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Preface

There have been world of good achievements in hyperspace topologies. Since the start of last

century, some hyperspace topologies have been introduced and developed. Specifically, Haus-

dorff metric and Veitoris topologies [1, 22]. The mentioned topologies are impeccable, in the

sense of their usage at the least. It is a monumental belief that the most imperative hyper-

space topologies have risen as topologies determined by families of geometric set functionals

refer to [4].

In fact, hyperspace topologies and related set convergence notation have been considered

at the outset of last century, the way we consider to the subject reflect ultimate modren

contribution by mathematicians whose mandatory research interests exist outside the general

topology. The revival of the subject comes from work of R. Wijsman [25] in the mid of

1960’s, and its advancements over the next fifteen years was to a gigantic breakthrough in

the hands of U. Mosco, R. Wets, H. Attouch, and their associates. This new approach

was advanced for the most part in North America, Europe, Italy and France, in particular.

This monumental interest is due to fruitfulness of these various areas of application (such

as probability, statistics or variational problem, for example). It also describes the effort in

comprehending their structure, common feature and general pattern in order to find a common

description for them. About this latter view, we refer the papers [4, 23, 24], devoted to a

description and classification of the hyperspace topologies as the outset topology, namely as

the weakest topologies which makes continuous families of real-valued functionals defined on

nonempty closed subsets of Y . Not only this is helpful in order to have a common description

of the hyperspace topologies, but also enables us to tackle some application in an orthodox

way (see [5] and [21]).

Three types of hyperspace topologies which comprises familiar topologies are as follows:

the hit-and-miss, the proximal hit-and-miss [1, 6, 7] and the weak topologies generated by

gap and excess functionals on nonempty closed subsets of Y [1, 4, 15], respectively. As a

prototype of weak hyperspace topologies, we must recognize the Wijsman topology, which is



the weak topology determined by the distance functionals seen as functionals of set argument.

It is a basic tool in the construction of the lattice of hyperspace topologies, above mentioned

and many other familiar hyperspace topologies has risen as supreme and infima, respectively

of appropriate Wijsman topologies [3].

Let (Y, τ) be an arbitrary Hausdorff topological space. We denote the collection of

nonempty, closed subset of Y by C(Y ). We will investigate topologies on C(Y ) such topolo-

gies are called hyperspace topologies. The focus of the thesis is to explain the hyperspace

topologies. This thesis is divided into three chapters. In chapter 1, we will discuss the Wi-

jsman and Hausdorff metric topologies. Chapter 1 also helps to explain the normality of the

Wijsman topology. The chapter 2 deals with the hit-and-miss and the proximal hit-and-miss

topologies. The most of the known Fell, Vietoris, proximal and ball proximal topologies are

discussed. In chapter 2, the normality of the Fell and Vietoris topologies is also discussed.

The last chapter describes the relationship among hyperspace topologies.
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Abstract

The aim of this thesis is to study the hyperspace topologies. In this thesis we will discuss the

Wijsman, Hausdorff metric, Fell, Vietoris, Proximal and Ball proximal topologies. Some re-

sults concerning the normality of the Wijsman, Fell and Vietoris topologies are also discussed.

Furthermore, we describe the relationship among above mentioned hyperspace topologies.
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Chapter 1

The Hausdorff metric and Wijsman

Topologies

In this chapter, hyperspace topologies on the metric space are studied. There are many such

hyperspace topologies that have been studied extensively. Our aim of this chapter is to study

two of these hyperspace topologies, the Hausdorff metric topology and the Wijsman topology

determined by family of distance functionals. The Wijsman topology depends on the base

space Y and the metric P . The Wijsman topology, defined first for some application in statis-

tics and together used in many applications linked to variational problems. Moreover, the

Wijsman topology is not only useful in applications but also as the building block of many

other hyperspace topologies. The Hausdorff metric topology is one of the oldest and best-

studied hyperspace topologies because of its applicability to different areas of mathematics [1].

Many completeness type properties of the Hausdorff metric topology are stock theorems in

topology. For example, the Hausdorff metric topology is compact (resp. totally bounded) iff

Y is. Moreover, the local compactness [11] and cofinal completeness [2] are described in Haus-

dorff metric topology. The Hausdorff metric topology amounts to the uniform convergence of

distance functionals while the Wijsman topology is the topology of pointwise convergence of

distance functionals corresponding to fixed metric P . Notice that two uniformly equivalent
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metrics fail to determine the same Wijsman topologies, but this fact is true for the Hausdorff

metric topology.

We first present the appropriate terms. Let (Y, P ) be a metric space and let U and V be

two nonempty subset of Y . The gap DP (U, V ) between U and V is given by

DP (U, V ) = inf{P (a, b) : a ∈ U, b ∈ V },

the excess of U over V is defined by

eP (U, V ) = sup{P (a, V ) : a ∈ U},

where P (a, V ) is the distance functional defined as

P (a, V ) = inf{P (a, v) : v ∈ U}.

Our basic references for general topology and set theoretic are [13] and [19]. We will denote the

open ball and closed ball centered at y0 in the P metric by BP (y0, ε) = {y ∈ Y : P (y, y0) < ε}

and BP (y0, ε) = {y ∈ Y : P (y, y0) ≤ ε} for ε > 0, respectively.

A topological space Y is said to be first-countable if it has a countable local base at each

point of Y . If a space Y has a countable base for its topology, then Y is said to be second-

countable. Obviously, second-countable implies first-countable space. A topological space Y

is said to be a Lindelöf space if every open cover of Y is reducible to a countable subcover.

We say that a topological space (Y, τ) is metrizable if there exist a metric P on Y such

that τ = τP , where τP is the topology induced by metric P . A topological space Y is said to

be separable if there exist a countable subset A of Y such that A = Y .

A topological space Y is said to be Hausdorff if for each pair u, v of distinct points of Y ,

there exist disjoint open sets G and H such that u ∈ G and v ∈ H. A topological space Y

is said to be normal if for each pair of disjoint closed sets A and B of Y , there exist disjoint
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open sets containing A and B respectively. A space Y is said to be hereditary normal if every

subspace of Y is normal.

Theorem 1.0.1. Every metrizable space is normal.

Theorem 1.0.2. Every compact Hausdorff space is normal.

[10] A uniformity on a set Y is a filter U on Y × Y such that

(Q1) 4(y) ⊂ V , for all V ∈ U , where 4(y) = {(y, y) : y ∈ Y }.

(Q2) for all V ∈ U , ∃ W ∈ U , such that W ◦W ∈ V , where W ◦W = {(x, y) ∈ Y × Y :

∃z ∈ Y with (x, z) ∈ W and (z, y) ∈ W}.

(Q3) for all V ∈ U implies V −1 ∈ U , where V −1 = {(x, y) ∈ Y × Y : (y, x) ∈ V }. The

sets in U are called entourages. The couple (Y, U) is called a uniform space.

1.1 Weak topology

Definition 1.1.1. [1] Suppose {(Yj, τj) : j ∈ I} is a collection of a Hausdorff spaces and Y

is a nonempty set. Assume that < = {gj : j ∈ I} is a collection of functions, where for every

j, gj : Y → Yj. Then the weak topology τ< on Y determined by < is the smallest topology τ

on Y such that each gj is continuous.

It would seem all sets of the type g−1
j (Uj) where Uj is open in τj is a subbase for τ<.

Example 1.1.2. Suppose {(Yi, τi) : i ∈ I} is a collection of Hausdorff spaces. The product

topology on
∏

i∈I Yi is the weak topology determined by the family of projection maps {pj : j ∈

I} where pj :
∏

i∈I Yi → Yj is defined by pj(y) = y(j).

Example 1.1.3. Consider a topological space (Y, τ). Let B ⊂ Y , then the relative topology on

B is a weak topology determined by single inclusion map iB : B → Y be defined by iB(b) = b.

Now, we describe the convergence of a sequence or net in weak topologies in next theorem.
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Theorem 1.1.4. Let < = {gj : j ∈ I} induced a topology τ< on Y . Then a net < yλ > in Y

is τ<-convergent to y ∈ Y iff limλ gj(yλ) = gj(y) for every j ∈ I.

Proof. Assume that y = τ< − lim yλ, then for every j ∈ I, implies limλ gj(yλ) = gj(y) by the

continuity of every gj. Conversely, assume that limλ gj(yλ) = gj(y) for every j ∈ I. SupposeW

is a τ< open subset of Y . So there exist j1, j2, j3, ..., jn ∈ I and open sets Wj1 ,Wj2 ,Wj3 , ...,Wjn

in a mark spaces of gj1 , gj2 , gj3 , ..., gjn such that

y ∈ ∩nm=1g
−1(Wjm) ⊂ W .

Since by continuity of gjm for m = 1, 2, ..., n there exist λ0 ∈ Λ such that for each m and

λ ≥ λ0, we have gjm(yλ) ∈ Wjm . Consequently, yλ ∈ W for λ ≥ λ0.

1.2 Wijsman topology

Definition 1.2.1. [1] Suppose (Y, P ) is a metric space. The lower Wijsman topology (resp.

upper Wijsman topology) on C(Y ) defined by the metric P , denoted by τ−WP
(resp. τ+

WP
) is the

smallest topology on C(Y ) such that y ∈ Y the distance functional P (y, .) : C(Y )→ [0,+∞) is

upper semicontinuous (resp. lower semicontinuous). The Wijsman topology of (Y, P ), denoted

by τWP
is the smallest topology on C(Y ) such that functional P (y, .) : C(Y ) → [0,+∞) is

continuos for y ∈ Y .

A Wijsman topology τWP
on C(Y ) has {B ∈ C(Y ) : P (y,B) > k} and {B ∈ C(Y ) :

P (y,B) < k}, k > 0 and y ∈ Y as a subbase. Moreover, the local base for τWP
at B ∈ C(Y )

consist of all sets of the type

U(B,F,ε) = {A ∈ C(Y ) : |P (y,B)− P (y, A)| < ε for all y ∈ F},

where ε > 0 and F is finite subset of Y .

A net (Gλ)λ∈Λ in C(Y ) is τWP
−convergent to G in C(Y ), if for all y ∈ Y implies

limλ P (y,Gλ) = P (y,G). Let us first define fG : Y → R by fG(y) = P (y,G), whereG ∈ C(Y ).
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Theorem 1.2.2. A net (Gλ) of closed subset of Y converges to G in (C(Y ), τWP
) iff (fGλ)→

fG pointwise.

