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Preface

The study of fluid flow has a variety of applications in medicine, science and technology.
The formulation of the Cauchy stress for various fiuids is a difficult problein. Due to the great
diversity in the physical structure of fluids, it is impossible to establish a single constitutive
equation. Therefare several constitutive equations describing the fluid behavior for instance
stress differences, shear thinning or shear thickening, stress relaxation and clastic effects atc.
are proposed. It is known that Newtonian fluids can be described by the Navier-Stokes equa-
tions. Non-Newtonian fluids are mainly classified under three categories namely the differential
type, rate type and integral type. One of the simplest subclass of differential type fAuids is
second grade. Although second grade model is able to prediet the normal stress differences
but third grade model is required in examining shear thinning or thickening when the shear
viscosity is constant, Many flow problems of classical hydrodynamics have received new atten-
tions recently in the general context of magnetohydrodynamics (MHD). In the past few years
magnetohydrodynamics (MHD) has gained considerable importance because of its diverse ap-
plications in physics and enginecring, In astrophysical and geophysical applications it is useful
to study the stellar and solar structures, solar storms and flares, radio propagation through the
ionosphere ete. In engineering its applications are in MHD generators, MHD pumps and MHD
bearings. The concept of magnetohydrodynamics lias been also utilized in the development of
boundary layer lows over a stretching surface. Such flows have important engineering applica-
tions. Examples of such processes include the hot rolling, wire drawing, glass-hber and paper
production. Sheet stretching is also comrnonly used in polymer industry. Production of plastic
sheets and foils, for example, involves extrusion of molten polymers through a slit die with the
extrudates being collected by a wind-up roll upon solidification. There are abundant number of
existing articles throngh various aspects that deal with the stretching Aow problems. However
the investigations on the flows due to a shrinking sheet are scarcely available in the literature,
These are even not available for the hydrodynamic sitnation. With all the facts highlighted
above this thesis runs as follows.

In chapter one, we include the review relevant to the MHD rotating flows, stretching and
shrinking flows for viscous and non-Newtonian fluids. The basic flow equations, constitutive

equations, honiotopy analysis method and homotopy Padé approximation are also presented



in this chapter,

Chapter two discusses the two-dimensional boundary layer flow of a viscous fluid over a
porous shrinking sheet. The equations are modeled when the MHD fliid and the shrinking
surface are in a state of solid body rotation. It is concluded that suction solution in shrinking
flow is only possible for the MHD fluid. The results of this chapter have been published in
Nonlinear Dynamics 51 (2008) 259.

Chapter three extends the flow analysis of chapter two in three dimensions when the finid
is bounded between the two plates. Emphasis is given to the results of wall shear stress. It
is found that influences of Hartman number and rotation parameter on the wall shear stress
are different. However the role of suction parameter on the shear stress is similar to that of
the rotation parameter. These observations are in press iy Chaos, Solitons and Fractals
(2007).

Porous materials have critical role in many scientific and engineering applications. Typi-
cal examples include catalysis, hydrology, tissue engineering, powder technology, wetting and
drying processes. The fluid flow through porous media occurs in the fields of agriculture en-
gineering to study the underground water resources, scepage of water in the river beds, in
petrolewn technology and transpiration cooling. In view of such applications, the MHD rotat-
ing flow of a viscous fluid over a non-linear stretching surface is studied in chapter four. The
flow analysis is based in the absence of electric and induced magnetic fields. An incompressible
viscous fluid occupies the porous half space. The influence of porosity parameter on the fow is
found similar to that of the Hartman number. The contents of this chapter have been submitted
for publication in Phys. Lett. A.

Chapter five is prepared to analyze the MHD rotating flow of a second grade fluid bounded by
a shrinking sheet. Flow modeling is done and influence of second grade parameter is seen. It is
revealed that the role of second grade parameter on horizontal and vertical velocity components
is opposite. Here the magnitude of horizontal velocity component decreases by increasing the
second grade parameter. These observations are in press for publication in Phys, Lett, A
372 (2008) 3264.

Much attention has been given to the flows in porous media which involve the classical

Darcy's law valid for a viscous fluid. The investigations dealing with the flows of non-Newtonian



fluids through modified Darcy’s law are less. In view of this rcason chapter six investigates the
Hall effect on hydromagnetic Poiseuille flow of a third grade fluid in a rotating frame. The
rmodified Darcy’s law for a third grade Huid is first developed and then used in the problem
formulation. Such flow occurs for high magnetic field or low collision frequency. The presented
analysis depict that the influence of Hall parameter and third grade parameter are similar on
the velocity components. The main points of this chapter are published in .J. Porous Media
10 (2007) 807.

Chapter seven illustrates the flow and heat transfer characteristics of a third grade fluid
between two porous plates., Both plates and fluid exhibit rigid body rotation. It is found that
third grade material parameter causes a reduction in the temperaturc profile. The behavior
of rotation parameter and third grade parameter on the temperature profile is same. These

conclusions have heen published in Acta Mechanica 191 (2007) 219.



Chapter 1

Introduction

1.1 Literature survey and basic equations

This chapter includes the review of the previous investigations relevant to MHD rotating flows
and flows over stretching and shrinking surfaces, The basic and constitutive equations gov-
erning the flow are given. Moreover the basic ideas of homotopy analysis method and Padé

approximant are explained.

1.2 Magnetohydrodynamic (MHD) rotating flows

Due to theoretical ane practical interest, the flow with magunetic ficld has attracted the attention
of the investigators during the last few decades. In the presence of magnetic field the fluid
particles expericnce a force induced by the eleclric current which results in the modification
of the flow. In fact the Lorentz force is the interaciion between the transverse magnetic field
and the electrically conducting fluid. Interest in MHD flow began in 1918, when Hartman (1]
invented the electromagnetic pump. Historically, Rossow 2] initiated the MHD boundary layer
flow on a semi-infinite flat plate. Since then a large amount of literature is developed on
this subject. The recent attempts in this direction are rnade by Hayat et al. [3-5], Misra et
al. [6}, Amkadni et al. [7], Sadeghy ct al. 8], Khan et al. [0, 10], Abbas et al. {11], Sekhar
et al. [12], Torahim et al. [13], Cortell [14], Pantokratoras [15], Pattison et al. [16], Liu et
al. [17], Aliakbar et al. [18], Hakan et al. [19], Ni et al. [20,21], Osalusi et al. [22], Palitavan



et al. [23]. Samulvak et al. [24], EL-Kabeir et al. [25], Salem et al. [26]. Eldabe et al. [27] and
Abel et al. [28]. Further the scientific research of the fluid systems in rotating environments
has considerable bearing on the problems of geophysical and astrophysical interest and fluid
engineering applications. Chandrasckhar [20-31] discussed the influence of Coriolis force on
problems of thermal instability and on stability of a viscous MHD flow. Lehnert [32,33) pointed
out the Coriolis force effects on the MHD waves in the sun. Vidyanidhi [34] and Nanda and
Mohanty [35] developed the steady rotating flow in a channel when pressure gradient is constant.
Gupta [36] obtained an exact solution of the steady rotating flow past a porous plate. He showed
that steady asymptotic solution for suction and injection cases are possible in a rotating {rame.
Soundalgekar and Pop [37) extended the Gupta’s analysis (36] to the MHD fluid case. Loper [38]
demenstrated the steady hydromagnetic boundary layer flow analysis near a rotating electrically
conducting plate. In another paper, Loper [39] constructed the general solution for the linearized
Ekman-Hartman layer on a spherical boundary. Hsueh [40] considered the problem of viscous
fluid flow over a corrugated bottom in a rotating system. Potter and Chawla [41] and Gilman
(42] investigated the stability of Ekman and Ekman-Hartman layers respectively. Vajravelu and
Debnath [43] discussed the convective rotating flow in a wavy channel. Furthermore, sonie works
have been done to investigate the time-dependent hydromagnetic flows as the boundary and
initial value problems. Thornley [44] has studied the rotating flow of hydrodynarnic viscous fluicd
bounded by an oscillating plate. The fluid occupies the semi-infinite space. The case of fluid
between two plates the lower of which is oscillating and upper at rest is also discussed. Debnath
(45} examined the rotating flow of a viscous MHD fluid over an oscillating rigid plate. In a series
of papers, Debnath and his coworkers [46--48] analyzed the rotating flows of a viscous fluid for
magnetohydrodynainic rigid and porous boundaries and Hall effect cases. The unsteady {low of
a rotating MHD fluid induced by periodic pressure gradient in a channel is studied by Seth and
Jana [49]. The influence of heat transfer and Hall curtent on the hydromagnetic flow has heen
seen by Mazumder et al. [50]. In another paper, Mazumder [51) found an exact solution for an
oscillatory Couette flow in a rotating frame. Ganapathy [52] proposed an alternate solution for
the problem considered in ref. [51]. Singh [33] extended the analysis of ref. [51] to MHD offects.
More recently the hydromagnetic rotating flows of non-Newtonian fluids which take into account

various physical features are investigated by Hayat et al. [54-58] and Siddiqui et al. [59,60].



1.3 Flows over a stretching/shrinking surface

The flows in which the sheet is stretched in its own plane with the velocity proportional to
the distance from a fixed point s known as the stretching flows, These flows have relevance in
several industrial applications. Investigations of boundary layer flows of an incompressible tluid
over a stretched surface particularly inchide aerodynamic extrusion of plastic sheets, liquid
film in condensation processes, cooling of a metallic plate, the glass fibre production and so
on. The solution of stretching flow problem is substantially different from that of boundary
layer flow bounded by a stationary surface (Blasius flow). Howarth [61] discussed the fat-
plate flow by Runge-Kutta numerical scheme. Abnssita [62] analyzed the Blasius How and
discussed the existence of the solution. Wang [63] deinonstrated the approximate solution for
Blasius flow using Adomian decomposition method. Interest in the boundary layer flows aver
a stretching surface is initiated by Sakiadis [64] and then followed by many other researchers.
He examined the analysis over a stretched surface with a constant velocity for two-dimensional
and axisymmetric flows. Tsou et al. [65] experimentally confirmed the numerical results of
Sakiadis [66] for heat transfer in the boundary layer flow induced by a stretching surface with
a constant velocity. Erickson [67] extended the Sakiadis’ work to mass transfer situation.
There are very few cases in which the closed form solution of the Navier-Stokes equations is
possible. Fortunately an analytic closed form solution is possible for the steady two-dimensional
flow of a stretching surface. Crane [68] gave solution for the two-dimensional flow. The worth-
mentioning fact of Cranes’ problem is that it is still possible to obtain a closed formn solution
even when numerous other features for example suction, magnetic field, viscoelasticity of the
fluid etc. are considered {see Andersson [69], Troy et al. [70], Ariel [71)). Moreover heat transfer
and non-Newtonian eftects on the stretching flow have been also analyzed (see Dandapat and
Gupta {72], Cheng and Huang (73], Gupta and Gupta [74], Chen and Char [75], Dutta [76],
Vajravelu (77], Hayat et al. [78,79] and Sajid et al. {80-82]). It should be pointed out that the
flow and heat transfer over a stretching surface have key importatice in engineering applica-
tions. Such applications may include heat treatment of materials manufactured in an extrusion
process and a casting process of materials, Since the material quality depends uporn the cooling
of stretching sheets therefore control of the temperature is important. Hence knowledge of flow

and heat transfer in such systems plays a critical role,



In the existing studies on stretching flows little attention has been given to uon-linear
velocity of a stretching swrface and slip condition. Some works which take into account such
physical features are developed by Vajravelu [83] and Hayat et al. [84]. Magyari and Keller [85]
and Sajid and Hayat [86] also considered the exponentially stretching surface. Vajravelu and
Kumar [87] also obtained the analytical and numerical solutions for non-linear systein arising in
three-cdliniensional rotating fow. Literature survey indicates that most of the researchers in the
field investigated the flow due to a stretching surface through various aspeets. Little is known
up to yet about the flow caused by a shrinking surface. To the best of our information only two
such studies {88, 89] exist. In [88] Wang presented unsteady shrinking film solution and in {89],
Miklaveic and Wang proved the existence and uniqueness of steady hydrodynamic flow due to
a shrinking sheet for a specific value of the suction parameter. Cortell [90] generalized the flow

analysis of ref. [87] in the regime of MHD fluids.

1.4 Basic equations

The equations of magnetohydrodynamics which can describe the flow and heat transfer char-
acteristics are

{a) Maxwell's equations

divE = 0, divB =0,

a
curllB = —-6—1?, ol B = p,,.J. {1.1)

These Maxwell's equations holds only when the displacement current is negligible.
{(b) Ohms' law
J=ad{(E+V xB). (1.2)

(¢} The incompressibility condition

divV =1 (1.3)



(d) The momentum equation in porous media [91]

dv
pﬁzdivrﬁ-pb#—R. (1.4)
(e) The energy cquation
dT .
pc?,d—t=T.L—dwq. (1.5)

Here E and B are the total electric and magnetic fields, g, is the magnetic permeability,
t is the time, J is the current density, V is the velocity, ¢ is the electrical condnctivity, p 1s
the fluid density, b the body force, R is the Darcy's resistance, ¢p is the specific heat, T is the
temperature, q is the heat flux, ¢/dt is the material derivative, L is the velocity gradient and

the Cauchy stress tensor T is given by

TII TIy’ TI-‘.

(1.6)

Tyze Tyy Tyz

Note that in above equations displacement currents, free charges and radiation effects are
absent; Tz, Ty, and 7., are the normal stresses and 7.y, Tez, Tyz, Tyz, Tae and Tay are the
shear stresses.

In rotating frame Eq. (1.4} takes the form

p(%+29xv+ﬂx(ﬂxr)>=div1’+pb+R, {1.7)

in which 2 is the angular velocity, the second and third terms on the left hand side of above

equation are the Coriolis and centrifugal forces respectively.

1.5 Constitutive equations

It is an established fact that many models have been suggested to analyze the response of various
fluids. The Auids obeying Newtons' law of viscosity can be characterized by the Navier-Stokes
eguation. However there are fluids of high molecular weight for which Navier-Stokes theory is

inadequate. These fluids are termed as the non-Newtonian fluids. Unlike the Newtonian fluids

10



the flow of non-Newtonian fluids cannot be described by a single relationship between stress
and deformation rate. Amongst the several madels of fluids, the Navier-Stokes, second and
third grade fluids which are the subclasses of differential type flnids are considered here.

