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Abstract

In this thesis, the exclusive semileptonic rare B-mesons decays which are induced by the flavor changing neutral

current transition (FCNC) have been studied within and beyond the Standard Model (SM). To probe physics

beyond the SM, B → K∗`+`−, B → K1`
+`−, B → K∗2`

+`− and Bc → D∗s`
+`− decays are considered. At quark

level, these FCNC transitions arises as b→ s`+`− and, in the SM, are forbidden at tree level but are allowed at loop

level through Glashow-Iliopoulos-Maiani (GIM) mechanism. Moreover, FCNC transitions are further suppressed

due to the fact that they are directly proportional to the off diagonal elements of the Cabibo Kobayashi Maskawa

(CKM) matrix. Because of these two conditions FCNC transitions are relatively rare and become important to

investigate the physics beyond the SM, usually known as new physics (NP). The important points of the thesis are

in order:

• We study the exclusive channel of flavor changing neutral current transition (FCNC) i.e. B → K∗`+`−

in the frame work of a family of non-universal Z′ model. In this model, the Z′ boson couplings to the

fermions could lead to FCNC transition at tree level. In addition, the off-diagonal elements of these effective

chiral Z′ couplings can contain new weak phases that provide a new source of CP violation and, therefore,

could explain the CP asymmetries in the current high energy colliders. In this context, we have studied

the polarized and unpolarized CP violation asymmetries for the said decay. These asymmetries are highly

suppressed in the standard model but significantly enhanced in the Z′ model. In addition to the CP violation

asymmetries, the single lepton polarization asymmetries are also studied and found them sensitive to the

couplings of the Z′ boson. Finally, it is analyzed that all these asymmetries which will hopefully be tested

at LHC can serve to probe the non-universal Z′ model, particularly, the accurate measurements of these

asymmetries may play a crucial role to extract the precise values of the coupling parameters of Z′ boson.

• The sensitivity of the zero position of the forward backward asymmetry AFB for the exclusive B →
K1(1270)µ+µ− decay is examined by using most general non-standard 4-fermion interactions. Our anal-

ysis shows that the zero position of the forward backward asymmetry is very sensitive to the sign and size

of the Wilson coefficients corresponding to the new vector type interactions, which are the counter partners

of the usual Standard Model operators but have opposite chirality. In addition to these, the other significant

effect comes from the interference of Scalar-Psudoscalar and Tensor type operators. These results will not

only enhance our theoretical understanding about the axial vector mesons but will also serve as a good tool

to look for physics beyond the SM.



• A detailed study of the impact of New Physics (NP) operators with different Lorentz structures, which

are absent in the Standard Model Hamiltonian, on the B → K∗2(1430)µ+µ− decay is performed. In this

context, the various observables such as branching ratio, forward-backward asymmetry of leptons, lepton

polarization asymmetries and the helicity fractions of the final state K∗2(1430) meson have been studied. We

have examined the effects of new vector-axial vector, scalar-pseudoscalar and tensor type interactions for

this decay B → K∗2(1430)µ+µ− by using the constraints on different NP couplings which come from the

Bs → µ+µ−, B → Xsµ
+µ− and B̄ → K̄∗µ+µ− decays. It is found that the effects of VA, S P and T operators

are significant on the zero position of AFB(q2) as well as on its magnitude. In addition to this these NP

operators also give significant effects on the differential decay rate, lepton polarization asymmetries and

helicities fractions of final state K∗2(1430) meson.

• The semileptonic Bc → D∗s`
+`− (` = µ, τ) decays have been studied in the Standard Model (SM) and in the

Universal Extra Dimension (UED) model. In addition to the contribution from the Flavor Changing Neutral

Current (FCNC) transitions the weak annihilation (WA) contribution is also important for this decay because

of enhanced CKM matrix elements V∗cbVcs. It is found that the WA gives 6.7 times larger branching ratio than

the penguin contribution for the decay Bc → D∗sµ
+µ−. The contribution from the WA and FCNC transitions

are parameterized in terms of the form factors. In this work we first relate the form factors through Ward

identities and then express them in terms of g+(0) which is extracted from the decay Bc → D∗sγ through QCD

sum rules approach. These form factors are then used to analyze the physical observables like branching

ratio and helicity fractions of the final state D∗s meson in the SM. This analysis is then extended to the UED

model where the dependency of above mentioned physical observables depend on the compactification

radius R. It is shown that the helicity fractions of D∗s are sensitive to the UED model especially when we

have muons as the final state lepton. This sensitivity is marked up at low q2 region, irrespective of the

choice of the form factors. It is hoped that in the next couple of years LHC will provide enough data on

the Bc → D∗s`
+`− channel, and then , these helicity fractions would serve as a useful tool to establish new

physics predicted by the UED model.



Chapter 1

Introduction

The understanding of flavor physics is one of the important goals of elementary particle physics. This is because

this understanding gives us more insight into the short distance physics which helps us to explain the physical pro-

cesses at short distance scales. Within the Standard Model (SM), flavor changing (FC) interactions are controlled

by the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix and this is the only source of FC interactions. To date,

SM explains the flavor dynamics with amazing accuracy but it is still required to be tested at high energy scales

(TeV) where New Physics (NP) is widely expected. Moreover, despite many hallmarks of the SM one cannot

consider it as a fundamental theory due to some basic deficiencies which are given below:

(i) 22 free parameters which appear in the Yukawa sector of the SM including the masses and mixing angles

of particles.

(ii) Why is the intergeneration mixing small?

(iii) Why do we have three families?

(iv) Why are 3 generations identical in representation content but vastly different in mass

(v) Higgs mass (mH) is not protected by any internal symmetry.

(vi) Why is there no CP violation in Flavour-diagonal processes

(vii) How to include gravity at very small distances?

(viii) Are there extra space-time dimensions?, etc.

These short comings impede SM to become a complete theory. The various extensions of the SM try to overcome

some of these questions. In addition, during the last few years some mismatches between the SM predictions and

experimental measurements are also found [1, 2, 3, 4, 5] which could be taken as an indication of new physics.

On the other hand, from theoretical point of view, B meson physics provides an important ingredient to un-

derstand the nature of flavor dynamics because of two weighty reasons: (i) B decays show an extremely rich
1



phenomenology and (ii) theoretical techniques using an expansion in the heavy mass allow for some model-

independent predictions. In particular, the study of rare B decays which are induced by the flavor changing neutral

currents (FCNC) is an interesting research area in flavor physics. These decays not only provide us a ground to

check the SM but also a probe for NP searches i.e. where one can look for deviations from the SM expectations.

The very low SM rate of these decays often make them unaccessible with the present experimental data sets, un-

less NP effects enhance the rate up to the current experimental sensitivity. Thus, if a suppressed decay is observed,

a clear sign of NP is obtained.

Within the SM, FCNC processes are governed by

• the unitary CKM matrix that parameterizes the weak charged current interactions of quarks,

• While the FCNC processes are forbidden at tree level, the Glashow-Iliopoulos-Maiani (GIM) mechanism

provides the size of its violation at the one loop level depending sensitively on the CKM parameters and the masses

of exchanged particles,

Further, the asymptotic freedom of QCD allows us to calculate the effect of strong interaction on weak decays

at sufficiently short distance scales within the framework of renormalization group improved perturbation theory.

Thus for the exclusive decays of B meson, the b quark mass being large compared to the typical QCD scale ΛQCD,

one can use the factorization ansatz to separate out the relevant hadronic matrix elements of local operators in the

weak Hamiltonian, which encode the long distance contributions to the process, from a perturbatively calculable

short distance part. The latter depends only on the large scale mb, in the operator product expansion (OPE) of

the effective Hamiltonian. This involves local operators which have a specific Dirac structure and their matrix

elements are calculated by means of non-perturbative methods or in certain cases extracted from experimental

data on tree level decays with the help of flavor symmetries.

The theoretical understanding of FCNC transitions of hadrons and the measurements of the corresponding

CKM matrix elements are consistently hampered by the presence of long distance QCD effects that are responsible

for the binding of quarks into hadrons. These effects are hard to evaluate in a model independent way, and

as such tend to bring large uncertainties to the theoretical predictions for the weak decay amplitudes. They

appear in the calculation of the matrix elements of the hadronic operators, between the initial and final hadronic

states. The dynamical content of hadronic current matrix elements is described by Lorentz invariant form factors.

The calculation of these form factors requires a non-perturbative treatment and are source of large theoretical

uncertainties. Knowledge of these form factors is essential for the description of semileptonic and non-leptonic

weak decay processes and in particular for the experimental determination of CKM matrix elements [6].

The experimental observation of inclusive [7] and exclusive [8] decays, B→ Xsγ and B→ K∗γ , has prompted

a lot of theoretical interest on rare B meson decays. Though the inclusive decays are theoretically better understood

but are extremely difficult to be measured in a hadron machine, such as the LHC, which is the only collider, except

for a Super-B factory, that could provide enough luminosity for the precise study of the decay distribution of such

rare processes. In contrast, the exclusive decays are easy to detect experimentally but are challenging to calculate

2



theoretically and the difficulty lies in describing the hadronic structure. This provides the main uncertainty in the

predictions of exclusive rare decays. In exclusive B → K,K∗ decays the long-distance effects in the meson tran-

sition amplitude of the effective Hamiltonian are encoded in the meson transition form factors (as we mentioned

above) which are the scalar functions of the square of momentum transfer and are model dependent quantities.

Many exclusive B meson processes based on b→ s (d) `+`− such as B→ K (K∗) `+`−[9, 10, 11, 12, 13, 14, 15, 16],

B→ φ`+`−[17], B→ γ`+`−[18, 19, 20] and B→ `+`−[21] have been studied in literature. In these studies various

fameworks have been applied to the description of meson transition form factors of initial and final state meson

like constituent quark models, QCD sum rules, lattice QCD, etc.

Regarding exploring the new physics (NP), many inclusive B−meson decays such as B → Xd,s`
+`− and their

corresponding exclusive processes, B → M`+`− with M = K,K∗,K1, ρ etc have been investigated in literature

[22, 23]. These studies indicated that the said inclusive and exclusive processes of B−meson are very sensitive

to the flavor structure of the Standard Model and could play a very crucial role to dig out the status of NP. In

this context, in general, there are two different techniques to search NP which are considered to overcome the

deficiencies of SM as well as to resolve the anomalies in the experimental measurements. One is the direct

search which can be achieved by increasing the energies of colliders and find the predicted new particles but these

particles are quite massive and therefore hard to produce. The other one is indirect search where the new heavy

particles could manifest themselves virtually through loops, consequently, Wilson coefficients get modified. In

addition, some of these new particles due to nature of their couplings with fermions could allow some of the

processes, which otherwise occur at loop level, at the tree level. This necessitates introduction of new operators

that are absent in the SM.

The indirect searches are comparatively easier than the direct searches due to the fact that one can see the

effects of heavy particles at low energy on the values of different observables due to the involvement of these new

particles. The decays based on the b → s`+`− transitions involve the Wilson coefficients Ce f f
7 , Ce f f

9 and Ce f f
10 ,

henceforth, are considered as a handy tool to determine the precise values of Wilson coefficients Ce f f
7 , Ce f f

9 and

Ce f f
10 . Finally, one can say that, the precise measurements of different observables for b → s`+`− transitions such

as branching ratio, forward-backward asymmetry, various polarization asymmetries of the final state leptons, etc,

particularly at LHC, could play a vital role in near future to reveal the NP and its shape.

This thesis is organized in the following way. In Chapter 2, we briefly review the theoretical formulation

required to analyze b → s`+`− transition within and beyond the SM. Section 2.1 contains the expression of

effective Hamiltonian, the explicit forms of six dimensional operators at quark level and the amplitude for the

above mentioned transition. Sections 2.2, 2.3 and 2.4 provide a brief introduction to the model independent

approach, the non-Universal family of Z′ model and the single Universal extra dimensional model, the latter on

suggested by Appelquist, Cheng and Dobrescu.

In chapter 3 we study the Exclusive B → K∗`+`− decay in the family of non- universal Z′ boson model. In

section 3.2, with little modification, we rewrite the additional part of the effective Hamiltonian due to the Z′ boson

3



contribution. Section 3.3 consists of the definition and the explicit expressions of physical observables such as

single lepton polarization and CP asymmetries. In section 3.4 we discuss the phenomenological analysis of said

observables under the influence of Z′ boson. In the last section, 3.5, we summarize and conclude our findings.

In chapter 4 we analyze the B → K1`
+`− decay through model independent approach. In section 4.2 we

present the matrix elements for the said decay, Ward identities are used to find the relations between the form

factors which results in reducing the number of unknown quantities. In section 4.3, we write the general amplitude

for B→ K1`
+`− as well as the formula and the explicit expression of the forward backward asymmetry. In section

4.4, we discuss the numerical analysis where we extract the new physics effects through the shifting in the zero

position of the forward-backward asymmetry which comes through the different type of new operators such as

scalar, vector and tensor operators. In section 4.5, we conclude our work.

In chapter 5 we apply the model independent approach to B → K2`
+`− channel. In section 5.2 we define the

matrix elements and parameterize these matrix elements in terms of the form factors. In section 5.3 we discuss

some phenomenological constraints on the numerical values of the new physics parameters. In section 5.4 we

calculate the general expressions of the different observables such as forward-backward and lepton polarization

asymmetries and the helicity fractions of the final state meson. In section 5.5 we describe the numerical analysis

that how much the values of said observables are influenced due to the implication of the different types of new

operators which are absent in the SM. In section 5.6 we present the important points and give conclusive remarks

of our work.

In Chapter 6 we present the semileptonic charm B-meson decays in universal extra dimension model. In sec-

tion 6.1 we give the introduction of charm B-meson decays and its importance in phenomenology. In section 6.2

we present the matrix element and form factors for the decay Bc → D∗s`
+`− and we also discuss the weak annihila-

tion form factors for the said decay. In section 6.3 the pole contribution for the said decay is discussed. In section

6.4 we give the formulas for the physical observables such as branching ratio and helicity fractions of D∗s-meson

for the decay Bc → D∗s`
+`−. In section 6.5 we present the numerical analysis of the above physical observables

and also compare our form factors with QCD sum rules for the same observables. Finally, we summarize the main

points of our study in section 6.6.

This thesis is based upon the following published research work.

1. Polarized, Unpolarized Direct CP violation and Single Lepton Polarization Asymmetries of B → K∗`+`−

decay in Z′ model. Ishtiaq Ahmed, Phys. Rev. D 86, 095022 (2012).

2. Model Independent Analysis of the Forward-Backward Asymmetry for the B → K1µ
+µ− Decay, Ishtiaq

Ahmed, M. Ali Paracha and M. J. Aslam, Eur. Phys. J. C 71 (2011) 1521

3. Model independent analysis of B → K∗2(1430)µ+µ− decay, Ishtiaq Ahmed, M. J. Aslam, M. Junaid and

S. Shafaq, JHEP 1202 (2012) 045.

4. Semileptonic charmed B meson decays in Universal Extra Dimension Model, M.Ali Paracha, Ishtiaq
4



Ahmed and M.Jamil Aslam, Phys.Rev.D 84: 035003, 2011.
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Chapter 2

The Basic Formulism

In this chapter we present the theoretical framework needed to study the processes based upon b → s`+`− both

in the Standard Model and in NP models. In this context, we only present the main points of the NP scenarios

which are analyzed in this thesis such as model independent approach, a family of non-Universal Z′ Model and

universal extra dimension model (UED). The phenomenological implications of these new physics scenarios will

be discussed in next chapters.

2.1 Effective Hamiltonian

The basic starting point to do phenomenology of weak decays of hadrons is the effective Hamiltonian which has

the following generic structure

He f f =
GF√

2

∑

i

VCKMCi(µ)Qi (2.1)

Here GF is the Fermi coupling constant, VCKM are the CKM matrix elements, Qi are the four-quark operators

and Ci(µ) are the corresponding Wilson coefficients at the energy scale µ. The explicit expressions of Wilson

Coefficients at NLO and NNLL are given in [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. The six classes of operators

are given below [34]:

Current Current Operators

Q1 = (c̄αbβ)V−A(s̄βcα)V−A Q2 = (c̄b)V−A(s̄c)V−A (2.2)

QCD-Penguins

Q3 = (s̄b)V−A

∑

q=u,d,s,c,b

(q̄q)V−A Q4 =
(
s̄αbβ

)
V−A

∑

q=u,d,s,c,b

(
q̄βqα

)
V−A

Q5 = (s̄b)V−A

∑

q=u,d,s,c,b

(q̄q)V+A Q6 =
(
s̄αbβ

)
V−A

∑

q=u,d,s,c,b

(
q̄βqα

)
V+A

(2.3)

6



Electroweak penguins

Q7 =
3
2

(s̄b)V−A

∑

q=u,d,s,c,b

eq (q̄q)V+A Q8 =
3
2

(
s̄αbβ

)
V−A

∑

q=u,d,s,c,b

(
q̄βqα

)
V+A

Q9 =
3
2

(s̄b)V−A

∑

q=u,d,s,c,b

eq (q̄q)V−A Q10 =
3
2

(
s̄αbβ

)
V−A

∑

q=u,d,s,c,b

(
q̄βqα

)
V−A

(2.4)

Magnetic Penguins

Q7γ =
e

8π2 mb s̄ασµν(1 + γ5)bαFµν Q8G =
g

8π2 mb s̄ασµν(1 + γ5)T a
αβbβG

a
µν (2.5)

Semileptonic Operators

Q9 = (s̄b)V−A

(
¯̀`
)

V
Q10 = (s̄b)V−A

(
¯̀`
)

A

Qνν̄ = (s̄b)V−A (ν̄ν)V−A Q` ¯̀ = (s̄b)V−A

(
¯̀`
)

V−A
(2.6)

The above set of operators is characteristic for any consideration of the interplay of QCD and electroweak effects.

The decay channels in which we are interested (B → (K∗,K1,K2,D∗s)l
+l−, l = µ, τ ) are the FCNC transition

and originates from the quark level transition b→ sl+l− and are based on the following operators

Q7 =
e2

16π2 mb

(
s̄σµνPRb

)
Fµν,

Q9 =
e2

16π2 (s̄γµPLb)(l̄γµl), (2.7)

Q10 =
e2

16π2 (s̄γµPLb)(l̄γµγ5l),

with PL,R = (1 ± γ5) /2.

In term of these operators and neglecting the mass of the s-quark, the effective Hamiltonian takes the form

HS M
e f f = −GFα√

2π
VtbV∗ts

{
CS M

9 (s̄γµPLb)(l̄γµl) + CS M
10 (s̄γµPLb)(l̄γµγ5l)

−2mbCS M
7 (s̄iσµν

qν

q2 PRb)(l̄γµl)
}
. (2.8)

The above effective Hamiltonian gives the following amplitude

MS M(B→ Ml+l−) =
αemGF

2
√

2π
V∗tbVts

[
〈M(k, ε)|sγµ(1 − γ5)b|B(p)〉 ×

{
Ce f f

9 (lγµl) + C10(lγµγ5l)
}

−2Ce f f
7 mb〈M(k, ε)|siσµν

qν

s
(1 + γ5)b|B(p)〉(lγµl)

]

(2.9)
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where M is the final state meson and q is the momentum transfer to the final lepton pair i.e. q = p1 + p2 where

p1 and p2 are the momenta of l− and l+ respectively and s is the squared of the momenta transfer. V∗tbVts are the

Cabibo-Kobayashi-Maskawa (CKM) matrix elements.

The Wilson coefficient Ce f f
9 in Eq. (3) contains a perturbative part Cper

9 which includes the indirect contribu-

tions of operators Qi where i = 1 to 6 to b → s and a non-perturbative part Cres
9 which contain the long-distance

resonance effects due to conversion of the real cc into the lepton pair l+l−. Therefore, Ce f f
9 can be written as

Ce f f
9 = Cper

9 + Cres
9 (2.10)

where the Cper
9 is read as [35]

Cper
9 = C9(mb) + g(mc, s)

(
4
3

C1 + C2 + 6C3 + 60C5

)

−2
2

g(mb, s)
(
7C3 +

4
3

C4 + 76C5 +
64
3

C6

)

−1
2

g(0, s)
(
C3 +

4
3

C4 + 16C5 +
64
3

)
+

4
3

C3

+
64
9

C5 +
64
27

C6. (2.11)

Here the functions g(mi, s) includes the one loop correction to the four-quark operators Q1, .....Q6 and have the

form [25, 36]

g(mi, s) =
8

27
− 8

9
ln(mi) +

4
9

yi

−2
9

(2 + yi)
√
|1 − yi| ×



(
ln |
√

1−yi+1√
1−yi−1

| − iπ
)
, for yi ≤ 1

2 arctan 1√
yi−1

, for yi > 1

where y ≡ 4m2
i /s. As mentioned above that the non-perturbative part Cres

9 arise from the intermediate states of the

real cc states and can be parameterized by using the Breit-Wigner formula in the following way

Cres
9 = −3π

α2 κ[3C1 + C2 + 3C3 + C4 + 3C5 + C6]

×
∑

V=ψ

mV Br(V → l+l−)ΓV
total

s − m2
V + imVΓtotalV

(2.12)

Now in the following sections we will briefly discuss some new physics models which we have analyzed in

this thesis.
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2.2 Model Independent Approach

As we have mentioned in the introduction that the NP effects in semileptonic B meson decays can be established

in two ways: in one case we can change the Wilson Coefficients but leave the operator basis same as that of the

SM and in other case we can add new operators too. In the model independent approach, we do not restrict ourself

to any model and discuss all possible operators that corresponds to b → sl+l− decays. The most general form of

the effective Hamiltonian contains 10 local four fermion interactions which can contribute to the b→ sl+l− decay

and can be written as:

Vector Operators

QVA
1 = CLLsLγ

µbLlLγ
µlL QVA

2 = CLRsLγ
µbLlRγµlR

QVA
3 = CRLsRγ

µbRlLγ
µlL QVA

4 = CRRsRγ
µbRlRγµlR (2.13)

Scalar Operators

QS P
1 = CLRLRsLbRlLlR QS P

2 = CRLLRsRbLlLlR

QS P
3 = CLRRLsLbRlRlL QS P

4 = CRLRLsRbLlRlL (2.14)

Tensor Operators

QT
1 = CT sσµνblσµνl QT

2 = iCT Eεµναβlσµνlsσαβb (2.15)

By using these operators, the new contributions to the effective Hamiltonian are

Hnew(b → sl+l−) = HV−A +HS−P +HT

HV−A =
GFα√

2π
V∗tsVtb

{
CLLsLγ

µbLlLγ
µlL + CLRsLγ

µbLlRγµlR + CRLsRγ
µbRlLγ

µlL + CRRsRγ
µbRlRγµlR

}

HS−P =
GFα√

2π
V∗tsVtb

{
CLRLRsLbRlLlR + CRLLRsRbLlLlR + CLRRLsLbRlRlL + CRLRLsRbLlRlL

}

HT =
GFα√

2π
V∗tsVtb

{
CT sσµνblσµνl + iCT Eεµναβlσµνlsσαβb

}
(2.16)

or if we define

RV = CLL + CLR R′V = CRR + CRL RA = CLL −CLR R′A = CRR −CRL

RS = CLRLR + CLRRL R′S = CRLLR + CRLRL RP = CLRLR −CLRRL R′P = CRLLR −CRLRL

(2.17)
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our total Hamiltonian becomes

He f f = HS M
e f f +HVA

e f f +HS P
e f f +HT

e f f , (2.18)

whereHS M
e f f is given in Eq. (2.8), while the others are [37]

HVA
e f f = −4GF√

2

α

π
V∗tsVtb

{
RV (s̄γµPLb) µ̄γµµ + RA (s̄γµPLb) µ̄γµγ5µ

+R′V (s̄γµPRb) µ̄γµµ + R′A (s̄γµPRb) µ̄γµγ5µ
}
, (2.19)

HS P
e f f = −4GF√

2

α

π
V∗tsVtb {RS (s̄PRb) µ̄µ + RP (s̄PRb) µ̄γ5µ

+R′S (s̄PLb) µ̄µ + R′P (s̄PLb) µ̄γ5µ
}
, (2.20)

HT
e f f = −4GF√

2

α

π
V∗tsVtb

{
CT

(
s̄σµνb

)
µ̄σµνµ + iCT E

(
s̄σµνb

)
µ̄σαβµε

µναβ
}

(2.21)

Here, RV ,RA,RV ,R′A,RS ,RP,R′S ,R
′
P,CT and CT E are the NP effective couplings. The constraints on the numerical

values of these NP coupling from different B meson decays will be given later in chapter 5.

