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0.3 Introduction

The theory of quantale was �rst introduced by Mulvey [57]. With algebraic struc-

tures and lattice-ordered structures, Quantale introduces a lattice setting of the study

of non-commutative C?- algebra and an initiation of the study of quantum mechanics.

A connection between quantale theory and linear logic was introduced by Yetter in

1990, in which he established a complete class of models for linear intuitionistic logic

[102]. Quantales may be utilized in many interesting research topics like algebraic the-

ory [44], rough set theory ([49, 67, 68, 70, 91, 96]), topological theory [30], theoretical

computer science [77] and linear logic [28].

The idea of quantale module was introduced by Abramsky and Vickers [1]. The

quantale module has attracted many scholars eyes. The idea of quantale module was

motivated by the thought of module over a ring [5]. It replaces rings by quantales

and abelian groups by complete lattices. The concept of quantale module showed up

out of the blue for the �rst time as the key notion in the uni�ed treatment of process

semantics done by Abramsky and Vickers. A family of models of full linear logic is

provided by modules over a commutative unital quantaleas as shown by Rosenthal

[80].

Fuzzy set theory, at �rst proposed by Zadeh [105], has given an important scienti�c

and mathematical tool to the description of those frameworks which are unreason-

ably perplexing or uncertain. Moreover, those conditions including vulnerabilities or

ambiguities even more solidly, the unit interval [0; 1] is replaced with a lattice and

L-fuzzy sets were proposed by Goguen [29]. Gradually by applying fuzzy sets to the

lattice-ordered environment, an important branch, has attracted consideration of re-

searchers [114, 115], recently since fuzzy lattices have been extensively used as a part

of designing, software engineering, topology, logic etc [64, 65]. Further, fuzzy algebra

has furthermore transformed into a promising subject, since fuzzy algebraic structures

have been viably associated with a wide range of �elds [49, 67].

The idea of fuzziness is generally utilized in the theory of formal languages and

automata. Numerous scientists utilized this idea to generalize notions of algebra.

Rosenfeld de�ned fuzzy subgroups. Ahsan et al. proposed fuzzy semirings [2]. There

are several authors who applied the theory of fuzzy sets to quantale, for instance, Luo

and Wang [49] applied the fuzzy set theory to quantales. They de�ned fuzzy prime,

fuzzy semi-prime and fuzzy primary ideals of quantales. They also introduced the
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notions of rough fuzzy (prime, semi-prime, primary) ideals of quantales.

The signi�cance of fuzzy algebraic structures can be viewed by utilizing the notion of

belongingness and quasi-coincidence with a fuzzy subset. Ming and Ming [66] presented

the idea of quasi-coincidence of a fuzzy point with a fuzzy subset. The idea of a quasi-

coincidence of a fuzzy point with a fuzzy set had a indispensable role to develop

di¤erent types of fuzzy subgroups [6, 7]. Remembering this target, the concept of

(2;2 _q)-fuzzy sub-nearrings was introduced by Davvaz [17]. The idea of (�; �)-

fuzzy ideals of hemirings was proposed by Dudek et al., [23]. In terms of (2;2 _q)-
fuzzy interior ideals, ordered semigroups was characterized by Khan et al., [40]. The

generalization of fuzzy interior ideals of semigroup was initiated by Jun and Song

[38]. The concept of (�; �)-fuzzy subalgebras (ideals) of a BCK/BCI algebra was

suggested by Jun [35] and investigated the related results. An (2;2 _qk)-fuzzy ideals
in ternary semigroups was studied by Shabir and Noor [86]. The general form of (�; �)-

fuzzy ideals of hemirings were proposed by Jun et al., [36]. An (2;2 _qk)-type fuzzy
ideals of semigroups were characterized by Shabir et al., [85]. An (2;2 _ q)-interval
valued fuzzy H-ideals in BCK-algebras was described by Zul�qar and Shabir [119].

Ma et al. studied (2;2 _q)-fuzzy �lters of RO-algebras [52]. For more details see
[23, 37, 41, 42, 84].

In 2010, the more general forms of (2;2 _q)-fuzzy �lters and (2;2 _ q)-fuzzy
�lters of BL-algebras were introduced by Yin and Zhan [103]. An (2 ;2 _q�)-fuzzy
�lters and (2 ;2 _ q�)-fuzzy �lters of BL-algebras were also de�ned by them. Some
important results regarding these notions were incorporated also. An (2 ;2 _q�)-
fuzzy interior ideals in ordered semigroups was proposed by Khan et al., [43]. The

signi�cance of these new types of notion is increased further by the work of Ma et

al. They presented the idea of (2 ;2 _q�)-type fuzzy ideals of BCI-algebras and
introduced a few essential results of BCI-algebras [53]. (2 ;2 _q�)-fuzzy ideals in
semigroups were investigated by Shabir and Ali jointly [83].

Rough set theory, introduced in 1982 by Pawlak [61], is a mathematical approach

to imperfect knowledge. The methodology of rough set is concerned with the classi�-

cation and analysis of imprecise, uncertain or incomplete information and knowledge.

The subset generated by lower approximations is characterized by objects that will

de�nitely form part of an interest subset, whereas the upper approximation is char-

acterized by objects that will possibly form part of an interest subset. Every subset

de�ned through upper and lower approximation is known as Rough set. After Pawlak�s
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work, Yao [98, 99] and Zhu [116, 117, 118] provided some new views on rough set the-

ory. Ali et al. [3] studied some properties of generalized rough sets. The applications

of rough set theory used today is much wider than in the past, principally in the areas

of cognitive sciences, medicine, knowledge acquisition, analysis of database attributes,

automata theory, machine learning, pattern recognition and process control.

Although rough set theory and fuzzy set theory are two prominent notions to

study about uncertainty, unpredictability and vagueness yet these theories are distinct

in nature. It can be combined in a good manner to solve many problems. Theory

of fuzzy sets proposes an exceptionally decent way to deal with vagueness. In 1990,

Dubois and Prade [21], introduced the concepts of fuzzy rough and rough fuzzy sets.

There are several authors who introduced rough sets theory in algebraic structures

and fuzzy algebraic structures. Investigation of algebraic properties of rough sets was

started by Iwinski [32]. For instance, some results on rough subgroups were proposed

by Biswas and Nanda [11]. Qurashi and Shabir introduced the roughness in Qt-module

[68]. Xiao and Li [91]; considered a quantale as a ground set and presented the notions

of generalized rough quantales and generalized rough subquantales. Rough prime,

rough semi-prime and rough primary ideals of quantales were investigated by Yang

and Xu [96]. Fuzzy ideals, fuzzy prime, fuzzy semi-prime and fuzzy primary ideals in

quantales were introduced by Luo and Wang [49]. They also discussed rough fuzzy

(prime, semi-prime, primary) ideals of quantales. Rough ideals in rings was proposed

by Davvaz [16]. An algebraic T-rough sets were also proposed by Davvaz [19]. Yamak

et al. [95]; introduced the concept of set-valued mappings as the basis of the generalized

upper and lower approximations of a ring with the help of an ideal. T-rough sets

based on lattices were introduced by Hosseini et al [31]. They also investigated some

results on T-rough (prime, primary) ideal and T-rough fuzzy (prime, primary) ideal on

commutative rings. Roughness in Hemirings [4], was presented by Ali et al. Yaqoob

et al. presented the rough prime bi-�-hyperideals of �-semihypergroups [100, 101].

Tahir et al. proposed the generalized roughness in fuzzy �lters and fuzzy ideals with

thresholds in ordered semigroups [54]. Generalized roughness in (2;2 _q)-fuzzy ideals
of hemirings was initiated by Rameez et al., [74]. Characterizations of Quantales

by (�; �)-fuzzy ideals and its generalized approximations of (2;2 _q)-fuzzy ideals in
Quantales were proposed by Qurashi and Shabir [69, 70]. Kuroki [45] introduced the

notion of rough ideal in a semigroup. Kuroki and Mordeson [46] studied the structure of

rough sets and rough groups. Jun [34], applied the rough set theory to BCK-algebras.



CONTENTS viii

0.4 Chapter-wise Study

This thesis comprises of eight chapters. Througout the thesis, Qt and M denotes

a quantale and quantale modules, unless and otherwise speci�ed.

Chapter one having introductory nature, gives fundamental de�nitions and results,

which are required for the consequent sections.

Chapter two represents the roughness in subsets of a Qt-module with respect to

Pawlak approximation space. Some basic properties of upper and lower approxima-

tions are discussed. We initiate the study of upper and lower rough approximations

of Qt-submodule of a Qt-module and discuss the relations between the lower (upper)

rough Qt-submodules of Qt-module and the lower (upper) approximations of their ho-

momorphic images. The concept of set-valued homomorphism and strong set-valued

homomorphism of Qt-modules are presented in this chapter. At the end of this chap-

ter, by using Qt-module homomorphism, homomorphic images of generalized rough

Qt-submodules are introduced.

Chapter three is devoted to the study the generalized rough fuzzy ideals, generalized

rough fuzzy prime ideals, generalized rough fuzzy semi-prime ideals and generalized

rough fuzzy primary deals of quantales. Further, approximations of fuzzy ideals, fuzzy

prime, fuzzy semi-prime and fuzzy primary ideals with the help of set-valued and

strong set-valued homomorphisms are discussed. In addition, homomorphic images of

generalized rough prime (semi-prime, primary) ideals which are established by quantale

homomorphism, are examined.

Chapter four presents the study of (�; �)-type fuzzy subquantales (ideals) in

quantale. Further, an (2;2 _q)-type fuzzy ideals (subquantales) is discussed. It

is investigated that homomorphic image of an (2;2 _q)-fuzzy subquantales (ideal)
under quantale homomorphism is an (2;2 _q)-fuzzy subquantale (ideal). These fuzzy
subquantales and fuzzy ideals are characterized by their level subquantales and ideals,

respectively. Some important results about (2;2 _q)-fuzzy prime and (2;2 _q)-fuzzy
semi prime ideals are discussed.

In the chapter �ve, we are starting the investigation of roughness in (2;2 _q)-fuzzy
subquantale and (2;2 _q)-fuzzy ideal of quantales with respect to the generalized ap-
proximation space. Moreover, it is demonstrated that generalized upper and lower ap-

proximations of (2;2 _q)-fuzzy ideal, (2;2 _q)-fuzzy subquantale, (2;2 _q)-fuzzy
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prime ideal and (2;2 _q)-fuzzy semi-prime ideal are (2;2 _q)-fuzzy ideal, (2;2 _q)-
fuzzy subquantale, (2;2 _q)-fuzzy prime and (2;2 _q)-fuzzy semi-prime ideal by
using set-valued and strong set-valued homomorphism, respectively.

In the chapter six; we are presenting more general forms of (2;2 _q)-fuzzy subquan-
tale and (2;2 _q)-fuzzy ideal of Quantales. We introduce the concepts of (�; �)-fuzzy
subquantale; (�; �)-fuzzy ideal and some related properties are investigated. Spe-

cial attention is given to (2 ;2 _q�)-fuzzy subquantale; (2 ;2 _q�)-fuzzy ideal;
(2 ;2 _q�)-fuzzy prime; (2 ;2 _q�)-fuzzy semi-prime ideals; and some interesting
results about them are obtained. Furthermore; subquantale; prime; semi-prime and

fuzzy subquantale; fuzzy prime; fuzzy semi-prime ideals of the types (2 ;2 _q�)
are linked by using level subsets.

In chapter seven, the concept of (�; �)-fuzzy �lter is introduced and some related

properties are discussed. Further, an (2;2 _q)-type fuzzy �lters are discussed. It is
investigated that inverse image of an (2;2 _q)-fuzzy �lter under quantale homomor-
phism is an (2;2 _q)-fuzzy �lter. Moreover, these fuzzy �lters are characterized by
their level sets. Furthermore; in this chapter, we are presenting more general forms of

(2;2 _q)-fuzzy f ilters of Quantales. Special attention is given to (2 ;2 _q�)-fuzzy
f ilters.

The goal of chapter eight is to study the the concept of generalized approximations of

(2 ;2 _q�)-type fuzzy subquantales (ideals and �lters) in quantales. With the help
of set-valued and strong set-valued homomorphisms, respectively; it is observed that

lower and upper approximations of (2 ;2 _q�)-fuzzy ideals (subquantale and �lter)
are (2 ;2 _q�)-fuzzy ideals (subquantale and �lter), respectively. Some examples
are added to convey these ideas.



Chapter 1

Preliminaries

In this chapter, we recall some de�nitions and results concerning with quantales,

quantale modules, fuzzy sets and rough sets which are valuable for our consequent

chapters. To start with, we portray complete lattice in light of the fact that nearly

everything will be based on these, and then we address quantales and quantale mod-

ules.

In the �rst section, some fundamental de�nitions about the poset, lattice, sup-

lattice, complete lattices and their homomorphisms are recalled. The de�nition of a

quantale, ideal and �lter of a quantale are presented in the second section. The Quan-

tale homomorphism and its congruence with an example is given here. An example

is added to demonstrate the de�nitions of subquantale, ideal and �lters of a quan-

tale. In the third section, the term quantale module and its examples are given. The

Qt-submodule and Qt-submodule ideal of a quantale module are introduced. The con-

gruence of quantale module and quantale module homomorphism with some related

results are given. Some basic results about fuzzy set theory is introduced in the fourth

section. Fuzzy ideals and fuzzy prime (semi-prime and primary) ideals are given in

this section. In the last section, the notion of rough sets and generalized rough sets

are presented.

1.1 Complete Lattices: De�nitions and Examples

We start by recalling some basic de�nitions about partial orders and sup-lattices,

as can be seen in [9].

1
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De�nition 1.1.1 A partially ordered set (poset) (Pt;�) is a non-empty set Pt equipped
with a binary relation �, which ful�lls the conditions below, for all w; u; z 2 Pt :

(1) w � w. (Re�exivity)

(2) If w � z and z � w, then w = z. (Antisymmetry)

(3) If w � z and z � u, then w � u. (Transitivity)

A poset (Pt;�) is bounded if Pt has a greatest element > 2 Pt such that w � > for

all w 2 Pt, and a least element ? 2 Pt such that ? � w for all w 2 Pt. Sometimes we
call greatest element as top element and least element as bottom element.

Example 1.1.2 Some examples of poset are given below:

(1) Consider the set of all non-negative integers Z+. De�ne ���by: w � u if and
only if w j u. Then, (Z+,�) is a poset, but it is not bounded.

(2) Let X 6= ; and P (X) be a power set of X. Then, it is easy to check that

(P (X),�) is a poset and it is bounded.

De�nition 1.1.3 Let Pt be a poset. Then z 2 Pt is an upper bound of a subset X of

Pt if x � z for all x 2 X. Similarly, w 2 Pt is a lower bound of a subset X of Pt if

w � x for all x 2 X.

Let Pt be a poset. Then z 2 Pt is the supremum, or join of a subset X of Pt if z is

an upper bound of X and, for all upper bounds z0 of X, we have z � z0. Similarly,

w 2 Pt is the in�mum, or meet of a subset X of Pt if w is a lower bound of X and,

for all lower bounds w0 of X, we have w0 � w.

The join (resp. meet) of X, if it exists, is unique and we denote it by
W
X (resp:

V
X),

or, for sets of two elements fx; yg, x _ y (resp: x ^ y).

Proposition 1.1.4 If (Pt;�) is a poset, then:

(1) supfsupfz; yg; wg = supfz; supfy; wgg;

(2) inffinffz; yg; wg = inffz; inffy; wgg;
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(3) z � y , supfz; yg = y , inffz; yg = z.

De�nition 1.1.5 A poset (Lt;�) is called a lattice if supfz; wg and inffz; wg exist
for any z,w in Lt. Clearly, (R,�) is a lattice, where R is the set of real numbers and
" � " is the less than equal relation of real numbers.

De�nition 1.1.6 A non-empty poset Lt, whose every subset has its supremum in Lt,

will be called sup-lattice for simplicity in the following text.

It is known that a set closed under joins contains arbitrary meets as well, and every

sup-lattice is therefore a complete lattice. Considered as ordered sets, sup-lattices and

complete lattices are thus identical, but a di¤erence appears when we look at their

homomorphisms.

De�nition 1.1.7 For sup-lattices Lt1, Lt2 a map �S : Lt1 �! Lt2 is a sup-lattice

homomorphism if it preserves arbitrary joins. Written more formally: for any fzig �
Lt1, (i 2 I), the following holds:

�S(_i2Izi) = _i2I�S(zi).

Since any homomorphism �S preserves suprema including a supremum of an empty

subset, it holds that �S(?t1) = (?t2).

Every homomorphism of complete lattices is certainly a sup-lattice homomorphism,

too, but sup-lattice homomorphisms needn�t preserve meets in general.

De�nition 1.1.8 A lattice Lt is complete when there is
W
X and

V
X for every

subset X of Lt.

Example 1.1.9 ([0,1],_,^) is a complete lattice.

1.2 Quantales: De�nitions and Examples

In 1986, Mulvey initiated the notion of quantale, [57]. In 1990, Yetter connected

quantale theory to linear logic and gave a sound and complete class of models for linear

intuitionstic logic [104]. Quantales have played an important role in many research
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areas like algebraic theory [45], rough set theory [50, 68, 69, 71, 74, 92, 97], topological

theory [31], theoretical computer science [78] and linear logic [29]. Here we present

some de�nitions and examples relevant to the basics of the theory of quantale.

De�nition 1.2.1 [79] A quantale Qt is a complete lattice equipped with an associative,

binary operation 
 distributing over arbitrary joins. In other words, for any w 2 Qt
and fzig � Qt, (i 2 I), it holds:

w 
 (_i2Izi) = _i2I (w 
 zi) ;

(_i2Iwi)
 z = _i2I (wi 
 z) :

Let Xi; X; Y � Qt, we de�ne the followings;

X _ Y = fx _ y j x 2 X; y 2 Y g ;

X 
 Y = fx
 y j x 2 X; y 2 Y g;

_i2IXi = f_i2Ixi j xi 2 Xig .

Throughout the thesis, the symbole Qt will be utilized for quantale, the symbol > will

denote the top element and ? will stand for the bottom one for quantale, unless stated

otherwise.

De�nition 1.2.2 [79, 80] Let Qt be a quantale. An element z 2 Qt is called:

(1) idempotent if and only if z 
 z = z2 = z.

(2) right-sided (left-sided) if and only if z 
> � z (>
 z � z).

(3) two-sided if it is both right-sided and left-sided.

(4) Let Qt be a quantale. Then Qt is commutative if x
 z = z
 x for all x; z 2 Qt.

Example 1.2.3 The following are the Examples of quantales:

(1) Consider the ring (R;+; �). The set of left ideals of a ring R denoted by LIdl(R)
forms a quantale with joins as ideals generated by the union of ideals and mul-

tiplication realized as a product of two ideals given by: A � B = fa1 � b1+; :::;+
an � bn j ai 2 A; bi 2 B; 1 � i � ng. Of course, the sets RIdl(R) and Idl(R) of



1. Preliminaries 5

right ideals and two sided ideals of R are quantales as well. Obviously, all these

three notions merge when R is commutative. Thus, set of all ideals of a ring

under inclusion ordering and standard multiplication of ideals form a quantale.

(2) Let (Qt; ?) be a semigroup and P (Qt) be the set of all its subsets. Then P (Qt)

is a complete lattice under inclusion order. The multiplication 
 can be realized
as: U 
 V = fu ? v j u 2 U; v 2 V g. Thus, (P (Qt);
) is a quantale.

(3) Binary relations on some set X under inclusion order form a complete lattice.

With their composition de�ned as R1
R2 = f(z; w)j9 u : (z; u) 2 R2 & (u,w) 2
R1g a quantale structure can be introduced as the composition distributes over
suprema:

R
 (_i2IRi) = f(z; w) j 9u : (z; u) 2 _i2IRi & (u;w) 2 Rg

= f(z; w) j 9u; 9i : (z; u) 2 Ri & (u;w) 2 Rg

= f(z; w) j 9i : (z; w) 2 R
Rig

= _i2I(R
Ri)

The case with a supremum in the left operand is analogous. Thus, binary rela-

tions on a non-empty set under inclusion ordering and composition of relations

give a quantale.

(4) For a sup-lattice SL, the set of all sup-lattices homomorphisms, $(SL) = f�S :
SL ! SL j �S is a homomorphismg with pointwise ordering and map composition
form a quantale. Sup-lattice SL endomorphisms can be ordered pointwise: for

�S1 ,�S2 : SL ! SL we set �S1 � �S2 , 8 x 2 SL: �S1(x) � �S2(x) what allows
us to compute suprema: (_i2I�Si)(x) = _i2I�Si(x), but it has to be veri�ed
that _i2I�Si is a homomorphism:

(_i2I�Si)(_j2Ixj) = (_i2I)(�Si(_j2Ixj))

= (_i2I)(_j2I�Si(xj))

= (_j2I)(_i2I�Si(xj))

= (_j2I)((_i2I�Si)(xj)).

Multiplication is de�ned as a map composition �S1 
 �S2 = �S1 � �S2 which is
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join-preserving since,

�S 
 (_i2I�Si)(x) = �S � (_i2I�Si)(x)

= �S(_i2I�Si(x))

= _i2I(�S � �Si)(x)

= _i2I(�S 
 �Si)(x)

((_i2I�Si)
 �S)(x) = ((_i2I�Si) � �S)(x)

= _i2I(�Si(�S(x))

= _i2I(�Si � �S)(x)

= _i2I(�Si 
 �S)(x).

(5) Let Qt be a complete lattice. Then Qt become a quantale if z 
 x = x for all

x; z 2 Qt. It also becomes a quantale if z 
 x = z for all x; z 2 Qt.

Throughout the thesis, the notations Fr; �t and � will be utilized for f ilter, quantale

homomorphism and congruence in quantales, respectively.

De�nition 1.2.4 [79] Let (Qt;
) and (Qt,
0) be two quantales. A map �t : Qt �!
Q0t is called a quantale homomorphism if for every z,w 2 Qt,fzig � Qt; (i 2 I), it
holds that

�t(z 
 w) = �t(z)
0 �t(w);

�t(_i2Izi) = _i2I�t(zi)):

A quantale homomorphism �t is an epimorphism if �t is ontoQ0t and �t ismonomor-

phism if �t is one-one. If �t is bijective, then it is called an isomorphism. It is

obvious that �t is order-preserving because if w � z, then �t(w) � �t(z).

De�nition 1.2.5 [79] Let Qt be a quantale. A binary relation � on Qt is a congruence

if � is an equivalence and for any a,b,c,d 2 Qt, faig,fbig � Qt, (i 2 I) it satis�es a�b
& c�d =) (a 
 c)�(b 
 d) and also for all i 2 I : ai�bi =) (_i2Iai)�(_i2Ibi). If �
is a congruence on a quantale Qt then Qt=� is again a quantale where Qt=� = f[a]� :
a 2 Qtg while the operations _ and 
 on Qt=� are de�ned as follows:

(1) [_i2Iai]� = _i2I [ai]�.

(2) [a]� 
 [b]� = [a
 b]� for all ai; a; b 2 Qt and faig � Qt.
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Example 1.2.6 [60] Let �t : Qt �! Q0t be a quantale homomorphism and ker(�t) =

f(a; b) j a; b 2 Qt, �t(a) = �t(b)g. Then ker(�t) is a congruence on Qt.

Proposition 1.2.7 [60] If Qt is a quantale and � a congruence on Qt, the factor set

Qt=� is a quantale again and the mapping � : Qt �! Qt=� de�ned by �(a) = [a]� is a

quantale homomorphism. The quantale Qt=� is then called a quotient quantale of Qt

by the congruence �.

1.2.1 Subquantales, Ideals and Filters

Now, we give de�nitions of subquantale, ideal and �lter of quantale and some

examples of them.

De�nition 1.2.8 [79] A subset Q of a quantale Qt is called a subquantale of Qt if it

is closed under arbitrary sup and multiplication 
 induced by the quantale.

Example 1.2.9 [60] For any quantale Qt the collection of right-sided, left-sided and

two-sided elements of Qt (R(Qt), L(Qt), T (Qt)) are its subquantales.

De�nition 1.2.10 [88, 89] Let Qt be a quantale. A subset ; 6= C of Qt is said to be

an ideal of Qt if the following conditions hold:

(1) If z,w 2 C, then z _ w 2 C;

(2) for all z; w 2 Qt and w 2 C such that z 6 w implies z 2 C;

(3) for all z 2 Qt and w 2 C implies z 
 w 2 C and w 
 z 2 C.

Let C be an ideal of a quantale Qt. Then, C is said to be a prime ideal if z 
 w 2 C
implies z 2 C or w 2 C, 8 z,w 2 Qt. An ideal C is said to be a semi prime ideal

if z 
 z 2 C implies z 2 C for each z 2 Qt. Primary ideal is an ideal C of Qt if 8
x,z 2 Qt, x 
 z 2 C and x =2 C imply zn 2 C for some positive integer n, where

zn = z 
 :::
 z| {z }
n

.

De�nition 1.2.11 [79] Let Qt be a quantale. A non-empty subset Fr of Qt is said to

be a �lter of Qt if Fr is an upper set and closed under 
. i.e., the following conditions
hold:
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(1) for all x 2 Qt and z 2 Fr such that z � x implies x 2 Fr;

(2) for all z; x 2 Fr implies z 
 x 2 Fr.

Fig:1

Table 1.


 ? e m n h >
? ? ? ? ? ? ?
e ? e ? e ? e

m ? ? m ? m m

n ? e ? n ? n

h ? ? m ? h h

> ? e m n h >

Example 1.2.12 Let Qt be the complete lattice shown in Fig:1 and the operation


 on Qt is shown in Table:1. Then it is straightforward to verify that (Qt,
) is a
quantale.

(1) The subsets Q1 = f?;m; h;>g; Q2 = fm;hg and Q3 = f?; e; n;>g of Qt are
examples of subquantales of Qt.

(2) The subsets C1 = f?; e; ng and C2 = f?;m; hg of Qt are examples of ideals of
Qt.

(3) The subsets Fr1 = fe; n;>g, Fr2 = fm;h;>g and Fr3 = fn;>g of Qt are exam-
ples of �lters of Qt.
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1.3 Quantale Module: De�nitions and Examples

The quantale modules were introduced by Abramsky and Vickers [1]. The idea of

quantale module was motivated by the thought of module over a ring [5]. It replaces

rings by quantales and abelian groups by complete lattices. The concept of quantale

module showed up out of the blue for the �rst time as the key notion in the uni�ed

treatment of process semantics done by Abramsky and Vickers. A family of models of

full linear logic is provided by modules over a commutative unital quantales as shown

by Rosenthal [80]. The following is going to deal with quantale modules. Most of the

theory is provided by [1; 16; 45; 60; 81].

De�nition 1.3.1 [1, 15, 44, 60, 81] Let Qt be a quantale and M be a sup-lattice

equipped with a left action � : Qt�M �!M . Then M is called a left Qt-module over

the quantale Qt if for any a; b 2 Qt; faig � Qt; x 2 M ,fxjg � M (i 2 I),(j 2 J), the
following conditions hold:

(_i2Iai) � x = _i2I(ai � x);

a � (_j2Jxj) = _j2J (a � xj) ;

(a
 b) � x = a � (b � x).

Right modules can be de�ned in an analogous way. For the rest of the thesis, Qt-

module M will stand for a left module over the quantale Qt. Let M be a Qt-module;

A � Qt and m 2M . We have,

A �m = fa �m j a 2 Ag ;

A �B = fa � b j a 2 A; b 2 Bg where B �M .

For A;B;Ai �M and i 2 I, we have,

A _B = fa _ b j a 2 A; b 2 Bg ;

_i2IAi = f_i2Iai j ai 2 Aig .

The symbol > will denote the top element and ? will stand for the bottom element

of the Qt-modules as well, throughout the thesis, unless stated otherwise.

Example 1.3.2 The following are the examples of Qt-modules.



1. Preliminaries 10

(1) Let Qt = f0; y; z; 1g be a complete lattice where 0 is the bottom element and 1 is

the top element of Qt; as shown in Fig:2 and the operation 
 on Qt is shown

in Table 2. Then it is straightforward to verify that (Qt;
) is a quantale. Let
M = f?; x;>g be a sup-lattice. The order relation of M is given in Fig:3.

Let � : Qt �M �!M be the left action on M as shown in the table 3.

Table. 3

� ? x >
0 ? ? ?
y ? x >
z ? x x

1 ? x >

Then it is straightforward that M is a Qt-module.

(2) Every quantale Qt is certainly a Qt-module over Qt.

(3) We already know that if M is a sup-lattice, the set of all sup-lattice homomor-

phisms, $(M) = f�S : M ! M j �S is a sup-lattice homomorphismg with
pointwise ordering and composition of maps form a quantale. Let Qt be another

quantale and �m : Qt ! $(M) be a quantale homomorphism. Then we can

de�ne an action a � z = �m(a)(z) for a 2 Qt, z 2 M and M becomes a left

Qt-module. Now consider the following:
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� a � (b � z) = �m(a)(b � z) = �m(a)(�m(b)(z)) = (�m(a) � �m(b))(z) = �m(a � b)(z) =
(a � b) � z.

� (_i2Iai) � z = �m(_i2I(ai)(z) = (�m(_i2I(ai))(z) = _i2I(�m(ai)(z)) = _i2I(ai � z).

� a � (_i2Izi) = �m(a)(_i2Izi) = _i2I(�m(a)(zi)) = _i2I(a � zi).

(4) If Qt is a quantale, $(Qt) can be viewed as Qt-module with multiplication q��m(z)
= (q � �m)(z) where �m is a Qt-module homomorphism.

In the next, the notations M;�m and � will be utilized for quantale module, quantale

module homomorphism and congruence in quantale module, respectively.

De�nition 1.3.3 [1] Let M be a Qt-module. A subset M1 � M is called a Qt-

submodule of M if for any m 2M1, fmig �M1, q 2 Qt, it holds that _mi 2M1 and

q �m 2M1.

Example 1.3.4 Let Qt be a quantale and a 2 Qt. Then the set Qt�a = fq�a j q 2 Qtg
is a left Qt-submodule of Qt.

De�nition 1.3.5 [81] Let M be a Qt-module and ; 6= C � M . Then C is a Qt-

module-ideal of M provided

(1) If ai 2 C (i 2 I) then _i2Iai 2 C;

(2) x 2 C and b � x imply b 2 C;

(3) x 2 C implies a � x 2 C, 8 a 2 Qt.

A Qt-submodule-ideal is a Qt-submodule as well.

Example 1.3.6 Let Qt be a complete lattice shown in Fig:1and 
 be an operation on
Qt de�ned as x 
 z = ? for all x; z 2 Qt. Then it is straightforward to verify that
(Qt;
) is a quantale. Also Qt is a Qt-module over itself. Since Q1 = f?;m; h;>g is
a Qt-submodule of Qt but it is not a Qt-submodule-ideal as > 2 Q1 and n � > but

n =2 Q1.
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De�nition 1.3.7 [60, 78] Let M be a Qt-module. A binary relation � on M is called

a congruence on M if it is an equivalence relation on M and for any given fmig,
fnig � M , m, n 2 M and q 2 Qt, it satis�es the following conditions 8 i 2 I, mi�ni

implies (_i2Imi)�(_i2Ini) and m�n implies (q �m)�(q � n).

De�nition 1.3.8 [60, 78] Let M and M 0 be two Qt-modules. A map �m :M �!M 0

is a Qt-module homomorphism if it is a sup-lattice homomorphism which also

preserves scalar multiplication, i.e.

�m(_i2Imi) = _i2I�m(mi);

�m(a �m) = a � �m(m)

for any a 2 Qt;m 2M , fmig �M (i 2 I).

A Qt-module homomorphism �m :M �!M 0 is called an epimorphism if �m is onto

M 0 and �m is called a monomorphism if �m is one-one. It is an isomorphism, if

�m is bijective.

Proposition 1.3.9 [60, 78] Let M be a Qt-module and � be a congruence on M .

Then M=� is again a Qt-module and a projection � :M �!M=� is a module homo-

morphism. Let � be a congruence relation on a Qt-module M . We de�ne operations

_ and � on the quotient Qt-module M�� =
n
[m]� j m 2M

o
as follows:

(1) _i2I [mi]� = [_i2Imi]� and

(2) [q �m]� = q � [m]� for all mi;m 2M and q 2 Qt.

Theorem 1.3.10 [60, 78] If �m is a homomorphism of Qt-modules from M to M 0,

then

ker(�m) = f(z; w) 2M �M j �m(z) = �m(w)g

is a congruence of Qt-modules. The ker(�m) is called the kernel of �m.

1.4 Fuzzy Sets and Fuzzy Ideals in Quantales

Numerous uses of fuzzy set theory have emerged over the years, for example,

fuzzy logic, fuzzy cellular neural networks, fuzzy automata etc. A fuzzy subset g in
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a non-empty universe Z is de�ned with the help of a mapping g : Z �! [0,1] which

associates a value g(z) to each object z of the set Z. This value portrays the degree

to which an object z is a member of the set Z, or the extent to which the object

z satis�es the property of the set Z. The value g(z) is known as the membership

grade of the object z and the mapping g is known as the membership function of Z.

As a generalization of the abstract set theory, Zadeh, [105] originated the theory of

fuzzy sets. Numerous algebraic structures have been characterized by many authors

to generalize these concepts. Let ; 6= Z be a universe of discourse. Then, the formal
de�nitions of fuzzy subset and its operations, as established by Zadeh [105], are given

below.

De�nition 1.4.1 A fuzzy subset g in Z is a function from Z to the unit closed interval

[0; 1], that is g : Z �! [0,1]. A fuzzy subset g : Z �! [0,1] is non-empty if g is not a

zero map. Let F(Z) be the collection of all fuzzy subsets in Z.

De�nition 1.4.2 Let g and f be two fuzzy subsets in Z. Then g � f if and only if
g(z) � f(z) for all z 2 Z. Clearly, g = f if and only if g � f and f � g.

De�nition 1.4.3 The null fuzzy subset in Z is de�ned by the mapping ;Z : Z �! [0,1]

such that ;Z(z) = 0 for all z 2 Z. The whole fuzzy subset in Z is de�ned by the

mapping FZ : Z �! [0,1] such that FZ(z) = 1 for all z 2 Z.

De�nition 1.4.4 Let g and f be any two fuzzy subsets in Z. Then, the union and

intersection of g and f are de�ned as:

(f d g)(z) = sup(g(z); f(z)) for all z 2 Z and

(f e g)(z) = inf(g(z); f(z)) for all z 2 Z:

De�nition 1.4.5 A fuzzy subset g in Z is said to be a constant fuzzy subset in Z if

and only if g : Z �! [0,1] is a constant function.

De�nition 1.4.6 For � 2 [0; 1], the sets

g� = fx 2 Z j g(x) � �g and g�+ = fx 2 Z j g(x) > �g

are called, �-cut and strong �-cut of g, respectively.
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De�nition 1.4.7 [36] Let �t : Qt �! Q0t be a mapping from a quantale Qt to a

quantale Q0t, and let g and g
0 be fuzzy subsets in Qt and Q0t, respectively. Then the

image of g under �t and the pre-image of g0 under �t are the f-subsets �t(B) and

��1t (B
0), respectively, de�ned as follows:

(i) �t(g)(y) =

8><>:
Sup

x 2 ��1t (y)

g(x), if ��1t (y) 6= ; 8 y 2 Q0t

0, otherwise
;

(ii) ��1t (g
0)(x) = g0(�t(x)) 8 x 2 Qt.

If �t is a quantale homomorphism, then �t(g) is called the homomorphic image of g

under �t and ��1t (g
0) is called the homomorphic pre-image of g0.

Next for fuzzy subset, fuzzy ideal, fuzzy prime ideal, fuzzy semiprime ideal and

fuzzy primary ideals, the following shortened forms, f -subset, FI, FPI, FSPI and

FPY I, will be utilized, respectively.

De�nition 1.4.8 A non-empty f-subset g in Qt is called a FI of Qt, if the conditions

bellow are satis�ed:

(1) z � w =) g(w) � g(z);

(2) inffg(z); g(w)g � g(z _ w);

(3) supfg(z); g(w)g � g(z 
 w)) for all z,w 2 Qt.

From (1) and (2) in De�nition 1:4:8, it is observed that g(z _ w) = inffg(z); g(w)g,
for all z,w 2 Qt. Thus, a f -subset g of Qt is a FI of Qt if and only if g(z _ w) =
inffg(z),g(w)g and g(z 
 w) � supfg(z); g(w)g, for all z,w 2 Qt.

The following de�nitions are taken from [49].

De�nition 1.4.9 Let g be a non-constant FI of a quantale Qt. Then g, is called a

FPI of Qt if it satis�es;

g(z 
 w) = g(z) or g(z 
 w) = g(w) for all z; w 2 Qt.

De�nition 1.4.10 Let g be a FI of a quantale Qt. Then g is called a FSPI of Qt if

the following assertion is satis�ed:
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g(z 
 z) = g(z) for all z 2 Qt.

De�nition 1.4.11 A non-constant FI; g of a quantale Qt is called a FPY I of Qt if,

g(z
w) = g(z) or g(z
w) = g(wn) for all z; w 2 Qt and for some positive integer n.

Proposition 1.4.12 Let g be a FI of a quantale Qt. Then g is a FPI if and only if

g(w 
 z) = g(z) _ g(w) for all w; z 2 Qt.

Proposition 1.4.13 Let g be a f-subset of a quantale Qt.

(1) Then g, is a FI of Qt if and only if for each � 2 [0; 1]; g� (res: g�+) is either
empty or an ideal of Qt.

(2) Then g, is a FSPI of Qt if and only if for each � 2 [0; 1]; g� (res: g�+) is either
empty or an SPI of Qt.

Proposition 1.4.14 Let g be a FI of a quantale Qt.

(1) Then g, is a FPI of Qt if and only if for each � 2 [0; 1]; g� (res: g�+) is either
empty or an PI of Qt.

(2) Then g, is a FPY I of Qt if and only if for each � 2 [0; 1]; g� (res: g�+) is either
empty or an PY I of Qt.

1.5 Rough Sets: De�nitions and Examples

Pawlak at �rst proposed the theory of rough sets [62, 63]. It was utilized to deal with

imprecision and de�ciency in data frameworks. The initial methodology supported by

Pawlak incorporates partitioning the universe set into granules (classes) of compo-

nents, which are indistinguishable or indiscernible subject to the accessible data or

information. With the help of these classes, the two de�nable subsets called the lower

and upper approximations of an arbitrary subset of a universe can be approximated.

In this section, we will give a few ideas identi�ed with rough set theory. An example

is added to demonstrate these concepts.

Let Z be a non-empty set and � be an equivalence relation on Z. Let [z]� denotes the

equivalence class of the relation � containing z 2 Z. Any �nite union of equivalence
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classes of Z is called a de�nable set in Z. Let X be any subset of Z, in general X is

not a de�nable set in Z. However the set X can be approximated by two de�nable

sets in Z. The �rst one is called �-lower approximation of X and the second is called

�-upper approximation. They are de�ned as follows

�(X) = fz 2 Z j [z]� � Xg;

�(X) = fz 2 Z j [z]� \X 6= ;g.

The �-upper approximation of X in Z is the least de�nable set in Z containing X.

The �-lower approximation of X in Z is the greatest de�nable set in Z contained in

X. For any non-empty subset X of Z; �(X) = (�(X); �(X)) is called a rough set with

respect to � or simply an �-rough subset of P (Z)�P (Z) if �(X) 6= �(X); where P (Z)
denotes the set of all subsets of Z.

The universe Z can be separated into three disjoint regions, by using the lower and

upper approximations of a set X � Z.

(1) the positive region (POS)�(X) = �(X);

(2) the negative region (NEG)�(X) = Z� �(X) = (�(X))c;

(3) the boundary region (BND)�(X) = �(X)� �(X):

The positive region contains all objects of Z that can be classi�ed to the equiva-

lence classes of Z with respect to the equivalence relation �. The boundary region,

(BND)�(X), is the set of objects that can possibly, but not certainly, be classi�ed
in this way. The negative region, (NEG)�(X), is the set of objects that cannot be
classi�ed to classes of Z=�.

This is obviously delineated in Figure 4.
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Fig:4 Illustration of the boundary region of Rough set

The approximation of a set X, and the negative, positive and boundary regions are

expressed through Figure 1. Each small square regarded an equivalence class. The

union of the positive and boundary regions constitute the upper approximation of a

set N represented by �(X) = (POS)�(X) [ (BND)�(X).

Proposition 1.5.1 [62] Let (Z; �) be an approximations space. Then the lower and

upper approximations for any X;Y � Z; are satis�ed.

1. � (X) � X � � (X)

2. � (;) = ; = � (;) ; � (Z) = Z = � (Z)

3. � (X [ Y ) = � (X) [ �(Y )

4. �
�
X) [ �(Y

�
� � (X [ Y )

5. � (X) \ �(Y ) � � (X \ Y )

6. � (X \ Y ) = �
�
X) \ �(Y

�
7. X � Y implies � (X) � � (Y ), � (X) � � (Y )

8. � (�X) = �� (X)

9. � (�X) = �� (X)

10. �� (X) = �� (X) = � (X)
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11. �� (X) = �� (X) = � (X).

Where �X means the complement of X.

It is observed that approximations are in fact closure and interior operator in a topol-

ogy generated by data.

De�nition 1.5.2 [99] A subset X of Z is called crisp when its boundary region is

empty, i.e., �(X) = �(X).

De�nition 1.5.3 [62] Let Z be a universal set and let � be an equivalence relation on

Z. Then the set X � Z is called a rough set with respect to � if �(X) 6= �(X).

Another de�nition is

De�nition 1.5.4 [99] A subset de�ned through its lower and upper approximations

is called a Rough set. That is, when the boundary region is a non-empty set (�(X) 6=
�(X)).

Example 1.5.5 Let (Z; �) is an approximation space, and � an equivalence relation,

where Z = fx1,x2,x3,:::,x8g. Consider the following equivalence classes:

E1 = fx1; x4; x8g; E2 = fx2; x5; x7g; E3 = fx3g; E4 = fx6g.

Let X = fx3; x5g and Y = fx3; x6g

�(X) = fx3g and �(X) = fx2; x3; x5; x7g

�(Y ) = fx3; x6g and �(Y ) = fx3; x6g

So �(X) = (fx3g,fx2,x3,x5,x7g) is a rough set and �(Y ) is a crisp set.

1.5.1 Generalized Rough Sets:

Frequently, it is not possible to �nd a suitable equivalence relation among the

elements of the universe set Z due to inde�nite human knowledge. An equivalence

relation is the essential prerequisite for lower and upper approximations while studying

rough set theory. Therefore, there was need to generalize the rough set theory in a more

general form to overcome this situation. The generalized rough set is the generalization

of Pawlak�s rough set. Yamak et al. proposed one of these generalizations. [95].
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De�nition 1.5.6 Let Z and W be two non-empty universes and H be a set-valued

mapping given by H : Z �! P �(W ) where P �(W ) = P (W ) r ;. Then the triplet
(Z;W;H) is called as generalized approximation space. Any set-valued function from

Z to P �(W ) de�nes a binary relation from Z to W by setting �H = f(x; y) 2 Z �W
j y 2 H(x)g. Obviously, if � is an arbitrary relation from Z to W , then a set-valued

mapping H� : Z ! P (W ) can be de�ned by H�(x) = fy 2 W j (x; y) 2 �g for all
x 2 Z. For any set A � W , the lower and upper generalized approximations H(A)

and H(A), are de�ned by

H(A) = fz 2 Z j H(z) � Ag ;

H(A) = fz 2 Z j H(z) \A 6= ;g .

The pair (H(A); H(A)) is referred to as a generalized rough set where H and H are

referred to as a lower and upper generalized approximation operators, respectively. If

a subset A � W satis�es that H(A) = H(A), then A is called a de�nable set of

(Z;W;H). From the de�nitions of lower and upper generalized approximation opera-

tors, the following theorem can be easily derived.

Theorem 1.5.7 [95] Let (Z;W;H) be a generalized approximation space. Its lower

and upper generalized approximation operators satisfy the following properties.

For all B;C 2 P (W );

(L1) H(C) = (H(Cc))c; (U1) H(C) = (H(Cc))c;

(L2) H(W ) = Z; (U2) H(;) = ;;
(L3) H(C \B) = H(C) \H(B); (U3) H(C [B) = H(C) [H(B);
(L4) C � B =) H(C) � H(B); (U4) C � B =) H(C) � H(B);
(L5) H(B) [H(C) � H(C [B); (U5) H(C \B) � H(C) \H(B):

Where Cc is the complement of C.

Throughout the thesis, for generalized approximation space, generalized lower and

upper approximations, lower and upper approximations, the following shortened forms

GAS, GLA and GUA, LA and UA, respectively, will be used.



Chapter 2

Roughness in Quantale Modules

In this chapter, we study the roughness in subsets of a Qt-module with respect to

Pawlak approximation space. We present some basic properties of upper and lower

approximations. We initiate the study of upper and lower rough approximations of

Qt-submodule of a Qt-module and discuss the relations between the lower (upper)

rough Qt-submodules of Qt-module and the lower (upper) approximations of their

homomorphic images. Generalized roughness is also introduced in this chapter. The

idea of set-valued homomorphism and strong set-valued homomorphism of Qt-modules

are presented.

In the �rst section, properties of lower and upper approximations of subsets of

Qt-modules are discussed. Next, complete congruence with respect to _-complete and
�-complete is introduced. Further, upper and lower roughQt-submodules ofQt-module
are de�ned and their di¤erent properties are discussed. In the second section, the rela-

tions between the lower (upper) rough Qt-submodules of Qt-module and the lower (up-

per) approximations of their homomorphic images are discussed. Moreover, roughness

in quotient of Qt-module are proposed. In the third section, set-valued homomorphism

and strong set-valued homomorphism of Qt-modules are de�ned. Properties of lower

and upper approximations of subsets of Qt-modules are discussed. The last section

shows the relation between homomorphic image of upper (lower) approximations of a

subset of Qt-module and the upper (lower) approximations of homomorphic image of

of a subset of Qt-module.

20
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2.1 Pawlak Approximation of Qt-module

In this section, we present the roughness in subsets of a Qt-module regarding Pawlak

approximation space. We contemplate some fundamental properties of lower approx-

imation (LA) and upper approximation (UA). Additionally, we will present the idea

of rough Qt-submodules and discuss their properties. For quantale module homomor-

phism, quantale module isomorphism, set-valued map, set-valued homomorphism and

strong set-valued homomorphism, the following shortened forms QMH, QMI, SVM ,

SV H and SSV H, respectively, will be utilized.

De�nition 2.1.1 Let � be a congruence relation on a Qt-moduleM . Let A be a subset

of M . Then the sets

� (A) =
n
m 2M j [m]� � A

o
and

� (A) =
n
m 2M j [m]� \A 6= ;

o
are known as the LA and UA of A.

Example 2.1.2 Take the Qt-module M of Example 1:3:2. Let

� = f(?;?); (x; x); (>;>); (x;?); (?; x)g

be an equivalence relation on M . Then it is easy to check that � is a congruence on

the Qt-module M . The �-equivalence classes are f?; xg and f>g. Let A = fx;>g.
Then � (A) = f>g and � (A) =M . It is obvious that � (A) � A � � (A).

Theorem 2.1.3 Let � and � be congruence relations on a Qt-module M . If A and B

are non-empty subsets of M , then the following hold;

(1) �(A) � A � �(A);

(2) �(A [B) = �(A) [ �(B);

(3) �(A \B) = �(A) \ �(B);

(4) A � B implies �(A) � �(B);

(5) A � B implies �(A) � �(B);

(6) �(A [B) � �(A) [ �(B);
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(7) �(A \B) � �(A) \ �(B);

(8) � � � implies �(A) � �(B);

(9) � � � implies �(A) � �(B).

Proof. The proof is similar to Theorem 2.1 of [45].

Theorem 2.1.4 Let � be a congruence relation on a Qt-module M . If A and B are

non-empty subsets of M , then

(1) �(A) [ �(B) � �(A _B), if ? 2 A \B,

(2) �(A) \ �(B) � �(A _B),

(3) �(A) [ �(B) � �(A _B), if ? 2 A \B.

Proof. (1) Let a 2 A, we have a _ ? 2 A _ B because ? 2 B. Hence A � A _ B.
Similarly, B � A_B. Thus A[B � A_B. By Theorem 2:1:3, we get �(A)[ �(B) =
�(A [B) � �(A _B).

(2) It is easy to prove that A\B � A_B. By Theorem 2:1:3, we have �(A)\ �(B) =
�(A \B) � �(A _B).

(3) It is similar to part 1.

Fig. 5

Example 2.1.5 Consider the complete lattice Q1 as shown in Fig. 5 and the operation

�
1�on Q1 is de�ned as z
1w = ? for all z; w 2 Q1. Then Q1 is a quantale. Also; Q1
is a Qt-module over Q1. Let � be an equivalence relation on a Qt-module Q1 with the

�-equivalence classes being f?; bg ; fa;>g. It is easy to check that � is a congruence
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relation on Q1. Let A = f?; bg and B = f?; ag. Then �(A) = f?; bg ; �(B) = ;;
�(A _ B) = Q1 and �(A) = f?; bg, �(B) = Q1. Thus converse of parts 2 and 3 of

Theorem 2:1:4, are not true in general.

