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Preface

There have been world of good achievements in hyperspace topologies. Since the start of last
century, some hyperspace topologies have been introduced and developed. Specifically, Haus-
dorff metric and Veitoris topologies [1, 22]. The mentioned topologies are impeccable, in the
sense of their usage at the least. It is a monumental belief that the most imperative hyper-
space topologies have risen as topologies determined by families of geometric set functionals
refer to [4].

In fact, hyperspace topologies and related set convergence notation have been considered
at the outset of last century, the way we consider to the subject reflect ultimate modren
contribution by mathematicians whose mandatory research interests exist outside the general
topology. The revival of the subject comes from work of R. Wijsman [25] in the mid of
1960’s, and its advancements over the next fifteen years was to a gigantic breakthrough in
the hands of U. Mosco, R. Wets, H. Attouch, and their associates. This new approach
was advanced for the most part in North America, Europe, Italy and France, in particular.
This monumental interest is due to fruitfulness of these various areas of application (such
as probability, statistics or variational problem, for example). It also describes the effort in
comprehending their structure, common feature and general pattern in order to find a common
description for them. About this latter view, we refer the papers [4, 23, 24|, devoted to a
description and classification of the hyperspace topologies as the outset topology, namely as
the weakest topologies which makes continuous families of real-valued functionals defined on
nonempty closed subsets of Y. Not only this is helpful in order to have a common description
of the hyperspace topologies, but also enables us to tackle some application in an orthodox
way (see [5] and [21]).

Three types of hyperspace topologies which comprises familiar topologies are as follows:
the hit-and-miss, the proximal hit-and-miss [1, 6, 7] and the weak topologies generated by
gap and excess functionals on nonempty closed subsets of Y [1, 4, 15], respectively. As a

prototype of weak hyperspace topologies, we must recognize the Wijsman topology, which is



the weak topology determined by the distance functionals seen as functionals of set argument.
It is a basic tool in the construction of the lattice of hyperspace topologies, above mentioned
and many other familiar hyperspace topologies has risen as supreme and infima, respectively
of appropriate Wijsman topologies [3].

Let (Y,7) be an arbitrary Hausdorff topological space. We denote the collection of
nonempty, closed subset of Y by C(Y). We will investigate topologies on C'(Y') such topolo-
gies are called hyperspace topologies. The focus of the thesis is to explain the hyperspace
topologies. This thesis is divided into three chapters. In chapter 1, we will discuss the Wi-
jsman and Hausdorff metric topologies. Chapter 1 also helps to explain the normality of the
Wijsman topology. The chapter 2 deals with the hit-and-miss and the proximal hit-and-miss
topologies. The most of the known Fell, Vietoris, proximal and ball proximal topologies are
discussed. In chapter 2, the normality of the Fell and Vietoris topologies is also discussed.

The last chapter describes the relationship among hyperspace topologies.
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Abstract

The aim of this thesis is to study the hyperspace topologies. In this thesis we will discuss the
Wijsman, Hausdorff metric, Fell, Vietoris, Proximal and Ball proximal topologies. Some re-
sults concerning the normality of the Wijsman, Fell and Vietoris topologies are also discussed.

Furthermore, we describe the relationship among above mentioned hyperspace topologies.
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Chapter 1

The Hausdorff metric and Wijsman

Topologies

In this chapter, hyperspace topologies on the metric space are studied. There are many such
hyperspace topologies that have been studied extensively. Our aim of this chapter is to study
two of these hyperspace topologies, the Hausdorff metric topology and the Wijsman topology
determined by family of distance functionals. The Wijsman topology depends on the base
space Y and the metric P. The Wijsman topology, defined first for some application in statis-
tics and together used in many applications linked to variational problems. Moreover, the
Wijsman topology is not only useful in applications but also as the building block of many
other hyperspace topologies. The Hausdorff metric topology is one of the oldest and best-
studied hyperspace topologies because of its applicability to different areas of mathematics [1].
Many completeness type properties of the Hausdorff metric topology are stock theorems in
topology. For example, the Hausdorff metric topology is compact (resp. totally bounded) iff
Y is. Moreover, the local compactness [11] and cofinal completeness [2] are described in Haus-
dorff metric topology. The Hausdorff metric topology amounts to the uniform convergence of
distance functionals while the Wijsman topology is the topology of pointwise convergence of

distance functionals corresponding to fixed metric P. Notice that two uniformly equivalent



metrics fail to determine the same Wijsman topologies, but this fact is true for the Hausdorft
metric topology.

We first present the appropriate terms. Let (Y, P) be a metric space and let U and V be
two nonempty subset of Y. The gap Dp(U, V') between U and V is given by

Dp(U,V) =inf{P(a,b):a € Ube V},
the excess of U over V' is defined by
ep(U, V) =sup{P(a,V):a € U},
where P(a, V) is the distance functional defined as
P(a,V) =inf{P(a,v) :v € U}.

Our basic references for general topology and set theoretic are [13] and [19]. We will denote the
open ball and closed ball centered at o in the P metric by Bp(yo,€) ={y € Y : P(y,y0) < €}
and Bp(yo,€) = {y €Y : P(y,y0) < €} for € > 0, respectively.

A topological space Y is said to be first-countable if it has a countable local base at each
point of Y. If a space Y has a countable base for its topology, then Y is said to be second-
countable. Obviously, second-countable implies first-countable space. A topological space Y
is said to be a Lindel6f space if every open cover of Y is reducible to a countable subcover.

We say that a topological space (Y, 7) is metrizable if there exist a metric P on Y such
that 7 = 7p, where 7p is the topology induced by metric P. A topological space Y is said to
be separable if there exist a countable subset A of Y such that A =Y.

A topological space Y is said to be Hausdorff if for each pair u, v of distinct points of Y,
there exist disjoint open sets G and H such that « € G and v € H. A topological space Y

is said to be normal if for each pair of disjoint closed sets A and B of Y, there exist disjoint



open sets containing A and B respectively. A space Y is said to be hereditary normal if every

subspace of Y is normal.
Theorem 1.0.1. Every metrizable space is normal.
Theorem 1.0.2. Every compact Hausdorff space is normal.

[10] A uniformity on a set Y is a filter U on Y x Y such that

(Q1) A(y) c V, for all V € U, where A(y) = {(y,y) : y € Y}.

(Q2) for all V € U, 3 W € U, such that W oW € V, where WoW = {(z,y) €Y xY :
dz € Y with (z,2) € W and (z,y) € W}.

(Q3) for all V € U implies V™! € U, where V™! = {(x,y) € Y XY : (y,z) € V}. The

sets in U are called entourages. The couple (Y, U) is called a uniform space.

1.1 Weak topology

Definition 1.1.1. [1] Suppose {(Y;,7;) : 7 € I} is a collection of a Hausdorff spaces and Y
is a nonempty set. Assume that R = {g; : 7 € I} is a collection of functions, where for every
J, g; Y = Y;. Then the weak topology T on'Y determined by R is the smallest topology T

on 'Y such that each g; is continuous.
It would seem all sets of the type gj_l(Uj) where U; is open in 7; is a subbase for 7.

Example 1.1.2. Suppose {(Y;, ;) : © € 1} is a collection of Hausdorff spaces. The product
topology on [],c; Y; is the weak topology determined by the family of projection maps {p; : j €
I} where p; : [[,c;Yi — Y is defined by p;(y) = y(j).

Example 1.1.3. Consider a topological space (Y, 7). Let B C'Y, then the relative topology on
B is a weak topology determined by single inclusion map ig : B —'Y be defined by ig(b) = b.

Now, we describe the convergence of a sequence or net in weak topologies in next theorem.



Theorem 1.1.4. Let ® = {g; : j € I} induced a topology Tn on'Y. Then a net < yy > inY
is Tp-convergent to y € Y iff limy g;(yx) = g;(y) for every j € 1.

Proof. Assume that y = 7@ — lim y,, then for every j € I, implies limy g;(yx) = ¢;(y) by the
continuity of every g;. Conversely, assume that limy ¢;(y») = ¢;(y) for every j € I. Suppose W
is a 7 open subset of Y. So there exist ji, jo, J3, ..., Jn € I and open sets W, , W,,, Wi, ..., W;

J2»

in a mark spaces of g;,, 9j,, 9js; ---» g5, such that

Since by continuity of g;, for m = 1,2,...,n there exist Ay € A such that for each m and

A > Xg, we have g;, (yr) € W;,,. Consequently, yy € W for A > . O

1.2 Wijsman topology

Definition 1.2.1. [1] Suppose (Y, P) is a metric space. The lower Wijsman topology (resp.
upper Wigsman topology) on C(Y') defined by the metric P, denoted by Ty, (resp. 7y,,) is the
smallest topology on C(Y') such thaty € Y the distance functional P(y,.) : C(Y) — [0, +00) is
upper semicontinuous (resp. lower semicontinuous). The Wijsman topology of (Y, P), denoted
by Tw, 1s the smallest topology on C(Y') such that functional P(y,.) : C(Y) — [0,4+00) is

continuos fory € Y.

