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Preface 

Fluid dynamics is a branch of engineering science which deals with the analysis of different 

fluids flow in different geometries under their rheological behavior. Analysis of non-

Newtonian fluids is now recognized for its several industrial and engineering applications. 

Motivation of researchers in these material is through biological stuff (chemicals, vaccines, 

syrups, blood, synovial fluid etc.), chemical material (cosmetics, grease, pharmaceutical 

chemicals, shampoos, tooth paste, paints, oil reservoirs etc.) and food products (ketchup, ice 

creams, mayonnaise, apple sauce etc.). Such materials do not obey the Newton’s law of 

viscosity. All characteristics of non-Newtonian liquids are not completely described by a single 

constitutive relation (model). Therefore, numerous models of such complex liquids have been 

suggested for the discussion about their rheological characteristics. The non-Newtonian fluids 

are categorized through three main classification (i.e., rate type, differential type and integral 

type). In addition, the features of such materials within the frame of different domain have 

benchmark importance in polymer and metal extrusion mechanisms, cooling of metallic 

surfaces and crystal growth, paper production and glass fibres. The analysis of heat transfer 

mechanism through cooling rate is an essential requirement of present industrial technologies. 

Features of heat and mass transfer is based through various mechanisms like heat 

generation/absorption, thermal radiation, Fourier’s law of heat conduction, convection, binary 

chemical reaction, activation energy and Fick’s laws. 

Keeping all these aspects in mind, the prime objective of this thesis is to study nonlinear 

mathematical models subject to chemical reaction and Cattaneo-Christov heat and mass fluxes. 

Solutions and analysis are performed by utilizing homotopy analysis technique and shooting 

method. Finally, the structure of thesis is as follows: 



Chapter one consists of literature survey of relevant published works and some basic 

conservation laws. The basic concepts of homotopy analysis method (HAM) and shooting 

technique are presented.  

Chapter two addresses the axisymmetric convective, stagnation point flow of electrically 

conducting nanofluid induced by a permeable cylinder. The Darcy-Forchheimer relation is 

accounted to specify the flow nature in porous medium. Formulation of mathematical model is 

given by using Tiwari-Das nanofluid model. The velocity and thermal slip conditions are 

considered for present analysis. Implementation of appropriate transformation leads to 

nonlinear coupled systems of momentum and energy. Resulting systems are cracked through 

homotopic technique. The physical quantities namely, the skin friction coefficient and the local 

Nusselt number are calculated at the cylindrical surface and elucidated through graphs and 

tables. The contents of this chapter are published in “Results in Physics, 9 (2018): 771–778”. 

( https://doi.org/10.1016/j.rinp.2018.02.073) 

Chapter three describes dual stratified flow of Maxwell nanofluid subjected to Cattaneo-

Christov double diffusion scheme by nonlinearly stretched inclined cylinder. Key objective of 

this chapter is to explore the physical aspects of Maxwell nanofluid flow by nonlinearly 

stretched inclined cylinder in corporation with Arrhenius activation energy, non-uniform heat 

generation/absorption, nonlinearly convection, dual stratification and binary chemical reaction. 

Homotopy procedure yields convergence series solutions. Graphs are plotted to see the 

behaviour of physical variables. Expression of Nusselt and Sherwood numbers are examined 

numerically. The results of this chapter are published in “Heliyon 5 (2019): e01121”.  

(https://doi.org/10.1016/j.heliyon.2019.e01121) 

Chapter 4 reports the novel characteristics of Jeffrey nanofluid flow due to an inclined 

permeable stretching cylinder manifested within the frame of homogeneous-heterogeneous 

reactions, thermal stratification, mixed convection and stagnation point. Energy expression is 



modelled by Cattaneo-Christov heat flux. The derived nonlinear systems are solved 

analytically. Intervals of convergence are identified. The dimensionless fluid velocity, 

temperature and nanoparticle concentration on varying physical parameters are demonstrated 

by means of graphical and tabular outcomes. The contents of this chapter are submitted to 

“Heliyon”. 

Chapter five describes nonlinear mixed convective flow of Jeffrey nanofluid with Arrhenius 

activation energy over an inclined permeable stretched cylinder. Features of non-uniform heat 

generation/absorption, binary chemical reaction, thermal and solutal stratification are utilized 

through no slip condition. The novel binary chemical reaction model is implemented to 

characterize the impact of activation energy. Generalized versions of Fourier’s and Fick’s law 

through Cattaneo–Christov double diffusion are employed to configure heat and mass transfer. 

Graphs and tables are created to analyse the impact of governing parameters on interested 

physical entities. The contents of this chapter are submitted in “The European Physical 

Journal”  

Chapter six explores the novel aspects of activation energy in nonlinearly convective flow of 

Walter-B nanofluid subjected to Cattaneo-Christov double diffusion model over a permeable 

stretched sheet. Generalized forms of Fourier's and Fick's law are utilized through Cattaneo-

Christov double diffusion. Walter-B nanomaterial model is used that describes the significant 

slip mechanism namely Brownian and thermophoresis diffusion. Activation energy, dual 

stratification, heat generation/absorption and binary chemical reaction are considered. 

Mathematical problems are computed for convergent series solutions. Discussion is made for 

dimensionless velocity, temperature and nanoparticle concentration. The outcomes of this 

chapter are published in “Heliyon 5 (2019): e01815”.  (https://doi.org/10.1016/j.heliyon. 

2019.e01815).  



Chapter seven aims to examine the novel features of activation energy in MHD nonlinear 

convective flow of Casson nanomaterial within the frame of Cattaneo-Christov heat flux 

model. Physical significance of heat transfer is based through nonlinear thermal radiation and 

non-uniform heat generation/absorption. Formulation for Brownian motion and 

thermophoresis is made through Buongiorno model. Additionally, impact of binary chemical 

reaction, thermal and solutal stratification are studied. A validation of the work is offered by 

comparing the current results with published literature. The contents of this chapter are 

submitted in "Physica Scripta”. 

Chapter eight is dedicated to discover the physical aspects of ferromagnetic Maxwell fluid flow 

over a stretched sheet in the presence of magnetic dipole, non-uniform heat source/sink, 

thermal and concentration stratification. Highlights of Brownian movement and 

thermophoresis are also explored through Buongiorno model. The numerical solution is 

obtained by using shooting method with the aid of fifth order Runge-Kutta-Fehlberg algorithm. 

Skin friction coefficient, local Nusselt and Sherwood numbers are tabulated and analysed. The 

contents of this chapter are published in "Physica Scripta, (2018)”. 

(https://doi.org/10.1088/1402-4896/aaf6df) 

 



 

Nomenclature 

 

𝐴 Velocity ratio parameter 

𝐵0 Magnetic field strength 

(�̂�1, �̂�2) Heat generation/absorption parameters 

𝐶 Fluid concentration 

(𝐶0, 𝐶𝑤, 𝐶∞) Reference, wall and ambient concentration 

𝐶𝐹 Skin friction coefficient 

(𝑐1, 𝑑1, 𝑑2, 𝑑3, 𝑑4) Constants 

(𝐷𝐵, 𝐷𝑇) Brownian diffusion and thermophoretic coefficients 

𝐸𝑐 Eckert number 

𝐸1 Activation energy 

𝐸𝑎 Activation energy parameter 

𝐹(𝜉) Similarity function 

�̂�𝑟 Forchheimer inertia coefficient  

�̂�1 Gravitational acceleration 

𝐺𝑟 Grashof number 

𝐽𝑤 Wall mass flux 

𝑱𝟏 Mass flux 

(𝑘𝑓 , 𝑘𝑠, 𝑘𝑛𝑓) Thermal conductivity of (fluid, solid fractions, nanofluid) 

(𝐾𝑚, 𝐾𝑡) Homogeneous and heterogeneous reaction strength 



𝑘∗ Boltzmann constant 

�̂�1 Reaction rate parameter 

�̂�3 Mean absorption coefficient 

�̂�𝑟
2 Chemical reaction rate constant 

L Scale length 

𝐿𝑒 Lewis number 

�̂� Magnetic parameter 

𝑀1 Porosity parameter 

�̂�𝑏 Brownian motion parameter 

�̂�𝑡 Thermophoresis parameter 

𝑁𝑢𝑧 Local Nusselt number 

�̂�1 Buoyancy ratio parameter 

𝑝 Fitted rate constant 

𝑃𝑟 Prandtl number 

�̂� Embedding parameter 

�̂�𝑟 Radiative heat flux 

𝑞𝑤 Walli heat flux 

𝒒𝟏 Heat flux 

𝑅0 Radius of cylinder 

(𝑆𝑡, 𝑆𝑣) Thermal and velocity slip parameters 

𝑆𝑐 Schmidt number 

𝑆ℎ𝑧 Sherwood number 



(𝑆1, 𝑆2) Thermal and solutal stratification parameters 

𝑇 Fluid temperature 

(𝑇0, 𝑇𝑤, 𝑇∞) Reference, surface and ambient temperature 

(𝑢𝑧 , 𝑢𝑟) Axial and radial velocity 

(𝑈0, 𝑈𝑤, 𝑈∞) Reference, stretching and ambient velocity 

𝑉1 Mass transfer velocity 

𝑉𝑝 Mass suction/injection parameter 

Greek symbols 

𝜉 Similarity variable 

𝛼∗ Thermal diffusivity 

(𝜌𝑓 , 𝜌𝑠, 𝜌𝑛𝑓) Density of (fluid, solid fractions, nanofluid) 

𝜇𝑓 Dynamic viscosity of base fluid 

(𝜈𝑓 , 𝜈𝑛𝑓) Kinematic viscosity of (fluid, nanofluid) 

𝜃(𝜉) Dimensionless temperature 

𝛾1 Curvature parameter 

𝛾2 Chemical reaction parameter 

𝛾3 Chemical reaction rate constant 

𝜍0 Magnetic permeability 

(�̂�𝑡, �̂�𝑐) Nonlinear thermal and solutal convection parameters  

𝛽1 Buoyancy parameter 

𝛽2 Deborah number 

𝛿 Temperature relative parameter 



(δ𝑒 , δ𝑐) Thermal and solutal relaxation parameters 

𝜙 Nanoparticle volume fraction 

𝜙𝑎 Angle of inclination 

𝜏𝑤 Shear stress at surface 

(𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6) Arbitrary constants 

((𝜌C𝑝)𝑓 , (𝜌C𝑝)𝑝, (𝜌C𝑝)𝑛𝑓) Heat capacity of (base fluid, nanoparticle, nanofluid) 

(£𝐹, £𝜃, £Φ) Auxiliary linear operators 

Φ(𝜉) Dimensionless nanoparticle concentration 

(Γ1, Γ2, Γ3, Γ4) Thermal and solutal expansion coefficients (linear & nonlinear) 

(Γ̂𝑒 , Γ̂𝑐) Thermal and solutal relaxation time 

Ψ1 Stream function 
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CHAPTER 1 

 

Literature Review 

 

1.1   Introductioni 

 

This ichapter is devoted to review the published articles related to the work presented in 

this thesis (e.g. heati and imass itransfer iwith iactivation energy, nonlinear mixed convection, 

thermal radiation, nonuniform heat igeneration/absorption, ihomogeneous-heterogeneous 

reactions and dual stratification) and the constitutive equations representing Maxwell, 

Walter-B, Jeffrey and Casson fluid models are included to analyze the flow regime. For 

the solution of the models ihomotopyi analysis imethod (HAM) and built-in-shooting 

technique are employed. 

1.2   Background 

“Investigationi of non-Newtonian liquids has iattained notable iconsideration in irecent icouple 

of iyears on iaccount of its ibroad applicationsi in iengineering iand industries. Some iexamples 

of non-Newtonian imaterials iare igypsum ipaste, iyogurt, clays, iprinting ink, idrilling mud, 

iblood, hydrogenatedi caster oil, ipaints, colloidal suspension, butter, ketchup, isoup, ijam andi 

so on. The intricatei ideai of non-Newtonian liquids ioffers great ichallenge to iphysicists, 

mathematiciansi and iengineers. Severali modelsi have ibeen ioffered ifor the iinvestigation of 

non-Newtoniani liquidsi in the iliterature. Sincei therei is no isingle iconstitutive irelation 

(model) that icompletely ipredict iall icharacteristics iof inon-Newtonian iliquids.” Various 
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constitutive equations were modelled to predict the rheological characteristics of such type 

of materials. Additionally, there are various rheological complex fluid models which do 

not display the features of relaxation and retardation time. These fluids are categorized as 

rate and differential types [1-5]. To predict the characteristics of relaxation/retardation 

time, Maxwell, Walter-B, Jeffrey and Casson fluid models were developed [6]. Mustafa et 

al. [7] completed numerical computations for rotating flow of Maxwell liquidi in view of 

Cattaneo-Christov heat flux mode. Hayat et al. [8] consideredi the iproblem of Maxwell 

fluid with the ieffects of imelting heat transfer via ihomotopic technique. Ijaz and Ayub [9] 

presented nonlineari convective flow of Maxwell nanofluid in the presence of heat 

generation/absorption and iactivation ienergy. Hayat et al. [10] discussed about thermally 

stratified flow of Maxwell liquid with radiation. Ijaz et al. [11] focused on stratified flows 

with ferromagnetic Maxwell fluid by including heat generation/absorption. Hayat et al. 

[12] examinedi the radiative iflow of Jeffrey fluid in the ipresence of iheat 

generation/absorption. Hamad et al. [13] inspected stagnation point iflow of iJeffrey fluid 

with variable ithermal conductivity iover ipermeable surface. Physical features of Jeffrey 

liquid with different assumptions are delineated (see [14-18]). 

Mixed convective flow with stretched surface has practical implementations in 

industries and engineering. Basically, it is coalition of forced and free convections. Key 

role of main factors in the particle deposition include convection, Brownian diffusion, 

turbulence, sedimentation, thermophoresis electrophoresis, inertial effect and surface 

geometry. Some significant applications of convection phenomenon are nuclear reactor, 

heat exchanger, solar thermal collectors and electronic equipment. Mixed convection 2D 

flow on stagnation point through vertical surface is investigated by Ramachandran et al. 
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[19]. Hayat et al. [20] explained mixed convection impacts on viscous nanofluid flow 

towards the stagnation point over a linearly stretched cylinder. Mixed convection 

influening the nanofluid flow through cylinder along with heat source/sink was discussed 

by Hayat et al. [21]. Unsteady radiative and mixed convective flow over stretched surface 

embedded through porous medium was analysed by Mukhopadhyay [22]. 

Fourier [23] proposed a model to analyze heat transfer phenomenon for different 

materials. This model was quite beneficiary in case of solids. But for fluids, this model has 

some flaws; one of major flaws is of parabolic nature in its mathematical system which 

does not predict the heat transfer in fluid flow accurately. This deficiency was overcomed 

by Cattaneo [24] by adding thermal relaxation term (effects of thermal inertia). Christov 

[25] revised the Cattaneo model by taking Oldroyd’s upper convected derivative for 

thermal inertia. “Ciarletta and Straughan [26] proved the uniqueness and stability of 

Christov-Cattaneo model. Han et al. [27] described the slip flow of viscoelastic fluid 

through stretched surface with inon-Fourier iheat flux imodel. iHayat et al. [28] discussedi 

Jeffrey model with iCattaneo-Christov iheat and imass idiffusion on stretched surface. Some 

significant work has been presented in [29-34].” 

Ferrofluids has demonstrated some remarkablei physical propertiesi and their usage 

in many ismart appliances. Its electrical application has ifascinated scientists and engineers 

overi the iyears. Ferrofluids are iused in various equipments like lasers, avionics, cooling 

agents, filtration, robotic, metal spining etc. Firstly, Anderson and iVanes [35] discussed 

the featuresi of imagnetic idipole iand iheat itransfer on iferrofluid iflow due to iistretchable 

isurface. Titus and iAbraham [36] examined ferroliquid iflow iand warmth itransfer over a 

istretchable isheet. Neuringer and iRosensweig [37] inspected thermophysical icharacteristics 
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of iferrohydrodynamics. Mixedi convective iflow of ferrofluidsi withi ihomogeneous/ 

heterogenousi reactionsi and imagnetic idipole is deliberated by iYasmeen et al. [38]. Impacti 

of suction/injection in the ipresence of magnetic idipole for flow of iviscoelastic material is 

considered by iZeeshan iand iMajeed [39]. iVtulkina and iElfimova [40] deliberatedi imagnetic 

characteristicsii of ferrofluidsi due to iexternal imagnetic field. Few irecent articles identifiedi 

with ferrofluidi flow are iintroduced in [41−43]. 

Chemical reaction and activation energy to study mass transfer phenomenon has 

attracted many researchers after its number of applications in industry (i.e. chemical 

engineering, cooling of nuclear reactors, thermal oil recovery and food processing). The 

law of Arrhenius is generally of the form [44]:    

𝐾 = 𝐵∗(𝑇 − 𝑇∞)
𝑝𝑒𝑥𝑝 [−

𝐸𝑎
𝜅(𝑇 − 𝑇∞)

], (1.1) 

“here 𝐾 denotes the ratei constanti of chemicali reaction, 𝐵∗ the prefactor (constant) based 

on the ifact enhancingi the temperaturei that ifrequently icauses remarkablei increasei in the 

ratei of ireactions, 𝐸𝑎the activationi ienergy and 𝜅(= 8.61 × 10−5 𝑒𝑉/𝐾) the Boltzmann 

iconstant.” Besides experimental study, theoretical efforts are acknowledged for activation 

energy analysis in different flow problems. Short comings of theoretical study are also 

found in literature. The complexities in predicting chemical reaction processes were main 

hurdle. These types of problems are very difficult to handle. Practical problems 

representing chemical kinetic reaction become very complicated, but if this is limited to 

binary type reaction a lot of achievements are possible in this field. On the basis of 

thermomechanics, Truesdell [45,46] initially formulated the balance equations for general 

materials. Afterwards, [47,48] obtained exact solutions of incompressible Newtonian fluids 
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with a binary chemical reaction in boundary layer regime. Bestman [49] explored the 

activation energy effects through porous matrix. Recently, Kandasamy et al. [50] discussed 

chemical reaction effects on viscous fluid flow over a wall of wedge with different physical 

assumptions. Bestman [51] analyzed the radiative heat transfer with effects of the 

Arrhenius activation energy under the various physical conditions through a vertical 

cylinder. 

Heat generation/absorption directly changes heat distribution that ultimately effects 

the rate of particle deposition in the medium. Heat source/sink have different situations, it 

may be constant, space or temperature dependent. Abo-Eldahab and El-Aziz [52] 

investigated hydrodynamic viscous fluid flow with heat generation/absorption. Abel et al. 

[53] also described the heat generation/absorption phenomenon in viscoelastic fluid flow 

with various assumptions. Abel and Mahesha [54] analyzed non-uniform heat source in 

viscoelastic fluid flow past a stretching sheet. In [55-60] some related articles on heat 

source/sink are presented. 

The character of iradiative heat itransfer is iquite phenomenali in variousi engineering 

processesi like nuclear ipower plants, process of solar heat igeneration ihypersonic flights, 

space vehicles, gas iturbines, gas coolant nuclear ireactors etc. iRadiation phenomenon is not 

medium-dependent while it varies against arrangement of geometry, properties between 

temperature and surface which is emitting or absorbing heat. The influences of linear 

radiation are not noticeable for excessive temperature difference because in this case the 

involved parameter i.e., linearized Rosseland approximation has negligible effects [61], 

whereas nonlinear radiation phenomenon is delineated with the aid of radiation parameter, 

Prandtl number and temperature ratio parameter. iHeat exchange with thermal iradiation has 
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marvellousi uses in numerous iprocedures includingi satellites, missilesi and space vehicles. 

Pantokratoras [62] investigated thei both linear and nonlinear Rosseland radiations on 

naturali convective flow over isothermali plate by means of a inovel iradiation iparameter 

named as film radiation parameter. Cortell [63] discussed the nonlinear radiations influence 

on viscous fluid flow past a stretched surface. Refs. [64-69] also described the nonlinear 

radiations impacts on MHD fluids. 

Although number of researchers has discussed various nanofluid models with flat 

surfaces under different situations by taking stratified flow. So far, the chemical reaction 

and Arrhenius activation energy under stretched cylindrical domain has not been 

considered. Due to its various applications in industry main focus of this thesis will be to 

examine Cattaneo-Christov heat and mass flux models by taking various viscoelastic 

materials in the presence of chemical reaction. Features of double stratification, stagnation 

point, non-uniform heat generation/absorption, MHD, binary chemical reaction, 

homogeneous-heterogeneous reactions and activation energy are also taken into account. 

Viscoelastic materials are one of the major subclasses of non-Newtonian models. These 

materials have so many applications (e.g. “in automobile bumpers, on computer drives to 

protect from mechanical shock, in helmets (the foam padding inside), in wrestling mats, in 

shoe insoles to reduce the impact transmitted to a person's skeleton” etc.). Moreover, 

synthetic viscoelastic materials can be injected directly into an osteoarthritic knee, 

enveloping cartilage-deficient joints and acting as a lubricant and shock absorber. In the 

formulation of mathematical models Tiwari-Das nanofluid model and Buongiorno model 

are taken with careful consideration. 
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1.3   Fundamental laws 

1.3.1  Law of mass conservation 

According to the law of conservation of mass, mass can neither be created and nor can be 

destroyed. Mathematically for icompressible fluidi it can be expressedi as 

𝜕𝜌

𝜕𝑡
+ 𝛁. (𝜌𝑽𝟏) = 0, (1.2) 

in which 𝜌 denotes the density and 𝑽𝟏 fluid velocity. After considering incompressible 

fluid (𝜌 is constant), Eq. (1.2) implies: 

𝛁. 𝑽𝟏 = 0. (1.3) 

For rectangular icoordinate system it is writteni asi 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0, 

(1.4) 

whereasi in cylindericali iform we have 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝑢𝜃) +

𝜕

𝜕𝑧
(𝑢𝑧) = 0. (1.5) 

For axisymmetricii incompressible iflow the icontinuity equation is iireduced as ifollows: 

𝑢𝑟
𝑟
+
𝜕

𝜕𝜃
(𝑢𝜃) +

𝜕

𝜕𝑧
(𝑢𝑧) = 0. (1.6) 

1.3.2  Law of momentum conservation 

This law states that linear momentum remains conserved of whole system. Newton’s 

second law is used to derive it. Mathematicallyii it becomesi 



11 

 

𝜌
𝑑𝑽𝟏
𝑑𝑡

= 𝛁. 𝝉 + 𝜌𝒃. 
(1.7) 

For incompressibleii fluid the Cauchy stress tensor is describedi as 

𝝉 = −𝑃𝑰 + 𝑺, (1.8) 

here 𝑃 denotesi pressure, 𝑰 an iidentity tensor, 𝑺 extra istress tensor iand 
𝑑

𝑑𝑡
  the imaterial 

time idifferentiation.  

“For 𝑽𝟏 = [𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡), 𝑤(𝑥, 𝑦, 𝑡)], momentum iequation in componentsi form (by 

using icartesian icoordinates) can be iwritten as  

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
] =

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
𝜕𝑧

+ 𝜌𝑏𝑥, 
(1.9) 

𝜌 [
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
] =

𝜕𝜏𝑦𝑥

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝜌𝑏𝑦, 

(1.10) 

𝜌 [
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
] =

𝜕𝜏𝑧𝑥
𝜕𝑥

+
𝜕𝜏𝑧𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

+ 𝜌𝑏𝑧 , 
(1.11) 

where  (𝜏𝑥𝑥, 𝜏𝑦𝑦, 𝜏𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧 , 𝜏𝑦𝑥, 𝜏𝑦𝑧 , 𝜏𝑧𝑥 , 𝜏𝑧𝑦)  showsi icomponents of iCauchy stress 

itensor iand (𝑏𝑥, 𝑏𝑦 , 𝑏𝑧) the body iforce icomponents. 

Using 𝑽𝟏 = [𝑢𝑟(𝑟, 𝜃, 𝑧), 𝑢𝜃(𝑟, 𝜃, 𝑧), 𝑢𝑧(𝑟, 𝜃, 𝑧)]  momentum iequation in iicylinderical 

coordinate systemi can be expressedi as”i 

𝜌 [
𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑟
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
𝑢𝜃
2

𝑟
] =

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜏𝑟𝜃)

                                                                          +
𝜕

𝜕𝑟
(𝜏𝑟𝑧) −

𝜏𝜃𝜃
𝑟
+ 𝜌𝑏𝑟 ,

 

(1.12) 
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𝜌 [
𝜕𝑢𝜃
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧

−
𝑢𝑟𝑢𝜃
𝑟
] =

1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝜏𝜃𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜏𝜃𝜃)

                                                                +
𝜕

𝜕𝑧
(𝜏𝜃𝑧) + 𝜌𝑏𝜃,

 

(1.13) 

𝜌 [
𝜕𝑢𝑧
𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
] =

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑧𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜏𝑧𝜃)

                                                +
𝜕(𝜏𝑧𝑧)

𝜕𝑧
+ 𝜌𝑏𝑧 .

 

(1.14) 

In the above iexpressions (𝜏𝑟𝑟 , 𝜏𝑟𝜃, 𝜏𝑟𝑧, 𝜏𝜃𝑟 , 𝜏𝜃𝜃, 𝜏𝜃𝑧 , 𝜏𝑧𝑟 , 𝜏𝑧𝜃, 𝜏𝑧𝑧 ) representi Cauchy 

stress itensor icomponents andi (𝑏𝑟 , 𝑏𝜃, 𝑏𝑧) idenotesi icomponents of body iforce. 

1.3.3  Law of energy conservation 

This law physically interpretsi that total energyi of thei framework remains iconserved. It is 

developed from ifirst law iof ithermodynamics. iMathematically, we havei  

𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝝉. 𝑳 − 𝑑𝑖𝑣(𝒒) − 𝑑𝑖𝑣(𝒒𝒓), (1.15) 

where 𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
 indicatesi internal ienergy, 𝝉. 𝑳 viscous idessipation, 𝑑𝑖𝑣(𝒒) thermal iheat 

fluxi and 𝑑𝑖𝑣(𝒒𝒓) radiative heat iflux irespectively. While 𝐶𝑝, 𝑇, 𝒒 and 𝒒𝒓 representi for 

ispecific iheat, idensity, thermal and iradiative iheat fluxes irespectively. 

1.3.4  Law of mass conservation 

It is idefined as the itotal concentration iof framework iremains conserved. It is iderived from 

iFick's second law. The concentrationi equation in iview of Fick’s law can be iexpressed asi 

𝑑𝐶

𝑑𝑡
= 𝐷(𝛁2𝐶), 

(1.16) 

where C symbolizei for concentrationi and D for massi idiffusivity.  
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1.3.5  Law of energy conservation for nanofluid 

The energy iiexpression iwithin ithe frame of inanofluid can be idefined as 

(𝜌𝐶𝑝)𝑓

𝑑𝑇

𝑑𝑡
= −𝑑𝑖𝑣(𝒒) + ℎ𝑝(𝜵. 𝑱𝑝), (1.17) 

where 𝑇 for iitemperature, �̂� for energy iflux, 𝑱𝑝 for mass idiffusion flux of inanoparticles, 

𝐶𝑝 for specific iheat of nanofluidi and ℎ𝑝 for specific ienthalapy for inanoparticles. Energy 

and mass fluxes (�̂�, 𝑱𝑝 ) are defined as 

𝒒 = −𝑘𝜵𝑇 + ℎ𝑝𝑱𝑝, (1.18) 

𝑱𝑝 = −𝜌𝑝𝐷𝐵𝜵𝐶 − 𝜌𝑝𝐷𝑇
𝜵𝑇

𝑇∞
, 

(1.19) 

in whichi 𝜌𝑝 defines for mass idensity of nanoparticles, k for thermal iconductivity, 𝐷𝐵 for 

Brownian idiffusion and 𝐷𝑇 for thermophoretic idiffusion. 

The energy iexpression for inanfluid in view of Eqs. (1.18) and (1.29) is iwritten as  

𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝑘𝛁2𝑇 + 𝜌𝑝𝐶𝑝 [𝐷𝐵𝜵𝐶. 𝜵𝑇 + 𝐷𝑇

𝜵𝑇. 𝜵𝑇

𝑇∞
]. 

(1.20) 

1.3.6  Law of mass conservation for nanofluid 

The concentration iequation within the frame of inanofluid is 

𝜕𝐶

𝜕𝑡
+ 𝑽𝟏. 𝛁𝐶 = −

1

𝜌𝑝
(𝜵. 𝑱𝑝). 

(1.21) 

The concentration iexpression for nanofluidsi in view of Eq. (1.19) is given as   
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𝜕𝐶

𝜕𝑡
+ 𝑽𝟏. 𝛁𝐶 = 𝐷𝐵𝛁

2𝐶 + 𝐷𝑇
𝜵𝟐𝑇

𝑇∞
. 

(1.22) 

1.4   Mathematical formulation of heat flux models 

1.4.1  Fourier's law of heat conduction 

In 1822, iFourier states ithat irate of heat itransfer iwith the ipassage of timei is idirectly 

ipropotional to the iproducti of negative itemperature gradienti and area. iMathematically, it is 

writteni as 

𝑸 ∝ −𝐴1𝛁𝑇, (1.23) 

where 𝐴1 denotes icross isectional iarea of the fluid iflow and ∇T is defining the temperature 

igradient. Now heat flux �̂� relation is 

𝒒 = −
𝑸

𝐴1
, 

(1.24) 

hence conductioni Fourier law itakes the followingi form 

𝒒 = −𝑘𝛁𝑇. (1.25) 

Fundamentalii deficiency of ithis ilaw is ithat iconstitutional interruptioni is instantly isensed 

by mediumi under iconsideration. In facti it is infeasible, so this is iirecognized as “Paradoxi 

of heat iiconduction”. To resolve ithis issue ivariousi modificationi have ibeen proposedi by the 

iscientists. 

1.4.2  Maxwell-Cattaneo model 

In 1948, iCattaneo iresolved the iparadox of iFourier's law by iintroducing thermal relaxationi 

time which icharacterize the time inecessitated for iheat conduction to ibuilt in a ivolume 
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element iwhen temperature igradient is imposedi across it. iMathematical expression of 

Maxwell-Cattaneoi (MC) modeli is 

𝒒 + 𝜆
𝜕𝒒

𝜕𝑡
= −𝑘𝛁𝑇, 

(1.26) 

here 𝜆 representsi the irelaxation time and the imodified form iinvolvedi in above iequation 

(𝑖. 𝑒. , 𝜆
𝜕𝒒

𝜕𝑡
 ) is iknown as "thermal inertia". 

1.4.3  Cattaneo-Fox model 

In 1984, iStraughan and iFranchi [70] proposed a new itheory for heat flux. In this model 

they introduced Juamann derivative for 𝒒 in Maxwell-Cattaneo imodel. Thus Cattaneo-

Fox model is 

𝒒𝒊 + 𝜆 [
𝜕𝒒

𝜕𝑡
− 𝜖𝑖𝑗𝑘∗𝑤𝑗𝒒𝑘∗  ] = −𝑘𝛁𝑇, (1.27) 

where 𝑘∗ = (0,0,1) and 𝑤 =
1

2
𝑐𝑢𝑟𝑙 (𝑽𝟏). 

1.4.4  Cattaneo-Christov model 

In 2009, iChristov swapped the iordinary derivative by iupper convective derivatives. After 

this imodification of iMaxwell-Cattaneo theory, imain advantage is ithat one can ieliminate q 

thus iyielding a single equationi for thermal ifield. iFinally, the Cattaneo-Christov model 

becomes: 

𝒒 + 𝜆 [
𝜕𝒒

𝜕𝑡
+ 𝑽𝟏. 𝛁𝒒 − 𝒒. 𝛁𝑽𝟏 + (𝛁. 𝑽𝟏)𝒒] = −𝑘𝛁𝑇, (1.28) 
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1.4.5  Fick's law 

The concentration equation is based on the Fick's law [71] and it is of the form 

∂C

∂t
+ 𝐕𝟏. 𝛁C = −𝛁. 𝐉, 

(1.29) 

here normali mass flux 𝐉 mass is definedii as 

𝐉 = −D𝛁C, (1.30) 

from Eqs. (1.29) and (1.30), one ihas 

∂C

∂t
+ 𝐕𝟏. 𝛁C = −D𝛁

2𝐶. 
(1.31) 

1.5   Solution procedures 

1.5.1  Homotopy analysis method (HAM) 

According to Liao [72], this analytical imethod has the following iadvantages on other 

techniques: 

• It provides a series isolution without idepending upon small/ large physical 

parameters involved in series solution and iapplicable for not ionly weakly ibut also 

stronglyi nonlinear iproblems. 

• It guarantees the convergence of series solutions for nonlinear problems. 