The Cauchy stress tensor 7 in an incompressible homogeneous fluid of grade three is [92):
7= —pl+pA) +aAs + agAf + 0,A5+ 05(AxA] + AjAs) + ;’33(tz-Af)A;, (1.8)

in which ¢ is the dynamic viscosity, p is the pressure, I is the identity tensor, ay(rn = 1,2) and
Bn(n = 1-3) are the material moduli. The first three Rivilin-Ericksen tensors A, (n=1-3)

are defined as follows:

Al = L+LT,
dA, q

An = T + An-—lL + LFATl—l n = 21 3. (19)
dt

It should be pointed out that Eq. (1.8) is considered as a third order approximation to an
incompressible simple fluid in the sense of retardation. However, the model is properly frame
invariant and can be used as an exact model in its own right. Tosdick and Rajagopal {93
examined the thermodynamics and stability of model (1.8). They coriclude that if the Auid is
thermodynamically compatible in the sense that all flows of the fluid meet the Clausius-Duhem
inequality and the assumption that the specific Helmholtz frec cnergy of the fluid is minimum

when the fluid is locally at rest, then
p20, 03 20, |y + oo € /248y, 8, =8, =0, B3 2 0. {1.10)
Therefore the model (1.8) now is
T = —pl + pAy 4+ As + AT+ 34(trADA (111}
For second grade fluid 3, = 3, = 83 = 0 and thus

T=—p1+,uA1+a-1A2+cx3Af, (1.12)

11



whence [94]

>0, ap 20, a0 +ap =0.

(1.13)

Equation {1.12) for Navier Stokes fluid can be reduced by choosing «) = ng = 0 and hence

T=—pl-+pA; {1.14)
1.6 Boundary layer equations
Here we consider the following scalar equations for a rotating viscous ftow
u du 1 3p P Pu
— rw— 20— Q= = - — ). 1.15
“or T Vo Y p o e ('()a:g (')zz> ' 1.19)
dv PFo  Pu
116
5 v (d P a~—) (1.16)
dw Sw 1 (973 w  Fhw
Wl 9 : 1
“oz Vs pau ( 832) (17
and an incompressibility condition
Ou, v g (118
g 0z 18)
Here v indicates the kinematic viscosity, V = (u, v,w}, £ is the constant angular velocity with

which the system is rotating about the z—axis. Defining

oo T ez o, QL
o= A= =T

ouw o who . p o
RO T T (L19)

where I is the horizontal length scale, § is the boundary layer thickness at « = L and UV is the

fiuid velocity in the z—direction parallel to the solid bourdary. Now we obtain

Ju* du’ . ap” v [ IN? &%ur
. + . _ LI -2‘_t —_ T o z = i
Wt 20 -0 e T UL (0.1:‘3 + (6) 3.7 | (1.20)
Lot Lo v [ L\ eR
[ 5?;+TU Ja- + 20" = UL (m—f— (B—) —éﬁ , (]_21)

12



du N Gur"
Jar  dz"

72 (5) -ow

= 0.

Selecting

and omitting asterisks one has

Gu du . 3 ap 1 e u
— w— — 20 — L= —— —— —_—
u&t N “’a: 2 = du + R o2 * dz3
v Jv 9021 1 9% N &%
_— }— = = -
Yoz T dz + ‘ Rbx?2  §z2
1 dw dw Bp 1 [d%u 3w
el el Sy _ YW, (Y, pl ™
(u8$+wﬂz) PR (8w2+ d9z2 )’
Ju  Ow
sy
dz + bz

,ow* O LN?8pt v [P IN? 92wt
e T o T (E) 9z T UL (a.f;-ﬁ 5 ) B

)

(1.22)

{1.23)

(1.24)

(1.26)

(1.27)

(1.28)

in which Re(= UL/v) is the Reynold number. When R — co then above equations reduce to

ow v . Op d*u
u%ﬁ-wb—;—z‘ﬁb‘ﬁ—% +822,
0 O gqu . O
Yor TV TN T o

dp

9.
Ju  Gw
e

where the modified pressure is

B=p— %Qa (:52 + y2) .

1.7 Homotopy analysis method

(1.29)

(1.30)
(1.31)

(1.32)

(1.33)

Perturbation methods have been widely used by the engineers in obtaining results especially for

non-linear problems. Such methods require small parameters so that approximate solution can

13



be expressed in term of series. It is not necessary chat all problems involve snch simall parameter,
Therefore it seems important to have another analytic method which does not require small
parameters at all. Keeping this [act in view Liao {95] has developed homotopy analysis method
(HAM) which is independent upon small parameter assumption. Some recent investigations in
the literature that contain HAM solutions may be mentioned in the refs. |?,96-124). The basic
idea ol HAM is described as follows.

Consider a nonlinear equation governed by
Alu) + f(r) =0, (1.34)

where A is a nonlinear operator, f(+) is a known function and 1 is an unknown function. By

means of homotopy analysis inethod, one first coustructs a family of cquations
(1 =) L[0(r,p) — uo(r)] = gh {A[F (r,p) — £ ("]} {1.35)

where () is an initial guess chosen by using the “Rule of solution expression” such that it
satisfies the boundary conditions, £ is an auxiliary linear operator is to be chosen in such a
way that it must generate the set of base functions that are used to define the initial guess, fi
is an auxiliary parameter, ¢ € |0, 1] is an embedding parameter, %(r, ¢} is an unknown function

of » and ¢. Liao [125] expanded %{r, ¢) in Taylor series about the embedding parameter

[» =]
o(r,p) = wolr) + Z U ( (1.36)

m=1

where
I ¢™%(r,q)

ml dgm (1.37)

U, (T} =

g=0
The convergence of the series (1.36) depends upon the auxiliary parameter . If it is convergent

at ¢ = 1, one has

u( ~U0 Z 5m " (138}

Differentiating the zeroth order deformation equation (1.35) ni—times with respect to p and then

dividing them by m! and finally setting ¢ = () we obtain the following mth— order deformation
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equation

L [um (7) — Xmltin-1 (7)] = hRm (’) . (139)
in which
0, <1,
Xon = " (1.40)
1, m> 1,
1 a1 s
Y — . PR 1,
R (r) = oy § g 4 olr) + Zlummq U (1.41)
m= p=

There are many different ways to get the higher order deformation equations, However, accord-
ing to the fundamental theorem in calculus [126], the term w,y, (v} in the series (1.36) is unigue,
Note that the HAM contains an auxiliary parameters fi,wlich provides us with a simple way to

control and adjust the conmvergence of the series solution (1.38).

1.8 Homotopy-Padé approximation

A Padé approximant of a given power series is a rational function of numerator degree in
and the denominator degree n whose power series agrees with the given one upto deprees
m + n inclusively. The Padé approximant that can be though of as a generalization of a
Taylor Polynomial. A Padé approximant often yields better approximation of the function than
truncating its Taylor scries, and it may still work where the Taylor series does not converge,
In many cases the traditional Padé techuique can greatly increase the convergence region and

rate of approximations. For a given series

o0
Z % (1.42)

n=0
the corresponding [m, n] Padé approximant is

™m

Z bm,.{-""k
k=0

e (1.43)

Z Crn ks rk

k=0



in which b, 1 and ¢, & are determined by the coeflicients a, (¢ = 0,1,2, 3, ...m+n). The so-called
homotopy-Padé technique [127] was proposed by combining the traditional Padé technique and
homotopy analyvsis method. For converpence of series (1.36) at ¢ = 1, we first emplay the
traditional [m,7) Padé technique about the embedding parameter ¢ to obtain [m,n] Padé

approximant

m
Z Bm,k("'.)qk
k=0

1 y “.44)
Z Cm,k ('F‘qu
k=0

where the coefficients By, g(r) and C\, x(7) are determined by the first several approximations

g {r), w1 (v), ... %wpn (7). On setting ¢ = 1 in Eq. {1.44) one can write

Z Bm‘k(?‘]
=0

= (1.45)
Z Cm.k("")
k=0

In general, the [m,m] homotopy-Padé approximation can be expressed as

mt+md-L
k
> B
k=0

m24m4+1

> e
k=0

. (1.46)

In above equation B;n‘k(r) and CI"‘L'(-r) are coefficients. It is very interesting that these cocf-
ficients are found to be independent of the anxiliary parameter h. Comparing Eqs. (1.43) and
(1.46) we find that in accuracy the [, m] homotapy-Padé approximation is equivalent to the
traditional [m? +m+1,m2+m+ 1] Padé approximant. Similarly, the so-called homotopy-Padé

technique can be applied to accelerate the convergence of the related series.
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Chapter 2

Hydromagnetic rotating How of a

viscous fluid over a shrinking surface

This chapter deals with the magnetohydrodynamic (MHD) rotating boundary layer How of a
viscous fluid incduced by the porous shrinking surface. The similarity trausformations are used
to reduce the partial differential equations inta a system of two coupled ordinary differential
equations. Analytic solution of the governing non-linear problem is developed by employing
homotopy analysis method (HAM). The solution is presented in the form of an infinite series and
corrvergence of the obtained series is given explicitly. The influence of the emerging parameters
on the velocity flelds is presented graphically and discussed. Tt is worth mentioning to note tliat
for the shrinking surface, the meaningful convergent solutions are possible only for the MHD

flows. The electromagnetic foree is responsible for such meaningtul solutions.

2.1 Mathematical formulation

Consider the steady laminar MHD boundary layer flow of a viscous fluid caused by a two
dimensional shrinking surface in a rotating [rame of reference. In mathematical modelling,
we use the Cartesian coordinate system (u,y, %) with £ being the angular velocity of the
rotating fluid in the z-direction. In addition a constant maguetic ficld By is applied in the
z-direction. There is no applied and induced electric fields. Under the assumption of small

magnetic Reynolds number, the induced magnetic field is neglected, Therefore, the Egs. {1.3),

17



(1.7) and {1.14) under the boundary layer approximations and no pressure gradient are reduced

in the following forms:

Ou  duw .
Hu Su D%*u  oB} o
uzﬂ + wc‘)—z —- 20y = f/a? - T“u, 12.2)
. : 92 2
u.% 4+ 'm% + 20 = ug:z - -(Liiq'v, (2.3)

where v = j1/p is the kinematic viscosity, ¢ is the electrical conductivity and w1, v and w are the
velocity components in x, vy and z-directions, respectively.

The boundary conditions are

v = -—ax, ov=0, w=-W at =0,

v — 0, v—10 as z — o0 (2.4)

in which @ > 0 is the shrinking constant and W > 0 is the suction velocity. Introducing the

following similarity transformations

u=axf (1), v=oqxg(n), w=—Vavf(n), 7= \ I—jz (2.5)
equation (2.1) is identically satisfied and Eqs. (2.2) and (2.3) become
7 = F2 g ff 1 00g — MEf =0, (2.6)
" = flg+ fo' =2f - M%g =0, (2.7)
f o= s fi=-1, g=0 at g=0,
7 — 0, ¢g—0 as 1 — 00, (2.8)

where the Hartman number (M), suction {s) and rotation {A) parameters are respectively given
by M = aB§/pa, s = W//av and A = {2/u and prime indicates the differentiation with respect

to 1.
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2.2 Analytic solution

For the HAM solution of Iigs. (2.6) and (2.7} subject 10 conditions (2.8}, we chioose the following

initial guess approximations for the functions f and g

o) =s—1+e™ gon)=ne™"

Here

Cofy=f"=1 Lalfi=1"-f

are the auxiliary linear operators saustying

E[ [C] + Gg(?r" + C;jl':'hrf] —_ O. ﬁg [C’q(j” + (};C’W”] =0,

where C;: 1 = | — 5 are arbitrary constants,
Zeroth order deformation problems

The problem at the zeroth order are given by
A =aq) 1 [Foa) - ()] =gt [Fon0),5009)]

(L =) L2 ()~ oo ()] = ahNe | T (.9). 5 ()]

Flog) = s, fi0g)=—-1.  ['{ooq) =0

Gg) = 0. G (0o,q) =0,

- - H (g, q) LO7 (0, ) "
M [Foa sma) = THRL 4TG0,

iy an?

- (af('r)‘q))z +Flna 9*f (n.q)

(2.10)

{2.11)

(2.12)

(2.13)

(2.14)



&5 (n.q) g af(i,-.q]

M [FOna) Gina)| = =5 = M) - 242
_9f(na)- , 99019} 516
By === On) +  (0.0) o (2.16)

in which ¢ € [0,1] is the embedding parameter and % is the auxiliary nonzero parameter. For

g = 0 and ¢ = 1, we respectively have

o~

Fo,0 = fom, Fal)y=fn,

G(n,0) = go(), T =g, (2.17)

As g increases from 0 to 1, f(u,q). G (1, g) varies from the initial guesses fy (3), o (9) to the

exact solutions f {y), ¢ (n}. By Taylor's theorem and Eq. (2.17), one can write

wwaHZm ¢ g =goln)+ Y gw () g™ {2.18)

=1 m=1

where .
’ L 9™ f{n.q) _ L 0"g(nq)
S (r,.') N ;ﬁ_z)qT s g (n) = mt Qg™ —0 '
7=0 4=

The convergence of the two series in Eq. (2.18) depends on the auxiliary parameter A Assuine
that £ is chosen in such a way that the {wo series in Eq. (2.18) arc convergent at ¢ = 1, then

due to Eq. (2.17) we get

Fy=tom+ > fuln), g =g+ gnln). (2.19)

m=1 m=1

m—th-order deformation problerns
Differentiating the zevoth order deformation Eqs. (2.12) and (2.13) with respect to the
embedding parameter p, ni—times and then dividing by m! and {inally setting p = 0, we gzt

the mith arder deformation problem as follows:
El {fm (n) - f\’i’ﬂ.fnlfl ("?)] ﬁan ( ) 'C'Z [Um (q) - Xmgru~l (T,’)} = ﬁRrgn (?f) y [220)

f'” (U) = f:n (0) = f:n ((\O) = Hm (0) = .gfn (DO) = U [921)
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RL () = f_ ()= M2l () + 22 gm—1 (1)

m—1

+- Z [fm—l— fnL (q) mfl IS (?]) .f.f. (’ﬂ] ) (222)

'R'?n (T’) = g :1 1( ) - P'j (-1 (i’,‘) - 2)‘J‘-m—l (’J'
m~—1

+Z [Frmr—ie ) 0k () = Fo o () g (D] (2.23)

where x,,, is defined in Eq. (1.40). We use the symbolic computation saftware MATHEMATICA
now to solve the lincar Eqs. {2.20) and {2.21) upto first few order of approximations. [t is fonnd

that the solution ol the problem can be expressed as an infinite series of the form

m+lmtl—n - f 1 m+l —-n

—T] ( -7 )
2 2 G’?nn e 11 Jm 2 2 4?” n' ‘e J‘ m > 0. {224)
n=0 ¢=0 n={ g0

In order to find the recurrence formnulas for the unknown coeflicients in above equation. we

proceed as follows. Now

m1 _m.+1 -n rre-p-1—rt
. - . ) —
f:n (”) = 2 2 "l"am Y ](} b i 2 ”‘?n.n.‘qq e "
n=0 g= y=0
ekl jd-l-n mtl-nr
. o -
— 2 2 g4-1 g « L H
- ((1' + l) il — W ar[n. n r}l] « !
n=0 ¢= q=0
il —n
_ N i+l q q.,—nmn
= 2 [(q +1)all — nam”j e
n==ll q=0C
m-+1m- {—1 —n
. g, —nn ‘
= 2 Wi e {2.25)
n=0 g=0
where
N _ gl o
bm.n - (q + l) o — nﬂm n (220)

Employing a similar procedure, other derivatives involved in Tig. (2.24) are given by
m+lmrl-n
n'” E : Jﬂ- " "ch—n”) (227)

n=0 g=4q
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mA1lmd-1-n

Now for the product term fo, - (1) f (1), when 0 <

(2.27) as

Sm—t () £ ()

