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Abstract

The purpose of this thesis is to study the conservation law of a dynamical system which

is an important research area in the investigation of analytical dynamics.The great impor-

tance of the conservation law is to reduce the order of the differential equation of motion.

To find the conservation we can used two methods, the first one is based on the invariance

of Hamilton’s integral and the other is differential variational principle.

In this thesis we used the differential variational principle to find the conservation law

of a dynamical system. To find the conservation law of a dynamical system we will face

two problems, either the motion of the dynamical system is under the ideal constraints or

non-ideal constraints. For this purpose, we divides this thesis into four chapters.

The first three section of chapter one are devoted to the fundamental concepts of

analytical dynamics including the notion of constraints and the generalized coordinates.

Then the idea of variable mass is presented with some examples. After that the idea of

fundamental and synchronous virtual variation (actual and virtual) is introduced and the

exchange rule between actual and the virtual variation is established.

In the chapter second, we calculated the conservation law of a non-conservative dy-

namical system for Jourdian and Gauss principle under the ideal constraint, in which the

virtual work is zero.

Chapter third deals with the calculation of conservative law of a dynamical system for

the D’Alembert principle under the non-ideal constraints. Besides the conservation law we

also find the magnitude of reaction force on the dynamical system. In this chapter we used

ideas of supplementary virtual displacement and supplementary generalized coordinates.

In the last chapter we developed the theory of conservation law for non conservative

dynamical system of the Jourdian and Guass differential variational principle under the

non ideal constraints.

i
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1.1 General Consideration

Prior to the investigation of conservation laws of mechanical systems with variable

mass, we need some fundamental and essential concepts which are important for non-

technical readers in the studies of analytical dynamics. So the aim of this chapter is

to collect some basic notions to familiarize the readers with some information which

are necessary for the investigation in the subject of analytical dynamics. First we

give a brief introduction of the constraints and their classification for the sake of

completeness. The concept of generalized coordinates is given and the idea of variable

mass is presented with some important examples. The notions of actual and virtual

variation are obtained and the corresponding exchange rule dδ = δd is formulated.

Finally, the general equation of dynamics under ideal constraints for constant mass,

expressing Langrange-d’Alembert’s principle is established in term of the generalized

coordinates.

1.2 Fundamental Concepts

1.2.1 Dynamical System

Any physical phenomenon that moves under the action of certain laws of forces is

called a dynamical system. For instance, the motion of a particle relative to a fixed

point in a straight line under the action of an opposing force proportional to the

distance is a dynamical system. Generally, a dynamical system may consist of N -

particles in which each particle is assumed to maintain a distinguishable identity

throughout the motion.

1.2.2 Constraint

Any condition or restriction that restrain the action of any physical phenomenon in

certain region of space is called a constraint. In general the constraints are expressed

by means of the equation or inequalities which provide a functional relation between

the quantities which define the position of the particles of the system or the kinematics

of the dynamical systems.

In order to give precise expression of the constraints analytically, let us consider

a dynamical system consisting of N -particles. Let at any time t the position of the

i-particle pi (i = 1, 2, ..., N) of the system to be defined by the cartesian coordinates

xi = x3i−2, yi = x3i−1, zi = x3i, (i = 1, 2, ..., N)
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relative to an inertial frame of reference OXY Z. A constraint can then be expressed

in the form

f(x1, ..., x3N ; ẋ1, ẋ2, ..., ẋ3N) S 0. (1.1)

Where f is assumed to be smooth function of at least class C2 with respect to all of

its arguments.

In our subsequent discussion, dot (·) over a quantity will imply the total derivative

with respect to time.

It is obvious from the (1.1) of the constraint equation that this is an ordinary

differential equation which may or may not be integrable. If (1.1) is integrable, then

it implies that there exist a function φ(x1, ..., x3N) of at least class C1, such that

dφ

dt
S 0,

φ(x1, x2, ..., x3N) S C. (1.2)

Where C is an arbitrary constant of integration and may be determined by given

initial condition.

Apart from this there may be a functional relation among the coordinates x1, x2, ..., x3N

and the possibly the time t which is not derivable from any function f as in (1.1) but

intrinsically associated with the system and may be given in the form

Ψ(x1, ..., x3N , t) S 0, (1.3)

where ψ is a function of at least class C1.

We observe that the expression (1.2) and (1.3) furnish a relation between the

position variable x1, ..., x3N and the possibly the time t.Keeping in view, the discussion

of preceding section, we now give the classification of the constraints.

1.2.3 Classification Of Constraints

There are two major classes of the constraints; namely, the holonomic and the non-

holonomic constraints. We now furnish their definitions

Definition

A condition expressing a functional relationship between the quantities describing

the position of the particles of system and possibly the time t and is given in the form

of equation or inequalities (1.2) or (1.3), respectively is called a holonomic constraint.

Definition
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A condition imposed on the kinematics of a dynamical system of particles and is

described by mean of the non-integrable equations of the form (1.1) are called the

non-holonomic constraints.

We now give further classification of the constraints. The constraint (1.2) and

(1.3) are called Bilateral according as they are equations or inequalities. Moreover, if

the function f and Φ depend upon the time explicitly, then the constraints are called

reheonomic or time dependent, otherwise constraints are called sceleronomic or time

independent [20]. Non-holonomic constraints may be non linear or linear according

as function f(x1, ..., x3N , ẋ1, ..., ẋ3N ; t) is non linear or linear with respect to ẋ, the

velocity component of the particles of the system.

We remarks that a dynamical system which moves subject to non-holonomic (or

only holonomic) constraints is called a non-holonomic (or holonomic) dynamical sys-

tem. If there are no constraints, the system is called a free system. Moreover in nature

there is no dynamical system which is free in its motion, it always has to move under

some restrictions which do not allow the system to move in space in any way it likes.

Therefor, the natural motion are the constrained motions.

1.3 Generalized Coordinates

In order to specify the position of a dynamical system at a certain instant of time

we require the value of a number of parameters. For instance, to specify the position

moving freely in plane, we need two variable x, y; the cartesian coordinates. If a

particle is moving in space, three parameters x, y, z are needed to define its position.

Similarly, if we consider a mechanical system which is composed of N free particles,

the 3N rectangular cartesian coordinates xi, yi, zi are expressed in term of some other

3N quantities

q1, q2, ..., q3N

and then these quantities are determined as functions of the time and certain arbitrary

constants to furnish the solution of a dynamical problem.

As mentioned by Lancoz [21] that the set of 3N variable q1, q2, ..., q3N must have

some geometrical relationship with 3N cartesian coordinates. Generally, the relation

between these two set of variables are expressed by means of the invertible transfor-

mations of the form
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x1 = f1(q1, q2, ..., q3N)

y1 = f1(q1, q2, ..., q3N)

= ............................

= ............................

zN = f3N(q1, q2, ..., q3N).

(1.4)

This mean that the set of equation (1.4) express a one-to-one correspondence between

these two sets of variable and that the matrix of transformation, that is

‖∂(x1, y1, z1, ..., xN , yN , zN)

∂(q1, q2, ..., q3N−1, q3N)
‖ =


∂x1
∂q1

∂x1
∂q2

· · · ∂x1
∂q3N

∂y1
∂q1

∂y1
∂q2

· · · ∂y1
∂q3N

...
. . .

...
∂zN
∂q1

∂zN
∂q2

· · · ∂zN
∂q3N

 , (1.5)

is non singular. It implies that the Jacobian of the this matrix is non-zero, namely

∂(x1, y1, z1, ..., xN , yN , zN)

∂(q1, q2, ..., q3N−1, q3N)
6= 0 (1.6)

so that the quantities qλ are expressible in the form

qλ = qλ(x1, y1, z1, ..., xN , yN , zN), (λ = 1, 2, ..., 3N) (1.7)

thus, we give the following:

Definition If there exist geometrical relation of the form (1.4) between the carte-

sian coordinates and the new independent quantities qλ and if, under the condition

(1.6), they are expressible in the form (1.7), then qλ(λ = 1, 2, ..., 3N) are called the

generalized coordinates.

So far we have not taken into taken into account the constraints. We now turn to

the consideration of constrained dynamical system. Suppose that the system moves

subject to the holonomic constraints that are expressed by mean of m independent

equations

Ψλ(x1, x2, ..., x3N) = 0, (λ = 1, 2, ...,m < 3N). (1.8)

If we introduce the following notation x1 = x1, x2 = y1, x3 = z1, ..., x3N−2 =

xN , x3N−1 = yN , x3N = zN , and assume that the function Ψλ satisfying (1.8) are of

class C1 at least and that the rank of the functional matrix

‖ ∂(Ψ1,Ψ2,Ψ3, ...,Ψm)

∂(x1, x2, ..., x3N−1, x3N)
‖ =


∂Ψ1

∂x1

∂Ψ1

∂x2
· · · ∂Ψ1

∂x3N
∂Ψ2

∂x1

∂Ψ2

∂x2
· · · ∂Ψ1

∂x3N
...

. . .
...

∂Ψm

∂x1
∂Ψm

∂x2
· · · ∂Ψm

∂x3N
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is equal to m. Then by implicit function theorem, we can solve the system of equation

(1.8) for the m x′ s in terms of the remaining (3N −m) x′ s in the form

xλ = xλ(xm+1, xm+2, ..., x3N ; t), (λ = 1, 2, ...,m < 3N), (1.9)

where the dependent variable xλ(λ = 1, 2, ...,m) are expressed in term of the (3N−m)

independent variables xk(k = m+ 1, ..., 3N).

This provided that the Jacobian of the functional matrix is different from zero,

that is
∂(Ψ1,Ψ2,Ψ3, ...,Ψm)

∂(x1, x2, ..., x3N−1, x3N)
6= 0. (1.10)

Thus, the position of the system can be described by the n = 3N − m number of

independent parameters. The number n is defined to be the degrees of freedom of the

holonomic system.

Further, in addition to the m holonomic constraints, if the system moves subject

to a non-holonomic constraints of the type

Fα(x1, x2, ..., x3N ; ẋ1, ẋ2, ..., ẋ3N ; t = 0). (1.11)

(α = 1, 2, ..., s < n)

Then the degree of freedom of the non-holonomic system is defined by the the number

n′ = n− s.

It is also to be noted that it is not always advisable to use the independent cartesian

coordinates xm+1, xm+2, ..., x3N for determining the position of the system. In place of

these coordinates we can introduce some other n = 3N −m independent parameters

q1, q2, ..., qn which must be connected with 3N −m cartesian coordinates by mean of

the relation of the type (1.4) that is

xk = xk(q1, q2, ..., qn), (K = 1, 2, ..., n) (1.12)

and satisfy the relation of the form (1.7) under the condition similar to (1.6). If the

constraint equation (1.8) involve the time t explicitly, namely

Fγ(x1, x2, ..., x3N ; t) = 0. (γ = 1, 2, ...,m) (1.13)

then (2.9) will take the following more general form

xk = xk(q1, q2, ..., qn; t). (k = 1, 2, ..., n) (1.14)
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Taking into account the relation (1.10) and (2.39), all the cartesian coordinates xγ(γ =

1, 2, ..., 3N) can be expressed as function of the q′s and the time t.

More precisely,

xλ = xλ(q1, q2, ..., qn; t) = xλ(qk, t) (1.15)

(k = 1, 2, ..., n;λ = 1, 2, ..., 3N)

In consequence of these equations of transformation, the position vectors of all the

particles of the system can be obtained in the form

ri = ri(q1, q2, ..., qn; t) ≡ ri. (1.16)

Keeping in view the preceding analysis, we introduce the following:

Definition A set of the minimum number of independent parameter q1, q2, ..., qn

which are obtained after taking into account the holonomic constraint (2.38) and

satisfy the relation of the form (1.9) and (1.14) are called the Lagrangian coordinates

[13].

The constraint equation (1.11), in view of the relation (1.15), can be expressed in

the form

Fα(q1, q2, ..., qn, q̇1, q̇2, ..., q̇n; t), (α = 1, 2, ..., s),

for the non-holonomic system. Here the quantities q̇1, q̇2, ..., q̇n are called the general-

ized velocities.

1.4 Variable Mass Dynamical System

There are various reason (e.g. temporal, spatial or kinematical ) which cause the

change in the mass of a particle or rigid body. In order to deal with the dynamics of

such bodies, in the sequel, we give a brief discussion of the associated concepts.

1.4.1 General Variable Mass System

A body in which the number of particles change with time, generalized coordinates or

generalized velocities is called a variable mass body. Precisely, the mass of a typical

i-th particle of a variable mass system of N -particles is expressed analytically as

mi = mi(qi, q̇i; t). (i = 1, 2, ..., N)

For example the mass of a rocket change with time [3], the mass of a homogenous

sphere which burns uniformly and roll on a rough horizontal plane changes with
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respect to the generalized coordinates [23], similarly the mass of a raindrop falling

from a stationary cloud varies with the position [24]. In the studies of special relativity,

the relativistic mass of the particle varies with to the speed and is usually given by

the expression

m =
mo

√
1− v2

c2

,

where mo is the rest mass and c is the speed of light, a positive constant. In most

cases v
c

is very small (i.e.v
c
<< 1), and then the variation of m from rest mass m0 may

be negligible. But the variation becomes significant when v
c

is nearly equal to unity.

