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Preface

Alternative theories of gravity are those which provide description of gravitational interaction

different from the description of the usual general theory of relativity. In 1920, soon after the

birth of general relativity, efforts were made to propose these modified theories of gravity. In

those days, work in this direction was mainly due to the curiosity to challenge the newly presented

general theory of relativity, but with time, interest and motivation to work on modified gravities

waxed and waned. Overall, however, a continuous activity in this direction over the past ninety

years may still be found. A part of this thesis is another such effort in the aforementioned

approach.

In this thesis, higher curvature gravity theories are considered which modify Einstein’s theory

of gravity due to the addition of higher order curvature terms to the Einstein-Hilbert term.

The primary motivation for this modification comes from the appearance of quadratic curvature

terms in the low-energy effective action of string theory and is also due to black hole solutions

in higher curvature gravities. Furthermore, these black hole solutions exhibit certain properties

which are unavailable in the usual Einstein’s theory of gravity.

Black hole emission and absorption phenomena is related to an important quantity, known

as greybody factor. Due to greybody factor Hawking radiation’s spectrum deviates from the

spectrum of black body radiations. Some studies of greybody factor are presented in this thesis

which elaborate the characteristics of the radiations emitted from black holes.

The outline of the thesis is as follows: In Chapter 1, historical background of general relativity

is introduced followed by current challenges and then a brief description of higher curvature
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gravities. This chapter also introduces the notion of greybody factor and its importance. In

Chapter 2, the quartic version of generalized cubic quasi-topological gravity is constructed. This

class of theories includes Lovelock gravity and a known form of quartic quasi-topological gravity

as special cases and possesses a number of remarkable properties:

• In vacuum, or in the presence of suitable matter, there is a single independent field equation

which is a total derivative.

• At the linearized level, the equations of motion on a constant curvature background are

second order, coinciding with the linearized Einstein equations up to a redefinition of New-

ton’s constant. Therefore, these theories propagate only the massless, transverse graviton

on a constant curvature background.

• While the Lovelock and quasi-topological terms are trivial in four dimensions, there exist

four new generalized quasi-topological terms (the quartet) that are nontrivial, leading

to interesting higher curvature theories in d ≥ 4 dimensions that appear well suited for

holographic study.

In Chapter 3, four dimensional black hole solutions to the theory are constructed and their

properties are studied. Further, black brane solutions in general dimensions of the theory are

studied. Results of this study may lead to interesting consequences for dual conformal field

theories. In Chapter 4, generalized Reissner-Nordström anti-de Sitter black hole solution for

generalized cubic quasi-topological gravity is constructed. Asymptotic and near-horizon solu-

tions for this theory are found in d spacetime dimensions. A form of extended first law of black

hole thermodynamics for these black holes is also presented. Critical values of volume, pressure

and temperature are presented.
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In Chapter 5, a general expression for the greybody factor of non-minimally coupled scalar fields

in Reissner-Nordström-de Sitter spacetime in low frequency approximation is derived. Greybody

factor as a characteristic of effective potential barrier is also presented. The role of cosmological

constant, both in the absence as well as in the presence of non-minimal coupling, is presented.

Considering the non-minimal coupling as a mass term, its effect on the greybody factor is

discussed. The significance of the results are elaborated by giving formulae for differential

energy rates and general absorption cross sections. The greybody factor gives insight into the

spectrum of Hawking radiations.

In Chapter 6, greybody factor of massless, uncharged scalar fields is worked out in the background

of cylindrically symmetric spacetime, in the low-energy approximation. Two cases are discussed.

In the first case, analytical expression for absorption probability is derived with the spacetime

kinetically coupled with the Einstein tensor. In the second case, an analysis is performed in

the absence of the coupling constant by using the wave equation, which is derived from Klein-

Gordon equation. The radial part of the wave equation is solved in the form of hypergeometric

function in the near-horizon region whereas in the far region, the solution is of the form of

Bessel’s function. Finally considering the continuity of wave function, the two solutions in the

low energy approximation are smoothly matched to get a formula for absorption probability.

The last chapter concludes the thesis by summarizing the outcomes of this work.
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Chapter 1

Introduction

1.1 Historical background of general relativity

Gravity is a fundamental force which has puzzled the man for ages despite the fact that it is

related to phenomena which can be experienced in everyday life. It is also an established fact

that the gravitational interaction was the first of its kind which underwent experimental investi-

gations. This was its simplicity that allowed the construction of an experimental apparatus. At

the end of the16th century, it was Galileo Galilei who first introduced pendulums and inclined

planes to study gravity. In fact, it appears that gravity played an important role in building in

Galileo’s mind ideas related to the requirement of experiments in science; his experiments had

a great impact on modern scientific thinking. However, gravity was not well understood until

1665, when Isaac Newton introduced his famous “inverse square gravitational law”. Newton’s

view of gravity was based on two concepts. First, space is absolute, i.e., a fixed, unaffected struc-

ture with physical phenomena taking place in a rigid arena. Second, inertial and gravitational

mass coincide. The first twenty years of Newton’s gravity managed to explain all the aspects of

1
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gravity known at that time. However, soon it was realized how large a portion of physical world

was insufficiently described by this theory.

In 19th century, there were certain experimental results which could not be predicted by New-

ton’s theory of gravity. These include Verrier’s observation of a 35 arc-seconds excess precession

of Mercury’s orbit in 1855 and later on, Newcomb’s more precise observation of 43 arc-seconds.

Also, Mach’s idea in 1893 about Newton’s absolute space is considered as the first constructive at-

tack on Newtonian physics. In the form of initial formulation of Mach, the idea was rather vague

but Einstein put it in mainstream physics in a more elegant way. According to Einstein, “inertia

originates in a kind of interaction between bodies”. This idea totally contradicts Newtonian pic-

ture of inertia, according to which inertia was a property of absolute space. Furthermore, Dicke

suggested that the gravitational constant should be a function of mass distribution, contrary

to Newton, who thought that it should be a universal constant. These were the developments

which compelled physicists of that time to reconsider the basic axioms of Newtonian picture of

gravity.

Einstein in 1905 postulated his theory of special relativity, which successfully explained many

non-gravitational phenomena, but it was in contradiction with Newtonian physics. Since relative

motion and related concepts of Newton and Galileo were ruled out by the theory of special

relativity, it was soon realized that one has to generalize the special theory of relativity to

accommodate non-inertial frames of reference as well. In 1907, Einstein predicted gravitational

redshift by his idea of equivalence of gravity and inertia. In 1915, he succeeded in formulating his

general theory of relativity which included gravity. Remarkably, this theory matched perfectly

with the experimental results about the precision of Mercury’s orbit and the deflection of light

from the Sun, which later measured in 1919 by A. Eddington.
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Despite general theory of relativity being well-accepted and a practised theory of gravity, New-

ton’s theory could not be abandoned completely. This was because it was realized that Newton’s

ideas were valid in limited cases and were sufficient for most practical applications. Also it is

important to note that general relativity reduces to Newtonian gravity in the limit of certain

gravitational field strengths and velocities. In other words, it can be said that Einstein reformu-

lated some of Newton’s ideas in a more suitable way, for example, his equivalence principle.

Nowadays, general relativity is facing questions similar to Newton’s gravity, some of which are

briefly presented above. These include issues of being inefficient at providing explanation to

particular observations, being incompatible with established theories and lack of uniqueness.

1.2 Current challenges of general relativity

Modern physics is based on two great theories: general relativity and quantum field theory. Both

these theories are successful in their own arenas of physical phenomena. As general relativity

is based on a classical viewpoint, it describes gravitational systems and non-inertial frames.

On the other hand, quantum field theory is quite successful in revealing the mysteries of high

energy or small scales, where classical description is not valid. In quantum theory, spacetime

is considered as flat whereas in quantum field theory, this is generalized to a curved spacetime

and that quantum fields play in a rigid arena. On the other hand, general relativity does not

take into account the quantum nature of matter. In fact, the behaviour of gravitational fields at

quantum scales itself is not clear. An interesting question which follows is the extent to which

these two great theories are compatible.

The real problem is that there is no idea whether gravity retains its nature as a force at small

scales or not. This is because it is the weakest interaction compared with other interactions, so

that the characteristic scale under which one could experience relevant non-classical effects of
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gravity is too small and is of the order of 10−33 cm, the Planck scale, which is of course a big

problem.

There are many reasons why physicists are trying to fit together general relativity and quantum

mechanics [1]. Curiosity is the main motivation for cutting edge scientific triumphs. In the

present context, curiosity lies in finding how the theory of quantum gravity would look like and

what modifications in general relativity and in quantum mechanics are required, in order to

make these theories compatible.

Some of the theories which modify general relativity are considered in this thesis. In particular,

those theories which are obtained by adding higher curvature terms in the usual Einstein-Hilbert

action are investigated.

1.3 Higher curvature theories

The Einstein-Hilbert action in general relativity is the action that gives Einstein field equations.

The gravitational part of this action is given by

IEH =
c4

16πG

∫

R
√−gd4x, (1.1)

where g = det(gab) is the determinant of the metric tensor, R is the Ricci scalar, G is the

gravitational constant and c is the speed of light in vacuum. Although it is in the simplest possible

form, but it has all the important required properties, including the one which requires equations

of motion to be of second-order. Despite the fact that general relativity is one of the most

successful theories of all times, it has some limitations. For example, it is not renormalizable.

To overcome this limitation, loop quantum corrections were suggested [2], which is done by

adding counter terms in the action, which are higher order in curvature scalars. Furthermore,
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in string theory, one can obtain the Einstein-Hilbert action from α′ expansion of string theory,

where
√
α′ is the string length. If one considers higher order in α′ expansion of string theory,

then higher curvature corrections appear. String theory makes other strong predictions about

the nature of addition of higher curvature corrections to the Einstein’s gravity [3]. The most

important predictions include existence of super-symmetry and extra dimensions. According

to one of the requirements of super-symmetry, spacetime has 10 dimensions. This convinces

physicists to look for the modifications of general relativity in higher dimensions to solve the

problems of quantum gravity.

Such studies have enough motivation to extend gravity beyond Einstein’s theory and study some

interesting black hole solutions in the resulting theories. A part of this thesis is devoted to those

theories in which terms are added to the Einstein-Hilbert part, which are of higher order in

curvature.

1.4 f(R) theories

When square of the Ricci scalar is added to the Einstein-Hilbert part of the action, we get the

simplest possible extension of Einstein’s theory of gravity. The action in this case is given by

If(R) =

∫

(R+ αR2)ddx. (1.2)

This action is usually known as the Starobinsky mode [4] and is a particular case of more general

class of Lagrangians, which are simply polynomial functions of the Ricci scalar. Theories of these

general class of Lagrangians are called f(R) theories. These theories provide very good toy

models to test the laws of black hole thermodynamics. If one couples these theories minimally

to scalar fields, then these are equivalent to Einstein’s gravity. Due to this property, these
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theories are usually known as scalar-tensor theories. The natural restriction on scalar fields is

that they are proportional to the first derivative of the function, which in turn ensure that these

theories are ghost-free. If we consider general f(R) theories, then equations of motion will be

of fourth order and hence propagate ghosts, but if we consider a scalar-tensor subset of f(R)

theories, then they are ghost-free.

1.5 Lovelock gravity

Lovelock theory of gravity is regarded as the generalization of Einstein’s theory of general rela-

tivity. It was introduced by D. Lovelock [5, 6]. In arbitrary dimensions d it is the most general

theory of gravity which yield second order equations of motion. Therefore, Lovelock’s theory is

the natural generalization of Einstein’s theory in higher dimensions. Both the theories coincide

in three and four dimensions but are different in higher dimensions. Since Einstein-Hilbert action

is one of the terms that constitute the Lovelock action, therefore Einstein’s theory is a special

case of Lovelock’s theory in dimensions greater then four. Lagrangian of the theory is given by

L =
√−g

t
∑

n=0

anR
n, Rn =

1

2n
δa1b1...anbnc1d1...cndn

n
∏

r=1

Rerfr
arbr

, (1.3)

where Rab
cd represents Riemann tensor and δa1b1...anbnc1d1...cndn

is the generalized Kronecker delta which is

defined as

δa1b1...anbnc1d1...cndn
= n!δa1[c1δ

b1
d1
...δancn δ

bn
dn]
. (1.4)

The coupling constants an appearing in the above Lagrangian have dimensions of [length]2n−d.

Expansion of the product in equation (1.3) gives the following

L =
√−g(a0 + a1R+ a2(R

2 +RabcdR
abcd − 4RabR

ab) + a3O(R3)). (1.5)
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It is clear from above equation that a0 corresponds to the cosmological constant, while an with

n > 2 are coupling constants for additional terms that correspond to the ultraviolet corrections to

Einstein’s theory, involving higher order contractions of the Riemann tensor Rab
cd. In particular,

second order term is R2 +RabcdR
abcd − 4RabR

ab, which is precisely the quadratic Gauss-Bonnet

term, which is the dimensionally extended version of the four-dimensional Euler density.

Lovelock and f(R) gravities have received a lot of attention in the quest to modify general

relativity. There is a class of theories in which both these classes appear as special cases. This

class is known as f(Lovelock) theories. The general form of the action of f(Lovelock) gravities

can be written as

Sf(Lovelock) =
1

16πG

∫

(ddx
√

|g|f(L0,L1,L2, ...,L d
2

)), (1.6)

where f is a differentiable function of dimensionally extended Euler densities given by

Ln = δb1b2...b2na1a2...a2nR
a1a2
b1b2

...R
a2n−1a2n
b2n−1b2n

. (1.7)

We can see that, in particular, L1 is the usual Einstein-Hilbert term and L2 is the Gauss-Bonnet

term. We will see the form of L3 in later sections and develop the form of L4 in later chapters.

It is evident from the above that we can reduce f(Lovelock) theories to the usual f(R) and

Lovelock theories if we choose f to be a linear combination of the sum of arbitrary functions

of Ricci scalar and Euler density, respectively. As we have seen above, Lovelock gravities are

the most general theories having second order equations of motion but in the f(Lovelock) case,

the equations of motion are of fourth order. In a particular case, if one restricts the number of

dimensions to four, then the action will contain the Ricci scalar and Gauss-Bonnet terms alone.

Such theories are usually known as f(R,G) gravities.
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1.6 Einsteinian cubic gravity

After the great success of Lovelock and other theories in modifying Einstein’s gravity, physicists

devoted efforts to construct new theories of gravity, which are free of ghosts. These efforts also

include the work in the direction to construct theories of cubic curvature corrections to Einstein’s

gravity. Quite recently, a new model of cubic curvature gravity has been presented [7]. This

gives a unique model when it is added to quadratic and cubic Lovelock terms. It also provides

Einstenian spectrum at linearized level, meaning that the theory is ghost-free. Furthermore, it

has dimension-independent coupling constants. This new model is coined as “Einsteinian cubic

gravity”. The Lagrangian density for this new theory is given by

LECG =
1

2κ
[−2Λ +R] + β1X4 + κ[β2X6 + λP ], (1.8)

where

P = 12Ra
c
b
dRc

e
d
fRe

a
f
b +Rab

cdRcd
efRef

ab − 12RabcdR
acRbd + 8Rb

aR
c
bR

a
c . (1.9)

Also, X4 andX6 are four- and six-dimensional Euler densities, respectively, representing Lovelock

terms and have the explicit forms given by

X4 = −1

4
δa1a2a3a4c1c2c3c4 R

c1c2
a1a2R

c3c4
a3a4 , (1.10)

and

X6 = −1

4
δa1a2a3a4a5a6c1c2c3c4c5c6 Rc1c2

a1a2Ra3a4
c3c4Rc5c6

a5a6 . (1.11)

An interesting thing about the contribution of this new P term is that it is active in four

dimensions. Remarkably, P contributes in all dimensions except d = 3 and d = 6. Therefore it

allows one to study the affects of cubic order curvature in four dimensions. It was claimed [7]
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that P is the unique theory for cubic curvature in which the linearized equations of motion

match the Einstein’s gravity. Therefore, it provides a useful holographic toy model and also one

can seek interesting black hole solutions of this new theory.

1.7 Generalized cubic quasi-topological gravity

Quasi-topological theories are very interesting gravity theories because when evaluated on a

spherically symmetric background, the field equations of these theories reduce to second order

differential equations and also produce exact solutions, similar to those of the Lovelock gravity.

This is peculiar, because when the condition of spherical symmetry is relaxed, the order of field

equation rises to four. Another important thing which makes quasi-topological theories more

relevant than the Lovelock theories is that for a given order of curvature, these theories are active

in dimensions less than the corresponding dimensions in which Lovelock theories are active for a

given order of curvature. For example, if we consider cubic order in curvature, Lovelock gravity

will be active in dimensions seven and higher, whereas quasi-topological gravity will be active in

dimensions five and higher. Furthermore, on the background of a constant curvature spacetime,

the linearized equations of motion of the theory coincide with that of the linearized equations

of motion of Einstein’s gravity up to an overall pre-factor. This match of linearized equations of

motion guarantees that the theory is physical, free of ghosts and does not posses extra degrees of

freedom other then Einsteinian gravity. This is very important, because if a theory propagates

extra degrees of freedom, then some of them may carry negative kinetic energy, which in turn is

equivalent to breakdown of unitarity in quantum theory. Furthermore, this match of equations

of motion with Einstein’s theory of gravity implies that the holographic studies of the theory

are significantly simplified.
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The gravitational action containing cubic order in curvature possesses generalized Schwarzschild

solution (usual Schwarzschild solution can be recovered by turning off the coupling constants

with cubic interaction terms), that is, possesses a vacuum static spherically symmetric solution,

characterized by a single metric function and having the most general form of Lagrangian, which

can be written as [8]

LCQTG = −2Λ +R+ αX4 + βX6 + µZd − λSd. (1.12)

Here α, β, µ, λ are coupling constants and Λ is cosmological constant. The forms of Zd and Sd

are given by [8]

Zd = Ra
b
c
dRb

e
d
fRe

a
f
c +

1

(2d− 3)(d− 4)

(3(3d− 8)

8
RabcdR

abcdR− 3(3d− 4)

2
Ra

cRc
aR

−3(d− 2)RacbdR
acb

eR
de + 3dRacbdR

abRcd + 6(d− 2)Ra
cRc

bRb
a +

3d

8
R3
)

. (1.13)

and

Sd = 14Ra
e
c
fRabcdRbedf + 2RabRa

cdeRbcde −
4(66− 35d+ 2d2)

3(d− 2)(2d− 1)
Ra

cRabRbc

−2(−30 + 9d+ 4d2)

(d− 2)(2d− 1)
RabRcdRacbd −

(38− 29d+ 4d2)

4(d− 2)(2d− 1)
RRabcdR

abcd

+
(34− 21d+ 4d2)

(d− 2)(2d− 1)
RabR

abR− (30− 13d+ 4d2)

12(d− 2)(2d− 1)
R3. (1.14)

This new theory has many remarkable properties:

1. If one wishes to recover Einstein’s gravity from it, it can be done by simply setting α, β, µ

and λ equal to zero.

2. In four dimensions Sd reduces to “Einsteinian cubic gravity” and in all dimensions, this

theory provides the generalized Schwarzschild solution.
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3. In the background of a constant curvature spacetime, linearized equations of motion match

with linearized equations of motion of Einstein’s gravity.

1.8 Black hole solutions

Higher curvature gravities contain whole classes of new black hole solutions which are unavailable

in the classical Einstein’s gravity. It was observed that addition of quadratic curvature terms in

the Einstein-Hilbert action did not produce any modification to the vacuum Einstein equations.

Therefore, the effect of adding the terms containing three Riemann curvatures was investigated.

Results of this analysis [9] showed that, there is a modification in the relation of the mass of the

black hole and its thermodynamic parameters. Particulary, the entropy of the black hole is not

proportional to the area of the horizon which is in contrast to the usual Einstein’s gravity.

Furthermore, perturbative analyses were developed to consider black holes in the context of string

theory [10–12]. In these references, authors have examined affects of curvature squared terms

on spherically symmetric black holes in general dimensions and also considered four-dimensional

black hole solutions with angular momentum or with charge. An important observation was

that, apart from other thermodynamic modifications made by the higher curvature terms, these

terms also generate various new long-range scalar fields "hair" on the black holes. However,

these hair are not primary as they can be completely determined by, for example, mass and

charge. Therefore, these solutions are not violating “no hair theorems”. In fact, new hair arise

because the scalar fields have non-minimal coupling with higher curvature terms.

Due to strong implications in string theory, physicists have focussed on Lovelock gravity. Re-

markably, exact spherically symmetric solutions were found for Gauss-Bonnet theory [13]. These

results are extended to arbitrary Lovelock theories [14–16] and also to include charged black

hole solutions [17]. These solutions exhibit certain peculiar properties such as multiple horizons



12

and unusual thermodynamical aspects. For example, some of these solutions exhibit vanishing

Hawking temperature [18]. The next interesting aspect which was considered and explored was

whether scalar hair found in the earlier work survived beyond perturbative theory or not. In

this direction, four-dimensional exact dilatonic solution in Gauss-Bonnet theory was investi-

gated [19]. The full equations of motion of this analysis are difficult and thus analytic solution

is not possible. Therefore, relying on the numerical evidences, it was found that modified black

holes do carry these secondary scalar hair as do the charged black holes [20].

Some black hole solutions in f(R) theories are also known [21, 22]. Particularly, for the case

f = R+ a2R
2, it was observed that, for a2 > 0, no new hair can arise. Thus, for this condition,

black hole solutions are same as that of Einstein’s gravity. This work was extended [22] to include

spherically symmetric solutions in arbitrary dimensions for general polynomial action. Results

of this study revealed that, regardless of the other terms in the action, the only constraints on

quadratic terms, as above i.e., a2 > 0, ensured the existence of asymptotically flat black holes

which are like the Schwarzschild solution.

1.9 Black hole thermodynamics

Black hole thermodynamics is certainly one of the most remarkable features of black hole physics,

because it provides a common point to thermodynamics, quantum field theory and general

relativity and thus provides hope that it might give insights into quantum gravity. Originally,

it was developed in the context of Einstein’s gravity. Afterwards, it was easy to extend similar

framework for the case of higher curvature theories. It was the work of Hawking [23] who first

showed that, black holes could actually radiate with temperature T , proportional to its surface

gravity κ:

kβT =
ℏκ

2πc
. (1.15)
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Here kβ is, ℏ Planck’s constant and c is speed of light. This was the prediction of quantum field

theory for spacetimes possessing horizon, which is independent of the dynamics of the gravity

theory. Using the Euclidean path integral approach [24] in higher curvature gravity, the first law

of black hole thermodynamics can be written as

κ

2πc
δS = c2δM − ΩδJ, (1.16)

whereM,J and Ω are mass of black hole, angular momentum and angular velocity at the horizon,

respectively. Once black hole temperature and surface gravity are known, black hole entropy

can be calculated. In the context of Einstein’s gravity, the famous Bekenstein-Hawking entropy

relation is given by [23–25]

SBH =
κ3c

ℏG

AH

4
, (1.17)

where AH represents the area of the event horizon. As will be seen in the next section, this

formula is not valid for the case of higher curvature gravities.

1.9.1 Wald entropy

In higher curvature gravities, it was found that temperature is still proportional to the surface

gravity, but entropy is no longer proportional to the area of the event horizon. Wald [26]

generalized the usual Bekenstein-Hawking entropy formula for black holes in higher curvature

gravities. To see this generalization, consider a Lagrangian of the form L(gab, Rabce). Then,

Wald entropy is given by [27]

S = −2π

∫

P abceǫabǫced
dx, (1.18)
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where ǫab = kalb− lakb is the binormal to bifurcate the Killing horizon. For the case of Einstein’s

gravity

P abce =
∂L

∂Rabce
=

1

32πG
(gacgbe − gaegbc). (1.19)

From this relation and the fact ǫabǫ
ab = −2, we can get the usual area-entropy relation S = A/4.

1.10 Greybody factor

If one considers black holes as a thermal system, then black holes will have temperature and

entropy. This implies that black holes can radiate. As thermal systems, black holes have an

associated temperature and entropy and therefore they radiate, and the radiations are called

Hawking radiations. The emission rate in a mode of frequency ω, at the event horizon, is given

by [23]

Γ(ω) =

(

1d3k

eβω ± 1(2π)3

)

. (1.20)

In this relation β is used to denote the inverse of the Hawking temperature and minus (plus)

sign is for bosons (fermions, respectively). This formula for emission rate can be generalized

for any dimension and it is valid for massive and massless particles. Spectrum of the radiations

from black holes at the event horizon is perfectly same as that of the black body spectrum. Due

to this, it gives rise to the information loss paradox. The important fact is that the geometry

of the spacetime around a black is non-trivial. This non-trivial geometry modifies the spectrum

of Hawking radiations. In fact, the non-trivial geometry acts as a potential barrier which allows

some of the radiations to transmit and reflect the rest to the black hole. The mathematical

expression that summarizes all the above discussion is

Γ(ω) =

(

γ(ω)d3k

eβω ± 1(2π)3

)

, (1.21)
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where γ(ω) is known as the greybody factor, which is frequency-dependent.

Physically, greybody factor originates from an effective potential barrier by a black hole space-

time. For example, the potential barrier for massless scalars from Schwarzschild spacetime is

Veff (r) =
(

1− rH
r

)

(

rH
r3

+
l(l + 1)

r2

)

, (1.22)

where rH is the horizon’s radius and l is angular momentum of the scalar. It is this potential

which transmits or reflects radiations from black holes. Therefore, it gives rise to the frequency

dependent greybody factor.