Proof. Suppose (Gλ) → G in (C(Y ), τWP
). Consider y ∈ Y and ε > 0. There exist λ0 ∈

Λ such that Gλ ∈ U(G,y,ε) for λ ≥ λ0. Hence |P (y,Gn) − P (y,G)| < ε for λ ≥ λ0 ⇒

|fGn(y)− fG(y)| < ε. Conversely, assume (fGλ)→ fG pointwise. So for each y ∈ Y and ε > 0,

there exist λ0 ∈ Λ such that λ ≥ λ0 implies |fGλ(y)− fG(y)| < ε. This means that if λ ≥ λ0

then |P (yi, Gλ)− P (yi, G)| < ε, for i = 1, 2, ..., n. Hence Gλ ∈ U(G,yi,ε) for λ ≥ λ0.

Therefore, Wijsman convergence of a net of closed sets amounts to the pointwise conver-

gence of the affiliate net of distance functionals. On the other hand, the mapping B → P (., B)

is an embedding of (C(Y ), τWP
) into the space of continuous functions C(Y,R), equipped with

the topology of poinwise convergence.

Now, we characterize the Wijsman convergence with the help of following lemma.

Lemma 1.2.3. [1] For a metric space (Y, P ) a net (Gλ)λ∈Λ in C(Y ) is τWP
−convergent to

G in C(Y ) iff the following axioms are satisfied.

(C1) If G ∩ U 6= φ then Gλ ∩ U 6= φ eventually for every nonempty open set U .

(C2) If 0 < δ < β and then BP (y, β) ∩G = φ implies BP (y, δ) ∩Gλ = φ eventually.

Proof. Claim the lemma is proved by showing that (C1) and (C2) are equivalent to the con-

ditions that for all y ∈ Y , P (y,G) ≥ lim supλ P (y,Gλ) and P (y,G) ≤ lim infλ P (y,Gλ),

respectively. Assume that P (y,G) ≥ lim supλ P (y,Gλ) holds, for each y ∈ Y and suppose

G ∩ U 6= φ for open subset U of Y . Take x ∈ G and δ > 0 such that BP (x, δ) ⊆ U . As

P (x,G) = 0, eventually P (x,Gλ) < δ will hold, and for each such λ BP (y, δ) ∩ Gλ 6= φ.

Hence (C1) is satisfied. Suppose (C1) holds, fix y ∈ Y and β > 0 and take x ∈ G with

P (y, x) < P (y,G) + β
2
. Since by (C1), BP (x, δ) ∩ Gλ 6= φ for all large λ, and for all such λ

P (y,Gλ) ≤ P (y, x) + P (x,Gλ) < P (y, x) + β
2
, therefore P (y,Gλ) < P (y,G) + β. Similarly,

we can prove the other equivalence.
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Obviously, axiom (C2) implies the closure condition given below. If all neighborhoods U

of y ∈ Y intersect Gλ for cofinal set of indices λ, then y ∈ G. Notice that this condition with

(C1) does not implies the Wijsman convergence in general.

Example 1.2.4. Suppose Y = {yn, n ∈ N}, let a metric P on Y is defined as

P (y1, yn) = 2 for n > 1, and P (yn, ym) = 1 for 1 < n < m.

Let Gn = {y1, yn+1, yn+2, ...} for each n ∈ N , and G = {y1}. Thus G,G1, ... satisfies axiom

(C1) of Lemma 1.2.3 and also above closure condition, but Gn does not converges to G with

respect to τWP
, because for all n ≥ 2 we have P (y2, Gn) = 1, and P (y2, G) = 2.

We say that Wijsman topology τWP
on C(Y ) is admissible. If the relative topology that

Y inherits from τWP
under the identification y → {y}, coincides τP .

Lemma 1.2.5. [1] Suppose (Y, P ) is a metric space. Then τWP
on C(Y ) is Hausdorff, com-

pletely regular and admissible.

We say a subset W of a metric space (Y, P ) is ε-discrete if for any w1, w2 ∈ W and w1 6= w2,

we have P (w1, w2) > ε. By Zorn’s lemma, for any ε > 0, Y has maximal ε-discrete subset Wε

with respect to set inclusion, so by maximality of this set, BP (Wε, ε) = Y .

Theorem 1.2.6. Suppose (Y, P ) is a metric space. Then the following are equivalent:

(1) Y is separable.

(2) τWP
on C(Y ) is second countable.

(3) τWP
on C(Y ) is metrizable.

(4) τWP
on C(Y ) is first countable.

Proof. Suppose that (1) holds. Assume that D is a countable dense subset of Y . Since by the

inequality |P (y,B)− P (x,B)| ≤ P (x, y) the sets of the form {B ∈ C(Y ) : P (y,B) < δ} and

{B ∈ C(Y ) : P (y,B) > δ} for (y ∈ D and δ is positive rational), form a countable subbase

for τWP
.
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(2)⇒ (3). Since τWP
is completely regular, it follows from Urysohn metrization theorem,

τWP
is metrizable.

(3)⇒ (4). Obviously.

(4)⇒ (1). If for all ε-discrete subset of Y are countable, then for any n ∈ N , there would

exist 1
n
-discrete set Dn such that BP (Dn,

1
n
) = Y . Thus Y would be separable. If Y is not

separable. Then there exist uncountable ε-discrete set D for some ε > 0. Since P (y, Y ) = 0

for y ∈ Y . So for Y ∈ C(Y ) and a finite subset E of Y and δ > 0, the collection

B(E, δ) = {B ∈ C(Y ) : P (x,B) < δ, ∀ x ∈ E}

form a local base for τWP
at Y . Take a countable family {B(Ei, δi) : i ∈ N} of such sets, since

D is uncountable so there exist x0 ∈ D such that P (y, x0) > ε
2

for y ∈
⋃
Ei. As a result, for

any i, {B ∈ C(Y ) : P (x0, B) < ε
2
} is a neighborhood of Y in τWP

fails to contain Ei, and

so fails to contain B(Ei, δi). Therefore, this particular local base is not countable, and hence

τWP
fails to be first countable.

Notice that, if D = {yn : n ∈ N} is any dense subset of Y , the metric δP on C(Y ) defined

by

δP (U, V ) =
∑∞

j=1 2−jmin{1, |P (yj, U)− P (yj, V )|}

is compatible with τWP
. The following example shows that completeness of the metric P does

not implies the completeness of δP . Consider (Y, P ) and Gn defined above in Example 1.2.4,

and take D = Y be countable dense subset. If n < m then δP (Un, Vm) =
∑m

i=j+1 2−i, hence

< Gn > is δP -cauchy. If < Gn > −τWP
converges to some B ∈ C(Y ). So we must have for

each y ∈ Y P (y,Gn)→ P (y,B). But P (., Gn) converges pointwise to the function g : Y → R

defined by

g(y) =


0, If y = y1

1, If y 6= y1

7



It seems, for any nonempty closed subset of Y , g is not distance functional. The natural

question arises. When is a pointwise limit of a net a distance functional? An answer is given

in the next proposition.

Proposition 1.2.7. Let (Y, P ) be a metric space and g ∈ C(Y,R) be in the closure of

{P (., B) : B ∈ C(Y )} with respect to the topology of pointwise convergence. Let G = {y ∈

Y : g(y) = 0} is nonempty, and for all y ∈ Y , we have P (y,G) ≤ g(y). Then g is distance

functional for the set G.

Proof. We need to prove that g(y) ≤ P (y,G) for y ∈ Y . By supposition P (y,G) ≤ g(y).

Fix y ∈ Y . Assume on contrary P (y,G) < g(y) holds. Let η = g(y) − P (y,G), and take

a ∈ G with P (y, a) < P (y,G) + η
3
. As g is pointwise limit of distance functional, there exist

F ∈ C(Y ) for which |g(a) − P (a, F )| < η
3

and |g(y) − P (y, F )| < η
3
. Since g(a) = 0, this

implies,

g(y) < P (y, F ) + η
3
≤ P (y, a) + P (a, F ) + η

3
< P (y, a) + g(a) + 2η

3
< P (y,G) + η.

Which is contradiction to the definition of η.

The metrics, P and P ′′, on a set Y is said to be equivalent if the corresponding metric

topologies are the same, and is said to be uniformly equivalent if they determine the same

uniformity.

Remark 1.2.8. If two metrics are equivalent even metrics are uniformly equivalent need not

determine the same Wijsman topologies. Suppose Y = Z+ and a metric P on Y defined

by P (u, v) = | 1
u
− 1

v
|, ∀ u, v ∈ Y . Then P is equivalent to discrete metric δ. Take Gn =

{n, n + 1, ...} for n ≥ 1 and G = {1}. Therefore Gn τWδ
−convergent to G. On the other

hand, Gn does not τWP
−convergent to G.

More interestingly we have two metrics they are not uniformly equivalent but give the same

Wijsman topologies. Let us define a metrics P and δ on Y = Z+ as follows, P (u, v) = | 1
u
− 1

v
|

and δ(u, v) = 1 + | 1
u
− 1

v
|, for u 6= v. i.e τWδ

= τWP
Since P and δ are equivalent metrics,
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so we only prove upper Wijsman convergence. Obviously, τWP
⊆ τWδ

. Suppose Gn ∈ C(Y )

converges to G ∈ C(Y ) with respect to τWδ
and Gn does not converges to G with respect

to τWP
. Then there exist x0 ∈ Y, 0 < ε < µ such that for each n there is mn ≥ n with

G ∩ BP (x0, µ) = φ and Gmn ∩ BP (x0, ε) 6= φ. For each n let us take xmn ∈ Gmn ∩ BP (x0, ε).

We take α, β such that 0 < α = ε + 1 < β = µ + 1, it follows that Gmn ∩ Bδ(x0, α) 6= φ but

G ∩ Bδ(x0, β) = φ because Bδ(x0, β) = BP (x0, µ), a contradiction. Hence Gn converges to G

with respect to τWP
. Thus τWδ

= τWP
.

We discuss the necessary and sufficient conditions on metrics P and δ which ensure that

P and δ will come up with same Wijsman topologies.

Let (Y, P ) be a metric space and U and V be two nonempty subset of Y such that U ⊆ V .

We call U is strictly P -included in V if there exist a finite subset y1, y2, ..., yn of V and

0 < βj < ηj, j = 1, 2, ...n such that

U ⊂ ∪nj=1BP (yj, βj) ⊂ ∪nj=1BP (yj, ηj) ⊂ V .

