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0.3 Introduction

The theory of quantale was first introduced by Mulvey [57]. With algebraic struc-
tures and lattice-ordered structures, Quantale introduces a lattice setting of the study
of non-commutative C*- algebra and an initiation of the study of quantum mechanics.
A connection between quantale theory and linear logic was introduced by Yetter in
1990, in which he established a complete class of models for linear intuitionistic logic
[102]. Quantales may be utilized in many interesting research topics like algebraic the-
ory [44], rough set theory ([49} 67, 68 [70], 91, [96] ), topological theory [30], theoretical

computer science [77] and linear logic [2§].

The idea of quantale module was introduced by Abramsky and Vickers [I]. The
quantale module has attracted many scholars eyes. The idea of quantale module was
motivated by the thought of module over a ring [5]. It replaces rings by quantales
and abelian groups by complete lattices. The concept of quantale module showed up
out of the blue for the first time as the key notion in the unified treatment of process
semantics done by Abramsky and Vickers. A family of models of full linear logic is
provided by modules over a commutative unital quantaleas as shown by Rosenthal
80

Fuzzy set theory, at first proposed by Zadeh [105], has given an important scientific
and mathematical tool to the description of those frameworks which are unreason-
ably perplexing or uncertain. Moreover, those conditions including vulnerabilities or
ambiguities even more solidly, the unit interval [0, 1] is replaced with a lattice and
L-fuzzy sets were proposed by Goguen [29]. Gradually by applying fuzzy sets to the
lattice-ordered environment, an important branch, has attracted consideration of re-
searchers [114) [I15], recently since fuzzy lattices have been extensively used as a part
of designing, software engineering, topology, logic etc [64, [65]. Further, fuzzy algebra
has furthermore transformed into a promising subject, since fuzzy algebraic structures

have been viably associated with a wide range of fields [49, [67].

The idea of fuzziness is generally utilized in the theory of formal languages and
automata. Numerous scientists utilized this idea to generalize notions of algebra.
Rosenfeld defined fuzzy subgroups. Ahsan et al. proposed fuzzy semirings [2]. There
are several authors who applied the theory of fuzzy sets to quantale, for instance, Luo
and Wang [49] applied the fuzzy set theory to quantales. They defined fuzzy prime,

fuzzy semi-prime and fuzzy primary ideals of quantales. They also introduced the
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notions of rough fuzzy (prime, semi-prime, primary) ideals of quantales.

The significance of fuzzy algebraic structures can be viewed by utilizing the notion of
belongingness and quasi-coincidence with a fuzzy subset. Ming and Ming [66] presented
the idea of quasi-coincidence of a fuzzy point with a fuzzy subset. The idea of a quasi-
coincidence of a fuzzy point with a fuzzy set had a indispensable role to develop
different types of fuzzy subgroups [0, [7]. Remembering this target, the concept of
(€,€ Vq)-fuzzy sub-nearrings was introduced by Davvaz [I7]. The idea of («,f)-
fuzzy ideals of hemirings was proposed by Dudek et al., [23]. In terms of (€, € Vq)-
fuzzy interior ideals, ordered semigroups was characterized by Khan et al., [40]. The
generalization of fuzzy interior ideals of semigroup was initiated by Jun and Song
[38]. The concept of («,3)-fuzzy subalgebras (ideals) of a BCK/BCI algebra was
suggested by Jun [35] and investigated the related results. An (€, € Vg )-fuzzy ideals
in ternary semigroups was studied by Shabir and Noor [86]. The general form of («, 5)-
fuzzy ideals of hemirings were proposed by Jun et al., [36]. An (€, € Vg)-type fuzzy
ideals of semigroups were characterized by Shabir et al., [85]. An (€, € V g)-interval
valued fuzzy H-ideals in BCK-algebras was described by Zulfiqar and Shabir [119].
Ma et al. studied (€, € Vq)-fuzzy filters of RO-algebras [52]. For more details see
[23, 37, 41, 42, &4].

In 2010, the more general forms of (€, € Vq)-fuzzy filters and (€, € V q)-fuzzy
filters of BL-algebras were introduced by Yin and Zhan [I03]. An (&,, €, Vgs)-fuzzy
filters and (€5, €, V @s)-fuzzy filters of BL-algebras were also defined by them. Some
important results regarding these notions were incorporated also. An (&€,, €, Vgs)-
fuzzy interior ideals in ordered semigroups was proposed by Khan et al., [43]. The
significance of these new types of notion is increased further by the work of Ma et
al. They presented the idea of (€,,€, Vgs)-type fuzzy ideals of BC1I-algebras and
introduced a few essential results of BCl-algebras [53]. (€., € Vgs)-fuzzy ideals in
semigroups were investigated by Shabir and Ali jointly [83].

Rough set theory, introduced in 1982 by Pawlak [61], is a mathematical approach
to imperfect knowledge. The methodology of rough set is concerned with the classifi-
cation and analysis of imprecise, uncertain or incomplete information and knowledge.
The subset generated by lower approximations is characterized by objects that will
definitely form part of an interest subset, whereas the upper approximation is char-
acterized by objects that will possibly form part of an interest subset. Every subset

defined through upper and lower approximation is known as Rough set. After Pawlak’s
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work, Yao [98, [99] and Zhu [116] 117, [118] provided some new views on rough set the-
ory. Ali et al. [3] studied some properties of generalized rough sets. The applications
of rough set theory used today is much wider than in the past, principally in the areas
of cognitive sciences, medicine, knowledge acquisition, analysis of database attributes,

automata theory, machine learning, pattern recognition and process control.

Although rough set theory and fuzzy set theory are two prominent notions to
study about uncertainty, unpredictability and vagueness yet these theories are distinct
in nature. It can be combined in a good manner to solve many problems. Theory
of fuzzy sets proposes an exceptionally decent way to deal with vagueness. In 1990,

Dubois and Prade [21], introduced the concepts of fuzzy rough and rough fuzzy sets.

There are several authors who introduced rough sets theory in algebraic structures
and fuzzy algebraic structures. Investigation of algebraic properties of rough sets was
started by Iwinski [32]. For instance, some results on rough subgroups were proposed
by Biswas and Nanda [11]. Qurashi and Shabir introduced the roughness in Q¢-module
[68]. Xiao and Li [91], considered a quantale as a ground set and presented the notions
of generalized rough quantales and generalized rough subquantales. Rough prime,
rough semi-prime and rough primary ideals of quantales were investigated by Yang
and Xu [96]. Fuzzy ideals, fuzzy prime, fuzzy semi-prime and fuzzy primary ideals in
quantales were introduced by Luo and Wang [49]. They also discussed rough fuzzy
(prime, semi-prime, primary) ideals of quantales. Rough ideals in rings was proposed
by Davvaz [16]. An algebraic T-rough sets were also proposed by Davvaz [19]. Yamak
et al. [95], introduced the concept of set-valued mappings as the basis of the generalized
upper and lower approximations of a ring with the help of an ideal. T-rough sets
based on lattices were introduced by Hosseini et al [3I]. They also investigated some
results on T-rough (prime, primary) ideal and T-rough fuzzy (prime, primary) ideal on
commutative rings. Roughness in Hemirings [4], was presented by Ali et al. Yaqoob
et al. presented the rough prime bi-I-hyperideals of I'-semihypergroups [100, 101].
Tahir et al. proposed the generalized roughness in fuzzy filters and fuzzy ideals with
thresholds in ordered semigroups [54]. Generalized roughness in (€, € Vq)- fuzzy ideals
of hemirings was initiated by Rameez et al., [74]. Characterizations of Quantales
by (a, B)-fuzzy ideals and its generalized approximations of (€, € Vq)-fuzzy ideals in
Quantales were proposed by Qurashi and Shabir [69} [70]. Kuroki [45] introduced the
notion of rough ideal in a semigroup. Kuroki and Mordeson [46] studied the structure of

rough sets and rough groups. Jun [34], applied the rough set theory to BCK-algebras.
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0.4 Chapter-wise Study

This thesis comprises of eight chapters. Througout the thesis, Q; and M denotes

a quantale and quantale modules, unless and otherwise specified.

Chapter one having introductory nature, gives fundamental definitions and results,

which are required for the consequent sections.

Chapter two represents the roughness in subsets of a QQ;-module with respect to
Pawlak approximation space. Some basic properties of upper and lower approxima-
tions are discussed. We initiate the study of upper and lower rough approximations
of Q¢-submodule of a Q;-module and discuss the relations between the lower (upper)
rough Q¢-submodules of Q;-module and the lower (upper) approximations of their ho-
momorphic images. The concept of set-valued homomorphism and strong set-valued
homomorphism of ();-modules are presented in this chapter. At the end of this chap-
ter, by using (;-module homomorphism, homomorphic images of generalized rough

Q-submodules are introduced.

Chapter three is devoted to the study the generalized rough fuzzy ideals, generalized
rough fuzzy prime ideals, generalized rough fuzzy semi-prime ideals and generalized
rough fuzzy primary deals of quantales. Further, approximations of fuzzy ideals, fuzzy
prime, fuzzy semi-prime and fuzzy primary ideals with the help of set-valued and
strong set-valued homomorphisms are discussed. In addition, homomorphic images of
generalized rough prime (semi-prime, primary) ideals which are established by quantale

homomorphism, are examined.

Chapter four presents the study of («, 3)-type fuzzy subquantales (ideals) in
quantale. Further, an (€,€ Vq)-type fuzzy ideals (subquantales) is discussed. It
is investigated that homomorphic image of an (€, € Vq)-fuzzy subquantales (ideal)
under quantale homomorphism is an (€, € Vq)-fuzzy subquantale (ideal). These fuzzy
subquantales and fuzzy ideals are characterized by their level subquantales and ideals,
respectively. Some important results about (€, € Vq)-fuzzy prime and (€, € Vq)- fuzzy

semi prime ideals are discussed.

In the chapter five, we are starting the investigation of roughness in (€, € Vq)- fuzzy
subquantale and (€, € Vq)- fuzzy ideal of quantales with respect to the generalized ap-
proximation space. Moreover, it is demonstrated that generalized upper and lower ap-

proximations of (&€, € Vq)-fuzzy ideal, (€, € Vq)-fuzzy subquantale, (€, € Vq)- fuzzy
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prime ideal and (€, € Vq)- fuzzy semi-prime ideal are (€, € Vq)-fuzzy ideal, (€, € Vq)-
fuzzy subquantale, (€, € Vq)-fuzzy prime and (€, € Vq)-fuzzy semi-prime ideal by

using set-valued and strong set-valued homomorphism, respectively.

In the chapter six, we are presenting more general forms of (€, € Vq)- fuzzy subquan-
tale and (€, € Vq)- fuzzy ideal of Quantales. We introduce the concepts of («, 3)- fuzzy
subquantale, («, 3)-fuzzy ideal and some related properties are investigated. Spe-
cial attention is given to (€5, €, Vgs)-fuzzy subquantale, (€, €, Vgs)-fuzzy ideal,
(€4, €y Vas)- fuzzy prime, (€., €y Vgs)- fuzzy semi-prime ideals, and some interesting
results about them are obtained. Furthermore, subquantale, prime, semi-prime and
fuzzy subquantale, fuzzy prime, fuzzy semi-prime ideals of the types (€5, €, Vgs)

are linked by using level subsets.

In chapter seven, the concept of (a, 3)-fuzzy filter is introduced and some related
properties are discussed. Further, an (€, € Vq)-type fuzzy filters are discussed. It is
investigated that inverse image of an (€, € Vq)-fuzzy filter under quantale homomor-
phism is an (€, € Vq)-fuzzy filter. Moreover, these fuzzy filters are characterized by
their level sets. Furthermore, in this chapter, we are presenting more general forms of
(€,€ Vq)-fuzzy filters of Quantales. Special attention is given to (€., €, Vgs)- fuzzy
filters.

The goal of chapter eight is to study the the concept of generalized approximations of
(€4, €4 Vgs)-type fuzzy subquantales (ideals and filters) in quantales. With the help
of set-valued and strong set-valued homomorphisms, respectively, it is observed that
lower and upper approximations of (€5, €y Vgs)-fuzzy ideals (subquantale and filter)
are (€4, €y Vgs)-fuzzy ideals (subquantale and filter), respectively. Some examples

are added to convey these ideas.



Chapter 1

Preliminaries

In this chapter, we recall some definitions and results concerning with quantales,
quantale modules, fuzzy sets and rough sets which are valuable for our consequent
chapters. To start with, we portray complete lattice in light of the fact that nearly
everything will be based on these, and then we address quantales and quantale mod-

ules.

In the first section, some fundamental definitions about the poset, lattice, sup-
lattice, complete lattices and their homomorphisms are recalled. The definition of a
quantale, ideal and filter of a quantale are presented in the second section. The Quan-
tale homomorphism and its congruence with an example is given here. An example
is added to demonstrate the definitions of subquantale, ideal and filters of a quan-
tale. In the third section, the term quantale module and its examples are given. The
Q¢-submodule and Q;-submodule ideal of a quantale module are introduced. The con-
gruence of quantale module and quantale module homomorphism with some related
results are given. Some basic results about fuzzy set theory is introduced in the fourth
section. Fuzzy ideals and fuzzy prime (semi-prime and primary) ideals are given in
this section. In the last section, the notion of rough sets and generalized rough sets

are presented.

1.1 Complete Lattices: Definitions and Examples

We start by recalling some basic definitions about partial orders and sup-lattices,

as can be seen in [9].
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Definition 1.1.1 A partially ordered set (poset) (Py, %) is a non-empty set Py equipped

with a binary relation <, which fulfills the conditions below, for all w,u,z € Py :

(1) w = w. (Reflexivity)
(2) If w < z and z < w, then w = z. (Antisymmetry)

(3) If w < z and z < u, then w < u. (Transitivity)

A poset (P;, =) is bounded if P; has a greatest element T € P; such that w < T for
all w € P;, and a least element 1 € P; such that | < w for all w € P;. Sometimes we

call greatest element as top element and least element as bottom element.

Example 1.1.2 Some examples of poset are given below:

(1) Consider the set of all non-negative integers Z*. Define “<” by: w =< u if and
only if w | u. Then, (Z*,<) is a poset, but it is not bounded.

(2) Let X # 0 and P(X) be a power set of X. Then, it is easy to check that
(P(X),C) is a poset and it is bounded.

Definition 1.1.3 Let P; be a poset. Then z € P; is an upper bound of a subset X of
P, if x < z for allx € X. Similarly, w € P; is a lower bound of a subset X of P; if
w3z forallez e X.

Let P; be a poset. Then z € P; is the supremum, or join of a subset X of P; if z is
an upper bound of X and, for all upper bounds z' of X, we have z < z'. Similarly,
w € P, is the infimum, or meet of a subset X of P, if w is a lower bound of X and,

for all lower bounds w' of X, we have w' < w.

The join (resp. meet) of X if it exists, is unique and we denote it by \/ X (resp. A X),

or, for sets of two elements {z,y}, x Vy (resp. x A y).

Proposition 1.1.4 If (P, X) is a poset, then:

(1) sup{sup{z,y},w} = sup{z, sup{y,w}};

(2) inf{inf{zy}, w} = inf{z infly, wi};
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(3) 2z 2y & sup{z,y} =y e inflz,y} =z

Definition 1.1.5 A poset (L, <) is called a lattice if sup{z,w} and inf{z,w} exist
for any z,w in L;. Clearly, (R,<) is a lattice, where R is the set of real numbers and

7 <7 is the less than equal relation of real numbers.

Definition 1.1.6 A non-empty poset L;, whose every subset has its supremum in Ly,

will be called sup-lattice for simplicity in the following text.

It is known that a set closed under joins contains arbitrary meets as well, and every
sup-lattice is therefore a complete lattice. Considered as ordered sets, sup-lattices and
complete lattices are thus identical, but a difference appears when we look at their

homomorphisms.

Definition 1.1.7 For sup-lattices Ly, Ly, a map og : Ly, — Ly, is a sup-lattice
homomorphism if it preserves arbitrary joins. Written more formally: for any {z;} C
Ly, (i € I), the following holds:

05(Vierzi) = Vieros(z).

Since any homomorphism g preserves suprema including a supremum of an empty
subset, it holds that os(Ly) = (Ls,).

FEvery homomorphism of complete lattices is certainly a sup-lattice homomorphism,

too, but sup-lattice homomorphisms needn’t preserve meets in general.

Definition 1.1.8 A lattice Ly is complete when there is \| X and N\ X for every
subset X of L.

Example 1.1.9 ([0,1],V,A) is a complete lattice.

1.2 Quantales: Definitions and Examples

In 1986, Mulvey initiated the notion of quantale, [57]. In 1990, Yetter connected
quantale theory to linear logic and gave a sound and complete class of models for linear

intuitionstic logic [I04]. Quantales have played an important role in many research
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areas like algebraic theory [45], rough set theory [50, 68 69, [71] [74, 92, [97], topological
theory [31], theoretical computer science [78] and linear logic [29]. Here we present

some definitions and examples relevant to the basics of the theory of quantale.

Definition 1.2.1 [7Y] A quantale Q¢ is a complete lattice equipped with an associative,
binary operation ® distributing over arbitrary joins. In other words, for any w € @
and {z;} C Q¢, (1 € I), it holds:

w® (Vierzi) = Vier (w® z);

(Vierw;) ® 2z = Vier (w; ® 2).

Let X;, X,Y C Qy, we define the followings;

XVvY

{rvylze X, yeY};
X®Y = {zy|lrzecX, yeY}

VierXs = {Vierzi |z € Xi}.

Throughout the thesis, the symbole Q; will be utilized for quantale, the symbol T will
denote the top element and L will stand for the bottom one for quantale, unless stated

otherwise.

Definition 1.2.2 [79, [80] Let Q; be a quantale. An element z € Q; is called:

(1) idempotent if and only if z ® z = 22 = 2.

(2) right-sided (left-sided) if and only if 2@ T < 2 (T ® z < 2).
(3) two-sided if it is both right-sided and left-sided.

(4) Let Q¢ be a quantale. Then @, is commutative if z® z = z @ z for all =,z € Q.

Example 1.2.3 The following are the Fxamples of quantales:

(1) Counsider the ring (R, +,-). The set of left ideals of a ring R denoted by LIdI(R)
forms a quantale with joins as ideals generated by the union of ideals and mul-
tiplication realized as a product of two ideals given by: A- B = {aj - b+, ..., +
an - by | a; € A,b; € B, 1 < i <n}. Of course, the sets RIdI(R) and Idl(R) of
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right ideals and two sided ideals of R are quantales as well. Obviously, all these
three notions merge when R is commutative. Thus, set of all ideals of a ring

under inclusion ordering and standard multiplication of ideals form a quantale.

Let (Q¢, *) be a semigroup and P(Q;) be the set of all its subsets. Then P(Q;)
is a complete lattice under inclusion order. The multiplication ® can be realized

as: UV ={uxv|ueU veV} Thus, (P(Q:),®) is a quantale.

Binary relations on some set X under inclusion order form a complete lattice.
With their composition defined as R1 ® Ry = {(z,w)|3 u: (z,u) € Ry & (u,w) €
R;} a quantale structure can be introduced as the composition distributes over

suprema:

R® (VierRi) = {(z,w)|3Ju:(z,u) € VierR; & (u,w) € R}
= {(z,w) | Ju,3i: (z,u) € R; & (u,w) € R}
= {(z,w)|3i:(z2,w) € R® R}
= Vier(R® R)

The case with a supremum in the left operand is analogous. Thus, binary rela-
tions on a non-empty set under inclusion ordering and composition of relations

give a quantale.

For a sup-lattice St the set of all sup-lattices homomorphisms, £(S1) = {og :
S — S | 05 is a homomorphism} with pointwise ordering and map composition
form a quantale. Sup-lattice S;, endomorphisms can be ordered pointwise: for
05,,08, : S, — Sp, we set 05, 205, & Ve S og,(r) =X og,(x) what allows
us to compute suprema: (Vicros;)(z) = Vieros,(z), but it has to be verified

that Vicrog, is a homomorphism:

(Vieros;)(Vierzj) = (Vier)(os,(Vjerz;))
(Vjeros;(z;))
(Vieros,(z;))
(

Vier)(Vieros;)(x5)).

Vjer

(Vier)
= (Vier)
(Vjer)
(Vjer)

Multiplication is defined as a map composition og, ® 0g, = 05, 0 0g, which is
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join-preserving since,

05 ® (Vierog,)(x) = ogo(Vierog,)(z)
= 05(Vieros;(x))
= Vier(osoog,)(x)

)

= Vier(os®og;)(x)

((Vieros,) ® os)(w) = ((Vieros;)oos

(5) Let Q: be a complete lattice. Then @; become a quantale if z ® x = z for all

x,z € Q. It also becomes a quantale if z ® x = z for all z,z € Q.

Throughout the thesis, the notations F,,o; and n will be utilized for filter, quantale

homomorphism and congruence in quantales, respectively.

Definition 1.2.4 [79] Let (Q,®) and (Q+,®') be two quantales. A map oy : Qr —
Q) is called a quantale homomorphism if for every z,w € Qu,{z;} C Q¢ (i € I), it
holds that

o(z@w) = o4(2) ® or(w);

ot(Vierzi) = Vieroi(z)).

A quantale homomorphism o, is an epimorphism if o, is onto @} and o, is monomor-
phism if o; is one-one. If o; is bijective, then it is called an isomorphism. It is

obvious that o; is order-preserving because if w < z, then o(w) = 04(2).

Definition 1.2.5 [79/ Let Q; be a quantale. A binary relation n on Q¢ is a congruence
if n is an equivalence and for any a,b,c,d € Qy, {a;},{bi} C Qq, (i € I) it satisfies anb
& end = (a® c)n(b® d) and also for all i € I : anb; = (Viera;)n(Vierbi). If n
is a congruence on a quantale Q; then Q¢/n is again a quantale where Q/n = {[a], :

a € Q¢} while the operations V and @ on Q¢/n are defined as follows:
(1) [Vieraily = Vierlaily-

(2) [aly ® [b], = [a® bl for all a;,a,b € Q¢ and {a;} C Q4.
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Example 1.2.6 [60] Let 0, : Qi — Q) be a quantale homomorphism and ker(oy) =
{(a,b) | a,b € Qq, or(a) = o4(b)}. Then ker(oy) is a congruence on Q.

Proposition 1.2.7 [60] If Q; is a quantale and 1 a congruence on Qy, the factor set
Q¢/n is a quantale again and the mapping o : Qy — Qi/n defined by aa) = [al, is a
quantale homomorphism. The quantale Q¢/n is then called a quotient quantale of Q¢

by the congruence 7.

1.2.1 Subquantales, Ideals and Filters

Now, we give definitions of subquantale, ideal and filter of quantale and some

examples of them.

Definition 1.2.8 [79] A subset Q of a quantale Q; is called a subquantale of Qy if it

is closed under arbitrary sup and multiplication Q@ induced by the quantale.

Example 1.2.9 [60] For any quantale Q; the collection of right-sided, left-sided and
two-sided elements of Q¢ (R(Q:), L(Q:), T(Q:)) are its subquantales.

Definition 1.2.10 [88, [89] Let Q; be a quantale. A subset ) # C of Qy is said to be
an ideal of Qq if the following conditions hold:

(1) If z,w € C, then z Vw € C;
(2) for all z, w € @Q; and w € C such that z < w implies z € C;

(3) forall z € Q; and w € C implies z@w € C and w® z € C.

Let C be an ideal of a quantale @);. Then, C is said to be a prime ideal if z @ w € C
implies z € C or w € C, V z,w € ;. An ideal C is said to be a semi prime ideal
if z® z € C implies z € C for each z € ;. Primary ideal is an ideal C' of Q; if V
2 € Qi, x®z € C and x ¢ C imply z" € C for some positive integer n, where
=2Q..Qz.

n

Definition 1.2.11 [79/ Let Q; be a quantale. A non-empty subset F, of Qq is said to

be a filter of Q¢ if F}. is an upper set and closed under ®. i.e., the following conditions
hold:
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(1) for all z € Q¢ and z € F, such that z < z implies = € F};

(2) for all z,x € F, implies z @ = € F.

T
n h
e m
1
Fig.1
Table 1.
L e m n h T
/L 1L 1L L 5L
e | L e L e L e
m|L 1L m L m m
n|L e L n L n
h| L L m L h h
T|L e m n h T

Example 1.2.12 Let Q; be the complete lattice shown in Fig.l and the operation
® on Q¢ is shown in Table.1. Then it is straightforward to verify that (Q:,®) is a

quantale.

(1) The subsets @1 = {L,m,h, T}, Q2 = {m,h} and Q3 = {L,e,n, T} of Q; are

examples of subquantales of Q.

(2) The subsets C; = {L,e,n} and Cy = {L,m,h} of Q; are examples of ideals of
Q.

(3) The subsets F,, = {e,n, T}, Fr, = {m,h, T} and F,, = {n, T} of Q; are exam-
ples of filters of Q.
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1.3 Quantale Module: Definitions and Examples

The quantale modules were introduced by Abramsky and Vickers [I]. The idea of
quantale module was motivated by the thought of module over a ring [5]. It replaces
rings by quantales and abelian groups by complete lattices. The concept of quantale
module showed up out of the blue for the first time as the key notion in the unified
treatment of process semantics done by Abramsky and Vickers. A family of models of
full linear logic is provided by modules over a commutative unital quantales as shown
by Rosenthal [80]. The following is going to deal with quantale modules. Most of the
theory is provided by [1, [16, 45, 60, &1].

Definition 1.3.1 [1, [75, 44, [60, [81] Let Q. be a quantale and M be a sup-lattice
equipped with a left action x : Q¢ Xx M — M. Then M is called a left Q¢-module over
the quantale Qy if for any a,b € Qy, {a;} C Qi,x € M {z;} CM (i €1),(j € J), the
following conditions hold:

(Viera;) xx = Vier(a; * o);

ax(Vjeszj) = Vjes(a*zj);

(a®@b)xxz = ax(bxz).

Right modules can be defined in an analogous way. For the rest of the thesis, Q-
module M will stand for a left module over the quantale QQ;. Let M be a (Q-module,
A C Q¢ and m € M. We have,

Axm = {axm|ac A};
AxB = {axb|la€ Abe B} where BC M.

For A,B,A; C M and i € I, we have,

AV B

{aVvb|aeAbe B};

Vierdi = {Viera; | a; € A;}.

The symbol T will denote the top element and 1 will stand for the bottom element

of the Qs-modules as well, throughout the thesis, unless stated otherwise.

Example 1.3.2 The following are the examples of Qi-modules.
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(1) Let Q¢ ={0,y, 2,1} be a complete lattice where 0 is the bottom element and 1 is
the top element of Q¢, as shown in Fig.2 and the operation ® on @; is shown
in Table 2. Then it is straightforward to verify that (Q:, ®) is a quantale. Let
M = {1,2z, T} be a sup-lattice. The order relation of M is given in F'ig.3.

1 @ T
Table.2
@10 y =z 1
0|0 0 0 O
y|0 ¥y 0 ¥ @ X
y z z |0 0 z z
1|10 y z 1

Fig. 2 Fig. 3

Let *: Q: X M — M be the left action on M as shown in the table 3.

Table. 3
* | 1L x T
oL 1 1
y|lLlL x T
z |1l x x
1)L x T

Then it is straightforward that M is a Q¢-module.

(2) Every quantale @Q; is certainly a Q;-module over Q.

(3) We already know that if M is a sup-lattice, the set of all sup-lattice homomor-
phisms, £(M) = {pg : M — M | pg is a sup-lattice homomorphism} with
pointwise ordering and composition of maps form a quantale. Let Q); be another
quantale and p,, : @y — £(M) be a quantale homomorphism. Then we can
define an action a *x z = p,,(a)(z) for a € Q, z € M and M becomes a left

@Q:-module. Now consider the following:
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(Vierai) * z = py,(Vier(ai)(2) = (pm(Vier(ai))(2) = Vier(pm(ai)(2)) = Vier(ai * z).
o ax(Vierzi) = pm(a)(Vierzi) = Vier(pm(a)(z)) = Vier(a * z).
(4) If @ is a quantale, £(Q;) can be viewed as Q;-module with multiplication g*p,,(2)

= (q * p,,)(2) where p,, is a @Q-module homomorphism.

In the next, the notations M, p,,, and n will be utilized for quantale module, quantale

module homomorphism and congruence in quantale module, respectively.

Definition 1.3.3 [1] Let M be a Q;-module. A subset My C M is called a Q-
submodule of M if for any m € My, {m;} C My, q € Qy, it holds that Vm; € My and
qg*m € M;j.

Example 1.3.4 Let Q; be a quantale and a € Q. Then the set Qixa = {g*a | ¢ € Q}
is a left Q¢-submodule of Q.

Definition 1.3.5 [81] Let M be a Qi-module and ) # C C M. Then C is a Q-
module-ideal of M provided

(1) If a; € C (i € I) then Viera; € C;

(2) x € C and b < z imply b € C,

(8) z € Cimpliesaxz € C,V a € Q.

A Q;-submodule-ideal is a (Q¢-submodule as well.

Example 1.3.6 Let Q; be a complete lattice shown in Fig.land & be an operation on
Qq defined as v ® z = L for all x,z € Q. Then it is straightforward to verify that
(Qt,®) is a quantale. Also Q is a Q¢-module over itself. Since Q1 = {L,m,h, T} is
a Q¢-submodule of Q¢ but it is not a Qi-submodule-ideal as T € Q1 and n < T but
né¢ Q.
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Definition 1.3.7 [60, [78] Let M be a Qi-module. A binary relation n on M is called
a congruence on M if it is an equivalence relation on M and for any given {m;},
{ni} S M, m, ne M and q € Q, it satisfies the following conditions ¥V i € I, m;nn;

implies (Viermi)n(Vierni) and mnn implies (g * m)n(q *n).

Definition 1.3.8 [60, [78] Let M and M’ be two Q¢-modules. A map p,, : M — M’
is a Q¢-module homomorphism if it is a sup-lattice homomorphism which also

preserves scalar multiplication, i.e.
Pm(Viermi) = Vierpm(m);
pmlaxm) = axp,(m)

foranya € Qy,me M, {m;} CM (i€l).

A @Q;-module homomorphism p,,, : M — M’ is called an epimorphism if p,, is onto
M’ and p,, is called a monomorphism if p,, is one-one. It is an isomorphism, if

Pm 18 bijective.

Proposition 1.3.9 [60, [78] Let M be a Qi-module and n be a congruence on M.
Then M/n is again a Qi-module and a projection o : M — M /n is a module homo-
morphism. Let n be a congruence relation on a Qi-module M. We define operations

V and x on the quotient Q¢-module M /1 = {[m]n | m e M} as follows:
(1) Vier [mi], = [Viermil, and
(2) g *m],, = q=*[m], for allm;;m € M and q € Q.

Theorem 1.3.10 [60, [78] If p,, is a homomorphism of Q¢-modules from M to M’,
then

ker(p) = {(z.w) € M x M | p(2) = ppu(w)}

is a congruence of Qi-modules. The ker(p,,) is called the kernel of p,,.

1.4 Fuzzy Sets and Fuzzy Ideals in Quantales

Numerous uses of fuzzy set theory have emerged over the years, for example,

fuzzy logic, fuzzy cellular neural networks, fuzzy automata etc. A fuzzy subset ¢ in



1. Preliminaries 13

a non-empty universe Z is defined with the help of a mapping g : Z — [0,1] which
associates a value g(z) to each object z of the set Z. This value portrays the degree
to which an object z is a member of the set Z, or the extent to which the object
z satisfies the property of the set Z. The value g(z) is known as the membership
grade of the object z and the mapping ¢ is known as the membership function of Z.
As a generalization of the abstract set theory, Zadeh, [105] originated the theory of
fuzzy sets. Numerous algebraic structures have been characterized by many authors
to generalize these concepts. Let () # Z be a universe of discourse. Then, the formal
definitions of fuzzy subset and its operations, as established by Zadeh [105], are given

below.

Definition 1.4.1 A fuzzy subset g in Z is a function from Z to the unit closed interval
[0,1], that is g : Z — [0,1]. A fuzzy subset g : Z — [0,1] is non-empty if g is not a
zero map. Let F(Z) be the collection of all fuzzy subsets in Z.

Definition 1.4.2 Let g and f be two fuzzy subsets in Z. Then g C f if and only if
9(z) < f(z) forall z € Z. Clearly, g = f if and only if g C f and f C g.

Definition 1.4.3 The null fuzzy subset in Z is defined by the mapping 0z : Z — [0,1]
such that 0z(z) = 0 for all z € Z. The whole fuzzy subset in Z is defined by the
mapping Fy : Z — [0,1] such that Fz(z) =1 for all z € Z.

Definition 1.4.4 Let g and f be any two fuzzy subsets in Z. Then, the union and

intersection of g and f are defined as:

fug)(z) = sup(g(z), f(2)) forall z € Z and
fmg)(z) = inf(g(2), f(2)) forall z € Z.

Definition 1.4.5 A fuzzy subset g in Z is said to be a constant fuzzy subset in Z if

and only if g : Z — [0,1] is a constant function.

Definition 1.4.6 For a € [0, 1], the sets

go={r€Z|g(x) >a} and go+ ={rv € Z|g(z) > a}

are called, a-cut and strong a-cut of g, respectively.
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Definition 1.4.7 [30] Let oy : Q; — Q) be a mapping from a quantale Q; to a
quantale Q}, and let g and g’ be fuzzy subsets in Q; and Q}, respectively. Then the
image of g under oy and the pre-image of ¢’ under o, are the f-subsets oi(B) and

o, Y (B, respectively, defined as follows:

Sup g(x), ifoy'(y) #0VyeQ;
(i) oug)(y) = § z€o'® :
0, otherwise

(i) o7 (¢)(x) = ¢'(04(2)) ¥ = € Qs

If o4 is a quantale homomorphism, then o(g) is called the homomorphic image of g

under oy and Ut_l(g’) is called the homomorphic pre-image of g'.

Next for fuzzy subset, fuzzy ideal, fuzzy prime ideal, fuzzy semiprime ideal and
fuzzy primary ideals, the following shortened forms, f-subset, F'I, FPI, FSPI and
FPY I, will be utilized, respectively.

Definition 1.4.8 A non-empty f-subset g in Q¢ is called a F'I of Qy, if the conditions
bellow are satisfied:

(1) 2 <w= g(w) < g(2);

(2) infig(z), g(w)} < g(zVw);

(3) sup{g(2),g9(w)} < g(z®w)) for all z,w € Q.

From (1) and (2) in Definition [L.4.8] it is observed that g(z V w) = inf{g(z),g(w)},
for all z,w € Q. Thus, a f-subset g of Q; is a FI of @ if and only if g(z V w) =

inf{g(z).g(w)} and g(z ® w) = sup{g(z), g(w)}, for all z,w € Q.

The following definitions are taken from [49].

Definition 1.4.9 Let g be a non-constant FI of a quantale Q:. Then g, is called a
FPI of Qy if it satisfies;

g(z@w) = g(z) or g(z @ w) = g(w) for all z,w € Q.

Definition 1.4.10 Let g be a FI of a quantale Q¢. Then g is called a FSPI of Q if

the following assertion is satisfied:
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g(z® z) = g(z) for all z € Q.

Definition 1.4.11 A non-constant FI, g of a quantale Q; is called a FPY I of Q; if,

g(z@w) = g(2) or g(z@w) = g(w") for all z,w € Q¢ and for some positive integer n.

Proposition 1.4.12 Let g be a FI of a quantale Q. Then g is a FPI if and only if
g(w®z)=g(z)Vg(w) for all w,z € Q.

Proposition 1.4.13 Let g be a f-subset of a quantale Q.

(1) Then g, is a FI of Q¢ if and only if for each o € [0,1], go (res. go+) is either
empty or an ideal of Q.

(2) Then g, is a FSPI of Qq if and only if for each o € [0,1], go (res. go+) is either
empty or an SPI of Q.

Proposition 1.4.14 Let g be a FI of a quantale Q.

(1) Then g, is a FPI of Q; if and only if for each a € [0,1], go (res. go+) is either
empty or an PI of Q.

(2) Then g, is a FPYI of Qq if and only if for each o € [0,1], go (res. go+) is either
empty or an PY I of Q.

1.5 Rough Sets: Definitions and Examples

Pawlak at first proposed the theory of rough sets [62, [63]. It was utilized to deal with
imprecision and deficiency in data frameworks. The initial methodology supported by
Pawlak incorporates partitioning the universe set into granules (classes) of compo-
nents, which are indistinguishable or indiscernible subject to the accessible data or
information. With the help of these classes, the two definable subsets called the lower

and upper approximations of an arbitrary subset of a universe can be approximated.

In this section, we will give a few ideas identified with rough set theory. An example

is added to demonstrate these concepts.

Let Z be a non-empty set and 7 be an equivalence relation on Z. Let [z], denotes the

equivalence class of the relation n containing z € Z. Any finite union of equivalence
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classes of Z is called a definable set in Z. Let X be any subset of Z, in general X is
not a definable set in Z. However the set X can be approximated by two definable
sets in Z. The first one is called n-lower approximation of X and the second is called

n-upper approximation. They are defined as follows

nX) = {z€Z|[, C X}
nX) = {z€Z|[z],nX #0}.

The n-upper approximation of X in Z is the least definable set in Z containing X.
The n-lower approximation of X in Z is the greatest definable set in Z contained in
X. For any non-empty subset X of Z, n(X) = (n(X),7n(X)) is called a rough set with
respect to 7 or simply an n-rough subset of P(Z) x P(Z) if n(X) # 7(X), where P(Z)
denotes the set of all subsets of Z.

The universe Z can be separated into three disjoint regions, by using the lower and

upper approximations of a set X C Z.

(X);

I
13

(1) the positive region (POS), (X)
(2) the negative region (NEG), (X) = Z— 7(X) = (7(X));

(3) the boundary region (BN'D), (X) = 7(X) — n(X).

The positive region contains all objects of Z that can be classified to the equiva-
lence classes of Z with respect to the equivalence relation 7. The boundary region,
(BN D)W(X ), is the set of objects that can possibly, but not certainly, be classified
in this way. The negative region, (J\/’Eg)n(X), is the set of objects that cannot be
classified to classes of Z/n.

This is obviously delineated in Figure 4.
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Fig.4 Mlustration of the boundary region of Rough set

The approximation of a set X, and the negative, positive and boundary regions are
expressed through Figure 1. Each small square regarded an equivalence class. The
union of the positive and boundary regions constitute the upper approximation of a
set N represented by 7(X) = (POS), (X) U (BND), (X).

Proposition 1.5.1 [62] Let (Z,n) be an approximations space. Then the lower and
upper approximations for any X,Y C Z, are satisfied.

10. 99 (X) =7n (X) = n(X)



1. Preliminaries 18

1L 77 (X) = i (X) =7 (X).

Where —X means the complement of X.

It is observed that approximations are in fact closure and interior operator in a topol-

ogy generated by data.

Definition 1.5.2 [99] A subset X of Z is called crisp when its boundary region is
empty, i.e., n(X) =1(X).

Definition 1.5.3 [62] Let Z be a universal set and let n be an equivalence relation on

Z. Then the set X C Z is called a rough set with respect to n if n(X) # 7(X).
Another definition is

Definition 1.5.4 [99] A subset defined through its lower and upper approximations
is called a Rough set. That is, when the boundary region is a non-empty set (n(X) #

7(X))-

Example 1.5.5 Let (Z,n) is an approximation space, and 1 an equivalence relation,

where Z = {x1,x2,23,...,x8}. Consider the following equivalence classes:

& ={z1, 24,28}, &2 = {xo, x5, 27}, E3 = {x3}, &1 = {x6}.

Let X = {x3,x5} and Y = {x3,26}
n(X) = {z3} and (X) = {w2, z3, 75, 27}
n(Y) ={zs, 26} and 7(Y) = {3, 26}

So n(X) = ({zs},{x2,x3,25,27}) is a rough set and n(Y) is a crisp set.

1.5.1 Generalized Rough Sets:

Frequently, it is not possible to find a suitable equivalence relation among the
elements of the universe set Z due to indefinite human knowledge. An equivalence
relation is the essential prerequisite for lower and upper approximations while studying
rough set theory. Therefore, there was need to generalize the rough set theory in a more
general form to overcome this situation. The generalized rough set is the generalization

of Pawlak’s rough set. Yamak et al. proposed one of these generalizations. [95].
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Definition 1.5.6 Let Z and W be two non-empty universes and H be a set-valued
mapping given by H : Z — P*(W) where P*(W) = P(W) ~ (. Then the triplet
(Z,W,H) is called as generalized approximation space. Any set-valued function from
Z to P*(W) defines a binary relation from Z to W by setting py = {(z,y) € Z x W
| y € H(z)}. Obuviously, if p is an arbitrary relation from Z to W, then a set-valued
mapping H, : Z — P(W) can be defined by Hy(x) = {y € W | (z,y) € p} for all
x € Z. For any set A C W, the lower and upper generalized approximations H(A)
and H(A), are defined by

H(A) = {z€Z|H(z) CA};
H(A) = {zeZ|H(Z)nNAZ0}.

The pair (H(A), H(A)) is referred to as a generalized rough set where H and H are
referred to as a lower and upper generalized approximation operators, respectively. If
a subset A C W satisfies that H(A) = H(A), then A is called a definable set of
(Z,W,H). From the definitions of lower and upper generalized approrimation opera-

tors, the following theorem can be easily derived.

Theorem 1.5.7 [95] Let (Z,W, H) be a generalized approximation space. Its lower

and upper generalized approximation operators satisfy the following properties.

For all B,C € P(W);

(L1) H(C) = (H(C?))*; (U1) H(C) = (H(C%))%

(L2) HW) = Z; (U2) H(0) = 0;

(L3) H(CNB) = H(C)NH(B); (U3) H(CUB)=H(C)UH(B);
(LA) CC B= H(C)C H(B); (U4)CCB= H(C)C H(B);

(L5) H(B)UH(C) C H(CUB); (U5) H(CNB)C H(C)NH(B)

Where C° is the complement of C.

Throughout the thesis, for generalized approximation space, generalized lower and

upper approximations, lower and upper approximations, the following shortened forms

GAS, GLA and GUA, LA and U A, respectively, will be used.



Chapter 2
Roughness in Quantale Modules

In this chapter, we study the roughness in subsets of a (Q;-module with respect to
Pawlak approximation space. We present some basic properties of upper and lower
approximations. We initiate the study of upper and lower rough approximations of
Q-submodule of a @;-module and discuss the relations between the lower (upper)
rough @Q;-submodules of @;-module and the lower (upper) approximations of their
homomorphic images. Generalized roughness is also introduced in this chapter. The
idea of set-valued homomorphism and strong set-valued homomorphism of Q¢-modules

are presented.

In the first section, properties of lower and upper approximations of subsets of
(Q:-modules are discussed. Next, complete congruence with respect to V-complete and
x-complete is introduced. Further, upper and lower rough @;-submodules of Q;-module
are defined and their different properties are discussed. In the second section, the rela-
tions between the lower (upper) rough Q;-submodules of Q;-module and the lower (up-
per) approximations of their homomorphic images are discussed. Moreover, roughness
in quotient of Qs-module are proposed. In the third section, set-valued homomorphism
and strong set-valued homomorphism of Q);-modules are defined. Properties of lower
and upper approximations of subsets of ();-modules are discussed. The last section
shows the relation between homomorphic image of upper (lower) approximations of a
subset of Q-module and the upper (lower) approximations of homomorphic image of

of a subset of ();-module.

20
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2.1 Pawlak Approximation of Q;-module

In this section, we present the roughness in subsets of a (Q;-module regarding Pawlak
approximation space. We contemplate some fundamental properties of lower approx-
imation (LA) and upper approximation (UA). Additionally, we will present the idea
of rough (Q¢-submodules and discuss their properties. For quantale module homomor-
phism, quantale module isomorphism, set-valued map, set-valued homomorphism and
strong set-valued homomorphism, the following shortened forms QMH, QM1, SV M,
SV H and SSV H, respectively, will be utilized.

Definition 2.1.1 Letn be a congruence relation on a Q¢-module M. Let A be a subset
of M. Then the sets

n(4) = {meM|m],cal and
7(4) = {meM|ml,naz0}

are known as the LA and UA of A.

Example 2.1.2 Take the Qi-module M of Example[1.3.2] Let
Q= {(_L, J—)’ (xv :L’), (T7 T)? (51:7 J_), (J—v x)}

be an equivalence relation on M. Then it is easy to check that o is a congruence on
the Q¢-module M. The a-equivalence classes are {L,x} and {T}. Let A = {z, T}.
Then a(A) ={T} and @ (A) = M. It is obvious that a(A) C A Ca(A).

Theorem 2.1.3 Let n and A be congruence relations on a Q¢-module M. If A and B

are non-empty subsets of M, then the following hold;
(1) n(4) € A C7(A);

(2) 7(A U B) =n(4) UT(B);

(3) n(AN B) = n(A) Nn(B);

(4) AC B implies n(4) C n(B);

(5) A C B implies 7(A) € 7(B);

(6) n(AU B) 2 n(A) Un(B);
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(8) n C X implies n(A) 2 A(B);

(9) n C X implies 7(A) C X(B).
Proof. The proof is similar to Theorem 2.1 of [45]. m

Theorem 2.1.4 Let n be a congruence relation on a Q¢-module M. If A and B are
non-empty subsets of M, then

(1) a(A)un(B) C(AVB), if L€ ANB,
(2) n(A)Nn(B) C

(3) n(A)un(B) Cn(AvB), if Lec ANB.

(AV B),

3

Proof. (1) Let a € A, we have aV L € AV B because L. € B. Hence A C AV B.
Similarly, B C AV B. Thus AUB C AV B. By Theorem we get 7(A)UR(B) =
n(AUB) Cn(AV B).

