
Bayesian Inference using Record Values from Inverted Probability Distributions

By

Muhammad Anwar

Department of Statistics
Faculty of Natural Sciences

Quaid-i-Azam University, Islamabad
2018



In The Name of Allah The Most Merciful and The Most Beneficent



Bayesian Inference using Record Values from Inverted Probability Distributions

By

Muhammad Anwar

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF PHILOSOPHY IN STATISTICS

Supervised By

Dr. Abdul Haq

Department of Statistics
Faculty of Natural Sciences

Quaid-i-Azam University, Islamabad
2018

i



Certificate

I hereby solemnly declare that the thesis entitled “Bayesian Inference using Record Values

from Inverted Probability Distributions” submitted by me for the partial fulfillment of Master

of Philosophy in statistics, is original work and has not been submitted concurrently or latterly

to this or any other university for any other degree.

Muhammad Anwar

.

ii



Acknowledgments

First of all I would like to thank glorious Almighty ALLAH, the most kind, loving and

merciful, who always helped me in every situation and in particular to complete this task. All

my admirations, pleasure and respect goes to Holy Prophet MUHAMMAD (SAW) who

emphasized the significance of knowledge and research.

I am really thankful to my supervisor Dr. Abdul Haq, who guided me to complete this

research work and thesis. I would like to express my heartiest gratitude to my other respected

teachers Dr. Zahid Asghar, Dr. Javid Shabbir, Dr. Muhammad Youssf Shad, Dr. Zawar

Hussain, Dr. Ijaz Hussain and Mr. Manzoor Khan.

I would like to thank all my teachers who guided me in one way or another. I am also

very thankful to my friends and class fellows, especially Muhammad Ibrahim, Farman Sahil,

Muhammad Awais, Muhammed Umair Sohail, Masood Anwar, Arif Khan, Javid Hayat, Asif

khan, Kalim-ullah, Sardar Hussain, Suhaib Khan, Aftab Alam, Farooq Shah, Shakeel Khan,

Muhammad Aslam, Anas Hayat Khan, Zulfiqar Ali, Akbar Ali, Waqas Muneer, Ishfaq Hussain

and Zain-ul-Abidean for their good wishes, prayers and sincere support.

I am greatly thankful to my affectionate, sympathetic and respectable parents, my siblings,

especially to my Father for his valuable advices, guidance, suggestions throughout my life and

educational carrier. May ALLAH bless them and give me a chance to serve them better.

Muhammad Anwar

iii



Abstract

In real life the record values arise in a natural way, for example, records in sports, weather,

temperatures, economic, etc. It is thus important to model those records with the help of

probability distributions for prediction purposes. In this thesis, the parameters of the inverted

Topp-Leone and inverted Gompertz distributions are estimated using upper and lower record

values, respectively, with the help of maximum likelihood, Bayes and empirical Bayes methods

of estimation.The Bayes and empirical Bayes estimators are developed under both symmetric

and asymmetric loss functions using informative and non-informative priors. For the empirical

Bayes estimators, the hyperparameters are estimated using the methods of moments and

maximum likelihood. Moreover, the prediction intervals for the future upper and lower record

values are also derived.

iv



Contents

1 Introduction 1

2 Bayes and empirical Bayes estimation and prediction using upper record

values from inverted Topp-Leone distribution 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Inverted Topp-Leone distribution . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Estimation of the parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Empirical Bayes estimation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 The HPD intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Prediction of the future records . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Bayes and empirical Bayes prediction . . . . . . . . . . . . . . . . . . . 17

2.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 An application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Bayes and empirical Bayes estimation and prediction using lower record

values from inverted Gompertz distribution 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Inverted Gompertz distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Estimation of the parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Empirical Bayes estimation . . . . . . . . . . . . . . . . . . . . . . . . 35

v



3.3.4 The HPD intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Prediction of the future records . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 An application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Records generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Conclusion and Future Works 44

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

References 46

vi



List of Tables

2.1 Estimated risks of the MLE and Bayes estimators under different loss functions 20

2.2 Temporal Capacities for the month of February for Shasta Reservoir . . . . . . 21

2.3 MLE, Bayes estimates, HPD and prediction intervals using real data . . . . . . 23

3.1 MLE, Bayes estimates, HPD and prediction intervals using real data . . . . . . 41

vii



List of Figures

2.1 The PDF, CDF, hazard rate and survival functions of the ITLD . . . . . . . . 8

3.1 The PDF, CDF, hazard rate and survival functions of the IGD . . . . . . . . . 29

viii



Chapter 1

Introduction

In our daily life, record values appear in a natural way. For instance, the hottest day of the

month, the longest wining strip in Olympics games, the strongest level of earthquake, and

lowest stock market figure are dealing with upper or lower record values. Every day, we wait

for such record breaking performances in the newspaper, Internet, TV announcements, etc.

The record value or record statistic is the smallest or largest value obtained from a sequence of

random variables. An enormous amount of literature on the record values is available, because

in some real life situations we have to deal with the datasets that comprise only record values.

For example, in sports, the record-breaking performances are only noticed.

The topic of records has become very popular among the specialists in probability and

statistics. Chandler (1952) was the first one to introduce a model for successive extremes

(upper record values) arising from a sequence of independent and identically distributed

random variables. In a very short time, after Chandler (1952), many researchers contributed

to the theory of record values, which now has got broad applications in different fields, like

medicines, traffic, stock prices, science, engineering, climatology, sports, industry, etc (cf.,

Balakrishnan et al., 1992; Ahsanullah, 1995; Arnold et al., 1998; Balakrishnan and Chan,

1998). Wilks (1959) posed a question that how much observations are required to obtain an

extreme value which exceeds the maximum of n observations, where n is a positive integer.

Dziubdziela and Kopocinski (1976) introduced the concept of k-record times, where k is a

positive integer. Carlin and Gelfand (1993) analyzed the record breaking data sets, where

only the exceeding observations or falling below observations from the current extreme values

are recorded. The likelihood function based on the record values was derived by Arnold et al.
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Chapter 1. Introduction 2

(1998).

In the existing literature, many researchers have shown keen interest in developing the

statistical inference when the records follow a certain probability distribution. In this regards,

one may refer to Kamps (1992) who considered a generalized class of distributions for modeling

the record values, including the power function, Pareto, Weibull, Burr-XII and logistic

distributions. For some important related works and extensive discussion on the record values

we refer to Nagaraja (1988); Balakrishnan et al. (1992); Balakrishnan and Ahsanullah (1994);

Franco and Ruiz (1997); Balakrishnan and Chan (1998); Sultan and Balakrishnan (1999);

Raqab (2002); Jaheen (2003); Nadarajah and Ahsanullah (2004); Soliman et al. (2006); Raqab

et al. (2007); Ahsanullah and Shakil (2012), and the references cited therein.

In many real life situations, the prediction of future record values is also of great interest.

For example, to observe the record value until the present time, we naturally get interested

in predicting the future expected record for which the present record can be broken for the

first time. In the existence literature, several parametric and non-parametric procedures

are available for the prediction of future record values. In many practical situations, one

can construct a prediction interval for the future record value using the current available

records. The prediction of future records when the observed records follow a certain probability

distribution are discussed by many researchers. For example, Dunsmore (1983) studied the

problem of predicting future record for two exponential models under the Bayesian framework.

Awad and Raqab (2000) used first m(m < n) observed record values from exponential

distribution and made prediction for future nth record. For more research works, we refer to

Chan (1998); Berred (1998); Mousa et al. (2002); Madi and Raqab (2004, 2007); Raqab and

Balakrishnan (2008); Sultan et al. (2008); Raqab (2009); Soliman et al. (2010); Salehi et al.

(2015), and the references cited therein.

In this thesis, our objective is to consider inverted probability distributions, and then

observe record values from them. Using these record values, we make statistical inferences

about the unknown parameters of these probability distributions. The rest of the thesis is

organized as follows:

In Chapter 2, by applying an inverse variable transformation to the Topp-Leone distributed

random variable, we propose an inverted Topp-Leone distribution (ITLD). Using upper record

values from ITLD, the unknown parameter is estimated using maximum likelihood, Bayes



Chapter 1. Introduction 3

and empirical Bayes estimation methods. Moreover, prediction intervals for the future upper

record values are also derived.

In Chapter 3, with a set of lower record values from inverted Gompertz distribution, the

unknown parameter is estimated using the maximum likelihood, Bayes and empirical Bayes

estimation methods. Moreover, prediction intervals for the future lower record values are also

derived.

Finally, in Chapter 4, we provide the conclusion and future works.



Chapter 2

Bayes and empirical Bayes estimation

and prediction using upper record

values from inverted Topp-Leone

distribution

In this chapter, with an inverse transformation on the Topp-Leone distributed random variable,

an inverted Topp-Leone distribution (ITLD) is derived. Using a set of upper record values from

an ITLD, the maximum likelihood, Bayes and empirical Bayes methods are used to obtain

the estimators of the unknown parameter. The Bayes and empirical Bayes estimators are

developed under symmetric, linear-exponential and general entropy loss functions. The Bayes

estimators are derived using informative and non-informative priors. For the empirical Bayes

estimators, the hyperparameters are estimated using the methods of moments and maximum

likelihood. A simulation study is conducted to compare the performances of these estimators.

It turns out that the Bayes estimators under the symmetric and asymmetric loss functions

are superior to the maximum likelihood estimator. Moreover, Bayes and empirical Bayes

prediction intervals of the future record values are obtained and discussed. Some practical

examples are also given to explain the applications of the results.

4
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2.1 Introduction

Record value or record statistics is the consecutive maxima or minima obtained from a sequence

of random variables. Record values arise naturally in many real life situations. Examples

include meteorology, seismology, hydrology, reliability studies and stock market analysis etc.

