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Preface

Fluid dynamics is a branch of engineering science which deals with the analysis of different
fluids flow in different geometries under their rheological behavior. Analysis of non-
Newtonian fluids is now recognized for its several industrial and engineering applications.
Motivation of researchers in these material is through biological stuff (chemicals, vaccines,
syrups, blood, synovial fluid etc.), chemical material (cosmetics, grease, pharmaceutical
chemicals, shampoos, tooth paste, paints, oil reservoirs etc.) and food products (ketchup, ice
creams, mayonnaise, apple sauce etc.). Such materials do not obey the Newton’s law of
viscosity. All characteristics of non-Newtonian liquids are not completely described by a single
constitutive relation (model). Therefore, numerous models of such complex liquids have been
suggested for the discussion about their rheological characteristics. The non-Newtonian fluids
are categorized through three main classification (i.e., rate type, differential type and integral
type). In addition, the features of such materials within the frame of different domain have
benchmark importance in polymer and metal extrusion mechanisms, cooling of metallic
surfaces and crystal growth, paper production and glass fibres. The analysis of heat transfer
mechanism through cooling rate is an essential requirement of present industrial technologies.
Features of heat and mass transfer is based through various mechanisms like heat
generation/absorption, thermal radiation, Fourier’s law of heat conduction, convection, binary

chemical reaction, activation energy and Fick’s laws.

Keeping all these aspects in mind, the prime objective of this thesis is to study nonlinear
mathematical models subject to chemical reaction and Cattaneo-Christov heat and mass fluxes.
Solutions and analysis are performed by utilizing homotopy analysis technique and shooting

method. Finally, the structure of thesis is as follows:



Chapter one consists of literature survey of relevant published works and some basic
conservation laws. The basic concepts of homotopy analysis method (HAM) and shooting

technique are presented.

Chapter two addresses the axisymmetric convective, stagnation point flow of electrically
conducting nanofluid induced by a permeable cylinder. The Darcy-Forchheimer relation is
accounted to specify the flow nature in porous medium. Formulation of mathematical model is
given by using Tiwari-Das nanofluid model. The velocity and thermal slip conditions are
considered for present analysis. Implementation of appropriate transformation leads to
nonlinear coupled systems of momentum and energy. Resulting systems are cracked through
homotopic technique. The physical quantities namely, the skin friction coefficient and the local
Nusselt number are calculated at the cylindrical surface and elucidated through graphs and
tables. The contents of this chapter are published in “Results in Physics, 9 (2018): 771-778”.

( https://doi.org/10.1016/j.rinp.2018.02.073)

Chapter three describes dual stratified flow of Maxwell nanofluid subjected to Cattaneo-
Christov double diffusion scheme by nonlinearly stretched inclined cylinder. Key objective of
this chapter is to explore the physical aspects of Maxwell nanofluid flow by nonlinearly
stretched inclined cylinder in corporation with Arrhenius activation energy, non-uniform heat
generation/absorption, nonlinearly convection, dual stratification and binary chemical reaction.
Homotopy procedure yields convergence series solutions. Graphs are plotted to see the
behaviour of physical variables. Expression of Nusselt and Sherwood numbers are examined
numerically. The results of this chapter are published in “Heliyon 5 (2019): e01121”.

(https://doi.org/10.1016/j.helivon.2019.¢01121)

Chapter 4 reports the novel characteristics of Jeffrey nanofluid flow due to an inclined
permeable stretching cylinder manifested within the frame of homogeneous-heterogeneous

reactions, thermal stratification, mixed convection and stagnation point. Energy expression is



modelled by Cattaneo-Christov heat flux. The derived nonlinear systems are solved
analytically. Intervals of convergence are identified. The dimensionless fluid velocity,
temperature and nanoparticle concentration on varying physical parameters are demonstrated
by means of graphical and tabular outcomes. The contents of this chapter are submitted to

“Heliyon”.

Chapter five describes nonlinear mixed convective flow of Jeffrey nanofluid with Arrhenius
activation energy over an inclined permeable stretched cylinder. Features of non-uniform heat
generation/absorption, binary chemical reaction, thermal and solutal stratification are utilized
through no slip condition. The novel binary chemical reaction model is implemented to
characterize the impact of activation energy. Generalized versions of Fourier’s and Fick’s law
through Cattaneo—Christov double diffusion are employed to configure heat and mass transfer.
Graphs and tables are created to analyse the impact of governing parameters on interested
physical entities. The contents of this chapter are submitted in “The European Physical

Journal”

Chapter six explores the novel aspects of activation energy in nonlinearly convective flow of
Walter-B nanofluid subjected to Cattaneo-Christov double diffusion model over a permeable
stretched sheet. Generalized forms of Fourier's and Fick's law are utilized through Cattaneo-
Christov double diffusion. Walter-B nanomaterial model is used that describes the significant
slip mechanism namely Brownian and thermophoresis diffusion. Activation energy, dual
stratification, heat generation/absorption and binary chemical reaction are considered.
Mathematical problems are computed for convergent series solutions. Discussion is made for
dimensionless velocity, temperature and nanoparticle concentration. The outcomes of this

chapter are published in “Heliyon 5 (2019): e01815”. (https://doi.org/10.1016/j.heliyvon.

2019.¢01815).



Chapter seven aims to examine the novel features of activation energy in MHD nonlinear
convective flow of Casson nanomaterial within the frame of Cattaneo-Christov heat flux
model. Physical significance of heat transfer is based through nonlinear thermal radiation and
non-uniform heat generation/absorption. Formulation for Brownian motion and
thermophoresis is made through Buongiorno model. Additionally, impact of binary chemical
reaction, thermal and solutal stratification are studied. A validation of the work is offered by
comparing the current results with published literature. The contents of this chapter are

submitted in "Physica Scripta”.

Chapter eight is dedicated to discover the physical aspects of ferromagnetic Maxwell fluid flow
over a stretched sheet in the presence of magnetic dipole, non-uniform heat source/sink,
thermal and concentration stratification. Highlights of Brownian movement and
thermophoresis are also explored through Buongiorno model. The numerical solution is
obtained by using shooting method with the aid of fifth order Runge-Kutta-Fehlberg algorithm.
Skin friction coefficient, local Nusselt and Sherwood numbers are tabulated and analysed. The
contents of this chapter are published in "Physica Scripta, (2018)”.

(https://doi.org/10.1088/1402-4896/aaf6df)




Nomenclature

A Velocity ratio parameter

B, Magnetic field strength

(El, EZ) Heat generation/absorption parameters

C Fluid concentration

(Co,Cy, Co) Reference, wall and ambient concentration
Cr Skin friction coefficient

(c1,dy,dy, d3,dy)

Constants

(Dg, D7) Brownian diffusion and thermophoretic coefficients
Ec Eckert number

E; Activation energy

E, Activation energy parameter

F(&) Similarity function

E Forchheimer inertia coefficient

g1 Gravitational acceleration

Gr Grashof number

Jw Wall mass flux

J1 Mass flux

(kg ks, kng) Thermal conductivity of (fluid, solid fractions, nanofluid)
(K, Kp) Homogeneous and heterogeneous reaction strength




k* Boltzmann constant

K, Reaction rate parameter

K, Mean absorption coefficient
K? Chemical reaction rate constant
L Scale length

Le Lewis number

M Magnetic parameter

M, Porosity parameter

N, Brownian motion parameter
N, Thermophoresis parameter
Nu, Local Nusselt number

N, Buoyancy ratio parameter

p Fitted rate constant

Pr Prandtl number

q Embedding parameter

dr Radiative heat flux

qw Wall heat flux

q1 Heat flux

R, Radius of cylinder

(54 S,) Thermal and velocity slip parameters
Sc Schmidt number

Sh, Sherwood number




(51,5,) Thermal and solutal stratification parameters
T Fluid temperature

(Ty, Ty, To) Reference, surface and ambient temperature
(uy,u,) Axial and radial velocity

Uy, Uy, Us) Reference, stretching and ambient velocity
4 Mass transfer velocity

V, Mass suction/injection parameter

Greek symbols

& Similarity variable

ar Thermal diffusivity

() Ps) Prf) Density of (fluid, solid fractions, nanofluid)
s Dynamic viscosity of base fluid

(Vf) Vny) Kinematic viscosity of (fluid, nanofluid)
(%) Dimensionless temperature

Y1 Curvature parameter

Vo Chemical reaction parameter

V3 Chemical reaction rate constant

So Magnetic permeability

(B B.) Nonlinear thermal and solutal convection parameters
b1 Buoyancy parameter

B2 Deborah number

é Temperature relative parameter




(8e,8c)

Thermal and solutal relaxation parameters

¢ Nanoparticle volume fraction
ba Angle of inclination
Ty Shear stress at surface

((‘)17 W3, W3, Wy, Ws, (‘)6)

Avrbitrary constants

((0S5) - (0C),, (05»),,)

Heat capacity of (base fluid, nanoparticle, nanofluid)

(EFr £9! £<‘D)

Auxiliary linear operators

()

Dimensionless nanoparticle concentration

(Flr Fz, F3' l—‘4-)

Thermal and solutal expansion coefficients (linear & nonlinear)

(FeTe)

Thermal and solutal relaxation time

¥

Stream function
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CHAPTER 1

Literature Review

1.1 Introduction

This chapter is devoted to review the published articles related to the work presented in
this thesis (e.g. heat and mass transfer with activation energy, nonlinear mixed convection,
thermal radiation, nonuniform heat generation/absorption, homogeneous-heterogeneous
reactions and dual stratification) and the constitutive equations representing Maxwell,
Walter-B, Jeffrey and Casson fluid models are included to analyze the flow regime. For
the solution of the models homotopy analysis method (HAM) and built-in-shooting

technique are employed.

1.2 Background

Investigation of non-Newtonian liquids has attained notable consideration in recent couple
of years on account of its broad applications in engineering and industries. Some examples
of non-Newtonian materials are gypsum paste, yogurt, clays, printing ink, drilling mud,
blood, hydrogenated caster oil, paints, colloidal suspension, butter, ketchup, soup, jam and
so on. The intricate idea of non-Newtonian liquids offers great challenge to physicists,
mathematicians and engineers. Several models have been offered for the investigation of
non-Newtonian liquids in the literature. Since there is no single constitutive relation

(model) that completely predict all characteristics of non-Newtonian liquids. Various

4



constitutive equations were modelled to predict the rheological characteristics of such type
of materials. Additionally, there are various rheological complex fluid models which do
not display the features of relaxation and retardation time. These fluids are categorized as
rate and differential types [1-5]. To predict the characteristics of relaxation/retardation
time, Maxwell, Walter-B, Jeffrey and Casson fluid models were developed [6]. Mustafa et
al. [7] completed numerical computations for rotating flow of Maxwell liquid in view of
Cattaneo-Christov heat flux mode. Hayat et al. [8] considered the problem of Maxwell
fluid with the effects of melting heat transfer via homotopic technique. ljaz and Ayub [9]
presented nonlinear convective flow of Maxwell nanofluid in the presence of heat
generation/absorption and activation energy. Hayat et al. [10] discussed about thermally
stratified flow of Maxwell liquid with radiation. ljaz et al. [11] focused on stratified flows
with ferromagnetic Maxwell fluid by including heat generation/absorption. Hayat et al.
[12] examined the radiative flow of Jeffrey fluid in the presence of heat
generation/absorption. Hamad et al. [13] inspected stagnation point flow of Jeffrey fluid
with variable thermal conductivity over permeable surface. Physical features of Jeffrey

liquid with different assumptions are delineated (see [14-18]).

Mixed convective flow with stretched surface has practical implementations in
industries and engineering. Basically, it is coalition of forced and free convections. Key
role of main factors in the particle deposition include convection, Brownian diffusion,
turbulence, sedimentation, thermophoresis electrophoresis, inertial effect and surface
geometry. Some significant applications of convection phenomenon are nuclear reactor,
heat exchanger, solar thermal collectors and electronic equipment. Mixed convection 2D

flow on stagnation point through vertical surface is investigated by Ramachandran et al.



[19]. Hayat et al. [20] explained mixed convection impacts on viscous nanofluid flow
towards the stagnation point over a linearly stretched cylinder. Mixed convection
influening the nanofluid flow through cylinder along with heat source/sink was discussed
by Hayat et al. [21]. Unsteady radiative and mixed convective flow over stretched surface

embedded through porous medium was analysed by Mukhopadhyay [22].

Fourier [23] proposed a model to analyze heat transfer phenomenon for different
materials. This model was quite beneficiary in case of solids. But for fluids, this model has
some flaws; one of major flaws is of parabolic nature in its mathematical system which
does not predict the heat transfer in fluid flow accurately. This deficiency was overcomed
by Cattaneo [24] by adding thermal relaxation term (effects of thermal inertia). Christov
[25] revised the Cattaneo model by taking Oldroyd’s upper convected derivative for
thermal inertia. Ciarletta and Straughan [26] proved the uniqueness and stability of
Christov-Cattaneo model. Han et al. [27] described the slip flow of viscoelastic fluid
through stretched surface with non-Fourier heat flux model. Hayat et al. [28] discussed
Jeffrey model with Cattaneo-Christov heat and mass diffusion on stretched surface. Some

significant work has been presented in [29-34].

Ferrofluids has demonstrated some remarkable physical properties and their usage
in many smart appliances. Its electrical application has fascinated scientists and engineers
over the years. Ferrofluids are used in various equipments like lasers, avionics, cooling
agents, filtration, robotic, metal spining etc. Firstly, Anderson and Vanes [35] discussed
the features of magnetic dipole and heat transfer on ferrofluid flow due to stretchable
surface. Titus and Abraham [36] examined ferroliquid flow and warmth transfer over a

stretchable sheet. Neuringer and Rosensweig [37] inspected thermophysical characteristics



of ferrohydrodynamics. Mixed convective flow of ferrofluids with homogeneous/
heterogenous reactions and magnetic dipole is deliberated by Yasmeen et al. [38]. Impact
of suction/injection in the presence of magnetic dipole for flow of viscoelastic material is
considered by Zeeshan and Majeed [39]. Vtulkina and Elfimova [40] deliberated magnetic
characteristics of ferrofluids due to external magnetic field. Few recent articles identified
with ferrofluid flow are introduced in [41—43].

Chemical reaction and activation energy to study mass transfer phenomenon has
attracted many researchers after its number of applications in industry (i.e. chemical
engineering, cooling of nuclear reactors, thermal oil recovery and food processing). The

law of Arrhenius is generally of the form [44]:

K = B*(T — Ty, )Pexp [— (1.2)

k(T — Tyl
here K denotes the rate constant of chemical reaction, B* the prefactor (constant) based
on the fact enhancing the temperature that frequently causes remarkable increase in the
rate of reactions, E,the activation energy and k(= 8.61 x 107> eV /K) the Boltzmann
constant. Besides experimental study, theoretical efforts are acknowledged for activation
energy analysis in different flow problems. Short comings of theoretical study are also
found in literature. The complexities in predicting chemical reaction processes were main
hurdle. These types of problems are very difficult to handle. Practical problems
representing chemical kinetic reaction become very complicated, but if this is limited to
binary type reaction a lot of achievements are possible in this field. On the basis of
thermomechanics, Truesdell [45,46] initially formulated the balance equations for general

materials. Afterwards, [47,48] obtained exact solutions of incompressible Newtonian fluids



with a binary chemical reaction in boundary layer regime. Bestman [49] explored the
activation energy effects through porous matrix. Recently, Kandasamy et al. [50] discussed
chemical reaction effects on viscous fluid flow over a wall of wedge with different physical
assumptions. Bestman [51] analyzed the radiative heat transfer with effects of the
Arrhenius activation energy under the various physical conditions through a vertical

cylinder.

Heat generation/absorption directly changes heat distribution that ultimately effects
the rate of particle deposition in the medium. Heat source/sink have different situations, it
may be constant, space or temperature dependent. Abo-Eldahab and EIl-Aziz [52]
investigated hydrodynamic viscous fluid flow with heat generation/absorption. Abel et al.
[53] also described the heat generation/absorption phenomenon in viscoelastic fluid flow
with various assumptions. Abel and Mahesha [54] analyzed non-uniform heat source in
viscoelastic fluid flow past a stretching sheet. In [55-60] some related articles on heat

source/sink are presented.

The character of radiative heat transfer is quite phenomenal in various engineering
processes like nuclear power plants, process of solar heat generation hypersonic flights,
space vehicles, gas turbines, gas coolant nuclear reactors etc. Radiation phenomenon is not
medium-dependent while it varies against arrangement of geometry, properties between
temperature and surface which is emitting or absorbing heat. The influences of linear
radiation are not noticeable for excessive temperature difference because in this case the
involved parameter i.e., linearized Rosseland approximation has negligible effects [61],
whereas nonlinear radiation phenomenon is delineated with the aid of radiation parameter,

Prandtl number and temperature ratio parameter. Heat exchange with thermal radiation has



marvellous uses in numerous procedures including satellites, missiles and space vehicles.
Pantokratoras [62] investigated the both linear and nonlinear Rosseland radiations on
natural convective flow over isothermal plate by means of a novel radiation parameter
named as film radiation parameter. Cortell [63] discussed the nonlinear radiations influence
on viscous fluid flow past a stretched surface. Refs. [64-69] also described the nonlinear

radiations impacts on MHD fluids.

Although number of researchers has discussed various nanofluid models with flat
surfaces under different situations by taking stratified flow. So far, the chemical reaction
and Arrhenius activation energy under stretched cylindrical domain has not been
considered. Due to its various applications in industry main focus of this thesis will be to
examine Cattaneo-Christov heat and mass flux models by taking various viscoelastic
materials in the presence of chemical reaction. Features of double stratification, stagnation
point, non-uniform heat generation/absorption, MHD, binary chemical reaction,
homogeneous-heterogeneous reactions and activation energy are also taken into account.
Viscoelastic materials are one of the major subclasses of non-Newtonian models. These
materials have so many applications (e.g. in automobile bumpers, on computer drives to
protect from mechanical shock, in helmets (the foam padding inside), in wrestling mats, in
shoe insoles to reduce the impact transmitted to a person's skeleton etc.). Moreover,
synthetic viscoelastic materials can be injected directly into an osteoarthritic knee,
enveloping cartilage-deficient joints and acting as a lubricant and shock absorber. In the
formulation of mathematical models Tiwari-Das nanofluid model and Buongiorno model

are taken with careful consideration.



1.3 Fundamental laws

1.3.1 Law of mass conservation

According to the law of conservation of mass, mass can neither be created and nor can be

destroyed. Mathematically for compressible fluid it can be expressed as

9P V.oV = 0

in which p denotes the density and V, fluid velocity. After considering incompressible
fluid (p is constant), Eq. (1.2) implies:

For rectangular coordinate system it is written as

6u+6v+aw_0
ox dy 0z (1.4)

whereas in cylinderical form we have

1o, 19 0.
ror (ruy) r o6 (ue) 0z (uz) = 0. (1.5)

For axisymmetric incompressible flow the continuity equation is reduced as follows:

Uy

0 9]
7 + ﬁ(ug) + & (uz) = 0. (16)

1.3.2 Law of momentum conservation

This law states that linear momentum remains conserved of whole system. Newton’s

second law is used to derive it. Mathematically it becomes
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dv,
p——=V.T + pb.

dt (1.7)
For incompressible fluid the Cauchy stress tensor is described as
T=—PI+S, (1.8)

here P denotes pressure, I an identity tensor, S extra stress tensor and % the material

time differentiation.

For V1 = [u(x,y,t),v(x,y,t), w(x,y, t)], momentum equation in components form (by

using cartesian coordinates) can be written as

[0u du ou oul 0Ty, 0Ty 0Ty,
ow odw ouw. ou_ b,,
Plac T 4ax ey " Wazl T ax Ty T oz TP (1.9)
[0v Jdv Jdv 0v] O0Tyx 0Ty, 0Ty,
Plact¥ax P oy T Wazl = ax Ty Taz TP (1.10)
aw ow ow ow] 0T, 075, 0T,
Plac T ox TV T Wzl T ax T oy T oz TP (1.11)

where (Tyx, Tyy Taz Tays Txzr Tyxo Tyz Tzx » Tzy)  SHOWS components of Cauchy stress

tensor and (b,, by, b,) the body force components.