Thus the explicit form of the free quark amplitudeM for the b→ sl+l− transition can be written as sum of the

SM amplitude Eq. (2.9) and of the new physics contributions, i.e.

M =MS M +Mnew (2.22)

whereMnew is

Mnew(B → Ml+l−) =MVA +MS P +MT

MVA =
GFα√

2π
V∗tsVtb

{
〈M|sLγ

µbL|B〉(RV lγµl + RAlγµγ5l) + 〈M|sRγ
µbR|B〉(R′V lγµl + R′Alγµγ5l)

}

MS P =
GFα√

2π
V∗tsVtb

{
〈M|sLbR|B〉(RS ll + RPlγ5l) + 〈M|sRbL|B〉(R′S ll + R′Plγ5l)

}

MT =
GFα√

2π
V∗tsVtb〈M|sσµνb|B〉

{
CT lσµνl + iCT Eε

µναβlσαβl
}

(2.23)

We use the model independent approach for B→ K1`
+`− and B→ K∗2`

+`− decays which will be discussed in

chapter 4 and 5 respectively.

2.3 Family Non-universal Z′ Model

A family non-universal Z′ model could naturally be derived in many extensions of the SM. The most economical

way to get it by including an additional U′(1) gauge symmetry. The model is formulated in detail by Langacker

and Plümacher [38]. The current in this model can be given as follows in a proper gauge basis

JµZ′ =
∑

i

ψ̄iγ
µ
[
ε
ψi
i PL + ε

ψR
i PR

]
ψi (2.24)
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where i represents the family index and ψ represents the families of up or down type quarks or charged or neutral

leptons. According to some GUT or string construction models such as E6, there is a possibility to have a family

of non-universal Z′ couplings such as εL,R
i which are diagonal and as a result the gauge couplings are family non

universal. In a family non-universal Z′-model, FCNCs generally appear at tree level in both left and right handed

sectors, after rotating the physical basis of non-universal Z′-couplings εL,R
i and one can write explicitly,

BψL = VψLε
ψL V†ψL

, BψR = VψRε
ψR V†ψR

(2.25)

Further these couplings might contains CP-violating phase, which is beyond that of SM. Making use of assumption

that the couplings of right handed quarks flavors with Z′ boson are diagonal, so the effective Hamiltonian in family

non-universal Z′ model for the decay b→ s`+`− can be written as [39, 40, 41, 42]

HZ′
e f f (b→ s`+`−) = −2GF√

2
VtbV∗ts[−

BL
sbBL

``

VtbV∗ts
s̄LγµbL ¯̀Lγ

µ`L −
BL

sbBR
``

VtbV∗ts
s̄LγµbL ¯̀Rγ

µ`R] (2.26)

One can reformulate the effective Hamiltonian given above as

HZ′
e f f (b→ s`+`−) = −4GF√

2
VtbV∗ts

[
∆C9(s̄γµ(1 − γ5)b) ¯̀γµ` + ∆C10(s̄γµ(1 − γ5)b) ¯̀γµγ5`

]
(2.27)

where

∆C9 = − BL
sb

VtbV∗ts

(
BL
`` + BR

``

)
, ∆C10 =

BL
sb

VtbV∗ts

(
BL
` − BR

`

)

The quantities BL
sb and BL,R

`
denote the effective chiral Z′ couplings to quarks and leptons. The off diagonal

element BL
sb contain a new weak phase and could be written as |Bsb|eiφL

s . The contribution of Z′ can be represented

as modification of Wilson coefficient of the semileptonic operators Q9 and Q10 i.e.

CZ′
9 = C SM

9 − 4π
α

BL
sb

VtbV∗ts

(
BL

ll + BR
ll

)
(2.28)

CZ′
10 = CSM

10 +
4π
α

BL
sb

VtbV∗ts

(
BL

ll − BR
ll

)
(2.29)

We analyze this model in the next chapter through B→ K∗`+`− decay.

2.4 Appelquist Cheng and Dobrescu Model

In our universe we have 3 spatial +1 temporal dimensions and if an extra dimension exists and is compactified,

fields living in all dimensions would menifest themselves in the 3 + 1 space by the appearence of Kaluza-Klein

excitations. The most pertinent question is whether ordinary fields propagate or not in all extra dimensions. One
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obvious possibilty is that only gravity propagates in ordinary plus extra dimensional universe, the “bulk”. Contrary

to this there are the models with universal extra dimensions (UED) in which all the fields propagate in all available

dimensions [43] and Appelquist, Cheng and Dobrescu (ACD) model belongs to one of UED scenarios [44].

This model is minimal extension of the SM in 4 + δ dimensions, and in literature a simple case δ = 1 is

considered [44]. The topology for this extra dimension is orbifold S 1/Z2, and the coordinate X5 = y runs from

0 to 2πR, where R is the the compactification radius. The Kaluza-Klein (KK) mode expansion of the fields

are determined from the boundary conditions at two fixed points y = 0 and y = πR on the orbifold. Under

parity transformation P5 : y → −y the fields may be even or odd. Even fields have their correspondent in the 4

dimensional SM and their zero mode in the KK mode expansion can be interpreted as the ordionary SM field. The

odd fields do not have their correspondent in the SM and therefore do not have zero mode in the KK expansion.

The significant features of the ACD model are:

i) the compactification radius R is the only free parameter with respect to SM

ii) no tree level contribution of KK modes in low energy processes (at scale µ � 1/R) and no production of

single KK excitation in ordinary particle interactions is a consequence of conservation of KK parity.

The detailed description of ACD model is provided in [45]; here we summarize main features of its construc-

tion from [44].

Gauge group

As ACD model is the minimal extension of SM therefore the gauge bosons associated with the gauge group

S U (2)L × U (1)Y are Wa
i (a = 1, 2, 3, i = 0, 1, 2, 3, 5) and Bi, and the gauge couplings are ĝ2 = g2

√
2πR and

ĝ′ = g′
√

2πR (the hat on the coupling constant refers to the extra dimension). The charged bosons are W±
i =

1√
2

(
W1

i ∓W2
i

)
and the mixing of W3

i and Bi give rise to the fields Zi and Ai as they do in the SM. The relations for

the mixing angles are:

cW = cos θW =
ĝ2√

ĝ2
2 + ĝ′2

cW = sin θW =
ĝ′√

ĝ2
2 + ĝ′2

(2.30)

The Wein berg angle remains the same as in the SM, due to the relationship between five and four dimensional

constants. The gluons which are the gauge bosons associated to S U (3)C are Ga
i (X, y) (a = 1, . . . , 8).

Higgs sector and mixing between Higgs fields and gauge bosons

The Higgs doublet can be written as:

φ =


iχ+

1√
2

(
ψ − iχ3

)

 (2.31)

with χ± = 1√
2

(
χ1 ∓ χ2

)
. Now only field ψ has a zero mode, and we assign vacuum expectation value v̂ to such

mode, so that ψ → v̂ + H. H is the the SM Higgs field, and the relation between expectation values in five and

four dimension is: v̂ = v/
√

2πR.
12



The Goldstone fields G0
(n), G±(n) aries due to the mixing of charged W±

5(n) and χ±(n) , as well as neutral fields Z5(n).

These Goldstone modes are then used to give masses to the W±µ(n) and Zµ
(n), and a0

(n), a±(n), new physical scalars.

Yukawa terms

In SM, Yukawa coupling of the Higgs field to the fermion provides the fermion mass terms. The diagonaliza-

tion of such terms leads to the introduction of the CKM matrix. In order to have chiral fermions in ACD model,

the left and right-handed components of the given spinor cannot be simultaneously even under P5. This makes the

ACD model to be the minimal flavor violation model, since there are no new opeators beyond those present in the

SM and no new phase beyond the CKM phase and the unitarity triangle remains the same as in SM [45]. In order

to have 4-d mass eigenstates of higher KK levels, a further mixing is introduced among the left-handed doublet

and right-handed singlet of each flavor f . The mixing angle is such that tan
(
2α f (n)

)
=

m f

n/R (n ≥ 1) giving mass

m f (n) =

√
m2

f + n2

R2 , so that it is negligible for all flavors except the top [44].

Integrating over the fifth-dimension y gives the four-dimensional Lagrangian:

L4 (X) =

∫ 2πR

0
L5 (X, y) (2.32)

which describes: (i) zero modes corresponding to the SM fields, (ii) their massive KK excitations, (iii) KK ex-

citations without zero modes which do not correspond to any field in SM. Feynman rules used in the further

calculation are given in Ref. [45].

In ACD model the new physics comes through the modification of Wilson coefficients. Buras et al. have

computed the above coefficients at NLO in ACD model including the effects of KK modes [45, 46]; we use these

results to study Bc → D∗s`
+`− decay. As it has already been mentioned that ACD model is the minimal extension of

SM with only one extra dimension and it has no extra operator other than the SM, therefore, the whole contribution

from all the KK states is in the Wilson coefficients, i.e. now they depend on the additional ACD parameter, the

inverse of compactification radius R. At large value of 1/R the SM phenomenology should be recovered, since the

new states, being more and more massive, decoupled from the low-energy theory.

In ACD model, the Wilson coefficients are modified and they contain the contribution from new particles

which are not present in the SM and comes as an intermediate state in penguin and box diagrams. Thus, these

coefficients can be expressed in terms of the functions F (Xt, 1/R), Xt =
m2

t

M2
W

, which generalize the corresponding

SM function F0 (Xt) according to:

F (Xt, 1/R) = F0 (Xt) +

∞∑

n=1

Fn (Xt, Xn) (2.33)

with Xn =
m2

n

M2
W

and mn = n
R [44]. The relevant diagrams are Z0 penguins, γ penguins, gluon penguins, γ magnetic

penguins, Chormomagnetic penguins and the corresponding functions are C (Xt, 1/R), D (Xt, 1/R), E (Xt, 1/R),

D′ (Xt, 1/R) and E′ (Xt, 1/R) respectively. These functions can be found in [45, 46] but to make the thesis self
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contained, we collect here the formulae needed for our analysis.

•C7

In place of C7, one defines an effective coefficient C(0)e f f
7 which is renormalization scheme independent [47]:

C(0)e f f
7 (µb) = η

16
23 C(0)

7 (µw) +
8
3

(η
14
23 − η 16

23 )C(0)
8 (µw) + C(0)

2 (µw)
8∑

i=1

hiη
αi (2.34)

where η =
αs(µw)
αs(µb) , and

C(0)
2 (µw) = 1, C(0)

7 (µw) = −1
2

D′(Xt,
1
R

), C(0)
8 (µw) = −1

2
E′(Xt,

1
R

); (2.35)

the superscript (0) stays for leading log approximation. Furthermore:

α1 =
14
23

α2 =
16
23

α3 =
6
23

α4 = −12
23

α5 = 0.4086 α6 = −0.4230 α7 = −0.8994 α8 = −0.1456

h1 = 2.996 h2 = −1.0880 h3 = −3
7

h4 = − 1
14

h5 = −0.649 h6 = −0.0380 h7 = −0.0185 h8 = −0.0057. (2.36)

The functions D′ and E′ are given in eq. (2.36) with

D′0(Xt) = − (8X3
t + 5X2

t − 7Xt)
12(1 − Xt)3 +

X2
t (2 − 3Xt)

2(1 − Xt)4 ln Xt (2.37)

E′0(Xt) = −Xt(X2
t − 5Xt − 2)

4(1 − Xt)3 +
3X2

t

2(1 − Xt)4 ln Xt (2.38)

D′n(Xt, Xn) =
Xt(−37 + 44Xt + 17X2

t + 6X2
n(10 − 9Xt + 3X2

t ) − 3Xn(21 − 54Xt + 17X2
t ))

36(Xt − 1)3

+
Xn(2 − 7Xn + 3X2

n)
6

ln
Xn

1 + Xn

− (−2 + Xn + 3Xt)(Xt + 3X2
t + X2

n(3 + Xt) − Xn)(1 + (−10 + Xt)Xt))
6(Xt − 1)4 ln

Xn + Xt

1 + Xn
(2.39)

E′n(Xt, Xn) =
Xt(−17 − 8Xt + X2

t + 3Xn(21 − 6Xt + X2
t ) − 6X2

n(10 − 9Xt + 3X2
t ))

12(Xt − 1)3

+ −1
2

Xn(1 + Xn)(−1 + 3Xn) ln
Xn

1 + Xn

+
(1 + Xn)(Xt + 3X2

t + X2
n(3 + Xt) − Xn(1 + (−10 + Xt)Xt))
2(Xt − 1)4 ln

Xn + Xt

1 + Xn
(2.40)

Following [46] one gets the expressions for the sum over n :

∞∑

n=1

D′n(Xt, Xn) = −Xt(−37 + Xt(44 + 17Xt))
72(Xt − 1)3

+
πMwR

2
[
∫ 1

0
dy

2y
1
2 + 7y

3
2 + 3y

5
2

6
] coth(πMwR

√
y)
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+
(−2 + Xt)Xt(1 + 3Xt)

6(Xt − 1)4 J(R,−1
2

)

− 1
6(Xt − 1)4 [Xt(1 + 3Xt) − (−2 + 3Xt)(1 + (−10 + Xt)Xt)]J(R,

1
2

)

+
1

6(Xt − 1)4 [(−2 + 3Xt)(3 + Xt) − (1 + (−10 + Xt)Xt)]J(R,
3
2

)

− (3 + Xt)
6(Xt − 1)4 J(R,

5
2

)] (2.41)

∞∑

n=1

E′n(Xt, Xn) = −Xt(−17 + (−8 + Xt)Xt)
24(Xt − 1)3

+
πMwR

2
[
∫ 1

0
dy(y

1
2 + 2y

3
2 − 3y

5
2 ) coth(πMwR

√
y)]

−Xt(1 + 3Xt)
(Xt − 1)4 J(R,−1

2
)

+
1

(Xt − 1)4 [Xt(1 + 3Xt) − (1 + (−10 + Xt)Xt)]J(R,
1
2

)

− 1
(Xt − 1)4 [(3 + Xt) − (1 + (−10 + Xt)Xt)]J(R,

3
2

)

+
(3 + Xt)
(Xt − 1)4 J(R,

5
2

)] (2.42)

where

J(R, α) =

∫ 1

0
dyyα[coth(πMwR

√
y) − X1+α

t coth(πmtR
√

y)]. (2.43)

•C9

In the ACD model and in the NDR scheme one has

C9(µ) = PNDR
0 +

Y(Xt,
1
R )

sin2 θW
− 4Z(Xt,

1
R

) + PE E(Xt,
1
R

) (2.44)

where PNDR
0 = 2.60 ± 0.25 [48] and the last term is numerically negligible. Besides

Y(Xt,
1
R

) = Y0(Xt) +

∞∑

n=1

Cn(Xt, Xn)

Z(Xt,
1
R

) = Z0(Xt) +

∞∑

n=1

Cn(Xt, Xn) (2.45)

Y0(Xt) =
Xt

8
[
Xt − 4
Xt − 1

+
3Xt

(Xt − 1)2 ln Xt]

Z0(Xt) =
18X4

t − 163X3
t + 259X2

t − 108Xt

144(Xt − 1)3

+[
32X4

t − 38X3
t + 15X2

t − 18Xt

72(Xt − 1)4 − 1
9

] ln Xt (2.46)

Cn(Xt, Xn) =
Xt

8(Xt − 1)2 [X2
t − 8Xt + 7 + (3 + 3Xt + 7Xn − XtXn) ln

Xt + Xn

1 + Xn
] (2.47)
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and
∞∑

n=1

Cn(Xt, Xn) =
Xt(7 − Xt)
16(Xt − 1)

− πMwRxt

16(Xt − 1)2 [3(1 + Xt)J(R,−1
2

) + (Xt − 7)J(R,
1
2

)] (2.48)

•C10

C10 is µ independent and is given by

C10 = −Y(Xt,
1
R )

sin2 θw
. (2.49)

The normalization scale is fixed to µ = µb ' 5 GeV.

We use these values of Wilson coefficients in the process Bc → D∗s`
+`− and will be discussed in Chapter 5.
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Chapter 3

Polarized, Unpolarized Direct CP

violation and Single Lepton Polarization

Asymmetries of B→ K∗`+`− decay in Z′

model.

3.1 Introduction

As we have already mentioned in chapter 1 that the study of rare B-meson decays which are induced by the flavor

changing neutral currents (FCNC) is highly interesting research area in flavor physics because these transitions

provide a fertile ground to check the SM and to probe new physics (NP) i.e. the physics beyond the SM. Sim-

ilarly, we have also indicated that to overcome the fundamental shortcomings in the SM and accommodate the

experimental measurements with the theory many models are cooked [49, 50, 51, 52, 53, 38]. Among them the

non universal Z′ model (summarized in chapter 2) looks an attractive extension of the SM (for a detailed review

see Ref. [38]). As the behavior of the off diagonal couplings of the non-universal Z′ boson with the fermions, the

FCNC transitions can occur at tree level as well as this model is help out to resolve some puzzles in the data of

rare B-meson decays such as anomaly in the Bs − B̄s mixing phase [54, 55] and π − K puzzle [56], etc.

The investigation of the couplings of non universal family of Z′ boson with the fermions through FCNC tran-

sitions have also been studied by considering different observables such as branching ratio and forward backward

asymmetry [57, 39]. In this context, the behavior of the other observables in the presence of Z′ boson may also

play a crucial role to refine our knowledge about the family of non universal Z′ model. With this motivation we

have studied single lepton polarization asymmetries, polarized and unpolarized CP violation asymmetries in the Z′
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model. In the context of CP asymmetry, it is important to emphasis here that the FCNC transitions are proportional

to three CKM matrix elements, namely, VtbV∗ts, VcbV∗cs and VubV∗us but due to the unitarity condition and neglecting

VubV∗us in comparison of VcbV∗cs and VtbV∗ts, the CP asymmetry is highly suppressed in the SM. Therefore, the

measurement of CP violation asymmetries in FCNC processes could provide a key evidence for new physics.

The scheme of this chapter is as follows. The section 3.2 contains the theoretical formulation of the Hamilto-

nian with Z′ contribution, the matrix elements and the final amplitude which is necessary to calculate the different

physical observables for B→ K∗`+`−. In section 3.3, we give the formulas and explicit expressions of observables

which are under consideration in this chapter. In section 3.4 we present the numerical analysis to show how the

lepton polarization asymmetries and CP violation asymmetries are influenced due to the contribution of Z′ boson.

In the last section, we give our conclusions.

3.2 Effective Hamiltonian with Z′ boson

As stated in Chapter 2, due to the presence of off-diagonal couplings in the Z′ model, FCNC transitions can occur

at tree level. In this regard, to reduce the number of parameters, the Z − Z′ mixing and the interaction of right

handed quark with Z′ are usually ignored [58]. Therefore, Z′ boson contribution is only to modify the Wilson

coefficients C9 and C10. With these assumptions, the additional part of the effective Hamiltonian due to the Z′

contribution given in Eq. (2.27) can also be written as

HZ′
e f f = −2GF√

2
sγµ(1 − γ5)b

× Bsb

[
SL
``

¯̀γµ(1 − γ5)` − SR
``

¯̀γµ(1 + γ5)`
]

+ h.c,

(3.1)

where Bsb is the off diagonal left handed coupling of Z′ boson with quarks and SL
`` and SR

`` represent the left and

right handed couplings of Z′ boson with leptons, respectively. It is to be noted that if a new weak phase φsb is

introduced in the off-diagonal coupling Bsb then this coupling could be read as Bsb = Re(Bsb)e−iφsb . Therefore,

one can also put the above equation in the following form

HZ′
e f f = −4GF√

2
VtbV∗ts

[
ΛsbCZ′

9 Q9 + ΛsbCZ′
10Q10

]
+ h.c.

(3.2)
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where

Λsb =
4πe−iφsb

αV∗tsVtb

CZ′
9 = Re(Bsb)S LL; CZ′

10 = Re(Bsb)DLL

S LL = SL
`` + SR

``; DLL = SL
`` − SR

`` (3.3)

Thus, to include the Z′ effects in the problem under consideration one has to make the following replacements in

the Wilson coefficients C9 and C10, while, C7 remains unchanged

Ctot
9 = Ce f f

9 + ΛsbCZ′
9 ,

Ctot
10 = C10 + ΛsbCZ′

10. (3.4)

The matrix elements in the B → K∗l+l− decay amplitude in Eq. (2.9) can be parameterized in terms of the form

factors as follows [59, 25, 32, 60, 61, 62]

〈K∗(k, ε)|sγµ(1 ± γ5)b|B(p)〉 = ∓iqµ
2mK∗

s
ε∗ · q

[
A3(s) − A0(s)

]

± iε∗µ(mB + mK∗)A1(s) ∓ i(p + k)µε∗ · q A2(s)
(mB + mK∗)

− εµνλσpλqσ
2V(s)

(mB + mK∗)
(3.5)

Contracting above equation by qµ and using the equation of motion, the form factors A3(s) can be expressed in

terms of the A1(s) and A2(s) form factors as follows

A3(s) =
mB + mK∗

2mK∗
A1(s) − mB − mK∗

2mK∗
A2(s) (3.6)

and

〈K∗(k, ε)|siσµνqν(1 ± γ5)b|B(p)〉 = 2εµνλσpλqσF1(s)

± i
{
ε∗µ(m2

B − m2
K∗) − (p + k)µε∗ · q

}
F2(s)

± iε∗ · q
qµ −

(p + k)µ
(m2

B − m2
K∗)

 F3(s) (3.7)

These seven independent form factors V(s), A1(s), A2(s), A0(s), F1(s), F2(s) and F3(s) are the scalar function

of the square of the momentum transfer s = q2 = (p − k)2 and are non-perturbative quantities. These form

factors are the main source of hadronic uncertainties and are calculated by different non perturbative schemes

such as lattice QCD, Quark model (QM) [63] , perturbative QCD (PQCD) and light cone-QCD sum rules (LCSR)
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[64, 65], etc.

By using the matrix elements which are parameterized in terms of the form factors (Eqs. 3.5 and 3.7) with the

expression (2.9), the decay amplitude for B→ K∗l+l− can be written as

M =
αGF

4
√

2π
V∗tbVts

[
lγµ(1 − γ5)l × ( − 2Aεµνλσε∗kλqσ

−iB1ε
∗
µ + iB2ε

∗ · q(p + k)µ + iB0ε
∗ · qqµ

)

+lγµ(1 + γ5)l × ( − 2Cεµνλσε∗kλqσ

−iD1ε
∗
µ + iD2ε

∗ · q(p + k)µ + iD0ε
∗ · qqµ

)]
(3.8)

Here the last term in the first line of the above equation will survive only for lγµγ5l due to the fact that

qµ(lγµγ5l) = 2ml(lγ5l) and will vanish for lγµl because of qµ(lγµl) = 0. However, the auxiliary functionsA, C, B1,

D1, B2 D2, B0 and D0 contain both long and short distance physics which are encapsulated in the form factors

and in the Wilson coefficients, respectively, and can be written in the following form.

