
Numerical Simulation of Time-dependent 

Flow of Williamson Fluid with Heat Transfer 

 

 
    By 

Aamir Hamid 
 
 

A Thesis 

 Submitted in the Partial Fulfillment of the  

Requirements for the Degree of  

DOCTOR OF PHILOSOPHY 

IN 

MATHEMATICS 
 

 

 

 
 

Supervised by 

Prof. Dr. Masood Khan 
 
 
 
 

Department of Mathematics 
Quaid-i-Azam University, Islamabad 

PAKISTAN 
2019 











 

____________________________   Dedication 

To my sweet Mother 

whose wisdom and patience will never be forgotten. 

 

To my dear father  

for their tender love and support have put me where I am now. 

& 

To my sisters and my brother 

for immense support and encouragements. 

  

 

 

 

 



Acknowledgments 

First and foremost, praises and thanks to Allah, the Almighty, for His showers of 

blessings throughout my research work to complete my PhD thesis successfully. 

I cannot forget the ideal man of the world and most respectable personality for 

whom Allah created the whole universe, Prophet Mohammed (Peace Be Upon Him). 

I offer my humblest gratitude to Him and seek His assistance and forgiveness.  

My profound gratitude goes to my supervisor Prof. Dr. Masood Khan, who 

cordially welcomed me into his research group. He has been a real mentor to me that 

provided his advices unconditionally for everything academic and non-academic 

throughout these years. He has inspired me to become an independent researcher and 

helped me realize the power of critical reasoning. He also demonstrated what a brilliant 

and hard-working scientist can accomplish. His continuous support, motivation and 

untiring guidance have made this dream come true. I have been extremely lucky to have 

a supervisor who cared so much about my work, and who responded to my questions 

and queries so promptly. 

I would like to express my very great appreciation to my teachers Prof. Dr. 

Tasawar Hayat and Prof. Dr. Sohail Nadeem and other members of the 

department for their valuable and constructive suggestions. I am grateful to everyone 

at the department of Mathematics, Quaid-i-Azam University.  

For this dissertation I would like to thank my oral defense committee, Prof. Dr. 

Saleem Asghar and Dr. Abdullah Shah, for letting my defense be an enjoyable 

moment, and for your brilliant comments and suggestions, thanks to you. 



I am extremely grateful to my dearest friends and seniors, Muhammad Irfan, 

Hashim, Aman Ullah, Masood ur Rahman, Latif Ahmad, Kaleem Iqbal, Jawad Ahmed, 

Muhammad Waqas, Muhammad Ijaz Khan, Sharafat Hussain, Zahoor Iqbal, Abdul 

Hafeez, Awais Ahmed, Muhammad Naveed Khan  and many others for their friendship, 

loved, encouraged, entertained, tremendous help and useful discussions in the most 

positive way. 

Finally, but by no means least, I preserve my respects and love to my parents, for 

their continuous support and encouragement over the years for their love, moral 

support and encouragement. I would like to thank my loving family with their 

unconditional, pure and wonderful love that made me climb mountains throughout my 

academic career and in my personal life. I could never have done it without you, you are 

the best I could ever have wished for. Lastly, I would especially like to say a heartfelt 

thank you to my sisters and my brother for keeping me grounded and their selfless love 

and support for me to pursue the PhD degree. 

It has been a wonderful trip these last four years and I would not mind repeating 

it. I learned a lot, laughed a lot, met a lot of people and harvested from the best times, 

learned and roughened up from the bad times and will always be thankful to the ones 

(both named and those unnamed) that help me reach the end. 

          Aamir Hamid 

November 2019 



Abstract 
        The investigation carried out in this thesis focuses on the numerical analysis of 

time-dependent flow and heat transfer of a non-Newtonian Williamson fluid. In the 

literature, several constitutive equations were calculated which describe the relation 

between stress and rate of strain for non-Newtonian fluids. We have chosen the 

constitutive equation as suggested by Williamson for pseudoplastic materials and 

proposed the model equations to describe the boundary layer Williamson fluid flow. The 

core focus of this thesis is to study the behavior of different geometries, like, planar 

stretching sheet, radially stretching sheet, stretching/shrinking sheet, stretching cylinder, 

expanding/contracting cylinder and static/moving wedge, for flow patterns of non-

Newtonian Williamson fluid. 

    We know that when fluid flows over a solid body, such as the hull of a ship or an 

aircraft, frictional forces retard the motion of the fluid in a thin layer close to the solid 

body. The development of this thin layer is a major contributor to the flow resistance and 

is of great importance in many engineering and industrial problems. Therefore, the study 

of such boundary layer flows of non-Newtonian fluids due to different stretching 

geometries have gained remarkable aspects in numerous industrial applications. Keeping 

this in view, the present thesis finds out how the stresses on the bodies are affected and to 

know the behavior of the Weissenberg number of these stresses in relation to the 

contribution of zero and infinity shear rate viscosity. Additionally, the non-Newtonian 

Williamson fluid flow due to different stretching surfaces finds its extensive applications 

in the area of agriculture, engineering, petroleum industries, geothermal reservoir and 

geothermal energy extractions. 

    This thesis further presented the characteristics of heat and mass transport of non-

Newtonian Williamson fluid. A computational code is developed for the present analysis 

and it is verified against the available numerical data. Numerical outcomes characterizing 

the performances of velocity, temperature and concentration distributions are captured 

through graphical illustrations. The surface drag force, heat and mass transfer rates are 

also obtained. It is found that the Weissenberg number slow down the fluid motion while 



it enhances the temperature distribution. Further, it is worth mentioning that an increment 

in the unsteadiness parameter diminishes the fluid velocity and temperature, respectively. 

It is interesting to note that the higher the viscosity ratio parameter has a tendency to 

decrease the skin friction coefficient substantially. 
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Chapter 1

Introduction

This chapter consists of preliminary research, literature survey and motivation that encourages

us to pursue this research project. Additionally, the outline of the thesis are brie‡y described

at the end.

1.1 Motivation and Literature Survey

Newtonian ‡uids are de…ned to have a linear relation between viscous stresses and the local

strain rate at each point which arises from their ‡ow. The most common examples of this type

includes water and air. Due to their daily life importance, the ‡ows of Newtonian ‡uids are

conventionally regarded as normal. However, there exist several other types of ‡uids that do

not follow the Newton’s viscosity law. Broadly, the ‡ow behavior of such type of ‡uids di¤er

on number of lines. Non-Newtonian ‡uids appear to be abnormal or even paradoxical initially.

However, Walker [1] has described easily reproducible experiments that are able to elaborate

the unusual characteristics of non-Newtonian ‡uids.

5



The series of explorations dedicated to the study of Newtonian ‡uids suggest that research

of non-Newtonian ‡uids has not lagged on any scale. An immense amount of study has been

performed on non-Newtonian ‡uids under the cover of di¤erent …elds. Major topics described

in the literature include withdrawal of plates from ‡uids, pressure dependence of viscosity,

agitation and mixing, entrance e¤ects, turbulent ‡ow, instability mould …lling, boundary layer

theory and …ber spinning, etc. There are many di¤erent properties that a¤ect the behavior

of the ‡uid ‡ow which may be utilized to devise categorization of these ‡uids. The foremost

signi…cance in de…ning the ‡uid behavior is the viscosity. On this basis, ‡uids can be subdivided

into Newtonian and non-Newtonian. The viscosity is taken to be a constant factor for Newtonian

‡uids over a certain range of shear rate; however, it can change with temperature and pressure

over a range. On the other hand, non-Newtonian ‡uids have viscosity values that may vary

with the shear rate and depends on the shear rate. Several constitutive relations and viscosity

models are available varying in their extent of complexity. Bird et al. [2] and Barnes et al. [3]

provide a great overview of many widely encountered viscosity models.

Recently, numerous theoretical and experimental researches have been presented to elabo-

rate the non-Newtonian transport phenomena because of their substantial applications in sev-

eral industrial and biological activities, mechanical and materials engineering, etc. No doubt,

research regarding the non-Newtonian ‡uid has acquired abundant importance in comparison

to Newtonian ‡uids owing to their extensive engineering applications. For instance, bio-‡uids

in biological tissue and polymers, emulsions, nuclear fuel slurries, biomedical and lubricants

‡ows, polymeric ‡uids extrusion, etc. The complex features of these non-Newtonian ‡uids,

like, thixotropy, shear-thinning or shear-thickening and viscoelasticity, show some remarkable

application prospects or possibilities, even though bound together perspectives [4] and [5] have
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not yet risen for the present. In such manner, various rheological models portraying the non-

Newtonian conduct have been proposed. However, majority of non-Newtonian models include

some type of modi…cation to their momentum conservation equations. Based on distinct rheo-

logical features of the non-Newtonian ‡uids, several constitutive models have been presented to

manifest such ‡uids. Some existing models of non-Newtonian ‡uids include power-law model,

Oldroyd-B models, di¤erential Reiner-Rivlin models, Carreau model, Sisko model, Ellis model

and Williamson model, etc. Out of these Williamson [6] is a simple, yet elegant constitutive

model which was originally proposed to simulate the pseudoplastic shear-thinning characteris-

tics of non-Newtonian ‡uids. The shear-thinning materials are those in which apparent viscosity

decreases instantaneously with uplifting shear rate. This three-parameter model is the gener-

alization of Newtonian ‡uids which has the propensity to elaborate the behavior of polymer

melts, blood and paints, etc. The mathematical expression of Williamson constitutive model

is expressed as  = 1 + (0 ¡ 1)
³
1¡ ¡

¢

´¡1

 in which 0 represents the zero shear rate

viscosity and 1 shows in…nitely large shear rate viscosity and ¡ a material constant. The

shear rate is de…ned as
¢
 =

s
1
2

X



X



¢


¢
. Due to the prominence applications in biological

phenomena, the peristaltic ‡ow and heat transfer analysis of Williamson ‡uid have fascinated

the attention of many researchers, for instance, Nadeem and Akram [7], Vasudev et al. [8],

Akbar et al. [9] and Eldabe et al. [10], etc. The convective heat transfer analysis for the

‡ow of Williamson nano‡uid by linear stretching/shrinking sheet was reported by Gorla and

Gireesha [11]. In this work, they employed the Runge-Kutta integration scheme to …nd the

dual solutions for ‡ow …eld. Kumar et al. [12] numerically investigated the two-phase ‡ow of

Williamson ‡uid with heat transfer by incorporating thermal radiation and temperature jump.

Recently, Ramzan et al. [13] developed the numerical solution of Williamson ‡uid ‡ow with
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non-Fourier heat transfer considering homogeneous-heterogeneous reactions.

Nanotechnology is a fast emerging …eld of science that started after Richard P. Feynman’s

lecture, "There’s Plenty of Room at the Bottom". It uses particles with di¤erent spatial struc-

ture and composition. However, a size of less than 100 nanometers remains constant. Devising

methods of formation and characterization of nanosize object having a well-de…ned geometry

and are subject of great research for scienti…c institutions around the world. Today we note

a very intense transfer of nanotechnology from laboratories to daily life. Nanoparticles are

increasingly found as components of paints, drugs, cosmetics, food packaging, tires and fabrics.

Often, they are components of complex ‡uids such as polymer solutions, molecular solutions or

ordered phases of liquid crystals. Understanding the properties of nanoscale systems is inter-

esting for cognitive reasons. It would encourage the design of materials with de…nite properties

and structure. Hence, it is advisable to inspect systems consisting of nanoparticles and complex

‡uids such as lyotropic ordered phases of liquid crystals and molecular solutions.

Nanotechnology has appealed to a number of researchers since its advent who investigated

the use of nano‡uids in the realm of both theoretical and experimental areas. The ability of

the nano‡uids to transfer the heat more e¢ciently has made them attractive for a number of

industries including nuclear reactors, chemical industry, biological and gas sensing and solar

synthesis. These industries have adopted the nanoparticles to intensify the heat-transport

capability of the normal ‡uids. This promise of the nano‡uids was proved theoretically for the

…rst time by Choi et al. [14] who established that thermal conductivity of the normal ‡uids

becomes doubled upon the addition of nanoparticles. The results reported by Masuda et al.

[15] and Eastman et al. [16] have illustrated that addition of less than 5% of nanoparticles can

improve 10¡15% of thermal conductivity of the basic ‡uids making a substantial improvement.

8



Buongiorno [17] recti…ed the weaknesses of dispersion and homogeneous models and presented a

non-homogeneous, two component model comprising of four equations to illustrate the unusual

improvement in the convective heat transfer using nano‡uids. Tiwari and Das [18] examined

the features of heat transfport on nano‡uids ‡ow in a two-sided lid-driven heated square cavity.

Experimental work [19] has demonstrated that the nano‡uid requires 5% volumetric portion for

a compelling heat transfer upgrades. Kuznetsov and Nield [20] used the Buongiorno’s model to

show the impact of thermophoresis di¤usion and Brownian motion on the natural convection

‡ow subjected to nanoparticles driven by a vertical surface. Khan and Pop [21] discussed the

mechanism of heat and mass transfer in free convection ‡ows of nano‡uid past a porous medium.

Transient hydro- magnetic rotating ‡ow of a nano‡uid with free convection was analyzed by

Hamad and Pop [22]. Sheikholeslami and Ganji [23] investigated the rotating 3D ‡ow of an

electrically conducting nano‡uid. After that, number of researches have been reported on

improvement of heat transfer rate in ‡ow of nano‡uids over various geometries, like, Dhanai et

al. [24] Hashim and Khan [25], Hayat et al. [26], Nayak et al. [27] and Dogonchi and Ganji

[28].

The review of magnetohydrodynamic (MHD) features has many important applications in

modern engineering and industry, namely solar physics, plasma con…nement, cosmology, and

many more. Physically, when an external magnetic …eld is applied to an electrically conducting

‡uid, it has an ability to create the induced electric and magnetic …elds. By assuming of

lower magnetic Reynolds number, we can ignore the contribution of the induced magnetic

…eld which interacts with electrically conducting ‡uid to produce Lorentz force [29]. The

applied magnetic …eld is generally utilized to control momentum and heat transportation in the

boundary region. It appears that, Pavlov [30] initially formulated the incompressible magneto-
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viscous ‡uid considering plane sheet deformation. Afterwards, Chakrabarti and Gupta [31]

extended this work by including the analysis of the temperature distribution. Hayat et al. [32]

reported the aspect of heat transport in stretched surface with magnetic e¤ect Turkyilmazoglu

[33] realized that the presence of magnetic …eld in the boundary layer ‡ow of di¤erent ‡uids is

used to control the momentum and heat transfer rate. Dessie and Kishan [34] scrutinized the

impact of magnetic …eld in dissipative stretching ‡ow subjected to variable viscosity and heat

sink/source aspects. Waqas et al. [35] addressed the MHD ‡ow of micropolar ‡uid generated

by nonlinear convective heated stretching surface considering the e¤ects of mixed convection.

Reddy et al. [36] elaborated the MHD stretched ‡ow of nano‡uid through the porous medium

with radiation e¤ect. It is fascinating to take note of those similar studies in di¤erent liquids

were performed by Hsiao [37 38], where he described that the electrically conducting magnetic

…eld enhancing the temperature …eld at a particular domain of the ‡ow. Recently, Haq et

al. [39] discussed the mixed convective ‡ow along a porous vertical stretching sheet under the

e¤ects of magneto-hydrodynamics. They reported the numerical as well as analytical solution

of the mentioned problem. Enormous research works [40¡ 42] have been done on MHD ‡ows

due to stretched surface under di¤erent physical situations.

According to researchers, radiative heat transport phenomenon is one of the thrust …eld of

science and engineering. Most engineering processes occurs because of high temperature and

hence the study of radiative heat transport plays a remarkable aspects in the structure and

design of advanced energy systems. Mukhopadhy et al. [43] inspected the e¤ect of nonlinear

radiation on steady ‡ow and heat transport behavior across a permeable surface. After that,

Cortell [44] presented a numerical investigation to study the radiative heat transfer features

by utilizing the Rosseland approximation for electrically conducting viscous ‡uid ‡ow. He
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concluded that the ‡uid temperature was signi…cantly boosted by the rising thermal radiation.

Besides, Hayat et al. [45] explored the three-dimensional ‡ow of viscous nano‡uid by considering

the e¤ects of radiative heat transfer and momentum slip condition. Analytical solutions for

momentum and thermal …elds have been computed by employing homotopy analysis methods.

