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Abstract

This thesis aims at understanding and improving the existing knowledge in the area of
generalized Newtonian fluids. The main focus in this work is given to the mathematical
modeling and computation of three dimensional flow of Carreau rheological model that
can describe both the shear thinning and shear thickening characteristics of fluids.
Consequently, three dimensional boundary layer equations for both steady and unsteady
cases are established. Utilizing Boussinesq estimates the governing flow and heat transfer
expressions of Carrau fluid model influenced by a bidirectional stretched surface have
been framed. The appropriate conversions reformed the modeled partial differential
equations (PDEs) into ordinary differential equations (ODEs) and results are established
both numerically as well as analytically by employing bvp4c scheme and homotopy
analysis method (HAM), respectively. The performance of influential parameters for
shear thinning-thickening cases are graphed, tabulated and conferred. Additionally, a
comparative study has been reported in both graphical and tabular forms with available

literature.

The consideration of non-Newtonian fluids have noteworthy utilizations in the area of
energy, deferrals, genetic disciplines, polymer clarification, imitation fibers compound
inventions, geophysics and refined materials, etc. Regardless of such attentions, various
researchers are still affianced to scrutinize further the streams of non-Newtonian fluids.
The contributions in this thesis include mathematical modeling of Carreau fluid in three
dimension with elucidations of results of considered problems. The results for the
velocity, temperature and concentration fields for both shear thinning-thickening cases
are reported. The results showed that the velocity components have conflicting
performance for the local Weissenberg numbers for shear thinning and shear thickening
cases. It was also noted that the enhancing values of the power law exponent intensify the
fluid velocities for both instances. Further, the temperature of Carrau fluid for shear
thinning case intensifies for higher estimation of the local Weissenberg numbers;
however, for shear thickening fluid a different behavior is observed.



Contents

1 Review and Some Fundamental Relations 5
1.1 Introduction . . . . . . . . . . L e 5
1.2 Background . . . . . .. L e e )
1.3 Basic Relations of Fluid Mechanics . . . . . . .. ... ... ... .. ... ... 17

1.3.1 Conservation Relation of Mass . . . . . .. ... .. ... .. ....... 17
1.3.2  Conservation Relation of Linear Momentum . . . . . . ... ... ... .. 17
1.3.3 Conservation Relation of Energy . . . . .. ... ... ... ... 18
1.3.4 Conservation Relation of Concentration . . . . ... ... ... .. .... 18
1.3.5 Conservation Relation of Energy for Nanofluids . . . . ... ... ... .. 19
1.3.6  Conservation Relation of Concentration for Nanofluids . . . . . . ... .. 19
1.4 Generalized Fourier’s and Fick’s Laws . . . . . . .. ... ... ... ....... 19
1.5 Homogeneous-Heterogeneous Reactions. . . . . . . .. .. ... ... ... .... 20
1.6 The Carreau Rheological Model . . . . . . ... .. ... ... ... ... ... 21
1.7 Solution Methodologies . . . . . . . . . . . ... 22
1.7.1  Numerical Procedure (bvpdc) . . . ... ... ... oL 22
1.7.2  Homotopy Analysis Method (HAM) . . .. ... ... ... ........ 22
1.8 Research Outlines . . . . . . . .. ... . 24

2 Mathematical Modeling for Three-Dimensional Carreau Fluid Flow with

Nonlinear Radiative Heat Flux 27
2.1 Development of Physical Model . . . . . . . ... ... 0 o 28
2.1.1 Governing Equations . . . . . . . . ... o 28



2.2 Description of the Problem . . . . . . ... ... ... .. ... .. ... ...
2.2.1 Appropriate Conversions . . . . . . . . . . .. e e
2.3 Engineering and Industrial Quantities of Interest . . . . . . . ... ... ... ..
2.3.1 The Skin Friction Coefficients . . . . . . . . .. ... ... ... ... ..
2.3.2 The Local Nusselt Number . . . . . ... .. ... . ... .. ...
2.4 Solution Methodologies . . . . . . . . ... ... L
2.4.1 Numerical Scheme . . . . .. ... ... ...
2.4.2 Homotopy Aanalysis Method (HAM) . . . . ... .. ... .. .. .....
2.5 Graphical Illustration and Analysis . . . . . . .. ... ... ... ... ...
2.5.1 Graphical Comparison between bvpdc and HAM . . . ... ... ... ..
2.5.2 Tabular Representations . . . . . . . . . . . .. ... o

2.5.3 Confirmation of Numerical OQutcomes . . . . . . . . . .. . .. ... ...

Influence of Convective Conditions in 3D Carreau Nanofluid Flow

3.1 Description of the Problem . . . . . . ... .. .. ... .. . o .
3.1.1 Appropriate Conversions . . . . . . . . . . . ..

3.2  Engineering and Industrial Quantities of Interest . . . . . . . ... ... ... ..
3.2.1 The Skin Friction Coefficients . . . . . . . .. . ... ... ... ......
3.2.2 The Local Nusselt and Sherwood Numbers . . . . .. ... ... ... ..

3.3 Graphical Illustration and Analysis . . . . . . ... ... ... ... ... ....
3.3.1 Graphical Comparison between bvp4c and HAM . . . ... ... ... ..
3.3.2 Tabular Representations . . . . . . . .. ... ... ... ... .......

3.3.3 Confirmation of Numerical Outcomes . . . . . . . . . .. .. ... ....

Influence of Thermal Radiation on Magnetohydrodynamic 3D Flow of Car-

reau Nanofluid

4.1 Description of the Problem . . . . . . ... .. .. .. oo
4.1.1 Appropriate Conversions . . . . . . . . . . . ..

4.2 Engineering and Industrial Quantities of Interest . . . . . . . .. ... ... ...
4.2.1 The Skin Friction Coefficients . . . . . . . . . ... ... ... ... ....
4.2.2 The local Nusselt number . . . . .. .. ... ... ...



4.3 Graphical Illustration and Analysis . . . . . . . .. .. ... ... L. 79
4.3.1 Tabular Representations . . . . . . . . . .. . ... ... ... ... 81

4.3.2 Confirmation of Numerical Outcomes . . . . . . . . . .. ... ... ... 82

Effect of Thermal-Solutal Stratifications in 3D Flow of Carreau Nanofluid 96

5.1 Description of the Problem . . . . . . ... ... ... 97
5.1.1 Appropriate Conversions . . . . . . . . . . . . 99
5.2  Engineering and Industrial Quantities of Interest . . . . . . . ... ... ... .. 99
5.3 Graphical Illustration and Analysis . . . . . . . . . ... .. ... ... ... 100
5.3.1 Tabular Representations . . . . . . . . . . . .. .. ... . L. 102
5.3.2 Confirmation of Numerical Outcomes . . . ... ... ... ... ..... 102

Impact of Variable Thermal Conductivity in 3D Unsteady flow of Carreau

Nanofluid 114
6.1 Description of the Problem . . . . .. ... ... ... ... ............ 115
6.1.1 Appropriate Conversions . . . . . . . . . . . .. 116
6.2 Engineering and Industrial Quantities of Interest . . . . . . . ... ... ... .. 117
6.3 Graphical Illustration and Analysis . . . . . . .. ... ... ... ... . ..., 117
6.3.1 Tabular Representations . . . . . . . . . .. ... .. ... ... ... 119
6.3.2 Confirmation of Numerical Outcomes . . . . ... ... ... ... .... 119

Influence of Arrhenius Activation Energy in 3D Chemically Reactive Flow

of Unsteady Carreau Nanofluid 130
7.1 Description of the Problem . . . . . . ... ... .. ... ... ... .. ..... 131
7.1.1 Appropriate Conversions . . . . . . . . . . ..t 132
7.2 Engineering and Industrial Quantities of Interest . . . . . . . ... .. ... ... 133
7.3 Graphical Tllustration and Analysis . . . . . . . . . .. ... ... ... ... 134
7.3.1 Tabular Representations . . . . . . . . . . . ... ... .. 136
7.3.2 Confirmation of Numerical Outcomes . . . .. . ... ... ... ..... 136

Homogeneous-Heterogenous Reactions in 3D Flow of Carreau Fluid with

Cattaneo Christov Heat Flux 149



9

8.1 Description of the Problem . . . . .. ... ... ... ... . ........... 150

8.1.1 Appropriate Conversions . . . . . . . . . . . .. 151
8.2 Engineering and Industrial Quantities of Interest . . . . . . . ... ... ... .. 152
8.3 Graphical Illustration and Analysis . . . . . . . .. ... .. ... ... .. .... 153
8.3.1 Graphical Comparison between bvpdc and HAM . . ... ... ... ... 154
8.3.2 Confirmation of Numerical Outcomes . . . . ... ... ... ... .... 154

Impact of Cattaneo—Christov Double Diffusion in 3D Carreau Fluid Flow 162

9.1 Description of the Problem . . . . . . .. . ... ... 162
9.1.1 Appropriate Conversions . . . . . . . . . . . .. 164
9.2 Engineering and Industrial Quantities of Interest . . . . . . . ... .. ... ... 164
9.3 Graphical Illustration and Analysis . . . . . . .. ... ... ... ... ..., 165
9.3.1 Confirmation of Numerical Outcomes . . . ... ... ... .. ...... 166

10 Homogeneous-Heterogeneous Reactions in 3D Unsteady Nonlinear Radiative

Flow of Carreau Fluid 172
10.1 Description of the Problem . . . . . ... ... ... ... L. 173
10.1.1 Appropriate Conversions . . . . . . . . . . . ..o 174

10.2 Engineering and Industrial Quantities of Interest . . . . . . . . ... .. ... .. 175
10.3 Graphical Illustration and Analysis . . . . . . . . .. ... ... ... ... .... 176
10.3.1 Tabular Representations . . . . . . . . . ... ... ... ... ....... 178

10.3.2 Confirmation of Numerical Outcomes . . . ... ... ... ... ..... 179

11 Closing Remarks and Future Research Work 195
11.1 Closing Remarks . . . . . . . . . . . 195
11.2 Future Research Work . . . . . . . . . . .. . Lo 196



Chapter 1

Review and Some Fundamental

Relations

1.1 Introduction

This chapter reports the background of research and theoretical establishment of the thesis
body. The essential facts for the flow and heat transfer of non-Newtonian fluids are provided in
literature review. Furthermore, it highlights the significance of reviewing such fluids, especially,
the Carreau rheological model. A brief narrative of all chapters of the thesis is incorporated in
this chapter. Additionally, some essential worthwhile laws for forming momentum, energy and
concentration terminologies are integrated. The basic notions of bvp4c approach and homotopy

analysis method (HAM) are also reported.

1.2 Background

Due to the rapid growth of recent engineering expertises, there has been a massive quantity
of exertions situate in the fluid flow and heat transport mechanism over the stretched surfaces
by the numerous scientists owing to their widespread solicitations in engineering and industry.
Boundary layer flow and heat transport are significant in numerous metallurgical processes like
depiction of plastic films, fabrication of papers, annealing of copper cords, preservation of an

enormous copper plate which might be an electrolyte etc. Initially, the pioneering exertion on



2D viscous fluid flow over a stretched sheet was reported by Crane [1]. Later on the problem
related to stretching sheet has broadly discussed under numerous liquid models [2, 3]. Flow by
an exponentially shrinking sheet for Eyring—Powell fluid with thermal radiation was analyzed
by Ara et al. [4]. They renowned that the mass suction parameter intensified the velocity
field, while divergent behavior is detected in suction parameter. Assessment of boundary-layer
flow through nanoparticles past a stretchable surface was examined by Ishfaq et al. [5]. They
reported that the consequence of Brownian motion parameter is insignificant on the Nusselt
number.

The analysis of non-linear difficulties dealing with flow of non-Newtonian liquids has gained
remarkable devotion during the former few decades. The behavior of nonlinear materials in
present-day has attained countless thoughtfulness because of their built-up and industrial deter-
mination. In numerous applications, non-Newtonian materials have sizeable worth throughout
the earliest limited spans. In these materials there is no linear correlation between stress tensor
and deformation. The remarkable feature of these liquids are their advanced apparent viscosities
and therefore, laminar flow circumstances intensify considerably compared to Newtonian lig-
uids. The applications correlated for these materials are biological progressions, geophysics and
genetic disciplines, reservoir manufacturing, petroleum diligence, biochemical, nuclear-powered
trades, polymer elucidation, synthetic fibers, cosmetic developments, splatters, antibiotics, bub-
bles, colloidal and deferral elucidations, adhesives, stone undercoat and soap suds, Ophthalmic
fibers, emollients, malleable polymers, granulated materials, compound and diet dispensation
are few specimens of non-Newtonian materials. Undoubtedly, all non-Newtonian ingredients on
the basis of their behavior in shear are not predicted by one constitutive relationship. Simple
shear rate and stress terminologies cannot designate entirely the rheological structures of non-
Newtonian fluids. Numerous investigators have exposed their concern to scrutinize nonlinear
materials. If a liquid spectacles a nonlinear communication to the strain rate then it is termed
as non-Newtonian liquid. It is remarkable that the interruption of non-Newtonian liquids and
their energetic features comprise numerous difficulties caused by addition of rheological proper-
ties existing in the governing constitutive expressions. Despite of all such densities, numerous
investigators are still betrothed to inspect the streams of non-Newtonian liquids under different

features. Therefore, numerous nonlinear models concerning non-Newtonian liquids have been



proposed and scrutinized in studies ([6 — 9]) and the references therein.

In 1972, modern rheologist Carreau [10] established an efficacious relation which is used
enthusiastically up to date that can well describe the characteristics of nonlinear viscoelastic
materials named as Carreau fluid model. The Carreau liquid model was endorsed to visualize the
properties of shear thinning/thickening liquids of several non-Newtonian liquids. The Carreau
liquid model has caught the thoughtfulness of numerous investigators and engineers through
the last few years owing to its wide-ranging uses, such as asphalt splatters, aqueous, polymers
deferral and fluxes. In view of its aptitude to access the rheological performance at precise low
as well as precise high shear rate, the Carreau viscosity model executes to be a worthy approach
for a huge number of shear thinning/thickening liquids. For instance, Chhabra and Uhlherr
[11] reported experimentally the Carreau liquid model and studied the creeping motion via
shear-thinning elastic fluids over sphere. They investigated that the Carreau viscosity equation
is precisely established for the impacts of elasticity and shear thinning on sphere drag. The
flow of Carreau liquid of blood through a tapered artery was analyzed by Akbar and Nadeem
[12]. Khan and Hashim [13] presented a new formulation for 2D Carreau fluid and examined
numerically the boundary layer flow over a nonlinear stretching sheet. They observed that
fluid velocity is reduced for shear thinning case with higher Weissenberg number, while the
performance is quite opposite for shear thickening case. Khan et al. [14] investigated Carreau
fluid flow over a sensor surface with time dependent thermal conductivity. They established that
for emergent values of squeezing parameter the velocity field arises. Hayat et al. [15] explored
Carreau nanofluid over a stretched flow in the presence of the convectively heated surface. A
virtual study in a limiting sense with prevailing solutions is made in this examination. The
results showed that the skin friction coefficient augments for the intensification in material
parameter. Moreover, they established that the larger power law exponent rises the velocity
component. To exploit the features of improved heat flux on Carreau fluid flow, Hashim and
Khan [16] made their study. The homogeneous/heterogeneous reactions are reported in this
scrutiny. The heat transfer rate is implicitly enriched to escalation in wall thickness parameter
and conflicting impact is noticed for the thermal relaxation parameter. The radiative flow of
Carreau fluid with temperature jump and suspension of liquid particle were stated by Kumar

et al. [17]. The impacts of thermal radiation and convective condition were also deliberated in



this examination. They established that the temperature of Carreau liquid and thickness of the
thermal boundary layer were enhancing functions of thermal radiation. Few endeavors in this
trend can be accessed in references ([18 — 21]).

Fluid heating and cooling are one of the utmost noteworthy and stimulating phases for
numerous applications of heat transfer in various industries for example; containing chemical
growths, transportation, industrial, fabrication, microelectronics, etc. By rising in the heat
transfer amount in industrialized applications there will be decline in time dispensation, inten-
sification in the life of equipment’s, and valid in energy. Moreover, conventional liquids viz.
paraffin, water, ethylene glycol (EG), inflating oil, etc., are broadly used in numerous produc-
tions. However, they do not have adequate proficiency of heat transfer because of their low
thermal conductivity and this frequently edges their usage in high heat flux devices, e.g., sub-
stantial processing, microelectronics maintenance and stellar thermal antennas. On the other
hand by diffusing dense nano-sized particles to conventional liquids rises the thermal conductiv-
ity which spectacles advanced thermal assets. Nanofluids, the engineered fluids with insulated
efficacious nanoparticles, have disclosed an unexpected thermo-physical properties and new
functionalities, and thus have maintained a widespread nature of important applications. The
deferral of non-metallic and metallic nanoparticles in base liquids like aquatic and paraffin are
known as nanofluids. These fluids are the diffusion of dense particles of magnitude lesser than
100 nm in size. Exclusively, nanoliquids have exposed intentionally better-quality ability of
heat transport as linked to traditional working fluids. Moreover, utilizing nanofluid as a forth-
coming heat transport liquid with higher thermos-physical aspects is an effective approach to
enhance the thermal enactment of energy systems. Furthermore, nanofluids have developed as
superior candidates for numerous applications in heat transport; for instance, in hybrid-powered
purposes, drag bargain, in crunching, solar water reheating, nuclear vessel cooling numerous
others. In the research features, the sort of nanofluid has been extended to a higher magnitude.
The current sort of nanoparticles for interrupting in liquids can be categorized according to the
thermal aspects which are as follows: Firstly, premier thermal conductivity for example CNT's,
graphene and diamond etc. Secondly, metallic simples with abundant thermal conductivity such
as, Au, Cu, Ag, Al, Fe, etc. Lastly, some metallic or non-metallic mixtures like CuQO, Al3Os,

Zn0, Ti0,, SiC, etc. As a consequence of the assortment of the exploration features and



element varieties in nanofluids, it is flattering gradually challenging to extant a broad analysis
on all classes of nanofluids. Choi [22] in 1995 introduced the term nanofluid who established an
experimental analysis and exposed to the world about the development of thermal conductivity
of nanofluids. Later on, Buongiorno [23] established a precise model to scrutinize the thermal
assets of base liquids. He reported that the Brownian motion and thermophoresis enhance the
thermal properties of base liquids. Analytically the entropy generation characteristics in MHD
Cu — H»0 nanoliquid were scrutinized by Ellahi et al. [24]. The impact of power law index in
the existence of thermal radiation is occupied. Khan and Khan [25] scrutinized the impact of
generalized Burgers fluid by exhausting the nanoparticle over a stretched surface. It was noted
that the rate of heat transfer of nanoliquid at the wall and the nanoparticle volume fraction
amount reduced by enhancing the values of thermophoresis parameter; however, quite opposed
effect was noted for Brownian motion parameter in this scrutiny. Numerical solutions for 3D
magneto viscous nanofluid was established by Mahanthesh et al. [26]. Khan and Khan [27] in-
vestigated MHD power law nanofluid by utilizing zero mass flux condition. Numerical scheme,
namely shooting technique was implemented to resolve the governing nonlinear ODEs. They
noted that both the Brownian and thermophoresis parameters were augmenting functions of
temperature distribution. The characteristics of the nanoparticles condition on 3D radiative
flow of Burgers nanofluid were explored by Khan et al. [28]. This investigation showed that
the concentration field collapsed rapidly correlate to the Deborah number when compared with
the Brownian motion parameter. Hayat et al. [29] analyzed numerically the stagnation point
flow of carbon—water nanofluid. The properties of melting heat and thermal energy were also
deliberated in this exploration. They establish that the amassed values of melting parameter
resembled to greater velocity and fewer temperature. Khan et al. [30] considered the gener-
alized Burgers nanoliquid with the influence of chemical response. The impact of nonlinear
thermal radiation in the existence of the zero mass flux condition was also explored. Waqas
et al. [31] inspected numerically the flow of Carreau nanoliquid in the presence of MHD and
thermal radiation. They established that for the velocity component the influence of local
Weissenberg number is quite conflicting. Dogonchi et al. [32] inspected the heat transfer flow of
magneto nanoliquid between two parallel plates with the effects of thermal radiation. Impact

of chemical species with variable thickness of nanoliquid owing to rotating disk was examined



by Hayat et al. [33]. This scrutiny exhibited that the radial, axial and azimuthal velocities were
enriched for intensification in disk thickness parameter. The heat transport phenomenon on
unsteady Carreau magneto nanofluid towards the cone packed subject to alloy nanomaterials
was discussed numerically by Raju et al. [34]. They reported that the heat transfer amount
heightened for the viscous variation parameter. Recently, Hayat et al. [35] investigated fluid flow
of magneto nanoliquid subject to nonlinear stretched surface. They analyzed that the pressure
and velocity field declined for power law index. The convective phenomenon in Fe3O4-water
nanofluid subject to magnetic source was explored by Sheikholeslami et al. [36]. The behavior
of chemical reaction and non-linear radiation in swirling flow influenced by rough rotating disk
was scrutinized by Mustafa et al. [37]. Irfan et al. [38] presented a new mathematical forming
for Maxwell nanomaterial with convective condition. Additionally, the aspects of MHD and
heat sink/source are engaged. They indicated that the temperature intensifies for Brownian
and thermophoresis parameters. Hamid et al. [39] addressed numerically the aspects of acti-
vation energy on time-dependent Williamson nanofluid flow with the nanoparticles mass flux
condition. They investigated that the heat transport amount over surface cylinder diminished
with escalating values of reaction rate parameter. The enactment of nonlinear radiative flow of
suspended nanoparticles with melting vertical surface was studied by Mahanthesh et al. [40].
They established that the melting and moving parameters declined the drag force.

In recent times, hydrogen-fueled and hydro-carbon homogeneous/heterogeneous micro re-
actors have been the attention of forceful exertions for an impartially wide-ranging assortment
of moveable constructions of energy with established energy compactness considerably sophisti-
cated than those of the advanced Li-ion batteries. The solicitations of micro reactors assortment
from catalytic micro reactors recycled for the steam revolutionizing of hydrocarbon fuel in little
and high-temperature energy chambers and to micro-scale heat apparatuses, in which a catalytic
micro combustor is recycled for straight chemical-to-thermal energy exchange. In furthermost
cases, reinforced moral metallic catalysts are engaged owing to their extraordinary biochemical
studies on the subject of chemical reaction have attained uninterrupted thoughtfulness from
the modern technologists and engineers. The intrinsic way of a chemical reaction happens if
two or more reactants yield a product. The aspects of chemical reactions are noteworthy in

various developments due to their utilization in numerous techniques like atmospheric flows,

10



hydrometallurgical diligence, mutilation of crops, fabrication of polymer and porcelains, fog
materialization and dispersal. The homogeneous and heterogeneous reactions are two catego-
rization of the chemical processes. This discrepancy is interrelated to the circumstance that
whether they arise in liquid substance or transpire in some catalytic exteriors. A homogeneous
process occurs consistently in the entire certain phase, whereas the heterogeneous process pro-
ceeds in a circumscribed region or inside the phase boundary. The collaboration between the
heterogeneous and homogeneous reactions is very problematic containing the fabrication and
depletion of reactant sorts at diverse amounts both inside the liquid and on the exteriors cat-
alytic. Apart from in the manifestation of a catalyst, numerous reactions have the aptitude to
transfer gradually or not at all. For the exploration of homogeneous-heterogeneous processes
on the flow of viscous liquids, Merkin [41] proposed an isothermal relation. This scrutiny
exposes that because of the surface retort this utilization is dominant. Further, by consid-
ering both sorts of the identical diffusivities, Chaudhry and Merkin [42] conferred the assets
of homogeneous-heterogeneous reactions in a viscous liquid. Flow scrutiny of the stagnation
region with the stimulus of heterogeneous-homogeneous reactions was explored by Xu [43]. He
reported multiple solutions numerically via hysteresis bifurcation approach and showed that
the Prandtl number and homogeneous reaction parameter were not the reasons to produce
multiple solutions. The MHD flow of a micropolar liquid over a curved stretched surface with
heterogeneous-homogeneous reaction was reported by Hayat et al. [44]. They noted that the
impact of heterogeneous and homogeneous response is quite opposite on the concentration field.
In diverse models, a few studies for flow with heterogenous/homogeneous reactions were pointed
out via references ([45 — 50]).

Recently, combining energetic liquids with heat transfer have been unique, worthwhile sub-
ject owing to their countless methodological and systematic solicitations. With the intention
to attain the superiority of the product it is documented that the amount of cooling is note-
worthy. For instance, cut-glass foodstuffs, gemstone developing, polymer dispensation, crust of
cords, purify- caution of liquefied metals and canvas material, microelectronics, transports, pa-
per productions, copper wires thinning and medical uses (conduction of heat in the muscles and
medication targeting) etc. The heat transport mechanism transpires when the temperature of

the body or different quantities of body is changed. This procedure has enormous solicitations
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in power cohort, heat conduction in nerves, nuclear synthesis and countless industrial arenas.
The features of heat transfer around 200 years ago, was first reported by Fourier [51], which is
the best heat conduction model to contribute an information to understand the mechanism of
heated conversation in numerous circumstances. But, Fourier’s law is insufficient owing to the
circumstance of the initial disruption that can be controlled straightaway all over the system.
Afterwards, Cattaneo [52] established an amendment of Fourier’s law for heat transfer in an
obstinate form. By insertion of thermal relaxation time aspect to present the thermal inertia,
which is recognized as Maxwell-Cattaneo law, he reformed the Fourier’s law. By interchanging
time derivative with Oldroyd upper convected derivative this notion is additionally improved
by Christov [53] and entitled it as Cattaneo-Christov theory for heat flux. For the scrutiny of
convective heat transport this model is precise worthwhile. For instance, Tibulle and Zampoli
[54] examined the uniqueness of Cattaneo-Christov heat flux model for an incompressible fluid
flow. Analytical solution of 3D Maxwell fluid flow escorting Cattaneo-Christov theory was in-
vestigated by Rubab and Mustafa [55]. The achieved results showed that for thermal relaxation
time parameter the penetration depth of temperature is a decline. Cattaneo-Christov heat flux
model characteristics in three dimensional Burgers fluid were scrutinized by Khan and Khan
[56]. They observed that the temperature field was greater in the instance of Fourier’s law,
as associated to Cattaneo-Christov model. To see the impact of Cattaneo-Christov model on
generalized Burgers fluid, Waqas et al. [57] analyzed the characteristics of the heat flux model
for generalized Burgers fluid in the existence of time-dependent thermal conductivity. The
homotopy analysis method (HAM) has been used for the convergent series solution of the gov-
erning equations in this investigation. Moreover, aspects of convection diffusion with fractional
Cattaneo-Christov flux were scrutinized by Liu [58]. Combined heat and mass conduction re-
lations with upper-convected Maxwell nanoliquid in the manifestation of the slip velocity were
considered by Sui [59]. Cattaneo—Christov double diffusion in Oldroyd-B fluid flow in the rotat-
ing frame with variable conductivity was reported by Khan [60]. Mustafa et al. [61] scrutinized
the theory of upgraded heat flux relation in Maxwell liquids with the aspect of variable con-
ductivity in rotating frame analytically. They pointed out that owing to the insertion of elastic
properties the hydrodynamic boundary layer turned out to be thinner. Furthermore, Ali and

Sandeep [62] reported numerically, the impact of the improved heat flux theory for radiative
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flow of magnetite Casson-ferrofluid. These upshots specified that thermal relaxation parameter
efficiently augmented the local Nusselt number and heat transfer enactment is extraordinary
towards flow past a wedge when related to flow towards plate/cone. Dogonchi and Ganji [63]
investigated the combined features of thermal radiation and MHD for nanofluid between paral-
lel plates by utilizing the theory of Cattaneo—Christov heat flux. They stated that the Nusselt
number has revered impact for thermal relaxation and heat source parameters. In outlook of
these properties, numerous investigators formerly have scrutinized diverse rheological problems
with numerous methods and physical properties were reported in references ([64 — 67]).

