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Preface 

The significant features of an engineering and technological field can be realized by its 

worth in relation to other engineering sciences. Transport phenomena in fluid mechanics have 

prominent aspects in chemical, thermal and mechanical engineering sciences. This field of 

research has enormous applications in biotechnology, microelectronics, nanotechnology, crystal 

growth, paper production, wire drawing, food processing etc. By getting inspiration from such 

broad applications, scientists and engineers have done extensive studies in this field. The 

strength of this subject is mainly depending on the fundamental laws of conservation. The 

transport phenomena like momentum, heat and mass transfer are important since they govern the 

velocity, temperature and concentration profiles. It has been apprehended that main attention in 

the preceding years has been given to the rheological problems relating to the differential type 

non-Newtonian fluid models. In this dissertation, the rate type non-Newtonian fluid modeis have 

been examined and the effects of heat transfer on various flow situations have been presented. 

Moreover, heat transfer problems have been coupled with mass transfer to investigate double 

diffusion. Also influence of magnetic field, suction/injection and radiations have been studied. 

Chapter 1 addresses the literature review of the two and lhree dimensional non-Newtonian fluid 

models. Conservation laws and the adopted computational methodologies have been briefly 

describes. Advantages of different techniques which have been implemented for the analytical 

and numerical computations have been also discussed. 

In chapter 2, investigation has been made to study the dual numerical solutions for the flow of an 

upper convected Maxwell (UCM) fluid in a porous medium. The influence of intern(ll heat 

generation/absorption effects, chemical reaction phenomenon and magnetic field have taken into 

account. Stream function and similarity transformations have been employed on the governing 

mathematical model which results into the system of nonlinear ordinary differential equations. 

Shooting technique has been implemented efficiently to obtain numerical results. It has been 

analyzed that the dual numerical results exist in case of shrinking surface while a unique solution 

Occurs for the stretching sheet. Results have been given to study the skin friction, local Nusselt 

and Sherwood numbers. The contents of this chapter have been published in Journal of 

Molecular Liquids, 232 (2017) 361-366. 



In chapter 3, we have examined double-diffusivity for the Sakiadis flow of UCM nanofluid in the 

presence of magnetic field and heat source/ sink effects. The effects of thermal radiations have 

been incorporated in addition. Set of nonlinear ordinary differential equations have been 

achieved by applying the suitable transformations on the governing partial differential equations. 

Analytic and numerical solutions have been computed via homotopy analysis method and finite 

difference approach respectively. Comparison between the results have been presented in tabular 

form and seems to be in a nice agreement. Results have also been portrayed to vi~ualize 

temperature and concentration profiles for the involved parameters. The contents of this chapters 

have been published in Journal of Molecular Liquids, 241 (2017) 570-576. 

Chapter 4 presents the three dimensional rheology of an upper-convected Maxwell (UCM) fluid 

over a bidirectionally stretched surface with temperature dependent thermal conductivity effects. 

Flow over an exponentially stretched wall has been considered and the cases of prescribed 

surface temperature (PST) and prescribed surface heat flux (PSHT) have been analyzed in detail. 

Series solutions have been evaluated via homotopy analysis method. Results have been presented 

in a graphical and tabular form to visualize the effect of different physical parameters. The 

contents of this chapter have been submitted for publication. 

Chapter 5 explores the Sakiadis rheology of Oltlroytl-B fluid in the presence of magnetiC field. 

Convective heating process has been analyzed under the effects of thermal radiations. 

Appropriate transformations have been invoked for conservation of partial differential equations 

into coupled nonlinear ordinary differential equations. Numerical as well as analytic solutions 

have been computed for the velocity and temperature distributions. Graphical results have been 

prepared observe the behavior of physical parameters. Error analysis is also presented in order to 

validate the obtained solutions. Bar charts have been designed to show the heat flux analysis. 

Comparison between the results obtained by homotopy analysis method (HAM) and finite 

difference method (FDM) has been given in a tabular form. The contents of this chapter are 

published in Thermal Sciences (2018) Doi.org/10.2298ITSCI180426284A. 

In chapter 6, the features of Cattaneo-Christov heat flux for the flow of Burgers' fluid have been 

analyzed. Mathematical modelling is performed using laws of momentum and energy under the 

order analysis to transform the problem into the set of equations. It is shown that the term for the 



hydro-magnetic rheology of the viscous model is "() B~ uJ p" while the generalized m~gnetic 

field term (as revealed in Eq. 6.2) is for the Burgers' model which is used in the present study. 

For the solution computation, homotopy analysis method is applied to compute results . Results 

are depicted in graphs to visualize the effect of physical parameters. Values of skin friction with 

heat transfer rate have been displayed in the tables. The contents of this chapter are published in 

Scientia Iranica 26 (2019) 323-330. 

Chapter 7 explores the study for Jeffery nanofluid with thermophoresis and Brownian motion 

properties. The combined effects of viscous dissipation and heat generation/absorption have been 

considered. Entropy generation and inclined magnetic field for the Jeffery fluid have been 

analyzed. Mathematical formulations have been performed and solutions have been computed by 

using a homotopy approach in the spatial domain. Results have been illustrated in graphical and 

tabular form to study the effect of flow parameters. It is analyzed that magnetic field is a flow 

reducing parameter whereas Biot number behaves like a boosting factor to increase the fluid 

temperature. The contents of this chapter are submitted for publication. 

In chapter 8, three-dimensional flow properties of an Oldroyd-B fluid model have been discussed 

while incorporating the effects due to the existence of nanoparticles. The present physical 

problem is studied under influence of nonlinear radiations. During mathematical formulation, the 

heat and concentration equations have been studied under thermophoresis effect and Brownian 

motion. Bidirectional stretching phenomenon have been taken to study the three-dimensional 

fluid deformation. Some suitable transformations have been utilized for conversion of derived 

partial differential system into coupled nonlinear ordinary differential system. Solutions are 

computed via homotopy approach. Several graphical and numerical illustrations have been 

prepared to present the behavior of involved physical quantities. The contents of this chapter are 

published in Results in Physics, 8 (2018) 1038-1045. 
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Chapter 1 
 

Introduction 
The survey of literature relevant to the flows in steady and time dependent cases of Newtonian 

and non-Newtonian fluid models are described. Conservation laws along with the brief idea of 

solution methodologies are also presented. 

 

1.1 Literature survey 
Rheological features of the non-Newtonian fluid models show difference as associated to the 

Newtonian fluids. We know that the rheological properties of all the nonlinear fluids can’t be 

anticipated by only constitutive relation between shear rate and strain rate. Non-linear fluids have 

nonlinear relation among the stress and strain. It is noted that the nonlinear fluids have been 

further characterized into three type’s viz. the differential, the integral and the rate type. The 

constitutive equations in the last mentioned class “rate type fluids” are comparatively more 

complex and complicated due to the elasticity effects in addition to the viscosity. In last few 

years, scientists pay great attention to the rate type fluid models under different physical 

conditions. Harris [1] presented some literature survey in his book “the rheology and non-

Newtonian flow”. He primarily investigated the mathematical formulation for the laws of 

conservation of momentum for the Maxwell model. Later on different analysts and applied 

mathematicians incorporated his idea to study the rate type models under diverse flow 

configurations. For-instance, Zierep and Fetecau [2] have investigated the Rayleigh-Stokes 

equation for the Maxwell model.  Tan and Masuoka [3] explored the stability of Maxwell fluid 

model. The authors have taken a porous medium to examine the stability values for the nonlinear 

rheology. Hayat and Awais [4] examined 3D flow of UCM fluid over stretched surface. Series 

solution has been obtained by using the homotopy approach. Abbasbandy et al. [5] investigated 

the numerical and analytic solutions by considering the Falkner-Skan flow. They have taken 
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MHD Maxwell fluid for the analysis. Later, Awais et al. [6] also considered the Maxwell fluid 

and studied the heat generation and absorption effects. Afify and Elgazery [7] have done the Lie 

group analysis to examine the chemical reaction effects. Scientists investigated the MHD flow 

for combined diffusion towards permeable stretching wall. Majeed et al. [8] examine the 

chemical reaction with heat transfer for the UCM Ferro-fluid flow with magnetic dipole. 

Analysis was carried out for the Soret and suction effects. Malik, Farzana and Rehman [9] also 

considered the Maxwell fluid model for the analysis. Scientists evaluated the MHD 3D flow in 

horizontal stretching surface with the convective wall. Later, Malik et al. [10] computed the 

numerical analysis of Williamson fluid flowing over stretched cylinder. Study has been 

presented by considering variable thermal and heat immersion effects. Numerical results have 

been calculated by using shooting method together with RK-Fehlberg approach. Awais et al. [11] 

observed the characteristics of micropolar fluid. Malik et al.  [12] have investigated Carreau fluid 

and variable viscosity in spongy medium. Analysts studied under the two situations namely 

Poiseuille and Couette flow. Researchers have employed shooting method together with Runge-

Kute-Fehlberg method to evaluate numerical results. Moreover, results displayed graphically to 

visualize influences of physical factors. Sakiadis [13] have scrutinized the BL behavior over 

solid wall. Later, Sakiadis [14] examined the behavior of boundary layer in continuous solid 

surface. Experts have employed numerical as well as integral method for the computation of 

results. Nadeem et al. [15] have evaluated the HAM solutions for flow in the regime of 

stagnation point. Hayat et al. [16] observed the 3D fluid motion by considering upper convected 

Maxwell model. Authors have discussed mixed convection with magnetic field and thermal-

diffusion. Time dependent flow of the second order viscoelastic fluid model has been analyzed 

by Saleem et al. [17]. They have analyzed the reaction and heat immersion effects and thus 

calculated the analytical results. Freidoonimehr et al. [18] calculated simultaneous heat-mass 

transfer properties for steady, laminar, incompressible and MHD stagnation point flow. Experts 

have applied differential transform method together with Pade approximation to evaluate 

analytical results. Computed results seem to be in good agreement with the results obtained by 

fourth order Runge-Kutte method and already published results. Rashidi et al. [19] described the 

analytical and numerical results by considering the combined heat and mass transfer 

phenomenon. Study has been presented in the nanofluid regime from a nonlinear stretching 
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porous sheet. Authors have compared current HAM results with numeric consequences attained 

by shooting method. Furthermore, Rashidi et al. [20] analyzed the generalized the magnetic field 

effects for the Burger nanofluid model. Homotopy approach is employed to calculate the series 

solution. Results were calculated under the influence of sundr5y parameters and compared with 

those of already published results. Ariel [21] described the 3D flow for the steady, laminar, 

incompressible viscous fluid model. Analytical results were obtained via homotopy perturbation 

method and seem to be in good correlation with exact solutions which are already present in 

literature. Singh [22] investigated the 3D unsteady, incompressible flow of Newtonian model. 

Analysts calculated the results by using perturbation technique to visualize momentum profile, 

isotherms and isolines. Further, researchers discussed two cases, viz. heating case (Gr < 0) and 

cooling case (Gr > 0). Xu et al. [23] investigated the series solutions of the 3D unsteady natural 

convective flow in the stagnation point region. Mookum et al. [24] described the numerical 

calculations for the 3D flow. Asako and Faghri [25] evaluated three dimensional heat transfer 

problem in the entrance regime of rhombic duct. Zhao et al. [26] evaluated the BL nanofluid 

rheology. HAM has been utilized to calculate solutions and also discuss the influence of 

involved physical parameters. Ramzan et al. [27] investigated 3D motion of the Oldroyd-B fluid 

by considering Newtonian heating. Awais et al. [28] have taken the 3D Maxwell fluid model 

flowing on the stretching surface for the investigation. Authors have used 3-stage Lobatto IIIA 

formula for the analysis. Jamil et al. [29] studied the unsteady helical flows of Olroyd-B fluid 

through finite Hankel transforms. Hayat and Alsaedi [30] examined radiation, thermophoresis 

and Joul heating properties for the Oldroyd-B fluid model. Experts have also considered the 

influence of magneto hydrodynamics and evaluated the analytical results via homotopy analysis 

method. Ibrahim [31] examined the influence of magnetic effect and convective wall conditions 

on MHD flow. Analyst has taken the Maxwell fluid model in the existence of nanoparticles. 