The oblique stagnation point ‡ow of an electrically conducting viscous nano‡uid with convective

heat transfer mode and thermal radiation have been probed by Khan et al. [46]. Lately,

extensive researches have been done in radiative ‡ow and heat transfer subjects [47], [48]  [49] 

[50], [51].

Numerous investigators have given remarkable consideration to incorporate the slip condi-

tion at the surface describing the relative movement between the wall and the ‡uid adjacent to

the wall. One can say that this is a basic property that a¤ect the ‡uid ‡ow features. There is

a limited velocity of the liquid-solid interface and such sort of boundary condition for velocity

is supposed boundary slip or slip length. Probably, Navier [52] was the …rst who examined slip

condition and observed the tangential slip velocity  is linearly related to shear stress , in

the form  = , where  represents slip factor that changes with the presence of temper-

ature, pressure, normal stress, molecular parameter, and the characteristics of the liquid-solid

connection. The boundary layer ‡ow due to a stretched surface with slip condition was initi-

ated by Wang [53]. Later on, Zheng et al. [54] reported the radiative ‡ow of nano‡uids with

combined slip impacts within the sight of permeable medium. Mukhopadhyay [55] scrutinized

the ‡ow of an incompressible viscous ‡uid by considering partial slip mechanism. Later, Khan

and Hashim [56] investigated the impact of velocity, thermal and concentration slips driven

by a moving wedge for Carreau ‡uid model. Xie et al. [57] explored the numerical solutions

for ‡ow and heat transfer analysis of low pressure gas in slip ‡ow regime. They revealed that
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the temperature jump decays the heat ‡ux, while the velocity slip improves the rate of heat

transfer.

Due to the complexity faced on consideration of all the chemical reactions of a system, it

becomes more convenient and simple to limit to binary type only. A chemical reaction needs

activation energy which is an amount must be available to start o¤. The activation energy for

a reaction can be determined using Arrhenius equation that describes how the rate constant

changes with temperature. Chemical reactions are described by a substance change and at

least one product is yielded that have properties not quite the same as the reactants. As a

fundamental step in the process of manufacturing, many industrial applications need some form

of chemical reaction. These types of reactions are conventionally carried out in chemical reactors

and often limited by the degree of mass transfer achieved. It is essential to make the reaction

e¢cient, minimizing the number of reagents, energy inputs and waste while maximizing the

yield. Bestman [58] has studied the impact of chemical reaction for binary reaction model with

Arrhenius activation energy. Latterly, Kandasamy et al. [59] illustrated the e¤ects of chemically

reacting ‡ow driven by a wedge-shaped geometry with generation/absorption. They found that

chemical reaction parameter reduces the velocity distribution. The impact of chemical reaction

and radiative heat transfer induced by a permeable ‡at plate was studied by Makinde et al. [60].

They revealed that the ‡uid velocity declines with higher values of buoyancy forces and wall

suction parameter. Maleque [61] elaborated the binary chemical reaction on boundary layer ‡ow

with viscous dissipation. Later on, Wahiduzzaman et al. [62] considered nano‡uid ‡ow with

the impact of heat generation, chemical reaction and thermal radiation past a shrinking sheet.

After that, Mabood et al. [63] numerically studied nano‡uid ‡ow with chemical reaction and

viscous dissipation. In their analysis, they exhibited that nanoparticles concentration declined
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with an increment in chemical reaction parameter. Makinde and Animasaun [64] analyzed

the behavior of thermophoresis di¤usion and Brownian motion on bio-convection of nano‡uid

with chemical reaction e¤ect. In another paper, Eid [65] illustrated the impact of chemical

reaction on mixed convective nano‡uid ‡ow due to stretched surface. A theoretical review on

nano‡uid ‡ow induced by rotating disk with chemical reaction was reported by Reddy et al.

[66]. Chemical reaction and activation energy aspects in nano‡uid generated by a vertical plate

in the presence buoyancy e¤ects are considered by Mustafa et al. [67]. Hsiao [68] applied

the controlling method to promote the radiative activation energy of a manufacturing system

of Carreau-nano‡uid. He utilized the …nite di¤erence technique to obtain the convergence

and stability of the problem. Khan et al. [69] investigated the e¤ect of chemical reaction on

stretched ‡ow of Casson ‡uid.

It is notable that Chaim [70] was the …rst to contemplate the stagnation-point ‡ow past an

elastic sheet by taking the similar value of stretching as well as free stream velocity. Since then,

many authors have extended this idea to consider the di¤erent aspects of the stagnation point

‡ows. Stagnation point ‡ow is still attracting many researchers attention because of its imper-

ative practical applications. Examples of such technological processes are cooling of electronic

devices, the cooling of nuclear reactors during emergency shutdown, hydrodynamic processes in

engineering applications and MHD generators. Aman et al. [71] acquired the numerical results

of two-dimensional stagnation point ‡ow induced by a linearly stretching/shrinking surface.

The stagnation point ‡ow of nano‡uids generated by a stretching surface is reported by Nandy

and Mahapatra [72]. Saleh et al. [73] discussed the viscous ‡ow past a vertical shrinking sur-

face with mixed convection in stagnation region. Dash et al. [74] investigated the electrically

conducting ‡ow towards stretching/shrinking surface by incorporating heat source/sink e¤ect
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near a stagnation point. Recently, Nasir et al. [75] have studied the stagnation point ‡ow

generated by a permeable quadratically stretching/shrinking surface and found the dual nature

of solutions for certain parameters. Additionally, Seth et al. [76] analyzed the properties of

magnetic …eld in stagnation region considering heat generation/absorption.

The study of heat transfer mechanism through stretching surfaces have received a great

deal of research interest due to its engineering and industrial applications, for instance, man-

ufacturing of …ber-glass, enhancement in e¢ciency of paints and lubrication, plastic-molding,

extrusion of polymers, etc. Crane [77] was the pioneered who studied the ‡ow over a linear

stretching plate and obtained the analytical solution for the Navier-Stoke’s equations. Later

on, Grubka and Bobba [78] predicted that the solution calculated by Crane is the exact solution

of the Navier-Stoke’s equations. The work done by Crane [77] was prolonged by Grubka and

Bobba [78] by including the mass transfer e¤ects on the stretched surface. The impact of vis-

cous dissipation on radiative ‡ow over a stretching plate was studied by Cortell [79]. Further,

Khan et al. [80] studied the heat transport mechanism for Carreau ‡uid ‡ow with convective

heated surface. Their study revealed that ‡uid velocity decrease signi…cantly by the magnetic

…eld. Moreover, Rahimi et al. [81] employed the Collocation method to discuss the behavior

of an Eyring-Powell ‡uid past a linearly stretching surface. Mahabaleshwar et al. [82] elabo-

rated the thermal radiation e¤ects on Walter-B liquid ‡ow in stretched surface with Navier-slip

conditions.

Over the past few years, the ‡ow and heat transfer analysis past wedge-shaped bodies has

been a matter of utmost synchronic interest in the …eld of engineering and chemical industry.

Usually, such sort of ‡ows occur in aerodynamics, ground water pollution, geothermal industries,

etc. This concept was initially proposed by Falkner and Skan [83] in 1931. In their model, they
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depicted that pressure gradient played a vital role in such types of ‡ow and ‡ow was caused by

the pressure gradient. After that, Rajagopal et al. [84] extended the work of Falkner and Skan

for the ‡ow of second grade ‡uid and accomplished the solutions by perturbation technique.

Several studied describing the impacts of distinct physical phenomena on Falkner-Skan ‡ow are

demonstrated in literature, such as, Chamkha et al. [85], Hossain et al. [86], Ishaq et al. [87],

Hsiao [88] and Hayat et al. [89].

During the past few decades, ‡ow over a circular cylinder have gained notable attention due

to rapidly growing applications in many industrial and engineering processes. In 1975 Crane

[90] investigated the boundary layer ‡ow generated by a stretched cylinder. Later on, Wang

[91] initially reported the ‡ow of Newtonian ‡uid outside the stretching cylinder. Some recent

studies concerning the ‡uid ‡ow past a circular cylinder was studied by the researchers such as

Ishak and Nazar [92]  Lok and Pop [93]  Fang et al. [94]  Zaimi et al. [95] 

1.2 Basics Conservation Laws

The conservation laws of physics like the law of concentration, energy, mass and momentum

govern the mechanics of ‡uids. Mathematical formulation for the conservation hypothesis are

stated in di¤erential form as:

1.2.1 Mass Conservation

The mass conservation law describes that the time rate of increase of mass within a control

volume () must be equal to to net rate of mass in () This relation can be denoted as:

Z

()

µ



+r ¢ (V)

¶

 = 0 (1.1)
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As this is true all () so the integrand vanishes at every point. Thus, the mass conservation

law is given by




+r ¢ (V) = 0 (1.2)

Also, the above law is famous as the continuity equation, where  denotes the ‡uid density, V

the velocity …eld and  be the time.

The continuity equation reduces to the incompressible form as:

r ¢V = 0 (1.3)

1.2.2 Linear Momentum Conservation

According to Newton’s second law of motion, which states that the time rate of momentum of

a control volume equals the resultant force acting on it. It can be expressed in mathematical

form as;
Z

()

·
V


+ (VV) 

¸

 =

Z

()
[B+ ¿ ]  (1.4)

which implies that

V


+ (VV)  = B+ ¿  (1.5)

which is the momentum conservation law. In Eq. (15) ¿ is the stress tensor and B the

body force per unit volume.

In a more convenient way the conservation of linear momentum takes the form



·
V


+V ¢rV

¸

= div ¿ + B (1.6)
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1.2.3 Energy Conservation

The conservation of energy is derived from the …rst law of thermodynamics. It is mathematically

de…ned as





= ¿ L¡divqr ¡ divq (1.7)

In the above equation, (  ) denote the speci…c heat and temperature of ‡uid, respectively.

Further, (divq and divq) depict the radiative and thermal heat ‡uxes, respectively.

The energy ‡ux q is given as

q = ¡r (1.8)

with  represents the ‡uid thermal conductivity.

1.2.4 Concentration Conservation

The net concentration of the framework under consideration remains constant. Its expression

is obtained by Fick’s second law. In the absence of any chemical reaction, it can be written as




+V ¢r = ¡r ¢ j+ (1.9)

where,  being the concentration of the ‡uid, j the normal mass ‡ux and  "source" or "sink"

for .

The normal mass ‡ux is typically approximated by Fick’s …rst law as

j = ¡r (1.10)
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where  is the mass di¤usivity.

1.2.5 Energy Conservation for Nano‡uids

The energy conservation for an incompressible nano‡uid is expressed as





= ¡r ¢ j¡divq (1.11)

In the above expression, q be the thermal ‡ux of nano‡uids,  is the enthalpy, j the total

nanoparticle mass ‡ux.

Mathematical relations for q and j are as follows:

q= ¡r + j (1.12)

j = ¡r¡ 
r

1
 (1.13)

Here,  denotes the density of nanoparticle, ( ) are the Brownian motion and ther-

mophoretic di¤usion coe¢cients.

Now substituting the expressions for q and j into Eq. (115), therefore the …nal equation

becomes





= r2 + 

·

r ¢r +
r ¢r

1

¸

 (1.14)
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1.2.6 Mass Conservation for Nano‡uids

Mathematically, nano‡uid concentration equation is written as




+V ¢r = ¡

1


r ¢ j (1.15)

Making use of Eq. (117), we …nally have




+V ¢r = r

2 +
r2

1
 (1.16)

1.3 Research Methodology

1.3.1 Runge-Kutta Fehlberg Method (RKF-45)

The achievement of numerical solution for ordinary di¤erential equations (ODEs) has been a

…eld of great interest within the ‡uid dynamic network. For this reason, many authors utilized

di¤erent numerical schemes to tackle the ‡uid problems. Generally, numerous techniques are

convenient in literature for solving the initial value problems (IVPs) comprising of ODEs. Here,

we illustrate Runge-Kutta Fehlberg method which is an ancient and e¢cient numerical method

to compute the solutions of initial value problems. Let an IVP be speci…ed as follows;




=  ( )   () =  (1.17)

The algorithm of RKF-45 is written as

+1 =  + 

µ
16

135
0 +

6656

12825
2 +

28561

56430
3 ¡

9

50
4 +

2

55
5

¶

 (1.18)
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where the coe¢cients 0 to 5 are, respectively, de…ned as:

0 =  ( ) 

1 = 
¡
 + 1

4  + 1
40

¢


2 = 
¡
 + 3

8  + 3
320 +

9
321

¢


3 = 
¡
 + 12

13  + 1932
21970 ¡

7200
21971 +

7296
21972

¢


4 = 
¡
 +   + 439

2160 ¡ 81 +
3860
513 2 ¡

845
41043

¢


5 = 
¡
 + 1

2  ¡
8
270 + 21 ¡

3544
25652 +

1859
41043 ¡

11
404

¢


9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

(1.19)

Before using the RK-Fehlberg method, at a very …rst step, we convert the non-linear di¤erential

equations into …rst order di¤erential structure. The new system of …rst order ODEs can be

obtained by introducing new variables as:

 = 1  0 = 2  00 = 3  = 4 0 = 5  = 6 0 = 7 (1.20)

1.4 Scope of Research

In human life, the most common and important examples of ‡uids are air and water that comes

across in our daily life. These liquids are basic examples of the Newtonian ‡uids. However,

there exist several other ‡uids that are less commonly dealt in daily life and found in nature,

are classi…ed as non-Newtonian ‡uids. This relatively small but signi…cant category is an

interesting proposition to study the ‡ow mechanism of non-Newtonian ‡uids. The e¤orts have

been rendered in both physical and mathematical modelling of these ‡uids. In this thesis, a

major part of such research has been dedicated to obtaining an improved view of the bulk ‡ow
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of non-linear Williamson ‡uid over various stretched geometries. The Williamson boundary-

layer ‡uid ‡ow has not been studied on many large scale as compared to other non-Newtonian

‡uids. This research has used the idea of self-similarity that give some valuable information

about the boundary layer behavior. The implementation of the numerical approach for the

study of time-dependent Williamson ‡uid ‡ow in relation to such layer, may also uncover many

other aspects of this boundary layer phenomenon.

Our initial interest was the mathematical modelling for the Williamson ‡uid by incorporat-

ing the e¤ects of in…nite shear rate viscosity. Consequently, an additional interest in this thesis

was the transient ‡ow behavior of Williamson ‡uid using various mechanisms such as, MHD,

mixed convection, thermal radiation, heat source/sink, stagnation-point ‡ow, slip ‡ow, chemi-

cal reaction and ‡uid suction or injected through the surface. There has also been considerable

interest and research activity in practical geometries in which ‡uid ‡ows. We consider time-

dependent Williamson ‡uid ‡ow on a stretching surface, ‡uid ‡ow past a radially stretching

surface, ‡uid ‡ow past a circular cylinder and ‡uid ‡ow past a wedge shape geometry. These

numerous geometries pose a theoretical challenge to the researchers. In this thesis we develop

various ‡ow problems arising from these geometries and employ an e¢cient numerical technique

to solve these problems. Moreover, one other interesting feature of this thesis is the existence

of multiple numerical solutions for ‡ow …eld for certain physical parameters.

1.5 Thesis Overview

The motivation behind this research work is to gain a better understanding about the mech-

anism of heat transfer for unsteady Williamson ‡uid ‡ow over certain geometries. In this
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dissertation, an extensive numerical approach has been made to explore the heat transfer and

‡uid ‡ow characteristics for two-dimensional transient ‡ow through di¤erent stretched geome-

tries. All the research material produced during this project brie‡y speci…ed in this section.

Thus, the chapter wise arrangement of this thesis is as follows:

Chapter 1: This chapter provides an extensive literature survey behind the present work.

A vast number of previous investigations related to linear and non-linear ‡ows over moving

surfaces under di¤erent aspects are discussed. The basic conservation laws of ‡uids, numerical

methodology, outline of the thesis, motivation and goals of this thesis are also presented.

Chapter 2: This chapter explains the numerical solution of Williamson ‡uid ‡ow over a

planar stretched surface by considering shear rate viscosity at in…nity. The prevailing nonlinear

PDEs are altered into ODEs and then elucidated numerically by Runge Kutta Fehlberg tech-

nique to scrutinize the properties of physical parameters. The contents of this chapter have

been published in "Results Phys 7 (2017 ) 3968 ¡ 3975".

