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Chapter 1

PRELIMINARIES

1.1 Introduction

In this chapter, we provide general information for the rest of the thesis. The essential de�ni-

tions and results regarding LA-semigroups are presented here. The chapter is divided into four

sections. The areas covered here are magmas in general, LA-semigroups in particular. Similar

algebraic concepts regarding semigroups are available in books such as Fundamentals of Semi-

group Theory [24] by Howie, The Algebraic Theory of Semigroups [8] by Cli¤ord and Preston,

and Theory of Partial Symmetries [34] by Lawson.

The purpose of this chapter is to enable the readers to comprehend this work without

consulting the references. However, references for more knowledge are provided throughout.

Besides introducing the fundamental concepts of LA-semigroups that are available in existing

literature, the chapter also provides some new ideas.

1.2 LA-semigroup

The algebraic objects dealt with in this thesis are left almost semigroups (abbreviated as LA-

semigroups). In this section, we provide some basic de�nitions and results to introduce the

frequently used notation. Readers are referred to �nd other sources in particular [40, 41, 43,

50, 52] for fundamentals of the LA-semigroups.
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De�nition 1 Let L be a non-empty set.

(i) A binary operation is a mapping ? : L � L ! L and a magma is denoted by the pair

(L; ?).

(ii) A magma (L; ?) is a left almost semigroup (abbreviated as LA-semigroup), if (u ? v)?w =

(w ? v) ? u for all u; v; w 2 L:

(iii) An element e 2 L is a left identity (right identity) of (L; ?), if e?u = u; (u ? e = u) for all

u 2 L. An LA-semigroup containing a left identity is a left almost monoid (abbreviated

as LA-monoid).

(iv) An LA-monoid (L; ?) is left invertible, if for all u 2 L, there exists an element u�1 2 L

such that u�1 ? u = e. Then u�1 is the left inverse of u: An LA-group is actually an

LA-monoid containing every invertible element.

In the future, it is usually a common practice that a magma (L; �) is represented by the non-

empty set L and the operation � is represented by simple adjacent positions of elements. When

it seems ambiguous, operation � is used. Generally, the multiplication is used as operation.

The cardinality or order of L is the number of elements in magma (LA-semigroup, LA-monoid,

and LA-group respectively). The period of an element u 2 L is the least positive integer n such

that un+1 = u:

Commutativity is de�ned as uvw = wvu in terms of ternary operations. Naseerudin used

the brackets on the left of this identity to introduce a new rule, that is, (uv)w = (wv)u and

de�ned a magma satisfying the rule (uv)w = (wv)u as a left almost semigroup[50]. Similarly, a

magma satisfying the rule u(vw) = w(vu) is named as right almost semigroup. Later, Mushtaq

and Yusuf explored some fundamental properties [40]. They also introduced locally associative

LA-semigroups and LA-semigroups derived from commutative inverse semigroups [41, 43]. LA-

semigroups are also known as the right modular groupoids or left invertive groupoids [23, 27].

Dénes and Keedwell referred the name Abel Grassmann�s law to represent the rule u(vw) =

w(vu) [9]. Later, Protíc and Stevanovíc introduced the name Abel Grassmann�s groupoids

(shortly as AG-groupoid) for LA-semigroups [52]. In [40], Mushtaq and Yusuf pointed out that

the medial identity, that is, (uv)(wx) = (uw)(vx) holds naturally in an arbitrary LA-semigroup
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by using left invertive law successively. It is important to mention here that every LA-semigroup

is medial but a medial groupoid may not be an LA-semigroup. For instance, Table 1 satis�es

the medial identity without being an LA-semigroup.

Table 1. Medial groupoid which is not LA-semigroup

� 0 1 2 3 4

0 4 4 4 2 4

1 4 0 0 4 4

2 4 0 4 2 4

3 0 2 2 0 0

4 4 4 4 4 4

Here, (0 � 3) � 1 6= (1 � 3) � 0 substantiates it.

LA-semigroups are non-associative in general, but they are similar in behaviour to the semi-

groups and commutative semigroups. LA-semigroups can easily be transformed into semigroups

or commutative semigroups under certain conditions. We provide the following examples to il-

lustrate the connection between a semigroup and an LA-semigroup (especially a commutative

semigroup).

Example 1 Let a be a �xed element of L on which a binary operation � is de�ned by u � v =

(ua) v, for all u; v 2 L.

Then it is easy to see that u � v = v � u for all u; v 2 L. Additionally, if L satis�es the

identity u (vw) = v (uw) ; then (u � v) � w = ((ua) v) � w = (((ua) v) a)w = (wa) ((ua) v) and

u � (v � w) = u � ((va)w) = (ua) ((va)w) = (ua) ((wa) v) = (wa) ((ua) v) : Consequently, (L; �)

is a commutative semigroup.

Example 2 Let Z be the set of integers on which � is taken as follows: u � v = v � u; for all

u; v 2 Z:

Then clearly, it is an in�nite LA-semigroup which is non-commutative as well as non-

associative.

3



In order to de�ne associative powers in L, the identity (uv)w = v (uw) was introduced

in L [45]. An LA-semigroup L with this additional property is called an LA*-semigroup. In

[44], Mushtaq and Kamran proved that (uv)w = v (uw) ; and (uv)w = v (wu) are equivalent

identities in an LA*-semigroup. Consequently, the identity u (vw) = u (wv) also holds in an

LA*-semigroup. In [56], Protic de�ned congruences in LA*-semigroup, left permutable LA-

semigroup and decomposed the structures using these congruences. In [13], Distler, Shah and

Sorge proved that smallest non-associative LA*-semigroup is of order 6 and these are just nine

in number. One of them is given in Table 2.

Table 2. An LA*-semigroup of least order

0 1 2 3 4 5

0 3 3 5 5 3 5

1 2 4 5 5 3 5

2 5 3 5 5 5 5

3 5 5 5 5 5 5

4 5 3 5 5 5 5

5 5 5 5 5 5 5

The rule u (vw) = v (uw) is known as a left permutable law. An LA-semigroup L which

satis�es the left permutable law is called a left permutable LA-semigroup. Protic and Bozi-

novic introduced such LA-semigroups in [54]. A left permutable LA-semigroup L is always

paramedial, that is, (uv) (wx) = (xv) (wu) for every u; v; w; x 2 L but its converse is not true.

For instance, Table 3 (i) follows that L is a left permutable groupoid which is also paramedial

without being an LA-semigroup while L is a left permutable groupoid with left identity without
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being an LA-semigroup by Table 3(ii).

Table 3. LP-groupoids which are not LA-semigroup

0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 2 1

2 0 0 0 1 1

3 0 0 0 2 0

4 0 0 0 1 0

0 1 2 3 4

0 3 0 4 4 0

1 4 2 0 0 3

2 0 1 2 3 4

3 0 4 3 3 4

4 4 3 0 0 3

(i) (ii)

It is important to mention here that an LA-monoid is always left permutable, but a left

permutable groupoid with the left identity may not be an LA-semigroup. For instance, Table

4(i) represents a left permutable groupoid with a left identity 2, but (1 � 2) � 2 6= (2 � 2) � 1

substantiates that L is not an LA-semigroup.

Table 4. Left permutable groupoid which are not LA-semigroup

� 0 1 2 3 4

0 3 0 4 4 0

1 4 2 0 0 3

2 0 1 2 3 4

3 0 4 3 3 4

4 4 3 0 0 3

� 0 1 2 3 4

0 2 2 2 2 2

1 3 4 2 0 1

2 2 2 2 2 2

3 2 2 2 2 2

4 2 1 2 2 4

(i) (ii)

On the other hand, Table 4(ii) represents a left permutable groupoid without being an LA-

semigroup.

The following proposition (Proposition 2.2 in [40]) ensures the existence of an LA-monoid

and the succeeding theorem (Theorem 2.3 in [40]) correlates LA-semigroups with the commu-
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tative semigroups.

Proposition 1 If e 2 L is a left identity of L; then it is unique.

Theorem 1 If e 2 L is a right identity of L; then L is a commutative semigroup.

In an LA-semigroup L with left identity e, an element u�1 of L is a right (left) inverse of

u 2 L if uu�1 = e (u�1u = e). Also, if u�1 is a left inverse of u; then uu�1 = (eu)u�1 =�
u�1u

�
e = ee = e: Consequently, any left inverse is also the right inverse in L and so is the

inverse. In particular, if v 2 L is another left inverse of u, then u�1 = eu�1 = (vu)u�1 =

(u�1u)v = ev = v. This means that left inverse of each element in L is unique. Moreover, every

LA-group contains one idempotent element only, which is its left identity.

The following theorem (Theorem 1 in [42]) presents a necessary and su¢ cient condition for

transforming L into an abelian group. Some additional conditions are also investigated for such

an LA-semigroup L.

Theorem 2 For any LA-semigroup L; the following statements are equivalent:

(i) u = (ww � uv) v for all u; v; w in L;

(ii) there exists a commutative group (L; �) such that uv = v � u�1 for all u; v in L;

(iii) L is cancellative with left identity e and that u2 = e for all u in L;

(iv) e 2 L is a left identity and u2 = e for all u in L:

An LA-semigroup L satisfying the identity (uu)u = u (uu) for each u 2 L is locally asso-

ciative LA-semigroup. A locally associative LA-monoid is de�ned analogously. Mushtaq and

Iqbal [45] de�ned powers in L as follows: For any u in L; we put u1 = u and un+1 = unu, where

n 2 N. In L; if unu = u = uun; for all u 2 L; then it has associative powers. We have taken

the following propositions from [45] to explain the concept of associative powers in an arbitrary

locally associative LA-monoid LM:

Proposition 2 Every LM has associative powers.

Proposition 3 umun = um+n for all u 2 LM:; and m;n 2 N.
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Proposition 4 (um)n = umn for all a 2 LM; and m;n 2 N.

Proposition 5 (uv)n = unvn for all u; v 2 LM and for a positive integer n � 1.

There is at least one element in every semigroup whose square is equal to itself, and therefore

all powers are equal to itself (Proposition1.2.3 in [24]). This element is known as an idempotent.

A semigroup with all idempotent elements is known as band. An idempotent element in L is

de�ned analogously to the semigroup. The set of all idempotent elements in L is denoted by

E (L). An LA-semigroup L with all idempotent elements is known an LA-band. It is important

to mention here that there are LA-semigroups of �nite order which do not have any idempotent

element. For example, Table 5 substantiates the existence of a �nite LA-semigroup containing

no idempotent element.

Table 5. An LA-semigroup containing no idempotent element

0 1 2 3 4

0 3 1 4 0 2

1 2 4 0 3 1

2 0 2 1 4 3

3 1 0 3 2 4

4 4 3 2 1 0

An idempotent element z is called left zero (right zero) if zu = z (uz = z) for all u 2 L.

A zero element is an idempotent element z, which is left as well as right zero of L; that is,

zu = z and uz = z for all u 2 L: A right zero LA-semigroup (left zero LA-semigroup) is an

LA-semigroup in which each element is a right zero (left zero). An LA-semigroup with zero

element, in which the product of two elements is always zero is called a zero LA-semigroup. A

zero LA-semigroup is indeed a commutative semigroup.

A re�exive, anti-symmetric, and transitive relation � on an LA-semigroup L is called partial

order. The pair (L;�) is called partial order set (abbreviated as poset). A natural partial order

on L is the partial order de�ned by using the binary operation in L: This natural partial order

was introduced by Hartwig [22], Nambooripad [49] and Mitsch [39] for a semigroup S separately.
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They also investigated many important results by using the multiplication of semigroup. The

band E (S) provides a good opportunity to collect information on the semigroup S . A natural

partial order on E (S) is de�ned by

e1 � e2 if and only if e1 = e1e2 = e2e1; for all e1; e2 2 E (S) :

Vagner introduced such an order for an arbitrary inverse semigroup S as follows:

u � v if and only if u = ev, for all e 2 E (S) :

Bozinovic, Protic and Stevanovic introduced the same notion for an LA-semigroup L [3]. For

example, consider L = f0; 1; 2; 3g having three idempotent elements 1, 2 and 3:

Table 6. An LA-semigroup with more than one idempotents

0 1 2 3

0 2 3 0 3

1 3 1 3 3

2 0 3 2 1

3 3 3 3 3

Then, it is easy to observe that the relation � : f(1; 1) ; (2; 2) ; (3; 3) ; (3; 1)g is a natural partial

order with respect to the binary operation of L de�ned in Table 6. The reason for showing the

concern towards these natural partial orders is that such an order supply more knowledge on

an LA-semigroup in a speci�c way since it follows the binary operation in a special sense.

A re�exive, symmetric, and transitive relation on L is called an equivalence relation. A

congruence relation is an equivalence relation � on L which is compatible with respect to

binary operation of L in the following way:

u � v implies that wv � wv and uw � vw; for all u; v; w 2 L:

8



A non-empty subset K of L is left ideal of L if every product of the form lk such that l 2 L

and k 2 K: A right ideal of L is de�ned analogously. Also, if K is left as well as right ideal of

L; then K is called ideal of L: An ideal P of L is prime ideal if for any two ideals K1 and K2

of L; K1K2 � P implies either K1 � P or K2 � P: An LA-semigroup L is called right(left)

simple, if L does not contain any right(left) ideals. For more details about the ideals of an

LA-semigroup, the readers are referred to [47].

In [53]; Protic and Stevanovic introduced a law by which an LA*-semigroup L is a com-

mutative semigroup if L = L2. They also introduced the notion of LA-band which is an

LA-semigroup whose all elements are idempotent elements [55]. One can observe that there is

no left identity in an LA-band, because if it contains left identity, then the structure transforms

into a commutative semigroup.

1.3 Graphs of LA-semigroups

The de�nitions and concepts regarding graphs of semigroups have been taken from PhD thesis of

Distler [12]. Let U1 be a set of vertices and E1 � U1�U1 be a set of edges. If e = (u1; u2) 2 E1,

then u1 represents the initial vertex of an edge e; and u2 is the terminating vertex. The pair

(U1; E1) is called a digraph or directed graph.

If �2 = (U2; E2) is a second graph, then �1 [ �2 is a graph (U1 [ U2; E1 [ E2). A bijective

mapping � : U1 �! U2 between the vertices of two graphs �1 and �2 is isomorphic if : (u1; u2) 2

E1 if and only if (� (u1) ; � (u2)) 2 E2. In [12], Distler developed a scheme to �nd diagonals

of multiplication tables of semigroups by de�ning a relationship between diagonals and certain

digraphs.

A digraph is connected if every two of its vertices are connected. Otherwise it is called

disconnected graph. A graph which can be embedded in a plane is called a planar graph.

Khan, Mushtaq and Anis discussed planar graphs for LA-semigroups, LA-monoids and LA-

bands [29]. According to them, a graph is n-partite, n � 1; if it is possible to partition the set

of vertices U into n subsets U1; U2; :::; Un (are called partite sets) such that every element of E

joins a vertex Ui to a vertex Uj ; i 6= j. The sets U1; U2; :::; Un are called partite sets. For n = 2,

graphs are called bipartite graphs, and n = 3 graphs are called tripartite graphs.
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A subset U = fu1; u2; :::; umg of an LA-semigroup L is called generating set if every element

of L is a product of �nite length of the elements from U: Every element of U is a generator and we

often write L = hUi or L = hu1; u2; :::; umi. An LA-semigroup L;which is completely generated

by a single element u 2 U is called cyclic or monogenic LA-semigroup. If L = hui = fun j n 2 Ng

is a �nite monogenic LA-semigroup, then there are m; r 2 N for which um+r = um. The least

values of m and r are called index and period of the generator u. It is important to mention

here that in any semigroups S; due to associativity, we can put brackets on any two consecutive

elements appearing in the following product: s1s2:::sm for all s1; s2; :::; sm 2 S. But, in an LA-

semigroup L, we write (((u1u2)u3) :::)um in lieu of u1u2u3:::um for all u1; u2; u3; :::; um 2 U .

Consequently, um = (((uu)u) :::)u for any u 2 L and m 2 N:

A Cayley diagram, also called a Cayley colour graph is a graphical expression of a group.

It is used to conceal/ciphers the abstract structure of any group. Generally, if < U j R >

is the presentation of an LA-semigroup L, where U and R denote the set of generators and

relations respectively. Here, we de�ne � = (L; E) a Cayley graph of an LA-semigroup L; where

E = f(b; a � b) jb 2 L; a 2 Ug. It is clear that the vertices of � are the elements of L and two

elements of L are connected by an edge if and only if any generator in U maps one to the other.

Di¤erent colours are used to di¤erentiate edges related with di¤erent generators in these graphs.

In this section, theorems and examples are taken from [29]. The following theorem explains

that under certain conditions the subspace of a vector space turns out to be an LA-semigroup.

Theorem 3 Let W1 be a sub-space of a vector space V over the �eld F of cardinality 2r such

that r > 1 and � on W1 is as follows: w1 � w2 = �rw1 + �w2; where � 2 Fn f0g is a generator

and w1; w2 2 W1: Then (W1; �) is an LA-semigroup. Such an LA-semigroup (W1; �) is called

an LA-semigroup de�ned by a vector space (V;+; �) :

Remark 4 If we take a; b 2 F; taking � as the generator of F and 2r as the cardinal of F ,

then (F; �) is an LA-semigroup de�ned by Galois �eld.

Example 3 If we take r = 2; in remark 4; we get Galois �eld of order 4: Moreover, consider an

irreducible polynomial x2 + x+ 1 in Z2 = f0; 1g : Then GF
�
22
�
=
�
0; 1; u; u2

	
and the Galois

�eld is given by the following tables.

10



Table 7. Galois �eld of order 4

� 0 1 u u2

0 0 0 0 0

1 0 1 u u2

u 0 u u2 1

u2 0 u2 1 u

+ 0 1 u u2

0 0 1 u u2

1 1 0 u2 u

u u u2 0 1

u2 u2 u 1 0

Example 4 Consider GF
�
22
�
n f0g = Fn f0g =

�
u : u3 = 1

	
=
�
1; u; u2

	
; and w1 � w2 =

�2w1+�w2; for all w1; w2 2 F: By taking � = u; we have an LA-semigroup
�
0; 1; u; u2

	
whose

multiplication table is given below:

Table 8. LA-semigroup over a Galois �eld of order 4

� 0 1 u u2

0 0 u u2 1

1 u2 1 0 u

u 1 u2 u 0

u2 u 0 1 u2

Figure 1 shows the Cayley graph of an LA-semigroup de�nd by Table 8. It is a tripartite, planar

disconnected graph.
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Figure 1. A tripartite, planar disconnected graph.