Recently, the convective phenomenon has improved noteworthy thoughtfulness of technol-
ogists and researchers owing to its proper influence on heat and mass transport structures.
It plays an enthusiastic quantity in various built-up problems regarding both metallic and
polymers sheets, exchange of heat between efficient heat stowage beds and inaccessibility of
thermonuclear pitchers, irrigation systems, diffusion of multifaceted chemicals in waterlogged
soil etc. The notion of surface convective boundary condition was instigated by Aziz [68]. He
deliberated the viscous fluid flow towards a flat plate with surface convective condition. The
flow of an Eyring-Powell liquid with the combined impact of heat and mass convective condi-
tions was scrutinized by Hayat et al. [69]. They noted that the performance of thermal and
mass Biot numbers on both the temperature and concentration were analogous. Hayat et al.
[70] reported the properties of convective on magnetite flow of Fe3O4 nanoparticles towards
curved surface. Numerous authors have considered the influence of these conditions in the
diverse flow geometries with diverse aspects [71, 72].

In the hurried universal evolution of science and expertise, augmenting the proficiency of
energy transfer in addition to tradable energy is pretense novel challenge. Solar energy from
side to side insignificant conservational bearing consequently offers a solution. Solar influence
is measured an expected tactic of attaining water, heat and voltage from the nature. Solar
energy is considered one of the supreme causes of renewable energy which forms energy for
billions of years. Although, consuming progressive resource with enhanced assets is a standout
among one of the supreme broadly implemented methodologies of heat transfer improvement.
Whereas the customary heat transfer fluids, for example engine oil, water or ethylene glycol,

have powerless to meet the exceptional necessities such as micro preservation and solid heat
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transfer strength. Solar supremacy is measured essential to yield electrical energy and heat from
nature. Moreover, the thermal radiative transportation has abundant significance in various
manufacturing applications resembling solar power antennas, warming and freezing cavities, and
open water tanks and several other engineering and conservational developments. Beside this,
radiation from solar energy and the consequential solar energized properties such as breeze
and wave supremacy, etc. provide a description for utmost handy renewable energy that is
existing in the world. By exhausting the Rosseland estimation, Hossain et al. [73] scrutinized
natural convective flow by a uniformly heated porous plate with effects of thermal radiation.
Numerical exploration on MHD tangent hyperbolic liquid by a stretched surface was reported
by Akbar et al. [74]. Later on, the radiative flow involving MHD nanofluid by a stretched
surface was studied by Akbar et al. [75]. Hayat et al. [76] analyzed the partial slip mechanism
in MHD flow of Cu-water nanofluid due to a rotating disk. Additionally, viscous dissipation
and thermal radiation effects are also deliberated. They established that for an escalation
in the nanoparticle volume fraction the heat transport rate boosted. The 3D radiative flow of
Burgers fluid with the influence of the thermophoresis particle was analyzed by Khan and Khan
[77]. Heat generation/absorption phenomenon was also carried out in this study. The MHD
radiative viscoelastic nanoliquid considering of stagnation region was scrutinized by Farooq et
al. [78]. Additionally, radiation is taken to be nonlinear in the presence of convective heat
transport. It was observed that there is a substantial diminution in the velocity component and
its corresponding thickness of the momentum boundary layer with rising values of magnetic
parameter. Improvement in the analysis of numerous non-Newtonian liquids related to thermal
radiation can be reported in references ([79 — 84]).

The operating liquid heat source or sink structures are precise vigorous in monitoring heat
exclusion from nuclear fuel debris, the heat transfer in the regions, underground disposal of
radioactive discarded material and exothermic chemical progressions and dissociating liquids in
packed-bed vessels. The heat source can arise in the form of a battery or coil. Khan et al. [85]
studied the impact of nanoparticles on 3D flow of an Oldroyd-B fluid over a stretched surface
in the presence of heat source/sink. Again, Khan et al. [86] scrutinized the characteristics of
nanoparticles for the steady flow of Burgers fluid over a stretched surface by utilizing heat

source/sink. They concluded that the impact of heat generation/absorption is quite reverse on
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the temperature of Burgers nanoliquid. Moreover, Khan et al. [87] investigated the features
of chemical processes and heat source/sink for Maxwell fluid. In addition, significant analysis
on heat source/sink can be comprehended in the references [88,89] and numerous explorations
therein.

The theory of variable conductivity in heat transport phenomenon has forceful worth in
numerous industrial and built-up applications. Undoubtedly variable thermal conductivity is
most worthwhile when allied with constant thermal conductivity as realistic conditions claim
variable properties. These assets fluctuate with temperature in linear mode for fluid metals
from 0°F to 400°F [90,91]. The mechanism of heat transportation in heaters, lather isola-
tions, containers, volumetric solar earpieces, porous flames and fibrous etc., is a specimen of
the conduction mechanism in which temperature fluctuates and therefore variation in thermal
conductivity is high. Aspects of variable conductivity on the Carreau and Eyring liquids with
nickel and dust nanoparticles were reported by Upadhya et al. [92]. Their study expressed that
the amount of heat transfer is advanced in the mixture of the nickel for Eyring-Powell situa-
tion when associated with Carreau situation. Hayat et al. [93] studied the behavior of variable
conductivity on the peristalsis flow of Johnson-Segalman fluid.

Recently, the mixed convection transport of non-Newtonian liquids via thermal and solute
stratifications is a subject of abundant scrutiny owing to its widespread manifestation in the
engineering and industrial progressions. The heat dismissal into the atmosphere for instance,
streams, oceans and ponds; thermal energy storing structures like astrophysical pools etc., are
the numerous specimens of such solicitations. Stratification of liquid is a deposition or es-
tablishment of layers that happens because of temperature changes, concentration variation
or owing to the manifestation of diverse liquids. It is fascinating to scrutinize the impact of
double stratification when both heat and mass transfer are existing instantaneously. Moreover,
in the manifestation of gravity the density dissimilarities have strategic role in the mixing of
heterogeneous liquid and dynamics. For instance, thermal stratification in pools can condense
the fraternization of oxygen to the lowest water to become anxious through the achievement of
organic progressions. Similarly, the scrutiny of thermal stratification is essential for the solar
industry as greater energy competence can be attained with enhanced stratification. The mixed

convection thermally stratified flow along a stretched cylinder was scrutinized by Mukhopad-
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hyay and Ishak [94]. The properties of chemically reacting flow and mixed convection on
nanoliquid towards the moving surface were analyzed by Mahanthesh et al. [95]. Imtiaz et al.
[96] considered the effects of mixed convection on Casson nanofluid due to stretched cylinder.
They concluded that for larger Casson liquid and magnetic parameter condensed the liquid
flow. Waqas et al. [97] explored the mutual effects of thermal and mass stratification on mixed
convective Oldroyd-B nanoliquid. They reported that the higher thermal and solutal stratified
cause a decline in the temperature and concentration fields, respectively. Moreover, current
endeavors on mixed convection as well as double stratifications via diverse thoughtfulness can
be referred through references ([98 — 100]).

The mass transport phenomenon with Arrhenius activation energy and chemical reaction
has been specified enormously of thoughtfulness owing to its countless uses in simmer down
of atomic reacting, compounds invention, geothermal artificial lake and retrieval of thermal
lubricant. Activation energy can be precise as the least quantity of energy that is attainable to
stimulate particles or molecules to a place wherein they can materialize physical transport or
chemical reaction. For a reaction the activation energy can be strong-minded using the Arrhe-
nius equation that states how the rate constant fluctuations in temperature. These are classified
by a chemical conversion and one or more products that have diverse effects from the reactants.
It is crucial to create the reaction effectual, energy influences, discarded while exploiting the
yield and diminishing the quantity of reagents. Mostly, in the mass transport theories with
chemical reaction are actually problematic, and it can be analyzed in the exploitation of de-
velopment and reactant species at numerous rates inside the mass transport of nanofluid. The
joint enactment of the Arrhenius activation energy with chemical reaction for radiative flow
and heat transport to vertical pipe was reported by Bestman [101]. He acquired an analytical
elucidation via perturbation approach. To use the parameters control scheme influence of ac-
tivation energy thermal extrusion built-up structure proficiency in Carreau nanomaterial was
explored by Hsiao [102]. He acquired a greater proficiency thermal energy extrusion structure
and endorsed the system’s economic proficiency. Mustafa et al. [103] addressed the properties of
magneto nanofluid with Activation energy and buoyancy influence. They scrutinized that the
performance of Brownian motion is quite conflicting to thermophoretic force on nanoparticles

concentration. Khan et al. [104] numerically considered the aspects of entropy generation and
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activation energy with nanoparticles. Their study indicated that the radiative variable intensi-
fied the thermal diffusivity and rised the temperature. Zeeshan et al. [105] acquired analytical
elucidations for Couette-Poiseuille nanofluid flow by performing the aspects of convective and
activation energy. They studied that the nanoparticles concentration is directly proportionate
to activation energy with chemical reaction. In recent times, influences are fortified by many

researchers to scrutinize the aspects of activation energy in diverse models [106, 107].

1.3 Basic Relations of Fluid Mechanics

1.3.1 Conservation Relation of Mass

The mass neither be molded nor destroyed. This phenomenon is termed as mass conservation
relation or continuity equation. For time-dependent flow the mass conservation relation can be
framed as

-tV (psV) =0, (1.1)

where p; signifies the fluid density, V the velocity field and ¢ the time.

For the case of an incompressible fluid i.e. (pf = Constant) , the relation (1.1) reduces to
V.-V =0 (1.2)

1.3.2 Conservation Relation of Linear Momentum

The complete momentum of the system remains conserved. This notion is established from the

Newton’s second law and acknowledged as conservation relation of momentum. Mathematically,

pra; = —Vp+divr* + p,B. (1.3)

ere a; (= AN : represents acceleration vector, in which == is the time derivative,
H N L (V-V)V ts accelerat t hich 2 is the time derivat

p the pressure, 7* the Cauchy stress tensor and B the body force per unit mass.
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1.3.3 Conservation Relation of Energy

The entire energy of the system remains constant and this notion is follow-on from the first law

of thermodynamics. Mathematically,
T
(pc)fcfl_t =71"L—divq — divq,, (1.4)

where (cg,T') are the specific heat and temperature of fluid, respectively, (q, q,.) the thermal and
radiative heat fluxes, respectively, which are characterized by Fourier’s and Stefan Boltzman
laws, respectively.

Mathematically, the energy flux is termed as
q=—kVT, (1.5)
where k represents the thermal conductivity of fluid.

1.3.4 Conservation Relation of Concentration

The entire concentration of the framework under estimation remains unvarying. This thought

is established on Fick’s second law and defined as

%+V-ch_v-j, (1.6)

where C signifies the fluid concentration, and j the normal mass flux which is defined by Fick’s
first law, i.e.,

j=-DVC, (1.7)

where D defines the mass diffusivity.

Considering the overhead relation the equation of mass transport becomes

oC

= tV-VC= DV?2C. (1.8)
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1.3.5 Conservation Relation of Energy for Nanofluids

The energy relation with nanoparticles for an incompressible fluid is defined as

dr . )
(pc); i hpV - j, —divq, (1.9)
where hy, defines the specific enthalpy for nanoparticles and (q, j,) the thermal and diffusivity

mass fluxes of nanoparticles, respectively, and are defined by

q = —kVT + hypjp, (1.10)

. vT
Jp = *ppDBVC*ppDTK, (111)

in which p, signifies the mass density of nanoparticles and (Dr, Dp) the thermophoretic and
Brownian diffusion coefficients, respectively.

Hence, seeing Eqgs. (1.10) and (1.11), the nanofluids energy equation (1.9) becomes

2 .
L _KVT <(pc)”) [VT VI pyvevr|. (1.12)

dt — (pc);  \ (pe); Two
1.3.6 Conservation Relation of Concentration for Nanofluids
The concentration relation with nanoparticles is delineated as

oC 1
4V =——V-j,. 1.1
7 +V.VvC ppV Jp (1.13)

Considering Eq. (1.11), the overhead relation is specified as

oC viT
— +V.VC = DpV?C + Dr . (1.14)
dt Too
1.4 Generalized Fourier’s and Fick’s Laws
The energy and concentration relation without nanoparticles are defined as
dTl
— = —di 1.1
(pe); S = —diva, (1.15)
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dC .
—p = —divd, (1.16)

The Cattaeno-Christov double diffusion theory which is the generalization of Fourier’s and

Fick’s laws are represented as

a+ M <%+VVq+(VV)q qVV> — —kVT, (1.17)
03
I+ he (5 +V.VI+(V.V)I-JVV ) =-DVC, (1.18)

where (A1, A2) are the heat and mass fluxes relaxation times, respectively. For A\; = Ay = 0,

Eqgs. (1.17) and (1.18) are condensed to classical Fourier’s and Fick’s laws, respectively.

1.5 Homogeneous-Heterogeneous Reactions

For cubic autocatalysis homogeneous-heterogeneous chemical reactions where two chemical

species are allied in boundary layer flow can be defined as
G1+2H, — 3Hy, rate = kcglh%, (1.19)

G1 — Hl, rate = k:sgl. (1.20)

Here (G4, H1) signify the chemical species of concentration (g1, h1) , respectively, and k; (j = ¢, s)
are the rate constants. For considering isothermal processes and far away from the sheet in
the ambient fluid a unvarying concentration g¢;, of reactant G; is existing and there is no
auto catalyst Hj. Under these norms the homogeneous-heterogeneous reaction equations for

time-dependent flow are determined as

2
dg1 | Og1 | Og1 [ _D 0°q

B Tug, TV By +wa G 5,2 — keg1h?, (1.21)
oh oh oh ohy 2h
8_t1 + ’U/a—wl + ’Ua—yl +w B = Dpg, B 21 + kcglh2. (1.22)
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For the case of time independent (% = O) overhead equations reduce to

0g1 01 ogn 3291

iy L = Do —2% — keg1h? 1.2
u@x —I—vay —|—waz 17,2 kegihi, (1.23)
Ohy Ohy ohy . 82h1 2
U +v 3y +w—— 5, =Dy, —— 5.2 + kegihi. (1.24)

1.6 The Carreau Rheological Model

This thesis essentially highlights the study of flow and heat transfer properties for three-
dimensional Carreau fluid model influenced by bidirectional stretching surface. The Carreau

fluid model has the subsequent relation of Cauchy stress tensor (7%).
= —pI+u(7) Ay, (1.25)
with
- - 9qn=1
(1) = (1o = poo) 1+ V]2 + pree, (1.26)

here (p,I) denote the pressure and identity tensor, respectively, (pg fio) the zero and the

infinity shear-rate viscosities, respectively, (I',n) the material time constant and power law

exponent, respectively, (ﬁ) defines the slope in the power law region, A; = VV +(VV)T

the first Rivlin-Erickson tensor and the shear rate is given by

3= 1/3r(AD). (1.27)

For considering the most practical cases, g >> ., and p., is taken to be zero. Consequently,

in view of Eq. (1.26), Eq. (1.25) reduces to the following expression
= —pItp[l + (T7)2] T Ay (1.28)

Note that the power law index range 0 < n < 1 describes the shear thinning or pseudoplastic

fluids and n > 1 describes the shear thickening or dilatant fluids in Carreau fluid model.
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1.7 Solution Methodologies

To attain the elucidation of differential equations has been a substance of greatest thought-
fulness among researchers because numerous real world problems are controlled by differential
equations. It has fluctuate problematic to attain the exact elucidations of nonlinear difficul-
ties. Aimed at this trouble different researchers espoused numerous approaches for solutions of
nonlinear differential equations. The crucial intention of this thesis is to elucidate the consid-
ered governing problems with the support of bvpdc, a Matlab’s boundary value solver and the

homotopy analysis method (HAM).

1.7.1 Numerical Procedure (bvp4c)

For the elucidation of two-point boundary value problems the Matlab function bvp4c [108] has
been utilized. A finite difference collocation scheme has been worked behind this development
and make use of 3-stage Labatto IIla formula. For instance, the BVPs are more problematical
when compared to IVPs. In this concerns numerous solver procedures fail for the solutions of
unknown parameters. The bvp4c is an effectual method to solve BVPs which is forth order
accurate. To disclose the behavior of preferred solution initial guesses are requisite which

satisfying the suggested boundary conditions.

1.7.2 Homotopy Analysis Method (HAM)

In 1992, Liao [109] was the first who wished-for the homotopy analysis method (HAM) in at-
tention to elucidate the highly nonlinear differential equations. For both strong/week nonlinear
systems this approach is effective. Homotopic method is an uninterrupted deformation or de-
viation of a function or expression. As allied to other techniques, this method has numerous

efficacies, i.e.

1. The homotopic tactic is autonomous of small/great parameters.
2. Assure the convergence of established equations easily.

3. For base function and linear operator, HAM provides remarkable independence.
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For numerous non-linear complications this methodology works efficiently for the establish-
ment of series solutions [110 — 114].

Consider a non-linear differential equation

Nu(n)] =0. (1.29)

Here N signifies the non-linear operator, u the dependent function which is unknown and 7 the

dependent variable. According to [109] the homotopic equation is

(1 —q) L[a(n; q) — uo(n)] = ¢hN [a(n; q)], (1.30)

here (ug(n), £) signify the initial guess and auxiliary linear operator, respectively, ¢ (0 < ¢ < 1)
the embedding parameter and A # 0, the auxiliary parameter.
Moreover, when ¢ = 0 and g = 1, then the aforestated equation is acknowledged as defor-

mation expression of zeroth order and final solution, respectively.

@(;0) —uo(n) =0, and a(n; 1) —u(n) = 0. (1.31)

The solution @(n; q) starts from initial guess (ug(n)) and goes to the ending solution (u(n))

with the conversion of ¢ from 0 to 1. For the Taylor series correlated to ¢, we have

. > A 1 0™ (n;
i g) = () + > ualn)g”s wal) = & LD (1.32)
=1 e g4 =0
The equation of nith order is
L [un(n) — wa—1(m)xa] = MRy (wn-1) , (1.33)
with
1 o™ Ya(n;q)
n(Un—1) = = , 1.34
Ralwn) = G a1 |, (39
0, n<l,
Xin = (1.35)
1, n>1.



By executing a suitable software like MATHEMATICA /MAPLE the solution of equations can
be attained. The series will converge at ¢ = 1 if appropriate initial approximation, auxiliary

variable and auxiliary linear operator are designated properly, thus,
(o ¢]
(x) = uo(n) + > _ ualn). (1.36)
n=1

1.8 Research Outlines

The notable anxiety of this thesis is to cover the gap in the obtainable prose by giving valuable
exertion on the flow, heat and mass transport of three-dimensional Carreau fluid flow influenced
by a bidirectional stretching surface. To be sure, formerly there had been no obtainable works in
respect of the 3D flows of the Carreau rheological model. The most essential contributions are
that a mathematical modelling is established and numerical and analytical studies have been
worked out. Twelve chapters are reported in this thesis which covers numerous characteristics
of Carreau fluid for time independent/dependent flows. It is hoped that this work can help
to discover more flow, heat and mass transfer characteristics of the Carreau fluid model. The
thesis is organized as follows:

Chapter 1 is a preliminary chapter, which accomplishes the incentive, literature analysis
and structure of the thesis.

Chapter 2 confers a new mathematical forming for three-dimensional flow of Carreau
fluid due to stretching of surface. Utilizing the standard boundary layer approximations the
governing equations of momentum are established. Additionally, numerically (bvp4c) and ana-
lytically (HAM) are worked out for the solutions of the equations. A brief discussion of solution
methodologies is also provided. The exertion in this chapter is published in ‘’Results in Physics,
7 (2017) 2692-2704".

Chapter 3 is an extension of chapter 2 which scrutinizes the heat and mass transport
properties via convective phenomenon in Carreau fluid flow. The Boungiono’s model has been
utilized which incorporate the stimulus of Brownian and thermophoresis nanoparticles. More-
over, heat sink/source and non linear radiative heat flux are reported. The results are worked
out via bvpdc and HAM. For both shear thinning/thickening liquids several tables are struc-
tured and graphs are portrayed. The results of this chapter are published in ‘’The Furopean
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Physical Journal Plus, (2017), doi: 10.1140/epjp/i2017-11803-3".

Chapter 4 visualizes the outcomes of nanoparticles mass flux theory in 3D radiative flow
of Carreau nanofluid. The behavior of MHD is also scrutinized. The bvp4c tactic has been
executed for the solution of ODEs. The substances of this chapter have been published in
“International Journal of Hydrogen Energy, 42 (2017) 22054-22065 .

Chapter 5 pictures a numerical considerations of thermal-solutal stratifications and con-
vective conditions in 3D Carreau nanofluid flow. Additionally, the aspect of mixed convection,
magnetic field, thermal radiation, heat sink/source are reported. The altered ODEs are tackled
via bvp4c approach. The present analysis has been printed in “"Journal of the Brazilian Society
of Mechanical Sciences and Engineering, (2018), doi: 10.1007/s40430-018-1429-5".

Chapter 6 reports the aspects of 3D Carreau nanofluid for time-dependent flow. The
nanoparticles conditions with the properties of variable conductivity and heat sink/source are
studied. Practically, nanoparticles condition is more significant because nanoparticles amend
the situation accordingly on the boundaries. Suitable conversions alter the PDEs into ODEs
and then tackled numerically via bvpdc. The framework of this study has been published in
“Results in Physics, 7 (2017) 3315-8324".

Chapter 7 explores the aspects of Arrhenius activation energy and nonlinear mixed convec-
tion in 3D unsteady Carreu nanofluid flow. Moreover, thermal radiation, magnetic properties,
chemical reaction and convective phenomenon are integrated. Apposite alterations are stim-
ulated to attain the ODEs structure and interpreted via bvp4c scheme. The endorsement of
the numerical outcomes is confirmed by associating with HAM technique and former limiting
studies. The work stimulated in this chapter has been published in “Journal of Physics and
Chemistry of Solids, 125 (2019) 141-152".

Chapter 8 reports the impact of Cattaeno-Christove heat flux theory and homogeneous-
heterogeneous reactions on Carreau fluid. The bvp4c approach has been executed to solve the
ODEs after appropriate conversions. The graphical verification between bvpdc and HAM as
well as the tabular confirmation of these two methods as well as with former works has been
established. The present exertion has been published in ¢ ’Pramana Journal of Physics, (2018),
doi:10.1007/s12043-018-1579-0".

Chapter 9 scrutinizes the behavior of Cattaeno-Christov double diffusion on 3D flow of
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Carreau fluid. The variable conductivity is also enumerated. The conversions of PDEs into
ODEs via apposite alteration are made and then elucidated numerically bvp4dc. HAM and
bvpdc comparison with earlier exertion is presented. The breakdown reported here has been
published in “’Journal of the Brazilian Society of Mechanical Sciences and Engineering, (2018),
doi: 10.1007/s40430-018-1498-5".

Chapter 10 examines the properties of homogeneous-heterogeneous reactions for time-
dependent 3D flow of Carreau fluid. The characteristics of non-linear thermal radiation, mag-
netic impact and the heat sink/source with convective condition are integrated. The modeled
problem is numerically solved through bvp4c. To visualize the properties of influential consider-
ation graphs are depicted and tables are structured. Additionally, HAM and bvp4c assessments
are provided to authenticate the present outcomes as well as with previous effort. The sub-
stances of this effort have been published in ‘“’Journal of the Brazilian Society of Mechanical
Sciences and Engineering, (2018), doi:10.1007/s40430-018-0964-4".

Chapter 11 summarizes the exertion executed in this thesis. Moreover, the recommenda-

tions are specified for extending this exertion for possible forthcoming research.
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Chapter 2

Mathematical Modeling for
Three-Dimensional Carreau Fluid
Flow with Nonlinear Radiative Heat
Flux

The forthright anxiety of this chapter is to establish a new mathematical formulation for three-
dimensional Carreau fluid flow. The flow is incompressible and influenced by a bidirectional
stretched surface. Additionally, we scrutinized the heat transport properties of the flow field.
The Carreau liquid model is the generalization of linear materials which reveal the aspects of
shear thinning (n < 1) and shear thickening (n > 1) liquids. The heat transfer phenomenon is
inspected by utilizing the non-linear thermal radiation and convective surface boundary con-
dition. The boundary layer equations of 3D Carreau fluid are established by means of usual
boundary layer approximations. The governing set of partial differential equations (PDEs) is
rendered into coupled non-linear ordinary differential equations (ODEs) via appropriate trans-
formations. Numerical solutions are computed for the resulting non-linear ODEs by employing
an effective numerical scheme namely bvp4c function in Matlab. Features of numerous sundry
thermophysical parameters on the liquid velocity, temperature, skin friction and Nusselt number

are explored and discussed in detail. The present results reveal that the liquid velocity declines
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for shear thinning liquid (n < 1) for the larger values of ratio of stretching rates parameter
(cv) and for shear thickening liquid (n > 1) conflicting behavior is detected. It is also remarked
that thermal radiation parameter (Ry) is an augmenting function of temperature distribution
on both situations. To comprehend the legitimacy of numerical results a comparison between
bvp4c results with the analytical results obtained by the homotopy analysis method (HAM) is
also made in this study and alleged an admirable agreement. Furthermore, authentication of
numerical outcomes is achieved via benchmarking with previously reported limiting cases and

we generally found a splendid correlation with these results.