We call U is P -included in V if there exist a finite subset y1, y2, ..., yn of V and 0 < βj,

j = 1, 2, ...n such that

U ⊂ ∪nj=1BP (yj, βj) ⊂ V .

Theorem 1.2.9. Suppose (Y, P ) and (Y, δ) are equivalent metric spaces. Then τWP
= τWδ

on C(Y ) iff each proper open P -ball strictly δ-includes each concentric open P ball of smaller

radius, and each proper open δ-ball strictly P -includes each concentric open δ ball of smaller

radius.

Proof. We prove the following.

(a) ∀ y ∈ Y , if BP (y, ε) 6= Y and 0 < β < ε, the ball BP (y, β) is strictly δ-included in

BP (y, ε) ⇒ τWP
⊂ τWδ

.

(b) ∀ y ∈ Y , if Bδ(y, ε) 6= Y and 0 < β < ε, the ball Bδ(y, β) is strictly P -included in

Bδ(y, ε) ⇒ τWδ
⊂ τWP

.

9



Assume that (a) holds, and let a net (Gλ)λ∈Λ in C(Y ) is τWδ
−convergent to G in C(Y ).

We now use Lemma 1.2.3 for Wijsman convergence. Let G ∩ U 6= φ, where U is τP open

set. Take y ∈ G and 0 < β < ε such that BP (y, β) ⊂ BP (y, ε) ⊂ U . So by (a), there exist

v ∈ BP (y, ε) and α > 0 such that y ∈ Bδ(v, α) ⊂ BP (y, ε). As G ∩ Bδ(v, α) 6= φ and (Gλ)λ∈Λ

τWδ
-convergent to G. Thus (Gλ) ∩ Bδ(v, α) 6= φ eventually. Since Bδ(v, α) ⊂ U . Hence

(Gλ)∩U 6= φ eventually. Fix y ∈ Y and 0 < β < ε such that G∩BP (y, ε) = φ. As BP (y, ε) is

proper ball, therefore by (a) we can find y1, y2, ..., yn in BP (y, ε) and 0 < βj < εj, j = 1, 2, ...n,

such that

BP (y, β) ⊂ ∪nj=1Bδ(yj, βj) ⊂ ∪nj=1Bδ(yj, εj) ⊂ BP (y, ε).

Since for all j, G ∩ Bδ(yj, εj) = φ. Hence by τWδ
-convergence implies that for all j, Gλ ∩

Bδ(yj, βj) = φ eventually. Thus Gλ ∩BP (y, β) = φ eventually. Analogously, we can prove the

statement (b).

Conversely, we claim that if the statements (a) (resp. (b)) fails, then τWP
6⊂ τWδ

(resp. τWδ
6⊂

τWP
) respectively. Assume that (a) is not holds, and in particular take y0 = y, β0 = β, and

ε0 = ε for which BP (y, β) is not strictly δ-included in BP (y, ε) 6= Y . Let v ∈ BP (y0, ε0), and

δ(v,B) = ψ(v), where B is the complement of BP (y0, ε0). So for each y1, y2, ..., yn in BP (y0, ε0)

and 0 < β1, β2, ..., βn we have

BP (y0, β0) 6⊂ ∪nj=1Bδ(yj, ψ(yj)− βj).

Thus for any y1, y2, ..., yn inBP (y0, ε0) andm ∈ Z+, there exist an element y = σ(y1, y2, ..., yn,m)

in BP (y0, β0) such that for j = 1, 2, ..., n

y 6∈ {v ∈ Y : δ(v, yj) < (1− 1
m

)ψ(yj)}.

Suppose Σ be the collection of finite subset of BP (y0, ε0). Thus (Σ,⊆) is a poset. As (N,≤)

is a poset. Equipping Σ×N with the product partial order, and

(S,m)→ B ∪ σ(S,m)
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where σ(S,m) is defined above is a net from Σ×N to Y . Then a net σ(S,m) τWδ
-converge

to B. Obviously, first axiom of Lemma 1.2.3 for τWδ
-convergence is satisfied. Now we prove

the second axiom, let y ∈ Y and 0 < α < η with Bδ(y, η) ∩ B = φ. Since η ≤ ψ(y), and we

can take m ∈ N such that

(1− 1
m

)ψ(y) ≥ α.

Thus if (S, k) ≥ ({y},m), we have σ(S, k) 6∈ {v ∈ Y : δ(v, y) < (1 − 1
m

)ψ(y)}, ∀ y ∈ S, and

in particular, σ(S, k) 6∈ {v ∈ Y : δ(v, y) < (1 − 1
m

)ψ(y)}. Consequently, σ(S, k) can not lie

in Bδ(y, α). But on the other hand, σ(S,m) does not converges to B with respect to τWP
.

Because lim supP (y0, σ(S,m)) ≤ β0 < ε0 ≤ P (y0, B).

1.3 Normality of the Wijsman topology

In this section we will discuss the normality and metrizability of the Wijsman topology.

About the normality of the Wijsman topology, we mention the papers [16] and [8]. By a well

known result [20], if (Y, P ) is a separable metric space iff (C(Y ), τWP
) is metrizable and hence

normal. Di Maio In [12], raised the following problem. Is (C(Y ), τWP
) normal iff (C(Y ), τWP

)

metrizable? We will present the solution of this problem in many classes of metric spaces

given below.

Lemma 1.3.1. Suppose δ > 0 and (Y, P ) is a 0− δ metric space. If (C(Y ), τWP
) is normal

then Y is countable.

Proof. Since (Y, P ) has nice closed balls, then by Theorem 3.0.13, we have τWP
= τF . By

Theorem 2.3.6, Y is Lindelöf. Hence Y is countable.

Remark 1.3.2. In the above result we observe that the normality of τWP
is equivalent to

metrizablity.

Lemma 1.3.3. Let (Y, P ) be a metric space and take a closed discrete subset S ⊂ Y . Consider

for each y ∈ Y \ S, the following property is satisfied. There is εy and at most one sy ∈ S
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with P (y, sy) < εy, for all other s ∈ S satisfied P (y, s) = εy. Then (C(S), τWP |S) is a closed

subspace of (C(X), τWP
).

Proof. Since S is a closed, then C(S) is a closed set in (C(Y ), U−), so in (C(Y ), τWP
). Let

Gλ ∈ C(S) is τWP
-converge to G ∈ C(S). Then P (y,Gλ) → P (y,G), for all y ∈ Y . Since

S ⊂ Y implies Gλ converges to G with respect to τWP |S . Now let Gλ ∈ C(S) converges to

G ∈ C(S) with respect to τWP |S and take y ∈ Y \S. We have the following cases.

(1) P (y, s) = εy for all s ∈ S

(2) There is sy ∈ S with P (y, sy) = λ < εy and P (y,G) < εy.

(3) There is sy ∈ S with P (y, sy) = λ < εy and P (y,G) = εy.

In (1) P (y,Gλ) = εy → εy = P (y,G).

In (2) sy ∈ G. So sy ∈ Gλ eventually and hence P (y,Gλ)→ λ = P (y,G). In (3) sy /∈ G.

Eventually, sy /∈ Gλ, and hence P (y,Gλ)→ εy = P (y,G).

Consider a metric space (Y, P ) and δ > 0, a uniformly equivalent metric space (Y, Pδ)

defined as Pδ(u, v) = min{P (u, v), δ} for u, v ∈ Y .

Theorem 1.3.4. Suppose (Y, P ) is a metric space. If for each ε > 0, there is δ ∈ (0, ε) such

that (C(Y ), τWPδ
) is normal, then Y is separable.

Proof. Let Y be a non separable, so there exist an ε > 0 and uncountable ε-discrete subset

D of Y . Let δ < ε
2

such that (C(Y ), τWPδ
) is normal. Then by Lemma 1.3.3 (C(D), τWPδ|D

)

is a closed subset of (C(X), τWPδ
) and thus normal. By Lemma 1.3.1 |D| = ℵ0, which is a

contradiction. Hence Y is separable.

A subset A of Y is said to be totally bounded if for every ε > 0, there exist a finite subset

G of A such that A ⊂ BP (G, ε).

Lemma 1.3.5. Consider every ball in a metric space (Y, P ) is totally bounded. If N is

uniformly equivalent metric space on Y , then τ+
WP
⊆ τ+

WN
.
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Proof. Suppose Gn ∈ C(Y ) converges to G ∈ C(Y ) with respect to τWN
and Gn does not

converges to G with respect to τWP
, so there exist x0 ∈ Y, 0 < ε < µ such that for each n

there is mn ≥ n with G ∩ BP (x0, µ) = φ and Gmn ∩ BP (x0, ε) 6= φ. For each n let us take

xmn ∈ Gmn ∩ BP (x0, ε). Since P and N are uniformly equivalent, there exist λ1 and λ2 > 0

such that for each x, y ∈ Y , N(x, y) < λ1 implies P (x, y) < µ − ε and P (x, y) < λ2 implies

N(x, y) < λ1
2

. Since BP (x0, ε) is totally bounded in (Y, P ), we can find y1, y2, ..., yk ∈ BP (x0, ε)

with BP (x0, ε) ⊆ ∪ki=1BP (yi, λ2). Consequently, there is i, 1 ≤ i ≤ k, such that xmn ∈

BP (yi, λ2) frequently. Since BP (yi, λ2) ⊆ BN(yi,
λ1
2

), it follows that Gmn ∩ BN(yi,
λ1
2

) 6= φ

frequently. On the other hand, z ∈ BN(yi, λ1) implies N(yi, z) < λ1 then P (yi, z) < µ − ε.

P (x0, z) ≤ P (x0, yi) + P (yi, z) < µ − ε + ε = µ, so z ∈ BP (x0, µ), i.e BN(yi, λ1) ⊆ BP (x0, µ)

and hence G ∩BN(yi, λ1) 6= φ, which is a contradiction.

For a metric space (Y, P ) and k > 0, a uniformly equivalent metric space (Y,Nk) defined

as Nk(x, y) = min{P (x, y), k}. We have τ+
WNk
⊆ τ+

WP
, suppose that Gi ∈ C(Y ) converges to

G ∈ C(Y ) with respect to τ+
WP

and take any x ∈ Y and 0 < ε < µ. If G ∩ BNk(x, µ) = φ,

then BNk(x, µ) 6= Y ; thus BNk(x, µ) = BP (x, µ) and BNk(x, ε) = BP (x, ε).