Using Vq = [u,(1,6,2),uy(r,0,z),u,(r,0,z)] momentum equation in cylinderical

coordinate system can be expressed as

aur+ aur+ugaur+ ou, uj 10 +16
Yoor T 0 "% e T | T ror (rtrr) r a0 (Tr0)

d Too b
+§(Trz) _T'l'p g (1_12)

11



dug ue dug dug U, Uy 10
p[ ru? T R ri ] 2o T“”H__(Tge)
d

+E (Toz) + pbe, (1.13)
auz U, ugauz du,] 10
[ Tar r 96 Zaz]_¥ar( ”)+ (TZ")

0(7;2)

+ + pb,.

9z (1.14)

In the above expressions (T,», Trg, Trz Tor» Toor Toz Tz Tz0,Tzz ) Fepresent Cauchy

stress tensor components and (b,., bg, b,) denotes components of body force.

1.3.3 Law of energy conservation

This law physically interprets that total energy of the framework remains conserved. It is

developed from first law of thermodynamics. Mathematically, we have

dT _ .
pCp— =L~ div(q) — div(q,), (1.15)

where pCp% indicates internal energy, t.L viscous dessipation, div(q) thermal heat

flux and div(q,) radiative heat flux respectively. While C,,T,q and g, represent for

specific heat, density, thermal and radiative heat fluxes respectively.

1.3.4 Law of mass conservation
It is defined as the total concentration of framework remains conserved. It is derived from

Fick's second law. The concentration equation in view of Fick’s law can be expressed as

dC
— = D(V?0),

dt (1.16)

where C symbolize for concentration and D for mass diffusivity.

12



1.3.5 Law of energy conservation for nanofluid

The energy expression within the frame of nanofluid can be defined as

dT
(pCp)fE = —div(q) + hy(V.J;), (1.17)

where T for temperature, g for energy flux, J,, for mass diffusion flux of nanoparticles,
C, for specific heat of nanofluid and h,, for specific enthalapy for nanoparticles. Energy

and mass fluxes (g,J, ) are defined as

q = —kVT + h,J, (1.18)

vT

= —p,DgVC — p, Dy ——
Jp = =PpDsVC = ppDr o, (1.19)

in which p,, defines for mass density of nanoparticles, k for thermal conductivity, Dy for

Brownian diffusion and Dy for thermophoretic diffusion.

The energy expression for nanfluid in view of Eqgs. (1.18) and (1.29) is written as

6, 2L = kv2T + pyc, | DpvC. VT + D VT'VT]
Pop e = Potp 7BV T | (1.20)
1.3.6 Law of mass conservation for nanofluid
The concentration equation within the frame of nanofluid is
A (v.J,)
ot <t TT T p RS (1.21)

The concentration expression for nanofluids in view of Eq. (1.19) is given as

13



aC+V VC = DgV3C + D Ve
ot v T 7B T, (1.22)

1.4 Mathematical formulation of heat flux models

1.4.1 Fourier's law of heat conduction

In 1822, Fourier states that rate of heat transfer with the passage of time is directly
propotional to the product of negative temperature gradient and area. Mathematically, it is

written as
Q x —A,VT, (1.23)

where A; denotes cross sectional area of the fluid flow and VT is defining the temperature

gradient. Now heat flux g relation is

Q

=" (1.24)

hence conduction Fourier law takes the following form

q = —kVT. (1.25)

Fundamental deficiency of this law is that constitutional interruption is instantly sensed
by medium under consideration. In fact it is infeasible, so this is recognized as “Paradox
of heat conduction”. To resolve this issue various modification have been proposed by the

scientists.

1.4.2 Maxwell-Cattaneo model

In 1948, Cattaneo resolved the paradox of Fourier's law by introducing thermal relaxation

time which characterize the time necessitated for heat conduction to built in a volume

14



element when temperature gradient is imposed across it. Mathematical expression of

Maxwell-Cattaneo (MC) model is

here A represents the relaxation time and the modified form involved in above equation

. a - n H 1Al
(z.e.,Aa—‘t’) is known as "thermal inertia".

1.4.3 Cattaneo-Fox model

In 1984, Straughan and Franchi [70] proposed a new theory for heat flux. In this model
they introduced Juamann derivative for g in Maxwell-Cattaneo model. Thus Cattaneo-

Fox model is

aq
q; + 4 [E — Eijk*Wi gk ] = —kVT, (1.27)

where k* = (0,0,1) and w = %curl (V).

1.4.4 Cattaneo-Christov model

In 2009, Christov swapped the ordinary derivative by upper convective derivatives. After
this modification of Maxwell-Cattaneo theory, main advantage is that one can eliminate g
thus yielding a single equation for thermal field. Finally, the Cattaneo-Christov model

becomes:

aq
q+1 [E +V1.Vq — q.VV; + (V.Vy)q| = —kVT, (1.28)
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1.4.5 Fick's law

The concentration equation is based on the Fick's law [71] and it is of the form

Z—S +V,.VC=-V.]J, (1.29)
here normal mass flux J mass is defined as
J = —DVC, (1.30)
from Egs. (1.29) and (1.30), one has
(1.31)

aC+V VC = —DV?2(C
at 1. - .

1.5 Solution procedures

1.5.1 Homotopy analysis method (HAM)

According to Liao [72], this analytical method has the following advantages on other

techniques:

e It provides a series solution without depending upon small/ large physical
parameters involved in series solution and applicable for not only weakly but also

strongly nonlinear problems.
e |t guarantees the convergence of series solutions for nonlinear problems.

e It provides us great choice to select the base function of the required solution and

the corresponding auxiliary linear operator of the homotopy.
Brief mathematical description of HAM is as follows:

Consider a nonlinear differential equation:
16



N*w(™)] +u(r) =0, (1.32)

where N* denotes nonlinear operator, u(r) for a known function and w(r) is unknown

function to be determined. The homotopic equation is
(1= L[w(r; q) —wo(M)] = qhH(P)N"[W(r; ) — wo(r)], (1.33)

here g € [0,1] is the embedding parameter, H(r) # 0 is an auxiliary function, a(# 0) is
a nonzero parameter, £ is an auxiliary linear operator, wy(r) is an initial guess of w(r)
and w(r; q) is an unknown function, respectively. It is significant, that one has great
freedom to choose auxiliary parameters in HAM. Noticeably, when ¢ =0 and q = 1,

following holds
w(r;0) = wy(r) and w(r; 1) = w(r), (1.34)

expanding w(r; q) in Taylor series with respect to g, one obtains

= 1 0™w(r;q)
— — m -
w(r; q) = wo(r) + mE Wm (r) @™ where win (r) = 20— o (1.35)

For convergence of above series solution, the value of A play important role. Substituting

q = 1, one gets

o (1.36)
W(r) = wo(r) + ) W),

by defining a vector w = (wy(r), wi(r), wy(r)..... w,(r)) and differentiating Eq.

(1.30) m-times w. r. t. (q) at g = 0, one obtain deformation of m** —order as

17



d (1.37)
W(r) = wo(r) + ) wn ()
m
LWy, (1) = XmWm-1()] = RH(@)Ry[Win—1], (1.38)
_(0 m<1, (1.39)
Am = {1 m> 1.
where
1 0™ IN*[w(r; q)]
Rywm-1]l = — - .
mL¥m m! aqm 1 4=0 (1.40)
Taking £7* of Eq. (1.38),
Wm(r) = Xme—l(r) + hH(r)Rm[Wm—l]- (141)
In this way one can obtain w,, for m > 1, at m** — order
M
w(r) = Z Wy, (1).
froounr (1.42)

1.5.2 Shooting technique

Shooting method [73] deals only initial values problems. Thus, modeled equations are

converted into first order ODE’s.
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CHAPTER 2

Mixed convective flow of nanofluid with Darcy-

Fochheimer relation and partial slip

2.1 Introduction

This chapter addresses axisymmetric mixed convective, stagnation point flow of
electrically conducting nanofluid with velocity and thermal slip conditions by a permeable
cylinder. The Darcy-Forchheimer relation is taken due to porous media. Tiwari-Das [74]
nanofluid constitutive law has been utilized to configure flow situation. Water-based
nanofluid with nanoparticle of titanium oxide, aluminum oxide and copper is considered.
After using similarity variables, the flow-govern system is transferred into nonlinear
ordinary differential equations. Analytical approach HAM has been utilized to solve flow-
govern system. Thermophysical features of problems are discussed by computing velocity,
temperature and concentration profiles versus physical parameters. Physical characteristics

in surface vicinity are described by coefficients of wall friction, wall heat and mass fluxes

2.2 Mathematical formulation

Here we analyze mixed convective stagnation point flow of nanofluids by a permeable
stretched cylinder having radius R,. The physical sketch of the flow problem is presented

in Fig. 2.1. The flow analysis is considered under Darcy-Forchheimer law. The velocity
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components along cylinder and radial direction are symbolized by u, and u,

U()Z

respectively. The flow is generated due to stretching velocity of the form U, (= T) and

wall temperature T,, = T, +AL—T. Free stream velocity and ambient temperature are

ZUso

represented by U, (z) = - and T,. The mathematical model has been formulated based

on Tiwari-Das nanofluid model. Using boundary layer approximation, one can get the

following governing equations [75]:

Rgg—és
—
+
N — [
! (u,,2)
7,
| .
I (u, r)
' S

Fig. 2.1: Physical model.

0 0
o (ru,) + FP (ruz) = 0, (2.1)
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ou, ou, oU, 0%u, 10u,\ 0B} Vnf
Yoy Ty — U 6z+vnf<6r2 T o +pnf(U1_uZ)_E_1uz
+(1-
_ful+ dpsPs + (1 — P)psPs 9T —T.),
Pnf (2.2)

oT N oT kns (aZT N 1 6T>
U,—+u—= —+t=-=
0z or (pCp)nf or2 ror (2.3)
The definitions are [76]
V. = ’uf
(- )25 - $)ps + bps] (2.4)
pnr = (L= @)ps + ¢ps, (2.5)
kng _ (ks + 2kr) — 2¢ (ks — ks)
ke (s + 2kp) + $(hp — k) (2.6)
(pCp)nf =1~ qb)(pCp)f + (l)(pCp)S. (2.7)
The associated boundary conditions are:
Ju, aT
uZ:UW+V26r' u,. =V, T=Tw+V3§ atr = Ry,
u, =U; = I u, =0, T - Ty asr — oo, (2.8)
By considering iappropriate itransformations [77]
_ (UovsR§ _ |UovfL (r* — R§
tvl—( ) F® i= S )
T—T, =229
=7 0@ (2.9)

where, ¥, is the stream function, which equitably satisfies the continuity Eq. (2.1) and is

defined as
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10w, 10w,
-1 - ___ - 2.10
Uz =5 or’ U r 0z (2.10)

After applying Egs. (2.9) and (2.10) incompressibility condition is trivially satisfied and

flow Egs. (2.2) — (2.3) become

1 (1 + 2y, OF" + 2y, F" — My F’
o , + FF" + A?
(1_¢)2.5(1_¢+¢z_;)( +M2(1_¢)2'5(A—F) >
SBS
— ¢+l
—(1+E)F? + ( ppﬁf) £.6 =0,
(1 —et d’ﬁ) 2.11)
eny /Ky [(1+ 2y,8)8" + 2y,0'] + Pr[FO' — F'8] = 0,
(1002 )
pCy) (2.12)
with

F®) =V, F'(=1+S5F"(¢), 0¢)=1+56'¢) at&=0,
F'(¢§) =4, 0(&)=0, asé — oo, (2.13)

Different dimensionless parameters are defined as

v = Vel 8 =ﬂ GrzglﬁfATb” S V3r U0 A=U—°°
V7 |UpR2" "t T ReZ’ v * TRy |vL’ Uy’
. ¢ _ oBZL C
~ VfL Vzr UO F;_ = b ) M = 0 P’r‘ = l{\—p
O T R L ; prlo Ky
01 O z\[f (2.14)
The skin friction Cr and local Nusselt number Nu, are described as
T L
CF — w2 ’ Nuz qw
prU% keAT (2.15)
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In which t,, and q,, (i.e., surface shear stress and surface heat flux) are

du,
Tw = Hnf 5" e
—80
oT
= —kpr—| .
T = 75 G, (2.16)

In non-dimensional form, Cr and Nu, are

Cr(Re,)? = —2_F"(0),
A= $)73

Gk (2.17)
NuZ(ReZ) 2 = —k—fL10 (0).

In which Re, (= %) is local Reynold number and setting L, = %
f

2.3 Methodology

The nonlinear coupled Egs. (2.11)-(2.12) along with the boundary conditions, Eq. (2.13)

has been solved with the help of Homotopy technique. The initial solutions

(F°(8),6°(8) ) are

FO) =V, +A¢ + 11;;1 - i;iexp(—f),
6°() = 7 TS, exp(—%), (2.21)
£:[F]=F" —F', £0[0] =6" -6, (2.22)
with
Erlwy + wyexp(§) + wzexp(=§)] =0, (2.23)
Eg[wsexp(§) + wsexp(~§)] = 0, (2.24)
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inwhich w; (j =1 —5) are arbitrary constants. The problems at zeroth and mth —order

are as follows:

2.3.1 Zeroth-order systems

The relevant deformation problems at this order are
(1= QEF[F (&P — FO(O)] = qheNe[F (& 9D, 6(5; )], (2.25)
(1= E[0(5 D) — 0°(D)] = qhoNo[F(£: D), 0(5; D), (2.26)
FOO;9) =V, F'(0;§)=1+S,F"(0;§) and 6(0;4) =1+S5,0'(0;), (2.27)

F(&g =4 and 8(59) -0 asé— oo, (2.28)

—~ra o~ A 1 (1+2 )I’;‘vm_l_z B — M.
NF[F(E;Q),H(&CI)]= 1413 Y1 f )

(1 — )25 (1—¢+¢5—;>< +M?(1 = ¢)* (A~ F")

(1- 6+ p2)

PP 42— (14 B)F2 + SLY)
(1 —et d’@) (2.29)
A R kne/k A A
No[F(&9),0(59)] = f/&c)[u+2nawwan91
(1 I )
+Pr[F' — F'8). (2.30)

The values of embedding parameter g lies in the interval [0,1].For § =0and§ =1

we have
F(&0)=F°(&), 6(&0)=06°%),
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FEGD=F©, 61D =60 (2.31)

2.3.2 mt — order systems

The deformation system at this order are

ErlFn(§) — XmFm-1(§)] = hpR (D), (2.32)
£9[6m(§) = XmOm-1(§)] = hoRA (), (2.33)
Fn(0) =0, F,(0)=S,F(0) and 6,,(0) = S65,(0), (2.34)
E, >0 and 6,-0 asé- o, (2.35)

Nonlinear operators for momentum and energy equations are

1
Rrb;l(f) = P, ((1 + 2y, OFp" 1 + 2y1Fp g — MlFrln—l)
(-9 (1-0+05)
m-—1 MZ
+ Foo1-kFy — (1 + E’)Fr,n—l—kFlé - ) Fy,
= (1-9+02)
Pr
. 1-g+pLsbs
+ “—ﬂ,s + AZ) (1= xm) + %ﬁlem_p
(1‘*"*‘1’3) (1‘4’“%) (2.36)
k /k 144 !
RE,(€) = i (fp ) (1 +2y,8)0}_1 + 2y165n_1)
p
1-¢+ :
( pro (pc,»f)
m-—1
+Pr Z (Frn—1-10k — Frne1-10k)-
k=0 (2.37)
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By Taylor series expansion
FE&D) = FO© + ) Fa(Od™
m=1

m

19 X
En(§) = ﬁaTmF(f‘ Q)

)

4=0 (2.38)

6D =0 + ) 6™,

m

1 0
Hm(s;) =—

mlaogm

0|
4=0 (2.39)

The above series (2.38) and (2.39) converge at g = 1 by selecting appropriate auxiliary

parameter and thus one has written

FO=F(+ ) Fu(d),
; (2.40)

0(5) =6+ ) 6,(D).
;1 (2.41)

General solutions (£, (&), 0,,(£)) of Egs. (2.32) and (2.33) in view of special solutions

(Fr (), Om($))
Fn(§) = Fn(§) + w1 + wpexp(§) + wzexp(=), (2.42)
0m(§) = 05 (8) + wsexp($) + waexp(=3). (2.43)

Using boundary conditions (2.34 and 2.35), the values of constants w; (j = 1 —5) are
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1 0E. (&) Sy 0 (§)

= — = — — E*
PTTES, 0 I, 1+sS, o¢ o w1 =~ — Fr(0),
S¢ 00,(8) 1
=— ————85(0), = w, = 0.
s T1+s, o o 15 m(0) @2 = @ (2.44)

2.4 Convergence analysis

The h —curves of Al,0; — water, Cu —water and Ti0O, —water nanofluids have been
displayed in Figs. (2.2) — (2.4) for F"'(0) and 6'(0). It is observed that acceptable
ranges of hp and hg —curves for Al,05, Cu and TiO, with water base nanofluid ranges
are (—1.0<hy<-02,-09<hy <-0.2), (1.1 <hy <-04,-09 < hg <-0.2)
and (—=1.0 < hy < —0.3, —0.9 < hy < —0.2) respectively. The admissible values of
physical parameters for plotting h —curves of Al,0; — H,0,Cu — H,0 and TiO, — H,0
nanofluids include ¢ =0.1, M =0.02, M; =F =0.01, S, = A=y, =, =02,
S, =10 and B; =0.1 (seeFigs.(2.2) —(2.4)). Table 2.1 shows thermophysical
effects of nanoparticles. Table 2.2 demonstrates convergence of homotopic solutions for
the momentum and energy. It is examined that 25", 22™4 and 32" orders seems to be
acceptable for velocity convergence when Al,0; — water, Cu —water and Ti0O, —water
nanofluids are under consideration. Further 22™¢, 20" and 32" approximations are
appropriate for the convergence of 6'(0) for Al,0; — water, Cu — water and

Ti0, —water nanofluids.
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Fig. 2.3: h —curves for Cu — H,O0.
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Fig. 2.4: h —curves for TiO, — H,O0.

Table 2.1: The properties of Al,05, Cu, TiO, and base fluid H,0.

ax107 [ x107° Kk P C, oC,
Formula
m?/sce 1/K W /mK Kg/m3 J/kgK j/m3k
Al, 0, 131.7 0.85 40 3970 765 3037050
Cu 1163.1 1.67 400 8933 385 3439205
TiO, 30.07 0.9 8.954 4250 686.2 2916350
H,0 1.47 21 0.613 997.1 4179 4166880.9
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Table 2.2: Solutions convergence for Al,0; — H,0,Cu — H,0,TiO, — H,0 when S, =

A=y, =V,=02, ¢ =0, =01, M=0.02 M, =F =0.01and S, = 1.0.