Moreover, record values are also important to all kinds of extreme phenomenon and talents.

In these situations, it should be noted that the amount of information provided by records is

considerable (cf., Ahmadi and Arghami, 2001). For some of the families of distributions, they

have shown that the upper record values may contain more information than the same number

of independent and identically distributed (IID) random variables. The statistical study of

record values started with Chandler (1952) and now has spread in different directions. Record

values can be described as follows: suppose that X1, X2, ... be a sequence of IID random

variables, with a probability density function (PDF) and cumulative distribution function

(CDF). By definition, Xj is an upper record value if it exceeds all the previous observations,

i.e., Xj is an upper record value if Xj > Xi for every j > i. For more details, one may refer to

Arnold et al. (1998).

In the existing literature, many researchers have shown keen interest in developing the

statistical inference when the records follow a certain probability distribution. In this regards,

one may refer to Sultan and Balakrishnan (1999) for higher order moments of record values

arising from Rayleigh and Weibull distributions. Raqab (2002) derived exact expression for

single and product moments of record statistics for a three-parameter generalized exponen-

tial distribution, and also obtained recurrence relations for single and product moments of

record statistics. The Bayesian and empirical Bayesian estimation of generalized exponential

distribution based on lower record values have been discussed by Jaheen (2004). He also

derived the Bayes and empirical Bayes prediction intervals for a future lower record values.

Ahmadi and Doostparast (2006) described Bayesian estimation and prediction for some lifetime

distributions, including the exponential, Pareto, Weibull and Burr type-XII. Soliman et al.

(2006) estimated the unknown parameters and lifetime parameters (reliability and hazard

rate functions) of the Weibull distribution using upper record values under Bayesian and

non-Bayesian methods. Moreover, they also constructed predictive intervals for a future upper

record value. On similar lines, Soliman and Al-Aboud (2008) used Bayesian and non-Bayesian
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approaches to estimate the unknown parameters of the Rayleigh distribution using upper

record values. Nadar et al. (2013) provided statistical analysis of Kumaraswamy distribution

when upper record values are available. The Bayesian inference of the Topp-Leone distribution

(TLD) with lower record values has been provided by MirMostafaee et al. (2016). They have

obtained the Bayes point and interval estimators of the unknown shape parameter, survival

and hazard rate functions of the TLD.

The TLD is a unimodal continuous distribution with j-shaped density function and bathtub

shaped hazard rate function. The TLD with support in the standard unit interval (0, 1) has

received much attention of the statisticians as an alternative to the beta distribution. In our

daily life, this distribution is used to model rates, percentages and some chemical process

yield data. The two parameters TLD was first introduced by Topp and Leone (1955). After a

long time, the TLD is reestablished by Kotz and Van D (2004), who derived an expression for

the characteristic function and introduced a bivariate generalization of TLD. Ghitany et al.

(2005) and Ghitany (2007) discussed asymptotic distribution of order statistics and some

reliability measures of their stochastic ordering of the TLD. Vicari et al. (2008) introduced a

two-sided generalized version of TLD and also discussed the moments and maximum likelihood

methods for parameter estimation. Furthermore, they provided a comparison between two-

sided generalized TLD and mixture of Gaussian distributions. Al-Zahrani (2012) discussed a

class of goodness-of-fit tests for the TLD with estimated parameters.

In this chapter, with an inverse transformation on the Topp-Leone distributed random

variable, an inverted TLD (ITLD) with its variable support (0,∞) is derived for modeling real

life datasets. The unknown parameter of the ITLD is estimated using a set of upper record

values, which include the maximum likelihood estimator (MLE), Bayes and empirical Bayes

estimators. These Bayes estimators are obtained under both symmetric and asymmetric loss

functions, including the squared-error loss function (SELF), linear-exponential loss function

(LELF), and general entropy loss function (GELF). Both informative and non-informative

priors are also used to derive the Bayes and empirical Bayes highest posterior density (HPD)

intervals. Moreover, explicit mathematical expressions for the Bayes and empirical Bayes

prediction intervals for a future upper record value are also derived. A numerical study with

simulated and real datasets is given to illustrate the applications of the results.

The rest of the chapter is organized as follows: in Section 2.2 an ITLD distribution is
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derived. In Section 2.3, both the classical and Bayes methods are used to derive estimators

of the unknown parameter of ITLD. The prediction of future record values is considered

in Section 2.4. In Sections 2.5 and 2.6, simulated and real datasets are used for numerical

comparisons of the derived estimators. Finally, Section 2.7 summarizes the main findings and

concludes the chapter.

2.2 Inverted Topp-Leone distribution

Let Y be a Topp-Leone distributed random variable. The PDF and the CDF of Y are

f ∗(y|θ) = 2θ(1− y)(2y − y2)θ−1, 0 < y < 1, θ > 0, and

F ∗(y|θ) = (2y − y2)θ,

respectively.

Most of the probability distributions with random variables support (0,∞) are more flexible

and practical when modeling positive data than those whose random variables support is

(0, 1). For instance, exponential, Weibull, and gamma distributions are mostly used in queuing

theory, reliability theory and reliability engineering for modeling times to failure of electronic

components. On the contrary, the TLD is not very flexible as Y ∈ (0, 1). In particular, it

may not be used to model the life of an electronic component. Thus, we devise an ITLD with

its random variable support (0,∞) that could model lifetimes of different components. If Y

follows TLD, then X = (1− Y )/Y has an ITLD. The PDF, CDF, hazard rate and survival

function of the ITLD are, respectively, given by

f(x|θ) = 2xθ(1 + 2x)θ−1

(1 + x)2θ+1 , x > 0, θ > 0, (2.1)

F (x|θ) = 1−
(

1 + 2x
(1 + x)2

)θ
, (2.2)

h(x|θ) = 2xθ
(1 + x)(1 + 2x) , and

S(x|θ) =
(

1 + 2x
(1 + x)2

)θ
.

The above functions are plotted in Figure 2.1. The PDF f(x|θ) is unimodal and right tailed for

different values of θ. The failure/hazard rate function of the ITLD is shown to be monotonic,
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where it first increases and then decreases, approaching a constant value as the lifetime

approaches infinite. This property is often found in case of lifetime dominated by early

occurrence of an event.
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Figure 2.1: The PDF, CDF, hazard rate and survival functions of the ITLD

2.3 Estimation of the parameter

In this section, we estimate the unknown parameter θ of the ITLD using maximum likelihood,

Bayes and empirical Bayes methods using k upper record values. Let X1 = x1, X2 = x2,...,

Xk = xk be the k upper record values arising from a sequences of an IID random variables

following an ITLD. According to Arnold et al. (1998), the likelihood function of θ given the k

upper record values x = (x1, x2, ..., xk)′ is

L(θ|x) = f(xk|θ)
k−1∏
i=1

f(xi|θ)
1− F (xi|θ)

. (2.3)
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By substituting (2.1) and (2.2) in (2.3), we obtain

L(θ|x) = θk exp (−θη1(xk)) η2(x), (2.4)

where

η1(xk) = − ln
(

1 + 2xk
(1 + xk)2

)
and η2(x) =

k∏
i=1

2xi
(1 + xi)(1 + 2xi)

·

2.3.1 Maximum likelihood estimation

The natural logarithm of the likelihood function given in (2.4) is

lnL(θ|x) = k ln(θ)− θη1(xk) + ln (η2(x)) . (2.5)

The MLE of θ can be obtained by minimizing (2.5), given by

θ̂ML = k

η1(xk)
, (2.6)

where θ̂ML is the MLE of θ. Now we find the PDF of η1(xk) to study the properties of θ̂ML.

According to Arnold et al. (1998), the PDF of Xk is

fXk(x|θ) = 1
Γ(k + 1){− ln(1− F (x|θ))}kf(x|θ), x > 0

= θk+1

Γ(k + 1)(η1(xk))k exp (−θη1(xk))
2xk

(1 + xk)(1 + 2xk)
· (2.7)

Using (2.7), the PDF of Z = k/η1(Xk) is

fZ(z|θ) = (kθ)k+1

Γ(k + 1)
1

zk+2 exp
(
−kθ
z

)
, z > 0, (2.8)

which is an inverted gamma distribution with the shape parameter k + 1 and the scale

parameter kθ. The mean and variance of θ̂ML are

E(θ̂ML) = θ, and

V ar(θ̂ML) = θ2

k − 1 , k > 1,
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respectively. It is clear that θ̂ML is an unbiased estimator of θ. Moreover, as the value of k

increases, V ar(θ̂ML) decreases. This shows θ̂ML is a weakly-consistent estimator of θ.

2.3.2 Bayesian estimation

In this subsection, we derive the Bayes estimators of θ using k upper record values under

symmetric and asymmetric loss functions. In the Bayesian approach, θ is considered as a

random variable, and it follows a prior distribution. It is a well known fact that the performance

of the Bayes estimator depends on a suitable choice of prior distribution and an appropriate

loss function considered for the study. Here, the posterior distributions of θ are derived using

informative and non-informative priors. For the informative prior, a conjugate prior for θ, is

considered and for the non-informative prior, Jeffreys and uniform priors are considered. A

natural conjugate prior assumed for θ is a gamma distribution, with the PDF:

g1(θ; a, b) = ba

Γ(a)θ
a−1 exp(−θb), θ > 0, (2.9)

where a > 0 and b > 0 are the hyperparameters. The posterior distribution of θ is obtained by

g(θ|x) = L(θ|x)g(θ; a, b)∫
Θ L(θ|x)g(θ; a, b) dθ ·

Using (2.4) and (2.9), we obtain

g1(θ|x) = βα1

Γ(α1)θ
α1−1 exp(−θβ1), θ > 0, (2.10)

which is a gamma distribution with the shape parameters α1 = a+ k and the scale parameter

β1 = b+ η1(xk).

