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Preface

Although over the last 40 years, cryptography is weighed up as a developed branch of

science nonetheless it is a new field of study compare to other subjects and every day

brings so many expansion. Symmetric cryptography is one of the significant branch

by which two parties share secret information and keys by encryption and decryption

procedures. Symmetric cryptography splits into two main branches; Block cipher and

Stream cipher. S-box is the important component of block cipher algorithm, used in

many famous cipher system such as data encryption standard (DES), International

data encryption algorithm (IDEA), advanced encryption standard (AES) [1,2]. S-box

is one of the nonlinear components of the block cipher, hence the security strength of

block cipher depends on the quality of an S-box. As a result of this many researchers

have shown their interest to design new and powerful S-boxes. Owing to their strong

cryptographic features, S-boxes that are created on algebraic systems have much at-

tention and which are robust against linear and differential cryptanalysis. Thus a

secure communication based on different types of S-boxes are always encouraged.

Like AES S-box, the affine power affine (APA) S-box is proposed which upsurges

the algebraic complexityalgebraic complexity though possession the anticipat avail-

able encryption properties [3]. The action of the symmetric group S8 on the original

S-box used in AES, the S8 AES S-box is offered in [4]. On applying additional trans-

form based on binary Gray codes on the original S-box of AES. The Gray S-box is

i
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obtained [5]. The Gray S-box has a 255-term polynomial as compare to 8-term poly-

nomial which carries all the properties and rises the security for AES. Similarly, Xyi

S-box, Residue Prime S-box and Skipjack S-box are normally used S-boxes in the en-

cryption and decryption techniques [6, 7]. Typically the algebraic strength of an S-box

is measured by Nonlinearity Nonlinearity, strict avalanche criterion strict avalanche

criterion (SAC), bit independence criterion bit independence criterion(BIC), linear

approximation probability linear approximation probability (LP) and Differential ap-

proximation probability Differential approximation probability (DP) [8]. It is evident

by the study of novelty in algorithms for S-box construction that the alteration of

the model and the selection of Boolean functions give small to the performance in-

dices of an S-box. In this research, we suggest that the performance of an S-box

is momentously link with the contextual Galois field. The finite fields of the same

order are isomorphic but the scaling effect of a nonlinear Boolean function apply on

two or more different fields of the same order may diverge. An S-box is a signifi-

cant component in a block cipher used to produce confusion in the data; it is valued

take in that the confusion making ability is allied with the optimal of the irreducible

polynomial used to form the contextual Galois field. The main aim of this research

is to understand the basic concept of cryptography, but mainly focused on the con-

struction of S-boxes based on the group action of projective general linear group on

the Galois field GF (28). The algebraic analysis such as nonlinearity, strict avalanche

criteria, linear approximation probability, bit independence criteria and differential

approximation probability on the newly generated S-box is performed to determine

the strength of the S-boxes.



Chapter 1

Cryptology and Algebra

1.1 Introduction

People always want to keep their sensitive information secret from others. There

are a lot of examples we have seen in history, where peoples tried to keep their

information secret. Nowadays world intelligence agencies and other secret agencies

used to communicate with each other in basic cryptography method. It is because

to keep their information secret. Headway in a society increased the more refine

methods for protecting data. As the world becomes further connected, the demand for

information and electronic services is growing and with accumulated demand comes

accumulated dependency on electronic systems. Already the exchange of sensitive

information like Master Card numbers over the open network is a common paractice.

protecting info and electronic systems unit important to our manner of living. The

world Cryptography has been derived from the Greek word krypto that means

hidden. It is the science of hiding info so that unlawful users are unable to understand

this information. It is the science of information security. The skills needed to protect

data belong to the field of cryptography.

The work of cryptography is the converting of readable and understandable data
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into unreadable data to protects the data. It is used for protecting private data from

being stolen. Even it will receive your messages that they will able to understand.

When cryptography protects data it implemented other security necessities for data

together with authentication, repudiation, confidentiality, and integrity. Cryptogra-

phy is, where security engineering come across Mathematics. It is an interdisciplinary

study of basically three fields.

1. Mathematics

2. Computer Science

3. Electrical Engineering

The main purpose of cryptography is securing communication over a non-secure chan-

nel between two parties in such a way that their hosting cannot understand what is

supposed to say the channel may be a telephone line or computer network. The field

of cryptography direct link with the field of cryptanalysis.The key purpose of this in-

troductory chapter, is about its definitions and basic concepts to afford background to

the material that is presented in the upcoming chapters. We have divided this chap-

ter into six sections. In these six sections we briefly described, what is cryptography,

what are the needs of cryptography, what are the objectives of cryptography, what

are the constituents of cryptography, types of cryptography and in the last section,

we have discussed basic concepts including binary number, rings, fields, polynomial

ring and finite fields etc.

1.1.1 Cryptology

Cryptology is the study of secure communication over non-secure channels and related

problems [9].
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1.1.2 Cryptography

The process of designing systems for secure communication over non-secure channels

belongs to the field of Cryptography. It is the study of Mathematical technique that

is linked to the aspects of information security.

1.1.3 Cryptanalysis

The discipline of examining and breaking cryptographic system is called Cryptanalysis

[9].

1.2 Cryptography Components

The main components of cryptography are given in the following subsections [10].

1.2.1 Plain text

A type of data that can understand and readable without usual process.

1.2.2 Encryption

It is a process in which manifest data is converted into hidden data to secure data.

1.2.3 Secret key

It is an input to the encryption algorithm. For securing information a numerical value

(secret key) is used by an algorithm modify information and make the information
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secure. But only to those who have the corresponding key to recover the information.

1.2.4 Cipher text

A type of data that cannot understand and unreadable without any usual process.

1.2.5 Decryption

It is a process in which encrypted data is converted into original plaintext. .

1.3 Types of Cryptography

In [10] there are two main types of cryptography.

1.3.1 Asymmetric key Cryptography

The asymmetric key algorithm was adapted in the 1970s and modernized Cryptog-

raphy. The Asymmetric key cryptography is also called public key cryptography.

public key cryptography consist of two keys, one key is a public key which is used for

encryption and another private key is used for the decryption.

The public key can be shared freely without any compromise with the security of a

private key. A private key must be kept secret. If someone has a public key he can

encrypt info but can not decrypt it, only that person who has the private key can

decrypt the information.
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Figure 1.1: Public key

1.3.2 Symmetric key Cryptography

Symmetric key cryptography is also known as private key cryptography. Symmetric-

key cryptography is that type of cryptography in which the encryption and decryption

are same in many cases and also known to both sender and receiver. Such as like key

are used for encryption and decryption.

Figure 1.2: Private key

Example 1.3.1. AES (Advance encryption standard), AES and DES (Data encryp-
tion standard), are the example of private key cryptography.

1.4 Algebraic structures

Let G be a non empty set, let G×G denote the set of all order pairs (x, y) such that

x ∈ G and y ∈ G. Then the mapping from G×G , into G is called binary operation
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on G. In this definition its required that the image of (x, y) ∈ G×G, must be in G,

which is the closure property of an operation. By an algebraic structure, its mean a

set together with one or more binary operation on G [5].

1.4.1 Group

Definition 1.4.1. A group is a nonempty set G together with binary operation ∗ on
G, such that for all α′, α′′, α′′′ ∈ G the following axioms hold.

1. α′ ∗ (α′′ ∗ α′′′) = (α′ ∗ α′′) ∗ α′′′.

2. There exist e ∈ G, such that for all α′ ∈ G, α′ ∗ e = α′ = e ∗ α′.

3. For all α′ ∈ G, there exist α′−1 ∈ G, such that α′ ∗ α′−1 = e = α′−1 ∗ α′.

Thus a mathematical system (G, ∗), satisfying axioms 1 to 3 is said to be a group.

Example 1.4.2. The set of Real number, (Z, ∗), is a group where ∗ represent the
usual operation of multiplication.

Definition 1.4.3. (Subgroup) Let G be a group, H ⊆ G is a subset of G which is a
group under the same binary operation. We call H is a subgroup of G and denoted
by H ≤ G.

Example 1.4.4. (Z,+), is a subgroup of (R,+), where R, is the set of real numbers,
Z, is the set of integers and +, is the usual operation addition.

Remark 1.4.5. A nonempty subset H ⊆ G is a subgroup if and only if a,b ∈ H, ⇒
ab−1 ∈ H.

1.4.2 Ring

Definition 1.4.6 (Ring). A ring (R, ∗,+), is a non empty set R together with two
binary operations multiplication ′∗′ and addition ′+′, such that the following axioms
hold [11].

1. R is an abelian group with respect to addition ′ +′ .

2. R is semigroup with respect to multiplication ′∗′.

3. Distribute laws of multiplication over addition hold.That is
α′ ∗ (α′′ + α′′′) = (α′ ∗ α′′) + (α′ ∗ α′′′), ∀ α′, α′′, α′′′ ∈ R.
(α′ + α′′) ∗ α′′′ = (α′ ∗ α′′′) + (α′′ ∗ α′′′), ∀ α′, α′′, α′′′ ∈ R.
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Definition 1.4.7 (Commutative ring). A Ring R, is said to be commutative ring, if

α′ ∗ α′′ = α′′ ∗ α′,∀α′, α′′ ∈ R.