De�nition 2.1.6 Let � be an equivalence relation on a Qt-module M . Then � is

called a weak congruence on M if for all a; b; c; d 2 M and q 2 Qt, a�b and c�d

implies (a _ c)�(b _ d) and a�b imply (q � a)�(q � b).

Theorem 2.1.7 Let � be a weak congruence relation on a Qt-module M . If A and B

are non-empty subsets of M , then

(1) �(A) _ �(B) � �(A _B);

(2) �(A) \ �(B) � �(A _B).

Proof. (1) Suppose that c 2 �(A) _ �(B). Then there exist a 2 �(A), b 2 �(B) such
that c = a_ b. So there exist x 2 [a]� \A and y 2 [b]� \B such that x_ y 2 A_B and
x_y 2 [a]�_[b]� � [a _ b]�. We have x_y 2 [a _ b]� \ A_B. Thus, c = a_b 2 �(A_B).

(2) Suppose that w 2 �(A) \ �(B). Then there exist a 2 [w]� \ A and b 2 [w]� \ B.
Thus, we have a_b 2 [w]�_ [w]� � [w]�. So a_b 2 (A_B)\ [w]�. Hence w 2 �(A_B).

Fig. 6

Example 2.1.8 Let Q2 be a complete lattice as depicted in F ig 6 and operation �
2�
on Q2 is de�ned as x 
2 y = ?0 for all x; y 2 Q2. Then Q2 is a quantale. Consider
Q2 as a Qt-module over itself. Let

� =
�
(?0;?0); (e; e); (g; g); (h; h); (f; f); (>0;>0); (f;?0); (?0; f)

	
.
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Then � is an equivalence relation on a Qt-module Q2 with the �-equivalence classes be-

ing f?0; fg ; feg ; fgg ; fhg ; f>0g. It is easy to verify that � is a congruence relation on
Q2. Let A = f?0; eg and B = f?0; hg. Then �(A) = f?0; f; eg, �(B) = f?0; f; hg and
�(A)[�(B) = f?0; e; f; hg. Also A_B = f?0; h; e;>0g and �(A_B) = f?0; f; h; e;>0g.
Hence converse of Theorem 2:1:4(1) is not valid in general. Suppose � is an equiva-

lence relation on a Qt-module Q1 having �-equivalence classes f?0g ; fag and fb;>0g.
Clearly � is a weak congruence relation on Q1. Let A = fag and B = f?0; bg.
Then �(A) = fag, �(B) = f?0; b;>0g, �(A _ B) = fa; b;>0g and �(A) = fag,
�(B) = f?0g ; �(A _ B) = fag. Hence �(A) _ �(B) = fag and �(A) \ �(B) = ;.
This concludes that converse of all parts of Theorem 2:1:7, are not true in general.

Theorem 2.1.9 Let � be a congruence relation on a Qt-module M and A, B be Qt-

submodule ideals of M . Then �(A ^B) = �(A) \ �(B).

Proof. It is easy to prove that A ^ B = A \ B. Hence �(A ^ B) = �(A \ B) =
�(A) \ �(B) = �(A) ^ �(B).

De�nition 2.1.10 A congruence relation � on a Qt-module M is called _-complete
if _i2I [xi]� = [_i2Ixi]� for xi 2M , and is called ���complete if it satis�es q � [x]� =
[q � x]� for x 2 M and q 2 Qt. � is a complete congruence if it is _-complete and �
complete.

De�nition 2.1.11 Let M be a Qt-module and � be an equivalence relation on M . A

subset M1 �M is called an upper (lower) rough Qt-submodule of M if �(M1) (�(M1))

is a Qt-submodule of M . If M1 is both upper and a lower rough Qt-submodule of M ,

then we say that M1 is a rough Qt-submodule of M .

Theorem 2.1.12 Let � be a congruence relation on a Qt-moduleM and ; 6=M1 �M .
If M1 is a Qt-submodule of M , then M1 is also an upper rough Qt-submodule of M .

Proof. Clearly ; 6=M1 � �(M1). Let xi 2 �(M1) for i 2 I. Then there exists ai 2M1

for i 2 I such that xi�ai. Since � is a congruence relation, we have (_xi)�(_ai). But
M1 is a Qt-submodule of M , we have _ai 2M1. This shows that (_xi) 2 �(M1). Let

q 2 Qt and x 2 �(M1). Then there exists y 2 M1 with y�x. Since � is a congruence

relation and M1 is a Qt-submodule of M , we have q � y 2M1 and (q � y)�(q � x). This
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implies q � x 2 �(M1). Therefore �(M1) is a Qt-submodule of M , that is M1 is an

upper rough Qt-submodule of M .

Theorem 2.1.13 Let � be a complete congruence on a Qt-module M and M1 � M .
If M1 is a Qt-submodule of M and �(M1) 6= ;, then M1 is also a lower rough Qt-

submodule of M .

Proof. Let xi 2 �(M1) for i 2 I. Then [xi]� � M1 for all i 2 I. Since � is a

complete congruence on the Qt-module M and M1 is a Qt-submodule of M , we have

[_i2Ixi]� = _i2I [xi]� � M1. Hence _i2Ixi 2 �(M1). Assume q 2 Qt and x 2 �(M1),

then we have [x]� �M1. Since � is a complete congruence and M1 is a Qt-submodule

of M , we have [q � x]� = q � [x]� �M1. Thus, we have q �x 2 �(M1). Therefore �(M1)

is a Qt-submodule of M , that is M1 is a lower rough Qt-submodule of M .

By the above two Theorems, we have the following Theorem.

Theorem 2.1.14 Let � be a complete congruence on a Qt-module M . If M1 is a

Qt-submodule of M and �(M1) 6= ;, then M1 is also a rough Qt-submodule of M .

Proposition 2.1.15 Let M be a Qt-module and M1 be a Qt-submodule of M . De�ne

a relation �M1
on M by a�M1

b if and only if there exist m1;m2 2 M1 such that

a _m1 = b _m2. Then �M1
is a congruence on the Qt-module M . (�M1

is also called

congruence induced by M1).

Proof. We show that �M1
is an equivalence relation on M . Since ? 2 M1, we have

that a�M1
a for each a 2 M , i.e., �M1

is re�exive. By the de�nition of �M1
, it is clear

that �M1
is symmetric. Suppose that a�M1

b and b�M1
c. Then there exist m1, m2, m3,

m4 2 M1 such that a _m1 = b _m3 and b _m2 = c _m4 and thus a _ (m1 _m2) =

(a _m1) _m2 = (b _m3) _m2 = (b _m2) _m3 = (c _m4) _m3 = c _ (m3 _m4).

Furthermore, since m1 _m2, m3 _m4 2 M1, we have a�M1
c. This shows that �M1

is

transitive.

Next, we shall show that �M1
is a congruence onM . Assume that a�M1

b and q 2 Qt.
Then there exist m1, m2 2M1 such that a_m1 = b_m2 and thus (q � a)_ (q �m1) =

q � (a _m1) = q � (b _m2) = (q � b) _ (q �m2). Since q �m1, q �m2 2 M1, we have

(q � a)�M1
(q � b). Let ai�M1

bi for i 2 I. Then there exist mi, m0
i 2 M1 such that

ai _mi = bi _m0
i but then _i2I(ai _mi) = _i2I(bi _m0

i)) ( _
i2I
ai) _ ( _

i2I
mi) = ( _

i2I
bi)
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_ ( _
i2I
m0
i). Since _

i2I
mi; _

i2I
m0
i 2 M1, we have ( _

i2I
ai)�M1

( _
i2I
bi). As a consequence,

�M1
is a congruence on M .

Proposition 2.1.16 Let M be a Qt-module and M1 be a Qt-submodule-ideal of M .

Then

(1) for every m 2M , [m]�M1
=M1 if and only if m 2M1;

(2) �
M1
(M1) =M1 = �M1

(M1).

Proof. (1) Let [m]�M1
=M1. Since �M1

is re�exive, it can be concluded that m 2M1.

Conversely, assume m 2 M1. Let m 2 M1. Then m _ z = z _ m for all z 2 M1, and

thus z 2 [m]�M1
; that is M1 � [m]�M1

. On the other hand, if z 2 [m]�M1
, then

there exist m1;m2 2 M1 such that z _m1 = m _m2. Since m _m2 2 M1, we have

z _m1 2M1 and z 2M1. Therefore [m]�M1
=M1.

(2) It is clear that �
M1
(M1) � M1 � �M1

(M1). By part (1), we conclude that

�
M1
(M1) =M1 = �M1

(M1).

Proposition 2.1.17 Let � be a congruence on a Qt-module M . Then [?]� is a Qt-
submodule of M .

Proof. Clearly [?]� 6= ;

(1) Let ai 2 [?]� for i 2 I. Then ai�?. Since � is a congruence, we have _i2Iai�?,
i.e., _i2Iai 2 [?]�.

(2) Let q 2 Qt and w 2 [?]�. Then w�? and (q � w)�?. It follows that q � w 2 [?]�.
Thus, [?]� is a Qt-submodule of M .

Proposition 2.1.18 Let � be a weak congruence relation on a Qt-module M . Then

�[?]� � �.

Proof. Suppose z �[?]�w. Then there exist v; t 2 [?]� such that z _ v = w _ t. Since
v�?, t�? and � is a weak congruence on M , we have (z _ v)�z, (w _ t)�w. Therefore,
z�w by transitivity. i.e., �[?]� � �.

Proposition 2.1.19 Let M be a Qt-module and M1 be a Qt-submodule-ideal of M .

Then [?]�M1
=M1.
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Proof. Let z 2 [?]�M1
. Then z�M1

? and there exist v1; v2 2 M1 such that z _ v1 =
? _ v2 = v2, and thus z 2 M1. Conversely, suppose z 2 M1. Then z�M1

?, i.e., z 2
[?]�M1

. Thus, [?]�M1
=M1.

Lemma 2.1.20 Let M1 be a Qt-submodule-ideal of a Qt-module M and ; 6= B �M .
Then the statements below hold;

(1) �M1
(B) =M1 if and only if B �M1;

(2) M1 � �
M1
(B) if and only if M1 � B;

(3) If M1 � B and B is a Qt-submodule-ideal of M then �
M1
(B) = B = �M1

(B).

Proof. (1) Let �M1
(B) = M1. Then, B � �M1

(B) = M1. Conversely, let B � M1,

by Proposition 2.1.16(2), we get �M1
(B) � �M1

(M1) = M1. Let m 2 M1. Then from

Proposition 2:1:16(1), it follows that [m]�M1
\ B = M1 \ B = B, and m 2 �M1

(B).

Thus, we have M1 � �M1
(B). Therefore �M1

(B) =M1.

(2) It is obvious that M1 � B whenever M1 � �M1
(B). Suppose that M1 � B. Then

M1 = �M1
(M1) � �M1

(B) by Proposition 2:1:16(2).

(3) It is clear that �
M1
(B) � B � �M1

(B), we need only to show that B � �
M1
(B)

and �M1
(B) � B. Let b 2 B. For w 2 [b]�M1

, there exist m1,m2 2 M1 such that

w _ m1 = b _ m2. Since b _ m2 2 B, we have w 2 B, which gives [b]�M1
� B, i.e.,

b 2 �
M1
(B). Thus B � �

M1
(B). Similarly, we can show that �M1

(B) � B. As a

consequence, �
M1
(B) = B = �M1

(B).

2.2 Problem of Homomorphism and Quotients of Qt-modules

In this section, relations between the upper (lower) rough Qt-submodules of Qt-

module and the upper approximation (UA) of their homomorphic images will be dis-

cussed.

Theorem 2.2.1 Let M and M 0 be Qt-modules and �m :M �!M 0 be a QMH. If B

is a non-empty subset of M and � = ker(�m), then

(1) �m(�(B)) = �m(B):

(2) If �m is one-one, then �m(�(B)) = �m(B).
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Proof. (1) Since B � �(B), then �m(B) � �m(�(B)). To see that the reverse inclusion
holds, let y 2 �m(�(B)). Then there exists an element w 2 �(B) such that �m(w) = y.
Thus there exists an element b 2M such that b 2 [w]� \B, and so b 2 [w]� and b 2 B.
Thus (b,w) 2 � such that �m(w) = �m(b). Then y = �m(w) = �m(b) 2 �m(B) and so
�m(�(B)) � �m(B). Thus, we have �m(B) = �m(�(B)).

(2) If �m is one-one then [x]� = fxg because if y 2 [x]� then �m(y) = �m(x) =) y = x

because �m is one one. Thus in this case �(B) = B = �(B). This implies that

�m(�(B)) = �m(B) = �m(�(B)).

Proposition 2.2.2 Let M and N be Qt-modules, �m : M �! N a surjective QMH

and �2 be a congruence on N . Set �1 = f(m1;m2) 2M �M j (�m(m1); �m(m2)) 2 �2g,
then

(1) �1 is a congruence relation on M ;

(2) �2(�m(B)) = �m(�1(B)) for each B �M ;

(3) �
2
(�m(B)) � �m(�1(B)) for each B � M , if �m is injective, then �

2
(�m(B))

= �m(�1(B)).

Proof. (1) Clearly, �1 is an equivalence relation. For congruence relation, let wi�1yi
for all i 2 I. Then �m(wi)�2�m(yi) for all i 2 I. Since �m is aQMH, _i2I�m(wi)�2_i2I
�m(yi) implies that �m(_i2Iwi)�2�m(_i2Iyi), i.e., (�m(_i2Iwi), �m(_i2Iyi)) 2 �2.

Thus we have, ((_i2Iwi),(_i2Iyi)) 2 �1. Let w�1y. Then �m(w)�2�m(y). Let a 2 Qt,
since �2 is a congruence relation and �m is a QMH, we have (a � �m(w))�2(a � �m(y))
=) �m(a�w)�2�m(a�y). So, (a�w)�1(a�y), i:e:, ((a�w),(a�y)) 2 �1. Consequently,
�1 is a congruence relation on M .

(2) Let z 2 �m(�1(B)). Then there exists a 2 �1(B) such that �m(a) = z and

[a]�1 \ B 6= ;. Thus there exists x 2 [a]�1 \ B such that x 2 B and (x; a) 2 �1. This
shows that (�m (x) ; �m (a)) 2 �2 ) �m (x) 2 [�m (a)]�2 . Also, �m(x) 2 �m(B). Thus
[�m (a)]�2 \ �m (B) 6= ; ) z = �m (a) 2 �2(�m (B)), that is �m(�1(B)) � �2(�m (B)).
Conversely, let w 2 �2(�m (B)). Then there exists a 2 �m (B) such that (w; a) 2 �2.
Since �m is surjective so there exist x 2 B and s 2 Qt such that a = �m (x) and

w = �m (s). Thus (�m (s) ; �m (x)) = (w; a) 2 �2 ) (s; x) 2 �1. This implies x 2
[s]�1 \B, so we have s 2 �1 (B), that is w = �m (s) 2 �m (�1 (B)). Thus �2(�m (B)) �
�m (�1 (B)). Hence �m (�1 (B)) = �2(�m (B)).
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(3) Let b 2 �m

�
�
1
(B)

�
. Then there exists a 2 �

1
(B) such that �m(a) = b and

[a]�1 � B. Let y0 2 [b]�2 . Then there exist x0 2 Qt such that �m(x
0) = y0 and

�m(x
0) 2 [�m(a)]�2 ; i.e., (�m(x0); �m(a)) 2 �2. Hence (x0; a) 2 �1; i.e., x0 2 [a]�1 � B

and so �m(x
0) 2 �m(B). Thus, [b]�2 � �m(B) which yields that b 2 �2 (�m (B)). So we

have �m
�
�
1
(B)

�
� �

2
(�m (B)).

Now, suppose that �m is one one and let b 2 �
2
(�m (B)). Then there exists a unique

a 2 Qt such that �m(a) = b and [�m (a)]�2 � �m (B). Let u0 2 [a]�1 ; i.e., (a; u0) 2 �1.
Then (�m(a); �m(u

0) 2 �2; i.e., �m(u0) 2 [�m (a)]�2 � �m (B) ; and so u
0 2 B. Thus;

[a]�1 � B; which gives a 2 �1 (B). Then b = �m(a) 2 �m(�1 (B)); and so �2 (�m (B)) �
�m(�1 (B)).

Lemma 2.2.3 Let M and N be two Qt-modules, �m : M �! N be a surjective

QMH and �2 be a congruence relation on N and �1the congruence on M de�ned in

Proposition 2:2:2. Then for each w 2M and A �M , the following hold;

(1) w 2 �1(A)() �m(w) 2 �m(�1(A)).

(2) w 2 �
1
(A)() �m(w) 2 �m(�1(A)).

Proof. (1) Let w 2 �1(A). Then �m(w) 2 �m(�1(A)). Conversely, if �m(w) 2
�m(�1(A)), then there exists a 2 �1(A) such that �m(w) = �m(a), then �m(w)�2�m(a)
and thus w�1a. Therefore, w 2 [a]�1 � �1(A).

(2) Proof is similar to the part (1).

Theorem 2.2.4 Let �m be a surjective QMH from a Qt-module M to a Qt-module

M 0. Let �2 be a congruence relation on M
0 and A be a subset of M . If �1 =

f(m1;m2) 2M �M j (�m(m1); �m(m2)) 2 �2g, then

(1) �1(A) is a Qt-submodule of M if and only if �2(�m(A)) is a Qt-submodule of M
0.

(2) �
1
(A) is a Qt-submodule of M if and only if �

2
(�m(A)) is a Qt-submodule of M

0.

Proof. By Proposition 2:2:2(3), �2(�m(A)) = �m(�1(A)) for each A �M .

(1) Let �m(�1(A)) is a Qt-submodule of M
0:

(i) Let wi 2 �1(A) (i 2 I). Then �m(wi) 2 �m(�1(A)) (i 2 I). Since �m(�1(A)) is a
Qt-submodule and �m is a QMH, we have �m(_i2Iwi) = _i2I�m(wi) 2 �m(�1(A)).
By Lemma 2:2:3, we have _i2Iwi 2 �1(A).
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(ii) Let w 2 �1(A) and q 2 Qt. Then �m(w) 2 �m(�1(A)). Since �m(�1(A)) is a

Qt-submodule ofM 0, we have �m(q �w) = q ��m(w) 2 �m(�1(A)). Thus q �w 2 �1(A).

By (i)-(ii), �1(A) is a Qt-submodule of M .

Conversely, suppose �1(A) is aQt-submodule ofM . We want to show that �m(�1(A))

is a Qt-submodule of M 0.

(i) Let yi 2 �m(�1(A)) (i 2 I). Then there exists wi 2 �1(A) such that yi = �m(wi)
(i 2 I). We have _i2Iyi = _i2I�m(wi) = �m(_i2Iwi). Since �1(A) is a Qt-submodule
of M , _i2Iwi 2 �1(A) if and only if �m(_i2Iwi) = _i2Iyi 2 �m(�1(A)). Thus, we have
_i2Iyi 2 �m(�1(A)).

(ii) Let y 2 �m(�1(A)) and q 2 Qt. Then w 2 �1(A) such that �m(w) = y. Since,

�1(A) is a Qt-submodule ofM and �m is a QMH, we have q��m(w) = �m(q�w) = q�y.
Then q � w 2 �1(A) if and only if q � y = �m(q � w) 2 �m(�1(A)).

By (i)-(ii), �m(�1(A)) = �2(�m(A)) is a Qt-submodule of M
0.

(2) The proof is similar to that of (1).

Let � be a congruence relation on a Qt-module M . We can de�ne operations _ and �
on the quotient Qt-module M�� =

n
[m]� j m 2M

o
as follows:

_i2I [mi]� = [_i2Imi]� and [q �m]� = q � [m]� for all mi;m 2M and q 2 Qt.

The LA and UA can be displayed in an alternative form as:

�(A)�� =
n
[w]� 2M�� : [w]� � A

o
�(A)�� =

n
[w]� 2M�� : [w]� \A 6= ;

o
.

Theorem 2.2.5 Let � be a congruence relation on a Qt-module M and A �M . Then

(1) A is a lower rough Qt-submodule of M if and only if �(A)�� is a Qt-submodule
of M��.

(2) A is an upper rough Qt-submodule of M if and only if �(A)�� is a Qt-submodule
of M��.

Proof. (1) Assume that A is a lower rough Qt-submodule of M . Let [wi]� 2 �(A)��
for i 2 I. Then wi 2 �(A). Since A is a lower rough Qt-submodule of M , we have

_i2Iwi 2 �(A). Thus, _i2I [wi]� = [_i2Iwi]� 2 �(A)��. Let [w]� 2 �(A)�� and
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q 2 Qt. Then w 2 �(A) and q �w 2 �(A) because A is a lower rough Qt-submodule of
M . So [q � w]� = q � [w]� 2 �(A)��. Hence, �(A)�� is a Qt-submodule of M��.

Conversely, suppose that �(A)�� is a Qt-submodule of M��. Let wi 2 �(A) for

i 2 I. Then [wi]� 2 �(A)�� for i 2 I. Since �(A)�� is a Qt-submodule, we have
[_i2Iwi]� 2 �(A)��. So _i2Iwi 2 �(A) for i 2 I. Let w 2 �(A) and q 2 Qt. Then
[w]� 2 �(A)�� and q � [w]� = [q � w]� 2 �(A)�� because �(A)�� is a Qt-submodule.
Hence q � w 2 �(A). Thus �(A) is a Qt-submodule of M . Hence A is a lower rough

Qt-submodule of M .

(2) The case of upper approximation can be seen in a similar way.

Now we shall consider the relation between the approximation of a set and the ap-

proximation of its preimage. We may get the important results.

Theorem 2.2.6 Let �m be a surjective QMH from a Qt-module M to a Qt-module

N and ��1m (B) = fw 2M j �m(w) 2 Bg for B � N . If �1 is a congruence relation on
M and set �2 = f(�m(w1); �m(w2)) 2 N �N j (w1; w2) 2 �1g, then

(1) �2 is a congruence relation on N ;

(2) �1(�
�1
m (B)) = �

�1
m (�2(B));

(3) �
1
(��1m (B)) = �

�1
m (�2(B)).

Proof. (1) is straightforward.

(2) Let u 2 �1(��1m (B)). Then [u]�1 \ ��1m (B) 6= ;. Let u0 2 [u]�1 \ ��1m (B). Then
�m(u

0) 2 B and (u0; u) 2 �1; so we have (�m(u0); �m(u)) 2 �2. Therefore �m(u0) 2
[�m(u)]�2 \B. Thus �m(u) 2 �2(B)) u 2 ��1m (�2(B)). This shows that �1(��1m (B)) �
��1m (�2(B)). Let v 2 ��1m (�2(B)). Then �m(v) 2 �2(B). This shows that [�m(v)]�2 \
B 6= ;. Let v0 2 B be such that there exist x 2 M such that �m(x) = v0. Thus

x 2 ��1m (B) and �m(x) 2 [�m(v)]�2 . This implies that x 2 [v]�1 . So [v]�1 \ ��1m (B) 6= ;.
Thus v 2 �1(��1m (B)). This implies that ��1m (�2(B)) � �1(�

�1
m (B)). Thus, we have

�1(�
�1
m (B)) = �

�1
m (�2(B)).

(3) Let x 2 ��1m (�2(B)). Then there exist y 2 �2(B) such that �m(x) = y. Since

�m(x) = y 2 �
2
(B) ) [�m(x)]�2 � B. Let y0 2 [�m(x)]�2 . Then there exist x0 2 M

such that �m(x
0) 2 [�m(x)]�2 ; i.e., (�m(x0); �m(x)) 2 �2 then (x0; x) 2 �1. This shows

that x0 2 [x]�1 . But y0 = �m(x0) 2 B ) x0 2 ��1m (B). Thus [x]�1 � ��1m (B). This con-
cludes that x 2 �

1
(��1m (B)). Therefore �

�1
m (�2(B)) � �1(�

�1
m (B)). Let u 2 �1(�

�1
m (B)).
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Then [u]�1 � ��1m (B). Let u
0 2 [u]�1 ; i.e., (u0; u) 2 �1. Then (�m(u0); �m(u)) 2 �2;

i.e., �m(u
0) 2 [�m(u)]�2 . But �m(u0) 2 B. Therefore [�m(u)]�2 � B ) �m(u) 2 �2(B).

This shows that u 2 ��1m (�2(B)). Thus �1(�
�1
m (B)) � ��1m (�2(B)). Finally, we have

�
1
(��1m (B)) = �

�1
m (�2(B)).

Theorem 2.2.7 Let �m be a surjective QMH from a Qt-module M to a Qt-module

N and ��1m (B) = fw 2M j �m(w) 2 Bg for B � N . If �1 is a congruence relation on
M and �2 = f(�m(w1), �m(w2)) 2 N �N j (w1; w2) 2 �1g, then

(1) �2(B) is a Qt-submodule of N if and only if �1(�
�1
m (B)) is a Qt-submodule of M .

(2) �
2
(B) is a Qt-submodule of N if and only if �

1
(��1m (B)) is a Qt-submodule of M .

Proof. (1) Let �2(B) be a Qt-submodule of N . We show that �1(��1m (B)) is a Qt-

submodule of M . By Theorem 2:2:6(2), we have �1(�
�1
m (B)) = �

�1
m (�2(B)). Let wi 2

��1m (�2(B)) for i 2 I. Then �m(wi) 2 �2(B) for i 2 I. Since �2(B) is a Qt-submodule
of N , we have �m(_i2Iwi) = _i2I �m(wi) 2 �2(B). Thus _i2Iwi 2 ��1m (�2(B)). Let
w 2 ��1m (�2(B)) and q 2 Qt. Then �m(w) 2 �2(B). Since �2(B) is a Qt-submodule of
N , we have �m(q�w) = q��m(w) 2 �2(B). Thus q�w 2 ��1m (�2(B)). Hence ��1m (�2(B))
is a Qt-submodule of M . But since �1(�

�1
m (B)) = �

�1
m (�2(B)). Thus �1(�

�1
m (B)) is a

Qt-submodule of M .

Conversely, suppose �1(�
�1
m (B)) is a Qt-submodule ofM . We show that �2(B) is a Qt-

submodule of N . Let yi 2 �2(B) such that yi = �m(wi). Then wi 2 ��1m (�2(B)). Since
��1m (�2(B)) is a Qt-submodule, we get _i2Iwi 2 ��1m (�2(B)) and then �m(_i2Iwi) 2
�2(B). Now since �m is QMH, we have _i2Iyi = _i2I �m(wi) = �m(_i2Iwi) 2 �2(B).
Let y 2 �2(B) and q 2 Qt. Then there exists w 2M such that y = �m(w) 2 �2(B) and
w 2 ��1m (�2(B)). Since ��1m (�2(B)) is a Qt-submodule, we have q � w 2 ��1m (�2(B)).
Hence q � y = q � �m(w) = �m(q � w) 2 �2(B). Thus �2(B) is a Qt-submodule of N .

(2) Proof is similar to part 1.

2.3 Generalized Rough Qt-submodules

In this section, we de�ne the concept of set-valued homomorphism (SV H) of Qt-

modules and give some examples of SV H. It is observed that QMH of a Qt-module is

a SV H. We also investigate some basic properties of GLA and GUA in Qt-modules.
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De�nition 2.3.1 LetM and N be Qt-modules. A mapping H :M �! P (N) is called

a SV H if

(1) _i2IH(mi) � H(_i2Imi);

(2) q �H(m) � H(q �m) for all m;mi 2M and q 2 Qt.

A set-valued mapping H :M �! P (N) is called a SSV H if

(1) _i2IH(mi) = H(_i2Imi);

(2) q �H(m) = H(q �m) for all m;mi 2M and q 2 Qt.

Example 2.3.2 (i) Let � be a congruence on a Qt-module M and H : M �! P (M)

be a SVM de�ned by H(m) = [m]�. Then H is a SV H.

(ii) Let M and N be two Qt-modules. Then the SVM , H : M �! P (N) de�ned by

H(m) = f?g is a SSV H.

(iii) Let �m : M �! N be a QMH. Then the SVM , H : M �! P (N) de�ned by

H(m) = f�m(m)g is a SSV H.

Note that, Example 2:3:2(i) point out that congruence relation may be consider as a

SV H. So, SV H is important for pure algebraic systems.

Theorem 2.3.3 Let M and N be two Qt-modules and C be a subset of N . Then

(1) Let H : M �! P �(N) be a SV H. Let C be a Qt-submodule of N and H(C) be a

non-empty subset of M . Then H(C) is a Qt-submodule of M .

(2) Let H : M �! P �(N) be a SSV H. Let C be a Qt-submodule of N and H(C) be

a non-empty subset of M . Then H(C) is a Qt-submodule of M .

Proof. (1) Let wi 2 H(C) for i 2 I. Then H(wi)\C 6= ; for i 2 I. Hence, there exist
ai 2 H(wi) \ C (i 2 I) such that _i2Iai 2 _i2IH(wi) � H(_i2Iwi). Since, C is a Qt-

submodule, we have _i2Iai 2 C. So H(_i2Iwi) \ C 6= ;. Therefore, _i2Iwi 2 H(C).
Let w 2 H(C) and q 2 Qt. Then, H(w) \ C 6= ;. Let y 2 H(w) \ C. Then we have
q � y 2 C and q � y 2 q � H(w) � H(q � w). Thus, we have H(q � w) \ C 6= ; and
q � w 2 H(C). This concludes that H(C) is a Qt-submodule of M .

(2) Let wi 2 H(C) for i 2 I. Then H(wi) � C for i 2 I. Since H(_i2Iwi) =
_i2IH(wi) � C, we have _i2Iwi 2 H(C). Let z 2 H(C). Then H(z) � C. Now
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H(q � z) = q � H(z) � C. Hence, q � z 2 H(C). This shows that H(C) is a Qt-
submodule of M .

De�nition 2.3.4 Let M and N be two Qt-modules and C be a subset of N . Let

H :M �! P �(N) be a SSV H. If H(C) and H(C) are Qt-submodules of M , then we

call (H(C), H(C)) a generalized rough Qt-submodule.

Proposition 2.3.5 Let H :M �! P �(N) be a SVM . If C, B are non-empty subsets

of Qt-module N , then

(1) H(C) [H(B) � H(C _B); if ?2 C \B

(2) H(C) \H(B) � H(C _B);

(3) H(C) [H(B) � H(C _B); if ?2 C \B.

Proof. (1) Let c 2 C. Then c = c _ ? 2 C _B for ? 2 B. So C � C _B. Similarly,
B � C_B. So C[B � C_B. By Theorem 1:5:7, we have H(C)[H(B) � H(C_B).

(2) It is obvious that C \ B � C _ B. By Theorem 1:5:7, we have H(C) \ H(B) =
H(C \B) � H(C _B).

(3) The proof is similar to the proof of (1).

Example 2.3.6 Let Q1 and Q2 be two complete lattices as depicted in Fig 5 and 6.

The operation �
�on Q1 and Q2 is same and is de�ned as x
y = ? for all x; y 2 Q1
and x 
 y = ?0 for all x,y 2 Q2. Then Q1 and Q2 are quantales and Qt-modules
over Q1 and Q2; respectively. Consider H : Q1 �! P (Q2) be a SVM de�ned as

H(?) = f?0g, H(>) = f>0g, H(a) = feg ; H(b) = ffg. Let A = f?0; eg � Q2,

B = f?0; g; hg � Q2. Then A _ B = f?0; g; e; h;>0g, H(A) = f?; ag ; H(B) = f?g ;
H(A _ B) = f?; a;>g; H(A) = f?; eg ;H(B) = f?g ;H(A _ B) = f?; e;>g. It is
easily seen that converse of all parts of Proposition 2:3:5 are not true in general.

Proposition 2.3.7 Let H : M �! P �(N) be a SSV H. If C, B are non-empty

subsets of Qt-module N , then

(1) H(C) _H(B) � H(C _B);

(2) H(C) \H(B) � H(C _B);

(3) H(C) _H(B) � H(C _B).
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Proof. (1) Let x 2 H(C) _ H(B). Then x = y _ z with y 2 H(C) and z 2 H(B).
Therefore H(y) \ C 6= ; and H(z) \ B 6= ;. Then there exist elements a, b such that
a 2 H(y) \ C and b 2 H(z) \ B. Therefore a _ b 2 C _ B, a _ b 2 H(y) _ H(z) =
H(y _ z) = H(x) which implies that a _ b 2 H(x) \ (C _ B). Thus x 2 H(C _ B).
Hence H(C) _H(B) � H(C _B).

(2) Let y 2 H(C) \H(B). Then y 2 H(C) and y 2 H(B). Let there exist c 2 C and

b 2 B such that c_b 2 C_B and c_b 2 H(y)_H(y) = H(y_y) = H(y) which implies
that c _ b 2 H(y) \ (C _B). Thus y 2 H(C _B). Hence H(C) \H(B) � H(C _B).

(3) Let x 2 H(C) _H(B). Then x = y _ z with y 2 H(C) and z 2 H(B). Therefore
H(y) � C and H(z) � B. We get H(y _ z) = H(y) _ H(z) � C _ B. Hence,

x 2 H(C _B). Therefore, we have H(C) _H(B) � H(C _B).

Example 2.3.8 Let Q1 be a complete lattice shown in Fig 5 and the operation �
�on
Q1 is de�ned as x
y = ? for all x; y 2 Q1. Then Q1 is a quantale and Qt-module over
Q1. Let H : Q1 �! P �(Q1) be a SSV H as de�ned by H(?) = f?g, H(>) = H(a) =
H(b) = f>g. Let C = fbg and B = f?; a;>g. Then C _ B = fb;>g, H(C) = ;,
H(B) = Q1, H(C _ B) = fa; b;>g, H(C) = ;, H(B) = Q1, H(C _ B) = fa; b;>g.
From above calculations, it is easily seen that converse of all parts of Proposition 2:3:7

are not true in general.

Proposition 2.3.9 Let H : M �! P �(N) be a SSV H and �m : M 0 �! M be a

QMI. Then H ��m is a SSV H from M 0 to P �(N) such that H � �m(B) = ��1m (H(B))
and (H � �m)(B) = ��1m (H(B)) for all B 2 P �(N).

Proof. We show that H � �m is a SSV H from M 0 to P �(N). Let mi 2M 0 for i 2 I.
Then

(1) (H � �m)(_i2Imi) = H(�m(_i2Imi)) = H(_i2I�m(mi)) = _i2IH(�m(mi)) =

_i2I(H � �m)(mi).

(2) (H ��m)(q�m) = H(�m(q�m)) = H(q��m(m)) = q�H(�m(m)) = q�(H ��m)(m).

Hence, H � �m is a SSV H from M 0 to P �(N).

Let w 2 H � �m(B) () (H � �m)(w) \ B 6= ; () H(�m(w)) \ B 6= ; () �m(w) 2
H(B)() w 2 ��1m (H(B)). Hence H � �m(B) = ��1m (H(B)).
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Let w 2 (H � �m)(B) () (H � �m)(w) � B () H(�m(w)) � B () �m(w) 2
H(B)() w 2 ��1m (H(B)). Hence (H � �m)(B) = ��1m (H(B)) for all B 2 P �(N).

Proposition 2.3.10 Let H : M �! P �(N) be a SSV H and �m : N �! M 0 be a

QMI. Then H�m is a SSV H from M to P �(M 0) de�ned by H�m(m) = �m(H(m))

such that H�m(B) = H(�
�1
m (B)) and H�m(B) = H(�

�1
m (B)) for all B 2 P �(M 0).

Proof. We show that H�m is a SSV H from M to P �(M 0). Let mi 2 M for i 2 I.
Then

(1)H�m(_i2Imi) = �m(H(_i2Imi)) = �m(_i2IH(mi)) = _i2I�m(H(mi)) = _i2IH�m(mi).

(2) H�m(q �m) = �m(H(q �m)) = �m(q �H(m)) = q � �m(H(m)) = q �H�m(m).

Hence, H�m is a SSV H from M to P �(M 0).

Let w 2 H�m(B) () H�m(w) � B () �m(H(w)) � B () H(w) � ��1m (B) ()
w 2 H(��1m (B)). Hence H�m(B) = H(��1m (B)).

Let w 2 H�m(B)() H�m(w)\B 6= ; () �m(H(w))\B 6= ; () H(w)\ ��1m (B) 6=
; () w 2 H(��1m (B)). Hence H�m(B) = H(��1m (B)).

Proposition 2.3.11 Let H : M �! P �(N) be a SV H and � be a congruence on a

Qt-module N . De�ne H� : M �! P (N��) by H�(m) =
n
[b]� j b 2 H(m)

o
, where

N�� is the quotient Qt-module of N by �. Then H� is a SV H.

Proof. (1) We show that H� is a SV H from M to P �(N��). Let mi 2M for i 2 I.
Then

H�(_i2Imi) =
n
[b]� j b 2 H(_i2Imi)

o
�
n
[b]� j b 2 _i2IH(mi)

o
=
n
[b]� j b = v1 _ v2; :::;_vi; v1 2 H(m1); ...; vi 2 H(mi)

o
=
n
[v1]� j v1 2 H(m1)

o
_; :::;_

n
[vi]� j vi 2 H(mi)

o
= H�(m1) _H�(m2) _H�(m3)_; :::;_H�(mi)

= _i2IH�(mi)

Thus, _i2IH�(mi) � H�(_i2Imi).

(2) H�(q �m) =
n
[b]� j b 2 H(q �m)

o
�
n
[b]� j b 2 q �H(m)

o
= q �H�(m)

Thus, we have q �H�(m) � H�(q �m). It concludes that H� is a SV H. Similarly, it
can be shown that H� is a SSV H when H is a SSV H.
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2.4 Homomorphic images of generalized rough Qt-Submodules

In this section, we will discuss the images of lower and upper approximations under

Qt-module homomorphism (QMH) and SV H.

Theorem 2.4.1 Let M and N be two Qt-modules and �m : M �! N be an epi-

morphism and H2 : N �! P �(N) be a SV H. If �m is one to one and H1(x) =

fy 2M j �m(y) 2 H2(�m(x))g for all x 2M , then H1 is a SV H from M to P �(M).

Proof. First, we show that H1 is well de�ned mapping. Suppose x1 = x2 then we

have, y1 2 H1(x1) () �m(y1) 2 H2(�m(x1)) = H2(�m(x2)) () y1 2 H1(x2). Thus
we have H1(x1) = H1(x2). Now we show that H1 is a SV H. First, we show that

_i2IH1(xi) � H1(_i2Ixi) for all xi 2 M (i 2 I). Let y 2 _i2IH1(xi). Then there
exist ai 2 H1(xi) for all i 2 I such that y = _i2Iai. Hence �m(y) = �m(_i2Iai) =
_i2I�m(ai) 2 _i2IH2(�m(xi)) � H2(_i2I�m(xi)) = H2(�m(_i2Ixi)). Finally, we have,
y = _i2Iai 2 H1(_i2Ixi). We have _i2IH1(xi) � H1(_i2I(xi)). Let y 2 q � H1(x).
Then there exists a 2 H1(x) such that y = q � a. Since H2 is a SV H and �m is a

QMH, we have �m(a) 2 H2(�m(x)) and q � �m(a) 2 q �H2(�m(x)) � H2(q � �m(x)) =
H2(�m(q � x)). Therefore, �m(q � a) 2 H2(�m(q � x)). Hence y = q � a 2 H1(q � x).
Thus, we have q �H1(x) � H1(q � x). So, H1 is a SV H from M to P �(M).

Theorem 2.4.2 Let M and N be Qt-modules, �m : M �! N be a surjective QMH

fromM to N and H2 : N �! P �(N) be a SV H. Set H1(w) = fy 2M j �m(y) 2 H2(�m(w))g
for all w 2M and for all ; 6= A � M , then

(1) �m(H1(A)) = H2(�m(A));

(2) �m(H1(A)) = H2(�m(A));

(3) If �m is one one then �m(w) 2 �m(H1(A)) () w 2 H1(A).

Proof. Let z 2 �m(H1(A)). Then there exists w 2 H1(A) such that �m(w) = z.

So H1(w) \ A 6= ;, then there exists w0 2 H1(w) \ A such that �m(w
0) 2 �m(A),

and �m(w
0) 2 H2(�m(w)). So H2(�m(w)) \ �m(A) 6= ;, which implies z = �m(w) 2

H2(�m(A)).

Conversely, let z 2 H2(�m(A)). Then there exists w 2 M such that �m(w) = z.

Hence H2(�m(w)) \ �m(A) 6= ;. So there exists w0 2 A such that �m(w
0) 2 �m(A)
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and �m(w
0) 2 H2(�m(w)). Then by H1, we have w0 2 H1(w). Thus H1(w) \ A 6= ;,

which implies w 2 H1(A). So z = �m(w) 2 �m(H1(A)). It means that H2(�m(A)) �
�m(H1(A)). From the above, we have �m(H1(A)) = H2(�m(A)).

(2) Let z 2 �m(H1(A)). Then there exists w 2 H1(A) such that �m(w) = z, so we have

H1(w) � A. Let z0 2 H2(�m(w)). Then there exists w0 2 M such that �m(w
0) = z0

and �m(w
0) 2 H2(�m(w)). Hence w0 2 H1(w) � A and so z0 = �m(w0) 2 �m(A). Thus

H2(�m(w)) � �m(A) which gives that �m(w) 2 H2(�m(A)), so we have �m(H1(A)) �
H2(�m(A)).

Suppose z 2 H2(�m(A)). Then there exists w 2 M such that �m(w) = z and

H2(�m(w)) � �m(A). Let w0 2 H1(w). Then �m(w0) 2 H2(�m(w)) � �m(A), and so
w0 2 A. Thus H1(w) � A, which yields w 2 H1(A). Then �m(w) = z 2 �m(H1(A)),

and so H2(�m(A)) � �m(H1(A)). Hence we have �m(H1(A)) = H2(�m(A)).

(3) Let w 2 H1(A). Then �m(w) 2 �m(H1(A)). Conversely suppose that �m(w) 2
�m(H1(A)). Then there exists w0 2 H1(A) such that �m(w) = �m(w

0). Since �m is

ono-one, we get w = w0 2 H1(A).

Remark 2.4.3 From Theorem 2:4:2(3), it is easily found that �m(x) 2 �m(H1(A))

() x 2 H1(A).

Theorem 2.4.4 Let M and N be two Qt-modules and �m :M �! N be a surjective

QMH and H2 : N �! P �(N) be a SV H. Set H1(x) = fy 2M j �m(y) 2 H2(�m(x))g
for all x 2M and for all ; 6= C �M , then

(1) H1(C) is a Qt-submodule of M if and only if H2(�m(C)) is a Qt-submodule of N .

(2) H1(C) is a Qt-submodule of M if and only if H2(�m(C)) is a Qt-submodule of N .

Proof. (1) Let H1(C) be a Qt-submodule of M . We show that H2(�m(C)) is a Qt-

submodule of N . Let yi 2 �m(H1(C)) (i 2 I). Then there exists xi 2 H1(C) (i 2 I)
such that �m(xi) = yi. Since �m is a QMH and H1(C) is a Qt-submodule of M , we

have _i2Iyi = _i2I�m(xi) = �m(_i2Ixi). Therefore _i2Ixi 2 H1(C) if and only if

_i2Iyi = �m(_i2Ixi) 2 �m(H1(C)). Suppose y 2 �m(H1(C)) and q be an arbitrary

element of Qt. Then there exists x 2 H1(C) such that �m(x) = y. Now �m(q � x) =
q � �m(x) = q � y. Then q � x 2 H1(C) if and only if q � y = �m(q � x) 2 �m(H1(C)).

Since, �m(H1(C)) = H2(�m(C)) by Theorem 2:4:2(1). We have H2(�m(C)) is a Qt-

submodule of N .



2. Roughness in Quantale Modules 39

Conversely, suppose �m(H1(C)) = H2(�m(C)) is a Qt-submodule of N . Let

xi 2 H1(C) for i 2 I. Then �m(xi) 2 �m(H1(C)) (i 2 I). Since �m(H1(C)) is a Qt-

submodule of N , we have _i2I�m(xi) = �m(_i2Ixi) 2 �m(H1(C)). Then by Theorem

2:4:2(3), we have _i2Ixi 2 H1(C). Let x 2 H1(C). Then �m(x) 2 �m(H1(C)). Since

�m(H1(C)) is a Qt-submodule, we have �m(q � x) = q � �m(x) 2 �m(H1(C)) and thus

q � x 2 H1(C) by theorem 2:4:2(3). So H1(C) is a Qt-submodule of M .

(2) The proof is similar to the part 1.



Chapter 3

Generalized Rough Fuzzy Ideals

in Quantales

In this chapter, we de�ne generalized rough fuzzy ideals, generalized rough fuzzy

prime ideals, generalized rough fuzzy semi-prime ideals and generalized rough fuzzy

primary deals of quantales. There are some intrinsic relations between fuzzy prime

(fuzzy semi-prime, fuzzy primary) ideals and generalized rough fuzzy prime (gener-

alized rough fuzzy semi-prime, generalized rough fuzzy primary) ideals of quantales.

Further, approximations of fuzzy ideals, fuzzy prime, fuzzy semi-prime and fuzzy pri-

mary ideals with the help of SV H and SSV H are discussed. In addition, homomorphic

images of generalized rough prime (semi-prime, primary) ideals which are established

by QH, are examined.

In the �rst section, by applying generalized rough set theory to fuzzy ideals of

quantales, we introduce the notions of generalized rough fuzzy (prime, semi-prime,

primary) ideals of quantales. By using SV H and SSV H, it is observed that generalized

lower and upper approximations of fuzzy ideals (fuzzy prime, fuzzy semi-prime, fuzzy

primary) are fuzzy ideals (fuzzy prime, fuzzy semi-prime, fuzzy primary). Some related

results about fuzzy ideals are also discussed in this section. In the second section, a

SV H is presented with the help of another SV H by using QH. It is also noted that

homomorphic image of upper (lower) approximation of a subset of a quantale is equal

to the upper (lower) approximation of homomorphic image of a subset of the quantale.

Further, in this section, relations between the upper (lower) generalized rough (prime,

semi-prime, primary) ideals of quantales and the upper (lower) approximations of

40
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their homomorphic images are studied. In the last section of this chapter, we will

discuss relations between the upper (lower) generalized rough fuzzy (prime, semi-

prime, primary) ideals of quantales and the upper (lower) approximations of their

homomorphic images and give some theorems related to them.

3.1 Generalized Rough Fuzzy Prime (Primary) ideals in

Quantale

This section presents the generalized rough fuzzy ideal in quantales and further

properties of such ideals are displayed here. For fuzzy subset, generalized rough fuzzy

set, generalized rough fuzzy ideal, generalized rough fuzzy prime ideal, generalized

rough fuzzy semi-prime ideal and generalized rough fuzzy primary ideal, the following

shortened forms, f -subset, GRFS, GRFI, GRFPI, GRFSPI and GRFPY I will be

used.

De�nition 3.1.1 [21] Let (Z; �) be an approximation space and g be a f-subset of Z;

that is g is a mapping from Z to [0; 1]. Then for z 2 Z, we de�ne;

�(g)(z) =
^
p2[z]�

g(p) and �(g)(z) =
_
p2[z]�

g(p).

They are called, the lower approximation (LA) and the upper approximation (UA) of

g, respectively. If �(g) 6= �(g), then �(g) = (�(g); �(g)) is called a rough fuzzy set

(RFS) with respect to �.

For � 2 [0; 1], the sets

g� = fx 2 Z j g(x) � �g and g�+ = fx 2 Z j g(x) > �g

are called, �-cut and strong �-cut of g, respectively.

Now we use the concept from de�nition 3:1:1 and generalize it in the following.

De�nition 3.1.2 Let (Qt;
1) and (Q0t;
2) be two quantales and H : Qt �! P �(Q0t)

be a SV H and g be any f-subset of Q0t. Then for every z 2 Qt, we de�ne,

H(g)(z) = Inf
a2H(z)

g(a) and H(g)(z) = Sup
a2H(z)

g(a)
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Here H(g) is the GLA and H(g) is the GUA of the f-subset g. The pair (H(g), H(g))

is called generalized rough fuzzy set (GRFS) of Qt if H(g) 6= H(g).

De�nition 3.1.3 [91] Let (Qt;
1) and (Q0t;
2) be two quantales. A set-valued map-
ping (SVM); H : Qt �! P �(Q0t), where P

�(Q0t) means the collection of all non-empty

subsets of Q0t, is called a set-valued homomorphism if, for all ai, a, b 2 Qt;

(1) H(a) 
2 H(b) � H(a
1 b).

(2) _i2IH(ai) � H(_i2Iai).

A set-valued mapping H : Qt �! P �(Q0t) is called a strong set-valued homomorphism

if we replace inclusion by equality in (1) and (2).