Chapter 3: This chapter investigated the 2D ‡ow of a non-NewtonianWilliamson ‡uid past

a wedge-shaped geometry. The impacts of heat transfer mechanism on time-dependent ‡ow are

illustrated graphically. A set of non-dimensional variables are employed to transmute the time-

dependent basics ‡ow equations to a …rst order system of ODEs. The converted conservation

equations are numerically incorporated subject to physically appropriate boundary conditions

with an e¢cient numerical method. The outcomes of this chapter are published in "Results

Phys 9 (2018 ) 479 ¡ 485"

Chapter 4: An investigation regarding the heat transfer characteristics during the time-

dependent ‡ow of Williamson ‡uid due to a static or moving wedge is endowed in this chap-

ter. This chapter also presents the …ndings from a numerical study of electrically conducting
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Williamson nano‡uid ‡ow by incorporating convective boundary conditions. The leading PDEs

of the ‡ow and heat transfer are alter to a set of ODEs by introducing new non-dimensional

quantities. The variations in non-dimensional velocity, temperature and nanoparticle concentra-

tion distributions are illustrated to see the in‡uence of physical parameters. The work provided

in this chapter is published in "Int  J  Heat Mass Transf  118 (2018 ) 480 ¡ 491".

Chapter 5: The foremost concern of this chapter is to deliberate the time-dependent

convective axisymmetric Williamson nano‡uid ‡ow with radially stretched wall. The surface

nanoparticles concentration is assumed to be uniform and the convective boundary condition

is considered. Additionally, radiative heat transfer in the form of Rosseland approximation is

considered in here. The control of active parameters on momentum, thermal and concentration

…elds is deliberated in detail with the help of plotted diagrams and tables. The …ndings of this

chapter are published in "Eur  Phys J  Plus 134 (2019 ) doi : 10 1140epjpi2019 ¡ 12473 ¡ 9"

Chapter 6: Here, an approximate numerical solution for the mixed convection Williamson

‡uid ‡ow driven by a radially stretching sheet with nanoparticles and chemically reactive species

have been investigated. In addition to this, we consider the nanoparticles condition at the sur-

face. The resultant equations are tackled numerically by a shooting technique. Graphical

analysis of several physical parameters on nano‡uids velocity, temperature, nanoparticles con-

centration is demonstrated and discussed with physical reasoning. The work corresponding to

this chaper is published in "J  Mol  Liq 260 (2018 ) 436 ¡ 446".

Chapter 7: The transient MHD ‡ow Williamson ‡uid along a stretching cylinder subject

to heat generation/absorption and binary chemical reaction is studied theoretically in this chap-

ter. In this investigation, Brownian di¤usion and thermophoresis are developed in energy and

concentration expressions by employing Buongiorno’s model of nano‡uid. The ruling math-
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ematical system in PDEs is altered over to a system of nonlinear ODEs by non-dimensional

analysis. The leading equations of ‡ow model consisting of time dependent momentum, energy

and concentration equations are tackled numerically by Runge-Kutta Fehlberg approach. The

work presented in this chapter is published in "J  Mol  Liq 262 (2018 ) 435 ¡ 442"

Chapter 8: This chapter explores the multiple solutions and combined e¤ects of magnetic

…eld, Ohmic heating and viscous dissipation for time-dependent Williamson ‡uid ‡ow gener-

ated by a permeable shrinking surface. Using suitable transformations, the ODEs equations

are integrated by utilizing RKF-45 method. The impact of in‡uential parameters on the di-

mensionless velocity and temperature distributions is studied and displayed with the help of

graphs. The consequences of this chapter are published in "Int  J  Heat Mass Transf  126

(2018 ) 933 ¡ 940"

Chapter 9: The cardinal focus of this chapter is to examine the e¤ects of heat genera-

tion/absorption, velocity slip and convective heat transfer on the ‡ow of an electrically con-

ducting Williamson nano‡uid towards an expanding/contracting cylinder. The study of all

governing parameters on the ‡uid velocity, temperature and nanoparticle volume fraction as

well as skin friction coe¢cient, heat and mass transfer rates are illustrated graphically. The

achievements of this chapter have been published in "Phys Lett  A 126 (2018 ) 1982 ¡ 1991"

Chapter 10: Finally, the last chapter concludes this thesis and provides a summary of the

work presented and suggest some recommendations for future work.
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Chapter 2

Impact of Non-linear Thermal

Radiation on Unsteady Williamson

Fluid Flow

In this chapter, a mathematical model for time-dependent ‡ow of Williamson ‡uid caused

by stretching surface by considering in…nite shear rate viscosity has been proposed. The

effects of heat source/sink and thermal radiation are considered for the analysis of heat

transfer. The similarity transformation technique is utilized to transmute the governing

equations of the problem. These nonlinear ODEs are tackled numerically by using Runge-

Kutta-Fehlberg 4th–5th order method. The numerical study is performed to investigate the

in‡uence of dimensionless parameters subject to their physical characteristics. The results

indicate that higher unsteadiness parameter enhances the friction factor at the surface.

Additionally, radiative parameter enhances the performance of heat transfer in the ‡ow.
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The obtained results are also compared with already published data and a superb agreement

is noted.

2.1 Governing Equations

The basic ‡ow equations including the mass conservation, momentum and energy are written

as:

rV =0 (2.1)


V


= div ¿  (2.2)





= ¿ L¡ divq¡ divqr (2.3)

Where, L denotes the velocity gradient and ¿ the Cauchy stress tensor.

The Cauchy stress tensor for Williamson ‡uid model is expressed as:

¿ = ¡I+ S (2.4)

where

S =

0

@1 +
0 ¡ 1

1 + ¡
¯
¯
¯
¢

¯
¯
¯

1

AA1 (2.5)

where  is the pressure, I and S respectively, denote the identity and extra stress tensors while

0 is the zero and 1 the in…nity shear rate viscosities, respectively, and ¡ the material time

constant. While the strain rate
¢
 is given by

¢
 =

r
1

2
(A2

1) where A1 =rV + (rV)  (2.6)
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Here, we consider the case for which 1 6= 0
¢
  0 and thus Eq. (25) takes the form

S = 0

Ã

¤ +
1¡ ¤

1¡ ¡
¢


!

A1 (2.7)

where ¤ = 1
0
represents the ratio of viscosities.

The velocity and temperature …elds for two-dimensional unsteady ‡ow have the forms:

V = [ (  )   (  )  0]   = (  )  (2.8)

where ( ) signify the components of velocity in ( ) directions, respectively. From Eq. (28),

the strain rate
³
¢

´
is given by:

¢
 =

"

4

µ




¶2
+

µ



+





¶2
#12

 (2.9)

Upon invoking the velocity and temperature …elds from Eq. (28) along with Eq. (29) into

Eqs. (21) ¡ (23), the dimensional form of governing equations under usual boundary-layer

assumption take the form:




+




= 0 (2.10)




+ 




+ 




= ¡

1






+ 

2

2

"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

+¡

µ




¶µ
2

2

¶"

(1¡ ¤)

µ

1¡ ¡




¶¡2
#

 (2.11)

0 = ¡
1






 (2.12)
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


+ 




+ 




= 

2

2
¡

1






+
0


( ¡ 1)  (2.13)

where  =  is the dynamic viscosity.

2.2 Geometry of the Problem

Fig. 21: Schematic diagram of physical con…guration.

2.3 Mathematical Formulation

We consider a 2 unsteady ‡ow of Williamson ‡uid driven by a ‡at stretching surface in the

region   0 (see Fig. 2.1). The ( ) is the stretching velocity with surface temperature

( ) which is anticipated to be greater than ambient temperature 1 (  1)  The

impact of heat generation/absorption is further incorporated in energy equation.
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Under these norms, the equations of radiative Williamson ‡uid ‡ow are:




+




= 0 (2.14)




+ 




+ 




= 

2

2

"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

+ ¡

µ




¶µ
2

2

¶"

(1¡ ¤)

µ

1¡ ¡




¶¡2
#

 (2.15)




+ 




+ 




= 

2

2
¡

1






+
0


( ¡ 1)  (2.16)

along with the boundary conditions

 = ( )  = 0  ¡



= ( ¡  ) at  = 0 (2.17)

! 0  ! 1 as  !1 (2.18)

The  via Rosseland approximation is simpli…ed as:

 = ¡
4¤¤

3¤




4

= ¡
16¤ 3

3¤



 (2.19)

in which ¤ indicates the mean absorption coe¢cient and ¤¤ denotes the Stefan-Boltzmann

constant. Utilizing Eq. (219) into Eq. (216) we have the following form of energy equation:





+ 




+




= 

2

2
+

16¤¤

3¤





µ

 3




¶

+
0


( ¡ 1)  (2.20)
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where 
³
= 

()

´
signify the thermal di¤usivity.

In addition, ( ) and ( ) are of the form:

( ) =


1¡ 
 ( ) = 1 +

0

(1¡ )
1
2

 (2.21)

In the above expression,   1 while  and  are dimensional constants having dimension

¡1. The e¤ective rate of stretching 1
(1¡) increments or decays with time as   0 or   0

respectively.

Let us de…ne the non-dimensional transformations [98] :

 = 

r



 (  ) =

p
() () =

 ¡ 1
 ¡ 1

 (2.22)

where  is the stream-function with  = 
 and  = ¡

 .

Substituting Eqs.(221¡ 222) into (215¡ 220)  we obtain

h
¤ + (1¡ ¤)

¡
1¡ 00

¢¡2
i
 000 +  00 ¡ ( 0)2 ¡

h
 0 +



2
 00
i
= 0 (2.23)

[f1 +(1 + ( ¡ 1))3g0]
0
+Pr(0 ¡ 2 0)¡Pr



2
(0 + 3) + Pr  = 0 (2.24)

subject to the boundary conditions

(0) = 0  0(0) = 1 
0
(0) = ¡(1¡ (0)) (2.25)

 0(1)! 0 (1)! 0 (2.26)
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The dimensionless parameters are given by:



Ã

=

s
3¡22

(1¡ )3

!

 Pr
³
=




´
 

Ã

=
0(1¡ )

 ()

!

 
³
=





´




µ

=
16¤¤ 31
3¤

¶

 

µ

=


1
 1

¶

 

µ

=




r




¶

 (2.27)

Here,  Pr     and  denote the local Weissenberg number, Prandtl number, un-

steadiness parameter, heat source parameter (  0) and heat sink parameter (  0), radiation

parameter, temperature ratio parameter and the Biot number, respectively.

2.3.1 Parameters of Physical Interest

The skin friction coe¢cient () and the Nusselt number () are reported as follows:

 =

2

  =


( ¡ 1)
+


( ¡ 1)

 (2.28)

In which  and  are expressed as:

 = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

  = ¡

µ




¶

=0

 (2.29)

Applying the transformations (222)  we have

Re12 =  00(0)[¤ + (1¡ ¤)
©
1¡ 00(0)

ª¡1
]

Re¡12  = ¡[1 +f1 + ( ¡ 1)(0)g3]0 (0)  (2.30)

where Re
¡
= 



¢
being the local Reynolds number.

31



2.4 Numerical Implementation

The system of ordinary di¤erential Eqs. (223) and (224) are highly nonlinear and partially

coupled. Therefore, it is quite di¢cult to obtain their analytical or exact solutions. Thus a

numerical treatment would be more appropriate. Hence, the governing equations (223) and

(224) having the boundary conditions (225) and (226) are numerically integrated by adopting

shooting algorithm coupled with the Runge-Kutta Fehlberg integration scheme.

The Runge-Kutta Fehlberg method is a numerical technique which can be applied to solve

the …rst order ODEs of the form:




=  ( )   () = 

Before applying the Runge-Kutta Fehlberg scheme, at a very …rst step, we reduce the non-

linear di¤erential structure into simultaneous di¤erential structure of …rst order. The governing

equations (223) and (224) are transformed to a set of …ve …rst order ODEs containing …ve

unknowns. In this regard, we introduce the new variables:

 = 1 
0
= 2 

00
= 3  = 4 

0
= 5 (2.31)

By practising the above variables, we get:

01 = 2 (2.32)

02 = 3 (2.33)
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03 =
¡13 ¡ 22 ¡

¡
2 +


23

¢

h
¤ + (1¡ ¤)

¡
1¡23

¢¡2
i  (2.34)

04 = 5 (2.35)

05 =

2

6
6
4

¡3 [1 +( ¡ 1)4]
2( ¡ 1)25 ¡Pr(15 ¡ 214)

+Pr 
2 f5 + 34g ¡ Pr 3

3

7
7
5

[1 +( ¡ 1)4]
3  (2.36)

Subsequently, the homologous modulated boundary conditions (BCs) take the form:

1 = 0, 2 = 1, 2 = 1 5 = ¡ (1¡ 4) , 5 = 2 (2.37)

To acquire the numerical solution of above non-linear system (232) and (236) along with initial

conditions (237) we need the values of unknown initial conditions 1 and 2. Since the values

of 1 and 2 are not prescribed, we use the multiple shooting method to …nd these unknown

initial values i.e.,  00(0) and 0(0). To do this, we have to shoot these initial conditions with

a systematic guessing such that the solution satis…es the given far …eld boundary conditions

(236). A hit and trail method is exercised in order to …nd these values. An important aspect

of shooting technique is to chose the appropriate value of 1. Let the range of numerical

integration to be …nite dimensions i.e., 1 = 10 We then compare the calculated values of

 0() and () at 1 = 10 with the given boundary conditions  0(1) = 1 and (1) = 0, and

adjust the values of  00(0) and 0(0) using the Newton’s method to give a better approximation

to the solution. The step-size is chosen to be 4 = 001. We obtained the numerical solution

with the convergence criterion of 10¡6 in all cases.
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2.4.1 Validation of Numerical Scheme

In order to examine the validity of our utilized code, a comparison of computed results is

made with the previously published studies. Table 21 elucidates a comparison regarding the

numerical results for  00(0) for varying  when  = 0 and ¤ = 0 with those of Sharidan 

 [96] Chamkha   [97] and Khan and Azam [98] It can be found from this table that

these outcomes are observed in better agreement. Table 22 provides a comparison regarding

numerical outcomes of local Nusselt number (Re
¡ 1
2

 ) for distinct Prandtl number (Pr) 

when  = 0 ¤ = 0  = 0  = 0  = 0 and  = 0 with published works of Grubka and

Bobba [99] and Chen [100] with a superb agreement.

2.5 Physical Description

This section emphasizes on the numerical outcomes for distinct physical parameters namely,

unsteadiness parameter , Prandtl number , local Weissenberg number , viscosity ratio

parameter ¤, radiation parameter , heat sink/source parameter , temperature ratio pa-

rameter  and Biot number . The characteristics of these parameters versus velocity and

temperature distributions are exposed graphically. We have selected …xed values to these pa-

rameters in the whole analysis as:  = 10 ¤ = 02  = 12  = 13  = 02,  = 03

Pr = 072 and  = 04

The variation in  0() and () for distinct values of  are sketched in Figs. 22 ( ) 

From these plots, it is observed that the ‡uid velocity and temperature decrease for higher

. Further, when  increases the ‡uid velocity and temperature diminishes. From physical

perspective, as  increases the ‡uid temperature decreases due to less amount of heat transfer
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from plate to the ‡uid. In Figs. 23( ) the physical behavior of boundary layer near to

the wall can bee seen by observing the velocity and temperature graphs, respectively. These

sketches demonstrate that how the velocity and temperature …elds are e¤ected by ¤. It also

explain that  0() increases by rising ¤ while reverse pattern is seen for associated thermal

boundary layer thickness.

Figs. 24( ) are outlined to describe the impact of  on  0() and () From the

output of these …gures, it can be seen that ‡uid velocity decreases by higher It also results

a decline in the momentum boundary layer thickness. However, a reverse trend is witnessed

for the ‡uid temperature. Physically, the relaxation time is increased for greater  which

diminishes the liquid velocity and enhances the ‡uid temperature. Fig. 25() reveals the

deviation in the temperature …eld in response to change in heat generation parameter (  0).

It is noticed that the ‡uid temperature and allied thickness of layer enhances with larger heat

generation parameter. In fact, the heat generation parameter (  0) yields an additional heat

that causes an increment in the thickness of thermal boundary layer. Fig. 25() depicts the

e¤ect on temperature pro…les for heat absorption parameter (  0). It can be viewed that the

‡uid temperature reduces subject to higher heat absorption parameter (  0). The impact

of  and  on () are plotted through Figs. 26( ). These graphs reveal that larger

values of  and  have the a¢nity to improve the temperature distribution and the thickness

of thermal boundary layer. Physically, an increment in radiation parameter yields lower mean

absorption coe¢cient. Therefore, radiative heat transport rate to the ‡uid enhances. Moreover,

the larger values of temperature ratio parameter show that   1 which rise the ‡uid thermal

state and produces an increment in temperature …eld. Figs. 27( ) elaborate the impact of

Pr and  on (). The temperature …eld decreases with higher . The main reason behind
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this fact is that the ‡uid with high Prandtl number has slow rate of thermal di¤usion and

therefore lower the conduction and the thickness of thermal boundary layer while an opposite

behavior is seen for Biot number. Therefore, the larger Biot number leads to uplift the wall

temperature and the thickness of thermal boundary layer. To ensure the authenticity of current

numerical computations, a comparison by bvp4c and shooting methods are portrayed in Fig.