2.1 Development of Physical Model

We considered generalized Newtonian liquid that obeys the rheological features of Carreau fluid

model.

2.1.1 Governing Equations

The constitutive equations for (3D) steady incompressible flow of Carreau fluid in vectorial
form can be written as follows:

ps(V.V) =V.7% (2.1)

For 3D steady flow, we seeks the velocity and Cauchy stress tensor given by Eq. (1.28) (cf.
Chapter 1) of the form

V= [u(m,y, Z),'U((E,y, Z),’LU((E,y,Z)], T = T*(xayaz)' (22)
Now substituting Eq. (2.2) in Eq. (1.27), we have the following expression
ou\? A% w2
e 2(2)+2(%) +2(3)
= 2 2
(3 +8) (B + (B + )
Utilizing Egs. (2.2) and (2.3) in Eq. (2.1) we have

u@—kv@—i—w@ ——@+8T;m+87-;y+67-* 2.0
Pr\ "oz Ay 0z)  0Or  Ox Ay 0z’ ’
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ov  Ov ov\  9p Oty Oty 0T,
Py <u8x+v8y +w82> __8y+ g + By + 5 (2.5)
ow ow ow\  Op  ori, Ot 0T,

where the stress components are defined to be

. o=t (D
The = moll + (D7) <28_z> ’ =0
. oqnzt (0
7, = poll + (D9)?)*7 <28_Z> : (2:8)
* \2185L ow
T2 = woll+ (VT (257 ), (2:9)
Tye = Toy = :u()[l + (FV)Q] 21 <8_Z + 8_,11),‘> ) (210)
sz - Tyz = /“1’0[1 + (F’Y)2] 21 (8_/;’} + 8_1:;]) . (211)
% * . n— 8 8
o = Th = o[l + (09)7% (a—z + 6—:) : (2.12)

Invoking overhead equations into Eqs (2.4) — (2.6), a straightforward calculation yields the

following governing equations

0,
oy (uge + 038 +wgt) = -
1
ou)2 o\ | o (0w)2 2
+2;LQ (@) R 2(393) +2( Yy +2(8z)
00z oz +(_u+@>2+(@_’_8_w2+<8_w+@>2
oy ox z x y z

Nl

N =

,(2.13)
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2 2 2
2(3) +2 (%) +2(3
+/"0% <%+g_q;) 1—|—F2 (Bz) Jy , (Bz )
+(§—Z+%) + (g + du) +(a—‘y"+3—§)
ou 2 v 2 w2 % ]
:u’oay oy +(_u+@>2+(@+6_w)2+<8_w+@>2
oy ox 0z ozr Oy z
N
Ou) 2 v 2 w2 2
Nl ow | v 1412 2(8:)0) +2(6_y) +2(§) 92.14
+M06Z Y + z + u v 2 du w2 Jw v 2 7( ) )
+(dy+8a:> + (55 + %) +<—y+—z>
Pr (ug—g +v%—§’+w3—f) —gg
1
i 2 2 2 12
2 (Qu +2(@) + 2 (Qu
e |G g [1er| 2 2w R
ou v ou ow\2 ow v
_+(—y+—z> +(—Z+% +<—y+—z> ]
1
[ 2u)? w)? | o (0uw)? 1°
1 9 8_w+@ 1+F2 Q(Bz)2 +2< y) +2(6z )
00y |\9y ' 0= ou | O ou | Ow)?2 o o)
| Floy Tas) H(E+a) H G taE) |
ou\2 4 o (av)? 4 o (w2 2
00z 0z +(8u+8v>2+(@+6_w 2+<8_w+@>2 .
oy ox z ox Yy z

For three-dimensional flow the standard boundary layer estimates i.e. z,y,u,v and p are of

order 1, whereas the order of z, w and I' are . Consequently, we obtain the following boundary

layer equations for the steady 3D flow of Carreau fluid

n—1
2 21 72—
uft +vde +wht = — L8 0 1472 (3)°] 7
n—1
ou\ o 2 (ou\2] *
()& 12 ()], (2.16)
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n—1

d d v _ 120 ok 2 (gw\2| 2
ut + o +wdt = —L1% 2 1412 (3)°)
—1
) ) ov\2] 2
()& [1+12(3)°] (2.17)
10
0=——2L (2.18)
py 0z

where v (: %}}) is the kinematic viscosity.

2.2 Description of the Problem

Let report the steady 3D flow of a Carreau fluid persuaded by a bidirectional stretched surface.
The sheet is stretched with linear velocities © = ax and v = by, where a and b are positive
constants relating to stretching speed. The x— and y—axes are concentrated along the contin-
uous stretching sheet, z the coordinate restrained perpendicular to it and the flow existence
restricted in the domain z > 0 as depicted in figure 2.1. Additionally, the hot liquid below the
sheet with temperature Ty consumed to reform the temperature of the sheet by convective heat
transfer approach, which brings a heat conversion coefficient hy. Also consequence of viscous
dissipation is deserted.

Execution of the overhead assumptions in attention the governing equations for Carreau

fluid are
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v v ¥ ¥ ¥
u= Uy(x)

Figure 2.1: Flow configuration and coordinates system.

ou Jv OJdw

e e 2.1
Ox + oy + 0z 0 (2.19)

n—1
du du du _ . 9% 2 (9u\2| 2
u%+7’]8—y+waz = Va2 [1+F (82') }
n—3
2

Fuln =128 (1412 (82)°] 7, (2.20)
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uft -l +wft = v 14T ()] T
n—3
+un -G [14+T2(32)°] * (2.21)

or or  or_ T 1 Og
Yor oy "0z T M 022 T (po); 02

(2.22)

in which a; denotes the thermal diffusivity.

The resultant boundary conditions are

u="Uy(z)=az, v=V,(y)=by, w=0, —kaa—:g =hy[Ty —T] at z=0, (2.23)

u—0, v—=0, T-—-Tyx as z— 0. (2.24)
On the behalf of non-linear radiation, we employ the Rosseland approximation, the radiative
heat flux ¢, is simplified as

_ 40t 9T* 160" T® 9°T
TR e T 3k 022

(2.25)

in which (o*, £*) are the Stefan Boltzmann constant and mean absorption coefficient.

Using the above expression in Eq. (2.22) we have the following resultant energy equation

or  or  oT T = 160* 0 [, 50T
2.2.1 Appropriate Conversions
Let we define
u=azf'(n), v=ayg(n), w=—var[f(n)+gm),
0(n) =772, n=2/% (2.27)

By employing the above conversions, the incompressibility condition (2.19) is substantiated

identically and Egs. (2.20), (2.21) and (2.26) with boundary conditions (2.23) and (2.24) are
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condensed into the subsequent form

JIL+ W P17 L4 nWed 2] = f2 4+ f'(f +.9) =0, (2.28)

"L+ Wedg")" 5 [L+ nWedg"™] — g% + ¢"(f + 9) =0, (2.29)

d%[{l + Ra(L+ (07 — 1)8)°}6'] + Pr(f + g)¢' =0, (2.30)

f0)=0, g(0)=0, f(0)=1, g(0)=a, 0(0)=—m[l-0(0), (2.31)

ff—=0, ¢—0, 6—-0 as n— oc. (2.32)

In the above equations, We; <: @) and Wes <: J@) are the local Weissenberg

* 3
numbers, Ry (: 16&@“) the radiation parameter, 6 (: :,%) the ratio of liquid temperature

to the ambient temperature, Pr (= all) the Prandtl number, « (: 2) the ratio of stretching
rates parameter and v; = (%f \/g> the Biot number.
It is exposed that for o = 0 reduces the equation of momentum into two dimensional case
(9 =0), ie.,
UL+ WeEF2 T [1 4+ nWe2 2 — f2+ f/f = 0. (2.33)

Furthermore, it is noted that for n = 1 or We; = 0 the above equation reduces to Newtonian

fluid.

2.3 Engineering and Industrial Quantities of Interest

The essential physical quantities of foremost interests are (C't,;, Cy,) the local skin friction

coefficients and (Nu;) the local Nusselt number.
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2.3.1 The Skin Friction Coefficients

As Uy, and Oy are influential boundary layer features which are the dimensionless shear rate

at the wall i.e. (z =0) along the x— and y— directions, respectively. Thus

T T
Cip =+ and Cp, =-—2=. (2.34)
Y LUz

The dimensionless form of the above expressions can be written as

1 e
L1Cp, Red = f7(0)[1+ Wed )T, (2.35)
1 n-1
L0y, (%) Rek = g(0)[1 + We3g™) (2.36)
2.3.2 The Local Nusselt Number
Since Nu, gives the rate of heat transfer at the wall and is defined as
T oT gy
Nuy = ———— [ =— —_— 2.37
b T — T <82>Z:0+k(TfTOO) (237)
The dimensionless variable, we have
1
Re; ? Nug = —[1 4+ Rg{1+ (67 — 1)6(0)}%]¢’ (0), (2.38)
in which Re, = M is the local Reynolds number.

2.4 Solution Methodologies

2.4.1 Numerical Scheme

The computation of numerical scheme is established for nonlinear ODEs (2.28) — (2.30) with
boundary conditions (2.31) and (2.32) via bvpdc procedure. To achieve this objective, we

modify Eqs. (2.28) — (2.32) into first order differential structures as follows:
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f=y, ['=w, "=y, ["=yy, (2.39)

9=y1, 9 =95, 9" =vs, 9" =yy2, (2.40)

0=yr, 0 =ys, 0" =yys, (2.41)

Yy = Wﬁi—w, ( + nWely3 * (1 + We%y%)%?) , (2.42)
Yy2 = %ﬁyﬁﬂlé’ = (1 +nWedyg) * (1 + Wegyg)%g , (2.43)
Az = (1 + Ra(1+ (0 — Lyr)*) (2.44)

y1(0)=0, 42(0)=1, ya2(o0) =0, (2.45)

¥4 (0) =0, y5(0) =, ys5(c0) =0, (2.46)

ys (0) +71(1 = y7(0)) =0, yr(c0) =0. (2.47)

2.4.2 Homotopy Aanalysis Method (HAM)

The ODEs (2.27) — (2.29) with boundary conditions (2.30) are solved analytically, by utilizing
the homotopic algorithm (HAM). The fo (), go (1) and 6o (1) are initial guesses and Ly, Ly,
and Ly are the auxiliary linear operators which are given below:

fom)=1—e, g =a[l—e], 0Oo(n) = ﬁe‘", (2.48)

Lol = (5 -2 ) # Lola) = (55— ) o Lol = (4 -1)0. a9

The overhead operators satisfying the following properties

Ly [CF+ Cse" + Cyexpe™] =0, (2.50)
Ly [Ck+ Cie" + Ciexpe™] =0, (2.51)
Ly [C7e" + Cgexpe™] =0, (2.52)

here C7 (j = 1 — 8) are the constant values.
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The deformation problems of zeroth-order

The zeroth order deformation problems are defined as follows:

A~

(1—q) Ly [f (n:q) — fo (77)] — qhyNy [f (7,9),9(m,q),0(n,9), (1, Q)} =0, (2.53)
(1—q) Ly [g(m,q) — go (n)] — qhgNg [f (7,9).G(n.9),0(n,9). 60, Q)} =0, (2.54)
(1=a) Lo |0 (n.0) = 00 ()] — alioNy | f (0.0) .5 (0,0) .0 (n,0) 6 (n.@)] =0, (2.55)
o of ma)| of (n,q) B
f(0,q) =0, “on =1, o =0, (2.56)
n=0 7—00
X _ 9 ma)|  _ 99 (1,9) _
g (Oa q) - 07 877 7]:0 Ot, 817 o0 0’ (257)
0'(0,q) = —m[1—-00,9), 9, q)‘nﬂoo = 0. (2.58)
The non-linear operators Ny, Ny, and Ny are
o ) R 82 ¢ , %3 82 ¢ ’ 83 £ ’
Ny |f (), g ()0 (ia)| = {(1 + W%%) <1 +aWe? fas;g 2 ‘2572 J
Pfma)\ (5. (2fma)\’
+< J(;E;“) (f+g)—( fg;q)) , (2.59)
~ R R 82A , nTig 82A , 83A ’
Ny |F050),9(0), 00| = <1+We§%> <1+nWe§ 98(7;72 2 %(7772 2
0m. )\ | *in,q) /; . .
- < o ) o (f + g) , (2.60)
Flme N Alm-a) O (n _9 _ 3 M Fi g M
Ny [f(n,q),g(mq),@(n,Q)}—877 {1+Ra(1+(0;—1)0)"} an? +Pr<f+g oy
(2.61)
For ¢ =0 and ¢ = 1, we have
F;0) = fon),  f(m:1) = f(n), (2.62)
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g(m;0) =go(n), g(n; 1) = g(n), (2.63)
0(n;0) = 0o(n), O(n;1) = 0(n), (2.64)

Note that fo(n), go(n) and 0y(n) approach f(n), g(n) and 6(n), respectively, when g has variation

from 0 to 1. According to Taylor series, we have

Foa =R+ f0d 5o - 37500 (2.65)

n=1 ’ q=

g(m.a)=go(n) + Zgn , g9a(n) = %W%EJZ’ %) K (2.66)
. ~

b (n,q) = 60 (n +Ze eﬁ(n):%% . (2.67)
. -

The value of iy, hy and hy are preferred in such a tactic that the series (2.64) — (2.66) are

convergent at ¢ = 1 and hence

o0

F)y=fom+> faln), (2.68)

n=1
g =go(m+> 9a(n), (2.69)

0(n) =00 (n)+Y_ 0 (n). (2.70)

The deformation problems of 7" order

The deformation problems of 72" order are of the form

Ly [fa () = xnfae1 ()] — ByRE () = 0, (2.711)
Ly g7 () — Xagn—1 (n)] — hyRY () =0, (2.72)
Lo 107 () — Xaba—1 ()] — heRY (1) =0, (2.73)

38



Afn (n) Afn (n)
2(0) = 0, —0, —0,
£ (0) 22 s
9 (1) 9gi (1)
2 (0) = 0, —0, —0,

where

n—1
Z (g0 =D fhaafi 4 erm),
7=0

n—1

Zgn dlfi 90 =D Ghoagh+ (),

1=0

RE(n) = (14 Ra)0_y (n) + Rq (05 — 1)’ S 01 Or—1— ZZZ —o - zZ; 00107
+3Rq (0 —1)* Y00 On1v 210 0r18] +3Ra (07 — 1) Xy 0516
+3Rq (87 — 1) X420 01465+ 6Ra (07 — 1)* 2070 01 1o 0516

+3Rd(9f_1) Z? 01971 1- ZZl 00— lzg 00— —j ’

+PTZ (fn 1— z+gn 1— 7,)9{’

where

= fil1s n=1,
wi(n) = n—1 7
! = fng + 3W€% Z f;{lflfz Zf{”,l l”’ n=3,
1=0 =0
= 9515 n=1,
pg(n) = ol
_ggll+3wegzggL1 Zzgl lg17 n:3,

=0
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(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)



The general solutions are

fu(n) = fi(n) + C1 + Cae” + Cze™, (2.83)
g () = gr(n) + C4 + C5e + Cge™, (2.84)
05 (1) = 0(n) + Cye" + Cge™, (2.85)

where f*, g% and 67 denote the particular solutions and the constants Cy (j =1—8) can be

attained by utilizing Eqs. (2.74) — (2.76). They are given by

* 8 * * * * * 6 * * *
Gy = 25Mm| L Of=—Ci—f(0), G5 = 25| . Ci=~Ci —g"(0),
Cg = 1+71 [ 2 ‘ —7160"(0 } )
Cy=Ct=Cr=0. (2.86)

2.5 Graphical Illustration and Analysis

This fragment is intensive to explore the impact of numerous corporal parameters on the ve-
locities f'(n) and ¢'(n) and temperature 6(n) fields. The combined set of Eqs. (2.27) — (2.29)
with boundary conditions (2.30) are elucidated numerically by means of the bvp4c technique.
Graphs are strategized for the values of distinct flow parameter like the local Weissenberg num-
bers (Wej, Weg), velocity ratio parameter («), non-linear radiation parameter (Ry), tempera-
ture ratio parameter (6y), Prandtl number (Pr) and thermal Biot number (v;). Moreover, the

1 1
results for the skin-friction coefficients %C’fx ReZ, %C’fy (%) Re%) and local Nusselt number

(Rex 2 Nu, | are also tabulated and deliberated in details.

Figures 2.2(a —d) are strategic to perceive the behavior of local Weissenberg number
(Weq) on velocity components f/(n) and ¢'(n) for the instance of (n < 1) and (n > 1). From
these sketches, it is established that intensifying values of We; decline the velocity component
f'(n) for shear thinning circumstance, whereas an opposed behavior is identified for ¢'(n).
Correspondingly, instead of this, it is also distinguished that for shear thickening fluid the

increase in value of We; augments the fluid velocity f’(n) and its related thickener of boundary
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layer and it diminishes the fluid velocity ¢'(n) for enlarging values of We; as displayed in
figures 2.2(b) and 2.2(d). Physically, We; is the relation of relaxation time of the fluid
and a certain process in which time growths the viscosity of liquid. Subsequently, there is a
decline in the liquid velocity. Moreover, the boundary layer thickness is thinner for escalating
values of We;p for n = 0.5, while it augments for n = 1.5. Figures 2.3(a — d) are schemed to
recognize the performance of local Weissenberg number (We3) on f'(n) and ¢'(n), for n = 0.5
and n = 1.5. From these plots quite opposed behaviors are identified for the augmented value of
Wes. An increase in the value of Wes enhances the velocity component f’(n) and declines the
velocity component ¢'(n) for shear thinning liquid. While, differing behavior is being noted for
shear thickening liquid. Figures 2.4(a — d) are plotted to scrutinize the effects of the ratio of
stretching rates («) for (n = 0.5) and (n = 1.5) on f’(n) and ¢'(n), respectively. It is illustrated
from these graphs that the velocity component f’(n) and associated momentum boundary
layer thickness decline for the augmented value of o while the inverse trend is observed for
g'(n). Physically, « is the relation of stretching in y—direction to the stretching in z—direction.
As we enhance « the velocity in y—direction boosts up when compared with the velocity in
x—direction.

The impact of local Weissenberg numbers (We;, Wez) on 6(n) is demonstrated through
figures 2.5(a —d). It is clear from these sketches that the higher values of We; augment the
temperature and associated thermal boundary layer thickness for (n < 1) and opposite behav-
ior is observed for (n > 1). The results are more pronounced for the shear thickening liquid.
Physically, We; and Weg are the ratio of viscous to the elastic forces, so intensifying values of
Wep cause an augmentation in the liquid viscosity. Therefore, flow befits more resistive and
consequently, 6(n) enhances for n < 1 and for n > 1 behavior is quite reversed. The impact
of radiation parameter (Ry) and temperature ratio parameters (6¢) on 6(n) for both circum-
stances, i.e., (n < 1) and (n > 1) is depicted via figures 2.6(a, b) and 2.7(a, b). These figures
expose that the advanced assessment of the radiation and temperature ratio parameters have
the tendency to augment both the temperature and allied thermal boundary layer thickness.
Figures 2.7(a,b) spectacle that for the amassed values of ¢, the fluid temperature (Ty) is
greater than the ambient temperature (T.,), which raises the thermal state of the fluid and

the outcome is intensification of 6(n). Moreover, these figures clue to the decision that the
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temperature and thermal boundary layer thickness are accumulative functions of Rq and 6 for
both cases. Figures 2.8(a,b) and 2.9(a,b) depict the discrepancy of the Biot number ()
and Prandtl number (Pr) on the heat process for shear thinning and shear thickening fluids.
It is noticed from these sketches that the 7, is an intensifying function of §(n) for the growing
value of ;. By physical point of assessment the advance values of 7, intensify the heat transfer
amount which clues higher temperature and its thermal boundary layer thickness pointedly
enhanced. Furthermore, the influence of Prandtl number (Pr) is relatively opposing on 6(n).
An escalation in Pr resembles to a reduction in thermal diffusivity which thus, arises difference
in the thermal features and diminutions the fluid temperature and its allied thermal boundary
layer thickness. The structure of 6(n) for diverse values of the ratio of stretching rates para-
meter () is established through figures 2.10(a, b). It is probable from these drafts that 6(n)
diminishes for improving the values of « for both (n < 1) and (n > 1). An amplification in «
resembles that the velocity in  — direction clues than the velocity in y — direction, because
of the particles collision boosts which as an outcome diminishes the temperature of Carreau

liquid.

2.5.1 Graphical Comparison between bvp4c and HAM

From figures 2.11(a, b) to 2.14(a, b), it is enthusiastic that the displayed plots of f'(n), ¢'(n)
and 6(n) reveal a tremendous graphical settlement of the bvp4c technique with the homotopy
analysis method (HAM).

2.5.2 Tabular Representations

1 1
Tables 2.1 and 2.2 are established for numerical values of <%C’fx ReZ, % <%> Cyy Re%) and

_1
Re, 2 N uz> for controlling parameter. The wall temperature gradient is improved for liquid
in both situations i.e., (n = 0.5, 1.5) for the augmented values of R; and ;. Therefore, it

consequences in the increase of the heat transfer coefficient.
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2.5.3 Confirmation of Numerical Outcomes

Tables 2.3 and 2.4 present the comparison of two dissimilar techniques, namely the homotopy
analysis method (HAM) and bvp4c for different values of ratio of stretching rates parameter
(o) with homotopy perturbation method (HPM) [115], exact solutions [115] and homotopy
analysis method (HAM) [116]. From these tables, a tremendous agreement is renowned in a
limiting sense. Additionally, the influence of Wei, Wes and « on (%C’ fx Re% , % (%) Cyy Reé )
is addressed numerically (bvp4c) and analytically (HAM) through Table 2.5 with excellent
agreement. Table 2.6 numerically (bvp4c) and analytically (HAM) revealed the effects of Ry,
0, v, and Pr on <Rex 3 N ua;> Here both the techniques are remarkable in agreement.
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Figure 2.2(a — d): Influence of We;y on f'(n) and ¢'(n).
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Figure 2.3(a — d): Influence of Wes on f'(n) and ¢'(n).
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Figure 2.5(a — d): Influence of We; and Wez on 6(n).
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1 1
Table 2.1: Outcomes of (%Cfx ReZ, % (%ﬁ) Cyy Re%) for different parameters when Ry =
0.5, 0y = 1.2, vy = 0.3 and Pr = 1.0 are fixed.

1 I
L0y, Re? 5 () Cpy e
n=0.5 n=15 n=20.>5 n=15

Wer Wey «

20 3.0 03 -1.581674 -3.344919 -0.255535 -0.345016

3.0 -1.856803 -5.271657 -0.250302 -0.350016
4.0 -2.073570 -7.485905 -0.246271  -0.353936
5.0 -2.253414  -9.936722 -0.343069 -0.357096
20 4.0 -1.580164 -3.350012 -0.270037 -0.406513
5.0 -1.578454 -3.354100 -0.286856 -0.476625
6.0 -1.576657 -3.358029 -0.304832  -0.553578

3.0 0.5 -1.647423 -3.594553 -0.577434 -1.013007
0.8 -1.728708 -3.986363 -1.379147 -3.485158
1.0 -1.775024 -4.258813 -2.114502  -6.702600
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Table 2.2: Outcomes of | Re; 2 NV ux> for different parameters R4, 0, v; and Pr when
Wep = Weg = 2.0 and o = 0.3 are fixed.

—I
Re, 2 Nu,
Ry 0y ~; Pr
n=05 n=15

0.5 1.2 03 1.0 0.294477 0.304676

1.0 0.372689  0.388123
1.5 0.441783  0.462292
2.0 0.504335  0.529242
0.5 1.5 0.325703  0.335816
1.7 0.352423  0.362326

2.0 0.404464  0.413952

1.2 05 0.394499 0.413634

0.7 0.460224  0.486964

1.0 0.524613  0.560187

0.3 1.3 0.313658 0.322535
1.7 0.331121  0.338646
2.0 0.340662 0.347414
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Table 2.3: A comparison of —f”(0) for numerous values of o when We; = Weg = 0 and

n = 1.
—f"(0)
“ Ariel(HPM) [115] Ariel(Exact) [115] Hayat et al. [116] Present Present
(HAM) (bvp4c)
0 1 1 1 1 1
0.1 1.017027 1.020264 1.020260 1.020263 1.020264
0.2 1.034587 1.039497 1.039495 1.039496 1.039497
0.3 1.057470 1.057956 1.057955 1.057956 1.057956
0.4 1.070529 1.075788 1.075788 1.075787 1.075788
0.5 1.088662 1.093095 1.093095 1.093095 1.093095
0.6 1.106797 1.109946 1.109947 1.109946 1.109946
0.7 1.124882 1.126397 1.126398 1.126396 1.126397
0.8 1.142879 1.142488 1.142489 1.142489 1.142488
0.9 1.160762 1.158253 1.158254 1.158252 1.158253
1.0 1.178511 1.17372 1.173721 1.173720 1.173720

55



Table 2.4: A comparison of —¢”(0) for numerous values of & when We; = Wey = 0 and

n = 1.
—9"(0)

“ Ariel(HPM) [115] Ariel(Exact) [115] Hayat et al. [116] Present Present
(HAM) (bvp4c)

0 0.0 0.0 0.0 0.0 0.0
0.1 0.070399 0.066847 0.066847 0.066848 0.0668485
0.2 0.158231 0.148737 0.148737 0.148737 0.1487382
0.3 0.254347 0.243360 0.243359 0.243360 0.2433607
0.4 0.360599 0.349209 0.349209 0.349208 0.3492087
0.5 0.476290 0.465205 0.465205 0.465207 0.4652046
0.6 0.600833 0.590529 0.590529 0.590528 0.5905229
0.7 0.733730 0.724532 0.724532 0.724530 0.7245312
0.8 0.874551 0.866683 0.866683 0.866682 0.8666822
0.9 1.022922 1.016539 1.016540 1.016540 1.016538
1.0 1.178511 1.173721 1.173722 1.173721 1.173720
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1 1
Table 2.5: A comparison of <%C'fz Rez, 3 (%) Cyy Re%) between bvp4c and HAM for

different parameters when Rq = 0.5, 0y = v; = 0.3, Pr = 0.7 and n = 3 are fixed.