Example 1.4.8. The set of integers (Z,+, ∗), is a ring with respect to addition ′+′

and usual multiplication ′∗′.

1.4.3 Field

Definition 1.4.9. A field is a nonempty set F , together with binary operations addi-
tion ′+′ and ′∗′ usual operation multiplication, (F, ∗,+), if the following axioms hold
[11].

1. F is an abelian group with respect to addition ’+’.

2. F is an abelian group with respect multiplication ’*’.

3. Distribute laws of multiplication over addition hold. That is
α′ ∗ (α′′ + α′′′) = (α′ ∗ α′′) + (α′ ∗ α′′′), ∀ α′, α′′, α′′′ ∈ F
(α′ + α′′) ∗ α′′′ = (α′ ∗ α′′′) + (α′′ ∗ α′′′), ∀ α′, α′′, α′′′ ∈ F .

1.4.4 Polynomial ring

Let R be a commutative ring. Then the indeterminant x is an expression of the from

g(x) = amx
1 + ... + a2x

2 + a1x
1 + a0x

0, is a polynomial g(x) over the ring R. where

each ai ∈ R and n ≥ 0. The coefficient of xi is an element ai in g(x). The degree

of g(x), for which am 6= 0 is the largest m, denoted by degf(x), and the leading

coefficient is am [11].

Remark 1.4.10. If f(x) = a0, and a0 6= 0, then degf(x) = 0. If all coefficients of
the polynomial f(x), are 0 then it is called 0 polynomial. And if the leading coefficient
of a polynomial f(x), is 1 then the polynomial is called monic polynomial.

Definition 1.4.11. Let R be a commutative ring. Then the set of all polynomials
whose coefficients from the ring R is a polynomial ring denoted by R[x]. polynomial
addition and multiplication are the two standard operations.

Example 1.4.12. Let f(x) = x4 + x, and g(x) = x2 + x+ 1, be the element of Z2[x].
working in Z2[x], f(x) + g(x) = x4 + 1, and f(x) ∗ g(x) = x6 + x5 + x4 + x3 + x2 + x.
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Definition 1.4.13. Let F be arbitrary field . A polynomial p(x) ∈ F[x] of degree at
least 1, is said to be an irreducible polynomial over F if p(x), cannot be written as the
product of two polynomials having a positive degree in F[x].

Example 1.4.14. x8 + x4 + x3 + x2 + 1, is reducible over Z2[x].

Definition 1.4.15. Let p(x), be a polynomial of degree less than n in F[x]. Then the

set F[x]
<p(x)>

, denote the equivalence classes of polynomial of degree less n. Addition and

multiplication are performed modulo p(x).

Proposition 1.4.16. Let f(x), be any polynomial in F[x]. Then F [x]
<f(x)>

is a commu-
tative ring.

Proposition 1.4.17. If p(x) ∈ F[x] be an irreducible polynomial over F. Then F[x]
<p(x)>

,
is a field.

1.4.5 Finite field of the from GF (pn)

In this section, we have defined a finite field as a finite set, that obeys all of the axioms

of fields and gave some example of a finite field [11]. Finite fields are the particular

interest in the context of cryptography. In many cryptographic algorithms, finite field

plays a circular role. For a positive integer n, the order of finite field must be a power

of prime number pn and generally can be written as GF (pn).

Definition 1.4.18. A field having finite order is called finite field or Galois field and
denoted by GF (q), where q is prime or power of a prime number.

Remark 1.4.19. Existence and uniqueness of finite field.

• A Galois field contains q elements. where q is prime or power of a prime
number.

• For any prime number p then power order pn, there exist a unique Galois field
of order pn.

Remark 1.4.20. Let Fq be a finite field of order q, where q = pn, p is any prime
number, the Fq, contain Zp, another word Zp is a subfield of Fq. And Fq is also called
the extension field of Zp.
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1.4.6 Construction of Galois field:

General procedure to construct a finite field GF (pn), of order pn, for prime number

p and positive integer n ≥ 1. Let Zp be the set of integer mod p.

1. The set of polynomials Zp[x], with coefficient mod p is a commutative ring.

2. Chose an irreducible polynomial p(x) ∈ Zp[x] of degree n mod p.

Then < p(x) > are the maximal ideal contain in Zp[x].

3. Then GF (pn) = Zp[x]

<p(x)>
are the finite Galois field.

1.4.7 Linear group

In this section, we have discussed general linear groups, Special linear group and

projective general linear groups over a field F [12]. Let F be a field and n be positive

integer then the set of all n× n, matrices with entries from F is denoted by Mn(F).

Definition 1.4.21 (General Linear Group). [12] The set of all n × n matrices with
entries from a field F is called general linear group, denoted by GL(n,F), and define
by

GL(n,F) = {A ∈Mn(F) : det(A) 6= 0}.

Remark 1.4.22. The set GL(n,F) from a group under metrics multiplication.

Definition 1.4.23 (Special linear group). [12] Special linear over a field F is denoted
by SL(n,F), defined as

SL(n,F) = {A ∈ GL(n,F) : det(A) = 1}.

Remark 1.4.24. Special linear group SL(n,F) is a normal subgroup of special linear
group GL(n,F).

Definition 1.4.25 (Center for general linear group). The center of general linear
group GL(n,F) is the set

Z = {λIn : λ ∈ F∗}.
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Definition 1.4.26. Let F be a field and Z be the center of general linear group
GF (n,F). Then projective general linear group over a field F is denoted by PGL(n,F),
and defined as

PGL(n,F) =
GL(n,F)

Z
.

1.4.8 Group action

Let G be a group and Ω be a nonempty set. By an action of G on Ω we mean a

function µ′ : Ω×G→ Ω such that for all ω′ ∈ Ω and g′, h′ ∈ G.

µ′(µ′(ω′, g′), h′) = µ′(ω′, g′h′).

µ′(ω′, 1) = ω′, where 1 ∈ G is the identity of G.

Then we can say G act on set Ω.

Example 1.4.27. Let x be a nonempty set and G ≤ sym(x). Then G act on a set x
defined as µ(ω, g) = (ω)g for g ∈ G and ω ∈ x. here we defined µ(ω, g) = ωg.

(ωg)h = ((ω)g)h = ((ω)g)h = (ω)gh = (ω)gh.

ω1 = ω1 = ω.

This action is called natural action.

1.5 Boolean algebra

Let B be a nonempty set, then the set (B,∨,∧,∼), where ∨, ∧ are the binary opera-

tions, and ∼ is a unary operation, is said to be a Boolean algebra, if for all a′, b′, c′ ∈ B

satisfy the following axioms.

(B1) a′ ∨ b′ = a′ ∨ b′, and a′ ∧ b′ = a′ ∧ b′.

(B2) a′ ∨ (b′ ∧ c′) = (a′ ∨ b′) ∧ (a′ ∨ c′), and a′ ∧ (b′ ∨ c′) = (a′ ∧ b′).
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(B3) There exist 0, 1 ∈ B with 0 6= 1 such that 0 ∨ a′ = a′ = a′ ∨ 0 and 1 ∧ a′ = a′ =

a′ ∧ 1.

(B4) a′ ∧ (∼ a′) = 0 and a′ ∨ (∼ a′) = 1.

The binary operation ∨ and ∧ are called OR and AND respectively and the unary

operation ∼ is called negation.

1.5.1 Boolean function

Let Zn2 be the n-dimensional vector space then Boolean function B(x) is a mapping

B : Zn2 → Z2 where x = (xn, xn−1, ...x1, x0), and Zn2 represent a Galois field of order

2n, the total number of distinct Boolean functions of n variable are 22n [13].

1.5.2 Some logic operations

AND operation

Let x = {0, 1}, then the AND operation on a set x, for any two input values u′, v′ ∈ B,

the output value AND operation of u′, v′ is denoted by u′ ∧ v′, and will be equal to 0

whenever one of the input value is 0 or both input values are 0, if both input values

are 1 then output value will be equal to 1. The truth table of AND operation are

given below

u’ v’ u′ ∧ v′

0 0 0

1 0 0

0 1 0

1 1 1
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OR operation

Let x = {0, 1}, the OR operation on a set x, for any two input value u′, v′ ∈ B, then

the output value of OR operation of u′, v′ is denoted by u′ ∨ v′, and will be equal to

1 if whenever one value of them is 1 or both values are 1, if both values are 0 then

the output value will be equal to 0. The truth table of OR operation are given below

u’ v’ u′ ∨ v′

0 0 1

1 0 1

0 1 1

1 1 0

XOR operation

Let x = {0, 1}, then the XOR operation on a set x, for any two input value u′, v′ ∈ B,

then the output XOR operation of u, v is denoted by u ⊕ v, and will be equal to 1

whenever one the input value are 1, if both the input values are 0 or both input values

is 1 then output value will be equal to 0. The truth table of XOR operation are given

below

u’ v’ u′ ⊕ v′

0 0 0

1 0 1

0 1 1

1 1 0



Chapter 2

Block Ciphers and S-Boxes

2.1 Introduction

This chapter consist of three sections, in the first section we have discussed ciphers,

properties of ciphers and types of ciphers. And the second section is to illustrate

the principle of symmetric key algorithm Advanced Encryption Standard (AES). And

third is the literature review of some standard S-boxes.