Lemma 3.1.4 Let H : Qt �! P �(Q0t) be a SVM . Then for every collection fgigi2I �
F(Q0t);

(1) H(Inf
i2I

gi) = Inf
i2I
H(gi);

(2) H(Sup
i2I

gi) = Sup
i2I

H(gi).

Proof. (1) For x 2 Qt, we have

H(Inf
i2I

gi)(x) = Inf
a2H(x)

Inf
i2I

gi(a) = Inf
i2I

Inf
a2H(x)

gi(a) = Inf
i2I

H(gi)(x).

The other part has the similar proof.

Proposition 3.1.5 Let (Qt;
1) and (Q0t;
2) be two quantales and H : Qt �!
P �(Q0t) be a SVM . Let g be a f-subset of Q

0
t. Then for each � 2 [0; 1], we have

the following,

(1) H(g�) = (H(g))�;

(2) H(g�) = (H(g))�;

(3) H(g�+) = (H(g))�+ ;

(4) H(g�+) = (H(g))�+.

Proof. (1) Let z 2 (H(g))� () H(g)(z) � �() Inf
a2H(z)

g(a) � �

() g(a) � � for all a 2 H(z);
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() H(z) � g� () z 2 H(g�).

Proofs of (2), (3) and (4) are similar to the proof of (1).

De�nition 3.1.6 Let H : Qt �! P �(Q0t) be a SV H. A f-subset g of the quantale Q
0
t

is said to be a lower [an upper] GRF ideal (GRFI) of Q0t if H(g) [H(g)] is a fuzzy

ideal (FI) of Qt. A f-subset g of Q0t which is both an upper and a lower GRFI of Q
0
t,

is called a GRFI of Q0t.

Now, LA and UA of FI of quantales are being studied in the following.

Theorem 3.1.7 Let g be a FI of Q0t and H : Qt �! P �(Q0t) be a SSV H. Then H(g)

is a FI of Qt.

Proof. As g is a FI of Q0t, so by de�nition 1:4:8, we have, g(a
 c) � supfg(a); g(c)g
and g(a_c) = inffg(c); g(a)g for all a, c 2 Q0t. SinceH is a SSV H, soH(z1)_H(z2) =
H(z1 _ z2) for all z1, z2 2 Qt.

Therefore,

H(g)(z1 _ z2) = Inf
e2H(z1_z2)

g(e)

= Inf
e2H(z1)_H(z2)

g(e)

Since e 2 H(z1) _H(z2), there exist c1 2 H(z1) and c2 2 H(z2) such that e = c1 _ c2.

Hence,

H(g)(z1 _ z2) = Inf
c1_c22H(z1)_H(z2)

g(c1 _ c2)

= Inf
c12H(z1), c22H(z2)

(g(c1) ^ g(c2))

= Inf

"
Inf

c12H(z1)
g(c1), Inf

c22H(z2)
g(c2)

#
= H(g)(z1) ^H(g)(z2).

HenceH(g)(z1_z2) = H(g)(z1)^H(g)(z2) for all z1; z2 2 Qt. (1)

Again since H is a SSV H, we have H(z1 
1 z2) = H(z1)
2 H(z2) for all z1, z2 2 Qt.

Thus we have,

H(g)(z1 
1 z2) = Inf
e2H(z1
1z2)

g(e)

= Inf
e2H(z1)
2H(z2)

g(e).
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Now since e 2 H(z1) 
2 H(z2) so there exist c1 2 H(z1), c2 2 H(z2) such that

e = c1 
2 c2.

Thus,

H(g)(z1 
1 z2) = Inf
c1
2c2 2 H(z1)
2H(z2)

g(c1 
2 c2)

� Inf
c1
2c2 2 H(z1)
2H(z2)

[g(c1) _ g(c2)]

= Inf
c1 2 H(z1), c22H(z2)

[g(c1) _ g(c2)]

= Sup

"
Inf

c12H(z1)
g(c1), Inf

c22H(z2)
g(c2)

#
= H(g)(z1) _H(g)(z2).

Hence, H(g)(z1 
1 z2) � H(g)(z1) _H(g)(z2) for all z1; z2 2 Qt. (2)

Thus, by (1) and (2) H(g) is a FI of Qt.

Theorem 3.1.8 Let H : Qt �! P �(Q0t) be a SSV H and g be a FI of Q0t. Then H(g)

is a FI of Qt.

Proof. Since H is a SSV H, therefore H(z1) _H(z2) = H(z1 _ z2) for all z1; z2 2 Qt.
Also g is FI of Q0t, hence inffg(a); g(b)g = g(a _ b) for all a, b 2 Q0t.

Consider,

H(g)(z1 _ z2) = Sup
c2H(z1_z2)

g(c)

= Sup
c2H(z1)_H(z2)

g(c)

For c 2 H(z1) _H(z2), we have a 2 H(z1) and b 2 H(z2) such that c = a _ b.

Hence,

H(g)(z1 _ z2) = Sup
a_b2H(z1)_H(z2)

g(a _ b)

= Sup
a2H(z1), b2H(z2)

[g(a) ^ g(b)]

= Inf

"
Sup

a2H(z1)
g(a), Sup

b2H(z2)
g(b)

#
= H(g)(z1) ^H(g)(z2).

Thus, H(g)(z1 _ z2) = H(g)(z1) ^H(g)(z2) for all z1; z2 2 Qt. (1)

Now for,
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H(g)(z1 
1 z2) = Sup
c2H(z1
2z2)

g(c)

= Sup
c2H(z1)
2H(z2)

g(c).

For c 2 H(z1)
2 H(z2), there exist a 2 H(z1) and b 2 H(z2) such that c = a
2 b.

Hence,

H(g)(z1 
1 z2) = Sup
a
2b2H(z1)
2H(z2)

g(a
2 b)

� Sup
a2H(z1); b2H(z2)

[g(a) _ g(b)]

= Sup

 
Sup

a2H(z1)
g(a), Sup

b2H(z2)
g(b)

!
= H(g)(z1) _H(g)(z2).

Thus, H(g)(z1 
1 z2) � H(g)(z1) _H(g)(z2) for all z1, z2 2 Qt. (2)

Hence by (1) and (2), we have H(g) is a FI of Qt.

From the two theorems discussed above, we have the following corollary.

Corollary 3.1.9 Let H : Qt �! P �(Q0t) be a SSV H and let g be a FI of Q0t. Then

g is a GRFI of Q0t.

Fig. 7
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Table 4.


1 ? a >
? ? ? ?
a ? a a

> ? a >

Proposition 3.1.10 Let H : Qt �! P �(Q0t) be a SSV H and fgigi2I be a family of
FI of Q0t. Then H(Inf

i2I
(gi)) is a FI of Qt.

Proof. By Lemma 3.1.4, we have H(Inf
i2I

gi) = Inf
i2I
H(gi). Since every gi is a FI for

i 2 I and H(gi) is a FI of Qt by Theorem 3.1.7, hence intersection of FIs is a FI.

Therefore H(Inf
i2I

(gi)) is a FI of Qt.

Theorem 3.1.11 Let H : Qt �! P �(Q0t) be a SSV H and g be a f-subset of Q0t.

Then H(g) (respectively H(g)) is a FI of Qt if and only if for each � 2 [0; 1], H(g�)
(respectively H(g�)) where g� 6= ;, is an ideal of Qt.

Proof. The Proof is similar to the proof of Proposition 1.4.13(1).

Fig: 8
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Table. 5


2 ?0 i j >0

?0 ?0 ?0 ?0 ?0

i ?0 i ?0 i

j ?0 ?0 j j

>0 ?0 i j >0

Example 3.1.12 Let (Qt;
1) and (Q0t;
2) be two quantales, where Qt and Q0t are
depicted in Fig. 7 and 8 and the binary operations 
1 and 
2 on both the quantales
are the same as the meet operation in the lattices Qt and Q0t as shown in the table 4

and 5.

Let H : Qt �! P �(Q0t) be a SSV H de�ned by H(?) = f?0g, H(a) = fi, jg, H(>) =
f>0g. Let g be a FI of Q0t de�ned by g = 0:9

?0 +
0:6
i +

0:7
j +

0:6
>0 . Then GLA and GUA

of g are as follows: H(g) = 0:9
? + 0:6

a + 0:6
> and H(g) = 0:9

? + 0:7
a + 0:6

> . It is easily

con�rmed that H(g) and H(g) are FI of Qt.

Consider H : Q0t �! P �(Q0t) de�ned by H(?0) = H(i) = H(j) = f?0g and H(>0) =
Q0t. Then H is a SV H.

Let � be a f-subset of Q0t de�ned by �(x) =

(
1, x = ?0

0:7, x 6= ?0
for all x 2 Q0t. Then

� is a FI of Q0t. Hence GLA and GUA of � are H(�) = 1
?0 +

1
i +

1
j +

0:7
>0 and

H(�) = 1
?0 +

1
i +

1
j +

1
>0 . It is observed that H(�) is not a FI of Q

0
t and H(�) is a

constant FI. Hence it is important to take SSV H.

De�nition 3.1.13 Let H : Qt �! P �(Q0t) be a SV H and g be a f-subset of a quantale

Q0t. Then g is called an upper [a lower] generalized rough fuzzy prime ideal (GRFPI)

of Q0t if H(g) [H(g)] is a fuzzy prime ideal (FPI) of Qt. A f-subset g of Q
0
t which is

both an upper and a lower GRFPI, is called GRFPI of Q0t.

Similarly, we can de�ne upper [lower] generalized rough fuzzy semi-prime ideal (GRFSPI)

and generalized rough fuzzy primary ideal (GRFPY I) of quantale.

Proposition 3.1.14 Let g be a FPI of Q0t and H : Qt �! P �(Q0t) be a SSV H. Then

H(g) is a FPI of Qt.
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Proof. As g is a FPI of Q0t, therefore g(c) = g(c
2 b) or g(b) = g(c
2 b) for all c; b 2
Q0t. Since, g is a FPI of Q

0
t, so g is a FI. By Theorem 3.1.7, H(g) is a FI of Qt.

Consider,

H(g)(x1 
1 y1) = Inf
e2H(x1
1y1)

g(e)

= Inf
e2H(x1)
2H(y1)

g(e)

Since H is a SSV H, therefore for e 2 H(x1) 
2 H(y1) there exist c 2 H(x1) and
b 2 H(y1) such that e = c
2 b.

Hence,

H(g)(x1 
1 y1) = Inf
c
2b2H(x1)
2H(y1)

g(c
2 b)

= Inf
c2H(x1), b2H(y1)

g(c
2 b)

= Inf
c2H(x1), b2H(y1)

[g(c) or g(b)]

= Inf
c2H(x1)

g(c) or Inf
b2H(y1)

g(b)

= H(g)(x1) or H(g)(y1).

Thus, H(g)(x1 
1 y1) = H(g)(x1) or H(g)(x1 
1 y1) = H(g)(y1) for all x1, y1 2 Qt.
Hence H(g) is a FPI of Qt.

Theorem 3.1.15 Let g be a FPI of Q0t and H : Qt �! P �(Q0t) be a SSV H. Then

H(g) is a FPI of Qt.

Proof. As g is a FPI of Q0t, therefore g(c) = g(c
2 b) or g(b) = g(c
2 b) for all c; b 2
Q0t. Since, g is a FPI of Q

0
t, so g is a FI. By Theorem 3:1:8, H(g) is a FI of Qt.

Consider,

H(g)(w 
1 z) = Sup
e2H(w
1z)

g(e)

= Sup
e2H(w)
2H(z)

g(e)

Since H is a SSV H, therefore for e 2 H(w)
2H(z) there exist c 2 H(w) and b 2 H(z)
such that e = c
2 b.

Hence,
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H(g)(w 
1 z) = Sup
c
2b2H(w)
2H(z)

g(c
2 b)

= Sup
c2H(w), b2H(z)

g(c
2 b)

= Sup
c2H(w), b2H(z)

[g(c) or g(b)]

= Sup
c2H(w)

g(c) or Sup
b2H(z)

g(b)

= H(g)(w) or H(g)(z).

Thus, H(g)(w 
1 z) = H(g)(w) or H(g)(w 
1 z) = H(g)(z) for all w; z 2 Qt. Hence
H(g) is a FPI of Qt.

Now, we have the following corollary.

Corollary 3.1.16 Let H : Qt �! P �(Q0t) be a SSV H and g be a FPI of Q0t. Then

g is a GRFPI of Q0t.

Theorem 3.1.17 Let H : Qt �! P �(Q0t) be a SSV H and H(g) be a FI of Qt. Then

H(g) is a FPI of Qt if and only if H(g)(w 
1 z) = H(g)(w) _ H(g)(z) for all z,
w 2 Qt.

Proof. Let H(g) be a FPI of Qt. Then H(g)(w) = H(g)(w 
1 z) or H(g)(z) =
H(g)(w 
1 z).

This implies that H(g)(w) _H(g)(z) � H(g)(w 
1 z). (1)

As H(g) is a FI of Qt, hence by de�nition of FI, we have H(g)(w
1 z) � H(g)(w)_
H(g)(z). (2)

By (1) and (2), we obtain H(g)(w) _ H(g)(z) = H(g)(w 
1 z). Conversely, suppose
that H(g)(w 
1 z) = H(g)(w) _ H(g)(z) for all w, z 2 Qt. We have to show that

H(g) is a FPI. As [0,1] is a totally ordered so H(g)(w) _ H(g)(z) = H(g)(w) or

H(g)(w) _ H(g)(z) = H(g)(z). Hence H(g)(w 
1 z) = H(g)(w) or H(g)(w 
1 z) =
H(g)(z) for all w, z 2 Qt. This shows that H(g) is a FPI of Qt.

Theorem 3.1.18 Let H : Qt �! P �(Q0t) be a SSV H and g be a FPI of Q0t. Then

H(g) (respectively H(g)) is a FPI of Qt if and only if for each � 2 [0; 1], H(g�)
(respectively H(g�)) where g� 6= ;, is a PI of Qt.

Proof. The proof is similar to the proof of Proposition 1.4.14(1).
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Theorem 3.1.19 Let H : Qt �! P �(Q0t) be a SSV H and g be a FSPI of Q0t. Then

H(g) is a FSPI of Qt.

Proof. As g is a FSPI of Q0t, therefore g(d
2) = g(d) for all d 2 Q0t and g is a FI of

Q0t, so by Theorem 3.1.7, H(g) is a FI of Qt.

Now consider,

H(g)(w) = Inf
d2H(w)

g(d)

= Inf
d2H(w)

g(d2)

= Inf
d�2d2H(w)�2H(w)

g(d2)

= Inf
d�2d2H(w�1w)

g(d2)

= Inf
d22H(w2)

g(d2)

= H(g)(w2).

Thus H(g)(w) = H(g)(w2) for all w 2 Qt. Therefore H(g) is a FSPI of Qt.

Theorem 3.1.20 Let H : Qt �! P �(Q0t) be a SSV H and g be a FSPI of Q0t. Then

H(g) is a FSPI of Qt.

Proof. The Proof is similar as reported in Theorem 3:1:19.

Corollary 3.1.21 Let H : Qt �! P �(Q0t) be a SSV H and g be a FSPI of Q0t. Then

g is a GRFSPI of Q0t.

Theorem 3.1.22 Let g be a FSPI of Q0t and H : Qt �! P �(Q0t) be a SSV H. Then

H(g) (respectively H(g)) is a FSPI of Qt if and only if for each � 2 [0; 1], H(g�)
(respectively H(g�)) where g� 6= ;, is a SPI of Qt.

Proof. Proof is similar to the proof of Proposition 1.4.13(2).

Example 3.1.23 Let (Qt,
1) and (Q0t, 
2)be two quantales, where Qt and Q0t are
depicted in Fig. 7 and 8 and the binary operations 
1 and 
2 on both the quantales
are the same as the meet operation in the lattices Qt and Q0t as shown in the table

4 and 5. Let H : Qt �! P �(Q0t) be a SSV H as de�ned in Example 3:1:12. Let �
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be a f-subset of Q0t de�ned by � =
0:9
?0 +

0:6
i +

0:9
j +

0:6
>0 . Then it is easy to con�rm

that � is a FPI of Q0t. Hence GUA and GLA of �, are H(�) = 0:9
? + 0:9

a +
0:6
> and

H(�) = 0:9
? + 0:6

a +
0:6
> . It is observed that H(�) and H(�) are non-constant FPI of

Qt.

Let g be a f-subset of Q0t de�ned by g(x) =

(
1, x = ?0

0:6, x 6= ?0
for all x 2 Q0t. Then g

is a FSPI of Q0t. Hence GLA and GUA of g, are as follows H(g) = 1
? +

0:6
a +

0:6
>

and H(g) = 1
? +

0:6
a +

0:6
> . It is straightforward that H(g) and H(g) are FSPI of Qt.

The next results are about the lower and upper approximations of fuzzy primary ideals

(FPY I).

Theorem 3.1.24 Let g be a FPY I of Q0t and H be a SSV H. Then H(g) is a FPY I

of Qt.

Proof. As g is a FPY I of Q0t, therefore g(a) = g(a
2 b) or g(bn) = g(a
2 b) for all
a; b 2 Q0t and hence, g is a FI of Q0t, so by Theorem 3:1:7, H(g) is a FI of Qt. Since

H is given as SSV H,

Consider,

H(g)(z 
1 w) = Inf
d2H(z
1w)

g(d)

= Inf
a
2b2H(z)
2H(w)

g(a
2 b)

= Inf
a2H(z), b2H(w)

g(a
2 b)

= Inf
a2H(z), b2H(w)

[g(a) or g(bn)]

= Inf
a2H(z)

g(a) or Inf
b2H(w)

g(bn)

= Inf
a2H(z)

g(a) or Inf
bn2H(wn)

g(bn)

= H(g)(z) or H(g)(wn).

Here bn = b
2b
2; :::;
2b 2 H(w)
2H(w)
2; :::;
2H(w) = H(w
1w
1w
1; :::;
1w) =
H(wn) up to n times for some positive integer n. Thus H(g)(z 
1 w) = H(g)(z) or

H(g)(z 
1 w) = H(g)(wn) for all z, w 2 Qt. Therefore H(g) is a FPY I of Qt.

Theorem 3.1.25 Let g be a FPY I of Q0t and H be a SSV H. Then H(g) is a FPY I

of Qt.
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Proof. The proof is similar to the proof of Theorem 3:1:24.

Theorem 3.1.26 Let H be a SSV H and g be a non-constant FPY I of Q0t. Then

H(g) (respectively H(g)) is a FPY I of Qt if and only if for each � 2 [0; 1], H(g�)
(respectively H(g�)) where g� 6= ;, is a PY I of Qt.

Proof. The proof is similar to the proof of Proposition 1.4.14(2).

3.2 Homomorphic images of Generalized Rough Ideals

based on Quantale Homomorphism

In this section, we will describe the images of GLA and GUA by using QH and

SV H of quantales.

Proposition 3.2.1 Let (Qt;
1) and (Q0t;
2) be two quantales, �t : Qt �! Q0t be

an epimorphism and H2 : Q0t �! P �(Q0t) be a SV H. If �t is one-one and H1(x) =

fy 2 Qt j �t(y) 2 H2(�t(x))g for all x 2 Qt, then H1 is a SV H from Qt to P �(Qt).

Proof. First of all, we show thatH1 is well de�ned mapping. Suppose x1 = x2, then we

have, y1 2 H1(x1) () �t(y1) 2 H2(�t(x1)) = H2(�t(x2)) () y1 2 H1(x2). Thus we
have H1(x1) = H1(x2). Now we show that H1 is SV H. Suppose y 2 H1(x1)
1H1(x2),
then there exist a 2 H1(x1) and b 2 H1(x2) such that y = a
1 b. Since H2 is a SV H
and �t is a QH, we have �t(a) 
2 �t(b) 2 H2(�t(x1)) 
2 H2(�t(x2)) � H2(�t(x1) 
2
(�t(x2)) = H2(�t(x1
1x2)). Therefore, �t(a
1 b) = �t(a)
2�t(b) 2 H2(�t(x1
1x2)).
Hence y = a
1b 2 H1(x1
1x2). Thus, we haveH1(x1)
1H1(x2) � H1(x1
1x2). Now
we show that _i2IH1(xi) � H1(_i2Ixi) for all xi 2 Qt (i 2 I). Let y 2 _i2IH1(xi),
then there exist ai 2 H1(xi) for all i 2 I such that y = _i2Iai. Hence �t(y) =

�t(_i2Iai) = _i2I�t(ai) 2 _i2IH2(�t(xi)) � H2(_i2I�t(xi)) = H2(�t(_i2Ixi)). Thus,
y = _i2Iai 2 H1(_i2Ixi). Hence _i2IH1(xi) � H1(_i2Ixi)). So, H1 is a SV H from

Qt to P �(Qt).

Theorem 3.2.2 Let �t : Qt �! Q0t be a surjective QH and H2 : Q0t �! P �(Q0t) be a

SV H. Set H1(m) = fz 2 Qt j �t(z) 2 H2(�t(m))g for all m 2 Qt and for all ; 6= C �
Qt, then
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(1) H2(�t(C)) = �t(H1(C));

(2) H2(�t(C)) = �t(H1(C));

(3) If �t : Qt �! Q0t is also one-one, then �t(x) 2 �t(H1(C)) () x 2 H1(C).

Proof. (1) Let z 2 �t(H1(C)). Then there exist x 2 H1(C) such that �t(x) = z.

Since x 2 H1(C), so H1(x)\C 6= ;. Suppose, z0 2 H1(x)\C, then �t(z0) 2 �t(C), and
by the de�nition of H1(x), we obtain �t(z0) 2 H2(�t(x)). Thus, H2(�t(x))\�t(C) 6= ;,
and hence z = �t(x) 2 H2(�t(C)). Thus, we obtain �t(H1(C) � H2(�t(C)). Now

we take y 2 H2(�t(C)), then there exist m 2 Qt such that �t(m) = y. Hence

H2(�t(m)) \ �t(C) 6= ;. So there exists z1 2 C such that �t(z1) 2 �t(C) and �t(z1) 2
H2(�t(m)). By the de�nition of H1(m), we have z1 2 H1(m). Thus H1(m) \ C 6= ;.
This gives m 2 H1(C). Hence, y = �t(m) 2 �t(H1(C)). Thus H2(�t(C) � �t(H1(C).

Finally, we obtain �t(H1(C) = H2(�t(C)).

(2) Suppose z 2 �t(H1(C)), then there exists m 2 H1(C) such that �t(m) = z and

H1(m) � C. Suppose z0 2 H2(�t(m)), then there is n0 2 Qt such that �t(n0) = z0,

hence �t(n0) 2 H2(�t(m)). Thus n0 2 H1(m) � C and so z0 = �t(n
0) 2 �t(C).

Hence, H2(�t(m)) � �t(C). Thus z = �t(m) 2 H2(�t(C)), so we have �t(H1(C)) �
H2(�t(C)). Now; let y 2 H2(�t(C)). Then there exists n 2 Qt such that �t(n) = y and
H2(�t(n)) � �t(C). Suppose n0 2 H1(n), then �t(n0) 2 H2(�t(n)) � �t(C) and hence
n0 2 C. Thus H1(n) � C and we obtain n 2 H1(C). Hence �t(n) = y 2 �t(H1(C))

and thus, H2(�t(C)) � �t(H1(C)). Hence, we have �t(H1(C)) = H2(�t(C)).

(3) Let x 2 H1(C). Then �t(x) 2 �t(H1(C)). Conversely, suppose that �t(x) 2
�t(H1(C)), then there exists y 2 H1(C) such that �t(y) = �t(x). Since �t is ono-one,

we have x = y 2 H1(C).

Lemma 3.2.3 Let (Qt;
1) and (Q0t;
2) be two quantales, �t : Qt �! Q0t be an

isomorphism, H2 : Q0t �! P �(Q0t) be a SV H and H1 : Qt �! P �(Qt) de�ned in

Proposition 3.2.2. Then �t(x) 2 �t(H1(C)) () x 2 H1(C).

Proof. The Proof is similar to the proof of Proposition 3:2:2(3).

Theorem 3.2.4 Let �t : Qt �! Q0t be an isomorphism and H2 : Q0t �! P �(Q0t)

be a SV H. Let H1(x) = fy 2 Qt j �t(y) 2 H2(�t(x))g for all x 2 Qt. Then for all
; 6= C � Qt; the following hold;



3. Generalized Rough Fuzzy Ideals in Quantales 54

(1) H1(C) is an ideal of Qt if and only if H2(�t(C)) is an ideal of Q0t;

(2) H1(C) is a PI of Qt if and only if H2(�t(C)) is a PI of Q0t;

(3) H1(C) is a SPI of Qt if and only if H2(�t(C)) is a SPI of Q0t;

(4) H1(C) is a primary ideal (PY I) of Qt if and only if H2(�t(C)) is a primary ideal

(PY I) of Q0t.

Proof. By Theorem 3:2:2(1); �t(H1(C)) = H2(�t(C)) for each C � Qt.

(1) Suppose H1(C) is an ideal of Qt.

(i) Let x; z 2 �t(H1(C)). Then there exist x1; z1 2 H1(C) such that �t(x1) = x

and �t(z1) = z. Since �t is a surjective QH and H1(C) is an ideal of Qt, we obtain

x _ z = �t(x1) _ �t(z1) = �t(x1 _ z1) 2 �t(H1(C)). Therefore x _ z 2 �t(H1(C)) for

all x; z 2 �t(H1(C)).

(ii) Let z � x 2 �t(H1(C)). Then there exist x1 2 H1(C) and z1 2 Qt such that
�t(x1) = x and �t(z1) = z. Since �t(z1) � �t(x1), we have �t(x1 _ z1) = �t(x1) _
�t(z1) = �t(x1) 2 �t(H1(C)). From part (3) in Theorem 3:2:2, it follows that x1_z1 2
H1(C). Since H1(C) is an ideal and z1 � x1 _ z1, we have z1 2 H1(C). Thus

z = �t(z1) 2 �t(H1(C)).

(iii) Let x 2 �t(H1(C)) and z 2 Q0t. Then there exist x1 2 H1(C) and z1 2 Qt such
that �t(x1) = x and �t(z1) = z. Since H1(C) is an ideal and �t is a QH, we obtain

x1 
1 z1 2 H1(C). Hence x 
2 z = �t(x1) 
2 �t(z1) = �t(x1 
1 z1) 2 �t(H1(C)). In

a similar way, we have z 
2 x 2 �t(H1(C)). Hence, �t(H1(C)) is an ideal of Q0t. But

H2(�t(C)) = �t(H1(C)). So H2(�t(C)) is an ideal of Q0t.

Conversely, suppose H2(�t(C)) = �t(H1(C)) is an ideal of Q0t.

(i) Let z1; z2 2 H1(C). Then �t(z1); �t(z2) 2 �t(H1(C)). Since �t(H1(C)) is an

ideal, �t(z1 _ z2) = �t(z1)_ �t(z2) 2 �t(H1(C)). So by Theorem 3:2:2(3), we have

z1 _ z2 2 H1(C).

(ii) Let z1 � z2 2 H1(C). Then �t(z1) � �t(z2) 2 �t(H1(C)). Since �t(H1(C)) is an

ideal, we have �t(z1) 2 �t(H1(C)). By Theorem 3:2:2(3), we obtain z1 2 H1(C). So

H1(C) is a lower set.

(iii) Suppose y0 2 Qt and y 2 H1(C), then �t(y0) 2 Q0t and �t(y) 2 �t(H1(C)). But

�t(H1(C)) is an ideal of Q0t, we have �t(y 
1 y0) = �t(y) 
2 �t(y0) 2 �t(H1(C)) and
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�t(y
0 
1 y) = �t(y0)
2 �t(y) 2 �t(H1(C)). Thus, we have y
1 y0; y0 
1 y 2 H1(C) by

Theorem 3:2:2(3). Hence by (i)-(iii), H1(C) is an ideal of Qt.

(2) First we show that H1(C) 6= Qt , �t(H1(C)) 6= Q0t; that is H1(C) = Qt ,
�t(H1(C)) = Q

0
t. Assume thatH1(C) = Qt. Since �t is surjective, we have �t(H1(C)) =

�t(Qt) = Q0t. Conversely, assume that �t(H1(C)) = Q0t. For each z 2 Qt we have
�t(z) 2 �t(Qt) = Q0t = �t(H1(C)). Then by Theorem 3:2:2(3); we have z 2 H1(C)

and thus H1(C) = Qt.

Let H1(C) is a PI of Qt. Then H1(C) is obviously an ideal of Qt and H1(C) 6= Qt. By
part (1), H2(�t(C)) is an ideal of Q0t. We also have thatH2(�t(C)) = �t(H1(C)) 6= Q0t.
Now suppose y1; y2 2 Q0t and y1 
2 y2 2 H2(�t(C)). Since �t is surjective, there are

z1; z2 2 Qt such that y1 = �t(z1), y2 = �t(z2). Then �t(z1 
1 z2) = �t(z1)
2 �t(z2) =
y1 
2 y2 2 �t(H1(C)). By Theorem 3:2:2(3), we have z1 
1 z2 2 H1(C). Since H1(C)

is prime, we have z1 2 H1(C) or z2 2 H1(C). Thus y1 2 �t(H1(C)) = H2(�t(C)) or

y2 2 �t(H1(C)) = H2(�t(C)). So H2(�t(C)) is a PI of Q0t.

Conversely, let H2(�t(C)) is a PI of Q0t. Then H2(�t(C)) is an ideal of Q0t. Since

�t(H1(C) = H2(�t(C) 6= Q0t and thus H1(C) 6= Qt. By part (1), H1(C) is an ideal of

Qt. Now suppose z1, z2 2 Qt and z1
1 z2 2 H1(C). So, �t(z1) 
2 �t(z2) = �t(z1 
1
z2) 2 �t(H1(C)). Since �t(H1(C)) = H2(�t(C)) is prime, we have �t(z1) 2 �t(H1(C))

or �t(z2) 2 �t(H1(C)). So by Theorem 3:2:2(3), we have z1 2 H1(C) or z2 2 H1(C).

Thus H1(C) is a PI of Qt.

The proof of remaining parts (3) and (4) are similar to the proof (1) and (2).

Theorem 3.2.5 Let �t : Qt �! Q0t be an isomorphism and H2 : Q0t �! P �(Q0t)

be a SV H. Set H1(x) = fy 2 Qt j �t(y) 2 H2(�t(x))g for all x 2 Qt. Then for all
; 6= B � Qt; the following hold,

(1) H1(B) is an ideal of Qt if and only if H2(�t(B)) is an ideal of Q
0
t;

(2) H1(B) is a PI of Qt if and only if H2(�t(B)) is a PI of Q
0
t;

(3) H1(B) is a SPI of Qt if and only if H2(�t(B)) is a SPI of Q
0
t;

(4) H1(B) is a PY I of Qt if and only if H2(�t(B)) is a PY I of Q
0
t.

Proof. By Theorem 3:2:2(1); �t(H1(B)) = H2(�t(B)) for each B � Qt.

(1) Suppose H1(B) is an ideal of Qt.
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(i) Let x; z 2 �t(H1(B)). Then there exist x1; z1 2 H1(B) such that �t(x1) = x

and �t(z1) = z. Since �t is a surjective QH and H1(B) is an ideal of Qt, we obtain

x _ z = �t(x1) _ �t(z1) = �t(x1 _ z1) 2 �t(H1(B)). Therefore x _ z 2 �t(H1(B)) for

all x; z 2 �t(H1(B)).

(ii) Let z � x 2 �t(H1(B)). Then there exist x1 2 H1(B) and z1 2 Qt such that
�t(x1) = x and �t(z1) = z. Since �t(z1) � �t(x1), we have �t(x1 _ z1) = �t(x1) _
�t(z1) = �t(x1) 2 �t(H1(B)). From part (3) in Theorem 3:2:2, it follows that x1_z1 2
H1(B). Since H1(B) is an ideal and z1 � x1 _ z1, we have z1 2 H1(B). Thus

z = �t(z1) 2 �t(H1(B)).

(iii) Let x 2 �t(H1(B)) and z 2 Q0t. Then there exist x1 2 H1(B) and z1 2 Qt such
that �t(x1) = x and �t(z1) = z. Since H1(B) is an ideal and �t is a QH, we obtain

x1 
1 z1 2 H1(B). Hence x 
2 z = �t(x1) 
2 �t(z1) = �t(x1 
1 z1) 2 �t(H1(B)). In

a similar way, we have z 
2 x 2 �t(H1(B)). Hence, �t(H1(B)) is an ideal of Q
0
t. But

H2(�t(B)) = �t(H1(B)). So H2(�t(B)) is an ideal of Q
0
t.

Conversely, suppose H2(�t(B)) = �t(H1(B)) is an ideal of Q
0
t.

(i) Let z1; z2 2 H1(B). Then �t(z1); �t(z2) 2 �t(H1(B)). Since �t(H1(B)) is an

ideal, �t(z1 _ z2) = �t(z1)_ �t(z2) 2 �t(H1(B)). So by Theorem 3:2:2(3), we have

z1 _ z2 2 H1(B).

(ii) Let z1 � z2 2 H1(B). Then �t(z1) � �t(z2) 2 �t(H1(B)). Since �t(H1(B)) is an

ideal, we have �t(z1) 2 �t(H1(B)). By Theorem 3:2:2(3), we obtain z1 2 H1(B). So

H1(B) is a lower set.

(iii) Suppose y0 2 Qt and y 2 H1(B), then �t(y
0) 2 Q0t and �t(y) 2 �t(H1(B)). But

�t(H1(B)) is an ideal of Q
0
t, we have �t(y 
1 y0) = �t(y) 
2 �t(y0) 2 �t(H1(B)) and

�t(y
0 
1 y) = �t(y0)
2 �t(y) 2 �t(H1(B)). Thus, we have y
1 y0; y0 
1 y 2 H1(B) by

Theorem 3:2:2(3). Hence by (i)-(iii), H1(B) is an ideal of Qt.

(2) First we show that H1(B) 6= Qt , �t(H1(B)) 6= Q0t; that is H1(B) = Qt ,
�t(H1(B)) = Q

0
t. Assume thatH1(B) = Qt. Since �t is surjective, we have �t(H1(B)) =

�t(Qt) = �t(Q
0
t). Conversely, assume that �t(H1(B)) = Q

0
t. For each z 2 Qt we have

�t(z) 2 �t(Qt) = Q0t = �t(H1(B)). Then by Theorem 3:2:2(3); we have z 2 H1(B)

and thus H1(B) = Qt.

Let H1(B) is a PI of Qt. Then H1(B) is obviously an ideal of Qt and H1(B) 6= Qt. By
part (1), H2(�t(B)) is an ideal of Q

0
t. We also have thatH2(�t(B)) = �t(H1(B)) 6= Q0t.
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Now suppose y1; y2 2 Q0t and y1 
2 y2 2 H2(�t(B)). Since �t is surjective, there are

z1; z2 2 Qt such that y1 = �t(z1), y2 = �t(z2). Then �t(z1 
1 z2) = �t(z1)
2 �t(z2) =
y1 
2 y2 2 �t(H1(B)). By Theorem 3:2:2(3), we have z1 
1 z2 2 H1(B). Since H1(B)

is prime, we have z1 2 H1(B) or z2 2 H1(B). Thus y1 2 �t(H1(B)) = H2(�t(B)) or

y2 2 �t(H1(B)) = H2(�t(B)). So H2(�t(B)) is a PI of Q
0
t.

Conversely, let H2(�t(B)) is a PI of Q
0
t. Then H2(�t(B)) is an ideal of Q

0
t. Since

�t(H1(B) = H2(�t(B) 6= Q0t and thus H1(B) 6= Qt. By part (1), H1(B) is an ideal of

Qt. Now suppose z1, z2 2 Qt and z1
1 z2 2 H1(B). So, �t(z1) 
2 �t(z2) = �t(z1 
1
z2) 2 �t(H1(B)). Since �t(H1(B)) = H2(�t(B)) is prime, we have �t(z1) 2 �t(H1(B))

or �t(z2) 2 �t(H1(B)). So by Theorem 3:2:2(3), we have z1 2 H1(B) or z2 2 H1(B).

Thus H1(B) is a PI of Qt.

The proof of remaining parts (3) and (4) are similar to the proof (2).

3.3 Generalized Rough Fuzzy Prime (Primary) Ideals In-

duced by Quantale Homomorphism

In this section, we will discuss relations between the upper (lower) generalized

rough fuzzy (prime, semi-prime, primary) ideals of quantales and the upper (lower)

approximations of their homomorphic images and give some Theorems related to them.

Theorem 3.3.1 Let �t : Qt �! Q0t be a surjective QH, H2 : Q
0
t �! P �(Q0t) be

a SV H and � be a f-subset of Qt. If H1(x) = fy 2 Qt j �t(y) 2 H2(�t(x))g for all
x 2 Qt, then

(1) H1(�) is a FI of Qt if and only if H2(�t(�)) is a FI of Q0t;

(2) H1(�) is a FPI of Qt if and only if H2(�t(�)) is a FPI of Q0t;

(3) H1(�) is a FSPI of Qt if and only if H2(�t(�)) is a FSPI of Q0t;

(4) H1(�) is a FPY I of Qt if and only if H2(�t(�)) is a FPY I of Q0t.

In the above,

�t(�)(y) =

8><>:
Sup

x 2 ��1t (y)

�(x), if ��1t (y) 6= ; 8 y 2 Q0t

0, otherwise
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i:e., �t(�) is the standard Zadeh image of the f -subset � under the mapping �t. (see

De�nition 1:4:7).

Proof. (1) We �rst point out that for each � 2 [0; 1], (�t(�))�+ = �t(��+) and

(H1(�))�+ 6= ; if and only if (H2(�t(�)))�+ 6= ;.

Let H1(�) be a FI of Qt. Then for all � 2 (0; 1], if (H2(�t(�))�+ 6= ;, then
(H1(�))�+ 6= ;. By Theorem 3:1:11, we have (H1(�))�+ is an ideal of Qt. Also

by using Proposition 3:1:5, we obtain H1(��+) is an ideal of Qt. Now, by Theorem

3:2:4(1) and Proposition 3:1:5, we have (H2(�t(�)))�+ = H2((�t(�))�+ = H2(�t(��+))

is an ideal of Q0t. Thus, by Theorem 3:1:11, we have H2(�t(�)) is a FI of Q0t.

Conversely, supposeH2(�t(�)) is a FI ofQ0t. We have (H2(�t(�)))�+ = H2(�t(�))�+ =

H2(�t(��+)) is an ideal of Q
0
t by utilizing Theorem 3:1:11 and Proposition 3:1:5. Thus,

H1(��+) is an ideal of Qt from Theorem 3:2:4(1). Hence H1(�) is a FI of Qt by The-

orem 3:1:11.

(2) Let H1(�) be a FPI of Qt. Now for H2(�t(�))�+ 6= ;, then (H1(�))�+ 6= ; for each
� 2 [0; 1]. Since H1(�) is a FPI of Qt, then by Theorem 3:1:18 and Proposition 3:1:5,

we have (H1(�))�+ = H1(�))�+ = H1(��+) is a PI of Qt. Hence (H2(�t(�)))�+ =

H2((�t(�))�+ = H2(�t(��+)) is a PI of Q
0
t, by Theorem 3:2:4(2). Thus, by Theorem

3:1:18, we have H2(�t(�)) is a FPI of Q0t.

Conversely, suppose H2(�t(�)) is a FPI of Q0t. By Theorem 3:1:18, we have

(H2(�t(�)))�+ = H2(�t(�))�+ = H2(�t(��+))

is a PI of Q0t. Thus from Theorem 3:2:4(2), H1(��+) is a PI of Qt. Hence H1(�) is a

FPI of Qt by Theorem 3.1.18.

Proof of (3) and (4) is similar to the proof of (1) and (2).

Theorem 3.3.2 Let �t be a surjective QH from a quantale (Qt;
1) onto a quantale
(Q0t;
2). Let H2 : Q0t �! P �(Q0t) be a SV H and � be a f-subset of Qt. If H1(x) =

fy 2 Qt j f(y) 2 H2(f(x))g for all x 2 Qt, then

(1) H1(�) is a FI of Qt if and only if H2(�t(�)) is a FI of Q
0
t;

(2) H1(�) is a FPI of Qt if and only if H2(�t(�)) is a FPI of Q
0
t;

(3) H1(�) is a FSPI of Qt if and only if H2(�t(�)) is a FSPI of Q
0
t;

(4) H1(�) is a FPY I of Qt if and only if H2(�t(�)) is a FPY I of Q
0
t.
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Proof. The proof is similar to the proof of Theorem 3:3:1.



Chapter 4

Characterizations of Quantales

by (�; �)-Fuzzy Ideals

In this chapter, we describe (�; �)-fuzzy subquantales and (�; �)-fuzzy ideals of

quantale. Further, (2;2 _q)-fuzzy ideal and (2;2 _q)-fuzzy subquantale are discussed.
It is investigated that homomorphic image of an (2;2 _q)-fuzzy subquantale (ideal)
under QH is an (2;2 _q)-fuzzy subquantale (ideal). These fuzzy subquantales and
fuzzy ideals are characterized by their level subquantales and ideals, respectively. Some

important results about (2;2 _q)-fuzzy prime and (2;2 _q)-fuzzy semi prime ideals
are discussed. Fuzzy quantale submodule is de�ned and its generalization that is an

(�; �)-fuzzy Qt-submodule of Qt-module is also introduced in this chapter.

In the �rst section, (�; �)-fuzzy ideals and (�; �)-fuzzy subquantales are intro-

duced. Moreover, (2;2 _q)-fuzzy ideals and (2;2 _q)-fuzzy subquantales are dis-
cussed in the second section. With the help of QH, it is proved that inverse image of

(2;2 _q)-fuzzy subquantale and (2;2 _q)-fuzzy ideal are (2;2 _q)-fuzzy subquantale
and (2;2 _q)-fuzzy ideal, respectively. In section three, we de�ne the (2;2 _q)-fuzzy
prime and (2;2 _q)-fuzzy semi prime ideals of Quantale. It is also investigated that
if a f -subset g is an (2;2 _q)-fuzzy prime (or (2;2 _q)-fuzzy semi prime) ideal of
Q0t, then �

�1(g) is an (2;2 _q)-fuzzy prime (or (2;2 _q)-fuzzy semi prime) ideal of
Qt. In the last section, (�; �)-fuzzy Qt-submodule of Qt-module is introduced. Fuzzy

Qt-submodule is characterized by its level Qt-subquantales.

60
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4.1 (�; �)-Fuzzy Ideals of Quantale

In this section, let � and � be one of 2, q, 2 _q or 2 ^q; unless otherwise speci-
�ed. From here onward, we will write (�; �)-FI; (�; �)-FRI; (�; �)-FLI; (�; �)-FS,

(2;2 _q)-FI; (2;2 _q)-FS; (2;2 _q)-FRI and (2;2 _q)-FLI for (�; �)-fuzzy ideal,
(�; �)-fuzzy right ideal, (�; �)-fuzzy left ideal, (�; �)-fuzzy subquantale, (2;2 _q)-
fuzzy ideal, (2;2 _q)-fuzzy subquantale, (2;2 _q)-fuzzy right ideal and (2;2 _q)-
fuzzy left ideal, respectively.

De�nition 4.1.1 [66] A f-subset g of a quantale Qt is called a fuzzy point if

g(y) =

(
p; if y = z

0; otherwise
for all z; y 2 Qt.

Then z is called the support of g and p 2 (0; 1] is its value. A fuzzy point is represented
by zp. Pu and Liu [66], gave meaning to the symbol zp�g, where � 2 f2; q;2 _q;2 ^qg
for a fuzzy point zp and a f-subset g in a set Qt.

(1) When g(z) � p, then it means that zp belongs to g and is represented as zp 2 g.

(2) When g(z) + p > 1, then zp is called quasi-coincident with g and is denoted as

zpqg.

(3) When g(z) � p or g(z) + p > 1; then zp belongs to g or zp is quasi-coincident with
g and is denoted as zp (2 _q)g. Similarly, zp (2 ^q)g denotes that zp 2 g and zpqg.
When zp�g means that zp�g does not hold.

Each f -subset g de�ned on Qt can be characterized by its level subsets, i.e., by the

sets of the form U(g; p) = fz 2 Qt : g(z) � pg, where p 2 [0; 1]. An important part is
played by the support of g, i.e., the set g� = fz 2 Qt : g(z) > 0g.

For a f -subset g of Qt such that g(z) � 0:5 for any z 2 Qt; in this case zp(2 ^q)g; we
have g(z) � p and g(z)+ p > 1. Thus; 1 < g(z)+ p � g(z)+ g(z) = 2g(z). This shows
that g(z) � 0:5. Hence; fzp : zp(2 ^q)gg = ;. Thus, the case � = 2 ^q is omitted.

De�nition 4.1.2 [90] Let �t : Qt �! Q0t be a mapping from a quantale Qt to a

quantale Q0t, and let g and g
0 be f-subsets in Qt and Q0t, respectively. Then the image

of g under �t and the pre-image of g0 under �t are the f-subsets �t(g) and ��1t (g
0),

respectively, de�ned as follows:
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(i) �t(g)(y) =

8><>:
Sup

x 2 ��1t (y)

g(x), if ��1t (y) 6= ; for all y 2 Q0t

0, otherwise
;

(ii) ��1t (g
0)(x) = g0(�t(x)) for all x 2 Qt.

If �t is a QH, then �t(g) is called the homomorphic image of g under �t and ��1t (g
0)

is called the homomorphic pre-image of g0.

De�nition 4.1.3 Let (Qt;
) be a quantale and g be a f-subset of Qt. We say that g
is a FS of Qt if

(i) g(_i2Izi) � inf
i2I

g(zi),

(ii) g(y 
 z) � inf(g(y); g(z)) for all z; zi; y 2 Qt.

Proposition 4.1.4 Let g1 and g2 be the FSs of Qt. Then (g1 e g2) is a FS of Qt.

Proof. Let zi 2 Qt for some i 2 I and g1 and g2 be the FS�s of Qt; so by De�nition
4.1.3, we have;

g1(_i2Izi) � inf
i2I

g1(zi) and g2(_i2Izi) � inf
i2I

g2(zi)

=) inffg1(_i2Izi); g2(_i2Izi)g � inffinf
i2I
g1(zi); inf

i2I
g2(zi)g

=) inffg1(_i2Izi); g2(_i2Izi)g � inf
i2I
finf(g1(zi); g2(zi))g

=) (g1 e g2)(_i2Izi) � inf
i2I
(g1 e g2)(zi)

Next; as g1(z1 
 z2) � inffg1(z1); g1(z2)g and g2(z1 
 z2) � inffg2(z1); g2(z2)g

=) inffg1(z1 
 z2); g2(z1 
 z2)g � inf(inffg1(z1); g1(z2)g; inffg2(z1); g2(z2)g)

=) inffg1(z1 
 z2); g2(z1 
 z2)g � inf(inffg1(z1); g2(z1)g; inffg1(z2); g2(z2)g)

=) (g1 e g2)(z1 
 z2) � inff(g1 e g2)(z1); (g1 e g2)(z2)g.

Therefore; (g1 e g2) is a FS of Qt.

De�nition 4.1.5 A f-subset g of a quantale Qt is called an (�; �)-FS of Qt, if

(i) (zi)pi�g �! (_i 2 Izi)inf
i2I

pi�g,

(ii) zp�g, and wv�g �! (z 
 w)inf(p;v)�g, for all pi; p; v 2 (0; 1] and for all zi; z; w
2 Qt.
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Lemma 4.1.6 A f-subset g of a quantale Qt is a FS of Qt if and only if it satis�es

(zi)pi 2 g �! (_i 2 Izi)inf
i2I

pi 2 g and zp 2 g; wv 2 g �! (z 
 w)inf(p;v) 2 g for all pi;

p; v 2 (0; 1] and for all zi; z; w 2 Qt.

Proof. Let g be a FS of Qt and zi 2 Qt and pi 2 (0; 1] be such that (zi)pi 2 g for
i 2 I. Then g(zi) � pi; for all i 2 I. Since g is a FS of Qt, so g(_i2Izi) � inf

i2I
g(zi) � inf

i2I
pi. Hence (_i 2 Izi)inf

i2I
pi 2 g.

Let p; v 2 (0; 1] and z; w 2 Qt be such that zp 2 g and wv 2 g. Then g(z) � p and

g(w) � v. But g is a FS of Qt, hence g(z 
 w) � inf(g(z); g(w)) � inf(p; v). Thus
g(z 
 w) � inf(p; v). This implies that (z 
 w)inf(p;v) 2 g.

Conversely, suppose that g satis�es the given conditions. First we show that

g(_i2Izi) � inf
i2I

g(zi) for i 2 I. On contrary suppose that g(_i2Izi) < inf
i2I

g(zi)

for zi 2 Qt. Let p 2 (0; 1] be such that g(_i2Izi) < p � inf
i2I

g(zi). Then (zi)p 2 g

but (_i 2 Izi)p 2 g. This contradicts our hypothesis. Thus g(_i2Izi) � inf
i2I

g(zi) for

zi 2 Qt. Similarly, we show that g(w 
 z) � inf(g(z); g(w)) for all w; z 2 Qt. Hence
g is a FS of Qt.