Theorem 1.3.6. Consider a metric space (Y, P ). The following are equivalent.

(1) For every k > 0, τ+
WP

= τ+
WNk

.

(2) For every k > 0, τ+
WP
⊆ τ+

WNk

(3) Every proper closed ball in (Y, P ) is totally bounded.

Proof. By Lemma 1.3.5 we only need to show that 1⇒ 2. Assume that there is proper closed

BP (x, t) which is not totally bounded. Then there exist k > 0 such that BP (x, t) /∈ BP (G, 2k)

for every finite subset G of BP (x, t). We can take a sequence yn of elements of BP (x, t)

such that P (yi, yj) > 2k for i 6= j. Take y0 ∈ Y − BP (x, t) and number λ, δ such that

t < λ < δ and P (x, y0) > δ > λ > t. Let Gn = {xn} and G = {y0} for n ∈ N . Then Gn

converges to G with respect to τ+
Nk

; take x0 ∈ Y , and 0 < ε < µ. If G ∩ BNk(x0, µ) = φ

then BNk(x0, µ) = BP (x0, µ) and µ ≤ k. Suppose for each n ∈ N , there exist kn ∈ N
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such that ynk ∈ BNk(x0, ε) = BP (x0, ε). Then P (x0, ynk) < ε < µ ≤ k for n ∈ N and

hence P (ynk , ynm) ≤ P (ynk , x0) + P (x0, ynm) < 2k, a contradiction. On the other hand,

G ∩ BP (x, δ) = φ but Gn ∩ BP (x, λ) 6= φ, for all n ∈ N and hence Gn does not converges to

G with respect to τ+
WP

.

Corollary 1.3.7. Suppose (Y, P ) is a metric space. Then every proper closed ball in Y is

totally bounded iff for each k > 0 τWP
= τWNk

.

Corollary 1.3.8. Consider every proper closed ball in a metric space (Y, P ) is totally bounded.

If (C(X), τWP
) is normal. Then Y is separable.

Furthermore, we will discuss normality of Wijsman topology which can be dealt with as

partial answer to above Problem. For this, we will use the following results.

Lemma 1.3.9. Consider a metric space (Y, P ). If < is a directed family in C(Y ) such that

G =
⋃
< is closed. Then G is a accumulation point of the net (<,⊆) in (C(Y ), τWP

).

Consider the ordinals ω1 and ω1 + 1 as a topological spaces equipped with the order

topology.

Proposition 1.3.10. Consider a non-separable metric space (Y, P ). Then the subspace

C(Y )\Y of (C(Y ), τWP
) contains a closed copy of the space ω1 × (ω1 + 1).

Proof. Since (Y, P ) is not separable, there exist ε > 0 and uncountable ε- discrete subset

U = {xµ,ν : µ < ω1 and ν ≤ ω1}

of Y , with xµ,ν 6= xµ′,ν′ for (µ, ν) 6= (µ′, ν ′). For every µ < ω1, let Uµ = {xµ,ν : ν ≤ ω1} and

Dµ = BP (Uµ, ε/2). Set A0 = {x0,0}. ∀ µ < ω1 and 0 < ν ≤ ω1, assume

Gµ = Y \ (
⋃
κ≥µDκ) and Aν = {xκ,λ : κ < ω1 and λ < ν}.
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The families z = {Gµ : µ < ω1} and S ′ = {Aν : ν ≤ ω1} are continuously increasing,

in the sense Gµ =
⋃
{Gκ+1 : κ < µ} and Aν =

⋃
{Aλ+1 : λ < ν}, for each 0 < µ < ω1 and

0 < ν ≤ ω1. We prove that the subspace

H ′ = {Gµ ∪ Aν : µ < ω1 and ν ≤ ω1}

of (C(Y ), τWP
) is homeomorphic to the product space ω1×(ω1 +1). Let ψ : ω1×(ω1 +1)→ H ′

be defined by ψ(µ, ν) = Gµ ∪ Aν . Obviously, ψ is one-to-one and onto. To prove that ψ is

continuous, let E ⊆ ω1× (ω1 + 1), and (µ, ν) ∈ E. Suppose E ′ = {(κ, λ) ∈ E : κ ≤ µ and λ ≤

ν}, and notice that (µ, ν) ∈ E ′. Since for all (κ, λ), (κ′, λ′) ∈ E ′, there exists (α, β) ∈ E ′ such

that α ≥ max(κ, κ′) and β ≥ max(λ, λ′). Consequently, the collection {Gκ∪Aλ : (κ, λ) ∈ E ′}

is directed. As (µ, ν) ∈ E ′, so for each µ′ < µ and ν ′ < ν that there exists (κ, λ) ∈ E ′ such

that κ ≥ µ′ and λ ≥ ν ′. Since z and S ′ are continuously increasing, we have

⋃
{Gκ ∪ Aλ : (κ, λ) ∈ E ′} = Gµ ∪ Aν .

From Lemma 1.3.9 the net ({Gκ ∪ Aλ : (κ, λ) ∈ E ′},⊆) converges to Fµ ∪ Aν in τWP
. Con-

sequently ψ(µ, ν) ∈ ψ(E ′) ⊆ ψ(E). Hence ψ is continuous. Now we prove that ψ is open,

notice that

(?) Since for all x ∈ U, µ < ω1 and ν ≤ ω1, either x ∈ Gµ ∪Aν or P (x,Gµ ∪Aν) ≥ ε
2
. Let

V be an open subset of ω1 × (ω1 + 1). Let (µ, ν) ∈ V . The element ψ(µ, ν) = Gµ ∪Aν of the

set ψ(V ) is denoted by J . There exist κ < µ and λ < ν such that (κ, µ]× (λ, ν] ⊆ V .

Let S = {xµ,ν , xµ,λ, xκ,ν} and

NJ,S, ε
4

= {W ∈ H ′ : |P (y,W )− P (y, J)| < ε

4
for every y ∈ S}.

Since NJ,S, ε
4

is a neighborhood of J in H ′. We want to prove NJ,S,ε ⊆ ψ(V ). Suppose

W ∈ NJ,S, ε
4
, and let α < ω1 and β ≤ ω1 be such that W = Gα∪Aβ. To show that W ∈ ψ(V ),

we need to show that κ < α ≤ µ and λ < β ≤ ν. Since for xµ,ν ∈ S, so xµ,ν ∈ Dµ ⊆ Y \ Gµ
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and xµ,ν 6∈ Aν . Thus xµ,ν 6∈ J , therefore, by (?), we have P (xµ,ν , J) ≥ ε
2
. Indeed, we have

P (xµ,ν ,W ) > 0. Thus xµ,ν 6∈ W , it follows that xµ,ν 6∈ Gα and xµ,ν 6∈ Aβ. We deduce that

α ≤ µ and β ≤ ν. Now for xµ,λ ∈ S, thus xµ,λ ∈ Aν ⊆ J , and therefore, P (xµ,λ, J) = 0. So we

have P (xµ,λ,W ) < ε
4
, therefore, by (?), we have xµ,λ ∈ W . Since W = Gα ∪ Aβ, this implies

that either xµ,λ ∈ Gα or xµ,λ ∈ Aβ. If xµ,λ ∈ Gα, but xµ,λ ∈ Uµ ⊆ Dµ, we must have µ < α;

however, we showed above that α ≤ µ. Therefore, xµ,λ ∈ Aβ. Thus λ < β. Consequently,

λ < β ≤ ν. Similarly, for xκ,ν ∈ S, so xκ,ν ∈ Gµ ⊆ J , therefore P (xκ,ν , J) = 0. Then we

have P (xκ,ν ,W ) < ε
4
. Therefore, xκ,ν ∈ W , this implies that either xκ,ν ∈ Gα or xκ,ν ∈ Aβ. If

xκ,ν ∈ Aβ, in this case ν < β, but we showed above that β ≤ ν. So xκ,ν ∈ Gα, thus κ < α.

Hence, κ < α ≤ µ. Therefore, ψ is open.

Hence we proved that the subspace H ′ of (C(Y ), τWP
) is homeomorphic to the product

space ω1 × (ω1 + 1). Since for all µ and ν xµ,ω1 6∈ Gµ ∪ Aν . Resultantly, Y 6∈ H ′. It remain

to show that H ′ is closed in the subspace C(Y ) \ {Y } of (C(Y ), τWP
). Let K ∈ H ′ \ H ′.

We need to prove K = Y , suppose on contrary that K 6= Y . Assume y ∈ Y \ K. There

exists µ0 < ω1 such that y 6∈
⋃
κ>µ0

Dκ. Notice that y ∈ Gµ for every µ > µ0. The subset

W0 = {Gµ ∪ Sν : µ ≤ µ0 and ν ≤ ω1} ⊆ H ′ is compact. Thus K ∈ H ′ \W0. As y 6∈ K,

suppose P (y,K) = ε, for ε > 0. Let

NK,{y},ε = {W ∈ C(Y ) : |P (y,W )− P (y,K)| < ε}

then it is neighborhood of K in (C(Y ), τWP
). Then there exist µ > µ0 and ν ≤ ω1 such

that Gµ ∪ Aν ∈ NK,{y},ε. Since y ∈ Gµ and thus P (y,Gµ ∪ Aν) = 0. As Gµ ∪ Aν ∈ NK,{y},ε,

thus P (y,Gµ ∪ Aν) < ε, which is a contradiction. We have shown that H ′ is closed in

C(Y )\{Y }.

Theorem 1.3.11. Consider a metric space (Y, P ). The following are equivalent.

(1) (C(Y ), τWP
) is metrizable.

(2) (C(Y ), τWP
) is hereditarily normal.
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(3) (C(Y ) \ {Y }, τWP
) is normal.

Proof. It suffices to prove that (3) ⇒ (1). Suppose (3) holds, suppose that (C(Y ), τWP
) is

not metrizable. Then (Y, P ) is non-separable. Thus by proposition1.3.10 (C(Y ) \ {Y }, τWP
)

contains a closed copy of ω1 × (ω1 + 1). Since ω1 × (ω1 + 1) is not normal, which is a

contradictions to the fact that (C(Y ) \ {Y }, τWP
) is normal. Hence this completes the proof.

Proposition 1.3.12. For non-separable metric space (Y, P ). Then for any n ≥ 1, (C(Y ), τWP
)

contains a copy of (ω1 + 1)n.