A = 2CLLH1 + 4mbCe f f
7

F1(s)
s

,

B1 = 2CLLH3 +
4mb

s
Ce f f

7 H4

B2 = 2CLLH6 + 4
mbCe f f

7

s
×H5

B0 =
2mk∗

s
H7 − 4mb

s
Ce f f

7 F3(s)

C = A(CLL → CLR) D1 = B1(CLL → CLR)

D2 = B2(CLL → CLR) D0 = B0(CLL → CLR)

(3.9)

where

CLL = Ctot
9 −Ctot

10 CLR = Ctot
9 + Ctot

10

H1 =
V(s)

(mB + mK∗ )

H3 = (mB + mK∗)A1(s)

H4 = (m2
B − m2

K∗)F2(s)

H6 =
A2(s)

(mB + mK∗ )

H5 =

[
F2(s) +

s
(m2

B − m2
K∗)

F3(s)
]

H7 = (A3 − A0)

(3.10)
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3.3 Physical Observables

Now, we have all the ingredients to calculate the physical observables. The double differential decay rate is given

in [66]

d2Γ(B→ K∗l+l−)
d cos θds

=
1

2m3
B

2β
√
λ

(8π)3 |M|2 (3.11)

where β ≡
√

1 − 4m2
l

s and λ ≡ m4
B + m4

k∗ + s − 2m2
Bm2

k∗ − 2m2
Bs − 2m2

k∗ s. By using the expression of the decay

amplitude given in Eq. (3.8) one can get the expression of the dilepton invariant mass spectrum as

dΓ(B→ K∗l+l−)
ds

=
G2

Fα
2β
√
λmB

214π5 |VtbV∗ts|2∆ (3.12)

where

∆ = 4(2m2
l + s){8λ

3
Re|A|2 +

12m2
K∗ s + λ

3m2
K∗ s

Re|B1|2

− (m2
B − m2

K∗ − s)

3m2
K∗ s

Re(B1B∗2) +
λ

3m2
K∗ s
Re|B2|2}

+
32λ

3
(s − 4m2

l )Re|C|2 + [
4λ(2m2 + s)

3m2
K∗ s

+ 16(s − 4m2
l )]

×Re|D1|2 − 4λ
3m2

K∗ s
{[(2m2

l + s)(m2
B − m2

K∗)

+s(s − 4m2
l )]Re(D1D∗2) + [6m2

l s(2m2
B + 2m2

K∗ − s)

+λ(2m2
l + s)]Re|D2|2 +

8m2
l λ

m2
K∗

(m2
B − m2

K∗)Re(D2D∗0)

−8m2
l λ

m2
K∗
Re|D0|2 (3.13)

3.3.1 Single Lepton Polarization Asymmetries

In this section we will compute the single lepton polarization asymmetries in the B→ K∗l+l− i.e. the asymmetries

where only one of the final state lepton is polarized. For this purpose we first define the six orthogonal vectors

belonging to the polarization of l− and l+ which we denote here by S i and Wi respectively where i =L, N and T

corresponding to the longitudinally, normally and transversally polarized lepton l± respectively. [27, 67]

S µ
L ≡ (0, e−L) =

(
0,

p−
|p−|

)

S µ
N ≡ (0, e−N) =

(
0,

k × p−
|k × p−|

)

S µ
T ≡ (0, e−T ) = (0, eN × eL) (3.14)
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Wµ
L ≡ (0, e+

L) =

(
0,

p+

|p+|
)

Wµ
N ≡ (0, e+

N) =

(
0,

k × p+

|k × p+|
)

Wµ
T ≡ (0, e+

T ) = (0,wN × wL) (3.15)

where p+, p− and k denote the three momenta vectors of the final particles l+, l− and k respectively. These

polarization vectors S µ
i (Wµ

i ) in Eqs. (3.14) and (3.15) are defined in the rest frame of l−(l+). When we apply

lorentz boost to bring these polarization vectors from rest frame of l−(l+) to the center of mass frame of final

leptons, only the longitudinal polarization four vector is changed while the other two polarization vectors remain

unchanged. After this operation the longitudinal four vectors read as

S µ
L =

( |p−|
ml

,
Elp−

ml|p−|
)

Wµ
L =

( |p+|
ml

,− Elp+

ml|p+|
)

(3.16)

To achieve the polarization asymmetries one can use the spin projectors 1
2 (1 + γ5 /S ) and 1

2 (1 + γ5 /W) for `− and `+,

respectively. The single lepton polarization asymmetries formula which is given in [67, 68]

P±i =

dΓ(S±=e±i )
ds − dΓ(S±=−e±i )

ds
dΓ(S±=e±i )

ds +
dΓ(S±=−e±i )

ds

(3.17)

where i denotes the L, N and T and S± is the spin direction of l±. The relation between the polarized and unpolar-

ized invariant dilepton mass spectrum for the B→ K∗l+l− read as

dΓ(S±)
ds

=
1
2

(
dΓ

ds

) [
1 + (PLe±L + PNe±N + PT e±T ) · S±

]

(3.18)

By using the decay rate which is given in Eq. (3.12) with the polarization vectors defined in Eqs. (3.14-3.16),

we get the following expressions for the single lepton polarization asymmetries

PL(s) =
16λ

3

√
s(s − 4m2

l )Re(AC∗) +
4
√

s − 4m2
l

3m2
K∗
√

s
{(12m2

K∗ s + λ)

×Re(B1D∗1) − λ(m2
B − m2

K∗ − s)[Re(B1D∗2) + Re(B2D∗1)]

+λ2Re(B2D∗2)Re|B1|2} (3.19)
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PN(s) =
4πml

√
λ√

s
{sRe(AB∗1) +

(m2
B − m2

K∗ − s)

4m2
K∗

[Re(B1D∗1)

−(m2
B − m2

K∗)Re(B1D∗2) + sRe(B1D∗0)]}

− λ

m2
K∗
{Re(B2D∗1) + (m2

B − m2
K∗)Re(B2D∗2)

+sRe(B2D∗0)}

(3.20)

PT (s) = 4πml

√
λ(s − 4m2

l ){Im(AD∗1) + Im(B1C∗)

+
(m2

B + 3m2
K∗ − s)

4m2
K∗

Im(D1D∗2) +
(m2

B − m2
K∗ − s)

4m2
K∗

× Im(D1D∗0) − λ

m2
K∗
Im(D2D∗0)} (3.21)

3.3.2 Polarized and Unpolarized CP Asymmetries

The normalized CP violation asymmetries can be defined through the difference of the differential decay rates of

particle and antiparticle decay modes as follows [69, 70]

ACP(S± = e±i ) =

dΓ(S−)
ds − dΓ̄(S+)

ds
dΓ
ds − Γ̄

ds

(3.22)

where

dΓ

ds
=

dΓ(B→ K∗`+`−(S−))
ds

dΓ̄

ds
=

dΓ̄(B→ K∗`+(S+))`−

ds

The differential decay rate of b → s`+`− is given in Eq. (3.18), analogously the CP conjugated differential

decay width can be written as

dΓ̄(S±)
ds

=
1
2

(
dΓ̄

ds

) [
1 + (PLe±L + PNe±N + PT e±T ) · S±

]

(3.23)

It is noted here, that dΓ̄
ds belongs to the transition b̄ → s̄`+`− which can be obtained by replacing Λsb to Λ∗sb in

Eq. (3.2). Furthermore, by using the fact that S+ = −S− for L,N and S+ = S− for T we get

ACP(S± = e±i ) =
1
2

[ ( dΓ
ds

)
−

(
dΓ̄
ds

)
(

dΓ
ds

)
+

(
dΓ̄
ds

) ±
(

dΓ
ds

)
Pi − {

(
dΓ
ds

)
Pi}Λsb→Λ∗sb(

dΓ
ds

)
+

(
dΓ̄
ds

)
]
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(3.24)

where i denotes the L, N or T polarizations of the final state leptons. By using Eq. (3.12) in the above equation,

CP violation expression becomes

ACP(S± = e±i ) =
1
2

[
∆ − ∆̄

∆ + ∆̄
± ∆i − ∆̄i

∆i + ∆̄i

]

(3.25)

where ∆̄ = (∆)Λsb→Λ∗sb
, ∆̄i = (∆i)Λsb→Λ∗sb

and

ACP(s) =
∆ − ∆̄

∆ + ∆̄
, Ai

CP(s) =
∆i − ∆̄i

∆i + ∆̄i
(3.26)

so by using these definitions normalized CP violation asymmetry can be written as follows

ACP(S± = e±i ) =
1
2

[
ACP(s) ±Ai

CP(s)
]
, (3.27)

where the plus sign in the second term of the above expression corresponds to L and N polarizations, whereas the

negative sign is for the T polarization.

The first term in ACP(s) in Eq. (3.27) is the unpolarized CP violation asymmetry, while the second term

Ai
CP(s) is called the polarized CP violation asymmetry which provide the modifications to the unpolarized CP

violation. After some calculation we have found the following results forACP(s) andAi
CP(s)

ACP(s) =
−4Im(Λsb)Ω(s)

2∆ + 4Im(Λsb)Ω(s)

Ai
CP(s) =

−4Im(Λsb)Ω(s)
2∆ + 4Im(Λsb)Ωi(s)

(3.28)

where i = L,N or T , and the explicit expressions of Ω(s), the Ωi(s) are given below

Ω(s) = A1Im(C7C∗9Z′ ) + A2Im(C∗9C9Z′)

ΩL(s) = A3{Im(C10Z′C∗9) + Im(C∗9Z′C10)}

ΩN(s) = A4Im(C7C∗9Z′ ) + A5{Im(C10C∗9Z′)}

+A6Im(C∗9C9Z′ )

ΩT (s) =
β

2
A6{Im(C10C∗9Z′ ) + Im(C10Z′C∗9)}
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with

A1 =
64

3m2
K∗ s

2
mb

[
(H3H5 +H6H4)λ(m2

K∗ − mB2 + s)

+(H3H4 +H5H6)λ + (3H3H4 + 2H1F1(s)λ)
]

A2 =
32(2m` + s)

3m2
K∗ s

[
2H3H6λ(m2

K∗ − mB2 + s)

+8H2
1 m2

K∗ sλ +H2
3 (12m2

K∗ s + λ) +H2
6λ

2
]

A3 =
32β

3m2
K∗

[
2λ(mB2 − m2

K∗ − s)H3H6

−H2
3 (12m2

K∗ s + λ) − λ(8m2
K∗ sH2

1 + λH2
6 )

]

A4 =
128π√

s
m`mb

√
λ
[
F1(s)H3 +H1H4

]

A5 =
8πm`

√
λ

m2
K∗
√

s

(
H6(m2

K∗ − m2
B) +H3 − 2H7

)

×
(
H3(m2

K∗ − mB2 + s) +H6λ
)

A6 = 128mlπ
√
λsH1H3

3.4 Phenomenological Analysis

In this section we describe the numerical analysis for the aforementioned observables i.e. the polarized, unpo-

larized direct CP violation asymmetries and single lepton polarization asymmetries. The input parameters which

we have used in the numerical calculations such as masses of particles, life times ,CKM matrix elements etc, are

given in Table-3.1, while the Wilson coefficients are displayed in Table-3.2. For the form factors, we rely on the

updated results of Light Cone QCD sum rule approach [73]. The values of these form factors and all relevant

fitting parameters and their related fit formulas for the decay under consideration B → K∗`+`− are recollected in

ref [42].

As for as the numerical values of the Z′ couplings are concerned, there are several severe constraints from

different inclusive and exclusive B decays [55, 42]. These numerical values of coupling parameters of Z′ model

are recollected in Table-3.3 where S 1 and S 2 correspond to two different fittings values for Bs − B̄s mixing data

by the UTfit collaboration [71].

Table 3.1: Default values of input parameters used in the calculations [72]
mB = 5.28 GeV, mb = 4.28 GeV, mµ = 0.105 GeV,

mτ = 1.77 GeV, fB = 0.25 GeV, |VtbV∗ts| = 45 × 10−3,
α−1 = 137, GF = 1.17 × 10−5 GeV−2,

τB = 1.54 × 10−12 sec, mK∗ = 0.892 GeV, mK∗2 = 1.43 GeV.

Before start the numerical analysis, it is better to mention again that S LL and DLL represent the combination

of left and right handed couplings of Z′ with the leptons and Bsb denotes the right handed coupling of Z′ with
25



Table 3.2: The Wilson coefficients Cµ
i at the scale µ ∼ mb in the SM [64].

C1 C2 C3 C4 C5 C6 C7 C9 C10

1.107 -0.248 -0.011 -0.026 -0.007 -0.031 -0.313 4.344 -4.669

Table 3.3: The numerical values of the Z′ parameters [55, 71].
Re(Bsb) × 10−3 φsb(inDegree) S LL × 10−2 DLL × 10−2

S 1 1.09 ± 0.22 −72 ± 7 −2.8 ± 3.9 −6.7 ± 2.6
S 2 2.20 ± 0.15 −82 ± 4 −1.2 ± 1.4 −2.5 ± 0.9

the quarks [see Eq. (3.3)] and in our numerical analysis S LL = 0 and DLL , 0 depict the situation when the new

physics comes only from the modification in the Wilson coefficient C10, while, the opposite case, S LL , 0 and

DLL = 0, indicates that the new physics is present in the process under consideration due to the change in the

Wilson coefficient C9 [see Eq. (3.4)]. In figs 3.1-3.5 we have displayed the results of single lepton polarization

asymmetries as a function of square of the momentum s within the SM and in Z′ model. It in important to note here

that in all the graphs the solid line correspond to the SM values of observables, while, the other curves correspond

to the values of observables when we include the Z′ boson effects. With the help of these graphs our findings are

in order.

(a) (b)

Figure 3.1: (a) Longitudinal and (b) Normal Polarization Asymmetries vs s with different values of Z′ couplings
in S 1 and S 2. Dashed line corresponds to Bsb = 1.31, φsb = −79◦, S LL = −6.7, DLL = −9.3. Dashed dotted
line corresponds to Bsb = 0.87, φsb = −65◦, S LL = 1.1, DLL = −4.1. Dashed double dotted line corresponds
to Bsb = 1.09, φsb = −72◦, S LL = −2.8, DLL = −6.7. Dashed triple dotted line corresponds to Bsb = 2.05,
φsb = −78◦, S LL = −2.6, DLL = −2.34

 In figs. 3.1a and 3.1b, the longitudinal PL and the normal polarization PN asymmetries, respectively, as a

function of s are displayed in the SM and in the Z′ model for the case of muons as final sate leptons. To

see the influence of Z′ boson we have drawn these asymmetries with different values of chiral couplings

of Z′ for S 1 and S 2 which are listed in Table(3.2). These figures show that both the longitudinal and

normal polarization asymmetries values are sensitive to the choice of the values of Z′ couplings. It can

also be noticed from these figures that the values of the longitudinal polarization asymmetries are sensitive

throughout the s region while for the normal polarization asymmetry the Z′ effects are only prominent in

the low s region and vanish for high s region. It is noted here that the transverse polarization asymmetry PT26



(a) (b)

Figure 3.2: Longitudinal and Normal Polarization Asymmetries in S 1 at s = 3 GeV2, here the flat curves corre-
spond to the SM values of PL and PN .

is too tiny both in the SM and the Z′ new physics.

It is important to mention here that in order to show the uncertain non-perturbative kinematical region (7

GeV2 ≤ s ≤ 12 GeV2), we have also plotted PL with charmed resonances (J/ψ) in fig. 3.1a. It is clear from fig 3.1a

that in the resonance region we cannot rely on the predictions obtained by just taking into account perturbative

contributions, however, one can also see from fig 3.1a that the effects are also well prominent and distinguished

from the SM in the regions which are below (1 GeV2 ≤ s ≤ 6 GeV2) and above (s ≥ 14.4 GeV2) the resonance

region.

(a) (b)

Figure 3.3: Legends are same as in fig. 3.2 but for S 2.

 We have also plotted 3-dimensional graphs of PL and PN at s = 3GeV2 (which is well below the resonance

region) against the DLL and S LL in figs. 3.2 and 3.3 for S1 and S2, respectively for B → K∗µ+µ−. From

these graphs, one can clearly see the variation in the values of PL upon varying the values of Z′ couplings.

For instance, from fig 3.2a one can extract that the SM value of PL at s = 3GeV2 is 0.76 which can be

reduced up to 60% when we set Bsb = 1.31 × 10−3, DLL = −9.3 and S LL = 1.1. It is important to mention

here that the values of PL and PN are insensitive to the value of new weak phase φsb.

 In fig. 3.4 the longitudinal polarization of B → K∗τ+τ− is portrayed against s. Similar to the case of

muons the effects of Z′ are also prominent, particularly, at high value of s which is far above the resonance

region. From this graph it can be seen that the maximum value of PL which lies at smax can be increased
27



13 14 15 16 17 18 19
-0.8

-0.6

-0.4

-0.2

0.0

sHGeV2
L

P
L
HB
®

K
*
Τ
+
Τ
-
L

Figure 3.4: Legends are same as in fig. 3.1 but for the case of τ+τ−.

or decreased when we change the values of coupling parameters of Z′ boson. As for the previous case of

muons, the value of these asymmetry is also not sensitive to the value of new weak phase φsb.
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Figure 3.5: Normal Polarization Asymmetry as a function of s (a) for S 1 and (b) for S 2 with different values of
Z′ parameters.

 The normal polarization asymmetry PN as a function of s for the case of tauons are shown in figs. 3.5a and

3.5b for S LL = 0 and DLL = 0, respectively, with different values of Bsb and new weak phase φsb. We have

found that PN is an interesting observable because the Z′ effects are comparatively well prominent from the

muon case (see fig. 3.1b) throughout the available kinematical space as well as its value is dependent on the

new weak phase φsb. Fig. 3.5a depicts that due to the Z′ effects the zero crossing of the asymmetry which

lies approximately at 16GeV2 is shifted towards lower values of s for both S 1 and S 2 when we decrease

the value of new weak phase φsb. Furthermore, the maximum value of PN = 0.14 lies at smin reduced up

to 43% when we set the value of φsb = −65◦. Similarly, due to the change in the value of φsb on setting

S LL = 0 the zero crossing of PN is shifted towards left (right) for S 1 (S 2) as depicted in fig. 3.5b, while for

the maximum value -0.14 is increased (decreased) for S 1 (S 2).

The average values of asymmetries are also very important tool to probe new physics and can be obtained by

the following formula

〈Pi〉 =

∫ (m2
B−m2

k∗ )

4m2
l

Pi
dΓ
ds ds

∫ (m2
B−m2

k∗ )

4m2
l

dΓ
ds ds

(3.29)
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Figure 3.6: Average value of the Longitudinal Polarization Asymmetries 〈PL〉 as a function of S LL (a) in S 1 and
(b) in S 2.

Table 3.4: Numerical values of 〈PL〉 in Z′ model for scenario-I
〈PL〉 at DLL = 0 〈PL〉 at S LL = 0

φsb

Decay Channel
S LL S LL DLL DLL

in Degree −6.7 1.1 −9.3 −4.1
Bsb = 0.87 1.31 0.87 1.31 0.87 1.31 0.87 1.31

−65◦ B→ K∗µ+µ− -0.785 -0.715 -0.774 -0.757 -0.597 -0.485 -0.731 -0.679
B→ K∗τ+τ− -0.423 -0.347 -0.526 -0.519 -0.515 -0.476 -0.538 -0.532

−79◦ B→ K∗µ+µ− -0.741 -0.651 -0.782 -0.772 -0.573 -0.442 -0.728 -0.669
B→ K∗τ+τ− -0.443 -0.354 -0.517 -0.506 -0.454 -0.394 -0.509 -0.490

Now we discuss the variation in the average values of single lepton polarization asymmetries 〈Pi〉, where

i = L,N or T , due to the influence of Z′ boson effect. To achieve this purpose, we have displayed 〈PL〉, 〈PN〉 and

〈PT 〉 in figures 3.6-3.11 against the different coupling parameters of Z′ models. From these graphs we have found

the following results

 In figs. 3.6 and 3.7 we have plotted 〈PL〉 for the case of muons and tauons as final state leptons, respectively,

as a function of S LL with the different values of Z′ parameters where fig. a (b) correspond to S 1 (S 2). It

is important to note here that the average value of PL is not much affected due to the variation in the DLL

values. For this reason, we have not plotted 〈PL〉 against DLL. However, one can easily see from figures

3.6 and 3.7 that for the small values of S LL the variation in the 〈PL〉 is not much significant but when we

increase the value of S LL, the value of 〈PL〉 is decreased accordingly for both muon and tauons in both the

scenarios S 1 and S 2.

On the other hand to see the dependence of 〈PL〉 on new weak phase φsb we have listed its values with the

different Z′ parameters in Tables-3.4 (3.5) for S 1 (S 2). From these tables one can extract the variation in

the values of 〈PL〉 due to the change in the values of φsb by keeping the other parameters of Z′ to be fixed.

 For 〈PN〉, it should be noted here that the SM value of 〈PN〉 is +0.01 and due to the influence of Z′ boson

it will become too suppressed to be measured. On the other hand for the case of tauons 〈PN〉 is displayed

vs S LL in figs. 3.8a (3.8b) for S 1 (S2), respectively. It is also worthwhile to mention here that similar to

the case of 〈PL〉, we have found that the value of 〈PN〉 is mildly dependent on the value of DLL. However,
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Table 3.5: Numerical values of 〈PL〉 in Z′ model for scenario-II
〈PL〉 at DLL = 0 〈PL〉 at S LL = 0

φsb

Decay Channel
S LL S LL DLL DLL

in Degree −2.6 0.2 −2.34 −1.6
Bsb = 2.05 2.35 2.05 2.35 2.05 2.35 2.05 2.35

−65◦ B→ K∗µ+µ− -0.795 -0.780 -0.790 -0.788 -0.696 -0.675 -0.539 -0.537
B→ K∗τ+τ− -0.437 -0.451 -0.531 -0.531 -0.535 -0.532 -0.539 -0.537

−79◦ B→ K∗µ+µ− -0.754 -0.733 -0.793 -0.792 -0.689 -0.665 -0.736 -0.722
B→ K∗τ+τ− -0.458 -0.434 -0.527 -0.526 -0.496 -0.488 -0.511 -0.507

figures 3.8a and 3.8b depict that for both S 1 and S 2 the 〈PN〉 crosses zero and become positive at a particular

value of S LL which shift towards the lower value of S LL when we increase the value of Bsb. One can also

find from figs 3.8a (3.8b) that on setting the maximum values of Z′ boson couplings the SM value -0.021

of 〈PN〉 is reached up to +0.1 (+0.06) for S 1 (S 2). Therefore, the measurement of magnitude and sign of

〈PN〉 is valuable to determine the exact values of Z′ couplings.

 In the same way, we have also drawn the explicit dependence of 〈PN〉 (when tauons are the final state

leptons) on φsb for S 1 and S 2 in figs. 3.9a and 3.9b, respectively, where S LL = 0 and DLL is fixed to be its

central value -6.7 for S 1 and -2.5 for S 2. It can be easily seen from these figures that in S 1 (S 2) the value

of 〈PN〉 is increased (decreased) when we decrease (increase) the value of new weak phase φsb. For instance

at φsb = −65◦ (−86◦) and Bsb = 1.31 × 10−3 (2.35 × 10−3), the deviation in 〈PN〉 from its SM value is about

62% (67%) for S 1 (S2), while, the deviation in the value of 〈PN〉 is not significant from its SM value when

we take φsb = −79◦ (−78◦). One last comment on 〈PN〉 is that if we put DLL = 0 and set S LL to be non

zero then 〈PN〉 is not much sensitive to the value of new weak phase φsb. Thus, the normal polarization

asymmetry when the tauons are the final state lepton is an interesting observable to constraint the Z′ boson

couplings as well as to determine the accurate value of new weak phase φsb.
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Figure 3.7: Legends are same as fig. 3.6 but for B→ K∗τ+τ−.