• It provides us great choice to select the base function of the required solution and 

the corresponding auxiliary linear operator of the homotopy. 

Brief mathematicali idescription of HAM is as follows: 

Consider a inonlinear differential iequation: 
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N∗[𝑤(𝑟)] + 𝑢(𝑟) = 0, (1.32) 

where N∗ denotes nonlineari ioperator, u(r) for a known ifunction and w(r) is iunknown 

functioni to be idetermined. The homotopic iequation is 

(1 − 𝑞)ℒ[�̅�(𝑟; 𝑞) − 𝑤0(𝑟)] = 𝑞ℏ𝐻(𝑟)𝑁
∗[�̅�(𝑟; 𝑞) − 𝑤0(𝑟)], (1.33) 

here 𝑞 ∈ [0,1] is the embedding parameter, 𝐻(𝑟) ≠ 0 is an auxiliary function, ℏ(≠ 0) is 

a nonzero parameter, ℒ is an auxiliary linear operator, 𝑤0(𝑟) is an initial guess of 𝑤(𝑟) 

and �̅�(𝑟; 𝑞) is an unknown function, respectively. It is significant, that one has great 

freedom to choose auxiliary parameters in HAM. Noticeably, when 𝑞 = 0 and 𝑞 = 1, 

following holds 

�̅�(𝑟; 0) = 𝑤0(𝑟) 𝑎𝑛𝑑 �̅�(𝑟; 1) = 𝑤(𝑟), (1.34) 

expanding �̅�(𝑟; 𝑞) in Taylor series with respect to q, one obtains 

�̅�(𝑟; 𝑞) = 𝑤0(𝑟) +∑𝑤𝑚(𝑟)

∞

𝑚

𝑞𝑚 𝑤ℎ𝑒𝑟𝑒 𝑤𝑚(𝑟) =
1

𝑚!

𝜕𝑚�̅�(𝑟; 𝑞)

𝜕𝑞𝑚
|
𝑞=0

. 
(1.35) 

For convergence of above series solution, the value of ℏ play important role. Substituting 

𝑞 = 1, one gets 

𝑤(𝑟) = 𝑤0(𝑟) +∑𝑤𝑚(𝑟)

∞

𝑚

, 
(1.36) 

by defining a vector 𝑤 = (𝑤0(𝑟), 𝑤1(𝑟), 𝑤2(𝑟)… ..  𝑤𝑛(𝑟))  and differentiating Eq. 

(1.30) m-times w. r. t. (𝑞) 𝑎𝑡 𝑞 = 0, one obtain deformation of 𝑚𝑡ℎ −order as” 
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𝑤(𝑟) = 𝑤0(𝑟) +∑𝑤𝑚(𝑟)

∞

𝑚

, 
(1.37) 

ℒ[𝑤𝑚(𝑟) − 𝜒𝑚𝑤𝑚−1(𝑟)] = ℏ𝐻(𝑟)𝑅𝑚[𝑤𝑚−1], (1.38) 

𝜒𝑚 = {
0 𝑚 ≤ 1,
1 𝑚 > 1.

 (1.39) 

where 

𝑅𝑚[𝑤𝑚−1] =
1

𝑚!

𝜕𝑚−1𝑁∗[�̅�(𝑟; 𝑞)]

𝜕𝑞𝑚−1
|
𝑞=0

. 
(1.40) 

Taking ℒ⁻¹ of Eq. (1.38), 

𝑤𝑚(𝑟) = 𝜒𝑚𝑤𝑚−1(𝑟) + ℏ𝐻(𝑟)𝑅𝑚[𝑤𝑚−1]. (1.41) 

In this way one can obtain 𝑤𝑚 for 𝑚 ≥ 1, at 𝑚𝑡ℎ − order 

𝑤(𝑟) = ∑ 𝑤𝑚(𝑟)

𝑀

𝑚=1

. 
(1.42) 

1.5.2  Shooting technique 

Shooting method [73] dealsi only initial values problems. Thus, imodeled equations are 

convertedi into first iorder ODE’s. 
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CHAPTER 2 

 

Mixed convective flow of nanofluid with Darcy-

Fochheimer relation and partial slip 

 

2.1   Introduction  
 

This chapter iaddresses iaxisymmetric mixed convective, istagnation point flow of 

ielectrically iconducting nanofluid with ivelocity and thermal islip conditions by a permeable 

cylinder. The Darcy-Forchheimer irelation is taken due to porous media. Tiwari-Das [74] 

nanofluid constitutive law has been utilized to configure flow situation. Water-based 

nanofluid with nanoparticle of titanium oxide, aluminum oxide and copper is considered. 

After using similarity variables, the flow-govern system is transferred into nonlinear 

ordinary differential equations. Analytical approach HAM has been utilized to solve flow-

govern system. Thermophysical features of problems are discussed by computing velocity, 

temperature and concentration profiles versus physical parameters. Physical characteristics 

in surface vicinity are described by coefficients of wall friction, wall heat and mass fluxes 

2.2   Mathematical formulation 

Here we analyze mixed convective stagnation point flow of nanofluids by a permeable 

stretched cylinder having radius 𝑅0. The physical isketch of the flow iproblem is presented 

in Fig. 2.1. The flow analysis is considered under Darcy-Forchheimer law. The velocity 
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components along cylinder and radial direction are symbolized by 𝑢𝑧  and 𝑢𝑟 

respectively. The flow is generated due to stretching velocity of the form 𝑈𝑤 (=
𝑈0𝑧

𝐿
) and 

wall temperature 𝑇𝑤 = 𝑇∞ +
∆𝑇

𝐿
. Free stream velocity and ambient temperature are 

represented by 𝑈1(𝑧) =
𝑧𝑈∞

𝐿
 and 𝑇∞. The mathematicali model has ibeen formulatedi based 

on iTiwari-Das inanofluid model. Using boundary layer approximation, one can get the 

following governing equations [75]: 

 

 

Fig. 2.1: Physical model.   

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕

𝜕𝑧
(𝑟𝑢𝑧) = 0, (2.1) 
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𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

= 𝑈1
𝜕𝑈1
𝜕𝑧

+ 𝜈𝑛𝑓 (
𝜕2𝑢𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝑧
𝜕𝑟
) +

𝜎𝐵0
2

𝜌𝑛𝑓
(𝑈1 − 𝑢𝑧) −

𝜈𝑛𝑓

�̂�1
𝑢𝑧

             −𝑓𝑟𝑢𝑧
2 +

𝜙𝜌𝑠𝛽𝑠 + (1 − 𝜙)𝜌𝑓𝛽𝑓

𝜌𝑛𝑓
�̂�1(𝑇 − 𝑇∞),

 

(2.2) 

𝑢𝑧
𝜕𝑇

𝜕𝑧
+ 𝑢𝑟

𝜕𝑇

𝜕𝑟
=

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓

(
𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
). 

(2.3) 

The definitions are [76] 

𝜈𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5[(1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠]
, 

(2.4) 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠 , (2.5) 

𝑘𝑛𝑓

𝑘𝑓
=
(𝑘𝑠 + 2𝑘𝑓) − 2𝜙(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜙(𝑘𝑓 − 𝑘𝑠)
, 

(2.6) 

(𝜌𝐶𝑝)𝑛𝑓 =
(1 − 𝜙)(𝜌𝐶𝑝)𝑓 +𝜙(𝜌𝐶𝑝)𝑠. (2.7) 

The associatedi boundary conditions are: 

𝑢𝑧 = 𝑈𝑤 + 𝑉2
𝜕𝑢𝑧
𝜕𝑟
, 𝑢𝑟 = 𝑉1, 𝑇 = 𝑇𝑤 + 𝑉3

𝜕𝑇

𝜕𝑟
   𝑎𝑡 𝑟 = 𝑅0,    

𝑢𝑧 = 𝑈1 =
𝑈∞𝑧

𝐿
,     𝑢𝑟 = 0, 𝑇 → 𝑇∞                𝑎𝑠 𝑟 → ∞.

 

(2.8) 

By considering iappropriate itransformations [77] 

Ψ1 = (
𝑈𝑜𝜈𝑓𝑅0

2

𝐿
) 𝑧𝐹(𝜉) 𝜉 = √

𝑈0𝜈𝑓𝐿

𝑅0
2 (

𝑟2 − 𝑅0
2

2𝜈𝑓𝐿
) ,

𝑇 − 𝑇∞ =
∆𝑇𝑧

𝐿
𝜃(𝜉),    

 

 (2.9) 

where, Ψ1 is the stream function, which equitably satisfies the continuity Eq. (2.1) and is 

defined as 
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𝑢𝑧 =
1

𝑟

𝜕Ψ1
𝜕𝑟

, 𝑢𝑟 = −
1

𝑟

𝜕Ψ1
𝜕𝑧

. (2.10) 

After iapplying Eqs. (2.9) and (2.10) incompressibilityi condition is trivially satisfied and 

iiflow Eqs. (2.2) − (2.3) becomei 

1

(1 − 𝜙)2.5 (1 − 𝜙 + 𝜙
𝜌𝑠
𝜌𝑓
)
(
(1 + 2𝛾1𝜉)𝐹

′′′ + 2𝛾1𝐹
′′ −𝑀1𝐹

′

+�̂�2(1 − 𝜙)2.5(𝐴 − 𝐹′)
) + 𝐹𝐹′′ + 𝐴2

−(1 + �̂�𝑟)𝐹
′2 +

(1 − 𝜙 + 𝜙
𝜌𝑠𝛽𝑠
𝜌𝑓𝛽𝑓

)

(1 − 𝜙 + 𝜙
𝜌𝑠
𝜌𝑓
)
𝛽1𝜃 = 0,                                                         

 

(2.11) 

𝑘𝑛𝑓/𝑘𝑓

(1 − 𝜙 + 𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

)

[(1 + 2𝛾1𝜉)𝜃
′′ + 2𝛾1𝜃

′] + 𝑃𝑟[𝐹𝜃′ − 𝐹′𝜃] = 0, 

(2.12) 

with 

𝐹(𝜉) = 𝑉𝑝, 𝐹′(𝜉) = 1 + 𝑆𝑣𝐹
′′(𝜉), 𝜃(𝜉) = 1 + 𝑆𝑡𝜃

′(𝜉) 𝑎𝑡 𝜉 = 0,

𝐹′(𝜉) = 𝐴, 𝜃(𝜉) = 0, 𝑎𝑠 𝜉 → ∞.                                                                
 

(2.13) 

Differentiidimensionless iiparameters are defined as 

γ1 = √
𝜈𝑓𝐿

𝑈0𝑅0
2 , 𝛽1 =

𝐺𝑟

𝑅𝑒𝑧2
, 𝐺𝑟 =

�̂�1𝛽𝑓∆𝑇𝐿
3

𝜈𝑓
2 , 𝑆𝑡 =

𝑉3𝑟

𝑅0
√
𝑈0
𝜈𝑓𝐿

, 𝐴 =
𝑈∞
𝑈0
,

�̂�1 =
𝜈𝑓𝐿

𝑈0�̂�1
,  𝑆𝑣 =

𝑉2𝑟

𝑅0
√
𝑈0
𝜈𝑓𝐿

,
�̂�𝑟 =

�̂�𝑏

𝑧√�̂�1

, �̂� =
𝜎𝐵0

2𝐿

𝜌𝑓𝑈0
𝑃𝑟 =

𝜇𝐶𝑝

�̂�𝑓
.
        

 

(2.14) 

Thei skin friction 𝐶𝐹 and ilocal Nusselt number 𝑁𝑢𝑧 are describedi as 

𝐶𝐹 =
𝜏𝑤
𝜌𝑓𝑈𝑤2

, 𝑁𝑢𝑧 =
𝐿𝑞𝑤

�̂�𝑓∆𝑇
. 

(2.15) 
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In iwhich 𝜏𝑤 and 𝑞𝑤 (i.e., surface shear stress and surface iheat flux) are  

𝜏𝑤 = 𝜇𝑛𝑓
𝜕𝑢𝑧
𝜕𝑟
|
𝑟=𝑅0

,

𝑞𝑤 = −𝑘𝑛𝑓
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅0

.

 

(2.16) 

In non-dimensional form, 𝐶𝐹 and 𝑁𝑢𝑧 are 

𝐶𝐹(𝑅𝑒𝑧)
1
2 =

𝐿1
(1 − 𝜙)2.5

𝐹′′(0),

𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1
2 = −

𝑘𝑛𝑓

𝑘𝑓
𝐿1𝜃

′(0).

 (2.17) 

In which 𝑅𝑒𝑧 (=
𝑈0𝐿

𝜈𝑓
) is locali Reynoldi number iand setting 𝐿1 =

𝑧

𝐿
. 

2.3   Methodology 

The nonlinear coupled Eqs. (2.11)-(2.12) along with the boundary conditions, Eq. (2.13) 

has been solved with the help of Homotopy technique. The initial solutions 

(𝐹0(𝜉), 𝜃0(𝜉)  )  are 

𝐹0(𝜉) = 𝑉𝑝 + 𝐴𝜉 +
1 − 𝐴

1 + 𝑆𝑣
−
1 − 𝐴

1 + 𝑆𝑡
exp(−𝜉) ,

𝜃0(𝜉) =
1

1 + 𝑆𝑡
exp(−𝜉),                                        

 

(2.21) 

£𝐹[𝐹] = 𝐹
′′′ − 𝐹′, £𝜃[𝜃] = 𝜃

′′ − 𝜃′, (2.22) 

with 

£𝐹[𝜔1 + 𝜔2𝑒𝑥𝑝(𝜉) + 𝜔3𝑒𝑥𝑝(−𝜉)] = 0, (2.23) 

£𝜃[𝜔4𝑒𝑥𝑝(𝜉) + 𝜔5𝑒𝑥𝑝(−𝜉)] = 0,        (2.24) 
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in which 𝜔𝑗 (𝑗 = 1 − 5) areiarbitraryiconstants. The problems at izerothi and 𝑚𝑡ℎ −order 

are as ifollows:  

2.3.1  Zeroth-order systems 

The relevanti deformation iproblems at this iorder are 

(1 − �̂�)£𝐹[�̂�(𝜉; �̂�) − 𝐹
0(𝜉)] = 𝑞ℎ𝐹�̂�𝐹[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�)], (2.25) 

(1 − �̂�)£𝜃[�̂�(𝜉; �̂�) − 𝜃
0(𝜉)] = 𝑞ℎ𝜃�̂�𝜃[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�)], (2.26) 

�̂�(0; �̂�) = 𝑉𝑝, �̂�′(0; �̂�) = 1 + 𝑆𝑣�̂�
′′(0; �̂�) and 𝜃(0; �̂�) = 1 + 𝑆𝑡𝜃

′(0; �̂�), (2.27) 

    �̂�(𝜉; �̂�) = 𝐴 and 𝜃(𝜉; �̂�) → 0 as 𝜉 → ∞, (2.28) 

�̂�𝐹[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�)] =
1

(1 − 𝜙)2.5 (1 − 𝜙 + 𝜙
𝜌𝑠
𝜌𝑓
)
(
(1 + 2𝛾1𝜉)�̂�

′′′ + 2𝛾1�̂�
′′ −𝑀1�̂�

′

+�̂�2(1 − 𝜙)2.5(𝐴 − �̂�′)
) 

                                       +�̂��̂�′′ + 𝐴2 − (1 + �̂�𝑟)�̂�
′2 +

(1 − 𝜙 + 𝜙
𝜌𝑠𝛽𝑠
𝜌𝑓𝛽𝑓

)

(1 − 𝜙 + 𝜙
𝜌𝑠
𝜌𝑓
)
𝛽1�̂�, 

(2.29) 

�̂�𝜃[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�)] =
𝑘𝑛𝑓/𝑘𝑓

(1 − 𝜙 + 𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

)

[(1 + 2𝛾1𝜉)𝜃
′′ + 2𝛾1𝜃

′] 

 

                                      +𝑃𝑟[�̂�𝜃′ − �̂�′𝜃]. (2.30) 

The values of embedding parameter �̂� lies in the interval [0,1]. For �̂� = 0 and �̂� = 1 

we havei 

�̂�(𝜉; 0) = 𝐹0(𝜉), 𝜃(𝜉; 0) = 𝜃0(𝜉),  
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�̂�(𝜉; 1) = 𝐹(𝜉),   𝜃(𝜉; 1) = 𝜃(𝜉). (2.31) 

2.3.2  𝑚𝑡ℎ − order systems 

The ideformation system at this iorder are 

£𝐹[𝐹𝑚(𝜉) − 𝜒𝑚𝐹𝑚−1(𝜉)] = ℎ𝐹𝑅𝑚
𝐹 (𝜉), (2.32) 

£𝜃[𝜃𝑚(𝜉) − 𝜒𝑚𝜃𝑚−1(𝜉)] = ℎ𝜃𝑅𝑚
𝜃 (𝜉), (2.33) 

 𝐹𝑚(0) = 0, 𝐹𝑚
′ (0) = 𝑆𝑣𝐹𝑚

′′(0) and 𝜃𝑚(0) = 𝑆𝑡𝜃𝑚
′ (0), (2.34) 

𝐹𝑚
′ → 0 and 𝜃𝑚 → 0 𝑎𝑠 𝜉 → ∞. (2.35) 

Nonlinear ioperators ifor imomentum and ienergy equations iare  

𝑅𝑚
𝐹 (𝜉) =

1

(1 − 𝜙)2.5 (1 − 𝜙 + 𝜙
𝜌𝑠
𝜌𝑓
)
((1 + 2𝛾1𝜉)𝐹𝑚−1

′′′ + 2𝛾1𝐹𝑚−1
′′ −𝑀1𝐹𝑚−1

′ ) 

+∑ (𝐹𝑚−1−𝑘𝐹𝑘
′′ − (1 + �̂�𝑟)𝐹𝑚−1−𝑘

′ 𝐹𝑘
′ −

�̂�2

(1 − 𝜙 + 𝜙
𝜌𝑠
𝜌𝑓
)
𝐹𝑘
′) 

𝑚−1

𝑘=0

 

+(
�̂�2𝐴

(1−𝜙+𝜙
𝜌𝑠
𝜌𝑓
)

+ 𝐴2) (1 − 𝜒𝑚) +
(1−𝜙+𝜙

𝜌𝑠𝛽𝑠
𝜌𝑓𝛽𝑓

)

(1−𝜙+𝜙
𝜌𝑠
𝜌𝑓
)

𝛽1𝜃𝑚−1, 

(2.36) 

𝑅𝑚
𝜃 (𝜉) =

𝑘𝑛𝑓/𝑘𝑓

(1 − 𝜙 + 𝜙
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

)

((1 + 2𝛾1𝜉)𝜃𝑚−1
′′ + 2𝛾1𝜃𝑚−1

′ ) 

+𝑃𝑟 ∑(𝐹𝑚−1−𝑘𝜃𝑘
′ − 𝐹𝑚−1−𝑘

′ 𝜃𝑘)

𝑚−1

𝑘=0

.       
(2.37) 
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By Taylor series expansion 

𝐹(𝜉; �̂�) = 𝐹0(𝜉) + ∑ 𝐹𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

 
 

𝐹𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
𝐹(𝜉; �̂�)|

�̂�=0

,    
(2.38) 

𝜃(𝜉; �̂�) = 𝜃0(𝜉) + ∑ 𝜃𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

 
 

𝜃𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
𝜃(𝜉; 𝑞)|

�̂�=0

.    
(2.39) 

The above series (2.38) and (2.39) converge at 𝑞 = 1 by selecting appropriate auxiliary 

parameter and thus one has written 

𝐹(𝜉) = 𝐹0(𝜉) + ∑ 𝐹𝑚(𝜉),

∞

𝑚=1

 
(2.40) 

𝜃(𝜉) = 𝜃0(𝜉) + ∑ 𝜃𝑚(𝜉).

∞

𝑚=1

 
(2.41) 

General isolutions (𝐹𝑚(𝜉), 𝜃𝑚(𝜉)) of Eqs. (2.32) and (2.33) in iview of special isolutions 

(𝐹𝑚
∗ (𝜉), 𝜃𝑚

∗ (𝜉)) 

𝐹𝑚(𝜉) = 𝐹𝑚
∗ (𝜉) + 𝜔1 + 𝜔2𝑒𝑥𝑝(𝜉) + 𝜔3𝑒𝑥𝑝(−𝜉), (2.42) 

𝜃𝑚(𝜉) = 𝜃𝑚
∗ (𝜉) + 𝜔5𝑒𝑥𝑝(𝜉) + 𝜔4𝑒𝑥𝑝(−𝜉). (2.43) 

Usingi boundary iconditions (2.34 and 2.35), the values of iconstants 𝜔𝑗  (𝑗 = 1 − 5) are 
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𝜔3 =
1

1 + 𝑆𝑣

𝜕𝐹𝑚
∗ (𝜉)

𝜕𝜉
|
𝜉=0

−
𝑆𝑣

1 + 𝑆𝑣

𝜕𝐹𝑚
∗2(𝜉)

𝜕𝜉2
|
𝜉=0

,   𝜔1 = −𝜔3 − 𝐹𝑚
∗ (0),

𝜔5 = −
𝑆𝑡

1 + 𝑆𝑡

𝜕𝜃𝑚
∗ (𝜉)

𝜕𝜉
|
𝜉=0

−
1

1 + 𝑆𝑡
𝜃𝑚
∗ (0),         𝜔2 = 𝜔4 = 0.           

 

(2.44) 

2.4   Convergence analysis 

The ℎ −curves of 𝐴𝑙2𝑂3 − water, 𝐶𝑢 −water and 𝑇𝑖𝑂2 −water nanofluids have been 

displayed in Figs. (2.2) − (2.4) for 𝐹′′(0) and 𝜃′(0). It is iobserved that iacceptable 

rangesi of ℎ𝐹 and ℎ𝜃 −curves for 𝐴𝑙2𝑂3, 𝐶𝑢 and 𝑇𝑖𝑂2 with iwater base nanofluid iranges 

are (−1.0 ≤ ℎ𝐹 ≤ −0.2, −0.9 ≤ ℎ𝜃 ≤ −0.2), (−1.1 ≤ ℎ𝐹 ≤ −0.4, −0.9 ≤ ℎ𝜃 ≤ −0.2) 

and (−1.0 ≤ ℎ𝐹 ≤ −0.3, −0.9 ≤ ℎ𝜃 ≤ −0.2)  respectively. The admissible values of 

physical iparameters for plotting ℎ −curves of 𝐴𝑙2𝑂3 − 𝐻2𝑂, 𝐶𝑢 − 𝐻2𝑂 and 𝑇𝑖𝑂2 − 𝐻2𝑂 

nanofluids include  𝜙 = 0.1, �̂� = 0.02, 𝑀1 = �̂�𝑟 = 0.01, 𝑆𝑣 =  𝐴 = 𝛾1 = 𝑉𝑝 = 0.2,

𝑆𝑡 = 1.0 and  𝛽1 = 0.1  (see Figs. (2.2) − (2.4)).  Table 2.1 shows thermophysical 

effects of nanoparticles. Table 2.2 demonstratesi convergence of ihomotopic isolutions for 

thei momentum and energy. It is examinedi that 25𝑡ℎ , 22𝑛𝑑  and 32𝑡ℎ orders seems to be 

acceptable for velocity convergence when 𝐴𝑙2𝑂3 − water, 𝐶𝑢 −water and 𝑇𝑖𝑂2 −water 

nanofluids are under consideration. Further 22𝑛𝑑 , 20𝑡ℎ  and 32𝑡ℎ  approximations are 

appropriate for the convergence of 𝜃′(0)  for 𝐴𝑙2𝑂3 −  water, 𝐶𝑢 − water and 

𝑇𝑖𝑂2 −water nanofluids. 
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Fig. 2.2: ℎ −curves for 𝐴𝑙2𝑂3 − 𝐻2𝑂. 

 

 

 

Fig. 2.3: ℎ −curves for 𝐶𝑢 − 𝐻2𝑂. 
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Fig. 2.4: h −curves for TiO2 − 𝐻2𝑂. 

 

 

Table 2.1: The properties of 𝐴𝑙2𝑂3, 𝐶𝑢, 𝑇𝑖𝑂2 and base fluid 𝐻2𝑂. 

Formula 

𝛼 × 107 𝛽 × 10−5 k 𝜌 𝐶𝑝 𝜌𝐶𝑝 

𝑚2/𝑠𝑐𝑒 1/𝐾 𝑊/𝑚𝐾 𝐾𝑔/𝑚3 𝐽/𝑘𝑔𝐾 𝑗/𝑚3𝑘 

𝐴𝑙2𝑂3 131.7 0.85 40 3970 765 3037050 

𝐶𝑢 1163.1 1.67 400 8933 385 3439205 

𝑇𝑖𝑂2 30.07 0.9 8.954 4250 686.2 2916350 

𝐻2𝑂 1.47 21 0.613 997.1 4179 4166880.9 
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Table 2.2: Solutions convergence for 𝐴𝑙2𝑂3 − 𝐻2𝑂, 𝐶𝑢 − 𝐻2𝑂, 𝑇𝑖𝑂2 − 𝐻2𝑂 when 𝑆𝑣 =

 𝐴 = 𝛾1 = 𝑉𝑝 = 0.2, 𝜙 = 𝛽1 = 0.1, �̂� = 0.02, 𝑀1 = �̂�𝑟 = 0.01 and 𝑆𝑡 = 1.0. 

Conv.  

Order 

𝐴𝑙2𝑂3 − 𝐻2𝑂 Conv.  

Order 

𝐶𝑢 − 𝐻2𝑂 Conv.  

Order 

𝑇𝑖𝑂2 − 𝐻2𝑂 

𝐹′′(0) 𝜃′(0) 𝐹′′(0) 𝜃′(0) 𝐹′′(0) 𝜃′(0) 

1 0.72093 0.70113 1 0.74036 0.70109 1 0.70250 0.70260 

10 0.79640 0.74402 8 0.89195 0.74042 8 0.70650 0.74905 

15 0.78721 0.74425 15 0.89451 0.74067 13 0.74905 0.74922 

22 0.77391 0.74500 20 0.88342 0.74004 22 0.77866 0.74980 

25 0.77342 0.74500 22 0.88072 0.74074 30 0.77079 0.75041 

30 0.77342 0.74500 28 0.88072 0.74074 35 0.77079 0.75041 

32 0.77342 0.74500 35 0.88072 0.74074 40 0.77079 0.75041 

 

2.5   Results and discussion 

This section ipresents iioutcome of various ipertinent variables on ivelocity, temperature, iskin 

friction and local Nusselt number. Here impact of involved parameters on interested 

physical quantities is discussed. Velocity behavior for A is revealed in Fig. 2.5. Here 

velocity 𝐹′(𝜉) increases both for 𝐴 > 1 and 𝐴 < 1. The increase in A boosts up free 

stream velocity that ultimately enhances 𝐹′(𝜉). This growing behaviour of 𝐹′(𝜉) remained 

same when either free stream velocity dominates or followed. Thickness of boundary layer 

has reverse effects. Fig. 2.6 reflects the effect of volume fraction of nanoparticles 𝜙 on 

𝐹′(𝜉) . Decrease in 𝐹′(𝜉)  is notified for increasing 𝜙  because with increase in 

nanoparticles more resistance produces consequently motion slows down. The present 
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study depicts the thinning effect of boundary layer due to existence of 𝐴𝑙2𝑂3, 𝐶𝑢 and 

𝑇𝑖𝑂2  nanoparticles. Here effect of 𝐶𝑢  and 𝑇𝑖𝑂2  nanoparticles are prominent when 

compared with copper. Figs.(2.7 and 2.8) deliberates mixed convection parameter 𝛽1on 

velocity profile for the cases known as assisting, forced and opposing convection flows. 

Fig. 2.7 predicts that nanofluid velocity escalates against mixed convection parameter 𝛽1. 

Basically, mixed convection parameter states the measure of buoyancy force as compare 

to inertia of external/free stream flow. The physical reason of an increase in velocity is due 

to increase in buoyancy force that acts as a favorable pressure gradient. This pressure 

gradient ultimately forces the fluid to be fast. A significant reduction in magnitude of 

velocity is noticed through Fig. 2.8 i.e. for opposing flow (𝛽1 < 0). For positive values 

of 𝛽1 the effect of copper nanoparticles is less while for negative values opposite behavior 

is observed. Permeability parameter 𝑉𝑝 effects on linear momentum are exhibited in Fig. 

2.9. The fluid velocity 𝐹′(𝜉) decreases in the presence of nanoparticles. From Fig. 2.9 one 

can see the decrease in boundary layer for suction parameter. The variation of 𝑀1  on 

𝐹′(𝜉) is checked in Fig. 2.10. Here parameter M₁ reduces the fluid velocity because for 

higher values of 𝑀1, adhesive forces reduces. As a result, velocity and boundary layer 

thickness of nanofluid declines. Less velocity is noticed for Cu nanoparticles. Effect of 

velocity slip parameter 𝑆𝑣 for 𝐹′(𝜉) is displayed in Fig. 2.11. The expected outcome of 

slip parameter 𝑆𝑣 is a reduction of velocity in the neighborhood of boundary and hence 

declines the boundary layer thickness. This resulting behavior of velocity 𝐹′(𝜉) is due to 

decline of adhesive forces between cylindrical surface and fluid. The influences of thermal 

slip parameter 𝑆𝑡 on fluid energy are delineated through Fig. 2.12. The results show the 

decreasing temperature with an increase in 𝑆𝑡 . Physically decrease of temperature 
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difference in ambient fluid and cylinder surface is identified by diminish in temperature 

curves. Velocity profile for inertia coefficient �̂�𝑟  is displayed via Fig. 2.13. The result 

shows decreasing behavior of velocity with increase of �̂�𝑟. As the increase in �̂�𝑟 produces 

more resistance in flow field that declines velocity curve. Nusselt number and skin friction 

coefficients for numerous parameters such as volume fraction φ, curvature parameter 𝛾1, 

permeability 𝑉𝑝 and mixed convection parameter β₁ are displayed in Figs. (2.14 − 2.17). 

Increase in Nusselt number was noticed (see Figs. 2.14 and 2.15) for increasing volume 

fraction φ of nanoparticles and curvature parameter 𝛾1 respectively.  

Increasing behavior of skin friction coefficient is also observed 

(see Figs. 2.16 and 2.17)   versus ipermeability parameter 𝑉𝑝  and imixed iconvection 

parameter 𝛽1, irespectively. For opposing flow, reduction of skin friction coefficient is 

identified for larger mixed convective parameter (see Fig. 2.17). 
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2.6   Graphical outcomes 

 

 

Fig. 2.5: Variationi of A on 𝐹′(𝜉).   

 

 

 

Fig. 2.6: Variationi of 𝜙 on 𝐹′(𝜉).  
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Fig. 2.7: Variationii of 𝛽1 > 0 on 𝐹′(𝜉).   

 

 

 

Fig. 2.8: Variationi of 𝛽1 < 0  on 𝐹′(𝜉).   
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Fig. 2.9: Variationii of 𝑉𝑝 on 𝐹′(𝜉).   

 

 

 

Fig. 2.10: Variationii of 𝑀1 on 𝐹′(𝜉).   
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Fig. 2.11: Variationii of 𝑆𝑣 on 𝐹′(𝜉).   

 

 

 

Fig. 2.12: Variationii of �̂�𝑟  on 𝐹′(𝜉).   
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Fig. 2.13: Variationii of 𝑆𝑡 on 𝜃(𝜉).   

 

 

 

Fig. 2.14: Variationi of 𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 on 𝜙.   
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Fig. 2.15: Variationi of 𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 on 𝛾1. 

 

 

 

Fig. 2.16: Variationii of 𝐶𝐹(𝑅𝑒𝑧)
1

2 on 𝜙. 
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Fig. 2.17: Variationi of 𝐶𝐹(𝑅𝑒𝑧)
1

2 on 𝛽1. 
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2.7   Conclusions 
 

Major findingsi of presented studyi are as follows: 

• Fluid velocity is an increasing function of volume fraction 𝜙 of nanoparticles. 

• Impact of velocity slip parameter 𝑆𝑣  and thermal slip parameter 𝑆𝑡  leads to 

reduction in velocity and temperature respectively. 

• An increase in inertia coefficient �̂�𝑟  and local porosity parameter 𝑀1  reduces 

velocity. 

• For larger 𝑉𝑝 and 𝛽1, skin friction coefficient enhances. 

• Rate of heat transfer increases via larger 𝛾1 and 𝜙. 