HOESY ) e, (2.28)
n=0 q=0
m+1m+l—n
gn(m =) Z BY, e ™, (2.29)
n=0 g¢=0
mi+l m4l-n
ANEDY Z Cly e ™. (2.30)
n=0 g¢=0
hon = (g + 1)UL — bl (2.31)
dgnTLz(Q+1) ?:A—-]“.'C(rlnn (232]
B?nn = ( )A?nlrlx - ”’Am n (233)
Cg': no (q + 1) B?aj—ri - “Bm n (234)
E<m—1, we get from Eqs. (2.24) and
m—kmn—k—t k41 k+1—p

i j L —11)
E : § : am—l-—-k,in]('

\ TP
> E cppt e ”
p==0 r=0

=0 §=0
kil m—k R+l—pm-—k-y
,— (i +p)n N roo i {j+r)

5 E ¢ Ck.Pam—l —-.‘\',t’}
p=0 i-=0 r=( 1=0
k41 min{n,k+1} k+l—pm—k—:

—nry \ r J ld+r)
5 e E E 2 ChpTin—1 -k
n=0 p=max{0,n+r—m)} r=0  j=0
bt min{rk+1}  mypl-n max{g.k+1—p}

-y \ \ q—r q
E ¢ 2 § : 2 . rkpamél kon-p'!
n=0

A+l mi+1l—m
n=0) =0
min{n.k+1})

A

p=max{0n+k—m} g0

ramax {0.g4+n—ptk-ra}

nax{g.k+1-p}
A LI
2 ; c-’\p m—1—kn—p

p=max {0n+s—r} r=max{l,g+n—p+hk—m}

n%e™"7(2.35)



which can be further simplified as

mi—1 k41 m4l—n
_ o N
E Somi—e (M) f () = E e 2
k=0 =0 q=0
m—1  min{nkt1} miax {q,k+1-p}

r q—r
E g E Ck.parn—l—k“n—p ’

k=0 pomax{0.ntk-m} r=max{0.q+n—ptk-—m}
k+1m4l-mn

= 87, nte ™. {2.36)
PRI A

=0 g=0

where
min{nk+1} mnax{g.k+1—p}

P Z Z Z (:L-Pu?r:.l —ken—p’ (2.37)

k=0 p=inax{0n+k—m} r=nx {0.g4n-ptk-m}

Employing the same methodology, we get

m—1 A+lm+l—n

me_l_- NIAUEDY L Al e, (2.38)

=0

m-—1 k41l m+l-n

— _

L fm.—l—k ( qk U Z Z A(v]n n“'] € m';’ (239)
k=0 n=0 g=0

m—1 m+l-n

)_
Zf:”“[“ 77 9k 77 Z Z r?r:.nnqek"n: (2~‘10)
n=0 g=0

where
m—1 min{nk+l1) min{gk+1-t}

A= > > OB (2.41)

k=0 i=max{0n—m+k} j=max{0.g—m+ktn—1}

ni—1  min{rk+1)} min{g.k+1--i}

mn - Z Z Z BJ amfl—k n—g! (242)

k=0 i=moax{0,n—m+k} j=max{0,g—m+k+n—i}

- min{n.k+1} min{g.&+1-i}

m ] L Z Z .l, ‘bm_l krn—i (243)

k=0 i=max{0 n—m+k} j=max{0,g-m+k+n—i)
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and hence Eqs. (2.22) and (2.23) can be written as

lpgﬂ.l’l = h [XHH-?-*"—Q (d(rzu—l,n - ‘Mr bm 1,n + 2)“4"1 1. n) + d:{n k- A;}n,n:l ) (24/1)

e?n.n = h !:Xm+2—n-q (ernkl,n ‘Mr?ASn I.n n 2’\bm 1 n) + A?ﬂ n an u] ' (2"15)

Substituting Eqs. (2.44) and (2.45) into Fq. (2.20) we have
m+lmtl-n
fcl [fm (n) - mern—l (’]) Z Z ‘I’?.“_ n ! _‘"TJ! (246)
n==l) q=0
m+lmtl-n

£2 [gm (U) \.mqm 1 Z Z em rn —nT" (247)

=0

In order to obtain the solution of Iiq. (2.46), we have to solve the following equation
() = () = e (2.48)

Case (1): For n = 1, above equation gives

g+l g+li-k

(ll R e~
Z Z . 2.19)
Hloqt2—k-p (
k=G p=0 t2e P
Setting
o+ 1-k y
M= R0z F g ¢gz0, 0<k<qg+1 {2.50)
p=0
Eq. (2.49) takes the form
g1
= Z;}.Ylknke_”. (2.51)
k=0
Case (2): When n > 2, Eq. (2.48) has a solution
7 q—k fi'*‘k_‘:v" —q
y(n) = — —— e 2.52

or



']
y() =Y plonte™ (2.53)
k=0

where
q—k q—k—r (1'
q — ! -
Fn ok Z Z Kinr+liy — [yetl=k—r=p(y 4 [jp+17 (2:54)
r=0 )'JKO
0 < k<q, q=20,n>2

Similarly for the solution of Eq. (2.47), our interest lies in finding the solution of the following
differential equation

Ll‘-” (7}) —x (77) — nqe_""’?l (255)

Case (1): For n = 1, the above equation is satisfied by

q+l
w(n) = plf e, (2.56)
k=1
where .
4+ 9 e
(=1 g+ 1—"2k—p 1
p1f = L ( 3112q+'.2ﬂk L g>0, 1<h<g+1 (2.57)

p=0

Case (2): When n > 2, the Eq. (2.55) has a solution

2 (1) = ipli_kvrke“"’, (2.58)
k=0
in which
q;_‘:' '
plie = %6 BT T (2.50)

0 € k<q, ¢>0, n22
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Thus we deduce the following solution of the Eqs. (2.46) and (2.47) respactively as

mA-1 g+t o gkl
frn (7]) - mem~1 (”) = Z Z‘Dm Dnu(] I r] + Z Z q:I'u 1“1 k” e
g=0 k=1 g=0 k=0

m+lmil-n ¢

+ Z Z Z\pm mun,kn F o

n=2 =0 A&=0

FOT O e 4 O, {2.60)
m4+1 g moog+l

HYm (7]) — Xmfm-1 (71') = Z Z em (]n“(] IS U o+ Z L ®m i“’] /\7-’ e
q=0 k=0 g=0 k=1

m+4lmt+l-n ¢

+ Z Z Z()m ,“unkr} e ™

n=2 q=0 k=0
Ci’?{ n I_C"TJ --f]‘ (2-61)

where CT*, CF*, CF*, CF* and CF"* are integral constants, Using the boundary conditions (2.21),

we have e
Cm L \Dm I/J'l 1 Z z m n (#i.] - (”’ - 1)#—?@.0) ? (262)
n=2 g=0
m mtlmtl—mn
Z\Iml (;Ll L~ D) + Z Z o (:“nl Tepl], 0) (2.63)
n=2 g=0
Cp =0, C =0, (2.64)
e+l m4l—n
F=-) D, Ol (2.65)
n=2 qg=0
Now

M M1 m4l—n
Z Fon () 11n(1>O {Z a?n‘n + Z e ( Z Z m ol )} (2.66)
n=1

m=0 m=0 m=rn-~1 L=0

=0 n=1 rm=n—1 k.-

A+l i+1—rn
ZJm{T) 1!1]1 [Zc"”’( Z >_‘ Am ) )} {2.67)
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where

m
0 q q
ﬂg,,o = XmXm+2%m-10 — Z \I]m‘lf-f'l‘l
g=:0
mt1 (n—~ 1) W b,
— Z m+l-n ¢ ¢ " {268}
n=2 + Z rin ((R - ]‘) Hap — IJ’n.l)
g=1
k k I . g
Amp = XmXm+1-k%m—1,0 l<r<m+1, (269]
It
0 0 q q
Ay = XmXm1Gm-11 + Z \Pm,lul.l\
=0
m+1 mH-l-—n
. q i) v
+ Z t m uJ“n ot Z Pm n (nluu.(] - nur;,l) > (270)
n=2 g=1
m
.k & I, ) g
ml Ym.Xm. L+lam— l+ Z \I"mllu[iu ]-S"'Sm'+1u (2““)
g=k—1
nm+l-n
k
am,n = XmXmn+2-n— Lam 1.m + Z Irm n.lu'n I
g=k
2 < n<m+l, 0<b<Sm+1—n, {2.72)
m+1 m+l-n
0 0 :
Am 15 Xme+1Amfl.1 Z Z em n¥n, [Zl1 (273]
n=2  ¢=0
Tri
k k . .
A = X Xoi—het IAm- 1,1 + Z em[ 1A 1<k <A1, (274)
g=k=-1
mi+l-n
k - v k - g
Amn - Ame+‘2—n——kAm—l.n + Z Ofnm‘un)k:
==k
2 < n<m+l, 0<bk<m+1—n, (2.75)
“8,0 =351, (.'.8’1 =1, al%.l = 1. (2.76)
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2.3 Convergence of the analytic solution

The explicit, analytic expressions given by Eqs. (2.66) and (2.67) coutain the auxiliary parame-
ter A. As pointed out by Liao |95] this parameter plays a vital role in finding the convergence
region and rate of approximation for the homotopy analysis method. For this purpose the
frcurves are plotted for the 25th order of approximations for both f and g in Fig. 2.1. Fipure
2.1 clearly indicates that the admissible values of the parameter h are —0.45 < h < —=0.1. Our
calculations depict that the series given by Eqs. (2.66) and (2.67) converge in the whole region

of 7 when A = —-0.25.

Fig.2.1
$=1.X=1 M= 20, 25th-order app.

2t
S a
'-6') 1 — "0 )
_— f
:-3 """"" g 'I/
“ 9 /.l
-"/“
,’c-‘--... ________________________________
A
A
-0.5 —-04 -0.3 -0.2 -0 0

Fig. 2.1. fi-curves for 25th order of approximation,

2.4 Results and discussion

The graphs for the functions f' (7} and g{%) are drawn apainst 5 for different values of the
parameters &/, s and A, In all cases, panel {a) displays the function f’ and (b) shows the
function g. It is depicted from Fig. 2.2 (a) that the velocity f’ increases and boundary layer
thickness decreases by increasing the suction parameter s. This is in accordance with the

fact that the suction controls the boundary layer thickness. The effect of s on the velocity ¢

28



is similar to that of f' but in this case boundary layer thickness increases as shown in Fig.
2.2 (b). Figure. 2.3(a,b) elucidates that the eflect of Hartman number is similar to that of
the suction parameter. The effect of rotation parameter is quite opposite when compared with

suction parameter and Hartman number as shown in Fig. 2.4(a,b).

Fig. 2.2 (a)

=10 M=20
or 2 T ———
{/,/'"
YAl
—02 I //::I
b 4;3
:—0.4 [ ”'
-06t%
-— 3=05
[ = §= 1.0
-0.8 - $= 1.5
-—- 3= 2.0
o 1 2 3 o 5

Fig. 2.2(a). Variations of f’ by increasing suction parameter s.
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Fig. 2.2 (b)
Y= 1.0.M=20

-0.02%

~0.04}

gl

-0.06¢ — $=05

e §= 1.0

5= 15

-0.08¢ - 5220
0 1 2 3 4 5

Fig. 2.2(b). Variations of g by increasing suction parameter s.

Fig. 2.3 (a)

f'im

Fig. 2.3 (a). Variations of f’ by increasing Hartman number M.

30



o1}
0.05%

gt

-0.05
~0. 1t
-0.15}
~02f

Fig. 2.3 (b). Variations of g by increasing Hartman number M.

Fig. 2.4 (a)
s=1,M=20
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Fig. 2.4 (a). Variations of f’ by increasing rotation parameter .
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Fig.2.4(b)
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Fig. 2.4 (b}, Variations of ¢ by increasing rotation parameter A.
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Chapter 3

Three-dimensional rotating flow
induced by a shrinking sheet for

suction

The purpose of this chapter is to discuss the three dimensional flow analysis in a rotating frame.
The flow between the two plates is engendered hy a porous shrinking surface. A homotopy
analysis method (HAM) is used to arrive at the similarity solutions of non-linear ordinary
differential systemn. Convergence of the obtained solutions is ensured through proper choice of
an auxiliary parameter. Graphs are sketched and discussed for various emerging parameters
on the velocity field. Besides that the variations of the wall shear stress are also tabulated and

analyzed. Comparison is made amongst the influences of various sundry parameters,

3.1 Description of the problem

Let ns consider the steady, incompressible and three-dimensional flow of an electrically con-
ducting viscous fluid between two horizontal parallel plates at y = +h. Both the fluid and the
plates rotate in uniform with a constant angular velocity 2 = Q}, where 5 is a unit vector
in the y-direction. The plate y = +h is rigid and stationary. The flow in the fluid system is

generated by shrinking of a porous plate at y = —h. The geometry of the problem is shown in
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Fig. 1. Making use of the Eqs. (1.3), (1.7) and (1.14) the governing equations are

Fig. 3.1. Configuration of the flow,

Ju
——— — .1
5T 77 0, (3.1)
6 L che 1 dp* % 3u aB
: + 'l:‘a—; + 20w = —-; 82, + v l:-—l,; + 'H—UE:' - —'—Dtt, {3.2)
dv 10" & % o
llb:‘; = —;_"‘ay + v [—8172 + —C}?Jz] (-33)

u%% + ‘u% —20u = {

F?w N Pw B ocB}
drt  Oy? P

The boundary conditions for the problem under consideration are

U = —ar, v = -V, w=0 at y=—h,

w = 0, v =10, w=0 at y=+h (3.5)

in which w«, v and w are the velocity compenents in 2-, y- and z-dircctions respectively, p the

density, ¥ the kinematic viscosity, o the electrical conductivity, By the magnetic induction, p*
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the modified pressure, a > 0 the shrinking constant and V' > (0 the suction velocity.

Using the following definitions

, w=—azf'(n), v=cahf(n), w = azg(y) (3.6

Y
szz

the incompressibility condition (3.1} is automatically satisfied and Eqs. (3.2) — (3.4) after elim-

inating the modified pressure become
AP - 2Kt — RUFT - FFY =0, (3.7)

¢"—~ MPq+2K*f — R(flg— fqg') =0, (3.8)

where primes signifv the differentiation with respect to 7.

The boundary conditions now transform into the following conditions:

f =0 f=0, ¢=0 at g=1, (3.9)

in which the suction parameter A, the viscosity parameter R, the Hartman number M and the
rotation parameter f§ are
14 ah? o oBER? Qh?

A= ——, R=—, M2 = , K% = :
ah v o 7

In the next section we will solve the non-linear system consisting of Eqs. (3.7) — (3.9) by HAM.