Finally, shooting procedure has been employed to evaluate numerical calculations. Hayat and 

Awais [32] discussed the effects of heat along with mass transfer for the 2D second grade fluid. 

Scientists have considered Soret and Dufour properties and have solved the physical problem by 

HAM. Later, Hayat et al. [33] examined Sorat and Dufaur’s effects for the 3D flow along the 

stretched surface. Rashidi et al. [34] evaluated approximate solutions for viscoelastic fluid on a 

moving stretching surface. Scientists have well taken the influence of MHD and computed the 
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results through homotopy analysis method. Nadeem et al. [35] explored three dimensional water-

based nanofluid flowing on the stretching surface. Experts have computed the numerical results 

via fourth order RK technique. Alsaedi [36] examined three dimensional viscoelastic fluid 

flowing on an exponentially stretched surface. Mahmoud and Megahed [37] discussed the 

influence of viscous dissipation and heat generation/absorption of a non-Newtonian fluid. Fluid 

is assumed to flow on the porous flat plate and the analytic results have been calculated. 

Hammad and Ferdows [38] evaluated the similarity solutions for the stagnation-point flow along 

heated permeable sheet. Lie group analysis has been performed to demonstrate velocity profile, 

isotherms and isolines. Also, influence of heat immersion on flow has been examined by Alsaedi 

et al. [39]. Awais et al. [40] accomplished heat transfer investigation by considering third grade 

nanofluid. Hayat et al. [41] described convection flow for the Burger’s fluid model. Effects of 

stratification and heat immersion are shown and finally convergent results have been evaluated 

for nonlinear coupled equations. Choi [42] has presented an extensive study on flow with 

nanoparticles. Makinde and Aziz [43] examined numerically BL flow along a stretched wall. 

Computed results have been displayed in graphical and tabular form to visualize the influence of 

considered variables on temperature and nanoparticle concentration. Also, Nadeem and Lee [44] 

investigated boundary layer flows along exponentially stretching sheet. Moreover, experts 

plotted h-curves to obtain convergence of the analytical results. Sheikholeslami et al. [45] 

investigated forced convected heat transfer problem with variable magnetic field. Further, 

Sheikholeslami and Ellahi [46] presented three dimensional analysis of natural convective flow 

of nanofluid. Dalir [47] numerically investigated heat transfer problem of a Jeffrey fluid. 

Cattaneo [48] initially investigated Cattaneo Christov fluid. Christov [49] studied generalization 

of Fourier law which is Maxwell Cattaneo model according to frame indifferent formulations. 

Tibullo and Zampoli [50] extend studies of Christov mentioned in ref. [49] for incompressible 

fluids and presented a unique solution. Haddad [51] examined thermal instability in a flow in 

porous media. In this study, scientist has considered Cattaneo-Christov theory in the governing 

equations for the flow field. Han et al. [52] have taken viscoelastic fluid while incorporating 

generalized heat flux. Hayat et al. [53] studied the 2D flow of Oldroyd –B fluid and included CC 

heat flux effects. Researchers have considered the influence of magneto-hydrodynamics with 

homogeneous-heterogeneous reactions and derived the series solution. Ali et al. [54] extend 
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studies for the Cattaneo-Christov heat flux by adding thermal radiation effects. Extensive studies 

related to Cattaneo-Christov theory have been done by the scientists and engineers mentioned in 

Ref. [55-60]. Ganji et al. [61] considered the 3D flow of Walter’s B fluid in a vertical channel. 

Analysts considered the influences of viscoelasticity and inertia and examined the accuracy of 

VIM, ADM and HPM in solving coupled equations. Outcomes attained are in settlement with the 

exact results and thus displayed in tabular form. Also, Ganji et al. [62] considered MHD 

squeezing flow between two parallel disks. Scientists employed HAM and HPM to obtain 

analytic results and investigated the influence of Reynold number, magnetic number and blowing 

parameter. Awais et al. [63] studied unsteady 3D incompressible flow of Maxwell fluid. Series 

solution has been calculated via homotopy analysis method. Extensive studies for the Oldroyd B 

fluid has been done by the scientists in recent years for heat transfer problems in two as well as 

three dimensions described in Ref. [64-73]. 
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1.2 Description of conservation laws 

Conservation laws are given by 

1.2.1 Continuity equation 
Mathematical expression for the conservation of mass is stated as: 

 

.( ) 0.
t





 


V  
(1.1) 

For incompressible fluids 

0. V  (1.2) 

1.2.2 Equation of fluid motion 
The mathematical form is given by 

 

,d
dt

   
V b  

(1.3) 

where 

.
xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 

  

(1.4) 

Note that   is 

p  I S . (1.5) 

Equation of motion become 

d
dt

  
V

 . 
(1.6) 
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Component forms of the above equation are 

( )( ) ( ) ,

( ) ( ) ( )
,

( )( ) ( ) .

xyxx xz

yx yy yz

zyzx zz

du
dt x y z
dv
dt x y z
dw
dt x y z

 


  


 


 
  

  

  
  

  

 
  

  

 

 

 

(1.7) 

1.2.3 Law of energy conservation 
 

This law states that 

2 1 ,r
p

T T
t c





     


V T q  

(1.8) 

where rq  is radiative flux which is stated mathematically as 

2 44 ( )
3r

R

q n


  T . 

(1.9) 

 

1.2.4 Mass transfer equation 
This equation is given by: 

 

2D
t


   



C V C C , 
(1.10) 

where C symbolizes species concentration and D represents the diffusion constant 
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1.3 Constitutive relations of stress tensors 
The constitutive relations of stress tensors for different fluid models are given by 

1.3.1 Newtonian model 
The generalized tensor is 

,p I S    (1.11) 

 

where extra stress tensor S  for Newtonian model is given by 

1 S A , 0  , 

 

in which the first RE tensor 1A  

 1 .transpose
  A V V  

 

1.3.2 Maxwell model 
The tensor S  for an upper-convected Maxwell (UCM) model satisfies: 

1 11 ,D
Dt

 
 

 
 

S A  
(1.12) 

 

where 1  is relaxation effect and the expression for D/Dt is given by [1] 

, , .i i
r i r i r r

Da a u a u a
Dt t


  


 
(1.13) 

 

1.3.3 Oldroyd-B fluid model 
For Oldroyd-B fluid model, the extra stress tensor satisfies 

1 2 11 1 .D D
Dt Dt

  
   
    

   
S A  

(1.14) 
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1.3.4 Jeffery fluid model 
Expression of tensor in Jeffery model is 

1
1* .

1
d
dt





 
 

  

AS A  
(1.15) 

 

1.4 Additional forces and source terms 
1.4.1 Magnetic field 
The additional term in the equation of motion corresponds to the hydro magnetic flow situation 

is given by 

m  F J B , (1.16) 

  , J = E + V B  (1.17) 

where 

0 .B b B  

After simplifications we get 
2
0m B F V.  (1.18) 

1.4.2 Internal heat generation/absorption 

The extra terms corresponds to the internal heat immersion is  0

p

Q T T
c  . 

1.4.3 Nanofluids 
The extra terms representing the effects of nanofluid are given by 

2

1 ,T
B

DC T TA D
y y T y




    
         

 

2

2 2 ,TD TA
T y





 

in which DB represents the Brownian motion and DT represents the thermophoresis phenomenon. 
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1.5 Methodology 
It is analyzed through literature survey that differential systems for the Rate type non-Newtonian 

fluids are non-linear and complex. Such nonlinearity is more complicated when the generalized 

rate type fluid model are considered. For the computation of nonlinear coupled set of equations, 

we employed numerical techniques, namely shooting technique together with Newton Raphson 

method and finite difference method. To compute results analytically, we apply an effectual 

analytical approach namely HAM.  
1.5.1 Shooting method 
Shooting technique is a numerical iterative scheme used for the numerical calculations of the 

system. This iterative approach is applicable only on the first order initial value problem. In this 

technique missing initial slope at the initial (starting) interval point is supposed and then we 

calculate the differential equation together with initial condition. The precision of anticipated 

initial condition is tested by relating the calculated value of the dependent variable at the final 

point.  If they are in good agreement then it’s the solution of IVP, otherwise we continue this 

process by taking other value for the missing condition. These steps are repeated until the 

accuracy is achieved.  

Solution procedure 

Consider a differential equation of second order 
2

2 , ,d u duf u v
dv dv

 
  

 
. 

(1.21) 

The suitable wall conditions are 

 

u(0) 0    and    u( )L A . (1.22) 

We rewrite Eq. 1.21 in the group of two equations of first order 

 

, ( , , )du dww f u v w
dv dv

  . 
(1.23) 

The missing initial condition is  

(0)du s
dv

     or    (0)w s . 
(1.24) 
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So need to calculate “s” such that the system of ODEs satisfy the boundary condition at the 

second point. We can compute “s” such that: 

( , ) ( ) 0u L s A s   . (1.25) 

By using Newton Raphson method 

   
 

1
n

n n
n

s
s s

d s
ds






  . 

(1.26) 

Using above equations 

   
 

1 ,

,

n
n n

n

y L s A
s s

y L s
s




 




. 
(1.27) 

Differentiated w.r.t. s to achieve derivative of (u) with s, we have 

 

dU W
dv

       and     dU f fU V
dv u v

 
 
 

, 
(1.28) 

  

U(0) = 0      and   W(0 )= 1,   (1.29) 

where  

,u wU W
s s
 

 
 

. 
(1.30) 

The solution is achieved by going through following steps 

1. Suppose value for s, and (1)s  denotes the approximate value of s. 

2. Solve an IVP from x = 0 - L. 

3. Results obtained from the above step will be utilized to get 

   
 

1
2 1

1

,

,

y L s A
s s

Y L s


  . 

       4.  Repeat the process until precision is achieved. 
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1.5.2 Finite difference technique 
FDM is efficient process for the computation of BL problems. In this technique, we discretize 

the set of partial differential equations by replacing the differentials with the difference quotients 

which in result yields nonlinear algebraic equations. 

Solution procedure 

To achieve a numerical solution for the system of differential equations, we replace continuous 

variables by discrete variables. We accomplish this process by reforming the given set of 

equations in algebraic form by substituting differentials with difference quotients.  Let we have 

continuous function u(x). Divide x-axis on the finite no of intervals with uniform grid size ( )x . 

At any three consecutive points 1,n nx x
 and 1nx 

, the value of function u(x) are 1,n nu u
 and 1nu 

.  

1nu 
 and 1nu 

can be written in terms of nu  and ( )x  by using Taylor series. 

 
2 2

1 2
( ) .......

2!n n
du d u xu u x
dx dx


     , 

(1.31) 

2 2

1 2
( ) .......

2!n n
du d u xu u x
dx dx


     . 

(1.32) 

 

Difference quotients for the 1st order differential terms are 

Forward difference 

Mathematical representation for the Forward difference of the ist-order derivatives can be 

obtained by using Eq. 1.31. 

  

1n nu udu
dx x

 



. 

(1.33) 

Backward difference 

Using Eq. 1.32, we get 

 

1n nu udu
dx x





. 

(1.34) 

Central difference 
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To get central difference analogue for 1st order differentials, we subtract Eq.1.31 from Eq. 1.32. 

1 1

2
n nu udu

dx x
 




. 
(1.35) 

Finite difference analogue for the second order derivative terms are obtained by adding Eq. 1.31 

and Eq. 1.32. 
2

1 1
2 2

2
( )

n n nu u ud u
dx x

  



. 

(1.36) 

Similarly difference quotient for the third order derivatives is 

 
3

2 1 1 2
3 3

2 2
2( )

n n n nu u u ud u
dx x

     



. 

(1.37) 

Using above equations in differential equations, we get nonlinear equations. Thomas algorithm is 

best applicable to the set of algebraic equations if they are tri-diagonal because they occupy less 

space.  