2.2 Cipher

Definition 2.2.1. Cipher or (Cryptographic system) consists of five-tuple (P,C,K,E,D)

satisfying the following conditions.

1. Let P denote the finite set of all plaintexts.

13
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2. Let C denote the finite set of all ciphertexts.

3. Let K denote the finite set of all possible keys is called keyspace.

4. For any k ∈ K their exit rule of encryption ek ∈ K such that ek : P → C and

rule of decryption dk ∈ D such that dk : C → P is a function and for every

y ∈ P and dk(ek(y)) = y

2.2.1 Properties of good Ciphers

In [14] Claude Elwood Shanan identifies the two properties Confusion and for the

secure Ciphers.

Definition 2.2.2 (Confusion). Confusion refers that in simple key and ciphertext

does not relate. In particularly every bit of ciphertext depend on several bits of the

key.

Definition 2.2.3 (Diffusion). Diffusion refers that change the plaintext by the single

character should change several characters of ciphertext. Similarly, change the ci-

phertext by the single character should change several characters in plain text. If we

change a single bit of the plaintext it can change several bits of the ciphertext.

Stream Cipher The encryption process in which encrypts a digital data stream

one bit or one byte is stream cipher. Which means that change the plain text by one

letter can change one letter in the ciphertext. In a modern cryptographic system,

this process cannot be used. Because by using frequency analysis frequency analysis,
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it is easy to find encryption key.

Block Cipher The encryption process in which encrypts a digital data stream

blocks of bits or bytes at a time is called block cipher. By encrypting blocks of several

numbers or latter simultaneously the frequency analysis is more difficult. In block

cipher almost all the characters of the ciphertext block change if we change one the

character in the plaintext Block.

2.3 Advanced Encryption Standard

In 2001 the National Institute of Standard and Technology (NIST) published Ad-

vanced encryption standard AES and replaced Data encryption standard (DES) by

the Advanced Encryption Standard. As compared to other cryptographic Algorithm

AES is more complex and cannot be explained easily, their operation is performed on

8-bit Bytes.

2.3.1 Structure of AES

AES advanced encryption standard is a reversible encryption algorithm, iterated sym-

metric block ciphers. To complete encryption and decryption in reverse order the

same number of steps performed, some steps repeat multiple time, operate on a fixed

number of bytes . AES is a secret encryption algorithm, the key is expanded into

individual subkeys, for each operation round one subkey, this process is called key

expansion

The operation used in AES can be broken down into the following 4 functions.
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1. Add round key

2. Bytes Substitution

3. Shift Row

4. Mix Colum

An iteration of the above 4 steps is called round, the number of rounds of the algorithm

depends on the key size, i.e 10 rounds algorithm for 10 bytes key, 12 rounds algorithm

24 bytes key and 14 rounds for 32 bytes key. The last consist of 3 step because add

round key performed at the start of the algorithm as round 0. Similarly in the last

round of decryption Mix column round do not perform.

Add Round Key: In the add round key given ciphertext is XORed with subkey

generated in the keys expansion process. For each round there exist a subkey which

can never use again in the next round, in the next round the add round key function

expended are used.

Byte Substitution: In byte substitution, each value of the state is replaced with the

corresponding S-box value during the encryption, in the reverse process each value of

the state replaced with the corresponding inverse of the S-box.

Shift Row: In this step of round arranges the state of data in a matrix form and

then performed a circular shift for each row. The shift is not bitwise it is byte-wise,

in circular shift each byte move one space over and there are a different number of

the shift in each row. The following example is the shift row process.
1 5 9 13

2 5 10 14

3 7 11 15

4 8 12 16

Shiftrow


1 5 9 13

6 10 14 2

11 15 3 7

16 4 8 12


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Mix Column: The Mix column is perhaps hardest step of the round to understand

and explain both, there are two parts of this step. The first part will explain which

part of the state are multiple against which part of the matrix. Here the matrix is
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


In the second part explain how this multiplication performed over a Galois field.

The multiplication is performed one column at a time (4 bytes), the multiplication is

performed as matrix multiplication for example
2 3 1 1

1 2 3 1

1 1 2 3

3 2 1 1

 ∗

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16


The first byte of is calculated by multiplying the first row 4 value of the state column

with the first row 4 value of the matrix. The result of each multiplication is then

Xored to produced one byte i.e

c1 = (b1 ∗ 2)⊕ (b2 ∗ 3)⊕ (b3 ∗ 1)⊕ (b4 ∗ 1)

c2 = (b5 ∗ 2)⊕ (b6 ∗ 3)⊕ (b7 ∗ 1)⊕ (b8 ∗ 1)

2.4 S-box Theory

In this section, we have discussed the area of substitution box (S-box) and also discuss

construction method and analysis of some standards-boxes.
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2.4.1 S-box

As m× n substitution box (S-box) is a mapping from m input bits to n output bits

S : Zm → Zn or in a simple way to combine the set of output Boolean functions in

fixed order is an S-Box, the possibility of input and output bits are 2m and 2n. if we

consider S to be m× n S-box then their representation is to be 2m × n matrix.

If m× n S-box with m < n number of output bits less then input bits then entries of

S-box must be repeated. The S-box is said to be surjective if all possible output bits

are present in S-box.

If m × n S-box for m = n i.e the number of output bits is equal to the number of

input bits, each input entries mapped to a distinct S-box entry. Then S-box may either

contain repeat entries or either distinct S-box entries and maybe the multiple inputs

entries mapped to the same output entries, all possible output bits are not present

in the S-box. An S-box is said to be injective if distinct input entries mapped to the

distinct output entries, S-box is said to bijective S-box if S-box is both surjective and

injective, bijective s-boxes are always reversible I,e there exist a reverse map output

entries to input and only exist if m = n. In m× n S-box is said to be regular which

contain all of it possible 22n output, an equal number of times appearing in the S-box

. Thus the possibility of each output bits appear in the S-box is 2m−n, if m ≥ n then

S-box are balanced S-box. An (m× n) is said to be bent if n ≥ 2m and n are even if

it can be written as linear combination of components Boolean function is bent.

2.4.2 Cryptographic properties of S-box

In the next chapter, we have discussed cryptographic properties of S-box.
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2.4.3 Literature survey on some standard S-boxes

Rijindael S-box

In 2001 Vincent Rijmen, Joan Daemen in [1] presented Rijindael S-box. The designing

procedure of Rijindael S-box is the combination of two power function take multi-

plicative inverse of an element x modulo irreducible polynomial x8 + x4 + x3 + x+ 1

belong to Galois field and then using affine transformation matrix’

g(x) =

x−1, if x 6= 0

0, if x = 0

l(x) =



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1





x0

x1

x2

x3

x4

x5

x6

x7


+



1

1

0

0

0

1

1

0


where xi are coefficient of x and the S-box denoted by

S(x) = log

APA S-box

In (2006) Lingguo Cui and Yuanda Cao, [3] proposed a new method to construct

8 × 8 named Affine power Affine (APA) S-box, improved the AES s-box with APA

structure and can be written as

S(x) = logol
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where g is the inverse function and l is Affine transformation function and x is any

element in the Galois field GF (28)

Gray S-box

In 2008. Tran et al [5] for the advanced encryption standard present a Gray S-box.

The construction procedure of Gray S-box is add a binary Gray code transformation

with original AES S-box to increase the complexity of and security against algebraic

attacks. Cryptographic properties of AES S-box like Non-linearity, stick avalanche

criterion, and differential uniformity also achieves Gray S-box.

SKIPJACK S-box

Skipjack was introduced by U.S National security (NSA). US government used Skip-

jack as the encryption algorithm. This algorithm was constructed to be used in fast

phones. It is a fasital network with 32 rounds and used 80 bits key which was also

known by Crypto variable to encrypt and decrypt 64 -bits blocks data. Every round

of Skipjack is characterized by different operation and S-box is the most notable op-

eration of each round, S-box is the notable operation of each round. In [6], Skipjack

S-box construction is given. Further I.Hussain and T.Shah analyzed Skipjack S-box

with different analysis i,e nonlinearity, SAC, BIC, LP,DP [15].