Remark 4.1.7 The above Lemma shows that every FS of Qt is an (2;2)-FS of Qt
and vice versa.

Theorem 4.1.8 Let g be a nonzero (�; �)- FS of Qt. Then the set g� = fy 2 Qt j g(y) > 0g
is a subquantale of Qt.

Proof. Let yi 2 g� for i 2 I. Then g(yi) > 0 for all i 2 I. Let g(_i2Iyi) = 0.

If � 2 f2;2 _qg, then (yi)g(yi)�g for all i 2 I but g(_i2Iyi) = 0 < inf
i2I

g(yi) and

g(_i2Iyi)+inf
i2I

g(yi) � 0+1 = 1. So (_i2Iyi)inf
i2I

g(yi)�g for every � 2 f2; q;2 _q;2 ^qg,

this gives a contradiction. Hence g(_i2Iyi) > 0, i.e., _i2Iyi 2 g�. Also (yi)1qg for all
i 2 I but (_i2Iyi)1�g for every � 2 f2; q;2 _q;2 ^qg. Hence g(_i2Iyi) > 0, i.e.,

_i2Iyi 2 g�. Thus g� is closed under arbitrary join. The proof is similar for g� to be
closed under 
.

De�nition 4.1.9 A f-subset g of a quantale Qt is said to be an (�; �)-FRI (FLI) of

Qt, if
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(i) zp�g, wv�g �! (z _ w)inf(p;v)�g,

(ii) zp�g;w 2 Qt �! (z 
 w)p�g, [respectively, (w 
 z)p�g]

(iii) zp�g and w � z �! wp�g; for all p, v 2 (0; 1] and for all z, w 2 Qt.

A f-subset g of a quantale Qt is called an (�; �)-FI of Qt if it is both an (�; �)-FRI

and (�; �)-FLI of Qt.

Example 4.1.10 Let (Qt;
) be a quantale, where Qt is depicted in Fig.9 and the
binary operation 
on Qt is shown in the table 7. Ideals of Qt are f?g, f?; jg and Qt.

Fig: 9

Table. 6


 ? i j >
? ? ? ? ?
i ? i j >
j ? j j j

> ? > j >

De�ne g : Qt �! [0; 1] by g = 0:8
? + 0:7

i +
0:6
j +

0:5
> . Then clearly g is an (2;2 _q)-FI

of Qt. But,

(i) g is not (2;2)-FI of Qt, since

i0:68 2 g but (i
 j)0:682g;
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(ii) g is not (q;2)-FI of Qt, since

i0:61qg but (i
 j)0:612g;

(iii) g is not (2; q)-FI of Qt, since

>0:3 2 g but (>
 j)0:3qg;

(iv) g is not (q;2 ^q)-FI of Qt, since

>0:6qg but (>
 i)0:6(2 ^q)g;

(v) g is not (2 _q;2 ^q)-FI of Qt, since

i0:65qg but (>
 i)0:65(2 ^q)g;

(vi) g is not (2 _q;2)-FI of Qt, since

i0:65qg but (>
 i)0:652g;

(vii) g is not (2;2 ^q)-FI of Qt, since

i0:67 2 g but (j 
 i)0:67(2 ^q)g;

(viii) g is not (q; q)-FI of Qt, since

i0:5qg but (>
 i)0:5 qg;

Lemma 4.1.11 A f-subset g in a quantale Qt is a FRI (FLI) of Qt if and only if

the following hold:

(1) zp; wv 2 g �! (z _ w)inf(p;v) 2 g;

(2) zp 2 g; w 2 Qt �! (z 
 w)p 2 g [respectively, (w 
 z)p 2 g];

(3) zp 2 g and w � z �! wp 2 g, for all p; v 2 (0; 1] and for all z; w 2 Qt.

Proof. The proof is like the proof of Lemma 4:1:6.

Remark 4.1.12 The above Lemma shows that every FRI (FLI) of Qt is an (2;2)-
FRI (FLI) of Qt and vice versa.

Theorem 4.1.13 Let g be a nonzero (�; �)- FRI (FLI) of Qt. Then g� = fy 2 Qt j g(y) > 0g
is a right (left) ideal of Qt.

Proof. Let g be a nonzero (�; �)- FRI of Qt. Let w; z 2 g�. Then g(w) > 0

and g(z) > 0. Let g(w _ z) = 0. If � 2 f2;2 _qg, then (w)g(w)�g and (z)g(z)�g
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but g(w _ z) = 0 < inf(g(w); g(z)) and g(w _ z) + inf(g(w); g(z)) � 0 + 1 = 1.

So (w _ z)inf(g(w);g(z))�g for every � 2 f2; q;2 _q;2 ^qg, a contradiction. Hence

g(w _ z) > 0, i.e., w _ z 2 g�. Also w1qB and z1qB but (w _ z)1�g for every � 2
f2; q;2 _q;2 ^qg. Hence g(w _ z) > 0, that is w _ z 2 g�. Thus g� is closed under
join.

Let w; z 2 Qt and w � z. If z 2 g�, then g(z) > 0. Assume that g(w) = 0.

If � 2 f2;2 _qg, then (z)g(z)�g but (w)g(w)�g for every � 2 f2; q;2 _q;2 ^qg, a
contradiction. Also z1qg but w1�g for every � 2 f2; q;2 _q;2 ^qg. Hence g(w) > 0,
i.e., w 2 g�.

Let w 2 g� and for all z 2 Qt. Then g(w) > 0. We want to show that g(w 
 z) > 0
for all z 2 Qt. Suppose that g(w
 z) = 0 and let � 2 f2;2 _qg. Then (w)g(w)�B but
(w
 z)g(w)�g for every � 2 f2; q;2 _q;2 ^qg, this is a contradiction. Also w1qB but

(w 
 z)1�g for every � 2 f2; q;2 _q;2 ^qg, a contradiction. Therefore g(w 
 z) > 0
and so w 
 z 2 g�. Hence g� is a right ideal of a quantale Qt.

Proposition 4.1.14 Let A be a right (left) ideal of Qt. Then a f-subset g of Qt such

that g(z) � 0:5 for z 2 A and g(z) = 0 otherwise is an (�;2 _q)- FRI (FLI) of Qt.

Proof. Let A be a right ideal of Qt.

(a) Suppose and p; v 2 (0; 1] and y; z 2 Qt be such that yp 2 g and zv 2 g. Then
g(y) � p and g(z) � v. Thus y; z 2 A and so y _ z 2 A , that is g(y _ z) � 0:5.

If inf(p; v) � 0:5, then g(y _ z) � 0:5 � inf(p; v). Hence (y _ z)inf(p;v) 2 g. If

inf(p; v) > 0:5, then g(y _ z) + inf(p; v) > 0:5 + 0:5 = 1 and so (y _ z)inf(p;v)qg.
Therefore (y _ z)inf(p;v)(2 _q)g.

Let y; z 2 Qt, y � z and v 2 (0; 1] be such that zv 2 g. Then g(z) � v. Thus z 2 A and
since A is a right ideal so y 2 A, that is g(y) � 0:5. If v � 0:5, then g(y) � 0:5 � v.
Hence yv 2 g. If v > 0:5, then g(y) + v > 0:5 + 0:5 = 1 and so yvqg. It follows that
yv(2 _q)g.

Now let y; z 2 Qt and p 2 (0; 1] be such that yp 2 g. Then g(y) � p, which implies

y 2 A, and so y 
 z 2 A; for all z 2 Qt. Consequently g(y 
 z) � 0:5. If p � 0:5, then
g(y 
 z) � 0:5 � p. Hence (y 
 z)p 2 g. If p > 0:5, then g(y 
 z) + p > 0:5 + 0:5 = 1
and so (y 
 z)pqg. Thus (y 
 z)p(2 _q)g. Hence g is an (2;2 _q)-FRI of Qt.
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(b) Suppose that y; z 2 Qt and p; v 2 (0; 1] be such that ypqg and zvqg. Then y; z 2 A,
g(y)+ p > 1 and g(z)+ v > 1. Thus, y; z 2 A and since A is a right ideal so y_ z 2 A,
we have g(y _ z) � 0:5. If inf(p; v) � 0:5, then g(y _ z) � 0:5 � inf(p; v). Hence

(y _ z)inf(p;v) 2 g. If inf(p; v) > 0:5, then g(y _ z) + inf(p; v) > 0:5 + 0:5 = 1 and so
(y _ z)inf(p;v)qg. Therefore (y _ z)inf(p;v)(2 _q)g.

Let y; z 2 Qt; y � z and v 2 (0; 1] be such that zvqg. Then g(z) + v > 1. Thus z 2 A
and since A is a right ideal so y 2 A, that is g(y) � 0:5. If v � 0:5, then g(y) � 0:5 � v.
Hence yv 2 g. If v > 0:5, then g(y) + v > 0:5 + 0:5 = 1 and so yvqg. It follows that
yv(2 _q)g.

Now, let y; z 2 Qt and p 2 (0; 1] be such that ypqg, which implies that g(y) + p > 1.
Thus y 2 A and so y 
 z is in A. This means that g(y 
 z) � 0:5. If p � 0:5, then

g(y 
 z) � 0:5 � p. Hence (y 
 z)p 2 g. If p > 0:5, then g(y 
 z) + p > 0:5 + 0:5 = 1
and so (y 
 z)pqg. Thus (y 
 z)p(2 _q)g. Hence g is an (q;2 _q)-FRI of Qt.

(c) Let y; z 2 Qt and p; v 2 (0; 1] be such that yp 2 g and zvqg. Then g(y) � p

and g(z) + v > 1. Thus, y; z 2 A and so y _ z 2 A, we have g(y _ z) � 0:5. Thus,

(y _ z)inf(p;v) 2 g for inf(p; v) � 0:5 and (y _ z)inf(p;v)qg for inf(p; v) > 0:5. Thus

(y _ z)inf(p;v)(2 _q)g. The rest is similar to the proof of parts (a) and (b).

Theorem 4.1.15 Let C be a subquantale of Qt. Then a f-subset g of Qt such that

g(c) � 0:5 for c 2 C and g(c) = 0 otherwise is an (�;2 _q)-FS of Qt.

Proof. The proof is like the proof of Theorem 4:1:14.

Proposition 4.1.16 Let g be a f-subset of a quantale Q0t and �t : Qt �! Q0t be a QH.

Then (�t(w))p�g if and only if wp���1t (g) for all w 2 Qt and p 2 (0; 1].

Proof. Let � = 2. Then (�t(w))p 2 g () g(�t(w)) � p () ��1t (g)(w) � p ()
wp 2 ��1t (g). Let � = q. Then (�t(w))pqg () g(�t(w))+ p > 1() ��1t (g)(w)+ p >

1() wpq�
�1(g). Similarly, we can obtain the other cases.

Theorem 4.1.17 Let �t : Qt �! Q0t be a QH and g be an (�; �)-FRI (FLI) of Q0t.

Then ��1t (g) is an (�; �)-FRI (FLI) of Qt.

Proof. Let z; w 2 Qt and p; v 2 (0; 1] be such that zp���1t g and wv���1t g. Then
(�t(z))p�g and (�t(w))v�g by Proposition 4:1:16. Since g is an (�; �)-FRI of Q0t;
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we have (�t(z) _ �t(w))inf(p;v)�g and (�t(z _ w))inf(p;v)�g by using QH. Thus; (z _
w)inf(p;v)��

�1
t g by Proposition 4:1:16. Let zp��

�1
t g such that w � z. Then (�t(z))p�g

and �t(w) � �t(z). Since g is an (�; �)-FRI of Q0t; we have �t(w)p�g. By Proposition
4:1:16, wp���1t g. Let zp��

�1
t g and for all y 2 Qt. Then (�t(z))p�g and �t(y) 2 Q0t.

Hence, (�t(z) 
0 �t(y))p�g �! (�t(z 
 y))p�g as g is an (�; �)-FRI of Q0t and �t
is a QH. Again by Proposition 4:1:16; we have (z 
 y)p���1t g. Hence ��1t (g) is an
(�; �)-FRI of Qt.

Proposition 4.1.18 Let (Qt;
) and (Q0t;
0) be two quantales and �t : Qt �! Q0t be

a QH. Let g be (�; �)-FS of Q0t. Then �
�1
t (g) be an (�; �)-FS of Qt.

Proof. The proof is similar to the proof of Theorem 4:1:17.

4.2 (2;2 _q)- Fuzzy Ideals of Quantale

We introduce some results about (2;2 _q)-FI and (2;2 _q)-FS of quantale Qt
in this section. We will show that homomorphic image of (2;2 _q)-FS is (2;2 _q)-
FS. Also with the help of QH, we will show that inverse image of (2;2 _q)-FS
((2;2 _q)-FI) is (2;2 _q)-FS ((2;2 _q)-FI).

Lemma 4.2.1 For a f-subset g of a quantale Qt, the conditions below are equivalent:

(zi)pi 2 g �! (_i 2 Izi)inf
i2I

pi(2 _q)g, (1)

g(_i2Izi) � inf(inf
i2I

g(zi); 0:5). (2)

Proof. (1) �! (2) Let zi 2 Qt for all i 2 I. We consider the two cases:

(a�) inf
i2I

g(zi) < 0:5,

(b�) 0:5 � inf
i2I

g(zi).

First we consider the case when inf
i2I

g(zi) < 0:5. Let g(_i2Izi) < inf(inf
i2I

g(zi); 0:5),

which implies that g(_i2Izi) < inf
i2I

g(zi). Then we can select p such that g(_i2Izi) <

p < inf
i2I

g(zi), which means that (zi)p 2 g for all i but (_i 2 Izi)p(2 _q)g. This

contradicts (1). Hence, our supposition g(_i2Izi) < inf(inf
i2I

g(zi); 0:5) is wrong.
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Now consider the case 0:5 � inf
i2I

g(zi). So, for g(_i2Izi) < 0:5, we have (zi)0:5 2 g for

all i 2 I and (_i 2 Izi)0:5(2 _q)g, which is impossible. Hence, we have g(_i2Izi) � 0:5.
Thus g(_i2Izi) � 0:5 � inf(inf

i2I
g(zi); 0:5).

(2) �! (1) Let (zi)pi 2 g for all i 2 I. Then g(_i2Izi) � inf(inf
i2I

g(zi); 0:5) �

inf(inf
i2I
pi; 0:5). Hence we have g(_i2Izi) � inf

i2I
pi when inf

i2I
pi � 0:5 and g(_i2Izi) �

0:5 for inf
i2I

pi > 0:5. Thus (_i 2 Izi)inf
i2I

pi(2 _q)g.

Lemma 4.2.2 For any f-subset g of Qt, the following conditions are equivalent:

zp 2 g and wv 2 g �! (z
w)inf(p;v)(2 _q)g, (3)

g(z
w) � inf(g(z); g(w); 0:5). (4)

Proof. The Proof is similar to the proof of Lemma 4:2:1.

Corollary 4.2.3 A f-subset g of Qt is an (2;2 _q)-FS of Qt if and only if the

conditions (2) and (4) hold.

Theorem 4.2.4 Let �t : Qt �! Q0t be a QH. Let g1 and g2 be (2;2 _q)-FS of Qt
and Q0t, respectively. Then

(1) �t(g1) is an (2;2 _q)-FS of Q0t,

(2) ��1t (g2) is an (2;2 _q)-FS of Qt.

Proof. (1) For any zi 2 Q0t, if ��1t (zi) = ; for i 2 I, then inf [inf
i2I

�t(g1)(zi); 0:5] = 0 �

�t(g1)(_i2Izi) and if ��1t (z) = ; or ��1t (w) = ;, then inf(�t(g1)(z); �t(g1)(w); 0:5) =
0 � �t(g1)(z 
 w). Now suppose that ��1t (zi) 6= ; for each i 2 I and ��1t (_i2Izi) 6= ;.

Thus,
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inf [inf
i2I
(�t(g1)(zi)); 0:5] = inf [inf [�t(g1)(z1); �t(g1)(z2); :::; �t(g1)(zi)]; 0:5]

= inf [inf [ Sup
a1 2 ��1t (z1)

g1(a1); :::; Sup
ai 2 ��1t (zi)

g1(ai)]; 0:5]

= Sup
a1 2 ��1t (z1),..., ai 2 ��1t (zi)

inf [inf(g1(a1); :::; g1(ai)); 0:5]

= Sup
�t(a1) = z1,..., �t(ai) = zi

inf [inf(g1(a1); :::; g1(ai)); 0:5]

= Sup
_i2I�t(ai) = _i2Izi

inf [inf
i2I
g1(ai); 0:5]

= Sup
�t(_i2Iai) = _i2Izi

inf [inf
i2I
g1(ai); 0:5], �t is a QH

� Sup
_i2Iai 2 ��1t (_i2Izi)

g1(_i2Iai)

= Sup
y 2 ��1t (_i2Izi)

g1(y)

= �t(g1)(_i2Izi)

Hence, �t(g1)(_i2Izi) � inf [inf
i2I

�t(g1)(zi); 0:5] for all zi 2 Q0t and

inf [�t(g1)(z); �t(g1)(w); 0:5] = inf [ Sup
a 2 ��1t (z)

g1(a); Sup
b 2 ��1t (w)

g1(b); 0:5]

= Sup
a2 ��1t (z); b2 ��1t (w)

inf [g1(a); g1(b); 0:5]

= Sup
�t(a)=z; �t(b)=w

inf [g1(a); g1(b); 0:5]

= Sup
�t(a)
0�t(b) = z
0w

inf [g1(a); g1(b); 0:5]

= Sup
�t(a
b) 2 z
0w

inf [g1(a); g1(b); 0:5], �t is a QH

� Sup
a
b 2 ��1t (z
0w)

g1(a
 b)

= Sup
y 2 ��1t (z 
0w)

g1(y)

= �t(g1)(z 
0 w)

So, �t(g1)(z 
0 w) � inf [�t(g1)(z); �t(g1)(w); 0:5] for all z; w 2 Q0t. By Corollary
4:2:3, we have �t(g1) is an (2;2 _q)-FS of Q0t.

(2) Let zi 2 Qt for all i 2 I. Then

��1t (g2)(_i2Izi) = g2(�t(_i2Izi))
= g2(_i2I�t(zi)), �t is a QH
� inf [inf

i2I
g2(�t(zi)); 0:5]

= inf [inf
i2I
��1t (g2)(zi); 0:5].
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Hence, ��1t (g2)(_i2Izi) � inf [inf
i2I

��1t (g2)(zi); 0:5] for all zi 2 Qt.

Now

��1t (g2)(z 
 w) = g2(�t(z 
 w))
= g2(�t(z)
0 �t(w)), �t is a QH
� inf(g2(�t(z)); g2(�t(w)); 0:5)

= inf(��1t (g2)(z); �
�1
t (g2)(w); 0:5).

Thus, ��1t (g2)(z 
 w) � inf(��1t (g2)(z); ��1t (g2)(w); 0:5).

By Corollary 4:2:3, we have ��1t (g2) is an (2;2 _q)-FS of Qt.

Lemma 4.2.5 The following two conditions are equivalent, for any f-subset g of Qt;

zp, wv 2 g �! (z_w)inf(p;v)(2 _q)g, (5)

g(z_w) � inf(g(z); g(w); 0:5), for all z, w 2 Qt and for all p, v 2 (0,1]. (6)

Proof. (5) �! (6) On contrary assume that there exist z; w 2 Qt such that g(z_w) <
inf(g(z); g(w); 0:5). Consider the following two cases.

Case:1 If inf(g(z); g(w)) � 0:5 then g(z _ w) < inf(g(z); g(w)). We can �nd p 2
(0; 0:5) such that g(z _ w) < p � inf(g(z); g(w)); which means that zp; wp 2 g but
(z _ w)p2g: Also g(z _ w) + p < 0:5 + 0:5 = 1 so (z _ w)pqg. Thus; (z _ w)p(2 _q)g;
which is a contradiction.

Case:2 If inf(g(z); g(w)) > 0:5; then g(z_w) < 0:5. Now z0:5; w0:5 2 g but (z_w)0:52g
and g(z_w)+0:5 < 1; i.e., (z_w)pqg. Hence; (z_w)inf(0:5;0:5)(2 _q)g; a contradiction.
Therefore g(z _ w) � inf(g(z); g(w); 0:5).

(6) �! (5) Let zp; wv 2 g. Then g(z _ w) � inf(g(z); g(w); 0:5) � inf(p; v; 0:5).

Consider the following two cases. Case:1 If inf(p; v) � 0:5; then g(z _w) � inf(p; v).
This shows that (z _ w)inf(p;v) 2 g.

Case:2 If inf(p; v) > 0:5; then g(z_w) � 0:5. Hence; g(z_w)+inf(p; v) > 0:5+0:5 = 1;
i.e., (z _ w)inf(p;v)qg. Thus (z _ w)inf(p;v)(2 _q)g.

Lemma 4.2.6 The following conditions are equivalent, for any f-subset g of a quantale

Qt;

zp 2 g , w 2 Qt �! (w
z)p(2 _q)g; (7)

g(w
z) � inf(g(z); 0:5) for all z; w 2 Qt. (8)
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Proof. (7) �! (8) Let z, w 2 Qt and 0:5 > g(z). Let g(z) > g(z 
 w). Then there is
p 2 (0; 1] such that g(z) > p > g(w
 z). This shows that zp 2 g and (w
 z)p(2 _q)g.
This is a contradiction against (7). So we have g(w
 z) � g(z) = inf(g(z); 0:5). Now
consider g(z) � 0:5. If g(w 
 z) < 0:5, then z0:5 2 g and (w 
 z)0:5(2 _q)g which is
again a contradiction against (7). Hence g(w 
 z) � inf(g(z); 0:5).

(8) �! (7) Let w 2 Qt and zp 2 g. Then g(z) � p. By supposition, g(w 
 z) �
inf(g(z); 0:5) � inf(p; 0:5). Consider the following two cases.

Case:1 If p � 0:5; then g(w 
 z) � p. Thus, (w 
 z)p 2 g.

Case:2 If p > 0:5; then g(w 
 z) � 0:5. Hence; g(w 
 z) + p > 0:5 + 0:5 = 1; i.e.,

(w 
 z)pqg. Thus (w 
 z)inf(p;v)(2 _q)g.

Lemma 4.2.7 The following two conditions are equivalent, for any f-subset g of a

quantale Qt;

zp 2 g; w 2 Qt �! (z
w)p(2 _q)g; (9)

g(z
w) � inf(g(z); 0:5) for all z; w 2 Qt: (10)

Proof. The Proof is similar to the proof of Lemma 4:2:6.

Lemma 4.2.8 The following two conditions are equivalent for any f-subset g of a

quantale Qt;

zp 2 g and w � z �! wp(2 _q)g; (11)

w � z; g(w) � inf(g(z); 0:5) for all z; w 2 Qt: (12)

Proof. (11) �! (12) Let w, z 2 Qt and w � z. We consider two cases.

(a�) 0:5 > g(z),

(b�) 0:5 � g(z).

Consider the �rst case when g(z) < 0:5. Assume g(w) < inf(g(z); 0:5). Then g(w) <

g(z). Take p such that g(z) � p > g(w) and g(w) + p < 1. Then zp 2 g but wp (2 _q)
g which is a contradiction. Hence g(w) � inf(g(z); 0:5). For case (b�), let w � z and
g(z) � 0:5. If g(w) < inf(g(z); 0:5) = 0:5 and g(w) + 0:5 < 1, then z0:5 2 g but w0:5
(2 _q) g, we obtain a contradiction. Therefore g(w) � inf(g(z); 0:5).
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(12) �! (11) Let w; z 2 Qt and w � z be such that zp 2 g. Then g(z) � p and by

supposition, we have g(w) � inf(g(z); 0:5) � inf(p; 0:5). This means that g(w) � p
or g(w) � 0:5, according to p � 0:5 or p > 0:5. Therefore wp(2 _q)g.

Proposition 4.2.9 A f-subset g of Qt is an (2;2 _q)-FRI (FLI) of Qt if and only
if the coditions below hold

(1) g(z _ w) � inf(g(z); g(w); 0:5);

(2) g(z 
 w) � inf(g(z); 0:5); [respectively g(w 
 z) � inf(g(z); 0:5)];

(3) w � z, g(w) � inf(g(z); 0:5), for all z, w 2 Qt.

Proof. Let g satisfy the conditions (1); (2) and (3). Since, the conditions (1); (2) and

(3) are equivalent to the conditions (6); (8) and (12); respectively (4:2:5; 4:2:6; 4:2:7; 4:2:8).

Thus, g is an (2;2 _q)-FRI of Qt.

Conversely, let g be an (2;2 _q)-FRI of Qt. Then g satis�es the the conditions (6); (8)
and (12); which are equivalent to the given conditions (1); (2) and (3); respectively.

Theorem 4.2.10 Let Qt and Q0t be two quantales and �t : Qt �! Q0t be a QH. Let

g be an (2;2 _q)-FRI (FLI) of Q0t. Then ��1t (g) is an (2;2 _q)-FRI (FLI) of Qt.

Proof. The proof is similar to the proof of Theorem 4:2:4(2).

Theorem 4.2.11 Let (Qt;
) be a quantale and fgigi2I be a non-empty family of
(2;2 _q)-FRI (FLI) of Qt. Then e

i2I
gi is an (2;2 _q)-FRI (FLI) of Qt.

Proof. Let fgigi2I be a non-empty family of (2;2 _q)-FRI of Qt. Let w; z 2 Qt be
such that w � z. Then

( e
i2I
gi)(w) = inf

i2I
gi(w)

� inf
i2I
[inf(gi(z); 0:5)]

= inf [inf
i2I
gi(z); 0:5]

= inf [( e
i2I
gi)(z); 0:5]

Thus, e
i2I
gi(w) � inf [( e

i2I
gi)(z); 0:5].

Let w; z 2 Qt. Then



4. Characterizations of Quantales by (�; �)-Fuzzy Ideals 74

( e
i2I
gi)(w _ z) = inf

i2I
gi(w _ z)

� inf
i2I
[inf(gi(w); gi(z); 0:5)]

= inf [inf
i2I
gi(w); inf

i2I
gi(z)]; 0:5]

= inf [ e
i2I
gi(w); e

i2I
gi(z); 0:5]

Hence ( e
i2I
gi)(w _ z) � inf [( e

i2I
gi)(w); ( e

i2I
gi)(z); 0:5].

Also for w; z 2 Qt, we have,

( e
i2I
gi)(z 
 w) = inf

i2I
gi(z 
 w)

� inf
i2I
[inf(gi(z); 0:5)]

= inf [inf
i2I
gi(z); 0:5]

= inf [ e
i2I
gi(z); 0:5]

Thus ( e
i2I
gi)(z 
 w) � inf [(( e

i2I
gi)(z); 0:5].

Therefore e
i2I
gi is an (2;2 _q)-FRI of Qt.

The following Proposition and Corollary are obvious.

Proposition 4.2.12 Every (2 _q;2 _q)-FI of Qt is an (2;2 _q)-FI of Qt.

Corollary 4.2.13 Every (2;2)-FI of Qt is an (2;2 _q)-FI of Qt.

The Example below shows that the converse of Proposition 4:2:12 and Corollary 4:2:13

are not true in general.

Example 4.2.14 Consider the quantale Qt as de�ned in Example 4:1:10 and taking

g = 0:8
? + 0:7

i +
0:6
j +

0:5
> . Then

(1) It is simple to con�rm that g is an (2;2 _q)-FI of Qt.

(2) g is not an (2;2)-FI of Qt; since i0:68 2 g and j0:59 2 g but (i _ j)inf(0:68;0:59) =
>0:592g.

(3) g is not an (2 _q;2 _q)-FI of Qt; since i0:68(2 _q)g and j0:59(2 _q)g but (i _
j)inf(0:68;0:59) = >0:59(2 _q)g.

De�nition 4.2.15 Let C be a crisp subset of a quantale Qt. We use KC to denote

the characteristic function of C, i.e., the mapping of a quantale Qt into [0; 1] de�ned
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by

KC(z) =

(
1; if z 2 C;
0; if z =2 C.

The following results are about the characteristic function KC of an ideal C of a

quantale Qt.

Lemma 4.2.16 Let ; 6= C � Qt. Then KC (the characteristic function) is an (2;2)-
FI of Qt if and only if C is an ideal of Qt.

Proof. Let C be an ideal of Qt. Let w; z 2 Qt and p; v 2 (0; 1] be such that

wp 2 KC and zv 2 KC . Then KC(w) � p > 0 and KC(z) � v > 0, which imply that
KC(w) = KC(z) = 1. Thus w; z 2 C and C is an ideal so w _ z 2 C. It follows that
KC(w_z) = 1 � inf(p; v) so that (w_z)inf(p;v) 2 KC . Now let b; z 2 Qt and p 2 (0,1]
be such that bp 2 KC . Then KC(b) � p > 0, and so KC(b) = 1, i.e., b 2 C. Since C
is an ideal of Qt, we have b
 z; z 
 b 2 C and hence KC(b
 z) = KC(b
 z) = 1 � p.
Therefore (b
 z)p 2 KC and (z
 b)p 2 KC . Let w; z 2 Qt, zp 2 KC and w � z. Then
KC(z) � p > 0, and so KC(z) = 1, i.e., z 2 C. Since C is an ideal, we have w 2 C
and so KC(w) = 1 � p. Therefore wp 2 KC and consequently KC is an (2;2)-FI of
Qt.

Conversely, let KC be an (2;2)-FI of Qt and w; z 2 C. Then (w)1 2 KC and (z)1 2
KC which show that (w _ z)1 = (w _ z)inf(1;1) 2 KC . Hence KC(w _ z) > 0, and so
w _ z 2 C. Let w; z 2 Qt, w � z and z 2 C. Then KC(z) = 1, and thus (z)1 2 KC .
Since KC is an (2;2)-FI, so we have (w)1 2 KC . Thus KC(w) = 1. Hence w 2 C.
Now let w 2 Qt and z 2 C. Then KC(z) = 1, and thus (z)1 2 KC . Since KC is an
(2;2)-FI, it follows that (z 
 w)1 2 KC so that KC(z 
 w) = 1. Hence z 
 w 2 C.
Similarly, w 
 z 2 C as C is an ideal of Qt.

Proposition 4.2.17 Let ; 6= C � Qt. Then, C is an ideal of Qt if and only if KC is

an (2;2 _q)-FI of Qt.

Proof. Let C be an ideal of Qt. Then KC is an (2;2)-FI of Qt by lemma 4:2:16, and
therefore KC is an (2;2 _q)-FI of Qt by Corollary 4:2:13.

Conversely, let KC be an (2;2 _q)-FI of Qt. Let w; z 2 C. Then w1 2 KC and z1 2
KC which show that (w _ z)1 = (w _ z)inf(1;1) (2 _q)KC . Hence KC(w _ z) > 0, and
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so w _ z 2 C. Let w; z 2 Qt, w � z and z 2 C. Then KC(z) = 1, and thus z1 2 KC .
Since KC is an (2;2 _q)-FI, so we have w1 2 KC . Thus KC(w) = 1. Hence w 2 C.
Now let w 2 Qt and z 2 C. Then KC(z) = 1, and thus z1 2 KC . Since KC is an
(2;2 _q)-FI, it follows that (z
w)1 2 KC so that KC(z
w) = 1. Hence z
w 2 C.
Also, w 
 z 2 C as C is an ideal of Qt.

Proposition 4.2.18 Let g be an (2;2 _q)-FI of Qt such that g(w) < 0:5 for all

w 2 Qt. Then g is an (2;2)-FI of Qt.

Proof. Let g be an (2;2 _q)-FI of Qt such that g(w) < 0:5 for all w 2 Qt. Then by
Proposition 4:2:9; we have

(1) g(z _ w) � inf(g(z); g(w); 0:5) = inf(g(z); g(w))

(2) g(z 
 w) � inf(g(z); 0:5) = g(z) and g(w 
 z) � inf(g(z); 0:5) = g(z)

(3) w � z, g(w) � inf(g(z); 0:5) = g(z). Thus g is an (2;2)-FI of Qt by Lemma
4.1.11.

Theorem 4.2.19 Let Qt be a quantale and g be a f-subset of Qt. Then g is an

(2;2 _q)-FI of Qt if and only if each non-empty U(g; p) is an ideal of Qt for all
p 2 (0; 0:5].

Proof. Consider g be an (2;2 _q)-FI of Qt and p 2 (0; 0:5]. Let w; z 2 Qt be

such that w � z. If z 2 U(g; p) then g(z) � p. Since g(w) � inf(g(z); 0:5) �
inf(p; 0:5) = p, we have w 2 U(g; p). Let w; z 2 Qt be such that w 2 U(g; p).

Then g(w) � p. Now since, g(z 
 w) � inf(g(w); 0:5) � inf(p; 0:5) = p, so we have
z 
 w 2 U(g; p). Similarly, we can obtain w 
 z 2 U(g; p). Let w; y 2 U(g; p). Then
g(w) � p and g(y) � p. Since g is an (2;2 _q)-FI of Qt, so we have g(w _ y) �
inf(g(w); g(y); 0:5) � inf(p; 0:5) = p. Thus w _ y 2 U(g; p). Hence U(g; p) is an ideal
of Qt.

Conversely, suppose ; 6= U(g; p) is an ideal of Qt for all p 2 (0; 0:5]. Let there

exist w; z 2 Qt such that g(w _ z) < inf(g(z); g(w); 0:5), then we can take p such

that g(w _ z) < p < inf(g(z); g(w); 0:5). Thus w; z 2 U(g; p) and p < 0:5 and so

w _ z 2 U(g; p). This is a contradiction. Therefore g(w _ z) � inf(g(z); g(w); 0:5) for
all w; z 2 Qt. Now if there exist y; z 2 Qt such that g(y 
 z) < inf(g(z); 0:5), then

we can choose p 2 (0; 0:5] such that g(y 
 z) < p < inf(g(z); 0:5). It concludes that
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z 2 U(g; p) and p < 0:5 so that y
 z 2 U(g; p), similarly, we have z
 y 2 U(g; p), i.e.,
g(y
 z) � p and g(z
y) � p. This is a contradiction. Hence g(y
 z) � inf(g(z); 0:5)
and g(z 
 y) � inf(g(z); 0:5) for all w; z 2 Qt. Let w; z 2 Qt and w � z. If

g(w) < inf(g(z); 0:5), we can �nd p 2 (0; 0:5] such that g(w) < p < inf(g(z); 0:5).

This implies that z 2 U(g; p) and p < 0:5. Since U(g; p) is an ideal, so w 2 U(g; p).
Hence g(w) � p. This gives a contradiction. So g(w) � inf(g(z); 0:5) for all w; z 2 Qt.
Using Proposition 4:2:9, g is an (2;2 _q)-FI of Qt.

4.3 (2;2 _q)-Fuzzy Prime (semi prime) Ideals of Quantale

In this section, we de�ne (2;2 _q)-fuzzy prime and (2;2 _q)-fuzzy semi prime
ideals of a Quantale. It is also investigated that if a f -subset g is an (2;2 _q)-fuzzy
prime ((2;2 _q)-fuzzy semi prime) ideal of Q0t, then ��1t (g) is an (2;2 _q)-fuzzy
prime ((2;2 _q)-fuzzy semi-prime) ideal of Qt, where �t is a QH.

The following shortened forms (2;2 _q)-FPI and (2;2 _q)-FSPI will be used for
(2;2 _q)-fuzzy prime ideals and (2;2 _q)-fuzzy semi prime ideals, respectively.

De�nition 4.3.1 An (�; �)-FI; g of a quantale Qt is called an (�; �)-FPI of Qt if

for all p 2 (0; 1] and z; w 2 Qt, (z 
 w)p�g �! (z)p�g or (w)p�g. An (�; �)-FI;

g of a quantale Qt is called an (�; �)-FSPI of Qt if for all z 2 Qt and p 2 (0; 1],
(z 
 z)p�g �! (z)p�g.

Proposition 4.3.2 A f-subset g of a quantale Qt is a FPI if and only if g is an

(2;2)-FPI.

Proof. Let g be a FPI. Then g(w 
 z) = g(w) or g(w 
 z) = g(z) for all z, w 2 Qt.
Let (w
 z)p 2 g for some p 2 (0; 1]. Then g(w
 z) � p. Thus g(w) = g(w
 z) � p or
g(z) = g(w
z) � p. This implies that wp 2 g or zp 2 g. Therefore g is an (2;2)-FPI.

Conversely, let g be an (2;2)-FPI. Let z, w 2 Qt and g(w
z) = v for some v 2 (0; 1].
Then g(w 
 z) � v. This shows that (z 
 w)v 2 g. This gives wv 2 g or zv 2 g. So
g(w) � v or g(z) � v; i.e., g(w) � g(w 
 z) or g(z) � g(w 
 z) Thus we have,
sup(g(w); g(z)) � g(w 
 z). But since g is an (2;2)-FPI, therefore g is a FPI by
Proposition 1.4.12.
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Theorem 4.3.3 A f-subset g is a (q; q)-FPI of a quantale Qt if and only if g is an

(2;2)-FPI of Qt.

Proof. Let g be a (q; q)-FPI of the quantale Qt. Let p 2 (0; 1] and z; y 2 Qt be
such that (y 
 z)p 2 g. Then g(y 
 z) � p. This implies that g(y 
 z) + � > p,

for some � > 0 �! g(y 
 z) + � � p + 1 > 1 �! (y 
 z)(��p+1)qg. Since g is a
(q; q)-FPI, so (y)(��p+1)qg or (z)(��p+1)qg. This implies that g(y) + �� p + 1 > 1 or
g(z)+��p+1 > 1 �! g(y)+� > p or g(z)+� > p �! g(y) � p or g(z) � p �! yp 2 g
or zp 2 g. Hence (y 
 z)p 2 g �! yp 2 g or zp 2 g. Thus g is an (2;2)-FPI of Qt.

Conversely, assume that (y 
 z)pqg �! g(y 
 z) + p > 1 �! g(y 
 z) > 1 � p �!
g(y
z) � ��p+1 > 1�p for some � > 0 �! (y
z)

(��p+1) 2 g. Since g is an (2;2)-FPI
of Qt. Therefore, we have y��p+1 2 g or z��p+1 2 g. Thus we have g(y) � ��p+1 > 1�p
or g(z) � � � p + 1 > 1 � p �! g(y) > 1 � p or g(z) > 1 � p �! g(y) + p > 1 or

g(z) + p > 1 �! ypqg or zpqg. Thus (y 
 z)pqg �! ypqg or zpqg. Hence g is a

(q; q)-FPI of the quantale Qt.

Proposition 4.3.4 An (2;2 _q)-FI; g of a quantale Qt is an (2;2 _q)-FPI if and
only if sup(g(z); g(w)) � inf(g(z 
 w); 0:5) for all w; z 2 Qt.

Proof. We want to show that sup(g(z); g(w)) � inf(g(z 
 w); 0:5) for all w; z 2 Qt.
Let there exist y; z 2 Qt such that sup(g(z); g(y)) < inf(g(y 
 z); 0:5). Then there
exist v such that sup(g(z); g(y)) < v < inf(g(y 
 z); 0:5) for v 2 (0; 0:5]. This means
that g(y 
 z) > v �! (y 
 z)v 2 g. But g(y) < v and g(z) < v; i.e., yv2g and zv2g.
Also we have g(y) + v < 2v < 2 � 0:5 = 1 �! yv(2 _q)g, zv(2 _q)g. This gives a
contradiction. Hence we have sup(g(z); g(w)) � inf(g(z 
 w); 0:5) for all w; z 2 Qt.

Conversely, suppose that the condition sup(g(z); g(y)) � inf(g(z
y); 0:5) holds for all
y; z 2 Qt. Let w; z 2 Qt be such that (w
z)v 2 g; where v 2 (0; 1]. Then g(w
z) � v.
Thus by supposition we have sup(g(z); g(y)) � inf(g(z 
 y); 0:5) � inf(v; 0:5). Now
sup(g(z); g(y)) � v if we suppose v � 0:5. Hence g(z) � v or g(y) � v. This implies
yv 2 g or zv 2 g. If we suppose v > 0:5, then sup(g(z); g(y)) � 0:5. Thus g(z) � 0:5
or g(y) � 0:5 �! g(y) + v � 0:5 + v > 0:5 + 0:5 = 1 or g(z) + v � 0:5 + v >

0:5+ 0:5 = 1 �! yvqg or zvqg. By combining the above two cases, we have yv(2 _q)g
or zv(2 _q)g. Hence (w 
 z)v 2 g �! yv(2 _q)g or zv(2 _q)g. Therefore g is an
(2;2 _q)-FPI of Qt.

The following Proposition gives a criteria for an (2;2 _q)-FPI to be an (2;2)-FPI.
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Proposition 4.3.5 If a f-subset g of a quantale Qt is an (2;2 _q)-FPI of Qt and
g(z) < 0:5 for all z 2 Qt, then g is also an (2;2)-FPI of Qt.

Proof. Suppose g is an (2;2 _q)-FPI of Qt and g(z) < 0:5 for all z 2 Qt. Let
(x
 z)v 2 g. Then g(x
 z) � v. Since 
 is a binary operation on Qt so x
 z 2 Qt,
hence we have v � g(x 
 z) < 0:5, i.e., v < 0:5 and g(x) < 0:5, g(z) < 0:5. Also

g(z) + v < 0:5 + 0:5 = 1 and g(x) + v < 0:5 + 0:5 = 1. This gives xvqg and zvqg. So

we have xv 2 g or zv 2 g as g is an (2;2 _q)-FPI. Thus g is an (2;2)-FPI of Qt.

Theorem 4.3.6 An (2;2 _q)-FI; g of a quantale Qt is an (2;2 _q)-FPI if and only
if for all 0 < p � 0:5, each non-empty U(g; p) is a PI of Qt.

Proof. Let g be an (2;2 _q)-FPI. Then g is an (2;2 _q)-FI. Each ; 6= U(g; p) is
an ideal of Qt, by Theorem 4:2:19. Let y 
 z 2 U(g; p). Then g(y 
 z) � p. Now, by
Proposition 4:3:4; we have sup(g(y); g(z)) � inf(g(y 
 z); 0:5) � inf(p; 0:5) = p. So,
g(y) � p or g(z) � p. Thus y 2 U(g; p) or z 2 U(g; p). Hence U(g; p) is a PI of Qt.

Conversely; suppose that U(g; p) is a PI of Qt for all p 2 (0; 0:5] and assume that
the condition sup(g(z); g(w)) � inf(g(z
w); 0:5) is not valid. Then there exist some
a; c 2 Qt such that sup(g(a); g(c)) < inf(g(a 
 c); 0:5) and we take p 2 (0; 0:5) such
that sup(g(a); g(c)) < p < inf(g(a 
 c); 0:5). This implies that a 
 c 2 U(g; p) but
a; c =2 U(g; p). This contradicts our supposition. Hence we must have sup(g(a); g(c))
� inf(g(a
 c); 0:5). Consequently, g is an (2;2 _q)-FPI of Qt by Proposition 4:3:4.

Theorem 4.3.7 Let ; 6= A � Qt be a PI if and only if the f-subset g of Qt de�ned

by g(z) = p � 0:5 for z 2 A and g(z) = 0 otherwise is an (2;2 _q)-FPI of Qt.

Proof. Proof is similar to the proof of Theorem 4:1:14.

The proof of following Proposition is similar to the proof of Proposition 4:2:17.

Theorem 4.3.8 Let ; 6= A � Qt. Then KA (the characteristic function) is an (2;2
_q)-FPI of Qt if and only if A is a PI of Qt.

Theorem 4.3.9 Let (Qt;
) and (Q0t;
0) be two quantales and �t : Qt �! Q0t be a

QH. Let g be an (2;2 _q)-FPI of Q0t. Then ��1t (g) is an (2;2 _q)-FPI of Qt.



4. Characterizations of Quantales by (�; �)-Fuzzy Ideals 80

Proof. Let g be an (2;2 _q)-FPI of Q0t. Then ��1t (g) is an (2;2 _q)-FI of Qt by
Theorem 4:2:10. Let x; z 2 Qt be such that (x
 z)p 2 ��1t (g). Then ��1t (g)(x
 z) �
p �! g(�t(x 
 z)) � p �! (�t(x 
 z))p 2 g. Since �t is a QH, we have (�t(x) 
0

�t(z))p 2 g. As g is an (2;2 _q)-FPI of Q0t, so (�t(x))p(2 _q)g or (�t(z))p(2 _q)g �!
g(�t(z)) � p or g(�t(z))+p > 1 or g(�t(x)) � p or g(�t(x))+p > 1 �! ��1t (g)(x) � p
or ��1t (g)(x) + p > 1 or ��1t (g)(z) � p or ��1t (g)(z) + p > 1 �! xp 2 ��1t (g)

or xpq��1(g) or zp 2 ��1t (g) or zpq��1(g) �! xp(2 _q)��1t (g) or zp(2 _q)��1t (g).
Thus (x 
 z)p 2 ��1t (g) �! xp(2 _q)��1t (g) or zp(2 _q)��1t (g). Thus, ��1t (g) is an
(2;2 _q)-FPI of Qt.

The proof of following Propositions are similar to the proof of Proposition 4:3:2; The-

orem 4:3:3; Proposition 4:3:4 and Theorem 4:3:6; respectively.

Proposition 4.3.10 A f-subset g of Qt is a FSPI if and only if g is an (2;2)-FSPI.

Proposition 4.3.11 A f-subset g is a (q; q)-FSPI of a quantale Qt if and only if g

is an (2;2)-FSPI of Qt.

Proposition 4.3.12 An (2;2 _q)-FI; g of Qt is an (2;2 _q)-FSPI if and only if
g(z) � inf(g(z 
 z); 0:5) for all z 2 Qt.

Proposition 4.3.13 An (2;2 _q)-FI; g of Qt is an (2;2 _q)-FSPI if and only if
for all 0 < p � 0:5, each non-empty U(g; p) is a SPI of Qt.

4.4 (�; �)-Fuzzy Qt-submodule of Qt-module

Now properties of (�; �)-fuzzy Qt-submodule of Qt-modules are introduced in this

section.

De�nition 4.4.1 [60, 78] Let M and M 0 be two Qt-modules. A map �m :M �!M 0

is a Qt-module homomorphism if it is a sup-lattice homomorphism which also

preserves scalar multiplication, i.e.

�m(_i2Imi) = _i2I�m(mi);

�m(a �m) = a � �m(m)
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for any a 2 Qt,m 2M , fmig �M ,(i 2 I).

A Qt-module homomorphism �m :M �!M 0 is called an epimorphism if �m is onto

M 0 and �m is called a monomorphism if �m is one-one. It is an isomorphism, if

�m is bijective.

De�nition 4.4.2 Let M be a Qt-module and g be a f-subset of M . We say that g is

a fuzzy Qt-submodule of M if

(1) g(_i2Imi) � inf
i2I

g(mi),

(2) g(a �m) � g(m) for all mi, m 2M and a 2 Qt(quantale).

De�nition 4.4.3 A f-subset g of a Qt-moduleM is called an (�; �)-fuzzy Qt-submodule

of M , if

(1) (mi)pi�g �! (_i 2 Imi)inf
i2I

pi�g,

(2) mp�g, and a 2 Qt �! (a �m)p�g for all pi, p 2 (0; 1], mi, m 2 M and a 2 Qt.

Lemma 4.4.4 A f-subset g of a Qt-module M is a fuzzy Qt-submodule of M if and

only if it satis�es

(1) (mi)pi 2 g �! (_i 2 Imi)inf
i2I

pi 2 g;

(2) mp 2 g; a 2 Qt �! (a �m)p 2 g for all pi; p 2 (0; 1], mi;m 2M and a 2 Qt.

Proof. Let g be a fuzzy Qt-submodule of a Qt-moduleM . Let mi 2M and pi 2 (0; 1]
be such that (mi)pi 2 g for i 2 I. Then g(mi) � pi; for all i 2 I. Since g is a fuzzy
Qt-submodule of M , so g(_i2Imi) � inf

i2I
g(mi) � inf

i2I
pi. Hence (_i 2 Imi)inf

i2I
pi 2 g.

Let a 2 Qt; m 2 M and p 2 (0; 1] be such that mp 2 g. Then g(m) � p. But g is a
fuzzy Qt-submodule of M , hence we have g(a �m) � g(m) � p. Thus g(a �m) � p.

This implies that (a � w)p 2 g.

Conversely, suppose that g satis�es the conditions (1) and (2). First we show that

g(_i2Imi) � inf
i2I

g(mi) for i 2 I. On contrary suppose that g(_i2Imi) < inf
i2I

g(mi)

for some mi 2 M . Let p 2 (0; 1] be such that g(_i2Imi) < p < inf
i2I

g(mi). Then

(mi)p 2 g but (_i 2 Imi)p2g. This contradicts our hypothesis. Thus g(_i2Imi) � inf
i2I

g(mi) for all mi 2M . Now we show that g(a �m) � g(m) for all m 2M and a 2 Qt.
Let g(a �m) < g(m). Then there exist v 2 (0; 1] such that g(a �m) < v < g(m). Thus
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mv 2 g and (a �m)v2g; a contradiction. Hence g(a �m) � g(m) for all m 2 M and

a 2 Qt. This concludes that g is a fuzzy Qt-submodule of M .

