Modeling and analysis for nonlinear flows
due to stretched surface

By

Madiha Rashid

A DISSERTATION SUBMITTED IN THE PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

Supervised By

Prof. Dr. Tasawar Hayat

Department of Mathematics
Quaid-i-Azam University
Islamabad, Pakistan
2019



Author’s Declaration

I Madiha Rashid hereby state that my PhD thesis titled Modeling and

analysis for nonlinear problems involving nanofluids is my own work

and has not been submitted previously by me for taking any degree from the
Quaid-i-Azam University Islamabad, Pakistan or anywhere else in the
country/world. At any time if my statement is found to be incorrect even after my

graduate the university has the right to withdraw my PhD degree.

/\:fk/
Name of Student: Madiha Rashid

Date: 06-09-2019




Plagiarism Undertaking

I solemnly declare that research work presented in the thesis titled “Modeling

and analysis for nonlinear problems involving nanofluids” is solely my

research work with no significant contribution from any other person. Small
contribution/help wherever taken has been duly acknowledged and that complete
thesis has been written by me. I understand the zero tolerance policy of the HEC

and Quaid-i-Azam University towards plagiarism. Therefore, I as an Author of

the above titled thesis declare that no portion of my thesis has been plagiarized and

any material used as reference is properly referred/cited.

[ undertake that if I am found guilty of any formal plagiarism in the above titled
thesis even afterward of PhD degree, the University reserves the rights to
withdraw/revoke my PhD degree and that HEC and the University has the right to

publish my name on the HEC/University Website on which names of students are

A

Student/Author Signature:

placed who submitted plagiarized thesis.

Name: Madiha Rashid




Modeling and analysis for nonlinear problems
involving nanofluids

By
Madiha Rashid
CERTIFICATE

A DISSERTATION SUBMITTED IN THE PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF THE DOCTOR OF

PHILOSOPHY

We accept this dissertation as conforming to the requi

l. 2. : = ‘7//[

. /7
Prof. Dr. Sohail Nadeem Prof. Dr. Tasawar Hayat

(Chairman) (Supervisor) < Q

3. —¢)9//9 4, 0 <
Dr. Nasir Ali Dr. Maryiam J J% /
Department of Mathematics & Statistics Department of Applied Mathematics
International Islamic University, Sector H-10 & Statistics, Institute of Space
Islamabad. Technology (IST), Islamabad.

Department of Mathematics
Quaid-I-Azam University
Islamabad, Pakistan
2019



Certificate of Approval

This is to certify that the research work presented in this thesis entitled Modeling
and analysis for nonlinear problems involving nanofluids was conducted by
Ms. Madiha Rashid under the kind supervision of Prof. Dr. Tasawar Havat. No
part of this thesis has been submitted anywhere else for any other degree. This
thesis is submitted to the Department of Mathematics, Quaid-i-Azam University,
Islamabad in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in field of Mathematics from Department of Mathematics, Quaid-i-
Azam University Islamabad, Pakistan.

Student Name: Madiha Rashid Signature: ﬂ/\’ M%

External committee:

a) External Examiner 1: Signature: M

Name: Dr. Nasir Ali
Designation: Associate Professor
Office Address: Department of Mathematics & Statistics, Faculty of Bas1cs

Applied Sciences International Islamic University, Islamabe::ér%

b) External Examiner 2: Signature:
Name: Dr. Maryiam Javed
Designation: Associate Professor
Office Address: Department of Applied Mathematics & Statistics, Instif
of Space Technology (IST), Islamabad.

e
c) Internal Examiner Signature: %

Name: Dr. Tasawar Hayat
Designation: Professor
Office Address: Department of Mathematics, QAU Islamabad.

e

Supervisor Name: Signature:
Prof. Dr. Tasawar Hayat

Name of Dean/ HOD Signature:

Prof. Dr. Sohail Nadeem




DEDICATED TO

MY BELOVED PARENTS

AND

MY SUPERVISOR



Acknowledgement

AW praise for Alah, the creator, the Glovious and the
Merciful Lord, who guides me inv dawkness, helps me v
difficulties and enables me to- view stumbling blocks as
stepping stones to-the stars to- reach the ultimate stage withv
couwrage. I v nothing without my Allahv but I comv achieve
everything withv His assistonce. AW of my veneration and
devotion goes to-owr beloved Prophet Hagrat Muhammad, %
the source of huwmanity, kindness and guidance for the
whole creatures ond who- declawed it awv obligatory duty of
every Muwslim to- seek and acquive knowledge: My AlUlalv
shower Hiy countless blessings uponw Muhawmunad £, Hisy
I express deepest gratitude to-my respected; affectionate and
devoted, supervisor Prof: Dr. Tasowawr Hayat for his
suggestions and inexhaustible inspiration thwoughout wy
reseawchy work. He was the backbone of this reseawrch work
withv constructive criticism and extensive discussions. I
shovt his tireless work, unique wavy of reseawch and devotion
to- his profession cannot be expressed in words:



I wish to- express my heawtiest thanks and gratitude to- my
parentsy Mr. and Mrs. Rashid Mehumood Toor the one who-
cav never ever be thanked enough for the overwhelming
love, kindness and care they bestow upow me. They support
me financially as well as movally and without their proper
guidance it would not beew possible for me to- complete my
higher education. I awm also- thankful to- eachy and every
member of my family. Special thanks to- my husband Awais
Arif Cheemaw and wmy Parenty inw low Mr. and Mry.
Muhamumamd, Arif Cheema. I amv also- grateful to- wy
brothers Lt. Aqib- Melwnood Toor, Muhawmumad Wajid Toor
and Abdul Basit Toor.

I would like to- express my gratitude to- respected teacher
Prof. Dr. Muhamunad Ayuwl, Prof- Abdul Waseew Siddique;
Prof: Dr. Malik Muhamumad Yowsaf, Prof. Dr. Sohail
Nadeem, Prof. Dr. Masood Khan; Dr. Khalid Saifulladv ands
Dr. Muhammad Aslam. These are all those people who-made
me what I am today, they polished me at diffevent stages of
my life and tauught me whatever I oun today.



I gratefully acknowledge my Ph.D fellows Muhawmmad
Irfany, Muhoammad Waqas, Sumaira Qayyuwy Sumaivos
Jabeen, Sadaf Nawag, Farwa haider and Muhammad Ijog
Khaw for their brilliant ideas and important contribution
v refining my reseawchv work. Their professional guidoance
has nowrished and polished my intellectual skills ond I will
alway s remaoinv thankful to-them.

I amv thankful to- my dearest friend Kiraww Rafique for
everything which she did for me. It iy my pray to- almighty
ALLAH that please give my friend everything she desires.

I ennact my heoutiest aond deepest thanks to-all my lab-fellows
who- were there iv lab- during my Ph.D session (03-03-2016
to-6-9-2019).

In the end thanks to- all my research fellows and to- those

people who- divectly and indivectly helped me duwring my
reseawrch work.

Madiha Rashid

06-09-2019



Preface

Nanofluids contain particles of size smaller than 100nm which are homogeneously and
stably dispersed in base fluid. Metals (Al, Cu, Fe and Au), oxide ceramics (CuO,
Ti0,, AlsO3 and FezOy), carbides ceramics (T%C' and SiC'), single or multi-walled car-
bon nanotubes (SWCNTs and MWCNTS), semiconductors (770, and SiO) and many
composite materials act as nanoparticles. The advanced type of improving heat conduc-
tivity of base fluids like water, engine oil, toluene and ethylene glycol is to append nano
sized particles. Nanofluids are a novel concept. Inclusion of nanoparticles in base fluids
remarkably enhances the heat transfer performance. Cooling is the most technical chal-
lenge faced in countless industries such as manufacturing, electronics and automobiles.
Nanofluids have great potentials in transportation, to improve automotive and heavy-
duty engine cooling rates by reducing the complexity of thermal management systems,
lowering the weight and enhancing the efficiency. Nanoparticles shows antibacterial prop-
erties or drug-delivery properties. Nanoamteial is more effective in nano/micro-electro-
mechanical devices and heat exchangers. Non-Newtonian fluids deviates the Newtonian’s
law of viscosity. Rheological characteristics of non-Newtonian fluids give rise to highly
complicated and very complex constitutive relation. In recent past several non-linear
liquids models are proposed according to their physical behaviors and shear. Examples
of such fluids are drilling muds, sugar solutions, blood, polymers of molecular weights,
ceramics, shampoos and lubricants. Many industrial procedures such as petroleum reser-
voirs, polymer processing, ceramics, food production and pharmaceutical industries are
the main focus of non-linear fluids. Features of heat transfer is based through in-
volvement of various mechanism i.e., thermal radiation, Joule heating, entropy gener-
ation, convective conditions and heat source/sink.

Having all the above aspects in mind, the modeling for flows of nanofluid involving
nanoparticles is made. Solutions and analysis are presented by homotopy analysis tech-

nique. The present thesis is designed as follows.



Chapter one provides literature review and expressions for basic laws of conservation of
mass, momentum, energy and concentration. Mathematical formulation and boundary
layer expressions of nanofluids, thixotropic and Maxwell fluids are provided. Basic con-
cept of homotopy analysis method is also incorporated.

Chapter two addresses the two dimensional flow of nanofluid due to curved stretching
surface. Modeling is based upon silver-water nanofluid. Convergent series solutions
for nonlinear systems are constructed. Solutions are presented for the contributions of
involved sundry variables. Discussion is made for velocity. Expressions of skin fric-
tion coefficient is calculated through numerical data. The contents of this chapter are
published in Results in Physics 8 (2018) 1104-1109.

Chapter three extends the analysis of chapter two for magnetite nanofluid. Flow and
heat transfer are discussed. Here analysis involve thermal radiation, heat generation and
convective boundary conditions. The modeled non-linear systems are reduced into di-
mensionless expressions. Homotopic convergent solutions with appropriate domains are
derived. Importance of physical parameters are narrated via plots. Computations of
skin friction and Nusselt numbers are explained. Outcomes of present chapter are pub-
lished in Results in Physics 7 (2017) 3107-3115.

The purpose of chapter four is twofold. Firstly magnetohydrodynamic flow of nanofluid
due to non-linear stretching surface is developed. Transverse magnetic field is applied.
Such consideration is significant in magnetic cell separation and to predict blood flow
problems. Secondly to inspect entropy generation rate. Slip effects are considered at the
boundary. Joule heating, thermal radiation and heat generation/absorption. Non-linear
systems are solved by taking optimal homotopy analysis method. The detail of plotted
graphs is discussed. The obtained results are published in Journal of Molecular lig-
uids 276 (2019) 441-452.

The chapters five and six are prepared for the flow analysis with MHD and carbon

nanotubes. In chapter five the nanoparticles of magnetic characteristics are considered



while in chapter six characteristics of both single and multi-walled carbon nanotubes
are discussed. Porous medium is specified by modified Darcy’s law. Homogeneous-
heterogeneous reactions and convective boundary conditions are entertained. Solutions
of various parameters are computed and analyzed. Main observations are summarized
in the conclusions. Material of these two chapters ae published in Results in Physics
8 (2018) 268-275 and International Journal of Numerical Methods for Heat
and fluid flow.

Chapter seven presents homogeneous-heterogeneous reactions in three-dimensional flow
of silver-water nanofluid. Fluid flow is caused by rotating disk of variable thickness.
Implementation of appropriate transformation leads to ordinary differential variables.
Physical quantities are explained graphically. The obtained results are published in In-
ternational Journal of Heat and Mass transfer, 113 (2017) 96-105.

Chapter eight is structured to show the MHD characteristics of nanofluid due to stretching
cylinder. Silver (Ag), Copper (Cu), Copper oxide (CuQO), Titanium oxide (770,) and
Aluminium-oxide (Al2Os) nanoparticles with water is considered. Present analysis fo-
cuses on entropy generation rate with modified Darcy’s law. Non-linear radiation and
non-uniform heat source/sink are also present. For heat transport phenomenon convective
conditions are employed. For reduction of PDEs into ODEs transformation procedure is
implemented. Non-linear problems are computed through optimal homotopy technique.
Flow behavior in terms of velocity, temperature, entropy rate, Bejan number and skin
friction and heat transfer rate are emphasized in the discussion. The outcomes of this
chapter are published in Applied Nanoscience DOI: org./10.1007/s13204-019—
009612 (2019).

The analysis of Maxwell nanofluid is discussed in chapters nine and ten. Electrically
conducting fluid is considered with combined effects heat and mass transfer. Modeling is
developed via non-linear convection and heat generation/absorption. Non-linear version

of thermal radiation is adopted. Activation energy is also used. The contents of chapter



nine are submitted. Material of chapter ten is published in Journal of the Brazilian
Society of Mechanical Sciences and Engineering DOI: org./10.1007/s40430—
019-1576-3 (2019).

Chapter eleven reports the salient features of thixotropic nanofluid due to stretching sheet
of variable thickness. Stagnation point flow is analyzed. The derived non-linear systems
are solved. Intervals of convergence are verified. Velocity, temperature, concentration,
skin friction and local Sherwood and Nusselt numbers are examined for influential param-
eters. The obtained results are published in Iranian Journal of Science and Tech-

nology, Transactions A; Science DOI: org./10.1007/s40995-00688-3 (2019).
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Chapter 1

Literature review and basics
equations

This chapter contains the motivation and survey of literature for considerations of nanoflu-
ids, rotating disk, surfaces with variable thickness, Darcy-Forchheimer porous medium,
non-Newtonian materials, entropy generation and homogeneous-heterogeneous reactions.

Techniques utilized for solutions development are briefly mentioned.

1.1 Background

Nanofluids are a new class of nanotechnology-based heat transfer fluids with augmented
thermal properties at the smallest possible concentrations by uniform dispersion and sta-
ble suspension of nanoparticles (1-100nm) in host fluids. Nano-sized metallic particles
(Copper, Silver, gold, Titanium or their oxides), carbon nanotubes and nitrites (SiN) are
used in traditional heat transfer fluids to form slurries. Combinations of nanoparticles
and base fluids can create several heterogeneous nanofluids. Applications of nanofluids
are significant in industrial and biomedical processes such as engine cooling, drag reduc-
tions refrigeration, chillers, high-power lasers, oil engine transference, cooling of electron-
ics, boiler,hybrid-powered engines, microwave tubes, drilling, lubrication, nanofluids in
transformer cooling oil, cooling of welding, great energy savings and emissions reduc-
tions. Word "nanofluid”is credited by Choi and Eastman [1]. Xuan and Li [2] worked on

heat transfer enhancement of nanofluids. Choi et al. [3] designed nanoparticles to refine
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Literature review and Basics of fluid mechanics

the quality of product and enhance thermal conductivity of fluids. Daungthondsuk and
Wongwises [4] gave a review of convective heat transfer nanofluids. Recently literature on
experimental and theoretical attempts regarding nanofluid is quite extensive. Few reviews
on nanofluids are presented in refs. [5]-[13]. Apart from these Buongiorno [14] developed a
mathematical model of convective transport of nanofluids. Buongiorno introduces seven
slip mechanisms between nanoparticles and base fluid. He concluded that there is an
abnormal enhancement in thermal conductivity due to presence of thermophoretic and
Brownian diffusion of nanoparticles. Buongiorno et al. [15] shows no anomalous thermal
conductivity enhancement in considered fluids. With these view points the nanofluid flow
due stretching sheet with chemical reaction is discussed by Hayat et al. [16]. Pourhoseini
et al. [17] worked on silver-water nanofluid due to plate exchanger. Nanofluid flow due
to permeable stretching/shrinking sheet with regression and stability analyses is given by
Jahan et al.[18]. Reddy et al. [19] discussed the salient aspects of thermophoresis and

Brownian motion in nanofluid flow past a slandering stretching surface.

Flows due to non-Newtonian materials has gained continuous attention of several re-
searchers. Examples of non-Newtonian fluids in geophysics and bio-engineering fields are
food products, milk, apple sauce, toothpaste, ketchup, crystal growth, blood at low and
oil reservoirs etc. Non-Newtonian fluids for their multiple properties are not accounted
by a single relation. These fluids introduce a non-linear relationship between shear stress
and strain rate. Non-Newtonian fluids are classified into differential, integral and rate
types. One of them, Maxwell liquid is simplest subclass of rate type liquids. recently,
Tan et al. [20] gave a Maxwell fluid flow among two plates. Thixotropic fluid model is
another important fluid model. The complexity among shear thinning and thixotropic
fluid is that viscosity diminishes in a shear thinning liquid with enhancement of the shear
rate. However, the thixotropic fluid reveals a viscosity decay via time at the constant
shear rate. Blasius flow of thixotropic fluids is presented by Sadeqi et al. [21]. Few

related studies to non-Newtonian fluids can be looked through the refs. [22]-[25] and
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Chapter 1

several attempts therein.

Flow due to stretching surface expanded great interest due to its application in indus-
trial and engineering forms. Most of the applications using flow generated in hot rolling,
broadsheets manufacture, rubber sheet, liquid crystals in condensation processes, fiber
spinning, glass blowing, melt-spinning, wire drawing, paper production, polymer sheet
filaments, polymer extrusion and so on. Fluid flow due to linear stretching surface was
initially reported by Crane [26]. Extensive information on this topic now exists. However
in most cases it is assumed that velocity of stretching surface is linearly proportional
to the distance from fixed origin. However realistically stretching sheet may not nec-
essarily be linear. Gupta and Gupta [27] discussed the flow due to stretching sheet.
Three-dimensional nanofluid flow due to non-linear stretching sheet is reported by Khan
et al. [28]. Analytical solutions of nanofluid flow subject to nonlinear stretching velocity
is analyzed by by Mahanthesh et al. [29]. Besides the flow due to flat stretching sheet
are mostly attended. In past fluid flow by curved stretching surface is not elaborated
properly. Very less attention is given about the study fluid flow due to curved stretch-
ing surface. Sajid et al. [30] examined fluid flow subject to curved surface with linear
stretching velocity. Micro polar fluid flow past curved stretching sheet is modeled and
analyzed by Naveed et al. [31]. Viscous flow due to curved stretching sheet with convec-
tive conditions is addressed by Hayat et al. [32]. Recently Sanni et al. [33] developed
a mathematical modeling for non-linear curved stretching sheet. Later on, Hayat et al.
[34] considered nanofluid flow subject to non-linear curved stretching sheet. Soret and
Dufour effects in nanofluid flow due to non-linear curved stretching surface is analyzed
by Reddy et al. [35]. Flow of nanofluid by non-linear stretching velocity is addressed by

Hayat et al. [36].

Practical and theoretical significance of applied sciences and engineering convince the
flow analysis in rotating frame. Flow due to rotating surfaces gained much attention of

engineers and researchers. Dominant applications include centrifugal filtration process,
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Literature review and Basics of fluid mechanics

air cleaning machines, rotating machinery, medical equipment, designs of multi-pore dis-
tributor and converter etc. Initial work on rotating disk is presented by Karman [37].
Stewartson [38] analyzed the fluid flow between two rotating coaxial disks. Fluid flow
between two rotating disks is studied by Mellor et al. [39]. Ming et al. [40] elaborated
power-law fluid flow due to rotating disk. Cu-water nanofluid flow due to rotating disk
is given by Hayat et al. [41]. The previous papers mainly discussed the flow by a disk of
negligible thickness. However due to acceleration/declaration, the thickness of stretching
surface may increase/decrease with distance. This factor depends on the value of the
velocity power-index. Applications regarding to surfaces of variable thickness are signif-
icant in mechanical, architectural, civil, marine and aeronautical engineering. Fang et
al. [42] described flow subject to stretching sheet of variable thickness. Subhashini et al.
[43] presented the fluid flow due to stretching sheet with variable thickness. Reasonable

recent literature is now available for rotating disk problems (see refs. [44]-[47] ).

The concept of fluid flow in porous space has great importance in geophysics, environ-
mental and industrial systems, civil and chemical engineering, catalytic reactors, heat ex-
changer layouts, fibrous insulation, mechanics of nanofluid, petroleum technology, oil pro-
duction, geothermal energy schemes, nuclear waste disposal, petroleum resources, blood
flow via lungs or arteries,fermentation process, gas-cleaning filtration, ground water pol-
lution and porous bearings and pipes. For the very first time Darcy’s theory is used for
porous space problems [48]. The classical DarcyéAZs law is insufficient when inertia and
boundary features are taken into account at high flow rate. So it’s impossible to neglect
the inertia and boundary features. Forchheimer [49] considered these aspects by taking
additional terms through square velocity factor in Darcian velocity expression. Flow of
homogeneous fluids saturating porous medium is given by Muskat [50]. Seddeek [51]
discussed flow of porous media. Fluid flow with Darcy-Brinkman-Forchheimer relation
is proposed by Singh et al. [52]. Pal and Mondal [53] studied fluid flow with Darcy-

Forchheimer expression. Darcy-Forchheimer flow in carbon nanotubes is discussed by
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Hayat et al. [54]. Ganesh et al. [55] presented Darcy-Forchheimer flow of nanofluid due

to stretching sheet.

Recently, some researchers have focused on entropy of thermodynamical systems. En-
tropy generation refers to irreversible thermodynamical deterioration of systems. For
assessment of irreversibility (entropy generation) the second law of thermodynamics has
been utilized. The level of irreversibility obtaining during any thermal process is mea-
sured by entropy generation. Thermodynamic irreversibility (entropy generation) gen-
erally accompanied the processes of heat transportation. Specific factors are responsi-
ble for irreversibilities generation like fluid friction, Joule dissipation, heat transporta-
tion through fixed temperature difference and diffusion etc. Entropy generation relates
the heat transportation, elementary thermodynamic principles and fluid mechanics. En-
tropy generation implements these sources to formulate the real structures and pro-
cedures which are categorized by constraints (finite, time). Entropy generation mini-
mization (EGM) technique is used to optimize performance of thermal devices such as
switches, electrical and motor control, temperature sensor’s for power conversion and
thermal science education. They are restricted by heat or mass transportation and ir-
reversibilities regarding fluid flow. Bejan [56, 57] scrutinized idea of entropy generation
minimization (system disorderedness). He observed that two diverse features i.e. lig-
uid friction and heat transportation due to temperature gradient. These features are
responsible for production of entropy in fluid flow process. He also delineated the numer-
ous applications in which irreversibility is minimized on a multifaceted level. However
for practical utilization the entropy generation rate must be minimized for thermody-
namic functioning up gradation. Flow of Casson nanofluid with entropy generation is
presented by Abolbashari et al. [58]. Some recent advancement in this direction can be

see in the attempts [59]-[65].

Concept of chemical reactions are classified into heterogeneous and homogeneous reac-

tions regarding to uniformity of a subject. Such reactions are utilized in chemically
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reacting structures like catalysis, combustion and biochemical systems. In the pres-
ence or absence of a catalyst these reaction react manifestly. Their is a key difference
among homogeneous and heterogeneous reactions. Homogeneous reactions contain chem-
ical changes which are solely depends only on nature of interaction among reactants.
Such reactions are simple and have uniformity for example oxyacetylene torch burning.
While reactions on the surface of catalyst of various phase are occurred in heteroge-
neous reactions. Such reactions are complex and have lack uniformity. Flow behav-
ior subject to chemical reaction has significant application in metabolism of food in
body, explosion of fireworks, crops damage, air and water pollution, polymer and ceram-
ics, formation and dispersion of fog, groves of fruit trees and atmospheric flows. Chaud-
hary and Merkin [66] proposed a simple isothermal model for homogeneous-heterogeneous
reactions in flow with different diffusivities for reactant and autocatalyst. After that
Merkin [67] worked on boundary layer flow with homogeneous-heterogeneous reactions.
Hayat et al. [68] described homogeneous-heterogeneous reactions in nanofluid flow due
to rotating disk of variable thickness. Raees et al. [69] anticipated a homogeneous-
heterogeneous reactions for nanofluid flow. Homogeneous combustion of methane-air
mixture and heterogeneous reaction characteristics in micro channel is presented by Wang
et al. [70]. Alzahrani [71] reported the effect of homogeneous-heterogeneous reactions in
flow of carbon nanotubes. Homogeneous-heterogeneous reactions in three dimensional

radiative flow of nanofluid is presented by Hayat et al. [72].

1.2 Fundamental laws

1.2.1 Law of conservation of mass

Law of conservation of mass stems from the principle that mass can neither be created
nor destroyed inside the control volume. For a known velocity and no source/sinks it

is sufficient to model the continuity equation (flow is continuous). Moreover in the law
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of conservation of mass total inlet and outlet flux is constant. Differential form of law

of conservation of mass for compressible fluid is

dp B
o TV (V) =0, (1.1)

where p exhibits fluid density, ¢ is the time and V = (u, v, w) the velocity of the fluid.