A Wijsman topology 1w, on C(Y) has {B € C(Y) : P(y,B) > k} and {B € C(Y) :
P(y,B) <k}, k>0and y € Y as a subbase. Moreover, the local base for my, at B € C(Y)
consist of all sets of the type

Ubre ={A€CY):|P(y,B) — P(y,A)| <eforallye F},

where € > 0 and F’ is finite subset of Y.
A net (Gy)xea in C(Y) is T, —convergent to G in C(Y), if for all y € Y implies
limy P(y,G)) = P(y,G). Let us first define f¢ : Y — Rby fo(y) = P(y,G), where G € C(Y).



Theorem 1.2.2. A net (G,) of closed subset of Y converges to G in (C(Y), w,) iff (fa,) —

fa pointwise.

Proof. Suppose (G) — G in (C(Y), 7w,). Consider y € Y and € > 0. There exist Ay €
A such that G\ € Uy, for X > Ag. Hence |P(y,G,) — P(y,G)| < € for A > Ay =
|fa, (y) — fa(y)| < e. Conversely, assume (fg,) = fe pointwise. So for each y € Y and € > 0,
there exist A\g € A such that A > X\ implies | fa, (y) — fe(y)| < €. This means that if A > Ay
then |P(y;, Gz) — P(y;, G)| <€, for i =1,2,...,n. Hence Gy € Uiy, for A > Ag. O

Therefore, Wijsman convergence of a net of closed sets amounts to the pointwise conver-
gence of the affiliate net of distance functionals. On the other hand, the mapping B — P(., B)
is an embedding of (C(Y'), 7w, ) into the space of continuous functions C(Y, R), equipped with
the topology of poinwise convergence.

Now, we characterize the Wijsman convergence with the help of following lemma.

Lemma 1.2.3. [1] For a metric space (Y, P) a net (Gx)xea in C(Y) is Tw,—convergent to
G in C(Y) iff the following axioms are satisfied.

(Ch) If GNU # ¢ then Gy NU # ¢ eventually for every nonempty open set U.

(Cy) If 0 < 6 < B and then Bp(y, ) NG = ¢ implies Bp(y,0) N G\ = ¢ eventually.

Proof. Claim the lemma is proved by showing that (C}) and (Cs) are equivalent to the con-
ditions that for all y € Y, P(y,G) > limsup, P(y,G,) and P(y,G) < liminf, P(y, G)),
respectively. Assume that P(y,G) > limsup, P(y, G)) holds, for each y € Y and suppose
GNU # ¢ for open subset U of Y. Take x € G and § > 0 such that Bp(z,d) C U. As
P(z,G) = 0, eventually P(z,G,) < § will hold, and for each such A Bp(y,d) N G\ # ¢.
Hence (C}) is satisfied. Suppose (C;) holds, fix y € Y and 8 > 0 and take z € G with
P(y,z) < P(y,G) + £. Since by (C1), Bp(z,6) N Gy # ¢ for all large ), and for all such A
P(y,G)) < P(y,x) + P(z,Gy) < P(y,x) + g, therefore P(y,G,) < P(y,G) + B. Similarly,

we can prove the other equivalence. [



Obviously, axiom (Cy) implies the closure condition given below. If all neighborhoods U
of y € Y intersect GG, for cofinal set of indices A, then y € GG. Notice that this condition with

(C) does not implies the Wijsman convergence in general.
Example 1.2.4. Suppose Y = {y,,n € N}, let a metric P on'Y is defined as
P(y1,yn) =2 forn > 1, and P(Yn,ym) =1 for 1 <n < m.

Let G, = {y1,Yns1, Ynso, ..} for each n € N, and G = {y1}. Thus G,G, ... satisfies axiom
(C1) of Lemma 1.2.3 and also above closure condition, but G, does not converges to G with

respect to Tw,, because for all n > 2 we have P(ys, G,) =1, and P(y2, G) = 2.

We say that Wijsman topology Ty, on C(Y) is admissible. If the relative topology that

Y inherits from 7y, under the identification y — {y}, coincides 7p.

Lemma 1.2.5. [1] Suppose (Y, P) is a metric space. Then 1w, on C(Y) is Hausdorff, com-

pletely regular and admissible.

We say a subset W of a metric space (Y, P) is e-discrete if for any wy, ws € W and wy # ws,
we have P(wy,ws) > €. By Zorn’s lemma, for any € > 0, Y has maximal e-discrete subset W,

with respect to set inclusion, so by maximality of this set, Bp(W,,¢) =Y.

Theorem 1.2.6. Suppose (Y, P) is a metric space. Then the following are equivalent:
(1) Y is separable.
(2) 7w, on C(Y) is second countable.
(3) Tw, on C(Y) is metrizable.
(4) Tw, on C(Y) is first countable.

Proof. Suppose that (1) holds. Assume that D is a countable dense subset of Y. Since by the
inequality |P(y, B) — P(x, B)| < P(x,y) the sets of the form {B € C(Y) : P(y,B) < 0} and
{BeC(Y): P(y,B) > ¢} for (y € D and ¢ is positive rational), form a countable subbase

for my,,.



(2) = (3). Since 7y, is completely regular, it follows from Urysohn metrization theorem,
Tw, 1s metrizable.

(3) = (4). Obviously.

(4) = (1). If for all e-discrete subset of Y are countable, then for any n € N, there would
exist %-discrete set D,, such that Bp(D,, %) =Y. Thus Y would be separable. If Y is not
separable. Then there exist uncountable e-discrete set D for some € > 0. Since P(y,Y) =0

fory € Y. So for Y € C(Y) and a finite subset £ of Y and ¢ > 0, the collection
B(E,§)={BeC(Y): P(x,B) <5, VzecE}

form a local base for Ty, at Y. Take a countable family { B(E;, ;) : i € N} of such sets, since
D is uncountable so there exist xg € D such that P(y,z) > 5 for y € [J£;. As a result, for
any i, {B € C(Y) : P(x,B) < 5} is a neighborhood of Y in 7y, fails to contain £;, and
so fails to contain B(Ej;, d;). Therefore, this particular local base is not countable, and hence

Tw, fails to be first countable. 0

Notice that, if D = {y, : n € N} is any dense subset of Y, the metric dp on C(Y") defined
by

op(U, V) = 3252, 277 minf{1, [P(y;, U) — Ply;, V)I}

is compatible with 7yy,. The following example shows that completeness of the metric P does
not implies the completeness of dp. Consider (Y, P) and G,, defined above in Example 1.2.4,

and take D =Y be countable dense subset. If n < m then dp(U,, V,,) = Z?ljﬂ 27% hence

< G, > is dp-cauchy. If < G,, > —7y, converges to some B € C(Y). So we must have for
eachy € Y P(y,G,) — P(y, B). But P(.,G,) converges pointwise to the function g : ¥ — R
defined by
07 It Y=y
9(y) =
17 If Y # Y1



It seems, for any nonempty closed subset of Y, ¢ is not distance functional. The natural
question arises. When is a pointwise limit of a net a distance functional? An answer is given

in the next proposition.

Proposition 1.2.7. Let (Y, P) be a metric space and g € C(Y,R) be in the closure of
{P(.,B) : B € C(Y)} with respect to the topology of pointwise convergence. Let G = {y €
Y : g(y) = 0} is nonempty, and for all y € Y, we have P(y,G) < g(y). Then g is distance
functional for the set G.

Proof. We need to prove that g(y) < P(y,G) for y € Y. By supposition P(y,G) < g(y).
Fix y € Y. Assume on contrary P(y,G) < g(y) holds. Let n = g(y) — P(y,G), and take
a € G with P(y,a) < P(y,G) + 2. As g is pointwise limit of distance functional, there exist
F € C(Y) for which [g(a) — P(a, F)] < 7 and |g(y) — P(y, F)| < 2. Since g(a) = 0, this

implies,
9(y) < P(y,F)+2 < P(y,a) + P(a,F) + 2 < P(y,a) + g(a) + 2 < P(y,G) + .

Which is contradiction to the definition of 7. O

The metrics, P and P”, on a set Y is said to be equivalent if the corresponding metric
topologies are the same, and is said to be uniformly equivalent if they determine the same

uniformity.

Remark 1.2.8. If two metrics are equivalent even metrics are uniformly equivalent need not
determine the same Wijsman topologies. Suppose Y = Z* and a metric P on'Y defined
by P(u,v) = |2 = 1|,V u,v €Y. Then P is equivalent to discrete metric 6. Take G, =
{n,n+1,..} forn > 1 and G = {1}. Therefore G, Tw,—convergent to G. On the other
hand, G,, does not Ty, —convergent to G.

More interestingly we have two metrics they are not uniformly equivalent but give the same

Wijsman topologies. Let us define a metrics P and 6 on'Y = Z* as follows, P(u,v) = %— %
and 6(u,v) = 1+ |+ — 1|, foru # v. i.e Tw, = Tw, Since P and & are equivalent metrics,



so we only prove upper Wijsman convergence. Obuviously, tw, C Tw,. Suppose G, € C(Y')
converges to G € C(Y') with respect to Tw, and G, does not converges to G with respect
to Tw,. Then there exist xo € Y,0 < € < u such that for each n there is m, > n with
G N Bp(xo, 1) = ¢ and Gy, N Bp(xo,€) # ¢. For each n let us take x,,, € G, N Bp(xg,€).
We take o, 8 such that 0 < o = e+ 1 < = p+ 1, it follows that G,,, N Bs(xo, ) # ¢ but
G N Bs(xg, B) = ¢ because Bs(xg, 5) = Bp(xo, i), a contradiction. Hence G,, converges to G

with respect to Ty,. Thus Ty, = Tw,.

