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Preface 
Mostly fluids which are very useful in our daily life and industry do not obey the 

Newtonian law of viscosity. These fluids are called non-Newtonian fluids, these 

can be subdivided into two categories i.e. viscoelastic and viscoinelastic fluids. 

Viscoinelastic fluids are those in which viscosity is prominent factor regarding 

internal opposition of molecules. Viscoinelastic fluids are further categorized with 

shear thinning and shear thickening etc. The common examples of these fluids are 

lubricating greases, waterborne coatings, multiphase mixers, paints, suspensions, 

emulsions, blood, polymer sheets and biological fluids etc. The flow of electrically 

conducting fluids is encountered in almost every branch of science e.g. 

astrophysics, geophysics, mechanical engineering, aerospace engineering, nuclear 

engineering and bio engineering etc. Also, this concept is incorporated in many 

industrial processes and daily use devices such as MHD pumps, MHD power 

generator and electromagnetic propulsion etc. Additionally, turbulence of fluid is 

also handled with magnetic field. Hall current effects are noteworthy in electrically 

conducting fluids when applied magnetic field is strong or fluids with low density. 

This is an important phenomenon having many applications such as Hall 

accelerates, Hall senores etc. Heat transfer over stretching surfaces is encountered 

in many practical applications, because cooling/heating is an important factor to 

achieve the desired quality of product. For instance many processes/products like 

extrusion, paper production, fiber-glass production, hot rolling, condensation 

process, crystal growing, polymer sheets, artificial fibers and plastic films etc. 

based on heat transfer of boundary layer flows. Thermal conductivity of fluids 

enlarges by increasing the temperature of fluid and vice versa. Thus fluids having 

low thermal conductivity are used for cooling in many industrial or daily life 

products. Experimentally, it is observed that when fluid particles move, the 

viscosity of fluid alters some part of kinetic energy into thermal energy i.e. 

dissipate energy. Such type of dissipation is called viscous dissipation. In heat 

transfer of many practical problems, it plays an important role. Joule heating is an 

important factor in heat transfer of electrically conducting fluid flows. This 

phenomenon has a lot of applications such as electric stoves, electric heaters, 

cartridge heaters, electric fuses, electronic cigarettes, vaporizing propylene glycol 

and vegetable glycerin etc. Also, it is utilized in some food processing equipment. 

Nanofluids are modern type of fluids which are combination of base fluid and 

nano-sized metal particles. The principal objective of including these particles to 

enlarge the thermal conductivity of base fluids, because it is observed that mostly 

fluids (water, oil, ethylene glycol, engine oil etc.) which are traditionally utilized in 

thermal processes possessing low thermal conductivity.  



Recently, nanofluids are found very useful in bio-medicine and bio-engineering. 

Thus due to substantial importance of these phenomena has motivated to explore 

these important features of fluid flows in current work. Since Sisko fluid and 

Prandtl-Eyring fluid models have great importance in industry but have not been 

discussed for stretching cylinder so for. Thus, present work has main focus on 

these models. Numerical solutions are obtained through robust numerical 

techniques (Keller Box method, Finite element method and Shooting method). 

The layout of this thesis is as follows:  

Literature review of present work is presented in chapter 0.  

In chapter 1, the boundary layer flow of MHD Sisko fluid over stretching cylinder 

along with heat transfer is investigated. The cylindrical polar co-ordinates are used 

to model the physical problems. This modeling yields the nonlinear set of partial 

differential equations. The modelled equations are transferred to non-dimensional 

form after application of appropriate similarity transformations. The obtained 

equations are solved numerically with the aid of shooting technique in conjunction 

with Runge-Kutta fifth order scheme. The expressions for velocity and temperature 

are computed under different parametric conditions and deliberated in graphical 

manner. The local Nusselt number and wall friction coefficient are calculated and 

described in quantitative sense through graphs and tables. The contents of this 

chapter are published in International Journal of Numerical Methods for Heat 

& Fluid Flow 26(2016)1787-1801. 
Chapter 2 extends chapter 1 by factoring thermal conductivity effects into account. 

This chapter addresses the influences of variable thermal conductivity and applied 

magnetic field on boundary layer flow of electrically conducting Sisko fluid over 

stretching cylinder. The modelled partial differential equations are highly 

nonlinear. A set of ordinary differential equations is obtained after applying 

appropriate similarity transforms. The attained equations are solved with efficient 

numerical technique (i.e. shooting method). Impact of flow controlling parameters 

on velocity, temperature, coefficient of wall friction and wall heat flux is 

delineated via graphical and tabular manners. A comparison with literature is made 

to ensure the validity of computed results. The contents of this chapter are 

published in AIP Advances 6 (2016) 025316, DOI: 10.1063/1.4942476. 

Chapter 3 focuses on the physical aspects of viscous dissipation and variable 

thermal conductivity on non-Newtonian Sisko fluid flow over stretching cylinder 

under the influence of normally impinging magnetic field. The modelled partial 

differential equations are transfigured into ordinary differential equations with the 

aid of scaling group of transforms. The highly nonlinear ordinary differential 

equations are tackled with numerical scheme Runge-Kutta-Fehlberg method. The 

focused physical quantities (velocity, temperature, coefficient of wall friction and 

wall heat flux) are calculated and variations in these quantities are displayed 



graphically as well as tabular by choosing feasible values of involving physical 

parameters. The accuracy of adapted method is certified by comparing present 

results with reported literature. The contents of this chapter are published in 

Results in Physics 7(2017)139-146.  

Chapter 4 explicates the combined effects of viscous dissipation and Joule heating 

on boundary layer flow of MHD Sisko nanofluid over stretching cylinder. The 

flow governing equations are highly nonlinear set of partial differential equations 

with appropriate boundary conditions. These equations are converted into system 

of ordinary differential equations by using suitable similarity transformations and 

then solved the resulting boundary value problem with the help of shooting 

technique. The velocity, temperature and nanoparticle concentration are computed 

numerically in dimensionless form. The effects of pertinent flow parameters on 

these quantities are displayed with the help of graphs. Physical phenomena in 

vicinity of stretching surface are explained with the help of skin friction 

coefficient, local Nusselt number and local Sherwood number. Also, effects of 

physical parameters are depicted with the assistance of graphs and tables. The 

comparison of present and previous results exhibits good agreement which leads to 

validation of the presented model. The contents of this chapter are published in 

Journal of Molecular Liquids 231(2017)341-352.  

In chapter 5, a computational study has been established to explore the physical 

aspects of non-Newtonian Prandtl-Eyring fluid flow over stretching sheet under the 

influence of normally applied magnetic field. The mathematical formulation of this 

flow configuration produces highly nonlinear system of simultaneous partial 

differential equations. The formulated problem is transformed to non-dimensional 

model by applying suitable scaling variables. The numerical solution of resulting 

nonlinear boundary value problem is computed with the assistance of finite 

difference scheme Keller-Box method. The concerned physical quantities i.e. 

velocity and coefficient of wall friction are computed and discussed under different 

parametric conditions. The graphs and tables are developed to deliver the effects of 

involved physical parameters on focused physical quantities. A comparative study 

has been made of obtained results with the literature. The contents of this chapter 

are published in Neural Computing & Applications 31(2019)425-433. 

Applications of generalized Fourier law of heat conduction on MHD Prandtl-

Eyring fluid flow over stretching sheet with temperature dependent thermal 

conductivity has been made in chapter 6. Modelled system of nonlinear partial 

differential equations is transformed to system of ordinary differential equations by 

using similarity transformations after simplifying through boundary layer 

assumptions. Shooting method is applied to compute numerical results for the 

obtained nonlinear system of ordinary differential equations. The graphs are 

adorned to investigate the influences of governing parameters on fluid velocity and 



temperature. Local wall friction coefficient and local Nusselt number are computed 

to explore physical aspects near the stretched surface. The impacts of controlling 

parameters on these physical quantities are revealed through tables. Additionally, a 

correlation between present and previous results is presented to justify the 

validation of present results. The contents of this chapter are published in 

International Journal of Numerical Methods for Heat & Fluid Flow  

(2019), DOI: 10.1108/HFF-02-2019-0161. 

Chapter 7 spotlights the effects of Hall current on Christove-Cattaneo heat flux 

model for viscous fluid flow over stretching sheet with variable thickness. The 

modelled problem comprises highly nonlinear partial differential equations with 

presubscribed boundary conditions. To facilitate the computation process, an 

appropriate group of similar variables is utilized to transfigure governing flow 

equations into dimensionless form. To find more compatible and realistic solution 

of obtained non-dimensional boundary value problem well-known numerical 

scheme shooting method is used. Numerical results are accomplished and 

interesting aspects of axial velocity, normal velocity and temperature are visualized 

via graphs by varying involving physical parameters. A comprehensive discussion 

is presented to delineate the effects of flow parameters on axial wall friction, 

transverse wall friction and wall heat flux in tabular form. A comparison of 

computed results (in limiting case) is presented to authenticate the present 

computations. The contents of this chapter are under review in peer-reviewed 

journal.   

Chapter 8 narrates the physical features of gravity-driven swimming 

microorganisms in the boundary layer regime of MHD viscous nanofluid flow over 

stretching surface. The mathematical configuration of flow problem yields the 

nonlinear simultaneous partial differential equations. These equations are then 

transformed to non-dimensional form by applying scaling variables on it. The 

numerical solution of resulting system of non-dimensional partial differential 

equations is computed with finite element method. The deviations in interesting 

physical quantities are demonstrated through graphs by varying the flow governing 

parameters.  
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Chapter 0

Introduction

Most of processes occurred in nature are nonlinear i.e. this phenomenon encountered in many

disciplines of universe (nature science, life science, social science etc.). The salient features of

nonlinear phenomena have been explored with the help of applied mathematics. Mathemati-

cal formulations of these phenomena yield nonlinear mathematical systems. These nonlinear

systems consist on algebraic equations, recurrence relations and/or differential equations. In

natural sciences, specifically in physics, mostly nonlinear problems are handled with differ-

ential equations e.g. Navier-Stokes equations(fluid dynamics), Nonlinear Schrödinger equa-

tions(optics), Sine-Gorden equations(differential geometry), Einstein field equations(general

relativity), Korteweg—de Vries equation(wave phenomenon) etc. In current analysis, Navier-

Stokes equations are studied, these are nonlinear partial differential equations (even in one-

dimensional flow case). These equations explicate the dynamics of fluids in different physical

situations. Two kinds of problems usually occurred in fluid dynamics i.e. initial and/or bound-

ary value problems. In present analysis, the designed problems are nonlinear boundary value

problems. As these problems are highly nonlinear, thus numerical techniques are applied to

analyze more compatible and realistic situations. Because analytic solution for conducting

equations is intractable in order to illustrate the behaviour of interesting physical quantities.

Many fluids experienced in daily life did not obey the Newton viscosity law i.e. deformation

rate and shear stress are not linearly related for these fluids e.g. lubricating greases, oil, poly-

mer sheets, rubber sheets, paints, emulsions, ketchup, toothpaste, blood, slurries and silly putty

etc., called non-Newtonian fluids. Hence these fluids are an influential issue in few recent years
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which attracted researchers attentions. As, in Newtonian fluids shear properties are discussed

with deformation rate but in non-Newtonian fluids this concept is not feasible. In addition,

non-Newtonian fluids comprises different varieties e.g. viscoelastic, nonlinear viscoelastic, shear

thinning, shear thickening, rheopectic, thixotropic etc. Also, important characteristics of these

fluid with single constitutive system is useless. So, numerous constitutive equations were pro-

posed to examine the physical properties of these fluids. These fluids are subdivided into two

major types i.e. viscoelastic and viscoinelastic. Current analysis focuses on viscoinelastic flu-

ids. These fluids have similar behaviour at zero shear stress while properties of these fluids are

quite dissimilar against applied stress. Thus, researchers proposed various models to investigate

the physical aspects of viscoinelastic fluids more accurately. Few among them are power law

model, Prandtl fluid model, Powell-Eyring model, Sisko fluid model and Prandtl-Eyring fluid

model etc. Among these fluid models power law fluid model is most felicitous model to presage

attitude of non-Newtonian fluids. But, it can predicts fluid properties in the power law region

only while it fails to analyze flow characteristics when shear rate become very small or large.

This deficiency overcomes in Sisko fluid model by adding high shear rate effects, (this model

was proposed by Sisko [1] in 1958). In his investigation, he considered three different greases

and compared the results of Bingham and Ree-Eyring fluid models with experimental data.

But he found that these models fail to describe flow properties of lubricating greases. Thus

he proposed the Sisko model. The results of this model were matched with the experimental

data. Also, it is experimentally verified that Sisko fluid model predicts the properties of many

real fluids which are used in chemical engineering. Recently, this model was investigated by

many researchers under different physical environments. Akyildiz et al. [2] investigated the two

dimensional Sisko fluid flow over thin film. The approximate analytic solution was found by

using homotopy analysis method. They perceived that shear thinning fluid velocity inclines for

both power law index and material parameters. Mekhimer and El-Kot [3] analyzed the Sisko

fluid flow passing through tapered elastic arteries with time-variant overlapping stenosis. They

concluded that magnitude of velocity is substantially large for Sisko fluid when compared with

Newtonian fluids. Additionally, pressure of Newtonian fluid is extremely immense than Sisko

fluid while shear thickening fluids have low pressure than shear thinning fluids. Nadeem and

Akbar [4] studied the peristaltic motion in Sisko fluid flow through uniform inclined tube. The
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analytical solution was computed with HAM and regular perturbation method. The peristaltic

motion in Sisko fluid flow is analyzed in the endoscope by Nadeem et al. [5] They computed

numerical as well as analytical solutions and found that Newtonian fluid has best peristaltic

transference than both Sisko and power law fluids. Akbar [6] delineated the flow of Sisko

nanofluid passing through asymmetric channel. Khan et al. [7] inspected Sisko fluid flow in the

annular pipe with heat transfer. Khan et al. [8] studied the MHD flow of Sisko fluid in annular

pipe. They predicted that material parameter decelerates the motion of fluid. Additionally,

Newtonian fluid has lesser velocity than Sisko fluid. Khan and Shahzad [9] delineated the Sisko

fluid flow over radially stretching sheet. They proved that both fluid velocity and wall friction

are increased against Sisko parameter. Additionally, Sisko fluid has larger wall friction than

both power law and Newtonian fluids. Khan and Shahzad [10] studied Sisko fluid flow over

stretching surface. They found that the linear momentum is decelerated versus power law in-

dex while Sisko parameter increases it. Malik et al. [11] firstly investigated the Sisko fluid flow

over continuously stretching cylinder along with temperature dependent thermal conductivity.

They computed solution with the aid of shooting method and discussed the problem by varying

controlling physical parameters. Present work also focuses on the Prandtl-Eyring fluid model to

describe viscoinelastic fluid properties. Prandtl-Eyring model relates shear stress to sine hyper-

bolic function of deformation rate. This model is capable to investigate the fluid properties of

shear thinning fluids. Darji and Timol [12] studied the viscoinelastic fluid flows and established

the similar solutions of modeled problems. The modeled equations for Prandtl-Eyring fluid are

solved and deliberated the fluid parameter effects on velocity and its slope. Akbar et al. [13]

described the blood flow through tapered arteries by using constitutive law of Prandtl-Eyring.

They calculated solution with regular perturbation method and predicts that both fluid pa-

rameters accelerate momentum. Akbar [14] analyzed the peristaltic motion of Prandtl-Eyring

fluid in small intestine. They computed solution via perturbation method and show that fluid

parameter decelerates fluid motion away from wall.

Magnetohydrodynamics (MHD) elaborates the characteristics of electrically conducting flu-

ids. There a lot of natural MHD fluids e.g. plasma, electrolysis, salt water and solar wind

are MHD fluids. Applied magnetic field produces current in fluid flow, as a result, a signifi-

cantly opposing force called Lorentz force is produced. Alfven [15] discovered electromagnetic-
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hydrodynamic waves in their experiments. This discovery opens a vast area of interest for re-

searchers. This work acquires a lot of importance very soon, because it has many applications

in every subdivision of science specifically in geophysics, astrophysics, electrical engineering,

mechanical engineering and aerospace engineering. MHD pumps, MHD sensors, MHD flow

meters, MHD power generators, electrostatic filters, electromagnetic propulsion, purification

of crude oil, fluid droplets are some engineering and industrial products/processes which are

based on the phenomenon of magnetohydrodynamics. Also, MHD phenomenon is utilized to

control thermal equilibrium in interstellar medium and interplanetary medium. Additionally,

radio propagation and geothermal extraction also utilized MHD phenomenon. Since rate of

cooling is an important factor corresponds to quality of product, hence magnetohydrodynamic

fluids are used in many manufacturing processes to control rate of cooling. For instance, it is

applied to control cooling/heating of nuclear reactor walls, fusing metals in electric furnace,

crystal growth and metal casting. Recently, MHD was found very useful in bioengineering,

because it is utilized in many disease diagnostic processes. While turbulence comportment of

fluid is also handled with magnetic field. MHD phenomenon is mathematically formulation by

adding Maxwell equations with Navier-Stokes equations. Rossow [16] investigated the MHD

viscous fluid flow over flat plate. Chakrabarti and Gupta [17] computed the similarity solu-

tions of MHD Newtonian fluid flow over a stretching sheet with uniform suction. Andersson

[18] calculated numerical solutions of MHD viscous fluid flow past a stretching surface. He

formulated and solved analytically this model. He also proved the validity of computed so-

lutions for large values of Reynolds number. Yih [19] studied free convection flow of MHD

Newtonian fluid past through permeable vertical sheet. Liao [20] investigated the MHD effects

on non-Newtonian fluid flow past a stretching sheet. They shows that MHD effects on shear

thinning are prominent than shear thickening fluids. Abo-Eldahab and Salem [21] studied dif-

fusion and chemical reaction effects on MHD power-law nanofluid on a moving cylinder. They

computed numerical solution and observed that magnetic field decelerates fluid motion while

rises temperature. Additionally, they suggested that magnetic field enhances wall temperature

gradient while it reduces both skin friction coefficient and Sherwood number. Cortell [22] de-

liberated the physical features of power law fluid flow past a stretching surface under magnetic

field effects. They proved that the Hartmann number effects are opposing on fluids velocity.
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Ishak et al. [23] studied the hydrodynamics flow of Newtonian fluid through vertical stretch-

ing sheet. They found that fluid momentum are decreased versus applied magnetic field while

friction coefficient enlarges against it. Akbar et al. [24] described the MHD characteristics on

Powell-Eyring fluid past a stretching surface. MHD flow of Williamson fluid passing through

stretching surface was studied by Malik and Salahuddin [25]. The numerical solution of fluid

model was computed via shooting method. Malik et al. [26] utilized Keller-Box integration

scheme to solve the flow governing system of MHD tangent hyperbolic fluid over a stretching

cylinder. They predicted that both local wall stress and velocity reduces versus applied mag-

netic field. In all above mentioned studies, the Hall current effects are ignored, because for low

magnetic field these effects are inconsequential while Hall current phenomenon is prominent

when intensity of applied magnetic field is strong or density of fluid is low. It happens because

electron carries the induced current and moves faster than ions. This phenomenon generates an

isotropic conductivity which is known as Hall current. The occurrence of Hall current demands

the modification of Ohm’s law, also the consequences of this phenomenon enhance the order of

flow govern differential equations. Hall current has many practical applications e.g. Hall accel-

erators, Hall sensors and turbine etc. The importance of Hall current in electrically conducting

fluid under the strong magnetic field was analyzed by Lighthill [27] The study of Hall current

effects in viscous fluid between parallel plates was initiated by Sato [28] The exact solution of

the problem was found against low Reynolds number and he proved that Hall current effects

are noticeable. Jana et al. [29] investigated the MHD Newtonian fluid flow passing through an

infinite porous plate with Hall current effects. They found that shear rate neither depends on

magnetic parameter nor on Hall parameter. Hall current effects and pressure gradient on time-

dependent hydrodynamic fluid flow through rotating channel were studied by Seth and Ghosh

[30] Chaudhary and Jha [31] elaborated the impacts of Hall current on free convection flow of

viscous fluid past an infinite plate. Salem and Abd El-Aziz [32] discussed the influences of Hall

current phenomenon on MHD flow of Newtonian fluid past a vertical stretching sheet. They

recommended that Hall parameter affected tangential velocity component slightly while lateral

velocity component enhances very rapidly against it. Ali et al. [33] captured the significance of

Hall current phenomenon on viscous fluid flow over vertical flat plate with mixed convection.

Shateyi and Motsa [34] investigated the unsteady flow of viscous fluid past through a stretch-

8



ing sheet with Hall current effects. Reddy [35] delineated the impacts of Hall current on flow

of Newtonian fluid over vertical surface with other physical effects. They prevailed that Hall

parameter accelerates velocity while it has opponent effects on temperature. Parsad et al. [36]

analyzed the Hall current phenomenon on MHD Newtonian fluid flow over variable stretching

surface. They observed that Hall parameter effects are insignificant on horizontal velocity and

temperature while the behavior of transverse velocity is periodic against it. Recently, Sreedevi

et al. [37] and Chandra and Misra [38] inspected the Hall current effects with different physical

situations.

Heat transfer in fluid flow plays remarkable role due to its widespread uses in applied sciences

e.g. biomedicine, meteorology, plasma physics, astrophysics, physical chemistry, oceanography

etc. Heat transfer plays a sensible role on the quality of many industrial products, thus liquid

cooling/heating is the major concern of modern days researchers. For instance, controlling the

heat transfer during the processes like crystal growing, polymer sheets, artificial fibers, plastic

films, filtration of liquid metal, glass fiber production and cooling/heating in heat exchangers

or chambers etc. is a crucial factor regarding achievement of desired quality products. Gupta

and Gupta [39] was firstly analyzed the heat transfer phenomenon in flow of Newtonian fluid

past through porous sheet. Also, Dutta and Roy [40] analyzed the heat transfer problem by

assuming uniform heat flux in flow of Newtonian fluid past a stretching sheet. Heat transfer of

fluid flows was also discussed by number of researchers (e.g. Grubka and Bobba [41] Hassanien

et al. [42] Cortell [43], Andersson and Kumran [44]). The heat conductance capacity of any

material called its thermal conductivity, according to Fourier law, it is directly related to heat

flux while it has inverse variation with temperature gradient. Thus, thermal conductivity of

fluid varies by increasing or decreasing temperature. For fluids, thermal conductivity increases

with increase in fluid temperature from 0 to 400 . As thermal conductivity varies by increas-

ing temperature, thus temperature dependent thermal conductivity is provides more suitable

results of heat transfer. Chiam [45] considered primarily the temperature dependent thermal

conductivity in his problem. He analyzed the consequences of variable thermal conductivity on

Newtonian fluid flow over a porous stretched surface. In this investigation, they found that the

variable thermal conductivity enhances temperature while it declines wall temperature gradient.

Abel and Mahesha [46] inspected the consequences of variable thermal conductivity on MHD
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viscoelastic fluid by considering various physical effects. It was found that variable thermal

conductivity increases temperature profile i.e. fluid with less thermal conductivity are better

for cooling. Abel et al. [47] also examined flow of power law fluid past a stretching sheet with

variable thermal conductivity and found analytical expressions for temperature profile. Mishra

et al. [48] discussed the variable thermal conductivity effects on unsteady viscous fluid flow

past a stretching plate. Rangi and Ahmad [49] investigated the variable thermal conductivity

features on viscous fluid flow past a stretching surface. They recommended that the variations

in thermal conductivity significantly affected the temperature. In literature, there are some

other investigations related to variable thermal conductivity (Singh [50], Miao et al. [51] and

Jhankal [52]).

