). Therefore

m 1 mi 1 0 1+ morny  Mi
B = M ()™ (1?)"™) = _
0 1 mao 1 meo 1
Js J3
Ju Jo
Jsir2 3
Thus, inductively matrix B! = , where [ > 1.
341 Jai-1

The matrix for (uv?)™ (uv)™ then turns out to be

Sy Ja ' '
M(g) = B! = , having the same trace and determinant as of

Jsip1 a2
M (h) and satisfying the recurrence relation

Bl = (14+mymg) (Bl’1 + B) +mims (Bl’2 + B34+ B2) — I. Also matrices
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1+momy my 1 mi
and , having the same eigen values , given by the
mo 1 m 1+ momy
2,2
roots A1 and A of )\2—(m2m1 +2) A+1 = 0 where \; = 14 M2t m§m1+4m2m1 =148, =

% and Ay = 1+ mamy—y/m3m2+dmamy 1 +Bl _ <B1)2 , /61 _ mami++/mim2+4mam, and

4dmomq 2 momi 2

[, is its algebraic conjugate.

Proposition 4 Ifa € Q (ﬁ) , and h = ((,uv2)m2 (,zw)ml)l or
g=((pv)™ (/w2)m2)l are elements of PSL(2,7) fizing «, then orbit of o contains

the circuit of type (my, ma, Mm1,..., m2) and a = mlﬁl_l, mlel

21
<07’a =5 B ), sod= m%m% 4+ 4momy. If h or g acts on Q (\/(Tl) , then the

m1’ mq

circuit in the coset diagram contains only 2 (mg + m1) ambiguous numbers.

Proof. Let a € Q (\/&) IR = ((,uv2)m2 (/w)ml)l fixes a, then Jaiatdu

J3ip1atJd3ige ’

so that Jaj 0% + (J3j49 — J3i—1) @ — J3; = 0. This implies that

J3—1 (mgch — Momia — ml) =0, for m1,mo,l > 1.
Hence a = %ﬁ‘/&, where d = m3m? + 4mamy, and the elements fixed by h are

B _ momi+Vd _ -1 By _ mami—+vdi __ a1
T = TGS = m13] " and T my = AL = m18; , where

B, = %M and (3, is its algebraic conjugate. On the other hand, if ¢ =

((l’y)ml (:CyQ)m2)l fixes 5 € Q (\/&) s then % = /8 That is

J31 (m2,32 + momy 8 — ml) = 0. Hence = —mamitVd i algo implies that

2m
d = m3m?3 4+ 4mam; and the elements fixed by g are 7% = W and % = %ﬁ.

If the generators u and v of PSL(2,7Z) act on Q <\/&) , where d = m3m? + 4mam;
then the circuit related to h or g is reduced to ((,uvz)m2 (p)™) or ((pv)™ (/wz)mQ) and

hence contains only 2 (m; + msg) ambiguous numbers. m
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We illustrate this proposition with the example given below.

3
Example 5 Let hy = ((,uv)2 (,uvz)3> be an element of PSL(2,7) and o € Q (\/3) be
fized by hi. The polynomial corresponding to hy is 302 + 6 — 2 = 0 which is the same as
that of the element (jw)? (uv2)37‘elated to the circuit (2,3).

Clearly the following circuit contains 10 ambiguous numbers.

B+V5Y3 _ fi5)3 /1513 (-3 V5 )2

\

(V15 )7 /5 )7 (3rvi5)/3
(3-/15 )/2 (/15 y2 (-1-/15 y2

Remark 6 In the action of PSL(2,Z) on Q (\/&) U {oo}, then the circuit corresponding

to h(or g) reduces to (pv?)™ (uv)™ (or (uv)™ (uv?)™).

Now considering the class of circuits of type (11,1) representing the elements

g1 = (pv?) (,uv)ml of PSL(2,7), we have the following important result.

Theorem 7 In the action of PSL(2,Z) on Q (\/&), the elements fixed by words of type

((,qu) (,Lw)m1> are Pisot numbers.

Proof. Let g1 = (uv?) (u)™ e PSL(2,7Z) corresponding to (ra, 1) fixes a €
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. , , /12 +4d1h .
Q (\/3) This means a2 — iy — 1y = 0 and thus we have a = % Consider
i+ m%+4ﬁ11 7’7’11—\/7’?1%-{-4’%1

a = ——5+—— and its algebraic conjugate a = 3

As \/m% + 4rnhq > 1h; this implies that 7y + \/mf + 41y > 2my, for all hy >

. 72 L Arh
1. SoWza>l,forallm121.

Now 173 4 417, < (rhy + 2)®. This implies that —1hy + /773 + 4177 < 2. Thus
ml—\/m%+4'rh1

5 =lal < 1.

Hence « is a Pisot number. m

Remark 8 If we consider element other than ((/w2) (/w)ml) , the resulting numbers will

not be Pisot numbers.

In the following, a list which describes the types of circuits, fixed vertices on the
circuits, number of triangles on the circuits, discriminant and mod value of conjugate of

fixed vertices of circuits is given.
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No. of

Fixed
et TS vete D i<l
circuit ’
(1L1) |2 =L 5 0.61803398875
(21) 3 1+/3 |3 0.73205080757
(31) 4 Ly 0.79128784748
(4,1) 5 2+ 22 8 0.82842712475
(51) 6 B s 085410196625
(6,1) |7 3+J/15 |15 0.43649167310
(7.1) |8 1T 77 0.88748219369
(81) |9 4+J14 14 0.12917130661
91) 10 Sefos 85 0.10977228646
Lm) | 1+m @ 2 + 4, o.s(ml—M)
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(1, ml)

2.3 Conclusion

By Theorem 3, matrices representing the element h or g of PSL (2,7) are matrices
whose entries are denominators of the convergents of the continued fractions related to the

circuits of type (my,ms), for all my,my € N. If an element h or g of PSL (2,7) acts on

_ 2 2 2
Q <\/&) , then my 871, m1 ! (or 7%, % ) where 3, = mammt m§m1+4m2m1, are the fixed
points and the corresponding reduced circuit is obtained in the coset diagram containing

only 2 (mq + mg) ambiguous numbers. The only element of type g1 = ((,U,’UQ) (;w)ml) of
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PSL(2,7Z) corresponding to the circuits (mq, 1) where m; € N, gives Pisot numbers as fixed

points. In case of elements other than ((/L’U2) (,U/U)ml> , fixed points are not Pisot numbers.
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Chapter 3

A class of triangle subgroups of

PSL (2,p) related to circuits of type
(m1, mp)

Coset diagrams for PSL (2,7Z) when acting on PL (Fj) are composed of various
types of well-defined fragments which are themselves composed of simple and non-periodic
circuits connected together in a specified way. In this chapter, we attempt to classify
all those subgroups of the homomorphic image of PSL (2,7Z) which are depicted by coset

diagrams containing circuits of the type (mi, mo).

3.1 Introduction

In [69], Q. Mushtaq proves that orbits of the action of PSL (2,Z) on Q* (ﬁ) =

Q (\/&) U{oo} where d is a square free integer, contain ambiguous numbers. Coset diagrams
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for this action give a useful connection between orbits and the way these ambiguous numbers
are located in orbits. In the following therefore, for the sake of completeness we explain

coset diagrams as in [68].

3.1.1 Coset Diagrams and Fragments

The coset diagram for PSL (2, Z) is represented by diagram T'¢ :

which is obtained by replacing every vertex in a tree of valence three by a triangle. The
coset diagram for PSL (2,7Z) either in its regular representation, or in the representation
for which a point stabilizer is (t), is exactly the same, except that one has to pick out an

axis of symmetry. In the case Flc, where the representation is regular, the axis of symmetry
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contains no vertices, where as in the case F%, where the representation is not regular, that
is for which the a point stabilizer is (t) , the line of symmetry contains two adjacent vertices.

Let & is a vertex in I'c and &' is a vertex of graph I',.. It is always possible that
for any vertex B in I'c is joined to & by a unique path § if we do not allow consecutive
p — edges or consecutive v — edges. There is a related path in I'j,, starting with &' and
having y — edges where 5 does and positive ( or negative ) v — edges where & does. This
path ends at a point B,, exclusively determined by B . Thus there is a mapping x from I'c to
I'f~, in which p— edges correspond to p—edges, and positive v —edges to positive v —edges.
If I'c and I'; are same then this map is one to one. If B # & maps on to &', the path from
& to B in I'c maps on to a circuit in I',. The elements of PSL (2,Z) are vertices of I'c.. If
g € PSL(2,7) is labelling 3/, then B/ maps onto &' if and only if § belongs to the stabilizer
of & in the representation of PSL (2, Z) on which I}, is the diagram. Thus circuits in the
diagram I'f; correspond to the elements of PSL (2,7Z) containing fixed points.

For example the circuit related to g3 = (uv) (,uy2)2 and go = (uu2)3 (uv) attains

the following form
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respectively. If §; and g both have a fixed vertex & then by connecting these two

circuits.the fragment 75 is obtained.
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Yoy

Y Y

73

Then &' also fixed by g1g2. But I'f, contains a non simple circuit related to g1 go, which is

given by 7,.

.
< <

By v we mean a non-simple fragment obtained by connecting, non trivial, non
periodic, simple circuits. Q. Mushtaq proves in [69] that each orbit of the action always
contains a single circuit and each vertex on the circuit is in fact an ambiguous number.

The coset diagrams for the action of PSL (2,Z) on Q* (\/&) are infinite. They
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become finite when the action of PSL (2,Z) on Q* (\/3) is transformed into the action of
PSL(2,Z) on PL(F;) naturally. The orbits get merged and circuits become fragments.
The coset diagram D (6, q) is obtained through the procedure described in [74] for every 6
in F,. The following result establish as a condition which proves the existence of v or its

homomorphic image D (0, q) .

Theorem 9 Given a fragment ~y, there is a polynomial f in Z[z] such that
(i) if the fragment ~y occurs in D (0, q) then f(0) =0
(ii) If £ (0) = 0 then the fragment or a homomorphic image of it occurs in D (0, q)

or in PL(F,).

3.2 Results and discussions

Consider two circuits of type (n1,m1) and (ng, mg) where my,mg,n1,ne > 1.
Each circuit corresponds to an element of PSL (2,Z). The words corresponding to these
circuits are wy = (pv)™ (,wu2)m1 and wy = (;wZ)n2 (uv)™? respectively. If X and Y are

the matrices representing p and v of PGL (2, q) and satisfying the relations
X2=v3=\I (3.1)

where [ is the identity matrix and A is a scalar, then wy,ws and wijws are represented as
follows in terms of X and Y :

Wy = (XY)™ (Xy?2)™

Wa = (XY?2)" (XY)™?

