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Abstract 

This thesis aims at understanding and improving the existing knowledge in the area of 

generalized Newtonian fluids. The main focus in this work is given to the mathematical 

modeling and computation of three dimensional flow of Carreau rheological model that 

can describe both the shear thinning and shear thickening characteristics of fluids. 

Consequently, three dimensional boundary layer equations for both steady and unsteady 

cases are established. Utilizing Boussinesq estimates the governing flow and heat transfer 

expressions of Carrau fluid model influenced by a bidirectional stretched surface have 

been framed. The appropriate conversions reformed the modeled partial differential 

equations (PDEs) into ordinary differential equations (ODEs) and results are established 

both numerically as well as analytically by employing bvp4c scheme and homotopy 

analysis method (HAM), respectively. The performance of influential parameters for 

shear thinning-thickening cases are graphed, tabulated and conferred. Additionally, a 

comparative study has been reported in both graphical and tabular forms with available 

literature. 

The consideration of non-Newtonian fluids have noteworthy utilizations in the area of 

energy, deferrals, genetic disciplines, polymer clarification, imitation fibers compound 

inventions, geophysics and refined materials, etc. Regardless of such attentions, various 

researchers are still affianced to scrutinize further the streams of non-Newtonian fluids. 

The contributions in this thesis include mathematical modeling of Carreau fluid in three 

dimension with elucidations of results of considered problems. The results for the 

velocity, temperature and concentration fields for both shear thinning-thickening cases 

are reported. The results showed that the velocity components have conflicting 

performance for the local Weissenberg numbers for shear thinning and shear thickening 

cases. It was also noted that the enhancing values of the power law exponent intensify the 

fluid velocities for both instances. Further, the temperature of Carrau fluid for shear 

thinning case intensifies for higher estimation of the local Weissenberg numbers; 

however, for shear thickening fluid a different behavior is observed. 
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Chapter 1

Review and Some Fundamental

Relations

1.1 Introduction

This chapter reports the background of research and theoretical establishment of the thesis

body. The essential facts for the ‡ow and heat transfer of non-Newtonian ‡uids are provided in

literature review. Furthermore, it highlights the signi…cance of reviewing such ‡uids, especially,

the Carreau rheological model. A brief narrative of all chapters of the thesis is incorporated in

this chapter. Additionally, some essential worthwhile laws for forming momentum, energy and

concentration terminologies are integrated. The basic notions of bvp4c approach and homotopy

analysis method (HAM) are also reported.

1.2 Background

Due to the rapid growth of recent engineering expertises, there has been a massive quantity

of exertions situate in the ‡uid ‡ow and heat transport mechanism over the stretched surfaces

by the numerous scientists owing to their widespread solicitations in engineering and industry.

Boundary layer ‡ow and heat transport are signi…cant in numerous metallurgical processes like

depiction of plastic …lms, fabrication of papers, annealing of copper cords, preservation of an

enormous copper plate which might be an electrolyte etc. Initially, the pioneering exertion on
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2D viscous ‡uid ‡ow over a stretched sheet was reported by Crane [1]. Later on the problem

related to stretching sheet has broadly discussed under numerous liquid models [2 3]. Flow by

an exponentially shrinking sheet for Eyring–Powell ‡uid with thermal radiation was analyzed

by Ara  . [4]. They renowned that the mass suction parameter intensi…ed the velocity

…eld, while divergent behavior is detected in suction parameter. Assessment of boundary-layer

‡ow through nanoparticles past a stretchable surface was examined by Ishfaq  . [5]. They

reported that the consequence of Brownian motion parameter is insigni…cant on the Nusselt

number.

The analysis of non-linear di¢culties dealing with ‡ow of non-Newtonian liquids has gained

remarkable devotion during the former few decades. The behavior of nonlinear materials in

present-day has attained countless thoughtfulness because of their built-up and industrial deter-

mination. In numerous applications, non-Newtonian materials have sizeable worth throughout

the earliest limited spans. In these materials there is no linear correlation between stress tensor

and deformation. The remarkable feature of these liquids are their advanced apparent viscosities

and therefore, laminar ‡ow circumstances intensify considerably compared to Newtonian liq-

uids. The applications correlated for these materials are biological progressions, geophysics and

genetic disciplines, reservoir manufacturing, petroleum diligence, biochemical, nuclear-powered

trades, polymer elucidation, synthetic …bers, cosmetic developments, splatters, antibiotics, bub-

bles, colloidal and deferral elucidations, adhesives, stone undercoat and soap suds, Ophthalmic

…bers, emollients, malleable polymers, granulated materials, compound and diet dispensation

are few specimens of non-Newtonian materials. Undoubtedly, all non-Newtonian ingredients on

the basis of their behavior in shear are not predicted by one constitutive relationship. Simple

shear rate and stress terminologies cannot designate entirely the rheological structures of non-

Newtonian ‡uids. Numerous investigators have exposed their concern to scrutinize nonlinear

materials. If a liquid spectacles a nonlinear communication to the strain rate then it is termed

as non-Newtonian liquid. It is remarkable that the interruption of non-Newtonian liquids and

their energetic features comprise numerous di¢culties caused by addition of rheological proper-

ties existing in the governing constitutive expressions. Despite of all such densities, numerous

investigators are still betrothed to inspect the streams of non-Newtonian liquids under di¤erent

features. Therefore, numerous nonlinear models concerning non-Newtonian liquids have been
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proposed and scrutinized in studies ([6¡ 9]) and the references therein.

In 1972 modern rheologist Carreau [10] established an e¢cacious relation which is used

enthusiastically up to date that can well describe the characteristics of nonlinear viscoelastic

materials named as Carreau ‡uid model. The Carreau liquid model was endorsed to visualize the

properties of shear thinning/thickening liquids of several non-Newtonian liquids. The Carreau

liquid model has caught the thoughtfulness of numerous investigators and engineers through

the last few years owing to its wide-ranging uses, such as asphalt splatters, aqueous, polymers

deferral and ‡uxes. In view of its aptitude to access the rheological performance at precise low

as well as precise high shear rate, the Carreau viscosity model executes to be a worthy approach

for a huge number of shear thinning/thickening liquids. For instance, Chhabra and Uhlherr

[11] reported experimentally the Carreau liquid model and studied the creeping motion via

shear-thinning elastic ‡uids over sphere. They investigated that the Carreau viscosity equation

is precisely established for the impacts of elasticity and shear thinning on sphere drag. The

‡ow of Carreau liquid of blood through a tapered artery was analyzed by Akbar and Nadeem

[12]. Khan and Hashim [13] presented a new formulation for 2D Carreau ‡uid and examined

numerically the boundary layer ‡ow over a nonlinear stretching sheet. They observed that

‡uid velocity is reduced for shear thinning case with higher Weissenberg number, while the

performance is quite opposite for shear thickening case. Khan   [14] investigated Carreau

‡uid ‡ow over a sensor surface with time dependent thermal conductivity. They established that

for emergent values of squeezing parameter the velocity …eld arises. Hayat   [15] explored

Carreau nano‡uid over a stretched ‡ow in the presence of the convectively heated surface. A

virtual study in a limiting sense with prevailing solutions is made in this examination. The

results showed that the skin friction coe¢cient augments for the intensi…cation in material

parameter. Moreover, they established that the larger power law exponent rises the velocity

component. To exploit the features of improved heat ‡ux on Carreau ‡uid ‡ow, Hashim and

Khan [16] made their study. The homogeneous/heterogeneous reactions are reported in this

scrutiny. The heat transfer rate is implicitly enriched to escalation in wall thickness parameter

and con‡icting impact is noticed for the thermal relaxation parameter. The radiative ‡ow of

Carreau ‡uid with temperature jump and suspension of liquid particle were stated by Kumar

  [17]. The impacts of thermal radiation and convective condition were also deliberated in
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this examination. They established that the temperature of Carreau liquid and thickness of the

thermal boundary layer were enhancing functions of thermal radiation. Few endeavors in this

trend can be accessed in references ([18¡ 21]).

Fluid heating and cooling are one of the utmost noteworthy and stimulating phases for

numerous applications of heat transfer in various industries for example; containing chemical

growths, transportation, industrial, fabrication, microelectronics, etc. By rising in the heat

transfer amount in industrialized applications there will be decline in time dispensation, inten-

si…cation in the life of equipment’s, and valid in energy. Moreover, conventional liquids viz.

para¢n, water, ethylene glycol (EG), in‡ating oil, etc., are broadly used in numerous produc-

tions. However, they do not have adequate pro…ciency of heat transfer because of their low

thermal conductivity and this frequently edges their usage in high heat ‡ux devices, e.g., sub-

stantial processing, microelectronics maintenance and stellar thermal antennas. On the other

hand by di¤using dense nano-sized particles to conventional liquids rises the thermal conductiv-

ity which spectacles advanced thermal assets. Nano‡uids, the engineered ‡uids with insulated

e¢cacious nanoparticles, have disclosed an unexpected thermo-physical properties and new

functionalities, and thus have maintained a widespread nature of important applications. The

deferral of non-metallic and metallic nanoparticles in base liquids like aquatic and para¢n are

known as nano‡uids. These ‡uids are the di¤usion of dense particles of magnitude lesser than

100  in size. Exclusively, nanoliquids have exposed intentionally better-quality ability of

heat transport as linked to traditional working ‡uids. Moreover, utilizing nano‡uid as a forth-

coming heat transport liquid with higher thermos-physical aspects is an e¤ective approach to

enhance the thermal enactment of energy systems. Furthermore, nano‡uids have developed as

superior candidates for numerous applications in heat transport; for instance, in hybrid-powered

purposes, drag bargain, in crunching, solar water reheating, nuclear vessel cooling numerous

others. In the research features, the sort of nano‡uid has been extended to a higher magnitude.

The current sort of nanoparticles for interrupting in liquids can be categorized according to the

thermal aspects which are as follows: Firstly, premier thermal conductivity for example ,

graphene and diamond etc. Secondly, metallic simples with abundant thermal conductivity such

as, , , , , , etc. Lastly, some metallic or non-metallic mixtures like , 23,

, 2, , etc. As a consequence of the assortment of the exploration features and
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element varieties in nano‡uids, it is ‡attering gradually challenging to extant a broad analysis

on all classes of nano‡uids. Choi [22] in 1995 introduced the term nano‡uid who established an

experimental analysis and exposed to the world about the development of thermal conductivity

of nano‡uids. Later on, Buongiorno [23] established a precise model to scrutinize the thermal

assets of base liquids. He reported that the Brownian motion and thermophoresis enhance the

thermal properties of base liquids. Analytically the entropy generation characteristics in MHD

¡2 nanoliquid were scrutinized by Ellahi   [24]. The impact of power law index in

the existence of thermal radiation is occupied. Khan and Khan [25] scrutinized the impact of

generalized Burgers ‡uid by exhausting the nanoparticle over a stretched surface. It was noted

that the rate of heat transfer of nanoliquid at the wall and the nanoparticle volume fraction

amount reduced by enhancing the values of thermophoresis parameter; however, quite opposed

e¤ect was noted for Brownian motion parameter in this scrutiny. Numerical solutions for 3D

magneto viscous nano‡uid was established by Mahanthesh   [26]. Khan and Khan [27] in-

vestigated MHD power law nano‡uid by utilizing zero mass ‡ux condition. Numerical scheme,

namely shooting technique was implemented to resolve the governing nonlinear ODEs. They

noted that both the Brownian and thermophoresis parameters were augmenting functions of

temperature distribution. The characteristics of the nanoparticles condition on 3D radiative

‡ow of Burgers nano‡uid were explored by Khan   [28]. This investigation showed that

the concentration …eld collapsed rapidly correlate to the Deborah number when compared with

the Brownian motion parameter. Hayat   [29] analyzed numerically the stagnation point

‡ow of carbon–water nano‡uid. The properties of melting heat and thermal energy were also

deliberated in this exploration. They establish that the amassed values of melting parameter

resembled to greater velocity and fewer temperature. Khan   [30] considered the gener-

alized Burgers nanoliquid with the in‡uence of chemical response. The impact of nonlinear

thermal radiation in the existence of the zero mass ‡ux condition was also explored. Waqas

  [31] inspected numerically the ‡ow of Carreau nanoliquid in the presence of MHD and

thermal radiation. They established that for the velocity component the in‡uence of local

Weissenberg number is quite con‡icting. Dogonchi   [32] inspected the heat transfer ‡ow of

magneto nanoliquid between two parallel plates with the e¤ects of thermal radiation. Impact

of chemical species with variable thickness of nanoliquid owing to rotating disk was examined
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by Hayat   [33]. This scrutiny exhibited that the radial, axial and azimuthal velocities were

enriched for intensi…cation in disk thickness parameter. The heat transport phenomenon on

unsteady Carreau magneto nano‡uid towards the cone packed subject to alloy nanomaterials

was discussed numerically by Raju   [34]. They reported that the heat transfer amount

heightened for the viscous variation parameter. Recently, Hayat   [35] investigated ‡uid ‡ow

of magneto nanoliquid subject to nonlinear stretched surface. They analyzed that the pressure

and velocity …eld declined for power law index. The convective phenomenon in 34-water

nano‡uid subject to magnetic source was explored by Sheikholeslami   [36]. The behavior

of chemical reaction and non-linear radiation in swirling ‡ow in‡uenced by rough rotating disk

was scrutinized by Mustafa   [37] Irfan   [38] presented a new mathematical forming

for Maxwell nanomaterial with convective condition. Additionally, the aspects of MHD and

heat sink/source are engaged. They indicated that the temperature intensi…es for Brownian

and thermophoresis parameters. Hamid   [39] addressed numerically the aspects of acti-

vation energy on time-dependent Williamson nano‡uid ‡ow with the nanoparticles mass ‡ux

condition. They investigated that the heat transport amount over surface cylinder diminished

with escalating values of reaction rate parameter. The enactment of nonlinear radiative ‡ow of

suspended nanoparticles with melting vertical surface was studied by Mahanthesh   [40].

They established that the melting and moving parameters declined the drag force.

In recent times, hydrogen-fueled and hydro-carbon homogeneous/heterogeneous micro re-

actors have been the attention of forceful exertions for an impartially wide-ranging assortment

of moveable constructions of energy with established energy compactness considerably sophisti-

cated than those of the advanced Li-ion batteries. The solicitations of micro reactors assortment

from catalytic micro reactors recycled for the steam revolutionizing of hydrocarbon fuel in little

and high-temperature energy chambers and to micro-scale heat apparatuses, in which a catalytic

micro combustor is recycled for straight chemical-to-thermal energy exchange. In furthermost

cases, reinforced moral metallic catalysts are engaged owing to their extraordinary biochemical

studies on the subject of chemical reaction have attained uninterrupted thoughtfulness from

the modern technologists and engineers. The intrinsic way of a chemical reaction happens if

two or more reactants yield a product. The aspects of chemical reactions are noteworthy in

various developments due to their utilization in numerous techniques like atmospheric ‡ows,

10



hydrometallurgical diligence, mutilation of crops, fabrication of polymer and porcelains, fog

materialization and dispersal. The homogeneous and heterogeneous reactions are two catego-

rization of the chemical processes. This discrepancy is interrelated to the circumstance that

whether they arise in liquid substance or transpire in some catalytic exteriors. A homogeneous

process occurs consistently in the entire certain phase, whereas the heterogeneous process pro-

ceeds in a circumscribed region or inside the phase boundary. The collaboration between the

heterogeneous and homogeneous reactions is very problematic containing the fabrication and

depletion of reactant sorts at diverse amounts both inside the liquid and on the exteriors cat-

alytic. Apart from in the manifestation of a catalyst, numerous reactions have the aptitude to

transfer gradually or not at all. For the exploration of homogeneous-heterogeneous processes

on the ‡ow of viscous liquids, Merkin [41] proposed an isothermal relation. This scrutiny

exposes that because of the surface retort this utilization is dominant. Further, by consid-

ering both sorts of the identical di¤usivities, Chaudhry and Merkin [42] conferred the assets

of homogeneous-heterogeneous reactions in a viscous liquid. Flow scrutiny of the stagnation

region with the stimulus of heterogeneous-homogeneous reactions was explored by Xu [43]. He

reported multiple solutions numerically via hysteresis bifurcation approach and showed that

the Prandtl number and homogeneous reaction parameter were not the reasons to produce

multiple solutions. The MHD ‡ow of a micropolar liquid over a curved stretched surface with

heterogeneous-homogeneous reaction was reported by Hayat   [44]. They noted that the

impact of heterogeneous and homogeneous response is quite opposite on the concentration …eld.

In diverse models, a few studies for ‡ow with heterogenous/homogeneous reactions were pointed

out via references ([45¡ 50]).

Recently, combining energetic liquids with heat transfer have been unique, worthwhile sub-

ject owing to their countless methodological and systematic solicitations. With the intention

to attain the superiority of the product it is documented that the amount of cooling is note-

worthy. For instance, cut-glass foodstu¤s, gemstone developing, polymer dispensation, crust of

cords, purify- caution of lique…ed metals and canvas material, microelectronics, transports, pa-

per productions, copper wires thinning and medical uses (conduction of heat in the muscles and

medication targeting) etc. The heat transport mechanism transpires when the temperature of

the body or di¤erent quantities of body is changed. This procedure has enormous solicitations
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in power cohort, heat conduction in nerves, nuclear synthesis and countless industrial arenas.

The features of heat transfer around 200 years ago, was …rst reported by Fourier [51], which is

the best heat conduction model to contribute an information to understand the mechanism of

heated conversation in numerous circumstances. But, Fourier’s law is insu¢cient owing to the

circumstance of the initial disruption that can be controlled straightaway all over the system.

Afterwards, Cattaneo [52] established an amendment of Fourier’s law for heat transfer in an

obstinate form. By insertion of thermal relaxation time aspect to present the thermal inertia,

which is recognized as Maxwell–Cattaneo law, he reformed the Fourier’s law. By interchanging

time derivative with Oldroyd upper convected derivative this notion is additionally improved

by Christov [53] and entitled it as Cattaneo-Christov theory for heat ‡ux. For the scrutiny of

convective heat transport this model is precise worthwhile. For instance, Tibulle and Zampoli

[54] examined the uniqueness of Cattaneo-Christov heat ‡ux model for an incompressible ‡uid

‡ow. Analytical solution of 3 Maxwell ‡uid ‡ow escorting Cattaneo-Christov theory was in-

vestigated by Rubab and Mustafa [55]. The achieved results showed that for thermal relaxation

time parameter the penetration depth of temperature is a decline. Cattaneo-Christov heat ‡ux

model characteristics in three dimensional Burgers ‡uid were scrutinized by Khan and Khan

[56]. They observed that the temperature …eld was greater in the instance of Fourier’s law,

as associated to Cattaneo-Christov model. To see the impact of Cattaneo-Christov model on

generalized Burgers ‡uid, Waqas   [57] analyzed the characteristics of the heat ‡ux model

for generalized Burgers ‡uid in the existence of time-dependent thermal conductivity. The

homotopy analysis method (HAM) has been used for the convergent series solution of the gov-

erning equations in this investigation. Moreover, aspects of convection di¤usion with fractional

Cattaneo-Christov ‡ux were scrutinized by Liu [58]. Combined heat and mass conduction re-

lations with upper-convected Maxwell nanoliquid in the manifestation of the slip velocity were

considered by Sui [59]. Cattaneo–Christov double di¤usion in Oldroyd-B ‡uid ‡ow in the rotat-

ing frame with variable conductivity was reported by Khan [60]. Mustafa   [61] scrutinized

the theory of upgraded heat ‡ux relation in Maxwell liquids with the aspect of variable con-

ductivity in rotating frame analytically. They pointed out that owing to the insertion of elastic

properties the hydrodynamic boundary layer turned out to be thinner. Furthermore, Ali and

Sandeep [62] reported numerically, the impact of the improved heat ‡ux theory for radiative
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‡ow of magnetite Casson-ferro‡uid. These upshots speci…ed that thermal relaxation parameter

e¢ciently augmented the local Nusselt number and heat transfer enactment is extraordinary

towards ‡ow past a wedge when related to ‡ow towards plate/cone. Dogonchi and Ganji [63]

investigated the combined features of thermal radiation and MHD for nano‡uid between paral-

lel plates by utilizing the theory of Cattaneo–Christov heat ‡ux. They stated that the Nusselt

number has revered impact for thermal relaxation and heat source parameters. In outlook of

these properties, numerous investigators formerly have scrutinized diverse rheological problems

with numerous methods and physical properties were reported in references ([64¡ 67]).

Recently, the convective phenomenon has improved noteworthy thoughtfulness of technol-

ogists and researchers owing to its proper in‡uence on heat and mass transport structures.

It plays an enthusiastic quantity in various built-up problems regarding both metallic and

polymers sheets, exchange of heat between e¢cient heat stowage beds and inaccessibility of

thermonuclear pitchers, irrigation systems, di¤usion of multifaceted chemicals in waterlogged

soil etc. The notion of surface convective boundary condition was instigated by Aziz [68]. He

deliberated the viscous ‡uid ‡ow towards a ‡at plate with surface convective condition. The

‡ow of an Eyring-Powell liquid with the combined impact of heat and mass convective condi-

tions was scrutinized by Hayat   [69]. They noted that the performance of thermal and

mass Biot numbers on both the temperature and concentration were analogous. Hayat  

[70] reported the properties of convective on magnetite ‡ow of 34 nanoparticles towards

curved surface. Numerous authors have considered the in‡uence of these conditions in the

diverse ‡ow geometries with diverse aspects [71 72].

In the hurried universal evolution of science and expertise, augmenting the pro…ciency of

energy transfer in addition to tradable energy is pretense novel challenge. Solar energy from

side to side insigni…cant conservational bearing consequently o¤ers a solution. Solar in‡uence

is measured an expected tactic of attaining water, heat and voltage from the nature. Solar

energy is considered one of the supreme causes of renewable energy which forms energy for

billions of years. Although, consuming progressive resource with enhanced assets is a standout

among one of the supreme broadly implemented methodologies of heat transfer improvement.

Whereas the customary heat transfer ‡uids, for example engine oil, water or ethylene glycol,

have powerless to meet the exceptional necessities such as micro preservation and solid heat
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transfer strength. Solar supremacy is measured essential to yield electrical energy and heat from

nature. Moreover, the thermal radiative transportation has abundant signi…cance in various

manufacturing applications resembling solar power antennas, warming and freezing cavities, and

open water tanks and several other engineering and conservational developments. Beside this,

radiation from solar energy and the consequential solar energized properties such as breeze

and wave supremacy, etc. provide a description for utmost handy renewable energy that is

existing in the world. By exhausting the Rosseland estimation, Hossain   [73] scrutinized

natural convective ‡ow by a uniformly heated porous plate with e¤ects of thermal radiation.

Numerical exploration on MHD tangent hyperbolic liquid by a stretched surface was reported

by Akbar   [74]. Later on, the radiative ‡ow involving MHD nano‡uid by a stretched

surface was studied by Akbar   [75]. Hayat   [76] analyzed the partial slip mechanism

in MHD ‡ow of Cu-water nano‡uid due to a rotating disk. Additionally, viscous dissipation

and thermal radiation e¤ects are also deliberated. They established that for an escalation

in the nanoparticle volume fraction the heat transport rate boosted. The 3 radiative ‡ow of

Burgers ‡uid with the in‡uence of the thermophoresis particle was analyzed by Khan and Khan

[77]. Heat generation/absorption phenomenon was also carried out in this study. The MHD

radiative viscoelastic nanoliquid considering of stagnation region was scrutinized by Farooq 

 [78]. Additionally, radiation is taken to be nonlinear in the presence of convective heat

transport. It was observed that there is a substantial diminution in the velocity component and

its corresponding thickness of the momentum boundary layer with rising values of magnetic

parameter. Improvement in the analysis of numerous non-Newtonian liquids related to thermal

radiation can be reported in references ([79¡ 84]).

The operating liquid heat source or sink structures are precise vigorous in monitoring heat

exclusion from nuclear fuel debris, the heat transfer in the regions, underground disposal of

radioactive discarded material and exothermic chemical progressions and dissociating liquids in

packed-bed vessels. The heat source can arise in the form of a battery or coil. Khan   [85]

studied the impact of nanoparticles on 3D ‡ow of an Oldroyd-B ‡uid over a stretched surface

in the presence of heat source/sink. Again, Khan   [86] scrutinized the characteristics of

nanoparticles for the steady ‡ow of Burgers ‡uid over a stretched surface by utilizing heat

source/sink. They concluded that the impact of heat generation/absorption is quite reverse on
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the temperature of Burgers nanoliquid. Moreover, Khan   [87] investigated the features

of chemical processes and heat source/sink for Maxwell ‡uid. In addition, signi…cant analysis

on heat source/sink can be comprehended in the references [88 89] and numerous explorations

therein.

The theory of variable conductivity in heat transport phenomenon has forceful worth in

numerous industrial and built-up applications. Undoubtedly variable thermal conductivity is

most worthwhile when allied with constant thermal conductivity as realistic conditions claim

variable properties. These assets ‡uctuate with temperature in linear mode for ‡uid metals

from 0± to 400± [90 91]. The mechanism of heat transportation in heaters, lather isola-

tions, containers, volumetric solar earpieces, porous ‡ames and …brous etc., is a specimen of

the conduction mechanism in which temperature ‡uctuates and therefore variation in thermal

conductivity is high. Aspects of variable conductivity on the Carreau and Eyring liquids with

nickel and dust nanoparticles were reported by Upadhya   [92] Their study expressed that

the amount of heat transfer is advanced in the mixture of the nickel for Eyring-Powell situa-

tion when associated with Carreau situation. Hayat   [93] studied the behavior of variable

conductivity on the peristalsis ‡ow of Johnson-Segalman ‡uid.