It has been observed that viscosity of the fluid provides resistance to the motion, this

process converted some amount of mechanical energy into thermal energy i.e. energy is dis-

sipated. Since, this dissipation is because of viscous force hence its called viscous dissipation

and it behaves like an energy source. Brinkman [53] was initially factored the influences of

viscous dissipation in viscous fluid flow through capillary. Lin et al. [54] described the energy

dissipation effects in viscous fluid flow through pipe. Vajravelu and Hadjinicolaou [55] analyzed

the viscous dissipation impacts on viscous fluid flow past a stretching sheet with variable heat

flux. Shigechi et al. [56] described the characteristics of energy dissipation in Coutte-Poiseuille

flow of Newtonian fluid. Both viscous dissipation and MHD effects on viscous fluid flow past a

stretching surface with suction/injection was investigated by Anjali Devi and Ganga [57]. They

utilized hypergeometric functions to solve the problem for linear stretching case and shows that

viscous dissipation effects are insignificant on temperature. Recently, Singh [58] Alinejad and

Samarbakhsh [59] Reddy et al. [60] and Mabood et al. [61] delineated the influences of energy

dissipation in viscous fluid flows with physical assumptions. Another important factor affecting

the heat transfer of hydrodynamics fluid flow is Joule heating. It is experimentally proved that

when current passes through the hydrodynamics fluid flow, its temperature rises. This phe-

nomenon occurs due to interaction between the moving particles and atomic ions which make

the body like conductor. The charged particle accelerated and produced electrostatic potential

energy. These particles strike with ions and release the energy which escalates temperature of

the fluid. Joule heating has a lot of applications such as incandescent light bulb, electric stoves,
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electric heaters, soldering irons, cartridge heaters, electric fuses, electronic cigarettes, vaporizing

propylene glycol and vegetable glycerine. Also, some food processing equipment utilized Joule

heating phenomenon. Because of its frequent use in daily-life devices, a lot of investigations

have been performed to delineate Joule heating phenomenon. Aissa and Mohammadein [62]

examined the flow of micropolar fluid over a stretched surface along with Joule heating effects

and found numerical solution. They shown that Eckert number and magnetic parameter en-

large the temperature. Alim et al. [63] computed numerical solution of Joule heating impacts

on hydrodynamic flow of viscous fluid past a flat plate. Recently, Kaladhar [64] and Harish

Babu and Satya Narayana [65] were discussed Joule heating effects on Couple stress and Jeffrey

fluids. Additionally to figure out the physical problem in more realistic way, many researchers

factored Joule heating effects along with viscous dissipation. Fillo [66] initially factored the

viscous dissipation and Joule heating impacts collectively on flow of viscous fluid. Hossain [67]

studied thermophysical aspects of energy dissipation and Joule heating on viscous fluid flow.

El-Amin [68] discussed the both Joule heating as well as energy dissipation impacts on viscous

fluid flow past a horizontal cylinder. Recently, Das et al. [69], Ibrahim and Suneetha [70] dis-

cussed the viscous dissipation along with Joule heating effects on Newtonian fluid with various

physical assumptions.

The transfer of heat happens due to difference of temperature (known as thermal conduc-

tion), it takes place in every type of matter (solid, liquid, gas and plasma). The observations

proved that the heat always marched towards frosty region from warmer region. The trans-

portation of heat transfer through fluid flow is interpreted via thermodynamic first law (it

relates internal energy with heat flux). Fourier [71] proposed the most popular heat conduction

law to anticipate the heat flux, this law is found to be very helpful for estimation of heat flux

for many materials but in the context of fluid this law is incompetent. One of the major fault

in this law is its mathematical formulation which yields a parabolic equation i.e. according to

this, an initial disturbance is felt very effective throughout the system which does not make

sense in practice. To affix this unrealistic property, plenty of attempts have been made, but

Maxwell-Cattaneo model eradicates this imperfection very significantly. Cattaneo [72 − 73]
included the thermal relaxation time and put partial time derivative into account and named

this term as thermal inertia. The addition of this term resolves the main issue of the Fourier
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law and this transformed the heat equation into damped hyperbolic equation. This gives the

direction to generalize Fourier law and correct the behaviour of solution. But this law needs still

modifications in partial time derivative, thus a lot of modifications have been proposed for time

derivative (see Fox [74] Straughan and Franchi [75] Lebon and Cloot [76]) but their solutions

faced some critical problems in physical sense. Haupt [77] suggested that Oldroyd derivative

would be better approximation for partial time derivative. Christov [78] revised the Maxwell-

Cattaneo heat flux law and utilized the Oldroyd upper convective derivative (instead of partial

time derivative) and showed that proposed model is invariant under different coordinates sys-

tems, and also, it is reducible to classical Fourier law under special circumstances. Ciarletta and

Straughan [79] proved uniqueness and stability of Christov-Cattaneo equation solution. Fur-

ther, Straughan [80] studied the application of Christov-Cattaneo model for thermal convection

effects in Newtonian fluid flow. He found that thermal relaxation effects are so strong in case of

large Cattaneo number. Straughan [81] extended their previous work and analyzed the thermal

convection in gravity-driven incompressible Newtonian fluid flow in porous media. He discussed

the heat transfer by using Christov-Cattaneo and Christov-Fox models. He recommended that

in both cases the influences of thermal relaxation is noteworthy for large Cattaneo number while

stationary convection is preferred in case of low Cattaneo number. Tibullo and Zampoli [82]

discussed the Christov-Cattaneo model for incompressible fluid flow and constructed the unique

solution of initial-boundary value problem. They found that the computed solution is trivially

deduced to Cattaneo results as a special case. Recently, many researchers discussed the heat

transfer by using Christov-Cattaneo heat flux model. Application of Christov-Cattaneo equa-

tion on flow of Williamson fluid past through stretching cylinder was discussed by Salahuddin

et al. [83] Malik et al. [84] implemented Christov-Cattaneo theory to illustrate the thermal

energy on Casson fluid over variable stretching sheet with various thermophysical effects. They

solved the governing boundary value problem with Keller-Box method and extracted that ad-

dition of thermal relaxation effects corresponds to fall down in temperature. Tanveer et al. [85]

studied the heat transfer in channel flow with Christov-Cattaneo heat flux model.

Nanofluid is a modern type fluid which is the combination of base fluid and nano size

particles. These nano particles are of different metals like copper, aluminum, silicon etc. The

main purpose of including nanoparticles is to enhance the thermal conductivity. Because, many
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conventional heat transfer fluids have poor thermal conductance (e.g. ethylene glycol, water and

engine oil etc.). Many experiments are performed to overcome this deficiency, e.g. geometry

is modified, small size (e.g. milli, micro etc.) metallic particles are dropped into base fluid

to enhance the thermal conductivity but these experiments did not give the required results.

Two decades ago, Chio [86 − 87] inserted nano sized particles and surprisingly found that
nanofluid have many times greater thermal conductivity than base fluid. After this successful

experiment, many theoretical and experimental studied are performed to analyze nanofluids,

because of nanofluid utilization in many thermal engineering processes. Kang et al. [88] and Yoo

et al. [89] performed experiments to investigate thermal conductivity variations in nanofluids.

They analyzed the thermal conductivity by considering different base fluids (water, glycol etc.)

and nano particles (ultra-dispersed diamond, iron, aluminum, copper etc.) and concluded that

nanofluid have much larger thermal conductivity. Maiga et al. [90] studied the water based

nanofluids(water—Al2O3 and Ethylene Glycol—Al2O3) by considering different geometries.

The results show that nanofluids have very better heat transfer rate than their respective base

fluid. Also, the comparison of two nanofluids shows that Ethylene Glycol—Al2O3 has more

capability of heat transfer than water—Al2O3A comprehensive review on nanofluid was written

by Wang and Mujumdar [91]. They compared viscosity, thermal conductivity and heat transfer

coefficient of many proposed models. They suggested that many other effects like Brownian

motion, size and shape of nanoparticles should be considered to obtain better results. Finally,

they summarized that prediction of physical characteristics of nanofluids is very difficult by

using theoretical models. Till now, for mathematical formulation of nanofluids two different

approaches (Two-phase model and Buongiorno model) have been adopted in literature. Two-

phase model elaborated the base fluid and nano particles particularly, but this model is not

common. On the other hand, Buongiorno [92] suggested the model which based on continuum

assumption of fluid with nanoparticles. He studied the influences of seven factors (inertia,

Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage and gravity)

in nanofluids. He observed that only thermophoresis and Brownian diffusion have significant

effects. Additionally, this model is simpler and efficient in computational point of view, so

Buongiorno model is considered to deliberate thermo-physical properties of nanofluids in this

work. Bachok et al. [93] utilized the Buongiorno model to describe properties of nanofluid
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past a semi infinite flat plate. Keller-Box technique was implemented to find solution of flow

governing equations. Khan and Pop [94] discussed viscous nanofluid flow past a stretching

sheet. The solution of similar equations was calculated numerically. Rana and Bhargava [95]

computed numerical solution of Newtonian nanofluid flow through nonlinear stretched sheet.

Zaimi et al. [96] designed the problem on viscous nanofluid flow passing through permeable

nonlinear stretching/shrinking sheet. Mabood et al. [97] theoretically analyzed the viscous

nanofluid flow on stretching surface. Recently, Malik et al. [98] and Narmgari and Sulochna

[99] presented the similarity solution of MHD nanofluid flow in different physical situations.
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Chapter 1

Numerical solution of MHD Sisko

fluid over a stretching cylinder and

heat transfer analysis

The physical features of Sisko fluid flow past over a stretching cylinder under magnetic field.

The electrically conducting fluids have been encountered in various industrial applications such

as electrostatic filters, cooling reactors, MHD power generation, fluid droplets and geothermal

energy extraction. So, this chapter discusses the MHD flow of Sisko fluid passing over a stretch-

ing cylinder. A suitable set of transformations is employed to transfigure the governing partial

differential system into ordinary differential system. Ordinary differential system is then solved

via Runge-Kutta-Fehlberg scheme. The involved parameters effects on momentum and thermal

energy are shown via graphs.

1.1 Problem formulation

Consider 2D, axisymmetric, steady state, incompressible electrically conducting flow of Sisko

fluid over a stretching cylinder in the boundary layer regime. The fluid occupied the semi-

infinite region   0, also the movement in fluid is made due to stretching of cylinder along

-direction with velocity () =  where   0 An orthogonal magnetic field of strength

0 is utilized to the -direction i.e. along radial direction. Electric field and induced magnetic
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field effects are not taken into account(see Fig. 1). Governing equations for under consider

problem are

B0
B0

B0

2r0

r

x

u 0

T T

u = U(x), v = 0, T = Tw

Fig. 1.1

Fig. 1.1: Physical configuration of flow problem.

∇V = 0 (1.1)


V


= ∇T+ J×B (1.2)





= ∇2 (1.3)

in the above-defined system,∇ is differential operator, material time derivative is symbolized
by 


 V = (  0) is velocity vector, T is mathematical symbol of Cauchy stress tensor,

B = (0 0 0) is strength of magnetic field, J =(V×B) represents the magnetic flux (in the
absence of electric field),  denotes temperature field,  is density of non-Newtonian fluid, 

is specific heat while  defines the thermal conductivity. The mathematical quantities ∇ and



are given below (in polar cylindrical coordinates)
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∇=()


̂ +

()


̂ +

1



()


̂ (1.4)




= V∇ (1.5)

As for steady flow the term 

is neglected in material time derivative. The stress tensor of

defined as

T = −I+ S (1.6)

in above relation  shows pressure, identity tensor is represented with I while S called the

extra stress tensor of Sisko fluid. Extra stress tensor is defined below

S =

⎛⎝+ 

¯̄̄̄
¯
r
1

2
(A21)

¯̄̄̄
¯
−1⎞⎠A1 (1.7)

The symbols   and  denote the viscosity at high shear rate, power law region viscosity

and power law index respectively. Additionally, A1 called first Rivlin-Ericksen tensor defined

below

A1 = ∇V+ (∇V) (1.8)

After interposing the all concerned variables, the first Rivlin-Ericksen tensor converted into

A1 =

⎡⎢⎢⎢⎣
2


0 

+ 



0 2


0



+ 


0 2



⎤⎥⎥⎥⎦  (1.9)
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Now the (A21) is computed, it is given by

(A21) = 4(



)2 + 4(




)2 + 4

2

2
+ 2(




+




)2 (1.10)

Incorporating  (19)− (110) into  (17), extra stress tensor takes the form

S =

⎛⎝+ 

¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2(




)2 + (




+




)2

¯̄̄̄
¯
−1⎞⎠

⎡⎢⎢⎢⎣
2


0 

+ 



0 2


0



+ 


0 2



⎤⎥⎥⎥⎦ 
(1.11)

Also, after simplification, J×B =(−20 0 0) Now substituting the concerned variables
in  (11) (continuity equation), it is converted to

 ()


+

 ()


= 0 (1.12)

After inserting T, momentum equation (by neglecting pressure gradient) takes the below

defined form


V


= ∇ · S+ J×B (1.13)

The derivative of velocity field V in components form is given below

(
V


) =




= 




+ 




 (1.14)
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(
V


) =




= 




+ 




 (1.15)

(
V


) =




= 0 (1.16)

The divergence of extra stress tensor is given as

(∇S) = (
1






(



) + 2

2

2
+

2


+
1






)

+(
1






(




¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1

)

+2



(




¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1

)

+



(




¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1
)

+
1







¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1
) (1.17)

(∇S) = (
2






(



) +




(



+




)− 2

2
)

+(
2






(




¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1
)

+



((



+




)

¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1

)

−2
2

¯̄̄̄
¯
r
2(



)2 + 2(




)2 + 2

2

2
+ (




+




)2

¯̄̄̄
¯
−1
) (1.18)

(∇S) = 0 (1.19)

After inserting the  (114) − (119) and expression of J×B in  (113) the fluid

momentum governing equation transfigured to the following form
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



+ 




=




(
1






(



) + 2

2

2
+

2


+
1






)

+



(+(

1






(




¯̄̄̄
¯
r
2(



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
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) (1.21)

Now simplifying the energy equation, the material time derivative of temperature field is




= 




+ 




 (1.22)

Also, Laplacian of fluid temperature is given as

∇2 = 1






(



) +

2

2
 (1.23)
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After using  (122)− (123) in  (13), the energy equation of non-Newtonian fluid is

transmuted to





+ 




= (

1






(



) +

2

2
) (1.24)

where  = 


symbolized the thermal diffusivity.

After inserting the boundary layer approximations (Prandtl theory) in  (112) (120)

(121) (124) these are transformed to

()


+

()


= 0 (1.25)
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1
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(
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

¯̄̄̄

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¯̄̄̄−1
)− 


20

After rearranging, the momentum equation takes the form





+ 




=




(
1






(



))− 


(−


) +




(−


)−1

2

2
− 


20 (1.26)





+ 




=








(



) (1.27)

along with boundary conditions

( ) = () ( ) = 0  ( ) =  at  = 0 (1.28)

( ) → 0  ( )→ ∞ as  →∞

The stream function Ψ of flow velocity is defined as
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 =
1



Ψ


  = −1



Ψ


 (1.29)

The modified form of  (125) − (127) along with the boundary conditions (128) is
obtained using the following similarity transformations

 =
2 − 20
20

Re
1

+1

  Ψ = 0 Re
−1
+1

 () (1.30)

() =
 − ∞
 − ∞

 Re =
2−




The mass equation is satisfied identically while momentum and energy equations will take

the form

(1 + 2) 000 + (1 + 2)
+1
2 (− 00)−1 000 − (+ 1)(1 + 2)−12 (− 00)

+2 00 −  0
2

+
2

+ 1
 00 − 0 = 0 (1.31)

(1 + 2)00 + 20 +
2

+ 1
Pr 0 = 0 (1.32)

along with the boundary conditions

(0) = 0  0(0) = 1 (0) = 1 (1.33)

 0(∞) → 0 (∞)→ 0

where the symbols    and Pr denote material parameter, curvature parameter, mag-

netic field parameter and Prandtl number respectively. These are defined as follows
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 =


0
Re

−1
+1

  Re =



  =

Re
2

+1



Re


 =
20


 Pr =



Re

−2
1+

  (1.34)

The coefficient of wall friction and local heat flux (i.e. quantities of practical interest) are

introduced as

 =

1
2
2

  =


( − ∞)
 (1.35)

where  is surface shear stress and  is surface heat flux, these are defined below

 = (



)=0 − (−


)=0   = −(




)=0  (1.36)

Using similarity transformations, the above equations are converted to

 =



Re

1
+1

  00(0)− [−

Re

1
+1

  00(0)]  = −( − ∞


)Re
1

+1

 0(0) (1.37)

Using  (137) into  (135) the coefficients of surface friction and surface heat flux are

transfigured into following dimensionless form

1

2
 Re

1
+1

 =  00(0)− (− 00(0)) Re
− 1
+1

 = −0(0) (1.38)
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1.2 Shooting method

 (131)− (132) is nonlinear ordinary differential system subject to conditions (133). Thus

solution of this system is computed with the help of efficient numerical technique, that is,

shooting method by considering distinct values of physical parameter , ,  and Pr.

Boundary Value
Problem

Initial Value
Problem

Assign missing
initial

aproximations

Solve I.V.P by
using R-K-Fehlberg

schme

Compute Boundary Residulas
(absolute difference between
given and cacluted
boundary values)

If Boundary Residulas
are less then
tolerance error

If Bounfary Residulas
are greater then
tolerance error

Final Solution
Initial Guesses are
modified with
Newton's method

Fig. 1.A: Flow Chart
of Shooting Method

Fig. 1.A: Flow chart of numerical scheme

Since first step of the procedure is convert BVP into IVP, so  (131) − (132) are re-
written as

 000 =
(+ 1)(1 + 2)

−1
2 (− 00) − 2 00 +  0

2 − 2
+1

  00 + 0

(1 + 2) + (1 + 2)
+1
2 (− 00)−1

 (1.39)

00 = −
2
+1

Pr 0 + 20

(1 + 2)
 (1.40)

Above equations i.e.  (139)−(140) are transfigured into first order ordinary differential
equations by substituting variables defined below
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 = 1 
0 = 2 

00 = 3  = 4 and 0 = 5 (1.41)

into

01 = 2 (1.42)

02 = 3 (1.43)

03 =
(+ 1)(1 + 2)

−1
2 (−3) − 23 + 21 − 2

+1
13 +2

(1 + 2) + (1 + 2)
+1
2 (−3)−1

 (1.44)

04 = 5 (1.45)

05 = −
2
+1

Pr 15 + 25

(1 + 2)
 (1.46)

The given conditions are converted to

1(0) = 0 2(0) = 1 2(∞) = 0 4(0) = 1 4(∞) = 0

Now missing initial conditions 3(0) and 5(0) are added instead of 2(∞) and 4(∞) So
above-defined conditions can be re-written as

1(0) = 0 2(0) = 1 3(0) = 1 4(0) = 1 5(0) = 2 (1.47)

To solve the initial value problem ( (142)− (146)) subject to initial conditions (147)
Runge—Kutta—Fehlberg formula is used. Fehlberg proposed the following formulas for Runge—

Kutta 4th and 5th order integration schemes
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y5( + ) = y() +
X

K where  = 1 2 3 4 5 6 (5th-order) (1.48)

y4( + ) = y() +
X

K where  = 1 2 3 4 5 6 (4th-order) (1.49)

where y5 and y4 correspond to the solution of 4th and 5th order integration formulas. Also,

y() = (1 2 3 4 5)
 denotes solution while K are defined in following equation

K1 = F(y)

K = F( +y+
X

K)  = 2 3 6 and  = 0 1 − 1 (1.50)

 is the step size and F is vector defined as

F(y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

3

(+1)(1+2)
−1
2 (−3)−23+21− 2

+1
13+2

(1+2)+(1+2)
+1
2 (−3)−1

4

−
2
+1

Pr 15+25

(1+2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


According to this method, fifth-order formula defined in  (148) is utilized to solve the

considered problem while truncation error is computed with the aid of fourth order formula.

E() = y5( + )− y4( + ) =
X
( −)K where  = 1 2 3 4 5 6 (1.51)

the error in fifth order integration scheme is computed with above defined equation. Here

coefficients     and  are used which proposed by Cash and Karp [108] (see Table

1.1).
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Table 1.1: Coefficients proposed by Cash and Karp[108].

    

1 - - - - - - 37
378

2825
27648

2 1
5

1
5
- - - - 0 0

3 3
10

3
40

9
40

- - - 250
261

18575
48384

4 3
5

3
10

−9
10

6
5
- - 125

594
13525
55296

5 1 −11
54

5
2

−70
27

35
27

- 0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Now Runge-Kutta-Fehlberg formula is utilized to solve the initial value problem by selecting

both 1 and 2 as −1 and ∞ = 5 Now boundary residuals are calculated to test the accuracy

of computed solution. They are mathematically given below

1(1 2) = |̂2(∞)− 2(∞)|  2(1 2) = |̂4(∞)− 4(∞)|  (1.52)

here 1(1 2) and 2(1 2) are residuals of momentum and heat equations respectively

and ̂2(∞) and ̂4(∞) are computed values.
The computed solution converges only if boundary residuals are less than tolerance error

i.e.  = 10−6. On the other hand, if boundary residuals do not meet the criteria then initial

values are modified with Newton method. The process of computation is started unless the

boundary residuals meet the required criteria.

1.3 Results and discussion

The flow governing problem is solved numerically by varying involved parameters. The cal-

culated solution is compared through tables with previous results. Table 1.2 represents the

comparison of wall friction factor with Akbar et al. [24] results for variations in magnetic field

parameter  . This table reflects that both results have good agree upto desired number of

digits. Additionally, comparison of local Nusselt number is presented via Table 1.3 with the
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existing literature i.e. Cortell [43], Rana and Bhargava [95] and Zaimi et al. [96] Nusselt num-

ber is calculated for several values of power law index  by taking Pr = 1 5. It is found that

present result has slight variations from previous. These results proved that computed solution

is accurate.

Table 1.2: Wall friction coefficient i.e.  00(0) by varying magnetic field parameter  when

 =  = 0 and  = 1

 Akbar et al. [24] Present Results

0 -1 -1

0.5 -1.11803 -1.11809

1.0 -1.41421 -1.41532

5.0 -2.44949 -2.44954

10 -3.31663 -3.31661

100 -10.04988 -10.05001

500 -22.38303 -22.38901

1000 -31.63859 -31.63901

28



Table 1.3: Comparison of surface heat flux i.e. −0(0) versus power law index and Prandtl
number while keeping  = =  = 0

Pr  Cortell [43] Rana and Bhargava [95] Zaimi et al. [96] Current Results

1.0 0.2 0.610262 0.6133 0.61131 0.61416

0.5 0.595277 0.5967 0.59668 0.59663

1.5 0.574537 0.5768 0.57668 0.57405

2.0 0.57245 0.57240

3.0 0.564472 0.5672 0.56719 0.56451

4.0 0.56415 0.56411

8.0 0.55897 0.55803

10.0 0.55460 0.5578 0.55783 0.55721

5.0 0.1 1.61805 1.61361

0.2 1.607175 1.5910 1.60757 1.59115

0.3 1.59919 1.58919

0.5 1.586744 1.5839 1.58658 1.58496

0.8 1.57389 1.57342

1.0 1.56787 1.56657

1.5 1.557463 1.5461 1.55751 1.55529

2.0 1.55093 1.55106

2.5 1.54636 1.54660

3.0 1.542337 1.5372 1.54271 1.54229

10.0 1.528573 1.5260 1.52877 1.52951
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Fig. 1.2

Fig. 1.2: Fluid velocity  0() versus power law index 



f
'(
)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A = 1, n = 1
A = 2, n = 1
A = 3, n = 1
A = 1, n = 2
A = 2, n = 2
A = 3, n = 2

 = 0.5, Pr = 1.2,
M = 0.3

Fig. 1.3

Fig. 1.3: Material parameter  effects on  0() by keeping power law index  = 1 and 2
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Fig. 1.4: Curvature parameter  effects on velocity profile  0() for power law index  = 1

and 2
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Fig. 1.5: Deviations in fluid velocity  0() versus  and power law index  = 1 and 2
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Fig. 1.6: Temperature profile () by varying power law index .
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Fig. 1.7: Temperature profile () behaviour versus  and 
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Fig. 1.8: Effects of Prandtl number Pr on temperature profile () for  = 1 2
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Fig. 1.9: Variations in wall friction coefficient versus governing parameters ,  and 
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Fig. 1.10: Variations in wall friction factor versus governing parameters   and .
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Fig. 1.11: Variations in Nusselt number against thermophysical parameters Pr  and .