Theorem 5 Let W1 be a sub-space of a vector space V over a �eld F of cardinal pn for some

prime p 6= 2 and w1 ~w2 = �
pn�1
2 w1 +w2; where � is a generator of Fn f0g and w1; w2 2W1:

Then (W1;~) is an LA-monoid:

Example 5 Put p = 3 and n = 1 in Theorem 5, then F = Z3 = f0; 1; 2g mod 3 and w1~w2 =

�w1 + w2; for all w1; w2 2 F . By taking � = 2; we have an LA-monoid whose multiplication

table is given below:

Table 9. An LA-monoid of order 3

~ 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0
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Figure 2 shows the Cayley graph of an LA-monoid de�ned by the Table 9.

Figur 2. A bipartite, planar disconnected graph.

Example 6 Put P = 5 and n = 1; in Theorem 5; then we get jF j = 5 and GF (5) = F =

Z5 = f0; 1; 2; 3; 4g mod 5: By taking � = 2, we have the following multiplication table which is

an LA-monoid.

Table 10. An LA-monoid of order 5

~ 0 1 2 3 4

0 0 1 2 3 4

1 4 0 1 2 3

2 3 4 0 1 2

3 2 3 4 0 1

4 1 2 3 4 0

Figure 3 represents the Cayley graph of an LA-monoid de�ned by the Table 10. It is again a

bipartite, disconnected graph.
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Figure 3. A bipartite, planar disconnected graph.

Theorem 6 Let W1 be a sub-space of a vector space V over a �eld F of cardinal r such that

r > 1 and w1 ~ w2 = �w1 + �
2w2; where � is a generator of Fn f0g and v1; v2 2 W1: Then

(W1;~) is an LA-band.

Example 7 Let jF j = 4: Then GF
�
22
�
n f0g =

�
u : u3 = 1

	
=
�
1; u; u2

	
. By putting � = u in

w1 ~ w2 = �w1 + �2w2; for all w1; w2 2 F; we have the following multiplication table which is

an LA-band.

Table 11. An LA-band of order 4

~ 0 1 u u2

0 0 u2 1 u

1 u 1 u2 0

u u2 0 u 1

u2 1 u 0 u2

Figure 4 shows the Cayley graph of LA-band de�ned by the multiplication table 11.
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Figure 4. A tripartite planar directed graph.

1.4 Enumeration of Finite LA-semigroups

The �rst combinatorial result about an associative structure was obtained in 1955 with the

help of a computer improvising that there are exactly 126 semigroups of order 4 [20]. Distler in

his doctoral thesis [12] investigated that mostly semigroups are nilpotent and have nilpotency

rank 3. He also found formulae to calculate the number of semigroups of any order up to

isomorphism, and up to anti-isomorphism. A technique to calculate and classify multiplication

tables of semigroups and their subclasses is also provided. This scheme incorporates the bene�ts

of computer algebra and constraint satisfaction problem (abbreviated as CSP), to make an

e¤ective and rapid search. The di¢ culty of avoiding isomorphic and anti-isomorphic semigroups

is compromised by using standardized schemes of CSPs and keeping the structural properties

of the semigroups in mind. Distler used this scheme at various stages, and applied in the GAP

and the constraint solver Minion. Consequently, he claimed that there are exactly 52 989 400

714 478 semigroups with 9 elements, 52 991 253 973 742 monoids with 10 elements, and 7 033

090 bands with 10 elements up to isomorphism and anti-isomorphism. In 2012, it was proved
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that there are exactly 12 418 001 077 381 302 684 semigroups of order 10 [11]. Currently, after

almost 63 years, the number of semigroups is known from order 1 to 10. There is a database of

semigroups of order 1 through 8 [14]. Recently in 2015, an important result on the enumeration

of �nite inverse semigroups arises that there are 7 035 514 642 inverse semigroups of order 15

[38].

The approach to the semigroup enumeration in [11, 38] is based on the idea that any

combinatorial enumeration problem can be written as a CSP. Distler and Kelsey in [11] worked

out a collection of CSPs whose solutions comprise the semigroups of order which cannot be

counted by any previously-known formula and feed those problems to the constraint satisfaction

solver Minion. Malandro in [38] also adapted a CSP to count inverse semigroups by adding

additional constraints to be satis�ed.

In [13], Distler, Shah and Sorge found the enumeration of LA-semigroups in Table 12

adopting the same approach as in [11]. But the situation is completely di¤erent for �nite LA-

semigroups which are non-associative structure in general. They investigated that there are 28

812 382 776 LA-semigroups of order 6 which are almost 1600 times more than semigroups of

the same order out of these 40 104 513 are non-isomorphic to each other.. They obtained these

results with the help of GAP, and constraint solver Minion by using both algebraic properties as

well as symmetry breaking conditions regrading LA-semigroups to minimize the search. Table

12 is taken from [13].

Table 12. Isomorphic and non-isomorphic solutions of LA-semigroups

Order n 2 3 4 5 6

Total Solutions 6 105 7 336 3 756 645 28 812 382 776

Time consumed in seconds 2 2 2 25s 104 245s

Non-isomorphic solutions 3 20 331 31 913 40 104 513

Time consumed in seconds 2 2 2 2 121s

In Table 12; the symbol 2 denotes the time less than 0:5 seconds. The results were obtained

with the help of Minion 0:11 version on a machine with processor 2:80 GHz Intel X-5560.
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Chapter 2

INVERSE LA-SEMIGROUPS

2.1 Introduction

Mushtaq and Iqbal introduced the notion of inverse LA-semigroup [46]. They investigated

certain basic characteristics of inverses in any inverse LA-semigroup satisfying the identity

(uv)w = v (uw) known as inverse LA*-semigroup. They also proved a theorem analogous to

Vagner-Preston representation theorem for inverse LA*-semigroups.

In this chapter, we �nd the fundamentals of inverse LA-semigroups where inverses commute:

this includes the algebraic properties of inverse LA-semigroups related with inverses, ideals and

homomorphisms. We investigate that a groupoid underlying an inverse LA-semigroup leads us

to Green�s equivalence relations, H;=;<; D and J . The relationship H = = = < = D = J

is particularly interesting because inverse LA-semigroups are generally non-commutative and

non-associative in nature.

The appearance of more than one idempotent element in an inverse LA-semigroup needs

to work in two categories: The Kernel of congruence is the union of the congruence classes

contains the idempotent elements and the trace of congruence is the restriction of congruence

to the set of idempotent elements. We show that every congruence on an Inverse LA-semigroup

is determined by a pair consisting of a normal sub-LA-semigroup and a normal congruence

on the set of idempotents. We de�ne a partially ordered function on two posets which is an

ordered isomorphism whose inverse also preserves order. Finally, we provide congruences in

inverse LA-semigroups by using their kernel and trace.
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De�nition 2 An LA-semigroup L in which for each u 2 L, there exists u0 2 L such that

(uu0)u = u and (u0u)u0 = u0 is called inverse LA-semigroup. Here, u0 is called an inverse of

u. Let V (u) be the set of all inverses of u. In the future, we use L = f$ : $ is an inverse

LA-semigroupg to represent the class containing all inverse LA-semigroups. An inverse LA-

semigroup $ with a left identity e is inverse LA-monoid (denoted by $M). Moreover, if $ has

a left inverse for each element, that is, u�1 2 $ for each u 2 $ such that u�1u = e, it is called

inverse LA-group (denoted by $G).

We describe basic properties of inverse LA-semigroups in the following results. These results

are useful in forthcoming studies. For instance, Lemma 1 explains the relationship of an inverse

LA-semigroup and LA-group.

Lemma 1 An inverse LA-semigroup containing only one idempotent as its identity element is

an LA-group.

Proof. Let E ($) = feg. Then u = eu = (uu0)u, and u0 = eu0 = (u0u)u0 for all u; u0 2 $,

which imply that uu0 = u0u = e. Consequently, $ is an LA-group.

Consider $ = f0; 1; 2; 3; 4g as de�ned by the following multiplication table.

Table 13. Inverse LA-semigroup with a single idempotent element

� 0 1 2 3 4

0 1 0 2 4 3

1 3 2 1 0 4

2 0 3 4 1 2

3 2 4 0 3 1

4 4 1 3 2 0

Then (0 � 2) � 0 = 0; (2 � 0) � 2 = 2; (1 � 4) � 1 = 1; (4 � 1) � 4 = 4; (3 � 3) � 3 = 3: Hence $

contains a single idempotent element 3; but it is not LA-group.

Also, it seems worthy to point out at this stage that every inverse LA-monoid is not an

LA-group. We provide the following examples to substantiate the claim.
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Table 14. Inverse LA-monoids

0 1 2 3 4

0 4 1 2 3 0

1 2 3 1 2 2

2 1 2 3 1 1

3 3 1 2 3 3

4 0 1 2 3 4

0 1 2 3 4

0 4 2 0 1 3

1 1 4 3 0 2

2 3 0 4 2 1

3 2 3 1 4 0

4 0 1 2 3 4

(i) (ii)

Table 14(i) is an inverse LA-monoid having more than one idempotent elements which is

not an LA-group. Table 14(ii) is an inverse LA-group with only one idempotent 4 which is in

fact its left idetnity.

In [4], Boµzinovíc, Protíc and Stevanovíc provide an example to substantiate that these are

inverse LA-semigroups having no idempotents (see Table 15).

Table 15. Inverse LA-semigroup having no idempotents

0 1 2 3

0 3 0 2 1

1 1 2 0 3

2 0 3 1 2

3 2 1 3 0

Lemma 2 In an inverse LA-monoid inverse of each element is unique.

Proof. Consider an inverse LA-monoid $M 2 L with left identity e, and let u 2 $M, such

that v and w are two inverses of u, that is, (vu) v = v; (uv)u = u; (wu)w = w; and (uw)u = u.

Then, it is easy to prove that v = w; which proves the uniqueness of inverses in $M.

Here, we establish some standard results regarding the natural partial orders by using the

fundamental properties of an inverse LA-semigroup discussed in Proposition 6. The proposition
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6 has been taken from [46]. It elaborates the basic characteristics of inverses in an inverse LA-

semigroup $ 2 L:

Proposition 6 Let $ 2 L. Then:

(i) e0 = e for all e 2 E ($) ;

(ii) (u0)0 = u for all u 2 $;

(iii) ((((u1u2)u3) : : :)un)
0 = (((u01u

0
2)u

0
3) : : :)u

0
n for all u1; u2; :::; un 2 $; n � 2:

Proof. The proofs of (i) and (ii) are available in [46]. We just outline (iii) ; for n = 2; it is

clear by de�nition that ((u1u2) (u01u
0
2)) (u1u2) = ((u1u

0
1) (u2u

0
2)) (u1u2) = ((u1u

0
1)u1) ((u2u

0
2)u2)

= u1u2 and ((u01u
0
2) (u1u2)) (u

0
1u
0
2) = ((u01u1) (u

0
2u2)) (u

0
1u
0
2) = ((u01u1)u

0
1) ((u

0
2u2)u

0
2) = u01u

0
2.

Hence, (u1u2)
0 = u01u

0
2: By induction, it is now straight forward to generalize the result.

The following remark has been taken from [4].

Remark 7 For any $ 2 L. If uu0 = u0u for any u 2 $; then (u0u)2 = (u0u) (u0u) =

(u0u) (uu0) = ((uu0)u)u0 = uu0 = u0u: Imply that u0u 2 E ($) :

2.2 Natural Partial Order

We establish a relation � on $ 2 L as follows: u � v if and only if u = ev = ve for u; v 2 $

and for some idempotent e. This relation can be considered on such an inverse LA-semigroup

containing at least one idempotent element

Let Q be a subset of partial order set P . If b � c 2 Q implies b 2 Q, then Q is called an

order ideal. Moreover, [b] = fc 2 P : c � bg is called the principal or least-order ideal generated

by b. More generally, [Q] = fc 2 P : c � a for some a 2 Qg is an order ideal which is generated

by a subset Q of P .

By using the structural properties of an inverse LA-semigroup given in Proposition 6, we

approach to the �rst classical result based on the relation of the natural partial order. We use

this concept to prove the succeeding theorem, which is a basis of the forthcoming results. Here,

we prove that the relation �� �is an order ideal.
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Lemma 3 Let $ 2 L and uu0 = u0u for all u 2 $; then for any u; v 2 $; the following are

equivalent:

(i) u � v;

(ii) u0 � v0;

(iii) u = (uu0) v:

Proof. (i)) (ii) : Let u � v. Then u = ev = ve for some e 2 E ($) : So u0 = ev0 = v0e by

Proposition 6. Hence u0 � v0:

(ii) =) (iii) : Let u0 � v0: Then u0 = ev0 = v0e for some e 2 E ($), which implies that

u = ev = ve: Moreover, uu0 = (eu)u0 = (u0u)e = e (uu0) : Thus u = (uu0) v:

(iii) =) (i) : Let u = (uu0)v. Since uu0 is an idempotent, then by de�nition u � v:

In (ii), it is important to point out that the inversion is not reversing the relation as in

group theory or other algebras.

Theorem 8 Let $ 2 L and uu0 = u0u for all u 2 $; and let a; b; u; v 2 $:

(i) If u � v and w � x; then uw � vx;

(ii) If u � v then u0u � v0v and uu0 � vv0;

(iii) E ($) is an order ideal of $:

Proof. (i) Let u � v and w � x then u = (uu0) v and w = (ww0)x. Now uw =

((uu0) v) ((ww0)x) = ((uu0) (ww0)) vx, which implies that uw � vx:

(ii) It is immediate from Lemma 3 and Theorem 8(i) :

(iii) Evidently, E ($) � $. Let u � v 2 E ($), then by de�nition u = (uu0) v. This implies

that u 2 E ($) and E ($) becomes an order ideal of $.

It is interesting to note that the natural partial order is compatible with respect to the

multiplication de�ned in $. Moreover, the natural partial order de�nes an order ideal on the

set of idempotents of $.
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2.3 Restricted Product and Green�s Relations

The smallest left ideal of a semigroup S is Sa for any element a 2 S. In [24], Howie named

it a principal left ideal generated by a. The principal right ideal of a semigroup S is de�ned

analogously. A relation = is called left congruence on S is described as: a=b if and only if

Sa = Sb: Similarly, a right congruence relation < is described as: a<b if and only if aS = bS.

These relations are introduced by Green in [21]. Moreover, by an alternative characterization

in [24] , more equivalences H; D and J are de�ned by taking:

H = = \ <, D = = _ <

aJb , SaS = SbS:

In [34], Lawson de�ned the relations = and < in an inverse semigroup S by

(u; v) 2 = if and only if u0u = v0v and (u; v) 2 < if and only if uu0 = vv0:

Here, the relation = is a right congruence and < is a left congruence. By putting H = =\<,

D = =�<; he obtained another equivalence relation. In [16, 17], Dudek and Gigon investigated

left permutable inverse LA-semigroups. They also de�ned Green�s relations in a left permutable

inverse LA-semigroup and proved some important characteristics of Green�s relations satisfying

the condition uu0 = u0u: Here, we de�ne Green�s relations in an inverse LA-semigroup $ 2 L

by using Lawson�s approach. Also, we reproduce some results because it provides an easier way

to understand the concepts and there is no need to impose extra conditions which are imposed

in [16].

We de�ne mappings d; r : $! E ($), by d (u) = u0u and r (u) = uu0 to establish the notion

of restricted product in $. Note that d (u0) = r (u) and r (u0) = d (u). Let $ 2L, and u; v 2 $.

Then the restricted product u � v exists only when u0u = vv0, which is then equal to uv.

Lemma 4 Let $ 2 L. If u �v exists, then d (u � v) = d (v) and r (u � v) = r (u) for any u; v 2 $.

Proof. If u�v exists, then u0u = vv0. Moreover, d (u:v) = d (uv) = (uv)0 (uv) = (u0v0) (uv) =

(u0u) (v0v)
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= (v0v) (v0v) = ((v0v) v0) v = v0v = d (v) : The other case is easy to prove analogously.

Theorem 9 Let $ 2 L:

(i) Let u 2 $; and e be an idempotent such that e � u0u. Then v = ue = eu is the unique

element in $ such that v � u and v0v = e.

(ii) Let u, v 2 $. Then uv = u0 � v0 where u0 = eu = ue and v0 = ev = ve and e = (u0u) (vv0).

Proof. (i) If e � u0u; for any u 2 $ and e 2 E ($), then by de�nition e = e (u0u) = (ee)

(u0u) = (eu0) (eu) : Take v = eu = ue; which implies that v � u: Moreover, v0v = (eu)0 (eu) =

(eu0) (eu) = e (u0u) = e: For uniqueness, if w � u; so that w0w = e: Then w = (w0w)u =

u (w0w) : Consequently, w = ue = eu = v:

(ii) Consider u0 = eu = ue; and v0 = ev = ve; where e = (u0u) (vv0) : Then u0 � u and

v0 � v. Therefore d (u0) = (u0)0 u0 = (eu)0 (eu) = e (u0u) = ((u0u) (vv0)) (u0u) = (vv0) (u0u) = e.

Similarly, it is easy to see that r (v0) = e. Which concludes that u0 � v0 exists. Furthermore, we

have u0 � v0 = u0v0 = (eu) (ev) = e (uv) = ((u0u) (vv0)) (uv) = ((uu0)u) ((vv0) v) = uv:

Here, we present Green�s equivalence relations =; <; H; and D in an inverse LA-semigroup.

We de�ne = and < on an inverse LA-semigroup $ by

(a; b) 2 = if and only if a0a = b0b and (a; b) 2 < if and only if aa0 = bb0:

Remark 10 By de�nition (u; v) 2 = if and only if u0u = v0v. This implies that uu0 = vv0 if

and only if (u; v) 2 <. Consequently, = = <:

Proposition 7 Let $ 2 L. Then = is a congruence relation.

Proof. It is easy to prove that = is re�exive and symmetric by de�nition. Now, suppose

that (u; v), (v; w) 2 =. Then u0u = v0v and v0v = w0w. Therefore (u;w) 2 =, and so = is

transitive. Finally, let (u; v) 2 = and a1 2 $. Then

(a1u)
0 (a1u) =

�
a01u

0� (a1u) = �a01a1� �u0u� = �a01a1� �v0v� = (a1v)0 (a1v) :
Similarly

(ua1)
0 (ua1) = (va1)

0 (va1) :
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Hence = is a congruence relation.