WiWs = (XY)™ (XY2)"T (xy)m2.
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Here we take i and © to be represented as X =

C1

where a1, c1,dy, f1, k1 € F;. We write
a? + kit =—-A#0

and require that

& +d+kfP+1=0
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k1 fa

—d; —1

These elements certainly satisfy relations (3.1). The trace of matrix representing pv is

r=a(2d; + 1)+ 2kic1f; and A = — (a% + kzlc%) is the determinant. As det (X) = A and

tr (X) =0, So

X?+AI=0
and, det (Y) =1 and tr (Y) = —1, we have
Y24Y +1=0
Further more, A = det (XY') and r = tr (XY, so, we have
(XY +r(XY)+AI=0

and by equations (3.2) — (3.3) give

XYX =rX+AI+AY
YXY =X+rY
YX=rl-X-XY

By using equations (3.2) to (3.7),

(3.2)

(3.3)

(3.4)



44

o k
W, = n1+2 (Z Z Clnl l+2 (k+2 1) n1+m1—(2k+2)Ak+l> I+
k=0 [=0
o k
A Z Z Cn1 (l+2 (k+1 1)
(_1)m1+1 k: 0= 0 Tn1+m1*(2k+3)Ak X
Z Z Cn1 (1+1) m1 (k+1-1)

k=0 =0

1—(+1) C;nll—(k+2_l),rn1 +m1—(2k+2) Ak+1> Y

k=0 1=0
_— - & _
n1—(+2) ~m1—(k+1—1
Z Z C 1—( )ijl ( )
A k=0 l:%
4 Z Z ClTll*(l+1)C]:rL_1lf(k+27l)
+ (=1)mHt k=0 =0 XY
ni1—(+1) ~m1—(k+1—1
_Zqu ( )Ck—ll( )
\ k=0 [=0
’I"n1+m1_(2k+3) Ak‘
Z Z cne —(I'+1) " ;(k’+1—l/) . C}a;zil—/(k%%l')
Wy = (—1)"2 ™! "y ( ) I

n2+1 (
7’L2+1 (

+ (=

K ~
Ai’s and fi,’s

0,1,2,3.

n1+2 <

Tn2+m2—(2k’+2)Ak’+1

w +1)Cl7€7112 l’(k/+2 1) pma+ma—(2k'+3) AR +1

izw

)X

Ol’
o0
Z Z o2 l+1)O]ZL2 l’(kl+1 ) pr2tme—(2K'+2) AK'+1 |

=01l'=

S ( (k11 _
l+2 E4+1-U
A Z Z Gt o
=0l'=
+ Z Z foic I'+1) (Acgil_/(k/_g_l/) B CZ?i;(k'+2_l')> XY
=01l'=
pn2tma—(2k'+3) AK'+1

are the coefficients of XY, Y, X and I in W; and Ws where i =

>y

C —(1+2) ml (k+2=0) g 4mi — (2k+2)Ak+1>
k=0 1=0
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Azzcnl (1+2) m1 (k+1-1)

5\1 — (_1)m1+1 k 0 = O

chrq (I+1) m1 (k+1-1)

k=0 1=0
co k
Xy = (—1)™ (ZZC —(+1) ;ml (k+2=1) g 4mi — (2k+2)Ak+1>

k? =0
oo k
chnl l+2)Cm1 (k+1-1)
l
A k=0 =0

o~ k
—(l+1) —(k+2—1
DR NS
k=0 1=0
oo k

B Clmf(m) C}g@_l;(kﬂfz)

Tnl +mi— (2k+3) Ak

=]
~

\ -

Az = (—1)™*

k=0 1=0

[e=]

,rnl +m1 7(2]{?4»3) Ak‘

Z Z o2~ W+ ( ma—(k/+1-1") szf(k’+2fl’))
fig = (-1)"*! 01— Wl k=l
rn2+m2—(2k’+2)Ak'+1
fiy = (1)t (Z Z o2+ e z'(kl+2 1) pna+ma— (2k’+3)Ak’+1>
0l'=
o k/
/:LZ — (_1)n2+1 (Z Z Cn27(l'+1)cl':}2 l/(k"+1 l) n2+m2 (2k1+2)Ak/+1
\k/=01'=0
—(42) yma— (K +1-1)
A Z Z o A
=01'=
~ +1 , , .
fiy = (=1)" n Z chz ('+1) (Ac’"? (K 4+2=1) _ cma—(k'+2—1 ))
k=1 k! —1
=0l'=
pn2tma—(2k'+3) Ak +1

Here [1; and \i for i = 0,1,2,3 are terms involving A and r. Since ¥ = dw; and
U = Pws, so matrices W1 and Wy have a common eigen vector .Thus the algebra generated

by W7 and W5 has dimension 3. Whereas the algebra generated by W1 Wy, Wy, Wiand I is

linearly dependent as given in [71].
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Using equations (3.2) to (3.7), we have
WiWs = 0ol + 01 X + DoY + 3 XY (38)

where 7; for ¢ = 0,1, 2, 3 is calculated in terms of f;’s and 'S again by using equations (3.2)
to (3.7) .The condition that WiWs, W, Wiand I are linearly dependent [71], is expressed

as

If we calculate 71, D9, 3 in terms of ji;’s and M\’s and put in (3.9), we get
< < \2 < N2 < < \2
()\ZM?) - )\3M2> +A <>\3M1 - /\1M3) + (Aluz - >\2M1>
+r (5\2/13 - 5\?:,&2) (5\3/11 - 5\1,&3>‘i‘(5\2ﬂ3 - 5\?:,&2) (5\1/12 - 5\2,[‘1> =0 (3.10)

By substituting these values in equation (3.10) one obtains a polynomial f ().

Remark 10 Consider non-periodic simple circuits of type (n1,mq) and (ng,msg) corre-
sponding to the elements g1 = (o)™ ([u‘)‘l)ml and go = (ﬂD_l)n2 (1v)™? respectively,
of PGL(2,Z). One obtains a fragment by joining these circuits in such a way that this
fragment will fix both g1 and g2 on a common fixed vertex. This fragment yields a poly-
nomial f (0) which is obtained by using the method developed in [71]. The roots of f (6) in
an appropriate finite field F), where p is a prime number. Corresponding to each 0, where

0 is a zero of f(0), we use theorem in [7}] to obtain a triplet [i,0,t of linear fractional

transformations such that (i)? = (0)® = (0)? = (@)? = (vH)? = 1 and (EO)P"* = 1
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or (uv)? = 1. That is, we obtain groups PSL (2,p), PSL(2,p) x Ca, A(2,3,6), S3, As or

Ay, For+p: PGL(2,Z) — PGL(2,p) with parameters

=0 (B, 0, t)=S3

=1 (m, 0, ty=A4

6=2 (i, v, 1) =S4
and

6=3 (i, v, t)y=A(2,3,6)

In all other cases

(i, v, t)y=PSL(2,p) or PSL(2,p) x Co

3.3 Conclusion

Coset diagrams for PSL (2, Z) when acting on F, where p is a prime, are composed
of various types of well-defined fragments which are themselves composed of simple and non-
periodic circuits connected together in a specified way. We considered non-periodic simple
circuits of type (n1,m1) and (ng,ms) corresponding to the elements g = (p)™ (pv?)™
and go = (;ux2)n2 (uv)™? respectively, of PGL (2,7Z). We obtained a fragment by joining
these circuits in such a way that both ¢; and §s have a common fixed vertex in this fragment.
This fragment yield a polynomial f (#) which is obtained by using the method introduced
in [71]. We obtain the roots of f(6) in an appropriate finite field F}, where p is a prime.

Corresponding to each 6, where 6 is a zero of f (), we use theorem in [74] to obtain a triplet
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fi, 0, such that (72)* = (0)® = (1) = (©8)? = (a)* = 1and ()’ ' =1 or (a0)? = 1. Thus

groups PSL (2,p) x Ca, PSL(2,p), A(2,3,6), S3, As or Ay, are obtained.
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Chapter 4

Generalized triangle groups as a

homomorphic image of PSL (2,7)

In this chapter we extend the parametrization of actions of the modular group

PSL(2,Z) on PL(F),), for various prime numbers p to obtain the generalized triangle

coset diagrams of <ﬁ, v:p? =03 = (ﬁDﬁDﬁD2)k = 1> for all 0 € F,,. We have also obtained
the coset diagrams for three finite generalized triangle groups <u, viu? =03 = (uvuvuv2)2 = 1>,

<u,v cu? =03 = (uvuvuvzuv2)2 = 1> and <u,v cu? =03 = (uvuv2)2 = 1> by taking 6 =

0 as a parameter.

4.1 Introduction

In [83] G. Rosenberger conjectures that all generalized triangle groups satisfy the

Tits Alternative. It is generally known that for a generalized triangle group < wu,v :
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k> the Tits Alternative holds with the exception when (r,s,k) is of the form

u”, v w
(2,s,2) where s = 3,4,5,6,10, 12,15, 20, 30,60 or one the forms (r, s, k) = (3,3,2),(3,4,2),
and (3,5,2) [38]. In [40] it is shown that the Tits Alternative holds in the cases (7, s, k) =
(2,s,2) for ¢ = 6,10,12,15,20,30,60. In [80], Q. Mushtaq and F. Shaheen studied factor

56:6:6

groups of the abstract group through coset diagrams by prameterizing its actions. The

5r,s,k

abstract group is defined for any positive integers r, s, k as

<u, vt p? = =1 = ()" = (ut)? = (uvt)® = 1>

In [39] fourteen generalized triangle groups are classified as finite. Out of these
fourteen only eight groups are quotients of the modular groups. Our aim is to obtain the
coset diagrams of the action of the modular group on a projective line over a finite field,
through parametrization. In this way we obtain one of these eight finite generalized triangle

groups <,u, viu? =03 = (w)3 = 1> of order 1440, where w = pvpvuv?.

4.1.1 Parametrization

Any homomorphism p; : PGL(2,Z) — PGL(2,q) give rise to an action on
PL (F,). We denote the generators (u) p;, (v)p; and (t) p; by @, 7 and ¢. If neither of
the generators p and v and ¢ lies in the kernel of py, so that ji, 7 and t are of order 2, 3 and
2 respectively, then p; is called a non-degenerate homomorphism. It is proved in [74] that
the conjugacy classes of non-degenerate homomorphism of PGL (2,7Z) into PGL (2,q) are
into one to one way with the conjugacy classes of non-trivial elements of PGL (2, q) . This of
course parametrizes the conjugacy classes of homomorphism p, : PGL (2,Z) — PGL (2,q)

are parametrized except for 6 = 0,3 € Fj,.
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If p; is a such homomorphism, and X, Y and T denote matrices of PGL (2,q)

yielding the elements fi, 7 and ¢ in PGL (2,q). The matrices X, Y and T are

a; kicq di  kif
X = , Y = and T =

1 —ay fi —di—1
where al,cl,dl, fl,/ﬁ S Fq.