Table 1.4: Wall friction coefficient for variations in physical parameters , ,  and  .
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     00(0)− (− 00(0))

0.1 1.0 0.3 0.5 -2.4215

0.5 -2.2533

0.8 -2.2190

1.0 -2.0648

1.3 -1.9913

1.6 -1.9398

1.8 -1.9125

2.0 -1.8911

1.0 1.0 -2.0648

1.0 2.0 -2.1792

1.0 3.0 -3.3138

2.0 1.0 -1.8911

2.0 2.0 -2.5017

2.0 3.0 -3.0976

1.0 1.0 0.1 -1.9443

1.0 0.3 -2.0648

1.0 0.5 -2.1792

2.0 0.1 -1.7595

2.0 0.3 -1.8911

2.0 0.5 -2.0168

1.0 0.3 0.1 -1.7072

1.0 0.5 -2.0648

1.0 1.0 -2.4980

2.0 0.1 -1.5994

2.0 0.5 -1.8911

2.0 1.0 -2.2740

35



Table 1.5: Effects of physical parameters , Pr and  on Nusselt number.

−0(0) −0(0)
 Pr  = 1  = 2

0.1 1.2 0.8390 0.7278

0.4 0.9396 0.8257

0.7 1.0486 0.9349

1.0 1.1601 1.0474

0.5 0.3 0.5862 0.5567

0.7 0.8080 0.7286

1.2 0.6574 0.8614

2.0 1.2684 1.1021

Effects of power law index  on fluid momentum are depicted via Fig. 1.2. It can be

observed that velocity of fluid declines when power law index  increases. It practically holds

because when power law index enhances, fluid become more viscous and the velocity decelerates.

Also, velocity of shear thinning fluids is higher than both Newtonian and shear thickening fluids

which can be observed in graph. Influence of material parameter  on  0() is represented

through Fig. 1.3 for  = 1 and 2 One can see that material parameter  accelerates the

fluid movement. Since increment in material parameter  reduces the viscosity which respond

by enhancing velocity. It is observed that fluid movement decelerate when power law index

 increases. Fig. 1.4 indicates the effects of curvature parameter  on  0() for  = 1 and

2 When curvature parameter  enhances, it reduces radius of cylinder and hence its surface

area. Thus contact area of cylinder with particles is deducted, so less opposing force is offered.

This produces more acceleration in fluid movement. Fig. 1.5 shows variations in horizontal

velocity  0() by varying magnetic field parameter  and keeping  = 1 2. When magnetic

field strength is increased, it generates Lorentz force which decelerates fluid velocity.

Fig. 1.6 reflects variations in temperature profile () for power law index . It can be

shown that temperature of fluid decayed against power law index . Variations in temperature

profile is shown via Fig. 1.7 by altering curvature parameter . The fluid temperature rises
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when curvature parameter  increases (see graph). Fig. 1.8 captures the variations in temper-

ature versus Prandtl number Pr. Since Prandtl number is quotient of momentum to thermal

diffusivities. So, for Pr  1 corresponds to dominant momentum diffusivity i.e. convectional

heat transfer is prominent than conduction, as a results, temperature of fluid is high. On the

other hand if Pr  1 then conduction is dominant heat transfer mode, so it causes reduction in

fluid temperature. Hence temperature is falls down versus Prandtl number.

Skin friction coefficient is computed through formula given in  (138), the influences

of different parameters are shown in Figs. 1.9-1.10. Fig. 1.9 shows variations in wall

friction factor versus magnetic field parameter  Sisko parameter  and power law index .

As imposed magnetic field increases thickness of momentum boundary layer, it increases skin

friction coefficient. Also, material parameter  enhances boundary layer thickness. It causes

enhancement in skin friction coefficient. Finally, this graph shows that wall friction factor is

larger in case of  = 2. Effects of curvature parameter  along with magnetic field parameter

on wall friction factor are explored via Fig. 1.10. This graph depicts that curvature parameter

 increases wall friction. This is true because curvature parameter is related with Reynolds

number in inverse relation and  (138) expresses that skin friction coefficient is also inversely

proportional to Reynolds number. Thus an increment in curvature parameter  reduces the

Reynolds number which alternatively increases wall friction.

Variations in wall heat flux coefficient are shown via Fig. 1.11 by varying governing

parameters , Pr and . As Prandtl number enhances momentum transport which reflects the

behavior of convective heat transfer and Nusselt number as well. Lastly, this graph demonstrates

that curvature parameter  accelerates the wall temperature gradient i.e. −0(0)
Table 1.4 displays the wall friction coefficient by varying governing parameters ,  

and . This table exhibits that skin friction is larger for shear thinning fluids as compared to

Newtonian or shear thickening fluids. Also, magnetic field enhances momentum boundary layer

and skin friction coefficient. Also, similar results are observed for material parameter  and

curvature parameter .

Variations in local Nusselt number against deviations in , Pr and  are presented in Table

1.5. It is found that the Nusselt number inclines when physical parameters  and Pr increases

but opposing behaviour has been recorded against .
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1.4 Concluding remarks

In current investigation boundary layer flow of MHD Sisko fluid past a stretching cylinder

is presented. The results are calculated with shooting technique are shown via graphs and

tables. It is observed that the applied magnetic field controls momentum boundary layer and

decelerates velocity of fluid. Also, fluid velocity enhances versus both curvature parameter 

and Sisko parameter . Curvature parameter  rises fluid temperature while Prandtl number

Pr causes reduction in it. Both velocity and temperature decline versus power law index .
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Chapter 2

Magnetohydrodynamic flow of Sisko

fluid over a stretching cylinder with

variable thermal conductivity: A

numerical study

This chapter extends the previous work by taking temperature dependent thermal conductivity.

Experimentally, it is validated that thermal conductivity of fluid changes when temperature rises

from 0 to 400F. As thermal conductivity is an important thermal property which measures

the capability of conductance, hence this property plays a paramount role in heat transfer

analysis. Thus major concern of present chapter is to discuss the variable thermal conductivity

effects on MHD Sisko fluid flow over stretching cylinder. Appropriate group of local similar

transforms are utilized to transform the modelled partial differential equations into ordinary

differential system and then resulting system is tackled with Runge-Kutta-Fehlberg scheme.

Physical aspects of interesting physical quantities are depicted through graphs versus involved

parameters. Additionally, variations in local wall friction and local heat flux are exhibited

with figures and tables. For validation of computed results, a comparison has been made with

literature.
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2.1 Mathematical formulation

Let us assume the axisymmetric, 2-dimenssional flow of Sisko fluid over stretching cylinder.

Surface is stretching along −  (axial direction of cylinder) with velocity () = . The

upper half of the plane i.e.   0 is filled with fluid. A magnetic field of strength 0 is imposed

on the fluid particles in radial direction by neglecting induced magnetic field and electric field.

Thermal conductivity of the fluid is considered as temperature dependent (i.e. variable). The

governing equations after boundary layer approximations are given by

B0
B0

B0

2r0

r

x

u 0

T T

u = U(x), v = 0, T = Tw

Fig. 2.1

Fig. 2.1: Geometry of the problem.

()


+

()


= 0 (2.1)





+ 




=




(
1






(



))− 


(−


) +




(−


)−1

2

2
− 


20 (2.2)





+ 




=
1






(




) (2.3)

subject to the boundary conditions
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( ) = () ( ) = 0  ( ) =  at  = 0 (2.4)

( ) → 0  ( )→ ∞ as  →∞

In above system  and  represent the components of velocity along −axis and -axis.

Also,  called the high shear rate viscosity, consistency index is denoted with ,  represents

the power law index,  is the electrical conductivity and  is the density of fluid particles. In

last equation,  is temperature while , ∞ and  = 


represent wall temperature, extreme

temperature and thermal diffusivity respectively.

Define the stream function Ψ such that

 =
1



Ψ


,  = −1



Ψ


 (2.5)

which satisfies the continuity equation identically.

Modelled differential system is converted into non-dimensional form by using the following

transformations

 =
2 − 20
20

Re
1

+1

  Ψ = 0 Re
−1
+1

 ()

() =
 − ∞
 − ∞

  = ∞(1 + ) (2.6)

where Re =
2−


is the Reynolds number ∞ is thermal diffusivity when  → ∞ and

 is a positive number called thermal conductivity parameter.

Using above similarity transformations into  (21)−(23) following system of equations
is obtained

(1 + 2) 000 + (1 + 2)
+1
2 (− 00)−1 000 − (+ 1)(1 + 2)−12 (− 00)
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+2 00 −  0
2

+
2

+ 1
 00 − 0 = 0 (2.7)

(1 + 2)(00 + (00 + 02)) + 2(1 + )0 +
2

+ 1
Pr 0 = 0 (2.8)

and the boundary conditions of the problem reduces to

(0) = 0  0(0) = 1  (0) = 1

 0(∞) = 0  (∞) = 0 (2.9)

Here the curvature parameter , Hartmann parameter  , Sisko fluid parameter  and

Prandtl number Pr are defined as

Re =



  =



0
Re

−1
+1

   =
20




 =
Re

2
+1



Re
 Pr =



∞‘
Re

−2
1+

  (2.10)

The quantities of practical interest i.e. local wall friction and local wall heat flux are defined

as

 =

1
2
2

and  =


( − ∞)
 (2.11)

where  is surface shear stress while  called wall heat flux. These quantities are defined

below

 = (



)=0 − (−


)=0 and  = −(


)=0  (2.12)
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The non-dimenssional form of wall friction and heat flux coefficients are take the following

form

1

2
 Re

1
+1

 =  00(0)− [− 00(0)] and Re
−1
+1

 = −0(0) (2.13)

2.2 Numerical solution

In this chapter, the problem on MHD non-Newtonian Sisko fluid with varying thermal conduc-

tivity is formulated. Since governing system i.e.  (27) − (28) of this problem are highly

nonlinear. For computation of numerical solution shooting method is implemented. The varia-

tions in model are discussed for different values of curvature parameter  material parameter

, magnetic field parameter , variable thermal conductivity parameter  and Prandtl number

Pr. Initially higher order equations are transformed to:

 000 =
(+ 1)(1 + 2)

−1
2 (− 00) − 2 00 +  0

2 − 2
+1

  00 + 0

(1 + 2) + (1 + 2)
+1
2 (− 00)−1

 (2.14)

00 = −
2
+1

Pr 0 + 2(1 + )0 + (1 + 2)02

(1 + 2)(1 + )
 (2.15)

A new set of variables is defined as

 = 1 
0 = 2 

00 = 3 
000
= 

0
3  = 4, 

0
= 5 and 

00
= 

0
5 (2.16)

Using  (216) in governing equations i.e.  (214)− (215) these are transformed to
first order ordinary differential system

01 = 2 (2.17)
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02 = 3 (2.18)

03 =
(+ 1)(1 + 2)

−1
2 (−3) − 23 + 22 − 2

+1
13 +2

(1 + 2) + (1 + 2)
+1
2 (−3)−1

 (2.19)

04 = 5 (2.20)

05 = −
2
+1

Pr 15 + 2(1 + 4)5 + (1 + 2)25

(1 + 2)(1 + 4)
 (2.21)

and the subjected boundary conditions are

1(0) = 0 2(0) = 1 2(∞) = 0 4(0) = 1 and 4(∞) = 0 (2.22)

Now to compute the solution of above system i.e.  (217) − (221) with Runge-Kutta
Fehlberg method, it requires five initial values, but  (222) has only three initial conditions, so

it lacks two initial approximations for dependent variables 3 and 5. Thus before proceeding

towards solution procedure first missing initial conditions must be chosen, 3(0) = 1 and

5(0) = 2 are chosen initially. Additionally, the domain of independent variable is semi-

infinite, so finite upper limit of  i.e. ∞ must be chosen Now solution process is started for

computation of fluid velocity and temperature. The process of solution will be terminated after

satisfying the tolerance criteria which is 10−6 in this problem. If error differences is larger then

initial values are modified by using Newton method.

2.3 Results and discussion

MHD flow of Sisko fluid over stretching cylinder is described under the impacts of variable

thermal conductivity. The solution was found numerically and compared with reported data to

check accuracy. In Table 2.1, numerical values of skin friction coefficient are compared with

Hassanien et al. [42], Cortell [43], Liao [20], Andreson and Kumran [44] and Abel et al. [47] It

can be observed from the table that results agree upto desired significant digits. Additionally,

comparison of wall heat flux i.e. −0(0) is presented via Table 2.2 by varying Prandtl number.
This graph reveals that present values are quite similar with reported data i.e. results of Yih
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[19], Ali et al. [33] and Reddy et al. [35]

Table 2.1: Comparison of wall friction coefficient by varying  and considering  = 0

 = 0 and  = 0

Hassanien et al. Cortell [43] Laio [20] Andreson and Abel et al. Present

 [42] Kumran [44] [47] Results

0.6 1.0280 1.0951 1.095166 1.0961

0.8 1.02883 1.0000 1.0000 1.0284 1.028713 1.0285

1 1.00000 1.0000 1.000000 1.0000

1.2 0.98737 0.9874 0.987372 0.9874

1.4 0.9819 0.981884 0.9824

1.5 0.98090 0.9820 0.9806 0.980653 0.9806

1.6 0.9798 0.979827 0.9798

1.8 0.97971 0.9794 0.979469 0.9797

2 0.9797 0.9820 0.9800 0.979991 0.9791

Table 2.2: Local Nusselt number comparison with reported data by varying Pr and keeping

 = 1,  = 0  = 0,  = 0

Pr Yih [19] Ali et al. [33] Reddy et al. [35] Present

0.71 0.8686 0.8686 0.86864 0.8685

1 1.0000 1.0000 1.001 1.0000

3 1.9237 1.9237 1.9230 1.9229

10 3.7207 3.7208 3.72028 3.7221

Fig. 2.2 shows the fluid velocity curves  0() for different values of Sisko fluid parameter

 and  = 1 2 This figure discloses that enhancement in Sisko fluid parameter  causes

increase in both velocity and momentum boundary layer. These results are physically valid

because Sisko parameter has inverse relation with consistency index  i.e. fluid viscosity of

power law region. So, when material parameter  increases, viscous force become weaker, as a

result, the fluid motion is accelerated. To figure out the influences of magnetic field parameter
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 on fluid velocity, Fig. 2.3 is constructed. This figure divulges that when magnetic field

strength increases, it decays fluid velocity. It is true because the Lorentz force (resisting force)

become stronger when magnetic field parameter  increases. Effects of curvature parameter 

on velocity profile  0() are displayed through Fig. 2.4 for power law index  = 1 and 2. It

can be perceived that when bending of cylinder enhances it reduces both radius of cylinder and

surface area. Hence the surface of the cylinder provides less, as a result, fluid velocity enlarges.
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Fig. 2.2: Fluid velocity  0() variations against Sisko parameter  and  = 1 and 2
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Fig. 2.3: Magnetic field parameter  influences on  0() for  = 1 and 2
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Fig. 2.4: Velocity profile  0() for variation in curvature parameter  and  = 1 2

Fig. 2.5 depicts the behavior of thermal conductivity parameter  on heat equation for

 = 1 and 2. This figure indicates that when thermal conductivity of fluid increases, it rises

the fluid temperature. The reason behind that when thermal conductivity enhances, then fluid
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conducts heat more rapidly and consequently temperature increases. Temperature curves are

shown for different values of Prandtl number Pr and  = 1, 2 in Fig. 2.6. It can be observe

that temperature profile declines for larger values of Prandtl number Pr. It holds practically

since Pr is the ratio of momentum to thermal diffusivity. Thus by increasing Pr, momentum

transport accelerates which enhances convective heat transfer and declines conductive heat

transfer, hence it reduces the fluid temperature. The influence of curvature parameter  on

temperature profile for  = 1 and 2 is shown via Fig. 2.7. This graph illustrates that curvature

parameter  enhances fluid temperature and hence thermal boundary layer as well. This is

physically true because when curvature of cylinder increases, it reduces radius of the cylinder

which accelerates the heat transfer rate. Fig. 2.8 depicts magnetic field parameter  effects

on temperature profile by keeping  = 1 2 Here fluid temperature enhances by increasing the

strength of magnetic field. The fact behind that when magnetic field strength increases, it

produced heat in the fluid which causes enhancement in fluid temperature.
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Fig. 2.5: Temperature curves against thermal conductivity parameter  and keeping  = 1,

2
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Fig. 2.6: Temperature profile () versus Prandtl number Pr while fixing  = 1, 2
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Fig. 2.7: Curvature parameter  impacts on temperature () for  = 1 2
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Fig. 2.8: Temperature profile () for magnetic field parameter  and keeping fixed .

Fig. 2.9 reflects combined impacts of fluid parameter  magnetic field parameter  and

power law index  on skin friction coefficient. This graph demonstrates that wall friction en-

hances versus magnetic field parameter  and Sisko parameter . The results hold practically

because enhancement in  and  increase momentum boundary layer and coefficient of wall

friction. Also, this figure proves that wall shear stress of pseudoplastic fluid is hotter than dila-

tant and Newtonian fluids. Fig. 2.10 delineates the fluctuations in skin friction coefficient by

altering power law index  Sisko parameter  and curvature parameter . It shows that cur-

vature parameter  increases wall friction coefficient. It is true because inclination in curvature

parameter  decrease Reynolds number which causes enhancement in wall shear stress.
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Fig. 2.9: Effects of magnetic field parameter  and Sisko parameter  on wall friction

coefficient for  = 1 2.
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Fig. 2.10: Wall shear stress by varying curvature parameter  and material parameter 

while  = 05 1, 2

The impacts of governing parameters ,  ,  and  on skin friction coefficient is displayed
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in Table 2.3. In this table a comparison is presented between power law fluid ( = 0) and

Sisko fluid ( = 1). It is observed that Sisko fluid has larger skin friction coefficient than power

law fluid for all values of . Also, wall shear stress declines for larger values of power law index

 while it inclines for physical parameters  and 

Table 2.3: Influences of  ,  and  on skin friction coefficient.

     00(0)− (− 00(0))

0 0.7 0.3 0.5 -1.3929

1 -1.3485

1.6 -1.2873

1 0.1 -1.2558

0.4 -1.3924

0.7 -1.5160

0.3 0.1 -1.1825

0.6 -1.3839

1 -1.5504

1 0.5 0.3 0.5 -2.2533

1 -2.0648

2 -1.8911

1 0.1 -1.9943

0.4 -2.1228

0.7 -2.2880

0.3 0.1 -1.7270

0.6 -2.1528

1 -2.4980

Fig. 2.11 exemplifies the effects of both curvature parameter  and variable thermal

conductivity parameter  on wall temperature gradient. Curvature parameter  accelerates heat

transfer from the wall, while the influence of thermal conductivity parameter  is opposite on it
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(see figure). These results are true because Nusselt number varies inversely to heat conduction.

Thus high thermal conductivity decreases the Nusselt number. Also, it can be analyzed that

power law index  causes decline in wall temperature gradient. Fig. 2.12 expresses variations

in local wall heat flux versus variable thermal conductivity parameter  Prandtl number Pr and

power law index . This figure illustrates that Prandtl number enhances local Nusselt number.

It can see that the increment in Prandtl number reduces thermal conductivity which increases

the local Nusselt number.
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Fig. 2.11: Effects of physical parameters  and  on −0(0) for  = 05 1 and 2
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Fig. 2.12: Wall temperature gradient versus physical parameters Pr,  and .

The impacts thermophysical parameters , , Pr and  on Nusselt number is discussed in

Table 2.4. It can be see from the table that fluid with constant thermal conductivity ( = 0)

has larger local Nusselt number when compared with the fluid for variable thermal conductivity

( = 05). Also,  and Pr enhances the Nusselt number.
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Table 2.4: Effect of curvature parameter  thermal conductivity parameter , Prandtl

number Pr and power law index  on local Nusselt number.

  Pr  −0(0)
0 0.5 1 0.5 0.9290

0.1 0.8384

2 0.7374

1 1 0.8384

2 1.1093

3 1.3517

1 0.1 0.6614

0.6 0.8843

1 1.0658

0.5 0.5 1 0.5 0.7178

1 0.6549

2 0.5846

1 1 0.6549

2 0.8491

3 1.0307

1 0.1 0.4971

0.6 0.6945

1 0.8512

2.4 Concluding remarks

Current chapter focuses on Sisko fluid flow with applied magnetic field. Thermal conductivity

of fluid is considered temperature dependent. Solution is computed with shooting technique.

It can be observed that

• Material parameter  and curvature parameter  enhance fluid velocity while both power
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law index  and magnetic field parameter  reduce it.

• By increasing thermal conductivity and curvature parameter  fluid temperature rises
while power law index  and Prandtl number Pr fall down temperature.

• Wall friction coefficient of power law fluid is much lesser than Sisko fluid while pseudo-
plastic fluid has larger skin friction coefficient than both Newtonian and dilatant fluids.

• Magnetic field parameter , Sisko fluid parameter  and curvature parameter  increases
skin friction coefficient absolutely.

• Local Nusselt number enlarges against curvature parameter  and Prandtl number Pr.

• Nusselt number is larger of constant thermal conductivity as compare to variable thermal
conductivity.
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Chapter 3

Computational analysis of

magnetohydrodynamic Sisko fluid

flow over a stretching cylinder in the

presence of viscous dissipation and

temperature dependent thermal

conductivity

In this chapter effects of viscous dissipation are included in flow analysis which is an extension of

previous chapter. In practice, it is noticed that during the fluid motion viscosity some amount

of kinetic energy is transformed into thermal energy i.e. dissipate energy. As this phenomenon

processed because of viscosity, thus called viscous dissipation. Thus focus of current chapter is

on MHD Sisko fluid flow over stretching surface under the influences of viscous dissipation and

variable thermal conductivity. The variable similarity transforms are used on governing partial

differential equations which non-dimensionalized the governing system. Attained equations are

solved with the aid of Runge-Kutta method. Interesting aspects of flow velocity and temperature

are computed and visualized via graphs for different parametric conditions. Influences of flow
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parameters on wall shear stress and local Nusselt number are discussed briefly and concisely

via figures and tables. The present results have good covenant with published results.