(2) Tt is easy to prove that AN B C AV B. By Theorem we have n(A)Nn(B) =
n(ANB) Cn(AV B).

(3) It is similar to part 1. m

Fig. 5

Example 2.1.5 Consider the complete lattice Q1 as shown in Fig. 5 and the operation
“17 on Q1 is defined as zR1w = L for all z,w € Q1. Then Q1 is a quantale. Also, Q1
is a Q¢-module over Q1. Let n be an equivalence relation on a Q¢-module Q1 with the

n-equivalence classes being {L,b},{a, T}. It is easy to check that n is a congruence
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relation on Q1. Let A = {1,b} and B = {L,a}. Then n(A) = {L1,b}, n(B) = 0,
N(AV B) = Q1 and 7(A) = {L,b}, N(B) = Q1. Thus converse of parts 2 and 3 of
Theorem [2.1.4), are not true in general.

Definition 2.1.6 Let n be an equivalence relation on a Q¢-module M. Then n is
called a weak congruence on M if for all a,b,c,d € M and q € @, anb and cnd
implies (a VvV c)n(b Vv d) and anb imply (q * a)n(q *b).

Theorem 2.1.7 Let n be a weak congruence relation on a Qi-module M. If A and B

are non-empty subsets of M, then
(1) m(A) va(B) C (A V B);

(2) n(A)Nn(B) CH(AV B).

3

Proof. (1) Suppose that ¢ € 7(A) vV 7(B). Then there exist a € 7(A), b € 7(B) such
that ¢ =aVb. So there exist z € [a], N A and y € [b], N B such that zVy € AV B and

zVy € [a],V[b], € [aVb],. WehavezVy € [aVb], N AVB. Thus, c = aVb € N(AVB).

(2) Suppose that w € 7(A) N7(B). Then there exist a € [w], N A and b € [w], N B.
V

Thus, we have aVb € [w], V[w], C [w],. SoaVb € (AVB)N[wl,. Hence w € N(AV B).

n n

T
g h
. f

Fig. 6

Example 2.1.8 Let Q2 be a complete lattice as depicted in F'ig 6 and operation “R9”
on Qo is defined as x @y y = L' for all x,y € Q2. Then Q2 is a quantale. Consider

Q2 as a Q¢-module over itself. Let

a={(L 1, (ee)(g.9),(hh), (f ), (T, T, (f, L), (L', ))} -
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Then « is an equivalence relation on a Qi-module Qo with the a-equivalence classes be-
ing {L', f},{e},{g},{h},{T'}. It is easy to verify that « is a congruence relation on
Q2. Let A={1' e} and B={L'h}. Thena(A) ={L', f,e}, a(B)={L', f,h} and
a(A)Ja(B) ={Ll' e, f,h}. Also AvB ={L1' h,e, T'} anda(AVB) ={L', f,h,e, T'}.
Hence converse of Theorem M(l) is not valid in general. Suppose 1 is an equiva-
lence relation on a Qi-module Q1 having n-equivalence classes {1'},{a} and {b, T'}.
Clearly n is a weak congruence relation on Q1. Let A = {a} and B = {1’ b}.
Then 7(A) = {a}, 7(B) = {L',b,T'}, 7(AV B) = {a,b, T’} and n(A) = {a},
n(B) = {L'},n(Av B) = {a}. Hence n(A)V n(B) = {a} and 7(A) N7(B) = 0.

This concludes that converse of all parts of Theorem 217, are not true in general.

Theorem 2.1.9 Let 1 be a congruence relation on a Qi-module M and A, B be Q-
submodule ideals of M. Then (A A B) =7(A) N7(B).

Proof. It is easy to prove that AN B = AN B. Hence n(AAB) = n(ANB) =
n(A) On(B) =n(A) An(B). =

Definition 2.1.10 A congruence relation n on a Q¢-module M is called V-complete
if Vier [:L“Z]77 = [\/ieﬂ:i]n for x; € M, and is called “” complete if it satisfies q x [m]n =
[q * x]n forx € M and q € Q¢. n is a complete congruence if it is \V-complete and x

complete.

Definition 2.1.11 Let M be a Q¢-module and n be an equivalence relation on M. A
subset My C M is called an upper (lower) rough Qg-submodule of M if (My) (n(My))
is a Q-submodule of M. If My is both upper and a lower rough Q¢-submodule of M,
then we say that My is a rough Q¢-submodule of M.

Theorem 2.1.12 Letn be a congruence relation on a Q¢-module M and () # My C M.
If My is a Q-submodule of M, then My is also an upper rough Q¢-submodule of M.

Proof. Clearly () # M; C 7(My). Let z; € (My) for i € I. Then there exists a; € M
for i € I such that x;na;. Since 7 is a congruence relation, we have (Va;)n(Va;). But
M is a Q¢-submodule of M, we have Va; € M;. This shows that (Va;) € 7(M;). Let
q € Q¢ and x € Tj(M;). Then there exists y € M; with ynz. Since 7 is a congruence
relation and M is a @Q;-submodule of M, we have g *y € M; and (g *y)n(q*z). This
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implies g x ¢ € §(M;). Therefore (M) is a Q;-submodule of M, that is M; is an
upper rough Q¢-submodule of M. m

Theorem 2.1.13 Let i be a complete congruence on a Q¢-module M and My C M.
If My is a Q¢-submodule of M and n(My) # 0, then My is also a lower rough Q-
submodule of M.

Proof. Let z; € n(M) for ¢ € I. Then [z;],

complete congruence on the Q;-module M and M; is a QQs-submodule of M, we have

C M for all © € I. Since 7 is a

[\/iej:xi}n = Vier [xl]n C M. Hence Vierz; € n(Myp). Assume ¢ € Q; and = € n(My),
then we have [m]n C M;. Since n is a complete congruence and M; is a Q¢-submodule
of M, we have [q x x|, = ¢*[z], € M;. Thus, we have g+ € n(My). Therefore n(M)
is a QQy-submodule of M, that is M; is a lower rough (J¢-submodule of M. =

By the above two Theorems, we have the following Theorem.

Theorem 2.1.14 Let n be a complete congruence on a Q¢-module M. If My is a
Q¢-submodule of M and n(My) # 0, then My is also a rough Q-submodule of M.

Proposition 2.1.15 Let M be a Q¢-module and My be a Q-submodule of M. Define
a relation ny;, on M by any, b if and only if there exist mi,mg € My such that
aVmy =bVma. Then ny, is a congruence on the Qi-module M. (1, is also called

congruence induced by My).

Proof. We show that 7,, is an equivalence relation on M. Since L € Mj, we have
that any a for each a € M, i.e., 1y, is reflexive. By the definition of 7,,,, it is clear
that n,,, is symmetric. Suppose that an;, b and bn,,, c. Then there exist my, mz, ms,
my € Mj such that a Vm; = bV mg and bV mg = ¢V my and thus a V (m; Vmg) =
(aVvmi)Vmg = (bVmz)Vmg = (bVma)Vmg=(cVmg)Vmg=cV(mzVm).
Furthermore, since my V mg, m3 V mg € My, we have any c. This shows that n,,, is

transitive.

Next, we shall show that 7,,, is a congruence on M. Assume that an,, band ¢ € Q.
Then there exist mq, mg € M; such that aVm; = bV mg and thus (gxa)V (gxmy) =
g*x(aVvmy)=qx*(bVmg) = (qgxb)V (¢*msz). Since g * my, ¢ *x mg € M, we have
(q *x a)npg (g D). Let agnyy by for i € I. Then there exist m;, mj € M such that
a; V:m; = b Vm} but then Vier(a; Vm;) = Vier(b; Vm,) = (i\e/lai) Vv (z\e/lmz) = (i\e/lbi)
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Vv (Vml). Since Vm;, Vm, € My, we have (V a; V b;). As a consequence
(iEI z) il “iGI % ’ (iEI Z)TIMl(z'GI l) q )
M, 18 @ congruence on M. ®

Proposition 2.1.16 Let M be a Qi-module and My be a Qi-submodule-ideal of M.
Then

(1) for every m € M, [m)] = My if and only if m € Mj;

v

(2) my,, (My) = My =T, (M),

Proof. (1) Let [m]nM = M;. Since 1, is reflexive, it can be concluded that m € M.
1
Conversely, assume m € M;. Let m € M;. Then mV z =z V m for all z € My, and

thus z € [m], , that is M; C [m)] On the other hand, if z € [m)]
1

N Ny - MM

there exist mi, mo € My such that z V. m; = m V mso. Since m V my € M7, we have

zVmi € My and z € M. Therefore [m]nM = M;.
1

, then
5

(2) It is clear that HMl(Ml) C My C 7y, (Myp). By part (1), we conclude that
Nag,(Mr) = My =Ty, (My). =

Proposition 2.1.17 Let n be a congruence on a Q¢-module M. Then [J_]n s a Q-
submodule of M.

Proof. Clearly [L], # 0

(1) Let a; € [J_}n for ¢ € I. Then a;nl. Since n is a congruence, we have V;cra;nL,
i.e., Viera; € [J_]n.
(2) Let ¢ € Q¢ and w € [L],. Then wnl and (g +w)nLl. It follows that ¢« w € [1],.
Thus, [1], is a @;-submodule of M. =

Proposition 2.1.18 Let n be a weak congruence relation on a Q¢-module M. Then

nwy, &0

Proof. Suppose z n;) w. Then there exist v,¢ € [L], such that z Vv =w V. Since
n
vnl, tnl and 7 is a weak congruence on M, we have (zVv)nz, (wV t)nw. Therefore,

znw by transitivity. ie, g Cn. =
n

Proposition 2.1.19 Let M be a Q¢-module and My be a Q-submodule-ideal of M.

Then [1], —= M.
1
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Proof. Let z € [J‘]nM . Then zn,,, 1 and there exist vi,v2 € My such that z Vv, =
1
L V vy = vg, and thus z € M;. Conversely, suppose z € My. Then zn,, L, ie., z €

(1], - Thus, [1], =M. =

n s

Lemma 2.1.20 Let M be a Q;-submodule-ideal of a Qi-module M and () # B C M.
Then the statements below hold,

(1) Tpy, (B) = My if and only if B C M;;
(2) My C QMI(B) if and only if My C B;

(3) If My C B and B is a Q¢-submodule-ideal of M then M, (B) = B =1, (B).

Proof. (1) Let 7, (B) = M;. Then, B C 7, (B) = M;. Conversely, let B C Mj,

by Proposition [2.1.16(2), we get 7y, (B) C 7y, (M1) = M. Let m € M;. Then from

Proposition [2.1.16(1), it follows that [m]an NB=MNB=B,and m € 7,,(B).

Thus, we have My C 7y, (B). Therefore 7, (B) = M;.

(2) It is obvious that M; C B whenever M; C ﬂMl(B)‘ Suppose that M; C B. Then

M, = ﬂMl(Ml) - ﬂMl(B) by Proposition [2.1.16(2).

(3) Tt is clear that QMl(B) C B C 7y, (B), we need only to show that B C QMl(B)

and 7y, (B) € B. Let b € B. For w € [b], , there exist my,ms € M; such that
1

wV my = bV mg. Since bV my € B, we have w € B, which gives [b]nM C B, i.e.,

1
b e ﬂMl(B)' Thus B C QMl(B). Similarly, we can show that 7,, (B) € B. As a
consequence, ﬁMl(B) =B =n,(B). =

2.2 Problem of Homomorphism and Quotients of Q;-modules

In this section, relations between the upper (lower) rough @Q:-submodules of Q-
module and the upper approximation (UA) of their homomorphic images will be dis-

cussed.

Theorem 2.2.1 Let M and M’ be Q¢-modules and p,, : M — M' be a QM H. If B
is a non-empty subset of M and n = ker(p,,), then

(1) pm(ﬁ(B» = pm(B>

(2) If py, is one-one, then p,,(n(B)) = p,,,(B).
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Proof. (1) Since B C7j(B), then p,,(B) C p,,(77(B)). To see that the reverse inclusion
holds, let y € p,,,(7(B)). Then there exists an element w € 7(B) such that p,,(w) = y.
Thus there exists an element b € M such that b € [w], N B, and so b € [w], and b € B.
Thus (b,w) € n such that p,,(w) = p,,(b). Then y = p,.(w) = p,,(b) € p,,(B) and so
pm(7(B)) € pou(B). Thus, we have p,,(B) = p,,(7(B)).

(2) If p,, is one-one then [z],, = {z} because if y € [z], then p,,(y) = p,,(v) =y ==
because p,, is one one. Thus in this case n(B) = B = 7(B). This implies that
Pm(1(B)) = pi(B) = pr(11(B)). m

Proposition 2.2.2 Let M and N be Qi-modules, p,, : M — N a surjective QM H
andny be a congruence on N. Setn, = {(m1,mg) € M x M | (p,,(m1), pp(m2)) € 1o},
then

(1) my is a congruence relation on M;
(2) 12(pn(B)) = P (T1(B)) for each B C M;

( ) m(B)) 2 pr(n,(B)) for each B C M, if py, is injective, then n,(p,,(B))

1,(p
P (11, (B))-

Proof. (1) Clearly, n; is an equivalence relation. For congruence relation, let w;n;y;
foralli € I. Then p,,(wi)nyp,,(y;) foralli € I. Since p,, isa QM H, Vicrp,, (wi)nyVier
Pm(yi) implies that p,,(Vierwi)nopy, (Vieryi), i-e, (pm(Vierwi), pm(Vieryi)) € no.
Thus we have, ((Vierw;),(Vieryi)) € 1. Let wnyy. Then p,, (w)nyep,,(y). Let a € Q,
since 7, is a congruence relation and p,, is a QM H, we have (a * p,,(w))ns(a* p,,(y))

— pm(axw)napp(axy). So, (axwin (axy), ie., (axw),(axy)) € ny. Consequently,

7, is a congruence relation on M.

(2) Let z € p,,(7;(B)). Then there exists a € 7;(B) such that p,,(a) = z and
la]y, N B # 0. Thus there exists x € [a],, N B such that € B and (z,a) € ;. This

shows that (o, (%), pr, (@) € 112 = Py (2) € [0 (@)]n,- Also, py () € py(B). Thus

[pm (a)]ng N Pm (B) 7& @ =z = Pm (a’) € ﬁ2<pm (B))7 that is pm(ﬁl(B)) g ﬁ?(pm (B))
Conversely, let w € 75(p,, (B)). Then there exists a € p,, (B) such that (w,a) € n,.

Since p,, is surjective so there exist x € B and s € @ such that a = p,, (x) and
w = p,, (). Thus (p,, (s),pm (x)) = (w,a) € Ny = (s,z) € n;. This implies x €
[s]y, N B, so we have s € 7y (B), that is w = p,, (s) € p,,, (7, (B)). Thus 75(p,, (B)) C
P (M (B)). Hence py, (7 (B)) = T2(py, (B))-
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(3) Let b € p,, (ﬂl (B)) Then there exists a € n, (B) such that p,,(a) = b and
la],, € B. Let y € [b],,. Then there exist 2’ € @Q; such that p,,(z') = 3 and

P (@) € [ (@)]ny, 1€, (P (2), pro(a)) € my. Hence (2',a) € ny, ie, 2 € [a]y, € B
and so p,, (') € p,,(B). Thus, [b],, C p,,(B) which yields that b € n, (p,, (B)). So we

have p,, (1, (B)) € 1, (o (B)).

Now, suppose that p,, is one one and let b € 1, (p,, (B)). Then there exists a unique
a € Q¢ such that p,,(a) = b and [p,, (a)ly, € p,, (B). Let v’ € [a],,, ie., (a,u') € 0.
Then (pp,(a), py(u') € n2, Le., py(u') € [py, (@)ly,  ppy (B), and so v’ € B. Thus,
la]y, € B, which gives a € 1, (B). Then b = p,,(a) € py,(n, (B)), and so 0, (p,, (B)) €
Pm(n, (B)). =

Lemma 2.2.3 Let M and N be two Qi-modules, p,, : M — N be a surjective
QMH and ny be a congruence relation on N and n,the congruence on M defined in
Proposition2.2.2] Then for each w € M and A C M, the following hold,

(1) w €M (A) <= pp(w) € pp (71 (A)).
(2) w e n,(A) <= pp(w) € py(n,(A)).
Proof. (1) Let w € 7m;(A4). Then p,,(w) € p,,(7,(A4)). Conversely, if p,,(w) €

Pm(71(A)), then there exists a € 7;(A) such that p,,(w) = p,,(a), then p,, (w)nyp,,(a)
and thus wn,a. Therefore, w € [a], C 7;,(A).

(2) Proof is similar to the part (1). m

Theorem 2.2.4 Let p,, be a surjective QM H from a Qi-module M to a Q¢-module
M'. Let ny be a congruence relation on M' and A be a subset of M. If n; =

{(m1,ma) € M x M | (pyn(m1), py(m2)) € 12}, then
(1) 71(A) is a Q¢-submodule of M if and only if T5(p,,(A)) is a Q¢-submodule of M'.

(2) n,(A) is a Qr-submodule of M if and only if n,(pp,(A)) is a Qi-submodule of M'.

Proof. By Proposition 2.2.2(3), 75 (p,,,(4)) = py, (71, (A)) for each A C M.
(1) Let p,,(7,(A)) is a @Q¢-submodule of M.

(1) Let w; € ,(A) (i € I). Then p,,(w;i) € p,,(7,(A)) (i € I). Since p,,(7,(A4)) is a
Q-submodule and p,, is a QM H, we have p,,(Vicrwi) = Vicrp,(wi) € p,,(71(4)).
By Lemma we have V,crw; € 7;(A).
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(73) Let w € 7;(A) and ¢ € Q. Then p,,(w) € p,,(7,(A)). Since p,,(7;(A)) is a
Q-submodule of M', we have p,,(gxw) = ¢*p,,(w) € p,,(7;(A)). Thus gxw € 7,(A).
By (2)-(2), 7;(A) is a Q-submodule of M.

Conversely, suppose 77, (4) is a Q;-submodule of M. We want to show that p,,, (7, (A))
is a Q;-submodule of M’.

(1) Let y; € p,,(M1(A)) (i € I). Then there exists w; € 7;(A) such that y; = p,, (w;)
(i € I). We have Vicryi = Vierpm(wi) = p,,(Vierw;). Since 77;(A) is a Q¢-submodule
of M, Vicrw; € 7, (A) if and only if p,,,(Vierw;) = Vieryi € pp,(771(A)). Thus, we have
VierYi € P (M1(A)).

(ii) Let y € p,,(M;(A)) and ¢ € Q. Then w € 7;(A) such that p,,(w) = y. Since,
71 (A) is a Q¢-submodule of M and p,, is a QM H, we have gxp,,(w) = p,,(gxw) = g*y.
Then ¢ *w € 7;(A) if and only if ¢ xy = p,, (¢ *w) € p,,(7;(A)).

By (i)-(ii), pyn(M1(A)) = 2(pn(A)) is a Qs-submodule of M’.
(2) The proof is similar to that of (1). m

Let 1 be a congruence relation on a Q¢-module M. We can define operations V and x

on the quotient Q;-module M /n = {[m]77 | m e M} as follows:

Vier [mi] = [Viermil, and [q*m], = q*[m], for all m;j,m € M and q € Q.
The LA and U A can be displayed in an alternative form as:
n(4)/n={lul, € M/ [w], € A}

7(4)/n={lwl, € M/ [w], N A+ 0}.

Theorem 2.2.5 Letn be a congruence relation on a Q¢-module M and A C M. Then

(1) A is a lower rough Q¢-submodule of M if and only if n(A),/n is a Q4-submodule
of M /1.
(2) A is an upper rough Q-submodule of M if and only if 1(A),/n is a Q-submodule
of M /1.

Proof. (1) Assume that A is a lower rough Q¢-submodule of M. Let [wi] € n(A)/n
for i € I. Then w; € n(A). Since A is a lower rough Q;-submodule of M, we have
Vierw; € n(A). Thus, Vier [wi] = [Vierwi, € n(A4),/n. Let [w], € n(A)n and

n
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q € Q¢. Then w € n(A) and g*w € 1(A) because A is a lower rough Q;-submodule of
M. So [g*w], = g [w], € n(A), . Hence, n(A), 7 is a Q-submodule of M .

Conversely, suppose that 1(A), 7 is a @Q;-submodule of M /1. Let w; € n(A) for
i € I. Then [wi] € n(A),/n for i € I. Since n(A)/7 is a Qi-submodule, we have
[Vierwi], € n(A),/m. So Vieqw; € n(A) for i € I. Let w € n(A) and ¢ € Q. Then
[w],, € n(A),/n and g [w], = [g*w], € n(A), N because n(A), 7 is a Qs-submodule.
Hence ¢ *x w € n(A). Thus n(A) is a Q¢-submodule of M. Hence A is a lower rough
Q¢-submodule of M.

(2) The case of upper approximation can be seen in a similar way. m

Now we shall consider the relation between the approximation of a set and the ap-

proximation of its preimage. We may get the important results.

Theorem 2.2.6 Let p,, be a surjective QM H from a Q¢-module M to a Q¢-module
N and p,;}(B) = {w € M | p,,,(w) € B} for BC N. Ifny is a congruence relation on
M and set ny = {(pm(w1), pm(w2)) € N X N | (w1, wa) € n1}, then

(1) ny is a congruence relation on N;
(2) TP (B)) = pr (M2(B));

(3) 1,(pm! (B)) = pi (n,(B)).

Proof. (1) is straightforward.

(2) Let u € 7,(p,; (B)). Then [u],, N p}(B) # 0. Let v € [u],, N p;,'(B). Then
pm(u’) € B and (uv/',u) € 0y, so we have (p,,(v), p,, (1)) € ny. Therefore p,,(u') €
[Py (4)]n, NB. Thus p,,(u) € Mo(B) = u € p,;! (75(B)). This shows that 7, (p,,,} (B)) €
Pl (Ma(B)). Let v € pt(My(B)). Then p,,(v) € 7y(B). This shows that [p,,(v)],, N
B # 0. Let v € B be such that there exist z € M such that p,,(z) = v'. Thus
z € pl(B) and p,,(x) € [pp,(v)]n,- This implies that = € [v],,. So [v],, Np,(B) # 0.
Thus v € 7(p,}(B)). This implies that p,}(775(B)) C 7,(p,}(B)). Thus, we have
(o (B)) = pi ((B))

(3) Let = € p;zl(QQ(B)). Then there exist y € n,(B) such that p,,(z) = y. Since
Pm(T) =y € 1,(B) = [pm(2)]y, € B. Let ' € [py,(x)]y,. Then there exist 2’ € M
such that p,, (') € [Py, (2)]n,, i-€.; (P (2"), pr(x)) € 1o then (2, x) € ;. This shows
that 2’ € [z],,. But y = p,,(2/) € B = o' € p;;}(B). Thus [z],, C p,;'(B). This con-

cludes that = € Ql(p;Ll(B)). Therefore p,_nl(QQ(B)) C ﬂl(p,_nl(B)). Let u € ﬂl(p,_nl(B)).
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Then [u],, C p,}(B). Let v’ € [u],,, ie., («/,u) € n. Then (p,, (), pp(u)) € 0y,
i.e., P (W) € [pp (W), But p,(u') € B. Therefore [p,,(u)];, € B = p,,(u) € n,(B).
This shows that u € p;Ll(Q2(B)). Thus Ql(pfnl(B)) - p;Ll(Q2(B)). Finally, we have
0, (0! (B)) = ppt (n,(B)). =

Theorem 2.2.7 Let p,, be a surjective QM H from a Q¢-module M to a Q¢-module
N and p,;}(B) = {w € M | p,,,(w) € B} for BC N. Ifn, is a congruence relation on
M and ny = {(pm(w1), pp(w2)) € N x N | (w1, w2) € ny}, then

(1) Mo(B) is a Q¢-submodule of N if and only if 7, (p;}(B)) is a Q¢-submodule of M.

(2) n,(B) is a Qi-submodule of N if and only if n, (p,1(B)) is a Qi-submodule of M.

Proof. (1) Let 75(B) be a Qi-submodule of N. We show that 7, (p;,}(B)) is a Q-
submodule of M. By Theorem MQ), we have 1, (p,,}(B)) = p,,}(7y(B)). Let w; €
pmi(My(B)) for i € I. Then p,,(w;) € My(B) for i € I. Since 7,(B) is a Qs-submodule
of N, we have p,,(Vierw;) = Vier pm(wi) € Mo(B). Thus Vicjw; € p,,1(75(B)). Let
w € p,(My(B)) and q € Q;. Then p,,(w) € Ny(B). Since 75(B) is a Qs-submodule of
N, we have p,, (¢xw) = q*py,(w) € y(B). Thus gxw € p;,! (72(B)). Hence p,,' (712(B))
is a Q-submodule of M. But since 7, (p,,,}(B)) = p,}(75(B)). Thus 7;(p,,}(B)) is a
Q¢-submodule of M.

Conversely, suppose 7 (p,,,} (B)) is a Qi-submodule of M. We show that 7j,(B) is a Q-
submodule of N. Let y; € 75(B) such that y; = p,,,(w;). Then w; € p;,1(75(B)). Since
pml(M5(B)) is a Qi-submodule, we get Vicjw; € p,t(7y(B)) and then p,,(Viesw;) €
7Mo(B). Now since p,, is QM H, we have Viery; = Vier pp,(wi) = pp(Vierw:) € My(B).
Let y € m,(B) and ¢ € Q;. Then there exists w € M such that y = p,,,(w) € 7,(B) and
w € pt(My(B)). Since p,t(75(B)) is a Qi-submodule, we have ¢ * w € p,.1(7,(B)).
Hence g x y = q * p,,,(w) = p,, (¢ x w) € Ny(B). Thus 75(B) is a Q¢-submodule of N.

(2) Proof is similar to part 1. m

2.3 Generalized Rough Q;-submodules

In this section, we define the concept of set-valued homomorphism (SV H) of Q-
modules and give some examples of SV H. It is observed that QM H of a QQ;-module is
a SV H. We also investigate some basic properties of GLA and GU A in Q;-modules.
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Definition 2.3.1 Let M and N be Qi-modules. A mapping H : M — P(N) is called
a SVH if

(1) VierH(m;) € H(Vierm;);

(2) g« H(m) C H(qg+m) for allm,m; € M and q € Q.

A set-valued mapping H : M — P(N) is called a SSV H if
(1) VierH(m;) = H(Vierm:);

(2) g« H(m) = H(q*m) for allm,m; € M and q € Q.

Example 2.3.2 (i) Let n be a congruence on a Qi-module M and H : M — P(M)

be a SVM defined by H(m) = [m|,. Then H is a SVH.

(73) Let M and N be two Qi-modules. Then the SVM, H : M — P(N) defined by
H(m)={Ll}isa SSVH.

(t31) Let p,, : M — N be a QMH. Then the SVM, H : M — P(N) defined by
H(m) ={p,,(m)} is a SSVH.

Note that, Example [2.3.2(7) point out that congruence relation may be consider as a
SV H. So, SV H is important for pure algebraic systems.

Theorem 2.3.3 Let M and N be two Q¢-modules and C' be a subset of N. Then

(1) Let H: M — P*(N) be a SVH. Let C be a Q;-submodule of N and H(C') be a
non-empty subset of M. Then H(C) is a Q¢-submodule of M.

(2) Let H: M — P*(N) be a SSVH. Let C be a Q¢-submodule of N and H(C') be
a non-empty subset of M. Then H(C) is a Q¢-submodule of M.

Proof. (1) Let w; € H(C) for i € I. Then H(w;)NC # () for i € I. Hence, there exist
a; € H(w;) NC (i € T) such that Vicra; € VierH(w;) € H(Vierw;). Since, C is a Q-
submodule, we have Vera; € C. So H(Vieqw;) N C # (. Therefore, Vicyw; € H(C).
Let w € H(C) and q € Q;. Then, H(w)NC # 0. Let y € H(w) N C. Then we have
gxy € Cand g*xy € ¢+ H(w) C H(q*w). Thus, we have H(q* w) N C # () and
q*w € H(C). This concludes that H(C) is a Q;-submodule of M.

(2) Let w; € H(C) for i € I. Then H(w;) C C for i € I. Since H(Vicjw;) =
VierH(w;) C C, we have Vicyw; € H(C). Let z € H(C). Then H(z) C C. Now



2. Roughness in Quantale Modules 34

H(q*z) = q+ H(z) C C. Hence, q*z € H(C). This shows that H(C) is a Q-
submodule of M. m

Definition 2.3.4 Let M and N be two Q¢-modules and C be a subset of N. Let
H:M — P*(N) be a SSVH. If H(C) and H(C) are Qi-submodules of M, then we
call (H(C), H(C)) a generalized rough Q¢-submodule.

Proposition 2.3.5 Let H: M — P*(N) be a SVM. IfC, B are non-empty subsets
of Q¢-module N, then

(C)U H(B) (CVB);if LeCNB

CH
(C)NH(B) C H(C V B);

(3) H(C)UH(B) C H(CV B); if Le CNB.

Proof. (1) Let ce C. Thenc=c¢V L e CV B for L € B. So C C C'V B. Similarly,
B CCVB. So CUB C CV B. By Theorem [1.5.7, we have H(C)UH(B) C H(CV B).

(2) It is obvious that C N B C C' V B. By Theorem we have H(C)N H(B) =
H(CNB)CH(CVB).

(3) The proof is similar to the proof of (1). m

Example 2.3.6 Let Q1 and Q2 be two complete lattices as depicted in Fig 5 and 6.
The operation “R” on Q1 and Q3 is same and is defined as @y = L for all x,y € Q1
and x @y = 1’ for all z,y € Q2. Then Q1 and Q2 are quantales and Q;-modules
over Q1 and Q2, respectively. Consider H : Q1 — P(Q2) be a SVM defined as
H(L) = {1}, H(T) = {T'}, H(a) = {e}, H®) = {f}. Let A = {L',e}  Qa,
B={1l'g,h} CQs. Then AV B =1{1',g,e,h, T'}, H(A) = {L,a}, H(B) = {L},
H(AVB) ={Ll,a,T}, HA) = {l,e} ,H(B) = {L},H(AV B) = {Ll,e,T}. Itis

easily seen that converse of all parts of Proposition [2.3.5] are not true in general.

Proposition 2.3.7 Let H : M — P*(N) be a SSVH. If C, B are non-empty
subsets of Q¢-module N, then
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Proof. (1) Let z € H(C)V H(B). Then z = y V z with y € H(C) and z € H(B).
Therefore H(y) NC # () and H(z) N B # (). Then there exist elements a, b such that
a€ Hy)NC and b € H(z) N B. Therefore aVbe CV B,aVbe H(y) V H(z) =
H(yV z) = H(x) which implies that a Vb € H(z) N (C V B). Thus z € H(C V B).
Hence H(C)V H(B) C H(C V B).

b € Bsuch that cvbe CVBand cVb e H(y)VH(y) = H(yVy) = H(y) which implies

(2) Let y € H(C)N H(B). Then y € H(C) and y € H(B). Let there exist ¢ € C and
(yv
that cvb e H(y) N (CV B). Thusy € H(C V B). Hence H(C)N H(B) C H(C V B).

(3) Let x € H(C)V H(B). Then x =y V z with y € H(C) and z € H(B). Therefore
H(y) € C and H(z) € B. We get H(y V2) = H(y) V H(z) € C VvV B. Hence,
x € H(C V B). Therefore, we have H(C)V H(B) CH(CV B). m

Example 2.3.8 Let Q1 be a complete lattice shown in Fig 5 and the operation “Q” on
Q1 is defined as x®y = L forallz,y € Q1. Then Q1 is a quantale and Q¢-module over
Q1. Let H: Q1 — P*(Q1) be a SSVH as defined by H(L) ={L}, H(T) = H(a) =
H(b) = {T}. Let C = {b} and B = {L,a,T}. Then CV B = {b, T}, H(C) = 0,
H(B) = Qu, H(CV B) = {a,b, T}, H(C) = 0, H(B) = Qu, H(C'V B) = {a,b, T}.
From above calculations, it is easily seen that converse of all parts of Proposition[2.3.

are not true in general.

Proposition 2.3.9 Let H : M — P*(N) be a SSVH and p,, : M' — M be a
QMI. Then Hop,, is a SSV H from M’ to P*(N) such that H o p,,(B) = p,,}(H(B))
and (H o p,,)(B) = p,,}(H(B)) for all B € P*(N).

Proof. We show that H o p,, is a SSVH from M’ to P*(N). Let m; € M’ for i € I.
Then

(1) (H o pp)(Viermi) = H(py,(Viermi)) = HVierppm(mi)) = VierH(py,(m;)) =
Vier(H o py,)(m;).

(2) (Hop)(@sm) = H(pp(g=m)) = H(gp(m)) = g H(py(m)) = g (o py,) (m).
Hence, H o p,, is a SSVH from M’ to P*(N).

Let w € Hop,,(B) <= (Hop,,)(w)NB # 0 < H(p,,(w)) N B # 0 < p,,(w) €
H(B) <= w € p;}(H(B)). Hence H o p,,(B) = p,}(H(B)).
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Let w € (Hopy)(B) <= (Hopp)(w) € B < H(py(w)) € B < py(w) €
H(B) < w € p,}(H(B)). Hence (H o p,,)(B) = p,,}(H(B)) for all B € P*(N). m

Proposition 2.3.10 Let H : M — P*(N) be a SSVH and p,, : N — M' be a
QMI. Then H, is a SSVH from M to P*(M') defined by H, (m) = p,,(H(m))
such that H, (B) = H(p;;(B)) and H, (B) = H(p,;,'(B)) for all B € P*(M").

Proof. We show that H, isa SSVH from M to P*(M'). Let m; € M for i € I.
Then

(1) Hp,, (Viermi) = pp(H(Viermi)) = pm(Vier H(mi)) = Vierpy,(H(mi)) = VierHp,, (m;).
(2) Hy, (q+m) = py,(H(q *m)) = pp(q * H(m)) = g pp,(H(m)) = g x Hpy, (m).

Hence, H, isa SSVH from M to P*(M").

Let w € H, (B) <= H, (w) C B <= p,(H(w)) C B <= H(w) C p,,'(B) <

w € H(p,'(B)). Hence H, (B) = H(p;,'(B)).

Let w € H, (B) <= H, (w)NB # 0 <= p,,(H(w))NB # 0 < H(w)Np,}(B) #
0 < w e H(p,'(B)). Hence H, (B) = H(p,;'(B)). =

Proposition 2.3.11 Let H : M — P*(N) be a SVH and n be a congruence on a
Qi-module N. Define H, : M — P(N/n) by H,(m) = {[b]n 1be H(m)}, where
N /m is the quotient QQ¢-module of N by n. Then H, is a SV H.

Proof. (1) We show that H, is a SVH from M to P*(N /7). Let m; € M for i € I.

Then
Hy(Vierms) = {[t], 1€ H(Viermi) } 2 {1l, | b € VierH(mi) }

[b]n | b=wv1 Vg, ...,Vu;, v1 € H(my), ..., v; € H(m;) }

=), v € H(ml)} NARY {[vi}n v € H(mi)}

= H,(m1) V Hy(ma) V Hy(m3)V, ..., VH,(m;)

= VierHy(m;)

Thus, \/iEIHn(mi) - Hn(\/iejmi).
(2) Hyla+m) = {[e], | b€ H(gsm)} 2 {b], | b€ qxH(m)} =g Hy(m)

Thus, we have ¢ x H,(m) C Hy(q *m). It concludes that H, is a SV H. Similarly, it
can be shown that H, is a SSVH when H isa SSVH. =
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2.4 Homomorphic images of generalized rough Q;-Submodules

In this section, we will discuss the images of lower and upper approximations under
Q¢-module homomorphism (QMH) and SV H.

Theorem 2.4.1 Let M and N be two Q¢-modules and p,, : M — N be an epi-
morphism and Hy : N — P*(N) be a SVH. If p,, is one to one and Hy(zx) =
{y e M| p,,(y) € Ha(p,,(x))} for all x € M, then Hy is a SVH from M to P*(M).

Proof. First, we show that H; is well defined mapping. Suppose x1 = x2 then we
have, y1 € Hi(x1) <= p,(y1) € Ha(py(x1)) = Ha(p,,(22)) <= y1 € Hi(z2). Thus
we have Hy(z1) = Hi(xz2). Now we show that H; is a SVH. First, we show that
VierHi(x;) € Hy(Vierx;) for all z; € M (i € I). Let y € VierHi(x;). Then there
exist a; € Hy(z;) for all ¢ € I such that y = Vjera;. Hence p,,(y) = pp,(Vierai) =
VierPm(ai) € VierHa(pp, (i) € Ha(Vierpp (i) = Ha(pp,(Vierzi)). Finally, we have,
y = Viera; € Hi(Vierx;). We have VierHi(x;) C Hi(Vier(z;)). Let y € g« Hi(x).
Then there exists a € Hj(z) such that y = ¢ * a. Since Hs is a SVH and p,, is a
QM , we have p,,(a) € Ha(p,, (%)) and g+ p,,(a) € ¢+ Ha(py,(2)) € Ha(q* py, (7)) =
Hsy(p,,(q * x)). Therefore, p,,(q * a) € Ha(p,,(q¢ *x)). Hence y = ¢ xa € Hyi(q * x).
Thus, we have ¢ *x Hi(z) C Hi(¢*x). So, Hy is a SV H from M to P*(M). m

Theorem 2.4.2 Let M and N be Qi-modules, p,, : M — N be a surjective QM H
from M to N and Hy : N — P*(N) be a SVH. Set Hi(w) ={y € M | p,,(y) € Ha2(p,,(w))}
for allw € M and for all ) # A C M, then

(1) prn(H1(A)) = Ha(p,,(A));

(2) P (H1(A)) = Ha(pyn(A));

(3) If p,, is one one then p,,(w) € p,,(H1(A)) < w € Hi(A).

Proof. Let z € p,,(H1(A)). Then there exists w € Hi(A) such that p,,(w) = z.
So Hi(w) N A # (), then there exists w’ € Hi(w) N A such that p,,(w') € p,,(4),
and p,,(w') € Ha(p,,(w)). So Ha(p,,(w)) N p,,(A) # 0, which implies z = p,,(w)
Ha(pp(4)).

Conversely, let z € Ha(p,,(A)). Then there exists w € M such that p,,(w) = 2.
Hence Haz(p,,(w)) N p,,(A) # 0. So there exists w’ € A such that p,,(w') € p,,(A4)
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and p,,(w’") € Ha(p,,(w)). Then by Hy, we have w’ € Hy(w). Thus Hy(w) N A # 0,
which implies w € H1(A). So z = p,,(w) € p,,,(H1(A)). It means that Ha(p,,(A4)) C
pm(H1(A)). From the above, we have p,,(H1(A)) = Ha(p,,(A)).

(2) Let z € p,,,(H(A)). Then there exists w € H;(A) such that p,,(w) = z, so we have
Hi(w) C A. Let 2/ € Ha(p,,(w)). Then there exists w’ € M such that p,,(w') = 2’
and p,,(w") € Ha(p,,(w)). Hence w' € Hi(w) C A and so 2’ = p,,(w') € p,,(A). Thus
Hy(p,,(w)) C p,,(A) which gives that p,,(w) € Hy(p,,(A)), so we have p,,(H;(A)) C

Hy(py(4)).

Suppose z € Hy(p,,(A)). Then there exists w € M such that p,,(w) = z and
Hy(p,(w)) C p(A). Let w' € Hi(w). Then p,,(w') € Ha(p,,(w)) C p,,(A), and so
w' € A. Thus Hy(w) C A, which yields w € H;(A). Then p,,(w) = z € p,,(H;(4)),
and 50 Hy(p,u(A)) € pyu(Hy(A). Hence we have p,, (Hy(A)) = Hy(p,n(A)):

(3) Let w € Hi(A). Then p,,(w) € p,,(H1(A)). Conversely suppose that p,,(w) €
pm(H1(A)). Then there exists w’ € Hi(A) such that p,,(w) = p,,(w'). Since p,, is

ono-one, we get w =w' € Hi(A). =

Remark 2.4.3 From Theorem [2.4.2(3), it is easily found that p,,(x) € p,,(H,(A))
=z e H{(A).

Theorem 2.4.4 Let M and N be two Q¢-modules and p,, : M — N be a surjective
QMH and Hy : N — P*(N) be a SVH. Set Hi(z) ={y € M | p,,(y) € Ha(p,,(x))}
for all x € M and for all ) # C C M, then

(1) H1(C) is a Q¢-submodule of M if and only if Ha(p,,(C)) is a Q-submodule of N.

(2) H{(C) is a Q¢-submodule of M if and only if Hy(p,,(C)) is a Q-submodule of N.

Proof. (1) Let H1(C) be a Q;-submodule of M. We show that Ha(p,,(C)) is a Q-
submodule of N. Let y; € p,,(H1(C)) (i € I). Then there exists z; € H1(C) (i € I)
such that p,,(z;) = y;. Since p,, is a QM H and H;(C) is a Q;-submodule of M, we
have Vicryi = Vierpm (i) = pm(Vierz;). Therefore Vierz; € Hi(C) if and only if
Vieryi = pm(Vierzi) € p,,(H1(C)). Suppose y € p,,(H1(C)) and ¢ be an arbitrary
element of Q;. Then there exists z € H;(C) such that p,,(z) = y. Now p,,(¢*z) =
q* p(r) = qg*y. Then ¢+ x € Hy(C) if and only if ¢ xy = p,,(q * x) € p,,(H1(C)).
Since, p,,(H1(C)) = Ha(p,,(C)) by Theorem (1) We have Hs(p,,(C)) is a Q-
submodule of N.
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Conversely, suppose p,,(H1(C)) = Ha(p,,(C)) is a Q¢-submodule of N. Let
x; € H1(C) for i € I. Then p,,(z;) € p,,(H1(C)) (i € I). Since p,,(H1(C)) is a Q-
submodule of N, we have Vicrp,,(z:) = p,(Vierxi) € py(H1(C)). Then by Theorem
2.4.2(3), we have Vicrx; € H1(C). Let x € H1(C). Then p,,(x) € p,,(H1(C)). Since
pm (H1(C)) is a Qg-submodule, we have p,,(q * ¥) = q * p,,(x) € p,,,(H1(C)) and thus
q*x € H1(C) by theorem (3) So H1(C) is a Q¢-submodule of M.

(2) The proof is similar to the part 1. m



Chapter 3

Generalized Rough Fuzzy Ideals

in Quantales

In this chapter, we define generalized rough fuzzy ideals, generalized rough fuzzy
prime ideals, generalized rough fuzzy semi-prime ideals and generalized rough fuzzy
primary deals of quantales. There are some intrinsic relations between fuzzy prime
(fuzzy semi-prime, fuzzy primary) ideals and generalized rough fuzzy prime (gener-
alized rough fuzzy semi-prime, generalized rough fuzzy primary) ideals of quantales.
Further, approximations of fuzzy ideals, fuzzy prime, fuzzy semi-prime and fuzzy pri-
mary ideals with the help of SV H and SSV H are discussed. In addition, homomorphic
images of generalized rough prime (semi-prime, primary) ideals which are established

by QH, are examined.

In the first section, by applying generalized rough set theory to fuzzy ideals of
quantales, we introduce the notions of generalized rough fuzzy (prime, semi-prime,
primary) ideals of quantales. By using SV H and SSV H, it is observed that generalized
lower and upper approximations of fuzzy ideals (fuzzy prime, fuzzy semi-prime, fuzzy
primary) are fuzzy ideals (fuzzy prime, fuzzy semi-prime, fuzzy primary). Some related
results about fuzzy ideals are also discussed in this section. In the second section, a
SV H is presented with the help of another SV H by using QH. It is also noted that
homomorphic image of upper (lower) approximation of a subset of a quantale is equal
to the upper (lower) approximation of homomorphic image of a subset of the quantale.
Further, in this section, relations between the upper (lower) generalized rough (prime,

semi-prime, primary) ideals of quantales and the upper (lower) approximations of

40
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their homomorphic images are studied. In the last section of this chapter, we will
discuss relations between the upper (lower) generalized rough fuzzy (prime, semi-
prime, primary) ideals of quantales and the upper (lower) approximations of their

homomorphic images and give some theorems related to them.

3.1 Generalized Rough Fuzzy Prime (Primary) ideals in

Quantale

This section presents the generalized rough fuzzy ideal in quantales and further
properties of such ideals are displayed here. For fuzzy subset, generalized rough fuzzy
set, generalized rough fuzzy ideal, generalized rough fuzzy prime ideal, generalized
rough fuzzy semi-prime ideal and generalized rough fuzzy primary ideal, the following
shortened forms, f-subset, GRF'S, GRFI, GRFPI, GRFSPI and GRFPY I will be

used.

Definition 3.1.1 [2]] Let (Z,n) be an approzimation space and g be a f-subset of Z,
that is g is a mapping from Z to [0,1]. Then for z € Z, we define;

n(9)(z)= )\ 9(p) and 9(9)(z) = \/ g(p)-

pElz], pElz],,

They are called, the lower approzimation (LA) and the upper approzimation (UA) of

g, respectively. If n(g) # n(g), then n(g) = (n(g9),7(g)) is called a rough fuzzy set
(RF'S) with respect to 0.

For a € [0, 1], the sets

go={z€Z|gx) > a} and go+ ={zx € Z|g(x) > a}
are called, a-cut and strong a-cut of g, respectively.
Now we use the concept from definition and generalize it in the following.

Definition 3.1.2 Let (Q:, ®1) and (Q}, ®2) be two quantales and H : Q; — P*(Q})
be a SVH and g be any f-subset of Q). Then for every z € Q¢, we define,

H(g)(2) = Inf g(a) and H(g)(z) = Sup g(a)
a€H(z) a€H(z)
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Here H(g) is the GLA and H(g) is the GUA of the f-subset g. The pair (H(g), H(g))
is called generalized rough fuzzy set (GRFES) of Q; if H(g) # H(g).