• Velocity in all cases is noticed less for 𝐶𝑢 nanoparticles when compared to 𝐴𝑙2𝑂3 

and 𝑇𝑖𝑂2 nanoparticles. 
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CHAPTER 3 

 

Nonlinearly convective stratified flow of Maxwell 

nanofluid with activation energy 

 

3.1   Introduction 

Main objective of present chapter is to configure stratified flow of Maxwell nanofluid 

driven by nonlinearly stretched inclined cylinder with activation energy. Cattaneo-Christov 

double diffusion scheme is utilized for heat and mass transfer analysis. Brownian and 

thermophoresis diffusions are focused in this analysis. The non-uniform heat 

generation/absorption and binary chemical reaction are considered for current flow 

configuration. Modified Arrhenius formula for activation energy is implemented. The 

governing flow equations are solved with the aid of homotopy technique. Velocity, 

temperature and concentration profiles are computed, and effects of involved flow 

parameters are analyzed via graphs. Both interested physical quantities i.e., Nusselt and 

Sherwood numbers are calculated numerically. Computed results are compared with 

published results in limiting case. 

3.2   Mathematical formulation 

Consider the nonlinear convective flow of Maxwell nanofluid with Cattaneo-Christov heat 

and mass diffusion model. Fluid flow is investigated by nonlinearly stretching velocity 
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𝑈𝑤 (
𝑈0𝑧

𝑛

𝐿
) with stretching rate 𝑈0 > 0. Here focus will be to analyze the effects of inon-

uniformi heat isource/sink, binary ireaction, dual istratification and Arrhenius ienergy. 

Buongiorno model of nanoparticles is incorporated. The flowi configuration of the isystem 

is displayedi in Fig. 3.1. Temperature and concentration at cylindrical surface are Tw =

T0 +
𝑑1z

L
 and  Cw = C0 +

d3z

L
.   where as ambient temperature and concentration are 

stratified as T∞ = T0 +
d2z

L
  and  C∞ = C0 +

d4z

L
, respectively. The modelled governing 

equations are: 

 

Fig. 3.1: Physical model. 

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕

𝜕𝑧
(𝑟𝑢𝑧) = 0, (3.1) 
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𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+ 𝜆𝑚 (𝑢𝑧
2
𝜕2𝑢𝑧
𝜕𝑧2

+ 𝑢𝑟
2
𝜕2𝑢𝑧
𝜕𝑟2

+ 2𝑢𝑧𝑢𝑟
𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

) = 𝜈1
𝜕2𝑢𝑧
𝜕𝑟2

  

+
�̂�1
𝜌𝑓
[Γ1(𝑇 − 𝑇∞) + Γ2(𝑇 − 𝑇∞ )

2 + Γ3(C − C∞) + Γ4(C − C∞ )
2]cos𝜙𝑎.

 

(3.2) 

According to Cattaneo-Christove double diffusive scheme [78], we have 

𝒒𝟏 + Γ̂𝑒 [
𝜕𝒒𝟏
𝜕𝑡

+ 𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏 + (𝜵.𝑽𝟏)𝒒𝟏] = −�̂�𝑓𝜵T, (3.3) 

𝐉𝟏 + Γ̂e [
∂𝐉𝟏
∂t
+ 𝐕𝟏. 𝛁𝐉𝟏 − (𝐉𝟏. 𝛁)𝐕𝟏 + (𝛁.𝐕𝟏)𝐉𝟏] = −DB𝛁C. (3.4) 

By taking Γ̂𝑒 = Γ̂𝑐 = 0 , the generalized models reduce to classical form. For steady 

(
𝜕𝒒𝟏

𝜕𝑡
=
∂𝐉𝟏

∂t
= 0) and for incompressible fluid (𝛁. 𝑽𝟏) one has 

𝒒𝟏 + Γ̂𝑒[𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏] = −�̂�𝑓𝜵T, (3.5) 

𝐉𝟏 + Γ̂e[𝐕𝟏. 𝛁𝐉𝟏 − (𝐉𝟏. 𝛁)𝐕𝟏] = −DB𝛁C. (3.6) 

The energy and concentration equations for non-uniform heat source/sink, Arrhenius 

energy, thermophoresis and Brownian motion are 

𝑢𝑟
𝜕𝑇

𝜕𝑟
+ 𝑢𝑧

𝜕𝑇

𝜕𝑧
+ Γ̂𝑒Π𝑒 =

�̂�𝑓

(𝜌C𝑝)𝑓

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

�̂�𝑚

(𝜌C𝑝)𝑓

+ 𝜏1D𝐵
𝜕C

𝜕𝑟

𝜕𝑇

𝜕𝑟
+
𝜏1D𝑇
𝑇∞

(
𝜕𝑇

𝜕𝑟
)
2

,                                                

 

(3.7) 

𝑢𝑟
𝜕𝐶

𝜕𝑟
+ 𝑢𝑧

𝜕𝐶

𝜕𝑧
+ Γ̂𝑐Π𝑐 = D𝐵

𝜕

𝜕𝑟
(𝑟
𝜕𝐶

𝜕𝑟
) +

D𝑇
𝑇∞

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
)

−�̂�1(C − C∞) − �̂�𝑟
2(C𝑤 − C0) (

𝑇

𝑇∞
)
𝑝

𝑒𝑥𝑝 [−
𝐸1
𝑇𝑘∗

],           

 

(3.8) 

with 
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𝑢𝑧 =
𝑈0𝑧

𝑚

𝐿
, 𝑇 = 𝑇𝑤 = 𝑇0 +

𝑑1𝑧

𝐿
,

𝑢𝑟 = 𝑉1, C =  C𝑤 = C0 +
𝑑3𝑧

𝐿

|  𝑎𝑡 𝑟 = 𝑅0, 

(3.9) 

𝑢𝑧 → 0,     𝑇 →  𝑇∞ = 𝑇0 +
𝑑2𝑥

𝐿
,

𝑢𝑟 → 0,     C → C∞ = C0 +
𝑑4𝑥

𝐿
.

|  𝑤ℎ𝑒𝑛 𝑟 → ∞, 
(3.10) 

Π𝑒 = 𝑢𝑟
2
𝜕2𝑇

𝜕𝑟2
+ 𝑢𝑧

2
𝜕2𝑇

𝜕𝑧2
+
𝜕𝑇

𝜕𝑟
(𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + 2𝑢𝑧𝑢𝑟

𝜕2𝐶

𝜕𝑟𝜕𝑧

+
𝜕𝑇

𝜕𝑧
(𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
), 

(3.11) 

 

Π𝑐 = 𝑢𝑟
2
𝜕2𝐶

𝜕𝑟2
+ 𝑢𝑧

2
𝜕2𝐶

𝜕𝑧2
+
𝜕𝐶

𝜕𝑟
(𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + 2𝑢𝑟𝑢𝑧

𝜕2𝐶

𝜕𝑟𝜕𝑧

+
𝜕𝐶

𝜕𝑧
(𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
). 

(3.12) 

 

The non-uniform iheat source/sink �̂�𝑚 [79] is idefined ias 

�̂�𝑚 =
𝑈𝑤�̂�𝑓

𝑧𝜈1
[�̂�1(𝑇𝑤 − 𝑇0)

𝜕𝐹

𝜕ξ
+ �̂�2(𝑇 − 𝑇∞)], (3.13) 

where �̂�1 and �̂�2 are ifor space iand temperature idependent coefficients iof heat isource 

/sink. By introducing the following transformations [80] 

ξ = √
(𝑚 + 1)

2

𝑈0𝑧𝑚−1

𝐿𝜈1
(
𝑟2 − 𝑅0

2

2𝑅0
) , Ψ1(ξ) = √

2

𝑚 + 1

𝜈1𝑈0𝑧𝑚+1

𝐿
𝐹(ξ), 

θ(ξ) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇0

, Φ(ξ) =
C − C∞
C𝑤 − C0

, 𝑢𝑧(ξ) =
𝑈0𝑧

𝑚

𝐿
𝐹′(ξ),                    

𝑢𝑟(ξ) = −
𝑅0
𝑟
√
(𝑚 + 1)

2

𝜈1𝑈0𝑧𝑚−1

𝐿
[𝐹(ξ) + 𝜉 (

𝑚 − 1

𝑚 + 1
)𝐹′(ξ)].                  

(3.14) 
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The flowi expressions iunder above itransformations takei the form 

(1 + 2𝛾1ξ)Ϝ
′′′ −

2𝑚

𝑚 + 1
Ϝ′2 + ϜϜ′′ + 𝛾1Ϝ

′′ − 𝛽2 ((3𝑚 − 1)Ϝ
′′Ϝ′Ϝ +

2𝑚(𝑚 − 1)

𝑚 + 1
Ϝ′3) 

−𝛽2 (
𝑚 + 1

2
(Ϝ′′′Ϝ2 + 𝛾1(1 + 2𝛾1ξ)

−1 (Ϝ + ξ
𝑚 − 1

𝑚 + 1
Ϝ′)

2

)Ϝ′′) − 𝛽2 (
𝑚 − 1

2
) ξϜ′2Ϝ′′ 

+
2

𝑚 + 1
𝛽1[(1 + �̂�𝑡θ)θ + �̂�1(1 + �̂�𝑐Φ)Φ] cos𝜙𝑎 = 0,                                       

(3.15) 

(1 + 2𝛾1ξ) [θ
′′ + Pr �̂�b (θ

′Φ′ +
�̂�t

�̂�b
θ′2 + 𝐸𝑐Ϝ′′2)] + 2𝛾1θ

′ + PrFθ′      

−𝑃𝑟δ𝑒 [
m + 1

2
(θ′′Ϝ2 − ϜϜ′θ′) +

2

m + 1
(S1 + θ) (𝑚Ϝ

′2 −
m+ 1

2
ϜϜ′′)] 

+
2

m + 1
(B̂1Ϝ

′ + �̂�2θ) −
2

m+ 1
𝑃𝑟(S1 + θ)Ϝ

′ = 0, 
(3.16) 

(1 + 2𝛾1ξ) (Φ
′′ +

�̂�t

�̂�b
θ′′) + 2𝛾1Φ

′ + 𝑆𝑐ϜΦ′ + 2𝛾1 (
�̂�t

�̂�b
)θ′ −

2

m+ 1
𝑆𝑐𝛾2Φ 

 

−Scδ𝑐 [(
m + 1

2
) (Φ′′Ϝ2 − ϜϜ′Φ′) +

2

m + 1
(S2 +Φ) (𝑚Ϝ

′2 −
m+ 1

2
ϜϜ′′)] 

 

−
2

m + 1
𝑆𝑐(S2 +Φ)Ϝ

′ − 𝑆𝑐γ3(1 + 𝛿θ)
𝑝 𝑒𝑥𝑝 [−

𝐸𝑎
1 + 𝛿θ

] = 0,                         
(3.17) 

with 

Ϝ′(𝜉) = 1, Ϝ(𝜉) = 0, θ(𝜉) = 1 − S1, Φ(𝜉) = 1 − 𝑆2 𝑎𝑡 𝜉 = 0,  

Ϝ′(𝜉) = 0, θ(𝜉) = 0, Φ(𝜉) = 0, 𝑎𝑠 𝜉 → ∞,                                             (3.18) 

where physical flow parameters are defined as 
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𝛾1 = √
2

𝑚 + 1

𝐿𝜈1

𝑅0
2𝑈0

𝑧−
𝑚−1
2 , δ𝑒 =

𝑈0Γ̂𝑒𝑧
𝑚−1

𝐿
, �̂�1 =

Γ3(C𝑤 − C0)

Γ1(𝑇𝑤 − 𝑇0)
, 𝑆𝑐 =

𝜈1
D𝐵
, S1 =

𝑑2
𝑑1
, 

�̂�𝑐 =
Γ4(C𝑤 − C0)

Γ3
, 𝐺𝑟 =

�̂�1Γ1(𝑇𝑤 − 𝑇0)𝑧
3

𝜈1
2 , �̂�𝑡 =

𝜏1D𝑇(𝑇𝑤 − 𝑇0)

𝑇∞𝜈1
, 𝐸𝑎 =

𝐸1
𝑇∞𝑘∗

,          

�̂�𝑏 =
𝜏1D𝐵(C𝑤 − C0)

𝜈1
, 𝐸𝑐 =

𝑈𝑤
2

𝐶𝑝(𝑇𝑤 − 𝑇0)
, 𝐺𝑟∗ =

�̂�1Γ3(C𝑤 − C0)𝑧
3

𝜈1
2 ,             

𝛾2 =
𝐾1𝐿

𝑈0𝑧𝑚−1
, γ3 =

𝐿�̂�𝑟
2

𝑈0𝑧𝑚−1
, 𝛿 =

(𝑇𝑤 − 𝑇0)

𝑇∞
, �̂�𝑡 =

Γ2(𝑇𝑤 − T0)

Γ1
.                  

(3.19) 

Physical ientities inear surface iare defined ias  

 𝐶Ϝ =
2𝜏𝑤
𝜌𝑓𝑈𝑤2

, 𝑁𝑢𝑧 =
𝑧𝑞𝑤

�̂�𝑓(𝑇𝑤 − 𝑇0)
, 𝑆ℎ𝑧 =

𝑧𝑗𝑤
D𝐵(C𝑤 − C0)

, (3.20) 

where walli shear stress, walli heat and imass flux iare defined as 

𝜏𝑤 = (1 + 𝛽2)
𝜕𝑢𝑧

𝜕𝑟
|
𝑟=𝑅0

,   𝑞𝑤 = − �̂�𝑓
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅0

,  𝑗𝑤 = −D𝐵
𝜕C

𝜕𝑟
|
𝑟=𝑅0

. (3.21) 

 

In non-dimensionali variables we ihave 

1

2
 𝐶Ϝ(𝑅𝑒𝑧)

1
2 = (

𝑚 + 1

2
)

1
2
(1 + 𝛽2)Ϝ

′′(0),

𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1
2 = −(

𝑚 + 1

2
)

1
2
θ′(0),        

𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1
2 = −(

𝑚 + 1

2
)

1
2
Φ′(0),          

 

(3.22) 

here 𝑅𝑒𝑧 =
𝑧𝑚+1𝑈0

𝐿𝜈1
 is the local Reynold number.   
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3.3   Methodology 

The coupled inonlinear system (3.15) to (3.18) is itackled analytically iwith the help of 

HAM. The comprehensive idescription of HAM is iprovided below: 

The initial iapproximations (𝐹0(𝜉), 𝜃0(𝜉), Φ0(𝜉))  and auxiliary ilinear ioperators 

(£𝐹, £𝜃, £Φ) are 

F0(ξ) = 1 − exp(−ξ), 
 

θ0(ξ) = (1 − S1) exp(−ξ),       

        Φ0(ξ) = (1 − S2) exp(−ξ) , 
(3.24) 

£𝐹[F] = F
′′′ − F′, £𝜃[𝜃] = θ

′′ − θ, £Φ[Φ] =Φ
′′ −Φ, (3.25) 

with properties 

£𝐹[ω2exp(−ξ) + ω1 +ω3exp(ξ)] = 0,  

£𝜃[ω4exp(−ξ) + ω5exp(ξ)] = 0,  

£Φ[ω6exp(−ξ) + ω7exp(ξ)] = 0. (3.26) 

According to iprocedure (see Ref. [81]), one ihas 

𝐹𝑚(𝜉) = 𝐹
∗
𝑚(𝜉) + 𝜔1 + 𝜔2𝑒𝑥𝑝(−𝜉) + 𝜔3𝑒𝑥𝑝(𝜉), (3.27) 

𝜃𝑚(𝜉) = 𝜃𝑚
∗ (𝜉) + 𝜔5𝑒𝑥𝑝(𝜉) + 𝜔4𝑒𝑥𝑝(−𝜉),           (3.28) 

Φ𝑚(𝜉) = Φ𝑚
∗ (𝜉) + 𝜔7𝑒𝑥𝑝(𝜉) + 𝜔6𝑒𝑥𝑝(−𝜉),          (3.29) 

wherei (𝐹∗𝑚(𝜉), 𝜃𝑚
∗ (𝜉),Φ𝑚

∗ (𝜉))  are the special isolutions and 𝑤𝑗  (𝑗 = 1 − 7)  are the 

arbitrary iconstant igiven by  
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𝜔1 = −�̂�𝑚
′ (0) +

𝜕𝐹∗𝑚(𝜉)

𝜕𝜉
|
𝜉=0

, 𝜔2 =
𝜕𝐹∗𝑚(𝜉)

𝜕𝜉
|
𝜉=0

,    𝜔4 = −𝜃𝑚
∗ (𝜉)|𝜉=0,

𝜔6 = −Φ𝑚
∗ (𝜉)|𝜉=0                   𝜔3 = 𝜔5 = 𝜔7 = 0.

 

(3.30) 

3.4   Convergence analysis 

Auxiliary parameters involved in HAM provide greati freedom to find iregion of 

convergencei for velocity  Ϝ′′(0), temperaturei  θ′(0), and concentrationi  Φ′(0) profiles. 

Therefore, h −curves of 20th  order approximation are shown in Fig. 3.2. Permissible 

values of  hϜ,  hθ  and hΦ  lie in the ranges (−1.7 ≤ hϜ ≤ −0.7), (−1.6 ≤  hθ ≤

−0.9) and (−1.5 ≤ hΦ ≤ −0.8).  Table 3.1 suggested that 26th, 30th and 20th  order 

of approximations for  Ϝ′′(0),  θ′(0) and  Φ′(0) are sufficenti for convergence. For the 

present analysis, we have considered the following values of emerging parameters.  

γ1 = β2 = 𝑆1 = δc = 0.3, Pr = Sc = 1.5,  β̂t = S2 = �̂�1 = β̂c = δe = �̂�2 = 0.2, γ3 =

N̂1 = Ea = δ = 1.0, p = N̂t = m = β1 = N̂b = 0.5, γ2 = 0.9, Ec = 1.0  and  ϕa =
π

4
. 

Table 3.2 shows local Nusselt number Nuz and Sherwood number Shz variations versus 

involving parameters. Local Nusselt number enlarges against δe, 𝑃𝑟 𝑎𝑛𝑑 𝑆2while reverse 

effects are recorded against B̂1 ,  N̂𝑡,  𝑆1 and δc on it. Additionally, Sherwood number 

enhances versus δe, N̂b,  𝑆2, Pr and �̂�1  while it declines against  𝑆1 and N̂𝑡. Tables 3.3 

and 3.4 are computed to compare numerical results of  Ϝ′′(0) and  θ′(0) with literature. 

This comparison shows that current results have good agreement with reported literature. 
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Fig. 3.2: ℎ −curves. 

Table 3.1: Convergence analysis of F′′(0), θ′(0) 𝑎𝑛𝑑 Φ′(0) when 𝛾1 = 𝛽2 = 𝑆1 = 𝛿𝑐 =

0.3, 𝑆𝑐 = 𝑃𝑟 = 1.5, �̂�1 = �̂�𝑐 = 𝑆2 = �̂�𝑡 = 𝛿𝑒 = �̂�2 = 0.2, �̂�1 = 1.0, 𝑝 = 𝑚 =  �̂�𝑡 =

𝛽1 = �̂�𝑏 = 0.5, 𝛾1 = 0.9, 𝐸𝑐 = 𝛾3 = 𝐸𝑎 = 𝛿 = 1.0 𝑎𝑛𝑑 𝜙𝑎 =
𝜋

4
. 

Approximation Order −F′′(0) −θ′(0) −Φ′(0) 

1 0.38642 0.30745 0.58247 

5 0.39123 0.32012 0.58479 

11 0.39627 0.31426 0.58640 

16 0.40878 0.32562 0.58718 

20 0.41403 0.32766 0.58956 

26 0.42891 0.33412 0.58956 

30 0.42891 0.33694 0.58956 

36 0.42891 0.33694 0.58956 
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Table 3. 2: Computed results of 𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 and 𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1

2  when 𝛾2 = 0.9,  𝛾1 =

𝛽2 = 0.3, 𝛾3 = �̂�1 = 𝐸𝑎 = 𝛿 = 𝐸𝑐 = 1.0, 𝑆𝑐 = 1.5, �̂�𝑡 = �̂�𝑐 = 0.2,   𝑛 = 𝛽1 = 𝑝 =

0.5 𝑎𝑛𝑑 𝜙𝑎 =
𝜋

4
.    

Pr �̂�𝑏 �̂�𝑡 𝑆1 𝑆2 δ𝑐 δ𝑒 𝐵1 −(
𝑛 + 1

2
)

1
2
θ′(0) −(

𝑛 + 1

2
)

1
2
Φ′(0) 

0.6 0.5 0.5 0.3 0.2 0.3 0.2 0.2 0.63743 0.58893 

1.4        0.85856 0.75205 

2.0        1.01772 1.00130 

1.5 0.1 0.5 0.3 0.2 0.3 0.2 0.2 0.80632 0.05884 

 0.6       0.78427 0.87407 

 0.8       0.73593 0.98916 

1.5 0.5 0.1 0.3 0.2 0.3 0.2 0.2 0.86094 0.93704 

  0.6      0.77561 0.49833 

  0.8      0.70283 0.12053 

1.5 0.5 0.5 0.0 0.2 0.3 0.2 0.2 0.86719 0.87640 

   0.3     0.83011 0.82077 

   0.5     0.77059 0.76344 

1.5 0.5 0.5 0.3 0.0 0.3 0.2 0.2 0.75056 1.27534 

    0.3    0.77575 1.34103 

    0.5    0.79540 0.84569 

1.5 0.5 0.5 0.3 0.2 0.1 0.2 0.2 0.88566 0.86745 

     0.4   0.88539 0.87342 

     0.5   0.87520 0.89011 

1.5 0.5 0.5 0.3 0.2 0.3 0.1 0.2 0.76876 0.85878 

      0.4  0.78456 0.87453 

      0.5  0.79348 0.88324 

1.5 0.5 0.5 0.3 0.2 0.3 0.2 0.1 0.85432 0.95759 

       0.3 0.81672 0.98432 

       0.5 0.76043 1.21434 
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Table 3.3: Comparative values iof −θ′(0) via m and Ec when 𝑃𝑟 = 1.5. 

𝐸𝑐 𝑚 Ref. [82] 
Present 

results 

0.0 0.5 0.595277 0.59538 

 1.5 0.574537 0.57457 

 3.0 0.564472 0.56452 

1.0 0.5 0.556623 0.55671 

 1.5 0.530966 0.53085 

 3.0 0.517977 0.51788 

 

 

Table 3.4: Comparative values of −F′′(0)  𝑤ℎ𝑒𝑛 𝛾1 = 𝛽1 = �̂�𝑡 = �̂�1 = �̂�𝑐 = 𝜙𝑎 = 0. 

𝛽2 Ref. [83] Ref. [84] 
Present 

results 

0.0 0.999978 0.999962 1.00001 

0.3 1.101848 1.101850 1.10196 

0.6 1.150160 1.150163 1.15019 

0.8 1.196690 1.196692 1.19676 

1.2 1.285253 1.285257 1.28538 

1.6 1.368641 1.368641 1.36867 

2.0 1.447616 1.447617 1.44783 
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3.5   Results and discussion 

In current section calculated results are described briefly and concisely. Figs. (3.3) −

(3.7) are revealed to show the influence of 𝛾1, 𝛽2, �̂�𝑡 , �̂�𝑐 𝑎𝑛𝑑 𝜙𝑎  on F′(ξ). Fig. 3.3 

shows the feature of curvature parameter 𝛾1 on F′(ξ). This figure strengthens the physical 

phenomenon that curved cylindrical surface is favourable for fluid movement i.e. 

enhancement in curvature causes acceleration in velocity. Impacts of Deborah number 𝛽2 

on F′(ξ) are presented through Fig. 3.4. This figure shows that β₂ enlarges velocity profile. 

It happens because larger values of 𝛽2 enhances the relaxation time which resists the fluid 

motion and as a result F′(ξ) decreases. Variations of �̂�𝑡 and �̂�𝑐  on velocity distribution 

F′(ξ)  are shown in Figs. 3.5 and 3.6. For higher estimation of �̂�𝑡, velocity is accelerated 

because �̂�𝑡 ,  enlarges enthalpy i.e. (𝑇𝑤 − 𝑇∞)  which alternatively enhances velocity. 

Also, velocity F′(ξ)  has increasing behaviour versus �̂�𝑐 (see Fig. 3.6). Fig. 3.7 portrays 

that effects of angle of inclination 𝜙𝑎  causes reduction in F′(ξ). This holds physically 

because influences of gravity become small for greater 𝜙𝑎 about z-axis and alternatively 

velocity profile declines. Figs. (3.8 − 3.15) exhibit variations in temperature profile 𝜃(𝜉) 

against 𝐸𝑐,  𝛿𝑒 , �̂�𝑏,  𝑆1,  �̂�𝑡, 𝑃𝑟,  �̂�1 𝑎𝑛𝑑 �̂�2, respectively. Behavior of temperature 𝜃(𝜉) 

for large estimation of Ec is delineated through Fig. 3.8. As larger values of Eckert number 

Ec corresponds to accelerate the conversion of mechanical into thermal energy, thus fluid 

temperature rises. Fig. 3.9 deliberates the influences of thermal relaxation parameter  𝛿𝑒 

on fluid temperature. As enhancement in relaxation time decreases the heat transfer through 

fluid molecules, as a result, fluid temperature reduces. Fig. 3.10 reveals fluctuations in 

𝜃(𝜉) against Brownian motion parameter �̂�𝑏. This figure predicts that temperature 𝜃(𝜉) 

rises versus larger values of �̂�𝑏 (see Fig. 3.10) because Brownian motion disperses fluid 



53 

 

particles which alternatively enhance temperature. Fig. 3.11 explained the significance of 

thermal stratification 𝑆1 on fluid temperature 𝜃(𝜉). As stratification phenomenon reduces 

the temperature difference between surface and fluid, as a result, temperature profile 𝜃(𝜉) 

falls down. Fig. 3.12 elaborated the �̂�𝑡 effects on temperature 𝜃(𝜉).This graph suggests 

that fluid temperature increases against thermophoresis parameter. Fig. 3.13 depicted the 

impacts of Prandtl umber Pr on temperature profile. As Prandtl number reduces the thermal 

conductance (i.e. capability of heat transfer) and hence temperature. Figs. (3.14 𝑎𝑛𝑑 3.15) 

elaborated the consequences of space and temperature dependent heat source/sink 

parameters �̂�1 and �̂�2 on temperature 𝜃(𝜉). These graphs predict that both parameters 

incline the temperature profile. Figs. (3.16 − 3.25) examines the influence of �̂�𝑡,  𝛿𝑐, 𝑆𝑐,

𝛾3, �̂�𝑏, 𝛾2, 𝐸𝑎, 𝛿, 𝑆2 𝑎𝑛𝑑 �̂�1on Φ(𝜉). Fig. 3.16 illustrates the effects of  �̂�𝑡 on Φ(𝜉). 

This graph shows that thermophoresis phenomenon leads to enlarge nanoparticle 

concentration. Concentration profile Φ(𝜉)  in frame of solutal relaxation time  𝛿𝑐  is 

displayed in Fig. 3.17. Here concentration Φ(𝜉) diminishes due to controlling influence 

of  𝛿𝑐. Impact of Schmidt number Sc on Φ(𝜉) is disclosed through Fig. 3.18. One can 

observed that Φ(ξ) declines versus higher values of Sc. It is true because Sc is responsible 

to lessen mass diffusivity and hence concentration. Declining impact of concentration 

Φ(𝜉) is observed for larger 𝛾3 in Fig. 3.19. The growing nature of 𝛾3 is responsible for 

rise in the expression (1 + 𝛿θ)𝑝 𝑒𝑥𝑝 [−
𝐸𝑎

1+𝛿θ
]. Physically, destructive rate of chemical 

reaction upsurges for greater estimation of 𝛾3. This is used to dissolve/ terminate the fluid 

species more efficiently. Fig. 3.20 is remarked for the impact of �̂�𝑏 on Φ(𝜉). Declining 

conduct of Φ(𝜉)  and relevant boundary thickness is identified for greater �̂�𝑏 . An 

enhancement in Brownian motion leads to dispersion of liquid particles more rapidly, as a 
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result, concentration Φ(𝜉) reduces. Impact of generative/destructive chemical reaction 𝛾2 

on concentration Φ(𝜉) is outlined in Fig. 3.21. There is an increase in Φ(𝜉) in vision of 

destructive chemical reaction variable 𝛾2 > 0 . However, opposite trend is seen for 

generative chemical reaction 𝛾2 < 0. Fig. 3.22 elucidates the increasing trend of activation 

energy 𝐸𝑎 on nanoparticle concentration Φ(𝜉). The modified Arrhenius function declines 

when 𝐸𝑎 increases. This holds practically because generative chemical reaction increases 

which rises concentration. Fig. 3.23 shows the effect of concentration Φ(𝜉)  against 

temperature difference parameter 𝛿 . Here declining role of 𝛿  on Φ(𝜉)  is witnessed. 

Features of 𝑆2  on Φ(𝜉)  are presented in Fig. 3.24. It is noticed that S₂ reduces the 

nanoparticle concentration Φ(𝜉). Fig. 3.25 empowers us to decide that growth in �̂�1 leads 

to decline in concentration Φ(𝜉) curve. It is true because �̂�1 generates heat, as a result, 

convection phenomenon dominates and hence it reduces concentration Φ(𝜉). Figs. 3.26 

and 3.27 are prepared to examine the impact of emerging iparameters 𝛽2  and �̂�𝑐 on skin 

friction icoefficient 𝐶𝐹. For greater estimation of 𝛽2  skin ifriction coefficient idiminishes 

(see Fig. 3.26) while ireverse behaviour is iobserved for ilarger �̂�𝑐 (see Fig.  3.27).  

 

 

 

 

 

 



55 

 

3.6   Graphical outcomes 
 

 

Fig. 3.3: Responseii of 𝐹′(𝜉) with 𝛾1. 

 

 

Fig. 3.4: Responseii of 𝐹′(𝜉) with 𝛽2. 
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Fig. 3.5: Responsei of 𝐹′(𝜉) with �̂�𝑡. 

 

 

 

Fig. 3.6: Responsei of 𝐹′(𝜉) with �̂�𝑐. 
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Fig. 3.7: Responseii of 𝐹′(𝜉) with 𝜙𝑎. 

 

 

 

Fig. 3.8: Responseii of 𝜃(𝜉) with 𝐸𝑐. 
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Fig. 3.9: Responsei of 𝜃(𝜉) with 𝛿𝑒 . 

 

 

 

Fig. 3.10: Responseii of 𝜃(𝜉) with �̂�𝑏 . 
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Fig. 3.11: Responseii of 𝜃(𝜉) with 𝑆1. 

 

 

 

Fig. 3.12: Responseii of 𝜃(𝜉) with �̂�𝑡. 
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Fig. 3.13: Responsei of 𝜃(𝜉) with 𝑃𝑟. 

 

 

 

Fig. 3.14: Responseii of 𝜃(𝜉) with �̂�1. 
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Fig. 3.15: Responsei of 𝜃(𝜉) with �̂�2. 

 

 

 

Fig. 3.16: Responsei of 𝛷(𝜉) with  �̂�𝑡. 
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Fig. 3.17: Responseii of 𝛷(𝜉) with 𝛿𝑐. 

 

 

 

Fig. 3.18: Responsei of 𝛷(𝜉) with 𝑆𝑐. 
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Fig. 3.19: Responsei of 𝛷(𝜉) with 𝛾3. 

 

 

 

Fig. 3.20: Responseii of 𝛷(𝜉) with �̂�𝑏 . 
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Fig. 3.21: Responsei of 𝛷(𝜉) with 𝛾2. 

 

 

 

Fig. 3.22: Responsei of 𝛷(𝜉) with 𝐸𝑎. 
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Fig. 3.23: Responseii of 𝛷(𝜉) with 𝛿. 

 

 

 

Fig. 3.24: Responseii of 𝛷(𝜉) with 𝑆2. 
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Fig. 3.25: Responseii of 𝛷(𝜉) with �̂�1.  

 

 

 

      Fig. 3.26: Responsei of 𝐶𝐹(𝑅𝑒𝑧)
1

2 with 𝛽2. 
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Fig. 3.27: Responsei of 𝐶𝐹(𝑅𝑒𝑧)
1

2 with �̂�𝑐. 
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3.7   Conclusions 
 

    The main findings are summarized as follows: 

• 𝐹′(𝜉) decays for higher estimation of 𝛽2 and 𝜙𝑎  while it boosts up for 𝛾1,   �̂�𝑡 

and �̂�𝑐. 

• Temperature idistribution declines for ithermal relaxation time 𝛿𝑒  and thermal 

stratification parameter 𝑆1. 

• Stratification variables (𝑆1, 𝑆2)  diminishes the temperaturei and iconcentration 

distributions. 

• Concentration iprofile Φ(𝜉) has opposite behaviour versus �̂�𝑏 and �̂�𝑡. 

• Prandtl number Pr reduces temperature 𝜃(𝜉)  while it enhances wall heat flux. 