1.5.3 Homotopy approach 
This is efficient technique and researchers are employing this technique for the series solution of 

differential systems. We can say regarding this technique that 

 HAM does not need small or large parameters. The auxiliary operator is presented to 

make the deformation equation of zeroth order. 

 It should be noted that auxiliary operator “h”, auxiliary function “H(t)”, initial operator 

“L” and initial guess “ 0( )V t ”can be independently chosen. 

  Convergence regime can efficiently be controlled and approximation rate for calculating 

the series solution is adjustable.  

 Different set of base functions can be selected while implementing this approach. 
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Chapter 2 

 

Analysis of UCM fluid with diffusion 

effects: Dual numerical results 
 

In this chapter, we have analyzed the properties of heat immersion and reaction phenomenon in a 

fluid flow under magnetic effects. Characteristics of the UCM fluid model have been taken in the 

spongy medium to examine the absorbent effects. Diffusion equations are used to measure out 

the heat as well as mass transfer effects. Set of ODEs are numerically computed by using 

shooting technique. It is being practically examined that dual solutions occur for the flow above 

shrinking wall and a single solution in case of stretching surface. Properties of Deborah number, 

heat and mass transfer and heat immerion have been visualized graphically. Results have also 

been depicted in the tables to describe the dual results for skin friction, Nusselt and Sherwood 

number. 

2.1 Construction of the equations 
Consider the UCM fluid flow over a permeable wall in order to study the suction-blowing 

properties. The flows in the porous medium y > 0  is considered as revealed in the Fig. 2.1.   
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Fig. 2.1: Plan. 

Mathematical model for the rheological system is 

 

,0









y
u

x
u           (2.1) 

22 2 2 2
2 2 0 

2 2 22

) ,

Bu u u u u u uu v u v uv u v
x y x y x y y y

uu v
k y


  






         
         

         

 
  

 

  (2.2) 

2

2 ( ),m
p

T T T Qu v T T
x y y c






  
   

  
      (2.3) 

2

12 C.C C Cu v D K
x y y

  
  

  
        (2.4) 

Wall properties are of the form: 

 

,  ,  ,             at    0,
0,  ,                            as    .

w w w wu U v V T T C C y
u T T C C y 

    

   
     (2.5) 
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In the given set of equations cxUw   signifies the shrinking velocity and wV  is suction-

blowing parameter. Notice that the suction effect arises when wV  < 0 and wV  > 0 relates to 

blowing condition. The stream function   with transformations are presented  

( ),  ,  ( ) ,  ( ) .
w w

T T C Ccc xf y
T T C C

       


 

 

 
   

 
    (2.6) 

Applying the above set of variables we get 

   
2 2 2 22 0,f f ff ff f f f M ff M f Kf K ff                     (2.7) 

,0PrPr 1   f         (2.8) 

Sc 0.f Sc              (2.9) 

The boundary conditions thus arises to be 

(0) ,  (0) 1, (0) 1, (0) 1,
( ) 0,  ( ) 0,  ( ) 0.

f S f
f

 

 

    

      
      (2.10) 

Mathematically  
2

2 0 1
1, , ,Pr , , , , .w

m p

B VKQc M K Sc S
c kc c c D c c
   

   
   


         (2.11) 

Physical quantities being discussed are xNu  and Sh. These quantities are represented 

mathematically as 
1/2 1/2/ Re (0),Sh/ Re (0).x x xNu             (2.12) 
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2.2 Computational technique and results  
 

Nonlinear coupled partial differential equations mentioned in Eqs. (2.7-2.9) are computed 

numerically by using boundary condition revealed in Eq. 2.10. To apply shooting technique, we 

apply RK method together with NR method. To calculate results numerically following variables 

are defined as: 

 
2 2 2

1 1
2

1 1

1

2 ,    ,
1

,    Pr Pr ,
,    Sc Sc ,

p fq fpq M fq K fq M p K pp q q
f

z fz
u fu

  



  

  



     
  



    

   

  (2.15) 

with 

(0) ,  (0) 1,  (0) 1,  (0) 1,f S p             (2.16) 

However the solutions of )0(q , u(0)  and z(0) necessarily  be calculated to approximate the IVPS 

represented in Eqs. 2.15 and 2.16. Shooting technique is applied by selecting the suitable initial 

guess. Grid size is taken to be h = 0.001 and numerical calculations are done constantly until the 

tolerance of 0.00001 is accomplished. Above Eqs. 2.15 and 2.16 have physical parameters 

magnetic effects, Deborah number, permeability, Prandtl number, generation-absorption as well 

as suction-blowing. Therefore we have depicted results graphically to visualize and also we 

figure out the numerical results in tables. Plots for the Newtonian and UCM fluid are displayed.   
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Fig. 2.3: UCM vs Newtonian model. 

 
Fig. 2.2: Hydromagnetic vs hydro-dynamic cases. 
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Skin frictions (0)f   for ( 0M  ) and for ( 0M  ) flow cases are compared and displayed in the 

Fig. 2.2. It is visualized that the dual solution occurs in case of hydro-dynamic flow for S > 

1.7397. However, for hydro-magnetic flow the domain rises to S > 1.4765. Maxwell and the 

Newtonian fluid are compared and displayed in Fig. 2.3. The graphs clarify that the dual solution 

exists in both cases though the domain in case of Maxwell fluid is comparatively greater than 

that of Newtonian (viscous) model over a shrinking surface.  

 

 

 

 
Fig. 2.4: Impact of   on f  . 
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Fig. 2.5: Impact of 1K  on velocity. 

 

  

In Fig. 2.4, influence of   on the momentum boundary layer is displayed. It is observed that 

different solutions occur by changing  . Also, it is noted that flow velocity reduces with 

Deborah number “β” due to the elastic properties in Maxwell fluid which hinders the motion of 

fluid particles. Impact of porosity parameter 1K  on the fluid is presented in Fig. 2.5 and it is 

studied that the dual solution exists for different values of 1K . It is analyzed that the second result 

is significant when related with the first one.  It is noted that changings in the first solution are 

slightly small for positive values of 1K  while the variations in second solution are 

acknowledgeable. Dual solutions for the thermal BL are depicted in Fig. 2.6 for various values of 

Pr and it is thus observed that both solutions are similar. As it is known from literature that Pr is 

inversely linked with diffusivity and also it is seen from the graphs that isotherms retard by 

growing the value of Pr. In Fig. 2.7 impact of internal heat generation/absorption is being 

discussed. It is clarified that temperature rises by raising hs. Effects of S on temperature are 
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discussed in the Fig. 2.8. It is analyzed that the boundary layer decays for greater S whereas 

increase in the value of S increases velocity of fluid particles.  Thus, it results in higher 

molecular movement so the temperature reduces. The impact of the suction-blowing 

phenomenon on the isolines is explained in the Fig. 2.9. From this geometry it is verified that 

enhancement in the suction-blowing decreases the concentration. It is also noted that increasing S 

cause a decrease in diffusion. 

 

 

 
Fig. 2.6: Pr variation against  . 
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Fig. 2.7: hs variations against  . 

 

 
Fig. 2.8: Temperature change vs S. 
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Fig. 2.9:  S variations on concentration. 

 

 

3D flow configuration is depicted in Fig. 2.10. Here the variation of velocity against the 

independent variables is shown. It is thus concluded that variation is maximum near the 

shrinking wall however the ambient values are small.   
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Fig. 2.10: 3D flow configuration. 

 

 

The numerically computed solution of temperature-diffusion change and wall friction against β, 

Pr, S, M and hs have shown in the Tables (2.1-2.3). The dual results for Cf,, Nu and Sh for 

different physical parameters are calculated and revealed which explain the characteristics of 

rheological behavior in computed results.  
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Table 2.1: Skin friction values: Dual results. 

 

S   M Skin friction (0)f   

1.72 0.0 0.5 0.9555807 0.773768 

1.78 0.0 0.5 1.118270 0.661129 

1.87 0.0 0.5 1.301370 0.567579 

1.93 0.0 0.5 1.402291 0.526234 

2.00 0.0 0.5 1.509902 0.487955 

1.69 0.2 0.5 1.064382 0.735073 

1.87 0.2 0.5 1.788153 0.501723 

1.93 0.2 0.5 1.994654 0.447306 

2.00 0.2 0.5 2.245862 0.425645 

1.74 0.2 0.0 1.022591 0.980014 

1.80 0.2 0.0 1.411943 0.721864 

1.90 0.2 0.0 1.793495 0.582473 

2.10 0.2 0.0 2.563495 0.410476 

1.50 0.2 0.5 0.969338 0.636261 

1.62 0.2 0.5 1.351365 0.467542 

1.74 0.2 0.5 1.678094 0.383745 

1.82 0.2 0.5 1.903514 0.361377 

1.94 0.2 0.5 2.272523 0.282457 

2.10 0.2 0.5 2.85835 0.202462 
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Table 2.2: Nusselt number values: Dual results. 

 

  hs Pr S Nusselt number (0)  

0.0 -1.0 1.0 2.2 1.21553 1.34589 

0.1 -1.0 1.0 2.2 1.21191 1.37503 

0.2 -1.0 1.0 2.2 1.20607 1.40153 

0.1 -1.0 1.0 2.2 1.21191 1.37503 

0.1 -0.5 1.0 2.2 0.95584 1.21144 

0.1 0.0 1.0 2.2 0.30947 0.99754 

0.1 -1.0 0.1 2.2 0.38427 0.44265 

0.1 -1.0 0.4 2.2 1.00521 1.15256 

0.1 -1.0 0.8 2.2 1.84177 2.04672 

0.1 -1.0 0.5 1.8 1.07013 1.19322 

0.1 -1.0 0.5 2.0 1.14021 1.28300 

0.1 -1.0 0.5 2.2 1.21191 1.37503 

 

 

Table 2.3: Sherwood number values: Dual solutions. 

 

S   M Sherwood number (0)  

1.8 0.1 0.5 1.07013 1.19322 

2.0 0.1 0.5 1.14021 1.28300 

2.2 0.1 0.5 1.21191 1.37503 

2.0 0.0 0.5 1.14184 1.26086 

2.0 0.1 0.5 1.14021 1.28300 

2.0 0.2 0.5 1.13821 1.30013 

2.0 0.1 0.0 1.16006 1.27801 

2.0 0.1 0.25 1.15464 1.27938 

2.0 0.1 0.5 1.14021 1.28300 
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2.3 Conclusive remarks 
This analysis aims to compute numerical results for UCM fluid model. Heat-mass transfer 

problem is studied with magnetic properties, reaction phenomenon and heat immersion. 

Numerically calculated results are illustrated in graphs and also shown in tabular form. 

Conclusive remarks about the present study are 

 Dual results occur for the double diffusive flow over shrinking surface.  

 Unique (single) solution happens only for stretching surface. 

 Momentum boundary layer turn to be thinner as the magnetic field retards the motion of 

fluid particles. 

 Second result is significant as compare to first for the porosity (permeability) effect. 

 Suction phenomenon reduces the temperature as well as concentration profiles. 
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Chapter 3 
 

Magnetic properties in Sakiadis flow of 

non-Newtonian nanofluid 
 

This chapter reveals the study of Sakiadis flow for nano material with magnetic properties and 

heat immersion effects. Double diffusivity is briefly examined with thermal radiations.  During 

mathematical modelling, the physical problem is transfigured to the set of PDEs which are 

further altered to nonlinear ODEs via appropriate transformations. Calculated results are shown 

in graphs to visualize the effect of involved parameters.  

 

3.1 Mathematical modelling 
Combined heat-mass transfer effects with magnetic field in sakiadis flow of UCM nanomaterial 

is investigated. Flow dynamics in a absorbent medium with convective wall properties have been 

considered.  Conservation laws are 

 
 

                                                             0u v
x y
 

 
 

,                                                                  (3.1) 

22 2 2
2 2 0

2 2 22 ,Bu u u u u u uu v u v uv u v
x y x y x y y K y

 
  



          
           

           
     (3.2) 

 
22

0
2

1 ,r T
m B

p p

Qq DT T T C T Tu v T T D
x y c y y c y y T y

 
 





         
                      

     (3.3) 
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2 2

2 2 ,T
B

DC C C Tu v D
x y y T y

   
  

   
                                         (3.4) 

 

The wall conditions are 

 

   ,  0,  , at   0,

0,  ,                   as .

f f c f
T Cu U v k h T T D h C C y
y y

u T T C C y 

 
        

 

   

   (3.5) 

 

Where qr is  
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along with wall properties 
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The numerical treatment is computed using finite-difference approach (FDM) as shown in Table 

1.  

