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Chapter 1

Introduction

The survey of literature relevant to the flows in steady and time dependent cases of Newtonian
and non-Newtonian fluid models are described. Conservation laws along with the brief idea of

solution methodologies are also presented.

1.1 Literature survey

Rheological features of the non-Newtonian fluid models show difference as associated to the
Newtonian fluids. We know that the rheological properties of all the nonlinear fluids can’t be
anticipated by only constitutive relation between shear rate and strain rate. Non-linear fluids have
nonlinear relation among the stress and strain. It is noted that the nonlinear fluids have been
further characterized into three type’s viz. the differential, the integral and the rate type. The
constitutive equations in the last mentioned class “rate type fluids” are comparatively more
complex and complicated due to the elasticity effects in addition to the viscosity. In last few
years, scientists pay great attention to the rate type fluid models under different physical
conditions. Harris [1] presented some literature survey in his book “the rheology and non-
Newtonian flow”. He primarily investigated the mathematical formulation for the laws of
conservation of momentum for the Maxwell model. Later on different analysts and applied
mathematicians incorporated his idea to study the rate type models under diverse flow
configurations. For-instance, Zierep and Fetecau [2] have investigated the Rayleigh-Stokes
equation for the Maxwell model. Tan and Masuoka [3] explored the stability of Maxwell fluid
model. The authors have taken a porous medium to examine the stability values for the nonlinear
rheology. Hayat and Awais [4] examined 3D flow of UCM fluid over stretched surface. Series
solution has been obtained by using the homotopy approach. Abbasbandy et al. [5] investigated

the numerical and analytic solutions by considering the Falkner-Skan flow. They have taken

4



MHD Maxwell fluid for the analysis. Later, Awais et al. [6] also considered the Maxwell fluid
and studied the heat generation and absorption effects. Afify and Elgazery [7] have done the Lie
group analysis to examine the chemical reaction effects. Scientists investigated the MHD flow
for combined diffusion towards permeable stretching wall. Majeed et al. [8] examine the
chemical reaction with heat transfer for the UCM Ferro-fluid flow with magnetic dipole.
Analysis was carried out for the Soret and suction effects. Malik, Farzana and Rehman [9] also
considered the Maxwell fluid model for the analysis. Scientists evaluated the MHD 3D flow in
horizontal stretching surface with the convective wall. Later, Malik et al. [10] computed the
numerical analysis of Williamson fluid flowing over stretched cylinder. Study has been
presented by considering variable thermal and heat immersion effects. Numerical results have
been calculated by using shooting method together with RK-Fehlberg approach. Awais et al. [11]
observed the characteristics of micropolar fluid. Malik et al. [12] have investigated Carreau fluid
and variable viscosity in spongy medium. Analysts studied under the two situations namely
Poiseuille and Couette flow. Researchers have employed shooting method together with Runge-
Kute-Fehlberg method to evaluate numerical results. Moreover, results displayed graphically to
visualize influences of physical factors. Sakiadis [13] have scrutinized the BL behavior over
solid wall. Later, Sakiadis [14] examined the behavior of boundary layer in continuous solid
surface. Experts have employed numerical as well as integral method for the computation of
results. Nadeem et al. [15] have evaluated the HAM solutions for flow in the regime of
stagnation point. Hayat et al. [16] observed the 3D fluid motion by considering upper convected
Maxwell model. Authors have discussed mixed convection with magnetic field and thermal-
diffusion. Time dependent flow of the second order viscoelastic fluid model has been analyzed
by Saleem et al. [17]. They have analyzed the reaction and heat immersion effects and thus
calculated the analytical results. Freidoonimehr et al. [18] calculated simultaneous heat-mass
transfer properties for steady, laminar, incompressible and MHD stagnation point flow. Experts
have applied differential transform method together with Pade approximation to evaluate
analytical results. Computed results seem to be in good agreement with the results obtained by
fourth order Runge-Kutte method and already published results. Rashidi et al. [19] described the
analytical and numerical results by considering the combined heat and mass transfer

phenomenon. Study has been presented in the nanofluid regime from a nonlinear stretching



porous sheet. Authors have compared current HAM results with numeric consequences attained
by shooting method. Furthermore, Rashidi et al. [20] analyzed the generalized the magnetic field
effects for the Burger nanofluid model. Homotopy approach is employed to calculate the series
solution. Results were calculated under the influence of sundr5y parameters and compared with
those of already published results. Ariel [21] described the 3D flow for the steady, laminar,
incompressible viscous fluid model. Analytical results were obtained via homotopy perturbation
method and seem to be in good correlation with exact solutions which are already present in
literature. Singh [22] investigated the 3D unsteady, incompressible flow of Newtonian model.
Analysts calculated the results by using perturbation technique to visualize momentum profile,
isotherms and isolines. Further, researchers discussed two cases, viz. heating case (Gr < 0) and
cooling case (Gr > 0). Xu et al. [23] investigated the series solutions of the 3D unsteady natural
convective flow in the stagnation point region. Mookum et al. [24] described the numerical
calculations for the 3D flow. Asako and Faghri [25] evaluated three dimensional heat transfer
problem in the entrance regime of rthombic duct. Zhao et al. [26] evaluated the BL nanofluid
rheology. HAM has been utilized to calculate solutions and also discuss the influence of
involved physical parameters. Ramzan et al. [27] investigated 3D motion of the Oldroyd-B fluid
by considering Newtonian heating. Awais et al. [28] have taken the 3D Maxwell fluid model
flowing on the stretching surface for the investigation. Authors have used 3-stage Lobatto IIIA
formula for the analysis. Jamil et al. [29] studied the unsteady helical flows of Olroyd-B fluid
through finite Hankel transforms. Hayat and Alsaedi [30] examined radiation, thermophoresis
and Joul heating properties for the Oldroyd-B fluid model. Experts have also considered the
influence of magneto hydrodynamics and evaluated the analytical results via homotopy analysis
method. Ibrahim [31] examined the influence of magnetic effect and convective wall conditions
on MHD flow. Analyst has taken the Maxwell fluid model in the existence of nanoparticles.
Finally, shooting procedure has been employed to evaluate numerical calculations. Hayat and
Awais [32] discussed the effects of heat along with mass transfer for the 2D second grade fluid.
Scientists have considered Soret and Dufour properties and have solved the physical problem by
HAM. Later, Hayat et al. [33] examined Sorat and Dufaur’s effects for the 3D flow along the
stretched surface. Rashidi et al. [34] evaluated approximate solutions for viscoelastic fluid on a

moving stretching surface. Scientists have well taken the influence of MHD and computed the



results through homotopy analysis method. Nadeem et al. [35] explored three dimensional water-
based nanofluid flowing on the stretching surface. Experts have computed the numerical results
via fourth order RK technique. Alsaedi [36] examined three dimensional viscoelastic fluid
flowing on an exponentially stretched surface. Mahmoud and Megahed [37] discussed the
influence of viscous dissipation and heat generation/absorption of a non-Newtonian fluid. Fluid
is assumed to flow on the porous flat plate and the analytic results have been calculated.
Hammad and Ferdows [38] evaluated the similarity solutions for the stagnation-point flow along
heated permeable sheet. Lie group analysis has been performed to demonstrate velocity profile,
isotherms and isolines. Also, influence of heat immersion on flow has been examined by Alsaedi
et al. [39]. Awais et al. [40] accomplished heat transfer investigation by considering third grade
nanofluid. Hayat et al. [41] described convection flow for the Burger’s fluid model. Effects of
stratification and heat immersion are shown and finally convergent results have been evaluated
for nonlinear coupled equations. Choi [42] has presented an extensive study on flow with
nanoparticles. Makinde and Aziz [43] examined numerically BL flow along a stretched wall.
Computed results have been displayed in graphical and tabular form to visualize the influence of
considered variables on temperature and nanoparticle concentration. Also, Nadeem and Lee [44]
investigated boundary layer flows along exponentially stretching sheet. Moreover, experts
plotted A-curves to obtain convergence of the analytical results. Sheikholeslami et al. [45]
investigated forced convected heat transfer problem with variable magnetic field. Further,
Sheikholeslami and Ellahi [46] presented three dimensional analysis of natural convective flow
of nanofluid. Dalir [47] numerically investigated heat transfer problem of a Jeffrey fluid.
Cattaneo [48] initially investigated Cattaneo Christov fluid. Christov [49] studied generalization
of Fourier law which is Maxwell Cattaneo model according to frame indifferent formulations.
Tibullo and Zampoli [50] extend studies of Christov mentioned in ref. [49] for incompressible
fluids and presented a unique solution. Haddad [51] examined thermal instability in a flow in
porous media. In this study, scientist has considered Cattaneo-Christov theory in the governing
equations for the flow field. Han et al. [52] have taken viscoelastic fluid while incorporating
generalized heat flux. Hayat et al. [53] studied the 2D flow of Oldroyd —B fluid and included CC
heat flux effects. Researchers have considered the influence of magneto-hydrodynamics with

homogeneous-heterogeneous reactions and derived the series solution. Ali et al. [54] extend



studies for the Cattaneo-Christov heat flux by adding thermal radiation effects. Extensive studies
related to Cattaneo-Christov theory have been done by the scientists and engineers mentioned in
Ref. [55-60]. Ganji et al. [61] considered the 3D flow of Walter’s B fluid in a vertical channel.
Analysts considered the influences of viscoelasticity and inertia and examined the accuracy of
VIM, ADM and HPM in solving coupled equations. Outcomes attained are in settlement with the
exact results and thus displayed in tabular form. Also, Ganji et al. [62] considered MHD
squeezing flow between two parallel disks. Scientists employed HAM and HPM to obtain
analytic results and investigated the influence of Reynold number, magnetic number and blowing
parameter. Awais et al. [63] studied unsteady 3D incompressible flow of Maxwell fluid. Series
solution has been calculated via homotopy analysis method. Extensive studies for the Oldroyd B
fluid has been done by the scientists in recent years for heat transfer problems in two as well as

three dimensions described in Ref. [64-73].