 Average transverse polarization asymmetry 〈PT 〉 is depicted in figs. 3.10 and 3.11 only for B → K∗τ+τ−

since for the case of muons its SM value is too tiny to be measured and not become large enough to reach the

visible range due to the influence of Z′ boson contribution. In contrast to the case of 〈PL〉 and 〈PN〉 which
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Figure 3.8: The average value of Normal Polarization Asymmetry PN as a function of S LL for B → K∗τ+τ− (a)
for S 1 and (b) for S 2.
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Figure 3.9: Legends are same as in fig. 3.8 but as a function of φsb.

are mildly effected by the variation in the value of DLL, we have found that the value of 〈PT 〉 is sensitive to

DLL. Therefore, we have also shown the explicit dependence of 〈PT 〉 on DLL in figure 3.11 along with the

S LL dependence which is shown in figure 3.10. One immediate look on these figures tells us that though the

dependence of 〈PT 〉 on DLL is not as strong as on S LL but significantly enough to be observed. Furthermore,

〈PT 〉 is an increasing function of DLL throughout the allowed region of DLL for both S 1 and S 2. On the

other hand for S LL the 〈PT 〉 behavior is approximately similar to the 〈PN〉 case but with the opposite sign

which we have discussed above. However, 〈PT 〉 is insensitive to the new weak phase φsb.

Now we turn our attention to analysis of another interesting observable i.e. CP violation. As we have men-

tioned earlier in the introduction that for b → s`+`− transition the value of CP violation is negligible and any

measurement of this observable is a clear sign of new physics. However, we have found that both the polarized

and unpolarized CP violation asymmetries for B → K∗µ+µ− are suppressed in the SM and in the Z′ model. Sim-

ilarly, CP violation when one of the final state tauon is transversely polarized is also found to be suppressed and

therefore, we do not include these asymmetries in our numerical discussion. The other CP asymmetries ACP

and Ai
CP (where i = L,N) for B → K∗τ+τ− are displayed in figs. 3.12 to 3.15 and their analysis is given in the

following points.

 We have found that the value of direct unpolarized CP violation asymmetryACP is not significantly changed
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Figure 3.10: Legends are same as in fig. 3.8 but for 〈PT 〉.
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Figure 3.11: The average value of transverse polarization asymmetry 〈PT 〉 as a function of DLL for B → K∗τ+τ−

(a) for S 1 and (b) for S 2.

when we change the values of new weak phase φsb and DLL but strongly depend on the value of S LL and

mildly depend on Bsb as can be seen from figs. 3.12a and 3.12b for S 1 and S 2, respectively. It is also noted

from these figures that for both S 1 and S 2 theACP is an increasing function of S LL.

 The longitudinally polarized CP asymmetry AL
CP is drawn in figs 3.13a and 3.13b for S 1 and S 2, respec-

tively. In contrast to the ACP it is found that the AL
CP is almost insensitive to the value of S LL but sensitive

to the values of DLL and Bsb. It is also important to point out here that similar to the case ofACP, the value

ofAL
CP is very mildly affected due to change in the value of φsb. Furthermore, the value ofAL

CP is increased

with the increment in the values of DLL and Bsb. For instance, from a closer look on fig 3.13a one can extract

that at Bsb = 0.87 × 10−3 and DLL = −4.1 the value ofAL
CP is approximately 0.035 which is enhanced up to

0.09 when we set Bsb = 1.31 × 10−3 and DLL to be -9.3.

 In contrast to ACP and AL
CP the AN

CP is sensitive for both S LL and DLL. The behavior of AN
CP as a function

of S LL(DLL) is depicted in figs. 3.14a (b) and 3.15a (b) for S 1 and S 2, respectively. These figures represent

that the value ofAN
CP is positive when we put S LL = 0 and negative when we put DLL = 0; however, in both

cases theAN
CP is an increasing function of S LL and DLL.
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Figure 3.12: Unpolarized CP violation asymmetryACP as function of S LL for B→ K∗τ+τ− (a) for S 1 and (b) for
S 2.

(a) (b)

� �
�

�
�

�
�

�
�

�
�

I
I

I
I

I
I

I
I

I

I

I

@
@

@
@

@
@

@
@

@

@

@

-9 -8 -7 -6 -5
-0.02

0.00

0.02

0.04

0.06

0.08

DLL

<
A

L
C

P
>
HB
®

K
*
Τ
+
Τ
-
L

Φsb=-79o , SLL=0

Bsb=0.87´10-3 � � �

Bsb=1.09´10-3
I I I

Bsb=1.31´10-3
@ @ @

�
�

�
�

�
�

�
�

I
I

I
I

I
I

I
I

@
@

@
@

@
@

@
@

-2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

DLL

<
A

L
C

P
>
HB
®

K
*
Τ
+
Τ
-
L

Φsb=-82o , SLL=0

Bsb=2.05´10-3 � � �

Bsb=2.20´10-3
I I I

Bsb=2.35´10-3
@ @ @

Figure 3.13: Longitudinally polarized CP violation asymmetryAL
CP as a function of DLL for B→ K∗τ+τ− (a) for

S 1 and (b) for S 2.
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Figure 3.14: Normally polarized CP violation asymmetry for B→ K∗τ+τ− in S 1 (a) as a function of DLL (b) as a
function of S LL.
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Figure 3.15: Legends are same as in fig. 3.14 but for S 2.
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3.5 Summary and Conclusion

In this chapter we have analyzed the influence of non-universal Z′ model to the B → K∗`+`− decay. For this

purpose we have calculated CP violation and single lepton polarization asymmetries. To calculate the numerical

values of these observables we rely on the LCSR form factors which are given in [73]. As we have mentioned

in the introduction, the CP asymmetries for b → s`+`− are very tiny to be measurable experimentally, so, their

measurements at current colliders would be clear indication of NP. In this context the unpolarized and polarized

CP violation asymmetries are calculated for the above mentioned decay channel in Z′ model. It is found that in

this model the CP violation asymmetriesACP,AL
CP andAN

CP are considerably enhanced for the case when tauons

are the final state leptons, while, for the case of muons CP asymmetries remain suppresed. It is also found that

the unpolarized CP violation is not sensitive to the DLL while its value is decreased when we increase the value of

S LL coupling of Z′ . In contrast to the unpolarized CP violation, the longitudinally polarized CP violationAL
CP is

not much sensitive to the S LL but sensitive to other couplings and similar to the case of unpolarized CP violation

asymmetry its value is also increased when we increase the values of the couplings. On the other hand the value of

AN
CP is sensitive for all the couplings present in the Z′ model. However, the dependence of these CP asymmetries

on the value of new weak phase φsb is very mild.

Apart from the CP violation asymmetries, the single lepton polarization asymmetries are also analyzed in the

presence of Z′ boson. It is shown in this study that the values of Pi and 〈Pi〉 significantly deviate from their SM

values where one can fix the parameters of Z′ model. It is also shown that the longitudinal polarization asymmetry

for both muons and tauons and the normal polarization only for tauons are sensitive to the new weak phase φsb.

Therefore, the behavior of single lepton polarization asymmetries under the presence of Z′ boson depict that

precise measurements of these asymmetries may help to yield the accurate values of new weak phase φsb and its

coupling with the fermions.

Finally, to measure the asymmetries of order 0.01 relative to the branching ratio of order 10−6 at 3σ level needs

approximately 1010 to 1011 BB̄ pairs (see last reference of [70]) and in LHC 108 to 1012 BB̄ pairs are expected to

be produced. Henceforth, the precise measurements of both the CP violation and lepton polarization asymmetries

for B→ K∗`+`− would seen to be possible at LHC which are very promising handy tool to extract out the imprints

of Z′ boson at low energy level.
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Chapter 4

Model Independent Analysis of the

Forward-Backward Asymmetry for the

B→ K1µ
+µ− Decay

4.1 Introduction

As we have seen that in SM the decay B → K∗l+l− is completely determined by the Wilson coefficients of only

three operators Q7, Q9 and Q10 which are evaluated at the scale µ = mb [74]. On the other hand the most

general analysis of these decays needs other set of new operators which are based on the the general four-fermion

interactions. In the literature, the model independent analysis of the quark level b → sl+l− decay, in terms of 10

new types of local four fermion interactions, has been performed in Ref. [75, 76] which is then applied to the

systematic study of B→ (K,K∗)l+l− [77].

Like B → K∗l+l− the semileptonic decay B → K1(1270)l+l− is also governed by the quark level transition

b → sl+l−. Analysis of this decay process will be a useful complement to the widely investigated analysis for

the B → K∗l+l− process, since the analysis probes the effective Hamiltonian in a similar but not identical way.

Compared to B → K∗l+l− the situation is complicated in the decay B → K1(1270)l+l−, because the axial vector

states K1(1270) and K1(1400) are the mixtures of ideal 1P1(K1A) and 3P1(K1B) orbital angular momentum states

and current limit on the mixing angle is [78]

θ = −(34 ± 13)o. (4.1)

Recently, some studies have been made on B → K1 transitions both by incorporating the mixing angle as well as

with out it [79]. Moreover, it is also shown in ref [80] that the zero position of the forward-backward asymmetry
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mildly depend on the mixing angle for B → K1(1270)l+l−. Therefore, significant shift in the zero position of the

forward-backward asymmetry would clearly give a signature of NP.

Regarding the experimental point of view the radiative decay B→ K1(1270)γ has already seen by Belle. The

related decay with a lepton pair instead of a photon in the final state can also be expected to be observed at LHC

[81] and SuperB factory [82]. In particular LHCb experiment at the LHC where estimates made in [81, 85] for

LHCb collaboration show that with an integrated luminosity of 2 f b−1, one may expect almost 8000 B → K∗l+l−

events. As, the branching ratio of B → K1(1270)l+l− is comparable to that of B → K∗l+l−, therefore one can

expect significant number of events for this decay and hence making analysis of FB asymmetry for this decay will

be experimentally meaningful for comparison with the SM and the theories beyond it.

In this chapter, our aim is to analyze the possible new physics effects stemming from the new structures in the

effective Hamiltonian [76] to the forward-backward asymmetry for the B→ K1(1270)l+l− decay. It is known that

the forward-backward asymmetry becomes zero for a particular value of the dilepton invariant mass. In the SM,

the zero position of the AFB(q2) appears in the low q2 region, sufficiently away from the charm resonance region

and is almost free from the hadronic uncertainties (i.e. the choice of form factors) as well as those from the mixing

angle. Now this zero position ofAFB an important tool to search for physics beyond the SM. The organization of

the chapter is as follows: In section 4.2 we introduce the model independent effective Hamiltonian and obtain the

transition matrix elements in terms of form factors of the B → K1(1270)l+l−. Section 4.3 describes the formulas

that can be used to determine the zero position of the FBA. In Sec. 4.4 we present our numerical analysis and Sec.

4.5 summarizes our conclusion.

4.2 Model Independent Effective Hamiltonian and Matrix Elements

The exclusive B → K1(1270)l+l− decay involves the hadronic matrix elements of quark operators given in Eq.

(2.9) and Eq. (2.23) which one can be parametrize in terms of the form factors as follows:

〈
K1(k, ε)

∣∣∣Vµ

∣∣∣ B(p)
〉

= ε∗µ
(
MB + MK1

)
V1(s)

−(p + k)µ (ε∗ · q)
V2(s)

MB + MK1

−qµ (ε · q)
2MK1

s
[V3(s) − V0(s)] (4.2)

〈
K1(k, ε)

∣∣∣Aµ

∣∣∣ B(p)
〉

=
2iεµναβ

MB + MK1

ε∗νpαkβA(s) (4.3)

where Vµ = s̄γµb and Aµ = s̄γµγ5b are the vectors and axial vector currents respectively. Also p(k) are the

momentum of the B(K1) meson and ε∗µ is the polarization of the final state axial vector K1 meson. In Eq.(4.2) we

have

V3(s) =
MB + MK1

2MK1

V1(s) − MB − MK1

2MK1

V2(s) (4.4)
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with

V3(0) = V0(0)

Further, there is also a contribution from the Penguin form factors that can be written as

〈
K1(k, ε)

∣∣∣s̄iσµνqνb
∣∣∣ B(p)

〉
=

[(
M2

B − M2
K1

)
εµ − (ε · q)(p + k)µ

]
F2(s)

+(ε∗ · q)

qµ −
s

M2
B − M2

K1

(p + k)µ

 F3(s) (4.5)

〈
K1(k, ε)

∣∣∣s̄iσµνqνγ5b
∣∣∣ B(p)

〉
= −iεµναβε∗νpαkβF1(s) (4.6)

By contracting Eq. (4.2) with qµ and making use of the equation of motions

qµ(ψ̄1γµψ2) = (m2 − m1)ψ̄1ψ2 (4.7)

qµ(ψ̄1γµγ5ψ2) = −(m1 + m2)ψ̄1γ5ψ2 (4.8)

we have

〈K1(k, ε)|s̄(1 ± γ5)b|B(p)〉 =
1

mb + ms

{∓2iMK1 (ε∗ · q)V0(s)
}

(4.9)

The form factors for B → K1(1270) transition are the non-perturbative quantities and are needed to be cal-

culated using different approaches (both perturbative and non-perturbative) like Lattice QCD, QCD sum rules,

Light Cone sum rules, etc. As the zero position of the forward-backward asymmetry depends on the short distance

contribution i.e. the Wilson coefficients and is independent from the long distance contribution (Form factors) [83]

as well as on the mixing angle between 1P1 and 3P1 states. We will consider the form factors that were calculated

using Ward Identities in Ref. [83] which can be summarized as follows:

A(s) =
A(0)

(1 − s/M′2BS
)(1 − s/M′2BS A

)

V1(s) =
V1(0)

(1 − s/M2
B∗A

)(1 − s/M′2B∗A )

1 −
s

M2
B − M2

K1



V2(s) =
Ṽ2(0)

(1 − s/M2
B∗A

)(1 − s/M′2B∗A )
− 2MK1

MB − MK1

V0(0)
(1 − s/M2

B)(1 − s/M′2B )

(4.10)

with

V0(0) = 0.36 ± 0.03 (4.11)

A(0) = −(0.52 ± 0.05)
38



V1(0) = −(0.24 ± 0.02)

Ṽ2(0) = −(0.39 ± 0.05)

(4.12)

4.3 Forward backward asymmetry for B→ K1(1270)l+l−

In this section, we are going to perform the calculation of the forward-backward asymmetry. From Eq. (2.22)

and by using the matrix elements given in Eqs. (4.2-4.9), it is straightforward to obtain the decay amplitude for

B→ K1(1270)l+l− as

MB→K1(1270)l+l− =
GFα

4
√

2π
VtbV∗tsMB



T 1
µ lγµl + T 2

µ lγµγ5l + T 3ll + T 4lγ5l

+8CT (lσµνl)(−2F1 (ŝ) ε∗µ
(
p̂B + p̂K1

)µ
+ J′1ε

∗µq̂ν − J′2
(
ε∗ · q̂) p̂µK1

q̂ν)

+2iCT Eεµναβ(lσµνl)(−2F1 (ŝ) ε∗α
(
p̂B + p̂K1

)β
+ J′1ε

∗αq̂β − J′2
(
ε∗ · q̂) p̂αK1

q̂β)


(4.13)

where the functions T 1
µ , T 2

µ , T 3 and T 4 interms of auxiliary functions are given by

T 1
µ = iA′(ŝ)εµραβε∗ρ p̂αB p̂βK1

− B′(ŝ)ε∗µ + C′(ŝ)(ε∗ · p̂B)p̂hµ + D′(ŝ)(ε∗ · p̂B)q̂µ

T 2
µ = iE′(ŝ)εµραβε∗ρ p̂αB p̂βK1

− F′(ŝ)ε∗µ + G′(ŝ)(ε∗ · p̂B) p̂hµ + H′ (̂s)(ε∗ · p̂B)̂qµ

T 3 = iI
′
(ε∗ · q̂)

T 4 = iJ
′
(ε∗ · q̂) (4.14)

By using the combination of the Wilson Coefficients

C(+)
RR = CRR + CRL, C(−)

RR = CRR −CRL,

C(+)
LL = CLL + CLR, C(−)

LL = CLL −CLR, (4.15)

C(+)
RLLR = CLRRL −CRLRL, C(+)

RLLR = CRLLR + CLRLR

where ŝ = s/M2
B, p̂K1 = pK1/MB, p̂B = pB/MB

The auxiliary functions appearing in Eqs. (4.14) are defined as follows:

A′(ŝ) = − 2
1 + M̂K1

[Ce f f
9 +

1
2

(C(+)
RR + C(+)

LL )]A(ŝ) +
2m̂b

ŝ
Ce f f

7 F1(ŝ)

B′(ŝ) = (1 + M̂K1 )(Ce f f
9 +

1
2

(C(+)
LL −C(−)

RR ))V1 (̂s) +
2m̂b

ŝ
(1 − M̂2

K1
)Ce f f

7 F2 (̂s)

C′(ŝ) =
1

(1 − M̂2
K1

)

[
((1 − M̂K1 )(Ce f f

9 +
1
2

(C(+)
LL −C(+)

RR )))V2(ŝ) + 2m̂bCe f f
7 (F3(ŝ) − (1 − M̂2

K1
)/ŝ)F2(ŝ)

]

D′(ŝ) =
1
ŝ

[
((1 + M̂K1 )V1(ŝ) − (1 − M̂K1 )V2(ŝ) − 2M̂K1 V0(ŝ))(Ce f f

9 +
1
2

(C(+)
LL −C(+)

RR )) − 2m̂bCe f f
7 F3(ŝ)

]
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E′(ŝ) =
−2

1 + M̂K1

[C10 +
1
2

(C(−)
RR −C(−)

LL )]A(ŝ)

F′(ŝ) = (1 + M̂K1 )[C10 − 1
2

(C(−)
LL + C(−)

RR ]V1(ŝ)

G′(ŝ) = − 1(
1 + M̂K1

) [C10 − 1
2

(C(−)
LL + C(−)

RR ]V2(ŝ)

H′(ŝ) =
1
ŝ

[
((1 − M̂K1 )V2 (̂s) − (1 + M̂K1 )V1(̂s) + 2M̂K1 V0(̂s))(C10 − 1

2
(C(−)

RR + C(−)
LL )

]

I
′
(ŝ) =

2M̂K1

m̂b
V0 (̂s)[C(+)

RLLR + C(+)
LRRL]

J
′
(ŝ) =

2M̂K1

m̂b
V0(ŝ)[C(+)

RLLR −C(+)
LRRL]

J′1(ŝ) = 2
(
1 − M̂2

K1

) F1 (ŝ) − F2 (ŝ)
ŝ

J′2(ŝ) =
4M2

B

ŝ

F1 (ŝ) − F2 (ŝ) − ŝ
1 − M̂2

K1

F3 (ŝ)

 (4.16)

where, the auxiliary functions A′, B′, C′, D′, E′ , F′, G′, H′ corresponds to VA interactions where as I′, J′ , J′1,

J′2 are relevant for S P and T interactions.

To calculate the forward-backward asymmetry of the final state leptons, one needs to know the differential

decay width of B→ K1(1270)l+l−, which in the rest frame of B meson can be written as

dΓ(B→ K1(1270)l+l−)
ds

=
1

(2π)3

1
32MB

∫ umax

umin

|MB→K1(1270)l+l− |2du, (4.17)

where u = (k + pl−)2 and s = (pl+ + pl− )2; k, pl+ and pl− are the four-momenta vectors of K1(1270), l+ and l−

respectively; |MB→K1(1270)l+l− |2 is the squared decay amplitude after integrating over the angle between the lepton

l− and K1(1270) meson. The upper and lower limits of u are given by

umax = (E∗K1(1270) + E∗l−)
2 − (

√
E∗2K1(1270) − m2

K1(1270) −
√

E∗2l− − m2
l− )

2,

umin = (E∗K1(1270) + E∗l−)
2 − (

√
E∗2K1(1270) − m2

K1(1270) +

√
E∗2l− − m2

l− )
2; (4.18)

where E∗K1(1270) and E∗l− are the energies of K1(1270) and l− in the rest frame of lepton pair and can be determined

as

E∗K1(1270) =
m2

B − m2
K1(1270) − s

2
√

s
, E∗l =

s
2
√

s
. (4.19)

The differential FBA of final state lepton for the said decay can be written as

dAFB(s)
ds

=

∫ 1

0
d cos θ

d2Γ(s, cos θ)
dsd cos θ

−
∫ 0

−1
d cos θ

d2Γ(s, cos θ)
dsd cos θ

(4.20)

and

AFB(s) =

∫ 1
0 d cos θ d2Γ(s,cos θ)

dsd cos θ −
∫ 0
−1 d cos θ d2Γ(s,cos θ)

dsd cos θ∫ 1
0 d cos θ d2Γ(s,cos θ)

dsd cos θ +
∫ 0
−1 d cos θ d2Γ(s,cos θ)

dsd cos θ

. (4.21)
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Now putting everything together in hat notation i.e. q2 = s = ŝm2
B we have

dAFB

dŝ
=

G2
Fα

2m5
B

210π5

∣∣∣V∗tsVtb

∣∣∣2 u(ŝ) [XVA + XS P + XT + XVA−S P + XVA−T + XS P−T ] (4.22)

where

u(ŝ) =

√
λ(1, M̂K1 , ŝ)(1 − 4

m̂2
l

ŝ
)

λ(1, M̂2
K1
, ŝ) = 1 + M̂4

K1
+ ŝ2 − 2ŝ − 2M̂2

K1
(1 + ŝ)

and

XVA = MB ŝM̂K1<[A′∗F′ + B′∗E′]

XS P = 0

XT = 0

XS P−VA = m̂l

[(
M̂2

K1
+ ŝ − 1

)
<(B′∗I′) + M2

Bλ<(I′∗C′)
]

XS P−T = MBM̂2
K1
<[2I′∗CT + J′∗CT E)

(
2J′1(M̂2

K1
+ ŝ − 1) + J′2M2

Bλ + 4F1 (ŝ) (3M̂2
K1
− ŝ + 1)

)
(4.23)

XVA−T = m̂l[2<(F′∗CT E)
(
2J′1(M̂2

K1
+ ŝ − 1) + J′2M2

Bλ + F1 (ŝ) (4M̂2
K1
− 4ŝ + 4)

)

−2<(G′∗CT E)M2
B


2J′1(M̂2

K1
ŝ − ŝ2 + ŝ + λ) + J′2M2

B(M̂2
K1
− 1)λ

+4F1 (ŝ) (5M̂2
K1

ŝ + 4M̂2
K1
− 3ŝ2 + 7ŝ + 3λ − 4)



+2<(H′∗CT E)M2
BM̂2

K1

(
2J′1(M̂2

K1
+ ŝ − 1) + J′2M2

Bλ + 4F1 (ŝ) (3M̂2
K1
− ŝ + 1)

)

−64<(E′∗CT )M2
B

(
J1M̂2

K1
ŝ + 2F1 (ŝ)

(
M̂2

K1
ŝ + ŝ − (ŝ − 1)2 + λ

))
]

From experimental point of view the normalized forward-backward asymmetry is more useful, defined as

dĀFB

dŝ
=

dAFB

dŝ
/

dΓ

dŝ

4.4 Numerical Analysis

In this following section, we examine the lepton forward-backward asymmetry and study the sensitivity of its zero

position to New Physics operators. We consider different Lorentz structures of NP, as well as their combinations

and take all the NP couplings to be real.