Chapter 3

Construction of S-boxes

3.1 Introduction

In this chapter, we have offered a novel technique to design 16 different robust 8×8 S-

boxes over the elements these 16 Galois fields. Accordingly, on these different Galois

fields we define 16 linear fractional transformations as: z −→ az+b
cz+d

where z is an

arbitrary element in any of these Galois fields and from any permanent Galois field the

parameters a, b, c, d are throughout fixed elements. Accordingly, for fixed parameters

a, b, c, d, we obtained 16 distinct S-boxes. The algebraic analysis such as nonlinearity,

strict avalanche criteria, linear approximation probability, bit independence criteria

and differential approximation probability on the newly generated S-box is performed

21
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to determine the strength of the S-box.

This chapter is organized as follows. Some basic concepts regarding Galois fields are

given in section 2. In section 3, the algebraic algorithm for the design of new S-boxes

is introduced. Section 4 contains the methods used to analyze the proposed S-boxes

and the methods include Nonlinearity, SAC, BIC, LP, and DP. Section 5. Contain

performance index. Section seven contain statical analysis of proposed S-boxes to

know about the security strength S-boxes in image encryption applications..

3.2 Construction of Galois Filed of order 256

The set of all polynomials whose coefficients from the field Z2 is a polynomial ring

denoted by Z2[x]. A polynomial p(x) is said to be irreducible in Z2[x]. If p(x) cannot

be a factor into a product of lower-degree polynomials in Z2[x]. If p(x) is an irreducible

polynomial over Z2, then ideal generated by p(x) is a maximal ideal of the ring Z2[x]

and it is denoted and can be written as:

< p(x) >= {a(x) : a(x) = p(x).h(x) for some h(x) ∈ Z2[x]}

Now if p(x) is irreducible polynomial in Z2[x], then the quotient ring Zp[x]

<p(x)>
is a

finite field, known as Galois field GF (2m) having order 2m where m is the degree

of primitive irreducible polynomial p(x). More explicitly the elements of Z2[x]
<p(x)>

are

the polynomials over Z2, whose degrees are strictly less than the degree of p(x).

The addition and subtraction are those of polynomials over Z2. The product of

two elements are the remainder of the Euclidean division of the product in Zp[x].

The multiplicative inverse of non-zero element may be computed with the extended
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Euclidean algorithm. Essentially in this study, the order 28 Galois field GF (28) are

of specific interest. For the of Galois field GF (28), we choose a degree-8 primitive

irreducible polynomial that generates the maximal ideal of the principle ideal domain

Z2[x]. Subsequent GF (28) − 0 is the multiplicative cyclic Galois group of the result

field GF (28) and hence each nonzero element of the field GF (28) can be expressed as

a power of the primitive element α. where α is the root of the irreducible polynomial,

in study we consider the {pi(x) ∈ Z2[x]; } pi(x) is irreducible and 1 ≤ i ≤ 16 of

16 primitive irreducible polynomials of degree 8, to construct corresponding sixteen

Galois Fields Zp[x]

<pi(x)
, 1 ≤ i ≤ 16. Where the case of primitive irreducible polynomial is

already taken in [18]. in the next section, we use the Galois fields to develop the S-

boxes.The rest of 8-degree primitive irreducible polynomials and their related Galois

fields are given in Table 3.1.

Table 3.1: Primitive irreducible polynomials and their corresponding Galois fields

Primitive Polynomials pi(x) Galois Field
GF (28)

Primitive Polynomials pi(x) Galois Field
GF (28)

p1(x) = x8 + x4 + x3 + x2 + 1 Z2[x]
<p1(x)>

p2(x) = x8 +x7 +x3 +x2 +1 Z2[x]
<p2(x)>

p3(x) = x8 + x5 + x2 + 1 Z3[x]
<p3(x)>

p4(x) = x8 +x7 +x5 +x3 +1 Z4[x]
<p4(x)>

p5(x) = x8+x6+x4+x3+x2+1 Z2[x]
<p5(x)>

p6(x) = x8 + x6 +5 +x1 + 1 Z2[x]
<p6(x)>

p7(x) = x8 +6 +x5 +2 +1 Z2[x]
<p7(x)>

p8(x) = x8 +x6 +x5 +x3 +1 Z2[x]
<p8(x)>

p9(x) = x8 + x7 + x3 + x2 + 1 Z2[x]
<p9(x)>

p10(x) = x7 + x5 + x3 + 1 Z2[x]
<p10(x)>

p11(x) = x8 + x7 + x2 + x+ 1 Z2[x]
<p11(x)>

p12(x) = x8 +x7 +x6 +x+1 Z2[x]
<p12(x)>

p13(x) = x8 +x7 +x6 +x5 +x2 +
x+ 1

Z2[x]
<p13(x)>

p14(x) = x8 +x7 +x6 +x3 +
x2 + x+ 1

Z2[x]
<p14(x)>

p15(x) = x8 +x7 +x6 +x5 +x4 +
x2 + 1

Z2[x]
<p15(x)>

p16(x) = x8+x6+x5+x4+1 Z2[x]
<p16(x)>
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3.3 Algorithm for construction of S-boxes

The designing procedure of the new S-boxes is based on the algebraic action of pro-

jective general linear group in PGL(2, Z2[x]
<pi(x)>

) on a Galois field Z2[x]
<pi(x)>

by linear frac-

tional transformation. Accordingly, the linear fractional transformation used in the

construction of S-boxes, which is given as;

gi : PGL(2,
Z2[x]

< pi(x) >
)× Z2[x]

< pi(x) >
−→ Z2[x]

< pi(x) >

,

gi(α
mj

i ) =


α
m1
i (α

mj
i )+α

m2
i

α
m3
i (α

mj
i )+α

m4
i

, if αm3
i (α

mj

i ) + αm4
i 6= 0

αmk
i , if αm3

i (α
mj

i ) + αm4
i = 0

(3.3.1)

where αm1
i , αm2

i , αm3
i , αm4

i ∈ Z2[x]
<pi(x)>

for any fixed (i) [16]. From this action we can

construct 16776960 the justification is given in [12]. For the construction of new

S-boxes, the algorithm begins with the action of PGL(2, Z2[x]
<pi(x)>

) on Z2[x]
<pi(x)>

for any

fixed i. Further details of the last step of the algorithm are shown in Table 3.1. In

Table 3.1, column 1 denotes the elements of Z2[x]
<pi(x)>

ranging from 0 to 255. Column

2 represents the analytical details of the linear fractional transformation and the

results from the evaluation of gi(z) are listed. The numbers in gi(z) are substituted

with their binary value equivalent, represented as some power of αi where αi the

primitive element is defined as the root of the primitive irreducible polynomial pi(x).

The resulting values from Z2[x]
<pi(x)>

are then converted to the eight-bit binary values to

be used in S-box. The final column displays the elements of the proposed S-box. In

this study we fixed parameters (a,b,c,d)=(α8
i , α

75
i , α

3
i , α

223
i ) as taken in [18]. Thus the

S-box design algorithm will be as under:

gi : PGL(2,
Z2[x]

< pi(x) >
)× Z2[x]

< pi(x) >
−→ Z2[x]

< pi(x) >
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gi(α
m
i ) =


α8
i (α

m
i )+α75

i

α3
i (α

m
i )+α223

i
, if αmi 6= α145

i

α5
i , if αmi = α145

i

(3.3.2)

where α8
i , α

75
i , α

3
i , α

223
i ∈ Z2[x]

<pi(x)>
for any fixed i. The new S-boxes, created through the

proposed algorithm are listed just below the Table 3.2. These are the 16× 16 lookup

tables. Construction of S-box based on linear fractional transformation by choosing

irreducible polynomial p1(x) = x8 + x4 + x3 + x2 + 1 with corresponding Galois field.

Table 3.2: S-box Construction algorithm against one the 15 Galois fields of order 256

GF (28) = Z2[x]
<p1(x)>

g1(α
m) =

α8
1(α

m)+α75
1

α3
1(α

m)+α223
1

Element of S-box 1

0 =0
α8
1(0)+α

75
1

α3
1(0)+α

223
1

= α75

α223 = α107 α107
1 = 104

1=α0
1

α8
1(α

0
1)+α

75
1

α3
1(α

0
1)+α

223
1

=
α224
1

α0
1

= α224 α224
1 = 18

2=α1
1

α8
1(α

1
1)+α

75
1

α3
1(α

1
1)+α

223
1

=
α39
1

α193
1

= α101
1 α101

1 = 34

3 = α25
1

α8
1(α

25
1 )+α75

1

α3
1(α

25
1 )+α223

1
= α53

α100 =α208
1 α208

1 = 81

4 = α2
1

α8
1(α

2
1)+α

75
1

α3
1(α

2
1)+α

223
1

=α172

α147 = α25
1 α25

1 = 3

. . .

. . .

. . .