Definition 3.1.3 [91)] Let (Q¢, ®1) and (Q}, ®2) be two quantales. A set-valued map-
ping (SVM), H : Qr — P*(Q)}), where P*(Q}) means the collection of all non-empty

subsets of Q}, is called a set-valued homomorphism if, for all a;, a, b € Q,
(1) H(a) @y H(b) C H(a®1 b).
(2) Vie[H(Cli) c H(\/iejai).

A set-valued mapping H : Qr — P*(Q}) is called a strong set-valued homomorphism

if we replace inclusion by equality in (1) and (2).

Lemma 3.1.4 Let H : Q; — P*(Q}) be a SV M. Then for every collection {g;};c; C
F(QY);

(1) H(Inf gi) = InfH(gi);

el el
(2) H(Sup g;) = Sup H(g;).
el el

Proof. (1) For z € @, we have
H(Inf gi)(z) = Inf Inf gi(a) =Inf Inf gi(a) =Inf H(g)(z).
iel acH(z) i€l i€l acH(z) i€l

The other part has the similar proof. m

Proposition 3.1.5 Let (Q,®1) and (Q},®2) be two quantales and H : Q —

P*(Q)) be a SVM. Let g be a f-subset of Q;. Then for each a € [0,1], we have
the following,

Proof. (1) Let z € (H(g9))a <= H(9)(2) > a <= aelﬁfz)g(a) >«

<= g(a) > a for all a € H(z);
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<= H(2) C go < 2z € H(gn)-

Proofs of (2), (3) and (4) are similar to the proof of (1). m

Definition 3.1.6 Let H : Q; — P*(Q}) be a SVH. A f-subset g of the quantale Q]
is said to be a lower [an upper] GRF ideal (GRFI) of Q) if H(g) [H(g)] is a fuzzy
ideal (FI) of Q. A f-subset g of Q} which is both an upper and a lower GRFI of Q,

is called a GRFI of Q.
Now, LA and U A of FI of quantales are being studied in the following.

Theorem 3.1.7 Let g be a FI of Q} and H : Qy — P*(Q}) be a SSVH. Then H(g)
is a FI of Q.

Proof. As g is a FI of Q}, so by definition we have, g(a ® ¢) > sup{g(a), g(c)}
and g(aVe) = inf{g(c),g(a)} for all a, ¢ € Q). Since H isa SSVH, so H(z1)VH (z2) =
H(Zl V 22) for all z1, z9 € Q4.

Therefore,

H(g)(z1V22) = Inf g(e)
e€H(z1Vz2)

= Inf  g(e)
e€H(z1)VH(22)

Since e € H(z1) V H(z2), there exist ¢; € H(z1) and c2 € H(z2) such that e = ¢; V ca.

Hence,
H(g)(z1V 22) = Inf gle1Vea)
C1\/CQ€H(Z1)VH(22)
= Inf (g(c1) A gle2))

C1€H(z1), CQEH(ZQ)

= Inf | Inf gle1), Inf g(co)
c1€H(z1) co€H(22)

= H(g)(z1) A H(g)(z2)-
Hence H(g)(z1Vz2) = H(g)(21)\H(g)(22) forall z1, 20 € Q¢. (1)

Again since H is a SSV H, we have H(z] ®1 z2) = H(21) ®2 H(z2) for all z1, 2o € Q.

Thus we have,

H(g)(z1 ®1 22) = EH{né )g(e)
= Inf  ge).

EGH(21)®2H(Z2)
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Now since e € H(z1) ®o H(z2) so there exist ¢; € H(z1), ca € H(z2) such that

e = c1 Qg Ca.
Thus,

H(g)(z1 ®1 22) = Inf g(c1 ®2 ¢2)
c1®2c2 € H(z1)®2H (z2)

= Inf [9(c1) V g(c2)]
c1®2c2 € H(z1)Q2H (22)

= Inf [g(c1) V g(e2)]
c1 € H(z1), co€H(z2)

= Sup | Inf g(e1), Inf g(c2)
c1€H (21) c2€H (22)

= H(g)(z1) V H(g)(22)-
Hence, H(g)(z1 ®1 22) > H(g)(z1) V H(g)(22) for all 21,20 € Q.  (2)

Thus, by (1) and (2) H(g) isa FI of Q;. =

Theorem 3.1.8 Let H : Q; — P*(Q}) be a SSVH and g be a FI of Q}. Then H(g)
is a FI of Q.

Proof. Since H is a SSV H, therefore H(z1)V H(z2) = H(z1 V 22) for all z1, 22 € Q4.
Also g is FI of @}, hence inf{g(a),g(b)} = g(a V) for all a, b € Q.

Consider,

H(g)(z1V 22) = Sup  g(c)
cEH (z1Vz2)

= Sup  g(c)
c€H(z1)VH(22)

For ¢ € H(z1) V H(z2), we have a € H(z1) and b € H(z2) such that c=a V b.

Hence,

H(g)(z1V 22) = Sup  g(aVb)
aVbeH (z1)VH (22)

= Sup  [g(a) A g(b)]
a€H(z1), beH(22)

= Inf | Sup g(a), Sup g(b)
a€H(z1) beH (22)

= H(g)(21) A H(g)(22)-
Thus, H(g)(21 V 22) = H(g)(21) A H(g)(22) for all z1,22 € Q¢ (1)

Now for,
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H(g)(z1 @1 22) =

Sup  g(c)

cEH (21®222)

g(c).

Sup
CEH(21)®2H(2’2)

For ¢ € H(z1) ®2 H(22), there exist a € H(z1) and b € H(z2) such that ¢ = a ®2 b.

Hence,

H(g)(z1 ®1 22) =

Thus, H(g)(z1 ®1 22) > H(g)(21) V H(g)(22) for all 21, 22 € Q1.

Sup g(a ®2b)

a®2 bGH(z1 )®2H(Z2)

Sup — [g(a)V g(b)]

a€H(z1), bEH(z2)

Sup | Sup g(a), Sup g(b)>

a€H(z1) beH (z2)
H(g)(z1) vV H(g)(z2)-

(2)

Hence by (1) and (2), we have H(g) is a FI of Q;. m

From the two theorems discussed above, we have the following corollary.

Corollary 3.1.9 Let H : Q; — P*(Q}) be a SSVH and let g be a FI of Q). Then

g is a GRFI of Q;.

=0

Fig. 7
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Table 4.
1 |L a T
L 1L 1
a |L a a
1l a T

Proposition 3.1.10 Let H : Q; — P*(Q}) be a SSVH and {g;};c; be a family of
FI of Q). Then H(Inf (gi)) is a FI of Q.
i€l

Proof. By Lemma [3.1.4] we have H(Inf ¢;) = InfH(g;). Since every g; is a FI for
iel icl
i € I and H(g;) is a FI of Q; by Theorem hence intersection of Fls is a F1I.

Therefore H(Inf (g;)) isa FI of Q;. m
iel

Theorem 3.1.11 Let H : Q; — P*(Q}) be a SSVH and g be a f-subset of Q.
Then H(g) (respectively H(g)) is a FI of Qq if and only if for each o € [0,1], H(ga)
(respectively H(ga)) where go # 0, is an ideal of Q.

Proof. The Proof is similar to the proof of Proposition |1.4.13|(1). =

Fig. 8
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Table. 5

®o | L7 5 T
N I L I T I
i 1 g 1 g
N T B
L I A A A

Example 3.1.12 Let (Q,®1) and (Q}, ®2) be two quantales, where Q; and Q) are
depicted in Fig. 7 and 8 and the binary operations ®1 and Q2 on both the quantales
are the same as the meet operation in the lattices Q; and Q) as shown in the table 4
and 5.

¥
{T'}. Let g be a FI of Q; defined by g = %2 + % + 07-7 + 98, Then GLA and GUA
of g are as follows: H(g) = % + OT‘LG + 0%5 and H(g) = OT + % + %. It is easily
confirmed that H(g) and H(g) are FI of Q.

Let H : Q — P*(Q}) be a SSVH defined by H(L) ={L'}, H(a) = {1, j}, H(T) =
6
9

Consider H : Q) — P*(Q}) defined by H(L') = H(i) = H(j) = {L'} and H(T') =
Q). Then H is a SVH.

1 =1’
Let 1 be a f-subset of Q. defined b ) = ’
I f f Qi defi y () {0'7’ ot L

pois a FI of Q). Hence GLA and GUA of p are H(p) = & + + + % + %7 and
H(p) =14 +1+ % + 4. It is observed that H(p) is not a FI of Q; and H(p) is a
constant F'I. Hence it is important to take SSV H.

, Jorallz € Q). Then

Definition 3.1.13 Let H : Q; — P*(Q}) be a SVH and g be a f-subset of a quantale
Q). Then g is called an upper [a lower| generalized rough fuzzy prime ideal (GRFPI)
of Q) if H(g) [H(g)] is a fuzzy prime ideal (FPI) of Q. A f-subset g of Q) which is
both an upper and a lower GRFPI, is called GRFPI of Q).

Similarly, we can define upper [lower] generalized rough fuzzy semi-prime ideal (GRFSPIT)
and generalized rough fuzzy primary ideal (GRFPYI) of quantale.

Proposition 3.1.14 Let g be a FPI of Q) and H : Q; — P*(Q}) be a SSVH. Then
H(g) is a FPI of Q.
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Proof. As g is a FPI of Q}, therefore g(c) = g(c®2b) or g(b) = g(c®2b) for all ¢,b €
Q}. Since, g is a FPI of Q}, so g is a FI. By Theorem H(g) is a FI of Q.

Consider,

H(g)(z1®1y1) = Inf  g(e)
e€H(z1®1y1)

= Inf  gle)
e€H (z1)®2H (y1)

Since H is a SSV H, therefore for e € H(z1) ®2 H(y1) there exist ¢ € H(z1) and
b € H(y;) such that e = ¢ ®2 b.

Hence,

H(g)(z1®111) = Inf g(c®2b)
c®2b€H (21)®2H (y1)

= Inf g(c®2b)
ceH(x1), beH (y1)

= Inf [9(c) or g(b)]
ceH(z1), b€H (y1)

= Inf g(c)or Inf g(b)
ceH(z1) beH (y1)

= H(g)(x1) or H(g)(y1).

Thus, H(g)(r1 ®1y1) = H(g)(w1) or H(g)(71 ®1y1) = H(g)(y1) for all z1, y1 € Q.
Hence H(g) isa FPI of Q;. m

Theorem 3.1.15 Let g be a FPI of Q, and H : Qt — P*(Q}) be a SSVH. Then
H(g) is a FPI of Q.

Proof. As g is a FPI of Q}, therefore g(c) = g(c®2b) or g(b) = g(c®2b) for all ¢,b €
Q). Since, g is a FPI of Q}, so g is a FI. By Theorem H(g) is a FI of Q.

Consider,

H(g)(w®12z) = Sup g(e)
e€H(w®12)

= Sup  g(e)
e€H(w)®2H (2)

Since H is a SSV H, therefore for e € H(w)®2 H(z) there exist ¢ € H(w) and b € H(z)
such that e = ¢ ®9 b.

Hence,
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H(g)(w® z) = Sup  g(c®20)
c®2bEH(w)®2H (z)

= Sup  g(c®2b)
ceH(w), beH(z)

= Sup  [g(c) or g(b)]
ceH(w), beH(z)

= Sup g(c) or Sup g(b)
c€H (w) beH(z)

= H(g)(w) or H(g)(2).
Thus, H(g)(w ®1 2) = H(g)(w) or H(g)(w ®1 2) = H(g)(z) for all w,z € Q;. Hence
H(g)isa FPI of Q;. m

Now, we have the following corollary.

Corollary 3.1.16 Let H : Q; — P*(Q}) be a SSVH and g be a FPI of Q). Then
g is a GRFPI of Q.

Theorem 3.1.17 Let H : Q; — P*(Q}) be a SSVH and H(g) be a FI of Q;. Then
H(g) is a FPI of Q: if and only if H(g)(w @1 2) = H(g)(w) V H(g)(2) for all ,
w e Qt'

Proof. Let H(g) be a FPI of Q;. Then H(g)(w) = H(g)(w ®;1 z) or H(g)(z) =
H(g)(w ®1 2).

This implies that H(g)(w) vV H(g)(z) > H(g)(w @1 z). (1)

As H(g) is a FI of @y, hence by definition of FI, we have H(g)(w ®1 2) > H(g)(w) V
H(g)(z). (2)

By (1) and (2), we obtain H(g)(w) VvV H(g)(2) = H(g)(w ®; z). Conversely, suppose
that H(g)(w ®1 2) = H(g)(w) V H(g)(z) for all w, z € Q;. We have to show that
H(g) is a FPI. As [0,1] is a totally ordered so H(g)(w) V H(g)(z) = H(g)(w) or
H(g)(w) v H(g)() = H(g)(2). Hence H(g)(w @1 2) = H(g)(w) or H(g)(w 1 2) =
H(g)(z) for all w, z € Q;. This shows that H(g) isa FPI of Q;. m

Theorem 3.1.18 Let H : Q; — P*(Q}) be a SSVH and g be a FPI of Q). Then
H(g) (respectively H(g)) is a FPI of Q¢ if and only if for each o € [0,1], H(ga)

(respectively H(ga)) where go # 0, is a PI of Qy.

Proof. The proof is similar to the proof of Proposition [1.4.14(1). m
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Theorem 3.1.19 Let H : Q; — P*(Q}) be a SSVH and g be a FSPI of Q}. Then
H(g) is a FSPI of Q.

Proof. As g is a FSPI of Q}, therefore g(d?) = g(d) for all d € Q} and g is a FI of
@}, so by Theorem H(g) is a FI of Q.

Now consider,

H(g)(w) = defg(f | g9(d)

= Inf g(d?
deH(w)

= Inf  g(d?)
dxod€ H (w)*2 H(w)

= Inf  g(d?)
dxod€ H (wxiw)

= Inf g(d®)
d2eH (w?)

= H(g)(w?).
Thus H(g)(w) = H(g)(w?) for all w € Q4. Therefore H(g) is a FSPI of Q;. m

Theorem 3.1.20 Let H : Q; — P*(Q}) be a SSVH and g be a FSPI of Q). Then
H(g) is a FSPI of Q.

Proof. The Proof is similar as reported in Theorem [3.1.19, =

Corollary 3.1.21 Let H : Q; — P*(Q}) be a SSVH and g be a FSPI of Q,. Then
g is a GRFSPI of Q).

Theorem 3.1.22 Let g be a FSPI of Q) and H : Q; — P*(Q}) be a SSVH. Then
H(g) (respectively H(g)) is a FSPI of Qq if and only if for each o € [0,1], H(ga)
(respectively H(ga)) where go # 0, is a SPI of Q.

Proof. Proof is similar to the proof of Proposition [1.4.13|(2). =

Example 3.1.23 Let (Q¢,®1) and (Q}, ®2)be two quantales, where Q¢ and Q) are
depicted in Fig. 7 and 8 and the binary operations ®1 and Q2 on both the quantales

are the same as the meet operation in the lattices Q; and Q) as shown in the table
4 and 5. Let H : Qy — P*(Q}) be a SSVH as defined in Example |3.1.12| Let A
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be a f-subset of Q) defined by A = %’ + 076 + 079 + 0%?. Then it is easy to confirm
that A is a FPI of Q). Hence GUA and GLA of A, are H(\) = %2 + %2 4 08 gpng
H(\) =22 4964 08 [y js observed that H()\) and H()\) are non-constant FPI of
Q-

!/

1, x=_1 ,
. for allz € Q. Then g

Let g be a f-subset of Q} defined by g(z) =

0.6, x# L
is a FSPI of Q). Hence GLA and GUA of g, are as follows H(g) = T + % + 26
and H(g) = i + % + %. It is straightforward that H(g) and H(g) are FSPI of Q;.

The next results are about the lower and upper approximations of fuzzy primary ideals
(FPYTI).

Theorem 3.1.24 Let g be a FPY I of Q} and H be a SSVH. Then H(g) is a FPYI
of Q.

Proof. As g is a FPYT of Q}, therefore g(a) = g(a ®2 b) or g(b") = g(a ®2 b) for all
a,b € Q) and hence, g is a FI of Q}, so by Theorem H(g) is a FI of Q. Since
H is given as SSV H,

Consider,

H(g)(z @1 w) = deh{(né )g(d)

= Inf g(a®2b)
a®2b€H (z)®2 H (w)

= Inf  gla®2b)
a€H(z), be H(w)

= Inf — [g(a) or g(b")]
a€H(z), be H(w)

= Inf g(a)or Inf g(b")

a€H(z) beH (w)
= Inf gla)or Inf g(b")
a€H(z) bneH (w™)

= H(g)(z) or H(g)(w").
Here b" = b®2b®2, ..., ®2b € H(w)R2H (w)®2, ..., o H (w) = Hw@w@iw®1, ..., Q1w) =
H(w™) up to n times for some positive integer n. Thus H(g)(z ®1 w) = H(g)(z) or
H(g)(z ®1 w) = H(g)(w") for all z, w € Q. Therefore H(g) isa FPYI of Q;. m

Theorem 3.1.25 Let g be a FPY T of Q) and H be a SSVH. Then H(g) is a FPY I
of Q.
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Proof. The proof is similar to the proof of Theorem [3.1.24] =

Theorem 3.1.26 Let H be a SSVH and g be a non-constant FPYI of Q). Then
H(g) (respectively H(g)) is a FPYT of Qq if and only if for each o € [0,1], H(ga)
(respectively H(go)) where go # 0, is a PY T of Q.

Proof. The proof is similar to the proof of Proposition [1.4.14(2). =

3.2 Homomorphic images of Generalized Rough Ideals

based on Quantale Homomorphism

In this section, we will describe the images of GLA and GUA by using QH and
SV H of quantales.

Proposition 3.2.1 Let (Q¢,®1) and (Q}, ®2) be two quantales, oy : Q — Q) be
an epimorphism and Hy : Q) — P*(Q}) be a SVH. If oy is one-one and Hy(z) =
{y € Q¢ | o1(y) € Ha(op(x))} for all x € Qy, then Hy is a SVH from Qi to P*(Qy).

Proof. First of all, we show that H; is well defined mapping. Suppose x1 = 2, then we
have, y1 € Hi(x1) <= 04(y1) € Ha(o(x1)) = Ha(or(x2)) <= y1 € Hi(x2). Thus we
have Hi(x1) = Hy(z2). Now we show that Hy is SV H. Suppose y € Hy(z1)®1 Hi(x2),
then there exist a € Hy(x1) and b € Hy(x2) such that y = a ®1 b. Since Hs is a SVH
and oy is a QH, we have o.(a) ®2 04(b) € Ha(oy(x1)) @2 Ha(oi(x2)) C Ha(o(z1) @2
(ot(z2)) = Ha(o¢(x1 ®122)). Therefore, o4(a®1b) = o¢(a) ®20¢(b) € Ha(op(x1 ®122)).
Hence y = a®1b € Hi(z1®1x2). Thus, we have Hy(z1)®1 H1(z2) C Hi(x1®122). Now
we show that VierHi(x;) € Hy1(Vierx;) for all x; € Q; (i € I). Let y € VierHi(z;),
then there exist a; € Hj(z;) for all ¢ € I such that y = Vicra;. Hence oy(y) =
ot(Vierai) = Vieroi(a;) € VierHa(o¢(x:)) € Ha(Vieroi(z;)) = Ha(o¢(Viere;)). Thus,
y = Viera; € Hi(Vierz;). Hence VierHi(x;) € Hi(Vierx;)). So, Hy is a SV H from
Q: to P*(Q¢). m

Theorem 3.2.2 Let o, : Qy — Q) be a surjective QH and Hy : Q) — P*(Q}) be a
SVH. Set Hi(m) ={z € Q¢ | 0¢(2) € Ha(ot(m))} for allm € Q¢ and for all ) # C C
Q:, then
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(1) Ha(01(C)) = a:(H1(C));
(2) Hy(04(C)) = o:(H,(C));

(3) If oy : Q1 — Q) is also one-one, then oy(x) € oy(H1(C)) <= x € H1(C).

Proof. (1) Let z € o4(H1(C)). Then there exist x € H;(C) such that o(z) = z.
Since z € H1(C), so Hi(z)NC # 0. Suppose, 2’ € Hy(x)NC, then o4(2') € 04(C), and
by the definition of Hj(x), we obtain o4(z') € Ha(o¢(x)). Thus, Ha(o(z))No(C) # 0,
and hence z = o4(x) € Ha(04(C)). Thus, we obtain o;(H1(C) C Ha(o:(C)). Now
we take y € Ha(o¢(C)), then there exist m € @ such that o;(m) = y. Hence
Hy(o¢(m)) No(C) # 0. So there exists z; € C such that o4(21) € 04(C) and o4(z1) €
Hjy(o(m)). By the definition of Hi(m), we have 21 € Hy(m). Thus Hy(m) N C # 0.
This gives m € H1(C). Hence, y = a¢(m) € a4(H1(C)). Thus Ha(o¢(C) C o¢(H1(O).
Finally, we obtain o;(H1(C) = Ha(04(C)).

(2) Suppose z € o1(H;(C)), then there exists m € H,(C) such that o;(m) = z and
Hy(m) C C. Suppose 2z’ € Ha(o¢(m)), then there is n’ € @Q; such that o4(n') = 2/,
hence o¢(n’) € Ha(oi(m)). Thus n’ € Hi(m) C C and so 2/ = o¢(n') € o4(C).
Hence, Ha(o:(m)) C 04(C). Thus z = o4(m) € Hy(0o(C)), so we have o4(H,(C)) C
Hy(04(C)). Now, let y € Hy(04(C)). Then there exists n € @ such that o4(n) = y and
Hj(o¢(n)) C 04(C). Suppose n’ € Hi(n), then o(n’) € Ha(ot(n)) C 04(C) and hence
n’ € C. Thus Hi(n) C C and we obtain n € H,(C). Hence o4(n) =y € o4(H;(C))
and thus, Hy(04(C)) C 0(H;(C)). Hence, we have o,(H(C)) = Hy(0¢(C)).

(3) Let z € H1(C). Then o(z) € oi(H1(C)). Conversely, suppose that o(z) €
oi(H1(C)), then there exists y € H1(C) such that o,(y) = o4(x). Since o is ono-one,
we have z =y € H1(C). m

Lemma 3.2.3 Let (Q¢,®1) and (Q},®2) be two quantales, o¢ : Qr — Q) be an
isomorphism, Hay : Q, — P*(Q}) be a SVH and Hy : Q; — P*(Qq) defined in
Proposition[3.2.4 Then o(z) € o4(H,(C)) <= x € H,(C).

Proof. The Proof is similar to the proof of Proposition [3.2.2(3). =
Theorem 3.2.4 Let 0, : Q; — Q} be an isomorphism and Hs : Q; — P*(Q})

be a SVH. Let Hi(x) = {y € Q¢ | 0+(y) € Ha(o(x))} for all x € Qi. Then for all
0 # C C Qy, the following hold;
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(1) H1(C) is an ideal of Q; if and only if Ho(o¢(C)) is an ideal of Q};
(2) H1(C) is a PI of Q; if and only if Ho(c+(C)) is a PI of Q};
(3) H1(C) is a SPI of Qq if and only if Ha(0(C)) is a SPI of Q};

(4) H1(C) is a primary ideal (PYI) of Q; if and only if Ho(c¢(C)) is a primary ideal
(PYT) of Q)

Proof. By Theorem 1), o+(H1(C)) = Ha(o+(C)) for each C C Q.
(1) Suppose H1(C) is an ideal of Q;.

(i) Let z,2 € 0¢(H1(C)). Then there exist z1,21 € H1(C) such that ou(z1) = z
and o4(z1) = 2. Since oy is a surjective QH and H1(C) is an ideal of Q;, we obtain
wV 2z =o04(x1) Vo) =0z V2) € oy(H1(C)). Therefore zV z € oy(H1(C)) for
all z, 2 € oy (H1(C)).

(i) Let z < z € 04(H1(C)). Then there exist 1 € H1(C) and z; € @ such that
+(z1) = x and o4(21) = z. Since o4(21) < o(x1), we have o¢(z1 V 21) = o¢(z1) V
+(z1) = o4(z1) € 0¢(H1(C)). From part (3) in Theorem it follows that z1V 2z €
1(C). Since H{(C) is an ideal and 23 < x1 V 21, we have z; € Hq(C). Thus
z=o04(z1) € 01 (H1(C)).

Q

T 2

(iii) Let € o¢(H1(C)) and z € Q}. Then there exist z1 € H1(C) and 21 € Q¢ such
that o4(x1) = z and 04(21) = 2. Since H1(C) is an ideal and o is a QH, we obtain
71 ®1 21 € H1(C). Hence z ®9 2 = 04(21) ®2 04(21) = 04(21 ®1 21) € 01(H1(C)). In
a similar way, we have z ®2 x € 0:(H1(C)). Hence, oi(H1(C)) is an ideal of Q}. But
Ha(04(C)) = 0¢(H1(C)). So Ha(o(C)) is an ideal of Q).

Conversely, suppose Ha(0(C)) = o1(H1(C)) is an ideal of Q.

(i) Let 21,20 € H1(C). Then o4(z1), 04(22) € o¢(H1(C)). Since oi(H1(C)) is an
ideal, o4(21 V 22) = 04(21)V 01(22) € oi(H1(C)). So by Theorem M(3), we have
21V 29 € ﬁl(C)

(ii) Let 21 < 20 € H1(C). Then o¢(21) < 0¢(22) € 0¢(H1(C)). Since or(H1(C)) is an
ideal, we have 04(21) € o;(H1(C)). By Theorem [3.2.2(3), we obtain z; € H1(C). So
H1(C) is a lower set.

(iii) Suppose ¢’ € Q; and y € H1(C), then o.(y') € Q, and o(y) € o+(H1(C)). But
oi(H1(C)) is an ideal of Q}, we have o4(y ®19') = 0¢(y) ®2 0¢(vy') € o;(H1(C)) and
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(Y @1y) = 01(y) @2 04(y) € 04(H1(C)). Thus, we have y ®1 v/, iy @1y € H1(C) by

Theorem [3.2.2(3). Hence by (i)-(iii), H1(C) is an ideal of Q;.

(2) First we show that H1(C) # Q; & o(H1(C)) # Q, that is H(C) = Q; &
ot(H1(C)) = Q). Assume that H1(C) = Q;. Since oy is surjective, we have o(H1(C)) =
o1(Q:) = Q). Conversely, assume that o¢(H1(C)) = Q). For each z € Q; we have
oi(2) € 04(Q¢) = Q) = a4(H1(C)). Then by Theorem (3), we have z € H;(O)
and thus H(C) = Q.

Let H1(C) is a PI of Q;. Then H1(C) is obviously an ideal of Q; and H1(C) # Q;. By
part (1), Ha(o(C)) is an ideal of ;. We also have that Hy(0¢(C)) = o¢(H1(C)) # Q}.
Now suppose y1,%2 € Q} and y1 ®2 y2 € Ha(0(C)). Since o, is surjective, there are
21, 22 € @ such that y; = 04(21), y2 = 04(22). Then o.(21 ®1 22) = 04(21) @2 04(22) =
Y1 Q2 Y2 € 01(H1(C)). By Theorem 3), we have 21 ®1 29 € H1(C). Since H;(C)
is prime, we have z; € H1(C) or zo € H1(C). Thus 31 € 0:(H1(C)) = Ha(04(C)) or
yo € 01(H1(C)) = Ha(04(C)). So Ha(c4(C)) is a PI of Q).

Conversely, let Hy(04(C)) is a PI of Q}. Then Hy(o(C)) is an ideal of @Q}. Since
ot(H1(C) = Ha(0+(C) # Q) and thus H1(C) # Q;. By part (1), H1(C) is an ideal of
Q. Now suppose z1, 20 € Q; and 21®1 29 € H1(C). So, 04(21) @2 04(22) = 04(21 1
29) € or(H1(C)). Since o4(H1(C)) = Ha(0o4(C)) is prime, we have o4(z1) € o;(H1(C))
or 0¢(22) € o1(H1(C)). So by Theorem (3), we have 21 € H{(C) or z2 € H1(C).
Thus H;(C) is a PI of Q.

The proof of remaining parts (3) and (4) are similar to the proof (1) and (2). =

Theorem 3.2.5 Let oy : Qy — Q} be an isomorphism and Hy : Q, — P*(Qy})
be a SVH. Set Hi(z) = {y € Q¢ | 0+(y) € Ha(o(z))} for all x € Qi. Then for all
() # B C @y, the following hold,

(1) H{(B) is an ideal of Q¢ if and only if Hy(o¢(B)) is an ideal of Q;
(2) Hy(B) is a PI of Q¢ if and only if Hy(0¢(B)) is a PI of Q};
(3) H{(B) is a SPI of Q¢ if and only if Hy(o¢(B)) is a SPI of Q};

(4) Hy{(B) is a PYI of Qq if and only if Hy(oy(B)) is a PYT of Q.

Proof. By Theorem 1), 0+(H,(B)) = Hy(0(B)) for each B C Q.

(1) Suppose H,(B) is an ideal of Q.
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(i) Let =,z € 04(H,(B)). Then there exist z1,21 € H;(B) such that o(z1) = =
and o(z1) = z. Since oy is a surjective QH and H,(B) is an ideal of @Q;, we obtain
xVz=o0i(x1)Voi(z1) =o(z1V 21) € 0r(H (B)). Therefore z V z € 0.(H;(B)) for
all z,z € o1(H;(B)).

(ii) Let 2 < = € o4(H;(B)). Then there exist 1 € H;(B) and 2z; € @ such that
oi(r1) = z and o4(21) = z. Since o4(21) < o¢(x1), we have op(x1 V 21) = or(x1) V
o¢(z1) = o4(x1) € o¢(H(B)). From part (3) in Theorem [3.2.2] it follows that 21 V21 €
H,(B). Since H;(B) is an ideal and z; < z1 V 21, we have z; € H;(B). Thus
z =o0¢(z1) € 0¢(H,(B)).

(iii) Let « € 04(H;(B)) and z € Q). Then there exist x; € H;(B) and z; € @ such
that o(z1) = = and 04(z1) = 2. Since H,(B) is an ideal and o; is a QH, we obtain
1 ®1 21 € H{(B). Hence z ®3 2z = 04(x1) @2 0¢(21) = 0¢(x1 @1 21) € 0¢(H(B)). In
a similar way, we have z ®g x € o(H,(B)). Hence, o.(H,(B)) is an ideal of Q}. But
Hy(o1(B)) = o1(H,(B)). So Hy(o4(B)) is an ideal of Q).

Conversely, suppose Hy(04(B)) = o4(H;(B)) is an ideal of Q.

(i) Let 21,20 € H{(B). Then o4(z1), 0¢(22) € oi(H (B)). Since o¢(H,(B)) is an
ideal, o4(21 V 22) = 04(21)V 04(22) € 04(H;(B)). So by Theorem [3.2.2(3), we have
21V 29 € ﬂl(B)

(ii) Let 21 < 29 € H{(B). Then o4(z1) < 04(22) € 0¢(H;(B)). Since o:(H,(B)) is an
ideal, we have 04(z1) € o4(H;(B)). By Theorem [3.2.2(3), we obtain z; € H;(B). So
H,(B) is a lower set.

(iii) Suppose ¢ € Q¢ and y € H,(B), then o(y') € Q} and o4(y) € o1(H(B)). But
ot(H,(B)) is an ideal of Q}, we have o4(y ®1y) = 04(y) ®2 0¢(y') € 0¢(H;(B)) and
oi(y' @1y) = ou(y") ®204(y) € o¢(H,(B)). Thus, we have y ®1y', ¥ ®1y € H,(B) by
Theorem [3.2.2|(3). Hence by (i)-(iii), H;(B) is an ideal of Q.

(2) First we show that H;(B) # Q: < oi(H(B)) # Q}, that is H{(B) = Q; <
ot(H,(B)) = Q). Assume that H,(B) = Q. Since oy is surjective, we have o4(H,(B)) =
01(Q¢) = 01(Q}). Conversely, assume that o;(H,(B)) = @Q}. For each z € Q; we have
01(2) € 04(Q:) = Q} = o1(H,(B)). Then by Theorem [3.2.2|3), we have z € H,(B)
and thus H,(B) = Q.

Let H,(B) is a PI of Q;. Then H,(B) is obviously an ideal of Q; and H,(B) # Q. By
part (1), Hy(ot(B)) is an ideal of Q}. We also have that Hy(0(B)) = o+(H(B)) # Q}.
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Now suppose y1,y2 € Q} and y; ®2 y2 € Hy(0o4(B)). Since oy is surjective, there are
21, 22 € @ such that y; = o4(21), y2 = 04(22). Then o4(21 ®1 22) = 04(21) 2 04(22) =
Y1 @2 Y2 € 0¢(H;(B)). By Theorem (3)7 we have 21 ®1 29 € H;(B). Since H,(B)
is prime, we have z; € H{(B) or z3 € H{(B). Thus y; € o¢(H{(B)) = Hy(0¢(B)) or
y2 € 0y(H (B)) = Hy(o1(B)). So Hy(o4(B)) is a PI of Q.

Conversely, let Hy(o4(B)) is a PI of Q}. Then H,(o:(B)) is an ideal of Q}. Since
o+(H,(B) = Hy(o(B) # @} and thus H,(B) # Q. By part (1), H,(B) is an ideal of
Q¢. Now suppose z1, 22 € Q; and 21®1 22 € H(B). So, 04(21) ®2 04(22) = 0¢(21 @1
z9) € 04(H(B)). Since o,(H;(B)) = Hy(0o(B)) is prime, we have 04(z1) € o,(H;(B))
or 0¢(z2) € o4(H,(B)). So by Theorem [3.2.2|3), we have z; € H,(B) or 25 € H,(B).
Thus H,(B) is a PI of Q.

The proof of remaining parts (3) and (4) are similar to the proof (2). m

3.3 Generalized Rough Fuzzy Prime (Primary) Ideals In-

duced by Quantale Homomorphism

In this section, we will discuss relations between the upper (lower) generalized
rough fuzzy (prime, semi-prime, primary) ideals of quantales and the upper (lower)

approximations of their homomorphic images and give some Theorems related to them.

Theorem 3.3.1 Let oy : Q1 — Q) be a surjective QH, Hs : Q, — P*(Q}) be
a SVH and X be a f-subset of Q. If Hi(z) = {y € Q¢ | 0+(y) € Ha(o¢(x))} for all
T € Q¢, then

(1) Hi(\) is a FI of Qq if and only if Ha(oi(N)) is a FI of Q};

(2) H1()\) is a FPI of Qq if and only if Ha(oi(N\)) is a FPI of Q};

(3) Hi(\) is a FSPI of Q; if and only if Ha(o(N)) is a FSPI of Q};
(4) Hi(\) is a FPYT of Q; if and only if Ha(o(N)) is a FPYT of Q).

In the above,

Sup Aaz), ifoi'(y) 0V yeqQ;
o(M(y) =4 c€o'®)
0, otherwise



3. Generalized Rough Fuzzy Ideals in Quantales 58

i.e., o¢(A) is the standard Zadeh image of the f-subset A\ under the mapping o;. (see
Definition 1.4.7).

Proof. (1) We first point out that for each a € [0,1], (0¢(A))q+ = 01(Ay+) and
(Fl(A))aJr 7& @ if and only if (Fg(at()\)))aJr 7§ @

Let Hi()\) be a FI of Q;. Then for all a € (0,1], if (H2(0¢(\))ar # 0, then

(H1(\))o+ # 0. By Theorem [3.1.11) we have (Hi()\)),+ is an ideal of Q. Also
by using Proposition we obtain Hj(A,+) is an ideal of Q. Now, by Theorem

3.2.4(1) and Proposition[3.1.5, we have (Ha(0¢(\))a+ = Ha((0¢t(\))a+ = Ha(0t(Aa+))
is an ideal of Q). Thus, by Theorem we have Ha(o()\)) is a F'I of Q.
Conversely, suppose Ha(o(\)) is a FI of Q}. We have (Ha(a¢(N)))qr = Ha(0t(A))gr =

Ha(oi(My+)) is an ideal of @} by utilizing Theorem [3.1.11|and Proposition Thus,
H1(\y+) is an ideal of Q; from Theorem [3.2.4(1). Hence H1(\) is a F'I of Q; by The-

orem B.I.TT1

(2) Let H1()\) be a FPI of Q;. Now for Ha(oi(\))g+ # 0, then (H1(\))o+ # 0 for each

a € [0,1]. Since Hq(\) is a FPI of Q;, then by Theorem and Proposition
we have (H1(A))o+ = H1(A\))o+ = H1(Ao+) is a PI of Q. Hence (Ha(0t(N)))at+ =
Ho((0¢(AN)gr = Ha(ot(Ay+)) is a PI of @}, by Theorem (2) Thus, by Theorem
we have Ha(o()\)) is a FPI of Q).

Conversely, suppose Ha(o())) is a FPI of Q. By Theorem [3.1.18 we have

(Ha(01(M))a+ = Ha(01(N)a+ = Ha(0(Ag+))

is a PI of Q). Thus from Theorem [3.2.4(2), H1()\,+) is a PI of Q;. Hence H1()) is a
FPI of Q¢ by Theorem [3.1.18

Proof of (3) and (4) is similar to the proof of (1) and (2). m

Theorem 3.3.2 Let 0, be a surjective QH from a quantale (Q¢, ®1) onto a quantale
(Q},®2). Let Hy : Q) — P*(Q}) be a SVH and X\ be a f-subset of Q¢. If Hi(z) =
{ye Q| fly) € Ha(f(x))} for all x € Qy, then

(1) Hi(A\) is a FI of Q¢ if and only if Hy(or(N)) is a FI of Q};
(2) H{(\) is a FPI of Q¢ if and only if Hy(or(N)) is a FPI of Q};
(3) Hi(X\) is a FSPI of Qq if and only if Hy(or(N)) is a FSPI of Q};

(4) Hy(\) is a FPYT of Q¢ if and only if Hy(or(N)) is a FPYT of Q).
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Proof. The proof is similar to the proof of Theorem



Chapter 4

Characterizations of Quantales
by (a, 5)-Fuzzy Ideals

In this chapter, we describe («, §)-fuzzy subquantales and (a, 3)-fuzzy ideals of
quantale. Further, (€, € Vq)-fuzzy ideal and (€, € Vq)-fuzzy subquantale are discussed.
It is investigated that homomorphic image of an (€, € Vq)-fuzzy subquantale (ideal)
under QH is an (€, € Vq)-fuzzy subquantale (ideal). These fuzzy subquantales and
fuzzy ideals are characterized by their level subquantales and ideals, respectively. Some
important results about (€, € Vq)-fuzzy prime and (€, € Vq)-fuzzy semi prime ideals
are discussed. Fuzzy quantale submodule is defined and its generalization that is an

(a, B)-fuzzy Q-submodule of Q;-module is also introduced in this chapter.

In the first section, (o, 3)-fuzzy ideals and («, 3)-fuzzy subquantales are intro-
duced. Moreover, (€,€ Vq)-fuzzy ideals and (€, € Vq)-fuzzy subquantales are dis-
cussed in the second section. With the help of QH, it is proved that inverse image of
(€, € Vq)-fuzzy subquantale and (€, € Vq)-fuzzy ideal are (€, € Vq)-fuzzy subquantale
and (€, € Vq)-fuzzy ideal, respectively. In section three, we define the (€, € Vq)-fuzzy
prime and (€, € Vq)-fuzzy semi prime ideals of Quantale. It is also investigated that
if a f-subset ¢ is an (€, € Vq)-fuzzy prime (or (€, € Vq)-fuzzy semi prime) ideal of
Q}, then 07 1(g) is an (€, € Vq)- fuzzy prime (or (€, € Vq)-fuzzy semi prime) ideal of
Q. In the last section, (o, 8)-fuzzy Qi-submodule of Q;-module is introduced. Fuzzy

@-submodule is characterized by its level (Q;-subquantales.

60
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4.1 («a,f)-Fuzzy Ideals of Quantale

In this section, let @ and 8 be one of €, ¢, € Vq or € Ag, unless otherwise speci-
fied. From here onward, we will write («, 5)-FI, (o, 5)-FRI, (o, 8)-FLI, (c, 5)-FS,
(e,€ Vq)-FI,(€,e Vvq)-FS, (€,€ Vq)-FRI and (€, € Vq)-FLI for («, 3)-fuzzy ideal,
(o, B)-fuzzy right ideal, (o, )-fuzzy left ideal, (o, f3)-fuzzy subquantale, (€, € Vq)-
fuzzy ideal, (€, € Vq)-fuzzy subquantale, (€, € Vq)-fuzzy right ideal and (€, € Vq)-

fuzzy left ideal, respectively.
Definition 4.1.1 [66] A f-subset g of a quantale Qy is called a fuzzy point if

p, fy=z

9(y) = - forall z,y € Q.
0, otherwise

Then z is called the support of g and p € (0, 1] is its value. A fuzzy point is represented

by zp. Pu and Liu [66], gave meaning to the symbol z,ag, where o € {€, q, € Vg, € Nq}

for a fuzzy point z, and a f-subset g in a set Q.
(1) When g(z) > p, then it means that z, belongs to g and is represented as z, € g.

(2) When g(2) +p > 1, then z, is called quasi-coincident with g and is denoted as
Zpqg.

(3) When g(z) > p or g(z) +p > 1, then z, belongs to g or z, is quasi-coincident with
g and is denoted as z, (€ Vq)g. Similarly, z, (€ Nq)g denotes that z, € g and z,qg.

When zpoig means that z,ag does not hold.

Each f-subset g defined on )y can be characterized by its level subsets, i.e., by the
sets of the form U(g;p) = {z € Q¢ : g(z) > p}, where p € [0,1]. An important part is
played by the support of g, i.e., the set g, = {z € Q¢ : g(2) > 0}.

For a f-subset g of Q¢ such that g(z) < 0.5 for any z € @, in this case z,(€ Aq)g, we
have g(z) > p and g(z) +p > 1. Thus, 1 < g(z) +p < g(2) + g(z) = 2¢(z). This shows
that g(z) > 0.5. Hence, {2, : z,(€ Aq)g} = 0. Thus, the case a = € Ag is omitted.

Definition 4.1.2 [90] Let oy : Q¢ — Q) be a mapping from a quantale Q; to a
quantale Q}, and let g and g’ be f-subsets in Qi and Q}, respectively. Then the image
of g under oy and the pre-image of ¢ under oy are the f-subsets o4(g) and o; *(g'),

respectively, defined as follows:
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Sup g(x), if oy (y) #0 forally € Q;
(i) oe(g)(y) = ¢ =€’ W ,
0, otherwise

(i) o7 (¢")(z) = ¢ (04(x)) for all z € Q.

If oy is a QH, then o4(g) is called the homomorphic image of g under oy and at_l(g’)

18 called the homomorphic pre-image of ¢'.

Definition 4.1.3 Let (Q:, ®) be a quantale and g be a f-subset of Q;. We say that g
is a F'S of Q¢ if

(1) 9(Vierzi) = inf g(z),
el

(1) g(y ® 2) 2 inf(g(y), 9(2)) for all z, zi,y € Q.
Proposition 4.1.4 Let g1 and go be the F'Ss of Qi. Then (g1 M ge) is a F'S of Q.

Proof. Let z; € @; for some ¢ € I and g; and g2 be the F'S’s of )¢, so by Definition
we have;

91(Vierzi) > m{ 91(z) and g2(Vierzi) > m{ 92(%)
ic ic

= inf{g1(Vierzi), 92(Vierzi)} > inf{Zijgﬂ%), iz{gg(zi)}

= inf{g1(Vierzi), 92(Vierzi)} = i?;lf{inf(gl(zi)7 92(zi))}

= (g1 M g2)(Vierzi) > inf(g1 M g2)(2i)
el

Next, as g1(z1 @ 2z2) > inf{g1(z1), g1(22)} and ga(21 ® 22) > inf{ga(21), g2(22)}
= inf{gi(z1 ® 22), 92(21 ® 22)} = inf(inf{gi(1), g1(22)}, inf{g2(21), 92(22)})
= inf{g1(z1 ® 22), g2(21 ® 22)} = inf(inf{g1(21), 92(21)}, inf{g1(22), g2(22)})
= (91 M g2)(21 ® 22) = inf{(g1 M g2)(21), (91 M g2)(22)}-

Therefore, (g1 Mgz) isa F'S of Q;. m

Definition 4.1.5 A f-subset g of a quantale Q; is called an (o, B)-F'S of Qy, if

() (zi)p;0g — (Vi € 1%0)infp; 59>
1€l

(i1) zpag, and wyag — (2 @ W)inp(pw)B9, for all pi, p, v € (0,1] and for all 2z, z, w
€ Q.
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Lemma 4.1.6 A f-subset g of a quantale Q¢ is a F'S of Q¢ if and only if it satisfies
(zz)pz cg— (\/z € Izz)'mfpI €g and Zp €g, Wy € g — (Z ®w>znf(pv €g fO?" a”pu
p, v € (0,1] and for all zz,z w € Q.

Proof. Let g be a F'S of Q; and z; € Q; and p; € (0,1] be such that (z),, € g for
i € I. Then g(z;) > p;, for all i € I. Since g is a F'S of Q¢, so g(Vicrzi) > inf
i€l
9(zi) > m{ p;. Hence (V; ¢ [zz)mfp €g.
e
Let p,v € (0,1] and z,w € @Q; be such that z, € g and w, € g. Then g(z) > p and
g(w) > v. But g is a F'S of @, hence g(z ® w) > inf(g(2), g(w)) > inf(p,v). Thus

g(z ®@w) > inf(p,v). This implies that (2 ® w)in¢pw) € 9-

Conversely, suppose that g satisfies the given conditions. First we show that
9(Vierzi) > mf g(z;) for ¢ € I. On contrary suppose that g(Vierz;) < inf g(z;)
for z; € Q. Let p € (0,1] be such that g(Vierz;) < p < inf g(z;). Then (61) €g
but (V; e rzi)p € g. This contradicts our hypothesis. Thusl%ql(\/igzi) > inf 9(z;) for
z; € Q¢. Similarly, we show that g(w ® z) > inf(g(z), g(w)) for all w, z éeé)t. Hence
gisa FSof Q;. m

Remark 4.1.7 The above Lemma shows that every F'S of Q¢ is an (€,€)-FS of Q,

and vice versa.