We discuss the necessary and sufficient conditions on metrics P and § which ensure that
P and § will come up with same Wijsman topologies.

Let (Y, P) be a metric space and U and V' be two nonempty subset of Y such that U C V.
We call U is strictly P-included in V' if there exist a finite subset yi,¥s,...,y, of V and
0< B <n;, j=1,2,..nsuch that

UcC U?:IBP(ijﬂj) - U?:1BP(yj,nj) cV.

We call U is P-included in V' if there exist a finite subset yi,v2,...,4, of V and 0 < g;,
j =1,2,...n such that

UC U?lep(yj,ﬂj) cV.

Theorem 1.2.9. Suppose (Y, P) and (Y,0) are equivalent metric spaces. Then Tw, = Tw,
on C(Y) iff each proper open P-ball strictly d-includes each concentric open P ball of smaller
radius, and each proper open d-ball strictly P-includes each concentric open & ball of smaller

radius.

Proof. We prove the following.

(a) Vy e Y, if Bp(y,e) #Y and 0 < 8 < ¢, the ball Bp(y, 5) is strictly d-included in
Bp(y,€) = mw, C Tw,.

(b) Vy eY,if Bs(y,e) # Y and 0 < 8 < ¢, the ball Bs(y, 3) is strictly P-included in

Bg(y, 6) = Tw; C Twp-



Assume that (a) holds, and let a net (Gy)xea in C(Y) is 7y, —convergent to G in C(Y).
We now use Lemma 1.2.3 for Wijsman convergence. Let G N U # ¢, where U is 7p open
set. Take y € G and 0 < 8 < € such that Bp(y,5) C Bp(y,e) C U. So by (a), there exist
v € Bp(y,€) and o > 0 such that y € Bs(v,a) C Bp(y,€). As G N Bs(v,a) # ¢ and (G))ren
Tw,-convergent to G. Thus (G)) N Bs(v,a) # ¢ eventually. Since Bs(v,«) C U. Hence
(GA)NU # ¢ eventually. Fix y € Y and 0 < 8 < e such that GN Bp(y,€) = ¢. As Bp(y,¢€) is
proper ball, therefore by (a) we can find y1, o, ..., ¥, in Bp(y,€) and 0 < 8; <¢;, j = 1,2,..n,
such that

Bp(y, B) C Uj_, Bs(y;, B5) C Ui_ Bs(yj,¢€5) C Bp(y, ).

Since for all j, G N Bs(y,,€;) = ¢. Hence by 7y, -convergence implies that for all j, G\ N
Bs(y;, B;) = ¢ eventually. Thus Gy N Bp(y, ) = ¢ eventually. Analogously, we can prove the
statement (b).

Conversely, we claim that if the statements (a) (resp. (b)) fails, then 7y, & Tw, (resp. Tw, ¢
Tw, ) respectively. Assume that (a) is not holds, and in particular take yo = y, 5o = 3, and
€0 = € for which Bp(y, #) is not strictly d-included in Bp(y,€) # Y. Let v € Bp(¥yo, €0), and
d(v, B) = ¢ (v), where B is the complement of Bp (v, €9). So for each y1, ya, ..., yn in Bp(yo, €0)
and 0 < B4, Ba, ..., B, we have

Bp (Yo, Bo) € Uiy Bs(v;, ¥ (y5) — Bj)-

Thus for any y1, Yo, .., Yn in Bp(yo, €9) and m € Z T, there exist an element y = o(y1, Y2, ..., Yn, M)

in Bp(yo, Bo) such that for 7 =1,2,....,n

yE{veY :6(v,y) < (1— )y}

Suppose X be the collection of finite subset of Bp(yo, €y). Thus (2, C) is a poset. As (N, <)

is a poset. Equipping > x N with the product partial order, and

(S,m) = BUo(S,m)

10



where o (S, m) is defined above is a net from ¥ x N to Y. Then a net (S, m) my,-converge
to B. Obviously, first axiom of Lemma 1.2.3 for ryy,-convergence is satisfied. Now we prove
the second axiom, let 7 € Y and 0 < a < n with Bs(y,n) N B = ¢. Since n < ¢(7), and we

can take m € N such that

(1= 0@ = o
Thus if (S, k) > ({y},m), we have o(S,k) € {v € Y : 6(v,y) < (1 — L)p(y)}, Vy € S, and
in particular, o(S,k) & {v € Y : 0(v,7) < (1 — L)¢(y)}. Consequently, (S, k) can not lie
in Bs(7,«). But on the other hand, (S, m) does not converges to B with respect to myy,.

Because limsup P(yo,0(S,m)) < By < €90 < P(yo, B). O

1.3 Normality of the Wijsman topology

In this section we will discuss the normality and metrizability of the Wijsman topology.
About the normality of the Wijsman topology, we mention the papers [16] and [8]. By a well
known result [20], if (Y, P) is a separable metric space iff (C(Y'), 7w, ) is metrizable and hence
normal. Di Maio In [12], raised the following problem. Is (C(Y), rw,) normal iff (C(Y), w,)
metrizable? We will present the solution of this problem in many classes of metric spaces

given below.

Lemma 1.3.1. Suppose 6 > 0 and (Y, P) is a 0 — § metric space. If (C(Y), Tw,) is normal

then Y is countable.

Proof. Since (Y, P) has nice closed balls, then by Theorem 3.0.13, we have my, = 7p. By
Theorem 2.3.6, Y is Lindel6f. Hence Y is countable. O]

Remark 1.3.2. In the above result we observe that the normality of Tw, is equivalent to

metrizablity.

Lemma 1.3.3. Let (Y, P) be a metric space and take a closed discrete subset S C Y. Consider

for each y € Y\ S, the following property is satisfied. There is €, and at most one s, € S
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with P(y,s,) < €, for all other s € S satisfied P(y,s) = €,. Then (C(S), Tw,,;) is a closed
subspace of (C(X), Tw,).

Proof. Since S is a closed, then C(S) is a closed set in (C(Y),U~), so in (C(Y), 7w, ). Let
Gy € C(9) is mw,-converge to G € C(S). Then P(y,G)) — P(y,G), for all y € Y. Since
S C Y implies G converges to G with respect to 7y, ;. Now let Gy € C(S) converges to
G € C(S) with respect to 7y, s and take y € Y'\S. We have the following cases.

(1) P(y,s) =¢, forall se S

(2) There is s, € S with P(y,s,) = A < ¢, and P(y,G) < ¢,.

(3) There is s, € S with P(y,s,) = A < ¢, and P(y,G) = ¢,.

In (1) P(y,Gx) = ¢, = ¢, = P(y,G).

In (2) s, € G. So s, € G, eventually and hence P(y,G,) - A = P(y,G). In (3) s, ¢ G.
Eventually, s, ¢ G, and hence P(y,G)) = ¢, = P(y,G). O

Consider a metric space (Y, P) and § > 0, a uniformly equivalent metric space (Y, Ps)

defined as Ps(u,v) = min{P(u,v),d} for u,v € Y.

Theorem 1.3.4. Suppose (Y, P) is a metric space. If for each € > 0, there is § € (0,€) such
that (C(Y), Twp,) is normal, then Y is separable.

Proof. Let Y be a non separable, so there exist an € > 0 and uncountable e-discrete subset
Dof Y. Let § < § such that (C(Y), 7w, ) is normal. Then by Lemma 1.3.3 (C(D),TWPMD)
is a closed subset of (C'(X), 7w, ) and thus normal. By Lemma 1.3.1 [D] = R, which is a

contradiction. Hence Y is separable. O]

A subset A of Y is said to be totally bounded if for every € > 0, there exist a finite subset
G of A such that A C Bp(G,e).

Lemma 1.3.5. Consider every ball in a metric space (Y, P) is totally bounded. If N is

uniformly equivalent metric space on'Y, then TVT,P - T;{,N.
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Proof. Suppose G,, € C(Y) converges to G € C(Y) with respect to Ty, and G,, does not
converges to GG with respect to 7y, so there exist zp € Y,0 < € < p such that for each n
there is m,, > n with G N Bp(zo, ) = ¢ and G,,, N Bp(zg,€) # ¢. For each n let us take
T, € G, N Bp(xg,€). Since P and N are uniformly equivalent, there exist A; and Ay > 0
such that for each x,y € Y, N(z,y) < Ay implies P(z,y) < u — € and P(x,y) < Ay implies
N(z,y) < % Since Bp(xy, €) is totally bounded in (Y, P), we can find yy, ya, ..., yx € Bp(zo,€)
with Bp(xg,€) € U Bp(y;, \2). Consequently, there is i, 1 < i < k, such that z,,, €
Bp(yi, X2) frequently. Since Bp(yi, \2) C Bn(y;, &), it follows that G,,, N By (yi, 3) # ¢
frequently. On the other hand, z € By(y;, A1) implies N(y;,2) < Ay then P(y;, 2) < p — €.
P(zo,2) < P(xo,y;) + P(yi,2) < p—e+e=p,s0 z€ Bp(xg,p), i.e By(yi, 1) € Bp(xo, i)
and hence G N By (y;, A1) # ¢, which is a contradiction. O

For a metric space (Y, P) and k > 0, a uniformly equivalent metric space (Y, Ny) defined
as Ni(z,y) = min{P(x,y),k}. We have TI;Nk C Ty,, suppose that G; € C(Y) converges to
G € CO(Y) with respect to 7y, and take any x € Y and 0 < € < p. If G N By, (z, 1) = ¢,
then By, (x, 1) # Y'; thus By, (2, ) = Bp(x, u) and By, (x,€) = Bp(z,€).