For incompressible fluid, law conservation of mass is
V-V =0. (1.2)

In Cartesian coordinates the operator and continuity equation is given by

V = %i—l—%j—l—%k, (1.3)
%JFZ—ZJFZ—ZJ:O, (1.4)
where as in cylindrical coordinates we have
VZGT%+€9%+62%, (1.5)
20 o+ L2 )+ Ly =0, (16)

The operator and continuity equation an in terms of curvilinear coordinates is written as

0 0
V= (T+R) EGT—FR%ex, (17)
0 ou

1.2.2 Conservation of linear momentum

It is stated that total linear momentum of an isolated system remains conserved. Math-

ematically, we have

av
pnf% =-V.7+ pnfb. (19)
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This equation contained the inertial forces which is the internal force on left hand side
while on the right hand side the first term is due to the surface force which is an external
force and last term is body force.

The Cauchy stress tensor is defined as

T =—pl+ p, Ay, (1.10)

where %(: % + V.V) is the material derivative, I signifies the identity tensor, p the

pressure and A; the first Rivlin Ericksen tensor given as
A, = (VV)+(VV)". (1.11)
The dynamics viscosity of nanofluid is [73]:

oy
= T (1.12)

where the effective nanofluid density is taken as follows [74]:

png = pg (1= ) + pso, (1.13)

in which ¢ is the solid volume fraction of nanoparticles, nf represents the thermophys-
ical properties of the nanofluid, s is defined as nano solid particles and f in subscript

explain base fluid. It is worth mentioning that nanofluid analysis is absent for ¢ = 0.

1.2.3 Law of conservation of energy

Law of conservation of energy interprets that total energy of the framework is conserved.
It is obtained through first law of thermodynamics. Energy equation for nanofluid in the

presence of viscous dissipation and thermal radiation can be written as

ar

— 2 .
g =1L+ k, VT —V.q;, (1.14)

(PCyp)

where q;, is the radiative heat flux. First law of thermodynamics states that the increase

in the internal energy of a thermodynamical system is equal to the amount of heat
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energy added to the system minus the amount of energy lost as a result of the work
done by the system on the surroundings.

The effective nanofluid heat capacity (pCy),, , is

(PCp)y = (pCp)y (1 = 0) + (pCy), ¢- (1.15)

and the effective thermal conductivity of nanofluid k,; by Maxwell-Garnett Model is

given by [75]:
ky, ks + 2k —2¢ (ky — ks
kng Ko+ 2k + 20 (kp — ky)
1.3 Basic laws for Buongiorno’s model
1.3.1 Law of conservation of linear momentum
Generalized equation of motion is
AY
— =V. b. 1.1
pay =Vt (1.17)
1.3.2 Law of conservation of energy
Nanofluid energy equation can be written as
drT
pCyzr = —dive, + 1,V -S,, (1.18)

where I, is the specific enthalpy of nanoparticles material, S, is the nanoparticles dif-
fusion mass flux and g, is the energy flux. No radiation is present. The first term on
left hand side of exhibits the combined effects of change in local energy and advection
term. On the right hand side first term comes from Fourier’s law of heat conduction and

last term is due to nanoparticles. Energy flux is given by

& = —kVT + IS, (1.19)
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Eq. (1.18) becomes

T
pCyar = =V (KVT +1,8,) + L,V S,

= kV’T -V (LS, + L,V -S,,

= kV*T-1,V-S,—S, VI, +1,V-S,,

= kV*T -S, VI, (1.20)
Considering
VI, =C,VT, (1.21)
one obtains from Eq. (1.20)
pcp% = kV*T — C,S, - VT. (1.22)

Diffusion mass flux S, for the nanoparticles, given as the sum of two diffusion terms (Brownian

diffusion and thermophoresis) by

Sp =Sp5 + Spr, (1.23)
with

S, 5 =—p,DpVC. (1.24)

Here Brownian diffusion coefficient Dp can be defined by the Einstein-Stokes equation

kgT

== 1.25
B 37T,UJdp’ ( )

in which kp is the Boltzmann’s constant and d, the nanoparticles diameter. Further

Sy = p,CV,, (1.26)
puVT

V, = -3 2 1.27
T (1.27)
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for the thermophoresis velocity V. In above equation the proportionality factor 7 (while
pp and p are the densities of nanoparticles and base fluid respectively) can be expressed

as follows:

k

5 =0.26
7 ok + k,’

(1.28)

in which %, and £ are the thermal conductivities of the particle material respectively and

fluid. Hence thermophoresis diffusion flux is given by

vT

= (1.29)

Spr = —ppDr

where

Dy = € (1.30)

p
which is the thermophoresis diffusion coefficient. From Eqs. (1.24) and (1.29), diffusion

mass flux is given by

vT

S, = —p,DpVC — ppDTT. (1.31)
Thus Eq. (1.22) becomes
m%%gzkv%1+%q,L@VC-VT+L%YZ?YZ : (1.32)
1.3.3 Conservation of concentration
For the nanoparticles the concentration equation is
%ﬁﬂﬁvcz—évsm (1.33)

where p,, is the mass density of the nanoparticles, C' is nanoparticles volume fraction and

S, is the diffusion mass flux. Now

T
%§+Vrm9:v-pgmw4%%:, (1.34)

which is the concentration equation for nanofluids.

21



Literature review and Basics of fluid mechanics

1.4 Entropy and second law of thermodynamics

1.4.1 Entropy

Entropy is a measure of disorder or randomness of molecular motion of the system.
Entropy of a system increases if heat flows into the system at constant temperature and
it decreases if heat leaves the system at constant temperature. It is a state function
which depends on the state of system. The absolute value of entropy can’t be determined

however change in entropy can be determined by the relation:

_dQ
as = ==. (1.35)

This expression shows that entropy of a system increases if heat flows into the system at

constant temperature and it decreases if heat leaves the system a constant temperature.

1.4.2 Entropy in irreversible process

In nature there is no reversible process due to friction and heat transfer. Thus every
thermodynamic process is irreversible. To find the entropy change for an irreversible
process, we choose a path by connecting the initial and final states and calculate the

entropy change by the equation:
! 0
S= [ = 1.36
K (1.36)

1.4.3 Second law of thermodynamics

The second law of thermodynamics in terms of entropy stated as in any thermody-
namic process, that proceeds from one equilibrium state to another, the entropy of the
system + environment either remains unchanged or increases. For reversible process, the
entropy does not change. For irreversible processes i.e., for all natural processes, the to-
tal entropy of the system must increase. It is possible that the entropy of system might

decrease, but entropy of environment shows increase of magnitude. Therefore the total
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change in entropy is always positive. Entropy generation consists of three sources i.e.
entropy generation due to heat transfer, viscous dissipation and mass diffusion.Entropy

equation is expressed as

k
N, = 2L (VT) + iy, (1.37)
where
1
b =—:Vu (1.38)
12

1.5 Boundary layer expressions of non-Newtonian flu-
ids
1.5.1 Maxwell fluid

Extra stress tensor S for Maxwell fluid is

D DS

D

, p; for covariant tensor, u for dynamic viscosity and

where \; signifies relaxation time
Ay for first Rivlin-Erickson tensor.
For tensor rank two, vector b; and scalar ¢, we have

DS 0S

- = = : — r_ 1.4
B = g T(V-V)S=S(VV) - (VV)s, (1.40)
Dby 9b; .
D = 5 +(V-V)b; —S(VV) (VV)by, (1.41)
Dy Oy

- 9¥ ) , 1.42

Momentum equation after boundary layer approximations leads to

D\ dV D D
) 2= = — — .S). 1.4
p(l—l—)th) 7 <1+/\1Dt) Vp—f-(l—i—)\lDt) (V.S) (1.43)

1.5.2 Thixotropic fluid

Extra stress tensor 7;; for this fluid is
Tij = 20 (Aaq (1)) dij.- (1.44)
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Here viscosity is time-dependent through allowing the second invariant of deformation
rate tensor to be time-dependent and A,y denote the second invariant of deformation

rate tensor. It is defined as

8u,~ 8uj
Aoy = oz, + oz, (1.45)
Here
B 2 ou\® 1 /v Ou\’ o\ 2
Aoy = (2d;;)" =4 ((8;5) + 5\ 92 + ay + 3y > 0. (1.46)

For viscosity function we have

ou\ > ou 0*u ou 0%u
— e — 2R [ == AR | y— —— ——]. 1.4
W= o — 28, (83/) T4 (uay Oxdy " Ty 83/2) (147)

1.6 Solution methodology

It is very difficult and some times even impossible to compute the exact solutions of
non-linear problems in science and engineering. Usually perturbation, Adomian decom-
position and homotopy perturbation methods are used to find solutions of nonlinear
equations. Besides, the homotopy analysis method (HAM) is also employed for the con-

vergent solutions development.

1.6.1 Homotopy analysis method

The concept of homotopy was first formulated by Poincare around 1900 (Collins 2004).
In topology, two functions are called homotopic if one can be "continuously deformed”
into the other. Homotopy is a combination of two Greek words homos means identi-
cal and topos means place. If there exists two continuous mapping ¢g; and g from the
topological space S into the topological space Z resulting g; is homotopic to go. A

continuous mapping G exists then

G:Sx[0,1] — Z, (1.48)
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such that for each s € S
G(s,0) = gi1(s), G(s,1) = ga(s). (1.49)

The mapping G is called the homotopy between g; and gs.

1.6.2 Solutions derivation by HAM

Homotopy analysis method (HAM)[77]-[84] is independent of large/small parameter. It
also provides exemption to choose multiple ways of base functions. This method is con-
venient to adjust and control convergence region. For the fundamental concept of ho-

motopy analysis technique, we assume a non-linear differential equations.
N [u(§)] =0, (1.50)

in which NV stands for nonlinear operator, u (§)for unknown function and ¢ for indepen-

dent parameter.

1.6.3 Zeroth-order deformation problems

(1= @) L€, q) —uo(§)] = ¢hNTu(&, g)], (1.51)

in which q is homotopic variable i.e., 0 < g < 1, h # 0 for auxiliary variable, £ for linear
operator and ug(§) for initial guess satisfying the boundary conditions. When ¢ = 0 and

g = 1 then

u(&,0) —up(§) =0 and u(&, 1) — ug(§) =0, (1.52)

respectively. When ¢ increases from 0 to 1 then u(¢, ¢) vary from initial solution wug(€)
to desired solution u(&). According to Taylor series we have

1 9Mu(§,q)

: 1.53
ml d¢™ | (1.53)

u(f, Q) = UO(S) + Z um(g)qm7 um(g) =
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1.6.4 mth order deformation problems

The resulting problems at this order are given by

L [tm(§) = XmUm—-1(§)] = AR m(Um-1), (1.54)

1 8m71 7
Ron(tm-1) = 75, aq:(j 2 R (1.55)

0,m<1
Xm_{ ILm>1" (1.36)

The solution of system can be acquired utilizing a suitable software like MATHEMATICA.
If the auxiliary variable, initial guess and the auxiliary linear operator is selected accu-

rately, the series will converge at ¢ = 1. Thus
u(€) = uo(€) = ) um(§). (1.57)
m=1

1.6.5 Solutions by OHAM

1.6.6 Optimal convergence control parameter

The non-zero auxiliary variables h defines convergence portion. We can compute the
minimum estimations of such variables by taking small error. In the frame of HAM,
the h plays a pivot role. That is why such variables refer to as convergence control
parameter which differs HAM from other analytical approximation methods. In order
to reduce CPU time we have applied concept of minimization by considering averaged

squared residual errors [77]. It is given by
Lk
= - 1'
o= SN (21 o (5))51&E , (1.58)

=0

where p,, is the total residual squares error.
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MHD flow of Ag-water nanofluid by
nonlinear curved stretching sheet

The present chapter concentrates on two-dimensional flow of viscous nanofluid due to
nonlinear curved stretching surface. Nanofluid is suspension of Silver(Ag) nanoparticles
and water(H,0). Magnetic field of strength (Bg) is applied. Apposite transformations
are utilized in obtaining dimensionless expressions. Homotopy analysis method (HAM) is
implemented for computations of convergent series solutions at zeroth and mth order de-
formations. Pressure inside the boundary layer flow induced by curved stretching surface
cannot be ignored. The characteristics of volume fraction of silver nanoparticles, dimen-
sionless radius of curvature, power-law index and magnetic parameter are discussed on
pressure, velocity and skin friction coefficient. Our findings indicate that the magnitude
of velocity reduces for higher silver nanoparticles volume fraction. Clearly magnitude of
pressure and velocity distributions are inversely related to the dimensionless radius of

curvature.

2.1 Model development

Here steady two-dimensional flow of an incompressible viscous nanofluid bounded by
non-linear curved stretching sheet coiled in a circle of radius (R) is formulated. Silver
nanoparticles with water as a regular base fluid is considered. Nanofluid is electrically

conducted due to magnetic field of constant strength (Bj) applied in the r-direction.
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Induced magnetic field for low magnetic Reynolds number is not entertained. We adopted
curvilinear coordinates (r, x) to construct relevant equations (see Figure (2.1)). We have
taken z and r-axes along and transverse direction to surface respectively. Surface has
stretching velocity u,, (x) = ugz™ where ug is the positive constant and n the power-law

index.

Figure 2.1: Geometry of the flow.

The boundary layer flow equations are given as:

0 ou
p [(r + R) ] +Ra—x =0, (2.1)
u? 1 Op
S 2.2
r+ R Pnf @T7 ( )
v@%— Ru @+ uv B 82u_ u N 1 @
Py or r+Roxr r+R/) fng or? (r+R)2 r+ ROr
R ap *2
T Ra,  owBu (2.3)
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subjected boundary conditions are [33]:

u =ugz", v=0at r=0,

0
u,a—:f—>0asr—>oo. (2.4)

In the above expressions velocity components along (r, z) directions are specified by (u, v)
and p the pressure.

Effective dynamic viscosity of the nanofluid by Brinkman is given as [73]:

My

Hnf = (1— p)25’ (2.5)

and the density of nanofluid is

Pnf = (1 - ¢>pf + ¢ps' (26)

Electrical conductivity of nanofluid is [76]:

3(5-1)0
Uf_1+<;‘—;+2>—(;‘—;—1)¢7 (2.7)

where ¢ signifies solid volume fraction of nanoparticles, s in subscript is for nano solid

Inf _

particles and f in subscript for base fluid.

The thermal diffusivity of nanofluid is given by

ks

Qpf = , (2.8)
! (PCp)ny
where the heat capacitance of nanofluid is
(PCplng = (1 = @) (pCy) s + d(pCy)s. (2.9)

Effective thermal conductivity of nanofluid for spherical nanoparticles is approximated

by Maxwell Garmett Model as

kg _ (ks +2ky) — 2¢(ky — ks)
ki (ks + 2ky) +20(ky — k) (2.10)
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Here piy indicates dynamic viscosity, p; and p, density of fluid and solid particles and k;
and ky thermal conductivities of solid nanoparticles and base fluid respectively.

In order to get the solution, appropriate variables are defined as

v £, v =2 e () de + () ere)

r+ R

s U l.nfl
p=ppugz®™ P (§), €= Oyf r. (2.11)

Prime denotes differentiation with respect to £&. Mass conservation law is automatically

satisfied. After using Eq. (2.11), Egs. (2.2) and (2.3) can be reduced as follows:

(9]3 Ps f’2

(2.12)

cn !
1 ( 2nK* p+ (n—1)EK* @) _ 1 "+ (E+K*)
(1—¢+¢%) (E+K~*) 2(6+K*) 05 ) (1—¢)2‘5(1—¢+¢%) R i
(E+K*)*

(1+n)$+2nK /2 (n—i—l / n+1 ci
( 2(§+K* ) f +K* fo §+K* ff

~21(%) (st ) (2.13)

with
f1(0)=1,f(0) =0,
f(00) = 0, f"(00) — 0. (2.14)
In above expressions K* = R, /% denotes the dimensionless radius of curvature

oy By?
pf’ll,ol'"fl

parameter, M = the magnetic parameter and Pr = % the Prandt]l number.

For velocity of fluid, the pressure can be eliminated from Egs. (2.12) and (2.13) and we

get
1 £ (iv) 2 fnr f " f !
((1—¢>2-5<1—¢+¢P—8>> (f * <5+K*>f €K7 <§+K*>3)
(n+1)K* ~~/// (n+1)K* ry (n+1)K* s (371—1) * £ FI

M £12 Onf f’ W)
(f—i-K*)Zf ( ) ( 1_¢+¢Ps)) ((f—i—K*) +f ) =0. (2.15)
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Through Eq. (2.13) the pressure is

1 cin I i
1 o " ((1—¢)25( ¢+¢Pg)) <f GS) (E+K*)
" P — (n+) K // (n+1)K* 75
((1—¢+¢&)> (5+K*)P_ +2(5+K FF+ §+K*sz
Pf

_ nK* /2 nf !
£+K* f <?> ((1 ¢+¢Ps )f

2.1.1 Physical quantities

)

(2.16)

Skin friction coefficient characterizes the surface drag. Mathematical expression for ve-

locity gradient in z-direction is

CN, . Tm:|r:0
sf — 2 _on?
prupl

where shear stress 7, is

(o
Tre = Hnf \ gy r+R|_,/)

Final form of skin friction coefficient can be written as follows:

(Re,)"” Cop = (1_—1@25 (f”(()) - f’T(O)> ,

in which Re, = upz"™ /v; shows the local Reynolds number.

2.2 Solution derivation

(2.17)

(2.18)

(2.19)

Here we employed homotopic scheme initiated by Liao [77] for the computations of prob-

lem comprising Egs. (2.12)-(2.15). For HAM solutions, we have auxiliary function (H f~)

and initial approximations ( f0(§)> with auxiliary linear operator (L f) as follows:

H; = exp(—29),

fo(§) = exp(—§) — exp(—2¢),
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Lr= f 5 4 4f (2.22)
subject to the properties

L;[Cref 4 Che™* + C3e* + Cye ] =0, (2.23)
in which C; (i = 1 —4) indicate the constants.

2.2.1 Zero-order system

We write

(1= a)L; |F(&a) — fol©)] = aligHNGIF(E ), (2:24)

F(0;q) =0, F'(0;q) =1, F'(c0;q) — 0, F"(c0;q) — 0, (2.25)

O F(£59) 2 9PF(&q)

Nonlinear operators are
¢t £+K ) o
1 82F (&:9) 1 9F(&q)

N |F(&q) =< )
f[ } (1=0)*(1 - ¢+ ¢2) Tk 9 T gk e

Ot OF(&q)  9°F(&q)
(% ><1—¢+¢>P ><§+K* e

(n+1)K* -, PF(&q)  (n+ )K* ~OPF(&q
WF(&Q) 3¢ + 2ET K ( ’q)—8§2
_ (n+ DK ~(£,q>3ﬁ(£ Q) _ Bn-1) OF(&q) 0°F(Sq)
2(6+ K+)° 23 2(£+ K¥) 73 02
_ Bn=1K [0F(&q)
ETRT ( 5 ) = 0,(2.26)
2.2.2 m'-order deformation systems
Here we write
L7 | Fnl®) = XmFumr (O] = B;RL(©), (2.27)
fm(0) = £1,(0) = f},(00) = f(00) =0, (2.28)
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_ 1 (w 2 mo 7/7,171 7In 1
Rf’m@)‘((l P ¢+¢5;)( e <§+K*>2+<§+K*>3)

3 1)K*
)fmlkfm . ) mlkzllc,:|_ n;:LK* melkfk

% m—1
T ) et = () ]
k=0

() () ()

et msr o
The general solutions ( f,,) comprising special solutions ( ~;;‘1) are
Fn(€) = F(E) + Cref + Coe™8 + Cse™ + Cye ™, (2.31)
where the constants are
Ch = Cy = 0,0y = —Cy — J1(0).C = af;f) eco + F5,0) 232)

2.3 Convergence of homotopy solutions

We have used the concept of homotopy analysis method to construct series solutions. In
this method we have chance to adjust the convergence of solutions by letting favorable
values of auxiliary variable iy For acceptable estimations of such variable the hi—curve
is drawn in Figure (2.2). Noted range of convergence parameter is —0.23 < fi; < —0.0.
Domain of convergence for obtained solution is § (0 < § < oo) when fi; = —0.18. Table
(2.1) shows some physical properties of nanofluids. Table (2.2) is prepared to compute

the convergence of f (0). Clearly f” (0) converges at 13th order of approximations.
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Figure 2.2: h—curve for velocity .

Table 2.1: Thermophysical properties of silver nanoparticles and water [17].

— EW/mEK) plkg/m?) o(Um)™ Cp(J/kgK)

Ag(Silver) 429 10500 3.6 x 107 235
HyO(Pure Water) 0.613 997.1 0.05 4179

Table 2.2: HAM solutions convergence when ¢ = 0.01,n =0.1, K* = 0.2, M = 0.2 and
Pr =6.2.

Order of approximations — f”(0)

1 2.9642
5 0.9403
8 0.9098
13 0.8971
17 0.8971
21 0.8971
30 0.8971
40 0.8971
50 0.8971
60 0.8971
70 0.8971
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2.4 Physical results and discussion

In this section we will argue the detailed description of involved sundry variables (0.1 < n < 0.9),
(0.1 < K*<0.4), (0.0l <¢<0.05), (0.2 < M <0.8) on pressure and velocity distribu-

tions. Estimations of surface drag force is also carried out.

2.4.1 Velocity

Figure (2.3) illustrates behavior of power-law index (n =0.1,0.3,0.5,0.9) for velocity
f/(€). Velocity of the fluid declines for larger (n). It is due to the fact that positive values
of (n) makes an enhancement in flatness of curved sheet and consequently the velocity
decays. Behavior of dimensionless radius of curvature (K* = 0.1,0.2,0.3,0.4) on velocity
f'(€) is given in Figure (2.4). For higher values of dimensionless radius of curvature
(K*), the radius of sheet become enlarges which shows flow enhancement. This is
due to the fact that curvature of the sheet significantly favors the secondary flow due
to curvilinear nature of fluid flow. A secondary flow is thus superimposed on pri-
mary flow caused an increment in velocity field. Figure (2.5) depicted the effect of
volume fraction of nanoparticles (¢ = 0.01,0.02,0.04,0.05) on velocity f'(£). A reduc-
tion in velocity of silver-water nanofluid is observed for positive values of (¢). Phys-
ically resistance between fluid particles enhances for larger (¢) which give rise to de-
creasing trend in velocity f'(¢). Figure (2.6) is plotted to show the impact of magnetic
parameter (M) for fluid velocity f'(£). A reduction in velocity is subject to higher values

of (M =0.2,0.4,0.6,0.8). Drag force (which is known as Lorentz force) is produced due

to application of magnetic field. Such force has ability to retard the fluid flow.
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Figure 2.3: Variation of n on f'(€).
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Figure 2.4: Variation of K* on f'(€)
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Figure 2.6: Variation of M on f(¢).
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2.4.2 Pressure

Figure (2.7) interprets the features of power-law index (n = 0.1,0.3,0.6,0.9) on pressure
P(€) when K* = 0.1, M = 0.8 and ¢ = 0.01 are fixed. A dual behavior is noticed for pres-
sure P(€). Pressure P(£) reduces near the boundary while increasing trend is noticed away
from the surface for higher (n). In fact higher values of stretching index (n) expanded the
radius of curvature that in turns enlarges the flatness of curved surface. Moreover pres-
sure gradually approaches to zero. Figure (2.8) is prepared to examine pressure 15(5)
for varying dimensionless radius of curvature (K* =0.1,0.2,0.3,0.4) and fixed power-
law index. As expected the magnitude of pressure 15(5) reduces for higher (K*). It can
be explained on the basis that far away from the boundary, the pressure approaches a
constant value. This is because of when we move away from surface the streamlines of
the flow behave in same manner as in low over a flat stretching sheet. Notably in this
case the variation of pressure inside the boundary layer cannot be neglected like a flat

stretching.

;zﬁ 00] K”—OQM 08

200 \A  n=01,050600 A —

o 1 2 3 4 5 6

Figure 2.7: Variation of n on P(£).
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Figure 2.8: Variation of K* on P(£).
2.4.3 Skin friction coefficient

Skin friction coefficient (Re,)"” Cyy is computed in Table (2.3). It is noted that surface
drag force enhances for power-law index and magnetic parameter while it reduces for

dimensionless radius of curvature.

Table 2.3: Behaviors of n, K* and M on skin friction coefficient for Ag-water nanofluid.

n  K* M (Re,)"”Cy

0.1 02 08 0.105
02 - - 0.128
03 - - 0.143
05 — - 0.204
- 01 - 0.105
- 02 - 0.085
- 04 - 0.074
- 06 - 0.033
- — 02 0.105
- — 04 0.255
- — 06 0.474
- = 09 0.749
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2.4.4 Comparative study

Table (2.4) is constructed to verify the present results with the help of previous litera-

ture. The results are found in good agreement.