Proposition 8 Let $ 2 L and v; w 2 $. Then v= w if and only if $v = $w:

Proof. If v= w; then v0v = w0w. Further, v0 = (v0v) v0 = (w0w) v0 = (v0w)w0 ) v = (vw0)w

and w = (wv0) v. Therefore $v = $w. Conversely, if $v = $w. Then v = xw and w = yv

for some x; y 2 $; imply that v0v = (xw)0 (xw) = (x0w0) (xw) = (x0x) (w0w) � w0w. Similarly

w0w � v0v. Hence v0v = w0w.

Let H; D; and J are de�ned exactly the same as for semigroups.

Proposition 9 Let $ 2 L. Then = = < = H = D = J:

Proof. It is easy to prove from the remark that = = <.

Proposition 10 Let $ 2 L and v; w 2 $. If v=w and v � w; then v = w.

Proof. Let v=w and v � w. Then v0v = w0w and v = (vv0)u; imply that vv0 = ww0 and

v = (vv0)w = (ww0)w = w.

2.4 Homomorphisms between Inverse LA-semigroups

The concept of homomorphism between LA-semigroups is the same as in group theory. For

example, a mapping � : $ �! $ de�ned by � (u) = u0 for all u 2 $. Then � is a homomorphism

by virtue of Proposition 6. A mapping � : P1 ! P2 between two partial order sets P1 and P2

is called order preserving, if u � v means � (u) � � (v). Furthermore, if � is bijective and ��1

is also order preserving, then � is called an order isomorphism.

Proposition 11 Let $1; $2 2 L and � : $1 ! $2 be a homomorphism. Then

(i) � (u0) = � (u)0 for all u 2 $1;

(ii) if � (e) 2 E ($2) for all e 2 E ($1);

(iii) For � (u) 2 E ($2) ; there exist e 2 E ($1) so that � (u) = � (e);

(iv) Im (�) is an inverse sub-LA-semigroup of $2;
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(v) For any inverse sub-LA-semigroup S of $2, ��1 (S) is inverse sub-LA-semigroup of $1;

(vi) � is an order preserving map;

(vii) if v; w 2 $1 so that � (v) � � (w), then there exist d 2 $1 for which d � w and

� (d) = � (v).

Proof. (i) Since

�
� (u)�

�
u0
��
� (u) =

�
�
�
uu0
�
� (u)

�
= �

��
uu0
�
u
�
= � (u) ;

and �
�
�
u0
�
� (u)

�
�
�
u0
�
=
�
�
�
u0u
��
�
�
u0
�
= �

��
u0u
�
u0
�
= �

�
u0
�
;

therefore due to uniqueness of inverses, � (u0) = � (u)0 :

(ii) It is immediate from the fact that � (e)2 = � (e)� (e) = � (ee) = � (e).

(iii) If � (u)2 = � (u), then � (u0u) = � (u0)� (u) = � (u)0 � (u) = � (u)� (u) = � (u)2 =

� (u). Since u0u 2 E ($1), take u0u = e, then � (u) = � (e).

(iv) Since � is a homomorphism and Im (�) is closed under inverses from (i). Therefore,

Im (�) is an inverse sub-LA-semigroup of $2:

(v) It is straightforward.

(vi) By de�nition u � v if and only if u = ev for some e 2 E ($1). Which implies that

� (v) = � (ew) = � (e)� (w), where � (e) is an idempotent. Thus � (v) � � (w).

(vii) Take d = (vv0)w. Then d � w and � (d) = �
�
vv

0
�
� (w) = � (e)� (w) = � (v).

2.5 Kernel and Trace

In [4], Boµzinovíc, Protíc and Stevanovíc presented the concepts of kernel normal systems of

inverse LA**-semigroups. Let � be a congruence on $ 2 L: Then kernel of � is de�ned by ker (�)

=fa 2 $ : 9 e 2 E ($) ^ (a; e) 2 �g and trace of � is de�ned by tr(�) = f(e; f) 2 � : e; f 2 E ($)g

= � \ (E ($)� E ($)), where E ($) denotes the set of idempotents in $:

If $1;$2 2 L such that $2 � $1, then $2 is called inverse sub-LA-semigroup. The inverse

sub-LA-semigroup $2 is said to be full if E ($2) = E ($1) ; and $2 is called self conjugate,

25



if (a0$) a � $2 for all a 2 $1. A full, self conjugate $2 is called the normal inverse sub-LA-

semigroup of $1: A congruence � on the semilattice E ($1) is said to be normal if (e1; e2) 2 �

implies that ((a0e1) a; (a0e2) a) 2 � for all a 2 $1:

Proposition 12 Let � be a congruence on $ 2 L: If B = ker (�) and ! = tr (�), then

(i) B is a full inverse sub-LA-semigroup of $;

(ii) For any u 2 L and e 2 E ($), if eu 2 B and (e; uu0) 2 ! then u 2 B:

Proof. (i) To prove that B is an inverse sub-LA-semigroup of $. If u; v 2 B, by de�nition

there exist e1; e2 2 E ($) such that (u; e1), (v; e2) 2 �. Now (u; e1) (v; e2) = (uv; e1e2) 2 �.

Which immediately implies that uv 2 B, since e1e2 2 E ($). Also (u0; e) 2 � and e0 = e ,

imply that u0 2 B: Now to prove B is full. Obviously E (B) � E ($) : Now let e 2 E ($) then

(e; e) 2 � implies that e 2 B which immediately follows that e 2 E (B). So E (B) = E ($).

Thus B is full.

(ii) From (e; uu0) 2 ! we get (eu; (uu0)u) 2 �. This implies that (eu; u) 2 �: Thus

� (eu) = � (u). But eu 2 B implies that � (eu) = �(u) holds an idempotent, which further

implies that u 2 B:

A congruence pair (B;!) on $ contains a normal inverse sub-LA-semigroup B and a normal

congruence ! for which if ea 2 B and (e; aa0) 2 ! then a 2 B and e 2 E ($).

Remark 11 From above results it is clear that (ker (�) ; tr (�)) is a congruence pair for every

congruence �:

Proposition 13 Let � be a congruence on $ 2 L.

(i) If (u; v) 2 � then

�
u0; v0

�
2 �,

�
uu0; vv0

�
2 � and

�
u0u; v0v

�
2 �;

(ii) If (u; e) 2 �, where e is an idempotent, then

�
u; u0

�
22 �;

�
u; u0u

�
2 � and

�
u; uu0

�
2 �.

26



Proof. (i) Let (u; v) 2 �. Then � (u) = � (v) and by Proposition 11, � (u0) = � (u)0 and

� (v0) = � (v)0. This implies that � (u0) = � (v0), that is, (u0; v0) 2 �: The remaining parts are

straight forward to prove.

An inverse LA-smigroup $ is called E-unitary if e � u for an e 2 E ($) implies u 2 E ($).

A subset B of $ is called left (right) unitary if b 2 B, u 2 $ and bu 2 B (ub 2 B) imply u 2 B.

A left unitary and right unitary subset of $ is called unitary.

For all b; c 2 $; we de�ne a left compatbility relation by b vl c if and only if bc0 2 E ($),

the right compatibility relation is de�ned dually. The compatibility relation is a relation which

is both left and right compatibility relation. These relations are re�exive and symmetric, but

they are not transitive. However, from our investigation, the left compatibility relation and

the right compatibility relation coincide in any $. Because b vl c if and only if bc0 2 E ($),

therefore (b0c)2 =
�
(bc0)0

�2
=
�
(bc0)2

�0
= (bc0)0 = b0c. This implies that b vr c: So the left

compatibility relation or right compatibility relation is the compatibility relation in $.

Proposition 14 Let $ 2 L. Then the following assertions are equivalent:

(i) E ($) is left unitary;

(ii) E ($) is right unitary;

(iii) $ is E-unitary.

Proof. (i) =) (ii) : If E ($) is left unitary and ue 2� E ($) for e 2 E ($) : By assumption

u 2 E ($) for eu; e 2 E ($) and u 2 $. Also; idempotents commute in $. Then eu = ue and

E ($) is right unitary.

(ii) =) (iii) : If E ($) is right unitary and e � u for e 2 E ($), and u 2 $. Then

e = fu = uf for some f 2 E ($). Now uf 2 E ($) for some f 2 E ($) implies that u 2 E ($) ;

since E ($) is right unitary. Consequently, $ is E-unitary.

(iii) =) (i) : If $ is E-unitary. Then for e 2 E ($) ; if e � u; then u 2 E ($). This further

implies that e = fu = uf 2 E ($) where f; u 2 E ($) :

Theorem 12 Let $ 2 L. Then $ is E-unitary if and only if the compatibility relation � is

transitive.
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Proof. If � is transitive and e � u for e 2 E ($). Then by de�nition of natural partial

order e = fu = uf and e = fu0 = u0f . From both cases fu0, f 0u 2 E ($). Therefore u � e. By

assumption e � u0, and so, e � u0u by Theorem 8. This further implies that e � u0u. Now by

transitivity u � u0u, that is, (u0u)0 u = (uu0)u = u 2 E ($). Therefore, $ is E-unitary.

Conversely, if $ is E-unitary and u � v and v � w. Then (v0u) (vw0) 2 E ($) and further

(v0u) (vw0) = (v0v) (uw0) � uw0. Since $ is E-unitary, therefore uw0 2 E ($). This implies that

u � w.

A congruence � on $ is called idempotent pure, if u 2 $ , e 2 E ($) and (u; e) 2 �, then

u 2 E ($).

Proposition 15 Let $ 2 L and uu0 = u0u for all u 2 $: Then a congruence � on $ is

idempotent pure if and only if � � �.

Proof. Suppose that � is an idempotent pure congruence and (u; v) 2 �. Then (uv0; vv0) 2 �.

Since vv0 2 E ($), therefore uv0 2 E ($) by assumption. Consequently, u � v. Conversely,

suppose � � � and let (a; e) 2 � for e 2 E ($) : Then by proposition 13, (u0u; u) 2 E ($) and

so, u0u � u. Since (u0u)0 u = (uu0)u = u; therefore u 2 E ($). Consequently, � is idempotent

pure congruence.

2.6 Conclusion

In this chapter, we have discussed the fundamentals of an inverse LA-semigroup$ where inverses

commute: this includes the algebraic properties of $ related with inverses, natural partial order,

ideals, homomorphisms and kernel normal system in $. Using these interesting properties, we

have proved that the set of idempotent elements of $ is an order ideal. We have introduced

the notions of restricted product to relate it with the Green�s relations in $. Furthermore, we

have investigated a relationship H = = = < = D = J which is particularly interesting due to

the non-commutative and non-associative nature of $. Finally, we have found congruences on

$ by using their kernel and trace.
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Chapter 3

LEFT PERMUTABLE INVERSE

LA-SEMIGROUPS

3.1 Introduction

A Left permutable inverse LA-semigroup is the LA-semigroup L satisfying the identity u (vw) =

v (uw) for all u; v; w 2 L and contains inverse u0 of each element u so that (uu0)u = u and

(u0u)u0 = u0. Alternatively, an inverse LA-semigroup $ satisfying the identity u (vw) = v (uw)

for all u; v; w 2 $ is called left permutable inverse LA-semigroup. We use the symbol $p

to denote a left permutable inverse LA-semigroup. In this chapter, our discussion surrounds

about $p in which inverses commute that is, uu0 = u0u for all u 2 $p. Let E($p) be the set

of idempotents in an $p. It is already proved that in an $p, uu0 = u0u if and only if uu0;

u0u 2 E($p) [4].

Here, we investigate the order-theoretic properties of left permutable groupoids which arise

by relating a natural partial order with the compatibility relations. Then, we use these to prove

certain results of meets and joins in an $p. We discuss homomorphism between two inverse

LA-semigroups. Also, we �nd the conditions under which an $p is in�nitely distributive. At

the end of this chapter, we prove that the C ($p) is complete and in�nitely distributive.

Before proving some interesting facts of natural partial order, it is essential to point out that

every inverse LA-monoid is left permutable inverse LA-semigroup. But all the left permutable

inverse LA-semigroups must not hold left identity. An example of the left permutable inverse
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LA-semigroup, depicting that it may not contain an identity element is given in Table 16.

Table 16. A left permutable inverse LA-semigroup without any left identity

0 1 2 3 4

0 1 1 3 3 1

1 1 1 1 1 1

2 0 1 1 1 4

3 0 1 1 1 0

4 1 1 2 3 1

3.2 Natural Partial Order and Compatibility Relations

The following proposition is available in [4]. It establishes a connection between the commuta-

tivity of inverses and idempotents of a left permutable inverse LA-semigroup. In this chapter,

almost all results of inverse LA-semigroups satisfy the condition discussed in Proposition 16.

Proposition 16 Let $p 2 L. Then uu0 = u0u if and only if and only if uu0 and u0u are

idempotents for all u 2 $p.

Proof. The proof is available in [4].

The following Proposition provides a connection between a left permutable inverse LA-

semigroup and LA-group.

Proposition 17 Every $p 2 L; in which uu0 = u0u for all u 2 $p; with a unique idempotent

is precisely an LA-group.

Proof. Since every LA-group contains a left identity, therefore it is a left permutable inverse

LA-semigroup with one idempotent only. Conversely, suppose $p 2 L has one idempotent only.

Then uu0 = u0u = e; and ea = (uu0)u = u for every u 2 $p. Therefore, $p contains a unique

left identity e and each element invertible. Hence, $p becomes an LA-group.

The relation � on an $p is described as follows: u � v if and only if u = ev for some

idempotent e.
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Before proving that the relation �� �de�ned above is a partial order, we use this concept to

prove the following lemma, which is a basis of the forthcoming results. It is a modi�ed version

of the Lemma 3, we have reproduced this result for a left permutable inverse LA-semigroup

because de�nition of a natural partial is di¤erent from previous sense.

Lemma 5 Let $p 2 L and uu0 = u0u for all u 2 $p: Then for all u; v 2 $p; the following are

equivalent:

(i) u � v;

(ii) u0 � v0;

(iii) u = (uu0) v:

Proof. It is easy to prove by using Lemma 3.

Proposition 18 Let $p 2 L and uu0 = u0u for all u 2 $p: Then

(i) � is a partial order on $p;

(ii) l � m if and only if l = lm = ml for all l; m 2 E ($p) :

Proof. (i) Re�exivity is clear from u = (uu0)u. Now let u � v and v � u: Then u = (uu0) v

and v = (vv0)u, so that u = (uu0) v = (uu0) ((vv0)u) = (vv0) ((uu0)u) = (vv0)u = v: Therefore

� is antisymmetric. Suppose that u � v and v � w. Then u = (uu0) v and v = (vv0)w: Hence

u = (uu0) v = (uu0) ((vv0)w) = (wu0) ((vv0)u) = (w (vv0)) (u0u) = ((u0u) (vv0))w; that is u � w:

(ii) If l � m. Then l = em for some e 2 E ($p). Moreover, lm = l and ml = (mm) l =

(lm)m = lm = l:. The converse is obvious.

Let (P;�) be a partial order set. If w � u; v; then w is known as a lower bound of u and v.

If w is the largest lower bound among all the pairs u and v, then w is said to be the greatest

lower bound and written as u ^ v. A meet-semilattice is a partial order set containing the

greatest lower bound for every pair of elements.

Now we prove some important conditions which relate a compatibility relation to a natural

partial order de�ned on any $p.
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Lemma 6 Let $p 2 L and uu0 = u0u for all u 2 $p: If u v v for u; v 2 $p; then the greatest

lower bound u ^ v of u and v exits and

(u ^ v)0 (u ^ v) =
��
u0u
�
v0
�
v:

Proof. If u v v; then by de�nition uv0; u0v 2 E ($p) : Let z = (uv0) v = (vv0)u: Then z � v

and z � u: If w � u and w � v; then ww0 � uv0 and so w = (ww0)w � (uv0) v = z by Theorem

8(i) : Hence z = u ^ v: Moreover,

z0z =
��
uv0
�
v
�0 ��

uv0
�
v
�
=
��
uv0
�0
v0
� ��

uv0
�
v
�

=
��
u0v
�
v0
� ��

uv0
�
v
�
=
��
u0v
� �
uv0
�� �

v0v
�

=
��
u0u
� �
vv0
�� �

u0u
�
=
��
u0u
�
v0
� ��

vv0
�
v
�
=
��
u0u
�
v0
�
v.

Lemma 7 Let $p 2 L and uu0 = u0u for all u 2 $p: If u v v for u; v 2 $p; then

u ^ v =
�
uv0
�
v =

�
u0v
�
v =

�
vv0
�
u = (vv)u0 =

�
vu0
�
u =

�
v0u
�
u.

Proof. It is immediate by the fact that u ^ v = (uv0) v: Since uv0 is an idempotent, so

obviously uv0 = (uv0)0 = u0v:

Lemma 8 Let $p 2 L and uu0 = u0u for all u 2 $p: Then for any u; v; w; x 2 $p;

(i) : u v v and w v x imply that uw v vx;

(ii) : u � v, w � x and v v x imply u v w:

Proof. (i) If u v v and w v x; then uv0, wx0 2 E ($p) : Also, (uw) (vx)0 = (uw) (v0x0) =

(uv0) (wx0) 2 E($p); therefore uw v vx:
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(ii) Let u � v, w � x and v v x: Then u = (uu0) v, w = (ww0)x and vx0 2 E ($p) : This

implies that

uw0 =
��
uu0
�
v
� ��

ww0
�
x
�0
=
��
uu0
�
v
� ��

w0w
�
x0
�

=
��
uu0
� �
w0w

�� �
vx0
�
2 E ($p) :

Hence u v w:

A subset B of $ is called compatible, if each pair in B is compatible.

Lemma 9 For elements u; v; w of $p 2 L and uu0 = u0u for all u 2 $p:

(i) v v w and vv0 � w0w imply v � w;

(ii) [u] is a compatible subset of $p:

Proof. (i) It is obvious.

(ii) Let v; w 2 [u] = fv 2 $p : v � ug, therefore v � u and w � u; which imply that v = eu

and w = fu. Hence vw0 = (eu) (fu)0 = (eu) (fu0) = (ef) (uu0) 2 E ($p). Consequently, [u] is a

compatible subset of $p.

We use a single word subset instead of a non-empty subset throughout this section.

Lemma 10 Let $ 2 L and B be a set of idempotent elements. Then

(i) ^B is an idempotent, if it exists;

(ii) _B is an idempotent, if it exists.