1 1
10}, Re? 3 (%) CpyRe?
HAM bvpdc HAM bvpdc

Wer Wes «

0.1 0.1 0.3 -1.06140 -1.061402  -0.243538 -0.2435388

0.2 -1.07126  -1.071256  -0.243930 -0.2439302
0.3 -1.08638 -1.086387  -0.244524 -0.2445312
0.4 -1.10543 -1.105454  -0.245261 -0.2452684
0.1 0.0 -1.06140 -1.061396  -0.243497 -0.2434975
0.2 -1.06142 -1.061421  -0.243662 -0.2436622
0.3 -1.06145 -1.061452  -0.243866 -0.2438667

0.1 0.4 -1.07942 -1.079422  -0.349508 -0.3495075
0.5 -1.09693 -1.096927  -0.465711 -0.4657115
0.6 -1.11399 -1.113986  -0.591380 -0.5913799
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Table 2.6: A comparison of <Rex 2 Nug | between bvp4c and HAM for different parameters
when We; = Wes = 0.1, « = 0.3 and n = 3 are fixed.

—1
Re; 2 Nu,
R; 6y ~ Pr
HAM bvpdc

0.5 03 03 07 0.219951 0.219914
0.6 0.224867 0.224881
0.7 0.229686 0.229695
0.8 0.234365 0.234373
0.5 0.0 0.210419 0.210411
0.5 0.228013 0.228010

1.0 0.256641 0.256622

0.3 0.5 0.282772  0.282752

0.7 0.324442  0.324437

1.0 0.366528 0.366523

0.3 1.0 0.245430 0.245432

1.3 0.263400 0.263400

1.5 0.272786 0.272796
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Chapter 3

Influence of Convective Conditions

in 3D Carreau Nanofluid Flow

This chapter reports a mathematical relation for 3D forced convective heat and mass trans-
fer mechanisms of Carreau nanoliquid over a bidirectional stretched surface. Additionally, the
features of heat source/sink and non-linear thermal radiation are considered. The governing
non-linear PDEs are established and altered into a set of non-linear ODEs by utilizing the
suitable conversion. A numerical approach, namely bvp4c is adopted to resolve the resultant
equations. The achieved outcomes are schemed and conferred in detail for somatic parame-
ters. It is realized that amassed values of Brownian motion parameter (/V;) lead to enhance
the temperature of Carreau nanoliquid while quite conflicting behavior is being noticed for the
concentration of Carreau nanoliquid. Moreover, it is also noted that the influence of heat source
(0 > 0) is relatively antithesis to heat sink (§ < 0) parameter. However an analogous impact
is being identified for thermal Biot number (v;) on temperature and the concentration Biot
number (y,) on concentration of Carreau nanoliquid for shear thinning/thickening liquids. Ad-
ditionally, an assessment between analytical technique, the homotopy analysis method (HAM)
and numerical scheme bvp4c is presented graphically, as well as in tabular form. From these

comparisons we initiate a splendid communication with these results.
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3.1 Description of the Problem

Here we scrutinize the steady 3D forced convective flow of a Carreau nanofluid over a bidirec-

tional stretched surface. The aspects of Brownian motion and thermophoresis particles are also

occupied in this description. The flow is influenced by stretching the surface in two adjacent

x and y directions with linear velocities (u,v) = (ax,by) respectively, where a and b are pos-

itive constants and the fluid conquers the region z > 0. The heat transfer mechanism is also

considered subject to nonlinear thermal radiation and heat generation/absorption.

Under these norms the existing flow problem of a Carreau nanofluid can be written as

ou Jv OJw

%—i_a_y—i_%:&

ar or ar _ . 9T 9C 9T | Dp (9T\2
u8x+v8y+waz_a1822+T[DB8282+TOO(8Z)

1 0a . Qo
oy 05 T Gy (L~ Too),

0c  0C_ oC_ PC DT
oz Uay Yo, T FE g2 Too 0227
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The esulting boundary conditions of flow problem are

u=azx, v="by, w=0, —k%—fzhf[Tf—T], —Dg%zhm[C'f—C’] at z=10,(3.6)

u—0, v—0, T—Ty C—Cyx as z— oo (3.7)

Here C' is the volume friction of nanoliquid, 7 the effective heat capacity of nanoparticles to heat
capacity of the base liquid ratio , (Dp, Dr) the Brownian and thermal diffusion coefficients, re-
spectively, C», the ambient concentration of the nanoliquid, @y the heat source/sink coefficient,

hp, wall mass transport coefficient and C the liquid concentration near to the surface.

3.1.1 Appropriate Conversions

Let we consider
C - Cx

=T —on

(3.8)

In the perception of overhead conversion and Eq. (2.27) (cf. Chapter 2), the condition of
incompressibility (3.1) is automatically satisfied and Egs. (3.2) — (3.7) reduce to

n—3

UL+ W [L+nWef" — f2 4+ f'(f+9) =0, (3.9)

n—3
g"1+We3g™] 2 [1+nWesg”™] — g +¢"(f+9) =0, (3.10)

%[{1 + Ry(1+ (8 — 1)0)>}0] + Pr(f + 9)0 + Pr[No8'¢' + N:@'? +Prog) =0,  (3.11)

¢" + PrLe(f +g)¢' + (%) 0" =0, (3.12)
f(0)=0, g(0)=0, f(0)=1, ¢'(0)=aq,

0'(0) = —y1(1 = 0(0)),  ¢'(0) = —72(1 — $(0)), (3.13)

ff—0, ¢d—0, 6—0, ¢—0 as n— oco. (3.14)

Here N, (: LB(C;i“’)) is the Brownian motion parameter, N; (: M) the ther-

V1o

mophoresis parameter, § (: ﬁng) the heat source (§ > 0) and heat sink (§ < 0) parameter,

61



Le (: g—;) the Lewis number and 74 (: ?)_7;\/5> the mass Biot number. Moreover, Weq,

Wea, Rq, 0, 71 and « are the dimensionless parameters and are same as defined in chapter 2.

3.2 Engineering and Industrial Quantities of Interest

From the industrial and engineering point of view, the essential quantities of physical interest

are the skin friction coefficients, heat and mass transfer coefficients which may be defined by

the subsequent expressions.

3.2.1 The Skin Friction Coefficients

It is defined as

3 U
and in dimensionless form
1 % " 2 £12 n=1
3C: Reg = f"(0)[1 + Wei f"(0)] =,

1

1 n—
(4) CpyRed = g"(O)[1 + We3g™(0)] "

N[—=

3.2.2 The Local Nusselt and Sherwood Numbers

These are defined as

x0T
(Tf — Too) 82

qy T oC

Nug = — P TN
2=0 k(Tf 7T00)

and the above quantities in the dimensionless expression are

Re,® Nu, = —[L+ Ra{l+ (8, — DO©O)}F (0), Re? Shy = —¢/(0).
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3.3 Graphical Illustration and Analysis

To report the influence of various inferential parameters on the temperature field 6 (n) and
concentration field ¢ (1) of Carreau nanoliquid this part is focused. A set of combined nonlinear
ODE:s (3.9) to (3.14) are interpreted numerically by employing bvp4v technique. For the values
of diverse flow parameters graphs are depicted. Furthermore, the outcomes for the local Nusselt
number (Re; 2 Nu, | and Sherwood number <Re; 3 th> are tabularized and discussed.
Figures 3.1(a,b) and 3.2(a,b) are portrayed to visualize the performance of Brownian
motion (V) and thermophoresis (N;) parameters on nanoliquid temperature 6(n) for shear
thinning/thickening liquids. From these plots it is detected that both are augmenting functions
of temperature of Carreau liquid for rising value of N, and N;. Physically, N, depends on the
unsystematic motion of nanoparticles in the Carreau liquid. When N, is augmented the unsys-
tematic gesture of the particles intensifies which exaggerates the velocity of the nanoparticles.
Hence, 0(n) augments. Moreover, N; is directly proportional to the difference of temperature
between the wall and the reference temperature. In the flow domain of the particulate struc-
ture, there is temperature gradient in hotter regions which causes small elements inclined to
isolated quicker. Consequently, the surface temperature of the nanoliquid and its thickness of
boundary layer are enhanced. Additionally, growing values of IN; physically means that the
smallest nanoparticles are pulled away from the warm surface to the cold surface. Therefore,
the higher number of small nanoparticles is dragged away from the warm surface due to which
concentration of the nanoliquid decline. Figures 3.3(a,b) and 3.4(a,b) are plotted to deter-
mine the features of thermal radiation parameter (R4) and temperature ratio parameter (6¢)
on O(n) for (n =0.5) and (n = 1.5). It is noted that the temperature and its related thickness
of boundary layer enhance for the augmented values of R; and 6 in both instances. The in-
creasing values of R, formed much heat in working liquid which consequences augment 6(n).
Figures 3.5(a,b) and 3.6(a,b) clarify the properties of heat sink/source parameter (§) on
the nanoparticles (7). From these sketches it is established that the temperature of Carreau
nanoliquid and associated thermal boundary layer thickness decline when we rise the values of
0 < 0; however, the conflicting circumstance is being remarked for 6 > 0. Apparently in 6 > 0
phenomenon provides much heat to the liquid that corresponds to an increase in 6(n) for both

(n < 1) and (n > 1). The influence of increasing values of the thermal Biot number (v;) for

63



shear thinning/thickening liquids on 6(n) is portrayed in figure 3.7(a,b). We can perceive
from these designs that augmenting behavior for enhancing values of v; on 6(n) is detected.
Due to increase in 7, the convection of the surface rises and as a result an enhancement in the
liquid temperature and its allied thickness of the boundary layer occur.

Figures 3.8(a,b) and 3.9(a,b) are delineated to interpret the aspects of N, and Ny, re-
spectively on ¢(n). These displays reported that the concentration of the Carreau nanoliquid
and associated concentration boundary layer thickness diminish for the larger values of Nj.
But, the higher /V; leads to an augmentation in ¢(n) for both situations (n < 1) and (n > 1).
The influence of higher values of the concentration Biot number (v,) and Lewis number (Le) on
¢(n) depicts the conflicting impacts which are expressed in figures 3.10(a,b) and 3.11(a, b).
An increase in v, enhances the concentration of Carreau liquid, while it declines for Le. From
the physical point of assessment Le is the inversely amount to the Brownian diffusion coefficient

(Dp) owing to which a magnification in Le produces a decline in diffusion coefficient and hence,

o(n) decays.

3.3.1 Graphical Comparison between bvp4c and HAM

Figures 3.12(a,b) and 3.13(a, b) are depicted to scrutinize the legitimacy of current results
on 0(n) through graphical illustrations and reveal a remarkable settlement of the bvp4c scheme

with homotopy analysis method (HAM).

3.3.2 Tabular Representations
_1
The convergence of different flow parameters on local Nusselt (Rex N ux> and local Sherwood

1
(Rex 2 Sha;) for both (n = 0.5, 1.5) are reported in Table 3.1. The heat and mass transport
rates decline for intensifying values of NN}, for both situations (n < 1) and (n < 1) in Table 3.1,

_1 _1
while the influence of amassed values of 75 on Nu, Re, ? is quite reverse to Sh, Re; 2.

3.3.3 Confirmation of Numerical Outcomes

1 1
Table 3.2 is organized for <Rex N ux> and <Rex 2 th> of two different schemes numerically
(bvp4c) and analytically (HAM). In this table a tremendous agreement is established between
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both techniques. Additionally, the validity of the numerical and analytical results are also
presented by assessment with former related prose and remarked an excellent settlement in

Tables 3.3 and 3.4.
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n=0.5
We, =We,=Pr=1.5, a=v,=04, §=0.1
R,=v,=N,=0.5, 6,=1.1, Le=1.0

Figure 3.1(a,b): Influence of N, on 6(n).
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We, =We,=Pr=1.5, a=v,=04, §=0.1
R,=v,=0.5, N,=0.3, 6,=1.1, Le=1.0

Figure 3.2(a,b): Influence of N; on 6(n).
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n=1.5
We,=We,=Pr=15, a=v,=0.4, §=0.1
R,=v,=N,=0.5, 6,=1.1, Le=1.0

N,=0.2,0.5,0.7,0.9

n=1.5
We, =We,=Pr=1.5, a=v,=0.4, §=0.1

=y,=0.5, N =03, 6,=1.1, Le=1.0
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Figure 3.3(a,b): Influence of Ry on 6(n).
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Figure 3.5(a,b): Influence of 6 < 0 on 6(n).
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Figure 3.6(a,b): Influence of 6 > 0 on 6(n).
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Figure 3.8(a,b): Influence of N; on ¢(n).
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Figure 3.10(a, b): Influence of 75 on ¢(n).
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_1 _1
Table 3.1: Outcomes of [ Re, ? Nu,, Re;? th> for different parameters when We; =
Wey =15, a =7, =04, Ry = 0.5, 0y = 1.1 are fixed.

—I —1
Ny Ny 6 Pr ~y Le
n=0.5 n=15 n=0.5 n=15

05 03 01 15 05 1.0 0.341960 0.355985 0.249964 0.257590

0.6 0.338322  0.352647 0.237525 0.245339
0.7 0.334630  0.349260 0.225651 0.233611
0.8 0.330883  0.345823 0.214344 0.222408
0.5 04 0.338260 0.352554 0.268821 0.275984
0.5 0.334526  0.349089 0.280138 0.287025

0.6 0.330758  0.345591 0.287685 0.294387

0.3 0.0 0.366450 0.376012 0.239956 0.249322

0.2 0.303074 0.327126 0.264898  0.268906

0.3 0.213655 0.277479 0.296008 0.287032

01 1.2 0.318472  0.334126 0.227834 0.235484

1.4 0.334979  0.349493 0.243130 0.250807

1.6 0.348263 0.361847 0.256325 0.263875

1.5 0.7 0.340017  0.354120 0.307357 0.317713

0.9 0.338491  0.352645 0.351684  0.365050

1.0 0.337845 0.352018 0.370532  0.385135

0.5 0.8 0.342023 0.356046 0.220321 0.228760
1.1 0.342000 0.356019 0.261808  0.269075
1.3 0.342155 0.356154 0.281407  0.288046

73



_1 _1
Table 3.2: A comparison of <Rex 2N ux> and <Rex 2 th> between bvp4c and HAM for
different parameters when We; = Wea = Ry = 0.5, =04, 0y = 1.1, 6 = 0.1 and n = 3 are
fixed.

_1 _1
Re; 2 Nug Rey ? Sh;
bvpdc HAM bvpdc HAM

Ny Ny, Pr vy vy Le

02 03 15 03 03 1.0 0.305948 0.305959 0.209633 0.209637
0.3 0.304038 0.304044 0.201220 0.201222
0.4 0.302094 0.302103 0.193054 0.193052
0.5 0.300115 0.300122 0.185130 0.185111
0.2 0.1 0.309066 0.309069 0.173196 0.173163
0.2 0.307515 0.307514 0.200523 0.200517
0.4 0.304366 0.304366 0.214189 0.214189
03 14 0.301094 0.301095 0.206679 0.206681
1.7 0.314283 0.314288 0.214797 0.214788

2.0 0.324258 0.324252 0.221128 0.221090

1.5 0.1 0.130296 0.130298 0.219452 0.219449

0.2 0.229213 0.229214 0.213837 0.213841

0.4 0.366754 0.366757  0.206396 0.206392

0.3 0.2 0.307140 0.307149  0.151935 0.151942

0.4 0.304926 0.304945 0.258768 0.258776

0.5 0.304040 0.304052 0.301115 0.301111

0.3 0.7 0.305733 0.305746 0.190679 0.190708

0.8 0.305794 0.305800 0.198174 0.198188

1.2 0.218066 0.218049 0.306115 0.306117
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Table 3.3: A comparison of —f”(0) in limiting sense when We; = Wegs =0 and n = 1 are

fixed.

—f"(0)
’ Wang [117] Liu and Anderson [118] Present (bvpdc) Present (HAM)
0.0 1 1 1 1
0.25 1.048813 1.048813 1.0488130 1.0488131
0.50 1.093097 1.093096 1.0930954 1.0930943
0.75 1.134485 1.134486 1.1344854 1.1344858
1.0 1.173720 1.173721 1.1737199 1.1737201

Table 3.4: A comparison of —¢”(0) in limiting sense when We; = Weg =0 and n = 1 are

fixed.

—-g"(0)

a

Wang [117] Liu and Anderson [118] Present(bvp4c) Present (HAM)
0.0 0 0 0 0
0.25 0.194564 0.194565 0.1945652 0.1945617
0.50 0.465205 0.465206 0.4652058 0.4652047
0.75 0.794622 0.794619 0.7946180 0.7946184
1.0 1.173720 1.173721 1.1737199 1.1737201
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Chapter 4

Influence of Thermal Radiation on
Magnetohydrodynamic 3D Flow of

Carreau Nanofluid

This chapter investigates 3D radiative flow of a magneto Carreau nanofluid over a bidirectional
stretched surface. Additionally, the aspect of the nanoparticles mass flux condition is occupied.
Practically, this recently recommended approach is more realistic where we assume that the
nanoparticle flux is zero and nanoparticle fraction adjusts itself on the boundaries accordingly.
With this convincing and revised relation, the features of Buongiorno’s relation on 3D Carreau
liquid can be applied in a more effective way. The appropriate transformations are employed
to alter the PDEs into ODEs and then tackled numerically by employing bvp4c scheme. The
numerous consequence of scheming parameters on the velocity components, temperature and
concentration fields is portrayed graphically and deliberated in detail. The numerical outcomes
for local skin friction coefficients and the wall temperature gradient for nanoliquid are intended
and presented through tables. The outcomes conveyed here manifest that the impact of Brown-
ian motion parameter on the rate of heat transfer for nanoliquids becomes negligible for the
recently recommended revised relation. It is notable that the magnetic parameter (M) is a
diminishing function to the velocity components f’(n) and ¢'(n), while it enhances the tem-

perature of Carreau liquid for both shear thinning/thickening liquids. Moreover, it is noted
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that the influence of the Brownian motion (N,) and thermophoresis parameter (N;) on the
concentration of the Carreau nanofluid is quite opposite. For authentication of the present
relation, the achieved results are distinguished with earlier research works in specific cases and

marvelous agreement has been noted.

4.1 Description of the Problem

Consider the steady 3D flow of an electrical conducting forced convective Carreau nanofluid
over a bidirectional stretched surface. The flow is persuaded owing to stretching surface in two
horizontal x—and y—directions with velocity © = ax and v = by, respectively, where a and b are
stretching rates and the fluid flow occupies the region in the domain z > 0. The magnetic field of
strength (By) is imposed parallel to z —axis. The notion of induced magnetic and electric fields
are insignificant considered here when compared to the applied magnetic field. This postulation
is effective only for the insignificant magnetic Reynolds number. Moreover, the temperature of
the nanoliquid at the surface T, is superior than temperature of nanoliquid distant from the
stretched surface. The Carreau nanoliquid relation in view of overhead declared assumptions

are given below:

ou Ov Ow

ey o Y (4.1)

n—1

du  ,du du _ 0% 2 (Qu)2] 2
Uz +U8y +waz = Va2 [1+F (dz) }

3

U w2 oB2

Fuin = )r2ge [1472(32)°) © - 2H, (4.2)
2 2 n771
B ol = B [+ 3]
n—3
+v(n —1)[29 [1 + T2 (8—2)2} — %av, (4.3)
or . ar = oT _ PT 9C T  Dr (0T\? 1 9,

E v s —a S v D T () ] - 4.4
u8$+U8y Yor T Moz TT| VPG, 8z+Too <8z) (pc)f 0z (44)
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oc  oC oC 0*°C  Dr&*T

— — — =Dp—+——. 4.5
u8m+v8y+w8z B8z2+Too8z2 (45)
The boundary conditions of the existing flow problems are
u=Uy(x)=ax, v=V,(y)=by, w=0,
T="T, Dp%+%£9L=0 at z=0, (4.6)
u—0, v—0, T—Ty, C—-Cx as z— o0 (4.7)
Here o is the electrical conductivity.
4.1.1 Appropriate Conversions
In view of dimensionless transformation variables
T—-Tw C—-Cx
0(n) = —"- = . 4.

and Eq. (2.27) (cf. Chapter 2), the incompressibility condition is automatically satisfied and
Egs. (4.2) — (4.7) yield

LA+ W L+ nWedf"] — 2 + f/(f +g) — M2f =0, (4.9)
g1+ I/Vegg’a]%3 [1+nWeig"?| — g2+ ¢"(f +9) — M?¢' =0, (4.10)
(14 Ry) 0" 4+ Pr(f + 9)0 + Pr[Ny0'¢' + N6 = 0, (4.11)
" / Nt "
" +PrLe(f+g)d + <F> 0" =0, (4.12)
b

f(0)=0, g(0)=0, f(0)=1, ¢'(0)=q,
0(0) =1, Ny (0)+ N:&'(0) =0, (4.13)

ff—0, ¢g—0 6—-0 ¢—0 as n— oo. (4.14)
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2
Here, M (z %) reports the magnetic parameter, Ny (%) the Brownian motion pa-

rameter and Ny <: %{;T"O)) the thermophoresis parameter.

4.2 Engineering and Industrial Quantities of Interest

From the physical point of view, the quantities of industrial and engineering interest in materials
processing are the skin friction coefficients and heat transfer coefficient which may be defined
below.

4.2.1 The Skin Friction Coefficients

Let

T T
Cio = —= and Oy, = —2, 4.15

and the dimensionless quantities of above expressions

1 1 e
5CrRed =[O+ W7, (4.16)

1 (U ! s
5(%%% = SO+ W™ (4.17)

4.2.2 The local Nusselt number

Let
x oT gy,
Nuypy=———"—"— — —_— 4.18
b T —Too) 02|,y & (Tw— Too) (4.18)
and in the dimensionless variable is
_1
Rey 2 Nugy = — (1 + Rg) 0 (0). (4.19)

4.3 Graphical Illustration and Analysis

The foremost attention here is to inspect the features of nanoparticles mass flux theory for 3D
magnetohydrodynamic (MHD) flow of Carreau nanofluid over a bidirectional stretching surface.

Widespread numerical computation, namely, bvp4c has been worked out for the exploration of
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the influential parameters on the velocity components f’(n) and ¢'(n), temperature 6(n) and
concentrations ¢(n) fields. The graphs are portrayed and the discrepancy of the local skin
friction coefficients <%C'fx Reé, % (%) Cyy Re;% ) and the local Nusselt number <Re; 2 N ux>
are reported in tabular arrangement and deliberated in detail.

Figures 4.1(a — d) are plotted to visualize the characteristics of magnetic parameter (M)
on the nanoliquid velocity components f’(n) and ¢'(n) for shear thinning and shear thickening
liquids. We perceived a diminishing behavior in the nanoliquid velocity profiles and associated
momentum boundary layer thickness with growing values of M. Physically, this happens be-
cause of fact that the Lorentz force boosts up for higher values of M which yields much struggle
to the fluid. Therefore, the complicity between the nanoparticles intensifies. This phenomenon
reduces the associated momentum boundary layer. Therefore, the velocities of the nanoliquid
decline.

Figures 4.2(a — d) demonstrate the impact of local Weissenberg number (We;) on the
nanoliquid temperature 6(n) and concentrations ¢(n) profiles. It is manifest from these figures
that the nanoliquid temperature and concentration profiles enhance with the augmented values
of Wey for (n = 0.5) while the reverse trend is observed for the (n = 1.5). Noticeably, We; is
the relation of viscous to the elastic forces, so strengthening in the values of We; reasons an
amplification in the liquid viscosity. This consequence augments the temperature of Carreau
liquid for (n < 1) and reverse trend is detected for (n > 1). The properties of nanoliquid tem-
perature and concentration profiles for distinct values of the ratio of stretching rates parameter
() are presented through figures 4.3(a —d). It is estimated from these sketches that 6(n)
and ¢(n) decline with the boosted values of « for shear thinning and shear thickening liquids.
The augmented values of « the nanoliquid velocity in y — direction leads, then the nanoliquid
velocity in z — direction owing to the collision of the particles which result in a reduction in
the concentration field and concentration thickness of the boundary layer. Figures 4.4(a —d)
spectacle the impact of magnetic parameter (M) on the nanoliquid temperature and concentra-
tion profiles for both (n = 0.5).and (n = 1.5). The nanoliquid temperature and concentration
profiles decay when M intensified. Physically, this is owing to the fact that the Lorentz force is
a resistive force which opposes the liquid motion due to which nanoliquid temperature profile

enhances. Figures 4.5(a — d) are drafted to deliberate the variations in the nanoliquid tem-
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perature and concentration distributions under the influence of the radiation parameter (Rg).
It can be reported from these sketches that the nanoliquid 6(n) and ¢(n) enhance for higher
Rg. Physically, by strengthening the R, offers more heat to the nanoliquid and subsequently,
the thickness of the thermal boundary layer is intensified. Thus, the radiation plays a key
role in boosting the rate of heat transfer of the nanoliquid. Figures 4.6(a —d) are sketched
to interpret the aspects of thermophoresis parameter (Ny) on the nanoliquid temperature 6(n)
and concentration ¢(n) distributions. Here, the temperature and concentration of the nano-
liquid across the thickness of boundary layer rise with intensifying values of N;. Physically,
this is because of the fact that the difference between the temperature of wall (T3,) and the
reference temperature (T,) rise which intensify the nanoliquid temperature field. Moreover, in
the flow domain of the particulate structure, there is a temperature gradient in hotter regions
which causes small elements incline to isolated quicker. Consequently, the surface temperature
of the nanoliquid and its thickness of boundary layer enhance. Additionally, growing values
of N; physically means that the small nanoparticles are pulled away from the warm surface to
the cold surface. Therefore, the higher number of small nanoparticles is dragged away from
the warm surface due to which concentration of the nanoliquid declines. Figures 4.7(a —d)
demonstrate the domination of Prandtl number (Pr) on the nanoliquid temperature and con-
centration distributions. From these graphs we found that boosting values of Pr decline the
temperature and concentration distributions. The greater Pr has lesser thermal diffusivity.
Hence, the temperature of the nanoliquid and the thermal boundary layer increase and decline
6(n) when Pr is enlarged. Figures 4.8(a,b) and 4.9(a, b) are drafted to deliberate the vari-
ations in the nanoliquid temperature and concentration distributions under the influence of
the Brownian motion (/Np) and Lewis number (Le), respectively. Here a fall in the nanoliquid
temperature and concentration profiles for the rising value of NV, and Le is noted. In fact, Le
is inversely proportional to the Brownian diffusion coefficient (Dpg). Here ¢(n) falloffs owing to

small diffusivity influence when Le intensifies.