Remark 4.4.5 It is concluded from the above Lemma that every fuzzy Qt-submodule

of M is an (2;2)-fuzzy Qt-submodule of M .

Theorem 4.4.6 Let g be a nonzero (�; �)-fuzzy Qt-submodule of M . Then the set

g� = fy 2 Qt j g(y) > 0g is a Qt-submodule of M .

Proof. Let mi 2 g� for i 2 I. Then g(mi) > 0 for all i 2 I. Let g(_i2Imi) = 0.

If � 2 f2;2 _qg, then (mi)g(mi)�g for all i 2 I but g(_i2Imi) = 0 < inf
i2I

g(mi)

and g(_i2Imi) + inf
i2I

g(mi) � 0 + 1 = 1. So (_i2Imi)inf
i2I

g(mi)�g for every � 2

f2; q;2 _q;2 ^qg, a contradiction. Hence g(_i2Imi) > 0, that is _i2Imi 2 g�.

Also (mi)1qg for all i 2 I but (_i2Imi)1�g for every � 2 f2; q;2 _q;2 ^qg. Hence
g(_i2Imi) > 0, that is _i2Imi 2 g�. Let m 2 g� and for all q 2 Qt. Then g(m) > 0.
We want to show that g(q �m) > 0 for all q 2 Qt. Suppose that g(q �m) = 0 and let
� 2 f2;2 _qg. Then (m)g(m)�g but (q �m)g(m)�g for every � 2 f2; q;2 _q;2 ^qg,
this is a contradiction. Also (m)1qg but (q �m)1�g for every � 2 f2; q;2 _q;2 ^qg, a
contradiction. Therefore g(q �m) > 0 and so q �m 2 g�. Hence g� is a Qt-submodule
of M .

Theorem 4.4.7 Let A be a Qt-submodule of M . Then a f-subset g of Qt such that

g(c) � 0:5 for c 2 A and g(c) = 0 otherwise, is an (�;2 _q)-fuzzy Qt-submodule of
M .

Proof. Let A be a Qt-submodule of M .

(a) Let mi 2 M and vi 2 (0; 1] for i 2 I be such that (mi)vi 2 g. Then g(mi) � vi

for all i 2 I. Thus mi 2 A and so _i2Imi 2 A because A is a Qt-submodule of M ,

that is g(_i2Imi) � 0:5. If inf
i2I
(vi) � 0:5, then g(_i2Imi) � 0:5 � inf

i2I
(vi). Hence

(_i2Imi)inf
i2I
(vi) 2 g. If inf

i2I
(vi) > 0:5, then g(_i2Imi) + inf

i2I
(vi) > 0:5 + 0:5 = 1 and so

(_i2Imi)inf
i2I

(vi)qg. Therefore (_i2Imi)inf
i2I

(vi)(2 _q)g.

Now letm 2M and p 2 (0; 1] be such thatmp 2 g. Then g(m) � p, which impliesm 2
A, and so q �m 2 A for all q 2 Qt because A is a Qt-submodule of M . Consequently
g(q �m) � 0:5. If p � 0:5, then g(q �m) � 0:5 � p. Hence (q �m)p 2 g. If p > 0:5,
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then g(q �m) + p > 0:5 + 0:5 = 1 and so (q �m)pqg. Thus (q �m)p(2 _q)g. Hence g
is an (2;2 _q)-fuzzy Qt-submodule of M .

(b) Let mi 2 M and pi 2 (0; 1] be such that (mi)piqg. Then g(mi) + pi > 1 and

mi 2 A. Since A is a Qt-submodule of M so _i2Imi 2 A, we have g(_i2Imi) � 0:5.
If inf

i2I
(pi) � 0:5, then g(_i2Imi) � 0:5 � inf

i2I
(pi). Hence (_i2Imi)inf

i2I
(pi) 2 g. If

inf
i2I
(pi) > 0:5, then g(_i2Imi) + inf

i2I
(pi) > 0:5 + 0:5 = 1 and so (_i2Imi)inf

i2I
(pi)qg.

Therefore (_i2Imi)inf
i2I

(pi)(2 _q)g.

Let m 2 M and v 2 (0; 1] be such that mvqg. Then, g(m) + v > 1. Thus m 2 A
and so q �m is in A for all q 2 Qt. This means that g(q �m) � 0:5. If v � 0:5, then
g(q �m) � 0:5 � v. Hence (q �m)v 2 g. If v > 0:5, then g(q �m) + v > 0:5 + 0:5 = 1
and so (q �m)vqg. Thus (q �m)v(2 _q)g. Hence g is an (q;2 _q)-fuzzy Qt-submodule
of M .

(c) Let mi 2M and pi 2 (0; 1] be such that (mi)pi 2 g or (mi)piqg. Then g(mi) � pi
and g(mi) + pi > 1. Since mi 2 A; we have that _i2Imi 2 A. Hence g(_i2Imi) � 0:5.
Thus, (_i2Imi)inf(pi) 2 g for inf(pi) � 0:5 and (_i2Imi)inf(pi)qg for inf(pi) > 0:5.

Thus (_i2Imi)inf(pi)(2 _q)g. The rest is similar to the proof of parts (a) and (b).

Proposition 4.4.8 Let g be a f-subset of a Qt-module M and �m : M �! M 0 be a

Qt-module homomorphism. Then (�m(m))p�g if and only if mp��
�1
m (g) for all m 2M

and p 2 (0; 1].

Proof. Let � = 2. Then (�m(m))p 2 g () g(�m(m)) � p () ��1m (g)(m) �
p () mp 2 ��1m (g). Let � = q. Then (�m(m))pqg () g(�m(m)) + p > 1 ()
��1m (g)(m) + p > 1() mpq�

�1
m (g). Similarly, we can show the other cases.

Theorem 4.4.9 Let (M; �) and (M 0; �0) be Qt-modules and �m :M �!M 0 be a Qt-

module homomorphism. Let g be an (�; �)-fuzzy Qt-submodule of M 0. Then ��1m (g) is

an (�; �)-fuzzy Qt-submodule of M .

Proof. Let mi 2 M and pi 2 (0; 1] for i 2 I be such that (mi)pi��
�1
m (g). Then

(�m(mi))pi�g for all i 2 I, by Proposition 4:4:8. Since g is an (�; �)-fuzzy Qt-

submodule of M 0; we have (_i2I�m(mi))inf
i2I

(pi)�g and so (�m(_i2Imi))inf
i2I

(pi)�g by

using Qt-module homomorphism. Thus; (_i2Imi)inf
i2I

(pi)��
�1
m g by Proposition 4:4:8.

Let xp���1m g and for all q 2 Qt. Then (�m(x))p�g. Hence, for all q 2 Qt; (q �0
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�m(x))p�g �! (�m(q � x))p�g as g is an (�; �)-fuzzy Qt-submodule of M 0 and �m is

a Qt-module homomorphism. Again by Proposition 4:4:8; we have (q � x)p���1m (g).
Hence ��1m (g) is an (�; �)-fuzzy Qt-submodule of M .

4.5 (2;2 _q)-Fuzzy Qt-submodule of Qt-Module

In this section, we will present some results about (2;2 _q)-fuzzy Qt-submodules.

Lemma 4.5.1 For a f-subset g of a Qt-module M , the following two conditions are

equivalent:

(mi)pi 2 g �! (_i 2 Imi)inf
i2I

pi(2 _q)g, (1)

g(_i2Imi) � inf(inf
i2I

g(mi); 0:5). (2)

Proof. Proof is similar to the proof of Lemma 4.2.1.

Lemma 4.5.2 The following conditions are equivalent, for any f-subset g of a Qt-

module M ;

mp 2 g , q 2 Qt �! (q�m)p(2 _q)g; (3)

g(q�m) � inf(g(m); 0:5) for all m 2M; and q 2 Qt. (4)

Proof. The Proof is similar to the proof of Lemma 4.2.6.

Proposition 4.5.3 A f-subset g of M is an (2;2 _q)-fuzzy Qt-submodule of M if

and only if it satis�es (2) and (4).

Theorem 4.5.4 Let M and M 0 be two Qt-modules and �m : M �! M 0 be a Qt-

module homomorphism. Let g1 and g2 be (2;2 _q)-fuzzy Qt-submodule sof M and

M 0, respectively. Then

(1) �m(g1) is an (2;2 _q)-fuzzy Qt-submodule of M 0,

(2) ��1m (g2) is an (2;2 _q)-fuzzy Qt-submodule of M .

Proof. (1) For anymi;m 2M 0 and q 2 Qt; if ��1m (mi) = ; for some i 2 I, then inf [inf
i2I

�m(g1)(mi); 0:5] = 0 � �m(g1)(_i2Imi) and if ��1m (m) = ;, then inf(�m(g1)(m); 0:5) =
0 � �m(g1)(q�m). Now suppose that ��1m (mi) 6= ; for each i 2 I and ��1m (_i2Imi) 6= ;.
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Thus,

inf [inf
i2I
(�m(g1)(mi)); 0:5] = inf [inf [�m(g1)(m1); �m(g1)(m2); :::; �m(g1)(mi)]; 0:5]

= inf [inf [ Sup
a1 2 ��1m (m1)

g1(a1); :::; Sup
ai 2 ��1m (mi)

g1(ai)]; 0:5]

= Sup
a1 2 ��1m (m1),..., ai 2 ��1m (mi)

inf [inf(g1(a1); :::; g1(ai)); 0:5]

= Sup
�m(a1) = m1,..., �m(ai) = mi

inf [inf(g1(a1); :::; g1(ai)); 0:5]

= Sup
_i2I�m(ai) = _i2Imi

inf [inf
i2I
g1(ai); 0:5]

= Sup
�m(_i2Iai) = _i2Imi

inf [inf
i2I
g1(ai); 0:5], �m is a QtMH

� Sup
_i2Iai 2 ��1m (_i2Imi)

g1(_i2Iai)

= Sup
y 2 ��1m (_i2Imi)

g1(y)

= �m(g1)(_i2Imi)

Hence, �m(g1)(_i2Imi) � inf [inf
i2I

�m(g1)(mi); 0:5] for all mi 2M 0.

and

inf [�m(g1)(z); 0:5] = inf [ Sup
a 2 ��1m (z)

g1(a); 0:5]

= Sup
a2 ��1m (z)

inf [g1(a); 0:5]

= Sup
�m(a)=z

inf [g1(a); 0:5]

= Sup
q�0�m(a)=q�0z

inf [g1(a); 0:5]

= Sup
�m(q�a)=q�0z

inf [g1(a); 0:5], �m is a QtMH

� Sup
q�a 2 ��1m (q�0z)

g1(q � a)

= Sup
y 2 ��1m (q�0z)

g1(y)

= �m(g1)(q �0 z)

So, �m(g1)(q �0 z) � inf [�m(g1)(z); 0:5] for all z 2 M 0 and q 2 Qt. Thus, we have
�m(g1) is an (2;2 _q)-fuzzy Qt-submodule of M 0.

(2) Proof is similar to the proof of Theorem 4.4.9.

Corollary 4.5.5 Every (2 _q;2 _q)-fuzzy Qt-submodule of M is an (2;2 _q)-fuzzy
Qt-submodule of M .
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Proof. Obvious.

Corollary 4.5.6 Every (2;2)-fuzzy Qt-submodule of M is an (2;2 _q)-fuzzy Qt-
submodule of M .

Proof. Straightforward.

De�nition 4.5.7 Let C be a crisp subset of a Qt-module M . We use KC to denote

the characteristic function of C, i.e., the mapping from M into [0; 1] de�ned by

KC(z) =

(
1; if z 2 C;
0; if z =2 C.

The following results are about the characteristic function KC of a Qt-submodule C

of a Qt-module M .

Lemma 4.5.8 Let ; 6= C � Qt. Then KC (the characteristic function) is an (2;2)-
fuzzy Qt-submodule of M if and only if C is a Qt-submodule of M .

Proof. Let C be a Qt-submodule of M . Let wi 2 M and pi 2 (0; 1] be such that
(wi)pi 2 KC . Then KC(wi) � pi > 0, which imply that KC(wi) = 1. Thus wi 2 C and
C is a Qt-submodule of M so _i2Iwi 2 C. It follows that KC(_i2Iwi) = 1 � inf(pi)
so (_i2Iwi)inf(pi) 2 KC . Now let b 2 M; q 2 Qt and p 2 (0; 1] be such that bp 2 KC .
Then KC(b) � p > 0, and so KC(b) = 1, i.e., b 2 C. Since C is a Qt-submodule of M ,
we have q � b 2 C and hence KC(q � b) = 1 � p. Therefore (q � b)p 2 KC .

Conversely, let KC be an (2;2)-fuzzy Qt-submodule of M and wi 2 C. Then (wi)1 2
KC . This shows that (_i2Iwi)1 = (_i2Iwi)inf(1;1) 2 KC . Hence KC(_i2Iwi) > 0, and
so _i2Iwi 2 C. Now let q 2 Qt and z 2 C. Then KC(z) = 1, and thus z1 2 KC . Since
KC is an (2;2)-fuzzy Qt-submodule, it follows that (q � z)1 2 KC so KC(q � z) = 1.
Hence q � z 2 C. Thus, C is a Qt-submodule of M .

Proposition 4.5.9 Let ; 6= C � Qt. Then KC is an (2;2 _q)-fuzzy Qt-submodule of
M if and only if C is a Qt-submodule of M .

Proof. Let C be a Qt-submodule of M . Then KC is an (2;2)-fuzzy Qt-submodule
of M by lemma 4:5:8, and therefore KC is an (2;2 _q)-fuzzy Qt-submodule of M by

Corollary 4:5:6.
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Conversely, let KC be an (2;2 _q)-fuzzy Qt-submodule of M . Let zi 2 C. Then (zi)1
2 KC which show that (_i2Izi)1 = (_i2Izi)inf(1;1)(2 _q)KC . Hence KC(_i2Izi) > 0,
and so _i2Izi 2 C. Now let a 2 Qt and z 2 C. Then KC(z) = 1, and thus z1 2 KC .
Since KC is an (2;2 _q)-fuzzy Qt-submodule, it follows that (a � z)1 2 KC so that
KC(a � z) = 1. Hence a � z 2 C. Hence C is a Qt-submodule of M .

Proposition 4.5.10 Let g be an (2;2 _q)-fuzzy Qt-submodule ofM such that g(w) <

0:5 for all w 2M . Then g is an (2;2)-fuzzy Qt-submodule of M .

Proof. Suppose g is an (2;2 _q)-fuzzy Qt-submodule of M such that g(z) < 0:5 for

all z 2M . Let (zi)pi 2 g. Then 0:5 > g(zi) � pi. Since zi 2M and M is closed under

join, so _i2Izi 2 M and 0:5 > g(_i2Izi). Thus g(_i2Izi) + inf(pi) < 0:5 + 0:5 = 1;

i.e., (_i2Izi)inf(pi)qg. But since g is an (2;2 _q)-fuzzy Qt-submodule ofM; this shows
that (_i2Izi)inf(pi) 2 g. Similarly, we can show that (a � z)p 2 g for zp 2 g and for all
a 2 Qt.

Theorem 4.5.11 Let M be a Qt-module and g be a f-subset of M . Then g is an

(2;2 _q)-fuzzy Qt-submodule of M if and only if each non-empty U(g; p) is a Qt-

submodule of M for all p 2 (0; 0:5].

Proof. Let g be an (2;2 _q)-fuzzy Qt-submodule of M and p 2 (0; 0:5]. Let x 2
M and q 2 Qt be such that x 2 U(g; p). Then g(x) � p. Now since g(q � x) �
inf(g(x); 0:5) � inf(p; 0:5) = p, so we have q � x 2 U(g; p). Let xi 2 U(g; p). Then
g(xi) � p. Since g is an (2;2 _q)-fuzzy Qt-submodule of M , so we have g(_i2Ixi) �
inf(inf

i2I
g(xi); 0:5) � inf(p; 0:5) = p. Thus _i2Ixi 2 U(g; p). Hence U(g; p) is Qt-

submodule of M .

Conversely, assume that each non-empty U(g; p) is a Qt-submodule of M for all p 2
(0; 0:5]. Let there exist mi 2 M such that g(_i2Imi) < inf(inf

i2I
g(mi); 0:5), then we

can take p such that g(_i2Imi) < p � inf(inf
i2I

g(mi); 0:5). Thus mi 2 U(g; p) and

p < 0:5 but _i2Imi =2 U(g; p). This is a contradiction. Therefore g(_i2Imi) � inf(inf
i2I

g(mi); 0:5) for all mi 2M . Now, if there exist z 2M and q 2 Qt such that g(q � z) <
inf(g(z); 0:5), then we can choose p 2 (0; 0:5] such that g(q � z) < p � inf(g(z); 0:5).
It follows that z 2 U(g; p) and p < 0:5 but q � z =2 U(g; p). This is not possible. Hence
g(q � z) � inf(g(z); 0:5) for all q 2 Qt and z 2 M . Thus, g is an (2;2 _q)-fuzzy
Qt-submodule of M by Proposition 4.5.3.



Chapter 5

Generalized Approximations of

(2;2 _q)-Fuzzy Ideals and
Subquantales in Quantale

In the present chapter, we are starting the investigation of roughness in (2;2 _q)-FS
and (2;2 _q)-FI of quantales with respect to the generalized approximation space.
Moreover, it is demonstrated that GLA and GUA of (2;2 _q)-FI, (2;2 _q)-FS,
(2;2 _q)-FPI and (2;2 _q)-FSPI are (2;2 _q)-FI, (2;2 _q)-FS, (2;2 _q)-FPI
and (2;2 _q)-FSPI by using SV H and SSV H, respectively.

In the �rst section, LA and UA of FS are introduced. It is also noted that GLA

of a FS is not a FS while taking SV H. In the second section, initially the general-

ized approximations of (2;2 _q)-FS are examined. Then, we study the generalized
roughness of (2;2 _q)-FI in terms of SV H and SSV H. It is observed that GLA

of (2;2 _q)-FI is not a (2;2 _q)-FI while taking SV H and GUA of (2;2 _q)-FI
is (2;2 _q)-FI while taking SV H. Further, generalized roughness being extended
to (2;2 _q)- FPI and (2;2 _q)-FSPI. In the last sections approximations of fuzzy
Qt-submodules and approximations of (2;2 _q)-fuzzy Qt-submodules of Qt-modules
are introduced.

88
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5.1 Lower and Upper Approximation of Fuzzy Subquan-

tales [Ideals]

It is observed that SVM are very useful to study roughness in quantales [91]. In

this section, initially the generalized approximations of FS are examined.

Theorem 5.1.1 Let H : Qt �! P �(Q0t) be a SSV H and g be a FS of Q0t. Then

H(g) is a FS of Qt.

Proof. As g is given to be a FS of Q0t, so by De�nition 4:1:3, we have g(_i2Iti) �
^i2Ig(ti) and g(y 
0 t) � g(y) ^ g(t) for all y; t; ti 2 Q0t. As H : Qt �! P �(Q0t) is a

SSV H, so _i2IH(ti) = H(_i2Iti).

Consider,

H(g)(_i2Iti) = Inf
e 2 H(_i2I ti)

g(e)

= Inf
e 2 _i2IH(ti)

g(e).

Since e 2 _i2IH(ti), there exist a1 2 H(t1), a2 2 H(t2),..., ai 2 H(ti) such that

e = _i2Iai.

Hence,

H(g)(_i2Iti) = Inf
_i2Iai 2 _i2IH(ti)

g(_i2Iai)

� Inf
_i2Iai 2 _i2IH(ti)

[^i2Ig(ai)]

= Inf
a1 2 H(t1), a2 2 H(t2),..., ai 2 H(ti)

[g(a1) ^ g(a2)^; :::;^g(ai]

=

 
Inf

a1 2 H(t1)
g(a1)

!
^
 

Inf
a2 2 H(t2)

g(a2)

!
^; :::;^

 
Inf

ai 2 H(ti)
g(ai)

!
= Inf(H(g)(t1); H(g)(t2); :::; H(g)(ti))

= Inf
i2I

H(g)(ti).

Thus we have

H(g)(_i2Iti) � Inf
i2I

H(g)(ti) for all ti 2 Qt.

Now since H : Qt �! P �(Q0t) is a SSV H, we have H(t1)
0H(t2) = H(t1
 t2) for all
t1; t2 2 Qt.

Consider,
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H(g)(t1 
 t2) = Inf
e 2 H(t1
t2)

g(e)

= Inf
e 2 H(t1) 
0H(t2)

g(e)

As e 2 H(t1) 
0H(t2), we obtain a1 2 H(t1) and a2 2 H(t2) such that e = a1 
0 a2.

Hence,

H(g)(t1 
 t2) = Inf
a1
0a2 2 H(t1) 
0H(t2)

g(a1 
0 a2)

� Inf
a1
0a2 2 H(t1) 
0H(t2)

[g(a1) ^ g(a2)]

= Inf
a12 H(t1); a2 2 H(t2)

[g(a1) ^ g(a2)]

= [ Inf
a12 H(t1)

g(a1)] ^ [ Inf
a2 2 H(t2)

g(a2)]

= Inf(H(g)(t1);H(g)(t2)).

Hence H(g)(t1 
 t2) � Inf(H(g)(t1);H(g)(t2)) for all t1; t2 2 Qt.

Thus, H(g) is a FS of Qt.

Now we show that by using SV H, GLA of a FS is not a FS.

Fig. 10

Table. 7


0 ?0 i j >0

?0 ?0 ?0 ?0 ?0

i ?0 i ?0 i

j ?0 ?0 j j

>0 ?0 i j >0
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Example 5.1.2 Let (Q0t;
0) be a quantale, where Q0t is depicted in Fig. 10 and the
binary operations 
0 on Q0t is shown in the table 7.

Let H : Q0t �! P �(Q0t) be de�ned by H(?0) = H(i) = H(j) = f?0g and H(>0) = Q0t.
It is easily seen that H is a SV H. Consider a f-subset; g of Q0t given by g =

1
?0 +

0:5
i +

0:5
j +

1
>0 . It is easily veri�ed that g is a FS of Q

0
t. With the help of De�nition 3:1:2,

we have H(g) = 1
?0 +

1
i +

1
j +

0:5
>0 . As H(g)(t1 


0 t2) � H(g)(t1)^H(g)(t2) is satis�ed
for all t1; t2 2 Q0t. But H(g)(_i2Iti) � Inf

i2I
H(g)(ti) for all ti 2 Q0t is not satis�ed in

this case, because H(g)(i _ j) = H(g)(>0) = 0:5 and H(g)(i) ^H(g)(j) = 1 ^ 1 = 1.
Hence H(g)(i_ j) � H(g)(i)^H(g)(j). Hence GLA of a FS is not a FS while taking
SV H.

Theorem 5.1.3 Let H : Qt �! P �(Q0t) be a SV H and g be a FS of Q0t. Then H(g)

is a FS of Qt.

Proof. As g is a FS of Q0t, so we have g(_i2Iti) � ^i2Ig(ti) and g(y
0 t) � g(y)^g(t)
for all y; t; ti 2 Q0t. Since H : Qt �! P �(Q0t) is a SV H, we have _i2IH(ti) �
H(_i2Iti).

For this consider,

Inf
i2I

H(g)(ti) = Inf
i2I

(H(g)(t1); H(g)(t2); :::; H(g)(ti))

=

 
Sup

a1 2 H(t1)
g(a1)

!
^
 

Sup
a2 2 H(t2)

g(a2)

!
^; :::;^

 
Sup

ai 2 H(ti)
g(ai)

!
= Sup

a1 2 H(t1), a2 2 H(t2),..., ai 2 H(ti)
[g(a1) ^ g(a2)^; :::;^ g(ai]

= Sup
_i2Iai 2 _i2IH(ti)

[^i2Ig(ai)]

� Sup
_i2Iai 2 _i2IH(ti)

g(_i2Iai)

� Sup
_i2Iai 2 H(_i2I ti)

g(_i2Iai)

= Sup
e 2 H(_i2I ti)

g(e)

= H(g)(_i2Iti).

Hence H(g)(_i2Iti) � Inf
i2I

H(g)(ti) for all ti 2 Qt.

As H : Qt �! P �(Q0t) is a SV H, so H(t1)
0 H(t2) � H(t1 
 t2) for all t1; t2 2 Qt.

Consider,
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Inf(H(g)(t1); H(g)(t2)) = [ Sup
a12 H(t1)

g(a1)] ^ [ Sup
a2 2 H(t2)

g(a2)]

= Sup
a12 H(t1); a2 2 H(t2)

[g(a1) ^ g(a2)]

= Sup
a1
0 a2 2 H(t1) 
0 H(t2)

g(a1) ^ g(a2)

� Sup
a1
0a2 2 H(t1) 
0H(t2)

g(a1 
0 a2)

� Sup
a1
0a2 2 H(t1
t2)

g(a1 
0 a2)

= Sup
e 2 H(t1
t2)

g(e)

= H(g)(t1 
 t2).

Hence H(g)(t1 
 t2) � Inf(H(g)(t1); H(g)(t2)) for all t1, t2 2 Qt. Thus H(g) is a FS
of Qt.

Theorem 5.1.4 [67] Let H : Qt �! P �(Q0t) be a SSV H and g be a FI of Q0t. Then

H(g) is a FI of Qt.

Similarly, we can show that by using SV H, the GLA of FI is not a FI.

Example 5.1.5 Let (Q0t;
0)be a quantale, where Q0t is depicted in Fig. 10 and the
binary operation 
0 on Q0t is shown in the table 7. Let H : Q0t �! P �(Q0t) be a SV H

as de�ned in Example 5.1.2. Let � be a f-subset of Q0t de�ned by

�(x) =

(
1, x = ?0

0:7, x 6= ?0
for all x 2 Q0t:

It is easy to verify that � is a FI of Q0t. Now GLA of � is H(�) =
1
?0 +

1
i +

1
j +

0:7
>0 .

We observe that H(�)(i_ j) = H(�)(>0) = 0:7 6= H(�)(i)^H(�)(j) = 1. Hence GLA
of � is not a FI while taking SV H.

Theorem 5.1.6 [67] Let H : Qt �! P �(Q0t) be a SV H and g be a FI of Q0t. Then

H(g) is a FI of Qt.

5.2 Lower and Upper Approximations of (2;2 _q)-Fuzzy
Ideals

It is well-known that the notion of ideals is one of the powerful tools to characterize

an algebraic structure. The idea of (2;2 _q)-fuzzy structures was started by Bhakat
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and Das [6]. These, (2;2 _q)-FI have signi�cant role. Note that (2;2 _q)-FI are
the generalization of FI. In fuzzy algebraic structures, roughness has been considered

broadly, however less investigation has been made for roughness in an (2;2 _q)-FI
and (2;2 _q)-FS. In this section, at �rst the investigation of generalized roughness
in (2;2 _q)-FS is started.

Theorem 5.2.1 Let g be an (2;2 _q)-FS of Q0t and H : Qt �! P �(Q0t) be a SSV H.

Then H(g) is an (2;2 _q)-FS of Qt.

Proof. As H : Qt �! P �(Q0t) is a SSV H, so _i2IH(zi) = H(_i2Izi). Let g be an
(2;2 _q)-FS of Q0t.

Consider,

H(g)(_i2Izi) = Inf
e 2 H(_i2Izi)

g(e)

= Inf
e 2 _i2IH(zi)

g(e).

As e 2 _i2IH(zi), so there exist a1 2 H(z1); a2 2 H(z2); :::; ai 2 H(zi) such that
e = _i2Iai.

H(g)(_i2Izi) = Inf
_i2Iai 2 _i2IH(zi)

g(_i2Iai)

� Inf
_i2Iai 2 _i2IH(zi)

[^i2Ig(ai) ^ 0:5] by Lemma 4:2:1

= Inf
a1 2 H(z1), a2 2 H(z2),..., ai 2 H(zi)

[g(a1) ^ g(a2)^; :::;^g(ai] ^ 0:5

=

 
Inf

a1 2 H(z1)
g(a1)

!
^
 

Inf
a2 2 H(z2)

g(a2)

!
^; :::;^

 
Inf

ai 2 H(zi)
g(ai)

!
^ 0:5

= Inf
i2I

[H(g)(z1) ^ H(g)(z2)^; :::;^ H(g)(zi)] ^ 0:5

= [Inf
i2I

H(g)(zi)] ^ 0:5.

Hence H(g)(_i2Izi) � Inf [(Inf
i2I

H(g)(zi)); 0:5] for all zi 2 Qt.

As H is a SSV H, so H(z 
 w) = H(z)
0 H(w).

Consider,

H(g)(z 
 w) = Inf
e 2 H(z
w)

g(e)

= Inf
e 2 H(z)
0H(w)

g(e).

As e 2 H(z)
0 H(w), so there exist a1 2 H(z), a2 2 H(w) such that e = a1 
0 a2.
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Hence,

H(g)(z 
 w) = Inf
a1
0a2 2 H(z)
0H(w)

g(a1 
0 a2)

� Inf
a1
0 a2 2 H(z)
0H(w)

[g(a1) ^ g(a2) ^ 0:5] by Lemma 4:2:2

= Inf
a1 2 H(z), a2 2 H(w)

[g(a1) ^ g(a2)] ^ 0:5

=

��
^

a1 2 H(z)
g(a1)

�
^
�

^
a2 2 H(w)

g(a2)

��
^ 0:5

= H(g)(z) ^H(g)(w) ^ 0:5.

Hence H(g)(z 
 w) � Inf [H(g)(z);H(g)(w); 0:5] for all z; w 2 Qt. Thus, H(g) is an
(2;2 _q)-FS of Qt.

Example 5.2.2 Let (Q0t;
0) be the quantale depicted in Fig. 10 and the binary op-
erations 
0 on Q0t is shown in the table 7. Let H : Q0t �! P �(Q0t) be the SV H as

de�ned in Example 5.1.2. It is easily seen that H is a set-valued homomorphism. Let

g be a f-subset of Q0t given by g =
0:5
?0 +

0:3
i +

0:3
j +

0:5
>0 . It is easily veri�ed that g is a

(2;2 _q)-FS of Q0t. GLA of g is as follows H(g) = 0:5
?0 +

0:5
i +

0:5
j +

0:3
>0 . As i0:4 2 g

and j0:5 2 g but (i _ j)0:4(2 _q)g. Thus, H(g) is not an (2;2 _q)-FS of Q0t; while
using SV H.

Theorem 5.2.3 Let g be an (2;2 _q)-FS of Q0t and H : Qt �! P �(Q0t) be a SV H.

Then H(g) is an (2;2 _q)-FS of Qt.

Proof. As H : Qt �! P �(Q0t) is a SV H, so _i2IH(zi) � H(_i2Izi).

Consider,

Inf(Inf
i2I

H(g)(zi); 0:5) = [H(g)(z1) ^H(g)(z2)^; :::;^ H(g)(zi)] ^ 0:5

=

" 
Sup

a1 2 H(z1)
g(a1)

!
^; :::;^

 
Sup

ai 2 H(zi)
g(ai)

!#
^ 0:5

= Sup
a1 2 H(z1), a2 2 H(z2),..., ai 2 H(zi)

[g(a1)^; :::;^ g(ai] ^ 0:5

= Sup
_i2Iai 2 _i2IH(zi)

[^i2Ig(ai) ^ 0:5]

� Sup
_i2Iai 2 _i2IH(zi)

g(_i2Iai)

= Sup
e 2 _i2IH(zi)

g(e)

� Sup
e 2 H(_i2Izi)

g(e)

= H(g)(_i2Izi).
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Hence H(g)(_i2Izi) � Inf(Inf
i2I

H(g)(zi); 0:5) for all zi 2 Qt.

Similarly, it can be shown that H(g)(z 
 w) � Inf(H(g)(z);H(g)(w); 0:5) for all

z; w 2 Qt. Thus, H(g) is an (2;2 _q)-FS of Qt.

Theorem 5.2.4 Let g be an (2;2 _q)-FRI (FLI) of Q0t and H : Qt �! P �(Q0t) be

a SSV H. Then H(g) is an (2;2 _q)-FRI (FLI) of Qt.

Proof. Since H : Qt �! P �(Q0t) is a SSV H, we have H(z _ w) = H(z) _H(w).

Consider,

H(g)(z _ w) = Inf
e 2 H(z _ w)

g(e)

= Inf
e 2 H(z)_H(w)

g(e).

As e 2 H(z)_H(w); therefore there are t1 2 H(z) and t2 2 H(w) such that e = t1_t2.

Hence,

H(g)(z _ w) = Inf
t1_t22 H(z)_H(w)

g(t1 _ t2)

� Inf
t1 2 H(z), t2 2 H(w)

[g(t1) ^ g(t2) ^ 0:5] by Lemma 4.2.5

=

 
Inf

t1 2 H(z)
g(t1)

!
^
 

Inf
t2 2 H(z)

g(t2)

!
^ 0:5

= H(g)(z) ^H(g)(w) ^ 0:5.

Hence H(g)(z _ w) � Inf(H(g)(z);H(g)(w); 0:5) for all z; w 2 Qt.

As H is a SSV H, so H(z 
 w) = H(z)
0 H(w).

Consider,

H(g)(z 
 w) = Inf
e 2 H(z 
 w)

g(e)

= Inf
e 2 H(z)
0H(w)

g(e).

For e 2 H(z)
0 H(w); there exist t1 2 H(z) and t2 2 H(w) such that e = t1 
0 t2.

Hence we have,
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H(g)(z 
 w) = Inf
t1
0t22 H(z)
0H(w)

g(t1 
0 t2)

� Inf
t1 2 H(z); t22 H(w)

[g(t1) ^ 0:5] by Lemma 4.2.6

= [ Inf
t1 2 H(z)

g(t1)] ^ 0:5

= H(g)(z) ^ 0:5.

Hence H(g)(z
w) � Inf(H(g)(z); 0:5) for all z; w 2 Qt. Similarly, we can show that
H(g)(w 
 z) � Inf(H(g)(z); 0:5) for all z; w 2 Qt.

Let w � z. Then w _ z = z. Since H : Qt �! P �(Q0t) is a SSV H, so H(z) =

H(w _ z) = H(w) _H(z).

Consider

Inf(H(g)(z); 0:5) = Inf
e2 H(z)

g(e) ^ 0:5

=

"
Inf

e2 H(z)_H(w)
g(e)

#
^ 0:5.

Since e 2 H(z) _H(w) so there exist t1 2 H(z) and t2 2 H(w) such that e = t1 _ t2.
As t1 _ t2 � t2. So, by Lemma 4:2:8, we have

Inf(H(g)(z); 0:5) =

"
Inf

t1_t22 H(z)_H(w)
g(t1 _ t2)

#
^ 0:5

= Inf
t12 H(z); t22 H(w)

[g(t1 _ t2) ^ 0:5]

� Inf
t22 H(w)

g(t2)

= H(g)(w).

Thus, H(g)(w) � H(g)(z) ^ 0:5. Therefore, H(g) is an (2;2 _q)-FRI of Qt.

Example 5.2.5 Let (Q0t;
0) be the quantale, where the binary operations 
0 on Q0t is
shown in the table 7 and Q0t is depicted in Fig. 10. Let H : Q0t �! P �(Q0t) be the SV H

as de�ned in Example 5.1.2. It is easily seen that H is a set-valued homomorphism.

Let g be a f-subset of Q0t given by g =
0:8
?0 +

0:5
i +

0:8
j +

0:5
>0 . It is easily veri�ed that

g is an (2;2 _q)-FI of Q0t. GLA of g is as follows H(g) = 0:5
>0 +

0:8
j +

0:8
i +

0:8
?0 .

As i0:55 2 H(g) and j0:75 2 H(g) but (i _ j)0:55(2 _q)H(g). Thus, H(g) is not an
(2;2 _q)-FI of Q0t by using SV H.

Theorem 5.2.6 Let H be SSV H and g be an (2;2 _q)-FRI (FLI) ideal of Q0t. Then
H(g) is an (2;2 _q)-FRI (FLI) of Qt.
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Proof. Proof is similar as reported in Theorem 5:2:4.

Fig 11.

Table 8.


 0 c 1

0 0 0 0

c 0 c c

1 0 c 1

Example 5.2.7 Let (Qt;
) and (Q0t;
0) be two quantales, where Qt and Q0t are de-
picted in Fig. 10 and 11 and the binary operations 
 and 
0 on both the quantales
are shown in the table 7 and 8. Let H : Qt �! P �(Q0t) be a SSV H de�ned by

H(?) = f?0g, H(c) = fi; jg and H(>) = f>0g. Let g be an (2;2 _q)-FI of Q0t
de�ned by g = 0:8

?0 +
0:7
i +

0:8
j +

0:7
>0 . Then GLA and GUA of the (2;2 _q)-FRI (FLI)

g of Q0t are as follows: H(g) =
0:8
? + 0:7

c +
0:7
> and H(g) = 0:8

? + 0:8
c +

0:7
> . It can be

veri�ed that H(g) and H(g) are (2;2 _q)-FI of Qt.

5.3 Approximations of (2;2 _q)-Fuzzy Prime (Semi prime)
Ideals

Now generalized roughness being extended to (2;2 _q)-FPI and (2;2 _q)-FSPI.
First the LA and UA of (2;2 _q)-FPI are being started.
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Theorem 5.3.1 Let H : Qt �! P �(Q0t) be a SSV H and g be an (2;2 _q)-FPI of
Q0t. Then H(g) is an (2;2 _q)-FPI of Qt.

Proof. As g is an (2;2 _q)-FPI of Q0t, therefore g is an (2;2 _q)-FI of Q0t, hence
by Theorem 5:2:4, H(g) is an (2;2 _q)-FI of Qt. Moreover by Proposition 4:3:4, we
have g(e) _ g(c) � g(e
0 c) ^ 0:5 for all e; c 2 Qt.

Consider,

Sup(H(g)(z);H(g)(w)) = Sup[ Inf
e 2 H(z )

g(e); Inf
c 2 H( w)

g(c)]

= Inf
e 2 H(z), c 2 H(w)

[g(e) _ g(c)]

� Inf
e 2 H(z), c 2 H(w)

[g(e
0 c) ^ 0:5]

= [ Inf
e
0c 2 H(z)
0H(w)

g(e
0 c)] ^ 0:5]

= [ Inf
e
0c 2 H(z
w)

g(e
0 c)] ^ 0:5]

= H(g)(z 
 w) ^ 0:5.

Thus H(g)(z) _ H(g)(w) � Inf(H(g)(z 
 w); 0:5) for all z; w 2 Qt. Therefore by
Proposition 4:3:4; we obtain H(g) is an (2;2 _q)-FPI of Qt.

Theorem 5.3.2 Let H : Qt �! P �(Q0t) be a SSV H and g be an (2;2 _q)-FPI of
Q0t. Then H(g) is an (2;2 _q)-FPI of Qt.

Proof. The proof is similar to the proof of Theorem 5:3:1.

Theorem 5.3.3 Let g be an (2;2 _q)-FSPI of Q0t and H : Qt �! P �(Q0t) be a

SSV H. Then H(g) is an (2;2 _q)-FSPI of Qt.

Proof. As g is an (2;2 _q)-FSPI of Q0t, by Proposition 4.3.12; we have g(e) �
g(e
0 e) ^ 0:5; for all e 2 Q0t.

Consider the following,
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H(g)(z) = Inf
e 2 H(z )

g(e)

� Inf
e 2 H(z )

[g(e
0 e) ^ 0:5]

= [ Inf
e
0e 2 H(z )
0H(z)

g(e
0 e)] ^ 0:5

= [ Inf
e2 2 H(z 
z)

g(e
0 e)] ^ 0:5

� H(g)(z 
 z) ^ 0:5.

Thus, H(g)(z) � Inf(H(g)(z 
 z); 0:5) for all z 2 Qt. Hence by Proposition 4:3:12;
H(g) is an (2;2 _q)-FSPI of Qt.

Theorem 5.3.4 Let g be an (2;2 _q)-FSPI of Q0t and H : Qt �! P �(Q0t) be a

SSV H. Then H(g) is an (2;2 _q)-FSPI of Qt.

Proof. The proof is similar to the proof of Theorem 5:3:3.

5.4 Approximation of Fuzzy Qt-submodule of Qt-Module

It is observed that SVM are very useful to study roughness in quantales [91].

In this section, initially the generalized approximations of fuzzy Qt-submodule of a

Qt-module are examined.

De�nition 5.4.1 Let M and N be Qt-modules. A mapping H : M �! P �(N) is

called a SV H of Qt-modules if

(1) _i2IH(mi) � H(_i2Imi);

(2) q �H(m) � H(q �m) for all m, mi 2M and q 2 Qt.

A set-valued mapping H : M �! P �(N) is called a SSV H of Qt-modules if if we

replace containment by equality in (1) and (2).

Theorem 5.4.2 Let H : M �! P �(N) be a SSV H of Qt-modules and g be a fuzzy

Qt-submodule of N . Then H(g) is a fuzzy Qt-submodule of M .

Proof. As g is given to be a fuzzy Qt-submodule of N , so by De�nition 4:4:2, we

have g(_i2Ixi) � ^i2Ig(xi) and g(q �0 x) � g(x) for all x; xi 2 N and q 2 Qt. As
H :M �! P �(N) is a SSV H, so _i2IH(mi) = H(_i2Imi) for all mi 2M .
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Consider,

H(g)(_i2Imi) = Inf
e 2 H(_i2Imi)

g(e)

= Inf
e 2 _i2IH(mi)

g(e).

Since e 2 _i2IH(mi), there exist a1 2 H(m1), a2 2 H(m2),..., ai 2 H(mi) such that

e = _i2Iai.

Hence,

H(g)(_i2Imi) = Inf
_i2Iai 2 _i2IH(mi)

g(_i2Iai)

� Inf
_i2Iai 2 _i2IH(mi)

[^i2Ig(ai)]

= Inf
a1 2 H(m1), a2 2 H(m2),..., ai 2 H(mi)

[g(a1) ^ g(a2)^; :::;^g(ai]

=

 
Inf

a1 2 H(m1)
g(a1)

!
^
 

Inf
a2 2 H(m2)

g(a2)

!
^; :::;^

 
Inf

ai 2 H(mi)
g(ai)

!
= Inf(H(g)(m1); H(g)(m2); :::; H(g)(mi))

= Inf
i2I

H(g)(mi).

Thus we have

H(g)(_i2Imi) � Inf
i2I

H(g)(mi) for all mi 2M .

Now, since H :M �! P �(N) is a SSV H of Qt-modules, we have q�0H(m) = H(q�m)
for all m 2M and q 2 Qt.

Consider,

H(g)(q 
m) = Inf
e 2 H(q�m)

g(e)

= Inf
e 2 q �0H(m)

g(e)

As e 2 q �0 H(m), we obtain n 2 H(m) such that e = q �0 n.

Hence,

H(g)(q �m) = Inf
q�0n2q �0H(m)

g(q �0 n)

� Inf
q�0n2q �0H(m)

g(n)

= Inf
n 2 H(m)

g(n)

= H(g)(m)



5. Generalized Approximations of (2;2 _q)-Fuzzy Ideals and Subquantales
in Quantale 101

Hence H(g)(q � m) � H(g)(m) for all m 2 M and q 2 Qt. Thus, H(g) is a fuzzy
Qt-submodule of M .

Theorem 5.4.3 Let H : M �! P �(N) be a SV H of Qt-modules and g be a fuzzy

Qt-submodule of N . Then H(g) is a fuzzy Qt-submodule of M .

Proof. As g is a fuzzy Qt-submodule of N , so we have g(_i2Ini) � ^i2Ig(ni) and
g(q �0 n) � g(n) for all n; ni 2 N and q 2 Qt. Since H : M �! P �(N) is a SV H of

Qt-modules, so we have _i2IH(mi) � H(_i2Imi) for all mi 2M .

For this consider,

Inf (
i2I

H(g)(mi)) = Inf
i2I

(H(g)(m1); H(g)(m2); :::; H(g)(mi))

=

 
Sup

a1 2 H(m1)
g(a1)

!
^
 

Sup
a2 2 H(m2)

g(a2)

!
^; :::;^

 
Sup

ai 2 H(mi)
g(ai)

!
= Sup

a1 2 H(m1), a2 2 H(m2),..., ai 2 H(mi)
[g(a1) ^ g(a2)^; :::;^ g(ai]

= Sup
_i2Iai 2 _i2IH(mi)

[^i2Ig(ai)]

� Sup
_i2Iai 2 _i2IH(mi)

g(_i2Iai)

� Sup
_i2Iai 2 H(_i2Imi)

g(_i2Iai)

= Sup
e 2 H(_i2Imi)

g(e)

= H(g)(_i2Imi).

Hence H(g)(_i2Imi) � Inf
i2I

H(g)(mi) for all mi 2M .

As H :M �! P �(N) is a SV H, so q �0 H(m) � H(q �m) for all m 2M and q 2 Qt.

Consider,

H(g)(m) = Sup
a2 H(m)

g(a)

� Sup
a2 H(m)

g(q �0 a)

= Sup
q
0a 2q
0H(m)

g(q �0 a)

� Sup
q
0a 2 H(q�m)

g(q �0 a)

= Sup
e 2 H(q�m)

g(e)

= H(g)(q �m).
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Hence H(g)(q 
 m) � H(g)(m) for all m 2 M and q 2 Qt. Thus H(g) is a fuzzy
Qt-submodule of M .

5.5 Approximations of (2;2 _q)-Fuzzy Qt-submodule of

Qt-Module

In this section, the investigation of generalized roughness in (2;2 _q)-fuzzy Qt-
submodule is started.

Theorem 5.5.1 Let g be an (2;2 _q)-fuzzy Qt-submodule of N and H : M �!
P �(N) be a SSV H of Qt-modules. Then H(g) is an (2;2 _q)-fuzzy Qt-submodule of
M .

Proof. As H : M �! P �(N) is a SSV H of Qt-modules, so we have _i2IH(mi) =

H(_i2Imi). Let g be an (2;2 _q)-fuzzy Qt-submodule of N .

Consider,

H(g)(_i2Imi) = Inf
e 2 H(_i2Imi)

g(e)

= Inf
e 2 _i2IH(mi)

g(e).

As e 2 _i2IH(mi), so there exist a1 2 H(m1); a2 2 H(m2); :::; ai 2 H(mi) such that

e = _i2Iai.

H(g)(_i2Imi) = Inf
_i2Iai 2 _i2IH(mi)

g(_i2Iai)

� Inf
_i2Iai 2 _i2IH(mi)

[^i2Ig(ai) ^ 0:5] by Lemma 4:5:1

= Inf
a1 2 H(m1), a2 2 H(m2),..., ai 2 H(mi)

[g(a1)^; :::;^g(ai] ^ 0:5

=

 
Inf

a1 2 H(m1)
g(a1)

!
^; :::;^

 
Inf

ai 2 H(mi)
g(ai)

!
^ 0:5

= Inf
i2I

[H(g)(m1) ^ H(g)(m2)^; :::;^ H(g)(mi)] ^ 0:5

= [Inf
i2I

H(g)(mi)] ^ 0:5.

Hence H(g)(_i2Imi) � Inf [(Inf
i2I

H(g)(mi)); 0:5] for all mi 2 Qt.

As H is a SSV H of Qt-modules, so H(q �m) = q �0 H(m).

Consider,
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H(g)(q �m) = Inf
e 2 H(q�m)

g(e)

= Inf
e2q�0H(m)

g(e).

As e 2 q �0 H(m), so there exists a 2 H(m) such that e = q �0 a.

Hence,

H(g)(q �m) = Inf
q�0a2q�0H(m)

g(q �0 a)

� Inf
q�0a2q�0H(m)

[g(a) ^ 0:5] by Lemma 4:5:2

= Inf
a2H(m)

g(a) ^ 0:5

= H(g)(m) ^ 0:5.

Hence H(g)(q �m) � Inf [H(g)(z); 0:5] for all q 2 Qt and m 2 M . Thus, H(g) is an
(2;2 _q)-fuzzy Qt-submodule of M .

Theorem 5.5.2 Let g be an (2;2 _q)-fuzzy Qt-submodule of N and H : M �!
P �(N) be a SV H of Qt-modules. Then H(g) is an (2;2 _q)-fuzzy Qt-submodule of
M .

Proof. As H :M �! P �(N) is a SV H of Qt-modules, so _i2IH(mi) � H(_i2Imi).

Consider,

Inf(Inf
i2I

H(g)(mi); 0:5) = [H(g)(m1) ^H(g)(m2)^; :::;^ H(g)(mi)] ^ 0:5

=

" 
Sup

a1 2 H(m1)
g(a1)

!
^; :::;^

 
Sup

ai 2 H(mi)
g(ai)

!#
^ 0:5

= Sup
a1 2 H(m1), a2 2 H(m2),..., ai 2 H(mi)

[g(a1)^; :::;^ g(ai] ^ 0:5

= Sup
_i2Iai 2 _i2IH(mi)

[^i2Ig(ai) ^ 0:5]

� Sup
_i2Iai 2 _i2IH(mi)

g(_i2Iai)

= Sup
e 2 _i2IH(mi)

g(e)

� Sup
e 2 H(_i2Imi)

g(e)

= H(g)(_i2Imi).