Recently, the mixed convection transport of non-Newtonian liquids via thermal and solute

strati…cations is a subject of abundant scrutiny owing to its widespread manifestation in the

engineering and industrial progressions. The heat dismissal into the atmosphere for instance,

streams, oceans and ponds; thermal energy storing structures like astrophysical pools etc., are

the numerous specimens of such solicitations. Strati…cation of liquid is a deposition or es-

tablishment of layers that happens because of temperature changes, concentration variation

or owing to the manifestation of diverse liquids. It is fascinating to scrutinize the impact of

double strati…cation when both heat and mass transfer are existing instantaneously. Moreover,

in the manifestation of gravity the density dissimilarities have strategic role in the mixing of

heterogeneous liquid and dynamics. For instance, thermal strati…cation in pools can condense

the fraternization of oxygen to the lowest water to become anxious through the achievement of

organic progressions. Similarly, the scrutiny of thermal strati…cation is essential for the solar

industry as greater energy competence can be attained with enhanced strati…cation. The mixed

convection thermally strati…ed ‡ow along a stretched cylinder was scrutinized by Mukhopad-

15



hyay and Ishak [94]. The properties of chemically reacting ‡ow and mixed convection on

nanoliquid towards the moving surface were analyzed by Mahanthesh   [95]. Imtiaz  

[96] considered the e¤ects of mixed convection on Casson nano‡uid due to stretched cylinder.

They concluded that for larger Casson liquid and magnetic parameter condensed the liquid

‡ow. Waqas   [97] explored the mutual e¤ects of thermal and mass strati…cation on mixed

convective Oldroyd-B nanoliquid. They reported that the higher thermal and solutal strati…ed

cause a decline in the temperature and concentration …elds, respectively. Moreover, current

endeavors on mixed convection as well as double strati…cations via diverse thoughtfulness can

be referred through references ([98¡ 100]).

The mass transport phenomenon with Arrhenius activation energy and chemical reaction

has been speci…ed enormously of thoughtfulness owing to its countless uses in simmer down

of atomic reacting, compounds invention, geothermal arti…cial lake and retrieval of thermal

lubricant. Activation energy can be precise as the least quantity of energy that is attainable to

stimulate particles or molecules to a place wherein they can materialize physical transport or

chemical reaction. For a reaction the activation energy can be strong-minded using the Arrhe-

nius equation that states how the rate constant ‡uctuations in temperature. These are classi…ed

by a chemical conversion and one or more products that have diverse e¤ects from the reactants.

It is crucial to create the reaction e¤ectual, energy in‡uences, discarded while exploiting the

yield and diminishing the quantity of reagents. Mostly, in the mass transport theories with

chemical reaction are actually problematic, and it can be analyzed in the exploitation of de-

velopment and reactant species at numerous rates inside the mass transport of nano‡uid. The

joint enactment of the Arrhenius activation energy with chemical reaction for radiative ‡ow

and heat transport to vertical pipe was reported by Bestman [101]. He acquired an analytical

elucidation via perturbation approach. To use the parameters control scheme in‡uence of ac-

tivation energy thermal extrusion built-up structure pro…ciency in Carreau nanomaterial was

explored by Hsiao [102]. He acquired a greater pro…ciency thermal energy extrusion structure

and endorsed the system’s economic pro…ciency. Mustafa   [103] addressed the properties of

magneto nano‡uid with Activation energy and buoyancy in‡uence. They scrutinized that the

performance of Brownian motion is quite con‡icting to thermophoretic force on nanoparticles

concentration. Khan   [104] numerically considered the aspects of entropy generation and
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activation energy with nanoparticles. Their study indicated that the radiative variable intensi-

…ed the thermal di¤usivity and rised the temperature. Zeeshan   [105] acquired analytical

elucidations for Couette-Poiseuille nano‡uid ‡ow by performing the aspects of convective and

activation energy. They studied that the nanoparticles concentration is directly proportionate

to activation energy with chemical reaction. In recent times, in‡uences are forti…ed by many

researchers to scrutinize the aspects of activation energy in diverse models [106 107].

1.3 Basic Relations of Fluid Mechanics

1.3.1 Conservation Relation of Mass

The mass neither be molded nor destroyed. This phenomenon is termed as mass conservation

relation or continuity equation. For time-dependent ‡ow the mass conservation relation can be

framed as



+r ¢
¡
V
¢
= 0 (1.1)

where  signi…es the ‡uid density, V the velocity …eld and  the time.

For the case of an incompressible ‡uid 
¡
 = constant

¢
 the relation (11) reduces to

r ¢V = 0 (1.2)

1.3.2 Conservation Relation of Linear Momentum

The complete momentum of the system remains conserved. This notion is established from the

Newton’s second law and acknowledged as conservation relation of momentum. Mathematically,

a = ¡r+div ¿ ¤ + B (1.3)

Here a
¡
= V

 + (V ¢r)V
¢
represents acceleration vector, in which ()

 is the time derivative,

 the pressure, ¿ ¤ the Cauchy stress tensor and B the body force per unit mass.
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1.3.3 Conservation Relation of Energy

The entire energy of the system remains constant and this notion is follow-on from the …rst law

of thermodynamics. Mathematically,

()



= ¿ ¤¢L¡ divq¡ divq (1.4)

where (   ) are the speci…c heat and temperature of ‡uid, respectively, (qq) the thermal and

radiative heat ‡uxes, respectively, which are characterized by Fourier’s and Stefan Boltzman

laws, respectively.

Mathematically, the energy ‡ux is termed as

q = ¡r (1.5)

where  represents the thermal conductivity of ‡uid.

1.3.4 Conservation Relation of Concentration

The entire concentration of the framework under estimation remains unvarying. This thought

is established on Fick’s second law and de…ned as




+V ¢r = ¡r ¢ j (1.6)

where  signi…es the ‡uid concentration, and j the normal mass ‡ux which is de…ned by Fick’s

…rst law, 

j = ¡r (1.7)

where  de…nes the mass di¤usivity.

Considering the overhead relation the equation of mass transport becomes




+V ¢r = r2 (1.8)

18



1.3.5 Conservation Relation of Energy for Nano‡uids

The energy relation with nanoparticles for an incompressible ‡uid is de…ned as

()



= r ¢ j ¡ divq (1.9)

where  de…nes the speci…c enthalpy for nanoparticles and (q j) the thermal and di¤usivity

mass ‡uxes of nanoparticles, respectively, and are de…ned by

q = ¡rT+ j (1.10)

j = ¡rC¡
rT

1
 (1.11)

in which  signi…es the mass density of nanoparticles and ( ) the thermophoretic and

Brownian di¤usion coe¢cients, respectively.

Hence, seeing Eqs. (110) and (111)  the nano‡uids energy equation (19) becomes




=

r2

()
+

Ã
()
()

!·
r ¢r

1
+r¢r

¸

 (1.12)

1.3.6 Conservation Relation of Concentration for Nano‡uids

The concentration relation with nanoparticles is delineated as




+V ¢r = ¡

1


r ¢ j (1.13)

Considering Eq. (111)  the overhead relation is speci…ed as




+V ¢r = r

2 +
r2T

1
 (1.14)

1.4 Generalized Fourier’s and Fick’s Laws

The energy and concentration relation without nanoparticles are de…ned as

()



= ¡divq (1.15)
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


= ¡divJ (1.16)

The Cattaeno-Christov double di¤usion theory which is the generalization of Fourier’s and

Fick’s laws are represented as

q+ 1

µ
q


+Vrq+ (rV)q¡ qrV

¶

= ¡r (1.17)

J+ 2

µ
J


+VrJ+ (rV)J¡ JrV

¶

= ¡r (1.18)

where (1 2) are the heat and mass ‡uxes relaxation times, respectively. For 1 = 2 = 0

Eqs. (117) and (118) are condensed to classical Fourier’s and Fick’s laws, respectively.

1.5 Homogeneous-Heterogeneous Reactions

For cubic autocatalysis homogeneous-heterogeneous chemical reactions where two chemical

species are allied in boundary layer ‡ow can be de…ned as

1 + 21 ! 31  = 1
2
1 (1.19)

1 ! 1 rate = 1 (1.20)

Here (11) signify the chemical species of concentration (1 1)  respectively, and  ( =  )

are the rate constants. For considering isothermal processes and far away from the sheet in

the ambient ‡uid a unvarying concentration 10 of reactant 1 is existing and there is no

auto catalyst 1 Under these norms the homogeneous-heterogeneous reaction equations for

time-dependent ‡ow are determined as

1


+ 
1


+ 
1


+
1


= 1

21
2

¡ 1
2
1 (1.21)

1


+ 
1


+ 
1


+
1


= 1

21
2

+ 1
2
1 (1.22)
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For the case of time independent
³

()
 = 0

´
overhead equations reduce to


1


+ 
1


+
1


= 1

21
2

¡ 1
2
1 (1.23)


1


+ 
1


+
1


= 1

21
2

+ 1
2
1 (1.24)

1.6 The Carreau Rheological Model

This thesis essentially highlights the study of ‡ow and heat transfer properties for three-

dimensional Carreau ‡uid model in‡uenced by bidirectional stretching surface. The Carreau

‡uid model has the subsequent relation of Cauchy stress tensor (¿ ¤).

¿ ¤= ¡I+(
¢
)A1 (1.25)

with

(
¢
) = (0 ¡ 1)[1 + (¡

¢
)2]

¡1
2 + 1 (1.26)

here ( I) denote the pressure and identity tensor, respectively, (0 1) the zero and the

in…nity shear-rate viscosities, respectively, (¡ ) the material time constant and power law

exponent, respectively,
³

¡1
0¡1

´
de…nes the slope in the power law region, A1 =rV+(rV)



the …rst Rivlin-Erickson tensor and the shear rate is given by

¢
 =

r
1

2
(A21) (1.27)

For considering the most practical cases, 0  1 and 1 is taken to be zero. Consequently,

in view of Eq. (126) Eq. (125) reduces to the following expression

¿ ¤= ¡I+0[1 + (¡
¢
)2]

¡1
2 A1 (1.28)

Note that the power law index range 0    1 describes the shear thinning or pseudoplastic

‡uids and   1 describes the shear thickening or dilatant ‡uids in Carreau ‡uid model.
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1.7 Solution Methodologies

To attain the elucidation of di¤erential equations has been a substance of greatest thought-

fulness among researchers because numerous real world problems are controlled by di¤erential

equations. It has ‡uctuate problematic to attain the exact elucidations of nonlinear di¢cul-

ties. Aimed at this trouble di¤erent researchers espoused numerous approaches for solutions of

nonlinear di¤erential equations. The crucial intention of this thesis is to elucidate the consid-

ered governing problems with the support of bvp4c, a Matlab’s boundary value solver and the

homotopy analysis method (HAM).

1.7.1 Numerical Procedure (bvp4c)

For the elucidation of two-point boundary value problems the Matlab function bvp4c [108] has

been utilized. A …nite di¤erence collocation scheme has been worked behind this development

and make use of 3-stage Labatto IIIa formula. For instance, the BVPs are more problematical

when compared to IVPs. In this concerns numerous solver procedures fail for the solutions of

unknown parameters. The bvp4c is an e¤ectual method to solve BVPs which is forth order

accurate. To disclose the behavior of preferred solution initial guesses are requisite which

satisfying the suggested boundary conditions.

1.7.2 Homotopy Analysis Method (HAM)

In 1992, Liao [109] was the …rst who wished-for the homotopy analysis method (HAM) in at-

tention to elucidate the highly nonlinear di¤erential equations. For both strong/week nonlinear

systems this approach is e¤ective. Homotopic method is an uninterrupted deformation or de-

viation of a function or expression. As allied to other techniques, this method has numerous

e¢cacies, i.e.

1. The homotopic tactic is autonomous of small/great parameters.

2. Assure the convergence of established equations easily.

3. For base function and linear operator, HAM provides remarkable independence.
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For numerous non-linear complications this methodology works e¢ciently for the establish-

ment of series solutions [110¡ 114].

Consider a non-linear di¤erential equation

N [ ()] = 0 (1.29)

Here N signi…es the non-linear operator,  the dependent function which is unknown and  the

dependent variable. According to [109] the homotopic equation is

(1¡ )L [̂(; )¡ 0()] = }N [̂(; )]  (1.30)

here (0()L) signify the initial guess and auxiliary linear operator, respectively,  (0 ·  · 1)

the embedding parameter and } 6= 0 the auxiliary parameter.

Moreover, when  = 0 and  = 1 then the aforestated equation is acknowledged as defor-

mation expression of zeroth order and …nal solution, respectively.

̂(; 0)¡ 0() = 0 and ̂(; 1)¡ () = 0 (1.31)

The solution ̂(; ) starts from initial guess (0()) and goes to the ending solution (())

with the conversion of  from 0 to 1 For the Taylor series correlated to  we have

̂(; ) = 0() +
1X

·=1

·()
· ·() =

1

·!

·̂(; )

·

¯
¯
¯
¯
=0

 (1.32)

The equation of ·th order is

L [·()¡ ·¡1()·] = }R· (·¡1)  (1.33)

with

R· (·¡1) =
1

(·¡ 1)!

·¡1̂(; )

·¡1

¯
¯
¯
¯
=0

 (1.34)

· =

8
<

:

0 · · 1

1 ·  1
(1.35)
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By executing a suitable software like MATHEMATICA/MAPLE the solution of equations can

be attained. The series will converge at  = 1 if appropriate initial approximation, auxiliary

variable and auxiliary linear operator are designated properly, thus,

̂() = 0() +
1X

·=1

·() (1.36)

1.8 Research Outlines

The notable anxiety of this thesis is to cover the gap in the obtainable prose by giving valuable

exertion on the ‡ow, heat and mass transport of three-dimensional Carreau ‡uid ‡ow in‡uenced

by a bidirectional stretching surface. To be sure, formerly there had been no obtainable works in

respect of the 3 ‡ows of the Carreau rheological model. The most essential contributions are

that a mathematical modelling is established and numerical and analytical studies have been

worked out. Twelve chapters are reported in this thesis which covers numerous characteristics

of Carreau ‡uid for time independent/dependent ‡ows. It is hoped that this work can help

to discover more ‡ow, heat and mass transfer characteristics of the Carreau ‡uid model. The

thesis is organized as follows:

Chapter 1 is a preliminary chapter, which accomplishes the incentive, literature analysis

and structure of the thesis.

Chapter 2 confers a new mathematical forming for three-dimensional ‡ow of Carreau

‡uid due to stretching of surface. Utilizing the standard boundary layer approximations the

governing equations of momentum are established. Additionally, numerically (bvp4c) and ana-

lytically (HAM) are worked out for the solutions of the equations. A brief discussion of solution

methodologies is also provided. The exertion in this chapter is published in ‘’Results in Physics,

7 (2017) 2692-2704”.

Chapter 3 is an extension of chapter 2 which scrutinizes the heat and mass transport

properties via convective phenomenon in Carreau ‡uid ‡ow. The Boungiono’s model has been

utilized which incorporate the stimulus of Brownian and thermophoresis nanoparticles. More-

over, heat sink/source and non linear radiative heat ‡ux are reported. The results are worked

out via bvp4c and HAM. For both shear thinning/thickening liquids several tables are struc-

tured and graphs are portrayed. The results of this chapter are published in ‘’The European
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Physical Journal Plus, (2017), doi: 10.1140/epjp/i2017-11803-3”.

Chapter 4 visualizes the outcomes of nanoparticles mass ‡ux theory in 3D radiative ‡ow

of Carreau nano‡uid. The behavior of MHD is also scrutinized. The bvp4c tactic has been

executed for the solution of ODEs. The substances of this chapter have been published in

‘’International Journal of Hydrogen Energy, 42 (2017) 22054-22065”.

Chapter 5 pictures a numerical considerations of thermal-solutal strati…cations and con-

vective conditions in 3D Carreau nano‡uid ‡ow. Additionally, the aspect of mixed convection,

magnetic …eld, thermal radiation, heat sink/source are reported. The altered ODEs are tackled

via bvp4c approach. The present analysis has been printed in ‘’Journal of the Brazilian Society

of Mechanical Sciences and Engineering, (2018), doi: 10.1007/s40430-018-1429-5”.

Chapter 6 reports the aspects of 3D Carreau nano‡uid for time-dependent ‡ow. The

nanoparticles conditions with the properties of variable conductivity and heat sink/source are

studied. Practically, nanoparticles condition is more signi…cant because nanoparticles amend

the situation accordingly on the boundaries. Suitable conversions alter the PDEs into ODEs

and then tackled numerically via bvp4c. The framework of this study has been published in

‘’Results in Physics, 7 (2017) 3315-3324”.

Chapter 7 explores the aspects of Arrhenius activation energy and nonlinear mixed convec-

tion in 3D unsteady Carreu nano‡uid ‡ow. Moreover, thermal radiation, magnetic properties,

chemical reaction and convective phenomenon are integrated. Apposite alterations are stim-

ulated to attain the ODEs structure and interpreted via bvp4c scheme. The endorsement of

the numerical outcomes is con…rmed by associating with HAM technique and former limiting

studies. The work stimulated in this chapter has been published in ‘’Journal of Physics and

Chemistry of Solids, 125 (2019) 141-152”.

Chapter 8 reports the impact of Cattaeno-Christove heat ‡ux theory and homogeneous-

heterogeneous reactions on Carreau ‡uid. The bvp4c approach has been executed to solve the

ODEs after appropriate conversions. The graphical veri…cation between bvp4c and HAM as

well as the tabular con…rmation of these two methods as well as with former works has been

established. The present exertion has been published in ‘’Pramana Journal of Physics, (2018),

doi:10.1007/s12043-018-1579-0”.

Chapter 9 scrutinizes the behavior of Cattaeno-Christov double di¤usion on 3D ‡ow of
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Carreau ‡uid. The variable conductivity is also enumerated. The conversions of PDEs into

ODEs via apposite alteration are made and then elucidated numerically bvp4c. HAM and

bvp4c comparison with earlier exertion is presented. The breakdown reported here has been

published in ‘’Journal of the Brazilian Society of Mechanical Sciences and Engineering, (2018),

doi: 10.1007/s40430-018-1498-5”.

Chapter 10 examines the properties of homogeneous-heterogeneous reactions for time-

dependent 3D ‡ow of Carreau ‡uid. The characteristics of non-linear thermal radiation, mag-

netic impact and the heat sink/source with convective condition are integrated. The modeled

problem is numerically solved through bvp4c. To visualize the properties of in‡uential consider-

ation graphs are depicted and tables are structured. Additionally, HAM and bvp4c assessments

are provided to authenticate the present outcomes as well as with previous e¤ort. The sub-

stances of this e¤ort have been published in ‘’Journal of the Brazilian Society of Mechanical

Sciences and Engineering, (2018), doi:10.1007/s40430-018-0964-4”.

Chapter 11 summarizes the exertion executed in this thesis. Moreover, the recommenda-

tions are speci…ed for extending this exertion for possible forthcoming research.

26



Chapter 2

Mathematical Modeling for

Three-Dimensional Carreau Fluid

Flow with Nonlinear Radiative Heat

Flux

The forthright anxiety of this chapter is to establish a new mathematical formulation for three-

dimensional Carreau ‡uid ‡ow. The ‡ow is incompressible and in‡uenced by a bidirectional

stretched surface. Additionally, we scrutinized the heat transport properties of the ‡ow …eld.

The Carreau liquid model is the generalization of linear materials which reveal the aspects of

shear thinning (  1) and shear thickening (  1) liquids. The heat transfer phenomenon is

inspected by utilizing the non-linear thermal radiation and convective surface boundary con-

dition. The boundary layer equations of 3D Carreau ‡uid are established by means of usual

boundary layer approximations. The governing set of partial di¤erential equations (PDEs) is

rendered into coupled non-linear ordinary di¤erential equations (ODEs) via appropriate trans-

formations. Numerical solutions are computed for the resulting non-linear ODEs by employing

an e¤ective numerical scheme namely bvp4c function in Matlab. Features of numerous sundry

thermophysical parameters on the liquid velocity, temperature, skin friction and Nusselt number

are explored and discussed in detail. The present results reveal that the liquid velocity declines
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for shear thinning liquid (  1) for the larger values of ratio of stretching rates parameter

() and for shear thickening liquid (  1) con‡icting behavior is detected. It is also remarked

that thermal radiation parameter () is an augmenting function of temperature distribution

on both situations. To comprehend the legitimacy of numerical results a comparison between

bvp4c results with the analytical results obtained by the homotopy analysis method (HAM) is

also made in this study and alleged an admirable agreement. Furthermore, authentication of

numerical outcomes is achieved via benchmarking with previously reported limiting cases and

we generally found a splendid correlation with these results.

2.1 Development of Physical Model

We considered generalized Newtonian liquid that obeys the rheological features of Carreau ‡uid

model.

2.1.1 Governing Equations

The constitutive equations for (3) steady incompressible ‡ow of Carreau ‡uid in vectorial

form can be written as follows:

(Vr) =r¿ ¤ (2.1)

For 3 steady ‡ow, we seeks the velocity and Cauchy stress tensor given by Eq. (128) (cf.

Chapter 1) of the form

V = [(  ) (  ) (  )] ¿ ¤= ¿ ¤(  ) (2.2)

Now substituting Eq. (22) in Eq. (127) we have the following expression

¢
 =

2

4
2
¡



¢2
+ 2
³




´2
+ 2
¡



¢2

+
³


 +




´2
+
¡

 +




¢2
+
³


 +




´2

3

5

1
2

 (2.3)

Utilizing Eqs. (22) and (23) in Eq. (21) we have



µ


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+ 
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¶
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 (2.4)
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where the stress components are de…ned to be

¿ ¤ = 0[1 + (¡
¢
)2]
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Invoking overhead equations into Eqs (24) ¡ (26)  a straightforward calculation yields the

following governing equations
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2

2

4
2
¡



¢2
+ 2
³




´2
+ 2
¡



¢2

+
³


 +




´2
+
¡

 +




¢2
+
³


 +




´2

3

5

1
2

1

C
C
A

3

7
7
5

+0



2

6
6
4
¡
2



¢

0

B
B
@1 + ¡

2

2

4
2
¡



¢2
+ 2
³




´2
+ 2
¡



¢2

+
³


 +




´2
+
¡

 +




¢2
+
³


 +




´2

3

5

1
2

1

C
C
A

3

7
7
5  (2.15)

For three-dimensional ‡ow the standard boundary layer estimates      and  are of

order 1, whereas the order of ,  and ¡ are  Consequently, we obtain the following boundary

layer equations for the steady 3D ‡ow of Carreau ‡uid


 +  

 + 
 = ¡

1



 +  2

2

h
1 + ¡2

¡



¢2i
¡1
2

+
¡



¢



h
1 + ¡2

¡



¢2i
¡1
2

 (2.16)

30




 +  

 + 
 = ¡

1



 +  2

2

h
1 + ¡2

¡



¢2
i¡1

2

+
¡



¢



h
1 + ¡2

¡



¢2i
¡1
2

 (2.17)

0 = ¡
1






 (2.18)

where 
³
= 0



´
is the kinematic viscosity.

2.2 Description of the Problem

Let report the steady 3 ‡ow of a Carreau ‡uid persuaded by a bidirectional stretched surface.

The sheet is stretched with linear velocities  =  and  = , where  and  are positive

constants relating to stretching speed. The ¡ and ¡axes are concentrated along the contin-

uous stretching sheet,  the coordinate restrained perpendicular to it and the ‡ow existence

restricted in the domain   0 as depicted in …gure 21. Additionally, the hot liquid below the

sheet with temperature  consumed to reform the temperature of the sheet by convective heat

transfer approach, which brings a heat conversion coe¢cient  . Also consequence of viscous

dissipation is deserted.

Execution of the overhead assumptions in attention the governing equations for Carreau

‡uid are

31



Figure 2.1: Flow con…guration and coordinates system.




+




+




= 0 (2.19)


 +  

 +
 =  2

2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2 

h
1 + ¡2

¡



¢2i
¡3
2

 (2.20)
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
 +  

 + 
 =  2

2

h
1 + ¡2

¡



¢2
i¡1

2

+(¡ 1)¡2 

h
1 + ¡2

¡



¢2i
¡3
2

 (2.21)





+ 




+




= 1

2

2
¡

1

()




 (2.22)

in which 1 denotes the thermal di¤usivity.

The resultant boundary conditions are

 = () =   = () =   = 0 ¡  
 =  [ ¡  ] at  = 0 (2.23)

! 0  ! 0  ! 1 as  !1 (2.24)

On the behalf of non-linear radiation, we employ the Rosseland approximation, the radiative

heat ‡ux  is simpli…ed as

 = ¡
4¤

3¤




4

= ¡
16¤ 3

3¤
2

2
 (2.25)

in which (¤ ¤) are the Stefan Boltzmann constant and mean absorption coe¢cient.