In the case, where the mass change with the speed, we call such dynamical system as

a relativistic variable mass system.

1.5 Fundamental Variations

Roughly speaking, the change in the configuration of a dynamical system is called

a displacement. This change, in fact, depend on the changes which occur in the

variable that define the configuration of the dynamical system at any time t. In what

follows, we shall give a precise definition of actual and virtual change in the generalized

coordinates.

Let us consider a holonomic dynamical system of N -particles whose configuration

at any time t is determined by mean of the generalized coordinates q1, q2, ..., qn. The

solution of a dynamical problem implies determination of these generalized coordinates

as function of the time. The set of functions

q1(t), q2(t), ..., qn(t), (1.17)

furnished the actual motion of the system. The differential dqk (k = 1, 2, ..., n) of the

generalized coordinates present their infinitesimal change the actual path during an

infinitesimal interval of time dt, which we write analytically as

dqk = qk(t+ dt)− qk(t)

dqk = q̇kdt, (k = 1, 2, ..., n) (1.18)

where we have used the taylor’s theorem and neglected the higher order terms of the

infinitesimal quantity dt.

The result (2.45) yield the actual variation dqk in the generalized coordinate along

the actual path and q̇k is called the actual generalized velocity.
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In general formulation of the laws of analytical dynamics, it is useful to consider

the infinitesimal quantities of another kind. The set of quantities (2.46) determine

the actual configuration of the system at a given moment of the time t. There are

an infinite number of possible configuration, but we examine only those configuration

which are infinitely close to the actual configuration of the system. If we denote by

δq1, δq2, ..., δqn the infinitesimal increments in the Langragian coordinates, then the

number of configurations at a given time t can be determined by the set of quantities

δq1 = δq∗(t)− q1(t), ..., δqn = δq∗n(t)− qn(t), (1.19)

where the difference δqk(k = 1, 2, ..., n) are called the virtual variations of the La-

grangain coordinates and are determined by keeping t as fixed, that is δt = 0. We also

assume them to be infinitely many times differential function of time.

Since the geometrical picture is of great help to our thinking, we may regard the

variables q1, q2, ..., qn as the rectangular coordinates in the n-dimensional Euclidean

space of a point (say) P and introduce the following:

1.5.1 Lagrangian Configuration Space

A set of n-independent parameters qk(k = 1, 2, ..., n) is said to form the Lagrangian

configuration space, if the conditions

δt = 0, δqk 6= 0, δq̇k 6= 0, (k = 1, 2, ..., n) (1.20)

hold throughout the motion of the system. Let us consider a dynamical system consist-

ing of N -particles. Let ri denotes the vector that determines the position of a typical

particle Pi of the system relative to an origin O of an inertial frame OXY Z. As the

system moves the vector ri in general, is a function of the generalized coordinates

qk(k = 1, 2, ..., n) and possibly the time t, that is

ri = ri(qk, t). (k = 1, 2, ..., n; i = 1, 2, ..., N)

Throughout our work we assume ri to be a function of class C2 with respect to all of

its arguments.

1.5.2 Actual Displacement

Let ri and ri + dri denotes the position vectors of the neighboring position Pi(qk,t)

and Qi(qk+dqk,t+dt) of the particles corresponding to the time t and t + dt, where dt
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Figure 1.1:

is a small differential quantity with respect to time along the actual motion of the

particle, as shown in the fig.1.

Then the differential dri of the position vector ri with respect the generalized

coordinates is given by

dri = ri(qk + dqk, t+ dt)− ri(qk, t). (k = 1, 2, ..., n)

Applying taylor’s theorem, we get

dri =
∂ri
∂qk

dqk +
∂ri
∂t
dt+H.O

where H.O denotes the term of order higher than one and we use the summation

convention over the repeated index k and, in the sequel, we shall employ it throughout

our work. Retaining only the first order terms, we obtain

dri =
∂ri
∂qk

dqk +
∂ri
∂t
dt, (1.21)
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which defines the infinitesimal displacement of the particle Pi in the actual motion.

Definition The change dri of arbitrary position vector ri(qk, t) during the actual

variation dqk in time dt of the system is determined by the formula (1.21). The

velocity vector of Pi is given by

dṙi =
∂ri
∂qk

q̇k +
∂ri
∂t
.

By differentiating with respect to q̇k, we get

∂ṙi
∂q̇k

=
∂ri
∂qk

.

This is known as the law of cancelation of dots.

The path along which the displacement dri takes place is known as the trajectory

or the actual path.

1.5.3 Virtual Displacement

As discussed earlier, we introduce the virtual displacement δri on the basis of the

fundamental variation δqs of the generalized coordinates qs. Let C denotes the ac-

tual path and C and C∗ an infinitely close path to C obtained by the simultaneous

projection of the position on C to the corresponding position on C∗ as shown in the

adjoining fig.2.

We denote the difference δri, in view of (1.20) by the relations

δri = ri(qk + δqk, t)− ri(qk, t), (k = 1, 2, ..., n)

which is called the synchronous displacement.

Again applying Tylor’s theorem, we find that

δri =
∂ri
∂qk

δqk +H.O

where H.O denotes the terms containing the square and the higher power of δqk.

Neglecting the term of higher order, we get

δri =
∂ri
∂qk

δqk (1.22)

which describes the virtual displacement of the particle Pi.

definition In a simultaneous virtual variation displacement δq1, δq2, ..., δqn of the

system, the variation δri in an arbitrary position vector ri(qk, t) is determined by

formula (1.22).
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Figure 1.2:

These type of variation yield a path infinitely close to the actual path and is called

the varied path.

The preceding analysis about the vector ri can be applied to any functionG(q1, q2, ..., qn; t)

of the generalized coordinates and the time t. The differential of the this function,

that is, its increment in the actual motion of the system during the interval dt of time

t is given by

dG =
∂G

∂qk
dqk +

∂G

∂t
dt

on the other hand, the variation

δG =
∂G

∂qk
δqk, (k = 1, 2, ..., n)

is the infinitesimal change at a fixed moment of time t which takes G from one con-

figuration to an infinitely close other configuration of the system.
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1.5.4 The Exchange Rule dδ = δd

Now we proceed to discuss the important rule dδ = δd. In order to establish this

rule, we assume that virtual displacement δri are differentiable function of time t.

Operating variational equation (1.21) and (1.22) by d and δ, respectively, we get

δ(dri) =
∂2ri
∂qk∂qs

dqkδqs +
∂2ri
∂qk∂t

δqkdt+
∂ri
∂qk

δ(dqk). (1.23)

d(δri) =
∂2ri
∂qk∂qs

dqsδqk +
∂2ri
∂qk∂t

δqkdt+
∂ri
∂qk

d(δqk). (1.24)

(k, s = 1, 2, ..., n)

Interchanging the indices k and s in the first term on the right hand side of (1.23),

we have

δ(dri) =
∂2ri
∂qs∂qk

dqsδqk +
∂2ri
∂qk∂t

δqkdt+
∂ri
∂qk

δ(dqk). (1.25)

Since ri is a function of class C2 in the domain of the variation qk(k = 1, 2, ..., n),

equation (1.25) take the following form

δ(dri) =
∂2ri
∂qk∂qs

dqsδqk +
∂2ri
∂qk∂t

δqkdt+
∂ri
∂qk

δ(dqk). (1.26)

From (1.24) and (1.26), it follow that

d(δri)− δ(dri) =
∂ri
∂qk

[d(δqk)− δ(dqk)]. (1.27)

Let Ci denotes the trajectory of the i-th particle; Pi and Qi denote its position on Ci

at time t and t + dt, respectively. Let C∗i denotes the varied path obtained from the

actual path by means of the δ-variation. Let P ∗i and Q∗i denote the position on C∗i
corresponding to Pi and Qi at time t and t+ dt on the varied path, respectively. Let

OPi = ri,

OP ∗i = ri + δri,

and

PiP ∗i = δri.

Again

OQi = ri + dri,



14 Literature Revisited

and

PiQi = OQi −OPi = dri.

In going from Pi to Qi or P ∗i to Q∗i we do not consider the change in time, therefore

P ∗i Q
∗
i = d(ri + δri) = dri + dδri,

Q∗iQi = δ(ri + dri) = δri + δdri.

From fig.3, it can easily be seen that

PiQ∗i = PiQi +QiQ∗i = dri + δri + δdri (1.28)

and also

PiQ∗i = PiP ∗i + P ∗i Q
∗
i = δri + dri + dδri. (1.29)

But from (1.28) and (1.29), it follows that

dδri − δdri = 0,

which may be written as

(dδ − δd)ri = 0.

Since ri is an arbitrary vector, therefore we have

dδ = δd. (1.30)

Consequently from (1.27) in conjunction with (3.42), it follows that

∂ri
∂qk

[d(δqk)− δ(dqk)] = 0, (1.31)

which in terms of the cartesian coordinates may be expressed as

∂rλ
∂qk

[d(δqk)− δ(dqk)] = 0.

(λ = 1, 2, ..., 3N ; k = 1, 2, ..., n)

Here the Cartesian coordinates are geometrically connected with q′s by means of the

equation of transformation

xλ = xλ(qk; t).
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Since the rank of the matrix 
∂x1
∂q1

∂x1
∂q2

· · · ∂x1
∂qn

∂x2
∂q1

∂x2
∂q2

· · · ∂x2
∂qn

...
. . .

...
∂z3N
∂q1

∂z3N
∂q2

· · · ∂z3N
∂qn


is n, it follows that the only solution of the system of equation (3.43) is the trivial

solution.

Hence

d(δqk)− δ(dqk) = 0

or

d(δqk) = δ(dqk).

Thus we have proved that the rule dδ = δd holds for the generalized coordinates when

the system is holonomic.

1.5.5 Actual And Virtual Work

Let dr(δri) denotes a small displacement along the actual (virtual) path. Then the

small work done by the reaction force R along the actual(virtual) small displacement

denoted by dW (δW ) is given by

dW = R · dr (δW = R · δr). (1.32)

1.5.6 Ideal Constraint

The presence of constraint implies that exist certain forces called the actual reaction

or the forces of constraints, which are responsible for keeping a dynamical system in

the state of equilibrium and these forces are denoted by R. So on the basis of this we

give the following:

Definition

If the work done (1.32) by the reaction (or the forces of constraints) R vanishes

then the constraint is said to be ideal (smooth or perfect). Example of ideal constraint

include, the mutual reaction of two particles which are rigidly connected together, the

reactions of fixed smooth surface and the reactions of fixed perfectly rough surfaces

etc ( [25],[24]).
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Figure 1.3:
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2.1 Introduction

The study of conservation law for the conservative and the non-conservative dynamical

system with the finite degree of freedom has great importance in physics and engi-

neering. Two well known approaches are commonly used to obtain conservation laws

for such dynamical system. The first approach involves integral variational principle

while the second one involves differential variational principles.

The first is also known as Neotherian approach which is based on the invariant

properties of the Hamilton’s action integral with respect to it’s infinitesimal transfor-

mation of the generalized coordinates and the time (see Vujanovic and Jones [17]).

This approach can be used only for those cases in which the system is completely

specified by the Lagrangian function, which is discussed in [19]. Here the invariant is

the gauge invariant. By using the variational principle the conservation law for the

purely non-conservative dynamical system explained in [18].

The other one is differential principle, this approach is used by B. Vujanovic, in [4]

to find the conservation law of the dynamical system which is so called D’Alembert’s

principle. The importance of D’Alembert’s principle is that, it is equally valid for

the both conservative and non-conservative system. An attempt have been made in

[20] to find the conservation law for the Jourdain and Gauss variation principle. In

[7] Aftab Ahmed used differential variation principle to find the conservation law for

the partially conserve variable mass system. An attempt have been made in [20] to

find the conservative law for the Jourdain and Gauss variation principle. Now here

question arise, can a differential variation principle of Jourdain and Gauss’ work for

the conservation law of the dynamical with variable mass? In this thesis, we will

answer this question, we will use these principles to find the conserved quantities of

the various kinds of a conservative and the non conservative dynamical system with

variable mass. To achieve this goal, we will use the approach of differential variational

principle by extending the idea of Vujanovic, [20].

2.2 Generalization Of Jourdian’s Principle For The

Variable Mass System

In this section we will find the Lagrangian-Jourdian principle on the basis of asyn-

chronous virtual variation. Here we will find the generalization of Jourdian and Gauss

principle to cover the holonomic dynamical system of the variable mass in conjunction

with a generalized variation which includes the variation not only for the position but
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also the time variation. So, therefore, we introduce the asynchronous variation and

the concept of infinitesimal transformation along with the gauge-variance to obtain

conservation law for variable mass dynamical system.

2.2.1 Asynchronous Variation

Consider the motion of a dynamical system consisting of N -particles with the gen-

eralized coordinate q1,q2,...,qn which are the continuous function on time t. Let C

and C1 denote the actual and virtual paths, respectively. Consider a point Q(Pk, t)

on the actual path and a point Q∗(qk+δqk,t) on the virtual path, if these points are

correlated at same time then the variation is the synchronous variation and is denoted

by δ. This implies that the δ-variation allows change in the generalized coordinates

but does not allow change in the time, that is, δt=0.