Theorem 1.3.6. Consider a metric space (Y, P). The following are equivalent.
(1) For every k >0, 7y}, = TVJIr/Nk'
(2) For every k>0, 1y, C T;{/Nk

(3) Every proper closed ball in (Y, P) is totally bounded.

Proof. By Lemma 1.3.5 we only need to show that 1 = 2. Assume that there is proper closed
Bp(z,t) which is not totally bounded. Then there exist k > 0 such that Bp(xz,t) ¢ Bp(G,2k)
for every finite subset G of Bp(x,t). We can take a sequence vy, of elements of Bp(z,t)
such that P(y;,y;) > 2k for i # j. Take yo € Y — Bp(x,t) and number A, J such that
t <A< dand Plx,yo) >0 > A >t. Let G, = {x,} and G = {y} for n € N. Then G,
converges to G with respect to TJQL,k; take xop € YV, and 0 < € < p. If G N By, (2o, 1) = ¢

then By, (%o, 1) = Bp(zo, ) and g < k. Suppose for each n € N, there exist k, € N
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such that y,, € Bn,(xo,€) = Bp(xg,€). Then P(x¢,yn,) < € < u < k for n € N and
hence P(Yn,, Yn,) < P(Yn,, o) + P(x0,Yn,,) < 2k, a contradiction. On the other hand,
G N Bp(x,0) = ¢ but G,, N Bp(x, \) # ¢, for all n € N and hence G,, does not converges to

G with respect to 7y, . O

Corollary 1.3.7. Suppose (Y, P) is a metric space. Then every proper closed ball in Y is

totally bounded iff for each k > 0 Ty, = TWy, -

Corollary 1.3.8. Consider every proper closed ball in a metric space (Y, P) is totally bounded.
If (C(X), Tw,) is normal. Then'Y is separable.

Furthermore, we will discuss normality of Wijsman topology which can be dealt with as

partial answer to above Problem. For this, we will use the following results.

Lemma 1.3.9. Consider a metric space (Y, P). If R is a directed family in C(Y') such that
G =R is closed. Then G is a accumulation point of the net (R, C) in (C(Y), Tw,).

Consider the ordinals w; and w; + 1 as a topological spaces equipped with the order

topology.

Proposition 1.3.10. Consider a non-separable metric space (Y, P). Then the subspace

CY)\Y of (C(Y), Tw,) contains a closed copy of the space wy X (wy + 1).

Proof. Since (Y, P) is not separable, there exist ¢ > 0 and uncountable e- discrete subset

U={z,, p<wand v <w}

of Y, with x,, # x,/, for (u,v) # (¢',V'). For every p < wy, let U, = {z,, : v < w;} and
D, = Bp(U,,€/2). Set Ay = {xop}. V p <w; and 0 < v < wy, assume

Gy =Y\ (Uss, Dx) and A, = {z,\ : & <w; and A <v}.
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The families f = {G, : p < w1} and §" = {4, : v < wy} are continuously increasing,
in the sense G, = (J{Gut1 : & < p} and A, = [J{Ar+1 : A < v}, for each 0 < pp < wy and

0 < v < w;. We prove that the subspace
H ={G,UA, : p<w and v <w}

of (C(Y), 7w,) is homeomorphic to the product space wy x (wy+1). Let ¥ : wy X (w1 +1) — H'
be defined by ¢ (u,v) = G, U A,. Obviously, v is one-to-one and onto. To prove that 1 is
continuous, let £ C w; x (w; +1), and (u,v) € E. Suppose B/ = {(k,\) € B : k < pand \ <
v}, and notice that (u,v) € E’. Since for all (k, \), (x',\') € E', there exists (a, 3) € E’ such
that a > max(k, k') and 8 > max(\, \'). Consequently, the collection {G,UA, : (k,\) € E'}
is directed. As (u,v) € E’, so for each p/ < p and v/ < v that there exists (k,\) € E' such

that K > ¢/ and A > /. Since f and S’ are continuously increasing, we have
L H{GrUAy: (5,0 € B} =GLUA,.

From Lemma 1.3.9 the net ({G, U Ay : (k,\) € E'}, C) converges to Fj, U A, in 7y,,. Con-

sequently ¢ (u,v) € ¥(E') C ¢(E). Hence v is continuous. Now we prove that 1 is open,
notice that

() Since for all z € U, < wy and v < wy, either v € G, U A, or P(z,G,UA,) > 5. Let
V' be an open subset of wy X (w; +1). Let (i, v) € V. The element ¢(u,v) = G, U A, of the
set (V) is denoted by J. There exist k < u and A < v such that (k, u] x (\,v] C V.

Let S = {x 0, Ty, ¥} and
Nyse={W € H' :|P(y,W)— P(y,J)| < i for every y € S}.

Since Nyjg < is a neighborhood of J in H'. We want to prove Nys. C (V). Suppose
W € Nyse, and let @ <w; and 8 < w; be such that W = G, U Ag. To show that W € »(V),

we need to show that kK < o < prand A < § <. Since for z,, € S,soz,, € D, CY \G,
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and z,, ¢ A,. Thus z,, ¢ J, therefore, by (x), we have P(z,,,J) > 5.
P(x,,,W) > 0. Thus z,, ¢ W, it follows that z,, ¢ G, and z,, ¢ Az. We deduce that

Indeed, we have

a <pand g <v. Now for x,, € S, thus z,, € A, C J, and therefore, P(z, ,J) = 0. So we
have P(x, ., W) < {, therefore, by (), we have x,, € W. Since W = G, U Ag, this implies
that either x,\ € G, or z,\ € Ag. If z,\ € G, but x,, € U, € D, we must have p < a;
however, we showed above that o < p. Therefore, x,» € Az. Thus A < 3. Consequently,
A < f < wv. Similarly, for z,, € S, so z,, € G, C J, therefore P(x,,,J) = 0. Then we
have P(xz,,, W) < . Therefore, z,, € W, this implies that either ., € G, or z,, € Ag. If
Ty, € Ag, in this case v < 3, but we showed above that 8 < v. So z,, € G,, thus k < «.
Hence, k < o < p. Therefore, 1 is open.

Hence we proved that the subspace H' of (C(Y), Tw,) is homeomorphic to the product
space wy X (wy + 1). Since for all p and v ., € G, U A,. Resultantly, Y ¢ H’'. It remain
to show that H' is closed in the subspace C(Y) \ {Y} of (C(Y),7w,). Let K € H' \ H'.
We need to prove K =Y, suppose on contrary that K # Y. Assume y € Y \ K. There

exists o < wp such that y & (J D,.. Notice that y € G, for every u > py. The subset

K> 1o

Wo={G,US, : p < ppand v < wi} € H' is compact. Thus K € H'\W,. Asy ¢ K,
suppose P(y, K) =€, for € > 0. Let

Ni e = {W € C(Y) : [P(y, W) = P(y, K)| < €}

then it is neighborhood of K in (C(Y),7w,). Then there exist p > pp and v < w; such
that G, U A, € N (y},. Since y € G, and thus P(y,G,UA,) =0. As G, UA, € Nk ().,
thus P(y,G, U A,) < €, which is a contradiction. We have shown that H' is closed in
C(Y)\{Y}. O

Theorem 1.3.11. Consider a metric space (Y, P). The following are equivalent.
(1) (C(Y), Tw,) is metrizable.
(2) (C(Y), Tw,) is hereditarily normal.

16



(3) (CY)\{Y}, 7w,) is normal.

Proof. 1t suffices to prove that (3) = (1). Suppose (3) holds, suppose that (C(Y), 7w,) is
not metrizable. Then (Y, P) is non-separable. Thus by proposition1.3.10 (C(Y) \ {Y'}, 7w,)
contains a closed copy of w; x (wy + 1). Since wy; X (w; + 1) is not normal, which is a
contradictions to the fact that (C(Y) \ {Y'}, 7w, ) is normal. Hence this completes the proof.

[

Proposition 1.3.12. For non-separable metric space (Y, P). Then for anyn > 1, (C(Y), Tw,)

contains a copy of (wy + 1)".