Theorem 4.1.8 Let g be a nonzero (a, 8)- F'S of Q¢. Then the set go = {y € Q¢+ | g(y) > 0}

is a subquantale of Q.

Proof. Let y; € go for i € I. Then g(y;) > 0 for all i € I. Let g(Vieryi) = 0.
If @ € {€,€ Vq}, then (y;)yy,ag for all i € I but g(Viery;) = 0 < 212{ 9(yi) and
g(\/igyi)—l—z%?;{ g(y;) <0+1=1. So (\/Z-elyi)i?[cg(yi)ﬁg for every 3 € {€,q, € Vq, € Aq},
this gives a contradiction. Hence g(Viecryi) > 0, i.e., Vieryi € go. Also (yi)1qg for all
i € I but (Vieryi)18g for every B € {€,q,€ Vg, € Aqg}. Hence g(Vicry;) > 0, i.e.,
VierVyi € go. Thus g, is closed under arbitrary join. The proof is similar for g, to be

closed under ®. =

Definition 4.1.9 A f-subset g of a quantale Qy is said to be an (o, f)-FRI (FLI) of
Qtz Zf
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(7') 2pQg, Wytrg — (va)inf(pﬂ))ﬂg;
(i) zpag,w € Qr — (2 @ w)pPy, [respectively, (w & z)pL4]
(13i) zpag and w < z — wypfByg, for all p, v € (0,1] and for all z, w € Q.

A f-subset g of a quantale Qy is called an («, B)-FI of Qy if it is both an (a, B)-FRI
and (o, B)-FLI of Q.

Example 4.1.10 Let (Q¢, ®) be a quantale, where Q is depicted in Fig.9 and the
binary operation ®on Qy is shown in the table 7. Ideals of Q¢ are { L}, {L, 75} and Q.

T
i J
1
Fig. 9
Table. 6
| L] |T
L] L] L|L]|L
1L | g | T
/2 RS I I B I
T LT |4 |T
0.6

+

Deﬁneg:Qt—>[071]byg:%+M

T+ 06 4 05 Then clearly g is an (€, € Vg)-FI
of Qt' But,

J

(1) g is not (€,€)-FI of Q, since

i0.68 € g but (i ® 7)0.68€4;
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(ii) g is not (q, €)-F1I of @, since

i0.6199 but (i ® j)o.61€9;
(7i1) g is not (€,q)-FI of @y, since

Tos € g but (T ® 7)0.399;
(1v) g is not (g, € Aq)-FI of @, since

To.sq9 but (T ®i)o6(€ Aq)g;

(v) g is not (€ Vg, € Nq)-FI of @, since

i0.65q9 but (T ®i)o.65(€ Aq)g;
(vi) g is not (€ Vg, €)-FI of Q, since
i0.65q9 but (T ® i)o.65€Y;

(vii) g is not (€,€ Nq)-FI of Q, since

io.67 € g but (j ®)o.67(€ Aq)g;

(viti) g is not (q,q)-F1I of @, since

i0.5q9 but (T ®i)o.5 G9;

Lemma 4.1.11 A f-subset g in a quantale Q; is a FRI (FLI) of Q; if and only if
the following hold:

(1) Zp, Wy € § — (Z \ w)inf(p,v) €9
(2) zp e gyw e Qr — (2@ w), € g [respectively, (w & 2), € gl;

(3) zpegand w < z — wy, € g, for all p,v € (0,1] and for all z,w € Q.
Proof. The proof is like the proof of Lemma [1.1.6 =

Remark 4.1.12 The above Lemma shows that every FRI (FLI) of Q; is an (€, €)-
FRI (FLI) of Q¢ and vice versa.

Theorem 4.1.13 Let g be a nonzero (o, 3)- FRI (FLI) of Q¢. Thengo ={y € Q¢ | g(y) > 0}
is a right (left) ideal of Q.

Proof. Let g be a nonzero («o,()- FRI of Q;. Let w,z € g,. Then g(w) > 0
and g(z) > 0. Let g(wV z) = 0. If @ € {€,€ Vg}, then (w)yyag and (2)4z)g
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but g(w V z) = 0 < inf(g(w),g(z)) and g(w V z) + inf(g(w),g(z)) < 0+1 = 1.
So (w V z)mf(g(w)’g(z))ﬁg for every 8 € {€,q,€ Vq, € Aq}, a contradiction. Hence
glwV z) >0, ie, wVz € go. Also wigB and 2z1¢B but (w V z)18g for every €
{€,q,€ Vg, € Nq}. Hence g(w V z) > 0, that is wV z € g,. Thus g, is closed under
join.

Let w,z € Q; and w < z. If z € go, then g(z) > 0. Assume that g(w) = 0.
If a € {€,€ Vvq}, then (2)4.)ag but (w)g(w)gg for every 8 € {€,q,€ Vq,€ Nq}, a
contradiction. Also z1qg but wiBg for every 8 € {€, ¢, € Vq, € Aq}. Hence g(w) > 0,

ie, w € go.

Let w € g, and for all z € ;. Then g(w) > 0. We want to show that g(w ® z) > 0
for all z € Q. Suppose that g(w®z) = 0 and let o € {€, € Vg}. Then (w),(,yaB but
(w® z)g(w)Bg for every 8 € {€,q, € Vq, € Aq}, this is a contradiction. Also wi¢B but
(w ® 2)18g for every B € {€,q, € Vq, € Aq}, a contradiction. Therefore g(w ® z) > 0

and so w ® z € go. Hence g, is a right ideal of a quantale ();. =

Proposition 4.1.14 Let A be a right (left) ideal of Q¢. Then a f-subset g of Q¢ such
that g(z) > 0.5 for z € A and g(z) = 0 otherwise is an («, € Vq)- FRI (FLI) of Q.

Proof. Let A be a right ideal of Q;.

(a) Suppose and p,v € (0,1] and y,z € Q¢ be such that y, € g and 2z, € g. Then
g(y) > p and g(z) > v. Thus y,z € Aand so yV z € A, that is g(y V z) > 0.5.
If inf(p,v) < 0.5, then g(y V z) > 0.5 > inf(p,v). Hence (yV 2)infpe) € g- If
inf(p,v) > 0.5, then g(y V z) +inf(p,v) > 0.5+ 0.5 = 1 and 50 (Y V 2)inf(p,v)q9-
Therefore (y V 2)inf(p0) (€ VQ)g-

Let y,z € Qt, y < zand v € (0, 1] be such that z, € g. Then g(z) > v. Thus z € A and
since A is a right ideal so y € A, that is g(y) > 0.5. If v < 0.5, then g(y) > 0.5 > v.
Hence y, € g. If v > 0.5, then g(y) +v > 0.5+ 0.5 = 1 and so y,qg. It follows that

Yo (€ Vq)g.

Now let y,z € Q; and p € (0, 1] be such that y, € g. Then g(y) > p, which implies
y€ A, and so y® z € A, for all z € ;. Consequently g(y ® z) > 0.5. If p < 0.5, then
g(y®z) >0.5>p. Hence (y® 2), € g. If p> 0.5, then g(y ® 2) +p > 05+05=1
and so (y ® z)pqg. Thus (y ® 2),(€ Vq)g. Hence g is an (€, € Vq)-FRI of Q.
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(b) Suppose that y, z € Q¢ and p,v € (0, 1] be such that y,qg and z,qg. Then y,z € A,
g(y)+p>1and g(z)+v > 1. Thus, y,z € A and since A is a right ideal so yV z € A,
we have g(y V z) > 0.5. If inf(p,v) < 0.5, then g(y V z) > 0.5 > inf(p,v). Hence
(Y V 2)infpv) € g- I inf(p,v) > 0.5, then g(y V 2) + inf(p,v) > 0.5+ 0.5 =1 and so
(Y V 2)inf(pw)29- Therefore (yV 2)insp.0) (€ Va)g-

Let y,z € Qt,y < z and v € (0,1] be such that z,q¢9. Then g(z) +v > 1. Thus z € A
and since A is a right ideal so y € A, that is g(y) > 0.5. If v < 0.5, then g(y) > 0.5 > v.
Hence y, € g. If v > 0.5, then g(y) +v > 0.5+ 0.5 = 1 and so y,qg. It follows that
Yv(€ Va)g.

Now, let y,z € Q; and p € (0, 1] be such that y,qg, which implies that g(y) +p > 1.
Thus y € A and so y ® z is in A. This means that g(y ® z) > 0.5. If p < 0.5, then
g(y®2z) >0.5>p. Hence (y®z), € g. If p> 0.5, then g(y ® 2) +p > 05+05=1
and so (y ® z)pqg. Thus (y ® 2),(€ Vq)g. Hence ¢ is an (g, € Vq)-FRI of Q.

(c) Let y,z € Q¢ and p,v € (0,1] be such that y, € g and z,qg. Then g(y) > p
and g(z) +v > 1. Thus, y,z € A and so y V z € A, we have g(y V z) > 0.5. Thus,
(Y V 2)intw) € g for inf(p,v) < 0.5 and (y V 2)ing(pw)q9 for inf(p,v) > 0.5. Thus
(Y V 2)int(pw) (€ Vg)g. The rest is similar to the proof of parts (a) and (b). =

Theorem 4.1.15 Let C' be a subquantale of Qi. Then a f-subset g of Q¢ such that
g(c) > 0.5 for c € C and g(c) = 0 otherwise is an (o, € Vq)-F'S of Q.

Proof. The proof is like the proof of Theorem ]

Proposition 4.1.16 Let g be a f-subset of a quantale Q) and oy : Q1 — Q) be a QH.
Then (o¢(w))pag if and only if wpozo;l(g) for all w € Q¢ and p € (0,1].

Proof. Let a = €. Then (04(w)), € g <= g(o1(w)) > p <= a; (g)(w) > p <=
w, € 07 1(g). Let a@ = ¢. Then (04(w)),q9 <= g(o(w)) +p > 1 <= o, (g)(w) +p >

1 <= wpqo~1(g). Similarly, we can obtain the other cases. m

Theorem 4.1.17 Let oy : Qy — Q) be a QH and g be an (o, 3)-FRI (FLI) of Q.
Then o; ' (g) is an (a, B)-FRI (FLI) of Q.

Proof. Let z,w € Q; and p,v € (0,1] be such that zpaat_lg and wvaat_lg. Then
(0¢(2))pag and (o¢(w)),cg by Proposition [4.1.16| Since g is an («, 3)-FRI of @,
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we have (04(2) V 04(W))inf(pv)B9 and (o¢(2 V W))intpw)Bg by using QH. Thus, (2 V

w)mf(p,v)ﬁat_lg by Proposition Let z,a0, g such that w < z. Then (0y(2))pag
and o4(w) < o4(z). Since g is an (a, 5)-FRI of Q}, we have o(w),(g. By Proposition
wyBo;tg. Let z,ao; tg and for all y € Q. Then (04(2)),ag and o4(y) € Q.
Hence, (04(2) @ 04(y))pBg — (0t(z @ y))pfyg as g is an («a, B)-FRI of @} and oy

is a QH. Again by Proposition 4.1.16, we have (z ® y)p,ﬁa;lg. Hence o7 '(g) is an
(o, B)-FRI of Q;. m

Proposition 4.1.18 Let (Q;,®) and (Q}, ®") be two quantales and oy : Qy — Q) be
a QH. Let g be (o, B)-FS of Q,. Then o; ' (g) be an (a, B)-FS of Q.

Proof. The proof is similar to the proof of Theorem 4.1.17] =

4.2 (€,€ Vq)- Fuzzy Ideals of Quantale

We introduce some results about (€, € Vq)-F1I and (€, € Vq)-FS of quantale @
in this section. We will show that homomorphic image of (€, € Vq)-FS is (€, € Vq)-
FS. Also with the help of QH, we will show that inverse image of (&, € Vvq)-F'S
((e,e Vvq)-FI)is (e, Vq)-FS ((€,€ vq)-FI).

Lemma 4.2.1 For a f-subset g of a quantale Q, the conditions below are equivalent:

(zi)p €9 — (Vie IZi)i_rez{pi(e Vq)g, (1)
9(Vierzi) = mf(i?;lf 9(zi),0.5). (2)

Proof. (1) — (2) Let z; € Q; for all i € I. We consider the two cases:
(a®) inf g(z) < 0.5,
il
(6°) 0.5 <inf g(z).
el

First we consider the case when inf g(z;) < 0.5. Let g(Vierzi) < inf(inf g(z:),0.5),
icl i€l

which implies that g(Vierz;) < inf g(z;). Then we can select p such that g(Vierz;) <
el
p < inf g(z), which means that (z;), € ¢ for all i but (V; ¢ rzi)p(€ Vq)g. This
el

contradicts (1). Hence, our supposition g(V,ecrz;) < inf(inf g(z;),0.5) is wrong.
el
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Now consider the case 0.5 < inf g(z;). So, for g(Vicrz;) < 0.5, we have (z;)o.5 € g for
el

alli € I and (V; ¢ 12)0.5(€ Vq)g, which is impossible. Hence, we have g(V;erz;) > 0.5.
Thus g(Vierzi) > 0.5 > inf(inf g(z;),0.5).
el

1€
(2) — (1) Let (z)p, € g for all ¢ € I. Then g(Vierzi) > inf(inf g(z;),0.5) >
i€l
inf(infp;,0.5). Hence we have g(Vierz;) > inf p; when inf p; < 0.5 and g(Vierzi) >
icl iel iel
0.5 for inf p; > 0.5. Thus (V; e 12)infp;, (€ V@)g.
el i€l

Lemma 4.2.2 For any f-subset g of Q¢, the following conditions are equivalent:

zp € g and wy € g — (2QW)inf(pa) (€ V)Y, (3)
9(z®@w) > inf(g(z),9(w),0.5). (4)

Proof. The Proof is similar to the proof of Lemma ]

Corollary 4.2.3 A f-subset g of Q; is an (€,€ Vq)-FS of Q. if and only if the
conditions (2) and (4) hold.

Theorem 4.2.4 Let o¢ : Qr — Q) be a QH. Let g1 and g3 be (€,€ Vq)-F'S of Q;
and Q}, respectively. Then

(1) o(g1) is an (€,€ Vq)-FS of Q},

(2) 07 (g2) is an (€, € Vq)-FS of Q.

Proof. (1) For any z; € Q, if o, ' (2;) = 0 for i € I, then infinf o1(g1)(2),0.5] = 0 <
el

ai(g1)(Vierz) and if 0,1 (2) = 0 or o, ' (w) = 0, then inf(o:(g1)(2), 0¢(91)(w), 0.5) =
0 < 04(g91)(2 ® w). Now suppose that o; ' (2;) # 0 for each i € T and o} ' (Vier2;) # 0.

Thus,
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inflinf(oi(g1)(zi)),0.5] =

el

IN

inflinflow(g1)(21), 04(g1)(22); . 0t(g1) (24)], 0.5]

inflinf[ Sup  gi(ar),....,  Sup gi1(a;)],0.5]

a1 € o7 (z1) ai € o7 ' (2)
Sup inflinf(gi(a1), ..., g1(a;)),0.5]
ai € Ut_l(zl),..., a; € O't_l(Zi)
Sup inflinf(gi(a1),...,g1(a;)),0.5]
ot(ar) = z1,..., ot(a;) = z;
Sup inflinfgi(a;),0.5]
Vierot(ai) = Vierzi iel
Sup inflinfgi(ai),0.5], oy is a QH
ot(Viera;) = Vierzi iel
Sup g1(Viera;)
Viera; € a't_l(\/ie[Zi)
Sup  g1(y)
y € oy ' (Vierz)
ot(91)(Vierzi)

Hence, 04(91)(Vierzi) > inflinf o+(g1)(2i),0.5] for all z; € Q} and

el

infloi(g1)(2),0(91)(w),0.5] = inf[ Sup gi(a), Sup g1(b),0.5]

a€orl(z) be oyt (w)

= Sup inflgi(a), g1(b),0.5]

a€ a;1(2), be a7 (w)

= Sup inflgi(a), g1(b),0.5]

ot(a)=z, o¢(b)=w
= Sup inflgi(a), g1(b),0.5]
ot(a)® ot (b) = z2Q'w
= Sup inflgi(a),g1(b),0.5], oy is a QH
ot(a®b) € 2@ w
< Sup  gi(a®D)
a®b € crt_l(z®’w)
= Sup  g1(y)
y€o; ' (z@w)

= 0i(g1)(z @ w)

So, o1(g1)(z @ w) > infloi(g1)(2), 0¢(g1)(w),0.5] for all z,w € Q). By Corollary
we have o4(g1) is an (€, € Vq)-F'S of Q.

(2) Let z; € Q for all ¢ € I. Then

o7 ' (92) (Vierz) =

>

92(0¢(Vierz))
92(Vieroi(zi)), o is a QH
inf[inlfgg(at(zi)),()ﬁ]

1€

inflinfo;  (g2)(2),0.5].
i€l
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Hence, o7 '(g2)(Vierz) > inflinf o7 (g2)(2:),0.5] for all z; € Q.
el

Now
o (@) (z@w) = g0z ®w))
= go(oy(2) ® or(w)), o¢ is a QH
inf(g2(0(2)), g2(or(w)),0.5)
= inf(o7 (92)(2), 07 (g2)(w), 0.5).
Thus, o, ' (92)(z @ w) > inf(o; ' (92)(2), 07 ' (g2)(w),0.5).

By Corollary we have o, !(g2) is an (€,€ Vq)-FS of Q;. =

Y

Lemma 4.2.5 The following two conditions are equivalent, for any f-subset g of Qy;

Zp, Wy € g — (2VW)inf(pv) (€ V), (5)

g(zVw) > inf(g(z), g(w),0.5), for all z, w € Q¢ and for all p, v € (0,1]. (6)

Proof. (5) — (6) On contrary assume that there exist z,w € Q¢ such that g(zVw) <
inf(g(z), g(w),0.5). Consider the following two cases.

Case:1 If inf(g(2),g(w)) < 0.5 then g(z Vw) < inf(g(2),g9(w)). We can find p €
(0,0.5) such that g(z Vw) < p < inf(g(2),g(w)), which means that z,,w, € g but

(2 Vw)p€g. Also g(zVw) +p <0.54+0.5=1s0 (2Vw)ygg. Thus, (2Vw),(€ Vq)g,

which is a contradiction.

Case:2 If inf(g(2), g(w)) > 0.5, then g(zVw) < 0.5. Now 295, wp.5 € g but (2Vw)o5€g

and g(zVw)+0.5 < 1,i.e., (2Vw),qg. Hence, (2Vw),r(0.50.5) (€ Vq)g, a contradiction.
Therefore g(z V w) > inf(g(z), g(w),0.5).

(6) — (5) Let zp,w, € g. Then g(z Vw) > inf(g(z),g9(w),0.5) > inf(p,v,0.5).
Consider the following two cases. Case:1 If inf(p,v) < 0.5, then g(z VvV w) > inf(p,v).
This shows that (2 V w)inf(p.v) € 9-

Case:2 If inf(p,v) > 0.5, then g(zVw) > 0.5. Hence, g(zVw)+inf(p,v) > 0.540.5 = 1,
ie., (2VW)infpwaq9- Thus (2V w)ispe) (€ Vg)g. m

Lemma 4.2.6 The following conditions are equivalent, for any f-subset g of a quantale
Qt;

€Y, wEQ — (WRz)p(€ Va)y, (7)

g(w®z) >inf(g(z),0.5) for all z,w € Q. (8)
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Proof. (7) — (8) Let z, w € Q¢ and 0.5 > g(z). Let g(z) > g(# ® w). Then there is

p € (0,1] such that g(z) > p > g(w ® z). This shows that z, € g and (w ® z),(€ Vq)g.
This is a contradiction against (7). So we have g(w ® z) > g(z) = inf(g(z),0.5). Now

consider g(z) > 0.5. If g(w ® z) < 0.5, then 295 € g and (w ® 2)o.5(€ Vq)g which is
again a contradiction against (7). Hence g(w ® z) > inf(g(z),0.5).

(8) — (7) Let w € Q¢ and z, € g. Then g(z) > p. By supposition, g(w ® z) >
inf(g(z),0.5) > inf(p,0.5). Consider the following two cases.

Case:1 If p < 0.5, then g(w ® z) > p. Thus, (v ® 2), € g.

Case:2 If p > 0.5, then g(w ® z) > 0.5. Hence, g(w ® z) +p > 0.5+ 0.5 = 1, ie.,
(w® 2)pgg. Thus (w ® Z)inf(p,v)(e Vq)g. =

Lemma 4.2.7 The following two conditions are equivalent, for any f-subset g of a

quantale Qy;
% € g,w € Qr — (2@w)y(€ V), (9)

g(z@w) >inf(g(z),0.5) for all z,w € Q. (10)
Proof. The Proof is similar to the proof of Lemma [

Lemma 4.2.8 The following two conditions are equivalent for any f-subset g of a

quantale Qy;
Zp € g and w < z — wp(€ Vq)g, (11)

w < z,9(w) >inf(g(2),0.5) forall z,w € Q. (12)

Proof. (11) — (12) Let w, z € @ and w < z. We consider two cases.
(a°) 0.5 > g(2),
(6°) 0.5 < g(2).

Consider the first case when g(z) < 0.5. Assume g(w) < inf(g(z),0.5). Then g(w) <
g(2). Take p such that g(z) > p > g(w) and g(w) +p < 1. Then 2, € g but w, (€ Vq)
g which is a contradiction. Hence g(w) > inf(g(z),0.5). For case (b°), let w < z and
g9(z) > 0.5. If g(w) < inf(g(z),0.5) = 0.5 and g(w) + 0.5 < 1, then zp5 € g but wy 5

(€ Vq) g, we obtain a contradiction. Therefore g(w) > inf(g(z),0.5).
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(12) — (11) Let w,z € Q¢ and w < z be such that 2z, € g. Then g(z) > p and by
supposition, we have g(w) > inf(g(z),0.5) > inf(p,0.5). This means that g(w) > p
or g(w) > 0.5, according to p < 0.5 or p > 0.5. Therefore wy(€ Vq)g. m

Proposition 4.2.9 A f-subset g of Q; is an (€,€ Vq)-FRI (FLI) of Q; if and only
if the coditions below hold

(1) g(z Vw) > inf(g(z), g(w),0.5);
(2) g(z®@w) > inf(g(2),0.5), [respectively g(w & z) > inf(g(z),0.5)];

(3) w < z, g(w) > inf(g(z),0.5), for all z, w € Q4.

Proof. Let g satisfy the conditions (1), (2) and (3). Since, the conditions (1), (2) and
(3) are equivalent to the conditions (6), (8) and (12), respectively (4.2.5}{4.2.6[4.2.74.2.8]).
Thus, g is an (€, € Vq)-FRI of Q.

Conversely, let g be an (€, € Vq)-F RI of Q);. Then g satisfies the the conditions (6), (8)
and (12), which are equivalent to the given conditions (1), (2) and (3), respectively. ®

Theorem 4.2.10 Let Q; and Q} be two quantales and oy : Qr — Q} be a QH. Let
g be an (€,€ Vq)-FRI (FLI) of Q,. Then o;*(g) is an (€,€ Vq)-FRI (FLI) of Q;.

Proof. The proof is similar to the proof of Theorem 4.2.4(2). m

Theorem 4.2.11 Let (Q:,®) be a quantale and {g;};c; be a non-empty family of
(€,€ Vq)-FRI (FLI) of Q¢. Then 'rm[gi is an (€,€ Vq)-FRI (FLI) of Q.
1€

Proof. Let {g;};c; be a non-empty family of (€, € Vq)-FRI of Q;. Let w,z € Q; be
such that w < z. Then

(M gi)(w) = infgi(w)

el icl

= inflinfg(z),0.5]
el
= znf[(Z@]gz)(z), 0.5]
Thus, () > infl(0,6)(2).0.5]

Let w,z € Q¢. Then
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(Mgi)(wVz)= infgi(wV z)
el iel

> iifez{[mf(gi(w)vgi(Z),0-5)}

= mf[znfgl(w), infgi(z)]a 05]
el i€l
= Z’I’Lf[@ gi(w)7 @gl(z)705]
el el
- > : : 5.
Hence ( 90:)(w\ ) > inf1(8.60)(w). (8.9:)(2), 03
Also for w, z € Qy, we have,
(Mgi)(z@w)=infgi(z®w)
el iel

> z‘iqg[z‘nf(gi(z)a 0.5)]

= nflinfgi(z),0.5]
i€l
= mf[irglgi(z),().f)]
Thus (M g;)(z ®@ w) = inf[(( M 9:)(2),0.5].
1€ 1€
Therefore M gi is an (€,€ Vq)-FRI of Q;. m
S

The following Proposition and Corollary are obvious.
Proposition 4.2.12 FEvery (€ Vq, € Vq)-FI of Q is an (€,€ Vq)-FI of Q.
Corollary 4.2.13 FEvery (€,€)-FI of Qq is an (€,€ Vq)-FI of Q.

The Example below shows that the converse of Proposition [4.2.12]and Corollary [4.2.13

are not true in general.

Example 4.2.14 Consider the quantale Q; as defined in Ezample [ 1.10] and taking

92%4-%4-%—1—%. Then
(1) It is simple to confirm that g is an (€, € Vq)-FI of Q.

(2) g is not an (€, €)-FI of Qy, since iges € g and josg € g but (i V J)inf(0.68,0.59) =
To.59€9.

(3) g is not an (€ Vq,€ Vq)-FI of Q, since iges(€ Vq)g and joso(€ Vq)g but (i V
J)ing(0.68,0.59) = To0.59(€ Va)g-

Definition 4.2.15 Let C be a crisp subset of a quantale Qr. We use Ko to denote
the characteristic function of C, i.e., the mapping of a quantale Qy into [0,1] defined
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by

) Lifz €C,
KC(Z)_{ 0, if z ¢ C.

The following results are about the characteristic function K¢ of an ideal C of a

quantale Q.

Lemma 4.2.16 Let ) # C C Q;. Then K¢ (the characteristic function) is an (€, €)-
FI of Q; if and only if C is an ideal of Q.

Proof. Let C be an ideal of Q;. Let w,z € @; and p,v € (0,1] be such that
wp € K¢ and 2z, € K¢. Then Ko(w) > p > 0 and K¢(z) > v > 0, which imply that
Kco(w) = Ko(2) = 1. Thus w,z € C and C is an ideal so w V z € C. It follows that
Ko(wVz) =12>1inf(p,v) so that (wV 2)nfpe) € Ko. Now let b,z € Q and p € (0,1]
be such that b, € K¢. Then K¢(b) > p > 0, and so K¢(b) =1, i.e., b € C. Since C
is an ideal of @, we have b® z,z2® b € C' and hence Ko(b® z) = Kc(b® z) =1 > p.
Therefore (b® 2), € K¢ and (2 ®0b), € K¢. Let w,z € Qy, 2, € K¢ and w < z. Then
Kco(z) > p >0, and so K¢o(z) = 1, i.e., z € C. Since C is an ideal, we have w € C
and so K¢(w) =1 > p. Therefore w, € K¢ and consequently K¢ is an (€, €)-FI of

Q-

Conversely, let K¢ be an (€,€)-F1I of Q; and w,z € C. Then (w); € K¢ and (2); €
K¢ which show that (wV z)1 = (wV 2)inp1,1) € Kc. Hence Ko(w V z) > 0, and so
wVzeC. Let wyz € Qy, w<zand z € C. Then K¢(z) = 1, and thus (z); € K¢.
Since K¢ is an (€, €)-FI, so we have (w); € K¢. Thus Ko(w) = 1. Hence w € C.
Now let w € Q¢ and z € C. Then K¢(z) = 1, and thus (z); € K¢. Since K¢ is an
(€,€)-F1, it follows that (z ® w); € K¢ so that Ko(z ® w) = 1. Hence z ®@ w € C.
Similarly, w ® z € C as C' is an ideal of ();. =

Proposition 4.2.17 Let ) # C C Qy. Then, C is an ideal of Q; if and only if K¢ is
an (€,€ Vq)-FI of Q.

Proof. Let C be an ideal of Q;. Then K¢ is an (€, €)-FI of @; by lemma|4.2.16] and
therefore K¢ is an (€, € Vq)-FI of @Q; by Corollary [4.2.13

Conversely, let K¢ be an (€, € Vq)-FI of Q;. Let w,z € C. Then wy; € K¢ and z €
K¢ which show that (wV 2)1 = (wV 2)inr1,1) (€ Vg)Kc. Hence Ko(w V z) > 0, and
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sowVzeC. Let w,z € Q, w< zand z € C. Then K¢(z) =1, and thus z; € K¢.
Since K¢ is an (€, € Vq)-F1, so we have w; € K¢. Thus Ko(w) = 1. Hence w € C.
Now let w € @ and z € C. Then K¢(z) = 1, and thus z; € K¢. Since K¢ is an
(€,€ Vq)-F1, it follows that (z @ w); € K¢ so that Ko(z®@w) = 1. Hence z@w € C.
Also, w® z € C as C is an ideal of Q;. =

Proposition 4.2.18 Let g be an (€,€ Vq)-FI of Q¢ such that g(w) < 0.5 for all
w € Q. Then g is an (€,€)-FI of Q.

Proof. Let g be an (€, € Vq)-FI of Q; such that g(w) < 0.5 for all w € @;. Then by
Proposition we have

(1) g(zVw) > inf(g(2), g(w),0.5) = inf(g(2), g(w))
(2) g(z @ w) > inf(g(2),0.5) = g(2) and g(w ® z) > inf(g(z),0.5) = g(z)

(3) w < 2z, g(w) > inf(g(2),0.5) = g(z). Thus g is an (€, €)-FI of Q; by Lemma
AIT0 m

Theorem 4.2.19 Let Q; be a quantale and g be a f-subset of Q. Then g is an
(€,€ Vq)-FI of Q. if and only if each non-empty U(g;p) is an ideal of Q¢ for all
p € (0,0.5].

Proof. Consider g be an (€,€ Vq)-FI of Q; and p € (0,0.5]. Let w,z € @Q; be
such that w < z. If z € U(g;p) then g(z) > p. Since g(w) > inf(g(z),0.5) >
inf(p,0.5) = p, we have w € U(g;p). Let w,z € Q¢ be such that w € U(g;p).
Then g(w) > p. Now since, g(z ® w) > inf(g(w),0.5) > inf(p,0.5) = p, so we have
z®@w € U(g;p). Similarly, we can obtain w ® z € U(g;p). Let w,y € U(g;p). Then
g(w) > p and g(y) > p. Since g is an (€,€ Vq)-FI of @, so we have g(w V y) >
inf(g(w),g(y),0.5) >inf(p,0.5) = p. Thus wVy € U(g;p). Hence U(g;p) is an ideal

of Qt-

Conversely, suppose ) # U(g;p) is an ideal of @; for all p € (0,0.5]. Let there
exist w,z € @ such that g(w V z) < inf(g(z),g(w),0.5), then we can take p such
that g(w V 2) < p < inf(g9(z),g(w),0.5). Thus w,z € U(g;p) and p < 0.5 and so
wV z € U(g;p). This is a contradiction. Therefore g(w V z) > inf(g(2), g(w), 0.5) for
all w,z € Q. Now if there exist y,z € Q; such that g(y ® z) < inf(g(z),0.5), then
we can choose p € (0,0.5] such that g(y ® z) < p < inf(g(z),0.5). It concludes that
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z € U(g;p) and p < 0.5 so that y ® z € U(g; p), similarly, we have z®@y € U(g;p), i.e.,
g(y®z) > pand g(z®y) > p. This is a contradiction. Hence g(y ® z) > inf(g(z),0.5)
and g(z ® y) > inf(g(2),0.5) for all w,z € Q. Let w,z € @y and w < z. If
g(w) < inf(g(z),0.5), we can find p € (0,0.5] such that g(w) < p < inf(g(z),0.5).
This implies that z € U(g;p) and p < 0.5. Since U(g;p) is an ideal, so w € U(g;p).
Hence g(w) > p. This gives a contradiction. So g(w) > inf(g(z),0.5) for all w, z € Q.

Using Proposition gisan (€,€ Vq)-FI of Q;. m

4.3 (€,€ Vq)-Fuzzy Prime (semi prime) Ideals of Quantale

In this section, we define (€, € Vq)-fuzzy prime and (€, € Vq)-fuzzy semi prime
ideals of a Quantale. It is also investigated that if a f-subset g is an (€, € Vq)- fuzzy
prime ((€,€ Vq)-fuzzy semi prime) ideal of @}, then o;'(g) is an (€, € Vq)- fuzzy
prime ((€, € Vq)- fuzzy semi-prime) ideal of @Q);, where o is a QH.

The following shortened forms (€, € Vq)-FPI and (€, € Vq)-FSPI will be used for
(€, € Vq)-fuzzy prime ideals and (€, € Vq)-fuzzy semi prime ideals, respectively.

Definition 4.3.1 An («, 8)-F1I, g of a quantale Q; is called an (o, B)-FPI of Q¢ if
for all p € (0,1] and z,w € Q¢, (2 @ w)pag — (2)pBg or (w)pBg. An (a,B)-FI,
g of a quantale Q is called an (o, B)-FSPI of Qq if for all z € Q¢ and p € (0,1],
(2 ® 2)pag — (2)pByg.

Proposition 4.3.2 A f-subset g of a quantale QQ; is a FPI if and only if g is an
(e,€)-FPI.

Proof. Let g be a FPI. Then g(w ® z) = g(w) or g(w ® z) = g(z) for all z, w € Q4.
Let (w® z), € g for some p € (0,1]. Then g(w® z) > p. Thus g(w) = g(w®z) > p or
9(2) = g(w®z) > p. This implies that w, € g or 2, € g. Therefore g is an (€, €)-FPI.

Conversely, let g be an (€, €)-FPI. Let z, w € Q; and g(w®z) = v for some v € (0, 1].
Then g(w ® z) > v. This shows that (z ® w), € ¢g. This gives w, € g or z, € g. So
g(w) > v or g(z) > v, ie., glw) > glw® z) or g(2) > g(w ® z) Thus we have,

sup(g(w), g(z)) > g(w ® z). But since g is an (€, €)-FPI, therefore g is a FPI by
Proposition [1.4.12 =
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Theorem 4.3.3 A f-subset g is a (q,q)-FPI of a quantale Q; if and only if g is an
(€,€)-FPI of Q.

Proof. Let g be a (q,q)-FPI of the quantale ;. Let p € (0,1] and z,y € Q; be
such that (y ® z), € g. Then g(y ® z) > p. This implies that g(y ® z) + € > p,
for some € > 0 — gly®@z) +e—p+1>1 — (y® 2)(pi1)q9- Since g is a
(¢,9)-FPI, 80 (Y)(c—p+1)q9 OT (2)(c—p+1)qg- This implies that g(y) +e—p+1>1or
g(z)+e—p+1>1-—g(y)te>porg(z)+te>p—g(y) =porg(z) 2p—yp €y
or z, € g. Hence (y® z), € g — yp € g or 2z, € g. Thus g is an (€, €)-FPI of Q.

Conversely, assume that (y ® z),q9 — g(y@2z)+p>1—g(y®z) >1—p —

9(y®z) > e—p+1 > 1—pforsomee > 0 — (yRz) € g. Since gisan (€,€)-FPI

(e=p+1)

of Q. Therefore, we havey, ., € gorz € g. Thus we have g(y) > e—p+1 > 1-p

e—p+1
org(z) 2e-p+1>1-p—g(y)>1-porg(z) >1—p—g(y)+p>1lor
g(z) +p > 1 — ypqg or z,q9. Thus (y ® 2)pqg — ypqg or z,qg. Hence g is a

(q,q)-FPI of the quantale Q;. =

Proposition 4.3.4 An (€,€ Vq)-F1, g of a quantale Q; is an (€, € Vq)-FPI if and
only if sup(g(z), g(w)) > inf(g(z ® w),0.5) for all w,z € Q.

Proof. We want to show that sup(g(z),g(w)) > inf(g(z ® w),0.5) for all w,z € Q.
Let there exist y,z € @ such that sup(g(z),9(y)) < inf(g(y ® z),0.5). Then there
exist v such that sup(g(z),9(y)) < v < inf(g(y ® 2),0.5) for v € (0,0.5]. This means
that g(y ® z) > v — (y® 2), € g. But g(y) < v and g(z) < v, i.e., y,€g and z,€Eg.
Also we have g(y) +v < 2v < 2x 0.5 =1 — y,(€ Vq)g, z(€ Vq)g. This gives a

contradiction. Hence we have sup(g(z), g(w)) > inf(g(z ® w),0.5) for all w, z € Q.

Conversely, suppose that the condition sup(g(z), g(y)) > inf(g(z®y),0.5) holds for all
Y,z € Q. Let w, z € @ be such that (w®z), € g, where v € (0, 1]. Then g(w®z) > v.
Thus by supposition we have sup(g(z),g(y)) > inf(g(z ® y),0.5) > inf(v,0.5). Now
sup(g(z), g(y)) > v if we suppose v < 0.5. Hence g(z) > v or g(y) > v. This implies
Yy € g Or 2, € g. If we suppose v > 0.5, then sup(g(z),g(y)) > 0.5. Thus g(z) > 0.5
or g(y) > 05 — gy) +v > 05+v >05+05=1o0rg(z)+v >05+v >
0.5+ 0.5 =1 — y,qg or z,qg. By combining the above two cases, we have y,(€ Vq)g
or zy(€ Vq)g. Hence (w ® z), € g — yu(€ Vq)g or z,(€ Vq)g. Therefore g is an
(e,eVq)-FPI of Q;. m

The following Proposition gives a criteria for an (€, € Vq)-FPI to be an (€, €)-FPI.
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Proposition 4.3.5 If a f-subset g of a quantale Q; is an (€,€ Vq)-FPI of Q¢ and
9(z) < 0.5 for all z € Qq, then g is also an (€,€)-FPI of Q.

Proof. Suppose g is an (€,€ Vq)-FPI of Q¢ and g(z) < 0.5 for all z € Q. Let
(r® 2)y € g. Then g(x ® z) > v. Since ® is a binary operation on (; so * ® z € Qy,
hence we have v < g(z ® z) < 0.5, i.e.,, v < 0.5 and g(z) < 0.5, g(z) < 0.5. Also
9(2) +v<0.5+0.5=1and g(x) +v < 0.5+ 0.5 = 1. This gives x,gg and z,Gg. So
we have x, € g or z, € g as g is an (€,€ Vq)-FPI. Thus g is an (€,€)-FPI of Q;. m

Theorem 4.3.6 An (€,€ Vq)-FI, g of a quantale Q; is an (€, € Vq)-FPI if and only
if for all 0 < p < 0.5, each non-empty U(g;p) is a PI of Q.

Proof. Let g be an (€,€ Vq)-FPI. Then g is an (€,€ Vq)-FI. Each § # U(g;p) is
an ideal of @, by Theorem [4.2.19] Let y ® z € U(g;p). Then g(y ® z) > p. Now, by

Proposition we have sup(g(y),g(z)) > inf(9(y ® 2),0.5) > inf(p,0.5) = p. So,
g(y) > por g(z) >p. Thusy € U(g;p) or z € U(g;p). Hence U(g;p) is a PI of Q.

Conversely, suppose that U(g;p) is a PI of @y for all p € (0,0.5] and assume that
the condition sup(g(z),g(w)) > inf(g(z ® w),0.5) is not valid. Then there exist some
a,c € Q¢ such that sup(g(a),g(c)) < inf(g(a ® c),0.5) and we take p € (0,0.5) such
that sup(g(a),g(c)) < p < inf(g(a ® c),0.5). This implies that a ® ¢ € U(g;p) but
a,c ¢ U(g;p). This contradicts our supposition. Hence we must have sup(g(a), g(c))
> inf(g(a® c),0.5). Consequently, g is an (€, € Vq)-FPI of Q; by Proposition [4.3.4]
u

Theorem 4.3.7 Let ) # A C Q; be a PI if and only if the f-subset g of Q; defined
by g(2) =p > 0.5 for z € A and g(z) = 0 otherwise is an (€, € Vq)-FPI of Q.

Proof. Proof is similar to the proof of Theorem [

The proof of following Proposition is similar to the proof of Proposition [4.2.17]

Theorem 4.3.8 Let ) # A C Q. Then K4 (the characteristic function) is an (€, €
Vq)-FPI of Q. if and only if A is a PI of Q.

Theorem 4.3.9 Let (Q,®) and (Q},®") be two quantales and oy : Qr — Q) be a
QH. Let g be an (€, Vq)-FPI of Q,. Then o;'(g) is an (€,€ Vq)-FPI of Q.
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Proof. Let g be an (€, € Vq)-FPI of Q}. Then o;(g) is an (€, € Vq)-FI of Q; by
Theorem Let x, 2 € Q; be such that (z ® 2), € 0; *(g). Then o, *(g)(z ® 2) >
p — glo(zr ®2)) > p — (04(z ® 2)), € g. Since oy is a QH, we have (o¢(z) ®'
01(2))p € g. Asgisan (€, € Vq)-FPI of Q}, so (o(z))p(€ Vq)g or (04(2))p(€ Vq)g —
9(01(2)) 2 p or glow(2)) +p > L or glow(®)) > p or g(ou(@)) +p > 1 — 07 (g)(x) > p
or o7 (g)(x) +p > Lor oy (9)(z) = poro(g)(z) +p > 1 — x, € 0;'(g)
or x,q0 Y (g) or z, € o, (g) or z,q07(g) — wp(€ V@)a; Hg) or zy(€ Vg)o,  (g).
Thus (z ® 2), € 07 (g) — (€ Vq)o,;  (g) or z,(€ Vg)o; ' (g). Thus, o, (g) is an
(e,eVq)-FPI of Q;. m

The proof of following Propositions are similar to the proof of Proposition The-
orem Proposition and Theorem respectively.

Proposition 4.3.10 A f-subset g of Q; is a FSPI if and only if g is an (€,€)-FSPI.

Proposition 4.3.11 A f-subset g is a (q,q)-FSPI of a quantale Q; if and only if g
is an (€,€)-FSPI of Q.

Proposition 4.3.12 An (€,€ Vq)-F1, g of Q¢ is an (€,€ Vq)-FSPI if and only if
g(z) > inf(g9(z ® 2),0.5) for all z € Q.

Proposition 4.3.13 An (€,€ Vq)-FI, g of Q; is an (€,€ Vq)-FSPI if and only if
for all 0 < p < 0.5, each non-empty U(g;p) is a SPI of Q.

4.4 («,p)-Fuzzy Qi-submodule of Q);-module

Now properties of («, 3)-fuzzy Q-submodule of Q;-modules are introduced in this

section.

Definition 4.4.1 [60, [78] Let M and M’ be two Q¢-modules. A map p,, : M — M’
is a Qi-module homomorphism if it is a sup-lattice homomorphism which also

preserves scalar multiplication, i.e.

P (Viermi) = Vierpp(mi);

pm(a * m) = a*pp(m)
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for any a € Q¢,m € M, {m;} C M,(i € I).

A Q¢-module homomorphism p,, : M — M’ is called an epimorphism if p,, is onto
M’ and p,, is called @ monomorphism if p,, is one-one. It is an isomorphism, if

Pm 8 bijective.

Definition 4.4.2 Let M be a Qi-module and g be a f-subset of M. We say that g is
a fuzzy Q¢-submodule of M if
(1) g(Vierm;) > ’iﬂ{ g(m),

1€

(2) glaxm) > g(m) for all m;, m € M and a € Q¢(quantale).

Definition 4.4.3 A f-subset g of a Q¢-module M is called an (o, B)-fuzzy Q¢-submodule
of M, if
(1) (mi)p,ag — (Vi e Imi)in];pifgg;

S

(2) mpag, and a € Qr — (a*m),Bg for all p;, p € (0,1], m;, m € M and a € Q.

Lemma 4.4.4 A f-subset g of a Q¢-module M is a fuzzy Q¢-submodule of M if and
only if it satisfies
(1) (mi)p, € g — (Vi e 1Mi)ingp; € 9,

i€l

(2) mp € g,a € Qr — (axm), € g for all p;,p € (0,1], mj;m € M and a € Q.

Proof. Let g be a fuzzy Q;-submodule of a Q;-module M. Let m; € M and p; € (0, 1]
be such that (m;),, € g for i € I. Then g(m;) > p;, for all ¢ € I. Since g is a fuzzy
Q¢-submodule of M, so g(Vierm;) > inf g(m;) > inf pi. Hence (V; ¢ Imi)?nfpi €g.
Let a € Q¢, m € M and p € (0,1] be Zseulch that mpZEEI g. Then g(m) > p. Bllellt gis a
fuzzy @Q;-submodule of M, hence we have g(a *xm) > g(m) > p. Thus g(a xm) > p.
This implies that (a * w), € g.

Conversely, suppose that g satisfies the conditions (1) and (2). First we show that

g(Vierm;) > inf g(m;) for i € I. On contrary suppose that g(Vierm;) < inf g(m;)
iel iel
for some m; € M. Let p € (0,1] be such that g(Vierm;) < p < inf g(m;). Then
el

(mi)p € g but (V; ¢ rm;),€g. This contradicts our hypothesis. Thus g(Vierm;) > inf

el
g(m;) for all m; € M. Now we show that g(a * m) > g(m) for all m € M and a € Q.
Let g(a*m) < g(m). Then there exist v € (0, 1] such that g(a*m) < v < g(m). Thus
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my € g and (a x m),Eg, a contradiction. Hence g(a * m) > g(m) for all m € M and

a € @Q¢. This concludes that g is a fuzzy @Q¢-submodule of M. =

Remark 4.4.5 [t is concluded from the above Lemma that every fuzzy Q¢-submodule
of M is an (€, €)-fuzzy Q-submodule of M.