Greybody factor not only accounts for the deviation of Hawking radiations from black body

spectrum, but is also important in working out energy emission rates and is also relevant for

computing the partial absorption cross sections of black holes. In this thesis we investigate some

spherically symmetric and axially symmetric spacetimes for these effects. The main procedure

to get expression for greybody factor is to derive the solution of wave equation in the near

horizon and asymptotic regions separately and then match them to an appropriate intermediate

point [28–38]. In this thesis we investigate some spherically symmetric and axially symmetric

spacetimes for these effects.



Chapter 2

Quartic Quasi-Topological Gravity

2.1 Introduction

Physicists expect that modification of Einstein-Hilbert action by the addition of higher curvature

terms could lead to the formulation of the theory of quantum gravity. In this context, Gauss-

Bonnet term, Lovelock class and various other theories are developed by various authors [3,

5, 10, 39, 40]. Higher curvature gravity is interesting area of research for many reasons. For

example, it has been known for more than forty years that these theories allow for renormalizable

quantum gravity [41]. Also, in the holographic context, the study of these theories has led to the

discovery of numerous interesting properties [42] of conformal field theories [43–47]. Details of

these studies revealed that, the inclusion of quadratic terms has been shown to lead to violations

of the Kovtun–Son–Starinets (KSS) viscosity/entropy ratio bound [47, 48] and studies of cubic

curvature theories have led to holographic c-theorems [49], valid in arbitrary dimensions [50].

Thermodynamic studies reveal that black holes in higher curvature theories have peculiar be-

haviour. Recently, there has been a renewed interest in the thermodynamics and phase structure

of black holes. Motivated by the basic thermodynamic scaling arguments, it has been realized

16
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that when describing AdS black holes, cosmological constant should be treated as a thermo-

dynamic black hole parameter i.e., the pressure and its conjugate quantity is known as the

volume. It was found that, in this framework, the critical behaviour of the charged AdS black

hole becomes a physical analogy with the van der Waals fluids such that the liquid/gas becomes

analogous to small/large black hole phase transition [51–53].

Quasi-topological theories are those for which, in vacuum or in the presence of suitable matter,

in the spherically symmetric case, there is a single independent field equation for one metric

function that is a total derivative. Also, for spherical symmetry, the field equation is in the

form of a polynomial of the single metric function. Whereas, for generalized quasi-topological

theories, in spherical symmetry, field equation contain first two derivatives of the single metric

function. As we will present in this chapter, there are four new generalized quasi-topological

theories which are non-trivial in four dimensions. This is intriguing finding because quartic

Lovelock and several quartic quasi-topological theories are trivial in four dimensions.

The motivations stated above led to the construction of a new cubic theory of gravity, quasi-

topological gravity [54–62], which possesses a number of remarkable properties. As we know

that the cubic Lovelock term – the six dimensional Euler density – is gravitationally non-trivial

only in d > 6, this new cubic quasi-topological term contributes to the field equations in five

dimensions and higher. The equations of motion, which are fourth order on general backgrounds,

reduce to second order under the restriction to spherical symmetry. The theory admits exact

spherically symmetric black hole solutions with the metric function determined by a polynomial

equation very similar to the Wheeler polynomial of Lovelock gravity. Remarkably, despite the

field equations being fourth order on general backgrounds, the linearized equations of motion

describing graviton propagation in a constant curvature background are second order and match

the linearized Einstein equations, up to a redefinition of Newton’s constant [56, 63]. In other

words, the additional massive scalar mode and massive, ghost-like graviton are absent.
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In a recent work Ref. [8] it was shown that cubic quasi-topological gravity and cubic Lovelock

gravity can be understood as members of a class of gravitational theories—generalized quasi-

topological gravity—which, under the restriction of spherical symmetry, have a single independent

field equation. This is a sufficient condition to allow vacuum static spherically symmetric (VSSS)

solutions described by a single metric function; that is, solutions of the form

ds2 = −N2fdt2 +
dr2

f
+ r2dΣ2

(d−2),k , (2.1)

withN = const., i.e., the solution is characterized in terms of a single metric function f [64]. Here

dΣ2
(d−2),k is the line element on a surface of constant scalar curvature k = +1, 0,−1 corresponding

to spherical, flat, and hyperbolic metrices, respectively. In Ref. [8] it was demonstrated that the

most general theory to cubic order in curvature having this property is given by the action

I =
1

16πG

∫

ddx
√−g

[

−2Λ +R+ αX4 + βX6 + µZd − λSd

]

. (2.2)

Here, Λ is the cosmological constant and α, β, µ, λ are arbitrary coupling constants. R stands

for the Ricci scalar and X4 and X6 are the four- and six-dimensional Euler densities,

X4 = −1

4
δa1b1a2b2c1d1c2d2

Ra1b1
c1d1Ra2b2

c2d2 ,

X6 = −1

8
δa1b1a2b2a3b3c1d1c2d2c3d3

Ra1b1
c1d1Ra2b2

c2d2Ra3b3
c3d3 , (2.3)
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corresponding to the standard Gauss-Bonnet and cubic Lovelock terms, respectively. Zd is the

cubic quasi-topological term given by (2.10) below, and Sd is a new term whose explicit form

Sd = 14Ra
e
c
fRabcdRbedf + 2RabRa

cdeRbcde −
4(66− 35d+ 2d2)

3(d− 2)(2d− 1)
Ra

cRabRbc

−2(−30 + 9d+ 4d2)

(d− 2)(2d− 1)
RabRcdRacbd −

(38− 29d+ 4d2)

4(d− 2)(2d− 1)
RRabcdR

abcd

+
(34− 21d+ 4d2)

(d− 2)(2d− 1)
RabR

abR− (30− 13d+ 4d2)

12(d− 2)(2d− 1)
R3, (2.4)

was elucidated for the first time in Ref. [8]. Interestingly, while both the cubic Lovelock and quasi-

topological terms vanish in four dimensions, the new term S4 makes a non-trivial contribution to

the field equations, reducing to the contribution of Einsteinian cubic gravity [65]. However, while

Einsteinian cubic gravity does not permit solutions of the form (2.1) in d > 4, Sd does. In this

sense, Sd can be viewed as the d-dimensional generalization of the four-dimensional Einsteinian

cubic term.

In Ref. [8] it was observed that the linearized equations of motion derived from the action (2.2)

coincide with the linearized Einstein equations, up to a redefinition of Newton’s constant. Thus,

to cubic order in curvature, the entire class of theories which have a single independent field

equation for a VSSS ansatz enjoy the property of propagating only the massless, transverse

graviton familiar from Einstein’s gravity. It was also conjectured In Ref. [8] that this would be a

general feature for this class of theories to all orders in the curvature. Shortly after this, it was

demonstrated [66] that this is indeed the case for any theory for which the metric (2.1) describes

the gravitational field outside a spherically symmetric mass distribution. This caveat explains

why some theories, such as f(R) gravity, admit solutions of the form (2.1) with N = 1 but also

propagate additional modes on the vacuum; in these theories, the metric (2.1) does not describe

the gravitational field of a spherical mass [66].

The aim of the present chapter is to provide the quartic version of generalized quasi-topological
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gravity describing all quartic Lagrangian densities which, under the restriction of a VSSS ansatz,

have only a single independent field equation.

This chapter is organized as follows. In section 2.2 we first review the procedure by which

the generalized quasi-topological gravities can be constructed, and present the results of this

construction for the quartic case. In section 2.3 we discuss the linearized theory and in section

2.4 we derive the field equations from the actions we construct.

2.2 Construction of the quartic theories

2.2.1 Review of the construction

We begin by briefly reviewing the construction used to obtain the generalized quasi-topological

theories in [8]. The central idea is to construct theories that supplement Einstein gravity with

higher curvature terms in a manner such that these terms can be “turned off" by a suitable

adjustment of parameters in the action. Our conditions are the same as those mentioned in [7].

Explicitly, the conditions are:

1. The solution is not an ‘embedding’ of an Einstein gravity black hole into a higher order

gravity [67–69]. That is, the solution must be modified by the addition of the higher

curvature terms.

2. The solution is not of a pure higher order gravity, but includes the Einstein-Hilbert term.

For example, pure Weyl-squared gravity allows for four dimensional solutions with N =

1 [67, 70–72].

3. Further, the theory must admit an Einstein-Gravity limit, i.e. reduce to the Einstein-

Hilbert action upon setting some of the parameters in the action to zero. This excludes
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certain theories that tune the couplings between the various orders of curvature terms

[73, 74].

These are, effectively, designed so that the most general solution of the theory takes the form

of (2.1) with N = 1. That is, we demand that,

(

E t
t − Er

r

) ∣

∣

N=1
= 0 , (2.5)

where

Eab =
1√−g

δI
δgab

(2.6)

is the generalized Einstein tensor. We emphasize once again that in enforcing equation (2.5) we

do not place any constraints on the metric function f . In a general quartic theory, evaluating

the field equations in full generality is an arduous task. It is more convenient to enforce (2.5) by

taking advantage of the Weyl method [75, 76]. Here, one inserts the metric ansatz (2.1) into the

action, integrates by parts to remove boundary terms, considering the action as functional of N

and f , I[N, f ] and varies the action with respect to N and f to obtain the two field equations.

A simple application of the chain rule reveals that

δI
δN

= ω
(k)
(d−2)r

d−2 2Ett
fN2

,
δI
δf

= −
ω
(k)
(d−2)r

d−2

f

[

E t
t −NEr

r

]

, (2.7)

and so condition (2.5) becomes

δI
δf

∣

∣

∣

∣

N=1

= 0 (2.8)

as was pointed out in [66].
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Carrying out this procedure for a cubic theory of gravity, one is led to the following action

I =
1

16πG

∫

ddx
√−g

[

−2Λ +R+ αX4 + βX6 + µZd − λSd

]

, (2.9)

where Λ is the cosmological constant and α, β, µ, λ are arbitrary coupling constants. R stands for

the Ricci scalar and X4 and X6 are the four- and six-dimensional Euler densities, corresponding

to the standard Gauss-Bonnet and cubic Lovelock terms, respectively. Zd is the cubic quasi-

topological term,

Zd = Ra
b
c
dRb

e
d
fRe

a
f
c +

1

(2d− 3)(d− 4)

(3(3d− 8)

8
RabcdR

abcdR− 3(3d− 4)

2
Ra

cRc
aR

−3(d− 2)RacbdR
acb

eR
de + 3dRacbdR

abRcd + 6(d− 2)Ra
cRc

bRb
a +

3d

8
R3
)

. (2.10)

and Sd is a new term, written explicitly in (2.4).

Here we are interested in constructing the quartic generalization of this action. The possible

quartic curvature interactions are given by [63, 77]:

L1 = Ra
e
c
fRabcdRe

j
b
hRfjdh , L2 = Ra

e
c
fRabcdRbjdhRe

j
f
h , L3 = Rab

efRabcdRc
j
e
hRdjfh ,

L4 = Rab
efRabcdRce

jhRdfjh , L5 = Rab
efRabcdRcdjhRef

jh , L6 = Rabc
eRabcdRfhjdR

fhj
e ,

L7 = (RabcdR
abcd)2 , L8 = RabRc

h
eaR

cdefRdhfb , L9 = RabRcd
h
aR

cdefRefhb ,

L10 = RabRa
c
b
dRefhcR

efh
d , L11 = RRa

c
b
dRc

e
d
fRe

a
f
b , L12 = RRab

cdRcd
efRef

ab,

L13 = RabRcdRebfdR
e
a
f
c , L14 = RabRcdRecfdR

e
a
f
b , L15 = RabRcdRefbdR

ef
ac ,

L16 = RabRb
cRdefcR

def
a , L17 = RefR

efRabcdR
abcd , L18 = RdeRRabcdR

abc
e ,

L19 = R2RabcdR
abcd , L20 = RabRe

dRecRacbd , L21 = RacRbdRRabcd ,

L22 = Ra
bRb

cRc
dRd

a , L23 = (RabR
ab)2 , L24 = Ra

bRb
cRc

aR ,

L25 = RabR
abR2 , L26 = R4 . (2.11)
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It is worth noting that in dimensions less than eight, the above 26 curvature invariants are

not independent. The reason is because a certain linear combination of these yields the eight

dimensional Euler density,

X8 =
1

24
δa1b1a2b2a3b3a4b4c1d1c2d2c3d3c4d4

Ra1b1
c1d1Ra2b2

c2d2Ra3b3
c3d3Ra4b4

c4d4 (2.12)

which vanishes identically in dimensions less than eight. Furthermore, under the restriction to

spherical symmetry, there are additional, subtle degeneracies. There exist certain combinations

of the above curvature invariants that identically vanish for spherically symmetric metrics [78].

Thus, we can expect certain degeneracies of theories in the spherically symmetric case: The field

equations will not change upon the addition of one of these terms to the action. However, we

should note that the resulting theories will be different when one moves away from spherical

symmetry.

In what follows we focus on the quartic contributions to the action and write the following action

I =
1

16πG

∫

ddx
√−g

[

−2Λ +R+

26
∑

i=1

ciLi

]

(2.13)

turning off the quadratic and cubic terms for the time being. In the following subsections we will

enforce condition (2.8) on this theory by fixing the constants ci such that the condition is satisfied

for any metric function f . From a practical perspective, we first compute the action (2.13) in

complete generality by explicitly determining each of the 26 terms in arbitrary dimensions for a

VSSS ansatz. This procedure is made significantly more manageable via a simple Maple script

that we have used to determine the dimensional dependence. Our results have been cross-checked

up to (in some cases) 19 dimensions. All subsequent calculations were then performed working

directly with this completely general action.
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We now split our discussion into two parts. First, we will consider the case of dimensions greater

than four and then we will consider the four dimensional case. This is because, as was observed

in the cubic theory [8], the four dimensional case is somewhat special, while all other dimensions

can be treated on equal footing.

2.2.2 The case for dimensions larger than four

Enforcing the condition (2.8) on action (2.13) revealed that, in five and higher dimensions, there

are nine constraints that determine the class of theories with this property i.e., those which

possess VSSS. Somewhat arbitrarily, we solve the constraints for c12, c17, c19, c20, c21, c22,

c23, c24 and c25. The expressions for these constraints are lengthy and the results are given in

Appendix A. After these, we are left with seventeen free parameters that we have to adjust to

get interesting quartic curvature terms. Learning from the existing literature, to classify such

theories, one must divide these theories into two categories:

1. Theories for which the field equation is in the form of total derivative of the polynomial of

the metric function.

2. Theories which contain more than one derivative of the metric function.

For each of the above categories, we will present field equations in § 2.4. For now, we will

present suitable forms which fulfill the conditions of either of above categories, for the 17 quartic

theories.

2.2.2.1 Lovelock and quasi-topological theories

In this section, we determine the number of constraints required, in addition to the nine con-

straints mentioned above, to allow all terms in the action to vanish (for those which lead to
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more than one derivative in the field equations for the VSSS metric function f , see § 2.4). The

resulting field equation is then a total derivative of a polynomial in f . We conclude that two

additional constraints are the minimum number required in order to get rid of these higher

derivative terms in the action. Furthermore, we find that this conclusion does not depend on

the particular choice of the constraints and therefore choosing arbitrarily c9 and c15, we get

c9 = −2
(

−8 + 2d4 − 23d+ 39d2 − 16d3
)

(3d− 4) (d− 4) (d2 − 6d+ 11)
c1 −

2
(

122 + 130d2 − 207d− 37d3 + 4d4
)

(3d− 4) (d− 4) (d2 − 6d+ 11)
c2

− (5d− 7) (d− 4)

(3d− 4) (d2 − 6d+ 11)
c3 −

8
(

82 + 82d2 − 21d3 + 2d4 − 139d
)

(3d− 4) (d− 4) (d2 − 6d+ 11)
c4

− 16
(

82 + 82d2 − 21d3 + 2d4 − 139d
)

(3d− 4) (d− 4) (d2 − 6d+ 11)
c5 −

4 (d− 2) (d− 3)
(

4d2 − 17d+ 16
)

(3d− 4) (d− 4) (d2 − 6d+ 11)
c6

− 32 (d− 1) (d− 3) (d− 2)2

(3d− 4) (d− 4) (d2 − 6d+ 11)
c7 −

(d− 4)

2 (d2 − 6d+ 11)
c8 −

(d− 3) d

2 (d2 − 6d+ 11)
c10 , (2.14)

c15 =
8d7 − 111d6 + 570d5 − 1190d4 + 210d3 + 2725d2 − 3308d+ 1024

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c1

+
2 (d− 1)

(

8d6 − 116d5 + 689d4 − 2141d3 + 3661d2 − 3197d+ 988
)

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c2

+
13d5 − 167d4 + 781d3 − 1615d2 + 1396d− 384

(3d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c3

+
8
(

4d7 − 70d6 + 513d5 − 2022d4 + 4566d3 − 5760d2 + 3557d− 716
)

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
(c4 + 2c5)

+
4 (d− 1)

(

8d6 − 116d5 + 673d4 − 1966d3 + 2983d2 − 2148d+ 512
)

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c6

+
32 (d− 1)

(

2d4 − 15d3 + 32d2 − 9d− 4
)

(d− 2) (d− 3)

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c7

+
(d− 3)2

(

d2 − 6d+ 2
)

(d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c8 +

(d− 4)
(

3d3 − 21d2 + 37d− 11
)

(d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c10

− d3 − 8d2 + 19d− 8

2 (d3 − 7d2 + 14d− 4)
c13 −

d (d− 3)

d3 − 7d2 + 14d− 4
c14 +

(d− 1) (d− 4)

d3 − 7d2 + 14d− 4
c16 (2.15)

Two additional constraints can be imposed to eliminate more than two derivatives of N(r) in

the action. These will make variational principle more manageable. These terms vanish anyway
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because the theory is constructed in such a way that N = 1 solves one of the field equations.

The remarkable property of these theories that we can kill higher derivatives of N(r) and also

that the field equations are algebraic, is consistent with Conjecture 2 of Ref. [66]. To ensure this

we choose c18 and c26, given by

c18 =
1

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4) (d3 − 9d2 + 26d− 22)

×
[

− 2(2d10 − 112640d2 + 6558d6 + 71315d3 − 2329d7 − 16827d4 + 447d8

− 46d9 − 6654d5 + 87822d− 28032)c1 − 4(2d10 + 156501d2 + 16490d6

− 158736d3 − 3749d7 + 107067d4 + 562d8 − 50d9 − 50145d5 − 92828d+ 25270)c2

− 2(d− 4)(4d8 − 92d7 + 900d6 − 4901d5 + 16264d4 − 33711d3 + 42690d2

− 30290d+ 9280)c3 − 16(d10 + 81391d2 + 10461d6 − 93331d3 − 2292d7

+ 67198d4 + 325d8 − 27d9 − 32176d5 − 39268d+ 7550)c4 − 32(d10 + 81391d2

+ 10461d6 − 93331d3 − 2292d7 + 67198d4 + 325d8 − 27d9 − 32176d5

− 39268d+ 7550)c5 − 8(2d10 + 88410d2 + 15059d6 − 106219d3 − 3597d7

+ 81940d4 + 555d8 − 50d9 − 42522d5 − 42618d+ 9088)c6

− 32 (d− 2) (d− 3) (d8 − 18d7 + 137d6 − 573d5 + 1436d4 − 2191d3 + 1884d2

− 584d− 164)c7 +
1
2(3d− 4)(d− 4) (d− 3) (5d5 − 60d4 + 281d3 − 626d2

+ 632d− 184)c8
]

− (d− 5)
(

d3 − 6d2 + 10d− 6
)

(d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c10

+
3 (d− 1) (d− 3)

d3 − 9d2 + 26d− 22
c11 −

(d− 3)2

d3 − 7d2 + 14d− 4
c13 + 2

(d− 3)

d3 − 7d2 + 14d− 4
c14

− 2 (d− 3)2

d3 − 7d2 + 14d− 4
c16 (2.16)



27

c26 =
1

(3d− 4) (d− 2)3 (d2 − 6d+ 11) (d3 − 9d2 + 26d− 22) (d2 − 7d+ 14) (d− 4)

×
[

c1
24

(147d10 + 340880d2 + 2457d6 − 20d11 − 475564d3 + 6300d7 + 317426d4

− 927d8 − 366d9 + d12 − 97214d5 − 87616d− 2048) +
c2
12

(200d10 − 467516d2

− 29192d6 − 22d11 + 359578d3 + 3084d7 − 208682d4 + 1757d8 − 919d9 + d12

+ 94783d5 + 393168d− 155456) +
c3
12

(d− 4)(d10 − 20d9 + 150d8 − 440d7

− 401d6 + 6292d5 − 16150d4 + 12280d3 + 13312d2 − 26080d+ 10240)

+
c4
6
(d− 2)(d11 − 22d10 + 194d9 − 806d8 + 995d7 + 4130d6 − 13426d5 − 20342d4

+ 181192d3 − 412060d2 + 442000d− 194240) +
c5
3
(d− 2)(d11 − 22d10 + 194d9

− 806d8 + 995d7 + 4130d6 − 13426d5 − 20342d4 + 181192d3 − 412060d2

+ 442000d− 194240) +
c6
6
(195d10 + 499536d2 − 13335d6 − 22d11 − 403948d3

+ 3582d7 + 163666d4 + 1153d8 − 826d9 + d12 − 14578d5 − 316736d+ 79872)

+
c7
3
(d− 2)(d11 − 18d10 + 122d9 − 324d8 − 169d7 + 2302d6 + 810d5 − 28868d4

+ 88832d3 − 152480d2 + 168128d− 87552)

]

−
(

3d4 − 28d3 + 105d2 − 176d+ 120
)

(d− 4)2

4 (d2 − 7d+ 14) (d3 − 9d2 + 26d− 22) (d2 − 6d+ 11) (d− 2)3
c8

−
(

d4 − 6d3 + 8d2 + 18d− 24
)

2 (d2 − 7d+ 14) (d2 − 6d+ 11) (d− 2)3
c10

+

(

d5 − 10d4 + 29d3 + 16d2 − 172d+ 152
)

2 (d2 − 7d+ 14) (d3 − 9d2 + 26d− 22) (d− 2)3
c11 +

(d− 4)

2 (d2 − 7d+ 14) (d− 2)3
c13

−
(

d2 − 6d+ 12
)

2 (d2 − 7d+ 14) (d− 2)3
c14 +

(d− 4)

(d2 − 7d+ 14) (d− 2)3
c16

−
(

d3 − 8d2 + 20d− 8
)

2 (d2 − 7d+ 14) (d− 2)3
c18 (2.17)

Resulting theories will have a field equation with a form similar to that of Lovelock gravity, as

presented in Ref. [61] – the quartic quasi-topological gravity. The field equation, which will be

presented in § 2.4, and it will be shown there that it is a total derivative of a polynomial in f(r).
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We are left with thirteen free parameters after the two additional constraints (2.16) and (2.17)

are imposed, given the constraints in Appendix A and equations (2.14) and (2.15). We remark

that only seven of these terms make non-trivial contributions to the field equations; these are

characterized by the constants c1, c2, c3, c4, c5, c6 and c7. Of these seven non-trivial theories, one

will be quartic Lovelock gravity, i.e., the choice of these constraints that yield eight dimensional

Euler density is

X8 : c1 = 96, c2 = −48, c3 = 96, c4 = −48, c5 = −6, c6 = 48, c7 = −3,

c8 = −384, c10 = −192, c11 = 32, c13 = −192, c14 = 192, c16 = −192. (2.18)

Another selection which possesses non-trivial field equation is

Z(1)
d : c1 = 0, c2 = 8(d− 2)(860− 2113d+ 1959d2 − 810d3 + 102d4 + 30d5 − 11d6 + d7)

c3 = 0, c4 = 0, c6 = 0,

c5 = −(d− 2)(1108− 2723d+ 2639d2 − 1224d3 + 235d4 + 10d5 − 10d6 + d7),

c7 = −1292 + 2929d− 2741d2 + 1527d3 − 684d4 + 276d5 − 82d6 + 14d7 − d8,

c8 = 0, c10 = 0, c11 = 0, c13 = 0,

c14 = 16(d− 2)3(274− 389d+ 183d2 − 34d3 + 2d4), c16 = 0 . (2.19)

This choice gives quartic quasi-topological gravity [61].

All of the above presented theories are available in literature and we made choices of c’s to recover

their forms. Now we will make choices of c’s to get new theories of desired properties which are

mentioned above for quasi-topological and generalized quasi-topological theories. Therefore, we

find five new quartic quasi-topological theories which are not available in literature previously.

We make the following simple choice of c’s for these new terms given by:
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Z(2)
d : c1 = 1, other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

Z(3)
d : c2 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

Z(4)
d : c3 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

Z(5)
d : c4 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

Z(6)
d : c5 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17).

(2.20)

Lagrangian densities for these theories have very complicated dimension, dependent on the

spacetime dimension. Their explicit forms for any dimension d > 4 are included in Appendix B.

Each of the quasi-topological theories contribute to the field equations in dimensions d ≥ 5, but

are ‘quasi-topological’ in d = 8, i.e., they do not contribute to the equations of motion for eight

dimensional spherically symmetric metrics.