Proof. (i) It is straight forward because the set of idempotent elements is an order ideal.

(ii) If b = _B. Then for all e 2 B; we have e � b and e � b0b by Theorem 8(ii) :

Consequently, b � b0b.

Lemma 11 Let $p 2 L and uu0 = u0u for all u 2 $p and let T = fti : i 2 Ig be a subset of

$p; and t = _T . Then t1 � t2 for all t1; t2 2 T .

Proof. Let t1; t2 2 T: Then by de�nition t1; t2 � t: Therefore by Lemma 8(ii); we have

t1 � t2.
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Proposition 19 Let $p 2 L and uu0 = u0u for all u 2 $p and let T = fti : i 2 Ig be a subset

of $p.

(i) If _ti exists, then _tit0i exists and (_ti) (_ti)
0 = _tit0i.

(ii) If _ti exists, then _t0iti exists and (_ti)
0 (_ti) = _t0iti.

Proof. (i) If t = _ti; then ti � t implies that tit0i � tt0: Furthermore, tt0 is an upper bound

of ftit0i : i 2 Ig : Suppose that tit0i � b for some b 2 $p. Then (tit0i) ti � bti � bt for each i 2 I:

Certainly, t = _ti � bt. Moreover, t = (tt0) (bt) = b ((tt0) t) = bt by Lemma 5, which directly

means that tt0 = (bt) t0 = (t0t) b. It follows that tt0 � b. Hence _tit0i = tt0:

(ii) It is obvious due to (i).

Proposition 20 Let $p 2 L and uu0 = u0u for all u 2 $p and let T = fti : i 2 Ig be a subset

of $p:

(i) If t = _ti and tit0i � u0u for each i 2 I: Then _tiu exists and tu = _tiu.

(ii) If t = _ti and t0iti � uu0 for each i 2 I: Then _uti exists and ut = _uti.

(iii) If t = ^ti exists, then ^tiu exists and ^tiu = tu.

(iv) If t = ^ti exists, then ^uti exists and ^uti = ut.

Proof. (i) If t = _ti: Then ti � t, which follows that tiu � tu. Thus tu is an upper bound

of ftiu : i 2 Ig : If tiu � b for some b 2 $p: Then (tiu)u0 � bu0 implies that (u0u) ti � bu0:

Since tit0i � u0u; therefore (tit0i) ti � (u0u) ti � bu0. Hence ti � bu0: It is then immediate that

tu � (bu0)u = (uu0) b � b and tu = _tiu:

(ii) It is obvious from (i) :

(iii) Since t � ti; therefore tu � tiu and so tu is a lower bound of ftiu : i 2 Ig : If b � tiu

for some b 2 $p: Then bu0 � (tiu)u
0 = (u0u) ti � ti; shows that bu0 � ^ti = t. Moreover,

(bb0) b � ((tiu) (t
0
iu
0)) b = ((tit

0
i) (uu

0)) b � (uu0) b = (bu0)u � tu. Which immediately implies

that b � tu and ^tiu = tu.

(iv) It is similar to (iii).
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3.3 In�nitely Distributive Left Permutable Inverse LA-semigroups

Any $ 2 L is left in�nitely distributive, if _B exists for a subset B of $, then _aB also exists

for every a 2 $ and a (_B) = (_aB). The right in�nitely distributive is de�ned dually. Now

$ is in�nitely distributive if it is left as well as right in�nitely distributive. The concept of join

lead us to �nalize the following assertions about $.

Proposition 21 For any $p 2 L in which uu0 = u0u for all u 2 $p; the following statements

are equivalent:

(i) $p is in�nitely distributive;

(ii) the set of idempotents of $p is an in�nitely distributive semilattice;

(iii) for all subsets S and T of $p, if s = _S and t = _T , then _ST = (_S) (_T ).

Proof. (i)) (ii) : It follows directly from Lemma 10.

(ii) ) (iii) : Let S = fsi : i 2 Ig and T = ftj : j 2 Jg be any two subsets of $p so that

s = _S and t = _T . Obviously, st is an upper bound of ST . Now, we just need to show that

_ST = st: Let h be an element which is another upper bounded of ST , such that sitj � h for

every si 2 S and tj 2 T . But si � s and tj � t such that (sis0i)
�
tjt

0
j

�
= (sitj)

�
s0it

0
j

�
� h

�
s0it

0
j

�
.

By de�nition E ($p) is in�nitely distributive, therefore

�
ss0
� �
tjt

0
j

�
=
��
(_S) (_S)0

� �
tjt

0
j

��
=
�
_
�
sis

0
i

�� �
tjt

0
j

�
= _

��
sis

0
i

� �
tjt

0
j

��
by Proposition 19.

But (sis0i)
�
tjt

0
j

�
� h (s0c0) implies that (ss0)

�
tjt

0
j

�
� h (s0t0). Since E ($) is in�nitely distrib-

utive, therefore

�
ss0
� �
tt0
�
=
�
ss0
� �
(_T ) (_T )0

�
=
�
ss0
� �
_
�
tjt

0
j

��
= _

��
ss0
� �
tjt

0
j

��
by Proposition 19.

Consequently, (ss0) (tt0) � h (s0t0). This implies that

st =
���
ss0
�
s
� ��

tt0
�
t
��
=
��
ss0
� �
tt0
��
(st) �

�
h
�
s0t0
��
(st) =

�
h (st)0

�
(st) �

�
hh0
�
h = h:

Hence st = _ST .

35



(iii)) (i) : It is immediate from (iii).

A subset T of $ 2 L, which is a compatible order ideal is called a permissible subset of $.

Here, C($) represents the set of all permissible subsets of $. Notice that if $ 2 L, then E($)

is permissible and for each a 2 $, [a] is also permissible.

Lemma 12 Let $p 2 L and uu0 = u0u for all u 2 $p and let T be a permissible subset of $p:

(i) If t1; t2 2 T and t1t01 = t2t02, then t1 = t2;

(ii) Both T 0T = ft0t : t 2 Tg, TT 0 = ftt0 : t 2 Tg and so T 0T = TT 0 is order ideal of $p.

Proof. (i) If t1; t2 2 T; then t1 � t2: Additionally, t1t01 = t2t
0
2 follows that (t1t

0
1) t1 =

(t2t
0
2) t1 = (t1t

0
2) t2, and so t1 � t2. Similarly, t2 � t1: Thus t1 = t2:

(ii) Let st0 2 TT 0 for all s; t 2 T . If s � t; then u = (st0) t = s ^ t by Lemma 7. Since T is

an order ideal, so u 2 T . Moreover,

uu0 =
��
st0
�
t
� ��

s0t
�
t0
�
=
�
s0t
� ���

st0
�
t
�
t0
�
=
�
s0t
� ��

t0t
� �
st0
��

=
�
s0t
� �
s
��
t0t
�
t0
��
=
�
s0t
� �
st0
�
=
�
st0
�0 �
st0
�
= st0:

Thus TT 0 � ftt0 : t 2 Tg. The converse is obvious. Now let e � ss0. Take t = es. Then

t � s so that t 2 S. But tt0 = (es) (es0) = (ee) (ss0) = e (ss0) ; implies that tt0 � ss0: Hence

tt0 2 SS0: Therefore SS0 is an order ideal of $p.

An inverse LA-semigroup $ is said to be complete if every non-empty compatible subset

has a join. De�ne a mapping � : $ �! C ($) by � (u) = [u] :

Theorem 13 Let $p 2 L and uu0 = u0u for all u 2 $p. Then C ($p) is a complete and

in�nitely distributive left permutable inverse LA-semigroup. Moreover, the mapping � : u �! [u]

is an embedding of $p into C ($p) :

Proof. Initially, we need to show that C ($p) 2 L. For this, we begin by proving the closure

law under multiplication of subsets. Let C;D 2 C ($p) : Now to prove that CD 2 C ($p),

assume that s � cd for some s 2 $p; c 2 C and d 2 D: Then s = (s0s) (cd) = c ((s0s) d) : Since

(s0s) d � d, and D is an order ideal, therefore (s0s) d 2 D: Consequently, s 2 CD and CD is an
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order ideal. To show that CD is compatible subset of $p; let cd, ef 2 CD where c; e 2 C and

d; f 2 D: But (cd)0 (ef) = (c0d0) (ef) = (c0e) (d0f). By assumption c0e and d0f are idempotents.

Thus (cd)0 (ef) is an idempotent. Similarly, (cd) (ef)0 is an idempotent. Hence CD 2 C ($p) :

Next we show that C ($p) is closed under inverses. We need to prove that if T 2 C ($) ;

then T 0 2 C ($p) such that (TT 0)T = T . First we prove that T 0 is an order ideal. Assume

s � t0 for s 2 $p and t 2 T: Then s = (ss0) t0 and so s0 = (s0s) t =
�
s0 (s0)0

�
t. Thus s0 � t;

that is s0 2 T; because T is an order ideal. Hence s 2 T 0: Consequently, T 0 is an order ideal.

To show that T 0 is compatible subset of $p: Consider two elements a0 and b0 of T 0: As ab0 and

a0b are idempotents, the elements (a0)0 b0 = ab0 and a0 (b0)0 = a0b are idempotents. Hence T 0

is a compatible subset of $p: Consequently T 0 2 C ($p) : Next we prove that (TT 0)T = T:

Evidently, T � (TT 0)T: Conversely; if (bc0) d 2 (TT 0)T where b; c; d 2 T: Since bc0 = tt0 for

some t 2 T by Lemma 12; therefore (bc0) d = (tt0) d = (dt0) t: Moreover, take dt0 = zz0 for some

z 2 T by Lemma 12; then (bc0) d = (tt0) d = (dt0) t = (zz0) t = t and (TT 0)T � T: Consequently,

(TT 0)T = T:

We now describe the natural partial order � in C ($p) de�ned by S � T if and only if

S = (SS0)T . We show that S � T for S; T 2 C ($p) if and only if S � T: Let S; T 2 C ($p)

so that S � T: Let s 2 S be an arbitrary element. Then s = (xx0) t for some x 2 S and t 2 T:

Hence s � t imply that s 2 T because T is an order ideal. Thus S � T: Conversely, assume

that S � T: As s = (ss0) s and s 2 S � T; it is obvious that S � (SS0)T . To show the converse

inclusion, let (ss0) t 2 (SS0)T be an arbitrary element (s 2 S; t 2 T ). Since S � T; therefore

s � t and so ts0 2 E ($p) : Hence (ss0) t = (ts0) s implies (ss0) t � s; that is (ss0) t 2 S; because S

is an order ideal of $p: Consequently, (SS0)T � S: Hence S = (SS0)T: As SS0 = fss0 : s 2 Sg ;

and S0S = fs0s : s 2 Sg ; we have SS0 = S0S: Thus C ($p) 2 L:

Now we show that S � T if and only if SUT 2 C ($p) : Suppose SUT 2 C ($p) : Then,

for every s 2 S and t 2 T; the elements s0t and st0 are idempotents. Thus, for example,

s0t = (s0t) (s0t) 2 (S0T ) (S0T ) implying that S0T � (S0T ) (S0T ) : If s1; s2 2 S and t1; t2 2 T are

arbitrary elements, then (s01t1) (s
0
2t2) � s02t2 2 S0T 2 C ($p) and so (s01t1) (s02t2) 2 S0T: Hence

(S0T ) (S0T ) � S0T: Consequently, (S0T ) (S0T ) = S0T; that is, S0T is an idempotent of C ($p) :

This implies that S � T: Conversely, if S � T then S0T is an idempotent of C ($p) : Now we

show that SUT 2 C ($p) for S; T 2 C ($p) : First we prove that SUT is compatible subset of

37



$p. For this, let s1; t1 2 SUT . Since S and T are compatible order ideals of $p. Then for

some s2; t2 2 SUT; it is clear that s1 � s2 and t1 � t2. Hence s1 = es2 and t1 = ft2 for some

e; f 2 E ($p) : Thus s1t01 = (es2) (ft2)
0 = (es2) (ft

0
2) = (ef) (s2t

0
2) implies that s1t

0
1 2 E ($p)

because S � T and product of idempotents is again an idempotent. Consequently, SUT is a

compatible subset of $p. Next we prove that SUT is order ideal of $p. Evidently, SUT � $p.

The fact that s � t 2 SUT implies s � t 2 S or s � t 2 T . In both cases a 2 SUT because S

and T are compatible order ideals of $p. Hence SUT 2 C ($p), that is, the join of a compatible

subset is just the union of its elements. Which immediately implies that C ($p) 2 L is a

complete in�nitely distributive.

The function � (s) = [s] is well de�ned being the compatible subset. It is obvious that the

mapping � is injective. Next to prove that [s] [t] = [st] ; let u 2 [s] [t] : Then u = ab with a � s

and b � t: Hence u = ab � st; and so u 2 [st] : Conversely, if u 2 [st] then u � st 2 [s] [t] :

Which immediately tells that � is a monomorphism.

3.4 Conclusion

First of all, we have improved some fundamental results for a left permutable inverse LA-

semigroup based on results from the previous chapter. We have proved that every left per-

mutable inverse LA-semigroup with a unique idempotent element in which inverses commute

is an LA-group. We have also related the natural partial order with the compatibility relations

in a left permutable inverse LA-semigroup. By using these relations, we have investigated the

complementary behaviour of meets and joins. We have found the conditions under which a left

permutable inverse LA-semigroup is in�nitely distributive. At the end, we have proved that

the set of all permissible subsets of a left permutable inverse LA-semigroup is complete and

in�nitely distributive.
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Chapter 4

ENUMERATION OF FINITE

INVERSE LA-SEMIGROUPS

4.1 Introduction

There has always been a necessity of the development of dynamical algorithms for the classi�-

cation of algebraic structures of associative and non-associative types. Since LA-semigroups are

non-associative in general. Therefore, our interest lies in developing an algorithm for the clas-

si�cation of LA-semigroups generally and inverse LA-semigroups particularly. In this regard,

�rst of all, we investigate some fundamental results of inverse LA-semigroups which enable

us to minimize our search of enumerating �nite inverse LA-semigroups. We present partial

classi�cation of inverse LA-semigroups up to order 6 and inverse LA-monoids up to order 8.

For this, we develop these results with the help of an e¢ cient algorithm which we develop in

C-Sharp. In Table 16, which provides the comparative study of the number of LA-semigroups

and the number of semigroups up to order 6. The enumeration results regarding semigroups

and LA-semigroups are taken from [10] and [13] respectively.
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Table 17. Number of Semigroups and LA-semigroups up to order 6

n 2 3 4 5 6

Semigroups Ref. [10] Total Solutions 8 113 3 492 183 732 17 061 118

Non-isomorphic 5 24 188 1 915 28 634

LA-semigroups Ref. [13] Total Solutions 6 105 7 336 3 756 645 28 812 382 776

Non-isomorphic 3 20 331 31 913 40 104 513

The most recent result on the enumeration of LA-semigroup is that there are exactly 28

812 382 776 LA-semigroups of order 6 [13]. This result is obtained with the help of Minion

0.11 version on a machine with processor 2:80 GHz Intel X-5560: It takes almost 28:96 hours

to complete the task. This chapter marks the �rst attempt to enumerate �nite inverse LA-

semigroups speci�cally. We develop a few algorithms to �nd the enumeration of various classes

of LA-semigroups up to order n. On the bases of these algorithms, we develop a user-friendly

Windows based machine Left Almost Semigroup Algebraic Machine (LASAM) in C-sharp. We

run LASAM on a machine with processor 2:3 GHz Intel X-E5-2699v3 18c which produces all

the LA-semigroups of order 6 in almost 22:3 hours. This proves the correctness and e¢ ciency

of our algorithm. Moreover, LASAM is capable of enumerating LA-semigroups, inverse LA-

semigroups and their subclasses. It is a user-friendly windows based machine (see Figure 5).

One of the main features of LASAM is that it �nds all equivalent solutions by providing any

solution to the underlying problem. The algorithm also deals with algebraic questions related

to enumeration and classi�cation of �nite LA-semigroups and subclasses like LA*-semigroups,

LA**-semigroups, LA-monoids, LA-bands, LA-3-bands, Locally associative LA-semigroups, in-

verse LA-semigroups, inverse LA*-semigroups, inverse LA**-semigroups, inverse LA-bands,

inverse LA-3-bands, inverse LA-monoids, and locally associative inverse LA-semigroups. It is

also possible to select all non-isomorphic solutions for any of the subclasses of LA-semigroups.
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Figure 5. An image of newly developed Left Almost Semigroup Algebraic Machine.

An inverse LA-semigroup satisfying associative law (ab) c = a (bc) is inverse left invertive

semigroup (abbreviated as inverse LI-semigroup) : Before describing the methodology used for

enumeration of inverse LA-semigroups, we prove an important result. This result is instrumental

in setting up a link between inverse LI-semigroup, inverse LA*-semigroup and commutative

inverse LA-semigroup. It also provides us an opportunity to enumerate any one class from the

three classes of inverse LA-semigroups.

Theorem 14 For any $ 2 L, the following statements are equivalent:

(i) $ is an inverse LI-semigroup;

(ii) $ is an inverse LA*-semigroup;
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(iii) $ is commutative inverse LA-semigroup.

Proof. (i) =) (ii) : Suppose that $ is an inverse LI-semigroup. Then $ is commutative,

because for all a; b; c 2 $;

ab = a
��
bb0
�
b
�
= a

�
b
�
b0b
��
= (ab)

�
b0b
�

=
��
b0b
�
b
�
a =

�
(bb) b0

�
a = (bb)

�
b0a
�

=
�
bb0
�
(ba) =

��
bb0
�
b
�
a = ba;

which directly states that (ab) c = (cb) a = (bc) a = b (ca) : Commutativity also implies that

(ab) c = b (ac) :

(ii) =) (iii) : If $ is an inverse LA*-semigroup, then a (bc) = a (cb) for all a; b; c 2 $.

Furthermore, we note that

ab =
��
aa0
�
a
�
b = a

��
aa0
�
b
�
= a

��
ba0
�
a
�
= (aa)

�
ba0
�
= (aa)

�
a0b
�

= a
��
a0b
�
a
�
= a

�
(ab) a0

�
=
�
a0a
�
(ab) =

�
a0a
�
(ba)

=
�
a0b
�
(aa) = b

�
a0 (aa)

�
= b

��
aa0
�
a
�
= ba:

Hence $ is commutative.

