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Abstract

The TE, TM and TEM modes are explored for dielectric atmosphere with electric primitivity
εo, bounded by two PEC shells that are Earth and ionosphere. The TE and TM modes of
this Earth ionosphere spherical cavity are investigated using expanded form of Maxwell’s
equations and scalar electromagnetic potentials. The excitation of the TM, TE and TEM
modes by a point current source J⃗oδ (⃗r− r⃗

′
) are also explored using homogenous Green

Functions in spherical coordinates system. The approximate equation is obtained for resonant
model frequencies valid in both cases of the cavity by solving a transcendental equation.
The electric and magnetic energy density are graphically presented for some of the resonant
modes.
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Chapter 1

Introduction

The electromagnetic wave propagation in the atmosphere of Earth is important for different
scientific and technological purposes. The Earth along with its ionosphere is considered as
resonant cavity, filled with atmospheric gases as dielectric medium. The cavity model may
be used in different meteorological calculations. The model may be useful to calculate the
distribution of energy due to excitation by lightning disturbance or radio frequency sources.
The ionosphere plays a vital role in radio waves propagation that changes with frequency
bands, which is critically important for long range communication and navigation system.
The electromagnetic propagation is important in a wide spectral range of frequency bands
that can exist from VLF(3kHz-30kHz) to HF.

The planet Earth with radius of 6400km, is a good conducting sphere (PEC) for almost
all frequency bands. The atmosphere covers the Earth in different layers, one of the layers
is ionosphere layer with radius 6500km, which is also PEC for almost all frequency bands
less than 10MHz. With the increase of atmospheric conductivity, this cavity can be treated
as the dielectric layer, with electric permittivity εo, bounded between two PEC shells. The
electromagnetic modes are excited in this cavity due to lightning thunderstorm or man made
RF sources.

Cavities are usually excited by small loops, short monopoles or apertures and a complete
set of modes is required in the cavity. This has been explained by Kurokawa [1] and Collin [2].
Liu [3] explained different theories of modal expansion method for the transient electromag-
netic field in a closed volume and analyzed that the transient responses of the electromagnetic
field can be derived in terms of resonance in this specified volume. He explained that modal
expansion is an important tool in theoretical and numerical electromagnetics for computation
of electromagnetic field in cavities. Omer et al [4] presented the idea of two types of field



2

expansion for the electromagnetic field due to the radiation of electric and magnetic currents
in a cavity resonator. The first type of expansion utilizes the guided resonant modes excited
by the source current in the wave guide, while the second type is expressed as same modes
as well as irrotational modes [5]. Schumann [6] introduced some theoretical and analytical
solutions for the propagation of resonant modes in Earth ionosphere cavity. Later on, he
derived the resonant frequencies and excitation of modes in ULF and ELF range numerically,
which shows that lightning is main source of EM modes oscillation [7]. Wait [8] has solved
some electromagnetic propagation problems analytically for ELF and VLF bands and an-
alyzed numerically many realistic propagation problems for the low frequencies which is
less than 1.5kHz [9]. Galejs [10] explained terrestrial propagation of electromagnetic wave
in earth ionosphere cavity. Budden [11] gave the theory of radio propagation in which he
derived conditions for existence of modes, excitation factors, and polarization of the waves by
evaluating a contour integral. Barrick [12] gave the idea of spherical harmonics solution for
electromagnetic field due to the dipole in Earth ionosphere cavity using speed-up numerical
convergence algorithms. Cummer [13] presented a comparison among modal theory, FDTD
and approximately analytical simulation of modal propagation in Earth ionosphere cavity
for different frequency bands. Chapman and Jones [14] interpreted experimental results
in terms of the waveguide modal theory by assuming that electrons and ions are sources
of excitation in Earth ionosphere resonant cavity. Bouwkamp and Casimir [15] developed
numerical methods for expansion of the EM field in multipole components due to radiating
currents. They represented electromagnetic field in terms of Debye potentials, which related
the radial components of the electric and magnetic vectors outside a sphere containing all
sources. Pappert [16] derived formulas for the excitation of electromagnetic field due to
magnetic and electric dipoles in Earth ionosphere cavity at satellite height and furthermore,
he compared the results of his simulation with modal excitation theory of Budden [17].
They had examined inhomogenous Earth ionosphere spherical cavity modes due to radial
excitation of dipole current at satellite height. Navarro et al [18] used the method of finite
differences (FDTD) in the time domain with Fourier transform to determine TM and TE
modes of the dielectric resonator. Price [19] presented both theoretical and experimental
results of the global electromagnetic resonance phenomenon in Earth ionosphere cavity.

In present work the TM and TE modes are investigated for Earth ionosphere cavity in
chapter 2. The approximate resonant frequency equation is derived using transcendental
equations of TM and TE modes. In chapter 3, a point current source is placed in this cavity
and solved through homogenous Green Function for TM, TE and TEM modes. The TM, TE
and TEM mode expressions have been derived, due to excitation of this cavity by source
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current in three different directions. In chapter 4, the electric and magnetic energy density
plots of TM and TE modes for excited and unexcited cavity have been plotted. It is shown
graphically that electric and magnetic energy densities oscillate between TM and TE modes.
In chapter 5, summary and concluding results about the Earth ionosphere spherical cavity
have been discussed.



Chapter 2

Resonant Modes and Eigen Frequencies
in Earth Ionosphere Cavity

In Earth ionosphere cavity electromagnetic modes are excited by atmospheric lightning.
In this chapter electromagnetic modes of homogenous Earth ionosphere cavity are discussed
and approximate resonant frequencies, which lie in frequency band of atmospheric lightning
(3-30kHz) are calculated, which impart energy to this cavity. The transverse electric and
transverse magnetic modes are investigated for high frequency bands.

2.1 Cavity Description

The cavity is modelled with two concentric spheres, having two different radii. The inner
sphere has radius labelled with r = a, representing the radius of planet Earth and the outer
sphere has radius labelled with r = b, representing the radius of ionosphere layer. The radius
of Earth is about 6400km and that of the ionosphere is 6500km. The Earth ionosphere cavity
is unique from other concentric spherical cavities for the reason, that it is assumed small
cavity as compared with cavity assumed for modes propagation in the range of ELF radio
frequency band and has very lossy boundaries. The Earth surface is generally assumed as
PEC because its conductivity is of order 0.01 and 1Sm−1 on land and sea respectively. The
ionosphere layer is also assumed PEC for all frequency bands less than 10-20 MHz. The
electromagnetic field boundary conditions are satisfied at the interface of Earth and also at
the ionosphere layer.
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Figure 2.1 Geometry of concentric spherical cavity

2.2 General Formulation

The simplified formulation of a general spherical concentric cavity is used that leads to
Eigenfunctions and Eigen-frequencies of the cavity. The method of separation of variables
is applied to the electric and magnetic scalar potentials to analyse the electromagnetic field
expressions of the concentric PEC spherical cavity analytically. The scalar potentials are
derived from Maxwell’s equations and boundary conditions are expressed in the spherical
coordinate system. To determine the resonant modes of this spherical cavity that is the
channel between two PEC spheres, the differential forms of Maxwell’s equations are used.
The Maxwell’s equation used by Tia [20] or Harrington [21] are as;

▽× E⃗ =−µo
∂H
∂ t

(2.1)

▽× H⃗ =
∂D
∂ t

(2.2)

▽.D⃗ = 0 (2.3)
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▽.B⃗ = 0 (2.4)

E and H are the electric and magnetic field where D is electric flux density and B is
magnetic flux density. The spherical polar coordinates (r,θ ,φ) is used to describe the
geometry. The Maxwell’s equations can be expanded in the spherical coordinate system, the
tangential components Eθ ,Eφ Hφ , Hθ can be expressed in terms of radial components Er and
Hr. We can write that Maxwell’s equations assume the form for the source free region are,

1
rsinθ

(
∂

∂ r
r sinθEφ −

∂

∂φ
Er) = iωµoHθ (2.5)

1
r
(

∂

∂ r
rEθ −

∂

∂θ
Er) =−iωµoHφ (2.6)

1
rsinθ

(
∂

∂ r
r sinθHφ −

∂

∂φ
Hr) = iωεoEθ (2.7)

1
r
(

∂

∂ r
rHθ −

∂

∂θ
Hr) =−iωεoHφ (2.8)

1
rsinθ

(
∂

∂θ
sinθEφ −

∂

∂φ
Eθ ) =−iωµoHr (2.9)

1
rsinθ

(
∂

∂θ
sinθHφ −

∂

∂φ
Hθ ) =−iωεoEr (2.10)

Now using scalar Electric and Magnetic potential U and V as,

Er = (
∂ 2

∂ r2 +
ω2

c2 )rU (2.11)

Hr = (
∂ 2

∂ r2 +
ω2

c2 )rV (2.12)

Eθ =
1
r

∂ 2

∂θ∂ r
rU +

iωµo

sinθ

∂

∂φ
V (2.13)

Hθ =
1
r

∂ 2

∂ r∂θ
rV +

iωεo
sinθ

∂

∂φ
U (2.14)
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Eφ = iωµo
∂

∂θ
V +

1
r sinθ

∂ 2

∂ r∂φ
(rU) (2.15)

Hφ = iωεo
∂

∂θ
U +

1
r sinθ

∂ 2

∂ r∂φ
(rV ) (2.16)

Substituting from equations (2.11) to (2.16) in equation (2.9) and (2.10). The general equation
for potentials is obtained like as,

[ 1
r2 (

1
sinθ

∂

∂θ
(sinθ

∂

∂θ
)+

1
sin2

θ

∂ 2

∂φ 2 )+
∂ 2

∂ r2 +
ω2

c2

]
rF = 0 (2.17)

where "F" may be U or V . Using the method of separation of variables, the scalar potential
F as,

F(r,θ ,φ) = R(r)H(θ)Φ(φ) (2.18)

By substituting (2.18) into (2.17), dividing by F and multiplying by r2 sin2
θ , we obtained

an ordinary differential equation given below,

sin2
θ

R
∂

∂ r
(r2 ∂

∂ r
)+

sinθ

H
∂

∂θ
(sinθ

∂

∂H
)+

1
Φ

∂ 2Φ

∂φ 2 + k2r2 sin2
θ = 0 (2.19)

The φ dependence in (2.19) is separated by use of integer m as,

1
Φ

d2Φ

dφ 2 = m2 (2.20)

Also the equation for H(θ) is simplified as,

1
sinθ

∂

∂θ
(sinθ

dH
dθ

)+
[
n(n+1)− m2

sin2
θ

]
H = 0 (2.21)

The solution of equation (2.21) is,

H(θ) = Pm
n (cosθ) (2.22)

For n ≥ m the period for the above solution is 0 ≤ θ ≤ π . It is more convenient to consider
the normalized harmonics.

Ymn(θ ,φ) =
[2n+1

4π

(n−m)!
(n+m)!

]1/2
Pm

n (cosθ)eimφ (2.23)
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Now the equation for radial function R(r) is,

[
∂ 2

∂ r2 +
ω2

c2 − n(n+1)
r2

]
rR(r) = 0 (2.24)

Generally the solution of equation (2.24) will be a linear combination of two independent
spherical Hankel functions h(1)n (kr) and h(2)n (kr). Substituting the solution of R(r), H(θ) and
Φ(φ) in equation (2.18). The general and compact wave solution are obtained as given below,

F =
∞

∑
n=0

n

∑
m=−n

[Amnh(1)n (knr)+Bmnh(2)n (knr)]Ymn(θ ,φ) (2.25)

where as ”kn” is unknown wave number will be given by the characteristics equation and F
may be U or V .