3.2 Analytic solution

For the HAM solution of Egs. (3.7) — (3.9), the initial approximations of f and g and auxiliary

operators £y and L4 are

Jo(n) = i_l N 1—3A , UE A—=1 4
o) = 2 71 1 ,‘+4+ 1 7, (3.10)

gwln) =1-74 (3.11)
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_ d*f

Ly(f) = et (3.12)
2
Li(f) = ‘(—17{ (3.13)

It is easy to check that these aperators satisfy the following equations:
L3 [Csn® + Con* + Can + Co] =0, (3.14)

Ly [Cion+ Cny) =0, (13.18)

where C; (i = 6 —11) are arbitrary constauts. On the basis of Egs. (3.7) and (3.8), we introduce

the following non-linear operator Ay and Ny

Fna). 3 PF(10) 28T ) 2080y
Ny [F (i), Gna)| = ——{9%@—;1»12-%@—21{2 gé’;’?-q)
afma) 0 (ma) -, 3 F(na) o
fR( an a2 ‘f(TI.Q)—a;:}— , 13.16)
5 7 J%G {m; o L OF (m;
Ni [g (m4), f(n;q)] —(:TS;—Q) — M%G () + 2K? fg:r 4)
aA v q) - ~ ag (1);
—R( f(gz Q)g(n;q)—f(n;Q)%z—@), (3.17)

where f('.'];q) and §{7n; ¢) are the kind of mapping fuuctions for f (7)) aud g (7)) with g serving
as an embedding parameter varying in the range [0, 1]. Using these operators, we construct the
following so-called zero order deformation probleins:

Zeroth-order deformation problems

(1= ) L3 [T tm@) = fo ()] = ams [Fmia)] (3.18)
fhg=a Fi-ta=-1 fig=0 Fe=0 (3.19)
(=) LG 0n0) — a0 ()} = ahay [§ (). T (i )] (3.20)
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g(-1¢) =0, g(lig)=0, (3.21}

where iy and hy are the auxiliary non-zera parameters. Upon making use of the similar proce-
dure as in the previous chapter, we get the following mth order deformation problems:

The mth-order deformation problems

Ly [ 00) =~ Xgnfr—1 (1)) = FARam (1), (3.22}

f (=1} = £, (=1 = fin (1) = f3, (1) = 0, (3.23)

Lalgm (1) = Xomgm—1 (M)} = Kz R (1), {3.24)

gm (—1) = g (1) = 0, (3.25)

Rum (y) = foly — M2 [ = 2K g, .+ RTS_;J! (oot = fm—1- £ (3.26)
k=0
m—1

R (9) = gy = MG + 257 [ = R Y [gmo1-sfh = Gy i) (3.27)
k=0

where Xx,, is defined in Eq. (1.40).
With the help of MATHEMATICA, the solution of Egs. (3.22) — (3.25) can be expressed

in the form

o0 A+ 4 AL{-'E
F)=> fuin) = Jim Z ( L am.n?‘r”” , (3.28)

m=() L n=1 m==i—1

AI*IM
m=_ n=1 me=rn—

0 [4AF+2 7 48041
g =3 gm(m = lan [ 3" ( > b;” (3.29)
1

where the coeflicients @y, bmon of f (%) and g{n) are obtained as follows

1 4rn4 3

Am n []- + (“UHJ
A0 = X Xamptlra—1.0 — = I
0 = X Xdm+1 1.0 4 Z (n+ ]_)(71—{-2_)('11 -+ 3)(11-{-4)7

n=0

dm-+3 “
1 Ay 1" =3 (n+3(-D"+1
Cin i = XmXamlm-11+ 3 - [( ) 2 « St s )]

2 (DA D+ d e+
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4m+3

- o —-]:-Z mn[]-+ ]-)]
Im,2 = XmXqm—10m-12 4 — (n+ 1)(n+2)(7l+3)(71+4)‘

) 1 dr\rf:s Am.n“ +(_1)n]
am3 = XmXam-2¢m-1.3 4 “ (n+ Din+2Yn+3n+4) l
A4
s Am.n—d

n > 4,

Gynn = Xm}(qm—n+1a’"—1‘" + 2 n(n — 1)(11 — 2)(71 - 3) ’
n=d

'1m+2 n
m n[l + “'1) ]
me = kalmb"l—l 0= 2 Z ??, + l)(ﬁ- + 2) !

A2 n
1 Fm,n[1+(_l) }
bout = XoXtbm11 =5 2 A

dm42
Fm n—2 2‘

bTran = XmXdm-— “brn 1"+ Z TI n— ]_} "

. 2 ) ]
ﬂm‘u =R [X4m—n+1(fm—l.u - qudm—l,n) - 2K an-;—ngm-—l.n) + Rxdrn—rt-f-‘l (C‘rm‘n - 'Bm-")J !

(3.30)
. ) 2 7 .
Imln = h‘Z [de—n. (h‘m~l,n - PV[ bm.fl.n.) + 21‘ X.1,,1_“+1C!uﬁl.rt - erjm-_n+;} (’)m.n - Om,u)] .
(3.31)
m—1 min{r.4k+3} m-—1 min{n,dk+3}
.
Omn = Z L dk,jcﬂl—-l-k,n*js Bm,n = Z Z Ak i€m—l—kn-—j:
k=0 j=max{0,n—dm+4k+1} k=0 j=max{0n—4m+d4k-+1}
m—1 min{n,1k+3} m—t min{ri.4k+3}

Yn = E E CkjGm—1—kn—j+ Om.n Z “k.jhm—lfﬁ-‘-ﬂ"}'-

k=0 j=max{0.n—Am+4k+1} =0 j=max{0n—4m+ik+1)

7—.

Cmn  — (ﬁ. + l)am‘u—fla dm.u = (ﬂ + ]-) o+l finn = (”' + 1) dm.nJrl..

fm,n = (Il + ]-) mn+lr Imn = ('n + l}brrl.n+l. h”l‘.” = (IL + ]‘) G+, (3‘52)
N 2A -1 1 —3A 1
— a = —— a = —
0,0 4 ) 0.1 4 ) 0.2 4»
A—1 .
(10,3 — T bU,G = 1‘ bO.l — O‘ b(}‘Q = —1 (33\5)
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3.3 Convergence of the HAM solution

Equations (3.28) and (3.29) present the series solutions of the considered How problem. Here
the values of f; and fis control the convergence region and rate of approximations of the series
solutions (3.28) and (3.29). In order to see that whether the series given by Eqs. (3.28)
and {3.29) are convergent, we draw fi-curves for 25th-order approximation in Fig. 3.2 by taking
fiy = Ky = h. Fig. 3.2 indicates that the ranpe for the admissible values ot fiis 1.4 < £ < —0.1.

The series (3.28) and (3.29) converge in the whole region of 4 when fi = —0.8. Table 3.1 shows

the convergence of f7(0) and —g'(0) by increasing order of approximations.

Fig.3.2
| K=, M=1.Y=05R=05
0.75}
0.5}
S 025§ ;
(&) h
— ot N
9 ..................................... ‘
z _025% "
b —— (O
_os5t
Y T g1

-1.5 -126 -1 -075 -05 -025 Q
]

Fig. 3.2, R-cwrves for the 25th-order of approximation.
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order of approximations | f”(0) —g'(0)
L 0.440000 | 0.066666
3 0.433087 | 0.035714
4 0.432737 | 0.035382
10 (.432728 | 0.035386
15 0.432728 | 0.035386
20) 0.432728 | 0.035386
30 0.432728 | 0.035386

Table. 3.1. Convergence of HAM solutions for increasing order of approximations.

3.4 Results and discussion

This section looks at the effects of various pertinent parameters an f, f’ and ¢g. For this purpose,
Figs. 3.3(a, b) — 3.8(a,b) have been plotted for suction parameter A, the Hartman number A,

rotation parameter K and viscosity parameter 2. Table 3.2 is prepared for the variations of A,

M and K on the wall shear stress f“{0) and —¢'{0).




Fig.3.3(a)
M=05 K=05 R=02

1.5¢-.

1.25

0.75

0.5¢

0.25

~0.25

-0.5

Fig. 3.3 {a). Influence of A on f at i = ~0.8.

Fig.3.3(h)
M=05K=08R=02

Fig. 3.3 (b). Influence of A on f'at i = ~0.8.
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Fig.3.4(a)
1=05 K=05R=05

L —— —

Fig. 3.4 {a). Influence of Af on f at k= —0.8.

Fig.3.4(b)
V=05 K=05 R=05

0.2 ——r— —

Fig. 3.4 (b). Influence of A on f' at h = —0.8.
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Fig. 3.5(«)

1=05M=05R=05

"
Fig. 3.5 (a). Influence of X on f at b= -0.8.

Fig. 3.5(b)
1=05M=05 R=035

[Fig. 3.5 (b). Influence of K on f* at i = —0.8.
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Fig. 3.6(a)
1=05M=03 K=10

— R=00
— ~ R=+40
- R=60

-0.5 0

Fig. 3.6 {a). Influence of R on f at A= —08.

Fig. 3.6(b)
1=05M=03 K=1.0

- A
- ~
- "l-\'
"

- R=80

-0.5 0
/i

0.5 [

Fig. 3.6 (b). Influence of R on f’ at h = —0.8.
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Fig. 3.7(a)

M=05K=05R=02

02 R T — =00
- —1=05
015' NEEEE A= 10
e m e e = 1.5
0.1 ST el
o) e .
R4 ~ .
OO5r _" —_— T . \\ .
R o —_ \\
OL‘Z-_-\_”"‘-/J
-1 -05 0 0.5 1
4

Fig. 3.7 (a). Influence of A on g at A = —0.8.

Fig. 3.7(0)
Y =05 K=05R=05
0.05 | : l |
0 -':\:___“‘“—-—,,
_005! \-“‘».__ ______ __,a”’
O ot
-0151 7 3 Ts
—02--M=17
m=18|
-1 -0.5 0 0.5 1

Fig. 3.7 (b). Influence of M on g at k = ~0.8.



Fig. 3.8(a)

V=05 M=05 R=05

— K=00
12 ] - = K: 10
1t - K= 1.5
0.8} - K=20
o6t L
04l - .7 RN
. ’
02t ;) - — — — .
i —~ T~
Ot e
-1 -0.5 0 0.5
I
Fig. 3.8 (2). Influence of K an g at /i = -0.8.
Fig. 3.8(b)
1=05 M=03 K=10
1251 - —-R=30
--—- R=50
1 s R=6.0

Fig. 3.8 (b). Influence of Ron g at A = ~0.8.
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A M| KR ()] —4'(0)
0010505102 0492430 | 0.040333
0.2 0.488033 | 0.040043

GS 0.485111 |} 0.040565
0.7 0.485640 | 0.041582

1.0 0.490199 | 0.044167
1.5 0.507998 | 0.051439
2.0 (.538803 | 0.062659
3.0 0.640577 | 0.100099
1.0} 0.0 0.511361 | 0.047207

0.5 0.490199 | 0.044167
0.7 0.471027 | 0.041531
1.0 0.433631 | 0.036672
2.0 0.279041 | 0.019667
0.5 0.0 0.487577 | 0.000000
0.5 0.490199 | 0.044167
0.7 0.497726 | 0.087368
L0 0.531335 | 0.185574
1.5 0.759040 | 0.527306

Table. 3.2. Variations of wall shear stresses f”(0) and —¢’(0).

Figs. 3.3(a) —3.6{b) have been plotted for the effects of A\, M, K and R on the velocity com-
ponents f and f’. Figs. 3.3(a) and 3.3(b) describe the variation of A on f and f', respectively.
From Fig. 3.3(a) it is found that f increases as A increases and f is maximumn at the lower
plate (shrinking sheet). It is evident from Fig. 3.3(L) that f’ decreases when X increases and
f’ has large values at the center of the channel. Figs. 3.4(a) and 3.4(b) illustrate the effects of
M on f and f'. Fig. 3.4(e) shows that f is an increasing function of M. It is noted from Fig.
3.4(b) that initially f’ increases but after the center of the channel it decreases as M increases,
Both f and f’ show fluctuations when M > 2. Fips. 3.5(«) and 3.5(b} show the effects of K on

f and f'. 1t is noted that f is a decreasing function of K and the velocity f is maximun at the
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center of the channel. Fig. 3.5(f) indicates that f' increases near the plates and decrcases at
the center of channel when K increases, igs. 3.6(a) and 3.6(k) depict the effects of viscosity
parameter R on f and f’. It is observed from these Figs. that both f and f’ have similar results
when compared with Figs. 3.5(a) and 3.5(b), but this change is larger in case of rotation /.
In order to see the cffects of A, M, K and R on g, the Figs., 3.7(a) — 3.8(}) are made, [Fig,
3.7{a) elucidates the effects of A on g. It is found that g is an increasing function of A but this
increment is larger at the centre of the channel as compared with at the plates. Fig, 3.7(})
displays the effects of M on ¢g. From this IYig. it is evident that g has quite opposite behavior
when compared with A. Fig. 3.8(a) shows the effects of ratation K on g. It is noted that g
increases with X and necar the shrinking sheet (lower plate » = —1) it has maximum values,
Fig. 3.8(b) illustrates the effects of R on ¢g. Fig. 3.8(b) shows that ¢ has similar behavior tor
large i when compared with the case of K. However this change is slightly larger in case of 12,
In order to see the variations of wall shear stress f7(0) and —g'(0) for different values of A,
M, K and R, we prepared Table 3.2. It is observed that f”{0) initially dccreases by increasing
A but f7(0) increases after A = 0.5. However —g’(0)} increases when A increases, The magnitude
of both f“(0) and —¢'(0) decreases when M increascs and have quite opposite results for large

K.
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Chapter 4

Homotopy analysis for the rotating
flow over a non-linear stretching

surface

The object of this chapter is to investigate the steady, rotating flow of an incompressible viscous
fluid due to the non-linear stretching of a sheet. An electrically conducting fluid fills the porous
half-space. The momentwn equation leads to a non-linear boundary value problem by means
of an exact similarity transformations. Analytic solutions of the resulting problen: is provided
using the homotopy analysis method (HAM). Expressions of velocity components are developed
and discussed. A comparison is also made with the existing result and an excellent agreement

15 noted.

4.1 Problem formulation

We consider the magnetohydrodynamic (MHD) flow induced in a semi-infinite expanse (z > ).
An incompressible viscous fluid filling the half space is bounded by a stretching surface (at
z = 0). The fluid is electrically conducting under the action of a uniform external applied
magnetic field By normal to the stretching surface i.e. along the z—axis. Let {u, v, w) be the
velocity components in the directions of the Cartesian coordinates (z, y, ) respectively and the

system rotates about the z—axis.
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The equations which govern the MHD rotating flow arc Eq. (1.7) and the following equa-
tions:
Pp

PUV. VIV H22 X V2 (Qxx)] = Vor + I x B~ T2V, (4.1)

in which V = (u,»,w) is the velocity vector, T is the Cauchy stress tensor, p is the density,
¢ and & are the porosity and permeability of the the porous medium, respectively. J is the
current density, B is the total magnetic field so that B = By + b, b is the induced magnetic
field. In absence of displacement currents, the Maxwell equations and generalized Ohms' law

are

VB=0, VxB=pg,) VxE=0 (4.2)
J=0(E+V x B), {4.3)

where u,, is the magnetic permeability, E is the electric field and o is the electrical conductivity.