• Nanoparticle concentration Φ(𝜉) is directly iproportional to the ichemical reaction 

with activation ienergy. 
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CHAPTER 4 

 

Thermally stratified flow of Jeffrey fluid with 

homogeneous-heterogeneous reactions and non-Fourier 

heat flux model 

 

4.1   Introduction 

 

This chapter concentrates on Jeffrey fluid flow near the iaxisymmetric istagnation point iover 

an iinclined ipermeable istretched icylinder with mixed convection effects. iAnalysis 

isubjected to iCattaneo-Christov iheat flux, ithermal stratificationi and ihomogeneous-

heterogeneousi reactions are iaccounted. The governing equations are transmuted into 

ordinary differential system withi suitable itransformations. iNon-dimensional system of 

ordinary idifferential equations is computed by Homotopy itechnique. Convergence 

ianalysis is iachieved and suitablei values are idetermined by iplotting the ℎ −curves. 

Effects of physical quantities of interest are studied ithrough igraphs and itables. The 

formulationi and interpretationi of skin friction coefficient is ideliberated. 

4.2   Mathematical formulation 

We examinei the steady two-dimensional istagnation-point iflow of an incompressible 

Jeffrey fluid model subjecti toii Cattaneo-Christov iheat flux theoryi on an inclined permeable 

stretching cylinder of radius 𝑅0  that makes an angle 𝜙𝑎  with vertical iposition. 
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Homogeneous/heterogeneous reaction is presented. Here (𝑢𝑧 , 𝑢𝑟) denote axial and radial 

velocities (see Fig.  4.1). The surface of inclined icylinder is being istretched with the 

ivelocity 𝑈𝑤(𝑧) =
𝑈0𝑧

𝐿
. The effect of external forces and pressure gradient is supposed to 

be negligible. For icubic autocatalysis ithe homogeneous ireaction [85-88] is iexpressed as 

ifollows: 

 

 

Fig. 4.1: Physical model. 

 

𝐴 + 2𝐵 → 3𝐵, 𝑟𝑎𝑡𝑒 = 𝑘𝑐𝑎1𝑏1
2 . (4.1) 

Isothermal reaction of first order on catalyst surface is   
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𝐴 → 𝐵, 𝑟𝑎𝑡𝑒 = 𝑘𝑠𝑎1. (4.2) 

Utilizing both the reactions of isothermal nature, the related flow expressions satisfy: 

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕

𝜕𝑧
(𝑟𝑢𝑧) = 0, (4.3) 

𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

= 𝑈1
𝑑𝑈1
𝑑𝑧

+
𝜈1

(1 + 𝜆1)
(
𝜕2𝑢𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝑧
𝜕𝑟
) +

�̂�1
𝜌𝑓
Γ1(𝑇 − 𝑇∞)𝑐𝑜𝑠𝜙𝑎

𝜈1𝜆2
(1 + 𝜆1)

(𝑢𝑟
𝜕3𝑢𝑧
𝜕𝑟3

+
𝜕𝑢𝑟
𝜕𝑟

𝜕2𝑢𝑧
𝜕𝑟2

+ 𝑢𝑧
𝜕3𝑢𝑧
𝜕𝑧𝜕𝑟2

+
𝜕𝑢𝑧
𝜕𝑟

𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

+
𝑢𝑟
𝑟

𝜕2𝑢𝑧
𝜕𝑟2

+
𝑢𝑧
𝑟

𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

)

 

(4.4) 

In view ofi Cattaneo-Christov heat iflux theory [89,90], 𝒒𝟏 satisfiesi the relationi  

𝒒𝟏 + Γ̂𝑒 [
𝜕𝒒𝟏
𝜕𝑡

+ 𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏 + (𝜵.𝑽𝟏)𝒒𝟏] = −𝑘𝑓𝜵T. 
(4.5) 

For Γ̂𝑒 = 0 the above expression ireduces to classicali Fourier’s law. Now iby consideringi 

incompressibleii ifluid situation ione has 

𝒒𝟏 + Γ̂𝑒[𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏] = −�̂�𝑓𝜵T. (4.6) 

The heat andi mass conservationi equations are 

𝑢𝑟
𝜕𝑇

𝜕𝑟
+ 𝑢𝑧

𝜕𝑇

𝜕𝑧
+ Γ̂𝑒Π𝑒 =

�̂�𝑓

(𝜌C𝑝)𝑓

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
), 

(4.7) 

𝑢𝑟
𝜕𝑎1
𝜕𝑟

+ 𝑢𝑧
𝜕𝑎1
𝜕𝑧

= 𝐷𝐴 (
𝜕2𝑎1
𝜕𝑟2

+
1

𝑟

𝜕𝑎1
𝜕𝑟
) − 𝑘𝑐𝑎1𝑏1

2, 
(4.8) 

𝑢𝑟
𝜕𝑏1
𝜕𝑟
+ 𝑢𝑧

𝜕𝑏1
𝜕𝑧

= 𝐷𝐴 (
𝜕2𝑏1
𝜕𝑟2

+
1

𝑟

𝜕𝑏1
𝜕𝑟
) + 𝑘𝑐𝑎1𝑏1

2, 
(4.9) 

along withi boundary conditionsi 
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𝑢𝑧 =
𝑈0𝑧

𝐿
,   𝑢𝑟 = 𝑉1, 𝑇 = 𝑇𝑤 = 𝑇0 +

𝑑1𝑧

𝐿
,

DA
𝜕𝑎1
𝜕𝑟

= ks𝑎1,         Db
𝜕𝑏1
𝜕𝑟

= −ks𝑎1,

|  𝑎𝑡 𝑟 = 𝑅0, 

(4.10) 

𝑢𝑧 → 𝑈1 =
U∞𝑧

𝐿
,     𝑇 →  𝑇∞ = 𝑇0 +

𝑑2𝑧

𝐿
,

𝑎1 → 𝑎0,                   𝑏1 → 0.                          
|  𝑤ℎ𝑒𝑛 𝑟 → ∞, 

(4.11) 

with  

Π𝑒 = 𝑢𝑟
2
𝜕2𝑇

𝜕𝑟2
+ 𝑢𝑧

2
𝜕2𝑇

𝜕𝑧2
+
𝜕𝑇

𝜕𝑟
(𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + 2𝑢𝑧𝑢𝑟

𝜕2𝐶

𝜕𝑟𝜕𝑧

+
𝜕𝑇

𝜕𝑧
(𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
). 

(4.12) 

 

Considering isuitable transformationsi for present problemi are [90] 

 ξ = √
𝑈0
𝐿𝜈1

(
𝑟2 − 𝑅0

2

2𝑅0
) , Ψ1(ξ) = √

𝜈1𝑈0𝑧2

𝐿
𝐹(ξ), 𝑢𝑧(ξ) =

𝑈0𝑧

𝐿
𝐹′(ξ), 

 

𝑢𝑟(ξ) = −
𝑅0
𝑟
√
𝜈1𝑈0
𝐿
𝐹(ξ), θ(ξ) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇0

, 𝑎1 = 𝑎0Φ(ξ), 𝑏1 = 𝑎0𝐻(𝑧).  
(4.13) 

The flow iexpressions under iabove transformations itake the form 

(1 + 2𝛾1𝜉)[𝐹
′′′ + 𝛽2(𝐹

′′2 − 𝐹𝐹4)]+𝛾1𝛽2(𝐹
′𝐹′′ − 3𝐹𝐹′′′) + 2𝛾1𝐹

′′  

+(1 + 𝜆1)(𝐹𝐹
′′ − 𝐹′2 + 𝐴2) − (1 + 𝜆1)𝛽1𝜃𝑐𝑜𝑠𝜙𝑎 = 0,                     (4.14) 

(1 + 2𝛾1𝜉)θ
′′ + 2𝛾1θ

′ − 𝑃𝑟(θ + 𝑆1)𝐹
′ + 𝑃𝑟𝐹θ′      

+𝑃𝑟𝛿𝑒[𝐹𝐹
′θ′ − 𝐹2θ′′ + (θ + 𝑆1)(𝐹𝐹

′′ − 𝐹′2)] = 0, (4.15) 

   (1 + 2𝛾1𝜉)𝐺
′′ + 2𝛾1G

′ + 𝑆𝑐𝐹G′ − 𝑆𝑐𝐾𝑚𝐺𝐻
2 = 0, (4.16) 
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(1 + 2𝛾1𝜉)𝐻
′′ + 2𝛾1H

′ +
𝑆𝑐

𝛿∗
𝐹H′ +

𝑆𝑐

𝛿∗
𝐾𝑚𝐺𝐻

2 = 0. (4.17) 

The transformediiboundary conditions arei 

F′(𝜉) = 1, F(𝜉) = 𝑉𝑝, 𝜃(𝜉) = 1 − S1, G
′(𝜉) = 𝐾𝑡𝐺(𝜉), 𝛿

∗H′(𝜉) = −𝐾𝑡𝐺(𝜉) 𝑎𝑡 𝜉 = 0, 

F′(𝜉) = 𝐴, 𝜃(𝜉) = 0, 𝐺(𝜉) = 0   𝑎𝑠 𝜉 → ∞.  (4.18) 

Definitions iof involved ivariables are ilisted ibelow: 

𝛾1 = √
𝜈1𝐿

𝑈0𝑅0
2 , 𝛽2 =

𝜆2𝑈0
𝐿
, 𝛿𝑒 =

Γ̂𝑒𝑈0
𝐿
,

𝐾𝑚 =
𝑘𝑐𝑎0

2𝐿

𝑈0
, 𝑃𝑟 =

(𝜇𝐶𝑝)𝑓

�̂�𝑓
, 𝑆𝑐 =

𝜈1
𝐷𝐵
,

𝐾𝑡 =
𝑘𝑠
𝐷𝐴
√
𝜈1𝐿

𝑈0
, 𝛿∗ =

𝐷𝐵
𝐷𝐴
.        

 

(4.19) 

The sizei of A and B are iconsidered to be icomparable so that iwe further iassume the iequality 

of diffusioni icoefficients as ispecial icase i.e., 𝐷𝐴 = 𝐷𝐵(𝛿
∗ = 1). Thus, we ihave 

𝐺(𝜉) + 𝐻(𝜉) = 1. (4.20) 

Invokingi Eq. (4.20) into Eqs. (4.16) and (4.17), we iget 

(1 + 2𝛾1𝜉)𝐺
′′ + 2𝛾1G

′ + 𝑆𝑐𝐹G′ − 𝑆𝑐𝐾𝑐𝐺(1 − 𝐺)
2 = 0. (4.21) 

The local skin friction coefficient 𝐶𝑓 (surface drag) and the local Nusselt number 𝑁𝑢𝑧 

(rate of heat transfer) are defined as 

𝐶𝑓 =
2𝜏𝑤
𝜌1𝑈𝑤2

,       

𝑁𝑢𝑧 =
𝑧𝑞𝑤

𝑘(𝑇𝑤 − 𝑇0)
.
 

(4.22) 
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Shear stress (𝜏𝑤) and heat flux (𝑞𝑤) are definedi as 

𝜏𝑤 =
𝜇

(1 + 𝜆1)

𝜕𝑢𝑧
𝜕𝑟

+
𝜇λ2

(1 + 𝜆1)
(𝑢𝑟

𝜕2𝑢𝑧
𝜕𝑟2

+ 𝑢𝑧
𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

)|
𝑟=𝑅0

, (4.23) 

𝑞𝑤 = −𝑘
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅0

. (4.24) 

Above physical quantities in dimensionless form are 

1

2
𝐶𝐹(𝑅𝑒𝑧)

1
2 =

1

(1 + 𝜆1)
[(1 − 𝛾1𝛽2𝐹(0) + 𝛽2𝐹

′(0))𝐹′′(0) − 𝛽2𝐹(0)𝐹
′′′(0)],   (4.25) 

𝑁𝑢𝑧(𝑅𝑒𝑧)
−1/2 = −𝜃′(0), (4.26) 

in iwhich 𝑅𝑒𝑧 (=
𝑈0𝑧

2

𝜈1𝐿
) is the local Reynolds number. 

4.3  Methodology 

The initial guesses (F0(ξ), θ0(ξ), G0(ξ)) and auxiliary linear operators (£𝐹, £𝜃, £G) are: 

F0(ξ) = 1 + V𝑝 + A(𝜉 − 1) + (𝐴 − 1) exp(−ξ) ,

θ0(ξ) = (1 − S1) exp(−ξ),                                       

G0(ξ) = 1 −
1

2
exp(−Ktξ),                                        

  

(4.27) 

£𝐹[F] = F
′′′ − F′, £𝜃[𝜃] = θ

′′ − θ, £G[G] =G
′′ − G. (4.28) 

The above imentioned ioperators £𝐹 , £𝜃 and £G satisfy the ifollowing properties 

£𝐹[ω2exp(−ξ) + ω1 +ω3exp(ξ)] = 0,  

£𝜃[ω4exp(−ξ) + ω5exp(ξ)] = 0, 
 

£G[ω6exp(−ξ) + ω7exp(ξ)] = 0, (4.29) 
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where ωj(j = 1 − 7) notify ithe iarbitrary iconstants. 

 4.3.1  Zeroth-order systems 

The zeroth-order ideformation iexpressions are iconstructed as follows: 

(1 − �̂�)£𝐹[�̂�(𝜉; �̂�) − 𝐹
0(𝜉)] = �̂�ℎ𝐹�̂�𝐹[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Ĝ(𝜉; �̂�)], (4.30) 

(1 − �̂�)£𝜃[𝜃(𝜉; �̂�) − 𝜃
0(𝜉)] = �̂�ℎ𝜃�̂�𝜃[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Ĝ(𝜉; �̂�)], (4.31) 

(1 − �̂�)£G[Ĝ(𝜉; �̂�) − G
0(𝜉)] = �̂�ℎG�̂�𝐺[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Ĝ(𝜉; �̂�)], (4.32) 

�̂�′(0; �̂�) = 1, �̂�(0; �̂�) = 𝑉𝑝, 𝜃(0; �̂�) = 1 − 𝑆1, �̂�′(0; �̂�) = 𝐾𝑡�̂�(0; �̂�), 

�̂�′(𝜉; �̂�) = 0, 𝜃(𝜉; �̂�) = 0 Ĝ(𝜉; �̂�) = 1, 𝑎𝑠 𝜉 → ∞,                   (4.33) 

�̂�𝐹[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Ĝ(𝜉; �̂�)]

= 𝛾1𝛽2 (
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
− 3�̂�(𝜉; �̂�)

𝜕3�̂�(𝜉; �̂�)

𝜕𝜉3
) + 2𝛾1

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2

+ (1 + 2𝛾1𝜉)𝛽2 (
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
− �̂�(𝜉; �̂�)

𝜕4�̂�(𝜉; �̂�)

𝜕𝜉4
)

+ (1 + 𝜆1) (�̂�(𝜉; �̂�)
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
−
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
) + 

(1 + 2𝛾1𝜉)
𝜕3�̂�(𝜉; �̂�)

𝜕𝜉3
+ (1 + 𝜆1) (𝐴

2(1 − 𝜒𝑚) − 𝛽1𝜃(𝜉; �̂�)) 𝑐𝑜𝑠𝜙𝑎 , 
(4.34) 
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�̂�θ[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Ĝ(𝜉; �̂�)]

= (1 + 2𝛾1𝜉)
𝜕2𝜃(𝜉; �̂�)

𝜕𝜉2
+ 2𝛾1

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
+ 𝑃𝑟�̂�(𝜉; �̂�)

𝜕𝜃(𝜉; �̂�)

𝜕𝜉

− 𝑃𝑟𝛿𝑒(𝜃(𝜉; �̂�) + 𝑆1) (�̂�(𝜉; �̂�)
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
−
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
)

− 𝑃𝑟𝛿𝑒 (�̂�(𝜉; �̂�)
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
− �̂�(𝜉; �̂�)�̂�(𝜉; �̂�)

𝜕2𝜃(𝜉; �̂�)

𝜕𝜉2
) 

−𝑃𝑟(𝜃(𝜉; �̂�) + 𝑆1)
𝜕�̂�(𝜉; �̂�)

𝜕𝜉
,                                   

(4.35) 

�̂�𝐺[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Ĝ(𝜉; �̂�)] = (1 + 2𝛾1𝜉)
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
+ (2𝛾1 + 𝑐�̂�(𝜉; �̂�))

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
 

                   −𝑆𝑐𝐾𝑐�̂�(𝜉; �̂�) (1 − �̂�(𝜉; �̂�))
2

. (4.36) 

The valuesi of �̂� ∈ [0,1] andi for �̂� = 0 𝑎𝑛𝑑 �̂� = 1, we ihave 

�̂�(𝜉; 0) = 𝐹0(𝜉) �̂�(𝜉; 1) = 𝐹(𝜉),

 𝜃(𝜉; 0) = 𝜃0(𝜉) 𝜃(𝜉; 1) = 𝜃(𝜉),

�̂�(𝜉; 0) = G0(𝜉) �̂�(𝜉; 1) = G(𝜉).

 

(4.37) 

4.3.2  𝑚𝑡ℎ-order systems 

 

Here problem statementsi are 

£𝐹[𝐹𝑚(𝜉) − 𝜒𝑚𝐹𝑚−1(𝜉)] = ℎ𝐹𝑅𝑚
𝐹 (𝜉), (4.38) 

£𝜃[𝜃𝑚(𝜉) − 𝜒𝑚𝜃𝑚−1(𝜉)] = ℎ𝜃𝑅𝑚
𝜃 (𝜉), (4.39) 

£G[G𝑚(𝜉) − 𝜒𝑚G𝑚−1(𝜉)] = ℎG𝑅𝑚
𝐺 (𝜉), (4.40) 
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 𝐹𝑚(𝜉) = 0, 𝐹𝑚
′ (𝜉) = 0,  𝜃𝑚(𝜉) = 0, G𝑚

′ (𝜉) = 0, 𝑎𝑡 𝜉 = 0,  

𝐹𝑚
′ (𝜉) = 0,  𝜃𝑚(𝜉) = 0,    𝐺𝑚(𝜉) = 0, 𝑎𝑠 𝜉 → ∞,                     (4.41) 

𝑅𝑚
𝐹 (𝜉) = (1 + 2𝛾1𝜉) (𝐹𝑚−1

′′′ + 𝛽2 ∑(𝐹𝑚−1−𝑘
′′ 𝐹𝑘

′′ − 𝐹𝑚−1−𝑘𝐹𝑘
𝑖𝑣)

𝑚−1

𝑘=0

)

+ 𝛾1 ∑(β2(𝐹𝑚−1−𝑘
′ 𝐹𝑘

′′ − 3𝐹𝑚−1−𝑘𝐹𝑘
′′′) + 2𝐹𝑚−1

′′ ) + 𝐴2(1 − 𝜒𝑚)

𝑚−1

𝑘=0

 

                      +(1 + 𝜆1) (∑(𝐹𝑚−1−𝑘𝐹𝑘
′′ − 𝐹𝑚−1−𝑘

′ 𝐹𝑘
′)

𝑚−1

𝑘=0

+ 𝛽1𝜃𝑚−1𝑐𝑜𝑠𝜙𝑎), (4.42) 

𝑅𝑚
𝜃 (𝜉) = (1 + 2𝛾1𝜉)𝜃𝑚−1

′′ + 2𝛾1𝜃𝑚−1
′ − 𝑃𝑟𝑆1𝐹𝑚−1

′ + 𝑃𝑟 ∑(𝐹𝑚−1−𝑘𝜃𝑘
′ )

𝑚−1

𝑘=0

− 𝑃𝑟 ∑(𝜃𝑚−1−𝑘𝐹𝑘
′ + 𝑆1𝛿𝑒(𝐹𝑚−1−𝑘

′ 𝐹𝑘
′ − 𝐹𝑚−1−𝑘𝐹𝑘

′′))

𝑚−1

𝑘=0

+ 

 Pr𝛿𝑒 ∑ (𝜃𝑚−1−𝑘∑(𝐹𝑘−𝑙𝐹𝑙
′′ − 𝐹𝑘−𝑙

′ 𝐹𝑙
′)

𝑘

𝑙=0

+ 𝐹𝑚−1−𝑘∑(𝐹𝑘−𝑙
′ 𝜃𝑙

′ − 𝐹𝑘−𝑙𝜃𝑙
′′)

𝑘

𝑙=0

)

𝑚−1

𝑘=0

, 
(4.43) 

𝑅𝑚
𝐺 (𝜉) = (1 + 2𝛾1𝜉)𝐺𝑚−1

′′ + 2𝛾1G𝑚−1
′ − 𝑆𝑐𝐾𝑐𝐺𝑚−1 − 𝐾𝑐𝐺𝑚−1−𝑘∑𝐺𝑘−𝑙𝐺𝑙

𝑘

𝑙=0

 

      +𝑆𝑐∑(𝐹𝑚−1−𝑘 + 2𝐾𝑐𝐺𝑚−1−𝑘)𝐺𝑘

𝑚

𝑘=0

,                                        (4.44) 

we have 

�̂�(𝜉; 0) = 𝐹0(𝜉), 𝜃(𝜉; 0) = 𝜃0(𝜉), Ĝ(𝜉; 0) = G0(𝜉),              

�̂�(𝜉; 1) = 𝐹(𝜉), 𝜃(𝜉; 1) = 𝜃(𝜉), Ĝ(𝜉; 1) = G(𝜉). (4.45) 
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Here we iobserved that iwhen �̂� variesi from 0 to 1 then ifunctions �̂�(𝜉; �̂�), 𝜃(𝜉; �̂�) and 

Ĝ(𝜉; �̂�)  changes from initial iapproximations (𝐹0(𝜉), 𝜃0(𝜉), G0(𝜉))  to the idesired 

isolutions (𝐹(𝜉), 𝜃(𝜉), G(𝜉)). Through iTaylor's series iexpansion we have 

�̂�(𝜉; �̂�) = 𝐹0(𝜉) + ∑ 𝐹𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

𝐹𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
�̂�(𝜉; �̂�)|

�̂�=0

,

 

(4.46) 

𝜃(𝜉; �̂�) = 𝜃0(𝜉) + ∑ 𝜃𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

𝜃𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
𝜃(𝜉; �̂�)|

�̂�=0

,    

 

(4.47) 

Ĝ(𝜉; �̂�) = G0(𝜉) + ∑ G𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

G𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
Ĝ(𝜉; �̂�)|

�̂�=0

.    

 

(4.48) 

The igeneral solutions (𝐹𝑚(𝜉), 𝜃𝑚(𝜉), G𝑚(𝜉)) of Eqs. (4.38) − (4.40) in viewi of iispecial 

solutions (𝐹𝑚
∗ (𝜉), 𝜃𝑚

∗ (𝜉), G𝑚
∗ (𝜉)) are 

𝐹𝑚(𝜉) = 𝐹𝑚
∗ (𝜉) + 𝜔1 + 𝜔2𝑒𝑥𝑝(−𝜉) + 𝜔3𝑒𝑥𝑝(𝜉), (4.49) 

𝜃𝑚(𝜉) = 𝜃𝑚
∗ (𝜉) + 𝜔5𝑒𝑥𝑝(𝜉) + 𝜔4𝑒𝑥𝑝(−𝜉), (4.50) 

G𝑚(𝜉) = G𝑚
∗ (𝜉) + 𝜔7𝑒𝑥𝑝(𝜉) + 𝜔6𝑒𝑥𝑝(−𝜉), (4.51) 

Invokingi Eq. (4.41), the ivalues of 𝜔𝑗  (𝑗 = 1 − 7) are as ifollows 
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𝜔1 = −𝐹𝑚
∗ (0) +

𝜕𝐹𝑚
∗ (𝜉)

𝜕𝜉
|
𝜉=0

, 𝜔2 =
𝜕𝐹𝑚

∗ (𝜉)

𝜕𝜉
|
𝜉=0

,    𝜔4 = −𝜃𝑚
∗ (𝜉)|𝜉=0,

𝜔6 = −𝐺𝑚
∗ (𝜉)|𝜉=0                   𝜔3 = 𝜔5 = 𝜔7 = 0.

 
(4.52) 

 

4.4   Convergence analysis 

HAM provides great ifreedom to icontrol rate of iconvergence of solution by taking 

appropriate values of auxiliary iiparameters. The accurate iauxiliary parameters ℎ𝑓 , ℎ𝜃 and 

ℎ𝐺  are selected from irelevant irange of iplotted ℎ −curves at 25𝑡ℎ iteration. In this istudy, 

numerical icomputations are irestricted ithoroughly iwith ipractical irange of non-dimensional 

iiparameters [91] as (0.2 ≤ 𝛾1 ≤ 0.8), (0.1 ≤ 𝛽1 ≤ 0.5), (0.4 ≤ 𝜆1 ≤ 1.5), (0.2 ≤ �̂�𝑐 ≤

0.6), (0.1 ≤ 𝛿𝑒 ≤ 0.5), (0.2 ≤ 𝑆1 ≤ 0.6), (0.1 ≤ 𝐾𝑡 ≤ 0.5), (0.5 ≤ 𝑃𝑟 ≤ 2.5), (0.1 ≤

𝐾𝑚 ≤ 0.5) and (0.1 ≤ 𝑉𝑝 ≤ 0.4). Fig. 4.2  portrays the iacceptable range of auxiliary 

parameters ℎ𝐹 , ℎ𝜃  𝑎𝑛𝑑 ℎ𝐺  as (−1.3 ≤ ℎ𝐹 ≤ −0.4), (−1.5 ≤ ℎ𝜃 ≤ −0.5) and (−1.2 ≤

ℎ𝐺 ≤ −0.4). Table 4.1 shows that 35𝑡ℎ order of iapproximations is enough to iobtain the 

convergenti solution computed to demonstrate the convergence analysis of homotopic 

expressions. Table 4.2  is built to ivalidate the ipresent consequencesi with ipreviously 

ipublished resultsi by Acharya [92], Khan and Pop [93] and Hsiao [94]. This table represents 

the comparison of present resultsi with the previousi iliterature which igives good iagreement. 
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Fig. 4.2: h −curves.  

 

Table 4.1: Convergence ianalysis when 𝛾1 = 𝐴 = 𝐾𝑡 = 0.1, 𝜆1 = 0.5, 𝛽2 = 0.3, 𝛿𝑒 =

𝑆1 = 𝑉𝑝 = 0.2, 𝐾𝑚 = 0.1, 𝛽1 = 1.0, 𝑃𝑟 = 1.2 and 𝑆𝑐 = 1.5. 

Approx. order −𝐹′′(0) −𝜃′(0) −Φ′(0) 

1 0.8587 0.6985 0.1382 

7 0.8524 0.7322 0.1345 

14 0.8554 0.7524 0.1360 

20 0.8582 0.7959 0.1371 

25 0.8607 0.7934 0.1450 

30 0.8612 0.7668 0.1429 

35 0.8624 0.7743 0.1408 

40 0.8624 0.7743 0.1408 

46 0.8624 0.7743 0.1408 
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Table 4.2: Numerical icomparison of −𝜃(0) when 𝛾1 =  �̂�𝑡 = 𝜆1 = �̂�𝑐 = 𝐴 = 𝛽1 = 𝑆1 =

𝐾𝑚 = 0.0 𝑎𝑛𝑑 𝑃𝑟 = 5.0. 

𝛿𝑒 
Acharya et al.  

[92] 

Khan & Pop  

[93] 

Hsiao et al.  

[94] 

Present 

HAM 

0.1 0.9524 0.9524 0.952432 1.00124 

0.2 0.6932 0.6932 0.693211 0.69582 

0.3 0.5201 0.5201 0.520147 0.51596 

0.4 0.4026 0.4026 0.402631 0.40236 

0.5 0.3211 0.3211 0.321149 0.32340 

 

4.5   Results and discussion 

In this isection, the fluctuations in iinterested quantities like curvature iparameter 𝛾1 , 

Deborah number 𝛽2 , velocities iratio parameter A, strength of ihomogeneous reaction 

parameter 𝐾𝑚, strength of iheterogeneous reaction iparameter 𝐾𝑡, mass idiffusion ratio 𝛿∗, 

Schmidt inumber 𝑆𝑐 , thermal irelaxation parameter 𝛿𝑒 , Prandtl inumber Pr, mixed 

convection iparameter 𝛽1  and thermal istratification iparameter 𝑆1  on velocity 𝐹′(𝜉) , 

itemperature 𝜃(𝜉) and iconcentration 𝐺(𝜉) is displayed in Figs. (4.3 − 4.15). Fig. 4.3 

demonstrates curvature parameter 𝛾1  influences on 𝐹′(𝜉) . As increment in curvature 

causes decrease in cylinder radius that causes low resistance in flow field. As a result, 

𝐹′(𝜉)  shows increasing behavior. Deborah number 𝛽2  consequences upon 𝐹′(𝜉)  are 

illustrated via Fig. 4.4. The velocity 𝐹′(𝜉) profile and related momentum boundary layer 

thickness are diminished with the rise of 𝛽2. It holds because increase of 𝛽2 describes the 

growth in the elasticity of fluid material. Fig. 4.5 shows the influences of 𝜆1 on 𝐹′(𝜉). 
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As expected, the velocity profile 𝐹′(𝜉) declines against 𝜆1. It is true because 𝜆1 is ratio 

of relaxation to retardation time i.e. its higher values enlarge the relaxation time (resistance 

in flow). Noticeable features of 𝛽1 are shown in Fig. 4.6. Physically increase of 𝛽1 is 

responsible for intensification of buoyancy forces. That results in increase of 𝐹′(𝜉). Fig. 

4.7 is revealed to study the features of velocities ratio parameter A on 𝐹′(𝜉). This figure 

suggests that in both cases (𝐴 > 1 𝑎𝑛𝑑 𝐴 < 1) fluid velocity enhances. The increase of A 

upsurges free stream velocity that eventually results in the enhancement of 𝐹′(𝜉). This 

developing behavior of 𝐹′(𝜉) remained same when either free stream velocity dominates 

or followed. Thickness of boundary layer has reverse effects. Fig. 4.8  portraits the 

inclination 𝜙𝑎  effects on 𝐹′(𝜉). The decaying nature of 𝐹′(𝜉) is observed for greater 

estimation of 𝜙𝑎. Since, impact of gravity forces decreases for higher altitude. That causes 

reduction in velocity profile. Fig. 4.9 elaborates the consequences of thermal relaxation 

parameter 𝛿𝑒  on temperature 𝜃(𝜉) . It can be seen that 𝛿𝑒   causes reduction in 

temperature 𝜃(𝜉). Physically it holds because increment in thermal relaxation slows down 

heat transfer between particles, as a result, temperature decreases. Fig. 4.10  depicts 

fluctuation in fluid temperature against thermal stratification parameter 𝑆1. As temperature 

difference (𝑇𝑤 − 𝑇∞)   gradually decreases for higher approximation of 𝑆1  that 

eventually declines the temperature curve 𝜃(𝜉). Fig. 4.11 elucidates that temperature and 

thermal boundary layer thickness are decreased significantly when the values of Prandtl 

number Pr are greater. Since, Prandtl inumber is ithe ratio of momentumi to thermal 

idiffusivities. Increase in Prandtl number icorresponds to stronger imomentum diffusivity 

andi weaker ithermal diffusivity. Here iweaker thermal idiffusivity dominant iover the 

stronger imomentum diffusivity due ito which lesser itemperature is inoticed. The influence 
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of the homogeneous reaction parameter 𝐾𝑚  on 𝐺(𝜉) is illustrated through Fig. 4.12. 

Since during the homogeneous reaction, reactants are consumed and as a result, the fluid 

concentration denigrates which is apparently seen from this figure. Fig. 4.13  explained 

the heterogeneous reaction parameter 𝐾𝑡 impacts on the concentration profile 𝐺(𝜉). The 

concentration boundary layer thickness upsurges with increasing 𝐾𝑡 which agrees with the 

common physical behavior of the homogeneous and heterogeneous reactions parameters. 

Variation of concentration profile 𝐺(𝜉) against various values of the Schmidt number Sc 

is displayed in Fig. 4.14. As Schmidt number varies inversely as mass diffusivity which 

consequently, declines the concentration. Wall friction coefficient 𝐶𝐹 , for emerging 

parameters �̂�𝑐 and A are presented in Figs. 4.15 and 4.16. The dwindling influence of 

wall friction is observed for both �̂�𝑐 and A. 

 4.6   Graphical outcomes 
 

 

Fig. 4.3: Variation of 𝛾1 on 𝐹′(𝜉). 
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Fig. 4.4: Variationii of 𝛽2 on 𝐹′(𝜉). 

 

 

 

Fig. 4.5: Variationi of 𝜆1 on 𝐹′(𝜉). 
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Fig. 4.6: Variation of 𝛽1 on 𝐹′(𝜉). 