Proof. Suppose H = (w; + 1)" for n > 1, since (Y, P) is not separable, there exist an € > 0
and uncountable e-discrete subset G of Y. We write G = |J_, G, as a disjoint union such
that Gy = {d} and |G, =X, V1 <r <n. Foreach 1 <r < n, let G, = {7, : p < wi},
and for each p < wy, we write M)} = {z} € G, : A < p}. Obviously each M] is closed in Y.
Let ¢ : H — (C(Y), Tw,,) be defined as ¢((u,)) = GoUU,_, M}, . Obviously 1 is one-to-one.
Now we show that 1 is continuous, let U~ is open in (C(Y),mw,). If GoNU # ¢, then
Y=Y (U~) = H. Suppose GoNU = ¢. Let (u,) € =" (U"). Then (GoUU,_, M}, )NU # ¢,
so there exist 1 < 7 < n such that Mﬁ} NU # ¢. Suppose A < p; be such that xf\ € U. Thus
:Uf\ € M) NU for each x > . Consequently, the neighborhood

H[Ohu?"] X ()\Muj] X H[()?NT]

r<j r>j

of (u1,) is contained in ¢p~'(U~). Hence vy ~1(U™) is open. Furthermore, P(z,v(u,)) > A,
for x € Y and A > 0, then we have P(z,¥(v,)) > A, whenever v, < pu, for every r. Hence,
we have verified continuity of . As H is compact, continuous one-to-one function v is an

embedding. O]

Corollary 1.3.13. Consider a metric space (Y, P). The following are equivalent.
(a) (C(Y), Tw,) is metrizable.
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(b) (C(Y)\{Y}, mw,) is metacompact.

(c) (CY)\{Y}, 7w,) is meta-Lindeldf.

(d) (C(Y)\{Y}, 7w,) is orthocompact.
Proof. We prove only (d) — (a), as (¢) — (a) can be shown in a similar fashion and other
statements are straightforward. Suppose that (d) holds, let (C(Y), 7w, ) is not metrizable.
Then (Y, P) is non-separable. So by Proposition 1.3.10 (C(Y) \ {Y'}, 7w,.) contains a closed
copy of wy x (w1+1). As (C(Y)\{Y}, 7w, ) is orthocompact, thus w; X (w;+1) is orthocompact,
which is contradiction. H
Corollary 1.3.14. For a metric space (Y, P). Each of the conditions (1) Sequentiality, (2)

countable tightness, (3) frechetnessis, is equivalent to metrizability of the space (C(Y), Tw,).

Proof. Suppose contrary (C(Y'), 7w, ) is not metrizable. Then (Y, P) is non-separable. By
Proposition 1.3.12, (C(Y'), 7w, ) contains a copy of wy + 1. As w; + 1 does not have countable
tightness. This concludes the proof. O

1.4 Hausdorff metric topology
The aim of this section is to study the Hausdorff metric topology (see [1]). We begin with

the definition of the Hausdorff metric on C(Y).

Definition 1.4.1. Suppose (Y, P) is a bounded metric space. The Hausdorff distance Hp on
C(Y) of metric (Y, P) is defined by

Hp(U,V) =max{ep(U,V),ep(V,U)}.

Then (C(Y), Hp) form a metric space, called Hausdorff metric space determined by (Y, P).

Alternatively, we define the Hausdorff distance Hp on C(Y') as,

Hp(U,V) =sup |P(y,U) — P(y,V)|.

yey
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Our next lemma, characterize the convergence of a sequence in the Hausdorff metric space.

Lemma 1.4.2. A sequence (G,,) € C(Y') converges in Hp to G iff (fa,) — fa uniformly on
Y.

Proof. Suppose (G,) € C(Y') which converges in Hp to G. Let € > 0, there exist nyg € N
such that n > ng then Hp(G,,,G) < €. Thus

Hp(G,,G) =sup |P(y,G,) — P(y,G)| < e implies sup |fa, (y) — fa(y)] <e

yey yey

Since this is true for supremum, so it holds for every y € Y. Hence

|fe.(y) — fa(y)| < e for n > ny.

As this holds for all € > 0, hence (fg,) — f¢ uniformly.

Conversely, assume that (fg,) — f¢ uniformly on Y. Then for each ¢ > 0, there exist
ny € N such that n > ng implies |fa, (v) — fa(y)| < € for each y € Y. So that |P(y,G,) —
P(y,G)| < e for all y € Y. Therefore

sup |P(y,Gn) — P(y,G)| < ¢

yey

and Hp(G,,G) < e. Hence (G,) — G in Hausdorff metric. O

Definition 1.4.3. Suppose (Y, P) is a metric space. The Hausdorff metric topology on C(Y)
is denoted by Ty, that C(Y) inherits from T,. ( Where T, is a topology of uniform convergence

on C(X, R)), under the identification B <> P(., B).

Proposition 1.4.4. Consider a metric space (Y,P). Let A € C(Y) then the function-
als ep(A,.) = (C(Y),Hp) — [0,+0c¢], ep(.,A) : (C(Y),Hp) — [0,+0¢], and Dp(A,.) :

(C(Y),Hp) — [0,400), are each Lipschitz continuous with constant one.

19



Theorem 1.4.5. Consider a metric space (Y, P). The Hausdorff metric topology on C(Y') is
the weakest topology T on C(Y') such that for each A € C(Y)

ep(A,.): (C(Y), 1) — [0, +0o0],

ep(,A): (C(Y), 1) — [0, +00],

Dp(A,.) : (C(Y),7) = [0, +00),

are all T continuous.

Proof. We denotes 7, as a weak topology determined by the family of all such functionals.
Since by Proposition 1.4.4 these functionals are continuous on Hausdorff metric topology and
hence 7, C 7g,. Now we prove that continuity of all functionals of the form ep(., A) and
ep(A,.) alone is enough to prove the reverse inclusion. Fix Gy, and let 7, — im Gy = Gy.
Since by convergence of a net in weak topology with A = Gy, we have lim, ep(Gy, G)) =

ep(Go, Go) = 0 and limy ep(Gy, Go) = ep(Go, Gy) = 0. Consequently,
lim)\ HP(GA, Go) = max{ep(Gm G)\)v €p(G)\, G())} - 07

and we get Hausdorftf metric convergence of a net. Hence 75, C 7. O]

Theorem 1.4.6. Consider a metric space (Y, P) and if d is another compatible metric. Then

Tp = T, on C(Y) iff P and d are uniformly equivalent.

Proof. Assume that P and d are uniformly equivalent. Then for every € > 0, there exist

91 = 61(€) and 3 = do(€) such that for each subset B of Y, we have both
Bp(&l,B) C Bd(E, B) and Bd(52, B) C Bp(él,B).

In consequence, uniform equivalence of the metrics not only produce equality of the hyper-
space, but also uniform equivalence of the induced Hausdorff distance. Conversely, assume
that P and d are not uniformly equivalent. So the identity mapping i : (Y, P) — (Y, d) fails
to be bi-uniformly continuous. Thus we can find ¢ > 0 and sequences < x, > and < y, >
such that for every n, P(z,,y,) < = but d(z,,y,) > €. By the Efremovic Lemma and by
passing to a subsequence, we may let Dy({(z, : n € N}, {y, :n € N}) > . For k=1,2,..,
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take G, = {z, :n € N} U{y, : n > k} and let G = {z,, : n € N}. By bicontinuity of the
identity, neither < x,, > nor < y,, > can have limit points, whence G and every G}, is closed.

Obviously Hp(G, Gy) — 0, whereas for every k, Hy(G,Gy) > §, thus 7y, # Tu,. O
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Chapter 2

Hit-and-Miss and Proximal

Hit-and-Miss Topologies

In this chapter, we will discuss hit-and-miss and proximal hit-and-miss hyperspace topolo-
gies. In particular, the Vietoris topology, Fell topology ,proximal topology and ball proximal
topology are discussed. First we define some notations. Let Y be a Hausdorff space, de-
notes C'(Y) and K(Y') be the set of nonempty closed and compact subsets of Y, respectively.
Let S C Y, we write ST ={B € C(Y): BC S}, S ={BeCY): BNS # ¢}.
If (Y,U) be a uniform space write ST+ = {B € C(Y) : 3V € U with V[B] C S}, where
VIB] = {y € Y : 3b € B with (y,b) € V}. Further, if (Y, P) be a metric space, put
STt ={BeC(Y):30 >0Bp(B,d) C S}. The subbase for hit-and-miss topology on C(Y),
consist of all sets of the type V'~ and (B)", where V is open in Y and B ranges over subfamily
AcCC(Y).

Let (Y, U) be a uniform space. The subbase for proximal hit-and-miss topology on C(Y),
consist of all sets of the type V'~ and (B¢)*", where V is open in Y and B € A C C(Y).
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2.1 Vietoris and Fell topologies

Definition 2.1.1. The Vietoris topology on C(Y') is denoted by 1. All sets of the type U~

and W+, where U and W are open in Y is a subbase for Ty .

Definition 2.1.2. The Fell topology on C(Y'), denoted by T has a subbase all sets of the type

W~ and (K°)*, where W and K are nonempty open and compact subset of Y, respectively.

In the next result, we prove that the Vietoris topology is a weak topology for metrizable

space.