This gives

(—a% — k:lc%) =A#0

and require that

& +dy ki fi=-1

1

—ky

0

(4.2)

This yields elements satisfying the relations X2 = )\;I , Y3 = )\,2.7 and T2 = )\;)I , where [ is

the identity matrix and /\ll, )\,2 and /\; are non zero scalers. The non-degenerate homomor-

phism p; is determined by nr. So, we must check the conjugacy class of uv. The trace of

matrix XY is
r=ay (2d; + 1)+ 2kic1 f
If tr (TXY) = kys, then

s = 2a1f1 —C (2d1 -+ 1)

so that
3A =% + k82
and set
"
A

(4.3)

(4.4)

(4.6)

Thus, for known values of ¢ and 6 and by using the equations (4.1) to (4.6), the matrices

T, Y and X can be found.
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Action of PGL (2,Z) on PL (Fy) through p, is shown by a coset diagram. The
coset diagram D (0, q) depicts the conjugacy class of actions of PGL (2,Z) on PL (Fy)
corresponding to 6 € Fj,.

We explain the above discussion with the help of an example.

Example 11 Let 6 =4 and q = 17.

By equation (4.6), 0 = % and 0 = 4 implies that r> = 4A. We can choose A =1
so that r = £2. Let r = 2 and substituting the values of A and r in equation (4.5) to get
s? = ;—11 Choosing k1 = 1, we get s = +4. choosing s = 4. Similarly by choosing di = 0,

we get f1 = 4. Putting the values of k1,s,d1 and f1 in equations (4.3) and (4.4) and solving

these equations, a1 = 0 and ¢; = 13. Thus

0 13 0 4 0 -1
X = and Y = and T =

13 0 4 -1 1 0

So, p(2') = & and v (2') = 5. The permutation representation of i and v is

as follows.
fi=(0 00)(2 9)(3 6)(4 13)(5 7)(8 15)(10 12)(11 14)(16)(1)
7=(0 13 oco)(1 7 14)(2 3 5)(4 15 9)(6 12 16)(8 10 11)
t=(0 oo)(1 16)(2 8)(3 11)(4)(5 10)(6 14)(7 12)(9 15)(13)

The associated coset diagram D (4,17) is:
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13

4.2 Parametrization of generalized triangle groups

PGL(2;q) of a cyclic group of order 3. The normalizer of this group is of order 48. We can
take v to be fixed element of order 3. Any more conjugation can occur within N(< v >).
In this group there are two classes of non-central involutions, and we select ji. Then vt is
of order 2 and it centralizes @ and v. It is the particular non-trivial element of the centre

of N(< v >). Thus there are just two conjugacy classes of non-degenerate homomorphisms
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in which w is of order 2.

of order 2 and the other in which tav?avav is of order 2. ®

Theorem 13 Any non trivial element g of PGL(2,q), and its order is other than 2 or 3,

_ 3 N2 k _ _
PP =0 = (1) = (pprpp®)” = (pt)* = (v1)* = 1 (4.7)
_ al k:101
Take i, 7 and t to be represented by X = ,
C —al
d1 klfl 0 —kl
Y = and T = where ay,c1,d1, k1, fi € Fy with
fi —di—1 1 0

k1 # 0. We shall take A as the determinant of matrix X
det(X) = —a? —k1cd = A
Now we require the determinant of matrix Y to be 1, that is
Erdi+kfP+1=0

This clearly yields the elements which satisfy the relations 2 = 7% = (/ﬂ//u/,uﬂ) -
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Theorem 14 The conjugacy classes of homomorphisms from PSL (2,7) to PL (Fy) , which

gives <u2 =13 = (;u//u//uﬂ)k = 1> as a homomorphic image of PSL(2,q), are parame-

trized by the elements of Fy.

Proof. let w = pvpvpvy = pvpuvuv?

If X and Y are the matrices representing fi, 7 and ¢ of PGL (2,q) and satisfying

the relations

(7)* = ()" = A1

Then w is represented as:

M=Y?XYXYX

_ ai
Here we take [i, 7 and t to be represented as X =
c
0 —k
and T = where a1, c1,dy, k1, f1 € F;. We write
10

det (X)=a? — ki =A#0

and require that

B 4d +hff+1=0

kic1

k1 f1

—d; -1

This gives the elements which satisfy the relations (4.1) . We note that matrix XY representing

v has the trace

T =a (2d1 + 1) + 2]€101f1

because det (Y') = 1. This means that det (X) = A and ¢r (X) = 0, Then by using equations

(3.2) — (3.7) in Chapter 3, the matrix M is expressed linearly, as
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M= (rA =)+ (0) X —rAY 4+ (~A +r?)XY
trM = (rA — r3)trl — rAtrY + (=A +r2)tr XY
trM = 2(rA — 17“3) —rA(-1)+ (-A+ 17"2) (r)
trM = 2rA — 13 (4.8)

This implies

trM =r (2A — r2)

this gives
trM _ (2A B 1“2)
T
and
N (4.9)
T
P2 A A trM
T
implies that
M
P2 _3A— AT (4.11)
T
Now
TM = (rA —r)TI+ (0)TX — rATY + (=A +7r°)TXY
tr (TM) = (=A +1?) (trTXY)
tr (TM) = (=A +1?) (trTXY)
trM
tr (TM) = (A — 22) (XY . (4.12)
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(trTXY) = kys

and

3A — 12

S

k1s? +12 = 3A = kys = (4.13)

using this value in equation (4.12)

using equation (4.11), we get

_ LA <A 4 M )
Sr T

— LA M)A+ trb)

sr2

1
= 5 (A% — (trM)?)

tr (TM) = — (A2 — (trM)?) (4.14)

ST

We illustrate this theorem by an example.

Example 15 For the action of PSL(2,7Z) on PL (Fy7) for 0 =1 of Fr.
By equation (4.6),60 = % and det M =1
Let trM = 1. As det(M) = A3 implies that A3 = 1.
This gives A = 1, _1%“/5, _1%“/5 Taking A = 1 and by equation (4.8),trM =

2rA — 13 implies 1 = 2r — 13 = 13 —2r +1 = 0. Hencer = 1, _1%‘/5, %\/E.Takerzl

and by equation (4.14), tr (TM)=1(1-1)=0.
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This shows tr (TM) = 0. Let s = 1, then k1s> + 12 = 3A implying k1 +1 = 3 or

k1 =2. Take dy =2, then d? +d1 +kif? +1=0 or f = 0. Nowr = a1 (2d1 + 1) + 2k1c1 f1

implies that a1 = 3 and s = 2a1f1 — ¢1 (2d1 + 1), that is ¢c; = 4.

So the matrices

31 20 0 —2
X = and 'Y = and T =

4 4 0 4 1 0
give
w(z') = i;;ﬂl, v(z) = f—; and t = 22.

Thus i, 7 and t are

The associated coset diagram is:

4.3 Parametric equations for ¢ =0

We consider the parametrization of the homomorphisms of the actions for the

group <M2 =13 = (/ux/w,wﬂ)g = 1> in the section (4.2) for all the elements of the field

F,. In this section we consider case of § = 0 not only for the aforementioned group
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but also for two other finite generalized triangle groups <,u2 =13 = (,LW,uZ/Q)2 = 1> and
<,u2 =13 = (;w,uu,uyz;uﬂf = 1> which are quotients of the modular group from the list of
fourteen finite generalized triangle groups.

4.3.1 The group <u2 =13 = (upuw?)’ = 1>

Let w = pvpvpv?, then by equations (4.1) — (4.14) are parametric equations for

We consider the action of PGL(2,Z) on PL(F;) and draw a coset diagram for

@ =0 € F7 Then

a(z) = ?é:fg, v(z) = _gzland t= =1

Thus fi, 7 and t are

where 2z’ € PL(F7). The associated coset diagram D (0, 7) is:
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O e ' 6

4.3.2 The group <u2 =13 = (uuuyuy2uy2)2 = 1>

Let w = pvpvpv?uv?. Then the group <u2 =13 = (w)2 = 1> represents a finite
generalized triangle groups of order 576.
The word w is presented as M =YY XYY XY XY X with the same matrices X,Y

and T. By equations (3.2) — (3.7) of Chapter 3, and matrix M is expressed as
M = (A% = 2r2A + )T 4 (rA) X +r2AY + (2rA 4+ r3) XY,
where
trM = (A% = 272 A + vVt (I) + (rA) trX + 72 AtrY + (2rA 4 r3)tr XY, (4.15)

AsTr(I)=2,Tr(X)=0,Tr(Y)=—1and Tr (XY) = r. Thus equation (4.15)

implies that

TrM = 2A% — 3r2A + 1!
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that is

3A — 72 = %2 (242 — tr (M) (4.16)

Also

Tr(TM) = (2rA +3)Tr (TXY)
By equations (4.1) — (4.5), we get

Tr(TM) = i (2A% — Tr (M)) (2A —1?) (4.17)

Now, we consider the action of PGL(2,Z) on PL(Fi7) and draw its corresponding
coset diagram.

Assuming 0 = 0 € Fy7, then by equations (4.1)—(4.5) and equations (4.15)—(4.17),
i, 7 and t are:

p(z)=22, v(d) = 39‘2;,+_141 and ¢ = =} Thus [i, v and { are

=0 oo)(1 92 13)(4 15(  12)

6 10)(7  11)(8  16)(3)(14)

9  16)(10  11)(13  15)(5)(12)
where 2’ € PL(Fi7).

The associated coset diagram D (0,17) is:
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13 5 12 ©

4.3.3 The group <u2 =13 = (uw?)’ = 1>

Let w = pvuv?, then the group <,u2 =13 = (w)2 = 1> represents a finite general-
ized triangle groups of order 24. The word w can be presented as M = Y2XY X with the
same matrices X,Y and T then by equations (3.2) — (3.7) given in Chapter 3, the matrix

M is expressed as

M= —r’T+(0)X — AY +rXY
TrM = (—r*) Trl + (0)TrX — ATTY + (r) TrXY (4.18)

AsTr(I)=2,Tr(X)=0,Tr(Y) = —1 and Tr (XY) = r, thus equation (4.18)

implies that
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TrM = A —r? (4.19)

Also

Tr(TM)=(r)trXY

By equations (4.1) — (4.5) and equation (4.19), we get
Tr(TM) = g (2A — Tr (M) (4.20)

Assuming # = 0 € Fy, then by equations (4.18) — (4.20) and equations(4.15) —

(4.17), we get i, 7 and ¢ respectively are:

w(z) = Z;:fé, v(Z) = 7:2,)2/ and t = ;—,2

Thus i, 7 and t are

t=(0 00)(1 5)(2 6)(3  4), where 2’ € PL(Fy).