Using the above expression in Eq. (222) we have the following resultant energy equation





+ 




+




= 1

2

2
+

16¤

3¤( )





µ

 3
2

2

¶

 (2.26)

2.2.1 Appropriate Conversions

Let we de…ne

 =  0()  = 0()  = ¡
p
[() + ()]

 () = ¡1
¡1

  = 
p


  (2.27)

By employing the above conversions, the incompressibility condition (219) is substantiated

identically and Eqs. (220) (221) and (226) with boundary conditions (223) and (224) are
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condensed into the subsequent form

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + ) = 0 (2.28)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 02 + 00( + ) = 0 (2.29)




[f1 +(1 + ( ¡ 1))

3g0] + Pr( + )0 = 0 (2.30)

(0) = 0 (0) = 0  0(0) = 1 0(0) =  0(0) = ¡1[1¡ (0)] (2.31)

 0 ! 0 0 ! 0  ! 0 as !1 (2.32)

In the above equations, 1

µ

=
q

¡232



¶

and 2

µ

=
q

¡232



¶

are the local Weissenberg

numbers, 

³
= 16¤ 31

3¤

´
the radiation parameter, 

³
=


1

´
the ratio of liquid temperature

to the ambient temperature, Pr
³
= 

1

´
the Prandtl number, 

¡
= 



¢
the ratio of stretching

rates parameter and 1 =
³




p



´
the Biot number.

It is exposed that for  = 0 reduces the equation of momentum into two dimensional case

( = 0) i.e.,

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00 = 0 (2.33)

Furthermore, it is noted that for  = 1 or 1 = 0 the above equation reduces to Newtonian

‡uid.

2.3 Engineering and Industrial Quantities of Interest

The essential physical quantities of foremost interests are ( ) the local skin friction

coe¢cients and () the local Nusselt number.
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2.3.1 The Skin Friction Coe¢cients

As  and  are in‡uential boundary layer features which are the dimensionless shear rate

at the wall i.e. ( = 0) along the ¡ and ¡ directions, respectively. Thus

 =

1
2

2


and  =

1
2

2


 (2.34)

The dimensionless form of the above expressions can be written as

1
2Re

1
2
 =  00(0)[1 +21

002]
¡1
2  (2.35)

1
2

³



´
Re

1
2
 = 00(0)[1 +22

002]
¡1
2  (2.36)

2.3.2 The Local Nusselt Number

Since  gives the rate of heat transfer at the wall and is de…ned as

 = ¡


( ¡ 1)

µ




¶¯
¯
¯
¯
=0

+


 ( ¡ 1)
 (2.37)

The dimensionless variable, we have

Re
¡1
2

  = ¡[1 +f1 + ( ¡ 1)(0)g
3]0 (0)  (2.38)

in which Re =
()

 is the local Reynolds number.

2.4 Solution Methodologies

2.4.1 Numerical Scheme

The computation of numerical scheme is established for nonlinear ODEs (228) ¡ (230) with

boundary conditions (231) and (232) via bvp4c procedure. To achieve this objective, we

modify Eqs. (228)¡ (232) into …rst order di¤erential structures as follows:
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 = 1  0 = 2  00 = 3  000 = 1 (2.39)

 = 4 0 = 5 00 = 6 000 = 2 (2.40)

 = 7 0 = 8 00 = 3 (2.41)

1 =
¡(1+4)3+22

1
 1 =

¡
1 + 21

2
3) ¤ (1 +21

2
3

¢¡3
2  (2.42)

2 =
¡(1+4)6+25

2
 2 =

¡
1 + 22

2
6) ¤ (1 +22

2
6

¢¡3
2  (2.43)

3 =
¡
1 +(1 + ( ¡ 1)7)

3
¢
 (2.44)

1 (0) = 0 2 (0) = 1 2 (1) = 0 (2.45)

4 (0) = 0 5 (0) =  5 (1) = 0 (2.46)

8 (0) + 1(1¡ 7(0)) = 0 7 (1) = 0 (2.47)

2.4.2 Homotopy Aanalysis Method (HAM)

The ODEs (227)¡ (229) with boundary conditions (230) are solved analytically, by utilizing

the homotopic algorithm (HAM). The 0 ()  0 () and 0 () are initial guesses and L , L

and L are the auxiliary linear operators which are given below:

0 () = 1¡ ¡ 0 () = 
£
1¡ ¡

¤
 0 () =

1
1 + 1

¡ (2.48)

L [ ()] =

µ
3

3
¡





¶

 L [ ()] =

µ
3

3
¡





¶

 L [ ()] =

µ
2

2
¡ 1

¶

 (2.49)

The overhead operators satisfying the following properties

L

£
¤1 +¤2

 +¤3 exp 
¡
¤
= 0 (2.50)

L

£
¤4 +¤5

 +¤6 exp 
¡
¤
= 0 (2.51)

L

£
¤7

 +¤8 exp 
¡
¤
= 0 (2.52)

here ¤ ( = 1¡ 8) are the constant values.
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The deformation problems of zeroth-order

The zeroth order deformation problems are de…ned as follows:

(1¡ )L

h
̂ ( )¡ 0 ()

i
¡ }N

h
̂ ( )  ̂ ( )  ̂ ( )  ̂ ( )

i
= 0 (2.53)

(1¡ )L [̂ ( )¡ 0 ()]¡ }N

h
̂ ( )  ̂ ( )  ̂ ( )  ̂ ( )

i
= 0 (2.54)

(1¡ )L

h
̂ ( )¡ 0 ()

i
¡ }N

h
̂ ( )  ̂ ( )  ̂ ( )  ̂ ( )

i
= 0 (2.55)

̂ (0 ) = 0
̂ ( )



¯
¯
¯
¯
¯
=0

= 1
̂ ( )



¯
¯
¯
¯
¯
!1

= 0 (2.56)

̂ (0 ) = 0
̂ ( )



¯
¯
¯
¯
=0

= 
̂ ( )



¯
¯
¯
¯
!1

= 0 (2.57)

̂
0
(0 ) = ¡1[1¡ ̂(0 )] ̂ ( )

¯
¯
¯
!1

= 0 (2.58)

The non-linear operators N  N, and N are

N

h
̂ (; )  ̂ (; )  ̂ (; )

i
=

2

4

Ã

1 +21
2̂( )

2

!¡3
2
Ã

1 + 21
2̂( )

2

!3

5 3̂( )

3

+

Ã
2̂( )

2

!
³
̂ + ̂

´
¡

Ã
̂( )



!2

 (2.59)

N

h
̂ (; )  ̂ (; )  ̂ (; )

i
=

µ

1 +22
2̂( )

2

¶¡3
2
µ

1 + 22
2̂( )

2

¶
3̂( )

3

¡

µ
̂( )



¶2
+

2̂( )

2

³
̂ + ̂

´
 (2.60)

N

h
̂ (; )  ̂ (; )  ̂ (; )

i
=





"

f1 + (1 + ( ¡ 1) )
3g

2̂( )

2

#

+Pr
³
̂ + ̂

´ ̂( )




(2.61)

For  = 0 and  = 1 we have

̂(; 0) = 0() ̂(; 1) = () (2.62)
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̂(; 0) = 0() ̂(; 1) = () (2.63)

̂(; 0) = 0() ̂(; 1) = () (2.64)

Note that 0() 0() and 0() approach () () and () respectively, when  has variation

from 0 to 1. According to Taylor series, we have

̂ ( ) = 0 () +
1X

·=1

· () 
· · () =

1

·!

· ( )

·

¯
¯
¯
¯
=0

 (2.65)

̂ ( ) = 0 () +
1X

·=1

· () 
· · () =

1

·!

· ( )

·

¯
¯
¯
¯
=0

 (2.66)

̂ ( ) = 0 () +
1X

·=1

· () 
· · () =

1

·!

· ( )

·

¯
¯
¯
¯
=0

 (2.67)

The value of }  } and } are preferred in such a tactic that the series (264) ¡ (266) are

convergent at  = 1 and hence

 () = 0 () +
1X

·=1

· ()  (2.68)

 () = 0 () +
1X

·=1

· ()  (2.69)

 () = 0 () +
1X

·=1

· ()  (2.70)

The deformation problems of · order

The deformation problems of · order are of the form

L [· ()¡ ··¡1 ()]¡ }R

· () = 0 (2.71)

L [· ()¡ ··¡1 ()]¡ }R

· () = 0 (2.72)

L [· ()¡ ··¡1 ()]¡ }R

· () = 0 (2.73)
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· (0) = 0
· ()



¯
¯
¯
¯
=0

= 0
· ()



¯
¯
¯
¯
!1

= 0 (2.74)

· (0) = 0
· ()



¯
¯
¯
¯
=0

= 0
· ()



¯
¯
¯
¯
!1

= 0 (2.75)

0·(0)¡ 1·(0) = ·(1) = 0 (2.76)

where

· =

8
<

:

0; · 6 1

1; ·  1
(2.77)

R
· () =

·¡1X

̧=0

 00·¡1¡̧(̧ + ̧)¡
·¡1X

̧=0

 0·¡1¡̧
0
̧ + () (2.78)

R
· () =

·¡1X

̧=0

00·¡1¡̧(̧ + ̧)¡
·¡1X

̧=0

0·¡1¡̧
0
̧ + () (2.79)

R
· () = (1 +)

00
·¡1 () + ( ¡ 1)

3P·¡1
̧=0 ·¡1¡̧

P̧
=0 ̧¡

P
=0 ¡

00


+3 ( ¡ 1)
2P·¡1

̧=0 ·¡1¡̧
P̧

=0 ̧¡
00
 + 3 ( ¡ 1)

P·¡1
̧=0 ·¡1¡̧

00
̧

+3 ( ¡ 1)
P·¡1

=0 
0
·¡1¡̧

0
̧ + 6 ( ¡ 1)

2P·¡1
̧=0 ·¡1¡̧

P̧
=0 

0
̧¡

0


+3 ( ¡ 1)
3P·¡1

̧=0 ·¡1¡̧
P̧

=0 ̧¡
P

=0 
0
¡

0


+Pr
P·¡1

̧=0 (·¡1¡̧ + ·¡1¡̧) 
0
̧ (2.80)

where

 () =

8
>><

>>:

=  000·¡1  = 1

=  000·¡1 + 321

·¡1X

̧=0

 000·¡1¡̧

̧X

=0

 00̧¡ 
00
   = 3

(2.81)

() =

8
>><

>>:

= 000·¡1  = 1

= 000·¡1 + 322

·¡1X

̧=0

000·¡1¡̧

̧X

=0

00̧¡ 
00
   = 3

(2.82)
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The general solutions are

· () = ¤·() +¤1 +¤2
 +¤3

¡ (2.83)

· () = ¤·() +¤4 +¤5
 +¤6

¡ (2.84)

· () = ¤·() +¤7
 +¤8

¡ (2.85)

where ¤·, 
¤
· and ¤· denote the particular solutions and the constants ¤ ( = 1 ¡ 8) can be

attained by utilizing Eqs. (274)¡ (276) They are given by

¤3 =
¤()



¯
¯
¯
=0

 ¤1 = ¡¤3 ¡ ¤(0) ¤6 =
¤()



¯
¯
¯
=0

 ¤4 = ¡¤6 ¡ ¤(0)

¤8 =
1

1+1

·
¤()



¯
¯
¯
=0

¡ 1
¤(0)

¸



¤2 = ¤5 = ¤7 = 0 (2.86)

2.5 Graphical Illustration and Analysis

This fragment is intensive to explore the impact of numerous corporal parameters on the ve-

locities  0() and 0() and temperature () …elds. The combined set of Eqs. (227)¡ (229)

with boundary conditions (230) are elucidated numerically by means of the bvp4c technique.

Graphs are strategized for the values of distinct ‡ow parameter like the local Weissenberg num-

bers (12), velocity ratio parameter (), non-linear radiation parameter ()  tempera-

ture ratio parameter ()  Prandtl number (Pr) and thermal Biot number (1). Moreover, the

results for the skin-friction coe¢cients

µ
1
2Re

1
2
 

1
2

³



´
Re

1
2


¶

and local Nusselt number
µ

Re
¡ 1
2

 

¶

are also tabulated and deliberated in details.

Figures 22(a¡ d) are strategic to perceive the behavior of local Weissenberg number

(1) on velocity components  0() and 0() for the instance of (  1) and (  1). From

these sketches, it is established that intensifying values of 1 decline the velocity component

 0() for shear thinning circumstance, whereas an opposed behavior is identi…ed for 0().

Correspondingly, instead of this, it is also distinguished that for shear thickening ‡uid the

increase in value of1 augments the ‡uid velocity  0() and its related thickener of boundary
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layer and it diminishes the ‡uid velocity 0() for enlarging values of 1 as displayed in

…gures 22(b) and 22(d). Physically, 1 is the relation of relaxation time of the ‡uid

and a certain process in which time growths the viscosity of liquid. Subsequently, there is a

decline in the liquid velocity. Moreover, the boundary layer thickness is thinner for escalating

values of 1 for  = 05 while it augments for  = 15. Figures 23(a¡ d) are schemed to

recognize the performance of local Weissenberg number (2) on  0() and 0() for  = 05

and  = 15. From these plots quite opposed behaviors are identi…ed for the augmented value of

2. An increase in the value of 2 enhances the velocity component 
0() and declines the

velocity component 0() for shear thinning liquid. While, di¤ering behavior is being noted for

shear thickening liquid. Figures 24(a¡ d) are plotted to scrutinize the e¤ects of the ratio of

stretching rates () for ( = 05) and ( = 15) on  0() and 0() respectively. It is illustrated

from these graphs that the velocity component  0() and associated momentum boundary

layer thickness decline for the augmented value of  while the inverse trend is observed for

0(). Physically,  is the relation of stretching in ¡direction to the stretching in ¡direction.

As we enhance  the velocity in ¡direction boosts up when compared with the velocity in

¡direction.

The impact of local Weissenberg numbers (12) on () is demonstrated through

…gures 25(a¡ d). It is clear from these sketches that the higher values of 1 augment the

temperature and associated thermal boundary layer thickness for (  1) and opposite behav-

ior is observed for (  1). The results are more pronounced for the shear thickening liquid.

Physically, 1 and 2 are the ratio of viscous to the elastic forces, so intensifying values of

1 cause an augmentation in the liquid viscosity. Therefore, ‡ow be…ts more resistive and

consequently, () enhances for   1 and for   1 behavior is quite reversed. The impact

of radiation parameter () and temperature ratio parameters ( ) on () for both circum-

stances, i.e., (  1) and (  1) is depicted via …gures 26(ab) and 27(ab). These …gures

expose that the advanced assessment of the radiation and temperature ratio parameters have

the tendency to augment both the temperature and allied thermal boundary layer thickness.

Figures 27(ab) spectacle that for the amassed values of   the ‡uid temperature () is

greater than the ambient temperature (1), which raises the thermal state of the ‡uid and

the outcome is intensi…cation of (). Moreover, these …gures clue to the decision that the
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temperature and thermal boundary layer thickness are accumulative functions of  and  for

both cases. Figures 28(ab) and 29(ab) depict the discrepancy of the Biot number (1)

and Prandtl number (Pr) on the heat process for shear thinning and shear thickening ‡uids.

It is noticed from these sketches that the 1 is an intensifying function of () for the growing

value of 1. By physical point of assessment the advance values of 1 intensify the heat transfer

amount which clues higher temperature and its thermal boundary layer thickness pointedly

enhanced. Furthermore, the in‡uence of Prandtl number (Pr) is relatively opposing on ().

An escalation in Pr resembles to a reduction in thermal di¤usivity which thus, arises di¤erence

in the thermal features and diminutions the ‡uid temperature and its allied thermal boundary

layer thickness. The structure of () for diverse values of the ratio of stretching rates para-

meter () is established through …gures 210(ab). It is probable from these drafts that ()

diminishes for improving the values of  for both (  1) and (  1). An ampli…cation in 

resembles that the velocity in  ¡  clues than the velocity in  ¡  because

of the particles collision boosts which as an outcome diminishes the temperature of Carreau

liquid.

2.5.1 Graphical Comparison between bvp4c and HAM

From …gures 211(ab) to 214(ab), it is enthusiastic that the displayed plots of  0(), 0()

and () reveal a tremendous graphical settlement of the bvp4c technique with the homotopy

analysis method (HAM).

2.5.2 Tabular Representations

Tables 2.1 and 2.2 are established for numerical values of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

and
µ

Re
¡ 1
2

 

¶

for controlling parameter. The wall temperature gradient is improved for liquid

in both situations  ( = 05 15) for the augmented values of  and 1. Therefore, it

consequences in the increase of the heat transfer coe¢cient.
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2.5.3 Con…rmation of Numerical Outcomes

Tables 2.3 and 2.4 present the comparison of two dissimilar techniques, namely the homotopy

analysis method (HAM) and bvp4c for di¤erent values of ratio of stretching rates parameter

() with homotopy perturbation method (HPM) [115], exact solutions [115] and homotopy

analysis method (HAM) [116]. From these tables, a tremendous agreement is renowned in a

limiting sense. Additionally, the in‡uence of1 2 and  on

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

is addressed numerically (bvp4c) and analytically (HAM) through Table 2.5 with excellent

agreement. Table 2.6 numerically (bvp4c) and analytically (HAM) revealed the e¤ects of 

  1 and Pr on

µ

Re
¡ 1
2

 

¶

. Here both the techniques are remarkable in agreement.
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Figure 22(a¡ d): In‡uence of 1 on  0() and 0().
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Figure 23(a¡ d): In‡uence of 2 on  0() and 0().
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Figure 24(a¡ d): In‡uence of  on  0() and 0()
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Figure 25(a¡ d): In‡uence of 1 and 2 on ()
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Figure 26(ab): In‡uence of  on ()
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Figure 27(ab): In‡uence of  on ()
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Figure 28(ab): In‡uence of 1 on ().
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Figure 29(ab): In‡uence of Pr on ()
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Figure 210(ab): In‡uence of  on ()
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Figure 211(ab): Graphical assessment between bvp4c and HAM for1 on  0() and 0().
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Figure 212(ab): Graphical assessment between bvp4c and HAM for2 on  0() and 0().
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Figure 213(ab): Graphical assessment between bvp4c and HAM for  on  0() and 0()
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Figure 214(ab): Graphical assessment between bvp4c and HAM for Pr and  on ()
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Table 2.1: Outcomes of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

for di¤erent parameters when  =

05  = 12 1 = 03 and Pr = 10 are …xed.

1 2 

1
2Re

1
2


 = 05  = 15

1
2

³



´
 Re

1
2


 = 05  = 15

2.0 3.0 0.3 -1.581674 -3.344919 -0.255535 -0.345016

3.0 -1.856803 -5.271657 -0.250302 -0.350016

4.0 -2.073570 -7.485905 -0.246271 -0.353936

5.0 -2.253414 -9.936722 -0.343069 -0.357096

2.0 4.0 -1.580164 -3.350012 -0.270037 -0.406513

5.0 -1.578454 -3.354100 -0.286856 -0.476625

6.0 -1.576657 -3.358029 -0.304832 -0.553578

3.0 0.5 -1.647423 -3.594553 -0.577434 -1.013007

0.8 -1.728708 -3.986363 -1.379147 -3.485158

1.0 -1.775024 -4.258813 -2.114502 -6.702600
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Table 2.2: Outcomes of

µ

Re
¡ 1
2

 

¶

for di¤erent parameters    1 and Pr when

1 =2 = 20 and  = 03 are …xed.

  1 Pr
Re

¡ 1
2

 

 = 05  = 15

0.5 1.2 0.3 1.0 0.294477 0.304676

1.0 0.372689 0.388123

1.5 0.441783 0.462292

2.0 0.504335 0.529242

0.5 1.5 0.325703 0.335816

1.7 0.352423 0.362326

2.0 0.404464 0.413952

1.2 0.5 0.394499 0.413634

0.7 0.460224 0.486964

1.0 0.524613 0.560187

0.3 1.3 0.313658 0.322535

1.7 0.331121 0.338646

2.0 0.340662 0.347414
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Table 2.3: A comparison of ¡ 00(0) for numerous values of  when 1 = 2 = 0 and

 = 1



¡ 00(0)

Ariel(HPM) [115] Ariel(Exact) [115] Hayat  . [116]
Pr esent

(HAM)

Pr esent

(bvp4c)

0

01

02

03

04

05

06

07

08

09

10

1

1017027

1034587

1057470

1070529

1088662

1106797

1124882

1142879

1160762

1178511

1

1020264

1039497

1057956

1075788

1093095

1109946

1126397

1142488

1158253

117372

1

1020260

1039495

1057955

1075788

1093095

1109947

1126398

1142489

1158254

1173721

1

1020263

1039496

1057956

1075787

1093095

1109946

1126396

1142489

1158252

1173720

1

1020264

1039497

1057956

1075788

1093095

1109946

1126397

1142488

1158253

1173720
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Table 2.4: A comparison of ¡00(0) for numerous values of  when 1 = 2 = 0 and

 = 1



¡00(0)

Ariel(HPM) [115] Ariel(Exact) [115] Hayat  . [116]
Pr esent

(HAM)

Pr esent

(bvp4c)

0

01

02

03

04

05

06

07

08

09

10

00

0070399

0158231

0254347

0360599

0476290

0600833

0733730

0874551

1022922

1178511

00

0066847

0148737

0243360

0349209

0465205

0590529

0724532

0866683

1016539

1173721

00

0066847

0148737

0243359

0349209

0465205

0590529

0724532

0866683

1016540

1173722

00

0066848

0148737

0243360

0349208

0465207

0590528

0724530

0866682

1016540

1173721

00

00668485

01487382

02433607

03492087

04652046

05905229

07245312

08666822

1016538

1173720
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Table 2.5: A comparison of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

between bvp4c and HAM for

di¤erent parameters when  = 05  = 1 = 03, Pr = 07 and  = 3 are …xed.

1 2 

1
2Re

1
2


HAM bvp4c

1
2

³



´
 Re

1
2


HAM bvp4c

0.1 0.1 0.3 -1.06140 -1.061402 -0.243538 -0.2435388

0.2 -1.07126 -1.071256 -0.243930 -0.2439302

0.3 -1.08638 -1.086387 -0.244524 -0.2445312

0.4 -1.10543 -1.105454 -0.245261 -0.2452684

0.1 0.0 -1.06140 -1.061396 -0.243497 -0.2434975

0.2 -1.06142 -1.061421 -0.243662 -0.2436622

0.3 -1.06145 -1.061452 -0.243866 -0.2438667

0.1 0.4 -1.07942 -1.079422 -0.349508 -0.3495075

0.5 -1.09693 -1.096927 -0.465711 -0.4657115

0.6 -1.11399 -1.113986 -0.591380 -0.5913799
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Table 2.6: A comparison of

µ

Re
¡ 1
2

 

¶

between bvp4c and HAM for di¤erent parameters

when 1 =2 = 01  = 03 and  = 3 are …xed.

  1 Pr
Re

¡ 1
2

 

HAM bvp4c

0.5 0.3 0.3 0.7 0.219951 0.219914

0.6 0.224867 0.224881

0.7 0.229686 0.229695

0.8 0.234365 0.234373

0.5 0.0 0.210419 0.210411

0.5 0.228013 0.228010

1.0 0.256641 0.256622

0.3 0.5 0.282772 0.282752

0.7 0.324442 0.324437

1.0 0.366528 0.366523

0.3 1.0 0.245430 0.245432

1.3 0.263400 0.263400

1.5 0.272786 0.272796
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Chapter 3

In‡uence of Convective Conditions

in 3D Carreau Nano‡uid Flow

This chapter reports a mathematical relation for 3D forced convective heat and mass trans-

fer mechanisms of Carreau nanoliquid over a bidirectional stretched surface. Additionally, the

features of heat source/sink and non-linear thermal radiation are considered. The governing

non-linear PDEs are established and altered into a set of non-linear ODEs by utilizing the

suitable conversion. A numerical approach, namely bvp4c is adopted to resolve the resultant

equations. The achieved outcomes are schemed and conferred in detail for somatic parame-

ters. It is realized that amassed values of Brownian motion parameter () lead to enhance

the temperature of Carreau nanoliquid while quite con‡icting behavior is being noticed for the

concentration of Carreau nanoliquid. Moreover, it is also noted that the in‡uence of heat source

(  0) is relatively antithesis to heat sink (  0) parameter. However an analogous impact

is being identi…ed for thermal Biot number (1) on temperature and the concentration Biot

number (2) on concentration of Carreau nanoliquid for shear thinning/thickening liquids. Ad-

ditionally, an assessment between analytical technique, the homotopy analysis method (HAM)

and numerical scheme bvp4c is presented graphically, as well as in tabular form. From these

comparisons we initiate a splendid communication with these results.
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3.1 Description of the Problem

Here we scrutinize the steady 3D forced convective ‡ow of a Carreau nano‡uid over a bidirec-

tional stretched surface. The aspects of Brownian motion and thermophoresis particles are also

occupied in this description. The ‡ow is in‡uenced by stretching the surface in two adjacent

 and  directions with linear velocities ( ) = ( ) respectively, where  and  are pos-

itive constants and the ‡uid conquers the region   0. The heat transfer mechanism is also

considered subject to nonlinear thermal radiation and heat generation/absorption.