Now suppose that q̄k k = 1, 2, ..., n(t) represent the coordinates of a point on the

virtual path and qk(t) represent coordinates of the point on the actual path, then by

[16]

q̄k(t) = qk(t) + δqk, (2.1)

t̄ = t.

At the same time, in order to express the internal symmetry of the dynamical sys-

tem properly, we must take into account the asynchronous variation. If the generalized

coordinate qk(k=1,2,......,n) of the point on the actual path, so we will determine the

corresponding infinitesimally close motion by q̄k(t+∆t). So we have

q̄k(t+ ∆t) = qk(t+ ∆t) + δqk,

= qk(t) + q̇k(t)∆t+ δqk,

using the equation (2.1), we obtain from last equation

q̄k(t+ ∆t) = q̄k(t)− δqk(t) + q̇k∆t+ δqk,

q̄k(t+ ∆t) = q̄k(t) + q̇k∆t. (2.2)

Let us define the asynchronous variation by the equation

∆qk = q̄k(t+ ∆t)− qk(t), (2.3)

again using (2.1)

∆qk = δqk + q̇k∆t. (2.4)
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For any function the asynchronous variation of equation (2.4) can written as,

∆F = δF + Ḟ∆t.

Therefore for generalized velocity we can infer from (2.4)

∆q̇k = δq̇k + q̈k∆t. (2.5)

Now, differentiating (2.4) with respect to t we have

(∆qk)
˙ = δq̇k + q̈k∆t+ q̇k(∆t)

˙. (2.6)

From (2.5) and (2.6) eliminate δq̇k, we get

(∆qk)
˙ = ∆q̇k − q̈k∆t+ q̈k∆t+ q̇k(∆t)

˙

(∆qk)
˙ = ∆q̇k + q̇k(∆t)

˙. (2.7)

For the generalized variation of the acceleration vector

∆q̈k = δq̈k +
...
q k∆t. (2.8)

Whose time derivative can be written as

(∆qk)
¨= δq̈k +

...
q k∆t+ q̈k(∆t)

˙+ q̈k(∆t)
˙+ q̇k(∆t)

¨,

this time eliminating δq̈k by using (2.8) in the last equation

(∆qk)
¨= ∆q̈k −

...
q k∆t+

...
q k∆t+ 2q̈k(∆t)

˙+ q̇k(∆t)
¨,

(∆qk)
¨= ∆q̈k + 2q̈k(∆t)

˙+ q̇k(∆t)
¨. (2.9)

As discuss by Vujanovic, B.[12], a closed observation of the concept of asyn-

chronous variation reveal that the quantities ∆qk and ∆t, given by the following

equation

q̄k(t̄) = qk(t) + ∆qk. (2.10)

t̄ = t+ ∆t. (2.11)

Since, equations (2.10) and (2.11) has great importance in the study of conserva-

tion laws. So in order to discussed the internal symmetry of the dynamical system and

constraints, the transformation in the equations (2.10) and (2.11) may be extended

to include the position variable qk and the dynamical variables q̇k together with the

time t. We will suppose that this structure in the form

q̄k(t̄) = qk + εFk(q̇k, qk; t), (2.12)
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t̄ = t+ εf(q̇k, qk; t). (2.13)

Where Fk(q̇k, qk; t) = Fk(q̇1, ..., q̇n, q1, ..., qn; t) and f(q̇k, qk; t) the space and the time

generators of the infinitesimal transformations respectfully, and the ε is a small con-

stant positive number.

By comparing the equations (2.10) and (2.11) with the equations (2.12) and (2.13)

respectively, so we get that

∆qk = εFk(q̇k, qk; t), (2.14)

∆t = εf(q̇k, qk; t). (2.15)

Since we consider the Jourdain’s phase space, so ∆q̇k , (∆qk)
˙ and (∆t)˙ together

with

∆qk = 0,∆t = 0. (2.16)

We obtain from equations (2.5) and (2.6),

∆q̇k = δq̇k (2.17)

∆q̇k = (∆qk)
˙− q̇k(∆t)˙. (2.18)

Here we use an infinitesimal transformation of the generalized coordinates, velocity

and time for the better understanding of the nature of the Jourdian variations:

q̄k = qk, t̄ = t,

dq̄k
dt
− dqk

dt
= δq̇k = ∆q̇k, (2.19)

dq̄k
dt
− dqk

dt
= (∆qk)

˙.

Consider the infinitesimal quantities (∆qk)
˙ and (∆t)˙ as the primitively quantities

for the Jourdain’s infinitesimal transformation, so that

(∆qk)
˙ = εFk(qk, q̇k, t), (2.20)

(∆t)˙ = εf(qk, q̇k, t). (2.21)

By virtue of equations (2.20) and (2.21) in the equation (2.18) becomes

δq̇k = ε[Fk(qk, q̇k, t)− q̇kf(qk, q̇k, t)], (2.22)

where qk = q1, ..., qn and q̇k = q̇1, ..., q̇n,

comparing equation (2.17) and equation (2.22), we obtain

∆q̇k = ε[Fk(qk, q̇k, t)− q̇kf(qk, q̇k, t)]. (2.23)
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2.3 Equation Of Motion For The Variable Mass

Dynamical System

Let us consider a variable mass dynamical system consisting of N -particles . Suppose

qk, q̇k and q̈k be the position, velocity and acceleration of the i − th particle of the

system. If Yi,Ri denote the applied force and the constraint force. Let Fij,Fji denote

the mutually attractive and repulsive forces within the system of N -particle.

Then by the Newton’s second law can be written as

Yi + Ri + Fij + Fji =
dpi
dt
, (2.24)

where pi is the linear momentum of the particle is given by

pi = mivi,

and vi is the velocity of the particle which can be written as

vi = ṙi.

Hence, from (2.24) we have

Yi + Ri + Fij + Fji =
d(mṙi)

dt
. (2.25)

The classification is performed in such away that Ri(constriant) are ideal, so the

virtual work is zero

N∑
i

Ri · δri = 0.

Taking into the account the virtual velocity δq̇i of the i-th particle and the dot mul-

tiplying with the equation (2.24), we get[
Yi + (Fij + Fji)−

d(miṙi)

dt

]
· δṙi = 0. (2.26)

For the system of N -particle, we sum over i and j from 1 to N , i.e

N∑
i=1

[
Yi +

N∑
j=1

(Fij + Fji)−
d(miṙi)

dt

]
· δṙi = 0. (2.27)

If attracting forces Fij and Fji satisfy Newton’s third law, then we must have
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N∑
i=1

N∑
j=1

(Fij + Fji) · δṙi = 0.

So
N∑
i=1

(
Yi −

d(miṙi)

dt

)
· δṙi = 0, (2.28)

which is the required Jourdain principle.

In order to transform equation (2.28) in term of generalized coordinates qk(t)

(k = 1, 2.....n), whose value at time t determine the configuration of the system. We

let

ri = ri(qk, t) with i = 1, 2...N and k = 1, 2....n,

δri =
∂ri
∂qk

δqk,

whose derivative with respect to time is given by

δṙi = (
∂2ri
∂qk∂ql

q̇k +
∂2ri
∂qk∂t

)δqk +
∂ri
∂qk

δq̇k, (2.29)

but in jourdian formulism δqk = 0, so

δṙi = ∂ri
∂qk
δq̇k

putting the value of δṙi in equation (2.28) we obtain

N∑
i=1

(
d(miṙi)

dt
−Yi

)
· ∂ri
∂qk

δq̇k = 0. (2.30)

2.4 Transformation Of Jourdain Principle

Let us consider a dynamical system with N number of particles and we assume that

the forces Y1, .......Yn act at some points of the system. The virtual velocity of these

points will be denoted by δṙ1, ....., δ ˙rN .

So we make the following transformation of the Jourdain’s principle (2.29) into an

expression involving the Jourdain’s asynchronous variation of the generalized velocity

and the time elements. By putting the (2.22) into the equation (2.30), the standard

procedure followed in L. A Parse Introduction to dynamics [13] we get,

ε
N∑
i=1

(Yi ·
∂ri
∂qk
− d(miṙi)

dt
· ∂ri
∂qk

)(Fk − q̇kf) = 0. (2.31)
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using ∂ri
∂qk

= ∂ṙi
∂q̇k
, we consider

d

dt
(miṙi) ·

∂ri
∂qk

(Fk − q̇kf)

=
d

dt

[
miṙi ·

∂ri
∂qk

(Fk − q̇k)
]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)−miṙi ·

∂ri
∂qk

(Fk − q̇kf)˙

=
d

dt

[
miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)−miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[(
∂

∂q̇k
(
1

2
miṙi

2)− 1

2

∂mi

∂q̇k
ṙi

2

)
(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)

− miṙi ·
∂ṙi
∂q̇k

(Fk − q̇kf)˙.

As we know Ti = 1
2
miṙi

2,

d

dt

[
miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)

]
=

d

dt

[
(
∂Ti
∂q̇k
− 1

2

∂mi

∂q̇k
ṙi

2)(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)

−miṙi ·
∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− 1

2

d

dt

[
∂mi

∂q̇k
ṙi

2(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)−miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
1

2mi

∂mi

∂q̇k
miṙi

2(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)−miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)˙,
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by using Ti = 1
2
miṙi

2,

d

dt
(miṙi) ·

∂ri
∂qk

(Fk − q̇kf) =
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
1

mi

∂mi

∂q̇k
Ti(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)−miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
−miṙi ·

(
∂ri
∂qk

)̇
(Fk − q̇kf)−miṙi ·

∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
−miṙi ·

∂ṙi
∂qk

(Fk − q̇kf)−miṙi ·
∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
−
[

1

2

∂miṙi
2

∂qk
− 1

2

∂mi

∂qk
ṙi

2

]
(Fk − q̇kf)

−miṙi ·
∂ṙi
∂q̇k

(Fk − q̇kf)˙,

by using Ti = 1
2
miṙi

2 in the above equation’s

d

dt
(miṙi) ·

∂ri
∂qk

(Fk − q̇kf)

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
−
[
∂Ti
∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf)

−miṙi ·
∂ṙi
∂q̇k

(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
−
[
∂Ti
∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf)−

(
1

2

∂miṙi
2

∂q̇k
− 1

2

∂mi

∂q̇k
ṙi

2

)
(Fk − q̇kf)˙,

=
d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
− d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
−
[
∂Ti
∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf)−

(
∂Ti
∂q̇k
− ∂ln(mi)

∂q̇k
Ti

)
(Fk − q̇kf)˙,

put the value of d(miṙi)
dt
· ∂ ri
∂qk

(Fk − q̇kf) in the equation (2.31)
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ε

N∑
i=1

[Yi ·
∂ri
∂qk

(Fk − q̇kf)− d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
+
d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
+

[
∂Ti
∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf) +

(
∂Ti
∂q̇k
− ∂ln(mi)

∂q̇k
Ti

)
(Fk − q̇kf)˙] = 0.

(2.32)

Let us suppose that each particle of the dynamical system is partially conserved,

so it has conserved force −∂V
∂qk

and the none conservative force Qk(q, q̇, t). Thus we

have

N∑
i=1

Yi ·
∂ri
∂qk

=
−∂V
∂qk

+Qk(q, q̇, t). (2.33)

Where V = V (x, t) is the potential function,

so put equation (2.32) in the equation (2.33)

ε
N∑
i=1

[(Qk −
∂V

∂qk
)(Fk − q̇kf)− d

dt

[
∂Ti
∂q̇k

(Fk − q̇kf)

]
+
d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
+

[
∂Ti
∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf) +

(
∂Ti
∂q̇k
− ∂ln(mi)

∂q̇k
Ti

)
(Fk − q̇kf)˙] = 0,

(2.34)

now introduce the Lagrangian function L = T − V

∂L

∂q̇k
=
∂Ti
∂q̇k

,

ε
∑N

i=1[(Qk− ∂V
∂qk

)(Fk−q̇kf)− d
dt

[
∂L
∂q̇k

(Fk − q̇kf)
]
+ d
dt

[
∂ln(mi)
∂q̇k

Ti(Fk − q̇kf)
]
+
[
∂(Ti)
∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk−

q̇kf) +
(
∂L
∂q̇k
− ∂ln(mi)

∂q̇k
Ti

)
(Fk − q̇kf)˙] = 0,

ε

N∑
i=1

[Qk(Fk − q̇kf)− d

dt

[
∂L

∂q̇k
(Fk − q̇kf)

]
+
d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
+

[
∂L

∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf) +

(
∂L

∂q̇k
− ∂ln(mi)

∂q̇k
Ti

)
(Ḟk − q̈kf − q̇kḟ)] = 0,

ε
N∑
i=1

[Qk(Fk − q̇kf)− d

dt

[
∂L

∂q̇k
(Fk − q̇kf)

]
+
d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
+

[
∂L

∂qk
− ∂ln(mi)

∂qk
Ti

]
(Fk − q̇kf) +

(
∂L

∂q̇k
− ∂ln(mi)

∂q̇k
Ti

)
(Ḟk − q̈kf − q̇kḟ)] = 0,
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ε
N∑
i=1

[Qk(Fk − q̇kf)− d

dt

[
∂L

∂q̇k
(Fk − q̇kf)

]
+
d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
− ∂ln(mi)

∂qk
Ti(Fk − q̇kf)− ∂ln(mi)

∂q̇k
Ti)(Ḟk − q̈kf − q̇kḟ)

− f(
∂L

∂qk
q̇k +

∂L

∂q̇k
q̈k +

∂L

∂t
) +

∂L

∂t
f +

∂L

∂q̇k
(Ḟk − q̇kḟ) +

∂L

∂qk
Fk] = 0.