Table 2.4: Comparative values of skin friction coefficient when n = 0.1.

K* Sajid et al. [30] Sanni et al. [33] Present study

5 0.7576 1.1576 1.1578
10 0.8375 1.0734 1.0734
20 0.9356 1.0355 1.0351
20 0.9741 1.0414 1.0411
100 0.9870 1.0070 1.0069

1000 0.9988 1.0009 1.0011

00 1 1 1

2.5 Conclusions

Hydromagnetic flow of silver-water nanofluid due to non-linear curved stretching sur-

face is reported in this chapter. The important points are highlighted below.
[d Pressure has dual behavior across power-law index.

(d Higher values of dimensionless radius of curvature correspond to flat stretching

surface.

Q Velocity f/ (&) is decreasing function of volume fraction of nanoparticles and mag-

netic parameter.

(1 Dimensionless radius of curvature reduce the surface drag force while opposite sce-

nario is noticed for power-law index and magnetic parameter.
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MHD convective flow of
Fe3; O -water nanofluid by non-linear
curved stretching sheet

This chapter is devoted to analyze magnetohydrodynamic flow of ferrofluid due to non-
linear curved stretching sheet. Ferrofluid comprises water and magnetite (Fe3O,4) nanopar-
ticles. Flow saturates porous medium. Heat transfer characteristics are studied by ther-
mal radiation, heat generation/absorption and convective boundary conditions. Gov-
erning problem are made dimensionless. The obtained non-linear systems are handled
by means of homotopy analysis method. Convergence intervals for solution are ana-
lyzed. Behavior of different variables on velocity and temperature are studied by plot-
ting graphs. Moreover, the velocity and temperature gradients are also calculated and

analyzed.

3.1 Mathematical formulation

Here we examine two-dimensional flow of an incompressible ferrofluid by non-linear curved
stretching sheet. Magnetite (Fe3O,) nanoparticles suspended in water are known as fer-
rofluid. Curvilinear coordinates (7, z) are used to model governing equations. Stretching
velocity taken in z-direction is u = u,,. Electrically conducting fluid is considered in the
presence of magnetic field. Induced magnetic field is ignored. Effects of porous medium,

thermal radiation and heat generation/absorption are also accounted. Further, the sur-
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face exhibits convective boundary condition. The bottom surface of sheet is heated

by convection from a hot fluid at temperature 7; while ambient fluid temperature is

T,.. We have
0 ou
u? 1 Op
= 3.2
r+R Py O’ (3.2)
0%4— Ru @+ uv R @—l— Pu  u N 1 du
i\ or T+ ROz v+ R) T r+Rox "™\0? (1R? r+Ror
—0n Bytu — %u, (3.3)
P

(C) a_T+ Ru@_T =k 82_T_|__1 a_T
Prp)ng Uar r+ R O0x - s or:2  r+ ROr

_riR(%(T+R)QE>+QO(T—TOO), (3.4)

with boundary conditions

or
u =wupz", v=0, —knfa—:hf(Tf—T) at =0,
r
ou
u,a——>O,T—>Tooasr—>oo. (3.5)
r

Here (u,v)are velocity components in the radial » and transverse z directions, ug > 0
the stretching constant, p the pressure and hy the heat transfer coefficient. According to
Rosseland’s approximation, the radiative heat flux g; is

4o*0T*
3k*or ’

q; = (3.6)

in which k* denotes mean absorption coefficient and ¢* the Stefan-Boltzmann constant.
Expanding the term T* as a linear function of temperature in Taylor series about 7.
We have

T = 4T3 T — 3T, (3.7)
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After using Egs. (3.6) and (3.7). Eq. (3.4) takes the form

8_T+ Ru 0T\ 1 N 1 160*T2 8_T+<+R)02_T
Yor Tr+Ror)  r+RrR\™ (pCp)ng 3kek* ar 'V or? )|

(3.8)
Considering
- R N _ -
w = (e, o= Ve (M) Fo+ (M) 69
- - T — T n—1
P et P, 0= = [ (3.9)

continuity equation is automatically satisfied and Eqgs. (3.2)-(3.3) and (3.8) can be reduced

as follows:

ap s ]?/2

1 InK* By (n—1)¢K" 0P _ L Fr + e
(1—o+of2) \ (§+K7) 2(6+ K*) ¢ A=oP=asof) \ — L — AT
(1+n)£+2nK* 2 (n+1)K
206+ K*)° K2+ 2(£+K fo/

(3.10)

(n+1)K )ff” o (o”f) f/ 3 11)

206+ K* (1- ¢+¢>p“‘)

1 1 knf ) o é/ ~
— (™ 4R 0+ — 0

pCp)
(3.12)
with
F(0) =1, f(0) = 0, #(0) = —k’f—J;BT (1-00).
f(00) = 0, f"(c0) = 0, B(cc) — 0. (3.13)

. . . . . 14 . . .
The dimensionless variables in above equations are defined as A = W which signifies
P

*2
the permeability parameter, M = pfifﬁ?t — the magnetic parameter, Pr = M the
Prandtl number, Rp = 1ng]§ the radiation parameter, By = Zj: ﬂ/uomn ; the thermal
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Biot number, @) = an#p)f the heat generation /absorption coefficient and K* =

-1 . . . . . .
W R the dimensionless radius of curvature. Now eliminating pressure between Egs.

(3.10) and (3.11) we obtain
£ (iv 2 e 1
1 /! )~+ &+ K*)f G
=976+ 9E)
(n+1)K*

S A Y (N S
MGCYE Mem +/
(n+ K" -5,  (n+ DK

T O T A T
(?’n _ 1)K* f/2 (3n _ 1) *]?/ 1
2(6+ K*)° 2(6+ K¥)

Ny (%) (( f )J_fu):o, (3.14)

1-o+¢7)

Fm i T
(— ))( P+ el )
)25 (1— Ps e
(£+K* z —Af

1 nK* -
P = (n+1 i (n—f—l)K2 % (31
((1—¢+¢ﬁ)> (€ + K*) steriy '+ ZK*;)ff (3.15)
nk* £12 %
_2(£+K*)2f -M (W) /

3.1.1 Physical quantities of curiosity

Mathematically coefficient of skin friction is defined as

~ Trs|._
CS g —7‘5 r=0 , (316)
T ppugan

where wall shear stress 7, is given by

ou U
Tra = Hnf (E - T+R) . (317)
In dimensionless form
- 1 . £(0)
0.5 _ oy — LN
(Ren)"*Cu = = gy (f -2 ) . (315)

It is the ratio of heat transferred through convection (fluid motion) to the heat trans-
ferred through conduction (if the fluid is stagnant). Mathematically

¥ xqqu
Ny=——F——, (3.19)
ki (Ty — T
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here heat flux ¢, is given as

160*T§’O oT
Guw = — (knf + 3+ ) E ‘TZO' (320)
In dimensionless form
—0.5 77 knf 0/
f

in which (Re;) = upz™*!/v; denotes the Reynolds number.

3.2 Computations of series solutions

To compute solutions of given problem, we have employed homotopic scheme. For that
purpose auxiliary functions (7-1,];, ’H(;), initial approximation ( fo(f),§0(§)> and Linear

operator (EJ;, 5(5) are given as:

Hj = exp(—28), Hg = exp(—2§), (3.22)
Jo(€) = exp(—€) — exp(=2), folexp(—E)) = f%T exp(—¢), (3.23)
L= FO) _ 5" 4 4f, £y— 0" —0, (3.2

with the properties

L [Crexp(§) + Cyexp(=E)] + Cs exp(26) + Caexp(=2¢)] = 0,

L;[Csexp(§) + Csexp(—€)] = 0, (3.25)
and C; (i =1 — 6) represents the constants.
3.3 Convergence of series solutions

The concept of Liao [77] is employed to express series solutions. No doubt the auxiliary

variables fi; and h; have significant role to control and adjust convergence domain for
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" (0) and o' (0) in homotopy analysis method (HAM). For this purpose the A curves have
been organized (see Figure (3.1). Allowed ranges for fi; and fi; are —1.20 < fi; < —0.85
and —1.5 < h; < —0.5. HAM solutions converge when ﬁf = —1.0 and hy = —1.1. Specific
heat, density and thermal conductivity of Fe3O4-water nanofluid are given in Table (3.1).
Table (3.2) demonstrates the convergence of series solutions of momentum and energy
constraints for FesOy-water nanofluid. It is clear that f” (0) and #'(0) coverage at11th

and 8th order of approximations respectively.

2

b Fe; 0, —water |

~1.0 05 0.0 05

Figure 3.1: h—curves for velocity and temperature fields.
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Table 3.1: Thermo-physical properties of magnetite nanoparticles and water.

— kW/mk) p(kg/m®) o(Um)~" Cyp(j/m*)

Fe304(Iron oxide) 9.7 5180 2500 670
H,O(Pure Water) 0.613 997.1 0.05 4179

Table 3.2: HAM solutions convergence when ¢ = 0.01,Q = 0.1, Rp = 0.4,A = 0.5,n =
M =Br =09, K*=12and Pr=6.2.

Order of approximations —f"(0) —6'(0)

1 2709  0.382
) 2.545  0.364
8 2448  0.358
11 2442 0.358
17 2442  0.358
21 2442  0.358
30 2442 0.358
35 2442 0.358
40 2442 0.358
45 2442  0.358
50 2442  0.358
60 2442 0.358

3.4 Interpretations of results

Main emphasis in this section is given to the physical illustration of emerging variables
with suitable ranges (0.1 <n < 0.9), (0.1 < K* < 1.2),(0.01 < ¢ <0.05), (0.2 < M <0.9),
(0.1 <X <0.5), (04<Rp <1.0), (=04 <Q <0.4) and (0.1 < By <0.9) on pressure,

velocity and temperature (see Figures (3.2)-(3.13)).

3.4.1 Velocity

Figure (3.2) shows the impact of power-law index (n = 0.1, 0.3,0.5,0.9) on velocity f' (£).
Velocity and associated momentum layer thickness are reduced for higher (n). Influ-

ence of dimensionless radius of curvature (K* =0.1,0.3,0.9,1.2) on velocity f’ () is
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highlighted in Figure (3.3). Here magnitude of fluid velocity enhances when (K*) is in-
creased. Since for higher values of dimensionless radius of curvature (K*), the radius of
sheet enlarges which increases fluid flow. Figure (3.4) shows the consequences of volume
fraction of magnetic nanoparticles (¢ = 0.01,0.02,0.04,0.05) for velocity f (£). Velocity
of fluid retards for higher (¢) . Due to higher concentration of nanoparticles the resistance
offered by fluid rises. Therefore the velocity of fluid decays. Impact of magnetite param-
eter (M = 0.2,0.4,0.6,0.9) on velocity f’(€) is displayed in Figure (3.5). Velocity of fluid
diminishes when (M) is increased. Lorentz force is in direct relation with application of
magnetic field. Higher (M) give rise to more Lorentz force so it produces resistance for
fluid particles. Thus velocity f’ (€) reduces. Larger values of permeability parameter
(A =0.1,0.2,0.3,0.5) correspond to low velocity f’ (€) (see Figure (3.6)). It is noted that
(A) has inverse relation with f' (£). It is concluded that medium permeability plays vital

role regarding reduction of momentum layer thickness.

Loy 4= 001 0= 01 Rp=04,1=05 M = BT_OQ

08 ..................... K ..... T..l..?...ﬁ‘...f.ﬁ? ................ ........................

06* ..................... ...................... ..................... ...................... ........................
G |
~04r 4 n=o01030500 R

Figure 3.2: Variation of n on f'(€).
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o 1 .
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Figure 3.3: Variation of K* on f'(€).

d = 00] Q= OJ RD_04 A=05, n_M BT_OQ
: : K”—]Q Pr =6.2 :

4 =0.01,0.02, 0.04, 0.05

Figure 3.4: Variation of ¢ on f’(f)
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Figure 3.5: Variation of M on f(¢).
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Figure 3.6: Variation ofA on f(€).
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3.4.2 Pressure

Figure (3.7) is sketched to show the behavior of power-law index (n = 0.1,0.5,0.6,0.9) on
pressure P (€) . Here the magnitude of pressure enhances for higher (n). In fact the higher
values of stretching index (increasing stretching velocity) enlarge the radius of curvature
that in turns expand the flatness of curved surface. Moreover, the pressure gradually ap-
proaches to zero. Effect of larger dimensionless radius of curvature (K* = 0.1,0.6,0.9, 1.2)
on pressure P (£) is scrutinized through Figure (3.8). Magnitude of pressure reduces for
greater values of dimensionless radius of curvature (K*). It is noted that pressure has
constant values away from the boundary. It can be explained on the basis that when we
move away from surface then the streamlines of flow behave in same manner as in case of
flow past a flat stretching sheet. No variation is observed in pressure for flat stretching
case i.e. K* — oo. However, the variation of pressure inside the boundary layer cannot

be ignored as in the case of flat stretching sheet.

of . N T _
| -:é 0.01, Q 0.1, RD_04 d-
sl N\M = Br.:..().?...K _____ =12, P _r___;__a_z _______
’@—10- .......................................................................................................................................
o

n=01,03, 06, 0.9

Figure 3.7: Variation of n on ]5(5)
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Figure 3.8: Impact of K* on ]5(6)

3.4.3 Temperature

Figure (3.9) provides the influence of dimensionless radius of curvature (K* = 0.1,0.3,0.9,1.2)
on temperature 5(5) It is noted that (K™*) plays notable role regarding enhancement of
thermal layer thickness. In fact for higher radius of curvature, the maximum amount
of heat is transferred from sheet. As a result temperature inside the fluid rises. Contri-
bution of volume fraction of nanoparticles (¢) on temperature 6(€) is captured in Figure
(3.10). It predicts that the temperature () rises for larger (¢). The sensitivity of
thermal layer thickness to volume fraction of nanoparticles (¢) is related with an en-
hancement of thermal conductivity of nanofluid. Figure (3.11) depicted the influence of
radiation (Rp = 0.4,0.6,0.8,1.0) on temperature 5(5) Temperature of fluid enhances for
larger estimation of (Rp). For higher (Rp) the surface heat flux rises which is re-
sponsible of temperature 6(¢) enhancement. Figure (3.12) elaborated the influence of
(Q < 0) on temperature A(€). It reveals that presence of heat generation (positive val-

ues) in thermal layer gives energy which is a responsible of temperature enhancement.
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As noted the temperature of fluid decays for heat absorption parameter (negative val-
ues). Moreover (@ = 0) corresponds to absence of heat generation/absorption. Outcome
of thermal Biot number (Br = 0.1,0.3,0.6,0.9) on temperature is shown in Figure (3.13).
Here 0(€) has significant improvement with a small variation in (Br) . Biot number (Br)
has direct relation with heat transfer coefficient (hy). The convective heat transfer coefhi-
cient enhances for higher (Br). As a result temperature rises. It is also found that there

is no heat transfer when Br = 0.

0.5F

| #=0050=01, Rp=04,1=05
04l N\ n=M=Br=09 Pr=62 I
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|
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K* =01, 0.55, 0.9, 12 H
0.0t,
0 1 2 3 4 5 6

Figure 3.9: Variation of K* on ().
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Figure 3.10: Variation of ¢ on 6(¢).
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Figure 3.11: Variation of Rp, on 6(¢).
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Figure 3.13: Variation of By on 6(€).
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3.4.4 Skin friction coefficient and heat transfer rate

Magnitude of skin friction coefficient (Rex)O'E’ C, ¢ decreases for higher curvature param-
eter K*(see Figure (3.14)). Figure (3.15)) gives the change in magnitude of local Nus-
selt number for multiple values of radiation parameter (Rp). Greater radiation parameter

enhances the magnitude of heat transfer coefficient.

—-5.07
\\\ ~~~~~~~~~~~
=55 Tte~l o LA
- I
> T~ Tl
w o [ TTre o T TS T
S b T T T
= <N T/ TS T
& —6.0
a7
N
-6.5¢
K*=10.1,0.5,0.9, 1.2
0 2 4 6 8
M

Figure 3.14: Variation of K* on (Re,)**C.;.
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Figure 3.15: Variation of Rp on (Re,) *°N,.
3.5 Concluding remarks

Magnetite nanofluid flow subject to thermal radiation and convective transport phenom-

ena is worked out. The important points are listed below:

1 Velocity of fluid declined for permeability parameter, volume fraction of nanopar-

ticles and magnetic parameter, however conflicting trend is observed for curvature

parameter.

1 Quite similar behavior are being remarked for curvature parameter and radiation

parameter on temperature.

(d Magnitude of skin friction coefficient reduces for dimensionless radius of curvature.

1 Magnitude of heat transfer rate rises for radiation parameter.
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Entropy generation in flow of
Fe3; O -water nanofluid with slip
effects

The purpose of present chapter is to study the flow of nanofluid due to non-linear stretch-
ing sheet. Nanofluid is suspension of iron oxide (Fe30,) nanoparticles and water(H20).
Modeling is arranged for viscous dissipation, nonlinear radiation and Joule heating ir-
reversibilities. Thermal and velocity slip aspects are accounted. Entropy generation
analysis is a major concern of present study. Thermodynamic irreversiblities is computed
by rate of entropy generation. Boundary-layer formulation of related consideration yields
non-linear system. Optimal homotopy scheme is adopted to derive and scrutinize the con-
vergent solutions subject to non-linear formulation. The plots for velocity, temperature,
entropy generation and Bejan number are shown through graphs. Further skin friction

and local Nusselt number are calculated and graphed.

4.1 Flow model

We examine two-dimensional flow of water-based nanofluid containing magnetite nanopar-
ticles. Fluid flow is generated by non-linear stretching sheet with velocity w,,. Magnetic
field of strength Bf is applied in transverse direction to flow. Effects of electric and in-
duced magnetic fields are ignored. Entropy generation analysis is developed. Energy ex-

pression is considered by involvement of Joule heating, viscous dissipation and non-linear
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thermal radiation. Heat generation/absorption aspects are also accounted. Further the
surface manifests velocity and thermal slip conditions (see Figure (4.1)). Let Ty and Ty,

be fluid and ambient temperatures respectively.

Nanofluid

u—=0,T >

Stretching sheet

du aTr
u:uw‘l'ﬁvafT = TW—I—BT@

Figure 4.1: Flow geometry.

The dimensional expressions are:

ou Ov
ou  Ou 0?u .
o (155 45y) =10 (33 ) - i .
or  oT T o\’
0 (452 +5) = g o (5)
a .
- (ai;) + 0 Bou* + Qo (T — T) (4.3)

with
0 oT
u:uw+ﬁv—u, v=0,T=T,+ Br— at y =0,
dy dy
u—0,T =T, as y — 0. (4.4)
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In above expressions (z,y) denote the cartesian coordinates, u,, = upz™(n the power-law
index), (u,v) the velocity components, 5, the velocity slip factor, fr the thermal slip
factor and )y the heat source/sink coefficient.

Heat flux through Rosseland’s concept gj, is

40*0T*  160*T° 0T
3k*0y 3k* Oy’

q;, = (4.5)

in which £* denotes mean absorption coefficient and ¢* the Stefan-Boltzmann constant.

After using Eqgs. (4.5) one has

a_T+ 8_T — 82_T+160-*£ T?’a_T + @ i
Yo U@y - s 0y? 3k* Oy dy Hns dy

tonpBiu® 4+ Qo (T — Tw) - (4.6)

We consider

2

o) = 7= fzy\/ (“5) 2 (1)

Expression (4.1) is satisfied trivially while Egs. (4.2) and (4.6) become

(%)

1 7 2n £12 " 2 r
((1—¢>2-5<1—¢+¢5—;>>f BEES R (e rwry () /=0

u = uafE). v = —\/ ("5 ) vt [ FO0+ " pef0)] @

(4.9)
we define
T =0Ty — Tso) + T, (4.10)
or
T = Too(1 + (6, — 1)0), (4.11)
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where 0, = % Now we have
(0, — 1)%(36%6™ + 6°6")
L (52w Rp) 0+ 22 | 4306, — 1)°(2007 1 0°0")
+3(6,, — 1)(02 + 66") (4.12)
+MEC<Unf> (-25) 2+ )25f”2+Q(n+1>0
(PCo)s \ 7
1— ¢+ oL | f0 = (4.13)
( (pOP>f
with
f(0)=0, f(0) =1+ S,f"(0),6(0) = 1+ Sr6'(0),
f'(00) =0, 6(c0) — 0. (4.14)
where M = p;foii: the magnetic parameter, S, = 3, (”TH) Z—(ij”—l the velocity slip
parameter, Rp = lng]i the radiation parameter Pr = (pfp)f the Prandtl number, 6,, =

2
%‘; the temperature ratio parameter, Fc = W the Eckert number, ) =

Qo
(pCp) puoz™~*

the heat generation/absorption parameter and Sy = fr (”TH) Z—;x”—l the thermal slip

parameter.

4.1.1 Quantities of interest

The skin friction coefficient C, ¢ and heat transfer rate N, are given by

~ T
Cyr = ——, 4.15
" g2 418)
Ny=—2 (4.16)
by (T~ 1)
where shear stress and wall heat flux are gives as
ou
Tw = lnf (—) , (4.17)
dy y=0
or 160*T3 0T
Gw = —kny =~ ’ — (4.18)
dy =0 3k* 0Oy =0
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In dimensionless form

(e, Gy = (") Tl (1.19)

(Reg) " N, = — (” ;r 1)0'5 (l‘;f + Rp(1 + (éw — 1) é(()))?’) 0'(0), (4.20)

in which local Reynolds number is Re, = uz"™ /v;.

4.2 Entropy generation

Local volumetric entropy generation rate per unit volume for MHD flow of Fe3O,—nanofluid
over non-linearly stretching sheet with slip effects is investigated. Entropy generation is

carried out through viscous dissipation, non-linear thermal radiation and Joule heating.

Here
kp |kop (OT\®  160*T3 (0T ) )
g = K |kug (OT\" 160717 (OT fns (91
7TZ | ky \ Oy 3k*k; \ Oy Ay
N ~— |, A,_/
Thermal irreversibility Fluid friction irreversibility (421)
Op %
B
N
Joule dissipation irreversibility )

2 s /N2
where TkQ {%—ff (g—g) + 1??;3* ka ’ (g—z) } signifies the entropy generation due to heat flow ir-
2
reversibility through radiation effects, & 7t (g—“) designates the irreversibility of the sys-
Y
tem owing to fluid friction irreversibility at constant density and 7L Bg?(u?) denotes the

Joule heating irreversibility with constant magnetic flux density. Dimensionless number

N, for the entropy generation is defined as

k, ~ n+1Y\ 5 n %,
o= (o o0 (5 =1) 17 Y (57 ) 8% Bt (51) 72

+MZLBrf?, (4.22)

_ TSgvs 3 3 _ ppugz®”
where N, = PN designates the entropy generation rate, Br = NG the Brinkman
number and ay = T“’T Toe = AT the dimensionless temperature difference. Bejan number
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is defined as the ratio of entropy generation by virtue of heat transport irreversibilty to
system total entropy generation. Bejan number varies from 0 to 1. When Be > 0.5
then irreversibility subject to heat transfer dominates. The viscous effects dominant
when Be < 0.5. Both effects are equal when Be = 0.5. Bejan number (Be) is

Entropy generation due to heat transfer

Be= Total entropy generation ’ (4.23)
or
(% +R(9<§w—1>+1)3>aT( 1) g2
Be = _ _ -
(nf —|—RD ( >+ > )92—1-37’(1 P ( ;1)fu2_|_M%fBrf,2’
(4.24)

4.3 Optimal homotopy analysis method

Optimal series solutions are developed for given flow system. For this purpose the initial
approximations < fol6), 50(§)> and linear operators (E 2 Eg) are given as:

- 1 ~ 1

Jol&) =17 S (L —exp(=¢)), 6(§) = 17 S, (exp(=£)), (4.25)

Li=f"—Ff Lz=0"-09, (4.26)

Lz [Cy + Cyexp(§) + Czexp(=€)] = 0,

L;[Crexp(§) + Csexp(—€)] = 0, (4.27)

with arbitrary constants C; (i =1 —5).

4.4 Convergence analysis

The non-zero auxiliary variables iy and fp govern convergence portion and also homo-
topic solutions rate. For optimal data of iy and Ay minimization concept is utilized by

taking averaged squared residual errors [77]:

Z N; (Z ),Zé(g)) : (4.28)
I= £=16%¢
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h- Y (S ie) | (429
J i E=16%¢

where ¢! represents total squared residual error, §¢ = 0.5 and k = 20. The ideal optimal
values of convergence control parameters are h; = —0.604206 and h; = —0.621623. We

write
0hy = 0, + 0, (4.30)

Total average squared residual error is o', = 0.0460441. Plot for total residual error
for magnetite nanofluid is depicted in Figure (4.2). Physical properties of density, spe-
cific heat and thermal conductivity is specified in Table (4.1). Table (4.2) presents
the averaged residual errors with optimal values. Decay is observed for higher order

of approximations.