1.2 Description of conservation laws

Conservation laws are given by

1.2.1 Continuity equation

Mathematical expression for the conservation of mass is stated as:

%—'toJrV.(pV):O. (1D
For incompressible fluids
V-V =0. (1.2)
1.2.2 Equation of fluid motion
The mathematical form is given by
pcil—f:v-r+pb, (1.3)
where
O Ty To (1.4)
T=|7, O, T,
T 2 O
Note that 7 is
t=—pl+S§. (1.5)
Equation of motion become
dv 1.6
'OE =V.r. (16



Component forms of the above equation are

du_do,) 0z, o)
dt ox oy oz
dv_o(r,) do,) ar,)

dt ox oy 0z
ﬂ — a(/Z-Z)c) + a(TZ,v) + a(O-zz) .
dt ox oy oz

2

2

1.2.3 Law of energy conservation

This law states that
o y.yr- ava—LVq,,
ot oc,
where g, is radiative flux which is stated mathematically as

4o

q,— V(n’T*).
3a,
1.2.4 Mass transfer equation
This equation is given by:
%—f+V-VC:DV2C :

where C symbolizes species concentration and D represents the diffusion constant
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1.3 Constitutive relations of stress tensors

The constitutive relations of stress tensors for different fluid models are given by
1.3.1 Newtonian model

The generalized tensor is

tU=—pI+§, (1.11)

where extra stress tensor S’ for Newtonian model is given by

S,=‘LJA], ILIZO,

in which the first RE tensor A,

Al — VV + (VV)tmnspose )

1.3.2 Maxwell model
The tensor S" for an upper-convected Maxwell (UCM) model satisfies:
D (1.12)
1+ A4 — [S'= uA,,
( D J HAq
where /4, is relaxation effect and the expression for D/Dt is given by [1]
Da;  Oa, (1.13)
= tu.a;, —u;,a,.
Dt ot ’ ’
1.3.3 Oldroyd-B fluid model
For Oldroyd-B fluid model, the extra stress tensor satisfies
(1.14)

D D
1+ 4 — |S=u| 1+ 4, — |A,.
( lDtj ﬂ( AQDJ 1
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1.3.4 Jeffery fluid model

Expression of tensor in Jeffery model is

1.15
1+ 4 dt

1.4 Additional forces and source terms

1.4.1 Magnetic field

The additional term in the equation of motion corresponds to the hydro magnetic flow situation

is given by
F, =JxB, (1.16)
J=0(E+VxB), (1.17)
where
B=5,+b.
After simplifications we get
F, =-0B;V. (1.18)

1.4.2 Internal heat generation/absorption

The extra terms corresponds to the internal heat immersion is &(T -T,).
pe,

1.4.3 Nanofluids

The extra terms representing the effects of nanofluid are given by

2
4 =7 Dga_ca_TJr&(a_T] ,
oy oy T,\ oy
2
4, =209
T, oy

in which Dp represents the Brownian motion and D7 represents the thermophoresis phenomenon.
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1.5 Methodology

It is analyzed through literature survey that differential systems for the Rate type non-Newtonian
fluids are non-linear and complex. Such nonlinearity is more complicated when the generalized
rate type fluid model are considered. For the computation of nonlinear coupled set of equations,
we employed numerical techniques, namely shooting technique together with Newton Raphson
method and finite difference method. To compute results analytically, we apply an effectual

analytical approach namely HAM.
1.5.1 Shooting method

Shooting technique is a numerical iterative scheme used for the numerical calculations of the
system. This iterative approach is applicable only on the first order initial value problem. In this
technique missing initial slope at the initial (starting) interval point is supposed and then we
calculate the differential equation together with initial condition. The precision of anticipated
initial condition is tested by relating the calculated value of the dependent variable at the final
point. If they are in good agreement then it’s the solution of IVP, otherwise we continue this
process by taking other value for the missing condition. These steps are repeated until the
accuracy is achieved.

Solution procedure

Consider a differential equation of second order

d’u du (L.21)
W = f M,V,E .
The suitable wall conditions are
u(0)=0 and uw(lL)=4. (1.22)

We rewrite Eq. 1.21 in the group of two equations of first order

du dw (1.23)
—=w,— = f(u,v,w).
dv dv A )
The missing initial condition is
1.24
du(0) _ W(0)=s. (1.24)
dv

13



So need to calculate “s” such that the system of ODEs satisfy the boundary condition at the

second point. We can compute ““s” such that:
u(L,s)—A=¢(s)=0.

By using Newton Raphson method

Using above equations

Differentiated w.r.t. s to achieve derivative of («) with s, we have

au

d_ w and d—U_%U'FgV,
A%

dv  ou ov

U0)y=0 and W0 )=1,

where
U= =
Os Os

The solution is achieved by going through following steps

1. Suppose value for s, and s denotes the approximate value ofs.

2. Solve an IVP fromx =0 - L.

3. Results obtained from the above step will be utilized to get

g )4
Y(L,s')

4. Repeat the process until precision is achieved.

14
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1.5.2 Finite difference technique

FDM is efficient process for the computation of BL problems. In this technique, we discretize
the set of partial differential equations by replacing the differentials with the difference quotients
which in result yields nonlinear algebraic equations.

Solution procedure

To achieve a numerical solution for the system of differential equations, we replace continuous
variables by discrete variables. We accomplish this process by reforming the given set of
equations in algebraic form by substituting differentials with difference quotients. Let we have

continuous function u(x). Divide x-axis on the finite no of intervals with uniform grid size A(x).

At any three consecutive points x, ,x, and x,,,, the value of function u(x) are u, ,,u, and u,,,.
u,,, and u _, can be written in terms of u, and A(x) by using Taylor series.
2 2 (1.31
un+1:u,1+@Ax+dZ(Ax) Foene , )
dx dx” 2!
du ,  d’u(Ax) (1.32)

u,  =u, ——~Ax+—
dx dx” 2!

Difference quotients for the 1st order differential terms are
Forward difference
Mathematical representation for the Forward difference of the ist-order derivatives can be

obtained by using Eq. 1.31.

du _u,,—u, (1.33)
dx Ax

Backward difference

Using Eq. 1.32, we get
du _u,—u,, (1.34)
dx Ax

Central difference

15



To get central difference analogue for 1st order differentials, we subtract Eq.1.31 from Eq. 1.32.
du _u,,—u,, (1.35)

dx 2Ax
Finite difference analogue for the second order derivative terms are obtained by adding Eq. 1.31

and Eq. 1.32.
d’u u,, —2u +u,, (1.36)

d*  (Ax)

Similarly difference quotient for the third order derivatives is

d3u _ un+2 _Zun-H + Zun—l _un—2 (137)

dx’ 2(Ax)’

Using above equations in differential equations, we get nonlinear equations. Thomas algorithm is
best applicable to the set of algebraic equations if they are tri-diagonal because they occupy less
space.
1.5.3 Homotopy approach
This is efficient technique and researchers are employing this technique for the series solution of
differential systems. We can say regarding this technique that
e HAM does not need small or large parameters. The auxiliary operator is presented to
make the deformation equation of zeroth order.
e It should be noted that auxiliary operator “A”, auxiliary function “H(¢)”, initial operator
“L” and 1initial guess “V/ (¢) ’can be independently chosen.
e Convergence regime can efficiently be controlled and approximation rate for calculating
the series solution is adjustable.

e Different set of base functions can be selected while implementing this approach.
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Chapter 2

Analysis of UCM fluid with diffusion

effects: Dual numerical results

In this chapter, we have analyzed the properties of heat immersion and reaction phenomenon in a
fluid flow under magnetic effects. Characteristics of the UCM fluid model have been taken in the
spongy medium to examine the absorbent effects. Diffusion equations are used to measure out
the heat as well as mass transfer effects. Set of ODEs are numerically computed by using
shooting technique. It is being practically examined that dual solutions occur for the flow above
shrinking wall and a single solution in case of stretching surface. Properties of Deborah number,
heat and mass transfer and heat immerion have been visualized graphically. Results have also
been depicted in the tables to describe the dual results for skin friction, Nusselt and Sherwood

number.

2.1 Construction of the equations

Consider the UCM fluid flow over a permeable wall in order to study the suction-blowing

properties. The flows in the porous medium y > 0 is considered as revealed in the Fig. 2.1.
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Fig. 2.1: Plan.

Mathematical model for the rheological system is

a—u+a—u:0, (2.1)
ox Oy
2 2 2 2 2

ua—u+va—u+l u28L21+v28L21+2uV6u zvabzl—o-BO u+iv8—u

ox Oy ox oy Ox0Oy oy P oy

(2.2)

_ u+/1va—u) ,

k oy

(T-T.), 2.3)

oCc oC o°C
u—+v—=D0—
ox oy oy

Wall properties are of the form:

~K,C. (2.4)

u=U_,v=V T=T,6 C=C, at y=0, 2.5)
u—>0,7=7, C=C, as y— o, '
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In the given set of equations U, =—cx signifies the shrinking velocity and V, is suction-

blowing parameter. Notice that the suction effect arises when V, < 0 and V, > 0 relates to

blowing condition. The stream function y with transformations are presented

w=JExf(n>,n=\fy, 49(77)—T 7 90 )—C (é

W o0

Applying the above set of variables we get

"= (S + 0+ BRI =SS ")+ MBI =M f =K+ KB =0,
0" +Prf0'+Pri6=0,

¢"+Sc f¢' —Scyp=0.

The boundary conditions thus arises to be

f(0)=S, f'(0)=-1,6(0) =1, ¢(0) =1,
f'(0) =0, 6(x0) =0, ¢() =0.

Mathematically
B} K -V,
ptemr =20 Y ope= ¥ g o € g, Ko Th
cp ke’ a, cpe, D c Jve

Physical quantities being discussed are Nu, and Sh. These quantities

mathematically as

Nu, /Re"> =—¢'(0),Sh/ Re"? = —¢'(0).

19
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2.8)
2.9)

(2.10)

@2.11)

are represented
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2.2 Computational technique and results

Nonlinear coupled partial differential equations mentioned in Eqs. (2.7-2.9) are computed
numerically by using boundary condition revealed in Eq. 2.10. To apply shooting technique, we
apply RK method together with NR method. To calculate results numerically following variables

are defined as:

, P —fq-2BJpq M’ fq-BK fg+ M p+K,p

P'=q 9 Y

0=z, 6=-Prif-Prfz, (2.15)
¢’:u’ ¢1':SC7/¢_SCf”9

with

£(0)=S, p(0)=—1, 8(0)=1, ¢0)=1, (2.16)

However the solutions of ¢(0), u(0) and z(0) necessarily be calculated to approximate the IVPS

represented in Eqs. 2.15 and 2.16. Shooting technique is applied by selecting the suitable initial
guess. Grid size is taken to be 2 = 0.001 and numerical calculations are done constantly until the
tolerance of 0.00001 is accomplished. Above Egs. 2.15 and 2.16 have physical parameters
magnetic effects, Deborah number, permeability, Prandtl number, generation-absorption as well
as suction-blowing. Therefore we have depicted results graphically to visualize and also we

figure out the numerical results in tables. Plots for the Newtonian and UCM fluid are displayed.
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Fig. 2.2: Hydromagnetic vs hydro-dynamic cases.

Fig. 2.3: UCM vs Newtonian model.
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Skin frictions f"(0) for (M #0) and for (M =0) flow cases are compared and displayed in the
Fig. 2.2. It is visualized that the dual solution occurs in case of hydro-dynamic flow for S >
1.7397. However, for hydro-magnetic flow the domain rises to S > 1.4765. Maxwell and the
Newtonian fluid are compared and displayed in Fig. 2.3. The graphs clarify that the dual solution
exists in both cases though the domain in case of Maxwell fluid is comparatively greater than

that of Newtonian (viscous) model over a shrinking surface.

Fig. 2.4: Impact of  on f".
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Fig. 2.5: Impact of K, on velocity.

In Fig. 2.4, influence of B on the momentum boundary layer is displayed. It is observed that
different solutions occur by changing f. Also, it is noted that flow velocity reduces with
Deborah number “f#” due to the elastic properties in Maxwell fluid which hinders the motion of
fluid particles. Impact of porosity parameter K, on the fluid is presented in Fig. 2.5 and it is
studied that the dual solution exists for different values of K, . It is analyzed that the second result
is significant when related with the first one. It is noted that changings in the first solution are
slightly small for positive values of K, while the variations in second solution are
acknowledgeable. Dual solutions for the thermal BL are depicted in Fig. 2.6 for various values of
Pr and it is thus observed that both solutions are similar. As it is known from literature that Pr is
inversely linked with diffusivity and also it is seen from the graphs that isotherms retard by

growing the value of Pr. In Fig. 2.7 impact of internal heat generation/absorption is being

discussed. It is clarified that temperature rises by raising As. Effects of § on temperature are
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discussed in the Fig. 2.8. It is analyzed that the boundary layer decays for greater S whereas
increase in the value of § increases velocity of fluid particles. Thus, it results in higher
molecular movement so the temperature reduces. The impact of the suction-blowing
phenomenon on the isolines is explained in the Fig. 2.9. From this geometry it is verified that
enhancement in the suction-blowing decreases the concentration. It is also noted that increasing S

cause a decrease in diffusion.