The associated coset diagram D (0,7) is:
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4.4 Conclusion

In this work we extended the parametrization of action of PSL (2,Z) for that
triangle group A (2,3,k) [74] to finite generalized triangle groups given by J. Howie in
[39]. We considered only eight groups out of fourteen finite generalized triangle groups
which are quotients of PSL (2,Z). We obtained coset diagrams of action of PSL (2,Z) on
PL (F,) through parametrization which yield one of these eight finite generalized triangle
groups, particularly </L,l/ s =03 = ()" = 1> of order 1440, where w = pvuvuv?. We
also analyzed coset diagrams for parameter § = 0 for three other finite generalized trian-
gle groups <u, =00 = (pprpn? ) = 1>, <u,1/ =0 = (wpprtuy ) = 1> and

<,u, cp? =03 (/ux,uy ) = 1>.
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Chapter 5

PSL(2,7) and carbon allotrope D168

Schwarzite

Coset diagrams for PGL(2,7Z), introduced by G. Higman in late sixties are used
in understanding spatial symmetry of Fullerene molecules. We discuss their relation with
the carbon allotrope structures with negative curvature D168 Schwarzite. We investigate
actions of PSL(2,Z) on PL(F7n) for different values of n, where n € N, and draw coset
diagrams for various orbits and prove some interesting results regarding the number of
orbits that occur. We draw coset diagrams depicting meaningfully their relationship with
the carbon allotrope structures with negative curvature D168 Schwarzite. Some related

topological aspects of these diagrams are also highlighted.
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5.1 Introduction

The use of point groups in chemistry is a well known application of group theory
which portray the spatial symmetry of molecules [44, 45]. In this context the groups of the
regular polyhedra are specifically noteworthy in view of their high symmetry. R. B. King
discussed in [49] that these regular polyhedral groups are subgroups of larger permutation
groups, which themselves are subgroups of the corresponding symmetric groups S,,. This
methodology utilizes classical mathematics, which is by and large new to scientific experts.
Of specific pertinence to chemists in [48] that these groups may be utilized to depict carbon
allotrope structures with negative curvature built from hexagons and heptagons of sp2-
hybridized carbon atoms [48, 19, 94].

PSL(2,p) contains a special subset of groups for p = 5,7, 11, in perspective of their
specific structure of permutations. In three dimensional space the pollakispolyhedral groups
can be viewed as multiples of regular polyhedral symmetry groups[19]. In this chapter we
are interested in PSL(2,7) having order 168 and is O the heptakisoctahedral group. It
has a subgroup of index 7 which is the octahedral group “O” and has many applications
in physics and chemistry. The rotational symmetry of an idealization of the “plumber’s
nightmare” is PSL(2,7), which is a representation for carbon allotropes “Schwarzite” [56].

Geometrical models, for the group PSL(2,7) or heptakisoctahedral group of order
168 depict its transitive permutations on sets of 7 and 8 objects. A set of seven objects
permuted transitively by the group PSL(2,7) can be acquired when an equilateral triangle
and a inscribed circle form the seven-point-seven-line geometry presented in D3 symmetry

[48]( Figl).
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F

Figl : Seven point - Seven line geometry

The seven collineations (AEB, AGC, BFC,BDG,ADF,EFG,CDE) preserved
by the permutations of the seven vertex labels form the group PSL(2,7). Note here that in
this presentation the six straight lines making the three altitudes and the three edges of the
triangle and the inscribed circle are treated on an equal basis. Eight objects permuted tran-
sitively by the heptakisoctahedral group are the vertex labels of a cuboid of Dy point group
symmetry which give a set of 168 nonsuperimposable cuboids, form the group PSL(2,7).
In analogy to the connection between the tetrahedral and icosahedral group, the octahe-

dral rotation group O can be obtained from the heptakisoctahedral group or PSL(2,7) by



68

erasing all seven-fold symmetry elements [19].

The regular genus—3 Klein map group is an other representation of PSL(2,7). Its
high symmetry in association with the theory of multivalued functions is studied in [49].
This map shows the transitivity on a 7 — set, when sevenfold symmetry elements removed,
seven octahedral structures are obtained which contain eight vertices. The relation of carbon
structures with negative-curvature and this group is given in [1, 18].

PSL(2,7)is important to analyze the permutational symmetry of D168 Schwarzite.
Infact the prototypical role of D168 in Schwarzite series and Cgg in fullerene series relate
that the carbon atoms in their structure and the order of corresponding transitive permu-
tational group are same. The structure of D168 is derived from a unit cell of 24 heptagons
embedded in a surface of genus 3. These of 24 heptagons has 56 vertices. Every heptagon
contains 7 vertices and three heptagons are connected with each other with one vertex.
Infinite minimal surfaces with minimal Gaussian curvature and surfaces with genus 3 are

discussed in [48].
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Fig2 : Klein graph

This Fig 2 (discussed by Klein in [50]) portrays an open network of full heptagons
or their portions that can be modified into a negative curvature of genus 3. The unit cell with
24 heptagons, 84 edges and 56 vertices has an Euler’s characteristic which corresponds to the

genus 3. A carbon allotropes with such type of structure is known as D56 protoschwarzite.
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This carbon allotrope structure leads to D168 structure, which is discussed in details in

[48].

5.2 Action of G on PL(Fm)

In this section we discuss the action of G = PSL(2,Z) on PL(F7) where n € N.
We use of coset diagrams to inspect the properties of this action and the orbits of the group

thus obtained.

5.2.1 Action of G on PL(Fy)

Consider G as a group generated by fi and 7, where fi and 7 are the permutation
representations of y and v after the action of G on PL(Fym) for n € N. Taking n = 1, the
action of G on PL(Fy) gives

p=(0 o0)(1 6)(2 3)(4 5)andv=(1 0 o0)(2 4 6)(3)(5).This yields

the following coset diagram +;, which can be graphically represented as:
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®
®

ga!
This diagram is a representation of the well known simple group of order 168 [20].

5.2.2 Action of G on PL(F;2)

We consider now the group G acting on PL(Fy2). An irreducible polynomial of
degree 2 in Fyz is t2 + 2t 4+ 3. The elements of Fyg are of the form tg 4 t1¢, where t; € Z,
for i =0, 1.

Let ¢ be the 48" root of unity of Fyg satisfying ¢ = 5¢ + 4. When G acts on
PL(F2), pu and v have the following permutation representation:

=0 ) (L P)E P)E P @ )

(€ NS EYE@ ENE YT e )

(€ T CNE Y ()

(€31 €41) (C32 C40) (C33 C39) (434 C38) (435 C37) (<36 436)

and

17:(1 0 OO) (C C2 C21) (CS C7 C14) (<~4 <-31 <37) (C5 <13 C6) (CS)
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(CQ C30 C33) (CIO <-36 CQG) (Cll <17 <-44) (<~12 C38 422) (C40)

(C16 <32 4-24) (ClS C18 ng) (C19 <28 <25) (C2O C29 C23) (C27 C46 <47)
(435 <43 442) (C34 <41 <45)

which yield the following two orbits v; and 5.

v, can be graphically represented as:

Y2

This coset diagram represents a group of order 168 [20] and consists of two orbits

71 and 7.
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5.2.3 Action of G on PL(Fs)

Let 3% + 68 + 2 be the irreducible polynomial in Frs. The field has elements of
type Bo + B1C + B9¢2, where §; € Zz, for i = 0,1,2. Let ¢ be the 342" primitive root of
unity satisfying ¢3 = ¢ 4+ 5 of F343. When G acts on PL(Fys), p and v have the following
permutation representation:

=0 ) (1 CTY(C CT) (@ O0) (¢ (e (@ )

CE (M (U T M) ()
¢ ) (¢ CPT) (¢ ) (¢ C) (¢ ) (¢ ¢ (¢ )
¢ ) (T P (¢ ) (¢ ) (¢t ) (¢ M) (¢ M)

T M) (¢ (¢ ) (¢ M) (P M) (¢ )
¢ (T (CP0 M) (CFT M) (¢ ) (¢B M) (¢ ¢M?)
¢ (¢ O (¢ ) (¢M ) (¢ T (¢ ) (¢ 1)
S (S e N (S e N (S e N (S e N (S e N (S e
S (G e N (S e N (e i e N (S e N (S e N (S ey
¢52 M) (¢B5 ) (¢BF MO (¢ ¢IOT) (88 ¢1O0) (5T ¢1OP) (¢ 1Y)
¢ IO (¢ ¢ (¢ O (C ) (€T ¢M) (¢ ) (¢ ¢
¢ M) (T CB) (M) (T (CT ) (P ) (¢ ()

GG N (S N (SN Gl N (S N G N (S S N (SN G o) N (SN S
I I ({0 B (T ) (@ ) (¢ (¢ ¢)
GBI (R () () (G ¢ (¢ )
CIST G () (¢ (0 ¢ (¢ ¢ (¢ )

(¢?
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(C"% ¢P0) (¢ 1) (P 1) (¢ T (¢ ¢TI (¢ ¢
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<199 C314) (C200 4-313) (C201 C312) (4202 C311) (<203 C310) (C204 4309)
C205 CSOS) (<206 <307) (C207 <306) (C208 C305) (C209 C304) (<210 C303)

C212 §301 C213 CBOO C214 C299 <215 C298 (216 <297

p=(1 0 o00)(¢C ¢! ¢1%)(¢PH (I8t (30) (¢2 (Pt (M) (¢B0 ¢ ()
BT () (B0 100 (OB (¢F ¢ T (¢ GPO) (¢B T ¢
BT (L0 (TH) (¢220 (T (B) (¢ ¢122 (PR (¢T ¢B (RO) (¢ (P ()
S N (G G e N (G G e I (Sl e N (S G )
S e e N (G e e I (S G ) N (S Gl G R (S G )
¢ 1O (¢ M (B (MO (52 ¢B) (¢P0 ¢ ¢B0) (¢ 5T (M)
¢ (BB (HY (I8 (AT () (B0 (O9) (19 ¢ M) (6P (0 (M)
(B0 (A (BO) (B2 (B8 (I08) (¢ (BB (A8) (¢ (T ) (¢ (P8 (M)
M8 (M CIT) (B0 MO 0) (€% CPOY) (O0T) (¢P) (€T (O %)
G5 (P (F00) (¢ B2 CO0) (¢B1B (P2 00) (B0 (I ) (B M ¢
¢ 196 (0) (BT (36 (MO) (¢ (O (F0) (¢P09 ¢ () (¢P 10 ()

/‘\AAAAAA/‘\/‘\/‘\
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<307 451 C155 (<~37 4296 C180) (4305 C162 C46) (CSS C45 C88) <304 C254 C297)
(4-303 C144 <~66) (C40 C242 4-231) (C302 4-111 ClOO (4-41 4-178 C249)
(

( ) (

(ng <276 C198) )

(<301 <48 C164) <-42 C172 C299) (<300 <170 <43) (<58 4279 C176) (<284 <166 4-63)
(4-70 4-251 <192) ((272 ClSO 4-91) (C49 4246 C218) ((293 6124 <96) (4—72 CQOQ C239)
<<270 C103 <14O) (C75 <215 4223) (C267 Cllg C127) (C77 <212 <224) (<265 <118 C130>
(<-78 <-203 4-232) (<264 4-110 C139) (C85 C181 C247) (<257 <95 Clﬁl) (4-86 C289 C138)
(C256 <-204 <53) (<81 C225 C207) ((261 <-135 C117) (4-90 C244 C179) (C252 4-163 <98)
(C99 C278 <136) (C243 C206 C64) (C104 4-169 C240) (C238 <102 €173) (Cl()? C195 C211)
(C235 C181 C147) (Cllﬁ CQOO <197) (C226 6145 <142) (<134 CISQ <190) (C208 <152 <153)
(C129 4-165 <~219) (4-213 C123 4-177) (€26 CQOI <186> (4-216 €150 4-141) (C137 4-193 <183)
(<205 4159 <149) (C154 <160 4199) (<188 <143 C182) (C171 C228 C114) (C308 <73 C132)
(C35 <-187 C291)

We have following orbits v; and 73. The graphical representation of 5 is:
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This coset diagram represents a group of order 168 [20] and consists of two orbits
v, and two copies of ;.