D.]_I}D T T T T T T T T T T T T T T T T T T T T T T T
Fe; Oy —water

0.070 - i
_ 0050} ]
2 .
rﬁ \\\.

\\\-H—%
0.030} ~ 1
0.020 . . . 1 . . . ] , , , ] , . , 5 , , , _T__.__.__.——-
2 4 ] 8 10 12 14

Figure 4.2: Residual error for Fe;O4-water nanofluid.
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Table 4.1: Thermo-physical properties of magnetite nanoparticles and water [32].

— k(W/mk) p(kg/m?) o(Um)™" Cy(j/m?)
FesOy(Iron oxide) 9.7 5180 2500 670
H,O(Pure Water)  0.613 997.1 0.05 4179

Table 4.2: Individual averaged squared residual errors for magnetite water nanofluid.

o,

g
Em

DS 0ok |E

14
16
18
20

6.40585 x 1073
2.88705 x 1073
1.81595 x 1073
1.30355 x 1073
1.00570 x 1073
8.12689 x 1074
6.78328 x 1074
5.79881 x 1074
5.04915 x 1074
4.46608 x 1074

4.35807 x 1072
3.27522 x 1072
2.82566 x 1072
2.57135 x 1072
2.40389 x 1072
2.28336 x 1072
2.19146 x 1072
2.11851 x 102
2.05877 x 1072
2.00897 x 1072

4.5 Results and discussion

Effect of various flow variables satisfying (0.02 < ¢ < 0.05), (0.1 < M < 0.4),
(0.2 < Rp < 0.5), (1.1 < 0, < 1.5), (0.1 < Q < 0.5), (0.01 < Ec < 0.1), (0.6 < S, < 0.9),
(1.1 <n < 1.5) and (0.8 < Sy < 1.2) for velocity f'(€), temperature 0 (€), entropy rate

and Bejan number are presented in Figures (4.3)-(4.23).

4.5.1 Velocity

Figure (4.3) elaborates influence of volume fraction of nanoparticles (¢ = 0.02,0.03,0.04, 0.05)
against velocity f’ (€). Larger values nanoparticles volume fraction gradually reduces ve-
locity of nanofluid. Physically fluid particles experience and offer high resistance due to
incremental values of ¢ and as a result the velocity decays. Characteristics of power-law
index (n =1.1,1.3,1.4,1.5) on velocity is depicted in Figure (4.4). For higher values of

power-law index (n) the velocity of fluid enhances. Figure (4.5) exhibits influence of
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magnetic parameter (M = 0.1,0.2,0.3,0.4) on f’(é‘). Velocity of fluid declines for higher
(M). Physically the Lorentz force appeared through magnetic parameter and becomes
stronger due to an increment in (M). In fact the stronger Lorentz force has ability to
reduce the fluid velocity. Figure (4.6) elucidates the influence of velocity slip parameter
(S, = 0.6,0.7,0.8,0.9) on f'(£). It is noted that higher (S,) reduce the velocity. Physi-
cally with an increment in (S,) the stretching velocity is partially transferred to the fluid

and consequently the velocity reduces.

EC:OOJ M=01 0= 02 RD—O3 Sy —06,

3 ST_08§—]4n—15Pr—62

Figure 4.3: Variation of ¢ on f/(£).
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Ec—OOI,?ﬁ 005 M = OJQ 02 RD—OS’S—Od

S;—OcS’ :9 =14, Pr—62

Figure 4.4: Variation of n on f'(€).

Ec= 001, 4=0050=02 Ry=03,5, = 0.6,
b S7 =08, 6 = 14,015 Pr=62 :

Figure 4.5: Variation of M on f'(€).
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ogl\ T T A T R

Ee=001,6=005M=010=02 Ry=03, |
' Sr =08, 8, =14,n =15, Pr =62

0'6 _.\1;‘."‘- ............... .......... I— .......... ...................... ...................... ...................... .........................

& 0.4 XA ______________________ ______________________ ______________________ ______________________ _________________________
: S, =0.6,0.7,0.8,0.9 : 5

02t :\ S ...................... ...................... ...................... .........................
oof____ . —

0 1 3 4 5 6

Figure 4.6: Variation of S, on f'(¢).

4.5.2 Temperature

Figure (4.7) delineates the the influence of magnetite nanoparticles volume fraction
(¢ =0.02,0.03,0.04,0.05) on temperature for FezO,-water nanofluid. For higher (¢)
the temperature of fluid enhances. Physically an enhancement in thermal conductivity
of nanofluid leads to rise the temperature of fluid. Variation of (n = 1.1,1.3,1.4,1.5) on
fluid’s temperature 6(€) is plotted in Figure (4.8). Power-law index (n) has direct relation
with temperature (). Influence of radiation parameter (Rp = 0.2,0.4,0.5) against tem-
perature A(¢) is determined in Figure (4.9). It is observed that radiative heat transfer
rate enhances with an increment in (Rp). This is because of larger (Rp) the coefficient
of mean absorption decreases. Thus temperature enhances. Impact of Eckert number
(Ec = 0.01,0.03,0.7,0.1) on temperature A(€) is displayed in Figure (4.10). Physically
mechanical energy is converted into heat energy. It is because of internal friction of
molecules. Hence temperature rises. Figure (4.11) revealed the behavior of temperature

ratio parameter (,,) on 8(€). Clearly temperature enhances through (6,,). It is noted that
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temperature of sheet is higher in comparison with ambient temperature for higher (6,,.)
Figure (4.12) displayed effect of (Q = 0.1,0.2,0.4,0.5) on 6(¢). Temperature of fluid en-
hances for () > 0). Physically internal energy of liquid particles rises by higher values
of (@) and so temperature increases. Moreover reverse trend is observed for (Q < 0).
Figure (4.13) illustrates the variation of thermal slip parameter (St = 0.8,1.0,1.1,1.2) on

0(&).Temperature of fluid declines via higher (Sy). Heat transfer from surface towards

adjacent layers of fluid trough larger(Sr). Hence temperature declines.

0 1 2 3 4 5 6

Figure 4.7: Variation of ¢ on é(é)
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Ec—OOI;ﬁ 005 M = O]Q 0.2, R= 03 Sy =0.6,]

St =0.8, 6, =14, Pr=6.2

Ec—om¢ 0.05, M ~01,0-02, S,,_Oé
N Sf—oga—un_mpr—ofz

Figure 4.9: Variation of Rp on ().
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.
N
e ¥
.
:
0.8F %
.

0.6/

&)

0.2

0.0, i - é .
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Figure 4.10: Variation of Ec on (¢).

5 al Y Ec=001,¢=005M=010=02 Ry=0.3, S, =006,
. _..,'\.‘(‘ ............... P oo 3

o 1 2 3 4 5 6

Figure 4.11: Variation of 6,, on 6(¢).
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Ec=001,=005M=01 Rp=0.3, 5, =006,

.  S7 =088 =14n=15Pr=62

< 0.4

0.2}

0.0 T s

0 1 2 3 1 5 6

Figure 4.12: Variation of Q on ().

Figure 4.13: Variation of Sy on 8(€).
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4.5.3 Local entropy generation rate N,(¢) and Bejan number Be

Figures (4.14) and (4.15) are plotted to examine behavior of (¢) on Ny(§) and Be. Bejan
number reduces while rate of entropy generation enhances. Physically with increasing
values of (¢) the magnetic and fluid friction effects are weaker than heat transfer. Fig-
ures (4.16) and (4.17) demonstrate the impact of (Br) on Ny(£) and Be. Here larger
(Br) reduces Bejan number (Be) and increases entropy generation rate (N,(£)). Ba-
sically Brinkman number measures heat released by viscous heating in a relation to
transfer of heat due to conduction of molecules. Near surface the viscous effects produce
less amount of heat energy when compared with transfer of heat energy by molecu-
lar conduction. Large amount of heat evolved among fluid particlesis a cause of entropy
enhancement. As a result system disorderliness also enhances. Figures (4.18)-(4.19)
demonstrate aspects of temperature difference parameter (ar) on N,(§) and Be. Both
quantities have increasing features for larger (ar). Heat transfer effects are dominant
over magnetic and frictional fluid effects via higher (ar). Hence Be rises. It can be
noticed from figure that (N,(£)) — 0 as we move far away from surface. Figures (4.20)-
(4.21) show the radiation parameter (Rp) behavior for (N,(£)) and (Be). Qualitative
similar behavior is noted for (Be) and (N,(§)) . Both entropy rate and Bejan number are
enhanced via (Rp). Due to enhancement of internal energy of given flow system the
rate of local entropy generation (Ny(£)) and (Be) are increased. Figures (4.22) and
(4.23) elucidated the behavior of (M) on (N,(§)) and Be. Diverse behavior of (M) on
Ny(€) and Be is observed. Greater M creates an enhancement in (Ny(¢)) while Be de-
cays. Clearly (M )is very sensitive to entropy generation enhancement. For higher (M)
the Lorentz force enhances due to which resistance of fluid enlarges. As a result entropy
rate enhances. Bejan number fluid friction irreversibility dominates over heat and mass

irreversibilities and thus (Be) decays.
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-

00_435:0.02,0;03,0.04,0.@5 e A — —

Figure 4.14: Entropy generation rate N, via ¢.

0.0 05 10 15 20 25 30

5 Ec= 001, M =0.1,0= 0.2, Rp=0.3,
N Br=04,S,=ar= 0.6, Sy = 0.8,
VN n=156,=14 Pr=6.2

NN\ = 0.02 0.03, 0.04, 0.05

15

Figure 4.15: Bejan number Be via ¢.
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1.0}
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~ 0.6}
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Ec:001¢ 0.05, M = OZQ 0.2, Rp =03,
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§n:15¢9:14 Pr=62
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Figure 4.16: Entropy generation N, via Br.

Ec=001,4=005M=010=02 Rp=03,

Sy =ar =06, St =03,

¢

Figure 4.17: Bejan number Be via Br.
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08‘t _____________________
' é Br—04S—O6ST—08

o6\ n=154=14 Pr_az...________§ ______________________

Figure 4.18: Entropy generation NV, via ar.

- Ec=001,4=005M=0.1,0=0.2, Rp =0.3,
_____ Br =04,8, =06, Sy =0.8,

1.5¢
n=15 64,=14Pr=62

0.5}
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0.0,
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Figure 4.19: Bejan number Be via arp.
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Figure 4.20: Entropy generation N, via Rp.

Ec= 001, 4=005M=010=02,
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Figure 4.21: Bejan number Be via Rp.
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1.5

0.0
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Figure 4.22: Entropy generation NV, via M.

Figure 4.23: Bejan number Be via M.
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4.5.4 Surface drag force and heat transfer rate

Figures (4.24)-(4.27) are sketched to show the influence of magnetic parameter (M), ther-
mal slip (S, ), temperature ratio parameter (6,,), Eckert number (Fc), velocity slip param-
eter (Syp) and nanoparticles volume fraction (¢) on skin friction coefficient (Re,)"” C.;
and heat transfer rate (Re,) " N,. Figure (4.24) highlights the features of magnetic
parameter (M) on skin friction coefficient (Re,)"” Cy;. It is reported that (Re,)"” Cy;
reduces through larger (M). Skin friction coefficient (Re,)"” Cys enhances for higher vol-
ume fraction of nanoparticles (¢) is shown in Figure (4.25). Figures (4.26) and (4.27)

guaranteed that larger (S7) and (6,,) show a decay in heat transfer rate (Re,) " N,.

L15] weonomasae - I
ol o N\—" o T
_10si— I S\ — [

5 T
S 100 T g o o
g 095t =T - __________________________ .—a—*‘"""#
0904-—* _________________________ — o
0.850 .. R — .
00 01 0.2 03 0.4 0.5

Figure 4.24: Variations of M and S, on (Rex)o'5 C’Sf.
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2.0t

(Re,)*Cy

0.6 0.8

Figure 4.25: Variations of ¢ and M and on (Rex)o'5 ésf.

ST = 0.2, 0.4, 0.5, 0.6

Figure 4.26: Variations of Sy and R and on (Re,) ™" N,.
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025

0.0 05 1.0 1.5 2.0

Figure 4.27: Variations of 8,, and Ec and on (Regc)fo'5 N,.

4.6 Conclusions
Here flow of magnetite nanofluid with slip effect is explored. The outcomes are mentioned
below.

1 Velocity declines for higher values of volume fraction of nanoparticles, magnetic

parameter and velocity slip parameter.

[ Temperature of fluid shows increasing behavior for volume fraction of nanoparticles,
Eckert number, radiation parameter and temperature ratio parameter while decays

for thermal slip parameter.

1 Entropy generation rate enhances through higher volume fraction of nanoparticles,

Brinkman number and radiation parameter.

d Bejan number enhances for temperature difference parameter while decays for Brinkman

number.

3O (Re,)"” Cy; is more for larger volume fraction of nanoparticles is observed.
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Three-dimensional flow

of Fe3O,-water nanofluid with
homogeneous-

heterogeneous reactions

An analysis has been carried out in this chapter for bidirectional nanofluid flow due to
non-linear stretching sheet. Pure water is treated as a base fluid. Nanoparticles of mag-
netic characteristics are considered. Effects of non-linear radiation and non-uniform heat
sink /source are examined. A simple model of homogeneous-heterogeneous reactions is
used. Optimal homotopy analysis method (OHAM) is adopted for solution development
of the non-linear system. Optimal estimations of auxiliary variables are obtained. Im-
pact of several non-dimensional parameters for velocity components, temperature and
concentration fields are examined. Graphs are plotted for analysis of surface drag force

and heat transfer rate.

5.1 Flow equations

Three-dimensional flow of an electrically conducting viscous nanofluid is examined. Flow
is caused by non-linearly stretching sheet at z = 0. An incompressible fluid occupies
z > 0. Assumed that sheet is stretched with velocities u,, = ug(x+y)" and v,, = vo(x+y)"

where wug, vy are the constants (see Figure (5.1)). Contribution due to non-uniform heat
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source/sink and non-linear radiation are studied. Applied magnetic field of strength B

acts transversely to flow. Omission of electric and induced magnetic field is ensured.

Nanoparticles
(Macroscopicview)

Figure 5.1: Problem sketch.

Homogeneous-heterogeneous reactions of two typical chemical species A and C' have

been analyzed. Homogeneous reactions for cubic auto catalysis satisfy
A+2C — 3C, rate = Kja*c™, (5.1)
while on catalyst surface the required heterogeneous reactions is given by
A — C, rate = Kya™, (5.2)

where K and K are rate constants of chemical species having concentrations a* and c*.

Non-uniform heat source/sink) is defined by

"o kfuw (Z) o 7} o
Q" = (A=) [ (r 1) () + (T = T0)]. 53)

where I; and I, are the heat generation/absorption coefficients respectively.

In Cartesian coordinates, the flow problems are governed by

@_,_@4_6_10—0
oxr Oy 0z
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ou  Ou ou 0?u .

Pnf (U% + Ua—y + w@) = Unf (@) — anfBozu, (55)
v O v 0% .

s (v + o e ) = () — ot (5.6

2 *
0y (155 + 055 + 05 ) =t (55 ) + g (TP52) @ 61

ox dy 0z 022 3k* 0z 0z
da*  Oa* da* 0a* 5
=D — Kqa*c* .
uax —H]&y +w8z A a*c*, (5.8)
dc* Oc* dc* 0?%c* )
= Dc—— + Kia*c* .
u@x+vay+w82 C@z2+ e (5.9)

U=1uy=1ug(x+y)", v=v,=vo(x+y)", w=0, T ="T,,

da* oc*
Dy a = Kya*, D¢ ¢ = —Kya™ at z =0,
0z 0z
u—0,v—=0, a* —>ay, T — T, ¢ —=0asz— o0, (5.10)

where (u, v, w) are the velocity components along (z,y, z) directions and D4 and D¢ the
diffusion coefficients respectively.

Making use of the following transformations

w=o(x+9)" P, v=ro(r+9)" 7). fzz\/(”gl) ot
w:—¢(”;1)u%<x+y>n—l (F+a)+2qe (7 +)].
) = 7 @ = @i (). ¢ = s (). (.11

The continuity equation is satisfied automatically and Egs. (5.5)-(5.10) become

((1 _¢)2,5(11_¢+¢g_;)) "+ (f+§> — nQ—J—ll <f/+§/> 7

- % ;7:
M(Uf) (1—¢+¢§—;)f 0 (5.12)
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((1—¢>2-5<11—¢+¢5—;>>§m+ I §> <f “i)a

(% + RD) 7+ 2 (L + )
1 (ew _ 1) (3029/2 + 03&//)
L—¢+ o ) | +Ro | +3(6, — 1)%(200% + 6°6")
+3(0, — 1)(02 + 60")

L

+Pr(f+3)d =0, (5.14)
L 5”+(f+g)j’— 2 K,j# =0 (5.15)

Sc n+1 " ’ '
9 5”+<f+g>§’+if(j§2:0 (5.16)

Sc n+1 " ’ '

F(0) = 0, f(0)=1,§(0)=0,g(0)=1, §(0)=0,
7'(0) = K,j(0), 65 (0) =—K,j(0), (5.17)
f'(00) =0, ¢’ (c0) = 0, 0(c0) =0, j(o00) =1, §(c0) = 0. (5.18)
Here ¥ = 1 signifies ratio variable, M = pr{) fﬁ,l the magnetic parameter, Rp = 12‘,;?50
the radiation parameter, 6, = f—w the temperature ratio parameter, Pr = Uf(zi)f the
oo f

Prandtl number, § = % the Diffusion ratio coefficients, Sc = g—; the Schmidt number,

K, = & the homogeneous reaction strength and K, =

uo(z+y)" n+1 the

ug(zty)" T

heterogeneous reaction strength. Here we make an assumption that diffusion coefficients

for both chemical species are same i.e. § = 1 and thus

J(n) +3(n) =1 (5.19)

Egs. (5.15) and (5.16) yield

(S%) <f + 9) J - %KJ (1-J) =0, (5.20)
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with the boundary conditions

J'(0) = K.j(0), j(o0) = L. (5.21)
5.1.1 Physical quantities

Skin friction coefficient (C’Sfx and C’S fy> and local Nusselt number (Nu> are defined as

Twzx ~ Tw N (ZE‘ + y) qw
Copp = —2 =% N,=—— 2% 5.22
= o2 T ey (Ta— 1) (5-22)

sfy —

Here surface shear stress along x and y directions are given by

ou ov
Twz = Hnf <$) y Twy = Hnf (&) . (523)
z=0 z=0

Wall heat flux is given by

oT
ek o 24
Dimensionless expressions of (Cyfs, Cif,) and (N,) are
5 A n+
(Rem>0503fz = ( 9 ) 25f//<0)7
5~ n+ ~
(Rey)0505fy - ( 5 ) W2 (1 )2.59’/(O)a
o < ks _ _
(Rep) " Nu = — (n 5 ) [k‘ + Rp(1+ (6, —1))0(0))*| (0), (5.25)
f
in which Re, = “(’(#jfnﬂ and Re, = ”(% denote the local Reynolds numbers.

5.2 Optimal homotopic solutions

In the frame of HAM, the optimal series solutions are developed. We select suitable

operators and initial guesses in the forms

fo(§) = 1—exp(=¢), Jo(§) = ¥ (1 —exp(=¢)),

Q€)= exp(—€), j =1 S exp(—| ——K°(6) (526)
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with
‘Cf _ ]?/// . /7 Eg _ g/// . f]/, /Cé _ é// o (9’ [’7 _ j// —j, (527)

and

L¢[Cy+ Crexp(§) + Czexp(—E€)] = 0,
L;[Ca+ Csexp(§) + Csexp(—¢)] = 0,
L;[Crexp(€) + Csexp(=¢)] = 0,

L5 [Coexp(§) + Crpexp(=§)] = 0, (5.28)

in which arbitrary constants are C; (i =1 — 10).

5.3 Optimal convergence analysis

In homotopic solutions the non-zero auxiliary variables hy, hy, hy and h; ensure conver-
gence analysis. For optimal data of Iy, hg, hy and h; we have utilized the concept given
by Liao [77]. The averaged squared residual errors of the m-th order of approximations

is applied to reduce the CPU-time and are given as follows:

= > (Z ST , (5.29)
=0 ; =0 £=16%¢ |

‘)
(Sios) | o

=16*¢ |

)
3@1
I
Ea
+ | =
[a—
FM@
=}

gz:,ﬁz N; (Zﬂs),Zg(@,Zé(s)) : (5.31)
. . . e

_ 1 ko[ m_o m m_
o =71 D N;(Zf(&%Zé(f%Zi(&)) : (5.32)
T3 i i=0 i=0 i=0 £=15%¢ |
Following
o, = ol + % + &b, + ol (5.33)
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Three-dimensional flow of Fe;O,-nanofluid with homogeneous-heterogeneous reactions

where ¢! constitute total squared residual error, 6*¢ = 0.5 and k = 16. For magnetite wa-
ter nanofluid the convergence control parameter have optimal values like A 7 = —0.686258,
hg = 0.651312, h; = —0.112385 and fi; = —1.92267 and total average squared residual
error is of, = 0.384779 taken at 2nd order of approximations. Plot for total residual error
of Fe3O, -water nanofluid is drawn in Figure (5.2). Thermophysical properties such
as density, specific heat and thermal conductivity is shown in Table (5.1). By using
optimal values of h the averaged squared residual errors is computed in Table (5.2).
Moreover, the averaged squared residual errors show decreasing trend for higher order

deformations.

Fe; O, —water

0.70 -

0.50 - -

SITOr

030} T ]

Figure 5.2: Residual error for magnetite-water nanofluid.
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Table 5.1: Thermo-physical properties of magnetite nanoparticles and water.

— EW/mk) plkg/m®) o(Um)"" Cp(j/m’)
Fe304(Iron oxide) 9.7 5180 670 25000
H,O(Pure Water) 0.613 997.1 0.05 4179

Table 5.2: Individual averaged squared residual errors having optimal values of auxiliary

variables for magnetite water nanofluid.

m e{j@ el ef; e{;

2 297942 x 107*  4.38213 x 1075 9.50986 x 107> 3.84342 x 107!
4 6.50099 x 107° 8.08571 x 107% 5.50189 x 107° 3.41095 x 10!
6 297292 x 1077 3.26840 x 107% 3.85403 x 10~ 3.15708 x 10"
8 1.72782x 107> 1.68369 x 107% 2.97053 x 107> 2.97885 x 10~!
10 1.13359 x 107> 9.92329 x 10~7 2.42156 x 107° 2.84327 x 107!
12 8.03415 x 1075  6.40412 x 1077 2.04679 x 107> 2.74327 x 107!
14 6.00804 x 1075 4.41266 x 10~7 1.77406 x 1075 2.65008 x 107!
16 4.67339 x 107%  3.19449 x 1077 1.56633 x 107° 2.58267 x 107"

5.4 Physical interpretation

This section presents the effects of (1.0 <n <1.3),(0.2 < M <0.8), (0.1 <V <0.7),
(04 < Rp <0.7),(0.02< ¢ <0.05),(1.3<6, <1.6), (02 < K, <0.5)and (0.2 < K, <0.5)
for magnetite-water nanofluids on velocity components, temperature and concentration

distributions. Plots for skin friction coefficient and heat transfer rate are also sketched.

5.4.1 Velocity components

Figure (5.3) illustrate the effect of (¢ = 0.02,0.03,0.04,0.05) on velocities f'(£) and
g'(&)-

cles enhances for larger (¢) which produce a decline in velocities f'(€) and §'(€). Be-

Higher (¢) reduces both velocities. Physically resistance between fluid parti-
havior of power-law index (n = 1.0,1.1,1.2,1.3) on the velocities is shown in Figure
(5.4). Clearly motion of fluid particles rises for higher (n). Physically viscosity of fluid
reduces due to higher values of (n).

Therefore both velocities are enhanced. Figure

(5.5) is sketched to indicate the behavior of magnetic parameter (M = 0.2,0.4,0.6,0.8)
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Three-dimensional flow of Fe;O,-nanofluid with homogeneous-heterogeneous reactions

for velocities f'(¢) and §(€). For larger magnetic parameter (M) both velocities of fluid
decay. As expected drag force (which is known as Lorentz force) is created by applica-
tion of magnetic field. This force has ability to slow down flow. Figure (5.6) is graphed
to study the variation in velocities (along = and y directions) respectively for higher
ratio parameter (¥ = 0.1,0.3,0.5,0.7). Higher values of (V) constitute more veloc-
ity field along y-direction while opposite trend can be observed for velocity field along
a-direction. Physically larger values of (U = ) lead to either an increase in ( o)
or decrease in (ug), the constant along z -direction decreased and ¥ along y-direction

increases correspondingly.