But L̇(qk, q̇k, t) = ∂L
∂qk
q̇k + ∂L

∂q̇k
q̈k + ∂L

∂t
, and dot represent d

dt

then we will get that

ε
∑N

i=1[Qk(Fk − q̇kf)− d
dt

[
∂L
∂q̇k

(Fk − q̇kf)
]

+ d
dt

[
∂ln(mi)
∂q̇k

Ti(Fk − q̇kf)
]
− fL̇+ ∂L

∂t
f +

∂L
∂q̇k

(Ḟk− q̇kḟ)+ ∂L
∂qk
Fk +Tif(∂ln(mi)

∂q̇k
q̈k + ∂ln(mi)

∂qk
q̇k + ∂ln(mi)

∂t
)−Tif ∂ln(mi)

∂t
− ∂ln(mi)

∂q̇k
Ti(Ḟk−

q̇kḟ)− ∂ln(mi)
∂qk

TiFk] = 0,

ε
N∑
i=1

[Qk(Fk − q̇kf)− d

dt

[
∂L

∂q̇k
(Fk − q̇kf)

]
+
d

dt

[
∂ln(mi)

∂q̇k
Ti(Fk − q̇kf)

]
− fL̇+

∂L

∂t
f +

∂L

∂q̇k
(Ḟk − q̇kḟ) +

∂L

∂qk
Fk

+ Tif
dln(mi)

dt
− Tif

∂ln(mi)

∂t
− ∂ln(mi)

∂q̇k
Ti(Ḟk − q̇kḟ)

− ∂ln(mi)

∂qk
TiFk] = 0,

(2.35)

because dln(mi)
dt

= ∂ln(mi)
∂q̇k

q̈k + ∂ln(mi)
∂qk

q̇k + ∂ln(mi)
∂t

and mi = mi(qk, q̇k, t),

An arbitrary function εṗ(qk, q̇k, t) called the gauge variant function in the classical

field theory can be add and subtract in the equation (2.35), the function depends on

the generalized coordinates, velocity and the time. But ε is a small number so it must

be ε 6= 0. Then equation’s (2.35) becomes∑N
i=1[Qk(Fk − q̇kf) + ∂L

∂t
f + ∂L

∂q̇k
(Ḟk − q̇kḟ) + ∂L

∂qk
Fk − Tif ∂ln(mi)

∂t
− ∂ln(mi)

∂q̇k
Ti(Ḟk −

q̇kf)− ∂ln(mi)
∂qk

TiFk− ṗ(qk, q̇k, t) + ḟL− ln(mi)
d(Tif)
dt

]− d
dt

[ ∂L
∂q̇k

(Fk− q̇kf)− ∂ln(mi)
∂q̇k

Ti(Fk−
q̇kf) + fL− Tifln(mi)− p] = 0.

Which is the required transformation of the Jourdian’s principle for the variable

mass

2.4.1 Condition For The Existence Of Conserved Quantity

From the transform form of the Jourdian’s principle, so it is obvious that if
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N∑
i=1

[Qk(Fk − q̇kf) +
∂L

∂t
f +

∂L

∂q̇k
(Ḟk − q̇kḟ) +

∂L

∂qk
Fk − Tif

∂ln(mi)

∂t

− ∂ln(mi)

∂q̇k
Ti(Ḟk − q̇kf)− ∂ln(mi)

∂qk
TiFk − ṗ(qk, q̇k, t) + ḟ l − ln(mi)

d(Tif)

dt
] = 0,

(2.36)

then the conservation of the form is
d
dt

[
∂L
∂q̇k

(Fk − q̇kf)− ∂ln(mi)
∂q̇k

Ti(Fk − q̇kf) + fL− Tifln(mi)− p
]

= 0

∂L

∂q̇k
(Fk − q̇kf)− ∂ln(mi)

∂q̇k
Ti(Fk − q̇kf) + fL− Tifln(mi)− p = c. (2.37)

The equation (2.36) must be satisfied by every infinitesimal transformation in the

form (2.20) and (2.21) and the gauge variant function p = (qk, q̇k, t), so there exist a

conserved quantity in the form (2.37). Since for the case of a conservative dynamical

system, i.e qk, the equation (2.36) and (2.37) constitute the classical form of the

Noether’s theorem.

we call the partial differential equations in the form of equation (2.36) is the gener-

alized Killing’s equation for the dynamical system of the variable mass, which help to

determine the gauge-variant function. If this system of linear partial differential equa-

tions admits a solution say Fk(q, q̇, t), f(q, q̇, t) and p(q, q̇, t), then a constant quantity

of the form (2.37) will must be exists which furnishes the conservation law of the

variable mass non-conservative dynamical system under consideration.

2.5 Guass Principle

Let us introduce the Gauss asynchronous variations, ∆q̈k, (∆qk)
¨, (∆q̇k)

˙ and (∆t)¨ to-

gether with the following requirements

δqk = 0,∆t = 0,∆q̇k = 0, (∆qk)
˙ = 0, (∆t)˙ = 0, putting in the equations (2.8) and

(2.9) becomes as

∆q̈k = δq̈k, (2.38)

and

(∆qk)
¨= ∆q̈k + q̇k(∆t)

¨, (2.39)

using (2.38) in (2.39)
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(∆qk)
¨= δq̈k + q̇k(∆t)

¨,

δq̈k = (∆qk)
¨− q̇k(∆t)¨. (2.40)

We use the infinitesimally transformation of the acceleration vector and time vari-

ation for better understanding of Gauss’

q̄k = qk

,

t̄ = t,

dq̄k
dt
− dqk

dt
=
dq̄k
dt̄
− dqk

dt
,

d2q̄k
dt2
− d2qk

dt2
= δq̈k = (δqk)

¨= (∆q̇k)
˙ = ∆q̈k,

d2q̄k
dt̄2
− d2qk

dt2
= (∆qk)

¨.

The primitively infinitesimal coordinate (∆qk)
¨and (∆t)¨as for the Gauss’ infinites-

imal transformation, so we introduce the Gauss’ generator of the transformation

(∆qk)
¨= εFk(qk, q̇k, t), (2.41)

(∆t)¨= εf(qk, q̇k, t), (2.42)

put equations (2.41) and (2.42) in the equation (2.39)

∆q̈k = ε[Fk(qk, q̇k, t)− q̇kf(qk, q̇k, t)], (2.43)

by using the gauss’ principle we have

N∑
i=1

(Yi −
d(miṙi)

dt
) · δr̈i = 0. (2.44)

Where δr̈i is represented the gauss’ infinitesimal variation of the acceleration vec-

tor. As we know the total derivative of the velocity vector is

vi =
∂ri
∂qk

q̇k +
∂ri
∂t
, (2.45)
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equation (2.45) can be written for the acceleration vector as

r̈i =
∂ri
∂qk

q̈k +
∂2ri
∂qk∂ql

q̇kq̇l + 2
∂2ri
∂qk∂t

q̇k +
∂2ri
∂t2

, (2.46)

the jourdian variation of the equation (2.46) can found as

δr̈i =
∂ri
∂qk

δq̈k + 2(
∂2ri
∂qk∂ql

q̇k +
∂2ri
∂qk∂t

)δq̇k. (2.47)

By putting δq̇k = 0 we will get

δr̈i =
∂ri
∂qk

δq̈k, (2.48)

δr̈i represented the gauss’ infinitesimal variation of the acceleration vector by sup-

posing that

δr̈i = (ri)
¨ 6= 0, δ

...
ri = (δri)

... 6= 0,

δri = 0, δṙi = 0, δt = 0,

put equation (2.48) in the equation (2.44)

N∑
i=1

(
d(miṙi)

dt
−Yi) ·

∂ri
∂qk

δq̈k = 0.

ε

N∑
i=1

(Yi
∂ri
∂qk
− d(miṙi)

dt
· ∂ri
∂qk

)(Fk − q̇kf) = 0.

This equation is identical to the equation (2.31) so the repeat the same process as

above to get the equation (2.36) and (2.37) for the gauss’ infinitesimal transformation
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3.1 Introduction

When we deal with the motion of a dynamical system, we usual encounter two kinds

forces under the observation, first one is the applied force due to which the rest body

can be set into motion and the second one is the reaction force which resist the

motion of the dynamical system. It mean that the motion of the dynamical system is

moving under the reaction forces due to the constraints. In such type of problems we

usually determine the motion of the system as well as magnitude of the reaction of the

constraint. In 1743, Jean and D’Alembert developed a principle so called the lagrange

D’Alembert principle. By using this discuss in [2]-[3] we can analysis different kind of

problems in different areas of physics. According to this principle the motion under

the ideal constraint is such that virtual work done by these constraints is zero. In

this way the reaction force will be disappeared. Now for the generalizations of the

lagrange d’Alembert principle we will used the non-ideal constraint as discussed in

[1]. In this situation we will consider the following basic ideas,

1):Virtual displacement and supplementary virtual displacements,

2):The principle of libration of constraints,

3):Ideal constraints,

4):Generalized coordinates and supplementary generalized coordinates.

The supplementary virtual displacement are called the normal virtual displace-

ment because normal virtual displacement are in the direction consistent with the

ignored constraints. Corresponding to these supplementary virtual displacement, we

introduced supplementary generalized coordinates equal to the numbers of constraints.

Whose measured is made along the normal virtual displacement. Now, the classical

virtual displacement in the D’Alembert principle of virtual work are replaced by the

sum of the classical and normal virtual displacement. The equation of Lagrange and

the dynamical equilibrium in the normal direction are derived from the generalized

D’Alembert principle. The force of constraint are computed from the equation dy-

namical equilibrium. The equation of material particles can be taken into considerent

by using generalized D’Alembert principle. This principle gives connection between

the applied forces at equilibrium state and the forces of constraints. Some special

problems are solved to check the validity of this principle.

In this chapter we will use the generalized D’Alembert principle which is used

in [1] in order to find conserve quantities of various kinds for conservative and non-

conservative systems. The conservative law can actually find by two methods. First

one is the differential equation of motion, which used by B, Vujanovic in [4] and
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seconde one is the transformation properties of Hamilton’s variation principle, which

is used by E. L. Hill in [5]. But all these principle are used for the ideal constraints.

Now in this paper we make an extension for the generalized D’Alembert principle

to find the conservative quantity of a non-conservative holonomic dynamical system

with finite degree of freedom by using differential variation principle. This principle

is equally valid for both the conservative and the non-conservative system.

3.2 Generalized Virtual Displacement

Consider N -particle holonomic dynamical system with mass ma and (xa, ya, za) be

the cartesian coordinate of the particle. The system is under the action of forces Ya

and constraint force Ra. Let us consider Ra is the non-ideal reaction force, so their

virtual work is non-zero,

N∑
i

Ra · δΨa 6= 0.

Here virtual displacement is δΨa. Since the system is subject to the holonomic

constraints

gi(t, xa, ya, za) = 0, i = 1, ..., k. (3.1)

Where t is the time and (xa, ya, za) is the cartesian coordinate of the particles. The

system has n = 3N − k degree of freedom and pj(j = 1, ..., n) be the corresponding

generalized coordinate. The position of each particle in three dimension is ra =

xai + yaj + zak. Where i, j,k is the unite vector of the cartesian coordinate system

x,y,z. The simultaneous variation of constraint equation (3.1) is

δgi =
∑
a

fai · δra = 0. (3.2)

Where

fai =
∂gi
∂xa

i +
∂gi
∂ya

j +
∂gi
∂za

k.

If the system is second order then we introduce a relation

∑
a

fai · faΠ = diΠ, (3.3)

and δra = δxai + δyaj + δzak is the simultaneous variation of the position vector,

but fai is the normal component of the virtual variation which is perpendicular to
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the constraints. Let us make each particle in the system free of constraint and make

every particle displacement faipn+i in the perpendicular direction fai, here pn+i is the

supplementary generalized coordinate. If the motion is in the direction of constraint

then pn+i = ṗn+i = p̈n+i = 0. The quantity which is calculated free of constraint is

denoted by lower index c. The position of the particle which is free of constraint is,

Ψa(t, pu) = ra(t, pj) + fai(t, pj)pn+i,

with

u = 1, ..., n+ k.

Whose the simultaneous variation is

δΨa = δra + δfaipn+i + faiδpn+i.

If the motion of the particle in the direction of constraint, then we have

(δΨa)c = δra + faiδpn+i. (3.4)

Which is the generalized virtual displacement of any particle of the dynamical system.

Decomposed equation (3.4) into tangent and normal component, so we have

(δΨa)c = (δΨa)oT + (δΨa)oN , (3.5)

but

(δΨa)oT = δra, (δΨa)oN = faiδpn+i.

So it is obviously that

∑
a

(δΨa)oT .(δΨa)oN = δpn+i

∑
a

fai · δra = 0.

Here we note that δra and faipn+i are perpendicular to each other.