The orbit 3 with 24 heptagons has 56 triangles where each triangle is shared
by three heptagons, (24)(7) /2 + 56 (3) = 252 edges, 168 vertices and 24 + 56 = 80 faces.

Thus has Euler’s characteristics (168 — 252 4+ 80) = —4 which corresponds to genus 3. The
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diagrammatic structure of this orbit is similar to the structure of D168 Schwazite as both
have same genus. Also total number of carbon atoms in D168 schwarzite structure and the

order of permutational group obtained are same.

5.2.4 Action of G on PL(Frn)

Similarly we can draw coset diagrams for the action of G on PL(Fyn) for any
n € N, because the orbits of the action contain no new coset diagrams for the orbits other
than 7, 75 and 73 in the coset diagram. In this section we show that the action of G on

PL(Fn) evolves PSL (2,7). We also prove some relevant results.
Theorem 16 If PSL(2,7) acts on PL(Fm), then

G =<pr: (=@ =) =g v*=1>=2PSL(2,7).

Proof. Indeed the actions considered are homomorphisms from PSL(2,7) to
Sym(m), for m = 8,42, 168, whose images are transitive subgroups. Obviously these images
are isomorphic to PSL (2,7), since this group is simple. m

Existence of fixed points of i and 7 in these coset diagrams play an important role

which is evident in the subsequent discussion.

Theorem 17 If G acts on PL(Fn), then
(1) fized points of i exist only for even n.

(2) fized points of v exist for all n.

Proof. (1) When n is even, 7"+1 are the total number of elements in PL(Frn).
As we have 7" = 1 (mod4) and the permutation fi is composed of two cycles leaving one

element which becomes a fixed point of .
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(2) (W)v = (w—1) /w implies (w—1) /w = w, that is w? —w + 1 = 0. So

w = 3,5(mod7) are the fixed points of 7 which exist for all n. m

Remark 18 The action of G on PL(Fm) gives three types of orbits v, v and 7ys.

The orbit vy, consists of 8 elements. C(q_l)/G and C5(q_1)/6 are fized points of U in v,
where ¢ = 7". All coset diagrams for this action contain vy, for all n and g“(q_l)/‘l, C3(q_1)/4
are fixed points of i which lie in the orbit v consisting of 42 elements. This orbit exists
in the coset diagram only for even m. The third orbit v5 consists of 168 vertices but it does
not contain any fived points of i or v. It exists in a coset diagram always in the form of

symmetric pairs for all n > 3.

Remark 19 Let < ¢ :¢7 ' =1> be a cyclic group of Fon. Then,
(i) the fived points of i are ("D and 37D/
(1) the fized points of v are (7" ~1/6 and > =V/6  and

(7i1) 0,1,2,3,4,5,6 and oo are the vertices of v,, where 2 = ¢ =08 4 = 20" =D/3 gng

6 — ¢(T"-1/2

Lemma 20 The conjugacy class equation of G is

6
‘C_;} = ‘Z(G)‘ +ZhT =1+ 21+ 56 + 42 + 24 + 24, where Z(C_}) is the centre of
r=1

G and h, = |z,| = |G : Ng (2,)| for any element z, in the @,th—conjugacy class and

Ng () is the centralizer of an element , in G.

Proof. The group obtained by the action of PSL (2,Z) on PL(Frn) is isomorphic
to PSL(2,7) by theorem (19). So the elements of PSL (2,7) are of orders 1, 2, 3, 4 and

7. Since the orbit v, lies in all the coset diagram for the action of PSL (2,7Z) on PL(Fm),
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we consider that orbit which, by remark (21) and remark (22), consists of eight elements
which are 0,1,2,3,4,5,6, and co. There are six conjugacy classes of G which partitions G.
The only element which commutes with all other elements of G is the identity element only.
So 167 elements are left of order 2, 3, 4 and 7. The element (1 2)(3 4)(5 00)(6 7) of order
2 forms a conjugacy class containing the following 21 elements:
(12)(34)(5 00)(6 7), (12)(36)(45)(7 o0), (12)(300)(47)(56),(13)(24)(56)
(700), (13)(25)(4 7)(6 00), (13)(200)(46)(57),(14)(23)(57)(6 00),(14)(25)
(300)(67), (14)(26)(37)(500),(15)(24)(37)(600), (15)(26)(34)(70), (15)
(2 7)(3 6)(4 00), (1 6)(2 5)(3 7)(4 00), (1 6)(2 7)(3 00)(4 5), (1 6)(2 00)(3 5)(47),
(17)(23)(46)(5 00), (17)(26)(35)(400), (17)(200)(34)(56),(100)(23)(45)
(67), (1 00)(24)(36)(57), (100)(27)(35)(46).
The element (3 5 7)(4 6 00) of order three forms the conjugacy class containing
the following 56 elements: (35 7)(4 6 00), (37 5)(4 00 6), (23 4)(5 00 7), (2 3 00)(4 6 7),
(243)(57 00), (245)(3006), (254)(3600), (256)(374), (267)(40c05),
(65)(347),(276)(4500),(2700)(365), (2003)(476), (2007)(356), (123)
(567),(124)(6700),(125)(3700),(126)(3400), (127)(345), (1200)(456),
(132)(576), (134)(5006), (1300)(457), (136)(274),(135)(2004),(137)
(2006), (142)(6007), (143)(5600), (145)(376), (146)(235),(1400)(237),
(147)(2005), (152)(3007),(156)(4007), (154)(367), (1500)(236),(153)
(2400), (157)(246), (162)(3004), (165)(4700), (167)(3005),(163)(247),
(164)(253),(1600)(257),(172)(354), (176)(3500), (1700)(364), (174)

(25 00), (173)(2600), (175)(264), (1002)(465),(1003)(475),(1007)(346),
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(1005)(263), (1004)(273),(1006)(275).
The class of element (1 2 3 5)(4 oo 7 6), of order 4, consists of the following 42
elements: (1235)(40076), (1246)(3c075), (1257)(30064),(12600)(3754),
(1273)(40065), (12004)(3765),(1372)(45600), (1367)(245 00),
(13005)(2476),(1326)(47500), (13400)(2756), (1354)(276 oc0),
(14002)(3567),(14700)(2563), (1436)(25007),(1427)(35 o0 6),
(1453)(20067), (1465)(20073), (1532)(46700), (1564)(237 c0),
(1576)(23004),(15003)(2674), (1547)(26300), (15200)(3746),
(1642)(35700), (1623)(40057), (1675)(24003), (16007)(2435),
(16500)(2743), (1634)(27005),(1752)(34600), (1724)(36 0 5),
(17006)(2534), (17300)(2546), (1763)(20054), (1745)(2 36),
(10062)(3457), (10056)(2347), (10074)(2365),(10025)(3647),
(10043)(2657), (1c03T7)(26405).
There are two conjugacy classes of order 7, each containing 24 elements. The class
for element (2 354 7 oo 6), contains the following 24 elements:
(257634 00), (27300564), (12360047),(12500463), (12746 0005),
(1346725), (13526700),(13007264),(1475362), (14003657),
(14265300), (15600327),(15432006),(15720034), (16375 002),
(16450073), (16200754), (17004523),(1732456),(176524 00),
(1cob53742), (loo67435), (1c0c24376), (23547 0 6).
The class of order 7 for the element (2 4 6 5 co 3 7), also consists of following 24

elements: (24650037),(26007453), (20043675), (124735 oc0),
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(1263574),(12005736),(13640052), (13700546),(13254007),
(14570026),(14627003),(14300275),(15006472), (153476 00),
(1527643),(16002345),(1654237), (16734200), (174006 32),

(17563004),(17230065),(10035624), (1c076253), (10042567).

Theorem 21 If G acts on PL(Fm), then

(4) ‘OerL(Fm) ((_})‘ =1+ (7”1%18)—8 if n is odd,

i1) |Orbpr ..y (G :2+wij’niseven.
(i) ‘ (7)( )} 168

Proof. By Remark 21, when n is odd, then the orbit v; composed of 8 vertices
exists for all n. So (7" + 1)—8 elements of PL(F7x) are left. By Theorem 19, G is isomorphic
to PSL (2,7) containing elements of orders 2,3,4,7 and the identity element. Theorem 20
shows that for odd n, there is no fixed point of ji. So there are 21 elements of order 2 which
do not fix any element of PSL (2,7). Also, when n is odd, 7" = 3 (mod4) and so there
are 42 elements of order 4 which do not fix any element. By Theorem 19, fixed points of
v exist for all n. Therefore there are 56 elements of order 3 fixing 2 elements. Moreover,
7"+1 =1 (mod 7) so there are 24+24 = 48 elements of order 7 which fix one element because
PSL(2,7) contains two conjugacy classes of order 7. All (7" 4 1) elements of PL(F7n) are
fixed by the identity element. By Frobenius-Burnside lemma [41], the number of orbits

including v, are

}OerL(FW) (G)‘ = ﬁ ( 2:_ )FixPL(Fm) (g)‘)

geG
:ﬁ(ﬂ><0+42><0+56><2—|—48><1+1><(7n_|_1))

_ (T"+1)—8
=1+ g
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By Remark 21, when n is even, v, containing 8 and 7, containing 42 vertices, are
two orbits. Only when n is even, 7, exists in coset diagram. So (7" + 1) — 50 elements of
PL(Frm) are left. By Theorem 20 when n is even, fixed points of i exist so 21 elements of
order 2 fix two elements. When n is even we have 7" = 1 (mod 4). Therefore 42 elements
of order 4 fix 2 elements. Fixed points of ¥ exist for all n so 56 elements of order 3 fix two
elements. In addition 7" +1 =1 (mod 7), so 48 elements of order 7 are fixing one element
and all (7" 4 1) elements are fixed by the identity element. By Frobenius-Burnside lemma
[41], the number of orbits including ~; are

|07bp1 ) (G)] = 1 (Z_ )F 0 (Q)D

geG
=105 (21 x2+4+42x 2456 x2+48 x 1+ 1 x (7" +1))

9 (T1)-50 o

168

Now, we have the following corollary.
Corollary 22 The action of G on PL(Fyn) is intransitive.