3.1 Development of problem

Consider the axisymmetric, steady state, electrically conducting, boundary layer flow of Sisko

fluid over continuously stretching surface. Cylinder is stretched along axial direction with

velocity () =  for   0. A magnetic field of strength 0 is imposed in radial direction.

The effects of variable thermal conductivity and viscous dissipation are factored into analysis.

After using Prandtl theory governing equations are transformed to

B0
B0

B0

2r0

r

x

u 0

T T

u = U(x), v = 0, T = Tw

Fig. 3.1

Fig. 3.1: Geometry of the fluid model.

 ()


+

 ()


= 0 (3.1)





+ 




=








(



)− 


(−


) +




(−


)−1

2

2
− 20


 (3.2)
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



+ 




=
1







µ






¶
+





µ
−


¶2
+





µ
−


¶+1

 (3.3)

along with prescribed boundary conditions

 = ()  = 0 at  = 0 and → 0 as  →∞ (3.4)

 =  at  = 0 and  → ∞ as →∞

In above differential system  and  are velocity components,  is high shear rate viscos-

ity,  is power law region viscosity,  is power law index,  is electrical conductivity while 

denotes density of fluid. Temperature is denoted by  ,  and ∞ represent wall and ambi-

ent temperature respectively while  and  =
( )


are symbols of specific heat the thermal

diffusivity.

The stream function Ψ of flow velocity is given below

 =
1



Ψ


,  = −1



Ψ


 (3.5)

The suitable similarity transformations are defined as

 =
2 − 20
20

Re
1

+1

  Ψ = 0 Re
−1
+1

 ()

() =
 − ∞
 − ∞

  = ∞(1 + ) (3.6)

here  and ∞ represent thermal conductivity parameter and extreme thermal diffusivity

while Re =
2−


called the Reynolds number.

The governing partial differential system is transformed into non-dimenssional form by using

above defined scaling variables. After employing these transforms, the continuity equation is

satisfied while resting two equations are take the following form
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(1 + 2) 000 + (1 + 2)
+1
2 (− 00)−1 000 − (+ 1)(1 + 2)−12 (− 00)

+2 00 −  0
2

+
2

+ 1
 00 − 0 = 0 (3.7)

(1 + 2)(00 + (00 + 02)) + 2(1 + )0 +
2

+ 1
Pr 0+

(1 + 2)Pr
¡− 00¢2 +Pr(1 + 2)

+1
2

¡− 00¢+1 = 0 (3.8)

and the boundary conditions reduce to

(0) = 0  0(0) = 1  (0) = 1

 0(∞) = 0  (∞) = 0 (3.9)

In above system, the symbols    Pr and  represent magnetic field parameter,

curvature parameter, Sisko parameter, Prandtl number and Eckert number which are defined

as

Re =



  =



0
Re

−1
+1

   =
20




 =
Re

2
+1



Re
  =

2

( − ∞)
 Pr =



∞
Re

−2
1+

  (3.10)

The fluid phenomenon in the vicinity of sheet surface is deliberated through wall friction

and wall heat flux. These are defined as

 =

1
2
2

and  =


( )( − ∞)
 (3.11)
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In above formulas, surface friction coefficient and Nusselt number are denoted with  and

. Here  and  denote surface friction and wall heat flux which are defined as

 = (



)=0 − (−


)=0 and  = −( )(


)=0  (3.12)

Coefficient of wall friction and wall gradient are transferred into non-dimenssional form

given as

1

2
Re

1
+1

 =  00(0)− [− 00(0)] and Re
−1
+1

 = −0(0) (3.13)

3.2 Numerical solution

As flow govern equations i.e.  (37)−(38) are highly nonlinear simultaneous set of ordinary
differential equations. So, in order to find solution of these simultaneous equations along with

boundary conditions (39), shooting technique in conjunction with fifth order Runge-Kutta in-

tegration scheme is employed. Both velocity and temperature profiles are discussed for different

values of dimensionless parameters. Since fifth order Runge-Kutta technique tackles only initial

value problems, so first  (37)−(38) are converted into set of first order differential system.
Firstly above set of equations are re-written as

 000 =
(+ 1)(1 + 2)

−1
2 (− 00) − 2 00 +  0

2 − 2
+1

  00 + 0

(1 + 2) + (1 + 2)
+1
2 (− 00)−1

 (3.14)

00 =
−1

(1 + 2)(1 + )
[
2

+ 1
Pr 0 + 2(1 + )0 + (1 + 2)02

+Pr((1 + 2)
¡− 00¢2 + (1 + 2)+12 ¡− 00¢+1)] (3.15)

New variables are defined in  (316) are utilized to reduce first order differential equations
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 = 1 
0 = 2 

00 = 3 
000
= 

0
3  = 4, 

0
= 5 and 

00
= 

0
5 (3.16)

After inserting  (316) into  (314) − (315) new system of ordinary differential

equations  (317)− (321) is obtained

01 = 2 (3.17)

02 = 3 (3.18)

03 =
(+ 1)(1 + 2)

−1
2 (−3) − 23 + 22 − 2

+1
13 +2

(1 + 2) + (1 + 2)
+1
2 (−3)−1

 (3.19)

04 = 5 (3.20)

05 =
−1

(1 + 2)(1 + 4)
[
2

+ 1
Pr 15 + 2(1 + 4)5 + (1 + 2)25

+Pr((1 + 2) (−3)2 + (1 + 2)
+1
2 (−3)+1)] (3.21)

together with the boundary conditions

1(0) = 0 2(0) = 1 2(∞) = 0 4(0) = 1 and 4(∞) = 0 (3.22)

This system of equations is solved with shooting method, the following procedure is adopted:

1. Firstly best suited limit for ∞ is chosen (∞ is 5 in this case).

2. Now choose appropriate initial guesses for 3(0) and 5(0)

3. In next step, ordinary differential system is solved by using Runge-Kutta Fehlberg scheme.

4. Finally, boundary residuals (absolute variations in given and calculated values of 2(∞)
and 4(∞)) are found. The solution will converge if boundary residuals are less than error
tolerance which is considered 10−6
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5. If values of boundary residuals are larger than error tolerance, then values of 3(0) and

5(0) are refined by Newton formula.

The procedure will continue unless the boundary residuals meet the desired criteria.

3.3 Results and discussion

In current investigation, the stretched flow of non-Newtonian Sisko fluid is examined under the

impact of normally applied magnetic field. In addition, effects of viscous dissipation and variable

thermal conductivity are also considered. Shooting technique is utilized to solve governing

equations. The accuracy of solution is verified by comparing with existing literature. Wall

friction factor versus power law index  are compared with reported data i.e. Hassanien et al.

[42], Cortell [43], Liao [20], Andersson and Kumran [44] and Abel et al. [47] (see Table 3.1). It

is observed that present results agree with previous upto desired significant digits. Table 3.2

illustrates the comparison of Nusselt number i.e. −0(0) against alteration in Prandtl number
Pr with previously published results i.e. Grubka and Bobba [41], Ishak et al. [23], Yih [19],

Reddy [35] and Ali et al. [33]. This table shows that both results agreed upto significant

number of digits.
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Table 3.1: Comparison table of skin friction coefficient i.e. | 00(0)− (− 00(0))| for dif-
ferent values of power-law index  and considering  = 0  = 0  = 0

 Hassanien Cortell [43] Liao [20] Andersson and Abel et al. Present Results

et al. [42] Kumaran [44] [47]

0.2 1.9287 1.943685 1.9200

0.4 1.2730 1.2715 1.272119 1.2716

0.5 1.16524 1.1605 1.167740 1.1640

0.6 1.0951 1.095166 1.0976

0.8 1.02883 1.0280 1.0284 1.028713 1.0282

1.0 1.0000 1.0000 1.0000 1.0000 1.000000 1.0000

1.2 0.98737 0.9874 0.987372 0.9888

1.4 0.9819 0.981884 0.9812

1.5 0.98090 0.9820 0.9806 0.980653 0.9805

1.6 0.9798 0.979827 0.9797

1.8 0.97971 0.9794 0.989469 0.9791

2.0 0.9797 0.9800 0.9800 0.979991 0.9801

Table 3.2: Comparison of −0(0) by varying Pr keeping  = 0  = 0  = 0  = 0  =

0  = 1

Pr Grubka and Ishak et al. Yih [19] Reddy [35] Ali et al. Present Results

Bobba [41] [23] [33]

0.71 0.8686

1.0 1 1 1 1 1.0001 1.0067

3.0 1.9237 1.9237 1.9237 1.9237 1.9230 1.9260

10.0 3.7207 3.7207 3.7207 3.7208 3.72028 3.7267
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Fig. 3.2: Impacts of magnetic field parameter  and power law index  on velocity  0().
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Fig. 3.3: Variations in velocity  0() versus curvature parameter  and power law index


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Fig. 3.4: Variations of  0() for altering values of material parameter  and  = 1 2
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Fig. 3.5: Influence of Eckert number  on temperature profile () for power-law index

 = 1 2
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Fig. 3.6: Effects of thermal conductivity parameter  and power-law index  on ()
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Fig. 3.7: Temperature profile () versus curvature parameter  while keeping  = 1 2.
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Fig. 3.8: Temperature profile () fluctuations versus Prandtl number Pr and  = 1 2
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Fig. 3.9: Combined effects of Sisko parameter  as well as magnetic field parameter on

coefficient of skin friction by considering power law-index  = 1 2
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Fig. 3.10: Effects of magnetic field strength and curvature parameter  on wall shear stress

for power law-index  = 1 2
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Fig. 3.11: Variations of Nusselt number versus Eckert number  variable thermal con-

ductivity parameter  and power law-index  = 1 2
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Fig. 3.12: Variations in wall heat transfer by altering curvature parameter  Eckert

number  and  = 1 2

Table 3.3: Values of skin friction coefficient for different values of parameters   and 

for  = 1 2

   (+ 1) 00(0)  00(0)−  00
2
(0)

0.1 0.3 0.2 -1.8221 -1.6455

0. -2.0223 -1.9163

1.0 -2.2284 -2.1818

0.5 0.1 -2.4396 -2.4416

0.3 0.3 -1.9549 -1.8265

0.5 -2.3716 -2.3528

0.3 1 -2.8531 -2.8456

2 -3.3594 -3.3201

3 -1.8704 -1.7640
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Table 3.4: Local Nusselt number against involving parameters   and Pr for  = 1 2

    −0(0) −0(0)
 = 1  = 2

0.1 0.1 1 0.2 0.6327 0.4740

0.5 0.7914 0.6493

1.0 0.9804 0.8589

0.5 0.1 0.7914 0.6493

0.3 0.7145 0.5922

0.5 0.6569 0.5497

0.1 1 0.7914 0.6493

2 1.0428 0.7762

3 1.2593 0.8986

1 0.1 0.7914 0.6493

0.3 0.6483 0.4301

0.6 0.4336 0.1011

The variations in interested physical quantities are visualized through graphs and tables.

Fig. 3.2 exhibits the influence of magnetic field on velocity profile  0(). It is worth

mentioning that the magnetic field strength decelerates the fluid momentum in boundary layer

regime. Because magnetic field produces Lorentz force which resists fluid motion. Also, it is

noticed that increment in power law index  leads to decrease in velocity  0(). Fig. 3.3

displays the asymptotic curves of velocity profile against curvature parameter  and power law

index  It is found that fluid motion experienced less resistance when curvature parameter

enlarges which consequently enhances velocity. The presently computed results validated the

above mentioned fact. Fig. 3.4 displays the velocity curves by varying power law index  and

Sisko parameter . The figure shows that velocity profile  0() enhances versus Sisko parameter

 because larger values of  corresponds to fluid with low viscosity. Also, this figure reflects

that the velocity profile decreases by varying power law index 

Variations in temperature versus Eckert number  are deliberated via Fig. 3.5 by fixing
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power law index i.e.  = 1 2. As Eckert number  accelerates the advective transport which

consequently enhances the collision of particles, these collisions transformed kinetic energy into

thermal energy, as a result, fluid temperature rises. Finally, it can be seen that temperature

profile () decreases by increasing power-law index  Fig. 3.6 demonstrates the influence

of thermal conductivity parameter  on temperature profile (). Enhancement in thermal

conductivity boosted the capability of heat transference and hence fluid temperature. The

curvature parameter  effects on fluid temperature are depicted with the aid of Fig. 3.7. This

graph shows that curvature parameter rises the fluid temperature. Fig. 3.8 delineates the

fluctuations in temperature profile for variations in Prandtl number Pr. It is observed that

Prandtl number Pr decreases temperature profile ().

Fig. 3.9 illustrates the magnetic field parameter  and Sisko parameter  on wall fric-

tion coefficient. Current graph describes that material parameter  increases the skin friction

coefficient in absolute sense, it holds physically because larger values of material parameter 

enhances boundary layer thickness. Also, magnetic field parameter  increases wall friction

coefficient. Finally, this figure displays that wall friction coefficient has less values for  = 2 as

compared to  = 1 Fig. 3.10 represents graph of variations in coefficient of wall friction by

altering fluid parameter  and magnetic field parameter  . Since, Reynolds number and skin

friction coefficient are in inverse relation as shown in  (313). Also, curvature parameter 

has inverse relation with Reynolds number, thus increase in curvature parameter  Reynolds

number becomes low which alternatively enhances coefficient of wall friction.

Eckert number  and thermal conductivity parameter  impacts on wall heat flux are

displayed in Fig. 3.11. It is mentioned that both parameters decrease wall heat flux. Addi-

tionally, Nusselt number are decreased for power law index . Deviations in surface heat flux

i.e. −0(0) on altered values of Eckert number  and curvature parameter  are shown by
Fig. 3.12. This graph illustrates that Nusselt number declines versus Eckert number  while

curvature parameter  causes enhancement in wall heat flux.

The behavior of the governing parameters    and  on coefficient of skin friction is

analyzed via Table 3.3. This table shows that fluid parameters   and  enlarge the skin

friction coefficient absolutely for both cases i.e.  = 1 and 2

Table 3.4 reveals the influences of Prandtl number Pr Eckert number , thermal con-
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ductivity parameter  and curvature parameter  on wall heat flux by keeping  = 1, 2 Wall

heat flux is enhances by varying Prandtl number Pr and curvature parameter  while Eckert

number  thermal conductivity parameter  and power law index  reduce wall temperature

gradient.

3.4 Concluding remarks

In present chapter, the numerical simulations for MHD Sisko fluid are developed to explore

the dynamics over stretching cylinder. Effects of temperature dependent thermal conductivity

and viscous dissipation are taken into account. The modeled partial differential system is

transformed into ordinary differential system by using scaling transforms which then solved

numerically. The main outcomes of the current observation are:

• Both curvature parameter  and Sisko parameter  accelerate fluid momentum while

power law index  and magnetic field strength decelerate it.

• Prandtl number Pr and power law index  are responsible to decrease the temperature

while it rise up against flow parameters   and 

• The effects of all pertinent parameters i.e.   and  on skin friction coefficient are

qualitatively similar but Sisko parameter  has prominent effects in quantitative sense.

• Curvature parameter , Eckert number  and Prandtl number Pr augments the Nusselt
number while thermal conductivity parameter  and power law index  are responsible to

reduce it.
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Chapter 4

Combined effects of viscous

dissipation and Joule heating on

MHD Sisko nanofluid over a

stretching cylinder

This chapter mathematically configures the physical situation focusing on MHD flow of Sisko

nanofluid past over a stretching cylinder with cumulative effects of viscous dissipation and Joule

heating. Nanofluid is a modern type of fluids which consists base fluid and nano-size particles.

Different metals (copper, aluminum, silicon etc.) are used as nanoparticles. The basic purpose

of including nanoparticles in fluids is to increase thermal conductivity of base fluid. Because

it is found that mostly fluids (e.g. oil, ethylene glycol, water and engine oil) which are con-

ventionally utilized in heat transfer have low heat conduction capacity. Also, movement of

electrical conducting fluid produces heat. It is an important phenomenon known as Joule heat-

ing, it has many applications in different areas. The mathematical modelling of the considered

physical problem produces nonlinear partial differential equations which are transfigured into

non-dimenssional form via suitable scaling group of transforms. Shooting technique is used

to solve nonlinear set of flow govern equations. Comparison of numerical solution is made

with the reported data to validate the model accuracy. Variations in velocity, temperature and
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concentration are discussed under different parametric conditions. The numerically computed

results are deliberated via graphs by selecting suitable values of the relevant physical parame-

ters. Additionally to insight physical phenomenon in the vicinity of surface i.e. coefficients of

wall friction, wall heat flux and wall mass flux are computed and explicated in both tabular

and graphical manners.

4.1 Problem formulation

Let assume steady, axisymmetric, 2D flow of Sisko nanofluid passing through stretching cylinder.

Cylinder surface is taken at  = 0 and surface is stretching in −direction with velocity
() =  where  is constant. Magnetic field of strength 0 is utilized in normal direction

i.e. −direction. Effects of energy dissipation and Joule heating are assumed. The governing
equations take the below-defined form (after imposing boundary layer theory)

B0
B0

B0

2r0

r

x

u 0

T T

u = U(x), v = 0, T = Tw,
C = Cw

Fig. 4.1

C C

Fig. 4.1: Geometry of the problem.

 ()


+

 ()


= 0 (4.1)
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



+ 




=








(



) +



∞



(



) (4.4)

along with the boundary conditions

 = ()  = 0 at  = 0 and → 0 as →∞

 =  at  = 0 and  → ∞ as →∞ (4.5)

 =  at  = 0 and  → ∞ as  →∞

In  (41)−(45)  and  denote the axial and radial velocity components respectively, 
 and  are Sisko fluid constants,  denotes electrical conductivity,  denotes the temperature,

 is nanoparticles concentration,  represents specific heat,  is Brownian motion diffusion

coefficient,  is diffusion coefficient of thermophoresis and  is the ratio of nanoparticle heat

capacity to base fluid heat capacity. The temperature and volumetric fraction of nanoparti-

cles at the surface of cylinder are denoted by  and  respectively while temperature and

concentration away from the cylinder are symbolized by ∞ and ∞

The stream function of velocity is defined as

 =
1



Ψ


,  = −1



Ψ


 (4.6)

To find similar solution of the governing equations i.e.  (41)− (44), the following set
of similarity variables is defined
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 =
2 − 20
20

Re
1

+1

  Ψ = 0 Re
−1
+1

 ()

() =
 − ∞
 − ∞

 () =
 − ∞
 −∞

 (4.7)

where  denotes dimensionless length,  is dimensionless velocity,  denotes dimensionless

temperature,  denotes the concentration of nanoparticles and Re denotes the Reynold number

which is defined as Re =
2−




After imposing the similarity transformations in  (41)− (44) the continuity equation
vanishes while momentum, energy and nanoparticles concentration equations are modified to

the following form

(1 + 2) 000 + (1 + 2)
+1
2 (− 00)−1 000 − (+ 1)(1 + 2)−12 (− 00)

+2 00 −  0
2

+
2

+ 1
 00 − 0 = 0 (4.8)

(1 + 2)00 + 20 +
2

+ 1
Pr 0 +Pr  02 +(1 + 2)Pr

¡− 00¢2
+Pr(1 + 2)

+1
2

¡− 00¢+1 + (1 + 2)(0
2

+00) = 0 (4.9)

(1 + 2)00 + 20 +
2

+ 1
Pr 0 +




(20 + (1 + 2)00) = 0 (4.10)

the boundary conditions in dimensionless form are

(0) = 0  0(0) = 1  (0) = 1 (0) = 1

 0(∞) = 0  (∞) = 0 (∞) = 0 (4.11)

In the above system of simultaneous equations,  represents the curvature parameter, 

denotes the material parameter,  denotes magnetic field parameter Pr is Prandtl number
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, ,  and  represent Eckert number, Brownian motion parameter and thermophoresis

parameter respectively while  denotes Lewis number. They are defined below

 =


0
Re

−1
+1

   =
20
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


 =
Re

2
+1


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  =

2

( − ∞)
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


Re

−2
1+

 

 =
( − ∞)


  =

 ( − ∞)
∞

  =



 (4.12)

The physical quantities in the surface vicinity i.e. local wall friction coefficient , local

wall heat flux coefficient  and local wall mass flux coefficient  are defined as

 =

1
2
2

  =


( − ∞)
and  =



( − ∞)
 (4.13)

where  is the stress at the surface,  and  are wall heat flux and mass flux. Mathe-

matically, these quantities are given below

 = (



)=0 − (−


)=0   = −(




)=0 and  = −(




)=0  (4.14)

Using similarity transformations into  (413)−(414),   and  are transformed

into following dimensionless form

1

2
 Re

1
+1

 =  00(0)− [− 00(0)] Re
−1
+1

 = −0(0) and Re
−1
+1

 = −0(0) (4.15)
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4.2 Numerical solution

The flow govern equations i.e.  (48)−(410) are nonlinear. So for computation of solution,
shooting technique with Runge-Kutta fifth order integration scheme is employed and solution

is investigated against variations in flow controlling parameters. As Runge-Kutta techniques

only solve initial value problems, thus governing equations i.e.  (48)− (410) are reduced
to first order. These equations are reorganized into following form

 000 =
(+ 1)(1 + 2)

−1
2 (− 00) − 2 00 +  0

2 − 2
+1

  00 + 0

(1 + 2) + (1 + 2)
+1
2 (− 00)−1

 (4.16)

00 = − 1

(1 + 2)
[
2

+ 1
Pr 0 + 20 +Pr{ 02 +(1 + 2)

¡− 00¢2
+(1 + 2)

+1
2

¡− 00¢+1}+ (1 + 2)(0
2

+00)] (4.17)

00 = −2
0 + 2

+1
Pr 0 + 


(20 + (1 + 2)00)

(1 + 2)
 (4.18)

Now above defined equations are transformed into first order differential system with the

aid of below-defined variables

 = 1 
0 = 2 

00 = 3 
000
= 

0
3  = 4, 

0
= 5 

00
= 

0
5 (4.19)

 = 6 
0 = 7 and 00 = 07

After inserting  (419) into  (416) − (418) they are transfigured into following
differential system

01 = 2 (4.20)

02 = 3 (4.21)
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03 =
(+ 1)(1 + 2)

−1
2 (−3) − 23 + 22 − 2

+1
13 +2

(1 + 2) + (1 + 2)
+1
2 (−3)−1

 (4.22)

04 = 5 (4.23)

05 = − 1

(1 + 2)
[
2

+ 1
Pr 15 + 25 +Pr{22 +(1 + 2) (−3)2

+(1 + 2)
+1
2 (−3)+1}+ (1 + 2)(25 +57)] (4.24)

06 = 7 (4.25)

07 = −
2
+1

Pr17 + 27 +


(25 + (1 + 2)

0
5)

(1 + 2)
 (4.26)

The subjected boundary conditions are reduce to

1(0) = 0 2(0) = 1 2(∞) = 0 4(0) = 1 4(∞) = 0 (4.27)

6(0) = 1 and 6(∞) = 0

To solve above set of differential equations along with corresponding boundary conditions

shooting method is implemented which consists the following steps:

1. Choose appropriate value for the limit ∞.

2. Select initial approximations for 3(0) 5(0) and 7(0)

3. Solved  (420)− (426) with the aid of Runge-Kutta method.
4. Solution convergence criteria is that absolute difference between given and calculated

values of 2(∞) 4(∞) 6(∞) are less than error tolerance i.e. 10−6
5. If these differences are greater than tolerance error, then guessed values of 3(0) 5(0)

and 7(0) are refined by Newton method.