1.0F ! ! ! ! '
| V=01 K=Kk=02 Ry=04M=08, |
0.8_—--“1-\- _________________ ___________ .=13n=Sc=11Pr=62 ________________________ Z
W O0.6F RN\
g
@
&: 04 ................................ ........................
0.2 ................................................................ .........................
0 1 2 3 4 5 6

Figure 5.3: Variation of ¢ on f'(€).
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=005 Y¥=01K=K-=02 Rp=04M =08,

0.8“ ................... ............ 62\_- = ]3, SC = ]], Pr = 62 ................. ........................ 4

Figure 5.5: Variation of M on f'(€) and §'(€).
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1.0F 5 5 5 5
;_d =005 K, =K, =02, Rpb =04, M = 0.8,

Figure 5.6: Variation of ¥ on f’(f) and §'(§).

5.4.2 Temperature

Influence of nanoparticles volume fraction (¢ = 0.02,0.03,0.04,005) on 5(6) is displayed
in Figure (5.7) . An increasing behavior of thermal field and associated layer thickness
is noted via (¢). It is due to the fact that higher values of (¢) corresponds to more
thermal conductivity as well as thermal layer thickness. Figure (5.8) represents the vari-
ation in temperature for radiation parameter (Rp = 0.4,0.5,0.6,0.7). Temperature of
fluid increases for larger (Rp). Here Rosseland radiative absorptive (k*) reduces due
to strengthening the radiation parameter. The radiative heat flux enhances and conse-
quently the rate of radiative heat transfer enhances inside the fluid. Higher radiative
heat transfer to the fluid is responsible for an increase in thermal layer growth. Impact of
temperature ratio parameter (6, = 1.3,1.4,1.5,1.6) on A(¢) is illustrated in Figure (5.9).
Increasing behavior is observed for temperature with an increment in (6, = %@) It is
due to the fact that temperature of stretching sheet is higher than ambient temperature

with increasing (6,,).
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L ¥=01K=Kk-=02 Rp=04,M=0.38,
- ﬁl_-:1.3,n_TSc:I.f, Pr:56.2
0.6}
W
0.4}
0.2
0.0}
0 1 9 3 4
S
Figure 5.7: Variation of ¢ on 0(¢).
1.0F,

g-=0.05; ¥= 0.1, k=K =02, M =0.5,

Figure 5.8: Variation of Rp on 6(¢).
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1.0F3
$=0.05 ¥ =01K=k=02M=03,
0.6
v
D
0.4
0.21
0.0
0 1 2 3 4

Figure 5.9: Variation of 6,, on é(f)

5.4.3 Concentration

Outcome of nanoparticles volume fraction (¢ = 0.02,0.03,0.04,0.05) on concentration is
illustrated in Figure (5.10). Here concentration of nanoparticles is an increasing function
of volume fraction of nanoparticles (¢). Figure (5.11) is plotted to examine the impact of
homogeneous reaction parameter (K, = 0.2,0.3,0.4,0.5) on concentration j(¢). Concen-
tration reduces for higher values of homogeneous reaction parameter. It is through the
fact that reactants are consumed during homogeneous reaction. Behavior of heteroge-
neous reaction parameter (K, = 0.2,0.3,0.4,0.5) on the concentration is displayed in Fig.
(5.12). It has been examined that large heterogeneous parameter shows an increasing
trend in concentration. For higher values of (K) the diffusion coefficient reduces and less

diffused particles enhances the concentration.

94



Chapter 5

1.0F

..........................................................................................................................................

Figure 5.11: Variation of K,¢ on j(£).
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1.0f° B s

09 ________ .@» _____________________ ________________________

08 Ak ,, (,é =0.05, 55” — O-I,EK,, 02 ERD =04, ]
M:O.:(S’, tﬁ"-:].ﬁ’,H:SC::J.],

;4_:4“‘_‘;- 0.7 ,, ..................... ............ Pr—?6.2 ........... ........................
0.6/ f,' _____ Ks.:_a,z,_.a__i;,_a,‘;,_0__5__2 _____________________ ________________________
ost 7 .. ..................... ..................... ..................... ........................
0.4}

Figure 5.12: Variation of K, on j(¢).

5.4.4 Skin friction coefficient and local Nusselt number

Figures (5.13)-(5.16) show the skin friction coefficients (Cf, and Csy,) and local Nusselt
number (N,,) for different values of volume fraction of nanomaterial, magnetic param-
eter, radiation parameter and temperature ratio parameter respectively. Skin friction
coefficient along x-direction depicts increasing behavior via (¢) and (M) (see Figure
(5.13)). Figure (5.14) shows that skin friction coefficient along y-direction enhances for
(¢) and (V). Figure (5.15) depicts that heat transfer rate enhances against (¢). Magni-

tude of the local Nusselt number enhances via higher (fw) (see in Figure (5.15)).
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Lo ............................................ o ""f’f,_
© 4 =0.02,0.03, 0.04, 0.05

Figure 5.13: Variation of ¥ on (Rer)o'5 Csfa-

0 2 4 6 8
@

Figure 5.14: Variation of ¢ on (Re,)"” Cyyy.
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30|
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Figure 5.16: Variation of #,, on (Rex)0'5 N,.
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5.4.5 Comparative study

A comparison between analytical results of the problem and previous literature have been

shown in Table (5.3). A good accuracy is obtained between two results.

Table 5.3: Comparison of the values of skin friction coefficient when M =1, =1, = I; =
I; = 0 and variation of ¢.

Junaid et al. [28] =~ Mahantesh et al. [29]  Present study

no T ¢ f10) | F(0) 1) | g 0y | g0
n>1 00 00 1.62435 0.0000 1.62435 | —0.0000 1.6243 | 0.00000

n>=1 05 0.0 198942 | 0.99471 1.98942 | 0.99471 1.98947 | 0.99477
n=1 10 0.0 229718 | 2.29718 2.29718 | 2.29719 2.29712 | 2.29715

n=>1 01 0.05 --- --- 2.20611 | 1.10306 2.20611 | 1.10306
n>1 01 0.1 --- --- 2.33770 | 1.16853 2.33711 | 1.16850
n>1 01 0.2 --- --- 2.42320 | 1.21160 2.42380 | 1.21130

5.5 Conclusions

Main points are as follows:
1 For higher magnetic parameter the velocity of fluid reduces.

1 Velocity components f’ reduces while ¢’ enhances for higher values of stretching

rates ratio.

(1 Behavior of nanoparticles volume fraction for momentum and thermal layers is

opposite.

(1 For fluid concentration the strength of heterogeneous reaction variable increases

while opposite trend is noticed for homogeneous reaction case.

1 Higher values of magnetic parameter and nanoparticles volume fraction enhance

skin friction coefficient.
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Darcy-Forchheimer bidirectional
flow in (SWCNTs) and (MWCNTSs)
carbon nanotubes

with homogeneous-heterogeneous
reactions

In this chapter modeling is provided for three-dimensional flow of water-based carbon
nanotubes. Flow generated is due to bidirectional non-linear stretching surface. Char-
acteristics of both single-walled carbon nanotubes (SWCNTSs) and multi-walled carbon
nanotubes (MWCNTSs) are discussed. Darcy-Forchheimer model is used for flow saturat-
ing porous medium. Heat transfer characteristics are elaborated considering convective
heating process. Homogeneous-heterogeneous reactions are also accounted. The appro-
priate transformations lead to strong nonlinear ordinary differential equations. Optimal
homotopy analysis technique (OHAM) guided to convergent solutions.The plots are mani-
fested and examined with respect to various variables. Skin friction coefficient and Nusselt
number are computed and elaborated. The results for both SWCNTs and MWCNTSs are

observed and compared.
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6.1 Problem formulation

Consider steady three-dimensional (3D) flow of water-based carbon nanotubes (CNT's)
due to bidirectional non-linearly stretching of surface. Heat transfer mechanism are ex-
amined by considering Xue model [2]. An incompressible fluid saturates the porous
space satisfying Darcy-Forchheimer relation. We consider cartesian coordinate system
in which surface is coincident with zy—plane and fluid occupies the space z > 0. Let
Uy = up (x +y)" and v, = v (z +y)" be velocities of stretching surface along the z—
and y—directions respectively. Here ug, vy and n > 0 being the constants. The con-
vectively heated mechanism gives surface temperature which present hot fluid tempera-
ture as T and heat transfer coefficient hy. Flow analysis is developed in the presence
of homogeneous-heterogeneous reactions. The resulting boundary layer expressions for

present three-dimensional flow are

0, o0 o0, o

u% + UZ_Z + w% = Ups (%) - Vﬁ—?u — Fau?, (6.2)
u% + UZ_Z w? = Upy (%) - VR—TZU — F?, (6.3)
ug—T + vg—z + wg—T nf (?;—f) ) (6.4)

u%;* + va(;;* + w%f - DA%QZ“; — Kja*c”, (6.5)
u%f; vgj —|—waacz* = DCZQZC; + Kya* ¢ (6.6)

The associated boundary conditions are

U=1uy =up(x+y)", v=0v, =v(x+y)", w=0,

oT Oa* oc*
nf@z f(f )a A@z 24, C@z

u—0,v—0,T—Ty, a*— ay, ¢ — 0 when z — o0, (6.7)

—k

= —Ksa" at z =0,
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Here u,v and w are flow velocities in x—, y— and z— directions respectively, F, = m@
the Forchheimer coefficient of porous media, «, the porous medium permeability and Cj
the drag coefficient.

Xue [2] proposed a theoretical model for which

) g

Hn = —T——>5E) Pnf=2PpP (1 _¢)+PCNT¢7 Qnf = 77—

f (1 . ¢>2.5 f f f (pcp)nf

in
Unf = 0_;7 (pcp)nf = (pCp)f (1=9)+ (pCp)onr @,
k k +k
by _ U=+ Wm0t (6.8)
- k k ks :

ky (1—9¢)+ 2¢kCNTf—kf In cggj !

where 1,y stands for nanofluid effective dynamic viscosity, py for dynamic viscosity of
base fluid, p,s for density of nanofluid, p; for base fluid density, ¢ for volume fraction of
nanoparticle, (pC,) s for effective heat capacity of nanofluid, ponr for carbon nanotubes
density, kcnr for thermal conductivity of carbon nanotubes and &y for base fluid thermal
conductivity.

Selecting the transformations

o= [ g (T a) it (4 9)], )

continuity equation Eq. (6.1) is trivially verified while Eqgs. (6.2)-(6.7) yield

1 o =\ 2n PR
(1—¢)2'5(1—¢+”%¢)f +<f+g> S (n+1) <f+g>f
2 A 2,
(D) 1 (um”%ﬁ)f “mrp 0 610
1 "+ (Fra)d— (7 +d)d
(1= 0P (1 4 22220) (1)
__2 A 7—— 2 Eg—0 (6.11)

(n+1)(1_¢)2.5<1_¢+%¢>9 (n+ 1)
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L kg 5 (pep)onT -\ 4
ot (12 g4 WD)t g — 1
Ry +( 6+ 28T (F+3)8 =0, (15)
1 ~n r ~\ = 2 T2
_ — K = 12
(SC)] +(f+g)3 K5 =0, (6.12)
9 g”+<f+g>§’+if(j§2:o (6.13)
Sc n+1 " ’ '
F0) =0, f(0)=1§(0)=0, §(0) =0, ¢(0) = ——ffBT(l ~6(0)),
jl (O) = Ksj (0)7 55/( ) = —1y] (0)7 (614)
f(00) =0, ¢ (00) =0, 8(c0) =0, j(c0) =1, 5(c0) = 0. (6.15)
Here \ = W denotes the permeability parameter, W = * the ratio variable, F, =

G ' T Ry T - _ vsleen)y
N Forchheimer number, By = w\ T\ g the Biot number, Pr = K the

Prandtl number, Sc = ;—2 the Schmidt number, § = g—j the ratio of diffusion coefficient,

2 .
K, = ﬁﬁ the homogeneous reaction strength and Ky = g—i, /uo(TJ;)"*l %H the

heterogeneous reaction strength.

When D ; = Dy then = 1 and thus

7€) +5(6) =1 (6.16)
Now Eqs.(6.12) and (6.13) give
(%) ' (F+a) T N FE (=) =0, (6.17)
with the boundary conditions
7'(0) = K,j(0), j(o0) = 1. (6.18)
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6.1.1 Quantities of interest

The expressions for skin friction coefficients and local Nusselt number are

(Rex)O'E’ Car = ("T“)O'5 o (0),
(Re,)"" C sfy = (%) W@" (0), (6.19)

(Rey) ™" N, = — (";1) ”fe'( ),

where Re, = u,, (x +vy) /vy and Re, = v, (z +y) /vy stands for local Reynolds number.

6.2 Homotopy procedure

The appropriate initial approximations and linear operators are

fol§) = T—exp(=£), Go(Q) = V(1 —exp(=E)), (6.20)
€)= Bfi exp (=), o(€) =1 S exp (— K, s) (6.21)
Ef _ f/// . f E ~/// - g/’ £é _ é// - é’ £5 — 3// . 3 (6.22)

The above linear operators obey

L7[C1+ Cyexp (§) + Czexp (=§)] =0, L5[Cs + Csexp (§) + Cpexp (—€)] = 0,
L;[Crexp (§) + Cgexp (=£)] =0, L [09 eXP( ) + Crexp (=§)] =0,
(6.23)

in which C; (i =1 — 10) depict the arbitrary constants

6.3 Convergence

The averaged squared residual errors are given as
- 1 k [

f—__ - N

Em E+1 Z f

=0

(6.24)
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~ 1 k mo m mo
=0 | =0 =0 =0 e=16¢
LT 92
~ 1 mo m m
=TT 2 N;(Zf(ﬁ%Zé(f),Zy(C)) (6.26)
=0 L =0 =0 1=0 £=16%¢€ |
Following Liao [43] :
S T (6.27)

where e! exhibits total squared residual error, §*¢ = 0.5 and & = 20. Best optimal
values of auxiliary variables for SWCNTs-Water are fi; = —0.616913, h; = —0.624129,
hy = —0.000163257 and h; = —1.57895 with total average squared residual error being
el =0.00230052 whereas optimal data of convergence control parameters for MWCNTs-
Water are iy = —0.610944, hy = —0.618209, hy; = —0.000359268 and h; = —1.580 with
total average squared residual error being £, = 0.00229349. Figures (6.1) and (6.2) are
plotted for residual error of single and multi-walled carbon nanotubes. It is noted that
the averaged squared residual errors show decreasing trend for higher order deformations.
Table (6.1) depicts thermophysical properties of water and carbon nanotubes (CNTs).
Tables (6.2) and (6.3) present the specific averaged squared residual errors by using
optimal values of convergence control parameters at m = 2 for SWCNTs-Water and

MWCNTs-Water respectively.
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Error
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m

Figure 6.1: Residual error for single-walled carbon nanotubes and water.
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Figure 6.2: Residual error for multi-walled carbon nanotubes and water.
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Table 6.1: Thermo-physical properties of single and multi-walled carbon nanotubes and

water

Table 6.2:

— EW/m.k) p(kg/m®) Cy(i/kgk)
(SWCNTs) 6600 2600 425
(MWCNTSs) 3000 1600 796

HyO(Pure Water) 0.613 997.1 4179

Individual averaged squared residual errors for SWCNTs-water nanofluid.

el

g
gm

0
gm

J
m

- :

m
2
6

10

16
20

2.97703 x 1071
3.06491 x 107
1.07557 x 107°
4.04702 x 1076
2.53488 x 1076

6.42426 x 10~°
7.26317 x 1076
2.6183 x 1076
1.00222 x 1076
6.31497 x 107"

1.11985 x 1073
9.27638 x 1074
8.73656 x 1074
8.39252 x 10~*
8.26796 x 1074

8.18731 x 1074
6.59371 x 1076
1.64036 x 10~
1.29133 x 1077
3.53144 x 1078

Table 6.3: Individual averaged squared residual errors for MWCNTs-water nanofluid.

m el el el €9,
2 2.89912 x 107* 6.22793 x 107° 1.1175 x 10~ 8.23794 x 10~*

6.7205 x 1076
1.70585 x 10~°
1.30667 x 1077
3.54361 x 1078

9.24652 x 1074
8.70279 x 1074
8.35464 x 10~*
8.22796 x 1074

7.05572 x 107°
2.548 x 1076
9.77269 x 1077
6.16436 x 1077

6 2.98607 x 107°
10 1.04900 x 1075
16 3.95293 x 107¢
20 2.47811 x 107°

6.4 Results and discussion

Here the influences of porosity parameter (\), Forchheimer number (F}.), ratio parameter
(), nanoparticle volume fraction (¢), thermal Biot number (Br), homogeneous reaction
variable (K, ), heterogeneous reaction variable (K) and Schmidt number (Sc¢) on the
velocities f' (¢) and § (€), temperature 0 (¢) and concentration j (£) fields. Figures (6.3)-
(6.18) are illustrated and interpreted for such intention. Results are achieved for both

single and multi-walled carbon nanotubes (SWCNTs and MW CNT's).
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6.4.1 Velocity components

Figures (6.3) and (6.4) are constructed to explore he impact of volume fraction of nanopar-
ticles (¢ = 0.01,0.02,0.03,0.4) on velocities f! (&) and ¢’ (€) . It is declared that (¢) yields
an enhancement in velocities f’ (€) and ¢’ (&) for both SWCNTs and MWCNTs. It is
observed that velocities of fluid particles in case of MWCTS-water base fluid is dominant
than SWCNTS for higher volume fraction of nanoparticles. The role of ratio variable
(T = 0.0,0.2,0.4,0.5) on velocities f’(€) and § (€) for both SWCNTs and MWCNTs
are addressed in Figures (6.5) and (6.6). Increasing behavior of §’ (§) is noted for higher
(¥) while reverse trend is observed for f’(£). Figures (6.7) and (6.8) are sketched to
indicate the behavior of permeability parameter (A = 0.5,0.6,0.7,0.8) on velocities f! (&)
and ¢’ (§) for both SWCNTs and MWCNTSs. Clearly a rise in permeability parameter
(A) corresponds to lower velocities. Infact the permeability of porous medium reduces for
higher (A\). It is noted that velocity for multi-walled CNTs is lesser than single-walled
CNTs. Figures (6.9) and (6.10) are constructed to examine that how the axial f’ ()
and transverse ¢ (£) velocities gets affected with the variation of Forchheimer number
(F, = 0.0,0.1,0.2,0.3). Velocities f'(¢) and § (€) decline via higher Forchheimer num-
ber (F,.). It is due to the fact that drag force has great association with Forchheimer
number. Higher Forchheimer number increases drag force which has ability to retard the
fluid velocities. It is worth mentioning that fluid velocities are more prominent in case of

single-walled CN'Ts when compared to multi-walled CNT’s.
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6.4.2 Temperature

Figure (6.11) is delineated for nanoparticle volume fraction (¢ = 0.01,0.2,0.03,0.04)
variation against temperature é(f) for both SWCNTs and MWCNTs. Clearly a rise in
(¢) augments temperature 6 (€) and thermal layer. Influence of permeability parameter
(A = 0.5,0.6,0.7,0.8) against temperature 0 (¢) is plotted in Figure (6.12). Higher ()
correspond to a stronger temperature for both SWCNTs and MWCNTs. In fact, the
existence of the porous space enhances the resistance to the fluid flow, which rise the
temperature of fluid. Figure (6.13) show the changes in temperature 8 (£) for various
values of Forchheimer number (F, = 0.0,0.1,0.2,0.3). It is clearly noticed that higher
Forchheimer number (F,) enhance the temperature for both SWCNTs and MWCNTs.
Influence of thermal Biot number (Br = 02,0.3,0.4,0.5) on temperature is plotted in
Figure (6.14). Larger (Br) leads to a increasing trend in temperature for both SWCNTs
and MWCNTs. Physically higher Biot number (Br) leads to stronger convection which

causes an enhancement in temperature 5(5’ ) and related thermal layer thickness.

0.14_... NKr —By=02.F =03, =905,

0.12F- —KS_:I.O,SC_——2.0,PF——_6.2 ............. ........................ i
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= [ o) —. <) S _____________________ ______________________ _____________________ ________________________ ]

D Nk : : ;
006 ........ S \ ..................... ...................... .................... ........................ ]
0.04_. .................. : : .SX&;’CNT.H.\Vater.._

o || == MWCNT — water,

0.02F ---------;9-:0.-012,--0.-02-,--0;03,--0.{?4 ................... .- S : : ]
0.00

0 1 2 3 4 5 6
Figure 6.11: Variation of ¢ on (¢).
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6.4.3 Concentration

Behavior of nanoparticle volume fraction ( ¢ = 0.01,0.02,0.03,0.04) on concentration
7 (&) for both SWCNTs and MWCNTSs is depicted in Figure (6.15). It is noted that
concentration of nanofluid is an increasing function of volume fraction of nanoparticles.
Figures (6.16)-(6.17) represent the behavior of j (¢) under the variation of homogeneous
reaction parameter (K, = 0.0,0.1,0.2,0.3) and heterogeneous reaction parameter (K =
0.0,0.3,0.6,1.0) for single-walled and multi-walled CNTs. It is noted that concentration
of fluid enhances for heterogeneous reaction parameter while reduces for homogeneous
reaction parameter. Figure (6.18) displays the change in concentration j (€) via Schmidt
number (Sc = 1.0,1.3,1.6,2.0). A rise in concentration is noted for higher values of
(Sc). Physically Schmidt number is based on Brownian diffusivity. Larger (Sc) generates
stronger Brownian diffusivity. Such stronger Brownian diffusivity leads to concentration

enhancement.
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6.4.4 Skin friction coefficient and heat transfer rate

Figures (6.19) and (6.20) present the plots of skin friction coefficients (Re,)"” Cyf, and
(Rey)0'5 C’Sfy for varying nanoparticle volume fraction (¢) and permeability parameter
(A). Clearly the magnitude of skin friction coefficients (Re,)"” Cyf, and (Re,)”” Cyy,
are enhanced for increasing values of nanoparticle volume fraction (¢).
and (6.21) are plotted to analyze the behavior of nanoparticle volume fraction (¢), Biot
number (Br) and power-law index (n) on heat transfer rate (Re,) *° N,.. Magnitude of

local Nusselt number (Rew)_0'5 N, are enhanced for larger nanoparticle volume fraction

(¢) and power-law index (n).

Figures (6.20)
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Figure 6.19: Variations of ¢ and A\ on (Rez)o'5 ésfx.
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6.5 Conclusions

Three-dimensional flow of water-based carbon nanotubes induced by non-linear stretching
of surface in existence of homogeneous-heterogeneous reactions has been analyzed. Main

points of present analysis are described below:

O Larger ratio parameter (¥) correspond to lower velocity field f” (¢) while opposite

trend is noticed for velocity field g’ ().

0 Increasing values of Forchheimer number (F}.) and permeability parameter (\) show

reduction in velocities f” (£) and § (£).

3 Velocities f' (¢€) and §’ (€) and temperature 6 (€) are enhances via nanoparticle vol-

ume fraction ¢.

O Higher Biot number (By )enhances temperature 6 (¢€) and more thermal layer thick-

ness.
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[ Greater porosity parameter (A) and Forchheimer number has more temperature
0(S).

O Larger Schmidt number (Sc¢) and heterogeneous reaction strength (K) present

increasing trend for concentration field j (&).
(1 Skin friction coefficients are increasing for larger nanoparticle volume fraction (¢).

1 Local Nusselt number (Heat transfer rate) is increasing function of nanoparticle

volume fraction (¢) and power-law index (n).
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Nanofluid low due to rotating disk
with variable thickness

and homogeneous-heterogeneous
reactions

Present chapter focuses on the steady, three-dimensional flow of water-based nanofluid.
Silver is taken as nanoparticles. Flow is caused by rotating disk with variable thickness.
Mass transfer subject to homogeneous-heterogeneous reactions is examined. Non-linear
formulation based upon conservation laws of mass, momentum, energy and concentra-
tion is made. Homotopy concept is utilized for the development of solutions. Special
attention is paid to the convergence of solutions. Plots for skin friction coefficient and

Nusselt number are analyzed. Main conclusions are indicated.

7.1 Problem formulation

We consider axisymmetric nanofluid flow due to a rotating disk with constant angu-
lar frequency €. Assume that the disk at z = d (RLO + 1) v is not flat. Here d is
the disk thickness coefficient, Ry is the radius and p the disk thickness index. Cylin-
drical coordinates (r, 6, z) are employed. Geometry of problem is shown in Figure (7.1).
Nanofluid is a suspension of silver (Ag) nanoparticles with water (H,O) being a base fluid.

Temperature at the surface of disk is T, and ambient temperature is assumed to be T,.
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Moreover thermal radiation and Joule heating effects are not considered in the heat

transfer analysis. Homogeneous—heterogeneous reactions are also considered.