Fig. 2.6: Pr variation against 6.
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Fig. 2.7: hs variations against 6.

Fig. 2.8: Temperature change vs S.
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Fig. 2.9: S variations on concentration.

3D flow configuration is depicted in Fig. 2.10. Here the variation of velocity against the
independent variables is shown. It is thus concluded that variation is maximum near the

shrinking wall however the ambient values are small.
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Fig. 2.10: 3D flow configuration.

The numerically computed solution of temperature-diffusion change and wall friction against £,
Pr, S, M and hs have shown in the Tables (2.1-2.3). The dual results for C;, Nu and Sh for
different physical parameters are calculated and revealed which explain the characteristics of

rheological behavior in computed results.
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Table 2.1: Skin friction values: Dual results.

S Jij M Skin friction f"(0)

1.72 0.0 0.5 0.9555807 0.773768
1.78 0.0 0.5 1.118270 0.661129
1.87 0.0 0.5 1.301370 0.567579
1.93 0.0 0.5 1.402291 0.526234
2.00 0.0 0.5 1.509902 0.487955
1.69 0.2 0.5 1.064382 0.735073
1.87 0.2 0.5 1.788153 0.501723
1.93 0.2 0.5 1.994654 0.447306
2.00 0.2 0.5 2.245862 0.425645
1.74 0.2 0.0 1.022591 0.980014
1.80 0.2 0.0 1.411943 0.721864
1.90 0.2 0.0 1.793495 0.582473
2.10 0.2 0.0 2.563495 0.410476
1.50 0.2 0.5 0.969338 0.636261
1.62 0.2 0.5 1.351365 0.467542
1.74 0.2 0.5 1.678094 0.383745
1.82 0.2 0.5 1.903514 0.361377
1.94 0.2 0.5 2.272523 0.282457
2.10 0.2 0.5 2.85835 0.202462

28




Table 2.2: Nusselt number values: Dual results.

yij hs Pr S Nusselt number —6'(0)
0.0 -1.0 1.0 2.2 1.21553 1.34589
0.1 -1.0 1.0 2.2 1.21191 1.37503
0.2 -1.0 1.0 2.2 1.20607 1.40153
0.1 -1.0 1.0 2.2 1.21191 1.37503
0.1 -0.5 1.0 2.2 0.95584 1.21144
0.1 0.0 1.0 2.2 0.30947 0.99754
0.1 -1.0 0.1 2.2 0.38427 0.44265
0.1 -1.0 0.4 2.2 1.00521 1.15256
0.1 -1.0 0.8 2.2 1.84177 2.04672
0.1 -1.0 0.5 1.8 1.07013 1.19322
0.1 -1.0 0.5 2.0 1.14021 1.28300
0.1 -1.0 0.5 2.2 1.21191 1.37503

Table 2.3: Sherwood number values: Dual solutions.

S yij M Sherwood number —¢'(0)
1.8 0.1 0.5 1.07013 1.19322
2.0 0.1 0.5 1.14021 1.28300
2.2 0.1 0.5 1.21191 1.37503
2.0 0.0 0.5 1.14184 1.26086
2.0 0.1 0.5 1.14021 1.28300
2.0 0.2 0.5 1.13821 1.30013
2.0 0.1 0.0 1.16006 1.27801
2.0 0.1 0.25 1.15464 1.27938
2.0 0.1 0.5 1.14021 1.28300

29




2.3 Conclusive remarks

This analysis aims to compute numerical results for UCM fluid model. Heat-mass transfer

problem is studied with magnetic properties, reaction phenomenon and heat immersion.

Numerically calculated results are illustrated in graphs and also shown in tabular form.

Conclusive remarks about the present study are

Dual results occur for the double diffusive flow over shrinking surface.

Unique (single) solution happens only for stretching surface.

Momentum boundary layer turn to be thinner as the magnetic field retards the motion of
fluid particles.

Second result is significant as compare to first for the porosity (permeability) effect.

Suction phenomenon reduces the temperature as well as concentration profiles.
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Chapter 3

Magnetic properties in Sakiadis flow of

non-Newtonian nanofluid

This chapter reveals the study of Sakiadis flow for nano material with magnetic properties and
heat immersion effects. Double diffusivity is briefly examined with thermal radiations. During
mathematical modelling, the physical problem is transfigured to the set of PDEs which are
further altered to nonlinear ODEs via appropriate transformations. Calculated results are shown

in graphs to visualize the effect of involved parameters.

3.1 Mathematical modelling

Combined heat-mass transfer effects with magnetic field in sakiadis flow of UCM nanomaterial
is investigated. Flow dynamics in a absorbent medium with convective wall properties have been

considered. Conservation laws are

vy, 3.1)
ox Oy
2 2 2 2
ua—u+va—u+ﬂ, uzat‘+v26?+2uv Cu :Vabzl— O-B°+L u+/1va—u , (3.2)
ox oy ox oy oxoy oy p K oy
2 2
ua—T+va—T:—L(%]+ama—{+&(T—Tw)+r DBa—Ca—T+&(a—T) , (3.3)
ax oy pc,\ Oy »y pec, oy T\
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oc, oc _, &C D oT

+v—= ,
Ox oy Loyt T o)’

The wall conditions are

or oC
u=U, v=0, —k5=hf(7}—T),—D5=hc(Cf—C) at  y=0,

u—>0,7T->7T,C—>C, as y—oo.
Where g is
g, =—(4c” /3k")oT* / oy .

Utilizing

U , 1 U ’ T_T"C C_COO
nZ\/%%th,v:‘E\/g(f"?f)’ o e

A o A o

We get
1

fm+Effﬂ_%(2fj~fr~n+77f’zfﬂ+f2fm)

—M*(f'=D,(f-nf")f")-Kf +KD,(f"-nff")=0,

6?”+Pr(% f0'+N,0'¢'+ N0 +hs9]+%Rd9" =0,

1 N,
"+ Sel — 4 +_tQ”:O’
¢ C(2f¢j N

b
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)



along with wall properties

f(0)=0,
f0)=1,

0'(0)=-7,(1-0(0)), ¢'(0) =7, (1-¢(0)),

f'(0) =0, 8(0) — 0, ¢(0)— 0.

Mathematically

_oB;
pU’
_ 46°T]

M2

Rd
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The numerical treatment is computed using finite-difference approach (FDM) as shown in Table

1.

3.2 Solution computations

In this part of chapter, we aim to investigate the impact of physical parameters including

Deborah number De, heat generation-absorption parameter ks, thermophoresis parameter N;.

Further, effect of magnetic field M, Biot numbers (7,,7, ) and Brownian motion N is also been

studied on the velocity, temperature and species concentration. During solution computation
errors are evaluated and depicted in Fig. (3.1-3.3). It is observed that errors in the results are
quite negligible. It is revealed in Fig 3.4 that Deborah number De retards the motion of fluid
particles near the boundary. Fig 3.5 reveals the effect of magnetic strength M. This geometry
clarifies that boundary layer decreases with M. From literature, it is studied that apparent
viscosity of the fluid increases as the magnetic field is applied on it. Likewise, in Fig 3.6 effect
of magnetic field on @ is presented. It is shown that 6 increases close to the convective wall.
Impact of 4s on @ is discovered in Fig 3.7. Also for (ks < 0.0), the temperature reduces while for
(hs > 0.0), the temperature rises. Also, thermal slip is observed in both cases because of the

convective properties of surface. Influence of y, on the temperature is discussed in the Fig. 3.8.
It is witnessed from this picture that temperature increases close to the wall and decreases far

from the convective surface. Effects of (N,,N,) on @ are exposed in Fig. 3.9. Consequently, it

is studied that nanoparticles enhance the temperature. Effect of M on the graph of concentration
is observed in Fig. 3.10. It is verified that species concentration is in direct relation with
magnetic field. Enhancement in the value of M gives rise to concentration profile. Impact of Biot

number y, on the isolines is displayed in the Fig. 3.11. It is witnessed that the concentration
profile in increased near to the convective wall. Influences of (Nwa) on the species mass
distribution are portrayed in the Fig. 3.12. It is discovered that ¢ rises by enhancing the

thermophoresis and Brownian motion (N » N, b) .
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Fig. 3.4: De variation on f".

Fig. 3.5: M variationon f".
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Fig. 3.6: M variation on 6.

Fig.3.7: hs variation on 6.
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Fig. 3.8: y, variation on 6.

Fig. 3.9: (N,,N,) variation on 6.
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Fig. 3.10: M variatons on ¢.

Fig. 3.11: y, variations on ¢.
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Fig. 3.12: (Nb,N,) variations on ¢ .

Table 3.1: Comparison table.

Parameters FD Solution HAM Solution
4 -¢'(0)
4 _ - '

pelns | m|N | N| v |5 —(1+§Rd)6?'(0) —4(0) [“ 3Rdj9 (0)

00] 05 ]1.0 03 |03 [05 |03 0.247136 0.248907 0.247260 0.248890
051105 1]1.0 03 |03 [05 03 0.246492 0.249193 0.246578 0.249295
1.0 05 ]1.0 03 |03 [05 |03 0.245687 0.249552 0.248952 0.249513
15105 ] 1.0 03 |03 [05 |03 0.2447057 0.249958 0.2447057 0.249955
05]-15] 1.0 03 |03 [05 |03 0.4769977 0.139383 0.4769977 0.139374
05| -1 1.0 0.3 03[ 05] 03 0.4519256 0.151260 0.4519232 -0.151241
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05]-05( 10| 03 03] 051 03 0.4157199 0.168457 0.4157214 0.168467
051 0 1.0 | 03 03] 05| 03 0.3576959 0.196092 0.3576458 0.196089
05105 (10| 03 03] 05| 03 0.2464949 0.249193 0.2464875 0.249188
05]10 (10| 03 03] 05| 03 -0.0672411 0.399351 -0.0672547 0.399340
05|15 (10| 03 03] 05| 03 -6.5635507 3.514316 -6.5635259 3.514320
05105 (00| 03 03 05] 03 0.2562556 0.245268 0.2562456 0.245270
0510505 03 03 05] 03 0.2532122 0.246472 0.2532312 0.246472
05105 (10| 03 03 05] 03 0.2464949 0.249193 0.2464859 0.249193
05105 (15] 03 03 05] 03 0.2394121 0.252142 0.2394251 0.252142
0510510 0.1 03 05] 03 0.2539361 0.336783 0.2539245 0.336783
05105 (10| 03 03] 05| 03 0.2464949 0.249193 0.2464925 0.249193
05105 (10| 06 |03 | 05|03 0.2351707 0.227337 0.2351817 0.227337
05105 (10| 1.0 1 051 03 0.2197855 0.218640 0.2197875 0.218641
05105 (10| 03 0.1 | 05103 0.2565104 0.214782 0.2565104 0.214781
05105(10] 03 03| 05| 03 0.2464949 0.249193 0.2464957 0.249192
05105(10] 03 06 | 05| 03 0.2313545 0.313103 0.2313542 0.313102
05105(10] 03 1.0 | 05 03 0.2110014 0.421578 0.2110014 0.421577
05105(10] 03 03 (01103 0.1038475 0.218254 0.1038457 0.218254
05105(10] 03 03(05] 03 0.2462949 0.249193 0.2462857 0.249193
05]05 (10| 03 03] 101 03 0.2945056 0.261406 0.2945514 0.261406
05]05 (10| 03 031201 03 0.3253130 0.269785 0.3253128 0.269784
05]05 (10| 03 03] 05 0.1 0.2543187 0.105175 0.2543187 0.105175
05105 (10| 03 03] 05|03 0.2464949 0.249193 0.2464947 0.249195
05105(10] 03 03[ 05 0.6 0.2393645 0.378966 0.2393545 0.378964
05105 (10| 03 0305 10 0.2338329 0.478731 0.2338358 0.478735
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3.3 Conclusive remarks

Convective heat-mass transport effects have studied for the Sakiadis rheology of UCM

nanomaterial. Brownian and thermophoretic effects are discussed in the present study. Final

results are listed in some steps as:

Boundary layers decrease by increasing the value of Deborah effects.