The complete solution of the problem needs boundary conditions, which will be satisfied.
The boundary conditions for surface of Earth (r = a) and ionosphere layer (r = b) must
satisfy both electric potential (U) and magnetic potential (V ). The boundary conditions
given by Bliokh et al [22], are used like as,

V (a,θ ,φ) |r=a= 0 (2.26)

V (b,θ ,φ) |r=b= 0 (2.27)

∂

∂ r
rU |r=a= 0 (2.28)

∂

∂ r
rU |r=b= 0 (2.29)

2.3 Electric or TM Modes

In transverse magnetic modes, there is no radial component of magnetic field in the direction
of propagation. To investigate the TM propagating modes in this cavity, Hr will be assumed
to be zero. The equations (2.11-2.17) and (2.25) have been split into two independent subsets
describing electric or TM oscillating modes. The equation for electric or TM oscillating
modes is described as,

U =
∞

∑
n=0

n

∑
m=−n

[Amnh(1)n (knr)+Bmnh(2)n (knr)]Ymn(θ ,φ) (2.30)
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The boundary conditions impose on equation (2.32) are,

∂

∂ r
rU |r=a= 0 (2.31)

∂

∂ r
rU |r=b= 0 (2.32)

The field components in term of scalar electric potential can be written as,

Emn
r = (

∂ 2

∂ r2 +
ω2

c2 )rU (2.33)

Emn
θ = (

1
r

∂ 2

∂ r∂θ
)rU (2.34)

Emn
φ = (

1
r sinθ

∂ 2

∂ r∂φ
)rU (2.35)

Hmn
r = 0 (2.36)

Hmn
θ =

iωε0

sinθ

∂

∂φ
U (2.37)

Hmn
φ =−iωε0

∂

∂θ
U (2.38)

Now for TM modes applying the boundary conditions, the following equations transcendental
are obtained,

Amn[ah(1)n (kna)]
′
+Bmn[ah(2)n (kna)]

′
= 0 (2.39)

Amn[bh(1)n (knb)]
′
+Bmn[bh(2)n (knb)]

′
= 0 (2.40)

For non-zero solution the determinant of equations (2.39) and (2.40) must be equal to zero
which yields a transcendental equation for kn.[

[ah(1)n (kna)]
′
][
[bh(2)n (knb)]

′
]
−
[
[bh(1)n (knb)]

′
][
[ah(2)n (kna)]

′
]
= 0 (2.41)

The modal fields can be obtained by obtaining value of Amn from equation (2.39) or (2.40)
and using in equations (2.34-2.38). The following expressions for fields corresponding to nth
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modes are given as,

Emn
r =

∞

∑
n=0

n

∑
m=−n

[
Amn

n(n+1)
knr2 Wn(knr)Ymn(θ ,φ)

]
(2.42)

Emn
θ =

∞

∑
n=0

n

∑
m=−n

[
Amn

W
′
n(knr)

r
∂

∂θ
Ymn(θ ,φ)

]
(2.43)

Emn
φ =

∞

∑
n=0

n

∑
m=−n

[ im
r sinθ

AmnW
′
n(knr)Ymn(θ ,φ)

]
(2.44)

Hmn
r = 0 (2.45)

Hmn
θ =

∞

∑
n=0

n

∑
m=−n

[−imcεo

r sinθ
AmnW n(knr)Ymn(θ ,φ)

]
(2.46)

Hmn
φ =

∞

∑
n=0

n

∑
m=−n

[−icεo

r
AmnW n(knr)

∂

∂θ
Ymn(θ ,φ)

]
(2.47)

The field as function of radial distance can be represented by,

W n(knr) =

[
h(1)n (knr)

][
[ah(2)n (kna)]

′
]
−
[
h(2)n (knr)

][
[ah(1)n (kna)]

′
]

[
[ah(2)n (kna)]′

] (2.48)

which is the combination of spherical hankel function of 1st and 2nd kinds with its derivatives
w-r-t to arguments. The W

′
n(knr) is the derivative of Wn(knr) w-r-t knr and Amn is the modal

amplitude which is free parameter.

2.4 Magnetic or TE Modes

In transverse electric modes, there is no radial component of electric field in the direction of
propagation. To investigate the TE propagating modes in this cavity, Er will be assumed to
be zero. The equations (2.11-2.17) and (2.26) have been split into two independent subsets
describing magnetic or TE oscillating modes. The magnetic or TE modes expressions are
obtained using the scalar magnetic potential like as,

V =
∞

∑
n=0

n

∑
m=−n

[
Cmnh(1)n (knr)+Dmnh(2)n (knr)

]
Ymn(θ ,φ) (2.49)
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In case of TE modes, the boundary conditions are like as,

V (a,θ ,φ) |r=a= 0 (2.50)

V (b,θ ,φ) |r=b= 0 (2.51)

The field components in term of scalar magnetic potentials can be written as,

Hmn
r = (

∂ 2

∂ r2 +
ω2

c2 )rV (2.52)

Hmn
θ = (

1
r

∂ 2

∂ r∂θ
)rV (2.53)

Hmn
φ = (

1
r sinθ

∂ 2

∂ r∂φ
)rV (2.54)

Emn
r = 0 (2.55)

Emn
θ =

iωε0

sinθ

∂

∂φ
V (2.56)

Emn
φ =−iωεo

∂

∂θ
V (2.57)

By applying boundary conditions, the eigen equations for TE modes are obtained as,

Cmnh(1)n (kna)+Dmnh(2)n (kna) = 0 (2.58)

Cmnh(1)n (knb)+Dmnh(2)n (knb) = 0 (2.59)

These equations will be solved simultaneously for the eigen values. For non-zero solution, the
determinant of equations (2.58) and (2.59) must be equal to zero which yields a transcendental
equation for kn like as,

h(1)n (kna)h(2)n (knb)−h(1)n (knb)h(2)n (knb) = 0 (2.60)

The modal fields can now be obtained using value of Cmn from (2.58) or (2.59) and using in
equations (2.52-2.57). The following expressions for electromagnetic field corresponding to
nth modes are given as,

Hmn
r =

∞

∑
n=0

n

∑
m=−n

[
Cmn

n(n+1)
knr2 Xn(knr)Ymn(θ ,φ)

]
(2.61)
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Hmn
θ =

∞

∑
n=0

n

∑
m=−n

[
Cmn

X
′
n(knr)

r
∂

∂θ
Ymn(θ ,φ)

]
(2.62)

Hmn
φ =

∞

∑
n=0

n

∑
m=−n

[ im
r sinθ

CmnX
′
n(knr)Ymn(θ ,φ)

]
(2.63)

Emn
r = 0 (2.64)

Emn
θ =

∞

∑
n=0

n

∑
m=−n

[−imcεo

r sinθ
CmnXn(knr)Ymn(θ ,φ)

]
(2.65)

Emn
φ =

∞

∑
n=0

n

∑
m=−n

[−icεo

r
CmnXn(knr)

∂

∂θ
Ymn(θ ,φ)

]
(2.66)

The constant Cmn is the modal amplitude of fields in all TE modes expressions and is a free
parameter. The field as function of radial distance can be represented by,

Xn(knr) =
h(1)n (knr)h(2)n (kna)−h(2)n (knr)h(1)n (kna)

h(2)n (kna)
(2.67)

Xn(knr) is the combination of spherical hankel function of 1st and 2nd kinds which contain
product of propagation constant and radial distance in its arguments. The X

′
n(knr) is the

derivative of Xn(knr) w-r-t knr.

2.5 Resonant Frequencies

The resonant frequencies of Earth ionosphere cavity depend upon the size of this cavity.
There are two approximate techniques to find the model frequencies in this cavity.

In first approximate technique, cavity is considered extremely large and has very lossy
boundaries. Such that r = a+ h, h is height of ionosphere above earth surface and a is
radius of Earth. This case has been studied by several authors like Shumman [6], Wait [9]
and Jakson [23] for ELF communication and called it the Shumman Resonance(SR). They
considered that lightning discharge is the primary natural source of SR. The vertical lightning
channels behave like huge antennas that radiate electromagnetic energy at frequencies below
100 kHz. In SR, lightning signals below 100 Hz are considered which is very weak and the
attenuation is only 0.5 dB/Mm, and hence the electromagnetic waves from an individual
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discharge can be propagated a number of times around the globe before decaying into the
background noise. In SR, the Earth-ionosphere waveguide behaves like a resonator at ELF
frequencies, and amplifies the spectral signals from lightning at the resonance frequencies
due to constructive interference of EM waves propagating around the globe in opposite
directions. The resonance peaks occur when the wavelength of the ELF waves is comparable
with the Earth’s circumference ( 40,000 km), with the direct and antipodal waves resulting
in constructive interference at the SR frequencies. Then the resonant frequencies fn are
determined by the Earth’s radius and the speed of light c as shown,

fn = (
c

2πa
)
√

n(n−1) (2.68)

where as n = 1,2,3,4.... for different modes frequencies. The resonance frequency in equa-
tion (2.68) depend upon the longitudinal dimension of earth, which is the circumference(2πa)
of the Earth. The Schumann made these assumptions and arrived at the expected SR first
mode of 10 Hz. However, the Earth-ionosphere cavity is not a perfect electromagnetic cavity.
The ELF radio waves are partially reflected over a large interval of altitudes. Heavy ions
and ion complexes play a key role in determining the losses due to the finite ionosphere
conductivity, resulting in the system resonating at lower frequencies than would be expected
in an ideal case (7.8 Hz), with observed peaks wider than expected. In addition, there are a
number of horizontal asymmetries of day–night transition, latitudinal changes in the Earth
magnetic field, ground conductivity, etc that complicate the SR frequencies of modal fields.

In second approximate, we assumed the cavity as a thin dielectric atmosphere that is the
only height of ionosphere which is in the transverse dimension of Earth. Such that h = b−a
which is about 100km then the resonant frequencies of this cavity will be in VLF and HF
radio frequency range. Because the maximum radiated energy occurs around 10 kHz, the
attenuation at these frequencies is about 10 dB/Mm. Hence these frequencies can only be
detected at a range of thousands of km from the lightning discharge. This approximate
technique is our area of research. The solution of transcendental equations for real values
of kn give us resonant frequencies of earth ionosphere cavity. By rewriting transcendental
equation (2.41) of TM modes,[

[ah(1)n (kna)]
′
][
[bh(2)n (knb)]

′
]
−
[
[bh(1)n (knb)]

′
][
[ah(2)n (kna)]

′
]
= 0 (2.69)
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The derivatives of hankel function w-r-t to its specific arguments, yield the equation like as,

n2

k2ab

[
h(1)n (kna)h(2)n (knb)−h(1)n (kna)h(2)n (knb)

]
− n

ka

[
h(1)n (kna)h(2)n−1(knb)−h(1)n−1(knb)h(2)n (kna)

]
−

n
kb

[
h(1)n−1(kna)h(2)n (knb)−h(1)n (knb)h(2)n−1(kna)

]
+
[
h(1)n−1(kna)h(2)n−1(knb)−h(1)n−1(knb)h(2)n−1(kna)

]
= 0

(2.70)

In order to find resonant frequencies, for large arguments of the spherical Hankel function,
the following approximate identities [24] are used in above equation,

h(1)n (x)≈− i
x

ei[x−( nπ

2 )] (2.71)

h(2)n (x)≈ i
x

e−i[x−( nπ

2 )] (2.72)

where as x = kna and knb in equations yield the following equations,

h(1)n (kna)≈− i
kna

ei[kna−( nπ

2 )] (2.73)

h(2)n (kna)≈ i
kna

e−i[kna−( nπ

2 )] (2.74)

h(1)n (knb)≈− i
knb

ei[knb−( nπ

2 )] (2.75)

h(2)n (knb)≈ i
knb

e−i[knb−( nπ

2 )] (2.76)

By substituting equations (2.73-2.76) in transcendental equation (2.70) of TM mode , yields
the equation like as,

[
ei[kn(a−b)]− e−i[kn(a−b)]

][ n2

k2
nab

+
n(i+1)

kna
+

n(i+1)
knab

+1
]
= 0 (2.77)

The solution of equation (2.77) gave equation for the propagation constant of TM modes as,

kn =
nπ

b−a
(2.78)

Similarly, the solution of transcendental equation (2.60) for TE modes, yields the same
propagation constant equation as for TM modes. Now using kn = ωn

c and ωn = 2π fn in
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above equation will yields resonant mode frequencies equation. Where as b is the radius of
ionosphere and a is radius of earth (b−a = h = 100km).

fn =
n× c
2h

(2.79)

for c = 3×105km/s and n = 1,2,3,4, the resonant frequencies are 1.5kHz , 3kHz , 4.5kHz
and 6kHz.

△ f = fn+1 − fn =
c

2h
= 1.5kHz (2.80)

Similarly, the wave length for each single propagating mode is obtained from the fn as,

λn =
2h

n× c
(2.81)

△λ = λn+1 −λn =
2h

n(n+1)c
(2.82)

From the above equations (2.79) and (2.81) it is clear that TM and TE modes are propagating
in Earth ionosphere spherical cavity, having specific frequencies and wavelength.