Figure 7.1: Geometry of the flow.

Under the assumptions % = % =0,0(u)=0(@w)=0(r)=0(1)and O (w) =0 (z) =

O (0) the equations for flow and heat and mass transfer are as follows:

%*%*%:0’ (7.1)
Pus (ug—:f - 072 8—Z> = fing (%) : (7.2)
oo (ug_ Ly g—) s (§—> , (73)
(0Cp).s (ug—f + w%—f) = kg (%) : (7.4)
u%i* + w% — Dy (%) ~ Kia*e?, (7.5)



Nanofluid flow due to rotating disk with variable thickness. . .

* * 2k
uac Oc _Dc(ac

w
022

— K**2
or Dz >+ e

with boundary conditions

a*

u=0,v=rQ w=0, T=T,, Dy a = Kya",
0z

e r o

o 20 at z (RO+ ) ,

u—0,v—0 T—>Ty, a*— ag, ¢ — 0asz— o0,

In above expressions ag the positive dimensional constant.

Using generalized Von Karman transformations can be posited:

(7.6)

(7.7)

—1

~ ~ O R? ntl
u = ?”*R(]QF(U), v = T*ROQG(H), w = R()Q(l -+ T*)ip <%) B(?])

N T—-Ty - at - c* 2
- - 7> _ _ -~ 11 *\p
© T T J(n) - S(n) el Ro( +77) (

one has

2F + B' + nepF’ =0,

1 - 1-n - ~ .
F"(Re)i (1 417)% — F2 + G2 — BF' —
((1—¢>2~5(1—¢+¢%>> R

1

Q%E)“l (7.8)

K

(7.9)

FF'pne =0, (7.10)

( ! ) G'(Re) 1+ (1 +1%)% — 2FG — BG' — FG'ppe =0, (7.11)

(=P 16+ 02)

Pr

: (@) (i> (Re) ™ (1 + 1) %0 — FO'ppe — BO' =0, (7.12)

(PCp)s
L=+ ey | \ M

1 ,n - U .
(—) (Re)}Tn(l + 7)) — K,LS* — FJ'pne — BJ'

Sec

(%) R (1 4+ 125" + K, L§? — FS'pne — B

124

=0, (7.13)

=0 (7.14)
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with boundary conditions

B(a) = 0, F(a)=0, F(c0) = 0, G(a) =1,G(c0) = 0, O(a) =1, O(c0) — 0,

J(a) = K.J(a), 65 (a) = —K,5(a), J(co) = 1, S(o0) — 0. (7.15)

The diffusion coefficients of chemical species A and C' are of comparable size. This leads

to assumption that the diffusion coefficient D4 and D¢ are equal, i.e. 6 = 1. Hence
J(n)+S(n) =1. (7.16)
Egs. (7.13)-(7.14) yield
]_ 1—n ~ ~ ~\ 2 ~ ~ ~ ~
(S—> (Re)TH (1 4+ )2 J" — K,.J (1 - J) _EJpe—BJ'=0  (7.17)
c
with the boundary condition

J'(a) = K,J(a), J(o0) — 1. (7.18)

2
The parameters involved in above equations are defined as Re = QV—I?) the Reynolds num-

r*

Ro+r*

ber, r* = RLO the dimensionless radius, € = the dimensionless constant number,

Pr = % the Prandtl number, § = g—j the ratio of diffusion coefficients, Sc = g—fA the

: Kiad .
Schmidt number, K, = =5 homogeneous reaction parameter, K, = K2 Ro —
QRpr n+1
Q(14r*)P (%)

-1
2, .\ ntl . .
the heterogeneous reaction parameter and o = Rio (Qi—(jf“’) ™" the disk thickness coeffi-

cient number.

We introduce [37]

B = bn—a)=b&), F=[(n—0a)=[).C=i0n-a)=4(),
© = 0(n—a)=0(¢), J=jn—a) =) (7.19)
and reduce (Egs. (7.9)-(7.12)) and (7.17) with boundary conditions (7.15) and (7.18) in

the forms:

2f +0 + (£ +a)epf =0, (7.20)
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1 L
R (1 *\2p 1) 2
((1—¢>2-5<1—¢+¢5—;>>< AR A
+32 = bf — ffp(€+ a)e =0, (7.21)
1 - i
R 7 (] * 2p~//_2 ~
<<1—¢>2-5<1—¢+¢5—;>>< LR
—bj' — fip(E+a)e = 0, (7.22)
1 k’nf 1 }_7_72 *\2p 1!
(1¢+¢%) (%) patmartiba e
—fO0'p(E+a)e—b0 = 0, (7.23)
! (Re) T (1 + 727" — K,j (1 — 5)% — fip(é + a)e — bj = 0, (7.24)

C

b(0) = 0, f(0)=0, f(c0) =0,

7(0) = Kj(0), j(oo) = 1. (7.25)
7.1.1 Physical quantities

Skin friction coefficient characterizes the surface drag. At disk the shear stresses 7, and

7.9 in radial and tangential directions are given by

ou ov

zr — Mnf 7 y T2 = HUnf =~ . 7.26
i “fazzzo 740 uf@zzzo ( )

Skin-friction coefficient C ¢ which is identified by

~ /2 2
C Tir + T.0 (727)

T )2

In dimensionless form one obtains

Colhe) = ey (Y(FOR < @O)). 2
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At disk the heat flux ¢, is

oT
Qu = —knf — , (7.29)
0z |,_,
Nusselt number N, is identified by
] ROQw
N, , (7.30)
kf (Tw - TOO) z=0
Dimensionless form is
. . L, R
N,(Re)wit = —k—f(1 +7)P8'(0). (7.31)
f

7.2 Homotopy procedure

Initial approximations <50, fo. G0, 0o and j0> with auxiliary linear operators (L'E, L Ly, Ly and 55)

are given as

bo(€) = 0, (7.32)

fol¢) =0, (7.33)

Go(&) = exp(—=¢), (7.34)

0o(&) = exp(—¢), (7.35)

of€) =1 5 exp(~K.0), (7.36)

Ly=V, Li=f"—f L3=§"—q Li=0"-0,L;=7 7. (7.37)
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satisfying the properties

= 0. (7.38)

where C; (i = 1 —9) are the constants.

7.3 Convergence

Homotopy analysis method (HAM) is performed for convergence of developed solutions.
Convergence region is adjusted with the help of auxiliary parameters #;, fiz, hi, fi; and
h; for the functions b, f . 7, 6 and jrespectively. Valid ranges of such variables are attained
by plotting the fi—curves (see Figures (7.2) and (7.3)). Admissible values for iz, fif, fig,
hg and h; are described as —1.1 < h; < —0.3, —1.1 < ﬁf < —0.5, =0.9 < hy < —0.35,
—1.5 < h; < —0.8 and —1.2 < h; < —0.4. The homptopic solutions for whole region
of £ (0 < ¢ < o0) when Ay = —0.7, h; = —0.7, hy = —0.4, h; = —0.6 and h; = —0.8.
Numerical values of specific heat, density and thermal conductivity of silver and water
are presented in Table (7.1). Table (7.2) is prepared to check the convergence of obtained
HAM solutions. It is obvious from the table that 12t and 20" order of approximations are
suitable for the convergence of f'(0), #'(0) and §'(0) while 14" order of approximations

are appropriate for 5”(0) and 7(0).
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Table 7.1: Thermophysical properties of silver nanoparticles and water

— EW/m.k) plkg/m?®) o(Um)™ Cy(j/kgk) B x10°(1/K)

Ag(Silver) 429 10500 3.6 x 107 235 1.89
HyO(Pure Water) 0.613 997.1 0.05 4179 21

Table 7.2: Convergence of series solutions when p = Sc =n = 1.0,e = a = 0.4, Re =
09,7 =0.3,0=0.01,K, =K, =0.7and Pr =6.2.

Order of approximations —E”(O) —f’(O) —'(0) _§/(0> —3’(0)

1 0.000 0488 0377 0.224 0.019
5 0.602 0527 0.392 0.367 0.024
9 0.610 0.551 0.435 0.401 0.031
12 0.612  0.558 0.455 0.406  0.038
14 0.614 0558 0.499 0.406 0.044
20 0.614 0558 0.508 0.406 0.044
25 0.614 0.558  0.508 0.406  0.044

7.4 Results and discussion

This segment is organized to reveal the significant features of pertinent variables versus
velocity components, temperature and concentration and skin friction coefficient and

Nusselt number.

7.4.1 Axial velocity

Figure (7.4) depict the impact of disk thickness power-law index (p = 0.1,0.5,0.8,1.0) on
axial velocity b (€) . It is clear that negative values of b (€) indicate the flow in downward
direction. An increase in disk thickness power-law index (p) reduces the magnitude of
axial velocity. Effect of dimensionless constant number (e = 0.0,0.2,0.4,0.6) on axial ve-
locity b () is portrayed in Figure (7.5). One can easily examine that the magnitude of
axial velocity decays for higher (€). Figure (7.6) explores the variation of disk thickness
coefficient (av = 0.1,0.2,0.3,0.4) on axial velocity b (€) . It is worth mentioning that mag-
nitude of axial velocity reduces via greater («) . Physically for small Ry the less particles

are in contact with the surface of disk and consequently the velocity decays.
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7.4.2 Radial and Azimuthal velocity components

Behavior of nanomaterial volume fraction (¢ = 0.01,0.03,0.04,0.05) on radial f (¢) and
tangential g (&) velocity components are presented in Figures (7.7) and (7.8). It is ex-
amined that for higher (¢) the fluid velocity in both directions decreases. Physically
higher volume fraction of silver nanoparticles is a cause of thermal conductivity enhance-
ment and as a result velocities decays. Silent characteristics of disk thickness coefficient
(e =10.1,0.2,0.3,0.4) on radial and azimuthal velocities are reported in Figures (7.9) and
(7.10). Here velocity in both directions enhances for higher («) . Figures (7.11) and (7.12)
are organized to see the outcome of f (€) and § (€) for increasing values of Reynolds num-
ber (Re = 0.4,0.6,0.7,0.9) . It is found that both velocities via higher (Re) are increased.
In fact Reynolds number (Re) has an inverse relation with viscosity of fluid. For higher
(Re) the viscosity of fluid reduces so less resistance is offered to fluid particles and hence

radial and azimuthal velocities rise.
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Figure 7.11: Variation of Re on f(&).
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Figure 7.12: Variation of Re on g(¢).
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7.4.3 'Temperature

Figure (7.13) illustrates the effect of (¢ = 0.01,0.03,0.04,0.05) on temperature é(é’) for
silver-water nanofluid. Direct relation is observed between (¢) and 6 (£). Higher esti-
mations of (¢) correspond to more thermal conductivity and thermal layer thickness.
Therefore temperature enhances. Impact of Reynolds number (Re = 0.4,0.6,0.7,0.9) on

temperature § (£) is shown in Figure (7.14). Here temperature enhances for higher (Re).

1.0

3 =03 e=a=04, K,= K;,= 0.7,

“-\‘\ = 0.9, =02, p=n= =1.
0.8 Re = 0.9, Pr =62, p=n= Sc=1.0

0 2 4 6 8

Figure 7.13: Variation of ¢ on 6(¢).
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23

0.4}

0.2/

0.0

0 2 4 6 8
Figure 7.14: Variation of Re on ().

7.4.4 Concentration

Figures (7.15) and (7.16) give variation of homogeneous and heterogeneous reaction pa-
rameters on concentration distribution j (§) . Concentration of nanofluid reduces for higher
(K, =0.1,0.3,0.7,0.9) while opposite behavior is noticed for (K =0.1,0.5,0.8,1.1).
Chemical reactants are consumed in the case of homogeneous reactions and thus nanopar-
ticles concentration decreases. Higher estimations of (/) correspond to diffusion re-
duction and less diffused nanoparticles enhances the concentration j(§). Figure (7.17)
is sketched to show effect of Reynolds number (Re = 0.4,0.6,0.7,0.9) on concentration

7(€) . Reynolds number (Re) significantly favors the concentration j (&) .

137



Nanofluid flow due to rotating disk with variable thickness. . .

1.0F

0.9
0.8

0.7¢

Jjé

0.6
0.5

:
f
0.4 7%
.
& 4

0.30!

£

-—" a—
"

=001, ¥=03, € = a= 04,
K.= 07, Re = 09, Pr =62,
p=n=Sc=10

K, =0.1,0.5, 0.8, 1.1

¢

Figure 7.16: Variation of K on j(£).
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Figure 7.17: Variation of Re on j(&).

7.4.5 Skin friction coefficient and Nusselt number

Figure (7.18) characterizes the variation of (r*) on skin friction coefficient C f(Re)Zfi for
specified values of (¢). Results indicate that C, f(Re)%ri reduces via (r*) while it has oppo-
site behavior for (€). Figure (7.19) enlightens the ramifications of (¢ = 0.01,0.02,0.03, 0.05)
and (Re) on heat transfer rate N, (Re)n_Tll. Clearly heat transfer rate is an increasing func-

tion of (¢) and (Re).
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7.4.6 Comparative study

A comparison between analytical results of the problem and previous literature has been

shown in Table (7.3). A good accuracy is obtained between two results.

Table 7.3: Comparison of present results when p = Pr =n =1.0,¢ = 0.

Authors —f(0) =g (0) —6(0)

Ming et al. [40] 0.5102 0.6159 0.3963
Xun et al. [44]  0.5102 0.6159 0.3962
Hayat et al. [45] 0.5109 0.6159 0.3959
Present study  0.5130 0.6110 0.3980

7.4.7 Conclusions

Here flow of silver-water nanofluid due to rotating disk is examined. Major findings

include the following results:

1 Magnitude of axial velocity decays for higher values of dimensionless constant num-

ber (¢), disk thickness power-law index (p) and disk thickness coefficient («).

1 Higher estimations of Reynolds number (Re) significantly favors both radial and az-
imuthal velocities while opposite behavior is noticed for silver nanoparticles volume

fraction (¢).
0 Temperature of fluid enhances for higher volume fraction of silver nanoparticles (¢).

1 Opposite impacts of heterogeneous (K) and homogeneous ( K,.) reaction parameters

are noticed for concentration.

a C:“sf(Pue)Zfi rises for larger estimations of (¢) whereas it decays when (r*) is en-

hanced.

0 Nu(Re)n;fl enhances with the increase in (¢) and (Re).
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Entropy generation

in Darcy-Forchheimer flow

of nanofluid due to stretching
cylinder

Here we are concerned with optimal homotopy arrangements for two-dimensional flow of
magnetite nanofluid. Stretching cylinder with linear velocity creates the flow. Porous
space effects are specified by Darcy-Forchheimer model. We have considered silver (Ag),
copper (Cu), copper oxide (CuO), Titanium oxide (70;) and aluminium-oxide (AlyO3)
nanoparticles with water. Energy expression is modeled subject to consideration of non-
linear thermal radiation phenomenon and non-uniform heat source/sink. Total entropy
generation is calculated by using second law of thermodynamics. Uniformly valid conver-
gent arrangement expressions are established by optimal homotopy technique (OHAM).
Fluid flow and temperature behavior for physical variables are examined graphically.

Coefficient of skin friction and Nusselt number are calculated and analyzed numerically.

8.1 Mathematical description

We explore the incompressible water-based nanofluid flow by stretching cylinder is stud-
ied. Nanofluids are suspensions of nanoparticles such as Copper oxide (CuO), Silver (Ag),

Titanium oxide (TiO2), Copper (Cu) and Aluminium-oxide (Al,O3) in water. Cylindri-
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cal coordinates (z,r) are used to construct relevant equations. Cylinder with velocity
Uy = Ug (%) is stretched in the axial direction. An incompressible fluid saturates the
porous space specifying Darcy-Forchheimer relation. Characteristics of heat transfer is

performed through nonlinear radiative heat flux and non-uniform heat source/sink.

Equations for flow and heat transfer are

ou uw Ow

§+;+£:O, (8.1)
ou ou 0’u  10u Ung 9
(u£+w5) = Upf (W+;E) —H—pU—FeU ) (82)

(oC) 8_T+ or _ i o*T 10T +160*T3 o*r 10T
Powing \ Yoy w@y -

oz ror 3k \or2  ror
160*37% (9T" ou\>
+—3k* <W) + fny (8_3/) +q (8.3)
x oT
U = Uy = U <E>’ v=0, —knfazhf(Tf—T) at r = R,
u— 0, T"— Twwhen r — oo, (8.4)

where u and w represents velocity components and L the characteristic length of cylinder.

Non-uniform heat source/sink is defined as

q/// _ (knfuw (T)

.’IZVf

) [h s (Tp — Too) F(€) + I (T — TOO)] , (8.5)

where generation/absorption coefficients are I; and Is.

Introducing the suitable transformations

_ T\ % R vpug\V2? o T—To . r—R [u
U—%(z)f(f),v——?(T) f(f)»e(f)—Tf_—Tooaf— R Lz/f’

(8.6)
Egs. (8.2)-(8.4) take the form
((1 — ¢+ qu—s)(l _ ¢)2,5> [(1 + 27§) ]E/// + 2’7fﬁ - /\f,] - FrfIZ + fNN =0, (8.7)
Pf
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( "ff) (1429 0" + 200 + I [' + 1,0 + Ecii25 f

I (320 6 - )
1—¢+¢% Pr RD(G(Gf—l)H) +0" (1+298) (0 (0 — 1) + 1)
+290'(6 (0, — 1) + 1)
+f0' =0,(8.8)

F0)=0, F(0) =1, f'(c0) — 0, §(0) = :ffBT (1 _ 9(0))  0(00) = 0. (89)

where \ = ERTy depicts the permeability parameter, F, = j_? the Forchheimer number,
Pr = % the Prandtl number, Rp = 16,; ™% the radiation parameter, 5 = the
temperature ratio variable, Fc = % the Eckert number, Bi = #% the
thermal Biot number By = p hfLuO and the curvature parameter v = ULOZ{Q.
vy
8.1.1 Physical quantities of curiosity
Surface drag force and heat transfer rate are
~ Tw 7 TGy
Csp=——, Ny= —————, (8.10)
T pasii ky (Ty — Tis)
C’sf and N, in dimensionless form
(Re,) Cyy = = (0
fo sf (1 _ ¢)2.5 )
05 Ko s ~ ~
(Re,) 05 N, = ( ? + Rp(1+ (6 — 1))0(0))3) 6'(0), (8.11)
f

in which Re, = ugz?/Lv; denotes the local Reynolds number.

8.2 Entropy generation

The entropy generation consists of three factors namely
(1)Heat transfer Irreversibility (HT'T),
(77) Fluid Friction Irreversibility (F'FT)
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(7ii) Porosity Permeability Irreversibility (PP1I)

kng (OT +160*3T2 oT\*
kf (97“ 3k’*k‘f 07“

Characteristic entropy generation is defined by

Thus

o

g

Hnf o
. 8.12
el (s

(5)

LI/fTOO Eg

Ey= : 8.13
O uksAT (8.13)
Characteristic entropy generation rate are written as
- 3 -
N, =258 = (ks 4 p (99—1 +1) 1+ 2+6) arb+
9= T ( o (0(0;—1) (1427 ar , (8.14)

2y Br 1+2v£) P
25f )25 f

Ty —Too
Too

,ufuoyc2

where Br = m

represents the Brinkman number and ap = = % the dimen-
oo

sionless temperature difference.

Bejan number (Be) is

Entro eneration due to heat and mass transfer
Be = Py 9 : / (8.15)

Total entropy generation

or
<"}:—ff + Rp <§ (0 —1) + 1) ) (14 27¢) apf?
Be = .
. 3
(’“k—ff +Rp (6(0;-1)+1) ) (1+278) arf? + B 2 + 220 2
(8.16)
8.3 OHAM Solutions
The optimal series solutions are established. We choose
~ ~ Br
fo(€§) = (1 —exp(=¢€)), 0o(§) = 77— exp(=9), (8.17)
(55)
!
with
Li=f"—f, L;=0"-0, (8.18)
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and

L;i[Cr+ Crexp(§) + Cyexp(=£)] = 0,

L;[Ciexp(§) + Csexp(=E)] = 0, (8.19)

in which C; (i = 1 — 5) are arbitrary constants. In homotopy solutions the non-zero
auxiliary variables h; and hj; regulate the convergence zone and also homotopic solutions
rate. To obtain the ideal optimal values of hy and hy, idea of minimization concept is

employed by taking averaged squared residual errors as:

=0

~ k mo
de (o) | 820
§=16%¢

k m m
g?;=ﬁ2 Np Zf@,zé(f)) : (30)
1=0 ' ‘ E=15*¢
Following:

o, = o +db, (32)
where of stands for total squared residual error, 6*¢ = 0.5 and k = 20. The op-
timal data of convergence control parameter for Ag-water are ﬁf = —0.504674 and
h; = —0.680152 with of, = 0.0265543. Optimal values of auxiliary variables for Cu-
water are hf = —0.535421 and h; = —0.692151 and error o, = 0.0276802. The op-
timal data of convergence control parameter for CuO-water are ﬁf = —0.643143 and
hy = —0.762613 with of = 0.0275201. Optimal values of auxiliary variables for TiOs-
water are ﬁf = —0.726765 and h; = —0.838434 with total averaged residual error
ot = 0.0256793. The optimal values of convergence control parameter for AlyOs-water are
ﬁf = —0.688264 and h; = —0.787352 with total averaged residual error of, = 0.0286444.
Curves of residual errors are plotted for all nanofluids (see Figures (8.1)-(8.5)). Table
(8.1) presents the thermophysical properties of water and nanoparticles. Table (8.2)-(8.6)

show residual errors of all nanofluids.
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Figure 8.1: Residual error for Ag-water nanofluid.
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Figure 8.2: Residual error for Cu-water nanofluid.

147



Entropy generation in Darcy-Forchheimer flow of nanofluid. . .
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Figure 8.3: Residual error for CuO-water nanofluid.
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Figure 8.4: Residual error for TiOs-water nanofluid.
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Figure 8.5: Residual error for Aly,Osz-water nanofluid.
Table 8.1: Characteristics of nanoparticles and water
— k(W/mk) p(kg/m?) o(Um)™"  Cp(j/m?)
Copper(Cu) 401 8933 5.96 x 107 385
Silver(C'u) 429 10500 3.6 x 107 235
Copper Oxide(CuO) 76.1 6320  2.7x107®  531.8
Alumina(Al,O3) 40 3970 1 x 10710 765
Titanium Oxide(T7i0,)  8.9538 4250 1x10712 686.2
HyO(Pure Water) 0.613 997.1 0.05 4179
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Table 8.2: Individual average residual errors for Ag-water nanofluid.

Ag — water

|
m |,

24

m
2
4
6

8

10
12
14
16
18
20

3.26765 x 1073
1.12094 x 1073
4.64313 x 1074
2.25327 x 1074
1.24747 x 10~*
7.71813 x 107°
5.24467 x 107
3.85137 x 107°
3.00996 x 1075
2.46948 x 1075

2.32866 x 1072
1.82634 x 1073
7.24801 x 10~
3.67716 x 1074
1.20815 x 1074
4.48858 x 1075
2.31161 x 107°
1.36508 x 10~°
8.03119 x 107
4.66100 x 1076

Table 8.3: Individual average residual errors for C'u-water nanofluid.

Cu — water

|
m |,

0

Em

m
2
4
6

8

10
12
14
16
18
20

3.52588 x 1073
1.17509 x 1073
5.00180 x 1074
2.56175 x 1074
1.51005 x 10~*
9.92802 x 10~°
9.92802 x 1075
5.43861 x 107
4.37754 x 107°
3.66237 x 107

2.41543 x 1072
2.00740 x 1073
1.07170 x 1073
5.01717 x 1074
1.50434 x 10~*
5.35087 x 10~°
5.35087 x 10~°
1.62122 x 107°
9.46327 x 1076
5.45314 x 1076
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Table 8.4: Individual average residual errors for CuO-water nanofluid.

CuO — water ‘

24

|

3.41411 x 1073
1.08771 x 1073
4.97279 x 10~*
2.81586 x 1074
1.83343 x 10~*
1.31457 x 10~
1.00931 x 10~
8.14252 x 1075
6.81239 x 10~°
5.85695 x 1075

2.41060 x 1072
4.14403 x 1073
2.95399 x 1073
7.19484 x 10~
1.40087 x 1074
5.32527 x 1075
3.13949 x 107°
1.67787 x 107°
7.35824 x 107°
3.62701 x 1076

Table 8.5: Individual average residual errors for TiO,-water nanofluid.