Magnetic effect opposes the fluid motion and delays the velocity.

The temperature is directly related with magnetic field. Enhancement in temperature
increases with magnetic field.

Heat immersion parameter has contrary behavior on the temperature.

Thermophoreses and Brownien motion both improve the temperature and concentration.
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Chapter 4

3D dynamics of UCM model over
exponentially stretched wall: Variable

properties

This part portrays the 3D flow of UCM over exponential stretched wall. The energy equation
with temperature dependent conductivity has been studied in detail. Analytical solutions are
computed via HAM. Comparison with the already published data is presented for the limiting

case. Various graphs and tables are illustrated to show the real insight of the problem.

4.1 Problem development

Consider the dynamics of UCM fluid over a bidirectional stretching wall. Analysis is performed

in (x,y,z) coordinates. Constitutive mathematical relations are

8_u+8_v+@=()’ 4.1)
ox oy o0z

oUW _ou oW 6217_/1(172 O’ 0% s azﬁJ

U——+V —+W =02 > TV T TW T3
ox oy oz 0z o oy 0z “2)
__ ot __owt  __ou’ '
+ 24 UV ——+vw +uw ,
X Oy oyoz oxoz

44



X oz 2 X2 y2 oz?
4.3)
L0 .0 .o
+ 24| uv +Vw +uw .
X Oy oyoz oxoz

Wall effects are

y y
u=U,=Upel , v=V, =Upe L, w=0, at 2=0,

and u >0, v—0, as Z —>w.

(4.4)
Introducing the transformations:
n= fouex;;z’ u = er%f'(ﬂ), V= er%g'(ﬂ),
U, = , ,
w2 e (fan) + () +n(f )+ ) (4.5)
Egs. (4.2) and (4.3) become
Al s ) 2 se P -2 )
(4.6)
_ﬂ(%(f n g)Zfvv|_3f(fv+g|)fvv_3g(fv+gv)fuj =0,
g"-2(f+g g +(f + g)g"—ﬁL2(f +g')’ g’—g(f +g')’ g”J
(4.7)

) 'BG (f+e) g 37/ +g)g"-3el/ '+g')g"j =0,

whereas the boundary conditions altered after subjected to transformations are written below:
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f=0, g=0, f'=1, g'=a, at =0 and '—0, g—>0, as n— oo, (4.8)

xX+y

Uy L

A V.
where ZOT denotes the Deborah number and o = [U_OJ symbolizes stretching ratio

0
parameter. Observe that o =0 shows that, the three dimensional flow is changed to two-

dimensional flow which is stated as:
m |2 n '3 77 n 12 1 2 m 1 "
f"=2af "+ ff —ﬂ(2af _Ef f +577f S35 f j=0, 4.9)

=0, f'=1, as n=0 and f'>0 as np—owo (4.10)

Note that for ¢ =1, we have f =g that describes axisymmetric flow and with the similar

boundary conditions (4.10).

4.1.1 Energy diffusion analysis

By taking the effects of radiation, we get
~ ~ ~ 3\ A
A . S B ) (ARl win)
ox oy oz pc » oz 3k * oz
whereas the wall conditions for the PST and PHF cases are:

- - A(x+y) N
T=T,=T +Te * atzZ=0and T —>7T, as zZ —> x,

oT (B+1)(x+y) _
-k, = =Te 2 at Z=0and T —>T, as Z—>oo. (4.12)
Z

Thermal conductivity (k) is expressed mathematically as:

PST case: k=k, (1+7.0(n)),

PHF case:  k=k, (1+y.¢(n)). (4.13)
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A similarity transformation is presented as

- A(x+y) - T 20L B(x+y)
T=T +Te ** 6(y) and T=T,+." ULe 2 4(n). (4.14)
0

00

Eq. (4.11) is reduced to the following form by applying Eq. (4.14):
(1+ Rn+y0)0"+Pr(f + g)f'—APr(f'+g')0 + y8° =0, (4.15)
(1+Rn+yp) 9"+ Pr(f +g)p'—B.Pr(f'+g") o+ yp" =0. (4.16)

And wall effects are

0=1, ¢'=—ﬁ, at =0, and 6 >0, ¢—0, at n— oo, (4.17)

w7 3
where Pr= ,uc% and Rn= 160*1,, 4{]( « respectivly.

4.2 Series solutions

The analytic solutions of Egs. (4.6), (4.7), (4.15) and (4.16) subject to the conditions (4.8) and
(4.17) are computed by utilizing homotopy approach. The suitable initial guesses and linear

operator are:

fn)=1-¢7, g,(n)=all-¢") 6,(n)=c", ¢n)= 1e+ ” (4.18)
L(f)=r"-f". L(g)=g"-g', L,(0)=0"-0, L,(¢)=¢"—¢. (4.19)

A MATHEMATICA code is constructed and we suppose (4, h,, h, and h,) for the function

( f, g, 6 and ¢) . It is observed experimentally that the convergence is achieved and it depends

on these auxiliary parameters. Convergence of the solution are well presented in tabular form
(Table 4.1).
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Table 4.1: Convergence of the series solution.

Order of approximation - 1"(0) -g"(0) -6'(0) ¢'"(0)

1 1.44813 0.72406 0.87333 0.51570
4 1.75472 0.86584 0.70194 0.21325
8 1.78138 0.88897 0.64558 0.18583
12 1.78208 0.89124 0.62985 0.18581
16 1.78303 0.89148 0.62395 0.18618
20 1.78303 0.89148 0.62135 0.18634
30 1.78303 0.89148 0.62135 0.18634

4.3 Results and analysis

Here we wish to present the graphical and numerical illustration for the involved physical
parameters. Therefore, Figs. (4.1-4.10) and Tables (4.2-4.3) are constructed. Influence of S on

f and f'is examined in Fig. 4.1 and Fig. 4.2. Thus, we notice that £ is in inverse relation with

fluid velocity. Fluid motion slows down by enhancing Deborah number. From literature, we

study that (B <1) resembles with the fluids in which the relaxation time is fewer than the

deformation time. Therefore, non-Newtonian fluids act like viscous fluid. Contrary to that the
fluid particles act like a solid material. Figs. 4.3 and 4.4 are constructed to study the influence of

stretching ratio parameter @ on g(r) and g'(r7) correspondingly. It is shown in these geometries
that the velocity of fluid particles increases by enhancing the value of « = (0.0, 0.3, 0.6, 1.0).
From above observation, we determine that when « = 0, the flow diminishes to two dimensional
form, while for « > 0,the flow resembles to three-dimensional (for the reason that surface is

bidirectional stretching) as apparent from Fig. 4.4. In addition, the flow turns to be axisymmetric

when a =1.0. The impact of temperature dependent thermal conductivity y on PST and PHF

cases are portrayed in Fig. 4.5 and Fig. 4.6. It is observed from geometry that
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7=(0.0,0.5,1.0,1.5) is directly related with 6(r7) and inversely proportional to ¢(;7). Variation

of the radiation parameter Rn is presented in Figs. 4.7 and 4.8. It is perceived that by increasing

the radiation there is growth in temperature for (PST and PHF). The effect of stretching ratio
parameter by considering Pr = (0.7 and 0.02) against the temperature profile is shown in Figs.
4.9 and 4.10 respectively. PST and PHF cases exhibit eloquent overshoot for small value of
Prandtl number (liquid metals=0.02) though for greater Prandtl number (air=0.7) the

temperature variations are not very much momentous. Physically, we can say that the reaction of

stretching ratio parameter is effective for the liquid metals (Pr:().OZ) because they are less

viscous. However, for greater Prandtl number, fluid turns to be more viscous so there is less
overshoot. Computed results are compared in table 4.2 and 4.3 and it is clear that numerical

solution and HAM results are in an agreement.

Fig. 4.1: Deborah number variations on f.
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Fig. 4.2: Deborah number variations on /",

Fig. 4.3: o variations on g.
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Fig. 4.4: o variatiosn on g'.

Fig. 4.5: y variations on 6 for PST
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Fig. 4.6: y variations on ¢ for PSHF.

Fig. 4.7: Rn variations on 6 for PST.
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Fig. 4.8: Rn changes on ¢ for PHF.

Fig. 4.9: Comparison of results: Air vs liquid metals on 6.
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Table 4. 2: Evaluation table.

Fig. 4.10: Comparison of results: Air vs liquid metals on ¢.

Parameters (Awais et al. 28)

a B f"(0) g"(0) f"(0) g"(0)

0.0 02 -1.56105 0.0 -1.56101 0.0

0.3 -1.86446 -0.55934 1.86443 -0.55934

0.6 -2.15823 -1.29494 2.15824 -1.29493

0.5 0.0 -1.57001 -0.78501 -1.57002 -0.78501
0.2 -1.78309 -0.89156 -1.78300 -0.89155
0.4 -1.97288 -0.98645 -1.97288 -0.98644
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Table 4.3: PST vs PHF cases: Analysis

Parameters PST PHF
6(n) #(n)

a Rn n=0.0 n=25 n=5.0 n=0.0 n=25 n=5.0
0.0 5.0 1.00000 0.28385 0.03857 1.93112 0.34177 0.04194
2.5 1.00000 0.16762 0.01665 1.70385 0.21745 0.02048
5.0 1.00000 0.05138 -0.0052 1.47658 0.09312 -0.0009
0.2 0.0 1.00000 0.06934 0.00313 1.00385 0.07065 0.00347

3.0 1.00000 0.19247 0.02334 1.54931 0.22736 0.02552

6.0 1.00000 0.31559 0.04355 2.09476 0.38406 0.04757

4.4 Conclusive remarks

Conclusive remarks about the present study are:

Deborah number stops fluid and hence the velocity of the fluid particles reduces.
Non-Newtonian fluid acts like a viscous (Newtonian) fluid as the Deborah number “De”
is greater than one.

Three dimensional flow lessens to two dimensional flow when (a2 =0).

Temperature dependent thermal conductivity has conflicting impact in both PST and PHF
cases.

Radiation parameter seems to be the source of enhancement in fluid temperature.