Theorem 4.4.6 Let g be a nonzero («, 8)-fuzzy Q¢-submodule of M. Then the set
9o ={y € Q¢ | g(y) > 0} is a Q¢-submodule of M.

Proof. Let m; € g, for ¢ € I. Then g(m;) > 0 for all : € I. Let g(Vierm;) = 0.

If a € {€,€Vq}, then (m;)gm,ag for all i € I but g(Vierm;) = 0 < inf g(m;)
el

and g(Viermi) + m{ glm;) < 0+ 1 = 1. So (Viermi)insg(m;)Bg for every p €
i iel

1€
{€,q,€ Vg, € Nq}, a contradiction. Hence g(V;eym;) > 0, that is Vierm; € go.

Also (m;)1qg for all i € I but (Vieym;)18g for every B € {€,q,€ Vg, € Aq}. Hence
9(Vierm;) > 0, that is Vieym; € go. Let m € g, and for all ¢ € Q;. Then g(m) > 0.
We want to show that g(g*m) > 0 for all ¢ € Q;. Suppose that g(q*m) = 0 and let
a € {€,€ Vg}. Then (m)gm)yag but (g * m)g(m)ﬁg for every B € {€,q, € Vg, € N},
this is a contradiction. Also (m)1qg but (¢ *m)18g for every g € {€,q,€ Vq, € A}, a
contradiction. Therefore g(g*m) > 0 and so ¢ *m € go,. Hence g, is a Q;-submodule
of M. m

Theorem 4.4.7 Let A be a Q¢-submodule of M. Then a f-subset g of Q¢ such that
g(c) > 0.5 for c € A and g(c) = 0 otherwise, is an (o, € Vq)-fuzzy Q-submodule of
M.

Proof. Let A be a Q;-submodule of M.

(a) Let m; € M and v; € (0,1] for ¢ € I be such that (m;),, € g. Then g(m;) > v;
for all ¢ € I. Thus m; € A and so V;eym; € A because A is a (Qi-submodule of M,

that is g(Viermi) > 0.5. If inf(v;) < 0.5, then g(Vierm;) > 0.5 > inf(v;). Hence
(\/iejmi)igg(w) €g. If Zzzlf(vl)li[ 0.5, then g(Vierm;) + 7;2{(1)@) > 0.5 —|—l(€).15 =1 and so
(de")i’;{@i)qg' Therefore (\/iejmi)i,g(vi)(e Vq)g.

Now let m € M and p € (0, 1] be such that m, € g. Then g(m) > p, which implies m €
A, and so g xm € A for all ¢ € Qs because A is a QQs-submodule of M. Consequently

g(g*m) > 0.5. If p < 0.5, then g(g * m) > 0.5 > p. Hence (¢*m), € g. If p > 0.5,
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then g(¢*m)+p > 0.5+ 0.5 =1 and so (¢ *x m),qg. Thus (¢ *m),(€ Vq)g. Hence g
is an (€, € Vq)-fuzzy @Qi-submodule of M.

(b) Let m; € M and p; € (0,1] be such that (m;)p,q9. Then g(m;) + p; > 1 and
m; € A. Since A is a Qi-submodule of M so Vieym; € A, we have g(Vieym;) > 0.5.
If z:g"(pl) < 0.5, then g(Vierm;) > 0.5 > z:g"(pz) Hence (\/igmi)ég(m) €yg. If
ZZTGL{(pZ) > 0.5, then g(Vierm;) + ZZTEL{(pZ) > 0.5+ 0.5 = 1 and so (\/ielmi)%{(pi)qg.
Therefore (\/iejmi)ilz{(pi)(e Vq)g.

Let m € M and v € (0,1] be such that m,qg. Then, g(m)+v > 1. Thus m € A
and so g *m is in A for all ¢ € @;. This means that g(g*m) > 0.5. If v < 0.5, then
g(g*m) > 0.5>v. Hence (g *xm), € g. If v > 0.5, then g(g*m)+v>05+05=1
and so (¢*m),qg. Thus (¢*xm),(€ Vq)g. Hence g is an (q, € Vq)-fuzzy Q;-submodule

of M.

(c) Let m; € M and p; € (0,1] be such that (m;),, € g or (m;)p,q9. Then g(m;) > p;
and g(m;) + p; > 1. Since m; € A, we have that V;eym; € A. Hence g(Vieym;) > 0.5.
Thus, (Vierm:)ingp,) € g for inf(p;) < 0.5 and (Viermi)inf(p,)q9 for inf(p;) > 0.5.

Thus (Vierm;) y(€ Vq)g. The rest is similar to the proof of parts (a) and (b). =

inf(ps
Proposition 4.4.8 Let g be a f-subset of a Qi-module M and p,, : M — M’ be a
Q¢-module homomorphism. Then (p,,(m))pag if and only if myap;,t(g) for allm € M
and p € (0,1].

Proof. Let @ = €. Then (p,,(m)), € g < glpn(m)) > p <= p,l(g)(m) >
p = my € p,l(9). Let @ = q. Then (p,(m))pag <= g(pm(m)) +p > 1 <=
Pt (9)(m) +p > 1 <= myqp;,' (g). Similarly, we can show the other cases. m

Theorem 4.4.9 Let (M,x) and (M',+") be Q¢-modules and p,, : M — M' be a Q-
module homomorphism. Let g be an (o, B)-fuzzy Qi-submodule of M'. Then p,;}(g) is
an (o, B)-fuzzy Q-submodule of M.

Proof. Let m; € M and p; € (0,1] for i € I be such that (m;)y,ap;,}(g). Then

(P (ms))p, g for all ¢ € I, by Proposition Since ¢ is an («, 8)-fuzzy Q-
submodule of M’, we have (Vierp,(1i))ins(p)B9 and so (pn,(Viermi))ingp)B9 by

i€l i€l

using @Q;-module homomorphism. Thus, (Viermi)inf(p,) Bpmtg by Proposition [4.4.8|
i€l

Let zpap,lg and for all ¢ € @Q;. Then (p,,(x))pag. Hence, for all ¢ € Qy, (q *
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Pm(2))pB9 — (p(q * ))pBg as g is an (a, §)-fuzzy Qs-submodule of M’ and p,, is
a @Qy-module homomorphism. Again by Proposition we have (q x x),8p,,1(g).
Hence p.'(g) is an (a, B)-fuzzy Qs-submodule of M. m

4.5 (€,€ Vq)-Fuzzy Q;-submodule of Q;-Module

In this section, we will present some results about (€, € Vq)-fuzzy Q;-submodules.

Lemma 4.5.1 For a f-subset g of a Qi-module M, the following two conditions are

equivalent:

(mi)m €g9— (Vie Imi)i_n{pz(e Vaq)g, (1)
1€

9(Vierm;) > inf(inf g(m;),0.5). (2)

i€l
Proof. Proof is similar to the proof of Lemma ]

Lemma 4.5.2 The following conditions are equivalent, for any f-subset g of a Q-
module M;

mp €9, q€Qr— (gxm)y(€ Va)y, (3)

g(gxm) > inf(g(m),0.5) for allm € M, and q € Q. (4)
Proof. The Proof is similar to the proof of Lemma ]

Proposition 4.5.3 A f-subset g of M is an (€,€ Vq)-fuzzy Q¢-submodule of M if
and only if it satisfies (2) and (4).

Theorem 4.5.4 Let M and M’ be two Q¢-modules and p,, : M — M’ be a Q-
module homomorphism. Let g1 and g be (€, € Vq)-fuzzy Q-submodule sof M and
M, respectively. Then

(1) pm(g1) is an (€, € Vq)-fuzzy Qi-submodule of M,

(2) pl(g2) is an (€, € Vq)-fuzzy Qi-submodule of M.

Proof. (1) For any m;,m € M’ and q € Qy, if p,,,}(m;) = 0 for some i € I, then inf[inf
el
P (g1)(mi), 0.5] = 0 < py, (1) (Vierm:) and if it (m) = 0, then inf (p,,(91)(m),0.5) =

0 < p,,(91)(gxm). Now suppose that p,,}(m;) # 0 for each i € I and p,,,}(Vierm;) # 0.
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Thus,
inf[in{(pm(gl)(mi>)70-5] = inflinflon(91)(m1), p(91)(M2), .., P (g1)(m4)], 0.5]
1€
= anflinf[  Sup gi(a1),..., Sup  g1(a;)],0.5]
a1 € pm'(m1) ai € pm'(m;)

= Sup inflinf(gi(a1),...,g1(a;)),0.5]
a1 € pmt(mi),..., a; € pm*(m;)

= Sup inflinf(gi(a1), ..., g1(a;)),0.5]
Pm(a1) = M1, pp(ai) = my

= Sup inflinfgi(a;),0.5]
\/iEIan(ai) = \/ie[mi s

= Sup inflinfgi(a;),0.5], p,, is a QM H
pm(\/ie]ai) = Vierm; el

< Sup 91(Viera;)
Vierai € pm' (Vierms)

= Sup g1(y)
Yy € pm' (Vierms)

= pm(91)(Viermi)

Hence, p,,,(91)(Viermi) > inflinf p,,(g1)(m;),0.5] for all m; € M.
el

and
an[pm(gl)(z)705] = an[ Sup gl(a’)vo'S]
a € p;Ll(z)
= Sup inflgi(a),0.5]
a€ prt(2)
= Sup inflgi(a),0.5]
pmla)=z

= Sup  inflgi(a),0.5]
a*' Py (a)=q¥' 2
= Sup inflgi(a),0.5], pp, is a QM H

p'm(q*a):q*lz

< Sup  gi(q*a)
q*a € pp'(q¥'2)
= Sup  g1(y)

Y € o (g¥'2)
= Pm(91)(g+ 2)
S0, pm(g1)(q* 2) > inf[p,,(91)(2),0.5] for all z € M" and ¢ € Q;. Thus, we have
Pm(g1) is an (€, € Vq)-fuzzy Q;-submodule of M'.

(2) Proof is similar to the proof of Theorem ]

Corollary 4.5.5 Every (€ Vq, € Vq)-fuzzy Q¢-submodule of M is an (€, € Vq)-fuzzy
Q¢-submodule of M.
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Proof. Obvious. m

Corollary 4.5.6 Every (€, €)-fuzzy Q-submodule of M is an (€,€ Vq)-fuzzy Q-
submodule of M.

Proof. Straightforward. m

Definition 4.5.7 Let C' be a crisp subset of a Qi-module M. We use Ko to denote
the characteristic function of C, i.e., the mapping from M into [0,1] defined by
{ 1, if z €C,

Ke(z) = 0, if 2 ¢C.

The following results are about the characteristic function K¢ of a Q¢-submodule C
of a @Q¢-module M.

Lemma 4.5.8 Let ) # C C Q;. Then K¢ (the characteristic function) is an (€, €)-
fuzzy Q-submodule of M if and only if C' is a Q-submodule of M.

Proof. Let C be a Qi-submodule of M. Let w; € M and p; € (0,1] be such that
(wi)p; € Kc¢. Then Ko (w;) > p; > 0, which imply that K¢(w;) = 1. Thus w; € C and
C' is a Q¢-submodule of M so Vcrw; € C. It follows that Ko (Vierw;) =1 > inf(p;)
80 (Vierwi)inf(p) € Kc. Now let b € M, g € Q; and p € (0,1] be such that b, € Kc.
Then K¢(b) > p > 0, and so K¢(b) =1, i.e., b € C. Since C is a Q¢-submodule of M,
we have ¢ * b € C and hence K¢(q*b) =1 > p. Therefore (¢ xb), € Kc.

Conversely, let K¢ be an (€, €)-fuzzy Q¢-submodule of M and w; € C. Then (w;); €
K. This shows that (Vierwi)1 = (Vierwi)inga,1) € Ko Hence Ko (Vierw;) > 0, and
50 Vieqw; € C. Now let ¢ € Q; and z € C. Then K¢ (z) = 1, and thus 2; € K¢. Since
K¢ is an (€, €)-fuzzy Qi-submodule, it follows that (¢ * 2); € K¢ so Ko(g* z) = 1.
Hence ¢ * z € C. Thus, C is a Qs-submodule of M. m

Proposition 4.5.9 Let () # C C Q. Then K¢ is an (€, € Vq)-fuzzy Qt-submodule of
M if and only if C is a Q¢-submodule of M.

Proof. Let C be a Q;-submodule of M. Then K¢ is an (€, €)-fuzzy Q;-submodule
of M by lemma [4.5.8] and therefore K¢ is an (€, € Vq)- fuzzy Qi-submodule of M by

Corollary
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Conversely, let K¢ be an (€, € Vq)-fuzzy Q¢-submodule of M. Let z; € C. Then (z)1
€ K¢ which show that (Vierzi)1 = (Vier2i)inga,1)(€ V@) Kc. Hence Kco(Vierzi) > 0,
and so Vierz; € C. Now let a € Q; and z € C. Then K¢ (z) = 1, and thus 21 € K¢.
Since K¢ is an (€, € Vq)-fuzzy @Qi-submodule, it follows that (a x z); € K¢ so that
Kc(a*z)=1. Hence a* z € C. Hence C is a Q¢-submodule of M. m

Proposition 4.5.10 Let g be an (€, € Vq)-fuzzy Q¢-submodule of M such that g(w) <
0.5 for allw € M. Then g is an (€, €)-fuzzy Q-submodule of M.

Proof. Suppose g is an (€, € Vq)-fuzzy Q;-submodule of M such that g(z) < 0.5 for
all z € M. Let (2;)p, € g. Then 0.5 > g(z;) > p;. Since z; € M and M is closed under
join, so Vierz; € M and 0.5 > g(Vierzi). Thus g(Vierzi) +inf(p;) < 0.5+ 0.5 = 1,
i.e., (Vierzi)inf(p)@9- But since g is an (€, € Vq)-fuzzy Q;-submodule of M, this shows
that (Vier2i)inf(p,) € 9- Similarly, we can show that (a * 2), € g for 2z, € g and for all
a€ @ m

Theorem 4.5.11 Let M be a Qi-module and g be a f-subset of M. Then g is an
(€, € Vq)-fuzzy Qi-submodule of M if and only if each non-empty U(g;p) is a Q-
submodule of M for all p € (0,0.5].

Proof. Let g be an (€, € Vq)-fuzzy Qi-submodule of M and p € (0,0.5]. Let z €
M and g € @Q; be such that x € U(g;p). Then g(x) > p. Now since g(q *x x) >
inf(g(x),0.5) > inf(p,0.5) = p, so we have g xx € U(g;p). Let x; € U(g;p). Then
g(x;) > p. Since g is an (€, € Vq)-fuzzy Q¢-submodule of M, so we have g(Vierz;) >
mf(mfg(:}:z),05) > inf(p,0.5) = p. Thus Vicrz; € U(g;p). Hence U(g;p) is Q-
subrrig(liule of M.

Conversely, assume that each non-empty U(g;p) is a Q¢-submodule of M for all p €
(0,0.5]. Let there exist m; € M such that g(Vierm;) < inf(inf g(m;),0.5), then we
el

1€
can take p such that g(Viermi) < p < inf(inf g(m;),0.5). Thus m; € U(g;p) and
el
p < 0.5 but Vierm; ¢ U(g;p). This is a contradiction. Therefore g(Vierm;) > inf(inf
el
g(m;),0.5) for all m; € M. Now, if there exist z € M and ¢ € @, such that g(q* z) <

inf(g(z),0.5), then we can choose p € (0,0.5] such that g(¢* z) < p <inf(g(z),0.5).
It follows that z € U(g;p) and p < 0.5 but ¢ * z ¢ U(g;p). This is not possible. Hence
g(g* z) > inf(g(2),0.5) for all ¢ € Q; and z € M. Thus, ¢ is an (€,€ Vq)-fuzzy
Q-submodule of M by Proposition [



Chapter 5

Generalized Approximations of
(€, € Vq)-Fuzzy Ideals and

Subquantales in Quantale

In the present chapter, we are starting the investigation of roughness in (€, € Vq)-F'S
and (€, € Vq)-FI of quantales with respect to the generalized approximation space.
Moreover, it is demonstrated that GLA and GUA of (€,€ Vq)-FI, (€,€ Vq)-FS,
(€,€ Vq)-FPI and (€,€ Vq)-FSPI are (€,€ Vq)-FI, (€,€ Vq)-FS, (€,€ Vq)-FPI
and (€, € Vq)-FSPI by using SVH and SSV H, respectively.

In the first section, LA and UA of F'S are introduced. It is also noted that GLA
of a F'S is not a F'S while taking SV H. In the second section, initially the general-
ized approximations of (€, € Vq)-FS are examined. Then, we study the generalized
roughness of (€,€ Vq)-FI in terms of SVH and SSVH. It is observed that GLA
of (€,€ Vq)-FI is not a (€, € Vq)-FI while taking SVH and GUA of (€,€ Vq)-FI
is (€,€ Vq)-FI while taking SVH. Further, generalized roughness being extended
to (€,€ Vq)- FPI and (€,€ Vq)-FSPI. In the last sections approximations of fuzzy
Q¢-submodules and approximations of (€, € Vq)-fuzzy Q-submodules of Qi;-modules

are introduced.

88
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5.1 Lower and Upper Approximation of Fuzzy Subquan-
tales [Ideals|

It is observed that SV M are very useful to study roughness in quantales [91]. In

this section, initially the generalized approximations of F'S are examined.

Theorem 5.1.1 Let H : Q; — P*(Q}) be a SSVH and g be a FS of Q,. Then
H(g) is a FS of Q.

Proof. As g is given to be a F'S of @}, so by Definition we have g(Vert;) >
Nicrg(t;) and g(y @' t) > g(y) A g(t) for all y, ¢, t; € Q. As H : Qy — P*(Q}) is a
SSVH, so VierH(t;) = H(Vierti).

Consider,
H(g)(Viert:) = Inf  g(e)
e e H(\/ie]ti)
= Inf  g(e).

e Vie[H(ti)

Since e € VerH(t;), there exist a3 € H(t1), ag € H(ta),..., a; € H(t;) such that

e = Viera;.
Hence,
H(g)(Vierti) = Inf 9(Viera;)
Viera; € VierH(t;)
> Inf (Nicrg(as)]
Viera; € vieIH(ti)
= Inf [g(a1) A glaz)A, ..., Ag(ai]

a1 € H(t1), az € H(t2),..., a; € H(t;)

= ( Inf g(a1) | A ( Inf 9(02)) TAYRIYA ( Inf 9(%’))
a1 € H(ty) az € H(tz) a; € H(t;)
= Inf(H(g)(tr), H(g)(t2),..., H(g)(t:))

= Iz{ H(g)(t:).

Thus we have

H(g)(Vierti) > Inf H(g)(t;) for all t; € Q.
i€l

Now since H : Q; — P*(Q}) is a SSV H, we have H(t1) ® H(t2) = H(t1 ®ta) for all
t1, t2 € Qt'

Consider,
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H(g)(t1®t2) = Inf  g(e)
e e H(t1®t2)
= Inf — g(e)

e € H(t1) ® H(tz2)

As e € H(t1) ® H(t2), we obtain a; € H(t1) and as € H(t2) such that e = a3 @' as.

Hence,
H(g)(t1 ®t2) = Inf g(a1 ® az)
a1®’'as € H(tl) ®’H(t2)
> Inf [9(a1) A g(az)]
a1®’az € H(t1) ® H(t2)
= Inf [g(a1) A g(az)]

a1€ H(t1), az € H(t2)

= [ Inf gla)]Al Inf  g(az)]
a1€ H(t1) az € H(t2)

= Inf(H(g)(t1), H(g)(t2))-
Hence H(g)(t1 ® ta) > Inf(H(g)(t1), H(g)(t2)) for all t1, ta € Q.

Thus, H(g) isa F'S of Q;. =

Now we show that by using SVH, GLA of a F'S is not a F'S.

-I-I

Fig. 10

Table. 7
@ | L i 5 T
B I I
A O A K
N RS R
T+ i 5 T
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Example 5.1.2 Let (Q},®') be a quantale, where Q) is depicted in Fig. 10 and the

binary operations ®' on Q) is shown in the table 7.

Let H : Q) — P*(Q}) be defined by H(L") = H(i) = H(j) = {L'} and H(T') = Q;.
It is easily seen that H is a SV H. Consider a f-subset, g of Q) given by g = %—i— 07-5 +
% + % It is easily verified that g is a F'S of Q). With the help of Deﬁnition
we have H(g) = % + % + % + OT%‘?. As H(g)(t1 @ t2) > H(g)(t1) A H(g)(t2) is satisfied
for all ty, to € Q;. But H(g)(Viert:) > Inf H(g)(t;) for all t; € Q; is not satisfied in
this case, because H(g)(iV j) = ﬂ(g)(—l—lﬁ]: 0.5 and H(g)(i) NH(g9)(j) =1A1=1
Hence H(g)(iV3j) # H(g)(i) NH(g)(j). Hence GLA of a F'S is not a F'S while taking
SVH.

Theorem 5.1.3 Let H : Q; — P*(Q}) be a SVH and g be a FS of Q. Then H(g)
is a F'S of Q.

Proof. As gisa FS of Q}, so we have g(Viert;) > Nierg(t;) and g(y ®@'t) > g(y) Ag(t)
for all y, ¢, t; € Q). Since H : Q; — P*(Q}) is a SVH, we have V;erH(t;) C
H(Vierts).

For this consider,

Inf H(g)(t:) = Inf (H(g)(t1), H(g)(t2), ... H(g)(t:))

el i€l
= ( Sup 9(‘11)) A ( Sup 9(‘12)) Aoy A ( Sup 9(%‘))
a1 € H(t1) az € H(t2) a; € H(t;)
= Sup [g(a1) A glag)A, ..., A g(a;]
a1 € H(t1), a2 € H(t2),..., a; € H(t;)
= Sup [Nierg(a;)]
Viera; € VierH(t;)
< Sup 9(Viera;)
Viera; € \/-L'e[H(ti)
< Sup 9(Viera;)
Viera; € H(Vierti)
= Sup  g(e)
e € H(vielti)
= H(g)(Vierti)-
Hence H(g)(Vierti) > Inf H(g)(t;) for all ¢; € Q;.
iel

As H:Qy — P*(Q}) isa SVH, so H(t1) ® H(te) C H(t1 ® to) for all t1, ta € Q.

Consider,
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Inf(H(g)(t1), H(g)(t2)) = [ Sup gla)]A[ Sup g(az)]

a1€ H(tl) az € H(tz)

= Sup [9(a1) A g(az2)]
a1 € H(tl), az € H(t2)

= Sup g(a1) A g(az)
a1®’ as € H(tl) ®' H(tz)

< Sup g(a; @ az)

a1®'a2 € H(t1) ® H(t2)

Sup g(a1 @ az)
a1®'az € H(t1®t2)

Sup  g(e)
e € H(t1®t2)

= H(g)(t1 @12).
Hence H(g)(t1 ® t2) > Inf(H(g)(t1), H(g)(t2)) for all t1, t2 € Q;. Thus H(g) is a F'S
of Qt- |

IN

Theorem 5.1.4 [67] Let H : Q — P*(Q}) be a SSVH and g be a FI of Q). Then
H(g) is a FI of Q.

Similarly, we can show that by using SV H, the GLA of FI is not a F1I.

Example 5.1.5 Let (Q},®')be a quantale, where Q} is depicted in Fig. 10 and the
binary operation @' on Q) is shown in the table 7. Let H : Q; — P*(Q}) be a SVH
as defined in Fxample . Let \ be a f-subset of Q) defined by
1 x=1'
Az) = ’ for all x € Q.
) { 0.7, x#L '

It is easy to verify that X is a FI of Q,. Now GLA of \ is H(\) = % + % + % + 0%.
We observe that H(A\)(iV j) = HA)(T') =0.7# H(A\) (i) ANH(\)(j) = 1. Hence GLA
of A is not a FI while taking SV H.

Theorem 5.1.6 [67] Let H : Q; — P*(Q}) be a SVH and g be a FI of Q). Then

H(g) is a FI of Q.

5.2 Lower and Upper Approximations of (€, € Vq)-Fuzzy
Ideals

It is well-known that the notion of ideals is one of the powerful tools to characterize

an algebraic structure. The idea of (€, € Vq)- fuzzy structures was started by Bhakat
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and Das [6]. These, (€, € Vq)-FI have significant role. Note that (&€, € Vq)-FI are
the generalization of F'I. In fuzzy algebraic structures, roughness has been considered
broadly, however less investigation has been made for roughness in an (€, € Vq)-FI
and (€, € Vq)-F'S. In this section, at first the investigation of generalized roughness
in (€, € Vq)-FS is started.

Theorem 5.2.1 Let g be an (€,€ Vq)-FS of Q; and H : Q; — P*(Q}) be a SSVH.
Then H(g) is an (€,€ Vq)-FS of Q.

Proof. As H : Q; — P*(Q}) is a SSVH, so VierH(z;) = H(Vierzi). Let g be an
(€,€ Vvq)-FS of Q.

Consider,
H(g)(Vierzi) = Inf  g(e)
e c H(Vie]Zi)
= Inf  g(e).

ec \/ieIH(Zi)

As e € VierH(z;), so there exist a; € H(z1),a2 € H(22),..., a; € H(z;) such that

e = Vic1a;.
H(g)(Vierz) = Inf 9(Viera;)
Viera; € ViE]H(Zi)
> Inf [Nierg(a;) A 0.5] by Lemma (4.2.1
Viera; € VierH(z;)
= Inf [9(a1) A glag)A, ..., Ag(a;] A 0.5

a1 € H(z1), a2 € H(22),..., a; € H(z;)

= Inf g(a1) | A Inf gla2) | A, ...iA Inf g(a;) | NO.5
a; € H(Zl) az € H(ZQ) a; € H(zz)

= IZZ{ [H(g)(z1) A H(g)(22)A, ..; A H(g)(2i)] A 0.5
= [Igg" H(g)(zi)] A0.5.

Hence H(g)(Vierz) > In f[(fg H(g)(2)),0.5] for all z € Q.

As Hisa SSVH,so H(z®@w) = H(z) ® H(w).

Consider,
H(g)(z ®w) = Inf  g(e)
e € H(2Qw)
= Inf  g(e).

e € H(z)®H(w)

As e € H(z) ® H(w), so there exist a; € H(z), az € H(w) such that e = a1 ® as.
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Hence,

H(g)(z @ w) = Inf

g(a1 ®" az)

a1®’az € H(z)®'H(w)

> Inf

[g(a1) A g(az) A 0.5] by Lemma

a1®' a2 € H(z)®'H(w)

= Inf
a1 € H(z), az € H(w)

= 1 Avpton)

[g(a1) A g(a2)] AN 0.5

<a2 e%(w)g(%)ﬂ A 0.5

= H(g)(z) NH(g)(w) A0.5.

4.2.2

Hence H(g)(z @ w) > Inf[H(g)(z), H(g)(w),0.5] for all z,w € Q. Thus, H(g) is an

(e,eVq)-FSofQ;. m

Example 5.2.2 Let (Q},®") be the quantale depicted in Fig. 10 and the binary op-
erations @' on @} is shown in the table 7. Let H : Q;, — P*(Q}) be the SVH as
defined in Example[5.1.3 1t is easily seen that H is a set-valued homomorphism. Let
g be a f-subset of Q) given by g = ()f? + % + 073 + O%. It is easily verified that g is a
(€,€ Vq)-FS of Q. GLA of g is as follows H(g) = %2 + % + 07-5 +93 Asiga€y
and jos € g but (i V j)oa(€ Vq)g. Thus, H(g) is not an (€,€ Vq)-FS of Q}, while

using SV H.

Theorem 5.2.3 Let g be an (€,€ Vq)-FS of Q; and H : Q; — P*(Q}) be a SVH.

Then H(g) is an (€,€ Vq)-FS of Q.

Proof. As H : QQ; — P*<Q2) isa SVH, so Vie]H(Zi) C H(\/ielzi)-

Consider,

Inf(IZJI‘ H(9)(2),0.5) =

= [( Sup g(@l)) AV < Sup  g(a;)
a1 € H(z1) a; € H(z)

[g(a1)A, ...y A gla;] AO.5

al € H(zl),

= Sup

Sup
az € H(22),..., a; € H(z;)

[Nierg(ai) A 0.5]

Viera; € VieIH(Zi)

< Sup

9(Viera;)

Vierai € VierH(z;)

= Sup

g(e)

e e VieIH(Z'L)

< Sup

g(e)

e € H(Vierz:)

= H(g)(Vierz).

[H(9)(z1) AH(g)(22)A, -..s A H(g)(2)] A 0.5

)] n05
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Hence H(g)(Vierz;) > Inf(Inf H(g)(2),0.5) for all z; € Qy.
i€l

Similarly, it can be shown that H(g)(z ® w) > Inf(H(g)(2),H(g)(w),0.5) for all
z,w € Q. Thus, H(g) is an (€,€ Vq)-FS of Q;. =

Theorem 5.2.4 Let g be an (€,€ Vq)-FRI (FLI) of Q, and H : Q1 — P*(Qy}) be
a SSVH. Then H(g) is an (€,€ Vq)-FRI (FLI) of Q.

Proof. Since H : Q; — P*(Q}) is a SSVH, we have H(zV w) = H(z) V H(w).

Consider,
H(g)(zVw)= Inf g(e)
e€ H(z Vw)
= Inf  g(e).

e € H(z)VH(w)

As e € H(z)V H(w), therefore there are t; € H(z) and t2 € H(w) such that e = ¢ Va.

Hence,
H(g)(zVw) = Inf g(t1 V t2)
t1Vto€ H(z)VH(w)
> Inf [9(t1) A g(t2) A 0.5] by Lemma [4.2.5

t1 € H(z), t2 € H(w)

= Inf g(t1) /\( Inf g(t2)>/\0.5

t1 € H(z) to € H(z)
= H(g)(2) A H(g)(w) A0.5.

Hence H(g)(zVw) > Inf(H(g)(2),H(g9)(w),0.5) for all z,w € Q.

As Hisa SSVH,so H(z ® w) = H(z) @ H(w).

Consider,
H(g)(z®w) = Inf  g(e)
e€ H(z ® w)
= Inf g(e).

e € H(z)® H(w)

For e € H(z) ® H(w), there exist t; € H(z) and t2 € H(w) such that e = t; @' to.

Hence we have,
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H(g)(z @ w) = Inf g(t1 &' t2)
t11Q'ta € H(z)®’H(w)
> Inf [g(t1) A 0.5] by Lemma

t1 € fI(Z)7 to€ H(w)

[ Inf ()] A0
t1 € H(z)

— H(g)(z) AO5.
Hence H(g)(z ®w) > Inf(H(g)(2),0.5) for all z,w € Q. Similarly, we can show that
H(g)(w® z) > Inf(H(g)(2),0.5) for all z,w € Q.

Let w < z. Then wV z = z. Since H : Q; — P*(Q}) is a SSVH, so H(z) =
H(wVz)=H(w)V H(z).

Consider

Inf(H(g)(2),05) = Inf g(e) A0.5
e€ H(z)

= Inf  g(e)| NO.5.
e€ H(z)VH(w)

Since e € H(z) V H(w) so there exist t; € H(z) and t2 € H(w) such that e = t1 V ta.
As t1 V tg > ta. So, by Lemma [£.2.8] we have

Inf(H(g)(2),0.5) = L " E{{n{f)vm )g(tl \/tg)] N 0.5

= Inf [g(t1 V t2) A 0.5]
t1€ H(z), t2€ H(w)

< Inf g(t2)
to€e H(w)

= H(g)(w).
Thus, H(g)(w) > H(g)(z) A 0.5. Therefore, H(g) is an (€,€ Vq)-FRI of Q;. ®

Example 5.2.5 Let (Q}, Q') be the quantale, where the binary operations @' on Q) is
shown in the table 7 and Q} is depicted in Fig. 10. Let H : Q) — P*(Qy}) be the SVH
as defined in Example [5.1.2. It is easily seen that H is a set-valued homomorphism.
Let g be a f-subset of Q) given by g = Ofg,s + 07»5 + 078 + %. It is easily verified that
g is an (€,€ Vq)-FI of Q;. GLA of g is as follows H(g) = 0% + % + % + %;.
As ioss € H(g) and jors € H(g) but (i V j)oss(€ V@) H(g). Thus, H(g) is not an
(€,€ Vq)-FI of Q} by using SVH.

Theorem 5.2.6 Let H be SSV H and g be an (€, € Vq)-FRI (FLI) ideal of Q). Then
H(g) is an (€,€ Vq)-FRI (FLI) of Q;.
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Proof. Proof is similar as reported in Theorem ]

I
@
Q°C
@

1

Fig 11.
Table 8.
®|0 ¢ 1
0]0 O O
c |0 ¢ ¢
110 ¢ 1

Example 5.2.7 Let (Q¢,®) and (Q},®") be two quantales, where Q¢ and Q) are de-
picted in Fig. 10 and 11 and the binary operations ® and ®' on both the quantales
are shown in the table 7 and 8. Let H : Q; — P*(Q}) be a SSVH defined by
H(L) = {Ll'}, H(c) = {i,j} and H(T) = {T'}. Let g be an (€,€ Vq)-FI of Q,
defined by g = 9% + &7 4 07-8 + 27, Then GLA and GUA of the (€, € Vq)-FRI (FLI)
g of Q} are as follows: H(g) = % + %7 + &7 and H(g) = % + %2 + &7 It can be
verified that H(g) and H(g) are (€,€ Vq)-FI of Q.

5.3 Approximations of (€, € Vgq)-Fuzzy Prime (Semi prime)
Ideals

Now generalized roughness being extended to (€, € Vq)-FPI and (€, € Vq)-FSPI.
First the LA and UA of (€, € Vq)-FPI are being started.
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Theorem 5.3.1 Let H : Q; — P*(Q}) be a SSVH and g be an (€,€ Vq)-FPI of
Q. Then H(g) is an (€,€ Vq)-FPI of Q.

Proof. As g is an (€, € Vq)-FPI of Q}, therefore g is an (€, € Vq)-FI of @}, hence

by Theorem H(g) is an (€, € Vq)-FI of Q;. Moreover by Proposition we
have g(e) V g(c) > g(e ® ¢) A 0.5 for all e, c € Q.

Consider,
Sup(H(g)(2), H(g)(w)) = Sup[ Inf g(e), Inf g(c)]
e€ H(z) c€ H(w)
= Inf [g(e) V g(c)]
e € H(z), c € Hw)
> Inf [g(e ® ¢) A0.5]

e € H(z), c € Hw)

= | Inf gle ® ¢)] A0.5]
e®’c € H(z)®'H(w)

= [ Inf gle® c)]AN0.5]
e®'c € H(2Qw)

= H(g)(z®@w)AO0.5.

Thus H(g)(2) V H(g)(w) > Inf(H(g9)(z ® w),0.5) for all z,w € @Q;. Therefore by
Proposition we obtain H(g) is an (€,€ Vq)-FPI of ;. m

Theorem 5.3.2 Let H : Qy — P*(Q}) be a SSVH and g be an (€,€ Vq)-FPI of
Q.. Then H(g) is an (€,€ Vq)-FPI of Q.

Proof. The proof is similar to the proof of Theorem ]

Theorem 5.3.3 Let g be an (€,€ Vq)-FSPI of Q, and H : Q; — P*(Q}) be a
SSVH. Then H(g) is an (€,€ Vq)-FSPI of Q.

Proof. As g is an (€,€ Vq)-FSPI of Q}, by Proposition [4.3.12] we have g(e) >
gle® e) N0.5, for all e € Q.

Consider the following,
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H(g)(z) = Inf g(e)
ec€ H(z)
>  Inf [ge® e)A0.5]
e€ H(z)
= | Inf gle® e)]N0.5

e®’e € H(z )®'H(z)

= [ Inf g(e® e)]AN05
e? € H(z ®z)

H(g)(z® z) N0.5.

Thus, H(g)(z) > Inf(H(g9)(z ® 2),0.5) for all z € ;. Hence by Proposition [4.3.12
H(g) is an (€,€ Vq)-FSPI of Q;. m

v

Theorem 5.3.4 Let g be an (€,€ Vq)-FSPI of Q; and H : Q; — P*(Q}) be a
SSVH. Then H(g) is an (€,€ Vq)-FSPI of Q.

Proof. The proof is similar to the proof of Theorem ]

5.4 Approximation of Fuzzy ();-~submodule of ();-Module

It is observed that SV M are very useful to study roughness in quantales [91].
In this section, initially the generalized approximations of fuzzy ()¢-submodule of a

QQs-module are examined.

Definition 5.4.1 Let M and N be Qi-modules. A mapping H : M — P*(N) is
called a SV H of Q¢-modules if

(1) VierH(m;) C H(Vierm;);
(2) g« H(m) C H(qg+m) for allm, m; € M and q € Q.

A set-valued mapping H : M — P*(N) is called a SSVH of Q¢-modules if if we

replace containment by equality in (1) and (2).

Theorem 5.4.2 Let H : M — P*(N) be a SSVH of Qi-modules and g be a fuzzy
Q¢-submodule of N. Then H(g) is a fuzzy Q-submodule of M.

Proof. As g is given to be a fuzzy @;-submodule of N, so by Definition we
have g(Vierx;) > Nierg(z;) and g(q * x) > g(x) for all z, z; € N and ¢ € Q;. As
H:M — P*(N)isa SSVH, so ViecrtH(m;) = H(Vierm;) for all m; € M.
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Consider,
H(g)(Vierm;) = Inf  g(e)
e € H(\/ie]ml’)
= Inf  g(e).

e € VierH(m;)

Since e € V;erH(m;), there exist a1 € H(m1), az € H(ma),..., a; € H(m;) such that

e = Vicra;.
Hence,
H(g)(Vierm;) = Inf 9(Viera;)
Vierai € VierH(m;)
> Inf (Nierg(as)]
Viera; € vieIH(mi)
= Inf [9(a1) A gla2)A, ..., Ag(ai]

a1 € H(m1), a2 € H(mga),..., a; € H(m;)

= Inf g(ar) | A Inf g(a2)>/\,...,/\< Inf g(ai)>

a1 € H(m1) az € H(ma2) a; € H(my)

= Inf(H(g)(m1), H(g)(mz),..., H(g)(m:))

= IZZJI“ H(g)(mi).

Thus we have
H(g)(Vierm;) > Inf H(g)(m;) for all m; € M.
el
Now, since H : M — P*(N)is a SSV H of Q-modules, we have ¢+’ H(m) = H(g*m)
for all m € M and ¢ € Q.

Consider,
H(g)(q@m)= Inf g(e)
e € H(gxm)
= Inf g(e)
e € ¢ ¥ H(m)

As e € g« H(m), we obtain n € H(m) such that e = ¢ ' n.

Hence,

H(g)(g+m) = Inf  g(g+'n)
gx'n€q *' H(m)

Inf — g(n)
gx'neq *"' H(m)

= Inf g(n)
n € H(m)

= H(g)(m)

Y
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Hence H(g)(q *m) > H(g)(m) for all m € M and q € @Q;. Thus, H(g) is a fuzzy
Q-submodule of M. =

Theorem 5.4.3 Let H : M — P*(N) be a SVH of Qi-modules and g be a fuzzy
Qq-submodule of N. Then H(g) is a fuzzy Qi-submodule of M.

Proof. As g is a fuzzy @Qs-submodule of N, so we have g(Viern;) > Nierg(n;) and
g(g*' n) > g(n) for all n, n; € N and q € Q. Since H : M — P*(N) is a SVH of
Qi-modules, so we have Ve H(m;) C H(V;erm;) for all m; € M.

For this consider,

Inf (H(g)(mi)) = Inf (H(g)(m1), H(g)(ma), ... H(g)(mi))

i€l el
= ( Sup g(a1)> A ( Sup g(a2)> Aoy A ( Sup g(ai))
a1 € H(mq) az € H(mza) a; € H(m;)
= Sup [g(a1) A gla2)A, ..., A g(ai]
a1 € H(m1), a2 € H(m2),..., a; € H(m;)
= Sup (Nierg(a;)]
Viera; € VierH(m;)
< Sup 9(Viera;)
Viera; € vieIH(mi)
< Sup 9(Viera;)
Viera; € H(Viermi)
= Sup  g(e)
e e H(\/iejmi)
= H(g)(Viermi).
Hence H(g)(Vierm;) > Inf H(g)(m;) for all m; € M.
i€l

AsH: M — P*(N)isa SVH,so g+ H(m) C H(q+m) for all m € M and q € Q.
Consider,
H(g)(m) = Sup g(a)
a€ H(m)

< Sup g(g+ a)
a€ H(m)

= Sup  g(g+ a)
q®’a €q®'H(m)

< Sup  g(q+ a)
q®’a € H(gxm)

= Sup g(e)
e € H(gxm)

= H(g)(g*m).
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Hence H(g)(q ® m) > H(g)(m) for all m € M and ¢ € @Q;. Thus H(g) is a fuzzy
Q¢-submodule of M. =

5.5 Approximations of (€, € vg)-Fuzzy ();-submodule of
():-Module

In this section, the investigation of generalized roughness in (€, € Vq)-fuzzy Q-

submodule is started.

Theorem 5.5.1 Let g be an (€, € Vq)-fuzzy Qi-submodule of N and H : M —
P*(N) be a SSVH of Qi-modules. Then H(g) is an (€, € Vq)-fuzzy Q¢-submodule of
M.

Proof. As H: M — P*(N) is a SSV H of Q;modules, so we have V;crH(m;) =
H(Vierm;). Let g be an (€, € Vq)-fuzzy Qs-submodule of N.

Consider,
H(g)(Vierm;) = Inf  g(e)
e € H(\/ielmi)
= Inf  g(e).

e € VierH(m;)

As e € VierH(m;), so there exist a; € H(mq),ae € H(ma),..., a; € H(m;) such that

e = Vicra;.
H(g)(Vierm;) = Inf 9(Viera;)
Vierai € VierH(m;)
> Inf [Nierg(a;) A 0.5] by Lemma |4.5.1
Viera; € ViEIH(mi)
= Inf [g(ar1)A, ..., Ag(a;] AN 0.5
a1 € H(m1), az € H(ma),..., a; € H(m;)
= Inf gla1) | A,y A Inf g(a;) | NO.5
a1 € H(m1) a; € H(m;)
= Iﬁ{ [H(g)(m1) A H(g)(m2)A, ..., A H(g)(mi)] A 0.5
1€
= [In{ H(g)(mi)] A0.5.
1€
Hence H(g)(Vierm;) > Inf[(Inf H(g)(mi)),0.5] for all m; € Q.

i€l
As H is a SSV H of Q¢modules, so H(qg*m) = q«" H(m).

Consider,
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H(g)(g*m)=  Inf g(e)
e € H(gxm)
= Inf g(e).
ecq*’'H(m)

As e € ¢+ H(m), so there exists a € H(m) such that e = ¢ a.

Hence,
H(g)(g*m)= Inf  g(g+ a)
g*'a€qx' H(m)

> Inf  [g(a) A0.5] by Lemma [4.5.2
g*'a€qx’ H(m)

= Inf g(a) N0.5
acH(m)

= H(g)(m)AO0.5.

Hence H(g)(q¢*m) > Inf[H(g)(2),0.5] for all ¢ € @ and m € M. Thus, H(g) is an
(€, € Vq)-fuzzy Q¢-submodule of M. m

Theorem 5.5.2 Let g be an (€, € Vq)-fuzzy Qi-submodule of N and H : M —
P*(N) be a SVH of Q;-modules. Then H(g) is an (€, € Vq)-fuzzy Q¢-submodule of
M.

Proof. As H: M — P*(N) is a SVH of Q;modules, so VierH(m;) C H(Vierm;).
Consider,

Inf(Inf H(g)(m:),0.5) = [H(g)(m1) A H(g)(m2)A, ..., A H(g)(m;)] A 0.5

el
Sup  glar) | Ay .oy A Sup  g(a;)) || ANO.5
a1 € H(my) a; € H(m;)

= Sup [g(a1)A, ...; A\ g(a;] AN0O.5
a1 € H(m1), az € H(mz),..., a; € H(my)

= Sup [Nierg(a;) A 0.5]
Viera; € VierH(m;)

< Sup 9(Viera;)
Viera; € VieIH(mi)

= Sup  g(e)
e € VierH(m;)

< Sup  g(e)
e c H(\/iejmi)

= H(g)(Viermi).

Hence H(g)(Vierm;) > Inf(Inf H(g)(m;),0.5) for all m; € Q.
i€l
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Similarly, it can be shown that H(g)(q* m) > Inf(H(g)(m),0.5) for all ¢ € Q; and

m € M. Thus, H(g) is an (€, € Vq)-fuzzy Q¢-submodule of M. m



Chapter 6

(€4, €4 Vgs)-Fuzzy Ideals in

Quantales

In the present chapter, we are presenting more general forms of (€, € Vq)-fuzzy
subquantale and (€, € Vq)-fuzzy ideal of Quantales. We introduce the concepts of
(v, B)-fuzzy subquantale, (a, 3)-fuzzy ideal and some related properties are inves-
tigated. Special attention is given to (€5, €, Vgs)-fuzzy subquantale, (€4, €, Vgs)-
fuzzy ideal, (€4,€, Vgs)-fuzzy prime, (€4,€, Vqs)-fuzzy semi-prime ideals, and
some interesting results about them are obtained. Furthermore, subquantale, prime,
semi-prime and fuzzy subquantale, fuzzy prime, fuzzy semi-prime ideals of the types

(€4, €4 Vgs) are linked by using level subsets.