28. A remarkable agreement between the two computational techniques is found. It indicates

that the obtained results in this chapter are reliable and correct. The numerical outcomes

of 12 and Re¡12 are also formulated in Tables 23 and 24 for some physical

parameters. The variations subject to numerous values of , ¤ and  on 12 are

depicted in Table 23 It is fascinating to notice that by uplifting the Weissenberg number the

shear stress at the wall decreases. Further, from Table 24 it is momentous to mention that

the rate of heat transfer is enhanced with greater Prandtl number. Additionally, it is observed

that larger values of ,  and  enhance the heat transport rate.
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Table 21: Comparison for numerical outcomes of  00(0) for various , for Newtonian ‡uid.

 Sharidan et al. [96] Chamkha et al. [97] Khan and Azam [98] Present work

08 ¡12610420 ¡12615120 ¡12610430 ¡12610427

12 ¡13777220 ¡13780520 ¡13777240 ¡13777238

Table 22 : A comparison between the results of ¡0(0) for various Prandtl number (Pr)

when  = 0 ¤ = 0  = 0  = 0  = 0 and  = 0.

Pr Grubka and Bobba [99] Chen [100] Present work

072 108850 1088530 10886210

100 133330 1333340 13333335

300 250970 2509720 25096981

100 479690 4796860 47968527

41



Table 23: Computed values of 
12
  for various   and ¤ when Pr = 072.

  ¤ ¡Re12

0 30 02 033979494

05 035138616

10 035966403

20 037186619

10 05 10448919

10 081338758

20 050549252

30 035966403

02 10255021

04 12987835

06 15027336

08 16710805

42



Table 24: Computed values of 
¡12
  for varying    and Pr when  = 10

 = 02  = 03 and ¤ = 02.

   Pr Re
¡ 1
2



05 12 03 10 0632107

10 0882219

15 112095

20 134567

05 15 0632107

17 0669341

20 0736606

12 05 0586143

07 0752486

10 0954415

03 13 0386056

17 0394549

20 0399100
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Chapter 3

Unsteady Heat Transfer in

Williamson Fluid Flow past a Wedge

In this chapter, a mathematical formulation for the transient Falkner-Skan Williamson ‡uid ‡ow and

heat transfer is presented. Firstly, the governing ‡ow equations are formulated for current model in terms

of PDEs. The transformed non-linear ODEs are solved numerically by employing Runge-Kutta-Fehlberg

method. The features of pertinent parameters are explored by observing the non-dimensional velocity

and temperature …elds. The coe¢cients of skin-friction and Nusselt number are illustrated by means of

tables. The outcomes declare that rate of heat transport is accelerated with a rise in unsteadiness and

wedge angle parameters. It is also noticed that the viscosity ratio parameter enhances the ‡uid velocity.

3.1 Physical Problem Description

A schematic view and geometrical con…guration of the physical model is illustrated in Fig. 31.

In this analysis, we have considered the time-dependent ‡ow of a Williamson ‡uid model due
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to stretching wedge. The stretching velocity of the wedge is denoted by ( ) = 

1¡  in

which  signi…es the stretching rate and  the dimensional constant with dimension (time)¡1.

Additionally, the ‡ow moves along the axis of wedge in the upward direction with a free stream

velocity ( ) = 

1¡  where   and  are positive constants with 0 ·  · 1. The

total wedge angle is supposed to be ­ = , where  = 2
+1 is associated with the pressure

gradient. To investigate the heat transfer, we have taken the temperature at the surface of

wedge as ( ) = 1 + 0

p
1¡

, where 0 represent the initial reference and 1 the free

stream temperature, respectively, when  approaches in…nity.
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Fig. 31: Physical sketch of considered problem.

The continuity equation can be written as:




+




= 0 (3.1)

The momentum equation after employing the usual boundary layer approximations forWilliamson

‡uid without viscous dissipation and external force can be expressed as:




+ 




+ 




=




+ 




+ 

2

2

"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

+¡

µ




¶µ
2

2

¶"

(1¡ ¤)

µ

1¡ ¡




¶¡2
#

 (3.2)
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The energy equation for time dependent ‡ow receipts the form:




+ 




+ 




= 

2

2
 (3.3)

It is worth mentioning that the Eq. (32) of Williamson ‡uid reduces to Newtonian ‡uid case

when ¤ = 0 and ¡ = 0

We have applied the no-slip conditions at the surface of the wedge along with the ‡ow

conditions which are given as follow:

() On the wedge surface i.e., at  = 0 :

 = ( )   = 0  = ( ) (3.4)

() At free stream i.e., as  !1 :

!   ! 1 (3.5)

Using dimensionless variables

 = 

r
(+ 1)

2
 (  ) =

r
2

+ 1
() () =

 ¡ 1
 ¡ 1

 (3.6)

On substituting the above de…ned non-dimensional parameters into Eqs. (32) and (33),

we get the accompanying nonlinear ordinary di¤erential equations:

h
¤ + (1¡ ¤)

¡
1¡ 00

¢¡2
i
 000+  00 + 

¡
1¡ ( 0)2

¢
¡(2¡ )

³
 0 +



2
 00 ¡ 1

´
= 0 (3.7)
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00 +Pr
¡
0 ¡ 2 0

¢
¡ Pr



2
(2¡ )

¡
0 + 3

¢
= 0 (3.8)

with reduced boundary conditions:

(0) = 0  0(0) =  (0) = 1 (3.9)

 0(1)! 1 (1)! 0 (3.10)

Here,  = 
 denotes the wedge moving parameter and   0 the stretching and   0 the

shrinking wedge, respectively, while  = 0 for a static wedge. The other involved physical

dimensionless variables are given by:



µ

=

q
¡2(+1)3

2

¶

is the local Weissenberg number, 
¡
= 

¡1

¢
the unsteadiness pa-

rameter, Pr
³
= 



´
the Prandtl number and 

³
= 2

+1

´
the wedge angle parameter.

3.1.1 Quantities of Physical Interest

The imperative physical parameters are skin friction and Nusselt number that are elaborated

as:

 =

2

  =


( ¡ 1)
 (3.11)

where  and  are expressed as

 = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

  = ¡

µ




¶¯
¯
¯
¯
=0

 (3.12)
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Invoking (36) and (312)  we get

Re12 =
1

p
2¡ 

 00(0)[¤ + (1¡ ¤)
©
1¡ 00(0)

ª¡1
]

Re¡12 = ¡
1

p
2¡ 

0(0) (3.13)

3.2 Numerical Procedure

The numerical computations of the governing ordinary di¤erential Eqs. (37) ¡ (310) are

obtained with the aid of Runge-Kutta Fehlberg integration scheme. This governing problem

[(37)¡ (310)] constitutes a one-parameter two-point boundary value problem and is solved

numerically. We need to change the modelled ODEs into a set of …rst-order in terms of new

dependent variables as:

 0 =  0 =  0 =
¡ ¡ 

¡
1¡2

¢
+(2¡ )

¡
+ 

2 ¡ 1
¢

h
¤ + (1¡ ¤) (1¡ )¡2

i  (3.14)

0 =  0 = ¡Pr (¡ 2) + Pr


2
(2¡ ) (+ 3)  (3.15)

and associated boundary condition becomes

(0) = 0 (0) =  (0) = 1 (1) = 1 and (1) = 2 (3.16)

To get the numerical solutions for the system of Eqs. (314) and (315) with conditions (316) by

employing Runge-Kutta Fehlberg technique coupled with shooting iterative method, we have

to …nd the values of unknown 1 and 2. The unknown values are approximated by Newton
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iterative method. In this study, the suitable …nite value of  ! 1 say 1 is taken to be 10.

The computer software MATLAB is utilized for computational work. A step size of ¢ = 001

has been acceptable for a convergence criterion of 10¡6 in all cases.

3.2.1 Testing of the Code

To demonstrate the validity of accomplished numerical outcomes, a correlation with earlier

published work is elaborated in limiting cases. The acquired results of Re12 for speci…c

 are compared with those published by Rajagopal  [84], Kuo [101] and Ishaq  [102]

(see Table31). A perfect compatibility with the results of the aforementioned authors is noted.

3.3 Results and Discussion

Here, the time dependent ‡ow and heat transport features of Williamson ‡uid towards moving

wedge are numerically investigated. The current section focuses on the obtained numerical

results which are manifested through Figs. 3.2–3.6 for dimensionless velocity and temperature

…elds for various numerical values of leading parameters that are the local Weissenberg number

, viscosity ratio parameter ¤, wedge angle parameter , moving wedge parameter  and

Prandtl number Pr.

The outcomes of unsteadiness parameter  versus velocity  0() and temperature () …elds

are plotted in Fig. 32() and Fig. 32(). From these plots, it is examined that a rise in

unsteadiness parameter augments the velocity …eld, whereas a depreciation in temperature

pro…le is noted. We have plotted these graphs for static and moving wedge parameter. Here,

 = 0 relates to the static wedge and  = 03  0 represents a moving wedge. Therefore, it is

revealed that ‡uid velocity is lower for stretching wedge in comparison to a static wedge while
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a reverse trend is seen for temperature pro…les. Also, the thickness of both layers (momentum

and thermal) reduces for higher unsteadiness parameter . Physically, when  increases then

the wedge releases heat and the ‡uid temperature declines.

Figs. 33() and 33() demonstrate the variation of  0() and () for varying moving

wedge parameter  for  = 0 and  = 1. It can be concluded from Fig. 33() that velocity

distribution elaborates a growing behavior for uplifting values of moving wedge parameter  for

both the cases. In addition, the thickness of momentum boundary layer reduces for higher .

An increment in the moving wedge parameter leads to depreciate the temperature distribution,

as seen in Fig. 33(). The thickness of thermal boundary layer also reduces for greater moving

wedge parameter.

The behavior of wedge angle parameter  against ‡uid velocity and temperature inside the

boundary layer are demonstrated in Figs. 34() and 34(). Here,  = 0 means a static wedge

and  = 03  0 shows a moving wedge, respectively. From these …gures, it is noticed that

the behavior of wedge parameter is comparable to unsteadiness parameter  i.e., ‡uid velocity

enhances while temperature diminishes for higher . The reason behind this fact is that wedge

angle parameter  demonstrates pressure gradient. Thus, positive values of  relate to adequate

pressure gradient which rises the ‡ow.

The variation of  0() and () for varying ¤ are presented in Figs. 35() and 35().

We examined a dependency of velocity and temperature …elds on ¤. Further,  = 0 relates to

zero degree wedge angle (‡ow by ‡at plate) and  = 1 corresponds to 90 degree wedge angle

(stagnation-point ‡ow). When ¤ intensify the velocity pro…le increases and diminishes for

temperature pro…le. Moreover, the ‡uid velocity is higher in case of ‡ow near stagnation point

in comparison with ‡ow over a ‡at plate. For higher ¤ thickness of both boundary layers
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(momentum and thermal) reduces remarkably.

The impact of  on dimensionless velocity and temperature pro…les by keeping the other

parameters …xed is portrayed in Figs. 36() and 36(). From these …gures, we found that ve-

locity …eld rises whereas temperature …eld decreases by rising the Weissenberg number. Clearly,

thickness of momentum and thermal layers are reducing function of Weissenberg number.

Table 32 demonstrates the characteristics of unsteadiness parameter , wedge angle pa-

rameter , viscosity ratio parameter ¤ and moving wedge parameter  on 12 and

Re¡12. Here, 12 and Re
¡12 enhance by rising . It is further seen that shear

stress at the wall is a decaying function of  and . We further found that the rate of heat

transfer is a reducing function of .
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Fig. 3.2: Impact of  on  0() and ().
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Fig. 3.3: Impact of  on  0() and ().
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Fig. 3.4: Impact of  on  0() and ().
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Fig. 3.5: Impact of ¤ on  0() and ().
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Fig. 3.6: Impact of  on  0() and ().

Table 31: A comparison of ¡ 00(0) for varying  when  = ¤ = 0

 Rajagopal et al. [84] Kuo [101] Ishak et al. [102] Present study

00 ¡ 0469600 046960 0469601

01 0587035 0587880 058700 0587036

03 0774755 0775524 077480 0774754

05 0927680 0927905 092770 092768

10 1232585 1231289 123260 1232588
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Table 32: Numerical outcomes of 12 and Re¡12 for varying ¤,   and 

when  = 20 and Pr = 10.

¤    (2¡ )12Re12 (2¡ )12(Re)
¡12

00 03 02 01 115746 103699

02 111757 104193

04 107167 104803

08 0943644 106788

02 03 02 01 015728 003701

05 140549 103412

08 175955 102657

10 19872 102021

02 03 ¡03 01 162985 037401

¡02 158455 0539636

00 141105 0813351

02 115728 103701

02 03 02 00 106074 094192

02 125376 112634

03 135024 121069

04 144669 129069
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Chapter 4

Transient Flow of

Magneto-Williamson Nano‡uid due

to Wedge

The intention of this chapter is to elaborate the Falkner-Skan Williamson nano‡uid ‡ow caused by a

moving/static wedge by considering magnetic e¤ect. Further, the convective heat transfer mechanism

for ‡ow is also investigated. Compatible transformations convert the PDEs into ODEs. The ensuing

ODEs are computed via Runge-Kutta Fehlberg integration procedure featuring a shooting technique.

Computations are presented for the dimensionless velocity, temperature and nanoparticles concentration

…elds, the skin friction, reduced heat and mass transport coe¢cients for pertinent physical parameters.

The rise in the amount of convective parameter has caused a rise in the ‡uid temperature. The rate of

heat transfer is examined to be increased as a result of Brownian motion and thermophoresis parameters

enhancement. Besides, the validity of present code is validated through comparison with earlier published
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works and found to be in superb agreement.

4.1 Mathematical Analysis

We formulated a transient incompressible ‡ow of Williamson ‡uid past a wedge shaped geom-

etry. The heat and mass transfer characteristics of stagnation-point ‡ow of MHD Williamson

nano‡uid are investigated. The stretching and free stream velocities are ( ) = 

1¡ ,

( ) =


1¡  respectively, where (, ,  and   0), with 0 ·  · 1. Here, magnetic …eld

() = 0
(1¡)12

is applied normal to the ‡ow …eld. The physical layout of the current model

is illustrated in Fig. 4.1. In addition, the wedge surface is heated through convection process

via hot liquid with temperature  which yields a coe¢cient of heat transfer  .
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Fig. 4.1: Physical sketch of the ‡ow con…guration.

The governing equations forWilliamson nano‡uids are …nalized by implementing the Oberbeck–

Boussinesq approximations as:

Continuity equation:




+




= 0 (4.1)

Momentum equation:




+ 




+ 




=




+ 




+ 

2

2

"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

¡
2 ()


(¡ ) + ¡

µ




¶µ
2

2

¶"

(1¡ ¤)

µ

1¡ ¡




¶¡2
#

 (4.2)

Energy equation:




+ 




+ 




= 

2

2
+ 

"









+



1

µ




¶2
#

 (4.3)
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Nanoparticles concentration equation:




+ 




+ 




= 

2

2
+



1

2

2
 (4.4)

with physical boundary conditions

 =  =   = 0

¡ 
 = ( ¡  )  = ( )

9
>>=

>>;
at  = 0

!   ! 1  ! 1g as  !1

(4.5)

where   denote the Brownian and thermophoresis di¤usion coe¢cients, respectively.

Further, the surface concentration ( ) is de…ned as:

( ) = 1 +
0

(1¡ )
1
2

 (4.6)

where 0 depicts the initial reference concentration.