Stretching parameter has a better over shoot for liquid metals.
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Chapter 5

Rheology of Oldroyd-B model with
magnetic and heat immersion effects:

Analytical and numerical treatment

Sakiadis rheology of Oldroyd-B model with magnetic and heat immersion effect has been
discussed in this chapter. Convective heating process is analyzed in the presence of thermal
radiations. Appropriate variables are applied to alter PDEs into coupled nonlinear ODEs.
Numerical as well as analytic solutions have been computed. Results are revealed in graphs to

observe the performance of all parameters. Error plots are also presented during the analysis.

5.1 Mathematical description

Consider the Oldroyd-B fluid flowing in a absorbent medium where magnetic properties are also

present. Analysis on convective heat transfer process is performed. Equations for the flow field

arc:

V.V =0, (5.1)

p% =-Vp+divS, (5.2)
D D

(l"f‘i‘EjS:ﬂ(l“rizE]A], (53)
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Da; _ o,

=—+ua,, —u .a, (5.4)
Dt ot ' ’

dT * -
pe,— == k'V’T+gq, (5.5)

Egs. (5.2-5.5) are further simplified as

2 2 2
ug—u+v8—u+ﬂ1(uz Ou +v? 0 L;+2uv Cu ]:—[O-B 0 +%](u+ﬂ1v8—uj+

x Oy ox’ oy oxoy o, oy
o’u o’u Ou oOudu oudv
14 —2+ﬂ,2 u > +V—3———2———2 9 (56)
oy oxoy 0y° Ox 0y~ Oy oy
2
ar va_T: ma];—L%+&(T—Tw). (5.7)
ox oy oz pC, ay pC,

We acquire the results for Maxwell model when A, attains zero value. Also, the results for the
Newtonian fluid (viscous) model can be acquired by setting 4, =4, =0.

The wall conditions are

or
u :U,v:O,—kazh/.(Tf ~T)  at y=0,

u—>0,v—>0,T->7T->T, as y—o, (5.8)

Applying

U R O 7N o
R R N 59)

Egs. (5.5-5.8) becomes
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1 ()= )M =D =)

(5.10)
—Kf'+ KD, (ff" ~nf ")+ Dl 1"+ nf "~ f1")= "~ 1) = O,
0"+Pr(%f9’+hs0j+%]€d9”:0, (5.11)
And wall effects are
£(0)=0.7'(0)=1.6/0) = (1-0(0)) 5o

Notice that

D, =AU/ 2x,

D =AU/2x,
K=v/kU,
M=\581pU,
R,=165"T" /3k'k",
hs=0. /UpC,

and

Pr=v/e, .
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5.2 Error analysis

The system of Egs. (5.10 and 5.11) along with wall properties (5.12) are nonlinear and coupled.
Thus, error analysis is executed to get the certified calculations. We have constructed Figs. 5.1

and 5.2 which display the error in momentum and thermal distribution. Geometries witnesses

that error in the calculations are insignificant.

Absolute Error

10 1 1
0.5 1 13 2 2.5 3 35 4 45 5

Fig. 5.1: Error in f.
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Absolute Error
=

Fig. 5.2: Error in 6.

5.3 Results and analysis

We observe that the system of nonlinear equations (5.10-5.12) include different physical
quantities comprising of Deborah number, wall convection parameter, magnetic field, internal
heat generation/ absorption etc. Thus, we construct Figs. (5.3-5.11) and table 5.1 to examine the
effect of various parameters on the momentum distribution and isotherms. Fig. 5.3 and 5.4 gives
the heat transfer against magnetic field M and permeability K. Front bar demonstrates the results
of Propane while back bar display the solutions of Ethylene glycol. Further, it is observed growth
in magnetic and porosity parameter tends to decrease heat transfer rate. Figs. 5.5 and 5.6 explain
the impact of Deborah numbers. It is witnessed that velocity reduce against Deborah number De
rises however in case of Ds, velocity enhances. Deborah numbers (De, Ds <<1) indicates the
flow motion but their large values (De, Ds >>1) relates to solid-like behavior. Fig. 5.7 interprets
the effect of magnetic field M on the velocity profile. We notice that magnetic parameter and
velocity are inversely proportional. Fig. 5.8 illustrates the variation in temperature profile for
different values of magnetic field M. It is noticed that isotherms and isolines develops for higher

magnetic parameter M. we know that the magnetic parameter depend on the Lorentz force. In
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result of the enhancement of magnetic force, the Lorentz force gets stronger which yields growth
in the temperature profile. In Fig. 5.9 effect of A4s on the temperature profile is shown. Notice
that, its negative value relates to heat absorption whereas its positive value characterizes heat
generation. It is investigated that the temperature profile is decreasing function of heat absorption
while temperature rises for the case of heat generation. Biot number y, effect on the thermal
distribution is demonstrated in Fig 5.10. It is shown from the geometry that there is growth in the
temperature for the greater values of y,. Fig. 5.11 describes the 3D flow pattern of the present
study. This graph noticeably shows that maximum change is close to the moving wall where

falloffs slowly and tends to uniform free stream. Table 5.1 and 5.2 portray several results.
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Fig. 5.3: Rate of heat transfer against M.

Fig. 5.4: Rate of heat transfer against K.
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Fig. 5.5: De effects on f".

Fig. 5.6: Ds effects on .
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Fig. 5.7: M variations on f".

Fig. 5.8: M variations on 6.
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Fig. 5.9: hs variations on 6.

Fig. 5.10: y, variations on 6.
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Table 5.1: Comparison values of skin friction.

Fig. 5.11: Velocity plot in 3D configuration.

Parameters HAM solutions Numerical solutions

De | hs | M |Ds | Pr| K | y - 1"(0) - f"(0)

00| 05(10]|05]|1.0] 05 |05 1.91694324 1.91694813
05({05(|10(05]|10] 05 (0.5 1.97353017 1.97333087
1.0 05(10[05]|10] 05 [0.5 2.03664843 2.03665842
1.5/{05(10]05]10] 05 ]0.5 2.10465408 2.10475407
05(-15|10]|05]|1.0] 0.5 |05 1.97343077 1.97333087
05(-10|10({05]|10] 05 |0.5 1.97334088 1.97333087
05(-05|10(05]|10] 05 |0.5 1.97333067 1.97333088
05(00(10(05]|10] 05 |05 1.97333128 1.97333088
05(05(10(05]|10] 05 |05 1.97763087 1.97333087
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051101(10]05]1.0] 05 |05 1.97333087 1.97333087
05(15]10(05]10] 05 |05 1.97480543 1.97480543
05(05]00(05]|10] 05 |05 1.25597299 1.25587299
05]105(05|05]1.0] 05|05 1.46804033 1.46704033
05105(10|05]|1.0] 05 |05 1.97223087 1.97333087
05(05(|13(05]10] 05 |05 2.34456601 2.34576601
05({05(|10f 0 |10] 05 |05 1.30360674 1.30360942
05105(10]|05]1.0] 05 |05 1.97333091 1.97333087
05105(10|10]1.0] 05 |05 4.16623092 4.16623093
05(05(|10(15]10] 05 |05 11.86444761 11.86444756
05(05(10(05]01] 05|05 1.97333098 1.97333088
05(05]10(05]05] 05|05 1.97333188 1.97333088
05105(10]|05]|1.0] 05 |05 1.97333077 1.97333087
05105(10]|05]|15]05 |05 1.97333077 1.97333087
05(05(10(05]10] 0.0 0.5 1.65264429 1.65264492
05(05(10(05]|10] 05 |05 1.97333077 1.97333087
05105(10]|05]|10] 1.0 |05 2.24931857 2.24931874
05105(10|05]|10] L5 |05 2.49518554 2.49518541
05(05]10(05]10] 0.5 |0.1 1.97333087 1.97333088
05({05(10(05]|10] 05 |05 1.97333054 1.97333087
05105(10(05|10]| 05 |1.0 1.97333076 1.97333087
05105(10|05]1.0] 05 |15 1.97333088 1.97333085
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Table 5.2: Comparison values of temperature gradient.

Parameters Numerical solutions HAM solutions
De [ Hs [M[Ds [ Pr[ K [y [ -(1+4R,/3)0'(0) | ~(1+4R,/3)6'(0)
00| 05 (10]05] 10| 05] 0.5 0.88626087 0.88626167
05]05(10]05] 10| 05] 05 0.87047844 0.87047845
1.0 05 (10|05 ] 10| 05] 05 0.85857029 0.85857129
15105 (10| 05| 10| 05] 05 0.84965734 0.84965754
05]-1.5({10] 05 ] 1.0 | 05 ] 0.5 0.47848456 0.47848356
05| -1 {1.0] 05 ] 1.0 | 05 ] 0.5 0.44917061 0.44917151
05]-05({10] 05 ] 10| 05 ] 0.5 0.39803006 0.39803116
05| 0 (1.0] 05 ] 1.0 |05 ] 0.5 0.25191604 0.2519159%4
05]05(10]05] 10| 05] 0.5 0.87047844 0.87046844
05|10 (10| 05 ] 1.0 | 05 ] 0.5 0.35714342 0.35714842
05|15 (1005|101 05105 0.72566043 0.72566043
051]05(00|05] 10| 05] 0.5 0.96221819 0.96221819
05]05(05{05] 10| 05] 0.5 0.92237457 0.92236757
05]05(10]05] 10| 05] 0.5 0.87047844 0.87048844
05105 (13,05 ]10] 05105 0.85099774 0.85097874
05105 (10| O 1.0 | 0.5 | 05 —0.01897348 —0.01898304
05]05(10[05] 10| 05] 0.5 0.87047844 0.87047834
05]05 (10|10 ] 10| 05] 0.5 0.84028696 0.84028896
05]05 (10| 15] 10| 05] 05 0.82674776 0.82674786
05]05(10]05]01|05]0.5 0.15693718 0.15693728
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05105 (10105 ]05]05]05 —0.44869951 —0.44868951
05]05 (10|05 ] 10| 05] 05 0.87047844 0.87047944
05]05(10[ 05|15 |05]05 0.52974335 0.52974345
05]05 (10|05 ] 10| 00| 05 0.21824554 0.21824564
05105 (10105 ]10] 05105 0.87047844 0.87047854
05105 (1005|101 10|05 0.85515317 0.85515337
05]05 (10|05 ] 10| L5] 05 0.84547170 0.84547180
05]05 (10|05 ] 10|05 ] 0.1 0.14570719 0.14570719
05]05 (10|05 ] 10| 05] 05 0.87047844 0.87047854
05105 (1005|101 05]| 1.0 2.30145457 2.30145467
05105 (10105 ]10]05]|15 5.09132362 5.09132372
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5.5 Conclusive remarks

Sakiadis fluid motion for the Oldroyd-B model over a porous wall is investigated in the present

study. Conclusive remarks deduced from graphical and tabular solution are as follows:

e Enhancement in the value of De tends to lessen momentum distribution while by
improving the values of Ds we get growth in the value of velocity profile.

e Magnetic field M tends to slow down the fluid motion.

e The temperature distribution progresses by enhancing magnetic field.

e Heat generation-absorption both have opposed behavior on isolines.

e Large y,intensify the temperature.
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Chapter 6

Dynamics of Burgers’ fluid with
generalized heat flux with heat immersion

and magnetic field

This chapter presents the features of CC heat flux for the flow of Burgers’ fluid. To investigate
the thermal relaxation properties together with heat source/sink we present the Cattaneo-Christov
model rather than Fourier’s law. Mathematical modelling is performed using laws of momentum
and energy under the order analysis to transform the problem into the set of equations. It is
shown that the term “ o B; u/ p” is for the hydro-magnetic theology of the viscous model while
the generalized magnetic field term (as revealed in Eq. 6.2) is for the Burgers’ model which is
used in the present study. For the solution computation, homotopy analysis method is applied to
compute results. Results are depicted in graphs to visualize the effect of physical parameters.