In the first section, («a, B)- fuzzy subquantale and («, §)- fuzzy ideal of Quantales are
introduced and some related results are discussed. An (€., € Vgs)- fuzzy subquantale
and (€., €y Vgs)-fuzzy ideal are presented in the second section. Relation between
(€4, €4 Vgs)-fuzzy subquantale, (€., €y Vgs)-fuzzy ideal and subquantale, ideal are
also discussed in this section. In the third section, (€, €, Vgs)-fuzzy prime and (&,
, €~ V@s)- fuzzy semi-prime ideals are given. We also discuss the relationship between
prime, semi-prime ideal and (€., €, Vgs)- fuzzy prime, (€, €, Vgs)- fuzzy semi-prime
ideal of Quantale. In the fourth and fifth sections, (a, (3)-fuzzy @Q;-submodules and
(€4, €y Vgs)-fuzzy Qi-submodules of Q;-modules are introduced.

105
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6.1 (o, ()-Fuzzy Subquantales (Ideals) of Quantale

In this section, we introduce some new relationships between fuzzy points and f-

subsets, and investigate («, 3)- fuzzy subquantale and («, §)- fuzzy ideal of Quantales.

Throughout the remaining paper 7,0 € [0, 1], where v < ¢ and «, 3 € {€,,¢s, €4
Vs, €y Ngs}. For a fuzzy point z, and a f-subset g of @y, we say that

1. zpeygifg(z) >p>1.

2. zpqs9 if g(z) +p > 24.

3. zp(€y Vg5)g if zp €4 g Or 2p¢59.
4. zp(€4 Ng5)g if 2, €4 g and 2pqsg.

5. zpayg if zp,ag does not hold for a € {€,,¢s, €4 Vs, €4 Ags}-

Note that the case when o =€, Ags is omitted. Suppose that g is a f-subset of
a quantale @Q); such that g(z) < ¢ for all z € @Q;. Suppose z € Q; and p € [0,1]
be such that z,(€y Ags)g. Then it follows that g(z) > p > v and g(z) +p > 20.
Hence, 26 < g(z) +p < g(2) + g(2) = 2g(z), that is g(z) > J§. This means that
{zp : zp(€y Ags5)g} = 0. Therefore, we are not taking the case when a = €, Ags.

If we take v = 0 and § = 0.5 then €, and g5 becomes € and q as defined in Chapter 4.
From here onward, we will write (o, 8)-FI, (o, B)-FS, (€4, €y Vas)-FI, (€4, €~ Vgs)-
FS, (€4,€4 Vqs)-FPI and (€., €y Vgs)-FSPI for («a,3)-fuzzy ideals, (o, 8)-fuzzy

subquantales, (€., €y Vqs)- fuzzy ideal, (€, €y Vg5)- fuzzy subquantale, (€, €, Vgs)-

fuzzy prime ideal and (€, €, Vgs)- fuzzy semi-prime ideal, respectively.
Definition 6.1.1 A f-subset g of a quantale Q; is called an («, B)-FS of Qy, if

(Fl) (Zi)piag - (\/i S ]Zz’)mfpw39§

iel
(F2) zpag, wyag — (2 @ W)inppwBg for all z,w € Qp{zi} € Q (1 € I), and
pi € (0,1].

Theorem 6.1.2 Let g be a non-zero (o, f)-F'S of Q¢ and 26 = 1+ ~. Then g, =
{y € Q¢ | g(y) >~} is a subquantale of Q.
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Proof. Let y; € gy for i € I. Then g(y;) > « for all i € I. Let g(Viery;) < . If

a € {€,,€, Vgs}, then (yi)g g for all i € I but g(Viery:) < v < inf g(y;) and
el
il

€ {€,,¢5, €y Vas, €4 Ngs}, a contradiction. Hence g(Viery:) > 7, i.e., Vieryi € gy. If

9(Vieryi) + m{ g(yi) < v+ in{g(yz-) < v+ 1=20. So (Vier¥i)infg(y,) B9 for every 8
1€ 1€

o = g5 then (y;)1qs9 for all i € I because g(y;) +1 > 1+~ = 26, but (Vsery:)189
for every B € {1, s, €, Va5, € Ags}, because g(Vierys) < 7, 50 (Vieryi)18,g and
9(Vieryi) +1 < v+ 1 =24, so (Vicryi)1qsg- Hence g(Vicry;) > 7, that is Vicry; € g,.
Thus g, is closed under arbitrary join. The proof is similar for g, to be closed under

®. This shows that g, is a subquantale of ;. =

Definition 6.1.3 A f-subset g of a quantale Q; is said to be an (o, B)-FLI (FRI)
Of Qt: Zf

(1) ZpQg, Wylrg — (Z \4 w)inf(p,v)ﬁg;
(2) zpag and w < z — w,Bg;
(3) z2vag,w € Q — (w® 2),9, (= ® w),B9) for all z,w € Q; and p,v € (0, 1].

A f-subset g of a quantale Qy is called an («, B)-FI of Qq if it is both an (a, B)-FRI
and (o, B)-FLI of Q.

Theorem 6.1.4 Let 26 = 1+ and g be a non-zero (o, B)-FLI (FRI) of Q. Then
9y ={y € Q¢ | g(y) >} is a left (right) ideal of Q.

Proof. Let g be a nonzero (o, 5)-FLI of Q. Let y,z € g,. Then g(y) > v and
g(z) > 7. Let v > g(yV2). If a € {€),€,Vgs}, then (y)yy)ag and (2)y)g
but (y V z)mf(g(y)y(z))ﬁg for every 8 € {€,,qs5, €y V@5, €4 Ags}, (because g(y V z) <
v < inf(g9(y),9(2) 0 (Y V 2)ins(gy).g(z))E~9g and gy V z) +inf(g(y),g9(z)) < v+
inf(9(y),g(2)) < y+1 = 26,50 (YV2)inf(g(y),g(z))7s9)> & contradiction. Hence g(yVz) >
7, that isyVz € g,. If a = g5 then y1¢59 and 21¢59 (because g(y)+1 > 14~ = 26 and
g(2)+1>1+4~=25) but (yV z2)18g for every 8 € {€5,qs5, €y Vg5, €4 Aqs}, (because
glyVz) <v,s0 (yVz)i€ygand g(yVz)+1<14+v=26), acontradiction. Hence
g(yV z) >, that is y V z € g,. Thus g, is closed under join.

Let y,2 € Q¢ and y < z. If z € gy, then g(z) > 7. Assume that g(y) < v. If

a € {€,, €4 Vgs}, then (2)4.)ag but (y)g,) B9 for every B € {€4, 45, €y Vs, €4 s},
a contradiction. Also z1¢sg but y18g for every B € {€,,qs5, €4 Vg5, €4 Aqs}, (because

g(y) <y soy€gand g(y) +1 < v+ 1 =20, so y1Gs9). Hence g(y) >, i.e., y € g5.
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Let y € gy and z € Q. Then g(y) > 7. We want to show that g(z ® y) > . Suppose
that g(z®y) < and let o € {€,, €, Vgs}. Then (y)y,)ag but (z@y),(,) By for every
B € {€+,qs, € Vas, €4 Ngs}, this is a contradiction again. Also y1gsg but (2 ® y)18¢
for every 8 € {€,4s5, €y Vg5, €4 Ags}, a contradiction. Therefore g(z ®y) > v and so
2 ®y € gy. Hence g, is a LI of the quantale ;. m

Theorem 6.1.5 Let 26 =1+~ and ) # C C Q¢. Then C is a LI (RI) of Q; if and
only if the f-subset g of Q¢ defined by

g(w):{ zoifwed for all w € Q.

v otherwise

is an (o, €y Vqs)-F LI (FRI) of Q.

Proof. Let C' be a LI of Q.

(a) Let w, z € Q and p, v € (v, 1] be such that w, €, g and 2z, €, g. Then g(w) > p >~
and g(z) > v > ~. Hence g(w) > ¢ and g(z) > 0. Thus w,z € C and so wV z € C,
that is g(w V z) > 6. If inf{p,v} < 6, then g(wV z) > 6 > inf{p,v} > ~. Hence
(WV 2)infpw) €y 9- I inf{p,v} > 6, then g(w V 2) + inf{p,v} > 6+ = 2§ and so
(W V 2)inf(pw)259- Therefore (wV 2)in f(pv) (€4 Vas5)g-

Let w,z € Q¢, w < z and v € (v, 1] be such that z, €, g. Then g(z) > v > ~. Thus
z € C and since C'is a LI so w € C, that is g(w) > §. If v < 9, then g(w) > > v > 7.
Hence w, €, g. If v > 9§, then g(w) +v > § +§ = 2 and so wyqsg. It follows that

wy (€4 Vs)g-

Now let w,z € Q¢ and p € (v,1] be such that w, €, g. Then g(w) > p > ~, which
implies w € C, and so z@w € C, for all z € Q;. Consequently g(z ®@ w) > 4. If p <4,
then g(z@w) > § > p > . Hence (2®@w), €, g. If p > §, then g(z@w)+p > §+06 = 2§
and so (z ® w)pqsg. Thus (2 ® w),(€, Vgs)g. Hence g is an (€., €y Vgs)-FLI of Q.

(b) Let w, z € Q¢ and p,v € (7, 1] be such that wygsg and z,qs59. Since, g(w) +p > 20
and g(z) +v > 26, and so g(w) >20—p>2—1=~and g(z) >26 —v>26—1=1,
it follows that g(w) > v and g(z) > 7, i.e., w,z € C. Since C is a LI so wV z € C,
hence we have g(w V z) > 6. If inf{p,v} < 9, then g(w V z) > 0 > inf{p,v} > 7.
Hence (w V 2)infpw) €y 9- If inf{p,v} > 0, then g(w V 2) +inf{p,v} > 6+ = 26
and 50 (W V 2)inf(pw)2s9- Therefore (wV 2)i r(pv) (€4 Vas)g-
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Let w,z € Q, w < z and v € (v,1] be such that z,q5g. Then g(z) + v > 20 so
g(z) > 20 —v > 20 —1 = «. Thus z € C and since C is a LI so w € C, that
is g(w) > 0. If v < 6, then g(w) > 6 > v > . Hence w, €4 g. If v > 4§, then
g(w) +v >0+ 6 =26 and so wygsg. It follows that w,(€, Vgs)g.

Now, let w, z € Q; and p € (v, 1] be such that w,gsg, which implies that g(w)+p > 26.
Thus w € C and so z ®@ w is in C. This means that g(z ® w) > §. If p < 4, then
g(z®@w) >d>p>r. Hence (z @ w), €y 9. If p> 9, then g(z@w)+p>d+0 =29
and so (z ® w)pqsg. Thus (z ®@ w),(€, Vgs)g. Hence g is (gs, €y Vas)-F LI of Q.

(c) Let w, z € Q¢ and p,v € (7, 1] be such that w, €, g and z,¢59. Then g(w) > p >~
and ¢g(z) +v > 24. Thus, w, z € C, implies that wV z € C. Hence g(wV z) > . In a
similar way we obtain (w V 2)i,¢(pw) €4 g for inf{p,v} <6 and (wV 2)in1(p)qs59 for
inf{p,v} > 6. Thus (wV 2)infpv) (€4 Vgs)g. The rest is similar to the proof of parts
(a) and (b).

Conversely, suppose that ¢ is an (o, €, Vgs)-FLI of Q. It is easy to prove that
C = g,. Hence, from Theorem Cisa Ll of Q;. m

The proof of the following Theorem can be obtained in a similar way.

Theorem 6.1.6 Let 26 = 1+ and ) # C C Q;. Then C is a subquantale of Q¢ if
and only if the f-subset g of Q; defined by

g(w)Z{ 20ifwel for all w € Q.

v otherwise

is an (o, €4 Vg5)-F'S of Q.

6.2 (e€,,¢€,Vq)- Fuzzy Suquantales (Ideals) of Quantale

In this section, we present an (€, €, Vqs)-F'S and (€, €, Vgs)-FI of quantale Q¢
and discuss some of their properties.
Definition 6.2.1 A f-subset g of Q¢ is called an (€, €~ Vg5)-FS of Qy, if
(F1) (2i)p; €4 9 — (Vi € 12i)infp; (€4 V5);
iel

(F2) 2p €4 g and wy €4 g — (2 @ W)inf(pw)(€y Vas)g for all {zi} € Q (1 € I),
Z, W € Qt and pi,p,V € (77 1]
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T
k
i i
1
Fig. 12
Table 9.
Q| L]t ||k |T
1Ll L|L]L]|L
i | L2 | L] 7|9
JlLyLlg1d|J
7 I T A I O Y R B
TV Tl |5 | k|T

Example 6.2.2 Let (Q:,®) be a quantale, where Q; is delineated in Fig.12 and the
binary operation ® on Q; is shown in the Table 9. Taking g = OTQ + 07-5 + % + % + %.

Then by routine calculations g is an (€g.3, €0.3 Vao.s)-FS of Q.

Theorem 6.2.3 Let g be a f-subset of Q. If g is an (gs, €y Vgs5)-FS of Qy, then

conditions below hold:

(1) sup {g(Vierzi),v} > inf {in{g(zz‘)ﬁ})

1€

(2) sup {g(z ®@y),v} > inf {g(2),9(y),0} for all {z;} C Q¢ (i € I) and z,y € Q4.

Proof. Let g be a (g5, €y Vgs)-F'S of Q. Assume that there exist z; € Q; such that
sup{g(Vierzi),v} < inf {infg(z;),0}. Then for all vy <v <1
el
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such that

20 — sup{g(Vierzi),v} > v > 26 —inf{infg(z),d}
il

and so

26 — g(Vierzi) = 26 — sup{g(Vierzi),7} > v = sup{20 —infg(zi), 0}
i€l

That is, 20 — g(Vierzi) > v, 20 —infg(z;) < v.
il
Thus,

infg(z;) +v>20, g(Vierz) +v <26
iel

and g(Vierzi) < 6 <wv. Hence (z;)vqsg for all i € I, but (Vierzi)o(€4 Vgs5)g, a contra-
diction. Therefore sup{g(Vierz:),v} > inf {infg(z),d}.
i€l

Let there exist z,y € Q¢ be such that sup{g(z®y),v} <inf {9(z),9(y),d}. Then for
all v <t <1 such that

20 — sup{g(z®@y),v} >t >20 —inf{g(2),9(y),d}

we have

20 — g(z ®y) > 20 — sup{g(z ®y), v} >t > sup{26 — g(2),20 — g(y),d}

That is, 20 — g(2) < t, 20 — g(w) < t, 20 — g(z ®y) > t.

and so

g(z)+t>25, gly)+t>20, gz@y) +t <20

and g(z ® y) < § < t. Hence 2459, yqs9 but (2 ® y)¢(€4 Vgs)g, a contradiction.
Therefore, sup{g(z @ y),7} > inf{g(z),9(y), o} for all z,y € Q;. =

Theorem 6.2.4 A f-subset g of Q; is an (€, Vqs)-F'S of Qi if and only if the

conditions below hold:

(1) sup {g(Vierzi),v} > inf{igg(zz‘)ﬁ};

(2) sup {g(z ®y),7v} > inf{g(2),9(y), o} for all {z} CQ: (i € I) and 2,y € Q4.
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Proof. Let g be a (€,,€, Vgs)-FS of Q. Let there exist z; € Q; and v € (v, 0]
such that sup{g(Vierzi),7} < v < mf{mfg(zz) 0}. Then g(z;)) > v >  for all 4
€ I, g(Vierz) < v and g(Vierz) +v < 21) < 20, i.e., (2)y €y g for all i € I but
(\/iejZi)vmg, a contradiction. Thus, sup{g(Vicrzi),v} > inf {infg(zi)ﬁ} for
all z; € Q. Let z,y € @ and v € (,0] be such that sup{g(z ® y),l'% <wv <inf

{9(2),9(y),0}. Then g(z) =2 v > v, g(y) = v > 7, g(z®y) < v and g(z @ y) +
v < 20 <20, de., 2y €y g, Yy €4 g but (2 ® y)y(E€4 Vgs)g, a contradiction. Thus,

sup{g(z ®@y),v} > inf {g(2),9(y),d} for all z,y € Q1.

Conversely, suppose that the above two conditions are true. We show that g is an

(€4,€4 Vgs)-FS of Q¢. Let z € Qy and v; € (v,6] be such that (z),, €y g but

(Vi e Izi)mfvi(eyi\/q(g)g. Then g(z;) > v;foralli € I, g(Vierz) < mfvZ and g(Vierzi)+

infu; < 21(;1 It follows that g(Vierz;) < 6 and so sup {g(Vierzi), ’y} < inf {mfg(zz) 5},

azue(lzontradiction. Hence (Vi e 12i)infp, (€4 Vas)g. Similarly, it can be shown that if
i€l

Zp €4 9, and w, S then g(z ® w)mf(p,v)(e’y \/Q(S)g u

Proposition 6.2.5 Let g1 and g2 be (€, €, Vqs)-FS’s of Qi. Then, (g1 M g2) is an
(€4, €4 Va5)-F'S of Qs

Proof. Let z; € Q; for some i € I and v, € (0,1] with v < §. Since ¢g; and gy are
(€4, €y Vas)-F'S of Q, so, sup{g1(Vierzi), v} = inf {in{gl(zz'), 6} and sup{ga(Vierzi), 7} =
ic
inflinfga(zi), 6}
el

Now, consider

sup{(g1 M g2)(Vierzi),v} = sup{g1(Vierzi) A g2(Vierzi), v}
sup{g1(Vierzi), v} A sup{ga(Vierzi),v}
inf{ifel{gl(zz% aF A inf{i?ggz(zz'), d}

inf{iizlf(m(zz') A g2(2i)), 6}

vl

That is, sup{(g1 M g2)(Vierzi),7} = inf{inf(gl m g2)(zi),0}
1€
Next, as sup{gi1(z1 ® 22),7} > inf{g1(21),91(22),} and

sup{ga(21 ® 22),7} = inf{g2(21), g2(22), 6}

Now, consider
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sup{(g1 M g2)(z1 ® 22),7} = sup{g1(21 ® 22) A g2(21 ® 22),7}
= sup{g1(z1 ® 22),7} A sup{g2(z1 ® 22),7}
> inf{gi(z1), 91(22), 6} Ninf{ga2(21), g2(22), 6}
= nf{g1(z1) A g2(21), 91(22) A g2(22), 6}

Hence, sup{(g1 M g2)(21 ® 22), v} > inf{(g1 M g2)(21), (91 M g2)(22), }
Therefore, g1 M g2 is an (€4, €, Vgs)-F'S of Q; by Theorem [ |

The following Propositions are obvious.
Proposition 6.2.6 Every ((€, Vgs), €y Vgs))-F'S of Q¢ is an (€4, €4 Vgs)-F'S of Q.

Proposition 6.2.7 Every (€, €4)-F'S of Q¢ is an (€, €y Vgs)-F'S of Q4.

The Example below demonstrates that the converses of Propositions [6.2.6] and [6.2.7]

may not be true in general.

Example 6.2.8 Consider the quantale Q; as defined in Ezample and taking

g="22 407 1 065 4 054 4 O3 Then

(1) It is easy to verify that g is an (9.3, €0.3 Vqo.4)-F'S of Q.

(2) g is not an (€93, €03)-FS of Q¢, since iggs €03 g and joe1 o3 g but (i V

J)inf(0.68,0.61) = k0.61€0.39-

(3) g is not an (€0.3 Vqo.6, €0.3 Vqo.6)-F'S of Qy, since ig.63(€0.3 Vgo.6)g and jos9(€0.3
Vqo.6)g but (i V J)inf0.68,059) = ko.59(€0.3 Vqo.6)g-

Definition 6.2.9 A f-subset g of a quantale Q; is said to be an (€, €, Vqs)-F' LI
(FRI) of Q, if
(F3) Zp €y g, Wy €y g — (Z \4 w)inf(p,v)(ev \/QJ)Q;

(F1) 20 € g and w < z — wy(€4 Vas)g;

(F5) 2y €4 g,w € Qp — (W ® 2)y(E4 Va5)g), (2@ w)p(€y Vgs)g) for all z,w € Qy
and p,v € (v, 1].

A f-subset g of a quantale Q; is called an (€, € Vas)-FI of Q; if it is both an
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Theorem 6.2.10 Let g be a f-subset of Q¢ and g be an (q5,€y Vqs)-FLI (FRI) of

Q:. Then the conditions below are satisfied:

(1) sup{g(z Vw),v} > inf {g(2), g(w),d};
(2) sup{g(w),v} > inf {g(2),d} withw < z;
(3) sup{g(w ® 2),7v} > inf {g9(2),0}), (sup {g(z ® w),v} > inf {g(2),d}) for all

zZ,w € Q.

Proof. If there exist z, w € @ such that sup{g(zVw),v} <inf {g(z),g(w),d}. Then
for all ¥ < v <1 such that

26 — sup{g(z Vw),v} >v > 26 —inf{g(z),g(w),d}

Thus, we have

20 —g(zVw) >20 — sup{g(z Vw),v} >v > sup{26 — g(z),20 — g(w),d}

That is, 20 — g(2) < v, 26 — g(w) < v, 26 — sup{g(z V w) > v.
and so,

g9(2) +v>26, glw)+v>26, g(zVw)+v<2§

and g(z Vw) < 6 < v. Hence wyqsg, 2059 but (z V w),(€, Vgs)g, a contradiction.

Therefore

sup{g(z Vv w),~} = inf{g(z),g(w),d} for all z,y € Q.

Let z,y € Q¢ be such that sup{g(w ® z),7} < inf{g(z),0}. Then for all v < p <1
such that

26 — sup{g(w ® 2),7} > p = 20 —inf{g(2), 0}

we have

20 — g(w ® z) > 26 — sup{g(w ® 2),v} > p > sup{20 — g(z),d}

That is, 20 — g(2) < p, 20 — g(w @ z) > p.

and so

9(z)+p>20, glw®z)+p< 28
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and g(w ® z) < § < p. Hence z,q59 but (w® 2),(€~4 Vgs)g, a contradiction. Therefore
sup{g(w ® z),v} > inf{g(z),d} for all z,y € Q. Similarly, we can prove that sup
{g(w),~v} >inf {g(2),0} withw < zforall z,y € Q;. m

Theorem 6.2.11 A f-subset g of Q; is an (€4, €, Vqs)-FRI (FLI) of Q¢ if and only

if the conditions below are satisfied:

(1) sup {g(z Vw),v} > inf {g(2), g(w),d};
(2) sup {g(w),v} > inf {g(2),d} withw < z;

(3) sup {g(w ® 2),v} > inf {g(2),6}), (sup {g(z @ w),v} > inf {g(2),6}), for all
z,w € Q.

Proof. (F;) = (1). If there exist z,w € Q; such that sup {g(z Vw),v} <v <inf
{9(2),9(w),d} for some v € (v,d]. Then g(z) > v >, g(w) > v >, g(zVw) < v and
g(zVw)+v<20<20, e, 2y €4 g, Wy €4 g but (2V w)ymg, a contradiction.
Hence sup{g(z Vw),v} > inf{g(z),g(w),d} for all z,w € Q.

(1) = (F5). Let there be z,w € Q; and s,t € (7, 6] be such that z, € g and w; €, g
but (z V w)mf(s,t)mg, then g(z) > s > v, g(w) >t > v, g(z Vw) < inf{s,t}
and g(z Vw) +inf{s,t} <26. Thus, we have g(z Vw) < § and so sup{g(z Vw),v} <
inf{g(z),g9(w),d}, a contradiction. Hence (F3) is valid.

(F,) = (2). If there exist z,w € Q; with w < z such that sup{g(w),v} < p < inf
{9(2),6} for some p € (7,6]. Then g(z) > p > v, g(w) < p and g(w) +p < 2p < 24,

i.e., z, €y g but wy(€y Vgs)g, a contradiction. Hence (2) is valid.

(2) = (F,). Assume that there exist z,w € Q; with w < z and v € (v, d] such that
Zp €~ g but wy(€, Vgs)g, then g(z) > p > 7, g(w) < p and g(w) +p < 26. It follows
that g(w) < 0 and hence, sup{g(w),v} < inf{g(z),0}, a contradiction.

(F5;) = (3). If there exist z,y € Q; such that sup {g(w ® 2),7} <v <inf {g(z),d}.
Then g(z) > v > 7, g(lw®z2) < vand g(w® 2) +v < 2v < 20, ie., 2z, €, g but
(w ® 2)y(€4 Vgs5)g, a contradiction. Hence sup {g(w ® z),7} > inf {g(z),d} for all
Z,Y € Qt-

(3) = (F5). Let there be z,y € Q; and s € (7,0] be such that z, €, g but (w ®
2)s(€4 Vgs)g. Then g(z) > s > v, g(w ® 2) < s and g(w ® z) + s < 26. This shows
g(w® z) < ¢ and so sup{g(w ® z),v} <inf {g(z),d}, a contradiction. Hence (F3) is

valid. m
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Proposition 6.2.12 If g1 and g2 are (€, €y Vqs)-FRI (FLI) of Qq, then, g1 M g is
an (€, €4 Vas)-FRI (FLI) of Q.

Proof. Let z,y € Q; and 7,9 € (0, 1] withy < 4. Since g; and go are (€4, €, Vgs)-FRI
of Q¢, so by Theorem|6.2.11} we have sup{g1(z),v} > inf{g1(y), 6} and sup{g2(2),v} >
inf{g2(y),d} with z < y.

Now, consider

sup{(g1 M g2)(2), 7} = sup{g1(z) A g2(2), 7}

= sup{gi(2),7} A sup{g2(2), 7}
inf{g1(y), o} Ninf{ga(y),d}

= inf{gi(y) N g2(y),d}.

That is, sup{(g1 M g2)(z),v} > inf{(g1 M g2)(y),0}.

v

Next, as g1 and gy are (€4, €y Vgs)-FRI of Qy, so we have

sup{g1(z V w),7} = inf{g1(2), g1(w), 6}

and

Sup{QQ(Z v w)v 7} > inf{QZ(z)a 92(w)a 5}

Now, consider

sup{(g1 M g2)(z vV w),7} = sup{g1(z Vw) A g2(z V w),~}
= sup{gi(z Vw),7v} A sup{ga(z V w), 7}

inf{91(2), g1(w), 6} Ninf{gz(2), g2(w), 6}
inf{g1(z) A g2(2), g1(w) A g2(w), 6}
Hence, sup{(g1 @ g2)(2 V w),7} > inf{(g1 M g2)(2), (91 M g2)(w), d}. Similarly, we can
show that sup{(g1 Mg2)(z @ w),v} > inf{(g1 Mg2)(2),0} for all z,w € Q. Therefore,
g1 M go is an (€, €y Vgs)-FRI of Q; by Theorem [6.2.11] =

For any g € F(Q;), where F(Q;) denotes the set of all f-subsets of @, we define

V
V

v

9 =1y € Qt | y» €y g} for all v € (v,1];

95 ={y € Q¢ | yoasg} for all v € (v,1];

and
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915 = {y € @t | yo(€4 Vas)g} for all v € (v,1].

It follows that [g]° = g, U gO.

The following Theorem gives the relation between (€., €y Vgs)-F'S and crisp subquan-
tale of Q.

Theorem 6.2.13 For any f-subset g of quantale Q¢, the following are equivalent:
(Fs) g is an (€4, €y Vgs)-F'S of Q;

(F7) gu(# 0) is a subquantale of Q¢ for all v € (v, 9].

Proof. (Fy) = (F,). Let g be an (&€, €, Vgs)-F'S of Q;. Let z; € Q; and v € (v, 9]
be such that z; € g, for all i € I. Then (2;), €, g for all i € I and since g is an (€., €,
Vgs)-F'S of Qy, therefore (V; ¢ 12i)v(€y Vgs)g. If (Vi e 12i)o €4 g, then V; ¢ 12 € gy
and if (V; e 12i)vqs9, then g(V; e 12i) > 20 —v > v > ~; that is, V; ¢ 12; € g,. Let
x,z € Q; be such that z,z € g, for some v € (v,6]. Then 2, €, g and =, €4 g, and
since g is an (€, €, Vg5)-F'S of Qy, therefore (2 ® z),(€, Vgs)g. If (2z®@2), €4 g, then
2@z € gy and if (2 ® x)yqs9, then g(z ® ) > 20 —v > v > ~; that is, 2 @ x € g,.

Therefore g, is a subquantale of ;.

(F;) = (Fg). Assume that () # g, is a subquantale of Q; for all v € (v, 0]. Suppose
that there exist z; € @y for i € I such that sup{g(Vicrzi),7} < inf{mfg(zi),cS};
then there exist v € (v, d] such that sup {g(Vierz:i),v} <v <inf {mfg(,;e)], 0}. This
shows that (z;), €, g for all ¢ € I; that is, z; € g, for all i € T bltft] (Vierzi) ¢ 9o,
a contradiction. Therefore, sup{g(Vierzi),7} > inf {in{g(zi),é} for all z; € Q¢, (i €
). Let 2y € Qr and supfg(= © y),7} < inf{g(),9(y). ). Then sup{g(z © ).~} <
v < inf {9(z),9(y),d} for some v € (v,0]. This implies that z € g, and y € g,
but (z ® y) ¢ gu, a contradiction. Therefore, {g(z ® y),v} > inf {g9(2),9(y),d}. By
Theorem gis an (€,,€y Vg)-FSof Q. m

Theorem 6.2.14 Let 26 =1+ . Then a f-subset g of Q is an (€4, €y Vgs)-FS if
and only if 0 # g0 is a subquantale of Q; for all v € (4,1].

Proof. Let g be an (€., €4 Vgs)-FS of Q;. Let z; € Q; for all i € T and v € (,1] be
such that z; € g9 for all i € I. Then (z;),qsg for all i € I; that is g(z;) > 26 — v >
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20 — 1 =~. Thus, g(z;) > 7. Since v € (4, 1], we have 20 — v < § < v. By hypothesis,

we have,

v

inf{infg(z), o};
9(Vierzi) > inf{26 —v, &}

20 — 0.

sup{g(Vierzi), v}

that is, g(Vierzi) > 26 — v. Hence Vicrz; € go.

Let w,z € Q; be such that w,z € gg for some v € (0,1]. Then z,qs9 and wygsg,
that is g(z) > 20 —v > 20 — 1 = v, g(w) > 20 —v > 2§ — 1 = ~ and since g is an
(€4, €y Vg5)-FS of Qy, therefore,

sup{g(z @ w),v} > inf{g(z),g(w),d}
> inf{20 —v,20 —v,0}
= 20 — v

that is, g(z ® w) > 20 — v. Hence z @ w € gg. So, gg is a subquantale of Q.

Conversely, assume that (} # ¢ is a subquantale of Q; for all v € (§,1]. Suppose
that there exist z; € @Q; for ¢ € I such that sup{g(Vicrzi),v} < inf{infg(z),0} =
el

26 — inf{infg(=),6} < 20 — sup{g(Vier:), 7} = sup {26 — infg(z),8} < inf{20
i el

i€l
9(Vierzi),20 — v} Take v € (d,1] such that sup{26 —infg(zi),0} < v < inf{26 —
el
9(Vierzi),20 —~}. Then 20 —infg(z;) < v and 20 — g(Vierzi) > v = infg(z)+v > 260
i€l iel

but g(Vierzi) +v < 26. This shows that (z;),qsg for @ € I, that is z; € gg for all ¢

€ I but (Vierzi)oqg, i-e., (Vierz) ¢ g2, a contradiction. Therefore, sup{g(Vierzi), v}

> inf {infg(z),6} for all z; € Qy, (i € I). By the same arguments, we have z € g} and
el

y € gdbut (2@y) ¢ g9, a contradiction. Therefore, {g(z®@y),v} > inf {g(2), g(y),d}.
Hence g is an (€., €y Vgs)-FS of Q; by Theorem [ |

If we take v = 0 and § = 0.5 in Theorem [6.2.13] we have the following Theorem.

Theorem 6.2.15 [69] Let g be a f-subset of a quantale Q. Then g is an (€, € Vq)-
FS of Q¢ if and only if each O # U(g;p) is a subquantale of Q; for all p € (0,0.5].

Theorem 6.2.16 Let 26 = 1+ . Then a f-subset g of a quantale Q; is an (€, €y
Vqs)-FS if and only if O # [g]% is a subquantale of Q; for all v € (v,1].
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Proof. The proof is similar to the proof of Theorem [6.2.13| and [6.2.14] m

Corollary 6.2.17 Letv,7', 6,8 € [0,1] be such that v < 6,7 <8, v <~ and &' < 4.
Then every (€, €y Vqs)-F'S of Q¢ is an (€4, €4 Vqg)-FS of Q.

The Example below demonstrates that the converse of Corollary is not true in

general.

Example 6.2.18 Let QQ; be a quantale and g be a f-subset as discussed in FExample
6.2.8 Then g is an (€03, €0.3 Vgo.4)-F'S of Q; but not an (€03, €03 Vqo.9)-FS of Q.

Theorem 6.2.19 Let g € F(Q:). Then

(1) g is an (€y,€4 Vgs5)-FI of Q¢ if and only if O # g, is an ideal of Q¢ for all
v € (v,0].

(2) If 20 = 1+, then g is an (€, €, Vas)-FI if and only if O # g3 is an ideal of Qy
for allv € (4,1].

(3) If 26 = 1+, then g is an (€4, € Vas)-FI if and only if ) # [g]) is an ideal of Qy
for allv € (v,1].

Proof. (1). Let g be an (€,,€y Vg5)-FI of Q;. Let z,w € Q; with w < z and
v € (7, 0] be such that z € g,. Then z, €, g and since g is an (€, €, Vgs)-FI of Qy,
so wy(€4 Vas5)g. If wy €4 g, then w € g, and if wygsg, then g(w) > 25 —v > v > 7,
that is, w € g,. Now we have to show that z Vw € g,, for all z,w € g,. Let z,w € @
be such that z,w € g, for some v € (7, 6]. Then w, €4 g and 2, €, g, and since g is an
(€, €4 Vas)-F1I of Qy, therefore (wV z),(€4 Vgs)g. If (wV 2), €4 g, then (wVz) € g,
and if (w V z),qs59, then g(wV z) > 20 —v > v > v, that is, wV z € g,. Let z € @,
and 2z’ € g, for some v € (7,d]. Then 2 €, g and since g is an (€., €, Vgs)-FI of Qy,
therefore (7' ® ), (€4 Vgs5)g and (2@ 2" )y (€4 Vgs)g. If (2 @ 2)y €4 g, then (2 ®2) € g,
and if (2/ ® 2)yqsg, then g(2' ® 2) > 26 —v > v > ~, that is, 2’ ® z € g,. Similarly,
2 ® 2 € gy. Thus, g, is an ideal of Q;.

Conversely, suppose that () # g, is an ideal of Q; for all v € (v,d]. Let z,w € Q
with w < z and sup{g(w),v} < inf{g(z),d}; then there exists v € (v, d] such that
sup{g(w),v} < v <inf{g(z),d}. This shows that z, €, g; that is z € g, but w ¢ g,,
a contradiction. Hence, sup{g(w),v} > inf {g(2),d} for all z,w € Q; with w < z. Let
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z,w € Qpand sup {g(zVw), v} <inf {g(2), g(w), d}, then sup {g(zVw),v} <v <inf
{9(2),g(w),d} for some v € (v, ]. This implies that z € g, and w € g, but (zVw) ¢ g,
a contradiction. Therefore, sup{g(z V w),~v} > inf{g(z), g(w),d}.

Similarly, we can show that sup {g(y®z2),v} > inf{g(z), 0}, [respectively, (sup {g(z®
y),v} > inf {g(z),6})] for all z,y € Q. Consequently, g is an (€., €y Vgs)-FI of Q.

(2). Proof of (2) is similar to the proof of Theorem |6.2.14

(3). Suppose g is an (€, €y Vgs)-FI of Q;. Let z,w € Q; with w < z and v € (v, 1]
be such that z € [g]%. Then z,(€, Vgs)g, that is g(z) > v > v or g(2) +v > 25. Thus,
g(z) >wvorg(z) >20—v>2—1=+. If v e(y,d], then v < v < 4. This implies
20 —v > § > v. Then it follows from above that g(z) > v. By hypothesis;

sup{g(w),v} > inf{g(z),d}
= g(w) > inf{g(2),6} > inf{v,v} =v

and so w, €, g. Thus, w € [g]}. If v € (4,1], then § < v < 1. This implies

v

20 —v < § <w. It follows that g(z) > 2§ — v > 26 — 1 = v. Now by hypothesis;

sup{g(w),v} = inf{g(2),6}
= g(w) > inf{g(z),0} > inf{20 —v,20 — v}
=g(w)> 20—v

Thus, g(w) + v > 2§ = w,qsg. This implies w € [g]}. Now we show that z V w € [g]?
1)

o.
2p(€y Va5)g, wp(€y Vas)g, i, g(z) = p >y or g(z) +p > 20 and g(w) = p > v
or g(w) +p > 26. Thus, g(z) > por g(z) >20 —p>2J—1=r and g(w) > p or
g(w) >20—p>20—1=+. Ifp € (v,0], then v < p < §. Thus we have, 20 —p > § > p.

for all z,w € [g]S. Let z,w € Q; be such that z,w € [g]’ for some p € (v,1]. Then

Then it follows from above that g(z) > p and g(w) > p. By hypothesis;

sup{g(z Vw),v} > inf{g(z),g(w),d}
= g(zVw) > inf{g(z),g9(w),é} > inf{p,p,p}
=g(zVw)> p

and so (2 Vw), €, g. Thus, zVw € [g]). If p € (§,1], then § < p < 1. This implies
20 — p < 6 < p. It follows that g(z) > 26 — p, g(w) > 20 — p. Now by hypothesis;

sup{g(z vV w),v} > inf{g(z),9(w), o}
= g(zVw)> inf{26 —p,20 —p,20 —p} =20 —p
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Thus, g(zVw) +v > 26 = (2 V w),qsg. This implies (2 Vw) € [g]°. Similarly, we can

v

show that for z € Q; and 2’ € [g]}, we have 2’ ® z and 2z ® 2’ € [g]°.

% is an ideal of Q; for all v € (v,1]. Let z,w € @

Conversely, suppose that 0 # [g]
with w < z and sup{g(w),v} < inf{g(z),0}; then there exists v € (v,1] such that
sup{g(w),v} < v < inf{g(2),6}. This shows that z, €, g; that is z € [g]] but
wy, (€, Vgs)g, a contradiction. Hence, sup{g(w),v} > inf {g(z),0} for all z,w € Q;
with w < z. Let z,w € Q¢ and sup{g(zVw),~v} < inf {g(z),g(w),0}. Then select p €
(7,1] such that sup{g(z Vw),v} <p <inf {g(z),g9(w),d}. This implies that z, €, g
and w, €, g but (2 V w),(€, Vgs)g, a contradiction. Therefore, sup{g(z V w),v} >
inf{g(z),g(w),d}. Similarly, we can show that sup{g(y ® 2),v} > inf{g(z),0}, (sup
{9(z®@y),v} > inf {g(z),6}) for all z,y € Q;. Consequently, g is an (€, €, Vgs)-FI

of Qt~ |

If we take v = 0 and 0 = 0.5 in Theorem [6.2.19] we have,

Theorem 6.2.20 [69] Let g be a f-subset of a quantale Q. Then g is an (€, € Vq)-FI
of Q¢ if and only if each O # U(g; p) is an ideal of Q¢ for all p € (0,0.5].

Corollary 6.2.21 Letv,7',6,8 € [0,1] be such that v < 6,7 < 8,4 <~ and &' < 4.
Then every (€, €~ Vqs)-FI of Qi is an (€, € Vag)-FI of Q.

The Example below demonstrates that above Corollary is not valid in general

Example 6.2.22 Consider the quantale given in Example[6.2.2] and define a f-subset

g of Q¢ as follows:
1 075 067 054 0.32

g=Tr Tt
Then g is an (€0.3,€0.3 Vqo.)-FI of Q¢ but not an (€g.3,€0.3 Vao.95)-F1 of Q.

The following Propositions are straightforward.
Proposition 6.2.23 Every (€4 Vas, €4 Vqs5)-FI of Q¢ is an (€, €~ Vas)-FI of Q.
Proposition 6.2.24 Every (€,,€)-FI of Q¢ is an (€4, €, Vgs)-FI of Q.

Converses of Propositions [6.2.23] and [6.2.24] do not hold in general as given in the

Example below.
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Example 6.2.25 Consider the quantale QQ; as discussed in Example and take

g="0+ %0+ 2 + 8 + 82 Then

(1) It is simple to confirm that g is an (€03, €0.3 Vqo.s)-F1 of Q.

(2) g is not an (€o3,€03)-FI of Q, since iges €03 g and joe1 €03 g but (i V

J)inf(0.68,0.61) = k0.61€0.39-

(3) g is not an (€0.3 Vqo.6, €0.3 Vqo.6)-F1 of Qt, since ig6s(€0.3 Vqo.6)9 and jos9(€o.3
Vqo.e)g but (i V J)inf(0.68,0.59) = Ko.50(€0.3 Vqo.6)g-

The following Lemma and Proposition describe the relation between characteristic

function K¢ and (€., €4)-F1, (€4, €, Vas)-F1I of Q.

Lemma 6.2.26 If C is an ideal of Qy, then the characteristic function Ko of C is an
(€y,€4)-FI of Q1.

Proof. Let w,z € Q; and p,v € (7, 1] be such that w, €, K¢ and 2z, €, K¢. Then
Ko(w) > p >~ and Ke(z) > v > vy, which imply that Ko(w) = Ko(z) = 1. As C'is
an ideal and w,z € C', so wV z € C. It follows that Kc(wV z) =1 > inf{p,v} >~
so that (wV 2)inf(pe) €y Ko. Now let b,z € Q; and p € (v,1] be such that b, €, Kc.
Then K¢(b) > p > 7, and so K¢(b) = 1, i.e.,, b € C. Since C is an ideal of @, we
have b ® z, 2z ®@ b € C and hence Ko(b® z) = Kc(# ®b) =1 > p > 7. Therefore
(b® 2)p €y Ko and (2 ®b), €y Ko. Let w,z € Qy, 2, €4y Ko with w < z. Then
Ko(z) > p > v, and so Kg(z) = 1, ie., z € C. Since C is a lower set, we have
w € C and so K¢(w) =1 > p > . Therefore w, €, K¢ and consequently K¢ is an
(€y,€4)-FIof Q. m

Proposition 6.2.27 Let ) # C C Qi. Then K¢ (the characteristic function) is an
(€, €4 Vas)-FI of Qq if and only if C is an ideal of Q.

Proof. Let K¢ be an (€,,€y Vgs)-FI of Q¢, p,v € (v,1] and w,z € C. Then
w1 €y K¢ and z; €, Ko which show that (wV 2)1 = (0 V 2)inra,1) (€4 Vas)Ke.
Hence Ko(wV z) >, and so wV z € C. Let w, z € Q¢ with w < z and z € C. Then
Kc(z) =1, and thus z; €, K¢. Since K¢ is an (€., €, Vgs)-F 1, so we have w; €, Kc.
Thus K¢(w) = 1. Hence w € C. Now let w € Q¢ and z € C. Then K¢(z) = 1, and
thus 2 €, K¢. Since K¢ is an (€., €4 Vgs)-F1, it follows that (z ® w); €, K¢ so
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that Kco(z ® w) = 1. Hence z ® w € C' and similarly, w ® z € C. Thus, C is an ideal
of Qt~

Conversely, if C' is an ideal of Q¢, then K¢ is an (&€, €4)-FI of Q; by lemma [6.2.26
and therefore K¢ is an (€4, €, Vgs)-FI of Q; by Proposition [6.2.24, m

6.3 (€., €, Vg)-Fuzzy Prime (Semi Prime) Ideals of Quan-

tale

(€4,€4 Vgs)-FPI and (€, €4 Vgs)-FSPI of a quantale @; are introduced in this
section. We also discuss the relationship between prime (semi-prime) and (€4, €, Vgs)-
FPI (FSPI) of Quantale.

Definition 6.3.1 An («, 3)-F1, g of a quantale Q; is called an (o, B)-FPI of Q¢ if
for all p € (v,1] and z,w € Q, (2 ® w)pag — 2,9 or wpBg. An (a,5)-FI, g
of a quantale Qq is called an (a, B)-FSPI of Q¢ if for all z € Q¢ and p € (7,1],
(2 ® 2)pag — 2zBg.

Proposition 6.3.2 An (€., Vqs)-FI, g of a quantale Q; is an (€, € Vgs)-FPI
if and only if sup{g(z),g9(w),v} > inf{g(z @ w),d} for all w,z € Q; and v € (7, J].

Proof. Let g be an (€,,€, Vgs)-FPI of a quantale @;. We want to show that
sup{g(z), g(w),v} > inf{g(z @ w),d} for all w,z € Q. Let there exist y,z € Q; and
v € (7, 9] be such that sup{g(z),9(y),7} < v < inf{g(z®y),d}. Then g(z®@y) > v > v,
g9(z) < v, g(y) <wvand g(z)+v < 2v < 2§, g(y) + v < 2v < 2§. This means that
(2®y)y €4 g, but yvmg and vag. This gives a contradiction. Hence we
have, sup{g(2),g(w),v} > inf{g(z @ w),d} for all w, z € Q.

Conversely, suppose that the condition sup{g(z),g(w),~v} > inf{g(z ® w),d} for all
w,z € @ hold. Let w,z € Q; and v € (v,0] be such that (w ® z), €, g but
wy (€, Vgs)g and z,(€, Vgs)g, then g(w ® 2) > v > 7, g(w) < v and g(w) +v < 27,
similarly, ¢g(z) < v and g¢(z) + v < 26. It follows that g(w) < 9§, g(z) < d and so
sup{g(2), g(w),v} < inf{g(z®w), d}, a contradiction. Therefore, g is an (€, €, Vgs)-
FPIof Q, m

Theorem 6.3.3 Let g be a f-subset of a quantale Q¢. Then g is an (€., €y Vqs)-FPI
if and only if g, is a PI of Q for all v € (v, 0].
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Proof. Let g be an (€4, €, Vgs)-FPI of Q;. Let y,z € Q; and v € (7,0] be such
that y ® 2 € g,. Then (y ® 2), €, g and since g is an (€, €, Vgs)-FPI of Q,
therefore y,(€y Vas)g or z,(€y Vas)g. If y, €y g then y € g, and if y,qs9, then
g(y) > 20 —v >wv > ; that is, y € g,. Similarly z € g,. Hence g, is a PI of Q.