 

 

 

Fig. 4.7: Variationi of 𝐴 on 𝐹′(𝜉). 
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Fig. 4.8: Variationi of 𝜙𝑎 on 𝐹′(𝜉). 

 

 

 

Fig. 4.9: Variationi of 𝛿𝑒 on 𝜃(𝜉). 
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Fig. 4.10: Variationi of 𝑆1 on 𝜃(𝜉). 

 

 

 

Fig. 4.11: Variationi of 𝑃𝑟 on 𝜃(𝜉). 
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Fig. 4.12: Variationi of 𝐾𝑚 on 𝐺(𝜉). 

 

 

 

Fig. 4.13: Variationi of 𝐾𝑡 on 𝐺(𝜉). 



89 

 

 

 

Fig. 4.14: Variationi of 𝑆𝑐 on 𝐺(𝜉). 

 

 

 

Fig. 4.15: Variationi of 𝐶𝐹(𝑅𝑒𝑧)
1

2 on 𝛽2. 
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Fig. 4.16: Variationi of 𝐶𝐹(𝑅𝑒𝑧)
1

2 on 𝐴. 

4.5  Conclusions 

Here we analyzei the homogeneous/heterogeneousi reactions for iJeffery fluid model 

induced by an iinclined istretching icylinder. Heat transfer analysis has been accomplished 

within iframe of Cattaneo-Christove heat flux model. Major key points are summarized as 

follows: 

• Deborah number 𝛽2 deaccelerates the linear momentum. 

• Homogeneous parameter 𝐾𝑚  is responsible to decrease in concentration while 

heterogeneous parameter 𝐾𝑡 has opposite effect. 

• Thermal stratification parameters reduce the temperature distribution. 

• Prandtl number Pr and thermal stratification parameter declines fluid temperature 

significantly. 
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CHAPTER 5 

 

Aspects of activation energy for Jeffrey nanofluid with 

Cattaneo-Christov double diffusion model 

 

5.1   Introduction  
 

In this chapter, nonlineari convective iflow of Jeffrey inanofluid within the iframe of 

Cattaneo-Christovi double diffusion iover an inclined ipermeable stretched cylinder is 

iaddressed. Analysis subjectedi to Arrhenius activation ienergy, chemical ireaction, double 

stratificationi and inon-uniform heat generation/absorptioni are assumed. For activation 

ienergy, a novel binary chemical reaction model is used. Cattaneo-Christov double 

diffusion model iare employed to iconfigure heat and mass itransfer. Apposite isimilarity 

transformationsi are iengagedi to iattain nonlineari iordinary differential system. Non-

dimensionali system of governing iequations is solved ianalytically to obtain the series 

solution by Homotopy itechnique. Expressionsi of skin frictioni and Nusselt number are 

calculatedi through inumerical values. Graphs and itables are created to ianalyze the impact 

of governingi parameters on interestedi physical ientities. 
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5.2   Mathematical formulation 
 

Consider 2D, inonlinear convective iflow of Jeffrey inanofluid subjected to Arrhenius 

activation energy, igeneralized Fourier and iFick’s models by an inclined permeable 

stretching icylinder of iradius 𝑅0. Non-uniform iheat generation/absorption, binary chemical 

ireaction, nonlinear imixed convection, thermal and isolutal stratification are accounted for 

present flow framework. The problem is considered in cylindrical polar coordinates 

(𝑟, 𝜃, 𝑧) with velocity components (𝑢𝑟 , 𝑢𝜃 ,  𝑢𝑧). The flow is generated with the linear 

stretching velocity of the form 𝑈𝑤 (=
𝑈0𝑧

𝐿
). Flow geometry is given in Fig. 5.1. The 

cylindrical surface is thermally and solutally stratified by maintaining (𝑇𝑤, 𝐶𝑤) in the form 

(𝑇0 +
𝑑1𝑧

𝐿
, 𝐶0 +

𝑑3𝑧

𝐿
), while ambient temperature and concentration (𝑇∞, 𝐶∞) are  

 

Fig. 5.1: Physical model. 
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measured in the form (𝑇0 +
𝑑2𝑧

𝐿
, 𝐶0 +

𝑑4𝑧

𝐿
). The effect of iexternal forces and ipressure 

gradient is supposedi to be negligible. The conservation laws under above isupposition after 

using the boundary layer approximations are [95,96] 

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕

𝜕𝑧
(𝑟𝑢𝑧) = 0, (5.1) 

𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

+ 𝑢
𝜕𝑢𝑧
𝜕𝑟

=
𝜈1

(1 + 𝜆1)
(
𝜕2𝑢𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝑧
𝜕𝑟
) +

𝜎𝐵0
2𝑢𝑧
𝜌𝑓

 

+
𝜈1𝜆2

(1 + 𝜆1)
(𝑢𝑟

𝜕3𝑢𝑧
𝜕𝑟3

+
𝜕𝑢𝑟
𝜕𝑟

𝜕2𝑢𝑧
𝜕𝑟2

+ 𝑢𝑧
𝜕3𝑢𝑧
𝜕𝑧𝜕𝑟2

𝜕𝑢𝑧
𝜕𝑟

𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

+
𝑢𝑟
𝑟

𝜕2𝑢𝑧
𝜕𝑟2

+
𝑢𝑧
𝑟

𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

) 

+
�̂�1
𝜌𝑓
(Γ1(𝑇 − 𝑇∞) + Γ2(𝑇 − 𝑇∞ )

2 + Γ3(C − C∞) + Γ4(C − C∞ )
2)𝑐𝑜𝑠𝜙𝑎 . (5.2) 

Heat and imass fluxes (𝒒𝟏, 𝐉𝟏) withini the framei of iCattaneo-Christov double iidiffusive 

model [97] are 

𝒒𝟏 + Γ̂𝑒 [
𝜕𝒒𝟏
𝜕𝑡

+ 𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏 + (𝜵.𝑽𝟏)𝒒𝟏] = −𝑘𝑓𝜵T, (5.3) 

𝐉𝟏 + Γ̂𝑐 [
∂𝐉𝟏
∂t
+ 𝐕𝟏. 𝛁𝐉𝟏 − (𝐉𝟏. 𝛁)𝐕𝟏 + (𝛁. 𝐕𝟏)𝐉𝟏] = −DB𝛁C. (5.4) 

Classical Fourier’s and Fick’s laws are deduced by inserting Γ̂𝑒 = Γ̂𝑐 = 0 in Eqs. (5.3) and 

(5.4). After iemploying ithe isteady andi iincompressibility iconditions, the models iireduce to: 

𝒒𝟏 + Γ̂𝑒[𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏] = −�̂�𝑓𝜵T, (5.5) 

𝐉𝟏 + Γ̂e[𝐕𝟏. 𝛁𝐉𝟏 − (𝐉𝟏. 𝛁)𝐕𝟏] = −DB𝛁C. (5.6) 

Then two-dimensional ienergy and concentration iexpressions yields 
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𝑢𝑟
𝜕𝑇

𝜕𝑟
+ 𝑢𝑧

𝜕𝑇

𝜕𝑧
+ Γ̂𝑒Π𝑒 =

�̂�𝑓

(𝜌C𝑝)𝑓

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

�̂�𝑚

(𝜌C𝑝)𝑓

                                     + 𝜏1D𝐵
𝜕C

𝜕𝑟

𝜕𝑇

𝜕𝑟
+
𝜏1D𝑇
𝑇∞

(
𝜕𝑇

𝜕𝑟
)
2

,

 

(5.7) 

𝑢𝑟
𝜕𝐶

𝜕𝑟
+ 𝑢𝑧

𝜕𝐶

𝜕𝑧
+ Γ̂𝑐Π𝑐 = D𝐵

𝜕

𝜕𝑟
(𝑟
𝜕𝐶

𝜕𝑟
) +

D𝑇
𝑇∞

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
)−�̂�1(C − C∞) 

                               −�̂�𝑟
2(C𝑤 − C0) (

𝑇

𝑇∞
)
𝑝

𝑒𝑥𝑝 [−
𝐸1
𝑇𝑘∗

], 

(5.8) 

with 

𝑢𝑧 =
𝑈0𝑧

𝐿
, 𝑇 = 𝑇𝑤 = 𝑇0 +

𝑑1𝑧

𝐿
,

𝑢𝑟 = 𝑉1, C =  C𝑤 = C0 +
𝑑3𝑧

𝐿

|  at 𝑟 = 𝑅𝑜 , 

 (5.9) 

𝑢𝑧 → 0,     𝑇 →  𝑇∞ = 𝑇0 +
𝑑2𝑥

𝐿
,

𝑢𝑟 → 0,     C → C∞ = C0 +
𝑑4𝑥

𝐿
.

|  when 𝑟 → ∞, 
 

(5.10) 

Π𝑒 = 𝑢𝑟
2
𝜕2𝑇

𝜕𝑟2
+ 𝑢𝑧

2
𝜕2𝑇

𝜕𝑧2
+
𝜕𝑇

𝜕𝑟
(𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + 2𝑢𝑧𝑢𝑟

𝜕2𝐶

𝜕𝑟𝜕𝑧

+
𝜕𝑇

𝜕𝑧
(𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
), 

(5.11) 

 

Π𝑐 = 𝑢𝑟
2
𝜕2𝐶

𝜕𝑟2
+ 𝑢𝑧

2
𝜕2𝐶

𝜕𝑧2
+
𝜕𝐶

𝜕𝑟
(𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + 2𝑢𝑟𝑢𝑧

𝜕2𝐶

𝜕𝑟𝜕𝑧

+
𝜕𝐶

𝜕𝑧
(𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
). 

(5.12) 

 

The non-uniform heat source/sink �̂�𝑚 [98] is expressedi as 
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�̂�𝑚 =
𝑈𝑤�̂�𝑓

𝑧𝜈1
[�̂�1(𝑇𝑤 − 𝑇0)

𝜕𝐹

𝜕ξ
+ �̂�2(𝑇 − 𝑇∞)], (5.13) 

where �̂�1  and �̂�2  are ithe icoefficients iof space iand temperature idependent heat 

igeneration/absorption, irespectively. The case �̂�1 > 0 and �̂�2 > 0  denotei internal heat 

generationi while �̂�1 < 0 and �̂�2 < 0  represent iinternal heat absorption. 

Considering 

ξ = √
𝑈0
𝐿𝜈1

(
𝑟2 − 𝑅0

2

2𝑅0
),                Ψ1(ξ) = √

𝜈1𝑈0𝑧2

𝐿
𝐹(ξ),

𝑢𝑧(ξ) =
𝑈0𝑧

𝐿
𝐹′(ξ),                    𝑢𝑟(ξ) = −

𝑅𝑜
𝑟
√
𝜈1𝑈0
𝐿
𝐹(ξ),

θ(ξ) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇0

,                                 Φ(ξ) =
C − C∞
C𝑤 − C0

.        

 

(5.14) 

Now flow iproblem under iiabove transformationsi become 

(1 + 2𝛾1𝜉)[𝐹
′′′ + 𝛽2(𝐹

′′2 − 𝐹𝐹4)] + 2𝛾1𝐹
′′ −𝑀1𝐹

′+𝛾1𝛽2(𝐹
′𝐹′′ − 3𝐹𝐹′′′)          

+(1 + 𝜆1) [(𝐹𝐹
′′ − 𝐹′2) − 𝛽1 ((1 + �̂�𝑡𝜃)𝜃 + �̂�1(1 + �̂�𝑐Φ)Φ)𝑐𝑜𝑠𝜙𝑎] = 0, (5.15) 

(1 + 2𝛾1𝜉) [θ
′′ + 𝑃𝑟�̂�𝑏 (Φ

′θ′ +
�̂�𝑡

�̂�𝑏
θ′2 + 𝐸𝑐𝐹′′2)] + 𝑃𝑟𝐹θ′ + (�̂�1𝐹

′ + �̂�2𝜃)              

−𝑃𝑟𝛿𝑒[𝐹
2θ′′ + (𝐹′2 − 𝐹𝐹′′)(θ + 𝑆1) − 𝐹𝐹

′θ′] + 2𝛾1θ
′ − 𝑃𝑟(θ + 𝑆1)𝐹

′ = 0, (5.16) 

(1 + 2𝛾1𝜉) [Φ
′′ +

�̂�𝑡

�̂�𝑏
θ′′] + 2𝛾1 (Φ

′ +
�̂�𝑡

�̂�𝑏
θ′) + 𝑆𝑐(Φ + 𝑆2)[𝐹

′ − 𝛿𝑐(𝐹
′2 − 𝐹𝐹′′)] 

𝑆𝑐(𝐹Φ′ − 𝛾2Φ− 𝛿𝑐(𝐹
2Φ′′ − 𝐹𝐹′Φ′)) − 𝑆𝑐𝛾3(1 + 𝛿θ)

𝑝𝑒𝑥𝑝 [−
𝐸𝑎

1 + 𝛿θ
] = 0, 

(5.17) 
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with endpoint iconditions 

F′(𝜉) = 1, F(𝜉) = 𝑉𝑝, 𝜃(𝜉) = 1 − S1, Φ(𝜉) = 1 − S2, 𝑎𝑡 𝜉 = 0,  

F′(𝜉) = 0, 𝜃(𝜉) = 0, Φ(𝜉) = 0, 𝑎𝑠 𝜉 → ∞.                                         (5.18) 

The dimensionless variables [99-101] iappeared iare expressed as follows:  

�̂�𝑐 =
Γ4(C𝑤 − C0)

Γ3
, 𝛾1 = √

𝜈1𝐿

𝑈0𝑅0
2 , �̂�1 =

Γ3(C𝑤 − C0)

Γ1(𝑇𝑤 − 𝑇0)
 , 𝛼1 =

λ2
𝜈1𝐿

, 𝛿 =
𝑇𝑤 − 𝑇0
𝑇∞

, 

𝐺𝑟∗ =
�̂�1Γ3(𝐶𝑤 − 𝐶0)𝑧

3

𝜈1
2 , �̂�𝑡 =

𝜏1D𝑇(𝑇𝑤 − 𝑇0)

𝑇∞𝜈1
, �̂�𝑡 =

Γ2(𝑇𝑤 − 𝑇0)

Γ1
, 𝑆𝑐 =

𝜈1
𝐷𝐵
,        

β1 =
𝐿2(𝑇𝑤 − 𝑇0)�̂�1Γ1

𝑈0
2𝑧2

, �̂�𝑏 =
𝜏1D𝐵(𝐶𝑤 − 𝐶0)

𝜈1
, 𝛽2 =

𝜆2𝑈0
𝐿
, 𝛾3 =

�̂�𝑟
2𝐿

𝑈0
,               

𝛿𝑐 =
Γ̂𝑐𝑈0
𝐿
, 𝑃𝑟 =

(𝜇𝐶𝑝)𝑓

�̂�𝑓
 , 𝛾2 =

�̂�1𝐿

𝑈0
, 𝐸𝑐 =

𝑈𝑤
2

𝐶𝑝(𝑇𝑤 − 𝑇0)
, 𝛿𝑒 =

Γ̂𝑒𝑈0
𝐿
.  

(5.19) 

The skin ifriction coefficient 𝐶𝐹, local iNusselt 𝑁𝑢𝑧  and iSherwood  𝑆ℎ𝑧 inumbers are 

𝐶𝐹 =
2𝜏𝑤
𝜌𝑓𝑈𝑤2

, 𝑁𝑢𝑧 =
𝑧𝑞𝑤

�̂�𝑓(𝑇𝑤 − 𝑇0)
, 𝑆ℎ𝑧 =

𝑧𝑗𝑤
D𝐵(C𝑤 − C0)

, (5.20) 

with  

𝜏𝑤 =
𝜇

(1 + 𝜆1)

𝜕𝑢𝑧
𝜕𝑟

+
𝜇λ2

(1 + 𝜆1)
(𝑢𝑟

𝜕2𝑢𝑧
𝜕𝑟2

+ 𝑢𝑧
𝜕2𝑢𝑧
𝜕𝑟𝜕𝑧

)|
𝑟=𝑅0

, 
(5.21) 

𝑞𝑤 = − �̂�𝑓
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅0

, 
(5.22) 

 𝑗𝑤 = −D𝐵
𝜕𝐶

𝜕𝑟
|
𝑟=𝑅0

. 
(5.23) 

The dimensionlessi formsi of these iquatitities arei 
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1

2
𝐶𝐹(𝑅𝑒𝑧)

1
2 =

1

(1 + 𝜆1)
[(1 − 𝛾1𝛽2𝐹(0) + 𝛽2𝐹

′(0))𝐹′′(0) − 𝛽2𝐹(0)𝐹
′′′(0)],   (5.24) 

𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1
2 = −θ′(0), (5.25) 

𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1
2 = −Φ′(0), (5.26) 

in which 𝑅𝑒𝑧 (=
𝑈0𝑧

2

𝜈1𝐿
) is theilocal Reynolds number. 

5.3   Methodology 
 

The selectedi iinitial guesses (F0(ξ),   θ0(ξ),   Φ0(ξ))  and iauxiliary ilinear ioperators 

(£𝐹, £𝜃, £Φ) are of thei form: 

F0(ξ) = 1 + V𝑝 − exp(−ξ),  

θ0(ξ) = (1 − S1) exp(−ξ),  

Φ0(ξ) = (1 − S2) exp(−ξ),   (5.27) 

£𝐹[F] = F
′′′ − F′, £𝜃[𝜃] = θ

′′ − θ, £Φ[Φ] =Φ
′′ −Φ, (5.28) 

the ifollowing iproperties holds (see Ref.  [102]) 

£𝐹[ω2exp(−ξ) + ω1 +ω3exp(ξ)] = 0, 
 

£𝜃[ω4exp(−ξ) + ω5exp(ξ)] = 0, 
 

£Φ[ω6exp(−ξ) + ω7exp(ξ)] = 0, 
(5.29) 

in which 𝜔𝑗 with (𝑗 = 1 − 5) are arbitrary constants. 
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5.3.1 Zeroth-order systems 

 The zeroth-order deformationiproblemsiare constructed as follows: 

(1 − �̂�)£𝐹[�̂�(𝜉; �̂�) − 𝐹
0(𝜉)] = �̂�ℎ𝐹�̂�𝐹[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Φ̂(𝜉; �̂�)], (5.30) 

(1 − �̂�)£𝜃[𝜃(𝜉; �̂�) − 𝜃
0(𝜉)] = �̂�ℎ𝜃�̂�𝜃[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Φ̂(𝜉; �̂�)], (5.31) 

(1 − �̂�)£Φ[Φ̂(𝜉; �̂�) − Φ
0(𝜉)] = �̂�ℎΦ�̂�Φ[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Φ̂(𝜉; �̂�)], (5.32) 

with  

�̂�′(0; �̂�) = 1, �̂�(0; �̂�) = 𝑉𝑝, θ̂(0; �̂�) = 1 − 𝑆1, Φ̂(0; �̂�) = 1 − 𝑆2, 

�̂�′(𝜉; �̂�) = 0, 𝜃(𝜉; �̂�) = 0 Φ̂(𝜉; �̂�) = 0, 𝑎𝑠 𝜉 →∞.             (5.33) 

Nonlinear ioperators �̂�𝐹, �̂�𝜃 iand �̂�Φ are  

�̂�𝐹[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Φ̂(𝜉; �̂�)]

= 𝛾1𝛽2 (
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
− 3�̂�(𝜉; �̂�)

𝜕3�̂�(𝜉; �̂�)

𝜕𝜉3
) −𝑀1

𝜕�̂�(𝜉; �̂�)

𝜕𝜉

+ (1 + 2𝛾1𝜉)(
𝜕3�̂�(𝜉; �̂�)

𝜕𝜉3
+ 𝛽2 ((

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
)

2

− �̂�(𝜉; �̂�)
𝜕4�̂�(𝜉; �̂�)

𝜕𝜉4
))

+ 2𝛾1
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
+ (1 + 𝜆1) (�̂�(𝜉; �̂�)

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
−
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
) 

−(1 + 𝜆1)𝛽1(
(1 + �̂�𝑡𝜃(𝜉; �̂�)) 𝜃(𝜉; �̂�) +

�̂�1 (1 + �̂�𝑐Φ̂(𝜉; �̂�)) Φ̂(𝜉; �̂�)
) 𝑐𝑜𝑠𝜙𝑎,         

(5.34) 
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�̂�𝜃[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Φ̂(𝜉; �̂�)]

= (1 + 2𝛾1𝜉)
𝜕2𝜃(𝜉; �̂�)

𝜕𝜉2
+ 2𝛾1

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
+�̂�1

𝜕𝐹(𝜉; 𝑞)

𝜕𝜉
+ �̂�2

+ (1 + 2𝛾1𝜉)𝑃𝑟 (�̂�𝑏
𝜕𝜃(𝜉; �̂�)

𝜕𝜉

𝜕Φ̂(𝜉; �̂�)

𝜕𝜉
+ �̂�𝑡 (

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
)

2

+ 𝐸𝑐 (
𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
)

2

)

− 𝑃𝑟(𝜃(𝜉; �̂�) + 𝑆1) (𝛿𝑒 (
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
− �̂�(𝜉; �̂�)

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
) +

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
)

− 𝑃𝑟 (𝛿𝑒 ((�̂�(𝜉; �̂�))
2 𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
− �̂�(𝜉; �̂�)

𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
) − �̂�

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
), 

 
(5.35) 

�̂�Φ[�̂�(𝜉; �̂�), 𝜃(𝜉; �̂�), Φ̂(𝜉; �̂�)]

= (1 + 2𝛾1𝜉) (
𝜕2Φ̂(𝜉; �̂�)

𝜕𝜉2
+
�̂�𝑡

�̂�𝑏

𝜕2𝜃(𝜉; �̂�)

𝜕𝜉2
) + 𝑆𝑐�̂�(𝜉; �̂�)

𝜕Φ̂(𝜉; �̂�)

𝜕𝜉

+ 2𝛾1 (
�̂�𝑡

�̂�𝑏

𝜕𝜃(𝜉; �̂�)

𝜕𝜉
+
𝜕Φ̂(𝜉; �̂�)

𝜕𝜉
) − 𝛿𝑐𝑆𝑐�̂�(𝜉; �̂�)�̂�(𝜉; �̂�)

𝜕2Φ̂(𝜉; �̂�)

𝜕𝜉2

− 𝑆𝑐(Φ̂(𝜉; �̂�) + 𝑆2) (𝛿𝑐 (
𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕�̂�(𝜉; �̂�)

𝜕𝜉
− �̂�(𝜉; �̂�)

𝜕2�̂�(𝜉; �̂�)

𝜕𝜉2
)

−
𝜕�̂�(𝜉; �̂�)

𝜕𝜉
)+𝛿𝑐𝑆𝑐�̂�(𝜉; �̂�)

𝜕�̂�(𝜉; �̂�)

𝜕𝜉

𝜕Φ̂(𝜉; �̂�)

𝜕𝜉
− 𝑆𝑐𝛾2Φ̂(𝜉; �̂�) 

                    −𝑆𝑐𝛾3 (1 + 𝛿𝜃(𝜉; �̂�))
𝑝

𝑒𝑥𝑝 [−
𝐸𝑎

1 + 𝛿𝜃(𝜉; �̂�)
], (5.36) 

wherei �̂� ∈ [0,1] is the embeddingi variable and when �̂� ivaries from 0 to 1 then we ihave 
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𝐹(𝜉; 0) = 𝐹0(𝜉) 𝐹(𝜉; 1) = 𝐹(𝜉),

 𝜃(𝜉; 0) = 𝜃0(𝜉) 𝜃(𝜉; 1) = 𝜃(𝜉),

Φ(𝜉; 0) = Φ0(𝜉) Φ(𝜉; 1) = Φ(𝜉).

 

(5.37) 

5.3.2  𝑚𝑡ℎ-order systems 

The 𝑚𝑡ℎ order isystem is 

£𝐹[𝐹𝑚(𝜉) − 𝜒𝑚𝐹𝑚−1(𝜉)] = ℎ𝐹𝑅𝑚
𝐹 (𝜉), (5.38) 

£𝜃[𝜃𝑚(𝜉) − 𝜒𝑚𝜃𝑚−1(𝜉)] = ℎ𝜃𝑅𝑚
𝜃 (𝜉), (5.39) 

£Φ[Φ𝑚(𝜉) − 𝜒𝑚Φ𝑚−1(𝜉)] = ℎΦ𝑅𝑚
Φ(𝜉), (5.40) 

 𝐹𝑚(0) = 0, 𝐹𝑚
′ (0) = 0,  𝜃𝑚(0) = 0, Φ𝑚(0) = 0,  

𝐹𝑚
′ (𝜉) = 0, 𝜃𝑚(𝜉) = 0, Φ𝑚(𝜉) = 0, when 𝜉 → ∞. (5.41) 

where the nonlinear ifunctions 𝑅𝑚
𝐹 (𝜉), 𝑅𝑚

𝜃 (𝜉) and 𝑅𝑚
Φ(𝜉) have the ifollowing 

forms: 

 

𝑅𝑚
𝐹 (𝜉) = (1 + 2𝛾1𝜉)𝐹𝑚−1

′′′ + 2𝛾1𝐹𝑚−1
′′ −𝑀1𝐹𝑚−1

′ − (1 + 𝜆1)𝛽1𝜃𝑚−1𝑐𝑜𝑠𝜙𝑎

+ (1 + 2𝛾1𝜉)𝛽2∑(𝐹𝑚−1−𝑘
′′ 𝐹𝑘

′′ − 𝐹𝑚−1−𝑘𝐹𝑘
4) − �̂�1Φm−1𝑐𝑜𝑠𝜙𝑎

𝑚

𝑘=0

− (1 + 𝜆1)𝛽1 (∑(�̂�𝑡𝜃𝑚−1−𝑘𝜃𝑘 + �̂�1�̂�𝑐Φ𝑚−1−𝑘Φ𝑘)

𝑚

𝑘=0

)𝑐𝑜𝑠𝜙𝑎 

     +(1 + 𝜆1)(1 + 2𝛾1𝜉)∑(𝐹𝑚−1−𝑘𝐹𝑘
′′ − 𝐹𝑚−1−𝑘

′ 𝐹𝑘
′),

𝑚

𝑘=0

 
(5.42) 
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𝑅𝑚
𝜃 (𝜉) = (1 + 2𝛾1𝜉)θ𝑚−1

′′ + 2𝛾1θ𝑚−1
′ − 𝑃𝑟 𝑆1𝐹𝑚−1

′ + �̂�1𝐹𝑚−1
′ + �̂�2𝜃𝑚−1

+ (1 + 2𝛾1𝜉)𝑃𝑟�̂�𝑏∑(Φ𝑚−1−𝑘
′ θ𝑘

′ +
�̂�𝑡

�̂�𝑏
θ𝑚−1−𝑘
′ θ𝑘

′ + 𝐸𝑐𝐹𝑚−1−𝑘
′′ 𝐹𝑘

′′)

𝑚

𝑘=0

+ 𝑃𝑟∑(𝐹𝑚−1−𝑘θ𝑘
′ − 𝜃𝑚−1−𝑘𝐹𝑘

′ − 𝛿𝑒𝑆1(𝐹𝑚−1−𝑘
′ 𝐹𝑘

′ − 𝐹𝑚−1−𝑘𝐹𝑘
′′))

𝑚

𝑘=0

+ 𝑃𝑟𝛿𝑒 ∑ (𝐹𝑚−1−𝑘∑(𝐹𝑘−𝑙
′ θ𝑙

′ − 𝐹𝑘−𝑙θ𝑙
′′)

𝑘

𝑙=0

)

𝑚−1

𝑘=0

 

+𝑃𝑟 𝛿𝑒 ∑ (𝜃𝑚−1−𝑘∑(𝐹𝑘−𝑙𝐹𝑙
′′ − 𝐹𝑘−𝑙

′ 𝐹𝑙
′)

𝑘

𝑙=0

)

𝑚−1

𝑘=0

, 
(5.43) 

𝑅𝑚
Φ(𝜉) = (1 + 2𝛾1𝜉) (Φ𝑚−1

′′ +
�̂�𝑡

�̂�𝑏
θ𝑚−1
′′ ) + 2𝛾1 (

�̂�𝑡

�̂�𝑏
θ𝑚−1
′ +Φ𝑚−1

′ ) − 𝑆𝑐𝛾2Φ𝑚−1

+ 𝑆𝑐∑(𝐹𝑚−1−𝑘Φ𝑘
′ +Φm−1−k𝐹𝑘

′ + 𝑝𝛾3𝐸𝑎𝛿
2𝜃𝑚−1−𝑘𝜃𝑘) + 𝑆𝑐𝑆2𝐹𝑚−1

′

𝑚

𝑘=0

− 𝑆𝑐𝛿𝑐𝑆2∑(𝐹𝑚−1−𝑘
′ 𝐹𝑘

′ − 𝐹𝑚−1−𝑘𝐹𝑘
′′) − 𝑆𝑐𝛾3(1 − 𝐸𝑎)(1 − 𝜒𝑚)

𝑚

𝑘=0

+ 𝑆𝑐𝛿𝑐 ∑ (𝐹𝑚−1−𝑘∑(𝐹𝑘−𝑙
′ Φ𝑙

′ − 𝐹𝑘−𝑙Φ𝑙
′′)

𝑘

𝑙=0

) − 𝑆𝑐𝛾3

𝑚−1

𝑘=0

((1 − 𝑝)𝐸𝑎𝛿) 

+𝑆𝑐 𝛿𝑐 ∑ (Φ𝑚−1−𝑘 (∑(𝐹𝑘−𝑙𝐹𝑙
′′ − 𝐹𝑘−𝑙

′ 𝐹𝑙
′)

𝑘

𝑙=0

)) ,

𝑚−1

𝑘=0

 

(5.44) 

we have 

�̂�(𝜉; 0) = 𝐹0(𝜉), 𝜃(𝜉; 0) = 𝜃0(𝜉), Φ̂(𝜉; 0) = Φ0(𝜉),

 �̂�(𝜉; 1) = 𝐹(𝜉),   𝜃(𝜉; 1) = 𝜃(𝜉),   Φ̂(𝜉; 1) = Φ(𝜉).  
 

(5.45) 

The solutionsi through iTaylor's series are ireduced to 



102 

 

�̂�(𝜉; �̂�) = 𝐹0(𝜉) + ∑ 𝐹𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

𝐹𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
�̂�(𝜉; �̂�)|

�̂�=0

,   

 

(5.46) 

𝜃(𝜉; �̂�) = 𝜃0(𝜉) + ∑ 𝜃𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

𝜃𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕𝑞𝑚
𝜃(𝜉; �̂�)|

�̂�=0

,    

 

(5.47) 

Φ̂(𝜉; �̂�) = Φ0(𝜉) + ∑ Φ𝑚(𝜉)�̂�
𝑚,

∞

𝑚=1

Φ𝑚(𝜉) =
1

𝑚!

𝜕𝑚

𝜕�̂�𝑚
Φ̂(𝜉; �̂�)|

�̂�=0

.    

 

(5.48) 

The 𝐹, 𝜃 and Φ through Taylor’s series are chosen convergent for �̂� = 1 and thus 

𝐹(𝜉) = 𝐹0(𝜉) + ∑ 𝐹𝑚(𝜉),

∞

𝑚=1

 
 

𝜃(𝜉) = 𝜃0(𝜉) + ∑ 𝜃𝑚(𝜉),

∞

𝑚=1

 
 

Φ(𝜉) = Φ0(𝜉) + ∑ Φ𝑚(𝜉).

∞

𝑚=1

 
(5.49) 

In terms of ispecial functions (𝐹𝑚
∗ (𝜉), 𝜃𝑚

∗ (𝜉),Φ𝑚
∗ (𝜉)), the igeneral solutions 

(𝐹𝑚(𝜉), 𝜃𝑚(𝜉),Φ𝑚(𝜉)) of  Eqs. (5.38 − 5.40) are 

𝐹𝑚(𝜉) = �̂�𝑚(𝜉) + 𝜔1 + 𝜔2𝑒𝑥𝑝(−𝜉) + 𝜔3𝑒𝑥𝑝(𝜉), (5.50) 
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𝜃𝑚(𝜉) = 𝜃𝑚(𝜉) + 𝜔5𝑒𝑥𝑝(𝜉) + 𝜔4𝑒𝑥𝑝(−𝜉), (5.51) 

Φ𝑚(𝜉) = Φ̂𝑚(𝜉) + 𝜔7𝑒𝑥𝑝(𝜉) + 𝜔6𝑒𝑥𝑝(−𝜉), (5.52) 

in which 

𝜔1 = −�̂�𝑚
′ (0) +

𝜕�̂�𝑚(𝜉)

𝜕𝜉
|
𝜉=0

, 𝜔2 =
𝜕�̂�𝑚(𝜉)

𝜕𝜉
|
𝜉=0

,    𝜔4 = −𝜃𝑚(𝜉)|𝜉=0,

𝜔6 = −Φ̂𝑚(𝜉)|𝜉=0                   𝜔3 = 𝜔5 = 𝜔7 = 0.