Conv. Al,05; — H,0 Conv. Cu— H,0 Conv. TiO, — H,0

Order F(0) 6'(0) Order F”@©) 6'(0) Order F”(0) 6'(0)

1 0.72093 0.70113 1 0.74036 0.70109 1 0.70250 0.70260

10  0.79640 0.74402 8 0.89195 0.74042 8 0.70650 0.74905

15  0.78721 0.74425 15  0.89451 0.74067 13 0.74905 0.74922

22 0.77391 0.74500 20  0.88342 0.74004 22 0.77866 0.74980

25  0.77342 0.74500 22  0.88072 0.74074 30 0.77079 0.75041

30 0.77342 0.74500 28  0.88072 0.74074 35 0.77079 0.75041

32 0.77342 0.74500 35 0.88072 0.74074 40 0.77079 0.75041

2.5 Results and discussion

This section presents outcome of various pertinent variables on velocity, temperature, skin
friction and local Nusselt number. Here impact of involved parameters on interested
physical quantities is discussed. Velocity behavior for A is revealed in Fig. 2.5. Here
velocity F'(§) increases both for A > 1 and A < 1. The increase in A boosts up free
stream velocity that ultimately enhances F’ (). This growing behaviour of F'(¢) remained
same when either free stream velocity dominates or followed. Thickness of boundary layer
has reverse effects. Fig. 2.6 reflects the effect of volume fraction of nanoparticles ¢ on
F'(§) . Decrease in F'(¢) is notified for increasing ¢ because with increase in

nanoparticles more resistance produces consequently motion slows down. The present
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study depicts the thinning effect of boundary layer due to existence of Al,05, Cu and
TiO, nanoparticles. Here effect of Cu and TiO, nanoparticles are prominent when
compared with copper. Figs.(2.7 and 2.8) deliberates mixed convection parameter ;on
velocity profile for the cases known as assisting, forced and opposing convection flows.
Fig. 2.7 predicts that nanofluid velocity escalates against mixed convection parameter f3;.
Basically, mixed convection parameter states the measure of buoyancy force as compare
to inertia of external/free stream flow. The physical reason of an increase in velocity is due
to increase in buoyancy force that acts as a favorable pressure gradient. This pressure
gradient ultimately forces the fluid to be fast. A significant reduction in magnitude of
velocity is noticed through Fig. 2.8 i.e. for opposing flow (8; < 0). For positive values
of B, the effect of copper nanoparticles is less while for negative values opposite behavior
is observed. Permeability parameter V,, effects on linear momentum are exhibited in Fig.
2.9. The fluid velocity F'(&) decreases in the presence of nanoparticles. From Fig. 2.9 one
can see the decrease in boundary layer for suction parameter. The variation of M; on
F'(&) is checked in Fig. 2.10. Here parameter M, reduces the fluid velocity because for
higher values of M;, adhesive forces reduces. As a result, velocity and boundary layer
thickness of nanofluid declines. Less velocity is noticed for Cu nanoparticles. Effect of
velocity slip parameter S,, for F'(§) is displayed in Fig. 2.11. The expected outcome of
slip parameter S,, is a reduction of velocity in the neighborhood of boundary and hence
declines the boundary layer thickness. This resulting behavior of velocity F'(¢) is due to
decline of adhesive forces between cylindrical surface and fluid. The influences of thermal
slip parameter S; on fluid energy are delineated through Fig. 2.12. The results show the

decreasing temperature with an increase in S;. Physically decrease of temperature
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difference in ambient fluid and cylinder surface is identified by diminish in temperature
curves. Velocity profile for inertia coefficient E. is displayed via Fig. 2.13. The result
shows decreasing behavior of velocity with increase of E.. As the increase in E. produces
more resistance in flow field that declines velocity curve. Nusselt number and skin friction
coefficients for numerous parameters such as volume fraction ¢, curvature parameter y;,
permeability V,, and mixed convection parameter f3; are displayed in Figs. (2.14 — 2.17).
Increase in Nusselt number was noticed (see Figs. 2.14 and 2.15) for increasing volume

fraction @ of nanoparticles and curvature parameter y, respectively.

Increasing  behavior of skin friction coefficient is also observed

(see Figs.2.16 and 2.17)  versus permeability parameter 1, and mixed convection
parameter S, respectively. For opposing flow, reduction of skin friction coefficient is

identified for larger mixed convective parameter (see Fig.2.17).
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2.6 Graphical outcomes
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Fig. 2.5: Variation of A on F'(§).
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Fig. 2.6: Variation of ¢ on F'(¢).
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Fig. 2.7: Variation of ; > 0 on F'(§).
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Fig. 2.8: Variation of g, <0 on F'(¢).
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Fig. 2.10: Variation of M, on F'(¢).
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Fig. 2.11: Variation of S, on F'(§).
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Fig. 2.15: Variation of Nu,(Re,) 2 0n y;.
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Fig. 2.16: Variation of Cz(Re,)z 0on ¢.
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Fig. 2.17: Variation of Cr(Re,)z on B;.
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2.7 Conclusions

Major findings of presented study are as follows:

Fluid velocity is an increasing function of volume fraction ¢ of nanoparticles.

Impact of velocity slip parameter S, and thermal slip parameter S, leads to

reduction in velocity and temperature respectively.

An increase in inertia coefficient £. and local porosity parameter M; reduces

velocity.
For larger V,, and B, skin friction coefficient enhances.
Rate of heat transfer increases via larger y; and ¢.

Velocity in all cases is noticed less for Cu nanoparticles when compared to Al,04

and TiO, nanoparticles.
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CHAPTER 3

Nonlinearly convective stratified flow of Maxwell

nanofluid with activation energy

3.1 Introduction

Main objective of present chapter is to configure stratified flow of Maxwell nanofluid
driven by nonlinearly stretched inclined cylinder with activation energy. Cattaneo-Christov
double diffusion scheme is utilized for heat and mass transfer analysis. Brownian and
thermophoresis diffusions are focused in this analysis. The non-uniform heat
generation/absorption and binary chemical reaction are considered for current flow
configuration. Modified Arrhenius formula for activation energy is implemented. The
governing flow equations are solved with the aid of homotopy technique. Velocity,
temperature and concentration profiles are computed, and effects of involved flow
parameters are analyzed via graphs. Both interested physical quantities i.e., Nusselt and
Sherwood numbers are calculated numerically. Computed results are compared with

published results in limiting case.
3.2 Mathematical formulation

Consider the nonlinear convective flow of Maxwell nanofluid with Cattaneo-Christov heat
and mass diffusion model. Fluid flow is investigated by nonlinearly stretching velocity
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UQZn

UW( L

) with stretching rate U, > 0. Here focus will be to analyze the effects of non-

uniform heat source/sink, binary reaction, dual stratification and Arrhenius energy.
Buongiorno model of nanoparticles is incorporated. The flow configuration of the system

is displayed in Fig. 3.1. Temperature and concentration at cylindrical surface are T,, =

d d : :
To +fz and C,, =C, +%Z. where as ambient temperature and concentration are

stratified as T, = Ty + % and C,, = Cy + %, respectively. The modelled governing

equations are:

Fig. 3.1: Physical model.

9] 9]
F (ru,) + EP (ruy,) =0, (3.1)
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ou, ou, 0%u, 0%u, 0%u, 0%u,
Ur gy Ty T Am <u§ 92 " uy arz T 2ty aroz) ~ "L orz

+fj—;[w ~Ta) T =T )? 4 (€= C) 4 T(C = Co VlcoSper

According to Cattaneo-Christove double diffusive scheme [78], we have

~ [9q -
q1+ e [a_tl +V1.Vqy — (q1. V)V + (V. V1)CI1] = —k;VT, (3.3)

0
Jo +Te [a_tl + V1. Y]y — (J3. V)Vy + (V. Vl)ll] = —DgVC. (3.4)

By taking [, =T, = 0, the generalized models reduce to classical form. For steady

(% = % = 0) and for incompressible fluid (V.V4) one has
q1 + Lo [V1.Vqy — (q1. V)V4] = =k, VT, (3.5)
J1 + [e[V1. V] — (J1. V)Vq] = —DgVC. (3.6)

The energy and concentration equations for non-uniform heat source/sink, Arrhenius

energy, thermophoresis and Brownian motion are

6T+ aT+fH ks 1a<ar>+ Om
Upr o T U5 elle = —o\T" o
or 0z (pcp)f ror\ or (pcp)f
reD acaT+11DT ((’)T)Z
BB ey ar T T, \or) 3.7)
ac+ BC_HQH _ D 6(66)+DT16(6T)
Urgy "YUz, T iete T Ve T or Ty 7 OT "or
_ _ T \P E,
~Ry(C = C) = R(C = €o) (=) exp [-L],
o (3.8)

with
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Uyz™ d,z
u, = I , T:TW:TO-I_T'

dsz

U, = Vl’ C= CW = CO + T (39)

atr = Ry,

d,x
u, -0, T—> T =Ty +—

dL whenr — oo,
u- -0, C- Cy —Co+% (3.10)
. 6T+ 92T (’)T( ou, aur>+2 92C
SWgm T Uzt g, Tyt Bk g (3.11)
4 0T( du, N aur)
0z\"““ 9z "W or )
1o, zazc+ac( ou, aur>+2 92C
c =W TGz T Y2 g, T Wy Ytz 5raz
ac( ou, 6ur) (3.12)
9z\"*"az """ ar )
The non-uniform heat source/sink Q,,, [79] is defined as
~ Uyker. oF
0, = ZV:/lf [Bl(TW - To)a—E + B,(T — To) |, (3.13)

where B; and B, are for space and temperature dependent coefficients of heat source

/sink. By introducing the following transformations [80]

_ \/(m + 1) Ugzm1 <r2 — RS) . (6) = \/ 2 v Uyzm+1 FE)

2 Lv, 2R, m+1 L

co

TW_TO’

o)

C—
0(%) = OO = wl) = )

m@———J“jﬁ””“mea+d m ) Fe)

(3.14)
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The flow expressions under above transformations take the form

1+ 2y, OF" 2m F'?2 + FF" + y,F" (3 DF'F'F+ 2m(m — 1) F’3
Y1§ m+1 Y1 B2 m m+ 1

1 -1 _\° -1
—.32<m; (F"'F2+y1(1+2ylz)—1(F+z 1F’)>F")—ﬁz(m2 S

m
m +

2 . _ .
7 B1[(1+ 5.0)8 + Ny (1 + B.®)P] cos p, = 0, 15

-~

_ N
(1+ 2y,%) [e" +PrA, (e'cp' + I\Al—te'2 + EcF"2>l + 2y,0' + PrFe’
b

m+1 m+1
—Prd, [T (0"F2 —FF'0') + (S, +0) (ml:’2 — TFF”)]

m+ 1

+ (B,F' + B,6) — Pr(S; + ©)F' =0,

-~

N, N, 2
1+2 " +—0" 271D’ + ScF®' + 2 — )0 — Scy,®
1+ 2y49) < + A ) + 2y, P+ 5¢ + 2y, <Nb> 1 CY2

Scs [<m+1>(d>”F2 FF'o) + —— (S +c1>)( F'2 m+1FF”)]
©c {2 m+ 12 mn 2

E
Sc(S, + ®)F' — Scys(1 + 60)P exp [— 2 ] =0,

m+ 1 1+ 66 (3.17)
with
F(§)=1 F=0 0@ =1-S, ®@=1-5, at§{=0,
F(§)=0 6()=0 &¢)=0 as§- oo, (3.18)

where physical flow parameters are defined as
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_m-_ Uofezm_1 = I3(Cy, — Co)
5—Z7Z 2 , 0, = —— =
m+ 1R5U, L

g1y (T, — TO)Z3 = 7,07 (T, — Tp)
r = N, =

F3 ’ Vf ot TOOV]_ rTa
S 7,D5(Cy, — Co) c= Uy . _ 9115(C,, — Co)z*
’ vi T G(T =Ty V2 ’
KL LR (T, —Tp) g = I,(T,, — Tp)
V2= m1 Y3 Ty gm1 T, Pt r,
Physical entities near surface are defined as
CF 2TW ZqW ZjW

=—, Nu, = ————, Sh, = ————,
prU% z k¢ (T, — To) *  Dg(Cy —Co)

where wall shear stress, wall heat and mass flux are defined as

Ju,
or ’

T=R0

p o o
Qw = far r=R0' Jw =

D oC
5 ar T=R0.

Tw = (1+5;)

In non-dimensional variables we have

1 1 1 2

> GeRe)t = (F=) (1 + P (O)
Nu,(Re,) 2 = — (= i 1)7 0'(0),
sh,(Re,) t = — ("0 2) w'(0),

Zm+1U0

here Re, = is the local Reynold number.

Vi
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YT n(T, — To)

V1 _dy
DB; 1 — dli
E
Tok*
(3.19)
(3.20)
(3.21)
(3.22)



3.3 Methodology

The coupled nonlinear system (3.15) to (3.18) is tackled analytically with the help of

HAM. The comprehensive description of HAM is provided below:

The initial approximations (F°(¢),6°(£),°(¢)) and auxiliary linear operators

(Ep, £g,£p) are

FO(®) = 1 — exp(-9),
8°(¢) = (1 — Sy) exp(—¥),
dO() = (1 —S,) exp(=¥), (3.24)

Ep[Fl=F" —F, £4[0]=0"—0, £o[P]=0"—, (3.25)

with properties

Er[w,exp(—=§) + w; + wzexp(§)] =0,
£glwsexp(—8) + wsexp(§)] = 0,
£o[wsexp(—8) + w7exp(8)] = 0. (3.26)

According to procedure (see Ref. [81]), one has

Fn() = F'in(§) + w1 + woexp(=$) + wzexp($), (3.27)
0m (§) = 05 () + wsexp($) + waexp(=3), (3.28)
D (§) = P (§) + wyexp($) + wgexp(=3), (3.29)

where (F*,,(£), 05, (8), ®5,(€)) are the special solutions and w; (j = 1 —7) are the

arbitrary constant given by
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OF " 1 (§) NG

- Az Y Wy = Y
I i .,

we = —P7,(§)]e=0 w3 = ws = wy; = 0. (3.30)

wy = —F,(0) + wy = =0 (§)le=0,

3.4 Convergence analysis

Auxiliary parameters involved in HAM provide great freedom to find region of
convergence for velocity F’'(0), temperature 6'(0), and concentration &®'(0) profiles.
Therefore, h —curves of 20™ order approximation are shown in Fig. 3.2. Permissible
values of hg, hg and hg lie in the ranges (—1.7 < hy < —0.7), (=1.6 < hg <
—0.9) and (—1.5 < hy < —0.8). Table 3.1 suggested that 26™, 30 and 20t order
of approximations for F”(0), 6'(0) and &'(0) are sufficent for convergence. For the

present analysis, we have considered the following values of emerging parameters.

Y1=PB,=5,=8,=03, Pr=Sc=15pB=S,= B, =B =6 =B,=0.2, y; =

N,=E,=6=10,p=N,=m=8, =N, =05,y, =09,Ec=1.0 and ¢a=§ .
Table 3.2 shows local Nusselt number Nu, and Sherwood number Sh, variations versus
involving parameters. Local Nusselt number enlarges against &., Pr and S,while reverse
effects are recorded against B;, N,, S; and &.on it. Additionally, Sherwood number
enhances versus 8., Ny, S,, Prand B; while it declines against S; and N,. Tables 3.3

and 3.4 are computed to compare numerical results of F’(0) and 6'(0) with literature.

This comparison shows that current results have good agreement with reported literature.
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Fig. 3.2: h —curves.

Table 3.1: Convergence analysis of F''(0),08'(0) and ®'(0) when y; =B, =5, =6, =
03,Sc=Pr=15 B,=.=S,=,=6,=B,=02,N,=1.0,p=m= N, =

Br=N, =05y, =09,Ec=y;=E, =6 =10and ¢, =".

Approximation Order  —F"'(0) —0'(0) —d'(0)
1 0.38642 0.30745  0.58247

5 0.39123 0.32012  0.58479

11 0.39627 0.31426  0.58640

16 0.40878 0.32562  0.58718

20 0.41403  0.32766  0.58956

26 0.42891 0.33412  0.58956

30 0.42891  0.33694  0.58956

36 0.42891 0.33694  0.58956
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1 1
Table 3.2: Computed results of Nu,(Re,) 2 and Sh,(Re,) 2 when y, =0.9, y; =
B, =03,y3=N,=E, =8 =Ec=10,S5c=15p8,=.=02, n=p,=p =

O.Sandcpa:%.

1 1

el s s b s B —(S e () o
06 05 05 03 02 03 02 0.2 0.63743 0.58893
14 0.85856 0.75205
2.0 1.01772 1.00130
15 01 05 03 02 03 02 02 0.80632 0.05884
0.6 0.78427 0.87407
0.8 0.73593 0.98916
15 05 01 03 02 03 02 0.2 0.86094 0.93704
0.6 0.77561 0.49833
0.8 0.70283 0.12053
15 05 05 00 02 03 02 0.2 0.86719 0.87640
0.3 0.83011 0.82077
0.5 0.77059 0.76344
15 05 05 03 00 03 02 0.2 0.75056 1.27534
0.3 0.77575 1.34103
0.5 0.79540 0.84569
15 05 05 03 02 01 02 0.2 0.88566 0.86745
0.4 0.88539 0.87342
0.5 0.87520 0.89011
15 05 05 03 02 03 01 0.2 0.76876 0.85878
04 0.78456 0.87453
0.5 0.79348 0.88324
15 05 05 03 02 03 02 01 0.85432 0.95759
0.3 0.81672 0.98432
0.5 0.76043 1.21434
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Table 3.3: Comparative values of —6'(0) viam and Ec when Pr = 1.5.

Ec m  Ref.[gz] @ oent
results
0.0 0.5 0.595277 0.59538

1.5 0.574537 0.57457

3.0 0.564472 0.56452

1.0 0.5 0.556623 0.55671

1.5 0.530966 0.53085

3.0 0.517977 0.51788

Table 3.4: Comparative values of —F"'(0) wheny, =, =, = N, = . = ¢, = 0.

B Ref. [83] Ref. [84] Present
results
0.0 0.999978 0.999962 1.00001
0.3 1.101848 1.101850 1.10196
0.6 1.150160 1.150163 1.15019
0.8 1.196690 1.196692 1.19676
1.2 1.285253 1.285257 1.28538
1.6 1.368641 1.368641 1.36867
2.0 1.447616 1.447617 1.44783
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3.5 Results and discussion

In current section calculated results are described briefly and concisely. Figs. (3.3) —
(3.7) are revealed to show the influence of y,, B,, B:, B. and ¢, on F'(¥). Fig. 3.3
shows the feature of curvature parameter y, on F'(&). This figure strengthens the physical
phenomenon that curved cylindrical surface is favourable for fluid movement i.e.
enhancement in curvature causes acceleration in velocity. Impacts of Deborah number £,
on F'(&) are presented through Fig. 3.4. This figure shows that 8, enlarges velocity profile.
It happens because larger values of 3, enhances the relaxation time which resists the fluid
motion and as a result F'(£) decreases. Variations of 3, and 8. on velocity distribution
F'(¥) are shown in Figs. 3.5 and 3.6. For higher estimation of £,, velocity is accelerated
because B, enlarges enthalpy i.e. (T, — T.,) which alternatively enhances velocity.
Also, velocity F'(£) has increasing behaviour versus £, (see Fig. 3.6). Fig. 3.7 portrays
that effects of angle of inclination ¢, causes reduction in F'(&). This holds physically
because influences of gravity become small for greater ¢, about z-axis and alternatively
velocity profile declines. Figs. (3.8 — 3.15) exhibit variations in temperature profile (&)
against Ec, 8,, N,, S;, N, Pr, B, and B,, respectively. Behavior of temperature 6 (&)
for large estimation of Ec is delineated through Fig. 3.8. As larger values of Eckert number
Ec corresponds to accelerate the conversion of mechanical into thermal energy, thus fluid
temperature rises. Fig. 3.9 deliberates the influences of thermal relaxation parameter 4§,
on fluid temperature. As enhancement in relaxation time decreases the heat transfer through
fluid molecules, as a result, fluid temperature reduces. Fig. 3.10 reveals fluctuations in
6 (&) against Brownian motion parameter N,. This figure predicts that temperature 6(§)
rises versus larger values of N, (see Fig. 3.10) because Brownian motion disperses fluid
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particles which alternatively enhance temperature. Fig. 3.11 explained the significance of
thermal stratification S; on fluid temperature 6(§). As stratification phenomenon reduces
the temperature difference between surface and fluid, as a result, temperature profile 6(¢)
falls down. Fig. 3.12 elaborated the N, effects on temperature 6(&).This graph suggests
that fluid temperature increases against thermophoresis parameter. Fig. 3.13 depicted the
impacts of Prandtl umber Pr on temperature profile. As Prandtl number reduces the thermal
conductance (i.e. capability of heat transfer) and hence temperature. Figs. (3.14 and 3.15)
elaborated the consequences of space and temperature dependent heat source/sink
parameters B; and B, on temperature 0(&). These graphs predict that both parameters
incline the temperature profile. Figs. (3.16 — 3.25) examines the influence of N, &, S,
Y3, Np, V2, Eg 8, S, and Byon ®(&). Fig. 3.16 illustrates the effects of N, on ®(§).
This graph shows that thermophoresis phenomenon leads to enlarge nanoparticle
concentration. Concentration profile ®(¢) in frame of solutal relaxation time &, is
displayed in Fig. 3.17. Here concentration ®(¢) diminishes due to controlling influence
of &.. Impact of Schmidt number Sc on ®(¢) is disclosed through Fig. 3.18. One can
observed that ®(&) declines versus higher values of Sc. It is true because Sc is responsible
to lessen mass diffusivity and hence concentration. Declining impact of concentration

@ (&) is observed for larger y5 in Fig. 3.19. The growing nature of y5 is responsible for

E,

“ : . .
- ae]' Physically, destructive rate of chemical

rise in the expression (1 + §6)? exp [—

reaction upsurges for greater estimation of y5. This is used to dissolve/ terminate the fluid
species more efficiently. Fig. 3.20 is remarked for the impact of N, on ®(&). Declining
conduct of ®(&) and relevant boundary thickness is identified for greater N,. An
enhancement in Brownian motion leads to dispersion of liquid particles more rapidly, as a
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result, concentration @ (&) reduces. Impact of generative/destructive chemical reaction y,
on concentration ®(¢) is outlined in Fig. 3.21. There is an increase in ® (&) in vision of
destructive chemical reaction variable y, > 0. However, opposite trend is seen for
generative chemical reaction y, < 0. Fig. 3.22 elucidates the increasing trend of activation
energy E, on nanoparticle concentration ®(¢§). The modified Arrhenius function declines
when E, increases. This holds practically because generative chemical reaction increases
which rises concentration. Fig. 3.23 shows the effect of concentration ®(§) against
temperature difference parameter §. Here declining role of § on ®(§) is witnessed.
Features of S, on ®(&) are presented in Fig. 3.24. It is noticed that S, reduces the
nanoparticle concentration ®(&). Fig. 3.25 empowers us to decide that growth in B, leads
to decline in concentration ® (&) curve. It is true because B; generates heat, as a result,
convection phenomenon dominates and hence it reduces concentration ®(§). Figs. 3.26
and 3.27 are prepared to examine the impact of emerging parameters 8, and S, on skin
friction coefficient Cr. For greater estimation of 3, skin friction coefficient diminishes

(see Fig. 3.26) while reverse behaviour is observed for larger 3. (see Fig. 3.27).
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3.6 Graphical outcomes

W =0
‘ ) y1=02]

Fig. 3.3: Response of F'(§¢) with y;.