One of the most commonly used loss function is the SELF, given by

L1(θ̂, θ) = (θ̂ − θ)2,
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where θ̂ is an estimator of θ. The Bayes estimator of θ using SELF, denoted by θ̂BS1 , is the

mean of the posterior distribution, given by

θ̂BS1 = Eθ|x(θ)

= α1

β1
= a+ k

b+ η1(xk)
,

where Eθ|x(·) is the mathematical expectation with respect to the posterior distribution of θ.

The SELF is symmetric in nature and it gives equal weights whether there is overestimation

or underestimation. Overestimation of a parameter may lead to more severe or less severe

consequences than the underestimation. For example, Basu and Ebrahimi (1991) have

mentioned that, when estimating the reliability function or average failure time, overestimation

is more serious than underestimation. Also an underestimation of the failure rate results in

more serious consequences than that with an overestimation. In such situations the use of

a symmetric loss function may be inappropriate. Therefore, in order to cope up with such

situations, the use of an asymmetric loss function has been suggested by many researchers,

which include Varian (1975) and Zellner (1986) to name a few. A number of asymmetric

loss functions are available in the literature, the most popular asymmetric loss functions

among them are LELF and GELF. The LELF was first time introduced by Varian (1975) and

extensively discussed by Calabria and Pulcini (1996). The LELF for estimating θ is

L2(∆) = exp(c∆)− c∆− 1, c 6= 0,

where ∆ = θ̂ − θ. The sign and magnitude of the shape parameter c shows the direction and

degree of symmetry, respectively.

It is also notified that

• if c = 1, then L2(∆) becomes asymmetric about zero which leads to the overestimation,

• if c = 0, then L2(∆) becomes symmetric and not far from SELF.

• if c < 0, L2(∆) increases almost exponentially when ∆ < 0 and almost linearly when ∆ > 0.

The Bayes estimator of θ under LELF, denoted by θ̂BL1 , is

θ̂BL1 = −1
c

ln
(
Eθ|x (exp(−cθ))

)
(2.11)
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provided that the posterior expectation Eθ|x(exp(−cθ)) exists and is finite, see Calabria and

Pulcini (1996). The Bayes estimator θ̂BL1 is obtained using (2.10) and (2.11):

θ̂BL1 = α1

c
ln
(

1 + c

β1

)
= a+ k

c
ln
(

1 + c

b+ η1(xk)

)
, c 6= 0.

Despite the flexibility and popularity of the LELF for the location parameter estimation, it

appears to be unsuitable for scale parameter and other quantities (cf., Basu and Ebrahimi,

1991; Parsian and Sanjari F, 1993). Therefore, a suitable alternative to LELF is GELF. The

GELF was proposed by Calabria and Pulcini (1996) and is given by

L3(θ̂, θ) =
 θ̂
θ

d − d ln
 θ̂
θ

− 1, d 6= 0. (2.12)

The general form in (2.12) allows different shapes of the LELF. The loss is minimum when

θ = θ̂. The constant d is used for overestimation or underestimation of the parameter. If

d > 0, overestimation is more serious than underestimation, and if d < 0, underestimation is

more serious than overestimation. The Bayes estimator of θ under GELF, denoted by θ̂BG1 , is

given by

θ̂BG1 =
(
Eθ|x

(
θ−d

))− 1
d

= 1
β1

(
Γ(α1 − d)

Γ(α1)

)− 1
d

= 1
b+ η1(xk)

(
Γ(a+ k − d)

Γ(a+ k)

)− 1
d

· (2.13)

It can be shown that, when d = 1, θ̂BG1 coincides with the Bayes estimator under the weighted

squared error loss function. Similarly, when d = −1, then θ̂BG1 is equal to θ̂BS1 .

Sometimes when the life tester has no prior information about the parameter θ, then it

is customary to use non-informative priors to estimate θ. The quasi prior is often used as a

non-informative prior when estimating θ, given by

g(θ) ∝ 1
θe
, θ, e ≥ 0. (2.14)

In (2.14) with e = 0, the quasi prior becomes a uniform prior, say g2(θ), given by

g2(θ) ∝ 1, θ > 0. (2.15)
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The posterior distribution using (2.4) and (2.15) is

g2(θ|x) = βα2
2

Γ(α2)θ
α2−1 exp(−θβ2), θ > 0, (2.16)

which is a gamma distribution with the shape parameter α2 = k + 1 and scale the parameter

β2 = η1(xk).

The Bayes estimators under SELF, LELF, and GELF with the uniform prior are given by

θ̂BS2 = α2

β2
= k + 1
η1(xk)

,

θ̂BL2 = α2

c
ln
(

1 + c

β2

)
= k + 1

c
ln
(

1 + c

η1(xk)

)
, and

θ̂BG2 = 1
β2

(
Γ(α2 − d)

Γ(α2)

)− 1
d

= 1
η1(xk)

(
Γ(k + 1− d)

Γ(k + 1)

)− 1
d

,

respectively.

Similarly, in (2.14) with e = 1, the quasi prior becomes the Jeffreys prior, say g3(θ), given

by

g3(θ) ∝ 1
θ
, θ > 0. (2.17)

The posterior distribution using (2.4) and (2.17) is

g3(θ|x) = βα3
3

Γ(α3)θ
α3−1 exp(−θβ3), θ > 0, (2.18)

which is a gamma distribution with the shape parameter α3 = k and the scale parameter

β3 = η1(xk).

Bayes estimators under SELF, LELF, and GELF with the Jeffreys prior are given by

θ̂BS3 = α3

β3
= k

η1(xk)
,

θ̂BL3 = α3

c
ln
(

1 + c

β3

)
= k

c
ln
(

1 + c

η1(xk)

)
, and

θ̂BG3 = 1
β3

(
Γ(α3 − d)

Γ(α3)

)− 1
d

= 1
η1(xk)

(
Γ(k − d)

Γ(k)

)− 1
d

,

respectively.



Chapter 2. Bayes and empirical Bayes estimation and prediction using upper record values
from inverted Topp-Leone distribution 14

2.3.3 Empirical Bayes estimation

The choice of hyperparameters for the prior distribution is quite sensitive in the Bayesian

inference. In usual practice, it may be possible that the prior information is not available.

Therefore, an alternative approach used to avoid this issue is the empirical Bayes estimation.

When the hyperparameters a and b are unknown, we may use an empirical Bayes method

to estimate them. The hyperparameters are usually estimated by the method of maximum

likelihood or method of moments, see Carlin and Louis (1997). In this chapter, both these

estimation methods are used to estimate the hyperparameters a and b.

1. Maximum likelihood estimation

Suppose that m past upper records samples, each of size k, are available, denoted by Xj with

the past realization θj where j = 1, 2, 3, ...,m. Then the MLE of θj (1 ≤ j ≤ m) is

θ̂ML,j = k

η1(Xkj)
= zj (say). (2.19)

Using (2.8), the conditional distribution of Zj given θj is

f(zj|θj) = (kθj)k+1

Γ(k + 1)
1

zk+2
j

exp
(
−kθj
zj

)
, zj > 0. (2.20)

According to Schafer and Feduccia (1972), the marginal PDF of Zj is obtained by solving

fZj(zj) =
∫

Θ
fZj |θj(zj|θj)g1(θj; a, b) dθj

= kk+1ba

Beta(k + 1, a)
za−1
j

(k + bzj)a+k+1 , (2.21)

which is a PDF of 3-parameter inverted beta distribution, denoted by inverted-Beta (k + 1, a, k/b).

Here, Beta(·, ·) is the usual beta function. The likelihood function of using (2.21) is

L(a, b|z) =
m∏
j=1

fZj(zj)

=
(

kk+1ba

Beta(k + 1, a)

)m m∏
j=1

za−1
j

(k + bzj)a+k+1 , (2.22)



Chapter 2. Bayes and empirical Bayes estimation and prediction using upper record values
from inverted Topp-Leone distribution 15

The log likelihood function, say l = logL(a, b|z), using (2.22) is

l = m [(k + 1) ln(k) + a ln(b)− ln (Beta(k + 1, a))]

+(a− 1)
m∑
j=1

ln(zj)− (a+ k + 1)
m∑
j=1

ln(k + bzj).

The MLEs of a and b, say â and b̂, can be obtained by simultaneously solving the following

equations:

m
(
ψ(a+ k + 1)− ψ(k + 1) + ln(b̂)

)
−

m∑
j=1

ln(k + b̂zj) +
m∑
j=1

ln(zj) = 0, (2.23)

am

b̂
− (â+ k + 1)

m∑
j=1

zj

k + b̂zj
= 0, (2.24)

where ψ(·) is the digamma function. The empirical Bayes estimators of the parameter θ under

SELF, LELF, and GELF are

ˆ̂
θBS1 = α̂1

β̂1
,

ˆ̂
θBL1 = α̂1

c
ln
(

1 + c

β̂1

)
, and

ˆ̂
θBG1 = 1

β̂1

(
Γ(α̂1 − d)

Γ(α̂1)

)− 1
d

,

respectively, where α̂1 = â+ k and β̂1 = b̂+ η1(xk).

2. Method of moments

It is also possible to estimate a and b by using the method of moments. In order to obtain the

moment estimators of a and b, the mean and variance of (2.21) are equated with the sample

mean and variance, given by

ã = k (k + 1)2 t21
(k + 1) t2 − k (k + 1)2 t21

and b̃ = (k + 1)2 t1

(k − 1) t2 − k (k + 1)2 t21
,

where

t1 =
m∑
j=1

zj
m

and t2 = (k − 1)
k

m∑
j=1

z2
j

m
.
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The empirical Bayes estimators of the parameter θ under SELF, LELF, and GELF are

θ̃BS1 = α̃1

β̃1
,

θ̃BL1 = α̃1

c
ln
(

1 + c

β̃1

)
, and

θ̃BG1 = 1
β̃1

(
Γ(α̃1 − d)

Γ ˜(α)

)− 1
d

,

respectively, where α̃1 = ã+ k and β̃1 = b̃+ η1(xk).