As mentioned above, we have found seven quasi-topological Lagrangians for the quartic order

in curvature. One of these is the quartic Lovelock term, one is previously known term [61] and

five are new. All of these six theories fall into the class of theories known as quasi-topological

gravity. It is not possible to “move between” these quasi-topological terms by adding a term

proportional to the eight-dimensional Euler density: there is no linear combination of the Z(i)
d

terms we have defined which can yield X8. This is in notable contrast to the cubic case where,

in five dimensions, there are two contributions to the field equations, namely, in the notation of

Ref. [56], Z5 and Z ′
5. However these densities obey the relationship [56]

X6 = 4Z ′
5 − 8Z5, (2.21)

and since the six dimensional Euler density identically vanishes in five dimensions for any metric,
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it follows that there are not really two independent theories. Cubic quasi-topological gravity is

unique. The fact that in the quartic case

X8 6=
6
∑

i=1

ciZ(i)
d , (2.22)

for any choice of the coefficients ci means that each of these theories are distinct for general

metrics. However, as mentioned at the beginning of this section, there is a sense in which these

theories are degenerate. Under the constraint of spherical symmetry, there exist invariants that

vanish for any spherically symmetric metric [78]. In fact, the combination

I(ij) =
µ̂(i)

µ(i)
Z(i) −

µ̂(j)

µ(j)
Z(j), (2.23)

will always be such a term [the quantities with the hats are defined below in equation (2.31)].

Thus, in spherical symmetry, there is a “unique” quasi-topological theory in the sense that

each of the Z(i)
d terms makes the same contribution to the field equations and are related to

one another by the addition of a term that vanishes on spherically symmetric metrics. We

emphasize, however, that these theories are ultimately distinct because they will each yield

different dynamics when spherical symmetry is not imposed.

The quartic quasi-topological term (2.19) was also claimed to be unique; however, this does not

appear to be the case, at least in the sense originally described [61]. That theory is unique

only in the sense described above: terms vanishing under the constraint of spherical symmetry

can be added to the action without altering the field equations. However, apart from spherical

symmetry, these are distinct theories, even in dimensions less than eight.
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2.2.2.2 Generalized quasi-topological terms

We now move on to consider generalized quasi-topological terms. Of the 13 free parameters re-

maining under the restrictions imposed by the constraints in Appendix A and equations (2.14)-

(2.17), the Lovelock and six quasi-topological terms comprise of the only seven non-trivial the-

ories. The remaining six terms do not contribute to the field equations of a VSSS ansatz. Here,

we do not explicitly present the Lagrangians for these terms, but rather simply indicate choices

of constants by which they are produced. We make the following choices:

C(1)
d : c8 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

C(2)
d : c10 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

C(3)
d : c11 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

C(4)
d : c13 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

C(5)
d : c14 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17);

C(6)
d : c16 = 1 , other ci = 0 except those constrained in Appendix A and equations (2.14)-(2.17).

(2.24)

In (2.24) and in § 2.2.2.1, we presented choices of constants that yield 13 of the 17 theories. We

find that seven of these theories are non-trivial on a spherically symmetric metric and belong to

the Lovelock or quasi-topological classes.

These remaining six terms yield vanishing contributions to the field equations when N = 1

is permitted (e.g., in vacuum or for electromagnetic matter), but would make non-vanishing

contributions in the presence of more general matter distributions.

We shall now relax the additional constraints imposed in equations (2.14)-(2.17) in order to

obtain a full family of theories satisfying the constraint (2.5). These four distinct new theories
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– the quartet – have a field equation that is a total derivative of a quantity that is a polynomial

in both f(r) and its first two derivatives and it will be elaborated in subsequent section.

We make the following selections:

S(1)
d : c1 = 1 ,

c9 = −2d6 − 23d5 + 106d4 − 292d3 + 588d2 − 709d+ 320

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
1

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[

d10 − 20d9 + 188d8 − 1211d7 + 6287d6 − 25778d5 + 75674d4

− 146251d3 + 172418d2 − 110076d+ 28160
]

,

all other ci = 0 except those constrained in Appendix A ; (2.25)

S(2)
d : c2 = 1 ,

c9 = −2
(

2d6 − 24d5 + 103d4 − 161d3 − 67d2 + 409d− 274
)

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
2

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[

d10 − 16d9 + 55d8 + 601d7 − 7258d6 + 35933d5 − 102275d4

+ 177665d3 − 184591d2 + 104237d− 24112
]

,

all other ci = 0 except those constrained in Appendix A ; (2.26)
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S(3)
d : c4 = 1 ,

c9 = −4(2d6 − 25d5 + 112d4 − 185d3 − 70d2 + 494d− 340)

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
4

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[

d10 − 18d9 + 99d8 + 193d7 − 5212d6 + 30115d5 − 93864d4

+ 175930d3 − 196892d2 + 120000d− 29920
]

,

all other ci = 0 except those constrained in Appendix A ; (2.27)

S(4)
d : c5 = 1 ,

c9 = −8(2d6 − 25d5 + 112d4 − 185d3 − 70d2 + 494d− 340)

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
8

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[

d10 − 18d9 + 99d8 + 193d7 − 5212d6 + 30115d5 − 93864d4

+ 175930d3 − 196892d2 + 120000d− 29920
]

,

all other ci = 0 except those constrained in Appendix A . (2.28)

We have chosen these constants to render the field equations in general dimensions as simple as

possible. Our choices have been further motivated by the four dimensional case, which will be

presented in § 2.2.3. The explicit Lagrangian densities that result for these terms are presented

in Appendix C.

Although, we have made many different attempts, it does not seem possible to select additional

constraints such that the reduced Lagrangian of these generalized quasi-topological theories takes

the form,

LN,f = NF0 +N ′F1 +N ′′F2 (2.29)
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where Fi are functions of f and its derivatives with respect to r. In other words, it does not

seem possible to eliminate terms that are higher order in the derivatives of N (e.g., N ′2/N , etc.)

without also eliminating the theory. This adds further support to Conjecture 2 made in Ref. [66]

since we also find that the field equations for these theories are not algebraic.

We have now listed choices of constants for all 17 theories which satisfy condition (2.5) at the

quartic level. We are now able to write down the explicit action for the full theory in five and

higher dimensions. This takes the form

I =
1

16πG

∫

ddx
√−g

[

− 2Λ +R+ α2X4 + α3X6 + µZd − λSd + α4X8

+
6
∑

i=1

µ̂(i)Z(i)
d −

4
∑

i=1

λ̂(i)S(i)
d +

6
∑

i=1

γ(i)C(i)
d

]

. (2.30)

For any situation in which the stress-energy tensor satisfies T t
t = T r

r (including the vacuum), the

C(i)
d terms will make no contribution to the field equations: their contributions to the generalized

Einstein tensor all contain derivatives of N . For this reason, we shall not include these terms in

our action in any of the discussion to follow. In the above, we have made the following rescalings

of the coupling constants to simplify the resulting field equations:
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µ̂(1) =
1

(d− 1) (d− 2) (d− 3)2 (d− 4) (d− 8)P
µ(1) ,

µ̂(2) =
24(3d− 4)

(d− 3) (d− 8) (28d3 − 173d+ 160 + d5 + 18d2 − 10d4)
µ(2) ,

µ̂(3) =
12(3d− 4)

(d− 3) (d− 8) (−12d4 + 61d3 + 242d− 167d2 + d5 − 137)
µ(3) ,

µ̂(4) =
12(3d− 4)

(d− 3) (d− 8) (d− 4) (d3 − 10d2 + 31d− 26)
µ(4) ,

µ̂(5) =
6(3d− 4)

(d− 3) (d− 8) (d5 + 79d3 − 14d4 + 316d− 170− 224d2)
µ(5) ,

µ̂(6) =
3(3d− 4)

(d− 3) (d− 8) (d5 + 79d3 − 14d4 + 316d− 170− 224d2)
µ(6) ,

λ̂(1) =
d
(

3d3 − 27d2 + 73d− 57
)

(2d5 − 20d4 + 56d3 + 36d2 − 346d+ 320)
λ(1) ,

λ̂(2) =

(

3d3 − 27d2 + 73 d− 57
)

d

4 (d5 − 12d4 + 61d3 − 167d2 + 242 d− 137)
λ(2) ,

λ̂(3) =

(

3d3 − 27d2 + 73 d− 57
)

d

8 (d5 − 14d4 + 79d3 − 224d2 + 316 d− 170)
λ(3) ,

λ̂(4) =

(

3d3 − 27d2 + 73 d− 57
)

d

16 (d5 − 14d4 + 79d3 − 224d2 + 316 d− 170)
λ(4) . (2.31)

In the first term above we have defined

P =
(

d5 − 20 d4 + 142 d3 − 472d2 + 743 d− 436
)

. (2.32)

This concludes our discussion of the theories in dimensions larger than four. We now turn to a

discussion of the four dimensional case.

2.2.3 The case for four dimensions

As was observed in the cubic version of generalized quasi-topological gravity, the four dimensional

case is somewhat special, with only seven constraints as opposed to nine. We find that the most
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general four dimensional theory satisfying (2.5) is given by placing the following seven constraints

on the quartic terms in the action:

c12 = −19

60
c1 −

1

2
c2 −

1

12
c3 −

4

5
c4 −

8

5
c5 −

14

15
c6 −

56

15
c7 −

1

8
c8 −

1

4
c9 −

1

2
c11,

c17 = −23

30
c1 −

4

3
c2 −

1

12
c3 −

11

5
c4 −

22

5
c5 −

41

15
c6 −

28

5
c7 −

1

24
c8 − c9 −

11

12
c10

− 1

6
c13 −

1

3
c14 −

1

12
c15 −

1

4
c16 ,

c19 =
11

30
c1 +

7

12
c2 +

1

12
c3 +

9

10
c4 +

9

5
c5 +

17

15
c6 +

16

5
c7 +

5

48
c8 +

1

4
c9 +

1

6
c10

+
3

8
c11 −

1

48
c13 +

1

12
c14 −

1

24
c15 −

1

4
c18 ,

c20 =
36

5
c1 +

32

3
c2 + 2c3 +

72

5
c4 +

144

5
c5 +

104

5
c6 +

1088

15
c7 +

7

3
c8 +

4

3
c10 + 8c11

− 8

3
c13 +

2

3
c14 −

10

3
c15 − 2c16 − 4c18 + 2c24 + 8c25 + 32c26 ,

c21 = −5

3
c1 −

8

3
c2 −

1

3
c3 − 4c4 − 8c5 −

16

3
c6 −

32

3
c7 −

1

3
c8 − c9 −

4

3
c10 − c11

+
1

6
c13 −

2

3
c14 +

1

3
c15 − c24 − 4c25 − 16c26 ,

c22 = −7

3
c1 −

10

3
c2 −

2

3
c3 − 4c4 − 8c5 −

20

3
c6 −

64

3
c7 −

2

3
c8 −

2

3
c10 − 2c11

+
1

3
c13 −

1

3
c14 +

2

3
c15 − 2c24 + 16c26 ,

c23 =
1

15
c1 +

1

3
c2 −

1

6
c3 +

4

5
c4 +

8

5
c5 +

14

15
c6 −

28

5
c7 −

1

3
c8 + c9 +

7

6
c10 −

3

2
c11

+
5

12
c13 +

1

3
c14 +

1

3
c15 +

1

2
c16 + c18 − 2c25 − 12c26 . (2.33)

Thus, one is left with a 19 parameter family of quartic densities whose solutions are of the form

equation (2.1) with N = constant. We shall now discuss a useful choices for these theories.

In general, only the six terms corresponding to c1, c2, c4, c5, c6 and c7 make nonzero contribution

to field equations in the context of VSSS metrics. Furthermore, each of these six terms make

the same contributions to the field equations, up to overall constants. These six terms provide

the quartic generalizations of the cubic S4 term in four dimensions. The remaining 13 terms do

not contribute to the field equations of a VSSS ansatz, or in any case where the stress-energy
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tensor satisfies T t
t = T r

r . Our focus here will be to present the six non-vanishing contributions.

In the previous subsection, we presented four Lagrangian densities, S(i)
d with i = 1, 2, 3, 4.

These terms account for four of the six contributions in four dimensions, upon setting d = 4 in

the expressions presented in Appendix C. The two additional non-trivial contributions can be

obtained by the following selection of free parameters.

S(5)
4 : c6 = 1 , c9 = −56

15
,

all other ci = 0 except those constrained in equation (2.33) ;

S(6)
4 : c7 = 1 , c9 = −224

15
,

all other ci = 0 except those constrained in equation (2.33) . (2.34)

We have presented explicit forms for these expressions in Appendix C. In addition to the six

non-trivial terms, there are 13 terms that are the four dimensional analogs of the C(i)
d terms.

We do not present full expressions for these terms here since they have no effect on the field

equations in the situations we are interested in. A simple choice for these terms is obtained

simply by taking ci = 1 and all other cj = 0 (except those which are constrained) for each of

the constants that have not been fixed by the above considerations.

We note again that the imposition of spherical symmetry yields a degeneracy amongst these

theories: they differ by terms that vanish for a spherically symmetric metric. However, this

degeneracy is lifted if spherical symmetry is relaxed and so the theories are ultimately distinct.

The action for the non-trivial contributions to the field equations in four dimensions reads

I =
1

16πG

∫

d4x
√−g

[

− 2Λ +R− λS4 −
6
∑

i=1

λ̂(i)S(i)
4

]

, (2.35)
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where

λ̂(5) = − 5

24
λ(5) , λ̂(6) = − 5

96
λ(6), (2.36)

with all other λ̂(i) as defined in equation (2.31) with d = 4. These choices of normalization have

been made to simplify the form of the field equations.

2.3 Linear theory and vacua

In this section, we provide a brief discussion of the linearized equations of motion for the theories

presented in § 2.2. As conjectured in Ref. [8] and then demonstrated in Ref. [66], a theory

satisfying equation (2.5) must necessarily have linearized equations of motion that agree with

the linearized Einstein equations on a constant curvature background, up to an overall constant.

The only caveat is that, in this theory, the metric (2.1) describes the gravitational field outside

of a spherically symmetric mass distribution. Thus, this section provides a useful check of the

correctness of the theories, and the results may be useful in future studies of these theories.

In what follows, we will closely follow Ref. [63], adopting the conventions therein.

We consider a perturbation hab away from a constant curvature spacetime ḡab such that,

gab = ḡab + hab . (2.37)

The curvature of the constant curvature background is given by,

R̄abcd = 2Kḡa[cḡd]b , (2.38)
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for some constant K. Adopting the procedure explained in [63], the linearized equations of

motion for hab are then given by,

1

2
EL
ab =

[

e− 2K (a(d− 1) + c) + (2a+ c)�̄
]

GL
ab + [a+ 2b+ c]

[

ḡab�̄− ∇̄a∇̄b

]

RL

−K
[

a(d− 3)− 2b(d− 1)− c
]

ḡabR
L =

1

4
TL
ab, (2.39)

where a, b, c and e are convenient choices of parameters based on the linearization procedure

which can be computed from the following two relationships

(
∂L
∂α

)|α=0 = 2eχ(χ− 1), (2.40)

(
∂2L
∂α2

)|α=0 = 4χ(χ− 1)(a+ bχ(χ− 1) + c(χ− 1)), (2.41)

here, α is a parameter and χ is an arbitrary integer number, which will remain undetermined

because values of a, b, c and e do not depend on χ, therefore we will not compute its value. In

the above, all quantities with a bar correspond to those defined for the background metric, ḡab,

while

GL
ab = RL

ab −
1

2
ḡabR

L − (d− 1)Khab ,

RL
ab =

1

2

[

∇̄a∇̄chb
c + ∇̄b∇̄cha

c − �̄hab − ∇̄a∇̄bh
]

+ dKhab −Khḡab

RL = ∇̄a∇̄bhab − �̄h− (d− 1)Kh, (2.42)

where h = ḡabhab. The additional scalar and massive graviton modes will be absent provided

2a+ c = 0 and 4b+ c = 0 [63]. In other words, these terms will be absent provided the linearized

equations are proportional to the linearized Einstein tensor (plus cosmological term) on the

same background. Let us now explicitly present the linearized equations for the theories we have
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constructed. Specifically, we consider the theory

I =
1

16πG

∫

ddx
√−g

[

− 2Λ +R−
4
∑

i=1

λ̂(i)S(i)
d +

6
∑

i=1

µ̂(i)Z(i)
d

]

, (2.43)

which includes all of the non-trivial contributions at the quartic level, except for the Lovelock

term, which has been thoroughly studied previously. The results can be easily extended to cases

with additional terms appearing in the action by simply adding the contributions arising from

these terms to the relevant equations below.

We will define, for convenience, the following constants:

µ

6
∑

i=1

µ(i) , λ

4+2δd,4
∑

i=1

λ(i) . (2.44)

Then, it is a matter of calculation to show that the linearized equations are given by,

EL
ab =

1

2

[

1 + 4

(

µ+
(d− 8)

3
λ

)

K3

]

GL
ab. (2.45)

Note that in the above, it is the couplings without hats that appear; the definitions made in

equation (2.31) significantly simplify the form of the linearized equations. As expected, we see

the result is proportional to the Einstein tensor linearized on the same background.

In four dimensions, the additional terms S(5)
4 and S(6)

4 also contribute, while the quasi-topological

terms make no contribution. The linearized field equations then become

EL
ab =

1

2

[

1− 16

3
λK3

]

GL
ab , in d = 4 (2.46)

where the sum defining λ now runs over all six couplings, λ(i).

The full field equations will relate the curvature of the background, K, to the length scale
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introduced by the cosmological constant, Λ. This dependence can be obtained by evaluating

the field equations (see next section) on the constant curvature background. One finds that the

following relationship must hold,

− 2Λ

(d− 1)(d− 2)
+K +

(

µ+
(d− 8)

3
λ

)

K4 = 0 , (2.47)

with µ and λ defined by the sums above. Note that when the higher curvature terms are switched

off, the cosmological constant uniquely determines the curvature of the constant curvature solu-

tions of the theory. However, when the higher curvature terms are present there will generically

be multiple solutions for K: four in this quartic theory. In general, only a single one of these

solutions will have a smooth limit to the vacuum of Einstein’s gravity upon sending µ, λ→ 0.

In order to ensure the proper coupling to matter, the prefactor appearing in front of GL
ab in the

linearized equations must have the same sign as in Einstein’s gravity. If this were not the case,

then the graviton would be a ghost. For the theory discussed here, this requirement demands

that

1 + 4

(

µ+
(d− 8)

3
λ

)

K3 > 0 . (2.48)

This condition must be satisfied by any physically reasonable solution to the equations of motion.

We close this section by noting that, in a d > 4 theory that contains both the quasi-topological

and generalized quasi-topological terms, the value

µ = −(d− 8)

3
λ (2.49)

seems to be special. When the couplings are constrained in this way, the theory has a unique

vacuum coinciding with the Einstein’s gravity vacuum. Furthermore, the above inequality for

the absence of ghosts is trivially satisfied.
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2.4 Nonlinear field equations in spherical symmetry

Here we present the field equations that are derived from the actions presented in Section 2.2.

We consider first the theory defined in dimensions larger than four, and then close with the four

dimensional case.

2.4.1 The field equations in dimensions larger than four

2.4.1.1 Quasi-topological theories

We consider first the field equations for the quasi-topological gravities constructed in Section 2.2.

The field equations of Lovelock gravity are well known and we do not discuss them here. We

consider the following action,

I =
1

16πG

∫

ddx
√−g

[

(d− 1)(d− 2)

ℓ2
+R+

6
∑

i=1

µ̂(i)Z(i)
d

]

, (2.50)

where the µ̂(i) terms are as in equation (2.31). A spherically symmetric metric (2.1) satisfies the

field equations F ′ = 0 with N = 1 and

F = (d− 2)rd−1

[

1

ℓ2
− ψ +

6
∑

i=1

µ(i)ψ
4

]

, (2.51)

where we have defined

ψ =
f − k

r2
. (2.52)

Equation (2.51) is a total derivative and can be easily integrated revealing that f is determined

by the following algebraic relationship,

(d− 2)rd−1

[

1

ℓ2
− ψ +

6
∑

i=1

µ(i)ψ
4

]

= m, (2.53)
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where m is an integration constant which is related to the mass of a black hole. Note that in

passing from the action to the field equations, the hats have been removed from the µ’s. It was

for this simplification that the µ̂(i) terms were defined as in equation (2.31). These equations

only hold for d > 4 but d 6= 8: in eight dimensions, the quasi-topological terms are trivial.

2.4.1.2 Generalized quasi-topological theories

We next present the field equations for the four non-trivial generalized quasi-topological terms

that were presented in § 2.2. The field equations for these theories are not algebraic, but rather,

in vacuum, integrate to a second order differential equation that the metric function f must

satisfy.

We consider now the following action,

I =
1

16πG

∫

ddx
√−g

[

(d− 1)(d− 2)

ℓ2
+R−

4
∑

i=1

λ̂(i)S(i)
d

]

, (2.54)

where the λ̂(i) terms are as defined in equation (2.31). The field equations of this theory can be

written in the following simple total derivative form,

F ′ = 0, (2.55)

where

F = (d− 2)rd−3

[

k − f +
r2

ℓ2

]

+ (d− 2)

(

4
∑

i=1

λ(i)

)

FSd
, (2.56)

and the FSd
represents the contribution from each S(i)

d to the field equations, which is the same

for each term S(i)
d due to the choices made in equations (2.25)- (2.28). Note that, once again, in

passing from the action to the field equations, the hats have been removed from the λ’s. It was

for this simplification that they were normalized in equation (2.31). Explicitly, the contribution
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made to the field equations from each S(i)
d is given by

FSd
= (k − f)

[

(d− 4) f (k − f) f ′′ + f ′
2
((

d2 − 23

2
d+ 32

)

f − 1

2
k (d− 4)

)]

rd−7

+ 2 ff ′f ′′
(

(k − f) (d− 5) rd−6 +
f ′

8
(3d− 16) rd−5

)

+ ff ′ (k − f)2 (d− 4) (d− 7) rd−8 +
f ′3

12

[

((3d− 16) f − 8k) (d− 5) rd−6

− 3
f ′

4
(3d− 16) rd−5

]

, (2.57)

where f = f(r) and its prime denotes a derivative with respect to r.

2.4.2 The field equations in four dimensions

In four dimensions, the only non-trivial contributions to the field equations come from the

generalized quasi-topological terms. Considering the action

I =
1

16πG

∫

d4x
√−g

[

− 2Λ +R−
6
∑

i=1

λ̂(i)S(i)
4

]

, (2.58)

with the λ̂(i) terms defined in equations (2.31) and (2.36), the field equations read

F ′ = 0, (2.59)

where

F = 2r

[

k − f +
r2

ℓ2

]

+ 2

(

6
∑

i=1

λ(i)

)

FS4
, (2.60)

and FS4
is given by the same expression as in equation (2.57) evaluated in d = 4. Explicitly,

this takes the relatively simple form,

FS4
= 2

ff ′f ′′

r2

(

f − 1

2
rf ′ − k

)

+
f ′4

4r
+
f ′3

3r2
(f + 2k) + 2

ff ′2

r3
(k − f) . (2.61)
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This completes the presentation of field equations for the new quartic theories. In the next

chapter we move on to a discussion of their black hole and black brane solutions.



Chapter 3

Black Hole and Black Brane Solutions

in Quartic Quasi-Topological Gravity

3.1 Black hole solutions in four dimensions

To explore features of the newly constructed quartic quasi-topological gravities in previous chap-

ter, here we will present black hole solutions in four dimensions. We consider the simplest case

i.e., the generalization of Schwarzschild solution for these theories. Therefore we aim to study

the vacuum field equations. An exact solution for the field equations is very difficult to obtain

and our efforts in this regard failed. Therefore we rely on perturbative solutions. We work out

asymptotically flat black hole solutions in four dimensions. It is a very important characteristic

of the generalized quasi-topological theories that higher curvature modifications occur in four

dimensions while maintaining relatively simple field equations. Here we only work on the spher-

ically symmetric solutions which can be easily generalized to other cases (i.e. those with k = 0

46
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or −1). We consider the action

I =
1

16πG

∫

d4x
√−g

[

−2Λ +R+KS(quartic)
d

]

, (3.1)

where K is the quartic coupling. The field equations naively contain up to third derivatives of

the metric function, but after imposing spherical symmetry and setting N = 1 they reduce to a

single equation F ′ = 0, where

F =
r

κ
(k − f) +

24κ2

5
K

[

ff ′f ′′

r2

(

f − 1

2
rf ′ − k

)

+
f ′4

8r

+
f ′3

6r2
(f + 2k) +

ff ′2

r3
(k − f)

]

, (3.2)

with κ = 8πG, f = f(r) and we have set Λ = 0. We have made a choice for K given by,

K =
5

6κ3

6
∑

i=1

λ(i). (3.3)

A notable thing here is that the Einstein’s gravity can be recovered from here by simply setting

K = 0. In calculations we will keep k for the general case but at the end we will put k = 1 to

focus only on the asymptotically flat spherical black hole.