B, =02]
By =04
B =06
B,=08

F (&)

Fig. 3.4: Response of F'(¢) with ,.
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Fig. 3.6: Response of F'(¢) with ..
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Fig. 3.7: Response of F'(&) with ¢,.
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Fig. 3.8: Response of 6(¢) with Ec.
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Fig. 3.9: Response of 8(¢) with &,.
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Fig. 3.10: Response of 8(&) with N,.
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Fig. 3.11: Response of 6(¢) with S;.
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Fig. 3.12: Response of 8(&) with N,.

59



Pr=05
Pr=15
Pr=25
Pr=35

(&)

Fig. 3.13: Response of 6(¢&) with Pr.
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Fig. 3.14: Response of (&) with B;.
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Fig. 3.15: Response of 6(&) with B,.
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Fig. 3.16: Response of @ (&) with N,.
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Fig. 3.17: Response of @ (&) with §..
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Fig. 3.18: Response of &@(&) with Sc.
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Fig. 3.19: Response of @(&) with ys.
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Fig. 3.20: Response of ®(&) with N,,.
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Fig. 3.21: Response of @ (&) with y,.
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Fig. 3.22: Response of @ (&) with E,,.
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Fig. 3.23: Response of @ (&) with &.
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Fig. 3.24: Response of @ (&) with S,.
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Fig. 3.25: Response of @ (&) with B;.
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Fig. 3.26: Response of Cr(Re,)z with f,.
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Fig. 3.27: Response of Cz(Re,)z with ..
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3.7 Conclusions
The main findings are summarized as follows:

F'(§) decays for higher estimation of 8, and ¢, while it boosts up for y;, B,

and f..

e Temperature distribution declines for thermal relaxation time §, and thermal

stratification parameter S;.

e Stratification variables (S;,S5,) diminishes the temperature and concentration

distributions.
e Concentration profile ®(&) has opposite behaviour versus N, and N,.
e Prandtl number Pr reduces temperature 6(¢) while it enhances wall heat flux.

e Nanoparticle concentration ®(¢) is directly proportional to the chemical reaction

with activation energy.
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CHAPTER 4

Thermally stratified flow of Jeffrey fluid with
homogeneous-heterogeneous reactions and non-Fourier

heat flux model

4.1 Introduction

This chapter concentrates on Jeffrey fluid flow near the axisymmetric stagnation point over
an inclined permeable stretched cylinder with mixed convection effects. Analysis
subjected to Cattaneo-Christov heat flux, thermal stratification and homogeneous-
heterogeneous reactions are accounted. The governing equations are transmuted into
ordinary differential system with suitable transformations. Non-dimensional system of
ordinary differential equations is computed by Homotopy technique. Convergence
analysis is achieved and suitable values are determined by plotting the h —curves.
Effects of physical quantities of interest are studied through graphs and tables. The

formulation and interpretation of skin friction coefficient is deliberated.

4.2 Mathematical formulation

We examine the steady two-dimensional stagnation-point flow of an incompressible
Jeffrey fluid model subject to Cattaneo-Christov heat flux theory on an inclined permeable

stretching cylinder of radius R, that makes an angle ¢, with vertical position.

69



Homogeneous/heterogeneous reaction is presented. Here (u,,u,) denote axial and radial

velocities (see Fig. 4.1). The surface of inclined cylinder is being stretched with the
velocity U, (z) = % The effect of external forces and pressure gradient is supposed to

be negligible. For cubic autocatalysis the homogeneous reaction [85-88] is expressed as

follows:

L 4

Fig. 4.1: Physical model.

A+ 2B - 3B, rate = k.a,b?. 4.1)

Isothermal reaction of first order on catalyst surface is
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A - B, rate = ksa,. (4.2)

Utilizing both the reactions of isothermal nature, the related flow expressions satisfy:

9] 0
or (ru,) + 0z (ruz) =0, (4.3)

du, ou, au; 121 0%u, 10u,\ G
UZE-F urw = U1 dz + (1 n /11) 6r2 ; or +EF1(T - Too)cos¢a

Vi, 03u, Ou,0%u, o3u, oOu,0%u, wu,0%u, wu,0d%u,
1+A)\ " ar3  or orz Y25z0r2 " 9r araz " r or? | 1 oroz (4.4)

In view of Cattaneo-Christov heat flux theory [89,90], q, satisfies the relation

~ aql 4.5

For [, = 0 the above expression reduces to classical Fourier’s law. Now by considering
incompressible fluid situation one has

g1+ Lo [V1.Vqy — (q1.V)V4] = =k, VT. (4.6)

The heat and mass conservation equations are

or T oo _ kg 16(6T)
or T e e T (e, ror Uar) 4.7)
u% u%z 0*ay 19a, — k.a.b?
"or %oz A\oarz " ror e (4.8)
ob, b 9%b; 10b, ,
AR P (a rar ) teabt 4.9)

along with boundary conditions
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= — = T=T,=T
* L & oL L atr =R
da, ob, o
Da = kqa,, Dy — = —ksa,q,
0 or (4.10)
Uyz d,z
uz—>U1—T, T - TOO—T0+T, Whenr—>00,
% = Go by =0 (4.11)
with
. 0T+ aT+aT( ou, 6ur)+2 92¢C
Swgz g T\ gy T gy ) Y g, (4.12)

oT Ju ou
n ( z r)

z\Y 5, T )

Considering suitable transformations for present problem are [90]

_ | Uy (1?2 —R§ _ [viUpz? Uz _,
§ = L_v1< 2R, ) Y (8) = ’ I F(), uz(E)—TF(E).

w®= -2 [LRF©, 00 =12, @ =), b= aHE)
Tw = To (4.13)

The flow expressions under above transformations take the form

(1 + 271 IF" + Bo(F'"? — FFN)]+y1Bo(F'F" — 3FF'") + 2y, F"
+(1 4+ A)(FF" —F'? + A%2) — (1 + 1,)B,0cos¢, = 0, (4.14)
1+ 2y,6)0" + 2y,0' — Pr(6 + S,)F' + PrFo’
+Pr8,[FF'0' — F20" + (6 + S))(FF" —F'?)] =0, (4.15)

(1+2y,6)G" + 2y,G' + ScFG' — ScK,,GH? = 0, (4.16)
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Sc Sc
—FH' +—

1+ 2y, H" + 2y,H + 5 5

K,GH? = 0. (4.17)
The transformed boundary conditions are
F'(§) = 1LF() =V, 0(6) =1-5,,G'(§) = K,G6(£),6"H'(§) = —K,G(§) até =0,

F'(§$) =4,0(6)=0,G(¢§) =0 asé — oo. (4.18)

Definitions of involved variables are listed below:

vl _ AU 5 = U,
Y1 = UORg: ﬁz - L ) e — I )
_ kcagl pr— (/"Cp)f o
m — UO ’ - lféf ’ c = DB )
ks |vqL D
Kt s 1 « _ B

Day Uo Da (4.19)

The size of A and B are considered to be comparable so that we further assume the equality

of diffusion coefficients as special case i.e., D, = Dg(8* = 1). Thus, we have
GE) +H() =1. (4.20)
Invoking Eq. (4.20) into Egs. (4.16) and (4.17), we get
(14 2y,8)G" + 2y,G' + ScFG' — ScK.G(1 — G)? = 0. (4.21)

The local skin friction coefficient Cr (surface drag) and the local Nusselt number Nu,

(rate of heat transfer) are defined as

2T,
Cr = —0\
! P1Uv2v
Z(qy
Nu, = ———r.
Y S k(T = To) (4.22)
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Shear stress (t,,) and heat flux (q,,) are defined as

wooou, pdy 0%u,
Tw = + U,
(1+4) or  (A+A)\ " ore

T
qW - a_r

T=R0

Above physical quantities in dimensionless form are

1 1 1
7 Cr(Re;)2 = ————= [(1 = ¥1B2F (0) + B,F'(0))F""(0) — B.F(0)F"(0)],

T+

Nu,(Re,)™"/? = -6'(0),

. . U022 .
in which Re, (= . L) is the local Reynolds number.
1

4.3 Methodology

(4.23)

(4.24)

(4.25)

(4.26)

The initial guesses (F°(%),08°(%), G°()) and auxiliary linear operators (£, £4,£g) are:

FO®) =14V, +A(¢ — 1)+ (A — 1D exp(-¥),

0°(9) = (1 -5 exp(=)
1
GO(®) = 1 -5 exp(—KeD),

£-[F]=F" —F, £4[0]=0"-0, £c[G]=G"—G.

The above mentioned operators £5,£4 and £¢ satisfy the following properties

£r[w,exp(—8) + w; + wzexp(§)] =0,

£olwsexp(=F) + wsexp(¥)] = 0,

£clweexp(—8) + w,exp(§)] = 0,
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where w;(j = 1 — 7) notify the arbitrary constants.

4.3.1 Zeroth-order systems

The zeroth-order deformation expressions are constructed as follows:

(1 - DEF (& D) — FOO)] = aheNe[F(£;9),0(5 9, G(& )], (4.30)
(1—DE[0(; D) — 6°()] = GhoNp[F(§: D), (& D, G D)), (4.31)
(1 - DEG[GE D) — G°(§)] = GhaNG[F (£ 9),0(8; 9, G(& )], (4.32)

Fro;9)=1, FO;9) =V, 80;9)=1-5, G'(0;9 =K,G(0;9),
F'l(&9 =0, 09 =0 G&Eg =1 as&- oo, (4.33)

Ne|F(£9),0(¢9),G(&9)]

0F (&) 0%F(&9) LOREED 0% F (& 9)
=71 2( Fr 9e? —3F (f q) FYE )"‘2 1 92
0%F (§9) 0°F (& 9) A,
+(1+2V1f)32< 9e? 9¢? —F(&Q) P )

N 0%F(&;6) OF(&:§)0F (&4
+(1+/11)<F(§;€1) anZQ)_ ((ffq) ég;q)>+

I*FE Q)

(14 2y,8) 553 +(1+2) (A2(1 — Xm) — B0 67)) cos¢yg, (4.34)
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No[F(£;9),0(¢9),G(; )]

B 920(¢;9) 90(&;9) L 00(& Q)
=(1+ 15) 9¢? + 2y —— 9¢ +PrE (&) 9¢
AT < WOPF(EQ)  OF(EQ)0F ()
— Pré,(0(59) + Sy) <F(E, D—Ge ~ oz 5% )
L OF(&9)00(89) ) L 020(& Q)
— Pré, (F(E,q) T T ~FEPFE a¢2 )
Ae A oF (&)
—Pr(8(&9) + S,) 9 (4.35)
0%G . G(&;§
Ne[F(&ED,0(89),GE ] = A+ 27,8 aii D (2y1 + cF(&; c?)) gé 2
—sek6E D (1- 6 ) (4.36)
The values of g €[0,1] and for § = 0 and § = 1, we have
F(&0)=F°(&) F(&1) =F(),
6(¢;0)=06°%) 6(51)=06(%),
G(§0)=G¢) G(&1) =G (4.37)
4.3.2 m™-order systems
Here problem statements are
Er[Fn(§) — XmFm-1(§)] = heRi(§), (4.38)
£6[6m(§) = XmOm-1(§)] = hgR(S), (4.39)
£6[Gm(§) — XmGm-1(5)] = heRG($), (4.40)
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Fn(@) =0, Fp(§) =0, 6,(§) =0, Gp() =0, at&=0,

Fn(§) =0, 0,(5) =0, Gp(§) =0, as§ - oo, (4.41)
m-—1
Rin(§) = (1+21:8) (F;,:’_l 82 ) (FrianFi Fm_l_kF,?’)>
k=0

m—1
+ V1 z (B2 (Fr,n—l—kFI:t, - 3Fm—1—kF12”) +2F,_1) + Az(l — Xm)
k=0

m—1
+(1+ 44) <z (Fn—1-kFx — Fp—1-Fi) + ﬁ1gm—1C05¢a>' (4.42)
k=0
m-—1
Rg@(f) = (1+2y,8)0pm-1 +2y16p_4 — PrSiFp_4 + Pr (Fin-1-161)
k=0

m-1

— Pr z (Bm—l—kFIé + 8168 (Fp—1-F — Fm—l—kFlé,)) +
k=0

k
(Flé—lel, - Fk—lgl”)>J

m-1 k
Prg, Z (9m—1—k Z(Fk—lFl” — Fy—iF)) + Foa
k=0 1=0

(4.43)

=0

k
RE(E) = (14 211Gy + 201 Gins — SCK Gy — Keimo1 ) Gt
=0

m
+Sc Z(Fm_l_k + 2K .Gpy_1-1) Gy, (4.44)
k=0

we have
F(&0)=F°&), 6(50)=6°&), G(0) =G,
F&ED=F@), 01D =600, GE&ED =GO (4.45)
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Here we observed that when § varies from 0 to 1 then functions F(&; §), 8(¢;§) and
G(&;g) changes from initial approximations (F°(£),0°(£€),G%(§)) to the desired

solutions (F(£),0(&),G(£)). Through Taylor's series expansion we have

FED = FU©+ ) Fa®™

am
aqmF(E,q)

1
E,(§) = — ,
= 4=0 (4.46)

6D =6+ ) 6™
m=1

o™ s

1
0,,(§) = — ,
® m! 4=0 (4.47)

G50 = 6D + ) Gn(©™
m=1

1 ™
G (&) = anfm(}(fi )

a=0 (4.48)

The general solutions (F,,(£), 6,,(£), G, (§)) of Egs. (4.38) — (4.40) in view of special

solutions (F;,(£),6,,(&),Gn(§)) are

Fn(§) = Fp(§) + w1 + wzexp(=$) + wzexp($), (4.49)
Om(§) = 0m(§) + wsexp(§) + wsexp(=S), (4.50)
G (§) = G (§) + wyexp(§) + weexp(=3), (4.51)

Invoking Eq. (4.41), the values of w; (j =1 —7) are as follows
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0Fn($) . = Hm &)
a€ $=0 ’ ? af §=0

We = _G;‘;l(f)lf=0 w3 = w5 = wy; = 0.

wy = —Fp(0) + ) wy = =0 (E)le=0o,

(4.52)

4.4 Convergence analysis

HAM provides great freedom to control rate of convergence of solution by taking
appropriate values of auxiliary parameters. The accurate auxiliary parameters hg, hg and
h, are selected from relevant range of plotted h —curves at 25" iteration. In this study,
numerical computations are restricted thoroughly with practical range of non-dimensional
parameters [91] as (0.2 <y; <0.8),(0.1 <, <0.5),(04 <4 <15),(02< 8. <
0.6), (0.1<6,<05), (02<S,<06), (0.1 <K, <0.5),(0.5<Pr<25), (0.1<
K <0.5)and (0.1 <V, < 0.4). Fig. 4.2 portrays the acceptable range of auxiliary
parameters hg, hg and hg as (—1.3 < hp < —0.4),(—-1.5< hg < —0.5)and (—-1.2 <
he < —0.4). Table 4.1 shows that 35" order of approximations is enough to obtain the
convergent solution computed to demonstrate the convergence analysis of homotopic
expressions. Table 4.2 is built to validate the present consequences with previously

published results by Acharya [92], Khan and Pop [93] and Hsiao [94]. This table represents

the comparison of present results with the previous literature which gives good agreement.
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Table 4.1: Convergence analysis when y; = A=K, =0.1,4; =0.5,6, =0.3,6, =
$1=V=02K,=0.1,p,=10,Pr =12 and Sc = 1.5.

Approx. order ~ —F"(0)  —67(0) —®'(0)
1 0.8587 0.6985 0.1382
7 0.8524 0.7322 0.1345
14 0.8554 0.7524 0.1360
20 0.8582 0.7959 0.1371
25 0.8607 0.7934 0.1450
30 0.8612 0.7668 0.1429
35 0.8624 0.7743 0.1408
40 0.8624 0.7743 0.1408
46 0.8624 0.7743 0.1408
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Table 4.2: Numerical comparison of —8(0) wheny; = i =4, =B, =A=p, =5, =
K,, = 0.0 and Pr = 5.0.

Acharyaetal. Khan & Pop  Hsiao et al. Present

e HAM
[92] [93] [94]

0.1 0.9524 0.9524 0.952432 1.00124
0.2 0.6932 0.6932 0.693211 0.69582
0.3 0.5201 0.5201 0.520147 0.51596
0.4 0.4026 0.4026 0.402631 0.40236
0.5 0.3211 0.3211 0.321149 0.32340

4.5 Results and discussion

In this section, the fluctuations in interested quantities like curvature parameter y,,
Deborah number f,, velocities ratio parameter A, strength of homogeneous reaction
parameter K,,, strength of heterogeneous reaction parameter K;, mass diffusion ratio 6%,
Schmidt number Sc, thermal relaxation parameter &§,, Prandtl number Pr, mixed
convection parameter , and thermal stratification parameter S; on velocity F'(§),
temperature 6(¢) and concentration G(&) is displayed in Figs. (4.3 —4.15). Fig. 4.3
demonstrates curvature parameter y, influences on F'(§). As increment in curvature
causes decrease in cylinder radius that causes low resistance in flow field. As a result,
F'(&) shows increasing behavior. Deborah number S, consequences upon F'(§) are
illustrated via Fig. 4.4. The velocity F'(¢) profile and related momentum boundary layer
thickness are diminished with the rise of £,. It holds because increase of S, describes the

growth in the elasticity of fluid material. Fig. 4.5 shows the influences of 1, on F'(§).
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As expected, the velocity profile F'(&) declines against A,. It is true because A, is ratio
of relaxation to retardation time i.e. its higher values enlarge the relaxation time (resistance
in flow). Noticeable features of 8, are shown in Fig. 4.6. Physically increase of f; is
responsible for intensification of buoyancy forces. That results in increase of F'(¢). Fig.
4.7 is revealed to study the features of velocities ratio parameter A on F'(&). This figure
suggests that in both cases (A > 1 and A < 1) fluid velocity enhances. The increase of A
upsurges free stream velocity that eventually results in the enhancement of F'(§). This
developing behavior of F'(&) remained same when either free stream velocity dominates
or followed. Thickness of boundary layer has reverse effects. Fig. 4.8 portraits the
inclination ¢, effects on F'(¢). The decaying nature of F'(&) is observed for greater
estimation of ¢,. Since, impact of gravity forces decreases for higher altitude. That causes
reduction in velocity profile. Fig. 4.9 elaborates the consequences of thermal relaxation
parameter 6, on temperature 6(¢). It can be seen that 6§, causes reduction in
temperature 8(§). Physically it holds because increment in thermal relaxation slows down
heat transfer between particles, as a result, temperature decreases. Fig. 4.10 depicts
fluctuation in fluid temperature against thermal stratification parameter S,. As temperature
difference (T, —T,) gradually decreases for higher approximation of S, that
eventually declines the temperature curve 8(¢). Fig. 4.11 elucidates that temperature and
thermal boundary layer thickness are decreased significantly when the values of Prandtl
number Pr are greater. Since, Prandtl number is the ratio of momentum to thermal
diffusivities. Increase in Prandtl number corresponds to stronger momentum diffusivity
and weaker thermal diffusivity. Here weaker thermal diffusivity dominant over the

stronger momentum diffusivity due to which lesser temperature is noticed. The influence
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of the homogeneous reaction parameter K,, on G (&) is illustrated through Fig. 4.12.
Since during the homogeneous reaction, reactants are consumed and as a result, the fluid
concentration denigrates which is apparently seen from this figure. Fig. 4.13 explained
the heterogeneous reaction parameter K, impacts on the concentration profile G(§). The
concentration boundary layer thickness upsurges with increasing K; which agrees with the
common physical behavior of the homogeneous and heterogeneous reactions parameters.
Variation of concentration profile G (&) against various values of the Schmidt number Sc
is displayed in Fig. 4.14. As Schmidt number varies inversely as mass diffusivity which
consequently, declines the concentration. Wall friction coefficient Cr, for emerging
parameters 3. and A are presented in Figs. 4.15 and 4.16. The dwindling influence of

wall friction is observed for both £, and A.