2.3.4 The HPD intervals

In this section, the HPD intervals for the unknown parameter θ of the ITLD are derived.

For the Bayesian estimators it is important to account the posterior uncertainty. The most

powerful tool that helps to measure such uncertainty is the HPD interval. This interval has the

capability to account more probable values of the parameter than less probable ones. An HPD

interval is a shortest interval which offers a pertinent summary of the posterior knowledge

about θ. The (1− τ)100% HPD interval, say [H1, H2], for θ is obtained by solving:

∫ H2

H1
gi(θ|x) dθ = 1− τ and (2.25)

gi(H1|x) = gi(H2|x) (2.26)

simultaneously, for i = 1, 2, 3.

After some simplification, of the (2.25) and (2.26) are simplified to

βαii
Γ(αi)

∞∑
r=0

(−1)r βri
r!(αi + r)(Hαi+r

2 −Hαi+r
1 ) = 1− τ and (2.27)

exp (βi(H1 −H2)) =
(
H1

H2

)αi−1
, (2.28)

respectively. Since a closed form of the HPD is difficult to derive, (2.27) and (2.28) are solved

numerically to get the values of H1 and H2. The empirical Bayes HPD intervals can be

obtained by replacing a and b by their respective maximum likelihood or moment estimators.
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2.4 Prediction of the future records

In many real life situations, the prediction of future records values has a great interest.

For example, to observe the record value until the present time, we naturally interested in

predicting the future expected record for which the present record can be broken for the first

time. This problem arises in many environmental process including rainfall, snowfall, drought,

disaster, and many more. The future records will be based on the previous records that are

observed from the same distribution. However, practically we need some threshold limits to

indicate the range of future predicted records at a certain level of confidence. Several authors

have discussed the Bayesian prediction bounds for some record statistics that are based on

certain distributions. For example, Dunsmore (1983) studied the problem of predicting future

records for two exponential models under the Bayesian framework.

2.4.1 Bayes and empirical Bayes prediction

Suppose that x = (x1, x2, ..., xk)′ be the first k upper record values observed from the ITLD.

Then, we may be interested in predicting the value of next record Xk+1 = xk+1, or more

generally, the value of sth record Xs for some s > k. Let Xs = y, following Ahsanullah (1995),

the conditional PDF of Y given xk is given by

f(y|xk, θ) = [ω(y|θ)− ω(xk|θ)]s−k−1

Γ(s− k)
f(y|θ)

1− F (xk|θ)
, xk < y, (2.29)

where ω(·|θ) = − lnF (·|θ).

Using (2.1) and (2.2), (2.29) can be written as

f(y|xk, θ) = θs−k

Γ(s− k) (ζ(y, xk))s−k−1 exp (−θζ(y, xk))× ξ(y), (2.30)

where ζ(y, xk) = (η1(y)− η1(xk)) and ξ(y) = 2y/ {(1 + y)(1 + 2y)}.

According to Arnold et al. (1998), the Bayes predictive density function of Y given x is

f(y|x) =
∫
θ
f(y|xk, θ)gi(θ|x) dθ

= 1
Beta(αi, s− k)

βαii
(βi + ζ(y, xk))s+a (ζ(y, xk))s−k−1 × ξ(y), (2.31)
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which is a PDF of 3-parameter inverted beta distribution, denoted by inverted-Beta (αi, s− k, βi),

where i = 1, 2, 3. The 100τ% lower and upper prediction bounds for Y can be derived using

the predictive survival function, obtained from (2.31), given by

P (Y ≥ λ|x) =
∫ ∞
λ

f(y|x) dy. (2.32)

The predictive bounds for a two-sided interval that cover the probability τ for the future

record Y may be thus obtained by solving:

P (Y ≥ Li|x) = 1 + τ

2 and P (Y ≥ Ui|x) = 1− τ
2 ,

where Li and Ui are lower and upper bounds, respectively. In most cases, we predict the first

unobserved record value Xk+1, the predictive survival function for Y = Xk+1 is obtained from

(2.31) and (2.32) by replacing s = k + 1, given by

P (Y ≥ λ|x) =
(

βi
η1(λ)− η1(xk) + βi

)αi
. (2.33)

Thus an 100τ% Bayesian prediction interval for Y = Xk+1 satisfies

Li =
(
1− (L∗i (τ)) 1

2
)−1
− 1 and Ui =

(
1− (U∗i (τ)) 1

2
)−1
− 1,

where

L∗i (τ) = 1− exp

βi − η1(xk)−
βi(

1+τ
2

) 1
αi

 and

U∗i (τ) = 1− exp

βi − η1(xk)−
βi(

1−τ
2

) 1
αi

 .

On similar lines, empirical Bayes prediction bounds for the future upper record value Xk+1

are obtained by replacing hyperparameters with their corresponding estimators, given by

L̂1 =
(

1−
√
L̂∗i (τ)

)−1
− 1 and Û1 =

(
1−

√
Û∗i (τ)

)−1
− 1,

L̃2 =
(

1−
√
L̃∗i (τ)

)−1
− 1 and Ũ2 =

(
1−

√
Ũ∗i (τ)

)−1
− 1,
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where

L̂∗i (τ) = 1− exp

β̂1 − η1(xk)−
β̂1(

1+τ
2

) 1
α̂1

 and

Û∗i (τ) = 1− exp

β̂1 − η1(xk)−
β̂1(

1−τ
2

) 1
α̂1

 .

L̃∗i (τ) = 1− exp

β̃1 − η1(xk)−
β̃1(

1+τ
2

) 1
α̃1

 and

Ũ∗i (τ) = 1− exp

β̃1 − η1(xk)−
β̃1(

1−τ
2

) 1
α̃1

 .

Here, (L̂i, Ûi) and (L̃i, Ũi) are the empirical Bayes predictions bounds when the hyperpa-

rameters are estimated using the maximum likelihood method and method of moments,

respectively.

2.5 Simulation study

In this section, a simulation study is conducted to compare the performances of the maximum

likelihood, Bayes (with informative and non-informative priors) and empirical Bayes estimators

of θ, in terms of their estimated risks (ERs) under different loss functions. The upper record

values of sizes k = 5, 7, 10 are generated from an ITLD with θ = 0.50. In order to compute the

ERs of the estimators, 100,000 samples of size k are generated from an ITLD. The estimator

values are then replaced into the loss function, and then the mean of the loss function is

considered as an estimate of the risk function of that estimator. Following Pakhteev and

Stepanov (2016), we provide a formula to generate k upper record values from an ITLD, given

by

(X1, X2, ..., Xk) =

1 +
√

1−
(∏k

i=1 Ui
)1/θ
−
(∏k

i=1 Ui
)1/θ

(∏k
i=1 Ui

)1/θ

 , k = 1, 2, ...,

where (U1, U2, ..., Uk) are IID uniform (0, 1) random variables.



Chapter 2. Bayes and empirical Bayes estimation and prediction using upper record values
from inverted Topp-Leone distribution 20

Ta
bl

e
2.

1:
Es

tim
at

ed
ris

ks
of

th
e

M
LE

an
d

B
ay

es
es

tim
at

or
s

un
de

r
di

ffe
re

nt
lo

ss
fu

nc
tio

ns

Lo
ss

SE
LF

LE
LF

G
EL

F
c

=
−

0.
30

c
=

0.
30

d
=
−

0.
90

d
=

0.
90

Es
tim

at
or

Pr
io

r
H

yp
er

pa
ra

m
et

er
s

k
=

5
M

LE
N

o
us

e
N

o
us

e
0.

14
09

7
0.

01
46

5
0.

02
38

1
0.

10
25

9
0.

18
03

1
B

ay
es

In
fo

rm
at

iv
e

(a
=

0.
50
,b

=
1.

00
)

0.
08

18
5

0.
01

09
2

0.
00

95
9

0.
08

21
7

0.
16

02
1

B
ay

es
In

fo
rm

at
iv

e
(a

=
1.

00
,b

=
2.

00
)

0.
05

75
2

0.
00

77
1

0.
00

67
0

0.
06

79
7

0.
14

24
1

B
ay

es
In

fo
rm

at
iv

e
(a

=
2.

00
,b

=
4.

00
)

0.
03

37
9

0.
00

45
4

0.
00

39
3

0.
04

91
6

0.
12

74
9

B
ay

es
Em

pi
ric

al
N

o
us

e
0.

14
09

7
0.

01
56

0
0.

02
23

5
0.

10
25

9
0.

44
61

4
B

ay
es

Je
ffr

ey
s

N
o

us
e

0.
14

09
7

0.
01

84
8

0.
01

71
6

0.
10

25
9

0.
19

91
4

B
ay

es
U

ni
fo

rm
N

o
us

e
0.

24
24

2
0.

03
00

0
0.

03
16

8
0.

11
79

3
0.

37
80

2
k

=
7

M
LE

N
o

us
e

N
o

us
e

0.
07

60
4

0.
00

84
2

0.
01

16
7

0.
07

30
9

0.
11

58
7

B
ay

es
In

fo
rm

at
iv

e
(a

=
0.

50
,b

=
1.

00
)

0.
05

51
3

0.
00

71
3

0.
00

66
7

0.
06

26
1

0.
18

06
6

B
ay

es
In

fo
rm

at
iv

e
(a

=
1.

00
,b

=
2.

00
)

0.
04

27
3

0.
00

55
7

0.
00

51
2

0.
05

44
4

0.
17

17
7

B
ay

es
In

fo
rm

at
iv

e
(a

=
2.