Switching off all New Physics Operators

By switching off all the new physics operators one will get the SM result of the lepton forward-backward

asymmetry for B → K1(1270)µ+µ− which was earlier calculated by Paracha et al. [83] and has been shown by

solid line in all the figures shown below. The zero position lies at ŝ = 0.16 (s = 4.46 GeV−2) and is almost
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independent of the choice of form factors and also from the uncertainties arising from different input parameters

like form factors, CKM matrix elements, etc. In the subsequent analysis we will ignore these uncertanities.

The study of the B → K∗ done in reference [84] showed that the presence of the tensor and the scalar type

interactions will have very mild effect on the zero position of forward-backward asymmetry (AFB) and they have

ignored it in their analysis. However, recently the discrepancy has been observed in the lepton forward-backward

asymmetry in the exclusive B → K∗µ+µ− decay [86, 87]. To explain the experimental results, Kumar et al. [88]

has done a systematic study B→ K∗µ+µ− decay by using the most general model independent Hamiltonian. They

have shown that though the scalar and tensor operators are not important to study the lepton forward-backward

asymmetry but the interference of these two is important and is not ignorable. Therefore, keeping this in view we

will not ignore these scalar and tensor type couplings in our analysis of B → K1(1270) decay. In order to see the

effect of the new vector type Wilson coefficients (CX = CLL,CLR,CRR,CRL,CLRLR, CT , CT E), we have plotted the

dependence ofAFB on ŝ by using different values of CX , which can be summarized as follows.

Switching on only CLL and CLR along with SM operators

Considering the constraints provided by Kumar et al. [88] we took broad range of the values of different

VA couplings. Fig. 4.1(a, b) shows the dependence of AFB on ŝ when all the CLL and CLR are present. When

CLL(LR) = −C10, CLL(LR) = C10, CLL(LR) = −0.7×C10, CLL(LR) = 0.7×C10 (and all other Wilson coefficients are set

to zero) the corresponding curves of AFB are denoted by dashed double dotted, dashed triple dotted, dashed and

dashed dotted lines respectively. The solid line corresponds to the SM result. One can deduce from here that there

is a significant shift in the zero position of the forward-backward asymmetry and the position of zero is gradually

shifted to the left for positive values of C10 and to the right for negative values of C10 compared to the SM value.

This is contrary to the B → K∗µ+µ− decay process where for the positive values of CLL(LR) the zero position of

AFB shifts to the right and for negative value of these new coefficients the shift in the zero position is to the left

[90]. This difference is due to the axial vector nature of the K1(1270). For different values of NP coefficients, the

location of the zero of theAFB varies from ŝ = 0.12 to 0.23.

Switching on CRR and CRL along with SM operators

In Fig. 4.2(a, b) we have shown the dependence of forward-backward asymmetry on CRR and CRL. Fig. 4.2a

give the plot of the AFB with ŝ by using different values of CRR and setting all the other Wilson Coefficients to

zero. By varying the CRR from −C10 to C10 in the same way as we did for the CLL in Fig. 4.1, we have plotted

theAFB with ŝ in Fig. 4.2a where, the legends of the curves are the same as in Fig. 4.1. One can clearly see that

the zero position of the forward-backward asymmetry is less sensitive to CRR compares to the CLL and CLR and

the position of the zero shifts left to the SM value from ŝ = 0.16 to 0.12 when CRR is changed from −C10 to C10.

Again this is contrary to the B→ K∗µ+µ− case where the shift of zero position of AFB is on the other way.

Similarly Fig. 4.2b shows the dependency of the zero position of forward backward asymmetry on different

values of CRL. It can be seen that when CRL vary from −C10 to C10, the zero position of the AFB shifts gradually

right to the SM value from ŝ = 0.16 to 0.21 .
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Figure 4.1: Forward-backward asymmetry for the B → K1µ
+µ− decays as functions of ŝ for different values of

CLL(LR). Solid line correspond to SM value, dashed line is for CLL(LR) = −C10, dashed-dot-dot is for CLL(LR) =

−0.7C10, dashed dotted line is for CLL(LR) = C10, dashed-triple-dotted is for CLL(LR) = 0.7C10. The coefficients of
the other interactions are all set to zero.

Switching only Scalar- Psudoscalar (CLRLR, CRLLR, CLRRL, CRLRL)operators along with SM operators

Fig. (4.3) shows the behavior of the lepton forward-backward asymmetry for different NP scalar operators.

In the graph we took the values of the scalar operators to be −C10 and +C10. Now such a large value of SP

couplings has been excluded by the B̄0
s → µ+µ− decay but these are still in the range of the weak limits provided

by B̄ → Xsµ
+µ− [88]. It is clear from the Eq. (4.23) that the contribution from the scalar operators alone is zero.

This is quite clear in the graph where the value of AFB overlap with that of the SM value and this is due to the

interference between the NP scalar operators and that of the SM operators (i.e their coefficients).

Switching on only Tensor-Axial Tensor(CT , CT E)operators along with SM operators

This is the case where only NP tensor operators are added. It is expected from Eq. (4.23) that the contribution

from the tensor operators alone to AFB is zero and Fig. (4.4) reflects this scenario. Just like the scalar operators,

the non zero value of the forward-backward asymmetry is due to the interference between the tensor type operator

and those of the SM operators but these are m̂l suppressed (c. f. Eq. (4.23)). The allowed values of new tensor

type operators are restricted to be [88]

|CT |2 + 4 |CT E |2 6 1.3 (4.24)

In Fig. 4.4 one can see the m̂l suppression (which is not negligible) of the value of AFB(ŝ) in the low ŝ region.

Though the value is suppressed but still the shift in the zero position is quite significant in the low ŝ region, which

is due to the mixing of Tensor and SM interactions.

Combination of SP, VA and T operators

Apart from the individual contribution of NP operators and their interference with the SM operators there is a

also a mixing between NP operators by itself. By looking at the term XS P−VA in Eq. (4.23) one can see that it is m̂l

suppressed but with the second term there is a factor of M2
B which will over come this suppression. This will not
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Figure 4.2: Forward-backward asymmetry for the B → K1µ
+µ− decays as functions of ŝ for different values of

CRR(RL). Solid line correspond to SM value, dashed line is for CRR(RL) = −C10, dashed-dot-dot is for CRR(RL) =

−0.7C10, dashed dotted line is for CRR(RL) = C10, dashed-triple-dotted is for CRR(RL) = 0.7C10. The coefficients of
the other interactions are all set to zero.

only change the zero position of AFB but also increases or decreases its value compared to SM value depending

on the size and sign of NP couplings. In Fig. 4.5, we have shown this dependence by taking the value of all NP

coupling to be +C10 or −C10.

Among different mixing terms the most important is the SP and T term. Though the individual contribution

of SP and T to the AFB are not very significant but their interference term is quite promising. One can see this

from XS P−T term in Eq. (4.23) in which there is no lepton mass suppression. In Fig. 4.6, we have shown the

dependencies of the zero position of forward-backward asymmetry for different values of SP couplings. The value

of tensor couplings is chosen to be |CT |2 + 4 |CT E |2 6 1.3.

Finally, the contribution from the mixing terms of VA and T is suppressed by m̂l which can be seen in XVA−T

term of Eq. 4.23.
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Figure 4.3: Forward-backward asymmetry for the B → K1µ
+µ− decays as functions of ŝ for differ-

ent values of Scalar and Psudoscalar operators. Solid line correspond to SM value, dashed line is for
(CLRLR, CRLLR, CLRRL, CRLRL)=−C10, dashed-dot-dot is for (CLRLR, CRLLR, CLRRL, CRLRL)=C10. The coefficients
of the other NP interactions are all set to zero.
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Figure 4.4: Forward-backward asymmetry for the B → K1µ
+µ− decays as functions of ŝ for different values

of Scalar and Psudoscalar operators. Solid line correspond to SM value,dashed line is for |CT |2 + 4 |CT E |2=1.3,
dashed-dot is for |CT |2 + 4 |CT E |2=0.9. The coefficients of the other NP interactions are all set to zero.
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Figure 4.5: Forward-backward asymmetry for the B → K1µ
+µ− decays as functions of ŝ for different values of

Scalar, Psudoscalar, Vector and Axialvector operators. Solid line correspond to SM value, dashed and dashed-dot-
dot lines are for all New Physics SP and VA couplings where SP coupling correspond to +C10 and −C10 and VA
correspond to +0.3C10 and −0.3C10. The coefficients of the other NP interactions are all set to zero.
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Figure 4.6: Forward-backward asymmetry for the B → K1µ
+µ− decays as functions of ŝ for different values of

Scalar and Psudoscalar operators. Solid line correspond to SM value,dashed line is for SP coupling to be −C10,
dashed-dot-dot is for SP couplings to be −0.7C10, dashed dot is for SP couplings to be +C10 and dashed-triple
dotted is for SP couplings to be 0.7C10. Here |CT |2 + 4 |CT E |2 = 1.3. The coefficients of the VA NP interactions
are all set to zero.

46



4.5 Conclusion

The sensitivity of the zero position of the forward backward asymmetry to the new physics effects is studied

here. We showed that the position of the zero of the forward backward asymmetry shifts significantly from its

Standard Model value both for the size and sign of the vector-vector new physics operators which are the opposite

chirality part of the corresponding SM operators. The scalar-scalar four fermion interactions have very mild

effects on the zero of the forward-backward asymmetry. The tensor type interactions shifts the zero position of the

forward-backward asymmetry but these are m̂l suppressed. However, the interference of SP and T operators gives

significant change in the zero position ofAFB.

In short, our results provide, just as in case of the B→ K∗l+l− process, an opportunity for the straightforward

comparison of the basic theory with the experimental results, which may be expected in near future for this process.
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Chapter 5

Model independent Analysis of

B→ K∗2(1430)µ+µ− Decay

5.1 Introduction

As mentioned in the introduction, in general there are two ways to search NP which in the experimental measure-

ments. One is the direct search which can be achieved by increasing the energies of colliders and find the predicted

new particles but these particles are quite massive and therefore hard to produced. The other one is indirect search

which is comparatively easier i.e to see how much different observables are affected by these new particles. The

indirect searches require precise measurement of the observables for the channel under consideration as well as

need rigorous complementary studies. Furthermore, as we do not know the exact form of new physics, more and

more analysis of different observables for different decay channels are required to cast the form of the new physics

[89]. Therefore, it seems to be indispensable to study the decay channels other than the B̄→ K̄∗µ+µ−.

With this motivation, the B→ K∗2`
+`− channel, where K∗2 is the excited state of K∗ with spin parity 2+, provides

the same testing ground to study the effects of the NP as in B̄→ K̄∗µ+µ− decay. The exclusive B→ K∗2(1430)`+`−

decay has been studied in the SM and some approaches beyond SM [92, 93, 94, 95, 96, 97, 98, 99, 100]. For

example, in refs. [92, 64] the form factors for B → K∗2`
+`− are calculated using perturbative QCD and LCSR

approaches. The analysis of different physical observable for this decay is studied in various beyond SM scenarios,

like SM4, non-universal Z′ model, Universal Extra dimension model and a model with the flipped sign of Ce f f
7

[94, 95, 96, 99]. The analysis of lepton polarization asymmetries of B → K∗2`
+`− in the presence of new right-

handed currents is done in [97, 98]. The analysis of polarized decay width and forward-backward asymmetry by

considering beyond SM operator basis is given in [100]. These studies show that, like B → K∗`+`− decay, this

channel is quite promising in finding NP and will provide us some independent tests of the physics of the SM and

beyond.
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In this chapter we perform the study of B → K∗2(1430)µ+µ− on the lines of ref. [37] and study the NP effects

without restricting ourselves to any specific model. Contrary to B → K∗µ+µ−, the decay B → K∗2(1430)µ+µ− is

not yet experimentally observed. We have taken into account the constraints from the different B decay modes

such as Bs → µ+µ−, B → Xsµ
+µ− and B̄ → K̄∗µ+µ− on different NP operator couplings allowed by the most

general lorentz structure of transition matrix elements. In this chapter we also incorporate bounds on the input

parameters coming from the recent AFB measurements at LHCb experiment for the decay B̄→ K̄∗(892)µ+µ− [91].

With these new bounds we obtain better understanding of how these new physics operators affect branching ratio,

zero-position of forward-backward asymmetry, different lepton polarization asymmetries and the helicity fractions

of final state meson.

The effects of these new operators couplings (VA,SP,T) are significant to the zero position of AFB(q2) as well

as on its magnitude. In addition to AFB, these NP operators also give significant effects on decay rate, lepton

polarization asymmetries and longitudinal and transverse helicities of final state K∗2(1430) meson. We hope that

in the coming years, the LHCb experiment will collect around 6.4k events in the full range of q2 for an integrated

luminosity of 2 f b−1 [37]. This would allow us to observe the B → K∗2(1430)µ+µ− in the SM and would also

permit many of the additional tests of NP.

The chapter is organized as follows: In Sec. 5.2 the necessary hadronic inputs, namely, new physics operators

and form factors and constraints on the NP parameters are collected. Sec. 5.3 contains the analytic formulas for

differential decay rates, forward backward asymmetry, different polarizations (longitudinal, normal and transverse)

and the helicity fractions of the final state K∗2(1430) meson. Sec. 5.4 deals with the numerical analysis and then

conclusions are summarized in Sec. 5.5.

5.2 Parametrization of Matrix Elements and Form Factors

The exclusive B → K∗2(1430)l+l− decay involves the hadronic matrix elements of quark operators, which can be

parameterized in terms of form factors. These matrix elements are written as

〈
K∗2(k, ε) |sγµb| B(p)

〉
= − 2V(q2)

mB + mK∗2

εµνρσ
ε∗ναpα

mB
pρkσ (5.1)

〈
K∗2(k, ε)

∣∣∣sγµγ5b
∣∣∣ B(p)

〉
=

2imK∗2 A0(q2)

q2

ε∗ναpα

mB
qνqµ +

i(mB + mK∗2 )A1(q2)

mB

[
gµνε∗ναpα − 1

q2 ε
∗
ναpαqνqµ

]

−iA2(q2)
ε∗ναpαqν

mB(mB + mK∗2 )

(pµ + kµ) −
m2

B − m2
K∗2

q2 qµ
 (5.2)

〈
K∗2(k, ε) |sσµνqνb| B(p)

〉
= −2iT1(q2)εµνρσ

ε∗ναpα

mB
pρkσ (5.3)

〈
K∗2(k, ε)

∣∣∣sσµνγ5qνb
∣∣∣ B(p)

〉
= T2(q2)

[
(m2

B − m2
K∗2

)gµνε∗ναpα − ε∗ναpαqν(pµ + kµ)
] 1

mB
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+T3(q2)
ε∗ναpα

mB
qν

qµ −
q2

m2
B − m2

K∗2

(pµ + kµ)

 (5.4)

〈
K∗2(k, ε) |sb| B(p)

〉
=

2V(q2)
(mB + mK∗2 )(mb − ms)

εµνρσ
ε∗ναpα

mB
pρkσ (5.5)

〈
K∗2(k, ε)

∣∣∣s̄γ5b
∣∣∣ B̄(p)

〉
=

2imK∗2 A0(q2)

q2

ε∗ναpα

mB(mb + ms)
qνqµ (5.6)

〈
K∗2(k, ε) |s̄σµνb| B(p)

〉
= −2T1(q2)εµνρσ

ε∗ναpα

mB
pρkσ (5.7)

where p(k) is the momentum of the B(K∗2) meson and ε∗να is the polarization of the final state K∗2(1430) meson. In

case of the tensor meson the polarization sum is given by [92]

Pµναβ =
∑

εµν(p)ε∗αβ(p) =
1
2

(
θµαθνβ + θµβθνα

)
− 1

3

(
θµνθαβ

)
(5.8)

with

θµν = −gµν +
kµkν
m2

K∗2

(5.9)

Defining

ε∗ν = ε∗ναpα/mB (5.10)

the resulting matrix elements for B → K∗2(1430) look just like those for B → V (e.g. K∗ meson) transitions. The

form factors for B→ K∗2(1430) transition are the non-perturbative quantities and are needed to be calculated using

different approaches (both perturbative and non-perturbative) like Lattice QCD, QCD sum rules, Light Cone sum

rules, etc. Here, we consider the form factors calculated in the LCSR approach [93] and their evolution with q2 is

given by:

F(q2) =
F(0)

1 − a(q2/m2
B) + b(q2/m2

B)2
(5.11)

where the value of different parameters is given in Table 5.1.

Table 5.1: B → K∗2 form factors in the light cone sum rules approach. F(0) denotes the value of form factors at
q2 = 0 while a and b are the parameters in the parameterizations shown in Eq. (5.11)[93]

F(q2) F(0) a b
V(q2) 0.16+0.02

−0.02 2.08 1.5
A0(q2) 0.25+0.04

−0.04 1.57 0.1
A1(q2) 0.14+0.02

−0.02 1.23 0.49
A2(q2) 0.05+0.02

−0.02 1.32 14.9
T1(q2) 0.14+0.02

−0.02 2.07 1.5
T2(q2) 0.14+0.02

−0.02 1.22 0.34
T3(q2) 0.01+0.01

−0.02 9.91 276

The errors in the values of the form factors arise from number of input parameters involved in their calculation
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in LCSR such as variations in the Boral parameters, fluctuation of threshold parameters, errors in the b quark mass,

corrections from the decay constants of involved mesons and from the Gengenbauer moments in the distribution

amplitudes.

It is worth mentioning here that it is possible to study this mode with the help of QCD factorization. Besides

the factorizable contribution of form factors which has been used here, there are in principle non-factorizable

contributions to matrix elements as well [101]. QCD factorization not only reduces the number of independent

parameters in heavy quark limit but also help us to compute the non-factorizable corrections to B meson decays

with the help of light-cone distribution amplitudes and hard scattering kernel [106, 107]. Especially if the fac-

torization approach discussed in [101] is taken into account, it leads to significant shift towards right in the zero

position of the forward backward asymmetry.

5.3 Numerical Constraints on NP Parameters

The constraints on NP parameters can be obtained from the branching ratios of B̄0
s → µ+µ−, B̄0

s → Xsµ
+µ− and

B̄0
d → K̄µ+µ−[108, 109, 110, 111, 112]. Due to the large hadronic uncertainties, the constraints obtained from

the exclusive decay modes are somewhat weaker compared to the inclusive ones. The branching ratio of inclusive

decay mode B̄ → Xsµ
+µ− has been measured by Babar [111] and Belle [112] and their measurements in low-q2

(1GeV2 ≤ q2 ≤ 6GeV2) and high-q2 (14.4GeV2 ≤ q2 ≤ 25GeV2) regions can be summarized as:

B(B̄→ Xsµ
+µ−)low q2 = (1.49 ± 0.50+0.41

−0.32) × 10−6 (Belle),

(1.8 ± 0.7 ± 0.50) × 10−6 (BaBar) (5.12)

(1.60 ± 0.50) × 10−6 (Average)

B(B̄→ Xsµ
+µ−)high q2 = (0.42 ± 0.12+0.07

−0.07) × 10−6 (Belle),

(0.50 ± 0.25+0.07
−0.08) × 10−6 (BaBar) (5.13)

(0.44 ± 0.12) × 10−6 (Average)

(5.14)

where q2 is the invariant mass squared of two muons and low-q2 region corresponds to 1GeV2 ≤ q2 ≤ 6GeV2 and

high-q2 region corresponds to q2 ≥ 14.4GeV2.

Now we discuss the constraints on the new physics couplings which are defined in eq. (2.17). The constraints on

the new VA couplings come mainly from B̄0
d → Xsµ

+µ− and B̄0
d → K̄µ+µ− [113]. It has been shown in Ref. [113]

that if RV,A couplings are present only, the constraints on these couplings from above decays is

1.0 ≤ |RV + 3.6|2
(4.7)2 +

|RA − 4.0|2
(4.8)2 ,

|RV + 2.8|2
(6.5)2 +

|RA − 4.1|2
(6.6)2 ≤ 1 (5.15)
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Similarly when we have only R′V,A couplings, the constraints on them from the same decay will become [113]

2.2 ≤ |R′V + 3.6|2 + |R′A − 4.0|2 ≤ 56.6, |R′V |2 + |R′A|2 ≤ 17 (5.16)

These constraints are weekend when both RV,A and R′V,A couplings are present at the same time. In this case these

new physics couplings are restricted to be

|RV + 2.8|2
(6.5)2 +

|RA − 4.1|2
(6.6)2 ≤ 1 (5.17)

and

|R′V |2 + |R′A|2 ≤ 40. (5.18)

The limits on couplings corresponding to scalar-pseudoscalar (SP) operators comes from the upper bound on

B̄0
s → µ+µ− which provides the limit

|RS − R′S |2 + |RP − R′P|2 ≤ 0.44. (5.19)

This puts a sever constraint on the NP couplings if only RS ,P or R′S ,P are present. However, under the condition

where both types of operators are present, RS ,P and R′S ,P, these bounds can be relaxed due to cancelation between

the RS ,P and R′S ,P. In this case B̄0
d → Xsµ

+µ− and B̄0
d → K̄µ+µ− can still bound these couplings and the stronger

bound is obtained from the measurement of later quantity, which yields

|RS |2 + |RP|2 ≤ 9, RS ≈ R′S , RS ≈ R′P. (5.20)

Now the constraint on the NP tensor type couplings comes entirely from the inclusive B̄0
d → Xsµ

+µ− decay. In

case when only tensor type operators are present, the limits on tensor type couplings are[113]:

|CT |2 + |CT E |2 ≤ 1.0. (5.21)

In the present study we will examine B→ K∗2(1430)µ+µ− decays by using these NP constraints.