Under these norms the existing ‡ow problem of a Carreau nano‡uid can be written as




+




+




= 0 (3.1)
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The esulting boundary conditions of ‡ow problem are

 =   =   = 0 ¡  
 =  [ ¡  ] ¡


 = [ ¡] at  = 0(3.6)

! 0  ! 0  ! 1  ! 1 as  !1 (3.7)

Here  is the volume friction of nanoliquid,  the e¤ective heat capacity of nanoparticles to heat

capacity of the base liquid ratio , (  ) the Brownian and thermal di¤usion coe¢cients, re-

spectively, 1 the ambient concentration of the nanoliquid, 0 the heat source/sink coe¢cient,

 wall mass transport coe¢cient and  the liquid concentration near to the surface.

3.1.1 Appropriate Conversions

Let we consider

 =
 ¡1
 ¡1

 (3.8)

In the perception of overhead conversion and Eq. (227) (cf. Chapter 2), the condition of

incompressibility (31) is automatically satis…ed and Eqs. (32)¡ (37) reduce to

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + ) = 0 (3.9)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 02 + 00( + ) = 0 (3.10)




[f1 +(1 + ( ¡ 1))

3g0] + Pr( + )0 +Pr[
00 +

02] +Pr ] = 0 (3.11)

00 +Pr( + )0 +

µ




¶

00 = 0 (3.12)

(0) = 0 (0) = 0  0(0) = 1 0(0) = 

0(0) = ¡1(1¡ (0)) 0(0) = ¡2(1¡ (0)) (3.13)

 0 ! 0 0 ! 0 ! 0 ! 0 as !1 (3.14)

Here 

³
=

(¡1)


´
is the Brownian motion parameter, 

³
=

 (¡1)
1

´
the ther-

mophoresis parameter, 
³
= 0

()

´
the heat source (  0) and heat sink (  0) parameter,
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
³
= 1



´
the Lewis number and 2

³
= 



p



´
the mass Biot number. Moreover, 1

2    1 and  are the dimensionless parameters and are same as de…ned in chapter 2.

3.2 Engineering and Industrial Quantities of Interest

From the industrial and engineering point of view, the essential quantities of physical interest

are the skin friction coe¢cients, heat and mass transfer coe¢cients which may be de…ned by

the subsequent expressions.

3.2.1 The Skin Friction Coe¢cients

It is de…ned as

 =


1
2

2


,  =


1
2

2


 (3.15)

and in dimensionless form

1
2Re

1
2
 =  00(0)[1 +21

002(0)]
¡1
2  (3.16)

1
2

³



´
 Re

1
2
 = 00(0)[1 +22

002(0)]
¡1
2  (3.17)

3.2.2 The Local Nusselt and Sherwood Numbers

These are de…ned as

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

+


 ( ¡ 1)
  = ¡



( ¡1)





¯
¯
¯
¯
=0

 (3.18)

and the above quantities in the dimensionless expression are

Re
¡ 1
2

  = ¡[1 +f1 + ( ¡ 1)(0)g
3]0 (0)  Re

¡1
2

  = ¡0(0) (3.19)

62



3.3 Graphical Illustration and Analysis

To report the in‡uence of various inferential parameters on the temperature …eld  () and

concentration …eld  () of Carreau nanoliquid this part is focused. A set of combined nonlinear

ODEs (39) to (314) are interpreted numerically by employing bvp4v technique. For the values

of diverse ‡ow parameters graphs are depicted. Furthermore, the outcomes for the local Nusselt

number

µ

Re
¡ 1
2

 

¶

and Sherwood number

µ

Re
¡1
2

 

¶

are tabularized and discussed.

Figures 31(ab) and 32(ab) are portrayed to visualize the performance of Brownian

motion () and thermophoresis () parameters on nanoliquid temperature () for shear

thinning/thickening liquids. From these plots it is detected that both are augmenting functions

of temperature of Carreau liquid for rising value of  and . Physically,  depends on the

unsystematic motion of nanoparticles in the Carreau liquid. When  is augmented the unsys-

tematic gesture of the particles intensi…es which exaggerates the velocity of the nanoparticles.

Hence, () augments. Moreover,  is directly proportional to the di¤erence of temperature

between the wall and the reference temperature. In the ‡ow domain of the particulate struc-

ture, there is temperature gradient in hotter regions which causes small elements inclined to

isolated quicker. Consequently, the surface temperature of the nanoliquid and its thickness of

boundary layer are enhanced. Additionally, growing values of  physically means that the

smallest nanoparticles are pulled away from the warm surface to the cold surface. Therefore,

the higher number of small nanoparticles is dragged away from the warm surface due to which

concentration of the nanoliquid decline. Figures 33(ab) and 34(ab) are plotted to deter-

mine the features of thermal radiation parameter () and temperature ratio parameter ( )

on () for ( = 05) and ( = 15). It is noted that the temperature and its related thickness

of boundary layer enhance for the augmented values of  and  in both instances. The in-

creasing values of  formed much heat in working liquid which consequences augment ().

Figures 35(ab) and 36(ab) clarify the properties of heat sink/source parameter () on

the nanoparticles (). From these sketches it is established that the temperature of Carreau

nanoliquid and associated thermal boundary layer thickness decline when we rise the values of

  0; however, the con‡icting circumstance is being remarked for   0. Apparently in   0

phenomenon provides much heat to the liquid that corresponds to an increase in () for both

(  1) and (  1). The in‡uence of increasing values of the thermal Biot number (1) for
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shear thinning/thickening liquids on () is portrayed in …gure 37(ab). We can perceive

from these designs that augmenting behavior for enhancing values of 1 on () is detected.

Due to increase in 1 the convection of the surface rises and as a result an enhancement in the

liquid temperature and its allied thickness of the boundary layer occur.

Figures 38(ab) and 39(ab) are delineated to interpret the aspects of  and , re-

spectively on (). These displays reported that the concentration of the Carreau nanoliquid

and associated concentration boundary layer thickness diminish for the larger values of .

But, the higher  leads to an augmentation in () for both situations (  1) and (  1).

The in‡uence of higher values of the concentration Biot number (2) and Lewis number () on

() depicts the con‡icting impacts which are expressed in …gures 310(ab) and 311(ab).

An increase in 2 enhances the concentration of Carreau liquid, while it declines for . From

the physical point of assessment  is the inversely amount to the Brownian di¤usion coe¢cient

() owing to which a magni…cation in  produces a decline in di¤usion coe¢cient and hence,

() decays.

3.3.1 Graphical Comparison between bvp4c and HAM

Figures 312(ab) and 313(ab) are depicted to scrutinize the legitimacy of current results

on () through graphical illustrations and reveal a remarkable settlement of the bvp4c scheme

with homotopy analysis method (HAM).

3.3.2 Tabular Representations

The convergence of di¤erent ‡ow parameters on local Nusselt

µ

Re
¡ 1
2

 

¶

and local Sherwood
µ

Re
¡ 1
2

 

¶

for both ( = 05 15) are reported in Table 3.1. The heat and mass transport

rates decline for intensifying values of  for both situations (  1) and (  1) in Table 3.1,

while the in‡uence of amassed values of 2 on Re
¡ 1
2

 is quite reverse to Re
¡ 1
2

 .

3.3.3 Con…rmation of Numerical Outcomes

Table 3.2 is organized for

µ

Re
¡ 1
2

 

¶

and

µ

Re
¡ 1
2

 

¶

of two di¤erent schemes numerically

(bvp4c) and analytically (HAM). In this table a tremendous agreement is established between
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both techniques. Additionally, the validity of the numerical and analytical results are also

presented by assessment with former related prose and remarked an excellent settlement in

Tables 3.3 and 3.4.
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Figure 31(ab): In‡uence of  on ()
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Figure 32(ab): In‡uence of  on ()

66






(

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

We
1
= We

2
= Pr = 1.5,  = 

1
= 0.4,  = 0.1


2
= N

t
= 0.5, N

b
= 0.3, 

f
= 1.1, Le = 1.0

n = 0.5(a)

R
d
= 0.0, 0.3, 0.6, 0.9




(

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4
We

1
= We

2
= Pr = 1.5,  = 

1
= 0.4,  = 0.1


2
= N

t
= 0.5, N

b
= 0.3, 

f
= 1.1, Le = 1.0

n = 1.5(b)

R
d
= 0.0, 0.3, 0.6, 0.9

Figure 33(ab): In‡uence of  on ()
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Figure 35(ab): In‡uence of   0 on ()
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Figure 36(ab): In‡uence of   0 on ()
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Figure 37(ab): In‡uence of 1 on ()
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Figure 38(ab): In‡uence of  on ()
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Figure 39(ab): In‡uence of  on ()
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Figure 310(ab): In‡uence of 2 on ()

70






(

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5 We
1
= We

2
= Pr = 1.5,  = 

1
= 0.4,  = 0.1

R
d
= 

2
= N

t
= 0.5, N

b
= 0.3, 

f
= 1.1

Le = 0.8, 1.2, 1.6, 2.0

n = 0.5(a)




(

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5
We

1
= We

2
= Pr = 1.5,  = 

1
= 0.4,  = 0.1

R
d
= 

2
= N

t
= 0.5, N

b
= 0.3, 

f
= 1.1

Le = 0.8, 1.2, 1.6, 2.0

n = 1.5(b)

Figure 311(ab): In‡uence of  on ()
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Figure 312(ab): Graphical assessment between bvp4c and HAM for  and  on ()
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Figure 313(ab): Graphical assessment between bvp4c and HAM for 1 and Pr on ()
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Table 3.1: Outcomes of

µ

Re
¡ 1
2

  Re
¡ 1
2

 

¶

for di¤erent parameters when 1 =

2 = 15  = 1 = 04  = 05  = 11 are …xed.

   Pr 2 
Re

¡1
2

 

 = 05  = 15

Re
¡ 1
2

 

 = 05  = 15

0.5 0.3 0.1 1.5 0.5 1.0 0.341960 0.355985 0.249964 0.257590

0.6 0.338322 0.352647 0.237525 0.245339

0.7 0.334630 0.349260 0.225651 0.233611

0.8 0.330883 0.345823 0.214344 0.222408

0.5 0.4 0.338260 0.352554 0.268821 0.275984

0.5 0.334526 0.349089 0.280138 0.287025

0.6 0.330758 0.345591 0.287685 0.294387

0.3 0.0 0.366450 0.376012 0.239956 0.249322

0.2 0.303074 0.327126 0.264898 0.268906

0.3 0.213655 0.277479 0.296008 0.287032

0.1 1.2 0.318472 0.334126 0.227834 0.235484

1.4 0.334979 0.349493 0.243130 0.250807

1.6 0.348263 0.361847 0.256325 0.263875

1.5 0.7 0.340017 0.354120 0.307357 0.317713

0.9 0.338491 0.352645 0.351684 0.365050

1.0 0.337845 0.352018 0.370532 0.385135

0.5 0.8 0.342023 0.356046 0.220321 0.228760

1.1 0.342000 0.356019 0.261808 0.269075

1.3 0.342155 0.356154 0.281407 0.288046
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Table 3.2: A comparison of

µ

Re
¡ 1
2

 

¶

and

µ

Re
¡ 1
2

 

¶

between bvp4c and HAM for

di¤erent parameters when 1 = 2 =  = 05  = 04  = 11,  = 01 and  = 3 are

…xed.

  Pr 1 2 
Re

¡ 1
2

 

bvp4c HAM

Re
¡ 1
2

 

bvp4c HAM

0.2 0.3 1.5 0.3 0.3 1.0 0.305948 0.305959 0.209633 0.209637

0.3 0.304038 0.304044 0.201220 0.201222

0.4 0.302094 0.302103 0.193054 0.193052

0.5 0.300115 0.300122 0.185130 0.185111

0.2 0.1 0.309066 0.309069 0.173196 0.173163

0.2 0.307515 0.307514 0.200523 0.200517

0.4 0.304366 0.304366 0.214189 0.214189

0.3 1.4 0.301094 0.301095 0.206679 0.206681

1.7 0.314283 0.314288 0.214797 0.214788

2.0 0.324258 0.324252 0.221128 0.221090

1.5 0.1 0.130296 0.130298 0.219452 0.219449

0.2 0.229213 0.229214 0.213837 0.213841

0.4 0.366754 0.366757 0.206396 0.206392

0.3 0.2 0.307140 0.307149 0.151935 0.151942

0.4 0.304926 0.304945 0.258768 0.258776

0.5 0.304040 0.304052 0.301115 0.301111

0.3 0.7 0.305733 0.305746 0.190679 0.190708

0.8 0.305794 0.305800 0.198174 0.198188

1.2 0.218066 0.218049 0.306115 0.306117
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Table 3.3: A comparison of ¡ 00(0) in limiting sense when 1 =2 = 0 and  = 1 are

…xed.


¡ 00(0)

Wang [117] Liu and Anderson [118] Present (bvp4c) Present (HAM)

0.0 1 1 1 1

0.25 1.048813 1.048813 1.0488130 1.0488131

0.50 1.093097 1.093096 1.0930954 1.0930943

0.75 1.134485 1.134486 1.1344854 1.1344858

1.0 1.173720 1.173721 1.1737199 1.1737201

Table 3.4: A comparison of ¡00(0) in limiting sense when 1 =2 = 0 and  = 1 are

…xed.


¡00(0)

Wang [117] Liu and Anderson [118] Present(bvp4c) Present (HAM)

0.0 0 0 0 0

0.25 0.194564 0.194565 0.1945652 0.1945617

0.50 0.465205 0.465206 0.4652058 0.4652047

0.75 0.794622 0.794619 0.7946180 0.7946184

1.0 1.173720 1.173721 1.1737199 1.1737201
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Chapter 4

In‡uence of Thermal Radiation on

Magnetohydrodynamic 3D Flow of

Carreau Nano‡uid

This chapter investigates 3D radiative ‡ow of a magneto Carreau nano‡uid over a bidirectional

stretched surface. Additionally, the aspect of the nanoparticles mass ‡ux condition is occupied.

Practically, this recently recommended approach is more realistic where we assume that the

nanoparticle ‡ux is zero and nanoparticle fraction adjusts itself on the boundaries accordingly.

With this convincing and revised relation, the features of Buongiorno’s relation on 3D Carreau

liquid can be applied in a more e¤ective way. The appropriate transformations are employed

to alter the PDEs into ODEs and then tackled numerically by employing bvp4c scheme. The

numerous consequence of scheming parameters on the velocity components, temperature and

concentration …elds is portrayed graphically and deliberated in detail. The numerical outcomes

for local skin friction coe¢cients and the wall temperature gradient for nanoliquid are intended

and presented through tables. The outcomes conveyed here manifest that the impact of Brown-

ian motion parameter on the rate of heat transfer for nanoliquids becomes negligible for the

recently recommended revised relation. It is notable that the magnetic parameter () is a

diminishing function to the velocity components  0() and 0(), while it enhances the tem-

perature of Carreau liquid for both shear thinning/thickening liquids. Moreover, it is noted
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that the in‡uence of the Brownian motion () and thermophoresis parameter () on the

concentration of the Carreau nano‡uid is quite opposite. For authentication of the present

relation, the achieved results are distinguished with earlier research works in speci…c cases and

marvelous agreement has been noted.

4.1 Description of the Problem

Consider the steady 3D ‡ow of an electrical conducting forced convective Carreau nano‡uid

over a bidirectional stretched surface. The ‡ow is persuaded owing to stretching surface in two

horizontal ¡and ¡directions with velocity  =  and  =  respectively, where  and  are

stretching rates and the ‡uid ‡ow occupies the region in the domain   0. The magnetic …eld of

strength (0) is imposed parallel to ¡. The notion of induced magnetic and electric …elds

are insigni…cant considered here when compared to the applied magnetic …eld. This postulation

is e¤ective only for the insigni…cant magnetic Reynolds number. Moreover, the temperature of

the nanoliquid at the surface  is superior than temperature of nanoliquid distant from the

stretched surface. The Carreau nanoliquid relation in view of overhead declared assumptions

are given below:




+




+




= 0 (4.1)


 +  

 +
 =  2

2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2 

h
1 + ¡2

¡



¢2i
¡3
2
¡

2
0


 (4.2)


 +  

 + 
 =  2

2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2 

h
1 + ¡2

¡



¢2i
¡3
2
¡

2
0


 (4.3)





+ 




+




= 1

2

2
+ 

"









+



1

µ




¶2
#

¡
1

()




 (4.4)
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



+ 




+




= 

2

2
+



1

2

2
 (4.5)

The boundary conditions of the existing ‡ow problems are

 = () =   = () =   = 0

 =  

 +


1


 = 0 at  = 0 (4.6)

! 0  ! 0  ! 1  ! 1 as  !1 (4.7)

Here  is the electrical conductivity.

4.1.1 Appropriate Conversions

In view of dimensionless transformation variables

 () =
 ¡ 1
 ¡ 1

  =
 ¡1

1
 (4.8)

and Eq. (227) (cf. Chapter 2), the incompressibility condition is automatically satis…ed and

Eqs. (42)¡ (47) yield

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + )¡2 0 = 0 (4.9)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 02 + 00( + )¡20 = 0 (4.10)

(1 +) 
00 +Pr( + )0 +Pr[

00 +
02] = 0 (4.11)

00 +Pr( + )0 +

µ




¶

00 = 0 (4.12)

(0) = 0 (0) = 0  0(0) = 1 0(0) = 

(0) = 1 
0(0) +

0(0) = 0 (4.13)

 0 ! 0 0 ! 0 ! 0 ! 0 as !1 (4.14)
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Here, 

µ

=

r
2

0


¶

reports the magnetic parameter, 

³
1



´
the Brownian motion pa-

rameter and 

³
=  (¡1)

1

´
the thermophoresis parameter.

4.2 Engineering and Industrial Quantities of Interest

From the physical point of view, the quantities of industrial and engineering interest in materials

processing are the skin friction coe¢cients and heat transfer coe¢cient which may be de…ned

below.

4.2.1 The Skin Friction Coe¢cients

Let

 =

1
2

2


and  =

1
2

2


 (4.15)

and the dimensionless quantities of above expressions

1

2
Re

1
2
 =  00(0)[1 +21

002]
¡1
2  (4.16)

1

2

µ




¶

 Re
1
2
 = 00(0)[1 +22

002]
¡1
2  (4.17)

4.2.2 The local Nusselt number

Let

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

+


 ( ¡ 1)
 (4.18)

and in the dimensionless variable is

Re
¡ 1
2

  = ¡ (1 +) 
0 (0)  (4.19)

4.3 Graphical Illustration and Analysis

The foremost attention here is to inspect the features of nanoparticles mass ‡ux theory for 3D

magnetohydrodynamic (MHD) ‡ow of Carreau nano‡uid over a bidirectional stretching surface.

Widespread numerical computation, namely, bvp4c has been worked out for the exploration of
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the in‡uential parameters on the velocity components  0() and 0(), temperature () and

concentrations () …elds. The graphs are portrayed and the discrepancy of the local skin

friction coe¢cients

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

and the local Nusselt number

µ

Re
¡ 1
2

 

¶

are reported in tabular arrangement and deliberated in detail.

Figures 41(a¡ d) are plotted to visualize the characteristics of magnetic parameter ()

on the nanoliquid velocity components  0() and 0() for shear thinning and shear thickening

liquids. We perceived a diminishing behavior in the nanoliquid velocity pro…les and associated

momentum boundary layer thickness with growing values of  . Physically, this happens be-

cause of fact that the Lorentz force boosts up for higher values of which yields much struggle

to the ‡uid. Therefore, the complicity between the nanoparticles intensi…es. This phenomenon

reduces the associated momentum boundary layer. Therefore, the velocities of the nanoliquid

decline.

Figures 42(a¡ d) demonstrate the impact of local Weissenberg number (1) on the

nanoliquid temperature () and concentrations () pro…les. It is manifest from these …gures

that the nanoliquid temperature and concentration pro…les enhance with the augmented values

of 1 for ( = 05) while the reverse trend is observed for the ( = 15). Noticeably, 1 is

the relation of viscous to the elastic forces, so strengthening in the values of 1 reasons an

ampli…cation in the liquid viscosity. This consequence augments the temperature of Carreau

liquid for (  1) and reverse trend is detected for (  1). The properties of nanoliquid tem-

perature and concentration pro…les for distinct values of the ratio of stretching rates parameter

() are presented through …gures 43(a¡ d). It is estimated from these sketches that ()

and () decline with the boosted values of  for shear thinning and shear thickening liquids.

The augmented values of  the nanoliquid velocity in  ¡  leads, then the nanoliquid

velocity in  ¡  owing to the collision of the particles which result in a reduction in

the concentration …eld and concentration thickness of the boundary layer. Figures 44(a¡ d)

spectacle the impact of magnetic parameter () on the nanoliquid temperature and concentra-

tion pro…les for both ( = 05).and ( = 15). The nanoliquid temperature and concentration

pro…les decay when  intensi…ed. Physically, this is owing to the fact that the Lorentz force is

a resistive force which opposes the liquid motion due to which nanoliquid temperature pro…le

enhances. Figures 45(a¡ d) are drafted to deliberate the variations in the nanoliquid tem-
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perature and concentration distributions under the in‡uence of the radiation parameter ().

It can be reported from these sketches that the nanoliquid () and () enhance for higher

. Physically, by strengthening the  o¤ers more heat to the nanoliquid and subsequently,

the thickness of the thermal boundary layer is intensi…ed. Thus, the radiation plays a key

role in boosting the rate of heat transfer of the nanoliquid. Figures 46(a¡ d) are sketched

to interpret the aspects of thermophoresis parameter () on the nanoliquid temperature ()

and concentration () distributions. Here, the temperature and concentration of the nano-

liquid across the thickness of boundary layer rise with intensifying values of . Physically,

this is because of the fact that the di¤erence between the temperature of wall () and the

reference temperature (1) rise which intensify the nanoliquid temperature …eld. Moreover, in

the ‡ow domain of the particulate structure, there is a temperature gradient in hotter regions

which causes small elements incline to isolated quicker. Consequently, the surface temperature

of the nanoliquid and its thickness of boundary layer enhance. Additionally, growing values

of  physically means that the small nanoparticles are pulled away from the warm surface to

the cold surface. Therefore, the higher number of small nanoparticles is dragged away from

the warm surface due to which concentration of the nanoliquid declines. Figures 47(a¡ d)

demonstrate the domination of Prandtl number (Pr) on the nanoliquid temperature and con-

centration distributions. From these graphs we found that boosting values of Pr decline the

temperature and concentration distributions. The greater Pr has lesser thermal di¤usivity.

Hence, the temperature of the nanoliquid and the thermal boundary layer increase and decline

() when Pr is enlarged. Figures 48(ab) and 49(ab) are drafted to deliberate the vari-

ations in the nanoliquid temperature and concentration distributions under the in‡uence of

the Brownian motion () and Lewis number (), respectively. Here a fall in the nanoliquid

temperature and concentration pro…les for the rising value of  and  is noted. In fact, 

is inversely proportional to the Brownian di¤usion coe¢cient (). Here () fallo¤s owing to

small di¤usivity in‡uence when  intensi…es.

4.3.1 Tabular Representations

The value of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

and

µ

Re
¡ 1
2

 

¶

of Carreau nanoliquid at the

boundary of the stretched sheet are presented by Tables 4.1 and 4.2. By keeping the other
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nonlinear material parameters …xed. An enhancement in  and  correspond to an improve-

ment in

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

. Additionally, it appears from Table 4.2 that the

magnitude of rate of heat transfer of nanoliquid enlarged with increasing values of Pr and ;

however,  and  have reverse trend.

4.3.2 Con…rmation of Numerical Outcomes

Tables 4.3, 4.4 and 4.5 depict an assessment of the numerical values for the velocity gradients

(¡ 00(0), ¡00(0)) and Nusselt number
¡
¡0(0)

¢
with formerly existing outcomes for di¤erent

values of . These tables initiated a tremendous settlement of the existent outcomes with

present ones. This demonstrates the legitimacy of the current analysis along with the admirable

precision of numerically (bvp4c) and analytically (HAM).
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Figure 41(a¡ d): In‡uence of  on  0() and 0()
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Figure 42(a¡ d): In‡uence of 1 on () and ()
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Figure 43(a¡ d): In‡uence of  on () and ()
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Figure 44(a¡ d): In‡uence of  on () and ().
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Figure 45(a¡ d): In‡uence of  on () and ().
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Figure 46(a¡ d): In‡uence of  on () and ()
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Figure 47(a¡ d): In‡uence of Pr on () and ()
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Figure 48(a¡ d): In‡uence of  on ()




(

)

0 2 4 6 8 10

­0.4

­0.2

0

0.2

0.4 n = 0.5(c)

Le = 0.5, 1.0, 1.5, 2.0

We
1
= We

2
= 3.0, N

b
= 0.3

M =  = R
d
= N

t
= 0.5, Pr = 1.5




(

)

0 2 4 6 8 10

­0.4

­0.2

0

0.2

0.4

n = 1.5(d)

Le = 0.5, 1.0, 1.5, 2.0

We1 = We2 = 3.0, Nb = 0.3

M =  = R
d
= N

t
= 0.5, Pr = 1.5

Figure 49(a¡ d): In‡uence of  on ()
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Table 4.1: Outcomes of

µ
1
2Re

1
2
 

1
2

³



´
Re

1
2


¶

for di¤erent values of  and when

1 =2 = 20 are …xed.