In the present analysis, we make the following assumptions:

s The guantities p, u,, and ¢ are constant.

o The magnetic field B is perpendicular to the velocity field V. The induced magnetic field

is negligible. This assumption is realistic when the magnetic Reynolds number is small [2).

e No external electric field is applied and the effect of polarization of the ionized fluid is
negligible. We also assume that the electric field E = 0. In view of above considerations,

the Lorentz force J x B takes the following form:
J x B = —aBi(u,v,0). (4.4)
For an incompressible steady MHD rotating flow of a viscous fluid in a porous medium,

Eqgs. (1.3), (1.7), (4.1) and (4.4} yield

Bu _(?E . (L)'LU

EJT + 7y - a7 ={). (4.5)

9 d 9 _13p g 9t 6P oBE v
(uaa: -+ v£ + wa) u~2Qu = _;£+u (8:{'2 + o + ﬁ) w— P u= (4.6)
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52 92 2 2 -
( d@ +u—a—+zb£-)v+2ﬂt¢»—£@+a/ (i+ J + g )LJ—UBUU—E;:—}U. {4.7)

()J a. P dy ()IZ al C)Z(’, P
a g a9y _ ldp L a2 2 v ,
(u5;+ua—y+w-3—z)w_ p 8z +U(5:13+37J2+523) vt (4.8)

where v is the kinematic viscosity and 7 is the modified pressure including the centrifugal

term.

The boundary conditions for the flow induced by the non-linear stretching are

w = e, v=0 w=0atz=0 (4.9)

u = 0, v 0 asz— oo, {4.10)

where ¢ and b are constants. Based use of the following transforimations

u = cxbf'(n), wv=caby(n), bz_:; 1)
b+1) b-a
w o= - C—U(Q_'_—])i"[f(’])"‘b_i_lﬂf(l] (4.11)

Eq. (4.5) is identically satisfied and Eqs. (4.6) — {4.8) reduce to

F1) = e £ + S 0) + o) = P - F ) =0, (432)
(1) = g g P ) + g NI — T ) = M)~ dgt) =0, (413)
with the boundary conditions
floy=0, f(Oy=1, g(0)=0, (4.14)
f'—0, g —0asy— oo, (4.15)

where primes indicate differentiation with respect to 7 and

[2 _ 2683 \ _ Q 19 _ 2I/¢
Cep(b 4 Dabm 7T gl ch(b + 1)zb-1’

(4.16)
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in which M is the local Hartman number, A is local rotation parameter and @ is the local

porosity parameter. The shear stress at the surface in & and y directions are

Tz = CHY M =T F(0), (4.17)

clb+1) s
Tys = CH —(—Q—u—)l 7 g'(0). (4.18)

We now proceed to find an analytic solution of the problem consisting of Eqs. (4.12) — (4.15)

in the next section by means of homotopy analysis method (HAM).

4,2 HAM solution of the problem
Here we choose the initial approximations
fotmy=1-e"  go(n)=ne™” (4.19)

and the auxiliary linear operators are defined in equation (2.10) which satisfies the condition
(2.11). Denoting q € [0, 1] the embedding parameter and fig, By the nonzero auxiliary parame-

ters, we have the following zeroth order problem:
(A=) Li[F(ng) — fo(m)] =ahsNs [F(n.9), G(n,9)], (4.20)

(L =q) L2 1G (,q9) — g0 (M) = abu NG [F (n,9) . C{n,q)]. {4.21)
F0,q) =0, F(0,¢)=0, F(o0,q)=0, G(0.q)=0and G (c0,q)=0. (4.22)

In above equations

Fr( 2_ [ OF(n. il
2 m(—i%”) + P (,q) ZEGD 4 A O, q)

N [F (), G(mq) = 19

5 (F(0), G(n4q)l —,'1'123‘"}2‘?—1 ) gd_i%ul (4.23)
3""@!7}.4) b G(J} Q) £{m.q) + F ”)q OG(ny) _ ah 8F(ng

Ns(F(nq), Glngl= 7 ™ o T (4.24)

MG (m,q) —9G(n,q).
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For ¢ = 0 and g = 1, one gets

F{n,0)=fon), Gm0)=go(n) and F'(n. 1) = f(n), G(n, 1) =g(n). (4.25)

When g increases from 0 to 1, then F (1, ¢), G5, ¢) varies from the initial guesses fo (1) . g0 (7)

to the solution f (%), g{n). The problems at the nith order deformation problem are

Ly [forn (1) = Xonfno1 (7)] = KgR3pm (1), (4.26)
Lo {gm (7}) — Xmim-1 (??)] = hyRd., (f}) ! (427)
I (0) =0, f:n (0) =0, Ym (0) =10, f:n (00) — 0 and gy, (c0) — 0. {4.28)
in which
dsfm-—l 2 ¢/ e — de e * f&
72,31" (77) _ dn3 - b + J. é Z fm 1 A
4A P dfm~1 dfm—-l
gy — M? — , .29
+n Fdmer T dn ' dn (4.29)
({ g m—1 re—1 dg,.,
R4m ("]) = "12 L b+1 ng 1~ A + Z fm 1 L
45 dfp 2
— iV -1 T U -1 .
b+l dn Mgy Jm—1 (4.30)

where x,, is defined in Eq. (1.40}. In order to solve the above equations upto first few order of
approximations, the symbolic computation software MATHEMATICA is used and obtain the

following series solutions:

m+1m4l—n el e l—n
fm Z L m n’ e m]‘ Q’m = L Z bm nfl'e m; m > 0. (431)
n=0  ¢=0
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Inserting Eq. (4.31) into Egs. (4.26} and (4.27) we get the following recurrence formulas for

the coefficients b, » and b, ,, of fi (2) and gn(z) as follows form > L, 0 <n < m+1

m m—+1 w41 -n
0 _ o . 0 ’ q ’ ;
0= XmAm+28m—-10 — § m 0#1 1T 2 : L Am n #n 1 (”' - Uun.l})‘ (432)
g=—{) n=2 g=0
i) m+lm+l-n
0 q .
m,l T Xme+lam 1,1 Z Am 1*“'1 1+ E L ‘/—\‘m n\tn ] T n-u‘u.l])‘ (43‘3)
q=0 n=2 g¢=0
ml—n
IS _ ; k AY q
Coin = XmXAm+2—nAm+2-n-kTm—1n + Dby k
y=0

m+imi-l-n

- Z Z A?n‘n(""'?a,l - (Tl - l—)#'i‘o)n (434)
n=2 q:(]

1 € n<m+1, 1<k<m+1-~n,

m+lm+l-n
]
tr)m \me+] m. | 0% Z Z Fm mu'l'n O (435)
[TESE
m+l-n
& _ k "
bm n XmXm+2~ﬂXm.+2~n—kbm-1,n + Z F ).Hl'n ke (430)
g=0
1 < n<<m+1, <k < 2m,
q A2 —nXm p2-n—g {a3?n—l,r1 + Bl_"b:?x I~ ("1"[2 + IS1)0'1?1'1~1.n}
Aru n= 3 2 1 ) (437)
L {13,,, n T el Q’m I'lj
’— XJ'J 2—‘ X 2_-, - {bgql— rn dx aqu - 1.11'2 + U be 11}
I,:?n L= ﬁq 1+2-nAm+ 1—q m—~1, QH_;’ -rz 1,n ( ) -1 (4.}8)
| + {"f:’n.n - H_]Oix‘n}

Here the coefficients oghn, 87, ,,, ¥in and a7, s wherem > 1, 0<n<m+1arc

- min{n,k+1} min{q,2k+1-7}

m o= Z Z Z [Lll?:—l—.‘ = lal}’i‘,t’ (439)

k=0 i=max{0n+k-m) j=max{0y+l+n—i-2m—k)}



m-1  min{nkt+1} min{y.2k4-1—-£}

Bran=2. D, > W a2l (4.40)

k=0 i=inax{0n+k—rn} j=mas {0+ 1 +n—i-2{re—k}}

- min {7 k-+1} min{q,2k+1 -7}

= L Z Z at™l brmiPlh (4.41)

k=0 t=max{0n+k-m} j—mwax{G.g+1+n—i—2(m-k)}

m—1 min{r,Ak-F1} min{g.2k+1—1}

mn z Z Z al?n Jl —k— tb{:,i‘ (4"’12)

k=0 i=max{0,n+k—m} j=nax{0,g+1+n- i—=2{m--k)}

a'l(r}n,n = (q + 1) a?:rlz - narqn n aggn.n = (q + J-) ul?:-rll - 7’1(&1?,,1 e (44‘3)
ad?, = {7+ 1) a2} —na2i, (4.44)

b1 = (g + D)b1TFL — nh1d

™m,n T, LI

(4.45)

m.n?

017, o = (g + 1) 6T — 1

where pf , pf o, p1] ) and @l | are given in Egs. (2.50), (2.54), (2.57) and (2.59). With the
above recurrence formulas, we can calculate all the coefficients a}, ., and b%, , using only the

first few

ago=1L oy =-1 by =1 (4.46)

given by the initial guess approximations for the solutions f(n) and g(n) in Eq. (4.19). The

corresponding A th-order approximations of Eqs. (4.20) — {4.22) are

M M AL+ Mo owmtl-n
0 -
2 fmim =2 dmot D e 3 3 ahan' |, (@47)
m=0 m=0 n--l m=n-1 =0
A M M+ M mtl-n
- 0 o
Dognm = ot d ™ S ST W (4.18)
m=0 m=0 n=| m=n~1 ¢=0

and thus the explicit analytic solutions are

Y, A4l m+l—n

oo

= T; fm () = A}i_r'nm 7;] L Z -nn HIZ" 1 L al 2%, (4.49)
© [ M M4l A omA)lon

= mZ:UQ‘m (U) = “}'i_!.,]l)q Z bm ot ”Z% e m; l Z n")?” al ) (4.50)
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4.3 Convergence of the analytic solution

The explicit analytic solutions in Eqs. (4.49) and (4.50) contains fiy and hy which give the
convergence region and rate of approximation for the HAM solution. The rcader is referred
to [95] (pp. 31-33) for the detailed discussion regarding the role of auxiliary paranieters on the
convergence region. Also a theorem similar to the convergence theorem 2.1 (pp. 18 and 19 of
reference [95]) can easily be proved for the problem under consideration. In Fig. 4.1(a.b), the
h—curves are plotted for 5th and 15th order of approximations for the dimensionless velocity
compenents f'and g when b = 0.1, A = 0.1, A = 0.5 and 7 = 0.5, Irom Fig. 4.1{a). we
note that the range for the adinissible values of Ay is —1.7 < fig < —0.4 as shown by the
15th order of approximations. Fig. 4.1(6} shows that the range for the admissible values of
hy is also —=1.6 € fiy € —0.4. It can be further observed from Fig. 4.1{(e,b) that the range
for the admissible values of fig and £y increases with increase of the order of approximmations.
As pointed out by Liao [95] we can select any value of hi{i = 3,4) from the admissible range
of k(i = 3,4) for which we can get convergent solution. Table 4.1 shows that the value of
Ry = fy = —1 leads to the divergent solution when & = 7, M = (0.5, A = 0.1, ¢ = 0.5.
Similarly we determined that the solution diverge for the values of f3 and kg when b = 1.5,
M=15A=01,9=0002,05 07,10and b = 1.5, M = 1.5, A = 0.0, 0.2, 0.5, 0.7, 1.0,
% = 0.1. However when fiy = fiy = —0.75 the series solution converges for all different valucs
of the pertinent parameters. Table 4.2 shows the [m,m] homotopy-Padé approximation when
b=1T M =05, A =0.1, 4 = 0.5 Comparison of HAM solution at iz = ks = —0.75 of Table
4.1 alongwith the homotopy-Padé approximation of Table 4.2 makes sure that the homotopy-
Padé approximation converges rapidly. Our calenlations result that the series solutions in Egs.

(4.49) and (4.50) converge in the whole region of ; when iy = fiy = h = —0.75.



Fig. 4.1 (a)
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Fig. 4.1 (a). h-curves arc plotted for 5th and 15th order of approximations for f7(0).

Fig. 4.1 (b)
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Fig. 4.1 (b). Ai-curves are plotted for 5th and 15th order of approximations for ¢'(0).



Order of approximation h=-—1 h=-0.75

m - f"(0) —4'(0) ~f"{0) —g'(0)

5 1.5386262 | 0.0705967 | 1.4975180 | 0.0195061
10 1.4379532 | —0.0544487 | 1.4963156 | 0.0191512
15 1.622488 0.1779839 | 1.49643756 | 0.0193187
20 1.1831901 | —0.3836943 | 1.4964231 | 0.0193002
25 2.3703257 1.155657 | 1.4964251 | 0.0133029
30 —1.0976900 | —3.367249 | 1.4964248 | 0.0193024
35 9.5336308 10.542240 | 1.4964249 | 0.0163025
40 —24.196985 | —33.695670 | 1.4964249 [ 0.0193025

Table 4.1. The HAM approximations of —f”(0) and —g’(0) at A = —1 and A = —0.75 when
b=7, M =05 A=01,9J=05

Homotopy-Padé approximation
[mom] | —f(0) | —(0)
[5,5) | 1.4964237 | 0.0192999
[10,10] | 1.4964249 | 0.0193025
[£5,15]) | 1.4964249 | 0.0193025
[20,20] | 1.4964249 | 0.0193025

Table 4.2, The {m, m] homotopy-Padé approximations of —f*{0) and —¢/(0) for b = 7, M = 0.5,
A=0.1and ¢ =0.5.
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, Cortell’s [90] hOl]lOt()py—PELd(j‘
solution approximation

0.0 0.627547 (.62755488
0.2 0.766758 0.76683734
0.5 0.889477 0.88954392
0.7 0.953786 0.95395659
1.0 1.0 1.0

1.5 1.061587 1.0616009
3.0 1.148588 1.1485932
7.0 1.216847 1.2168503
10.0 1234875 1.2348745
20.0 1.257418 1.2574235
100.0 1.276768 1.2767735

Table 4.3. The comparison of Cortell’s solution |90] with [20, 20] homotopy-Padé approximations
of the present work for different values of the non-linear stretching parameter b when M = A =

7 =0.

4.4 Results and discussion

This section includes the graphs of f/ (7)) and g¢{x) for 15th order approximations. These
graphs illustrate the variation of the parameters b, M, A and . Such variations can be seen

through Figs. 4.2(a) — 4.5(b).
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Fig. 4.2 (a)
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Fig. 4.2 (a). Variations of f' with the increase in b.

Fig. 4.2 (b)
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Fig. 4.2 (b). Variations of g with the increase in .
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Fig. 4.3 ()
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Fig. 4.3 (2). Variations of f' with the increase in M.

Fig. 4.3 (b)
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Fig. 4.3 (b). Variations of g with the increase in M
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Fig. 4.4 {a)
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Fig. 4.4 (a). Variations of f with the increase in A.
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Fig. 4.4 (b). Variations of g with the increase in A.
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Fig. 4.5 (a)
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Fig. 4.5 (a).Variation of f' with the increase in 9.
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Fig. 4.5 (b).Variation of g with the increase in 9.