00
,b

=
4.

00
)

0.
02

88
2

0.
00

37
7

0.
00

34
4

0.
04

22
2

0.
16

45
2

B
ay

es
Em

pi
ric

al
N

o
us

e
0.

07
60

4
0.

00
89

6
0.

01
09

5
0.

07
30

9
0.

32
48

5
B

ay
es

Je
ffr

ey
s

N
o

us
e

0.
07

60
4

0.
00

96
7

0.
00

95
0

0.
07

30
9

0.
19

66
3

B
ay

es
U

ni
fo

rm
N

o
us

e
0.

11
80

2
0.

01
45

8
0.

01
53

0
0.

08
16

0
0.

33
67

1
k

=
10

M
LE

N
o

us
e

N
o

us
e

0.
04

17
3

0.
00

48
6

0.
00

56
5

0.
05

08
3

0.
07

40
8

B
ay

es
In

fo
rm

at
iv

e
(a

=
0.

50
,b

=
1.

00
)

0.
03

49
5

0.
00

44
6

0.
00

42
8

0.
04

57
2

0.
21

53
0

B
ay

es
In

fo
rm

at
iv

e
(a

=
1.

00
,b

=
2.

00
)

0.
02

96
2

0.
00

37
9

0.
00

36
1

0.
04

10
8

0.
21

30
7

B
ay

es
In

fo
rm

at
iv

e
(a

=
2.

00
,b

=
4.

00
)

0.
02

29
4

0.
00

29
5

0.
00

27
9

0.
03

44
9

0.
21

45
0

B
ay

es
Em

pi
ric

al
N

o
us

e
0.

04
17

3
0.

00
51

4
0.

00
53

3
0.

05
08

3
0.

28
74

1
B

ay
es

Je
ffr

ey
s

N
o

us
e

0.
04

17
3

0.
00

52
9

0.
00

51
5

0.
05

08
3

0.
21

93
6

B
ay

es
U

ni
fo

rm
N

o
us

e
0.

05
91

3
0.

00
73

9
0.

00
74

1
0.

05
52

7
0.

32
97

0



Chapter 2. Bayes and empirical Bayes estimation and prediction using upper record values
from inverted Topp-Leone distribution 21

Table 2.1 provides the ERs of the MLE, Bayes and empirical Bayes estimators under

the SELF, LELF, and GELF. For the Bayes estimators under the informative gamma prior,

different set of values of (a, b) are taken. Under each pair, the prior mean is equivalent to 0.50,

which is the considered value of θ. For the empirical Bayes estimators, following Soliman and

Al-Aboud (2008), the hyperparameters are estimated with the approximation: E(θ) ≈ θ̂ML

with V ar(θ) = 0.2. From Table 2.1 it is observed that as the value of k increases, generally,

the values of ERs decrease and vice versa. Moreover, when the suitable prior information is

available, the Bayes estimates with the informative priors are more precise than the MLE.

It is to be noted that when the value of (a, b) increases, the prior variance decreases, and as

a result the ERs of the Bayes estimates tend to decrease. In all cases, the empirical Bayes

and Bayes (using Jeffreys prior) estimates are better than those with the uniform prior as the

former possess less ERs than that of the latter.

2.6 An application to real data

In this section, a real dataset is taken for the application of the obtained results. The dataset

is taken from MirMostafaee et al. (2016), where it has been shown that this dataset follows a

TLD.

Table 2.2: Temporal Capacities for the month of February for Shasta Reservoir

Year Capacities Proportion to Inverse proportion to
total capacity: (Y ) total capacity: (X)

1995 3448519 0.757583 0.319987
1996 3694201 0.811556 0.232201
1999 3594861 0.785339 0.273335
1998 3594861 0.783660 0.276064
1999 3569220 0.815627 0.226051
2000 3912933 0.847413 0.180062
2001 3859423 0.768007 0.302071
2002 3495969 0.843485 0.185558
2003 3584830 0.787408 0.269990
2004 3868600 0.849868 0.176653
2005 3168056 0.695970 0.436844
2006 3834224 0.842316 0.189203
2009 3992193 0.828689 0.206725
2008 2641041 0.580219 0.723561
2009 1960458 0.430681 1.321904
2010 3380149 0.742563 0.346687

Inverse proportion to total capacity : (X = 1/Y − 1)

The dataset comprises the monthly capacities for the months of February in years 1995

to 2010, while the maximum capacity of the reservoir is 4552000 acre-foot. According to
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the domain of TLD, the dataset is first transformed to lie within the unit interval (0,1), i.e.,

by dividing the capacities over the maximum capacity of the reservoir. In order to use this

dataset for ITLD, an other transformation is considered, i.e., subtract one from the inverse

proportion to total capacity. The Kolomogorov-Simirnov (K-S) test is used to check whether

the transformed data follow an ITLD or not. The K-S test gives a p-value of 0.2106, which

shows that the transformed dataset follows an ITLD. Using these data, a set of four upper

record values is observed, given by

0.319987, 0.436844, 0.723561, 1.321904.

This dataset is used to obtain the estimators of the unknown parameter θ.
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In order to find the Bayes estimators of θ under different loss functions with an informative

priors, the values of hyperparameters must be known in advance. Here, as a matter of

fact, the values of hyperparameters are unknown. In what follows, following Soliman and

Al-Aboud (2008), the hyperparameters are estimated with the help of an approximation:

E(θ) ≈ θ̂ML = 10.2109 with V ar(θ) = 0.2, which gives â = 521.292 and b̂ = 51.0535. Table

2.3 reports the MLE, Bayes (using non-informative priors) and empirical Bayes estimators of

θ under the SELF, LELF, and GELF. As expected, under SELF the empirical Bayes estimate

of θ is equivalent to those of the MLE and Bayes with the Jeffreys prior. With the LELF and

GELF, the Bayes estimates are over (under) estimated when c < 0(> 0) and d < 0(> 0). In

addition, it is observed that the 90% HPD intervals with the informative prior (though its

parameters are estimated from data) are shorter than those under the Jeffreys and uniform

priors. Similarly, the 90% empirical Bayes prediction interval has small length than those with

the non-informative priors.

2.7 Conclusion

In this chapter, with an inverse transformation on the Topp-Leone distributed random variable,

an inverted Topp-Leone distribution (ITLD) has been derived. The maximum likelihood, Bayes

and empirical Bayes methods have been used to obtain the estimators of the unknown parameter

using upper record values from an ITLD. The Bayes and empirical Bayes estimators have been

developed under SELF, LELF, and GELF. The Bayes estimators have been derived using

both informative and non-informative priors. For obtaining the empirical Bayes estimators,

the hyperparameters were estimated using the methods of moments and maximum likelihood.

A simulation study was conducted to compare the performances of these estimators. It has

turned out that, when suitable prior information is available, the Bayes estimators under the

symmetric and asymmetric loss functions were superior to the maximum likelihood estimator.

Moreover, explicit mathematical expression for the Bayes and empirical Bayes prediction

intervals were also derived.

The current work could be extended to develop statistical inference when samples are

available from an ITLD under different censoring schemes or generalized order statistics.

Moreover, there is a possibility to estimate the unknown parameters when data are coming

from a two or more component mixture of ITLDs.



Chapter 3

Bayes and empirical Bayes estimation

and prediction using lower record

values from inverted Gompertz

distribution

In this chapter, we consider lower record values from an inverted Gompertz distribution (IGD).

The maximum likelihood, Bayes and empirical Bayes methods are used to obtain the unknown

parameter of IGD using a set of lower record values. The Bayes and empirical Bayes estimators

are developed under the squared-error, linear-exponential and general entropy loss functions.

The informative and non-informative priors are considered to derive the Bayes estimators.

The methods of maximum likelihood and moments are used to estimate the hyperparameters.

In addition, we provide the Bayes and empirical Bayes highest posterior density and prediction

intervals. Furthermore, we have shown that the Bayes estimators under the symmetric and

asymmetric loss functions are superior to the maximum likelihood estimator. A real life

dataset is used to explain the applications of the mathematical results.

3.1 Introduction

In many disciplines the collected data are more easily accessed in terms of record values. For

instance, weather, industry, sports, athletic events, economics, and life-tests among others.

Record value or record statistics are the smallest or largest value obtained from a sequence of

25
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independent and identically distributed (IID) random variables. The theory of records is much

discussed and well developed, due to its wide real life applications. Moreover, records become

more important when the complete list of the observations is difficult to obtain or when they

are being destroyed if the observations are subjected to an experimental test. Record values

and their basic properties were first examined by Chandler (1952). In the existing literature,

many researchers have attracted attention towards the estimation and inferential problem,

when record values follow a given probability distribution. Record values can be defined as:

Consider X1, X2, ... be a sequence of IID random variables with a probability density

function (PDF) and cumulative distribution function (CDF). If an observation xj is greater

(smaller) than all the previous observations say x1, x2, ..., xj−1 , then Xj will be upper (lower)

record value, i.e., Xi < (>)Xj , ∀ i < (>)j. Let consider Xj is an upper as well as lower record

value that is we can transform lower record value to an upper record by replacing the original

sequence by −Xj. For further details on record values and their applications, see Ahsanullah

(1995), Arnold et al. (1998), and the references cited therein.