Theorem 2.1.3. Let Y be a metrizable space and denotes D be the set of metrics compatible

forY . Then v on C(Y) is a weak topology determined by the family {P(y,.) 1y € Y, P € D}.

Proof. We denotes 7, as a weak topology determined by the above family of metrics. Suppose
P e D and y € Y be fixed. Since (Bp(y,€))” ={B € C(X) : P(y,B) < €} € 1y, for € > 0.
Also, if F € {B € C(X): P(y, B) > €}, so for some d > ¢ implies F N Bp(y,d) = ¢. Thus,

F € (Bp(y,0)°)" c{B € C(X): Py, B) > ¢}

This shows that each open set of 7y, in 7, as P was arbitrary, hence 7, C 7. Now we prove
that 7y C 7,. Since by Lemma 1.2.3 each set U™, where U is open in Y belongs to each 1y,
and hence to 7,. If V=Y then VT =C(Y) € 7,, and if V = ¢, then V** = ¢ € 7,,. Suppose
V be an open proper subset of Y, and y, € V¢. Take fix A € VT, we introduce a compatible

metric d for which

This means that V* contains a 7, neighborhood of each of its points. Since ANV = ¢,
so by Urysohn’s Lemma ¢ € C(Y,[0,1]) such that ¢(A) = 0 and (V¢) = 1. The metric
d:Y xY — [0, 2] defined as

d(u,v) = min{3, P(u,v)} + [¢(u) — P(v)].
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Obviously, d is a metric on Y equivalent to P. Assume that {B € C(Y) : d(yo, A) — 1 <

d(yo, B)} ¢ V*. So there exist B € C(Y) such that d(yo, A) — L < d(yo, B), and BNV # ¢.

1
Take ¢ € BNV®. As c and yy are both in V¢, we have d(c, yy) < %, thus

1< d(yo, A) < d{yo, B) + 1 < d{yo, ) + <

>~

Which is contradiction, thus V* is 7, open. Hence 7, C 7,. Consequently, 7, is a weak

topology. O]

Remark 2.1.4. Since by Theorem 2.1.3, 1y is a weak topology. Thus we can express the
convergence of a net in terms of distance functionals. i.e, a net (G) in C(Y') is 7y convergent

to Ge C(Y) iff for ally € Y, for all P € D, implies P(y,G) = limy, P(y, G)).

We intend to present the convergence of a net in the Fell topology for Hausdorff uniform

space.

Theorem 2.1.5. Let (Y,U) be a Hausdorff uniform space. A net (Gy)aea in C(Y) is
Tp—convergent to G in C(Y') iff for each V € U and B € K(Y'), there exist \g € A such that
for each X\ > Xy, we have both G\N B C V(G) and GN B C V(G)).

Proof. For Ve U, Be€ K(Y) and G € C(Y), write
[B,V](G)={AeCY): AnNBCV(G)and GNB C V(A)}.

Thus the convergence of the net G to G means that every set [B,V](G) contains G even-
tually. Suppose that the convergence in this sense holds. We prove G 7Tg-convergent to
G, It suffices to work with subbasic 7 open sets. Suppose G € W~, where W is open in
Y. Take symmetric V € U and x € G with z € V(x) C W. Then G € [{z},V](G), if
Gy € [{z},V](G), we have G, € W~. Let B € K(Y), and G € (B°)*. Since B is compact,
so there exist a symmetric entourage V' such that V[G] N B = ¢. Hence, if S € [B, V](G), we

have

SNB=(SNB)NBCV[GINB=¢.
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Therefore, Gy € [B,V](G) = G, € (B°)*, thus G\ Tp-convergent to G. Conversely, suppose
G Tr-convergent to G holds. Take fix B € K(Y) and open symmetric V € U. If GN B = ¢,
so for each A € C(Y) implies that G N B C V(A). In the case G N B # ¢, take an open
symmetric entourage Vo with VoV C V. As G N B is nonempty compact set, thus we can

find a finite subset {y1,y2, ..., yn} of G N B such that GN B C Vo({y1, 92, .., yn}). Therefore
A€M Voly,)~ = GNBCV(A),
Let F'= BNV(G), a compact set. If A € (F°)*, then
ANB=(ANF)UANBNV(G))=¢pU(ANBNV(G)) C V(G).

Thus, take only (F°)* or (N7_;Vo(y;)~) N (F°)", we get 7p-neighborhood of G' contained in
[B,V](G). Hence G € [B,V](G) eventually. O

In the previous theorem, if we take metric space instead of Hausdorff uniform space then

the convergence of a net is characterized below.

Corollary 2.1.6. Suppose (Y, P) is a metric space. A net (Gx)aea in C(Y') is Tp—convergent
to G in C(Y) iff for each B € K(Y'), we have both limy ep(G N B,G,) =0 and limy ep(G N
B,G) =0.

2.2 Ball proximal and Proximal topologies

Definition 2.2.1. Consider a metric space (Y, P). The ball proximal topology on C(Y') is
denoted by Tp,. All sets of the type W~ and (B°)™", where W is open in Y and B is closed

ball is a subbase for Tp,,.

Definition 2.2.2. Consider a metric space (Y, P). The prozimal topology on C(Y') is denoted
by 75,. All sets of the type U~ and Wt where U and W are open in'Y is a subbase for 7s,.

Remark 2.2.3. Notice that for equivalent metric d the sets ST+ are not necessarily conserve.

For instance if P is 0—1 metric on N and the equivalent metric d is defined by d(a,b) = | —1|.
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The set S ={2n:ne€ N} € Sp*, but S & S;*. If d is uniformly equivalent to P then the sets
STt are unchanged. Because it is well known if the metrics P and d are uniformly equivalent
then for each § > 0, we can fined €; = €1(9) and €3 = €2(9) such that for each S CY, we have
both

Bp(S,€1) C By(S,8) and By(S,€2) C Bp(S,0).
Thus the fact that for uniformly equivalent metric d to P, we have 75, = T5,.

Theorem 2.2.4. Consider a metric space (Y, P), and denotes D be the set of metrics which
uniformly equivalent to P. Then the weak topology determined by the family {d(y,.) : y €
Y,d € D} equal to 15, generated by P.

Proof. We denotes 7, as a weak topology determined by the above family of metrics. Suppose
for each d € D, we have 75, = 75, D 1w, thus 75, D sup{mw, : d € D} = 7,,. Now we prove
that 75, C 7,. Since for each open set U in Y and d € D implies U~ belongs to 7y, and
hence to 7,. If V=Y, then V*+ =C(Y) € 7, and if V = ¢, then VT = ¢ € 7,,. Take fix
AeV*tt yye Ve and e <  such that By(A,2¢) C V. We introduce d € D such that

Ae{BeC(Y):d(ys,A) —e <d(yo, B)} C (Ba(A,€))" C (Ba(A,2e)) T Cc VT (2.2.1)

Since {B € C(Y) : d(yo, A) — € < d(yo, B)} € Tw, C Tw, this would prove that V*+ € 7,,. Let
the function ¢ : Y — R be defined as

P(y,A) ify € Ba(A,e)
Y(y) =
€ ny € Bd(Av E)

As 1) is Lipschitz continuous with constant one, it is uniformly continuous, also the metric d
on Y be defined as
d(a,b) = min{z, P(a,b)} + ¢[t(a) — 9 (b)].
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Obviously, d is a metric on Y, which is uniformly equivalent to P. Note that d(x,y) < %
provided =,y € (By(A,¢€))¢, whereas if x € A and y € (By(A,¢€))¢ then d(z,y) > 1. To
establish 2.2.1, we only prove {B € C(Y) : d(yo, A) — € < d(y0, B)} C (Ba(A,€))". Assume
that {B € C(Y) : d(yo,A) — € < d(yo,B)} ¢ (Ba(A,€))". Then there exist B € C(Y)
such that d(yo, A) — € < d(yo, B), and BN (By(A,¢€))® # ¢. Take ¢ € BN (By(A,¢€))°. Now

Yo € V¢ C (By(A,€))°. As c and yo are both in By(A, €)¢, and € < 3, thus
1 <d(yo, A) < d(yo, B) + € < d(yo,c) +e < 5 +e < 1.

Which is contradiction, thus 2.2.1 is valid and hence 75, C 7. O

Therefore, in previous Theorem, a net (G)) in C(Y') is 75, convergent to G € C(Y) iff for
all y € Y, for all P € D, implies P(y,G) = limy P(y, G)).

2.3 Normality of Fell and Vietoris topologies

Our attention of this section is to study the normality of Fell and Vietoris topologies refer to
[18, 14]. We prove that (C(Y'), 7p) is normal iff Y is Lindelof and local compact. For this, we

will use the following results.

Proposition 2.3.1. [6] Let Y be a Hausdorff space. The following are equivalent.
(1) (C(Y), 1r) is Hausdorff.

2) (C(Y

cy

(2) ), Tr) 1S reqular.
(3) (C(Y), 1) is completely regular.
(4)

4) Y 1is locally compact.
Lemma 2.3.2. Let Y be a Hausdorff o-compact space. Then (C(Y),Tr) is o-compact.