3.2  Solution computations 
 

In this part of chapter, we aim to investigate the impact of physical parameters including 

Deborah number De, heat generation-absorption parameter hs, thermophoresis parameter Nt. 

Further, effect of  magnetic field M, Biot numbers  1 2,  and Brownian motion Nb is also been 

studied on the velocity, temperature and species concentration. During solution computation 

errors are evaluated and depicted in Fig. (3.1-3.3). It is observed that errors in the results are 

quite negligible. It is revealed in Fig 3.4 that Deborah number De retards the motion of fluid 

particles near the boundary. Fig 3.5 reveals the effect of magnetic strength M. This geometry 

clarifies that boundary layer decreases with M. From literature, it is studied that apparent 

viscosity of the fluid increases as the magnetic field is applied on it. Likewise, in Fig 3.6 effect 

of magnetic field on   is presented. It is shown that   increases close to the convective wall. 

Impact of hs on   is discovered in Fig 3.7. Also for (hs < 0.0), the temperature reduces while for 

(hs > 0.0), the temperature rises. Also, thermal slip is observed in both cases because of the 

convective properties of surface. Influence of 1  on the temperature is discussed in the Fig. 3.8. 

It is witnessed from this picture that temperature increases close to the wall and decreases far 

from the convective surface. Effects of  ,t bN N  on   are exposed in Fig. 3.9. Consequently, it 

is studied that nanoparticles enhance the temperature. Effect of M on the graph of concentration 

is observed in Fig. 3.10. It is verified that species concentration is in direct relation with 

magnetic field. Enhancement in the value of M gives rise to concentration profile. Impact of Biot 

number 2  on the isolines is displayed in the Fig. 3.11. It is witnessed that the concentration 

profile in increased near to the convective wall. Influences of  ,t bN N  on the species mass 

distribution are portrayed in the Fig. 3.12. It is discovered that   rises by enhancing the 

thermophoresis and Brownian motion  ,t bN N . 
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Fig. 3.1: Error in f. 
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Fig. 3.2: Error in  . 

 

 

 

 
Fig. 3.3: Error in  . 
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Fig. 3.4:  De variation on f  . 

 

 

 
Fig. 3.5:  M variation on f  . 
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Fig. 3.6: M variation on  . 

 

 

 

 
Fig.3.7: hs variation on  . 
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Fig. 3.8: 1  variation on  . 

 

 

 

Fig. 3.9:  ,b tN N  variation on  . 
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Fig. 3.10:  M variatons on  . 

 

 

 
Fig. 3.11:  2  variations on  . 
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Fig. 3.12:  ,b tN N  variations on  . 

Table 3.1: Comparison table. 

 

Parameters FD Solution         HAM Solution  

De hs M bN  tN  1  2  
41 '(0)
3

Rd 
 

  
 

  0   
41 0
3

Rd 
 

  
 

 

 0  

0.0 0.5 1.0 0.3 0.3 0.5 0.3 0.247136 0.248907 0.247260 0.248890 

0.5 0.5 1.0 0.3 0.3 0.5 0.3 0.246492 0.249193 0.246578 0.249295 

1.0 0.5 1.0 0.3 0.3 0.5 0.3 0.245687 0.249552 0.248952 0.249513 

1.5 0.5 1.0 0.3 0.3 0.5 0.3 0.2447057 0.249958 0.2447057 0.249955 

0.5 -1.5 1.0 0.3 0.3 0.5 0.3 0.4769977 0.139383 0.4769977 0.139374 

0.5 -1 1.0 0.3  0.3  0.5  0.3 0.4519256 0.151260 0.4519232 -0.151241 
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0.5 -0.5 1.0 0.3  0.3  0.5  0.3 0.4157199 0.168457 0.4157214 0.168467 

0.5 0 1.0 0.3  0.3  0.5  0.3 0.3576959 0.196092 0.3576458 0.196089 

0.5 0.5 1.0 0.3  0.3  0.5  0.3 0.2464949 0.249193 0.2464875 0.249188 

0.5 1.0 1.0 0.3  0.3  0.5  0.3 -0.0672411 0.399351 -0.0672547 0.399340 

0.5 1.5 1.0 0.3  0.3  0.5  0.3 -6.5635507 3.514316 -6.5635259 3.514320 

0.5 0.5 0.0 0.3  0.3  0.5  0.3 0.2562556 0.245268 0.2562456 0.245270 

0.5 0.5 0.5 0.3  0.3  0.5  0.3 0.2532122 0.246472 0.2532312 0.246472 

0.5 0.5 1.0 0.3  0.3  0.5  0.3 0.2464949 0.249193 0.2464859 0.249193 

0.5 0.5 1.5 0.3  0.3  0.5  0.3 0.2394121 0.252142 0.2394251 0.252142 

0.5 0.5 1.0 0.1  0.3  0.5  0.3 0.2539361 0.336783 0.2539245 0.336783 

0.5 0.5 1.0 0.3  0.3  0.5  0.3 0.2464949 0.249193 0.2464925 0.249193 

0.5 0.5 1.0 0.6 0.3  0.5  0.3 0.2351707 0.227337 0.2351817 0.227337 

0.5 0.5 1.0 1.0 1  0.5  0.3 0.2197855 0.218640 0.2197875 0.218641 

0.5 0.5 1.0  0.3 0.1  0.5  0.3 0.2565104 0.214782 0.2565104 0.214781 

0.5 0.5 1.0  0.3 0.3  0.5  0.3 0.2464949 0.249193 0.2464957 0.249192 

0.5 0.5 1.0  0.3 0.6  0.5  0.3 0.2313545 0.313103 0.2313542 0.313102 

0.5 0.5 1.0  0.3 1.0  0.5  0.3 0.2110014 0.421578 0.2110014 0.421577 

0.5 0.5 1.0  0.3  0.3 0.1  0.3 0.1038475 0.218254 0.1038457 0.218254 

0.5 0.5 1.0  0.3  0.3 0.5  0.3 0.2462949 0.249193 0.2462857 0.249193 

0.5 0.5 1.0  0.3  0.3 1.0  0.3 0.2945056 0.261406 0.2945514 0.261406 

0.5 0.5 1.0  0.3  0.3 2.0  0.3 0.3253130 0.269785 0.3253128 0.269784 

0.5 0.5 1.0  0.3  0.3  0.5 0.1 0.2543187 0.105175 0.2543187 0.105175 

0.5 0.5 1.0  0.3  0.3  0.5 0.3 0.2464949 0.249193 0.2464947 0.249195 

0.5 0.5 1.0  0.3  0.3  0.5 0.6 0.2393645 0.378966 0.2393545 0.378964 

0.5 0.5 1.0 0.3  0.3  0.5 1.0 0.2338329 0.478731 0.2338358 0.478735 
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3.3 Conclusive remarks 
 

Convective heat-mass transport effects have studied for the Sakiadis rheology of UCM 

nanomaterial. Brownian and thermophoretic effects are discussed in the present study. Final 

results are listed in some steps as: 

 Boundary layers decrease by increasing the value of Deborah effects. 

 Magnetic effect opposes the fluid motion and delays the velocity. 

 The temperature is directly related with magnetic field. Enhancement in temperature 

increases with magnetic field. 

 Heat immersion parameter has contrary behavior on the temperature. 

 Thermophoreses and Brownien motion both improve the temperature and concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

 

 

Chapter 4 

3D dynamics of UCM model over 

exponentially stretched wall: Variable 

properties 

This part portrays the 3D flow of UCM over exponential stretched wall. The energy equation 

with temperature dependent conductivity has been studied in detail. Analytical solutions are 

computed via HAM. Comparison with the already published data is presented for the limiting 

case. Various graphs and tables are illustrated to show the real insight of the problem. 

4.1  Problem development 
Consider the dynamics of UCM fluid over a bidirectional stretching wall. Analysis is performed 

in (x,y,z) coordinates. Constitutive mathematical relations are 
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 Wall effects are  

0 0, , 0, 0
x y x y
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 
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and  .~,0~,0~  zasvu           (4.4)       

Introducing the transformations:  
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 Eqs. (4.2) and (4.3) become  
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whereas the boundary conditions altered after subjected to transformations are written below:  
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0, 0, ' 1, ' , 0f g f g at       and ,,0',0'  asgf  (4.8)      

where 0

x y
LU e

L






  denotes the Deborah number and 











0

0

U
V

  symbolizes stretching ratio 

parameter. Observe that 0  shows that, the three dimensional flow is changed to two-

dimensional flow which is stated as:  

2 3 2 21''' 2 ' '' 2 ' '' ' ''' 3 ' '' 0,
2 2
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             (4.9)  

0,1',0  asff    and   ' 0 .f as          (4.10)   

Note that for 1 , we have gf   that describes axisymmetric flow and with the similar 

boundary conditions (4.10).  

 

4.1.1 Energy diffusion analysis  

By taking the effects of radiation, we get  

,~
~

*3
*16

~
1

~
~

~
~
~

~
~
~

~
3


















































 

z
T

k
Tk

zcz
Tw

y
Tv

x
Tu

p




       (4.11) 

whereas the wall conditions for the PST and PHF cases are:  
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Thermal conductivity (k) is expressed mathematically as: 

PST case:   ,.1  kk  

PHF case:    .1 kk .                     (4.13) 



47 

 

A similarity transformation is presented as  
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Eq. (4.11) is reduced to the following form by applying Eq. (4.14):  
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 And wall effects are  
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   respectivly. 

4.2  Series solutions 

The analytic solutions of Eqs. (4.6), (4.7), (4.15) and (4.16) subject to the conditions (4.8) and 

(4.17) are computed by utilizing homotopy approach. The suitable initial guesses and linear 

operator are:  
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        .'','','''',''''    LLgggLfffL gf     (4.19) 

A MATHEMATICA code is constructed and we suppose ( , , and  )f gh h h h   for the function 

 , , and  f g   . It is observed experimentally that the convergence is achieved and it depends 

on these auxiliary parameters.  Convergence of the solution are well presented in tabular form 

(Table 4.1).  
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Table 4.1: Convergence of the series solution. 

4.3   Results and analysis 

Here we wish to present the graphical and numerical illustration for the involved physical 

parameters. Therefore, Figs. (4.1-4.10) and Tables (4.2-4.3) are constructed. Influence of β on 

f and 'f is examined in Fig. 4.1 and Fig. 4.2. Thus, we notice that β is in inverse relation with 

fluid velocity. Fluid motion slows down by enhancing Deborah number. From literature, we 

study that  1  resembles with the fluids in which the relaxation time is fewer than the 

deformation time. Therefore, non-Newtonian fluids act like viscous fluid. Contrary to that the 

fluid particles act like a solid material. Figs. 4.3 and 4.4 are constructed to study the influence of 

stretching ratio parameter   on  g  and  'g  correspondingly. It is shown in these geometries 

that the velocity of fluid particles increases by enhancing the value of  0.1,6.0,3.0,0.0 . 

From above observation, we determine that when ,0 the flow diminishes to two dimensional 

form, while for ,0 the flow resembles to three-dimensional (for the reason that surface is 

bidirectional stretching) as apparent from Fig. 4.4. In addition, the flow turns to be axisymmetric 

when 0.1 . The impact of temperature dependent thermal conductivity   on PST and PHF 

cases are portrayed in Fig. 4.5 and Fig. 4.6. It is observed from geometry that 

 
Order of approximation 

 
)0(''f  

 
)0(''g  

 
)0('  

 
)0(''  

 

1 

 

1.44813 

 

0.72406 

 

0.87333 

 

0.51570 

4 1.75472 0.86584 0.70194 

      0.64558 

0.21325 

8 1.78138 0.88897 0.18583 

12 1.78208      0.89124 0.62985 0.18581 

16 1.78303      0.89148 0.62395 0.18618 

20 1.78303      0.89148 0.62135 0.18634 

30 1.78303      0.89148 0.62135 0.18634 
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 5.1,0.1,5.0,0.0  is directly related with    and inversely proportional to   . Variation 

of the radiation parameter Rn is presented in Figs. 4.7 and 4.8. It is perceived that by increasing 

the radiation there is growth in temperature for (PST and PHF). The effect of stretching ratio 

parameter by considering  Pr 0.7 and 0.02  against the temperature profile is shown in Figs. 