Inference problems based on record values with many probability distributions were con-

sidered by several researchers. In this regards, one may refer to Raqab (2002), who derived

an exact expression for single and product moments of record statistics for three parameter

generalized exponential distribution. They have also discussed the recurrence relations for

single and product moments of record statistics. The Bayesian and non-Bayesian estimators of

the unknown parameters of the Weibull distribution are compared and discussed by Soliman

et al. (2006) using upper record values. They have provided the estimation of some survival

time parameters, e.g., reliability and hazard rate function, by considering a conjugate prior

for the scale parameter and a discrete prior for the shape parameter, using symmetric and

asymmetric loss functions. Moreover, predictive interval for the future upper record value was

also constructed. The estimation and prediction of some lifetime distributions, including Ex-

ponential, Weibull, Pareto, and Burr type XII under the Bayesian framework were studied by

Ahmadi and Doostparast (2006). Furthermore, they derived the Bayesian prediction interval

for future upper record values for all these probability distributions. The Bayesian inference for

the unknown parameter of Rayleigh distribution using upper record values was developed by

Soliman and Al-Aboud (2008). They used both Bayesian and non-Bayesian approaches for the

estimating the unknown scale and some lifetime parameters, e.g., reliability and hazard rate
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functions. Sultan (2008) discussed different methods of estimation for unknown parameters of

an inverted Weibull distribution using upper record values. Nadar et al. (2013) used a set of

m upper record values for statistical analysis of the Kumaraswamy distribution. Singh et al.

(2016) discussed the Bayesian estimation and predictions of log-normal distribution based

on lower record values and lower record values with inter-record times. They also computed

the maximum likelihood estimators and asymptotic confidence intervals for the unknown

parameters. In addition, the Bayes estimators and HPD intervals are derived using informative

and non-informative priors. Furthermore, they provided the Bayes prediction interval under

one-sample and two-sample framework. Seo and Kim (2016) derive unbiased estimators and

confidence intervals for the parameters of the extreme value distribution with the help of

different pivotal quantities using upper record values. Besides this, they also discussed Bayes

inference using the Jeffreys and reference priors.

The Gompertz distribution plays an important role to model survival times, human motility

and actuarial tables. In literature the mathematical model of Gompertz distribution was

first introduced by Gompertz (1825), to fit mortality tables. The Gompertz distribution is

used as a growth model, usually used to fit tumor growth, see Winsor (1932) and Casey

(1934). Al-Hussaini et al. (2000) described the applications of the Gompertz distribution.

Osman (1987) derived a compound Gompertz distribution from a two parameter Gompertz

distribution, taking one of the parameters as a random variable following gamma distribution.

Gompertz distribution can be seen as an extension of the exponential distributions because

exponential distribution is limit of sequence of Gompertz distribution. Ghitany et al. (2014)

considered a progressive type-II censored sample from a two parameter Gompertz distribution,

and established a necessary and sufficient conditions for the existence and uniqueness of

the likelihood estimates of the shape and scale parameters. A simulation based Bayesian

approach is used by Soliman et al. (2011) for the estimation of the coefficient of variation

under progressive first failure censored data from Gompertz distribution. They proposed

a Markov chain Monte Carlo method for finding the point and interval estimation of the

coefficient of variation using progressive first failure censored data. The Bayesian analysis of

records statistics that follows a two parameter Gompertz distribution was provided by Jaheen

(2003). Minimol and Thomas (2014) developed characterization of the Gompertz and inverted

Gompertz distributions (IGDs) using record values.
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In this chapter, a set of lower record values is used to find the estimators of the unknown

parameter of IGD, which include the maximum likelihood estimator (MLE), Bayes and

empirical Bayes estimators. Informative and non-informative priors are used to obtain the

Bayes estimators under both symmetric and asymmetric loss functions, including the squared-

error loss function (SELF), linear-exponential loss function (LELF), and general entropy loss

function (GELF). Moreover, the Bayes and empirical Bayes highest posterior density (HPD)

interval for the unknown parameter θ and prediction intervals of a future lower record value

are derived. A real dataset is used to illustrate the applications of the results.

This rest of the work is organized as follows: In Section 3.2, we consider an IGD. The

MLE, Bayes and empirical Bayes estimators of the unknown parameter of IGD are derived in

Section 3.3. Section 3.4 deals with the computation of prediction interval for the future lower

record value. An application to real data set is given in Section 3.5, and finally we conclude

the chapter in Section 3.6.

3.2 Inverted Gompertz distribution

Let Y be a Gompertz distributed random variable with the PDF and CDF given by

f ∗(y|θ) = θ [exp (y − θ (exp (y)− 1))] , y ≥ 0, θ > 0, and

F ∗(y|θ) = 1− [exp (−θ (exp (y)− 1)))] ,

respectively. Gompertz distribution is unimodal with increasing hazard rate, and it is a

positively skewed distribution. According to Ananda et al. (1996), the two parameter Gompertz

distribution is mostly used as a survival time distribution in actuarial science, reliability, and

life testing.

If Y is a Gompertz distributed random variable, then X = 1/Y has an IGD (cf., Minimol

and Thomas, 2014). The PDF, CDF, hazard rate and survival function of the IGD are,
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respectively, given by

f(x|θ) = θ

x2 exp
(1
x
− θζ(x)

)
, x > 0, θ > 0, (3.1)

F (x|θ) = exp (−θζ(x)) , (3.2)

h(x|θ) = θ

x2

exp
(

1
x
− θζ(x)

)
1− exp (−θζ(x)) and

S(x|θ) = 1− exp (−θζ(x)) ,

where ζ(x) = exp (1/x)− 1. In Figure 3.1, we plot the PDF, CDF, hazard rate and survival

function of the IGD. It is observed that the IGD is also a unimodal and positively skewed

distribution. As expected, there are different shapes of IGD with different values of θ.
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Figure 3.1: The PDF, CDF, hazard rate and survival functions of the IGD
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3.3 Estimation of the parameter

In this section, we discuss the maximum likelihood, Bayes and empirical Bayes estimation of

the unknown parameter θ of IGD, when data on k lower record values are available. Consider

a set of k lower record values: X∗1 = x1, X∗2 = x2,..., X∗k = xk, that are observed from a

sequence of an IID random variables following an IGD. The likelihood function of θ using k

lower record values, say x = (x1, x2, ..., xk)′, is given by (cf., Arnold et al., 1998)

L(θ|x) = f(xk|θ)
k−1∏
i=1

f (xi|θ)
F (xi|θ)

(3.3)

= θk exp (−θζ(xk)) exp
(

k∑
i=1

1
xi

)
k∏
i=1

1
x2
i

, (3.4)

where

ζ(xk) = exp
( 1
xk

)
− 1.

3.3.1 Maximum likelihood estimation

The log-likelihood function using (3.4), say l = lnL(θ|x), is

l = k ln(θ)− θζ(xk) +
k∑
i=1

1
xi

+
k∑
i=1

ln
(

1
x2
i

)
. (3.5)

The MLE of θ is obtained by minimizing (3.5), given by

θ̂ML = k

ζ(xk)
, (3.6)

where θ̂ML is the MLE of θ. To study the properties of θ̂ML, we need to find the distribution

of ζ(Xk). The PDF of Xk is given by (cf., Ahsanullah, 1995)

fXk(x|θ) = 1
Γ(k){− ln (F (x|θ))}k−1f(x|θ), x > 0

= θk

Γ(k) (ζ(x))k−1 exp (−θζ(x))× ξ(x), (3.7)

where

ξ(x) = exp (1/x) (1/x2).
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From (3.7), the PDF of Z = k/ζ(Xk) is

fZ(z|θ) = (kθ)k
Γ(k)

1
zk+1 exp

(
−kθ
z

)
, z > 0, (3.8)

which is the PDF of an inverted gamma distribution with parameters k and kθ. The mean

and variance of θ̂ML are, respectively, given by

E(θ̂ML) = kθ

k − 1 , k > 1,

V ar(θ̂ML) = (kθ)2

(k − 1)2(k − 2) , k > 2.

The bias and MSE of θ̂ML are given by

Bias(θ̂ML) = θ

k − 1 and

MSE(θ̂ML) = θ2(k + 2)
(k − 1)(k − 2) ,

respectively. It is clear that θ̂ML is a weakly-consistent estimator of θ.

3.3.2 Bayesian estimation

In most of the practical situations, the size of observed record values is not so large, in such

circumstances, the use of maximum likelihood estimation may provide biased estimates. In

order to make a more reliable estimates from small samples, one can use the Bayesian method

to estimate the unknown parameter(s).

In this subsection, the Bayesian approach is used to obtain the estimators of θ using a set

of lower record values from IGD. In the Bayesian framework, θ is treated as a random variable,

and it follows a prior distribution. In our study, we first derive the posterior distributions of

θ using informative and non-informative priors. The gamma prior is taken as a conjugate

informative prior, and the Jeffreys and uniform priors are taken as non-informative priors.

Assume that θ follows a gamma distribution with the hyperparameters a > 0 and b > 0, given

by

g1(θ; a, b) = ba

Γ(a)θ
a−1 exp(−θb), θ > 0, (3.9)
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The posterior distribution of θ given x is obtained by solving

g1(θ|x) = L(θ|x)g1(θ; a, b)∫
Θ L(θ|x)g1(θ; a, b) dθ

= βα1
1

Γ(α1)θ
α1−1 exp(−θβ1), θ > 0, (3.10)

which is the PDF of gamma distribution with parameters α1 = a+ k and β1 = b+ ζ(xk).

One of the most commonly used symmetric loss function is SELF, given by

L1(θ̂, θ) = (θ̂ − θ)2,

where θ̂ is an estimator of θ. The SELF is often used in the Bayes inference because of its

simplicity and ease in computation. The Bayes estimator of θ using SELF is

θ̂BS1 = Eθ|x(θ)

= α1

β1
= a+ k

b+ ζ(xk)
,

where Eθ|x(·) denotes the mathematical expectation with respect to the posterior distribution

of θ.