Process is repeated until the computed solution satisfies convergence criteria.
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4.3 Results and discussion

To figure out physical problem more clearly, the numerical technique is implemented to solve

governing differential equations, because it provides freedom to choose feasible values of govern-

ing parameters. In Table 4.1, a comparison of −0(0) values is is established with previously
reported data by varying Pr and putt resting parameters to zero. This table shows that com-

puted results agree with previous data (see Khan and Pop [94], Wang [101] and Gorla and

Sidawi [102]).

Table 4.1: Comparison table of −0(0) by altering Prandtl number Pr, when  =  =

 =  = 0 → 0 and  = 1

Pr Khan and Pop [94] Wang [101] Gorla and Sidawi [102] Present Results

0.07 0.0663 0.0656 0.0656 0.0656

0.2 0.1691 0.1691 0.1691 0.1695

0.7 0.4539 0.4539 0.549 0.4539

2 0.9113 0.9114 0.9114 0.9114

7 1.8954 1.1854 1.1905 1.8954

20 3.3539 3.3539 3.3539 3.3538

70 6.4622 6.4622 6.4622 6.4621
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1. Velocity profile
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Figs. 4.2-4.4: Velocity profile variations against fluid momentum governing parameters

   and 

Fig. 4.2 exhibits the behavior of fluid momentum versus Sisko parameter  on MHD Sisko

fluid ( = 05) and Sisko fluid ( = 0). It is observed that Sisko fluid moves much faster than

magnetohydrodynamic Sisko fluid. It could be noticed that material parameter  enhances

fluid velocity but higher values of  have not create considerable disturbance in the fluid
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movement i.e. change in velocity profile is small. A comparison of Sisko fluid velocity against

the Newtonian fluid velocity is presented by fluctuating curvature parameter  in Fig. 4.3.

This figure shows that Sisko fluid have more acceleration than Newtonian fluid. Also, curvature

parameter provides a substantial growth in the velocity for both Sisko and Newtonian fluids. In

the vicinity of cylindrical surface curvature parameter has reverse effects on flow velocity. Fig.

4.4 deliberates the variations in fluid movement for magnetic field parameter  and curvature

parameter  = 0 (stretching plate case) and  = 05 (stretching cylinder case). From the figure,

it can be analyzed that the motion of Sisko fluid on cylindrical surface is more rapid than

plate surface. Additionally, this graph prevailed that magnetic field produces an appreciable

resistance to fluid on both surfaces and hence reduces the fluid velocity.

2. Temperature profile
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Figs. 4.5-4.10: Fluid temperature behavior against the heat flow responsible parameters

  Pr    and 

The temperature profile of non-Newtonian Sisko fluid is plotted in Fig. 4.5 by altering Eck-

ert number  and fixing Prandtl number Pr = 1 and 2 This graph suggests that temperature

declines versus Prandtl number. On the other hand, Eckert number  rises temperature more

rapidly, because higher values of Eckert number correspond to accelerate the fluid particles

which collide more frequently with each other and release heat which alternatively rises tem-

perature. Impacts of Hartmann number  on temperature profile () are depicted via Fig.

4.6 for curvature parameter  = 0 (stretching plate case) and  = 05 (stretching cylinder case).
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This figure shows that the cylindrical surface is more hotter. Also, magnetic field parameter 

increases the temperature, because applied magnetic field heats both surface and fluid parti-

cles. Fig. 4.7 delineates the alteration in temperature versus thermophoresis parameter  for

Brownian motion parameter ( = 01 05). This figure shows that temperature is lower for

 = 01 as compared to  = 05. Additionally, it is analyzed that thermophoresis parame-

ter  rises the fluid temperature. Because thermophoresis phenomenon accelerates fluid and

nanoparticles from hot region to cold region which alternatively escalates the temperature. Fig.

4.8 shows temperature profile by altering Brownian motion parameter  and ( = 0 05)

This graph exhibits that effects of Eckert number  are noteworthy on temperature profile i.e.

when effects of Eckert number are assumed, noticeable change in temperature is observed. Also,

as Brownian motion tells the random movement of nanoparticles in the fluid, thus increasing

Brownian motion parameter corresponds to collide particles more frequently. This collision of

particles change kinetic energy into thermal energy. Hence it enhances the temperature. Cur-

vature parameter  impacts on temperature () are shown in Fig. 4.9 for Newtonian and

non-Newtonian fluids respectively. Curvature parameter enhances temperature profile versus

both Newtonian and Sisko fluids (see Fig. 4.9). Also, current graph shows that Sisko fluid is

much hotter than Newtonian fluid. The fluctuations is observed in Sisko nanofluid temperature

against Prandtl number Pr as shown in Fig. 4.10 by considering  = 0 (stretching plate case)

and  = 05 (stretching cylinder case). One can see that the fluid temperature on cylindrical

surface is more as compared to plate surface. In both cases fluid temperature falls down rapidly

versus Prandtl number Pr. This holds physically because Prandtl number Pr inversely varies

versus thermal conductivity i.e. capability of heat transfer.

85



3. Concentration profile
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Figs. 4.11-4.14: Variations in concentration of nanoparticles on altering values of involved

thermophysical parameters    Pr and 

Fig. 4.11 portraits the impact of Lewis number  on nanoparticles concentration profile

() by assuming Prandtl number (Pr = 1 2) The concentration of nanoparticles become

low when Prandtl number increases. This graph illustrates that Lewis number  declines the

volumetric fraction of nanoparticles massively. It provides evidence to the fact that the Lewis
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number varies inversely as mass diffusivity, hence Lewis number reduces mass diffusivity and

concentration of nanoparticles. Fig. 4.12 examines concentration profile () versus Prandtl

number Pr while keeping  = 0 (stretching plate case) and  = 05 (stretching cylinder case).

This figures exhibits that concentration of nanoparticles is higher in the case  = 05 (stretching

cylinder) as compared to  = 0 (stretching plate case). Also, this figure deliberates that

concentration profile () decreases considerably against Prandtl number Pr in both cases.

Fig. 4.13 reflects behavior of thermophoresis parameter  and Lewis number ( = 2 4)

on concentration profile () It is observed from the concentration curves that nanoparticles

concentration is very high in the case of Lewis number  = 2 Additionally, this graph provides

a valuable information that the thermophoresis parameter  increases concentration profile

() in both cases. Fig. 4.14 elaborates the impact of Brownian motion parameter  on the

concentration profile () for Lewis number ( = 2 4). It can be deduces from the figure that

Brownian motion parameter  decreases concentration profile () remarkably in quantitative

sense. This result holds practically because Brownian motion enhances the random movement of

nanoparticles i.e. they disperse nanoparticles in irregular way and hence concentration declines.

4. Wall friction factor (skin friction coefficient)
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Figs. 4.15-4.16: Wall fraction factor versus physical parameters    and 
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Fig. 4.15 deliberates magnetic field parameter  and Sisko parameter  effects on wall

friction factor for power law index  = 1 2. This graph exhibits that wall friction factor

enlarges against larger values of both parameters while its values are declined verses power

law index  Fig. 4.16 shows variations in wall friction factor against physical parameters

,  and  = 1 2. Current figure shows that curvature parameter escalates the factor of wall

friction substantially in magnitude sense. Also, similar results can be observed for larger values

of material parameter while wall friction factor slightly decreases against power law index.

Table 4.2: Governing parameters   and  effects on wall friction factor by keeping

 = 1 and 2

 = 1  = 2

   (+ 1) 00(0)  00(0)−  00
2
(0)

0.1 1 0.2 -1.8221 -1.6455

0.4 -2.0223 -1.9163

0.7 -2.2284 -2.1818

1 -2.4496 -2.4318

0.3 1 -1.9549 -1.8265

2 -2.3716 -2.3528

3 -2.8531 -2.8454

4 -3.3594 -3.3201

1 0.1 -1.8704 -1.7640

0.2 -1.9549 -1.8265

0.3 -2.0374

0.4 -2.1182

Table 4.2 shows wall friction coefficient against governing parameters   and  on wall

friction factor for  = 1, 2. This table shows that wall friction coefficient has larger values for

 = 1 In addition, this table gives the information that larger values of all three parameter

  and  enhance the skin friction coefficient in absolute sense. But effects of material

parameter are prominent on wall friction factor as compared to others effects i.e. skin friction
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coefficient grows more rapidly against material parameter.

5. Wall heat flux (local Nusselt number)
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Figs. 4.17-4.21: Influence of pertinent parameters on wall heat flux   Pr  

 and 

Figs. 4.17-4.21 depict the variations of wall heat flux by varying parameters   Pr

   and  Fig. 4.17 explains the behavior of wall heat flux coefficient versus , Pr

and  This graph reveals that both Prandtl and Eckert numbers have reverse effects on local

Nusselt number. Also, Eckert number affects Nusselt number more significantly rather than

Prandtl number. The reason behind that Eckert number decreases enthalpy i.e.  −∞, so it

reduces heat transfer rate and hence Nusselt number. The behavior of −0(0) against magnetic
field parameter  and Prandtl number Pr is illustrated in Fig. 4.18 for power law index

( = 1 2) This graph shows that Pr enlarges Nusselt number while magnetic field parameter

 declines it. Also, one can seen that the impact of magnetic parameter is not significant on

heat transfer coefficient. Fig. 4.19 displays the deviations in local Nusselt number for altering

values of physical parameters ,  and Pr. Thermophoresis parameter inclines wall heat flux

substantially which can be observed from the figure. Also, it can be deducted that wall heat flux

diminishes for larger values of thermophoresis parameter. Fig. 4.20 illustrates the behavior

of thermophysical parameters  and Pr on −0(0) by selecting  = 1 2 Brownian motion

parameter  reduces the wall heat flux considerably. The combined impacts of Pr and  on

heat flux at surface are shown in Fig. 4.21 by choosing power law index ( = 1 2) This graph

shows that local Nusselt number declines against power law index.
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Table 4.3: Local surface heat flux by varying      and Pr for  = 1, 2

 = 1  = 2

      −0(0) −0(0)
0.1 0.05 1 0.2 0.1 0.1 0.6520 0.5749

0.4 0.7646 0.6824

0.7 0.8792 0.7976

1 0.9900 0.9126

0.3 0.1 0.6898 0.6022

0.3 0.5446 0.4313

0.5 0.3992 0.2602

0.7 0.2537 0.0891

0.05 1 0.7262 0.6449

2 0.9420 0.8061

3 1.0672 0.9021

4 1.1306 0.9492

1 0.1 0.7443 0.6526

0.2 0.7262 0.6449

0.3 0.7183 0.6375

0.4 0.7108 0.6303

0.2 0.1 0.7262 0.6449

0.3 0.6517 0.5780

0.5 0.5827 0.5160

0.7 0.5190 0.4588

0.1 0.4 0.6461 0.5695

0.5 0.6210 0.5458

0.6 0.5966 0.5229

0.7 0.5729 0.5001
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Table 4.3 depicts the variations in Nusselt number by varying involved physical parameters

 , Pr,  ,  and . It is observed that physical parameters  and Pr enlarge the

Nusselt number while resting parameter i.e.     and  causes reduction in local

Nusselt number. This table also discloses that the effects of   and  are prominent on

coefficient of wall heat flux.

6. Wall mass flux (Local Sherwood number)
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Figs. 4.22-4.23: Wall mass flux verses involving physical parameters   Pr and 

The variations of physical parameters , Pr,  and  on −0(0) are illustrated in the
Figs. 4.22-4.23. Fig. 4.22 manifests the combined consequences of   and  on local

Sherwood number  Both parameters  and  accelerate the mass transfer but their

effects on wall mass flux are not prominent which can be noticed from the figure. Also, power

law index decrease local Sherwood number. The influences of  and Pr on wall mass flux

i.e. −0(0) are shown by Fig. 4.23 for power law index ( = 1 2) This figure predicts that
Prandtl number Pr enhances local Sherwood number.
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Table 4.4: Local Sherwood number (−0(0)) versus physical parameters    and

Pr for  = 1, 2

 = 1  = 2

Pr    −0(0) −0(0)
1 1 0.1 0.1 0.5369 0.5353

2 0.7529 0.7105

3 1.0248 0.9362

4 1.3019 1.1745

1 1 0.5369 0.5353

2 0.9298 0.8516

3 1.2566 1.1235

4 1.5317 1.3568

1 0.1 0.5369 0.5353

0.3 0.7564 0.7004

0.5 0.7993 0.7325

0.7 0.8170 0.7456

0.1 0.4 0.1251 0.1192

0.5 0.1592 0.1391

0.6 0.2159 0.1478

0.7 0.2353 0.1960

.

Variations in local Sherwood number against thermophysical parameters     and

Pr are presented in Table 4.4. This table explicates that the surface mass transfer enhances

against progressing values of all involving parameters    and Pr.

4.4 Concluding remarks

Present chapter communicates the speculative investigation of Sisko nanofluid over axially

stretching surface. Also, viscous dissipation and Joule heating effects are factored into the
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analysis. The computational solution of governing differential system is attained by employing

well-known numerical approach shooting method. To insight problem in the physical sense,

feasible values of controlled parameters are selected. The solutions of dimensionless velocity,

temperature and concentration have asymptotic behavior (see graphs). The main outcomes of

the problem are:

• The computed results revealed that curvature parameter  and material parameter  both
have qualitively similar effects on dimensionless velocity  0() but in quantitative sense

material parameter  is significant impact on fluid movement while fluid acceleration

retarded very rapidly versus magnetic field parameter  . Also, Sisko fluid moves faster

than Newtonian fluid.

• A noticeable growth has been captured in wall friction factor against all three momen-

tum controlling parameters (i.e. material parameter  magnetic field parameter  and

curvature parameter ).

• Both Eckert number (viscous dissipation effect) and magnetic field parameter (Joule heat-
ing) substantially enlarge the temperature, a qualitively similar consequences were ob-

served against Brownian motion parameter  thermophoresis parameter  and cur-

vature parameter  But in quantifying sense, Eckert number has more prominent effects

than resting parameters. On the other hand heat transfer trends verses Prandtl number

Pr are different i.e. progressing values of Prandtl number corresponds to low temperature.

• Coefficient of wall heat flux enhances verses both Prandtl number Pr and curvature para-
meter  while magnetic field parameter Eckert number  thermophoresis parameter

 and Brownian motion parameter  have opposite impacts.

• A relatively small growing behavior of nanoparticles concentration has been noticed for
thermophoresis parameter  while impacts of Brownian motion parameter  Prandtl

number Pr and Lewis number  lead to reduce concentration.

• Wall mass flux enhances by varying all controlling parameters   Pr and 
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Chapter 5

Computational and physical aspects

of MHD Prandtl-Eyring fluid flow

analysis over a stretching sheet

This chapter explores the applied magnetic field effects on Prandtl-Eyring fluid flow past a

stretching surface. Prandtl-Eyring fluid model is capable of describing zero shear rate viscosity.

Stretching of a sheet induces the flow (Couette flow). The mathematical formulation yields

nonlinear partial differential equations, these equations are transfigured into ordinary differ-

ential equation by using scaling group of transformations. The resulting differential system is

solved with the aid of Keller-Box method. Axial velocity is calculated and impacts of governing

parameters are visualized inclusively on it through graphs. Wall friction factor is computed

and sketched against variations in influential parameters. The present solution is certified by

making comparison with existing literature. This comparison shows that computed results have

good agreement with reported data.

5.1 Formulation of physical problem

Flow of viscoinelastic fluid over two-dimensional surface is assumed, the surface is stretching in

axial direction. A perpendicular magnetic field of strength 0 is imposed on the fluid flow (see

Fig. 5.1). The governing equations in usual notion are given below
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Fig. 5.1: Physical configuration of the problem.

∇V = 0 (5.1)


V


= divT+ J×B (5.2)

where ∇ denotes differential operator,  is the fluid density, 

corresponds to material time

derivative, V = (  0) is the velocity field, T denotes Cauchy stress tensor and B =(0 0 0)

represents the magnetic field while J =(V ×B) symbolized electric current density (in the
absence of electric field). The mathematical quantities ∇ and 


are defined below

∇ = 


̂ +




̂ +




̂ (5.3)




= V∇ (5.4)

since flow is steady so term 

is neglected. Cauchy stress tensor is given as
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T = −I+ S (5.5)

where  depicts fluid pressure, the identity tensor is denoted by I while S is called extra

stress tensor which is defined mathematically as

S =
Sinh−1( ̇


)

̇
A1 (5.6)

where  and  are fluid parameters, A1 = ∇V + (∇V) denotes first Rivilin-Ericksen
tensor and ̇ =

q
1
2
(A21) Now expanding the inverse hyperbolic function in terms of Taylor

series and neglecting higher order terms

Sinh−1(
̇


) =

̇


− ̇3

63
+((

̇


)5) (5.7)

By inserting  (57) into  (56)

S = (



− ̇2

63
)A1 (5.8)

Now compute first Rivlin-Ericksen tensor A1 and ̇

A1 =

⎡⎢⎢⎢⎣
2




+ 


0



+ 


2


0

0 0 0

⎤⎥⎥⎥⎦  (5.9)

and
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̇ =

s
2(



)2 + 2(




)2 + (




+




)2 (5.10)

Incorporating  (59)− (510) in  (58) it takes the following form

S = (



− 

63
(2(




)2 + 2(




)2 + (




+




)2))

⎡⎢⎢⎢⎣
2




+ 


0



+ 


2


0

0 0 0

⎤⎥⎥⎥⎦  (5.11)

After inserting the concerned variables, continuity equation transmutes to




+




= 0 (5.12)

Now after simplification of J×B one can write

J×B =(−20 0 0) (5.13)

After incorporating T the linear momentum equation (in absence of pressure gradient)

transfigured to


V


= divS+ J×B (5.14)

Partial time derivative of flow field velocity is defined below (in components form)

(
V


) =




= 




+ 




 (5.15)
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(
V


) =




= 




+ 




 (5.16)

(
V


) = 0 (5.17)

The divergence of stress tensor is defined below

(divS) =



(2
2

2
+

2

2
+

2


)− 

33




½
(2(




)2 + 2(




)2 + (




+




)2)





¾
− 

63




½
(2(




)2 + 2(




)2 + (




+




)2)(




+




)

¾
 (5.18)

(divS) =



(
2

2
+ 2

2

2
+

2


)− 

33




½
(2(




)2 + 2(




)2 + (




+




)2)





¾
− 

63




½
(2(




)2 + 2(




)2 + (




+




)2)(




+




)

¾
 (5.19)

(divS) = 0 (5.20)

Inserting concerned expressions in the momentum equation becomes





+ 




=




(2
2

2
+

2

2
+

2


)− 

33




½
(2(




)2 + 2(




)2 + (




+




)2)





¾
− 

63




½
(2(




)2 + 2(




)2 + (




+




)2)(




+




)

¾
− 20


 (5.21)





+ 




=




(
2

2
+

2

2
)− 

33




½
(2(




)2 + 2(




)2 + (




+




)2)





¾
− 

63




½
(2(




)2 + 2(




)2 + (




+




)2)(




+




)

¾
 (5.22)

After employing boundary layer approximations in  (512) (521) (522), these equa-

tions deduced to
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


+




= 0 (5.23)





+ 




=





2

2
− 

23
(



)2
2

2
− 20


 (5.24)

along with the boundary conditions

 = () =   = 0 at  = 0 and → 0 as  →∞ (5.25)

The stream function is chosen in the following form

 =
Ψ


,  = −Ψ


 (5.26)

Below defined set of scaling transforms is utilized to transmute modelled partial differential

system into dimensionless form

 =

r



 Ψ =

√
() (5.27)

Employing  (527) into  (523) − (524) the continuity equation is satisfied while
Navier-Stokes equations are transfigured to

 000 −  002 000 −  0
2

+  00 − 0 = 0 (5.28)

while the two-point conditions are reshaped to
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(0) = 0  0(0) = 1  0(∞) = 0 (5.29)

In  (528)  and  denote the material parameters while Hartmann number is symbolized

with  , these parameters are mathematically given as

 =



  =

32

22
  =

20


 (5.30)

Coefficient of skin friction is given below

 =

1
2
2

 (5.31)

where  denotes the wall friction coefficient. In above relation,  is the wall shear stress

defined as

 =



(



)=0 − 

63
(



)3=0 (5.32)

After incorporating the scaling transforms in  (531)− (532) coefficient of wall friction
transformed into

1

2
Re

1
2
 =  00(0)− 

3
[ 00(0)]3 (5.33)

here Re denotes Reynolds number.
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5.2 Keller-box method

Keller-box scheme is used to solve governing flow problem. This numerical scheme is uncon-

ditionally stable and its truncating error is of second order. Cebeci and Bradshaw [100] first

time solve heat transfer problem by using Keller-box scheme. In the first step higher order

differential system is re-designed into first order differential system. A set of new variables 

and  is introduced

 0 =  (5.34)

0 =  (5.35)

after inserting the new variables,  (528) becomes

(1− 2)0 + − 2 −2 = 0 (5.36)
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Fig. 5.2. Discretization of domain.

The −  plane is subdivided into meshes (see Fig. 5.2).

0 = 0  = −1 +   = 1 2 3 (5.37)

0 = 0  = −1 +    = 1 2 3

where  is the step-size in −axis, on the other hand,  is difference between  values.

After that second order central difference scheme is utilized on involved derivatives. First,

central difference scheme is utilized on s (534)− (535) at midpoint ( −12)

  −  −1


=
 + −1

2
 (5.38)

 − −1


=
 + −1

2
 (5.39)
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But in  (536) the involved derivative are approximated at mid-point (−12 −12)

these equation takes the below-defined form

( − −1)−


2
(02)−12 +



2
 −12


−12 −



2
(−12)

2 − 

2
−12 = −12 (5.40)

where

−12 = −(−1 −−1−1)+


2
(02)−1

−12−


2
 −1
−12

−1
−12+



2
(−1

−12)
2+



2
−1

−12 (5.41)

R.H.S of  (541) i.e. −12 comprises known quantities.

After using difference scheme, the boundary conditions are converted to

 0 = 0 

0 = 1 


 = 0 (5.42)

As above difference equations i.e.  (538) − (540) are highly nonlinear. The efficient
numerical technique Newton’s method is utilized to find solution.


(+1)
 = 

()
 + 

()
  (5.43)


(+1)
 = 

()
 + 

()
 


(+1)
 = 

()
 + 

()
 

Above defined expressions are incorporated into  (538)− (540), the above set of equa-
tions is converted into (after neglecting the second or higher terms in )

 − −1 − 

2
( + −1) = (1)  (5.44)
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 − −1 − 

2
( + −1) = (2)  (5.45)

(1)−12 + (2)−12−1 + (3)−12 + (4)−12−1

+(5)−12 + (6)−12−1 = (3)  (5.46)

where

(1)−12 = (1− 1
2
2−12)−



2
(0)−12 +

−12
4



(2)−12 = −(1−
1

2
2−12)−



2
(0)−12 +

−12
4



(3)−12 =
−12
4

 (4)−12 = (3)−12

(5)−12 = −


2
−12 −



4
 (6)−12 = (5)−12 (5.47)

(1) = −( − −1) +


2
( + −1)

(2) = −( − −1) +


2
( + −1)

(3) = −0
−12 +



2
[(02)−12 − −12−12 + (−12)

2 +−12] + −12 (5.48)

while prescribed boundary conditions are altered to

0 = 0 0 = 0  = 0 (5.49)

Since system of equations i.e.  (544) − (546) is linear. Firstly, these difference equi-
tations are converted into matrix form. The obtained matrix has block-tridiagonal structure

given below
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=

[A1] [C1]

[B2] [A2] [C2]

[BJ-1] [AJ_1] [CJ-1]

[BJ] [AJ]

-

-

-

-

-

-

-

-

-

[1]

[2]

-

-

-

[J-1]

[J]

[r1]

[r2]

-

-

-

[rJ-1]

[rJ]

,

[][] = [] (5.50)

the components of above-defined matrix system are given below

0 1 0

d 0 d

a2
a3

a1

[A1] =
,

d 1 0

-1 0 d

(a6)j (a3)j (a1)j

[Aj] =

,

where j = 2, 3, 4, .., J.
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0 -1 0

0 0 d

0 (a4)j (a2)j

[Bj ] =

,

where j = 2, 3, .., J.

d 0 0

1 0 0

(a5)j 0 0

[Cj] =
,

where j = 1, 2, .., J-1.

where j = 1, 2, 3, .., J.

v0

f1

v1

[1] = , [j] =

uj-1

fj

vj

where j = 2, 3, .. , J.