Remark 23 (1) If n is odd, we have 1+ % number of orbits, including one orbit v,

containing 8 vertices. leftover elements are evenly divided into % number of orbits.

All of these orbits are copies of v5 consisting of 168 vertices.

(2) If n is even, we have 2 + % number of orbits. One of these orbils is

v, containing 8 vertices and the other is vo containing 42 vertices. Remaining elements
(7"+1)-8 (7"+1)-8

are evenly divided into ~—gg— number of orbits. These ~—z— orbits are copies of 3

containing 168 vertices.

2_
Theorem 24 p"={p+ilp(p-—1)+ s.p(p2 ) } for any prime p.
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Proof. Forn =1, p" = p and for n = 2, we have p?> = p+ p(p—1). Suppose

p(p?—1)
2

for n = k, it is true, that is p* = {p+Ip(p—1) + s. }, where | = 0 if n is odd,

l=14f niseven and s =0 for n < 3.

2_
Next for n = k + 1, consider p*p={p+1lp(p—1) + S.p(p2 D) }.p. Then pFt!l =

(P-4 20 ) p i p o) +lpp—1) — 1p (2 — 1) + 52057 =

p+ 1+ -1+ 6p—2)2 D e pp—1)+5 <<2>>

Therefore it is true for n = k + 1. Hence it is true for all values of n. m

5.3 Conclusion

The group PSL(2,7) is an important group of order 168 and has many applica-
tions in carbon chemistry. It is useful to understand and analyze the structure of graphite
and fullerenes having surface of negative curvature due to its link with polymeric carbon
allotropes having unusually low density. We analyzed that the coset diagrams for the ac-
tion of PGL(2,Z) or PSL(2,Z) on PL (Frn), are a diagrammatic view of D168 Schwarzite.

The total number of orbits that exist in coset diagram are 1 + % if n is odd and

2+ % if n is even. The orbits of the coset diagram are closely related to the structure

of D168 Schwarzite. The transitive action of G on a set of 7 elements for n = 1 gives us an
orbit ; having 8 vertices and also has octahedral "O" symmetry. It is 7O heptakisoctahe-
dral group [6]. For n =2, G acts on PL (Fy9) intransitively obtaining two orbits v, and 7,
containing 8 and 42 elements respectively and representing heptakisoctahedral group. When
G acts on PL (Fyn) for n > 3, we obtain orbits 7;, v, and copies of 5. The orbit v5 and

D168 Shwarzite are topologically same as both have genus 3. The total number of carbon
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atoms in D168 schwarzite structure and the order of permutational group obtained are also

Same.
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Chapter 6

PSL(2,11) and Cgy graph

In this chapter we investigate the actions of the modular group PSL(2,Z) on the
projective line over finite fields PL(Fi1m) for different values of m, where m € N and draw
coset diagrams for various orbits and prove some interesting results regarding the number

of orbits that occur.

6.1 Introduction

To determine the properties of molecules the use of point groups, is a well known
technique and there is a immense literature on this subject. For a particular non-trivial
molecule the group involved is the molecule symmetry group, which upto conjugacy can be
regarded as a finite subgroup of O(3).

The groups PSL(2,5), PSL(2,7) and PSL(2,11) form a special subset of PSL(2,p)
These groups have a particular permutational structure, so in three dimensional (3D) space

they are viewed as multiples of the symmetry groups of the regular polyhedra. These groups
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are also called the pollakispolyhedral groups [19]. PSL(2,5) correspond to the pentakiste-
trahedral, 7', and and PSL(2,7) correspond to heptakisoctahedral group, 7O and have
applications in physics and chemistry. PSL(2,5) is the rotation group of the icosahedron
and fullerene Cgy. PSL(2,7) is the rotational symmetry group of D168 schwarzite an al-
lotrope of carbon. The third group PSL(2,11) forms the undecakisicosahedral group, ‘1.
PSL(2,11) is more interesting than the first two groups, also defines trivalent frameworks
and so has application to other hypothetical high-genus forms of carbon. M. Deza [56] stud-
ied realization of '] as the symmetry group of a 60-vertex regular map of genus 26. The
connection between the skeleton of Cgp and this map is very important to this realization.
Applications of PSL(2,11) in chemistry or physics up to now are limited. In view of the
inherent relations between this group and the icosahedral lattice, this powerful symmetry

in near future can be predictable to look directly in the description of physical occurrences.

6.2 Action of G on PL(Fjin)

In this section we discuss the action of G = PSL(2,Z) on PL(F11m) where m € N.
We make use of coset diagrams to inspect the properties of this action and the orbits of the

group thus obtained.

6.2.1 Action of G on PL(Fi;)

Consider G is a group generated by fi and 7, where i and 7 are the permutation
representations of pu and v after the action of G on PL(Fjjm) for m € N. Taking m = 1,

we get,
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p=0 o) (1 102 5B 7@ 86 9 and

v

(1 0 o©)(2 6 10)(3 8 5)(4 9 7). The associated coset diagram is
£1, which is graphically represented as:

£1

8 4
\ 5i; i;9 J
3 4
£1

This diagram represents simple group of order 660 [20].

6.2.2 Action of G on PL(F;2)

An irreducible polynomial of degree 2 in Fyq2 is 1% + 1 + 7. The action of G on

PL(Fyy2) gives elements of Fi2; of the form v, + 9, where ¢; € Zy1, for j =0, 1.
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Let p be the primitive root of GF (121) satisfying p* = 5p + 4. When G acts on
PL(Fyy2), the permutation representation of y and v is:
=0 00) (1 %) (9! ©7) (9% ©°) (9* ©™) (0" ©%°) (9” ©™°)
(@7 KJSB) (p8 952) (pQ p51) (@10 p50) (@11 p49) (@12 p48)
(' %) (0" ) (0" ™) (0'7 0*) (p'° *?) (0" ")
( = %)
( )

o2 o ) 02 o (pzza p37) (pm g)36) (pzs 935) (926 p34)

29 31 (p30) (990) (961 9119) @62 118) (@63 @117)

(

( (

( (

( ( (% o

(0% 110) (0% ©'19) (9% 1) (977 912) (6% '12) (0% ') (0™ ©'1°)
( ) (07 917) (0™ ©'%) (97 1) (97 ') (677 ')
( ) 2 6%) (

( (

79 101 (p80 @100) (p81 p99) (p8 p98) p83 p97) (p84 p96)

3
)

U= (1 0 OO) (pl p87 p92) (@119 p28 p33) (92 937 {{921) (9118 p99 983)
8) (KJ117 KJ52 p11) (@4 KJ101 {{975) (pllﬁ p45 @19) (p5 978 p97)

3 p6

@42) (p6 p16 KJ?)S) (@7 939 p14) (9113 9106 981) (KJS p35 @17)
3

2

7

© p10

115
P

#
@112 © p85) (936 p84 @60) (99 @73 @98) (plll p22 6047) (@10 @91 p79)
© 29) (@12 p72 996) (9108 p24 @48) (913 @102 @65) (p107 p55 @18)
© 6) (plo5 944 p31) (926 p80 p74) (@94 p46 p40) (@27 p90 @63)
p30) (934 @77 p69) (p86 @51 p43) (949 pﬁl p70) (@71 p50 959)

p53 © @32) (@67 p88 925) (p56 p58 p66) (pﬁ4 @54 p62) (920) (@100)

o

P o

20

( 9
( 23
( 10,
( 110 41
( 9
( 7
( 5

8
93 9
9

which yield orbits £1 and £5. Graphically £2 can be represented as:
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Lo

This coset diagram is a representation of a group of order 660 [20] and contains

two orbits £1 and £5.

6.2.3 Action of G on PL(Fy;3)

let 02 + 02 + 3 be the irreducible polynomial in Fy;s for m = 3. The elements are

Oth

of type g + 019 + 02p?, where 0j € Z11, for j = 0,1,2. Let p be the 1330*" primitive root



90

© + 5 of Fi331. The permutation representation of y and v under

of unity satisfying >

the action of G on PL(Fy;2) is

n=p= (0 OO) (1 KJ665) (KJ @664) (92 @663) (@3 KJ662) (pél KJ661) (@5 {p660)

(p6 p659) (p7 p658) <p8 9657) (p9 9656) (pl() 60655) <@11 p654) (p12 @653)

(@13 p652) (@14 p651) (@15 p650) (K)lG p649) (@17 9648) (@18 p647) (919 p646)
(@20 p645) (p21 @644) (@22 p643) (923 p642) (924 9641) (925 9640) (@26 p639)
(927 p638) (928 9637) (929 @636) (@30 p635) (930 p635) (931 9634) (932 p633)
(@33 9632) (934 p631) (@35 p630) (@36 @629) (937 p628) (@38 9627) (@39 p626)
(p40 @625) (941 p624) (942 p623) (p43 p622) (944 @621) (@45 KJ6'20) (946 p619)
(947 p618) (948 p617) (@49 @616) (p50 p615) (p51 p614) (952 KJ613) (@53 p612)
(953 p612) (5)54 p611) (p55 p610) (@56 p609) (p57 p608) (@58 @607) (959 p606)
(559 599 (650 594 (672 69) (655 62) (5 ) (6 ) (6% )
(57 6999 (655 ) (67 679) (6 67 (671 67) (677 6°%) (67 77)
(p74 KJ591) (@75 p590) (KJ76 p589) (@77 K3588) (978 p587) (p79 @586) (QSO @585)
(p81 @584) (982 p583) (KJSB p582) (p84 KJ581) (@85 p580) (p86 @579) (987 p578)
(@88 p577) (989 p576) (@90 p575) (@91 p574) (@92 p573) (@93 p572) (994 p571)

(@95 p570) (ng @569) (997 9568) (998 p567) (@99 9566) (pl()O @565) (9101 @564)
(9102 9563) (p103 p562) (plo4 p561) (@105 p560) (9106 @559) (p107 @558)
(9108 @557) (9109 @556) (9110 9555) (plll @554) (@112 p553) (plli% @552)

(p114 p551) (9115 p550) (pll6 9549) (@117 p548) (p118 p547) (pllg @546)
(9120 p545) (p121 p544) (9122 9543) (9123 p542) (p124 p541) (9125 p540)
(9126 p539) (9127 p538) (9128 9537) (@129 p536) (9130 p535) (p131 p534)
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(p132 p533) (p133 p532) (9134 @531) (@135 p530) (p136 p529) (9137 p528)
(9138 p527) (9139 p526) (@140 9525) (@141 p524) (9142 p523) (9143 p522)