(iii) =) (i) : From this it follows that, for every a; b; c 2 $; we have (ab) c = (ba) c = a (bc) :

4.2 Methodology for Enumeration of Finite Inverse LA-semigroups

To �nd all the inverse LA-semigroups of a certain order n, �rst, we �nd all LA-semigroups for

n. These are huge in number as compared to semigroups [13]. The di¤erence in numbers of

semigroups and LA-semigroups of the same order is examined in Table 16. We have stored each

solution of LA-semigroups and inverse LA-semigroups of orders 2 to 6 on the hard disk. Further,

we have also stored each solution of inverse LA-monoids of orders 2 to 8. All these solutions are

available in the form of text �les. We note that the �le containing all LA-semigroups of order

6 occupy 107 GB space for storage while for the �le containing all LA-semigroups of order 5 it
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was just 111 MB. It seems thousands of terabytes space is required to store all LA-semigroups

of order 7 and above. We have developed our own machine named LASAM which is capable

of doing enumeration up to order n. The two main factors which prevent us from working for

higher orders are storage space and time limit. To avoid the storage space problem, we decide

to enumerate the subclasses of LA-semigroups.

The LASAM is entirely based on the approach presented in [15, 13, 38] that any enumeration

problem can be expressed as a constraint satisfaction problem (abbreviated as CSP).

Constraint Satisfaction Problem

A CSP is a set of limitations or restrictions which must satisfy a de�ned set of objects or

variables, answerable by constraint solver techniques. More details about the class of CSPs are

available in [11]. Mostly, the CSPs are highly symmetric. Symmetries are essential part of the

problem, or may be generated in the process of expressing a problem in terms of a CSP. There are

many solutions which are equivalent in the sense of a given problem. A CSP is constructed for

each multiplication table representing generally an LA-semigroup or in particular an inverse LA-

semigroup. The set of variables 4 := fL11; L12; :::; L1n; L21; :::; L2n; :::; Ln1; :::; Lnng ; consists of

each entry in any n� n table. The main constraints are:

1. Each variable in 4 has a domain f1; 2; 3; :::; ng :

2. (a � b) � c = (c � b) � a for all possible values of a; b; and c in 4:

3. For each element a 2 4, there exists a unique element b 2 4 such that (a � b) � a = a

and (b � a) � b = b:

The �rst constraint known as element constraint, is the domain D := f1; 2; 3; :::; ng : Each

entry in the n � n multiplication table is �lled with an element from the domain. Elements

are repeatable in any row (column). Second constraint is the left invertive law, which in the

algorithm is enforced by using element constraints. The constraint element (vector, i, Val)

speci�es, in any solution vector [i] =val [11]. We add a new variable A((a;b);c) for each triple

((a; b) ; c). The pair of constraints

element
�
column (c) ; a � b; A((a;b);c)

�
and element

�
column (a) ; c � b; A((c;b);a)

�
.
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It then implements left invertive law for each possible triple from the domain set. Constraint

1 turns n2 variables into ground variables that is, f1; 2; 3; :::; ng : While constraint 2 and 3

enforces to reduce the search space by implementing the left invertive law and inverse law.

In a �rst step, we use the underlying algebra that is, the left invertive law to reduce the

search space by creating all the constraints of type 2 for a �nite set of the variables. After

�nding all the LA-semigroups of certain �nite order, we apply the constraints of type 3 which

de�nes the inverse law to search out inverse LA-semigroups as a subclass of LA-semigroups. We

also adjoin multiple constraints like commutative law, associative law, locally associative law,

weak associative law, left identity law, left permutable law, band property, 3-band property,

paramedial law, and medial law with the constraints of type 2 or type 3 to know more about

the enumeration of the sub-classes of LA-semigroups and inverse LA-semigroups.

Theorem 15 The number of constraints of type 2 for an LA-semigroup of order n is

2

�
n

2

�
+ 3

�
n

3

�
=
n2 (n� 1)

2
;where n � 2 is a positive integer.

Proof. We prove this by mathematical induction. For this, we use Pascal triangle. For n =

2, D := fa; bg ; the possible triples produced are ((a; a) ; b) and ((b; b) ; a) only. They are equiva-

lent to ((b; a) ; a) and ((a; b) ; b) respectively. For n = 3,D := fa; b; cg ; has three subsets contain-

ing two elements and one subsets containing three elements that is, D itself. The the number

of possible triples are (2� 3) + (3� 1) ; which are ((a; a) ; b) ; ((b; b) ; a) ; ((a; a) ; c) ; ((c; c) ; a) ;

((b; b) ; c) ; ((c; c) ; b) ; ((a; b) ; c) ; ((b; a) ; c) ; and ((b; c) ; a) : If there are some other triples, they

are redundant or are equivalent to one of the element obtained earlier. Clearly, the number of

triples in both cases satis�es the given formula.

Suppose it is true for n = k; that is, the setD contains k elements. ThenD has
�
k
2

�
= k(k�1)

2

subsets with two elements and
�
k
3

�
= k(k�1)(k�2)

6 subsets with three elements. Now number of
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possible triples are 2k(k�1)2 + 3k(k�1)(k�2)6 = k2(k�1)
2 : For n = k + 1; we have

2

�
k + 1

2

�
+ 3

�
k + 1

3

�
= 2

(k + 1) k

2
+ 3

(k + 1) k (k � 1)
6

=

=
k + 1

k � 1

 
2k (k � 1)

2
+
3k (k � 1)2

6

!

=
k + 1

k � 1

�
2k (k � 1)

2
+
3k (k � 1) (k � 1)

6

�
=

k + 1

k � 1

�
2k (k � 1)

2
+
3k (k � 1) (k � 2 + 1)

6

�
=

k + 1

k � 1

��
2k (k � 1)

2
+
3k (k � 1) (k � 2)

6

�
+
3k (k � 1)

6

�
=

k + 1

k � 1

�
k2 (k � 1)

2
+
3k (k � 1) (k � 2)

6

�
=

k2 (k � 1)
2

+
k (k + 1)

2
=
k (k + 1) (k + 1)

2
=
(k + 1)2 k

2
;

showing that it is also true for n = k + 1: Hence the given statement is true for all positive

integers n � 2:

By using the preceding Theorem, the minimum number of constraints of type 2 to �nd an

LA-semigroup are given in Table 18:

Table 18. Minimum Number of constraints of type 2

Order 2 3 4 5 6 7 8 9 10

Minimum number of constraints 2 9 24 50 90 147 224 324 450

The On-Line Encyclopedia of Integer Sequences (abbreviated as OEIS) [60] has many se-

quences of enumerations of algebraic and combinatorics structures. The sequence that is pre-

sented in Table 18 is A006002: the minimum number of constraints of type 2 is required to

be satis�ed to �nd an LA-semigroup of order n. It is also interesting to note that the sum of

non-triangular numbers between successive triangular numbers,
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1; (2) ; 3; (4; 5) ; 6; (7; 8; 9) ; 10; (11; 12; 13; 14) ; 15; (16; 17; 18; 19; 20) ;

21; (22; 23; 24; 25; 26; 27) ; 28; (29; 30; 31; 32; 33; 34; 35) ;

36; (37; 38; 39; 40; 41; 42; 43; 44) ; 45;

(46; 47; 48; 49; 50; 51; 52; 53; 54) ; :::; (Sum of terms in brackets).

is exactly the same sequence which is presented in Table 18.

Algorithm 1 Algorithm for �nding all LA-semigroups of certain order n.

Our designed enumeration scheme is strictly based on the CSP. As demonstrated in Figure

6, an algorithm for �nding all LA-semigroups of certain order is given below.

Step 1: Select n elements from the set containing numbers, characters and alphabets.

Step 2: Form an empty multiplication table of order n � n depending upon the selected

elements in Step 1.

Step 3: Generate all the left invertive laws by following the preceding Theorem 15.

Step 4: Apply all the generated identities of left invertive law to �ll each entry of the table

obtained in Step 2.

Step 5: Consider all options separately, if there are multiple options to �ll any one entry of

the table. Moreover, delete the option where any of the identities obtained in Step 3 is violated.

Step 6: All LA-semigroups of order n are available on the respective location of the hard

drive as text �les. Currently, these results are available in the display window of LASAM which

can be accessed one by one using the next button.
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Figure 6. Proposed enumeration scheme for �nding LA-semigroups of order n.

The implementation of Algorithm 1 in LASAM for �nding all LA-semigroups is explained

in Code 1.

Code 1

Find the enumeration of LA-semigroups up to order n.

private bool LeftInvertiveLaw(ref string[,] matrix)

{

int limit = n;

bool complete = true;

for (int i = 0; i < limit; i++)

{

for (int j = 0; j < limit; j++)

{

for (int k = i + 1; k < limit; k++)

{

string a = input[i];
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string b = input[j];

string c = input[k];

string abc = "", cba = "";

string ab = matrix[i, j];

if (ab != "" & & ab != null)

abc = matrix[Array.IndexOf(input, ab), k];

string cb = matrix[k, j];

if (cb != "" & & cb != null)

cba = matrix[Array.IndexOf(input, cb), i];

if (abc != cba & & abc != "" & & cba != "" & & abc != null & & cba != null)

{

if (showViolation)

MessageBox.Show("(" + a + b + ")" + c + " = (" + c + b + ")" + a,

"Violation of Left Invertive Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (abc == "" jj cba == "" jj abc == null jj cba == null)

complete = false;

}

}

}

if (complete)

return true;

else

return this.radioButtonLeftInvertiveHold.Checked;

} n

private void buttonLeftInvertive_Click(object sender, EventArgs e)

{

if (CheckEmpty())

return;

48



FillMatrix(ref mainMatrix);

showViolation = true;

if (LeftInvertiveLaw(ref mainMatrix))

MessageBox.Show("Left Invertive Law Holds", "", MessageBoxButtons.OK, Mes-

sageBoxIcon.Information);

showViolation = false;

}

Algorithm 2 Algorithm for �nding all inverse LA-semigroups of certain order n:

Designed scheme is strictly based on algorithm 1. As demonstrated in Figure 7, an algorithm

for proposed scheme is given below.

Step 1: Select n elements from the set containing numbers, characters and alphabets.

Step 2: Generate the all LA-semigroups of order n for selected elements..

Step 3: Generate all the sets of possibilities of inverse law for selected n elements.

Step 4: Apply all the generated sets of inverse laws on each multiplication table of LA-

semigroup generated in step 2. Select the all multiplication tables obeying any set of inverse

laws completely and discard the others.

Step 5: All inverse LA-semigroups of order n are available on the respective location of the

hard drive as text �les. Currently, these results are available in the display window of LASAM

which can be accessed one by one using the next button.
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Figure 7. Proposed enumeration scheme for �nding all inverse LA-semigroups of order n.

The implementation of Algorithm 2 in LASAM for �nding the inverse LA-semigroups of

certain order n is given in Code 2.

Code 2

Find the enumeration of inverse LA-semigroups up to order n.

Source code for the enumeration scheme for �nding the inverse LA-semigroup discussed in

Figure 7 is given below:

private bool InverseLaw(ref string[,] matrix)

{

bool complete = true;

string[] inverse = new string[n];

for (int i = 0; i < n; i++)

{

for (int j = i; j < n; j++)

{

string a = input[i];
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string b = input[j];

string aba = "", bab = "";

string ab = matrix[i, j];

string ba = matrix[j, i];

int index_ab = -1;

int index_ba = -1;

if (ab != "" & & ab != null)

{

index_ab = Array.IndexOf(input, ab);

aba = matrix[index_ab, i];

}

if (ba != "" & & ba != null)

{

index_ba = Array.IndexOf(input, ba);

bab = matrix[index_ba, j];

}

if (aba == a & & bab == b)

{

if (inverse[i] == null & & inverse[j] == null)

{

inverse[i] = b;

inverse[j] = a;

if (this.checkBoxRestrictInverseLaw.Checked & & this.checkBoxFindInResult.Checked)

{

if (a != b & & ab != ba)

{

if (showViolation)

MessageBox.Show("Restriction 1 does not satisfy.", "Violation

of Inverse Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;
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}

}

if (this.checkBoxRestrictInverseLawProduct.Checked & &

this.checkBoxFindInResult.Checked)

{

{

if (matrix[index_ab, index_ab] != ab jj matrix[index_ba,

index_ba] != ba)

{

if (showViolation)

MessageBox.Show("Restriction 2 does not satisfy.",

"Violation of Inverse Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

}

}

}

else

{

if (showViolation)

MessageBox.Show("Inverse of " + a + " or " + b + " already

exist for another variable.", "Violation of Inverse LA-Semigroup", MessageBoxButtons.OK,

MessageBoxIcon.Warning);

return false;

}

}

if (aba == "" jj bab == "" jj aba == null jj bab == null)

complete = false;

}

}
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if (complete)

{

for (int k = 0; k < n; k++)

{

if (inverse[k] == null)

{

if (showViolation)

MessageBox.Show("Inverses of all variables do not exist.", "Violation of

Inverse LA-Semigroup", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

}

return true;

}

else

return this.radioButtonInverseLawHold.Checked;

}

Isomorphism Rejection

An isomorphism of LA-semigroups indicates an action between the set of elements in two

multiplication tables which transforms one table to the other. If we have a permutation � of

the elements of A; we transform the given Cayley table by permuting the rows according to �;

then to each column. We obtain an isomorphic multiplication table by permuting the values at

the end. An anti-isomorphism is an action followed by transposing the resulting multiplication

table of an isomorphism. For example, by applying the permutation (b; d) on the table 19 (i) is

given in table 19 (iii). Tables 19 (i) and 19 (iii) are isomorphic. If A has n elements, then the

number of maximum multiplication tables isomorphic to LA-semigroup A are n!.
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Table 19. A multiplication table is mapped to another multiplication

under permutation (1 3)

0 1 2 3 4

0 1 4 4 0 0

1 0 1 1 4 4

2 0 1 2 3 4

3 4 0 0 2 1

4 4 0 0 1 1

apply

(1 3)

=)

0 3 2 1 4

0 3 4 4 0 0

3 0 3 3 4 4

2 0 3 2 1 4

1 4 0 0 2 3

4 4 0 0 3 3

arrange

rows

columns

=)

0 1 2 3 4

0 3 0 4 4 0

1 4 4 0 3 3

2 0 1 2 3 4

3 0 2 3 0 4

4 4 3 0 0 3

(i) (ii) (iii)

We reduce the search space by selecting any one of the two as a representative of these

isomorphic multiplication tables and discarding the remaining ones.

Algorithm 3 Algorithm for �nding all non-isomorphic LA-semigroups of certain order n:

The main purpose of designing this scheme is to reduce the space on hard disk which

surely enables us to analyze the multiplication tables more easily and critically. We use all

permutations to �nd isomorphic tables corresponding to each permutation as in Table 19 and

to reduce the space by selecting just one multiplication table from all the isomorphic tables

of each class representative instead of considering all isomorphic multiplication tables. The

following algorithm gives the detailed description of the proposed scheme as demonstrated in

Figure 8.

Step 1: Generate all LA-semigroups of order n.

Step 2: Generate all the permutations from the set for which all LA-semigroups are gener-

ated.

Step 3: Apply all the permutations on an LA-semigroup say L1 and �nd all the LA-

semigroups isomorphic to L1 from the list generated in Step 1.

Step 4: Save L1 as representative of this class at another location and delete all others LA-

semigroups isomorphic to L1 (generated in Step 3) from set of all LA-semigroups generated in
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Step 1.

Step 5: Repeat the Steps 3 and 4 for the remaining LA-semigroups and save the represen-

tatives of each class on the same location as L1:

Step 6: All isomorphic LA-semigroups of order n are available on the respective location

of the hard drive as text �les. Currently, these results are available in the display window of

LASAM which can be accessed one by one using the next button.

Figure 8. Proposed enumeration scheme for �nding non-isomorphic LA-semigroups.

The implementation of Algorithm 3 for �nding the non-isomorphic LA-semigroups or its

subclasses are presented in Code 3.

Code 3

Find all non-isomorphic inverse LA-semigroups up to order n.

public void ProcessIsomorphic(object parameter)

{

string[] th_Values = (string[])parameter;

List<string> resultsTemp = new List<string>();

List<string> resultsNew = new List<string>();
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OpenResults(th_Values[0], ref resultsTemp);

Hashtable results = new Hashtable();

for (int i = 0; i < resultsTemp.Count; i++)

results.Add(resultsTemp[i], "");

List<string> isomorphic = new List<string>();

for (int i = 0; i < resultsTemp.Count; i++)

{

if (results.ContainsKey(resultsTemp[i]))

{

isomorphic.Clear();

mainMatrix = StringToMatrix(resultsTemp[i]);

FindIsomorphic(ref mainMatrix, ref isomorphic);

for (int j = 0; j < isomorphic.Count; j++)

{

if (isomorphic[j] != resultsTemp[i])

results.Remove(isomorphic[j]);

}

}

}

foreach (string mString in results.Keys)

resultsNew.Add(mString);

if (resultsNew.Count > 0)

{

mutex.WaitOne();

completed += resultsNew.Count;

mutex.ReleaseMutex();

this.SetCompletedTables(completed.ToString());

SaveResults(OutputDirectory + th_Values[1] + "0.bin", ref resultsNew);

}

}
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4.3 Enumeration Results

The enumeration results for non-associative inverse LA-semigroups are given in Table 20:

Table 20. Enumeration results of non-associative inverse LA-semigroups

n 3 4 5 6

Inverse Total Solutions 6 104 1 841 47 256

LA-semigroups Non-isomorphic 2 10 37 165

Inverse Total Solutions 6 96 1 725 44 280

LA**-semigroups Non-isomorphic 2 8 32 148

Inverse Total Solutions 3 60 870 19 170

LA-monoids Non-isomorphic 1 5 15 60

Inverse Total Solutions 0 2 56 1 296

LA-bands Non-isomorphic 0 1 3 8

Inverse Total Solutions 0 2 56 1 596

LA-3-bands Non-isomorphic 0 1 3 10

Locally associative Total Solutions 1 50 1 091 29 016

Inverse LA-semigroups Non-isomorphic 1 5 22 101

Paramedial Total Solutions 6 96 1 725 44 280

Inverse LA-groups Non-isomorphic 2 8 32 148

Table 21. Enumeration results of LA-monoids

n 3 4 5 6 7 8

LA-monoids Total Solutions 30 448 9, 140 296, 520 12, 999, 084 809, 205, 280

Non-isomorphic 6 25 107 609 3, 996 31, 872

Non-associative Total Solutions 3 72 1, 710 63, 180 2, 985, 990 190, 873, 200

LA-monoids Non-isomorphic 1 6 29 188 1, 359 11, 386
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Table 22. Enumeration results of inverse LA-monoids

n 3 4 5 6 7 8

Inverse Total Solutions 24 256 3 060 59 340 1 428 252 48 005 120

LA-monoids Non-isomorphic 5 16 42 147 543 2 371

Inverse Total Solutions 21 196 2 190 40 170 940 002 31 347 080

LA*-monoids Non-isomorphic 4 11 27 87 3 000 1 259

Inverse Total Solutions 24 256 3 060 59 340 1 428 252 48 005 120

LA**-monoids Non-isomorphic 5 16 42 147 543 2 371

Locally ass. inv. Total Solutions 21 208 2 490 48 000 1 188 852 40 574 480

LA-monoids Non-isomorphic 4 12 32 111 418 1, 842

Inverse LA- Total Solutions 6 36 380 6 390 157 962 5 396 888

monoid bands Non-isomorphic 1 2 5 15 53 222

Inverse LA- Total Solutions 18 160 1 740 32 070 777 462 26 596 040

monoid 3 bands Non-isomorphic 3 8 19 62 221 955

Table 23. Enumeration results of non-associative inverse LA-monoids

n 3 4 5 6 7 8

Inverse Total Solutions 3 60 870 3 195 488 250 16 658 040

LA-monoids Non-isomorphic 1 5 15 60 243 1 112

Inverse Total Solutions 3 60 870 3 195 488 250 16 658 040

LA**-monoids Non-isomorphic 1 5 15 60 243 1 112

Locally ass. inv. Total Solutions 0 12 300 1 305 248 850 9 227 400

LA-monoids Non-isomorphic 0 1 5 24 118 583
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4.4 Source Code

The code implemented in LASAM consists of thousands of lines of C-sharp. It is not possible

to present full code here. Main parts of the code for various structures which are possible to

enumerate using LASAM are given below.