Conversely, suppose that g, is a PI of @ for all v € (v,d] and assume that the
condition sup{g(z),g(w),v} > inf{g(z ® w),0} is not valid, then there exist some
a,c € Q¢ such that sup{g(a),g(c),v} < inf{g(a ® c),d}, then there exists v € (v, ]
such that sup{g(a),g(c),7} < v <inf{gla®c),0}. This implies that (a ® ¢), € g,
that is a ® ¢ € g,. Since g, is a PI of Q;, we have a € g, or ¢ € g, i.e., g(a) > v or
g(c) > v, which contradicts the condition. Hence we must have sup{g(z), g(w),v} >
inf{g(z ®w),d}. Consequently g is an (€, € Vq)-FPI of Q; by Proposition |

Proposition 6.3.4 An (€4, €, Vgs5)-FI, g of a quantale Q; is an (€, €y Vgs)-FSPI
if and only if sup{g(z),v} > inf{g(z ® 2),d} for all z € Q.

Proof. Proof is obtained in a similar way from Proposition ]

Proposition 6.3.5 Let g be a f-subset of a quantale Q¢. Then g is an (€, €y Vgs)-
FSPI if and only if g, is a SPI of Q; for allv € (v, 4].

Proof. Let g be an (€., €, Vg5)-FSPI. Let (y ® y) € go. Then g(y ® y) > v. Thus
by Proposition we have sup{g(z),v} > inf{g(z ® 2),6} > inf{v,6} = v. So,
g(z) > v. Thus z € g,. Hence g, is a SPI of Q.

Conversely, suppose that g, is a SPI of Q; for all v € (+y, 0] and assume that condition
sup{g(z),v} > inf{g(z ® z),d} is not valid, then there exist some ¢ € Q; such that
sup{g(c),v} < inf{g(c® c),0} and we take v € (7, 0] such that sup{g(c),v} < v <
inf{g(c®c),d}. This implies that (c®c) € g,. Since g, is a SPI of Q, we have ¢ € g,,
i.e., g(c) > v, which contradicts the condition. Hence we must have sup{g(z),v} >
inf{g(z ® z),6} for all z € Q;. Consequently, g is an (€, € Vqs)-FSPI of Q4 by
Proposition [

6.4 (a,f)-Fuzzy Q;-Submodule of @);-Module

Some new relationships between fuzzy points and f-subsets regarding («, 5)-fuzzy

Q¢-submodule of @Q;-module are introduced in this section.
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If we take v = 0 and 6 = 0.5 then €, and g5 becomes € and q as defined in section 4.4
of Chapter 4.

Definition 6.4.1 A f-subset g of a Q¢-module M is called an (a, B)-fuzzy Q¢-submodule
of M, if
(Fl) (mi)mag - (\/i € Imi)inf{pi}ﬁg;

i€l

(Fy) mpag — (axm)pBg for all mj,m € M, p;,p € (0,1] and a € Q.

Theorem 6.4.2 Let g be a non-zero («, 8)-fuzzy Q-submodule of a Qi-module M
and 20 = 1+~. Then g, = {m € M | g(m) > v} is a Q¢-submodule of M.

Proof. Let m; € gy for ¢ € I. Then g(m;) >« for all i € I. Let g(Vierm;) < . If
a € {€,,€, Vgs}, then (m;)gm,yag for all i € I but g(Vierm;) < < z:;lf g(m;) and
g(Vierm;) + ZZZ{ g(m;) < v+ éZ{g(mi) <7y+1=24. So (\/ielmi)?;};g(mi)gg for every
B € {€y,45, €4 Va5, €4 Ngs}, a contradiction. Hence g(Vierm;) > 7, i.e., Vierm; € g-.
If o = g5 then (m;)1qsg for all i € I because g(m;) +1 > 1+ = 26, but (Vierm;)189
for every 8 € {€,,qs, €y Vas, €y Ags}, because g(Vierm;) < 7, so (Vierm;)1€49 and
9(Vierm;)+1 < v+1 = 26, 50 (Viermi)1qsg- Hence g(Viermi) > vy, that is Vierm; € g5.
Thus g, is closed under arbitrary join. Let m € g,. Then g(m) > . Suppose
glgxm) <y forall g€ Q. If a € {€y,€, Vgs}, then (m)ymyag but g(g+m) < v
< g(m) and g(g*m) + g(m) <y +g(m) < v+ 1 =24. So (q*m)yumBg for every
B € {€y,q5, €y Vg5, €y Ngs}, a contradiction. Hence g(g x m) > v, i.e.,, gxm € g,. If
o = gs then (m)1qsg because g(m) +1 > 1+ = 24, but (g * m)18g for every 3 €
{€4,45, €y Va5, €4 NG5}, since g(gxm) < 7, s0 (gxm)1€g and g(gxm)+1 < y+1 = 26,
so (¢ *m)1gsg. Hence g(g*m) > =, that is ¢ * m € g,. Thus, g, is a Q¢-submodule of
M. m

Theorem 6.4.3 Let 26 = 1+~ and ) # C C M. Then C is a Q-submodule of
Qi-module M if and only if the f-subset g of M defined by

>4 1 eC
glm) =4 — of m for allm e M.
v otherwise

is an (o, €y Vq5)-fuzzy Qy-submodule of M.
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Proof. Let C be a QQi-submodule of M.

(a) Let m; € M and v; € (v,1] be such that (m;),,
Hence g(m;) > §. Thus m; € C and so Vierm; € C, that is g(Vierm;) > 6. If

€y g. Then g(m;) > v; > .

inf{vi} < ¢, then g(Viermi) > ¢ > inf{v;} > ~. Hence (Vielmi)imf{vi} €y 9.
If inf{vi} > 0, then g(Vierm;) +inf{vi} > 0 +0 = 26 and so (Viermi)inf{v,}3959-
Therefore (Viermi)infiv} (€4 Vas)g-

Now let m € M and p € (v, 1] be such that m, € g. Then g(m) > p > ~. This shows
m € C, and so a xm € C for all a € Q4. Consequently g(a*m) > 6. If p <6, then
glaxm) > 6 > p >~. Hence (axm), €, g. If p > §, then g(axm)+p > 6+ = 26 and
so (a*m)pqsg. Thus (axm),(€4 Vas)g. Hence g is an (€, €4 Vgs)-fuzzy Qs-submodule
of M.

(b) Let m; € M and p; € (v,1] be such that (m;)p,qs9. Then g(m;) + p; > 20
and so g(m;) > 20 —p; > 20 — 1 = ~. It follows that g(m;) > =, ie.,m; € C.
Since C' is a @-submodule of M, so Vieym; € C, hence we have g(Vierm;) > 0.
If inf{pi} < 0, then g(Vierm;) > 0 > inf{p;} > v. Hence (Viermi)infip;y €y 9-
If inf{pi} > 6, then g(Viermi) + inf{pi} > 6 + 46 = 20 and so (Viermi)ins{p:1959-
Therefore (Viermiimgip,1 (€4 Vas)g. Let m € M and p € (v,1] be such that m,qsg.
Then g(m) 4+ p > 2J and so g(m) > 25 —p > 20 — 1 =+~. Thus m € C and so a*xm is
in C for all @ € ;. This means that g(axm) > 4. If p <, then g(laxm) > 6 >p > .
Hence (a*xm), € g. If p > §, then g(a*xm)+p > §+ 9 = 26 and so (a*m)pqsg. Thus
(a*m)y(€y Vgs)g. Hence g is (g5, €y Vgs5)-fuzzy Q-submodule of M.

(c) Let m; € M and p; € (v, 1] be such that (m;),, €y g or (m;)v,¢s9. Then g(m;) >
v; > v and g(m;) + v; > 26. This shows that m; € C and V,eym; € C. Hence
g(Vierm;) > 6. Thus, in a similar way, we have (Vierm;)infip,;y €y g for inf{p;} <6
and (Vier™mi)infipiy259 for inf{p:;} > 0. Thus (Viermi)infip,;} (€4 Vas)g. The rest is
similar to the proof of parts (a) and (b).

Conversely, suppose that g is an (o, €4 Vgs5)-fuzzy Qi-submodule of M. It is easy to
prove that C' = g,. Hence, by Theorem C is a Q4-submodule of M. =

6.5 (¢€,,¢€,Vg)-Fuzzy Q;-Submodule of );-Module

In this section, we present an (€., €y Vgs)-fuzzy Q-submodule of @Qy-module M

and discuss some of their properties.
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Definition 6.5.1 A f-subset g of Q¢-module M is called an (€, €y Vqs)-fuzzy Q-
submodule of M, if
(F1) (mi)p;, €4 9 — (Vi e 1Mi)ingip} (€4 Vas)9;

el

(F2) mp €4 g — (qxm)p(E4 Vas)g for all {m;} € M (i € I), m € M and p;,p € (v,1].

Example 6.5.2 Let (Q:,®) be a quantale, where Qy is delineated in Fig.12 and the
binary operation ® on @ is shown in the Table 9. Then Q¢ is a Q¢-module over
Q:. Taking g = % + O'Z@ + 0‘]@ + % + @. Then by routine calculations g is an

(€03, €0.3 Vqo.6)-fuzzy Qi-submodule of M.

Theorem 6.5.3 Let g be a f-subset of a Q;-module M. If g is an (g5, €y Vqs)-fuzzy
Qq-submodule M, then conditions below hold:
(1) sup {g(Viermi),~} > inf {in{g(mi),é};
1€
(2) sup{g(qg*xm),v} >inf{g(m),d} for all {m;} C Q¢ (i €I), m € M and q € Q.

Proof. Let g be a (g5, €y Vgs)-fuzzy Qi-submodule of M. Assume that there exist
m; € M such that sup{g(Vierm;),v} <inf {infg(m;),d}. Then for all y < v <1
T

1€
such that

20 — sup{g(Vierm;),v} > v > 20 —inf{infg(m;),d}
el

and so

26 — g(Viermi) = 26 — sup{g(Viermi),} > v = sup{20 —infg(m),d}
i€l

That is, 20 — g(Vierm;) > v, 20 —infg(m;) < v.
i€l
Thus,
infg(m;) +v > 20, g(Vierm;) +v <24
el

and g(Vierm;) < 6 < v. Hence (m;)yqsg for all © € I, but (Viermi)o(€4 Vas)g, a

contradiction. Therefore sup{g(Vierm;),v} > inf {infg(m;),d}.
el

Let there exist m € M and for all ¢ € Q; be such that sup{g(q* m),v} < inf
{g(m),d}. Then for all v < ¢t <1 such that

26 — sup{g(g*m),v} >t > 26 —inf{g(m),d}
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we have

20 — g(gxm) > 26 — sup{g(qg*m),vy} >t > sup{2§ — g(m),d}

That is, 20 — g(m) < t, 25 — g(g*m) > t.

and so

glm) +t>24, glgxm)+1t<2§

and g(g*m) < ¢ < t. Hence mgsg but (¢ *m).(€, Vgs)g, a contradiction. Therefore,
sup{g(q*m),v} > inf{g(2),g(y),d} for all m € M and ¢ € Q;. ®

Theorem 6.5.4 A f-subset g of Qi-module M is an (€., €y Vq5)-fuzzy Q¢-submodule
of M if and only if the conditions below hold:

(1) sup {g(Viermi),v} > inf{inlg(mi),5};

1€

(2) sup{g(g*xm),~v} >inf{g(m),d} for all {m;} CQ; (i €I), m € M and q € Q.

Proof. Let g be a (€4, €, Vgs)-fuzzy Q;-submodule of M. Let there exist m; € M
and v € (7, 0] be such that sup{g(Vierm;),v} <v <inf{infg(m;),d}. Then g(m;) >
v > forall i € I, g(Vierm;) < v and g(Vierm;) + v <Ze§v < 24, ie., (Mi)y €4 g
for all i € T but (Vierm;)y(€4 Vas)g, a contradiction. Thus, sup{g(Viermi), v} > inf
{infg(mi),CS} for all m; € Q. Let z,y € @Q; and v € (7, ] be such that sup{g(q *
W”Z)E,I’y} <wv <inf{g(m),d}. Then g(m) > v >+, g(¢gxm) < v and g(gxm)+v < 2v <
28, i.e., my €+ g but (gxm),(€4 Vgs)g, a contradiction. Thus, sup{g(qg*m),y} > inf
{g(m),0} for all m € M and q € Q.

Conversely, suppose above conditions are true. We show that g is an (€, €, Vgs)-
fuzzy @Q;-submodule of M. Let m; € M and v; € (v, 0] be such that (m;),, €, g but

(Vie Imi)i?efl{vi}mg- Then g(m;) > v; for all i € I, g(Vierm;) < iizlf{vi} and
g(Vierm;) + inf{v;} < 26. It follows that g(Vierm;) < ¢ and so sup{g(Viermi),7v} <
mf{mfg(mz)z,eg}, a contradiction. Hence (V; ¢ rm;)
be shfv{/n that if 2, €, g, and ¢ € Q; then g(q * m),(€, Vgs)g. ™

inf{p:}(€y V@s)g. Similarly, it can
il

Proposition 6.5.5 Let g1 and g2 be (€4, €, Vqs)-fuzzy Qi-submodules of M. Then,
(91 Mg2) is an (€, €4 Vas)-fuzzy Q¢-submodule of M.
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Proof. Let m; € M for some i € I and 7,6 € (0,1] with v < §. Since g; and gy are
(€4, €y Vgs)-fuzzy Qi-submodules of M., so, sup{gi(Viermi),v} > inf{infgi(m;),0}
el

and sup{g2(Viermi), v} > inf{iﬂfm(mz'), d}
1€
Now, consider

sup{(g1 M g2)(Viermi), v} = sup{g1(Vierms) A g2(Viermi), v}
sup{g1(Vierms), v} A sup{g2(Viermi), v}

inf{inf(gh(mi) A g2(mi)), 0}

AV

1€

That is, sup{(g1 M g2)(Vicrmi),v} > inf{i”{(gl M g2)(mi),0}
1€

Next, as

v

inf{g1(m),0} and
sup{gg(a * m)a ’7} > inf{QZ(m)a 6}

sup{g1(a +m),~}

Now, consider

sup{(g1 M g2)(a @ m),v} = sup{gi(a

(a®@m) A ga(a®@m),v}
= sup{gi(a®@m
(

), 7} A sup{ga(a @ m),v}
> inf{gi(m),d} Ninf{ga(m),d}
= inf{gi(m) A g2(m),é}

Hence, sup{(g1 M g2)(a * m), v} > inf{(g1 M g2)(m), 5}

Therefore, g1 M g2 is an (€4, €, Vgs)-fuzzy Q¢-submodules of M by Theorem |

The following Propositions are obvious.

Proposition 6.5.6 Every ((€, Vgs), €y Vas))-fuzzy Qi-submodule of M is an (€., €y
Vqs)-fuzzy Q-submodule of M.

Proposition 6.5.7 Every (€, €,)-fuzzy Q¢-submodule of M is an (€, €y Vgs)-fuzzy
Q-submodule of M.

The Example below describes that the converses of Propositions [6.5.6] and [6.5.7] may

not be true in general.

Example 6.5.8 Let QQ; be a quantale defined in Example [6.2.2]. Then Q: is a Q-

module over itself and taking g = % + 077 + 0.]@ + % + 0'%11. Then
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(1) It is easy to verify that g is an (€9.3, €0.3 Vqo.4)-fuzzy Q¢-submodule of Qy.

(2) g is not an (€o3, €0.3)-fuzzy Q¢-submodule of Qy, since iges €0.3 g and joe1 €0.3 g

but (i V J)inf(0.68,0.61) = K0.61€0.39-

(3) g is not an (€0.3 Vqo.6, €0.3 Vao.6)-fuzzy Qi-submodule of Qy, since iges(€0.3 Vqo.6)g
and jo.59(€0.3 Vqo.6)g but (i V j)ins(0.68,0.59) = k0.59(€0.3 Vqo.6)g-

The following Theorem gives the relation between (€., €y Vgs)-fuzzy @Q;-submodule
of M and crisp Q;-submodule of M.

Theorem 6.5.9 The following are equivalent for any f-subset g of Q¢-module M :
(1) g is an (€, €y Vgs)-fuzzy Qi-submodule of M;

(2) gu(# 0) is a Q¢-submodule of M for all v € (v, 0].

Proof. (1) = (2). Let g be an (€, €y Vgs)-fuzzy Q¢-submodule of M. Let m; € M
and v € (v,0] be such that m; € g, for all i € I. Then (m;), €, g for all i € I and
since g is an (€., €y Vgs)-fuzzy Q¢-submodule of M, therefore (V; ¢ rm;),(€4 Vgs)g. If
(Vie 1rm;)y €4 g, then V; ¢ ym; € gy and if (V; ¢ 1m;)4qs59, then g(V; ¢ rm;) > 20 —v >
v > «; that is, V; ¢ ym; € gy. Let m € M and a € @ be such that m € g, for some

€ (v,60]. Then m, €, g and since g is an (&€, €y Vgs)-fuzzy Q-submodule of M,
therefore (a*m),(€y Vgs)g. If (a xm), €, g, then axm € g, and if (a * m),qs9, then
glaxm) > 20 —v >wv>~; that is, a * m € g,. Therefore g, is a Qy-submodule of M.

(2) = (1). Assume that ) # g, is a @Q;-submodule of M for all v € (,d]. Suppose
that there exist m; € M for ¢ € I such that sup{g(Viermi),v} < inf{infg mi), d};
then there exist v € (v, 0] such that sup{g(Vierm;),v} < v < mf{mfg(mz) 0}. This
shows that (m;), €, g for all i € I; that is, m; € g, for all i € I but (Vierm;) ¢ g,
a contradiction. Therefore, sup{g(Vierm;),v} = inf {infg(m;),é} for all m; € M, (i
€ 1I). Let m € M and q € Q; be such that sup{g(a *Z;f),'y} < inf{g(m),0}. Then
sup{g(a*m),v} < v <inf {g(m),0} for some v € (v,6]. This implies that m € g,
and but (a xm) ¢ g,, a contradiction. Therefore, {g(a *x m),v} > inf{g(m),d}. By
Theorem g is an (€., €y Vqs)-fuzzy Q;-submodule of M. m

Theorem 6.5.10 Let 26 = 1+ . Then a f-subset g of Qi-module M is an (€, €
Vs)-fuzzy Qqi-submodule of M if and only if O # g is a Q¢-submodule of M for all
€ (9,1].
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Proof. Let g be an (€., €, Vgs)-fuzzy Q;-submodule of M. Let m; € M for all ¢
€ I and v € (4,1] be such that m; € g for all i € I. Then (m;),qsg for all i € T;
that is g(m;) > 20 —v > 2§ — 1 = ~. Thus, g(m;) > 7. Since v € (d,1], we have
20 —v < § < wv. By hypothesis, we have,

Y

inf{i?gg(mi), };
g(Viermi) > inf{26 —wv, d};

= 20 —w.

sup{g(Viermi), v}

that is, g(Vierm;) > 26 — v. Hence Vicrm; € ¢0.

Let 2 € M be such that = € g5 for some v € (4, 1]. Then z,qsg that is g(z) > 26 —v >
26 — 1 =~ and since g is an (&5, €4 Vgs)-fuzzy @Qs-submodule of M, therefore,

sup{g(axz),v} > inf{g(z),d}
inf{26 —v,d}
= 20—

\%

that is, g(a * ) > 20 —v. Hence a x 2 € g5. So, g2 is a Qs-submodule of M.

Conversely, assume that () # gg is a @Q;-submodule of M for all v € (d,1]. Suppose
that there exist m; € M for ¢ € I such that sup{g(Viermi),v} < mf{mfg(mZ o} =

26 —inflinfo(m), 3} < 26~ suplg(Viesm). 7} = sup {25 ~infg(m) 'S} < inf{2-
el
9(Vierm;), 20 — v} Take v € (§,1] such that sup{26 — mfg(mz) 0} < v <inf{20 —

9(Vierm;), 20 —~}. Then 20 —infg(m;) < v and 26 —g(V Zermz) >v=infg(m;)+v >
el el

20 but g(Vierm;)+v < 26. This shows that (m;),qsg for i € I, that is m; € g0 foralli €

I but (Vierms)oGg, ie., (Vierm;) ¢ g2, a contradiction. Therefore, sup{g(Vicrm;), v}

>inf {infg(m;),d} for all m; € M, (i € I). By the same arguments, we have m € g3
el

but (a *m) ¢ g3, a contradiction. Therefore, {g(a * m),v} > inf {g(m),d}. Hence g

is an (&€, € Vgs)-fuzzy @Qs-submodule of M by Theorem n

If we take v =0 and § = 0.5 in Theorem [6.5.9] we have Theorem

Theorem 6.5.11 [69] Let M be a Qi-module and g be a f-subset of M. Then g is an
(€, € Vq)-fuzzy Q¢-submodule of M if and only if each O # U(g;p) is a Q¢-submodule
of M for all p € (0,0.5].
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Theorem 6.5.12 Let 20 = 1+~. Then a f-subset g of a Q;-module M is an (€., €y
Vs)-fuzzy Qg-submodule of M if and only if O # [g]° is a Q¢-submodule of M for all
v e (v,1].

Proof. The proof is similar to the proof of Theorem [6.5.9] and [6.5.10] =

Lemma 6.5.13 Let S be a Qy-submodule of M. Then the characteristic function Kg
of S is an (€, €,)-fuzzy Q¢-submodule of M.

Proof. Let m; € M and v; € (v, 1] be such that s,, €, Kg. Then Kg(m;) > v; > 7.
This implies that Kg(m;) = 1. As S is a Qs-submodule of M and m; € S, so Vierm; €
S. Tt follows that Kg(Vierm;) =1 > inf{v;} > v so that (\/iejmi)z‘nf{vi} €, Kg. Now
let m € M and p € (v,1] be such that m, €, Kg. Then Kg(m) > p > ~ and so
Kg(m) =1, i.e., m € S. Since S is Q¢-submodule of M, we have ¢ x m € S for all
q € Q¢ and hence Kg(¢*m) =1 > p > ~. Therefore (¢ * m), €4 Kg. Therefore
wp €4 Kg. Thus, Kg is an (€., €,)-fuzzy Q¢-submodule of M. m

Proposition 6.5.14 Let ) # S C Q. Then the characteristic function Kg is an
(€4, €y Vas)-fuzzy Qi-submodule of M if and only if S is a Q¢-submodule of M.

Proof. Let Kg be an (€, €, Vgs)-fuzzy Q;-submodule of M such that p; € (v, 1] and
s; € S. Then (s;)1 €y Kg which shows that (Viersi)1 = (Viersi)ing1,1) (€4 Vas)Ks.
Hence Kg(Viersi) > v, and so Vers; € S. Now let ¢ € Qp and s € S. Then Kg(s) =1,
and thus s; €y Kg. Since Kg is an (€, €, Vgs)-fuzzy Qs-submodule of M, it follows
that (¢*s)1 €, Kg so that Kg(g*s) = 1. Hence g*s € S. Thus, S is a Q;-submodule
of M.

Conversely, Let S be a @Q-submodule of M. Then Kg is an (&4, €,)-fuzzy Qs
submodule of M by lemma [6.5.13, and therefore Kg is an (€, €, Vgs)-fuzzy Q-
submodule of M by Proposition [ |



Chapter 7

On Generalized Fuzzy Filters in

Quantales

In this chapter, the concept of («, 3)-fuzzy filter is introduced and some related
properties are discussed. Further, (€, € Vq)-fuzzy filters are discussed. It is investi-
gated that inverse image of an (€, € Vq)-fuzzy filter under QH is an (€, € Vq)-fuzzy
filter. Moreover, these fuzzy filters are characterized by their level sets. Furthermore,
in this chapter, we are presenting more general forms of (€, € Vq)-fuzzy filters of

Quantales. Special attention is given to (€., €y Vgs)-fuzzy filters.

In the first section, (a, §)-fuzzy filters are introduced. It is shown that inverse image
of an (v, B)- fuzzy filter under QH is an («, §3)- fuzzy filter. Moreover, (€, € Vq)- fuzzy
filters are discussed in the second section. It is also investigated that if a f-subset g
is an (€, € Vq)-fuzzy filter of Q}, then o; ' (g) is an (€, € Vq)-fuzzy filter of Q;. In
the last section, we define the (€., €, Vgs)-fuzzy filters of a Quantale ;. Relation
among (€, €, Vgs)-fuzzy filter, (€,€ Vq)-fuzzy filter and ordinary fuzzy filters

are also discussed.

7.1 («,)-Fuzzy Filters in Quantales

In this section, « and 8 will mean any one of €, ¢, € Vq and € Aq, unless otherwise
specified. From here onward, we will write (a, 3)-FF, (€, € Vq)-FF and (€4, €, Vgs)-
FF for (o, B)-fuzzy filter, (€,€ Vq)-fuzzy filter and (€4, €, Vgs)-fuzzy filter, re-

spectively.

133
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Definition 7.1.1 [79]/ A non-empty subset F, of a quantale Q; is said to be a filter

of Q: if F, is closed under ® and an upper set i.e., the following conditions hold,

(1) for all z1 € Q¢ and for all z3 € F, zo < z1 implies z1 € Fy;

(2) for all z1, 22 € F, implies 21 @ zo € Fy.

Definition 7.1.2 A f-subset g of a quantale Q; is called a FF of Q; if the following
assertions hold:

(1) for all z1, 22 € Qy, 21 < 22 1mplies g(z1) < g(22);

(2) for all z1,2z9 € Qy, g(z1 ® 2z2) > inf(g(z1),9(22)).
Proposition 7.1.3 Let g1 and g3 be FF of Qi. Then (g1 Mge2) is a F'F of Q.

Proof. Let 21,2 € Q; with 21 < 2. As g1 and gs are the FF of Qs 50
91(21) < g1(22) and ga(z1) < g2(22)
= inf{g1(21), 92(21)} < inf{g1(22), 92(22) }
= (91 M g2)(21) < (91 M g2)(22)-
Next, as g1(z1 ® 22) 2 inf{g1(21), 91(22)} and ga(z1 ® 22) > inf{g2(21), g2(22)}-
= inf{gi(z1 ® 22), 92(21 ® 22)} = inf(inf{gi(21), g1(22)}, inf{g2(21), g2(22)})
= inf{g1(21 ® 22), 92(21 ® 22)} = inf(inf{g1(21), 92(21)}, inf{g1(22), 92(22)})

= (g1 M g2)(21 ® 22) > inf{(g1 M g2)(21), (g1 M g2)(22)}.

Therefore, (g1 Mg2) isa FF of Q;. m

Definition 7.1.4 Let Q; be a quantale and ) # F,. C Q. Then the characteristic
function K, of F, is defined by

1 2 e F,
Kp, : Qi — (0,1], Z if 2
0 if z¢ F,.

Clearly, a non-empty subset F. of Q; is a filter if and only if the characteristic function
Kp, of F, is a F'F of Q.

The proof of the theorem below is easy and so excluded.
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Theorem 7.1.5 A f-subset g of Q¢ is a FF of Q: if and only if 0 # U(g;p) for all

p € (0,1] is a filter of Q.

T
h
f
1
Fig.13
Table. 10
| Lle| flk|h|T
1L L] L] L] L L
e|L]lel| L]|lel|]L]e
il frLlris
k| L|le | L|Kk|L|E
h|L|L|f|lL|h|h
T|Lle| flEkE|R|T

Example 7.1.6 Let (Q;,®) be a Quantale, where Qy is illustrated in Figure 13 and

the binary operations @ on the quantale is the same as the meet operation in the lattice
Q¢ as shown in Table 10. Filters of Q; are {f,h, T},{h, T},{T} and Q. Define a
f-subset g : Q¢ — (0, 1] byg:%+%+%+%+%+¥. Then

Ulg,p) =

Q1

{fa h? T}
{h, T}
{T}

0

0<p<0.5

0.5<p<0.6
0.6 <p<0.7
0.7<p<0.9
09<p< 1.
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Thus, by Theorem g is a F'F of Q.

Theorem 7.1.7 Let g be a f-subset of Qr. Then O # U(g;p) is a filter of Q¢ for all
p € (0.5,1] if and only if g satisfies the conditions below:

(1) sup(g(y),0.5) > g(z) with z < y;

(2) sup(g(z ®y),0.5) > inf(g(2),g(y) for all z,y € Q.

Proof. Assume that U(g;p) is a filter of @, for all p € (0.5, 1]. If there exist z,w € Q;
with z < w such that the condition (1) is not valid, then sup(g(w),0.5) < g(z) = r.
Then r € (0.5,1], z € U(g;r). But r > g(w) implies that w ¢ U(g;r), we get a

contradiction. Hence condition (1) is valid.

If there are z,w € @, such that inf(g(z),g(w)) = s > sup(g(z ® w),0.5), then z,w €
U(g;s) and s € (0.5,1]. But g(z ® w) < s. Thus, 2 @ w ¢ U(g;s), a contradiction.

Hence condition (2) is valid.

Conversely, suppose that g satisfies the conditions (1) and (2). Let w,z € @Q; with
w < z be such that w € U(g;p) for some p € (0.5,1]. Then g(w) > p. Since w < z so
it follows by condition (1)

sup(g(2),0.5) > g(w) > p > 0.5
so that g(z) > p, i.e., z € U(g;p). Now, for w,z € U(g;p), we have,

sup(g(w ® 2),0.5) = inf(g(w),g(z)) = p > 0.5

and so g(w ® z) > p. It follows that w® z € U(g;p). Thus, U(g;p) is a filter of @ for
all pe (0.5,1]. m

Definition 7.1.8 A f-subset g of a quantale Q is called an (o, B)-FF of Qy, if it

satisfies the conditions below,
(1) zpag — wpfg with z < w;

(2) zpag, wyag — (2 @ W)infpw B9, for all z,w € Qp and p,v € (0,1].

Theorem 7.1.9 Let g be a non-zero (a, 8)-FF of Q¢. Then go = {z € Q¢ | g(2) > 0}
is a filter of Q.
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Proof. Let z,w € @, and z < w be such that z € g,. Then g(z) > 0. Assume that
g(w) = 0. If a € {€,€ Vg}, then z,;)ag but wg(w)Bg for every g € {€, ¢, € Aqg,
€ Vq}, a contradiction. Further, z1qg, but wifBg for every 8 € {€,q,€ Vq,€ Aq}, a
contradiction. Hence g(w) > 0, that is w € go. Now let z, w € go. Then g(w) > 0 and
g(z) > 0. Assume that g(z ® w) = 0 and let o € {€, € Vg}, then zy,)ag, wy,yag but
(z® w)mf(g(z),g(w))ﬁg for every € {€ Aq, €, € Vq, q}, a contradiction. Also z1qg and
w1qg but (z ® w)1Bg for every B € {€ Aq, €, € Vq, ¢}, a contradiction. Thus, g(z ® w)
> 0, it follows that, z ® w € g,. Therefore g, is a filter of ;. m

Proposition 7.1.10 Let F,. be a filter of Q;. Then a f-subset g of Q¢ such that

>0.5 1 € F,
g(w) = { - if w for all w € Q.

0 Zf w e Qt \Fr,«

is an (o, € Vq)-FF of Q.

Proof. Suppose F, is a filter of Q.

(i) Let w,z € Q, w < z and v € (0,1] be such that w, € g. Then w € F, and we
have z € F.. If v < 0.5 then ¢g(z) > 0.5 > v implies g(z) > v, and so z, € g. If
v > 0.5 then g(z) + v > 0.5+ 0.5 = 1 and z,qg. Hence z,(€ Vq)g. Let w,z € Q; and
v,7 € (0, 1] be such that w, € g and z, € g. Then w, z € F, and we have w ® z € F,.
If inf(v,r) < 0.5 then g(w ® z) > 0.5 > inf(v,r) and so g(w ® z) > inf(v,r) implies
(W ® 2)infr) € 9- I inf(v,r) > 0.5 then g(w ® z) +inf(v,7) > 0.5+ 0.5 =1 and so
(W ® 2)infwr)a9- Hence (W @ 2)in (v, (€ Va)g.

(ii) Let w,z € Q¢ and v € (0,1] with w < z be such that w,qg. Then w € F,
and z > w € F, implies that z € F,. If 0.5 > v then g(z) > 0.5 > v implies
that g(z) > v and so z, € g. If 0.5 < v then g(z) + v > 0.5 +0.5 = 1 and z,qg.
Hence z,(€ Vq)g. Let u,v € (0,1] and w, z € @; be such that w,qg and z,qg. Then
w,z € Fp and so w ® z € F,.. If 0.5 > inf(u,v) then g(w ® z) > 0.5 > inf(u,v)
and so g(w ® z) > inf(u,v) implies (W ® 2)inf(uw) € g- If inf(u,v) > 0.5 then
g(w®z)+inf(u,v) > 0.54+0.5 = 1 and s0 (W2 )i f(u,p)q9- Thus, (WR2)i, f(u,w) (€ VQ)g.

(iii) Let y,z € Q¢ and p,v € (0,1] be such that y, € g and z,qg. Then g(y) > p and
g(z) +v > 1. Thus, y,z € F, and so y ® z € F,, we have g(y ® z) > 0.5. Thus,
(Y @ 2)inf(pw) € g for inf(p,v) < 0.5 and (y ® 2)inf(pw)qg for inf(p,v) > 0.5. Thus
(Y @ 2)inf(pw) (€ Vq)g.
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Lemma 7.1.11 A f-subset g in a quantale Q¢ is a F'F of Q¢ if and only if it satisfies;
(1) wy€g and w < z — 2, € g;

(2) 2p,wy € g — (2@ W)ing(pw) € g for all z,w € Qr and p,v € (0,1].

Proof. Let g be a F'F' of Q;. Let w, € g for some v € (0,1]. Then g(w) > v. Since
g is a FF of Q; so, for w < z, we have v < g(w) < g(z). This shows that g(z) > v.
Hence z, € g. Consider z,w € Q, p,v € (0,1] be such that z, € g and w, € g. Then
9(z) > p and g(w) > v. But g is a FF of Q; so, we have g(z ® w) > inf(g(z), g(w))
> inf(p,v). Thus g(z ® w) > inf(p,v). This implies that (z @ w)inf(p.v) € 9-

Conversely, suppose that g satisfies the conditions (1) and (2). First we show that
for all z,w € @, z < w implies g(z) < g(w). Suppose that g(z) > g(w) for some
z,w € @y, then there exists v € (0, 1] such that g(z) > v > g(w). Then z, € g but
wy€yg, a contradiction to the hypothesis (1). Now we show that inf(g(z),g(w)) <
g(z ®@ w) for all w,z € Q. On contrary suppose that g(a ® ¢) < inf(g(a),g(c)) for
some a,c € Q¢ Let p € (0,1] be such that gla ® ¢) < p < inf(g(a),g(c)). Then
g(a) > p and g(c) > p but (a ® ¢), € g. This contradicts our hypothesis (2). Thus,
inf(g(z),g9(w)) < g(z®@w) for all z,w € Q. Hence g is a F'F of a quantale Q;. ®

Remark 7.1.12 A f-subset g of a quantale Q¢ is a FF of Q if and only if g is an
(€,€)-FF of Q.

Proposition 7.1.13 Let o : Q: — Q) be a QH and g be an («, 8)-FF of Q). Then
o7 (g) is an (a, B)-FF of Q.

Proof. Let z,w € Q; and p,v € (0,1] be such that zpaat_lg and wvozot_lg. Then
(0¢(2))pag and (o4(w))yag by Proposition 4.1.16, Since g is an (a, 3)-FF of @,
we have (04(2) ® o4(w))inf(pw)B9 and (0¢(2 @ w))inf(pw)Bg by using QH. Thus, (2 ®

w)mf(p,v)ﬁat_lg by Proposition4.1.16] Let zpa0; *g such that z < w. Then (04(2)),ag.
As o4 is an order preserving hence o04(z) < o(w). Since g is an (o, §)-FF of Qj}, we

have o¢(w),fg. By Proposition 4.1.16} w,B0; 'g. Hence o, '(g) is an (o, B)-FF of Q.
[
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7.2 (€,€ vq)-Fuzzy Filters of Quantale

Now, the concept of (€, € Vq)-FF' in quantale is introduced in this section and we
characterize the filters of Quantale in terms of (€, € Vq)- F/F. Also with the help of
QH, we will show that inverse image of (€, € Vq)-FF is (€, € Vq)-FF.

Definition 7.2.1 A f-subset g of a quantale Q; is called an (€, € Vq)-FF of Qq if it

satisfies:
(1) z2<y,2p € g = yp(€ Vq)y;

(2) 2 € 9,90 € 9 — (2 ® Yingp (€ Va)g for all 2,y € Qy and p,v € (0, 1].

Example 7.2.2 Let (Q¢, ®) be a quantale, where Qy is depicted in Figure 13 and the
binary operation ® on the quantale is the same as the meet operation in the lattice Q¢
as shown in Table 11. Define a f-subset g of Q¢ as g = % + % + % + % + Ohi + %.
Then g is an (€,€ Vq)-FF of Q. But

(1) g is not an (€,€)-FF of Qy, since eg58 € g and foes € g but (€ ® f)inf(0.63,0.58) =
Loss€g-

(2) g is not an (q,€)-F'F of Q, since fos2q9 and kos1q9 but (f @ k)inpo0.52,051) =
Losi1€g.

(3) g is not an (€,q)-F'F of Qy, since kos7 € g and hoa € g but (k ® h)ing0.57,04) €
9 = Loaqy.

Theorem 7.2.3 A f-subset g of Q¢ is an (€,€ Vq)-F'F of Q¢ if and only if it satisfies

the conditions below:
(1) 2 <y, g(y) > inf(g(2),0.5);

(2) g(z®@y) > inf(g(z),9(y),0.5) for all z,y € Q.

Proof. Let g be an (€,€ Vq)-FF and z,y € @Q; be such that z < y. If g(z) = 0,
then g(y) > inf(g(z),0.5). Let g(z) # 0 and assume, on the contrary that g(y) <
inf(g(z),0.5). Take v € (0,1] such that g(y) < v < inf(g(z),0.5). Case-1If g(z) <
0.5, then g(y) < v < g(z) and so z, € g but y,€g. Also g(y)+v < 0.5+0.5 = 1 so y,qg.
Thus, z, € g but y,(€ Vq)g, a contradiction. Case-2 If g(z) > 0.5 then g(y) < 0.5 and
S0 205 € g but yo5 € g and g(y) + 0.5 < 1, i.e., Y0579, again a contradiction. Hence



7. On Generalized Fuzzy Filters in Quantales 140

9(y) > inf(g(2),0.5) for all z,y € @, with z < y. Let w,y € Q¢ be such that g(w®y) <
inf(g(w), g(y),0.5). Take p € (0,1] such that g(w ® y) < p < inf(g(w),g(y),0.5).

Case-1 If inf(g(w), g(y)) < 0.5 then g(w ® y) < p < inf(g(w),g(y)) and wy,yp € g
but (w®y),€g. Also we have, g(w®y)+p < 0.540.5 = 1, so (w®yY),qg, a contradiction.

Let 0.5 < inf(g(w),g(y)). Then wos,yo5 € g but (WRy)os€g and glw®y)+0.5 < 1,
ie., (w®y)osqg, again a contradiction. Thus, g(w ® y) > inf(g(w), g(y),0.5) for all
w,y € Qt-

Conversely suppose that the conditions (1) and (2) are satisfied. Let w,z € @ and
wy, € g with w < z for some v € (0,1]. Then g(w) > v. By hypothesis, g(z) >
inf(g(w),0.5) > inf(v,0.5). Case-1. If v < 0.5, then g(z) > v and 2, € ¢g. If v
> 0.5 then g(2) +v > 0.5+ 0.5 = 1 and so z,qg, i.e., 2, (€ V q)g. Let v1,v3 € (0,1]
and w,z € @ be such that wy,, 2y, € g. Then g(w) > v1 and g(z) > v2 and so
by hypothesis we have, inf(vi,v2,0.5) < inf(g(w), g(2),0.5) < g(w ® z). Case-1. If
inf(vi,v2) < 0.5 then g(w ® z) > inf(vi,ve) and (W @ 2)inf(v;m) € g- Case-2. If
inf(vy,v2) > 0.5 then g(w® z) +inf(vi,v2) > 0.5+ 0.5 =1 and s0 (W @ 2) i (v, 0279
Hence (w ® 2)inf(v1,00) (€ Vq)g. Consequently, g is an (€, € Vq)-FF of Q;. m

Remark 7.2.4 A f-subset g of a quantale Q; is an (€,€ Vq)-FF of Q. if and only if
it satisfies the conditions (1) and (2) of Theorem7.2.3|

Lemma 7.2.5 FEvery (€,€)-FF of Q; is an (€,€ Vq)-F'F of Q.

Proof. Obvious. m

For (€,€ Vq)-FF to be an (€,€)-FF of @, some condition is imposed in the next

Proposition.

Proposition 7.2.6 Let g be an (€,€ Vq)-FF of Q such that g(z) < 0.5 for all
z € Q. Then g is an (€,€)-FF of Q.

Proof. Let g be an (€,€ Vq)-FF of Q; such that g(z) < 0.5 for all z € @;. Then
by Theorem if z <y then g(y) > inf(g(2),0.5) = g(z). Now if z,w € @Q; then

9(z ®@y) > inf(g(2),9(y),0.5) = inf(g(z),9(y). Hence g is an (€,€)-FF of Q; by
Lemma[ZT11l m

Lemma 7.2.7 Let (Q¢,®) be a quantale and ) # F, C Q. Then the characteristic
function Kg. is an (€,€)-FF of Q. if and only if F, is a filter of Q.
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Proof. Let w,z € @ be such that z < w and 2z, € K, where p € (0,1] . Then
Kp (z) >p>0,and so Kg.(z) =1, i.e., z € F,. Since F, is a filter, we have w € F,
and so Kp (w) =1 > p. Therefore w, € Kp,. Suppose p,v € (0,1] and w,z € Q¢ be
such that w, € K, and z, € Kp,. Then Kg (w) > p > 0 and Kp, (z) > v > 0, which
show that Kr, (w) = Kp,.(z) = 1. Thus w, z € F, and F} is a filter so w ® z € F,.. It
shows that Kr (w®z) =1 >inf(p,v) so that (w® z)
Kp, is an (€,€)-F'F of Q.

inf(pw) € K. and consequently

Conversely, let K. be an (€,€)-FF of Q; and w,z € F,. Then w; € Kp, and 21 €
K, which show that (w ® 2)1 = (W ® 2)inp1,1) € KF,. Hence Kp, (w® z) = 1, and
sow®z € Fp. Let w,z € @ and w < z be such that w € F,. Then Kg (w) = 1, and
thus w; € Kp,. Since Kp, is an (€,€)-FF, so we have z; € Kp,. Thus Kp,(z) =1
and z € F,.. Hence F; is a filter of Q;. m

Theorem 7.2.8 The characteristic function Kg, is an (€,€ Vq)-FF of a quantale
Q¢ if and only if F, is a filter of Qy, for any 0 # F. C Q.

Proof. Suppose K, is an (€, € Vq)-FF of Q; and w, z € F,.. Then wy € Kg. and z;
€ K, which show that (w ® 2)1 = (w ® 2)infa,1) (€ V@) KF,. Hence Kp, (w® z) > 0,
and so w ® z € F,. Let w,z € @Q; and z € F, be such that z < w. Then Kp (z) =1,
and thus z; € Kp,. Since Kp, is an (€,€ Vq)-FF, so we have w; € Kg.. Thus
Kp.(w) = 1. Hence w € F,.

Conversely, if F,. is a filter of @y, then K, is an (€, €)-FF of Q; by lemma|7.2.7, and
therefore K, is an (€, € Vq)-FF of Q; by Corollary [

Theorem 7.2.9 A f-subset g of Q; is an (€,€ Vq)-FF of Qq if and only if U(g;p) =
{w € Q¢ : g(w) > p} is a filter of Q for all p € (0,0.5].

Proof. Suppose g is an (€, € Vq)-F'F of Q. Let w,b € Q; be such that w < b, and
let p € (0,0.5] be such that w € U(g;p). Then g(w) > p and it is clear from Theorem
7.0.3(1) that

g(b) = inf(g9(w),0.5) > inf(p,0.5) =p

and so b € U(g;p). Let w,a € U(g;p) for some p € (0,0.5]. Thus from Theorem
7.2.3(2), we have g(w ® a) > inf(g(w), g(a),0.5) > inf(p,0.5) = p, and so w R a €
Ul(g; p)-
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Conversely, let U(g;p) be a filter of Q¢ for all p € (0,0.5]. If there exist a,y €
Q: with a < y such that g(y) < inf(g(a),0.5), then select v € (0,0.5] such that
9(y) < v < inf(g(a),0.5), then a € g, but y ¢ U(g;p), a contradiction. Hence
9(y) > inf(g(a),0.5) for all a,y € Q¢ with a < y. If there exist z,y € @ such that g(z®
y) < inf(g(z),9(y),0.5). We can choose s € (0,0.5] such that inf(g(z),g(y),0.5) >
s > g(z®y). Then z,y € U(g;s) but z®y ¢ U(g;s), a contradiction. Hence

inf(9(2),9(y),0.5) < g(z®y) for all z,y € Q. By Theorem [7.2.3] g is an (€, € Vq)-
FF of Qt‘

Theorem 7.2.10 Let Q; and Q) be two quantales and oy : Qr — Q) be a QH. Let
g be an (€,€ Vq)-FF of Q,. Then o7 '(g) is an (€,€ Vq)-FF of Q.