3.3 Simultaneous And Non Simultaneous Varia-

tion Infinitesimal Transformation

Let p1, p2, ..., pn be the generalized coordinates of the position of a dynamical system

with n-degree of freedom. These coordinate is continuous function of time t. Consider

a point K on the actual path which is correlated to infinitesimally a point L on the

virtual path at the same time by the relation
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pj(t) = pj(t) + δpj, (3.6)

where pj(t) and pj(t) will represent the coordinate of the point k and the point L re-

spectively, and δ represent synchronous variation. If the variation is non-simultaneously

then we introduce pj(t+ ∆t) which infinitesimally close to actual path but with small

change of time ∆t. Developing and ignore the higher order term, so we will get that

pj(t+ ∆t) = pj(t) + ṗj∆t,

but

pj(t+ ∆t) = pj(t+ ∆t) + δpj, (3.7)

put equation (3.6) in the equation (3.7)

pj(t+ ∆t) = pj(t) + ṗj(t)∆t+ pj(t)− pj(t).

pj(t+ ∆t) = ṗj(t)∆t+ pj(t). (3.8)

Let us ∆pj be the asynchronous variation define by

∆pj = pj(t+ ∆t)− pj(t), (3.9)

∆pj = pj(t+ ∆t)− pj(t) + δpj,

∆pj = pj(t) + ṗj(t)∆t+ δpj − pj(t),

∆pj = ṗj(t)∆t+ δpj. (3.10)

For any function the non-simultaneous ∆pj, equation (3.10) can be write as

∆Fj = Ḟj(t)∆t+ δFj. (3.11)

For the generalized velocity equation (3.10) can written as

∆ṗj = p̈j(t)∆t+ δṗj. (3.12)

Here we consider a variation so called the generalized variation, in which the

infinitesimal transformation of the generalized coordinate p1, ..., pj on the actual path
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which are correlated to the point pj +∆pj, ..., pj +∆pj on the virtual path at the time

t+ ∆t, which give the equations

pj(t) = pj(t) + ∆pj (3.13)

.

t = t+ ∆t (3.14)

.

These two equation, the equation (3.14) and (3.13) has great important in the

study of conservation law and similarly, we can take the infinitesimal transformation

are of the form

pj(t) = pj(t) + εFj(p, ṗ, t), (3.15)

t = t+ εf(p, ṗ, t). (3.16)

By using (3.14) and (3.13) we find

∆pj = εFj(pj, ṗj, t). (3.17)

∆t = εf(pj, ṗj, t). (3.18)

And similarly we can write these transformation for the supplementary generalized

coordinate as

∆pn+i = εFn+i(pn+i, ṗn+i, t). (3.19)

∆t = εf(pn+i, ṗn+i, t). (3.20)

Now we take derivative of equation (3.10) and subtract from equation (3.12) we get

that

∆ṗj = ε[Ḟj(p, ṗj, t)− ṗj ḟ(p, ṗj, t)]. (3.21)

And for the supplementary generalized coordinate

∆ṗn+i = ε[Ḟn+i(p, ṗn+i, t)− ṗn+iḟ(p, ṗn+i, t)]. (3.22)
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3.4 Kinetic Energy And The Generalized Force Of

The Dynamical System

The position of a particle of the dynamical system, which is free of constraint, is

denoted by Ψa. Then the kinetic energy for such system is

Tk =
1

2

∑
a

maΨ̇a · Ψ̇a. (3.23)

Since the position of the particle free of constraint is Ψa = ra + faipn+i. The

corresponding velocity is

Ψ̇a = ṙa + ḟaipn+i + faiṗn+i. (3.24)

Where ṙa is the velocity which is not librated of constraints.

By substituting equation (3.24) in the equation (3.23) we will get

Tk =
1

2

∑
a

ma(ṙa + ḟaipn+i + faiṗn+i) · (ṙa + ḟaipn+i + faiṗn+i),

Tk =
1

2

∑
a

ma(ṙa) · (ṙa) +
∑
a

maṙa(ḟaipn+i + faiṗn+i) + nonlinearterm,

Tk = (Tk)c + (T k),

by ignoring the nonlinear term which is nonlinear with respect to pn+i and ṗn+i,

(Tk)c = 1
2

∑
ama(ṙa) · (ṙa) is the kinetic energy with constraint and T k =

∑
amaṙa ·

(ḟaipn+i + faiṗn+i) which is linear with respect to pn+i and ṗn+i.

If Ya be the applied force, the virtual work with respect to the generalized virtual

displacement is,

W 1 =
∑
a

(Ya)c · (δΨa)c, (3.25)

by using equation (3.5) in equation (3.25)

W 1 =
∑
a

(Ya)c · (δra + faiδpn+i). (3.26)

Since the position of the particle is the function of time and the generalized coordinate

i.e, ra = ra(t, pj), then their virtual displacement is
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δra =
∂ra
∂pj

δpj, (3.27)

substitute equation (3.27) in (3.28)

W 1 =
∑
a

(Ya)c · (
∂ra
∂pj

δpj + faiδpn+i), (3.28)

W 1 = Qjδpj +Niδpn+i. (3.29)

With Qj =
∑

a(Ya · ∂ra∂pj
)c is the classical generalized forces and the generalized

force along the constraint is Ni =
∑

a(Ya)c · fai.

3.5 Transformation Of Generalized D’Alembert Prin-

ciple

Let Ya be the applied force act on the particle of the system and Ra be the reaction

force of the constraint, them for such system the generalized D’Alembert principle is

∑
a

(
Ya + Ra −maΨ̈a

)
c
· (δΨa)c = 0. (3.30)

Where ma is the mass of the system and Ψ̈ is the acceleration which is free of

constraint. Now by introducing the generalized coordinate and applying the standard

process we will get the lagrange-D’Alembert principle of the virtual work as discussed

by Dorde Duckic. [1], so equation (3.30) becomes,

[
(
d

dt

∂Tk
∂ṗj
− ∂Tk
∂pj

)c −Qj

]
δpj +

[
(
d

dt

∂Tk
∂ṗn+i

− ∂Tk
∂pn+i

)c −Ni

]
δpn+i +Riδpn+i = 0.

(3.31)

Since the generalized coordinate and the supplementary generalized coordinate

does not depend each other, so their virtual change also be independent on each other

and cannot be zero mean that, δpj 6= 0, δpn+i 6= 0. It possible only if

(
d

dt

∂Tk
∂ṗa
− ∂Tk
∂pa

)c −Qk = 0.

(
d

dt

∂Tk
∂ṗn+i

− ∂Tk
∂pn+i

)c −Ni −Ri = 0.

Where Ri is the reaction force and Qi and Ni is the generalized force.
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Let us take each particle of the system is partially conserved then the system have

the conserved part is −∂V
∂Pj

, −∂V
∂pn+i

and the non-conservative part is Qj, Ni, then we have

N∑
a=1

Ya ·
∂va
∂pj

= Qj −
∂V

∂pj
,
∑
a

(Ya)c · fai = Ni −
∂V

∂pn+i

. (3.32)

Put (3.32) in (3.31)

[
(
d

dt

∂Tk
∂ṗj
− ∂Tk
∂pj

)c −Qj +
∂V

∂pj

]
δpj +

[
(
d

dt

∂Tk
∂ṗn+i

− ∂Tk
∂pn+i

)c −Ni +
∂V

∂pn+i

]
δpn+i

+Riδpn+i = 0,

[
(
d

dt

∂(Tk − V )

∂ṗj
− ∂(Tk − V )

∂pj
)c −Qj

]
δpj +

[
(
d

dt

∂(Tk − V )

∂ṗn+i

− ∂(Tk − V )

∂pn+i

)c −Ni

]
δpn+i +Riδpn+i = 0.

(3.33)

But

L = Tk − V

[
(
d

dt

∂L

∂ṗj
− ∂L

∂pj
)c −Qj

]
δpj +

[
(
d

dt

∂L

∂ṗn+i

− ∂L

∂pn+i

)c −Ni

]
δpn+i +Riδpn+i = 0.

(3.34)

Where L = L(pj, ṗj, pn+i, ṗn+i, t) is the lagrangian function of the given system

which explain the conservative part of the system. Write (3.34) in the form

d

dt

(
∂L

∂ṗj
δpj

)
− ∂L

∂ṗj
δṗj −

∂L

∂pj
δpj −Qjδpj +

d

dt

(
∂L

∂ṗn+i

δpn+i

)
− ∂L

∂ṗn+i

δṗn+i −
∂L

∂pn+i

δpn+i −Njδpn+i −Riδpn+i = 0.

(3.35)

Using equation (3.10) and (3.12) in the equation (3.35)

d

dt

[
∂L

∂ṗj
(∆pj − ṗj∆t)

]
− ∂L

∂ṗj
(∆ṗj − p̈j∆t)−

∂L

∂pj
(∆pj − ṗj∆t)

−Qj(∆pj − ṗj∆t) +
d

dt

(
∂L

∂ṗn+i

(∆pn+i − ṗn+i∆t)

)
− ∂L

∂ṗn+i

(∆ṗn+i − p̈n+i∆t)

− ∂L

∂pn+i

(∆pn+i − ṗn+i∆t)−Nj(∆pn+i − ṗn+i∆t)−Ri(∆pn+i − ṗn+i∆t) = 0.

(3.36)
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d

dt

[
∂L

∂ṗj
(∆pj + ṗj∆t)

]
− (

∂L

∂ṗj
∆ṗj +

∂L

∂pj
∆pj +

∂L

∂t
∆t) + (

∂L

∂ṗj
p̈j +

∂L

∂pj
ṗj +

∂L

∂t
)

∆t−Qj(∆pj − ṗj∆t) +
d

dt
[
∂L

∂ṗn+i

(∆pn+i + ṗn+i∆t)]

− (
∂L

∂ṗn+i

∆ṗn+i +
∂L

∂pn+i

∆pn+i +
∂L

∂t
∆t) + (

∂L

∂ṗn+i

p̈n+i +
∂L

∂pn+i

ṗn+i +
∂L

∂t
)∆t

−Ni(∆pn+i − ṗn+i∆t)−Ri(∆pn+i − ṗn+i∆t) = 0.

(3.37)

Let us consider

∆L =
∂L

∂ṗj
∆ṗj +

∂L

∂pj
∆pj +

∂L

∂t
∆t

L̇ =
∂L

∂ṗj
p̈j +

∂L

∂pj
ṗj +

∂L

∂t

and

∆L1 =
∂L

∂ṗn+i

∆ṗn+i +
∂L

∂pn+i

∆pn+i +
∂L

∂t
∆t

L̇1 =
∂L

∂ṗn+i

p̈n+i +
∂L

∂pn+i

ṗn+i +
∂L

∂t

So we can (3.37) in the form

d

dt

[
∂L

∂ṗj
(∆pj − ṗj∆t) +

∂L

∂ṗn+i

(∆pn+i − ṗn+i∆t) + L∆t

]
−∆L− L(∆t)˙−∆L1

+ L̇1(∆t)−Qj(∆pj − ṗj∆t)−Ni(∆pn+i − ṗn+i∆t)−Ri(∆pn+i − ṗn+i∆t) = 0.

(3.38)

We will define a function is called gauge variant function, denoted by M which is

function of the generalized coordinate, generalized velocity, supplementary gener-

alized coordinate, supplementary generalized velocity and time written as, M =

M(pj, ṗj, pn+i, ṗn+i, t). We will add and subtract εṀ in equation (3.38). Where ε

is the small positive number. We will get that

d

dt
[
∂L

∂ṗj
(∆pj − ṗj∆t) +

∂L

∂ṗn+i

(∆pn+i − ṗn+i∆t) + L∆t− εM ]− [∆L+ L(∆t)˙

+ ∆L1 − L̇1(∆t) +Qj(∆pj − ṗj∆t) +Ni(∆pn+i − ṗn+i∆t)− εṀ ]

−Ri(∆pn+i − ṗn+i∆t) = 0.

(3.39)



3.6 Conservation Law For Mathematical Pendulum With Length a 41

Which is the required transformation of the generalized D’Alembert principle.

Equation (3.39) is the transformed form of the generalized D’Alembert principle it is

clear that if

∆L+ L(∆t)˙ + ∆L1 − L̇1(∆t) +Qj(∆pj − ṗj∆t) +Ni(∆pn+i − ṗn+i∆t)− εṀ
+Ri(∆pn+i − ṗn+i∆t) = 0,

(3.40)

is satisfied, the dynamical system admits a conservation law of the form

∂L

∂ṗj
(∆pj − ṗj∆t) +

∂L

∂ṗn+i

(∆pn+i − ṗn+i∆t) + L∆t− εM = costant = c. (3.41)

By substituting (3.17), (3.18), (3.19) and (3.20) in (3.40) , (3.41) take the form

∂L

∂pj
Fj +

∂L

∂ṗj
(Ḟj − ṗj ḟ) +

∂L

∂t
f + Lḟ +

∂L

∂pn+i

Fn+i +
∂L

∂ṗn+i

(Ḟn+i − ṗn+iḟ)

+
∂L

∂t
f − L̇1f +Qj(Fj − ṗjf) +Ni(Fn+i − ṗn+if) +Ri(Fn+i − ṗn+if)− Ṁ = 0

(3.42)

∂L

∂ṗj
(Fj − ṗjf) +

∂L

∂ṗn+i

(Fn+i − ṗn+if) + Lf −M = c. (3.43)

3.6 Conservation Law For Mathematical Pendu-

lum With Length a

Here we will consider a mathematical pendulum with length a and mass m, the

constraint equation for such pendulum is g1 = x2 + y2 − a2 = 0, x and y is the

horizontal and vertical axis respectfully, where vertical axis is the oriented down. From

constraint equation we have fai = 2a sinαi + 2a cosαj, the position of the particle is,

r = a sinαi + a cosαj.