Ti09 — water

0

Em

|

3.40734 x 1073
1.14445 x 1073
5.68582 x 1074
3.46269 x 1074
2.38774 x 1074
1.78712 x 10~*
1.41553 x 10~*
1.16756 x 10~*
9.92210 x 1075
8.62438 x 107°

2.22720 x 102
9.74970 x 1073
4.26139 x 1073
3.94865 x 1074
8.27567 x 107°
4.32835 x 107°
3.46839 x 1075
1.05392 x 10~°
2.86704 x 1076
2.15518 x 1076
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Table 8.6: Individual average residual errors for AlsOs-water nanofluid

‘ Al,O3 — water ‘

m | el el

2 [3.80764 x 1073 | 2.47468 x 1072
4 11.33607 x 1073 | 6.55269 x 1073
6 | 6.68945 x 10~* | 4.23514 x 1073
10 | 2.81166 x 10~* | 1.32792 x 10~*
12 | 2.09896 x 10~* | 5.79818 x 10~°
14 | 1.65735 x 107* | 4.02838 x 107°
16 | 1.36272 x 10~* | 1.98703 x 10~°
18 | 1.15465 x 10~* | 7.34830 x 1076
20 | 1.00097 x 10~* | 3.72899 x 10~

8.4 Results and discussion

Primary goal here is to explore the characteristics of several sundry variables for velocity,
temperature, entropy rate and Bejan number. This goal is achieved here by plotting the

(8.6)-(8.19). Numerical data of skin friction and Nusselt number is also computed.

8.4.1 Velocity

Figure (8.6) presents the variation of curvature parameter (v = 0.1,0.2,0.3,0.4) on ve-
locity f(€) for CuO, TiO,, Cu, Ag and AlyOs—water nanofluids. It is observed that
velocity is more for larger (). By increasing values of curvature parameter the radius of
cylinder gradually reduces. Thus less surface of cylinder is in contact with fluid particles
which provides a small resistance to fluid particles. Therefore velocity enhances. It is
observed that velocity of CuQ, AlyO3 and Ti0Oy— water nanofluids dominant over Ag and
C'u-water nanofluids. Because Ag and C'u nanoparticles are more dense than the rest
of nanoparticles. Influence of volume fraction of nanoparticles (¢ = 0.01,0.02,0.03,0.05)
on velocity f'(€) for all nanofluids is captured in Figure (8.7). An increment in (¢) yields
reduction in f (€). Velocity of Cu and Ag-water nanofluids is less than CuO, TiOy and
AlyO3— water nanofluids because of their higher densities. Salient characteristics of per-

meability parameter (A = 0.3,0.4,0.5,0.6 ) on f’(f) is plotted in Figure (8.8). Here f’(ﬁ')
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decays for higher (\). It is because of the fact for higher (A) mean lead to more kinematic
viscosity. A small permeability causes the production of resistive force to the fluid flow
which is responsible of reduction in f'(€). Figure (8.9) reports the impact of Forchheimer
number (F, = 0.2,0.3,0.4,0.5) on f'(¢). Higher Forchheimer number (F,) cause reduction
in f'(€). Physically drag force has significant association with Forchheimer number (F}.).
Higher Forchheimer number (F)) enhance drag force which has tendency to reduce the

velocity. Similar results are obtained for all nanofluids.

1.0

Ag

Cu ———

CuQ — ===
0.8 Ti0y - emee

AL Oy ceemeenn

0.6

&

¢ =0.051,=0.1,
L=F,=0.2,1=0.3,

04 Br=04, ar = 0.,
Br = Ec=Rp =09,
0f=11, Pr=6.2
0.2
y=0.1,0.2,03, 04
0.0 0 1 2 3 4 5 6

Figure 8.6: Variation of v on f’(f).
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Figure 8.8: Variation of A on f/(€).
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Figure 8.9: Variation of F, on f’(f).

8.4.2 Temperature

Figure (8.10) present the outcome of (¢ = 0.01,0.03,0.04,0.05) on temperature for CuO,
AlyO3, TiO4, Ag and Cu-water nanofluids. As expected higher (¢) estimations yield an
increment in temperature. The sensitivity of associated thermal layer to nanoparticles
volume fraction has relationship with an enhancement of nanofluid’s thermal conduc-
tivity which uplifts the nanofluid temperature. It is worth mentioning that temper-
ature are slightly higher for Ag—water nanofluid rather than Cu, TiOs, Al;O3— and
CuO-water nanofluids due to its high thermal conductivity. An enhancement in 0 (&)
and thermal layer thickness via (y = 0.1,0.2,0.3,0.4) is noted in Figure (8.11). Greater
values of(y) shrinks the surface area of cylinder. High heat transfer rate by convection
is created due to minimum particles are attached on the surface. Thus temperature
enhances. Figure (8.12) interprets the impact of Eckert number (Ec¢ = 0.1,0.4,0.7,0.9)
on temperature. Higher (E¢) boosts temperature of fluid. It occurs due to friction of

molecules where mechanical energy is converted into thermal energy. Hence temperature
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enhances. Thermal Biot number (Br = 0.1,.4,0.7,0.9 ) for all nanofluids on temperature

0 (¢) is plotted in Figure (8.13). It is observed that 6 (€) rises when (Br) is augmented.

Ag
0.25 L=y =01, i ———
L=F,=02 1=0.3,
Br =04, ar = 0.8, Cu0 = —--=
Br=Ec=Rp=10J9, Ti0y -----
0.20¢ 0;= L1, Pr=6.2 I N

0.10¢

0.05¢

0.00

Figure 8.10: Variation of ¢ on 6(¢).
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Figure 8.11: Variation of  on 6(¢).
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Figure 8.12: Variation of Ec on §(¢).
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Figure 8.13: Variation of By on 6(¢).

8.4.3 Entropy generation and Bejan number

Figures (8.14) and (8.15) shows the outcome of Brinkman number (Br = 0.2,0.3,0.4,0.5)
on N, (§) and Bejan number Be. Higher values of Brinkman number (Br) enhance vis-
cous dissipation irreversibilities and thus entropy rate boosts while Bejan number de-
creases for low thermal conductivity. Plots for temperature ratio parameter (o =
0.8,0.9,1.0,1.2) on N, (&) and (Be) are displayed in Figures (8.16) and (8.17). Disor-
deredness in the system and Bejan number are enhanced for higher (7). It is noted that
Ny, — 0 away from surface. For larger (ar) the heat transfer effects are prominent than
fluid friction. That is why (Be) is increases. It is found that Ag—water nanofluid
have more prominent effects than rest of the nanofluids for (Be) due to its higher
heat conductive ability. Effect of Forchheimer number (F, = 0.2,0.3,0.4,0.5) on entropy
generation N, () and Bejan number (Be) are plotted in Figures (8.18) and (8.19). Here
N, (€) and (Be) are enhanced for higher (F,) in all nanofluids. Physically disorderliness

of system increases for higher Forchheimer number F,.. Therefore N, (§) and (Be) rise.
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Figure 8.15: Variation of Br on Be.
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8.4.4 Skin friction coefficient and heat transfer rate

Influence of nanoparticles volume fraction (¢) on skin friction coefficient and heat trans-
fer rate for five different types of nanofluids are elaborated through Tables (8.7)-(8.8).

Magnitude of skin friction coefficient and heat transfer rate enhanced for higher ¢.

Table 8.7: Behavior of ¢ on skin friction coefficient for all nanofluids.

‘ 10) ‘ Ag ‘ Cu ‘ CuO ‘ Ti0s ‘ AlyO5 ‘

1) Ag Cu CuO Ti0, Al5O4

0.01 | —0.9747 | —0.9704 | —0.9631 | —0.9566 | —0.9574
0.03 | —1.0616 | —1.0490 | —1.0278 | —1.0080 | —1.0106
0.05 | —1.1501 | —1.1297 | —1.0949 | —1.0626 | —1.0665

Table 8.8: Behavior of ¢ on heat transfer rate for all nanofluids.

0.01 | —1.005 | —1.004 | —1.004 | —1.003 | —1.001
0.03 | —1.066 | —1.066 | —1.064 | —1.062 | —1.049
0.05 | —-1.129 | —1.129 | —1.125 | —1.123 | —1.101

8.5 Concluding remarks

Darcy-Forchheimer flow of nanofluid due to stretching cylinder with entropy generation

is studied. Main observations are:

1 Rise in nanoparticles volume fraction has tendency to retard the velocity and en-

hance the temperature.

A reduction in velocity is observed for higher values of permeability and Forch-

heimer variables.

1 For higher Eckert number the temperature of fluid enhances and impact of silver-

water nanofluid dominates when compared with rest of nanofluids.
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a

Temperature of fluid increases for thermal Biot number.

Entropy generation enhances for higher estimations of temperature difference vari-
able, Forchheimer number and Brinkman number while Bejan number reduces for

Brinkman number.

Magnitude of skin friction coefficient is an increasing function of volume fraction

of nanoparticles.

An enhancement in local Nusselt number occurs for volume fraction of nanopar-

ticles.
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Chemically reactive flow of Maxwell
nanofluid due to stretching cylinder
with thermal radiation

This chapter investigates the non-linear mixed convective flow of Maxwell nanofluid due
to stretching cylinder. Electrically conducting fluid is considered. Silent features of Joule
heating, thermal radiation and first order chemical reaction are attended. Concentration
and energy expressions consist of Brownian motion and thermophoresis phenomena. Heat
and mass transfer are described by convective conditions associated with cylinder. Strong
non-linear systems are solved for convergent homotopy solutions. Salient characteristics
of magnetic parameter, Deborah number, curvature parameter, Biot number, Prandtl
number, thermophoresis parameter, Eckert number and Schmidt number on the velocity,
temperature, nanoparticles concentration, Nusselt and Sherwood numbers are reported

via graphs.

9.1 Problem statement

Non-linear mixed convective flow of Maxwell nanofluid towards stretching cylinder is mod-
eled. Fluid is conducted electrically through B{; applied along radial direction. Also, the
magnetic Reynolds number is assumed small and the characteristics of induced magnetic

field are not considered. Electric field is absent. Cylinder with velocity w,, = wy (Z) is

stretching in the axial direction. Thermal radiation, Joule heating and convective heating
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effects are considered in the heat transfer process. Brownian motion and thermophore-
sis attributes are considered. Viscous dissipation is absent. Chemically reacted species

model are accounted. The relevant problems satisfy:

ou u Ow
e T T Nl
or r 0Oz 0, (9-1)
a_w+ a_w+)\ 282_w_|_ 282_w+2 8211]
u@r waz L\ 022 Y or? uwﬁraz
Pw 10w afB(’]k2 ow
=Gt r) = ()

+9(er (T —Too) + €2 (T = Too) (T = Tiv))

+9(e3(C — Cx) + €4(C — C)(C — Cw)), (9.2)

a_T + a_T — 82_T + la_T + D a_Ca_T + & 8_T i
Y or v 0z - WY or?  ror T Bor or T \ Or
160*T3, (82T 1 OT) oB:

+3k*(POp)f Or? i ror i (Pcp)fw ' 53)

oC oC 0*C 10C Dy (O°T 10T
(“ar“”a >_D3(5r2+25r> Too (57«2 ?ar)_KC(O_C“’)’ ©-4)
2w orT
u:O,v:0,w:ww:T0, _ka:hf(Tf_T),
oC
-D. = = — =
mg, km(Cy—C) at r =R,
w—0, T =Ty, C—Cyxasr— oo. (9.5)

in which (u,w) are the velocity components in (7, z) directions, A\; the relaxation time,

. : _ (pCp)p 1 1 = —kf
C' the nanoparticles volume fraction, 7 = Co)r the heat capacity ratio, ay = Tenp

the thermal diffusivity, g the gravitational acceleration, €; and €5 the linear and nonlinear

thermal expansion coefficients, €3 and ¢4 the linear and nonlinear concentration expansion
coefficients, K, the reaction rate of solute, Dy thermophoresis diffusion coefficient and

Dp the Brownian diffusion coefficient.
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Considering
R Jvpw _2wo 5 oo =Ty
u=——y =7 f&, w=—=F(&), () T, -1
~ _C—é’oo P —R* [wg
o) = O, = §= R vy’ (9.6)
we have
il i Ry £2 P Y £ N
(+29) 7" +29") - 8 [2fff PPl ]
~M ([ = BIS") + NO(1+ 5,0)
+N1Noj (1 +6.) + F " = f2 =0, (9.7)
(%) (14 Rp) ((1 +29) 6" + 275’) + Np (1429605
+Np (14 2796) 02 + f0 + MEcf™ =0, (9.8)
(14279 7" + 297" + ]]\VT—Z ((1 4 26) 0" 279”’> —Seff — LeSci =0,  (9.9)

f0)=0, f(0)=1, f(00) =0, 6'(0) = —Br(1 — 6(0)), 0(c0) =0,
7 (0) = —=Be(1—7(0)), j(c0) — 0, (9.10)

Lo;Bg2

Here incompressibility condition (9.1) is trivially verified, M = py

the magnetic
23ger (Tw—Tx)

a2 the mixed convection
Re vy

parameter, § = onAl the Deborah number, N; =
23g€2(Cry—Coo)

parameter, Ny = Re?,2

the ratio of concentration to thermal buoyancy forces

As (T —Teo Ay (Cyp—Coo . .
Sp = 2(2—1) and ¢, = 4(2—3) the non-linear convection parameter due to tem-

. gA1(Tr—Too )23
perature and concentration, Gr = % the Grashof number for temperature,
¥

, the Grashof number for concentration, Pr = WO)r the Prandtl

9A3(Cp—Coo )2
2 kf

vy

Gr* =
— wi) _ 160 T3 L
number, Fc = ——»—— the Eckert number, Rp = —-= the radiation parameter,
Gy, (1 T) ks

(s *f'oo)DB w the thermophore-
1 v

Np = the Brownian motion parameter, Ny =

. . h .
sis parameter, Lo = ££< the reaction-rate parameter, By = —£L— the thermal Biot
| i | INE
vy
km

wo
D qu

number, Bo = the concentration Biot number, Sc = g—; the Schmidt number

Lvy
wo R?

and v = the curvature parameter.
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9.1.1 Local Nusselt number

It is the ratio of heat transferred through convection (fluid motion) to the heat trans-

ferred through conduction (if the fluid is stagnant). Mathematically we have

24z

Ny=——7~17% (9.11)
kp (Ty — Tes)
with
160*T3 \ (0T
w=— k(1 S . 9.12
== (+55) (5] 012
Now
Re "N, = — (1+ Rp) 6'(0), (9.13)

9.1.2 Sherwood number

It portrays the ratio of convective mass transfer to diffusive mass transport rate i.e.

o jw
Sy = 9.14
oC
w=—Dp | — ) 9.15
et )TR (9.15)
Dimensionless version of Sh is
Re %5, = —5(0), (9.16)

in which Re = “’?52 denotes the local Reynolds number.

9.2 Solution Methodology

For solutions we choose

) = 1= exp(=6), 8o(€) = 1 exp(=6), ol6) = g expl=6). (917
with
Ly =" = £a0) =0 =8, £,0) ="~ ] (9.18)
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and

Li[Cr+ Crexp(=€) + Czexp(§)] = 0,
L [Cyexp(§) + Csexp(=¢)] = 0,

L5 [Csexp(§) + Crexp(=§)] = 0, (9.19)

9.3 Convergence analysis

It is quite obvious that convergence controlling parameters hif, h; and h; are involved in
the developed HAM solutions. For determination of suitable values of these parameter
controlling convergence of series solutions, the Figure (9.1) is sketched. The valid regions
of hf, hz and h; are found —0.9 < hf- < =03, -79< hy < —041 and —1.1 < h; < —0.5.
When hy = —0.7, by = —0.5 and h; = —0.7. The convergence of series solutions upto
four decimal places for f(0), #(0) and j/(0) is found in Table (9.1). It is clear that
f7(0) and #'(0) converge at 13th order of approximations while for j'(0) the 15th order
of approximations is required.

Residual errors are sketched in Figures (9.2)-(9.4). The residual errors are calculated for

velocity, energy and concentration equations through the expressions:
i (RS ’
Al = / EARDIRS

oy, = [ [Riem) o

A= /:Rin (5,ﬁ~.)]285. (9.20)
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Figure 9.1: h-curves for velocity, temperature and concentration fields.
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Figure 9.2: hj—curve for the residual error Af;L.
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Table 9.1: HAM solutions convergence when v = 0.1, = 0.2, Ec =0.4,5, = M = Np =
Nr =0.5,Bc =5, =06,Rp =07,N, =Ny =08,Br =09,Lc = Sc=1.1and Pr =
1.3.

Order of approximation —f”(0) —6(0) —j"(0)

1 0.9676 0.3534 0.3163
3 0.7236  0.2744 0.3602
7 0.6738  0.2403 0.3819
13 0.6654 0.2353 0.3847
15 0.6654 0.2353 0.3848
20 0.6654 0.2353 0.3848
25 0.6654 0.2353 0.3848
30 0.6654 0.2353 0.3848
35 0.6654 0.2353 0.3848

9.4 Interpretation

This portion presents the dimensionless parameters for 2D Maxwell fluid flow past a
stretching cylinder. Figures (9.5)-(9.15) are sketched for velocity,temperature and con-

centration.

9.4.1 Velocity

Figure (9.5) interprets the impact of Deborah number (8 = 0.2,0.3,0.4,0.5) on f'(€).
Here velocity decays via higher Deborah number (). Physically fluid relaxation time
enlarges with increasing values of Deborah number (/3). Hence velocity decays. Figure
(9.6) portrays the characteristics of curvature parameter (y = 0.1,0.2,0.4,0.5) on f'(€).
Clearly f’ (&) increments for (7). Radius of cylinder reduces due to an increment in
curvature parameter. Hence less resistance is offered towards fluid motion and fluid
velocity increases. Behavior of magnetic parameter (M =0.0,0.2,0.4,0.6) for velocity f'(¢)
is portrayed in Figure (9.7). Velocity retards for higher (M). As magnetic parameter has
association with resistive Lorentz force. Lorentz force enhances through higher values of

(M) which resists the fluid velocity. Thus velocity decays.
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Figure 9.7: Variation of M on f’(f).

9.4.2 Temperature

Figure (9.8) elaborates the characteristics of curvature parameter (y = 0.1,0.2,0.4,0.5)
on A(¢). Temperature enhances for larger (7). Behavior of Eckert number (Ec¢ =
0.1,0.2,0.4,0.5) on temperature é(f) is captured in Figure (9.9). Temperature 5(5) rises
via higher (E¢). Physically the mechanical energy is converted into thermal energy for
internal friction of molecules. That is why thermal field rises. Figure (9.10) is plotted
to show the combined effects of Brownian motion (Np=0.2,0.4,0.5,0.6) and thermophore-
sis parameter (N7 = 0.2,0.4,0.5,0.6) on temperature. Here temperature of nanofluid is
more for thermophoresis and Brownian motion parameter (Ng and N7). Due to presence
of thermophoresis phenomenon the temperature of fluid increases in which heated par-
ticles are pulled away from hot region to cold surface. It is noted that higher Brownian
motion parameter Np rises the temperature of fluid. It is physically expected because
Brownian motion parameter Np describes the movement of nanoparticles in fluid. Figure

(9.11) indicates temperature variation for (Pr = 1.1,1.2,.13,1.4). There is a reduction
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in temperature for higher (Pr). In fact thermal conductivity reduces for higher (Pr) and
consequently the temperature decays. Figure (9.12) graphed to indicate the behavior of
thermal Biot number on temperature. Positive values of (Br=0.1,0.3,0.5,0.9) offer more

heat transfer resistance inside a fluid when compared with cylinder and thus temperature

enhances.
1
) B =02 Ec= 04, M=g ,=Ng=Nr=0.5 Bc =g .=0.6,
0-5’ Rp=07,Ny=N,=0.8, B =0.9, Lc=Sc=1.1, Pr=1.3
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D 't
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Figure 9.8: Variation of v on 6(€).
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Figure 9.12: Variation of By on 6(€).
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9.4.3 Concentration

Figure (9.13) presents impact of curvature parameter (v = 0.1,0.2,0.4, 0.5) for concentra-
tion j(£). There is an enhancement in concentration j(€) for larger (). Brownian motion
parameter (Ng = 0.2,0.4,06,0.8) and thermophoresis parameter (Nr = 0.2,0.4,06,0.8
) have opposite effect on concentration j(¢) (see Figure (9.14)). Action of destructive
chemical reaction (Lo > 0) and generative chemical reaction (Lo < 0) on concentra-
tion j(&) is graphed in Figure (9.15). It is noted that concentration j(¢) enhances for
generative chemical reaction parameter (Lo < 0) while reverse response is noticed for
destructive chemical reaction parameter (L > 0). During destructive chemical reaction

(Lc > 0) rate of species decreases and concentration decays.

0.47,

B =02Ec=04M=¢g ,=Ng=Nr=0.5 Bc =g ,=0.6,
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Figure 9.13: Variation of v on j(£).
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9.4.4 Heat and mass transfer rates

Figures (9.16)-(9.19) show the variations of heat and mass transfer rates for different
physical variables. Behavior of thermal Biot number on local Nusselt number (Rez)fo'5 N,
is plotted in Figure (9.16). Clearly heat transfer rate for thermal Biot number is increased.
Figure (9.17) illustrates the variation of curvature parameter () on Nusselt number
(Re,) " N,. It is noted that local Nusselt number is reduces via (7). Figure (9.18)
reflects less magnitude of the mass transfer rate for chemical reaction parameter L.

Figure (9.19) depicts decreasing behavior of Sherwood number when ~ enhances.

p—

-
-

L ——

7 Br =09, 1.0, 1.1, 1.2
0.0 0.5 1.0 1.5 2.0
Pr

Figure 9.16: Variation of Br on (Rez)fo'5 N,
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9.5 Major findings

We have following observations.

0.4

0.5

1 Curvature parameter has tendency to rise fluid velocity, temperature and concentration.

(1 Brownian motion for temperature and concentration has reverse response.

4 Concentration is reduced for destructive chemical reaction whereas it enhances for

generative chemical reaction.

1 Influence of thermal Biot number on Nusselt number is opposite when compared

with curvature parameter.

( Sherwood number is reduced for the curvature and chemical reaction parameters.
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Chemically reactive flow of Maxwell
nanofluid due to stretching cylinder
with activation energy

This chapter discussed the radiative flow of Maxwell nanofluid over a stretching cylin-
der. Modeling of heat transfer is made with thermal radiation, convective conditions and
heat generation/absorption effects. A modified Arrhenius function is analyzed in order to
investigate activation energy. Mass transfer is examined by considering the activation en-
ergy along with binary chemical reaction, thermophoresis and Brownian diffusion. Mass,
energy, momentum and concentration laws give rise to nonlinear differential systems. Ho-
motopic algorithm is adopted to derived the convergent series solutions. Five quantities
namely the velocity, temperature, concentration and local Nusselt and Sherwood num-
bers are discussed. Clearly concentration of nanoparticles enhances for activation energy

while it reduces for chemical reaction parameter.

10.1 Modeling

Here two-dimensional flow of Maxwell nanomaterial past a stretching cylinder is modeled.
Cylinder has constant concentration C'y of nanoparticles whereas (7., Cw) are fluid’s am-
bient concentration and temperature respectively when z — oo. The Brownian diffusion
and thermophoresis properties are accounted. Let the cylinder with velocity w,, = wq (%)

is stretched in axial direction. Fluid is electrically conducting. Moreover influence of ac-
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tivation energy with binary chemical reaction is stated to debate mass transfer rate. A
phenomenon of thermal radiation with heat generation/absorption effects is reviewed.
Viscous dissipation and Joule heating effects are taken absent. The governing problems

under the aforementioned assumptions become:

ou u Ow
e I 10.1
or + r + 0z 0, (10.1)
8_w+ ow L 82 . , 0*w o 0*w
Yor TV T\ a2 T 2 T a2
Pw 10w afB()*2 ow
_ _ ow 10.2
’/f( 2+r8r) T (w Alu&r)’ (10-2)

or TN _ T 10T D808T+DT oT\’
Yor TV ) T Y\ T ar Bor or or
| 160°T% (0T 10T
3k*(pCp)s \ Or2 ~ r Or

oC oC o*C  10C Dy (0*T 10T
(UW“‘E) = Ds <W+rar) T (W*W) (10.4)

T1" -F,
—K2(C - Cy) {T_} exp {le} ,

(10.3)

oT
u=0, v=0, w=1w,, kfa =hy(Ty—=T), C=Cratr=R,
r
w—0,T—Ty, C—Cyxasr— oo, (10.5)

n
where (u,w) are velocity components in (r, z) directions. The term [Tl} exp [E“] is

referred as the modified Arrhenius function. Here k; = 8.61 x 1075eV/K represents the
Boltzmann constant, n is the dimensionless constant or rate constant having the range

—1 <n <1 and F, the activation energy.