63




Fig. 4.2 (a} and4.2 (b) shows that there is very small change in f’ by increasing b. However
there is a significant change in g when & is changed and A4, A and v are fixed. This Fig. indicates
that the magnitude of g increases by increasing b. The effect of Hartman number A7 on f' and
g are shown in the Fig. 4.3(e) and 4.3 (5). Here the used values of the Hartman number are
M =10.205,0.7 and 1. The effect of & on f" and g is significant. We conclude that an increase
in M leads to an increase in f’ and decrease in g. The variation of A on f" aud g is shown in Fig.
4.4(a) and 4.4 (b). These Figs. show that f’ decreases. The behavior of A on the magnitude
of g is quite opposite to that of f'. Fig 4.5(a) aud 4.5 (b} depicts the effects of the porosity
parameter ¥ on f'and g. It is found that the effect of the porosity parameter on f' and g is
similar to that of the Hartman number M.

In order to see the effect of different parameters b, M, ¥ and A on the wall shear stress
- f7{0) and —¢'(0), Table 4.4 is constructed. It is observed that —f“(0) increases with an
increase in the non-linearity of the stretching b. However —g'(() decreases with an increasc
in &. The increase of Hartman number increases — f"(0) and —g'(0). Similarly the increase in
porosity ¥ and rotation A causes an increase in — f”(0). On the other hand increase in porosity

decreases —g'(0) but an increase in A increases —g'(0).
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b M| o N] -0 —g(0)
0.0 1.069949 | 0.194189
0.2 1.150419 | 0.153881
0.5 1.244544 | 0.1174821
0.75 1.291418 | 0.0981848
1.0 1.3257934 | 0.0843510
1.5 1.3728528 | 0.065%266
3.0 1.4412643 | 0.0397066
7.0 1.4064249 | 0.01930255
10.0 15111042 | 0.0139339
1.5 | 0.0 1.2787653 | 0.0723894
0.2 1.2942709 | 0.0712026

0.5 1.3728525 | 0.0658266

0.7 1.4575394 | 0.0600834

L0 1.6229786 | 0.0534946

1.5 | 0.0 1.8395130 | 0.0462558

0.2 1.8930839 | 0.0447767

0.5 1.9707145 | 0.0428031

0.7 9.0208135 | 0.0416243

1.0 2.0937172 | 0.0400261

0.2 ) 0.2 ] 1.8047351 | 0.0894639

- 0.5 | 1.9060671 | 0.2221391
0.7 | 1.9185639 | 0.3086837

1.0 | 1.9437001 | 0.4344984

1.5 | 1.987963 | 0.6315092

Table 4.4. The [20, 20) homotopy-Padé approximations of — f#(0) and —¢'(0) for different values

of the parameters b, M, A and 4.




Chapter 5

MHD rotating flow of a second

grade fluid over a shrinking surface

The alm of present chapter is to extend the analysis of chapter two for a simplest subclass of a
viscoelastic fluid namely the second grade fluid. The flow equations are first modeled and then
reduced into ordinary differential equations. Series solution of the arising equation is calculated
using HAM. Besides that the displayed graphical results show the variations of the pertinent
parameters. In addition, a comparison between the solutions of viscous and second grade fluids

is made.

5.1 Mathematical formulation

Here, the physical model of the flow problemn is sitilar to that of chapter two except that second
grade fluid replaces the viscous fluid. The corresponding expression of Cauchy stress tensor in a
second grade fuid is given in Eq. (1.12). Employing Eq. (1.12}, the continuity and momentum

equations are

ou  Guw
-C'ﬂ + -a—z =), (5.1)
ou Ou V[0Tee  0Te] oB§ .
U +w5;- — 20 = P l: R ph J - P (5.2)
du . Bu L[0T, 9T,.] oB} .
u6$+waz+29u_;[8:u ,z:l— P , (5.3)



where asterisk has been suppressed for simplicity. In the next scction we will obtain the solution

of above equations subject to the boundary conditions in Eq. (2.8).

5.2 Solution by homotopy analysis method

In order to provide the HAM solution, we choose the initial approximations and operators given

in Eqs. (2.9)-(2.11). The resulting problem at the zeroth order is of the following form
(L=a) Ly [F {n,q) = fo(n)] = qhs N [F (m.0) . G (m.9)], (5.15)

(L= q) £2[G () — 90 ()] = qheNs [F (11.4) . G (. 9)], {5.16)
F{0,q)=s, F'(0,q)=-1, F'(00,¢)=0, G{(0,q =0and G{co,q)=0. (5.17)

In above equations

3‘11’?1, ar(n, 2 331"_'1, 5 BFn,
TG (220" 4 F (3,q) LEGL + 2NG(n,q) - 2254

, . A (ng) FFing 32 R, 2 a0, 2
Nz [Fn.q), G(n.9)] = e 2(—%%71_#_)~g'(]___}_1) _ (3 S‘,Sj q)) + (’?(t(}nrw)
2 (. A4 F Ly, ~
+2500G (4, 9) + ZELLF (11, 4)
(5.18)
é)QGr, ')"7, oy , . g R .
ZE — G, q) 2504 1 F (5, 9) 2424 — 2\ 2EDA) _ 412G (5, )
Ns[F (1.9, G(ma)] = PRl )
+ay .
GF(n.q) 82 F(n, F 1.y .
RUBL CHL Ry IR
(5.19)

Obviously, when ¢ = 0 and q = 1, Eqs. (5.18) and (5.19) satisfy Eq. (2.17). Expanding ' in

Taylor's series with respect to ¢, we have

Fma)=fom+ Y fulm ™ Coa=gpm+ S gnn) ¢ (5.20)
rre=] m=]

L 6™ F (0,q)
mb dg™

1 "G (1, q)
mb o dgm

fm(’.’) = G (77) = (5.21)

=0 g=0
Note that Eq. (5.20) contains the auxiliary parameters fis and Ag. Asswming the solution in

Eq. (5.20) that A5 and hg are chosen so that the Fgs. (5.20) are convergent at ¢ — I, we have,
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using Eq. (2.17), the solution series

fOn)=foln) + i S () g (i) = goln) + i gm (1} (5.22)
m=1 m=1
The mth order deformation problems are
L[ (M) = X Sfrnm1 (0)] = A5 R 5 (7)., (5.23)
Lo [gm (1) ~ X G- (M)] = hgRBu (1) . (5.24)
fm{0) =0, £, (0)=0, gn(0)=0, fr{c0)—0andgnco)—90 (5.25)

in which

dafm~1 pt dfm 1-k dfk d fk zdfrn—l
= - fad 2/\ m—1 M
Rbm (Tf) drﬂ } (b] d.‘] g__ f 1—-1- l\ + g 1 4 d."}

m—1 2dfm~l-k‘d e e Sk _J;& + in 1 —u dgg

_ L s dr dn? a4yt dn dny .
@1 d* Dn-1-% + di er l—kf ' (526)
k=) Ttz 9k A k
dzgm—l iy ek dgk dfm Gm=1 Pl
b (Tf) = df? - E Om—1- .k + E fm =k dT,’ —~2A dn — M G-y
m—1 v A -k d? [y
o dom _45
+ap Y y df” f”q ‘ (5.27)
Hon—1—k 279 47 e~ 1 A
k=0 | R A - g e

where x,, is defined in Eq. (1.40). The solutions of abave equations upto first few order of
approximations can be obtained by means of the symbolic computation software MATHEMAT-

ICA. It is found that f..(#) and () are expressed by

m+1 2m-kl—n rtl 2m+1—7
fmmy=>" > al e gmlm)= > Y W% om0 (5.28)
n=0 ¢=0 n=0 g=0

Since recursive relations are useful for vs to recognize the structure of the series solutions and

to have an insight to the nature of the considered problem. Therefore, we put Eq. (5.28) into
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Egs. (5.23) and (5.24) and get the {ollowing recurrence formulas for the coefficients a,,, and

Bdn of fu (2) and gy, (2) as follows whenm > 1,0 < n<m+1

2m
0 o PR , 0 q 4
Tpno = XmXmp2X2mp1@n-10 — Z Aln:_ll”‘l,]
g0
m--l 2kl —n
o
- Z Z A1m.n nun 1 (H- - l)lu‘n,())1
=2
2mn
0 —
Tnd = XmAep1dam — 1yt ZAlm ToR
g—0
m412m+1l—n
v
q g e
+ L Z A]‘m,n(ﬂ?n.n - ”‘lurz.())’
n=2 g=0
2m41 m+! 2m+1l-n
30 q q
bml mem+1)«2'mbm—1.l - Z A2wu,Df“lDO Z Z A2m "[.Ll )!
q=0 n=2 =0
2
& ¢
= XouXon\ X k-1 + Z A]‘m 1“1 £ 0= A < 2m,
g=k—1
2m
9
bm,l XmXm+1X2m - .’bm Il + Z A2m 1/"‘11 kY 0= k< 2m,
q=k--1
Zm+1-n
k _ L
am,u - J\me+‘2 nY‘}!m+1 —Tn-q L In + Z Alm n.“"n I
=k

2 € E<2dm+1l—-n 2<n<m+1,

2m+l-n

k _
bm.n = XmXm2-nX2mtl-n— me In + Z A2mn n 1)
g=k
2 £ k<2m4+1—n, 2<n<m+1,
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(5.30)

(5.34)

(5.35}



er:+2—rzx'2m+17n— {a‘}m—-l n + 2’\bm—l n}
A]_?” n = R 2".1711 n 5?;;.1; ' (5.36)

q _ A0 e
+X2m+2fn—q ne,n G n 431
+(‘?H. T

=+ (.b?;,‘” + ‘p?u,n

Xt 2-nAZm+tl-n—q {62?11—1 - 2"\b]‘m—l n}

AQ?R n = ﬁ‘ﬁ q q sz n : (5‘}7)
TXom42—n~gq (_)m‘n - [m,n + oy
Tm g m n

1/

Here afn, 87, . Yinn Oy Bomis Py Dy Ofin, Thin, Thn, Yhn, form > 1,0<n

2m + 1, are given by

m—1 min{n,k+1} min{g2k+1-1}

al L= Z Z Z all™? kln_,ali._“ (5.38)

k=0 = inax{0,n-+k—m} J=max{lg+l+n—i=2{m-k}}

m~1  min{nk+1} min{q,2k+1—1}
Bq

. L Z Z a?n;—_—il—-k.n—iaz{:,i’ ' (539)

k=0 t=max{0,n+k—m} J=max{0,qg+14n—i-2(m-k)}

m~1  min{nk¥l} min{g. 2k F1-i}

‘7?"'" = Z Z >__: “'l?u Jl k,n-r‘a:;i*.i’ {540}

k=0 iemax{0.n+k—ra} jmmax{dg+1+n—i-2(m—k)}

min{rn,&+1} min{g,2k+1-7}

ggrt.n = Z Z Z bl?n_—lek n—-:blk i1 (5'4]‘)

k=0 i=max{0n+k—m} j=max{0,g+1+n—-1-2(m—k)}

—1  min{nk+1} min{g,2k+1-1}

— ) J
(f)?".u - § E : bm 1k, n—zb2 kot (542)
k=0 i=max{0n+k-m} j=max{0g+1+n—i—-2(m—k)}

J 3

m—1  min{uk+1} mindg.2k+1—1)

ga?"'" = L Z Z agn_jlvk n—taAL i (5.43)

k=0 i=max {(0ri+k—m} j=max{Og -+t +n—1-2(m—k}}

m-~1  min{nk+1} min{q,2k+1 i}
e

s > > B L, (544)

k=0 i=max{0r+k-m} j=max{0.g+1+n—i-2(m—k)}

i

m—1 min{n k+1} min{g,2k+1-i}

eg”"” = Z Z Z blgril~f~. n—zak i (5.45)

k=0 i=max{0n+k-rne} j=max{0,g+ 14 n—i-2(m—k)}
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m—1 min{n.k+1} min{q.2k+1—1}

S = Z Z Z b1 ki ,‘Zi‘,, (5.46)

k=0 1=max{Q.rn+hk—m} J=max{0.g+1+n—c 20 —-k}}

m~-1  min{rnk+l1} min{q,2k+1-i}

Thn = Z Z Z aly k- lei“.. {5.47)

k=0 i=mux{0,n+k—m} j=max {0y Fl4+n—1=2{m—k}}

min{nk+1} min{q.2k-+1~17}

Vi Z Z Z “:3fr;31—k..:—ibi,ir {5.48)

k=0 i=max{0n+k—m} j=max{Gy+1+r—i—2(m—~k}}

alfy . = (g+ 1) alf) —nal, ., a2f = (g+ Dalltl —nall (5.49)
adl = (g+1) a2ttl — na2? o oad?, = (g+ 1) a3l —nadd, (5.50)
Bl = (g + D bILL = by B2h = (g4 1)UL — noLY, (5.51)
b3, . = g+ 1)b20FL — b2t (5.52)

where pf ., pf o #1]  and pdl o are defined through Egs. (2.50), (2.54), (2.57) and (2.59)
respectively. Due to the above recurrence formulas, we can calculate all the coefficients af, , and
i, n using only the first few defined in Eq. (2.76). The corresponding A th-order approximations

of Egs. (2.8), (5.13) and (5.14) are

M M1 M Zm4l-n

Z fm 24 (lmo + 24 M Z >_1 "" n’} q ! (553)
m=0 =0 n=z1 ri=n—1t

M M1 r 2m41-n

S gm(m) = L o+ Y. e | > Z AL (5.54)
== m={ r=] m=n-1

The analytic solutions now are

oo M1 M 2m4l-n
— — 3 LT q
f(ﬁ') - Z fm- (73) - ﬁ}l—lvl})o Z m 0 + Z & L L am nn N {555)
m=0 | =0 n=1 m=n—-1 4=0
Y A Al Zmdl-n
a(n) = Z g ()= lm | D b+ e Y ST bt (5.56)
m=0 | = =( n=1 m=n—-i ¢=0
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5.3 Convergence of the analytic solution

The explicit analytic solutions given in Eqs. {5.55) and {5.56) contain the auxiliary parameter
4z and Fg. The convergence region and rate of approximation for the HAM solution strongly
depends upen these auxiliary parameters. The reader is referred to [95] (pages 31 — 33) for the
detailed discussion regarding the role of auxiliary parameters on the convergence region. Also
a theorem similar to the convergence theorem 2.1 (pages 18 and 19) of reference (95 can easily
be proved for the problem under consideration. As suggested by Liao [93], the region of the
fi—curve having slope zero is the valid region. Thus the value of fi that lies inside the valid
region always pive the convergent series solution, The fi—curves for f and g are plotted for
15th order of approxinration by taking two different values of ay, M, s and A (Fig. 5.1). Fig.
5.1(a) shows that the range for the admissible values of fig is — 1.7 < fis € —0.2 when «; =0,
M=0,5=01land A=0.1. For oy =0.1, M = 0.1, s = 0.3 and A = 0.3; the admissible range
is —0.8 < hy < —0.2. Fig. 5.1(b) indicates that the range for the admissible values of fig is
—16<hg < —02forer; =0, M =0,s=01land A=0.1and for ¢; = 0.1, M =0.1, s = (.3
and A =03 it s —0.8 £ g < —0.2. Qur caleulations depict that series given i Eqs. (5.35)

and (5.56) converge in the whele region of 7) when A = hg = i = —0.5.
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Fig. 5.1(a)
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Fig. 5.1 {a). h-curves are plotted for 15th order of approximation for f™(0).