2.6 Summary and Discussions

In this chapter, TM and TE modes of Earth ionosphere spherical cavity are discussed. For
this purpose, electric and magnetic scalar potentials, and method of separation of variables
are used. The resonant frequencies are also investigated for both TM and TE modes using
the approximate large arguments of spherical Hankel function. The atmosphere is assumed
as a dielectric waveguide having the 100km height from the Earth surface to the ionosphere.
In this cavity, the TM and TE modes for VLF and HF radio frequency bands are observed.
Each nth TM and TE has its own model amplitude, wavelength, and the resonant frequency
with which it is propagating in this cavity.



Chapter 3

Resonant Modes Excitation in Earth
Ionosphere Cavity

The steady state electromagnetic excitation of Earth ionosphere cavity by the point source
carrying current is studied. The resulting electromagnetic modes are analytically calculated
using Green’ functions. The homogenous wave equation is not valid after introducing a point
source in this cavity. Therefore, the cavity will split into two source free regions, in order
to utilize the model solution derivatives. The approximate resonant modal frequencies of
respective electromagnetic modes for source free cavity discussed are also assumed in this
cavity as resonant modal frequencies.

3.1 Cavity Description and Fields Formulation

The cavity is an approximate atmospheric waveguide above the Earth surface and below
ionosphere layer having height h=100km. A point source, carrying current J⃗0 is placed at
r = r

′
, θ

′
,φ

′
inside the cavity. To facilitate the calculation of excited fields, the cavity space

is divided into two regions. Region I is space below the location of point source and above
the Earth surface for a < r < r

′
and the resulting electric field is denoted by E⃗mn[I]

(r,θ ,φ) while

the corresponding magnetic field is denoted by H⃗mn[I]
(r,θ ,φ). Region II is space above the point

source and beneath ionosphere layer that is for r
′
< r < b and in this region electric field

is denoted by E⃗mn[II]
(r,θ ,φ) while the associated magnetic field is denoted by H⃗mn[II]

(r,θ ,φ). The modal
fields derived for homogenous Earth ionosphere cavity discussed in the previous chapter are
assumed for both regions I and region II.
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Figure 3.1 Geometry of concentric spherical cavity containing current source

3.2 Electric or TM modes

The field expressions for TM modes, derived in Chapter 2 are used to calculate the
TM modes excitation by source in this cavity. The following expressions for the fields
corresponding to nth propagating TM modes are assumed for the homogeneous region I of
the cavity. The resulting fields assumed as Green Functions for region I can be written as,

Emn[I]
r =

∞

∑
n=0

n

∑
m=−n

[
A[I]

mn
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)
]

(3.1)

Emn[I]
θ

=
∞

∑
n=0

n

∑
m=−n

[
A[I]

mn
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

]
(3.2)

Emn[I]
φ

=
∞

∑
n=0

n

∑
m=−n

[ im
r sinθ

[A[I]
mn[W

′
n(knr)][I]Ymn(θ ,φ)

]
(3.3)

Hmn[I]
r = 0 (3.4)
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Hmn[I]
θ

=
∞

∑
n=0

n

∑
m=−n

[−imcεo

r sinθ
A[I]

mn[W n(knr)][I]Ymn(θ ,φ)
]

(3.5)

Hmn[I]
φ

=
∞

∑
n=0

n

∑
m=−n

[−icεo

r
A[I]

mn[W n(knr)][I]
∂

∂θ
Ymn(θ ,φ)

]
(3.6)

where as A[I]
mn is the modal amplitude of respective fields in region I. The term [W n(knr)][I]

represent field as function of radial distances for region I which is the combination of
spherical hankel function of 1st and 2nd kinds and [W

′
n(knr)][I] is the derivative of [W n(knr)][I]

w-r-t knr. The field as function of radial distances is like as,

[W n(knr)][I] =

[
h(1)n (knr)

][
[ah(2)n (kna)]

′
]
−
[
h(2)n (knr)

][
[ah(1)n (kna)]

′
]

[
[ah(2)n (kna)]′

] (3.7)

The following expressions for the field corresponding to nth TM modes are used for
homogeneous region II of the excited cavity.

Emn[II]
r =

∞

∑
n=0

n

∑
m=−n

[
A[II]

mn
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)
]

(3.8)

Emn[II]
θ

=
∞

∑
n=0

n

∑
m=−n

[
A[II]

mn
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

]
(3.9)

Emn[II]
φ

=
∞

∑
n=0

n

∑
m=−n

[ im
r sinθ

A[II]
mn [W

′
n(knr)][II]Ymn(θ ,φ)

]
(3.10)

Hmn[II]
r = 0 (3.11)

Hmn[II]
θ

=
∞

∑
n=0

n

∑
m=−n

[
−imcεo

r sinθ
A[II]

mn [W n(knr)][II]Ymn(θ ,φ)] (3.12)

Hmn[II]
φ

=
∞

∑
n=0

n

∑
m=−n

[−icεo

r
A[II]

mn [W n(knr)][II] ∂

∂θ
Ymn(θ ,φ)

]
(3.13)

where as A[II]
mn is the modal amplitude representation for corresponding fields in region II. The

term [W n(knr)][II] has contribution due to radial field as function of radial distance for region
II which is the combination of spherical hankel function of 1st and 2nd kinds and [W

′
n(knr)][II]

is the derivative of [W n(knr)][II] w-r-t knr. The field as function of radial distances for region



3.2 Electric or TM modes 19

II can be written as,

[W n(knr)][II] =

[
h(1)n (knr)

][
[ah(2)n (knb)]

′
]
−
[
h(2)n (knr)

][
[ah(1)n (kna)]

′
]

[
[ah(2)n (knb)]′

] (3.14)

The utilized modal fields already satisfy the boundary conditions at interface of Earth
(r = a) and at the interface of ionosphere layer (r = b). At interface between region I and II
at (r = r

′
), the tangential electric fields are continuous while tangential magnetic fields are

discontinuous by the amount of current placed on that interface. These can be expressed as,

E⃗mn[II]
(r,θ ,φ)− E⃗mn[I]

(r,θ ,φ) = 0 (3.15)

H⃗mn[II]
(r,θ ,φ)− H⃗mn[I]

(r,θ ,φ) = J⃗oδ (⃗r− r⃗
′
) (3.16)

In spherical coordinates system we used the delta function, as expressed by [25]. The most
general representation of delta function will be used as given,

δ (⃗r− r⃗
′
) =



1
r2 δ (r− r

′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
)

1
2r2 δ (r− r

′
)δ (φ −φ

′
) for no θ dependence

1
2πr2 δ (r− r

′
)δ (cosθ − cosθ

′
) for no φ dependence

1
4πr2 δ (r− r

′
) for neither θ nor φ dependence

(3.17)
The delta function which represents the current distribution in all directions from the above
equations are like as,

δ (⃗r− r⃗
′
) = δ (r− r

′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
) (3.18)

The delta function can be converted in to its series of discrete scalar deltas and summation of
the scalar delta can be represented using [26] as shown below,

δ (r− r
′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)] (3.19)

The current J⃗o is vector and it has radial, θ and φ components in spherical coordinate
system. This current source excites the cavity due to its current in three different dimensions.
The placement of current in all direction simultaneously and calculating the excited fields
collectively is quite complex analytical process. That is why, the placement of current will
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be divide into three different direction distinctly. The current J⃗o is written in its components
form as,

J⃗o = Jorêr + Joθ êθ + Joφ êφ (3.20)

The current placing position in each direction have electromagnetic field components in all
directions. The current J⃗o can be assumed in the cavity in three different directions that is r,
θ and φ which can excite the TM modes. The fields formulation for TM modes have three
different cases.

3.2.1 Case I
(

Jor ̸= 0 , Joθ = 0, Joφ = 0
)

The current source is placed only in radial direction then the resulting electric and magnetic
fields have components in radial, θ and φ directions. Electric field can be resolved into its
components form in region I are given as,

E⃗mn[I]r
(r,θ ,φ) = Emn[I]r

r êr +Emn[I]r
θ

êθ +Emn[I]r
φ

êφ (3.21)

By substituting equations (3.1-3.3) in (3.21), the components of electric field excited by
radial current source in region I may be written as,

E⃗mn[I]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[I]r

mn

{
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)

}
êr+

A[I]θ
mn

{
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +A[I]φ

mn

{
im

r sinθ
[W

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.22)

The magnetic field can be decomposed in components form for region I is expressed as,

H⃗mn[I]r
(r,θ ,φ) = Hmn[I]r

r êr +Hmn[I]r
θ

êθ +Hmn[I]r
φ

êφ (3.23)

The magnetic field and its components excited by current source can be obtained by using
equations (3.4-3.6) in equation (3.23),

H⃗mn[I]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[I]θ

mn

{
−imcεo

r sinθ
[W n(knr)][I]Ymn(θ ,φ)

}
êθ

+A[I]φ
mn

{
−icεo

r
[W n(knr)][I]

∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.24)
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where as A[I]r
mn is model amplitude of radial component of electric and magnetic field, A[I]θ

mn and
A[I]φ

mn is the possible amplitude of tangential components of both the fields. The superscript
r at the left side with electric and magnetic field equations (3.21-3.24) is due to the radial
directed current while the unit vectors represent the direction of associated field components.

Electric field can be resolved into its components due source current for region II can be
written as,

E⃗mn[II]r
(r,θ ,φ) = Emn[II]r

r êr +Emn[II]r
θ

êθ +Emn[II]r
φ

êφ (3.25)

The components of electric field excited due radial current in region II is obtained by
substituting equations (3.8-3.10) in (3.25) like as,

E⃗mn[II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[II]r

mn

{
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)

}
êr+

A[II]θ
mn

{
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +A[II]φ

mn

{
im

r sinθ
[W

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.26)

The components magnetic field excited by the radial current are like as,

H⃗mn[II]r
(r,θ ,φ) = Hmn[II]r

r êr +Hmn[II]r
θ

êθ +Hmn[II]r
φ

êφ (3.27)

The radial placement of current source yields the magnetic field in components form for
region II, by using equations (3.11-3.12) in equation (3.27),

H⃗mn[II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[II]θ

mn

{
−imcεo

r sinθ
[W n(knr)][II]Ymn(θ ,φ)

}
êθ

+A[II]φ
mn

{
−icεo

r
[W n(knr)][II] ∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.28)

where as A[II]r
mn is model amplitude of radial component of electric and magnetic field, A[II]θ

mn

and A[II]φ
mn is the possible amplitude of θ and φ components of electric and magnetic fields.

The superscript r at the left side with electric and magnetic field equations (3.25-3.28) is due
to the radial directed current while the unit vectors represent the direction of associated field
components due to excitation of radial current.

In order to calculate the total electric and magnetic field expressions for TM mode ex-
citation in this cavity, all unknown amplitude associated with the electric and magnetic
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field components are necessary. These unknown coefficients can be obtained by imposing
boundary conditions. The boundary conditions are,

n̂×
(
E⃗mn[II]
(r,θ ,φ)− E⃗mn[I]

(r,θ ,φ)

)
= 0 (3.29)

n̂×
(
H⃗mn[II]
(r,θ ,φ)− H⃗mn[I]

(r,θ ,φ)

)
=

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)]Jorêr (3.30)

By solving the equations (3.29) and (3.30) simultaneously and using method of comparing
coefficients, unknown modal amplitudes are obtained like as,

A[I]r
mn = A[II]r

mn = A[I]θ
mn = A[II]θ

mn = A[I]φ
mn = A[II]φ

mn = 0 (3.31)

Now putting these values in equation (3.22) and (3.24), expressions for electric and magnetic
fields for TM modes are,

E⃗mn[I+II]r
(r,θ ,φ) = 0 (3.32)

H⃗mn[I+II]r
(r,θ ,φ) = 0 (3.33)

It is observed that excited fields for TM modes vanishes in this cavity which conclude that,
due to radial current the field components modal amplitudes become zero. The total electric
and magnetic field evanescent for TM mode due excitation of radial current source.