Code 4

Find all groupoids or LA-semigrroups satisfying weak associative law up ton order n.

private bool WeakAssociativeLaw(ref string[,] matrix)

bool complete = true;

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n; j++)

{

for (int k = 0; k < n; k++)

{

string a = input[i];

string b = input[j];

string c = input[k];

string abc = "", bac = "";

string ab = matrix[i, j];

if (ab != "" & & ab != null)

abc = matrix[Array.IndexOf(input, ab), k];

string ac = matrix[i, k];

if (ac != "" & & ac != null)

bac = matrix[j, Array.IndexOf(input, ac)];

if (abc != bac & & abc != "" & & bac != "" & & abc != null & & bac != null)

{

if (showViolation)

MessageBox.Show("(" + a + b + ")" + c + " = " + b + "(" + a + c + ")",

"Violation of Weak Associative Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);
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return false;

}

if (abc == "" jj bac == "" jj abc == null jj bac == null)

complete = false;

}

}

}

if (complete)

return true;

else

return this.radioButtonWeakAssociativeHold.Checked;

}

Code 5

Find all associative/non-associative LA-semigroups of a certain order n.

private bool AssociativeLaw(ref string[,] matrix)

{

bool complete = true;

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n; j++)

{

for (int k = 0; k < n; k++)

{

string a = input[i];

string b = input[j];

string c = input[k];

string abc_l = "", abc_r = "";

string ab = matrix[i, j];

if (ab != "" & & ab != null)

abc_l = matrix[Array.IndexOf(input, ab), k];
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string bc = matrix[j, k];

if (bc != "" & & bc != null)

abc_r = matrix[i, Array.IndexOf(input, bc)];

if (abc_l != abc_r & & abc_l != "" & & abc_r != "" & & abc_l != null &

& abc_r != null)

{

if (showViolation)

MessageBox.Show("(" + a + b + ")" + c + " = " + a + "(" + b + c +

")", "Violation of Associative Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (abc_l == "" jj abc_r == "" jj abc_l == null jj abc_r == null)

complete = false;

}

}

}

if (complete)

return true;

else

return this.radioButtonAssociativeHold.Checked;

}

Code 6

Find all commutative/non-commutative LA-semigrroups of a certain order n.

private bool CommutativeLaw(ref string[,] matrix)

{

bool complete = true;

for (int i = 0; i < n; i++)

{

for (int j = i + 1; j < n; j++)

{
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string a = input[i];

string b = input[j];

string ab = matrix[i, j];

string ba = matrix[j, i];

if (ab != ba & & ab != "" & & ba != "" & & ab != null & & ba != null)

{

if (showViolation)

MessageBox.Show(a + b + " = " + b + a, "Violation of Commutative

Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (ab == "" jj ba == "" jj ab == null jj ba == null)

complete = false;

}

}

if (complete)

return true;

else

return this.radioButtonCommutativeLawHold.Checked;

}

private void buttonCommutativeLaw_Click(object sender, EventArgs e)

{

if (CheckEmpty())

return;

FillMatrix(ref mainMatrix);

showViolation = true;

if (CommutativeLaw(ref mainMatrix))

MessageBox.Show("Commutative Law Holds", "", MessageBoxButtons.OK, Mes-

sageBoxIcon.Information);

showViolation = false;
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}

Code 7

Find all LA-bands of a certain order n.

private bool LA_Band(ref string[,] matrix)

{

bool complete = true;

for (int i = 0; i < n; i++)

{

string a = input[i];

string aa = matrix[i, i];

if (aa != a & & aa != "" & & aa != null)

{

if (showViolation)

MessageBox.Show(a + a + " = " + a, "Violation of LA-Band", Message-

BoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (aa == "" jj aa == null)

complete = false;

}

if (complete)

return true;

else

return this.radioButtonLA_BandHold.Checked;

}

Code 8

Find all locally associative LA-semigroups of a certain order n.

private bool LocallyAssociativeLaw(ref string[,] matrix)

{

63



bool complete = true;

for (int i = 0; i < n; i++)

{

string a = input[i];

string aaa_l = "", aaa_r = "";

string aa = matrix[i, i];

if (aa != "" & & aa != null)

aaa_l = matrix[Array.IndexOf(input, aa), i];

if (aa != "" & & aa != null)

aaa_r = matrix[i, Array.IndexOf(input, aa)];

if (aaa_l != aaa_r & & aaa_l != "" & & aaa_r != "" & & aaa_l != null & & aaa_r

!= null)

{

if (showViolation)

MessageBox.Show("(" + a + a + ")" + a + " = " + a + "(" + a + a + ")",

"Violation of Locally Associative Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (aaa_l == "" jj aaa_r == "" jj aaa_l == null jj aaa_r == null)

complete = false;

}

if (complete)

return true;

else

return this.radioButtonLocallyAssociativeLawHold.Checked;

}

Code 9

Find all LA-3-band of a certain order n.

private bool AG_3_Band(ref string[,] matrix)

{
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bool complete = true;

for (int i = 0; i < n; i++)

{

string a = input[i];

string aaa_l = "", aaa_r = "";

string aa = matrix[i, i];

if (aa != "" & & aa != null)

aaa_l = matrix[Array.IndexOf(input, aa), i];

if (aa != "" & & aa != null)

aaa_r = matrix[i, Array.IndexOf(input, aa)];

if ((aaa_l != aaa_r jj aaa_l != a) & & aaa_l != "" & & aaa_r != "" & & aaa_l

!= null & & aaa_r != null)

{

if (showViolation)

MessageBox.Show("(" + a + a + ")" + a + " = " + a + "(" + a + a + ") =

" + a, "Violation of AG-3-Band", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (aaa_l == "" jj aaa_r == "" jj aaa_l == null jj aaa_r == null)

complete = false;

}

if (complete)

return true;

else

return this.radioButtonAG_3_BandHold.Checked;

}

Code 10

Find all LA-monoids of a certain order n.

private bool LeftIdentityLaw(ref string[,] matrix)

{
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bool complete = true;

bool[] Identities = new bool[n];

for (int i = 0; i < n; i++)

{

Identities[i] = true;

for (int j = 0; j < n; j++)

{

string a = input[i];

string b = input[j];

string ab = matrix[i, j];

if (ab != b & & ab != "" & & ab != null)

Identities[i] = false;

if (ab == "" jj ab == null)

complete = false;

}

}

if (complete)

{

for (int i = 0; i < n; i++)

if(Identities[i] == true)

return true;

if (showViolation)

MessageBox.Show("Left Identity Law does not satisfy", "Violation of Left

Identity Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

else

return this.radioButtonLeftIdentityLawHold.Checked;

}
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Code 11

Find all left permutable LA-semigroups of a certain order n.

private bool LeftPermutableLaw(ref string[,] matrix)

{

bool complete = true;

for (int i = 0; i < n; i++)

{

for (int j = i + 1; j < n; j++)

{

for (int k = 0; k < n; k++)

{

string a = input[i];

string b = input[j];

string c = input[k];

string abc = "", bac = "";

string bc = matrix[j, k];

if (bc != "" & & bc != null)

abc = matrix[i, Array.IndexOf(input, bc)];

string ac = matrix[i, k];

if (ac != "" & & ac != null)

bac = matrix[j, Array.IndexOf(input, ac)];

if (abc != bac & & abc != "" & & bac != "" & & abc != null & & bac !=

null)

{

if (showViolation)

MessageBox.Show(a + "(" + b + c + ") = " + b + "(" + a + c +

")", "Violation of Left Permutable Law", MessageBoxButtons.OK, MessageBoxIcon.Warning);

return false;

}

if (abc == "" jj bac == "" jj abc == null jj bac == null)
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complete = false;

}

}

}

if (complete)

return true;

else

return this.radioButtonLeftPemutableHold.Checked;

}

4.5 Conclusion

First of all, we have produced results which minimize our search of enumerating �nite in-

verse LA-semigroups. In this regard, we have investigated that inverse LI-semigroups, inverse

LA*-semigroups and commutative inverse LA-semigroups are equivalent to each other. Fur-

thermore, we have found a formula for �nding the number of constraints of type 2 for an

inverse LA-semigroup of certain order n. We have developed algorithms for the enumeration

of LA-semigroups, inverse LA-semigroups and their subclasses. Moreover, we have developed

an algorithm for �nding non-isomorphic classes of inverse LA-semigroups and their subclasses.

Finally, we have used these algorithms to develop a left almost algebraic machine (abbreviated

as LASAM) in C-sharp. Main work of this machine to enumerate LA-semigroups in general and

its subclasses in particular. We have presented a partial classi�cation of inverse LA-semigroups

up to order 6 and inverse LA-monoids up to order 8. With the help of this machine, we have also

obtained many examples of inverse LA-semigroups of certain order by �xing some generators

and relations which are presented throughout the thesis.
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Chapter 5

PRESENTATION OF INVERSE

LA-SEMIGROUPS

5.1 Introduction

This chapter of thesis marks the �rst attempt of �nding and describing the (�nite) presentations

of inverse LA-semigroups which is still far from being comprehensive. It provides a foundation

to the concept of de�ning an inverse LA-semigroup by generators and relations. If one is not

careful enough to distinguish between the elements of an LA-semigroup and words that describe

these elements, utter confusion is likely to ensue.

Our purpose is to devise a technique to write the inverse LA-semigroups in the form of

(�nite) presentation which enables us to study the �nite inverse LA-semigroups in a more

e¢ cacious way. It also helps us to further investigate the enumeration results of the previous

chapter combinatorially and graphically; such like groups and semigroups.

A vast literature on the presentations of groups and semigroups (and related structures) lays

an outline for the development of the presentation of the inverse LA-semigroups but devising a

presentation is not, by any means, trivial. Examples of semigroups de�ned by the presentations

are available in [5], [6], [7] and [51]. In [7], the authors considered semigroup presentations of

the form

� = hx1; :::; xn j s1 = r1; :::; sm = rmi
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where m;n 2 N and si; ri; i = 1; :::;m are non-empty words in the symbols x1; :::; xn: Every

presentation can also be considered as a group presentation. They used the symbols Sgp(�) and

Gp(�) to distinguish between the semigroup and group de�ned by �: Also, they investigated

necessary and su¢ cient conditions for the minimum two sided ideals of Sgp(�) to be disjoint

union of copies of the group Gp(�):

The principal problem which arises is that of recognizing when two sets of generators and

relations actually present the same LA-semigroup. For this, we describe LA-semigroups by

exhibiting its multiplication table just like groups and semigroups. Of course, the use of a

multiplication table is not possible for an in�nite LA-semigroup, nor even practical for a �nite

LA-semigroup of large order. For instance, the Table 24 has sixteen entries, but using the data

from table t = s2; u = ts = s2s = s3 6= ss2, we reduce the information necessary to determine

the elements of the LA-semigroup which are s, s2, s3 and v with the relations us = s3s = s:

Now, the LA-semigroup in question is more e¢ ciently depicted because the elements s and v

generate it and that the equations s4 = s and vs = v = ss2 are satis�ed. Thus the presentation

s; v j s4 = s, vs = v = ss2

�
represents the LA-semigroup de�ned by Table 24.

Table 24. An LA-semigroup with two generators

s t u v

s t v u s

t u s t v

u s u v t

v v t s u

This leads to the method of describing an LA-semigroup by generators and relations. Let

L be a set fx1; x2; :::; xng. A word over L is a �nite string

w = x1x2x3:::xl = (((x1x2)x3) :::)xl

with each xi 2 L: The length of w is l = l (w) = jwj. When l = 0, then this is an empty word,

which we denote by 2 :
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We follow the terms and notations used in [59]. Let us denote the set of all (�nite) words

over L by L�, and by L+ the set of all words (non-empty) in L�. Thus L� = L+ [ f2g. The

sets L� and L+ can be induced into the structure of LA-semigroups if we de�ne multiplication

of words such that it satis�es (x1x2)x3 = (x3x2)x1: The presentation of an LA-semigroup is

an ordered pair hL j <i, where < � L+ � L+. An element x of L is called a generating symbol

whereas an element (s; r) of < is called a de�ning relation, and is written by the usual notation

s1 = s2. Likewise if L = fx1; x2; :::; xmg and < = fs1 = r1; s2 = r2; :::; sn = rng ; then hL j <i

is used to represent the complete notation. Thus, a presentation is a sequence of alphabets

and words. An LA-semigroup is de�ned by the presentation hL j <i is L+��, where � is the

smallest congruence on L+ containing <. More generally, an LA-semigroup L is said to be

de�ned by the presentation hL j <i if L �= hL j <i : Therefore, the elements of L are in one-one

correspondence with the congruence classes of words from L+.

5.2 Presentations and Graphs of Inverse LA-semigroups

First, we de�ne some presentations of inverse LA-semigroups generated by one or two genera-

tors. We have also generalized some of these to study the symmetries. Then we draw the Cayley

graphs of these �nite presentations to explain the obscure symmetries or partial symmetries

hidden in these inverse LA-semigroups. We observe that there are many partial symmetries of

rotation and re�ection in the Cayley graphs of inverse LA-semigroups which may be explored

by deleting the symmetry spoilers.

In group theory, the coloured edges are used to represent the product of one generator

to another and arrow head on the edge discloses the output element which is written at the

pointed/directed vertex of the edge. The circle on any vertex indicates that the product of any

particular element with the vertex element again yield the vertex element. It is a central tool of

combinatorial and geometric group theory. Here, we draw the graphs from the presentations of

inverse LA-semigroups keeping the following facts in mind: we use two colour edges for product

of each element: one for the left and the other for right multiplication. An arrow head is pointed

towards the output. There is no need to point direction on the circle because the colour of its

edges indicates the product of generator from the left or right whereas it yields again the same

71



element in the circle. The discussed Cayley graphs are connected and transitive. Their cycles

represent the relations. These graphs are partially symmetric means that deleting the one or

more symmetry spoilers (speci�c edges), the resultant Cayley graph is symmetric.

We construct some examples �rst which establishes a foundation for more general and

composite structures. Which are helpful to elaborate the products (direct and wreath) of the

inverse LA-semigroups in the next sections.

Example 8 The presentation


a; b j aa2 = b = ba; a4 = a

�
de�nes an inverse LA-semigroup

of order 4 with the left inverses a0 = a3 and b0 = a2.

Table25. Inverse LA-semigroup having two generators

a a2 a3 b

a a2 b a3 a

a2 a3 a a2 b

a3 a a3 b a2

b b a2 a a3

a

b

a2a3

Figure 9. Cayley graph of an inverse LA-semigroup generated by two generators a and b:

Figure 9 allow us to visualize the abstract structure of the inverse LA-semigroup de�ned

by Table 25. Black edges in the diagram show the right multiplication a with any vertex and

arrows are directed towards the output of the product. For example, output of the product a2a

is a3 . The output of the product ba is b which is denoted by undirected black circle. Right
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multiplication with b is shown by the green edges. Similarly, left multiplication of a and b with

any vertex are denoted by purple and red edges respectively. The Cayley graph is connected

and transitive.

Example 9 The presentation


c j c5 = c = cc2; cc3 = c4

�
de�nes an inverse LA-monoid of or-

der 4 where the left inverse of c is c0 = c3, and c4 is the left identity.

Table 26. Non-commutative cyclic inverse LA-monoid of order 4

by presentation


c j c5 = c = cc2; cc3 = c4

�
c c2 c3 c4

c c2 c c4 c3

c2 c3 c4 c c2

c3 c4 c3 c2 c

c4 c c2 c3 c4

a a2

a3a4

c c2

c4 c3

Figure 10. Cayley graph of a cyclic inverse LA-semigroup of order 4.

Figure 10 represents the abstract structure of cyclic inverse LA-semigroup of order 4. Here, c

is the only generator having period 4. Black edges indicate the right multiplication of c with

any vertex element and green edges are used to represent the left multiplication of c. A green

edge between c3 and c4 is bidirectional which indicates that cc4 = c3 and cc3 = c4: This Cayley

graph is connected and transitive. Also, it is symmetric in many senses.
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Inverse LA-semigroup

Here, we �nd presentations of inverse LA-semigroups of particular form of order 5; 9; 11 and

19 which contain two generators and at most 4 relations. Furthermore, we note that there

is no other inverse LA-semigroup of this kind between these orders. These presentations are

of particular importance in the sense that they have same kind of inverse LA-semigroups but

of di¤erent order. The inverse LA-semigroups representing by these presentations are non-

commutative, non-associative and non-left permutable.

Example 10 The presentation


a; b : a5 = a; aa3 = b = ba

�
de�nes an inverse LA-semigroup

of order 5, which is explicated by the following multiplication table.