To proceed with the analysis, the following pertinent non-dimensional quantities are em-

ployed to recast the ordinary di¤erential equations:

 = 

r
(+ 1)

2
 (  ) =

r
2

+ 1
() () =

 ¡ 1
 ¡ 1

 () =
 ¡1
 ¡1

 (4.7)

where () is the dimensionless ‡uid concentration
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Using Eq. (47) into Eqs. (42)¡ (44), we get

h
¤ + (1¡ ¤) (1¡ 00)¡2

i
 000 +  00 + 

©
1¡ ( 0)2

ª

¡(2¡ )
©
 0 + 

2
00 ¡ 1

ª
¡2(2¡ ) f 0 ¡ 1g = 0

(4.8)

00 +Pr
¡
0 ¡ 2 0

¢
¡ Pr



2
(2¡ )

¡
0 + 3

¢
+Pr0

0
+Pr

¡
0
¢2

= 0 (4.9)

00 +Pr
¡
0 ¡ 2 0

¢
¡ Pr



2
(2¡ )

¡
0 + 3

¢ 


00 = 0 (4.10)

The associated converted boundary conditions for the ‡ow take the form:

 = 0  0 =   = 1


0
= ¡(2¡ )12 (1¡ ) 

9
>>=

>>;
at  = 0 (4.11)

 0 ! 1 ! 0 ! 0 as  !1 (4.12)

where  = 

is the velocity ratio parameter, 2 =

2
0

¡1
depicts the magnetic parameter,

 =
 (¡1)

1
indicates the thermophoresis number,  = (¡1)

 associates the

Brownian motion number,  = 


the Lewis number and  =

 Re¡12 is the generalized

Biot number.

4.1.1 Engineering coe¢cients

The practical coe¢cients of engineering concern in material processing operations are the 

 and  which have the following respective de…nitions:

 =

2

  =


( ¡ 1)
  =


( ¡1)

 (4.13)
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with

 = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

  = ¡

µ




¶¯
¯
¯
¯
=0



 = ¡

µ




¶¯
¯
¯
¯
=0

 (4.14)

Utilizing Eqs. (47) and (414), we obtain

(2¡ )12Re12 =  00(0)[¤ + (1¡ ¤)
©
1¡ 00(0)

ª¡1
]

(2¡ )12Re¡12 = ¡0(0) (2¡ )12Re¡12  = ¡0(0) (4.15)

4.2 Numerical Simulations

In this study, RK-Fehlberg algorithm is employed to discretize the ‡ow, energy and concentra-

tion equations for the considered problem with the assistance of shooting technique. In this

regard, the Eqs. (48) ¡ (412) are integrated for in‡uential parameters. To do this, we …rst

de…ne the new variables:

 = 1  0 = 2  00 = 3  = 4 0 = 5  = 6 0 = 7 (4.16)

By practising the above variables, system of …rst order di¤erential equations become

0
1 = 2

0
2 = 3

 0
3 =

¡13¡f1¡2
2g¡(2¡)f2+


2
3¡1g¡2(2¡)f2¡1g


¤+(1¡¤)(1¡2

3)
¡2
 

9
>>>>>>>=

>>>>>>>;

(4.17)
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 0
4 = 5

0
5 = ¡Pr

£
15 ¡ 214 ¡


2 (2¡ ) (5 + 34) +57 +2

5

¤


9
>>=

>>;
(4.18)

0
6 = 7

0
7 = ¡Pr

£
17 ¡ 226 ¡


2 (2¡ ) (7 + 36)

¤
¡ 


0
5

9
>>=

>>;
(4.19)

Subsequently, the corresponding initial condition becomes:

1(0) = 0, 2(0) = , 5(0) = ¡(2¡ )12 f1¡4(0)g , 6(0) = 1,

2(1) = 1 4(1) = 0 6(1) = 0

9
>>=

>>;
(4.20)

To set the solution of Eqs. (417) to (419) along with conditions (420) as an initial value

problem, one requires the values of  00(0) 0 (0) and 0 (0). Since, these are unknown in the

current problem, so we start with the initial guesses for  00(0) 0 (0) and 0 (0) such that the

conditions  0 = 1  = 0 and  = 0 are satis…ed for suitable …nite domain length 1. The above

process is repeated until the desired accuracy is achieved. The far …eld BCs in Eq. (420) are

estimated by utilizing a …nite value 10 for 1 as follows:

 0(1)! 1 (1)! 0 (1)! 0 (4.21)

4.2.1 Code Validation

In order to ascertain either the obtained numerical results are accurate or not, it is necessary to

check the behavior of velocity, nano‡uid temperature and concentration …elds. These pro…les

must ful…ll the resultant boundary conditions at 1 asymptotically. We repeat the process

by guessing values of  00(0) 0 (0) and 0 (0) for the …xed pertinent parameters so that the
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corresponding far …eld conditions (420) must be ful…lled. In addition, numerical results of

¡ 00(0) obtained in this analysis are validated by comparing them with those calculated by

Rajgopal et al. [84], Kuo [101] and Ishaq et al. [102] in some special case when ¤ = 0 =  =

. This comparison is depicted quantitatively through Table 41 which veri…es the accuracy

of our result.

4.3 Numerical Result and Discussion

Numerical results of this investigation are declared in terms of the velocity, temperature and

concentration distributions of various pertinent parameters; these physical parameters include

, Pr, , , ,  , , ,  and . The impact of these emerging parameters on ‡ow

…eld, skin friction, rate of heat and mass transfer coe¢cients in terms of Nusselt number and

Sherwood number are plotted through Figs. 42¡ 410. In order to perform the numerical

simulation we have assigned …xed values to non-dimensional pertinent parameter as  =

 = 1,  =  = 02 ¤ = 02, Pr = 072,  =  = 01,and  = 02. In the whole analysis,

these values are kept as constant except the varied parameters as shown in the respective

…gure legends. Following the work of Turkyilmazoglu [33], numerical simulation is completed

by reporting a certain range of required parameters (00 ·  · 12), (0 ·  · 30),

(10 ·  · 40), ¤ (0 · ¤ · 10),  (01 ·  · 25),  (01 ·  · 04), (01 ·

 · 04) and (1 ·  · 4)

The variations of  0() () and () for di¤erent  are exhibited through Figs. 42()¡

42(). It is anticipated by Fig.4.2() that the velocity of nano‡uid demonstrates an accel-

erating behavior near the solid boundary for higher values of  while an reverse behavior is

64



seen as we move along  within the boundary layer regime. It can be noticed that all the

graphs are captured for static wedge ( = 0) and moving wedge ( = 03). We further noticed

that both the velocity and momentum boundary layer thickness are higher in case of moving

wedge. Further, we see that the nano‡uid temperature is found to reduce with increasing ,

whereas the thermal boundary layer becomes thinner, as illustrated in Fig. 4.2(). It is due to

the fact that that when unsteadiness parameter increases then the sheet loses its heat and the

nano‡uids temperature decreases. Moreover, the concentration pro…le () is demonstrated in

Fig. 42(). It is evident from this …gure that both the nanoparticles concentration and solutal

boundary layer thickness reduce with growing values of .

Impact of on momentum, thermal and concentration boundary layers is demonstrated in

Figs. 43()¡ 43() for the case of ‡ow over a static and moving wedge. Physically,  = 0

depicts hydrodynamic ‡ow and   0 stands for hydromagnetic ‡ow. We clearly see from

Fig. 43() that the ‡uid velocity at any point in the ‡ow …eld enhances due to increasing  .

It is additionally observed that the  creates drag force which tends to deliver resistance in

the ‡ow of ‡uid particles and the momentum boundary layer tends toward the surface, as seen

in Fig. 43(). It is analyzed from these pro…les that the velocity boundary layer thickness

diminishes for higher  in both cases. In view of physics, the Lorentz force generated by the

dual actions of electric and magnetic …elds lessens the momentum boundary layer thickness by

resisting the transport phenomenon. Fig.43() and 43() display the impact of  on ()

and () distributions, respectively. Note that for both temperature and concentration pro…les

either  = 0 or  = 03, we observed a decreasing trend. Furthermore, the thermal boundary

layer seems to decrease for increasing magnetic parameter.

Figs. 44()¡ 44() are drawn to look into the behavior of  on  0() () and ().
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It is seen through Fig. 44() that the pro…le of velocity is boosted by enlarging  in case

of both static and moving wedge. It is worthwhile to noticed that momentum boundary layer

thickness depreciates for higher estimation of . Also, this …gure indicates that for  = 03

a thicker velocity boundary layer is produced than that of  = 0. Furthermore, it is noted

from Fig. 44() and 44() that the nano‡uid temperature and concentration distributions

are decreasing function of . Increasing the Weissenberg number has a shrinking e¤ect on

the thickness for thermal and concentration boundary layers.

To visualize the behavior of ¤ on  0() and (), we have plotted Figs. 45() and 45(),

respectively. These pro…les are illustrated for two distinct values of wedge angle parameter,

i.e.,  = 0 (‡ow over a horizontal ‡at plate) and  = 1 (‡ow over a vertical ‡at plate). We

noticed a considerable di¤erence between these two cases for distinct viscosity ratio parameter.

From Fig. 45(), it can be concluded that at each point inside the boundary layer regime

the velocity of nano‡uids accelerates by uplifting values of ¤. However, an opposite pattern

is seen for momentum boundary layer thickness in both cases. Furthermore, all the velocity

curves satisfy the far …eld boundary conditions asymptotically. Fig. 45() is sketched to see

the pro…les of nanoparticles temperature for varied values of ¤ by keeping all other involve

parameters …xed. An increment in the viscosity ratio parameter causes a signi…cant reduction

in the nano‡uids temperature in both cases. Additionally, it is important to note that the

nano‡uids temperature is higher in case of  = 0 when compare to the case of  = 1.

The thermophoresis parameter  has a vital role on () and () in the boundary layer

region. The in‡uence of on  () and  () is captured in Figs. 46() and 46(). As demon-

strated in these …gures, the temperature and concentration at each point within the boundary

layer reveal the same increasing behavior with an increment of thermophoresis parameter .
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From a physical perspective, thermophoresis is a force in which these small particles employes

physical force on another particles to move it away from the hotter surface and pushed toward a

colder one. Therefore, the rising values of  corresponds to higher thermophoretic force which

tends to push the nanoparticles in the boundary layer from higher temperature to a lower

temperature region. As a consequence, a rise in the nano‡uid temperature and nanoparticles

concentration is noted. Moreover, the thermal and concentration boundary layer thicknesses

are larger for slightly augmented values of .

A qualitative analysis of the thermal and concentration boundary layers with Brownian

motion parameter  is delineated in Figs. 47() and 47() respectively. One can clearly

view from Fig. 47() that the nano‡uid temperature escalates when  enhances. Indeed,

the Brownian motion is the result of crisscross motion of nanoparticles. Physically, an enhance-

ment in Brownian motion leads to the e¤ective gesture of nanoparticles inside the ‡ow regime.

Therefore, the strength of this chaotic movement increase the kinematic energy of the nanopar-

ticles which accelerates the nano‡uid’s temperature. Moreover, an enlargement in  boosts

the unsystematic motion of the particles and accordingly the thermal boundary layer thickness

grows. However, it is depicted that concentration pro…le shows a declining trend with growing

. Further, it is noticed that () decreases signi…cantly with increase in .

Fig. 48 revealed the behavior of () and () for various . As expected, the Biot number

enhances the temperature distribution. Moreover, the thermal boundary layer thickness depicts

a growing behavior as the value of  is raised. The wedge surface is isolated at  = 0.

To illustrate the in‡uence of  on  (), Fig. 4.9 is displayed. It is found that the 

considerably e¤ects the nanoparticles concentration …eld. From this …gure, it is established that

the nanoparticles concentration reduces by growing . The reason behind this is because of
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the reduction in mass di¤usivity or due to the Brownian motion of nanoparticles.

Figs. 4.10()¡ 410() respectively, show the in‡uence of Re12, Re
¡12 and

Re¡12  for two cases ‡ow over ‡at plate and near the stagnation point, respectively. From

Fig. 410(), we can see that the local skin friction enhances with an increment in the un-

steadiness parameter for both the cases. It can also seen that the local skin friction is higher

for stagnation point ‡ow in comparison with the ‡ow over a ‡at plate. In Fig. 410() the

non-dimensional Nusselt number is plotted against Prandtl number by varying the generalized

Biot number. This plot shows that the rate of heat transfer increases in response to a rise in

Biot number for both the cases. The variation of local Sherwood number with respect to Lewis

number is sketched in Fig. 410(). The behavior of mass transfer coe¢cient in Fig. 410()

illustrates that concentration gradient augments for . In case of stagnation point ‡ow, the

mass transfer is higher for particular values of Lewis number.

Table 42 incorporates the data showing the behavior of numerical results of local skin

frictions under the in‡uence of , ,  and ¤. Based on this table, it is seen that the

Re12 upgrades by improving the estimations of  and  . Enhancement in  and 

reduce the surface drag force. Further, the viscosity ratio parameter has decreasing e¤ect on

Re12. Table 43 illustrates the impact of ,  and  on rate of heat and mass transfer

when  =  = 20  = 01  = 02  = 10 ¤ = 02 and  =  = 02 are …xed.

As evident through Table 43 that increase in  and  causes a decrease in the local Nusselt

number while an opposite is true for higher Prandtl number. Furthermore, a foremost factor is

that Sherwood number is the decreasing function of  and an increasing function of  and Pr.
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Fig. 4.10: Variation of Re12, Re
¡12 and Re¡12  for varying   and .
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Table 41 : A comparison of ¡ 00(0) for varying  when ¤ =  =  =  = 0

 Rajagopal et al. [84] Kuo [101] Ishaq et al. [102] Present study

00 ¡ 0469600 04696 0469600

01 0587035 0587080 05870 0587035

03 0774755 0774724 07748 0774755

05 0927680 0927905 09277 0927680

10 1232585 1232589 12326 1232588
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Table 42 : The numerical data of 12 for various values of    and ¤ when

 = 02 and  = 20

   ¤ (2¡ )1212

00 02 20 03 683663

03 ¡ ¡ ¡ 628601

06 ¡ ¡ ¡ 573011

10 ¡ ¡ ¡ 498722

03 ¡02 ¡ ¡ 124367

¡ ¡01 ¡ ¡ 107264

¡ 01 ¡ ¡ 764492

¡ 02 ¡ ¡ 628601

¡ ¡ 20 ¡ 628601

¡ ¡ 25 ¡ 742285

¡ ¡ 30 ¡ 858178

¡ ¡ 35 ¡ 976077

¡ ¡ 20 02 614577

¡ ¡ ¡ 04 598778

¡ ¡ ¡ 06 580668

¡ ¡ ¡ 08 558524

77



Table 43 : The numerical data of ¡12 and ¡12 for   and Pr when

 =  = 20  = 01  = 02  = 10 ¤ = 02 and  =  = 02.

  Pr (2¡ )12¡12 (2¡ )12¡12

00 03 30 0117747 153830

02 ¡ ¡ 0120004 185559

03 ¡ ¡ 0120774 200184

¡ 00 ¡ 0130585 207381

¡ 04 ¡ 0117310 197738

¡ 10 ¡ 0093656 182524

¡ ¡ 10 00913386 110523

¡ ¡ 20 0092991 151457

¡ ¡ 30 0093656 182524
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Chapter 5

Axisymmetric Flow of Williamson

Nano‡uid with Slip Mechanism

In this chapter, we present a novel study to develop a mathematical model for a non-Newtonian

Williamson ‡uid ‡ow subject to nanoparticles. The movement of nanoparticle is caused by a radi-

ally stretching surface. This study aims at describing the thermal characteristics of nanoparticles via

Rosseland approximation to illustrate the non-linear radiation e¤ects. Convective heat transfer model

alongside Brownian motion are studied for the electrically conducting nano‡uids ‡ow. A set of PDEs

for Williamson nano‡uids ‡ow are derived by basic conservation laws, i.e., momentum, energy and con-

centration. These equations are initially converted to ODEs by employing non-dimensional quantities.

The numerical simulation of these equations is performed using the Runge-Kutta Fehlberg scheme. An

examination is done to investigate the impact of pertinent parameters on momentum, thermal and con-

centration boundary layers. It is concluded from our computations that the nano‡uids velocity and

temperature accelerate when Brownian motion parameter rises. Finally, a comparison of obtained nu-
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merical solution against previous literature is presented which shows satisfactory agreement.

5.1 Flow Equations

Mathematical model elaborating the characteristics of unsteady Williamson ‡uid can be ex-

pressed in terms of basic governing expressions. Considering the ‡uid to be incompressible, the

‡ow equations are

rV = 0 (5.1)


V


= ¡r+r¿ + J£B (5.2)

Here J and B represent the electrical current density and magnetic …eld, respectively. The

shear stress can be expressed in terms of non-Newtonian viscosity (
¢
) as

¿ = (
¢
)D (5.3)

The constitutive equation for Williamson ‡uid are given by Eqs. (24) to (27) (cf. Chapter 2).