 

1
2Re

1
2


 = 05  = 15

1
2

³



´
Re

1
2


 = 05  = 15

0.5 0.5 -1.896547 -4.321695 -0.6051041 -0.9147802

1.0 -2.570714 -6.655255 -0.8570421 -1.4181890

1.5 -3.555854 -10.821100 -1.2354530 -2.2880650

2.0 -4.755225 -17.073510 -1.7073990 -3.5625300

0.5 0.6 -1.926160 -4.445858 -0.8136476 -1.3608700

0.8 -1.980438 -4.700804 -1.3470240 -2.7344020

1.0 -2.029327 -4.964101 -2.0293270 -4.9641010
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Table 4.2: Outcomes of

µ

Re
¡ 1
2

 

¶

for di¤erent values of the  Pr,  and  when

1 =2 = 20  = 03 and  =  = 05 are …xed.

 Pr  
Re

¡ 1
2

 

 = 05  = 15

0.5 0.7 0.5 1.0 0.544664 0.622229

0.8 0.572512 0.654022

1.2 0.607435 0.691702

1.5 0.633160 0.718299

0.5 1.0 0.699751 0.794837

1.5 0.914065 1.026980

2.0 1.086800 1.211240

0.7 0.8 0.529463 0.605695

1.0 0.519503 0.594830

1.3 0.504833 0.578781

0.5 1.5 0.539958 0.617056

2.0 0.536784 0.613523

2.5 0.534456 0.610905
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Table 4.3: A comparison of ¡ 00(0) between bvp4c and HAM for numerous values of  in

limiting cases when 1 =2 = = 0 and  = 1


¡ 00(0)

Ariel(HPM) [115] Ariel(Exact) [115] Present(bvp4c) Present(HAM)

0

01

02

03

04

05

06

07

08

09

10

1

1017027

1034587

1057470

1070529

1088662

1106797

1124882

1142879

1160762

1178511

1

1020264

1039497

1057956

1075788

1093095

1109946

1126397

1142488

1158253

117372

1

1020264

1039497

1057956

1075788

1093095

1109946

1126397

1142488

1158253

1173720

1

1020264

1039495

1057955

1075785

1093092

1109944

1126395

1142488

1158254

1173721
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Table 4.4: A comparison values of ¡00(0) between bvp4c and HAM for numerous values

of  in limiting cases when 1 =2 = = 0 and  = 1


¡00(0)

Ariel(HPM) [115] Ariel(Exact) [115] Present(bvp4c) Present(HAM)

0

01

02

03

04

05

06

07

08

09

10

00

0070399

0158231

0254347

0360599

0476290

0600833

0733730

0874551

1022922

1178511

00

0066847

0148737

0243360

0349209

0465205

0590529

0724532

0866683

1016539

1173721

00

00668485

01487382

02433607

03492087

04652046

05905229

07245312

08666822

10165380

11737200

00

00668484

01487384

02433605

03492087

04652045

05905227

07245310

08666821

10165360

11737210
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Table 4.5: A comparison of 0(0) between bvp4c and HAM for numerous values of  in

limiting cases when 1 =2 =  =  =  = 0 and  = 1.


0(0)

Liu and Anderson [118] Munir   [119] Present(bvp4c) Present(HAM)

0.25 -0.665933 -0.665939 -0.665933 -0.665926

0.50 -0.735334 -0.735336 -0.735335 -0.735332

0.75 -0.796472 -0.796472 -0.796473 -0.796471
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Chapter 5

E¤ect of Thermal-Solutal

Strati…cations in 3D Flow of

Carreau Nano‡uid

The notable intention of the current chapter is to explore the features of combined convective

and strati…cations by utilizing Brownian and thermophrosis nanoparticles in 3D mixed convec-

tion ‡ow of magnetite Carreau ‡uid in‡uenced by stretched surface. The heat transport phe-

nomenon is also betrothed in the manifestation of thermal radiation and the heat sink/source.

By means of compatible alterations to rehabilitate the structure of non-linear PDEs into non-

linear ODEs. To identify the behavior of numerous somatic parameters, numerically bvp4c

tactic has been worked out to elucidate the governing ODEs. The graphical depiction is de-

lineated and tables are organized for diverse physical parameters of Carreau nano‡uid. It is

scrutinized that the impact of induced magnetic parameter on both the velocity components is

analogous and it diminish both the velocities for shear thinning/thickening liquids. Moreover,

the present outcomes reported that the mixed convection and thermal strati…cation parameters

decline the liquid temperature and allied thickness of the thermal boundary layer for both shear

thickening/thinning liquids.
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5.1 Description of the Problem

We scrutinize the steady 3D mixed convection ‡ow of a Carreau magnetite-nano‡uid over a

bidirectional stretched surface. The in‡uence of combined strati…cation and convective condi-

tions are engaged in heat and mass transfer phenomena. Additionally, thermal radiation and

the heat sink/source are deliberated. The ‡ow is persuaded by stretching the surface in two

nearby ¡ and ¡ directions with linear velocities ( ) = ( ) respectively, where    0

and the ‡uid overcomes the region   0. Furthermore, it is also supposed that the electric and

magnetic …elds are inconsequential when we equated with applied magnetic …eld (as depicted in

…gure 5.1). This notion is only e¤ective when the magnetic Reynolds number is inconsequential.

Under these attentions the governing problem of magnetite Carreau nano‡uid is

Figure 5.1: Flow con…guration and coordinates system.
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Subject to the boundary conditions

 = () =   = () =   = 0

¡



=  [ ¡  ] ¡




= [ ¡] at  = 0 (5.6)

 ! 0  ! 0  ! 1  ! 1 as  !1 (5.7)

Here  is the gravitational acceleration, (  ) the coe¢cients of thermal and concentra-

tion expansion respectively, (  ) = (0 +  0 + ) the heated liquid temperature and

concentration, respectively, (1 1) = (0 + 1 0 + 1) the ambient temperature and

concentration, respectively, in which (0 0) the reference temperature and concentration re-
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spectively and ( 1  1) the dimensionless constants.

5.1.1 Appropriate Conversions

Let we introduce

 () =
 ¡ 1
 ¡ 0

  =
 ¡1
 ¡0

 (5.8)

In vision of overhead conversions and Eq. (227) (cf. Chapter 2), Eq. (51) satis…ed

automatically and Eqs. (52)¡ (57) reduced to the following ODEs

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + )¡2 0 + ¤( +¤) = 0 (5.9)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 02 + 00( + )¡20 = 0 (5.10)

(1 +) 
00 +Pr( + )0 ¡ Pr  0 ¡ Pr1

0 +Pr[
00 +

02 + ] = 0 (5.11)

00 +Pr( + )0 ¡ Pr 0¡Pr2
0 +

µ




¶

00 = 0 (5.12)

with BCs

(0) = 0 (0) = 0  0(0) = 1 0(0) = 

0(0) = ¡1(1¡ 1 ¡ (0)) 0(0) = ¡2(1¡ 2 ¡ (0)) (5.13)

 0 ! 0 0 ! 0  ! 0 ! 0 as !1 (5.14)

Here ¤
³
=  

2

´
is the mixed convection parameter ¤

³
=  

 

´
the buoyancy ratio para-

meter ratio parameter, 

³
=

(¡0)


´
the Brownian motion parameter, 

³
=

 (¡0)
1

´

the thermophoresis parameter and (1 2)
³
= 1

  1


´
the thermal and mass strati…cation pa-

rameters, respectively.

5.2 Engineering and Industrial Quantities of Interest

From the industrial and engineering point of view, the essential quantities of physical interest

are the skin friction coe¢cients, heat and mass transport rates which may be de…ned by the

subsequent relations. These quantities in non-dimensional forms are given as:
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1

2
Re

1
2
 =  00(0)[1 +21

002(0)]
¡1
2  (5.15)

1

2

µ




¶

 Re
1
2
 = 00(0)[1 +22

002(0)]
¡1
2  (5.16)

Re
¡1
2

  =
¡ (1 +) 

0 (0)

1¡ 1
 Re

¡ 1
2

  = ¡

µ
1

1¡ 2

¶

0(0) (5.17)

5.3 Graphical Illustration and Analysis

The notable objective here is to disclose the structure of numerous parameters on mixed con-

vection strati…ed ‡ow of magnetite Carreau nano‡uid subject to convectives phenomena. The

heat transport mechanism is also considered in manifestation of the heat sink/source and ther-

mal radiation. For this persistence, graphs are planned and tables are structured for diverse

parameters and discussed in facts.

To envision the impact of magnetic parameter () on velocity components  0() and 0()

for both cases (  1) and (  1), …gures 52(a¡ d) are strategized. It is noted that

both the liquid velocities decline for enhancing values of for shear thinning/thickening cases.

This occurs because of the circumstance that the outcome of strong magnetic …eld contributes

resistance to ‡ow in both ¡ and ¡directions which intensify the Lorentz force in ¡direction.

Therefore, the ‡ow in both the directions, which decays the liquid velocities. The stimulus of

mixed convection (¤) and buoyancy ratio (¤) on velocity components for (  1) and (  1)

are schemed in …gures 53(a¡ d) and 54(a¡ d). It is noteworthy to note that when values

of ¤ and ¤ intensify, the liquid velocity  0() increases. Physically, augmented values of ¤

reason a forceful buoyancy force which clues the escalation of velocity …eld  0(). Similarly,

the concentration buoyancy strength boost up for the increase in ¤ which consequences the

decline of velocity 0(). Moreover, it is reported that both the velocity components decay for

augmenting values of ¤ and ¤ for both (  1) and (  1) as displayed in …gures 53(cd)

and 54(cd). Hence, we can say from these strategies that the impact of these ‡ow parameters

¤ and ¤ are entirely con‡icting for velocity components  0() and 0().
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Figures 55(ab) and 56(ab) are intended to visualize the enactment of mixed convec-

tion parameter (¤) and buoyancy ratio parameter (¤) for shear thickening/thinning cases on

nanoliquid temperature …eld (). From these structures it is scrutinized that both ¤ and ¤

are retreating functions of temperature distribution (). For higher values of ¤ and¤ display

thinner thickness of the thermal boundary layer and low temperature on Carreau nano‡uid.

The enhancing values of ¤ relate to stronger buoyancy force because mixed convection pa-

rameter depends on buoyancy force. Hence, owing to stronger buoyancy force is the reason

for the decline in temperature and its allied thickness of the boundary layer. Furthermore,

analogous enactment is being detected for the progressive values of ¤. Figures 57(ab)

and 58(ab) expose the tendency of thermal Biot number (1) and strati…cation parameter

(1), respectively, for ( = 05 and 15) on Carreau liquid temperature …eld. Here scrutinized

that quite con‡icting tendency is being famed for growing value of 1 and 1. When values

of 1 intensify the temperature …eld enhances; however, the temperature of Carreau ‡uid is

declining function of 1. Physically, enlarging the values of 1 arise the heat transfer amount

which is responsible to enhance (). Moreover, the di¤erence between the sheet and ambient

liquid temperature is condensed with intensi…ed values of 1. Therefore, the temperature …eld

decays for 1 as shown in …gure 58(ab). The nanoparticles display a strategic role in the

enhancement of heat transfer features in Carreau ‡uid. For this persistence, …gures 59(ab)

and 510(ab) are designed for both (  1 and   1). These drafts scrutinized that 

and  are both boosting the liquid temperature and thermal thickness of the boundary layer.

Intensi…cation in  enriches the accidental gesture of liquid particles because of this aspect the

additional heat is formed which rises (). From …gure 59(ab) it is reported that the higher

 also enhances the liquid temperature. As, thermophoresis is a mechanism wherein minor

elements are dragged away from the hot to the cold surface. Therefore, enormous quantity of

nanoparticles is relocated away from the intense surface which increases the temperature of the

liquid. The characteristic of thermal radiation () for ( = 05 and 15) is exposed in …gure

511(ab) on nanoliquid temperature …eld. There is an enhancement in both the liquid tem-

perature and thermal thickness of boundary layer for higher values of . The heat ‡ux from

the sheet intensi…es for larger  which rise (). Moreover, the coe¢cient of means absorption

decays for enhancing values of  which is blamable for the enrichment of ().
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An intensi…cation in nanoparticles concentration Biot number (2) and strati…cation para-

meter (2) on concentration …eld () for shear thinning/thickening parameters are exposed

in …gures 512(ab) and 513(ab). These strategies spectacles opposing tendency for higher

values of 2 and 2. An increase in 2 enhances the concentration of nanoliquid; however, it

declines for 2. The higher values of 2 relate to advance mass transfer coe¢cient and thus,

the concentration …eld arises. On the other hand, it is inspected that when 2 enhances, the

di¤erence between surface and reference nanoparticles reduces and the outcomes the declination

of ()

5.3.1 Tabular Representations

Tables 5.1 and 5.2 are established to visualize the tendency of the involved parameters

on the local skin friction coe¢cients

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

, local Nusselt number
µ

Re
¡ 1
2

 

¶

and local Sherwood number

µ

Re
¡ 1
2

 

¶

for both shear thinning/thickening

liquids. From Table 5.1 it is fascinating to note that by increasing the value of  1 and 2

rises

µ
1
2Re

1
2


¶

 while it declines for enhancing value of ¤ ¤ 1 and 2 for both (  1)

and (  1). It is also reported that

µ
1
2

³



´
 Re

1
2


¶

enhances for  ¤ ¤, 1 and 2

whereas con‡icting behavior is being identi…ed for 1 and 2. From Table 5.2, the rate of

heat transfer

µ

Re
¡ 1
2

 

¶

, enhanced for ¤ ¤ 1 1 and 2 and declined for  and 2

Moreover, the mass transfer rate

µ

Re
¡1
2

 

¶

for shear thinning/thickening liquids diminished

for the progressive values of ¤ ¤ and 1 while increasing for  1 and 2

5.3.2 Con…rmation of Numerical Outcomes

For the endorsement of numerical upshots of ¡ 00(0) and ¡00(0) with former related prose for

diverse values of  Tables 5.3 and 5.4 are organized. It is reported that intensifying values of

 is to enhance the magnitude of ¡ 00(0) and ¡00(0) From these tables a noteworthy feature

is being noted with earlier studies.
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Figure 54(a¡ d): In‡uence of ¤ on  0() and 0().
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Figure 55(ab): In‡uence of ¤ on ()
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Figure 56(ab): In‡uence of ¤ on ()
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Figure 57(ab): In‡uence of 1 on ()
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Figure 59(ab): In‡uence of  on ()
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Figure 510(ab): In‡uence of  on ()
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Figure 511(ab): In‡uence of  on ()
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Figure 512(ab): In‡uence of 2 on ()
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Figure 513(ab): In‡uence of 2 on ()
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Table 5.1: Outcomes of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

when 1 = 2 = Pr = 15

 = 01  = 02  =  = 03  = 05 and  = 10 are …xed.

 ¤ ¤ 1 1 2 2

1
2Re

1
2


 = 05  = 15

1
2

³



´
 Re

1
2


 = 05  = 15

0.4 0.4 0.3 0.3 0.8 0.2 0.8 -1.460721 -2.702463 -0.2739822 -0.3101425

0.7 -1.718577 -3.357890 -0.3290915 -0.3808131

1.0 -2.100599 -4.412760 -0.4035425 -0.4832473

1.3 -2.587644 -5.905137 -0.4925378 -0.6152006

0.4 0.1 -1.532698 -2.812340 -0.2730782 -0.3099244

0.6 -1.414603 -2.628506 -0.2745703 -0.3103278

1.2 -1.285444 -2.410590 -0.2762105 -0.3109680

0.4 0.2 -1.470707 -2.720519 -0.2738206 -0.3100615

0.4 -1.450823 -2.684511 -0.2741418 -0.3102233

0.6 -1.431282 -2.648912 -0.2744551 -0.3103841

0.3 0.0 -1.333852 -2.409828 -0.2774695 -0.3128348

0.1 -1.376357 -2.507028 -0.2762919 -0.3119151

0.2 -1.418661 -2.604599 -0.2751290 -0.3110178

0.3 0.3 -1.547184 -2.883712 -0.2720473 -0.3088822

0.5 -1.504591 -2.795352 -0.2730074 -0.3094936

0.7 -1.473393 -2.729474 -0.2737020 -0.3099532

0.8 0.0 -1.439437 -2.653593 -0.2744843 -0.3105191

0.1 -1.450078 -2.678001 -0.2742330 -0.3103304

0.3 -1.471366 -2.726980 -0.2737319 -0.3099554

0.2 0.2 -1.482257 -2.745890 -0.2735980 -0.3098986

0.4 -1.473374 -2.728128 -0.2737565 -0.3099981

0.6 -1.466377 -2.714009 -0.2738814 -0.3100774
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Table 5.2: Outcomes of

µ

Re
¡ 1
2

 

¶

and

µ

Re
¡ 1
2

 

¶

when 1 = 2 = Pr = 15

 = 01  = 02  =  = 03  = 05 and  = 10 are …xed.

 ¤ ¤ 1 1 2 2
Re

¡ 1
2

 

 = 05  = 15

Re
¡ 1
2

 

 = 05  = 15

0.4 0.4 0.3 0.3 0.8 0.2 0.8 0.7907507 0.8222056 0.2984109 0.2754751

0.7 0.7703503 0.8096584 0.3132862 0.2846241

1.0 0.7409110 0.7923285 0.3347524 0.2972605

1.3 0.7040871 0.7716916 0.3616032 0.3123082

0.4 0.1 0.7884971 0.8230341 0.3000542 0.2748710

0.6 0.7924613 0.8220249 0.2971637 0.2756068

1.2 0.7974830 0.8223095 0.2935020 0.2753994

0.4 0.2 0.7901262 0.8220475 0.2988663 0.2755904

0.4 0.7913636 0.8223643 0.2979641 0.2753593

0.6 0.792556 0.8226835 0.2970945 0.2751266

0.3 0.0 0.6340343 0.6523905 0.5895476 0.5704266

0.1 0.6759248 0.6974054 0.4913205 0.4711825

0.2 0.7268688 0.7525559 0.3942760 0.3728701

0.3 0.3 0.4199406 0.4312493 0.0584489 0.0364596

0.5 0.5999854 0.6201335 0.1750171 0.1515109

0.7 0.7350988 0.7630746 0.2624176 0.2391045

0.8 0.0 0.7900713 0.8206323 0.2391251 0.2212978

0.1 0.7904104 0.8214178 0.2654748 0.2453774

0.3 0.7910923 0.8229956 0.3407564 0.3141703

0.2 0.2 0.7977195 0.8300549 0.2933295 0.2697516

0.4 0.7948675 0.8268635 0.2954091 0.2720787

0.6 0.7925988 0.8242934 0.2970633 0.2739527
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Table 5.3: A comparison of ¡ 00(0) between bvp4c and HAM in limiting sense when

1 =2 = = ¤ = ¤ = 0 and  = 1 are …xed.



¡ 00(0)

Wang [117] Liu and Anderson [118]

cf. Chapter 3

Table 3.3

(bvp4c)

cf. Chapter 3

Table 3.3

(HAM)

Present bvp4c

0.0 1 1 1 1 1

0.25 1.048813 1.048813 1.0488130 1.0488131 1.0488113

0.50 1.093097 1.093096 1.0930954 1.0930943 1.0930949

0.75 1.134485 1.134486 1.1344854 1.1344858 1.1344856

1.0 1.173720 1.173721 1.1737199 1.1737201 1.1737208

Table 5.4: A comparison values of ¡00(0) between bvp4c and HAM in limiting sense when

1 =2 = = ¤ = ¤ = 0 and  = 1 are …xed.



¡00(0)

Wang [117] Liu and Anderson [118]

cf. Chapter 3

Table 3.4

(bvp4c)

cf. Chapter 3

Table 3.4

(HAM)

Present (bvp4c)

0.0 0 0 0 0 0

0.25 0.194564 0.194565 0.1945652 0.1945617 0.19456397

0.50 0.465205 0.465206 0.4652058 0.4652047 0.46520490

0.75 0.794622 0.794619 0.7946180 0.7946184 0.79461824

1.0 1.173720 1.173721 1.1737199 1.1737201 1.17372080
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Chapter 6

Impact of Variable Thermal

Conductivity in 3D Unsteady ‡ow of

Carreau Nano‡uid

This chapter reports unsteady 3D forced convective ‡ow of Carreau nano‡uid over a bidirec-

tional stretched surface. Heat transfer phenomenon of Carreau nano‡uid is inspected through

the variable thermal conductivity and heat generation/absorption. Furthermore, this chap-

ter presents a more convincing approach for heat and mass transfer phenomena of nanoliquid

by utilizing new mass ‡ux condition. Practically, zero mass ‡ux condition is more adequate

because here we assume nanoparticle amends itself accordingly on the boundary. Now the fea-

tures of Buongiorno’s relation for Carreau nano‡uid can be applied in a more e¢cient way. The

appropriate transformations are employed to alter the PDEs into ODEs and then tackled nu-

merically by employing bvp4c scheme. The numerous consequence of scheming parameters on

the Carreau nanoliquid velocity components, temperature and concentration …elds is portrayed

graphically and deliberated in detail. The numerical outcomes for local skin friction and the

wall temperature gradient for Carreau nanoliquid are intended and reported through tables.

The outcomes conveyed here manifest that the impact of Brownian motion parameter  on

the rate of heat transfer for nanoliquids has become negligible for the recently recommended

revised relation. Additionally, for authentication of the present relation, the achieved results
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are distinguished with earlier research works in speci…c cases and marvelous agreement has been

noted.

6.1 Description of the Problem

Here we report unsteady 3D ‡ow of Carreau nano‡uid over a bidirectional stretched surface. The

‡ow is persuaded owing to stretching surface in two horizontal ¡and ¡directions with veloc-

ities  ( ) and  ( )  respectively, where  and  are stretching rates and the nano‡uid

‡ow that occupies the region in the domain   0. Characteristics of heat transfer mecha-

nism are inspected in view of heat source/sink and variable thermal conductivity. Features

of nanoparticles are taken considering Brownian motion and thermophoresis. Temperature of

the nanoliquid at the surface  is superior than temperature of nanoliquid distant from the

stretched surface.

The Carreau nanoliquid equations in view of overhead declared assumptions are given below:




+




+




= 0 (6.1)




+ 

 +  
 +

 =  2
2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2
¡



¢2 ³2
2

´h
1 + ¡2

¡



¢2i
¡3
2

 (6.2)


 + 

 +  
 +

 =  2
2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2
¡



¢2 ³2
2

´h
1 + ¡2

¡



¢2i
¡3
2

 (6.3)


 + 

 +  
 +

 =
1

()




³
( )

2
2

´

+
h






 +


1

¡



¢2i
+ 0

()
( ¡ 1)  (6.4)




+ 




+ 




+




= 

2

2
+



1

2

2
 (6.5)
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The following appropriate boundary conditions are imposed at the stretched surface and in the

freestream

 =  =

1¡   =  =


1¡   = 0  = ( )



 +


1


 = 0 at  = 0 (6.6)

! 0  ! 0  ! 1  ! 1 as  !1 (6.7)

Here ( ) is the variable thermal conductivity. Furthermore, temperature of the nano‡uid

at the surface ( ) and variable thermal conductivity ( ) are given by the following

expressions

( ) = 1 +
0

2

(1¡ )
3
2

, ( ) = 1

·

1 + 

µ
 ¡ 1
¢

¶¸

 (6.8)

where (1 ) are the thermal conductivity of the nanoliquid far away from the stretched sur-

face and  the thermal conductivity parameter, respectively, 0 the the positive reference tem-

perature of the nanoliquid and ¢ represents the liquid temperature di¤erence between the

stretched surface and far away from the surface.

6.1.1 Appropriate Conversions

In view of non-dimensionless transformation variables

 =
³


1¡

´
 0()  =

³

1¡

´
0()  = ¡

q


(1¡) [() + ()]

 () = ¡1
¡1

  = ¡1
1

  = 
q


(1¡)  (6.9)

and Eq. (68), the Eq. (61) is satis…ed automatically and Eqs. (62)¡ (67) yield

 000[1 +21
002]

¡3
2 [1 + 21

002]¡ 

µ

 0 +
1

2
 00
¶

¡  02 +  00( + ) = 0 (6.10)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 

µ

0 +
1

2
00
¶

¡ 02 + 00( + ) = 0 (6.11)
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(1 + ) 00 + 02 +Pr( + )0 ¡ 2Pr  0 ¡ Pr 
2

¡
3 + 0

¢

+Pr
00 +Pr

02 +Pr  = 0 (6.12)

00 +Pr( + )0 ¡ Pr

µ

+
1

2
0
¶

+

µ




¶

00 = 0 (6.13)

(0) = 0 (0) = 0  0(0) = 1 0(0) = 

(0) = 1 
0(0) +

0(0) = 0 (6.14)

 0 ! 0 0 ! 0 ! 0 ! 0 as !1 (6.15)

In the above equations, 
³
= 



´
is the unsteadiness parameter, and 

³
= 0(1¡)

()

´
the heat

sink/source parameter.