3.2.2 Case II
(

Jor = 0 , Joθ ̸= 0, Joφ = 0
)

In this case, the TM modes are obtained from the excitation of θ directed current Joθ .
The excitation current is placed in θ -direction which produce the electric and magnetic field
components in radial, θ and φ directions. Electric field in its components form for region I
are,

E⃗mn[I]θ
(r,θ ,φ) = Emn[I]θ

r êr +Emn[I]θ
θ

êθ +Emn[I]θ
φ

êφ (3.34)

By using equations (3.1-3.3) in (3.34) electric field components due θ -directed excitation of
current in region I is obtained like as,

E⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[I]r

mn

{
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)

}
êr+

A[I]θ
mn

{
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +A[I]φ

mn

{
im

r sinθ
[W

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.35)
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Similarly magnetic field can be split into its components form due to source current for
region I can be written as,

H⃗mn[I]θ
(r,θ ,φ) = Hmn[I]θ

r êr +Hmn[I]θ
θ

êθ +Hmn[I]θ
φ

êφ (3.36)

Using equations (3.4-3.6) in equation (3.36) the magnetic field and its excited components
due to source are,

H⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[I]θ

mn

{
−imcεo

r sinθ
[W n(knr)][I]Ymn(θ ,φ)

}
êθ

+A[I]φ
mn

{
−icεo

r
[W n(knr)][I]

∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.37)

where as A[I]r
mn is unknown coefficient which can be the model amplitude of radial component

of electric and magnetic field, A[I]θ
mn and A[I]φ

mn coefficients are the possible amplitude of
tangential components of both the fields. The superscript θ at the left side in the equations of
electric and magnetic field (3.34-3.37) is due to the θ directed current while the unit vectors
represent the direction of corresponding excited field components.

Similarly, in region II, the electric field can be split into its components form is written as,

E⃗mn[II]θ
(r,θ ,φ) = Emn[II]θ

r êr +Emn[II]θ
θ

êθ +Emn[II]θ
φ

êφ (3.38)

By putting equations (3.8-3.10) in (3.38), fields components are obtained due to excited
θ -directed current in region II. The field components are,

E⃗mn[II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[II]r

mn

{
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)

}
êr+

A[II]θ
mn

{
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +A[II]φ

mn

{
im

r sinθ
[W

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.39)

The magnetic field can be split into its components form due excitation of θ -directed source
current in region II, can be represented as,

H⃗mn[II]θ
(r,θ ,φ) = Hmn[II]θ

r êr +Hmn[II]θ
θ

êθ +Hmn[II]θ
φ

êφ (3.40)
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Using equations (3.11-3.12) in equation (3.40) the magnetic field in its components form due
to source current for region II are,

H⃗mn[II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[II]θ

mn

{
−imcεo

r sinθ
[W n(knr)][II]Ymn(θ ,φ)

}
êθ

+A[II]φ
mn

{
−icεo

r
[W n(knr)][II] ∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.41)

where as A[II]r
mn , A[II]φ

mn , A[II]θ
mn are unknown coefficient which represent the model amplitude of

radial, θ , φ components of electric and magnetic field. The superscript θ at the left side in
the equations of electric and magnetic field (3.38-3.41) is due to the θ directed current while
the unit vectors represent the direction of corresponding excited field components.

The unknown coefficients associated with the components of electric and magnetic field
for both regions can be find out using the boundary conditions at the interface between region
I and II. The boundary conditions are,

n̂×
(
E⃗mn[II]θ
(r,θ ,φ) − E⃗mn[I]θ

(r,θ ,φ)

)
= 0 (3.42)

n̂×
(
H⃗mn[II]θ
(r,θ ,φ) − H⃗mn[I]θ

(r,θ ,φ)

)
=

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)]Joθ êθ (3.43)

By putting the equations (3.35), (3.39), (3.37) and (3.41) in equation (3.42) and (3.43), two
equations are derived. By solving the obtained two equations linearly and comparing the
coefficients on both sides, the unknown modal amplitudes are obtained. The modal amplitude
can be written as,

A[I]r
mn = A[II]r

mn = 0 (3.44)

A[I]θ
mn =

−r sinθein(r−r
′
)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][II]

2πimcεoTn(knr)
Joθ (3.45)

A[II]θ
mn =

−r sinθein(r−r
′
)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][I]

2πimcεoTn(knr)
Joθ (3.46)

A[I]φ
mn = A[II]φ

mn = 0 (3.47)
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where as Tn(knr) is field as a function of radial distances for region I and region II. This can
be written as,

Tn(knr) = [W
′
n(knr)][I][Wn(knr)][II]− [W

′
n(knr)][II][Wn(knr)][I] (3.48)

By putting the coefficient values in equations (3.37), (3.39), (3.41) and (3.42), equations for
electric and magnetic field are obtained for region I and region II. In order to get the total
electric and magnetic fields, the electric fields of both regions are added and similarly the
magnetic fields of both regions are added. The total electric and magnetic field expression
for T Mθ

mn become as,

E⃗mn[I+II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[sinθein(r−r
′
)Y ∗

mn(θ
′
,φ

′
)

iπmcεoTn(knr)
∂

∂θ
Ymn(θ ,φ)[W

′
n(knr)][II][W

′
n(knr)][I]

]
Joθ êθ

(3.49)

H⃗mn[I+II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
− ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)
]
Joθ êθ (3.50)

where as E⃗mn[I+II]θ
(r,θ ,φ) represent the total electric field while H⃗mn[I+II]θ

(r,θ ,φ) show the total magnetic
field for T Mθ

mn. The Joθ êθ in equation of electric and magnetic fields show that the tangential
θ− directed placement of current source excite modes in this cavity.

3.2.3 Case III
(

Jor = 0 , Joθ = 0, Joφ ̸= 0
)

In this case, the expressions for TM modes are obtained from the excitation of only φ -
directed current source. When the current source is placed only in φ direction then electric
and magnetic field have components in radial, θ and φ directions. Electric field in its
components form in region I can be written as,

E⃗mn[I]φ
(r,θ ,φ) = Emn[I]φ

r êr +Emn[I]φ
θ

êθ +Emn[I]φ
φ

êφ (3.51)

The substitution of equations (3.1-3.3) in (3.51) resulted the field excitation by source current
in region I as,

E⃗mn[I]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[I]r

mn

{
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)

}
êr+

A[I]θ
mn

{
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +A[I]φ

mn

{
im

r sinθ
[W

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.52)
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Similarly, magnetic field can be split into components from by the excitation of source
current in region I. The magnetic field in its components from can be written as,

H⃗mn[I]φ
(r,θ ,φ) = Hmn[I]φ

r êr +Hmn[I]φ
θ

êθ +Hmn[I]φ
φ

êφ (3.53)

The resulting magnetic field expression in its components form due to source can be written
by using equations (3.4-3.6) in equation (3.53) like as,

H⃗mn[I]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[I]θ

mn

{
−imcεo

r sinθ
[W n(knr)][I]Ymn(θ ,φ)

}
êθ

+A[I]φ
mn

{
−icεo

r
[W n(knr)][I]

∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.54)

where as A[I]r
mn , A[I]φ

mn , A[I]θ
mn are unknown coefficient which represent the model amplitude of

radial, θ , φ components of electric and magnetic field. The superscript φ at the left side in
the equations of electric and magnetic field (3.51-3.54) is due to the φ directed current while
the unit vectors represent the direction of corresponding excited field components.

In region II, electric field can be expanded into its components form due to φ -directed
source current, can be written as,

E⃗mn[II]φ
(r,θ ,φ) = Emn[II]φ

r êr +Emn[II]φ
θ

êθ +Emn[II]φ
φ

êφ (3.55)

The resulted fields obtained by excitation of φ -directed current in region II is obtained by
substituting equations (3.8-3.10) in (3.55). The electric field expression can be written as,

E⃗mn[II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[II]r

mn

{
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)

}
êr+

A[II]θ
mn

{
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +A[II]φ

mn

{
im

r sinθ
[W

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.56)

Similarly resulted magnetic field due to source current in components form for region II is
shown in (3.57) like as,

H⃗mn[II]φ
(r,θ ,φ) = Hmn[II]φ

r êr +Hmn[II]φ
θ

êθ +Hmn[II]φ
φ

êφ (3.57)
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Using equations (3.11-3.12) in equation (3.57) the magnetic field in its components form due
to source are obtained as,

H⃗mn[II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
A[II]θ

mn

{
−imcεo

r sinθ
[W n(knr)][II]Ymn(θ ,φ)

}
êθ

+A[II]φ
mn

{
−icεo

r
[W n(knr)][II] ∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.58)

where as A[II]r
mn , A[II]φ

mn , A[II]θ
mn are unknown model amplitude of radial, θ , φ components of

electric and magnetic field. The boundary conditions used to find the unknown amplitude
are,

n̂×
(
E⃗mn[II]φ
(r,θ ,φ) − E⃗mn[I]φ

(r,θ ,φ)

)
= 0 (3.59)

n̂×
(
H⃗mn[II]φ
(r,θ ,φ) − H⃗mn[I]φ

(r,θ ,φ)

)
=

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)]Joφ êφ (3.60)

The unknown modal amplitudes obtained are like as,

A[I]r
mn = A[II]r

mn = 0 (3.61)

A[I]θ
mn = A[II]θ

mn = 0 (3.62)

A[I]φ
mn =

−rein(r−r
′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][II]

2πicεoTn(knr) ∂

∂θ
Ymn(θ ,φ)

Joφ (3.63)

A[II]φ
mn =

−rein(r−r
′
)Ymn(θ

′
,φ

′
)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][I]

2πicεoTn(knr) ∂

∂θ
Ymn(θ ,φ)

Joφ (3.64)

where as,
Tn(knr) = [W

′
n(knr)][I][Wn(knr)][II]− [W

′
n(knr)][II][Wn(knr)][I] (3.65)

The substituting of modal amplitudes in equations (3.52), (3.54), (3.56) and (3.58) yield
electric and magnetic field expression in region I and region II. The summation of electric
field expressions for both regions gave the total electric field expression for T Eφ

mn mode.
Similarly, expression of total magnetic field is obtained by the addition of magnetic field
expression of region I and region II. The total electric and magnetic field expression for
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T Mφ
mn written as,

E⃗mn[I+II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[−mein(r−r
′
)[Ymn(θ ,φ)]

2Y ∗
mn(θ

′
,φ

′
)[W

′
n(knr)][II][W

′
n(knr)][I]

πcεo
∂

∂θ
Ymn(θ ,φ)Tn(knr)

]
Joφ êφ

(3.66)

H⃗mn[I+II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[ein(r−r
′
)[Ymn(θ ,φ)]Y ∗

mn(θ
′
,φ

′
)

2π

]
Joφ êφ (3.67)

where as E⃗mn[I+II]φ
(r,θ ,φ) is total electric field and H⃗mn[I+II]φ

(r,θ ,φ) is total magnetic field. The total
electric and magnetic field expression gave observation about TM modal fields expressions,
that TM modes will be excite due to the φ -directed current of source.