Proof. Suppose z,y € Q¢ with y < z. Then o4(y) < g4(2).

071 (9)(2) = g(0u(2))
> inf(g(oi(y)),0.5)
= inf(o; ' (9)(y).0.5).

Hence, o7} (g)(2) = inf (o7 (9)(y), 0.5),

Now,

B = glo(ow)
= g(ou(z) ® or(w))
= inf(g(oi(2)), g(o(w)),0.5)
= inf(o; ' (9)(2),0; (9)(w),0.5).

(2
Thus, o; ' (9)(z @ w) > inf(o; (9)(2), 07 (g)(w),0.5) for all z,w € Q;.
(

By Theorem_ we have o, !(g) is an (€, € Vq)-FF of Q.
7.3 (€&,, €, Vg)- Fuzzy Filters of Quantale

In this section, some more general forms of (€, € Vq)-FF' are introduced and we
introduce the notion of (€,, €, Vgs)-FF in quantale. Furthermore, filter and fuzzy

filter (F'F) of the types (€4, €, Vgs) are linked by using level subsets.

Definition 7.3.1 A f-subset g of a quantale Q; is said to be an (€, €y Vas)-FF of
Qt7 Zf
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(Fr)1 wy €4 g — 20(€4 Vg5)g with w < z;

(Fr)2 2p €y g, wp €y 9 — (2@ W)inf(pv) (€4 Vas)g for all z,w € Qp and p,v € (v,1].

Example 7.3.2 Consider the quantale as given in Example[7.1.6] Taking g = % +

Ojﬁ + % + % + % + O'Tﬂ. Then g is an (€9.3, €0.3 Vqo.e)-FF of Q.

Theorem 7.3.3 Let g be a f-subset of a quantale Q; and g be a (g5, €y Vgs)-F'F of
Q:. Then the following conditions hold:

(1) sup(g(w),v) > inf(g(z),6) with z < w;

(2) sup(g(z @ w),7) = inf(g(2), g(w),8) for all z,y,w € Q.

Proof. Let z,w € Q; be such that sup(g(w),v) < inf (9(z),0) with z < w. Then for
all v < p <1 such that

26 — sup(g(w),y) > p > 26 —inf(g(2),0)

we have,

26 — g(w) > 26 — sup(g(w),) > p > sup(26 — g(2),0)

That is, 20 — g(w) > p, 20 — g(2) < p

and so,

g(z)+p> 20, glw)+p <2

and g(w) < 0 < p. Hence z,q59 but wy(€4 Vgs)g, a contradiction. Hence, sup
(9(w),7) = inf (g(2),0) with z < w.

If there exist z,w € @ such that sup(g(z @ w),v) <inf (g(z),g9(w),d). Then for all
v < v < 1 such that

26 — sup(g(z @ w),v) > v > 26 —inf(g(2), g(w),d)
we have,

20 —g(z®@w) > 20 — sup(g(z @ w),7y) > v > sup(20 — g(z),20 — g(w), )

We have, 2§ — g(z @ w) > v, 20 — g(z) < v, 20 — g(w) < v
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and so,

g(z) +v>26, g(w)+v>24, gzQw)+v <20

and g(z ® w) < 6 < v. Hence wyqsg, 20959 but (z ® w),(€4 Vgs)g, a contradiction.
Therefore sup(g(z @ w),v) > inf(g(z), g(w),d) for all z,w € Q;. m

Theorem 7.3.4 A f-subset g of a quantale Q; is an (€, €, Vqs)-FF of Q; if and
only if the conditions below hold:

(1) sup (g(w),7) = inf (9(2),6) with z < w;

(2) sup (g(z®@w),v) >inf (g(2),g(w),d) for all z,w € Q.

Proof. (F,); = (1). If there exist z,w € Q; with z < w such that sup(g(w),~) <
p <inf (g(2),d). Then, g(z) > p >, g(w) < p and g(w) +p < 2p < 2§. This implies
that z, €, g but wy(€4 Vgs)g, a contradiction. Hence (1) is valid.

(1) = (F7)1. Assume that there exist z,w € Q; with z < w and v € (7, d] such that
Zp €4 g but wy(€, Vgs)g, then g(z) > p > v and g(w) < p and g(w) +p < 25. It
follows that g(w) < ¢ and hence, sup(g(w),v) < inf(g(z),d), a contradiction.

(Fy)2 = (2). If there exist z,w € Q¢ such that sup (9(z ® w),vy) < v < inf
(9(2),g(w),d). Then g(z) > v > v, g(w) > v > 7, but g(z ® w) < v and g(z ® w) +
v < 2v <26, ie., 2y €y g, wy €4 g but (2 ® w)vmg, a contradiction. Hence
sup(g(z @ w),vy) > inf(g(z), g(w),d) for all z,w € Q.

(2) = (F})2. Suppose there exist z,w € @Q; and u,v € (7, ] such that z, €, g and
Wy e’y g but (Z & w)inf(u,v)(e’y Vgs g, then g(’z) > u > v g(w) > v > v, g(Z ® w) <
inf(u,v) and g(z ® w) + inf(u,v) < 26. It concludes that g(z ® w) < § and so

sup(g(z @ w),v) <inf(g(z),g(w),d), a contradiction. Hence (F}.)s is valid. =

Proposition 7.3.5 If g1 and g2 are (€,,€4 Vqs)-FF of Q:, then (g1 M g2) is an
(€4, €4 Va5)-FF of Q.

Proof. Let 21,22 € Q¢ and «,6 € (0,1] with v < 4. Since g1 and go are (€4, €y Vgs)-
FF of @, so by Theorem we have sup{gi(z2),v} > inf{gi(z1),0} with z; < 29
and sup{ga(22),7} = inf{g2(21),6}.

Now, consider
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sup{(g1 M g2)(22),7} = sup{g1(22) A g2(22),7}
= sup{g1(22), 7} A sup{g2(22), 7}
> inf{gi(z1),6} Ninf{ga(z1),6}
= inf{g1(z1) A g2(z1),6}.

That is, sup{(g1 M g2)(22),7} > inf{(g1 M g2)(21), 0}.
Next, as sup{g1(z1 ® 22),7} = inf{g1(21), 91(22),6} and

sup{g2(21 ® 22),7} = inf{g2(21), g2(22), 6}.
Now, consider

sup{(g1 M g2)(z1 ® 22),7} = sup{gi(z1 ® 22) A g2(21 ® 22),7}

sup{gi(z1 ® 22),7} A sup{g2(21 ® 22),7}
infi{gi(z1), 91(22),0} Ainf{ga(21), g2(22), 6}
= inf{gi(z1) A g2(21), 91(22) A g2(22), 6}

Hence, sup{(g1 M g2)(2z1 ® 22),7} > inf{(g1 M g2)(21), (91 M g2)(22),6}.

A\

Therefore, g1 M g2 is an (€4, €, Vgs)-FF of Q; by Theorem |

For any g € F(Q;), where F(Q;) denotes the set of all f-subsets of @Q;, we define

g ={y € Q¢ | y» €4 g} for all v € (v,1];

95 = {y € Qi | yogsg} for all v € (v, 1];

and

1915 = {y € Q¢ | yo(€4 Vas)g} for all v € (v,1].

It follows that [g]® = g, U gJ.

v —

Corollary 7.3.6 Let v,7,6,8 € [0,1] be such that v < 6,y <&, <~ and § < 6.

Then every (€4, €~ Vqs)-F'F of Q¢ is an (€4, €y Vqg)-FF of Q.

Example 7.3.7 Consider the quantale Q¢ as given in Example and define a

f-subset g of Q¢ as follows:

_ 05,065, 07 065 075 095
I S A
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Then g is an (€03, €0.3 Vqo.a)-F'F of Q¢ but it is not an (€03, €0.3 Vqo.9)-F'F of Q.
Now, we characterize (€, €, Vgs)-FF of Q; by their level sets.

Theorem 7.3.8 Let g € F(Q:). Then

(1) g is an (€y,€5 Vas)-FF of Q¢ if and only if O # g, is a filter of Q¢ for all
v € (v,4].

(2) If 26 = 1+, then g is an (€4, €~ Vas)-FF if and only if g5(# 0) is a filter of Qy
for all v € (4,1].

(3) If 20 = 1+, then g is an (€, €, Vgs)-FF if and only if [g]5 (# 0) is a filter of
Q¢ for all v € (v,1].

Proof. (1). Let g be an (€., €, Vgs)-F'F of Q. Suppose z,w € Q; with w < z and
v € (7, 9] be such that w € g,. Then w, €, g and since g is an (€., €y Vgs5)-FF of Qy,
s0 zy(€4 Vgs5)g. If 2, €, g, then z € g, and if z,q59, then g(z) > 26 —v > v > v, that
is, z € g,- Now we have to show that z @ w € g, for all z,w € g,. Let z,w € @ be
such that z,w € g, for some v € (,6]. Then w, €4 g and z, €, g, and since g is an
(€4, €y Vas)-FF of Qy, therefore (w®2),(€4 Vgs)g. If (wV z), €, g, then (W®2) € g,
and if (w ® 2),qs59, then g(w ® z) > 20 —v > v > ~, that is, w ® z € g,. Thus g, is
filter of Q.

Conversely, suppose that 0 # g, is a filter of @ for all v € (v,0]. Let z,w € @
with z < w and sup(g(w),~y) < inf(g(z),0). Then there exist v € (v,d] such that
sup(g(w),v) <wv <inf(g(z),d). This shows that z, €, g; that is z € g, but w ¢ g,, a
contradiction. Thus, sup(g(w),7y) > inf (g(2),d) with z < w. Let z,w € Q; and sup
(9(z@w),7) <inf (9(z),9(w),d). Then sup(g(z @w),v) <v <inf (9(z), g(w),0) for
some v € (7, d]. This implies that z € g, and w € g, but (2 ®@w) ¢ g, a contradiction.
Therefore, sup(g(z @ w),v) > inf(g(z),g(w),d). Consequently, g is an (€., €, Vgs)-
FF of Q; by Theorem

(2). Let g be an (€, € Vgs)-F'F of Q. Let z,w € Q¢ with w < z be such that
w € ¢°. Then wyqsg, that is g(w) +v > 20 = g(w) > 26 —v > 26 — 1 = 7. Thus,
g(w) > ~. By hypothesis, we have

sup(g(z),7) > inf(g(w),0)
= g(z) > inf(20 —v,0)
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Since v € (§,1], § <v <1=20—v <d <w. Thus, g(z) >20 —v = g(z) +v > 20.

Hence, z € ¢2.

Now we have to show that z ® w € gg for all z,w € gg. Let z,w € @ be such that
z,w € g0. Then w,qsg and z,qsg, that is g(w) +v > 26 = g(w) > 20 —v>20—1 =1

and similarly g(z) > . By assumption, we have

sup(g(z @ w),7) = inf(g(w),g(z),0)
= g(z@w) > inf(20 —v,26 —v,9)

Sincev € (4,1, <v<1=2—v < <v. S0, g(z@w) >20—v = g(zQw)+v > 24.
Hence, z ® w € go.

Conversely, suppose that () # g9 is a filter of Q; for all v € (d,1]. We show that g is
an (€4, €y Vgs)-F'F. Let z,w € Q; with z < w be such that z,¢59. Let sup(g(w),v) <
inf(g(z),0). Then

20 —inf(9(2),0) < 20 — sup(g(w),~)
= sup(20 — g(2),9) < inf(20 — g(w),26 — 7).

Take p € (9, 1] such that sup(26—g(z),d) < p <inf(20—g(w),20—). Then 20—g(z) <
p and 20 — g(w) > p = g(2) +p > 2 and g(w) + p < 26. This shows that z,qsg; that
is z € g5 but w ¢ ¢°, a contradiction. Hence, sup(g(w),v) > inf (g(z),8) with z < w.
Let z,w € Q¢ and sup (g(2®@w),v) <inf (9(2),g9(w),d). Then 26—inf(g(2), g(w), ) <
20 — sup(g(z@w),v) = sup(20 —g(z),20 —g(w),d) < inf(20 —g(z@w), 20 —~). There
exist u € (9, 1] such that sup(20 — g(2),20 — g(w),d) < u < inf(20 —g(z@w),25 — 7).
Then 20 — g(z) < u, 20 — g(w) < w and 2§ — g(z @ w) > u = g(z) +u > 20,
g(w) +u > 28 but g(z @ w) +u < 26. Thus, z € ¢ and w € g5 but (z @ w) ¢ ¢, a
contradiction. Therefore, sup(g(z ® w),v) > inf(g(z), g(w),d). Consequently, g is an

(€4, €4 Vg5)-FF of Q; by Theorem

(3). The proof of part 3 is similar to the proof of parts 1 and 2. =



Chapter 8

Generalized Approximations of
(E% SN \/q(g)-Fuzzy Substructers

in Quantales

The concept of generalized approximations (GA) of (€4, €, Vgs)-F1I, (€, €4 Vags)-
FS and (€, €y Vgs)-FF in quantales are presented in this chapter. With the help of
SV H and SSV H, it is observed that GLA and GUA of (€, €, Vgs)-FI, (€, €y Vas)-
FS and (€, €, Vgs)-FF are (€4, €, Vg5)-F1, (€4, €, Vgs)-FS and (€, €4 Vgs5)-FF,

respectively.

In the first section, GLA and GUA of (€., € Vgs)-FS and (€, €, Vgs)-FF are
introduced. It is observed that GLA of (€., €y Vgs)-F'S and (€., €, Vgs)-FF are not
(€4,€4 Vgs5)-FS and (€4, €, Vg5)-FF, respectively, while taking SV H. Furthermore,
GUA of (€,,€y Vgs)-FS and (€4,€, Vgs)-F'F are presented by using SVH. In
the second section, at first, GLA (and GUA) of (€4, €, Vgs)-F1Is is introduced. In
the third section, GLA and GUA of (€, €, Vgs)-FPI and (€4, €, Vgs)-FSPI are
discussed. GLA and GUA of (€., €, Vgs)-fuzzy Qi-submodules of a Q;-module are
being presented at the end of this chapter.

148
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8.1 Approximations of (€., €, Vgs)-Fuzzy Filters and (e,
, €4 V@s5)-Fuzzy Subquantales

The idea of generalized roughness (GR) of (€4, €y Vg5)-F'S and (€., €y Vgs)-FF of
a quantale Q; is being presented, in the following. The investigation of GLA and GU A
in (€4, €, Vgs)-FS of a quantale @y is being first started in the following. However,

we begin with the result.

Theorem 8.1.1 Let g be an (€,,€, Vgs)-FS of Q; and H : Q¢ — P*(Q}) be a
SSVH. Then H(g) is an (€, €~ Vgs5)-FS of Q.

Proof. Let g be an (€4, Vgs)-FS of Q;. As H : Q; — P*(Q}) is a SSVH, so
vieIH(Zi) = H(\/igzi). Consider the following:

sup {1(6) Vierz)n} = s A gla)r )

Vierzi

= A Su, a),
vt p{g(a),~}

= A su, a),
CLEVieIH(ZZ') p{g( ) PY}

Since a € VerH(z;), there exist a1 € H(z1),a2 € H(z2),...,a; € H(z;) such that

a = Viecra;.
sup {H(g)(Vierz), v} = rae =P {9(Viera:),~}
> viemiEQEIH(ZZ_)mf{igg(ai),5}
= cten e H(Zi)inf{ig[g(m% - 9(ai)], 0}
= inf{é?;ﬂal e%(mg(al), o G/;I(Zi)g(az‘)]ﬁ}

= inf{ig[ﬂ(g)(zl),---,ﬂ(g)(zz')]ﬁ}
= inf{ig[ﬂ(g)(zz')w}-
Thus, we have sup {H(g)(Vierzi), 7} 2 inf{inf[H(g)(z)], 0}
As H : Q; — P*(Qy) is a SSVH, so H(z ® w) = H(z) @' H(w).

Now, consider
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sl o).t = sl n gl

= A ,
ety P 19(€) 7}

= A ).
e ) P {g(e), 7}

As e € H(z) ® H(w), we obtain a € H(z) and b € H(w) such that e = a ®'b.

sup{H(9)(z@w), 7y =~ D™ {g9(a@"b),7}
= A sup{g(a ®"b),7}

a € H(z), b€ H(w)
A : g(b),
we )y e i) 19(@), 9(0), 0}

= 3 A A\ b). o
mf{aE H(z)g(a%bE H(w)g( ),0}

= inf{H(9)(2), H(g)(w),d}.
Thus, sup {H(9)(z @ w),~} > inf{H(g)(2), H(g)(w), }. Therefore, H(g) is an (€, €, Vgs)-
FSof Q. m

v

T2

Fig. 14
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Table. 11
Qo | dlo|s|t|lul|lv]| Ty
do | do|s|t|lu|lv]| Tg
s | do|s|t|lul|v]| To
t | lo|s|t]lu|v]| To
u | do|s|t|lu|lv]| To
v | dlo|s|tlu|v]| To
To | do|s|t|lulv]| Te

The example below shows that, if H is a SVH and g is an (€., €, Vgs)-F'S, then its
lower approximations H(g), may not be an (€, €, Vgs)-F'S.

Example 8.1.2 Let v,6 € (0,1] with v < §. Let Q, = {La,s,t,u,v, Ta} be a sup-
lattice depicted in Fig.14 and the binary operation ®9 on Q} is shown in Table 11. Then
(Q},®2) is a quantale. Define a f-subset g : Q} — [0,1] by g = ﬁ + 854 064 0.7 4
08 4 %2 Then g is an (€0.3, 0.3 Vqo.6)-FS of Q). Now, consider H : Q; — P*(Q})
defined as H(Lly) = H(s) = H(t) = H(u) = H(v) = {La} and H(T2) = Q}. It is
easily seen that H : Q, — P*(Q}) is a SV H. With the help of Definition|3.1.1, we have
H(g) = ﬁ+%+%+%+%+%. Now, foru < To andv < To withy = 0.3 and 6 = 0.6,
but sup {H(g) (Vier=i), v} > inf{inf[H(g)(=)],5} for all 2 € Q) is not satisfied,
icl

because sup {H(g)(uV v),v} = sup{H(9)(T2),v} # inflinf[H(g)(u), H(g)(v)],d}.
Also, sup {H(g)(s V' t),7v} = sup {H(9)(T2),v} # inf{inf[H(g)(s), H(g)(t)],d}

Theorem 8.1.3 Let g be an (€,,€, Vgs)-FS of Q; and H : Q¢ — P*(Q}) be a
SVH. Then H(g) is an (€, €~ Vgs)-FS of Q.

Proof. Let z; € Q; for i € I. Since g is an (€4, € Vgs)-FS of Q} and H : Qy —
P*(Q}) is a SVH, so we have V;erH(z;) € H(V;erz;). Consider the following:
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inf{inf[H(g)(z)],0} = inf{inf[H(g)(z1), H(g)(22), ... H(g)(zi)], 0}

i€l =y
= inf{i vV 1,0
inf {Zg [a1 A (Zl)g(al) e (Zi)g(a )16}
- Y, in fli s g(a)), é
w e e a e H(Zi)mf{lizf[g(al) g(a;)], 0}

— Y, inf{infg(a;),d}
icT

Vierai€VicrH(z)

< v sup{g(Vierai),v}
Vierai€VierH(z;)

= V SU e),
v pg(e) v}

< Y su e),
S p{g(e), 7}

= SUP{ Vv 9(6),7}

ecH(Vierzi)
= sup{H(g)(Vierz),7} -

Thus, we have sup {F(g)(\/igzi), 7} > mf{ljel]f[ﬁ(g)(zz)], 9}

As H:Q — P*(Q¢) isa SVH,so H(z) ® H(w) C H(z @ w).
Furthermore, consider

inf{H(9)(). Hg)w).0) = inf(| v gla). v a(b).5)

- Vv )mf{g(a),g(b), o}

a € H(z),be Hw

< Vv "B,
R R {g(a @"b),~}

= V "b),
a®’b€H(z)®’H(w)Sup {g<a® ) PY}

< V su a®'b),
S L AU

v )
L {g(c),v}

— sw{ v o)

— s {0 w),}
Thus, sup {H(9)(z @ w),v} > inf[H(g)(z), H(g)(w),s}. Therefore, H(g) is an (€, €y Vgs)-
FSof Q. m

Proposition 8.1.4 Let g1 and g2 be (€, €, Vg5)-FS of Q} and H : Q¢ — P*(Q})
be a SVH. Then H(g1) M H(g2) and H(g1) M H(g2) are (€+, €y Vas)-F'S of Q.

Proof. Proof follows from Proposition and Theorems [
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Now, we discuss GLA and GUA of (€,, € Vgs)-FFs. First the GLA is being pre-

sented.

Theorem 8.1.5 Let g be an (€+,€, Vqs)-FF of Q; and H : Q; — P*(Q}) be a
SSVH. Then H(g) is an (€, €y Vq5)-FF of Q4.

Proof. Consider z,w € Q; and 7,6 € (0,1] such that v < §. Since H : Q; — P*(Qy)
isa SSVH, so, H(z) ® H(w) = H(z ® w). Consider the following:

A )
{eEH(z@w)g(e) ")/}

= A ’
et {g(e),7}

sup {H(g)(z ® w),7} = sup

= A )
et () {g(e),7}

Since e € H(z) ® H(w), there exist a; € H(z) and as € H(w) such that e = a; ®’ as.
So,

sup{H(g)(z@w) v} = AR {g(a1 ® a2),~}

> A . 7 g
a a1®la2EH(Z)®IH(w)an{g(a’1) g(a/2) }

= A )mf{g(al),g(@)ﬁ}

a1 € H(z), a2 € H(w

= 1 A a1), A as),0
mf{a1 g H(Z)g( 1) e H(w)g( 2),0}

= inf{H(g)(z), H(g)(w),d}.
Thus, we have sup {H(g)(z ® w),v} =2 inf{H(g)(z), H(g)(w),d}.

Furthermore, let w < z. Then wV z = z. Since H : Q; — P*(Q) is a SSV H, so
H(z)=H(wVz)=H(w)V H(2).

Consider,
sup{H(9)(2),v} = sup{ A gle),7}
e€ H(z)
= /\ .
T o)

Since e € H(z) V H(w) so there exist ¢ € H(z) and d € H(w) such that e = cV d. As
cV d > d. We have,
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sup{H(g)(z),7} = e H(Az)v o (w)sup{g(c vV d),v}

= A vd
e i1 e (w)sup{g<c ),7}

> A ' d),o
> e H(w)mf{g( ),0}

= inf{ e Ql(w)g(d), o}

— inf{H(g)(w).5).
Thus, we have sup{H (g9)(2),v} > inf{H(g)(w),0}. Therefore, H(g) is an (€, €y Vgs)-
FF of Qt- |

The GLA of (€4, €, Vgs)-FF is not necessarily a F'F' by using SV H, as illustrated by

the example below.

Example 8.1.6 Let (Q},®2) be a quantale, where Q) is depicted in Fig.14 and the
binary operation ®2 on Q) is shown in the Table 11. Let v,0 € (0,1] with v < 9.
Now, consider H : Q, — P*(Q}) a SVH defined as H(Ls) = {lo,u}, H(s) =
{uyvaZ}vH(t) = {U,U,TQ},H(U) = {J—Q’uvvaT2}7H(U) = {U,U,TQ} and H(TQ) =
{v,u, Ta}. Let g be a f-subset of Q) given by g = % + % + OT? + % + OTS + %2
Then it is easy to verify that g is an (€93, €03 Vqo.6)-FF of Q;. Now, GLA of the
(€0.3,€0.3 Vaoe)-FF is H(g) = % + % + % + % + OT8 + %. We observe that for

s <wu with v = 0.3, § = 0.6, we have, sup{H (g)(u),v} # inf{H(g)(s),d}.

Theorem 8.1.7 If g is an (€, €y Vgs)-FF of Q} and H : Q; — P*(Q}) be a SVH.
Then H(g) is an (€, €~ Vas)-FF of Q.

Proof. Let z1,29 € Q; and 7,6 € (0,1] be such that v < §. Let z; < z3. Then

21V z9g = 29.

Consider,
inf{H(g)(=1),0} = inf{ _ Y/ @): 0}
= X(ZI)inf{g(ﬂf), o}

Since H is a SVH, so H(z1)V H(z2) C H(21V 22) = H(22). As z Vy > z, we have,
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inf{H(g)(2).0) =y inf{olx).5}
< vV SU xVy),
S e Hn v B plg(z Vy),7}
= v V),
TVye H(m)\/H(zz)Sup{g(x y) fy}
< v sup{g(z vV y), 7}

xVye H(z1Vz2)

= V su e),
e i1v p{g(e), 7}

= Vi ’
oy (22)sup{g(e) 7}

- Y,
suzo{ee v (22)9(6),7}

= sup{H(g)(22),7}.
Thus, we have sup{H (g)(z2),7} > inf{H(g)(z1),d}.

Next, Consider the following:

inf{H(g)(2). Hlg)(2). 6} = inf(_y ola)., ¥ g0).9)

— v )inf{g(a ,g(b), 6}

a€ H(z1),b€ H(z2

Since H is a SVH, so H(z1) ® H(z2) C H(z1 ® 2z2). We have,
inf{H(g)(=1), H(¢)(22)),0} = \ jinf{g(a), g(b), 0}

a€ H(z), b€ H(z

< V su ®'b),
" a€ H(z1), b€ H(z2) p{g(a ) FY}

= \% ®'b),
e H (z1)®,H(zz)sup{g(a )7}

< v sup{g(a ®'b),
S e Bner) p{g( )7}

suz?{eE . (Zl®,z2)g(e) v}

= sup{H(g)(z1 ® 22),7}

Thus, we have sup {H(g)(z1 ® 22),7} > inf{H(g)(z1), H(g)(22),d}. Therefore, H(g)
is an (€,€4 Vgs)-FF of Q;. m
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T
a b
14
Fig. 15
Table 12.

® | L1 a b T,

J_l J_l a b Tl

a J_l a b Tl

J_l a b Tl

Tl _L1 a b Tl

Example 8.1.8 Let (Q,®1) and (Q},®2) be two quantales, where Q; and Q) are
depicted in Figures 14 and 15 and the binary operations ®1 and ®o on both the
quantales are shown in Tables 11 and 12. Let v,§ € (0,1] with v < §. Now, con-
sider H : Q¢ — P*(Q}) defined as H(Ly) = {Lao},H(a) = {u,s},H(b) = {u,v}
and H(T1) = {u, To}. Then, H is a SSVH. Let g be a f-subset of Q) given
by g = %4—%4—%4—%4—0—{?4—%. Then it is easy to verify that g is an
(€0.3,€0.3 Vaos)-F'F of Q;. Now, GLA and GUA of (€,,€4 Vgs)-F'F, g of Q¢ are
as follows: H(g) = %jtoffjt%—%% and H(g) = %4—%5+0—£+%. It can be
verified that H(g) and H(g) are (€0.3,€0.3 Vqo.6)-FF of Q.

Proposition 8.1.9 Let g1 and g2 be (€4,€, Vgs5)-FF of Q; and H : Q; — P*(Q})
be a SVH. Then H(g1) M H(g2) and H(g1) M H(g2) are (€, €y Vas)-FF of Q.

Proof. Follows from Proposition [7.3.5] and Theorems [
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8.2 Approximations of ( €, , €, Vgs)-Fuzzy Ideals in Quan-

tales

Now in the following discussion, the concept of GLA and GUA of (€., € Vgs)-F1,

in quantales are being introduced.

Theorem 8.2.1 Let g be an (€4, €~ Vqs)-FI of Q; and H : Q; — P*(Q}) be a
SSVH. Then, H(g) is an (€, €y Vas)-FI of Q.

Proof. Let z,w € Q¢ and ~,J € (0,1] be such that v < . Since H : Qy — P*(Qy) is
a SSVH, so we have H(zV w) = H(z) V H(w). Consider the following:

su{zl)evud = s n o))

(zVw

= A
0.7}

= A
AL {g(e), 7}

Since e € H(z) V H(w), there exist a; € H(z) and ag € H(w) such that e = a; V as.
So,

H -
sup {H(g)(z V w),7} alv@eHA(z)vzf P {g(a1 V az),v}

v g(az),
a1Va2€H(z)VH(w)an{g(a1) g(az),d}

B ¢ ' g(az), 8
a; € H(Z), as € H(w)an{g(al) g(a2> }

= A A )
mf{a1 g H(Z)g(al) e H(w)g(az) }

= inf{H(g)(2), H(g)(w),d}
Thus, we have sup {H(g)(z V w),v} > inf{H(g)(2), H(g)(w),d}.

v

Furthermore, let w < z. Then wV z = z. Since H : Q; — P*(Q:) is a SSV H, so
H(z)=H(wVz)=H(w)V H(z).

Consider,

nf{H@)(:).0) = inf{_p _ole).0)

SR AUOILY

= A ; o},
ec H(z)vH(w)mf{g(e)’ }

Since e € H(z) V H(w) so there be ¢ € H(z) and d € H(w) such that e = ¢V d. As
cV d > d. We have,
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inf{H(g)(z),v} = e H(AZ)VH (w)inf{g(c v d),d}

= A ' vd),d
ce H(z), de H(w)mf{g(c )8}

< A d),
< en Nen (w)sup{g( )7}

- A d
sup{ e H(w)g( )7}

= sup{H(g)(w),7}.
Thus, we have sup{H (g)(w), v} > inf{H(g)(z),0}.

As H: Qi — P*(Q¢) isa SSVH, so H(z®@w) = H(z) ® H(w).

Furthermore, consider
sw (w9t = sw{ _n o))
e€H(z@w)

= A ,
et {g(e), 7}

= A\
2907}

Ase € H(z) @ H(w), we obtain a € H(z) and b € H(w) such that e = b ®’ a.

sup{H(g)(w @ 2), 7y =~ D™ {9(b®" a),v}

= A b
aeH(z),beH(w)Sup{g( ®" a),v}

> A : ¥
T acH(2),be H(w)mf{g(a) }

= anf{ A g(a),d}

a € H(z)
= inf[H(g)(z),0}
Thus, sup {H(g9)(w ® 2),7} = inf[H(g)(2),6}. Also, sup{H(g)(z ® w), v} = inf[H(g)(z),}.
Therefore, H(g) is an (€4, €y Vgs)-FI of Q¢ by Theorem [ |

The next example shows that, if H is a SV H, and g is an (€4, €, Vgs)-FI of Q,
then H(g) may not be a an (€5, €y Vgs)-FI of Q.

Example 8.2.2 Let v,6 € (0,1] with v < §. Let Q) = {La,s,t,u,v, Ta} be a sup-
lattice with the multiplication Table 11 and order relation as shown in the Fig. 14.

Then (Q}, ®2) is a quantale. Define g : Q; — [0,1] by

=1 " T raizeq)
g(z) = or all z
0.5, x# Lo !

Then g is an (€0.3,€0.3 Vqos)-FI of Q). Let H : Q, — P*(Q}) be a SVH defined as
n Efcample. Now LA of g is H(g) = fz—l-%—l-%—ki—k%—i—%. Now, for v = 0.5
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and 6 = 0.7, the following are not satisfied: sup {H(g)(uV v),v} = sup{H(g)(T2),v}
# inf{H(g)(u),H(g)(v),6}. Also,

sup{H(g)(s V t),7} = sup{H(9)(T2),v} # inf{H(g)(s), H(g)(t),d}.

Theorem 8.2.3 Let g be an (€, €+ Vas)-FI of Q; and H : Q; — P*(Q}) be a
SVH. Then, H(g) is an (€, €y Vgs)-FI of Q.

Proof. The proof is like the proof of Theorem ]

Example 8.2.4 Let (Qi,®1) and (Q},®2) be two quantales, where Qu and Q) are
depicted in Figures 14 and 15 and the binary operations ®1 and Qs on both the
quantales are shown in Tables 11 and 12. Let v,0 € (0,1] with v < §. Now, con-
sider H : Q¢ — P*(Q}) defined as H(Ly) = {Lo},H(a) = {u,s},H(b) = {u,v}
and H(T1) = {u, T2}. Then, H is a SSVH. Let g be a f-subset of Q} given by

1, z=1
g9(z) = 2 for all z € Q). Then it is easy to verify that g is an
0.5, z# 1o

(€03, €03 Vaos)-FI of Q. Now, LA and UA of (€03,€03 Vqos)-FI of Q) are as

follows: H(g) = J_11 + % + % + % and H(g) = J_% + % + 0—55 + %1 It can be verified

that H(g) and H(g) are (€0.3, 0.3 Vqo.6)-FI of Q.

Proposition 8.2.5 Let g1 and g2 be (€, €~ Vas)-FI of Q¢ and H : Q; — P*(Q})
be a SVH. Then H(g1) M H(g2) and H(g1) M H(g2) are (€, €~ Vgs)-FI of Q.

Proof. The proof follows from Proposition and Theorems [8.2.1]/8.2.3] m
8.3 Approximations of ( €, , €, V¢s)-Fuzzy Prime (Semi-
Prime) Ideals in Quantales

Now, GLA and GU A being extended to (€, €y Vgs)-FPI and (€., €y Vqs5)-FSPI.
First the GLA and GUA of (€, €y Vqs)-FPI are being started.

Theorem 8.3.1 Let g be an (€4, Vqs)-FPI of Q; and H : Qy — P*(Q}) be a
SSVH. Then H(g) is a (€4, €~ Vas)-FPI of Q.
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Proof. Let w,z € Q; and 7,0 € (0, 1] be such that v < 6. As gis an (€4, €, Vgs)-F'PI
of @}, therefore g is an (€4, €y Vgs)-FI of @}, hence by Theorem H(g) is an

(€,€4 Vgs)-F1I of Q;. Moreover by Proposition we have sup{g(e),g(c),v} >
inf{gle®c),d} for all e,c € Q.

Consider,

sup(H(9)(2). H()(w).7} = sup(_ A o)., A gld).7)

= A d
ce e H(w)suzo{g(e),g( )7}

> A ; 'd), 5
B eGH(z),dGH(w)an{g(e@ ) }

= A ] ®'d),o
e®'d € H(z)®’H(w)an{g(e ) }

= 4 A ®'d),o
an{e@)/d S H(z®w)g(e ) }

= inf{H(g9)(z ®w),d}.
Thus sup{H(9)(z), H(g)(w),v} > sup{H(9)(z ® w),d} for all z,w € Q;. m

Proposition 8.3.2 Let g be an (€, €, Vgs)-F'PI of Q¢ and H : Q; — P*(Q}) be a
SSVH. Then, H(g) is an (€, € Vqs)-FPI of Q.

Proof. The proof is simple and is similar to the Theorem ]

Theorem 8.3.3 Lat g be an (€, €y Vas)-FSPI of Q; and H : Q; — P*(Q}) be a
SSVH. Then, H(g) is an (€, €~ Vgs5)-FSPI of Q.

Proof. Let z € @ and 7,0 € (0,1] be such that v < 6. Since g is an (€4, €, Vgs)-
FSPI of @}, by Proposition we have sup{g(e),v} > inf{g(e ® e),d} for all
e c Qt-

Consider the following:
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sup{H(g)(2),7} = Sup{e A . )9(6)7 v}

= A
e ypunlate).7)

> A in e®'e),o
A ino(e e).6)

e c

= A ) ®'e),d
e®'e € H(z )®’H(z)7jnf{g(e 6) }

= A ‘ ®'e),d
e®’e € H(z ®Z)'mf{g(e 6) }

B inf{eQ € h/’\(z ®z)g(e “ e)L 6}

= inf{H(g)(z ® 2),}.
Thus, sup{g(z),v} > inf{H(g)(2®z),0} for all z € Q;. Hence, H(g) is an (€, €, Vgs)-
FSPIofQ;. m

Proposition 8.3.4 Let g be a (€4,€ Vqs)-F'SPI of Q; and H : Q; — P*(Qy) be a
SSVH. Then, H(g) is a (€, €y Vqs)-FSPI of Q.

Proof. The proof is similar to the proof of Theorem ]

8.4 Approximations of ( €, , €, V¢5)-Fuzzy ();-submodules
of ();-Module

GLA and GUA of (€, €4 Vgs)-fuzzy Qs-submodules of a Q;-module is being presented

in this section.

Theorem 8.4.1 Let H : M — P*(N) be a SSVH of Q¢-modules and g be an
(€4, €y Vas)-fuzzy Q¢-submodule of N. Then H(g) is an (€, €y Vq5)-fuzzy Q¢-submodule
M.

Proof. Let g be an (€., €y Vgs)-fuzzy Qi-submodule of N. As H : M — P*(N) is
a SSVH of Q¢modules, so VierH(m;) = H(Vierm;). Consider the following:
sup (2l (Vierm) 1) = sup{ | A gleha]
c€H(Viermi)

= A S, c),
cEH(\/ielmi) p{g( ) 7}

= A su, c),
CevieIH(mi) p{g( ) 7}
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Since ¢ € VierH(m;), there exist ¢; € H(mq),co € H(mg),...,c; € H(m;) such that

¢ = Vier¢i.
sup {H(9)(Viermi), v} = viGICiev/:elH(W)sup {9(Vierci), v}
= \/ieICiE\//i\eIH(mi)inf{iiZIfg(ci)’ 0}
S e Hm H(mi)inf{iigf[g(Q% o 9(c)], 8}
= znf{zzg[q . /I}(ml)g(cl), L /}}(mi)g(ci)]’ 5}

= inflinf[H(g)(m), ., H(g)(mi)], o}
= inf{inf[H(g)(mi)], 6}
Thus, we have sup {H(g)(Vierms), v} > inf{inf[H(g)(mi)], 0}
As H: M — P*(N) is a SSVH of Q-modules, so H(q*m) = q+ H(m).

Now, consider

sup {E( )(Q*m sup {aeH(q*m }
_ EEH . sup{g( ),
- eeqﬁﬂm)sup{g( R

As e € ¢+’ H(m), there is a € H(m) such that e = g «’ a.

sup {H(g)(q *m),v} = q*,aeqf*\, I {g(a+ a),7}

> mf{g( )0}

q* aEq*’H (m)

= inf{,_p o(0).5)

= mf{H( )(m), 6}
Thus, sup{H(g)(q*m),v} > inf{H(g)(m),é}. Therefore, H(g) is an (€, €, Vgs)-
fuzzy Q:-submodule of M. =

Theorem 8.4.2 Let g be an (€, €y Vqs)-fuzzy Qi-submodule of N and H : M —
P*(N) be a SVH of Qi-modules. Then H(g) is an (€, €y Vas)-fuzzy Q-submodule
of M.

Proof. Let H : M — P*(N) be a SV H of QQ-modules. Then, we have V;crH(m;) C
H(Vierm;). Let m; € M fori € I and g be an (€., €, Vgs)-fuzzy Q;-submodule of N.

Consider the following:
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inf{inf[H(g)(m:)], 6} = inf{inf[H(g)(m1), H(g)(mz), ... H(g)(ms)], 6}

el

el
- 4 ; \V/ s ey V i)], 6
an{zz‘gf[al € H(ml)g(al) a; € H(mi)g(a ).}
= Vv ) ) , e glag)], é
a1 € H(my),..., a; € H(mi)lnf{zigf[g(al) 9(ai)l, o}
= v inf{infg(a;),d}
Vierai€VierH(m;) el
< Vv sup {g(Vierai), v}

Viefaie\/q;elH(mi)

= \% Su, e),
st p{g(e),~}

< V su e),
~ e€H(Viermy) plg(e). 7}

= su \Y €),
p EGH(VieImi)g( ) ’7}
= sup {H(g)(\/iefmi)ﬂ} .

Thus, we have sup { H(g)(Vierms),v} > inf{inf[ﬁ(g)(mi)], o}

el

As H : Qi — P*(Qy) is a SVH of Q¢modules, so ¢« H(m) C H(q*m).

Furthermore, consider

inf{H(g)(m),d} =

<

inf{ v )9(0)7 o}

a € Him

n a),o
Yy 9(0),0)

\/ !
W {9(q a),~}

a €

Vv su * a),
g+’ a€q+'H(z)) p{g(q ) 7}

V su ' a),
srae o) p{g(a+ a),~}

Vo osu c),
ettty p{g(c),v}

sup {CEHX]*m)g(C)7 7}
sup {H(g)(g*m),7}-

Thus, sup {H(g)(q+m),v} > inf[H(g)(m),d}. Therefore, H(g) is an (€, €~ Vgs)-
fuzzy QQ¢-submodule of M. =

Proposition 8.4.3 Let g1 and g2 be (€, €y Vq5)-fuzzy Qi-submodule of N and H :
M — P*(N) be a SVH of Qi-modules. Then H(g1) ® H(g2) and H(g1) M H(g2) are
(€4, €4 Vas)-fuzzy Qi-submodule of M.

Proof. The proof follows from Proposition and Theorems [
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Conclusion

In this thesis at first, we contributed to the roughness in the subsets of a Q-
module with respect to Pawlak approximation space. Further complete congruence
with respect to V-complete and *- complete is introduced. Upper and lower rough
Qi-submodules of (Q;-module are defined and their different properties are discussed.
Moreover, roughness in quotient of ();-module are proposed. Then we generalized
this concept and provided the concept of generalized roughness in the subsets of Q-
module. The idea of set-valued homomorphism and strong set-valued homomorphism

of (Q;-module are also proposed.

As a generalization of rough fuzzy ideals in quantale [49], the concept of generalized
rough fuzzy ideals, generalized rough fuzzy prime ideals, generalized rough fuzzy semi-
prime ideals and generalized rough fuzzy primary deals of quantales were proposed
in the third chapter. Further, approximations of fuzzy ideals, fuzzy prime, fuzzy
semi-prime and fuzzy primary ideals with the help of set-valued homomorphism and
strong set-valued homomorphism are discussed. In addition, homomorphic images of
generalized rough prime (semi-prime, primary) ideals which are established by quantale

homomorphism, are examined.

Next, in chapter four, we define («, 3)- fuzzy subquantales and («, 3)- fuzzy ideals
of quantale which are the generalization of fuzzy subquantales and fuzzy ideals in
quantale [49]. Further, an (€, € Vq)-fuzzy ideals and (€, € Vq)-fuzzy subquantales are
discussed. These fuzzy subquantales and fuzzy ideals are characterized by their level
subquantales and ideals, respectively. Some important results about (€, € Vq)- fuzzy
prime and (€, € Vq)- fuzzy semi-prime ideals are discussed. Fuzzy quantale submodule
is defined and its generalization that is an («, 5)-fuzzy Q-submodule of Q¢-module
is also introduced in this chapter. Fuzzy );-submodule is characterized by its level
QQs-subquantales. Further, approximations of fuzzy @;-submodule and approximations

of (€, € Vq)-fuzzy Qs-submodule of Q;-module are introduced.

The concept of («, 3)-fuzzy filter and some related properties are discussed in
chapter five. Further, an (€,€ Vq)-fuzzy filters are discussed. It is investigated
that under quantale homomorphism, inverse image of an (€, € Vq)-fuzzy filter is an
(€, € Vq)-fuzzy filter. Moreover, these fuzzy filters are characterized by their level
sets. Furthermore, in this chapter, we are presenting more general forms of (€, € Vq)-

fuzzy filters of Quantales. Particular attention is given to (€., €y Vgs)- fuzzy filters.
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In the chapter six, we started the investigation of roughness in (€, € Vq)- fuzzy ideal
and (€, € Vq)-fuzzy filter of quantales with respect to the generalized approximation
space. Moreover, it is demonstrated that generalized lower and upper approximations
of (€, € Vq)-fuzzy ideal, (€, € Vq)-fuzzy filter, (€,€ Vq)-fuzzy prime ideal and (€
, € Vq)-fuzzy semi-prime ideal are (€, € Vq)- fuzzy ideal, (€, € Vq)-fuzzy filter, (€, €
Vq)- fuzzy prime ideal and (€, € Vq)- fuzzy semi-prime ideal by using set-valued and

strong set-valued homomorphism, respectively.

In chapter seven, we are presenting more general forms of (€, € Vq)- fuzzy subquan-
tale and (€, € Vq)- fuzzy ideal of quantales. We introduce the concepts of («, 5)- fuzzy
subquantale, («a, 3)-fuzzy ideal and some related properties are investigated. Spe-
cial attention is given to (€5, €, Vgs)-fuzzy subquantale, (€, €, Vgs)-fuzzy ideal,
(€4, €4 Vgs)- fuzzy prime, (€4, €y Vqs)-fuzzy semi-prime ideals, and some interesting
results about them are obtained. Furthermore, subquantale, prime, semi-prime and
fuzzy subquantale, fuzzy prime, fuzzy semi-prime ideals of the types (€5, €, Vgs)

are linked by using level subsets.

The concept of generalized approximations (GA) of (€, €, Vgs)-fuzzy ideal, (€,
, €4 V@5)- fuzzy subquantale and (€., €y Vgs)-fuzzy filter in quantales were presented
in chapter eight. With the help of set-valued and strong set-valued homomorphism,
it is observed that GLA and GUA of (€4, €y Vqs)-fuzzy ideal, (€, €, Vqs)-fuzzy
subquantale and (€., €y Vgs)-fuzzy filter are (€4, €, Vgs)-fuzzy ideal, (€, € Vgs)-
fuzzy subquantale and (€, €, Vgs)-fuzzy filter, respectively. To extend this work,

one may consider the following topics:

(1) Generalized Rough Fuzzy Ideals in near-ring.

(2) Generalized Rough Fuzzy Q-submodules of Q;-module.

(3) Generalized roughness in (€, € Vq)-fuzzy ideals of BCK algebra.

(4) Generalized roughness in (€, € Vq)-fuzzy ideals of of near-ring.

(5) (&4, €4 Vas)-fuzzy ideals in near-ring.
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