6.2 Engineering and Industrial Quantities of Interest

From the physical point of view, the quantities of industrial and engineering interest in materials

processing are the skin friction coe¢cients and heat transfer rate which may be de…ned in

dimensionless forms

1
2Re

1
2
 =  00(0)[1 +21

002(0)]
¡1
2  (6.16)

1
2

³



´
 Re

1
2
 = 00(0)[1 +22

002(0)]
¡1
2  (6.17)

and

Re
¡ 1
2

  = ¡0 (0)  (6.18)

6.3 Graphical Illustration and Analysis

The main theme of this section is to scrutinize the impact of variable thermal conductivity and

heat source/sink in unsteady 3D ‡ow of Carreau nano‡uid over a bidirectional stretching sur-

face. Widespread numerical computation namely, bvp4c has been reported for the exploration

of scheming parameters on the velocity components, temperature and concentration …elds. The

graphs are portrayed and the discrepancy of the local skin friction coe¢cients and the local
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Nusselt number is established in tabular arrangement and deliberated in details.

Figures 61(a¡ d) are sketched to visualize the features of the unsteadiness parameter ()

on the nanoliquid velocity components  0() and 0() for shear thinning and shear thickening

liquids. The diminishing behavior in velocity components and associated momentum boundary

layer thickness with enhanced values of  is being acknowledged. Physically,  is inversely

proportional to the stretching rate of the nanoliquid along ¡direction. When the values of

is  intensi…ed the stretching rate along ¡direction decline due to which the velocity of the

nanoliquid is diminished.

Figures 62(a¡ d) are drafted to deliberate the variations in the nanoliquid temperature

() and concentration () distributions under the in‡uence of the unsteadiness parameter ().

It can be perceived from these sketches that the nanoliquid temperature and concentration dis-

tributions are declined for intensifying values of . Physically, by strengthening the value of 

reduces the velocity of the nanoliquid along ¡direction due to which kinetic energy of the nano-

liquid decreases. Therefore, the temperature of the nanoliquid declines. Figures 63(a¡ d)

demonstrate the impact of heat source parameter (  0) on the nanoliquid temperature and

concentration pro…les. It is manifest from these …gures that the nanoliquid temperature and

concentration pro…les enhance with the augmented values of   0 for shear thinning liquid and

shear thickening liquids. As heat transfer mechanism contributes additional heat to the liquid

that resembles to an intensi…cation in the nanoliquid temperature and the thickness of thermal

boundary layer. Figures 64(a¡ d) demonstrate the domination of the thermal conductiv-

ity parameter () on the nanoliquid temperature and concentration distributions. From these

graphs it is established that boosting values of  enhance the temperature and concentration

distributions. Physically, the thermal conductivity of the Carreau nanoliquids enhances when

 increases due to which temperature of the nanoliquids boosts up. Figures 65(a¡ d) are

sketched to interpret the features of thermophoresis parameter () on nanoliquid temperature

and concentration distributions. It is reported that the temperature and concentration of the

nanoliquid across the thickness of boundary layer rise with the emergent values of . Physi-

cally, this is because of the statistic that the di¤erence between the temperature of wall and the

reference temperature rises which intensify the nanoliquid temperature …eld. Moreover, in the

‡ow domain of the particulate structure there is a temperature gradient in hotter regions which
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causes the smallest elements incline to isolated quicker. Consequently, the surface temperature

of the nanoliquid and its thickness of boundary layer enhance. Additionally, growing values of

 physically means that the small nanoparticles are pulled away from the warm surface to the

cold surface. Therefore, the higher number of small nanoparticles are dragged away from the

warm surface due to which concentration of the nanoliquid declines.

6.3.1 Tabular Representations

The coe¢cients of skin friction

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

and heat transport rate

µ

Re
¡ 1
2

 

¶

of nanoliquid at the boundary of the stretched sheet are presented through Tables 6.1 and 6.2.

By keeping the other nonlinear material parameters …xed, an augmentation in  and  corre-

sponds an enhancement in the magnitude of 12Re
1
2
 

1
2

³



´
 Re

1
2
 . Moreover, it appears

from Table 6.2 that heat transport quantity Re
¡ 1
2

  of nanoliquid augment with amassed

values of  and Pr; however, the opposite tendency is pragmatic for the ,  and   0 for

both shear thinning/thickening liquids. Furthermore, the numerical values of Re
¡ 1
2

  for

( = 05 15 and 3) wide-ranging of Pr is depicted through Table 6.3. It is also noted that

amassed values of Pr enhance the heat transport amount in all circumstances.

6.3.2 Con…rmation of Numerical Outcomes

For the legitimacy of our outcomes, a comparison Table 6.4 is structured in a limiting case

i.e., in case of 2D ‡ow. Tables 6.5 and 6.6 contemporary the assessment of numerically

scheme bvp4c with homotopy perturbation method (HPM) [115], exact solutions [115], homo-

topy analysis method (HAM) (cf. Chapter 2) and bvp4c (cf. Chapter 2) for distinct values of

. A remarkable assertion is distinguished in a limiting sense from these tables.
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Figure 61(a¡ d): In‡uence of  on  0() and 0()
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Figure 63(a¡ d): In‡uence of   0 on () and ()
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Figure 64(a¡ d): In‡uence of  on () and ()
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Figure 65(a¡ d): In‡uence of  on () and ()
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Table 6.1: Outcomes of

µ
1
2Re

1
2
 

1
2

³



´
Re

1
2


¶

for 1, 2  and 

1 2  

1
2Re

1
2


 = 05  = 15

1
2

³



´
Re

1
2


 = 05  = 15

1.0 1.0 0.5 0.3 -1.495932 -2.275974 -0.3014584 -0.3224466

1.5 -1.735959 -3.240193 -0.2992882 -0.3238545

2.0 -1.953110 -4.360016 -0.2973149 -0.3250810

2.5 -2.139428 -5.604837 -0.2956285 -0.3261349

1.0 1.5 -1.495648 -2.276565 -0.3074282 -0.3473583

2.0 -1.495263 -2.277291 -0.3156383 -0.3796407

2.5 -1.494790 -2.278095 -0.3258926 -0.4178941

1.0 0.7 -1.597571 -2.473501 -0.3239701 -0.3481788

0.9 -1.698759 -2.674949 -0.3456479 -0.3734159

1.1 -1.799172 -2.879372 -0.3664994 -0.3981124

0.5 0.5 -1.540941 -2.374278 -0.5729707 -0.6737814

0.7 -1.583640 -2.474459 -0.9220556 -1.2239450

1.0 -1.642297 -2.629779 -1.6422970 -2.6297790
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Table 6.2: Outcomes of

µ

Re
¡ 1
2

 

¶

for   Pr  and  when  = 03 and  = 10

are …xed.

  Pr  
Re

¡ 1
2

 

 = 05  = 15

0.5 0.3 1.0 0.2 0.1 1.26096 1.29885

0.7 1.32981 1.36747

0.9 1.39482 1.43240

1.1 1.45670 1.49430

0.5 0.5 1.14343 1.17857

0.8 1.01115 1.04311

1.0 0.94252 0.97278

0.3 1.3 1.46421 1.50558

1.6 1.64507 1.68907

2.0 1.86106 1.90771

1.0 0.4 1.25338 1.29116

0.6 1.24591 1.28359

0.8 1.23855 1.27613

0.2 0.2 1.22654 1.26605

0.3 1.19030 1.23167

0.4 1.15174 1.19533
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Table 6.3: Outcomes of

µ

Re
¡ 1
2

 

¶

for Pr when 1 = 2 = 20  = 05  =  =

 = 03  = 02 and  = 10 are …xed.

Pr
Re

¡ 1
2

 

 = 05  = 15  = 30

0.8 1.07517 1.1593 1.20571

1.1 1.29391 1.38825 1.43679

1.4 1.48539 1.58709 1.63678

1.7 1.65749 1.76481 1.81518

2.0 1.81489 1.92667 1.97746

2.5 2.05234 2.16985 2.22106

3.0 2.26599 2.38783 2.43926

3.5 2.46131 2.58663 2.63818

4.0 2.64194 2.77004 2.82165

5.0 2.96863 3.10102 3.15265

6.0 3.25964 3.39514 3.44671

7.0 3.52319 3.66105 3.71252

8.0 3.76469 3.90438 3.95573

9.0 3.98798 4.12910 4.18031

10 4.19585 4.33811 4.38915

Table 6.4: A comparison of  00 (0) for  when 1 =2 =  = 0 and  = 1.

 00 (0)

 Sharidan   [120] Chamkha   [121] Present(bvp4c)

0.8 ¡1.261042 ¡1.261512 ¡1.261044

1.2 ¡1.377722 ¡1.378052 ¡1.3777280

2.0 ¡1.587362 - ¡1.587371
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Table 6.5: A comparison of ¡ 00(0) for  when 1 =2 =  = 0 and  = 1



¡ 00(0)

Ariel [115]

(HPM)

Ariel [115]

(Exact)

[cf. Chapter 2]

Table 2.3 (HAM)

[cf. Chapter 2]

Table 2.3 (bvp4c)

Present

(bvp4c)

0

01

02

03

04

05

06

07

08

09

10

1

1017027

1034587

1057470

1070529

1088662

1106797

1124882

1142879

1160762

1178511

1

1020264

1039497

1057956

1075788

1093095

1109946

1126397

1142488

1158253

117372

1

1020263

1039496

1057956

1075787

1093095

1109946

1126396

1142489

1158252

1173720

1

1020264

1039497

1057956

1075788

1093095

1109946

1126397

1142488

1158253

1173720

1

1020264

1039497

1057956

1075789

1093095

1109947

1126398

1142489

1158254

1173721

128



Table 6.6: A comparison of ¡00(0) for  when 1 =2 =  = 0 and  = 1



¡00(0)

Ariel [115]

(HPM)

Ariel [115]

(Exact)

[cf. Chapter 2]

Table 2.3(HAM)

[cf. Chapter 2]

Table 2.3 (bvp4c)

Present

(bvp4c)

0

01

02

03

04

05

06

07

08

09

10

00

0070399

0158231

0254347

0360599

0476290

0600833

0733730

0874551

1022922

1178511

00

0066847

0148737

0243360

0349209

0465205

0590529

0724532

0866683

1016539

1173721

00

0066848

0148737

0243360

0349208

0465207

0590528

0724530

0866682

1016540

1173721

00

00668485

01487382

02433607

03492087

04652046

05905229

07245312

08666822

1016538

1173720

00

006684873

014873860

02433613

03492100

04652060

05905299

07245326

08666836

10165390

1173721
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Chapter 7

In‡uence of Arrhenius Activation

Energy in 3D Chemically Reactive

Flow of Unsteady Carreau Nano‡uid

The forthright intention of this chapter is to scrutinize the up-to-date advances in nanoparti-

cles by utilizing the properties of nonlinear mixed convection and binary chemical reaction with

Arrhenius activation energy in time-dependent Carreau ‡uid ‡ow. The energy and concentra-

tion terminologies contain Brownian and thermophoresis nanoparticles. The silent features of

magnetohydrodynamic (MHD), non-uniform heat sink/source and thermal radiation are being

presented. Additionally, heat and mass transport phenomena are manifest by convective condi-

tions. Apposite conversions are executed to acquire the essential nonlinear ordinary di¤erential

equations (ODEs) structure and elucidated numerically via bvp4c. Graphs are portrayed and

tables are structured to scrutinize the behavior of diverse in‡uential variables. As of graphical

consequences, it is scrutinized that the ‡uid velocities enhance for an intensi…cation in the power

law exponent. These outcomes reported that on the temperature …eld, thermal Biot number,

radiation and Brownian motion parameters indicate analogous performance and intensify the

temperature of Carreau ‡uid. Furthermore, augmenting performance is being established for

activation energy and thermophrosis parameters; however, the behavior is quite antithesis for

…tting rate constant.
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7.1 Description of the Problem

Let us scrutinize unsteady 3D magnetohydrodynamic (MHD) convective ‡ow of a Carreau

nano‡uid in the presence of suspended nanoparticles in‡uenced by a bidirectional stretching

surface. The ‡ow is induced by a stretching surface in two nearby ¡ and ¡ directions with

velocities ( ) =
³


1¡ 


1¡

´
 respectively, where    0 and the ‡uid occupies the region

  0. The structure of non-uniform heat sink/source with nonlinear mechanism of thermal

radiation and mixed convection are also integrated. Furthermore, concentration equation deals

with the impact of Arrhenius activation energy with the binary chemical reaction. In this

clari…cation the Brownian and thermophoresis nanoparticles are also engaged. This chapter

also pretends that the electric and induced magnetic …elds are insigni…cant when equated with

applied magnetic …eld. This concept is only e¤ective when the magnetic Reynolds number is

very small.

These attentions leads to the following equations of Carreau nano‡uid:




+




+




= 0 (7.1)


 + 

 +  
 + 

 =  2
2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2
¡



¢2 2
2

h
1 + ¡2

¡



¢2i
¡3
2
¡ 2()
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Subject to the boundary conditions

 = ( ) =

1¡   = ( ) =


1¡   = 0

¡ 
 =  [ ¡  ] ¡


 = [ ¡] at  = 0 (7.6)

! 0  ! 0  ! 1  ! 1 as  !1 (7.7)

Here (  
¤
) are the nonlinear thermal and concentration expansions respectively,  the …tted

rate constant (¡1    1),  the reaction rate, 
¤ the activation energy,  = 861£105

the Boltzmann constant and whole expression 2

³

1

´
exp
¡
¡¤



¢
is entitled as modi…ed

Arrhenius equation.

The expression of non-uniform heat sink/source 000 is de…ned as

000 =
( )



£
( ¡ 1)

0 + ¤( ¡ 1)
¤
 (7.8)

Here ( ¤) are the space and temperature dependent heat sink/source coe¢cients, respectively.

Additionally, ( ¤)  0 relate to internal heat source and ( ¤)  0 internal heat sink

parameters.

7.1.1 Appropriate Conversions

Let us de…ne the following quantities

 () =
 ¡ 1
 ¡ 1

  =
 ¡1
 ¡1

 (7.9)

The overhead conversions and Eq. (69) (cf. Chapter 6) satisfy Eq. (71) automatically and

Eqs. (72)¡ (77) with Eq. (78) are reduced to the following ODEs

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + )

¡
¡
 0 + 

2
00
¢
¡2 0 + ¤(1 + ) + ¤¤(1 + ) = 0 (7.10)

000[1 +22
002]

¡3
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³
0 +



2
00
´
¡20 = 0 (7.11)

(1 +) 
00 +Pr( + )0 ¡ Pr

³
 +



2
0
´
+Pr[

00 +
02] +  + ¤ 0 = 0 (7.12)
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´
00 ¡ Pr

¡
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0
¢

¡Pr¤(1 + ¤¤) exp
h

¡
1+¤¤

i
= 0 (7.13)

with BCs

(0) = 0 (0) = 0  0(0) = 1 0(0) = 

0(0) = ¡1(1¡ (0)) 0(0) = ¡2(1¡ (0)) (7.14)

 0 ! 0 0 ! 0 ! 0 ! 0 as !1 (7.15)

In the above expressions, ¤
³
=

 (¡1)
()

´
is the mixed convection parameter ¤

³
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(¡1)
 (¡1)

´

the buoyancy ratio parameter, 

³
=

¤ (¡1)


´
and 

³
=

¤(¡1)


´
the nonlinear con-

vection parameters due to temperature and concentration, 

µ

=



q
(1¡)

  


q
(1¡)



¶

 = 1 2, are the thermal and concentration Biot numbers, ¤
³
= 2(1¡)



´
the reaction rate pa-

rameter, ¤¤
³
=

¡1
1

´
the temperature di¤erence parameter, and 

³
= ¤

1

´
the activation

energy parameter respectively.

7.2 Engineering and Industrial Quantities of Interest

The notable quantities of physical concern are the local skin friction coe¢cients ( ), heat

and mass transfer rates ( ) and are de…ned in the following dimensionless variables:

1

2
Re

1
2
  =  00(0)[1 +21

002(0)]
¡1
2 

1

2

µ
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

¶

Re
1
2
  = 00(0)[1 +22

002(0)]
¡1
2  (7.16)

and

Re
¡ 1
2

  = ¡ (1 +) 
0 (0)  Re

¡ 1
2

  = ¡0(0) (7.17)
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7.3 Graphical Illustration and Analysis

The framework of this section is to scrutinize the properties of Arrhenius activation energy with

binary chemical reaction in 3D Carreau nano‡uid ‡ow subject to nonlinear phenomena of mixed

convection and radiation. Additionally, MHD, non-uniform heat sink/source and convective

conditions are involved. The bvp4c scheme has been executed to elucidate the present ODEs.

The inducement of numerous parameters on velocities  0() and 0(), temperature () and

concentration () are portrayed and discussed.

The physical enactment of power-law exponent () for both shear thinning/thinking ‡uids

( = 05 and 15) on ‡uid velocities  0() and 0() are presented in …gures 71(a¡ d) These

strategies display augmenting performance for larger values of . It is also reported that the

thickness of the momentum boundary layer and ‡uid velocities exaggerate when the values of

 enhance. Figures 72(a¡ d) portray the properties of mixed convection parameter (¤) on

the velocities of Carreau ‡uid for shear thinning/thickening ‡uids. In fact, from these schemes

the larger ¤ intensi…es the liquid velocity  0() for both (  1 and   1). This arises owing

to the fact that a strong buoyancy force appears which speci…es the intensi…cation of velocity

…eld  0() for both situations. Furthermore, di¤ering tendency is being established for velocity

…eld 0() for boosting value of ¤ The higher value of ¤ causes the decline of 0() and its

allied thickness of the layer as exposed in …gures 72(c) and 72(d)

Figures 73(ab) and 74(ab) are envisioned to picture the performance of nonlinear

convection parameter () and magnetic parameter () on temperature …eld () for the cases

  1 and   1 The portrayal of these designs, speci…es diverse behavior for both  and

 . Intensifying values of  not only diminish the temperature of Carreau nanoliquid but,

also the allied thermal thickness of layer fallo¤. This mechanism relates to stronger buoyancy

force, since  be in‡uenced by buoyancy force. Therefore, in consequence of this buoyancy

force the Carreau liquid temperature decays. Similarly,  intensi…es the temperature …eld for

both circumstances. Physically, by reason of higher  enriches the Lorentz force and form

additional struggle to the ‡uid gesture and the energy is converted into heat. This fact causes

to the enhancing of (). Figures 75(ab) and 76(ab) expose the enhancing trend for

( = 05) and ( = 15) cases for increasing values of Brownian () and thermophrosis ()

nanoparticles on (). These nanoparticles spectacles a forceful part of the enrichment of heat
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transport properties of Carreau ‡uid. At this instant, outcomes indicate that  and  raise

the temperature and thermal thickness of the boundary layer. As, thermophoretic potency

is exaggerated by the temperature gradient, the heated particles dragged away from hot to

cold surface which enhances (). Consequently, vast amount of nanoparticles is transferred

away from the intense surface which intensify the temperature of Carreau liquid. Hence, the

analogous performance ensued for both parameters in both circumstances in these plots. To

disclose the enactment of thermal Biot (1) and thermal radiation () parameters for two

di¤erent values of  ( = 05 and  = 15) …gures 77(ab) and 78(ab) are exposed. It is

scrutinized that the intensifying values of 1 and  present analogous impact and enhance both

the temperature and thermal layer thickness of Carreau ‡uid. Physically, an increasing value

of 1 intensi…es the heat transport quantity which boosts (). Additionally, …gures 78(ab)

indicate that higher values of  formed signi…cant heat throughout radiation processes in

functioning liquid which intensi…es ().

Figures 79(ab) and 710(ab) capture the portrayal of Brownian () and thermophro-

sis () nanoparticles on concentration () scattering for shear thinning/thickening liquids.

These presentations indicate that both the thickness of concentration boundary layer and con-

centration of Carreau nano‡uid are diminishing functions of ; however, for  con‡icting

drift is being reported in both instances. The larger values of  intensify the nanoparticles

transport rate with di¤erent velocities in arbitrary direction owing to the Brownian in‡uence.

Consequently, higher  corresponds to a reduction in () for  = 05 and 15. Additionally,

the liquid thermal conductivity in the existence of nanoparticles intensi…es. The rise in  con-

tributes higher liquid thermal conductivity which spectacles the higher concentration as seen

in …gures 710(ab). Thus, the performance is thoroughly con‡icting for both parameters

on concentration scattering. The aspects of reaction rate (¤) and temperature di¤erence (¤¤)

parameters for concentration of Carreau nano‡uid with shear thinning/thickening properties

are reported via …gures 711(ab) and 712(ab). There is a diminishing trend being acknowl-

edged for both considerations. As we improve the value of ¤ the destructive amount of chemical

reaction also rises. It is used to dismiss or separate the liquid specie more e¢ciently. When the

destructive chemical reaction parameter is enlarged then a reduction in the nanoparticle con-

centration …eld is detected. Similarly, larger ¤¤ displays that the thickness of concentration as
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well as the concentration …eld decay for  = 05 and 15. To scrutinize the consequence of shear

thinning/thickening liquids for …tted rate constant () and activation energy parameter ()

on concentration …eld, …gures 713(ab) and 714(ab) are drafted. A dissimilar enactment is

noted for these schemes. The enhancing value of these parameters causes a decline in the con-

centration …eld for but it enhances for . The larger spectacles an increase in nanoparticle

concentration for  = 05 and 15 as …tted rate constant is intensifying. Additionally, physically

advanced values of  falling-o¤ the modi…ed Arrhenius function which ultimately stimulates

the generative chemical reaction quantity. Thus, the concentration of Carreau ‡uid augments.

7.3.1 Tabular Representations

Tables 7.1 and 7.2 are structured for the intensifying value of in‡uential parameters on lo-

cal skin friction coe¢cients

µ
1
2 Re

1
2
 

1
2

³



´
Re

1
2
 

¶

, heat and mass transfer amount
µ

Re
¡ 1
2

  Re
¡ 1
2

 

¶

on Carreau nano‡uid for   1 and   1 From these tables, out-

comes acknowledge that the

µ
1
2 Re

1
2
 

¶

intensi…es for   and ; however, it fallo¤s for ¤

  and  Instead of this,

µ
1
2

³



´
Re

1
2
 

¶

exhibits boosting enactment for   ¤ 

 and  but for  its fallo¤ for both cases   = 05 and 15. The heat transport amount

for  ¤  have con‡icting tendency when we compare with    and  Moreover, the

mass transport amount diminishes for    and  and intensify for ¤  and  for both

values of  = 05 and 15.

7.3.2 Con…rmation of Numerical Outcomes

For the endorsement of numerical upshots, Tables (7.3) to (7.5) are documented. Table 7.3

is the assessment table of ¡ 00(0) in the restrictive sense while Tables 7.4 and 7.5 are the

estimated value of local skin friction coe¢cients

µ
1
2 Re

1
2
 

1
2

³



´
Re

1
2
 

¶

for both values

of  = 05 and  = 15 with those of (cf. Chapter 6). From both these tables, a remarkable

agreement is being reported with earlier obtainable …ctions.
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Figure 71(a¡ d): In‡uence of  on  0() and 0()
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Figure 72(a¡ d): In‡uence of ¤ on  0() and 0()
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Figure 73(ad): In‡uence of  on ().
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Figure 74(ab): In‡uence of  on ()
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Figure 75(ab): In‡uence of  on ()
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Figure 76(ab): In‡uence of  on ()
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Figure 77(ab): In‡uence of 1 on ()




(

)

0 3 6 9 12
0

0.1

0.2

0.3

0.4

0.5

0.6

R
d
= 0, 1, 2, 3

We
1
= We

2
= Pr = 3, * = N* =  = * = 0.1


t
= 

c
= N

b
= 0.2,  = N

t
= 0.3, S = 0.4, m = 0.5

M = 1.5, 
1
= 

2
= 0.8,  = * = E = Le = 1

(a) n = 0.5




(

)

0 3 6 9 12
0

0.1

0.2

0.3

0.4

0.5

0.6

R
d
= 0, 1, 2, 3

We
1
= We

2
= Pr = 3, * = N* =  = * = 0.1


t
= 

c
= N

b
= 0.2,  = N

t
= 0.3, S = 0.4, m = 0.5

M = 1.5, 
1
= 

2
= 0.8,  = * = E = Le = 1

(b) n = 1.5

Figure 78(ab): In‡uence of  on ()
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Figure 79(ab): In‡uence of  on ()
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Figure 710(ab): In‡uence of  on ()
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Figure 711(ab): In‡uence of ¤ on ()
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Figure 712(ab): In‡uence of ¤¤ on ()
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Figure 713(ab): In‡uence of  on ()
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Figure 714(ab): In‡uence of  on ()
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Table 7.1: Outcomes of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

when 1 = 2 = Pr = 30

¤ =  = ¤ = 01  =  = 02  = 03  = 04 1 = 2 = 08 and ¤ = ¤¤ =  = 10

are …xed.