3.3 Magnetic or TE modes

The electric and magnetic field expressions for TE modes in unexcited cavity are assumed
to calculate the field expressions for TE modes in this excited cavity. The region of excited
cavity is divided into two homogenous regions that is why the expressions of unexcited cavity
are assumed for each region in excited cavity. The calculated electric field expressions for
nth TE modes in region I can written as,

Hmn[I]
r =

∞

∑
n=0

n

∑
m=−n

[C[I]
mn

n(n+1)
knr2 [Xn(knr)][I]Ymn(θ ,φ)] (3.68)

Hmn[I]
θ

=
∞

∑
n=0

n

∑
m=−n

[C[I]
mn

[X
′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)] (3.69)

Hmn[I]
φ

=
∞

∑
n=0

n

∑
m=−n

[
im

r sinθ
C[I]

mn[X
′
n(knr)][I]Ymn(θ ,φ)] (3.70)

Emn[I]
r = 0 (3.71)

Emn[I]
θ

=
∞

∑
n=0

n

∑
m=−n

[
−imcεo

r sinθ
C[I]

mn[Xn(knr)][I]Ymn(θ ,φ)] (3.72)

Emn[I]
φ

=
∞

∑
n=0

n

∑
m=−n

[
−icεo

r
C[I]

mn[Xn(knr)][I]
∂

∂θ
Ymn(θ ,φ)] (3.73)
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where as C[I]
mn is the modal amplitude of respective fields in region I. The term [Xn(knr)][I]

represent field as function of radial distances for region I which is the combination of
spherical hankel function of 1st and 2nd kinds and [X

′
n(knr)][I] is the derivative of [Xn(knr)][I]

w-r-t knr. The field as function of radial distance for region I can be represented by equation,

[Xn(knr)][I] =
h(1)n (knr)h(2)n (kna)−h(2)n (kna)h(1)n (knr)

h(2)n (kna)
(3.74)

Similarly, electric and magnetic field expressions corresponding to nth TE modes in homoge-
nous region II of excited can be assumed as,

Hmn[II]
r =

∞

∑
n=0

n

∑
m=−n

[C[II]
mn

n(n+1)
knr2 [Xn(knr)][II]Ymn(θ ,φ)] (3.75)

Hmn[II]
θ

=
∞

∑
n=0

n

∑
m=−n

[C[II]
mn

[X
′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)] (3.76)

Hmn[II]
φ

=
∞

∑
n=0

n

∑
m=−n

[
im

r sinθ
C[II]

mn [X
′
n(knr)][II]Ymn(θ ,φ)] (3.77)

Emn[II]
r = 0 (3.78)

Emn[II]
θ

=
∞

∑
n=0

n

∑
m=−n

[
−imcεo

r sinθ
C[II]

mn [Xn(knr)][II]Ymn(θ ,φ)] (3.79)

Emn[II]
φ

=
∞

∑
n=0

n

∑
m=−n

[
−icεo

r
C[II]

mn [Xn(knr)][II] ∂

∂θ
Ymn(θ ,φ)] (3.80)

where as C[II]
mn is the modal amplitude of respective fields in region I. The term [Xn(knr)][II]

represent field as function of radial distances for region I which is the combination of spherical
hankel function of 1st and 2nd kinds and [X

′
n(knr)][II] is the derivative of [Xn(knr)][II] w-r-t

knr. The field as function of radial distance for region II can be represented as,

[Xn(knr)][II] =
h(1)n (knr)h(2)n (knb)−h(2)n (knr)h(1)n (knb)

h(2)n (knb)
(3.81)

The boundary conditions are already satisfied by the modal fields at the interface of
Earth(r = a) and at interface of ionosphere(r = b). The interface(r = r

′
) between region I and

region II, tangential electric field are continuous while the magnetic field are discontinuous
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by the amount of current placed on that interface. These can be expressed as,

E⃗mn[II]
(r,θ ,φ)− E⃗mn[I]

(r,θ ,φ) = 0 (3.82)

H⃗mn[II]
(r,θ ,φ)− H⃗mn[I]

(r,θ ,φ) = J⃗oδ (⃗r− r⃗
′
) (3.83)

where as J⃗o is a source current and is a vector which create the field components in all
directions. The vectorial representation of delta function are like as,

δ (⃗r− r⃗
′
) = δ (r− r

′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
) (3.84)

while its summation form can be written as,

δ (r− r
′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)] (3.85)

3.3.1 Case I
(

Jor ̸= 0 , Joθ = 0, Joφ = 0
)

In case I, to obtained the modes expressions for TE modes, the current source is assumed
only in radial direction then the magnetic and electric fields have components in radial, θ

and φ direction. The magnetic field in components form for region I are,

H⃗mn[I]r
(r,θ ,φ) = Hmn[I]r

r êr +Hmn[I]r
θ

êθ +Hmn[I]r
φ

êφ (3.86)

By substituting equations (3.68-3.70) in (3.86), magnetic fields components due radial current
in region I is obtained as,

H⃗mn[I]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][I]Ymn(θ ,φ)

}
êr+

C[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +C[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.87)

The electric field can be split into its components form due to radial directed source current
in region I is expressed as,

E⃗mn[I]r
(r,θ ,φ) = Emn[I]r

r êr +Emn[I]r
θ

êθ +Emn[I]r
φ

êφ (3.88)
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Using equations (3.71-3.73) in equation (3.88) the electric field has components due to source
are like as,

E⃗mn[I]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[I]θ

mn

{
−imcεo

r sinθ
[Xn(knr)][I]Ymn(θ ,φ)

}
êθ

+C[I]φ
mn

{
−icεo

r
[Xn(knr)][I]

∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.89)

where as C[I]r
mn , C[I]φ

mn , C[I]θ
mn are unknown coefficient which represent the model amplitude of

radial, θ , φ components of electric and magnetic field. The superscript r at the left side
in the equations of electric and magnetic field (3.87-3.89) is due to the excitation of radial
directed current while the unit vectors represent the direction of corresponding excited field
components. Similarly, the magnetic field can be resolved into its components due to source
current for region II can be written as,

H⃗mn[II]r
(r,θ ,φ) = Hmn[II]r

r êr +Hmn[II]r
θ

êθ +Hmn[II]r
φ

êφ (3.90)

By substituting equations (3.75-3.77) in (3.90) magnetic field due to radial directed current
in region II is obtained as,

H⃗mn[II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[II]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}
êr+

C[II]θ
mn

{
[X

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +C[II]φ

mn

{
im

r sinθ
[X

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.91)

Electric field in component for region II can be written as,

E⃗mn[II]r
(r,θ ,φ) = Emn[II]r

r êr +Emn[II]r
θ

êθ +Emn[II]r
φ

êφ (3.92)

By substituting equations (3.78-3.80) in equation (3.92) the electric field in components form
due to source current can be written as,

E⃗mn[II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[II]θ

mn

{
−imcεo

r sinθ
[Xn(knr)][II]Ymn(θ ,φ)

}
êθ

+C[II]φ
mn

{
−icεo

r
[Xn(knr)][II] ∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.93)
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where as C[II]r
mn , C[II]φ

mn , C[II]θ
mn are the model amplitude of radial, θ , φ components of electric

and magnetic field in region II. The superscript r at the left side in the equations of electric
and magnetic field (3.91-3.93) is due to the radial source current.

The expressions for total electric and magnetic field for TE modes in this excited cavity
need the description of all known modal amplitudes of field components. These unknown
can be obtained by imposing the boundary conditions. The boundary conditions are,

n⃗×
(
E⃗mn[II]
(r,θ ,φ)− E⃗mn[I]

(r,θ ,φ)

)
= 0 (3.94)

n⃗×
(
Ĥmn[II]
(r,θ ,φ)− H⃗mn[I]

(r,θ ,φ)

)
=

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)]Jorêr (3.95)

Using this boundary condition unknown amplitude vanishes as,

C[I]r
mn =C[II]r

mn =C[I]θ
mn =C[II]θ

mn =C[I]φ
mn =C[II]φ

mn = 0 (3.96)

By substituting these modal amplitude values in equation (3.92) and (3.93). The expressions
of total electric and magnetic field for TE modes are obtained as,

E⃗mn[I+II]r
(r,θ ,φ) = 0 (3.97)

H⃗mn[I+II]r
(r,θ ,φ) = 0 (3.98)

where as E⃗mn[I+II]r
(r,θ ,φ) is the total electric field expression while H⃗mn[I+II]r

(r,θ ,φ) is total magnetic field
expression. It is observed from equations (3.97) and (3.98) that TE modes in this cavity are
not excited due to radial current. The total electric and magnetic field vanishes due to radial
directed current.

3.3.2 Case II
(

Jor = 0 , Joθ ̸= 0, Joφ = 0
)

In this case, the cavity is excited by current source is only in θ -direction and resulted
electric and magnetic field have components in radial, θ and φ direction. Magnetic field in
its components form in region I due to excitation of source current can be written as,

H⃗mn[I]θ
(r,θ ,φ) = Hmn[I]θ

r êr +Hmn[I]θ
θ

êθ +Hmn[I]θ
φ

êφ (3.99)
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By putting equations (3.68-3.70) in (3.99) magnetic field expression for region I. This
magnetic field in its components form due to current source in region I can be written as,

H⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][I]Ymn(θ ,φ)

}
êr+

C[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +C[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.100)

Similarly, for electric field can be decomposed in components form for region I due source
current in θ -direction are,

E⃗mn[I]θ
(r,θ ,φ) = Emn[I]θ

r êr +Emn[I]θ
θ

êθ +Emn[I]θ
φ

êφ (3.101)

The substitution of equations (3.71-3.73) in equation (3.101) yield the electric field in the
form of its component due to source current in region I like as,

E⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[I]θ

mn

{
−imcεo

r sinθ
[Xn(knr)][I]Ymn(θ ,φ)

}
êθ

+C[I]φ
mn

{
−icεo

r
[Xn(knr)][I]

∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.102)

where as C[I]r
mn , C[I]φ

mn , C[I]θ
mn are unknown coefficients which represent the model amplitudes of

radial, θ , φ components of electric and magnetic field. Magnetic Field for region II can be
decomposed into its components form like as,

H⃗mn[II]θ
(r,θ ,φ) = Hmn[II]θ

r êr +Hmn[II]θ
θ

êθ +Hmn[II]θ
φ

êφ (3.103)

The substitution of equations (3.75-3.77) in (3.103) yields magnetic field in components
form due to θ -directed source current in region II. The magnetic field in components form
can be written as,

H⃗mn[II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[II]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}
êr+

C[II]θ
mn

{
[X

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +C[II]φ

mn

{
im

r sinθ
[X

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.104)
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Similarly, the electric field in its components form for region II are,

E⃗mn[II]θ
(r,θ ,φ) = Emn[II]θ

r êr +Emn[II]θ
θ

êθ +Emn[II]θ
φ

êφ (3.105)

Using equations (3.78-3.80) in equation (3.105) the electric field and its excited components
in region II due to source are,

E⃗mn[II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[II]θ

mn

{
−imcεo

r sinθ
[Xn(knr)][II]Ymn(θ ,φ)

}
êθ

+C[II]φ
mn

{
−icεo

r
[Xn(knr)][II] ∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.106)

where as C[II]r
mn , C[II]φ

mn , C[II]θ
mn are unknown coefficient which represent the model amplitude of

radial, θ , φ components of electric and magnetic field.

The boundary conditions at the interface between both regions, determine the all unknown
modal amplitude like as,

n⃗×
(
Êmn[II]θ
(r,θ ,φ) − E⃗mn[I]θ

(r,θ ,φ)

)
= 0 (3.107)

n⃗×
(
H⃗mn[II]θ
(r,θ ,φ) − H⃗mn[I]θ

(r,θ ,φ)

)
=

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)]Joθ êθ (3.108)

The substitution of equation (3.100),(3.102),(3.104) and (3.106) in equation of given boundary
conditions yield the other two equations. The unknown modal amplitudes are obtained from
derived equations by method of comparing coefficient. The obtained modal amplitudes are,

C[I]r
mn =C[II]r

mn = 0 (3.109)

C[I]θ
mn =

rein(r−r
′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[X

′
n(knr)][II]

2π
∂

∂θ
Ymn(θ ,φ)Tn(knr)

Joθ (3.110)

C[II]θ
mn =

rein(r−r
′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[X

′
n(knr)][I]

2π
∂

∂θ
Ymn(θ ,φ)Tn(knr)

Joθ (3.111)

C[I]φ
mn =C[II]φ

mn = 0 (3.112)
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where as Tn(knr) is the field as function of radial distance for both regions and can be written
as,

Tn(knr) = [X
′
n(knr)][I][Xn(knr)][II]− [X

′
n(knr)][II][Xn(knr)][I] (3.113)

By substituting the modal amplitudes in equations equation (3.100), (3.102), (3.104) and
(3.106), expressions of electric and magnetic field are obtained for both the regions. The
electric fields of both region I and region II similarly magnetic fields of both regions are
added to get total electric and magnetic fields in this excited cavity. The field expressions for
TE modes due to excitation of cavity can be written as,

E⃗mn[I+II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[−imcεoein(r−r
′
)[Ymn(θ ,φ)]

2Y ∗
mn(θ

′
,φ

′
)[Xn(knr)][I][Xn(knr)][II]

π sinθTn(knr) ∂

∂θ
Ymn(θ ,φ)

]
Joθ êθ

(3.114)

H⃗mn[I+II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[ein(r−r
′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)

2π

]
Joθ êθ (3.115)

where as E⃗mn[I+II]θ
(r,θ ,φ) is total electric field and H⃗mn[I+II]θ

(r,θ ,φ) is total magnetic field due to excitation
of θ -directed source current Joθ êθ . These are expressions for TE modes in this excited cavity.