Integration of field equation gives

F =
C

κ
, (3.4)

where C is the integration constant and the factor 1/κ gives us the valid contribution to the

mass coming from the large r solution, as we will see shortly.
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For the asymptotic flat solution we consider as r → ∞, we also assume that the K terms have

small corrections, so that use the following expansion of the metric function

f(r) = k − C

r
+ ǫh(r), (3.5)

where ǫ accounts for the order of contribution of h(r). We use this expansion into (3.2) and

only retain the linear terms in h(r). Therefore, we get a second order inhomogeneous differential

equation after setting ǫ = 1. A particular solution upto the first order of K is given by

hp(r) = k − C

r
+

108κ3kKC3

5r9
− 97κ3KC4

5r10
+O

(

K2C5

r17

)

. (3.6)

Now, we consider the homogeneous equation which has the form,

h′′h −
5

r
h′h − ω2r6hh = 0, (3.7)

where

ω2 =
5

36κ3kC2|K| . (3.8)

Here the assumption is that ω2 is positive, which, in turn, implies that K is negative. The

homogeneous equation can be solved exactly in terms of Bessel functions, but in this case it is

the approximate solution which is more relevant to capture the behaviour. The first derivative

term is small and hence negligible for large r, so the approximate solution can be written as,

hh(r) ≈ A exp

(

ωr4

4

)

+B exp

(

−ωr
4

4

)

. (3.9)
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For asymptotic flat spacetime we get A = 0, so at leading order we obtain

h(r) ≈ hp(r) +B exp

(

−ωr
4

4

)

. (3.10)

The solution obtained for the homogeneous equation is similar to Yukawa-type terms and it

is also exponentially decaying. Therefore we can neglect it and hence we are only left with

the correction that appears to the particular solution. Another justification for this is that the

theory which we have developed does not propagate massive ghosts.

The ADM (Arnowitt, Deser and Misner) mass corresponding to the asymptotic solution is given

by [79]

M =
d− 2

2κ
ω(k)d−2 lim

r→∞
rd−3(k − gtt) =

ω(k)2C

8πG
, (3.11)

where ω(k)d−2 represents the volume of the space with the line element dΣ(k)d−2; for a two-sphere

this is just ω2 = 4π.

Next we will explore the behaviour of the solution near the event horizon. To do this we consider

the following expansion for the metric function

f(r) = 4πT (r − r+) +
∑

n=2

an(r − r+)
n, (3.12)

where T = f ′(r+)/(4π) represents the Hawking temperature and we opt to use temperature

instead of f ′(r+). We use this expansion in the field equation (3.2) and perform series expansion

in (r − r+). Retaining only zero and first order expansion we get the two relations given by

C

κ
=

1

5κr2+

(

5kr3+ + 512π3kKκ3T 3 + 768π4Kκ3r+T
4
)

,

0 =
1

5κr3+
(5kr3+ − 20πr4+T + 512π3kKκ3T 3 + 256π4Kκ3r+T

4).
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These two equations allow us to determine physical quantities. The first equation gives the

value of C which is related to mass (3.11), and from the second equation we could determine

T in terms of the horizon radius, r+. We can observe that the second equation is quartic but

only one root is real and approaches to nonnegative value for K → 0. Therefore this branch is

interesting and appropriate one due to the fact that it possesses smooth Einsteinian limit, so we

will consider it in our discussions.

We now use numerical solution of the field equation to match the two solutions i.e., asymptotic

and near-horizon solutions. The initial data for numerical scheme will come from the expansion

very near to the horizon. To get this data we have to use higher orders in the expansion (3.12).

Although the higher order terms are more complicated, but good thing is that at each order one

can solve for the new parameter an in terms of parameters in the previous orders that themselves

are eventually related to the single free parameter a2 at second order. We consider the value of

this free parameter as [80]

a2 =
f ′′(r+)

2
= − 1

r2+
[1 + δ], (3.13)

where δ accounts for the corrections, which appear due to higher curvature terms, to the usual

Schwarzschild solution which can be recovered by setting δ = 0. It is important to choose the

values of δ very carefully as it should be consistent with the boundary conditions (i.e. f(r) → 1

as r → ∞). We use the shooting method to determine it. In (3.12), our expansion runs for

twelve orders. Good results can be obtained with fewer terms, but the construction of these

terms is easily automated and therefore working to a high order comes with no extra difficulty.

We have found that determining δ to ten significant digits is sufficient to integrate the solution

to the point where the large r expansions become accurate (see Figure 3.1).



51

Figure 3.1: Asymptotically flat solution in quartic theory, black curve is for usual
Schwarzschild solution and blue, red and green curves are for K = −0.32,−1,−3 respectively.

The results of numerical solution are presented in Figure 3.1. Here behaviour of f(r) against

the dimensionless distance r/C is presented for various values of K. It can be observed from

the graph that the solution approaches the expected value for asymptotically flat black holes.
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When quartic coupling is increased we get more outward displacement of the horizon compared

to the Schwarzschild black hole. This behaviour appears due to the addition of higher curvature

terms in the action which in fact removes metric singularity as r → 0. However, the curvature

singularity remains, because it is observed that the Kretschmann scalar diverging as 1/r4 and

Ricci scalar as 1/r2. This can be confirmed through an expansion of f(r) as r → 0. These

results are same as those observed for the case of cubic theory [7, 8].

Another interesting aspect that we want to elaborate from the black hole solutions is that, despite

the equation of motion for f(r) in these theories being a third order differential equation (though

a total derivative), asymptotically the black hole solutions we have obtained are characterized

only by their mass. In the near-horizon solution, the free parameter a2 is equivalent to a choice

of boundary conditions, and it appears that there is a unique value yielding asymptotically flat

conditions. One might naively expect that since the equations of motion are third order and the

black holes may possess “higher derivative hair". However, the above discussion shows that this

is clearly not the case for this class of theories. The black holes are characterized by a single

free parameter (after fixing boundary conditions) and that is the black hole mass. In Ref. [66]

it was suggested that this may be a general feature of this class of theories.

3.1.1 Black hole entropy

As described in Chapter 1, the usual Bekenstein-Hawking entropy gets modified due to the

addition of higher curvature terms. These corrections were incorporated by Wald and the entropy

relation is given by (1.18).

We start by considering the quartic quasi-topological theories. Our analysis shows that each
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Z(i)
d makes the same contribution to the Wald entropy. For the theory written down in equa-

tion (2.50), we find the expression for entropy given by,

s
(i)
4 =

(d− 2)

(d− 8)

k3

r6+
µ(i)r

d−2
+ , for Z(i)

d , (3.14)

giving

s =
rd−2
+

4

[

1 +
(d− 2)

(d− 8)

k3

r6+

(

6
∑

i=1

µ(i)

)]

, (3.15)

for the theory (2.50). For a theory containing additional terms, the above entropy density is

simply modified by the addition of the entropy densities corresponding to the extra terms.

In the case of the generalized quasi-topological terms, S(i)
d , due to our choices of constraints

and the normalization of λ̂(i) in equation (2.31), we find the same contribution to the entropy

from each S(i)
d . For the particular case of the theory presented in equation (2.54) this relation

becomes,

s
(i)
4 = −π(d− 2)T

r3+
rd−2
+

[

(d− 4)k2

r2+
+

4π(d− 5)kT

r+
+

(4π)2

12
(3d− 16)T 2

]

λ(i), (3.16)

giving for the theory in equation (2.54),

s =
rd−2
+

4

{

1−
4
∑

i=1

4π(d− 2)T

r3+

[

(d− 4)k2

r2+
+

4π(d− 5)kT

r+
+

(4π)2

12
(3d− 16)T 2

]

λ(i)

}

, (3.17)

where T = f ′(r+)/4π is the temperature. In all the above cases we have set G = 1. Again, if the

Lagrangian contains additional terms, then the corresponding entropy densities of these terms

will be simply added to the above.

The results presented above are valid for the case of four dimensions, where the only modification

is the addition of the two additional terms corresponding to the contributions from S(5)
4 and S(6)

4
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yielding

sd=4 =
r2+
4

[

1 +
32π2T 2

r4+

6
∑

i=1

λ(i)

(

k +
4π

3
r+T

)]

. (3.18)

As a consistency check of the calculations, one can verify that the first law of black hole ther-

modynamics holds. Using near horizon solution presented above, and replacing C with M , from

equation (3.11), we find that

δM = TδS, (3.19)

where

S =
ω2r

2
+

2κ

[

1 +
192π2T 2

5r4+
κ3K

(

k +
4π

3
r+T

)]

, (3.20)

from above. Since each of the terms going into the first law was computed independently, the

fact that this relationship holds provides an important check of our calculations.

3.2 Black brane solutions in quartic quasi-topological gravity

In this section, we aim to construct the black brane solutions of the quartic generalized quasi-

topological gravities presented in Chapter 2. In order to get a more direct implication, we will

only consider quartic generalized quasi-topological terms supplemented to the Einstein-Hilbert

term. Therefore, we consider the action (3.1). Also, the metric ansatz is given by

ds2 =
r2

ℓ2

[

−N(r)2f(r)dt2 +
d−2
∑

i=1

dx2i

]

+
ℓ2dr2

r2f(r)
, (3.21)
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where l is the AdS length. The resulting field equation reads F ′ = 0 with

F =(d− 2) (rℓ)d−3 [r2 (f − 1)
]

+
(d− 2)λ

4
ℓd−3rd−1

[

(

(3d− 16) rf ′ + 4 (d− 6) f
)

r3ff ′

− 1

4
(3d− 16) r4f ′

4
+

(3d− 16) (d+ 1)

3
r3ff ′

3
+ 2d (d− 6) f2r2f ′

2
+

4f4

3
(d− 8)

]

, (3.22)

and we have set k = 0 and rescaled λ with powers of ℓ so that it is dimensionless. Integration

of this gives F = C, where C is an integration constant, depending on the mass. Here, we will

use N = 1/
√
f∞ which means that the speed of light in dual CFT (conformal field theories) is

equal to one.

3.2.1 Perturbative solution

Similar to the case presented in previous the section, here again we are not able to solve the field

equation exactly and, therefore, choose to go for an approximate solution. To obtain asymptotic

solution, we use the following expansion of the metric function f(r)

f(r) = f∞ − ℓ2C

(rℓ)d−1
+ ǫh(r) . (3.23)

In the above the quantity, f∞ represents the asymptotic value of the metric function which can

be obtained by solving

1− f∞ +
(d− 8)

3
λf4∞ = 0 . (3.24)

Defined this way, the black branes asymptote to an AdS space with curvature radius ℓ̃ = ℓ/
√
f∞.

We substitute this choice for f(r) into the field equations. An inhomogeneous equation in h(r)

is obtained by setting all terms ǫn equal to zero for n > 1 and then, at the end, by setting ǫ = 1.

The general form of the equation is complicated and not presented here for the sake of simplicity.
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The form of particular solution of the resulting differential have the form,

hp(r) =
4(d− 8)f3∞λ

4(d− 8)f3∞λ− 3

ℓ2C

(rℓ)d−1

− 3(d4 − 8d3 + 13d2 − 10d+ 32)
(

4(d− 8)λf3∞ + 3
)

λf2∞

2 (4(d− 8)λf3∞ − 3)2
ℓ4C2

(rℓ)2d−2
+O

(

λC3

r3d−3

)

. (3.25)

We note that, provided f∞ 6= 0, there are corrections of the same order as the mass of the black

brane from the higher curvature terms.

Next, we consider the homogenous part of the differential equation for large r. We are led to

two separate cases. First, we consider the d 6= 6 case. In this case, the differential equation has

the form,

h′′ − (3 d− 16) (d− 1)2C

4 (d− 6) f∞rdℓd−3
h′ − ω2

dr
d−3h = 0 , (for d 6= 6) (3.26)

with

ω2
d =

3− 4 (d− 8)λf3∞
3λ (d− 1) (d− 6)Cf2∞

ℓd−3 . (3.27)

To get a valid solution and make sure that the AdS boundary conditions are satisfied, we must

have ω2 > 0 which constrains the coupling to satisfy

3− 4(d− 8)λf3∞
(d− 6)λ

> 0 . (3.28)

Physical solution has to satisfy this inequality. An approximate solution to the homogenous

equation meeting the above condition is given by

h(r) ≈ A exp

(

2ωdr
(d−1)/2

d− 1

)

+B exp

(

−2ωdr
(d−1)/2

d− 1

)

. (3.29)

To ensure the boundary conditions are met, we have to set A = 0. Also, it can be observed that

the second term is suppressed and can be ignored.
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For the case of six dimensions, calculations give the following form of the homogeneous equation,

h′′ − 5

r
h′ − ω2

6r
8h = 0, (3.30)

where

ω2
6 =

2(3 + 8λf3∞)

75λC2f∞
ℓ6, (3.31)

and we must have

3 + 8λf3∞
λ

> 0 for d = 6. (3.32)

In this case the approximate solution can be written as,

h(r) ≈ A exp

(

ω6r
5

5

)

+B exp

(

−ω6r
5

5

)

. (3.33)

Again, we set A = 0 to ensure consistency with the boundary conditions, and also discard the

contribution of second term due to its enormous suppression.

The importance of the consideration of homogenous equation is evident from the above results.

These calculations give the restriction on couplings which are not available with particular

solution alone. Furthermore, we observe that we can drop the exponential terms from our

considerations.

3.2.2 Near-horizon solution

Here, we will present the near-horizon solution for the black brane case. We use the following

expansion for the metric function,

f(r) =
4πT

√
f∞ℓ

2

r2+
(r − r+) +

∑

i=2

an(r − r+)
n, (3.34)
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assuming that the metric function vanishes linearly as r → r+ for non-extremal black holes.

Using this ansatz into the field equations allows one to determine the coefficients from the

resulting recurrence relation. The first two of these are

C = ℓd−3rd−1
+ − 16(3d− 16)π4λrd−5

+ ℓd+5f2∞T
4 ,

0 = (d− 1)r4+ − 4π
√

f∞Tr
3
+ℓ

2 +
16λ

3
(d− 5)(3d− 16)f2∞ℓ

8π4T 4. (3.35)

These two relations allow us to determine C, the integration constant, and the temperature

in terms of the horizon radius. The rest of the terms become more and more complicated

and, in fact, are not required for thermodynamic considerations. It is well established now

from some extensive studies that the thermodynamics of black objects in the generalized quasi-

topological theories can be studied exactly, despite the lack of an exact solution to the full field

equations [7, 8, 66, 81].

To close this section, we remark that the above result shows that, in five dimensions, temperature

is same as that of the Einstein’s gravity, but in all other dimensions, it gets modified by these

higher curvature terms.

3.2.3 Thermodynamical considerations

The expression for the entropy for these theories has the following form

s =
1

4

(r+
ℓ

)d−2
[

1− 16λ

3

(d− 2)(3d− 16)π3ℓ6f
3/2
∞ T 3

r3+

]

, (3.36)

which is not simply given by the Bekenstein-Hawking area law, but rather contains corrections

due to the generalized quasi-topological contributions. This is remarkably different from what is

observed in both Lovelock and quasi-topological gravity, where the area law remains unaffected
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for black branes, and may have interesting holographic consequences. For d ≤ 5 the entropy is

larger than that in the Einstein’s gravity (λ = 0), whereas for d ≥ 6, it is smaller.

As a check, we can demonstrate that (3.36) satisfies the first law,

dε = Tds, (3.37)

where the energy density has the form,

ε =
(d− 2)

16π
√
f∞ℓ2d−3

C ,

=
(d− 2)

16π
√
f∞ℓ2d−3

[

ℓd−3rd−1
+ − 16(3d− 16)π4λrd−5

+ ℓd+5f2∞T
4
]

. (3.38)

The factors of r+ appearing in the entropy and energy densities can be eliminated by solving

the second equation of (3.35). This is made easier by writing,

r+ = γλ
4πℓ2

√
f∞

d− 1
T (3.39)

where γλ solves the equation,

γ4λ − γ3λ +
λ

48
(d− 1)3(d− 5)(3d− 16) = 0 , (3.40)

which is obtained by substituting r+ for the above definition in the second equation of (3.35).

Here, we have included the subscript λ to illustrate that this quantity depends directly on the

coupling λ.
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The entropy and energy densities now have the forms,

s =
12γ3λ − λ(d− 1)3(d− 2)(3d− 16)

48γ3λ

(

γλ
4πℓ

√
f∞T

d− 1

)d−2

,

ε =
(d− 2)ℓd−4

256πγ4λ

[

16γ4λ − (d− 1)4(3d− 16)λ
]

(

γλ
4πℓ2

√
f∞

d− 1
T

)d−1

. (3.41)

The analysis of the polynomial (3.40) reveals that there will be real, positive solutions for γλ,

provided the coupling satisfies

λ ≤ 81

16(d− 1)3(d− 5)(3d− 16)
, (3.42)

with equality corresponding to a positive, real double root. This does not apply in d = 5, but in

this case, λ does not contribute to the polynomial, and the only valid solution is γλ = 1, which

is valid for any value of the coupling.

Free energy density can be constructed from energy densities and have the form

F = ε− Ts = −12γ3λ − λ(d− 1)3(d− 2)(3d− 16)

192πℓ
√
f∞γ4λ

(

γλ
4πℓ

√
f∞T

d− 1

)d−1

. (3.43)

The entropy and energy densities can be shown [using equation (3.40)] to satisfy the relation

ε =
d− 2

d− 1
Ts, (3.44)

which is expected for a CFT living in d− 1 dimensions.

An interesting aspect of the above results is that the entropy and energy densities are modified

from the Einstein’s gravity result. Similar results were noted for five dimensional black branes

in cubic generalized quasi-topological gravity [66]. In Lovelock and quasi-topological gravity,

this is not the case: the expressions are identical, apart from the appearance of the term f∞,
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characterizing the curvature of the AdS space [56]. In a sense, the properties of black branes in

these latter theories are ‘universal’.



Chapter 4

Charged Anti-de Sitter Black Hole

Solutions in Cubic Generalized

Quasi-Topological Gravity

4.1 Charged black hole solutions in cubic GQG

In this chapter we shall study charged static, spherically symmetric AdS black holes in generalized

quasi-topological gravity. This includes a more thorough study of the results presented for

asymptotically flat solutions and AdS black branes in recent works [66, 82].

The most general cubic theory satisfying the condition gttgrr = −1, ensuring dependence on a

single metric function, includes the cubic Lovelock and quasi-topological terms, in addition to

the GQG term. Since both Lovelock and quasi-topological terms have been previously studied,

here we take Einstein’s gravity accompanied only by the cubic generalized quasi-topological term

62
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and a Maxwell field. In d spacetime dimensions, the action is given by [8]

I =
1

16πG

∫

ddx
√−g

[

(d− 1)(d− 2)

ℓ2
+R+

12(2d− 1)(d− 2)

d− 3
µS3,d −

1

4
FabF

ab

]

, (4.1)

where the cosmological constant Λ = − (d−1)(d−2)
2ℓ2

and

S3,d = 14Ra
e
c
fRabcdRbedf + 2RabRa

cdeRbcde −
4(66− 35d+ 2d2)

3(d− 2)(2d− 1)
Ra

cRabRbc

−2(−30 + 9d+ 4d2)

(d− 2)(2d− 1)
RabRcdRacbd −

(38− 29d+ 4d2)

4(d− 2)(2d− 1)
RRabcdR

abcd

+
(34− 21d+ 4d2)

(d− 2)(2d− 1)
RabR

abR− (30− 13d+ 4d2)

12(d− 2)(2d− 1)
R3. (4.2)

The ansatz for the metric is in the following form

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΣ2

(d−2),k, (4.3)

and the field equations permit N(r) =constant [8]; we set N(r) = 1 for simplicity. In the above,

dΣ2
(d−2),k denotes the line element of the (d − 2)-dimensional transverse space, which we take

to be a surface of constant scalar curvature k = +1, 0,−1, associated with spherical, flat, and

hyperbolic topologies, respectively.1

A particular case of the metric (4.3) is a constant curvature space, for which the metric function

is given by,

fAdS(r) = k + f∞
r2

ℓ2
. (4.4)

1The case k = 0 has been previously investigated [83] and so we only concentrate on non-planar black holes.
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Here, ℓ is the length scale associated with the cosmological constant, while f∞ is a constant that

solves the following polynomial equation:

1− f∞ +
µ

ℓ4
(d− 6)(4d4 − 49d3 + 291d2 − 514d+ 184)f3∞ = 0 , (4.5)

which is insensitive to the value of k. With µ 6= 0, f∞ will differ from unity, indicating that the

higher curvature terms contribute to the radius of curvature of the space. In general, the real

solutions to this polynomial may be positive or negative — we discard any negative solutions,

since these would correspond to dS vacua. Restricting to only f∞ > 0, the effective radius of

the AdS space is then given by ℓeff = ℓ/
√
f∞.

The negative of the derivative of equation (4.5) with respect to f∞ coincides with the prefactor

appearing in the linearized equations of motion [8], and therefore must be positive

P (f∞) = 1− 3
µ

ℓ4
(d− 6)(4d4 − 49d3 + 291d2 − 514d+ 184)f2∞ > 0, (4.6)

to ensure that the graviton is not a ghost in these backgrounds.

As our aim is to study charged black holes, we introduce a Maxwell field Fab = ∂aAb − ∂bAa,

with electromagnetic one-form defined as,

A = qE(r)dt. (4.7)

By substitution of the above expression in the Maxwell equation, the unknown function is

determined as

E(r) =

√

2(d− 2)

(d− 3)

1

rd−3
, (4.8)
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where the specific choice of the prefactor is made to simplify the thermodynamic expressions.

The only independent field equation from (4.1) becomes

d

dr
F [f, f ′, f ′′] = 0, (4.9)

with

F = rd−3

(

k − f(r) +
r2

ℓ2

)

+ µFS3,d
+ r3−dq2 . (4.10)

The term FS3,d
is the contribution from the cubic generalized quasi-topological term to the field

equation and is given by

FS3,d
=

32232(2d− 1)k

13(d− 3)
δd,7 + 12

[

(d2 + 5d− 15)
(4

3
rd−4f ′3 − 8rd−5ff ′′

(rf ′

2
+ k − f

)

−2rd−5((d− 4)f − 2k)f ′2 + 8(d− 5)rd−6ff ′(f − k)
)

− 1

3
(d− 4)rd−7(k − f)2

×
(

(

−d4 + 57

4
d3 − 261

4
d2 + 312d− 489

)

f + k
(

129− 192d+
357

4
d2 − 57

4
d3 + d4

)

)]

.

(4.11)

Since the above equation is a total derivative, it can be directly integrated to yield

F = m, (4.12)

where m is an integration constant with dimensions of [length]d−3 and we shall see shortly that

it is related to the mass of black hole. Although exact solutions to these field equations are

not possible, we can study the asymptotic behaviour and near-horizon behaviour of the metric

perturbatively. From the near-horizon expansion it will be possible to completely characterize

the thermodynamics of the black holes.
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4.1.1 Asymptotic solution

The asymptotic form of the metric function is

f(r) = k + f∞
r2

ℓ2
− m

rd−3
+

q2

r2d−6
+ ǫh(r), (4.13)

where h(r) describes a correction to the Einstein’s gravity solution due to the cubic terms and

ǫ is used to track the order of these contributions. Inserting the above expression into the field

equation, at first order in ǫ we obtain an inhomogenous second order differential equation for the

modified function h(r). Assuming that µ 6= 0,2 the homogenous part of the equation at large r

is

h′′h −
4

r
h′h − γ2rd−3hh = 0, (4.14)

where

γ2 = − 3l2P (f∞)

144(d− 1) (d2 + 5d− 15) f∞µ m
. (4.15)

First, consider the case of γ2 > 0. In this case the solution to (4.14) takes the form,3

hh+ = Ar5/2I 5

d−1

(

2γr
d−1

2

d− 1

)

+Br5/2K 5

d−1

(

2γr
d−1

2

d− 1

)

, (4.16)

2Of course, the coefficients of h′′ and h′ appearing in the differential equation are proportional to µ, and
therefore, in the µ → 0 limit, these terms are simply absent, and the full solution limits to the d-dimensional
RN-AdS black hole solution of Einstein’s gravity.

3Note that the first and the second terms in this equation contribute to the same order at asymptotic infinity
and so pure exponential solutions (without some power of r) are not valid.
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where I and K denote the modified Bessel functions of the first and second kinds, respectively,

and A and B are constants. Schematically, in the limit of large r, the behaviour is

hh ∼ Ar5/2 exp

(

2γr
d−1

2

d− 1

)

+Br5/2 exp

(

−2γr
d−1

2

d− 1

)

, (4.17)

which shows that by imposing A = 0, the homogenous solution falls off super-exponentially in

the asymptotic region — this can be viewed as a consequence of the fact that the theory does

not propagate ghosts on AdS. The super-exponential fall off of the second term also justifies our

dropping of the homogenous solution below.

Note that k is not present in the approximate large r solution.

Consider next γ2 < 0; the homogenous solution at large r becomes

hh− = C1r
5/2J 5

d−1

(

2|γ|r d
2
−

1

2

d− 1

)

+ C2r
5/2Y 5

d−1

(

2|γ|r d
2
−

1

2

d− 1

)

, (4.18)

where J and Y are the Bessel functions of the first and second kinds, respectively. Note that

the radial dependence is such that, in any dimension, we get solutions that oscillate rapidly and

grow faster than r2/ℓ2, and thus do not approach AdS at infinity. The only consistent possibility

would be to impose C1 = C2 = 0, eliminating the homogenous part of the solution. Since in

all but this finely tuned case the asymptotic structure of the black holes is not AdS, in what

follows, we disregard solutions with γ2 < 0, imposing the constraint γ2 > 0, thereby restricting

our attention to solutions that do not have oscillating behaviour near infinity.
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The differential equation for the metric perturbation h(r) has a complicated particular solution

given by

hp(r) =
P (f∞)− 1

P (f∞)

m

rd−3
− P (f∞)− 1

P (f∞)

q2

r2d−6
+

8058kµ

P (f∞)r4
δd,7

−µ
2
(72d5 − 294d4 + 2358d3 − 11880d2 + 18888d− 6624)

P (f∞)− 2

P (f∞)2
f∞m

2

ℓ2r2d−4

+µ(216d5 − 342d4 − 2442d3 + 5064d2 − 1992d+ 2016)
P (f∞)− 2

P (f∞)2
f∞mq

2

ℓ2r3d−7

−24µ(d− 2)(d− 1)2
(

d2 + 5d− 15
) P (f∞)− 2

P (f∞)2
km2

r2d−2

+O
(

g1(µ, d, l)m
3

P (f∞)3r3d−5
,
g2(µ, d, l)kq

2m

P (f∞)2r3d−5
,
g3(µ, d, l)q

4

P (f∞)2r4d−10

)

, (4.19)

where P (f∞) is defined in (4.6). We have written the five leading terms, indicating the fall off

structure of the next corrections to hp(r). It is easy to see that as µ → 0, hp → 0 because, in

this limit, P (f∞) → 1 eliminates the first and second terms, while µ→ 0 removes the remaining

terms.