The velocity …eld for described model is taken as:

V =[(  ) 0 (  )]  (5.4)

where () are the components of velocity along the radial and axial directions, respectively.

The shear rate according to theWilliamson model is de…ned in terms of the velocity gradients
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as:

¢
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Under the overhead norms, the equations which governs the ‡ow become
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Invoking     and   from above the equations, the governing momentum Eqs. (57)
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and (58) take the form:
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Utilizing the well-known boundary-layer estimations [ ( ) = 1  ( ) =   () =  =

 (¡)], the governing equations reduce to:
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0 = ¡
1






 (5.16)

5.2 Flow Analysis

Let us formulate the unsteady axisymmetric Williamson nano‡uid ‡ow generated by a con-

vectively heated radially stretching surface with non-linear thermal radiation e¤ects. The ‡ow
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mechanism has been considered in two-dimensional ( ) reference frames as exhibited in Fig.

51. The radially stretched surface coincide with the plane ( = 0) and liquid ‡ows in upper half

region (  0). Besides, the ‡ow …eld is subject to an external magnetic …eld having strength

() = 0
(1¡)12

applied along the  ¡ . The induced magnetic …eld is absent for smaller

magnetic Reynolds number. Also, heat transfer analysis of nanoparticles is studied by incorpo-

rating the impact of thermophoresis and Brownian motion. We suppose the velocity slip at the

surface of the stretching sheet. The stretching velocity of the sheet in radial direction is given

by ( ) =

1¡ .

Fig. 51: A physical layout of the ‡ow con…guration.
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The governing equations by assuming time-dependent magnetic …eld take the form:
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In the above equations,  represents the ‡uid density,  = ()() the heat capacitance

ratio of nanoparticle to base liquid and  =  () the thermal di¤usivity.

The boundary conditions are reported below:

 = ( ) +   = 0 



= ¡( ¡  )  =  at  = 0 (5.21)

! 0  ! 1  ! 1 as  !1 (5.22)

The mathematical form of velocity slip condition is:
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where 1 is known as slip length.
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We consider the following non-dimensional variables [80]:
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() =
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 ¡ 1

and  () =
 ¡1
 ¡1

 (5.25)

Also  = 1 + [1 + ( ¡ 1)], with ( 1) as the temperature ratio parameter and de…ned

as  =

1
.

The velocity components in terms of new non-dimensional variables become

 = 
0 ()   = ¡2 Re¡12  ()  (5.26)

Utilizing Eqs. (524) and (525) into Eqs. (518)¡ (520) we …nally get
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Consequently, the boundary conditions have the forms:

(0) = 0  0(0) = 1 +  00(0)[¤ + (1¡ ¤)
©
1¡ 00(0)

ª¡1
]


0
(0) = ¡(1¡ (0)) (0) = 1  0(1)! 0 (1)! 0 (1)! 0 (5.30)

The signi…cant thermophysical parameters are elaborated as follows:

86



The localWeissenberg number2
³
= 3¡22

(1¡)3

´
 the non-linear radiation parameter

³
= ¤

4¤¤31

´
,

the Schmidt number 
³
= 



´
, the generalized Biot number 

³
=


 Re¡12

´
and the veloc-

ity slip parameter 
³
= 1

 Re12
´


5.2.1 Physical Quantities

The physical parameters of engineering concern are given by

 =
j=0
2

  =
j=0

 ( ¡ 1)
  =

j=0
 ( ¡1)

 (5.31)

where   and  represent wall (shear stress, heat ‡ux, mass ‡ux) respectively, and given

as:

 = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#¯
¯
¯
¯
¯
=0



 = ¡

µ




¶



+ ()  or  = ¡

µ

1 +
16¤

3¤
 3
¶





¯
¯
¯
¯




 = ¡

µ




¶

=0

 (5.32)

Using (524), (525)  (531) and (532), one gets

Re12 =  00(0)
h
¤ + (1¡ ¤)

©
1¡ 00(0)

ª¡1
i


Re¡12 = ¡0(0)
h
1 + (43) f1 + ( ¡ 1)(0)g3

i


Re¡12  = ¡0(0) (5.33)
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5.3 Numerical Scheme

The ordinary non-linear di¤erential Eqs. (527)  (528) and (529) with boundary conditions

(530) are tackled numerically via Runge-Kutta-Fehlberg integration algorithm. Before we apply

this method to the present problem, the coupled nonlinear Eqs. (527)¡ (529) which are third

order in  and second order in  and  are reduce to the system of seven …rst-order ODEs of

initial order seven unknowns are as follows:

 = ~  0 = ~  00 = ~  000 = ~ 0;

 = ~ 0 = ~ 00 = ~0;

 = ~ 0 = ~ 00 = ~0; (5.34)

Invoking Eq. (537) in Eqs. (529)  (530) and (531)  we obtain

·

¤ + (1¡ ¤)
³
1¡ ~

´¡2
¸
~0 ¡ ~2 ¡( ~ +



2
~)¡2 ~ + 2 ~ ~ = 0 (5.35)

½

3 + 4
h
1 + ( ¡ 1) ~

i3
¾

~0 + 3 Pr
h
2 ~ ~ ¡ 

2 
~ + ~ ~+ ~2

i

+12 ( ¡ 1)
h
1 + ( ¡ 1) ~

i2
~2 = 0 (5.36)

~0 + 2 ~ ~+


2
 ~¡




~0 = 0 (5.37)

The nonlinear BVP has been transformed to a system of seven simultaneous equations of …rst-

order for seven unknowns as follows:
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~0 = ~

~0 = ~

~ 0 =
~2+( ~+

2
~)+2 ~¡2 ~ ~


¤+(1¡¤)(1¡ ~)

¡2
  (5.38)

~0 = ~

~0 =






¡3Pr
h
2 ~ ~ ¡ 

2 
~ + ~ ~+ ~2

i

¡12 ( ¡ 1)
h
1 + ( ¡ 1) ~

i2
~2






3+4[1+(¡1) ~]
3  (5.39)

~ 0 = ~

~0 = ¡2 ~ ~¡ 
2 

~+ 


~0 (5.40)

The boundary conditions are:

~ = 0 ~ = 1+  ~

·

¤ + (1¡ ¤)
n
1¡ ~

o¡1
¸



~ = ¡(1¡ ~) ~ = 1 at  = 0

~ ! 0 ~! 0 ~ ! 0 as !1 (5.41)

To solve Eqs. (538)¡ (540) with (541) as an initial value problem (IVP) the values for ~ (0)

i.e.,  00(0), ~ (0) i.e., 0 (0) and ~ (0) i.e., 0 (0) are necessary; however, these values are not
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indicated. Once all the seven initial conditions are determined then we solve this system of

coincidental equations employing RKF-45 order technique.

5.3.1 Validation of Numerical Results

To validate the present numerical procedure, the above simulation results are tested with the

results reported by Arial [103]. The numerical data¡ 00(0) is compared with Arial [103] for

varying values of slip parameter  by taking  =  =  = ¤ = 0. Table 51 shows the

excellent correspondence between the two sets of results.

In addition, the computed numerical results are compared with those of Makinde et al. [104],

who investigated the ‡ow of electrically conducting nano‡uids driven by a radially stretching

convective surface with thermal radiation. Table 52 highlights the values of friction coe¢cient

for the case when  =  =  = ¤ = 0 are listed for di¤erent magnetic parameter  .

As exhibited in this table, the results of current investigation are consistent with the data

of Makinde et al.’s [104] work. Therefore, the numerical scheme of the current analysis is

authorized.

5.4 Physical Description

This study is devoted to discuss the physical aspects of radiative Williamson nano‡uid ‡ow over

a radially stretched surface. In this section, the impact of several leading non-dimensional pa-

rameters, namely, unsteadiness parameter , viscosity ratio parameter ¤, magnetic parameter

 , Weissenberg number , Prandtl number Pr, velocity slip parameter  temperature ra-

tio parameter , thermal radiation parameter  on velocity, temperature and nanoparticles

concentration are depicted graphically. The pro…les for velocity  0(), temperature () and
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concentration () are presented in Figs. 5.2-5.9 for …xed values of the physical parameters

 = 10  = 01 ¤ = 02  = 01  = 02  = 01 Pr = 25  = 02  = 01

 = 20  = 12 and  = 20

Figs. 52 (¡ ) portray the  0(), () and () distributions by varying the numerical

values of  . It is depicted through Fig. 52 () that the velocity of nano‡uids is depressed

with increasing values of magnetic parameter by keeping the other parameters …xed. Likewise,

the associated momentum boundary layer thickness reduces with higher  . Physically, it is

justi…ed that the higher magnetic parameter has the capacity to slow down the motion of ‡uid

particles. This occurs due to Lorentz force which acts like a retarding force. From Figs. 52 ()

and 52 () we observed that both temperature () and concentration () are boosted with

the raising values of magnetic parameter within the boundary layer region. In addition, a

similar trend is noted for both thermal and solutal boundary layer thickness with higher  .

Figs. 53 (¡ ) depict the variation of  0(), () and () with velocity slip parameter

. From this plot, it is understandable that the ‡uid velocity enhances by growing . Addi-

tionally, it can also be reported that temperature and nanoparticles concentration and their

corresponding thermal and concentration boundary layer thicknesses are reducing functions of

.

Figs. 54() and 54() render the variation of () and () with varying  It is per-

ceived from these …gures that the ‡uid temperature and nanoparticles concentration show a

rising behavior with higher unsteadiness parameter. However, the corresponding boundary

layer thickness is elevated by enhancing the unsteadiness parameter. In fact, an increment in

unsteadiness parameter can boost the thermal and concentration …elds.

Figs. 55() and 55() are captured to depict the in‡uence of  and  on (). From
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these plots, it is observed that higher values of  relate to larger wall temperature as compared

to ambient ‡uid. As a result, temperature of the ‡uid as well as thermal boundary layer

thickness increases. Fig. 55() demonstrates the impact of  on () pro…les. This …gure

reveals that the nano‡uid temperature depreciate by rising .

Figs. 56() and 56() are portrayed against the similarity variable  to see the e¤ect of 

on () and (). As an output of these plots, it is noted that temperature and nanoparticles

concentration of the ‡uid as well as thermal and solutal boundary layer thicknesses enhance

for growing . At  = 0 the sheet is totally isolated. The interior thermal resistance of the

sheet is extremely strong and convective heat transfer does not occur from the outside of sheet

to the cool liquid far away from the sheet. However, the recorded e¤ect in nanoparticle volume

fraction is minimal.

The behavior of  on the nano‡uid temperature and concentration within the hydrody-

namic boundary layers are elucidated through Figs. 57() and 57(). From these plots, it

is observed that temperature and its related boundary layer thickness elevates for increasing

values of , but reverse pattern is observed for concentration pro…le. Brownian motion hap-

pens due to random movement of nanoparticles and caused a reduction in nanoparticle volume

fraction within the boundary layer region.

Figs. 58() and 58() are displayed to examine the impact of  and  on (). It is

visualized that concentration …eld and corresponding boundary solutal boundary layer thickness

suppress with uplifting . Physically, higher values of  increases the temperature di¤erence

between the ambient and surface and it results in a growth in nano‡uid temperature and

concentration. Fig. 58() displays the impact of  on (). The Schmidt number embodies

the ratio of kinematic viscosity to molecular mass di¤usivity for an increment in  yields a
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reduction in mass di¤usivity in the system which yields a decline in nanoparticles concentration.

The variation in non-dimensional skin friction against magnetic parameter for di¤erent

values of  is depicted in Fig. 59(). As seen earlier, the ‡uid velocity reduces for magnetic

parameter because of the Lorentz force generated by magnetic …eld, consequently, the skin

friction depicts the similar behavior for higher magnetic parameter as shown in this …gure. It

is further noted that the dimensionless skin friction enhances as the velocity slip parameter

increases. The local Nusselt number is sketched through Fig. 59(), against the Prandtl

number Pr for several values of thermophoresis parameter . These plots highlight that the

rate of heat transfer reduces with a growth in thermophoresis parameter. This is because of the

fact that higher thermophoretic force drags the nanoparticles with large thermal conductivity

from the hotter region to the ambient ‡uid. Further, the impact of  on the heat transfer rate

is to increase its magnitude. Finally, the e¤ect of  on the dimensionless Sherwood number

against  is depicted in Fig. 59(). This …gure reveals that the reduced Sherwood number is

higher for larger velocity slip parameter i.e., the Sherwood number is a decreasing function of

. It is clear from this …gure that higher curves corresponds to the higher values of .
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Fig. 52: The variation of  on  0(), () and ().
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Fig. 53: The variation of  on  0(), () and ().
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Fig. 57: The variation of  on () and ().
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Table 5.1: Comparison of the Re12 for di¤erent values of  when  =  =  =

¤ = 0.

[¡ 00(0)]

 Exact [103] HPM [103] Perturbation [103] Asymptotic [103] Present survey

00 11737210 11785110 11737210 ¡ 117373

001 11534720 11573110 11534810 ¡ 115348

002 11340170 11369980 11340900 ¡ 113403

005 10799490 10808200 10810100 ¡ 107996

01 10018340 10003080 10095220 ¡ 100185

02 08784250 08744530 09302130 ¡ 087844

05 06505280 06453040 12016230 15299180 065056

10 04625100 04583330 ¡ 05741630 046254

20 02990500 02965340 ¡ 03107530 029090

50 01493930 01484540 ¡ 01495900 014945

100 00829120 00825320 ¡ 00828330 008297

200 00443680 00442280 ¡ 00443370 004442

500 0018732 00186980 ¡ 00187270 001877

1000 0009594 00095830 ¡ 00095930 0009618
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Table 5.2: Comparison of the Re12 for di¤erent values of 
2 when  =  =  =

¤ = 0.

2 Makinde et al. [104] Present survey

00 ¡117372 ¡1173720

05 ¡136581 ¡1365830

10 ¡153571 ¡1535710

20 ¡183049 ¡1830510

30 ¡208484 ¡2084850
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Chapter 6

Unsteady Mixed Convective Flow of

Williamson Nano‡uid with Variable

Thermal Conductivity

This chapter focuses on time-dependent ‡ow of Williamson ‡uid past a radially stretched surface in

the presence of nanoparticles. The analysis is done under the in‡uence of variable magnetic …eld,

mixed convection and newly proposed zero nanoparticles mass ‡ux condition. An e¢cient Runge-

Kutta integration scheme is implemented to obtain the numerical solutions for velocity, temperature

and concentration distributions for various set of physical parameters. The obtained results disclose that

higher magnetic …eld reduces the nano‡uids velocity as well as momentum boundary layer thickness.

We observe an increment in heat transport rate with Schmidt number.
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6.1 Problem Formulation

We examine the unsteady and incompressibleWilliamson nano‡uid ‡ow past a radially stretched

surface coinciding with plane ( = 0) and the ‡uid appears in the upper half of the space

( ¸ 0)  as depicted in Fig. 61 The basic assumptions for current analysis are listed below:

1 Time-dependent ‡ow.

2 Williamson ‡uid model.

3 Mixed convection ‡ow.

4 Impact of variable thermal conductivity on heat transport.

5 Revised model for nanoparticles mass ‡ux.

6 Heat generation/absorption e¤ects.

Further, the surface ‡uid temperature  and ambient ‡uid temperature 1 are supposed to

be constant where   1 A variable magnetic …eld () = 0
(1¡)12

is applied perpendicular

to the plane of sheet.
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Fig. 61: Schematic diagram.