Table 27. Inverse LA-semigroup de�ned by the presentation

a; b : a5 = a; aa3 = b = ba

�
a a2 a3 a4 b

a a2 a b a4 a3

a2 a3 a4 a a2 b

a3 a4 b a3 a a2

a4 a a3 a2 b a4

b b a2 a4 a3 a
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a4

a a2

a3

b

Figure 11. Cayley graph of inverse LA-semigroup de�ned by Table 27.

Figure 11 allows to study the abstract properties of an inverse LA-semigroup de�ned by

the presentation


a; b : a5 = a; aa3 = b = ba

�
. It is a graph based on four colours and two

generators. Black edges in the diagram show the right multiplication of a with any vertex and

arrows are directed towards the output of the product. The output of the product ba is b which

is denoted by undirected black circle. Right multiplication of b with any vertex is shown by

the red edge. Similarly, left multiplication of a and b are denoted by green and purple edges

respectively. Black edges form a squares and a circle which has many symmetries of rotation

and re�ection.

Example 11 The presentation


a; b : a9 = a; aa7 = b = ba; bb = a7

�
is an inverse LA-semigroup

of order 8, which is explicated by the following multiplication table.
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Table 28. Inverse LA-semigroup de�ned by the presentation

a; b : a9 = a; aa7 = b = ba; bb = a7

�
a a2 a3 a4 a5 a6 a7 a8 b

a a2 a6 a a7 a4 a3 b a8 a5

a2 a3 a4 a5 a6 a7 a8 a a2 b

a3 a4 a a8 b a5 a7 a3 a6 a2

a4 a5 a8 a6 a3 a2 b a7 a a4

a5 a6 b a3 a5 a a4 a2 a7 a8

a6 a7 a5 a2 a b a6 a8 a4 a3

a7 a8 a7 b a4 a6 a2 a5 a3 a

a8 a a3 a7 a2 a8 a5 a4 b a6

b b a2 a4 a8 a3 a a6 a5 a7

a
a2

a3

a4

a8

a7

a6 a5

b

Figure 12. Cayley graph of commutative inverse LA-semigroup de�ned by Table 28.

Figure 12 allow us to study the abstract properties of an inverse LA-semigroup de�ned by

the presentation


a; b : a9 = a; aa7 = b = ba; bb = a7

�
. It is a graph based on four colours and

two generators.Black edges in the diagram show the right multiplication of a with any vertex

and arrows are directed towards the output of the product. The output of the product ba is b

which is denoted by undirected black circle. Right multiplication of b with any vertex is shown
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by the red edge. Similarly, left multiplication of a and b are denoted by green and purple edges

respectively.

Example 12 The presentation


a; b : a11 = a; aa9 = b = ba; bb = a8

�
de�nes an inverse LA-

semigroup of order 11, which is explicated by the following multiplication table.

Table 29. Inverse LA-semigroup de�ned by the presentation

a; b : a11 = a; aa9 = b = ba; bb = a8

�
a a2 a3 a4 a5 a6 a7 a8 a9 a10 b

a a2 a9 a7 a3 a8 a a5 a4 b a10 a6

a2 a3 a4 a5 a6 a7 a8 a9 a10 a a2 b

a3 a4 a7 a a10 b a6 a8 a5 a3 a9 a2

a4 a5 a a6 a9 a3 a2 b a8 a10 a7 a4

a5 a6 a10 a9 b a5 a7 a4 a2 a8 a3 a

a6 a7 b a3 a5 a2 a10 a6 a a4 a8 a9

a7 a8 a6 a2 a7 a10 a4 a3 b a9 a a5

a8 a9 a8 b a4 a6 a3 a a7 a2 a5 a10

a9 a10 a5 a8 a2 a b a7 a9 a6 a4 a3

a10 a a3 a10 a8 a4 a9 a2 a6 a5 b a7

b b a2 a4 a a9 a5 a10 a3 a7 a6 a8

a
a2

a3

a4

a10

a7 a6

a5a8

a9

b

Figure 13. Cayley graph of inverse LA-semigroup de�ned by Table 9.
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Figure 13 depicts the abstract properties of an inverse LA-semigroup de�ned by the pre-

sentation


a; b : a11 = a; aa9 = b = ba; bb = a8

�
. It is a graph based on four colours and two

generators. Black edges in the diagram show the right multiplication of a with any vertex

and arrows are directed towards the output of the product. The output of the product ba is

b which is denoted by undirected black circle. Right multiplication of b with any vertex is

shown by the red edge. Similarly, left multiplication of a and b are denoted by green and purple

edges respectively. The presentations for such inverse LA-semigroups of order 19 and 25 are

a; b : a19 = a; aa17 = b = ba; bb = a12

�
and



a; b : a25 = a; aa23 = b = ba; bb = a15

�
respectively.

Cyclic inverse LA-group

We de�ne cyclic inverse LA-group to be generated by a single element which may have one or

more relations. The succeeding theorem provides a general presentation for the cyclic inverse

LA-group of order n. This presentation is of signi�cance as the identity exists in the structure

and there is no need to prove it.

Theorem 16 The presentation

�1 =
D
a j an+1 = a = aa

n
2 ; aman�m = an; 1 � m � n� 1; n = 4k;m; k 2 Z

E
de�nes an LA-group.

Proof. Here, a is the only generator with period n, that is, an+1 = a: Further, am =

(((aa) a) :::) a| {z }
m�times

=
���
an+1a

�
a
�
:::
�
a =

��
an+2a

�
:::
�
a = ::: = an+m. Since aman�m = an for

each 1 � m � n � 1. By the variation of m, it is clear that aman�m = an = an�mam.

Also, (aman�m)2 = (aman�m) (aman�m) = (aman�m) (an�mam) = ((an�mam) an�m) am =

an�mam = aman�m: So an = aman�m is the idempotent element in �1: Next we prove that an

is the left identity element. Since for each 1 � m � n� 1 we have anam = (aman�m) am = am:

Showing that an is the left identity and unique idempotent of �1: Hence by Proposition 17, �1

represents an inverse LA-group.
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The next example explains the �nite presentation of the cyclic inverse LA-semigroup in

detail.

Example 13 For n = 8; �1 =


a j a9 = a = aa4; ama8�m = a8; 1 � m � 7

�
, we have aa7 =

a8; a2a6 = a8; a3a5 = a8; a4a4 = a8; a5a3 = a8; a6a2 = a8; a7a = a8. The following multiplica-

tion table explicates the structure of the cyclic inverse LA-semigroup.

Table 30. Cyclic inverse LA-semigroup de�ned by the presentation

a j a9 = a = aa4; ama8�m = a8; 1 � m � 7

�
a a2 a3 a4 a5 a6 a7 a8

a a2 a7 a4 a a6 a3 a8 a5

a2 a3 a4 a5 a6 a7 a8 a a2

a3 a4 a a6 a3 a8 a5 a2 a7

a4 a5 a6 a7 a8 a a2 a3 a4

a5 a6 a3 a8 a5 a2 a7 a4 a

a6 a7 a8 a a2 a3 a4 a5 a6

a7 a8 a5 a2 a7 a4 a a6 a3

a8 a a2 a3 a4 a5 a6 a7 a8

a

a3

a4

a8

a7

a6 a5

Figure 14. Cayley graph of a cyclic inverse LA-semigroup of

order 8 de�ned by Table 30.

Figure 14 depicts the abstract structure of cyclic inverse LA-semigroup. All edges are

unidirectional. The diagram is symmetric about vertical axis. Black edges indicate the right
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multiplication of a with any vertex element and green edges are used to represent the left

multiplication of a with any vertex element.

Commutative Inverse LA-semigroup

Theorem 17 If


a j an+1 = a; aan = a

�
is the presentation of an inverse LA-semigroup then

by adding a generator b along with the relations bak = b = bb, 1 � k � n de�nes an inverse

LA-semigroup

�2 =
D
a; b j an+1 = a; aan = a; bak = b = bb; 1 � k � n

E
of order n+ 1.

Example 14 For n = 2; �2 =


a; b ja3 = a = aa2; bak = b = b2; 1 � k � 2

�
establishes a com-

mutative inverse LA-semigroup of order 3, whose multiplication table is:

Table 31. Commutative inverse LA-semigroup of order 3

a; b ja3 = a = aa2; bak = b = b2; 1 � k � 2

�
a a2 b

a a2 a b

a2 a a2 b

b b b b

a a2

b

Figure 15. Cayley graph of commutative inverse LA-semigroup.
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Figure 15 allow us to study the abstract properties of a commutative inverse LA-semigroup.

It is a graph based on four colours and two generators. Black edges in the diagram show the

right multiplication of a with any vertex and arrows are directed towards the output of the

product. The output of the product ba is b which is denoted by undirected black circle. Right

Multiplication of b with any vertex is shown by the red edge. Similarly, left multiplication of a

and b with any vertex are denoted by green and purple edges respectively.

5.3 Construction and Representation

Given two monoidsM1 andM2 by presentations hM1 j R1i and hM2 j R2i, and if U is the direct

product M1 �M2, then U has a presentation

hA1; A2 j R1; R2; a1a2 = a2a1; a1 2 A1; a2 2 A2i ; (5.1)

while the free product M1 �M2 has a presentation

hA1; A2 j R1; R2i :

We highlight the fact that if $1 and $2 are presumed to be inverse LA-semigroups instead

of monoids, then the presentation mentioned in equation 5.1 does not necessarily demonstrates

a presentation for $1 � $2 in general.

We have found two ways of constructing an inverse LA-semigroup U from two di¤erent

inverse LA-semigroups Li; the direct product and the wreath product.

The Direct Product

The structure of direct products is well-versed in groups; given the �nite presentation of two

groups G1 = hAi j Rii and G2 = hBj j Rji , having no common element except e, and if all

elements of G1 commute with those of G2, then m+ n elements Ai and Bj generate the direct

product. A presentation for the direct product includes all the generators and relations of G1
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and G2 along the relations

A�1i B
�1
j AiBj = e (i = 1; :::;m; j = 1; :::; n):

Though, generally the number of generators and relations may be reduced or simpli�ed.

We incorporate the same layout for the inverse LA-semigroups but the composition di¤er-

entiates substantially. We observe that the direct product of groups require two groups with

identity and inverses, which may or may not be present in an inverse LA-semigroup. To accom-

modate this essentiality we take two inverse LA-semigroups $1 and $2, both with inverses of

the generators and at least one of them should have an identity (left or right). Also, the extra

relations considered to have a speci�c order

�
A�1i B

�1
j

�
(AiBj) = e (i = 1; :::;m; j = 1; :::; n)

which follows the left invertive law.

Theorem 18 An inverse LA-semigroup has the presentation by taking the direct product of an

inverse LA-semigroup $ and an inverse LA-monoid $M with identity e, after adding m � n

relations of the form
�
a�1i b

�1
j

�
(aibj) = e, which follows the left invertive law, where ai and bj

, 1 � i � m , 1 � j � n are generators of $ and $M respectively.

Proof. The invertive law in the direct product follows by imposing it on the relations�
a�1i b

�1
j

�
(aibj) = e , since $ and $M are already LA-semigroups and the inverses exist natu-

rally. Hence, the direct product of $ and $M is an inverse LA-semigroup.

We explain the direct product of LA-semigroups with the help of the following example.

Example 15 Consider the inverse LA-semigroup $ =


a; b j aa2 = b = ba; a4 = a

�
; and the

inverse LA-monoid $M =


c j c5 = c; cc3 = c4

�
where e = c4. Introduce the two new relations

�
a�1c�1

�
(ac) = c4, and

�
b�1c�1

�
(bc) = c4 ,

which reduces to �
a3c3

�
(ac) = c4, and

�
a2c3

�
(bc) = c4:
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By the medial law �
a3a
� �
c3c
�
= c4, and

�
a2b
� �
c3c
�
= c4:

This gives relations mentioned in Table 8

Table 32: Direct product of $ and $M

a a2 a3 b c c2 c3 c4

a a2 b a3 a c c2 c3 c4

a2 a3 a a2 b c c2 c3 c4

a3 a a3 b a2 c c2 c3 c4

b b a2 a a3 c c2 c3 c4

c c3 c3 c3 c3 c2 c c4 c3

c2 c2 c2 c2 c2 c3 c4 c c2

c3 c c c c c4 c3 c2 c

c4 c4 c4 c4 c4 c c2 c3 c4

which is an inverse LA-semigroup. So the direct product of $ and $M.

$�$M =


a; b; cjaa2 = b = ba; a4 = a; c5 = c; cc3 = c4;

�
a3a
� �
c3c
�
= c4;

�
a2b
� �
c3c
�
= c4

�
(5.2)

is an inverse LA-semigroup of order 8.

5.4 Wreath Product of Inverse LA-semigroups

In this section, we deal with a presentation for the (restricted) wreath product of two inverse

LA-semigroups. Our approach depends upon the pattern inscribed in [59]. Foremost, the

de�nition of the wreath product has been recollected here; for more details see [18].

Let M1 and M2 be two monoids. The Cartesian product of jM2j copies of the monoid M1

is denoted by M�M2
1 , and the direct product which conforms to it is denoted by M�M2

1 . The

elements of M�M2
1 is regarded as the set of all functions from M2 into M1, and M

�M2
1 as the

set of all such functions f with �nite support, which is having the property that (x) f = 1M1
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for all but �nitely many x 2 M2. If M
�M2
1 and M�M2

1 are equipped with the component wise

multiplication, two monoids with the function

�I :M2 !M1; (x) �I = IM1 ;

as the right identity are obtained.

We de�ne the unrestricted wreath product of the inverse LA-semigroup $ by the inverse

LA-monoid $M, denoted by $Wr $M, by the set $�$M�$M with the multiplication de�ned

by

(f; u)(g; u0) = (fguu0; uu0); (5.3)

where gu : $M ! $ is de�ned by

(x) gu = (xu)g; x 2 $M; (5.4)

fgtt0 : $M ! $ is de�ned by

(x) fgtt0 = [I$M ] : [(tt0) I$M : (x) f ] g; for all x 2 $M (5.5)

and f (tt0)u00gtt0 : $M ! $ is de�ned by

(x) f (tt0)u00gtt0 = [(tt0)u00] [[(tt0)u00: ((x) f)] g] : (5.6)

Theorem 19 The unrestricted wreath product of the inverse LA-semigroup $ by the inverse

LA-monoid $M, $�$M �$M, is an inverse LA-semigroup with the right identity (�I; I$M).

Proof. Let $�$M � $M satisfy the above mentioned equations, then by equation 5.3 the

left invertive law states that:

[(h; u00)(g; u0)] (f; u) =
�
hgu00u0; u00u0

�
(f; u) (5.7)

=
��
hgu00u0

�
f (u00u0)u; (u00u0)u

�
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Focusing on the �rst element of the ordered pair, we get

�
hgu00u0

�
f (u00u0)u =

�
f (u00u0)ugu00u0

�
h:

From equation 5.5,

(x)
��
f (u00u0)ugu00u0

�
h
�
=
h
(x)
�
f (u00u0)ugu00u0

�i
h:

From equation 5.6,

(x)
��
f (u00u0)ugu00u0

�
h
�

=
h
(x)
�
f (u00u0)ugu00u0

�i
h

= [[(u00u0)u] : [[(u00u0)u: (x) f ] g]]h

= [[(tt0)u00] : [[(tt0)u00: (x) f ] g]]h

= [[(tt0)u00: (x) f ] g]h(tt0)u00

=
h
(x)
�
fg(tt0)u00

�i
h(tt0)u00

= (x)
h�
fg(tt0)u00

�
h(tt0)u00

i
:

Referring back to equation 5.7,

[(h; u00)(g; u0)] (f; u) =
��
hgu00u0

�
f (u00u0)u; (u00u0)u

�
=

��
fg(tt0)u00

�
h(tt0)u00; (tt0)u00

�
= [(f; u)(g; u0)] (h; u00) :

and

(f; u) (�I; I$M) =
�
f:�Iu:I$M ; u:I$M

�
= (f; u) :

Hence, $�$M �$M is an inverse LA-semigroup with right identity (�I; I$M).

The restricted wreath product of the inverse LA-semigroup $ by the inverse LA-monoid
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$M, denoted by $ wr $M, is the set $�$M , with the same multiplication. Also, $Wr $M = $

wr $M if and only if j$j = 1 or $M is �nite.

Corollary 20 The restricted wreath product of the inverse LA-semigroup $ by the inverse

LA-monoid $M, $�$M, is an inverse LA-semigroup with the right identity (�I; I$M).

5.5 Conclusion

In this chapter, we have produced examples of inverse LA-semigroups, left permutable inverse

LA-semigroups, Cyclic inverse LA-semigroups and LA-groups by �xing generators and relations

in LASAM. Then we have expressed them in the form of presentation. For this purpose, we

have provided a foundation for expressing an inverse LA-semigroup in terms of generators and

relations. We have found presentations for inverse LA-semigroups, commutative inverse LA-

semigroups, left permutable inverse LA-semigroups and generated by two generators. We have

also found presentations for cyclic inverse LA-semigroups. Then, we have generalized these

presentations. Also, we have presented Cayley graphs using these presentations to investigate

symmetries, that is, permutation inverse LA-semigroups. The direct and wreath products of

inverse LA-semigroups have been introduced here which have enabled us to study and analyse

the inverse LA-semigroups in a more e¢ cacious way.
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Chapter 6

APPLICATION OF INVERSE

LA-SEMIGROUPS IN

CRYPTOGRAPHY

6.1 Introduction

The study of LA-semigroups has wide applications in the soft sets, neutrosophic sets, locally

associative LA-semigroups, abelian groups, the theory of fuzzy LA-semigroups, ternary semi-

hypergroups, �-semihypergroups and the theory of non-commutative groupoids [1, 30, 41, 42,

45, 48, 62, 63].

There are a number of information security techniques that have been designed in cryptog-

raphy whose algorithms are based on non-associative structures. Cryptography is one of the

most important branches of cryptology which is used to make an encryption scheme to secure

information. Classical encryption techniques usually utilize either substitution or permutation

to develop a cryptosystem. So far, di¤erent types of mathematical structures were utilized

namely Group, Ring, Galois �eld and Galois ring for the development of a substitution box

(S-box), which is a main nonlinear component of a smart block cypher. Here, by an S-box, we

mean a Latin square of size 256�256 whose entries are selected from a set of 256 di¤erent sym-

bols having no repetition in any row and column of the table. The desire for new mathematical
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structures in the development of encryption techniques is the most important area of research

in security analysis [26, 32, 33, 57].