From the particular solution we note the leading order corrections are of the same order as

the mass and charge, similar to Gauss-Bonnet gravity. Furthermore, as long as the graviton is

not a ghost, the denominators are positive (and non-vanishing). Finally, since the particular

solution falls off polynomially in r, it is the dominant contribution to the general solution for

h(r) = hh+ + hp and we can safely neglect hh+ in equation (4.16).

4.1.2 Near-horizon solution

Next, we look at the solution near the horizon, which is achieved by performing the following

expansion for the metric function:

f(r) = 4πT (r − r+) +
∑

i=2

an(r − r+)
n, (4.20)
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where T is Hawking temperature of the black hole, which can be written as

T =
f ′

4π
. (4.21)

Inserting the near-horizon expansion of the metric function into the field equation and demanding

it satisfy the field equations at each order of (r − r+) we find from the first two orders

ωd−3 = krd−3
+ +

rd−1
+

ℓ2
+

q2

rd−3
+

− 12(2d− 1)

(d− 3)
µ
[

−2686

13
kδd,7 −

(d− 3)

2d− 1

×
(

−k(d− 4)(129− 192d+ 357
4 d2 − 57

4 d
3 + d4)rd−7

+

3

+(d2 + 5d− 15)
(

64kπ2rd−5
+ +

256

3
π3Trd−4

+

)

T 2
)]

,

0 = (d− 3)krd−4
+ + (d− 1)

rd−2
+

ℓ2
− (d− 3)

q2

rd−2
+

− 4πTrd−3
+ +

12µ

(d− 3)

×
[

− k

12
(d− 3) (d− 4) (d− 7)

(

516− 768d+ 357d2 − 57d3 + 4d4
)

rd−8
+

−128

3
π3 (d− 4) (d− 3)

(

d2 + 5 d− 15
)

rd−5
+ T 3

−64π2(d− 3)(d− 5)
(

d2 + 5 d− 15
)

krd−6
+ T 2

+(d− 3) (d− 4) (d− 6)π
(

4d3 − 33d2 + 127d− 166
)

k2rd−7
+ T

]

, (4.22)

which determine the mass parameter and temperature in terms of the horizon radius and cou-

pling. These formulae are enough to determine the thermodynamic properties of the black hole.

Going to higher orders we eventually get all the series coefficients in terms of a2, which is a free

parameter whose value is fixed from the boundary condition at infinity.

Consider next the behaviour of the metric function for r → 0. Expanding the field equations

near the origin we find

f(r) = a0 + ra1 + r2a2 + · · · , (4.23)
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where these coefficients depend on the mass and charge parameters. Therefore the metric is

regular at the origin, implying that the Kretschmann scalar RabcdR
abcd ∼ r−4. This is a milder

singularity than that which appears in Einstein’s gravity, for which the metric in these coordi-

nates is singular at r = 0 and for which RabcdR
abcd ∼ r−6. It would be interesting to study if it

is possible to remove this singularity completely by adding matter fields.

4.2 Thermodynamic considerations

In this section we investigate the thermodynamic properties of charged black holes in cubic

generalized quasi-topological gravity. Applying the black hole chemistry formalism [53], we start

by investigating the first law and Smarr relation, taking both Λ and µ to be thermodynamic

variables. We then look at the physical constraints between the cubic coupling and the charge

and present the domain for parameters to get physical critical points. We also illustrate the

critical behaviour for the black holes here.

4.2.1 First law and Smarr relation

The near-horizon expansion of the metric function discussed in Section 4.1.2 above allows for

the mass and temperature of the black holes to be determined algebraically by (4.22), despite

the lack of an exact solution. However, except for d = 4 an explicit solution for the temperature

is complicated, so we shall use the second equation implicitly instead to show that the first law

is satisfied.
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To calculate the entropy, we use the Iyer-Wald formalism explained in Chapter 1. Calculation

yields the form of the entropy for the action (4.1),

S =
Σ(d−2),k

4
rd−2
+

[

1 +
48µ

r4+
(d− 2)

(

8π
(

d2 + 5d− 15
)

r+T (k + πr+T )

− 1

16
(d− 4)

(

4d3 − 33d2 + 127d− 166
)

k2
)]

, (4.24)

where Σ(d−2),k is the volume of the submanifold with line element dΣ(k)d−2. When k = 1, this

is just the volume of the (d − 2)-dimensional sphere, while for k = 0 and k = −1 the numeric

answer depends on what type of identifications are performed. The pressure is defined in the

standard way,

P = − Λ

8π
=

(d− 1)(d− 2)

16πℓ2
, (4.25)

with other thermodynamic quantities given by

V =
Σ(d−2),kr

d−1
+

(d− 1)
, Q = Σ(d−2),k

√

2(d− 2)(d− 3)

16π
q , Φ =

√

2(d− 2)

d− 3

q

rd−3
+

,

Ψµ =− 32(d− 2)(d2 + 5d− 15)Σ(d−2),k

(

π2rd−4
+ T 3 +

3

2
πkT 2rd−5

+

)

+
(d− 2)(d− 4)Σ(d−2),k

4

[

3
(

4d3 − 33d2 + 127d− 166
)

k2Trd−6
+

−
(

129− 192d+
357

4
d2 − 57

4
d3 + d4

)

k3rd−7
+

π

]

, (4.26)

and [79] the mass

M =
d− 2

16πG
Σ(d−2),k [m− 8058kµδd,7] , (4.27)

where we have absorbed the δd,7 part into the mass since it occurs at the same order of m.
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These quantities satisfy the first law of black hole thermodynamics, as it is then straightforward

to confirm

dM = TdS + V dP +ΦdQ+Ψµdµ, (4.28)

which is the extended first law, with V the thermodynamic volume conjugate to the pressure

and Ψµ the potential conjugate to the coupling µ. The quantities also satisfy the Smarr formula

that is expected from scaling,

(d− 3)M = (d− 2)TS − 2PV + (d− 3)ΦQ+ 4µΨµ . (4.29)

Our aim is to study the critical behaviour of these black holes, and so we must obtain the

equation of state. This is constructed by replacing ℓ2 in the second equation in equation (4.22)

in terms of pressure, yielding

P =
T

v
− (d− 3)

π(d− 2)

k

v2
+

e2

v2d−4
+ (d− 7)(d− 4)

β0
v6

− (d− 6)(d− 4)β1
T

v5

+(d− 5)
β2
v4
T 2 + (d− 4)

β3
v3
T 3, (4.30)

where, to simplify the resulting expressions we have introduced

v =
4r+

(d− 2)
, e2 =

16d−3

π
(d− 3)(d− 2)5−2dq2

β0 =
28
(

4d4 − 57d3 + 357d2 − 768d+ 516
)

k

π(d− 2)5
µ, β2 =

3× 212π
(

d2 + 5d− 15
)

k

(d− 2)3
µ,

β1 =
3× 28

(

4d3 − 33d2 + 127d− 166
)

k2

(d− 2)4
µ, β3 =

211π2
(

d2 + 5d− 15
)

(d− 2)2
µ, (4.31)

where we refer to v as the specific volume and the others are rescaled physical parameters. In

the sequel we choose β3 and e as the free parameters.
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The non-linear dependence of the equation of state on the temperature in (4.30) has been

observed for the generalized quasi-topological theories in Ref. [81]. We shall study how including

cubic generalized quasi-topological terms modify the results for Einstein’s gravity in four and

higher dimensions up to seven. To facilitate the study of the thermodynamics, we present the

explicit form of the Gibbs free energy G =M − TS

G =

[

4

d− 2

]d−1 G

Σ(d−2),k
=
vd−1P

d− 1
+

vd−3k

π(d− 2)
+

e2

(d− 3)vd−3
− β0(d− 4)vd−7 −

( vd−2

d− 2

−β1(d− 4)vd−6
)

T − β0
48π2(d− 2)2

(

d2 + 5d− 15
)

vd−5

4d4 − 57d3 + 357d2 − 768d+ 516
T 2 − β3v

d−4T 3 (4.32)

where the overall positive factor is suppressed in the new definition to simplify the expression

and other parameters are defined in equation (4.31). In stable equilibrium, the preferred state of

the system is that which minimizes the Gibbs free energy at constant temperature and pressure.

The equation of state in general d using the rescaled parameters given in equation (4.31) is

p =
T

v
− (d− 3)k

π(d− 2)v2
+
β3(d− 4)T 3

v3
+

6β3(d− 5)kT 2

π(d− 2)v4
+

e2

v2d−4
− 3β3(d− 6)(d− 4)k2T

8π2(d− 2)2

×
(

4d3 − 33d2 + 127d− 166
)

(d2 + 5d− 15) v5
+
β3(d− 7)(d− 4)

(

4d4 − 57d3 + 357d2 − 768d+ 516
)

k

8π3(d− 2)3 (d2 + 5d− 15) v6

, (4.33)

where we note that all quantities depend only on e2, and so the same results hold for both

positive and negative charge.

The general idea for observing phase transitions is to see whether the coefficients of different

powers of v in the equation of state have signs that allow for various maxima and minima of p.

A necessary condition for a critical point to occur is that

∂p

∂v
=
∂2p

∂2v
= 0 , (4.34)
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which will generally have non-degenerate solutions. An exception to this occurs when

∂p

∂T
= 0, (4.35)

which corresponds to a singular critical point. We find for general d that ∂p/∂T is proportional

to a power of 1/v and so we do not obtain any singular critical points.

Unfortunately, the equation of state is quite complicated and does not admit an analytic solution

for the critical values in arbitrary dimensions. However, some insight can still be gleaned from

its form. We begin by isolating ∂p/∂v = 0 for e2, and then plug this result into ∂2p/∂v2. (Due

to the non-linear temperature dependence, it’s not possible to isolate either ∂p/∂v or ∂2p/∂v2

for the temperature or volume.) This produces the following result

0 = − π T (2 d− 5) (d− 2)5 v5c + 4 k (d− 3)2 (d− 2)4 v4c

− 6144µT 3π3 (d− 4) (2 d− 7)
(

d2 + 5 d− 15
)

(d− 2)3 v3c

− 98304π2T 2kµ (d− 4) (d− 5)
(

d2 + 5 d− 15
)

(d− 2)2 v2c

+ 3840µTk2π (d− 2) (d− 4) (d− 6) (2 d− 9)
(

4 d3 − 33 d2 + 127 d− 166
)

vc

− 3072 kµ (d− 5) (d− 7) (d− 4)
(

4 d4 − 57 d3 + 357 d2 − 768 d+ 516
)

, (4.36)

which fixes the critical volume, vc, when the other quantities are known. In the following, we

concentrate only on the case of four dimensions and discuss thermodynamic behaviour in some

detail.

4.2.2 Critical behaviour in four dimensions

The existence of critical points for four dimensional charged black holes has been previously

pointed out in both Einstein’s gravity [84] and in ECG [81]. The equation of state (4.30) takes
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the following relatively simple form:

p =
T

v
− k

2πv2
+
e2

v4
− 3β3kT

2

πv4
, (4.37)

where for small v (i.e. for small black holes) the contributions from the electromagnetic and

higher curvature terms equally dominate.

Solving equation (4.34) we find for general values of β3 and e2 that the critical temperature,

pressure and volume are

T 2
c ± =

3π3e2 ± π
√

9π4e4 − 4k4β3
18π2kβ3

, pc ± =
3π2e2 ±

√

9π4e4 − 4k4β3
32k2β3

, vc ± =
2k

3πTc ±

,

(4.38)

which result in two choices because the equation of state is quadratic in T . Note that if β3 < 0

then if k > 0 only Tc−, pc− and vc− exist; if k < 0 then only Tc+ exists, but both pc− and vc−

are negative. Note that no solution exists for k = 0, recovering the result that no critical points

exist for black branes.

From the above relations, it is obvious that the constraint

β3 <
9π4e4

4k4
, (4.39)

must hold to get a well defined critical solution. We also find that the ratio of critical quantities

in (4.38) is independent of the black hole

pcvc
Tc

=
3

8
, (4.40)

and in this sense is universal. Note that this ratio is independent of choice of spherical or
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hyperbolic geometry, though in the latter case we do not have critical points since pc− and vc−

are negative.

Remarkably, the ratio (4.40) is precisely the same as that first observed for charged black holes

in four dimensional Einstein’s gravity [84]; higher curvature corrections have not affected this

universal value for spherical black holes. However, for four dimensional black branes the van der

Waals ratio can differ from this value [83].



Chapter 5

Greybody Factor of Scalar Field from

Reissner-Nordström-de Sitter

Black Hole

5.1 Introduction

The study of asymptotically non-flat spacetime geometries received a lot of attention after it was

discovered that our Universe has entered into a new phase of accelerated expansion [85]. Among

these non-flat geometries de Sitter spacetime is of great interest due to its rich symmetries and

also because it could incorporate the accelerated expansion of the Universe due to the presence

of non-zero cosmological constant in the Einstein field equations. As predicted, the Universe

is in continuous expansion, so in far future it will pass through a de Sitter phase. Further,

de Sitter geometry could also approximate the inflationary phase of our Universe [86]. The

fact that all black hole spacetimes of Kerr-Newman family can be generalized to include a

cosmological constant makes black hole de Sitter spacetimes an interesting field of investigation.

77
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De Sitter spacetime is the maximally symmetric Lorentzian space having positive curvature. In

four dimensions the symmetry group is SO(1, 4) and topology is R × S. Due to the structure

of de Sitter spacetime, inertial observers are surrounded by cosmological horizons, which are a

characteristic of spacetimes having positive cosmological constant. Also dS/CFT correspondence

enhances the interest in the study of de Sitter spacetimes as they provide connection with

conformal field theories.

Thermodynamically, in particular, and otherwise, in general, black holes are the most interest-

ing and relevant objects in any gravitational theory. Their thermodynamics and entropy have

been investigated by taking into account quantum mechanical effects [87, 88]. Also, Hawking

temperature of radiations emitted from variety of different black holes was calculated [89–93].

Greybody factor defined as the probability for a given wave coming from infinity to be absorbed

by the black hole (technically, rate of absorption probability) is directly connected to absorption

cross section [23, 28–33, 94–97]. Black hole emission and absorption phenomena is related to

this important quantity known as greybody factor. It is this quantity that makes it different

from emission and absorption of a black body. The question is, how this quantity originated? It

is generated by an effective potential barrier by black hole spacetimes. This potential quantum

mechanically allows some of the radiation to transmit and remaining to reflect back. This leads

to the frequency dependent greybody factor. Due to this factor black hole thermal radiation

formula is different from the black body radiation formula. Greybody factor not only alters

the thermal radiation formula but is also important to compute the partial absorption cross

section of black holes [35, 98, 99]. In the literature there are investigations for greybody factor

of scalar fields for Schwarzschild-de Sitter black hole. These include the cases of lowest partial

modes in low energy regimes [36, 38, 95, 100, 101]. The absorption and emission spectra of a

Schwarzschild black hole was studied in Ref. [38]. There has been a considerable interest in the

study of greybody factor of scalar and fermionic radiations from asymptotically flat spacetimes
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and black strings [28, 30–33, 94, 102–107].

In this chapter, we use the simple matching technique to solve the radial equation resulting from

the Klein-Gordon equation in the background of the Riessner-Nordström-de Sitter black hole. In

this method we divide the space into two regimes, namely near the black hole horizon and near

the cosmological horizon and find solutions for radial equations in both the regimes separately.

Then we stretch these solutions to an intermediate point rm. The choice of rm is such that

rh < rm, rc > rm and ωrm ≪ 1, (5.1)

where rh and rc correspond to black hole and cosmological horizons respectively and ω is the

frequency.

The rest of the chapter is organized as follows. In Section 5.2 we will discuss the Klein-Gordon

equation and the profile of effective potential in the background of Reissner-Nordström-de Sitter

black hole. In Section 5.3 we compute the greybody factor, starting from near black hole horizon

solution, near cosmological horizon solution, and then matching them at an intermediate point.

This yields expressions for greybody factor and spectrum of Hawking radiations.

5.2 Klein-Gordon equation and profile of effective potential

The spacetime metric for Reissner-Nordström-de Sitter black hole is given by,

ds2 = f(r)dt2 − 1

f(r)
dr2 − r2

(

dθ2 + sin2 θdϕ2
)

, (5.2)

where

f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, (5.3)
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and related electromagnetic field is given by the four-potential

Aµ =
Q

r
δtµ. (5.4)

Here M is the mass and Q is the charge of the black hole. Introducing a dimensionless cosmo-

logical parameter λ = 1/3ΛM2, a dimensionless charge e = Q
M and dimensionless coordinates

t −→ t/M , r −→ r/M . It is equivalent to putting M = 1 [108]. The horizons are determined

by the condition

1− 2

r
+
e2

r2
− λr2 = 0. (5.5)

It is clear from the above equation that in the special case of e = 0, the black hole spacetimes

exist for 0 < λ 6 1
27 .

Before going into detailed calculations of analytic result of greybody factor we comment about

its validity. It is interesting to note that it is valid for arbitrary quantum number l and coupling

ξ. On the other hand the accuracy of the result is guaranteed only if the two asymptotic regions

overlap, which implies that it is only valid for small frequencies. Also the approximation which

we have used is justified for “small” black holes (compared with characteristic dS scale) that is

λ << 1. Therefore the result of greybody factor is valid only in complementary regions of the

parameter space.

We consider a scalar field theory in which the field is either minimally or non-minimally coupled

to gravity and described by the following action

S =

∫

d4x
√−g[R− ξRΦ2 − ∂µΦ∂

µΦ]. (5.6)
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The equation of motion for the above theory can be written as

1√−g∂µ
[√−ggµν∂νΦ(t, r, θ, ϕ)

]

= −4ξΛΦ. (5.7)

In the above, we have used R = −4Λ and ξ is a coupling constant determining the magnitude

of coupling between the scalar and gravitational field, with ξ = 0 corresponding to the minimal

coupling. In matrix form the above line element can be written as

gµν =

























f(r) 0 0 0

0 − 1
f(r) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

























. (5.8)

Also,

√−g = r2 sin θ. (5.9)

Using these values in equation (5.7), it takes the form

1

r2 sin θ
∂t

(

r2 sin θ

f(r)
∂tΦ

)

+
1

r2 sin θ
∂r
(

r2 sin θ (−f(r)) ∂rΦ
)

+
1

r2 sin θ
∂θ (− sin θ∂θΦ)

+
1

r2 sin θ
∂ϕ (∂ϕΦ) = −4ξΛΦ. (5.10)

Let

Φ(t, r, θ, ϕ) = e−ιωtR(r)Y (θ, ϕ), (5.11)

therefore, the radial part of equation (5.10) is

1

r2
d

dr

(

r2f(r)
) dR(r)

dr
+

[

ω2

f(r)
− l(l + 1)

r2
+ 4ξΛ

]

R(r) = 0, (5.12)
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where l(l + 1) are the eigenvalues coming from the (θ, ϕ) part.

Before solving equation (5.12) we will discuss the profile of effective potential due to which

greybody factor originates. We employ the following transformation on equation (5.12)

R (r) =
U (r)

r
(5.13)

and the tortoise coordinate

x ≡
∫

dr

f
, (5.14)

such that

d

dx
= f

d

dr
,
d2

dx2
= f2

d2

dr2
+ ff ′

d

dr
.

Thus equation (5.12) takes the form

(

d2

dx2
+ ω2 − Veff (r)

)

U (r) = 0, (5.15)

with

Veff (r) = f (r)

(

l (l + 1)

r2
− 4ξΛ +

f ′

r

)

. (5.16)

In Fig. 5.1, we draw the profile of effective potential for different values of the cosmological

constant for ξ = 0.01, q = 1 and l = 0. It is observed that an increase in the value of cosmological

constant, decreases the height of gravitational barrier and thus enhances the greybody factor.

In Fig. 5.2, the effective potential is depicted for different values of the coupling constant and

Λ = 0.01, q = 1 and l = 0. It is observed that increase in the value of the coupling constant

leads to the increase in gravitational barrier, which subsequently suppresses the emission of

scalar fields.
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Figure 5.1: Profile of effective potential for different values of the cosmological constant for
ξ = 0.01, q = 1 and l = 0.

x = 1

x = 0.5

x = 0.01

1.2 1.4 1.6 1.8

r

rh

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Veff

Figure 5.2: Profile of effective potential for different values of the coupling constant for Λ =
0.01, q = 1 and l = 0.

5.3 Greybody factor computation

5.3.1 Near black hole horizon solution

Equation (5.12) is the master equation of our interest. We will solve this equation in two regions

separately, namely, near the black hole horizon and the cosmological horizon by using a semi-

classical approach known as simple matching technique. Then we will match both the solutions

to an intermediate region to get the analytical expression for the greybody factor.
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For the near-horizon region r ∼ rh, we will perform the following transformation to simplify the

radial equation [101]

r → g =
f (r)

1− Ξr2
, (5.17)

where

Ξ =
Λ

3
.

Thus we get

dg

dr
= (1− g)

B(rh)

rh
(

1− Ξr2h
) , (5.18)

where, in the above

B(rh) =

(−6ΛMr3h + 4ΛQ2r2h + 6Mrh − 6Q2

6Mrh − 3Q2

)

. (5.19)

Using equations (5.17) and (5.18) in (5.12), we obtain

g(1− g)
d2R(g)

df2
+ (1− C∗g)

dR(g)

dg
+

[

F 2
∗

B2(rh) (1− g) g
− λh

(

1− Ξr2h
)

B2(rh) (1− g)

]

R(g) = 0. (5.20)

Here

F∗ = ωrh, (5.21)

C∗ =
rh
(

1− Ξr2h
)

(1− g)2B (rh)
− 2r2hΞ

(

1− Ξr2h
)

(1− g)B (rh)
, (5.22)

and

λh = [l (l + 1)− 4ξΛ] r2h. (5.23)

In order to further simplify the above equation we use field redefinition

R(g) = gµ1 (1− g)ν1 F (g). (5.24)
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In equation (5.20) we use this definition of R(f) to get

g (1− g)
d2F (g)

dg2
+[1 + 2µ1 − (2µ1 + 2ν1 + C∗) g]

dF

dg
+(

µ21
g
−µ21+µ1−2µ1ν1+

ν21
1− g

−ν21−
2ν1
1− g

+ ν1 − µ1C∗ +
ν1C∗

1− g
− ν1C∗ +

F 2
∗

B2(rh)g
+

F 2
∗

B2(rh) (1− g)
− λh

(

1− Ξr2h
)

B2(rh) (1− g)
)F (g) = 0. (5.25)

Now, define

a1 = µ1 + ν1 + C∗ − 1, (5.26)

b1 = µ1 + ν1, (5.27)

c1 = 1 + 2µ1. (5.28)

Also, constraints coming from the coefficients of F (f) give

µ21 +
F 2
∗

B2(rh)
= 0, (5.29)

and

ν21 + ν1(C∗ − 2) +
F 2
∗

B2(rh)
− λh

(

1− Ξr2h
)

B2(rh)
= 0. (5.30)

From here we find the values of µ1 and ν1 as

µ1 = ±ι F∗

B(rh)
, (5.31)

and

ν1 =
1

2



(2− C∗)±

√

√

√

√(2− C∗)
2 − 4

(

F 2
∗

B2(rh)
− 4λh

(

1− Ξr2h
)

λh

B2(rh)

)



 . (5.32)
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Thus equation (5.25) by virtue of equations (5.26)−(5.28) and constraints (5.29) , (5.30) becomes

g (1− g)
d2F (g)

dg2
+ [c1 − (1 + a1 + b1) g]

dF (g)

dg
− a1b1F (g) = 0. (5.33)

In the near-horizon region the solution can be written in the form of general hypergeometric

function, which has the form

R(g)NH = A1g
µ1(1− g)ν1F (a, b, c; g)+A2g

−µ1(1− g)ν1F (a− c+ 1, b− c+ 1, 2− c; g) , (5.34)

where A1 and A2 are arbitrary constants. For the near-horizon case there exists no outgoing

mode, we choose A2 = 0, thus we get

R(g)NH = A1g
µ1(1− g)ν1F (a, b, c; g) . (5.35)

5.3.2 Near cosmological horizon solution

We now solve the radial equation (5.12) close to the cosmological horizon rc. In this case we

choose the radial function h (r), in place of g (r), which is defined as

h (r) = 1− Ξr2. (5.36)

We employ the following transformation on equation (5.12)

r → h (r) , (5.37)

so that

dh

dr
=

(1− h)

r
(−2) . (5.38)
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Using this, equation (5.12) becomes

h(1− h)
d2R(h)

dh2
+ (1− 2h)

dR(h)

dh
+

[

F 2
c

B2
c (1− h)h

− λc
(1− h)B2

c

]

R(h) = 0, (5.39)

where, Fc = ωr2c , Bc = −2 and λc = [l (l + 1)− 4ξΛ] r2c . We redefine the radial function as

R(h) = hµ2 (1− h)ν2 X (h) . (5.40)

Using equation (5.40) in (5.39) gives

h (1− h)
d2X(h)

dh2
+ [c2 − (1 + a2 + b2) f ]

dX(h)

dh
− a2b2X(h) = 0. (5.41)

In the above we defined

a2 = µ2 + ν2 + 1, (5.42)

b2 = µ2 + ν2, (5.43)

c2 = 1 + 2µ2. (5.44)

Also the constraints coming from the coefficients of X (h) are

µ22 +
F 2
c

B2
c

= 0, (5.45)

and

ν22 +
F 2
c

B2
c

− λc
B2

c

= 0. (5.46)

From the above two equations we obtain the values of power coefficients as

µ2± = ±ι Fc

Bc
, ν2± = ±

√

F 2
c

B2
c

− λc
B2

c

. (5.47)
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Equation (5.41) is again a hypergeometric equation and in order to ensure the convergence of

the hypergeometric function, we choose negative sign of ν2. Near the cosmological constant both

the modes, incoming and outgoing exist, so the general solution can be written as

R(h)CH = B1h
µ2(1−h)ν2F (a2, b2, c2;h)+B2h

−µ2(1−h)ν2F (a2 − c2 + 1, b2 − c2 + 1, 2− c2;h) .