Values of skin friction with heat transfer rate have been displayed in the tables.
6.1 Governing equations

Consider the dynamics of Burgers’ fluid past a conducting wall in the region of stagnation
point. The conducting wall is situated along x-axis and an incompressible Burgers’ fluid fills the

space y >0 as displayed in the Fig. 6.1.
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Fig. 6.1: Geometry.

A uniform magnetic field B = {O, BO,O} is applied along y-axis and the influence of influenced

magnetic field is ignored by supposing slight magnetic Reynolds’ number. A conducting wall go

through a stretched phenomenon with U (x), while U, (x) is the free stream. The equations are

of the form:
ou oOv
—+5-=0, (6.1
ox Oy
2 2 38 388 2 (&% & ou o v D
20, S0 WSy S (S-S te 20 )
2 2
ou Ou ox oy 5 , , \ \
— — Ov 9u 4 Ou Ou _Ou_ Ou || =
uax+vay+ﬂ1 . + A4, | +3v (ay ay2+ayMy)+3uv(uaxzay+vaxayz)
+2uv8 0 uy| e v Pu v Pu ou v
Xy » o’ ox gy’ Oy Ox0y Oy OxQy

2 3 3 2 2 2
v a—L;Jrﬂg u 6u2+va_p31_8_u61,2:_8_u812) _95 u—Ue+/11va—u +Ue@
oy Ox0y 0y° Ox 0y~ Oy oy yo, oy dx
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2 2 2
_oB4 uga—u—va—ua—uj%tv Ou +V28—L2l , (6.2)
Jo, Ox oy  Ox Oy Ox0y oy
The wall effects are:
u=U =cx,v=0 at y=0,
(6.3)
u=U,=ax as y—>oo,
Moreover, the solution for Newtonian fluid can be achieved for 4 =4, =4, =0.
The generalized heat flux model is:
q-+ /1(% +VNVg—qVV+VV)q)=—kVT, (6.4)

Equation written above corresponds to Fourier's law when A = 0. The energy equation takes

the following form when the internal heat generation/absorption effects are present.

pc VNT =-V.q+O(T-T,). (6.5)

Substituting Eq. 6.4 into Eq. 6.5, we get

or orT , 0T ,0°T T ouol ovoT overl
U—+v—+A| u" —5+v. —+2uv +tuy——+uy——+v——
ox oy Ox oy ox0y Ox Ox  Ox Oy Oy Oy
2 2
_o0-T) + 0 A ua_T+v8_T = k 8T2 +6T2 . (6.6)
pe, pc, Ox oy ) pc,\ x" oy

The conditions are
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I'=T, at y=0,

T—>T, as y—>ox,

where Q, ¢,

constant, wall temperature and the free stream temperature respectively.

The expression for stream function is

u =8—Wandv=—a—l’[/,
Oox
where
T-T c
v =~evxf(n), 0m)=—2, =fy.
I,-T, v

Applying the above mentioned transformations, we get
ST =L B2 =) B (S =20 =3
+ﬂ3 (frr2 _]]*/W)_MZ(f!_ﬂlffrr+ﬂ2f2fm)+A2+M2A:O’

0"+ Pr(fO' +h0+y(f20"+ ff'0' —h,f0))=0.
Along with associated wall conditions

f'm=1,f()=0, 8(n)=1 at 7=0,

f'(n)=4, 6()=0 as 17— oo,
where
2
B=ch, B=ch, B=ch, Pr=Y m>=ZB 4 4
a o o c
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(6.7)

T, and T, are the heat generation-absorption coefficient, the specific heat

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)



6.2 Results and discussion

Here we analyze the influence of different physical parameters involving Deborah numbers,
thermal relaxation parameter, stagnation point, Prandtl number, heat source/sink etc on solution
set. Thus, we construct Figs. 6.2-6.10 and Tables 6.1-6.3 to visualize the results graphically and
in tabular form. Figs. 6.2 and 6.3 display the stream line behavior for the viscous and Burger
fluid which show that streamlines for Burgers’ fluid are different as compared to the streamlines
for Newtonian fluid. It is because of the occurrence of several relaxation and retardation times in
the stress tensor of Burger’s model. Fig. 6.4 shows the variation of stagnation point 4 on the
velocity field. By increasing A, the velocity increases and the momentum boundary-layer
deceases in the region 0.0< A4<1.0. However, when 4>1.0 the momentum boundary-layer
grows. Thus, we say that the bigger values of 4 together with greater free stream which improves
the fluid’s velocity and the momentum boundary layer. Also, for 4=1.0 both velocity and
momentum boundary layer disappears. Therefore, 4=1.0 is a critical point at which the
behavior of the momentum boundary layer varies. Fig. 6.5 show the comparison of Newtonian
and Burger’s fluid. It is perceived that the magnitude of velocity profile and momentum
boundary layer is lesser in magnitude for the rheology of Burger’s model when equated with the

rheology of Newtonian model. The extra physical quantities £, £, and f, are positive for
Burger fluid. Values of S, B, and f, signifies to viscous and elastic effects which slow down

the flow. Fig. 6.6 displays the impact of magnetic field on the flow profile. Note that the velocity
profile decreases by increasing magnetic field parameter M. The apparent viscosity rises due to
the effects of magnetic strength. So, the ability of fluid particles to transmit force is increased.
The influence of thermal relaxation time on the temperature distribution is shown in Fig 6.7. It is
studied that the temperature profile and its relaxation time have opposite relationship. It is seen
that the temperature reaches free stream rapidly for the greater values of thermal relaxation
parameter. The effect of Pr on the temperature profile is given in Fig 6.8. Isolines tends to reduce
as Pr increases. The thermal diffusivity is smaller for higher Prandtl number because of the
decrease in thermal diffusion. Observe that the decline in thermal diffusion rate results into a
decrease in temperature. The result of internal heat generation/absorption parameters /s on the

temperature profile are portrayed in the Figs. 6.9 and 6.10. It is seen that the temperature profile
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0 (n) reduces when the heat sink is present. However, the temperature profile expands for the
case of heat source. The heat source and sink play important role in controlling the temperature.
This is significant due to its many applications in industry as the product mainly depends on the
heat transfer rate. The comparison of the present computed results and the published results are
shown in table 6.1 and it is verified that both are in a nice agreement. Table 6.2 displays the
behavior of f"(0) against different values of Burgers parameter f,. Note that the numerical
values of skin friction f”(0) improves for bigger values of Burgers parameter f,. The calculated
values of heat transfer rate at the wall 6'(0) against different quantities are shown in the table
6.3. It is analyzed that the magnitude of &'(0) falls for Burgers parameter, thermal relaxation

time and internal heat source/sink quantity.
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Fig. 6.2: Rheology of Newtonian model.

Fig. 6.3: Rheology of Burgers model.
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Fig. 6.4: A variations on the velocity.

Fig. 6.5: Newtonian vs Burgers model.

78



Fig. 6.6: Velocity distribution vs M.

Fig. 6.7: Temperature distribution vs y .
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Fig. 6.8: Temprature change vs Pr.

Fig. 6.9: Temperature variation vs heat sink.
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Fig. 6.10: Temperature change vs heat source.

Table 6.1: Evaluation of f"(0) with published results when4 = 0.0 = g, =, =M.

B Our results Sadghey et al. [78] Mukhopadhyay [79]
0.0 1.000000 1.00000 0.999999
0.4 1.101904 1.10084 1.101851
0.8 1.196712 1.19872 1.196693

Table 6.2: Behavior of f”(0) for various values of Burgers parameter f,.

s, —/"(0)

0.0 0.96652
0.2 0.97951
0.4 0.99328
0.6 1.00773
0.8 1.01582
1.0 1.05219
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Table 6.3: Numerical values of &'(0) for various physical parameters.

5 4 h, -6'(0)
0.0 0.3 -0.2 0.76621
0.2 0.75992
0.4 0.74165
0.2 0.0 0.76105
0.3 0.75992
0.6 0.74319
0.3 0.2 0.75992
0.0 0.60445
0.2 0.41284

6.3 Conclusive remarks

We discussed the CC heat flux for the Burger’s fluid model. Some observations are

e Velocity profile and the boundary layer are quite lessor because of the additional
viscoelastic effects.

e Streamlines are different for Newtonian and Burger model.

e Temperature distribution is quite smaller for the CC model when compared with the basic
Fourier’s law.

e A reduction in temperature profile is noted for greater Prandtl number.

e Presence of heat source/sink in the system can efficiently control the temperature to the

desired value.
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Chapter 7

Second law  analysis of Jeffery

nanomaterial with magnetic field

We investigate the entropy generation and inclined magnetic field for the Jeffery fluid.
Moreover, viscous dissipation and heat generation-absorption effects are considered. Boundary
layer is applied to develop the leading equations. Solutions have been computed by using a
homotopy approach in the spatial domain. Results are illustrated in graphical form to study the
effect of flow parameters. It is analyzed that magnetic field is a flow reducing parameter whereas
Biot number behaves like a boosting factor to increase the fluid temperature. The present work is

also discussed for Newtonian fluid (1, — 0)

7.1 Problematic development

The dynamics of the Jeffery fluid over stretching wall ( y = 0) is studied. The material holds onto
the region y>0. Magnatic field B, is employed at an angle ¥ to the positive direction of
the y—axes. The considered physical problem is modelled by using a Cartesian coordinate
system by taking x—axes sideways the stretching surface and y—axes in a upright direction.

The systematic picture of physical situation and coordinates system is portrayed in Figure 7.1.
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Fig. 7.1: Geometry

Governing equations for the rheology of the viscoelastic nanomaterial are

6u 6v

=0, 7.1
ox 8y b
2 2 3 2 3
g, o _ v a_z‘mz On Oy 2+@6L2+vai3 OB S’ (P, (72)
ox oy 1+4, |0y oy Ox0y  OxOy~ Oy Oy oy P
2 2
WL ama]; o (77 Vo p, 2L Dr[OT )| 0 fOu] (7.3)
ox Oy y°  pc, oy oy T,\0oy ¢, \ oy
> 2
ua—c+va—C—DBa—§+& or , (7.4)
ox Oy o T, oy

Note that Eqgs. 7.1-7.4 are deduced from the continuity equation, law of momentum, law of

energy and law of concentration respectively.
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The supported wall properties are:

oT

u:uw:cx,v:O,—k—:HW(TW—T),—D§—
y

=M, (C,~C), aty=0,

u=0,v=0, T—>T,, C—>C, asy—>x, (1.5)

where (u,v) represent the velocities, o the electric conductivity, v the kinematics viscosity, p

the density, 7 the ratio of the heat capacities, «, the thermal diffusivity constant, D, the

thermophoretic effect, D, the Brownian diffusion. Moreover, specific heat, heat
generation/absorption, mass diffusivity, coefficient of heat transfer, coefficient of mass transfer,

M, k respectively. Also, 7,7, 7T, , C,

w2

thermal conductivity are denoted by ¢, , O, D, H
C,, C, stand for fluid temperature, wall temperature, ambient temperature, concentration,

species concentration at the surface and ambient concentration correspondingly.