Proof. Suppose H = (ω1 + 1)n for n ≥ 1, since (Y, P ) is not separable, there exist an ε > 0

and uncountable ε-discrete subset G of Y . We write G =
⋃n
r=0Gr as a disjoint union such

that G0 = {d} and |Gr| = ℵ1 ∀ 1 ≤ r ≤ n. For each 1 ≤ r ≤ n, let Gr = {xrµ : µ < ω1},

and for each µ ≤ ω1, we write M r
µ = {xrλ ∈ Gr : λ < µ}. Obviously each M r

µ is closed in Y .

Let ψ : H → (C(Y ), τWP
) be defined as ψ((µr)) = G0 ∪

⋃n
r=1M

r
µr . Obviously ψ is one-to-one.

Now we show that ψ is continuous, let U− is open in (C(Y ), τWP
). If G0 ∩ U 6= φ, then

ψ−1(U−) = H. Suppose G0 ∩ U = φ. Let (µr) ∈ ψ−1(U−). Then (G0 ∪
⋃n
r=1M

r
µr) ∩ U 6= φ,

so there exist 1 ≤ j ≤ n such that M j
µj
∩ U 6= φ. Suppose λ < µj be such that xjλ ∈ U . Thus

xjλ ∈M j
κ ∩ U for each κ > λ. Consequently, the neighborhood

∏
r<j

[0, µr]× (λ, µj]×
∏
r>j

[0, µr]

of (µr) is contained in ψ−1(U−). Hence ψ−1(U−) is open. Furthermore, P (x, ψ(µr)) > λ,

for x ∈ Y and λ > 0, then we have P (x, ψ(νr)) > λ, whenever νr ≤ µr for every r. Hence,

we have verified continuity of ψ. As H is compact, continuous one-to-one function ψ is an

embedding.

Corollary 1.3.13. Consider a metric space (Y, P ). The following are equivalent.

(a) (C(Y ), τWP
) is metrizable.
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(b) (C(Y ) \ {Y }, τWP
) is metacompact.

(c) (C(Y ) \ {Y }, τWP
) is meta-Lindelöf.

(d) (C(Y ) \ {Y }, τWP
) is orthocompact.

Proof. We prove only (d) → (a), as (c) → (a) can be shown in a similar fashion and other

statements are straightforward. Suppose that (d) holds, let (C(Y ), τWP
) is not metrizable.

Then (Y, P ) is non-separable. So by Proposition 1.3.10 (C(Y ) \ {Y }, τWP
) contains a closed

copy of ω1×(ω1+1). As (C(Y )\{Y }, τWP
) is orthocompact, thus ω1×(ω1+1) is orthocompact,

which is contradiction.

Corollary 1.3.14. For a metric space (Y, P ). Each of the conditions (1) Sequentiality, (2)

countable tightness, (3) frechetnessis, is equivalent to metrizability of the space (C(Y ), τWP
).

Proof. Suppose contrary (C(Y ), τWP
) is not metrizable. Then (Y, P ) is non-separable. By

Proposition 1.3.12, (C(Y ), τWP
) contains a copy of ω1 + 1. As ω1 + 1 does not have countable

tightness. This concludes the proof.

1.4 Hausdorff metric topology

The aim of this section is to study the Hausdorff metric topology (see [1]). We begin with

the definition of the Hausdorff metric on C(Y ).

Definition 1.4.1. Suppose (Y, P ) is a bounded metric space. The Hausdorff distance HP on

C(Y ) of metric (Y, P ) is defined by

HP (U, V ) = max{eP (U, V ), eP (V, U)}.

Then (C(Y ), HP ) form a metric space, called Hausdorff metric space determined by (Y, P ).

Alternatively, we define the Hausdorff distance HP on C(Y ) as,

HP (U, V ) = sup
y∈Y
|P (y, U)− P (y, V )|.
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Our next lemma, characterize the convergence of a sequence in the Hausdorff metric space.

Lemma 1.4.2. A sequence (Gn) ∈ C(Y ) converges in HP to G iff (fGn)→ fG uniformly on

Y .

Proof. Suppose (Gn) ∈ C(Y ) which converges in HP to G. Let ε > 0, there exist n0 ∈ N

such that n ≥ n0 then HP (Gn, G) < ε. Thus

HP (Gn, G) = sup
y∈Y
|P (y,Gn)− P (y,G)| < ε implies sup

y∈Y
|fGn(y)− fG(y)| < ε.

Since this is true for supremum, so it holds for every y ∈ Y . Hence

|fGn(y)− fG(y)| < ε for n ≥ n0.

As this holds for all ε > 0, hence (fGn)→ fG uniformly.

Conversely, assume that (fGn) → fG uniformly on Y . Then for each ε > 0, there exist

n0 ∈ N such that n ≥ n0 implies |fGn(y) − fG(y)| < ε for each y ∈ Y . So that |P (y,Gn) −

P (y,G)| < ε for all y ∈ Y . Therefore

sup
y∈Y
|P (y,Gn)− P (y,G)| ≤ ε

and HP (Gn, G) < ε. Hence (Gn)→ G in Hausdorff metric.

Definition 1.4.3. Suppose (Y, P ) is a metric space. The Hausdorff metric topology on C(Y )

is denoted by τHP that C(Y ) inherits from τuc ( Where τuc is a topology of uniform convergence

on C(X,R)), under the identification B ↔ P (., B).

Proposition 1.4.4. Consider a metric space (Y, P ). Let A ∈ C(Y ) then the function-

als eP (A, .) : (C(Y ), HP ) → [0,+∞], eP (., A) : (C(Y ), HP ) → [0,+∞], and DP (A, .) :

(C(Y ), HP )→ [0,+∞), are each Lipschitz continuous with constant one.
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Theorem 1.4.5. Consider a metric space (Y, P ). The Hausdorff metric topology on C(Y ) is

the weakest topology τ on C(Y ) such that for each A ∈ C(Y )

eP (A, .) : (C(Y ), τ)→ [0,+∞],

eP (., A) : (C(Y ), τ)→ [0,+∞],

DP (A, .) : (C(Y ), τ)→ [0,+∞),

are all τ continuous.

Proof. We denotes τw as a weak topology determined by the family of all such functionals.

Since by Proposition 1.4.4 these functionals are continuous on Hausdorff metric topology and

hence τw ⊂ τHP . Now we prove that continuity of all functionals of the form eP (., A) and

eP (A, .) alone is enough to prove the reverse inclusion. Fix G0, and let τw − limGλ = G0.

Since by convergence of a net in weak topology with A = G0, we have limλ eP (G0, Gλ) =

eP (G0, G0) = 0 and limλ eP (Gλ, G0) = eP (G0, G0) = 0. Consequently,

limλHP (Gλ, G0) = max{eP (G0, Gλ), eP (Gλ, G0)} = 0,

and we get Hausdorff metric convergence of a net. Hence τHP ⊂ τw.

Theorem 1.4.6. Consider a metric space (Y, P ) and if d is another compatible metric. Then

τHP = τHd on C(Y ) iff P and d are uniformly equivalent.

Proof. Assume that P and d are uniformly equivalent. Then for every ε > 0, there exist

δ1 = δ1(ε) and δ2 = δ2(ε) such that for each subset B of Y , we have both

BP (δ1, B) ⊂ Bd(ε, B) and Bd(δ2, B) ⊂ BP (δ1, B).

In consequence, uniform equivalence of the metrics not only produce equality of the hyper-

space, but also uniform equivalence of the induced Hausdorff distance. Conversely, assume

that P and d are not uniformly equivalent. So the identity mapping i : (Y, P ) → (Y, d) fails

to be bi-uniformly continuous. Thus we can find ε > 0 and sequences < xn > and < yn >

such that for every n, P (xn, yn) < 1
n

but d(xn, yn) > ε. By the Efremovic Lemma and by

passing to a subsequence, we may let Dd({(xn : n ∈ N}, {yn : n ∈ N}) ≥ ε
4
. For k = 1, 2, ...,
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take Gk = {xn : n ∈ N} ∪ {yn : n ≥ k} and let G = {xn : n ∈ N}. By bicontinuity of the

identity, neither < xn > nor < yn > can have limit points, whence G and every Gk is closed.

Obviously HP (G,Gk)→ 0, whereas for every k, Hd(G,Gk) ≥ ε
4
, thus τHP 6= τHd .
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Chapter 2

Hit-and-Miss and Proximal

Hit-and-Miss Topologies

In this chapter, we will discuss hit-and-miss and proximal hit-and-miss hyperspace topolo-

gies. In particular, the Vietoris topology, Fell topology ,proximal topology and ball proximal

topology are discussed. First we define some notations. Let Y be a Hausdorff space, de-

notes C(Y ) and K(Y ) be the set of nonempty closed and compact subsets of Y , respectively.

Let S ⊆ Y , we write S+ = {B ∈ C(Y ) : B ⊂ S}, S− = {B ∈ C(Y ) : B ∩ S 6= φ}.

If (Y, U) be a uniform space write S++ = {B ∈ C(Y ) : ∃V ∈ U with V [B] ⊂ S}, where

V [B] = {y ∈ Y : ∃b ∈ B with (y, b) ∈ V }. Further, if (Y, P ) be a metric space, put

S++ = {B ∈ C(Y ) : ∃δ > 0BP (B, δ) ⊂ S}. The subbase for hit-and-miss topology on C(Y ),

consist of all sets of the type V − and (Bc)+, where V is open in Y and B ranges over subfamily

∆ ⊂ C(Y ).

Let (Y, U) be a uniform space. The subbase for proximal hit-and-miss topology on C(Y ),

consist of all sets of the type V − and (Bc)++, where V is open in Y and B ∈ ∆ ⊂ C(Y ).
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2.1 Vietoris and Fell topologies

Definition 2.1.1. The Vietoris topology on C(Y ) is denoted by τV . All sets of the type U−

and W+, where U and W are open in Y is a subbase for τV .

Definition 2.1.2. The Fell topology on C(Y ), denoted by τF has a subbase all sets of the type

W− and (Kc)+, where W and K are nonempty open and compact subset of Y , respectively.

In the next result, we prove that the Vietoris topology is a weak topology for metrizable

space.

Theorem 2.1.3. Let Y be a metrizable space and denotes D be the set of metrics compatible

for Y . Then τV on C(Y ) is a weak topology determined by the family {P (y, .) : y ∈ Y, P ∈ D}.