5.4 Decay Rate, Forward-Backward Asymmetry and Lepton Polariza-

tion Asymmetries for B→ K∗2(1430)µ+µ− decay

In this section, we perform the calculations of some interesting quantities like the decay rate, the forward-

backward asymmetry, the polarization asymmetries of the final state lepton and the helicity fractions of the final

state K∗2(1430) meson. By using Eq. (2.22) with matrix elements given in section 5.2, the decay amplitude for
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B→ K∗2(1430)µ+µ− can be written as

M(B̄→ K∗2(1430)µ+µ−) = − GFα

2
√

2π
VtbV∗ts

[
T µ

V l̄γµl + T µ
A l̄γµγ5l

+TS l̄l + TP l̄γ5l + T µν
T l̄σµνl + iT µν

E ε
µναβ l̄σαβl

]
(5.22)

with

T µ
V = −F1ε

µναβε∗νpK∗αqβ + iF2ε
∗µ + iF3ε

∗ · q(pB + pK∗)µ + iF4ε
∗ · qqµ

T µ
A = −F5ε

µναβε∗νpK∗αqβ + iF6ε
∗µ + iF7ε

∗ · q(pB + pK∗)µ + iF8ε
∗ · qqµ

TS = iF9ε
∗ · q

TP = iF10ε
∗ · pB

T µν
T = CT

(
iF11ε

µναβε∗α(pB + pK∗)β + iF12ε
µναβε∗αqβ − iF13ε

µναβε∗ · qpαK∗qβ
)

T µν
E = CT E

(
iF11ε

µναβε∗α(pB + pK∗)β + iF12ε
µναβε∗αqβ − iF13ε

µναβε∗ · qpαK∗qβ
)

(5.23)

The auxiliary functions F1 · · · F13 appearing in Eq. (5.23) are defined as follows:

F1 =

[
2V(q2)

mB + mK∗
(Ce f f

9 + RV + R′V ) +
4mb

q2 Ce f f
7 T1(q2)

]
,

F2 = −
[
(mB + mK∗)A1(q2)(Ce f f

9 + RV − R′V ) +
2mb

q2 Ce f f
7 T1(q2)(m2

B − mK∗)
]
,

F3 =

 A(q2)
mB + mK∗

(Ce f f
9 + RV − R′V ) +

2mb

q2 Ce f f
7

T1(q2) +
q2T3(q2)
m2

B − mK∗


 ,

F4 =

[
2mK∗

q2 (Ce f f
9 + RV − R′V )(A3(q2) − A0(q2)) − 2mb

q2 Ce f f
7 T3(q2)

]
,

F5 =

[
2V(q2)

mB + mK∗
(Ce f f

10 + RA + R′A)
]
,

F6 = −
[
(mB + mK∗)A1(q2)(Ce f f

10 + RA − R′A)
]
,

F7 =

[
A(q2)

mB + mK∗
(Ce f f

10 + RA − R′A)
]
,

F8 =

[
2mK∗

q2 (Ce f f
10 + RA − R′A)(A3(q2) − A0(q2))

]
,

F9 =

[
−2(RS − R′S )

mK∗

mb
A0(q2)

]
,

F10 =

[
2(RP − R′P)

mK∗

mb
A0(q2)

]
,

F11 = −2T1(q2),

F12 =


2(m2

B − m2
K∗)

q2 (T1(q2) − T2(q2))
 ,

F13 =

 4
q2

T1(q2) − T2(q2) − q2T3(q2)
m2

B − m2
K∗


 (5.24)
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5.4.1 Differential Decay Rate

Collecting everything together, one can write the general expression of the differential decay rate for B →
K∗2(1430)µ+µ− by using the formula given in Eq. (4.17) as

dΓ

dq2 =
G2

Fα
2

211π5m3
B

∣∣∣VtbV∗ts
∣∣∣2 u(q2)λ

18m2
l m4

T q2

{
3F 2

1 m2
K∗2

q2λ + 2F 2
2 m4

B(λ + 10m2
T q2) (5.25)

+2F 2
3 λ

2
] (

2m2
l + q2

)
−

[
3F 2

5 m2
K∗2
− 3F 2

9 m2
B

]
K2q2λ + 12F 2

8 m2
l q4λ

+2F 2
6 m4

B

[
2
(
λ − 20m2

T q2
)

m2
l + q2

(
λ + 10m2

T q2
)]

+ 3F 2
10m2

Bq4λ

+2F 2
7 λ

[
2
(
λ − 3q4 + 6m2

T q2
)

m2
K∗2

+ q2λ
]
− 4F2F3m4

B

(
2m2

l + q2
)

K1λ
2

−4F6F7m2
Bλ

[
2
(
K1 + 3q2

)
m2

l + K1q2
]
− 24F6F8m2

l m2
Bq2λ − 12F10F6mlm3

Bq2λ

+24F7F8m2
l K0q2λ + 12F10F7mlmBK0q2λ + 8F11F12q2(λ + 10m2

T m2
B − 10m4

T )K3

−4F11F13(K1 + 4m2
T )λq2K3 − 72F1F11mlm2

K∗2
q2λCT

+48F11F2mlm2
Bq2(λ + 10m2

T m2
B − 10m4

T )CT E − 4F12F13K1λq2K3

+48F12F2mlm2
Bq2

(
λ + 10m2

T q2
)
CT E − 48F12F3mlq2K1CT Eλ

−24F13F2mlm2
BK1λq2CT E + 24F13F3mlq2CT Eλ

2
}

where ml is the mass of final state muon and

λ = λ
(
m2

B,m
2
K∗2
, q2

)
≡ m4

B + m4
K∗2

+ q4 − 2m2
K∗2

m2
B − 2q2m2

B − 2m2
K∗2

q2. (5.26)

K0 = (m2
B − m2

K∗2
), K1 =

(
m2

B − m2
K∗2
− q2

)
, K2 = q2 − 4m2

l ,

K3 = q2C2
T − 4m2

l

(
C2

T − 36C2
T E

)
. (5.27)

and the auxiliary functions are the same as defined in Eq.(5.24 ).

5.4.2 Forward-Backward Asymmetry

Now we are in a position to explore the forward-backward asymmetry of final state leptons in the B→ K∗2(1430)µ+µ−,

which is an essential observable sensitive to the new physics effects. Making use of the formula of forward-

backward asymmetry which is given in Eq. (4.21), one can easily get the expression for the forward-backward

asymmetry for B→ K∗2(1430)µ+µ− as follows:

dAFB(q2)
dq2 =

G2
Fα

2

211π5m3
B

∣∣∣VtbV∗ts
∣∣∣2 u(q2)λ

6mBm4
T

[
AVA

FB + AS P
FB + ATS P

FB + AT
FB

]
(5.28a)

AVA
FB = −3(F2F5 + F1F6)q2m2

Bm2
K2

(5.28b)

AS P
FB = 2F9mlmB

(
F3λ + F2m2

B

[
q2 − m2

B + m2
K2

])
(5.28c)
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ATS P
FB = −q2 (F10CT + 2F9CT E) mB

(
2F12

(
m2

B − m2
K2
− q2

)
(5.28d)

−F13λ + 2F11

(
m2

B + 3m2
K2
− q2

))

AT
FB = −2ml

(
12F12F5q2CT Em2

K2
+ 12F11F5CT Em2

K2

(
m2

B − m2
K2

)
(5.28e)

+F13λCT

(
(F6 − F7)m2

B − F8q2 + F7m2
K2

)

−2F12CT

(
m2

B − m2
K2
− q2

) (
(F6 − F7)m2

B − F8q2 + F7m2
K2

)

−2F11CT

(
F6m2

B

(
m2

B + 9m2
K2
− q2

)
−

(
m2

B + 3m2
K2
− q2

) (
F8q2 + F7

(
m2

B − m2
K2

)))

and the expression of the differential decay rate is given in Eq. (5.25).

5.4.3 Lepton Polarization asymmetries

By using Eqs. (3.14-3.18), we can obtain the expressions for longitudinal, normal and transverse polarizations for

B→ K∗2(1430)µ+µ− decays and one collected below. The longitudinal lepton polarization can be written as:

PL ∝ 1
36m2

Bm4
T

4u(q2)
√
λ
[
PVA

L + PS P
L + PT

L

]
, (5.29a)

PVA
L = ml

(
2λF2 (F6 − F7) m4

B +
(
3λF1F5q2 + 2F2m2

B

(
10q2F6m2

B + λF7

))
m2

K∗2

+2λF3

(
F6

(
q2 − m2

B + m2
K∗2

)
m2

B + λF7

))
, (5.29b)

PS P
L = 3mlλF9mB

(
−2mlF8q2 − F10mBq2 + 2ml

(
(F6 − F7) m2

B + F7m2
K∗2

))
, (5.29c)

PT
L = m2

l F11

(
24 (CT E F1 −CT F5) m2

K∗2
λ + 4CTλF3

(
m2

B + 3m2
K∗2
− q2

)

+4m2
B (4CT EF6 −CTF2)

(
10

(
m2

B − m2
K∗2

)
m2

K∗2
+ λ

))

+m2
l F12

(
4m2

B (4CT EF6 −CTF2)
(
10q2m2

K∗2
+ λ

)
− 4CTF3

(
q2 − m2

B + m2
K∗2

))

+m2
l F13

(
2CTλ − 4CTF2m2

B

(
m2

B − m2
K∗2
− q2

)
− 2CTλ

2F3

)
. (5.29d)

Similarly, the normal lepton polarization is

PN ∝ − πu(q2)t
(12m2

Bm4
T

(
λ

t
)3/2

[
PVA

N + PS P
N + PT

N

]
, (5.30a)

PVA
N = 2ml

(
F2

(
F8q4 −

(
(F6 − F7 + F8) m2

B + (−3F1 + F7 − F8) m2
K∗2

)
q2 +

(
m2

B − m2
K∗2

)
(5.30b)

m2
B

(
(F6 − F7) m2

B + F7m2
K∗2

))
+λF3

(
F8q2 − F6m2

B + F7

(
m2

B − m2
K∗2

))))
,

PS P
N = mBλ

(
F3F10q2 +

(
q2 − 4m2

l

)
F7F9

)
−

(
F2F10q2 +

(
q2 − 4m2

l

)
F6F9

)
m3

B

(
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K∗2
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)
, (5.30c)
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N = F13
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l λCT E
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F8q2 − F6m2
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B
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+ 4mlmBλCT EF10q2

)
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l CT E

(
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(
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)
− F8q2 − mB

2ml
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) (
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)

+6
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CT EF1q2m2
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+ 3
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)
CTF5q2m2
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)

+F11

(
−16m2

l CT E

(
F8q2 + F7

(
m2
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)
+

mB

2ml
F10q2

) (
m2

B + 3m2
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)
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+6m2
K∗2

(
4m2

l + q2
) (

CT EF1

(
m2

B − m2
K∗2

)
−CTF2m2

B

)
+ 3

(
4m2

l − q2
)
CTF5m2
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m2
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)

+4CT EF6m2
B

(
4m2

l

(
m2

B + 6m2
K∗2
− q2

)
− 3q2m2

K∗2
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. (5.30d)

and the transverse one is given by

PT ∝ iπλq2u(q2)
12mBm2

K∗2

{
λCT EF13

(
4F2m2

B − 3F5m2
K∗2

+ F3

(
q2 − 5m2

B + m2
K∗2

))
(5.31)

−2F12

(
2CT E

((
8F3m2

B − (2F3 + 3F5) m2
K∗2

)
q2 + 4F2m2

B

(
2m2

B + m2
K∗2
− 2q2

)

−
(
m2
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K∗2

) (
8F3m2
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K∗2
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− 3CTF1m2
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+2F11
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2CT E
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3F5m2
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3m2
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K∗2
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− 4F2
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B

(
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−3CTF1m2

K∗2

(
3m2

B + m2
K∗2
− q2

)}

5.4.4 Helicity Fractions

Helicity fraction is an observable associated with polarization of the out going meson that is almost free of hadronic

uncertainties. The spin-2 polarization tensor, which satisfies εµνkν = 0 with k being the momentum, is symmetric

and traceless. It can be constructed by the vector polarization εµ as

εµν(±2) = εµ(±)εν(±), εµν(±1) =
1√
2

[εµ(±)εν(0) + εµ(0)εν(±)],

εµν(0) =
1√
6

[εµ(+)εν(−) + εµ(−)εν(+)] +

√
2
3
εµ(0)εν(0). (5.32)

Using the definition

εTν(n) =
ενα(n)pα

mB
,

the above relations simplify to

εTν(±2) = 0, εTν(±1) =
ε(0).p√

2mB
εµ(±), εTν(0) =

√
2
3
ε(0).p

mB
εµ(0)

The physical expressions for helicity fractions are given by

fi(q2) =
dΓi/dq2

dΓ/dq2 , i = L,T (5.33)

Here L and T refer to longitudinal and transverse helicity fractions. The explicit expression of the longitudinal

helicity fraction for the decay B→ K∗2(1430)l+l− is

dΓL

dq2 =
G2

Fα
2

211π5m3
B

∣∣∣VtbV∗ts
∣∣∣2 u(q2)
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Bq2

(
4F2

2m4
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3(2m2 + t)λ2

+6F2
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B

(
q2 − 4m

)
+ 6F2

10q4λm2
B + 4F2

6m4
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(
q2K2

1 + 2m2
(
λ − 8q2m2
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)
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(5.34)

As the sum of the longitudinal and transverse helicity amplitudes is equal to unity i.e. fL(q2) + fT (q2) = 1 for each

value of q2, therefore, the expression of transverse helicity fraction of final state meson is quite obvious.

5.5 Numerical Analysis

In this section we will examine the physical observables derived above and analyze the effects of model indepen-

dent(MI) parameters on these observables. As B → K∗2(1430)µ+µ− is not yet observed, therefore the purpose of

this study is not to get constraints on NP parameters but is to use the constraints on MI parameters defined in Sec.

5.3. which comes from different B meson decays. We consider different Lorentz structures of NP, as well as their

combinations and examine their implications on differential decay rate, the forward-backward asymmetry, the

lepton polarization asymmetries and the helicity fractions of the final state K∗2(1430) meson. Here we varied the

strength of individual NP couplings such that they lie inside the bounds given by different flavor decays (c.f. Sec.

5.3). In all the figures the band correspond to the uncertainties in different input parameters where form factors

(c.f. Table 5.1) are the major contributors. The same type of lines correspond to the same set of NP parameters

and all the NP curves are plotted for the central values of the form factors and other input parameters. To make

the quantitative analysis complete the numerical values of input parameters that we have used are given in Table

3.1 and 3.2.

From the point of view of probing physics beyond the standard model there are a large number of observables

which are accessible in the above mentioned B-meson decay. For instance, the branching ratio, in general for

semi-leptonic decays like B → K∗2(1430)µ+µ−, is prune to many sources of uncertainties. The major source of

uncertainty originate from the B → K∗2(1430) transition form factors calculated using the LCSR approach, as

shown in Table 5.1, and can give 20 − 30% uncertainty to the differential branching ratio. Thus the differential

branching ratio is not a suitable observable to look for the NP effects unless these effects are very drastic. It

is therefore valuable to look for the observables where hadronic uncertainties almost have no effect. In this
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regard the most important observables are the zero position of the forward-backward asymmetry, different lepton

polarization asymmetries and the helicity fractions of the final state meson. These observables are almost free

from the hadronic uncertainties and serve as an important probe to look for NP.

The SM predicts the zero crossing of AFB(q2) at a well determined position which is free from the hadronic

uncertainties at the leading order (LO) in strong coupling αs [102, 103, 104]. This zero position of AFB, which is

independent of form factors, is an important observable in the search of new physics. The short distance relation

between the Wilson coefficients and the zero position of AFB is given by [105, 101]

<[Ce f f
9 (q2

0)] =
2mbmB

q2
0

Ce f f
7 (5.35)

where q2
0 is the zero position (ZP) of the AFB. Recently LHCb has published its results on AFB(B̄ → K̄∗µ+µ−)

that are quite close to SM predictions [91]. The LHCb result shows, with small error bars, that the zero position

of AFB(B̄ → K̄∗µ+µ−) is close to the SM’s zero position. Like B̄ → K̄∗µ+µ− decay, the semileptonic decay

B→ K∗2(1430)µ+µ− also occurs through the quark level transition b→ sµ+µ−. Therefore, the future measurements

of the AFB(B→ K∗2(1430)µ+µ−) will shed more light on NP in the flavor sector.
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Figure 5.1: The dependence of decay rate for B0 → K∗2(1430)µ+µ− on q2 where different curves correspond to
different choices of the values of VA couplings inside their allowed region. In Fig(a) only RV and RA are present,
Fig(b) when only R′V and R′A are present, Fig(c), Fig(d) when both RV , R′V and RA, R′A are present and in all figures
the solid line represent the SM with light green shaded region as uncertainty in SM.

The polarization of the final state leptons can shed light on the helicity structure of the electroweak interac-

tions. The longitudinal and normal lepton polarization asymmetry are also very good observables to look for NP
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effects. As in the case of forward-backward asymmetry the long distance effects are also canceled out in these

asymmetries. Hence, they provide a good tool to test the various new physics extensions of the SM. In the present

numerical analysis, we have taken the NP couplings to be real. The transverse lepton polarization asymmetry

as given in Eq. (5.31) involves the imaginary part of the auxiliary functions, and hence for real couplings its

value comes out to be negligibly small. In this numerical study we will discuss the results of transverse lepton

polarization asymmetry in the presence of all NP operators at the very end.

Another interesting observable is the study of the spin effects of the final state meson which for our case is

the K∗2(1430) meson. A detailed discussion about the effects of NP operators on the longitudinal and transverse

helicity fractions of final state meson will also be done in the forthcoming numerical analysis.

A model independent numerical analysis of this decay channel B→ K∗2(1430)µ+µ− is presented in this section,

where we will analyze the effects of different NP operator couplings (VA,SP,T) on different physical observables.

A similar NP study was presented in [100] where the observables studied were polarized branching ratios as

function of NP couplings and forward backward asymmetry. The observables we have presented in this chapter

are different than the ones presented in [100]. For example we have studied differential observables(that are

functions of q2) like branching ratio, forward backward asymmetry, lepton polarization asymmetries and helicity

fractions of the final state meson. We have also incorporated the old bounds [113, 114] as well as the new LHCb

bound [91] on different NP couplings. We will study the effects of these NP couplings one by one as follows.

5.5.1 VA new-physics operators

In this section, we shall consider the scenarios when (a) only RV,A couplings are present, (b) only R′V,A couplings

are present, and (c) both types of couplings are present.

Figs. 5.1-5.5 display the results when the only vector-axial vector VA NP couplings (RV,A and R′V,A) are present.

In the case of differential branching ratio it can be seen that its value increases for certain range of parameters while

it decreases for another range of parameters. The increase in differential branching ratio is up to 4 time its SM

value for the case when both type of NP couplings are present simultaneously (c.f. Fig. 5.1(c,d)).

As can be seen in Fig. 5.2 that the AFB(q2) is very sensitive to the NP effects. The zero crossing is also

disturbed significantly by the VA couplings. The short distance relation Eq. (5.35) is modified with the inclusion

of new VA couplings which now takes the form

<(Ce f f
9 (q2

0)) + RV −
R′VR′A
C10

=
2mbmB

q2
0

Ce f f
7 (5.36)

The experimental results that came in from measurement of AFB(B̄ → K̄∗µ+µ−) at LHCb can put stringent

bound on the NP coupling constants. In the measurement of the zero position of AFB(B̄→ K̄∗µ+µ−) at LHCb, the

experimental error bar in this zero position is roughly 30 percent. When this error bar uncertainty is plugged in

Eq. 5.36 we get a new bound on the VA coupling constants
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Figure 5.2: The dependence of forward-backward asymmetry for B → K∗2(1430)µ+µ− on q2 for different values
of VA couplings. The caption for the above figures are the same as Fig. 5.1.

−1 < RV −
R′VR′A
C10

< 3.2 (5.37)

When this bound is taken into consideration then the zero position (ZP) stays in the vicinity of Standard

Model’s ZP (see Figs. 5.2(a,b,c)). But if we ignore this new bound then the effects on forward backward asym-

metry become very drastic (see Fig. 5.2d). These effects increase when all the couplings RV,A and R′V,A are present

(Figs. 5.2(c,d)). The zero crossing shifts quite significantly and it even disappears for certain values of RV,A and

R′V,A (Fig. 5.2d).

Figs. 5.3 and 5.4 depict the effects on lepton polarization asymmetries coming from RV,A and R′V,A couplings.

The effects are quite obvious in the case of longitudinal lepton polarization asymmetry. The magnitude of PL

decrease in most cases and when R′V,A is present the effects get more amplified. This asymmetry even vanishes

(Fig. 5.3b) in some values of R′V,A couplings. When both RV,A and R′V,A are present, PL even changes sign for some

values of couplings (see Figs. 5.3(c,d)). As can be seen in Eq. (5.29b) the VA effects are only ml suppressed

compared to other NP contributions that are m2
l suppressed. Qualitatively, these effects are large because of large

numerical values and different signs of the new VA couplings. The normal lepton polarization asymmetry is also

sensitive to NP effects, as it develops a zero crossing which is not present in SM. Still, the effects are suppressed

by ml (see Eq. 5.30b) hence in Fig. 5.4 all curves show nearly the same behavior.

The longitudinal and transverse helicity fractions are depicted in Figs. 5.5. The deviation from the SM results
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Figure 5.3: The dependence of Longitudinal lepton polarization asymmetry for B → K∗2(1430)µ+µ− on q2 for
different values of VA couplings. The caption for the above figures are the same as Fig. 5.1.

are fairly large that arise from the effects of different VA couplings. When both RV,A and R′V,A couplings are present

(see Figs. 5.5(c,d,g,h)) the traits become even more conspicuous.

5.5.2 S P new-physics operators

In this section, we consider the scenarios when (a) only RS and R′S couplings are present, (b) only RP and R′P

couplings are present, and (c) both types of couplings are present.

The differential branching ratio in Fig. 5.6 shows that it is slightly disturbed by the different values of S P

parameters. Fig. 5.7 depicts that the lepton forward-backward asymmetry is not very sensitive to the NP arising

form S P operators. There is a slight shift in the zero position of the AFB(q2) towards left or right. These mild effects

can also be inferred from the Eq. (5.28c) that S P effects on forward-backward asymmetry are ml suppressed.

Fig. 5.8 displays the plots of the longitudinal lepton asymmetry in the presence of S P operator couplings. The

S and P couplings separately (Figs. 5.8(a,b)) have a mild effect on the longitudinal lepton polarization asymmetry,

while the effects increase three folds when both the couplings are present, Fig. 5.8(c). The dominant contribution

comes from the F9F10 term in Eq. (5.29c) which is enhanced by a factor of mBq2.

The normal lepton polarization asymmetry is very sensitive to the S and P couplings. In SM this asymmetry

takes only negative values and there is no zero crossing, but as S and P couplings are introduced the curves are

scattered in both positive and negative regimes (Fig 5.9). When both S P couplings are present the effects are

even more enhanced. The Eq. (5.30c) clearly shows that S P contribution is not ml suppressed like other VA
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Figure 5.4: The dependence of Normal lepton polarization asymmetry for B→ K∗2(1430)µ+µ− on q2 for different
values of VA couplings. The caption for the above figures are the same as Fig. 5.1.

contributions to the normal polarization asymmetry. So the normal lepton polarization asymmetry is a very good

tool to constraint the values of the S P couplings.

In case of S P couplings the longitudinal and transverse helicity fractions are shown in Fig. 5.10. The effects

in this case are quite subtle especially in the large q2 region as seen in Fig 5.10. The deviation from SM amplifies

when both S and P couplings are present (see Figs. 5.10(c,f)).

5.5.3 T operators and interference of S P and T operators

In this section, we shall consider the scenarios when (a) only CT and CT E couplings are present, (b) when S , CT

and CT E couplings are present, and (c) when P, CT and CT E couplings are present.

The differential branching ratio shown in Fig. 5.11 indicates that its value increases for most values T coupling

parameters. These T type coupling also effects the zero crossing of the AFB(q2) which can be seen in Fig. 5.12. By

looking at the Eq. (5.28) one can see that the contribution from the T couplings is ml suppressed (c.f. Eq. (5.28e))

but after including S P operators along with T operators it is no more ml suppressed. It is therefore expected that

the value of AFB(q2) in this scenario will be large compared to T coupling only, but the sever constraints on the

S P couplings do not allow AFB(q2) to become significantly more than the SM in magnitude. Also there is some

parameter space of couplings where AFB(q2) is negative every where, i.e. there is no zero crossing (Fig. 5.12(b,c)).

In Fig. 5.13(a) the longitudinal lepton asymmetry is shown in the presence of T operator couplings. From

Eq. (5.29b) we can observe that the effect of the T couplings are m2
l suppressed and therefore we expect the small
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variation of longitudinal lepton polarization asymmetry unless the value of T couplings is large and this can also

be inferred from Fig. 5.13. When S P couplings are also included the results hardly change (Fig. 5.13(b,c)) since

their effect is also ml suppressed compared to SM results.

The normal lepton polarization asymmetry (Fig 5.14(a)) develops a zero crossing when only T operator cou-

plings are incorporated. Adding the S P operators change the plots as well. The zero crossing of the normal lepton

polarization asymmetry is shifted when the S P couplings are introduced along with CT and CT E .

The longitudinal and transverse helicity fractions in the presence of T operator couplings are plotted in Fig.

5.15. Here, the response to the different values of T couplings are visible both in the high and low q2 regimes. The

effects are more distinct when CT coupling is present compared to when only CT E coupling is present. When S P

couplings are added along with the T couplings the results are an emulsion of the effects coming from T as well

as high q2 effects of S P (Figs. 5.15(b,c,e,f)).

5.5.4 All NP operators together

In the presence of all new physics operator couplings of V, A, S, P and T the results as expected are pretty drastic.

The combination of all these couplings have most of the attributes of each individual type of coupling. The

branching ratio plots as shown in Fig. 5.16 increases by a factor of two and depending upon the values of coupling

this increase is four times compared to the SM branching ratio (Fig. 5.16(b)).