The SELF is symmetric in nature, and it gives equal magnitude to overestimation and

underestimation. However, this restriction may be impractical, because in some situations,

overestimation is considered to be more or less serious than underestimation. Under such

situations, Varian (1975) and Zellner (1986) have suggested to consider an asymmetric loss

function, called LELF. This loss function may associate more weight to overestimation or

underestimation as it rises almost exponentially on one side of zero and approximately linear

on the other side. The LELF for estimating θ is given by

L2(∆) = exp(c∆)− c∆− 1, c 6= 0,

where ∆ = θ̂−θ is the scalar estimation error. The sign and magnitude of the shape parameter

c show the direction and degree of symmetry, respectively. For c = 1, LELF is symmetric about

zero with overestimation being more serious than underestimation. The LELF is approximately

equal to SELF for c = 0. If c < 0, then L2(∆) increases almost exponentially when ∆ < 0 and
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almost linearly when ∆ > 0. The Bayes estimator of θ under LELF is

θ̂BL1 = −1
c

ln
(
Eθ|x (exp(−cθ))

)
(3.11)

provided that Eθ|x(exp(−cθ)) exists and is finite. The Bayes estimator θ̂BL1 is obtained using

(3.10) and (3.11), given by

θ̂BL1 = α1

c
ln
(

1 + c

β1

)
= a+ k

c
ln
(

1 + c

b+ ζ(xk)

)
, c 6= 0.

The LELF is more flexible among the asymmetric loss functions when estimating the location

parameter. However, it appears to be unsuitable for scale parameter and some other quantities,

(cf., Basu and Ebrahimi, 1991; Parsian and Sanjari F, 1993). Therefore, a suitable alternative

to LELF was proposed by Calabria and Pulcini (1996), called GELF. The GELF for estimating

θ is given by

L3(θ̂, θ) =
 θ̂
θ

d − d ln
 θ̂
θ

− 1, d 6= 0. (3.12)

As expected, the GELF is zero at θ̂ = θ. The overestimation or underestimation of θ depends

on the sign and magnitude of d. For d > 0 (d < 0), overestimation is more (less) serious than

underestimation. The Bayes estimator of θ under GELF is

θ̂BG1 =
(
Eθ|x

(
θ−d

))− 1
d

= 1
β1

(
Γ(α1 − d)

Γ(α1)

)− 1
d

= 1
b+ ζ(xk)

(
Γ(a+ k − d)

Γ(a+ k)

)− 1
d

.

It can be shown that, for d = 1, θ̂BG1 is equivalent to the Bayes estimator under the weighted

squared error loss function. Similarly, for d = −1, θ̂BG1 is equivalent to θ̂BS1 .

There are situations where the suitable/reliable prior information is not available or it is

difficult to quantify the prior information with the help of an informative prior. Under such

situations, it is possible to derive Bayes estimators of θ with the help of non-informative priors.

The most commonly used non-informative priors are Jeffreys, uniform, Quasi priors, etc. In

what follows, we use these priors to derive Bayes estimators of θ under the aforementioned
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loss functions. The quasi prior for θ is

g(θ) ∝ 1
θe
, θ, e > 0. (3.13)

In (3.13) by setting e = 0, a uniform prior for θ is obtained, given by

g2(θ) ∝ 1, θ > 0. (3.14)

Using (3.4) and (3.13), the posterior distribution of θ given x is

g2(θ|x) = βα2
2

Γ(α2) θ
α2−1 exp (−θβ2) , θ > 0, (3.15)

which is the PDF of gamma distribution with parameters α2 = k + 1 and β2 = ζ(xk). The

Bayes estimators under the symmetric (SELF) and asymmetric loss functions (LELF and

GELF) are

θ̂BS2 = α2

β2
= k + 1
ζ(xk)

,

θ̂BL2 = α2

c
ln
(

1 + c

β2

)
= k + 1

c
ln
(

1 + c

ζ(xk)

)
and

θ̂BG2 = 1
β2

(
Γ(α2 − d)

Γ(α2)

)− 1
d

= 1
ζ(xk)

(
Γ(k − d+ 1)

Γ(k + 1)

)− 1
d

,

respectively.

Similarly, in (3.13) with e = 1, a non-informative Jeffreys prior for θ is obtained, given by

g3(θ) ∝ 1
θ
, θ > 0. (3.16)

Using (3.4) and (3.15), the posterior distribution of θ given x is

g3(θ|x) = βα3
3

Γ(α3) θ
α3−1 exp (−θβ3) , θ > 0, (3.17)

which is the PDF of gamma distribution with parameters α3 = k and β3 = ζ(xk). The Bayes
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estimators under the symmetric (SELF) and asymmetric loss functions (LELF and GELF) are

θ̂BS3 = α3

β3
= k

ζ(xk)
,

θ̂BL3 = α3

c
ln
(

1 + c

β3

)
= k

c
ln
(

1 + c

ζ(xk)

)
and

θ̂BG3 = 1
β3

(
Γ(α3 − d)

Γ(α3)

)− 1
d

= 1
ζ(xk)

(
Γ(k − d)

Γ(k)

)− 1
d

,

respectively.

3.3.3 Empirical Bayes estimation

In Bayesian inference the selection of hyperparameters of the prior distribution is very important

and sensitive. Sometime a life tester has no prior information, then empirical Bayes estimation

is used to avoid this issue. When the hyperparameters a and b are unknown, we may use an

empirical Bayes method to estimate them. The method of maximum likelihood or method

of moments are usually used to estimate the hyperparameters, (cf., Carlin and Louis, 1997).

Here, these methods are used to estimate the hyperparameters a and b.

1. Maximum likelihood estimation

Suppose that past m samples xjs with the past realization θjs are available, where j =

1, 2, ...,m. Then, using (3.5), the MLE of θj (1 ≤ j ≤ m) is

θ̂ML,j = k

ζ(xj)
= zj (say). (3.18)

The conditional distribution of Zj given θj is obtained by replacing Z and θ with Zj and θj in

(3.8), respectively, given by

fZ|θj(z|θj) = (kθj)k
Γ(k)

1
zk+1
j

exp
(
−kθj
zj

)
, zj > 0. (3.19)

According to Schafer and Feduccia (1972), the marginal PDF of Zj is obtained by solving

fZj(zj) =
∫ ∞

0
fzj |θj(zj|θj)g1(θj) dθj

= kkba

Beta(k, a)
za−1
j

(k + bzj)a+k , (3.20)
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which is the PDF of 3-parameter inverted beta distribution, say Zj ∼ inverted-Beta(k, a, k/b)

for j = 1, 2, ...,m, where Beta(·, ·) is the usual beta function. The likelihood function using

z = (z1, z2, ..., zm)′, Zj is given by

L(a, b|z) =
m∏
j=1

fZj(zj)

=
(

kkba

Beta(k, a)

)m m∏
j=1

za−1
j

(k + bzj)a+k , (3.21)

The log likelihood function, say l = ln L(a, b|z), using (3.21) is

l = m [(k) ln(k) + a (ln(b))− ln (Beta(k, a))]

+(a− 1)
m∑
j=1

ln(zj)− (a+ k)
m∑
j=1

ln(k + bzj).

The MLEs of a and b say â and b̂, are obtained by solving the following equations simultaneously:

m
(
ψ(a+ k)− ψ(k) + ln(b̂)

)
−

m∑
j=1

ln(k + b̂zj) +
m∑
j=1

ln(zj) = 0, (3.22)

am

b̂
− (â+ k)

m∑
j=1

zj

k + b̂zj
= 0, (3.23)

where ψ(·) is the digamma function. The empirical Bayes estimators of θ under the symmetric

(SELF) and asymmetric loss functions (LELF and GELF) are

ˆ̂
θBS1 = α̂1

β̂1
,

ˆ̂
θBL1 = α̂1

c
ln
(

1 + c

β̂1

)
and

ˆ̂
θBG1 = 1

β̂1

(
Γ(α̂1 − d)

Γ(α̂1)

)− 1
d

,

respectively, where α̂1 = â+ k and β̂1 = b̂+ ζ(xk).

2. Method of moments

The hyperparameters can also be estimated by the method of moments. The moment estimators

of a and b are obtained by equating the mean and variance of (3.20) with the sample mean
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and variance of MLEs Zjs, given by

ã = s2
1

s2 − s2
1

and b̃ = ks1

(k − 1)(s2 − s2
1) ,

where s1 =
m∑
j=1

zj
m

and s2 = (k − 2)
(k − 1)

m∑
j=1

z2
j

m
.

The moment estimators of θ under the symmetric (SELF) and asymmetric loss functions

(LELF and GELF) are

˜̃θBS1 = α̃1

β̃1
,

˜̃θBL1 = α̃1

c
ln
(

1 + c

β̃1

)
and

˜̃θBG1 = 1
β̃1

(
Γ(α̃1 − d)

Γ(α̃1)

)− 1
d

,

respectively, where α̃1 = ã+ k and β̃1 = b̃+ ζ(xk).

3.3.4 The HPD intervals

In this subsection, we derive the HPD and empirical HPD intervals for the unknown parameter

of IGD. An interval which is based on the posterior distribution is called credible interval,

while an HPD interval is the shortest possible credible interval. The HPD interval is the most

powerful tool that helps to measure the posterior uncertainty. Moreover, the HPD interval

has the capability to account the more probable values of the parameter than less probable

ones. An 100τ% HPD interval, say (H1, H2), for θ is obtained by solving:

∫ H2

H1
gi(θ|x) dθ = τ and (3.24)

gi(H1|x) = gi(H2|x) (3.25)

simultaneously, for i = 1, 2, 3. The above equations (3.24) and (3.25) are simplified as follows:

βαii
Γ(αi)

∞∑
r=0

(−1)rβri
r!(αi + r)(Hαi+r

2 −Hαi+r
1 ) = τ and (3.26)

exp ((H1 −H2) βi) =
(
H1

H2

)αi−1
, (3.27)
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respectively. Since an explicit expressions for the HPD interval is difficult to obtain, therefore

(3.26) and (3.27) are solved numerically to get the values of H1 and H2. For the empirical HPD

intervals, the values of hyperparameters a and b are replaced by their maximum likelihood or

moment estimators, and the rest of its computation remains the same.