(5.48)

5.3.3 Matching to an intermediate region

In order to match the above two solutions of the radial equation i.e., the near-horizon and near

cosmological horizon solutions, to an intermediate region we use matching technique. We first

shift the near-horizon solution given in equation (5.35) to an intermediate region, for which we

change the argument of the hypergeometric function from g to 1− g . This gives the following

[105, 109]

R(g)NH = A1g
µ1 (1− g)ν1 {Γ(c1)Γ(c1 − a1 − b1)

Γ(c− a)Γ(c− b)
F (a1, b1, a1 + b1 − c1 + 1; 1− g)

+ (1− g)c1−a1−b1 Γ(c1)Γ(a1 + b1 − c1)

Γ(a1)Γ(b1)
F (c1 − a1, c1 − b1, c1 − a1 − b1 + 1; 1− g) }. (5.49)

In the limit r ≫ rh, g → 1 and we can use

(1− g)ν1 ≃
(rh
r

)ν1
≃
(

r

rh

)l

, (5.50)

and

(1− g)ν1+c1−a1−b1 ≃
(rh
r

)2−Bh−ν1
≃
(

r

rh

)−(l+1)

. (5.51)
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So, in an intermediate region the solution will take the following form

R(r)BH = A1
Γ(c1)Γ(c1 − a1 − b1)

Γ(c1 − a1)Γ(c1 − b1)

(

r

rh

)l

+A1
Γ(c1)Γ(a1 + b1 − c1)

Γ(a1)Γ(b1)

(

r

rh

)−(l+1)

, (5.52)

or

R(r)BH = ̥1r
−(l+1) +̥2r

l. (5.53)

In the above we have used

̥1 = A1
Γ(c1)Γ(a1 + b1 − c1)

Γ(a1)Γ(b1)
, (5.54)

̥2 = A1
Γ(c1)Γ(c1 − a1 − b1)

Γ(c1 − a1)Γ(c1 − b1)
. (5.55)

Now we turn to equation (5.48) and shift its argument of hypergeometric function from h to

1− h. Thus near cosmological horizon, we have h(rc) → 0, therefore

(1− h)ν2 ≃
(

r

rc

)ν2

≃
(

r

rc

)−(l+1)

, (5.56)

and

(1− h)ν2+c2−a2−b2 ≃
(

r

rc

)−(1+2ν2)

≃
(

r

rc

)l

. (5.57)

By using the above approximations and properties of hypergeometric functions [109] we can

write equation (5.48) as

R(r)C =

[

B1
Γ(c2)Γ(c2 − a2 − b2)

Γ(c2 − a2)Γ(c2 − b2)
+B2

Γ(2− c2)Γ(c2 − a2 − b2)

Γ(1− a2)Γ(1− b2)

](

r

rc

)−(l+1)

[

B1
Γ(c2)Γ(a2 + b2 − c2)

Γ(a2)Γ(b2)
+B2

Γ(2− c2)Γ(a2 − b2 − c2)

Γ(a2 + 1− c2)Γ(b2 + 1− c2)

](

r

rc

)l

, (5.58)

or

R(r)C = (̥3B1 +̥4B2)

(

r

rc

)−(l+1)

+ (̥5B1 +̥6B2)

(

r

rc

)l

. (5.59)
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Here we have used

̥3 =
Γ(c2)Γ(c2 − a2 − b2)

Γ(c2 − a2)Γ(c2 − b2)
,̥4 =

Γ(2− c2)Γ(c2 − a2 − b2)

Γ(1− a2)Γ(1− b2)
, (5.60)

̥5 =
Γ(c2)Γ(a2 + b2 − c2)

Γ(a2)Γ(b2)
,̥6 =

Γ(2− c2)Γ(a2 − b2 − c2)

Γ(a2 + 1− c2)Γ(b2 + 1− c2)
. (5.61)

5.3.4 Greybody factor

Greybody factor |Al|2 for the emission of scalar fields can be defined by the amplitudes of the

waves at the stretched cosmological horizon solution [101] that is

|Al|2 = 1−
∣

∣

∣

∣

B2

B1

∣

∣

∣

∣

2

. (5.62)

As the power law in (5.53) and (5.59) is same, we match these two solutions to get the values of

B1 and B2 as

B1 =
̥1̥6 −̥2̥4

̥3̥6 −̥4̥5
, (5.63)

B2 =
̥2̥3 −̥1̥5

̥3̥6 −̥4̥5
. (5.64)

Using values from equations (5.63) and (5.64) in (5.62), we get the analytic formula for greybody

factor for arbitrary mode l as

|Al|2 = 1−
∣

∣

∣

∣

̥2̥3 −̥1̥5

̥1̥6 −̥2̥4

∣

∣

∣

∣

2

. (5.65)

In the following plots we depict the greybody factor |Al|2 as a function of ωrh. In Fig. 5.3, we

take Λ = 0.001, q = 3.5, l = 0, for different values of ξ; in Fig. 5.4 Λ = 0.05, q = 3.5, l = 0, for

different values of ξ; in Fig. 5.5 Λ = 0.01, q = 3.5 and l = 0, for different values of ξ; in Fig.

5.6 ξ = 0.2, Λ = 0.001 and l = 0, for different values of q; in Fig. 5.7 ξ = 1, Λ = 0.001, l = 0,
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for different values of q. An increase in value of the coupling parameter, decreases the greybody

factor. This is due to the fact that non-minimal coupling plays the role of an effective mass and

hence suppresses the greybody factor.

x = 0

x = 0.4

x = 0.8

1.1 1.2 1.3 1.4 1.5

0.885

0.890

0.895

0.900

0.905

0.910

Figure 5.3: Greybody factor as a function of ωrh for different values of ξ, when Λ = 0.001,
q = 3.5 and l = 0.
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0.980

0.985
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0.995
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Figure 5.4: Greybody factor as a function of ωrh for different values of ξ , when Λ = 0.05,
q = 3.5 and l = 0.
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Figure 5.5: Greybody factor as a function of ωrh for different values of ξ , when Λ = 0.01,
q = 3.5 and l = 0.
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Figure 5.6: Greybody factor as a function of ωrh for different values of q, when ξ = 0.2,
Λ = 0.001 and l = 0.
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Figure 5.7: Greybody factor as a function of ωrh for different values of q, when ξ = 1,
Λ = 0.001 and l = 0.
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5.3.5 Energy emission

The flux spectrum, that is, the number of massless scalar particles emitted by the black hole per

unit time is given by [100]

dN (ω)

dt
=
dω

2π

1

e
ω

TH − 1

∞
∑

l=0

(2l + 1)Al (ω) . (5.66)

By using the value from equation (5.65) into (5.66) we get

dN (ω)

dt
=
dω

2π

1

e
ω

TH − 1

∞
∑

l=0

(2l + 1)

√

√

√

√

(

1−
∣

∣

∣

∣

̥2̥3 −̥1̥5

̥1̥6 −̥2̥4

∣

∣

∣

∣

2
)

. (5.67)

Also, the differential energy rate is given by [100]

d2E (ω)

dtdω
=

1

2π

ω

e
ω

TH − 1

∞
∑

l=0

(2l + 1)Al (ω) . (5.68)

On using the value of the greybody factor we get

d2E (ω)

dtdω
=

1

2π

ω

e
ω

TH − 1

∞
∑

l=0

(2l + 1)

√

√

√

√

(

1−
∣

∣

∣

∣

̥2̥3 −̥1̥5

̥1̥6 −̥2̥4

∣

∣

∣

∣

2
)

. (5.69)

The relevance of the low frequency limit is evident from the above results, that the coupling

is only significant in this regime. As the coupling to scalar field is irrelevant in high frequency

limits, the enhancement in emission rate occurs only at low frequencies.

5.3.6 Generalized absorption cross section

The definition of absorption cross section for asymptotically flat spacetimes is not valid for

asymptotically non-flat spacetimes. For these cases the general formula for absorption cross
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section is given by [100, 110]

σ =

∞
∑

l=0

σl =
π

ω2

∞
∑

l=0

(2l + 1)Al (ω) . (5.70)

Using the value from equation (5.65) we obtain

σ =
∞
∑

l=0

σl =
π

ω2

∞
∑

l=0

(2l + 1)

√

√

√

√

(

1−
∣

∣

∣

∣

̥2̥3 −̥1̥5

̥1̥6 −̥2̥4

∣

∣

∣

∣

2
)

.



Chapter 6

Greybody Factor of Scalar Fields from

Black Strings

6.1 Introduction

Scalar fields, non-minimally coupled with gravity, have shown significant features, both for in-

flation and dark energy. Also, the non-minimal couplings between derivatives of the scalar fields

and the curvature reveal interesting cosmological behaviours. In general, the scalar-tensor the-

ories give both the Einstein equation and the equation of motion for the scalar in the form of

fourth-order differential equations. But if the kinetic term is only coupled to the Einstein tensor,

the equation of motion for scalars is reduced to a second-order differential equation. Therefore,

from the point of view of physics, considering such a coupling can be interpreted as a good theory

because it is very simple. In the light of the earlier results [111–113] there is a need for more

efforts to be focussed on the study of scalar fields coupled with tensors for more general cases.

In order to fill the gap in the literature, for the case of cylindrically symmetric black holes, we

have studied the properties of the scalar field when

95
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• they are kinetically coupled to the Einstein tensor and

• they are without any coupling.

Our efforts are organized as follows: in Section 6.2, Klein-Gordon equation in a charged, black

string background is calculated with a coupling to the Einstein tensor. In Section 6.3, solutions

of the radial equation resulting from the Klein-Gordon equation in the near-horizon region and

the far horizon regime will be presented. We will also match the solutions to an intermediate

region to get the value of absorption probability (greybody factor). In Section 6.4, all the above

analysis is then performed in the absence of the coupling parameter.

6.2 Klein-Gordon equation in the background of a charged black

string

The Klein-Gordon equation when the Einstein tensor is coupled to a massless, uncharged scalar

field is

1√−g∂µ
[√−g (gµν + ηǫµν) ∂νΨ

]

= 0, (6.1)

where η is a coupling constant and ǫµν is Einstein tensor. The charged black string having

non-zero components of Einstein tensor is [37, 114]

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dθ2 + α2r2dz2, (6.2)

where

f(r) = α2r2 − 4M

αr
+

4Q2

α2r2
. (6.3)
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Here M is the mass, Q is the charge and α = −Λ/3, with Λ being the cosmological constant.

For the above metric the Einstein tensor ǫµν in matrix form can be written as

ǫµν =
4Q2

α4r4

























− 1
f 0 0 0

0 f 0 0

0 0 − 1
r2

0

0 0 0 − 1
α2r2

























. (6.4)

Also

√−g = αr2. (6.5)

Substituting the components of the Einstein tensor and spacetime metric in equation (6.1), it

takes the form

1

αr2
∂t

[

αr2
(

− 1

f
− 4ηQ2

α4r4f

)

∂tΨ

]

+
1

αr2
∂r

[

αr2
(

f +
4ηQ2f

α4r4

)

∂rΨ

]

+

1

αr2
∂θ

[

αr2
(

1

r2
− 4ηQ2

α4r6

)

∂θΨ

]

+
1

αr2
∂z

[

αr2
(

1

αr2
− 4ηQ2

α6r6

)

∂θΨ

]

= 0. (6.6)

Using the form of cylindrical harmonics

Ψ(t, r, θ, z) = e−ιωtR(r)Y (θ, z), (6.7)

we get from the radial part of equation (6.6) as

1

r2
d

dr

[

r2
(

1 +
4ηQ2

α4r4

)

f

]

dR(r)

dr
+

[(

1 +
4ηQ2

α4r4

)

ω2

f
−
(

1− 4ηQ2

α4r4

)

Flm

α2r2

]

R(r) = 0, (6.8)

where Flm = l(l + 1) are the eigenvalues coming from the (θ, z) part.
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6.3 Greybody factor computation

6.3.1 Near-horizon solution

Equation (6.8) is the master equation of our interest. We will solve this equation in two regions

separately, namely, the near horizon region and the far region by using a semi-classical approach

known as the simple matching technique. We will match both solutions to an intermediate region

to get the analytical expression for the absorption probability.

For the near-horizon region r ∼ r+, we will perform the following transformation to simplify the

radial equation [115–119]:

r → f, (6.9)

which implies

df

dr
= (1− f)

B(r+)

r+
, (6.10)

where r+ is the horizon and

B(r+) = 1− 4Q2 − 2α4r4+
4Mαr+ − 4Q2

. (6.11)

Using the above, equation (6.8) takes the form

f(1− f)
d2R(f)

df2
+ (1− C∗f)

dR(f)

df

+

[

F 2
∗

B2(r+) (1− f) f
−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

Flm

B2(r+)α2 (1− f)

]

R(f) = 0. (6.12)

Here

F∗ = ωr∗, (6.13)

and

C∗ = 2− 2

B(r+)

(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

. (6.14)
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In order to further simplify the above equation, we use the field redefinition

R(f) = fµ (1− f)ν F (f). (6.15)

Using this in equation (6.12), we obtain

f (1− f)
d2F (f)

df2
+ [1 + 2µ− (2µ+ 2ν + C∗) f ]

dF

df

+[
µ2

f
− µ2 + µ− 2µν +

ν2

1− f
− ν2 − 2ν

1− f
+ ν − µC∗ +

νC∗

1− f
− νC∗

+
F 2
∗

B2(r+)f
+

F 2
∗

B2(r+) (1− f)
−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

Flm

B2(r+)α2 (1− f)
]F (f) = 0. (6.16)

We define

a = µ+ ν + C∗ − 1, b = µ+ ν, c = 1 + 2µ. (6.17)

Also the constraints coming from the coefficients of F (f) give

µ2 +
F 2
∗

B2(r+)
= 0, (6.18)

and

ν2 + ν(C∗ − 2) +
F 2
∗

B2(r+)
−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

Flm

B2(r+)α2
= 0. (6.19)

From this we get the values of µ and ν:

µ± = ±ι F∗

B(r+)
, (6.20)
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and

ν± =
1

2

[

(2− C∗)±
√

(2− C∗)
2 − 4

(

F 2
∗

B2(r+)
−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

Flm

B2(r+)α2

)

]

. (6.21)

Equation (6.16) by virtue of (6.17) and the constraints (6.18)-(6.19) becomes

f (1− f)
d2F (f)

df2
+

[

c− (1 + a+ b) f

]

dF (f)

df
− abF (f) = 0. (6.22)

For the near-horizon case there exists no outgoing mode, which means µ+ = µ− and ν+ = ν−. So

in the near-horizon region the solution can be written in the form of the general hypergeometric

function, which has the form

R(f)NH = C−f
µ(1− f)νF (a, b, c; f) , (6.23)

where C− is an arbitrary constant.

6.3.2 Far horizon solution

Now we find the solution of the radial equation for the far region. In this case the radial part

will have the form

d2R(r)FR

dr2
+

4

r

dR(r)FR

dr
+

(

ω2 − Flm

α2r2

)

R(r)FR = 0. (6.24)

This is the well-known Bessel equation, and in a far field its solution can be written as

RFR (r) =
1√
rαω

[B1Jγ(ωαr) +B2Yγ(ωαr)] . (6.25)
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In the above solution Jγ and Yγ are Bessel’s functions. For γ = l+ 1/2, and in the limit r → 0,

the above solution can be written as

RFR (r) ≃ B1

(

ωαr
4

)γ

√
ωαrΓ (ν + 1)

− B2Γ (γ)

π
√
ωαr

(

ωαr
4

)ν . (6.26)

6.3.3 Matching the two solutions

We now stretch the near-horizon solution to an intermediate region [105, 109] which gives

R(f)NH = C−f
µ (1− f)ν

[

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1; 1− f)

+ (1− f)c−a−b Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1; 1− f)

]

. (6.27)

We can approximate 1− f for the case r ≫ r+ as

1− f ≃ 4M

αr
. (6.28)

So, the form of the final solution for the near-horizon case becomes

R(r)NH ≃ A1r
ν +A2r

−(ν+C∗−2). (6.29)

Here we have chosen

A1 = C−

(

4M

α

)ν Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (6.30)

and

A2 = C−

(

4M

α

)−(ν+C∗−2) Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
. (6.31)
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In the low-energy limit we can use the approximation

− ν ≃ l +O(ω2), (6.32)

ν + C∗ − 2 ≃ − (l + 1) +O(ω2). (6.33)

From equations (6.26) and (6.29) matching the coefficients and eliminating C− give

B =
B1

B2
= − 1

π

1

(αωM)2l+1

Γ(c− a− b)Γ(a)Γ(b)

Γ(c− a)Γ(c− b)Γ(a)Γ(b)
Γ2(l + 1/2). (6.34)

The greybody factor can now be given by [100]

γl (ω) = |Pl|2 =
2ι (B∗ −B)

|B|2
. (6.35)

By using the value of B we can find the expression of absorption probability of the radiations

emitted from the charged black string. This relation gives a measure of how much the radiations

are different (or modified) from the spectrum of the black body radiation.

6.4 Absorption probability for scalar field without coupling to

the Einstein tensor

In this section we find an analytical expression of the absorption probability for scalar field from

the charged black string without coupling to the Einstein tensor. The Klein-Gordon equation

for a massless, uncharged scalar field is

1√−g∂µ
[√−g (gµν) ∂νΨ

]

= 0. (6.36)
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Using the values of each component of the spacetime considered in the previous section, we get

the following equation:

1

αr2
∂t

[

αr2
(

− 1

f

)

∂tΨ

]

+
1

αr2
∂r

[

αr2 (f) ∂rΨ

]

+

1

αr2
∂θ

[

αr2
(

1

r2

)

∂θΨ

]

+
1

αr2
∂z

[

αr2
(

1

αr2

)

∂θΨ

]

= 0. (6.37)

Considering cylindrical harmonics, we can separate the radial part of equation (6.37), which has

the form

1

αr2
d

dr

(

αr2f
) dR(r)

dr
+

[

ω2

f
− Flm

α2r2

]

R(r) = 0. (6.38)

As in the previous case we will find two solutions of the radial equation (6.38), one for the

near-horizon and the other for the far horizon regime. In the case of the near-horizon region, we

use the transformation r → f , which implies

df

dr
= (1− f)

B(r+)

r+
, (6.39)

where

B(r+) = 1− 4Q2 − 2α4r4+
4Mαr+ − 4Q2

. (6.40)

Using equation (6.39), equation (6.38) takes the form

f(1−f)d
2R(f)

df2
+(1− C∗f)

dR(f)

df
+

[

F 2
∗

B2(r+) (1− f) f
− Flm

B2(r+)α2 (1− f)

]

R(f) = 0. (6.41)

Here

F∗ = ωr∗, C∗ = 2− 2

B(r+)
. (6.42)
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In order to further simplify the above equation, we use field redefinition

R(f) = fµ (1− f)ν F (f). (6.43)

In equation (6.41) we use this definition of R(f) to obtain

f (1− f)
d2F (f)

df2
+

[

1 + 2µ− (2µ+ 2ν + C∗) f

]

dF

df
+

[

µ2

f
− µ2 + µ− 2µν +

ν2

1− f
− ν2 − 2ν

1− f
+ ν − µC∗ +

νC∗

1− f
− νC∗ +

F 2
∗

B2(r+)f
+

F 2
∗

B2(r+) (1− f)
−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

Flm

B2(r+)α2 (1− f)

]

F (f) = 0. (6.44)

We again use the definitions given in (6.17). The constraints coming from the coefficients of

F (f) yield

µ2 +
F 2
∗

B2(r+)
= 0, (6.45)

and

ν2 + ν(C∗ − 2) +
F 2
∗

B2(r+)
− Flm

B2(r+)α2
= 0. (6.46)

These give the values of µ and ν as

µ± = ±ι F∗

B(r+)
, (6.47)

ν± =
1

2

[

(2− C∗)±
√

(2− C∗)
2 − 4

(

F 2
∗

B2(r+)
− Flm

B2(r+)α2

)

]

. (6.48)
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Equation (6.44) by virtue of the above constraints becomes

f (1− f)
d2F (f)

df2
+

[

c− (1 + a+ b) f

]

dF (f)

df
− abF (f) = 0. (6.49)

For the near-horizon case there exists no outgoing mode, which means µ+ = µ− and ν+ = ν−. So,

in the near-horizon region the solution can be written in the form of the general hypergeometric

function, being of the form

R(f)NH = C1−f
µ(1− f)νF (a, b, c; f) , (6.50)

where C1− is an arbitrary constant. We now stretch the near horizon solution to an intermediate

region [105, 109] so that

R(f)NH = C−f
µ (1− f)ν

[

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1; 1− f) +

(1− f)c−a−b Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1; 1− f)

]

. (6.51)

We again approximate 1 − f for the case r ≫ r+, as before, and obtain the final form of the

solution given in (6.29).

Now, as in the previous section, the radial equation for the far region reduces to the form of

Bessel’s equation, and the form of the final solution in this region is

RFR (r) ≃ B1

(

ωαr
4

)γ

√
ωαrΓ (ν + 1)

− B2Γ (γ)

π
√
ωαr

(

ωαr
4

)ν . (6.52)

Using the same procedure as in the previous case, we find

B =
B1

B2
= − 1

π

1

(αωM)2l+1

Γ(c− a− b)Γ(a)Γ(b)

Γ(c− a)Γ(c− b)Γ(a)Γ(b)
Γ2(l + 1/2). (6.53)
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The absorption probability and hence greybody factor can be found by using the value of B in

equation (6.35).
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Figure 6.1: Greybody factor as a function of the frequency for ξ = 0, 0.1, 0.001, 0.5, 1 and for
l = 1.
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Figure 6.2: Greybody factor as a function of the frequency for ξ = 0, 0.1, 0.001, 0.5, 1 and for
l = 2.
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The effect of the coupling constant on the greybody factor is also analyzed graphically for

different partial modes. In Figure 6.1, we have drawn the graph of greybody factor as a function

frequency for different values of coupling constant and for l = 1. In Figure 6.2, the same is

depicted for l = 2. It is observed that for different modes, stronger coupling enhances the

absorption probability in low frequency approximation.



Chapter 7

Summary and Conclusion

We have constructed a complete set of quartic curvature theories of gravity. Under the restriction

of spherical symmetry, the field equations of each of these theories reduce to the total derivative

of a single metric function. In the case of four dimensions, we found that there are six generalized

quasi-topological theories which have non-trivial contribution and these are given in equations

(2.25)-(2.28) and (2.34). The equations of motion of these theories are in the form of total

derivative of a polynomial of single metric function f(r) and its first two derivatives.

In the case of dimensions five and higher, theories constructed here break up into the following

categories:

1. Quartic Lovelock gravity: the explicit form of the Lagrangian for this class is given by

the eight dimensional Euler density X8. An interesting aspect of theories of this class is

that the equations of motion are always of second order. Furthermore, if we impose the

restriction of spherical symmetry, the equation of motion will be unique and in the form

of a total derivative of a single metric function.
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2. Six quasi-topological theories, with Lagrangians given by equations (2.19) and (2.20). One

of these, given in equation (2.19), is already known [61]; the remaining five given in equa-

tion (2.20) are new. For all these theories, in a general background, the equations of motion

will be different and are of fourth order. On the other hand, if we impose the condition of

spherical symmetry, the equations of motion are of second order and contributions of each

of six Lagrangians coincide. This is due to the fact that the Lagrangians are equivalent up

to the terms which vanish for spherically symmetric metrics.

3. Four generalized quasi-topological theories are found whose Lagrangians are given by equa-

tions (2.25)-(2.28). For this quartet, if we impose the condition of spherical symmetry, field

equation will be same and in the form of a total derivative of a polynomial of single metric

function f and its first and second derivatives.

4. The Lagrangians for six theories, whose field equations vanish when one sets N as constant,

are given by equation (2.24). For situations where the stress-energy tensor has T t
t 6= T r

r ,

there will be two non-trivial field equations that determine N and f .

We have presented a generalized charged anti-de Sitter black hole solution for cubic quasi-

topological gravity and also elaborated its thermodynamic aspect.

Furthermore, we have derived the analytic expression of greybody factor for non-minimally

coupled scalar fields from Reissner-Nordström-de Sitter black hole in low energy approximation.