[rj] =

(r1)j-1/2

(r2)j-1/2

(r3)j-1/2

and

Well-known technique Thomas algorithm is employed to solve this block tridiagonal system.

The solution will converge if |0| is less than error tolerance, on the other hand, if computed
solution does not meet the criteria, then Newton method is utilized to refine the values of

dependent variables. Computation process terminates if it meets convergence criteria.
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5.3 Results and discussion

Current investigation configures the thermophysical features of stretched flow of MHD Prandtl-

Eyring fluid. Keller-Bbox scheme is implemented to solve flow govern equation. The precision

of applied method is validated through comparison with reported data (Akbar et al. [24] and

Malik et al. [26], see Table 5.1). This table certifies that both solutions have good agreement.

Table 5.1: Comparative study of wall friction by varying Hartmann number  and con-

sidering fluid parameters  = 1  = 0

 Akbar et al. [24] Malik et al. [26] Present Results

0 -1 -1 -1

0.5 -1.11803 -1.11802 -1.1180

1.0 -1.41421 -1.41419 -1.4137

5.0 -2.44949 -2.44945 -2.4495

10 -3.31663 -3.31657 -3.3166

100 -10.04988 -10.04981 -10.0500

500 -22.38303 -22.38294 -22.3835

1000 -31.63859 -31.63851 -31.6391

Computed results are illustrated in graphical manners to understand the behaviour of phys-

ical quantities more clearly. Velocity and wall friction factor are depicted against variations

in governing parameters via Figs. 5.3-5.7. Table 5.2 is developed to delineate wall friction

more accurately. The computed results are explained briefly and concisely.
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Fig. 5.3: Fluid velocity for Hartmann number  while keeping  = 5  = 03
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Fig. 5.4: Velocity profile versus variations in material parameter  while keeping  = 04

and  = 03.
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Fig. 5.5: Fluid parameter  influences on velocity profile by setting  = 50 and  = 30.
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Fig. 5.6: Surface friction factor against deviations in Hartmann number  and fluid

parameter 
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Fig. 5.7: Behaviour of surface friction factor against fluid parameter  and Hartmann

number 
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Table 5.2: Coefficient of wall friction by varying fluid parameters   and Hartmann

number 

    00(0)− 
3
[ 00(0)]3

0.1 5 0.4 -2.2375

0.5 -2.4815

1.0 -3.1092

1.5 -3.7833

0.3 2 -1.4020

5 -2.2932

7 -2.7350

10 -3.2987

5 0.1 -2.3274

0.4 -2.2932

0.7 -2.2574

1.0 -2.2199

Behaviour of fluid velocity for different values of Hartmann number = 01 05 1 15 and

retaining  = 5,  = 04 is shown with the aid of Fig. 5.3. This figure demonstrates that the

momentum transport is decelerated verses independent variable  in addition, magnetic field

strength is counterproductive to flow velocity. Fig. 5.4 predicts impacts of fluid parameter

 on velocity profile  0() by keeping  = 03,  = 04 The fluid motion is accelerated

against larger values of fluid parameter  because fluid parameter reduces the viscous effects.

Consequently it accelerates the fluid motion. Variations in axial velocity  0() versus alteration

in fluid parameter  are deliberated in Fig. 5.5. In these computation, fixed values are assigned

to other parameters i.e.  = 5,  = 3. This figure shows that velocity curves are overlapping

i.e. fluid parameter  deviates the fluid velocity very slightly. Also, this figure reports that

the fluid velocity is decelerated against increment in fluid parameter  This holds because

momentum diffusivity has inverse relation with fluid parameter 

Fig. 5.6 deliberates the attitude of wall shear stress against Hartmann number and fluid
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parameter . One can notice that the wall friction curve for  = 2 varies slowly versus Hartmann

number  while surface friction coefficient rapidly increases against  for  = 5 7 and 10

Finally, this figure spectacles skin friction enlarge against larger values of both parameters. The

behaviour of concerned physical quantity against Hartmann number  and fluid parameter 

is displayed via Fig. 5.7. This graph perceived that the fluid parameter  slightly decrease the

skin friction factor while rapid escalations is observed in wall friction against Hartmann number

 Finally, this figure tells us that the surface friction reduces by increasing fluid parameter .

The variations in local wall shear stress is exhibited in Table 5.2 by altering parameters

  and  The friction of wall enhances against  and  while its opposite behaviour is

captured versus fluid parameter 

5.4 Conclusions

A speculative investigation is configured to elaborate the effects of magnetic field on stretched

flow of Prandtl-Eyring fluid. The governing mathematical system is tackled with Keller-box

scheme. The computed results are reported through graphs and tables by varying governing

parameters   and  . The major outcomes inferred from current analysis are listed below:

• Fluid momentum appreciably grows versus fluid parameter  while it decays against fluid
parameter .

• Magnetic field strength produces deceleration in fluid velocity.

• Magnetic field has prominent effects on local wall shear as compared to effects of fluid
parameters  and  Additionally, both parameters  and  enlarge the wall friction

while fluid parameter  reduces it.
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Chapter 6

Application of generalized Fourier

heat conduction law on MHD

viscoinelastic fluid flow over

stretching surface

Current chapter extends last chapter work by including heat transfer analysis. As heat transfer

plays sensible role in the quality of industrial products. For instance controlling the heat trans-

fer during the processes like polymer extrusion, glass fiber production and cooling/heating in

heat exchangers or chambers etc. is a crucial factor regarding quality products. Also, in this

chapter Christov-Cattaneo heat flux model is used. Here Oldroyd upper convective derivative

is used (instead of partial time derivative) for heat flux. The current flow configuration spot-

lights the thermophysical aspects of MHD viscoinelastic fluid flow over stretching surface. Fluid

momentum problem is mathematically formulated by using constitutive law of Prandtl-Eyring

model. Also, non-Fourier heat flux law is considered to investigate the heat transfer in fluid

flow. The governing problem consists nonlinear partial differential equations with prescribed

boundary conditions. In order to facilitate the computation process, the governing problem is

transmuted into dimensionless form via appropriate group of similarity transforms. Numerical

technique (shooting method) is employed to solve dimensionless boundary value problem. Ex-
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pressions for dimensionless velocity and temperature are found and investigated under different

parametric conditions. The important features of fluid flow near the wall i.e. wall friction factor

and wall heat flux are deliberated by altering the pertinent parameters. The impact of gov-

erning parameters is highlighted through graphical as well as tabular manner against focused

physical quantities (velocity, temperature, wall friction factor and wall heat flux). A comparison

with reported literature is presented to validate calculated results. This comparison shows that

computed solutions agrees reported data which led to confidence the present computations.

6.1 Physical configuration of problem

Let assume boundary layer flow of MHD Prandtl-Eyring fluid past a stretching sheet. The flow

is induced due to stretching of sheet in axial direction (−) with stretching rate () = .

The magnetic field of strength 0 is applied in perpendicular direction (−). Incorporating
above defined assumptions, the governing equations are transfigured into form (by restricting

the problem in boundary layer region)

Fig. 6.1: Geometry of the problem.
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


+




= 0 (6.1)





+ 




=





2

2
− 

23
(



)2
2

2
− 20


 (6.2)

the prescribed boundary conditions are

 = ()  = 0 at  = 0 and → 0 as  →∞ (6.3)

Here   denote axial and radial components of velocity,  is fluid density,  is electrical

conductivity and   symbolized the fluid parameters.

For heat transfer analysis, the first thermodynamic law is used. The mathematical equation

of this law is defined as

(V∇ ) = −∇q (6.4)

In this expression,  is temperature,  is specific heat and q called heat flux. To find heat

flux q usually researchers utilized classical Fourier law, but here Christov-Cattaneo heat flux

model is used. This law is defined below

q+(V∇q− q∇V + (∇V)q) = −( )∇ (6.5)

here,  denotes the thermal relaxation parameter, the expression of classical Fourier law

can be deduced from the above defined equation by letting  = 0 Also, ( ) i.e. thermal

conductivity is taken temperature dependent defined as ( ) = ∞(1 +  −∞
−∞ ) here  dis-

plays variable thermal conductivity parameter while ∞ is ambient thermal conductivity. By
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eliminating q from  (64) and  (65) and after inserting all concerned expressions, the

thermodynamics law converted into





+ 




+ ((




+ 




)



+ (




+ 




)



+ 2

2



+2
2

2
+ 2

2

2
) =

1






(( )




) (6.6)

along with temperature boundary conditions

 =  at  = 0 and  → ∞ as  →∞ (6.7)

Here  and ∞ correspond to wall temperature and free stream temperature respectively.

The stream function for flow velocity is defined below

 =
Ψ


,  = −Ψ


 (6.8)

The below-defined scaling group of similarity variables are utilized to transfer modelled

partial differential system into ordinary differential system

 =

r



 Ψ =

√
()  =

 − ∞
 − ∞

 (6.9)

After imposing the above defined similarity variables in  (61) (62) (66) the conti-

nuity equation satisfies identically while both momentum and thermal energy equations are

transformed into following form

 000 −  002 000 −  0
2

+  00 − 0 = 0 (6.10)
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(1 + )00 + 02 +Pr 0 − Pr ( 00 + 200) = 0 (6.11)

subject to the prescribed two-point conditions

(0) = 0  0(0) = 1  0(∞)→ 0

(0) = 1 (∞)→ 0 (6.12)

The dimensionless variables  and  called the Prandtl-Eyring fluid parameters,  is the

Hartmann number, Pr denotes Prandtl number while thermal relaxation parameter is repre-

sented with . These are mathematically defined as

 =



  =

32

22
  =

20


 Pr =



  =  (6.13)

To explore the physical phenomenon near the wall i.e. surface friction factor and surface

heat flux coefficients are computed. These are given below

 =

1
2
2

and  =


( )( − ∞)
 (6.14)

where  and  exhibit wall friction coefficient and local Nusselt number respectively

while  and  show surface shear stress and heat flux respectively. The last two variables are

defined as

 =



(



)=0 − 

63
(



)3=0 and  = −( )(


)=0 (6.15)

Non-dimenssional form of wall friction factor and wall heat flux is achieved by inserting

similarity variables into  (614)− (615)
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1

2
 Re

1
2
 =  00(0)− 

3
[ 00(0)]3 and Re

−1
2

 = −0(0) (6.16)

Here Re is the mathematical symbol of Reynolds number.

6.2 Computational algorithm

As the modelled equations ( (610) − (611)) of under consideration problem are highly

nonlinear coupled equations, thus numerical technique (shooting method) is employed to find

more realistic and compatible solution. Initially, these higher order equations are shifted to

first order, so these equations are re-arranged as

 000 =
 0
2 −  00 + 0

(1−  002)
 (6.17)

00 = −Pr(
0 −  00) + 02

(1 + )− Pr 2  (6.18)

The below defined group of variables is inserted in the above system

 = 1 
0 = 2 

00 = 3 
000 = 03  = 4 

0 = 5 and 00 = 05 (6.19)

After inserting the new variables, the flow problem takes the following form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 = 2

02 = 3

03 =
22−13+2

(1−22)


04 = 5

05 = −Pr(15−125)+
2
5

(1+4)−Pr 21


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
along with two-point conditions
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1(0) = 0 2(0) = 1 2(∞) = 0 4(0) = 1 and 4(∞) = 0

First missing initial conditions 3(0) and 5(0) are added instead of 2(∞) and 4(∞) this
step transmuted the BVP into IVP. Now, Runge-Kutta scheme is employed to tackle resulting

problem for suitable value of ∞. After considering some random values of ∞ it is found that

the results are accurate in the range  ∈ [0 7] for feasible values of governing parameters.

6.3 Results and discussion

6.3.1 Validation of present results

Principal objective of this chapter is investigation of heat transfer with generalized Fourier

heat flux model of MHD Prandtl-Eyring fluid flow past a stretching sheet. Mathematical

modelled system is solved with fifth order Runge-Kutta scheme. To authenticate the present

computations, comparison is established with reported literature (Akbar et al. [24]Malik et

al. [26] and Previous chapter results) via Table 6.1. It is absolutely clear that calculated

values have close agreement with previous literature which leads to faith on current numerical

procedure.
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Table 6.1: Comparative analysis of skin friction coefficient by varying Hartmann number

 and considering  = 1  =  =  = 0

 Akbar et al. [24] Malik et al. [26] Previous chapter results Present Results

0 -1 -1 -1 -1

0.5 -1.11803 -1.11802 -1.1180 -1.1201

1.0 -1.41421 -1.41419 -1.4137 -1.4142

5.0 -2.44949 -2.44945 -2.4495 -2.4495

10 -3.31663 -3.31657 -3.3166 -3.3166

100 -10.04988 -10.04981 -10.0500 -10.0500

500 -22.38303 -22.38294 -22.3835 -22.3890

1000 -31.63859 -31.63851 -31.6391 -31.6392

6.3.2 Velocity profile
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Fig. 6.2

Fig. 6.2: Impact of Hartmann number on Newtonian and non-Newtonian fluid velocity.

121





f
'(


)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prandtl-Eyring Fluid (M = 0)

MHD Prandtl-Eyring Fluid (M = 0.5 )

 = 1

 = 1.5

 = 2

 = 0.2,

 = 0.5,

Pr = 1.2,

 = 0.1.

Fig. 6.3

Fig. 6.3: Variations in velocity profile against fluid parameter 
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Fig. 6.4: Velocity curves under the impact of fluid parameter 

Figs. 6.2-6.4 illuminate fluctuations in velocity profile under different parametric condi-

tions. A contrast of fluid momentum for Prandtl-Eyring and Newtonian fluids against Hart-

mann number is communicated through Fig. 6.2. A substantial enhancement in velocity is
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noticed for Prandtl-Eyring fluid verses Newtonian fluid for all values of Hartmann number.

Also, both fluids have similar respond against Hartmann number i.e. their linear momentums

decline against proceeding values of Hartmann number. This physically implies that Hartmann

number is responsible to generate Lorentz force (an opposing force). Effects of fluid parameter

 on dynamics of non-Newtonian fluid (by letting = 00 and 05) has been captured with the

aid of Fig. 6.3. This graph anticipates that magnetic field strength does not provide favorable

situation for fluid movement. Additionally, this graph infers that fluid velocity grows rapidly

verses fluid parameter  It sounds practicable because fluid parameter  lessen the viscosity

and alternatively fluid moves rapidly. Fig. 6.4 discloses the consequences of fluid parameter 

on Prandtl-Eyring fluid velocity(by letting = 00 and 05). Fluid parameter  has capability

to decelerate velocity(it can be observed from figure).

6.3.3 Temperature profile
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Fig. 6.5: Temperature profile by varying Prandtl number.
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Fig. 6.6: Thermal relaxation parameter effects on temperature.
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Fig. 6.7: Effects of thermal conductivity on temperature field.

In Fig. 6.5, a comparison between Fourier heat flux law and Christov-Cattaneo heat flux

law has been established for different values of Prandtl number. Fluid temperature is larger

in case of Fourier heat flux model (see graph). Finally, this graph reveals that expeditious fall
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down in temperature is noticed against Prandtl number. This result holds in practice because

high Prandtl number corresponds to fluid having low thermal conductivity. An speculative

investigation of thermal relaxation parameter  effects on thermal dynamics of fluid has been

delineated through Fig. 6.6 (by assuming  = 00 and 05). This figure predicts that the fluids

with high thermal conductivity are more hotter. Also, temperature exhibit declining behaviour

against thermal relaxation parameter. It justifies the fact that for large relaxation time fluid

molecules take more time to transport thermal energy which alternatively reduces the temper-

ature. This Christov-Cattaneo heat flux model reduces to Fourier model for thermal relaxation

parameter  = 0 An important aptitude of thermodynamics i.e. thermal conductivity effects

on temperature is interpreted via Fig. 6.7. This figure predicts that thermal conductivity

enhances the temperature quickly. It strengthen the fact that thermal conductivity is capacity

of heat conductance. Thus liquids with higher thermal conductivity transport the heat rapidly

and vice versa.
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6.3.4 Wall friction factor and wall heat flux

Table 6.2: Influence of governing parameters (     and Pr) on wall friction factor

and wall heat flux

     Pr
¯̄̄
 00(0)− 

3
[ 00(0)]3

¯̄̄
−0(0)

0.1 2.0 0.2 0.5 0.1 1.2 1.5052 0.7615

0.5 1.6921 0.7339

1.0 1.8536 0.7091

0.3 1.0 1.2212 0.6829

1.5 1.4189 0.7218

2.0 1.5507 0.7487

2.0 0.1 1.6029 0.7507

0.3 1.5809 0.7465

0.5 1.5556 0.7416

0.2 0.1 0.7004

0.5 0.7183

1.0 0.7428

0.5 0.1 0.7428

0.5 0.6977

1.0 0.6540

0.1 1.0 0.6584

1.5 0.7893

2.0 0.9278

Table 6.2 emphasizes the alteration of internal friction between fluid and solid wall verses

momentum controlling parameters (  and ) It can be noticed that the magnetic field

intensity boosts the internal friction because it aligned the fluid particles. Qualitatively similar

outcomes are observed for internal friction against fluid parameter  but fluid parameter 

decreases the internal friction slightly. This table also provides the behaviour of wall heat flux
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by varying flow parameters (     and Pr). One can see that the both fluid parameters

( ) enhance temperature gradient (in magnitude sense) but magnetic field provides resistance

to flow heat through surface. Also, it can be noticed that both thermal relaxation parameter as

well as Prandtl number enhance wall temperature gradient while effects of thermal conductivity

parameter are found to be reversed.

6.4 Enumerated key findings

Current communication endeavours the heat transfer analysis of MHD Prandtl-Eyring fluid

flow past a stretching surface manifested with the Christov-Cattaneo heat flux model. The

problem is formulated under boundary layer assumptions and solved numerically with shooting

technique. Salient features of current investigation are catalogued below:

• Prandtl-Eyring fluid moves faster than both Newtonian fluid and MHD Prandtl-Eyring

fluid.

• Strength of magnetic field defiances the movement of fluid. Additionally, both fluid pa-
rameters have oppugnant effects on fluid momentum.

• Temperature for Christov-Cattaneo heat flux model is less for Fourier heat flux model
i.e. high estimations in the thermal relaxation parameter are responsible for fall down in

temperature.

• Prandtl number and thermal conductivity parameter influenced temperature significantly
but qualitively opposite behaviour has been noticed.

• Both fluid parameter  and Hartmann number reinforce internal friction while Prandtl-

Eyring parameter  reduces it.

• Absolute heat transfer coefficient grows against both fluid parameters ( ), thermal
relaxation parameter and Prandtl number while opposing behaviour is observed for mag-

netic field parameter and thermal conductivity parameter.
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Chapter 7

Thermal energy change in

Christov-Cattaneo heat flux model

for MHD fluid flow over variable

thickened sheet with Hall current

effects: A computational study

Present chapter carry out the speculative investigation on MHD viscous fluid flow over variable

stretching sheet with Hall current phenomenon. Hall current phenomenon is prominent when

intensity of applied magnetic field is strong or density of fluid is low. It is due to the fact that

electron carries the induced current and moves faster than ions. This phenomenon generates

an isotropic conductivity which is known as Hall current. The occurrence of Hall current

demands the modification of Ohm’s law, also consequences of this phenomenon enhance the

order of flow govern differential equations. Hall current has many practical applications e.g.

Hall accelerators, Hall sensors and turbine etc. Christov-Cattaneo heat flux law is utilized

for heat transfer analysis. Present configuration produces partial differential equations with

nonlinearity of higher order. The modelled partial differential system is switched into ordinary

differential system with the aid of an appropriate similarity transforms. The resulting similarity
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equations are solved with Runge-Kutta method. The expressions for axial velocity, transverse

velocity and temperature are numerically computed and effects of controlling parameters on

them are visualized with the help of graphs. To insight flow behaviour in the nieghbourer

region of sheet surface, local wall friction factors and local heat flux are calculated. Flow

govern parameters impacts on these quantities are elaborated through tabular representations.

A suitable correlation of current results with previously reported data (in limiting case) is

presented for the validation of computed results.

7.1 Problem development

Consider the incompressible electrically conducting flow of Newtonian fluid passing over a

stretching sheet with variable thickness. The sheet is stretched along the axial direction i.e.

− with stretching rate () = 0(+)
 here 0 is reference velocity,  is relative stretch-

ing parameter while  denotes velocity exponent parameter. The − is taken perpendicular
to the stretching surface. The sheet is non-flat and its surface is taken at  = (+)

1−
2 where

 is stretching coefficient and its values are assumed small to avoid pressure gradient along the

sheet. Applied magnetic field of strength 0() is taken in −direction. The low magnetic

Reynolds number is assumed (i.e. induced magnetic field is negligible). Hall current effects are

considered in flow distribution, since Hall currents generates the cross flow, so flow becomes

three dimensional. Also, quantities are assumed constant along  −  and last assumption

is true for surface of infinite extent.

c

c

at  .

Fig. 7.1 

u

v
w

129



Fig. 7.1: Physical description of the problem.

Modified Ohm’s law is defined below(by adding Hall current effects)

J = (E+V ×B− 1


J×B+ 1


∇) (7.1)

Here J = (  ) denotes current density,  denotes electrical conductivity,V = (  )

is velocity, E denotes the electric field,  called electronic pressure and B = (0() 0) denotes

magnetic field. The flow is considered in the absence of electric field and pressure gradient

(E = 0 and ∇ = 0) Since sheet is considered non-conducting so  = 0 thus, after imposing
the aforementioned conditions, the above defined physical law transformed to

 =
2()

1 +2
(−)  =

2()

1 +2
(+) (7.2)

where =
()


is the Hall parameter. Now, the governing mass and momentum equations

along with boundary layer approximations are given below ( see Parsad et al. [36])




+




= 0 (7.3)





+ 




= 

2

2
− 2()

(1 +2)
(+) (7.4)





+ 




= 

2

2
+

2()

(1 +2)
(− ) (7.5)

along with appropriate boundary conditions

 = ()  = 0  = 0 at  = (+ )
1−
2  (7.6)

 → 0  → 0 at  →∞
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The heat equation of steady viscous flow is defined as

V∇ = −∇q (7.7)

here  is density,  called specific heat,  and q denote temperature and heat flux. Here,

the temperature equation is defined in terms of Christov-Cattaneo heat flux law which is defined

below

q+ (V∇ − q∇V+ (∇V)q) = −∇ (7.8)

In  (78),  is thermal conductivity,  is the thermal relaxation parameter, if  = 0 then

above defined thermodynamic law is converted into classical Fourier law. In present analysis,

incompressible flow is considered, so ∇V = 0 After, inserting this assumption in above defined

heat equation (  (78) ), it becomes

q+ (V∇q− q∇V) = −∇ (7.9)

Eliminating q from  (77) and  (79) the heat equation for viscous fluid flow takes

the form





+ 




= 

2

2
− ((




+ 




)



+ (




+ 




)



+ 2

2



+2
2

2
+ 2

2

2
) (7.10)

prescribed two-point conditions for fluid temperature are

 =  at  = (+ )
1−
2 and  → ∞ as  →∞ (7.11)
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The expressions  = 


  and ∞ defined in  (711) correspond to thermal diffusivity,

surface temperature and ambient temperature respectively.