Proof. Consider {G,, : n € w} is a sequence of compact sets in Y such that Y = |J{G,, : n €
w}. Therefore C(Y) = U{G, : n € w}. Since by [1] G,, is compact in (C(Y), 7r) for each
n € w. Hence (C(Y), 7r) is o-compact. O
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Consider x be an ordinal. An open cover B = {V,, : a € k} of Y is called well-monotone
cover if V,, ¢ V3 whenever o < 3, a, 8 € k. For any well-monotone cover B we will select the
sub collection U(B) of C(Y') as follows. Suppose « is an ordinal such that B = {V,, : a € k}.
for each a € k take U, = Y\ U{Vps : f < a} and set U(B) = {U, : a € k}. Note that Uy =Y

and for each limit ordinal a € k we have U, = ({Up : 5 < a}.

Lemma 2.3.3. Consider a well-monotone cover B of a Hausdorff space Y. Then U(B) is a
closed set in (C(Y), Tr).

Proof. Let B = {V,, : a € k} be a well-monotone cover. Let A € C(Y)\U(B). Take
pw=min{f € k: Ag Ug}. Recall \{Us: B € K} = ¢ and A # ¢. Obviously, p cannot
be limit, thus © = A 4+ 1. Hence A C U,, thus U\\A # ¢. Let y € U\\A and define
S=(Y\U,) N \{y})". Therefore A€ S and SNU(B) = ¢. O

Lemma 2.3.4. Consider a well-monotone cover B = {V,, : « € w} of a Hausdorff space Y.

If (C(Y), 7r) is normal then Y is o-compact.

Proof. Take H = {{y} : y € Y}. So U(B) and H are 7 closed sets. Since (C(Y),7r) is
normal, then there exist disjoint 7z-open sets W; and W5 such that

U(B) C Wy and H C W,
For every U,, € U(B) there are open sets V", ..., V" and a compact set K, such that

Un € (V)™ =100} N ((K))T € WA

We claim Y = |J{K,, : n € w}. Let thereis x € Y\ J{K, : n € w}. {x} € Wy, then there is

an open neighbourhood S of z and a compact set M with
{z} € ST N (M)" C Wh.

Since M is compact and ({U, : n € w} = ¢ so there is m € w with U,, " M = ¢. Hence
Un U{x} € Wi N Wy, a contradiction. O
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Lemma 2.3.5. Suppose Y is a Hausdorff space and (C(Y),7r) is a normal space. There is

no well-monotone cover B ={V, : a € k} of Y with cofinality of . greater than w.

Proof. Assume on contrary. Take H = {{y} : y € Y}. So U(B) and H are 7r closed sets.
Since (C(Y), 7r) is normal, thus there is continuous mapping g : C(Y) — [0, 1] such that

g(U(B)) =0 and g(H) = 1.

For every n € w and let y, € Y, E, € K(Y), an open neighbourhood V,, of y, and n, € E,
such that

(@) glV N ((En)) ] € (1= 1351, yn € (Bn)S,

() Uy, 0 (U{E; U{y;} -7 <n}) =9,

(€) Ynt1 € Upyy g1 2 M-

Suppose n = 0 and for any yy € Y. Since by continuity of g and g({yo}) = 1 so there are an
open neighbourhood Vj of yo and Ey € K(Y') such that yo & Eo and g[Vy N((Eo)9)t] C (3, 1.
Suppose 1 € « such that U, ,N(EqU{yo}) = ¢. As({Us : B € k} = ¢ and EyU{yo} is compact
so such ng always exist. Consider we defined yq, y1, ..., Yn—1, Vo, V1, -, Va1, Eo, E1, ..., E,_1 and
70,71, ---s n—1. Let y, be any point of U, ,. Since by continuity of g and g({y,}) = 1 thus
there exist V,, and E,, which verify (a). There is n, € s with 5, > n,-1 and U,, N(U{E;U{y;} :
j<nh) =6

Take n = sup{n, : n € w}. Thus n € x and U,, = {U,, : n € w}. For each n € w take
M, = Uy, U{yn}. Then g(M,) € (1 — =5,1] by (a), as M,, € (Vo) N ((E,)°)". Suppose
B € K(Y) such that BN U, = ¢. So there is n € w with U,,, U B = ¢. Hence {M,, : n € w}
Tp-converges to U,, which contradict the fact that ¢(U,) = 0.

]

Theorem 2.3.6. Let Y be a Hausdorff space and (C(Y),7r) is a normal space. Then Y is

Lindelof space.

Proof. Assume that Y is not Lindelof. In the collection of all open cover of Y without any

countable subcover there is an open cover G of Y with the minimal cardinality |G|. Suppose k
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be the first ordinal having cardinality |G|. Then G = {V,, : u < k}. For each pu < k we define
L,=U{V,:n<pu}. Then L, #Y for every pr < k. There is a subfamily {L,, : A < x} of
{L, : p < Kk} which is well-monotone cover of Y. By means of transfinite induction we define a
sequence {uy : A < k} C [0, k) in the following aspect. Suppose o = 0. Having defined py let
fia+1 be the first p > gy such that L,, C L,. For A a limit ordinal, let 11y = sup{pio : @ < A}.
If sup{pa : @« < A} = &, then {L,, : o < A} is an open cover of Y with the cardinality
less than |G|, thus there must exist a countable subcover of {L, : a < A} which leads to
a contradiction by Lemma 2.3.4. So ay < k. For each A < x take M, = L, . Therefore
{M, : X\ < K} is a well-monotone cover of Y. Hence by Lemma 2.3.5, & is cofinal with w. Let

Kn /K, n € w. Define
Tn=U{M.:c<kp}

Thus {7}, : n € w} is a well-monotone cover of Y. Hence Y is o-compact by Lemma 2.3.4, a

contradiction. 0

Theorem 2.3.7. Consider a Hausdorff topological space Y. The following statements are
equivalent.

(1) Y is locally compact and Lindeldf.
(C(Y),1r) is o-compact and regular.
(C(Y), 7r) is Lindeldf.
(C(Y), Tr) is paracompact.
(C(Y), 7r) is normal.
Proof. (1) = (2) if Y is locally compact. Then by Proposition 2.3.1 (C(Y), 7r) is regular.
Since Y is locally compact and Lindeldf, implies Y is o-compact. Thus by Lemma 2.3.2
(C(Y), 7F) is o-compact.

(2) = (3),(3) = (4) and (4) = (5) are obvious. (5) = (1) if (C(Y'), 7r) is normal, then by
Theorem 2.3.6 Y is Lindel6f. Since Y is Hausdorff, thus (C(Y'), 7x) is 71. Hence (C(Y), 7r)
is regular. Finally by Proposition 2.3.1 Y is local compact. [
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Now we will discuss the normality of the Vietoris topology. It is known that if Y is compact
then (C(Y), ) is compact Hausdorff and thus normal. Ivanova in [17], showed that if YV is
a well order space with order topology then (C(Y),7/) is normal implies Y is compact. Now
we show that (C(Y'), 7v/) is normal iff Y is compact with by assuming continuum hypothesis.
First we need some results.

All the upcoming results given below have the condition of CH(continuum hypothesis).

Proposition 2.3.8. Let Y be a separable and countably compact but not compact. Then

[0,w1) can be imbedded in (C(Y),7v) as closed subset.

Proposition 2.3.9. Let Y be a separable, not first countable and countably compact. Then
[0,wq] can be imbedded in (C(Y), v).

Theorem 2.3.10. (C(Y), 7v) is normal iff Y is compact.

Proof. Suppose that (C(Y), 7y) is normal. Suppose W = G, where G be any countable subset
of Y. So (C(W),7y) is normal. If we can show for some separable space K, (C(K),1y) is
normal implies K is compact, thus W will be compact. Then Y would be strongly compact
and compact by [[18], corollary 2.6(d)]. We claim that if K is separable and (C(K),7y) is
normal, then K is compact. Suppose K is separable and (C(K), 1) is normal, but K is not
compact. By [[18], corollary 2.6(a)], K is not first countable. Assume that K is not countable
at y. Suppose V is an open set and y € V such that K — V is not compact. Such V exists
becuse Y is not compact. Assume U be an open set and y € U such that U C V. Suppose
M=K —ﬁ. Then M has the property that K — M is separable and not compact. Let
O be an open set and y € O with O C M. Suppose S; = O and S, =Y — M. Let W = S;US,.
Now W is closed subset of K also (C(W), 1) is homeomorphic to (C(S1), 7v) x (C(S2), Tv).
Since by Propositon 2.3.8 [0,w;) can be imbedded in (C(S2),7y) as closed subset and by
Propositon 2.3.9 [0,w;] can be imbedded in (C(Sy),7v) as closed subset. So [0,w;] x [0,w;)
is closed subset of (C(W), ) and hence of (C(X), 7). Since [0,w;] X [0,w;) is not normal.