Proof. We denotes τw as a weak topology determined by the above family of metrics. Suppose

P ∈ D and y ∈ Y be fixed. Since (BP (y, ε))− = {B ∈ C(X) : P (y,B) < ε} ∈ τV , for ε > 0.

Also, if F ∈ {B ∈ C(X) : P (y,B) > ε}, so for some δ > ε implies F ∩BP (y, δ) = φ. Thus,

F ∈ (BP (y, δ)c)+ ⊂ {B ∈ C(X) : P (y,B) > ε}.

This shows that each open set of τWP
in τV , as P was arbitrary, hence τw ⊂ τV . Now we prove

that τV ⊂ τw. Since by Lemma 1.2.3 each set U−, where U is open in Y belongs to each τWP
,

and hence to τw. If V = Y , then V + = C(Y ) ∈ τw, and if V = φ, then V + = φ ∈ τw. Suppose

V be an open proper subset of Y , and y0 ∈ V c. Take fix A ∈ V +, we introduce a compatible

metric d for which

A ∈ {B ∈ C(Y ) : d(y0, A)− 1
4
< d(y0, B)} ⊂ V +.

This means that V + contains a τw neighborhood of each of its points. Since A ∩ V c = φ,

so by Urysohn’s Lemma ψ ∈ C(Y, [0, 1]) such that ψ(A) = 0 and ψ(V c) = 1. The metric

d : Y × Y → [0, 3
2
] defined as

d(u, v) = min{1
2
, P (u, v)}+ |ψ(u)− ψ(v)|.
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Obviously, d is a metric on Y equivalent to P . Assume that {B ∈ C(Y ) : d(y0, A) − 1
4
<

d(y0, B)} 6⊂ V +. So there exist B ∈ C(Y ) such that d(y0, A)− 1
4
< d(y0, B), and B ∩ V c 6= φ.

Take c ∈ B ∩ V c. As c and y0 are both in V c, we have d(c, y0) ≤ 1
2
, thus

1 ≤ d(y0, A) < d(y0, B) + 1
4
≤ d(y0, c) + 1

4
≤ 3

4
.

Which is contradiction, thus V + is τw open. Hence τV ⊂ τw. Consequently, τV is a weak

topology.

Remark 2.1.4. Since by Theorem 2.1.3, τV is a weak topology. Thus we can express the

convergence of a net in terms of distance functionals. i.e, a net (Gλ) in C(Y ) is τV convergent

to G ∈ C(Y ) iff for all y ∈ Y , for all P ∈ D, implies P (y,G) = limλ P (y,Gλ).

We intend to present the convergence of a net in the Fell topology for Hausdorff uniform

space.

Theorem 2.1.5. Let (Y, U) be a Hausdorff uniform space. A net (Gλ)λ∈Λ in C(Y ) is

τF−convergent to G in C(Y ) iff for each V ∈ U and B ∈ K(Y ), there exist λ0 ∈ Λ such that

for each λ ≥ λ0, we have both Gλ ∩B ⊂ V (G) and G ∩B ⊂ V (Gλ).

Proof. For V ∈ U , B ∈ K(Y ) and G ∈ C(Y ), write

[B, V ](G) = {A ∈ C(Y ) : A ∩B ⊂ V (G) and G ∩B ⊂ V (A)}.

Thus the convergence of the net Gλ to G means that every set [B, V ](G) contains Gλ even-

tually. Suppose that the convergence in this sense holds. We prove Gλ τF -convergent to

G, It suffices to work with subbasic τF open sets. Suppose G ∈ W−, where W is open in

Y . Take symmetric V ∈ U and x ∈ G with x ∈ V (x) ⊂ W . Then G ∈ [{x}, V ](G), if

Gλ ∈ [{x}, V ](G), we have Gλ ∈ W−. Let B ∈ K(Y ), and G ∈ (Bc)+. Since B is compact,

so there exist a symmetric entourage V such that V [G]∩B = φ. Hence, if S ∈ [B, V ](G), we

have

S ∩B = (S ∩B) ∩B ⊂ V [G] ∩B = φ.
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Therefore, Gλ ∈ [B, V ](G) ⇒ Gλ ∈ (Bc)+, thus Gλ τF -convergent to G. Conversely, suppose

Gλ τF -convergent to G holds. Take fix B ∈ K(Y ) and open symmetric V ∈ U . If G∩B = φ,

so for each A ∈ C(Y ) implies that G ∩ B ⊂ V (A). In the case G ∩ B 6= φ, take an open

symmetric entourage V0 with V0 ◦ V0 ⊂ V . As G ∩ B is nonempty compact set, thus we can

find a finite subset {y1, y2, ..., yn} of G ∩B such that G ∩B ⊂ V0({y1, y2, ..., yn}). Therefore

A ∈ ∩nj=1V0(yj)
− ⇒ G ∩B ⊂ V (A).

Let F = B ∩ V (G)c, a compact set. If A ∈ (F c)+, then

A ∩B = (A ∩ F ) ∪ (A ∩B ∩ V (G)) = φ ∪ (A ∩B ∩ V (G)) ⊂ V (G).

Thus, take only (F c)+ or (∩nj=1V0(yj)
−) ∩ (F c)+, we get τF -neighborhood of G contained in

[B, V ](G). Hence Gλ ∈ [B, V ](G) eventually.

In the previous theorem, if we take metric space instead of Hausdorff uniform space then

the convergence of a net is characterized below.

Corollary 2.1.6. Suppose (Y, P ) is a metric space. A net (Gλ)λ∈Λ in C(Y ) is τF−convergent

to G in C(Y ) iff for each B ∈ K(Y ), we have both limλ eP (G ∩B,Gλ) = 0 and limλ eP (Gλ ∩

B,G) = 0.

2.2 Ball proximal and Proximal topologies

Definition 2.2.1. Consider a metric space (Y, P ). The ball proximal topology on C(Y ) is

denoted by τBP . All sets of the type W− and (Bc)++, where W is open in Y and B is closed

ball is a subbase for τBP .

Definition 2.2.2. Consider a metric space (Y, P ). The proximal topology on C(Y ) is denoted

by τδP . All sets of the type U− and W++, where U and W are open in Y is a subbase for τδP .

Remark 2.2.3. Notice that for equivalent metric d the sets S++ are not necessarily conserve.

For instance if P is 0−1 metric on N and the equivalent metric d is defined by d(a, b) = | 1
a
− 1

b
|.
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The set S = {2n : n ∈ N} ∈ S++
P , but S 6∈ S++

d . If d is uniformly equivalent to P then the sets

S++ are unchanged. Because it is well known if the metrics P and d are uniformly equivalent

then for each δ > 0, we can fined ε1 = ε1(δ) and ε2 = ε2(δ) such that for each S ⊂ Y , we have

both

BP (S, ε1) ⊂ Bd(S, δ) and Bd(S, ε2) ⊂ BP (S, δ).

Thus the fact that for uniformly equivalent metric d to P , we have τδP = τδd.

Theorem 2.2.4. Consider a metric space (Y, P ), and denotes D be the set of metrics which

uniformly equivalent to P . Then the weak topology determined by the family {d(y, .) : y ∈

Y, d ∈ D} equal to τδP generated by P .

Proof. We denotes τw as a weak topology determined by the above family of metrics. Suppose

for each d ∈ D, we have τδP = τδd ⊃ τWd
, thus τδP ⊃ sup{τWd

: d ∈ D} = τw. Now we prove

that τδP ⊂ τw. Since for each open set U in Y and d ∈ D implies U− belongs to τWd
, and

hence to τw. If V = Y , then V ++ = C(Y ) ∈ τw, and if V = φ, then V ++ = φ ∈ τw. Take fix

A ∈ V ++, y0 ∈ V c, and ε < 1
2

such that Bd(A, 2ε) ⊂ V . We introduce d ∈ D such that

A ∈ {B ∈ C(Y ) : d(y0, A)− ε < d(y0, B)} ⊂ (Bd(A, ε))
+ ⊂ (Bd(A, 2ε))

++ ⊂ V ++. (2.2.1)

Since {B ∈ C(Y ) : d(y0, A)− ε < d(y0, B)} ∈ τWd
⊂ τw, this would prove that V ++ ∈ τw. Let

the function ψ : Y → R be defined as

ψ(y) =


P (y, A) ify ∈ Bd(A, ε)

ε ify 6∈ Bd(A, ε)

As ψ is Lipschitz continuous with constant one, it is uniformly continuous, also the metric d

on Y be defined as

d(a, b) = min{1
2
, P (a, b)}+ 1

ε
|ψ(a)− ψ(b)|.
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Obviously, d is a metric on Y , which is uniformly equivalent to P . Note that d(x, y) ≤ 1
2

provided x, y ∈ (Bd(A, ε))
c, whereas if x ∈ A and y ∈ (Bd(A, ε))

c, then d(x, y) ≥ 1. To

establish 2.2.1, we only prove {B ∈ C(Y ) : d(y0, A) − ε < d(y0, B)} ⊂ (Bd(A, ε))
+. Assume

that {B ∈ C(Y ) : d(y0, A) − ε < d(y0, B)} 6⊂ (Bd(A, ε))
+. Then there exist B ∈ C(Y )

such that d(y0, A) − ε < d(y0, B), and B ∩ (Bd(A, ε))
c 6= φ. Take c ∈ B ∩ (Bd(A, ε))

c. Now

y0 ∈ V c ⊂ (Bd(A, ε))
c. As c and y0 are both in Bd(A, ε)

c, and ε < 1
2
, thus

1 ≤ d(y0, A) < d(y0, B) + ε ≤ d(y0, c) + ε ≤ 1
2

+ ε < 1.

Which is contradiction, thus 2.2.1 is valid and hence τδP ⊂ τw.

Therefore, in previous Theorem, a net (Gλ) in C(Y ) is τδP convergent to G ∈ C(Y ) iff for

all y ∈ Y , for all P ∈ D, implies P (y,G) = limλ P (y,Gλ).

2.3 Normality of Fell and Vietoris topologies

Our attention of this section is to study the normality of Fell and Vietoris topologies refer to

[18, 14]. We prove that (C(Y ), τF ) is normal iff Y is Lindelöf and local compact. For this, we

will use the following results.

Proposition 2.3.1. [6] Let Y be a Hausdorff space. The following are equivalent.

(1) (C(Y ), τF ) is Hausdorff.

(2) (C(Y ), τF ) is regular.

(3) (C(Y ), τF ) is completely regular.