 

(5.53) 

5.4   Convergence analysis 

The accurate iauxiliary parameters ℎ𝐹 , ℎ𝜃 𝑎𝑛𝑑 ℎΦ  are selected ifrom relevant irange of 

plotted ℎ −curves at 25𝑡ℎ  iterationi. For present ianalysis, numerical icomputations are 

restricted ithoroughly with specific range of non-dimensional iparameters as (0.2 ≤ 𝛾1 ≤

0.6), (0.2 ≤ 𝛽1 ≤ 0.6), (0.4 ≤ 𝜆1 ≤ 1.4), (0.2 ≤ �̂�𝑐 ≤ 0.6), (0.1 ≤ 𝛽2 ≤ 0.5), (0.2 ≤

𝛿𝑒 ≤ 0.4), (0.2 ≤ �̂�𝑡 ≤ 0.6), (0.1 ≤ 𝑆1 ≤ 0.6), (0.1 ≤ �̂�𝑡 ≤ 0.5), (0.1 ≤ 𝑀1 ≤ 0.3),

(0.1 ≤ 𝑆2 ≤ 0.6), (0.2 ≤ �̂�1 ≤ 0.4), (0.2 ≤ �̂�𝑏 ≤ 0.4), (0.5 ≤ 𝑃𝑟 ≤ 2.5), (0.2 ≤ �̂�2 ≤

0.5), (0.1 ≤ 𝛾2 ≤ 0.3), (0.5 ≤ 𝛾3 ≤ 1.4), (0.5 ≤ 𝐸𝑎 ≤ 1.0), (0.1 ≤ 𝑉𝑝 ≤ 0.3) and 

(0.1 ≤ �̂�1 ≤ 1.2).  Fig. 5.2, provides the the ranges (−1.5 ≤ ℎ𝐹 ≤ −0.7),  (−1.6 ≤

ℎ𝜃 ≤ −0.4) and (−1.6 ≤ ℎΦ ≤ −0.5) of convergence icontrolling parameters. Table 5.1 

proved that 25𝑡ℎ , 20𝑡ℎand 30𝑡ℎ  order of approximation are sufficient for convergent 

solutions of 𝐹′′(0), 𝜃′(0) 𝑎𝑛𝑑 Φ′(0), respectively. Table 5.2 shows fluctuations in wall 

ifriction coefficient iversus governing iparameters. Results presented in Table 5.3 are 

icompared with previously ireported data (Abbasi et al. [103]). From this table a great 

agreement has been observed with the previous iliterature. 
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Fig. 5.2: ℎ −curves. 

Table 5.1: Convergence analysis when 𝛾1 = 0.2, 𝛽1 = 𝜆1 = 0.4, �̂�𝑡 = 𝛽2 = 0.3, 𝛾3 =

 𝐸𝑎 = �̂�1 = 1.0,  �̂�𝑡 = 𝑀1 = 𝑆2 = �̂�1 = 𝛾2 = 0.1, �̂�𝑐 = 𝑆1 = �̂�𝑏 = �̂�2 = 0.2, 𝑃𝑟 = 1.2,

𝑆𝑐 = 1.5 and 𝜙𝑎 =
𝜋

4
. 

   Approximation 

Order 
−𝐹′′(0) −𝜃′(0) −Φ′(0) 

1 1.3543 0.9744 0.2869 

8 1.4015 0.8675 0.4875 

12 1.4033 0.8461 0.5126 

20 1.4046 0.8453 0.5133 

25 1.4048 0.8453 0.5144 

30 1.4048 0.8453 0.5147 

35 1.4048 0.8453 0.5147 

40 1.4048 0.8453 0.5147 
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Table 5.2: Numerical values of 𝐶𝐹(𝑅𝑒𝑧)
1

2 when �̂�𝑡 = 0.3, 𝑃𝑟 = 1.2, 𝛾1 =  �̂�2 = 0.2,   

 �̂�𝑡 = 𝑆2 = �̂�1 = 𝛾2 = 0.1, 𝛿𝑒 = �̂�𝑐 = 𝑆1 = 𝑉𝑝 = �̂�𝑏 =  0.2, 𝛾3 = �̂�1 = 𝐸𝑎 = 1.0,   

𝑆𝑐 = 1.5 𝑎𝑛𝑑 𝜙𝑎 =
𝜋

4
.   

𝛾1 𝑀1 𝜆1 𝛽1 𝛽2 𝐶𝐹(𝑅𝑒𝑧)
1
2 

0.2     0.8466 

0.4     0.8647 

0.6     0.8854 

 0.1    0.8466 

 0.2    0.8542 

 0.3    0.8639 

  0.4   0.8466 

  0.8   0.8035 

  1.2   0.7463 

   0.2  0.8152 

   0.4  0.8466 

   0.6  0.8734 

    0.1 0.7857 

    0.3 0.8466 

    0.5 0.8792 
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Table 5.3: Comparative analysis of 𝐶𝐹(𝑅𝑒𝑧)
1

2 when �̂�1 = 𝜙𝑎 = 𝛾2 = 𝐸𝑎 = �̂�𝑐 = 𝑉𝑝 =

�̂�2 = �̂�𝑡 = 0, 𝑃𝑟 = 1.2, 𝑆1 = 𝑆2 = 0.2, �̂�𝑏 = �̂�𝑡 = 0.2 and  �̂�1 = 0.3.  

𝛽2 𝜆1 𝑀1 𝛽1 
Ref. 
[103] 

Present 

0.0    0.91586 0.91586 

0.3    1.05963 1.05963 

0.5    1.14651 1.14651 

 0.1   1.11097 1.11097 

 0.4   0.97340 0.97340 

 0.7   0.87539 0.87539 

  0.0  0.79447 0.79447 

  0.3  0.91104 0.91104 

  0.7  1.20901 1.20901 

   0.0 1.17277 1.17277 

   0.5 0.91683 0.91683 

   1.0 0.69008 0.69008 

 

 

5.5   Results and discussion 

Here the effectsi of various iflow variables ion the velocity F′(𝜉), itemperature θ(𝜉) and 

concentration fields Φ(𝜉)  are idiscussed in idetail. Figs. (5.3 − 5.6)  are sketched to 

analyzei the influence of 𝛾1, 𝛽2, 𝜆1 𝑎𝑛𝑑 𝜙𝑎 on velocity profile F′(𝜉) versus increment in 

curvature parameter 𝛾1 near the cylindrical surface while opposite behaviour has been 
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observed far away from surface. It holds because enhancement in curvature reduces surface 

area (i.e contact area). As a result, less resistance is offered to fluid movement. Fig. 5.4 

illustrates the behavior of F′(𝜉) for distinct variation of Deborah number 𝛽2. As larger 

values of 𝛽2  enhances the retardation time that ultimately boosts the elasticity of the 

material which is accountable for upsurge in velocity field. Fig. 5.5 expresses the behavior 

of F′(𝜉) against ratio of relaxation to retardation times 𝜆1 . It is noticed that velocity 

profile F′(𝜉) is decreasing function of 𝜆1. Since, relaxation time of fluid enhances for 

higher approximation of 𝜆1 that develops a declining trend in the magnitude of F′(𝜉). Fig. 

5.6, demonstrates the impact of inclination of cylinder on the velocity profile F′(𝜉), when 

inclined cylinder’s angle 𝜙𝑎  enhances, fluid velocity diminishes. Figs. (5.7 − 5.13) 

exposes the temperature profile 𝜃(𝜉) variations against 𝛿𝑒 , 𝑆1, �̂�𝑏, �̂�𝑡, 𝑃𝑟, �̂�1 𝑎𝑛𝑑 𝐸𝑐. 

The consequences of 𝛿𝑒 on fluid temperature 𝜃(𝜉) are presented in Fig. 5.7. One can see 

that 𝛿𝑒 falls down temperature because material particle takes some extrai time to transfer 

heat due to thermal relaxation enhancement. Hence, temperature 𝜃(𝜉) decreases. Figs. 

5.8  and 5.9  displayed the effect of thermal stratification parameter 𝑆1  and Prandtl 

number Pr on temperature distribution 𝜃(𝜉). Similar type of behavior for iboth parameters 

has been observed in temperature. In fact, temperature idifference between icylinderical 

surface iand ambient ifluid i.e. (𝑇𝑤 − 𝑇∞) gradually falls ifor higheri 𝑆1. As a result, 𝜃(𝜉) 

ideclines. Also, higher Prandtl number corresponds to fluids with low thermal conductivity 

i.e. capacity of heat transfer. Such weaker ithermal diffusivity ibecomes a source of idecrease 

in the temperature and thermal iboundary layer ithickness (isee Fig. 5.9). Impacts of �̂�𝑏 

and �̂�𝑡 for temperature 𝜃(𝜉) is exposed in Figs. 5. 10 and 5. 11. Similar enhancingi is 

observed on itemperature against both parameters. As Brownian motion randomly disperses 
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the fluid particles, so this dispersion causes increment in thermal energy. As 

thermophoresis transports fluid particles from hot to cold regions which consequently rises 

fluid temperature 𝜃(𝜉). Fig. 5. 12 reveals the features of �̂�1   on 𝜃(𝜉). Scientifically, 

higher approximation of �̂�1  generates heat and hence temperature enlarges. The 

temperature distributions 𝜃(𝜉) are portrayed against different values of Ec in Fig. 5.13. 

Since larger values of Ec leads to increase in kinetic energy i.e. fluid particles collides more 

rapidly with each other and converts its mechanical energy into thermal energy, as a result, 

temperature increases. Fig. 5.14 is adorned to analyse the impact of chemical reaction 

parameter 𝛾2 on Φ(𝜉). It discloses that the concentration Φ(𝜉) declines with a rise in the 

destructive chemical reaction (𝛾2 > 0), whereas the reverse trend is observed in the case 

of generative (𝛾2 < 0) chemical reaction. Fig. 5.15 predicts the consequences of solutal 

relaxation time 𝛿𝑐  on concentration profile Φ(𝜉). The concentration profile decreases 

versus greater values of 𝛿𝑐  (see Fig. 5.15 ). Variation of Φ(𝜉)  against the Schmidt 

number Sc is displayed in Fig. 5.16. Since higher values of Sc corresponds to decrease in 

the mass diffusivity and hence in concentration. Fig. 5.17, captured the fluctuations in 

concentration Φ(𝜉) for different values of �̂�𝑏. It is noticed that concentration decreases 

for larger �̂�𝑏 . Fig. 5.18  displays the thermophoresis parameter �̂�𝑡  effects on 

concentration Φ(𝜉) . This figure provides the information that �̂�𝑡  enhances the 

concentration field Φ(𝜉). Fig. 5.19 is sketched to investigate the relationship between 

activation energy 𝐸𝑎  and nanoparticle concentration for definite values of other flow 

parameters. The modified Arrhenius function decays as activation energy 𝐸𝑎 increases. 

This finally endorses the generative chemical reaction due to which nanoparticle 

concentration upsurges. Figs. 5.20  and 5.21  elucidate the variations of reaction rate 
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constant 𝛾3  and solutal stratification parameter 𝑆2 on concentration distribution Φ(𝜉). A 

drop in concentration profile Φ(𝜉) is detected while the destructive chemical reaction 

parameter 𝛾3 (> 0) is amplified (see Fig.  5.20). Fig. 5.21 portrays the effect of 𝑆2 on 

Φ(𝜉) . Here decreasing trend of Φ(𝜉)  is found against 𝑆2 . It is due to the fact that 

difference between the surface concentration and ambient concentration lessens for greater 

𝑆2. Thus, concentration field Φ(𝜉) decreases. Figs. 5.22 and 5.23 show the impacts of 

various flow parameters on wall heat flux coefficient. It is analyzed that wall heat flux 

coefficient decays for larger values of �̂�1 and 𝑆1. Moreover, wall mass flux coefficient 

declines versus 𝑆2 while it enhances against 𝛾3  (Figs. 5.24 and 5.25). 

5.6  Graphical outcomes 
 

 

 

Fig. 5.3: Responsei of  F′(𝜉) with 𝛾1.   
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Fig. 5.4: Responseii of F′(𝜉) with 𝛽2. 

 

 

 

Fig. 5.5: Responsei of F′(𝜉) with 𝜆1. 
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Fig. 5.6: Responseii of F′(𝜉) with 𝜙𝑎. 

 

 

 

Fig. 5.7: Responseii of 𝜃(𝜉) with δe. 



112 

 

 

 

    Fig. 5.8: Responseii of 𝜃(𝜉) with 𝑆1. 

 

 

 

Fig. 5.9: Responsei of 𝜃(𝜉) with 𝑃𝑟. 
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Fig. 5.10: Responseii of 𝜃(𝜉) with �̂�𝑏. 

 

 

 

Fig. 5.11: Responsei of 𝜃(𝜉) with �̂�𝑡. 
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Fig. 5.12: Responsei of 𝜃(𝜉) with �̂�1. 

 

 

 

Fig. 5.13: Responsei of 𝜃(𝜉) with 𝐸𝑐. 
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Fig. 5.14: Responseii of Φ(𝜉) with γ2. 

 

 

 

Fig. 5.15: Responseii of Φ(𝜉) with δ𝑐 . 
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Fig. 5.16: Responseii of Φ(𝜉) with 𝑆𝑐. 

 

 

 

Fig. 5.17: Responseii of Φ(𝜉) with �̂�𝑏. 
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Fig. 5.18: Responseii of Φ(𝜉) with �̂�𝑡. 

 

 

 

Fig. 5.19: Responsei of Φ(𝜉) with 𝐸𝑎. 
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Fig. 5.20: Responseii of Φ(𝜉) with 𝛾3. 

 

 

 

Fig. 5.21: Responsei of Φ(𝜉) with 𝑆2. 
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Fig. 5.22: Responsei of 𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 with �̂�1. 

 

 

 

Fig. 5.23: Responsei of 𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 with 𝑆1. 
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Fig. 5.24: Responseii of 𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1

2 with 𝑆2. 

 

 

 

Fig. 5.25: Responseii of 𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1

2 with 𝛾3. 



121 

 

 

5.7   Conclusions 
 

    Major highlightsi of presented flow analysis are: 

• Higher estimations of Deborah number (𝛽2) result in the reduction of velocity and 

momentum boundary layer thickness. 

• Thermal and iisolutal stratification (𝑆1, 𝑆2) decaysi the itemperature and 

concentration idistribution respectively. 

• Both temperature field and thermal boundary ilayer thickness ireduce by enhancing 

thermal relaxation parameter (𝛿𝑒). 

• Larger solutal relaxation parameter (𝛿𝑐) show idecay in the iconcentration field and 

associated iconcentration layer ithickness. 

• Skin friction coefficient increases for higher values of (𝛽2) 𝑎𝑛𝑑 (𝛾1).  
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CHAPTER 6 

 

Dual stratification effects for Walter-B fluid flow in view 

of Cattaneo–Christov double diffusion 

 

6.1   Introduction  
 

Present chapter focuses on activationi energyi and idual istratification impacts on Walter-B 

nanofluidi over a permeable stretched sheet. Heat and mass diffusion are delineated with 

the aid of Cattaneo – Christov models. Thermophoresisi and Browniani motion effectsi are 

also taken into account. Influence of heat generation/absorption and chemical reaction is 

also measured. Modified Arrhenius formula for activation energy is implemented carefully. 

The resulting nonlinear differential system is tackled with homotopy analysis method. 

Effects of emanating variables are examined through graphs and tables.  

6.2   Mathematical formulation 
 

Present study has explored the inovel ifeatures of iactivation ienergy for iunsteady and 

inonlinear iconvective iflow of iWalter-B inanofluid [104] with igeneralized iFourier’s iand 

iFick’s imodels. Non-uniformi heat igeneration/absorption, idual istratification, inonlinear 

mixed convection, ichemical reactioni and activation ienergy are iconsidered. Due to 
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variations in the temperature and concentration, ithermal and iconcentration ibuoyancy 

iforces are applied to ithe fluidi with idouble istratification ieffect. Walter-B fluid ioccupies the 

isemi-infinite iregion 𝑦 > 0  over the surface with istretching ivelocity  Uw(x) =

𝑈0𝑥

𝐿
 (see Fig.  6.1). Temperaturei and the nanoparticle ifraction at surface of ithe sheeti arei 

Tw and Cw respectivelyi. While the ambient itemperature and nanoparticles volume fraction 

is specified by T∞ and C∞, respectively. Walter-B inanomaterial imodel is iengaged iwhich 

definesi the importanti slip imechanism namely iBrowniani iand ithermophoresisi idiffusions. 

The boundaryi ilayer approximation iireduces the icontinuity, imomentum, iheat iand imass 

iiequations [105-107] to 

 

Fig. 6.1: Physical model. 
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𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, 

(6.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈1

𝜕2𝑢

𝜕𝑦2
− λ3 (𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+ 𝑣

𝜕3𝑢

𝜕𝑦3
+
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
−
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
)  

+
�̂�1
𝜌𝑓
[Γ1(𝑇 − 𝑇∞) + Γ2(𝑇 − 𝑇∞ )

2 + Γ3(C − C∞) + Γ4(C − C∞ )
2].        

(6.2) 

Within the frame of iCattaneo – Christove idouble diffusive ischeme [108] 

𝒒𝟏 + Γ̂𝑒 [
𝜕𝒒𝟏
𝜕𝑡

+ 𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏 + (𝜵.𝑽𝟏)𝒒𝟏] = −𝑘𝑓𝜵T, (6.3) 

𝐉𝟏 + Γ̂e [
∂𝐉𝟏
∂t
+ 𝐕𝟏. 𝛁𝐉𝟏 − (𝐉𝟏. 𝛁)𝐕𝟏 + (𝛁.𝐕𝟏)𝐉𝟏] = −DB𝛁C. (6.4) 

By imposing isteady and incompressibility iconditions, we iget 

𝒒𝟏 + Γ̂𝑒[𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏] = −�̂�𝑓𝜵T, (6.5) 

𝐉𝟏 + Γ̂e[𝐕𝟏. 𝛁𝐉𝟏 − (𝐉𝟏. 𝛁)𝐕𝟏] = −DB𝛁C. (6.6) 

Two-dimensional governing ienergy and iconcentration expressions iare  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ Γ̂𝑒Π𝑒 =

�̂�𝑓

(𝜌C𝑝)𝑓

𝜕2𝑇

𝜕𝑦2
+

�̂�𝑚

(𝜌C𝑝)𝑓

+ 𝜏1D𝐵
𝜕C

𝜕𝑦

𝜕𝑇

𝜕𝑦
+
𝜏1D𝑇
𝑇∞

(
𝜕𝑇

𝜕𝑦
)
2

, 
(6.7) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ Γ̂𝑐Π𝑐 = D𝐵

𝜕2𝐶

𝜕𝑦2
+
D𝑇
𝑇∞
(
𝜕2𝑇

𝜕𝑦2
) − 𝐾1(C − C∞) 

 

                                 −�̂�𝑟
2(C𝑤 − C0) (

𝑇

𝑇∞
)
𝑝

𝑒𝑥𝑝 [−
𝐸1
𝑇𝑘∗

], 
(6.8) 
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with 

𝑢 =
𝑈0𝑥

𝐿
, 𝑇 = 𝑇𝑤 = 𝑇0 +

𝑑1𝑥

𝐿
,

𝑣 = 𝑉1, C =  C𝑤 = C0 +
𝑑3𝑥

𝐿

|  at 𝑦 = 0, (6.9) 

𝑢 → 0,     𝑇 →  𝑇∞ = 𝑇0 +
𝑑2𝑥

𝐿
,

𝑣 → 0,     C → C∞ = C0 +
𝑑4𝑥

𝐿
.

|  when 𝑦 → ∞, (6.10) 

Π𝑒 = 𝑢
2
𝜕2𝑇

𝜕𝑥2
+ 𝑣2

𝜕2𝑇

𝜕𝑦2
+
𝜕𝑇

𝜕𝑦
(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) +

𝜕𝑇

𝜕𝑥
(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)

+ 2𝑢𝑣
𝜕2𝑇

𝜕𝑦𝜕𝑥
, 

(6.11) 

 

Π𝑐 = 𝑢
2
𝜕2𝐶

𝜕𝑥2
+ 𝑣2

𝜕2𝐶

𝜕𝑦2
+
𝜕𝐶

𝜕𝑦
(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) +

𝜕𝐶

𝜕𝑥
(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)

+ 2𝑢𝑣
𝜕2𝐶

𝜕𝑦𝜕𝑥
. 

(6.12) 

 

The expressioni of non-uniform heat igeneration/absorption �̂�𝑚 [109] is  

�̂�𝑚 =
𝑈𝑤(𝑥)�̂�𝑓

𝑥𝜈1
[�̂�1(𝑇𝑤 − 𝑇0)

𝜕𝐹

𝜕ξ
+ �̂�2(𝑇 − 𝑇∞)]. (6.13) 

Here, �̂�1 > 0 and �̂�2 > 0 corresponds to iheat generation case while �̂�1 < 0 and �̂�2 <

0)  resemblesi to the heat iabsorption. 

Introducing the following similarity transformations 

ξ = √
𝑈0
𝐿𝜈1

𝑦, 𝑢(ξ) =
𝑈0𝑥

𝐿
𝐹′(ξ), 𝑣(ξ) = √

𝜈1𝑈0
𝐿
𝐹(ξ), Ψ1(ξ) = √

𝜈1𝑈0𝑥2

𝐿
𝐹(ξ), 

θ(ξ) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇0

 , Φ(ξ) =
C − C∞
C𝑤 − C0

.             
(6.14) 
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Introducing Eq. (6.14) into Eqs. (6.2), (6.7) and (6.8), we get ithe following isystem of 

ordinary idifferential iequations 

𝐹′′′ − 𝐹′2 + 𝐹𝐹′′ + 𝛼2[𝐹
′′2 − 2𝐹′𝐹′′′ + 𝐹𝐹4]  

+𝛽1[(1 + �̂�𝑡θ)θ + �̂�1(1 + �̂�𝑐Φ)Φ] = 0, (6.15) 

θ′′ + 𝑃𝑟[𝐹θ′ + �̂�𝑏Φ
′θ′ + �̂�𝑡θ

′2 − (θ + 𝑆1)𝐹
′] + (�̂�1𝐹

′ + �̂�2)  

−𝑃𝑟𝛿𝑒[𝐹
2θ′′ + (𝐹′2 − 𝐹𝐹′′)(θ + 𝑆1) − 𝐹𝐹

′θ′] = 0, (6.16) 

Φ′′ + 𝑆𝑐𝐹Φ′ +
�̂�𝑡

�̂�𝑏
θ′′ − 𝛿𝑐𝑆𝑐[𝐹

2Φ′′ + (𝐹′2 − 𝐹𝐹′′)(Φ + 𝑆2) − 𝐹𝐹
′Φ′]  

−𝑆𝑐 (𝛾2Φ+ (Φ+ 𝑆2)𝐹
′ + 𝛾3(1 + 𝛿θ)

𝑝𝑒𝑥𝑝 [−
𝐸𝑎

1 + 𝛿θ
]) = 0.  

(6.17) 

Transformed iboundary conditions ifor present flow iproblem are 

F′(0) = 1, F(0) = 𝑉𝑝, 𝜃(0) = 1 − S1, Φ(0) = 1 − S2,  

F′(𝜉) = 0, 𝜃(𝜉) = 0, Φ(𝜉) = 0, 𝜉 → ∞.                          (6.18) 

The idimensionless parameters iused in Eqs. (6.15) − (6.18) are as ifollows: 

�̂�𝑡 =
Γ2(𝑇𝑤 − 𝑇0)

Γ1
,                    𝐸𝑎 =

𝐸1
𝑇∞𝑘∗

, 𝛿 =
𝑇𝑤 − 𝑇0
𝑇∞

,

�̂�1 =
Γ3(C𝑤 − C0)

Γ1(𝑇𝑤 − 𝑇0)
 ,                  𝛿𝑒 =

Γ̂𝑒𝑈0
𝐿

𝛼2 =
λ3
𝜈1𝐿
,         

�̂�𝑐 =
Γ4(C𝑤 − C0)

Γ3
,                   𝛾3 =

�̂�𝑟
2𝐿

𝑈0
, 𝛾2 =

�̂�1𝐿

𝑈0
,       

β1 =
𝐿2(𝑇𝑤 − 𝑇0)�̂�1Γ1

𝑈0
2𝑥2

     �̂�𝑡 =
𝜏1D𝑇(𝑇𝑤 − 𝑇0)

𝑇∞𝜈1
, 𝐴 =

𝑈∞
𝑈0
.

 

(6.19) 
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The interested quantities (𝐶𝐹, 𝑁𝑢𝑥, 𝑆ℎ𝑥) in the wall vicinity are given as  

𝐶𝐹 =
2𝜏𝑤
𝜌𝑓𝑈𝑤2

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤

�̂�𝑓(𝑇𝑤 − 𝑇0)
, 𝑆ℎ𝑥 =

𝑥𝑗𝑤
D𝐵(C𝑤 − C0)

, 

(6.20) 

with  

𝜏𝑤 = 𝜈1
𝜕𝑢

𝜕𝑦
− λ3 (𝑢

𝜕2𝑢

𝜕𝑦𝜕𝑥
− 2

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
)|
𝑦=0

, 
(6.21) 

𝑞𝑤 = − �̂�𝑓
𝜕𝑇

𝜕𝑦
|
𝑦=0

, 
(6.22) 

 𝑗𝑤 = −D𝐵
𝜕𝐶

𝜕𝑦
|
𝑦=0

. 
(6.23) 

In dimensionlessi form, skin friction icoefficient 𝐶𝐹 , local iNusselt  𝑁𝑢𝑥 and iSherwood 

 𝑆ℎ𝑥 numbers are  

1

2
𝐶𝐹(𝑅𝑒𝑥)

1
2 = [(1 + 𝛼2)𝐹

′(0)]𝐹′′(0),   (6.24) 

𝑁𝑢𝑥(𝑅𝑒𝑥)
−
1
2 = −θ′(0), (6.25) 

𝑆ℎ𝑥(𝑅𝑒𝑥)
−
1
2 = −Φ′(0), (6.26) 

in iwhich 𝑅𝑒𝑥 (=
𝑈0𝑥

2

𝜈1𝐿
) is the local Reynolds number. 

6.3   Methodology 
 

The flow governing isystem (6.15 − 6.17)  along iwith boundary iconditions (6.18)  is 

solved iwith HAM [110]. For this, first iwe have to ichoose initial iapproximations 

(F0(ξ), θ0(ξ), Φ0(ξ)) and auxiliary ilinear operators (£𝐹, £𝜃, £Φ) in the iform:  
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F0(ξ) = 1 + V𝑝 − exp(−ξ), 
 

θ0(ξ) = (1 − S1) exp(−ξ), 
 

Φ0(ξ) = (1 − S2) exp(−ξ), 
(6.27) 

£𝐹[F] = F
′′′ − F′, £𝜃[𝜃] = θ

′′ − θ, £Φ[Φ] =Φ
′′ −Φ, (6.28) 

with ithe following iproperties  

£𝐹[ω2exp(−ξ) + ω1 +ω3exp(ξ)] = 0,                 
 

£𝜃[ω4exp(−ξ) + ω5exp(ξ)] = 0,  

£Φ[ω6exp(−ξ) + ω7exp(ξ)] = 0. (6.29) 

According to the procedure (see Ref. [111]), we have 

          Fm(ξ) = 𝐹𝑚
∗ (𝜉) + ω2exp(−ξ) + ω1 +ω3exp(ξ),  

θm(ξ) = 𝜃𝑚
∗ (𝜉) + ω4exp(−ξ) + ω5exp(ξ),  

Φm(ξ) = Φ𝑚
∗ (ξ) + ω6exp(−ξ) + ω7exp(ξ), (6.30) 

where (𝐹𝑚
∗ (𝜉), 𝜃𝑚

∗ (𝜉),Φ𝑚
∗ (𝜉))  are the special solutions and ωj (j = 1 − 7)  are the 

arbitrary constants that are defined as follows  

𝜔1 =
𝜕𝐹𝑚

∗

𝜕ξ
|
ξ=0

− 𝐹𝑚
∗ (0), 𝜔2 =

𝜕𝐹𝑚
∗

𝜕ξ
|
ξ=0

, 𝜔4 = −𝜃𝑚
∗ (𝜉)|ξ=0

 𝜔6 = −Φ𝑚
∗ (ξ)|ξ=0,           𝜔3 = 0,              𝜔5 = 𝜔7 = 0.       

 (6.31) 
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6.4   Convergence analysis 
 

The nonlinear iproblem is analyzed ithrough homotopy itechnique to get convergent 

solutions. Here h −curves are sketched in Fig. 6.2 to see the iappropriate iranges of hF,  hθ 

and hΦ. The admissible iconvergent regions iparallel to h −axis are (−1.0 ≤ hF ≤ −0.5),

(−1.3 ≤  hθ ≤ −0.5) and (−1.4 ≤ hΦ ≤ −1.1), respectively. Convergence of velocity 

 F′′(0),  temperature θ′(0)  and iconcentration Φ′(0)  is attained at 18𝑡ℎ ,  26𝑡ℎ  and 

30𝑡ℎ  order of approximation, irespectively (see Table 6.1). 

Table 6.1: Convergence ianalysis when 𝛾2 = 0.9, �̂�𝑏 = �̂�𝑡 = 0.5, 𝑆𝑐 = 1.5,  𝑆2 = 0.1, 

 �̂�𝑡 = 𝛼2 = �̂�1 = 𝛿𝑒 = 0.2, �̂�2 = 𝛿𝑐 = 𝑆1 = 0.3, 𝛾3 = �̂�1 = 𝐸𝑎 = 𝛿 = 1.0𝑎𝑛𝑑 𝑃𝑟 = 1.2. 

 Approximation 

Order 
−𝐹′′(0) −𝜃′(0) −Φ′(0) 

1 0.6253 0.2014 2.4943 

8 0.6545 0.2386 2.5761 

12 0.7138 0.3495 2.6874 

18 0.7957 0.3828 2.7136 

26 0.7957 0.4395 2.7250 

30 0.7957 0.4395 2.7544 

36 0.7957 0.4395 2.7544 

40 0.7957 0.4395 2.7544 

42 0.7957 0.4395 2.7544 
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6.4   Results and discussion 

In this section we will discuss in detail the behavior of velocity F′(𝜉), temperature θ(𝜉) 

and concentration Φ(𝜉), heat transfer and mass transfer rate for various flow parameters 

in graphical and tabulated form. Fig. 6.3 presents the declining trend of F′(𝜉) for greater 

𝛼2. Physically, higher 𝛼2 correspond to the enhancement in viscoelasticity through tensile 

stress. That develops resistance in boundary layer and hence velocity F′(𝜉)  profile 

declines. Fig. 6.4  elaborates behavior of 𝛽1 for velocity F′(𝜉)  curve. Here F′(𝜉) 

enriches for higher estimation of 𝛽1. Since higher values of 𝛽1 corresponds due to the 

dominant role of thermal buoyancy force which helps to heighten F′(𝜉). Impact of �̂�𝑏 and 

�̂�𝑡  on temperature θ(𝜉)  is presented in Figs. 6.5  and 6.6  respectively. Increase in 

temperature θ(𝜉) and apposite boundary layer thickness is found for greater marks of �̂�𝑏 

(𝑠𝑒𝑒 𝐹𝑖𝑔.  6.5) . In fact, additional iheat is generated idue to random imotion of liquid 

imolecules within the iframe of greateri �̂�𝑏. Hence, itemperature θ(𝜉) curve iupsurges. Fig. 

6 . 6  depicits same enhancing behaviour of θ(𝜉)  against increasing values of �̂�𝑡. For 

higher approximation of �̂�𝑡, fluid particles drag out from hotter region to colder region of 

medium which subsequently boost up temperature profile θ(𝜉) . Fig. 6 . 7 reveals the 

declining effect of temperature θ(𝜉)  for greater values of Pr. In fact, rise in 𝑃𝑟 

corresponds to weaker thermal diffusivity over the stronger momentum diffusivity due to 

which reduction in θ(𝜉) is observed. Fig. 6.8 examines the declining trend of θ(𝜉) for 

higher values of 𝑆1. Infact, temperature difference (𝑇𝑤 − 𝑇∞)  gradually decreases for 

higher approximation of 𝑆1 that result in decrease of temperature. In Fig. 6.9 variation of 

θ(𝜉) due to sundry values of 𝛿𝑒 is displayed. Temperature is found to be decline in nature 

through greater value of 𝛿𝑒. Physically, material particles take more time to transfigure 
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heat due rise in thermal relaxation time. Fig. 6. 10 reveals the impact of �̂�1  on θ(𝜉) 

profile. One can noticed that θ(𝜉) is increasing function of �̂�1. Because �̂�1 increases the 

thickness of thermal boundary layer that performs as an agent to produce more heat. Due 

to this fact, an increase in θ(𝜉) is observed for greater estimation of �̂�1. Impact of 𝑆𝑐 on 

Φ(𝜉) is deliberated in Fig. 6.11. Concentration outline reduces for larger values of 𝑆𝑐. 