In the previous chapter, we came to conclude a generalized presentation

�1 =
D
a j an+1 = a = aa

n
2 ; aman�m = an; 1 � m � n� 1; n = 4k;m; k 2 Z

E
of an LA-group. Every LA-group is in fact an inverse LA-semigroup with a unique idempotent

element which behaves as a unique left identity. In this chapter, we make use of an inverse LA-

semigroup of order 256 described by the presentation


a j a257 = a = aa128; ama256�m = a256

�
.

We use this inverse LA-semigroup to construct a S-box which produces confusion in the proposed

algorithm. Thus, increasing its measure of nonlinearity and compelling the system to be more

secure and impregnable.

According to Edward Lorenz, chaos takes place "when the present determines the future,

but the approximate present does not approximately determine the future." The logistic map

uses a di¤erential equation in which time behaves as a continuous variable. This map is iterative

in the sense that its value at any time interval maps to the value at the succeeding time interval.

Chaos theory has always been practised extensively for the development of image encryption

and decryption mechanisms [35, 25]. The three fundamental characteristics of chaos that have

made it possible to use it in the development of encryption algorithms are: sensitive to the

initial condition, topological mixing, and dense periodic orbits. These three properties were

closely related to cryptography. Due to the cryptographically robust characteristics of chaos,

we have utilized the chaotic sequence using a modi�ed Lorenz chaotic di¤erential equations with

a logistic map while designing our novel image encryption technique. Decrytion scheme may

also be achieved by reversing the orders of chaotic sequence and S-box in the given algorithm

4.

Here, we suggest a novel design for the encryption of images based on an inverse LA-

semigroup and a modi�ed non-linear chaotic map, which has better confusion and di¤usion

characteristics that are necessary for a modern substitution-permutation network. The numeri-

cal measures are also discussed to examine the response of suggested scheme against di¤erential

attacks.
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Algorithm 4 Proposed digital encryption algorithm.

The present section elaborates the encryption procedure. The designed image encryption

technique comprises of confusion and di¤usion. As illustrated in Figure 16, the encryption

method is based on the steps given below:Step 1.

Step 1. Take a standard digital colour image of size n� n.

Step 2. Read the inverse LA-semigroup of order n� n.

Step 3. Apply a substitution transformation by using the LA-semigroup as listed in Step 2,

which adds confusion to the proposed algorithm.

Step 4. Generate chaotic sequence using Lorenz chaotic di¤erential equations with a logistic

map un+1 = run (1� un) where the variable r is given di¤erent value, ranging from 2 to

4:(seed values for each iteration comes from the Lorenz chaotic di¤erential equation utilized

three chaotic logistic maps used seeds from x, y and z directions solutions of Lorenz chaotic

di¤erential equations).

Step 5. Apply a bit wise addition under modulo 2, of confused image produced in Step 3

with the chaotic sequences generated in Step 4 for each layer of the digital image that uses x

component values for the red layer, y component values from the green layer and z component

values of the logistic map for the blue layer of a given image.

Step 6. Apply all of the above steps on each layer of the digital image.

Step 7. Display the encrypted image.
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Figure 16. Proposed encryption algorithm.
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Algorithm 5 Proposed digital decryption algorithm.

This process is actually the reverse process of the encryption scheme provided in the previous

algorithm.

Step 1: Obtain three layers from the encrypted coloured image.

Step 2: Generate the chaotic sequence using Lorenz chaotic di¤erential equations with

inverse logistic map to obtain a sequence of length n� n.

Step 3: Apply a bit wise addition under modulo 2 of the di¤used images produced in Step

1 and the sequence generated in step 2.

Step 4: Read the inverse LA-semigroup of order n� n.

Step 5: Apply substitution transformation by using the inverse LA-semigroup enlisted in

Step 4.

Step 6. The decrypted Red, Green and Blue layers are obtained separately.

Step 7. Combine all the three layers to get the original coloured image.
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Figure 17. Proposed decryption algorithm.
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The encrypted images through our proposed algorithm are provided in Figures 18, 19 for

images of Lena and Baboon respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. The images (e), (f), (g) and (h) are encrypted results for Lena�s

(a) standard (b) red (c) green and (d) blue layers respectively.

(a) (b) (c) (d)
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(e) (f) (g) (h)

Figure 19. The images (e), (f), (g) and (h) are encrypted results for Baboon�s

(a) standard; (b) red (c) green and (d) blue layers respectively.

6.2 Security Analysis of the Proposed Algorithm

Here, we apply some statistical measures on the typical digital contents to examine the safety

during execution of the proposed encryption scheme. These measurements are strictly based

on a precise evaluation, a realistic inspection and an inconsistency criterion for the encryption

of images.

Uniformity Analysis of Image Pixels

A histogram in image analysis provides information about the circulation of pixel intensity

esteems for an image. A protected framework in encryption has an identical histogram to resist

statistical assaults. The histograms in Figures 20, 21 represent the standard and encrypted

images of Lena and Baboon. From Figures 20, 21, we analyze that the standard images do not

have uniform histograms, whereas the encrypted digital images have uniform histograms. The

uniformity of pixel heights in the histograms creates di¢ culty for attackers to �nd the clue for
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the maximum information region.

(a) (d)

(b) (e)

(c) (f)

Figure 20. Histograms (a) red; (b) green and (c) blue layers for Lena�s standard

images with size 256 � 256. Histograms (d) red; (e) green; (f) blue layers for

Lena�s encrypted images.
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(a) (d)

(b) (e)

(c) (f)

Figure 21. Histograms (a) red; (b) green and (c) blue layers for Baboon�s standard

images with size 256 � 256. Histograms (d) red; (e) green; (f) blue layers for

Baboon�s encrypted images.
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Correlation Analysis for Adjacent Pixels

The purpose of the correlation analysis is to examine the connection of neighboring pixels in

the standard and encrypted images. Mathematically, the correlation coe¢ cient rU;V of two

neighboring pixels is de�ned as:

rU;V =
Cov (U; V )p

V ar (U)V ar (V )
;

where U and V are the estimations of two neighboring pixels of gray scale image, V ar(U)

and V ar(V ) are deviations of U and V individually and Cov(U; V ) represents the covariance.

The correlation coe¢ cients of the plain and encrypted digital images have distinctive results dis-

played in Tables 33�36 which are depicted by the plain and enciphered digital images provided

in Figures 22, 23. In addition, Table 33 contains the quanti�ed evaluation of the correlation

coe¢ cient demonstrating the di¤usion of the unique and encoded images horizontally, vertically

and diagonally. Presently, we consider 2000 pairs of randomly selected neighboring pixels to

look over the original and the enciphered images horizontally, vertically and diagonally. In

Table 36, the correlation coe¢ cients for the red, green and blue layers of the encrypted images

are quite small, which implies a correlation between adjoining pixels.

Table 33. Colour components-wise correlation coe¢ cient of cipher images

Image Layer Correlation of Correlation of Altered

Encrypted Image Encrypted Image

Red -0.019408 -0.026560

Lena Green 0.005199 0.016749

Blue -0.057938 -0.013504

Red -0.017262 -0.062436

Baboon Green -0.018564 -0.039240

Blue -0.011867 0.037551
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Table 34. Correlation coe¢ cients of original and encrypted images

Standard Images Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.9339 0.9652 0.9076 -0.0043 -0.0090 -0.0031

Baboon 0.8310 0.7737 0.7723 -0.0029 -0.0079 0.0026

Table 35. Correlation coe¢ cients of the plain and cipher image for the

Lena colour image of size 256 � 256

Standard Images Original Image Encrypted Image

Red Green Blue Red Green Blue

Horizontal 0.9339 0.9044 0.8609 -0.0084 -0.0028 -0.0072

Vertical 0.9652 0.9464 0.9086 -0.0052 -0.0066 -0.0098

Diagonal 0.9076 0.8796 0.8371 -0.0016 0.0012 0.0013

Table 36. Comparison between the correlation coe¢ cients of the proposed

scheme and recent techniques using Lena image

Correlation Directions

Horizontal Vertical Diagonal

Proposed encryption scheme -0.0043 -0.0090 -0.00310

Ref. [58] 0.06810 0.08450 -

Ref. [26] 0.21570 0.05810 0.05040

Ref. [19] 0.00720 0.00580 0.00310

Ref. [66] 0.02140 0.04650 -0.0090

Ref. [64] 0.08200 0.04000 0.00500

Ref. [67] 0.01200 0.02700 0.00700

Ref. [2] 0.00500 0.01100 0.02300

98



(a) (e)

(b) (f)

(c) (g)
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(d) (h)

Figure 22. Correlation coe¢ cients between the pixels of Lena�s image (a) Standard

(b) horizontal (c) vertical and (d) diagonal (e) encrypted (f) horizontal

(g) vertical (h) diagonal.

(a) (e)

(b) (f)
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(c) (g)

(d) (h)

Figure 23. Correlation coe¢ cients between the pixels of Baboon�s image (a) Standard

(b) horizontal (c) vertical and (d) diagonal (e) encrypted (f) horizontal

(g) vertical (h) diagonal.

In addition, high correlation coe¢ cients of red, green and blue layers of the standard image

make data spillage conceivable. Table 35 provides us with similar position correlations for the

red, green and blue parts, while Table 36 gives the adjoining position correlations for the red,

green and blue layers. From Tables 35 and 36, we analyze that the correlation coe¢ cients

of the encrypted digital images for the red, green and blue layers are all lower than �0:003,

while the greatest correlation coe¢ cient for the original images is 0:9652 in the Lena image

and 0:8310 for the Baboon. Which indicates that the correlations for the red, green and blue

layers of the encrypted images are adequately diminished. Therefore, our encryption scheme is

highly defensive against statistical attacks. Furthermore, we plotted the correlation coe¢ cients

for the red, green and blue layers of the original images in Figures 22a � d; 23a � d and the

encrypted images Figures 22e�h, 23e�h vertically, horizontally and diagonally. The correlation
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coe¢ cients between the adjacent pixels of the layers of standard image are shown by slanted

spots Figures 22b� d, 23b� d. However, these spots scattered over the whole plane in Figures

22f � h, 23f � h, showing that the correlation is fully diminished in the encrypted images.

6.3 Pixel Modi�cation Based Measurements

The quality of an image depends upon the pixel di¤erence which is calculated by means of

Mean Square Error (MSE), Average Di¤erence (AD), Maximum Di¤erence (MD), Normalized

Absolute Error (NAE), Normalized Cross Correlation (NCC), Structure Content (SC) and

Peak Signal to Noise Ratio (PSNR) values. These metrics are used for the comparison of unlike

images.

Mean Square Error (MSE)

An encrypted image should not be equivalent to the original image due to the application of

the encryption scheme, which surely adds some noise to the actual digital content. To analyze

the level of enciphering, we calculate the MSE of the standard and encrypted images by using

the formula:

MSE =

Pm
j=1

Pn
k=1 (Pjk � Cjk)

2

m� n

where Pjk and Cjk represent the pixels positioned at jth row and kth column of the standard

and encrypted images. A larger value of the MSE enhances the security of the encryption

algorithm.

Peak Signal to Noise Ratio (PSNR)

PSNR is de�ned as:

PSNR = 20 log10

�
IMAXp
MSE

�
;

where IMAX is the maximum value of pixel. The low value of PSNR shows the high di¤erence

of the original and enciphered images. In Table 37, we evaluate the values MSE and PSNR to
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ensure the versatility of the suggested scheme.

Table 37. MSE and PSNR of the suggested scheme

Images Pixel Di¤erence Based Measures

MSE PSNR

Lena 4859.03 11.30

Baboon 6399.05 10.10

Normalized Absolute Error (NAE)

NAE is de�ned as:

NAE =

Pm
j=1

Pn
k=1 jPjk�CjkjPm

j=1

Pn
k=1 jCjkj

:

It is the proportion of the encrypted digital content to the original image. A longer estima-

tion of NAE demonstrates the result of the scrambled image after the encryption process.

Maximum Di¤erence (MD)

MD is de�ned as:

MD =Max jPjk � Cjkj ;

where j = 1; 2; :::;m and k = 1; 2; :::; n: It measures the maximum value of the error signal. A

higher value of the maximum di¤erence indicates better quality of the encryption scheme.

Average Di¤erence (AD)

The average di¤erence measures the pixel contrast between the original image and its corre-

sponding enciphered image. This quantitative measure is only utilized in object revealing and

pattern recognition applications. A larger estimation of the AD represents the high quality

of the digital image encryption (see Table 38). The zero value of AD represents that the two

digital images are identical. Mathematically, the average di¤erence is de�ned as:

AD =

Pm
j=1

Pn
k=1 (Pjk � Cjk)
m� n :
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6.4 Similarities Measure

The likenesses between two signals are estimated through a cross-correlation, structure sim-

ilarity, and structure content. These are the standard devices for assessing how much two

signals are comparable. It is a basic way to match two image patches for highlight recognition.

This method has a few favorable circumstances. We have used a standardized correlation and

structure content with the end goal to demonstrate the dissimilarities among the original and

scrambled images.

Normalized Cross Correlation (NCC)

A normalized cross-correlation (NCC) is used to analyse the level of likeness (or di¤erence)

between the standard and encrypted images. It ranges from -1 to 1 and measures the cosy

connection of any two images: they might be standard and encrypted images. The setting of

the location edge esteem is signi�cantly less di¢ cult than the cross-correlation. Normalized

cross-correlation measurement approaches to 1 if the di¤erence between the two digital images

approaches to zero. Normalized cross-correlation is de�ned as:

NCC =

Pm
j=1

Pn
k=1 Pjk � CjkPn
k=1 (Pjk)

2 ;

where m� n is taken as the size of standard and encrypted images.

Structural Content (SC)

It deals with the structural place of pixels in any image. It is used to measures the likeliness

of any two images. This metric yields the close connections of two images so that one can

di¤erentiate between two images. Its higher value represents the low quality of an image.

When two approximately similar images are considered, its value approaches to 1. Also, it is

used in steganographic and radar applications. Hence it is a worldwide measurement which is

calculated by the formula:

SC =

Pm
j=1

Pn
k=1 (Pjk)

2Pm
j=1

Pn
k=1 (Cjk)

2 :

On account of the plain and encrypted images, the estimation of SC is always di¤erent from
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unity because the encryption scheme includes confusion and di¤usion-like noise and commotion

in the original image. The estimation of SC isn�t near one if there should be an occurrence of

all advanced standard shading images (red, green and blue layers) (see Table 38).

Table 38. Pixel modi�cation based and similarity measurements

Pixel Di¤erence Measures Similarity Measures

Image Layer MSE PSNR AD MD NAE NCC SC

Red 10637 7.8625 52.3109 255 0.4674 0.6598 1.6004

Lena Green 9245.2 8.4716 -28.9211 235 0.7968 0.9983 0.5788

Blue 7169.4 9.5760 -22.2776 229 0.6713 1.0952 0.5632

Red 8740.1 8.7156 1.9610 255 0.5938 0.8259 0.9174

Baboon Green 7802.8 9.2083 -5.9805 230 0.6025 0.9106 0.7810

Blue 9714.3 8.2567 -21.8818 244 0.7670 0.9038 0.6819

6.5 Entropy Investigation

It is used to examine the amount of divergence of the grayscale estimations of the standard and

encrypted images. Its bigger value indicates the poor quality of an image. The most suitable

encrypted image in 256 greyscales has entropy 8 in the perfect world [31]. On the o¤ chance

that, if the entropy of an encrypted image is under 8, then the encrypted algorithm is supposed

weak which increases the possible risk of anticipating the security. Mathematically, the entropy

E of a data source y is de�ned as:

E = �
2N�1P
i=0

P (yi) log2 P (yi) ;

where 2N are all possible states of information and yi are the source images. In Table 39,

the entropies of di¤erent plain and enciphered image entropies are given as demonstrated by

the plain images in �gures 17; 18. These values are very close to the theoretical value which

is 8. Consequently, information spillage in our encryption is negligible and well secured for

physical attacks. We have looked at data entropy for our proposed encryption method with the
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already developed encryption plans. Table 40 shows that the entropy of the o¤ered scheme for

the scrambled images are better than the already available algorithms.

Table 39. Entropies of standard and encrypted images

Image Layer Standard Altered Encrypted Encrypted Altered

Red 7.2352 7.2353 7.9965 7.9975

Lena Green 7.5812 7.5814 7.9970 7.9970

Blue 7.5682 7.5683 7.9971 7.9971

Red 7.7766 7.7766 7.9965 7.9967

Baboon Green 7.4911 7.4911 7.9968 7.9973

Blue 7.7546 7.7546 7.9973 7.9973

Table 40. Comparison between the entropies for 256 � 256 Lena image

Algorithm Entropy

Proposed 7.9968

Sun�s algorithm [65] 7.9965

Baptista�s algorithm [65] 7.9260

Wong�s algorithm [65] 7.9690

Xiang�s algorithm [65] 7.9950

In Tables 40 and 41, we compare the entropy of the proposed algorithm to the already

de�ned algorithms. Our entropies are approximately equal to 8, which is the most suitable value.

This minimizes the chance of data spillage during the encryption. Consequently, the proposed

cryptosystem is perfectly secure against any entropy assault. Besides, the entropy investigations

of the proposed scheme are better than the previously proposed encryption schemes [58, 61, 37,
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36, 28].

Table 41. Comparison between entropy investigations of the proposed and

already de�ned algorithms

Encryption colour Components of colour Components of

Techniques Test Image Original Image Encrypted Image

Red Green Blue Red Green Blue

Proposed scheme Lena 7.2933 7.5812 7.5682 7.9965 7.9970 7.9971

Reference [61] Lena 7.2933 7.5812 7.5682 7.9903 7.9890 7.9893

Reference [37] Lena 7.2933 7.5812 7.5682 7.9732 7.9750 7.9715

Reference [36] Lena 7.2933 7.5812 7.5682 7.9791 7.9802 7.9827

Reference[37] Lena 7.2933 7.5812 7.5682 7.9871 7.9881 7.9878

Reference [36] Lena 7.2933 7.5812 7.5682 7.9874 7.7872 7.7866

Reference [28] Lena 7.2933 7.5812 7.5682 7.9278 7.9744 7.9705

6.6 Conclusion

In this chapter, we have provided a new idea for the construction of an image encryption

technique using an algebraic structure namely inverse LA-group, which is non-commutative as

well as non-associative simultaneously. This structure is one of the most important components

in symmetric encryption. This new mechanism has added confusion, which is fundamentally

responsible for breaking the pattern between the original and encrypted images.
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