In the upcoming steps, we apply the suitable transformation in order to convert the set of partial

differential equations to the system of ordinary differential equations.

c , _ _ T-T, _ c-C,
== ()= (n). )= F e o) £ 1)
Substitute Eqn. (7.6), in Egs. (7.1-7.4) we have:
s+ )= - M sin (o) )+ By - =0, (7.7)
0"+ Pr(f0+20 + N,g 0+N,(0') + Ec ("} )=0, (7.8)
" 1 & "n__
(0+Lefgp+N 0"=0. (7.9)

b

The dimensionless boundary conditions

£(0)=0, £'(0)=1,60'(0)=—y,(1-6(0)), #(0)=-y,(1-¢(0)),
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f(0)=0, 8(0) =0, ¢(0) =0, (7.10)

where B, Le, Ec,y,, y,,Pr specifies the dimensionless Deborah, Lewis, Eckert, heat transfer
and mass transfer Biot numbers and Prandtl number respectively. While M denote the magnetic

field, N, the Brownian motion and N, the thermophoresis. Note that 4 >0and A <0 shows

heat source and sink respectively and are stated as:

2

u v v H, (v M, (v
=Ahc, Ec=———F——,Le=—,Pr=—, y1=—= . |—, 1, =—=.|—,
F=4 c,(T,~T,) D, o Tk Ve 2T e

M=3302,Nt:rDTM,Nb=r D,(C,~C.) =2 (7.11)
cp T, ) cpe,

The exact solution of Eq. 7.7 for ¥ =7x/2 is

1—e™ (144"
o= n{i55)

—mn

Notice that its second derivative for velocity f”"(77) =—me™" which further gives the velocity

gradient at the wall with the exact result to be f"(0) = —m.

The volumetric entropy generation term (S G) and the characteristic entropy generation rate (S g)

arc CXpI‘GSSGd as:

2 2 2
BZ
So= K [O0) pfon) OB gy s = K [AT] (7.12)
r\oy) T\&y) T, forol
The entropy generation Ns in non-dimensional form is
2
Ns =28 =Re, (0" + SL20 ()7 + B i o) (). (.13)

S, c
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Eq. 7.12 describes the three roots for the generation of entropy:

* Ist term is achieved because of the heat transfer N,, irreversibility.
* We get the second term for the reason that the effects of viscous dissipation N, are present.
* The third expression is accomplished since the effects of magnetic field N,, are present.

Additionally the dimensionless numbers apperaing in the system of equations are “Reynolds

number (Re, ), Hartman number (Ha), finite temperature difference (¢), Brinkmann number

(Br)” and expressed as:

AT
Re, = L1, Br=—H_u>(x), Ha* = B, |71, === (7.14)
v k AT P T

o0

The series solution of Eqgs. (7.7—-7.9) under conditions 7.10 are calculated via homotopy

approach. The guesses and operators for f, 8 and ¢ are defined below

fon =1=exp(=1). 0,(1) = ~"—exp(=1). (1) = 2 —exp(-).

Vi Va2
and
Le(f)=S"-1", Ly(0)=0"-0, L,(p)=p"-¢. (7.15)

A MATHEMATICA computer program has been constructed for HAM. The exact and HAM
solutions are portrayed in Figure 7.2 and 7.3. Both exact solution and the series solution are in an

agreement.
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Fig. 7.2: Impact in /"(0) with 5.

Fig. 7.3: Impact of f"(0) with A, .
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7.2 Results and discussion

Results are sketched to demonstrate the performance of various evolving constraints for the
momentum, thermal and concentration distributions. Fig. 7.4 gives the effect of S on the
velocity graph. It is perceived that when a magnetic field is constant the Deborah number
develop the flow configuration. Both the elasticity and viscosity are led by the Deborah number.
As the Deborah number takes the low value the material acts like viscous whereas for greater
values of [, the fluid acts to be non-Newtonian. Using this concept results are graphed for
lesser values of Deborah number. Fig. 7.5 is portrayed to visualize the behavior of angle of
inclination ¥ on the velocity. It is noted by increasing the value of ¥, the velocity profile
decreases. We have studied that by increasing the angle of inclination, the influence of magnetic

field rises and thus the Lorentz force enhance. In results of that velocity profile decays. Fig. 7.6
explains the behavior of N, and N, on temperature field. Notice that growing value of both N,
and N, improves temperature profile rapidly. Brownian motion appears due to the size of

nanoparticles which disturbs the rate of heat transfer. Enhancement in the magnitude of the
Brownian motion results into the efficient movement in the nanoparticles. So the thermal
conductivity of the fluid particles is improved. Fig. 7.7 portrays the impact of Biot number y, on
0(n). It is the relation of the heat conduction resistances at the interior and at the exterior of
material. It is noticed that as Biot number increases the temperature of the fluid rises. When Biot
number is less than 0.1, it specifies that heat transfer inside the material is greater than the

convection away from its surface. Fig. 7.8 shows the impact of Brownian motion and
thermophoresis parameter on concentration. It is apparent that by increasing the magnitude of
Brownian motion and thermophoresis the nanoparticle concentration grows. Fig. 7.9 is organized
to examine the effect of y, on mass concentration ¢(77). It specifies that increase of mass Biot
number improves the concentration field. Results are well compared and presented in tabular

form. It is detected that f"(0) decreases with the improvement in £, but f"(0) grow as

A — 0.

89



Fig. 7.4: Velocity change vs .

Fig. 7.5: Velocity change vs ¥ .
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Fig. 7.6: Temperature change vs (N,, N, ).

Fig. 7.7: Variation of y, on 6(n7).
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Fig. 7.8: Variationof N,, N, on ¢(77).

Fig. 7.9: Variation of 7, on ¢(77).
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Table 7.1. Comparison of results

Parameter | HAM (present) | Numerical solution [80] | Exact solution [81]

B —/"(0) —/"(0) —/"(0)

0.0 1.09641491 1.09641580 1.09544512
0.4 0.92723121 0.92724220 0.92582010
0.8 0.81807191 0.81808091 0.81649658
1.2 0.74010411 0.74010502 0.73854895
1.6 0.68073213 0.68074654 0.67936622
2.0 0.63351345 0.63352833 0.63245553
24 0.59474926 0.59473195 0.59408853
2.8 0.56201236 0.56205463 0.56195149
3.2 0.53390910 0.53398720 0.53452248
3.6 0.50944571 0.50949569 0.51075392
4.0 0.48782645 0.48784584 0.48989795
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Table 7.2. Evaluation of 7"(0).

Parameter | HAM (present) | Numerical solution [80] | Exact solution [81]
A - /"(0) - /"(0) - /"(0)
0.0 0.91467231 0.91468190 0.91287093
0.4 1.08101045 1.08100090 1.08012345
0.8 1.22523245 1.22521512 1.22474487
1.2 1.35422340 1.35427540 1.35400640
1.6 1.47211231 1.47212137 1.47196014
2.0 1.58122891 1.58123895 1.58113883
2.4 1.68332391 1.68331479 1.68325082
2.8 1.77956545 1.77955488 1.77951304
3.2 1.87083401 1.87085660 1.87082869
3.6 1.95791792 1.95790896 1.95789002
4.0 2.04126541 2.04125449 2.04124145

Figs. 7.10-7.12 are organized to explore the influence of Brinkman Br, Hartman Ha and
Reynolds number Re on entropy number Ns. Fig. 7.13 explains the behavior of temperature

difference ¢ on entropy number Ns. Fig. 7.10 explains entropy against Brinkman number Br.

Entropy increases by growing Br. At (77 = O) the entropy is larger against Br. It is noted that
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entropy is more projecting near the surface. Moreover these effects decline rapidly far from
sheet. The effect of Hartman number Ha on the entropy number is shown in Fig. 7.11. Entropy
increases by growing the value of Hartman number. The entropy is related to the square of
Hartman number which is proportionate with the magnetic field. Thus the magnetic field
generates additional entropy. Fig. 7.12 portrays the entropy field for several values of the
Reynolds number Re. It is witnessed that for growing values of Re, the entropy also increases.
We know that by increasing the value of Reynolds number, the inertial forces are improved
whereas the viscous forces decay. So, the velocity of fluid particles is increased and the
resistance on the fluid motion due to the friction is reduced. Thus, the magnitude of entropy has
been enhanced. The effect of finite temperature difference { on the entropy is shown in Fig.
7.13. It is seen that by growing ¢ the entropy of the system will be reduced. From literature we

already know that { is inversely related with the velocity distribution which reduce the entropy

generation for greater values of ¢ .

Fig. 7.10. Br variations on Ns.
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Fig. 7.11. Ha variations on Ns.

Fig. 7.12. Re variations on Ns.
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Fig. 7.13. & variationson Ns.

7.3 Conclusive remarks

e Newtonian flow can be attained by considering A, — O.

e By increasing the value of inclination angle ¥, the fluid motion slow down.
e The velocity field for Newtonian fluid is lesser than the non-Newtonian fluid model.

e Risein (N s NS V175 ) efficiently improves the temperature and concentration fields.

e Reduction in the magnitude of Brinkman, Hartman and Reynolds number minimize the

entropy.
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Chapter 8

3D study of Oldroyd-B nanofluid with

radiations

In this chapter, 3D dynamics of Oldroyd-B fluid have been discussed while incorporating the
effects due to the existence of nanoparticles. The present physical problem is studied under
influence of nonlinear radiations. During mathematical formulation, the diffusion equations are
shown under thermophoretic and Brownian effect. Bidirectional stretching is taken to study the
three-dimensional fluid deformation of non-Newtonian (polymeric) liquid. We achieve set of
ODEs by employing similarity analysis on the governing partial differential equations. Further,
solution in the series form is calculated by using the Homotopy approach. Graphs and tables are

prepared for several quantities.

8.1 Formulating the physical problem

Consider the dynamics of Oldroyd-B model with nanoparticles. The deformation in the fluid
particles is due to the bidirectional stretching. Motion of the particles is along x- and y- direction

and deformation is along z- direction as revealed in the Fig. 8.1.
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Fig. 8.1: Physical model.
The constitutive equations are
V.V =0, (8.1)
dv
2Y AT, 8.2
P~ 82)

Note that the flow is governed under the assumption that the fluid is incompressible and no body
forces are present in the system. In the above equation 8.2, Cauchy stress tensor is denoted by T
and extra stress tensor is symbolized by S and for Oldroyd-B fluid they are

T=—pl+8, (8.3)

(1+A%)S=y(l+/{21%)Al. (8.4)
In the above equations, D/Dt represents covariant derivative and Rivlin Ericksen tensor A is
A =VV+(VV)™, (8.5)
where velocity field is 'V =[u(x, y,z),v(x, y,z),w(x, y,z)] and the definition for D/Dt¢ is

obtained from literature
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%:%+urair _uirar' (86)
Dt ot ' '

System of equations for the flow field is

ou 8\/ ow _o, 8.7)
ox ay oz
2 2 2 2 2 2
ua—u+va—u+wa—u+/11 u’ 0 L2l+v2 0 Zl +w 0 L;+2uv Ou + 2uw Ou +2vw Ou
ox 0Oy 0z Ox oy 0z Ox0y 0x0z 0y0oz 8.8)
o S (D P P GuSy ulu_ oy |
ﬁxﬁz 8y822 0z> Oy oz° Ox 0z° Oz oz
2 2 2 2
u@+v@+w@+ﬂ1 28‘2}+v28‘2}+w28v+2uvav +2vwav+2uwav
ox Oy oz Ox oy oz’ Ox0y 0y0z Ox0z 8.9)
52 v v v wvdu vdv ovow '
+ﬂ,2 >+v AW S S
Ox0z 0y0z 0z> ox o0z Oyozt Oz oz’
C ’ 2
ua—T+v6—T+ or ('0 )P DB(a—Ta—Cj+& or +aa—z— ! aq’, (8.10)
ox oy oz (pC)f 0z Oz T \ oy oz (pC)f oz
2 2
ua_c+va_c+ oc =D, 6(23 +& 87; . (8.11)
ox oy oz oy T, \ oy
Wall conditions are
u=U (x)=ax,v=V (y)=by,w=0,T=T , D, oc D—a—T—O at z=0.,
oz T, oz
u—>0,v—>0,T->7,C—->C, as Z —>00, (8.12)

The radiative flux g, is expressed as
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% 4 *
g = A ort_ 165 o1 (8.13)
3k oz 3k oz

In the above mentioned equations, k* is absorption coefficient and §* denotes Stefan-Boltzmann

constant.