4.9 and 4.10 respectively. PST and PHF cases exhibit eloquent overshoot for small value of 

Prandtl number  020  metalsliquid .  though for greater Prandtl number  70 air .  the 

temperature variations are not very much momentous. Physically, we can say that the reaction of 

stretching ratio parameter is effective for the liquid metals  020 Pr .  because they are less 

viscous. However, for greater Prandtl number, fluid turns to be more viscous so there is less 

overshoot. Computed results are compared in table 4.2 and 4.3 and it is clear that numerical 

solution and HAM results are in an agreement. 

 

Fig. 4.1: Deborah number variations on .f  
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Fig. 4.2:  Deborah number variations on .f   

 

 

Fig. 4.3:   variations on .g  
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Fig. 4.4:   variatiosn on .g  

 

 

Fig. 4.5:   variations on   for PST 
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Fig. 4.6:   variations on   for PSHF. 

 

 

Fig. 4.7: Rn variations on   for PST. 

 

 



53 

 

 

Fig. 4.8:  Rn changes on   for PHF. 

 

 

Fig. 4.9: Comparison of results: Air vs liquid metals on  . 
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Fig. 4.10: Comparison of results: Air vs liquid metals on  . 

 
Table 4. 2: Evaluation table. 
 
 

Parameters (Awais et al. 28) Present 
 
  

 
  

 
''(0)f  

 
g''(0)  

 
''(0)f  

 
g''(0)  

0.0 0.2 -1.56105 0.0 -1.56101 0.0 

0.3  -1.86446 -0.55934 1.86443 -0.55934 

0.6  -2.15823 -1.29494 -2.15824 -1.29493 

0.5 0.0 -1.57001 -0.78501 -1.57002 -0.78501 

 0.2 -1.78309 -0.89156 -1.78300 -0.89155 

 0.4 -1.97288 -0.98645 -1.97288 -0.98644 
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Table 4.3:  PST vs PHF cases: Analysis 

4.4  Conclusive remarks 

Conclusive remarks about the present study are:  

 Deborah number stops fluid and hence the velocity of the fluid particles reduces. 

 Non-Newtonian fluid acts like a viscous (Newtonian) fluid as the Deborah number “De” 

is greater than one.  

 Three dimensional flow lessens to two dimensional flow when  0   . 

 Temperature dependent thermal conductivity has conflicting impact in both PST and PHF 

cases. 

 Radiation parameter seems to be the source of enhancement in fluid temperature. 

 Stretching parameter has a better over shoot for liquid metals. 

 

 

 

 
Parameters 

 
PST 
   

 
PHF 
   

  Rn  0.0  5.2  0.5  0.0  5.2  0.5  

0.0 5.0 1.00000 0.28385 0.03857 1.93112 0.34177 0.04194 

2.5  1.00000 0.16762 0.01665 1.70385 0.21745 0.02048 

5.0  1.00000 0.05138 -0.0052 1.47658 0.09312 -0.0009 

 
0.2 

 
0.0 

 
1.00000 

 
0.06934 

 
0.00313 

 
1.00385 

 
0.07065 

 
0.00347 

  
3.0 

 
1.00000 

 
0.19247 

 
0.02334 

 
1.54931 

 
0.22736 

 
0.02552 

  
6.0 

 
1.00000 

 
0.31559 

 
0.04355 

 
2.09476 

 
0.38406 

 
0.04757 
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Chapter 5 
 

Rheology of Oldroyd-B model with 

magnetic and heat immersion effects: 

Analytical and numerical treatment 
 

 Sakiadis rheology of Oldroyd-B model with magnetic and heat immersion effect has been 

discussed in this chapter. Convective heating process is analyzed in the presence of thermal 

radiations. Appropriate variables are applied to alter PDEs into coupled nonlinear ODEs. 

Numerical as well as analytic solutions have been computed. Results are revealed in graphs to 

observe the performance of all parameters. Error plots are also presented during the analysis. 

 

5.1 Mathematical description 
Consider the Oldroyd-B fluid flowing in a absorbent medium where magnetic properties are also 

present. Analysis on convective heat transfer process is performed. Equations for the flow field 

are:  

 

V = 0 ,           (5.1) 

div ,D p
Dt

   
V S           (5.2) 

1 2 11 1 ,D DS A
Dt Dt

  
   
     

   
        (5.3) 
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, , ,i i
r i r i r r

Da a u a u a
Dt t


  


         (5.4) 

* 2 ,p
dc k q
dt

  
T T +           (5.5) 

 

Eqs. (5.2-5.5) are further simplified as 

 
22 2

2 2 0
1 12 2 2 Bu u u u u uu v u v uv u v

x y x y x y k y
 

 


         
            

          

2 3 3 2 2

22 2 3 2 2

u u u u u u vu v
y x y y x y y y

 
         

     
          

,      (5.6) 

 
2

0
2

1 r
m

p p

QqT T Tu v T T
x y z C y C


 



  
    

   
.      (5.7) 

We acquire the results for Maxwell model when 2  attains zero value. Also, the results for the 

Newtonian fluid (viscous) model can be acquired by setting 1 2 0   .  

The wall conditions are 

 ,,0, TTh
y
TkvUu ff 



  at 0,y   

0, 0,u v T T T      as y ,      (5.8) 

 

Applying 

 

   
1, , ,
2 f

T TU Uy u Uf v f f
x x T T


   







      


.    (5.9) 

 

Eqs. (5.5-5.8) becomes 
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    

     ,02

2
22

1

2

222













fffffffffDffffKDfK

fffDfMfffffffDfff

se

e
e




   (5.10) 

,0
3
4

2
1Pr 








  Rdhsf         (5.11) 

And wall effects are  

 

        
    .0,0

,010,10,00 1









f
ff

       (5.12) 

 

Notice that 

1 / 2eD U x , 

2 / 2sD U x , 

/K kU , 

2 /M U  , 

316 / 3dR T k k  


 , 

/ phs Q U C  

and  

Pr / m   .  
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5.2 Error analysis 
The system of Eqs. (5.10 and 5.11) along with wall properties (5.12) are nonlinear and coupled. 

Thus, error analysis is executed to get the certified calculations. We have constructed Figs. 5.1 

and 5.2 which display the error in momentum and thermal distribution. Geometries witnesses 

that error in the calculations are insignificant.  

 

 

 

 
Fig. 5.1: Error in f. 
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Fig. 5.2: Error in  . 

 

5.3 Results and analysis 

  
We observe that the system of nonlinear equations (5.10-5.12) include different physical 

quantities comprising of Deborah number, wall convection parameter, magnetic field, internal 

heat generation/ absorption etc.  Thus, we construct Figs. (5.3-5.11) and table 5.1 to examine the 

effect of various parameters on the momentum distribution and isotherms. Fig. 5.3 and 5.4 gives 

the heat transfer against magnetic field M and permeability K. Front bar demonstrates the results 

of Propane while back bar display the solutions of Ethylene glycol. Further, it is observed growth 

in magnetic and porosity parameter tends to decrease heat transfer rate. Figs. 5.5 and 5.6 explain 

the impact of Deborah numbers. It is witnessed that velocity reduce against Deborah number De 

rises however in case of Ds, velocity enhances. Deborah numbers (De, Ds <<1) indicates the 

flow motion but their large values (De, Ds >>1) relates to solid-like behavior. Fig. 5.7 interprets 

the effect of magnetic field M on the velocity profile. We notice that magnetic parameter and 

velocity are inversely proportional. Fig. 5.8 illustrates the variation in temperature profile for 

different values of magnetic field M. It is noticed that isotherms and isolines develops for higher 

magnetic parameter M. we know that the magnetic parameter depend on the Lorentz force. In 
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result of the enhancement of magnetic force, the Lorentz force gets stronger which yields growth 

in the temperature profile. In Fig. 5.9 effect of hs on the temperature profile is shown. Notice 

that, its negative value relates to heat absorption whereas its positive value characterizes heat 

generation. It is investigated that the temperature profile is decreasing function of heat absorption 

while temperature rises for the case of heat generation. Biot number 1  effect on the thermal 

distribution is demonstrated in Fig 5.10. It is shown from the geometry that there is growth in the 

temperature for the greater values of 1 . Fig. 5.11 describes the 3D flow pattern of the present 

study. This graph noticeably shows that maximum change is close to the moving wall where 

falloffs slowly and tends to uniform free stream. Table 5.1 and 5.2 portray several results.  
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Fig. 5.3: Rate of heat transfer against M. 

 

 

 
Fig. 5.4: Rate of heat transfer against K. 
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Fig. 5.5: De effects on f  . 

 

 

 

 

 
Fig. 5.6: Ds effects on f  . 
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Fig. 5.7: M variations on f  . 

 

 

 
Fig. 5.8: M variations on  . 
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Fig. 5.9:  hs variations on  . 

 

 

 

 

 
Fig. 5.10: 1  variations on  . 
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Fig. 5.11: Velocity plot in 3D configuration. 

 

 

 

Table 5.1: Comparison values of skin friction. 

 

Parameters HAM solutions Numerical solutions 

De hs M Ds Pr K 1  )0(f   )0(f   

0.0 0.5 1.0 0.5 1.0 0.5 0.5 1.91694324 1.91694813 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97353017 1.97333087 

1.0 0.5 1.0 0.5 1.0 0.5 0.5 2.03664843 2.03665842 

1.5 0.5 1.0 0.5 1.0 0.5 0.5 2.10465408 2.10475407 

0.5 -1.5 1.0 0.5 1.0 0.5 0.5 1.97343077 1.97333087 

0.5 -1.0 1.0 0.5 1.0 0.5 0.5 1.97334088 1.97333087 

0.5 -0.5 1.0 0.5 1.0 0.5 0.5 1.97333067 1.97333088 

0.5 0.0 1.0 0.5 1.0 0.5 0.5 1.97333128 1.97333088 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97763087 1.97333087 
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0.5 1.0 1.0 0.5 1.0 0.5 0.5 1.97333087 1.97333087 

0.5 1.5 1.0 0.5 1.0 0.5 0.5 1.97480543 1.97480543 

0.5 0.5 0.0 0.5 1.0 0.5 0.5 1.25597299 1.25587299 

0.5 0.5 0.5 0.5 1.0 0.5 0.5 1.46804033 1.46704033 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97223087 1.97333087 

0.5 0.5 1.3 0.5 1.0 0.5 0.5 2.34456601 2.34576601 

0.5 0.5 1.0 0 1.0 0.5 0.5 1.30360674 1.30360942 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97333091 1.97333087 

0.5 0.5 1.0 1.0 1.0 0.5 0.5 4.16623092 4.16623093 

0.5 0.5 1.0 1.5 1.0 0.5 0.5 11.86444761 11.86444756 

0.5 0.5 1.0 0.5 0.1 0.5 0.5 1.97333098 1.97333088 

0.5 0.5 1.0 0.5 0.5 0.5 0.5 1.97333188 1.97333088 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97333077 1.97333087 

0.5 0.5 1.0 0.5 1.5 0.5 0.5 1.97333077 1.97333087 

0.5 0.5 1.0 0.5 1.0 0.0 0.5 1.65264429 1.65264492 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97333077 1.97333087 

0.5 0.5 1.0 0.5 1.0 1.0 0.5 2.24931857 2.24931874 

0.5 0.5 1.0 0.5 1.0 1.5 0.5 2.49518554 2.49518541 

0.5 0.5 1.0 0.5 1.0 0.5 0.1 1.97333087 1.97333088 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 1.97333054 1.97333087 

0.5 0.5 1.0 0.5 1.0 0.5 1.0 1.97333076 1.97333087 

0.5 0.5 1.0 0.5 1.0 0.5 1.5 1.97333088 1.97333085 
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Table 5.2: Comparison values of temperature gradient. 