(p144 p521) (pl45 {{9520) (@146 @519) (@147 p518) (p148 @517) ([{3149 {{3516)

(p150 p515) (K«7151 50514) (9152 9513) (@153 p512) (p154 p511) (@155 80510)

(@156 p509) (@157 @508) (9158 p507) (9159 p506> (@160 p505) (@161 @504)

(@162 @503) (p163 @502) (9164 p501) (9165 p500) (@166 p499) (@167 @498)
(9168 p497) (p169 p496) (9170 p495) (9171 p494) (9172 9493) (p173 @492)

(9174 p491) (9175 @490) (9176 9489) (@177 @488) (@178 p487) (9179 @486)
(plso p485) (9181 p484) (9182 @483) (p183 p482) (9184 p481) (9185 KJ480)

(9186 p479) (p187 p478) (9188 9477) (p189 p476) (9190 p475) (plgl p474)

(p192 p473) (plg3 p472) (@194 5)471) (@195 p470) (p196 p469) (p197 p468)
(919 1) (5% %) (70 67%) (92 %) (67 ') (2 )
(9200 911) (5225 1) (20 6157) (27 1) (62 1) (2 )
(p210 p455) (KJZH {{9454) (@212 p453) (@213 p452) (p214 @451) ({47215 {{3450)
(p216 p449) (K«7217 50448) (9218 9447) (@219 p446) (p220 p445) (K«)221 50444)
(572 949) (572 6142) (2 ™7) (6720 9H0) (6720 6% (77 o)
(9228 @437) (@229 9436) (pZSO p435) (9231 p434) (9232 @433) (@233 9432)
(9234 p431) (p235 @430) (9236 p429) (p237 p428) (9238 p427) (p239 @426)
(210 012) (P11 120) (22 0127) (249 12) (o214 121 (62 )

(p246 p419) (9247 p418) (9248 9417) (@249 @416) (9250 p415) (9251 KJ414)

(9252 p413) (p253 p412) (9254 KJ411) (@255 p410) (9256 p409) (9257 p408)
(p258 p407) (9259 p406) (9260 9405) (@261 p404) (p262 p403) (p263 p402)
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(p264 p401) (p265 p400) (9266 @399) (@267 p398) (p268 p397) (p269 p396)
(9270 9395) ({{3271 p394) (@272 9393) (@273 p392) (9274 p391) ({{3275 p390)

(p276 g)389) (KJ277 {{9388) (9278 p387) (@279 p386) (9280 @385) ([47281 {{9384)

(p282 p383) (KJ283 50382) (9284 9381) (@285 p380) (p286 p379) (KJ287 80378)
(@288 p377) (@289 @376) (9290 p375) (9291 @374> (@292 p373) (@293 @372)

(@294 @371) (@295 9370) (9296 p369) (9297 p368) (@298 @367) (@299 @366)
(9300 p365) (p301 p364) (9302 p363) (9303 p362) (9304 p361) (p305 p360)

(@306 p359) (9307 @358) (9308 9357) (@309 9356) (@310 p355) (9311 @354)

(p312 p353) (9313 p352) (9314 p351) (@315 @350) (9316 p349) (9317 @348)
(9318 p347) (9319 p346) (9320 9345) (@321 p344) (9322 p343) (@323 p342)
(9324 p341) (9325 p340) (9326 9339) (@327 p338) (9328 p337) (p329 p336)

(p330 p335) (9331 p334) (9332 @333) (@666 p1329) (9667 @1328) (p668 91327)

(9669 91326) (9670 p1325) (@671 p1324) (9672 p1323) (@673 91332) (9674 91331)
(p675 plSZO) (9676 p1319) (@677 p1318) (9678 p1317) (@679 91316) (9680 p1315)

(p681 p1314) (p682 p1313) (p683 p1312) (9684 p1311) (9685 91310) (@686 91309)
(@687 p1308) (p688 @1307) (p689 @1306) (9690 91305) (9691 p1304) (9692 @1303)

(@693 @1302) (9694 @1301) (9695 p1300) (p696 @1299) (p697 p1298) (9698 p1297)
(9699 p1296) (p700 91295) (9701 p1294) (@702 p1293) (9703 p1292) (9704 91291)

(@705 p1290) (p706 p1289) (@707 p1288) (@708 p1287) (9709 91286) (9710 91285)

(p711 p1284) (@712 p1283) (p713 @1282) (9714 p1281) (9715 p1280) (9716 p1279)

(9717 p1278) (p718 p1277) (p719 p1276) (9720 @1275) (9721 p1274) (9722 91273)
(9723 p1272) (p724 p1271) (9725 p1270) (9726 W1269) (9727 p1268) (9728 91267)
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(p729 p1266) (9730 p1265) (9731 91264) (9732 @1263) (@733 91262) (@734 @1261)
(9735 91260) (9736 p1259) (@737 p1258) (9738 p1257) (9739 91256) (9740 91255)

(p74l p1254) (p742 p1253) (@743 p1252) (9744 p1251) (@745 91250) (9746 p1249)

(p747 p1248) (p748 p1247) (@749 p1246) (9750 p1245) (9751 91244) <@752 91243)

<P753 p1242) (@754 @1241) (9755 91240) (9756 91239) (9757 p1238) (9758 @1237)
(@759 @1236) (9760 @1235) (9761 91234) (9762 p1233) (p763 p1232) (p764 p1231)

(9765 p1230) (p766 91229) (9767 p1228) (@768 p1227) (9769 p1226) (9770 91225)

(@771 p1224) (p772 p1223) (@773 p1222) (@774 p1221) (9775 p1220) (9776 91219)

(p777 p1218) (p778 p1217) (p779 @1216) (9780 p1215) (9781 p1214) (9782 p1213)

(9783 p1212) (p784 p1211) (p785 p1210) (9786 p1209) (9787 @1208) (9788 @1207)
(p789 p1206) (p790 p1205) (9791 p1204) (9792 @1203) (5)793 p1202) (@794 91201)

(p795 p1200) (p796 p1199) (@797 91198) (@798 @1197) (@799 91196) (9800 @1195)

(9801 91194) (9802 p1193) (@803 p1192) (@804 p1191) (@805 91190) (9806 @1189)

(p807 p1188) (9808 p1187) (@809 p1186) (9810 p1185) (@811 91184) (9812 p1183)

(p813 p1182) (p814 p1181) (9815 @1180) (9816 p1179) (9817 91178) <@818 91177)
(@819 p1176) (QSQO @1175) (p821 p1174) (9822 p1173) (9823 p1172) (9824 p1171)

(@825 @1170) (9826 p1169) (9827 91168) (p828 @1167) (p829 p1166) (9830 p1165)

(9831 91164) (p832 p1163) (9833 p1162) (@834 p1161) (9835 p1160) (9836 91159)

(@837 @1158) (p838 @1157) (@839 p1156) (@840 p1155) (9841 p1154) (9842 91153)

(p843 p1152) (@844 p1151) (p845 @1150) (p846 p1149) (9847 p1148) (9848 p1147)
(9849 p1146) (p850 p1145) (p851 p1144) (9852 p1143) (9853 p1142) (9854 91141)

(p855 p1140) (p856 91139) (9857 p1138) (9858 p1137) (@859 p1136) (9860 91135)
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(p861 p1134) (9862 p1133) (9863 91132) (9864 @1131) (@865 91130) (p866 @1129)

(9867 91128) (9868 p1127) (@869 p1126) (@870 p1125) (9871 91124) (9872 @1123)

(p873 p1122) (p874 p1121) (@875 p1120) (9876 p1119) (@877 91118) (9878 p1117)

(p879 p1116) (pSSO p1115) (p881 p1114) (9882 p1113) (9883 91112) <@884 pllll)

(@885 p1110) (p886 @1109) (p887 @1108) (9888 91107) (9889 p1106) (9890 @1105)
(@891 @1104) (9892 @1103) (9893 91102) (9894 p1101) (p895 p1100) (p896 p1099)

(9897 p1098) (p898 91097) (9899 p1096) (@900 p1095) (9901 p1094) (9902 91093)

(@903 @1092) (p904 p1091) (@905 p1090) (@906 p1089) (9907 p1088) (9908 91087)
(p909 p1086) (p910 p1085) (pgll p1084) (pgl2 p1083) (9913 p1082) (@914 p1081)

(9915 p1080) (p916 p1079) (p917 p1078) (9918 p1077) (9919 @1076) (9920 91075)

(p921 p1074) (p922 91073) (9923 p1072) (9924 @1071) (9925 p1070) (9926 91069)
(p927 p1068) (9928 p1067) (@929 91066) (9930 @1065) (@931 91064) (9932 @1063)

(9933 p1062) (9934 p1061) (@935 p1060) (9936 p1059) (@937 91058) (9938 @1057)
(p939 p1056) (9940 p1055) (@941 p1054) (9942 p1053) (@943 91052) (@944 p1051)

(p945 p1050) (p946 p1049) (@947 @1048) (9948 p1047) (9949 p1046) <@950 91045)

(@951 p1044) (p952 @1043) (p953 @1042) (9954 91041) (9955 p1040) (9956 @1039)

(@957 @1038) (9958 @1037) (9959 91036) (p960 @1035) (p961 p1034) (9962 p1033)

(9963 @1032) (p964 91031) (9965 p1030) (p966 p1029) (9967 p1028) (9968 91027)

(@969 p1026) (p970 @1025) (@971 p1024) (@972 p1023) (9973 p1022) (9974 91021)

(p975 p1020) (p976 p1019) (p977 @1018) (9978 p1017) (9979 p1016) (9980 p1015)

(9981 p1014) (p982 p1013) (p983 p1012) (9984 p1011) (9985 p1010) (9986 @1009)
(9987 p1008) (p988 p1007) (9989 p1006) (9990 @1005) (KJQQI p1004) (@992 91003)
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104 448 p113) (@1226 p1217 882 © ©
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p133 1064 p798) (p1197 p266) (p134 892) (91196 p438 p361)

p135 1147) (91195 p617) (9136 1023) (pllg4 @307 p494)
9137 1175 683) (91193 p155) (9138 308) (91192 p1022 pllll)
p140 p146 p379) (@1190 1184) (p142 1157 696) (p1188 9634 p173)
P43 129 @723) (@1187 @201) (@145 o 731) (@1185 P> @211)
p147 p189p329) ( 1183 1001 1141) (@151 1145) (91179 p185 p631)
p149 p799 @1047) (p1181 531) (p153 194) (p1177 p1136 91012)