(4) Y is locally compact.

Lemma 2.3.2. Let Y be a Hausdorff σ-compact space. Then (C(Y ), τF ) is σ-compact.

Proof. Consider {Gn : n ∈ ω} is a sequence of compact sets in Y such that Y =
⋃
{Gn : n ∈

ω}. Therefore C(Y ) =
⋃
{Gn : n ∈ ω}. Since by [1] Gn is compact in (C(Y ), τF ) for each

n ∈ ω. Hence (C(Y ), τF ) is σ-compact.
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Consider κ be an ordinal. An open cover B = {Vα : α ∈ κ} of Y is called well-monotone

cover if Vα 6⊂ Vβ whenever α < β, α, β ∈ κ. For any well-monotone cover B we will select the

sub collection U(B) of C(Y ) as follows. Suppose κ is an ordinal such that B = {Vα : α ∈ κ}.

for each α ∈ κ take Uα = Y \
⋃
{Vβ : β < α} and set U(B) = {Uα : α ∈ κ}. Note that U0 = Y

and for each limit ordinal α ∈ κ we have Uα =
⋂
{Uβ : β < α}.

Lemma 2.3.3. Consider a well-monotone cover B of a Hausdorff space Y . Then U(B) is a

closed set in (C(Y ), τF ).

Proof. Let B = {Vα : α ∈ κ} be a well-monotone cover. Let A ∈ C(Y )\U(B). Take

µ = min{β ∈ κ : A 6⊂ Uβ}. Recall
⋂
{Uβ : β ∈ κ} = φ and A 6= φ. Obviously, µ cannot

be limit, thus µ = λ + 1. Hence A ⊂ Uλ, thus Uλ\A 6= φ. Let y ∈ Uλ\A and define

S = (Y \Uµ)− ∩ (Y \{y})+. Therefore A ∈ S and S ∩ U(B) = φ.

Lemma 2.3.4. Consider a well-monotone cover B = {Vα : α ∈ ω} of a Hausdorff space Y .

If (C(Y ), τF ) is normal then Y is σ-compact.

Proof. Take H = {{y} : y ∈ Y }. So U(B) and H are τF closed sets. Since (C(Y ), τF ) is

normal, then there exist disjoint τF -open sets W1 and W2 such that

U(B) ⊂ W1 and H ⊂ W2.

For every Un ∈ U(B) there are open sets V n
1 , ..., V

n
jn and a compact set Kn such that

Un ∈
⋂
{(V n

i )− : i = 1, ..., jn} ∩ ((Kn)c)+ ⊆ W1.

We claim Y =
⋃
{Kn : n ∈ ω}. Let there is x ∈ Y \

⋃
{Kn : n ∈ ω}. {x} ∈ W2, then there is

an open neighbourhood S of x and a compact set M with

{x} ∈ S− ∩ (M c)+ ⊆ W2.

Since M is compact and
⋂
{Un : n ∈ ω} = φ so there is m ∈ ω with Um ∩M = φ. Hence

Um ∪ {x} ∈ W1 ∩W2, a contradiction.
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Lemma 2.3.5. Suppose Y is a Hausdorff space and (C(Y ), τF ) is a normal space. There is

no well-monotone cover B = {Vα : α ∈ κ} of Y with cofinality of κ greater than ω.

Proof. Assume on contrary. Take H = {{y} : y ∈ Y }. So U(B) and H are τF closed sets.

Since (C(Y ), τF ) is normal, thus there is continuous mapping g : C(Y )→ [0, 1] such that

g(U(B)) = 0 and g(H) = 1.

For every n ∈ ω and let yn ∈ Y , En ∈ K(Y ), an open neighbourhood Vn of yn and ηn ∈ En
such that

(a) g[V −n ∩ ((En)c)+] ⊂ (1− 1
n+2

, 1], yn ∈ (En)c,

(b) Uηn ∩ (
⋃
{Ej ∪ {yj} : j ≤ n}) = φ,

(c) yn+1 ∈ Uηn , ηn+1 ≥ ηn.

Suppose n = 0 and for any y0 ∈ Y . Since by continuity of g and g({y0}) = 1 so there are an

open neighbourhood V0 of y0 and E0 ∈ K(Y ) such that y0 6∈ E0 and g[V −0 ∩ ((E0)c)+] ⊂ (1
2
, 1].

Suppose η0 ∈ κ such that Uη0∩(E0∪{y0}) = φ. As
⋂
{Uβ : β ∈ κ} = φ and E0∪{y0} is compact

so such η0 always exist. Consider we defined y0, y1, ..., yn−1, V0, V1, ..., Vn−1, E0, E1, ..., En−1 and

η0, η1, ..., ηn−1. Let yn be any point of Uηn−1 . Since by continuity of g and g({yn}) = 1 thus

there exist Vn and En which verify (a). There is ηn ∈ κ with ηn > ηn−1 and Uηn∩(
⋃
{Ej∪{yj} :

j ≤ n}) = φ.

Take η = sup{ηn : n ∈ ω}. Thus η ∈ κ and Uη =
⋂
{Uηn : n ∈ ω}. For each n ∈ ω take

Mn = Uηn ∪ {yn}. Then g(Mn) ∈ (1 − 1
n+2

, 1] by (a), as Mn ∈ (Vn)− ∩ ((En)c)+. Suppose

B ∈ K(Y ) such that B ∩ Uη = φ. So there is n ∈ ω with Uηn ∪ B = φ. Hence {Mn : n ∈ ω}

τF -converges to Uη, which contradict the fact that g(Uη) = 0.

Theorem 2.3.6. Let Y be a Hausdorff space and (C(Y ), τF ) is a normal space. Then Y is

Lindelöf space.

Proof. Assume that Y is not Lindelöf. In the collection of all open cover of Y without any

countable subcover there is an open cover G of Y with the minimal cardinality |G|. Suppose κ
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be the first ordinal having cardinality |G|. Then G = {Vµ : µ < κ}. For each µ < κ we define

Lµ =
⋃
{Vη : η ≤ µ}. Then Lµ 6= Y for every µ < κ. There is a subfamily {Lµλ : λ < κ} of

{Lµ : µ < κ} which is well-monotone cover of Y . By means of transfinite induction we define a

sequence {µλ : λ < κ} ⊂ [0, κ) in the following aspect. Suppose µ0 = 0. Having defined µλ let

µλ+1 be the first µ > µλ such that Lµλ ⊂ Lµ. For λ a limit ordinal, let µλ = sup{µα : α < λ}.

If sup{µα : α < λ} = κ, then {Lµα : α < λ} is an open cover of Y with the cardinality

less than |G|, thus there must exist a countable subcover of {Lµα : α < λ} which leads to

a contradiction by Lemma 2.3.4. So αλ < κ. For each λ < κ take Mλ = Lµλ . Therefore

{Mλ : λ < κ} is a well-monotone cover of Y . Hence by Lemma 2.3.5, κ is cofinal with ω. Let

κn ↗ κ, n ∈ ω. Define

Tn =
⋃
{Mc : c ≤ κn}.

Thus {Tn : n ∈ ω} is a well-monotone cover of Y . Hence Y is σ-compact by Lemma 2.3.4, a

contradiction.

Theorem 2.3.7. Consider a Hausdorff topological space Y . The following statements are

equivalent.

(1) Y is locally compact and Lindelöf.

(2) (C(Y ), τF ) is σ-compact and regular.

(3) (C(Y ), τF ) is Lindelöf.

(4) (C(Y ), τF ) is paracompact.

(5) (C(Y ), τF ) is normal.

Proof. (1) ⇒ (2) if Y is locally compact. Then by Proposition 2.3.1 (C(Y ), τF ) is regular.

Since Y is locally compact and Lindelöf, implies Y is σ-compact. Thus by Lemma 2.3.2

(C(Y ), τF ) is σ-compact.

(2)⇒ (3), (3)⇒ (4) and (4)⇒ (5) are obvious. (5)⇒ (1) if (C(Y ), τF ) is normal, then by

Theorem 2.3.6 Y is Lindelöf. Since Y is Hausdorff, thus (C(Y ), τF ) is T1. Hence (C(Y ), τF )

is regular. Finally by Proposition 2.3.1 Y is local compact.
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Now we will discuss the normality of the Vietoris topology. It is known that if Y is compact

then (C(Y ), τV ) is compact Hausdorff and thus normal. Ivanova in [17], showed that if Y is

a well order space with order topology then (C(Y ), τV ) is normal implies Y is compact. Now

we show that (C(Y ), τV ) is normal iff Y is compact with by assuming continuum hypothesis.

First we need some results.

All the upcoming results given below have the condition of CH(continuum hypothesis).

Proposition 2.3.8. Let Y be a separable and countably compact but not compact. Then

[0, ω1) can be imbedded in (C(Y ), τV ) as closed subset.

Proposition 2.3.9. Let Y be a separable, not first countable and countably compact. Then

[0, ω1] can be imbedded in (C(Y ), τV ).

Theorem 2.3.10. (C(Y ), τV ) is normal iff Y is compact.

Proof. Suppose that (C(Y ), τV ) is normal. Suppose W = G, where G be any countable subset

of Y . So (C(W ), τV ) is normal. If we can show for some separable space K, (C(K), τV ) is

normal implies K is compact, thus W will be compact. Then Y would be strongly compact

and compact by [[18], corollary 2.6(d)]. We claim that if K is separable and (C(K), τV ) is

normal, then K is compact. Suppose K is separable and (C(K), τV ) is normal, but K is not

compact. By [[18], corollary 2.6(a)], K is not first countable. Assume that K is not countable

at y. Suppose V is an open set and y ∈ V such that K − V is not compact. Such V exists

becuse Y is not compact. Assume U be an open set and y ∈ U such that U ⊂ V . Suppose

M = K− (K − U). Then M has the property that K−M is separable and not compact. Let

O be an open set and y ∈ O with O ⊂M . Suppose S1 = O and S2 = Y −M . Let W = S1∪S2.

Now W is closed subset of K also (C(W ), τV ) is homeomorphic to (C(S1), τV )× (C(S2), τV ).

Since by Propositon 2.3.8 [0, ω1) can be imbedded in (C(S2), τV ) as closed subset and by

Propositon 2.3.9 [0, ω1] can be imbedded in (C(S1), τV ) as closed subset. So [0, ω1] × [0, ω1)

is closed subset of (C(W ), τV ) and hence of (C(X), τV ). Since [0, ω1]× [0, ω1) is not normal.