251 = α234
1

α8(α253
1 )+α75

α3(α253
1 )+α223 =

α162
1

α192
1

= α225
1 α225

1 = 36

252 = α168
1

α8(α168
1 )+α75

α3(α168
1 )+α223 =

α122
1

α57
1

= α65
1 α65

1 = 190

253 = α80
1

α8(α80
1 )+α75

α3(α80
1 )+α223 =

α174
1

α211
1

= α218
1 α218

1 = 43

254 = α88
1

α8(α88
1 )+α75

α3(α88
1 )+α223 =

α85
1

α151
1

= α189
1 α189

1 = 87

255 = α175
1

α8(α175
1 )+α75

α3(α175
1 )+α223 =

α236
1

α209
1

= α271 α27
1 = 12

3.4 The List of all S-boxes 1-15
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Table 3.3: Proposed S-box 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

104 18 34 81 03 125 74 167 149 40 54 120 111 165 171 49
27 243 70 16 242 124 250 240 147 132 99 07 253 58 203 148
10 22 162 94 222 205 50 130 42 129 123 139 181 208 174 46
196 83 112 109 209 229 225 90 178 160 200 226 118 38 180 69
15 169 09 213 182 24 197 146 188 202 224 71 93 100 249 06
233 238 168 108 47 215 80 89 227 207 13 217 161 184 211 210
127 107 221 60 79 220 231 121 61 185 44 234 198 186 183 212
48 144 55 02 68 194 154 51 117 110 20 85 155 64 152 157
115 214 79 204 01 206 172 29 101 82 195 151 78 08 255 136
30 11 28 35 201 106 66 156 246 105 173 96 159 84 141 65
230 95 163 216 133 41 164 113 119 53 177 59 32 97 142 31
239 228 92 88 67 103 145 39 98 37 134 254 252 131 170 251
232 73 00 14 75 77 138 72 248 179 158 199 241 19 26 56
62 192 175 45 63 219 187 122 17 247 126 114 218 143 05 150
223 191 245 128 140 21 25 237 193 04 116 57 23 33 52 150
153 137 86 236 135 235 91 166 102 244 176 36 190 43 87 12

Table 3.4: Proposed S-box 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

98 18 135 95 03 128 180 17 19 139 240 200 176 204 149 164
247 178 173 112 181 255 127 146 74 245 197 113 158 163 21 32
224 111 131 145 83 134 107 155 199 43 00 51 26 196 206 48
62 254 34 152 138 104 198 82 08 102 133 225 60 80 02 116
22 231 75 06 37 04 69 44 115 47 57 126 110 227 31 35
191 161 141 186 105 118 94 45 96 185 91 154 114 124 68 156
135 33 142 30 248 54 42 157 130 166 250 122 25 253 230 243
214 249 90 77 218 05 172 183 66 58 61 50 56 53 87 78
07 215 137 15 159 150 144 10 217 244 117 86 97 187 251 84
23 212 226 210 147 169 106 189 20 92 120 93 100 16 99 175
89 242 234 72 188 236 81 184 76 167 237 171 88 238 221 235
101 121 211 64 216 165 246 136 222 40 192 208 190 241 109 46
233 28 119 24 179 160 49 170 148 193 12 14 205 229 55 59
67 73 209 201 71 239 123 36 125 232 228 63 213 143 70 52
85 194 29 168 223 203 140 132 129 220 79 202 65 252 38 13
103 174 39 11 09 151 27 207 182 219 41 108 177 01 195 162

Table 3.5: Proposed S-box 3
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

229 18 26 142 03 99 111 100 126 164 189 156 132 210 213 206
167 94 98 97 117 102 07 65 46 16 198 202 40 24 107 35
243 193 251 174 14 158 00 36 09 161 58 80 118 149 114 159
109 166 130 136 146 25 196 59 128 199 08 81 113 124 230 153
231 233 108 11 236 212 72 56 173 227 237 147 105 31 228 15
103 76 44 242 78 90 143 50 89 29 96 60 66 215 141 254
95 216 57 162 49 17 86 182 75 155 148 183 140 222 87 21
28 13 52 192 05 204 30 70 163 232 240 53 48 208 69 160
02 255 82 181 67 177 01 101 123 138 12 32 74 38 178 22
85 246 92 37 207 234 154 135 214 223 04 125 201 209 83 250
220 39 226 137 133 151 238 68 217 55 187 20 43 139 169 45
244 221 224 219 152 176 64 175 194 06 121 34 200 180 122 172
157 239 171 106 225 119 179 110 42 170 253 184 290 247 168 191
54 144 79 165 23 71 37 19 185 88 104 129 145 93 77 131
115 252 127 249 62 235 197 33 211 10 120 218 186 27 41 241
112 63 205 188 245 116 84 248 61 91 195 203 150 134 51 47

Table 3.6: Proposed S-box 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

166 18 240 186 03 67 123 53 124 178 99 214 26 138 45 29
41 188 85 25 13 243 101 114 249 24 226 219 245 75 153 72
06 115 39 79 43 198 157 70 133 221 21 208 01 97 151 194
100 71 148 126 116 227 103 55 122 113 19 73 255 59 27 200
204 44 159 246 191 222 05 20 23 189 209 95 82 87 69 143
207 16 177 14 118 74 187 254 212 61 89 196 171 50 66 251
248 136 215 28 150 228 04 129 231 253 195 168 244 140 230 203
241 90 250 252 88 63 142 161 235 35 80 83 51 78 00 236
211 190 33 220 197 81 149 174 247 155 32 08 141 135 152 170
242 210 180 15 234 184 34 144 65 128 199 07 31 10 09 127
46 147 47 163 120 84 201 232 109 205 40 225 119 93 42 169
110 86 38 182 30 22 02 237 213 154 52 54 62 132 58 176
49 134 37 217 238 17 216 239 96 57 121 223 204 206 229 68
91 218 179 165 106 12 202 145 98 107 233 183 139 175 193 137
160 112 192 56 117 173 131 181 156 108 167 11 48 94 172 146
162 130 111 162 92 185 76 158 125 60 36 102 105 104 64 77
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Table 3.7: Proposed S-box 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

122 18 213 150 03 154 171 180 227 36 43 69 28 134 164 32
217 246 19 209 146 206 214 189 181 85 255 51 128 102 88 22
236 167 241 25 229 176 141 77 73 182 37 38 23 244 194 192
83 237 45 175 198 190 108 243 220 110 121 89 76 239 149 61
132 53 145 203 57 162 100 158 124 27 70 90 169 58 92 101
187 82 68 06 74 59 151 219 55 96 35 112 142 202 130 147
00 106 160 10 47 165 177 62 228 64 163 52 56 31 78 139
12 157 103 156 39 135 42 71 240 238 98 94 16 166 46 104
168 33 97 07 235 81 242 216 230 254 247 223 13 212 140 17
233 05 50 188 199 152 153 186 185 197 26 93 215 205 129 87
161 178 60 207 159 172 109 80 250 41 144 04 222 86 72 191
183 156 11 211 48 224 34 24 01 208 66 107 118 65 63 195
105 111 99 232 199 15 75 95 125 179 137 127 120 02 123 251
113 201 49 234 193 174 252 345 08 210 115 204 114 138 21 133
131 226 54 20 44 30 170 91 84 248 136 173 116 200 40 253
70 09 14 218 196 67 184 225 117 231 155 29 249 221 148 143

Table 3.8: Proposed S-box 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

88 18 186 250 03 63 188 27 106 103 66 138 246 23 56 223
68 211 31 232 36 234 76 213 28 21 65 203 46 179 227 247
82 39 73 97 93 44 119 218 91 167 240 22 215 176 209 168
58 177 200 219 238 160 89 100 00 249 17 144 16 253 199 146
113 15 11 125 53 189 77 124 96 40 47 114 101 120 207 152
158 155 109 185 255 33 251 41 111 14 148 24 139 187 122 149
04 20 169 237 241 173 102 74 174 161 172 72 235 166 178 06
105 49 62 52 233 245 170 217 194 129 01 126 90 151 198 153
212 110 29 10 104 222 206 30 210 130 38 55 175 230 163 80
116 86 85 118 75 34 228 07 59 224 121 117 196 242 184 236
243 136 162 205 140 231 45 37 08 150 69 156 64 180 204 60
84 95 87 226 42 132 143 09 131 135 191 13 137 94 154 57
164 32 171 83 252 190 19 192 26 127 157 133 108 115 71 134
165 221 239 201 248 254 197 02 220 70 67 214 159 61 12 195
208 99 78 229 05 145 81 43 225 98 216 142 141 147 112 35
183 128 51 79 48 181 50 54 107 25 182 193 202 123 244 92
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Table 3.9: Proposed S-box 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

192 18 119 214 03 161 165 222 04 88 74 91 216 08 80 240
132 07 101 236 198 211 110 184 107 109 254 205 178 249 162 92
120 139 175 227 106 247 77 167 103 163 86 141 104 67 248 170
246 62 00 111 181 224 27 60 29 134 35 239 133 228 06 85
202 253 230 44 196 68 229 140 54 204 189 96 193 25 82 127
152 255 59 52 185 145 215 99 128 144 183 244 78 89 169 143
39 79 117 187 105 218 223 243 194 63 83 93 188 40 200 164
47 21 182 186 69 61 126 72 02 43 94 179 157 31 159 57
180 66 34 168 203 41 241 58 251 199 135 207 208 245 250 53
124 38 10 50 225 95 129 05 42 17 56 195 172 149 24 115
206 98 49 14 12 81 151 166 75 233 26 148 130 191 197 48
137 173 70 237 37 201 220 28 232 16 190 234 1118 153 136 252
217 97 36 32 131 114 87 33 154 123 102 142 147 55 15 160
30 112 65 76 46 171 108 176 177 100 156 121 138 210 150 212
231 155 20 209 242 221 116 235 19 113 13 238 45 64 09 71
11 226 122 90 22 23 146 01 213 73 174 125 158 51 219 84