And the velocity of the corresponding particle is

ṙ = (a cosαi− a sinαj)α̇.

Here only the gravitational force apply on the particle, which is F = mgj, where g is

the gravitational acceleration. The corresponding potential energy is V = mga(1 −
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cosα). Therefore, by using equation (4.24) the generalized forces are Qi = −mga sinα,

Ni = 2mga cosα.

(
d

dt

∂Tk
∂ṗn+i

− ∂Tk
∂pn+i

)c −Ni −Ri = 0,

Ri = −2m(aα̇)2 − 2mga cosα,

is the reaction force. Fore the kinetic energy we will use equation (3.23), so we will

get that

Tk =
m

2
(aα̇)2 + 2m(aα̇)2p2.

Hence the Lagrangian function is

L =
m

2
(aα̇)2 + 2m(aα̇)2p2 −mga(1− cosα)

Let suppose that the function Fj, Fn+i, f and M depend only the time t and position,

so Fj = Fj(t, pj), Fn+i = Fn+i(t, pn+i), M = M(t, pj, pn+i), f = f(t, pj) and f =

f(t, pn+i), then we can write equation (3.42) as

∂L

∂pj
Fj +

∂L

∂ṗj
(
∂Fj
∂pj

ṗj +
∂Fj
∂t

)− ṗj
∂L

∂ṗj
(
∂f

∂pj
ṗj +

∂f

∂t
) +

∂L

∂t
f + L(

∂f

∂pj
ṗj +

∂f

∂t
)

+
∂L

∂pn+i

Fn+i +
∂L

∂ṗn+i

(
∂Fn+i

∂pn+i

ṗn+i +
∂Fn+i

∂t
)− ṗn+i

∂L

∂ṗn+i

(
∂f

∂pn+i

ṗn+i +
∂f

∂t
)

− f(
∂L

∂pn+i

ṗn+i +
∂L

∂t
) +Qi(Fj − ṗjf) +Ni(Fn+i − ṗn+if) +Ri(Fn+i − ṗn+if)

− (
∂M

∂pi
ṗi +

∂M

∂pn+i

ṗn+i +
∂M

∂t
) = 0.

Fj(−ma sinα) + (
∂Fj
∂α

α̇ +
∂Fj
∂t

)(maα̇ + 4maαp2)− (α̇)2 ∂f

∂α
(maα̇ + 4maα̇p2)

− α̇∂f
∂t

(maα̇ + 4maα̇p2) + (
m

2
(aα̇)2 + 2m(aα̇)2p2 −mga(1− cosα))(

∂f

∂α
α̇ +

∂f

∂t
)

+ F2(2m(aα)2)− f(2m(aα̇)2p2ṗ2)−mga sinα(Fj − α̇f) + 2mga cosα(F2 − ṗ2f)

− (2m(aα)2 + 2mga cosα)(F2 − ṗ2f)− (
∂M

∂α
α̇ +

∂M

∂p2

ṗ2 +
∂M

∂t
) = 0.

Now by comparing various power of α̇ and ṗ2, we will get that

∂F

∂t
(ma+ 4map2)−mga sinαf − ∂M

∂α
= 0. (3.44)
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∂F

∂α
(ma+ 4map2)− ∂f

∂t
(ma+ 4map2) +

∂f

∂t
(
1

2
ma2 + 2ma2p2) + 2ma2(F2 − ṗ2f)

− F22ma2 − f(2ma2p2ṗ2) = 0.

(3.45)

− 2m(aα)2fp2 − f(2p2mga cosα) + f(2m(aα)2 + 2mga cosα)− ∂M

∂p2

= 0. (3.46)

∂f

∂t
(4maα̇) + f(2m(aα̇)2ṗ2) = 0. (3.47)

∂f

∂t
+ f(

1

2
aα̇ṗ2) = 0,

d

dt
(f exp

1
2
aα̇Ṗ2t) = 0,

f = C1 exp−
1
2
aα̇Ṗ2t .

Where C1 is constant of integration and using value of f in equation (3.45), we find

Fj =
C1 exp−

1
2
aα̇ṗ2t

1 + 4p2

(2ap2 + 2ap2ṗ2)α− C1 exp−
1
2
aα̇ṗ2t

(1 + 4p2)α̇ṗ2a
(1 + 4p2 −

a

2
− 2ap2)α

∂Fj
∂t

=
−aα̇ṗ2C1 exp−

1
2
aα̇ṗ2t

2(1 + 4p2)
(2ap2 + 2ap2ṗ2)α+

C1p2 exp−
1
2
aα̇ṗ2t

(1 + 4p2)ṗ2

(1 + 4p2−
a

2
− 2ap2)α.

Substitute the value of
∂Fj

∂t
and f in equation (3.44) to find M .

M = (ma+ 4map2)(
aα̇ṗ2C1 exp−

1
2
aα̇ṗ2t

2(1 + 4p2)
(2ap2 + 2ap2ṗ2)

α2

2

− C1p2 exp−
1
2
aα̇ṗ2t

(1 + 4p2)ṗ2

(1 + 4p2 −
a

2
− 2ap2)

α2

2
)−mga cosαC1 exp−

1
2
aα̇ṗ2t,

and F2 = 0. Now we can find conservation law by substituting the value Fj, F2 and f

in equation (3.43).(
ma2α̇ + 4ma2α̇p2

)
(
C1 exp−

1
2
aα̇ṗ2t

1 + 4p2

(2ap2 + 2ap2ṗ2)α

− C1 exp−
1
2
aα̇ṗ2t

(1 + 4p2)α̇ṗ2a
(1 + 4p2 −

a

2
− 2ap2)α)− α̇(ma2α̇ + 4ma2α̇p2)C1 exp−

1
2
aα̇Ṗ2t

+
(m

2
(aα̇)2 + 2m(aα̇)2p2 −mga(1− cosα)

)
C1 exp−

1
2
aα̇Ṗ2t

− (ma+ 4map2) (
aα̇ṗ2C1 exp−

1
2
aα̇ṗ2t

2(1 + 4p2)
(2ap2 + 2ap2ṗ2)

α2

2

− C1p2 exp−
1
2
aα̇ṗ2t

(1 + 4p2)ṗ2

(1 + 4p2 −
a

2
− 2ap2)

α2

2
)

−mga cosαC1 exp−
1
2
aα̇ṗ2t = consttant.
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Principle Of Generalized Jourdian and Gauss

4.1 Introduction

In the analysis of motion of a mechanical system under the action of constraints there

arise two problems. The first one is related to the determination of the motion of the

system and the second one is related to the calculation of reaction forces due to the

presence of constraints during the motion. In the subject of analytical dynamics these

two problems are solved by the D’Alembert Lagrange principle and the notion of ideal

constraints. The notion of ideal constraints implies that the virtual work done by the

reaction forces vanish. In this way we eliminate reaction forces from the analysis of

motion, which is based on D’Alembert Lagrange principal. For the reaction forces

whose virtual work do not vanish, then such forces are summed up with the given

forces and the corresponding constraints are called non-ideal.

So in this chapter we find conservation law by differential variational principle

of the Guass and Jourdian under constraints. Conservation law or the first integral

of both conservative and non-conservative dynamical system with finite degree of

freedom has a very important role in physics and engineering since for both theoretical

and practical science. Simply conservation law is the first integral of a differential

equation of motion. When particles of the dynamical system are in the state of motion,

then there is two forces must be under discussion, the applied force and the reaction

force. The reaction force is actually the force of constraint. First time reaction force

discussed by Dorde [1] to find the differential variational principle called generalized

Lagrange-D’Alembert principle in which he find the magnitude of the reaction force.

Vojanovic in [2] used a differential principle in which he find the conservation law

but without discussing any constraint force on the dynamical system. So the virtual

work was eliminated by Vojanovic in his work. Vujanovic in [20] also used differential

variational principle of Jourdian and Gauss to find the conservation law but in this

work he also ignore the reaction force. An attempt has been made by Aftab [7] to

find the conservation law of the dynamical system whose mass is varies with respect

to generalized velocities, generalized coordinates and time by using the virtual work

of the reaction force is zero. If the virtual work is non-zero for some reaction force,

then this reaction will add to the given applied force, the corresponding constraints

are called non ideal constraints.

In this chapter we makes an attempt to find the conservation law of a dynamical

system by using differential variational principle of Gauss’ and Jourdian by intro-

ducing the non-ideal constraints, before finding the conservation law we will define

some important following ideas: 1):Virtual displacement and supplementary virtual

displacements,
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2):The principle of libration of constraints,

3):Ideal constraints,

4):Generalized coordinates and supplementary generalized coordinates.

The supplementary virtual displacement are called the normal virtual displace-

ment because normal virtual displacement are in the direction consistent with the

ignored constraints. Corresponding to these supplementary virtual displacement, we

introduced supplementary generalized coordinates equal to the numbers of constraints.

Whose measured is made along the normal virtual displacement. Now, the classical

virtual displacement in the D’Alembert principle of virtual work are replaced by the

sum of the classical and normal virtual displacement. The equation of Lagrange and

the dynamical equilibrium in the normal direction are derived from the generalized

D’Alembert principle. The force of constraint are computed from the equation dy-

namical equilibrium. The equation of material particles can be taken into considerent

by using generalized D’Alembert principle. This principle gives connection between

the applied forces at equilibrium state and the forces of constraints. Some special

problems are solved to check the validity of this principle.

4.2 Synchronous And Asynchronous Variation In-

finitesimal Transformation

In this section we will consider the position of the particle with n-degree of freedom

(n = 3N − k) of the dynamical system is denoted by set of coordinates y1, y2, ..., yn

and the set of supplementary generalized coordinates yn+1, yn+2, ..., yn+k, which are

continuous function of time t. Here we will denote the synchronous variation by δ,

defined as a point on the actual path correlate at the same a point on the varied path

by the relation

yl(t) = yl(t) + δyl, l = 1, ..., n. (4.1)

Where yl(t) and yl(t) is the coordinate of the point on the varied and the actual

path respectfully. Now if we discuss the internal symmetry of the given dynamical

system then we must take the time t change during the process of variation by the

relation

yl(t+ ∆t) = yl(t+ ∆t) + δyl, (4.2)

yl(t+ ∆t) = yl(t) + ẏl∆t+ δyl, (4.3)
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eliminate δyl from equation (4.3) using equation (4.1) in equation (4.3)

yl(t+ ∆t) = yl(t) + ẏl(t)∆t.

Where yl(t+∆t) is the point on the varied path which is correlated with the point

on the actual path asynchronously. Let us take an equation ∆yl = yl(t + ∆t)− yl(t)
which define the asynchronous variation and over dot represent derivative with respect

to time. So

∆yl = yl(t+ ∆t)− yl(t), (4.4)

using equation (4.2) in equation (4.4)

∆yl = yl(t+ ∆t) + δyl − yl(t)

∆yl = yl(t) + ẏl(t)∆t+ δyl − yl(t)

∆yl = ẏl(t)∆t+ δyl. (4.5)

For any function equation (4.5) can be written as

∆F = Ḟ (t)∆t+ δF.

For generalized velocity equation (4.5) can be written as

∆ẏl = ÿl(t)∆t+ δẏl. (4.6)

Let suppose if δ and differentiation d commute each other then (4.6) will be written

as

∆ẏl = ÿl(t)∆t+
d

dt
(δyl).

Now take derivative of equation (4.5) with respect to time t

(∆yl)
˙ = δẏl + ÿl∆t+ ẏl(∆t)

˙. (4.7)

From equation (4.6) put δẏl in equation (4.7)

(∆yl)
˙ = ∆ẏl + ẏl(∆t)

˙,

∆ẏl = (∆yl)
˙− ẏl(∆t)˙. (4.8)

For the generalized acceleration equation (4.5) can be write in the form

∆ÿl =
...
y l(t)∆t+ δÿl. (4.9)
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Take derivative with respect to time of equation (4.7)

(∆yl)
¨ = δÿl +

...
y l∆t+ 2ÿl(∆t)

˙ + ẏl(∆t)
¨, (4.10)

from equation (4.9) put δÿl into the equation (4.16), we will get

∆ÿl = (∆yl)
¨− 2ÿl(∆t)

˙− ẏl(∆t)¨ (4.11)

At this point it should be noted that the infinitesimal transformation which is shown

by equation (4.1) and (4.4) has great important in the study of conservation law. We

let these transformation in the form

(∆yl) = εFj(t, ẏ, y), (4.12)

(∆t) = εf(t, ẏ, y). (4.13)

For the supplementary generalized coordinate these transformation take the form

(∆yn+i) = εFn+i(t, ẏ, y), (4.14)

(∆t) = εf(t, ẏ, y). (4.15)

f and F is infinitesimal transformation of space and time.