3.3.3 Case III
(

Jor = 0 , Joθ = 0, Joφ ̸= 0
)

In case I, the current source is assumed only in φ direction then the resulting magnetic
and electric fields have components in radial, θ and φ direction. The magnetic field in
components form for region I is,

H⃗mn[I]φ
(r,θ ,φ) = Hmn[I]φ

r êr +Hmn[I]φ
θ

êθ +Hmn[I]φ
φ

êφ (3.116)

By substituting equations (3.68-3.70) in (3.116), the magnetic field components form due φ -
directed current in region I is,

H⃗mn[I]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][I]Ymn(θ ,φ)

}
êr+

C[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +C[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.117)

The electric field can be split into components form in region I is,

E⃗mn[I]φ
(r,θ ,φ) = Emn[I]φ

r êr +Emn[I]φ
θ

êθ +Emn[I]φ
φ

êφ (3.118)
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Using equations (3.71-3.73) in equation (3.118) the electric field and its components due to
source are like as,

E⃗mn[I]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[I]θ

mn

{
−imcεo

r sinθ
[Xn(knr)][I]Ymn(θ ,φ)

}
êθ

+C[I]φ
mn

{
−icεo

r
[Xn(knr)][I]

∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.119)

where as C[I]r
mn , C[I]φ

mn , C[I]θ
mn are unknown coefficients which represent the model amplitudes

of radial, θ , φ components of electric and magnetic field. Similarly, magnetic field in
components form for region II can be written as,

H⃗mn[II]φ
(r,θ ,φ) = Hmn[II]φ

r êr +Hmn[II]φ
θ

êθ +Hmn[II]φ
φ

êφ (3.120)

By substituting equations (3.75-3.77) in (3.120), the resulting components of magnetic field
excited by φ -directed current in region II are obtained as,

H⃗mn[II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[II]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}
êr+

C[II]θ
mn

{
[X

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +C[II]φ

mn

{
im

r sinθ
[X

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.121)

The electric field in its components in region II are,

E⃗mn[II]φ
(r,θ ,φ) = Emn[II]φ

r êr +Emn[II]φ
θ

êθ +Emn[II]φ
φ

êφ (3.122)

By using equations (3.78-3.80) in equation (3.122), the electric field in its components form
is obtained due to source current are like as,

E⃗mn[II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
C[II]θ

mn

{
−imcεo

r sinθ
[Xn(knr)][II]Ymn(θ ,φ)

}
êθ

+C[II]φ
mn

{
−icεo

r
[Xn(knr)][II] ∂

∂θ
Ymn(θ ,φ)

}
êφ

]
(3.123)

where as C[I]r
mn , C[I]φ

mn , C[I]θ
mn are unknown the model amplitudes of radial, θ , φ components of

electric and magnetic field. The boundary conditions are used to find the unknown amplitude
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can be obtained. These are written as,

n̂×
(
E⃗mn[II]φ
(r,θ ,φ) − E⃗mn[I]φ

(r,θ ,φ)

)
= 0 (3.124)

n̂×
(
H⃗mn[II]φ
(r,θ ,φ) − H⃗mn[I]φ

(r,θ ,φ)

)
=

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)]Joφ êφ (3.125)

The substitution of equations (3.117), (3.119), (3.121) and (3.123) in above equations yield
the unknown modal amplitudes. These modal amplitudes can be written as,

C[I]r
mn =C[II]r

mn = 0 (3.126)

C[I]θ
mn =C[II]θ

mn = 0 (3.127)

C[I]φ
mn =

r sinθein(r−r
′
)Y ∗

mn(θ
′
,φ

′
)[Xn(knr)][II]

2πimTn(knr)
Joφ (3.128)

C[II]φ
mn =

r sinθein(r−r
′
)Y ∗

mn(θ
′
,φ

′
)[Xn(knr)][I]

2πimTn(knr)
Joφ (3.129)

Where as
Tn(knr) = [X

′
n(knr)][I][Xn(knr)][II]− [X

′
n(knr)][II][Xn(knr)][I] (3.130)

By substituting the modal amplitudes in equations (3.117), (3.119), (3.121) and (3.123),
expressions of electric and magnetic field are obtained for both the regions. The electric fields
of region I and region II similarly magnetic fields of both regions are added respectively,
to get total electric and magnetic fields in this excited cavity. The field expressions for TE
modes due to excitation of cavity can be written as,

E⃗mn[I+II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[−cεoein(r−r
′
)Y ∗

mn(θ
′
,φ

′
)[Xn(knr)][II][Xn(knr)][I]

πTn(knr)
∂

∂θ
Ymn(θ ,φ)

]
Joφ êφ

(3.131)

H⃗mn[I+II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[ein(r−r
′
)[Ymn(θ ,φ)]Y ∗

mn(θ
′
,φ

′
)

2π

]
Joφ êφ (3.132)
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where as E⃗mn[I+II]φ
(r,θ ,φ) represent total electric field for both regions and H⃗mn[I+II]φ

(r,θ ,φ) is total
magnetic field for the expression of TE modes. The current Joφ êφ is source of excitation in
cavity which generate TE modes.

3.4 Transverse Electromagnetic or TEM modes

In the Transverse Electric and Magnetic (TEM) mode, both the electric field and the
magnetic field (which are always perpendicular to one another in free space) are transverse
to the direction of propagation. To calculate the field expressions for TEM modes due to
source current in Earth ionosphere cavity, the magnetic field expressions for TE modes and
electric field expressions for TM modes in unexcited cavity are assumed to calculate the field
expressions for TEM modes. The following expressions for electric field corresponding to
nth TEM modes are assumed for homogeneous region I of cavity.

Emn[I]
r =

∞

∑
n=0

n

∑
m=−n

[
D[I]

mn
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)
]

(3.133)

Emn[I]
θ

=
∞

∑
n=0

n

∑
m=−n

[
D[I]

mn
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

]
(3.134)

Emn[I]
φ

=
∞

∑
n=0

n

∑
m=−n

[ im
r sinθ

[D[I]
mn[W

′
n(knr)][I]Ymn(θ ,φ)

]
(3.135)

The constant D[I]
mn is the modal amplitude of resonant mode in region I and is free parameter.

The [W n(knr)][I] represent the field as a function of radial distance for region I, can be written
as,

[W n(knr)][I] =

[
h(1)n (knr)

][
[ah(2)n (kna)]

′
]
−
[
h(2)n (knr)

][
[ah(1)n (kna)]

′
]

[
[ah(2)n (kna)]′

] (3.136)

Similarly magnetic field expression representation for homogenous region I are,

Hmn[I]
r =

∞

∑
n=0

n

∑
m=−n

[D[I]
mn

n(n+1)
knr2 [Xn(knr)][I]Ymn(θ ,φ)] (3.137)

Hmn[I]
θ

=
∞

∑
n=0

n

∑
m=−n

[D[I]
mn

[X
′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)] (3.138)
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Hmn[I]
φ

=
∞

∑
n=0

n

∑
m=−n

[
im

r sinθ
D[I]

mn[X
′
n(knr)][I]Ymn(θ ,φ)] (3.139)

where as [Xn(knr)][I] is the field as a function radial distance for region I and can be written
as,

[Xn(knr)][I] =
h(1)n (knr)h(2)n (kna)−h(2)n (knr)h(1)n (kna)

h(2)n (kna)
(3.140)

The electric Field expression for Region II are,

Emn[II]
r =

∞

∑
n=0

n

∑
m=−n

[
D[II]

mn
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)
]

(3.141)

Emn[II]
θ

=
∞

∑
n=0

n

∑
m=−n

[
D[II]

mn
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

]
(3.142)

Emn[II]
φ

=
∞

∑
n=0

n

∑
m=−n

[ im
r sinθ

[D[II]
mn [W

′
n(knr)][II]Ymn(θ ,φ)

]
(3.143)

The [W n(knr)][II] show field as a function of radial distance for region II and may written as,

[W n(knr)][II] =

[
h(1)n (knr)

][
[bh(2)n (knb)]

′
]
−
[
h(2)n (knr)

][
[bh(1)n (knb)]

′
]

[
[ah(2)n (kna)]′

] (3.144)

where as [W
′
n(knr)][II] is derivative of [W n(knr)][II] w-r-t argument knr. Magnetic fields

expression for region II can be written as,

Hmn[II]
r =

∞

∑
n=0

n

∑
m=−n

[D[II]
mn

n(n+1)
knr2 [Xn(knr)][II]Ymn(θ ,φ)] (3.145)

Hmn[II]
θ

=
∞

∑
n=0

n

∑
m=−n

[D[II]
mn

[X
′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)] (3.146)

Hmn[II]
φ

=
∞

∑
n=0

n

∑
m=−n

[
im

r sinθ
D[II]

mn [X
′
n(knr)][II]Ymn(θ ,φ)] (3.147)

where as [Xn(knr)][II] represent field as a function of radial distance in region I. This can be
written as,

[Xn(knr)][I] =
h(1)n (knr)h(2)n (knb)−h(2)n (knr)h(1)n (knb)

h(2)n (knb)
(3.148)
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where as [X
′
n(knr)][II] derivative of [Xn(knr)][II] w-r-t knr. The unknown coefficients D[I]

mn

and D[II]
mn are the modal amplitudes of corresponding electric and magnetic field in region I

and region II respectively. These unknown coefficients can be obtained by using the boundary
condition at the interfaces.

The utilized modal fields already satisfy the boundary conditions at interface of Earth
(r = a) and at the interface of ionosphere layer (r = b). At interface between region I and II
at (r = r

′
), the tangential electric fields are continuous while tangential magnetic fields are

discontinuous by the amount of current placed on that interface. These can be expressed as,

E⃗mn[II]
(r,θ ,φ)− E⃗mn[I]

(r,θ ,φ) = 0 (3.149)

H⃗mn[II]
(r,θ ,φ)− H⃗mn[I]

(r,θ ,φ) = J⃗oδ (⃗r− r⃗
′
) (3.150)

The delta function which represent the current distribution in all direction can be written as,

δ (⃗r− r⃗
′
) = δ (r− r

′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
) (3.151)

The scalar delta function in sum form is represented as,

δ (r− r
′
)δ (cosθ − cosθ

′
)δ (φ −φ

′
) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)] (3.152)

The current J⃗o can be written as,

J⃗o = Jorêr + Joθ êθ + Joφ êφ (3.153)

As J⃗o excite the field in three different directions that is why, there are three cases for
observation to investigate modes in this cavity.

3.4.1 Case I
(

Jor ̸= 0 , Joθ = 0, Joφ = 0
)

The current source is placed only in radial direction then the resulting electric and magnetic
fields have components in radial, θ and φ directions. Electric field can be resolved into its
components form in region I are given as,

E⃗mn[I]r
(r,θ ,φ) = Emn[I]r

r êr +Emn[I]r
θ

êθ +Emn[I]r
φ

êφ (3.154)
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By substituting equations (3.133-3.135) in (3.154), the components of electric field excited
by radial current source in region I may be written as,

E⃗mn[I]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)

}
êr+

D[I]θ
mn

{
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[I]φ

mn

{
im

r sinθ
[W

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.155)

The magnetic field can be decomposed in components form for region I is expressed as,

H⃗mn[I]r
(r,θ ,φ) = Hmn[I]r

r êr +Hmn[I]r
θ

êθ +Hmn[I]r
φ

êφ (3.156)

The magnetic field and its components excited by current source can be obtained by using
equations(3.137-3.139) in equation (3.156). The magnetic field in components form can be
written as,

H⃗mn[I]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][I]Ymn(θ ,φ)

}
êr

+D[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.157)

where as D[I]r
mn is model amplitude of radial component of electric and magnetic field, D[I]θ

mn

and D[I]φ
mn is the possible amplitude of tangential components of both the fields. Electric field

can be resolved into its components due source current for region II can be written as,

E⃗mn[II]r
(r,θ ,φ) = Emn[II]r

r êr +Emn[II]r
θ

êθ +Emn[II]r
φ

êφ (3.158)

The components of electric field excited due radial current in region II is obtained by
substituting equations (3.141-3.143) in (3.158) are as,

E⃗mn[II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[II]r

mn

{
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)

}
êr+

D[II]θ
mn

{
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[II]φ

mn

{
im

r sinθ
[W

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.159)
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The components magnetic field excited by the radial current can be written as,

H⃗mn[II]r
(r,θ ,φ) = Hmn[II]r

r êr +Hmn[II]r
θ

êθ +Hmn[II]r
φ

êφ (3.160)

Using equations (3.145-3.147) in equation (3.159) the magnetic field in components form
due to source current can be written as,

H⃗mn[II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[II]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}
êr

+D[II]θ
mn

{
[X

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[II]φ

mn

{
im

r sinθ
[X

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.161)

where as D[II]r
mn is model amplitude of radial component of electric and magnetic field, D[II]θ

mn

and D[II]φ
mn is the possible amplitude of θ and φ components of electric and magnetic fields.