  ¤    

1
2Re

1
2


 = 05  = 15

1
2

³



´
 Re

1
2


 = 05  = 15

0.2 0.5 0.1 0.3 0.2 0.5 1.0 -2.12086 -6.42904 -0.339987 -0.490901

0.3 -2.21382 -6.78915 -0.354492 -0.515325

0.4 -2.30607 -7.15928 -0.369073 -0.540188

0.5 -2.39711 -7.53779 -0.383708 -0.565455

0.2 0.2 -1.96905 -5.77391 -0.292578 -0.412462

0.6 -2.19941 -6.77972 -0.363443 -0.531575

1.0 -2.64142 -8.90320 -0.489244 -0.766933

0.5 0.0 -2.21547 -6.71371 -0.338410 -0.490016

0.2 -2.02931 -6.15185 -0.341502 -0.491784

0.3 -1.94046 -5.88197 -0.342970 -0.492666

0.1 0.1 -2.12763 -6.45158 -0.339838 -0.490813

0.2 -2.12426 -6.44045 -0.339911 -0.490856

0.4 -2.11741 -6.41734 -0.340065 -0.490949

0.3 0.1 -2.12111 -6.42784 -0.340000 -0.490917

0.4 -2.11742 -6.41957 -0.340040 -0.490925

0.5 -2.11539 -6.41357 -0.340075 -0.490943

0.2 0.0 -2.12048 -6.42800 -0.339994 -0.490905

0.3 -2.12070 -6.42861 -0.339990 -0.490903

0.6 -2.12094 -6.42926 -0.339985 -0.490901

0.5 0.2 -2.12226 -6.43366 -0.339956 -0.490883

0.4 -2.12191 -6.43247 -0.339964 -0.490888

0.6 -2.12156 -6.43130 -0.339972 -0.490892
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Table 7.2: Outcomes of

µ

Re
¡ 1
2

  Re
¡ 1
2

 

¶

when 1 = 2 = Pr = 30 ¤ =

 = ¤ = 01  =  = 02  = 03  = 04 1 = 2 = 08 and ¤ = ¤¤ =  = 10 are …xed.

  ¤    
Re

¡ 1
2

 

 = 05  = 15

Re
¡ 1
2

 

 = 05  = 15

0.2 0.5 0.1 0.3 0.2 0.5 1.0 0.503349 0.526309 0.535465 0.539490

0.3 0.531448 0.548969 0.531497 0.536941

0.4 0.556993 0.570018 0.528702 0.535095

0.5 0.579895 0.589424 0.526957 0.533911

0.2 0.2 0.508541 0.528719 0.535482 0.539688

0.6 0.500854 0.525164 0.535456 0.539393

1.0 0.488371 0.519507 0.535433 0.538903

0.5 0.0 0.502150 0.526205 0.535062 0.539333

0.2 0.504403 0.526407 0.535860 0.539648

0.3 0.505309 0.526495 0.536256 0.539806

0.1 0.1 0.528223 0.550041 0.552856 0.557868

0.2 0.515843 0.538258 0.542804 0.547344

0.4 0.490760 0.514209 0.530732 0.534242

0.3 0.1 0.514184 0.536627 0.495155 0.498329

0.4 0.481625 0.505501 0.556079 0.560472

0.5 0.470746 0.495032 0.560378 0.564822

0.2 0.0 0.502827 0.525839 0.525102 0.530586

0.3 0.503133 0.526115 0.531222 0.535836

0.6 0.50346 0.526410 0.537634 0.541364

0.5 0.2 0.504308 0.527326 0.574254 0.576156

0.4 0.504052 0.527058 0.564432 0.566675

0.6 0.503805 0.526800 0.554635 0.557343
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Table 7.3: A comparison of ¡ 00(0) for  when1 =2 = = ¤ = ¤ =  =  = 0

and  = 1

 Sharidan   [120] Chamkha   [121]
cf. Chapter 6

Table 6.4 (bvp4c)
Present (bvp4c)

0.8 -1.261042 -1.261512 -1.261044 -1.2610433

1.2 -1.377722 -1.378052 -1.377728 -1.3777257

2.0 -1.587362 - -1.587371 -1.5873714

Table 7.4: A comparison of

µ
1
2Re

1
2


¶

when  = ¤ = ¤ =  =  = 0

1 2  

1
2Re

1
2


cf. Chapter 6

Table 6.5 (bvp4c)

 = 05  = 15

1
2Re

1
2


Present (bvp4c)

 = 05  = 15

1.0 1.0 0.5 0.3 -1.495932 -2.275974 -1.4959297 -2.2759716

1.5 -1.735959 -3.240193 -1.7359481 -3.2401889

2.0 -1.953110 -4.360016 -1.9531051 -4.3600111

2.5 -2.139428 -5.604837 -2.1394249 -5.6048323

1.0 1.5 -1.495648 -2.276565 -1.4956459 -2.2765631

2.0 -1.495263 -2.277291 -1.4952613 -2.2772888

2.5 -1.494790 -2.278095 -1.4947885 -2.2780928

1.0 0.7 -1.597571 -2.473501 -1.5975519 -2.4735003

0.9 -1.698759 -2.674949 -1.6987548 -2.6749507

1.1 -1.799172 -2.879372 -1.7991637 -2.8793713

0.5 0.5 -1.540941 -2.374278 -1.5409627 -2.3742755

0.7 -1.583640 -2.474459 -1.5836865 -2.4744540

1.0 -1.642297 -2.629779 -1.6423871 -2.6297725
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Table 7.5: A comparison of

µ
1
2

³



´
 Re

1
2


¶

when  = ¤ = ¤ =  =  = 0

1 2  

1
2

³



´
 Re

1
2


cf. Chapter 6

Table 6.4 (bvp4c)

 = 05  = 15

1
2

³



´
 Re

1
2


Pr esent (bvp4c)

 = 05  = 15

1.0 1.0 0.5 0.3 -0.3014584 -0.3224466 -0.30145875 -0.32244680

1.5 -0.2992882 -0.3238545 -0.29928831 -0.32385468

2.0 -0.2973149 -0.3250801 -0.29731498 -0.32508109

2.5 -0.2956285 -0.3261349 -0.29562848 -0.32613498

1.0 1.5 -0.3074282 -0.3473583 -0.30742884 -0.34735831

2.0 -0.3156383 -0.3796407 -0.31563951 -0.37964054

2.5 -0.3258926 -0.4178941 -0.32589468 -0.41789377

1.0 0.7 -0.3239701 -0.3481788 -0.32397045 -0.34817952

0.9 -0.3456479 -0.3734159 -0.34564809 -0.37341649

1.1 -0.3664994 -0.3981124 -0.36649962 -0.39811393

0.5 0.5 -0.5729707 -0.6737814 -0.57297368 -0.67378130

0.7 -0.9220556 -1.2239450 -0.92206906 -1.22394310

1.0 -1.6422970 -2.6297790 -1.64238710 -2.62977250
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Chapter 8

Homogeneous-Heterogenous

Reactions in 3D Flow of Carreau

Fluid with Cattaneo Christov Heat

Flux

This chapter communicates the consideration of 3D Carreau liquid ‡ow under the impact of ho-

mogeneous/heterogeneous chemical reactions over a stretched surface. Moreover, heat transfer

aspect is reported in vision of an improved heat ‡ux relation. This phenomenon is established

upon the theory of Cattaneo–Christov heat ‡ux relation that contributes by the thermal relax-

ation. On exploitation of apposite transformations a system of nonlinear ODEs is attained and

then elucidated numerically by means of bvp4c scheme. The description of temperature and

concentration …elds equivalent to the frequent somatic parameters are graphically scrutinized.

Our analysis carries that the concentration of the Carreau liquid declines as the heterogenous-

homogeneous reaction parameters intensify. Furthermore, it is notable that for shear thinning

(  1) liquid, the in‡uence of local Weissenberg numbers is absolutely con‡icted as compared

with the instance of shear thickening (  1) liquid. Additionally, validation of numerical

results is done via benchmarking with previously stated limiting cases and initiated a superb

correspondence with these outcomes.
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8.1 Description of the Problem

Consider the steady, 3D incompressible Carreau ‡uid ‡ow over a bidirectional stretched sur-

face. The sheet is stretched with linear velocities  =  and  =  respectively, in which

   0 are taken as constants and ‡ow occupies the domain   0. The heat transfer phenom-

enon is established in the presence of an improved heat conduction relation. Additionally, the

in‡uences of heterogeneous-homogeneous reactions are occupied in the present ‡ow analysis.

Homogeneous reaction for cubic autocatalysis can be termed as

1 + 21 ! 31 rate = 1
2
1 (8.1)

whereas on the catalyst surface, the isothermal reaction of the …rst-order is of the form

1 ! 1 rate = 1 (8.2)

where the chemical species (11) have the concentration (1 1) and rate constants ( ) 

respectively. Moreover, assumed that both are isothermal processes for reactant 1 there is a

uniform concentration 10 while there is no autocatalyst 1

Under these considerations, the governing ‡ow problem with boundary conditions is written

as



+




+




= 0 (8.3)


 +  

 +
 =  2

2

h
1 + ¡2

¡



¢2
i¡1

2

+(¡ 1)¡2 

h
1 + ¡2

¡



¢2i
¡3
2

 (8.4)


 +  

 + 
 =  2

2

h
1 + ¡2

¡



¢2i
¡1
2

+(¡ 1)¡2 

h
1 + ¡2

¡



¢2i
¡3
2

 (8.5)
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
 +  

 + 
 = 1

2
2

+1

2

6
6
6
4

2 
2

2
+ 2 

2
2

+2 
2

2
+ 2 2



+2 2
 + 2

2
 +

³


 +  
 +



´



+
³


 +  
 +



´

 +

³


 +  
 + 



´



3

7
7
7
5
 (8.6)


1


+ 
1


+
1


= 1

21
2

¡ 1
2
1 (8.7)


1


+ 
1


+
1


= 1

21
2

+ 1
2
1 (8.8)

 = () =   = () =   = 0

 =  1

1
 = 1 1

1
 = ¡1 at  = 0 (8.9)

! 0 ! 0  ! 1 1 ! 10  1 ! 0 as  !1 (8.10)

where 1 is the thermal relaxation time and (1 1) the coe¢cients of di¤usion species of

1 and 1 respectively.

8.1.1 Appropriate Conversions

We de…ne the following applicable conversions

 () =
 ¡ 1
 ¡ 1

 1 = 10() 1 = 10()  = 

r



 (8.11)

In view of overhead conversions and Eq. (227) (cf. Chapter 2), Eqs. (84)¡ (810) yield

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + ) = 0 (8.12)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 02 + 00( + ) = 0 (8.13)

00 +Pr( + )0 ¡ Pr1[( + )( 0 + 0)0 ¡ ( + )200] = 0 (8.14)

1


00 + ( + )0 ¡ 1

2 = 0 (8.15)
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


00 + ( + )0 + 1

2 = 0 (8.16)

(0) = 0 (0) = 0  0(0) = 1 0(0) =  (0) = 1 (8.17)

0(0) = 2(0) 
0(0) = ¡2(0) (8.18)

 0 ! 0 0 ! 0  ! 0 (8.19)

! 1 ! 0 as  !1 (8.20)

Here, 1 (= 1) indicates the thermal relaxation time parameter, 
³
= 



´
the Schmidt

number, 

³
=

1
1

´
the di¤usion coe¢cient ratio and (2 1) the measures the strength of

heterogeneous-homogeneous processes.

In physical circumstances, the 1 and 1 the di¤usion coe¢cients are taken to be equal

  = 1 which will provide as:

() + () = 1 (8.21)

Thus, Eqs. (815), (816), (818) and (820) yield

1


00 + ( + )0 ¡ 1(1¡ )2 = 0 (8.22)

0(0) = 2(0) ! 1 as  !1 (8.23)

8.2 Engineering and Industrial Quantities of Interest

The essential features of ‡ow is the coe¢cient of skin friction ( ) which are demarcated

as

 =

1
2

2


and  =

1
2

2


 (8.24)

and in the dimensionless representations, we have

1
2Re

1
2
 =  00(0)[1 +21

002]
¡1
2  (8.25)

1
2

³



´
 Re

1
2
 = 00(0)[1 +22

002]
¡1
2  (8.26)
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8.3 Graphical Illustration and Analysis

This section is predominantly emphases to interpret the somatic features of heterogeneous-

homogeneous reactions in 3 Carreau ‡uid ‡ow past a stretched sheet by utilizing the non-

Fourier’s heat conduction relation. The set of Eqs. (812) ¡ (814) and (822) with boundary

restrictions (817) (819) and (823) are established and resolved via bvp4c scheme. The core

purpose of the following discussion is to fetch out the in‡uences of scheming parameters such

as 1 2, , Pr, 1, 1 2 and  on the temperature () and concentration () …elds

in both circumstances (  1) and (  1) (i.e., shear thinning/thickening). Additionally,

the numerical and analytical outcomes in comparison of former existing prose are presented for

some descriptive value of  and Pr.

Figures 81(ab) and 82(ab) are portrayed to visualize the impact of the thermal relax-

ation parameter (1) and Prandtl number (Pr) on the temperature () of Carreau liquid for

both shear thinning/thickening liquids, respectively. These plots acknowledged that the liquid

temperature in addition to the thickness of thermal boundary layer spectacles a diminishing

behavior for enhancing values of Pr and 1 for (  1) and (  1). Physically, this happens

because of the fact that for larger value of 1, the liquid material needs extra time for heat

transfer to its adjacent elements which raises the temperature gradient and hence, declines

the temperature distribution. Moreover, the instance of Fourier’s law in association with the

Cattaneo-Christov heat ‡ux model the temperature pro…le is higher for 1 = 0.

Figures 83(ab) and 84(ab) are sketched to interpret the features of the local Weis-

senberg numbers (12) on concentration …eld () of Carreau liquid for higher 1 and

2, respectively. These results exhibit that with the enlargement of1 and2, the concen-

tration distribution intensi…es, whereas the thickness of concentration boundary layer reduces

for shear thinning liquid. Instead of shear thickening liquid moderately con‡icting behavior is

identi…ed for the increasing values of 1 and 2 on (). The impact of the growing value

of the ratio of stretching rates parameter () and the Schmidt number () on concentration of

Carreau ‡uid for the both instances (  1) and (  1) is clari…ed via …gures 85(ab) and

86(ab) respectively. From these sketches the analogous behaviors for the emergent value of 

and  for the circumstances of shear thinning/thickening liquids are perceived. Uplifting the

values of  and  enhance the concentration of Carreau liquid while its allied thickness of con-
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centration boundary layer reduces. For physical point of vision, advance value of , stretching

beside the ¡direction growths which reasons the escalation of the concentration of Carreau

liquid. Moreover, as  is the relation of the viscous di¤usion rate to the molecular di¤usion

rate, higher value of  resembles the greater viscous di¤usion rate, which is …t to intensify the

liquid concentration. Figures 87(ab) and 88(ab) respectively, explore the properties of

homogeneous and heterogeneous reaction parameters (1 2) for the shear thinning and shear

thickening situations on the concentration scattering. The concentration …eld moderates for

both conditions (  1) and (  1) for increasing values of 1 and 2; however, the thick-

ness of concentration boundary layer assembled for larger 1 and 2. Physically, from …gures

87(ab) this is owing to the circumstance that the reactants are consumed throughout the

homogeneous reaction which reasons the decline of the concentration distribution. Instead, one

can noticed from …gures 88(ab) that the advance value of 2 outcomes in the decline of

(). This coincides with the overall physical behavior of homogeneous 1 and heterogeneous

2 reactions.

8.3.1 Graphical Comparison between bvp4c and HAM

Figures 89(ab) depict the impact of Pr and 1 for two dissimilar schemes, namely the

homotopy analysis method (HAM) and bvp4c approach. From these plots a brilliant agreement

is initiated amongst both techniques.

8.3.2 Con…rmation of Numerical Outcomes

The authenticity of the numerical consequence are also established by assessment with the

analytical outcomes achieved by the HAM as shown in Tables 8.1 to 8.3. Moreover, these

results are compared with former available prose as an exceptional instance of the problem and

outstanding settlement is noticed. The discrepancy of the Nusselt number for di¤erent values of

Pr is presented through Table 8.4. A comparison between analytical technique (HAM) and the

numerical scheme (bvp4c) with some former prose is also presented in this table. Consequently,

these tables assured that the present outcomes are very accurate.
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Table 8.1: A comparison of  00(0) between bvp4c and HAM in limiting cases when 1 =

2 = 0 and  = 1 are …xed.


 00(0)

Wang [117] Liu and Anderson [118] Munir   [119] Present(bvp4c) Present (HAM)

0.0 -1 -1 -1 -1 -1

0.25 -1.048813 -1.048813 -1.048818 -1.048813 -1.048810

0.50 -1.093097 -1.093096 -1.093098 -1.093095 -1.093095

0.75 -1.134485 -1.134486 -1.134487 -1.134485 -1.134486

1.0 -1.173720 -1.173721 -1.173721 -1.173720 -1.173720

Table 8.2: A comparison of 00(0) between bvp4c and HAM in limiting cases when 1 =

2 = 0 and  = 1 are …xed.


00(0)

Wang [117] Liu and Anderson [118] Munir   [119] Present(bvp4c) Present (HAM)

0.0 0 0 0 -1 -1

0.25 -0.194564 -0.194565 -0.194567 -0.1945649 -0.1945645

0.50 -0.465205 -0.465206 -0.465207 -0.4652052 -0.4652049

0.75 -0.794622 -0.794619 -0.794619 -0.7946182 -0.7946182

1.0 -1.173720 -1.173721 -1.173721 -1.1737205 -1.1737210
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Table 8.3: A comparison of 0(0) between bvp4c and HAM in limiting cases when 1 =

2 =  = 0 and  = 1 are …xed.


0(0)

Liu and Anderson [118] Munir   [119] Present(bvp4c) Present (HAM)

0.25 -0.665933 -0.665939 -0.665933 -0.665926

0.50 -0.735334 -0.735336 -0.735335 -0.735332

0.75 -0.796472 -0.796472 -0.796473 -0.796471

Table 8.4: A comparison of ¡0(0) between bvp4c and HAM for Pr when 1 = 2 =

 = 0 and  = 1 are …xed.

Pr
¡0(0)

Khan and Pop [2] Wang [122] Gorla and Sidawi [123] Present(bvp4c) Present(HAM)

0.70 0.4539 0.4539 0.4539 0.453935 0.453933

1.0 - - - 0.581979 0.581977

1.3 - - - 0.693029 0.693023

1.5 - - - 0.760293 0.760298

1.7 - - - 0.823311 0.823327

2.0 0.9113 0.9114 0.9114 0.911362 0.911336

7.0 1.8954 1.8954 1.8954 1.895420 -

20.0 3.3539 3.3539 3.3539 3.353950 -

70.0 6.4621 6.4622 6.4622 6.462250 -
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Chapter 9

Impact of Cattaneo–Christov Double

Di¤usion in 3D Carreau Fluid Flow

Here the steady 3D ‡ow of a Carreau liquid in‡uenced by bidirectional stretched surface. With

Cattaneo–Christov double di¤usion and temperature-dependent thermal conductivity, the heat

and mass transfer mechanisms have been scrutinized. The alteration of nonlinear PDEs to

nonlinear ODEs is equipped via apposite conversions and then resolved numerically by means

of bvp4c scheme. The graphical depiction is exposed to portray the essential features of somatic

parameters on Carreau liquid temperature and concentration distributions. This study indicates

that the variable conductivity parameter enhances the liquid temperature, while the thermal

relaxation time parameter and Prandtl number are diminishing functions of temperature …eld.

Furthermore, these results illustrate that the concentration relaxation time parameter and

Schmidt number diminish the concentration …eld. The assertion of present outcome is asserted

by emergent assessment with former outcomes presented in prose, which sets a benchmark for

execution of computational methodology. Moreover, graphical assessment is also reported for

two altered techniques, the analytical one (HAM) and numerical one (bvp4c).

9.1 Description of the Problem

We analyze the steady 3D ‡ow of Carreau liquid in‡uenced by a bidirectional stretched surface.

The ‡ow is in‡uenced owed to the stretching surface in two nearby ¡ and ¡directions with
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linear velocities  =  and  = , respectively, in which    0 are occupied to be constants

relating to stretching rates and the ‡ow presence constrained in the region   0. The heat and

mass transfer mechanisms are explored via Cattaneo–Christov double di¤usion relationships.

The constant temperature and concentration at the wall are represented by ( ) while the

ambient values attain as  !1 take on the constant values (1 1) respectively.

Under these concerns, the governing equations of 3D Carreau liquid are
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+
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 = () =   = () =   = 0  =   =  at  = 0 (9.6)

! 0  ! 0  ! 1  ! 1 as  !1 (9.7)

where (2) are the relaxation time of mass ‡ux and molecular di¤usivity of the concentra-

tion respectively.

9.1.1 Appropriate Conversions

The following are the appropriate conversions

 () =
 ¡ 1
 ¡ 1

  () =
 ¡1
 ¡1

 (9.8)

In vision of above the alterations and Eq. (227) (cf. Chapter 2), the condition of incompress-

ibility is satis…ed automatically and Eqs. (92)¡ (97) yield

 000[1 +21
002]

¡3
2 [1 + 21

002]¡  02 +  00( + ) = 0 (9.9)

000[1 +22
002]

¡3
2 [1 + 22

002]¡ 02 + 00( + ) = 0 (9.10)

(1 + )00 + 02 +Pr( + )0 ¡ Pr1[( + )(
0
+ 0)0 + ( + )200] = 0 (9.11)

00 + ( + )0 ¡ 2[( + )(
0
+ 0)0 + ( + )200] = 0 (9.12)

(0) = 0 (0) = 0  0(0) = 1 0(0) =  (0) = 1 (0) = 1 (9.13)

 0 ! 0 0 ! 0 ! 0 ! 0 as !1 (9.14)

Here 2(= 2) is the concentration relaxation time parameter.

9.2 Engineering and Industrial Quantities of Interest

A critical structure of ‡ow are the local skin friction coe¢cients  and  which are de…ned

as

 =

1
2

2


  =

1
2

2


 (9.15)
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and the overhead expressions in the dimensionless form yield

1
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1
2
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¡1
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1
2
 = 00(0)[1 +22

002(0)]
¡1
2  (9.17)

9.3 Graphical Illustration and Analysis

This portion is established to infer the in‡uence of non-Fourier’s heat and non-Fick’s mass

‡ux relations in 3D ‡ow of Carreau liquid. The numerical study is established for some de-

scriptive values of numerous apposite parameters. The resultant non-linear ODEs are resolved

numerically by bvp4c and the outcomes are designed graphically.

To envision the in‡uence of ratio of stretching rates parameter () and thermal conductivity

parameter () on the Carreau liquid temperature …eld  (), …gures 91(ab) and 92(ab) are

depicted for both instants (  1) and (  1). These conspiracies show that the temperature

of Carreau ‡uid diminishes for larger  Strengthening values of  cause that the velocity in

¡direction is lower then velocity in ¡direction and the particles collision increases. Hence,

the liquid temperature of Carreau liquid declines when  increases. Additionally, the divergent

tendency to be instigated for higher values of . Physically, the thermal conductivity of Carreau

liquid rises for enhancing value of  because of huge heat transfer quantity from the sheet to

the material and therefore the temperature of Carreau liquid boosts up. Figures 93(ab) and

94(ab) are drafted to deduce the features of Prandtl number (Pr) and thermal relaxation

parameter (1) for both conditions. These outcomes display that the higher value of Pr and

1, diminish both the liquid temperature and its thickness of the thermal boundary layer. As

Prandtl number and thermal di¤usivity have con‡icting correlation. Because of this datum

higher Pr declines the Carreau liquid temperature. Moreover, a similar performance is being

remarked for 1 which decays the temperature of Carreau liquid for both (  1) and (  1)

Physically, from …gures 94(ab), this ensue owing to the datum that for collective values of

1, the liquid material desires additional time to transport of heat to its adjacent particle which

enhances the temperature gradient and therefore, the liquid temperature declines.

Figures 95(ab) and 96(ab) depict the aspects of Schmidt number () and solutal
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relaxation time parameter (2) on (). Both  and 2 diminish the concentration of Car-

reau liquid and allied thickness of concentration boundary layer. As  is the relation of the

viscous di¤usion rate to the molecular di¤usion rate. Though, advanced value of  resemble

the larger viscous di¤usion amount, which is adequate to exaggerate the liquid concentration.

Furthermore, the results indicated that for shear thinning/thickening liquids, increasing values

of  and 2 are declining functions of concentration distribution.

9.3.1 Con…rmation of Numerical Outcomes

For the legitimacy of the numerical outcomes an assessment of di¤erent values of ratio of

stretching rates parameter () with the analytical results attained through the HAM is displayed

in Tables 9.1 to 9.3. Moreover, an assessment table for diverse values of  and Pr in limiting

circumstance is presented as Table 9.4. From these tables, compared upshots with earlier

presented valid prose as a brilliant instance of the problem and exceptional settlement is being

remarked.
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


(

)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

n = 0.5(a)


1
= 0.0, 0.1, 0.3, 0.4

We1 = We2 = Pr = 1.0, 2 = 0.2

 =  = 0.3, Sc = 1.2




(

)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

n = 1.5(b)


1
= 0.0, 0.1, 0.3, 0.4

We
1
= We

2
= Pr = 1.0, 

2
= 0.2

 =  = 0.3, Sc = 1.2
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Table 9.1: A comparison of

µ
1
2Re

1
2


¶

between HAM and bvp4c in limiting circum-

stances when 1 =2 = 0 and  = 1 are …xed.