This expression is valid for general, partial modes. For coupling to scalar curvature, which can

be regarded as mass or charge terms, greybody factor tend to zero in low frequency regime,

irrespective of the values of the coupling parameter. Non-zero greybody factor in low frequency

regime means that there is non-zero Hawking emission rate of Hawking radiations. The matching

technique is used in deriving formula for greybody factor. The significance of the results is
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elaborated by giving formulae of differential rate of energy and generalized absorption cross

section from the greybody factor.

The results of the present study reduce to those of Ref. [101] in appropriate limiting case, i.e.,

if we put charge Q = 0, we recover the previously reported results. The effective potential and

greybody factor are also analyzed graphically. We observe that the height of gravitational barrier

increases with the increase of ξ, the coupling parameter, whereas in the absence of the coupling

parameter, it is decreased by increasing the values of the cosmological constant. Also, from the

plots of greybody factor, it is observed that an increase in the value of the coupling parameter

decreases the greybody factor. This is due to the fact that non-minimal coupling plays the role

of effective mass and hence suppresses the greybody factor.

In the previous chapter, we have presented a study of the greybody factor for a scalar field which

are coupled to the Einstein tensor in the background of a charged black string, considering low

energy approximation. We demonstrated that the greybody factor depends on the coupling

between Einstein tensor and scalar field. It is observed that the presence of coupling enhances

the greybody factor of the scalar field in the black string spacetime. Furthermore, for weaker

coupling, greybody factor decreases with increase in charge of black string. In the second case,

we discussed this work without considering coupling of scalar field and the Einstein tensor. It

is trivial from results that the later case reduces to the result of former in absence of coupling

constant.

In the case of three-dimensional topological black holes [90, 120] like the charged BTZ (Bañados

, Teitelboim, Zanelli) black holes, we find the propagation of scalar fields with non-minimal

coupling to gravity obeys the Universality theorem. This means that under the restrictions

of zero angular-momentum, low energy regime, massless/chargeless scalar field and minimal
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coupling, the greybody factor approaches to a constant value. However, Universality theorem

does not hold for zero angular-momentum if any of the above restrictions is relaxed.

We have thus explored theories in several aspects. Consideration of linearized spectrum of these

theories revealed that on a constant curvature background, it is only the massless graviton that

is propagated by these theories. We also have found the explicit forms of field equations of

these theories in general spacetime dimension d which are valid for spherical symmetric back-

ground. Also, explicit form of black hole entropy in general spacetime dimension is presented.

The consequence of this particular result is very interesting; for the case of black brane solu-

tions, it modifies the usual Bekenstein-Hawking area law. It was observed previously that this

aspect was not seen before for theories like Lovelock and quasi-topological gravities. Therefore,

holographic consideration of these generalized quasi-topological theories may have interesting

implications. Furthermore, we have found four dimensional asymptotic, flat, black solutions for

these theories. This solution revealed that it is characterized only by mass, implying that it

does not give rise to higher derivative “hair”. We have presented perturbative and numerical

solutions, but interestingly, thermodynamics can be studied analytically. In this regard, we

found that first law of black hole thermodynamics holds. We presented black brane solutions of

these theories in general d dimensions. Expected thermodynamic relations for a CFT (without

chemical potential) are satisfied by these solutions, living in one dimension less. We also found

the peculiar thermodynamical behaviour of these black brane solutions which is in contrast to

the corresponding black brane solutions in Lovelock and quasi-topological gravities. For this

reason, this result may have interesting consequences in holographic studies.

This class of theories (which has now been constructed to cubic [8, 65] and quartic order) pro-

vides interesting generalizations of Einstein’s gravity that are non-trivial in four (and higher)
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dimensions. This contrasts with previous constructions of Lovelock and quasi-topological gravi-

ties, which vanish on four dimensional (spherically symmetric) metrics. The generalized quasi-

topological terms can be thought of as the theories which have many of the interesting properties

observed for Einsteinian cubic gravity [65] in four dimensions [7, 81], but in higher dimensions

and/or to higher orders in the curvature. These theories necessarily [66] propagate only a mass-

less, transverse graviton on a constant curvature spacetime. Furthermore, they admit black hole

solutions which are characterized only by their mass. The thermodynamics of the black holes

can be studied exactly, despite the lack of an exact, analytic solution to the field equations.

Construction of these theories has opened many problems which deserve further study. These

problems include further investigations of the properties of four and higher dimensional black

hole solutions in these theories. Also, as we know that the Birkhoff theorem holds for Lovelock

and quasi-topological gravities [71, 72, 121]; it would be interesting to see whether this is the

case for these theories. More interestingly, these theories seem well-suited for holographic study

and therefore can serve as a good toy model in such investigations. A study in the context of

holography could better shed further light on the stability of the solutions of these theories and

the allowed values of coupling constants, and may reveal novel features in the case of black brane

solutions of the theory. An ambitious undertaking would be to elucidate the general structure

of the Lagrangians in this class of theories. This has been long known in the case of Lovelock

gravity [5] but remains an open problem in the (generalized) quasi-topological cases.
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Appendix A

The Constraints in General Dimensions

We get the following values of constraints on c12, c17, c19, c20, c21, c22, c23, c24 and c25 in order to

ensure that condition (2.5) is met for the quartic action given by equation (2.13) in dimensions

d larger than four.

c12 = − (19− 40d+ 38d2 − 15d3 + 2d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c1 −

(2− 69d+ 83d2 − 32d3 + 4d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− (13− 2d− 4d2 + d3)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c3 −

4(d− 2)(−2 + 22d− 13d2 + 2d3)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 8(d− 2)(−2 + 22d− 13d2 + 2d3)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c5 −

8(d− 3)(−1 + 6d− 5d2 + d3)

3(3d− 1)(−22 + 26d− 9d2 + d3)
c6

− (d− 4)(d− 3)(d− 1)2

2(3d− 2)(−22 + 26d− 9d2 + d3)
c10 −

8(d− 3)(d− 2)2(2d− 1)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c7

− (d− 2)(1− 7d+ 2d2)

4(3d− 2)(−22 + 26d− 9d2 + d3)
c8 −

(5− 28d+ 27d2 − 9d3 + d4)

(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (16− 15d+ 3d2)

4(−22 + 26d− 9d2 + d3)
c11 (A.1)
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c17 = −(−200 + 430d+ 566d2 − 2677d3 + 3194d4 − 1807d5 + 524d6 − 74d7 + 4d8)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− (272− 1572d+ 4104d2 − 5617d3 + 4420d4 − 2042d5 + 536d6 − 73d7 + 4d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
(336− 1418d+ 2520d2 − 2107d3 + 885d4 − 168d5 + 7d6 + d7)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− 4(148− 790d+ 1986d2 − 2683d3 + 2126d4 − 991d5 + 262d6 − 36d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 8(148− 790d+ 1986d2 − 2683d3 + 2126d4 − 991d5 + 262d6 − 36d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− 2(136− 988d+ 3086d2 − 4784d3 + 4079d4 − 1975d5 + 531d6 − 73d7 + 4d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− 8(20 + 58d− 134d2 + 74d3 − 15d4 + d5)

(d− 2)(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(24 + 36d− 296d2 + 683d3 − 698d4 + 368d5 − 94d6 + 9d7)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

− 3(40− 546d+ 2232d2 − 3935d3 + 3633d4 − 1870d5 + 538d6 − 81d7 + 5d8)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (−240 + 184d+ 2538d2 − 7062d3 + 7893d4 − 4550d5 + 1418d6 − 228d7 + 15d8)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

+
3(d− 4)(d− 3)(d− 1)2(−1 + 3d)

2(d− 2)2(2d− 1)(−22 + 26d− 9d2 + d3)
c11 −

(−4− 13d+ 39d2 − 24d3 + 4d4)

4(d− 2)2(d− 1)(2d− 1)
c13

− (d− 3)d2

4(d− 2)2(d− 1)
c14 −

(−2− 8d+ 23d2 − 13d3 + 2d4)

2(d− 2)2(d− 1)(2d− 1)
c15

− (2 + 7d− 9d2 + 2d3)

2(d− 2)2(2d− 1)
c16 −

(d− 4)(d− 1)(−1 + 3d)

2(d− 2)2(2d− 1)
c18 (A.2)
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c19 =
(−344 + 2086d− 4878d2 + 5109d3 − 2618d4 + 590d5 − 10d6 − 17d7 + 2d8)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

+
(−1000 + 4684d− 7926d2 + 6691d3 − 2963d4 + 595d5 − d6 − 18d7 + 2d8)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
(552− 2214d+ 2702d2 − 1489d3 + 358d4 − 14d5 − 8d6 + d7)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

+
(−1096 + 5100d− 8504d2 + 7072d3 − 3046d4 + 579d5 + 8d6 − 19d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

+
2(−1096 + 5100d− 8504d2 + 7072d3 − 3046d4 + 579d5 + 8d6 − 19d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

+
2(−448 + 2150d− 3790d2 + 3299d3 − 1488d4 + 302d5 − d6 − 9d7 + d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

+
2(368− 580d+ 262d2 − 30d3 − 5d4 + d5)

(d− 2)(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(360− 1388d+ 1568d2 − 593d3 − 124d4 + 146d5 − 36d6 + 3d7)

8(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

+
3(−776 + 3662d− 6388d2 + 5545d3 − 2543d4 + 576d5 − 38d6 − 7d7 + d8)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

+
(−1152 + 6104d− 12474d2 + 12330d3 − 6321d4 + 1592d5 − 128d6 − 18d7 + 3d8)

8(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

+
3(d− 3)(16− 49d+ 41d2 − 11d3 + d4)

4(d− 2)2(2d− 1)(−22 + 26d− 9d2 + d3)
c11 +

(−11 + 25d− 14d2 + 2d3)

4(d− 2)2(d− 1)(2d− 1)
c13

+
(d− 3)d

4(d− 2)2(d− 1)
c14 +

(−7 + 16d− 8d2 + d3)

2(d− 2)2(d− 1)(2d− 1)
c15 +

(d− 4)(d− 1)

2(d− 2)2(2d− 1)
c16

− (−8 + 17d− 6d2 + d3)

4(d− 2)2(2d− 1)
c18 (A.3)
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c20 = − 8(66− 106d− 27d2 + 99d3 − 52d4 + 8d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− 8(−220 + 638d− 716d2 + 427d3 − 133d4 + 16d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− 4(264− 634d+ 494d2 − 175d3 + 23d4)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− 32(−132 + 362d− 384d2 + 227d3 − 69d4 + 8d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 64(−132 + 362d− 384d2 + 227d3 − 69d4 + 8d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− 16(−132 + 422d− 548d2 + 373d3 − 127d4 + 16d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− 256(d− 3)(d− 1)d

(3d− 2)(−22 + 26d− 9d2 + d3)
c7 −

4(44− 80d+ 26d2 + 13d3 − 14d4 + 3d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

− 12(−44 + 116d− 148d2 + 116d3 − 41d4 + 5d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− 2(176− 416d+ 242d2 + 22d3 − 53d4 + 9d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

− 24(d− 3)(d− 1)2d

(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11 +

2(−5 + 2d)

(d− 2)(2d− 1)
c13

+
4

d− 2
c14 −

8

(d− 2)(2d− 1)
c15 +

4(−3 + 2d)

(d− 2)(2d− 1)
c16 +

8(d− 1)d

(d− 2)(2d− 1)
c18 (A.4)
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c21 =
4(−96 + 509d− 1068d2 + 1031d3 − 516d4 + 141d5 − 23d6 + 2d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

+
4(−332 + 1560d− 2593d2 + 2194d3 − 1041d4 + 288d5 − 48d6 + 4d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
4(64− 253d+ 246d2 − 101d3 + 20d4 − 5d5 + d6)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

+
16(−180 + 850d− 1408d2 + 1191d3 − 559d4 + 153d5 − 25d6 + 2d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

+
32(−180 + 850d− 1408d2 + 1191d3 − 559d4 + 153d5 − 25d6 + 2d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

+
32(−80 + 381d− 657d2 + 566d3 − 268d4 + 73d5 − 12d6 + d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

+
32(d− 3)(−24 + 26d− 5d2 + d3)

(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(116− 464d+ 557d2 − 326d3 + 115d4 − 36d5 + 6d6)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

+
12(−148 + 689d− 1170d2 + 989d3 − 452d4 + 115d5 − 16d6 + d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

+
2(−256 + 1284d− 2475d2 + 2301d3 − 1132d4 + 304d5 − 45d6 + 3d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

+
3(−28 + 78d− 51d2 + 3d3 + 2d4)

(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11 −

2(5− 10d+ 4d2)

(d− 2)(d− 1)(2d− 1)
c13

− 2d

(d− 2)(d− 1)
c14 −

4(3− 6d+ 2d2)

(d− 2)(d− 1)(2d− 1)
c15 −

8(d− 1)

(d− 2)(2d− 1)
c16

− 4(d− 1 + d2)

(d− 2)(2d− 1)
c18 (A.5)
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c22 =
(−9504 + 28040d− 26710d2 + 7806d3 + 2763d4 − 2722d5 + 1012d6 − 222d7 + 15d8 + 2d9)

12(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

+
(11616− 38016d+ 46080d2 − 27850d3 + 10107d4 − 3153d5 + 1051d6 − 235d7 + 14d8 + 2d9)

6(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
(−15840 + 49168d− 53582d2 + 25858d3 − 5241d4 + 356d5 − 62d6 + 14d7 + d8)

12(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

+
(14784− 47304d+ 55236d2 − 31612d3 + 10792d4 − 3404d5 + 1165d6 − 248d7 + 13d8 + 2d9)

3(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

+
2(14784− 47304d+ 55236d2 − 31612d3 + 10792d4 − 3404d5 + 1165d6 − 248d7 + 13d8 + 2d9)

3(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

+
2(3168− 10564d+ 13436d2 − 9026d3 + 4002d4 − 1539d5 + 537d6 − 118d7 + 7d8 + d9)

3(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

+
2(d− 2)d(−264 + 102d− 48d2 + 13d3 + d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(−1760 + 4280d− 2348d2 − 960d3 + 1127d4 − 150d5 − 76d6 + 14d7 + d8)

8(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

+
(1408− 1224d− 3726d2 + 4544d3 − 245d4 − 1603d5 + 784d6 − 134d7 + 3d8 + d9)

4(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

+
(−10560 + 34480d− 39088d2 + 17370d3 + 582d4 − 3803d5 + 1726d6 − 338d7 + 12d8 + 3d9)

24(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

+
d(−220 + 309d− 68d2 − 38d3 + 8d4 + d5)

4(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11

− (72− 77d− d2 + 11d3 + d4)

6(d− 2)(d− 1)(2d− 1)
c13 −

1

d− 1
c14 −

(60− 47d− 13d2 + 11d3 + d4)

6(d− 2)(d− 1)(2d− 1)
c15

− (d+ 7)(−12 + 5d+ d2)

6(d− 2)(2d− 1)
c16 −

d(d+ 7)(−12 + 5d+ d2)

12(d− 2)(2d− 1)
c18 − 2(d− 2)dc26 (A.6)
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c23 = − (7104− 35088d+ 67484d2 − 52018d3 + 8628d4 + 11187d5 − 7810d6 + 2236d7 − 288d8 + 3d9 + 2d10)

24(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− (13824− 65760d+ 107232d2 − 80268d3 + 21812d4 + 7485d5 − 7491d6 + 2305d7 − 295d8 + 2d9 + 2d10)

12(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− (−6144 + 28032d− 37964d2 + 27334d3 − 11888d4 + 2799d5 − 64d6 − 98d7 + 8d8 + d9)

24(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− (15168− 73200d+ 120720d2 − 92556d3 + 26636d4 + 7372d5 − 8018d6 + 2449d7 − 302d8 + d9 + 2d10)

6(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− (15168− 73200d+ 120720d2 − 92556d3 + 26636d4 + 7372d5 − 8018d6 + 2449d7 − 302d8 + d9 + 2d10)

3(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− (6624− 31560d+ 52724d2 − 39676d3 + 10258d4 + 4194d5 − 3873d6 + 1167d7 − 148d8 + d9 + d10)

3(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− (−5856 + 7872d− 1872d2 − 1008d3 + 630d4 − 128d5 + 5d6 + d7)

3(d− 2)(3d− 2)(−22 + 26d− 9d2 + d3)
c7

− (−1856 + 8016d− 10784d2 + 6260d3 − 618d4 − 1205d5 + 722d6 − 160d7 + 8d8 + d9)

16(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

− (12096− 55344d+ 88108d2 − 60318d3 + 9758d4 + 10317d5 − 6659d6 + 1620d7 − 152d8 − 3d9 + d10)

8(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (20352− 98400d+ 177616d2 − 139276d3 + 34518d4 + 16968d5 − 14063d6 + 3850d7 − 410d8 − 6d9 + 3d10)

48(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

− (672− 2232d+ 2438d2 − 1299d3 + 448d4 − 86d5 + 2d6 + d7)

8(d− 2)2(2d− 1)(−22 + 26d− 9d2 + d3)
c11

+
(−96 + 168d− 29d2 − 31d3 + 5d4 + d5)

12(d− 2)2(d− 1)(2d− 1)
c13

+
(d− 4)d

2(d− 2)2(d− 1)
c14 +

(−120 + 222d− 41d2 − 31d3 + 5d4 + d5)

12(d− 2)2(d− 1)(2d− 1)
c15

+
(72− 42d− 25d2 + 6d3 + d4)

12(d− 2)2(2d− 1)
c16 +

(96− 168d+ 66d2 − 49d3 + 6d4 + d5)

24(d− 2)2(2d− 1)
c18

+ (12− 6d+ d2)c26 (A.7)



121

c24 = −(1768− 5050d+ 5912d2 − 3707d3 + 1391d4 − 285d5 + 17d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− 2(−560− 376d+ 2678d2 − 2965d3 + 1408d4 − 299d5 + 16d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− (1696− 3274d+ 2116d2 − 371d3 − 63d4 + 15d5 + d6)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− 4(−920 + 196d+ 2624d2 − 3272d3 + 1548d4 − 313d5 + 15d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 8(−920 + 196d+ 2624d2 − 3272d3 + 1548d4 − 313d5 + 15d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− 8(36− 888d+ 1898d2 − 1668d3 + 727d4 − 150d5 + 8d6 + d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− 8(d− 2)(−168 + 190d− 88d2 + 13d3 + d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c7

− (120 + 44d− 416d2 + 417d3 − 149d4 + 15d5 + d6)

2(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

− (632− 3322d+ 5142d2 − 3529d3 + 1162d4 − 170d5 + 4d6 + d7)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (2544− 8320d+ 10510d2 − 6760d3 + 2395d4 − 419d5 + 15d6 + 3d7)

6(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

− (d− 1)(−4 + 55d− 43d2 + 5d3 + d4)

(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11

+
2(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c13 +

2(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c15

+
2(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c16 +

d(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c18 + 8(d− 2)c26 (A.8)
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c25 = +
(3600− 16408d+ 31034d2 − 30162d3 + 16863d4 − 5794d5 + 1228d6 − 114d7 − 9d8 + 2d9)

12(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

+
(912− 7080d+ 15960d2 − 18454d3 + 12579d4 − 5229d5 + 1243d6 − 115d7 − 10d8 + 2d9)

6(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
(1824− 6056d+ 9634d2 − 7274d3 + 2439d4 − 184d5 − 50d6 + 2d7 + d8)

12(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

+
(480− 5880d+ 14820d2 − 18556d3 + 13312d4 − 5672d5 + 1333d6 − 116d7 − 11d8 + 2d9)

3(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

+
2(480− 5880d+ 14820d2 − 18556d3 + 13312d4 − 5672d5 + 1333d6 − 116d7 − 11d8 + 2d9)

3(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

+
2(888− 5176d+ 10700d2 − 11444d3 + 7212d4 − 2805d5 + 639d6 − 58d7 − 5d8 + d9)

3(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

+
2(−1248 + 1968d− 1116d2 + 366d3 − 62d4 − d5 + d6)

3(d− 2)(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(−32 + 600d− 1476d2 + 1936d3 − 1469d4 + 614d5 − 112d6 + 2d7 + d8)

8(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

+
(2448− 12968d+ 25506d2 − 25744d3 + 14727d4 − 4859d5 + 840d6 − 38d7 − 9d8 + d9)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

+
(6432− 30800d+ 58832d2 − 57438d3 + 31686d4 − 10223d5 + 1810d6 − 86d7 − 24d8 + 3d9)

24(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

+
(d− 3)(−16 + 12d+ 37d2 − 29d3 − d4 + d5)

4(d− 2)2(2d− 1)(−22 + 26d− 9d2 + d3)
c11

− (−33 + 61d− 25d2 − d3 + d4)

6(d− 2)2(d− 1)(2d− 1)
c13

+
d

2(d− 2)2(d− 1)
c14 −

(−36 + 67d− 25d2 − d3 + d4)

6(d− 2)2(d− 1)(2d− 1)
c15 −

(30− 25d+ d3)

6(d− 2)2(2d− 1)
c16

− (d− 1)d(−36 + d+ d2)

12(d− 2)2(2d− 1)
c18 − 2dc26 (A.9)



Appendix B

Quasi-Topological Lagrangian Densities

In this appendix we provide a list of the explicit forms of the quasi-topological Lagrangian

densities, which are obtained by the choices made in equations (2.19) and (2.20).
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Z(1)
d = 16(d− 2)(244− 451d+ 306d2 − 91d3 + 10d4)Ra

cRabRb
dRcd

−64(d− 2)(7− 5d+ d2)(14− 14d+ 3d2)Ra
cRabRbcR

+8(−388 + 931d− 856d2 + 379d3 − 82d4 + 7d5)RabR
abR2

+(−980 + 1683d− 1060d2 + 302d3 − 36d4 + d5)R4

−32(d− 4)2(d− 2)2(14− 14d+ 3d2)RabRcdRRacbd

+2(2764− 6289d+ 5788d2 − 2776d3 + 736d4 − 103d5 + 6d6)R2RabcdR
abcd

+64(d− 3)(d− 2)2(−58 + 75d− 30d2 + 4d3)Ra
cRabRdeRbdce

−48(d− 3)(d− 2)(4− 31d+ 37d2 − 15d3 + 2d4)RabRcdRac
efRbdef

+16(d− 2)3(274− 389d+ 183d2 − 34d3 + 2d4)RabRcdRa
e
b
fRcedf

−4(d− 4)(118− 596d+ 876d2 − 581d3 + 195d4 − 32d5 + 2d6)RabR
abRcdefR

cdef

+16(d− 4)(d− 3)(d− 2)(d− 1)(14− 14d+ 3d2)RabRa
cdeRbc

fhRdefh

−(d− 2)(1108− 2723d+ 2639d2 − 1224d3

+235d4 + 10d5 − 10d6 + d7)Rab
efRabcdRcd

hiRefhi + 8(d− 2)(860− 2113d

+1959d2 − 810d3 + 102d4 + 30d5 − 11d6 + d7)Ra
e
c
fRabcdRb

h
d
iRehfi

+(−1292 + 2929d− 2741d2 + 1527d3 − 684d4 + 276d5 − 82d6

+14d7 − d8)RabcdR
abcdRefhiR

efhi (B.1)
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Z(2)
d =

1

(d− 4)(d− 2)3(3d− 4)(11− 6d+ d2)(−4 + 14d− 7d2 + d3)(−22 + 26d− 9d2 + d3)

×
[

(d− 4)(d3 − 9d2 + 26d− 22)(d− 1)(2d8 − 36d7 + 264d6 − 969d5 + 1486d4 + 1289

×d3 − 8530d2 + 11948d− 5632)RabRabR
cdRcd − (d− 2)(−22 + 26d− 9d2 + d3)(3840

−9872d+ 13772d2 − 12446d3 + 6133d4 − 795d5 − 639d6 + 327d7 − 60d8 + 4d9)Ra
cRab

×Rb
dRcd + (d− 1)(d− 4)(−22 + 26d− 9d2 + d3)(−5632 + 11948d− 8530d2 + 1289d3

+1486d4 − 969d5 + 264d6 − 36d7 + 2d8)Ra
cRabRb

dRcd +
4

3
(d− 2)(92672− 459640d

+851460d2 − 741570d3 + 245584d4 + 91339d5 − 122856d6 + 51524d7 − 10130d8 + 451

×d9 + 192d10 − 36d11 + 2d12)Ra
cRabRbcR− (−19968 + 129856d− 351080d2 + 486664

×d3 − 350864d4 + 91452d5 + 48784d6 − 50566d7 + 18113d8 − 2536d9 − 243d10 + 143d11

−20d12 + d13)RabR
abR2 +

1

24
(385024− 1950016d+ 3753760d2 − 3555864d3 + 1582172

×d4 − 4394d5 − 370858d6 + 206017d7 − 59436d8 + 10909d9 − 1522d10 + 195d11 − 20d12

+d13)R4 + 4(d− 2)2(−36480 + 97652d− 90614d2 + 16524d3 + 30278d4 − 24508d5

+6916d6 + 152d7 − 625d8 + 173d9 − 21d10 + d11)RRabRcdRacbd +
1

4
(d− 2)(−328704

+1158096d− 1701488d2 + 1286084d3 − 430702d4 − 82374d5 + 157229d6 − 79874d7

+23397d8 − 4346d9 + 507d10 − 34d11 + d12)R2RabcdR
abcd − 2(d− 2)3(−28032 + 87822d

−112640d2 + 71315d3 − 16827d4 − 6654d5 + 6558d6 − 2329d7 + 447d8 − 46d9 + 2d10)Rab

×RRa
cdeRbcde − 8(d− 2)2(−22 + 26d− 9d2 + d3)(−64 + 1592d− 2909d2 + 1743d3 − 58d4