Fig. 5.1 (b)
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Fig. 5.1 (b). A-curves are plotted for 15th order of approximation for ¢"(0).
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5.4 Results and discussion

Shrinking flow of MHD second grade fluid in a rotating frame is studied analytically. Compu-
tations are carried out for a wide range of physical parameters of the problem and the graphical
results are presented to illustrate the effects of various controlling parameters including second
crade parameter (o), shrinking parameter (s), rotation {(A) and the Hartman number (M)

when hs = kg = k.

Fig. 5.2(a)
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0 ! 2 3 +4 5 6

Fig. 5.2 {a). Variations of f' with an increase in «.
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Fig. 5.2 (b)
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Fig. 5.2 (b). Variations of g with an increase in aj.

Fig. 5.3 (a)
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Fig. 5.3 (a). Variations of f* with s for case of suction.
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Fig. 5.3 (b)
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Fig. 5.3 (b). Variations of g with s for case of suction.
Fig. 5.4(a)
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Fig. 5.4 (a). Variations of f' with an increase in A.
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Fig. 5.4 (b)
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Fig. 5.4 (b). Variations of g with an increase in A.

Fig. 5.5(a)
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Fig. 5.5{a). Variations of frwith an increase in A,
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Fig. 5.5(b)
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Fig. 5.5 (b). Variations of g with an increase in M.

IMig. 5.6 (a)
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Fig. 5.6 (a). Variations of f* with s for the case of injection.
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Fig. 5.6 (b)
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Fig. 5.6 (b). Variations of g with s for the case of injection.

It is found from Fig. 5.2(a) that the magnitude of f’ decreases by increasing c. Fig. 5.2(b)
shows that the behavior of ¢ on ¢ is quite opposite to that of f/. Fig. 5.3 (a) depicts that
the velocity f’ increases by increasing s. Furtherniore, the boundary layer thickness decreases
when s is increased. This is in agreement with the observation that suction causes reduction in
the boundary layer thickness. The effect of s an g is similar to that of f. However in this case
boundary layer thickness increases as shown in Fig. 5.3(b). Fig. 5.4{(«) and 5.4(b) elucidate
the behavior of A on f' and g. It can be seen that the effect of A {which is the ratio of the
rotation rate to the shrinking rate) is quite similar to that of @y on f" and g. Fig. 5.5(«) and
5.5(b) illustrates the effects of M on f' and g. The variation for M is similar to that of 5. The
boundary layer thickness decreases by increasing M. It is evident that the effect of rotation
parameter on g is quite opposite when compared with the suction parameter s and Hartman
number M. Fig. 5.6 (a) elucidates the variation in f’ for the injection parameter s. It is noted
that velocity decreases by increasing injection. These effects are quite opposite in the case of

velocity field g as shown in Fig. 5.6 {b).
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Chapter 6

The influence of Hall current on
rotating flow of a third grade fluid in

a porous medium

This chapter investigates the effect of Hall current on the steady and rotating flow of a third
grade fluid in a porous medium. The hydromagnetic flow between the two stationary plates is
induced by a constant applied pressure gradient. Modified Darcy's law has been used in the
flow modelling. The serics solution of the resulting non-linear problem is developed by means
of the homotopy analysis method. The effects of various interesting parameters on the velocity

components are seen through graphs and discussion.

6.1 Mathematical formulation

Let us consider the steady flow of an incompressible third grade fluid between two parallel
plates at a distant d apart. Both plates and fluids are votating with constant angular velocity
2 about an axis normal to the plates. We select the Cartesian coordinate system QXY Z. The
z-axis and z-axis are perpendicular to the paralle! plates respectively and y-axis normal to the
zz-plane. The third grade fluid fills the porous space between the two stationary plates. Since
the plates are infinite along x—and y—directions, all physical quantities except pressure depend

upon z only. Denoting velocity components « and v along 2~and y- directions, respectively,
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the velocity V is defined as

V =[u2 0] (6.1)

For third order fluid, the Cauchy stress tensor 7 is defined in Eq. (1.11}.

In a porous medium, the equations governing the incompressible rotating flow with Hall

effect are

divV =10, (6.2)

p %+29xv+ﬂxﬂxr =-Vp+divS+J x B+ R, (6.3)

where J is the current density, B is the total magnctic field, R is the Darcy’s resistance and

the extra stress tensor S in a third grade fluid is defined as
S = (u+B5tr AN A + o Ay + AT + 81 Az + Fy(A1Ar + AgAy) (6.4)
where the apparent viscosity ji,p, is defined by

Hapy = 1+ ﬂ-strA%. (6.5)

1
I+ (I« B) =0 |E+ V x B+
By eny,

Vp.!, (6.6)
where w, is the cyclotron frequency of clectrons, 7. is the electron collision time, ¢ is electrical
conductivity, ¢ is the electron charge and p, is the electron pressurc, The ion-slip and thermo-
electric eflects are not included in Eq. (6.6). Further it is assumed that wer, ~ o{1) and w,;
< 1 where w, and 7; are cyclotron frequency and collision time for ions respectively.

For fluid flow in a porous media, it is a common practice to treat the porous medium as
a continuous medium, but in this case we have two continuum medium: fuid in mwotion and
the solid matrix that is rigid and stationary. For low speed fluid the Darcy’s law holds in an
unbounded porous mediwm. This law relates the pressure drop caused by the frictional drag
and velocity and ignores the boundary effects on the flow. By this law the induced pressure
drop is directly proportional to the velocity. For the porous medinm with boundaries, Brinkman
suggested an equation describing the locally averaged flow. Although an equation proposed by

Brinkman holds only for steady viscous flows but there are several modified Darcy’s law available
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in the literature for viscous flows. Due attention has not been given to the mathematical
macroscopic filtration models concerning viscoelastic flows in a porous medium. Due to this

fact and keeping in view the constitutive equation of an Oldroyd- B fluid, the following expression

a R 17,
(l—i—/\a) Vp=— . (14—/\,-(%)\/‘ (6.7

in which & is the permeability, A and A, are respective relaxation and retardation times and ¢

has been proposed

is the porosity of the mediun. It is pertinent to mention that for A = A, =0, Eq. (6.7) glves
the well known Darcy's law for a viscous flow. For A, = 0, Eq. (6.7) reduces to a Maxwell
fluid. When A = 0 and pA- = a) (second grade fluid parameter), Eq. (6.7) holds for second
grade fluid. It should be pointed ont that for A = A, = 0, Eq. (6.7) is valid for a viscous fluid,

Employing a similar procedure as in reference [10], the Darcy's resistance R in a third grade

fluid is ) .,
& ) du du\* \
R = ‘—I:' [[J + Zﬁg ((E) -+ (d—z) )J V. (6.8)

In view of above equations, the incompressibility condition is antomatically satisfied and

Eq. (1.7) give the followiug scalar equations

(()}5 d.Tlg 4 [35
—20000 = —— + ——= - ‘ 3
prey oz * dz + 1 1 —im (6.9)
a7 dThy o B2
2ofdy = -+ p —=2 5 — a_, ;
priu dy i dz + 2 T—am (6.10)
where
- 2 . .
P= Ty — L0 (? +4), (6.11)
du du d\ 2 dv 2]
Tiq = e h— — . \
13 'u(iz Qﬁ‘]dz (dz) + (dz) ' (6.12)
dv do du\? du 2]
Tos = pji— + 23— || — _— )
2 =1 Jr‘w"‘d:: {(d'z) + (ri:) * (6.13)

b\ 2 dn\ 2
Ty = -p+ (201 + ay) [(%) + (d—u) J (6.14)

m(= w,7.} is the Hall parameter and the z—-compenent of equation of motion indicates that
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the modified pressure p # p(z).
The equations which are to be solved are Eqs. (6.9) and (6.10), subject to the following

boundary conditions:

u=v=0atz=0and z=4d. (6.15)

Writing
f=uv+iv, f=u—iv (6.16)

Fgs. (6.9) — {6.14) and boundary conditions (6.15) give

af = X @ 98
#—4 (% + l%’f‘:a) f
+£ —imey ot g dl , (6.17)

wmpggﬁ+£ﬂ%f}
FO) =0, f(d)=0. (6.18)

It is expedient to write the above equations in non-dimensional form. To do this, we intreduce

nondimensjonal variables and parameters as follows:

s ng z.:a Q'=$= ¢.=c3§
8 = i;gf C = —% (§?+ gf’). Mt = "‘Zi‘ﬂ. (6.19)
We write Eqs. (6.17) and (6.18) in terms of these dimensionless parameters as
%0 = C + =it = (9 wlia) - 20655 f (6.20)
condh 4L - £1 4
J0)y=0, f{1)=0, (6.21)

where ' is dimensionless pressure gradient and asterisks have been suppressed for simplicity.
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6.2 Analytic solution

For HAM solution we choose

folz)=2" — =, (6.22)
Ly(f)y= 1", (6.23)
as initial approximation of f and auxiliary linear operator £y satisfying

L4(Csz +C7) =0, (6.24)

where Cys and Cy are arbitrary constants. If g € [0, 1] is the embedding parameter and f is the

auxiliary nonzcero parameter then

(1—q)LalF{z.q) - fol2)] = ghaNo [F (2,q)], (6.25)
F(0,q) =0, F(lg)=0, (6.26}
in which
No [F (2.0) C+ ng‘:gz‘g’. —3 (—_lei:L -+ 'ZQ) Flz,q)— ((p + ﬁ“'!;g) Fz,y4) (6.27)
9 ) = i 1‘7;3 /.’,.!; ) ._‘:[‘__ ) S ,
+‘2ﬁ36_pc{)fgl [Zd Cﬂzl 1 gz'-"q o édri);z‘q F(Z, Q) -+ & g':”'q d!" _-:'

When g = 00 and ¢ = 1, one ¢an write

F(2,0) = fo(2), F(z1)=f(3). (6.28)

As q increases from 0 to 1, F'(z,q) varies from the initial guess fy(z) to the solution f(z).

Using Taylor's theorem and Eq. (6.28) one obtains

F(z,9) = fo(z)+ D fml2) q™, (6.29)
m=|
_ 1™ {zq)
fm(2) = Ao, (6.30)
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Clearly, the convergence of the serics (6.29) depends upon fi;. We select fiz in such a way that

the series (6.29) is convergent at ¢ = L, then due to Eq. (6.28) we can write

Fy=Ffol2) + ) fulz). (6.31)

=1

The resulting mth order deformation probler is
Ly [fm (z) — Xmfm1 (2)] = ﬁ‘TR'Tm(Z) (6.32)

fm (0) - fm (1) = O‘! (633)

(1 - Xm)c ~ (lri;;i + 232) frn—l

d? f.,, ; :
+ £, = — ((P+ Tn'}) Jin—1
-1 & djm— d};k—t d2 a:‘zf
2 e e S (6.34)
! “‘26? dfulkdji —i ' -
k=0 1=0 PRy ==

To obtain the solution of above equation upto first few order of approximations, the symbolic

computation software MATHEMATICA is used and the series solution is found to be
442
= Z [T mo> (6.35)

n=0

Inserting Eq. (6.35) into Eq. (6.32) we get the following recurrence formulas for the coefficients

@, Of fm (2) as follows for m > 1, 0 <t < 4dm + 2

Ami+2
C 2'_‘ Am,n

a 1 :'Xy-;)(-m a —1,1_ﬁ7(1_xnj__ i 6-36
i A dm L b = {(n+1)(n+2) ( )
C Apn
m2 = XmXam@mn—1,2 + ﬁ'? (1 - Xm) E 9 'U\ (637)
Am.r -2 . \
a’"'.n - )t.m)intm—n+2am—l,n + TL('TL-H! 3 S il S 4m + 2‘ (038)
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1+m

C€man — 1 ( b + 29) Lmon
Aqnln = ﬁ?qu—n+'2
(¢ + m) Urmn

2 22”1‘?’! + Hm,n
o | 20 | 650

‘_2¢ﬁ3r‘m,u
Here the coeflicients Ur, oy Hiany Sinn, wherem > 1, 0 < n < dmn + 2, are

I min{n,ak-+2} min{ky 4-+2}

Fmm = Z Z Z Brrnm | —kerm ey D=1 ey U (6.40)

3
=
i

k=0 =0 ky=max{0n—4(m-—k)+2} j=max{0k -4{k-1}}
m—1 & min{n.Ak+2} min{ky,4/+2
U = Z Z bin— 1 kon—k; Tty 01 5, (6.41)

k=0 {=0 ki=max{0,n—4(m—k)+2} j=max{0.ky —4(k-~0)}
m—1 &k min{n,4k-+2} min{k; 4142
Yman = 3 Z Z R S S (6.42)
k=0 =0 k) =max{0n—-4(m—~&)+2} j=max{0.k; —4(k-1)}
bon = (ﬂ' -+ I-) Q41 (643)
Cmpn = (“ -+ 1) bm.n+1a (644)

where Em‘n,'dm‘n, are complex conjugate of by, n, ¢ n respectively. One can caleulate all cocffi-
cients using the first three

agn =0, apy =1, ggp =1 (6.45)

given by the initial guess approximation (6.22).

The corresponding M th-order approximation of Eqs. (6.20) and (6.21) is

M AN 42 43041
me (z): Z ( Z am.nzn> (646)

wre==0 =1 m=r—]\

and the explicit analytic solution is

AM+2 AN +]
me =J"}@M{Z ( > az” (6.47)

m=0 n=] m=n—-1
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6.3 Convergence of the analytic solution

The explicit analytic solution given in Eq. (6.47) contains the auxiliary parameter fi; which
gives the convergence region and rate of approximation for the HAM solution. In Fig. 6.1 (a,b),
the Ai—curves are plotted for two different order of approximations for the dimensionless velocity
components w and v for ¢ =01, =1, 3, =01, M =2, C =0.1 and m = 0.1. As we can
see that the change in the order of approximation does not produce any change for the valid
region of the auxiliary parameter fi7. Fig. 6.1 (e and &) clearly elucidates that the range for the
admissible value of h; is —0.6 < k; < 0. Similar we can draw A—curve for all other different

values of the parameter involved. Qur calculation indicates that the = and y-components of the

velocity field f converges in the whole region of z when fi; = —0.4.
I'ig. 6.1 (a)
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\
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Figs. 6.1(a) A-curves are plotted for 16th and 20th order of approximations for the velocity
component u,
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Fig. 6.1 {b)
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Figs. 6.1(b) fi-curves are plotted for 16th and 20th order of approximations for the velocity

component v,

6.4 Results and discussion

The graphs for the functions u(z) and v (2) for 15th order approximations are drawn against
z for diflerent values of the parameters 3, m. M ¢, Q and the constant pressure gradient
C for C' > 0. Similarly, the graphs can be obtained for C' < 0. To see the effects of emerging
parameters on the velocity components ¢ and », Figs. 6.2{a)—6.7(b) are displayed. In each case,

Figs {(a) and (b) indicate the behavior for the velocity components ¢ and v, respectively.
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Fig. 6.2 (a)
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Fig. 6.2 (a). Variations of velocity components « with the increase in parameter C.