Stream function is given below

 =
Ψ


  = −Ψ


 (7.12)

The following transformations are utilized to transfigured flow govern system into non-

dimenssional form (see Parsad et al. [36] Salahuddin et al. [83] Malik et al. [84] Fang et al.

[103] and Khader and Megahed [104])

 = 

r
+ 1

2

0


(+ )

−1
2  Ψ =  ()

r
2

+ 1
0(+ )

+1

2 

 = ()() Θ =
 − ∞
 − ∞

 (7.13)

With the aid of  (712) and  (713) the velocity components along  and  directions

can be written as

 = () 0() and  = −
r

+ 1

2
0(+ )

−1
2 × [ () +  0()(

− 1
+ 1

)] (7.14)

Inserting the above defined similarity variables i.e.  (713) − (714) into modelled
governing partial differential equations i.e.  (73)  (74)  (75) and  (710) The

mass conservation equation is identically satisfied, on the other hand velocity and temperature

equations become

 000 +  00 − 2

+ 1
 0

2 − 2

(1 + )(1 +2)
( 0 +) = 0 (7.15)
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 00 +  0 − 2

+ 1

0
 +

2

(1 + )(1 +2)
( 0 −) = 0 (7.16)

Θ00 +PrΘ0 +Pr (
− 3
2

 0Θ0 − + 1

2
 2Θ00) = 0 (7.17)

while prescribed boundary conditions are reshaped to

 () = 
1− 

1 + 
  0() = 1 () = 0 Θ () = 1

 0(∞) = 0 (∞) = 0 Θ (∞) = 0 (7.18)

Here  = 

q
+1
2

0

exhibits the wall thickness parameter while  =  = 

q
+1
2

0


corresponds to surface of sheet. In order to facilitate the computing process, the following

suitable transformations are inserted into above defined boundary value problem (see Parsad

et al. [36])

() =  ( − ) () = ( − ) () = Θ( − ) (7.19)

After employing the recently defined variables in  (715)−(717) the modified governing
equations take the following form

 000 +  00 − 2

+ 1
 0
2 − 2

(1 + )(1 +2)
( 0 +) = 0 (7.20)

00 + 0 − 2

+ 1

0
+

2

(1 + )(1 +2)
( 0 − ) = 0 (7.21)

00 +Pr 0 +Pr (
− 3
2

 00 − + 1

2
200) = 0 (7.22)

while given boundary conditions are converted to
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(0) = 
1− 

1 + 
  0(0) = 1 (0) = 0  (0) = 1

 0(∞) = 0 (∞) = 0  (∞) = 0 (7.23)

In above non-linear set of differential equations prime denotes the derivative w.r.t  Also,

the dimensionless variables (magnetic field parameter  Prandtl number Pr and thermal

relaxation parameter ) are given below

 =
2(+ )20

()
, Pr =




and  = 0(+ )−1 (7.24)

The coefficients of horizontal and transverse wall frictions as well as wall heat flux are

computed to insight problem near the sheet surface. The mathematical expressions of these

quantities are given below

 =

1
2
2

  =

1
2
2

and  =


( − ∞)
 (7.25)

where  ,  and  represent wall shear stresses and heat flux respectively, these are

defined below

 = (



)
=(+)1−


2
  = (




)
=(+)1−


2
  = −(


)
=(+)

1−
2
 (7.26)

After inserting similar variables, the above defined expressions take the form

1

2
 Re

1
2
 =

r
+ 1

2
 00(0)

1

2
 Re

1
2
 =

r
+ 1

2
0(0) Re

−1
2
 = −

r
+ 1

2
0(0) (7.27)

here Re displays the Reynolds number and it is defined as Re =
(+)()



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7.2 Numerical solution

The governing equations i.e.  (720) − (722) are highly nonlinear in nature, a numerical
approach shooting is employed to compute solution. According to solution procedure, primarily

higher order system is transferred to first order differential system. For this aim re-write them

in the following form

 000 =
2

+ 1
 0
2 −  00 +

2

(1 + )(1 +2)
( 0 +) (7.28)

00 =
2

+ 1

0
− 0 − 2

(1 + )(1 +2)
( 0 − ) (7.29)

00 =
−Pr 0 − Pr (−3

2
 00)

1− +1
2
Pr 2

 (7.30)

The following defined variables are applied to above mentioned equations

 = 1 
0 = 2 

00 = 3 
000 = 03  = 4 

0 = 5 
00 = 05  = 6 

0 = 7 and 00 = 07

(7.31)

The transformed system is given below

01 = 2 
0
2 = 3

03 =
2

+ 1

2

2 − 13 +
2

(1 + )(1 +2)
(2 +4)

04 = 5 
0
5 =

2

+ 1
24 − 15 − 2

(1 + )(1 +2)
(2 − 4)

06 = 7 
0
7 =
−Pr 17 − −3

2
Pr 127

1− +1
2
Pr 21

 (7.32)

along with prescribed conditions
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1(0) = 
1− 

1 + 
 2(0) = 1 4(0) = 0 and 6(0) = 1

2(∞) = 0 4(∞) = 0 and 6(∞) = 0 (7.33)

Now above differential system is solved with Runge-Kutta-Fehlberg technique after adding

initial conditions 3(0) = 1 5(0) = 2 and 7(0) = 3 (as an alternative of 2(∞) = 0

4(∞) = 0 and 6(∞) = 0) The solution is computed for different values of ∞ and found that

solution is accurate in the region 0 ≤  ≤ 4 for suitable values of flow govern parameters.

7.3 Results and discussion

7.3.1 Validity of computed results

Present communication is an speculative investigation of the problem addressing Hall current

effects on magnetohydrodynamic flow of viscous fluid along with non-Fourier heat flux theory

over variable stretching sheet. Shooting technique is employed to solve governing system. The

validity of calculated solution is checked by comparing results with previously reported data

(Fang et al. [103] and Khadar and Megahed [104]) This table ensures the accuracy of presently

computed results and leads to confidence on the adapted method.
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Table 7.1: Comparative analysis of wall friction factor − 00(0) against wall thickness
parameter  and non-linearity parameter  but  =  = 0

 = 05  = 025

 Fang et al. Khader and Present Results Fang et al. Khadar and Present Results

[103] Megahed [104] [103] Megahed [104]

10.0 1.0603 1.0603 1.0605 1.1433 1.1433 1.1437

9.0 1.0589 1.0588 1.0591 1.1401 1.1404 1.1408

7.0 1.0550 1.0551 1.0552 1.1323 1.1322 1.1327

5.0 1.0486 1.0486 1.0486 1.1186 1.1186 1.1190

3.0 1.0359 1.0358 1.0359 1.0905 1.0904 1.0909

2.0 1.0234 1.0234 1.0234

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0005

0.5 0.9798 0.9798 0.9801 0.9338 0.9337 0.9341

0 0.9576 0.9577 0.9577 0.7843 0.7843 0.7843

-1/3 1.0000 1.000 1.0000 0.5000 0.5000 0.5000

-0.5 1.1667 1.1666 1.1667 0.0833 0.0833 0.0833

7.3.2 Effects of wall thickness parameter

Figs. 7.2-7.4 exhibit the physical aspects of wall thickness parameter  on axial velocity, nor-

mal velocity and temperature. Qualitatively identical manners have been captured in all three

physical quantities against variations in wall thickness parameter while fluid energy affected

dominantly in quantifying sense. Since   1 corresponds to mass injection in axial direction,

thus higher values of wall thickness parameter  leads to reduce wall shear stress and hence

consequentially axial velocity  0() is accelerated. Also, one can see that the enhancement

in wall thickness leads to accelerate the fluid motion in normal direction i.e. higher values of

 corresponds to increase in normal velocity component () The variable thickness of wall

i.e. increasing values of  motivates the transferal of heat from the surface, it accelerates the
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convection of fluid and hence temperature.
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Figs. 7.2-7.4: Influence of variable stretching parameter  on horizontal velocity profile,

transverse velocity profile and temperature profile.

7.3.3 Effects of Hartmann number

Figs. 7.5-7.6 communicate the Hartmann number effects on horizontal and transverse velocity

components over flat sheet ( = 1) and non-flat sheet ( = 5) The non-flatness of the sheet
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is responsible to grow the horizontal velocity while oppugnant impact on transverse velocity is

encapsulated. Additionally, these graphs explicate that the both velocity components display

similar patterns against Hartmann number i.e. both velocity profiles have decreasing manner. It

holds physically because strength of magnetic field produces Lorentz force (an opposing force),

thus higher values of Hartmann number corresponds to enhance Lorentz force which consequen-

tially decelerates the velocity. Figs. 7.7-7.8 explain the influences of Hartmann number in

the absence of Hall current for  = 0= 1 It can be noticed that presence of Hall current leads

to enlarge the both velocity components while decreasing behavior of horizontal and transverse

velocities has been noticed against Hartmann number. Fig. 7.9 exposes the Hartmann number

consequences on temperature for classical Fourier law ( = 0) and Christov-Cattaneo heat flux

model ( = 05) The variations in Hartmann number produce the homogeneous results for

both cases in qualitative manner while effects on Christov-Cattaneo heat flux are prominent

in quantifying sense. Because when electrical conducting fluid particles are passed through

magnetic field, they strike with ions and release thermal energy. Thus, strength of magnetic

field generates heating in the fluid and this sequentially rises the temperature.
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Figs. 7.5-7.9: Effects of Hartmann number on horizontal velocity, transverse velocity and

temperature profile.

7.3.4 Effects of Hall parameter

Fig. 7.10 focuses on the comparative analysis of horizontal velocity over flat ( = 1) and

non-flat ( = 5) stretching sheet by varying Hall parameter. This graph illustrates that the

fluid movement is more rapid on non-flat sheet as compared to flat sheet. Also, the influence of

Hall parameter leads to accelerate the fluid motion but in magnitude sense this acceleration is

not significant. Because increasing values of Hall parameter corresponds to reduce in damping
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magnetic force on axial velocity which alternatively accelerates axial velocity. Fig. 7.11

conveys the interesting facts about the Hall parameter effects on transverse velocity component,

it can be seen that when Hall parameter values advances from 0 to 1 the normal acceleration

is positive while reverse behaviour has been recorded when its values are taken greater than

1 It holds because larger values of Hall parameter correspond to reduce the damping factor

and hence it causes reduction in transverse velocity. Fig. 7.12 prevails the Hall parameter on

effects on fluid temperature for both cases i.e. Fourier heal flux model ( = 0) and Christov-

Cattaneo heat flux model ( = 05) The temperature profile reduces against increasing values

of Hall parameter but this falls down in temperature is inconsequential. Finally, this graph

predicts that fluid temperature is high in case of Fourier heat flux model.
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Figs. 7.10-7.12: Impact of Hall parameter on horizontal velocity profile, transverse veloc-

ity profile and temperature profile.

7.3.5 Effects of nonlinearity parameter

Figs. 7.13-7.14 are adorned to investigate the behaviour of horizontal and transverse velocities

by varying non-linearity parameter  for  = 0 (viscous flow) and  = 02 (magnetohydro-

dynamic flow). The effects of nonlinearity parameter are found to be insignificant on both

velocity components in viscous flow while magnetohydrodynamic flow is strongly influenced by

it. As   1 corresponds to mass injection in axial direction, thus large values of this leads to

reduce the wall shear stress remarkably. Hence fluid momentum is accelerated very rapidly in

axial direction (see Fig. 7.13)). On the other hand, Fig. 7.14 exhibits decreasing manner of

transverse velocity component versus non-linearity parameter for both fluids. The consequences

of non-linearity parameter on both velocity components is described in Figs. 7.15-7.16 for

 = 0 and  = 1 These graphs suggest that the presence of Hall current enhances the fluid

velocity in both directions while opponent attitude is captured in axial and normal velocity

components against nonlinearity parameter. Fig. 7.17 depicts temperature profile versus non-

linearity parameter for  = 0 and  = 05 Increment in nonlinearity parameter correspond to

non-flatness of sheet, as non-flatness provides favorable environment to heat transfer, so fluid

temperature amplifies significantly against nonlinearity parameter(it can be encapsulated in
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this figure).
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Figs. 7.13-7.17: The impacts of nonlinearity index on horizontal velocity, transverse

velocity and temperature.

7.3.6 Effects of thermal relaxation parameter and Prandtl number

Fig. 7.18 shows the temperature profile versus variations in thermal relaxation parameter and

keeping Pr = 1 2. This graph explicates that fluid temperature substantially reduces versus

Prandtl number. Also, thermal relaxation parameter is responsible to decline thermal energy

in substantial amount. Physically, it is true because increasing values of  corresponds to

enhance in relaxation time i.e. fluid particles take more time to transfigure thermal energy, the

consequences of this phenomenon reduces temperature in large amount. Prandtl number effects

on fluid temperature is analyzed over non-flat sheet by Fig. 7.19 for  = 0 and  = 05 The

fluid temperature declines against Prandtl number, because fluid with high Prandtl number

have low thermal conductivity (capability of heat transfer).
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Figs. 7.18-7.19: Fluid temperature variations versus thermal relaxation parameter and

Prandtl number.

7.3.7 Radial and transverse friction factors and local Nusselt number

The inclusive picture of physical quantities − 00(0) −0(0) and −0(0) is elaborated via Tables
7.2-7.5.

Table 7.2 interprets the attitude of wall friction factors and wall heat flux coefficients

towards different values of     and Pr while keeping wall thickness parameter  = 0

(constant stretching) and  = 02 (variable stretching). This table infers that contributions

of wall thickness parameter reduce the radial wall friction and wall heat flux coefficients while

transverse component of friction remained unaffected. Furthermore, axial and normal wall

friction factors advances to higher values (in magnitude sense) against Hartmann number while

behaviour of local Nusselt number is opposite against it. The influence of Hall parameter

enhances heat flux in quantifying sense while wall friction factors display dual behaviour (they

increase for ≤ 1 and decreases for  1) The nonlinearity parameter enlarges the horizontal

skin friction coefficient and local Nusselt number while transverse wall friction shows opposing

behaviour. Prandtl number and thermal relaxation parameter increase the Nusselt number.
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Table 7.2: Numerical values of − 00(0) −0(0) and −0(0) by varying     and Pr

while keeping  fixed i.e.  = 0 02

 = 00  = 02

    Pr − 00(0) −0(0) −0(0) − 00(0) −0(0) −0(0)
0.1 1.0 2.0 0.3 1.0 1.1195 0.0182 0.6450 1.0878 0.0182 0.5908

1.0 1.2560 0.1558 0.6120 1.2230 0.1558 0.5570

2.0 1.4012 0.2697 0.5758 1.3689 0.2697 0.5238

0.1 0.5 1.1283 0.0144 0.6428 1.0965 0.0144 0.5888

1.0 1.1195 0.0182 0.6450 1.0878 0.0182 0.5908

2.0 1.1106 0.0147 0.6472 1.0789 0.0147 0.5930

5.0 1.1057 0.0071 0.6484 1.0740 0.0071 0.5942

10.0 1.1049 0.0037 0.6487 1.0731 0.0037 0.5944

1.0 1.0 1.0287 0.0290 0.6088 1.0287 0.0290 0.6088

2.0 1.1195 0.0182 0.6450 1.0878 0.0182 0.6108

5.0 1.2044 0.0086 0.7906 1.1432 0.0086 0.6201

2.0 0.1 0.6023 0.5680

0.3 0.6450 0.5908

0.5 0.6991 0.6322

0.3 1.0 0.6450 0.5908

2.0 1.0410 0.9234

3.0 1.2048 1.1753

Table 7.3 delivers the quantitative analysis of physical phenomena near the sheet surface

by varying involving parameters     and Pr and considering Hall parameter  = 0 and

 = 50 This table presents that in the absence of Hall parameter transverse wall friction is

negligible. Also, effects of Hall current are opposite on horizontal wall friction and wall heat

flux. In addition, both Hartmann number and nonlinearity parameter accelerate the magnitude

of axial wall friction factor but opposite results are found in case of wall thickness parameter
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on it. Hartmann number and wall thickness parameter increase transverse component of wall

friction while it reduces due to nonlinearity parameter. The homogeneous results are recorded

for local Nusselt number by increasing Prandtl number and thermal relaxation parameter.

Table 7.3: Numerical values of − 00(0) −0(0) and −0(0) by varying     and Pr

while keeping  fixed i.e.  = 0 50

 = 00  = 50

    Pr − 00(0) −0(0) −0(0) − 00(0) −0(0) −0(0)
0.1 0.2 2.0 0.3 1.0 1.1022 1.5353×10−25 0.5874 1.0740 0.0071 0.5942

1.0 1.3405 3.9563×10−31 0.5362 1.0865 0.0720 0.5905

2.0 1.5649 9.2869×10−24 0.4977 1.1043 0.1376 0.5845

0.1 -0.5 1.2179 2.7432×10−26 0.8010 1.1895 0.0060 0.8083

-0.2 1.1668 6.2361×10−22 0.7007 1.1385 0.0064 0.7079

0.0 1.1340 3.5042×10−23 0.6414 1.1057 0.0067 0.6484

0.2 1.1022 1.5335×10−25 0.5874 1.0740 0.0071 0.5942

0.5 1.0563 7.9282×10−19 0.5147 1.0283 0.0073 0.5212

0.2 1.0 1.0519 8.0031×10−26 0.6046 1.0062 0.0114 0.6131

2.0 1.1022 1.5353×10−25 0.5874 1.0740 0.0071 0.5942

5.0 1.1500 9.6847×10−25 0.6174 1.1369 0.0033 0.6227

2.0 0.1 0.5555 0.5606

0.3 0.5874 0.5942

0.5 0.6255 0.6367

0.3 1.0 0.5874 0.5942

2.0 0.9188 0.9278

3.0 1.1706 1.1572

Table 7.4 presents comparative analysis of wall friction factors and local Nusselt number

for  = 1 (constant stretching) and  = 5 (variable stretching) by varying controlling parame-

ter. The nonlinear stretching parameter has tendency to increase the friction of wall in both
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directions as well as heat flux. Additionally, Hartmann number is capable to enhance both

wall friction factors while it reduces wall heat flux. The influence of wall thickness parameter

is exactly oppugnant to Hartmann number effects i.e. it reduces the friction of surface in both

directions while enhances the heat flux. The behaviour of all three physical quantities is dual

against Hall parameter i.e. they increase for  ≤ 1 and reduces for   1 Nusselt number

quantitatively enlarges versus both thermal relaxation parameter and Prandtl number.

Table 7.4: Numerical values of − 00(0) −0(0) and −0(0) by varying     and Pr

while keeping  fixed i.e.  = 10 50

 = 10  = 50

   Pr  − 00(0) −0(0) −0(0) − 00(0) −0(0) −0(0)
0.1 1.0 0.2 1.0 0.3 1.0287 0.0290 0.6088 1.1432 0.0082 0.6201

1.0 1.2476 0.2261 0.5668 1.2062 0.0799 0.5939

2.0 1.2936 0.2601 0.5583 1.2764 0.1480 0.5655

0.1 1.0 1.0287 0.0290 0.6088 1.1432 0.0082 0.6201

2.0 1.0142 0.0236 0.6116 1.1391 0.0069 0.6218

5.0 1.0062 0.0146 0.6131 1.1369 0.0033 0.6227

10.0 1.0048 0.0059 0.6134 1.1363 0.0003 0.6229

2.0 -0.2 - 1.2694 0.0089 1.1013

0.0 - 1.2044 0.0085 0.7906

0.2 - 1.1432 0.0082 0.6201

0.5 - 1.0584 0.0081 0.4312

0.2 1.0 0.6088 0.6201

2.0 0.9542 1.1470

3.0 1.2271 1.3085

1.0 0.1 0.5975 0.5508

0.3 0.6088 0.6201

0.5 0.6237 0.7339

Table 7.5 shows contrast of local Nusselt number for classical Fourier’s law ( = 0) and
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Christov-Cattaneo heat flux model ( = 05) by varying pertinent flow parameters. This

table emphasizes that thermal relaxation parameter significantly enhances the heat flux i.e.

local Nusselt number has larger magnitude in case of Christov-Cattaneo heat flux model. The

behaviour of Nusselt number is enhancing verses Hartmann number while both nonlinearity

parameter and wall thickness parameter are responsible for reduction in Nusselt number, also

Nusselt number reflects dual nature for Hall parameter.
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Table 7.5: Numerical values of −0(0) by varying     and Pr while keeping  fixed

i.e.  = 0 05

 = 00  = 05

    Pr −0(0) −0(0)
-0.5 1.0 2.0 0.1 1.0 0.6913 0.9069

-0.2 0.6263 0.7745

0.0 0.5846 0.6991

0.2 0.5444 0.6322

0.5 0.4867 0.5454

0.2 0.5 0.5430 0.6295

1.0 0.5444 0.6322

2.0 0.5456 0.6351

5.0 0.5466 0.6367

10.0 0.5467 0.6370

1.0 1.0 0.5929 0.6237

2.0 0.5444 0.6322

5.0 0.4976 0.7335

2.0 0.1 0.5444 0.6322

1.0 0.5217 0.5878

2.0 0.5003 0.5455

0.1 1.0 0.5444 0.6322

2.0 08079 0.8373

5.0 1.3349 -

7.0 1.5191 -
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7.4 Enumerated key results

In this chapter, a theoretical model is presented to disclose Hall current phenomenon on MHD

viscous fluid flow along with Christov-Cattaneo model over variable stretching sheet. The for-

mulated mathematical system is solved with shooting technique. Numerical results are obtained

versus controlling parameters i.e. Hartmann number, nonlinearity parameter, Hall parameter,

wall thickness parameter, thermal relaxation parameter and Prandtl number. The principal

outcomes of current study are highlighted below:

• Fluid velocities sustained an appreciable resistance of strong magnetic field while strength
of magnetic field is quite beneficial for fluid temperature. Both wall friction factors grows

verses Hartmann number while temperature gradient is reduces against it.

• Hall parameter exerts the opposing force on transverse velocity while it slightly accelerates
the axial velocity and declines temperature insignificantly. Coefficients of skin friction and

wall heat flux exhibit dual nature verses Hall parameter.

• An increase in wall thickness parameter provoked both velocities and temperature while
its significance induces the reduction in wall friction factor and surface heat flux.

• Nonlinearly stretching surface bestowed the favorable situation to fluid movement in axial
direction and heat transfer while transverse velocity shows deceleration over it. Addition-

ally, it enhances the axial friction factor and wall heat flux while it has reverse effects on

transverse wall friction factor.

• An enhancement in thermal relaxation leads to cooling of fluid while wall heat flux accel-
erates against it.