4.3.1 Tabular Representations

1 1 _1
The value of (%C’fz Re%,% (%) Chy Re%) and (Rex 2 Nux> of Carreau nanoliquid at the
boundary of the stretched sheet are presented by Tables 4.1 and 4.2. By keeping the other
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nonlinear material parameters fixed. An enhancement in M and « correspond to an improve-
1 1

ment in (%Cﬁc Rez, % (%‘j) Cty Re%). Additionally, it appears from Table 4.2 that the

magnitude of rate of heat transfer of nanoliquid enlarged with increasing values of Pr and Ry;

however, N; and Le have reverse trend.

4.3.2 Confirmation of Numerical Outcomes

Tables 4.3, 4.4 and 4.5 depict an assessment of the numerical values for the velocity gradients
(=f"(0), —¢"(0)) and Nusselt number (—6’(0)) with formerly existing outcomes for different
values of a. These tables initiated a tremendous settlement of the existent outcomes with
present ones. This demonstrates the legitimacy of the current analysis along with the admirable

precision of numerically (bvp4c) and analytically (HAM).
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Figure 4.1(a — d): Influence of M on f’(n) and ¢'(n).
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Figure 4.2(a — d): Influence of We; on 6(n) and ¢(n).
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Figure 4.3(a — d): Influence of a on 6(n) and ¢(n).
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Figure 4.5(a — d): Influence of R4 on 6(n) and ¢(n)..
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Figure 4.6(a — d): Influence of V; on 6(n) and ¢(n).
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1 1
Table 4.1: Outcomes of <%C rz Rez, %C’ ty (%) Re;%) for different values of o and M when

Wep = Weg = 2.0 are fixed.

v §Cpe Rel 1y () Rez
n=05 n=15 n=05 mn=15
0.5 0.5 -1.896547 -4.321695 -0.6051041 -0.9147802
1.0 -2.570714 -6.655255  -0.8570421 -1.4181890
1.5 -3.555854  -10.821100 -1.2354530 -2.2880650
2.0 -4.755225 -17.073510 -1.7073990 -3.5625300
0.5 0.6 -1.926160 -4.445858  -0.8136476 -1.3608700
0.8 -1.980438 -4.700804  -1.3470240 -2.7344020
1.0 -2.029327 -4.964101  -2.0293270 -4.9641010
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_1
Table 4.2: Outcomes of | Re; 2 Nu, | for different values of the R4, Pr, N; and Le when
Wepr = Weg =2.0, Ny =0.3 and M = a = 0.5 are fixed.

—1
Re; 2 Nu,
Ry Pr N Le

n=05 n=15

0.5 0.7 05 1.0 0.544664 0.622229
0.8 0.572512  0.654022
1.2 0.607435 0.691702
1.5 0.633160 0.718299
0.5 1.0 0.699751  0.794837
1.5 0.914065 1.026980

2.0 1.086800 1.211240

0.7 08 0.529463 0.605695

1.0 0.519503  0.594830

1.3 0.504833 0.578781

0.5 1.5 0.539958 0.617056

2.0 0.536784 0.613523

2.5 0.534456 0.610905
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Table 4.3: A comparison of —f”(0) between bvp4dc and HAM for numerous values of « in

limiting cases when We; = Wegs =M =0 and n = 1.

—f"(0)

: Ariel(HPM) [115] Ariel(Exact) [115] Present(bvpdc) Present(HAM)
0 1 1 1 1

0.1 1.017027 1.020264 1.020264 1.020264
0.2 1.034587 1.039497 1.039497 1.039495
0.3 1.057470 1.057956 1.057956 1.057955
0.4 1.070529 1.075788 1.075788 1.075785
0.5 1.088662 1.093095 1.093095 1.093092
0.6 1.106797 1.109946 1.109946 1.109944
0.7 1.124882 1.126397 1.126397 1.126395
0.8 1.142879 1.142488 1.142488 1.142488
0.9 1.160762 1.158253 1.158253 1.158254
1.0 1.178511 1.17372 1.173720 1.173721
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Table 4.4: A comparison values of —g”(0) between bvp4c and HAM for numerous values

of « in limiting cases when We; = Wea = M =0 and n = 1.

—9"(0)
: Ariel(HPM) [115] Ariel(Exact) [115] Present(bvpdc) Present(HAM)
0 0.0 0.0 0.0 0.0
0.1 0.070399 0.066847 0.0668485 0.0668484
0.2 0.158231 0.148737 0.1487382 0.1487384
0.3 0.254347 0.243360 0.2433607 0.2433605
0.4 0.360599 0.349209 0.3492087 0.3492087
0.5 0.476290 0.465205 0.4652046 0.4652045
0.6 0.600833 0.590529 0.5905229 0.5905227
0.7 0.733730 0.724532 0.7245312 0.7245310
0.8 0.874551 0.866683 0.8666822 0.8666821
0.9 1.022922 1.016539 1.0165380 1.0165360
1.0 1.178511 1.173721 1.1737200 1.1737210
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Table 4.5: A comparison of 6'(0) between bvpdc and HAM for numerous values of « in

limiting cases when We; = Wes = R=N;= Ny, =0and n=1.

0'(0)
Q
Liu and Anderson [118] Munir et al. [119] Present(bvpdc) Present(HAM)
0.25 -0.665933 -0.665939 -0.665933 -0.665926
0.50 -0.735334 -0.735336 -0.735335 -0.735332
0.75 -0.796472 -0.796472 -0.796473 -0.796471
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Chapter 5

Effect of Thermal-Solutal
Stratifications in 3D Flow of

Carreau Nanofluid

The notable intention of the current chapter is to explore the features of combined convective
and stratifications by utilizing Brownian and thermophrosis nanoparticles in 3D mixed convec-
tion flow of magnetite Carreau fluid influenced by stretched surface. The heat transport phe-
nomenon is also betrothed in the manifestation of thermal radiation and the heat sink/source.
By means of compatible alterations to rehabilitate the structure of non-linear PDEs into non-
linear ODEs. To identify the behavior of numerous somatic parameters, numerically bvp4c
tactic has been worked out to elucidate the governing ODEs. The graphical depiction is de-
lineated and tables are organized for diverse physical parameters of Carreau nanofluid. It is
scrutinized that the impact of induced magnetic parameter on both the velocity components is
analogous and it diminish both the velocities for shear thinning/thickening liquids. Moreover,
the present outcomes reported that the mixed convection and thermal stratification parameters
decline the liquid temperature and allied thickness of the thermal boundary layer for both shear

thickening/thinning liquids.
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5.1 Description of the Problem

We scrutinize the steady 3D mixed convection flow of a Carreau magnetite-nanofluid over a
bidirectional stretched surface. The influence of combined stratification and convective condi-
tions are engaged in heat and mass transfer phenomena. Additionally, thermal radiation and
the heat sink/source are deliberated. The flow is persuaded by stretching the surface in two
nearby x— and y— directions with linear velocities (u, v) = (ax, by) respectively, where a, b > 0
and the fluid overcomes the region z > 0. Furthermore, it is also supposed that the electric and
magnetic fields are inconsequential when we equated with applied magnetic field (as depicted in
figure 5.1). This notion is only effective when the magnetic Reynolds number is inconsequential.

Under these attentions the governing problem of magnetite Carreau nanofluid is

X
T U (x)
g
‘ 1
.;E:" = 4 S o B
o2 RS —> 5o
I Il
= —
= a
R —> 7
l : o
._._a
) —
L
V()

¥

Figure 5.1: Flow configuration and coordinates system.
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(5.7)

Here g is the gravitational acceleration, (87,08c) the coefficients of thermal and concentra-

tion expansion respectively, (T, Cy) = (1o + dx, Cy + ex) the heated liquid temperature and

concentration, respectively, (Too, Cso) = (To + diz, Cp + e1x) the ambient temperature and

concentration, respectively, in which (7p, Cp) the reference temperature and concentration re-
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spectively and (d, d, e, e1) the dimensionless constants.

5.1.1 Appropriate Conversions

Let we introduce

0 (n) = - *"c—a (5.8)

In vision of overhead conversions and Eq. (2.27) (cf. Chapter 2), Eq. (5.1) satisfied
automatically and Egs. (5.2) — (5.7) reduced to the following ODEs

n—3

fl/l[l +W€%f”2] 3 [1 +nW€%f”2] . f/2 +f”(f+g) o MZf/ +)\*(9+N*¢) — 0’ (59)

g"[1+Wedg"™"T [L+ nWedg"™] — g% + g"(f + g) — Mg =0, (5.10)
(1+Ry) 0" +Pr(f +9)0 —Pr f'0 —PrSif + Pr[Nyo'¢ + N8 + 66] = 0, (5.11)
¢" +PrLe(f+g)¢) —PrLef'¢p —PrLeSaf' + <%) 0" =0, (5.12)

b

with BCs

f(O) =0, g(()) =0, f/(O) =1, g’(O) = Q,
0'(0) = —7,(1 = S1—0(0)), ¢'(0) = —72(1 — S2 — $(0)), (5.13)
ff—0, ¢g—0 6—-0 ¢—0 as n— . (5.14)

Here \* (: g—i#) is the mixed convection parameter, N* (: éc—e) the buoyancy ratio para-

Brd
w) the Brownian motion parameter, IV (z %ﬂ)

meter ratio parameter, IVp (:
the thermophoresis parameter and (S, S2) (: %, %) the thermal and mass stratification pa-

rameters, respectively.

5.2 Engineering and Industrial Quantities of Interest

From the industrial and engineering point of view, the essential quantities of physical interest
are the skin friction coefficients, heat and mass transport rates which may be defined by the

subsequent relations. These quantities in non-dimensional forms are given as:
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SCpRel = O+ WE0)) (5.15)

1 n—
% (%) CryRel = ¢"(0)[1+ Welg™(0))"". (5.16)
_1 —(1+ Ry) 4 (0) -1 1 /
2 _ 2 _ _
Re;? Nu, = s, , Re;? Shy 5, ¢'(0). (5.17)

5.3 Graphical Illustration and Analysis

The notable objective here is to disclose the structure of numerous parameters on mixed con-
vection stratified flow of magnetite Carreau nanofluid subject to convectives phenomena. The
heat transport mechanism is also considered in manifestation of the heat sink/source and ther-
mal radiation. For this persistence, graphs are planned and tables are structured for diverse
parameters and discussed in facts.

To envision the impact of magnetic parameter (M) on velocity components f'(n) and ¢'(n)
for both cases (n < 1) and (n > 1), figures 5.2(a—d) are strategized. It is noted that
both the liquid velocities decline for enhancing values of M for shear thinning/thickening cases.
This occurs because of the circumstance that the outcome of strong magnetic field contributes
resistance to flow in both x— and y—directions which intensify the Lorentz force in z—direction.
Therefore, the flow in both the directions, which decays the liquid velocities. The stimulus of
mixed convection (A*) and buoyancy ratio (N*) on velocity components for (n < 1) and (n > 1)
are schemed in figures 5.3(a —d) and 5.4(a —d). It is noteworthy to note that when values
of \* and N* intensify, the liquid velocity f’(n) increases. Physically, augmented values of \*
reason a forceful buoyancy force which clues the escalation of velocity field f/(n). Similarly,
the concentration buoyancy strength boost up for the increase in N* which consequences the
decline of velocity ¢'(n). Moreover, it is reported that both the velocity components decay for
augmenting values of \* and N* for both (n < 1) and (n > 1) as displayed in figures 5.3(c,d)
and 5.4(c,d). Hence, we can say from these strategies that the impact of these flow parameters

A* and N* are entirely conflicting for velocity components f'(n) and ¢'(n).
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Figures 5.5(a,b) and 5.6(a,b) are intended to visualize the enactment of mixed convec-
tion parameter (\*) and buoyancy ratio parameter (N*) for shear thickening/thinning cases on
nanoliquid temperature field #(n). From these structures it is scrutinized that both \* and N*
are retreating functions of temperature distribution (). For higher values of A* and N* display
thinner thickness of the thermal boundary layer and low temperature on Carreau nanofluid.
The enhancing values of \* relate to stronger buoyancy force because mixed convection pa-
rameter depends on buoyancy force. Hence, owing to stronger buoyancy force is the reason
for the decline in temperature and its allied thickness of the boundary layer. Furthermore,
analogous enactment is being detected for the progressive values of N*. Figures 5.7(a,b)
and 5.8(a,b) expose the tendency of thermal Biot number (;) and stratification parameter
(S1), respectively, for (n = 0.5 and 1.5) on Carreau liquid temperature field. Here scrutinized
that quite conflicting tendency is being famed for growing value of v, and S;. When values
of ~, intensify the temperature field enhances; however, the temperature of Carreau fluid is
declining function of S;. Physically, enlarging the values of v, arise the heat transfer amount
which is responsible to enhance (7). Moreover, the difference between the sheet and ambient
liquid temperature is condensed with intensified values of S7. Therefore, the temperature field
decays for S; as shown in figure 5.8(a,b). The nanoparticles display a strategic role in the
enhancement of heat transfer features in Carreau fluid. For this persistence, figures 5.9(a, b)
and 5.10(a, b) are designed for both (n < 1 and n > 1). These drafts scrutinized that N,
and V; are both boosting the liquid temperature and thermal thickness of the boundary layer.
Intensification in NV, enriches the accidental gesture of liquid particles because of this aspect the
additional heat is formed which rises 6(n). From figure 5.9(a, b), it is reported that the higher
N; also enhances the liquid temperature. As, thermophoresis is a mechanism wherein minor
elements are dragged away from the hot to the cold surface. Therefore, enormous quantity of
nanoparticles is relocated away from the intense surface which increases the temperature of the
liquid. The characteristic of thermal radiation (R4) for (n = 0.5 and 1.5) is exposed in figure
5.11(a, b) on nanoliquid temperature field. There is an enhancement in both the liquid tem-
perature and thermal thickness of boundary layer for higher values of R;y. The heat flux from
the sheet intensifies for larger Ry which rise 6(n). Moreover, the coefficient of means absorption

decays for enhancing values of R; which is blamable for the enrichment of 0(n).
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An intensification in nanoparticles concentration Biot number (v5) and stratification para-
meter (S2) on concentration field ¢(n) for shear thinning/thickening parameters are exposed
in figures 5.12(a,b) and 5.13(a, b). These strategies spectacles opposing tendency for higher
values of v, and S>. An increase in v, enhances the concentration of nanoliquid; however, it
declines for S3. The higher values of 7, relate to advance mass transfer coefficient and thus,
the concentration field arises. On the other hand, it is inspected that when Ss enhances, the

difference between surface and reference nanoparticles reduces and the outcomes the declination

of ¢(n).

5.3.1 Tabular Representations

Tables 5.1 and 5.2 are established to visualize the tendency of the involved parameters

1 1
on the local skin friction coefficients %C’fa; ReZ, %(%) Cyy Re%), local Nusselt number

_1 _1
<Rez *N um> and local Sherwood number <Rex 2 th> for both shear thinning/thickening
liquids. From Table 5.1 it is fascinating to note that by increasing the value of M, S; and So
1
rises <%C’fx Re;?;) , while it declines for enhancing value of \*, N*, ~; and ~, for both (n < 1)

1
and (n > 1). It is also reported that <% (%) Chy Re;%) enhances for M, \*, N*  ~, and 7,
whereas conflicting behavior is being identified for S; and S2. From Table 5.2, the rate of
_1
heat transfer (Rex 2 Nux), enhanced for \*, N*, ~;, S1 and Sy and declined for M and ~,.

1
Moreover, the mass transfer rate (Rex s hx> for shear thinning/thickening liquids diminished
for the progressive values of A*, N* and S; while increasing for M, v; and ,.
5.3.2 Confirmation of Numerical Outcomes

For the endorsement of numerical upshots of —f”(0) and —¢”(0) with former related prose for
diverse values of «, Tables 5.3 and 5.4 are organized. It is reported that intensifying values of
a is to enhance the magnitude of —f”(0) and —¢”(0). From these tables a noteworthy feature

is being noted with earlier studies.
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Figure 5.2(a — d): Influence of M on f'(n) and ¢'(n).
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Figure 5.4(a — d): Influence of N* on f’(n) and ¢'(n).
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5.5(a,b): Influence of \* on 6(n).
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Figure 5.6(a, b): Influence of N* on 6(n).
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Figure 5.8(a,b): Influence of S; on 6(n).
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Figure 5.10(a,b): Influence of NV; on 6(n).
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Figure 5.12(a,b): Influence of v, on ¢(n).
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Figure 5.13(a,b): Influence of Sy on ¢(n).
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1 1
Table 5.1: Outcomes of (%Cfx Rez?, 1 (%ﬁ) Chy Re;%) when We; = Weg = Pr = 1.5,
0=0.1, Ny=0.2, a= N, =0.3, Rg = 0.5, and Le = 1.0 are fixed.

1 T
1Cy, Re? L (%) CpyRez
n=05 n=15 n=05 n=15

M X N* S v Sy 7

04 04 03 03 08 02 08 -1.460721 -2.702463 -0.2739822 -0.3101425

0.7 -1.718577 -3.357890  -0.3290915 -0.3808131
1.0 -2.100599 -4.412760  -0.4035425 -0.4832473
1.3 -2.587644 -5.905137  -0.4925378 -0.6152006
04 0.1 -1.532698 -2.812340  -0.2730782 -0.3099244
0.6 -1.414603 -2.628506  -0.2745703 -0.3103278

1.2 -1.285444 -2.410590  -0.2762105 -0.3109680

04 0.2 -1.470707 -2.720519  -0.2738206 -0.3100615

0.4 -1.450823 -2.684511  -0.2741418 -0.3102233

0.6 -1.431282  -2.648912  -0.2744551 -0.3103841

0.3 0.0 -1.333852 -2.409828  -0.2774695 -0.3128348

0.1 -1.376357 -2.507028  -0.2762919 -0.3119151

0.2 -1.418661 -2.604599  -0.2751290 -0.3110178

0.3 03 -1.547184 -2.883712  -0.2720473 -0.3088822

0.5 -1.504591 -2.795352  -0.2730074 -0.3094936

0.7 -1.473393  -2.729474  -0.2737020 -0.3099532

0.8 0.0 -1.439437 -2.653593  -0.2744843 -0.3105191

0.1 -1.450078 -2.678001  -0.2742330 -0.3103304

0.3 -1.471366 -2.726980  -0.2737319 -0.3099554

0.2 0.2 -1.482257 -2.745890  -0.2735980 -0.3098986
0.4 -1.473374 -2.728128  -0.2737565 -0.3099981
0.6 -1.466377 -2.714009 -0.2738814 -0.3100774
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_1 _1
Table 5.2: Outcomes of <Rez 2 Nux> and <Rex 2 Shz> when We; = Wey = Pr = 1.5,
0=0.1, Ny=0.2, a= N, =0.3, Rg = 0.5, and Le = 1.0 are fixed.

—1 —I
. Rey, 2 Nuy, Rey, 2 Sh,
M X N 51 v S 7

n=05 n=1.5 n=05 n=15

04 04 03 03 0.8 02 0.8 0.7907507 0.8222056 0.2984109 0.2754751
0.7 0.7703503 0.8096584 0.3132862 0.2846241
1.0 0.7409110 0.7923285 0.3347524 0.2972605
1.3 0.7040871 0.7716916 0.3616032 0.3123082
04 0.1 0.7884971 0.8230341 0.3000542 0.2748710
0.6 0.7924613 0.8220249 0.2971637 0.2756068

1.2 0.7974830  0.8223095 0.2935020 0.2753994

04 0.2 0.7901262 0.8220475 0.2988663 0.2755904
0.4 0.7913636  0.8223643 0.2979641 0.2753593

0.6 0.792556  0.8226835 0.2970945 0.2751266

0.3 0.0 0.6340343 0.6523905 0.5895476 0.5704266

0.1 0.6759248 0.6974054 0.4913205 0.4711825

0.2 0.7268688 0.7525559 0.3942760 0.3728701

0.3 0.3 0.4199406 0.4312493 0.0584489 0.0364596

0.5 0.5999854 0.6201335 0.1750171 0.1515109

0.7 0.7350988 0.7630746 0.2624176 0.2391045

0.8 0.0 0.7900713 0.8206323 0.2391251 0.2212978

0.1 0.7904104 0.8214178 0.2654748 0.2453774

0.3 0.7910923 0.8229956 0.3407564 0.3141703

0.2 0.2 0.7977195 0.8300549 0.2933295 0.2697516

0.4 0.7948675 0.8268635 0.2954091 0.2720787

0.6 0.7925988 0.8242934 0.2970633 0.2739527
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Table 5.3: A comparison of —f”(0) between bvpdc and HAM in limiting sense when
Wei =Wey=M=X"=N*=0and n =1 are fixed.

—f"(0)

cf. Chapter 3 cf. Chapter 3
“ Wang [117] Liu and Anderson [118] Table 3.3 Table 3.3 Present bvpdc

(bvpdc) (HAM)

0.0 1 1 1 1 1
0.25 1.048813 1.048813 1.0488130 1.0488131 1.0488113
0.50 1.093097 1.093096 1.0930954 1.0930943 1.0930949
0.75 1.134485 1.134486 1.1344854 1.1344858 1.1344856
1.0 1.173720 1.173721 1.1737199 1.1737201 1.1737208

Table 5.4: A comparison values of —g”(0) between bvp4c and HAM in limiting sense when

Weir =Weyg=M =X\ =N*=0and n =1 are fixed.

—9"(0)
cf. Chapter 3 cf. Chapter 3
“ Wang [117] Liu and Anderson [118§] Table 3.4 Table 3.4 Present (bvp4c)
(bvp4c) (HAM)
0.0 0 0 0 0 0
0.25 0.194564 0.194565 0.1945652 0.1945617 0.19456397
0.50 0.465205 0.465206 0.4652058 0.4652047 0.46520490
0.75 0.794622 0.794619 0.7946180 0.7946184 0.79461824
1.0 1.173720 1.173721 1.1737199 1.1737201 1.17372080
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Chapter 6

Impact of Variable Thermal
Conductivity in 3D Unsteady flow of

Carreau Nanofluid

This chapter reports unsteady 3D forced convective flow of Carreau nanofluid over a bidirec-
tional stretched surface. Heat transfer phenomenon of Carreau nanofluid is inspected through
the variable thermal conductivity and heat generation/absorption. Furthermore, this chap-
ter presents a more convincing approach for heat and mass transfer phenomena of nanoliquid
by utilizing new mass flux condition. Practically, zero mass flux condition is more adequate
because here we assume nanoparticle amends itself accordingly on the boundary. Now the fea-
tures of Buongiorno’s relation for Carreau nanofluid can be applied in a more efficient way. The
appropriate transformations are employed to alter the PDEs into ODEs and then tackled nu-
merically by employing bvp4c scheme. The numerous consequence of scheming parameters on
the Carreau nanoliquid velocity components, temperature and concentration fields is portrayed
graphically and deliberated in detail. The numerical outcomes for local skin friction and the
wall temperature gradient for Carreau nanoliquid are intended and reported through tables.
The outcomes conveyed here manifest that the impact of Brownian motion parameter N, on
the rate of heat transfer for nanoliquids has become negligible for the recently recommended

revised relation. Additionally, for authentication of the present relation, the achieved results
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are distinguished with earlier research works in specific cases and marvelous agreement has been

noted.

6.1 Description of the Problem

Here we report unsteady 3D flow of Carreau nanofluid over a bidirectional stretched surface. The
flow is persuaded owing to stretching surface in two horizontal x—and y—directions with veloc-
ities Uy, (z,t) and V,, (y,t), respectively, where a and b are stretching rates and the nanofluid
flow that occupies the region in the domain z > 0. Characteristics of heat transfer mecha-
nism are inspected in view of heat source/sink and variable thermal conductivity. Features
of nanoparticles are taken considering Brownian motion and thermophoresis. Temperature of
the nanoliquid at the surface T, is superior than temperature of nanoliquid distant from the
stretched surface.

The Carreau nanoliquid equations in view of overhead declared assumptions are given below:

ou Ov  Ow
u_ Ov ow 6.1
Ox + oy + 0z ’ (6.1)
Ou ) d 9 o ou)2] T
et ugs +og, twgr =vgs [1+F2 (%) }
n—3
2 215"
+un -2 (38" (5%) [1+12(3)°] * (6.2)
n—1
%—i—ug—z—kvg—z +wd =19y {l—i-I‘Q(d—Z 22
-3
2 2175
+uin— DI (3)* (58) [1+12(30)°] * (6.3)
2
%—f + ug—g + vg—g + w%—z = (pi)f% (K(T) %ng)
2
+7 | D92 gL + £ (9T) ] +(§§—f(T—TOO), (6.4)
oC oC oC oC 0’C D7 0°T
CAS AN AT ) A< iy .
ot +u6x+v8y+w8z B822+T006z2 (6.:5)
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The following appropriate boundary conditions are imposed at the stretched surface and in the

freestream

u="U, = 1%, U:Vw:%, w=0, T="Tu(xt)
DpdZ + 2L =0 at 2 =0, (6.6)
u—0, v—0, T—-Ty C—-Csx as z— oo (6.7)

Here K(T) is the variable thermal conductivity. Furthermore, temperature of the nanofluid
at the surface T,(z,t) and variable thermal conductivity K(7') are given by the following

expressions
Toax?

(1—pt)

where (koo,€) are the thermal conductivity of the nanoliquid far away from the stretched sur-

Ty(z,t) = Too + . K(T) = ke [1+5<T;f°°>}, (6.8)

ol

face and ¢ the thermal conductivity parameter, respectively, Ty the the positive reference tem-
perature of the nanoliquid and AT represents the liquid temperature difference between the
stretched surface and far away from the surface.