Thus (C(X), τV ) is not normal, which is contradiction. Hence this completes the proof.
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Chapter 3

Relationship among Hyperspace

Topologies

In this chapter, we will study connections among hyperspace topologies. We have introduced

six topologies on C(Y ) namely, Wijsman topology, Hausdorff metric topology, Vietoris topol-

ogy, Fell topology, ball proximal topology, and proximal topology. The main focus of this

chapter is to completely characterize the relationship among above mentioned hyperspace

topologies. Clearly, τF ⊆ τV . Since τHP - convergence of a net (Gλ) to G is uniform conver-

gence of (P (y,Gλ)) to P (y,G). Consequently, τWP
⊆ τHP . By a well known that each of the

statements (1) τWP
= τV , (2) τF = τV , (3) τHP = τV , is equivalent to compactness of Y .

Theorem 3.0.1. Suppose (Y, P ) is a metric space. Then

(1) τWP
⊆ τBP .

(2) τWP
= τBP on C(Y ) iff every closed ball B in Y is strictly P -included in each of its

open ε-enlargements BP (B, ε).

Proof. First we prove τWP
⊆ τBP . For this we need to show that each subbasic τWP

-open

set lies in τBP . Assume that B0 ∈ {B ∈ C(Y ) : P (y,B) < k}. So for some b ∈ B0 implies

P (y, b) < k. Take α = k − P (y, b), every point in BP (b, α) has distance less than k from y,
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then B0 ∈ (BP (b, α))− ⊂ {B ∈ C(Y ) : P (y,B) < k}. This shows {B ∈ C(Y ) : P (y,B) < k}

is open in τBP . Next we prove that {B ∈ C(Y ) : P (y,B) > k} is open in τBP . Let B0 ∈ {B ∈

C(Y ) : P (y,B) > k}. Suppose ε = 1
2
(k + P (y,B0)), we have

B0 ∈ {x ∈ Y : P (y, x) > ε}++ ⊂ {x ∈ Y : P (y, x) > ε}+ ⊂ {B ∈ C(Y ) : P (y,B) > k}.

Since {x ∈ Y : P (y, x) > ε} is the complement of a closed ball, therefore {B ∈ C(Y ) :

P (y,B) > k} is open in τBP . Hence τWP
⊆ τBP .

Now we prove (2), since by Lemma 1.2.3 U− ∈ τWP
where U is open in τP , requires no

condition on the metric. Therefore for (2) we only prove (Bc)++ ∈ τWP
iff every closed ball

B in Y is strictly P -included in BP (B, ε).

Assume (Bc)++ ∈ τWP
for each closed ball B in Y . Suppose B = BP (y, δ) is a fixed closed

ball and let ε > 0. If BP (B, ε) = Y , then

B ⊂ BP (y, δ + 1) ⊂ BP (y, δ + 2) ⊂ BP (B, ε),

and thus B is strictly P -included in BP (B, ε). Otherwise take S = BP (B, ε)c ∈ C(Y ). Since

S ∈ (Bc)++ and since by supposition (Bc)++ ∈ τWP
, then we can find y1, y2, ..., yn ∈ Y and

µ > 0 such that

S ∈ ∩nj=1{F ∈ C(Y ) : P (yj, F ) > P (yj, S)− µ} ⊂ (Bc)++.

Now let M = {j ∈ {1, 2, ..., n} : P (yj, S) > 0} 6= φ, because (Bc)++ 6= C(Y ). Suppose

0 < α < µ with α < min{P (yj, S) : j ∈ M}, and take εj = P (yj, S) − α. We claim that

B ⊂ ∪j∈MBP (yj, εj). If not, there exist b0 ∈ B such that for every j ∈ M , P (yj, b0) ≥ εj >

P (yj, S)− µ. This means that

{b0} ∈ ∩nj=1{F ∈ C(Y ) : P (yj, F ) > P (yj, S)− µ} ⊂ (Bc)++,

which is contradiction. With αj = P (yj, S) > εj for j ∈M , we have

B ⊂ ∪j∈MBP (yj, εj) ⊂ ∪j∈MBP (yj, αj) ⊂ Sc = BP (B, ε).
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Hence B is strictly P -included in BP (B, ε).

Conversely, suppose each closed ball B in Y is strictly P -included in their enlargements.

We need to prove (Bc)++ ∈ τWP
. Let B0 ∈ (Bc)++, so for some ε > 0 implies BP (B, ε)∩B0 =

φ, and by supposition, there exist a finite set {y1, y2, ..., yn} and 0 < εj < αj, j = 1, 2, ..., n

such that

B ⊂ ∪nj=1BP (yj, εj) ⊂ ∪nj=1BP (yj, αj) ⊂ Bc
0.

Hence

B0 ∈ ∩nj=1{F ∈ C(Y ) : P (yj, F ) > 1
2
(εj + αj)} ⊂ (Bc)++.

Which is required.

Remark 3.0.2. By definition proximal topology τδP contains the ball proximal topology τBP

determined by metric P . Also by Theorem 3.0.1 τBP contains τWP
. Thus it follows that τδP

contains τWP
.

Remark 3.0.3. As a weak topologies illustrate by Theorem 2.1.3 and 2.2.4, the Vietoris

topology τV contains the metric proximal topology τδP because τV is induce by bigger class of

functionals. Consequently, the Vietoris topology is the largest topology among the hit-and-miss

and proximal hit-and-miss topologies on C(Y ).

The equality of τV and τδP on C(Y ) is discussed in the next proposition.

Proposition 3.0.4. Suppose (Y, P ) is a metric space. Then τV = τδP on C(Y ) iff whenever

U, V ∈ C(Y ) are disjoint, then U and V are far.

Proof. Assume that nonempty disjoint closed sets are far. Then for every open set W in Y ,

we have W+ = W++, and thus τV = τδP on C(Y ). Conversely, let U, V ∈ C(Y ) are disjoint

and DP (U, V ) = 0. Take Un = BP (U, 1
n
), implies U = τδP − limUn but U 6= τV − limUn,

because Un 6∈ (V c)+. Hence for such a metric space, τV properly contains τδP .
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Remark 3.0.5. Thus from Theorem 2.1.3 and 2.2.4 we have τV = sup{τWP
: P ∈ D} and

τδP = sup{τWP
: P ∈ D} respectively.

Corollary 3.0.6. Consider a metrizable space Y and denotes D is the set of metrics com-

patible for Y. Then τV = sup{τδP : P ∈ D}.

Therefore, at the same time the Vietoris topology is the supremum of the Wijsman topolo-

gies and proximal topologies corresponding to compatible metrics for a metrizable space Y

i.e.,

τV = sup{τWP
: P ∈ D} = sup{τδP : P ∈ D}.

Lemma 3.0.7. Consider a metric space (Y, P ). The following statements are equivalent. (1)

(Y, P ) is totally bounded. (2) τδP = τHP . (3) τHP ⊂ τV .

Theorem 3.0.8. Consider (Y, P ) is a metric space. The following are equivalent.

(1) (Y, P ) is totally bounded.

(2) τHP = τWP
.

(3) (C(Y ), τHP ) is second countable.

Lemma 3.0.9. If a metric space (Y, P ) is not second countable. Then τδP 6= τWP
.

Theorem 3.0.10. Consider a metric space (Y, P ). The following are equivalent.

(1) (Y, P ) is totally bounded.

(2) τδP = τWP
.

Proof. Assume that (1) holds, then by Theorem 3.0.8 τHP = τWP
. Conversely, Assume that

(2) holds, as τWP
is metrizable (and second countable) iff Y is second countable. So by Lemma

3.0.9 τδP is second countable. Hence by [[3], Theorem 4.3 ], (Y, P ) is totally bounded.

Lemma 3.0.11. Suppose (Y, P ) is a metric space. Then τF ⊆ τWP
.
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Proof. By Lemma 1.2.3 U− ∈ τWP
where U is open in τP . Take a compact subset K of Y

and B ∈ (Kc)+. Suppose DP (B,K) = λ > 0, we can find a finite subset G of K such that

K ⊂ BP (G, λ
2
). Then B ∈

⋂
x∈G{A ∈ C(Y ) : P (x,A) > λ

2
} ⊆ (Kc)+. This shows that (Kc)+

contains a τWP
neighborhood of each of its points and hence (Kc)+ ∈ τWP

.

Definition 3.0.12. A metric space (Y, P ) is said to have nice closed balls. If B is proper

closed ball in Y . Then B is compact.

Theorem 3.0.13. Suppose (Y, P ) is a metric space. Then τWP
= τF on C(Y ) iff (Y, P ) has

nice closed balls.

Proof. Suppose (Y, P ) has nice closed balls. Since for x ∈ Y and ε > 0 implies {U ∈ C(Y ) :

P (x, U) < ε} = (BP (x, ε))− ∈ τF . If BP (x, ε) is proper closed ball in Y . Then there exist

δ > ε such that BP (x, δ) is compact. If U ∈ C(Y ) and P (x, U) = ε, then BP (x, ε) ∩ U 6= φ.

It follows that {U ∈ C(Y ) : P (x, U) > ε} = (BP (x, ε)c)+ ∈ τF . Finally, if BP (x, ε) = Y , then

{U ∈ C(Y ) : P (x, U) > ε} = φ ∈ τF . Conversely, suppose (Y, P ) fails to have nice closed

balls. So there exist x and y in Y and ε > 0 such that BP (x, ε) is noncompact and P (x, y) > ε.

Let {yn} be sequence in BP (x, ε) with no limit point. Then {yn, y} is τF -convergent to {y},

whereas limn→∞ P (x, {yn, y}) 6= P (x, {y}). This shows that τWP
6= τF

Corollary 3.0.14. Suppose (Y, P ) is a metric space. Then τHP = τF on C(Y ) iff Y is

compact.

Proof. It follows easily from Theorems 3.0.8 and 3.0.13, because a totally bounded metric

space with nice closed balls can be expressed as a finite union of compact balls and is thus

compact.

Corollary 3.0.15. Suppose (Y, P ) is a metric space. Then τδP = τF on C(Y ) iff Y is

compact.

Proof. Assume that Y is compact. Then τF = τV , and τδP lies between them. Conversely,

assume that τδP = τF , we have both τWP
= τF and τδP = τWP

, thus (Y, P ) has nice closed

balls, and (Y, P ) is totally bounded. Hence Y must be compact.
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