Thus (C(X), ) is not normal, which is contradiction. Hence this completes the proof. [
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Chapter 3

Relationship among Hyperspace

Topologies

In this chapter, we will study connections among hyperspace topologies. We have introduced
six topologies on C'(Y') namely, Wijsman topology, Hausdorff metric topology, Vietoris topol-
ogy, Fell topology, ball proximal topology, and proximal topology. The main focus of this
chapter is to completely characterize the relationship among above mentioned hyperspace
topologies. Clearly, 7= C 7y. Since 7p,- convergence of a net (G,) to G is uniform conver-
gence of (P(y,G))) to P(y,G). Consequently, 7w, C 7g,. By a well known that each of the

statements (1) Tw, = 7v, (2) 77 = 7v, (3) Ta, = Tv, is equivalent to compactness of Y.

Theorem 3.0.1. Suppose (Y, P) is a metric space. Then
(_Z) TWp g TBp-
(2) Tw, = B, on C(Y) iff every closed ball B in'Y is strictly P-included in each of its

open e-enlargements Bp(B,€).

Proof. First we prove 1y, C 7p,. For this we need to show that each subbasic 7y ,-open
set lies in 75,. Assume that By € {B € C(Y) : P(y,B) < k}. So for some b € By implies
P(y,b) < k. Take a = k — P(y,b), every point in Bp(b, @) has distance less than k from y,
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then By € (Bp(b,a))” C {B € C(Y): P(y,B) < k}. This shows {B € C(Y) : P(y,B) < k}
is open in 75,. Next we prove that {B € C(Y) : P(y, B) > k} is open in 75,. Let By € {B €
C(Y): P(y, B) > k}. Suppose € = £(k + P(y, By)), we have

Boe{x €Y :Py,x)>e}™t C{reY :Plyz)>e}t c{BeCY): Ply,B) > k}.
Since {z € Y : P(y,x) > €} is the complement of a closed ball, therefore {B € C(Y) :
P(y,B) > k} is open in 75,. Hence 1y, C 75,.

Now we prove (2), since by Lemma 1.2.3 U~ € 7y, where U is open in 7p, requires no
condition on the metric. Therefore for (2) we only prove (B°)*" € 7y, iff every closed ball
B in Y is strictly P-included in Bp(B,e¢).

Assume (B¢)** € 7y, for each closed ball B in Y. Suppose B = Bp(y,d) is a fixed closed
ball and let € > 0. If Bp(B,€) =Y, then

B C Ep(y,5 + 1) C Ep(y,é + 2) - BP(B,G),

and thus B is strictly P-included in Bp(B,¢€). Otherwise take S = Bp(B,¢€)® € C(Y). Since
S € (B°)™* and since by supposition (B¢)*" € 7y, then we can find y1,v2,...,y, € Y and
4 > 0 such that

Seni_{FeCY): Py, F)> P(y;,S) — u} C (B)*.

Now let M = {j € {1,2,...,n} : P(y;,S) > 0} # ¢, because (B°)** # C(Y). Suppose
0 < o < p with @ < min{P(y;,S) : j € M}, and take ¢; = P(y;,S) — «. We claim that
B C UjemBp(y;,€;). If not, there exist by € B such that for every j € M, P(y;,by) > € >
P(y;,S) — p. This means that

{bo} € M {F € C(Y) : P(y;, F) > P(y;,S) — p} C (B)™,
which is contradiction. With a; = P(y;, S) > €; for j € M, we have

B C UjEMBP(yj,Ej) C UjGMBP(yjyaj) C SC = BP(B,G).
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Hence B is strictly P-included in Bp(B,e€).
Conversely, suppose each closed ball B in Y is strictly P-included in their enlargements.
We need to prove (B)*" € 1y, Let By € (B¢)*, so for some € > 0 implies Bp(B,e)N By =

¢, and by supposition, there exist a finite set {y1,vy2,....,yn} and 0 < ¢; < aj, j = 1,2,...,n

such that
B C U} Bp(y;, €;) C Uj_ Bp(y;, o) C Bg.
Hence
ByeM_{FeC(Y): Py, F) > 5(e; + apy} C (B)".
Which is required. [

Remark 3.0.2. By definition proximal topology 75, contains the ball proximal topology Tp,
determined by metric P. Also by Theorem 3.0.1 T, contains Tw,. Thus it follows that 75,

contains Ty, .

Remark 3.0.3. As a weak topologies illustrate by Theorem 2.1.3 and 2.2.4, the Vietoris
topology Ty contains the metric proximal topology s, because Ty is induce by bigger class of
functionals. Consequently, the Vietoris topology is the largest topology among the hit-and-miss

and proxzimal hit-and-miss topologies on C(Y).
The equality of 7 and 75, on C(Y") is discussed in the next proposition.

Proposition 3.0.4. Suppose (Y, P) is a metric space. Then 7y = 75, on C(Y) iff whenever
U,V € C(Y) are disjoint, then U and V are far.

Proof. Assume that nonempty disjoint closed sets are far. Then for every open set W in Y,
we have W+ = W** and thus 7 = 75, on C(Y). Conversely, let U,V € C(Y) are disjoint
and Dp(U,V) = 0. Take U, = EP(U,%), implies U = 75, — limU,, but U # 7y — lim U,

because U,, ¢ (V¢)*. Hence for such a metric space, 7y properly contains 7g,,. [
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Remark 3.0.5. Thus from Theorem 2.1.3 and 2.2.4 we have 7y = sup{mw, : P € D} and

Tsp = sup{mw, : P € D} respectively.

Corollary 3.0.6. Consider a metrizable space Y and denotes D is the set of metrics com-

patible for Y. Then 1y = sup{r;, : P € D}.

Therefore, at the same time the Vietoris topology is the supremum of the Wijsman topolo-
gies and proximal topologies corresponding to compatible metrics for a metrizable space Y

ie.,
v = sup{mw, : P € D} =sup{m, : P € D}.

Lemma 3.0.7. Consider a metric space (Y, P). The following statements are equivalent. (1)

(Y, P) is totally bounded. (2) 75, = Trp. (3) Tu, C Tv.

Theorem 3.0.8. Consider (Y, P) is a metric space. The following are equivalent.

(1) (Y, P) is totally bounded.
(2) THp = TWp-

(3) (C(Y), TH,) is second countable.
Lemma 3.0.9. If a metric space (Y, P) is not second countable. Then 75, # Tw,.

Theorem 3.0.10. Consider a metric space (Y, P). The following are equivalent.
(1) (Y, P) is totally bounded.

(2) Tsp = TWp-

Proof. Assume that (1) holds, then by Theorem 3.0.8 74, = Tw,. Conversely, Assume that
(2) holds, as Ty, is metrizable (and second countable) iff Y is second countable. So by Lemma

3.0.9 75, is second countable. Hence by [[3], Theorem 4.3 |, (Y, P) is totally bounded. O

Lemma 3.0.11. Suppose (Y, P) is a metric space. Then 7 C Ty,.
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Proof. By Lemma 1.2.3 U~ € 7y, where U is open in 7p. Take a compact subset K of ¥
and B € (K¢)*. Suppose Dp(B,K) = A > 0, we can find a finite subset G of K such that
K C Bp(G,%). Then B € (,.o{A € C(Y): P(z,A) > 5} C (K°)*. This shows that (K°¢)"

contains a Ty, neighborhood of each of its points and hence (K¢)™ € ryy,. O

Definition 3.0.12. A metric space (Y, P) is said to have nice closed balls. If B is proper
closed ball in Y. Then B is compact.

Theorem 3.0.13. Suppose (Y, P) is a metric space. Then myw, = 7 on C(Y) iff (Y, P) has

nice closed balls.

Proof. Suppose (Y, P) has nice closed balls. Since for z € Y and € > 0 implies {U € C(Y) :
P(z,U) < €} = (Bp(x,¢))” € 7p. If Bp(z,¢) is proper closed ball in Y. Then there exist
§ > e such that Bp(z,d) is compact. If U € C(Y) and P(x,U) = ¢, then Bp(x,¢) NU # ¢.
It follows that {U € C(Y) : P(z,U) > ¢} = (Bp(w,€)¢)" € 7p. Finally, if Bp(r,¢) =Y, then
{U € CY): P(x,U) > ¢} = ¢ € 7. Conversely, suppose (Y, P) fails to have nice closed
balls. So there exist x and y in Y and € > 0 such that Bp(z, €) is noncompact and P(z,y) > e.
Let {y,} be sequence in Bp(z,€) with no limit point. Then {y,,y} is Tp-convergent to {y},
whereas lim,, o P(z, {yn,y}) # P(x,{y}). This shows that my, # 7 O

Corollary 3.0.14. Suppose (Y, P) is a metric space. Then 1, = 7 on C(Y) iff Y is

compact.

Proof. 1t follows easily from Theorems 3.0.8 and 3.0.13, because a totally bounded metric
space with nice closed balls can be expressed as a finite union of compact balls and is thus

compact. ]

Corollary 3.0.15. Suppose (Y, P) is a metric space. Then 75, = 1 on C(Y) iff Y is

compact.

Proof. Assume that Y is compact. Then 7/ = 7y, and 75, lies between them. Conversely,
assume that 75, = 7, we have both 1y, = 77 and 75, = Tw,, thus (Y, P) has nice closed

balls, and (Y, P) is totally bounded. Hence Y must be compact. O
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