1) : To define the jourdian generalized variation take ∆ẏl, (∆yl)
˙ and (∆t)˙ with

the ∆yl = 0, ∆t=0 replace these value in equation (4.6) and (4.7) then we have

∆ẏl = δẏl,

(∆yl)
˙ = δẏl + ẏl(∆t)

˙,

∆ẏl = (∆yl)
˙− ẏl(∆t)˙. (4.16)

For better understanding the nature of Jourdian variation we will use the following

transformation

yl = yl, t = t,

yl − yl = ∆yl.

For the velocity vector we have

ẏl − ẏl = ∆ẏl,

d

dt
(yl)−

d

dt
(yl) = ∆ẏl = δẏl.
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We will introduce the following space and time Jourdian generator of transforma-

tion which has great important in the study of conservation law, we will take structure

in the form as discussed in the [4]

(∆yl)
˙ = εFl(t, ẏ, y), (4.17)

(∆t)˙ = εf(t, ẏ, y), (4.18)

using equation (4.17) and (4.18) in equation (4.16)

∆ẏl = ε[Fl(t, ẏ, y)− ẏlf(t, ẏ, y)], (4.19)

now same as for the supplementary generalized coordinates

∆ẏn+i = ε[Fn+i(t, ẏ, y)− ẏn+if(t, ẏ, y)]. (4.20)

2) : For the Gauss’ we will take ∆ÿl, (∆yl)
¨, (∆t)¨ with ∆yl = 0, ∆t = 0, ∆yl = 0,

(∆yl)
˙ = 0 and (∆t)˙ = 0, substitute these value in equation (4.11) and (4.9)

∆ÿl = δÿl,

δÿl = ∆ÿl = (∆yl)
¨− ẏl(∆t)¨. (4.21)

In the sense of gauss’ we will introduce the following infinitesimal transformation

yl = yl, t = t,

yl = yl = ∆yl,

for the acceleration vector this written as

ÿl − ÿl = ∆ÿl,

d2

dt2
(ÿl)−

d2

dt2
(ÿl) = ∆ÿl = δÿl,

d2

dt2
(ÿl)−

d2

dt2
(ÿl) = ∆yl

¨.

Let us define the space and time Gauss’ generator Fl and f of the infinitesimal trans-

formation of the generalized acceleration vector

(∆yl)
¨ = εFl(t, ẏl, yl),

(∆t)¨ = εf(t, ẏl, yl).
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So the simultaneous variation in term of above transformation is

δÿl = ε[Fl(t, ẏl, yl)− ẏlf(t, ẏl, yl)]. (4.22)

Similarly the infinitesimal transformation of the supplementary generalized coor-

dinates can be written as

(∆yn+i)
¨ = εFn+i(t, ẏn+i, yn+i),

(∆t)¨ = εf(t, ẏn+i, yn+i).

δÿn+i = ε[Fn+i(t, ẏn+i, yn+i)− ẏn+if(t, ẏn+i, yn+i)].

4.3 Generalized Virtual Displacement

Let us take a dynamical system with N-particles and take yl, ẏl, ÿl be the position,

velocity and acceleration of the generalized coordinate and similarly yn+i, ẏn+i, ÿn+i be

the position, velocity and the acceleration of the supplementary generalized coordinate

of the particle, where n = 3N − k is the degree of freedom. Here we will consider a

system with mass mj which is under action of applied force Fj and the reaction force

Aj in such away that the reaction is non-ideal, then it must have the non-zero virtual

work
N∑
j

Ajδxj 6= 0,

δxj represent the virtual displacement. It mean that the system is under the action

of holonomic constraints

Bi(t, aj, bj, cj) = 0, i = 1, ..., k. (4.23)

Where (aj, bj, cj) is the cartesian coordinate and t is the time. Let us suppose that

xj = aji + bjj + cjk be the position of each particle in three dimension and i, j,k are

the unite vectors. The simultaneous variation of the constraints equation are

δBi =
∑
j

Rji · δxj = 0, (4.24)

but

Rji =
∂Bi

∂aj
i +

∂Bi

∂bj
j +

∂Bi

∂cj
k.

If we will introduce the the second order system then we must take
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∑
j

Rji ·Rjπ = diπ.

Since δxj is the simultaneous variation of the position vector and Rji is the normal

component of the virtual variation of the constraint. In this note any quantity which

is calculated along the constraint is denoted by the lower index c. The position of the

particles which is librated of constraint is

Γj(t, yu) = xj(t, yl) + Rji(t, yl)yn+i,

with the virtual change

δΓj(t, yu) = δxj(t, yl) + Rji(t, yl)δyn+i + δRji(t, yl)yn+i.

For the motion along the constraint, we have

(δΓj)c = δxj + Rjiδyn+i, (4.25)

which is the required generalized virtual displacement. Now we separate equation

(4.25) as a normal and the tangential direction, then

(δΓj)c = (δΓj)OT + (δΓj)ON ,

(δΓj)OT = δxj, (δΓj)ON = Rjiδyn+i.

By using equation (4.24) here it will show that∑
j

(δΓj)OT · (δΓj)ON = δyn+i

∑
j

δxj ·Rji = 0.

Which show (δΓj)OT and (δΓj)ON are perpendicular to each other, so it justify equa-

tion (4.25) of decomposition.

4.4 Kinetic Energy And The Generalized Force Of

The Dynamical System

As we know that Γj be the position of the particles then the velocity for such position

is

Γ̇j(t, yu) = ẋj(t, yl) + Ṙji(t, yl)yn+i + Rji(t, yl)ẏn+i,

u = 1, ..., n+ k.
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Now here we will define the kinetics energy as

Tk =
1

2

∑
j

mjΓ̇j · Γ̇j

Tk =
1

2

∑
j

mj

(
ẋj(t, yl) + Ṙji(t, yl)yn+i + Rji(t, yl)ẏn+i

)
· (ẋj(t, yl)

+ Ṙji(t, yl)yn+i + Rji(t, yl)ẏn+i),

Tk = (Tk)c + (T̄k) + nonlinearterm. (4.26)

Where (Tk)c = 1
2

∑
jmjẋj · ẋj is the kinetic energy which is under the constraint and

T̄k =
∑

jmjẋj · (Ṙjiyn+i + Rjiẏn+i) is also part of kinetic energy which is linear with

respect to ẏn+i and yn+i and here the non linear term mean that, that the term which

is non linear with respect to ẏn+i and yn+i.

Since Fj be the applied force then the work done will be

W =
∑
j

(Fj)c · (δΓj)c. (4.27)

By using equation (4.25) in equation (4.27)

W =
∑
j

(Fj)c · (δxj + Rjiδyn+i)c. (4.28)

As we know xj = xj(yl, t) then the simultaneous variation is

δxj =
∂xj
∂yl

δyl. (4.29)

By putting equation (4.28) into (4.29) we will gets

W =
∑
j

(Fj)c · (
∂xj
∂yl

δyl + Rjiδyn+i)c. (4.30)

W = Q′lδyl +N ′iδyn+i,

with Q′l =
∑

j(Fj)c · ∂xj

∂yl
is the classical generalized force and N ′i =

∑
j(Fj)c ·Rji is

the force which is perpendicular in direction to the classical generalized force.

4.5 Differential Variation Principle

1): Let us consider mj is the mass of the particle in the motion and Fj be the applied

force which is resist by reaction force Aj, so after applying the Newton’s second law
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of motion under the constraint is (Fj + Rj)c = (mjΓ̈j)c, sum this equation for all the

particles over the index j and take dot product with the equation (4.25)∑
j

(Fj + Rj −mjΓ̈j)c · (δΓj)c = 0,

but from equation (4.25) we have

(δΓj)c = δxj + Rjiδyn+i, (4.31)

but xj = xj(t, yl) then

δxj =
∂xj
∂yl

δyl

use in equation (4.31)

(δΓj)c =
∂xj
∂yl

δyl + Rjiδyn+i, (4.32)

take derivative of equation (4.32) with respect to time

(δΓ̇j)c = (
∂2xj
∂yl∂ym

ẏm +
∂2xj
∂yl∂t

)δyl +
∂xj
∂yl

δẏl + Ṙjiδyn+i + Rjiδẏn+i, (4.33)

(δΓ̇j) represent the generalized Jourdian variation which depend only the infinites-

imal arbitrary change of the velocity and does not depend on the time and the space

deformations:

δẏl 6= 0, δẏn+i 6= 0, δyl = 0, δt = 0 and δyn+i = 0 after replacing in equation (4.33)

we will get

(δΓ̇j)c =
∂xj
∂yl

δẏl + Rjiδẏn+i. (4.34)

Where (δΓ̇j)c is the generalized Jourdian infinitesimal variation and take dot product

with (Fj + Rj)c = (mjΓ̈j)c we will get

∑
j

(Fj + Rj −mjΓ̈j)c · (δΓ̇j)c = 0, (4.35)

which is the required generalized Jourdian variational principle.

2): Now let us introduce the generalized Gauss’ differential variation principle in

the form ∑
j

(Fj + Rj −mjΓ̈j)c · (δΓ̈j)c = 0, (4.36)
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but (δΓ̈j)c represent the generalized Gauss’ infinitesimal variation of the acceleration

vector which depend only on the infinitesimal arbitrary changes of the acceleration

vector then we must have (δyl)
¨ = δÿl 6= 0, (δyn+i)

¨ = δÿn+i 6= 0, δẏl = 0, δyl = 0,

δẏn+i = δyn+i = 0 and δt = 0. First we will take derivative with respect to time

of equation (4.34) and then the replace these value to get the generalized Gauss’

infinitesimal variation.

(δΓ̈j)c = (
∂2xj
∂yl∂ym

ẏm +
∂xj
∂t

)δẏl +
∂xj
∂yl

δÿl + Ṙijδẏn+i + Rijδÿn+i,

put here δẏl = 0 and δẏn+i = 0 we will get generalized Gauss’ infinitesimal variation.

(δΓ̈j)c =
∂xj
∂yl

δÿl + Rijδÿn+i. (4.37)

Which is required generalized Gauss’ infinitesimal variation.

4.6 Transformation Of Generalized Gauss’ Varia-

tional Principle

In this section we consider a N particles dynamical system which is subject to holo-

nomical constraint and Fj be the applied force which act on some point of dynamical

system Aj be the force of constraint, then virtual acceleration for such a point is

(δΓ̈j)c. Now by using the generalized Gauss’ principle is∑
j

(Fj + Rj −mjΓ̈j)c · (δΓ̈j)c = 0, (4.38)

after applying the standard process on equation (4.38) same as discussed by Dorde

Duckic [1] we will get the Gauss’ variational principle

(Zl +Q′l)δÿl + (Zn+i +N ′i + Ai)δÿn+i = 0,[(
d

dt
(
∂Tk
∂ẏl

)− ∂Tk
∂yl

)
c

−Q′l
]
δÿl +

[(
d

dt
(
∂Tk
∂ẏn+i

)− ∂Tk
∂yn+i

)
c

−N ′i
]
δÿn+i

+ Aiδÿn+i = 0.

(4.39)

Since the generalized coordinate and the supplementary generalized coordinate are

independent to each other as well as their virtual change also independent to each

other and cannot be zero δyl 6= 0, δyn+i 6= 0, the virtual work is equal to zero for the

virtual changes δyl, δyn+i

d

dt
(
∂Tk
∂ẏl
− ∂Tk
∂yl

)c −Q′l = 0.
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d

dt
(
∂Tk
∂ẏn+i

− ∂Tk
∂yn+i

)c −N ′i − Ai = 0.

Since Ai is the reaction force, Q′l and N ′i is the generalized force. If the system

is partially conserved then it must have the conserved part −∂V
∂yl

, − ∂V
∂yn+i

with the

non-conserved part Ql, Ni, so the generalized forces will take the form∑
j

(Fj)c ·
∂xj
∂yl

= Ql −
∂V

∂yl
,

∑
j

(Fj)c ·Rji = Ni −
∂V

∂yn+i

,

put these generalized force in equation (4.39)[
d

dt
(
∂Tk
∂ẏl

)− ∂Tk
∂yl
−Ql +

∂V

∂yl

]
δÿl +

[
d

dt
(
∂Tk
∂ẏn+i

)− ∂Tk
∂yn+i

−Ni +
∂V

∂yn+i

]
δÿn+i

− Aiδÿn+i = 0.

[
d

dt
(
∂Tk
∂ẏl

)− ∂(Tk − V )

∂yl
−Ql

]
δÿl +

[
d

dt
(
∂Tk
∂ẏn+i

)− ∂(Tk − V )

∂yn+i

−Ni

]
δÿn+i

− Aiδÿn+i = 0.

(4.40)

Here we will introduce the lagrangian function L = T − V and use ∂L
∂yl

= ∂T
∂ẏl

and
∂L

∂yn+i
= ∂T

∂ẏn+i
, so equation (4.40) will become

[
d

dt
(
∂Lk
∂ẏl

)− ∂L

∂yl
−Ql

]
δÿl +

[
d

dt
(
∂L

∂ẏn+i

)− ∂L

∂yn+i

−Ni

]
δÿn+i −Aiδÿn+i = 0. (4.41)

Where L = L(yl, ẏl, yn+i, ẏn+i, t) is the lagrangian function which is used to explain

the conservation law.