6.1.1 Appropriate Conversions

In view of non-dimensionless transformation variables

u=(125) o). v=(12%) g0, w=— /aZ5lfm)+9m)
0(n) =727, ¢=5G==, n==z /e (6.9)

and Eq. (6.8), the Eq. (6.1) is satisfied automatically and Eqs. (6.2) — (6.7) yield

P WAL W =5 (£ gaf”) < 12 G0 =0 (010

n—

n—3 1
g"1+Wesg™] = [1 + nWezg"?] - S <g/ + 5?79”) —g?+4d"(f+9)=0, (6.11)



(1+e0)0" +e0? +Pr(f +g)0 —2Pr f'0 — Pr 5 (30 +no')

+Pr Nyd'¢’ + Pr Ny + Prof = 0, (6.12)
¢" +PrLe(f+g)¢ —PrS <¢> + %ngb/) + <%> 0" =0 (6.13)
b

f(0)=0, ¢(0)=0, f(0)=1, ¢(0)=xq,
0(0) =1, Ny¢'(0) + N:&'(0) =0, (6.14)

ff—0, ¢g—0 6—-0 ¢—0 as n— oo. (6.15)

In the above equations, S (: %) is the unsteadiness parameter, and ¢ (: %ﬁ) the heat

sink/source parameter.

6.2 Engineering and Industrial Quantities of Interest

From the physical point of view, the quantities of industrial and engineering interest in materials
processing are the skin friction coefficients and heat transfer rate which may be defined in

dimensionless forms

1 n—
101 ReZ = f/(0)[1+ WeZ f2(0)] "7, (6.16)
1 n—
3 (%) Cpy Ref = (01 + We3g(0)]"7, (6.17)
and
_1
Re, 2 Nu, = —6' 0). (6.18)

6.3 Graphical Illustration and Analysis

The main theme of this section is to scrutinize the impact of variable thermal conductivity and
heat source/sink in unsteady 3D flow of Carreau nanofluid over a bidirectional stretching sur-
face. Widespread numerical computation namely, bvp4c has been reported for the exploration
of scheming parameters on the velocity components, temperature and concentration fields. The

graphs are portrayed and the discrepancy of the local skin friction coefficients and the local
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Nusselt number is established in tabular arrangement and deliberated in details.

Figures 6.1(a — d) are sketched to visualize the features of the unsteadiness parameter (S)
on the nanoliquid velocity components f’(n) and ¢'(n) for shear thinning and shear thickening
liquids. The diminishing behavior in velocity components and associated momentum boundary
layer thickness with enhanced values of S is being acknowledged. Physically, S is inversely
proportional to the stretching rate of the nanoliquid along z—direction. When the values of
is S intensified the stretching rate along z—direction decline due to which the velocity of the
nanoliquid is diminished.

Figures 6.2(a — d) are drafted to deliberate the variations in the nanoliquid temperature
0(n) and concentration ¢(n) distributions under the influence of the unsteadiness parameter (.5).
It can be perceived from these sketches that the nanoliquid temperature and concentration dis-
tributions are declined for intensifying values of S. Physically, by strengthening the value of S
reduces the velocity of the nanoliquid along x—direction due to which kinetic energy of the nano-
liquid decreases. Therefore, the temperature of the nanoliquid declines. Figures 6.3(a — d)
demonstrate the impact of heat source parameter (§ > 0) on the nanoliquid temperature and
concentration profiles. It is manifest from these figures that the nanoliquid temperature and
concentration profiles enhance with the augmented values of § > 0 for shear thinning liquid and
shear thickening liquids. As heat transfer mechanism contributes additional heat to the liquid
that resembles to an intensification in the nanoliquid temperature and the thickness of thermal
boundary layer. Figures 6.4(a — d) demonstrate the domination of the thermal conductiv-
ity parameter (¢) on the nanoliquid temperature and concentration distributions. From these
graphs it is established that boosting values of £ enhance the temperature and concentration
distributions. Physically, the thermal conductivity of the Carreau nanoliquids enhances when
¢ increases due to which temperature of the nanoliquids boosts up. Figures 6.5(a —d) are
sketched to interpret the features of thermophoresis parameter (Ny) on nanoliquid temperature
and concentration distributions. It is reported that the temperature and concentration of the
nanoliquid across the thickness of boundary layer rise with the emergent values of N;. Physi-
cally, this is because of the statistic that the difference between the temperature of wall and the
reference temperature rises which intensify the nanoliquid temperature field. Moreover, in the

flow domain of the particulate structure there is a temperature gradient in hotter regions which
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causes the smallest elements incline to isolated quicker. Consequently, the surface temperature
of the nanoliquid and its thickness of boundary layer enhance. Additionally, growing values of
N; physically means that the small nanoparticles are pulled away from the warm surface to the
cold surface. Therefore, the higher number of small nanoparticles are dragged away from the

warm surface due to which concentration of the nanoliquid declines.

6.3.1 Tabular Representations

The coefficients of skin friction <%C’ fa Reé, % (%) Cyy Re%) and heat transport rate <Re; 2 N uz>
of nanoliquid at the boundary of the stretched sheet are presented through Tables 6.1 and 6.2.
By keeping the other nonlinear material parameters fixed, an augmentation in S and « corre-
sponds an enhancement in the magnitude of %C'fx Re;%, % (%) Cyy Re;%. Moreover, it appears
from Table 6.2 that heat transport quantity Re, 3 Nu, of nanoliquid augment with amassed
values of S and Pr; however, the opposite tendency is pragmatic for the £, N; and § > 0 for
both shear thinning/thickening liquids. Furthermore, the numerical values of Re, 3 Nu, for

(n = 0.5,1.5 and 3) wide-ranging of Pr is depicted through Table 6.3. It is also noted that

amassed values of Pr enhance the heat transport amount in all circumstances.

6.3.2 Confirmation of Numerical Outcomes

For the legitimacy of our outcomes, a comparison Table 6.4 is structured in a limiting case
i.e., in case of 2D flow. Tables 6.5 and 6.6 contemporary the assessment of numerically
scheme bvp4c with homotopy perturbation method (HPM) [115], exact solutions [115], homo-
topy analysis method (HAM) (cf. Chapter 2) and bvp4c (cf. Chapter 2) for distinct values of

«. A remarkable assertion is distinguished in a limiting sense from these tables.
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Figure 6.1(a — d): Influence of S on f'(n) and ¢'(n).
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Figure 6.2(a — d): Influence of S on 6(n) and ¢(n).
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1 1
Table 6.1: Outcomes of <%Cfx Re2,1Cy, (%) Re%) for Weq, Wea, S and a.

SINIEE

1
1 3 1 U,
1C:. Re2 5C¢ | 74 ) Re
Wel Wez S o 2V f 2% fy (Vw)
n=05 n=15 n=05 n=15

1.0 1.0 0.5 03 -1.495932 -2.275974 -0.3014584 -0.3224466

1.5 -1.735959 -3.240193  -0.2992882 -0.3238545
2.0 -1.953110 -4.360016 -0.2973149 -0.3250810
2.5 -2.139428 -5.604837 -0.2956285 -0.3261349
1.0 1.5 -1.495648 -2.276565 -0.3074282 -0.3473583
2.0 -1.495263 -2.277291 -0.3156383 -0.3796407

2.5 -1.494790 -2.278095 -0.3258926 -0.4178941

1.0 0.7 -1.597571 -2.473501 -0.3239701 -0.3481788

0.9 -1.698759 -2.674949  -0.3456479 -0.3734159

1.1 -1.799172  -2.879372  -0.3664994 -0.3981124

0.5 0.5 -1.540941 -2.374278 -0.5729707 -0.6737814
0.7 -1.583640 -2.474459 -0.9220556 -1.2239450
1.0 -1.642297 -2.629779 -1.6422970 -2.6297790
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_1
Table 6.2: Outcomes of <Rex 2 Nux> for S, e, Pr, Ny and § when N, = 0.3 and Le = 1.0

are fixed.

—1
Re; 2 Nu,
S g Pr Nt 1)

n=05 n=1>5

05 03 1.0 02 01 1.26096  1.29885
0.7 1.32981 1.36747
0.9 1.39482 1.43240
1.1 1.45670  1.49430
0.5 0.5 1.14343 1.17857
0.8 1.01115 1.04311

1.0 0.94252  0.97278

03 1.3 1.46421 1.50558
1.6 1.64507 1.68907

2.0 1.86106 1.90771

1.0 0.4 1.25338 1.29116

0.6 1.24591 1.28359

0.8 1.23855 1.27613

0.2 0.2 1.22654 1.26605

0.3 1.19030 1.23167

0.4 1.15174 1.19533
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_1
Table 6.3: Outcomes of <Rez 2 Nux> for Pr when We; = Wey =2.0, S =05, a =€ =
Ny =0.3, Ny = 0.2 and Le = 1.0 are fixed.

—1
Re; 2 Nuy,
n=05 n=15 n=30

0.8 1.07517 1.1593  1.20571
1.1 1.29391 1.38825 1.43679
1.4 1.48539 1.58709 1.63678
1.7 1.65749 1.76481 1.81518
2.0 1.81489 1.92667 1.97746
2.5 2.05234 2.16985 2.22106
3.0 2.26599 2.38783 2.43926
3.5 2.46131 2.58663 2.63818
4.0 2.64194 2.77004 2.82165
5.0 2.96863 3.10102 3.15265
6.0 3.25964 3.39514 3.44671
7.0 3.52319 3.66105 3.71252
8.0 3.76469 3.90438 3.95573
9.0 3.98798 4.12910 4.18031
10 4.19585 4.33811 4.38915

Table 6.4: A comparison of f”(0) for S when We; = Wea =a=0and n = 1.

f"(0)

S Sharidan et al. [120] Chamkha et al. [121] Present(bvp4c)
0.8 —1.261042 —1.261512 —1.261044
1.2 —1.377722 —1.378052 —1.3777280
2.0 —1.587362 - —1.587371
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Table 6.5: A comparison of —f”(0) for &« when We; = Weg =S =0 and n = 1.

—f"(0)

e’ Ariel [115] Ariel [115] [cf. Chapter 2] [cf. Chapter 2] Present

(HPM) (Exact) Table 2.3 (HAM) Table 2.3 (bvp4c) (bvp4c)
0 1 1 1 1 1
0.1 1.017027 1.020264 1.020263 1.020264 1.020264
0.2 1.034587 1.039497 1.039496 1.039497 1.039497
0.3 1.057470 1.057956 1.057956 1.057956 1.057956
0.4 1.070529 1.075788 1.075787 1.075788 1.075789
0.5 1.088662 1.093095 1.093095 1.093095 1.093095
0.6 1.106797 1.109946 1.109946 1.109946 1.109947
0.7 1.124882 1.126397 1.126396 1.126397 1.126398
0.8 1.142879 1.142488 1.142489 1.142488 1.142489
0.9 1.160762 1.158253 1.158252 1.158253 1.158254
1.0 1.178511 1.17372 1.173720 1.173720 1.173721
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Table 6.6: A comparison of —g”(0) for « when We; = Wey =S =0 and n = 1.

o

9"(0)

e’ Ariel [115] Ariel [115] [cf. Chapter 2] [cf. Chapter 2] Present

(HPM) (Exact) Table 2.3(HAM) Table 2.3 (bvpdc) (bvp4c)
0 0.0 0.0 0.0 0.0 0.0
0.1 0.070399 0.066847 0.066848 0.0668485 0.06684873
0.2 0.158231 0.148737 0.148737 0.1487382 0.14873860
0.3 0.254347 0.243360 0.243360 0.2433607 0.2433613
0.4 0.360599 0.349209 0.349208 0.3492087 0.3492100
0.5 0.476290 0.465205 0.465207 0.4652046 0.4652060
0.6 0.600833 0.590529 0.590528 0.5905229 0.5905299
0.7 0.733730 0.724532 0.724530 0.7245312 0.7245326
0.8 0.874551 0.866683 0.866682 0.8666822 0.8666836
0.9 1.022922 1.016539 1.016540 1.016538 1.0165390
1.0 1.178511 1.173721 1.173721 1.173720 1.173721
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Chapter 7

Influence of Arrhenius Activation
Energy in 3D Chemically Reactive
Flow of Unsteady Carreau Nanofluid

The forthright intention of this chapter is to scrutinize the up-to-date advances in nanoparti-
cles by utilizing the properties of nonlinear mixed convection and binary chemical reaction with
Arrhenius activation energy in time-dependent Carreau fluid flow. The energy and concentra-
tion terminologies contain Brownian and thermophoresis nanoparticles. The silent features of
magnetohydrodynamic (MHD), non-uniform heat sink/source and thermal radiation are being
presented. Additionally, heat and mass transport phenomena are manifest by convective condi-
tions. Apposite conversions are executed to acquire the essential nonlinear ordinary differential
equations (ODEs) structure and elucidated numerically via bvpdc. Graphs are portrayed and
tables are structured to scrutinize the behavior of diverse influential variables. As of graphical
consequences, it is scrutinized that the fluid velocities enhance for an intensification in the power
law exponent. These outcomes reported that on the temperature field, thermal Biot number,
radiation and Brownian motion parameters indicate analogous performance and intensify the
temperature of Carreau fluid. Furthermore, augmenting performance is being established for
activation energy and thermophrosis parameters; however, the behavior is quite antithesis for

fitting rate constant.
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7.1 Description of the Problem

Let us scrutinize unsteady 3D magnetohydrodynamic (MHD) convective flow of a Carreau
nanofluid in the presence of suspended nanoparticles influenced by a bidirectional stretching
surface. The flow is induced by a stretching surface in two nearby x— and y— directions with

velocities (u,v) = (lfgt, 1—3%) , respectively, where a,b > 0 and the fluid occupies the region

z > 0. The structure of non-uniform heat sink/source with nonlinear mechanism of thermal
radiation and mixed convection are also integrated. Furthermore, concentration equation deals
with the impact of Arrhenius activation energy with the binary chemical reaction. In this
clarification the Brownian and thermophoresis nanoparticles are also engaged. This chapter
also pretends that the electric and induced magnetic fields are insignificant when equated with
applied magnetic field. This concept is only effective when the magnetic Reynolds number is
very small.

These attentions leads to the following equations of Carreau nanofluid:

ou Ov  Ow
%+8_y+%_0’ (7.1)

Fun -2 (32" 24 [1+12 (32)°] 7 - 22y

+g[ﬁT(T - Too) + B;“(T - Too)2 + BC(C - Coo) + 5?} C— 000)2]a (72)

n—1
@+ @+ @+ @_ & 14+ 1?2 @ 7
at " lor oy Yoz 922 82
n—3
v\ ? 82v ov\?| 2 oB2(t)
o 2 (XY g 2 (Y% o

or T  or  OT 9T oC T Dr [0T\? 1 dq
GG gy g — g | D+ 2 () | e
oC  9C  9C  oC #2C  Dr 0T

- tum—-t+v—+w

-~ oL ProL o0 TA\™ 2
ot o0z oy 0z 022 JrToo 022 k(€= C) <Too xp |77 ) - (7.5)
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Subject to the boundary conditions

u = Uyp(z,t) = 797 v="Vyu(y,t) = by w =0,

Bt -8t
k%L = hy[Ty —T], —Dp%< =hy,[C;—C] at z=0, (7.6)
u—0, v—0, T—Ty C—-Cyx as z— oo (7.7)

Here (87, B%) are the nonlinear thermal and concentration expansions respectively, m the fitted

rate constant (—1 < m < 1), k, the reaction rate, E* the activation energy, x = 8.61 x 10°eV/K

m *
the Boltzmann constant and whole expression k2 <%) exp (—E—T) is entitled as modified

Arrhenius equation.

The expression of non-uniform heat sink/source Q" is defined as

kEUy(x,t)
TV

Q" = [Ty — Too) f' + (T — To)] . (7.8)

Here (h, h*) are the space and temperature dependent heat sink /source coefficients, respectively.
Additionally, (h,h*) > 0 relate to internal heat source and (h,h*) < O internal heat sink

parameters.

7.1.1 Appropriate Conversions

Let us define the following quantities

Bln)= e, b= 2 (7.9)

The overhead conversions and Eq. (6.9) (cf. Chapter 6) satisfy Eq. (7.1) automatically and
Egs. (7.2) — (7.7) with Eq. (7.8) are reduced to the following ODEs

FIA WP [+ nWed 7] = 2 + f(f + 9)

=S (f'+4f") = M2+ X (1 +&0)0 + N'N*(1+£.0)¢ = 0, (7.10)

n—3 Ui
9"+ Wesg™ Z [1+nWe3g™] — g% +4"(f +9) - S (g’ + 59”) — Mg =0, (7.11)

(1+ Rg) 0" +Pr(f +g)§ —PrS (9 + ga/) F PN + NO2 + 60 + 5 f =0,  (7.12)
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¢ +PrLe(f+9)¢' + (§) 0"~ Prs (o+ 44
—PrLeA(1 + A*0)™¢ exp {ﬁfa] =0, (7.13)

with BCs

f(()) =0, g(()) =0, f’(()) =1, gl(o) = a,
0'(0) = =71 (1 = 0(0)), ¢'(0) = —72(1 — $(0)), (7.14)
ff—0, ¢g—0 6—-0 ¢—0 as n— oo. (7.15)

In the above expressions, \* (: %) is the mixed convection parameter, N* <: #ﬁﬂc ((g’: :gm))
w (T, T\Lf 00)

the buoyancy ratio parameter, &, (z éfT(—TBT*i"’» and &, (: BL(CB’:C;”)> the nonlinear con-

vection parameters due to temperature and concentration, v, [ = %\/ ”(1;'3 t), %% V(I;'B t))

2(1— .
i = 1,2, are the thermal and concentration Biot numbers, A (: M) the reaction rate pa-

rameter, A* (: Z%T”) the temperature difference parameter, and F (z %) the activation

energy parameter respectively.
7.2 Engineering and Industrial Quantities of Interest

The notable quantities of physical concern are the local skin friction coefficients (C't,, C'y, ), heat

and mass transfer rates (Nug, Shy) and are defined in the following dimensionless variables:

n—1
2

% Re?Cr. = f/(0)[1+Welf"(0)]"",
1
5

Uw 1 n-1
7) Re? Cp, = ¢"(0)[1+Wedg”(0)]"7, (7.16)

and

Jun

_1 _1
Rey? Nug = — (14 Rg) 0 (0), Rey? Shy = —¢/(0). (7.17)
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7.3 Graphical Illustration and Analysis

The framework of this section is to scrutinize the properties of Arrhenius activation energy with
binary chemical reaction in 3D Carreau nanofluid flow subject to nonlinear phenomena of mixed
convection and radiation. Additionally, MHD, non-uniform heat sink/source and convective
conditions are involved. The bvp4c scheme has been executed to elucidate the present ODEs.
The inducement of numerous parameters on velocities f/(n) and ¢'(n), temperature 6(n) and
concentration ¢(n) are portrayed and discussed.

The physical enactment of power-law exponent (n) for both shear thinning/thinking fluids
(n = 0.5 and 1.5) on fluid velocities f'(n) and ¢'(n) are presented in figures 7.1(a — d). These
strategies display augmenting performance for larger values of n. It is also reported that the
thickness of the momentum boundary layer and fluid velocities exaggerate when the values of
n enhance. Figures 7.2(a — d) portray the properties of mixed convection parameter (A*) on
the velocities of Carreau fluid for shear thinning/thickening fluids. In fact, from these schemes
the larger \* intensifies the liquid velocity f’(n) for both (n < 1 and n > 1). This arises owing
to the fact that a strong buoyancy force appears which specifies the intensification of velocity
field f'(n) for both situations. Furthermore, differing tendency is being established for velocity
field ¢'(n) for boosting value of A\*. The higher value of \* causes the decline of ¢'(n) and its
allied thickness of the layer as exposed in figures 7.2(c) and 7.2(d).

Figures 7.3(a,b) and 7.4(a,b) are envisioned to picture the performance of nonlinear
convection parameter (£,) and magnetic parameter (M) on temperature field 6(n) for the cases
n < 1 and n > 1. The portrayal of these designs, specifies diverse behavior for both &, and
M. Intensifying values of &, not only diminish the temperature of Carreau nanoliquid but,
also the allied thermal thickness of layer falloff. This mechanism relates to stronger buoyancy
force, since &, be influenced by buoyancy force. Therefore, in consequence of this buoyancy
force the Carreau liquid temperature decays. Similarly, M intensifies the temperature field for
both circumstances. Physically, by reason of higher M enriches the Lorentz force and form
additional struggle to the fluid gesture and the energy is converted into heat. This fact causes
to the enhancing of 0(n). Figures 7.5(a,b) and 7.6(a,b) expose the enhancing trend for
(n =0.5) and (n = 1.5) cases for increasing values of Brownian (N,) and thermophrosis (V)

nanoparticles on 6(n). These nanoparticles spectacles a forceful part of the enrichment of heat
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transport properties of Carreau fluid. At this instant, outcomes indicate that Ny and IV; raise
the temperature and thermal thickness of the boundary layer. As, thermophoretic potency
is exaggerated by the temperature gradient, the heated particles dragged away from hot to
cold surface which enhances 6(n). Consequently, vast amount of nanoparticles is transferred
away from the intense surface which intensify the temperature of Carreau liquid. Hence, the
analogous performance ensued for both parameters in both circumstances in these plots. To
disclose the enactment of thermal Biot (v;) and thermal radiation (R;) parameters for two
different values of n (n = 0.5 and n = 1.5) figures 7.7(a,b) and 7.8(a,b) are exposed. It is
scrutinized that the intensifying values of 7, and R, present analogous impact and enhance both
the temperature and thermal layer thickness of Carreau fluid. Physically, an increasing value
of v, intensifies the heat transport quantity which boosts 6(n). Additionally, figures 7.8(a, b)
indicate that higher values of Ry formed significant heat throughout radiation processes in
functioning liquid which intensifies (7).

Figures 7.9(a,b) and 7.10(a, b) capture the portrayal of Brownian (V) and thermophro-
sis (Vi) nanoparticles on concentration ¢(n) scattering for shear thinning/thickening liquids.
These presentations indicate that both the thickness of concentration boundary layer and con-
centration of Carreau nanofluid are diminishing functions of Ny; however, for N; conflicting
drift is being reported in both instances. The larger values of N intensify the nanoparticles
transport rate with different velocities in arbitrary direction owing to the Brownian influence.
Consequently, higher NV, corresponds to a reduction in §(n) for n = 0.5 and 1.5. Additionally,
the liquid thermal conductivity in the existence of nanoparticles intensifies. The rise in V; con-
tributes higher liquid thermal conductivity which spectacles the higher concentration as seen
in figures 7.10(a,b). Thus, the performance is thoroughly conflicting for both parameters
on concentration scattering. The aspects of reaction rate (A) and temperature difference (A*)
parameters for concentration of Carreau nanofluid with shear thinning/thickening properties
are reported via figures 7.11(a,b) and 7.12(a, b). There is a diminishing trend being acknowl-
edged for both considerations. As we improve the value of A the destructive amount of chemical
reaction also rises. It is used to dismiss or separate the liquid specie more efficiently. When the
destructive chemical reaction parameter is enlarged then a reduction in the nanoparticle con-

centration field is detected. Similarly, larger A* displays that the thickness of concentration as
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well as the concentration field decay for n = 0.5 and 1.5. To scrutinize the consequence of shear
thinning/thickening liquids for fitted rate constant (m) and activation energy parameter (E)
on concentration field, figures 7.13(a,b) and 7.14(a, b) are drafted. A dissimilar enactment is
noted for these schemes. The enhancing value of these parameters causes a decline in the con-
centration field for m but it enhances for E. The larger m spectacles an increase in nanoparticle
concentration for n = 0.5 and 1.5 as fitted rate constant is intensifying. Additionally, physically
advanced values of E falling-off the modified Arrhenius function which ultimately stimulates

the generative chemical reaction quantity. Thus, the concentration of Carreau fluid augments.

7.3.1 Tabular Representations

Tables 7.1 and 7.2 are structured for the intensifying value of influential parameters on lo-

1 1
cal skin friction coefficients <% Rez Clz, % (%) Re? C'fy>, heat and mass transfer amount
_1 _1
<Rez 2 Nug, Reg? th> on Carreau nanofluid for n < 1 and n > 1. From these tables, out-
1
comes acknowledge that the (% Rez C fx> intensifies for S, M and m; however, it falloffs for \*,

Ny, Ny and E. Instead of this, <% (%) Reg% C’fy> exhibits boosting enactment for .S, M, \*, IV,
Np and E but for m its falloff for both cases i.e., n = 0.5 and 1.5. The heat transport amount
for S, \*, m have conflicting tendency when we compare with M, N;, N, and E. Moreover, the
mass transport amount diminishes for S, M, N; and E and intensify for \*, N, and m for both

values of n = 0.5 and 1.5.

7.3.2 Confirmation of Numerical Outcomes

For the endorsement of numerical upshots, Tables (7.3) to (7.5) are documented. Table 7.3
is the assessment table of —f”(0) in the restrictive sense while Tables 7.4 and 7.5 are the
estimated value of local skin friction coefficients <% Rex% Cta, % (%) Reé C fy> for both values
of n = 0.5 and n = 1.5 with those of (cf. Chapter 6). From both these tables, a remarkable

agreement is being reported with earlier obtainable fictions.
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Figure 7.1(a — d): Influence of n on f’(n) and ¢'(n).