@154 p918 @923) (@1176 p407 p412) (9156 @964 p875) (91174 @455 p366)
@158 @165 p342) (91172 p988 @1165) (plﬁl @673 @1161) (@1169 KJ169 p657)
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1009
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184 1113 698) (p1146 p632 @217) (p187 p898 p910) (@1143 p420 p432)

188 1079 728) (91142 p602 p251) (9198 p897 pQOO) (91132 p430 p433)

973) ({{91135 p357 @503) ({{9202 {{9254 KJ209) (@1128 {{31121 91076)
810) (601127 p520 p348) (60205 @779 @1011) (p1125 p319 p551)
820) (@1123 p510 p362) (9212 @932 p851) (91118 @479 p398)

1035) (@1115 p295 p585) (@224 @914 @857) (@1106 @473 @416)
789) (@1105 p541 p349) (p226 9678 91091) (p1104 9239 p652)

962) (pno?) p368 9524) (9228 @845 p922) (@1102 @408 @485)

1077) ( 1101 p253 p641) (p231 p711 1053) ( 1099 277 619)

® ® ® 2

1006) (91098 @ p573) (9236 p1029 p730) (91094 @600 p301)

992) (@1093 338 p564) (p241 p1070 p684) (p1089 p646 p260)

®

891) (p1088 p439 p468) (@245 p1048 p702) (p1085 p628 p282)

890) (91078 p440 9477) (9248 p761 p986) (91082 p344 p569)

p671) (91075 p261) (p256 805) ({{31074 p525 @396)
p724) (p1068 p321) <p263 960) (p1067 p370 p558)
1010) (@1066 9609) (p268 1041) ( 1062 9644)
694) (@1057 302) (@1052 382) ( 278 769)
714) (91046 p616 p333) (p287 959) (91043 371 581)
811) (91042 @519 @434) (9291 705) (91039 331)

1036) (p1038 p294 p663) (p303 p831 p861) (91027 p469 p499)
877) (91021 p453 p521) (9311 p936 KJ748) (91019 p582 p394)

725) (p1016 p605 p374) (9316 p758 p921) (91014 p409 p572)
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(p317 p693 p985) (@1013 p345 [Q637) (9322 @716 p957) (91008 p373 p614)

(9325 9755 {{9915) (91005 p415 {{9575) (9332 p747 p916) (9998 9414 p583)
(p335 9682 p978) ({{9995 KJ352 KJ648) (9336 p752 p907) (@994 @423 p578)
(p337 p739 p919) (50993 @411 @591) (9341 9746 p908) (p989 p422 p584)

(@343 p668 p984) (9987 @346 p662) (9353 9838 p804) (@977 p526 p492)

(@351 @970 p674) (9979 @656 9360) (@354 p706 p935) (@976 @395 p624)
(9358 p821 p816) (@972 9514 9509) (@359 p924 @712) (9971 @618 p406)

(@364 p788 p843) (9966 9487 9542) (@376 p639 9980) (@954 p350 p691)

(9377 o777 p841) (9953 o189 @553) (9380 o2 9873) (p%o 457 p588)
(9389 o784 p822) (9941 (0508 KJ546) (9390 (o876 p729) (p940 (801 p454)
(9397 017 p681) (p933 (0549 p413) (9404 (0890 pgol) (p926 (129 p640)
(p405 P @741) (@925 P @481) (@410 "7 @707) (pgzo %% 9452)

(9417 9893 {{9685) (9913 p645 p437) (@6 p1031 9958) (91324 9372 {{9299)

(p22 @562 KJ81) (91309 p267 p419) (p24 KJ791 p1180) ({{31307 91109 p909)

(p208 p726 p1061) (p1122 9269 p604) <p441 p753 p801) (p889 @529 @577)
(@436 p692 p867) (9894 @463 p638) (9445 p817 @733> (@885 p597 p513)

(@447 @734 p814) (9883 9516 9596) (p461 @732 p802) (@869 @528 p598)
(9474 p709 p812) (p856 9518 9621) (@475 p750 @770) (9855 @560 p580)
(@482 @740 @773) (9848 9557 9590) (9483 p677 @835) (@847 @495 9653)
(p486 p790 p719) (p844 @611 KJ540) (9501 p774 @720) (p829 p610 p556')

(9507 p751 p737) (9823 p593 KJ579) (9511 p704 p780) (p819 p550 p626)

(p537 p722 p'736) (9793 p594 p608) (9555 @785 p655) (9775 p675 p545)
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(p559 p660 p776) (@771 p670) ( 668 727) (p762 p603 9630)
(9563 9760 p672) (9767 p570) ( 643 574) (9687 9756 p552)
(p612 KJ7O3 p680) ({{9718 9627)

Under the action of G on PL(Fj3), we get two orbits £1 and £3. Graphical

representation of L3 is:
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6.2.4 Action of G on PL(Fjim)

Similarly we can draw coset diagrams for the action of G on PL(Fjjm) for any
m € N, because the orbits of the action contain no new coset diagrams for the orbits other
than £ £9 and £3 in the coset diagram. In this section we show that the actions of G on

PL(Fy1m) evolves PSL (2,11). We also prove some relevant results.

Theorem 25 If G acts on PL(Fyim), m € N

Gi=<pv: (1) = @) = (i) = ()" (ir~")° =1 >= PSL(2,11).

Proof. Indeed the actions considered are homomorphisms from PSL (2,11) to
Sym(m), for m = 12,110,660, whose images are transitive subgroups. Obviously these
images are isomorphic to PSL (2,11), since this group is simple. m

Existence of fixed points of i and 7 in these coset diagrams play an important role

which will be evident in the subsequent discussion.
Theorem 26 If G acts on PL(Fy1m), then fized points of i and v exist only for even m.

Proof. When m is even, 11" +1 are the total number of elements in PL(Fjim). As
we have 11" = 1 (mod 4) and the permutation i composed of two cycles leaving one element
which becomes a fixed point of f. Also we have 11" = 1(mod 3) and the permutation o

composed of three cycles leaving two elements which are fixed points of 7. ®

Remark 27 The action of G on PL(Fy1m) gives three types of orbits namely £1, £2 and

£3.

The orbit £ consist of 12 elements. All coset diagrams for this action contain £

for all m. (1™ =1/4 and 311" -1/4 are fixed points of i and (1™ ~1/6 and (5(11m*1)/6
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are fixed points of ¥ which lie in the orbit £5 consisting of 110 elements. This orbit exists
in coset diagram only for even m. The third orbit £3 consist of 660 vertices but it does not
contain any fixed points of i or ¥. It exists in coset diagram always in the form of symmetric

pairs for all m > 3.

Remark 28 Let < p: """l =1 > be the cyclic subgroup of Fiim. Then,
(1) the fized points of i are PM™=D/% gnd 3™ =1/4,
(i) the fized points are v are eI =D/6 gpd ¢SO =D/6 4ng

(7i1) 0,1,2,3,4,5,6,7,8,9,10 and oo are the vertices of £1.

Lemma 29 The conjugacy class equation of Gy is

8
G1| =12 (G1)|+ D Iy, =1+55+110+ 132+ 132 + 110 + 60 + 60, where Z (G)
ri=1

denotes the centre of G and ], = |z,,| = |G1: Ng, (xr1)| for any element x,, in the

x, th—conjugacy class and Ng, (7,,) is the centralizer of an element z,, in Gi.

Proof. The group obtained by the action of PSL (2,Z) on PL(Fi1m) is isomorphic
to PSL(2,11) by Theorem 28. So the elements of PSL (2,11) are of order 1, 2, 3, 5,6 and
11. Since the orbit £ lies in all the coset diagram for the action of PSL (2,7Z) on PL(Fyim).
We consider that orbit which, by Remark 30 and Remark 31, consist of twelve elements
which are 0,1,2,3,4,5,6,7,8,9,10 and oco. There are eight conjugacy classes of G1 which
partitions Gi. The only element which commutes with all other elements of Gy is the
identity element only. So 659 elements are left of order 2, 3, 5,6 and 11. The element
(12)(34)(512)(6 11)(7 10)(8 9) of order 2 forms a conjugacy class containing 55 elements.

The element (1 2 3)(4 8 12)(5 10 9)(6 11 7) of order 3 forms the conjugacy class containing
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110 elements. There are two classes of order 5 each containing 132 elements. So there
are 264 elements on the whole in both classes of order 5. The class of order 6 contain 110
elements. There are two conjugacy classes of order 11, each containing 60 elements. So

both classes contain 120 elements of order 11. m

Theorem 30 If G acts on PL(Fm), then
(@) [Orbpr(pym) (G1)] =1+ EEDZ12 G s odd,

(i) ‘OTbPL(FHm) ((_?q)\ =2+ % if m is even.

Proof. By Remark 28, when m is odd, the orbit £1 composed of 12 vertices, exists
for all m. So (11™ + 1)—12 elements of PL(Fjim) are left. By Theorem 26, G is isomorphic
to PSL(2,11) containing elements of orders 2,3,5,6, 11 and the identity element. Theorem
(27) shows that for odd m, there is no fixed point of i and v. So, by Theorem 27 the total
number of orbits for odd m is:

|Orbp ey (Gr)| = 14+ gy =2,

By Remark 28, when m is even, £ containing 12 and £2 containing 110 vertices,
are two orbits. Only when m is even, £3 exists in coset diagram. So (11" +1) — 122
elements of PL(F1ym) are left. By Theorem 29 when m is even, fixed points of i and v
exist. So, by Lemma 30 and Theorem 27, the total number of orbits for even m is:

Orbps iy ()| = 2+ Q=12

Thus we have the subsequent result.
Corollary 31 The action of G on PL(Fy1m) is intransitive.

Remark 32 (1) If m is odd, we have 1 + % number of orbits, including one orbit
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m —
£1 containing 12 vertices. Remaining elements are evenly divided into W number

of orbits. All of these orbits are copies of £3 consisting of 660 vertices.
(2) If m is even, we have 2 + % number of orbits. One of these orbits is
£1 containing 12 vertices and the other is £9 containing 110 vertices. Remaining elements
(11M41)—122

are evenly divided into ~——gz5—— number of orbits. All these orbits are copies of £3

containing 660 vertices.

6.3 Conclusion

The group PSL(2,11) is an important group of order 660 and has many applica-
tions in carbon chemistry. This group is useful to understand and analyze the structure
of graphite and fullerenes. We analyzed the coset diagrams for the action of PGL(2,Z)
or PSL(2,Z) on PL(Fi1m). The total number of orbits that exist in coset diagram are
1+ % if m is odd and 2 + W if m is even. The transitive action of G on a
set of 11 elements for m = 1 gives us an orbit £1 having 12 vertices. It is "I undecakisicosa-
hedral group [56]. For m = 2, G acts on PL (F121) intransitively obtaining two orbits £

and £9 containing 12 and 110 elements respectively and representing undecakisicosahedral

group. When G acts on PL (Fy1m) for m > 3, we obtain orbits £1, £ and copies of £3.
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