Since higher values of 𝑆𝑐  resembles to the lower mass diffusivity which reduces 

concentration Φ(𝜉) profile. Fig. 6.12 displays the role of �̂�𝑏  on concentration Φ(𝜉). 

This figure predicts that the nanoparticles concentration become low versus Brownian 

motion. This assertive response produces more collision among fluid particles due to which 

Φ(ξ) diminishes. Fig. 6.13 elaborates the character of �̂�𝑡 on Φ(𝜉). For greater estimation 

of �̂�𝑡  fluid thermal conductivity develops promptly. Such extra thermal conductivity 

corresponds due to rise in Φ(𝜉) . Fig. 6 . 14  displays the variation of Φ(𝜉)  due to 

temperature change parameter 𝛿 . Here declining role of Φ(𝜉) is analyzed for greater 

value of 𝛿 . Physically, it indicates that concentration in boundary thickness Φ(𝜉) 

upsurges for higher temperature difference (𝑇𝑤 − 𝑇∞). Fig. 6.15 investigates the activation 

energy parameter 𝐸𝑎  effects on concentration Φ(𝜉). One can observe that increasing 

behavior of concentration Φ(𝜉) exists for higher marks of 𝐸𝑎 . Physically greater 𝐸𝑎 

decreases the modified Arrhenius function which eventually endorses the generative 

chemical reaction. Therefore Φ(𝜉)  enriches. Higher variation of 𝛾3  corresponds to 

increase in rate of destructive chemical reaction which terminates/dissolves the fluid 

species more effectively (see Fig.  6.16). Hence, concentration Φ(𝜉) decays. Fig. 6. 17 

interprets the impact of fitted rate constant 𝑝  on Φ(𝜉) . Here Φ(𝜉)  is found to be 

decreasing function of 𝑝. The role of iskin friction icoefficient 𝐶𝐹, Nusselt inumber 𝑁𝑢𝑥 
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iand Sherwood iNumber 𝑆ℎ𝑥  for emerging iparameters �̂�𝑏 , �̂�2, 𝑃𝑟, 𝛾3  and 𝛽1  are 

presented in Figs. (6.18) − (6.23) respectively. It is depicted from Figs. 6.18 and 6.19 

that skin ifriction coefficient 𝐶𝐹 ienhances for larger values iof both parameters �̂�𝑏 and 𝛽1, 

respectively. While ibehavior of iNusselt number 𝑁𝑢𝑥(𝑅𝑒𝑥)
1

2  for �̂�2  and 𝑃𝑟  are 

perceived in Figs. 6. 20 and 6.21. Fig. 6.20 idepicts the decline role of 𝑁𝑢𝑥 for greater 

valuesi of �̂�2 whereas ireverse impact is identifiedi for fixed valuesi of �̂�2 (see Fig. 6.22). 

Impact of ilocal Sherwood inumber 𝑆ℎ𝑥(𝑅𝑒𝑥)
−
1

2 for 𝛾3 and 𝛽1 are idisplayed in Figs. 6. 22 

and 6. 23. Here we irevealed that 𝑆ℎ𝑥(𝑅𝑒𝑥)
−
1

2 ienhances via 𝛾3 and it idiminishes for ifixed 

values iof 𝛽1. 

6.5  Graphical outcomes 

 

 

Fig. 6.3: Responseii of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝛼2. 

 

 



133 

 

 

 

Fig. 6.4: Responseii of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝛽1. 

 

 

 

Fig. 6.5: Responseii of θ(𝜉) with �̂�𝑏 . 
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Fig. 6.6: Responsei of 𝜃(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑡. 

 

 

 

Fig. 6.7: Responsei of 𝜃(𝜉) 𝑤𝑖𝑡ℎ 𝑃𝑟. 
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Fig. 6.8: Responseii of 𝜃(𝜉) 𝑤𝑖𝑡ℎ 𝑆1. 

 

 

 

Fig. 6.9: Responsei of 𝜃(𝜉) 𝑤𝑖𝑡ℎ 𝛿𝑒 . 
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Fig. 6.10: Responseii of 𝜃(𝜉) 𝑤𝑖𝑡ℎ �̂�1. 

 

 

 

Fig. 6.11: Responseii of 𝛷(𝜉) with 𝑆𝑐. 
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Fig. 6.12: Responsei of 𝛷(𝜉) with �̂�𝑏 . 

 

 

 

Fig. 6.13: Responsei of 𝛷(𝜉) with �̂�𝑡. 
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Fig. 6.14: Responseii of 𝛷(𝜉) with 𝛿. 

 

 

 

Fig. 6.15: Responseii of 𝛷(𝜉) with 𝐸𝑎 . 
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Fig. 6.16: Responseii of 𝛷(𝜉) with 𝛾3. 

 

 

 

Fig. 6.17: Responsei of Φ(ξ) with p. 
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          Fig. 6.18: Responsei of  
1

2
𝐶𝐹(𝑅𝑒𝑥)

1

2 with �̂�𝑏 . 

 

 

 

      Fig. 6.19: Responseii of 
1

2
𝐶𝐹(𝑅𝑒𝑥)

1

2 with 𝛽1. 
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     Fig. 6.20: Responseii of 𝑁𝑢𝑥(𝑅𝑒𝑥)
−
1

2 with �̂�2. 

 

 

 

       Fig. 6.21: Responseii of 𝑁𝑢𝑥(𝑅𝑒𝑥)
−
1

2 with 𝑃𝑟. 
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         Fig. 6.22: Responseii of 𝑆ℎ𝑥(𝑅𝑒𝑥)
−
1

2 with 𝛾3. 

 

 

 

        Fig. 6.23: Responseii of 𝑆ℎ𝑥(𝑅𝑒𝑥)
−
1

2 with 𝛽1. 
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6.6   Conclusions 

Main findingsi of the istudy are ilisted below: 

• Velocity iprofile 𝐹′(𝜉) declines for higher ivalues of viscoelastic factor 𝛼2 while 

it boosts iup for larger estimation of mixed iconvection iparameter 𝛽1. 

• Temperature ifield 𝜃(𝜉) enhances for igreater values of flow iparameters �̂�𝑏 , �̂�𝑡 

and B̂1.  

• For greater estimations of activation energy parameter 𝐸𝑎, concentration profile 

Φ(𝜉) enhances while reverse impact is inoticed for reaction rate iconstant 𝛾3. 

• Reverse ibehavior of iconcentration field Φ(𝜉) is iremarked in view of �̂�𝑏 and �̂�𝑡. 

• Skin friction icoefficient is amplified via Brownian parameter �̂�𝑏. 
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CHAPTER 7 

 

Numerical simulation of nonlinear radiative flow of 

Casson nanofluid with Cattaneo-Christov heat flux 

model 

 

7.1   Introduction 

 

This chapter investigates Cattaneo-Christovi heat iflux modeli for nonlineari radiativei flow 

of Casson inanofluid over an iinclined permeable istretched icylinder with slip imechanism. 

The novel characteristics of activation energy are studied in the presence of inon-uniform 

iheat igeneration/absorption, idual istratification, inonlinear imixed iconvection and ibinary 

ichemical ireaction. Casson fluid inanomaterial imodel is imeasured that irefers to the 

significanti slip imechanism such as iBrownian and thermophoresis idiffusions. The 

igoverning dimensional isystem is transformedi into dimensionlessi system by iimplementing 

isimilarity ivariables. The ideveloped inonlinear isystem is iunravelled through ishooting 

itechnique along iwith Runge–Kutta–Fehlberg (RK–45) iapproach. iPhysical iquantities of 

interesti are investigated through graphs and tables. A validation of the work is offered by 

comparing the current results with published literature. 
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7.2   Mathematical formulation 
 

Consider two dimensional, incompressible, nonlinear radiative flow of Casson nanofluid 

[112-114] over an inclined stretched cylinder of radius 𝑅0. Fluid flow is maintained due to 

linear stretching velocity of the form 𝑈𝑤 (=
𝑈0𝑧

𝐿
). Present analysis has been accomplished 

with nonlinear thermal radiation, non-uniform heat source/sink, thermal and solutal 

stratification, nonlinear mixed convection, binary chemical reaction and Arrhenius 

activation energy. The velocity and thermal slip are also inspected for present flow 

problem. The uniform magnetic field of strength 𝐵0 is applied in normal radial direction 

(see Fig. 7.1). Cattaneo–Christov heat flux theory is used for heat transfer. The governing 

expression of problem are 

 

Fig. 7.1: Physical model. 
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𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

𝜕

𝜕𝑧
(𝑟𝑢𝑧) = 0, (7.1) 

𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

= 𝜈1 (1 +
1

𝜆𝑐
) (
𝜕2𝑢𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝑧
𝜕𝑟
) −

𝜎𝐵0
2𝑢𝑧
𝜌𝑓

    

+
�̂�1
𝜌𝑓
[Γ1(𝑇 − 𝑇∞) + Γ2(𝑇 − 𝑇∞ )

2 + Γ3(𝐶 − 𝐶∞) + Γ4(𝐶 − 𝐶∞ )
2]𝑐𝑜𝑠𝜙𝑎. 

(7.2) 

Cattaneo–Christov iheat flux imodel is idefined as 

𝒒𝟏 + Γ̂𝑒 [
𝜕𝒒𝟏
𝜕𝑡

+ 𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏 + (𝜵.𝑽𝟏)𝒒𝟏] = −𝑘𝑓𝜵T. 
(7.3) 

Utilizing the icondition of steady incompressible iflow i.e., 
𝜕

𝜕𝑡
= 0 and 𝛁.𝐕𝟏 = 0, Eq. (7.3) 

reduces to 

𝒒𝟏 + Γ̂𝑒[𝑽𝟏. 𝜵𝒒𝟏 − (𝒒𝟏. 𝜵)𝑽𝟏] = −�̂�𝑓𝜵T. (7.4) 

The heat iand mass iconservation laws iare  

𝑢𝑟
𝜕𝑇

𝜕𝑟
+ 𝑢𝑧

𝜕𝑇

𝜕𝑧
+ Γ̂𝑒Π𝑒 =

�̂�𝑓

(𝜌C𝑝)𝑓

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

�̂�𝑚

(𝜌C𝑝)𝑓

+  

1

(𝜌C𝑝)𝑓

1

𝑟

𝜕

𝜕𝑟
(
16𝜎2𝑇

3

3�̂�3
𝑟
𝜕𝑇

𝜕𝑟
) + 𝜏1D𝐵

𝜕C

𝜕𝑟

𝜕𝑇

𝜕𝑟
+
𝜏1D𝑇
𝑇∞

(
𝜕𝑇

𝜕𝑟
)
2

,   
(7.5) 

𝑢𝑟
𝜕𝐶

𝜕𝑟
+ 𝑢𝑧

𝜕𝐶

𝜕𝑧
= D𝐵

𝜕

𝜕𝑟
(𝑟
𝜕𝐶

𝜕𝑟
) +

D𝑇
𝑇∞

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
)  

−�̂�1(C − C∞) − �̂�𝑟
2(C𝑤 − C0) (

𝑇

𝑇∞
)
𝑝

𝑒𝑥𝑝 [−
𝐸1
𝑇𝑘∗

]. 
(7.6) 

The corresponding iboundary iconditions iare 
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𝑢𝑧 =
𝑈0𝑧

𝐿
+ 𝑉2 (1 +

1

𝜆𝑐
)
𝜕𝑢𝑧
𝜕𝑟
, 𝑇 = 𝑇𝑤 = 𝑇0 +

𝑑1𝑧

𝐿
,

𝑢𝑟 = 𝑉1,                                        C =  C𝑤 = C0 +
𝑑3𝑧

𝐿

||  𝑎𝑡 𝑟 = 𝑅0, 

 (7.7) 

𝑢𝑧 → 0,     𝑇 →  𝑇∞ = 𝑇0 +
𝑑2𝑥

𝐿
,

𝑢𝑟 → 0,     C → C∞ = C0 +
𝑑4𝑥

𝐿
.

|  𝑤ℎ𝑒𝑛 𝑟 → ∞, 

 (7.8) 

with  

Π𝑒 = 𝑢𝑟
2
𝜕2𝑇

𝜕𝑟2
+ 𝑢𝑧

2
𝜕2𝑇

𝜕𝑧2
+
𝜕𝑇

𝜕𝑟
(𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
) + 2𝑢𝑧𝑢𝑟

𝜕2𝐶

𝜕𝑟𝜕𝑧

+
𝜕𝑇

𝜕𝑧
(𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
). 

(7.9) 

 

The mathematical iexpression of inon-uniform iheat generation/absorption �̂�𝑚 [115] is 

�̂�𝑚 =
𝑈𝑤�̂�𝑓

𝑧𝜈1
[�̂�1(𝑇𝑤 − 𝑇0)

𝜕𝐹

𝜕ξ
+ �̂�2(𝑇 − 𝑇∞)]. (7.10) 

Here, (�̂�1, �̂�2) > 0  corresponds to heat generation state while (�̂�1, �̂�2) < 0  resembles 

to the heat absorption. 

Apposite transformations for present flow are [116] 

ξ = √
𝑈0
𝐿𝜈1

(
𝑟2 − 𝑅0

2

2𝑅0
),                  Ψ1(ξ) = √

𝜈1𝑈0𝑧2

𝐿
𝐹(ξ),

𝑢𝑧(ξ) =
𝑈0𝑧

𝐿
𝐹′(ξ),                    𝑢𝑟(ξ) = −

𝑅0
𝑟
√
𝜈1𝑈0
𝐿
𝐹(ξ),

θ(ξ) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇0

,                                 Φ(ξ) =
C − C∞
C𝑤 − C0

.        

 

(7.11) 
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The resultingi ordinary differential iequations are 

(1 + 2𝛾1ξ) (1 +
1

𝜆𝑐
) 𝐹′′′ + 2𝛾1 (1 +

1

𝜆𝑐
) 𝐹′′ + 𝐹𝐹′′ − 𝐹′2  

+𝛽1[(1 + �̂�𝑡θ)θ + �̂�1(1 + �̂�𝑐Φ)Φ] cos𝜙𝑎 −𝑀1𝐹
′ = 0, (7.12) 

(1 + 2𝛾1ξ) (θ
′′ + Pr N̂b (θ

′Φ′ +
N̂t

N̂b
θ′2 + 𝐸𝑐 (1 +

1

𝜆𝑐
) F′′2)) + 2𝛾1θ

′ 

+(1 + �̂�𝑟(1 + (θ𝑤 − 1)θ)
3θ′)

′
+ PrFθ′ + 𝑃𝑟𝛿𝑒(FF

′θ′ − θ′′Ϝ2) 

+B̂1Ϝ
′ + B̂2θ + Pr (𝑆1 + 𝜃)(𝛿𝑒(ϜϜ

′′ − Ϝ′2) − F′) = 0,  (7.13) 

(1 + 2𝛾1ξ) (Φ
′′ +

N̂t

N̂b
θ′′) + 2𝛾1 (Φ

′ +
N̂t

N̂b
θ′) + 𝑆𝑐𝐹Φ′  

−𝑆𝑐(S2 +Φ)𝐹
′ + 𝛾2Φ− 𝑆𝑐𝛾3(1 + 𝛿𝜃)

𝑝𝑒𝑥𝑝 [−
𝐸𝑎

(1 + 𝛿𝜃)
] = 0, 

(7.14) 

with  

  F′(0) = 1 + 𝑆𝑣 (1 +
1

𝜆𝑐
) 𝐹′′(0), F(0) = 𝑉𝑝, 𝜃(0) = 1 − S1, Φ(0) = 1 − S2, 

F′(𝜉) = 0, 𝜃(𝜉) = 0, Φ(𝜉) = 0, when 𝜉 → ∞.       (7.15) 

Emerging flow parameters are listed below: 
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 �̂�𝑏 =
𝜏1D𝐵(C𝑤 − C0)

𝜈1
,   �̂�𝑐 =

Γ4(C𝑤 − C0)

Γ3
, δ𝑒 =

𝑈0Γ̂𝑒
𝐿
,

�̂�1 =
Γ3(C𝑤 − C0)

Γ1(𝑇𝑤 − 𝑇0)
,        𝛿 =

(𝑇𝑤 − 𝑇0)

𝑇∞
, γ3 =

𝐿�̂�𝑟
2

𝑈0
,

𝐺𝑟 =
�̂�1Γ1(𝑇𝑤 − 𝑇0)𝑧

3

𝜈1
2 , �̂�𝑡 =

Γ2(𝑇𝑤 − T0)

Γ1
, 𝛾2 =

𝐾1𝐿

𝑈0
,

�̂�𝑡 =
𝜏1D𝑇(𝑇𝑤 − 𝑇0)

𝑇∞𝜈1
,         𝛾1 = √

𝐿𝜈1

𝑅0
2𝑈0

, 𝐸𝑎 =
𝐸1
𝑇∞𝑘∗

,

𝐺𝑟∗ =
�̂�1Γ3(C𝑤 − C0)𝑧

3

𝜈1
2 , Sv =

𝑉2𝑟

𝑅0
√
𝑈0
𝜈1𝐿

, 𝑃𝑟 =
(𝜇𝐶𝑝)𝑓

�̂�𝑓
,

𝐸𝑐 =
𝑈𝑤
2

𝐶𝑝(𝑇𝑤 − 𝑇0)
,          S1 =

𝑑2
𝑑1
,   𝑆𝑐 =

𝜈1
D𝐵
.     

 

(7.16) 

The interested physical iquantities (𝐶𝐹, 𝑁𝑢𝑧 , 𝑆ℎ𝑧) near isurface are  

 𝐶Ϝ =
2𝜏𝑤
𝜌𝑓𝑈𝑤2

, 𝑁𝑢𝑧 =
𝑧𝑞𝑤

�̂�𝑓(𝑇𝑤 − 𝑇0)
, 𝑆ℎ𝑧 =

𝑧𝑗𝑤
D𝐵(C𝑤 − C0)

, (7.17) 

with 

𝜏𝑤 = 𝜇 (1 +
1

𝜆𝑐
)
𝜕𝑢𝑧
𝜕𝑟
|
𝑟=𝑅0

,  
(7.18) 

  𝑞𝑤 = − �̂�𝑓
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅0

+ 𝑞𝑟|𝑤,    
(7.19) 

𝑞𝑚 = −D𝐵
𝜕C

𝜕𝑟
|
𝑟=𝑅0

,              
(7.20) 

where 𝑞𝑟|𝑤 is defined as 

(𝑞𝑟)𝑤 = −
16𝜎2𝑇

3

3�̂�𝑓�̂�3
(
𝜕𝑇

𝜕𝑟
)
𝑟=𝑅0

. 
(7.21) 

From above iequations, one ican write 
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1

2
 𝐶Ϝ(𝑅𝑒𝑧)

1
2 = (1 +

1

𝜆𝑐
) Ϝ′′(0),  

𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1
2 = −(1 + �̂�𝑟(1 + (θ𝑤 − 1)θ(0))

3
) θ′(0),  

𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1
2 = −Φ′(0).                                                          (7.22) 

 

7.3   Methodology 
 

The numerical solution of resulting system of coupled non-linear Eqs. (7.12) − (7.14) 

along withiboundaryiconditions Eq. (7.15) is computed through shooting technique along 

with fifth order Runge–Kutta–Fehlberg method with 𝜉 = 0.001. Newton method is applied 

for the modification of initial guesses 𝑈1, 𝑈2 and 𝑈3 subjected to the tolerance of 𝜀 =

10−7. For present study, the domain of the problem is considered as [0 − 15] instead 

of  [0 − ∞).  To proceed with this technique, we have to reduce higher order coupled 

system into the first order equivalent system by defining new variables: 

(𝑍1,  𝑍2,  𝑍3,  𝑍4, 𝑍5, 𝑍6,  𝑍7) = (𝐹,  𝐹
′, F′′, θ,  θ′, Φ,  Φ′). 

The first order equivalent system in term of 𝑍𝑖 for (𝑖 = 1, 2, 3, 4, 5, 6, 7) is  

𝑍1
′ = 𝑍2, (7.23) 

𝑍2
′ = 𝑍3, (7.24) 

𝑍3
′ =

(
−2𝛾1 (1 +

1
𝜆𝑐
) 𝑍3 − 𝑍1𝑍3 + 𝑍2

2 +𝑀1𝑍2 −      

𝛽1 ((1 + �̂�𝑡𝑍4)𝑍4 + �̂�1(1 + �̂�𝑐𝑍6)𝑍6) cos𝜙𝑎

)

(1 + 2𝛾1ξ) (1 +
1
𝜆𝑐
)

, 

(7.25) 
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𝑍4
′ = 𝑍5, (7.26) 

𝑍5
′ = (

 
 
−(1 + 2𝛾1ξ)𝑃𝑟 (N̂b𝑍5𝑍7 + N̂t𝑍5

2 + 𝐸𝑐 (1 +
1
𝜆𝑐
) 𝑍3

2) − 2𝛾1𝑍5

+𝑃𝑟(S1 + Z4)Z2 − PrZ1𝑍5 − (1 + �̂�𝑟(1 + (θ𝑤 − 1)Z4)
3Z5)

′

−𝑃𝑟𝛿𝑒((S1 + 𝑍4)(Z1Z3 − 𝑍2
2)+Z1Z2Z5) − (B̂1Z2 + B̂2Z4)                 )

 
 

(1 + 2𝛾1ξ − Pr𝛿𝑒𝑍1
2)

, 
(7.27) 

𝑍6
′ = 𝑍7, (7.28) 

𝑍7
′ = (

 
 
−
N̂t
N̂b
((1 + 2𝛾1ξ)Θ

′′ + 2𝛾1𝑍5) −  𝛾2𝑍6 − 𝑆𝑐𝑍1𝑍7 − 2𝛾1𝑍7

+𝑆𝑐(S2 + 𝑍6)𝑍2 + 𝑆𝑐𝛾3(1 + 𝛿𝑍4)
𝑝𝑒𝑥𝑝 [−

𝐸𝑎
(1 + 𝛿𝑍4)

]      
           )

 
 

(1 + 2𝛾1ξ)
, (7.29) 

 

with 

𝑍1(0) = 𝑉𝑝,        𝑍2(0) = 𝑆𝑣 (1 +
1

𝜆𝑐
)𝑈1, 𝑍3(0) = 𝑈1,       

𝑍4(0) = 1 − S1, 𝑍5(0) = 𝑈2                       𝑍6(0) = 1 − S2.

𝑍7(0) = 𝑈3,       

 (7.30) 

The terminating benchmarks for the iterative process is set as  

 𝑚𝑎𝑥(|𝑍2(15) − 0|,   |𝑍4(15) − 0|,   |𝑍6(15) − 0|) < 𝜀,   

7.4   Results and discussion 
 

The computed results are explained for interested physical entities by restricting physical 

parameters as (0.2 ≤ 𝛾1 ≤ 0.8),  (0.5 ≤ 𝜆𝑐 ≤ ∞),  (0.1 ≤ 𝛽1 ≤ 0.5),   (0.3 ≤ �̂�𝑏 ≤

1.5),  (0.2 ≤ �̂�𝑡 ≤ 1.5),  (1 ≤ �̂�1 ≤ 1.5),  (0.2 ≤ 𝛾2 ≤ 0.8),  (0.5 ≤ 𝑃𝑟 ≤ 2.5), (0.2 ≤

𝑆𝑣 ≤ 0.8),   (0.5 ≤ �̂�𝑟 ≤ 3),  (0.2 ≤ �̂� ≤ 0.6),   (0.2 ≤ 𝐸𝑎 ≤ 1.5),  (0.1 ≤ 𝛾3 ≤ 1.0),  

https://www.sciencedirect.com/topics/engineering/iterative-process
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(0.1 ≤ 𝑆𝑐 ≤ 1.0),  (0.1 ≤ 𝑆1 ≤ 0.5)  and  (0.1 ≤ 𝛽𝑡 ≤ 0.5).  Tables (7.1 − 7.3)  are 

constructed to notice the behavior of skin friction coefficient, local Nusselt and Sherwood 

number towards various flow controlling parameters such as 𝛾1  curvature parameter, 

𝜆𝑐 Casson fluid parameter, 𝑀1  Hartman number,  𝑆𝑐  Schmidt number, 𝛽1  mixed 

convection parameter, �̂�𝑟  radiation parameter, �̂�𝑏 Brownian motion parameter, �̂�𝑡  

thermophorsis parameter (𝑆1, 𝑆2) thermal stratification and solutal stratification 

parameters, respectively. Specifically, Tables 7.1 and 7.2 provide a comparison of the skin 

friction coefficient and local Nusselt number with the previously published results. Table 

7.1 portrays the skin friction coefficient for numerous values of 𝜆𝑐 and 𝑀1 and match these 

values with Ref. [117] when all other parameters remains unchanged. Without emphasis of 

Eq. (7.13), the present outcomes for Nusselt number using a number of values of Prandtl 

number are compared with existing values through Table 7.2. An excellent agreement of 

results has been noticed that confirms the validity of our present endeavor. 

(see Tables (7.1 and 7.2)).  Table 7.3  is presented to study the sound effects of 

parameters like 𝛾1,  𝜆𝑐, 𝛽1, 𝑀1 , S1, Ea and 𝑆2 on skin friction coefficient. It is noticed 

that wall friction in the absolute sense, displays a provoking nature towards thermal 

stratification parameter S1,  curvature parameter 𝛾1,  Casson fluid parameter 𝜆𝑐  and 

magnetic parameter 𝑀1 while opposite approach is viewed for positive values of mixed 

convection parameter 𝛽1,  activation energy parameter Ea  and solutal stratification 

parameter 𝑆2  respectively. Table 7.4 spectacles the impact of curvature parameter  𝛾1 , 

fluid parameter 𝜆𝑐, thermal radiation parameter  �̂�𝑟 , activation energy parameter Ea,  

thermal relaxation parameter 𝛿𝑒 ,  thermal stratification parameter S1,  and B̂1 on local 

wall heat flux. Here, wall heat flux inclines versus 𝛾1 and Ea while it declines for higher 

https://www.sciencedirect.com/topics/engineering/skin-friction
https://www.sciencedirect.com/topics/engineering/sherwood-number
https://www.sciencedirect.com/topics/engineering/sherwood-number
https://www.sciencedirect.com/science/article/pii/S111001681630014X#t0015
https://www.sciencedirect.com/science/article/pii/S111001681630014X#b0095
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marks of 𝜆𝑐, �̂�𝑟, B̂1, 𝛿𝑒 and 𝑆1. From Table 7.5, it is detected that an enhancement in 

curvature parameter 𝛾1 Schmidt number Sc, Brownian motion parameter �̂�𝑏 corresponds 

to rise in Sherwood number while �̂�𝑡 , Ea  reduces it. The MATLAB built-in function 

(bvp4c) is employed for the verification of the present results attained from the shooting 

code. 

Figs. (7.2 − 7.7)  are portrayed to explore the velocity profile 𝐹′(𝜉), for distinct values 

of 𝜆𝑐, γ1, 𝑀1, �̂�𝑡 and Sv.  Fig. 7.2 depict the behavior of 𝐹′(ξ) on variation of Casson 

parameter 𝜆𝑐. As stress of the Casson fluid causes a decrease in rheological characteristics. 

When 𝜆𝑐 approaches to its maximum value or infinity, the flow behavior resemble to the 

Newtonian fluid model and the fluid is able to shear faster along the surface. Fig. 7.3 

captured fluctuations in velocity 𝐹′(𝜉) by varying curvature parameter 𝛾1. One can see 

from graph that velocity distribution 𝐹′(𝜉) upsurges within the frame of larger curvature 

parameter 𝛾1. Fig. 7.4 reveales the effect of an inclination 𝜙𝑎 on velocity profile. It is 

observed that for greater values of 𝜙𝑎, the velocity profile decreases. Behavior of 𝐹′(𝜉) 

for higher approximation of nonlinear thermal convection parameter �̂�𝑡 is presented in 

Fig. 7.5 . Motion of fluid particles boosts up for higher marks of nonlinear thermal 

convection parameter �̂�𝑡 . For greater approximation of �̂�𝑡 , the temperature difference 

(𝑇𝑤 − 𝑇∞) intensifies which is responsible for upsurge in velocity distribution. Impact of 

velocity slip parameter 𝑆𝑣  on 𝐹′(𝜉) is delineated through Fig. 7.6. Here the velocity 

𝐹′(𝜉) decelerates versus velocity slip parameter 𝑆𝑣. In fact, the stretching of the sheet 

becomes a source of decrease in fluid flow that weaken the velocity field 𝐹′(𝜉) against 

velocity slip parameter 𝑆𝑣 . Figs. (7.7 − 7.15)  elaborates the influence of physical 

parameters such as 𝑆1, �̂�𝑏, �̂�𝑡, 𝑃𝑟, 𝛿𝑒 , �̂�1  and �̂�1on temperature distribution 𝜃(𝜉). The 
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effect of thermal stratification parameter 𝑆1 on fluid temperature 𝜃(𝜉) is identified in Fig. 

7.7. This figure displays a decreasing fashion of temperature field for positive values of 

thermal stratification parameter. This tendency of curve is due to the existence of potential 

drop between cylindrical surface and ambient fluid. Enhancing trend of 𝜃(𝜉) is remarked 

for larger nonlinear thermal radiation parameter �̂�𝑟 (𝑠𝑒𝑒 𝐹𝑖𝑔.  7.8). It strengthen the fact 

that radiation is a heat transfer mode that transmits the thermal energy through fluid 

particles. Figs. 7.9 and 7.10 are adorned to study the influence of Brownian motion �̂�𝑏 

and thermophoresis parameter �̂�𝑡  on temperature 𝜃(𝜉) . It can be seen that both 

parameters give rise in temperature 𝜃(𝜉). It holds because Brownian motion accelerates 

random motion i.e. fluid particles collision becomes rapid and hence these collisions 

produce more thermal energy. Also, as fluid particles rush from hot to cold region for 

higher thermophoresis parameter �̂�𝑡  due to increase in thermophoresis force 

(see Fig.  7.10). Influences of temperature ratio parameter 𝜃𝑤  on temperature 𝜃(𝜉) are 

examined through Fig. 7.11. This figure shows that fluid temperature rises by increasing 

𝜃𝑤. This is due to higher thermal state of liquid when compared with ambient temperature. 

Fig. 7.12 elucidates the effect of Pr on temperature distribution 𝜃(𝜉). One can observe 

that temperature 𝜃(𝜉) is a diminishing function of Pr. This response of temperature 𝜃(𝜉) 

against Pr is in line for weaker thermal diffusivity as compare to momentum diffusivity. 

Fig. 7.13  revealed the thermal relaxation time 𝛿𝑒  effects on fluid temperature. It is 

observed that temperature falls down versus 𝛿𝑒. Due to rise in thermal relaxation time, 

particles require additional time for heat transmission to its adjacent particles. Figs. 7.14 

and 7.15 portraits deviations in temperature against space dependent and temperature 

dependent heat source/sink parameters (�̂�1, �̂�2). It is noticed that temperature 𝜃(𝜉) rises 
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for �̂�1 > 0  and �̂�2 > 0  while opposite behaviour is captured in case of �̂�1 < 0  and 

�̂�2 < 0.  Figs. (7.16 − 7.22)  are revealed to show the impact of 𝛾2, 𝑆2, �̂�𝑏,  �̂�𝑡,

𝑆𝑐,  𝐸𝑎  and 𝛾3 on Φ(𝜉) . Impact of destructive chemical reaction variable 𝛾2 > 0  on 

concentration Φ(𝜉) is pointed out in Fig. 7.16. Here Φ(𝜉) and relevant boundary layer 

thickness are reduced for larger destructive chemical reaction variable 𝛾2 > 0. From Fig. 

7.17, it is detected that Φ(𝜉) is a decreasing function of solutal stratification parameter 

𝑆2 . In reality, reduction in concentration potential between ambient fluid and the 

cylinderical surface is identified hence, it reduces the concentration Φ(𝜉) respectively. In 

Fig. 7.18 features of Brownian parameter �̂�𝑏 on Φ(𝜉) is presented. It is observed that 

concentration profile is a falling function of �̂�𝑏. Since fluid particles are pushed in opposite 

direction to the concentration gradient to make more homogeneous nanoparticle solution. 