(a)
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L (c)
- We, =We,=Pr=3, 1=N*=5=5"=0.1

g=¢=N,=0.2, «=N,=0.3, S=R,=0.4
Lm = 1.5, v,=7,=0.8, A=A*=E=Le=1, m=0.5
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Figure 7.2(a — d): Influence of \* on f/(n) and ¢'(n).
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Figure 7.4(a,b): Influence of M on 6(n).
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Table 7.1: Outcomes of <%C'fx RezZ, %(%) Cyy Re%) when We; = Wey = Pr = 3.0,
N =§6=0"=01,¢=¢(£=02,a0a=03, R =04, =7, =08, and A = A*=Le =1.0

are fixed.
§Cpe Rel (%) Cry el

S M X N Ny, m E
n=05 n=15 n=05 n=15
02 05 01 03 02 05 1.0 -2.12086 -6.42904 -0.339987 -0.490901
0.3 -2.21382  -6.78915 -0.354492  -0.515325
0.4 -2.30607 -7.15928 -0.369073  -0.540188
0.5 -2.39711  -7.53779 -0.383708 -0.565455
0.2 0.2 -1.96905 -5.77391 -0.292578  -0.412462
0.6 -2.19941  -6.77972 -0.363443 -0.531575
1.0 -2.64142  -8.90320 -0.489244  -0.766933
0.5 0.0 -2.21547  -6.71371 -0.338410 -0.490016
0.2 -2.02931 -6.15185 -0.341502 -0.491784
0.3 -1.94046 -5.88197 -0.342970  -0.492666
0.1 0.1 -2.12763  -6.45158 -0.339838 -0.490813
0.2 -2.12426  -6.44045 -0.339911  -0.490856
0.4 -2.11741  -6.41734 -0.340065 -0.490949
0.3 0.1 -2.12111  -6.42784 -0.340000 -0.490917
0.4 -2.11742  -6.41957 -0.340040 -0.490925
0.5 -2.11539  -6.41357 -0.340075 -0.490943
0.2 0.0 -2.12048  -6.42800 -0.339994  -0.490905
0.3 -2.12070 -6.42861 -0.339990 -0.490903
0.6 -2.12094  -6.42926 -0.339985 -0.490901
0.5 0.2 -2.12226 -6.43366 -0.339956  -0.490883
0.4 -2.12191 -6.43247 -0.339964 -0.490888
0.6 -2.12156 -6.43130 -0.339972  -0.490892
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_1 _1
Table 7.2: Outcomes of (Rex 2 Nug, Re,? Shz> when We; = Wes = Pr = 3.0, N*

§=0"=0.1,{,=¢£ =02, =03, Rg =04, 7, =7, =0.8, and A = A* = Le = 1.0 are fixed.

S M N N, N, om E Re;% Nuy, Re;% Shy
n=05 n=1.>5 n=05 n=15
02 05 01 03 02 05 1.0 0.503349 0.526309  0.535465 0.539490
0.3 0.531448 0.548969  0.531497 0.536941
0.4 0.556993 0.570018  0.528702 0.535095
0.5 0.579895 0.589424  0.526957 0.533911
0.2 0.2 0.508541 0.528719  0.535482 0.539688
0.6 0.500854 0.525164  0.535456 0.539393
1.0 0.488371 0.519507  0.535433 0.538903
0.5 0.0 0.502150 0.526205  0.535062 0.539333
0.2 0.504403 0.526407  0.535860 0.539648
0.3 0.505309 0.526495  0.536256 0.539806
0.1 0.1 0.528223 0.550041  0.552856 0.557868
0.2 0.515843 0.538258  0.542804 0.547344
0.4 0.490760 0.514209  0.530732 0.534242
0.3 0.1 0.514184 0.536627  0.495155 0.498329
0.4 0.481625 0.505501  0.556079 0.560472
0.5 0.470746 0.495032  0.560378 0.564822
0.2 0.0 0.502827 0.525839  0.525102 0.530586
0.3 0.503133 0.526115  0.531222 0.535836
0.6 0.50346  0.526410  0.537634 0.541364
0.5 0.2 0.504308 0.527326  0.574254 0.576156
0.4 0.504052 0.527058  0.564432 0.566675
0.6 0.503805 0.526800  0.554635 0.557343
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Table 7.3: A comparison of —f”(0) for S when Wey = Wea =M =X *=N*=¢(,.=¢§,=0

and n = 1.

cf. Chapter 6
S Sharidan et al. [120] Chamkha et al. [121] Present (bvp4c)

Table 6.4 (bvp4c)

0.8 -1.261042 -1.261512 -1.261044 -1.2610433
1.2 -1.377722 -1.378052 -1.377728 -1.3777257
2.0 -1.587362 - -1.587371 -1.5873714

1
Table 7.4: A comparison of <%sz Rea%) when M = \*=N*=¢,=¢,=0.

I I
%sz Re? %C’fx ReZ
cf. Chapter 6
Wer Wey S «
Table 6.5 (bvp4c) Present (bvp4c)
n=05 mn=1.5 n=05 n=15

1.0 1.0 0.5 03 -1.495932 -2.275974  -1.4959297 -2.2759716

1.5 -1.735959 -3.240193  -1.7359481 -3.2401889
2.0 -1.953110 -4.360016  -1.9531051 -4.3600111
2.5 -2.139428 -5.604837  -2.1394249 -5.6048323
1.0 1.5 -1.495648 -2.276565  -1.4956459 -2.2765631
2.0 -1.495263 -2.277291  -1.4952613 -2.2772888

2.5 -1.494790 -2.278095  -1.4947885 -2.2780928

1.0 0.7 -1.597571  -2.473501  -1.5975519 -2.4735003

0.9 -1.698759 -2.674949  -1.6987548 -2.6749507

1.1 -1.799172 -2.879372  -1.7991637 -2.8793713

0.5 0.5 -1.540941 -2.374278  -1.5409627 -2.3742755
0.7 -1.583640 -2.474459  -1.5836865 -2.4744540
1.0 -1.642297 -2.629779  -1.6423871 -2.6297725
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1
Table 7.5: A comparison of <% (%) Cyy Re%) when M = \* = N*=¢, =¢,=0.

T T
% <\%> Cry Rei % (%) CryRez
cf. Chapter 6
We, Weyg S o
Table 6.4 (bvp4c) Present (bvp4c)
n=05 mn=15 n=05 mn=15

1.0 1.0 0.5 0.3 -0.3014584 -0.3224466 -0.30145875 -0.32244680

1.5 -0.2992882  -0.3238545 -0.29928831 -0.32385468
2.0 -0.2973149  -0.3250801 -0.29731498 -0.32508109
2.5 -0.2956285 -0.3261349 -0.29562848 -0.32613498
1.0 1.5 -0.3074282  -0.3473583 -0.30742884 -0.34735831
2.0 -0.3156383 -0.3796407 -0.31563951 -0.37964054

2.5 -0.3258926 -0.4178941 -0.32589468 -0.41789377

1.0 0.7 -0.3239701  -0.3481788 -0.32397045 -0.34817952

0.9 -0.3456479 -0.3734159 -0.34564809 -0.37341649

1.1 -0.3664994 -0.3981124 -0.36649962 -0.39811393

0.5 0.5 -0.5729707 -0.6737814 -0.57297368 -0.67378130
0.7 -0.9220556 -1.2239450 -0.92206906 -1.22394310
1.0 -1.6422970 -2.6297790 -1.64238710 -2.62977250
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Chapter 8

Homogeneous-Heterogenous
Reactions in 3D Flow of Carreau
Fluid with Cattaneo Christov Heat
Flux

This chapter communicates the consideration of 3D Carreau liquid flow under the impact of ho-
mogeneous/heterogeneous chemical reactions over a stretched surface. Moreover, heat transfer
aspect is reported in vision of an improved heat flux relation. This phenomenon is established
upon the theory of Cattaneo—Christov heat flux relation that contributes by the thermal relax-
ation. On exploitation of apposite transformations a system of nonlinear ODEs is attained and
then elucidated numerically by means of bvp4c scheme. The description of temperature and
concentration fields equivalent to the frequent somatic parameters are graphically scrutinized.
Our analysis carries that the concentration of the Carreau liquid declines as the heterogenous-
homogeneous reaction parameters intensify. Furthermore, it is notable that for shear thinning
(n < 1) liquid, the influence of local Weissenberg numbers is absolutely conflicted as compared
with the instance of shear thickening (n > 1) liquid. Additionally, validation of numerical
results is done via benchmarking with previously stated limiting cases and initiated a superb

correspondence with these outcomes.
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8.1 Description of the Problem

Consider the steady, 3D incompressible Carreau fluid flow over a bidirectional stretched sur-
face. The sheet is stretched with linear velocities u = ax and v = by, respectively, in which
a,b > 0 are taken as constants and flow occupies the domain z > 0. The heat transfer phenom-
enon is established in the presence of an improved heat conduction relation. Additionally, the
influences of heterogeneous-homogeneous reactions are occupied in the present flow analysis.

Homogeneous reaction for cubic autocatalysis can be termed as
G1+2H, — 3H,, rate = k.g1h3, (8.1)
whereas on the catalyst surface, the isothermal reaction of the first-order is of the form
G1 — Hy, rate=ksg, (8.2)

where the chemical species (G, H1) have the concentration (g1, h1) and rate constants (ke, ks) ,
respectively. Moreover, assumed that both are isothermal processes for reactant G; there is a
uniform concentration gi,, while there is no autocatalyst Hj.

Under these considerations, the governing flow problem with boundary conditions is written

as
ou OJv OJdw
%+a—y+$—0, (8.3)
2
uft + gt bl = v 1412 ()] T
n—3

w
—~
*®
>
~—

Hu(n — 1228 [1 +r2 (47 7

n—1

o 2

uGl + 05 + wj? = v [1+F2(a—§) }
n—3

+vn— D28 1412 (82)°] 7 (8.5)
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oT oT or _ 9T
’U/% +’Ua—y +’LUE —041822

29%T 29%T 20T 2T
Ox? +v Oy? +w 0z2 + 2uv OOy
or

02 02 . - -
+A1 +2vwgygz + 2unggz + (u% + vg—z + w%) S , (8.6)

u

v v ov\ T ow ow ow ) 9T

0 0 0 o
w4 viyl il = DG1W921 — keg1 3, (8.7)

h h h 2h
Gy O O g, O
072

2
oz 2y 92 + kegihy, (8.8)

u=Uy(x) =ax, v=Vu(y)=by, w=0,

T=Ty Do%*=ksg, Dm%s=—kagi at z=0, (8.9)
u—0, v—=0, T—-Tsx, g1—0g, h —0 as 2z— o0, (8.10)

where A; is the thermal relaxation time and (Dg,, D, ) the coefficients of diffusion species of

G1 and Hi, respectively.

8.1.1 Appropriate Conversions

We define the following applicable conversions

00 a
~ e =gl = b, =zt (s.11)

In view of overhead conversions and Eq. (2.27) (cf. Chapter 2), Egs. (8.4) — (8.10) yield

[+ W P [+ nWed 2 = 2+ [(f +9) =0, (8.12)
g"[L+ W7 [L+ nWe3g™] - g° +9"(f +9) = 0, (8.13)
0" +Pr(f +9)0 —PrSi[(f +9)(f' + )0 — (f +9)0"] =0, (8.14)
%z” +(f+ 9l —kilr? =0, (8.15)
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Ac
="+ (f+ 9’ + kalr? =0, (8.16)

Sc
f(0)=0, g(0)=0, f(0)=1 g¢(0)=ca, 6(0)=1, (8.17)
'(0) = kol(0), Acr’(0) = —kol(0), (8.18)
ff'—=0, ¢—0, 00, (8.19)
l—1, r—0 as n— oo (8.20)

Here, ; (= A\1a) indicates the thermal relaxation time parameter, Sc (: DLG> the Schmidt

number, A. (: g?) the diffusion coefficient ratio and (ks, k1) the measures the strength of
1

heterogeneous-homogeneous processes.
In physical circumstances, the D, and Dy, the diffusion coefficients are taken to be equal
i.e., Ac = 1, which will provide as:

ln)+r(n)=1. (8.21)

Thus, Egs. (8.15), (8.16), (8.18) and (8.20) yield

Sicz" F(F 4ol — k(1 =12 =0, (8.22)
I'(0) = kol(0), 1—1 asn— oo. (8.23)

8.2 Engineering and Industrial Quantities of Interest

The essential features of flow is the coefficient of skin friction (Cf,, Cf,) which are demarcated

as

Txz Tyz
Cip =+ and Cp, =, (8.24)
Y% YU

and in the dimensionless representations, we have

1 n—1
10 ReZ = f(0)[1 + Wedf™5, (8.25)
1 n—
3 (%) CpyRez = g"(0) 1 + We3g™) "2, (8:26)
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8.3 Graphical Illustration and Analysis

This section is predominantly emphases to interpret the somatic features of heterogeneous-
homogeneous reactions in 3D Carreau fluid flow past a stretched sheet by utilizing the non-
Fourier’s heat conduction relation. The set of Eqgs. (8.12) — (8.14) and (8.22) with boundary
restrictions (8.17), (8.19) and (8.23) are established and resolved via bvp4c scheme. The core
purpose of the following discussion is to fetch out the influences of scheming parameters such
as Weyi, Wea, «, Pr, 5, k1, k2 and Sc on the temperature #(n) and concentration [(n) fields
in both circumstances (n < 1) and (n > 1), (i.e., shear thinning/thickening). Additionally,
the numerical and analytical outcomes in comparison of former existing prose are presented for
some descriptive value of o and Pr.

Figures 8.1(a,b) and 8.2(a, b) are portrayed to visualize the impact of the thermal relax-
ation parameter () and Prandtl number (Pr) on the temperature 6(n) of Carreau liquid for
both shear thinning/thickening liquids, respectively. These plots acknowledged that the liquid
temperature in addition to the thickness of thermal boundary layer spectacles a diminishing
behavior for enhancing values of Pr and ; for (n < 1) and (n > 1). Physically, this happens
because of the fact that for larger value of 3, the liquid material needs extra time for heat
transfer to its adjacent elements which raises the temperature gradient and hence, declines
the temperature distribution. Moreover, the instance of Fourier’s law in association with the
Cattaneo-Christov heat flux model the temperature profile is higher for 5; = 0.

Figures 8.3(a,b) and 8.4(a,b) are sketched to interpret the features of the local Weis-
senberg numbers (Wej, Wez) on concentration field [(n) of Carreau liquid for higher We; and
Wes, respectively. These results exhibit that with the enlargement of We; and Wes, the concen-
tration distribution intensifies, whereas the thickness of concentration boundary layer reduces
for shear thinning liquid. Instead of shear thickening liquid moderately conflicting behavior is
identified for the increasing values of We; and Wegy on I(n). The impact of the growing value
of the ratio of stretching rates parameter («)) and the Schmidt number (Sc¢) on concentration of
Carreau fluid for the both instances (n < 1) and (n > 1) is clarified via figures 8.5(a,b) and
8.6(a, b), respectively. From these sketches the analogous behaviors for the emergent value of «
and Sc for the circumstances of shear thinning/thickening liquids are perceived. Uplifting the

values of a and Sc enhance the concentration of Carreau liquid while its allied thickness of con-
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centration boundary layer reduces. For physical point of vision, advance value of «, stretching
beside the y—direction growths which reasons the escalation of the concentration of Carreau
liquid. Moreover, as Sc is the relation of the viscous diffusion rate to the molecular diffusion
rate, higher value of Sc resembles the greater viscous diffusion rate, which is fit to intensify the
liquid concentration. Figures 8.7(a,b) and 8.8(a,b), respectively, explore the properties of
homogeneous and heterogeneous reaction parameters (kq, k2) for the shear thinning and shear
thickening situations on the concentration scattering. The concentration field moderates for
both conditions (n < 1) and (n > 1) for increasing values of k; and kg; however, the thick-
ness of concentration boundary layer assembled for larger k1 and ke. Physically, from figures
8.7(a,b), this is owing to the circumstance that the reactants are consumed throughout the
homogeneous reaction which reasons the decline of the concentration distribution. Instead, one
can noticed from figures 8.8(a,b) that the advance value of ky outcomes in the decline of
I(n). This coincides with the overall physical behavior of homogeneous k; and heterogeneous

ko reactions.

8.3.1 Graphical Comparison between bvp4c and HAM

Figures 8.9(a,b) depict the impact of Pr and (3; for two dissimilar schemes, namely the
homotopy analysis method (HAM) and bvp4c approach. From these plots a brilliant agreement

is initiated amongst both techniques.

8.3.2 Confirmation of Numerical Outcomes

The authenticity of the numerical consequence are also established by assessment with the
analytical outcomes achieved by the HAM as shown in Tables 8.1 to 8.3. Moreover, these
results are compared with former available prose as an exceptional instance of the problem and
outstanding settlement is noticed. The discrepancy of the Nusselt number for different values of
Pr is presented through Table 8.4. A comparison between analytical technique (HAM) and the
numerical scheme (bvp4c) with some former prose is also presented in this table. Consequently,

these tables assured that the present outcomes are very accurate.
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Table 8.1: A comparison of f”(0) between bvpdc and HAM in limiting cases when We; =
Wes =0 and n = 1 are fixed.

f"(0)
: Wang [117] Liu and Anderson [118] Munir et al. [119] Present(bvp4c) Present (HAM)
0.0 -1 -1 1 -1 1
0.25 -1.048813 -1.048813 -1.048818 -1.048813 -1.048810
0.50 -1.093097 -1.093096 -1.093098 -1.093095 -1.093095
0.75 -1.134485 -1.134486 -1.134487 -1.134485 -1.134486
1.0 -1.173720 -1.173721 -1.173721 -1.173720 -1.173720

Table 8.2: A comparison of ¢”(0) between bvp4c and HAM in limiting cases when We; =
Weg =0 and n = 1 are fixed.

9"(0)
. Wang [117] Liu and Anderson [118] Munir et al. [119] Present(bvp4c) Present (HAM)
0.0 0 0 0 -1 -1
0.25 -0.194564 -0.194565 -0.194567 -0.1945649 -0.1945645
0.50 -0.465205 -0.465206 -0.465207 -0.4652052 -0.4652049
0.75 -0.794622 -0.794619 -0.794619 -0.7946182 -0.7946182
1.0 -1.173720 -1.173721 -1.173721 -1.1737205 -1.1737210
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Table 8.3: A comparison of §'(0) between bvpdc and HAM in limiting cases when We; =
Wes = =0and n =1 are fixed.

6'(0)
Q
Liu and Anderson [118] Munir et al. [119] Present(bvpdc) Present (HAM)
0.25 -0.665933 -0.665939 -0.665933 -0.665926
0.50 -0.735334 -0.735336 -0.735335 -0.735332
0.75 -0.796472 -0.796472 -0.796473 -0.796471

Table 8.4: A comparison of —0'(0) between bvp4c and HAM for Pr when We; = Wey =
B8 =0and n =1 are fixed.

- —0'(0)
Khan and Pop [2] Wang [122] Gorla and Sidawi [123] Present(bvpdc) Present(HAM)

0.70 0.4539 0.4539 0.4539 0.453935 0.453933
1.0 - - - 0.581979 0.581977
1.3 - - - 0.693029 0.693023
1.5 - - - 0.760293 0.760298
1.7 - - - 0.823311 0.823327
2.0 0.9113 0.9114 0.9114 0.911362 0.911336
7.0 1.8954 1.8954 1.8954 1.895420 -

20.0 3.3539 3.3539 3.3539 3.353950 -

70.0 6.4621 6.4622 6.4622 6.462250 -
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Chapter 9

Impact of Cattaneo—Christov Double
Diffusion in 3D Carreau Fluid Flow

Here the steady 3D flow of a Carreau liquid influenced by bidirectional stretched surface. With
Cattaneo—Christov double diffusion and temperature-dependent thermal conductivity, the heat
and mass transfer mechanisms have been scrutinized. The alteration of nonlinear PDEs to
nonlinear ODEs is equipped via apposite conversions and then resolved numerically by means
of bvp4c scheme. The graphical depiction is exposed to portray the essential features of somatic
parameters on Carreau liquid temperature and concentration distributions. This study indicates
that the variable conductivity parameter enhances the liquid temperature, while the thermal
relaxation time parameter and Prandtl number are diminishing functions of temperature field.
Furthermore, these results illustrate that the concentration relaxation time parameter and
Schmidt number diminish the concentration field. The assertion of present outcome is asserted
by emergent assessment with former outcomes presented in prose, which sets a benchmark for
execution of computational methodology. Moreover, graphical assessment is also reported for

two altered techniques, the analytical one (HAM) and numerical one (bvp4c).

9.1 Description of the Problem

We analyze the steady 3D flow of Carreau liquid influenced by a bidirectional stretched surface.

The flow is influenced owed to the stretching surface in two nearby x— and y—directions with
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linear velocities v = ax and v = by, respectively, in which a,b > 0 are occupied to be constants

relating to stretching rates and the flow presence constrained in the region z > 0. The heat and

mass transfer mechanisms are explored via Cattaneo—Christov double diffusion relationships.

The constant temperature and concentration at the wall are represented by (7, Cy,) while the

ambient values attain as z — oo, take on the constant values (7o, Cso), respectively.

Under these concerns, the governing equations of 3D Carreau liquid are

8u+8v+8w_0
or oy 0z
]
2
ugt +v3e +wdt = vZy [1412 (%)’
n—3

=1 (32 (5) 112 (3)7] 7

n—1
uaerv +w = g—[1+f‘2( )} ?

-3

=D (3)° (52) [1+1° (3)°] 7

6T
Uaz +v +w

26T+U26T+w26T+2u1)

U 52 &vay
or _ 1 9 or
+A1 +2”wayaz + 2uw it + (“% +oge + w&) o = Too); 02 (K(T)3;
or T
+< 6x+v6y+w8z) 8y+( 8z+vay+w8z> 0z
U’Ba: +v +w
+ A2 +2vwddc+2uwac+< —i—v +waz> gg = me,

ac ac
+( Ude +v8y+w6z) Dy +< 890 +v6y +w8z) Dz
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(9.5)



u=Uy(x)=ax, v="V,(y) =by,

v — 0,

w=0, T=T1T,,
u — 0,

c=C, at

z =0,
T — T,

C—Cx, as z— 00,

where (A2, Dy,,) are the relaxation time of mass flux and molecular diffusivity of the concentra-
tion respectively.

9.1.1 Appropriate Conversions

The following are the appropriate conversions

T Ty C - Cx
H(U):ﬁ, ()= F—~—

(9.8)

In vision of above the alterations and Eq. (2.27) (cf. Chapter 2), the condition of incompress-
ibility is satisfied automatically and Egs. (9.2) — (9.7) yield

JIL+ W SP)T L 4nWed 2] = f2 4+ f'(f +9) =0,

(9.9)
g1+ Wedg"™ "7 [L + nWedg") — g% + ¢"(f +g) = 0, (9.10)
(1+e0)0" + 0 + Pr(f + )0 — PrBy[(f + 9)(f +¢)0 + (f +9)%0"] =0, (9.11)
¢" + Se(f + )¢’ — ScBol(f + 9)(f + )¢ + (f +9)%¢"] =0, (9.12)
f(0)=0, ¢g(0)=0, f(0)=1, ¢g0)=a 060)=1, ¢0)=1, (9.13)
ff—0, ¢d—0, 6—-0, ¢—0 as n— . (9.14)

Here B5(= aX2) is the concentration relaxation time parameter.

9.2 Engineering and Industrial Quantities of Interest

A critical structure of flow are the local skin friction coefficients C'y, and C'y,, which are defined
as

Tz
Ciz =
T3l

-
and Cy, = ¥_
YU

(9.15)
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and the overhead expressions in the dimensionless form yield

n—1
2

L0 ReZ = F/(0)[1+ We3 fr2(0))*, (9.16)

n—1

1
3 (8) €y, Rel = ' (0)[1 + Wedg(0)) 5", (917)

w

9.3 Graphical Illustration and Analysis

This portion is established to infer the influence of non-Fourier’s heat and non-Fick’s mass
flux relations in 8D flow of Carreau liquid. The numerical study is established for some de-
scriptive values of numerous apposite parameters. The resultant non-linear ODEs are resolved
numerically by bvp4c and the outcomes are designed graphically.

To envision the influence of ratio of stretching rates parameter («) and thermal conductivity
parameter (¢) on the Carreau liquid temperature field 6 (n), figures 9.1(a, b) and 9.2(a, b) are
depicted for both instants (n < 1) and (n > 1). These conspiracies show that the temperature
of Carreau fluid diminishes for larger a. Strengthening values of o cause that the velocity in
y—direction is lower then velocity in z—direction and the particles collision increases. Hence,
the liquid temperature of Carreau liquid declines when « increases. Additionally, the divergent
tendency to be instigated for higher values of €. Physically, the thermal conductivity of Carreau
liquid rises for enhancing value of € because of huge heat transfer quantity from the sheet to
the material and therefore the temperature of Carreau liquid boosts up. Figures 9.3(a,b) and
9.4(a,b) are drafted to deduce the features of Prandtl number (Pr) and thermal relaxation
parameter (3;) for both conditions. These outcomes display that the higher value of Pr and
B, diminish both the liquid temperature and its thickness of the thermal boundary layer. As
Prandtl number and thermal diffusivity have conflicting correlation. Because of this datum
higher Pr declines the Carreau liquid temperature. Moreover, a similar performance is being
remarked for 5; which decays the temperature of Carreau liquid for both (n < 1) and (n > 1).
Physically, from figures 9.4(a, b), this ensue owing to the datum that for collective values of
B, the liquid material desires additional time to transport of heat to its adjacent particle which
enhances the temperature gradient and therefore, the liquid temperature declines.

Figures 9.5(a,b) and 9.6(a,b) depict the aspects of Schmidt number (Sc) and solutal
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relaxation time parameter (3,) on ¢(n). Both Sc and 5 diminish the concentration of Car-
reau liquid and allied thickness of concentration boundary layer. As Sc is the relation of the
viscous diffusion rate to the molecular diffusion rate. Though, advanced value of Sc resemble
the larger viscous diffusion amount, which is adequate to exaggerate the liquid concentration.
Furthermore, the results indicated that for shear thinning/thickening liquids, increasing values

of Sc and [y are declining functions of concentration distribution.

9.3.1 Confirmation of Numerical Outcomes

For the legitimacy of the numerical outcomes an assessment of different values of ratio of
stretching rates parameter («) with the analytical results attained through the HAM is displayed
in Tables 9.1 to 9.3. Moreover, an assessment table for diverse values of ¢ and Pr in limiting
circumstance is presented as Table 9.4. From these tables, compared upshots with earlier
presented valid prose as a brilliant instance of the problem and exceptional settlement is being

remarked.
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1
Table 9.1: A comparison of <%Cfx Re;%) between HAM and bvp4c in limiting circum-

stances when Wey; = Weg =0 and n = 1 are fixed.

f"(0)

“ Wang [117] Liu and Anderson [118] Munir et al. [119] Present Present

(bvp4c) (HAM)
0.0 -1 -1 -1 -1 -1
0.25 -1.048813 -1.048813 -1.048818 -1.0488125 -1.0488101
0.50 -1.093097 -1.093096 -1.093098 -1.0930951  -1.0930952
0.75 -1.134485 -1.134486 -1.134487 -1.1344845  -1.1344855
1.0 -1.173720 -1.173721 -1.173721 -1.1737201  -1.1737201

1
Table 9.2: A comparison of (% (%) Cyy Re%) between HAM and bvp4c in limiting cir-

cumstances when We; = Wey = 0 and n = 1 are fixed.

g"(0)

“ Wang [117] Liu and Anderson [118] Munir et al. [119] Present Present

(bvp4c) (HAM)
0.0 0 0 0 -1 -1
0.25  -0.194564 -0.194565 -0.194567 -0.19456491  -0.19456446
0.50  -0.465205 -0.465206 -0.465207 -0.46520520  -0.46520485
0.75  -0.794622 -0.794619 -0.794619 -0.79461815  -0.79461822
1.0 -1.173720 -1.173721 -1.173721 -1.17372051  -1.17372100
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Table 9.3: A comparison of —¢'(0) between HAM and bvpdc in limiting circumstances

when We; = Wey =€ =) =85 = Sc=0and Pr =n =1 are fixed.