4.6  Graphical outcomes

1.0f S To0
Y1 =0.2
0.8} y1=0.41
y1=0.6
@ 0.6}
e
04|
0.2}
0 1 ) 3 ] 5

Fig. 4.3: Variation of y, on F'(§).
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Fig. 4.4: Variation of 8, on F'(§).

=011
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F'(€)

Fig. 4.5: Variation of A, on F'(§).
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Fig. 4.6: Variation of 8; on F'(§).

Fig. 4.7: Variation of A on F'(¢).
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Fig. 4.8: Variation of ¢, on F'(&).
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Fig. 4.9: Variation of §, on 6(¢).
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Fig. 4.10: Variation of S; on 6(¢).

Fig. 4.11: Variation of Pr on 6(¢).
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Fig. 4.13: Variation of K; on G(¢).
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Fig. 4.14: Variation of Sc on G(¢).
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Fig. 4.15: Variation of Cp(Re,)z on pB,.
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Fig. 4.16: Variation of Cr(Re,)z on A.

4.5 Conclusions

Here we analyze the homogeneous/heterogeneous reactions for Jeffery fluid model
induced by an inclined stretching cylinder. Heat transfer analysis has been accomplished
within frame of Cattaneo-Christove heat flux model. Major key points are summarized as

follows:

e Deborah number B, deaccelerates the linear momentum.

e Homogeneous parameter K,, is responsible to decrease in concentration while

heterogeneous parameter K; has opposite effect.
e Thermal stratification parameters reduce the temperature distribution.

e Prandtl number Pr and thermal stratification parameter declines fluid temperature
significantly.
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CHAPTER 5

Aspects of activation energy for Jeffrey nanofluid with

Cattaneo-Christov double diffusion model

5.1 Introduction

In this chapter, nonlinear convective flow of Jeffrey nanofluid within the frame of
Cattaneo-Christov double diffusion over an inclined permeable stretched cylinder is
addressed. Analysis subjected to Arrhenius activation energy, chemical reaction, double
stratification and non-uniform heat generation/absorption are assumed. For activation
energy, a novel binary chemical reaction model is used. Cattaneo-Christov double
diffusion model are employed to configure heat and mass transfer. Apposite similarity
transformations are engaged to attain nonlinear ordinary differential system. Non-
dimensional system of governing equations is solved analytically to obtain the series
solution by Homotopy technique. Expressions of skin friction and Nusselt number are
calculated through numerical values. Graphs and tables are created to analyze the impact

of governing parameters on interested physical entities.
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5.2 Mathematical formulation

Consider 2D, nonlinear convective flow of Jeffrey nanofluid subjected to Arrhenius
activation energy, generalized Fourier and Fick’s models by an inclined permeable
stretching cylinder of radius R,. Non-uniform heat generation/absorption, binary chemical
reaction, nonlinear mixed convection, thermal and solutal stratification are accounted for
present flow framework. The problem is considered in cylindrical polar coordinates

(r, 6, z) with velocity components (u,, ug, u,). The flow is generated with the linear

). Flow geometry is given in Fig. 5.1. The

stretching velocity of the form U, (: %

cylindrical surface is thermally and solutally stratified by maintaining (T, C,,) inthe form

(T0 + %, Co + %) while ambient temperature and concentration (T, C,,) are

Fig. 5.1: Physical model.
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measured in the form (TO + %,CO + %) The effect of external forces and pressure

gradient is supposed to be negligible. The conservation laws under above supposition after

using the boundary layer approximations are [95,96]

0 0
ar (ruy) + 0z (ruz) =0, (5.1)

) auz+u6uz v 0%u, 10u, +GB§uZ
Z 0z or (A+A)\ar? ror Pr

N v 4, 3u, N ou, 0%u, N d03u, du, 0%u, LU 0%u, LY 0%u,
A+ )\ a3 " ar arz T “29z9r2 or araz | r or? | r ordz

+%(n(r = Te) + (T = T ) 4+ T3(C = C0) + T4(C = € ))c05a.  (5.2)
f

Heat and mass fluxes (qq,]J1) within the frame of Cattaneo-Christov double diffusive

model [97] are

~ aql
@+ L[S0+ V2. 7q; = (@1 VW3 + (P VD as| =~k VT, 539

. [0

Classical Fourier’s and Fick’s laws are deduced by inserting I, = [, = 0 in Egs. (5.3) and

(5.4). After employing the steady and incompressibility conditions, the models reduce to:

g1+ Lo [V1.Vqy — (q1. V)V4] = =k VT, (5.5)
J1 + [e[V1. V)1 — (J1. V)V4] = —DgVC. (5.6)
Then two-dimensional energy and concentration expressions yields
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oT oT . ks 10<0T> O

U—+u,—+II, =———-—(r—)+ ——
or 0z (PCp)f ror\ or (pcp)f
oD 0C0T+11DT <6T)2
tbs or or T, \or/ '’ (5.7)
6C+ 6C+fl'l _p 6( 6C)+DT1 6( 6T> R.(C—C.)
Urgr Tleg, Tictle = V5" 57 T, ror "or 1 @
~ T \P E
~REC =€) () e |~
°° (5.8)
with
Uyz d,z
uzzT, T:TW:TO+T'
atr = R,,
u,=V,, C=C,=0Co+—
L (5.9)
d,x
u, -0, T—>TOO=TO+T,
when r — oo,
dix
u, - 0, CoCp=0Cp+—.
L (5.10)
. ,0°T 262T+6T< aur+ aur>+2 d%c
e =W g2 T2 T Y2, TGy Yzl 5oz
LoT ( ou, aur) (5.11)
0z\"* 9z " Yo )
L0 zazc+ac< o, aur>+2 92C
c T W gr2 T2 T \M2 g, T Gy lz 5r0z
(5.12)

+0C( 6u2+ aur>
0z\"% 9z " Yo )

The non-uniform heat source/sink @, [98] is expressed as
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PN Uwiéf PN

oF
Qm = Zv, By (Ty — To)a_E + B (T — Tw) |, (5.13)

where B; and B, are the coefficients of space and temperature dependent heat
generation/absorption, respectively. The case B; > 0 and B, > 0 denote internal heat

generation while B; < 0 and B, < 0 represent internal heat absorption.

Uy (1% — RZ Uyz?

= /ﬁ(r T3 °), w@= 29 pg
UOZ ’ RO V1U0

u, (%) =—F ®, u(8) = - ’ T F(®),

6 _T-T, o _ C—Cq
© = T, —T,’ ®© = Cy —Co’ (5.14)

Considering

Now flow problem under above transformations become

(1 + 271 [F" + B (F"? = FF")] + 2y, F" — MyF'+y1 B, (F'F" — 3FF'")

+(1+20) [(FF" = F2) = By (1 + £.0)6 + Ny (1 + f.®)®) cosda| =0, (515

-~

[ _ N _ .
1+ 2y,8)|0" + PrN, <q>'e' + N_t 0’2 + EcF”2>l + PrFe’' + (ByF' + B,0)
L b

—Pr&,[F20" + (F'> —FF")(0 +S,) — FF'0'] + 2y,0' — Pr(8 + S;)F' = 0, (5.16)

N N
(1 + 2y,8) lCD” + N—t e"l + 21, (CD’ + N—te'> + Sc(® + S)[F' — 8.(F'?2 — FF'")]
b b

E
" _ 26" — FE'®N) _ 1 L
Sc(F®' —y,® — 8. (F2®" — FF'®")) — Scys(1 + 58) exp[ T 59] =0 (517
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with endpoint conditions
F,(E) = 1; F(E) = Vpr 9(5) =1- Sll (I)(E) =1- SZ' at Sz = O'
F'(¢§)=0, 6(§)=0, ®(¢&)=0, asé - oo (5.18)

The dimensionless variables [99-101] appeared are expressed as follows:

; _F4(Cw_co) vl =F3(CW—C0) a =£6=TW_TO
¢ o T R T LT, =T Tl T

. G11:(Cy — Co)z® - uDp(T, —Ty) 5 To(T, —Tp) LS
Gr* = 5 , Ny = P =——F——,5c=—,
A Toove I Dpg

B, = L*(Ty, — To) 11y N = 7:Dp(Cy — Co) _ 1,Uq _ KZL

1 ngz » Vb v » P2 I Y3 UO )

r.U. (uCy) RiL U2 f.U
6. = < 0,Pr= — f,y2=;,Ec=—W,é‘e= ce 9
L ks Uo Cp(Tw — To) L (5.19)

The skin friction coefficient Cr, local Nusselt Nu, and Sherwood Sh, numbers are

2TW qu ZjW
Cp = ——, u,==————, Shy=——"—— 5.20
i ke (T, — To) “  Dg(Cyw —Co) (5.20)
with
2 2
_ U ou, N UA, d“u, N d“u,
WEAt ) or T A+a\"arz T Y oraz e (5.21)
“R, .
_ .z aT
W= "5 o g, (5.22)
o ac
Jw Forl._g, (5.23)

The dimensionless forms of these quatitities are
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1 1 1 1A n rnr

5 Cr(Re,)? = YN [(1 = y1BF(0) + BoF'(0))F"(0) — B F(O)F"(0)],  (5.24)
Nu,(Re,)"2 = —6'(0), (5.25)
Shz(Rez)‘% = —®'(0), (5.26)

. . Uoz2 .
in which Re, (= . L) is the local Reynolds number.

1

5.3 Methodology

The selected initial guesses (F°(%), 8°(%), ®°(¥)) and auxiliary linear operators

(Er, £, £4) are of the form:
FO(8) =1+ V, —exp(-Y),
8°(5) = (1 —Sy) exp(-9),
PO(®) = (1 —S;) exp(—9), (5.27)
£:[F] = F" —F', £9[0] = 0" =0, £o[®] =" —d, (5.28)

the following properties holds (see Ref. [102])
Er[waexp(—=8) + w; + wzexp(§)] =0,
£glwsexp(—F) + wsexp(§)] = 0,
£olweexp(—8) + wyexp(§)] = 0,
(5.29)

in which w; with (j =1 —5) are arbitrary constants.
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5.3.1 Zeroth-order systems

The zeroth-order deformation problems are constructed as follows:

(1= DEFF (&) — FO©)] = aheNe[F(§:9),0(59), (& )], (5.30)
(1 - DEg[6(5:9) — 0°(D)] = ahoN[F (£ D), 6(5 ), (& D)), (5.31)
(1= DES[P(E; D) — P©)] = GhoNo[F (&9, 0(5 D), D& D). (5.32)
with
FF(,9=1 FOD=V, 8(0;)=1-5, ®(0;§ =1-5,
Fi(&ED =0, 0(ED=0 ®(&49) =0, asé - (5.33)

Nonlinear operators Ny, Ny and Ng are

~ 93F(&:§
—3F(¢; Q)%) - M

IF (£ )

NGOG
NPT T o

03F(&q 0%°F(&q 2 0*F (& q
+(1+2y1€)< agiq)wz(( D) — R ‘”))

0% F (& 9)
PYe

*F(&Q) OF(GOF @))

+2n FIE FE FrS

+(1+21) <F(€: Q)

(1+40E D)0 +

—(1+ 218 | A _ COSQPgq,
Ny (1+ B3 ) B(E )

(5.34)
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0%0(& ) 00(&9) B dF (&;q)

=(1+ 15;) 9¢? + 2y, 9¢ 1 FE + B;

00D IBED | o <aé(€; @)2 \ Ee <62ﬁ(5; q>>2>
t

+ (1 + 2y,9)Pr ( LT 3¢ 3¢

- FEGDIFEGD PG\ 0FEQ)
—Pr(e(s,q>+sl)<se( o e >+ )

20%F (&4 . OF(&;§)00(¢; G L 00(&; 4
_Pr< ((F(E A)) (EQ)—F(E;EI) & (Eq)>_F (fq)>’

FIE

No[F(&9),0(¢9), D& D]

0D(&;9)
¢

32D(&; §) &629(5; q)
02 N, 0¢&?

= (1+2V1$)< >+Scl7"(<§”:67)

020(&9)
PYE

r2y <1Vt 20(&; 67)+0d3(€: q)

17, o 3t )—&Scﬁ(f;@)ﬁ(f;@)

S FEGPIFE . 0*F (&
—Sc(CD(f;CI)+Sz)<6c< afq afq —F(&9) aan)

AR (&) L 0F(&9)09(&9) S,
_ 5% >+6CScF(f,q) 3¢ 2¢ = Scy, @& 9)
~ p E,
—Scy; (1+60(59)) exp I_—1+59 (f-@)l' (5.36)

where § € [0,1] is the embedding variable and when § varies from 0 to 1 then we have
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F(§&0)=F(§) F(§&1 =F(@©),
0(50)=06°¢) 651 =06(),
D(§0) = 2% @(§1) = (). (5.37)

5.3.2 m!™-order systems

The m®™ order system is

Er[Fn() = XmFn-1(§)] = heRin(£), (5.38)
£0[0m (&) = XmBm-1(E)] = hoR7(), (5.39)
Eo[Pm(§) — XmPm-1(§)] = haR7(S), (5.40)

Fn(0) =0, Fn(0)=0, 6,(0)=0, @,(0)=0,
Fa(@) =0, 6,(8) =0, ®,() =0, when¢ - co. (5.41)

where the nonlinear functions RE,(£),RE,(¢) and RE (&) have the following

forms:
RHL(E) = (14 21O Fpl1 + 2y1Fpy — MyFp g — (1 + 21)B10m—1c0SP,

m
+ (1 + 2y18)p, Z(Fé{q—kFly — Fo1-1F) = Ny @, _icosd,
k=0

- (1 + /11)[;1 (Z (ﬁtgm—l—kgk + Nlﬁccbm—l—k(bk)> COS¢a
k=0

m
FA+ A+ 21 D Fs iFi = Frua D,
=0 (5.42)
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Rgl(f) =1+ 2y,8)05-1 +2y105_1 — PrSiFp_ 1 + §1Fr’n—1 + 3’29,.,1_1

m —~

A7 ’ ’ Nt ’ ’ " "
+ (1 + 2y,8)PrN, E <d>m_1_k6k + T 0r—1-kO% + EcFy_1_iFr )
b
k=0

m
+ PrZ(Fm—l—ke;c — Om—1-kFy = 8051 (Fpp_ 1 Fp = Frne1-1Fy))
k=0

m-—1 k
+ Pré, Z (Fm—l—k Z(Flé—le; - Fk—ﬁf’))
k=0 1=0

m—1 k
+Pr 6e Z (Hm—l—k Z(Fk—lFl” - Flé—lFlI)>'
k=0 1=0 (5.43)

-~ -~

b 17 Nt 17 Nt I} I}
Rm(&) = (1 +2y.8) | Prpq + 7 Im-1 + 2y N_em—1 + P | = ScY2 P
b b

m
+ Sc Z(Fm—l—kq);c + @ 1-kF + DY3Ea8?0m_1_10k) + ScSyFn_4
k=0

m
—8cé.S; Z(Frln—l—kFlé - Fm—l—kFlél) - SCY3(1 - Ea)(l - Xm)

k=0
m-—1 k
+ Scé¢ z <Fm—1—k (Fp— @ — Fk—lq)f')) — Scy3 (1 —p)E,S)
k=0 1=0
m—1 k
+5c & D1k < (Fe— F/" = Flé—lFl,)> )
= ; (5.44)
we have
F(&0)=F°(%), 6(50)=06°%), ®(0) =20,
FEGED=F®), 6&ED=006), 1D =30 (5.45)

The solutions through Taylor's series are reduced to
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P& =F© + Z Fn(9)A™,

10
Fn®) = 5o F

a=0 (5.46)

6(5:9) = 6°() + Z On ()™

m

10
0,,(§) = — )
&)= mloq™ -0 (5.47)

(59 = () + Z (DA™,

1
q)m(‘f) - _'aAm

d=0 (5.48)

The F,6 and ® through Taylor’s series are chosen convergent for § = 1 and thus

F) = FO@©) + ) (),
0 =0+ ) 6n(®),

PE) =2’ + ) Pn(?).
;1 (5.49)

In terms of special functions (F;,(£),60,,(&), P (£)), the general solutions

(En(8),0,,(8€),d,,(8)) of Egs. (5.38 —5.40) are

En(§) = Fn(©) + w1 + woexp(=§) + wzexp($), (5.50)
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On(§) = 0, (9) + wsexp(§) + wsexp(—5), (5.51)

D, (&) = B,,(8) + wyexp(§) + wgexp(=§), (5.52)
in which
. 0F, (&) 0E,(§) 5
w; = —E,(0) + , Wy = ) wy = =0, (O)|,_,
: % |, 2T e |, ™ le=o
W = —@n(f)l;:o w3 = ws = w; = 0. (5.53)

5.4 Convergence analysis

The accurate auxiliary parameters hg, hg and hg are selected from relevant range of
plotted h —curves at 25" iteration. For present analysis, numerical computations are
restricted thoroughly with specific range of non-dimensional parameters as (0.2 < y; <
0.6), (02<8,<06), (04<1 <14), (02<4.<06), (01<p,<05),(02<
8. <04), (02<N,<06), (0.1<5 <06), (01<5,<05), (0.1 <M, <0.3),

(01<S,<06), (02<B8,<04),(02<N,<04), (05<Pr<25),(02<8,<
0.5), (0.1<y,<03), (0.5<y;<14), (0.5<E,<1.0), (0.1<V,<03) and
(0.1 <N, <1.2). Fig. 5.2, provides the the ranges (—1.5 < hy < —0.7), (-1.6<
hg < —0.4) and (—1.6 < hgy < —0.5) of convergence controlling parameters. Table 5.1
proved that 25", 20"and 30" order of approximation are sufficient for convergent
solutions of F'"(0), 6'(0) and ®'(0), respectively. Table 5.2 shows fluctuations in wall
friction coefficient versus governing parameters. Results presented in Table 5.3 are

compared with previously reported data (Abbasi et al. [103]). From this table a great

agreement has been observed with the previous literature.
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F”(0), #(0), ®(0)
S
th

225 20 -15 -10 —05 00 05

Fig. 5.2: h —curves.

Table 5.1: Convergence analysis when y; = 0.2, B; = 1; = 0.4,N, = 5, = 0.3,y5 =
E,=N,=10,,=M,=S,=B,=y,=01,8.=S5S, =N, = B, =0.2,Pr =1.2,

T

Sc=15and ¢, = .

Approximation

Order —F"(0) -6'(0)  —9'(0)
1 1.3543 0.9744 0.2869

8 1.4015 0.8675 0.4875
12 1.4033 0.8461 0.5126
20 1.4046 0.8453 0.5133
25 1.4048 0.8453 0.5144
30 1.4048 0.8453 0.5147
35 1.4048 0.8453 0.5147
40 1.4048 0.8453 0.5147
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1 Fo-) ~
Table 5.2: Numerical values of Cr(Re,)z when N, = 0.3,Pr =1.2,y; = B, = 0.2,
pr=S,=B=y,=018, ===V, =N, = 02,3 =N, = E;, = 1.0,

Vi

Sc=15and ¢, = "

1
Y1 M, A P B Cr(Re,)2

N

0.2 0.8466

0.4 0.8647

0.6 0.8854

0.1 0.8466

0.2 0.8542

0.3 0.8639

0.4 0.8466

0.8 0.8035

1.2 0.7463

0.2 0.8152

0.4 0.8466

0.6 0.8734

0.1 0.7857

0.3 0.8466

0.5 0.8792
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1 ~ A~
Table 5.3: Comparative analysis of Cp(Re,)2 when By = ¢, =y, = E, = B¢

B,=f,=0,Pr=12,8,=5,=0.2,N, =N, =02and N, = 0.3.