Table 3.10: Proposed S-box 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

142 18 55 73 03 56 48 154 168 229 219 115 158 175 24 11
245 201 215 242 221 38 109 70 184 90 234 217 117 15 216 189
00 41 120 235 87 132 126 101 06 94 183 220 29 121 188 226
203 195 202 118 149 91 104 07 45 36 52 233 252 193 176 05
105 71 163 82 12 160 27 23 53 225 51 42 140 107 218 64
33 249 159 97 34 185 72 232 231 139 170 147 204 39 13 16
119 17 08 31 40 65 68 162 174 171 254 186 155 164 100 192
223 141 113 129 75 108 125 122 62 161 130 128 236 116 43 25
182 09 77 250 138 248 44 178 181 124 10 26 19 106 200 78
99 224 228 112 137 69 165 237 212 145 251 206 54 136 04 47
239 209 177 60 93 30 89 247 190 207 59 246 114 156 21 211
144 98 76 180 46 143 152 135 210 49 58 191 244 238 88 173
35 194 28 187 205 172 131 208 146 157 199 127 57 198 150 123
85 227 01 32 222 151 74 103 134 240 61 253 197 166 111 110
83 79 243 80 66 96 92 148 14 22 169 133 86 20 153 67
255 213 84 95 214 37 167 241 230 179 102 196 02 50 63 81
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Table 3.11: Proposed S-box 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

166 18 240 186 03 67 123 53 124 178 99 214 26 138 45 29
41 188 85 25 13 243 101 114 249 24 226 219 245 75 153 72
06 115 39 79 43 198 157 70 133 221 21 208 01 97 151 194
100 71 148 126 116 227 103 55 122 113 19 73 255 59 27 200
204 44 159 246 191 222 05 20 23 18 209 95 82 87 69 143
207 16 177 14 118 74 187 254 212 61 89 196 171 50 66 251
248 136 215 28 150 228 04 129 231 253 195 168 244 140 230 203
241 90 250 252 88 63 142 161 235 35 80 83 51 78 00 236
211 190 33 220 197 81 149 174 247 155 32 08 141 135 152 ‘70
242 210 180 15 234 184 34 144 65 128 199 07 31 10 09 127
46 147 47 163 120 84 201 232 109 205 40 225 119 93 42 169
110 86 38 182 30 22 02 237 213 154 52 54 62 132 58 176
49 134 37 217 238 17 216 239 96 57 121 223 224 206 229 68
91 218 179 165 106 12 202 145 98 107 233 183 139 175 193 137
160 112 192 56 117 173 131 181 156 108 167 11 48 94 172 146
164 130 111 162 92 185 76 158 125 60 36 102 105 104 64 77

Table 3.12: Proposed S-box 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

84 18 73 117 03 103 199 149 54 197 191 218 221 07 21 51
200 208 106 223 167 19 122 239 186 183 161 147 92 203 198 67
55 170 82 100 104 123 182 91 156 165 227 88 137 168 39 29
49 228 231 179 226 252 237 232 52 193 30 224 95 74 225 43
77 80 94 209 41 205 68 105 24 26 254 86 136 119 37 98
36 126 13 112 70 31 116 42 99 87 125 107 185 110 154 250
240 207 102 59 189 229 34 06 23 220 14 178 206 08 28 138
174 194 48 225 20 109 78 204 166 173 40 175 247 44 251 38
157 143 214 22 244 02 151 69 148 234 202 15 76 241 253 01
130 61 144 81 25 201 53 46 160 127 90 150 235 11 32 212
58 155 128 213 60 04 133 96 135 79 16 140 192 243 17 62
180 211 245 45 153 142 113 10 139 05 56 163 196 141 242 145
85 190 162 216 215 195 124 120 236 131 184 249 159 50 158 66
177 219 115 111 83 210 33 89 188 93 47 132 97 75 187 35
222 246 238 64 27 217 164 230 121 57 114 71 118 181 108 63
169 248 134 152 176 09 72 00 65 12 171 101 129 233 172 146
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Table 3.13: Proposed S-box 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

181 18 201 254 03 227 211 11 195 49 177 28 111 45 41 13
188 82 199 165 60 171 72 158 185 57 40 247 42 63 47 38
173 65 196 142 112 170 104 44 169 134 90 124 236 237 240 43
167 239 10 245 242 130 218 159 115 69 67 08 161 64 151 194
37 172 49 244 01 80 94 232 73 154 23 81 97 27 113 226
145 114 35 77 200 88 255 95 126 86 54 136 166 26 246 214
253 32 87 07 210 178 241 157 233 59 212 228 225 128 107 83
203 61 76 164 193 100 96 106 217 33 50 21 53 59 110 102
224 252 251 78 248 17 30 118 137 215 58 116 146 179 123 66
138 132 174 208 31 00 163 152 99 148 91 235 119 02 150 135
141 183 89 109 55 180 36 190 108 231 175 182 98 105 204 191
143 229 249 144 120 74 93 70 34 117 79 16 46 234 12 153
133 84 197 92 14 25 162 24 15 250 198 243 206 127 09 05
68 122 51 192 186 39 139 56 04 06 140 156 62 202 85 71
184 160 147 121 129 103 20 222 207 219 238 221 205 230 223 125
131 52 19 187 189 48 101 155 216 22 168 75 176 213 220 29

Table 3.14: Proposed S-box 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

241 18 231 146 03 164 248 232 48 78 68 124 127 115 46 125
116 136 179 01 101 204 15 244 109 14 86 236 251 206 209 66
119 253 221 153 181 224 44 95 196 159 41 20 154 139 38 149
13 217 47 200 88 12 29 107 193 94 76 96 57 155 167 79
252 05 161 214 85 31 208 182 11 199 246 151 30 170 176 26
58 180 99 114 237 56 147 87 100 45 173 226 81 69 177 212
245 103 233 211 207 213 240 168 192 34 93 148 92 52 90 135
16 255 158 49 27 111 222 142 171 210 163 24 98 104 133 113
50 67 219 118 54 70 190 197 33 61 91 63 230 126 227 138
152 89 123 07 223 17 28 62 184 132 144 239 110 121 84 56
77 06 157 106 183 105 198 35 250 243 32 128 249 194 205 02
23 37 10 247 25 178 80 165 175 160 131 134 04 254 09 08
53 150 166 112 229 187 117 201 59 186 189 185 75 36 65 43
82 215 238 162 202 228 141 64 42 195 72 174 21 129 203 119
172 225 40 242 102 71 00 234 143 145 218 220 216 60 130 39
51 83 188 235 169 55 97 120 191 137 140 22 73 122 108 74



32

Table 3.15: Proposed S-box 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

212 18 60 99 03 202 95 120 253 131 50 169 249 88 123 101
172 170 14 10 70 69 113 208 81 48 162 72 106 153 142 53
160 230 86 33 204 241 17 164 96 198 143 156 35 79 197 59
130 49 152 58 223 175 13 216 42 103 06 244 23 213 08 144
191 189 185 110 181 157 161 173 179 87 43 16 176 252 177 54
183 209 07 235 68 214 98 114 250 105 20 224 182 225 196 47
45 206 37 92 62 134 119 64 236 195 154 155 180 219 135 36
126 85 248 193 71 26 159 148 22 40 108 52 97 34 218 239
231 83 78 166 122 19 151 61 55 246 255 117 76 90 111 129
141 217 242 167 254 28 200 75 168 88 82 237 44 139 127 178
233 89 112 107 128 67 184 211 80 104 01 124 93 146 247 12
24 150 48 39 228 165 133 229 31 234 102 29 09 125 220 115
192 232 32 251 238 138 121 190 02 11 222 194 118 243 21 149
210 51 221 140 147 66 158 30 05 136 187 201 145 109 174 00
215 186 116 240 63 171 205 137 27 65 25 132 74 100 73 38
91 46 245 57 41 15 163 203 77 207 56 226 199 94 04 227