The forward backward asymmetry gets scrambled results, the zero crossing vanishes for most values of NP

couplings when new bound Eq. (5.37) is neglected (Fig 5.17b). If this new bound is incorporated then the zero

position does not vanish but the shift in ZP is significantly in both directions.

The longitudinal lepton polarization varies a lot and takes on both positive and negative values (Fig. 5.18).

The normal lepton polarization crosses the zero and become positive for some values of the NP couplings (Fig.

5.19) showing us the presence of S P couplings.

The longitudinal and transverse helicity fractions are shown in Fig. 5.20 for the case when all couplings are

present. The deviation from SM values, as expected, are large since now all couplings are present.

Finally, the transverse lepton polarization asymmetry PT acquires non-zero values when T couplings are

present (see Eq. (5.31)). In the SM this asymmetry is negligibly small since all Wilson coefficients are pre-

dominantly real. The transverse lepton polarization asymmetry will be imaginary if all couplings are real(c.f. Eq.

(3.19)), but for imaginary values of CT ,CT E couplings it will become a real observable. Fig. 5.21 shows PT for

different values of imaginary tensor couplings while all other couplings are taken to be real. It can be seen that for

certain values of NP couplings the value of transverse lepton polarization is significant. It is therefore expected

that its experimental observation in future will help us to get constraints on CT ,CT E couplings. In Fig. 5.21a only

CT ,CT E couplings are present and in Figs. 5.21(b,c) all other couplings are present too, hence the values of PT

become large.
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Figure 5.5: The dependence of Longitudinal and Transverse helicity fractions for B → K∗2(1430)µ+µ− on q2 for
different values of VA couplings. The caption for the above figures are the same as Fig. 5.1.
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Figure 5.6: The dependence of decay rate for B0 → K∗2(1430)µ+µ− on q2 where different curves correspond to
different choices of the values of S P couplings inside their allowed region. In Fig(a) only RS and RP are present,
Fig(b) when only R′S and R′P are present, Fig(c) when both RS , R′S and RP, R′P are present and in all figures the
solid line represent the SM with light green shaded region as uncertainty in SM.
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Figure 5.7: The dependence of forward-backward asymmetry for B → K∗2(1430)µ+µ− on q2 for different values
of S P couplings. The caption for the above figures are the same as Fig. 5.6.
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Figure 5.8:
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Figure 5.9: The dependence of Longitudinal and Normal lepton polarization asymmetry for B → K∗2(1430)µ+µ−

on q2 for different values of S P couplings. The caption for the above figures are the same as Fig. 5.6.
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Figure 5.10: The dependence of Longitudinal and Transverse helicity fractions for B → K∗2(1430)µ+µ− on q2 for
different values of S P couplings. The caption for the above figures are the same as Fig. 5.6.
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Figure 5.11: The dependence of decay rate for B0 → K∗2(1430)µ+µ− on q2 where different curves correspond
to different choices of the values of T-SP couplings inside their allowed region. In Fig(a) only CT and CT E are
present, Fig(b) when only CT , CT E , RS and R′S are present, Fig(c) when only CT , CT E , RP and R′P are present and
in all figures the solid line represent the SM with light green shaded region as uncertainty in SM.
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Figure 5.12: The dependence of forward-backward asymmetry for B → K∗2(1430)µ+µ− on q2 for different values
of T-SP couplings. The caption for the above figures are the same as Fig. 5.11.
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Figure 5.13:
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Figure 5.14: The dependence of Longitudinal and Normal lepton polarization asymmetry for B→ K∗2(1430)µ+µ−

on q2 for different values of T-SP couplings. The caption for the above figures are the same as Fig. 5.11.
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Figure 5.15: The dependence of Longitudinal and Transverse helicity fractions for B → K∗2(1430)µ+µ− on q2 for
different values of T-SP couplings. The caption for the above figures are the same as Fig. 5.11.
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Figure 5.16: The dependence of decay rate for B0 → K∗2(1430)µ+µ− on q2 where different curves correspond to
different choices of the values of all couplings are taken into account inside their allowed region. In all figures the
solid line represent the SM with light green shaded region as uncertainty in SM.
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Figure 5.17: The dependence of forward-backward asymmetry for B → K∗2(1430)µ+µ− on q2 for different values
of All couplings. The caption for the above figures are the same as Fig. 5.16.
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Figure 5.18:
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Figure 5.19: The dependence of Longitudinal and Normal lepton polarization asymmetry for B→ K∗2(1430)µ+µ−

on q2 for different values of All couplings. The caption for the above figures are the same as Fig. 5.16.
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Figure 5.20: The dependence of Longitudinal and Transverse helicity fractions for B → K∗2(1430)µ+µ− on q2 for
different values of All couplings. The caption for the above figures are the same as Fig. 5.16.
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Figure 5.21: The dependence of transverse lepton polarization asymmetry for B0 → K∗2(1430)µ+µ− on q2 where
different curves correspond to different choices of the values of all couplings inside their allowed region and the
flat solid line at PT = 0 represent the SM with no uncertainty region. In Fig(a) only tensor type couplings are
present, Fig(b,c) when all couplings are present.

5.6 Conclusions

We carried out the study of the decay B → K∗2(1430)µ+µ− in the presence of new physics (NP) operators beyond

SM. We have performed a schematic model-independent analysis, allowing for new vector-axial vector (VA),

scalar-pseudoscalar (SP) and tensor (T) operator couplings. We analyzed the effects on different physical observ-

ables for this channel in the presence of these NP operator couplings. To conclude this study we summarize the

important out comes as follows

• The differential branching ratios generally increase for most of the parameter space of NP couplings. For

VA couplings the BR increases considerably particularly when both RV,A and R′V,A are involved the BR is

enhanced by more than a factor of 4 and the reason is that the new VA couplings are not ml suppressed

compared to other NP couplings. On the other hand the BR for case of S P and T couplings fall mainly

in uncertainty region of SM. The reason behind this lies in the fact that S P and T operator couplings are

severely constrained by the upper bound on B(Bs → µ+µ−) as well as their contribution is ml suppressed.

• The forward-backward asymmetry of the final state leptons deviates sizable in the presence of VA couplings.

When the new bound given in Eq 5.37 is ignored the zero crossing even disappears and its values become

all positives or all negative. Similar kind of trend was also witnessed for the decay B → K∗(892)µ+µ−. If

we consider the recent measurement of AFB for B → K∗(892)µ+µ− decay at LHCb [91] we can see that
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new VA couplings get constrained within a narrow band given in Eq 4.3. However, the new S P couplings

contribute delicately to the shifting of the zero position of AFB for both decays B→ K∗(892)µ+µ− [114] and

B → K∗2(1430)µ+µ−. S P operators couplings particularly S coupling shift the zero crossing both towards

left as well as towards right. When T coupling is added to the scene the zero shifting is enhanced and it even

disappears for certain values of S P−T couplings. Qualitatively the AFB in presence of S P and T couplings

separately are ml suppressed while S P − T couplings together are not ml suppressed and hence show large

NP effects on the decay under consideration.

• The longitudinal lepton polarization asymmetry (PL) is also an important tool to look for physics beyond

SM. Again the PL is very sensitive to VA couplings, its values sway between the positive SM value to

negative maximum value for defined range of RV,A and R′V,A couplings. The effects on PL are still mild when

S and P couplings are introduced individually but the effects are magnified when both S P couplings are

present. The T couplings also disturb the values of PL and the effects get added up when both S P and T

couplings are in combination.

• The normal lepton polarization asymmetry is not as sensitive to VA operator couplings like the other ob-

servables. The VA effects on PN are more dominant in the low q2 region while in high q2 regime they all

asymptotically converge to zero. The normal lepton polarization provides an ideal testing ground to test the

existence of S P new physics operators. The distinct behavior of PN in the presence of S P couplings is very

important to test the existence of S P as well as S P − T operators.

• The longitudinal and transverse helicity fractions of the final state meson K∗2(1430) are also efficient tool to

look for the NP effects. In case of VA operators there is a noticeable change in helicity fractions of the final

state meson. For S P operator couplings the effects are more prominent in the high q2 regime. The tensor

couplings CT and CT E also allow the helicity fractions to deviate significantly from their SM values.

We hope that these results will be tested one some ongoing and future experiments like LHCb and super B

factories.
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Chapter 6

Exclusive charm B meson decays in

universal extra dimensions

6.1 Introduction

The charmed Bc meson is a bound state of two heavy quarks, bottom b and charm c, and was first observed in 1998

at Tevatron in Fermilab [115]. Because of two heavy quarks, the Bc mesons are rich in phenomenology compared

to the other B mesons. At the Large Hadron Collider (LHC) the expected number of events for the production of

the Bc meson are about 108−1010 per year [116, 117] which is a reasonable number to work on the phenomenology

of the Bc meson. It also provides a frame work to study physics in and beyond the SM. In the literature, some

of the possible radiative and semileptonic exclusive decays of Bc mesons like Bc → (
ρ,K∗,D∗s, B

∗
u
)
γ, Bc → `νγ

, Bc → B∗u`
+`−, Bc → D0

1`ν, Bc → D∗s0`
+`− and Bc → D∗s,d`

+`− have been studied using the frame work of

relativistic constituent quark model [118], QCD Sum Rules and the Light Cone Sum Rules [10]. In this chapter

we will focus on the Bc → D∗s`
+`− decay.

Theoretically, what makes the Bc → D∗s`
+`− more important compared to the other B meson decays such

as B0 → (K∗,K1, ρ, π)l+l− is that this decay can occur in two different ways i.e. through FCNC transitions and

due to Weak Annihilations (WA). In ordinary B meson decays the WA contributions are very small and can be

ignored. However, for the Bc meson the WA contributions are proportional to the CKM matrix elements VcbV∗cs

and hence can not be ignored. While working on the exclusive B-meson decays, the main job is to calculate the

form factors which are the non perturbative quantities and are scalar functions of the momentum transfer squared.

In the literature the form factors for Bc → D∗s`
+`− decay were calculated using different approaches, such as light

front constituent quark models, a relativistic quark model and the QCD sum rules [118, 119]. In this work we

calculate the form factors for the above mentioned decay through Ward identities, which was earlier applied to

B → ρ, γ [121, 120] and B → K1 decays [124]. This approach enables us to make a clear separation between the
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pole and non pole type contributions, the former is known in terms of a universal function ξ⊥(q2) ≡ g+(q2). The

residue of the pole is then determined in a self consistent way in terms of g+(0) which will give information about

the couplings of B∗s(1
−) and B∗sA(1+) in BcD∗s channel. The above mentioned coupling arises at lower pole masses

because the higher pole masses of Bc meson do not contribute to the decay Bc → D∗s`
+`−. The form factors are

then determined in terms of a known parameter g+(0) and the pole masses of the particles involved, which will

then be used to calculate different physical observables like the branching ratios and the helicity fractions of final

state meson (D∗s) for these decays.

In this chapter we analyze the branching ratio and helicity fractions of D∗s meson for Bc → D∗s`
+`− decay both

in the SM and ACD model. The chapter is organized as follows. In Sec. 6.2 we present the theoretical framework

for the decay Bc → D∗s`
+`− as well as the weak annihilation amplitude. Section 6.3 provides the definitions as

well as the detailed calculation of the form factors using Ward Identities. Here we compare the dependence of our

form factors on q2 with the ones calculated using QCD sum rules [128]. In Sec. 6.4 we present the basic formulas

for physical observables like decay rate and helicity fractions of D∗s meson whereas the numerical analysis of these

observables is given in Section 6.5. Section 6.6 gives the summary of the results.

6.2 Theoretical framework for Bc → D∗s`
+`− decays

6.2.1 Weak Annihilation Amplitude

The weak annihilation amplitude (WA) for the decay Bc → D∗s`
+`− can be written in analogy of Bc → D∗sγ

[129, 130].

MWA=
GFα

2
√

2π

fD∗s fBc

q2 VcbV∗cs

[
−iεµναβε∗νpαqβFD∗s

V (q2) +
(
ε · qpµ + p · qεµ

)
FD∗s

A (q2)
]

l̄γµl (6.1)

where fBc and fD∗s are the decay constants of Bc and D∗s mesons, respectively. The functions FD∗s
V (q2) and FD∗s

A (q2)

are the weak annihilation form factors which are calculated in QCD Sum Rules and can be parameterized as [128]:

FD∗s
V,A(q2) =

FD∗s
V,A(0)

1 + αq̂ + βq̂2 (6.2)

where q̂ = q2/M2
Bc
. In the present study we have parameterized the form factors in terms of double poles as follows

FD∗s
V (q2) =

(mb + ms)
MB−c + MD∗−s

FD∗s
V (0)

(1 − q2/M2
B∗s

)(1 − q2/M′2B∗s )
(6.3)

FD∗s
A (q2) =

mb − ms

MB−c − MD∗−s

FD∗s
A (0)

(1 − q2/M2
B∗sA

)(1 − q2/M′2B∗sA
)

1 −
q2

M2
B−c
− M2

D∗s

 (6.4)

The values of the form factors at q2 = 0 are determined by using QCD sum rules [131]. The two set of form

factors given in Eq. (6.2) and Eqs. (6.3-6.4) give respectively the branching ratios 2.20× 10−6 and 2.82× 10−6 for
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Figure 6.1: Weak annihilation diagram for the decay Bc → D∗s`
+`−

Bc → D∗sµ
+µ−. It follows that the branching ratios are independent on the choice of form factors. These values of

the branching ratios are almost five times larger than the penguin one which is given in Table 6.2, and as such one

cannot ignore the weak annihilation contribution for the process under consideration.

At quark level the semileptonic decay Bc → D∗s`
+`− is governed by the FCNC transition b→ s`+`− for which

effective Hamiltonian is given in Eq. (2.8). The ACD model (see sec. 2.4) is the most economical one because

it has only one additional parameter R i.e. the radius of the compactification, leaving the same operators basis as

that of the SM. At the low values of 1/R the KK states couple with the low energy theory and modified the Wilson

coefficients which now become the functions of the compactification radius R. The explicit form of these modified

Wilson coefficients Ce f f
7 , Ce f f

9 and Ce f f
10 were given in Chapter 2. However, at large values of 1/R the new states

become more and more massive, and will be decoupled from the low-energy theory,therefore one can recover the

SM phenomenology.

6.3 Matrix Elements and Form Factors

The exclusive Bc → D∗s`
+`− decay involves the hadronic matrix elements which can be obtained by sandwiching

the quark level operators give in Eq. (2.9) between initial state Bc meson and final state D∗s meson. These can

be parameterized in terms of form factors which are the scalar functions of the square of the four momentum

transfer(q2 = (p− k)2). The non vanishing matrix elements for the process Bc → D∗s can be parameterized exactly

in the same fashion as that of B→ K∗ decay in chapter 3. The form factors for the decay Bc → D∗s can be related

through Ward identities [121] as

〈
D∗s(k, ε)

∣∣∣s̄iσµνqνb
∣∣∣ Bc(p)

〉
= −(mb + ms)

〈
D∗s(k, ε)

∣∣∣s̄γµb
∣∣∣ Bc(p)

〉
(6.5)

〈
D∗s(k, ε)

∣∣∣s̄iσµνqνγ5b
∣∣∣ Bc(p)

〉
= (mb − ms)

〈
D∗s(k, ε)

∣∣∣s̄γµγ5b
∣∣∣ Bc(p)

〉

+(p + k)µ
〈
D∗s(k, ε) |s̄γ5b| Bc(p)

〉
(6.6)
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By using the parametrization of form factors in Eqs. (6.5) and (6.6) and comparing the coefficients of ε∗µ and qµ

on both sides, one can get the following relations between the form factors:

F1(q2) =
(mb + ms)

MB−c + MD∗−s
V(q2) (6.7)

F2(q2) =
mb − ms

MB−c − MD∗−s
A1(q2) (6.8)

F3(q2) = −(mb − ms)
2MD∗−s

q2

[
A3(q2) − A0(q2)

]
(6.9)

The results given in Eqs. (6.7, 6.8, 6.9) are derived by using Ward identities and therefore are the model indepen-

dent.

The universal normalization of the above form factors at q2 = 0 is obtained by defining [121]

〈
D∗s(k, ε)

∣∣∣s̄iσαβb
∣∣∣ Bc(p)

〉
= −iεαβρσε∗ρ

[
(p + k)σg+ + qσg−

] − (ε∗ · q)εαβρσ(p + k)ρqσh

−i
[
(p + k)αεβρστε∗ρ(p + k)σqτ − α↔ β

]
h1 (6.10)

Making use of the Dirac identity

σµνγ5 = − i
2
εµναβσαβ (6.11)

in Eq.(6.10), we get

〈
D∗s(k, ε)

∣∣∣s̄iσµνqνγ5b
∣∣∣ Bc(p)

〉
= ε∗µ

[
(M2

B−c
− M2

D∗−s
)g+ + q2g−

]

−q · ε∗
[
q2(p + k)µg+ − qµg−

]

+q · ε∗
[
q2(p + k)µ − (M2

B−c
− M2

D∗−s
)qµ

]
h (6.12)

On comparing coefficients of qµ, ε∗µ and εµναβ from the parametrization of the form factors, we have

F1(q2) =
[
g+(q2) − q2h1(q2)

]
(6.13)

F2(q2) = g+(q2) +
q2

M2
B−c
− M2

D∗−s

g−(q2) (6.14)

F3(q2) = −g−(q2) − (M2
B−c
− M2

D∗−s
)h(q2) (6.15)

One can see from Eqs. (6.13, 6.14) that at q2 = 0, F1(0) = F2(0). The form factors V(q2), A1(q2) and A2(q2) can

be written in terms of g+, g− and h as

V(q2) =
MB−c + MD∗−s

mb + ms

[
g+(q2) − q2h1(q2)

]
(6.16)

A1(q2) =
MB−c + MD∗−s

mb − ms

g+(q2) +
q2

M2
B−c
− M2

D∗−s

g−(q2)

 (6.17)
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A2(q2) =
MB−c + MD∗−s

mb − ms

[
g+(q2) − q2h(q2)

]
− 2MD∗−s

MB−c − MD∗−s
A0(q2) (6.18)

By looking at Eq. (6.16) and Eq. (6.17) it is clear that the normalization of the form factors V and A1 at q2 = 0

is determined by a single constant g+(0), where as from Eq. (6.18) the form factor A2 at q2 = 0 is determined by

two constants i.e. g+(0) and A0(0).

6.3.1 Pole Contribution

In Bc → D∗s`
+`− decay, there will be pole contributions to h1, g−, h and A0 from B∗s(1

−), B∗sA(1+) and Bs(0−) mesons

which can be parameterized as

h1|pole = −1
2

gB∗s BcD∗s

M2
B∗s

f B∗
T

1 − q2/M2
B∗

=
RV

M2
B∗s

1
1 − q2/M2

B∗s

(6.19)

g−|pole = −gB∗sABcD∗s

M2
B∗sA

f B∗sA
T

1 − q2/M2
B∗sA

=
RS

A

M2
B∗sA

1
1 − q2/M2

B∗sA

(6.20)

h|pole =
1
2

fB∗S ABcD∗s

M2
B∗sA

f B∗S A
T

1 − q2/M2
B∗sA

=
RD

A

M2
B∗sA

1
1 − q2/M2

B∗sA

(6.21)

A0(q2)|pole =
gB∗s BcD∗s

M2
B∗s

fBs

q2/M2
B

1 − q2/M2
B

= R0
q2/M2

Bs

1 − q2/M2
Bs

(6.22)

where the quantities RV ,RS
A,R

D
A and R0 are related to the coupling constants gB∗s BcD∗s , gB∗sABcD∗s and gB∗sABcD∗s , respec-

tively. Here we would like to mention that the above mentioned couplings arise at the lower pole mass, because

the higher pole masses of Bc meson do not contribute for the Bc → D∗s`
+`− decay. The form factors A1(q2), A2(q2)

and V(q2) can be written in terms of these quantities as

V(q2) =
MB−c + MD∗s

mb + ms

g+(q2) − RV

M2
B∗s

q2

1 − q2/M2
B∗s

 (6.23)

A1(q2) =
MB−c − MD∗−s

mb − ms

g+(q2) +
q2

M2
B−c
− M2

D∗−s

g̃−(q2) +
RS

A

M2
B∗sA

q2

1 − q2/M2
B∗sA

 (6.24)

A2(q2) =
MB−c + MD∗−s

mb − ms

g+(q2) − RD
A

M2
B∗As

q2

1 − q2/M2
B∗sA

 −
2MD∗−s

MBc − MD∗−s
A0(q2) (6.25)

Now, the behavior of g+(q2), g̃−(q2) and A0(q2) is known from LEET and their form is [121]

g+(q2) =
ξ⊥(0)

(1 − q2/M2
B)2

= −g̃−(q2) (6.26)

A0(q2) =

1 −
M2

D∗−s

MBc ED∗−s

 ξ‖(0) +
MD∗−s

MBc

ξ⊥(0) (6.27)

ED∗s =
MBc

2

1 −
q2

M2
Bc

+
M2

D∗s

M2
Bc

 (6.28)

g+(0) = ξ⊥(0) (6.29)
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The pole terms given in Eqs.(6.23-6.25) dominate near q2 = M2
B∗s

and q2 = M2
B∗sA

. Just to make a remark that

relations obtained from the Ward identities can not be expected to hold for the whole q2. Therefore, near q2 = 0

and near the pole following parametrization is suggested [121]

F(q2) =
F(0)(

1 − q2/M2) (1 − q2/M′2)
(6.30)

where M2 is M2
B∗s

or M2
B∗sA

, and M′ is the radial excitation of M. The parametrization given in Eq. (6.30) not

only takes into account the corrections to single pole dominance suggested by the dispersion relation approach

[122, 123] but also give the correction of off-mass shell-ness of the couplings of B∗s and B∗sA with the BcD∗s channel.