• Prandtl number has tendency to depreciate temperature while it enhances wall heat flux.
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Chapter 8

On the movement of gravity-driven

swimming microorganisms in viscous

nanofluid flow

This chapter interprets the thermophysical features of bioconvection flow of gyrotactic swim-

ming microorganisms through viscous nanofluid in the boundary layer regime. Bioconvection

occurred because microorganisms are slight denser than base fluid and since they swim in up-

ward direction which causes hydrodynamic instability. The microorganisms are self-propelled

which enlarges the fluid density by swimming in a specific direction in the fluid due to grav-

ity, light, or chemical attraction. This kind of problems has been encountered in many bio-

microsystems e.g. enzyme biosensor, chip-size micro-devices for evaluating nanoparticle toxicity,

the critical functional alveolarcapillary interface of the human lung to evaluate toxic and in-

flammatory responses of the lung to silica nanoparticles etc. So, the major concern of present

chapter is to narrate the properties of gravity-driven swimming microorganisms in MHD viscous

nanofluid flow past a stretching surface by taking Joule heating effects into account. The con-

stitutive set of partial differential equations are non-dimensionalized through suitable similarity

transformations. The governing non-dimenssional partial differential equations are solved with

finite element method. The influence of involving parameters on interesting physical quantities

are deliberated through graphs.
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8.1 Configuration of physical problem

Let assume 2D, steady, incompressible viscous nanofluid flow past through stretching sheet in

the presence of gyrotactic swimming microorganisms. The coordinate system is chosen such

as  −  is axial direction while  −  is normal direction. The sheet is stretching in

−direction with stretching rate 0


(here 0 knows as reference velocity,  is a constant

and  is the characteristic length). Magnetic field of strength 0 is experienced in normal

direction. Both electric field as well as induced magnetic fields are neglected. Since, magnetic

field is applied to fluid particles they behave like conductor, so Joule heating effects are taken

into account. Temperature, nanoparticle volume fraction and motile microorganisms density

are kept constant at wall and their magnitudes are   and  respectively. Also, away

from the sheet the magnitude of these quantities is represented with ∞ ∞ and ∞ respec-

tively. Also, it is assumed that the presence of nanoparticle does not affects the movement of

swimming microorganisms. Further, it is assumed that suspension of nanoparticles is dilute

because bioconvection occurred in dilute suspension otherwise large concentration of nanopar-

ticles enhances the base-fluid viscosity which ultimately suppress the bioconvection. Under

the Boussinesq approximation, the governing boundary layer equations of mass, momentum,

energy, nanoparticle concentration and motile microorganisms concentration are given below

(see Refs. [105− 107])

Fig. (8.1): Geometry of the problem.
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



+ 




+



( − ∞)



(




) = 

2

2
 (8.5)

subjected to boundary conditions

 = 0



  = 0  = ,  =  and  =  at  = 0

 → 0  → ∞,  → ∞ and → ∞ at  →∞ (8.6)

In the above set of equations, ( ) are cartesian coordinates, ( ) are velocity components

along ( ),    and  are temperature, nanoparticle concentration and density of motile

micoorginisams respectively,  denotes kinematic viscosity,  called gravitational acceleration,

   and  are densities of base-fluid, nanoparticle and motile microorganisms respectively.

Here  called thermal diffusivity,  =
()
()

is the ratio between nanoparticle and fluid heat

capacities,   and  are diffusion coefficients of Brownian motion, thermophoresis and

motile microorganisms respectively. Also,  represents the average volume of microorganisms

cells,  exhibits coefficient of chemical reaction and  is maximum speed of swimming cell.

The governing mathematical system is converted into non-dimensional form with the aid of

below defined variables
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 =



  =
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Re
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
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  =


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Re

1
2
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 − ∞
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 =
 − ∞
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− ∞
 − ∞

 (8.7)

After incorporating the above defined variables in governing boundary layer equations (

(81)− (85)) these are converted into following form




+




= 0 (8.8)
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Pr(
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2
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along with the boundary conditions

 =   = 0  = 1,  = 1 and  = 1 at  = 0

 → 0  → 0,  → 0 and → 0 as  →∞ (8.13)

Here ( ) are non-dimensional cartesian coordinates, ,    and  are non dimen-

sional axial and normal velocity components, temperature, nanoparticles concentration and

concentration of microorganisms respectively. Also,  = 2


is the Hartmann number,


Re2

=
(1−∞)(−∞)32

222
represents local Richardson number,  =

(− )(−∞)
(1−∞)(−∞) is

the buoyancy ratio parameter,  =
(−∞)(−∞)
(1−∞)(−∞) is the bioconvection Rayleigh num-

ber, Pr = 

is the Prandtl number,  =

(−∞)


is the Brownian motion parameter,
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 =
 (−∞)

∞
is the thermophoresis parameter,  = 2

(−∞) is the local Eckert num-

ber,  = 


and  = 


are the traditional Lewis number and the bioconvection Lewis

number respectively,  = 


is the bioconvection Peclet number and  = ∞
(−∞) is the

microorganisms concentration difference parameter.

Coefficients of skin friction, wall heat and mass fluxes and motile microorganisms density

at wall are defined as

 =

1
2
20
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

(8.14)

here    and  symbolized the wall shear stress, wall heat and mass fluxes and wall

flux of microorganisms density respectively which are given below
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After using the non-dimenssional variables in  (814)− (815) we get
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(8.16)

8.2 Finite element method

The governing system i.e. ( (88)− (812)) along with boundary condition (813) is highly
nonlinear in nature. To compute the numerical solutions for this system, a numerical technique

finite element is utilized. According to this method, firstly governing system is converted into

variational or weak form. For this governing equations ( (89)−(812)) are integrated along
y-axis
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The integrals can be decomposed into sum of sub-integrals (i.e. domain of integration is

subdivided into finite number of elements)
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

( − −)Ψ() +

Z


Ψ() (8.21)

2 =

X
=1

[Pr

Z






Ψ() +Pr

Z






Ψ() +

Z






Ψ()




−Pr
Z


[







+(




)2 +2]Ψ()] (8.22)
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3 =

X
=1

[Pr

Z






Ψ() +Pr

Z






Ψ() +

Z






Ψ()




+




Z






Ψ()


] (8.23)

4 =

X
=1

[Pr

Z ∞

0





Ψ() +Pr

Z ∞

0





Ψ() +

Z ∞

0





Ψ()


 (8.24)

+

Z ∞

0





Ψ()


 + 

Z


(



)
Ψ()


]

here Ψ() is the global testing function.

Now, the global coordinate (i.e. ) is transformed into local coordinate (i.e. ) by using

following relations

 =  + (+ 1)( − )2 and  = [( − )2] =  (8.25)

where  and  are the left and right endpoints of element.

In local coordinates the residuals take the below-defined form

1 =

X
=1

[

Z 1

−1




Ψ()+

Z 1

−1




Ψ()+

Z 1

−1





Ψ()


−



Re2

Z 1

−1
( − −)Ψ()+

Z 1

−1
Ψ()] (8.26)

2 =

X
=1

[Pr

Z 1

−1




Ψ()+Pr

Z 1

−1




Ψ()+

Z 1

−1





Ψ()






−

Pr

Z 1

−1








Ψ()




− Pr

Z 1

−1
(



)2Ψ()




− Pr

Z 1

−1
2Ψ()](8.27)
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3 =

X
=1

[Pr

Z 1

−1




Ψ()+Pr

Z 1

−1




Ψ()+

Z 1

−1





Ψ()







+




Z 1

−1





Ψ()






] (8.28)

4 =

X
=1

[Pr

Z 1

−1




Ψ()+Pr

Z 1

−1




Ψ()+

Z 1

−1





Ψ()







+

Z 1

−1





Ψ()






+ 

Z 1

−1
(




)
Ψ()






] (8.29)

To solve the integrals in above set of residuals, the interested physical quantities are defined

in the form of interpolation polynomials

 =

X
=1

()Ψ()  =

X
=1

()Ψ()  =

X
=1

()Ψ()

 =

X
=1

()Ψ()  =

X
=1

()Ψ() (8.30)

By using the above set of variables, the residuals is converted into following form

1 =

X
=1

[

Z 1

−1
(

X
=1

Ψ())(

X
=1




Ψ())Ψ()+

Z 1

−1
(

X
=1

Ψ())(

X
=1


Ψ()


)Ψ()

+

Z 1

−1
(

X
=1


Ψ()


)
Ψ()






− 

Re2

Z 1

−1
(

X
=1

Ψ()−

X
=1

Ψ()−



X
=1

Ψ())Ψ() −

Z 1

−1

X
=1

Ψ()Ψ()] (8.31)
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2 =

X
=1

[{
Z 1

−1
Pr(

X
=1

Ψ())(

X
=1




Ψ())Ψ()+

Z 1

−1
(

X
=1

Ψ())(

X
=1


Ψ()


)Ψ()}

+

Z 1

−1
(

X
=1


Ψ()


)
Ψ()






− Pr

Z 1

−1
(

X
=1


Ψ()


)(

X
=1


Ψ()


)Ψ()





−Pr

Z 1

−1
(

X
=1


Ψ()


)(

X
=1


Ψ()


)Ψ()





−Pr

Z 1

−1
(

X
=1

Ψ())(

X
=1

Ψ())]Ψ()] (8.32)

3 =

X
=1

[Pr{
Z 1

−1
(

X
=1

Ψ())(

X
=1




Ψ())Ψ()+

Z 1

−1
(

X
=1

Ψ())(

X
=1


Ψ()


)Ψ()}

+

Z 1

−1
(

X
=1


Ψ()


)
Ψ()






+





Z 1

−1
(

X
=1


Ψ()


)
Ψ()






] (8.33)

4 =

X
=1

[Pr{
Z 1

−1
(

X
=1

Ψ())(

X
=1




Ψ())Ψ()+

Z 1

−1
(

X
=1

Ψ())(

X
=1


Ψ()


)Ψ()}

+

Z 1

−1
(

X
=1


Ψ()


)
Ψ()






+ 

Z 1

−1
(

X
=1


Ψ()


)
Ψ()







+

Z 1

−1
(

X
=1

Ψ())(

X
=1


Ψ()


)
Ψ()






] (8.34)

The local testing functions are defined below respectively

Ψ1() = (1− )2 and Ψ2() = (1 + )2 (8.35)

Now the integrals in the residuals are solved through Gaussian quadrature formulas. We

have to compute such values of     and  for which (||  10−12)
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8.3 Results and discussion

8.3.1 Validity of computed results

The flow govern equations are solved with finite element scheme in two-dimensional domain

( ) To check the accuracy and validity of the method, we allocated the fix values to controlling

physical parameters ( = Re =  = Pr = 10  =  = 02 = 05  =  =  =

10  =  =  = 01) and varying the step sizes along −axis and −axis. The computed
results of interested physical quantities (velocity , temperature  , concentration  and motile

microorganisms density ) are plotted via Figs. (8.2)-(8.9). In Fig. (8.2), we fixed the

step size along  ( considering number of elements is 300) and varying the step size along  i.e.

 = 005 01 02 It can be observed from Fig. (8.2) that the results of velocity are agreed

quite well for different step size. On the other hand, in Fig. (8.3), the step-size along  is fixed

while number of elements are varies. It could be seen that by increasing number of elements

from 300 the results for velocity profile remained similar. This means that 300 number of

elements are enough to compute the results of this problem. Figs. (8.4)-(8.9) deliberated

the similar results for temperature, concentration and microorganisms density. These results

assured the accuracy and validity of the applied method for this set of equations.
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Fig. 8.2: Axial velocity  for different step size along −axis.

Fig. 8.3: Axial velocity  for different step size along −axis.

Fig. 8.4: Temperature  for different step size along −axis.
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Fig. 8.5: Temperature  for different step size along −axis.

Fig. 8.6: Nanoparticles concentration  for different step size along −axis.
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Fig. 8.7: Nanoparticles concentration  for different step size along −axis.

Fig. 8.8: Motile microorganisms density  for different step size along −axis.
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Fig. 8.9: Motile microorganisms density  for different step size along −axis.

8.3.2 Axial Velocity Profile

Figs. (8.10)-(8.13) reflect the fluid momentum verses controlling parameters (  

and) on axial velocity. Fig. (8.10) delineates the Grashof number impacts on fluid velocity,

this figure shows that for increasing values Grashof number the velocity is increasing near

the sheet surface while opposite behaviour has been captured in free stream region. Fig.

(8.11) elaborates buoyancy ratio parameter influences on horizontal velocity. The buoyance

ratio parameter accelerates velocity near the surface while velocity is decelerated in far away

region. Fig. (8.12) depicts bioconvection Rayleigh number effects on horizontal velocity

profile. This graph predicts that larger values of bioconvection Rayleigh number opposed the

fluid movement in surface vicinity while it increases velocity near the boundary layer region.

Fig. (8.13) elaborates the Hartmann number effects on axial velocity, it could be seen that

Hartmann number decreases the velocity near the surface but its effects are opposite near the

boundary layer region.
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Fig. 8.10: Axial velocity  versus Grashof number .

Fig. 8.11: Axial velocity  against buoyancy ratio parameter 

166



Fig. 8.12: Axial velocity  for different values of bioconvection Rayleigh number 

Fig. 8.13: Axial velocity  for different Hartmann number 
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Temperature Profile

Figs. (8.14)-(8.17) disclose the consequences of involving physical parameters (  

and) on temperature profile. Fig. (8.14) validates the interesting results of thermodynamics

that Brownian motion causes enhancement in the fluid temperature. Fig. (8.15) also suggests

that the thermophoresis phenomenon rise fluid temperature in away from surface. Eckert

number impacts on temperature are demonstrated through Fig. (8.16). This figure shows

that Eckert number rises fluid temperature. Fig. (8.17) is responsible to reveal the outcomes

of temperature versus Hartmann number. Hartmann number enhances the temperature profile

significantly in far away region (see graph).

Fig. 8.14: Temperature  for different values of Brownian motion parameter 
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Fig. 8.15: Temperature  for different values of thermophoresis parameter 

Fig. 8.16: Temperature  for different values of Eckert number 
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Fig. 8.17: Temperature  for different values of Hartmann number 

8.3.3 Concentration profile

The outcomes of thermophysical parameters on nanoparticles concentration are captured in

Figs. (8.18)-(8.21). Fig. (8.18) deliberates the influences of buoyancy ratio parameter

on concentration profile. This figure forecasted that the buoyancy ratio parameter enlarges

the concentration of nanoparticles in far away region. The consequences of Brownian motion

on concentration profile are shown via Fig. (8.19). The computed results reveals that the

Brownian motion causes reduction in the concentration profile. The outcomes of nanoparticles

concentration against variations in thermophoresis parameter are displayed in Fig. (8.20).

This figure shows that the thermophoresis phenomenon enhances the concentration profile. Fig.

(8.21) discloses that the traditional Lewis number decreases the nanoparticles concentration

significantly.
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Fig. 8.18: Concentration  for different values of buoyancy ratio parameter 

Fig. 8.19: Concentration  for different values of Brownian motion parameter 
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Fig. 8.20: Concentration  for different values of thermophoresis parameter 

Fig. 8.21: Concentration  for different values of Lewis number 
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8.3.4 Motile microorganisms density

The impacts of governing parameters on motile microorganisms density are analyzed with the

aid of Figs. (8.22)-(8.25). Fig. (8.22) manifests that the bioconvection Rayleigh number

enhances the density of motile microorganisms. Fig. (8.23) displays the effects of bioconvec-

tion Lewis number on density of motile microorganisms. One can find that bioconvection Lewis

number decreases the density in far away region. Fig. (8.24) reflects the variations in density

function versus increasing values of bioconvection Peclet number. This figure shows that the

bioconvection Peclet number declines the density of microorganisms. Fig. (8.25) exhibits the

effects of average density parameter on motile microorganism density. It can be observed that

by increasing average density of motile microorganisms, the total density decreases.

Fig. 8.22: Microorganisms density  for different values of bioconvection Rayleigh number


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Fig. 8.23: Microorganisms density  for different values of bioconvection Lewis number



Fig. 8.24: Microorganisms density  for different values of Peclet number 
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Fig. 8.25: Microorganisms density  for different values of 

8.3.5 Wall friction factor, wall heat flux, wall mass flux and wall micoorgin-

isams density flux

Tables 8.1-8.4 demonstrate the effects of physical parameters on the interested physical quan-

tities in the vicinity of surface i.e. wall friction factor, wall heat flux, wall mass flux and wall

micoorginisams density flux. Table 8.1 consists the numerical values of wall friction factor

against variations in the controlling parameters (   and ) It can be seen that fric-

tion of wall is decreased along −axis, also, one can observed that all physical parameters (
  and ) increase wall friction. Table 8.2 discloses the consequences of thermophysi-

cal parameters on wall heat flux. The heat transfer rate enhances away from the origin along

−axis. This table predicts that the wall heat flux decreases for all thermal parameters. The
impacts of governing parameters on wall mass flux could be investigated through Table 8.3.

One can seen that the physical parameters   and  enhance the wall mass flux while

opposite behaviour is observed versus  Also, it is observed that wall mass flux enlarges as

marching along −axis. Table 8.4 manifests the outcomes of the physical parameters on the
microorganisms density flux at surface. The density flux enhances in the away region along
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−axis from the origin. Also, this table suggests that the physical parameters (  and

) enhance wall micoorginisams density flux, on the other hand, the bioconvection Rayleigh

number is declines wall density flux.

Table 8.1: Wall friction factor i.e. 1
2
Re

1
2
  by varying parameters (   and )

   

 0.1 1.0 0.1 0.7 0.1 0.7 0.5 2.0

0.1 0.7525 0.9216 0.7525 0.7825 0.7525 0.7847 0.7525 0.8059

0.2 0.1183 0.4557 0.1183 0.1851 0.1183 0.1985 0.1183 0.2027

0.3 -0.1077 0.2973 -0.1077 -0.0232 -0.1077 0.0043 -0.1077 0.0287

0.4 -0.2613 0.1774 -0.2613 -0.1686 -0.2613 -0.1362 -0.2613 -0.1155

0.5 -0.3934 0.0657 -0.3934 -0.2973 -0.3934 -0.2402 -0.3934 -0.2543

0.6 -0.5162 -0.0431 -0.5162 -0.4194 -0.5162 -0.3481 -0.5126 -0.3914

0.7 -0.6341 -0.1505 -0.6341 -0.5379 -0.6341 -0.4534 -0.6341 -0.5275

0.8 -0.7491 -0.2568 -0.7491 -0.6542 -0.7491 -0.5574 -0.7491 -0.6628

0.9 -0.8623 -0.3624 -0.8623 -0.7689 -0.8623 -0.6608 -0.8623 -0.7974

1.0 -0.9744 -0.4673 -0.9744 -0.8825 -0.9744 -0.7637 -0.9744 -0.9313
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Table 8.2: Wall heat flux Re
− 1
2

  against physical parameters (   and )

   

 0.2 2.0 0.2 3.0 0.5 2.0 0.1 5.0

0.1 0.3454 0.1640 0.3454 0.1485 0.3454 0.2278 0.3454 0.2070

0.2 0.3034 0.0579 0.3034 0.0402 0.3034 0.1573 0.3034 0.1284

0.3 0.3008 -0.0247 0.3008 -0.0474 0.3008 0.1224 0.3008 0.0607

0.4 0.2964 -0.1162 0.2964 -0.1519 0.2964 0.0822 0.2964 -0.0248

0.5 0.2884 -0.2170 0.2884 -0.2778 0.2884 0.0363 0.2884 -0.1260

0.6 0.2768 -0.3282 0.2768 -0.4306 0.2768 -0.0456 0.2768 -0.2478

0.7 0.2619 -0.4508 0.2619 -0.6170 0.2619 -0.0739 0.2619 -0.3753

0.8 0.2439 -0.5856 0.2439 -0.8452 0.2439 -0.1386 0.2439 -0.5239

0.9 0.2231 -0.7332 0.2231 -1.1259 0.2231 -0.2100 0.2231 -0.6890

1.0 0.1995 -0.8945 0.1995 -1.4722 0.1995 -0.2881 0.1995 -0.8714

Table 8.3: Wall mass flux i.e. Re
− 1
2

  against parameters (   and )

   

 0.1 0.7 0.2 2.0 0.2 3.0 1.0 10.0

0.1 0.4002 0.3747 0.4002 0.4029 0.4002 0.6027 0.4002 0.4026

0.2 0.3692 0.2952 0.3692 0.3977 0.3692 0.6879 0.3692 0.4336

0.3 0.3766 0.2748 0.3766 0.4362 0.3766 0.8254 0.3766 0.5123

0.4 0.3897 0.2646 0.3897 0.4731 0.3897 0.9992 0.3897 0.5882

0.5 0.3922 0.2572 0.3922 0.5058 0.3922 1.2111 0.3922 0.6668

0.6 0.3998 0.2520 0.3998 0.5348 0.3998 1.4714 0.3998 0.7309

0.7 0.4085 0.2492 0.4085 0.5610 0.4085 0.1937 0.4085 0.7993

0.8 0.4187 0.2428 0.4187 0.5851 0.4187 2.1948 0.4187 0.8663

0.9 0.4307 0.2504 0.4307 0.6077 0.4307 2.6961 0.4307 0.9322

1.0 0.4448 0.2540 0.4448 0.6239 0.4448 3.3241 0.4448 0.9970
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Table 8.4: Microorganisms wall density flux i.e. Re
−1
2

  by varying physical parameters

(   and )

   

 0.1 0.7 1.0 10.0 1.0 2.0 0.1 1.0

0.1 0.4698 0.4491 0.4698 0.4117 0.4698 0.5485 0.4698 0.4923

0.2 0.5029 0.4243 0.5029 0.4631 0.5029 0.6422 0.5029 0.5574

0.3 0.5681 0.4574 0.5681 0.5585 0.5681 0.7560 0.5681 0.6560

0.4 0.6236 0.4997 0.6236 0.6485 0.6236 0.8487 0.6236 0.7423

0.5 0.6689 0.5424 0.6689 0.7335 0.6689 0.9220 0.6689 0.8147

0.6 0.7064 0.5831 0.7064 0.8146 0.7064 0.9809 0.7064 0.8760

0.7 0.7382 0.6210 0.7382 0.8927 0.7382 1.0299 0.7382 0.9290

0.8 0.7661 0.6562 0.7661 0.9684 0.7661 1.0725 0.7661 0.9764

0.9 0.7916 0.6889 0.7916 1.0421 0.7916 1.1111 0.7916 1.0201

1.0 0.8154 0.7197 0.8154 1.1137 0.8154 1.1474 0.8154 1.0616

8.4 Concluding remarks

The current chapter focuses on the movement of motile microorganisms in MHD viscous

nanofluid flow. The governing mathematical system is solved via numerical approach finite

element method. The impacts of flow controlling parameters are depicted on interested physi-

cal quantities via graphs. The key findings of analysis are listed below:

• Velocity of fluid flow asymptotically declines versus −axis and boundary layer is achieved.
Additionally, the buoyancy ratio parameter and Grashof number accelerate the fluid ve-

locity while Hartmann number and bioconvection Rayleigh number produce resistance to

fluid movement.

• Temperature enlarges against all controlling parameters (   and )

• Concentration of nanoparticles increases versus buoyancy ratio parameter and thermophore-
sis parameter while both magnetic field and Brownian motion are counterproductive on
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it.

• Density of motile microorganisms becomes high against larger values of bioconvection
Rayleigh number while all other governing parameters (  and ) decline the density

of motile microorganisms.

• Wall friction factor enlarges for increasing values of all physical parameters (  

and )

• Wall heat flux decreases verses all physical parameters (   and )

• Wall mass flux enlargers versus physical parameters   and  while it declines

against buoyancy ratio parameter 

• Flux of microorganisms density enhances against physical parameters (  and )

while bioconvection Rayleigh number has opposing effects on it.
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