Table 3.16: Proposed S-box 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

133 18 181 107 3 53 216 144 118 47 244 222 71 163 138 23
241 239 49 96 245 58 223 252 130 242 160 173 199 108 89 05
200 63 249 213 195 153 193 40 80 148 2 75 30 197 29 13
198 212 77 172 104 217 151 136 33 119 243 238 208 227 69 159
45 182 117 176 190 225 232 186 254 214 94 174 12 134 158 146
231 141 115 164 54 166 106 97 86 36 27 161 41 8 83 162
229 55 22 168 73 10 44 253 180 19 99 78 87 210 25 235
52 204 211 46 64 226 90 170 120 39 218 171 192 109 67 88
95 16 76 24 178 246 143 124 152 248 66 59 26 209 230 179
167 126 220 237 20 127 183 82 0 98 112 116 57 157 7 1
219 60 233 81 11 145 155 111 215 103 34 142 129 14 206 37
84 85 137 189 70 205 187 114 17 56 101 175 251 154 15 147
74 188 156 21 221 61 51 79 165 131 236 150 185 194 62 9
224 149 132 177 247 31 35 4 32 68 196 43 121 92 110 240
250 50 123 28 122 125 225 207 202 169 91 72 42 184 65 128
38 113 234 135 93 100 140 228 203 6 48 201 139 102 191 105
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Table 3.17: Proposed S-box 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

222 18 110 202 3 160 239 22 17 27 93 219 79 146 11 145
205 31 198 37 133 126 70 254 71 56 212 54 228 136 104 206
221 163 50 243 21 216 248 176 64 127 76 200 226 73 57 103
211 169 251 174 154 232 231 135 6 33 116 130 9 112 234 177
175 75 102 85 68 20 214 134 223 199 53 118 35 8 66 109
26 201 151 122 62 40 203 184 253 101 81 217 155 14 108 65
52 29 204 164 140 120 15 138 88 247 245 19 42 47 89 170
229 72 159 132 156 115 36 59 45 12 195 1 139 236 191 207
157 87 171 60 190 111 237 209 197 91 0 141 194 23 179 32
230 25 97 92 166 183 250 125 44 106 69 95 49 161 186 215
144 150 4 113 107 242 38 99 46 162 43 55 78 187 13 121
137 213 34 185 210 2 84 244 208 167 182 5 188 98 238 224
225 214 39 143 123 61 172 30 51 100 218 48 152 178 227 83
173 10 148 82 96 128 80 149 119 193 74 180 142 235 94 58
7 105 168 241 16 153 63 233 28 240 249 147 189 220 255 117

181 196 41 246 129 86 165 158 114 131 77 252 90 67 192 24

Table 3.18: Proposed S-box 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

124 18 154 77 3 216 99 81 117 91 112 125 88 32 10 96
227 253 141 194 235 5 111 9 122 37 206 233 156 72 53 51
184 7 20 239 102 22 166 210 192 97 226 27 12 248 79 149
69 59 196 220 132 109 94 168 234 84 15 108 120 52 142 14
25 90 151 205 93 0 26 171 217 41 1 67 224 197 21 198
130 174 231 161 199 153 76 6 144 170 246 221 43 232 29 219
61 229 191 242 195 95 137 225 157 75 39 119 44 98 104 87
115 89 56 110 160 42 31 249 169 222 146 11 245 238 136 247
54 139 200 8 36 46 126 218 121 165 105 16 58 35 135 164
207 230 2 243 63 123 214 80 68 55 183 114 107 208 62 163
252 145 116 250 13 204 127 228 187 113 49 86 159 83 152 244
180 193 57 173 133 128 150 30 40 190 255 240 237 155 85 175
162 47 134 50 60 28 186 177 33 202 176 19 70 209 24 178
71 38 212 48 201 172 129 143 215 188 181 147 158 65 101 100
251 179 182 203 140 223 66 254 64 23 45 189 17 213 131 4
73 211 167 74 78 148 236 185 92 241 82 103 118 106 34 138
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3.5 Algebraic analysis

In this section, we have presented some valuable analysis of S-box followed by [16].

3.5.1 Nonlinearity

The distance among the Boolean function f and the set of all affine linear functions

is said to be nonlinearity of f . Basically the nonlinearity of a Boolean function f

characterizes the number of bits which transformed in the truth table of f to reach

the neighboring affine function.The upper bound of nonlinearity is N = 2n−1 − 2
n
2
−1

[19] so that for n = 8 the extreme value of nonlinearity is 120. It can be seen

from the Performance Indexes of S-boxes that average nonlinearity of all proposed

S-boxes is almost 112, hence an optimal value is achieved. In figure 3.1, we have

the nonlinearity analysis of proposed S-boxes with some standard S-boxes, which we

have already discussed in section 2.4.2, literature review of S-boxes, to know about

the security strength of proposed S-boxes as compare to other S-boxes. It can be

seen in the performance indexes of proposed S-boxes 1-16 that the nonlinearity of

each proposed S-box measure is 112. In figure 3.1 when we compare the values of

nonlinearity of proposed S-boxes with some of the standard S-boxes, we absorbed that

the result of proposed S-boxes are same as the result of analysis of the top S-boxes,

i,e Gray, APA and AES S-box, and batter then other S-boxes such as Skipjack , Xyi

and Residue prime S-box.
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Figure 3.1: Comparison of nonlinearity analysis of different S-boxes

3.5.2 Strict avalanche criteria

The SAC was first introduced in 1895 by Webster and Tavares [20]. The SAC con-

structs on the notions of completeness and avalanche. It is satisfied if, whenever a

single bit of input changed, each of the output bits changes with a 0.5 probability that

is, when one bit of input is changed, half of its corresponding output bits will changes.

We can observe from the performance Indexes of S-boxes that the proposed S-box

successfully satisfied SAC. The result of the strict avalanche criterion (SAC) analysis

of all proposed S-box are different and closed to 0.5, and in figure 3.2 the comparison

of SAC analysis of all proposed S-boxes with standard S-boxes are presented, it can

be seen that the SAC analysis result of all 16 proposed S-boxes is approximately equal

to 0.5 which is comparatively best.
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Figure 3.2: Comparison of SAC analysis of different S-boxes

3.5.3 Bit independent criterion

The BIC was also first introduced by Webster and Tavares [20] which is another re-

quired property for any cryptographic methods. Table 2, shows the results of BIC

analysis of proposed S-box and in the sense of encryption strength, the BIC of the

proposed S-box is acceptable. Performance Indexes of S-boxes show that the rank

of our proposed S-box is comparable with S-boxes from literature and we observed

that the proposed S-boxes satisfied BIC close to the best possible value. In Bit inde-

pendence criterion variables are pairwise compared to analyze independence between

these variables. Performance indexes of all proposed S-box show that the result of the
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nonlinearity of bit independent criterion analysis is equal. Moreover, BIC analysis of

all S-boxes has minimum value 112 and average value 112 respectively. In the figure

showing the comparison of the result of the BIC analysis of all Proposed S-boxes with

Standard S-boxes, it can be seen that BIC analysis result of proposed S-boxes is same

as the result of BIC analysis of AES, APA and Gray S-box and much batter then

Xyi, Skipjack, and Residue prime S-box.

Figure 3.3: Comparison of BIC analysis of different S-boxes

3.5.4 Linear approximation probability

The maximum value of the imbalance of an event is said to be the linear approximation

probability. The parity of the input bits selected by the mask Gb is equal to the parity

of the output bits selected by the mask Ga According to Matsui s original definition
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[20], linear approximation probability of a given S-box is defined as

LP = max
Ga,Gb 6=0

|]{a ∈ x|a.Ga = S(a).Gb}
2n

| − 1

2
|

Where Ga and Gb are input and output masks, respectively, x the set of all possible

inputs; and 2n is the number of elements of x. From Performance Indexes of S-boxes,

we see that the average value of LP of the proposed S-boxes are 0.0625 which is

appropriate against linear attacks. It can be seen in the figure 3.2 that the result

of linear approximation analysis of all 16 proposed S-boxes are much better than

the result of linear approximation probability analysis of Skipjack, Xyi, and Residue

prime S-box.

Figure 3.4: Comparison of LP analysis of different S-boxes
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3.5.5 Differential approximation probability

The differential approximation probability (DP) of S-box is a measure for differential

uniformity and is defined as

DP s(∆a→ ∆b) = [
]{a ∈ x|S(a) = S(a±∆a = ∆b)}

2m
]

This means an input differential ∆ai should uniquely map to an output differential ∆bi

so that ensuring a uniform mapping probability for each i. The average value of dif-

ferential approximation probability for proposed S-boxes are 0.015625 (Performance

Indexes of S-boxes) and Table 3 shows the comparison of differential approximation

probability of different S-boxes.