Fig. 6.2 (b)
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Fig. 6.2 (b). Variations of velocity components v with the increase in parameter C.
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Fig. 6.3 (a)
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Fig. 6.3 (a}. Variations of velocity component « with the increase in parameter 2.

Fig. 6.3 (b)
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Fig. 6.3 (b). Variations of velocity component v with the increase in parameter (2.
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Fig. 6.4 (a)
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Fig. 6.4 (). Variations of velocity component u with the increase in parameter ¢.

Fig. 6.4 (b)
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Fig. 6.4 (b). Variations of velocity component v with the increase in parameter ¢.
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Fig. 6.5 {a)
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Fig. 6.5 (a). Variations of velocity component « with the increase in M.
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Fig. 6.5 (b). Variations of velocity component v with the increase in M.
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Fig. 6.6 (a)
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Fig. 6.6 (a). Variations of velocity component u with the increase in parameter m.
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Fig. 6.6 (b). Variations of velocity component v with the increase in parameter m.
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Fig. 6.7 (a)
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Fig. 6.7 (a). Variations of velocity component u with the increase in paramneter ;.
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Fig. 6.7 (b). Variations of velocity component ¢ with the increase in parameter d,.
Iig. 6.2(e) and 6.2(b) depicts the variation of C on the velocities » and v respectively.

These Figs, show that by increasing constant pressure gradient ¢, the magnitude of » and v



increases. It is found from Fig. 6.3(a and &) that the magnitude of « decreases by increasing
rotation parameter {2, where this effect is opposite on velocity component ¢. Fig. 6.4 shows the
effect of porosity parameter ¢ on w and v. It i5 observed that the effect of ¢ is quite opposite
to that of C. Fig. 6.5(a and b) illustrates that the behavior of the parameter M on u and v is
similar to that of ¢. Figs. 6.6(a,b) and 6.7(a, ) show the variation of m and 84 on « and wv.

These Figs. explore that magnitudes of 1 and v increase by increasing the value of m and 4.



Chapter 7

Heat transfer analysis on the

rotating flow of a third grade fluid

The present work is concerned with the flow of a third grade fluid and heat transfer analy-
sis hetween two stationary porous plates. The governing non-lincar flow problem is solved
analytically using homotopy analysis method {HAM). After finding the solution for velocity,
the temperature profile is determined for the constant surface temperature case. Graphs for
the velocity amd temperature profiles are made and discussed for various values of pertinent

parameters entering the problem.

7.1 Formulation of the problem

Let us consider the steady flow of a third grade fluid bounded by two porous parallel plates at
z = 0 and =z = d. The lower plate is subjected to a uniform suction Wy and the upper plate is
under the action of constant blowing Wy, In the undisturbed state, both the fluid and plates are
in a state of rigid body rotation with the uniform angular velocity £ about the z—axis normnal
to the plates. The fHuid is driven by a constant pressure gradient and heat transfer is due to
constant temperature of the lower plate. By Cartesian coordinate system Ozyz, the motion in

this rotating frame is governed by the womentum equation, the continuity equation and the
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energy equation as follows

p[% +20 x V+Q x (@ xr)] = dive, (7.1)
divV =0, (7.2)
pci—f =o .- dinq, (7.3)

where p is the fluid density, ¢ is the specific heat, T is the temperature, L is the velocity
gradient, ¢ is the time, q is the heat flux vector, & is the Cauchy stress tensor which for a

thermodynamic third grade fluid is
a=-—pl+ (,u+[)’£rA"f)A1 + a1 Ay + AT (7.4)

in which p is the pressure, I is the identity tensor, i, crp, a0, and @ are material constants. The

velocity field for the present flow is
Vo= lu(z),v{z),w(2)], (7.5)

which together with Eq. (7.2) gives w = —Wj (W > 0 corresponds to the suction velocity and
Wo < 0 indicates blowing).

The Eqs. (7.1 — 7.5} after using the following non-dimensional variables

F z ) AUz Wad Qd?
Y= — = ' = 0 Wr = = —
U © Ty g vpd?’ 0 v f T
. oy & oy Op T Ty .
= — Nk i), 02"y = ) 6
™ pd?’ png(am " lé)y) (=") To — Ty (7.6)
give
dF d2F BFd | (dF\?dF
-Wy— +2i0F = -C+ — ~aWy— + 20— [ [ — | —
oz T eyt 20 dz (d.:; ) dz |’ (.7
420 2y o\ Wo d [dF dF dF dF\®  dF dT
e Pr Wy — g, S C TR S )
dz? ' [ Vdz C{ 2 dx (dz dz) 2 ( dz dz) dz dz 0. (7.8)

where F' = u + iv, F = u« — iv, the Prandtl number Pr = pey/k, the Eckert number
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E. = U /cy(Ty — Ty), v the kinematic viscosity and asterisks have been suppressed for brevity.

The non-dimensional boundary conditions are

7.2 HAM solution for F(z)

Here the initial approximation Fy(z) and the auxiliary linear operator L5 are

[,5 (F) = F‘” — C! £5 (022 -+ Cu.’:‘. + C13) = [],

(7.10)

(7.11)

where C is a constant pressure gradient and C12 and Cyj are arbitrary constants. By emiploying

the similar procedure as in the previous chapters, the HAM solution of F is given by

AN 42 A0 +1
F(z)= lim Z Z Tmz” ||
M ~—100

RSN m=n-—1

where form > 1, 0 < n < 4dm + 2 we have

C’ 42 I—\
ot = Yoty g+ = 8 L
m,l = XmXdm—13m-11 9 L (n+1) (n+2)

n=q)
. Cf 11m‘O
Tm,2 = XmXAm—2%m-12 — _2— + T!
F-n n-2
A = X Adm-—nGm—1n ”_(;‘—“T)— 3<n<dm+ 2,

C(l - Xm) - Wobm-l.o + 2"£'Qa:m-l.0
fig . on=0,
+ (0!1””0 - 1) Cm—-1,0 — 2}6 (2(5m.0 + Am,U)
X9m—n+1 {“H/me—l‘n + QiQam-Ln + (0'1 I’VU - 1) C-mfl,n} -

2.6 (25n:.n + Am.n)

Fm,n =
fig
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(7.12)

(7.16)



m—1 & min{n.2k-+2} min{p2i41}

=3 > > bt sbi—tp— s 1=k reepe (7.17)

k=0 1=0 p=max{0.n—2me+2k-+1} s=max {0,p—2k+2(-1}

m—1 Kk win{na,2k+2} min{p2{+1}

A?ﬂ.ﬂ = Z Z Z Z E!,sbk—l,p—ﬁbm_1_kl,l_p, (718)

k=0 {=0 p=max{0,n~2m+2k+1} s=max{(0,p—2k+2{-1}

bm-" = (Tl + ]‘) Trnn1s Crnn = (7?, + 1) bm.n+l| (?19)
C
app =0, con = -5, dnz = (7.20)

7.3 HAM solution for 0(z)

Here we select the following initial approximation (g} and an auxiliary linear operater (L) in
the form

fg(z) =1 -z, (7.21)
Ly(9)=8", L{Cioz+Cn)=0, (7.22)

in which Cg and ', are arbitrary constants,

Following the same methodology of solution as for F one can get

4M+4 443
0@):\}@00[2 ( Z am‘nz”)}, (7.23)

n=1 m=n—1

where for mn > 1, 0 < n < die + 4 we have

a"l.o - anr\(/irn-}-zam*l,‘)n (72’1)
4m+4
Flrn n
Oml = Xy Xame1Qme1g = 3 | e (7.25)
" ; (n+1)(n+2)
1—\]-m, —2 .
T = XpXam -ns2%m—1.n m. 2<n<4m+ 2, (72()')

€m_1n + Pr Wodm—l, N
Tl = 5 | Xam—ns2 o " AP Efbmal| . (7.27)
—Pr EC (G_Lg_n (Amﬂ + -Bm.u) - ’Ym,n)

100



min{n 4k+2}
Arn,n = Z Cm—l-*k‘u—abk.sn (728)

E
|

k=0 s=max{0n-40m—k)+2}
m—1 min{n4k+2}
fT ~ ,
ﬂm." = L bm~1~k.n~.§ick‘s| (72.9)
k=0 s=max{0,n—4{m—~)+2}
m—] min{n dk-+2}
T = Z bm«l—k,n—sbk,m (730)

h=0 s=max{0n—-4(m-k)+2}

1—-1 inin{n 4k+6} min{q,4/+4}

R 5 M >

0 1=0 i=0 g.anax{0n—a{m—k}+2} p—max{0.g—1(k—{} -4}

3

b
i

min{p4i+2}
Z bi‘rbi—i,p—-r'bk—l,qubm—l—k,n—rp (?31)
r=mnax{0.p—4{{—E)--2}
bm n — (”' + 1) raon41, Cmn = (71 + l) bm,n+1, (732]
dm,n = (Tl + 1) @mng, Cmon = ('n +1) dm,n+la (733)
cpg =1, ap)y=-—1 (7.34)

7.4 Convergence of the solution

The expressions given in Egs. (7.12) and (7.23) contain two auxiliary parameters fig and
hig. The fi-curves are plotted in IMigs. 7.1 and 7.2 for 15th order of approxiination for the
non-dimensional velacity profiles © and v. Furthermore Fig. 7.3 is the hs-curve for the nou-
dimeusional temperature profile 8 for 15th order of approximation. It is evident from Figs. 7.1
and 7.2 that the range for the admissible value kg is —1 < hg < —0.3 and for Fig. 7.3 the

admissible value of fig is —1.8 < g < —-0.3. From the calculations it is noted that the real

part of the series given by Eq. (7.12) converges in the whole region of z when fig = ~0.6 and
the imaginary part for fig = —0.5. The series (7.23) converges in the whole region of = when
hg = —0.8.
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Fig. 7.1 {a)
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Figs. 7.1 (). A—curve of velocity profile u for 15th order of approximation.

Fig. 7.1(b)
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Figs. 7.1 (b). i—curve of velocity profile v for 15th order of approximation.
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Fig.7.1(c)
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Pigs. 7.1 (c). A—curve of temperature profile 8 for 15th order of approximation.

7.5 Results and discussion

This section is developed to observe the effects of different parameters Wy, «y, 4 and Q for the
case when € > 0 and C < 0 on the velocity profiles u and v. For this purpose 7.2(2) — 7.5(h)

have been plotted for variations in different parameters.
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Fig. 7.2 (a)
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Figs. 7.2 (@). Variations of velocity profile w with the change in parameter 0.

Fig. 7.2 {b)
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Figs. 7.2 (b). Variations of velocity profile v with the change in parameter §2.
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Fig. 7.3 {a)
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Figs. 7.3 (a). Variations of velocity profile u with the change in parameter 8.

Fig. 7.3 (b)
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Figs. 7.3 (b). Variations of velocity profile v with the change in parameter 3.
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Fig. 7.4 (a)
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Figs. 7.4 (a). Variations of temperature profile ¢ with the change in parameter 3.

Fig. 7.4 (b)
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Figs. 7.4 (b). Variations of temperature profile 4 with the change Prandtl number Pr.
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Figures. 7.2 — 7.5 are made just to analyze the variations of velocity profiles u and v for the
rotation parameter ! and third grade parameter /3 for diffcrent cases C > 0 and C < 0. It is
obvious [rom the Figs. 7.2 (a) and 7.2 () that the magnitude of u decreases and v increases by
increasing {2 when € > 0 and C' < 0. The behavior of third grade parameter 7 is shown in Figs.
7.3 (a) and 7.3 (b). These figures show that the magnitude of velocity profiles v and v increases
up to z = 0.5 and then decreases. Also third grade parameter causes the huge fluctuation in
the magnitude of real component u of the velocity. To see the effect of the emerging parameters
on the temperature distribution, Figs. 7.4 (a,b) — 7.5 (e,b) are prepared. The behavior of
third grade parameter £ on temperature is shown in Fig. 7.4 (a). It elucidates that an increase
in 3 gives the decrease in the temperature profile. However positive pressure gradient causes
the substantial change in temperature in comparison to the negative pressure gradient. It is
shown in Fig. 7.4 (b) that the temperature increases with an increasc in the Prandtl number
but about =z = 0.6 its behavior is quite oppuosite [or the case of positive pressure gradient. On
the other hand, for negative pressure gradient the temperature decreases with an increase in
Prandt]l number. The bchavior of Eckert number (as shown in Fig. 7.5 («)) initially is quite
similar to the behavior of third prade parameter initially and at z = 0.7 its behavior changes
abruptly. Fig. 7.5 (b). depicts the behavior of the rotation parameter Q@ which is quite similar

to the behavior of third grade parameter on the temperature distribution,
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Chapter 8

Conclusions

This thesis is mainly concerned with the flows of second and third grade fluids in rotating [rame.
Linear and non-iinear stretching/shrinking flows have been taken into an account. Fundaniental
concept of three dimensional stretching is considered. Chapter one of this thesis contains useful
material for the subsequent chapters. Throughout the thesis the technicue used is a honotopy
analysis method (HAM). From the analysis presented in chapters two to seven, the following

points have been noted.

In semi-infinite domain, the researchers in the fluid mechanics dealt with the issue of

extra. boundary conditions through augmentation process. It is shown here that homo-
topy analysis method in such domain is able to give us meaningful solution without the

augmentation process.

e Since Pade’ approximation is used to accelerate the convergence of the series. It is noted
that hormotopy Pade’ approximation is more useful than the usual Pade' approximation,
It is further found that such approximation is independent upon an auxiliary parameter

embedded in the equation to control and adjust the convergence for the series selution.
e Suction phenomenon causes reduction in the boundary layer thickness.
e The velocity components increases by increasing the injection velocity,

e The role of the Hartman number on the velocity coniponents is similar to that of the

suction velocity.
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Porosity if the medium decreases the magnitude of the velocity components.

The magnitude of x-component of velocity in non-linear stretching case is much when

compared with linear stretching.

The magnitude of y-component of velocity in linear stretching is more than the non-linear

stretching case.

The normal stress coefficient in a second grade fluid increases the horizontal components

of velocity. However it decreases the transverse component of velocity,

The magnitude of velocity components increases by increasing an applied pressure gradi-

ent,
Increase in the Hall parametor inereases the magnitude of velocity components,
The behavior of third grade parameter on the velocity is similar to that of hall parameter.

Increase in the third grade parameter increases the temperature prafile for both reverse

and favorable pressure gradients.

The variation of the Prandtl number for the positive pressure gradient is increases the

temperature where as for negative pressure gradient, variation of temperature is reverse,

Effects of Eckert and Prandtl number are same an the temperature for positive pressure

gradient. However for negative pressure gradient their effects are opposite.
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