Since g+(0) and g̃−(q2) have no pole at q2 = M2
B∗s
, we get

V(q2)(1 − q2

M2
B∗

)|q2=M2
B∗

= −RV

(
MBc + MD∗s

mb − ms

)

This becomes

RV ≡ −1
2

gB∗s BcD∗s fB∗s = − g+(0)
1 − M2

B∗/M
′2
B∗

(6.31)

and similarly

RD
A ≡

1
2

fB∗sABcD∗s f B∗sA
T = − g+(0)

1 − M2
B∗sA
/M′2B∗sA

(6.32)

We cannot use the parametrization given in Eq.(6.30) for the form factor A1(q2), since near q2 = 0, the behavior

of A1(q2) is g+(q2)
[
1 − q2/

(
M2

B−c
− M2

D∗−s

)]
, therefore we can write A1(q2) as follows

A1(q2) =
g+(0)(

1 − q2/M2
B∗sA

) (
1 − q2/M′2B∗sA

)
1 −

q2

M2
B−c
− M2

D∗s

 (6.33)

The only unknown parameter in the above form factors calculation is g+(0) and its value can be extracted by using

the central value of branching ratio for the decay B−c → D∗−s γ [131] for which the decay rate is

Γ
(
Bc → D∗sγ

)
=

G2
Fα

32π4

∣∣∣VtbV∗ts
∣∣∣2 m2

bM3
Bc
×

1 −
M2

D∗s

M

2

Bc



3 ∣∣∣∣Ce f f
7

∣∣∣∣
2 |g+(0)|2 (6.34)

From Eq.(6.34), the value of unknown parameter g+(0) is found to be g+(0) = 0.42. Using fBc = 0.35 GeV we

have prediction from Eq.(6.31) that

gB∗s BcD∗s = 10.38GeV−1. (6.35)

Similarly the ratio of S and D wave couplings as found to be

gB∗sABcD∗s

fB∗sA BcD∗s
= −0.42GeV2 (6.36)
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The different values of F(0) are

V(0) =
MB−c + MD∗−s

mb + ms
g+(0) (6.37)

A1(0) =
MB−c − MD∗−s

mb − ms
g+(0) (6.38)

A2(0) =
MB−c + MD∗−s

mb − ms
g+(0) − 2MD∗−s

MB−c − MD∗−s
A0(0) (6.39)

The calculation of the numerical values of V(0) and A1(0) is quite trivial but for the value of A2(0), the value

of A0(0) has to be known. Although LEET does not give any relationship between ξ||(0) and ξ⊥(0), but in LCSR

ξ||(0) and ξ⊥(0) are related due to numerical coincidence [127]

ξ||(0) ' ξ⊥(0) = g+(0) (6.40)

Thus from Eq. (6.27) we have

A0(0) = 1.12g+(0)

For the other values of q2 the form factors can be extrapolated as follows:

V(q2) =
V(0)

(1 − q2/M2
B∗s

)(1 − q2/M′2B∗s )
(6.41)

A1(q2) =
A1(0)

(1 − q2/M2
B∗sA

)(1 − q2/M′2B∗sA
)

1 −
q2

M2
B−c
− M2

D∗s

 (6.42)

A2(q2) =
Ã2(0)

(1 − q2/M2
B∗sA

)(1 − q2/M′2B∗sA
)

− 2MD∗−s

MB−c − MD∗−s

A0(0)
(1 − q2/M2

Bs
)(1 − q2/M′2Bs

)

(6.43)

The behavior of the form factors V(q2), A1(q2) and A2(q2) which are given in Eqs.(6.41-6.43) are plotted as a

function of q2 shown in Fig. 6.1. One can see that the value of the form factors increases with increasing q2 except

for A2(q2) where the second term starts dominating at large q2. This behavior of form factors also differs from the

one calculated using three point QCD sum rules shown in Fig. 6.2. The form factors obtained by QCD sum rules

for the decay Bc → D∗s`
+`−[128] are given in Table 6.1
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Figure 6.2: Form factors are plotted as a function of q2. Solid line, dashed line and long-dashed line correspond
to g+(0) equal to 0.42, 0.32 and 0.22 respectively.
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Figure 6.3: Form factors are plotted as a function of q2. Solid line is drawn by using Ward Identities (our case)
and dashed line is drawn by using 3 point QCD sum rules. In both cases we took the central value of the form
factors.
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Table 6.1: The values of form factors at q2 = 0 obtained by three point QCD sum rules [128]
Bc → D∗sl

+l−

AV (0) 0.54 ± 0.018
A0(0) 0.30 ± 0.017
A+(0) 0.36 ± 0.013
A−(0) −0.57 ± 0.04
F1(0) 0.31 ± 0.017
F2(0) 0.33 ± 0.016
F3(0) 0.29 ± 0.034

6.4 Physical Observables for Bc → D∗s`
+`−

In this section we will present the calculations of the physical observables like the decay rates and the helicity

fractions of D∗s meson using the weak annihilation (WA) and the penguin amplitude that corresponds to the FCNC.

From Eq. (2.9) it is straightforward to write the penguin amplitude

MPENG = − GFα

2
√

2π
VtbV∗ts

[
T 1
µ (l̄γµl) + T 2

µ

(
l̄γµγ5l

)]

where

T 1
µ = f1(q2)εµναβε∗νpαkβ − i f2(q2)ε∗µ + i f3(q2)(ε∗ · q)Pµ (6.44)

T 2
µ = f4(q2)εµναβε∗νpαkβ − i f5(q2)ε∗µ + i f6(q2)(ε∗ · q)Pµ (6.45)

The functions f1 to f6 in Eq.(6.44) and Eq. (6.45) are known as auxiliary functions, which contain both long

distance (form factors) and short distance (Wilson coefficients) effects and these can be written as

f1(q2) = 4(mb + ms)
Ce f f

7

q2 F1(q2) + 2Ce f f
9

V(q2)
MBc + MD∗s

f2(q2) =
Ce f f

7

q2 2(mb − ms)F2(q2)
(
M2

Bc
− M2

D∗s

)
+ Ce f f

9 A1(q2)
(
MBc + MD∗

)

f3(q2) =

4
Ce f f

7

q2 (mb − ms)

F2(q2) + q2 F3(q2)(
M2

Bc
− M2

D∗s

)
 + Ce f f

9
A2(q2)

MBc + MD∗s



f4(q2) = C10
2V(q2)

MBc + MD∗s

f5(q2) = C10A1(q2)
(
MBc + MD∗s

)

f6(q2) = C10
A2(q2)

MBc + MD∗s

f0(q2) = C10A0(q2) (6.46)

The next task is to calculate the decay rate and the helicity fractions of the D∗s meson in terms of these auxiliary

functions.
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6.4.1 The Differential Decay Rate of Bc → D∗s`
+`−

In the rest frame of Bc meson the differential decay width of Bc → D∗s`
+`− can be written as

dΓ(Bc → D∗sµ
+µ−)

dq2 =
1

(2π)3

1
32M3

Bc

∫ +u(q2)

−u(q2)
du |A|2 (6.47)

where

A = MWA +MPENG (6.48)

q2 = (pl+ + pl−)2 (6.49)

u = (p − pl−)2 − (p − pl+ )2 (6.50)

Now the limits on q2 and u are

4m2
l ≤ q2 ≤ (MBc − MD∗s )

2 (6.51)

−u(q2) ≤ u ≤ u(q2) (6.52)

with

u(q2) =

√
λ

1 −
4m2

l

q2

 (6.53)

and

λ ≡ λ(M2
Bc
, M2

D∗s , q
2) = M4

Bc
+ M4

D∗s + q4 − 2M2
Bc

M2
D∗s − 2M2

D∗s q
2 − 2q2M2

Bc

Here ml corresponds to the mass of the lepton which for our case is the µ or τ. The total decay rate for the decay

Bc → D∗s`
+`− can be expressed in terms of WA, penguin amplitude and interference of these two which takes the

form
dΓ

dq2 =
dΓWA

dq2 +
dΓ PENG

dq2 +
dΓWA-PENG

dq2 (6.54)

with

dΓWA

dq2 =
G2

F

∣∣∣VcbV∗cs

∣∣∣2 α2

211π53M3
Bc

M2
D∗s

q2
u(q2) × g

(
q2

)
(6.55)

dΓ PENG

dq2 =
G2

F

∣∣∣VtbV∗ts
∣∣∣2 α2

211π53M3
Bc

M2
D∗s

q2
u(q2) × h

(
q2

)
(6.56)

dΓWA-PENG

dq2 =
G2

F

∣∣∣VcbV∗cs

∣∣∣ ∣∣∣VtbV∗ts
∣∣∣α2

211π53M3
Bc

M2
D∗s

q2
u(q2) × I

(
q2

)
. (6.57)

The function u(q2) is defined in Eq. (6.53) and g(q2), h(q2) and I(q2) are

g
(
q2

)
=

1
2

(
2m2

l + q2
)
κ2

[
8λM2

D∗s q
2
(
FD∗s

V (q2)
)2

+
(
FD∗s

A (q2)
)2

[12M2
D∗s q

2(λ
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+4M2
Bc

q2) + λ2 + λ(λ + 4q2M2
D∗s + 4q4)]

]

h(q2) = 24
∣∣∣ f0(q2)

∣∣∣2 m2
l M2

D∗sλ + 8M2
D∗s q

2λ(2m2
l + q2)

∣∣∣ f1(q2)
∣∣∣2 − (4m2

l − q2)
∣∣∣ f4(q2)

∣∣∣2]

+λ(2m2
l + q2)

∣∣∣ f2(q2) + (M2
Bc
− M2

D∗s − q2) f3(q2)
∣∣∣2 − (4m2

l − q2)| f5(q2)

+(M2
Bc
− M2

D∗s − q2) f6(q2)|2] + 4M2
D∗s q

2[(2m2
l + q2)(3

∣∣∣ f2(q2)
∣∣∣2 − λ

∣∣∣ f3(q2)
∣∣∣2)

−(4m2
l − q2)(3

∣∣∣ f5(q2)
∣∣∣2 − λ

∣∣∣ f6(q2)
∣∣∣2)] (6.58)

I(q2) = 2κ[ f2(q2)FD∗s
A (q2)q2(2m2

l + q2)(λ + 6M2
D∗s (M2

Bc
− M2

D∗s + q2))

−(λ(2 f1(q2)FD∗s
V (q2)M2

D∗s q
4 + f3(q2)FD∗s

A (q2)(2m2
l + q2)(λ + q4 + 4MBc MD∗s ))].

where

κ =
8π2MD∗s fBc fD∗s(

m2
c − m2

s
)

q2 (6.59)

6.4.2 Helicity Fractions Of D∗s In Bc → D∗s`
+`−

We now discuss the helicity fractions of D∗s in Bc → D∗s`
+`− which are interesting variables and as such are

independent of the uncertainties arising due to form factors and other input parameters. The final state meson

helicity fractions were already discussed in literature for B → K∗ (K1) `+`− decays [125, 124]. For the K∗

vector meson, the longitudinal helicity fraction fL has been measured by Babar collaboration for the decay B →
K∗l+l−(l = e, µ) in two bins of momentum transfer and the results are [126]

fL = 0.77+0.63
−0.30 ± 0.07, 0.1 ≤ q2 ≤ 8.41GeV2

(6.60)

fL = 0.51+0.22
−0.25 ± 0.08, q2 ≥ 10.24GeV2

while the average value of fL in full q2 range is

fL = 0.63+0.18
−0.19 ± 0.05, q2 ≥ 0.1GeV2 (6.61)

The explicit expression for the decay rate for B−c → D∗−s l+l− decay can be written in terms of longitudinal ΓL and

transverse components ΓT as

dΓL(q2)
dq2 =

dΓWA
L (q2)
dq2 +

dΓPENG
L (q2)
dq2 +

dΓWA-PENG
L (q2)

dq2 (6.62)

dΓ±(q2)
dq2 =

dΓWA
± (q2)
dq2 +

dΓPENG
± (q2)
dq2 +

dΓWA-PENG
± (q2)

dq2 (6.63)

dΓT (q2)
dq2 =

dΓ+(q2)
dq2 +

dΓ−(q2)
dq2 . (6.64)
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where

dΓWA
L (q2)
dq2 =

G2
F

∣∣∣VcbV∗cs

∣∣∣2 α2

211π5

u(q2)
M3

Bc

× 1
3

AWA
L (6.65)

dΓPENG
L (q2)
dq2 =

G2
F

∣∣∣VtbV∗ts
∣∣∣2 α2

211π5

u(q2)
M3

Bc

× 1
3

APENG
L (6.66)

dΓWA-PENG
L (q2)

dq2 =
G2

F

∣∣∣VcbV∗cs

∣∣∣ ∣∣∣VtbV∗ts
∣∣∣α2

211π5

u(q2)
M3

Bc

× 1
3

AWA-PENG
L (6.67)

dΓWA
± (q2)
dq2 =

G2
F

∣∣∣VcbV∗cs

∣∣∣2 α2

211π5

u(q2)
M3

Bc

× 2
3

AWA
± (6.68)

(6.69)

dΓPENG
± (q2)
dq2 =

G2
F

∣∣∣VtbV∗ts
∣∣∣2 α2

211π5

u(q2)
M3

Bc

× 4
3

APENG
± (6.70)

dΓWA-PENG
± (q2)

dq2 =
G2

F

∣∣∣VcbV∗cs

∣∣∣ ∣∣∣VtbV∗ts
∣∣∣α2

211π5

u(q2)
M3

Bc

× 2
3

AWA-EP
± . (6.71)

The different functions appearing in above equation can be expressed in terms of auxiliary functions (c.f. Eq.

(6.46)) as

AWA
L =

κ2

4q2M2
D∗s

[ (
FD∗s

V (q2)
)2

{
q2λ(λ + 4q2M2

D∗s ) − 4M2λ(2λ + 8q2M2
D∗s )

− q2
(
M2

Bc
− M2

D∗s − q2
)2 (

λ − 2u2(q2)
) }

+
(
FD∗s

A (q2)
)2

{
12λq2((M2

Bc
− M2

D∗s )
2 − M2

D∗s )

− λ2(q2 − 4m2
l ) + q2(8q2M2

D∗s − λ)(M2
Bc
− M2

D∗s + q2)2

− 2u2(q2)q2((M2
Bc
− M2

D∗s )
2 + q4) + 4m2

l ((M2
Bc
− M2

D∗s )
2 − q4)2

}]

APENG
L =

1
2M2

D∗s
q2

[24
∣∣∣ f0(q2)

∣∣∣2 m2
l M2

D∗sλ + (2m2
l + q2)

∣∣∣(M2
Bc
− M2

D∗s − q2) f2(q2) + λ f3(q2)
∣∣∣2

+ (q2 − 4m2
l )

∣∣∣(M2
Bc
− M2

D∗s − q2) f5(q2) + λ f6(q2)
∣∣∣2]

AWA-PENG
L =

κ

q2M2
D∗s

[
<( f1

(
q2

)
FD∗s

V (q2))
{
(λ + 4M2

D∗s q
2)

(
8m2

l

√
λ + q2(2u(q2) −

√
λ)

)
− 4M2

D∗s q
2λ

}

+<( f2
(
q2

)
FD∗s

A (q2))
{
q2u2(q2)(M2

Bc
− M2

D∗s − q2) + 6q2λ(M2
D∗s − M2

Bc
)

+ q2(λ − 8q2M2
D∗s )(M2

Bc
− M2

D∗s + q2) − 4m2
l q2(4q2M2

D∗s + λ)
}

+<( f3
(
q2

)
FD∗s

A (q2))
{
λ2(4m2

l − q2) + q4(q2u(q2)
√
λ

− 6λ(M2
Bc

+ M2
D∗s )) + q2(M2

Bc
− M2

D∗s )(6λ − u2(q2))
}]

AWA
± = κ2

[ (
2m2

l + q2
) [
λ
(
FD∗s

V (q2)
)2

+
(
FD∗s

A (q2)
)2 (

λ + 4M2
D∗s q

2
) ]]

APENG
± = (q2 − 4m2

l )
∣∣∣∣ f5(q2) ∓

√
λ f4(q2)

∣∣∣∣
2

+
(
q2 + 2m2

l

) ∣∣∣∣ f2(q2) ±
√
λ f1(q2)

∣∣∣∣
2

AWA -PENG
± = −κ

{
2
√
λ(q2 − 4m2

l )<( f2
(
q2

)
FD∗s

V (q2)) + 4λ(q2 + 2m2
l )<( f1

(
q2

)
FD∗s

V (q2))
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± 2(q2 + 2m2
l )(M2

Bc
− M2

D∗s + q2)[2<[( f1
(
q2

)
FD∗s

A (q2))]
√
λ ∓ 2<( f2

(
q2

)
FD∗s

V (q2))]
}

(6.72)

Finally, the longitudinal and transverse helicity fractions can be evaluated by the formula given in Eq. (5.33)

6.5 Numerical Analysis.

In this section we present the numerical analysis of the branching ratio and helicity fractions of D∗s meson both in

the SM and in ACD model. Among the different input parameters the important one are the form factors which

are the major source of uncertainties. To study the above mentioned physical observables we use two different

form factors, in one where we parameterized the form factors in terms of double pole and then relate them through

the Ward identities which are given in section 6.3, the other one obtained by three point QCD sum rules given in

Table 6.1 . The differences in the results obtained in physical observables using two different approaches of form

factors represents an indication of the error related to the hadronic uncertainty. We have used next-to-leading order

approximation for the Wilson Coefficients at the renormalization scale µ = mb. It has already been mentioned that

besides the contribution in the Ce f f
9 , there are long distance contributions resulting from the cc̄ resonances like

J/ψ and its excited states. For the present analysis we do not take into account these long distance effects. The

numerical results for the branching ratio and helicity fractions of D∗s for the decay mode Bc → D∗s`
+`− using

the form factors given in section 6.3 and QCD sum rules are depicted in Figs. 6.3-6.8, both in the SM and the

ACD model. Figs. (6.3-6.4) represents the branching ratio of Bc → D∗s`
+`− decay. One can clearly see from the

Figs.(6.3) and (6.4) that the branching ratio is increased due to the increment in the inverse of the compactification

radius R of the KK-contribution, while at the larger values of the inverse of the compactification radius R the

branching ratio is shifted towards the SM. We have also displayed the numerical results of the branching ratio for

the decay Bc → D∗s`
+`− separately for penguin, WA and combination of both are given in Table 6.2.

Table 6.2: Branching ratio for Bc → D∗sµ
+µ−(τ+τ−) decay in the SM.

Form factors defined in section 5.3 QCD Sum Rule
BR(PENG)(Bc → D∗sµ

+µ−(τ+τ−)) 4.17 × 10−7(2.22 × 10−8) 2.57 × 10−7
(
1.13 × 10−8

)

BR(WA)(Bc → D∗sµ
+µ−(τ+τ−)) 2.82 × 10−6

(
0.92 × 10−9

)
2.20 × 10−6

(
0.35 × 10−9

)

BR(Total)(Bc → D∗sµ
+µ−(τ+τ−)) 3.24 × 10−6

(
3.03 × 10−8

)
2.46 × 10−6

(
1.49 × 10−8

)

From Table 6.2 one can also see that the branching ratio for the decay Bc → D∗sµ
+µ− obtained from the WA is

about 5 times larger than the corresponding penguin one. It is therefore expected that these WA contributions will

reduce the new physics effects in helicity fractions of the final state meson.

In general the sensitivity of NP on the branching ratio is affected by the uncertainties which arises due to the

number of different input parameters. Among them the major one lies in the numerical analysis of Bc → D∗s`
+`−

decay originated from the Bc → D∗s transition form factors. The large uncertainties involved in the form factors

are mainly from the variations of the decay constant of Bc meson and also there are some uncertainties from the
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Figure 6.4: (a)Branching ratio using double pole parametrization and (b) using three point QCD sum rules for the
B → D∗sµ

+µ− decay as functions of q2 for different values of 1/R. Solid line correspond to SM value,dashed line
is for 1/R = 300, long dashed is for 1/R = 500.
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Figure 6.5: Branching ratio for the decay Bc → D∗sτ
+τ−. The legends are same as that of Fig. 6.4

strange quark mass ms. The latter are expected to be tiny on account of the negligible role of ms suppressed by the

much larger energy scale of mb. Moreover, the uncertainties of the charm quark and bottom quark mass are at the

1% level, which will not play significant role in the numerical analysis and can be dropped out safely. It also needs

to be stressed that these hadronic uncertainties almost have no influence on the various asymmetries including the

polarization asymmetries of final state meson on account of their cancelation among different polarization states

and this makes them as one of the best tools to look for physics beyond the SM.

Figs. 6.5(a, b, c, d) and 6.6(a, b, c, d) show the longitudinal and transverse helicity fractions of D∗s for the

decay Bc → D∗sµ
+µ− as a function of q2, where we have used the form factors calculated in section 6.3. Choosing

the different values of the compactification radius 1/R, one can see from these figures that the effect of extra

dimensions are visible at low q2 region. In this case these effects interfere constructively to the SM value for the
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case of transverse helicity fraction and destructive for the case of longitudinal helicity fraction. Just to see their

dependence on the choice of the form factors we have plotted these longitudinal and transverse helicity fractions

of D∗s in Figs. 6.6(a, b) using three point QCD sum rules form factors (c.f. Table 6.1). Here we want to emphasize

that the behavior of longitudinal and transverse helicity fraction changes when we consider WA (c.f. Figs. 6.5(b,d)

and 6.6(b,d)) contribution in addition to the penguin one (c.f. Figs. 6.5(a,c) and 6.6(a,c)). This is due to the large

contribution of WA amplitude in the decay rate of Bc → D∗sµ
+µ−.

Figs. 6.7(a, b, c, d) and 6.8(a, b, c, d) show the longitudinal and transverse helicity fractions of D∗s for the

decay Bc → D∗sτ
+τ− decay as a function of q2 for the form factors given in section 6.3 and three point QCD sum

rules. Here one can see that the shift from the SM value is very mild for both choices of form factors as well as

due to the WA contribution.

Hence one can see that the helicity fractions of the final state meson have mild dependence on the choice of

form factors and NP effects are quite significant in the lower q2 region. Moreover from Figs. 6.5-6.8 it is clear

that for each value of the momentum transfer q2 the sum of the longitudinal and transverse helicity fractions are

equal to one, i.e. fL(q2) + fT (q2) = 1 as we have mentioned in the previous chapter.
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Figure 6.6: Longitudinal helicity fraction for the B→ D∗sµ
+µ− as a function of q2 for different values of 1/R.The

legends are same as that of Fig 6.4.

90



0 2.5 5 7.5 10 12.5 15 17.5
q2

0

0.2

0.4

0.6

0.8

f T

0 2.5 5 7.5 10 12.5 15 17.5
q2

0

0.1

0.2

0.3

0.4

0.5

0.6

f T

0 2.5 5 7.5 10 12.5 15 17.5
q2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f T

0 2.5 5 7.5 10 12.5 15 17.5
q2

0

0.1

0.2

0.3

0.4

0.5

0.6

f T

(a) (b)

(c) (d)

Figure 6.7: Transverse helicity fraction for the B → D∗sµ
+µ− as a function of q2 for different values of 1/R.The

legends are same as that of Fig 6.4.
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Figure 6.8: Longitudinal helicity fraction for the B → D∗sτ
+τ− as a function of q2 for different values of 1/R.The

legends are same as that of Fig 6.4.
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Figure 6.9: Transverse helicity fraction for the B → D∗sτ
+τ− as a function of q2 for different values of 1/R. The

legends are same as that of Fig 6.4.
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6.6 Conclusion:

We have investigated the semileptonic decay Bc → D∗s`
+`− by including both the penguin and WA contributions.

In particular we found that branching ratio obtained from WA amplitude is 6.7 times large as compared to penguin

amplitude for Bc → D∗s`
+`− decay. In order to calculate the WA form factors FD∗s

V (q2) and FD∗s
A (q2), we use Eqs.

(6.2, 6.3, 6.4), where the value of the form factors at q2 = 0 can be obtained from QCD sum rules [131]. However

for the penguin amplitude the form factors for the above mentioned decay are calculated using the framework of

Ward identities which is discussed in section 6.3. Here we have also compared the values of our form factors with

the ones calculated using three point QCD sum rules [128].

The form factors contributing to the penguin amplitudes were calculated in the framework of Ward identities

which can be expressed in terms of a single universal constant g+(0). The value of g+(0) = (0.42) is obtained from

the decay Bc → D∗sγ [131]. Considering the radial excitation at lower pole masses M ( where M = MB∗s and MB∗sA
)

one can predict the coupling of B∗s with BcD∗s channel as indicated in Eq.(6.35) which is gB∗s BcD∗s = 10.38 GeV−1.

Also we predicted the ratio of S and D wave couplings
gB∗sA BcD∗s
fB∗sA BcD∗s

= −0.42 GeV2 given in Eq.(6.36). We have studied

the physical observables such as the branching ratio and the helicity fraction of D∗s in the decay Bc → D∗s`
+`− both

in SM and in the ACD model. We have seen that the effects of ACD model in the helicity fractions of D∗s meson

for the decay Bc → D∗sµ
+µ− are quite significant at low q2 region. Furthermore to see the sensitivity of the said

physical observables on the choice of form factors against q2 using the three point QCD sum rules form factors.

We have shown that the helicity fractions of the final state meson have weak dependence on the choice of form

factors which make them good tool to look for NP which we hope to be seen at LHC.

In short, the experimental measurements of the extra dimensions effects in the above mentioned observables

at LHC will be a useful tool to describe the status of physics beyond the SM. Further we are hopeful that when

more data will be collected at LHC, it will not only test the SM but also puts some stringent constraints on the

compactification radius 1/R.
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