−371d5 + 167d6 − 30d7 + 2d8)Ra
cRabRdeRbdce + (d− 2)3(−22 + 26d− 9d2 + d3)(1024

−3308d+ 2725d2 + 210d3 − 1190d4 + 570d5 − 111d6 + 8d7)RabRcdRac
efRbdef +

1

3
(d− 2)3

×(1792− 3743d+ 2678d2 − 531d3 − 247d4 + 150d5 − 29d6 + 2d7)(−4 + 14d− 7d2 + d3)

×RRab
efRabcdRcdef +

1

2
(d− 2)(−22 + 26d− 9d2 + d3)(9216− 31760d+ 41152d2 − 22702

×d3 + 914d4 + 5611d5 − 3201d6 + 839d7 − 111d8 + 6d9)RabR
abRcdefR

cdef
]

−2(−8− 23d+ 39d2 − 16d3 + 2d4)

(d− 4)(3d− 4)(11− 6d+ d2)
RabRa

cdeRbc
fhRdefh +Ra

e
c
fRabcdRb

h
e
jRdhfj (B.2)
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Z(3)
d =

1

12(−4 + d)(−2 + d)3(−4 + 3d)(11− 6d+ d2)(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)

×
[

− 24(−2 + d)(−22 + 26d− 9d2 + d3)(−3408 + 9452d− 13070d2 + 12869d3

− 9751d4 + 5409d5 − 2053d6 + 496d7 − 68d8 + 4d9)Ra
cRabRb

dRcd

+ 24(−4 + d)(−3 + d)(−22 + 26d− 9d2 + d3)(1716− 5894d+ 8839d2 − 7538d3

+ 4008d4 − 1364d5 + 291d6 − 36d7 + 2d8)RabR
abRcdR

cd + 32(−2 + d)(−71704

+ 400996d− 956122d2 + 1301340d3 − 1128581d4 + 652069d5 − 251257d6

+ 60923d7 − 7184d8 − 444d9 + 290d10 − 40d11 + 2d12)Ra
cRabRbcR− 24(15680

− 106664d+ 323592d2 − 568168d3 + 638164d4 − 479674d5 + 243364d6 − 80096d7

+ 14246d8 + 229d9 − 800d10 + 196d11 − 22d12 + d13)RabR
abR2 + (−302144

+ 1720608d− 4189176d2 + 5863660d3 − 5304058d4 + 3284002d5 − 1431861d6

+ 445160d7 − 99552d8 + 16457d9 − 2171d10 + 248d11 − 22d12 + d13)R4

+ 48(−2 + d)2(70472− 240892d+ 359520d2 − 299804d3 + 143976d4 − 30793d5

− 6594d6 + 7094d7 − 2428d8 + 453d9 − 46d10 + 2d11)RabRcdRRacbd

+ 6(−2 + d)(316048− 1340112d+ 2613908d2 − 3095774d3 + 2474698d4

− 1403521d5 + 577724d6 − 173518d7 + 37673d8 − 5759d9 + 588d10

− 36d11 + d12)R2RabcdR
abcd − 48(−2 + d)3(25270− 92828d+ 156501d2

− 158736d3 + 107067d4 − 50145d5 + 16490d6 − 3749d7 + 562d8 − 50d9

+ 2d10)RabRRa
cdeRbcde − 192(−2 + d)2(−22 + 26d− 9d2 + d3)(−40− 1069d

+ 3085d2 − 3689d3 + 2463d4 − 1001d5 + 247d6 − 34d7 + 2d8)Ra
cRabRdeRbdce

+ 24(−2 + d)3(−1 + d)(−22 + 26d− 9d2 + d3)(988− 3197d+ 3661d2 − 2141d3

+ 689d4 − 116d5 + 8d6)RabRcdRac
efRbdef + 4(−2 + d)3(−4 + 14d

− 7d2 + d3)(−1654 + 4528d− 5595d2 + 4003d3 − 1751d4 + 459d5 − 66d6

+ 4d7)RRab
efRabcdRcdef + 12(−2 + d)(−22 + 26d− 9d2 + d3)(−8144 + 33248d

− 60534d2 + 64054d3 − 43371d4 + 19504d5 − 5824d6 + 1112d7

− 123d8 + 6d9)RabR
abRcdefR

cdef − 24(−2 + d)3(−22 + 26d− 9d2 + d3)(−4

+ 14d− 7d2 + d3)(122− 207d+ 130d2 − 37d3 + 4d4)RabRa
cdeRbc

fhRdefh

]

+Ra
e
c
fRabcdRb

h
d
jRehfj (B.3)
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Z(4)
d =

1

12(−2 + d)2(−4 + 3d)(11− 6d+ d2)(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)

×
[

− 48(−2 + d)(−22 + 26d− 9d2 + d3)(136− 230d+ 271d2 − 248d3

+ 119d4 − 26d5 + 2d6)Ra
cRabRb

dRcd + 48(−1 + d)(−22 + 26d− 9d2 + d3)(968

− 2030d+ 1645d2 − 689d3 + 161d4 − 20d5 + d6)RabR
abRcdR

cd

+ 16(−2 + d)(16144− 75888d+ 132572d2 − 115700d3 + 54596d4 − 13179d5

+ 902d6 + 277d7 − 64d8 + 4d9)Ra
cRabRbcR− 24(−1520 + 9492d− 24910d2

+ 33458d3 − 24719d4 + 9944d5 − 1768d6 − 118d7 + 110d8 − 18d9 + d10)RabR
abR2

+ (33280− 158960d+ 285656d2 − 263172d3 + 139206d4 − 44518d5 + 8963d6

− 1272d7 + 162d8 − 18d9 + d10)R4 + 96(−2 + d)2(−3112 + 7497d− 6676d2

+ 2251d3 + 265d4 − 441d5 + 138d6 − 19d7 + d8)RabRcdRRacbd

+ 6(−2 + d)(−28000 + 90828d− 127196d2 + 100724d3 − 49778d4 + 15961d5

− 3326d6 + 434d7 − 32d8 + d9)R2RabcdR
abcd − 24(−2 + d)2(9280− 30290d

+ 42690d2 − 33711d3 + 16264d4 − 4901d5 + 900d6 − 92d7 + 4d8)RabRRa
cdeRbcde

− 48(−2 + d)2(−22 + 26d− 9d2 + d3)(−24 + 538d− 817d2 + 444d3 − 101d4

+ 8d5)Ra
cRabRdeRbdce + 12(−2 + d)2(−22 + 26d− 9d2 + d3)(−384 + 1396d

− 1615d2 + 781d3 − 167d4 + 13d5)RabRcdRac
efRbdef + 4(−2 + d)2(−4 + 14d

− 7d2 + d3)(−496 + 1049d− 844d2 + 321d3 − 58d4 + 4d5)RRab
efRabcdRcdef

+ 12(−4 + d)(−2 + d)(−1 + d)(−22 + 26d− 9d2 + d3)(194− 370d+ 237d2

− 63d3 + 6d4)RabR
abRcdefR

cdef − 12(−4 + d)(−2 + d)2(−7 + 5d)(−22 + 26d

− 9d2 + d3)(−4 + 14d− 7d2 + d3)RabRa
cdeRbc

fhRdefh

]

+Rab
efRabcdRc

h
e
jRdhfj (B.4)
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Z(5)
d =

1

6(−4 + d)(−2 + d)3(−4 + 3d)(11− 6d+ d2)(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)

×
[

− 48(−2 + d)(−22 + 26d− 9d2 + d3)(−144 + 188d− 1374d2 + 4021d3

− 5045d4 + 3387d5 − 1325d6 + 304d7 − 38d8 + 2d9)Ra
cRabRb

dRcd

+ 48(−4 + d)(−22 + 26d− 9d2 + d3)(−1804 + 9398d− 18611d2 + 19639d3

− 12568d4 + 5162d5 − 1380d6 + 234d7 − 23d8 + d9)RabR
abRcdR

cd

+ 64(−2 + d)(−39608 + 263092d− 689234d2 + 982248d3 − 860735d4

+ 487978d5 − 179717d6 + 40454d7 − 4102d8 − 390d9 + 179d10

− 22d11 + d12)Ra
cRabRbcR− 24(4736− 58896d+ 273136d2 − 618416d3

+ 804696d4 − 652724d5 + 339308d6 − 109530d7 + 18000d8 + 735d9 − 1064d10

+ 234d11 − 24d12 + d13)RabR
abR2 + (−318080 + 2132288d− 5677552d2

+ 8307160d3 − 7598852d4 + 4634276d5 − 1950058d6 + 577374d7 − 122648d8

+ 19523d9 − 2542d10 + 286d11 − 24d12 + d13)R4 + 96(−2 + d)2(17960− 85612d

+ 156176d2 − 144780d3 + 69622d4 − 10116d5 − 7511d6 + 5207d7 − 1574d8

+ 268d9 − 25d10 + d11)RabRcdRRacbd + 6(−2 + d)(178336− 1018016d+ 2405768d2

− 3225004d3 + 2781796d4 − 1644450d5 + 687962d6 − 206196d7 + 44081d8

− 6568d9 + 648d10 − 38d11 + d12)R2RabcdR
abcd − 96(−2 + d)3(7550− 39268d

+ 81391d2 − 93331d3 + 67198d4 − 32176d5 + 10461d6 − 2292d7 + 325d8

− 27d9 + d10)RabRRa
cdeRbcde − 384(−2 + d)2(−1 + d)(−22 + 26d− 9d2

+ d3)(−152 + 929d− 1562d2 + 1239d3 − 542d4 + 135d5 − 18d6 + d7)Ra
cRabRdeRbdce

+ 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−716 + 3557d− 5760d2 + 4566d3 − 2022d4

+ 513d5 − 70d6 + 4d7)RabRcdRac
efRbdef + 8(−2 + d)3(−4 + 14d− 7d2 + d3)(−878

+ 3064d− 4182d2 + 2976d3 − 1215d4 + 288d5 − 37d6 + 2d7)RRab
efRabcdRcdef

+ 24(−2 + d)(−22 + 26d− 9d2 + d3)(−2704 + 14944d− 32382d2 + 37746d3

− 26667d4 + 12018d5 − 3491d6 + 635d7 − 66d8 + 3d9)RabR
abRcdefR

cdef

− 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)(82− 139d+ 82d2

− 21d3 + 2d4)RabRa
cdeRbc

fhRdefh

]

+Rab
efRabcdRce

hjRdfhj (B.5)
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Z(6)
d =

1

3(−4 + d)(−2 + d)3(−4 + 3d)(11− 6d+ d2)(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)

×
[

− 48(−2 + d)(−22 + 26d− 9d2 + d3)(−144 + 188d− 1374d2 + 4021d3 − 5045d4

+ 3387d5 − 1325d6 + 304d7 − 38d8 + 2d9)Ra
cRabRb

dRcd + 48(−4 + d)(−22

+ 26d− 9d2 + d3)(−1804 + 9398d− 18611d2 + 19639d3 − 12568d4 + 5162d5

− 1380d6 + 234d7 − 23d8 + d9)RabR
abRcdR

cd + 64(−2 + d)(−39608 + 263092d

− 689234d2 + 982248d3 − 860735d4 + 487978d5 − 179717d6 + 40454d7 − 4102d8

− 390d9 + 179d10 − 22d11 + d12)Ra
cRabRbcR− 24(4736− 58896d+ 273136d2

− 618416d3 + 804696d4 − 652724d5 + 339308d6 − 109530d7 + 18000d8 + 735d9

− 1064d10 + 234d11 − 24d12 + d13)RabR
abR2 + (−318080 + 2132288d− 5677552d2

+ 8307160d3 − 7598852d4 + 4634276d5 − 1950058d6 + 577374d7 − 122648d8 + 19523d9

− 2542d10 + 286d11 − 24d12 + d13)R4 + 96(−2 + d)2(17960− 85612d+ 156176d2

− 144780d3 + 69622d4 − 10116d5 − 7511d6 + 5207d7 − 1574d8 + 268d9

− 25d10 + d11)RabRcdRRacbd + 6(−2 + d)(178336− 1018016d+ 2405768d2

− 3225004d3 + 2781796d4 − 1644450d5 + 687962d6 − 206196d7 + 44081d8

− 6568d9 + 648d10 − 38d11 + d12)R2RabcdR
abcd − 96(−2 + d)3(7550− 39268d

+ 81391d2 − 93331d3 + 67198d4 − 32176d5 + 10461d6 − 2292d7 + 325d8

− 27d9 + d10)RabRRa
cdeRbcde − 384(−2 + d)2(−1 + d)(−22 + 26d− 9d2

+ d3)(−152 + 929d− 1562d2 + 1239d3 − 542d4 + 135d5 − 18d6 + d7)Ra
cRabRdeRbdce

+ 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−716 + 3557d− 5760d2 + 4566d3 − 2022d4

+ 513d5 − 70d6 + 4d7)RabRcdRac
efRbdef + 8(−2 + d)3(−4 + 14d− 7d2

+ d3)(−878 + 3064d− 4182d2 + 2976d3 − 1215d4 + 288d5 − 37d6 + 2d7)RRab
efRabcdRcdef

+ 24(−2 + d)(−22 + 26d− 9d2 + d3)(−2704 + 14944d− 32382d2 + 37746d3 − 26667d4

+ 12018d5 − 3491d6 + 635d7 − 66d8 + 3d9)RabR
abRcdefR

cdef

− 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)(82− 139d+ 82d2

− 21d3 + 2d4)RabRa
cdeRbc

fhRdefh

]

+Rab
efRabcdRcd

hjRefhj (B.6)



Appendix C

Generalized Quasi-Topological

Lagrangian Densities

Here we present the explicit forms of the quartet of generalized quasi-topological theories, which

are obtained by the choices made in equations (2.25)-(2.28) and (2.34).
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S(1)
d =

1

6(d− 3)2(d− 2)2(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)

×
[

− 2(d− 2)2(675840− 1895902d+ 2220384d2 − 1342691d3 + 370480d4

+ 36380d5 − 68962d6 + 27252d7 − 6100d8 + 862d9 − 74d10 + 3d11)Ra
cRabRb

dRcd

− 2(1332480− 3880512d+ 4484792d2 − 2299414d3 + 114412d4 + 452234d5

− 195096d6 − 509d7 + 26111d8 − 9952d9 + 1830d10 − 175d11 + 7d12)RabR
abRcdR

cd

+ 8(d− 2)2(d− 1)(8160− 19934d+ 18411d2 − 6271d3 − 1872d4 + 2790d5

− 1261d6 + 301d7 − 38d8 + 2d9)Ra
cRabRbcR+ 2(374400− 1072928d

+ 1257694d2 − 724744d3 + 156052d4 + 53793d5 − 49657d6 + 17344d7

− 3698d8 + 525d9 − 47d10 + 2d11)RabR
abR2 + 24(d− 2)(−128640 + 368958d

− 429005d2 + 239408d3 − 43691d4 − 22101d5 + 15982d6 − 4406d7 + 625d8

− 43d9 + d10)RabRcdRRacbd − 3(361600− 1116656d+ 1410902d2

− 875630d3 + 208502d4 + 51581d5 − 38382d6 − 577d7 + 6668d8 − 2637d9

+ 500d10 − 49d11 + 2d12)R2RabcdR
abcd − 24(d− 2)(d− 1)(−119680

+ 338440d− 401078d2 + 240034d3 − 58237d4 − 13906d5 + 14831d6

− 4890d7 + 849d8 − 78d9 + 3d10)Ra
cRabRdeRbdce

+ 6(d− 2)2(d− 1)(28160− 110076d+ 172418d2 − 146251d3

+ 75674d4 − 25778d5 + 6287d6 − 1211d7 + 188d8 − 20d9 + d10)RabRcdRac
efRbdef

+ 2(d− 3)(d− 2)2(d− 1)(−2400 + 9201d− 9929d2 + 2690d3 + 1954d4

− 1667d5 + 507d6 − 72d7 + 4d8)RRab
efRabcdRcdef + 3(−113920

+ 801792d− 1837992d2 + 2067094d3 − 1242116d4 + 346968d5 + 4985d6

− 18628d7 − 8905d8 + 9138d9 − 3089d10 + 546d11 − 51d12 + 2d13)RabR
abRcdefR

cdef

− 6(d− 3)(d− 2)2(d− 1)(−22 + 26d− 9d2 + d3)(320− 709d+ 588d2

− 292d3 + 106d4 − 23d5 + 2d6)RabRa
cdeRbc

fhRdefh

]

+Ra
e
c
fRabcdRb

h
e
jRdhfj (C.1)
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S(2)
d =

1

3(d− 3)2(d− 2)2(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)
×

×
[

− 2(d− 2)2(−578688 + 2025158d− 3185710d2 + 2977426d3 − 1839784d4

+ 791721d5 − 244086d6 + 54763d7 − 8972d8 + 1049d9 − 80d10 + 3d11)Ra
cRabRb

dRcd

+ (2281872− 8031408d+ 12067376d2 − 9693872d3 + 3903996d4 + 22113d5

− 946024d6 + 572163d7 − 189362d8 + 39599d9 − 5244d10 + 405d11 − 14d12)RabR
abRcdR

cd

+ 8(d− 2)2(d− 1)(−6987 + 21346d− 29861d2 + 26093d3 − 15931d4 + 6882d5

− 2031d6 + 385d7 − 42d8 + 2d9)Ra
cRabRbcR+ 2(−320580 + 1132666d

− 1781245d2 + 1646682d3 − 998922d4 + 421855d5 − 128958d6 + 29348d7

− 5024d8 + 627d9 − 51d10 + 2d11)RabR
abR2 − 12(d− 2)(−220296

+ 774954d− 1199885d2 + 1070366d3 − 604828d4 + 223750d5 − 53844d6

+ 7998d7 − 628d8 + 12d9 + d10)RabRcdRRacbd − 3(−309620 + 1149158d

− 1856955d2 + 1675917d3 − 875073d4 + 209908d5 + 40520d6 − 53295d7

+ 21313d8 − 4912d9 + 693d10 − 56d11 + 2d12)R2RabcdR
abcd

− 24(d− 2)(d− 1)(102476− 371148d+ 606224d2 − 585295d3 + 368632d4

− 157824d5 + 46423d6 − 9251d7 + 1194d8 − 90d9 + 3d10)Ra
cRabRdeRbdce

+ 6(d− 2)2(d− 1)(−24112 + 104237d− 184591d2 + 177665d3 − 102275d4

+ 35933d5 − 7258d6 + 601d7 + 55d8 − 16d9 + d10)RabRcdRac
efRbdef

+ (d− 3)(d− 2)2(d− 1)(4110− 23613d+ 44912d2 − 42687d3 + 23334d4

− 7715d5 + 1532d6 − 169d7 + 8d8)RRab
efRabcdRcdef + 3(97544− 765604d

+ 2080704d2 − 2942717d3 + 2459345d4 − 1222083d5 + 288468d6 + 44796d7

− 62477d8 + 24383d9 − 5446d10 + 743d11 − 58d12 + 2d13)RabR
abRcdefR

cdef

− 6(d− 3)(d− 2)2(d− 1)(−22 + 26d− 9d2 + d3)(−274 + 409d− 67d2

− 161d3 + 103d4 − 24d5 + 2d6)RabRa
cdeRbc

fhRdefh

]

+Ra
e
c
fRabcdRb

h
d
jRehfj (C.2)
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S(3)
d =

1

3(d− 3)2(d− 2)(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)
×

×
[

− 4(d− 2)(−718080 + 2405582d− 3666144d2 + 3359133d3 − 2057938d4

+ 887142d5 − 276120d6 + 62662d7 − 10296d8 + 1182d9 − 86d10 + 3d11)Ra
cRabRb

dRcd

− 4(707880− 2115012d+ 2700668d2 − 1809780d3 + 561468d4 + 61133d5 − 134394d6

+ 60426d7 − 15005d8 + 2238d9 − 189d10 + 7d11)RabR
abRcdR

cd

+ 16(d− 2)(d− 1)(−8670 + 30262d− 47247d2 + 43299d3 − 25747d4 + 10271d5

− 2734d6 + 466d7 − 46d8 + 2d9)Ra
cRabRbcR+ 4(198900− 592178d+ 790224d2

− 617415d3 + 313537d4 − 109500d5 + 27237d6 − 4900d7 + 624d8 − 51d9 + 2d10)RabR
abR2

+ 48(d− 2)(−68340 + 203532d− 268574d2 + 203038d3 − 95967d4 + 29190d5

− 5665d6 + 667d7 − 42d8 + d9)RabRcdRRacbd − 6(192100− 603774d+ 820554d2

− 605255d3 + 237492d4 − 22951d5 − 24843d6 + 14329d7 − 3890d8 + 609d9 − 53d10

+ 2d11)R2RabcdR
abcd − 48(d− 2)(d− 1)(−63580 + 183572d− 244118d2

+ 192444d3 − 97734d4 + 32893d5 − 7308d6 + 1032d7 − 84d8 + 3d9)Ra
cRabRdeRbdce

+ 12(d− 2)(d− 1)(−29920 + 120000d− 196892d2 + 175930d3 − 93864d4

+ 30115d5 − 5212d6 + 193d7 + 99d8 − 18d9 + d10)RabRcdRac
efRbdef

+ 4(d− 3)(d− 2)(d− 1)(2550− 15414d+ 28633d2 − 26167d3 + 13715d4

− 4351d5 + 830d6 − 88d7 + 4d8)RRab
efRabcdRcdef + 6(−60520 + 414664d

− 945458d2 + 1097752d3 − 719367d4 + 242784d5 − 3125d6 − 36155d7 + 17569d8

− 4430d9 + 659d10 − 55d11 + 2d12)RabR
abRcdefR

cdef

− 12(d− 3)(d− 2)(d− 1)(−22 + 26d− 9d2 + d3)(−340 + 494d− 70d2 − 185d3

+ 112d4 − 25d5 + 2d6)RabRa
cdeRbc

fhRdefh

]

+Rab
efRabcdRce

hjRdfhj (C.3)
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S(4)
d =

1

3(d− 3)2(d− 2)(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)
×

×
[

− 8(d− 2)(−718080 + 2405582d− 3666144d2 + 3359133d3 − 2057938d4

+ 887142d5 − 276120d6 + 62662d7 − 10296d8 + 1182d9 − 86d10 + 3d11)Ra
cRabRb

dRcd

− 8(707880− 2115012d+ 2700668d2 − 1809780d3 + 561468d4 + 61133d5

− 134394d6 + 60426d7 − 15005d8 + 2238d9 − 189d10 + 7d11)RabR
abRcdR

cd

+ 32(d− 2)(d− 1)(−8670 + 30262d− 47247d2 + 43299d3 − 25747d4 + 10271d5

− 2734d6 + 466d7 − 46d8 + 2d9)Ra
cRabRbcR+ 8(198900− 592178d+ 790224d2

− 617415d3 + 313537d4 − 109500d5 + 27237d6 − 4900d7 + 624d8 − 51d9 + 2d10)RabR
abR2

+ 96(d− 2)(−68340 + 203532d− 268574d2 + 203038d3 − 95967d4 + 29190d5

− 5665d6 + 667d7 − 42d8 + d9)RabRcdRRacbd − 12(192100− 603774d+ 820554d2

− 605255d3 + 237492d4 − 22951d5 − 24843d6 + 14329d7 − 3890d8 + 609d9 − 53d10

+ 2d11)R2RabcdR
abcd − 96(d− 2)(d− 1)(−63580 + 183572d− 244118d2

+ 192444d3 − 97734d4 + 32893d5 − 7308d6 + 1032d7 − 84d8 + 3d9)Ra
cRabRdeRbdce

+ 24(d− 2)(d− 1)(−29920 + 120000d− 196892d2 + 175930d3 − 93864d4

+ 30115d5 − 5212d6 + 193d7 + 99d8 − 18d9 + d10)RabRcdRac
efRbdef

+ 8(d− 3)(d− 2)(d− 1)(2550− 15414d+ 28633d2 − 26167d3 + 13715d4

− 4351d5 + 830d6 − 88d7 + 4d8)RRab
efRabcdRcdef + 12(−60520 + 414664d

− 945458d2 + 1097752d3 − 719367d4 + 242784d5 − 3125d6 − 36155d7 + 17569d8

− 4430d9 + 659d10 − 55d11 + 2d12)RabR
abRcdefR

cdef

− 24(d− 3)(d− 2)(d− 1)(−22 + 26d− 9d2 + d3)(−340 + 494d− 70d2

− 185d3 + 112d4 − 25d5 + 2d6)RabRa
cdeRbc

fhRdefh

]

+Rab
efRabcdRcd

hjRefhj (C.4)

The following two Lagrangian densities are relevant only for the four dimensional theory.
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S(5)
4 = −14

5
RabR

abRcdR
cd − 20

3
Ra

bRb
cRc

dRd
a − 8

5
RacRbdRRabcd

+
104

5
RabRe

dRecRacbd +RefR
efRabcdR

abcd +
1

5
R2RabcdR

abcd

− 56

15
RabRcd

h
aR

cdefRefhb +Rabc
eRabcdRfhjdR

fhj
e (C.5)

S(6)
4 = −308

15
RabR

abRcdR
cd − 64

3
Ra

bRb
cRc

dRd
a +

64

15
RacRbdRRabcd +

1088

15
RabRe

dRecRacbd

+
28

3
RefR

efRabcdR
abcd − 8

15
R2RabcdR

abcd − 224

15
RabRcd

h
aR

cdefRefhb

+RabcdR
abcdRfhjeR

fhje (C.6)
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