Equation for the temperature field turns to be

* 3 C 2

w L L WO O 16T PO, DB(a—Ta—C)+& TV (314

ox oy 0z Oz 3k (,OC)./. (pC) ; oz oz) T, 6\ oy
Now applying
u=axf'(n), v=ayg'(n),w=—-(av)"” (f'(n)+g'(n)),

T-T Cc-C a\? (8.15)

9 = s , = s , =| — .

(77) TW_TUJ ¢(77) CW_COO 77 (UJ :

Using T =(1-6(1-6, ))T, where 6, =T, /T, .
Eq. (8.7) is satisfied individually and Eq. (8.8)-(8.11) are transfigured to

P (f+e)=(f) + B 21" (f+8)-1"(f+e) ]

(8.16)
+ﬂ2 I:f”(f"'i'g”)_f””(f'i'g):l:0,
g"+g"(f+2)-(g) +A [2g2g"(f+g)—g’"(f+g)2}
+ﬂ2 I:g”(f”‘l'g”)_g””(f'i'g)] — 0’ (817)
((1+Rd (1+(6, —1)6)3)9’) +Pr((f+g)0'~ [0+ N,09'+ N.g"°) =0, (8.18)
¢"+LePr(f+g)¢' +(N,/N,)0" =0, (8.19)
The boundary conditions after employing transformations are
f=0,g=0,f"=1,g'=4,0=1,N,¢'+ N =0, at n=0, (8.20)
f"—>0,g">0,0 >0,0—>0,as n—>. (8.21)
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In the above terms f, and f, are Deborah numbers, N, and N; represent Brownian effect and
thermophoresis, Le and Pr are Lewis and Prandtl number and R, is the radiation parameter and 4

is the stretching ratio which are further stated as:

b 165°T (pe), Ds(C,-C,)
B =akr.p,=ak,A=— R, =——= N, = - >
a 3kk (pc) 0
( ) 5 (T . ) ' (8.22)
c —
L P S VAP Vi
D, ( pc). , ol
Nusselt and Sherwood numbers are
Re.”> Nu, =—(1+R,0.)0'(0) ,
Re> Sh.=—¢'(0). (8.23)
Where Re, =U  x/v.
The initial guesses and operator which are utilized for computation of solution are
fm=1-e",g.(m)=A(1-e"),0.(n)=e",p.(m)=—(N,/N,)e”", (8.24)
Lf — fﬂ!_f!’Lg — glﬂ_g!,Le — 0"_9,L¢ — ¢ﬂ_¢. (8.25)
The above mentioned operators have the following features
L/[c +c,e" +ce"]1=0,L,[c, +ce” +ce]=0, (8.26)

Lylc,e” +¢e1=0, L [ce” +c,pe"]1=0.
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8.2 Convergence of the solution

The curves as prepared as shown in Figs. 8.2 and 8.3. These geometries present that domain of

the convergence is -1.05<h, <-0.01, -1.15<h, <—0.05, —1.1 <h,<-0.1 and ~1.13<h, <-0.1. The
results are convergent in domain of 7 when we have h, =h, =h, =h, =-0.6. The geometries

describe h curves for the error of f(y) and g(r7), which are utilized to get suitable values of h.

Appropriate value for h is taken to obtain convergence upto six decimal place. Figs. 8.4 and 8.5

are drawn to analyze h-curves. Table 8.1 present the convergence.

Bi=F=02=A K=002

10}

(o], g"[]

-10}

15t
-15 -10 -05 00 05

IF]'f ..IF]'Q

Fig. 8.2: h-curves.
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Fig. 8.3: h-curves.

Fig. 8.4: Error graph.
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Fig. 8.5: Error graph.

Table 8. 1: Convergence table

Order | —/7(0) —¢"0) | -0 ~'(0) CPU time

1 0.9360000 | 0.1456000 | 1.042402 | —0.4169608 2 sec.

5 0.9475450 | 0.1317675 | 1.080406 | —0.4321625 10 sec.

10 0.9470198 | 0.1321204 | 1.074371 | —0.4297483 35 sec.

15 0.9470315 | 0.1321265 | 1.072644 | —0.4290577 80 sec.

20 0.9470355 | 0.1321210 | 1.072654 | —0.4290617 150 sec.

30 09469867 | 0.1321123 | 1.072709 | —0.4290837 250 sec.
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8.3 Results and analysis

Influences of Deborah number f, on the heat and mass transfer are presented in Figs. 8.6 and
8.7. It is observed that by raising the value of §, there is reduction in temperature as well as in
concentration flux due to increasing relaxation time. Figs. 8.8 and 8.9 exhibits that Deborah

number f, depending on retardation time rises temperature as well as concentration flux. Thus it
is showing the increasing behavior. Effect of Brownian motion N, on the concentration flux is
displayed in Fig. 8.10. It is witnessed that concentration decreases as N, grows. It is revealed in
Fig. 8.11 that thermophoresis Parameter N, and temperature flux are in inverse relation.
Temperature decays for growth in the value of N . However it is observed in Fig. 8.12 that » is

related directly with mass concentration. Fig. 8.13 defines that an increase in Le decreases mass
diffusion that indicate reduction in concentration. It is demonstrated in Fig. 8.14 that by raising

the value of radiation parameter R, , temperature flux reduces. Influences of Deborah numbers
B, and p, on f'() are analyzed in Figs. 8.15 and 8.16. It is noted that §, and S, have inverse
relation on £'(5). f'(7) lessens with the growth in f, but development in fluid velocity £'(y) is

investigated as S, rises. Figs. 8.17 and 8.18 describe the impact of f and f, on velocity
componentg'(n). Fig.8. 17 explains that g'(n) decays by rising f, and grows with the

improvement in /£, . It is clear from Fig 8.19 that isolines show growth in behavior by rising the

values of R, . Fig. 8.20 explains the effects of N, and N, on é(y). By rising N,and N,, the

temperature field is improved. Impact of N, and N, on ¢(y) are given in Fig. 8.21. It is witnessed

that concentration profile decays because of the random motion of nanoparticles. Table 8.2 is
displayed to show the effects of different variables over local Nusselt and Sherwood numbers by

considering remaining parameters constant. It is investigated that Nusselt number N, /Re'?
intensify for increase in 4, Pr, §, and decay by rising N,, Le and f,. However, numerical value

of Sherwood number rises by increasing 4, N, , Pr, B, and falls for the greater N,,Le and £,.
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Fig. 8.6: Influence of f on temperature derivative.

Fig. 8.7 Influence of f on concentration derivative.
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Fig. 8.8: Influence of f, on temperature derivative.

Fig. 8.9: Influence of f, on concentration derivative.
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Fig. 8.10: Influence of N, on concentration derivative.

Fig. 8.11: Effects of N, on temperature derivative.
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Fig. 8.12: Influence of N, on concentration derivative.

Fig. 8.13: Influence of Le on concentration derivative.
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Fig. 8.14: Influence of R, over temperature derivative.

Fig. 8.15: Impact of f on 7(»).
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Fig. 8.16: Impact of 8, on r'(5).

Fig. 8.17: Impact of g, on g'(y).
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Fig. 8.18: Impact of §, ong'(y).

Fig. 8.19: Effects of R, on ().
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Fig. 8.20: Effects of N, and N, on (7).

Fig. 8.21: effects of N, and N, on ().
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Table 8.2: Numerical values of N, /Re'> and Sh/Re'”.

A N, N, Le Pr B, B, N, /Re'? Sh/Re"?
0.0 0.1 1.0 1.0 1.0 0.2 0.2 1.0349 0.9408
0.5 0.1 1.0 1.0 1.0 0.2 0.2 1.1305 1.0277
1.0 0.1 1.0 1.0 1.0 0.2 0.2 1.2138 1.1034
1.0 0.1 1.0 1.0 1.0 0.2 0.2 1.1305 1.0277
1.0 0.2 1.0 1.0 1.0 0.2 0.2 1.1232 2.0423
1.0 0.3 1.0 1.0 1.0 0.2 0.2 1.1161 3.0432
1.0 0.1 0.1 1.0 1.0 0.2 0.2 1.1305 1.0277
1.0 0.1 0.2 1.0 1.0 0.2 0.2 1.1305 0.5138
1.0 0.1 0.3 1.0 1.0 0.2 0.2 1.1305 0.3426
1.0 0.1 0.3 0.0 1.0 0.2 0.2 1.1820 1.0745
1.0 0.1 0.3 1.0 1.0 0.2 0.2 1.1747 1.0679
1.0 0.1 0.3 1.5 1.0 0.2 0.2 1.1728 1.0662
1.0 0.1 0.3 1.5 0.5 0.2 0.2 0.7523 0.6839
1.0 0.1 0.3 1.5 1.0 0.2 0.2 1.1747 1.0679
1.0 0.1 0.3 1.5 2.0 0.2 0.2 1.7680 1.6072
1.0 0.1 0.3 1.5 1.0 0.0 0.2 1.1636 1.0578
1.0 0.1 0.3 1.5 1.0 0.2 0.2 1.1305 1.0277
1.0 0.1 0.3 1.5 1.0 0.4 0.2 1.0989 0.9991
1.0 0.1 0.3 1.5 1.0 0.2 0.0 1.0855 0.9866
1.0 0.1 0.3 1.5 1.0 0.2 0.5 1.1747 1.0679
1.0 0.1 0.3 1.5 1.0 0.2 1.0 1.2187 1.0755
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8.4 Conclusive remarks

The three dimensional Oldroyd-B model together with thermal radiation is analyzed. Fluid
deformation is along the stretching surface. The governing equations have been converted into
ODEs. Moreover, the results are computed by using HAM. Results are drawn in graphical form
to visualize the effect of involved physical parameters. Conclusive remarks drawn from present

study are,

e Deborah numbers f, and f, has opposing effect on £'(r7).
e Ratio parameter has incompatible influences on /”(r7) and also on g'(i).

e Isotherms and isolines decay by increasing the value of Pr.

e Species concentration ¢(7;7) descends by growing N, and N, .
e Improvement in Pr, f, and 4 enlarge the Nu_ Re, "> and Sh/Re"*.
e Positive N, decreases the nu Re /> and enhances Sh/Re*.

e For the greater values of Le and f,, we have reduction in Nu,Re, "*and Sp/Re">.
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