In view of aforesaid assumptions, the basic relations take the form:




+




+




= 0 (6.1)




+ 




+




= 

2

2

"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

+  ( ¡ 1) + ( ¡1)

+¡

µ




¶
2

2

"

(1¡ ¤)

µ

1¡ ¡




¶¡2
#

¡
()2


 (6.2)




+ 




+




=

1

()





µ

( )




¶

+

"









+



1

µ




¶2
#

+
0
()

( ¡ 1) (6.3)




+ 




+ 




= 

2

2
+



1

2

2
 (6.4)
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The boundary conditions are:

 = ( ) =


1¡ 
  = 0  =  




+



1




= 0 at  = 0 (6.5)

! 0  ! 1  ! 1 as  !1 (6.6)

The stream-function and non-dimensional variables are de…ned as:

 =



Re12 (  ) = ¡2 Re¡12  ()  () =

 ¡ 1
 ¡ 1

and  () =
 ¡1

1
 (6.7)

The variable thermal conductivity ( ) is given by the following relation:

( ) = 1

·

1 + 

µ
 ¡ 1
¢

¶¸

 (6.8)

The new velocity components are de…ned as:

 = 
0 ()   = ¡2 Re¡12  ()  (6.9)

Substituting Eqs. (67)¡ (69) into Eqs. (62)¡ (64), we …nally get

h
¤ + (1¡ ¤)

¡
1¡ 00

¢¡2
i
 000 ¡

³
 0 +



2
 00
´
+ 2 00 ¡

¡
 0
¢2

¡2 0 +  ( +) = 0 (6.10)

(1 + ) 00 + 
¡
0
¢2

+Pr

µ

20 ¡


2
0 +00 +

¡
0
¢2

+ 

¶

= 0 (6.11)
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00 + 20 ¡


2
0 +




00 = 0 (6.12)

with associated boundary conditions:

(0) = 0  0(0) = 1 (0) = 1 0(0) +0(0) = 0

 0(1) ! 0 (1)! 0 (1)! 0 (6.13)

The dimensionless physical parameters are de…ned as below:


³
=  (¡1)

2

´
the buoyancy force parameter, 

³
= 



³
1

¡1

´´
buoyancy forces ra-

tio parameter, 
³
= 1



´
the Brownian motion parameter and 

³
= 0(1¡)

()

´
the heat

generation/absorption parameter

6.1.1 Engineering and Industrial Parameters of Interest

Quantities of pragmatic importance in this analysis are the coe¢cient of skin-friction and Nus-

selt number, which are written as:

 =
j=0
2

  =
j=0

 ( ¡ 1)
 (6.14)

where

 = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡
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¶¡1
#¯
¯
¯
¯
¯
=0

  = ¡

µ




¶



 (6.15)

On substituting Eq. (616) into Eq. (615), we get

Re12 =  00(0)
h
¤ + (1¡ ¤)

©
1¡ 00(0)

ª¡1
i
 Re¡12 = ¡0(0) (6.16)
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6.1.2 Numerical Method for Solution

The governing Eqs. (610)¡ (612) with BCs (613) are solved numerically using RK-Fehlberg

method with shooting scheme. To do this, the system of nonlinear ODEs must be transformed

to a …rst-order linear system.

Let

 = 1  0 = 2  00 = 3  = 4 0 = 5  = 6 0 = 7 (6.17)

Therefore, the leading equations become

01 = 2 02 = 3 03 =
22 +(2 +


23) +22 ¡ 213 ¡ (4 +6)

h
¤ + (1¡ ¤) (1¡3)

¡2
i  (6.18)

04 = 5 05 =
¡25 ¡Pr

£
215 ¡


2 5 +57 +25 ¡ 4

¤

[1 + 4]
 (6.19)

06 = 7 07 = ¡217 ¡


2
7 +




05 (6.20)

and the boundary conditions

1 (0) = 0 2 (0) = 1 5 (0) +7 (0) = 0 (6.21)

2 (1) = 0 4 (1) = 0 6 (1) = 0 (6.22)

Now, Runge-Kutta Fehlberg technique is employed for step by step integration and calculation

are carried out using MATLAB software.
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6.1.3 Numerical Validation of the Algorithm

To have a check on the accuracy of computed results in this study via Runge-Kutta-Fehlberg

integration scheme, a comparison of presently computed values of skin friction coe¢cient is

made for several values of  and . To do this, the acquired results are validated against

Makinde et al. [104] as shown in Table 61. It is seen that the numerical data of the current

investigation are in an excellent agreement.

6.2 Numerical Results

In this section, we have noticed the e¤ects of mixed convection, variable thermal conductiv-

ity, heat generation/absorption and magnetic …eld for momentum, thermal and concentration

boundary layers. The emerging mathematical problem is governed by active physical parame-

ters which include unsteadiness parameter , viscosity ratio parameter ¤, magnetic parameter

 , buoyancy force parameter  buoyancy forces ratio parameter Weissenberg number ,

thermophoresis parameter  Prandtl number Pr, Brownian movement parameter  and

heat generation/absorption parameter  The dimensionless pro…les of velocity, temperature,

concentration, skin-friction and Nusselt number are delineated graphically in Figs. 62¡ 68

In the present study, the accompanying default values of physical parameters are:  = 10

¤ = 0001  = 02  = 10  = 01  = 02  = 01 0 · Pr · 50 0 ·  · 20

0 ·  · 01 0 ·  · 01 0 ·  · 01 All graphs therefore correspond to these values unless

particularly demonstrated in the appropriate graph.

Figs. 62 (¡ ) render the variation of  on  0(), () and (), respectively. It is

visualized via Fig. 62() that the  0() is decreased for higher  . It has been described in
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many physical situations that magnetic …eld reduces the velocity of ‡uid particles. Physically,

we can say that a drag force that applies normal to sheet surface and hence reduces the motion

of ‡uid. It is further noticed that a growth in magnetic parameter tends to enhance the

temperature distribution as seen through Fig. 62(). Fig. 62() displays the deviation of

concentration pro…le () for distinct  . On can see that a dual behavior for concentration

pro…les. The pattern of species concentration is initially raised by higher  near the solid

surface. However, a contrary behavior is portrayed as we go along the dimensionless parameter

 that is a reduction in concentration is observed with larger 

The characteristics of  0() and () for di¤erent  are shown in Figs. 63( ) It is

observed that higher values of  rises the velocity and diminishes the temperature …eld. Since

the buoyancy force is dominant over viscous force for higher . Subsequently, buoyancy force

parameter enhances the ‡uid ‡ow which tends to increase  0() and associated boundary layer

thickness. Additionally, since the buoyancy force tends to enhance the temperature gradient,

hence, () and corresponding boundary layer thickness decrease by higher values of . E¤ect

of  on  0() and () are displayed in Figs. 64( ) From these graphs, it is evident that

an increase in  decreases the ‡uid velocity but an opposite is true for temperature pro…les.

When both thermal and concentration buoyancy forces are acting which results in uplift the

momentum boundary layer and velocity shoots are computed. However, thickness of the thermal

boundary layer is improved with increasing e¢cient buoyancy opposition.

Figs. 65( ) are sketched to inspect the in‡uence of  and  on (). It is reported

that the ‡uid temperature enhances with an expansion in  and  Physically, a lot of heat

is exchange from surface to the material when  is raised and thus temperature of the ‡uid

increases. It is also reported that heat generation occurs in thermal boundary layer for growing
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estimations of  (heat source) and henceforth temperature rises.

Figs. 66( ) are drawn to explore the e¤ect of  on () and (), respectively. From

…gure 66(), it is analyzed that an enlargement in thermophoresis parameter leads to boost

the ‡uid temperature. The physical fact behind this phenomenon is that the large values of 

produces a strong thermophoresis force which have a tendency to transport the nanoparticles

from heated surface to cold ambient ‡uid and consequently the ‡uid temperature is elevated

in boundary-layer regime. Furthermore, higher values of  correspond to a greater boundary

layer thickness. It is interesting to note that () decays with growing estimations of  within

the small region 0 ·  · 08 However, after this region they change their physical behavior

and goes on increasing with  Fig. 66() depicts the concentration distribution due to

variation in thermophoresis parameter. Since concentration pro…les are driven by temperature

gradient which is an increasing function of . Therefore, an increasing value of  improves

the concentration and solutal boundary layer thickness.

The Brownian motion is an important factor to check the pro…ciency of heat transfer during

the motion of nano‡uids. Due to this random motion, nanoparticles collide with each other

and transfer the kinetic energy between each other. Figs. 67() and 67() demonstrate the

consequence of Brownian motion parameter  on () and (). It is found that () decreases

for larger values of  In addition, the concentration pro…les elucidate an opposite behavior

for growing values of  We observe that both concentration and thickness of boundary-layer

reduce subjected to large estimations of Brownian motion parameter.

The variation of Re12 with diverse values of  is depicted in Fig. 68(). Wall shear

stress at the surface enhances by higher buoyancy force parameter. We further anticipate that

as the value of magnetic parameter becomes higher, the friction coe¢cient takes the smaller
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values. This behavior occurs due to drag force which creates resistance in the motion of ‡uid

particles. Fig. 68() explains the impact of Schmidt number  on heat transfer coe¢cient

as a function of . It is shown in Fig. 68() that the heat transport coe¢cient reduces for

increasing values of Schmidt number by keeping  …xed. But in contrast, the numerical results

of heat transport coe¢cients with increasing values of  are completely di¤erent. This is due

to the fact that higher  relates to a poor thermophoresis di¤usion coe¢cient which tends to

short penetration depth for nanoparticles concentration. It is also reported that in contrast with

the past investigations on constant wall nanoparticles volume fraction, here the reduced Nusselt

number is not depending on . This result is predictable and can be e¤ectively checked by

utilizing 0 (0) = ¡()0(0) in the energy equation (631) as we move towards the surface.

In Fig. 68(), results of Nusselt number are shown as a function of  for varying Pr. We can

see that, the Nusselt number is a decreasing functions of  due to loss of concentration at the

surface. It is further revealed that the rate of heat transfer increases for augmenting .
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Fig. 62: In‡uence of varying  on  0 (),  () and  ().
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Fig. 63: In‡uence of varying  on  0 () and  ().
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Fig. 64: In‡uence of varying  on  0 () and  ().
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Fig. 65: In‡uence of varying  and  on  ().
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Fig. 66: In‡uence of varying  on  () and  ().
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Fig. 67: In‡uence of varying  on  ().
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Fig. 68: In‡uence of varying  on Re12 ,  and Pr on Re¡12.
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Table 61: A comparison of the Re12 for varying
2 when =  =  =  = ¤ = 0.

2 Makinde et al. [104] Present results

00 ¡117372 ¡1173988

05 ¡136581 ¡13658126

10 ¡153571 ¡15357173

20 ¡183049 ¡18304917

30 ¡208484 ¡20848529
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Chapter 7

Chemically Reacting Flow of

Williamson Nano‡uid by a

Stretching Cylinder

In this chapter, the simultaneous characteristics of heat absorption/generation and variable magnetic

…eld on unsteady ‡ow of Williamson ‡uid by a stretched cylinder subject to nanoparticles have been

studied. An important prospective of this chapter is to incorporate the impacts of binary chemical

reaction and activation energy for revised Buongiorno’s model of nano‡uid. The notion of Boussinesq-

approximations is utilized to model the leading equations of momentum, thermal energy and nanopar-

ticles concentration for Williamson nano‡uids. The numerical simulations are carried out with the

help of Runge-Kutta Fehlberg scheme coupled with shooting iteration procedure. The analysis of the

obtained results revealed that the assumed physical model is signi…cantly in‡uenced by the key phys-

ical parameters, like, magnetic parameter, chemical reaction parameter, activation energy parameter,
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heat generation/absorption parameter, Brownian motion and thermophoresis parameter. The physical

performance of in‡uential parameters are exhibited through graphs.

7.1 Problem Modelling

A time-dependent ‡ow of chemically reacting Williamson ‡uid past a circular stretched cylinder

subject to suspended nanoparticles has been investigated. The impact of Arrhenius activation

energy and heat absorption/generation are further exhibited. The geometry and coordinate

system for the current model is shown in Fig. 71. A non-uniform magnetic …eld is imposed

normal to cylinder and ‡uid is presumed to be electrically conducting with strength  () =

0p
1¡

, where 0 is a constant. Finally, ( ) =

1¡ is the stretching velocity of the cylinder.
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Fig. 71: Flow con…guration.

As per as the stated restrictions, the pertinent equations of momentum, energy and concen-

tration conservations for Williamson nano‡uids ‡ow are given by:

Continuity equation:

 ()


+

 ()


= 0 (7.1)

Momentum equation:
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Energy equation:
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

1

µ




¶2
#

+
0
()

(¡1) (7.3)
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Concentration equation:




+ 




+ 




=









µ






¶

+


1

1







µ






¶

¡2 ( ¡1)

µ


1

¶

exp

µ

¡


¤

¶

 (7.4)

The realistic BCs are

 =  ( )   = 0  =  



+



1




= 0 at  =  (7.5)

! 0  ! 1  ! 1 as !1 (7.6)

Here ( ) signi…es the velocities along ¡ and ¡directions and0 the heat generation/absorption

coe¢cient.

To solve the governing equations (71)¡ (74) subject to the corresponding boundary condi-

tions (75) and (76), we make use of the following transformations and dimensionless quantities:

 =
2 ¡2

2

³



´12
  = ()

12 ()   () =
 ¡ 1
 ¡ 1

  () =
 ¡1

1


(7.7)

The stream function ( ) is given by  = 1


 and  = ¡1


  so that the continuity equation

(71) is automatically satis…ed.

Now, by adopting Eq. (77), the governing Eqs. (72)¡ (74) are transformed into a set of
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dimensionless equations as:

(1 + 21)
£
¤ + (1¡ ¤) (1¡ 00)¡2

¤
 000 +  00 ¡

³
 0 +



2
 00
´
¡2

0

+21
00

·

¤ + (1¡ ¤)

µ

1¡
 00

2

¶
¡
1¡ 00

¢¡2
¸

= 0 (7.8)

(1 + 21)  + 21
0 +Pr 0 +Pr (1 + 21) (

00 +
02)¡ Pr



2
0 +Pr  = 0 (7.9)

(1 + 21)
00 + 21

0 + 0 +



[(1 + 21) 

00 + 20]

¡


2
0 ¡ ¤(1 + ¤) exp

µ

¡


1 + ¤

¶

= 0 (7.10)

with

(0) = 0  0(0) = 1 (0) = 1 0 +0 = 0 (7.11)

 0(1)! 0 (1)! 0 (1)! 0 (7.12)

Here, the local Weissenberg number , curvature parameter  heat generation/absorption

parameter  magnetic parameter  , thermophoresis parameter , Brownian motion para-

meter  Prandtl number Pr, Schmidt number  unsteadiness parameter , viscosity ratio

parameter ¤, reaction rate parameter ¤, activation energy parameter  and temperature

di¤erence parameter ¤ are de…ned as follows:
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 =

µ
322¡2

(1¡ )32

¶12
 1 =

µ
(1¡ )

2

¶12
  =

0(1¡ )

()


 =

µ
¤20


¶12
  =

 ( ¡ 1)

1
  =

1


 Pr =





 =



  =




 ¤ =

1
0

 ¤ =
2

  =



1
 ¤ =

 ¡ 1
1

 (7.13)

7.1.1 Parameters of Physical Signi…cance

The friction and heat transport coe¢cients are given by:

 =
 j=

2
  =

j=

 ( ¡ 1)
 (7.14)

where

  = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

  = ¡

µ




¶

 (7.15)

The non-dimensional surface drag and heat transport rate takes the form:

Re12 =  00(0)
h
¤ + (1¡ ¤)

¡
1¡ 00(0)

¢¡1
i
 Re¡12 = ¡0(0) (7.16)

7.1.2 Computational Procedure

The system of highly non-linear ODEs with associated boundary conditions Eqs. (78)¡ (712)

has been tackled numerically via RKF method coupled with Nachtsheim-Swigert shooting tech-

nique for the non-dimensional velocity, temperature and nanoparticle concentration distribu-

tions. The ruling equations are transformed into a system of …rst order ODEs and Runge-Kutta
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method with shooting technique is utilized for step by step integration and calculations are

carried out on MATLAB software. The computations are performed until some convergence

criterion of 10¡6 is ful…lled.

7.2 Results and Discussion

The numerical simulation of  0 (),  () and  () for varying pertinent physical parameters

have been performed in a MATLAB routine based on Runge-Kutta method. We investigate the

physical behavior of all involved dimensionless parameters. For instance, unsteadiness parame-

ter  magnetic parameter  , local Weissenberg number , curvature parameter 1, heat

generation/absorption parameter , Brownian motion parameter , thermophoresis parame-

ter , Schmidt number , activation energy parameter , temperature di¤erence parameter

¤, reaction rate parameter ¤ and …tted rate constant  on  0 (),  () and  (), which are

illustrated through Figs. 72¡ 714 We have put default values for leading parameters such

as  = 01  = 02  = 10  = 02 ¤ = 01 1 = 02  = 05  = 05  = 50

 = 20 Pr = 70 ¤ = 01 ¤ = 10 and  = 05 during the entire computations.