 

Parameters Numerical solutions HAM solutions 

De Hs M Ds Pr K 1     1 / 04 3dR       1 / 04 3dR    

0.0 0.5 1.0 0.5 1.0 0.5 0.5 0.88626087 0.88626167 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87047845 

1.0 0.5 1.0 0.5 1.0 0.5 0.5 0.85857029 0.85857129 

1.5 0.5 1.0 0.5 1.0 0.5 0.5 0.84965734 0.84965754 

0.5 -1.5 1.0 0.5 1.0 0.5 0.5 0.47848456 0.47848356 

0.5 -1 1.0 0.5 1.0 0.5 0.5 0.44917061 0.44917151 

0.5 -0.5 1.0 0.5 1.0 0.5 0.5 0.39803006 0.39803116 

0.5 0 1.0 0.5 1.0 0.5 0.5 0.25191604 0.25191594 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87046844 

0.5 1.0 1.0 0.5 1.0 0.5 0.5 0.35714342 0.35714842 

0.5 1.5 1.0 0.5 1.0 0.5 0.5 0.72566043 0.72566043 

0.5 0.5 0.0 0.5 1.0 0.5 0.5 0.96221819 0.96221819 

0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.92237457 0.92236757 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87048844 

0.5 0.5 1.3 0.5 1.0 0.5 0.5 0.85099774 0.85097874 

0.5 0.5 1.0 0 1.0 0.5 0.5 −0.01897348 −0.01898304 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87047834 

0.5 0.5 1.0 1.0 1.0 0.5 0.5 0.84028696 0.84028896 

0.5 0.5 1.0 1.5 1.0 0.5 0.5 0.82674776 0.82674786 

0.5 0.5 1.0 0.5 0.1 0.5 0.5 0.15693718 0.15693728 
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0.5 0.5 1.0 0.5 0.5 0.5 0.5 −0.44869951 −0.44868951 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87047944 

0.5 0.5 1.0 0.5 1.5 0.5 0.5 0.52974335 0.52974345 

0.5 0.5 1.0 0.5 1.0 0.0 0.5 0.21824554 0.21824564 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87047854 

0.5 0.5 1.0 0.5 1.0 1.0 0.5 0.85515317 0.85515337 

0.5 0.5 1.0 0.5 1.0 1.5 0.5 0.84547170 0.84547180 

0.5 0.5 1.0 0.5 1.0 0.5 0.1 0.14570719 0.14570719 

0.5 0.5 1.0 0.5 1.0 0.5 0.5 0.87047844 0.87047854 

0.5 0.5 1.0 0.5 1.0 0.5 1.0 2.30145457 2.30145467 

0.5 0.5 1.0 0.5 1.0 0.5 1.5 5.09132362 5.09132372 
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5.5  Conclusive remarks 
 Sakiadis fluid motion for the Oldroyd-B model over a porous wall is investigated in the present 

study. Conclusive remarks deduced from graphical and tabular solution are as follows: 
 

 Enhancement in the value of De tends to lessen momentum distribution while by 

improving the values of Ds we get growth in the value of velocity profile.  

 Magnetic field M tends to slow down the fluid motion. 

 The temperature distribution progresses by enhancing magnetic field. 

 Heat generation-absorption both have opposed behavior on isolines. 

 Large 1 intensify the temperature. 
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Chapter 6      

Dynamics of Burgers’ fluid with 

generalized heat flux with heat immersion 

and magnetic field 
 

This chapter presents the features of CC heat flux for the flow of Burgers’ fluid. To investigate 

the thermal relaxation properties together with heat source/sink we present the Cattaneo-Christov 

model rather than Fourier’s law. Mathematical modelling is performed using laws of momentum 

and energy under the order analysis to transform the problem into the set of equations. It is 

shown that the term “ 2
0 u/B  ” is for the hydro-magnetic rheology of the viscous model while 

the generalized magnetic field term (as revealed in Eq. 6.2) is for the Burgers’ model which is 

used in the present study. For the solution computation, homotopy analysis method is applied to 

compute results. Results are depicted in graphs to visualize the effect of physical parameters. 

Values of skin friction with heat transfer rate have been displayed in the tables.  

6.1  Governing equations 
Consider the dynamics of Burgers’ fluid past a conducting wall in the region of stagnation 

point. The conducting wall is situated along x-axis and an incompressible Burgers’ fluid fills the 

space 0y   as displayed in the Fig. 6.1. 
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Fig. 6.1: Geometry. 

 

A uniform magnetic field  0,,0 0BB  is applied along y-axis and the influence of influenced 

magnetic field is ignored by supposing slight magnetic Reynolds’ number. A conducting wall go 

through a stretched phenomenon with ( )sU x , while ( )eU x  is the free stream. The equations are 

of the form: 

 

,0









y
v

x
u            (6.1) 

 

   

3 3 2 2 2

3 3 2 2

2 2 3 3

2 2 2

2 2 2

2 2

3 3 22 2
2 2

2 2
2

1 22

2

  3 3
2

2

u u u u u v v u
x y x x yx y x x

v u u u u u
y y x yy x y x y

u u v u v u
y x y x yx y

u v uu uu v
x yu uu v v uv u v

x y uuv
uvx y

 

       
       

     
       

     
     

      
 

          
   
 

       2u v
y x y
 
  

 
 
 

 
 
 
 

 

2 3 3 2 2

32 2 3 2 2

u u u u u u vu v
y x y y x y y y

 
         

     
          

2
0

1e e
B u duu U v U

y dx





 
    

 
 



73 

 

2 2 2
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The wall effects are: 

 

,  0       at     0,
       as     ,

s

e

u U cx v y
u U ax y
   

  
        (6.3) 

Moreover, the solution for Newtonian fluid can be achieved for 1 2 3 0     .  

The generalized heat flux model is: 

 

( . . ( . ) ) k T
t




         


qq V q q V V q ,       (6.4) 

 

Equation written above corresponds to Fourier's law when     = 0. The energy equation takes 

the following form when the internal heat generation/absorption effects are present. 

 

. . ( ).pc V T q Q T T              (6.5) 

 

Substituting Eq. 6.4 into Eq. 6.5, we get 
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The conditions are 
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 at  0wT T y  , 

   as ,T T y             (6.7) 

 

where Q , pc , wT  and T  are the heat generation-absorption coefficient, the specific heat 

constant, wall temperature and the free stream temperature respectively. 

 

The expression for stream function is 

, and 
x

v
y

u



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
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           (6.8) 
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Applying the above mentioned transformations, we get 
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               
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Along with associated wall conditions 
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6.2   Results and discussion 
Here we analyze the influence of different physical parameters involving Deborah numbers, 

thermal relaxation parameter, stagnation point, Prandtl number, heat source/sink etc on solution 

set. Thus, we construct Figs. 6.2-6.10 and Tables 6.1-6.3 to visualize the results graphically and 

in tabular form. Figs. 6.2 and 6.3 display the stream line behavior for the viscous and Burger 

fluid which show that streamlines for Burgers’ fluid are different as compared to the streamlines 

for Newtonian fluid. It is because of the occurrence of several relaxation and retardation times in 

the stress tensor of Burger’s model. Fig. 6.4 shows the variation of stagnation point A on the 

velocity field. By increasing A, the velocity increases and the momentum boundary-layer 

deceases in the region 0.0 1.0A  . However, when 1.0A  the momentum boundary-layer 

grows. Thus, we say that the bigger values of A together with greater free stream which improves 

the fluid’s velocity and the momentum boundary layer. Also, for 1.0A  both velocity and 

momentum boundary layer disappears. Therefore, 1.0A  is a critical point at which the 

behavior of the momentum boundary layer varies. Fig. 6.5 show the comparison of Newtonian 

and Burger’s fluid. It is perceived that the magnitude of velocity profile and momentum 

boundary layer is lesser in magnitude for the rheology of Burger’s model when equated with the 

rheology of Newtonian model. The extra physical quantities 1 , 2  and 3  are positive for 

Burger fluid. Values of 1 , 2  and 3  signifies to viscous and elastic effects which slow down 

the flow. Fig. 6.6 displays the impact of magnetic field on the flow profile. Note that the velocity 

profile decreases by increasing magnetic field parameter M. The apparent viscosity rises due to 

the effects of magnetic strength. So, the ability of fluid particles to transmit force is increased. 

The influence of thermal relaxation time on the temperature distribution is shown in Fig 6.7. It is 

studied that the temperature profile and its relaxation time have opposite relationship. It is seen 

that the temperature reaches free stream rapidly for the greater values of thermal relaxation 

parameter. The effect of Pr on the temperature profile is given in Fig 6.8. Isolines tends to reduce 

as Pr increases. The thermal diffusivity is smaller for higher Prandtl number because of the 

decrease in thermal diffusion. Observe that the decline in thermal diffusion rate results into a 

decrease in temperature. The result of internal heat generation/absorption parameters hs on the 

temperature profile are portrayed in the Figs. 6.9 and 6.10. It is seen that the temperature profile 
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 ( ) reduces when the heat sink is present. However, the temperature profile expands for the 

case of heat source. The heat source and sink play important role in controlling the temperature. 

This is significant due to its many applications in industry as the product mainly depends on the 

heat transfer rate. The comparison of the present computed results and the published results are 

shown in table 6.1 and it is verified that both are in a nice agreement. Table 6.2 displays the 

behavior of (0)f   against different values of Burgers parameter 2.  Note that the numerical 

values of skin friction (0)f  improves for bigger values of Burgers parameter 2.  The calculated 

values of heat transfer rate at the wall (0)  against different quantities are shown in the table 

6.3. It is analyzed that the magnitude of (0)  falls for Burgers parameter, thermal relaxation 

time and internal heat source/sink quantity.  
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Fig. 6.2: Rheology of Newtonian model. 

 

 

 

 

 
Fig. 6.3: Rheology of Burgers model. 
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Fig. 6.4:  A variations on the velocity. 

 

 

 

 

 

 
Fig. 6.5: Newtonian vs Burgers model. 
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Fig. 6.6: Velocity distribution vs M. 

 

 

 

 
Fig. 6.7: Temperature distribution vs  . 
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Fig. 6.8: Temprature change vs  Pr. 

 

 

 

 

 
Fig. 6.9: Temperature variation vs heat sink. 
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Fig. 6.10: Temperature change vs heat source. 

 
 

Table 6.1: Evaluation of (0)f   with published results when A = 0.0 = 2 3 .M     

  

1  Our results Sadghey et al. [78] Mukhopadhyay [79] 

0.0 

0.4 

0.8 

1.000000 

1.101904 

1.196712 

1.00000 

1.10084 

1.19872 

0.999999 

1.101851 

1.196693 

 

Table 6.2: Behavior of (0)f   for various values of Burgers parameter 2.  

2  (0)f   

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.96652 

0.97951 

0.99328 

1.00773 

1.01582 

1.05219 
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Table 6.3: Numerical values of (0)  for various physical parameters.   

2    
sh  (0)  

0.0 

0.2 

0.4 

0.2 

0.3 

 

 

0.0 

0.3 

0.6 

0.3 

-0.2 

 

 

 

 

 

-0.2 

0.0 

0.2 

0.76621 

0.75992 

0.74165 

0.76105 

0.75992 

0.74319 

0.75992 

0.60445 

0.41284 

 

6.3 Conclusive remarks 

We discussed the CC heat flux for the Burger’s fluid model. Some observations are  

 Velocity profile and the boundary layer are quite lessor because of the additional 

viscoelastic effects. 

 Streamlines are different for Newtonian and Burger model. 

 Temperature distribution is quite smaller for the CC model when compared with the basic 

Fourier’s law. 

 A reduction in temperature profile is noted for greater Prandtl number. 