Hence H(g)(_i2Imi) � Inf(Inf
i2I

H(g)(mi); 0:5) for all mi 2 Qt.
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Similarly, it can be shown that H(g)(q �m) � Inf(H(g)(m); 0:5) for all q 2 Qt and
m 2M . Thus, H(g) is an (2;2 _q)-fuzzy Qt-submodule of M .



Chapter 6

(2;2 _q�)-Fuzzy Ideals in
Quantales

In the present chapter; we are presenting more general forms of (2;2 _q)-fuzzy
subquantale and (2;2 _q)-fuzzy ideal of Quantales. We introduce the concepts of
(�; �)-fuzzy subquantale; (�; �)-fuzzy ideal and some related properties are inves-

tigated. Special attention is given to (2 ;2 _q�)-fuzzy subquantale; (2 ;2 _q�)-
fuzzy ideal; (2 ;2 _q�)-fuzzy prime; (2 ;2 _q�)-fuzzy semi-prime ideals; and
some interesting results about them are obtained. Furthermore; subquantale; prime;

semi-prime and fuzzy subquantale; fuzzy prime; fuzzy semi-prime ideals of the types

(2 ;2 _q�) are linked by using level subsets.

In the �rst section, (�; �)-fuzzy subquantale and (�; �)-fuzzy ideal of Quantales are

introduced and some related results are discussed. An (2 ;2 _q�)-fuzzy subquantale
and (2 ;2 _q�)-fuzzy ideal are presented in the second section. Relation between
(2 ;2 _q�)-fuzzy subquantale; (2 ;2 _q�)-fuzzy ideal and subquantale; ideal are
also discussed in this section. In the third section, (2 ;2 _q�)-fuzzy prime and (2
;2 _q�)-fuzzy semi-prime ideals are given. We also discuss the relationship between
prime, semi-prime ideal and (2 ;2 _q�)-fuzzy prime; (2 ;2 _q�)-fuzzy semi-prime
ideal of Quantale. In the fourth and �fth sections, (�; �)-fuzzy Qt-submodules and

(2 ;2 _q�)-fuzzy Qt-submodules of Qt-modules are introduced.

105
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6.1 (�; �)-Fuzzy Subquantales (Ideals) of Quantale

In this section; we introduce some new relationships between fuzzy points and f -

subsets; and investigate (�; �)-fuzzy subquantale and (�; �)-fuzzy ideal of Quantales.

Throughout the remaining paper ; � 2 [0; 1]; where  < � and �; � 2 f2 ; q�;2
_q�;2 ^q�g. For a fuzzy point zp and a f -subset g of Qt; we say that

1. zp 2 g if g(z) � p > .

2. zpq�g if g(z) + p > 2�.

3. zp(2 _q�)g if zp 2 g or zpq�g.

4. zp(2 ^q�)g if zp 2 g and zpq�g.

5. zp�g if zp�g does not hold for � 2 f2 ; q�;2 _q�;2 ^q�g.

Note that the case when � =2 ^q� is omitted. Suppose that g is a f -subset of

a quantale Qt such that g(z) � � for all z 2 Qt. Suppose z 2 Qt and p 2 [0; 1]

be such that zp(2 ^q�)g. Then it follows that g(z) � p >  and g(z) + p > 2�.

Hence, 2� < g(z) + p � g(z) + g(z) = 2g(z); that is g(z) > �. This means that

fzp : zp(2 ^q�)gg = ;. Therefore; we are not taking the case when � = 2 ^q�.

If we take  = 0 and � = 0:5 then 2 and q� becomes 2 and q as de�ned in Chapter 4.

From here onward; we will write (�; �)-FI; (�; �)-FS; (2 ;2 _q�)-FI, (2 ;2 _q�)-
FS; (2 ;2 _q�)-FPI and (2 ;2 _q�)-FSPI for (�; �)-fuzzy ideals; (�; �)-fuzzy
subquantales; (2 ;2 _q�)-fuzzy ideal, (2 ;2 _q�)-fuzzy subquantale; (2 ;2 _q�)-
fuzzy prime ideal and (2 ;2 _q�)-fuzzy semi-prime ideal; respectively.

De�nition 6.1.1 A f-subset g of a quantale Qt is called an (�; �)-FS of Qt; if

(F1) (zi)pi�g �! (_i 2 Izi)inf
i2I

pi�g;

(F2) zp�g; wv�g �! (z 
 w)inf(p;v)�g for all z; w 2 Qt; fzig � Qt (i 2 I); and

pi 2 (0; 1].

Theorem 6.1.2 Let g be a non-zero (�; �)-FS of Qt and 2� = 1 + . Then g =

fy 2 Qt j g(y) > g is a subquantale of Qt.
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Proof. Let yi 2 g for i 2 I. Then g(yi) >  for all i 2 I. Let g(_i2Iyi) � . If

� 2 f2 ;2 _q�g ; then (yi)g(yi)�g for all i 2 I but g(_i2Iyi) �  < inf
i2I

g(yi) and

g(_i2Iyi) + inf
i2I

g(yi) �  + inf
i2I
g(yi) �  + 1 = 2�. So (_i2Iyi)inf

i2I
g(yi)�g for every �

2 f2 ; q�;2 _q�;2 ^q�g, a contradiction. Hence g(_i2Iyi) > ; i.e., _i2Iyi 2 g . If
� = q� then (yi)1q�g for all i 2 I because g(yi) + 1 > 1 +  = 2�; but (_i2Iyi)1�g
for every � 2 f2 ; q�;2 _q�;2 ^q�g, because g(_i2Iyi) � ; so (_i2Iyi)12g and
g(_i2Iyi) + 1 �  + 1 = 2�; so (_i2Iyi)1q�g. Hence g(_i2Iyi) > ; that is _i2Iyi 2 g .
Thus g is closed under arbitrary join. The proof is similar for g to be closed under


. This shows that g is a subquantale of Qt.

De�nition 6.1.3 A f-subset g of a quantale Qt is said to be an (�; �)-FLI (FRI)

of Qt; if

(1) zp�g;wv�g �! (z _ w)inf(p;v)�g;

(2) zv�g and w � z �! wv�g;

(3) zv�g;w 2 Qt �! (w 
 z)v�g; ((z 
 w)v�g) for all z; w 2 Qt and p; v 2 (0; 1].

A f-subset g of a quantale Qt is called an (�; �)-FI of Qt if it is both an (�; �)-FRI

and (�; �)-FLI of Qt.

Theorem 6.1.4 Let 2� = 1 +  and g be a non-zero (�; �)-FLI (FRI) of Qt. Then

g = fy 2 Qt j g(y) > g is a left (right) ideal of Qt.

Proof. Let g be a nonzero (�; �)-FLI of Qt. Let y; z 2 g . Then g(y) >  and

g(z) > . Let  � g(y _ z). If � 2 f2 ;2 _q�g ; then (y)g(y)�g and (z)g(z)�g
but (y _ z)inf(g(y);g(z))�g for every � 2 f2 ; q�;2 _q�;2 ^q�g, (because g(y _ z) �
 < inf(g(y); g(z)) so (y _ z)inf(g(y);g(z))2g and g(y _ z) + inf(g(y); g(z)) �  +

inf(g(y); g(z)) � +1 = 2�; so (y_z)inf(g(y);g(z))q�g); a contradiction. Hence g(y_z) >
; that is y_z 2 g . If � = q� then y1q�g and z1q�g (because g(y)+1 > 1+ = 2� and
g(z)+ 1 > 1+  = 2�) but (y _ z)1�g for every � 2 f2 ; q�;2 _q�;2 ^q�g ; (because
g(y _ z) � ; so (y _ z)12g and g(y _ z) + 1 � 1 +  = 2�); a contradiction. Hence
g(y _ z) > ; that is y _ z 2 g . Thus g is closed under join.

Let y; z 2 Qt and y � z. If z 2 g ; then g(z) > . Assume that g(y) � . If

� 2 f2 ;2 _q�g ; then (z)g(z)�g but (y)g(y)�g for every � 2 f2 ; q�;2 _q�;2 ^q�g ;
a contradiction. Also z1q�g but y1�g for every � 2 f2 ; q�;2 _q�;2 ^q�g, (because
g(y) �  so y12g and g(y) + 1 �  + 1 = 2�; so y1q�g). Hence g(y) > ; i.e.; y 2 g .
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Let y 2 g and z 2 Qt. Then g(y) > . We want to show that g(z 
 y) > . Suppose
that g(z
y) �  and let � 2 f2 ;2 _q�g. Then (y)g(y)�g but (z
y)g(y)�g for every
� 2 f2 ; q�;2 _q�;2 ^q�g, this is a contradiction again. Also y1q�g but (z 
 y)1�g
for every � 2 f2 ; q�;2 _q�;2 ^q�g ; a contradiction. Therefore g(z
 y) >  and so
z 
 y 2 g . Hence g is a LI of the quantale Qt.

Theorem 6.1.5 Let 2� = 1 +  and ; 6= C � Qt. Then C is a LI (RI) of Qt if and

only if the f-subset g of Qt de�ned by

g(w) =

(
� � if w 2 C
 otherwise

for all w 2 Qt:

is an (�;2 _q�)-FLI (FRI) of Qt.

Proof. Let C be a LI of Qt.

(a) Let w; z 2 Qt and p; v 2 (; 1] be such that wp 2 g and zv 2 g. Then g(w) � p > 
and g(z) � v > . Hence g(w) � � and g(z) � �. Thus w; z 2 C and so w _ z 2 C;
that is g(w _ z) � �. If inffp; vg � �; then g(w _ z) � � � inffp; vg > . Hence

(w _ z)inf(p;v) 2 g. If inffp; vg > �; then g(w _ z) + inffp; vg > � + � = 2� and so
(w _ z)inf(p;v)q�g. Therefore (w _ z)inf(p;v)(2 _q�)g.

Let w; z 2 Qt; w � z and v 2 (; 1] be such that zv 2 g. Then g(z) � v > . Thus
z 2 C and since C is a LI so w 2 C; that is g(w) � �. If v � �; then g(w) � � � v > .
Hence wv 2 g. If v > �; then g(w) + v > � + � = 2� and so wvq�g. It follows that

wv(2 _q�)g.

Now let w; z 2 Qt and p 2 (; 1] be such that wp 2 g. Then g(w) � p > ; which

implies w 2 C; and so z 
w 2 C; for all z 2 Qt. Consequently g(z 
w) � �. If p � �;
then g(z
w) � � � p > . Hence (z
w)p 2 g. If p > �; then g(z
w)+p > �+� = 2�
and so (z 
 w)pq�g. Thus (z 
 w)p(2 _q�)g. Hence g is an (2 ;2 _q�)-FLI of Qt.

(b) Let w; z 2 Qt and p; v 2 (; 1] be such that wpq�g and zvq�g. Since; g(w) + p > 2�
and g(z)+ v > 2�; and so g(w) > 2�� p � 2�� 1 =  and g(z) > 2�� v � 2�� 1 = ;
it follows that g(w) >  and g(z) > ; i.e.; w; z 2 C. Since C is a LI so w_ z 2 C;
hence we have g(w _ z) � �. If inffp; vg � �; then g(w _ z) � � � inffp; vg > .

Hence (w _ z)inf(p;v) 2 g. If inffp; vg > �; then g(w _ z) + inffp; vg > � + � = 2�
and so (w _ z)inf(p;v)q�g. Therefore (w _ z)inf(p;v)(2 _q�)g.
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Let w; z 2 Qt; w � z and v 2 (; 1] be such that zvq�g. Then g(z) + v > 2� so

g(z) > 2� � v � 2� � 1 = . Thus z 2 C and since C is a LI so w 2 C; that

is g(w) � �. If v � �; then g(w) � � � v > . Hence wv 2 g. If v > �; then

g(w) + v > � + � = 2� and so wvq�g. It follows that wv(2 _q�)g.

Now; let w; z 2 Qt and p 2 (; 1] be such that wpq�g; which implies that g(w)+p > 2�.
Thus w 2 C and so z 
 w is in C. This means that g(z 
 w) � �. If p � �; then

g(z 
 w) � � � p > . Hence (z 
 w)p 2 g. If p > �; then g(z 
 w) + p > � + � = 2�
and so (z 
 w)pq�g. Thus (z 
 w)p(2 _q�)g. Hence g is (q�;2 _q�)-FLI of Qt.

(c) Let w; z 2 Qt and p; v 2 (; 1] be such that wp 2 g and zvq�g. Then g(w) � p > 
and g(z) + v > 2�. Thus, w; z 2 C; implies that w _ z 2 C. Hence g(w _ z) � �. In a
similar way we obtain (w _ z)inf(p;v) 2 g for inffp; vg � � and (w _ z)inf(p;v)q�g for
inffp; vg > �. Thus (w _ z)inf(p;v)(2 _q�)g. The rest is similar to the proof of parts
(a) and (b).

Conversely; suppose that g is an (�;2 _q�)-FLI of Qt. It is easy to prove that
C = g . Hence; from Theorem 6:1:4; C is a LI of Qt.

The proof of the following Theorem can be obtained in a similar way.

Theorem 6.1.6 Let 2� = 1 +  and ; 6= C � Qt. Then C is a subquantale of Qt if

and only if the f-subset g of Qt de�ned by

g(w) =

(
� � if w 2 C
 otherwise

for all w 2 Qt.

is an (�;2 _q�)-FS of Qt.

6.2 ( 2 ; 2 _q�)- Fuzzy Suquantales (Ideals) of Quantale

In this section; we present an (2 ;2 _q�)-FS and (2 ;2 _q�)-FI of quantale Qt
and discuss some of their properties.

De�nition 6.2.1 A f-subset g of Qt is called an (2 ;2 _q�)-FS of Qt; if

(F1) (zi)pi 2 g �! (_i 2 Izi)inf
i2I

pi(2 _q�)g;

(F2) zp 2 g and wv 2 g �! (z 
 w)inf(p;v)(2 _q�)g for all fzig � Qt (i 2 I);
z; w 2 Qt and pi; p; v 2 (; 1].
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Fig. 12

Table 9.


 ? i j k >
? ? ? ? ? ?
i ? i ? i i

j ? ? j j j

k ? i j k k

> > i j k >

Example 6.2.2 Let (Qt;
) be a quantale; where Qt is delineated in Fig.12 and the
binary operation 
 on Qt is shown in the Table 9. Taking g = 0:9

? +
0:5
i +

0:5
j +

0:5
k +

0:6
> .

Then by routine calculations g is an (20:3;20:3 _q0:6)-FS of Qt.

Theorem 6.2.3 Let g be a f-subset of Qt. If g is an (q�;2 _q�)-FS of Qt; then
conditions below hold:

(1) sup fg(_i2Izi); g � inf finf
i2I
g(zi); �g)

(2) sup fg(z 
 y); g � inf fg(z); g(y); �g for all fzig � Qt (i 2 I) and z; y 2 Qt.

Proof. Let g be a (q�;2 _q�)-FS of Qt. Assume that there exist zi 2 Qt such that
supfg(_i2Izi); g < inf finf

i2I
g(zi); �g. Then for all  < v � 1
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such that

2� � supfg(_i2Izi); g > v � 2� � inffinf
i2I
g(zi); �g

and so

2� � g(_i2Izi) � 2� � supfg(_i2Izi); g > v � supf2� � inf
i2I
g(zi); �g

That is; 2� � g(_i2Izi) > v; 2� � inf
i2I
g(zi) < v.

Thus;

inf
i2I
g(zi) + v > 2�; g(_i2Izi) + v < 2�

and g(_i2Izi) < � < v. Hence (zi)vq�g for all i 2 I; but (_i2Izi)v(2 _q�)g; a contra-
diction. Therefore supfg(_i2Izi); g � inf finf

i2I
g(zi); �g.

Let there exist z; y 2 Qt be such that supfg(z
 y); g < inf fg(z); g(y); �g. Then for
all  < t � 1 such that

2� � supfg(z 
 y); g > t � 2� � inffg(z); g(y); �g

we have

2� � g(z 
 y) � 2� � supfg(z 
 y); g > t � supf2� � g(z); 2� � g(y); �g

That is; 2� � g(z) < t; 2� � g(w) < t; 2� � g(z 
 y) > t.

and so

g(z) + t > 2�; g(y) + t > 2�; g(z 
 y) + t < 2�

and g(z 
 y) < � < t. Hence ztq�g; ytq�g but (z 
 y)t(2 _q�)g; a contradiction.
Therefore; supfg(z 
 y); g � inffg(z); g(y); �g for all z; y 2 Qt.

Theorem 6.2.4 A f-subset g of Qt is an (2 ;2 _q�)-FS of Qt if and only if the
conditions below hold:

(1) sup fg(_i2Izi); g � inffinf
i2I
g(zi); �g;

(2) sup fg(z 
 y); g � inffg(z); g(y); �g for all fzig � Qt (i 2 I) and z; y 2 Qt.
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Proof. Let g be a (2 ;2 _q�)-FS of Qt. Let there exist zi 2 Qt and v 2 (; �]
such that supfg(_i2Izi); g < v � inffinf

i2I
g(zi); �g. Then g(zi) � v >  for all i

2 I; g(_i2Izi) < v and g(_i2Izi) + v < 2v � 2�; i:e:; (zi)v 2 g for all i 2 I but
(_i2Izi)v(2 _q�)g; a contradiction. Thus; supfg(_i2Izi); g � inf finf

i2I
g(zi); �g for

all zi 2 Qt. Let z; y 2 Qt and v 2 (; �] be such that supfg(z 
 y); g < v � inf

fg(z); g(y); �g. Then g(z) � v > ; g(y) � v > ; g(z 
 y) < v and g(z 
 y) +
v < 2v � 2�; i:e:; zv 2 g; yv 2 g but (z 
 y)v(2 _q�)g; a contradiction. Thus;
supfg(z 
 y); g � inf fg(z); g(y); �g for all z; y 2 Qt.

Conversely; suppose that the above two conditions are true. We show that g is an

(2 ;2 _q�)-FS of Qt. Let zi 2 Qt and vi 2 (; �] be such that (zi)vi 2 g but
(_i 2 Izi)inf

i2I
vi(2 _q�)g. Then g(zi) � vi for all i 2 I; g(_i2Izi) < inf

i2I
vi and g(_i2Izi)+

inf
i2I
vi � 2�. It follows that g(_i2Izi) < � and so sup fg(_i2Izi); g < inf finf

i2I
g(zi); �g;

a contradiction. Hence (_i 2 Izi)inf
i2I

pi(2 _q�)g. Similarly; it can be shown that if

zp 2 g; and wv 2 g then g(z 
 w)inf(p;v)(2 _q�)g.

Proposition 6.2.5 Let g1 and g2 be (2 ;2 _q�)-FS�s of Qt. Then; (g1 e g2) is an
(2 ;2 _q�)-FS of Qt.

Proof. Let zi 2 Qt for some i 2 I and ; � 2 (0; 1] with  < �. Since g1 and g2 are
(2 ;2 _q�)-FS ofQt; so; supfg1(_i2Izi); g � inffinf

i2I
g1(zi); �g and supfg2(_i2Izi); g �

inffinf
i2I
g2(zi); �g

Now; consider

supf(g1 e g2)(_i2Izi); g = supfg1(_i2Izi) ^ g2(_i2Izi); g
= supfg1(_i2Izi); g ^ supfg2(_i2Izi); g
� inffinf

i2I
g1(zi); �g ^ inffinf

i2I
g2(zi); �g

= inffinf
i2I
(g1(zi) ^ g2(zi)); �g

That is; supf(g1 e g2)(_i2Izi); g � inffinf
i2I
(g1 e g2)(zi); �g

Next; as supfg1(z1 
 z2); g � inffg1(z1); g1(z2); �g and

supfg2(z1 
 z2); g � inffg2(z1); g2(z2); �g

Now; consider
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supf(g1 e g2)(z1 
 z2); g = supfg1(z1 
 z2) ^ g2(z1 
 z2); g
= supfg1(z1 
 z2); g ^ supfg2(z1 
 z2); g
� inffg1(z1); g1(z2); �g ^ inffg2(z1); g2(z2); �g
= inffg1(z1) ^ g2(z1); g1(z2) ^ g2(z2); �g

Hence; supf(g1 e g2)(z1 
 z2); g � inff(g1 e g2)(z1); (g1 e g2)(z2); �g

Therefore; g1 e g2 is an (2 ;2 _q�)-FS of Qt by Theorem 6:2:4.

The following Propositions are obvious.

Proposition 6.2.6 Every ((2 _q�);2 _q�))-FS of Qt is an (2 ;2 _q�)-FS of Qt.

Proposition 6.2.7 Every (2 ;2)-FS of Qt is an (2 ;2 _q�)-FS of Qt.

The Example below demonstrates that the converses of Propositions 6:2:6 and 6:2:7

may not be true in general.

Example 6.2.8 Consider the quantale Qt as de�ned in Example 6:2:2 and taking

g = 0:9
? + 0:7

i +
0:65
j + 0:54

k + 0:31
> . Then

(1) It is easy to verify that g is an (20:3;20:3 _q0:4)-FS of Qt.

(2) g is not an (20:3;20:3)-FS of Qt; since i0:68 20:3 g and j0:61 20:3 g but (i _
j)inf(0:68;0:61) = k0:6120:3g.

(3) g is not an (20:3 _q0:6;20:3 _q0:6)-FS of Qt; since i0:68(20:3 _q0:6)g and j0:59(20:3
_q0:6)g but (i _ j)inf(0:68;0:59) = k0:59(20:3 _q0:6)g.

De�nition 6.2.9 A f-subset g of a quantale Qt is said to be an (2 ;2 _q�)-FLI
(FRI) of Qt; if

(F3) zp 2 g; wv 2 g �! (z _ w)inf(p;v)(2 _q�)g;

(F4) zv 2 g and w � z �! wv(2 _q�)g;

(F5) zv 2 g; w 2 Qt �! (w 
 z)v(2 _q�)g); ((z 
 w)p(2 _q�)g) for all z; w 2 Qt
and p; v 2 (; 1].

A f-subset g of a quantale Qt is called an (2 ;2 _q�)-FI of Qt if it is both an
(2 ;2 _q�)-FRI and (2 ;2 _q�)-FLI of Qt.
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Theorem 6.2.10 Let g be a f-subset of Qt and g be an (q�;2 _q�)-FLI (FRI) of
Qt. Then the conditions below are satis�ed:

(1) supfg(z _ w); g � inf fg(z); g(w); �g;

(2) supfg(w); g � inf fg(z); �g with w � z;

(3) supfg(w 
 z); g � inf fg(z); �g); (sup fg(z 
 w); g � inf fg(z); �g) for all
z; w 2 Qt.

Proof. If there exist z; w 2 Qt such that supfg(z_w); g < inf fg(z); g(w); �g. Then
for all  < v � 1 such that

2� � supfg(z _ w); g > v � 2� � inffg(z); g(w); �g

Thus; we have

2� � g(z _ w) � 2� � supfg(z _ w); g > v � supf2� � g(z); 2� � g(w); �g

That is, 2� � g(z) < v; 2� � g(w) < v; 2� � supfg(z _ w) > v.

and so;

g(z) + v > 2�; g(w) + v > 2�; g(z _ w) + v < 2�

and g(z _ w) < � < v. Hence wvq�g; zvq�g but (z _ w)v(2 _q�)g; a contradiction.
Therefore

supfg(z _ w); g � inffg(z); g(w); �g for all z; y 2 Qt:

Let z; y 2 Qt be such that supfg(w 
 z); g < inffg(z); �g. Then for all  < p � 1

such that

2� � supfg(w 
 z); g > p � 2� � inffg(z); �g

we have

2� � g(w 
 z) � 2� � supfg(w 
 z); g > p � supf2� � g(z); �g

That is, 2� � g(z) < p; 2� � g(w 
 z) > p.

and so

g(z) + p > 2�; g(w 
 z) + p < 2�



6. (2 ;2 _q�)-Fuzzy Ideals in Quantales 115

and g(w
 z) < � < p. Hence zpq�g but (w
 z)p(2 _q�)g; a contradiction. Therefore
supfg(w 
 z); g � inffg(z); �g for all z; y 2 Qt. Similarly; we can prove that sup
fg(w); g � inf fg(z); �g with w � z for all z; y 2 Qt.

Theorem 6.2.11 A f-subset g of Qt is an (2 ;2 _q�)-FRI (FLI) of Qt if and only
if the conditions below are satis�ed:

(1) sup fg(z _ w); g � inf fg(z); g(w); �g;

(2) sup fg(w); g � inf fg(z); �g with w � z;

(3) sup fg(w 
 z); g � inf fg(z); �g); (sup fg(z 
 w); g � inf fg(z); �g); for all
z; w 2 Qt.

Proof. (F3) =) (1). If there exist z; w 2 Qt such that sup fg(z _ w); g < v � inf
fg(z); g(w); �g for some v 2 (; �]. Then g(z) � v > ; g(w) � v > ; g(z_w) < v and
g(z _ w) + v < 2v � 2�; i.e.; zv 2 g; wv 2 g but (z _ w)v(2 _q�)g; a contradiction.
Hence supfg(z _ w); g � inffg(z); g(w); �g for all z; w 2 Qt.

(1) =) (F3). Let there be z; w 2 Qt and s; t 2 (; �] be such that zs 2 g and wt 2 g
but (z _ w)inf(s;t)(2 _q�)g; then g(z) � s > ; g(w) � t > ; g(z _ w) < inffs; tg
and g(z _w) + inffs; tg � 2�. Thus, we have g(z _w) < � and so supfg(z _w); g <
inffg(z); g(w); �g; a contradiction. Hence (F3) is valid.

(F4) =) (2). If there exist z; w 2 Qt with w � z such that supfg(w); g < p � inf
fg(z); �g for some p 2 (; �]. Then g(z) � p > ; g(w) < p and g(w) + p < 2p � 2�;
i.e.; zp 2 g but wp(2 _q�)g; a contradiction. Hence (2) is valid.

(2) =) (F4). Assume that there exist z; w 2 Qt with w � z and v 2 (; �] such that
zp 2 g but wp(2 _q�)g; then g(z) � p > ; g(w) < p and g(w) + p � 2�. It follows
that g(w) < � and hence; supfg(w); g < inffg(z); �g; a contradiction.

(F5) =) (3). If there exist z; y 2 Qt such that sup fg(w 
 z); g < v � inf fg(z); �g.
Then g(z) � v > ; g(w 
 z) < v and g(w 
 z) + v < 2v � 2�; i.e.; zv 2 g but
(w 
 z)v(2 _q�)g; a contradiction. Hence sup fg(w 
 z); g � inf fg(z); �g for all
z; y 2 Qt.

(3) =) (F5). Let there be z; y 2 Qt and s 2 (; �] be such that zs 2 g but (w 

z)s(2 _q�)g. Then g(z) � s > ; g(w 
 z) < s and g(w 
 z) + s � 2�. This shows
g(w 
 z) < � and so supfg(w 
 z); g < inf fg(z); �g; a contradiction. Hence (F5) is
valid.
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Proposition 6.2.12 If g1 and g2 are (2 ;2 _q�)-FRI (FLI) of Qt, then; g1 e g2 is
an (2 ;2 _q�)-FRI (FLI) of Qt.

Proof. Let z; y 2 Qt and ; � 2 (0; 1] with  < �. Since g1 and g2 are (2 ;2 _q�)-FRI
ofQt; so by Theorem 6:2:11, we have supfg1(z); g � inffg1(y); �g and supfg2(z); g �
inffg2(y); �g with z � y.

Now; consider

supf(g1 e g2)(z); g = supfg1(z) ^ g2(z); g
= supfg1(z); g ^ supfg2(z); g
� inffg1(y); �g ^ inffg2(y); �g
= inffg1(y) ^ g2(y); �g:

That is; supf(g1 e g2)(z); g � inff(g1 e g2)(y); �g.

Next; as g1 and g2 are (2 ;2 _q�)-FRI of Qt; so we have

supfg1(z _ w); g � inffg1(z); g1(w); �g

and

supfg2(z _ w); g � inffg2(z); g2(w); �g:

Now; consider

supf(g1 e g2)(z _ w); g = supfg1(z _ w) ^ g2(z _ w); g
= supfg1(z _ w); g ^ supfg2(z _ w); g
� inffg1(z); g1(w); �g ^ inffg2(z); g2(w); �g
= inffg1(z) ^ g2(z); g1(w) ^ g2(w); �g:

Hence; supf(g1 e g2)(z _w); g � inff(g1 e g2)(z); (g1 e g2)(w); �g. Similarly, we can
show that supf(g1 e g2)(z 
w); g � inff(g1 e g2)(z); �g for all z; w 2 Qt. Therefore;
g1 e g2 is an (2 ;2 _q�)-FRI of Qt by Theorem 6:2:11.

For any g 2 F(Qt); where F(Qt) denotes the set of all f -subsets of Qt; we de�ne

gv = fy 2 Qt j yv 2 gg for all v 2 (; 1];

g�v = fy 2 Qt j yvq�gg for all v 2 (; 1];

and
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[g]�v = fy 2 Qt j yv(2 _q�)gg for all v 2 (; 1].

It follows that [g]�v = gv [ g�v.

The following Theorem gives the relation between (2 ;2 _q�)-FS and crisp subquan-
tale of Qt.

Theorem 6.2.13 For any f-subset g of quantale Qt; the following are equivalent:

(F6) g is an (2 ;2 _q�)-FS of Qt;

(F7) gv(6= ;) is a subquantale of Qt for all v 2 (; �].

Proof. (F6) =) (F7). Let g be an (2 ;2 _q�)-FS of Qt. Let zi 2 Qt and v 2 (; �]
be such that zi 2 gv for all i 2 I. Then (zi)v 2 g for all i 2 I and since g is an (2 ;2
_q�)-FS of Qt; therefore (_i 2 Izi)v(2 _q�)g. If (_i 2 Izi)v 2 g; then _i 2 Izi 2 gv
and if (_i 2 Izi)vq�g; then g(_i 2 Izi) > 2� � v � v > ; that is; _i 2 Izi 2 gv. Let
x; z 2 Qt be such that x; z 2 gv for some v 2 (; �]. Then zv 2 g and xv 2 g; and
since g is an (2 ;2 _q�)-FS of Qt; therefore (z
x)v(2 _q�)g. If (z
x)v 2 g; then
z 
 x 2 gv and if (z 
 x)vq�g; then g(z 
 x) > 2� � v � v > ; that is; z 
 x 2 gv.
Therefore gv is a subquantale of Qt.

(F7) =) (F6). Assume that ; 6= gv is a subquantale of Qt for all v 2 (; �]. Suppose
that there exist zi 2 Qt for i 2 I such that supfg(_i2Izi); g < inffinf

i2I
g(zi); �g;

then there exist v 2 (; �] such that sup fg(_i2Izi); g < v � inf finf
i2I
g(zi); �g. This

shows that (zi)v 2 g for all i 2 I; that is; zi 2 gv for all i 2 I but (_i2Izi) =2 gv;
a contradiction. Therefore; supfg(_i2Izi); g � inf finf

i2I
g(zi); �g for all zi 2 Qt; (i 2

I). Let z; y 2 Qt and supfg(z 
 y); g < inffg(z); g(y); �g. Then supfg(z 
 y); g <
v � inf fg(z); g(y); �g for some v 2 (; �]. This implies that z 2 gv and y 2 gv

but (z 
 y) =2 gv; a contradiction. Therefore; fg(z 
 y); g � inf fg(z); g(y); �g. By
Theorem 6:2:4; g is an (2 ;2 _q�)-FS of Qt.

Theorem 6.2.14 Let 2� = 1 + . Then a f-subset g of Qt is an (2 ;2 _q�)-FS if
and only if ; 6= g�v is a subquantale of Qt for all v 2 (�; 1].

Proof. Let g be an (2 ;2 _q�)-FS of Qt. Let zi 2 Qt for all i 2 I and v 2 (�; 1] be
such that zi 2 g�v for all i 2 I. Then (zi)vq�g for all i 2 I; that is g(zi) > 2� � v �
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2� � 1 = . Thus; g(zi) > . Since v 2 (�; 1]; we have 2� � v < � < v. By hypothesis;
we have;

supfg(_i2Izi); g � inffinf
i2I
g(zi); �g;

g(_i2Izi) > inff2� � v; �g;

= 2� � v.

that is; g(_i2Izi) > 2� � v. Hence _i2Izi 2 g�v.

Let w; z 2 Qt be such that w; z 2 g�v for some v 2 (�; 1]. Then zvq�g and wvq�g;
that is g(z) > 2� � v � 2� � 1 = ; g(w) > 2� � v � 2� � 1 =  and since g is an

(2 ;2 _q�)-FS of Qt; therefore;

supfg(z 
 w); g � inffg(z); g(w); �g
> inff2� � v; 2� � v; �g
= 2� � v;

that is; g(z 
 w) > 2� � v. Hence z 
 w 2 g�v. So; g�v is a subquantale of Qt.

Conversely; assume that ; 6= g�v is a subquantale of Qt for all v 2 (�; 1]. Suppose
that there exist zi 2 Qt for i 2 I such that supfg(_i2Izi); g < inffinf

i2I
g(zi); �g )

2� � inffinf
i2I
g(zi); �g < 2� � supfg(_i2Izi); g ) sup f2� � inf

i2I
g(zi); �g < inff2� �

g(_i2Izi); 2� � g Take v 2 (�; 1] such that supf2� � inf
i2I
g(zi); �g < v � inff2� �

g(_i2Izi); 2��g. Then 2�� inf
i2I
g(zi) < v and 2��g(_i2Izi) � v ) inf

i2I
g(zi)+v > 2�

but g(_i2Izi) + v � 2�. This shows that (zi)vq�g for i 2 I; that is zi 2 g�v for all i
2 I but (_i2Izi)vqg; i.e., (_i2Izi) =2 g�v; a contradiction. Therefore; supfg(_i2Izi); g
� inf finf

i2I
g(zi); �g for all zi 2 Qt; (i 2 I). By the same arguments, we have z 2 g�v and

y 2 g�v but (z
 y) =2 g�v; a contradiction. Therefore; fg(z
 y); g � inf fg(z); g(y); �g.
Hence g is an (2 ;2 _q�)-FS of Qt by Theorem 6:2:4.

If we take  = 0 and � = 0:5 in Theorem 6:2:13; we have the following Theorem.

Theorem 6.2.15 [69] Let g be a f-subset of a quantale Qt. Then g is an (2;2 _q)-
FS of Qt if and only if each ; 6= U(g; p) is a subquantale of Qt for all p 2 (0; 0:5].

Theorem 6.2.16 Let 2� = 1 + . Then a f-subset g of a quantale Qt is an (2 ;2
_q�)-FS if and only if ; 6= [g]�v is a subquantale of Qt for all v 2 (; 1].
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Proof. The proof is similar to the proof of Theorem 6:2:13 and 6:2:14.

Corollary 6.2.17 Let ; 0; �; �0 2 [0; 1] be such that  < �; 0 < �0; 0 <  and �0 < �.
Then every (2 ;2 _q�)-FS of Qt is an (20 ;20 _q�0)-FS of Qt.

The Example below demonstrates that the converse of Corollary 6:2:17 is not true in

general.

Example 6.2.18 Let Qt be a quantale and g be a f-subset as discussed in Example

6:2:8. Then g is an (20:3;20:3 _q0:4)-FS of Qt but not an (20:3;20:3 _q0:9)-FS of Qt.

Theorem 6.2.19 Let g 2 F(Qt). Then

(1) g is an (2 ;2 _q�)-FI of Qt if and only if ; 6= gv is an ideal of Qt for all

v 2 (; �].

(2) If 2� = 1 + ; then g is an (2 ;2 _q�)-FI if and only if ; 6= g�v is an ideal of Qt
for all v 2 (�; 1].

(3) If 2� = 1+ ; then g is an (2 ;2 _q�)-FI if and only if ; 6= [g]�v is an ideal of Qt
for all v 2 (; 1].

Proof. (1). Let g be an (2 ;2 _q�)-FI of Qt. Let z; w 2 Qt with w � z and

v 2 (; �] be such that z 2 gv. Then zv 2 g and since g is an (2 ;2 _q�)-FI of Qt;
so wv(2 _q�)g. If wv 2 g; then w 2 gv and if wvq�g; then g(w) > 2� � v > v > ;
that is; w 2 gv. Now we have to show that z _w 2 gv; for all z; w 2 gv. Let z; w 2 Qt
be such that z; w 2 gv for some v 2 (; �]. Then wv 2 g and zv 2 g; and since g is an
(2 ;2 _q�)-FI of Qt; therefore (w_ z)v(2 _q�)g. If (w_ z)v 2 g; then (w_ z) 2 gv
and if (w _ z)vq�g; then g(w _ z) > 2� � v > v > ; that is; w _ z 2 gv. Let z 2 Qt
and z0 2 gv for some v 2 (; �]. Then z0v 2 g and since g is an (2 ;2 _q�)-FI of Qt;
therefore (z0
z)v(2 _q�)g and (z
z0)v(2 _q�)g. If (z0
z)v 2 g; then (z0
z) 2 gv
and if (z0 
 z)vq�g; then g(z0 
 z) > 2� � v > v > ; that is; z0 
 z 2 gv. Similarly;
z 
 z0 2 gv. Thus; gv is an ideal of Qt.

Conversely; suppose that ; 6= gv is an ideal of Qt for all v 2 (; �]. Let z; w 2 Qt
with w � z and supfg(w); g < inffg(z); �g; then there exists v 2 (; �] such that
supfg(w); g < v � inffg(z); �g. This shows that zv 2 g; that is z 2 gv but w =2 gv;
a contradiction. Hence; supfg(w); g � inf fg(z); �g for all z; w 2 Qt with w � z. Let
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z; w 2 Qt and sup fg(z_w); g < inf fg(z); g(w); �g; then sup fg(z_w); g < v � inf
fg(z); g(w); �g for some v 2 (; �]. This implies that z 2 gv and w 2 gv but (z_w) =2 gv;
a contradiction. Therefore; supfg(z _ w); g � inffg(z); g(w); �g.

Similarly; we can show that sup fg(y
z); g � inffg(z); �g; [respectively; (sup fg(z

y); g � inf fg(z); �g)] for all z; y 2 Qt. Consequently; g is an (2 ;2 _q�)-FI of Qt.

(2). Proof of (2) is similar to the proof of Theorem 6.2.14.

(3). Suppose g is an (2 ;2 _q�)-FI of Qt. Let z; w 2 Qt with w � z and v 2 (; 1]
be such that z 2 [g]�v. Then zv(2 _q�)g; that is g(z) � v >  or g(z) + v > 2�. Thus;
g(z) � v or g(z) > 2� � v � 2� � 1 = . If v 2 (; �]; then  < v � �. This implies
2� � v � � � v. Then it follows from above that g(z) � v. By hypothesis;

supfg(w); g � inffg(z); �g
) g(w) � inffg(z); �g � inffv; vg = v

and so wv 2 g. Thus; w 2 [g]�v. If v 2 (�; 1]; then � < v � 1. This implies

2� � v < � < v. It follows that g(z) > 2� � v � 2� � 1 = . Now by hypothesis;

supfg(w); g � inffg(z); �g
) g(w) � inffg(z); �g > inff2� � v; 2� � vg
) g(w) > 2� � v

Thus; g(w) + v > 2� ) wvq�g. This implies w 2 [g]�v. Now we show that z _ w 2 [g]�v
for all z; w 2 [g]�v. Let z; w 2 Qt be such that z; w 2 [g]�v for some p 2 (; 1]. Then
zp(2 _q�)g; wp(2 _q�)g; i.e., g(z) � p >  or g(z) + p > 2� and g(w) � p > 

or g(w) + p > 2�. Thus; g(z) � p or g(z) > 2� � p � 2� � 1 =  and g(w) � p or

g(w) > 2��p � 2��1 = . If p 2 (; �]; then  < p � �. Thus we have; 2��p � � � p.
Then it follows from above that g(z) � p and g(w) � p. By hypothesis;

supfg(z _ w); g � inffg(z); g(w); �g
) g(z _ w) � inffg(z); g(w); �g � inffp; p; pg
) g(z _ w) � p

and so (z _ w)p 2 g. Thus; z _ w 2 [g]�v. If p 2 (�; 1]; then � < p � 1. This implies
2� � p < � < p. It follows that g(z) > 2� � p; g(w) > 2� � p. Now by hypothesis;

supfg(z _ w); g � inffg(z); g(w); �g
) g(z _ w) � inff2� � p; 2� � p; 2� � pg = 2� � p
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Thus; g(z _w) + v > 2� ) (z _w)pq�g. This implies (z _w) 2 [g]�v. Similarly; we can
show that for z 2 Qt and z0 2 [g]�v; we have z0 
 z and z 
 z0 2 [g]�v.

Conversely; suppose that ; 6= [g]�v is an ideal of Qt for all v 2 (; 1]. Let z; w 2 Qt
with w � z and supfg(w); g < inffg(z); �g; then there exists v 2 (; 1] such that
supfg(w); g < v � inffg(z); �g. This shows that zv 2 g; that is z 2 [g]�v but

wv(2 _q�)g; a contradiction. Hence; supfg(w); g � inf fg(z); �g for all z; w 2 Qt
with w � z. Let z; w 2 Qt and supfg(z_w); g < inf fg(z); g(w); �g. Then select p 2
(; 1] such that supfg(z _ w); g < p � inf fg(z); g(w); �g. This implies that zp 2 g
and wp 2 g but (z _ w)p(2 _q�)g; a contradiction. Therefore; supfg(z _ w); g �
inffg(z); g(w); �g. Similarly; we can show that supfg(y 
 z); g � inffg(z); �g; (sup
fg(z 
 y); g � inf fg(z); �g) for all z; y 2 Qt. Consequently; g is an (2 ;2 _q�)-FI
of Qt.

If we take  = 0 and � = 0:5 in Theorem 6:2:19; we have;

Theorem 6.2.20 [69] Let g be a f-subset of a quantale Qt. Then g is an (2;2 _q)-FI
of Qt if and only if each ; 6= U(g; p) is an ideal of Qt for all p 2 (0; 0:5].

Corollary 6.2.21 Let ; 0; �; �0 2 [0; 1] be such that  < �; 0 < �0; 0 <  and �0 < �.
Then every (2 ;2 _q�)-FI of Qt is an (20 ;20 _q�0)-FI of Qt.

The Example below demonstrates that above Corollary is not valid in general

Example 6.2.22 Consider the quantale given in Example 6:2:2 and de�ne a f-subset

g of Qt as follows:

g =
1

? +
0:75

i
+
0:67

j
+
0:54

k
+
0:32

> .

Then g is an (20:3;20:3 _q0:6)-FI of Qt but not an (20:3;20:3 _q0:95)-FI of Qt.

The following Propositions are straightforward.

Proposition 6.2.23 Every (2 _q�;2 _q�)-FI of Qt is an (2 ;2 _q�)-FI of Qt.

Proposition 6.2.24 Every (2 ;2)-FI of Qt is an (2 ;2 _q�)-FI of Qt.

Converses of Propositions 6:2:23 and 6:2:24 do not hold in general as given in the

Example below.
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Example 6.2.25 Consider the quantale Qt as discussed in Example 6:2:2 and take

g = 0:9
? + 0:7

i +
0:65
j + 0:54

k + 0:31
> . Then

(1) It is simple to con�rm that g is an (20:3;20:3 _q0:6)-FI of Qt.

(2) g is not an (20:3;20:3)-FI of Qt; since i0:68 20:3 g and j0:61 20:3 g but (i _
j)inf(0:68;0:61) = k0:6120:3g.

(3) g is not an (20:3 _q0:6;20:3 _q0:6)-FI of Qt; since i0:68(20:3 _q0:6)g and j0:59(20:3
_q0:6)g but (i _ j)inf(0:68;0:59) = k0:59(20:3 _q0:6)g.

The following Lemma and Proposition describe the relation between characteristic

function KC and (2 ;2)-FI; (2 ;2 _q�)-FI of Qt.

Lemma 6.2.26 If C is an ideal of Qt; then the characteristic function KC of C is an

(2 ;2)-FI of Qt.

Proof. Let w; z 2 Qt and p; v 2 (; 1] be such that wp 2 KC and zv 2 KC . Then
KC(w) � p >  and KC(z) � v > ; which imply that KC(w) = KC(z) = 1. As C is

an ideal and w; z 2 C , so w _ z 2 C. It follows that KC(w _ z) = 1 � inffp; vg > 
so that (w _ z)inf(p;v) 2 KC . Now let b; z 2 Qt and p 2 (; 1] be such that bp 2 KC .
Then KC(b) � p > ; and so KC(b) = 1; i.e.; b 2 C. Since C is an ideal of Qt; we

have b 
 z; z 
 b 2 C and hence KC(b 
 z) = KC(z 
 b) = 1 � p > . Therefore

(b 
 z)p 2 KC and (z 
 b)p 2 KC . Let w; z 2 Qt; zp 2 KC with w � z. Then

KC(z) � p > ; and so KC(z) = 1; i.e.; z 2 C. Since C is a lower set; we have

w 2 C and so KC(w) = 1 � p > . Therefore wp 2 KC and consequently KC is an
(2 ;2)-FI of Qt.

Proposition 6.2.27 Let ; 6= C � Qt. Then KC (the characteristic function) is an

(2 ;2 _q�)-FI of Qt if and only if C is an ideal of Qt.

Proof. Let KC be an (2 ;2 _q�)-FI of Qt; p; v 2 (; 1] and w; z 2 C. Then

w1 2 KC and z1 2 KC which show that (w _ z)1 = (w _ z)inf(1;1) (2 _q�)KC .
Hence KC(w _ z) > ; and so w _ z 2 C. Let w; z 2 Qt with w � z and z 2 C. Then
KC(z) = 1; and thus z1 2 KC . SinceKC is an (2 ;2 _q�)-FI; so we have w1 2 KC .
Thus KC(w) = 1. Hence w 2 C. Now let w 2 Qt and z 2 C. Then KC(z) = 1; and
thus z1 2 KC . Since KC is an (2 ;2 _q�)-FI; it follows that (z 
 w)1 2 KC so
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that KC(z 
 w) = 1. Hence z 
 w 2 C and similarly; w 
 z 2 C. Thus; C is an ideal
of Qt.

Conversely; if C is an ideal of Qt; then KC is an (2 ;2)-FI of Qt by lemma 6:2:26;
and therefore KC is an (2 ;2 _q�)-FI of Qt by Proposition 6:2:24.

6.3 (2;2 _q�)-Fuzzy Prime (Semi Prime) Ideals of Quan-
tale

(2 ;2 _q�)-FPI and (2 ;2 _q�)-FSPI of a quantale Qt are introduced in this
section. We also discuss the relationship between prime (semi-prime) and (2 ;2 _q�)-
FPI (FSPI) of Quantale.

De�nition 6.3.1 An (�; �)-FI; g of a quantale Qt is called an (�; �)-FPI of Qt if

for all p 2 (; 1] and z; w 2 Qt; (z 
 w)p�g �! zp�g or wp�g. An (�; �)-FI; g

of a quantale Qt is called an (�; �)-FSPI of Qt if for all z 2 Qt and p 2 (; 1] ;

(z 
 z)p�g �! zp�g.

Proposition 6.3.2 An (2 ;2 _q�)-FI; g of a quantale Qt is an (2 ;2 _q�)-FPI
if and only if supfg(z); g(w); g � inffg(z 
 w); �g for all w; z 2 Qt and v 2 (; �].

Proof. Let g be an (2 ;2 _q�)-FPI of a quantale Qt. We want to show that

supfg(z); g(w); g � inffg(z 
 w); �g for all w; z 2 Qt. Let there exist y; z 2 Qt and
v 2 (; �] be such that supfg(z); g(y); g < v � inffg(z
y); �g. Then g(z
y) � v > ;
g(z) < v; g(y) < v and g(z) + v < 2v � 2�; g(y) + v < 2v � 2�. This means that

(z
 y)v 2 g; but yv(2 _q�)g and zv(2 _q�)g. This gives a contradiction. Hence we
have; supfg(z); g(w); g � inffg(z 
 w); �g for all w; z 2 Qt.

Conversely; suppose that the condition supfg(z); g(w); g � inffg(z 
 w); �g for all
w; z 2 Qt hold. Let w; z 2 Qt and v 2 (; �] be such that (w 
 z)v 2 g but
wv(2 _q�)g and zv(2 _q�)g; then g(w 
 z) � v > ; g(w) < v and g(w) + v < 2�;
similarly; g(z) < v and g(z) + v < 2�. It follows that g(w) < �; g(z) < � and so

supfg(z); g(w); g < inffg(z
w); �g; a contradiction. Therefore, g is an (2 ;2 _q�)-
FPI of Qt.