Therefore, small concentration gradient value is noticed for greater values of �̂�𝑏. That 

eventually drops the concentration Φ(𝜉). Decreasing features of concentration profile is 

found against larger Sc (see Fig. 7.19). This tendency is expected because larger Sc values 

leads to diminish the mass diffusivity. Increase in �̂�𝑡contributes higher fluid thermal 

conductivity which spectacles the higher concentration Φ(𝜉) as seen in Fig. 7.20. The 

relationship between activation energy 𝐸𝑎 and nanoparticle concentration for particular 

values of parameters is analyzed in Fig. 7.21. The modified Arrhenius function dwindles 

as activation energy 𝐸𝑎 enlarges. This lastly endorses the generative chemical reaction due 

to which nanoparticle concentration Φ(𝜉)  upswings. Decreasing tend of Φ(𝜉)  is 

comprehended for larger γ₃ (see Fig.  7.22). Physically, as we enhance the values of 𝛾3, 

the destructive rate of chemical reaction also grows which is used to terminate/dissolve the 

liquid species more effectively.  
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Table 7.1: Comparison of  (1 +
1

𝜆𝑐
) Ϝ′′(0) with [117] for limiting case. 

𝜆𝑐 M1 −(1 +
1

𝜆𝑐
) Ϝ′′(0) 

  Ref. [117] Present 

∞ 0 1.0042 1.00001 

5  −1.0954 −1.09545 

1  −1.4142 −1.41426 

∞ 10 −3.3165 −3.31664 

5  −3.6331 −3.63318 

1  −4.6904 −4.69042 

∞ 100 −10.049 −10.04987 

5  −11.0091 −11.00909 

1  −14.2127 −14.21267 

 

Table 7.2: Comparison of  𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 with Refs. [118] and [119] in the limiting cases. 

Pr. 

Ref. [118] Ref. [119] Present 

(St = S1 = 𝑀1) (Ea = 𝛾1 = 0) (
𝜆𝑐 → ∞, 𝛾1 = 𝑆1 = M1 = 𝛽1
= �̂�1 = �̂�2 = �̂�𝑟 = 0         

) 

1.0 0.9547 0.9547 0.9547 

2.0 1.4714 1.4714 1.4714 

3.0 1.8961 1.8961 1.8962 
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Table 7.3: Numerical values of  
1

2
CF(Rez1)

1

2 for various physical parameters. 

𝛾1 λc 𝛽1 M1 S1 Ea 𝑆2 
−(1 +

1

𝜆𝑐
) Ϝ′′(0) 

Shooting Bvp4c 

0.2       2.1046 2.1046 

0.4       3.0086 3.0086 

0.6       4.0524 4.0524 

 1.1      1.7580 1.7580 

 1.3      1.7846 1.7846 

 1.5      1.8077 1.8077 

  0.1     1.6649 1.6649 

  0.3     1.5278 1.5278 

  0.5     1.3884 1.3884 

   0.2    1.5675 1.5675 

   0.4    1.7968 1.7968 

   0.6    1.9654 1.9654 

    0.1   1.7456 1.7456 

    0.3   1.7698 1.7698 

    0.5   1.7864 1.7864 

     0.4  1.9789 1.9789 

     0.8  1.4876 1.4876 

     1.2  1.0754 1.0754 

      0.2 1.7487 1.7487 

      0.4 1.7356 1.7356 

      0.6 1.7245 1.7245 
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Table 7.4: Numerical values of  𝑁𝑢𝑧(𝑅𝑒𝑧)
−
1

2 for various physical parameters. 

𝛾1 λc �̂�𝑟 𝛿𝑒 S1 𝐸𝑎 �̂�1 
−𝑁𝑢𝑧(𝑅𝑒𝑧)

−
1
2 

Shooting Bvp4c 

0.2       0.6254 0.6254 

0.4       0.7367 0.7367 

0.6       0.8498 0.8498 

 1.1      0.7568 0.7568 

 1.3      0.7365 0.7365 

 1.5      0.7149 0.7149 

  1.0     0.7857 0.7857 

  2.0     0.7286 0.7286 

  3.0     0.6394 0.6394 

   0.3    0.7465 0.7465 

   0.5    0.7389 0.7389 

   0.7    0.7266 0.7266 

    0.2   0.7465 0.7465 

    0.4   0.7387 0.7387 

    0.6   0.7259 0.7259 

     0  0.8854 0.8854 

     1  1.0657 1.0657 

     2  1.8784 1.8784 

      0.1 0.7593 0.7593 

      0.3 0.7048 0.7048 

      0.5 0.6532 0.6532 
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Table 7.5: Numerical values of  𝑆ℎ𝑧(𝑅𝑒𝑧)
−
1

2 for various physical parameters. 

𝛾1 Sc �̂�𝑏 �̂�𝑡 S2 𝐸𝑎 𝛾3 
−𝑆ℎ𝑧(𝑅𝑒𝑧)

−
1
2 

Shooting Bvp4c 

0.2       0.5473 0.5473 

0.4       0.6537 0.6537 

0.6       0.7265 0.7264 

 0.1      0.4872 0.4872 

 0.5      0.5438 0.5438 

 1.0      0.6679 0.6678 

  0.3     0.6278 0.6278 

  0.5     0.7256 0.7256 

  0.7     0.7483 0.7482 

   0.3    0.5867 0.5866 

   0.5    0.4259 0.4259 

   0.7    0.3765 0.3764 

    0.2   0.4573 0.4573 

    0.4   0.5246 0.5246 

    0.6   0.6375 0.6375 

     0.4  0.7854 0.7853 

     0.6  0.7736 0.7736 

     1.2  0.7523 0.7522 

      0.1 0.7871 0.7871 

      0.5 0.8534 0.8534 

      1.0 0.9657 0.9656 
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7.5   Graphical outcomes 
 

 

Fig. 7.2: Responseii of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝜆𝑐. 

 

 

 

Fig. 7.3: Responseii of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝛾1. 
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Fig. 7.4: Responsei of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝜙𝑎 . 

 

 

 

 Fig. 7.5: Responseii of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑡. 
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Fig. 7.6: Responsei of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝑆𝑣. 

 

 

 

Fig. 7.7: Responseii of 𝜃(𝜉) 𝑤𝑖𝑡ℎ 𝑆1. 
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Fig. 7.8: Responsei of 𝜃(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑟 . 

 

 

 

Fig. 7.9: Responseii of 𝜃(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑏 . 
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Fig. 7.10: Responseii of 𝜃(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑡. 

 

 

 

Fig. 7.11: Responseii of 𝜃(𝜉) 𝑤𝑖𝑡ℎ 𝜃𝑤. 
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Fig. 7.12: Responseii of θ(ξ) with 𝑃𝑟. 

 

 

 

Fig. 7.13: Responseii of θ(ξ) with δe. 
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Fig. 7.14: Responseii of θ(ξ) with �̂�1. 

 

 

 

Fig. 7.15: Responseii of θ(ξ) with �̂�2. 
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Fig. 7.16: Responseii of Φ(ξ) with 𝛾2. 

 

 

 

Fig. 7.17: Responsei of Φ(ξ) with 𝑆2. 
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Fig. 7.18: Responsei of Φ(ξ) with �̂�𝑏. 

 

 

 

Fig. 7.19: Responsei of Φ(ξ) with 𝑆𝑐. 
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Fig. 7.20: Responsei of Φ(ξ) with �̂�𝑡. 

 

 

 

Fig. 7.21: Responsei of Φ(ξ) with 𝐸𝑎. 
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Fig. 7.22: Responseii of Φ(ξ) with 𝛾3. 

 

 

7.6   Conclusions 
 

A numerical analysis is presented toiinvestigateitheiinfluence of slip boundary conditions 

on a nonlinearly radiative flow of Casson nanofluid with novel impacts of activation 

energy, non-uniformiheatigeneration/absorption and binaryichemicalireaction. iHeat 

transfer for current problem is investigated through Cattaneo-Christove heat flux model 

with thermal and solutal stratification phenomena. Numerical solution of transformed 

system is achieved by using shooting technique. The key observations are summarized as 

follows: 

• Nanoparticle concentration is an enhancingi function of activation ienergy  𝐸𝑎 for 

chemical reaction and ithermophoresis parameter �̂�𝑡. Additionally, the response of 

chemical reaction parameter 𝛾3 is qualitatively opposite to that of 𝐸𝑎 
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• An enhancement in non-uniform heat generation/absorption parameters (�̂�1, �̂�2), 

Brownian motion and thermophoresis parameters (�̂�𝑏 , �̂�𝑡) become a source of rise 

in temperature distribution while greater approximation of Prandlt number  𝑃𝑟 and 

thermal relaxation parameter  𝛿𝑒 generates fall in temperature field. 

• Temperature and concentration fields are dwindling functions of thermal and 

solutal stratification parameters (𝑆1, 𝑆2), respectively. 

• Heat transfer rate at the cylindrical surface and thermal boundary layer thickness 

enhances in presence of thermal radiation  �̂�𝑟 .  

• Sherwood number has contrary behavior for larger 𝐸𝑎 and 𝛾3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/physics-and-astronomy/thermal-boundary-layer
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CHAPTER 8 

 

Stratified flow of ferromagnetic nanofluid with heat 

generation/absorption 

 

8.1   Introduction  

 

The objectivei of existingi articlei is to analyzei the effectsi of non-uniformi heat isource/sink 

andi magnetici dipolei in flowi of ferromagnetici Maxwelli liquidi over a istretched isheet. 

Highlightsi of Brownian imovement iand thermophoresisi are exploredi within the isight of 

magnetici idipole. Effectsi of thermali and concentrationi stratificationi are iadditionally 

iconsidered. Apposite itransformations iare employedi to obtaini the nonlinear idifferential 

isystem. The iprocured nonlineari frameworki is lockedi in numericallyi withi the assistancei 

of shooting technique. Velocity and temperature igradients are idiscussed iand analysedi in 

idetail throughi graphsi and itables. 

8.2   Mathematical formulation 

Consider an iincompressible iMaxwell iferromagnetic ifluid with dual istratification 

phenomenai over a linearly istretched sheet. The istretching of sheet is idirectly iproportional 

to the idistance fromi the iorigin. Heat itransfer ianalysis is iexamined ithrough iviscous 

idissipation. The ipresent investigationi is carriedi out in additioni to Brownian imotion, 
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ithermophoresis and iviscous idissipation. Further, imagnetic idipole of iadequate istrength is 

positionedi at some idistance (𝑎) belowi the ix-axis and icentered at y-axis (see Fig.  8.1). 

The directioni of magnetic ifield is taken ialong ipositive x-direction. Here iCurie temperature 

𝑇𝑐 is takeni to be igreater than the itemperature at istretched isurface 𝑇𝑤, iotherwise, 𝑇 = 𝑇c 

is temperaturei far ifrom surfacei that ifollows Tw < T < Tc . The liquidi above 𝑇𝑐  is 

inadequatei of being imagnetized. Here ivariable temperature Tw = 𝑇0 + 𝑑1𝑥  and T𝑐 =

𝑇0 + 𝑑2𝑥  are scrutinized at the isheet idistant ifrom the isurface. The iboundary layeri 

iequationsi in a iiferrofluid iflow and iiheat transfer iirate arei as ifollow: 

 

 

Fig. 8.1: Physical model.   

 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, 

(8.1) 
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈1

𝜕2𝑢

𝜕𝑦2
+
𝜆𝑚
𝜌𝑓
(𝑢2

𝜕2𝑢

𝜕𝑥2
+ 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
) 

 

+
𝜍0𝑀1
𝜌𝑓

𝜕𝑯

𝜕𝑥
,   

(8.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ (𝑢

𝜕𝑯

𝜕𝑥
+ 𝑣

𝜕𝑯

𝜕𝑦
)
𝜍0𝑇

𝜌𝑓

𝜕𝑀1
𝜕𝑇

= 𝛼∗
𝜕2𝑇

𝜕𝑦2
+

�̂�𝑚

(𝜌𝐶𝑝)𝑓

                        + τ̂1 (𝐷𝐵
𝜕C

𝜕𝑦

𝜕𝑇

𝜕𝑦
+
DT
𝑇𝑐
(
𝜕𝑇

𝜕𝑦
)
2

) +
𝜇

(𝜌𝐶𝑝)𝑓

(
𝜕𝑢

𝜕𝑦
)
2

,

 

(8.3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+
DT
𝑇𝑐

𝜕2𝑇

𝜕𝑦2
. 

(8.4) 

The boundary conditions are 

𝑢 = 𝑈𝑤 = 𝑐1𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇0 + 𝑑1𝑥, C =  C𝑤 = C0 + 𝑑3𝑥 at 𝑦 = 0, (8.5) 

𝑢 → 0, 𝑣 → 0, 𝑇 →  𝑇𝑐 = 𝑇0 + 𝑑2𝑥, C → C𝑐 = C0 + 𝑑4𝑥. when 𝑦 → ∞. (8.6) 

The time dependent non-uniform heat source/sink �̂�𝑚 [120] is considered as 

�̂�𝑚 =
𝑈𝑤(𝑥)�̂�1
𝑥𝜈1

[�̂�1(𝑇𝑤 − 𝑇0)
𝜕𝐹

𝜕ξ
+ �̂�2(𝑇 − 𝑇𝑐)], (8.7) 

in the above iequation positive ivalues (�̂�1 > 0 𝑎𝑛𝑑 �̂�2 > 0)  correspondsi to heat 

generationi and negative values (�̂�1 < 0 𝑎𝑛𝑑 �̂�2 < 0) resemblesi to the heat iabsorption. 
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8.3   Magnetic Potential 

The features of magnetic field influence the ferrofluid flow due to a magnetic dipole. Such 

impacts of magnetic dipole are pronounced by a magnetic scalar potential 𝛀𝟏, which is 

demonstrated as [121] 

𝛀𝟏 =
𝛼

2𝜋

𝑥

[𝑥2 + (𝑦 + 𝑎)2]
. (8.8) 

The componentsi of iscalar ipotential of imagnetic idipole arei 

𝜕𝑯

𝜕𝑥
= −

𝜕𝛀𝟏
𝜕𝑥

=
𝛼

2𝜋

𝑥2 − (𝑦 + 𝑎)2

[𝑥2 + (𝑦 + 𝑎)2]2
, (8.9) 

𝜕𝑯

𝜕𝑦
= −

𝜕𝛀𝟏
𝜕𝑦

=
𝛼

2𝜋

2𝑥(𝑦 + 𝑎)

[𝑥2 + (𝑦 + 𝑎)2]2
. (8.10) 

Since the imagnetic body iforce is (generally) iproportional to the igradient of the imagnetic 

of 𝑯, we thus ihave 

𝑯 = √(
𝜕𝛀𝟏
𝜕𝑥
)
2

+ (
𝜕𝛀𝟏
𝜕𝑦
)
2

, (8.11) 

by utilizing Eqs. (8.9) and (8.10) in Eq. (8.11), we obtaini the following equations, after 

expandedi in powers of 𝑥 and iretained iterms up to order 𝑥2 

𝜕𝑯

𝜕𝑥
= −

𝛼

2𝜋

2𝑥

(𝑦 + 𝑎)4
, (8.12) 

𝜕𝑯

𝜕𝑦
=
𝛼

2𝜋
[−

2

(𝑦 + 𝑎)3
+

4𝑥2

(𝑦 + 𝑎)5
]. (8.13) 

The approximationi of magnetization 𝑀1 through itemperature T is estimated iby 
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𝑀1 = �̂�2(𝑇 − 𝑇𝑐). (8.14) 

Here, K̂2 identifies as ipyromagnetic icoefficient.  

 

8.4   Methodology 
 

By invoking following transformations [122] 

𝑢 = 𝑐1𝑥Ϝ
′(ξ), 𝑣 = −√

𝑐1𝜇

𝜌
Ϝ(ξ), Ψ1 = 

𝜇𝜉1Ϝ(ξ)

𝜌
,

ξ = √
𝑐1𝜇

𝜌
y, θ(𝜉1, ξ) =

𝑇𝑐 − 𝑇

𝑇𝑐 − 𝑇𝑤
= θ1(ξ) + 𝜉1

2θ2(ξ),

𝜉1 = √
𝑐1𝜇

𝜌
𝑥, Φ(𝜉1, ξ) =

𝐶𝑐 − 𝐶

𝐶𝑐 − 𝐶𝑤
= Φ1(ξ) + 𝜉1

2Φ2(ξ).

 

(8.15) 

Employing the boundary layer approximation and utilizing similarity variables given in 

Eq. (8.15), the Eqs. (8.2) − (8.4) along with stated boundary conditions given in Eq. 

(8.5) reduces to the following system of equations  

Ϝ′′′ + ϜϜ′′ − Ϝ′2 +𝑀𝑒(Ϝ
′′′Ϝ2 − 2ϜϜ′Ϝ′′) −

2𝜆𝑓𝜃1
(𝜉 + 𝛼1)4

= 0, 
(8.16) 

𝜃1
′′ + 𝑃𝑟(Ϝ𝜃1

′ − 2Ϝ′θ1) + (�̂�1Ϝ
′ + �̂�2θ1) +

2𝜆𝑓λ𝑣Ϝ(𝜃1 − 𝜀1)

(𝜉 + 𝛼1)3

+Pr N̂b (𝜃1
′Φ1

′ +
N̂t

N̂b
𝜃1
′2) − 𝑃𝑟𝑆1Ϝ

′ − 4𝜆𝑣Ϝ
′2 = 0,                 

 

(8.17) 

𝜃2
′′ − 𝑃𝑟(4Ϝ′θ2 − Ϝ𝜃2

′) + Pr N̂b(𝜃2
′Φ1

′ + 𝜃1
′Φ2

′ ) − 𝜆𝑣Ϝ
′′2 +

2𝜆𝑓λ𝑣Ϝ𝜃2
(𝜉 + 𝛼1)3

+�̂�2θ2 + 2𝑃𝑟N̂𝑡𝜃1
′𝜃2
′−𝜆𝑓λ𝑣(𝜃1 − 𝜀1) (

2Ϝ′

(𝜉 + 𝛼1)4
+

4Ϝ

(𝜉 + 𝛼1)5
) = 0,

 

(8.18) 
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Φ1
′′ +

N̂t

N̂b
θ1
′′ − 𝑃𝑟𝐿𝑒Ϝ′Φ1 + 𝑆𝑐ϜΦ1

′ − 𝑃𝑟𝐿𝑒𝑆2Ϝ
′ = 0, (8.19) 

Φ2
′′ +

N̂t

N̂b
θ2
′′ − 3𝑃𝑟𝐿𝑒Ϝ′Φ2 + 𝑆𝑐ϜΦ2

′ = 0, (8.20) 

with 

F(0) = 0,  F′(0) = 1, 𝜃1(0) = 1 − S1,  

𝜃2(0) = 0, Φ2(0) = 0, Φ1(0) = 1 − S2, (8.21) 

F′(∞) = 0, 𝜃1(∞) = 0, 𝜃2(∞) = 0, Φ1(∞) = 0, Φ2(∞) = 0. (8.22) 

Mathematically, the non-dimensional governing parameters are defined as follows: 

𝜆𝑓 =
𝛼

2𝜋

𝜍0�̂�2ρ(𝑇0 − 𝑇𝑤) 

𝜇2
, λ𝑣 =

𝑐1𝜇
2

𝜌�̂�1(𝑇0 − 𝑇𝑤)
  𝛼1 = √

𝑐1𝜌𝑎2

𝜇

�̂�1 =
Γ3(C𝑤 − C0)

Γ1(𝑇𝑤 − 𝑇0)
 ,             𝜀1 =

𝑇𝑐
𝑇𝑤 − 𝑇0

,        𝐿𝑒 =
𝛼∗

D𝐵
,

�̂�𝑡 =
𝜏1D𝑇(𝑇𝑤 − 𝑇0)

𝑇𝑐𝜈1
,         𝑀𝑒 = 𝜆𝑚𝑐1,       𝑃𝑟 =

𝜇𝐶𝑝

�̂�1
,

N̂b =
𝜏1DB(𝐶𝑤 − 𝐶0)

𝜈1
,                𝑆1 =

𝑑2
𝑑1
,                      𝑆2 =

𝑑4
𝑑3
.

 

(8.23) 

The skin friction coefficient 𝐶𝐹, local Nusselt 𝑁𝑢𝑥 and Sherwood  𝑆ℎ𝑥 numbers are 

𝐶𝐹 =
2𝜏𝑤
ρ𝑈𝑤2

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤

�̂�1(𝑇𝑤 − 𝑇0)
, 𝑆ℎ𝑥 =

𝑥𝑗𝑤
D𝐵(C𝑤 − C0)

. (8.24) 

In dimensionless form, we have 

𝐶𝐹(𝑅𝑒𝑥)
1
2 = −2F′′(0),                   

 

𝑁𝑢𝑥(𝑅𝑒𝑥)
−
1
2 = −[θ1

′ (0) + 𝜉1
2θ2
′ (0)],    

 

𝑆ℎ𝑥(𝑅𝑒𝑥)
−
1
2 = −[Φ1

′ (0) + 𝜉1
2Φ2

′ (0)]. 
(8.25) 
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8.5   Results and discussion 
 

Here the effects of elasticity parameter 𝑀𝑒 , Prandtl number 𝑃𝑟, ferrohydrodynamici 

interactioni parameter 𝜆𝑓 ,  Brownian iparameter N̂b,  dimensionlessi temperature 𝜀1, 

Schmidt inumber 𝑆𝑐,  thermophoresis ivariable N̂t,  ithermal istratification iparameter 

𝑆1, spacei and itemperature ibased isource/sink iparameters (�̂�1, �̂�2) and iLewis inumber 𝐿𝑒 

on velocity Ϝ′(ξ), temperature 𝜃(ξ)  andi iconcentration Φ(ξ) are istudied. Table (8.1) 

iconveys the icomputational iresults of Nusselt inumber againsti certain iphysical ifactors. Here 

heati transferi ratei enriches for igreater N̂b, 𝜆𝑓 , 𝑀𝑒 and 𝑆𝑐 whilei it ideclines ifor 𝜀1, N̂t and 

𝛼1.  Table (8.2)  providesi outcomesi of Sherwood inumber against idifferent iphysical 

ivariables. It is iobserved that imass itransfer rate iimproves for igrowing ivalues of 𝛼1, 𝜆𝑓 and 

𝑃𝑟, whilei it declines for increasing 𝜆𝑣 and N̂t. Figs. (8.2 − 8.4) are revealed to display 

the effect of 𝑀𝑒 and 𝜆𝑓 on Ϝ′(ξ). iImpacts of ielasticity iparameter 𝑀𝑒 are imarked in Fig. 

8.2. Fori greateri 𝑀𝑒 velocityi Ϝ′(ξ) advancesi iprogressively, ithe outcomei designatesi that 

ivelocity and iapposite boundaryi layer ibecomes thickeri with a irise in 𝑀𝑒. Iti is ipondered 

ithat iresponse ivelocity iascends by iincrementing elastici force of isystem. Surfacei forcesi 

rangesi to its ilowest ivalue for 𝑀𝑒 = 0. Thati definesi the iabsence of iinternal ielastic iforce 

idue to which the ifluid moderatesi to Newtoniani fluid. Fig. 8.3 inspectsi the ideclining itrend 

of Ϝ′(ξ) for ihigher ivalues of iferromagnetic iparameter 𝜆𝑓. iPhysicallyi ihigher iivalues of 𝜆𝑓 

iprovidei iadditionali iresistancei to ifluid iflow. iiHencei Ϝ′(ξ) ireduces. Figs. (8.5 − 8.12) are 

sketchedi out to investigatei the itemperaturei profile θ1(𝜉) for ivarious estimations of 𝜆𝑣,

𝑃𝑟, 𝜆𝑓 , 𝑆1, N̂b  and N̂t. Fig. 8.5 displaysi the ieffect of iEckert number Ec on θ1(𝜉). For 

largeri valuei of Ec, itemperature θ1(𝜉) is ifound to be iheightens inear the surface. iFor 
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igreater Ec iadditional inner ienergy of liquidi producesi rise in θ1(𝜉). Variation of 𝑃𝑟 on 

θ1(𝜉) is displayed in Fig. 8.6. Herei greateri appraisal of 𝑃𝑟 icorresponds to ilessen the 

itemperature field. In fact, ihigher 𝑃𝑟 relatesi to greater imomentum idiffusion and ithinner 

ithermal layer. iThat resultsi in reduction of θ1(𝜉). It is notified from Fig. 8.7 that for 

iexpanding iestimations of 𝜆𝑓  relate to ihigher temperature ifield θ1(𝜉) . Physicallyi for 

ibigger 𝜆𝑓  resistive iforce (Lorentz compel) iimproves and ialong these ilines θ1(𝜉) 

iincreases. The role of ithermal stratified iparameter 𝑆1 iagainst θ1(𝜉) is ipresented in Fig. 

8.8. It is noted that iboth temperaturei and thermal iboundary layer are idiminished for higher 

𝑆1. Due to rise in 𝑆1, the temperature difference (between isheet, iambient ifluid) is ireduced 

that iresult in weakeri temperaturei profile and iapposite ithermal iboundary thickness. Figs. 

8.9  and 8.10  are idisplayed to iknow the inature of θ1(𝜉)  for idistinct ivalues of heat 

isource/sink iparameters �̂�1  and �̂�2 . iEnhancing nature of θ1(𝜉)  is inoticed for iboth 

iparameters �̂�1  and �̂�2 . iScientifically, higher iestimation of �̂�1  iincreases the iboundary 

layer ithickness and ihence it iacts as an iagent to igenerate iheat. Due to this ireason, an 

iamplification in θ1(𝜉) is iperceived for ihigher �̂�1(see Fig.  8.9). iImpact of N̂b and N̂t 

on θ1(𝜉) is idisplayed in Fig. 8.11 and 8.12. iSimilar iconduct of N̂b and N̂t is iobserved 

for θ1(𝜉)  and irelated layer ithickness. In fact, iadditional heat is icreated ithrough the 

random imotion of fluid iparticles insidei the iframe of ilarger iBrownian motion iparameter 

N̂b. iConsequently, θ1(𝜉) increases. iMovement of iliquid particles ascendsi ifrom hot to 

icool ilocations in the iframework for ibigger N̂t . It is iexpected an iexpansion in 

ithermophoresis iforce and itherefore the itemperature profile ibuilds up (see Fig.  8.12). 

Figs. (8.13 − 8.16) scrutinize the behavior of concentration Φ1(𝜉) against 𝐿𝑒,  Sc, N̂b 

and N̂t. Effect of Lewis number 𝐿𝑒 on Φ1(𝜉) is plotted in Fig. 8.13. It is notice that 
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increase in Lewis number 𝐿𝑒 leads to decrease in Φ1(𝜉). Behavior of Sc on Φ1(𝜉) is 

exposed in Fig. 8.14. Here Φ1(𝜉) is idecreasing ifunction of Sc. iPhysically Sc ienhances 

imomentum diffusivityi and thus iconcentration curvei idecreases. Figs. 8.15 and  8.16 are 

idesigned to istudy the iconcentration Φ1(𝜉)  for ilarger iBrownian iparameter N̂b  and 

ithermophoresis iparameter N̂t . It is inoticed ifrom Fig. 8.15  that iconcentration Φ1(𝜉) 

ireduces iwith rise in iBrownian iparameter N̂b . iPhysically, N̂b  improves iBrownian 

diffusioni ratei and as a iresult Φ1(𝜉) idiminishes. For igreater N̂t  iconcentration Φ1(𝜉) 

iincreases (see Fig.  8.16). As ihigher N̂t offer iascent to thermal iconductivity of ithe ifluid 

that iultimately iproduces ienhancement in Φ1(𝜉). Fig. 8.17 depicts the itotal iaveraged 

isquared iresidual ierror 𝐸𝑚,𝑡𝑜𝑡 at idifferent iorders of iapproximations 𝑚. 

Table 8.1: Numerical ivalues of −CF(Rex)
1

2 for various physical parameters. 

𝜆𝑓 S1 𝑀𝑒 Pr −CF(Rex)
1
2 

1.0 0.2 0.5 1.2 1.2975 

2.0    1.5033 

3.0 0.2 0.5 1.2 1.6122 

 0.4   1.2975 

 0.6   1.3044 

1.0 0.2 0.1 1.2 1.3189 

  0.5  1.3175 

1.0 0.2 1.0 1.2 1.2975 

   2.2 1.2747 

   3.2 1.2975 

 

Table 8.2: Numerical values of −𝑁𝑢𝑥(Re𝑥)
−
1

2 for various physical parameters. 
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λ𝑓 λ𝑣 N̂b N̂𝑡 B̂1 α1 𝜀1 𝑀𝑒 Pr −𝑁𝑢𝑥(Re𝑥)
−
1
2 

0.2 0.4 0.2 0.2 0.3 0.2 0.1 0.5 1.2 0.690618 

0.4         0.649362 

0.6         0.608331 

 0.1        0.684573 

 0.3        0.678502 

 0.5        0.672406 

  0.2       0.710402 

  0.3       0.730151 

  0.4       0.750126 

   0.1      0.704658 

   0.2      0.717790 

   0.3      0.729936 

    0.1     0.689512 

    0.3     0.689262 

    0.5     0.688432 

     0.2    0.706592 

     0.4    0.715294 

     0.6    0.720367 

      0.1   0.693605 

      0.2   0.696584 

      0.3   0.699562 

       0.1  0.696195 

       0.5  0.694292 

       1.0  0.692434 

        0.5 0.726713 

        1.0 0.762634 

        1.2 0.798277 
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Table 8.3: Numerical values of −𝑆ℎ𝑥(Re𝑥)
−
1

2 for various physical parameters. 

λ𝑓 λ𝑣 N̂b N̂𝑡 B̂1 α1 𝜀1 𝑀𝑒 𝑃𝑟 −𝑆ℎ𝑥(Re𝑥)
−
1
2 

0.2 0.4 0.2 0.2 0.3 0.2 0.1 0.5 1.2 0.487562 

0.4         0.486294 

0.6         0.484172 

 0.1        0.487403 

 0.3        0.488204 

 0.5        0.488562 

  0.2       0.475904 

  0.3       0.478485 

  0.4       0.480266 

   0.1      0.454873 

   0.2      0.438595 

   0.3      0.421272 

    0.1     0.487403 

    0.3     0.488200 

    0.5     0.488561 

     0.2    0.467321 

     0.4    0.467307 

     0.6    0.467228 

      0.1   0.466524 

      0.2   0.466281 

      0.3   0.466038 

       0.1  0.484342 

       0.5  0.502060 

       1.0  0.519874 

        0.5 0.461302 

        1.0 0.454521 
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8.6   Graphical outcomes 
 

 

Fig. 8.2: Response of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝑀𝑒 . 

 

 

 

Fig. 8.3: Response of 𝐹′(𝜉) 𝑤𝑖𝑡ℎ 𝜆𝑓 . 
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Fig. 8.4: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ 𝐸𝑐. 

 

 

Fig. 8.5: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ 𝑃𝑟. 
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Fig. 8.6: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ 𝜆𝑓 . 

 

 

Fig. 8.7: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ 𝜆𝑓 . 
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Fig. 8.8: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ �̂�1. 

 

 

Fig. 8.9: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ �̂�2. 
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Fig. 8.10: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑏. 

 

 

Fig. 8.11: Response of 𝜃1(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑡. 
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Fig. 8.12: Response of 𝛷1(𝜉) 𝑤𝑖𝑡ℎ 𝐿𝑒. 

 

 

Fig. 8.13: Response of 𝛷1(𝜉) 𝑤𝑖𝑡ℎ 𝑆𝑐. 
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Fig. 8.14: Response of 𝛷1(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑏. 

 

 

 

Fig. 8.15: Response of 𝛷1(𝜉) 𝑤𝑖𝑡ℎ �̂�𝑡. 
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Fig. 8.16: Totali iaveraged isquared residuali error 𝐸𝑚,𝑡𝑜𝑡for idifferent m. 

 

 

8.7   Conclusions 
 

Some of the conclusive remarks for the present work are presented below: 

• Temperature 𝜃1(𝜉)  enhances for greater estimations of �̂�𝑏, 𝜆𝑓 , �̂�1,

�̂�2 𝑎𝑛𝑑 �̂�𝑡 however it decays for increasing 𝑃𝑟 𝑎𝑛𝑑 𝑆1. 

• Velocity F′(ξ) enhances for 𝑀𝑒 while it decays for 𝑆1 𝑎𝑛𝑑 𝜆𝑓 . 

• Larger estimations of �̂�1 and �̂�2 decays temperature 𝜃1(𝜉) profile. 

• Outcomes of �̂�𝑏 and �̂�𝑡 are reverse on concentration Φ1(ξ). 
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