 Presence of heat source/sink in the system can efficiently control the temperature to the 

desired value. 
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Chapter 7 

Second law analysis of Jeffery 

nanomaterial with magnetic field 
 

We investigate the entropy generation and inclined magnetic field for the Jeffery fluid. 

Moreover, viscous dissipation and heat generation-absorption effects are considered. Boundary 

layer is applied to develop the leading equations. Solutions have been computed by using a 

homotopy approach in the spatial domain. Results are illustrated in graphical form to study the 

effect of flow parameters. It is analyzed that magnetic field is a flow reducing parameter whereas 

Biot number behaves like a boosting factor to increase the fluid temperature. The present work is 

also discussed for Newtonian fluid  01   

7.1  Problematic development 

The dynamics of the Jeffery fluid over stretching wall ( 0y ) is studied. The material holds onto 

the region 0y .  Magnatic field 0B  is employed at an angle   to the positive direction of 

the y axes.  The considered physical problem is modelled by using a Cartesian coordinate 

system by taking x axes sideways the stretching surface and y axes in a upright direction. 

The systematic picture of physical situation and coordinates system is portrayed in Figure 7.1.  
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Fig. 7.1: Geometry 

 

Governing equations for the rheology of the viscoelastic nanomaterial are 
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Note that Eqs. 7.1-7.4 are deduced from the continuity equation, law of momentum, law of 

energy and law of concentration respectively.  
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The supported wall properties are:  

   , 0, , , at y 0,w w w w w
T Cu u cx v k H T T D M C C
y y

 
         

 
 

0, 0, , as ,u v T T C C y                                                                                            (7.5) 

where ),( vu  represent the velocities,   the electric conductivity,   the kinematics viscosity,   

the density,  the ratio of the heat capacities, m  the thermal diffusivity constant, TD  the 

thermophoretic effect, BD  the Brownian diffusion. Moreover, specific heat, heat 

generation/absorption, mass diffusivity, coefficient of  heat transfer, coefficient of  mass transfer, 

thermal conductivity are denoted by pc , 0Q , D, wH , wM , k  respectively. Also, T , wT , T , C , 

wC , C  stand for fluid temperature, wall temperature, ambient temperature, concentration, 

species concentration at the surface and ambient concentration correspondingly.  

In the upcoming steps, we apply the suitable transformation in order to convert the set of partial 

differential equations to the system of ordinary differential equations.  

       , ' , , , .
w w

T T C Cc y u cxf v c f
T T C C
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 

 

 
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 
   (7.6) 

Substitute Eqn.  7.6 ,  in Eqs. (7.1 7.4)  we have: 

        ,0''''''')('''1''' 222
1  ffffSinMffff      (7.7) 

     ,0''''''Pr'' 22
 fEcNNf tb        (7.8) 

'' ' '' 0.t

b

NLe f
N

              (7.9) 

The dimensionless boundary conditions 

   ,)0(1)0(',)0(1)0(',1)0(',0)0( 21   ff  
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,0)(,0)(,0)(  f         (7.10) 

where 1 2, , , , ,PrLe Ec    specifies the dimensionless Deborah, Lewis, Eckert, heat transfer 

and mass transfer Biot numbers and Prandtl number respectively. While M  denote the magnetic 

field, bN  the Brownian motion and tN  the thermophoresis. Note that 0 and0    shows 

heat source and sink respectively and are stated as: 
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The exact solution of Eq. 7.7 for / 2   is  
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Notice that its second derivative for velocity  mmef  )(  which further gives the velocity 

gradient at the wall with the exact result to be .)0( mf   

The volumetric entropy generation term  GS  and the characteristic entropy generation rate  gS  

are expressed as: 

  .,
2

2
2

2
0

22

2 






 





























l
T

T
kSuSin

T
B

y
u

Ty
T

T
kS gG


   (7.12) 

 

The entropy generation Ns  in non-dimensional form is 
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Eq. 7.12 describes the three roots for the generation of entropy: 

•  Ist term is achieved because of the heat transfer HN  irreversibility. 

•  We get the second term for the reason that the effects of viscous dissipation VN  are present. 

•  The third expression is accomplished since the effects of magnetic field MN  are present. 

Additionally the dimensionless numbers apperaing in the system of equations are “Reynolds 

number  ,Re l
 
Hartman number  ,Ha  finite temperature difference   , Brinkmann number 

 Br ” and expressed as: 
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The series solution of Eqs. (7.7 7.9)  under conditions 7.10 are calculated via homotopy 

approach. The guesses and operators for ,f  and   are defined below 
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and 

fL ( ) ''' ', ( ) '' , ( ) '' .f f f L L                  (7.15) 

A MATHEMATICA computer program has been constructed for HAM. The exact and HAM 

solutions are portrayed in Figure 7.2 and 7.3. Both exact solution and the series solution are in an 

agreement. 
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Fig. 7.2: Impact in )0(f   with  . 

 

 

Fig. 7.3: Impact of )0(f   with 1 . 
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7.2 Results and discussion 

Results are sketched to demonstrate the performance of various evolving constraints for the 

momentum, thermal and concentration distributions. Fig. 7.4 gives the effect of   on the 

velocity graph. It is perceived that when a magnetic field is constant the Deborah number 

develop the flow configuration. Both the elasticity and viscosity are led by the Deborah number. 

As the Deborah number takes the low value the material acts like viscous whereas for greater 

values of  , the fluid acts to be non-Newtonian. Using this concept results are graphed for 

lesser values of Deborah number. Fig. 7.5 is portrayed to visualize the behavior of angle of 

inclination   on the velocity. It is noted by increasing the value of  , the velocity profile 

decreases. We have studied that by increasing the angle of inclination, the influence of magnetic 

field rises and thus the Lorentz force enhance. In results of that velocity profile decays. Fig. 7.6 

explains the behavior of bN  and tN  on temperature field. Notice that growing value of both bN  

and tN   improves temperature profile rapidly. Brownian motion appears due to the size of 

nanoparticles which disturbs the rate of heat transfer. Enhancement in the magnitude of the 

Brownian motion results into the efficient movement in the nanoparticles. So the thermal 

conductivity of the fluid particles is improved. Fig. 7.7 portrays the impact of Biot number 1  on 

)( . It is the relation of the heat conduction resistances at the interior and at the exterior of  

material. It is noticed that as Biot number increases the temperature of the fluid rises. When Biot 

number is less than ,1.0  it specifies that heat transfer inside the material is greater than the 

convection away from its surface. Fig. 7.8 shows the impact of Brownian motion and 

thermophoresis parameter on concentration. It is apparent that by increasing the magnitude of 

Brownian motion and thermophoresis the nanoparticle concentration grows. Fig. 7.9 is organized 

to examine the effect of 2  on mass concentration )( . It specifies that increase of mass Biot 

number improves the concentration field. Results are well compared and presented in tabular 

form. It is detected that )0(f   decreases with the improvement in ,  but  )0(f   grow as 

1 . 
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Fig. 7.4: Velocity change vs  . 

 

 

 

Fig. 7.5: Velocity change vs  . 
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Fig. 7.6: Temperature change vs  ,b tN N . 

 

 

Fig. 7.7: Variation of 1  on )( . 
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Fig. 7.8: Variation of  tb NN ,  on   )( . 

 

 

 

Fig. 7.9: Variation of  2  on   )( . 
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Table 7.1. Comparison of results 

Parameter HAM (present) Numerical solution [80] Exact solution [81] 

  )0(f   )0(f   )0(f   

0.0 1.09641491 1.09641580 1.09544512 

0.4 0.92723121 0.92724220 0.92582010 

0.8 0.81807191 0.81808091 0.81649658 

1.2 0.74010411 0.74010502 0.73854895 

1.6 0.68073213 0.68074654 0.67936622 

2.0 0.63351345 0.63352833 0.63245553 

2.4 0.59474926 0.59473195 0.59408853 

2.8 0.56201236 0.56205463 0.56195149 

3.2 0.53390910 0.53398720 0.53452248 

3.6 0.50944571 0.50949569 0.51075392 

4.0 0.48782645 0.48784584 0.48989795 
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Table 7.2.  Evaluation of )0(f  . 

Parameter HAM (present) Numerical solution [80] Exact solution [81] 

 

1  )0(f   )0(f   )0(f   

0.0 0.91467231 0.91468190 0.91287093 

0.4 1.08101045 1.08100090 1.08012345 

0.8 1.22523245 1.22521512 1.22474487 

1.2 1.35422340 1.35427540 1.35400640 

1.6 1.47211231 1.47212137 1.47196014 

2.0 1.58122891 1.58123895 1.58113883 

2.4 1.68332391 1.68331479 1.68325082 

2.8 1.77956545 1.77955488 1.77951304 

3.2 1.87083401 1.87085660 1.87082869 

3.6 1.95791792 1.95790896 1.95789002 

4.0 2.04126541 2.04125449 2.04124145 

 

Figs. 7.10-7.12 are organized to explore the influence of Brinkman Br, Hartman Ha and 

Reynolds number Re on entropy number Ns. Fig. 7.13 explains the behavior of temperature 

difference   on entropy number Ns. Fig. 7.10 explains entropy against Brinkman number Br. 

Entropy increases by growing Br. At  0  the entropy is larger against Br . It is noted that 
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entropy is more projecting near the surface. Moreover these effects decline rapidly far from 

sheet. The effect of Hartman number Ha  on the entropy number is shown in Fig. 7.11. Entropy 

increases by growing the value of Hartman number. The entropy is related to the square of 

Hartman number which is proportionate with the magnetic field. Thus the magnetic field 

generates additional entropy. Fig. 7.12 portrays the entropy field for several values of the 

Reynolds number Re. It is witnessed that for growing values of lRe  the entropy also increases. 

We know that by increasing the value of Reynolds number, the inertial forces are improved 

whereas the viscous forces decay. So, the velocity of fluid particles is increased and the 

resistance on the fluid motion due to the friction is reduced. Thus, the magnitude of entropy has 

been enhanced. The effect of finite temperature difference   on the entropy is shown in Fig. 

7.13.  It is seen that by growing    the entropy of the system will be reduced. From literature we 

already know that   is inversely related with the velocity distribution which reduce the entropy 

generation for greater values of  . 

 

 

Fig. 7.10.  Br  variations on   Ns . 
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Fig. 7.11. Ha  variations on   Ns . 

 

 

 

Fig. 7.12. Re  variations on   Ns . 
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Fig. 7.13.   variations on   Ns . 

 

7.3 Conclusive remarks 

 Newtonian flow can be attained by considering .01   

 By increasing the value of inclination angle  , the fluid motion slow down. 

 The velocity field for Newtonian fluid is lesser than the non-Newtonian fluid model.    

 Rise in   21,,, tb NN  efficiently improves the temperature and concentration fields.  

 Reduction in the magnitude of Brinkman, Hartman and Reynolds number minimize the 

entropy.  
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Chapter 8 

3D study of Oldroyd-B nanofluid with 

radiations  
 

In this chapter, 3D dynamics of Oldroyd-B fluid have been discussed while incorporating the 

effects due to the existence of nanoparticles. The present physical problem is studied under 

influence of nonlinear radiations. During mathematical formulation, the diffusion equations are 

shown under thermophoretic and Brownian effect. Bidirectional stretching is taken to study the 

three-dimensional fluid deformation of non-Newtonian (polymeric) liquid. We achieve set of 

ODEs by employing similarity analysis on the governing partial differential equations. Further, 

solution in the series form is calculated by using the Homotopy approach.  Graphs and tables are 

prepared for several quantities. 

 

8.1 Formulating the physical problem 
Consider the dynamics of Oldroyd-B model with nanoparticles. The deformation in the fluid 

particles is due to the bidirectional stretching. Motion of the particles is along x- and y- direction 

and deformation is along z- direction as revealed in the Fig. 8.1.  
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Fig. 8.1: Physical model. 