—6'(0)
Q
Liu and Anderson [118] Munir et al. [119] Present(bvpdc) Present(HAM)
0.25 0.665933 0.665939 0.665933 0.665926
0.50 0.735334 0.735336 0.735335 0.735332
0.75 0.796472 0.796472 0.796473 0.796471

Table 9.4: A comparison of —6'(0) between HAM and bvp4c in limiting circumstances

Wer =Weg =1 =9 =S5c=0and n=1 are fixed.

€ Pr ~010)
Khan et.al [60] Present(bvpdc) Present(HAM)
0.2 1.3 0.604568 0.6045730 0.6045650
0.3 0.569570 0.5695749 0.5695719
0.4 0.539040 0.5390454 0.5390411
0.2 1.5 0.664040 0.6640454 0.6640446
1.7 0.719773 0.7197816 0.7197711
2.0 0.797638 0.7976520 0.7976410
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Chapter 10

Homogeneous-Heterogeneous
Reactions in 3D Unsteady Nonlinear

Radiative Flow of Carreau Fluid

This chapter scrutinize unsteady 3D bidirectional stretched flow of a magneto-Carreau liquid
with non-linear thermal radiation. The convective properties for heat transfer mechanisms are
investigated with heat sink/source aspects. Additionally, the proposed model of heterogeneous-
homogeneous processes with equivalent diffusivities for autocatalysis and reactants are consid-
ered. The modeled boundary layer equations are reduced to a system of nonlinear ODEs using
the appropriate transformations. The resulting equations are then solved by utilizing the two
different techniques, namely the bvp4c function in Matlab and the homotopic algorithm. The
numerical data for the velocities, temperature and concentration fields are graphically sketched
and characteristics of the influential parameters are deliberated in detail. Moreover, the ve-
locity gradients and the amount of heat transfer at the stretched surface for diverse value of
the pertaining parameters are given in tabulated form. It is observed that the temperature
profile enhances for the higher values of magnetic parameter (M) and heat generation para-
meter (§ > 0), whereas it declines for augmented values of heat absorption (6 < 0) parameter.
In addition, the concentration profile declines for increasing values of homogeneous reaction

parameter (k1) and unsteadiness parameter (S). To see the validity of the numerical computa-
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tions, the results of the numerical techniques, namely bvp4c with an efficient analytical method,
the homotopy analysis method (HAM) are compared and perceived an outstanding correlation

between these techniques.

10.1 Description of the Problem

Let us scrutinize unsteady 3D flow of a magneto-Carreau liquid with velocities Uy, (z,t) and
Vi = (z,t), in which z is the coordinate measured beside the sheet and ¢ the time. Additionally,
convective heat transfer mechanism is carried out in the presence of nonlinear thermal radia-
tion and heat source/sink. Furthermore, the flow analysis is considered here by utilizing the
heterogeneous-homogeneous processes (Merkin [41]). A magnetic field of strength B(t) = \/_?E—E
is applied along z — axis. Because of the small magnetic Reynolds number the impact of the
induced magnetic field is neglected here. Moreover, we assume that hot liquid below the sheet
with temperature Ty transform the heat to the sheet with coefficient of heat transfer hy. The

homogeneous processes for cubic autocatalysis be written as
G1+2H, — 3Hy, rate = keg1h?, (10.1)
while on the catalyst surface, the first-order isothermal response is
G1 — Hy, rate = ksg1, (10.2)

where (g1,h1) are the concentration and (k.,ks) the rate constants of the chemical species
(G1, Hy), respectively. Furthermore, with the notion of both isothermal processes and distant
from the sheet at the ambient fluid, for G reactant, gi, is a constant concentration, whereas
there is no autocatalyst H;.
Governing equations of the existing unsteady flow under these aforementioned assumptions
discussed above are given by
ou Ov Ow

g0 (10.3)
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14T <8z>

n—3

ov\? [ 9% ov\?| 2 oB?
. 2 OV 2 (YY _ =0
+v(n—1)I (82) <8z2> [1 +T (82:) ] py v, (10.5)
or ~or or 9T = 0T 1 dg- Qo
o o Ty T T MaE T oy 0: (o, L ek (106)
Op g1 | B | dg1 . Pg >
2 TV, +v—ay two= = D¢, 5.2 kegihi, (10.7)
Ohy ~ Ohy  Ohy | O . O’hy 5
5 +u 9 +v 3y +w P = Dp, 5.2 + kegihi. (10.8)

The boundary condition of flow problems are

u=Up(z,t) = 1% v="Vy(z,t)= 2%, w=0,

-6t -5t
kL = hy[Ty —~T), Dgy % =kegr, D22 = —kyg1 at z=0, (10.9)
u—0, v—=0, T—-Tsx, g1—0g, h —0 as z— o0, (10.10)

10.1.1 Appropriate Conversions

We introduce the following appropriate conversions:

T — To
O =g—7 > 9= 91l h=hir(). (10.11)
f oS

In vision of the above conversions and Eq. (6.9) (cf. Chapter 6), the condition of incompress-

ibility is satisfied automatically and Egs. (11.4) — (11.10) yield

P WAL W =5 (4 gaf”) = 17 £ ) <M =0, (10.12)
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n—3 1
g"1+Wesg™] = [1 + nWezg"?] - S <g/ + 5?79”) — g% +4d"(f+9)— M?*¢' =0, (10.13)

d%[{l + Ry(1+ (07 — 1)0)%}0'] — Pr S (9 + %W) +Pr(f +g)0' + Préo = 0, (10.14)

i " I 2 § I __

Scl +(f+ 9l —klr 217l =0, (10.15)
ﬁr" +(f +g)r" + kylr? — §77r' =0 (10.16)

Sc ! 2 ’ ’
f(0)=0, g(0)=0, f'(0)=1, ¢'(0)=c, 6'(0)=—7[l—0(0)], (10.17)
'(0) = kol(0), Acr’(0) = —k2l(0), (10.18)
ff—=0, ¢—0, 0-0, (10.19)
l—1, r—0 as n— oo (10.20)

In physical situations, the diffusion coefficients Dg, and Dp, are occupied to be equal i.e.
Ae = 1, which will give us

ln)+r(n)=1. (10.21)
Now consequently, Egs. (10.15) and (10.16) yield

1

S
" A T _ 27 —
STl =Sl — k(1= D=0, (10.22)

with boundary conditions (10.18) and (10.20), we have
I'(0) = kol(0), 1—1 asn— oo. (10.23)

10.2 Engineering and Industrial Quantities of Interest

The surface drag forces (Cy,, Cyy) and heat transport amount (Nu,) are stated below

T T
Cip =+~ and Cp, =%, (10.24)
e 1p02 ETYF
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Vo= 0 T T (05 Ho29)
while in dimensionless variables, these are
104, ReZ = f/(0)[1+ Wed /25, (10.26)
L (%) en Re = ¢"(0)[1+ We3g"?] s, (10.27)
Re, ® Nug = —[1 + Ra{1 + (65 — 1)8(0)})6' (0). (10.28)

10.3 Graphical Illustration and Analysis

The main attention of this section is to infer the physical structures of nonlinear thermal radi-
ation and heterogeneous-homogeneous reactions in unsteady 3D magneto-Carreau liquid with
convective heat transport. Additionally, characteristics of heat absorption/generation are delib-
erated. The set of Egs.(10.12) — (10.14) and (10.20) with boundary restrictions (10.17),(10.19)
and (10.23) are established and elucidated via bvp4c approach. Tables of skin friction coeffi-
cients and Nusselt number are structured for shear thinning/thickening liquids. Additionally,
the tabular assessment between numerical (bvp4c) and analytical (HAM) schemes are presented.

Figures 10.1(a — d) are prepared to highlight the characteristics of local Weissenberg num-
ber (Wey) for both (n = 0.5) and (n = 1.5) on the velocity components f'(n) and ¢'(n). It is
reported from these drafts that when values of We; rise the velocity component f'(n) decays
for (n < 1), while conflicting depiction is being identified for the velocity component ¢'(n) for
(n < 1). Similarly, it is also detected that for (n > 1) local Weissenberg number We; boosts
up the liquid velocity f’(n) whereas, it reduces the liquid velocity component ¢'(n) for amassed
values of We; as exposed in figures 10.1(b) and 10.1(d). Physical, We; is the relation of
relaxation time of material and a specific process time. So higher estimation of relaxation time
leads to enhancement of thickness of material. Thus, higher We; corresponds to a decrease in
velocity. Moreover, We; is the relation of relaxation time of liquid and a certain progression

in which time growing the liquid viscosity. Hence, outcomes decline the liquid velocity ¢'(n).
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The behavior of local Weissenberg number (Wes) on the velocity components f'(n) and ¢'(n)
is noticed through figures 10.2(a — d) for shear thinning/thickening liquids. It is noted from
these strategies, the intensifying value of Wey enhances the velocity components f/(n) whereas
the reverse trend is detected for the velocity component ¢'(n) for (n < 1). However, it is antic-
ipated from the graphical data that opposite behavior of velocity components is acknowledged
for shear thinning liquid i.e., (n < 1).

Figures 10.3(a,b) and 10.4(a, b) are plotted to interpret the impact of local Weissenberg
numbers (We; and Weg) on the temperature 6 () of magneto-Carreau liquid. The progressive
values of We; and Wes enhance the liquid temperature for (n < 1) and a reverse behavior is
identified for (n > 1). Physically, We; and Weg are the proportion of viscous to the elastic
forces, so strengthening values of We; and Wes result in an amplification in the liquid viscos-
ity. Consequently, flow becomes extra resistive and therefore, the temperature field enriches for
(n < 1) and reduced for (n > 1). Figures 10.5(a,b) and 10.6(a,b) are schemed to compre-
hend the impact of radiation parameter (R;) and temperature ratio parameter (6) for both
shear thinning/thickening liquids on the temperature of Carreau liquid. From these plots it is
notable that the temperature of Carreau liquid and associated thermal boundary layer rise for
augmenting values of Rg and 6. Physically, when Rq enhances, the mean absorption coefficient
declines due to which radiative heat transfer amount of the fluid rise. Therefore, the liquid tem-
perature and its associated thermal boundary layer increase. The variation in the temperature
of Carreau liquid for (n < 1) and (n > 1) is sketched in figures 10.7(a,b) and 10.8(a, b) for
different values of the heat absorption phenomenon (§ < 0) and heat generation phenomenon
(6 > 0). The temperature of Carreau liquid increases as the value of heat generation § > 0 is
increased due to the fact that § > 0 gives more heat to the fluid that corresponds to an increase
in the temperature profile and the thermal boundary layer thickness while the opposite trend
is detected for 6 < 0. Impact of magnetic parameter (M) and thermal Biot number (v;) on
the temperature field are delineated through figures 10.9(a, b) and 10.10(a, b). It is apparent
from these graphs that M and v, are increasing functions of temperature field. Physically, this
is due to the fact that the Lorentz force is a resistive force which opposes the liquid motion due
to which collusion between the liquid particles enhances. Therefore, the temperature of Car-

reau liquid and its associated thermal boundary layer thickness rise. Additionally, it is observed
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from the graphs, v; has a significant effect on the temperature profile. When +; is increased,
the internal thermal resistance of the surface enhances. Therefore, a build in v, increases fluid
temperature effectively.

To visualize the impact of the local Weissenberg numbers (WWe; and Wez) on the concen-
tration profile [ () for both values of n = 0.5 and 1.5, figures 10.11(a, b) and 10.12(a, b) are
plotted. From these plots we noted that when we enhance values of We; and Wes the concen-
tration profile reduces for (n < 1) while conflicting trend is observed for (n > 1). Furthermore,
it is noted that the outcomes for the concentration of Carreau liquid are more prominent for
lesser values of We; and Wes when compared with the velocity and temperature fields. Fig-
ures 10.13(a,b) and 10.14(a, b) are enlisted to envision the characteristics of homogeneous
reaction parameter (k1) and unsteadiness parameter (S) on concentration of Carreau liquid.
The increasing values of homogeneous reaction parameter (amount of strength of homogeneous
reaction) decline both the concentration and its associated thickness of concentration boundary
layer for both instances. Although conflicting behavior is observed for accumulated values of
S for concentration field. Chemically, during a chemical reaction reactant is consumed when
enhance k1. Owing to this circumstance concentration distribution shows diminishing trend for
higher values of k;. Figures 10.15(a,b) and 10.16(a, b) are exposed to envision the influence
of magnetic parameter (M) and Schmidt number (Sc) for (n < 1) and (n > 1) on concentra-
tion profiles. A conflicting behavior for both M and Sc on concentration profile is observed.
Augmented values of M diminish the concentration distribution and its related thickness of
concentration boundary layer; however, the concentration of Carreau fluid enriches for Se. It is
essential to note that Scis the amount of momentum diffusivity to mass diffusivity. Augmented

values of Sc resemble to greater momentum diffusivity due to which concentration profile rises.

10.3.1 Tabular Representations

Tables 10.1 and 10.2 are presented to inspect the characteristics of the different flow parame-

1 1
ter on the skin friction coefficients <%C'fx ReZ, % (%) Cyy Re%) and amount of heat transfer

_1 1 1

(N ugz Reg 2>, respectively. It is noted that magnitude of <%C’fx ReZ ,% (%‘:) Cyy Ref) and
_1

(N uz Reg 2> augment for higher M and S. Moreover, the larger values of R4, v; and Pr
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1
decrease the <Nux Re, 2) for both (n < 1) and (n > 1) cases.

10.3.2 Confirmation of Numerical Outcomes

Tables 10.3 and 10.4 present the comparison between two different schemes, namely bvp4c
and HAM. From these tables, we found an outstanding agreement between these two techniques.
The accuracy of numerical significances is also recognized by comparison with the numerical
outcomes (bvp4c) and analytical consequences attained by the HAM as displayed in Tables
10.5 to 10.7. Moreover, these outcomes are compared with previous published results and

achieved an excellent agreement between these results.
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Figure 10.1(a — d): Influence of We; on f/(n) and ¢'(n).
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Figure 10.2(a — d): Influence of Wey on f/(n) and ¢'(n).

181

[ (b) n=15

i  We,=Pr=20, 0=8=R,=0.3, Sc=1.5

Ll 6,=12, M=y,=05, 5=k =k, =02

;\ ! IRESTIESS TR PR PO Ten
0 8 10
| (d) n=1.5

We,=Pr=20, a=S=R,=0.3, Sc=15
0,=1.2, M=7y,=05, 5=k, =k,=0.2




n=0.5
0.36 We,=Pr=20, a=S=R;=0.3, Sc=1.5
I 6,=1.2, M=v,=0.5, 3=k, =k,=0.2

Figure 10.3(a,b): Influence of We; on 6(n).

(@) n=0.5
|
03817 We,=Pr=2.0, a=S=R,=0.3, Sc=1.5
|t
\ 6,=1.2, M=y,=0.5 5=k =k,=0.2
- X"\
0.24 - 1}
=
S -
D
0121 We, =1.0, 2.0, 3.0, 4.0
0 L1
0

Figure 10.4(a,b): Influence of Wey on 6(n).
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Figure 10.6(a,b): Influence of 6 on 6(n).
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Figure 10.7(a,b): Influence of § < 0 on 6(n).
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Figure 10.8(a,b): Influence of § > 0 on 6(n).
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Figure 10.9(a, b): Influence of M on 6(n).
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Figure 10.10(a, b): Influence of v; on 6(n).
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Figure 10.12(a, b): Influence of Wey on I(n).

186

0.77

0.99

We, =0.2,0.4,0.6,0.8

We,=M =05, a=S=03

Sc=1.5, k =k, =0.2
TN TSR N T T [N T AT AN T AN T N
0 2 4 6 8 10
n
= (b) T n=ts
l ~
| //
- / We,=0.2,0.4,0.6,0.8
/ 7
- / //////
|/ We,=M=0.5, ¢=S=0.3
| Sc=15, k=k,=0.2
ARSI TN [T T TN SNV ANT AN [N S N NN R
0 2 4 6 8 10
n



n=1.5

I k,=0.1,0.3,0.5,0.7
| I k,=0.1,0.3,0.5,0.7

We,=We, =2.0, a=S=0.2 We, =We,=2.0, a=8=0.3
0.85
1 M=0.5 k,=0.2, Sc=1.5 M=0.5, k,=0.2, Sc=1.5
TR T [T T R [N T N T AN T AN B N TN TSR N T T [N T AT AN T AN T N
0 2 4 6 8 10 0 2 4 6 8
n n

Figure 10.13(a, b): Influence of k; on I(n).
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Figure 10.14(a, b): Influence of S on I(n).
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Figure 10.16(a, b): Influence of Sc on (7).
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Table 10.1: Outcomes of <%Cfx Re;%,% (%) Cyy Re%) when a = 0.3, v; = 0.5, § = 0.2,
R;=0.3, 0y =1.2 and Pr = 2.0 are fixed.

1 1
1 ) 1 (U, 2
104 Re? -(4&)0 Re2
Wer Wey, S M 27 2 \Vur) M
n=20.5 n=1.5 n=20.5 n=1.5

20 20 03 0.5 -2.046435 -4.702709 -0.3300503  -0.4125359

2.5 -2.240301 -6.062783 -0.3281542 -0.4141052
3.0 -2.407694 -7.539750 -0.3265503 -0.4154563
3.5 -2.555124 -9.120284 -0.3251771  -0.4166335
20 25 -2.045798 -4.704881 -0.3414938 -0.4574357
3.0 -2.045067 -4.707137 -0.3548244  -0.5079346

3.5 -2.044266 -4.709401 -0.3695934 -0.5631292

20 04 -2.117672  -4.919199 -0.3424575 -0.4302965

0.5 -2.188601 -5.139543 -0.3547994  -0.4482203

0.6 -2.259131 -5.363385 -0.3670574 -0.4662761

0.3 0.0 -1.804023 -3.938287 -0.2843380 -0.3471551
0.2 -1.843686 -4.059568 -0.2919741 -0.3578008
0.4 -1.960615 -4.425757 -0.3141013 -0.3892843
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Table 10.2: Outcomes of <Nux Rey 2) when Wey = Wey =2.0,a=0.3,0=0.2, 0y = 1.2
and Pr = 2.0 are fixed.

[SIES

Nug, Re,
S M R; v Pr

n=05 n=1>5

03 05 03 05 2.0 0.411062 0.429949

0.4 0.424277  0.439151
0.5 0.435556  0.447557
0.6 0.445239  0.455161
0.3 0.0 0.418642  0.433624
0.2 0.417404  0.433017

0.4 0.413749  0.431242

0.5 0.0 0.324812  0.337217

0.4 0.438037  0.459293

0.8 0.537834  0.569123

0.3 0.1 0.116831  0.118229

0.2 0.211790  0.216517

0.4 0.355621  0.369532

0.5 1.0 0.328768 0.352512
1.3 0.360871  0.383626
1.7 0.392740 0.413299
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Table 10.3: A comparison of (%C 12 ReZ, (%) Cyy Re;%) between HAM and bvp4c when
Weip =Wey =6=02, a=v,=R;=03, 0y =12, n =3 and Pr = 1.3 are fixed.

1 T
3Crx Re 2 (%‘) Cry Rei
bvpdc HAM bvpdc HAM

0.2 0.5 -1.245683 -1.24569 -0.3061175 -0.306114
0.3 -1.275457 -1.27546 -0.3161997 -0.316197
0.4 -1.304997 -1.30499 -0.3261552 -0.326155
0.2 0.1 -1.139945 -1.13995 -0.2683624 -0.268361
0.2 -1.153643 -1.15366 -0.2733681 -0.273365
0.3 -1.176149 -1.17615 -0.2815117 -0.281515
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2

Table 10.4: A comparison of <N uyz Rey
0=02,a=03, 0f =12 and n =3 are fixed.

between HAM and bvp4c when We; = Weg =

N

Nuy, Re,
S M Ry v Pr

bvpdc HAM

02 05 03 03 1.3 0.263464 0.263461
0.3 0.272514 0.272512
0.4 0.280134 0.280130
02 01 0.268427 0.268429
0.2 0.267809  0.267806
0.3 0.266779 0.266774
0.5 0.0 0.209058  0.209055
0.5 0.296467 0.296469

1.0 0.368989  0.368985

0.3 0.1 0.112420 0.112424

0.4 0.315951  0.315953

0.7 0.423164 0.423167

0.3 1.0 0.224571 0.224570

1.3 0.250787 0.250789

1.7 0.268741 0.268747
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Table 10.5: A comparison of f”(0) between HAM and bvpdc in limiting cases when

Wei =Wey =a=0and n =1 are fixed.

f"(0)
[cf. Chapter 6] Present Present
S Sharidan et al. [120] Chamkha et al. [121]
Table 6.4 (bvp4c) (HAM)
0.8 -1.261042 -1.261512 -1.261044 -1.261043 -1.261043
1.2 -1.377722 -1.378052 -1.377728 -1.377725 -1.377752
2.0 -1.587362 - -1.587371 -1.587381 -1.587362

Table 10.6: A comparison of #'(0) between HAM and bvp4c in limiting cases when We; =

Wey=8=M=6=0;=Rqg=0andn =1 are fixed.

0'(0)
et
Liu and Anderson [118]  Munir et al. [119] Present(bvp4c) Present(HAM)
0.25 -0.665933 -0.665939 -0.665933 -0.665926
0.50 -0.735334 -0.735336 -0.735335 -0.735332
0.75 -0.796472 -0.796472 -0.796473 -0.796471
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Table 10.7: A comparison of —6'(0) between HAM and bvpdc in limiting cases when
Wer=Wes=5=0=0;=R;=0,7— 00and n =1 are fixed.

—6'(0)

Pr Present Present
Khan and Pop [2] Wang [122] Gorla and Sidawi [123]
(bvp4c) (HAM)

0.70 0.4539 0.4539 0.4539 0.453935 0.453933
1.0 0.581979 0.581977
1.3 0.693029 0.693023
1.5 0.760293 0.760298
1.7 0.823311 0.823327
2.0 0.9113 0.9114 0.9114 0.911362 0.911336
7.0 1.8954 1.8954 1.8954 1.895420
20.0 3.3539 3.3539 3.3539 3.353950
70.0 6.4621 6.4622 6.4622 6.462250
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Chapter 11

Closing Remarks and Future
Research Work

11.1 Closing Remarks

The research in this thesis has been initiated to elaborate the mathematical modeling and analy-
sis for three-dimensional flows of Carreau fluid. The diverse characteristics of flow, heat and
mass transport inside the boundary influenced by a bidirectional stretching surface have been
explored. Particularly, both time-independent and time-dependent flows were reported. The
formulated partial differential equations were converted in view of compatible conversions and
then solved numerically via bvp4c. The confirmation of the results of this work is also done by
making comparison through a numerical as well as analytical technique. This chapter provides
in brief the highlights of the work presented in this thesis. Hence, the notable conclusions that

are inferred from this exertion are enumerated as follows:

e The velocity component f'(n) declined for n = 0.5 and enhanced for n = 1.5 for increasing
local Weissenberg number (We;). However, a conflicted behavior was reported for velocity

component ¢’ (7).

e The behavior of the local Weissenberg number (Wez) was noted totally opposite for both
n < 1 and n > 1 on velocity components f’(n) and ¢’(n), while temperature field enhanced

for n = 0.5 and diminished for n = 1.5.
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A similar trend was remarked for higher value of power law exponent (n) on f’(n) and ¢'(n)

for both shear thinning/thickening cases.

The higher values of magnetic parameter (/) and unsteadiness parameter (S) caused
a reduction in f’(n) and ¢'(n) and allied thickness of the boundary layer, whereas a

conflicted performance was reported for temperature and concentration fields.

The augmented values of thermal radiation (Ry), temperature ratio parameter (6) and

thermal Biot number (7;) intensified the temperature §(n) of Carreau fluid.

The Brownian motion (N) and thermophrosis (/V;) parameters, respectively, boosted the
temperature of Carreau fluid for n < 1 and n > 1. However, conflicted performance of

N and N; were observed on concentration of Carreau nanofluid.

The thermal stratification (S7) and mass stratification (S2) parameters diminished the
temperature 6(n) and concentration ¢(n) fields, respectively, while a conflicted trend was

noted for larger mass Biot number (75) for concentration field.

The thermal relaxation time parameter (3;) and concentration relaxation time parameter

(B5) reduced the temperature 6(n) and concentration ¢(n), respectively.

It was scrutinized that the homogeneous (k1) and heterogeneous (kq) reaction parameters

have the aptitude to reduce the concentration [(n) of Carreau fluid.

The higher reaction rate (A), temperature difference parameters (A*) and fitted rate
constant (m) acknowledged a decay in the concentration field ¢(n); however, the activation

energy parameter (E) was augmented ¢(n).

11.2 Future Research Work

In this thesis the main focus was to scrutinize the three-dimensional flows of Carreau fluid

influenced by a bidirectional stretched surface. Although this thesis covers a wide-range of

aspects regarding mathematical modeling and numerical computation of Carreau fluid, there

are still a few suggestions for future work:
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In this thesis, the three-dimensional flows of Carreau fluid over planner stretching surface
were investigated. This work can be extended for flows over curved stretching surface as

well as flows due to rotating disk.

This work could be extended forward to account for non-zero infinite shear rate viscosity

for 3D flows of Carreau fluid.
This study can be extended to explore the multiple solutions.

Regarding the numerical simulation method, it would be interesting to perform a com-

parative study with different numerical methods.
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