Considering
R [vpwg 2w oo =Ty
~ C - Coo T2 — R2 w
= Yoo Vg
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we have
Iy ry eIy 2 7 ,y 2
1+2,}/€ f//,+2’yf/,j|_ﬁ fol l/_f2f///_—f 107
[( ) (1+27¢) (10.7)
-M (f/ _/Bff”> +N1é+N2§+f~f// g2 _ 07
1 - . .
<ﬁ) (14 Rp) ((1+29€) 0" +298') + Np (1 +296) 07 (10.8)
+N7 (1+27€) 6% + f6' + Q6 =0,
~ ~ N ~ ~ —~
(1+29)J" +277") + ((1+296) 8" +298) — Sef 7 (10.9)
B
LoSe[l + azd]" MECHI -
— c Q ex =
c T p 1+ g J ,
f(0)=0, f/(0)=1, f/(c0) =0, #(0) = —Br[1 —6(0)], (10.10)
f(oc) =0, j(0) =1, j(o0) = 0.
in which M = L;;—f depicts magnetic parameter, [ = % the Deborah number,
Rp = 122*;30 the radiation parameter, Pr = % the Prandtl number, Np = W
the Brownian motion parameter, Ny = % the thermophoresis parameter, () =
wOaOCLp)f the heat generation/absorption parameter, ar = Tf;:"" the temperature differ-
ence parameter, Lo = LUI){O‘? the reaction-rate parameter, £* = klETaoo the non-dimensional

L
lgz the curvature parameter.

activation energy, Sc = I”)—; the Schmidt number and v =

wo
10.1.1 Quantities of interest
Mathematically
N7 ZGw
Ny = ———F—, (10.11)
kf (Tf - Too)
with
160*T3 oT
w=— |k |1 = - . 10.12
vl (- 557) (5L (12
Now
(Re.) *° N, = — (1 + Rp) 0'(0), (10.13)
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Sherwood number

Dimensionless version of S}, is

(Re.) ™" S, = —7'(0),

in which Re = “iouf denotes the local Reynolds number.

10.2 Homotopy procedure

For solutions we choose

) = 1= exp(=6), 8o(€) = 1= exp( =€), Jo(€) = exp(~€),
with
Li(f)=F" = [ L2(0) = 0"~ 0, Ls(0) =J" ~ ],
and

L1 [Cy + Cyexp(—E) + Csexp(§)] = 0,
Ly [Cyexp(§) + Csexp(—=¢£)] = 0,

L3 [Csexp(§) + Crexp(=¢)] = 0,
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10.3 Convergence analysis

Auxiliary parameters I, fi; and h; gave us opportunity to adjust convergence region for
solutions of highly nonlinear system. £ curves are plotted in Figure (10.1) for the velocity,
temperature and concentration. Permissible values of hf, hy and h; are adjusted in the
ranges —1.05 < ﬁf < —0.2, at 13th, —1.4 < hy < —0.65, at 15th and —1.6 < ﬁ; < —0.2,
at 18th order of approximations. When h; = —0.4, hy = —1.1 and h; = —0.7 the series

solutions converges in whole region of £ (0 < £ < 00). Table (10.1) is also constructed to

guarantee convergence.
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Figure 10.1: h-curves for velocity, temperature and concentration.
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Table 10.1: Convergence of series solutions wheny= Rp =@ = 0.1, = Ng = 0.2, Br =
ap = 0.3,M = Sc=0.5,E* = 0.6, Ny =0.8,n =09, Lc = 1.1 and Pr = 1.5.

Order of approximation —f”(0) —6(0) —j"(0)

1 1.0323  0.2000 0.5575
) 1.0797  0.1811 0.5454
8 1.0862  0.1787 0.5367
11 1.0878  0.1779 0.5321
13 1.0879  0.1777 0.5296
15 1.0879  0.1776  0.5290
18 1.0879  0.1776  0.5275
25 1.0879  0.1776  0.5275
35 1.0879  0.1776  0.5275
20 1.0879  0.1776  0.5275

10.4 Discussions

This section is developed to scrutinized the behavior of physical variables on temperature,
concentration and velocity. Moreover heat and mass transfer rates are presented in tabular

form.

10.4.1 Velocity

Figure (10.2) is prepared to examine velocity of nanofluid for higher Deborah number
(6=0.1,0.2,0.3,0.4). Velocity gradually reduces for larger values of (/). Physically Deb-
orah number (/) is a ratio of fluid relaxation time to its characteristic time scale. when
shear stress is applied on fluid, then the time in which fluid attain its equilibrium position
is called relaxation time. This time becomes larger for those fluids having higher viscosity.
Thus an increment in (/) enhances the viscosity of fluid. As a result viscosity of fluid
reduces. Note that if (/) fluid behave like a Newtonian fluid. Figure (10.3) is plotted to
investigate the behavior of magnetic parameter (M = 0.0,0.2,0.4,0.6) on velocity f'(£).
Clearly velocity reduces when (M) is increased. Larger (M) give rise to more Lorentz
force . As a result velocity is reduced. A resisting force is induced with application of

magnetic field which slows down the fluid flow. Contribution of curvature parameter on
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velocity is captured in Figure (10.4). As expected velocity of fluid near the cylinder is
increased. It is observed that the radius of cylinder will decreases with the increase of
curvature parameter (7). As a result less surface of cylinder is in contact with fluid par-

ticles which produce a small resistance towards fluid particles. Hence velocity enhances.

1.0 |
O=Rp=y=01, Ng=02,By=a7r=0.3, M = Sc=0.5,
E=06,Ny=08 n=09, Lc=11, Pr=1.5
0.8:
0.6r
@
- R B =0.1,02, 0.3, 04
04 =0.1,02,0.3,0.
0.2r
0.0 ‘
0 1 2 3 4 5 6 7

Figure 10.2: Variation of 8 on f'(€).
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1.0 | |
O=Rp=y=0.1, B=Ng=02,Br=ar=103, Sc=0.5,

E=06,Nr =08 n=09, Lc=11, Pr=15

f'e

OQ=Rp=01, B=Np=02,Br=ar=03, M= Sc=0.5,

1.0
E=06,Nr=08 n=09, Lc=1.1, Pr=15

0.8

0.6-
L

0.4

0.2

0 1 2 3 4 5 6
£

Figure 10.4: Variation of v on f’(f)
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10.4.2 Temperature

Figure (10.5) displayed the influence of heat generation parameter () > 0) on tempera-
ture é(ﬁ ). Here temperature of fluid rises subject to higher estimations of heat generation
parameter (¢ > 0). Physically nanomaterial has the property to improve the temperature
of fluid. Thus heat generation present in system boosts the temperature. Temperature

6(¢) for (Rp = 0.2,0.3,0.4,0.5) is increased (see Figure (10.6)). Note that the mean

absorption coefficient becomes less for (Rp) and thus temperature enhances.

0.05 Rp=y =01, =Np=0.2 ar=03, M= Sc=0.5,
' E=06, Nr =08 n=09, Lc=11, Pr=15

0.20r
@ 0.15¢
S

0.10r

0.05¢

0.00; ‘

0 2 4 6 8
4

Figure 10.5: Variation of Q on 6(¢).
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\"\‘ Q=y=01, B=Np=02,Br=ar=03, M=Sc=05,
Lo\
0.30" 4 E=0.6,Nr=08 n=09, Lc=1.1, Pr=15

0.25¢

0.20r

66

0.15

0.10r

0.05;

0.00,

Figure 10.6: Variation of Rp on 6(¢).

10.4.3 Concentration

Exploration of dimensionless activation energy (E* = 0.2,0.4,0.7,0.9) on nanoparticles
concentration is reflected in Figure (10.7). A rise in concentration is observed. Since
activation energy is small amount of energy to activate molecules in a system to start
chemical reaction. Therefore if activation energy is very high then rate of reaction reduces
and thus concentration enhances. The influence of temperature difference parameter (ar)
on concentration is noted in Figure (10.8). It is observed that j(€) is decreasing function
of (ag). Figure (10.9) clarifies the influence of non-dimensional chemical reaction param-
eter (Lc = 0.5,0.6,0.7,0.8) on concentration of nanoparticles. Decay in nanoparticle’s

concentration is noticed with an increase in (L¢).
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1.0

O=Rp=y=01, B=Ng=02,Br=ar=03,
08 M=8c=05N;=08 n=09, L¢c=11, Pr=15

0.6r
'
—
0.4t
0.2
0.0, ‘ ‘ ‘ ‘
0 2 4 6 8
&
Figure 10.7: Variation of E* on j(&).
1.0 -
\ O=Rp=y=01, B=Ng=02,B;y=03, M=Sc=0.5,
E=06,Nr=08 n=09, L¢c=1.1, Pr=15
0.8r
0.6r
©
ar =03, 0.4, 05, 0.7
0.4
0.2
0.0’ . . | I ]
0 2 4 6 8
&

Figure 10.8: Variation of ap on j(£).
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1.0 ;

\ O=Rp=y=01, B =Ng=02, By =ay=03,

N, M=Sc=05 E=06 Ny=08 n=09, Pr=15
08 W\
0.6

S
0.4
0.2
0.0 |
0 2 4 6 8

Figure 10.9: Variation of L, > 0 on j(£).
10.4.4 Heat and mass transfer rates

Impact of emerging variables on (Re,) " N, and (Re,) "*S, is calculated in Table
(10.2). It is noted that heat transfer rate enhances for non-dimensional activation en-
ergy parameter while it reduces for Brownian motion and thermophoresis. Clearly mass
transfer rate enhances for Brownian motion and Thermophoresis and decreased for non-

dimensional activation energy parameter.

193



Chemically reactive flow of Maxwell nanofluid with activation energy. ..

Table 10.2: Numerical Values of heat transfer and mass transfer rates when v = Rp =
Q=01,=02,Br=ar =03,M =Sc=05n=09,Lc=1.1and Pr = 1.5 are
fixed.

Ng Nr E* (Re)) "N, (Rey)*"S,

0.2 08 0.6 0.1964 0.5301
0.3 — - 0.1894 0.5640
04 - - 0.1831 0.5851
05 — - 0.1762 0.5980
- 05 - 0.2018 0.4995
- 06 - 0.1997 0.5041
- 07 - 0.1975 0.5142
- 08 - 0.1907 0.9288
- — 02 0.1911 0.8198
- - 04 0.1931 0.6888

10.4.5 Comparison results

Table (2.3) presents the comparison of — f”(0) for different values of Maxwell parameter

in limiting case. The results are found in good agreement.

Table 10.3: Comparison values of # for Newtonian case i.e., M = 0.

B —/"(0)
Abel et al. [78] Megahed [79] Present outcomes

0.0 1.000000 0.999978 1.00000
0.2 1.051948 1.051945 1.051889
0.4 1.101850 1.101848 1.101903
0.6 1.150163 1.150160 1.150137
0.8 1.196692 1.196690 1.196711
1.2 1.285257 1.285253 1.285362
1.6 1.368641 1.368641 1.368757
2.0 1.447617 1.447616 1.447650
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10.5 Conclusions

We summarize the major findings as follows:

1 Velocity of fluid enhances via curvature parameter while it reduces for magnetic

parameter.
(1 Temperature of fluid increases for radiation and heat generation parameters.

[ Concentration is reduced for destructive chemical reaction whereas as it enhances

for temperature difference number.
1 Concentration of nanofluid enhances for non-dimensional energy.

(1 Brownian motion and thermophoresis reduces for heat transfer rate while it en-

hances for mass transfer rate.
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Magnetohydrdynamic flow of
thixotropic nanofluid with Soret and
Dufour. . .

This chapter addresses magnetohydrodynamic (MHD) flow of thixotropic nanofluid. Stag-
nation point flow due to nonlinear stretching sheet of variable thickness is elaborated.
Heat and mass transfer features are discussed using Soret and Dufour effects. Convec-
tive conditions are also imposed. Nonlinear systems are solved by homotopy algorithm.
Convergence of derived solutions is ensured explicitly. Velocity, temperature, concentra-
tion, skin friction coefficient and local Sherwood and Nusselt numbers are examined for

influential parameters.

11.1 Formulation

Let us model stagnation point flow of thixotropic nanofluid due to stretching surface of
variable thickness. Flow caused by nonlinear stretching surface is restricted in domain
y > 0. Behaviors of Brownian movements and thermophoreseis are studied. Stretching
velocity of sheet is w, () = ug(x + b)" (n being power-law index). A magnetic field
of constant strength BS is applied. Omission of electric and induced magnetic fields is

ensured. The related problem satisfy:

ou Ov

— + == 11.1
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ou ou |\ __ du,
Pf (ua—z + va—y> = Ue g

2 (u, —u)+ﬂf(32—g)—61~z (;) pat

Ju 9%u B u
—|—4Rb ; 2(8_3/)8(@) (8 Bxﬁy;_ 88y ) o 7 (112)
+ oy 8x8y +v + Dy Ozdy + Ay dy?
N 2
aT ar __ aC aT Dy (0T
o= (8) - [on (55) £ (3
(11.3)
1 160" ( 38T) | DpKy 9C
(nCp); 3k* (Cp);Cs 0y*~
oC oC 0°C r (0°T DpKrp 0°T
— — | =D | — 114
(u8r+w82) (8y)+ <8y2> T Oy?’ (11.4)
u=u, =uy(x+b)", v=0, k;f8 —hf(Tf—T)
~Dp%C =k, (Cy = C) at y=d(@+b) 7 (11.5)

u=1u.=1vy(x+0b)", T =Ty, C— Cy asy—)oo,
where components of velocity in (x,y) directions are (u,v) and R, and R}, the material
constants.

Considering:

u=ug(x+b)"F'(n), v= —\/("TH) viug (x4 b)" ! {F(n) anF’( )]

— | (11.6)
n=yy/ (") s @+ 0" O = £, J(n) = S5,
Eq. (11.1) is trivially satisfied while Egs. (11.2)-(11.5) give
B ey PRLR, (2 [”“FF] — M 20 2 UM
F// _ n_—l—lFFIIQFw (117)
+ Ky (l’) |: SL 7 ~/ ///2 5n2f2n73 [ T2 o } =Y
— (1) FF I A A

(6-1) (3@2 (&) + @sc:y)
e safo-) (o) eow) | |y
w3 (6-1) ((9) +0er)
+NpOL' + Np©2 + FO&' + D, J" =0, )
¢+ (% - Srsc) 0" + SckJ =0, (11.9)
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, ©(c0) = 0, (11.10)
J
Letting
F)=fn—a) =), ©=00n—a)=0(), J=jn—a)=jE) (11.11)

one can write

n+1

f/// . n+1 f/2 + ff// (
+1 2 ) f//4 - nTJrlffusz ] o, (11.12)

) [n+1 f//Qf///} . n+1 Mf/ 2n \112 + —\I/M

_ ( ) ]F /f///2 5n2+22n—3 f~/f~/12f/l/

(6, -1)’ (352 (#) + é/és)

L (1+Rp)0"+Rp | +3 (éw —~ 1)2 (25 (é’)2 - éQé”)

(11.13)

- N2 aa

+3 (0, 1) ((0) + 90")
+N39~/3/ —I—_NTéIQ + FO + Df}” =0, )
~n N "
J + <—+Sr5c>6’ + Scfj =0, (11.14)
Np

F(0) = atz2, f/(0) =1, f(c0) = U,

9(0) = —Br[L - §(0)], f(c0) 0, (11.15)
7'(0) = =Bc[1 = j (0)], j(o0) =0
Here K, = GUOR“::#, Ky = %ﬁrb)w are the non-Newtonian parameters, By =
¥ ¥

hy

kf\/(n+1)u0( +b)

km

the concentration

the thermal Biot number, B =

c .
Biot number, Pr = % the Prandtl number, M = Ufffi the magnetic parameter,
U = Z—g the velocity ratio parameter, Sc = ;—; the Schmidt number, Rp = 152 Zi the

TDB(Cf Coo)
14

radiation parameter, 0; = f—f the temperature ratio parameter, Ngp = the

TDT (Tf

Brownian motion parameter, Ny = o T=) the thermophoresis parameter, D; =

DpKr(Cr—0x) {16 Dufour number and S, = 22571~ Tx)

V£(Cp) ;Ca(Ty—Too) T = T (Cr—Co) the Soret number .
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11.1.1 Physical quantities of curiosity

Mathematically, skin friction of coefficient is defined as

where wall shear stress (7,,) is expressed as

2
Tw = Hy — 2Ra <@) % .
Oy Oy y=d(z+b) 2"

In dimensionless form

o= ()" o (1) 5 ().

Mathematically, Nusselt number is defined as

\7 ([E+b) Guw
Ny=——7—"F,
ke (Ty — T

where wall heat flux (g,) satisfies

160*T§O) (aT

or
n—+1

(Re,) 0 N, = - (

Mathematically, Sherwood number is defined as

" DB(CJ”_OOO)7

where the mass flux (g,,) obeys

oC
qm = —Dp (8_) .
Y y=d(x+b) 2

n+1 0.5~.
5 ) 7'(0).

or

(Rey) " S, = — <

In the above expressions Re, (= to (z + )"/ vs) the local Reynolds number.
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11.2 HAM Solutions

We take for solutions here as

Jol€) = W(E) + (1~ W)(1 — exp(—€)) + o (12),
00(€) = 12 oxp(—6), (11.25)
Jol€) = 125 exp(=),

with ~ ~ ~
L =7 7.
Li(0) = 0" 6, (11.26)
£5G)=J" =],
and

L7 [Cy + Caexp(§) + Czexp(—E)] =
5 [Caexp(€) + C5 exp(—€)] = 0, (11.27)
- [Csexp(€) + Crexp(—€)] = 0,

11.3 Convergence

Convergence region is adjusted with the help of auxiliary parameters hjz, hy and f; in
homotopy analysis method. Thus we have inspected and plotted the A—curves (see Figure
(11.1)). Ranges of admissible values for fi are —1.1 < fif < —0.68, —1.86 < fi; < —0.98
and —2.12 < fi; < —0.6. Solutions converge in whole region of § (0 < ¢ < o0) when
hi=—1.0, h; = —1.4 and hi; = —1.6. Series solutions convergence can be seen from Table
(11.1). £"(0) and #'(0) converge at 20" order of approximations and j'(0) converges at

17" order of approximations.

200



Chapter 11

2 \\‘
‘\"-_
LAY
i
l, \\'.“‘
\\\
\,
\\\\
S
0 T S
N\\
~ AN
;g i \\\\
L -1 \‘.\\
=2 "\\\
> (Y
2
1
i
_3l “‘\
- Y
7'(0) I
o i
4l F'(0) —mimemm i
- 1l “|
](0) ————— i_\
il
_s | ‘ | il
-1.0 -0.5 0.0
fi 2050
VA

Figure 11.1: A-curves for velocity, temperature and concentration.

Table 11.1: Series solution convergence when ¥ = 0.1, K, = K, = 0.2, Br = B¢
03,Rp =Dy =M =25,=Npr=Np=05,0,=13n=11Pr=13and Sc=1.7.

Order of approximations —f'(0) —0'(0) —j'(0)
1 0.9943 0.2192 0.2223
5 0.9997 0.2001 0.2104
10 1.0074 0.1950 0.2068
15 1.0120 0.1850 0.2058
17 1.0133 0.1833 0.2056
20 1.0149 0.1818 0.2056
23 1.0149 0.1818 0.2056
30 1.0149 0.1818 0.2056
40 1.0149 0.1818 0.2056
45 1.0149 0.1818 0.2056
50 1.0149 0.1818 0.2056
60 1.0149 0.1818 0.2056
70 1.0149 0.1818 0.2056

80 1.0149 0.1818 0.2056
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11.4 Analysis

This section highlights the behaviors of velocity, temperature, concentration, surface drag

force and heat and mass transfer rates for different involved parameters.

11.4.1 Dimensionless velocity field

Figures (11.2) and (11.3) are plotted to investigate influences of thixotropic parameters
(K, = 0.2,0.4,0.6,0.7) and (K, = 0.2,0.4,0.6,0.7) on velocity f'(¢). It is noted that
velocity field enhances for thixotropic parameters (K,) and (K}). Physically it is verified
that (K,) and (K}3) lead to shear thinning case which demonstrates viscosity change due
to time. Hence larger values of thixotropic parameters (K,) and (K;) correspond to
longer the fluid experiences shear stress which causes reduction in fluid viscosity. Hence

velocity of fluid enhances.

Lo N =¥ =01, N,=K,=02 By =B =03,
@ =Rp =04, M =Ng=Nr =D; =5, =05,
B8y G sePrell g =138 =18 |
_0.6¢
W |
S &
0.2r
| Ko=02, ?}.4,0.6,0.2. e |
0.0, i i i fe 2 :
0 1 2 3 4 5 6

Figure 11.2: Variation of K, on f'(€).
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N, =¥ =01 N, =Ky =02 By =Bc=03,

@ =Rp =04, M =Ng =Ny =Dy =5, = 0.5,

0'8 ...... ............... nzPr:II,(g‘:]‘g,SC:]? ......... ....................... _

0.6/

7é

0.4

0.2

0.0:,,,.,.5.5.:.5...‘
0 1 2 3 4 5 6

Figure 11.3: Variation of Kj on f’(g)

11.4.2 Temperature

Combined effects of Brownian motion (Ng = 0.2,0.4,0.5,0.6) and thermophoresis (Np =
0.2,0.4,0.5,0.6 ) on 6(¢) are displayed in Figure (11.4). Increasing behavior of tempera-
ture and thermal layer thickness is noted for Brownian motion (Np) and thermophoresis
(Nr). Impact of Dufour number (D; = 0.2,0.3,0.5,0.7) on temperature é(f) is portrayed
in Figure (11.5). Results indicate that temperature 6(€) is an increasing function of Du-
four number (Dy). Effect of Prandtl number (Pr = 1.1,1.2,.13,1.4) on temperature is
shown in Figure (11.6). There is a reduction in temperature for higher (Pr). In fact
thermal conductivity reduces for higher (Pr ) and consequently the temperature decays.
Figure (11.7) is plotted to study the impact of thermal Biot number on temperature.
Higher (Br = 0.3,0.4,0.5,0.6) offer more heat transfer resistance inside a fluid when

compared with stretching sheet and thus temperature enhances.
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Nj_tff 01 NQ_K Kb=02 By =0.3,
S—05 ...... ........................ i

Ng = 0.2, 0.4, 0.5, \--

Ny =0.2, 04 0.5, 06 =g
0 i 2 3 4 5 6

Figure 11.4: Variations of Nz and Ny on 6(¢).
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Figure 11.5: Variation of D on 6(¢).
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11.4.3 Concentration

We can see from Figure (11.8) that an increase in thermophoresis parameter (Nr) yields
an enhancement of concentration j(f ). No doubt thermal conductivity increases in pres-
ence of nanoparticles. Higher values of (N7) correspond to an increase in fluid thermal
conductivity. Larger thermal conductivity lead to more concentration. Mean while con-
centration of nanoparticles reduces through Np. Physically for larger (Ng) the collision
among the fluid particles increases and the corresponding concentration decreases. Higher
values of (S, = 0.2,0.3,0.5,0.7) on concentration j(£) is depicted in Figure (11.9). Clearly
concentration is an increasing function of (S,). Figure (11.10) is plotted to study varia-
tion of concentration j(¢) for larger (B¢). Concentration j(¢) of fluid enhances for larger
solutal Biot number (Bg). It is due to the fact that coefficient of mass transfer enhances

via higher (B¢).

N, = 50 0.1, Ng—Ka—Kb—02 Br =03,
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3 rg—Pr 11&"1—]350:]7
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0.2} e ..... . ]
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O.O'NT_G) 0.4, 0.5, 0

0 2 4 6 3

Figure 11.8: Variation of Ny and N on j(£).
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11.4.4 Skin friction coefficient and local Nusselt and Sherwood
numbers

Figure (11.11) depicts impacts of K, and M on skin friction coefficient. Magnitude of

skin friction coefficient enhances for larger K,. Heat transfer rate reduces for Np (see

Figure (11.12)). For higher n the local Sherwood number enhances (see Figure (11.13)).

Figure (11.14) shows that Sherwood number reduces for larger Nr.

K,=0.2,0.3,0.5

-2.2r
. —2.4 ~
%
®) ——
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x-260 /T~ e
x
N \\ \.‘
.o .
So "\..\
_2.87 ‘\\\ e
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Figure 11.11: Variation of K, on (Rex)o'5 C~’Sf.
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11.5 Closing remarks

Nonlinear radiation in flow of thixotropic nanofluid is studied in presence of Soret and

Dufour effects. The following points are worth mentioning:

[ Velocity is an increasing function of material parameters (K,, K}) of thixotropic

liquids.

1 Temperature of fluid enhances for higher Brownian motion, thermophoresis param-

eter, thermal Biot number and Dufour number.

1 Concentration of nanofluid strongly depends upon the Soret number and solutal

Biot number.
d Magnitude of Skin friction coefficient rises for material variable (K.

(d Thermophoresis parameter reduces for heat and mass transfer rates.
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