 

The constitutive equations are  

. 0, V            (8.1) 

.d div
dt

 
V T            (8.2) 

Note that the flow is governed under the assumption that the fluid is incompressible and no body 
forces are present in the system. In the above equation 8.2, Cauchy stress tensor is denoted by T 
and extra stress tensor is symbolized by S and for Oldroyd-B fluid they are 

,p  T I S            (8.3) 

1 121 1 .D D
Dt Dt

  
   
     

   
S A         (8.4) 

In the above equations, D Dt  represents covariant derivative and Rivlin Ericksen tensor A1 is 

 
.

1 ,tran
   A V V           (8.5) 

where velocity field is [ ( , , ), ( , , ), ( , , )]u x y z v x y z w x y zV  and the definition for D Dt  is 
obtained from literature 
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, , .i i
r i r i r r

Da a u a u a
Dt t


  


               (8.6) 

 

System of equations for the flow field is 

 

0,u v w
x y z
  

  
  

                   (8.7) 

2 2 2 2 2 2
2 2 2

1 2 2 2

2 3 3 3 2 2 2

22 2 2 3 2 2 2

2 2 2

,

u u u u u u u u uu v w u v w uv uw vw
x y z x y z x y x z y z

u u u u u v u u u wu v w
z x z y z z y z x z z z



 

         
        

            

           
        

             

     (8.8) 

2 2 2 2 2 2
2 2 2

1 2 2 2

2 3 3 3 2 2 2

22 2 2 3 2 2 2

2 2 2

,

v v v v v v v v vu v w u v w uv vw uw
x y z x y z x y y z x z

v v v v v u v v v wu v w
z x z y z z x z y z z z



 

         
        

            

           
        

             

 (8.9) 

 

   

2 2

2

1 ,P T r
B

f f

C D qT T T T C T Tu v w D
x y z C z z T y z C z




 

          
                    

           (8.10) 

2 2

2 2 .T
B

DC C C C Tu v w D
x y z y T y

       
      

       
             (8.11) 

 

Wall conditions are 

 

( ) , ( ) , 0, , 0,T
w w w B

DC Tu U x ax v V y by w T T D
z T z

 
       

 
 at  0.z  , 

0, 0, ,  ,u v T T C C      as .z      (8.12) 

 

The radiative flux rq  is expressed as 
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4
34 16 .

3 3r
T Tq T

k z k z
  

 

 
   

 
                     (8.13) 

In the above mentioned equations, k  is absorption coefficient and   denotes Stefan-Boltzmann 

constant. 

Equation for the temperature field turns to be 

 

 

 

2316 .
3

P T
B

f f

C DT T T T T C Tu v w D
x y z z k C C z z T y




 







                                       

           (8.14) 

Now applying 

          

   

1/2

1/2

, , ,

, , .
W W

u axf v ayg w a f g

T T C C a z
T T C C

    

    


 

 

       

   
    

   

                (8.15) 

Using   1 1 WT T      where /w wT T  . 

 

Eq. (8.7) is satisfied individually and Eq. (8.8)-(8.11) are transfigured to  

 

       

   

2 2
1

2

2

0,

f f f g f f f f g f f g

f f g f f g





            
 

         

                         (8.16) 

       

   

2 2
1

2

2

0,

g g f g g g g f g g f g

g f g g f g





            
 

                         (8.17) 

       
3 21 1 1 Pr 0,d w b tR f g f N N       


                                     (8.18) 

   Pr 0,t bLe f g N N                                   (8.19) 

 

The boundary conditions after employing transformations are 

 

0, 0, 1, , 1, 0,b tf g f g A N N             at   0 ,              (8.20) 

0, 0, 0, 0,f g       as .                             (8.21) 



102 

 

In the above terms 1  and 2  are Deborah numbers, Nb and Nt  represent Brownian effect and 

thermophoresis, Le and Pr are Lewis and Prandtl number and dR  is the radiation parameter and A 

is the stretching ratio which are further stated as: 

 

   

 

   

 

3

1 1 2 2
16, , , , ,

3

Pr , , .

B wp
d b

f

T wp
t

B f

c D C CTba a A R N
a kk c

c D T T
Le N

D c T


   

 

 

  











    


  

    (8.22) 

 

Nusselt and Sherwood numbers are 

 
1 2 3Re (1 ) (0)x x d wNu R       , 

1 2Re (0)x xSh    .          (8.23) 

Where Rex wU x v . 

The initial guesses and operator which are utilized for computation of solution are 

( ) 1 , ( ) (1 ), ( ) , ( ) ( ) ,t bf e g A e e N N e           

              (8.24) 

, , , .f gL f f L g g L L                       (8.25) 

The above mentioned operators have the following features 

1 2 3 4 5 6

7 8 9 10

[ ] 0, [ ] 0,

[ ] 0, [ ] 0.
f gL c c e c e L c c e c e

L c e c e L c e c e

   

   

 

 

 

     

   
      (8.26) 

 

 



103 

 

8.2 Convergence of the solution 
The curves as prepared as shown in Figs. 8.2 and 8.3. These geometries present that domain of 

the convergence is 1.05 0.01fh    , 1.15 0.05gh    , 1.01.1  h  and .1.013.1  h  The 

results are convergent in domain of   when we have 6.0  hhhh gf . The geometries 

describe h curves for the error of  f  and  g , which are utilized to get suitable values of h. 

Appropriate value for h is taken to obtain convergence upto six decimal place. Figs. 8.4 and 8.5 

are drawn to analyze h-curves. Table 8.1 present the convergence. 

 

 

 

Fig. 8.2: h-curves. 
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Fig. 8.3: h-curves. 

 

 

Fig. 8.4: Error graph. 
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      Fig. 8.5: Error graph. 

 

Table 8. 1:  Convergence table 

 
Order ''(0)f  )0("g  '(0)  '(0)  CPU time 

1     2 sec. 

5     10 sec. 

10     35 sec. 

15     80 sec. 

20     150 sec. 

30     250 sec. 
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8.3 Results and analysis 
Influences of Deborah number 1  on the heat and mass transfer are presented in Figs. 8.6 and 

8.7. It is observed that by raising the value of 1 , there is reduction in temperature as well as in 

concentration flux due to increasing relaxation time. Figs. 8.8 and 8.9 exhibits that Deborah 

number 2   depending on retardation time rises temperature as well as concentration flux. Thus it 

is showing the increasing behavior. Effect of Brownian motion bN  on the concentration flux is 

displayed in Fig. 8.10. It is witnessed that concentration decreases as bN  grows. It is revealed in 

Fig. 8.11 that thermophoresis Parameter tN  and temperature flux are in inverse relation. 

Temperature decays for growth in the value of tN . However it is observed in Fig. 8.12 that  tN  is 

related directly with mass concentration. Fig. 8.13 defines that an increase in Le decreases mass 

diffusion that indicate reduction in concentration. It is demonstrated in Fig. 8.14 that by raising 

the value of radiation parameter dR , temperature flux reduces. Influences of Deborah numbers 

1  and 2  on  f   are analyzed in Figs. 8.15 and 8.16. It is noted that 1  and 2  have inverse 

relation on  f  . ( )f    lessens with the growth in 1  but development in fluid velocity  f   is 

investigated as 2  rises. Figs. 8.17 and 8.18 describe the impact of 1  and 2  on velocity 

component  g  . Fig.8. 17 explains that  g   decays by rising 1  and grows with the 

improvement in 2 . It is clear from Fig 8.19 that isolines show growth in behavior by rising the 

values of dR . Fig. 8.20 explains the effects of bN  and tN  on   . By rising bN and bN , the 

temperature field is improved. Impact of bN  and tN  on    are given in Fig. 8.21. It is witnessed 

that concentration profile decays because of the random motion of nanoparticles. Table 8.2 is 

displayed to show the effects of different variables over local Nusselt and Sherwood numbers by 

considering remaining parameters constant. It is investigated that Nusselt number 2/1ReuN  

intensify for increase in A, Pr, 2  and decay by rising tN , Le and 1 . However, numerical value 

of Sherwood number rises by increasing A, tN , Pr, 2  and falls for the greater bN , Le and 1 . 
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Fig. 8.6: Influence of 1  on temperature derivative. 

 

 

 

 

Fig. 8.7 Influence of 1  on concentration derivative. 
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Fig. 8.8: Influence of 2  on temperature derivative.  

 

 

 

 

 

 

 

                                                      Fig. 8.9: Influence of 2  on concentration derivative. 
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Fig. 8.10: Influence of bN  on concentration derivative. 

 

 

 

 

 

 

Fig. 8.11: Effects of tN  on temperature derivative. 
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Fig. 8.12: Influence of tN  on concentration derivative. 

 

 

 

 

Fig. 8.13: Influence of Le on concentration derivative. 
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Fig. 8.14: Influence of dR  over temperature derivative. 

 

 

 

 

Fig. 8.15: Impact of 1   on  f  .  
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Fig. 8.16: Impact of 2  on  f  . 

 

 

   

 

 

Fig. 8.17: Impact of 1  on  g  . 
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Fig. 8.18: Impact of 2  on  g . 

 

 

 

 

Fig. 8.19: Effects of dR  on   . 
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                      Fig. 8.20: Effects of bN  and tN  on   . 

 

 

 

Fig. 8.21: effects of bN  and tN  on   . 
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Table 8.2: Numerical values of 2/1ReuN  and 2/1ReSh . 

A tN  bN  Le Pr 1  2  2/1ReuN  2/1ReSh  

0.0 0.1 1.0 1.0 1.0 0.2 0.2 1.0349 0.9408 

0.5 0.1 1.0 1.0 1.0 0.2 0.2 1.1305 1.0277 

1.0 0.1 1.0 1.0 1.0 0.2 0.2 1.2138 1.1034 

1.0 0.1 1.0 1.0 1.0 0.2 0.2 1.1305 1.0277 

1.0 0.2 1.0 1.0 1.0 0.2 0.2 1.1232 2.0423 

1.0 0.3 1.0 1.0 1.0 0.2 0.2 1.1161 3.0432 

1.0 0.1 0.1 1.0 1.0 0.2 0.2 1.1305 1.0277 

1.0 0.1 0.2 1.0 1.0 0.2 0.2 1.1305  
1.0 0.1 0.3 1.0 1.0 0.2 0.2 1.1305  
1.0 0.1 0.3 0.0 1.0 0.2 0.2 1.1820 1.0745 

1.0 0.1 0.3 1.0 1.0 0.2 0.2 1.1747 1.0679 

1.0 0.1 0.3 1.5 1.0 0.2 0.2 1.1728 1.0662 

1.0 0.1 0.3 1.5 0.5 0.2 0.2   
1.0 0.1 0.3 1.5 1.0 0.2 0.2   
1.0 0.1 0.3 1.5 2.0 0.2 0.2 0  
1.0 0.1 0.3 1.5 1.0 0.0 0.2 1.1636 1.0578 

1.0 0.1 0.3 1.5 1.0 0.2 0.2 1.1305 1.0277 

1.0 0.1 0.3 1.5 1.0 0.4 0.2 1.0989 0.9991 

1.0 0.1 0.3 1.5 1.0 0.2 0.0 1.0855 0.9866 

1.0 0.1 0.3 1.5 1.0 0.2 0.5 1.1747 1.0679 

1.0 0.1 0.3 1.5 1.0 0.2 1.0 1.2187 1.0755 
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8.4 Conclusive remarks 
 

The three dimensional Oldroyd-B model together with thermal radiation is analyzed. Fluid 

deformation is along the stretching surface. The governing equations have been converted into 

ODEs. Moreover, the results are computed by using HAM. Results are drawn in graphical form 

to visualize the effect of involved physical parameters. Conclusive remarks drawn from present 

study are, 

 

 Deborah numbers 1  and 2  has opposing effect on  f  . 

 Ratio parameter has incompatible influences on  f   and also on  g  . 

 Isotherms and isolines decay by increasing the value of  Pr. 

 Species concentration ( )    descends by growing tN  and bN .  

 Improvement in Pr , 2  and A enlarge the 2/1Re 

xxNu and 2/1ReSh . 

 Positive tN  decreases the 2/1Re 

xxNu  and enhances 2/1ReSh . 

 For the greater values of Le and 1 , we have reduction in 2/1Re 

xxNu and 2/1ReSh . 
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