B2 A M, B

Ref.
[103]

Present

0.0

0.3

0.5

0.1

0.4

0.7

0.0

0.3

0.7

0.0

0.5

1.0

0.91586

1.05963

1.14651

1.11097

0.97340

0.87539

0.79447

0.91104

1.20901

1.17277

0.91683

0.69008

0.91586

1.05963

1.14651

1.11097

0.97340

0.87539

0.79447

0.91104

1.20901

1.17277

0.91683

0.69008

5.5 Results and discussion

Here the effects of various flow variables on the velocity F'(¢), temperature 6(¢) and
concentration fields @ (&) are discussed in detail. Figs. (5.3 —5.6) are sketched to
analyze the influence of y;, B,, 4, and ¢, on velocity profile F'(&¢) versus increment in

curvature parameter y; near the cylindrical surface while opposite behaviour has been
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observed far away from surface. It holds because enhancement in curvature reduces surface
area (i.e contact area). As a result, less resistance is offered to fluid movement. Fig. 5.4
illustrates the behavior of F'(¢) for distinct variation of Deborah number S,. As larger
values of S, enhances the retardation time that ultimately boosts the elasticity of the
material which is accountable for upsurge in velocity field. Fig. 5.5 expresses the behavior
of F'(&¢) against ratio of relaxation to retardation times A,. It is noticed that velocity
profile F'(&) is decreasing function of A,. Since, relaxation time of fluid enhances for
higher approximation of A, that develops a declining trend in the magnitude of F'(§). Fig.
5.6, demonstrates the impact of inclination of cylinder on the velocity profile F'(¢), when
inclined cylinder’s angle ¢, enhances, fluid velocity diminishes. Figs. (5.7 — 5.13)
exposes the temperature profile 6(¢) variations against 8,, S;, N, N;, Pr, B, and Ec.
The consequences of §, on fluid temperature 6(¢) are presented in Fig. 5.7. One can see
that &, falls down temperature because material particle takes some extra time to transfer
heat due to thermal relaxation enhancement. Hence, temperature 6(¢) decreases. Figs.
5.8 and 5.9 displayed the effect of thermal stratification parameter S; and Prandtl
number Pr on temperature distribution 6(¢). Similar type of behavior for both parameters
has been observed in temperature. In fact, temperature difference between cylinderical
surface and ambient fluid i.e. (T, — T,) gradually falls for higher S,. As a result, 8(¢)
declines. Also, higher Prandtl number corresponds to fluids with low thermal conductivity
i.e. capacity of heat transfer. Such weaker thermal diffusivity becomes a source of decrease
in the temperature and thermal boundary layer thickness (see Fig.5.9). Impacts of N,
and N, for temperature 6(&) is exposed in Figs. 5.10 and 5.11. Similar enhancing is

observed on temperature against both parameters. As Brownian motion randomly disperses
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the fluid particles, so this dispersion causes increment in thermal energy. As
thermophoresis transports fluid particles from hot to cold regions which consequently rises
fluid temperature 6(£). Fig. 5.12 reveals the features of B, on 6(&). Scientifically,
higher approximation of B; generates heat and hence temperature enlarges. The
temperature distributions 8(¢) are portrayed against different values of Ec in Fig. 5.13.
Since larger values of Ec leads to increase in kinetic energy i.e. fluid particles collides more
rapidly with each other and converts its mechanical energy into thermal energy, as a result,
temperature increases. Fig. 5.14 is adorned to analyse the impact of chemical reaction
parameter y, on ®(&). It discloses that the concentration ®(¢) declines with a rise in the
destructive chemical reaction (y, > 0), whereas the reverse trend is observed in the case
of generative (y, < 0) chemical reaction. Fig. 5.15 predicts the consequences of solutal
relaxation time &, on concentration profile ®(¢). The concentration profile decreases
versus greater values of 8. (see Fig. 5.15). Variation of ®(¢) against the Schmidt
number Sc is displayed in Fig. 5.16. Since higher values of Sc corresponds to decrease in
the mass diffusivity and hence in concentration. Fig. 5.17, captured the fluctuations in
concentration @ (&) for different values of N,. It is noticed that concentration decreases
for larger N, . Fig. 5.18 displays the thermophoresis parameter N, effects on
concentration (&) . This figure provides the information that N, enhances the
concentration field ®(¢). Fig. 5.19 is sketched to investigate the relationship between
activation energy E, and nanoparticle concentration for definite values of other flow
parameters. The modified Arrhenius function decays as activation energy E, increases.
This finally endorses the generative chemical reaction due to which nanoparticle

concentration upsurges. Figs. 5.20 and 5.21 elucidate the variations of reaction rate

108



constant y5; and solutal stratification parameter S, on concentration distribution ®(&). A
drop in concentration profile ®(§) is detected while the destructive chemical reaction
parameter y; (> 0) is amplified (see Fig. 5.20). Fig. 5.21 portrays the effect of S, on
®(&). Here decreasing trend of ®(&) is found against S,. It is due to the fact that
difference between the surface concentration and ambient concentration lessens for greater
S,. Thus, concentration field ®(&) decreases. Figs. 5.22 and 5.23 show the impacts of
various flow parameters on wall heat flux coefficient. It is analyzed that wall heat flux
coefficient decays for larger values of B; and S;. Moreover, wall mass flux coefficient

declines versus S, while it enhances against y; (Figs.5.24 and 5.25).

5.6 Graphical outcomes

y;=0.11
Y1 =03
y;=1.0]
1 =15
>
E’
5 7

Fig. 5.3: Response of F'(¢) with y;.
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B=0.1]
B, =05
By=10

By =15

F'(£)

Fig. 5.4: Response of F'(&) with f,.

A =02 ]
N =04
N =06
=08

Fig. 5.5: Response of F'(¢) with A;.
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Fig. 5.7: Response of 6(¢) with §,.
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Fig. 5.6: Response of F'(¢) with ¢,.
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6(£)

0(&)

S;=0.01
S;=0.20
S; =040
S;=0.60

Fig. 5.8: Response of 6(¢) with S;.

Pr=05]
Pr=15
Pr=25]
Pr=3.5

Fig. 5.9: Response of 8(¢) with Pr.
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6(£)

0(&)

Ny=0.1
Ny=03
Ny =05
Ny=07]
5 6 7
¢
Fig. 5.10: Response of 6(§) with N,,.
N.=01
N, =05
Ny=1.0
Ny =151
s 6 7

Fig. 5.11: Response of 6(&) with N,.
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6(£)

0(&)

Gy Oy Ly O
— — — —
[ I [ [
—_ — — —
L O L —

Fig. 5.12: Response of 6(§) with B;.

Ec=10.3]
Ec=0.6
Ec=0.9]
Ec=12]

Fig. 5.13: Response of 8(&) with Ec.
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B(£)

v, =0.1]
Y2 =035
v, =10
y2=15]

Fig. 5.14: Response of ® (&) with y,.

6,=0.1]
6, =0.5
6, =1.0]
5, =15

Fig. 5.15: Response of ®(¢) with §,.

115



Sc=0.1]
Sc=10.5
Sc=10|
Sc=15
@
6 7

Fig. 5.16: Response of ®(&) with Sc.
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Fig. 5.17: Response of ®(&) with N,,.

116



—

et

= =2 =2 =]
I

=R =)

o o b~ b2

—

B(£)

Fig. 5.18: Response of ®(&) with N,.

B(£)

Fig. 5.19: Response of ®(¢) with E,,.
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B(£)

Fig. 5.20: Response of ®(&) with ys.

S, =0.01]
S, =02
S, =04 |
S, =06 |

Fig. 5.21: Response of ®(&) with S,.
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Oc

1 ~
Fig. 5.22: Response of Nu,(Re,) z with B;.
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Fig. 5.23: Response of Nu,(Re,) 2z with S;.
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Fig. 5.24: Response of Sh,(Re,) 2z with S,.
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Fig. 5.25: Response of Sh,(Re,) z with y;.
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5.7 Conclusions

Major highlights of presented flow analysis are:
e Higher estimations of Deborah number (f,) result in the reduction of velocity and

momentum boundary layer thickness.

e Thermal and solutal stratification (S;,S,) decays the temperature and

concentration distribution respectively.

e Both temperature field and thermal boundary layer thickness reduce by enhancing

thermal relaxation parameter (6,).

e Larger solutal relaxation parameter (6.) show decay in the concentration field and

associated concentration layer thickness.

e Skin friction coefficient increases for higher values of (f,) and (y,).
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CHAPTER 6

Dual stratification effects for Walter-B fluid flow in view

of Cattaneo—Christov double diffusion

6.1 Introduction

Present chapter focuses on activation energy and dual stratification impacts on Walter-B
nanofluid over a permeable stretched sheet. Heat and mass diffusion are delineated with
the aid of Cattaneo — Christov models. Thermophoresis and Brownian motion effects are
also taken into account. Influence of heat generation/absorption and chemical reaction is
also measured. Modified Arrhenius formula for activation energy is implemented carefully.
The resulting nonlinear differential system is tackled with homotopy analysis method.

Effects of emanating variables are examined through graphs and tables.
6.2 Mathematical formulation

Present study has explored the novel features of activation energy for unsteady and
nonlinear convective flow of Walter-B nanofluid [104] with generalized Fourier’s and
Fick’s models. Non-uniform heat generation/absorption, dual stratification, nonlinear

mixed convection, chemical reaction and activation energy are considered. Due to

122



variations in the temperature and concentration, thermal and concentration buoyancy
forces are applied to the fluid with double stratification effect. Walter-B fluid occupies the

semi-infinite region y >0 over the surface with stretching velocity U, (x) =
% (see Fig. 6.1). Temperature and the nanoparticle fraction at surface of the sheet are

T, and C,, respectively. While the ambient temperature and nanoparticles volume fraction
is specified by T, and C,, respectively. Walter-B nanomaterial model is engaged which
defines the important slip mechanism namely Brownian and thermophoresis diffusions.
The boundary layer approximation reduces the continuity, momentum, heat and mass

equations [105-107] to

I MOMENTUM BOUNDARY LAYER

I CONCENTRATION BOUNDARY LAYER |

I EEEEEEEER

dyx dax
rs i

C,=C+

Fig. 6.1: Physical model.
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ou 617_

—+—=0,
6x+6y

6u+ ou  0%u \ 03%u N 63u+0u62u ou 0%u

Yax TPy T " ayz T "8\ %axay2 T Vay3 T axay? ay axdy

+%[r1(T —T) + (T = Ty )? + T5(C — Con) + Tu(C — Coo )],
f

Within the frame of Cattaneo — Christove double diffusive scheme [108]

~ [0q
q. + T [a_tl +V1.Vq1 —(q1. V)V + (V. V1)CI1] = —ksVT,

. [0
J1 + T [a_tl +Vi.V]; — (J1.V)V; + (V. V1)]1] = —DgVC.

By imposing steady and incompressibility conditions, we get

g1+ L[V1.Vq: — (q1. V)V4] = =k, VT,
J1 + Te[V1. V)1 — (J1. V)Vy] = —DgVC.

Two-dimensional governing energy and concentration expressions are

6T+ aT+r . ks aZT+ O teD 6C6T+11DT (0T)2
u— UV— = T _ —,
ox dy °° (pcp)f dy? (PCp)f YBoyay ' T, \dy
ac ac 0%C Dy (0°T
ua+v@+r‘CHC—DBF i a—yz —Kl(C—COO)
. T \? E,
cr-co() el
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(6.6)

(6.7)
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with

M

II, =

Ugx dlx
u=T, T=T,=Ty +— I
d3x aty =0
v—Vl, C— C —C0+_
L
dyx
u—>0, T - TOO:TO-I_T’
wheny — oo,
daX

U—>0, C—>C —C0+T

3 262T+ 0%T 6T< 6v+ 6v>+6T< 6u+ 6u>
— Wz v? dy? Oy 0x dy/  0x\ 0dx ”ay
+2 o°T
”vayax’
262C+ 6C+6C( 0v+ 6v)+66( 6u+ au)
Yook TV dy? 0y Y ox dy)  0x Y ox ”ay
+2 o%C
uvayax.

The expression of non-uniform heat generation/absorption Q,,, [109] is

Uk
0n =2 5,

oF
(T~ To) 5+ BalT - Tm)].

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

Here, B, > 0 and B, > 0 corresponds to heat generation case while B; < 0 and B, <

0) resembles to the heat absorption.

Introducing the following similarity transformations

Uy
§= ﬁ y, u® ="TF®, =

Y1 (8) =

0(%) = Lo

)
W TO

OO

CW_CO

() =
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Introducing Eq. (6.14) into Egs. (6.2), (6.7) and (6.8), we get the following system of

ordinary differential equations
F"" —F2 4+ FF" + a,[F"* — 2F'F"" + FF*]
+B1[(1+ 5.0)0 + Ny (1 + B.®)P] =0, (6.15)
0" + Pr[FO' + N,®'0' + N,6> — (6 + S)F'| + (B,F' + B,)

—Pré8,[F20" + (F2—FF")(0+S,) — FF'8'] = 0, (6.16)

—~

N
" + ScFd' + N_t 0" — §5.Sc[F*®" + (F> = FF")(® + S,) — FF'®']
b

E
—Sc (yZCD + (@ + S)F" + y5(1 + 88)Pexp [— N +“56 ) = 0. (6.17)

Transformed boundary conditions for present flow problem are
F'(0) =1, F(0) =1, (0)=1-5,, ®0)=1-5,,
F'(§)=0, (=0 ®(¢)=0, - oo (6.18)

The dimensionless parameters used in Egs. (6.15) — (6.18) are as follows:

5 I (Tw B TO) E; Tw —To
= E = , o= ,
Be Iy T T okt To
< l—‘3 (CW - CO) erO }\3
1 =, 68 = aZ = —,
[ (Tw — To) L V1L
s _ LGy —Co) _RA R
BC - F3 ) V3 - UO ) Vz - UO )
B, = L*(Ty, — To) 1Ty N = 71 D7 (T, — To) A= U_oo
' UZx? t Tovi g (6.19)
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The interested quantities (Cr, Nu,, Sh,) in the wall vicinity are given as

Cr=—2,  Nuyy=—" " Sh=—"
us’ * ke(T, —Ty)’ * T Dg(Cyy — Co)
pf w f( w 0) B( w 0) (620)
with
_0u A 0%u Zau ou (6.21)
tw=W ay u dydx ~ 0xdy y=0'
_aT (6.22)
qw = — kf_| ’
w ay y=0
] ac‘ (6.23)
—Dp—
w ay y=0

In dimensionless form, skin friction coefficient Cr, local Nusselt Nu,and Sherwood

Sh, numbers are

CeRe,)? = [(1+ ) (O))F(0), (6.24)
Nux(Rex)_% = —6'(0), (6.25)
th(Rex)‘% = —d'(0), (6.26)

_ Upx?

in which Re, (— L) is the local Reynolds number.

Vi

6.3 Methodology

The flow governing system (6.15 — 6.17) along with boundary conditions (6.18) is
solved with HAM [110]. For this, first we have to choose initial approximations

(FO(¥),0°(%), °(¥)) and auxiliary linear operators (£g, £4,£4) in the form:
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FO(§) =14V, — exp(-%),

08°(%) = (1 - S;) exp(—¥),
PO(®) = (1 —Sy) exp(—9), (6.27)

£p[Fl =F" —F', £5[0]=0" -8, £o,[®]=0"— o, (6.28)
with the following properties
Er[waexp(=8) + w1 + wzexp(¥)] = 0,
£olwyexp(—=E) + wsexp(§)] = 0,
Eoweexp(—F) + wyexp(¥)] = 0. (6.29)
According to the procedure (see Ref. [111]), we have
Fin(®) = Fn(§) + waexp(—8) + w; + wzexp(¥),
O (8) = 0m(§) + waexp(=F) + wsexp(¥),
P (§) = P (§) + weexp(—F) + wrexp(¥), (6.30)

where (F(§),05,(8), @7,(§)) are the special solutions and w; (j=1—7) are the

arbitrary constants that are defined as follows

0F, 0E;,
wi=—| —Fn0), wy=—| , wy=—6,(l:=
ool T S m($)lg=o (6.31)
We = —CD%(E)Ig:o, w3 = 0, ws = w; = 0.
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6.4 Convergence analysis

The nonlinear problem is analyzed through homotopy technique to get convergent
solutions. Here h —curves are sketched in Fig. 6.2 to see the appropriate ranges of hg, hg
and hg. The admissible convergent regions parallel to h —axis are (—1.0 < hg < —0.5),
(—=1.3 < hg < —0.5) and (—1.4 < hg < —1.1), respectively. Convergence of velocity
F"’(0), temperature 6’(0) and concentration ®’(0) is attained at 18", 26" and

30" order of approximation, respectively (see Table 6.1).

Table 6.1: Convergence analysis when y, = 0.9, N, = N, = 0.5, Sc = 1.5, S, = 0.1,

fp=a,=B;=6,=02,B,=6,=5,=03,y3=N, =E, =6 = 1.0and Pr = 1.2.

Approximation

order —F"(0) —0'(0)  —9'(0)
1 0.6253 0.2014 2.4943
8 0.6545 0.2386 2.5761
12 0.7138 0.3495 2.6874
18 0.7957 0.3828 2.7136
26 0.7957 0.4395 2.7250
30 0.7957 0.4395 2.7544
36 0.7957 0.4395 2.7544
40 0.7957 0.4395 2.7544
42 0.7957 0.4395 2.7544
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6.4 Results and discussion

In this section we will discuss in detail the behavior of velocity F'(§), temperature 6(§)
and concentration ®(§), heat transfer and mass transfer rate for various flow parameters
in graphical and tabulated form. Fig. 6.3 presents the declining trend of F'(&) for greater
a,. Physically, higher a, correspond to the enhancement in viscoelasticity through tensile
stress. That develops resistance in boundary layer and hence velocity F'(§) profile
declines. Fig. 6.4 elaborates behavior of p; for velocity F'(¢) curve. Here F'(§)
enriches for higher estimation of ;. Since higher values of f; corresponds due to the
dominant role of thermal buoyancy force which helps to heighten F’(). Impact of N, and
N, on temperature 6(§) is presented in Figs. 6.5 and 6.6 respectively. Increase in
temperature 6(&) and apposite boundary layer thickness is found for greater marks of N,
(see Fig. 6.5). In fact, additional heat is generated due to random motion of liquid
molecules within the frame of greater N,. Hence, temperature 6(&) curve upsurges. Fig.
6.6 depicits same enhancing behaviour of (&) against increasing values of N,. For
higher approximation of N,, fluid particles drag out from hotter region to colder region of
medium which subsequently boost up temperature profile 6(¢). Fig. 6.7 reveals the
declining effect of temperature 6(¢) for greater values of Pr. In fact, rise in Pr
corresponds to weaker thermal diffusivity over the stronger momentum diffusivity due to
which reduction in 6(¢) is observed. Fig. 6.8 examines the declining trend of 6(¢) for
higher values of S;. Infact, temperature difference (T,, — T,,) gradually decreases for
higher approximation of S; that result in decrease of temperature. In Fig. 6.9 variation of
0(¢) due to sundry values of &, is displayed. Temperature is found to be decline in nature
through greater value of §,. Physically, material particles take more time to transfigure
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heat due rise in thermal relaxation time. Fig. 6.10 reveals the impact of B; on 8(§)
profile. One can noticed that 8(¢) is increasing function of B;. Because B, increases the
thickness of thermal boundary layer that performs as an agent to produce more heat. Due
to this fact, an increase in 8(&) is observed for greater estimation of B,. Impact of Sc on
® (&) is deliberated in Fig. 6.11. Concentration outline reduces for larger values of Sc.
Since higher values of Sc resembles to the lower mass diffusivity which reduces
concentration ®(&) profile. Fig. 6.12 displays the role of N, on concentration ®(£).
This figure predicts that the nanoparticles concentration become low versus Brownian
motion. This assertive response produces more collision among fluid particles due to which
(&) diminishes. Fig. 6.13 elaborates the character of N, on ®(£). For greater estimation
of N, fluid thermal conductivity develops promptly. Such extra thermal conductivity
corresponds due to rise in ®(&). Fig. 6.14 displays the variation of ®(¢) due to
temperature change parameter 6. Here declining role of ®(¢) is analyzed for greater
value of &§. Physically, it indicates that concentration in boundary thickness ®(¢)
upsurges for higher temperature difference (T,, — T, ). Fig. 6.15 investigates the activation
energy parameter E, effects on concentration ®(&). One can observe that increasing
behavior of concentration ® (&) exists for higher marks of E,. Physically greater E,
decreases the modified Arrhenius function which eventually endorses the generative
chemical reaction. Therefore ®(¢) enriches. Higher variation of y; corresponds to
increase in rate of destructive chemical reaction which terminates/dissolves the fluid
species more effectively (see Fig. 6.16). Hence, concentration ®(¢) decays. Fig. 6.17
interprets the impact of fitted rate constant p on ®(¢). Here ®(¢) is found to be

decreasing function of p. The role of skin friction coefficient Cr, Nusselt number Nu,
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and Sherwood Number Sh, for emerging parameters N,, B,, Pr, y; and f; are
presented in Figs. (6.18) — (6.23) respectively. It is depicted from Figs. 6.18 and 6.19

that skin friction coefficient Cr enhances for larger values of both parameters N, and B,

1 ~
respectively. While behavior of Nusselt number Nu,(Re,)z for B, and Pr are
perceived in Figs. 6.20 and 6.21. Fig. 6.20 depicts the decline role of Nu, for greater

values of B, whereas reverse impact is identified for fixed values of B, (see Fig.6.22).
1
Impact of local Sherwood number Sh, (Re,) 2 for y; and B, are displayed in Figs. 6. 22
1
and 6. 23. Here we revealed that Sh, (Re,) z enhances via y5 and it diminishes for fixed

values of ;.