Theorem 6.3.3 Let g be a f-subset of a quantale Qt. Then g is an (2 ;2 _q�)-FPI
if and only if gv is a PI of Qt for all v 2 (; �].
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Proof. Let g be an (2 ;2 _q�)-FPI of Qt. Let y; z 2 Qt and v 2 (; �] be such
that y 
 z 2 gv. Then (y 
 z)v 2 g and since g is an (2 ;2 _q�)-FPI of Qt;
therefore yv(2 _q�)g or zv(2 _q�)g. If yv 2 g then y 2 gv and if yvq�g; then

g(y) > 2� � v � v > ; that is; y 2 gv. Similarly z 2 gv. Hence gv is a PI of Qt.

Conversely; suppose that gv is a PI of Qt for all v 2 (; �] and assume that the

condition supfg(z); g(w); g � inffg(z 
 w); �g is not valid; then there exist some
a; c 2 Qt such that supfg(a); g(c); g < inffg(a 
 c); �g; then there exists v 2 (; �]
such that supfg(a); g(c); g < v � inffg(a 
 c); �g. This implies that (a 
 c)v 2 g;
that is a 
 c 2 gv. Since gv is a PI of Qt; we have a 2 gv or c 2 gv; i.e.; g(a) � v or
g(c) � v; which contradicts the condition. Hence we must have supfg(z); g(w); g �
inffg(z 
 w); �g. Consequently g is an (2;2 _q)-FPI of Qt by Proposition 6:3:2.

Proposition 6.3.4 An (2 ;2 _q�)-FI; g of a quantale Qt is an (2 ;2 _q�)-FSPI
if and only if supfg(z); g � inffg(z 
 z); �g for all z 2 Qt.

Proof. Proof is obtained in a similar way from Proposition 6:3:2.

Proposition 6.3.5 Let g be a f-subset of a quantale Qt. Then g is an (2 ;2 _q�)-
FSPI if and only if gv is a SPI of Qt for all v 2 (; �].

Proof. Let g be an (2 ;2 _q�)-FSPI. Let (y 
 y) 2 gv. Then g(y 
 y) � v. Thus
by Proposition 6:3:4; we have supfg(z); g � inffg(z 
 z); �g � inffv; �g = v. So;

g(z) � v. Thus z 2 gv. Hence gv is a SPI of Qt.

Conversely; suppose that gv is a SPI of Qt for all v 2 (; �] and assume that condition
supfg(z); g � inffg(z 
 z); �g is not valid; then there exist some c 2 Qt such that
supfg(c); g < inffg(c 
 c); �g and we take v 2 (; �] such that supfg(c); g < v �
inffg(c
c); �g. This implies that (c
c) 2 gv. Since gv is a SPI of Qt; we have c 2 gv;
i.e.; g(c) � v; which contradicts the condition. Hence we must have supfg(z); g �
inffg(z 
 z); �g for all z 2 Qt. Consequently; g is an (2 ;2 _q�)-FSPI of Qt by
Proposition 6:3:4.

6.4 (�; �)-Fuzzy Qt-Submodule of Qt-Module

Some new relationships between fuzzy points and f -subsets regarding (�; �)-fuzzy

Qt-submodule of Qt-module are introduced in this section.
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If we take  = 0 and � = 0:5 then 2 and q� becomes 2 and q as de�ned in section 4:4
of Chapter 4.

De�nition 6.4.1 A f-subset g of a Qt-moduleM is called an (�; �)-fuzzy Qt-submodule

of M; if

(F1) (mi)pi�g �! (_i 2 Imi)inff
i2I

pig�g;

(F2) mp�g �! (a �m)p�g for all mi;m 2M; pi; p 2 (0; 1] and a 2 Qt.

Theorem 6.4.2 Let g be a non-zero (�; �)-fuzzy Qt-submodule of a Qt-module M

and 2� = 1 + . Then g = fm 2M j g(m) > g is a Qt-submodule of M .

Proof. Let mi 2 g for i 2 I. Then g(mi) >  for all i 2 I. Let g(_i2Imi) � . If
� 2 f2 ;2 _q�g ; then (mi)g(mi)�g for all i 2 I but g(_i2Imi) �  < inf

i2I
g(mi) and

g(_i2Imi) + inf
i2I

g(mi) �  + inf
i2I
g(mi) �  + 1 = 2�. So (_i2Imi)inf

i2I
g(mi)�g for every

� 2 f2 ; q�;2 _q�;2 ^q�g, a contradiction. Hence g(_i2Imi) > ; i.e., _i2Imi 2 g .
If � = q� then (mi)1q�g for all i 2 I because g(mi) + 1 > 1+  = 2�; but (_i2Imi)1�g

for every � 2 f2 ; q�;2 _q�;2 ^q�g, because g(_i2Imi) � ; so (_i2Imi)12g and
g(_i2Imi)+1 � +1 = 2�; so (_i2Imi)1q�g. Hence g(_i2Imi) > ; that is _i2Imi 2 g .
Thus g is closed under arbitrary join. Let m 2 g . Then g(m) > . Suppose

g(q �m) �  for all q 2 Qt. If � 2 f2 ;2 _q�g ; then (m)g(m)�g but g(q �m) � 

< g(m) and g(q �m) + g(m) �  + g(m) �  + 1 = 2�. So (q �m)g(m)�g for every
� 2 f2 ; q�;2 _q�;2 ^q�g, a contradiction. Hence g(q �m) > ; i.e., q �m 2 g . If
� = q� then (m)1q�g because g(m) + 1 > 1 +  = 2�; but (q �m)1�g for every � 2
f2 ; q�;2 _q�;2 ^q�g, since g(q�m) � ; so (q�m)12g and g(q�m)+1 � +1 = 2�;
so (q �m)1q�g. Hence g(q �m) > ; that is q �m 2 g . Thus, g is a Qt-submodule of
M .

Theorem 6.4.3 Let 2� = 1 +  and ; 6= C � M . Then C is a Qt-submodule of

Qt-module M if and only if the f-subset g of M de�ned by

g(m) =

(
� � if m 2 C
 otherwise

for all m 2M .

is an (�;2 _q�)-fuzzy Qt-submodule of M .
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Proof. Let C be a Qt-submodule of M .

(a) Let mi 2 M and vi 2 (; 1] be such that (mi)vi 2 g. Then g(mi) � vi > .

Hence g(mi) � �. Thus mi 2 C and so _i2Imi 2 C; that is g(_i2Imi) � �. If

inffvig � �; then g(_i2Imi) � � � inffvig > . Hence (_i2Imi)iinffvig 2 g.
If inffvig > �; then g(_i2Imi) + inffvig > � + � = 2� and so (_i2Imi)inffvigq�g.

Therefore (_i2Imi)inffvig(2 _q�)g.

Now let m 2M and p 2 (; 1] be such that mp 2 g. Then g(m) � p > . This shows
m 2 C; and so a �m 2 C for all a 2 Qt. Consequently g(a �m) � �. If p � �; then
g(a�m) � � � p > . Hence (a�m)p 2 g. If p > �; then g(a�m)+p > �+� = 2� and
so (a�m)pq�g. Thus (a�m)p(2 _q�)g. Hence g is an (2 ;2 _q�)-fuzzy Qt-submodule
of M .

(b) Let mi 2 M and pi 2 (; 1] be such that (mi)piq�g. Then g(mi) + pi > 2�

and so g(mi) > 2� � pi � 2� � 1 = . It follows that g(mi) > ; i.e.;mi 2 C.

Since C is a Qt-submodule of M , so _i2Imi 2 C; hence we have g(_i2Imi) � �.

If inffpig � �; then g(_i2Imi) � � � inffpig > . Hence (_i2Imi)inffpig 2 g.
If inffpig > �; then g(_i2Imi) + inffpig > � + � = 2� and so (_i2Imi)inffpigq�g.

Therefore (_i2Imiinffpig(2 _q�)g. Let m 2 M and p 2 (; 1] be such that mpq�g.

Then g(m) + p > 2� and so g(m) > 2� � p � 2� � 1 = . Thus m 2 C and so a �m is

in C for all a 2 Qt. This means that g(a�m) � �. If p � �; then g(a�m) � � � p > .
Hence (a �m)p 2 g. If p > �; then g(a �m)+ p > �+ � = 2� and so (a �m)pq�g. Thus
(a �m)p(2 _q�)g. Hence g is (q�;2 _q�)-fuzzy Qt-submodule of M .

(c) Let mi 2 M and pi 2 (; 1] be such that (mi)vi 2 g or (mi)viq�g. Then g(mi) �
vi >  and g(mi) + vi > 2�. This shows that mi 2 C and _i2Imi 2 C. Hence

g(_i2Imi) � �. Thus, in a similar way, we have (_i2Imi)inffpig 2 g for inffpig � �
and (_i2Imi)inffpigq�g for inffpig > �. Thus (_i2Imi)inffpig(2 _q�)g. The rest is
similar to the proof of parts (a) and (b).

Conversely; suppose that g is an (�;2 _q�)-fuzzy Qt-submodule of M . It is easy to
prove that C = g . Hence; by Theorem 6:4:2; C is a Qt-submodule of M .

6.5 ( 2 ; 2 _q�)-Fuzzy Qt-Submodule of Qt-Module

In this section; we present an (2 ;2 _q�)-fuzzy Qt-submodule of Qt-module M
and discuss some of their properties.
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De�nition 6.5.1 A f-subset g of Qt-module M is called an (2 ;2 _q�)-fuzzy Qt-
submodule of M; if

(F1) (mi)pi 2 g �! (_i 2 Imi)inff
i2I

pig(2 _q�)g;

(F2)mp 2 g �! (q�m)p(2 _q�)g for all fmig �M (i 2 I); m 2M and pi; p 2 (; 1].

Example 6.5.2 Let (Qt;
) be a quantale; where Qt is delineated in Fig.12 and the
binary operation 
 on Qt is shown in the Table 9. Then Qt is a Qt-module over

Qt. Taking g = 0:9
? + 0:63

i + 0:63
j + 0:63

k + 0:65
> . Then by routine calculations g is an

(20:3;20:3 _q0:6)-fuzzy Qt-submodule of M .

Theorem 6.5.3 Let g be a f-subset of a Qt-module M . If g is an (q�;2 _q�)-fuzzy
Qt-submodule M; then conditions below hold:

(1) sup fg(_i2Imi); g � inf finf
i2I
g(mi); �g;

(2) supfg(q �m); g � inffg(m); �g for all fmig � Qt (i 2 I); m 2M and q 2 Qt.

Proof. Let g be a (q�;2 _q�)-fuzzy Qt-submodule of M . Assume that there exist
mi 2M such that supfg(_i2Imi); g < inf finf

i2I
g(mi); �g. Then for all  < v � 1

such that

2� � supfg(_i2Imi); g > v � 2� � inffinf
i2I
g(mi); �g

and so

2� � g(_i2Imi) � 2� � supfg(_i2Imi); g > v � supf2� � inf
i2I
g(mi); �g

That is; 2� � g(_i2Imi) > v; 2� � inf
i2I
g(mi) < v.

Thus;

inf
i2I
g(mi) + v > 2�; g(_i2Imi) + v < 2�

and g(_i2Imi) < � < v. Hence (mi)vq�g for all i 2 I; but (_i2Imi)v(2 _q�)g; a
contradiction. Therefore supfg(_i2Imi); g � inf finf

i2I
g(mi); �g.

Let there exist m 2 M and for all q 2 Qt be such that supfg(q � m); g < inf

fg(m); �g. Then for all  < t � 1 such that

2� � supfg(q �m); g > t � 2� � inffg(m); �g
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we have

2� � g(q �m) � 2� � supfg(q �m); g > t � supf2� � g(m); �g

That is; 2� � g(m) < t; 2� � g(q �m) > t.

and so

g(m) + t > 2�; g(q �m) + t < 2�

and g(q �m) < � < t. Hence mtq�g but (q �m)t(2 _q�)g; a contradiction. Therefore;
supfg(q �m); g � inffg(z); g(y); �g for all m 2M and q 2 Qt.

Theorem 6.5.4 A f-subset g of Qt-module M is an (2 ;2 _q�)-fuzzy Qt-submodule
of M if and only if the conditions below hold:

(1) sup fg(_i2Imi); g � inffinf
i2I
g(mi); �g;

(2) supfg(q �m); g � inffg(m); �g for all fmig � Qt (i 2 I); m 2M and q 2 Qt.

Proof. Let g be a (2 ;2 _q�)-fuzzy Qt-submodule of M . Let there exist mi 2 M
and v 2 (; �] be such that supfg(_i2Imi); g < v � inffinf

i2I
g(mi); �g. Then g(mi) �

v >  for all i 2 I; g(_i2Imi) < v and g(_i2Imi) + v < 2v � 2�; i:e:; (mi)v 2 g
for all i 2 I but (_i2Imi)v(2 _q�)g; a contradiction. Thus; supfg(_i2Imi); g � inf
finf
i2I
g(mi); �g for all mi 2 Qt. Let z; y 2 Qt and v 2 (; �] be such that supfg(q �

m); g < v � inffg(m); �g. Then g(m) � v > ; g(q �m) < v and g(q �m)+v < 2v �
2�; i:e:; mv 2 g but (q �m)v(2 _q�)g; a contradiction. Thus; supfg(q �m); g � inf
fg(m); �g for all m 2M and q 2 Qt.

Conversely; suppose above conditions are true. We show that g is an (2 ;2 _q�)-
fuzzy Qt-submodule of M . Let mi 2 M and vi 2 (; �] be such that (mi)vi 2 g but
(_i 2 Imi)inff

i2I
vig(2 _q�)g. Then g(mi) � vi for all i 2 I; g(_i2Imi) < inf

i2I
fvig and

g(_i2Imi) + inf
i2I
fvig � 2�. It follows that g(_i2Imi) < � and so supfg(_i2Imi); g <

inffinf
i2I
g(mi); �g; a contradiction. Hence (_i 2 Imi)inf

i2I
fpig(2 _q�)g. Similarly; it can

be shown that if zp 2 g; and q 2 Qt then g(q �m)p(2 _q�)g.

Proposition 6.5.5 Let g1 and g2 be (2 ;2 _q�)-fuzzy Qt-submodules of M . Then;
(g1 e g2) is an (2 ;2 _q�)-fuzzy Qt-submodule of M .
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Proof. Let mi 2 M for some i 2 I and ; � 2 (0; 1] with  < �. Since g1 and g2 are
(2 ;2 _q�)-fuzzy Qt-submodules of M .; so; supfg1(_i2Imi); g � inffinf

i2I
g1(mi); �g

and supfg2(_i2Imi); g � inffinf
i2I
g2(mi); �g

Now; consider

supf(g1 e g2)(_i2Imi); g = supfg1(_i2Imi) ^ g2(_i2Imi); g
= supfg1(_i2Imi); g ^ supfg2(_i2Imi); g
� inffinf

i2I
g1(mi); �g ^ inffinf

i2I
g2(mi); �g

= inffinf
i2I
(g1(mi) ^ g2(mi)); �g

That is; supf(g1 e g2)(_i2Imi); g � inffinf
i2I
(g1 e g2)(mi); �g

Next; as

supfg1(a �m); g � inffg1(m); �g and

supfg2(a �m); g � inffg2(m); �g.

Now; consider

supf(g1 e g2)(a
m); g = supfg1(a
m) ^ g2(a
m); g
= supfg1(a
m); g ^ supfg2(a
m); g
� inffg1(m); �g ^ inffg2(m); �g
= inffg1(m) ^ g2(m); �g

Hence; supf(g1 e g2)(a �m); g � inff(g1 e g2)(m); �g

Therefore; g1 e g2 is an (2 ;2 _q�)-fuzzy Qt-submodules of M by Theorem 6:5:4.

The following Propositions are obvious.

Proposition 6.5.6 Every ((2 _q�);2 _q�))-fuzzy Qt-submodule of M is an (2 ;2
_q�)-fuzzy Qt-submodule of M .

Proposition 6.5.7 Every (2 ;2)-fuzzy Qt-submodule of M is an (2 ;2 _q�)-fuzzy
Qt-submodule of M .

The Example below describes that the converses of Propositions 6:5:6 and 6:5:7 may

not be true in general.

Example 6.5.8 Let Qt be a quantale de�ned in Example 6:2:2. Then Qt is a Qt-

module over itself and taking g = 0:9
? + 0:7

i +
0:65
j + 0:54

k + 0:41
> . Then
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(1) It is easy to verify that g is an (20:3;20:3 _q0:4)-fuzzy Qt-submodule of Qt.

(2) g is not an (20:3;20:3)-fuzzy Qt-submodule of Qt; since i0:68 20:3 g and j0:61 20:3 g
but (i _ j)inf(0:68;0:61) = k0:6120:3g.

(3) g is not an (20:3 _q0:6;20:3 _q0:6)-fuzzy Qt-submodule of Qt; since i0:68(20:3 _q0:6)g
and j0:59(20:3 _q0:6)g but (i _ j)inf(0:68;0:59) = k0:59(20:3 _q0:6)g.

The following Theorem gives the relation between (2 ;2 _q�)-fuzzy Qt-submodule
of M and crisp Qt-submodule of M .

Theorem 6.5.9 The following are equivalent for any f-subset g of Qt-module M :

(1) g is an (2 ;2 _q�)-fuzzy Qt-submodule of M ;

(2) gv(6= ;) is a Qt-submodule of M for all v 2 (; �].

Proof. (1) =) (2). Let g be an (2 ;2 _q�)-fuzzy Qt-submodule of M . Let mi 2M
and v 2 (; �] be such that mi 2 gv for all i 2 I. Then (mi)v 2 g for all i 2 I and
since g is an (2 ;2 _q�)-fuzzy Qt-submodule ofM; therefore (_i 2 Imi)v(2 _q�)g. If
(_i 2 Imi)v 2 g; then _i 2 Imi 2 gv and if (_i 2 Imi)vq�g; then g(_i 2 Imi) > 2��v �
v > ; that is; _i 2 Imi 2 gv. Let m 2 M and a 2 Qt be such that m 2 gv for some
v 2 (; �]. Then mv 2 g and since g is an (2 ;2 _q�)-fuzzy Qt-submodule of M;
therefore (a �m)v(2 _q�)g. If (a �m)v 2 g; then a �m 2 gv and if (a �m)vq�g; then
g(a �m) > 2� � v � v > ; that is; a �m 2 gv. Therefore gv is a Qt-submodule of M .

(2) =) (1). Assume that ; 6= gv is a Qt-submodule of M for all v 2 (; �]. Suppose
that there exist mi 2 M for i 2 I such that supfg(_i2Imi); g < inffinf

i2I
g(mi); �g;

then there exist v 2 (; �] such that supfg(_i2Imi); g < v � inffinf
i2I
g(mi); �g. This

shows that (mi)v 2 g for all i 2 I; that is; mi 2 gv for all i 2 I but (_i2Imi) =2 gv;
a contradiction. Therefore; supfg(_i2Imi); g � inf finf

i2I
g(mi); �g for all mi 2 M; (i

2 I). Let m 2 M and q 2 Qt be such that supfg(a �m); g < inffg(m); �g. Then
supfg(a �m); g < v � inf fg(m); �g for some v 2 (; �]. This implies that m 2 gv
and but (a �m) =2 gv; a contradiction. Therefore; fg(a �m); g � inffg(m); �g. By
Theorem 6:5:4; g is an (2 ;2 _q�)-fuzzy Qt-submodule of M .

Theorem 6.5.10 Let 2� = 1 + . Then a f-subset g of Qt-module M is an (2 ;2
_q�)-fuzzy Qt-submodule of M if and only if ; 6= g�v is a Qt-submodule of M for all

v 2 (�; 1].
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Proof. Let g be an (2 ;2 _q�)-fuzzy Qt-submodule of M . Let mi 2 M for all i

2 I and v 2 (�; 1] be such that mi 2 g�v for all i 2 I. Then (mi)vq�g for all i 2 I;
that is g(mi) > 2� � v � 2� � 1 = . Thus; g(mi) > . Since v 2 (�; 1]; we have
2� � v < � < v. By hypothesis; we have;

supfg(_i2Imi); g � inffinf
i2I
g(mi); �g;

g(_i2Imi) > inff2� � v; �g;

= 2� � v.

that is; g(_i2Imi) > 2� � v. Hence _i2Imi 2 g�v.

Let x 2M be such that x 2 g�v for some v 2 (�; 1]. Then xvq�g that is g(x) > 2�� v �
2� � 1 =  and since g is an (2 ;2 _q�)-fuzzy Qt-submodule of M; therefore;

supfg(a � x); g � inffg(x); �g
> inff2� � v; �g
= 2� � v

that is; g(a � x) > 2� � v. Hence a � x 2 g�v. So; g�v is a Qt-submodule of M .

Conversely; assume that ; 6= g�v is a Qt-submodule of M for all v 2 (�; 1]. Suppose
that there exist mi 2M for i 2 I such that supfg(_i2Imi); g < inffinf

i2I
g(mi); �g )

2�� inffinf
i2I
g(mi); �g < 2��supfg(_i2Imi); g ) sup f2�� inf

i2I
g(mi); �g < inff2��

g(_i2Imi); 2� � g Take v 2 (�; 1] such that supf2� � inf
i2I
g(mi); �g < v � inff2� �

g(_i2Imi); 2��g. Then 2��inf
i2I
g(mi) < v and 2��g(_i2Imi) � v ) inf

i2I
g(mi)+v >

2� but g(_i2Imi)+v � 2�. This shows that (mi)vq�g for i 2 I; that ismi 2 g�v for all i 2
I but (_i2Imi)vqg; i.e., (_i2Imi) =2 g�v; a contradiction. Therefore; supfg(_i2Imi); g
� inf finf

i2I
g(mi); �g for all mi 2M; (i 2 I). By the same arguments, we have m 2 g�v

but (a �m) =2 g�v; a contradiction. Therefore; fg(a �m); g � inf fg(m); �g. Hence g
is an (2 ;2 _q�)-fuzzy Qt-submodule of M by Theorem 6:5:4.

If we take  = 0 and � = 0:5 in Theorem 6:5:9; we have Theorem 4:5:11.

Theorem 6.5.11 [69] Let M be a Qt-module and g be a f-subset of M . Then g is an

(2;2 _q)-fuzzy Qt-submodule of M if and only if each ; 6= U(g; p) is a Qt-submodule
of M for all p 2 (0; 0:5].
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Theorem 6.5.12 Let 2� = 1+ . Then a f-subset g of a Qt-module M is an (2 ;2
_q�)-fuzzy Qt-submodule of M if and only if ; 6= [g]�v is a Qt-submodule of M for all

v 2 (; 1].

Proof. The proof is similar to the proof of Theorem 6:5:9 and 6:5:10.

Lemma 6.5.13 Let S be a Qt-submodule of M . Then the characteristic function KS
of S is an (2 ;2)-fuzzy Qt-submodule of M .

Proof. Let mi 2 M and vi 2 (; 1] be such that svi 2 KS . Then KS(mi) � vi > .
This implies that KS(mi) = 1. As S is a Qt-submodule ofM andmi 2 S , so _i2Imi 2
S. It follows that KS(_i2Imi) = 1 � inffvig >  so that (_i2Imi)inffvig 2 KS . Now
let m 2 M and p 2 (; 1] be such that mp 2 KS . Then KS(m) � p >  and so

KS(m) = 1; i.e.; m 2 S. Since S is Qt-submodule of M; we have q � m 2 S for all
q 2 Qt and hence KS(q � m) = 1 � p > . Therefore (q � m)p 2 KS . Therefore
wp 2 KS . Thus, KS is an (2 ;2)-fuzzy Qt-submodule of M .

Proposition 6.5.14 Let ; 6= S � Qt. Then the characteristic function KS is an

(2 ;2 _q�)-fuzzy Qt-submodule of M if and only if S is a Qt-submodule of M .

Proof. Let KS be an (2 ;2 _q�)-fuzzy Qt-submodule ofM such that pi 2 (; 1] and
si 2 S. Then (si)1 2 KS which shows that (_i2Isi)1 = (_i2Isi)inf(1;1) (2 _q�)KS .
HenceKS(_i2Isi) > ; and so _i2Isi 2 S. Now let q 2 Qt and s 2 S. ThenKS(s) = 1;
and thus s1 2 KS . Since KS is an (2 ;2 _q�)-fuzzy Qt-submodule of M; it follows
that (q � s)1 2 KS so that KS(q � s) = 1. Hence q � s 2 S. Thus; S is a Qt-submodule
of M .

Conversely; Let S be a Qt-submodule of M . Then KS is an (2 ;2)-fuzzy Qt-

submodule of M by lemma 6:5:13; and therefore KS is an (2 ;2 _q�)-fuzzy Qt-
submodule of M by Proposition 6:5:7.



Chapter 7

On Generalized Fuzzy Filters in

Quantales

In this chapter, the concept of (�; �)-fuzzy �lter is introduced and some related

properties are discussed. Further, (2;2 _q)-fuzzy �lters are discussed. It is investi-
gated that inverse image of an (2;2 _q)-fuzzy �lter under QH is an (2;2 _q)-fuzzy
�lter. Moreover, these fuzzy �lters are characterized by their level sets. Furthermore;

in this chapter, we are presenting more general forms of (2;2 _q)-fuzzy f ilters of
Quantales. Special attention is given to (2 ;2 _q�)-fuzzy f ilters.

In the �rst section, (�; �)-fuzzy f ilters are introduced. It is shown that inverse image

of an (�; �)-fuzzy f ilter underQH is an (�; �)-fuzzy �lter. Moreover, (2;2 _q)-fuzzy
f ilters are discussed in the second section. It is also investigated that if a f -subset g

is an (2;2 _q)-fuzzy f ilter of Q0t, then ��1t (g) is an (2;2 _q)-fuzzy f ilter of Qt. In
the last section, we de�ne the (2 ;2 _q�)-fuzzy f ilters of a Quantale Qt. Relation
among (2 ;2 _q�)-fuzzy f ilter; (2;2 _q)-fuzzy f ilter and ordinary fuzzy f ilters
are also discussed.

7.1 (�; �)-Fuzzy Filters in Quantales

In this section, � and � will mean any one of 2; q;2 _q and 2 ^q, unless otherwise
speci�ed. From here onward, we will write (�; �)-FF; (2;2 _q)-FF and (2 ;2 _q�)-
FF for (�; �)-fuzzy f ilter, (2;2 _q)-fuzzy f ilter and (2 ;2 _q�)-fuzzy f ilter, re-
spectively.

133
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De�nition 7.1.1 [79] A non-empty subset Fr of a quantale Qt is said to be a �lter

of Qt if Fr is closed under 
 and an upper set i.e.; the following conditions hold;

(1) for all z1 2 Qt and for all z2 2 Fr; z2 � z1 implies z1 2 Fr;

(2) for all z1; z2 2 Fr implies z1 
 z2 2 Fr.

De�nition 7.1.2 A f-subset g of a quantale Qt is called a FF of Qt if the following

assertions hold:

(1) for all z1; z2 2 Qt; z1 � z2 implies g(z1) � g(z2);

(2) for all z1; z2 2 Qt; g(z1 
 z2) � inf(g(z1); g(z2)).

Proposition 7.1.3 Let g1 and g2 be FF of Qt. Then (g1 e g2) is a FF of Qt.

Proof. Let z1; z2 2 Qt with z1 � z2. As g1 and g2 are the FF of Qt; so

g1(z1) � g1(z2) and g2(z1) � g2(z2)

=) inffg1(z1); g2(z1)g � inffg1(z2); g2(z2)g

=) (g1 e g2)(z1) � (g1 e g2)(z2).

Next, as g1(z1 
 z2) � inffg1(z1); g1(z2)g and g2(z1 
 z2) � inffg2(z1); g2(z2)g.

=) inffg1(z1 
 z2); g2(z1 
 z2)g � inf(inffg1(z1); g1(z2)g; inffg2(z1); g2(z2)g)

=) inffg1(z1 
 z2); g2(z1 
 z2)g � inf(inffg1(z1); g2(z1)g; inffg1(z2); g2(z2)g)

=) (g1 e g2)(z1 
 z2) � inff(g1 e g2)(z1); (g1 e g2)(z2)g.

Therefore, (g1 e g2) is a FF of Qt.

De�nition 7.1.4 Let Qt be a quantale and ; 6= Fr � Qt. Then the characteristic

function KFr of Fr is de�ned by

KFr : Qt �! (0; 1]; z 7!
(
1 if z 2 Fr
0 if z =2 Fr.

Clearly, a non-empty subset Fr of Qt is a f ilter if and only if the characteristic function

KFr of Fr is a FF of Qt.

The proof of the theorem below is easy and so excluded.
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Theorem 7.1.5 A f-subset g of Qt is a FF of Qt if and only if ; 6= U(g; p) for all
p 2 (0; 1] is a �lter of Qt.

Fig:13

Table. 10


 ? e f k h >
? ? ? ? ? ? ?
e ? e ? e ? e

f ? ? f ? f f

k ? e ? k ? k

h ? ? f ? h h

> ? e f k h >

Example 7.1.6 Let (Qt;
) be a Quantale; where Qt is illustrated in Figure 13 and
the binary operations 
 on the quantale is the same as the meet operation in the lattice
Qt as shown in Table 10. Filters of Qt are ff; h;>g; fh;>g; f>g and Qt. De�ne a
f-subset g : Qt �! (0; 1] by g = 0:5

? + 0:5
e +

0:6
f +

0:5
k +

0:7
h +

0:9
> . Then

U(g; p) =

8>>>>>>><>>>>>>>:

Qt if 0 < p � 0:5
ff; h;>g if 0:5 < p � 0:6
fh;>g if 0:6 < p � 0:7
f>g if 0:7 < p � 0:9
; if 0:9 < p � 1.
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Thus; by Theorem 7:1:5; g is a FF of Qt.

Theorem 7.1.7 Let g be a f-subset of Qt. Then ; 6= U(g; p) is a �lter of Qt for all
p 2 (0:5; 1] if and only if g satis�es the conditions below:

(1) sup(g(y); 0:5) � g(z) with z � y;

(2) sup(g(z 
 y); 0:5) � inf(g(z); g(y) for all z; y 2 Qt.

Proof. Assume that U(g; p) is a �lter of Qt for all p 2 (0:5; 1]. If there exist z; w 2 Qt
with z � w such that the condition (1) is not valid; then sup(g(w); 0:5) < g(z) = r.

Then r 2 (0:5; 1]; z 2 U(g; r). But r > g(w) implies that w =2 U(g; r); we get a

contradiction. Hence condition (1) is valid.

If there are z; w 2 Qt such that inf(g(z); g(w)) = s > sup(g(z 
 w); 0:5); then z; w 2
U(g; s) and s 2 (0:5; 1]. But g(z 
 w) < s. Thus, z 
 w =2 U(g; s); a contradiction.
Hence condition (2) is valid.

Conversely; suppose that g satis�es the conditions (1) and (2). Let w; z 2 Qt with
w � z be such that w 2 U(g; p) for some p 2 (0:5; 1]. Then g(w) � p. Since w � z so
it follows by condition (1)

sup(g(z); 0:5) � g(w) � p > 0:5

so that g(z) � p; i.e., z 2 U(g; p). Now, for w; z 2 U(g; p); we have;

sup(g(w 
 z); 0:5) � inf(g(w); g(z)) � p > 0:5

and so g(w
 z) � p. It follows that w
 z 2 U(g; p). Thus; U(g; p) is a �lter of Qt for
all p 2 (0:5; 1].

De�nition 7.1.8 A f-subset g of a quantale Qt is called an (�; �)-FF of Qt; if it

satis�es the conditions below;

(1) zp�g ! wp�g with z � w;

(2) zp�g;wv�g ! (z 
 w)inf(p;v)�g; for all z; w 2 Qt and p; v 2 (0; 1].

Theorem 7.1.9 Let g be a non-zero (�; �)-FF of Qt. Then g� = fz 2 Qt j g(z) > 0g
is a �lter of Qt.
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Proof. Let z; w 2 Qt and z � w be such that z 2 g�. Then g(z) > 0. Assume that
g(w) = 0. If � 2 f2;2 _qg; then zg(z)�g but wg(w)�g for every � 2 f2; q; 2 ^q;
2 _qg; a contradiction. Further, z1qg; but w1�g for every � 2 f2; q;2 _q;2 ^qg; a
contradiction. Hence g(w) > 0; that is w 2 g�. Now let z; w 2 g�. Then g(w) > 0 and
g(z) > 0. Assume that g(z 
w) = 0 and let � 2 f2;2 _qg; then zg(z)�g, wg(w)�g but
(z 
w)inf(g(z);g(w))�g for every � 2 f2 ^q;2;2 _q; qg; a contradiction. Also z1qg and
w1qg but (z
w)1�g for every � 2 f2 ^q;2;2 _q; qg; a contradiction. Thus, g(z
w)
> 0; it follows that; z 
 w 2 g�. Therefore g� is a f ilter of Qt.

Proposition 7.1.10 Let Fr be a �lter of Qt. Then a f-subset g of Qt such that

g(w) =

(
� 0:5 if w 2 Fr
0 if w 2 Qt nFr.

for all w 2 Qt.

is an (�;2 _q)-FF of Qt.

Proof. Suppose Fr is a �lter of Qt.

(i) Let w; z 2 Qt; w � z and v 2 (0; 1] be such that wv 2 g. Then w 2 Fr and we
have z 2 Fr. If v � 0:5 then g(z) � 0:5 � v implies g(z) � v; and so zv 2 g. If
v > 0:5 then g(z) + v > 0:5 + 0:5 = 1 and zvqg. Hence zv(2 _q)g. Let w; z 2 Qt and
v; r 2 (0; 1] be such that wv 2 g and zr 2 g. Then w; z 2 Fr and we have w 
 z 2 Fr.
If inf(v; r) � 0:5 then g(w 
 z) � 0:5 � inf(v; r) and so g(w 
 z) � inf(v; r) implies
(w 
 z)inf(v;r) 2 g. If inf(v; r) > 0:5 then g(w 
 z) + inf(v; r) > 0:5 + 0:5 = 1 and so
(w 
 z)inf(v;r)qg. Hence (w 
 z)inf(v;r)(2 _q)g.

(ii) Let w; z 2 Qt and v 2 (0; 1] with w � z be such that wvqg. Then w 2 Fr

and z � w 2 Fr implies that z 2 Fr. If 0:5 � v then g(z) � 0:5 � v implies

that g(z) � v and so zv 2 g. If 0:5 < v then g(z) + v > 0:5 +0:5 = 1 and zvqg.

Hence zv(2 _q)g. Let u; v 2 (0; 1] and w; z 2 Qt be such that wuqg and zvqg. Then
w; z 2 Fr and so w 
 z 2 Fr. If 0:5 � inf(u; v) then g(w 
 z) � 0:5 � inf(u; v)

and so g(w 
 z) � inf(u; v) implies (w 
 z)inf(u;v) 2 g. If inf(u; v) > 0:5 then

g(w
z)+inf(u; v) > 0:5+0:5 = 1 and so (w
z)inf(u;v)qg. Thus, (w
z)inf(u;v)(2 _q)g.

(iii) Let y; z 2 Qt and p; v 2 (0; 1] be such that yp 2 g and zvqg. Then g(y) � p and
g(z) + v > 1. Thus, y; z 2 Fr and so y 
 z 2 Fr, we have g(y 
 z) � 0:5. Thus,

(y 
 z)inf(p;v) 2 g for inf(p; v) � 0:5 and (y 
 z)inf(p;v)qg for inf(p; v) > 0:5. Thus

(y 
 z)inf(p;v)(2 _q)g.
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Lemma 7.1.11 A f-subset g in a quantale Qt is a FF of Qt if and only if it satis�es;

(1) wv 2 g and w � z �! zv 2 g;

(2) zp; wv 2 g �! (z 
 w)inf(p;v) 2 g for all z; w 2 Qt and p; v 2 (0; 1].

Proof. Let g be a FF of Qt. Let wv 2 g for some v 2 (0; 1]. Then g(w) � v. Since
g is a FF of Qt so; for w � z; we have v � g(w) � g(z). This shows that g(z) � v.
Hence zv 2 g. Consider z; w 2 Qt, p; v 2 (0; 1] be such that zp 2 g and wv 2 g. Then
g(z) � p and g(w) � v. But g is a FF of Qt so; we have g(z 
 w) � inf(g(z); g(w))
� inf(p; v). Thus g(z 
 w) � inf(p; v). This implies that (z 
 w)inf(p;v) 2 g.

Conversely; suppose that g satis�es the conditions (1) and (2). First we show that

for all z; w 2 Qt; z � w implies g(z) � g(w). Suppose that g(z) > g(w) for some

z; w 2 Qt; then there exists v 2 (0; 1] such that g(z) � v > g(w). Then zv 2 g but
wv2g; a contradiction to the hypothesis (1). Now we show that inf(g(z); g(w)) �
g(z 
 w) for all w; z 2 Qt. On contrary suppose that g(a 
 c) < inf(g(a); g(c)) for

some a; c 2 Qt. Let p 2 (0; 1] be such that g(a 
 c) < p � inf(g(a); g(c)). Then

g(a) > p and g(c) > p but (a 
 c)p 2 g. This contradicts our hypothesis (2). Thus,
inf(g(z); g(w)) � g(z 
 w) for all z; w 2 Qt. Hence g is a FF of a quantale Qt.

Remark 7.1.12 A f-subset g of a quantale Qt is a FF of Qt if and only if g is an

(2;2)-FF of Qt.

Proposition 7.1.13 Let �t : Qt �! Q0t be a QH and g be an (�; �)-FF of Q0t. Then

��1t (g) is an (�; �)-FF of Qt.

Proof. Let z; w 2 Qt and p; v 2 (0; 1] be such that zp���1t g and wv���1t g. Then
(�t(z))p�g and (�t(w))v�g by Proposition 4:1:16. Since g is an (�; �)-FF of Q0t;

we have (�t(z)
0 �t(w))inf(p;v)�g and (�t(z 
w))inf(p;v)�g by using QH. Thus; (z 

w)inf(p;v)��

�1
t g by Proposition 4:1:16. Let zp��

�1
t g such that z � w. Then (�t(z))p�g.

As �t is an order preserving hence �t(z) � �t(w). Since g is an (�; �)-FF of Q0t; we

have �t(w)p�g. By Proposition 4:1:16, wp���1t g. Hence �
�1
t (g) is an (�; �)-FF of Qt.
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7.2 (2;2 _q)-Fuzzy Filters of Quantale

Now; the concept of (2;2 _q)-FF in quantale is introduced in this section and we
characterize the f ilters of Quantale in terms of (2;2 _q)- FF . Also with the help of
QH, we will show that inverse image of (2;2 _q)-FF is (2;2 _q)-FF .

De�nition 7.2.1 A f-subset g of a quantale Qt is called an (2;2 _q)-FF of Qt if it

satis�es:

(1) z � y; zp 2 g ! yp(2 _q)g;

(2) zp 2 g; yv 2 g ! (z 
 y)inf(p;v)(2 _q)g for all z; y 2 Qt and p; v 2 (0; 1].

Example 7.2.2 Let (Qt;
) be a quantale; where Qt is depicted in Figure 13 and the
binary operation 
 on the quantale is the same as the meet operation in the lattice Qt
as shown in Table 11. De�ne a f-subset g of Qt as g = 0:5

? +
0:6
e +

0:65
f + 0:6

k +
0:7
h +

0:9
> .

Then g is an (2;2 _q)-FF of Qt. But

(1) g is not an (2;2)-FF of Qt; since e0:58 2 g and f0:63 2 g but (e
 f)inf(0:63;0:58) =
?0:582g.

(2) g is not an (q;2)-FF of Qt; since f0:52qg and k0:51qg but (f 
 k)inf(0:52;0:51) =
?0:512g.

(3) g is not an (2; q)-FF of Qt; since k0:57 2 g and h0:4 2 g but (k 
 h)inf(0:57;0:4) 2
g = ?0:4qg.

Theorem 7.2.3 A f-subset g of Qt is an (2;2 _q)-FF of Qt if and only if it satis�es
the conditions below:

(1) z � y; g(y) � inf(g(z); 0:5);

(2) g(z 
 y) � inf(g(z); g(y); 0:5) for all z; y 2 Qt.

Proof. Let g be an (2;2 _q)-FF and z; y 2 Qt be such that z � y. If g(z) = 0;

then g(y) � inf(g(z); 0:5). Let g(z) 6= 0 and assume; on the contrary that g(y) <

inf(g(z); 0:5). Take v 2 (0; 1] such that g(y) < v � inf(g(z); 0:5). Case-1 If g(z) <

0:5; then g(y) < v � g(z) and so zv 2 g but yv2g. Also g(y)+v < 0:5+0:5 = 1 so yvqg.
Thus; zv 2 g but yv(2 _q)g; a contradiction. Case-2 If g(z) � 0:5 then g(y) < 0:5 and
so z0:5 2 g but y0:5 2 g and g(y) + 0:5 < 1; i.e., y0:5qg; again a contradiction. Hence
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g(y) � inf(g(z); 0:5) for all z; y 2 Qv with z � y. Let w; y 2 Qt be such that g(w
y) <
inf(g(w); g(y); 0:5). Take p 2 (0; 1] such that g(w 
 y) < p � inf(g(w); g(y); 0:5).

Case-1 If inf(g(w); g(y)) < 0:5 then g(w 
 y) < p � inf(g(w); g(y)) and wp; yp 2 g
but (w
y)p2g. Also we have, g(w
y)+p < 0:5+0:5 = 1; so (w
y)pqg; a contradiction.
Let 0:5 � inf(g(w); g(y)). Then w0:5; y0:5 2 g but (w
y)0:52g and g(w
y)+0:5 < 1;
i.e., (w 
 y)0:5qg; again a contradiction. Thus, g(w 
 y) � inf(g(w); g(y); 0:5) for all
w; y 2 Qt.

Conversely suppose that the conditions (1) and (2) are satis�ed. Let w; z 2 Qt and
wv 2 g with w � z for some v 2 (0; 1]. Then g(w) � v. By hypothesis; g(z) �
inf(g(w); 0:5) � inf(v; 0:5). Case-1. If v � 0:5; then g(z) � v and zv 2 g. If v

> 0:5 then g(z) + v > 0:5 + 0:5 = 1 and so zvqg, i.e.; zv (2 _ q)g. Let v1; v2 2 (0; 1]
and w; z 2 Qt be such that wv1 ; zv2 2 g. Then g(w) � v1 and g(z) � v2 and so

by hypothesis we have, inf(v1; v2; 0:5) � inf(g(w); g(z); 0:5) � g(w 
 z). Case-1. If
inf(v1; v2) � 0:5 then g(w 
 z) � inf(v1; v2) and (w 
 z)inf(v1;v2) 2 g. Case-2. If
inf(v1; v2) > 0:5 then g(w
 z)+ inf(v1; v2) > 0:5+0:5 = 1 and so (w
 z)inf(v1;v2)qg.
Hence (w 
 z)inf(v1;v2) (2 _q)g. Consequently; g is an (2;2 _q)-FF of Qt.

Remark 7.2.4 A f-subset g of a quantale Qt is an (2;2 _q)-FF of Qt if and only if

it satis�es the conditions (1) and (2) of Theorem 7:2:3.

Lemma 7.2.5 Every (2;2)-FF of Qt is an (2;2 _q)-FF of Qt.

Proof. Obvious.

For (2;2 _q)-FF to be an (2;2)-FF of Qt; some condition is imposed in the next

Proposition.

Proposition 7.2.6 Let g be an (2;2 _q)-FF of Qt such that g(z) < 0:5 for all

z 2 Qt. Then g is an (2;2)-FF of Qt.

Proof. Let g be an (2;2 _q)-FF of Qt such that g(z) < 0:5 for all z 2 Qt. Then
by Theorem 7.2.3, if z � y then g(y) � inf(g(z); 0:5) = g(z). Now if z; w 2 Qt then
g(z 
 y) � inf(g(z); g(y); 0:5) = inf(g(z); g(y). Hence g is an (2;2)-FF of Qt by

Lemma 7.1.11.

Lemma 7.2.7 Let (Qt;
) be a quantale and ; 6= Fr � Qt. Then the characteristic

function KFr is an (2;2)-FF of Qt if and only if Fr is a �lter of Qt.
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Proof. Let w; z 2 Qt be such that z � w and zp 2 KFr where p 2 (0; 1] . Then
KFr(z) � p > 0; and so KFr(z) = 1; i.e.; z 2 Fr. Since Fr is a �lter; we have w 2 Fr
and so KFr(w) = 1 � p. Therefore wp 2 KFr . Suppose p; v 2 (0; 1] and w; z 2 Qt be
such that wp 2 KFr and zv 2 KFr . Then KFr(w) � p > 0 and KFr(z) � v > 0; which
show that KFr(w) = KFr(z) = 1. Thus w; z 2 Fr and Fr is a f ilter so w 
 z 2 Fr. It
shows that KFr(w
 z) = 1 � inf(p; v) so that (w
 z)inf(p;v) 2 KFr and consequently
KFr is an (2;2)-FF of Qt.

Conversely, let KFr be an (2;2)-FF of Qt and w; z 2 Fr. Then w1 2 KFr and z1 2
KFr which show that (w 
 z)1 = (w 
 z)inf(1;1) 2 KFr . Hence KFr(w 
 z) = 1, and
so w 
 z 2 Fr. Let w; z 2 Qt and w � z be such that w 2 Fr. Then KFr(w) = 1, and
thus w1 2 KFr . Since KFr is an (2;2)-FF , so we have z1 2 KFr . Thus KFr(z) = 1
and z 2 Fr. Hence Fr is a �lter of Qt.

Theorem 7.2.8 The characteristic function KFr is an (2;2 _q)-FF of a quantale

Qt if and only if Fr is a �lter of Qt; for any ; 6= Fr � Qt.

Proof. Suppose KFr is an (2;2 _q)-FF of Qt and w; z 2 Fr. Then w1 2 KFr and z1
2 KFr which show that (w
 z)1 = (w
 z)inf(1;1) (2 _q)KFr . Hence KFr(w
 z) > 0;
and so w 
 z 2 Fr. Let w; z 2 Qt and z 2 Fr be such that z � w. Then KFr(z) = 1;
and thus z1 2 KFr . Since KFr is an (2;2 _q)-FF; so we have w1 2 KFr . Thus

KFr(w) = 1. Hence w 2 Fr.

Conversely; if Fr is a �lter of Qt; then KFr is an (2;2)-FF of Qt by lemma 7:2:7; and
therefore KFr is an (2;2 _q)-FF of Qt by Corollary 7:2:5.

Theorem 7.2.9 A f-subset g of Qt is an (2;2 _q)-FF of Qt if and only if U(g; p) =
fw 2 Qt : g(w) � pg is a �lter of Qt for all p 2 (0; 0:5].

Proof. Suppose g is an (2;2 _q)-FF of Qt. Let w; b 2 Qt be such that w � b; and
let p 2 (0; 0:5] be such that w 2 U(g; p). Then g(w) � p and it is clear from Theorem

7:2:3(1) that

g(b) � inf(g(w); 0:5) � inf(p; 0:5) = p

and so b 2 U(g; p). Let w; a 2 U(g; p) for some p 2 (0; 0:5]. Thus from Theorem

7:2:3(2); we have g(w 
 a) � inf(g(w); g(a); 0:5) � inf(p; 0:5) = p; and so w 
 a 2
U(g; p).
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Conversely; let U(g; p) be a f ilter of Qt for all p 2 (0; 0:5]. If there exist a; y 2
Qt with a � y such that g(y) < inf(g(a); 0:5); then select v 2 (0; 0:5] such that

g(y) < v � inf(g(a); 0:5); then a 2 gv but y =2 U(g; p); a contradiction. Hence

g(y) � inf(g(a); 0:5) for all a; y 2 Qt with a � y. If there exist z; y 2 Qt such that g(z

y) < inf(g(z); g(y); 0:5). We can choose s 2 (0; 0:5] such that inf(g(z); g(y); 0:5) �
s > g(z 
 y). Then z; y 2 U(g; s) but z 
 y =2 U(g; s); a contradiction. Hence

inf(g(z); g(y); 0:5) � g(z 
 y) for all z; y 2 Qt. By Theorem 7:2:3; g is an (2;2 _q)-
FF of Qt.

Theorem 7.2.10 Let Qt and Q0t be two quantales and �t : Qt �! Q0t be a QH. Let

g be an (2;2 _q)-FF of Q0t. Then �
�1
t (g) is an (2;2 _q)-FF of Qt.

Proof. Suppose z; y 2 Qt with y � z. Then �t(y) � �t(z).

��1t (g)(z) = g(�t(z))

� inf(g(�t(y)); 0:5)

= inf(��1t (g)(y); 0:5).

Hence; ��1t (g)(z) � inf(��1t (g)(y); 0:5).

Now;

��1t (g)(z 
 w) = g(�t(z 
 w))
= g(�t(z)
0 �t(w))
� inf(g(�t(z)); g(�t(w)); 0:5)

= inf(��1t (g)(z); �
�1
t (g)(w); 0:5).

Thus; ��1t (g)(z 
 w) � inf(��1t (g)(z); ��1t (g)(w); 0:5) for all z; w 2 Qt.