Figure 3.5: Comparison of DP analysis of different S-boxes
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Performance indexes of S-box 1
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.546875 0.4375 0.509033 0.0141386
BIC 112 112 0
BIC-SAC 0.474609 0.501256 0.0129051
DP 0.015625
LP 144 0.625

Performance indexes of S-box 2
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.4375 00.496094 0.017304
BIC 112 112 0
BIC-SAC 0.472656 0.504883 0.0104725
DP 0.015625
LP 144 0.625

Performance indexes of S-box 3
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.4375 00.489502 0.0167477
BIC 112 112 0
BIC-SAC 0.46875 0.497559 0.0121931
DP 0.015625
LP 144 0.625
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Performance indexes of S-box 4
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.4375 00.502441 0.01534543
BIC 112 112 0
BIC-SAC 0.490234 0.501883 0.009400
DP 0.015625
LP 144 0.625

Performance indexes of S-box 5
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.546875 0.4375 0.4956338 0.0160869
BIC 112 112 0
BIC-SAC 0.490234 0.501883 0.009400
DP 0.015625
LP 144 0.625

Performance indexes of S-box 6
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.546875 0.4375 0.506639 0.0160869
BIC 112 112 0
BIC-SAC 0.480469 0.054185 0.0140524
DP 0.015625
LP 144 0.625
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Performance indexes of S-box 7
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.4375 00.503662 0.0169564
BIC 112 112 0
BIC-SAC 0.482422 0.501325 0.00987734
DP 0.015625
LP 144 0.625

Performance indexes of S-box 8
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.4375 0.501709 0.0137496
BIC 112 112 0
BIC-SAC 0.482422 0.505092 0.0119186
DP 0.015625
LP 144 0.625

Performance indexes of S-box 9
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.546875 0.453125 00.503174 0.0140285
BIC 112 112 0
BIC-SAC 0.488281 0.50014 0.009838244
DP 0.015625
LP 144 0.625
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Performance indexes of S-box 10
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.453125 00.506348 0.0164989
BIC 112 112 0
BIC-SAC 0.476563 0.506836 0.0126308
DP 0.015625
LP 144 0.625

Performance indexes of S-box 11
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.546875 0.433125 0.492188 0.0.0133185
BIC 112 112 0
BIC-SAC 0.486328 0.498535 0.0091405
DP 0.015625
LP 144 0.625

Performance indexes of S-box 12
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.4375 00.51001 0.0186504
BIC 112 112 0
BIC-SAC 0.480469 0.501186 0.0186504
DP 0.015625
LP 144 0.625
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Performance indexes of S-box 13
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.546875 0.4375 0.509521 0.0162014
BIC 112 112 0
BIC-SAC 0.482422 0.503418 0.0114676
DP 0.015625
LP 144 0.625

Performance indexes of S-box 14
Analysis Max Min Average Square

Deviation
The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.453125 0.492432 0.013879
BIC 112 112 0
BIC-SAC 0.476563 0.502581 0.0125502
DP 0.015625
LP 144 0.625

Table 3.19: Performance indexes of S-box 15

Analysis Max Min Average Square
Deviation

The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.453125 0.510742 0.0159796
BIC 112 112 0
BIC-SAC 0.486328 0.50565 0.0119301
DP 0.015625
LP 144 0.625
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Table 3.20: Performance indexes of S-box 16

Analysis Max Min Average Square
Deviation

The differen-
tial approxi-
mation prob-
ability

The linear
approx-
imation
probability

Nonlinearity 112 112 112
SAC 0.0.5625 0.453125 0.510742 0.0159796
BIC 112 112 0
BIC-SAC 0.486328 0.50565 0.0119301
DP 0.015625
LP 144 0.625

3.6 Statistical analysis of proposed S-boxes

In this section, we have taken the image of Lenna and performed an image encryption

experiment using proposed S-boxes, we apply MLC majority logic criterion which in-

cludes Contrast analysis, energy analysis, homogeneity analysis, correlation analysis

and entropy analysis used to determine the best suitable S-box. The result of sta-

tistical analysis of proposed S-boxes and some other well known S-boxes are given

in Table 3.21, it can be seen in the table that the statistical analysis result of all

proposed S-boxes are almost same and batter then the result of other S-boxes.

(a) Orignal (b) S-box 1. (c) S-box 2. (d) S-box 3.
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(e) S-box 4. (f) S-box 5. (g) S-box 6. (h) S-box 7.

(i) S-box 8. (j) S-box 9. (k) S-box 10. (l) S-box 11.

(m) S-box 12. (n) S-box 13. (o) S-box 14. (p) S-box 15.

Figure 3.6: Encrypted Images.

3.6.1 Entropy

Entropy is the statistical analysis measure the randomness which can use in the

characterize of the structure of image. The high level of randomness make complex
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image detection process the Mathematically it can be written as,

H =
n∑
i=1

g(xi)logbfxi

. In Table 3.21 show that the result of entropy analysis of encrypted images of different

S-box. It can be seen that the entropy analysis of all proposed S-boxes are equal, and

batter then the result of entropy AES, APA, Gray, Xyi, and Hussain S-box.

3.6.2 Energy

Energy analysis is used to measure the energy of encrypted image, Gray level Co-

occurrence matrix (GLCM) are used for this purpose. In (GLCM) the squared com-

ponent are called energy, mathematically it can be written as

E =
∑
m

∑
n

f 2(v, u).

Here v and u denote the pixel of the image, and f(v, u) are the number of gray-level

co-occurrence. It can be seen in the table 3.18 that energy analysis of all proposed

S-box is less than the energy analysis of AES S-box, APA S-box, Gray S-box, Residue

Prime S-box, Xyi S-box.

3.6.3 Contrast

Contrast analysis is used to help the viewer to identify the object of an image. In

image encryption process randomness is directly proportional to the contrast value,

mean increasing randomness in encrypted image increasing the value of contrast. The
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result of contrast analysis of all proposed S-boxes and some other S-boxes have given

in table 3.21. The following mathematical formula is used to measure the contrast

analysis ∑
n

∑
m

(m− n)2f(m,n).

3.6.4 Correlation

Correlation analysis is used to analyze the correlation of entire image pixels couple

wise. There are three possible ways to select, Vertical, horizontal, and diagonal

formate, for this purpose correlation analyzed the entire image with partial regions.

The correlation is calculated by the following formula.

C =
(u− αu)(v − αv)f(u, v)

σuσv
.

where for the perfectly positive or perfectly negative images the value of correlation

is 1 or −1, for the constant image the correlation is NaN , which mean it is not a

number, just a data type which represented by the redefined value. The result of

correlation of all proposed S-boxes are given in table 3.21.

3.6.5 Homogeneity

Homogeneity analysis is used to measure the closeness of elements which are dis-

tributed from GLCM to GLCM diagonals. It is also known as a gray tone spital

dependency matrix. In tabular from, the GLCM is work to shows the statistic of ar-

rangement gray level pixels. The process of entire form of GLCM extend this analysis.



49

The mathematical from of Homogeneity analysis are given below

H∗ =
∑
u

∑
v

=
f(u, v)

1− |u− v|
.

Table 3.21: Statistical analysis of different S-boxes

8× 8 S-boxes Contrast Correlation Energy Homogeneity Entropy

proposed S-box 1 9.5062 0.1532 0.186 0.4723 7.3021
proposed S-box 2 9.3720 0.1142 0.0190 0.4712 7.3021
proposed S-box 3 9.6826 0.1393 0.0184 0.4633 7.3021
proposed S-box 4 8.6784 0.1332 0.0193 0.4724 7.3021
proposed S-box 5 8.9918 0.1084 0.0191 0.4687 7.3021
proposed S-box 6 8.6557 0.1034 0.0186 0.4716 7.3021
proposed S-box 7 9.3562 0.1273 0.0184 0.4639 7.3021
proposed S-box 8 8.7901 0.1073 0.0193 0.4716 7.3021
proposed S-box 9 8.6826 0.1065 .0190 0.4755 7.3021
proposed S-box 10 8.7033 0.1904 0.0190 0.4838 7.3021
proposed S-box 11 8.5146 0.1105 0.0180 0.4693 7.3021
proposed S-box 12 8.3766 0.1386 0.0185 0.4761 7.3021
proposed S-box 13 9.0504 0.1160 0.0180 0.4653 7.3021
proposed S-box 14 9.8755 0.0957 0.0183 0.4600 7.3021
proposed S-box 15 9.9046 0.1252 0.0183 0.4555 7.3021
proposed S-box 16 9.5060 0.1532 0.0186 0.4723 7.3021
AES S-Box 7.5509 0.0554 0.0202 0.4662 7.2531
APA S-box 8.1195 0.1473 0.0183 0.4676 7.2264
Gray S-box 7.2301 0.0586 0.0203 0.4623 7.2301
Skipjack S-box 7.5283 7.7058 0.1025 0.0193 7.2214
Xyi S-box 8.3108 0.0417 0.0196 0.4533 7.2207
Residue prime 8.3108 0.0417 0.0202 0.4640 7.2035



Chapter 4

Conclusion

In the presented work a novel technique for the construction of 8 × 8 S-boxes over

16 different Galois fields is given. The method of linear fractional transformation is

adopted by fixing the same parameters a, b, c, d for the design of all 16 S-boxes. The

algebraic strength of these newly constructed S-boxes are measured by Nonlinearity,

BIC, SAC, BIC-SAC, LP, and DP. So we observed after the comparison with well-

known 8 × 8 S-boxes that the results are of finest value and up to the standard. In

addition, it is determined that these new S-boxes are balanced, which make it strong.

For the futuristic point of view; by using the linear fractional transformations, one

can obtain a large class of S-boxes by varying the parameters a, b, c, d Moreover, other
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construction techniques of S-boxes can also be used to generate the variety of good

S-boxes.
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