6.5 Graphical outcomes

Lo 2y =0.1
Q2=0.3
0.8f 0 =05 ]

@ =0.7
0.6} .

F'(&)

0.4f

0.2}

0.0}

Fig. 6.3: Response of F'(¢) with a,.
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Fig. 6.4: Response of F'(¢) with B;.

o
I

= = = =
Ll

o
I

Fig. 6.5: Response of 8(§) with N,,.

133



(&)

6(£)

—

o = e ]
[

_— O O

in © tn o— |

Pr=05]
Pr=15
Pr=25]
Pr=35

Fig. 6.7: Response of 6(&) with Pr.
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Fig. 6.8: Response of 6(¢) with S;.
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Fig. 6.9: Response of 8(¢) with §,.
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Fig. 6.10: Response of 6(§) with B;.
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Fig. 6.11: Response of @ (&) with Sc.
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Fig. 6.12: Response of @ (&) with N,,.
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Fig. 6.13: Response of @ (&) with N,.
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Fig. 6.14: Response of @ (&) with 6.
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Fig. 6.15: Response of @ (&) with E,.
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Fig. 6.16: Response of @(&) with y;.

Fig. 6.17: Response of ®(&) with p.
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Fig. 6.19: Response of %CF(Rex)E with f;.
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Fig. 6.21: Response of Nu,(Re,) z with Pr.
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Fig. 6.23: Response of Sh,(Re,) 2 with f3;.

142



6.6 Conclusions

Main findings of the study are listed below:
e Velocity profile F'(¢) declines for higher values of viscoelastic factor a, while

it boosts up for larger estimation of mixed convection parameter S;.

e Temperature field 8(&) enhances for greater values of flow parameters N,, N,

and B;.

e For greater estimations of activation energy parameter E,, concentration profile

® (&) enhances while reverse impact is noticed for reaction rate constant y5.
e Reverse behavior of concentration field ®(&) is remarked in view of N, and N,.

e Skin friction coefficient is amplified via Brownian parameter N,,.

143



CHAPTER 7

Numerical simulation of nonlinear radiative flow of

Casson nanofluid with Cattaneo-Christov heat flux

model

7.1 Introduction

This chapter investigates Cattaneo-Christov heat flux model for nonlinear radiative flow
of Casson nanofluid over an inclined permeable stretched cylinder with slip mechanism.
The novel characteristics of activation energy are studied in the presence of non-uniform
heat generation/absorption, dual stratification, nonlinear mixed convection and binary
chemical reaction. Casson fluid nanomaterial model is measured that refers to the
significant slip mechanism such as Brownian and thermophoresis diffusions. The
governing dimensional system is transformed into dimensionless system by implementing
similarity variables. The developed nonlinear system is unravelled through shooting
technique along with Runge—Kutta—Fehlberg (RK-45) approach. Physical quantities of
interest are investigated through graphs and tables. A validation of the work is offered by

comparing the current results with published literature.
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7.2 Mathematical formulation

Consider two dimensional, incompressible, nonlinear radiative flow of Casson nanofluid

[112-114] over an inclined stretched cylinder of radius R,. Fluid flow is maintained due to
linear stretching velocity of the form U, (= %) Present analysis has been accomplished

with nonlinear thermal radiation, non-uniform heat source/sink, thermal and solutal
stratification, nonlinear mixed convection, binary chemical reaction and Arrhenius
activation energy. The velocity and thermal slip are also inspected for present flow
problem. The uniform magnetic field of strength B, is applied in normal radial direction
(see Fig. 7.1). Cattaneo—Christov heat flux theory is used for heat transfer. The governing

expression of problem are

Fig. 7.1: Physical model.
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0 d _
= (ru,) + FP (ruz) =0, (7.1)

209z T or 1 AJ\arz r or pr

+%[F1(T - Too) + FZ(T - Too )2 + FS(C - Coo) + F4(C - Coo )2]C05¢a'
f

(7.2)
Cattaneo—Christov heat flux model is defined as
~ [0q 7.3
g+, a_tl +V.Vq, — (q. V)V + (V. Vl)ql] = —k;PT. (73)

Utilizing the condition of steady incompressible flow i.e., % =0 and V.V; = 0,Eq.(7.3)
reduces to

g1+ Le[V1.Vqq — (q1. V)V4] = —kVT. (7.4)

The heat and mass conservation laws are

6T+ aT+fH ks 1a(ar>+ Om N
Up o T U, elle =7—7<">"7-\"+ 7N
or 0z (pcp)frar or (pcp)f
1 10 (1602T3 ar) 9CAT t,Dy <6T)2
—————(——7r— |+ 1y Dp—— —,
(pCp)frar 3K, or YBoror = T, \or (7.5)
(’)C+ (’)C_D 6(6C>+DT16(6T>
Yror Y2, = CBar\ ar T 7 OT "or
— ~ T \?P E;
~R(C= ) = R2(Cu =€) (5-) exp| -],
@ (7.6)

The corresponding boundary conditions are
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Uyz 1\ du, d,z
uZ=T+V2(1+/1—)a B T:TW:TO+—,
c/ O L atr =R
d;z 0
ur=V1, C:CW:C0+T
(7.7)
d,x
u, - 0, T—>TOO=T0+T,
whenr — oo,
dyx
u, -0, C—>COO=C0+T.
(7.8)
with
262T 262T oT ou, ou, 0%C
e = uf 5y +ud g+ 5 (v g+ ) + 2w 5o
(7.9)

0T( Ouz_l_ aur)
Y252 T or )

The mathematical expression of non-uniform heat generation/absorption Q,, [115] is

. Uyk oF
On =L (8.1 — 1) S+ B(7 - 1) (7.10)

Here, (B,,B,) > 0 corresponds to heat generation state while (By,B,) < 0 resembles

to the heat absorption.

Apposite transformations for present flow are [116]

_ | Uy (T?—R§ _ [viUpz?
- (25 w = [ )

U R U
1, = 2-F'©), u® = [P0k,
oy = T =T _ C—Co
® = Ty —To’ *®) = Cw — Co (7.11)
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The resulting ordinary differential equations are

1 1
(1 + 2]/1§) (1 + —) F'"'" + 2)/1 (1 + _) F'" + FF" — Fr2
Ac A,

+B1[(1+ 5:0)8 + Ny (1 + B.®)®] cos p, — M,F' =0, (7.12)

-~

. N 1
(14 2y,%) <e" +PrN, <e'c1>' + N—te'2 + Ec (1 + /1_> F”2>> +2y,0'
b c

+(1+ N.(1+ (8, — 1)6)0')" + PrFe’ + Pré, (FF'6’ — 6"'F2)

+B,F' + B,0 + Pr (S; + 0)(8,(FF" —F?) —F') =0, (7.13)

— —

N N
(1+ 2y,%) <c1>” + A—te”> + 2y, <CI>’ + A—te’> + ScF '
Np Np

E
—Sc(S, + P)F' +y,d — Scy;(1 + 66)Pexp [— (1+—a<59)] =0, (7.14)

with
1
F'(0) =1+, (1 + A—)F”(O), FO) =V, 6(0)=1-5, ®(0)=1-S5,
C

F(§)=0, () =0 &) =0 when¢ - oo. (7.15)

Emerging flow parameters are listed below:
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N = 7,:D5(Cy, — Co)’ B _ I, (Cy, — Co)

e F3(CW - CO) 5 = (Tw - TO)
LT, - Ty T,
g1 (T, — To)23 5 I, (T — Tp)
GT == 2 , Bt A ——

Vi I;
= .07 (Ty, — T) Lv,

Nt = ) Yi= |53

TwVvy RgUy

. 9115(C,, — Cy)z° S — g ﬂ
- vz 7V Ry wnilL’
Uz S — d,

Cp(T — To)’ tdy

Gr

Ec =

The interested physical quantities (Cr, Nu,, Sh,) near surface are

21y, Zqw
Cr=——, Nu,=——, Sh
F T psU2 * T R (T, — To) z
with
(1 N 1 ) du,
Ty = U — ,
v Ac) orl _p.
. OT
Aw _kfa_ + erw'
TZRO
b aC
qm B ar rzRo’

where q,|,, is defined as

Grdw=——Z==|5z
v 3keKs \Or
From above equations, one can write
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160,T3 (BT)
T=R0.

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)
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L (Re,y? = (1+ 1)F”(0)
2 F eZ - AC )

NuZ(ReZ)—% = — (1 +N.(1+ (0, — 1)9(0))3) 8'(0),

Sh,(Re,) 2 = —'(0). (7.22)

7.3 Methodology

The numerical solution of resulting system of coupled non-linear Eqgs. (7.12) — (7.14)
along with boundary conditions Eq. (7.15) is computed through shooting technique along
with fifth order Runge—Kutta—Fehlberg method with & = 0.001. Newton method is applied
for the modification of initial guesses U,, U, and U; subjected to the tolerance of ¢ =
10~7. For present study, the domain of the problem is considered as [0 — 15] instead
of [0 —o0). To proceed with this technique, we have to reduce higher order coupled
system into the first order equivalent system by defining new variables:
(Zy, Z,, Z3, Z4, Zs, Zs, Z5) = (F, F', F", 0, 6/, ®, ®').
The first order equivalent system in term of Z; for (i =1,2,3,4,5,6,7) is

Zy =73, (7.24)

-2y, (1 + %) Z3—Z1Z3+ 75 + MyZ, —
(4

By ((1+ Beza)Zy + Ny (1 + BuZ6)Zs ) cos g

(1+2y,8) (1 + /1%) | (7.25)

3=
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7l = Z, (7.26)

+Pr(Sy + Z4)Z, — PrZ, Zs — (14 N.(1 + (8,, — 1)Z,)3Zs)’

( —(1+2y,9Pr (szsz7 + N.Z2 + Ec (1 + %) Z§) — 2y, Zs
C
\—Pr&e((Sl + Z,)(Z1Z5 — Z2)+Z,7,Z5) — (B1Z; + B,Z,)

7L = :
> (1 + 2y,& — Pré,Z2) (7.27)
Zt =17, (7.28)
N 144
_N_:, ((1 + 2y,§)0" + 2V125) — Yo2le — SCZ1Z7 — 2]’127\
E
14 —_———a
\+5c(s2 +Z)Zy + Scys(1 + 62,) exp[ T 624)] /
Zh = (7.29)
(1+2y4%)
with
1
4O =V, %O =5(1+7)U, Z0)=0,
Ae (7.30)
Z,(0)=1-5;, Zs5(0) =U, Ze(0) =1-5;. .
Z7(0) = U3,

The terminating benchmarks for the iterative process is set as

max(|Z,(15) — 0], [Z4(15) — 0], [Zs(15) —0]) <,
7.4 Results and discussion

The computed results are explained for interested physical entities by restricting physical
parameters as (0.2 <y; <0.8), (05<1. <), (01<p <05), (03<N,<
15), (02<N,<15), (1<N,<15), (02<y,<08), (0.5<Pr<25),(02<

S,<08), (0.5<N,<3), (02<M<06), (02<E,<15), (0.1<y;<10),
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(01<S8c<1.0), (01<S5,<05) and (0.1 <pB,<0.5). Tables (7.1—7.3) are
constructed to notice the behavior of skin friction coefficient, local Nusselt and Sherwood
number towards various flow controlling parameters such as y; curvature parameter,
Ac Casson fluid parameter, M; Hartman number, Sc Schmidt number, B; mixed
convection parameter, N, radiation parameter, N, Brownian motion parameter, N,
thermophorsis parameter (S;,S,) thermal stratification and solutal stratification
parameters, respectively. Specifically, Tables 7.1 and 7.2 provide a comparison of the skin
friction coefficient and local Nusselt number with the previously published results. Table
7.1 portrays the skin friction coefficient for numerous values of A, and M, and match these
values with Ref. [117] when all other parameters remains unchanged. Without emphasis of
Eq. (7.13), the present outcomes for Nusselt number using a number of values of Prandtl
number are compared with existing values through Table 7.2. An excellent agreement of
results has been noticed that confirms the validity of our present endeavor.
(see Tables (7.1 and 7.2)). Table 7.3 is presented to study the sound effects of
parameters like y;, 4., B1, M;, S;, E, and S, on skin friction coefficient. It is noticed
that wall friction in the absolute sense, displays a provoking nature towards thermal
stratification parameter S, curvature parameter y,;, Casson fluid parameter A, and
magnetic parameter M; while opposite approach is viewed for positive values of mixed
convection parameter f;, activation energy parameter E, and solutal stratification
parameter S, respectively. Table 7.4 spectacles the impact of curvature parameter y,,
fluid parameter A, thermal radiation parameter N,., activation energy parameter E,,
thermal relaxation parameter 8,, thermal stratification parameter S;, and B, on local

wall heat flux. Here, wall heat flux inclines versus y; and E, while it declines for higher
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marks of A., N,, By, 6, and S;. From Table 7.5, it is detected that an enhancement in
curvature parameter y; Schmidt number Sc, Brownian motion parameter N, corresponds
to rise in Sherwood number while N,, E, reduces it. The MATLAB built-in function
(bvp4c) is employed for the verification of the present results attained from the shooting
code.

Figs. (7.2 — 7.7) are portrayed to explore the velocity profile F'(£), for distinct values
of A., Y1, My, B, and S,. Fig. 7.2 depict the behavior of F’(£) on variation of Casson
parameter A.. As stress of the Casson fluid causes a decrease in rheological characteristics.
When A, approaches to its maximum value or infinity, the flow behavior resemble to the
Newtonian fluid model and the fluid is able to shear faster along the surface. Fig. 7.3
captured fluctuations in velocity F'(&) by varying curvature parameter y;. One can see
from graph that velocity distribution F'(&) upsurges within the frame of larger curvature
parameter y,. Fig. 7.4 reveales the effect of an inclination ¢, on velocity profile. It is
observed that for greater values of ¢,, the velocity profile decreases. Behavior of F'(§)
for higher approximation of nonlinear thermal convection parameter j, is presented in
Fig. 7.5. Motion of fluid particles boosts up for higher marks of nonlinear thermal
convection parameter S,. For greater approximation of f,, the temperature difference
(T, — T,) intensifies which is responsible for upsurge in velocity distribution. Impact of
velocity slip parameter S, on F'(§) is delineated through Fig. 7.6. Here the velocity
F'(&) decelerates versus velocity slip parameter S,,. In fact, the stretching of the sheet
becomes a source of decrease in fluid flow that weaken the velocity field F'(¢) against
velocity slip parameter S, . Figs. (7.7 — 7.15) elaborates the influence of physical

parameters such as S;, N,, N,, Pr,8,,B; and B;on temperature distribution 6(&). The
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effect of thermal stratification parameter S; on fluid temperature 8(¢) is identified in Fig.
7.7. This figure displays a decreasing fashion of temperature field for positive values of
thermal stratification parameter. This tendency of curve is due to the existence of potential
drop between cylindrical surface and ambient fluid. Enhancing trend of 6(¢) is remarked
for larger nonlinear thermal radiation parameter N, (see Fig. 7.8). It strengthen the fact
that radiation is a heat transfer mode that transmits the thermal energy through fluid
particles. Figs. 7.9 and 7.10 are adorned to study the influence of Brownian motion N,
and thermophoresis parameter N, on temperature 6(€). It can be seen that both
parameters give rise in temperature 6(£). It holds because Brownian motion accelerates
random motion i.e. fluid particles collision becomes rapid and hence these collisions
produce more thermal energy. Also, as fluid particles rush from hot to cold region for
higher thermophoresis parameter N, due to increase in thermophoresis force
(see Fig. 7.10). Influences of temperature ratio parameter 6,, on temperature 8(§) are
examined through Fig. 7.11. This figure shows that fluid temperature rises by increasing
6,,. This is due to higher thermal state of liquid when compared with ambient temperature.
Fig. 7.12 elucidates the effect of Pr on temperature distribution 6(¢). One can observe
that temperature 6(¢) is a diminishing function of Pr. This response of temperature 6($)
against Pr is in line for weaker thermal diffusivity as compare to momentum diffusivity.
Fig. 7.13 revealed the thermal relaxation time &, effects on fluid temperature. It is
observed that temperature falls down versus §,. Due to rise in thermal relaxation time,
particles require additional time for heat transmission to its adjacent particles. Figs. 7.14
and 7.15 portraits deviations in temperature against space dependent and temperature

dependent heat source/sink parameters (El,éz). It is noticed that temperature 6(&) rises
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for B, >0 and B, > 0 while opposite behaviour is captured in case of B; <0 and
B, < 0. Figs. (7.16 —7.22) are revealed to show the impact of y,, S,, N,, N,,
Sc, E; andy; on @(&). Impact of destructive chemical reaction variable y, > 0 on
concentration @(§) is pointed out in Fig. 7.16. Here ®(¢§) and relevant boundary layer
thickness are reduced for larger destructive chemical reaction variable y, > 0. From Fig.
7.17, it is detected that (&) is a decreasing function of solutal stratification parameter
S, . In reality, reduction in concentration potential between ambient fluid and the
cylinderical surface is identified hence, it reduces the concentration ®(§) respectively. In
Fig. 7.18 features of Brownian parameter N, on ®(&) is presented. It is observed that
concentration profile is a falling function of N,. Since fluid particles are pushed in opposite
direction to the concentration gradient to make more homogeneous nanoparticle solution.
Therefore, small concentration gradient value is noticed for greater values of N,. That
eventually drops the concentration ®(§). Decreasing features of concentration profile is
found against larger Sc (see Fig. 7.19). This tendency is expected because larger Sc values
leads to diminish the mass diffusivity. Increase in N,contributes higher fluid thermal
conductivity which spectacles the higher concentration ®(§) as seen in Fig. 7.20. The
relationship between activation energy E, and nanoparticle concentration for particular
values of parameters is analyzed in Fig. 7.21. The modified Arrhenius function dwindles
as activation energy E, enlarges. This lastly endorses the generative chemical reaction due
to which nanoparticle concentration ®(¢) upswings. Decreasing tend of ®(§) is
comprehended for larger y; (see Fig. 7.22). Physically, as we enhance the values of 5,
the destructive rate of chemical reaction also grows which is used to terminate/dissolve the

liquid species more effectively.
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Table 7.1: Comparison of (1 + li) F""(0) with [117] for limiting case.