 00(0)

Wang [117] Liu and Anderson [118] Munir   [119]
Present

(bvp4c)

Present

(HAM)

0.0 -1 -1 -1 -1 -1

0.25 -1.048813 -1.048813 -1.048818 -1.0488125 -1.0488101

0.50 -1.093097 -1.093096 -1.093098 -1.0930951 -1.0930952

0.75 -1.134485 -1.134486 -1.134487 -1.1344845 -1.1344855

1.0 -1.173720 -1.173721 -1.173721 -1.1737201 -1.1737201

Table 9.2: A comparison of

µ
1
2

³



´
 Re

1
2


¶

between HAM and bvp4c in limiting cir-

cumstances when 1 =2 = 0 and  = 1 are …xed.



00(0)

Wang [117] Liu and Anderson [118] Munir   [119]
Present

(bvp4c)

Present

(HAM)

0.0 0 0 0 -1 -1

0.25 -0.194564 -0.194565 -0.194567 -0.19456491 -0.19456446

0.50 -0.465205 -0.465206 -0.465207 -0.46520520 -0.46520485

0.75 -0.794622 -0.794619 -0.794619 -0.79461815 -0.79461822

1.0 -1.173720 -1.173721 -1.173721 -1.17372051 -1.17372100
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Table 9.3: A comparison of ¡0(0) between HAM and bvp4c in limiting circumstances

when 1 =2 =  = 1 = 2 =  = 0 and Pr =  = 1 are …xed.


¡0(0)

Liu and Anderson [118] Munir   [119] Present(bvp4c) Present(HAM)

0.25 0.665933 0.665939 0.665933 0.665926

0.50 0.735334 0.735336 0.735335 0.735332

0.75 0.796472 0.796472 0.796473 0.796471

Table 9.4: A comparison of ¡0(0) between HAM and bvp4c in limiting circumstances

1 =2 = 1 = 2 =  = 0 and  = 1 are …xed.

 Pr
¡0(0)

Khan  [60] Present(bvp4c) Present(HAM)

0.2 1.3 0.604568 0.6045730 0.6045650

0.3 0.569570 0.5695749 0.5695719

0.4 0.539040 0.5390454 0.5390411

0.2 1.5 0.664040 0.6640454 0.6640446

1.7 0.719773 0.7197816 0.7197711

2.0 0.797638 0.7976520 0.7976410
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Chapter 10

Homogeneous-Heterogeneous

Reactions in 3D Unsteady Nonlinear

Radiative Flow of Carreau Fluid

This chapter scrutinize unsteady 3D bidirectional stretched ‡ow of a magneto-Carreau liquid

with non-linear thermal radiation. The convective properties for heat transfer mechanisms are

investigated with heat sink/source aspects. Additionally, the proposed model of heterogeneous-

homogeneous processes with equivalent di¤usivities for autocatalysis and reactants are consid-

ered. The modeled boundary layer equations are reduced to a system of nonlinear ODEs using

the appropriate transformations. The resulting equations are then solved by utilizing the two

di¤erent techniques, namely the bvp4c function in Matlab and the homotopic algorithm. The

numerical data for the velocities, temperature and concentration …elds are graphically sketched

and characteristics of the in‡uential parameters are deliberated in detail. Moreover, the ve-

locity gradients and the amount of heat transfer at the stretched surface for diverse value of

the pertaining parameters are given in tabulated form. It is observed that the temperature

pro…le enhances for the higher values of magnetic parameter () and heat generation para-

meter (  0) whereas it declines for augmented values of heat absorption (  0) parameter.

In addition, the concentration pro…le declines for increasing values of homogeneous reaction

parameter (1) and unsteadiness parameter (). To see the validity of the numerical computa-
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tions, the results of the numerical techniques, namely bvp4c with an e¢cient analytical method,

the homotopy analysis method (HAM) are compared and perceived an outstanding correlation

between these techniques.

10.1 Description of the Problem

Let us scrutinize unsteady 3D ‡ow of a magneto-Carreau liquid with velocities ( ) and

 = ( ), in which  is the coordinate measured beside the sheet and  the time. Additionally,

convective heat transfer mechanism is carried out in the presence of nonlinear thermal radia-

tion and heat source/sink. Furthermore, the ‡ow analysis is considered here by utilizing the

heterogeneous-homogeneous processes (Merkin [41]). A magnetic …eld of strength () = 0p
1¡

is applied along  ¡ . Because of the small magnetic Reynolds number the impact of the

induced magnetic …eld is neglected here. Moreover, we assume that hot liquid below the sheet

with temperature  transform the heat to the sheet with coe¢cient of heat transfer  . The

homogeneous processes for cubic autocatalysis be written as

1 + 21 ! 31 rate = 1
2
1 (10.1)

while on the catalyst surface, the …rst-order isothermal response is

1 ! 1 rate = 1 (10.2)

where (1 1) are the concentration and ( ) the rate constants of the chemical species

(1 1)  respectively. Furthermore, with the notion of both isothermal processes and distant

from the sheet at the ambient ‡uid, for 1 reactant 10 is a constant concentration, whereas

there is no autocatalyst 1

Governing equations of the existing unsteady ‡ow under these aforementioned assumptions

discussed above are given by



+




+




= 0 (10.3)
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µ
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+
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= 

2

2

"

1 + ¡2
µ




¶2
#¡1

2

+(¡ 1)¡2
µ




¶2µ2

2

¶"

1 + ¡2
µ




¶2
#¡3

2

¡
2

0


 (10.5)




+ 




+ 




+




= 1

2

2
¡

1

()




+
0
()

( ¡ 1) (10.6)

1


+ 
1


+ 
1


+
1


= 1

21
2

¡ 1
2
1 (10.7)

1


+ 
1


+ 
1


+
1


= 1

21
2

+ 1
2
1 (10.8)

The boundary condition of ‡ow problems are

 = ( ) =

1¡   = ( ) =


1¡   = 0

¡ 
 =  [ ¡  ] 1

1
 = 1 1

1
 = ¡1 at  = 0 (10.9)

! 0 ! 0  ! 1 1 ! 10  1 ! 0 as  !1 (10.10)

10.1.1 Appropriate Conversions

We introduce the following appropriate conversions:

 () =
 ¡ 1
 ¡ 1

 1 = 10() 1 = 10() (10.11)

In vision of the above conversions and Eq. (69) (cf. Chapter 6), the condition of incompress-

ibility is satis…ed automatically and Eqs. (114)¡ (1110) yield

 000[1 +21
002]

¡3
2 [1 + 21

002]¡ 

µ

 0 +
1

2
 00
¶

¡  02 +  00( + )¡2 0 = 0 (10.12)
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000[1 +22
002]

¡3
2 [1 + 22

002]¡ 

µ

0 +
1

2
00
¶

¡ 02 + 00( + )¡20 = 0 (10.13)




[f1 +(1 + ( ¡ 1))

3g0]¡ Pr

µ

 +
1

2
0
¶

+Pr( + )0 +Pr  = 0 (10.14)

1


00 + ( + )0 ¡ 1

2 ¡


2
0 = 0 (10.15)




00 + ( + )0 + 1

2 ¡


2
0 = 0 (10.16)

(0) = 0 (0) = 0  0(0) = 1 0(0) =  0(0) = ¡1[1¡ (0)] (10.17)

0(0) = 2(0) 
0(0) = ¡2(0) (10.18)

 0 ! 0 0 ! 0  ! 0 (10.19)

! 1 ! 0 as  !1 (10.20)

In physical situations, the di¤usion coe¢cients 1 and 1 are occupied to be equal i.e.

 = 1 which will give us

() + () = 1 (10.21)

Now consequently, Eqs. (1015) and (1016) yield

1


00 + ( + )0 ¡



2
0 ¡ 1(1¡ )2 = 0 (10.22)

with boundary conditions (1018) and (1020) we have

0(0) = 2(0) ! 1 as  !1 (10.23)

10.2 Engineering and Industrial Quantities of Interest

The surface drag forces (, ) and heat transport amount () are stated below

 =


1
2

2


and  =


1
2

2


 (10.24)
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 =


 ( ¡ 1)
¡



( ¡ 1)

µ




¶¯
¯
¯
¯
=0

 (10.25)

while in dimensionless variables, these are

1
2Re

1
2
 =  00(0)[1 +21

002]
¡1
2  (10.26)

1
2

³



´
 Re

1
2
 = 00(0)[1 +22

002]
¡1
2  (10.27)

Re
¡1
2

  = ¡[1 +f1 + ( ¡ 1)(0)g
3]0 (0)  (10.28)

10.3 Graphical Illustration and Analysis

The main attention of this section is to infer the physical structures of nonlinear thermal radi-

ation and heterogeneous-homogeneous reactions in unsteady 3D magneto-Carreau liquid with

convective heat transport. Additionally, characteristics of heat absorption/generation are delib-

erated. The set of Eqs.(1012)¡ (1014) and (1020) with boundary restrictions (1017) (1019)

and (1023) are established and elucidated via bvp4c approach. Tables of skin friction coe¢-

cients and Nusselt number are structured for shear thinning/thickening liquids. Additionally,

the tabular assessment between numerical (bvp4c) and analytical (HAM) schemes are presented.

Figures 101(a¡ d) are prepared to highlight the characteristics of local Weissenberg num-

ber (1) for both ( = 05) and ( = 15) on the velocity components  0() and 0(). It is

reported from these drafts that when values of 1 rise the velocity component  0() decays

for (  1), while con‡icting depiction is being identi…ed for the velocity component 0() for

(  1). Similarly, it is also detected that for (  1) local Weissenberg number 1 boosts

up the liquid velocity  0() whereas, it reduces the liquid velocity component 0() for amassed

values of 1 as exposed in …gures 101(b) and 101(d). Physical, 1 is the relation of

relaxation time of material and a speci…c process time. So higher estimation of relaxation time

leads to enhancement of thickness of material. Thus, higher 1 corresponds to a decrease in

velocity. Moreover, 1 is the relation of relaxation time of liquid and a certain progression

in which time growing the liquid viscosity. Hence, outcomes decline the liquid velocity 0().
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The behavior of local Weissenberg number (2) on the velocity components  0() and 0()

is noticed through …gures 102(a¡ d) for shear thinning/thickening liquids. It is noted from

these strategies, the intensifying value of 2 enhances the velocity components 
0() whereas

the reverse trend is detected for the velocity component 0() for (  1). However, it is antic-

ipated from the graphical data that opposite behavior of velocity components is acknowledged

for shear thinning liquid i.e., (  1).

Figures 103(ab) and 104(ab) are plotted to interpret the impact of local Weissenberg

numbers (1 and 2) on the temperature  () of magneto-Carreau liquid. The progressive

values of 1 and 2 enhance the liquid temperature for (  1) and a reverse behavior is

identi…ed for (  1). Physically, 1 and 2 are the proportion of viscous to the elastic

forces, so strengthening values of 1 and 2 result in an ampli…cation in the liquid viscos-

ity. Consequently, ‡ow becomes extra resistive and therefore, the temperature …eld enriches for

(  1) and reduced for (  1). Figures 105(ab) and 106(ab) are schemed to compre-

hend the impact of radiation parameter () and temperature ratio parameter () for both

shear thinning/thickening liquids on the temperature of Carreau liquid. From these plots it is

notable that the temperature of Carreau liquid and associated thermal boundary layer rise for

augmenting values of  and  . Physically, when  enhances, the mean absorption coe¢cient

declines due to which radiative heat transfer amount of the ‡uid rise. Therefore, the liquid tem-

perature and its associated thermal boundary layer increase. The variation in the temperature

of Carreau liquid for (  1) and (  1) is sketched in …gures 107(ab) and 108(ab) for

di¤erent values of the heat absorption phenomenon (  0) and heat generation phenomenon

(  0). The temperature of Carreau liquid increases as the value of heat generation   0 is

increased due to the fact that   0 gives more heat to the ‡uid that corresponds to an increase

in the temperature pro…le and the thermal boundary layer thickness while the opposite trend

is detected for   0. Impact of magnetic parameter () and thermal Biot number (1) on

the temperature …eld are delineated through …gures 109(ab) and 1010(ab). It is apparent

from these graphs that  and 1 are increasing functions of temperature …eld. Physically, this

is due to the fact that the Lorentz force is a resistive force which opposes the liquid motion due

to which collusion between the liquid particles enhances. Therefore, the temperature of Car-

reau liquid and its associated thermal boundary layer thickness rise. Additionally, it is observed
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from the graphs, 1 has a signi…cant e¤ect on the temperature pro…le. When 1 is increased,

the internal thermal resistance of the surface enhances. Therefore, a build in 1 increases ‡uid

temperature e¤ectively.

To visualize the impact of the local Weissenberg numbers (1 and 2) on the concen-

tration pro…le  () for both values of  = 05 and 15 …gures 1011(ab) and 1012(ab) are

plotted. From these plots we noted that when we enhance values of 1 and 2 the concen-

tration pro…le reduces for (  1) while con‡icting trend is observed for (  1). Furthermore,

it is noted that the outcomes for the concentration of Carreau liquid are more prominent for

lesser values of 1 and 2 when compared with the velocity and temperature …elds. Fig-

ures 1013(ab) and 1014(ab) are enlisted to envision the characteristics of homogeneous

reaction parameter (1) and unsteadiness parameter () on concentration of Carreau liquid.

The increasing values of homogeneous reaction parameter (amount of strength of homogeneous

reaction) decline both the concentration and its associated thickness of concentration boundary

layer for both instances. Although con‡icting behavior is observed for accumulated values of

 for concentration …eld. Chemically, during a chemical reaction reactant is consumed when

enhance 1. Owing to this circumstance concentration distribution shows diminishing trend for

higher values of 1. Figures 1015(ab) and 1016(ab) are exposed to envision the in‡uence

of magnetic parameter () and Schmidt number () for (  1) and (  1) on concentra-

tion pro…les. A con‡icting behavior for both  and  on concentration pro…le is observed.

Augmented values of  diminish the concentration distribution and its related thickness of

concentration boundary layer; however, the concentration of Carreau ‡uid enriches for . It is

essential to note that  is the amount of momentum di¤usivity to mass di¤usivity. Augmented

values of  resemble to greater momentum di¤usivity due to which concentration pro…le rises.

10.3.1 Tabular Representations

Tables 10.1 and 10.2 are presented to inspect the characteristics of the di¤erent ‡ow parame-

ter on the skin friction coe¢cients

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

and amount of heat transfer
µ

Re
¡ 1
2



¶

, respectively. It is noted that magnitude of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

and
µ

Re
¡ 1
2



¶

augment for higher  and . Moreover, the larger values of , 1 and Pr
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decrease the

µ

Re
¡ 1
2



¶

for both (  1) and (  1) cases.

10.3.2 Con…rmation of Numerical Outcomes

Tables 10.3 and 10.4 present the comparison between two di¤erent schemes, namely bvp4c

and HAM. From these tables, we found an outstanding agreement between these two techniques.

The accuracy of numerical signi…cances is also recognized by comparison with the numerical

outcomes (bvp4c) and analytical consequences attained by the HAM as displayed in Tables

10.5 to 10.7. Moreover, these outcomes are compared with previous published results and

achieved an excellent agreement between these results.
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Figure 101(a¡ d): In‡uence of 1 on  0() and 0()
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Figure 102(a¡ d): In‡uence of 2 on  0() and 0()

181






(

)

0 2 4 6 8 10
0

0.09

0.18

0.27

0.36 We
2
= Pr = 2.0,  = S = R

d
= 0.3, Sc = 1.5


f
= 1.2, M = 

1
= 0.5,  = k

1
= k

2
= 0.2

We
1
= 1.0, 2.0, 3.0, 4.0

n = 0.5(a)




(

)

0 2 4 6 8 10
0

0.12

0.24

0.36

We
2
= Pr = 2.0,  = S = R

d
= 0.3, Sc = 1.5


f
= 1.2, M = 

1
= 0.5,  = k

1
= k

2
= 0.2

We
1
= 1.0, 2.0, 3.0, 4.0

n = 1.5(b)

Figure 103(ab): In‡uence of 1 on ()
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Figure 104(ab): In‡uence of 2 on ()
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Figure 105(ab): In‡uence of  on ()
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Figure 106(ab): In‡uence of  on ()
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Figure 107(ab): In‡uence of   0 on ()
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Figure 108(ab): In‡uence of   0 on ()
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Figure 109(ab): In‡uence of  on ()
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Figure 1010(ab): In‡uence of 1 on ()
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Figure 1011(ab): In‡uence of 1 on ()
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Figure 1012(ab): In‡uence of 2 on ()
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Figure 1013(ab): In‡uence of 1 on ()
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Figure 1014(ab): In‡uence of  on ()
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Figure 1015(ab): In‡uence of  on ()
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Figure 1016(ab): In‡uence of  on ()
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Table 10.1: Outcomes of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

when  = 03 1 = 05,  = 02

 = 03  = 12 and Pr = 20 are …xed.

1 2  

1
2Re

1
2


 = 05  = 15

1
2

³



´
 Re

1
2


 = 05  = 15

2.0 2.0 0.3 0.5 -2.046435 -4.702709 -0.3300503 -0.4125359

2.5 -2.240301 -6.062783 -0.3281542 -0.4141052

3.0 -2.407694 -7.539750 -0.3265503 -0.4154563

3.5 -2.555124 -9.120284 -0.3251771 -0.4166335

2.0 2.5 -2.045798 -4.704881 -0.3414938 -0.4574357

3.0 -2.045067 -4.707137 -0.3548244 -0.5079346

3.5 -2.044266 -4.709401 -0.3695934 -0.5631292

2.0 0.4 -2.117672 -4.919199 -0.3424575 -0.4302965

0.5 -2.188601 -5.139543 -0.3547994 -0.4482203

0.6 -2.259131 -5.363385 -0.3670574 -0.4662761

0.3 0.0 -1.804023 -3.938287 -0.2843380 -0.3471551

0.2 -1.843686 -4.059568 -0.2919741 -0.3578008

0.4 -1.960615 -4.425757 -0.3141013 -0.3892843
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Table 10.2: Outcomes of

µ

Re
¡ 1
2



¶

when1 =2 = 20,  = 03  = 02  = 12

and Pr = 20 are …xed.

    Pr
Re

¡ 1
2



 = 05  = 15

0.3 0.5 0.3 0.5 2.0 0.411062 0.429949

0.4 0.424277 0.439151

0.5 0.435556 0.447557

0.6 0.445239 0.455161

0.3 0.0 0.418642 0.433624

0.2 0.417404 0.433017

0.4 0.413749 0.431242

0.5 0.0 0.324812 0.337217

0.4 0.438037 0.459293

0.8 0.537834 0.569123

0.3 0.1 0.116831 0.118229

0.2 0.211790 0.216517

0.4 0.355621 0.369532

0.5 1.0 0.328768 0.352512

1.3 0.360871 0.383626

1.7 0.392740 0.413299
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Table 10.3: A comparison of

µ
1
2Re

1
2
 

1
2

³



´
 Re

1
2


¶

between HAM and bvp4c when

1 =2 =  = 02  = 1 =  = 03  = 12  = 3 and Pr = 13 are …xed.

 
1
2Re

1
2


bvp4c HAM

1
2

³



´
 Re

1
2


bvp4c HAM

0.2 0.5 -1.245683 -1.24569 -0.3061175 -0.306114

0.3 -1.275457 -1.27546 -0.3161997 -0.316197

0.4 -1.304997 -1.30499 -0.3261552 -0.326155

0.2 0.1 -1.139945 -1.13995 -0.2683624 -0.268361

0.2 -1.153643 -1.15366 -0.2733681 -0.273365

0.3 -1.176149 -1.17615 -0.2815117 -0.281515
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Table 10.4: A comparison of

µ

Re
¡ 1
2



¶

between HAM and bvp4c when1 =2 =

 = 02  = 03  = 12 and  = 3 are …xed.

    Pr
Re

¡ 1
2



bvp4c HAM

0.2 0.5 0.3 0.3 1.3 0.263464 0.263461

0.3 0.272514 0.272512

0.4 0.280134 0.280130

0.2 0.1 0.268427 0.268429

0.2 0.267809 0.267806

0.3 0.266779 0.266774

0.5 0.0 0.209058 0.209055

0.5 0.296467 0.296469

1.0 0.368989 0.368985

0.3 0.1 0.112420 0.112424

0.4 0.315951 0.315953

0.7 0.423164 0.423167

0.3 1.0 0.224571 0.224570

1.3 0.250787 0.250789

1.7 0.268741 0.268747
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Table 10.5: A comparison of  00 (0) between HAM and bvp4c in limiting cases when

1 =2 =  = 0 and  = 1 are …xed.

 00 (0)

 Sharidan   [120] Chamkha   [121]
[cf. Chapter 6]

Table 6.4

Present

(bvp4c)

Present

(HAM)

0.8 -1.261042 -1.261512 -1.261044 -1.261043 -1.261043

1.2 -1.377722 -1.378052 -1.377728 -1.377725 -1.377752

2.0 -1.587362 - -1.587371 -1.587381 -1.587362

Table 10.6: A comparison of 0(0) between HAM and bvp4c in limiting cases when1 =

2 =  = =  =  =  = 0 and  = 1 are …xed.


0(0)

Liu and Anderson [118] Munir   [119] Present(bvp4c) Present(HAM)

0.25 -0.665933 -0.665939 -0.665933 -0.665926

0.50 -0.735334 -0.735336 -0.735335 -0.735332

0.75 -0.796472 -0.796472 -0.796473 -0.796471
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Table 10.7: A comparison of ¡0(0) between HAM and bvp4c in limiting cases when

1 =2 =  =  =  =  = 0  !1 and  = 1 are …xed.

Pr

¡0(0)

Khan and Pop [2] Wang [122] Gorla and Sidawi [123]
Present

(bvp4c)

Present

(HAM)

0.70 0.4539 0.4539 0.4539 0.453935 0.453933

1.0 0.581979 0.581977

1.3 0.693029 0.693023

1.5 0.760293 0.760298

1.7 0.823311 0.823327

2.0 0.9113 0.9114 0.9114 0.911362 0.911336

7.0 1.8954 1.8954 1.8954 1.895420

20.0 3.3539 3.3539 3.3539 3.353950

70.0 6.4621 6.4622 6.4622 6.462250
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Chapter 11

Closing Remarks and Future

Research Work

11.1 Closing Remarks

The research in this thesis has been initiated to elaborate the mathematical modeling and analy-

sis for three-dimensional ‡ows of Carreau ‡uid. The diverse characteristics of ‡ow, heat and

mass transport inside the boundary in‡uenced by a bidirectional stretching surface have been

explored. Particularly, both time-independent and time-dependent ‡ows were reported. The

formulated partial di¤erential equations were converted in view of compatible conversions and

then solved numerically via bvp4c. The con…rmation of the results of this work is also done by

making comparison through a numerical as well as analytical technique. This chapter provides

in brief the highlights of the work presented in this thesis. Hence, the notable conclusions that

are inferred from this exertion are enumerated as follows:

² The velocity component  0() declined for  = 05 and enhanced for  = 15 for increasing

local Weissenberg number (1). However, a con‡icted behavior was reported for velocity

component 0()

² The behavior of the local Weissenberg number (2) was noted totally opposite for both

  1 and   1 on velocity components  0() and 0() while temperature …eld enhanced

for  = 05 and diminished for  = 15.
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² A similar trend was remarked for higher value of power law exponent () on  0() and 0()

for both shear thinning/thickening cases.

² The higher values of magnetic parameter () and unsteadiness parameter () caused

a reduction in  0() and 0() and allied thickness of the boundary layer, whereas a

con‡icted performance was reported for temperature and concentration …elds.

² The augmented values of thermal radiation ()  temperature ratio parameter ( ) and

thermal Biot number (1) intensi…ed the temperature () of Carreau ‡uid.

² The Brownian motion () and thermophrosis () parameters, respectively, boosted the

temperature of Carreau ‡uid for   1 and   1. However, con‡icted performance of

 and  were observed on concentration of Carreau nano‡uid.

² The thermal strati…cation (1) and mass strati…cation (2) parameters diminished the

temperature () and concentration () …elds, respectively, while a con‡icted trend was

noted for larger mass Biot number (2) for concentration …eld.

² The thermal relaxation time parameter (1) and concentration relaxation time parameter

(2) reduced the temperature () and concentration () respectively.

² It was scrutinized that the homogeneous (1) and heterogeneous (2) reaction parameters

have the aptitude to reduce the concentration () of Carreau ‡uid.

² The higher reaction rate (¤), temperature di¤erence parameters (¤¤) and …tted rate

constant () acknowledged a decay in the concentration …eld (); however, the activation

energy parameter () was augmented ().

11.2 Future Research Work

In this thesis the main focus was to scrutinize the three-dimensional ‡ows of Carreau ‡uid

in‡uenced by a bidirectional stretched surface. Although this thesis covers a wide-range of

aspects regarding mathematical modeling and numerical computation of Carreau ‡uid, there

are still a few suggestions for future work:
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² In this thesis, the three-dimensional ‡ows of Carreau ‡uid over planner stretching surface

were investigated. This work can be extended for ‡ows over curved stretching surface as

well as ‡ows due to rotating disk.

² This work could be extended forward to account for non-zero in…nite shear rate viscosity

for 3D ‡ows of Carreau ‡uid.

² This study can be extended to explore the multiple solutions.

² Regarding the numerical simulation method, it would be interesting to perform a com-

parative study with di¤erent numerical methods.
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