3.4 Prediction of the future records

This section is devoted for deriving the Bayes and empirical Bayes prediction interval of future

lower records. The prediction of future lower records is a problem of great interest. For

example, a meteorologist is usually interested to predict the future minimum low temperature

or in sports a fastest event (shortest time duration), etc. For such practical situations, one can

construct a prediction interval for the future lower record value using the current available

lower records. In most of the situations the available record observations and the predictable

future record possess same nature. In what follows, we consider the prediction of future lower

record value using Bayes and empirical Bayes methods.

One of the important features of the Bayes inference is that the predictive distribution

depends only on the observed data. Suppose that X = (X∗1 = x1, X
∗
2 = x2, ..., X

∗
k = xk) with

X∗1 ≥ X∗2 ≥ · · · ≥ X∗k be the k observed lower record values from IGD. Then, the interest

lies in predicting the value of next lower record, say X∗k+1 or X∗s for some s < k. Let X∗s = y

be the future lower record value, then the conditional PDF of Y given xk is (cf., Ahsanullah,

1995)

f(y|xk, θ) = (Φ(y)− Φ1(xk))s−k−1

Γ(s− k)
f(y|θ)
F (xk|θ)

, 0 < y < xk <∞, (3.28)

where Φ(·) = − lnF (·|θ). Using (3.1) and (3.2), (3.28) can be written as

f(y|xk, θ) = θs−k

Γ(s− k) (η(y, xk))s−k−1 exp (−θη(y, xk))× ξ(y), (3.29)

where η(y, xk) = ζ(y)− ζ(xk) and ξ(y) = exp (1/y) (1/y2).

The Bayes predictive distribution of Y given xk (cf., Arnold et al., 1998) is

f(y|xk) =
∫ ∞

0
f(y|xk, θ)gi(θ|x) dθ

= 1
Beta(αi, s− k)

βαii

(βi + η(y, xk))s−k+αi (η(y, xk))s−k−1 × ξ(y), (3.30)
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where i=1,2,3.

In order to obtained lower and upper 100τ% prediction bounds for Y = Xs or Xk+1 given xk

can be derived using the following predictive survival function:

P (Y ≥ λ|xk) =
∫ xk

λ
f(y|xk) dy. (3.31)

The predictive bound of a two-sided interval that covers τ for the future record Y may thus

be obtained by solving the following two equations for lower (L) and upper (U) limits:

P (Y ≥ L|xk) = 1 + τ

2 and P (Y ≥ U |xk) = 1− τ
2 .

In most cases, the interest lines in predicting the first unobserved record value Xk+1, the

predictive survival function for Y = X∗k+1 is obtained from (3.28) with s = k + 1, which

simplifies to

P (Y ≥ λ|xk) = 1−
(

βi
ζ(λ)− ζ(xk) + βi

)αi
. (3.32)

Thus an 100τ% Bayes prediction interval for Y = Xk+1 satisfies the following limits:

L =

ln
1 + ζ(xk)− βi + βi

(1−τ
2 )

1
αi


−1

and

U =

ln
1 + ζ(xk)− βi + βi

(1+τ
2 )

1
αi


−1

.

Similarly, the empirical Bayes prediction intervals are obtained by replace the hyperparameters

values a and b by their respective maximum likelihood or moment estimators. The empirical

Bayes prediction intervals for Xk+1 with probability τ are

L̂ =

ln
1 + ζ(xk)− β̂1 + β̂1

(1−τ
2 )

1
α̂1


−1

,

Û =

ln
1 + ζ(xk)− β̂1 + β̂1

(1+τ
2 )

1
α̂1


−1

,
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and

L̃ =

ln
1 + ζ(xk)− β̃1 + β̃1

(1−τ
2 )

1
α̃1


−1

,

Ũ =

ln
1 + ζ(xk)− β̃1 + β̃1

(1+τ
2 )

1
α̃1


−1

.

3.5 An application to real data

In this section, real life dataset are taken to explain the applications of the obtained results.

The dataset comprises the survival time in (days) of a group of lungs cancer patients reported

by Lawless (1982), given by

6.96, 9.30, 6.96, 7.24, 9.30, 4.90, 8.42, 6.05, 10.18, 6.82, 8.58, 7.77, 11.94, 11.25, 12.94, 12.94.

This dataset is used by Soliman and Al-Aboud (2008) for the Bayesian inference using upper

record values from the Rayleigh distribution. In order to use this dataset for IGD, we consider

the following transformation:

If W be a Rayleigh distributed random variable, then 1/ ln (1 +W 2) follows an IGD. Using

this transformation, the transformed dataset is given by:

0.25636, 0.22364, 0.25636, 0.25137, 0.22364, 0.31063, 0.23390, 0.27570,

0.21503, 0.25900, 0.23189, 0.24290, 0.20134, 0.20625, 0.19506, 0.19506.

The adequacy of the fitness of IGD is checked using the Kolomogorov-Simirnov (K-S) test.

The K-S test gives a p-value of 0.4152, which indicates that the transform dataset follows IGD

reasonably. Using these data the following set of lower record values is observed:

0.25636, 0.22364, 0.21503, 0.20134, 0.19506.

Using these record values, we obtain the maximum likelihood and Bayes estimators of θ.
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In order to obtain the Bayes estimators of θ under the informative prior, the values of

hyperparameters must be known in advance. Since the hyperparameters values are unknown

then following Soliman and Al-Aboud (2008), we consider an approximation: Set E(θ) ≈

θ̂ML = 0.029861 with V ar(θ) = 0.2, which gives the hyperparameter’s values as a = 0.004458

and b = 0.1493. The MLE, Bayes (using non-informative priors) and the empirical Bayes

estimators of θ under SELF, LELF and GELF are computed and reported in Table 3.1. It

is to be noted that the empirical Bayes estimator under SELF is equal to the MLE and

the Bayes estimator with the Jeffreys prior. However, under LELF and GELF, the Bayes

estimators are over (under) estimating when c < 0 (> 0) and d < 0 (> 0). Moreover, the

length of 90% empirical HPD interval less than those with the Jeffreys and uniform priors.

In addition, the length of the empirical Bayes prediction interval is also less than those with

the non-informative priors. Here, the prediction interval is constructed for the next 6th lower

record value.

3.5.1 Records generation

Suppose X be an inverted Gompertz distributed random variable. One can generate a random

sample of k lower records from the IGD. In the existence literature, many researchers have

provided records generations algorithms. In this regards, following Pakhteev and Stepanov

(2016), we derive a formula for generation of k lower record values following an IGD, given by

(X1, X2, ..., Xk) = 1

ln
(

1− ln
(∏k

i=1 Ui
)1/θ

) , k = 1, 2, ...,

where (U1, U2, ..., Uk) are IID uniform (0, 1) random variables.

3.6 Conclusion

In this chapter, using a set of k lower record values, we have estimated the unknown parameter

of the IGD using maximum likelihood, Bayes and empirical Bayes estimation methods. The

methods of the maximum likelihood and moments were used to estimate the hyperparameters.

The Bayes estimators were derived using informative and non-informative priors under sym-

metric and asymmetric loss functions. Moreover, HPD intervals for the unknown parameter θ

and prediction intervals for the future lower record values were also derived. Finally, a real life
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dataset was used to compute the numerical results using the derived mathematical formulas.



Chapter 4

Conclusion and Future Works

4.1 Conclusion

Every day we heard about the new records in the real life phenomena. For example, a new

record value of the summer temperature in Pakistan, the strongest level of earthquake in India,

and lowest stock market figure of china, etc., are dealing with upper or lower record values.

The record values or record statistics are the successive extremes that occur in a sequence

of independent and identically distributed random variables. In this thesis, the unknown

parameters of two inverted probability distributions have been estimated using upper and

lower record values.

In Chapter 2, an inverted Topp-Leone distribution (ITLD) has been derived from an inverse

variable transformation on the Topp-Leone distributed random variable. The maximum

likelihood, Bayes and empirical Bayes methods have been used to estimate the unknown

parameter of ITLD using upper record values. The Bayes and empirical Bayes estimators

have been derived under symmetric (SELF) and asymmetric (LELF and GELF) loss functions.

Both informative and non-informative priors were used to compute the Bayes estimators.

The unknown hyperparameters have been estimated by the methods of maximum likelihood

and moments. The performances of these estimators have been compared using both real

and simulated datasets. Through simulation analysis, it was verified that, when suitable

prior information is available, the Bayes and empirical Bayes estimators under symmetric and

asymmetric loss functions were more precise than the MLE. In addition, we have provided the

Bayes and empirical Bayes HPD and prediction intervals for the unknown parameter of ITLD

and future upper record value, respectively.

44
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On similar lines, in Chapter 3, the unknown parameter of inverted Gompertz distribution

(IGD) has been estimated by maximum likelihood, Bayes and empirical Bayes estimation

methods when a set of lower record values is available. The symmetric and asymmetric loss

functions were used to obtain the Bayes and empirical Bayes estimators. The Bayes estimators

have been obtained under both informative and non-informative priors. Moreover, explicit

mathematical expressions for the Bayes and empirical Bayes prediction intervals were also

derived. Finally, the mathematical results were applied on a real dataset that followed IGD.

4.2 Future works

The current work could be extended to develop statistical inference when samples are available

from ITLD and IGD under different censoring schemes or generalized order statistics. Moreover,

there is a possibility to estimate the unknown parameters when data follow a two or more

component mixture of ITLDs or IGDs.
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