In order to calculate the total electric and magnetic field expressions for TM mode ex-
citation in this cavity, all unknown amplitude associated with the electric and magnetic
field components are necessary. These unknown coefficients can be obtained by imposing
boundary conditions from equations (3.149) and (3.150). The obtained modal amplitudes
are,

D[I]r
mn =

[
knr2ein(r−r

′
)Y ∗

mn(θ
′
,φ

′
)[Wn(knr)][II]

2πn(n+1)[Zn(knr)]

]
Jor (3.162)

D[II]r
mn =

[
knr2ein(r−r

′
)Y ∗

mn(θ
′
,φ

′
)[Wn(knr)][I]

2πn(n+1)[Zn(knr)]

]
Jor (3.163)

D[I]θ
mn = D[II]θ

mn = 0 (3.164)

D[I]φ
mn = D[II]φ

mn = 0 (3.165)

where as [Zn(knr)] is fields as function of radial distance in TEM modes excitation and can
be written as,

[Zn(knr)] = [Wn(knr)][I][Xn(knr)][II]− [Wn(knr)][II][Xn(knr)][I] (3.166)
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As the source of excitation is only in radial direction that why modal amplitudes associated
with the tangential components vanish out in the boundary conditions. Now putting these
values in equation (3.159) and (3.161), the expression for electric and magnetic fields for
TEM modes in this cavity are obtained. These can be written as,

E⃗mn[I+II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r

′
)Y ∗

mn(θ
′
,φ

′
)[Wn(knr)][II][Wn(knr)][I]

π[Zn(knr)]

]
Jorêr (3.167)

H⃗mn[I+II]r
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r

′
)Y ∗

mn(θ
′
,φ

′
)Ymn(θ ,φ)

−2π

]
Jorêr (3.168)

where as E⃗mn[I+II]r
(r,θ ,φ) represent the total electric field while H⃗mn[I+II]r

(r,θ ,φ) show the total magnetic
field for T EMr

mn. The Jorêr in equation of electric and magnetic fields show that the radial
directed placement of current source excite modes in this cavity.

3.4.2 Case II
(

Jor = 0 , Joθ ̸= 0, Joφ = 0
)

In this case, the cavity is excited by current source is only in θ -direction and resulted
electric and magnetic field have components in radial, θ and φ direction. Electric field in
components form for region I can be written as,

E⃗mn[I]θ
(r,θ ,φ) = Emn[I]θ

r êr +Emn[I]θ
θ

êθ +Emn[I]θ
φ

êφ (3.169)

Substituting equations (3.133-3.135) in (3.169), electric field components due to current in
region I is obtained like as,

E⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)

}
êr+

D[I]θ
mn

{
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[I]φ

mn

{
im

r sinθ
[W

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.170)

Similarly, the corresponding magnetic field can be decomposed in components form for
region I due source current in θ -direction are,

H⃗mn[I]θ
(r,θ ,φ) = Hmn[I]θ

r êr +Hmn[I]θ
θ

êθ +Hmn[I]θ
φ

êφ (3.171)
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Using equations (3.145-3.147) in equation (3.171) the magnetic field in components form
due to source in region can be written as,

H⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}

+D[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
+D[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}]
(3.172)

Electric Field for region II can be decomposed into its components form due to source current
which is in θ -direction. Fields for region II can be written as,

E⃗mn][II]θ
(r,θ ,φ) = Emn[II]θ

r êr +Emn[II]θ
θ

êθ +Emn[II]θ
φ

êφ (3.173)

Substituting equations (3.141-3.143) in (3.173) fields excited by θ -directed current in region
II is obtained like as,

E⃗mn[II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[II]r

mn

{
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)

}
êr+

D[II]θ
mn

{
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[II]φ

mn

{
im

r sinθ
[W

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.174)

H⃗mn[II]θ
(r,θ ,φ) = Hmn[II]θ

r êr +Hmn[II]θ
θ

êθ +Hmn[II]θ
φ

êφ (3.175)

Using equations (3.145-3.147) in equation (3.175) the magnetic field and its component due
to source are like as,

H⃗mn[I]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}

+D[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
+D[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}]
(3.176)

where as D[II]r
mn , D[II]φ

mn , D[II]θ
mn are unknown coefficient which represent the model amplitude

of radial, θ , φ components of electric and magnetic field. Now using the given boundary
conditions given in equations (3.149) and (3.150), the unknown amplitudes can be obtained
as,

D[I]r
mn = D[II]r

mn = 0 (3.177)



3.4 Transverse Electromagnetic or TEM modes 45

D[I]θ
mn =

[
rein(r−r

′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][II]

2π
∂

∂θ
Ymn(θ ,φ)[Z

′
n(knr)]

]
Joθ (3.178)

D[II]θ
mn =

[
rein(r−r

′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][I]

2π
∂

∂θ
Ymn(θ ,φ)[Z

′
n(knr)]

]
Joθ (3.179)

D[I]φ
mn = D[II]φ

mn = 0 (3.180)

Where as Z
′
n(knr) is field as function of radial distance for both the regions and can be written

as,
Z

′
n(knr) = [W

′
n(knr)][I][X

′
n(knr)][II]− [W

′
n(knr)][II][X

′
n(knr)][I] (3.181)

By substituting the modal amplitudes in equations (3.170), (3.172), (3.174) and (3.176),
expressions of electric and magnetic field are obtained for both the regions. The electric
fields of both region I and region II similarly magnetic fields of both regions are added to get
total electric and magnetic fields in this excited cavity. The field expressions for TEM modes
due to excitation of cavity can be written as,

E⃗mn[I+II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r

′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[W

′
n(knr)][II][W

′
n(knr)][I]

πZ ′
n(knr)

]
Joθ êθ

(3.182)

H⃗mn[I+II]θ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
− ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)
]
Joθ êθ (3.183)

where as E⃗mn[I+II]θ
(r,θ ,φ) is total electric field and H⃗mn[I+II]θ

(r,θ ,φ) is total magnetic field due to excitation
of θ -directed source current Joθ êθ . These are expressions for TEM modes in this excited
cavity.

3.4.3 Case III
(

Jor = 0 , Joθ = 0, Joφ ̸= 0
)

In this case, the current source is assumed only in φ direction then the resulting magnetic
and electric fields have components in radial, θ and φ direction. The electric field in
components form for region I is,

E⃗mn[I]φ
(r,θ ,φ) = Emn[I]φ

r êr +Emn[I]φ
θ

êθ +Emn[I]φ
φ

êφ (3.184)
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Substituting equations (3.133-3.135) in (3.184) components of magnetic field due to excita-
tion of current in region I can be written as,

E⃗mn[I]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Wn(knr)][I]Ymn(θ ,φ)

}
êr+

D[I]θ
mn

{
[W

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[I]φ

mn

{
im

r sinθ
[W

′
n(knr)][I]Ymn(θ ,φ)

}
êφ

]
(3.185)

The magnetic field can be split into components form in region I is,

H⃗mn[I]φ
(r,θ ,φ) = Hmn[I]φ

r êr +Hmn[I]φ
θ

êθ +Hmn[I]φ
φ

êφ (3.186)

Using equations (3.137-3.139) in equation (3.188) the magnetic field in component form due
to source current can be written as,

H⃗mn[I]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[I]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}

+D[I]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
+D[I]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}]
(3.187)

The electric field in components from for region II can be written as,

E⃗mn[II]φ
(r,θ ,φ) = Emn[II]φ

r êr +Emn[II]φ
θ

êθ +Emn[II]φ
φ

êφ (3.188)

By substituting equations (3.141-3.143) in (3.188) fields excited by φ -directed current in
region II can be written as,

E⃗mn[II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[II]r

mn

{
n(n+1)

knr2 [Wn(knr)][II]Ymn(θ ,φ)

}
êr+

D[II]θ
mn

{
[W

′
n(knr)][II]

r
∂

∂θ
Ymn(θ ,φ)

}
êθ +D[II]φ

mn

{
im

r sinθ
[W

′
n(knr)][II]Ymn(θ ,φ)

}
êφ

]
(3.189)

Similarly, magnetic field in region II can be decomposed into components form as,

H⃗mn[II]φ
(r,θ ,φ) = Hmn[II]φ

r êr +Hmn[II]φ
θ

êθ +Hmn[II]φ
φ

êφ (3.190)
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Using equations (3.145-3.147) in equation (3.190) the magnetic field in component form due
to source current are like as,

H⃗mn[II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
D[II]r

mn

{
n(n+1)

knr2 [Xn(knr)][II]Ymn(θ ,φ)

}

+D[II]θ
mn

{
[X

′
n(knr)][I]

r
∂

∂θ
Ymn(θ ,φ)

}
+D[II]φ

mn

{
im

r sinθ
[X

′
n(knr)][I]Ymn(θ ,φ)

}]
(3.191)

where as D[II]r
mn , D[II]φ

mn and D[II]θ
mn are unknown coefficients which represent the model am-

plitudes of radial, θ , φ components of electric and magnetic field. Now using the given
boundary conditions given in equations (3.149) and (3.150), the unknown amplitudes can be
obtained as,

D[I]r
mn = D[II]r

mn = D[I]θ
mn = D[II]θ

mn = 0 (3.192)

D[I]φ
mn =

[
r sinθein(r−r

′
)Y ∗

mn(θ
′
,φ

′
)[X

′
n(knr)][II]

2πim[Z ′
n(knr)]

]
Joφ (3.193)

D[II]φ
mn =

[
r sinθein(r−r

′
)Y ∗

mn(θ
′
,φ

′
)[X

′
n(knr)][I]

2πim[Z ′
n(knr)]

]
Joφ (3.194)

Where as,
Z

′
n(knr) = [W

′
n(knr)][I][X

′
n(knr)][II]− [W

′
n(knr)][II][X

′
n(knr)][I] (3.195)

By substituting the modal amplitudes in equations (3.185), (3.189), (3.187) and (3.191),
expressions of electric and magnetic field are obtained for both the regions. The electric fields
of region I and region II similarly magnetic fields of both regions are added respectively,
to get total electric and magnetic fields in this excited cavity. The field expressions for TE
modes due to excitation of cavity can be written as,

E⃗mn[I+II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
− ein(r−r′)

2π
Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)
]
Joφ êφ (3.196)

H⃗mn[I+II]φ
(r,θ ,φ) =

∞

∑
n=0

n

∑
m=−n

[
ein(r−r

′
)Ymn(θ ,φ)Y ∗

mn(θ
′
,φ

′
)[X

′
n(knr)][II][X

′
n(knr)][I]

πZ ′
n(knr)

]
Joφ êφ

(3.197)
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where as E⃗mn[I+II]φ
(r,θ ,φ) represent total electric field for both regions and H⃗mn[I+II]φ

(r,θ ,φ) is total
magnetic field for the expression of TEM modes. The current Joφ êφ is source of excitation in
cavity which generate TE modes.

3.5 Summary and Discussion

In this chapter, excitation of modes due to delta current source are explained in Earth
ionosphere cavity. The cavity is divided into two regions I and II for the simplification of the
solution. The Green functions for both the regions are assumed with some changes, from
the general formulation used in the earlier chapter. Due to delta current source placement,
the electric and magnetic fields have components in r, θ and φ direction. When the current
source is placed in the radial direction only TEM modes are excited, TE and TM modes
vanish out. TM, TE and TEM modes are excited when the current source is tangential, placed
in θ or φ direction.