By Theorem 7:2:3; we have ��1t (g) is an (2;2 _q)-FF of Qt.

7.3 ( 2 ; 2 _q�)- Fuzzy Filters of Quantale

In this section, some more general forms of (2;2 _q)-FF are introduced and we

introduce the notion of (2 ;2 _q�)-FF in quantale. Furthermore; �lter and fuzzy

�lter (FF ) of the types (2 ;2 _q�) are linked by using level subsets.

De�nition 7.3.1 A f-subset g of a quantale Qt is said to be an (2 ;2 _q�)-FF of

Qt; if
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(Fr)1 wv 2 g �! zv(2 _q�)g with w � z;

(Fr)2 zp 2 g; wv 2 g �! (z 
 w)inf(p;v)(2 _q�)g for all z; w 2 Qt and p; v 2 (; 1].

Example 7.3.2 Consider the quantale as given in Example 7:1:6. Taking g = 0:5
? +

0:6
e +

0:65
f + 0:6

k +
0:72
h + 0:91

> . Then g is an (20:3;20:3 _q0:6)-FF of Qt.

Theorem 7.3.3 Let g be a f-subset of a quantale Qt and g be a (q�;2 _q�)-FF of

Qt. Then the following conditions hold:

(1) sup(g(w); ) � inf(g(z); �) with z � w;

(2) sup(g(z 
 w); ) � inf(g(z); g(w); �) for all z; y; w 2 Qt.

Proof. Let z; w 2 Qt be such that sup(g(w); ) < inf (g(z); �) with z � w. Then for
all  < p � 1 such that

2� � sup(g(w); ) > p � 2� � inf(g(z); �)

we have;

2� � g(w) � 2� � sup(g(w); ) > p � sup(2� � g(z); �)

That is, 2� � g(w) > p; 2� � g(z) < p

and so;

g(z) + p > 2�; g(w) + p < 2�

and g(w) < � < p. Hence zpq�g but wp(2 _q�)g; a contradiction. Hence; sup

(g(w); ) � inf (g(z); �) with z � w.

If there exist z; w 2 Qt such that sup(g(z 
 w); ) < inf (g(z); g(w); �). Then for all
 < v � 1 such that

2� � sup(g(z 
 w); ) > v � 2� � inf(g(z); g(w); �)

we have;

2� � g(z 
 w) � 2� � sup(g(z 
 w); ) > v � sup(2� � g(z); 2� � g(w); �)

We have, 2� � g(z 
 w) > v; 2� � g(z) < v; 2� � g(w) < v
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and so;

g(z) + v > 2�; g(w) + v > 2�; g(z 
 w) + v < 2�

and g(z 
 w) < � < v. Hence wvq�g; zvq�g but (z 
 w)v(2 _q�)g; a contradiction.
Therefore sup(g(z 
 w); ) � inf(g(z); g(w); �) for all z; w 2 Qt.

Theorem 7.3.4 A f-subset g of a quantale Qt is an (2 ;2 _q�)-FF of Qt if and

only if the conditions below hold:

(1) sup (g(w); ) � inf (g(z); �) with z � w;

(2) sup (g(z 
 w); ) � inf (g(z); g(w); �) for all z; w 2 Qt.

Proof. (Fr)1 =) (1). If there exist z; w 2 Qt with z � w such that sup(g(w); ) <
p � inf (g(z); �). Then, g(z) � p > ; g(w) < p and g(w)+ p < 2p � 2�. This implies
that zp 2 g but wp(2 _q�)g; a contradiction. Hence (1) is valid.

(1) =) (Fr)1. Assume that there exist z; w 2 Qt with z � w and v 2 (; �] such that
zp 2 g but wp(2 _q�)g; then g(z) � p >  and g(w) < p and g(w) + p � 2�. It

follows that g(w) < � and hence; sup(g(w); ) < inf(g(z); �); a contradiction.

(Fr)2 =) (2). If there exist z; w 2 Qt such that sup (g(z 
 w); ) < v � inf

(g(z); g(w); �). Then g(z) � v > ; g(w) � v > ; but g(z 
 w) < v and g(z 
 w) +
v < 2v � 2�; i.e.; zv 2 g; wv 2 g but (z 
 w)v(2 _q�)g; a contradiction. Hence
sup(g(z 
 w); ) � inf(g(z); g(w); �) for all z; w 2 Qt.

(2) =) (Fr)2. Suppose there exist z; w 2 Qt and u; v 2 (; �] such that zu 2 g and
wv 2 g but (z 
 w)inf(u;v)(2 _q�)g; then g(z) � u > ; g(w) � v > ; g(z 
 w) <
inf(u; v) and g(z 
 w) + inf(u; v) � 2�. It concludes that g(z 
 w) < � and so

sup(g(z 
 w); ) < inf(g(z); g(w); �); a contradiction. Hence (Fr)2 is valid.

Proposition 7.3.5 If g1 and g2 are (2 ;2 _q�)-FF of Qt, then (g1 e g2) is an
(2 ;2 _q�)-FF of Qt.

Proof. Let z1; z2 2 Qt and ; � 2 (0; 1] with  < �. Since g1 and g2 are (2 ;2 _q�)-
FF of Qt; so by Theorem 7.3.4, we have supfg1(z2); g � inffg1(z1); �g with z1 � z2
and supfg2(z2); g � inffg2(z1); �g.

Now; consider
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supf(g1 e g2)(z2); g = supfg1(z2) ^ g2(z2); g
= supfg1(z2); g ^ supfg2(z2); g
� inffg1(z1); �g ^ inffg2(z1); �g
= inffg1(z1) ^ g2(z1); �g:

That is; supf(g1 e g2)(z2); g � inff(g1 e g2)(z1); �g.

Next; as supfg1(z1 
 z2); g � inffg1(z1); g1(z2); �g and

supfg2(z1 
 z2); g � inffg2(z1); g2(z2); �g.

Now; consider

supf(g1 e g2)(z1 
 z2); g = supfg1(z1 
 z2) ^ g2(z1 
 z2); g
= supfg1(z1 
 z2); g ^ supfg2(z1 
 z2); g
� inffg1(z1); g1(z2); �g ^ inffg2(z1); g2(z2); �g
= inffg1(z1) ^ g2(z1); g1(z2) ^ g2(z2); �g:

Hence; supf(g1 e g2)(z1 
 z2); g � inff(g1 e g2)(z1); (g1 e g2)(z2); �g:

Therefore; g1 e g2 is an (2 ;2 _q�)-FF of Qt by Theorem 7:3:4.

For any g 2 F(Qt); where F(Qt) denotes the set of all f -subsets of Qt; we de�ne

gv = fy 2 Qt j yv 2 gg for all v 2 (; 1];

g�v = fy 2 Qt j yvq�gg for all v 2 (; 1];

and

[g]�v = fy 2 Qt j yv(2 _q�)gg for all v 2 (; 1].

It follows that [g]�v = gv [ g�v.

Corollary 7.3.6 Let ; 0; �; �0 2 [0; 1] be such that  < �; 0 < �0; 0 <  and �0 < �.
Then every (2 ;2 _q�)-FF of Qt is an (20 ;20 _q�0)-FF of Qt.

Example 7.3.7 Consider the quantale Qt as given in Example 7:1:6 and de�ne a

f-subset g of Qt as follows:

g =
0:5

? +
0:65

e
+
0:7

f
+
0:65

k
+
0:75

h
+
0:95

> :
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Then g is an (20:3;20:3 _q0:4)-FF of Qt but it is not an (20:3;20:3 _q0:9)-FF of Qt.

Now; we characterize (2 ;2 _q�)-FF of Qt by their level sets.

Theorem 7.3.8 Let g 2 F(Qt). Then

(1) g is an (2 ;2 _q�)-FF of Qt if and only if ; 6= gv is a f ilter of Qt for all

v 2 (; �].

(2) If 2� = 1+ ; then g is an (2 ;2 _q�)-FF if and only if g�v(6= ;) is a f ilter of Qt
for all v 2 (�; 1].

(3) If 2� = 1 + ; then g is an (2 ;2 _q�)-FF if and only if [g]�v (6= ;) is a f ilter of
Qt for all v 2 (; 1].

Proof. (1). Let g be an (2 ;2 _q�)-FF of Qt. Suppose z; w 2 Qt with w � z and
v 2 (; �] be such that w 2 gv. Then wv 2 g and since g is an (2 ;2 _q�)-FF of Qt;
so zv(2 _q�)g. If zv 2 g; then z 2 gv and if zvq�g; then g(z) > 2� � v � v > ; that
is; z 2 gv. Now we have to show that z 
 w 2 gv for all z; w 2 gv. Let z; w 2 Qt be
such that z; w 2 gv for some v 2 (; �]. Then wv 2 g and zv 2 g; and since g is an
(2 ;2 _q�)-FF of Qt; therefore (w
z)v(2 _q�)g. If (w_z)v 2 g; then (w
z) 2 gv
and if (w 
 z)vq�g; then g(w 
 z) > 2� � v � v > ; that is; w 
 z 2 gv. Thus gv is
f ilter of Qt.

Conversely; suppose that ; 6= gv is a f ilter of Qt for all v 2 (; �]. Let z; w 2 Qt
with z � w and sup(g(w); ) < inf(g(z); �). Then there exist v 2 (; �] such that
sup(g(w); ) < v � inf(g(z); �). This shows that zv 2 g; that is z 2 gv but w =2 gv; a
contradiction. Thus; sup(g(w); ) � inf (g(z); �) with z � w. Let z; w 2 Qt and sup
(g(z
w); ) < inf (g(z); g(w); �). Then sup(g(z
w); ) < v � inf (g(z); g(w); �) for
some v 2 (; �]. This implies that z 2 gv and w 2 gv but (z
w) =2 gv; a contradiction.
Therefore; sup(g(z 
 w); ) � inf(g(z); g(w); �). Consequently; g is an (2 ;2 _q�)-
FF of Qt by Theorem 7:3:4.

(2). Let g be an (2 ;2 _q�)-FF of Qt. Let z; w 2 Qt with w � z be such that

w 2 g�v. Then wvq�g; that is g(w) + v > 2� ) g(w) > 2� � v � 2� � 1 = . Thus,

g(w) > . By hypothesis; we have

sup(g(z); ) � inf(g(w); �)

) g(z) > inf(2� � v; �)
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Since v 2 (�; 1]; � < v � 1 ) 2� � v < � < v. Thus; g(z) > 2� � v ) g(z) + v > 2�.

Hence, z 2 g�v.

Now we have to show that z 
 w 2 g�v for all z; w 2 g�v. Let z; w 2 Qt be such that
z; w 2 g�v. Then wvq�g and zvq�g; that is g(w)+ v > 2� ) g(w) > 2�� v � 2�� 1 = 
and similarly g(z) > . By assumption; we have

sup(g(z 
 w); ) � inf(g(w); g(z); �)

) g(z 
 w) > inf(2� � v; 2� � v; �)

Since v 2 (�; 1]; � < v � 1) 2��v < � < v. So; g(z
w) > 2��v ) g(z
w)+v > 2�.
Hence, z 
 w 2 g�v.

Conversely; suppose that ; 6= g�v is a f ilter of Qt for all v 2 (�; 1]. We show that g is
an (2 ;2 _q�)-FF . Let z; w 2 Qt with z � w be such that zpq�g. Let sup(g(w); ) <
inf(g(z); �). Then

2� � inf(g(z); �) < 2� � sup(g(w); )
) sup(2� � g(z); �) < inf(2� � g(w); 2� � ).

Take p 2 (�; 1] such that sup(2��g(z); �) < p � inf(2��g(w); 2��). Then 2��g(z) <
p and 2� � g(w) � p) g(z) + p > 2� and g(w) + p � 2�. This shows that zpq�g; that
is z 2 g�v but w =2 g�v; a contradiction. Hence; sup(g(w); ) � inf (g(z); �) with z � w.
Let z; w 2 Qt and sup (g(z
w); ) < inf (g(z); g(w); �). Then 2��inf(g(z); g(w); �) <
2��sup(g(z
w); )) sup(2��g(z); 2��g(w); �) < inf(2��g(z
w); 2��). There
exist u 2 (�; 1] such that sup(2�� g(z); 2�� g(w); �) < u � inf(2�� g(z
w); 2�� ).
Then 2� � g(z) < u; 2� � g(w) < u and 2� � g(z 
 w) � u ) g(z) + u > 2�;

g(w) + u > 2� but g(z 
 w) + u � 2�. Thus, z 2 g�v and w 2 g�v but (z 
 w) =2 g�v; a
contradiction. Therefore; sup(g(z 
w); ) � inf(g(z); g(w); �). Consequently; g is an
(2 ;2 _q�)-FF of Qt by Theorem 7:3:4.

(3). The proof of part 3 is similar to the proof of parts 1 and 2.



Chapter 8

Generalized Approximations of�
2;2 _q�

�
-Fuzzy Substructers

in Quantales

The concept of generalized approximations (GA) of (2 ;2 _q�)-FI; (2 ;2 _q�)-
FS and (2 ;2 _q�)-FF in quantales are presented in this chapter. With the help of

SV H and SSV H; it is observed that GLA and GUA of (2 ;2 _q�)-FI; (2 ;2 _q�)-
FS and (2 ;2 _q�)-FF are (2 ;2 _q�)-FI, (2 ;2 _q�)-FS and (2 ;2 _q�)-FF ,
respectively.

In the �rst section, GLA and GUA of (2 ;2 _q�)-FS and (2 ;2 _q�)-FF are

introduced. It is observed that GLA of (2 ;2 _q�)-FS and (2 ;2 _q�)-FF are not
(2 ;2 _q�)-FS and (2 ;2 _q�)-FF; respectively, while taking SV H. Furthermore,
GUA of (2 ;2 _q�)-FS and (2 ;2 _q�)-FF are presented by using SV H. In

the second section, at �rst, GLA (and GUA) of (2 ;2 _q�)-FIs is introduced. In
the third section, GLA and GUA of (2 ;2 _q�)-FPI and (2 ;2 _q�)-FSPI are
discussed. GLA and GUA of (2 ;2 _q�)-fuzzy Qt-submodules of a Qt-module are
being presented at the end of this chapter.

148
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8.1 Approximations of (2;2 _q�)-Fuzzy Filters and (2
;2 _q�)-Fuzzy Subquantales

The idea of generalized roughness (GR) of (2 ;2 _q�)-FS and (2 ;2 _q�)-FF of
a quantale Qt is being presented, in the following. The investigation of GLA and GUA

in (2 ;2 _q�)-FS of a quantale Qt is being �rst started in the following. However;
we begin with the result.

Theorem 8.1.1 Let g be an (2 ;2 _q�)-FS of Q0t and H : Qt �! P �(Q0t) be a

SSV H. Then H(g) is an (2 ;2 _q�)-FS of Qt.

Proof. Let g be an (2 ;2 _q�)-FS of Q0t. As H : Qt �! P �(Q0t) is a SSV H; so

_i2IH(zi) = H(_i2Izi). Consider the following:

sup fH(g)(_i2Izi); g = sup

�
^

a2H(_i2Izi)
g(a); 

�
= ^

a2H(_i2Izi)
sup fg(a); g

= ^
a2_i2IH(zi)

sup fg(a); g

Since a 2 _i2IH(zi); there exist a1 2 H(z1); a2 2 H(z2); :::; ai 2 H(zi) such that

a = _i2Iai:

sup fH(g)(_i2Izi); g = ^
_i2Iai2_i2IH(zi)

sup fg(_i2Iai); g

� ^
_i2Iai2_i2IH(zi)

inffinf
i2I
g(ai); �g

= ^
a1 2 H(z1),..., ai 2 H(zi)

inffinf
i2I
[g(a1); :::; g(ai)]; �g

= inffinf
i2I
[ ^
a1 2 H(z1)

g(a1); :::; ^
ai 2 H(zi)

g(ai)]; �g

= inffinf
i2I
[H(g)(z1); :::;H(g)(zi)]; �g

= inffinf
i2I
[H(g)(zi)]; �g.

Thus; we have sup fH(g)(_i2Izi); g � inffinf
i2I
[H(g)(zi)]; �g.

As H : Qt �! P �(Qt) is a SSV H; so H(z 
 w) = H(z)
0 H(w).

Now; consider
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sup fH(g)(z 
 w); g = sup

�
^

a2H(z
w)
g(e); 

�
= ^

e2H(z
w)
sup fg(e); g

= ^
e2H(z)
0H(w)

sup fg(e); g .

As e 2 H(z) 
0H(w); we obtain a 2 H(z) and b 2 H(w) such that e = a
0 b.

sup fH(g)(z 
 w); g = ^
a
0b2H(z)
0H(w)

sup fg(a
0 b); g

= ^
a 2 H(z), b 2 H(w)

sup fg(a
0 b); g

� ^
a 2 H(z), b 2 H(w)

inffg(a); g(b); �g

= inff ^
a 2 H(z)

g(a); ^
b 2 H(w)

g(b); �g

= inffH(g)(z);H(g)(w); �g:

Thus; sup fH(g)(z 
 w); g � inffH(g)(z);H(g)(w); �g. Therefore; H(g) is an (2 ;2 _q�)-
FS of Qt.

Fig. 14
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Table. 11


2 ?2 s t u v >2
?2 ?2 s t u v >2
s ?2 s t u v >2
t ?2 s t u v >2
u ?2 s t u v >2
v ?2 s t u v >2
>2 ?2 s t u v >2

The example below shows that; if H is a SV H and g is an (2 ;2 _q�)-FS; then its
lower approximations H(g); may not be an (2 ;2 _q�)-FS.

Example 8.1.2 Let ; � 2 (0; 1] with  < �. Let Q0t = f?2; s; t; u; v;>2g be a sup-
lattice depicted in Fig.14 and the binary operation 
2 on Q0t is shown in Table 11. Then
(Q0t;
2) is a quantale. De�ne a f-subset g : Q0t ! [0; 1] by g = 1

?2 +
0:5
s +

0:6
t +

0:7
u +

0:8
v +

1
>2 . Then g is an (20:3;20:3 _q0:6)-FS of Q

0
t. Now; consider H : Q0t ! P �(Q0t)

de�ned as H(?2) = H(s) = H(t) = H(u) = H(v) = f?2g and H(>2) = Q0t. It is

easily seen that H : Q0t ! P �(Q0t) is a SV H. With the help of De�nition 3:1:1; we have

H(g) = 1
?2+

1
s+

1
t +

1
u+

1
v+

0:5
>2 . Now; for u � >2 and v � >2 with  = 0:3 and � = 0:6;

but sup fH(g)(_i2Izi); g � inffinf
i2I
[H(g)(zi)]; �g for all zi 2 Q0t is not satis�ed;

because sup fH(g)(u _ v); g = sup fH(g)(>2); g � inffinf [H(g)(u);H(g)(v)]; �g.
Also; sup fH(g)(s _ t); g = sup fH(g)(>2); g � inffinf [H(g)(s);H(g)(t)]; �g.

Theorem 8.1.3 Let g be an (2 ;2 _q�)-FS of Q0t and H : Qt �! P �(Q0t) be a

SV H. Then H(g) is an (2 ;2 _q�)-FS of Qt.

Proof. Let zi 2 Qt for i 2 I. Since g is an (2 ;2 _q�)-FS of Q0t and H : Qt �!
P �(Q0t) is a SV H; so we have _i2IH(zi) � H(_i2Izi). Consider the following:
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inffinf
i2I
[H(g)(zi)]; �g = inffinf

i2I
[H(g)(z1); H(g)(z2); :::;H(g)(zi)]; �g

= inffinf
i2I
[ _
a1 2 H(z1)

g(a1); :::; _
ai 2 H(zi)

g(ai)]; �g

= _
a1 2 H(z1),..., ai 2 H(zi)

inffinf
i2I
[g(a1); :::; g(ai)]; �g

= _
_i2Iai2_i2IH(zi)

inffinf
i2I
g(ai); �g

� _
_i2Iai2_i2IH(zi)

sup fg(_i2Iai); g

= _
e2_i2IH(zi)

sup fg(e); g

� _
e2H(_i2Izi)

sup fg(e); g

= sup

�
_

e2H(_i2Izi)
g(e); 

�
= sup

�
H(g)(_i2Izi); 

	
.

Thus; we have sup
�
H(g)(_i2Izi); 

	
� inffinf

i2I
[H(g)(zi)]; �g.

As H : Qt �! P �(Qt) is a SV H; so H(z)
0 H(w) � H(z 
 w).

Furthermore; consider

inffH(g)(z); H(g)(w); �g = inff _
a 2 H(z)

g(a); _
b 2 H(w)

g(b); �g

= _
a 2 H(z), b 2 H(w)

inffg(a); g(b); �g

� _
a 2 H(z), b 2 H(w)

sup fg(a
0 b); g

= _
a
0b2H(z)
0H(w)

sup fg(a
0 b); g

� _
a
0b2H(z
w)

sup fg(a
0 b); g

= _
c2H(z
w)

sup fg(c); g

= sup

�
_

c2H(z
w)
g(c); 

�
= sup

�
H(g)(z 
 w); 

	
:

Thus; sup
�
H(g)(z 
 w); 

	
� inf [H(g)(z); H(g)(w); �g. Therefore; H(g) is an (2 ;2 _q�)-

FS of Qt.

Proposition 8.1.4 Let g1 and g2 be (2 ;2 _q�)-FS of Q0t and H : Qt �! P �(Q0t)

be a SV H. Then H(g1) eH(g2) and H(g1) eH(g2) are (2 ;2 _q�)-FS of Qt.

Proof. Proof follows from Proposition 6.2.5 and Theorems 8.1.1, 8.1.3.
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Now, we discuss GLA and GUA of (2 ;2 _q�)-FFs. First the GLA is being pre-

sented.

Theorem 8.1.5 Let g be an (2 ;2 _q�)-FF of Q0t and H : Qt �! P �(Q0t) be a

SSV H. Then H(g) is an (2 ;2 _q�)-FF of Qt.

Proof. Consider z; w 2 Qt and ; � 2 (0; 1] such that  < �. Since H : Qt �! P �(Qt)

is a SSV H; so, H(z)
0 H(w) = H(z 
 w). Consider the following:

sup fH(g)(z 
 w); g = sup

�
^

e2H(z
w)
g(e); 

�
= ^

e2H(z
w)
sup fg(e); g

= ^
e2H(z)
0H(w)

sup fg(e); g .

Since e 2 H(z)
0 H(w); there exist a1 2 H(z) and a2 2 H(w) such that e = a1 
0 a2.
So;

sup fH(g)(z 
 w); g = ^
a1
0a22H(z)
0H(w)

sup fg(a1 
0 a2); g

� ^
a1
0a22H(z)
0H(w)

inffg(a1); g(a2); �g

= ^
a1 2 H(z), a2 2 H(w)

inffg(a1); g(a2); �g

= inff ^
a1 2 H(z)

g(a1); ^
a2 2 H(w)

g(a2); �g

= inffH(g)(z);H(g)(w); �g.

Thus; we have sup fH(g)(z 
 w); g � inffH(g)(z);H(g)(w); �g.

Furthermore; let w � z. Then w _ z = z. Since H : Qt �! P �(Qt) is a SSV H; so

H(z) = H(w _ z) = H(w) _H(z).

Consider;

supfH(g)(z); g = supf ^
e2 H(z)

g(e); g

= ^
e2 H(z)_H(w)

supfg(e); g.

Since e 2 H(z) _H(w) so there exist c 2 H(z) and d 2 H(w) such that e = c _ d. As
c _ d � d. We have;
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supfH(g)(z); g = ^
c_d2 H(z)_H(w)

supfg(c _ d); g

= ^
c2 H(z); d2 H(w)

supfg(c _ d); g

� ^
c2 H(z); d2 H(w)

inffg(d); �g

= inff ^
d2 H(w)

g(d); �g

= inffH(g)(w); �g.

Thus; we have supfH(g)(z); g � inffH(g)(w); �g. Therefore;H(g) is an (2 ;2 _q�)-
FF of Qt.

The GLA of (2 ;2 _q�)-FF is not necessarily a FF by using SV H; as illustrated by
the example below.

Example 8.1.6 Let (Q0t;
2) be a quantale; where Q0t is depicted in Fig.14 and the
binary operation 
2 on Q0t is shown in the Table 11. Let ; � 2 (0; 1] with  < �.

Now; consider H : Q0t �! P �(Q0t) a SV H de�ned as H(?2) = f?2; ug;H(s) =
fu; v;>2g;H(t) = fu; v;>2g;H(u) = f?2; u; v;>2g;H(v) = fu; v;>2g and H(>2) =
fv; u;>2g. Let g be a f-subset of Q0t given by g = 0:5

?2 +
0:5
s +

0:7
t +

0:8
u + 0:8

v + 1
>2 .

Then it is easy to verify that g is an (20:3;20:3 _q0:6)-FF of Q0t. Now; GLA of the

(20:3;20:3 _q0:6)-FF is H(g) = 0:5
?2 +

0:8
s +

0:8
t +

0:5
u + 0:8

v +
0:8
>2 . We observe that for

s � u with  = 0:3; � = 0:6; we have; supfH(g)(u); g � inffH(g)(s); �g.

Theorem 8.1.7 If g is an (2 ;2 _q�)-FF of Q0t and H : Qt �! P �(Q0t) be a SV H.

Then H(g) is an (2 ;2 _q�)-FF of Qt.

Proof. Let z1; z2 2 Qt and ; � 2 (0; 1] be such that  < �. Let z1 � z2. Then

z1 _ z2 = z2.

Consider;

inffH(g)(z1); �g = inff _
x2 H(z1)

g(x); �g

= _
x2 H(z1)

inffg(x); �g.

Since H is a SV H; so H(z1) _H(z2) � H(z1 _ z2) = H(z2). As x _ y � x, we have;



8. Generalized Approximations of (2 ;2 _q�)-Fuzzy Substructers in
Quantales 155

inffH(g)(z1); �g = _
x2 H(z1)

inffg(x); �g

� _
x2 H(z1); y2 H(z2)

supfg(x _ y); g

= _
x_y2 H(z1)_H(z2)

supfg(x _ y); g

� _
x_y2 H(z1_z2)

supfg(x _ y); g

= _
e2 H(z1_z2)

supfg(e); g

= _
e2 H(z2)

supfg(e); g

= supf _
e2 H(z2)

g(e); g

= supfH(g)(z2); g.

Thus; we have supfH(g)(z2); g � inffH(g)(z1); �g.

Next; Consider the following:

inffH(g)(z1); H(g)(z2)); �g = inff _
a2 H(z1)

g(a); _
b2 H(z2)

g(b); �g

= _
a2 H(z1);b2 H(z2)

inffg(a); g(b); �g

Since H is a SV H; so H(z1)
0 H(z2) � H(z1 
 z2). We have;

inffH(g)(z1); H(g)(z2)); �g = _
a2 H(z1); b2 H(z2)

inffg(a); g(b); �g

� _
a2 H(z1); b2 H(z2)

supfg(a
0 b); g

= _
a
0b2 H(z1)
0H(z2)

supfg(a
0 b); g

� _
a
0b2 H(z1
0z2)

supfg(a
0 b); g

= supf _
e2 H(z1
0z2)

g(e); g

= supfH(g)(z1 
 z2); g

Thus; we have sup
�
H(g)(z1 
 z2); 

	
� inffH(g)(z1); H(g)(z2); �g. Therefore; H(g)

is an (2 ;2 _q�)-FF of Qt.
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Fig. 15

Table 12.


1 ?1 a b >1
?1 ?1 a b >1
a ?1 a b >1
b ?1 a b >1
>1 ?1 a b >1

Example 8.1.8 Let (Qt;
1) and (Q0t;
2) be two quantales; where Qt and Q0t are
depicted in Figures 14 and 15 and the binary operations 
1 and 
2 on both the
quantales are shown in Tables 11 and 12. Let ; � 2 (0; 1] with  < �. Now; con-

sider H : Qt �! P �(Q0t) de�ned as H(?1) = f?2g;H(a) = fu; sg;H(b) = fu; vg
and H(>1) = fu;>2g. Then; H is a SSV H. Let g be a f-subset of Q0t given

by g = 0:5
?2 +

0:5
s + 0:8

t + 0:5
u + 0:8

v + 1
>2 . Then it is easy to verify that g is an

(20:3;20:3 _q0:6)-FF of Q0t. Now; GLA and GUA of (2 ;2 _q�)-FF; g of Qt are
as follows: H(g) = 0:5

?1 +
0:5
a +

0:5
b +

0:5
>1 and H(g) =

0:5
?1 +

0:5
a +

0:8
b +

1
>1 . It can be

veri�ed that H(g) and H(g) are (20:3;20:3 _q0:6)-FF of Qt.

Proposition 8.1.9 Let g1 and g2 be (2 ;2 _q�)-FF of Q0t and H : Qt �! P �(Q0t)

be a SV H. Then H(g1) eH(g2) and H(g1) eH(g2) are (2 ;2 _q�)-FF of Qt.

Proof. Follows from Proposition 7.3.5 and Theorems 8.1.5, 8.1.7.
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8.2 Approximations of ( 2 ; 2 _q�)-Fuzzy Ideals in Quan-
tales

Now in the following discussion; the concept of GLA and GUA of (2 ;2 _q�)-FI;
in quantales are being introduced.

Theorem 8.2.1 Let g be an (2 ;2 _q�)-FI of Q0t and H : Qt �! P �(Q0t) be a

SSV H. Then; H(g) is an (2 ;2 _q�)-FI of Qt.

Proof. Let z; w 2 Qt and ; � 2 (0; 1] be such that  < �. Since H : Qt �! P �(Qt) is

a SSV H; so we have H(z _ w) = H(z) _H(w). Consider the following:

sup fH(g)(z _ w); g = sup

�
^

e2H(z_w)
g(e); 

�
= ^

e2H(z_w)
sup fg(e); g

= ^
e2H(z)_H(w)

sup fg(e); g

Since e 2 H(z) _H(w); there exist a1 2 H(z) and a2 2 H(w) such that e = a1 _ a2.
So;

sup fH(g)(z _ w); g = ^
a1_a22H(z)_H(w)

sup fg(a1 _ a2); g

� ^
a1_a22H(z)_H(w)

inffg(a1); g(a2); �g

= ^
a1 2 H(z), a2 2 H(w)

inffg(a1); g(a2); �g

= inff ^
a1 2 H(z)

g(a1); ^
a2 2 H(w)

g(a2); �g

= inffH(g)(z);H(g)(w); �g

Thus; we have sup fH(g)(z _ w); g � inffH(g)(z);H(g)(w); �g.

Furthermore; let w � z. Then w _ z = z. Since H : Qt �! P �(Qt) is a SSV H; so

H(z) = H(w _ z) = H(w) _H(z).

Consider;

inffH(g)(z); �g = inff ^
e2 H(z)

g(e); �g

= ^
e2 H(z)

inffg(e); �g

= ^
e2 H(z)_H(w)

inffg(e); �g.

Since e 2 H(z) _H(w) so there be c 2 H(z) and d 2 H(w) such that e = c _ d. As
c _ d � d. We have;
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inffH(g)(z); g = ^
c_d2 H(z)_H(w)

inffg(c _ d); �g

= ^
c2 H(z); d2 H(w)

inffg(c _ d); �g

� ^
c2 H(z); d2 H(w)

supfg(d); g

= supf ^
d2 H(w)

g(d); g

= supfH(g)(w); g.

Thus; we have supfH(g)(w); g � inffH(g)(z); �g.

As H : Qt �! P �(Qt) is a SSV H; so H(z 
 w) = H(z)
0 H(w).

Furthermore; consider

sup fH(g)(w 
 z); g = sup

�
^

e2H(z
w)
g(e); 

�
= ^

e2H(z
w)
sup fg(e); g

= ^
e2H(z)
0H(w)

sup fg(e); g

As e 2 H(z) 
0H(w); we obtain a 2 H(z) and b 2 H(w) such that e = b
0 a.

sup fH(g)(w 
 z); g = ^
a
0b2H(z)
0H(w)

sup fg(b
0 a); g

= ^
a 2 H(z), b 2 H(w)

sup fg(b
0 a); g

� ^
a 2 H(z), b 2 H(w)

inffg(a); �g

= inff ^
a 2 H(z)

g(a); �g

= inf [H(g)(z); �g

Thus; sup fH(g)(w 
 z); g � inf [H(g)(z); �g. Also; sup fH(g)(z 
 w); g � inf [H(g)(z); �g.
Therefore;H(g) is an (2 ;2 _q�)-FI of Qt by Theorem 6.2.11.

The next example shows that; if H is a SV H; and g is an (2 ;2 _q�)-FI of Qt;
then H(g) may not be a an (2 ;2 _q�)-FI of Qt.

Example 8.2.2 Let ; � 2 (0; 1] with  < �. Let Q0t = f?2; s; t; u; v;>2g be a sup-
lattice with the multiplication Table 11 and order relation as shown in the Fig. 14.

Then (Q0t;
2) is a quantale. De�ne g : Q0t ! [0; 1] by

g(z) =

(
1; x = ?2
0:5; x 6= ?2

for all z 2 Q0t

Then g is an (20:3;20:3 _q0:6)-FI of Q0t. Let H : Q0t ! P �(Q0t) be a SV H de�ned as

in Example 8:1:2. Now LA of g is H(g) = 1
?2 +

1
s +

1
t +

1
u +

1
v +

0:5
>2 . Now; for  = 0:5



8. Generalized Approximations of (2 ;2 _q�)-Fuzzy Substructers in
Quantales 159

and � = 0:7; the following are not satis�ed: sup fH(g)(u _ v); g = sup fH(g)(>2); g
� inffH(g)(u);H(g)(v); �g. Also;

sup fH(g)(s _ t); g = sup fH(g)(>2); g � inffH(g)(s);H(g)(t); �g:

Theorem 8.2.3 Let g be an (2 ;2 _q�)-FI of Q0t and H : Qt �! P �(Q0t) be a

SV H. Then; H(g) is an (2 ;2 _q�)-FI of Qt.

Proof. The proof is like the proof of Theorem 8:2:1.

Example 8.2.4 Let (Qt;
1) and (Q0t;
2) be two quantales; where Qt1 and Q0t are
depicted in Figures 14 and 15 and the binary operations 
1 and 
2 on both the
quantales are shown in Tables 11 and 12. Let ; � 2 (0; 1] with  < �. Now; con-

sider H : Qt �! P �(Q0t) de�ned as H(?1) = f?2g;H(a) = fu; sg;H(b) = fu; vg
and H(>1) = fu;>2g. Then; H is a SSV H. Let g be a f-subset of Q0t given by

g(z) =

(
1; z = ?2
0:5; z 6= ?2

for all z 2 Q0t. Then it is easy to verify that g is an

(20:3;20:3 _q0:6)-FI of Q0t. Now; LA and UA of (20:3;20:3 _q0:6)-FI of Q0t are as
follows: H(g) = 1

?1 +
0:5
a +

0:5
b +

0:5
>1 and H(g) =

1
?1 +

0:5
a +

0:5
b +

1
>1 . It can be veri�ed

that H(g) and H(g) are (20:3;20:3 _q0:6)-FI of Qt.

Proposition 8.2.5 Let g1 and g2 be (2 ;2 _q�)-FI of Qt and H : Qt �! P �(Q0t)

be a SV H. Then H(g1) eH(g2) and H(g1) eH(g2) are (2 ;2 _q�)-FI of Qt.

Proof. The proof follows from Proposition 6:2:12 and Theorems 8:2:1; 8:2:3.

8.3 Approximations of ( 2 ; 2 _q�)-Fuzzy Prime (Semi-
Prime) Ideals in Quantales

Now; GLA and GUA being extended to (2 ;2 _q�)-FPI and (2 ;2 _q�)-FSPI.
First the GLA and GUA of (2 ;2 _q�)-FPI are being started.

Theorem 8.3.1 Let g be an (2 ;2 _q�)-FPI of Q0t and H : Qt �! P �(Q0t) be a

SSV H. Then H(g) is a (2 ;2 _q�)-FPI of Qt.
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Proof. Let w; z 2 Qt and ; � 2 (0; 1] be such that  < �. As g is an (2 ;2 _q�)-FPI
of Q0t; therefore g is an (2 ;2 _q�)-FI of Q0t; hence by Theorem 8:2:1; H(g) is an

(2 ;2 _q�)-FI of Qt. Moreover by Proposition 6:3:2; we have supfg(e); g(c); g �
inffg(e
 c); �g for all e; c 2 Qt.

Consider;

supfH(g)(z);H(g)(w); g = supf ^
e 2 H(z )

g(e); ^
d 2 H( w)

g(d); g

= ^
e 2 H(z);d 2 H(w)

supfg(e); g(d); g

� ^
e 2 H(z), d 2 H(w)

inffg(e
0 d); �g

= ^
e
0d 2 H(z)
0H(w)

inffg(e
0 d); �g

= inff ^
e
0d 2 H(z
w)

g(e
0 d); �g

= inffH(g)(z 
 w); �g.

Thus supfH(g)(z);H(g)(w); g � supfH(g)(z 
 w); �g for all z; w 2 Qt.

Proposition 8.3.2 Let g be an (2 ;2 _q�)-FPI of Qt and H : Qt �! P �(Q0t) be a

SSV H. Then; H(g) is an (2 ;2 _q�)-FPI of Qt.

Proof. The proof is simple and is similar to the Theorem 8:3:1.

Theorem 8.3.3 Lat g be an (2 ;2 _q�)-FSPI of Qt and H : Qt �! P �(Q0t) be a

SSV H. Then; H(g) is an (2 ;2 _q�)-FSPI of Qt.

Proof. Let z 2 Qt and ; � 2 (0; 1] be such that  < �. Since g is an (2 ;2 _q�)-
FSPI of Q0t; by Proposition 6:3:4; we have supfg(e); g � inffg(e 
0 e); �g for all
e 2 Qt.

Consider the following:
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supfH(g)(z); g = supf ^
e 2 H(z )

g(e); g

= ^
e 2 H(z )

supfg(e); g

� ^
e 2 H(z )

inffg(e
0 e); �g

= ^
e
0e 2 H(z )
0H(z)

inffg(e
0 e); �g

= ^
e
0e 2 H(z 
z)

inffg(e
0 e); �g

= inff ^
e2 2 H(z 
z)

g(e
0 e)]; �g

= inffH(g)(z 
 z); �g.

Thus; supfg(z); g � inffH(g)(z
z); �g for all z 2 Qt. Hence; H(g) is an (2 ;2 _q�)-
FSPI of Qt.

Proposition 8.3.4 Let g be a (2 ;2 _q�)-FSPI of Qt and H : Qt �! P �(Qt) be a

SSV H. Then; H(g) is a (2 ;2 _q�)-FSPI of Qt.

Proof. The proof is similar to the proof of Theorem 8.3.3.

8.4 Approximations of ( 2 ; 2 _q�)-Fuzzy Qt-submodules
of Qt-Module

GLA and GUA of (2 ;2 _q�)-fuzzy Qt-submodules of a Qt-module is being presented
in this section.

Theorem 8.4.1 Let H : M �! P �(N) be a SSV H of Qt-modules and g be an

(2 ;2 _q�)-fuzzy Qt-submodule of N . Then H(g) is an (2 ;2 _q�)-fuzzy Qt-submodule
M .

Proof. Let g be an (2 ;2 _q�)-fuzzy Qt-submodule of N . As H : M �! P �(N) is

a SSV H of Qt-modules; so _i2IH(mi) = H(_i2Imi). Consider the following:

sup fH(g)(_i2Imi); g = sup

�
^

c2H(_i2Imi)
g(c); 

�
= ^

c2H(_i2Imi)
sup fg(c); g

= ^
c2_i2IH(mi)

sup fg(c); g
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Since c 2 _i2IH(mi); there exist c1 2 H(m1); c2 2 H(m2); :::; ci 2 H(mi) such that

c = _i2Ici:

sup fH(g)(_i2Imi); g = ^
_i2Ici2_i2IH(mi)

sup fg(_i2Ici); g

� ^
_i2Ici2_i2IH(mi)

inffinf
i2I
g(ci); �g

= ^
c1 2 H(m1),..., ci 2 H(mi)

inffinf
i2I
[g(c1); :::; g(ci)]; �g

= inffinf
i2I
[ ^
c1 2 H(m1)

g(c1); :::; ^
ci 2 H(mi)

g(ci)]; �g

= inffinf
i2I
[H(g)(m1); :::;H(g)(mi)]; �g

= inffinf
i2I
[H(g)(mi)]; �g.

Thus; we have sup fH(g)(_i2Imi); g � inffinf
i2I
[H(g)(mi)]; �g.

As H :M �! P �(N) is a SSV H of Qt-modules; so H(q �m) = q �0 H(m).

Now; consider

sup fH(g)(q �m); g = sup

�
^

a2H(q�m)
g(e); 

�
= ^

e2H(q�m)
sup fg(e); g

= ^
e2q�0H(m)

sup fg(e); g .

As e 2 q �0 H(m); there is a 2 H(m) such that e = q �0 a.

sup fH(g)(q �m); g = ^
q�0a2q�0H(m)

sup fg(q �0 a); g

� ^
q�0a2q�0H(m)

inffg(a); �g

= inff ^
a 2 H(m)

g(a); �g

= inffH(g)(m); �g:

Thus; sup fH(g)(q �m); g � inffH(g)(m); �g. Therefore; H(g) is an (2 ;2 _q�)-
fuzzy Qt-submodule of M .

Theorem 8.4.2 Let g be an (2 ;2 _q�)-fuzzy Qt-submodule of N and H : M �!
P �(N) be a SV H of Qt-modules. Then H(g) is an (2 ;2 _q�)-fuzzy Qt-submodule
of M .

Proof. Let H :M �! P �(N) be a SV H of Qt-modules. Then, we have _i2IH(mi) �
H(_i2Imi). Let mi 2M for i 2 I and g be an (2 ;2 _q�)-fuzzy Qt-submodule of N .
Consider the following:
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inffinf
i2I
[H(g)(mi)]; �g = inffinf

i2I
[H(g)(m1); H(g)(m2); :::;H(g)(mi)]; �g

= inffinf
i2I
[ _
a1 2 H(m1)

g(a1); :::; _
ai 2 H(mi)

g(ai)]; �g

= _
a1 2 H(m1),..., ai 2 H(mi)

inffinf
i2I
[g(a1); :::; g(ai)]; �g

= _
_i2Iai2_i2IH(mi)

inffinf
i2I
g(ai); �g

� _
_i2Iai2_i2IH(mi)

sup fg(_i2Iai); g

= _
e2_i2IH(mi)

sup fg(e); g

� _
e2H(_i2Imi)

sup fg(e); g

= sup

�
_

e2H(_i2Imi)
g(e); 

�
= sup

�
H(g)(_i2Imi); 

	
.

Thus; we have sup
�
H(g)(_i2Imi); 

	
� inffinf

i2I
[H(g)(mi)]; �g.

As H : Qt �! P �(Qt) is a SV H of Qt-modules; so q �0 H(m) � H(q �m).

Furthermore; consider

inffH(g)(m); �g = inff _
a 2 H(m)

g(a); �g

= _
a 2 H(m)

inffg(a); �g

� _
a 2 H(z)

sup fg(q �0 a); g

= _
q�0a2q�0H(z))

sup fg(q �0 a); g

� _
q�0a2H(q�m)

sup fg(q �0 a); g

= _
c2H(q�m)

sup fg(c); g

= sup

�
_

c2H(q�m)
g(c); 

�
= sup

�
H(g)(q �m); 

	
:

Thus; sup
�
H(g)(q �m); 

	
� inf [H(g)(m); �g. Therefore; H(g) is an (2 ;2 _q�)-

fuzzy Qt-submodule of M .

Proposition 8.4.3 Let g1 and g2 be (2 ;2 _q�)-fuzzy Qt-submodule of N and H :

M �! P �(N) be a SV H of Qt-modules. Then H(g1) eH(g2) and H(g1) eH(g2) are
(2 ;2 _q�)-fuzzy Qt-submodule of M .

Proof. The proof follows from Proposition 6.2.5 and Theorems 8:4:1, 8:4:2.
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Conclusion

In this thesis at �rst, we contributed to the roughness in the subsets of a Qt-

module with respect to Pawlak approximation space. Further complete congruence

with respect to _-complete and �- complete is introduced. Upper and lower rough
Qt-submodules of Qt-module are de�ned and their di¤erent properties are discussed.

Moreover, roughness in quotient of Qt-module are proposed. Then we generalized

this concept and provided the concept of generalized roughness in the subsets of Qt-

module. The idea of set-valued homomorphism and strong set-valued homomorphism

of Qt-module are also proposed.

As a generalization of rough fuzzy ideals in quantale [49], the concept of generalized

rough fuzzy ideals, generalized rough fuzzy prime ideals, generalized rough fuzzy semi-

prime ideals and generalized rough fuzzy primary deals of quantales were proposed

in the third chapter. Further, approximations of fuzzy ideals, fuzzy prime, fuzzy

semi-prime and fuzzy primary ideals with the help of set-valued homomorphism and

strong set-valued homomorphism are discussed. In addition, homomorphic images of

generalized rough prime (semi-prime, primary) ideals which are established by quantale

homomorphism, are examined.

Next, in chapter four, we de�ne (�; �)-fuzzy subquantales and (�; �)-fuzzy ideals

of quantale which are the generalization of fuzzy subquantales and fuzzy ideals in

quantale [49]. Further, an (2;2 _q)-fuzzy ideals and (2;2 _q)-fuzzy subquantales are
discussed. These fuzzy subquantales and fuzzy ideals are characterized by their level

subquantales and ideals, respectively. Some important results about (2;2 _q)-fuzzy
prime and (2;2 _q)-fuzzy semi-prime ideals are discussed. Fuzzy quantale submodule
is de�ned and its generalization that is an (�; �)-fuzzy Qt-submodule of Qt-module

is also introduced in this chapter. Fuzzy Qt-submodule is characterized by its level

Qt-subquantales. Further, approximations of fuzzy Qt-submodule and approximations

of (2;2 _q)-fuzzy Qt-submodule of Qt-module are introduced.

The concept of (�; �)-fuzzy f ilter and some related properties are discussed in

chapter �ve. Further, an (2;2 _q)-fuzzy f ilters are discussed. It is investigated

that under quantale homomorphism, inverse image of an (2;2 _q)-fuzzy �lter is an
(2;2 _q)-fuzzy �lter. Moreover, these fuzzy f ilters are characterized by their level
sets. Furthermore; in this chapter, we are presenting more general forms of (2;2 _q)-
fuzzy f ilters of Quantales. Particular attention is given to (2 ;2 _q�)-fuzzy f ilters.
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In the chapter six, we started the investigation of roughness in (2;2 _q)-fuzzy ideal
and (2;2 _q)-fuzzy f ilter of quantales with respect to the generalized approximation
space. Moreover, it is demonstrated that generalized lower and upper approximations

of (2;2 _q)-fuzzy ideal, (2;2 _q)-fuzzy f ilter, (2;2 _q)-fuzzy prime ideal and (2
;2 _q)-fuzzy semi-prime ideal are (2;2 _q)-fuzzy ideal, (2;2 _q)-fuzzy f ilter, (2;2
_q)-fuzzy prime ideal and (2;2 _q)-fuzzy semi-prime ideal by using set-valued and
strong set-valued homomorphism, respectively.

In chapter seven; we are presenting more general forms of (2;2 _q)-fuzzy subquan-
tale and (2;2 _q)-fuzzy ideal of quantales. We introduce the concepts of (�; �)-fuzzy
subquantale; (�; �)-fuzzy ideal and some related properties are investigated. Spe-

cial attention is given to (2 ;2 _q�)-fuzzy subquantale; (2 ;2 _q�)-fuzzy ideal;
(2 ;2 _q�)-fuzzy prime; (2 ;2 _q�)-fuzzy semi-prime ideals; and some interesting
results about them are obtained. Furthermore; subquantale; prime; semi-prime and

fuzzy subquantale; fuzzy prime; fuzzy semi-prime ideals of the types (2 ;2 _q�)
are linked by using level subsets.

The concept of generalized approximations (GA) of (2 ;2 _q�)-fuzzy ideal; (2
;2 _q�)-fuzzy subquantale and (2 ;2 _q�)-fuzzy �lter in quantales were presented
in chapter eight. With the help of set-valued and strong set-valued homomorphism;

it is observed that GLA and GUA of (2 ;2 _q�)-fuzzy ideal; (2 ;2 _q�)-fuzzy
subquantale and (2 ;2 _q�)-fuzzy �lter are (2 ;2 _q�)-fuzzy ideal, (2 ;2 _q�)-
fuzzy subquantale and (2 ;2 _q�)-fuzzy �lter, respectively. To extend this work,
one may consider the following topics:

(1) Generalized Rough Fuzzy Ideals in near-ring.

(2) Generalized Rough Fuzzy Qt-submodules of Qt-module.

(3) Generalized roughness in (2;2 _q)-fuzzy ideals of BCK algebra.

(4) Generalized roughness in (2;2 _q)-fuzzy ideals of of near-ring.

(5) (2 ;2 _q�)-fuzzy ideals in near-ring.
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