We can write equation (4.41) in the form

[
d

dt
(
∂L

∂ẏl
δÿl)−

∂L

∂ẏl
δ
...
y l −

∂L

∂yl
δÿl −Qlδÿl] + [

d

dt
(
∂L

∂ẏn+i

δÿn+i)−
∂L

∂ẏn+i

δ
...
y n+i

− ∂L

∂yn+i

δÿn+i −Niδÿn+i]− Aiδÿn+i = 0.
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Put equation (4.21) here

d

dt

∂L

∂ẏl

(
(∆yl)

¨− ẏl(∆t)
)̈
− ∂L

∂ẏl
((∆yl)

¨− ẏl(∆t)¨)˙−
∂L

∂yl
((∆yl)

¨− ẏl(∆t)¨)

−Ql((∆yl)
¨− ẏl(∆t)¨) +

d

dt

∂L

∂ẏn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

− ∂L

∂ẏn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈̇
− ∂L

∂yn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

−Ni((∆yn+i)
¨− ẏn+i(∆t)

¨)− Ai
(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

= 0

d

dt

∂L

∂ẏl

(
(∆yl)

¨− ẏl(∆t)
)̈
− ∂L

∂ẏl
((∆yl)

... − ÿl(∆t)¨− ẏl(∆t)...)

− ∂L

∂yl
((∆yl)

¨− ẏl(∆t)¨)−Ql((∆yl)
¨− ẏl(∆t)¨) +

d

dt

∂L

∂ẏn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

− ∂L

∂ẏn+i

((∆yn+i)
... − ÿn+i(∆t)

¨− ẏn+i(∆t)
...

)− ∂L

∂yn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

−Ni((∆yn+i)
¨− ẏn+i(∆t)

¨)− Ai
(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

= 0,

d

dt

∂L

∂ẏl

(
(∆yl)

¨− ẏl(∆t)
)̈
−
[
∂L

∂ẏl
(∆yl)

...
+
∂L

∂yl
(∆yl)

¨+
∂L

∂t
(∆t)

]̈
+

(∆t)¨
[
∂L

∂ẏl
ÿl +

∂L

∂yl
ẏl +

∂L

∂t

]
+
∂L

∂ẏl
ẏl(∆t)

...
+
d

dt

∂L

∂ẏn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

−
[
∂L

∂ẏn+i

(∆yn+i)
...

+
∂L

∂yn+i

(∆yn+i)
¨+

∂L

∂t
(∆t)

]̈
+ (∆t)¨

[
∂L

∂ẏn+i

ÿn+i +
∂L

∂yn+i

ẏn+i +
∂L

∂t

]
+

∂L

∂ẏn+i

ẏn+i(∆t)
... −Ql((∆yl)

¨− ẏl(∆t)¨)

−Ni((∆yn+i)
¨− ẏn+i(∆t)

¨)− Ai
(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

= 0,

but L̇ = ∂L
∂ẏl
ÿl + ∂L

∂yl
ẏl + ∂L

∂t
and L̇1 = ∂L

∂ẏn+i
ÿn+i + ∂L

∂yn+I
ẏn+i + ∂L

∂t

d

dt

∂L

∂ẏl

(
(∆yl)

¨− ẏl(∆t)
)̈
−
[
∂L

∂ẏl
(∆yl)

...
+
∂L

∂yl
(∆yl)

¨+
∂L

∂t
(∆t)

]̈
+ (∆t)¨L̇

+
∂L

∂ẏl
ẏl(∆t)

...
+
d

dt

∂L

∂ẏn+i

(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

−
[
∂L

∂ẏn+i

(∆yn+i)
...

+
∂L

∂yn+i

(∆yn+i)
¨+

∂L

∂t
(∆t)

]̈
+ (∆t)¨L1 +

∂L

∂ẏn+i

ẏn+i(∆t)
... −Ql((∆yl)

¨− ẏl(∆t)¨)−Ni((∆yn+i)
¨− ẏn+i(∆t)

¨)

− Ai
(
(∆yn+i)

¨− ẏn+i(∆t)
)̈

= 0,
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put (∆yl)
¨ = εFl, (∆yn+i)

¨ = εFn+i and (∆t)¨ = εf in the above equation

d

dt

∂L

∂ẏl
(Fl − ẏlf)−

[
∂L

∂ẏl
Ḟl +

∂L

∂yl
F +

∂L

∂t
f

]
+ fL̇

+
∂L

∂ẏl
ẏlḟ +

d

dt

∂L

∂ẏn+i

(Fn+i − ẏn+if)−
[
∂L

∂ẏn+i

Ḟn+i +
∂L

∂yn+i

Fn+i +
∂L

∂t
f

]
+ ḟL1 +

∂L

∂ẏn+i

ẏn+iḟ −Ql(Fl − ẏlf)−Ni(Fn+i − ẏn+if)

− Ai (Fn+i − ẏn+if) = 0,

d

dt

[
∂L

∂ẏl
(Fl − ẏlf) + fL+

∂L

∂ẏn+i

(Fn+i − ẏn+if)

]
−
[
∂L

∂ẏl
Ḟl +

∂L

∂yl
F +

∂L

∂t
f

]
− ḟL

+
∂L

∂ẏl
ẏlḟ −

[
∂L

∂ẏn+i

Ḟn+i +
∂L

∂yn+i

Fn+i +
∂L

∂t
f

]
+ ḟL1 +

∂L

∂ẏn+i

ẏn+iḟ −Ql(Fl − ẏlf)−Ni(Fn+i − ẏn+if)

− Ai (Fn+i − ẏn+if) = 0,

d

dt

[
∂L

∂ẏl
(Fl − ẏlf) + fL+

∂L

∂ẏn+i

(Fn+i − ẏn+if)

]
− [

∂L

∂yl
Fl +

∂L

∂t
f +

∂L

∂ẏl
(Ḟl − ẏlḟ)

+
∂L

∂yn+i

Fn+i +
∂L

∂t
f +

∂L

∂ẏn+i

(Ḟn+i − ẏn+iḟ) + ḟL− fL̇1 +Ql(Fl − ẏlf)

+Ni(Fn+i − ẏn+if) + Ai(Fn+i − ẏn+if)] = 0.

In the above equation we will introduce Gauge variant function, which is represented

by P = P (yl, ẏl, yn+i, ẏn+i, t), so by adding and subtracting εṖ in the above equation,

we will get

ε
d

dt

[
∂L

∂ẏl
(Fl − ẏlf) + fL+

∂L

∂ẏn+i

(Fn+i − ẏn+if)− P
]

− ε[∂L
∂yl

Fl +
∂L

∂t
f +

∂L

∂ẏl
(Ḟl − ẏlḟ) +

∂L

∂yn+i

Fn+i +
∂L

∂t
f +

∂L

∂ẏn+i

(Ḟn+i − ẏn+iḟ)

+ ḟL− fL̇1 +Ql(Fl − ẏlf)

+Ni(Fn+i − ẏn+if) + Ai(Fn+i − ẏn+if) + Ṗ ] = 0.

ε[
d

dt

[
∂L

∂ẏl
(Fl − ẏlf) + fL+

∂L

∂ẏn+i

(Fn+i − ẏn+if)− P
]
− (

∂L

∂yl
Fl +

∂L

∂t
f

+
∂L

∂ẏl
(Ḟl − ẏlḟ) +

∂L

∂yn+i

Fn+i +
∂L

∂t
f +

∂L

∂ẏn+i

(Ḟn+i − ẏn+iḟ) + ḟL− fL̇1

+Ql(Fl − ẏlf) +Ni(Fn+i − ẏn+if) + Ai(Fn+i − ẏn+if)− Ṗ )] = 0.
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Where ε is small positive number, which can not be equal to zero ε 6= 0. Then

d

dt

[
∂L

∂ẏl
(Fl − ẏlf) + fL+

∂L

∂ẏn+i

(Fn+i − ẏn+if)− P
]
− (

∂L

∂yl
Fl +

∂L

∂t
f

+
∂L

∂ẏl
(Ḟl − ẏlḟ) +

∂L

∂yn+i

Fn+i +
∂L

∂t
f +

∂L

∂ẏn+i

(Ḟn+i − ẏn+iḟ) + ḟL− fL̇1

+Ql(Fl − ẏlf) +Ni(Fn+i − ẏn+if) + Ai(Fn+i − ẏn+if)− Ṗ ) = 0.

(4.42)

Which is the required transformation of the differential principle of Gauss’ and juor-

dain. Now the condition for the existence of a conserved quantity, it is obvious that

if

∂L

∂yl
Fl +

∂L

∂t
f +

∂L

∂ẏl
(Ḟl − ẏlḟ) +

∂L

∂yn+i

Fn+i +
∂L

∂t
f +

∂L

∂ẏn+i

(Ḟn+i − ẏn+iḟ)

+ ḟL− fL̇1 +Ql(Fl − ẏlf) +Ni(Fn+i − ẏn+if) + Ai(Fn+i − ẏn+if)− Ṗ = 0,

(4.43)

is satisfied , then the dynamical system admits the conservation law in the form

∂L

∂ẏl
(Fl − ẏlf) + fL+

∂L

∂ẏn+i

(Fn+i − ẏn+if)− P = constant. (4.44)

Equation (4.43) can be decomposed into the a system of partial differential equation of

the first order with respect to Fl, Fn+i, f and P , we will call this system is generalized

killing’s equation, for more explanation see [4], [13], [10], [11], [9] and [8].

4.7 Transformation Of Jourdain’s Principle

In this section we will explained that the generalized principle (4.35) can be trans-

formed into the relation similar as (4.42) in order to obtained the conservation law,

so the Jourdian’s principle is∑
j

(Fj +Rj −mjΓ̈j)c · (δΓ̇j)c = 0,

so repeat the same process as in the previous section, we can easily find the relation

same as in equation (4.42).

4.8 Linear First Integrals

In this section we will find that type of integral which is linear with respect to the gen-

eralized velocities. In order to find linear first integral, we must take the infinitesimal

transformation and the Guage- variant function in the form
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f = 0 , Fl = Fl(yl, t) , Fn+i = Fn+i(yn+i, t) , P = P (yl, yn+i, t).

For such special form of the function f , Fl, Fn+i and P , the existence of linear

first integral in equation (4.43) is

∂L

∂yl
Fl +

∂L

∂ẏl
Ḟl +

∂L

∂yn+i

Fn+i +
∂L

∂ẏn+i

Ḟn+i +QlFl +NiFn+i + AiFn+i − Ṗ = 0, (4.45)

and in equation (4.44) linear first integral is

∂L

∂ẏl
+

∂L

∂ẏn+i

Fn+i − P = constant (4.46)

Let us consider a mathematical pendulum with length r and mass m, the constraint

equation is B1 = a2 + b2 − r2 = 0, a and b are the horizontal and vertical axis

respectfully, where vertical axis is the oriented down. From the variation of constraint

equation we have Rji = 2r sinαi + 2r cosαj, the position of the particle is

r1 = r sinαi + r cosαj.

And the velocity of the corresponding particle is,

ṙ1 = (r cosαi− r sinαj)α̇.

Here only the gravitational force apply on the particle, which is F = mgj, where g is

the gravitational acceleration. The corresponding potential energy is V = mgr(1 −
cosα). The generalized forces are Ql = −mgr sinα, Ni = 2mgr cosα.

(
d

dt

∂Tk
∂ṗn+i

− ∂Tk
∂pn+i

)c −Ni − Ai = 0,

Ai = −2m(rα̇)2 − 2mgr cosα

is the reaction force. Fore the kinetic energy we will use equation (4.26), so we will

get that

Tk =
m

2
(rα̇)2 + 2m(rα̇)2y2.

Hence the Lagrangian function is

L =
m

2
(rα̇)2 + 2m(rα̇)2y2 −mgr(1− cosα).

Since the function Fl, Fn+i, and P depend only the time t and position, so Fl =

Fl(t, yl), Fn+i = Fn+i(t, yn+i), P = P (t, yl, yn+i), then we can write equation (4.45) as

∂L

∂yl
Fl +

∂L

∂ẏl
(
∂Fl
∂α

α̇ +
∂Fl
∂t

) +
∂L

∂yn+i

Fn+i +
∂L

∂ẏn+i

(
∂F

∂yn+i

+
∂F

∂t
)

+QlFl +NiFn+i + AiFn+i − Ṗ = 0.
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Fl(−mgr sinα) + (
∂Fl
∂α

α̇ +
∂Fl
∂t

)(mr2α̇ + 4mr2α̇y2) + 2m(rα̇)2F2 − (2m(rα̇)2

+ 2mgr cosα)F2 − Flmgr sinα + 2mgr cosαF2 − (
∂P

∂α
α̇ +

∂P

∂y2

ẏ2 +
∂P

∂t
) = 0.

By comparing various power of α̇, we have

− 2mgr sinαFl −
∂P

∂t
= 0. (4.47)

∂Fl
∂t

(mr2 + 4mr2y2)− ∂P

∂α
= 0. (4.48)

Fl
∂t

(mr2 + 4mr2y2) + 2mr2F2 − 2mr2F2 = 0, (4.49)

Fl
∂t

(mr2 + 4mr2y2) = 0

Fl = C1.

Where C1 is constant of integration. Put value of Fl in equation (4.47)

−2mgr sinαC1 =
∂P

∂t

P = −2mgr sinαC1t.

Substitute the value of Fl and P in equation (4.46)

mr2α̇ + 4mr2α̇y2 + 2mgr sinαC1t = constant.
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