Chapter 4

Results

In this chapter the electric and magnetic energy density of unexcited and excited Earth
ionosphere cavity is discussed. In case of unexcited cavity, the expression for TM and TE
modes have been derived in Chapter 2. The description of electromagnetic field in this
cavity is quite complex that is why the electric and magnetic energy density of TM and TE
modes have been graphically presented. In case of excited cavity, a point source carrying
current J⃗o is placed in this cavity. The current J⃗o is a vector due to which the electromagnetic
field components are in radial, θ and φ directions. In Chapter 3, TM, TE and TEM modes
expressions for excited cavity are derived. The excitation of cavity is due to current J⃗o,
therefore the energy density for TM, TE and TEM modes have been plotted for three different
cases. The electric and magnetic energy density for each case is calculated using [27]. The
electric energy density uE , magnetic energy density uM and total energy density u may be
calculated as,

uE =
1
εo

|Emn|2

2
(4.1)

uM =
1
µo

|Hmn|2

2
(4.2)

u = uE +uH (4.3)

In both excited and unexcited cavity, the all expressions of electromagnetic modes have
radial, θ and φ parameters dependency. In simulation set up, the φ dependency is assumed
fixed because the sphere is rotationally symmetric. The θ -dependency of modes varies on
both m and n while radial dependency is only on n. The electromagnetic modes for high
frequency are obtained using n ≥ 1 and m ≥ 1. The number of resonant frequencies increase
with the size of cavity. The electric and magnetic energy density of T M and T E modes in
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component form are separately graphically displayed for each case in this cavity, this means
that the electric energy density of Emn

r , Emn
θ

and Emn
φ

while magnetic energy density of Hmn
r ,

Hmn
θ

and Hmn
φ

have been shown. The total magnetic and electric energy density is sum of all
these energy densities according to the given equation,

E⃗.E⃗∗ = |Er|2 + |Eθ |2 + |Eφ |2 (4.4)

H⃗.H⃗∗ = |Hr|2 + |Hθ |2 + |Hφ |2 (4.5)

4.1 Energy Density of Unexcited Cavity

In unexcited cavity, the magnetic energy density of Hθ and Hφ field components for T M11

mode is shown in figure (4.1) and (4.2) as a function of radius r and polar angle θ respectively.
The total magnetic energy density of T M11 mode is graphically presented in figure (4.1) and
(4.2) using equation (4.5).
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Figure 4.1 Magnetic Energy Density of T M11, for n = 1, m = 1 and φ = 360o with r = h at x− axis

In figure (4.1) , the energy density due Hφ field has a peak in its energy density level while
due to Hθ field show little variation in energy density level. Similarly, it is observed in figure
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(4.2) that magnetic energy density due to Hθ field has a little variation while due to Hφ field
component, it has maximum variation in energy density verses polar angle θ at x− axis. A
single peak in energy density due to Hφ is also observed clearly in the plot of total magnetic
energy density. The peak value of energy density is important while rest of the variation in
energy density level is assumed as a noise. The peak value of magnetic energy density is
depend upon the number of resonant frequency.
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Figure 4.2 Magnetic Energy Density of T M11, for n = 1, m = 1 and φ = 360o with θ at x− axis

The graphical representation of electric energy density for T M11 mode is shown in figures
(4.3) and (4.4) verses radial distance r and polar angle θ at x− axis respectively. The
azimuthal angle φ is assumed fixed at 360◦. In both these plots the electric energy density
due Er, Eθ and Eφ fields for T M11 are shown distinctly. The plot of electric energy density
due to Eθ field has slightly little variation verses radial distance and polar angle θ . The
energy density due to Eφ has maximum variation verses θ and also has energy density peak
value while verses radial distance r contain only a single peak of electric energy density. The
electric energy density due to Er and Eφ field verses radial distance r, has also energy density
peak while Eθ field has a little downward change in its level of energy density. The total
electric energy density is also shown in these figures, which is the sum of Er, Eθ and Eφ

according to the equation (4.4).
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Figure 4.3 Electric Energy Density of T M11, for n = 1, m = 1 and φ = 360o with r = h at x− axis
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Figure 4.4 Electric Energy Density of T M11, for n = 1, m = 1 and φ = 360o with θ at x− axis
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Figure 4.5 Comparison of Magnetic Energy Density of T Mmn for different m, n at φ = 360o with
r = h at x− axis
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Figure 4.6 Comparison of Magnetic Energy Density of T Mmn for different m, n at φ = 360o with θ

at x− axis
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Figure 4.7 Comparison of Electric Energy Density of T Mmn for different m, n at φ = 360o with r = h
at x− axis
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Figure 4.8 Comparison of Electric Energy Density of T Mmn for different m, n at φ = 360o with θ at
x− axis
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In unexcited cavity, the total electric and magnetic energy densities are distributed between
energy densities for T Mmn and T Emn modes for different values of m and n. Therefore,
electric and magnetic energy densities for T Emn modes are graphically presented using the
same simulation set up, like T Mmn. In figure (4.9) and (4.10), the magnetic energy density
for T E11 mode is plotted verses radial distance r and polar angle θ . Similarly, the electric
energy density for T E11 mode is shown verses radial distance r and polar angle θ in figure
(4.11) and (4.12). The electric energy density for T E11 mode has resemblance with magnetic
energy density for T M11 while electric energy density for T M11 mode has correspondence
with the magnetic energy density for T E11 mode. The peak magnetic energy density for
T E11 is comparable with the peak electric energy density for T M11 mode and peak magnetic
energy density for T M11 shows resemblance with the peak electric energy density for T E11

mode. The results for electric and magnetic energy density for different values of m and n
are also compared in figures (4.13), (4.14), (4.15) and (4.16). The number of peak values in
energy density increase as resonant frequency increases with the increase in value of n. It is
clear that the electric and magnetic energy densities reciprocate in each other for T Emn and
T Mmn modes respectively.
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Figure 4.9 Magnetic Energy Density of T E11, for n = 1, m = 1 and φ = 360o with r = h at x− axis
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Figure 4.10 Magnetic Energy Density of T E11, for n = 1, m = 1 and φ = 360o with θ at x− axis

6400 6410 6420 6430 6440 6450 6460 6470 6480 6490 6500
15

20

25

30

35

40

45

50

r=h

El
ec

tri
c E

ne
rg

y 
|T

E 11
|

 

 

Eθ
Eφ

E

Figure 4.11 Electric Energy Density of T E11, for n = 1, m = 1 and φ = 360o with r = h at x− axis
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Figure 4.12 Electric Energy Density of T E11, for n = 1, m = 1 and φ = 360o with θ at x− axis
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Figure 4.13 Comparison of Magnetic Energy Density of T Emn for different m, n at φ = 360o with
r = h at x− axis
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Figure 4.14 Comparison of Magnetic Energy Density of T Emn for different m, n at φ = 360o with θ

at x− axis
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Figure 4.15 Comparison of Electric Energy Density of T Emn for different m, n at φ = 360o with
r = h at x− axis
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Figure 4.16 Comparison of Electric Energy Density of T Emn for different m, n at φ = 360o with θ at
x− axis

4.2 Energy density of Excited Cavity

In case of excited cavity, results for the sum of electric and magnetic energy density
for the T Mmn, T Emn and T EMmn modes have been presented. In Chapter 3, it is proved
analytically that cavity is excited by tangential current in case of T Mmn and T Emn modes.
The comparison of total energy density due excitation of tangential current for T Mθ

mn, T Mφ
mn,

T Eθ
mn and T Eφ

mn modes is shown in figures (4.17), (4.20), (4.22) and (4.25). In figure (4.17),
comparison of total energy density for T Mθ

11 and T Mθ
22 is shown. The level and peak value

of total energy density for T Mθ
11 mode is greater than T Mθ

22 mode but number of peaks in
total energy density of T Mθ

22 mode is more than T Mθ
11 mode. It is due to reason that resonant

frequency of T Mθ
22 mode is higher than T Mθ

11 mode. Similarly, same results are obtained
for total energy density of T Mφ

11 mode and T Mφ

22, shown in figure (4.20). In figure (4.18)
and (4.19), pattern of energy density is shown for T Mθ

11 and T Mθ
22 modes, respectively. The

figure (4.18) shows that energy density repeats its pattern after every 2km verses radial height
r. Similarly, energy density pattern for T Mθ

22 mode repeat after every 1km verses radial
height r. The figure (4.21) showed that energy density pattern for T Mφ

11 and T Mφ

22 modes
is also repeated like T Mθ

11 and T Mθ
22 verses radial height r. These electromagnetic modes

depend on the radial, θ and φ components of field expressions.
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Figure 4.17 Comparison of Total Energy Density due to point source of T Mθ
mn mode, excitation in θ

with r = h at x− axis
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Figure 4.18 Total Energy Density Pattern for T Mθ
11 mode, excitation in θ with r = h at x− axis
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Figure 4.19 Total Energy Density pattern for T Mθ
22 mode, excitation in θ with r = h at x− axis
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Figure 4.20 Comparison of Total Energy Density due to point source of T Mφ
mn mode, excitation in φ

with r = h at x− axis
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Figure 4.21 Comparison of Total Energy Density pattern between T Mφ

11 and T Mφ

22 mode, excitation
in φ with r = h at x− axis

In figure (4.22), the total energy density for T Eθ
11 and T Eθ

22 mode is presented. The level
of total energy density decreases as the frequency increases due to increase in value of n. The
reason for decrease of total energy density is that the energy density distribution occurs in
most numbers of peaks for T Eθ

22. The figures (4.23) and (4.24)shows the pattern of electric
energy density for T Eθ

11 and T Eθ
22 mode respectively, which show repetition like T Mθ

mn

modes. Similarly in figure (4.25), the total energy density for T Eφ

11 and T Eφ

22 mode show
the same variation like T Eθ

mn, with the increase in resonant frequency. The energy density
pattern for T Eφ

11 and T Eφ

22 mode is presented in figure (4.26). The radial current didn’t
excite the electromagnetic field in cavity that is why the T Mr

mn and T Er
mn mode have not any

contribution in total electric and magnetic energy density.

In TEM case, the electromagnetic modes are excited by radial current and tangential
current. The figure (4.27) shows the total energy density for T EMr

11 and T EMr
12. The change

in energy density for T EMr
12 is same like T Emn and T Mmn modes. The main difference is

that, in T EMr
mn mode the total energy density level increases as the frequency increases

while T Emn and T Mmn modes it decreases. The sum of electric and magnetic energy density
of T EMθ

mn and T EMφ
mn for different value of m and n can be graphically presented using

same simulation set up used for T EMr
mn.
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Figure 4.22 Comparison of Total Energy Density due to point source of T Eθ
mn mode, excitation in θ

with r = h at x− axis
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Figure 4.23 Total Energy Density pattern for T Eθ
mn mode, excitation in θ with r = h at x− axis
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Figure 4.24 Total Energy Density pattern for T Mθ
mn mode, excitation in θ with r = h at x− axis
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Figure 4.25 Comparison of Total Energy Density due to point source of T Eφ
mn mode, excitation in φ

with r = h at x− axis
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Figure 4.26 Total Energy Density pattern for T Mφ
mn mode, excitation in φ with r = h at x− axis
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Figure 4.27 Comparison of Total Energy Density due to point source of T EMr
mn mode, excitation in

r with r = h at x− axis



Chapter 5

Conclusion

In the first portion of this thesis, TM and TE modes in Earth ionosphere spherical cavity
have been investigated. The resonant frequencies of the modes have been obtained through
an approximate technique. These resonant frequencies are found to be very high as compared
with Shummann frequencies in Earth ionosphere cavity. These frequencies span a range
from VLF to HF, i.e., from 1.5kHz to 10kHz. The graphical representation of electric and
magnetic energy densities for TM and TE modes have shown a decrease in energy densities
with an increase in resonant frequency.

In the second portion, the TM, TE and TEM modes have been explored due to excitation
of Earth ionosphere cavity by a infinitesimal current source at some specific location. The
electric and magnetic field have components in r, θ , φ directions due to current source. Sine
the current source may be placed in three mutually orthogonal directions, response of the
cavity in all three cases is vectorial in nature. Ir may be noted that response of cavity is
a superposition of TM, TE and TEM modes. It is observed analytically that due to radial
placement of current, E(r,θ ,φ) and H(r,θ ,φ) vanish out and modal excitation doesn’t take place
as mentioned by Kurakawa [1]. The TM and TE modes are obtained only due to excitation
of Earth ionosphere cavity by tangential current, Joθ in θ -direction and Joφ in φ -direction.
The TEM modes are obtained due to excitation of cavity by current source J⃗o(r,θ ,φ) in all
directions. It is shown graphically that the electric and magnetic energy densities for TE, TM
and TEM modes increase as the frequency increases.

In future work, the cavity losses will be calculated in case of unexcited and excited cavity.
The energy loss and energy storage in this cavity will be determined. Since the total energy
passes between electric and magnetic fields, we may calculate it from electric and magnetic
fields. The lightning phenomena can be assumed as source of excitation in this cavity instead
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of infinitesimal current source. As the lightning follows the random path and is a complex
process that is why probability density function of its path will be calculated. This probability
density function of lightning will be used as source of excitation in this cavity.
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