M, ~(1+ %) F"(0)

Ref. [117] Present
o) 0 1.0042 1.00001
5 —1.0954 —1.09545
1 —1.4142 —1.41426
o 10 —3.3165 —3.31664
5 —-3.6331 -3.63318
1 —4.6904 —4.69042
oo 100 —10.049 —10.04987
5 —11.0091 —11.00909
1 —14.2127 —14.21267

1
Table 7.2: Comparison of Nu,(Re,) 2z with Refs. [118] and [119] in the limiting cases.

Ref. [118] Ref. [119] Present
Pr. Ae 20,1 =5 =M, =p;
St=S,=M;) (E;=y,=0) <=§1=§2=Nr=0 )
1.0 0.9547 0.9547 0.9547
2.0 14714 1.4714 1.4714
3.0 1.8961 1.8961 1.8962
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Table 7.3: Numerical values of %CF(ReZl)2 for various physical parameters.

yi A B My S B, S, ‘(”%)F"(O)
Shooting Bvp4c

0.2 2.1046 2.1046
0.4 3.0086 3.0086
0.6 4.0524 4.0524
1.1 1.7580 1.7580
1.3 1.7846 1.7846
1.5 1.8077 1.8077
0.1 1.6649 1.6649

0.3 1.5278 1.5278

0.5 1.3884 1.3884

0.2 1.5675 1.5675

0.4 1.7968 1.7968

0.6 1.9654 1.9654

0.1 1.7456 1.7456

0.3 1.7698 1.7698

0.5 1.7864 1.7864

0.4 1.9789 1.9789

0.8 1.4876 1.4876

1.2 1.0754 1.0754

0.2 1.7487 1.7487

0.4 1.7356 1.7356

0.6 1.7245 1.7245
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Table 7.4: Numerical values of Nu,(Re,) 2 for various physical parameters.

1
—Nu,(Re,) 2

Y1 Ac N, 8e S1 Eq, By

Shooting Bvp4c

0.2 0.6254 0.6254

0.4 0.7367 0.7367

0.6 0.8498 0.8498

1.1 0.7568 0.7568

13 0.7365 0.7365

15 0.7149 0.7149

1.0 0.7857 0.7857

2.0 0.7286 0.7286

3.0 0.6394 0.6394

0.3 0.7465 0.7465

0.5 0.7389 0.7389

0.7 0.7266 0.7266

0.2 0.7465 0.7465

0.4 0.7387 0.7387

0.6 0.7259 0.7259

0.8854 0.8854

1.0657 1.0657

1.8784 1.8784

0.1 0.7593 0.7593

0.3 0.7048 0.7048

0.5 0.6532 0.6532
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Table 7.5: Numerical values of Sh,(Re,) 2 for various physical parameters.

V1 Sc Ny N¢ S; Eq vs

1
—Sh,(Re,) 2

Shooting Bvp4c
0.2 0.5473 0.5473
0.4 0.6537 0.6537
0.6 0.7265 0.7264
0.1 0.4872 0.4872
0.5 0.5438 0.5438
1.0 0.6679 0.6678
0.3 0.6278 0.6278
0.5 0.7256 0.7256
0.7 0.7483 0.7482
0.3 0.5867 0.5866
0.5 0.4259 0.4259
0.7 0.3765 0.3764
0.2 0.4573 0.4573
0.4 0.5246 0.5246
0.6 0.6375 0.6375
0.4 0.7854 0.7853
0.6 0.7736 0.7736
1.2 0.7523 0.7522
0.1 0.7871 0.7871
0.5 0.8534 0.8534
1.0 0.9657 0.9656

159



7.5 Graphical outcomes
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Fig. 7.2: Response of F'(¢) with A..

Fig. 7.3: Response of F'(¢) withy;,.
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Fig. 7.5: Response of F’(§) with f3,.
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Fig. 7.6: Response of F'(§) with S,,.
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Fig. 7.7: Response of 6(¢) with S;.
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Fig. 7.8: Response of 6(§) with N,.
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163



N.=02

N.=06"

J"’\'A’?r = ].0 i

N, =14
- ]
T i

---:'-.,"..'-:-ahﬂ'-' i
15

Fig. 7.11: Response of 8(¢) with 6,,.
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Fig. 7.12: Response of 6(&) with Pr.
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Fig. 7.13: Response of 0(&) with §,.
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Fig. 7.14: Response of 0(%) with B,.
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Fig. 7.15: Response of 0(%) with B,.
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Fig. 7.17: Response of ®(&) with S,.
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Fig. 7.18: Response of ® (%) with N,,.
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Fig. 7.19: Response of ®(&) with Sc.
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Fig. 7.20: Response of ®(£) with N,.

O(£)

Fig. 7.21: Response of ®(§) with E,,.
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Fig. 7.22: Response of ®(§) with y;.

7.6 Conclusions

A numerical analysis is presented to investigate the influence of slip boundary conditions
on a nonlinearly radiative flow of Casson nanofluid with novel impacts of activation
energy, non-uniform heat generation/absorption and binary chemical reaction. Heat
transfer for current problem is investigated through Cattaneo-Christove heat flux model
with thermal and solutal stratification phenomena. Numerical solution of transformed
system is achieved by using shooting technique. The key observations are summarized as
follows:
¢ Nanoparticle concentration is an enhancingi function of activation ienergy E, for
chemical reaction and ithermophoresis parameter N,. Additionally, the response of

chemical reaction parameter y5 is qualitatively opposite to that of E,,
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e An enhancement in non-uniform heat generation/absorption parameters (B,, B,),

Brownian motion and thermophoresis parameters (1\7,,, IVt) become a source of rise
in temperature distribution while greater approximation of Prandlt number Pr and

thermal relaxation parameter &, generates fall in temperature field.

Temperature and concentration fields are dwindling functions of thermal and

solutal stratification parameters (S, S,), respectively.

Heat transfer rate at the cylindrical surface and thermal boundary layer thickness

enhances in presence of thermal radiation N,.

Sherwood number has contrary behavior for larger E, and ys;.
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CHAPTER 8

Stratified flow of ferromagnetic nanofluid with heat

generation/absorption

8.1 Introduction

The objective of existing article is to analyze the effects of non-uniform heat source/sink
and magnetic dipole in flow of ferromagnetic Maxwell liquid over a stretched sheet.
Highlights of Brownian movement and thermophoresis are explored within the sight of
magnetic dipole. Effects of thermal and concentration stratification are additionally
considered. Apposite transformations are employed to obtain the nonlinear differential
system. The procured nonlinear framework is locked in numerically with the assistance
of shooting technique. Velocity and temperature gradients are discussed and analysed in

detail through graphs and tables.

8.2 Mathematical formulation

Consider an incompressible Maxwell ferromagnetic fluid with dual stratification
phenomena over a linearly stretched sheet. The stretching of sheet is directly proportional
to the distance from the origin. Heat transfer analysis is examined through viscous

dissipation. The present investigation is carried out in addition to Brownian motion,
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thermophoresis and viscous dissipation. Further, magnetic dipole of adequate strength is
positioned at some distance (a) below the x-axis and centered at y-axis (see Fig. 8.1).
The direction of magnetic field is taken along positive x-direction. Here Curie temperature
T, is taken to be greater than the temperature at stretched surface T,,, otherwise, T = T,
is temperature far from surface that follows T, < T < T.. The liquid above T, is
inadequate of being magnetized. Here variable temperature T,, = Ty + d;x and T, =
Ty + d,x are scrutinized at the sheet distant from the surface. The boundary layer

equations in a ferrofluid flow and heat transfer rate are as follow:

>
T, <T. a u =¢1X
Magnetic Dipole
Fig. 8.1: Physical model.
ou N dv _ 0
ox dy (8.1)
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6u+ ou 0°u Ay ([ 07 o 62u+ ,0%u
Yax TV 1gy2 pr Y oox? “”axay v dy?
oM, 0H
pr 0x’ (8.2)

=a*

pr 0T "6, b),
= (p dCoT Dy (6T> U (6u>

+ Tq B a ay + = T (p ) )

o, OC_, 0°C Do’
ox 9y Pay? ' T, ay? (8.4)

8T+ 6T+( 6H+ aH)gOTaM1 aT Qo
“Yax " Va ax 'y

(8.3)

The boundary conditions are

u=U,=cxv=0 T=T,=Ty+dx, C=C,=Cy+dsx aty=0, (85)
u—-0, v-0 T->T.=Ty+dx, C—>C,=Cy+dyx. wheny — co. (8.6)

The time dependent non-uniform heat source/sink Q,, [120] is considered as

~ U, ()k oF
On = =20 Bt~ Ty G + Ba7 — 1) )

in the above equation positive values (Bl > 0and B, >0) corresponds to heat

generation and negative values (B, < 0 and B, < 0) resembles to the heat absorption.
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8.3 Magnetic Potential
The features of magnetic field influence the ferrofluid flow due to a magnetic dipole. Such
impacts of magnetic dipole are pronounced by a magnetic scalar potential 4, which is

demonstrated as [121]

_ a X
S+ (y+a)?] (88)

Q

The components of scalar potential of magnetic dipole are

OH 09y a x*—(y+a)?

ox  o0x 2m [x2 + (y + a)?])? (8.9)
OH 09y «a 2x(y +a)
dy 9y 2m[x?2+ (y+a)?]? (8.10)

Since the magnetic body force is (generally) proportional to the gradient of the magnetic

of H, we thus have

- (691)2 N (aﬂl>2
by utilizing Egs. (8.9) and (8.10) in Eqg. (8.11), we obtain the following equations, after

expanded in powers of x and retained terms up to order x?

(')H_ a 2x

% mo T .12
OH «a 2 N 4x?
dy 2m| (y+a)® (y+a)s| (8.13)

The approximation of magnetization M, through temperature T is estimated by
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My = Ky (T = To). (8.14)

Here, K, identifies as pyromagnetic coefficient.

8.4 Methodology

By invoking following transformations [122]

u= Clel(E)’ v = _\/%F(E)’ Lpl — #51;:(5) ’

| _TI.-T
E_ TYJ e(flﬂg)_T —

- 2 o _Leml 2
$1= 795: (1,8 = C.—C, 1(8) + 1 P2 (8).

T, = 0,(8) + £76,(%),

(8.15)

Employing the boundary layer approximation and utilizing similarity variables given in
Eq. (8.15), the Egs. (8.2) — (8.4) along with stated boundary conditions given in Eq.
(8.5) reduces to the following system of equations

21,6,

F" 4 FF" — F'2 + M,(F""F2 — 2FF'F") — — 11 _
¢ (€ +ap)*

0. (8.16)
ZAf)\vF(Hl - 81)
R € +ay)?

N ¥ N Nt 2 ! 2 _
+ PI‘ Nb 01(1)1 + N_Bl - PTSlF - 4‘2,171—_‘ - O,
b

;' + Pr(FO; — 2F'0,) + (B,F' + B,0,) +

(8.17)

212, F6,
€+ ay)?

. S 2F 4F
+B262 +2PrNt6162_Af)\v(61_81) <(€+a )4+(E+a )5> = 0,
1 1

6, — Pr(4F'8, — FO;) + PrN, (6, + 6;®}) — A,F"%2 +

(8.18)
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—~

D! + N_t 0} — PrLeF'®, + ScF®, — PrLeS,F' = 0, (8.19)
b

—

DY N—te'z' — 3PrLeF'®, + ScF®} = 0,

(8.20)
b

with
F(O) = 0) F,(O) = 1) 01(0) = 1 - Sll

6,(0) =0, @,(0)=0, ®,(0)=1-S5,, (8.21)

F’(OO) = 0) 91(00) = 0: 92(00) = 0! q)1(00) = 0! q)Z(OO) =0. (822)

Mathematically, the non-dimensional governing parameters are defined as follows:

_«a oKop(To — T,y) _ 1 _ cipa?
Af == > , Ny =E———— =
21 K pk1(To — Ty) K
5 F3(CW - CO)

B T, Le = a
VST, —Ty) R “ T by’
~ 17 Dr(T, — Tp) uCy
N, = . M, =21,ci, Pr=—-2
t chl e mcl r k1
N =T1DB(CW_CO) S =% S =%
b v ’ Td) 27 dy (8.23)

The skin friction coefficient Cr, local Nusselt Nu,, and Sherwood Sh, numbers are

_ 21y

qu ij
Cr =——, Nu, = ———, Sh, = ————. (8.24)
F vazv * k1(TW - To) * DB (CW - CO)
In dimensionless form, we have
1
Cr(Rey)2 = —2F"(0),
1
Nu,(Re,)™2 = —[01(0) + ¢765(0)],
1 , , 8.25
Shy(Rey) 2 = —[®4(0) + £2}(0)]. (825
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8.5 Results and discussion

Here the effects of elasticity parameter M,, Prandtl number Pr, ferrohydrodynamic
interaction parameter Ar, Brownian parameter Ny, dimensionless temperature &,
Schmidt number Sc, thermophoresis variable N, thermal stratification parameter
S1, space and temperature based source/sink parameters (EI,E’Z) and Lewis number Le
on velocity F'(€), temperature (%) and concentration ®(&) are studied. Table (8.1)
conveys the computational results of Nusselt number against certain physical factors. Here
heat transfer rate enriches for greater Ny, As, M, and Sc while it declines for &, N, and
a,. Table (8.2) provides outcomes of Sherwood number against different physical
variables. It is observed that mass transfer rate improves for growing values of a4, Af and
Pr, while it declines for increasing A, and N,. Figs. (8.2 — 8.4) are revealed to display
the effect of M, and A, on F'(§). Impacts of elasticity parameter M, are marked in Fig.
8.2. For greater M, velocity F'(&) advances progressively, the outcome designates that
velocity and apposite boundary layer becomes thicker with a rise in M,. It is pondered
that response velocity ascends by incrementing elastic force of system. Surface forces
ranges to its lowest value for M, = 0. That defines the absence of internal elastic force
due to which the fluid moderates to Newtonian fluid. Fig. 8.3 inspects the declining trend
of F'(§) for higher values of ferromagnetic parameter A. Physically higher values of A,
provide additional resistance to fluid flow. Hence F'(£) reduces. Figs. (8.5 — 8.12) are
sketched out to investigate the temperature profile 6,(&) for various estimations of 4,
Pr, A¢, Sy, N, and N,. Fig. 8.5 displays the effect of Eckert number Ec on 8,(§). For

larger value of Ec, temperature 6,(¢) is found to be heightens near the surface. For
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greater Ec additional inner energy of liquid produces rise in 8,(¢). Variation of Pr on
0,(&) is displayed in Fig. 8.6. Here greater appraisal of Pr corresponds to lessen the
temperature field. In fact, higher Pr relates to greater momentum diffusion and thinner
thermal layer. That results in reduction of 6,(¢). It is notified from Fig. 8.7 that for
expanding estimations of A, relate to higher temperature field 6,(¢). Physically for
bigger Ar resistive force (Lorentz compel) improves and along these lines 64(¢)
increases. The role of thermal stratified parameter S; against 6,($) is presented in Fig.
8.8. It is noted that both temperature and thermal boundary layer are diminished for higher
S;. Due torise in S;, the temperature difference (between sheet, ambient fluid) is reduced
that result in weaker temperature profile and apposite thermal boundary thickness. Figs.
8.9 and 8.10 are displayed to know the nature of 6,(&) for distinct values of heat
source/sink parameters B, and B,. Enhancing nature of 6,(§) is noticed for both
parameters B; and B,. Scientifically, higher estimation of B, increases the boundary
layer thickness and hence it acts as an agent to generate heat. Due to this reason, an
amplification in 8, () is perceived for higher B, (see Fig. 8.9). Impact of N, and N,
on 0, (&) is displayed in Fig. 8.11 and 8.12. Similar conduct of N, and N, is observed
for 6,(&) and related layer thickness. In fact, additional heat is created through the
random motion of fluid particles inside the frame of larger Brownian motion parameter
N,. Consequently, 8, (&) increases. Movement of liquid particles ascends from hot to
cool locations in the framework for bigger N,. It is expected an expansion in
thermophoresis force and therefore the temperature profile builds up (see Fig. 8.12).
Figs. (8.13 — 8.16) scrutinize the behavior of concentration ®, (&) against Le, Sc, Ny,

and N,. Effect of Lewis number Le on ®, (&) is plotted in Fig. 8.13. It is notice that
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increase in Lewis number Le leads to decrease in &, (¢). Behavior of Sc on ®,(¢) is
exposed in Fig. 8.14. Here @, (&) is decreasing function of Sc. Physically Sc enhances
momentum diffusivity and thus concentration curve decreases. Figs. 8.15 and 8.16 are
designed to study the concentration ®,(&) for larger Brownian parameter Ny and
thermophoresis parameter N. It is noticed from Fig. 8.15 that concentration ®, (&)
reduces with rise in Brownian parameter N, . Physically, N, improves Brownian
diffusion rate and as a result ®,(&) diminishes. For greater N, concentration @, (&)
increases (see Fig. 8.16). As higher N, offer ascent to thermal conductivity of the fluid
that ultimately produces enhancement in @, (). Fig. 8.17 depicts the total averaged

squared residual error E,, .., at different orders of approximations m.

1
Table 8.1: Numerical values of —Cg(Rey)z for various physical parameters.

Ay S1 M, Pr —Cp(Rey)?
1.0 0.2 05 1.2 1.2975
2.0 1.5033
3.0 0.2 0.5 1.2 1.6122
0.4 1.2975
0.6 1.3044
1.0 0.2 0.1 1.2 1.3189
0.5 1.3175
1.0 0.2 1.0 1.2 1.2975
2.2 1.2747
3.2 1.2975

1
Table 8.2: Numerical values of —Nu, (Re, ) 2 for various physical parameters.
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Nt §1 6] &1 M,

Pr

1
—Nu, (Rex)_E

0.2
0.4
0.6

0.4

0.1
0.3
0.5

0.2

0.2
0.3
0.4

02 03 02 01 05

0.1
0.2
0.3
0.1
0.3
0.5
0.2
0.4
0.6
0.1
0.2
0.3
0.1
0.5
1.0

1.2

0.5
1.0
1.2

0.690618
0.649362
0.608331
0.684573
0.678502
0.672406
0.710402
0.730151
0.750126
0.704658
0.717790
0.729936
0.689512
0.689262
0.688432
0.706592
0.715294
0.720367
0.693605
0.696584
0.699562
0.696195
0.694292
0.692434
0.726713
0.762634
0.798277
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1
Table 8.3: Numerical values of —Sh, (Re,) 2 for various physical parameters.

A

Ay

Ny

N, B, o & M, Pr

1
—Shy(Rey) 2

0.2
0.4
0.6

0.4

0.1
0.3
0.5

0.2

0.2
0.3
0.4

02 03 02 01 05 12

0.1
0.2
0.3
0.1
0.3
0.5
0.2
0.4
0.6
0.1
0.2
0.3
0.1
0.5
1.0
0.5
1.0

0.487562
0.486294
0.484172
0.487403
0.488204
0.488562
0.475904
0.478485
0.480266
0.454873
0.438595
0.421272
0.487403
0.488200
0.488561
0.467321
0.467307
0.467228
0.466524
0.466281
0.466038
0.484342
0.502060
0.519874
0.461302
0.454521
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8.6 Graphical outcomes

Loy M,=02 ]
M, =04
0.8 M, =06
M, =08
o4} -
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&
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0.0/

Fig. 8.2: Response of F'(¢) with M,.
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Fig. 8.3: Response of F'(&) with Ay.
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Fig. 8.4: Response of 6,(¢) with Ec.
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Fig. 8.5: Response of 6,(¢) with Pr.
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Fig. 8.6: Response of 6, () with Ay.
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Fig. 8.7: Response of 60, (¢) with Ay.
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Fig. 8.8: Response of 8, (§) with B;.
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Fig. 8.9: Response of 0, (§) with B,.
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Fig. 8.10: Response of 0, (¢) with N;,.
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Fig. 8.11: Response of 0, (¢) with N,.
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Fig. 8.12: Response of @,(&) with Le.
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Fig. 8.13: Response of @, (&) with Sc.
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Fig. 8.15: Response of @, (&) with N,.
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Fig. 8.16: Total averaged squared residual error E, ., for different m.

8.7 Conclusions

Some of the conclusive remarks for the present work are presented below:

e Temperature 6,(¢) enhances for greater estimations of IVb,/lf, B,

B, and N, however it decays for increasing Pr and S;.

e Velocity F'(§) enhances for M, while it decays for S; and A;.

e Larger estimations of B, and B, decays temperature 6, (&) profile.

e Outcomes of N, and N, are reverse on concentration @, (¥).
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