7.2.1 Velocity and Temperature Pro…les

The dimensionless velocity …eld for several values of 1 is displayed in Fig. 72 The compu-

tational values are plotted for two di¤erent cases of  i.e., hydrodynamic ‡ow ( = 0) and

hydromagnetic ‡ow ( = 1). It can be viewed from Fig. 72 that the velocity distribution

inside the boundary-layer rises for higher 1 for both cases. This fact is justi…ed physically

because the higher values of 1 lead to reduce the cylinder radius. So a smaller amount of resis-

tance is being o¤ered by the surface and subsequently the ‡uid velocity increases. In addition,
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the liquid velocity is reduced subject to a rise in  . Owing to the reality that presence of

transverse magnetic …eld to an electrically conducting liquid ascend the retarding force, known

as the Lorentz force and this force accelerates the movement of the ‡uid within the bound-

ary layer region. We further inspected that the computed results are much notable after a

certain distance from the solid surface. The impact of curvature parameter in the unsteady

two-dimensional ‡ow on () is well exhibited through Fig. 73. The graphs are sketched in the

presence of magnetic …eld ( = 1) and absence of magnetic …eld ( = 0). It is witnessed that

higher values of curvature parameter resulted in an increment in ‡uid temperature as well as

the corresponding boundary-layer thickness. As expected, the  () exhibit a signi…cant growth

due to magnetic …eld presence.

Fig. 74 is about the behavior of  () with varying values of . The behavior of  () is

depicted for two cases of curvature parameter i.e., 1 = 0 and 1 = 1. Here, it is perceived

that the  () in case of 1 = 1 dominates over the ‡ow by a ‡at plate and also the  ()

increases signi…cantly for higher estimations of heat generation/absorption parameter. Further,

we noticed that all  () curves start with no-slip boundary condition at 1 and meet the far-

away boundary condition asymptotically. It is fascinating to mention that boundary-layer is

attained quite earlier in case of 1 = 0. Now, we will elaborate the impact of  on  () which

has ample physical importance regarding ‡uid temperature. It is seen that the temperature

distribution reveals magni…cation phenomenon and an improving values of enhances the ‡uid

temperature as seen through Fig. 75 This is due to the reason that temperature di¤erence

between surface and ambient ‡uid rises for larger and hence the ‡uid temperature accelerates

for both cases. Moreover, the ‡uid temperature has higher value in case of 1 = 1.
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7.2.2 Nanoparticles Concentration Pro…les

We now disclose the conduct of nanoparticles concentration for diverse physical parameters

through Figs. 76¡ 711. The behavior of the curvature parameter 1 in both the pres-

ence/absence of  on  () is displayed in Fig. 76. It is interesting to note that all the

concentration curves  () are initiated from negative value ful…lling the boundary condition at

the surface, reaches its peak value and then tends to zero asymptotically. This …gure demon-

strates that the concentration distributions increases for higher values of curvature parameter

in both cases. Clearly, concentration …eld heightens with enlarging  . Fig. 77 depicts the

concentration curves  () for distinct values of  for  = 1 and  = 0. For both the cases,

it is scrutinized that the concentration pro…les have dual behavior with larger Brownian motion

parameter. A useful insight of this …gure discloses that the concentration pro…les change their

behavior near  ¼ 038 i.e., within the region 0 ·  . 038 the concentration pro…les rise with

augmenting values of  while for the region 038 .  · 8, it has decreasing behavior. The

signi…cance of thermophoresis parameter  against concentration pro…les is presented in Fig.

78. Initially, these pro…les increases with inside the boundary layer, reaches up to maximum

value and then goes on decreasing monotonically to satisfy the boundary condition. Also, for

enlarged , near the solid boundary, the concentration pro…le decrease and after a de…nite

distance it goes on increasing for both the cases. It is appealing to note that the peak in the

nanoparticles concentration close to the sheet is because of the fact that the nanoparticle vol-

ume fraction close to the sheet is higher in comparison to nanoparticles volume fraction at the

surface.

The simulated concentration pro…les  () for various ¤ are drawn in Fig. 79 in the
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absence/presence of  . The concentration curves shown in this …gure perceived to have a

decaying behavior with higher ¤. Additionally, for  = 0, the ¤ is higher in comparison

with the in‡uence of magnetic …eld. Fig. 710 elucidates the behavior of  () with the

variation in ¤. From this plot, it is seen that an increase in the destructive chemical reaction

parameter ¤  0 tends to reduce the nanoparticles concentration. In‡uence of  on  ()

is illustrated in Fig. 711. In chemistry, the term ‘activation energy’ was …rst introduced

by a Swedish scientist Svante Arrhenius which is described as the energy that must be used

to proceed the chemical reaction. It is also be de…ned as the minimum amount of energy

that is require to continue a chemical reaction. It is generally denoted by  and given in

units of  ¢¡1. The modi…ed Arrhenius function
³


1

´
exp

¡
¡



¢
declines as activation

energy  ampli…es. We observe that increasing the values of activation energy  leads to

enhance the nanoparticles concentration. In Fig. 712, the variation of …tted rate constant 

on nanoparticles concentration is shown. The  () and thickness of associated boundary layer

enhance as …tted rate constant changes its values from  = 2 to 8

7.2.3 Skin friction and Nusselt number

The simulated values of Re12 and Re¡12 are obtained for distinct values of pertinent

parameters and presented through Fig. 713 and Fig. 714. The variation in Re12 against

 for varying  is shown in Fig. 713 A signi…cant rise in Re12 is marked for higher

which means that the wall shear stress is higher for larger . In Fig. 714 we exhibit ¡0(0)

against the  for deviating values of ¤ As the surface heat ‡ux has an inverse relation with

¤ and as a result the heat transfer rate decreases for greater ¤ Further, the temperature

gradient collapse in non-linear pattern when  is increased.
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Fig. 72: Illustration of  0() for varying 1.
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Fig. 73: Illustration of () for varying 1.
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Fig. 74: Illustration of () for varying .
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Fig. 75: Illustration of () for varying .
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Fig. 76: Illustration of () for varying 1.
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Fig. 77: Illustration of () for varying .
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Fig. 78: Illustration of () for varying .
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Fig. 79: Illustration of () for varying ¤.
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Fig. 7.10: Illustration of () for varying ¤.
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Fig. 711: Illustration of () for varying .
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Fig. 712: Illustration of () for varying 
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Fig. 714: Illustration of Re¡12 for varying ¤
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Chapter 8

Williamson Fluid Flow driven by

Shrinking Surface

This chapter deals with multiple solutions for an electrically conducting Williamson ‡uid ‡ow caused by a

stretching/shrinking surface by considering Ohmic heating and viscous dissipation. Flow is subjected to

a time-dependent magnetic …eld which is employed in transverse direction. The dimensionless variables

are used to transform the governing PDEs into ODEs and then tackled numerically. In addition, the

multiple solutions for dimensionless ‡uid velocity and temperature distribution are captured when a

certain quantity of mass suction is employed through the porous shrinking surface. It is visualized from

multiple branches that the skin friction enhances with magnetic parameter for the upper branch solution

and it reduces for lower branch solution.
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8.1 Problem Description

Assuming transient, 2D, incompressible and laminar ‡ow of magneto-Williamson ‡uid induced

by a permeable shrinking surface in the vicinity of stagnation point. The physical model is

depicted in Fig. 81. It is considered that the stretching/shrinking sheet velocity is  =

( ) where  is a constant with   0 relates to a shrinking sheet and   0 represents a

stretching sheet and the velocity of the far ‡ow (inviscid ‡ow) is ( ). It is illustrated that

the sheet is permeable and the mass ‡ux velocity is ( ). The surface temperature ( )

along with ambient temperature 1 are considered as constants.

Fig. 81: Schematic diagram.
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The equations of motion that govern the unsteady ‡ow of Williamson ‡uid can be written

as:




+




= 0 (8.1)
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( ¡ )2  (8.3)

with physical boundary conditions:

  0 :  =  = 0  = 1 for any  

 ¸ 0 :  = ( )  = ( )  = ( ) at  = 0

 ! ( )  ! 1 as  !1 (8.4)

We assume the following forms of     and ():

( ) =


1¡ 
 ( ) =



1¡ 
 ( ) = ¡

0p
1¡ 



( ) = 1 +
2

(1¡ )2
 2() =

20
1¡ 

 (8.5)
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where   and  are constants having the dimension (time)¡1

Now the necessary non-dimensional variables are

 = 

r


(1¡ )
 (  ) =

r


1¡ 
() () =

 ¡ 1
 ¡ 1

 (8.6)

Substituting Eq. (86) into Eqs. (83)¡ (85), we obtain

h
¤ + (10¡ ¤)

¡
1¡ 00

¢¡2
i
 000+ 00+1¡( 0)2¡

³
 0 ¡ 1 +



2
 00
´
+(1¡ 0) = 0 (8.7)

00 +Pr
¡
0 ¡ 2 0

¢
¡Pr

µ
1

2
0 + 2

¶

+Pr[(1¡  0)2

+¤ 002 + (1¡ ¤)
¡
1¡ 00

¢¡1
 002] = 0 (8.8)

with associated boundary conditions:

(0) =   0(0) =  (0) = 1 at  = 0 (8.9)

 0(1) = 1 (1) = 0 as  !1 (8.10)

The emerging physical parameters that appeared in the above equations are:

 =

r
¡23


 =



  =

20


  =
¡0p


 =
2

( ¡ 1)
 (8.11)

where,     denote the local Weissenberg number, unsteadiness parameter, magnetic

parameter, mass transfer parameter and the Eckert number, respectively.
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8.1.1 Engineering Coe¢cients

The quantities regarding engineering signi…cance are coe¢cient of skin friction ( ) and Nusselt

number () are de…ned by the relations:

 =
(1¡ )¡12

2

µ




¶

=0

  =
(1¡ )12

( ¡ 1)

µ




¶

=0

 (8.12)

with

 = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

 (8.13)

Making use of Eq. (86), we obtain

Re12 =  00(0)[¤ + (1¡ ¤)
©
1¡ 00(0)

ª¡1
] Re¡12 = ¡0(0) (8.14)

8.2 Numerical Methodology

The nonlinear di¤erential Eqs. (87) and (810) are elucidated numerically using the RKF

method.

Let

 0 = 

0 = 

0 =
2¡¡1+(¡1+

2
)¡(1¡)

¤+(1¡¤)(1¡)
¡2

9
>>>>>>=

>>>>>>;

(8.15)
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and

0 = 

0 = ¡Pr + 2Pr +Pr
¡
2 + 

2 
¢

¡Pr
h
 (1¡ )2 + ¤2 + (1¡ ¤) (1¡)¡1 2

i

9
>>>>>>=

>>>>>>;

(8.16)

with boundary conditions

(0) =  (0) =  (0) = 1 (1)! 1 (1)! 0 (8.17)

In order to integrate Eqs. (815) and (816) with (817) as an IVP, the estimations for  (0) i.e.,

 00(0) and  (0) i.e., 0 (0) are not mentioned at this stage. The initial guess values for  00(0) and

0 (0) are selected and then RKF 45 method is employed to get an approximate solution. Then

the obtained values for  0 () and  () at 1 varying from 5 to 15 depending on the physical

parameters are compared with the far …eld boundary conditions  0 (1) = 1 and  (1) = 0

and the values of  00 (0) and 0(0) are modi…ed using "Newton Raphson method" to determine

the required signi…cant digit. Hence the step size is chosen as ¢ = 0001 and the solution

process is repeated until the desired outcomes are converged up to the error tolerance of 10¡6

8.2.1 Validation of Numerical Data

To evaluate the accuracy of employed numerical scheme, Tables 81 and 82 present a com-

parison of  00(0) and ¡0(0) for varying values of  and  with those of Wang [105] and Soid

et al. [106]. These comparisons are given quantitatively in Tables 81 and 82, and revealed in

a good agreement. From both tables a conspicuous perception could be made that computed

outcomes are in decent agreement with published data. Now, we have the con…dence to say
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that the numerical scheme produces correct results.

8.3 Computational Results

In the current work, numerical simulations for the heat transfer subject to Ohmic heating and

dissipation aspects in stagnation-point ‡ow of time-dependent Williamson liquid are developed.

The computations for varying values of the suction parameter , viscosity ratio parameter ¤,

magnetic parameter  , Weissenberg number  and unsteadiness parameter  have been

presented. To conserve space we choose to plot the pro…les of velocity, temperature, wall shear

stress and heat transport rate for the case of  = 30 ¤ = 01  = ¡13  = 10 Pr = 10

 = 01  = 01 and  = 05 only to show the existence of dual solutions in the pro…les. The

results obtain in this study are illustrated through Figs. 82¡ 811. Since, when we assume

the stagnation region towards a shrinking surface there may exist dual solutions in a certain

range of governing parameters, where the sheet is being shrunk. First solution is illustrated

by solid lines whereas second solution is portrayed by dotted lines. The edge of the boundary

layer has been chosen 1 = 10 for the …rst solution and 1 = 20 for the second solution.

The computed data of Re12 and Re
¡12 is written in Table 8.3. Clearly, increasing

values of strengthen the Re12 in …rst solution while reverse characteristics are observed

for second solution. Table 8.3 also depicts the variation of Re¡12 for distinct values of

and ¤. Here, heat transportation rate is lower with the growth of  in the upper solution

whereas a reverse pattern is seen for lower solution. Further, the higher values of ¤ lead to

increase the Re¡12 in the …rst solution. It is also noticed that the Re¡12 is a decreasing

function of ¤ in the second solution.
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In Fig. 82, two solutions being developed for Re12 against higher values of . Further,

critical values of , when solution being divided into two branches (lower and upper branch

solutions), are  ¼ ¡04499¡07731¡11188. In this plot, the variation of Re12 with

  0 (blowing case),   0 (suction case) and  = 0 (absence of suction/blowing) for several

values of  is shown. It is revealed from Fig. 82, that the wall shear stress rises with

enlarged values of  for the …rst solution while for the second solution it deprecates with

larger  . Fig. 83 elaborates the performance of Re12 with  for varying . It is

seen in Fig. 83 that there are dual solutions for     0, where the critical values of

 are  ¼ ¡14972¡15241¡15522 It can be seen that dual nature of solution exists for

shrinking situation (  0)  whereas the solution is unique for stretching situation (  0)  It

is further observed  declines as  increases. Moreover, if the unsteadiness  is increased then

Re12 also rises for …rst solution while for second solution a con‡icting nature is observed.

Fig. 84 interprets the variation of rate of heat transfer with   0 (shrinking sheet) and

  0 (stretching sheet) for di¤erent values of  ( = 00 005 01)  This plot reveals that

an increment in  the heat transfer rate enhances in both branches. The associated critical

values corresponding to  are  ¼ ¡14972¡15241¡15522 Variation of Re
12 against 

for ¤ is portrayed in Fig. 85 This …gure reveals that Re12 diminishes with the growth

of ¤ in the lower branch solution and opposite impact is noticed for upper branch solution.

The trajectories of Re¡12 for varying values of ¤ are depicted through Fig. 86 against

. The range of  for which these dual nature solution exists, illustrate an increasing trend

for higher values of ¤ The critical values of shrinking parameter  varies from ¡15566 to

¡15692 as ¤ changes from 03 to 07 Fig. 87 is presented to look at the in‡uence of  on

 0 (). One can easily observed from this pro…le that dual solutions exists for certain values
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of  The ‡uid velocity improves with growing values of suction parameter  in case of upper

branch solution, whereas the ‡uid velocity initially decreases with  and after that for large ,

changing the nature it increases with  in the lower branch solution. Further, it is evident to say

that in every case of dual solutions of the velocity pro…le, the thickness of momentum boundary

layer for the second solution is higher in comparison to …rst solution. In Fig. 88, the features

of  versus temperature pro…le are exhibited. The dual temperature pro…les show that the

temperature of the ‡uid rises with increasing suction parameter  in both solutions. The values

of  varies from ¡075 to ¡073 represent the blowing case in which   0. One can conclude

form this graph that the ‡uid temperature as well as thickness of thermal boundary layer for

both cases intensi…es by higher suction parameter (  0). Moreover, the momentum boundary

layer in the second solution is thicker in comparison to the …rst solution. From this, one can

conclude that solutions for lower branch are not stable whereas the upper branch solutions are

stable. The  0 () for varying  is shown in Fig. 89. Clearly, velocity is decreased for varying

values of  for both lower and upper solution. Further, it is witnessed that second solution is

much thicker than the …rst solution. Fig. 810 shows velocity …eld for varying estimations of

¤. It is examined that both the upper and lower branch solutions increase for larger values of

viscosity ratio parameter. This plot reveals that initially the ‡uid velocity decreases, while at

a certain range of  the velocity pro…le improves remarkably. Fig. 811 depicts the aspect of

 on  0(). Fluid velocity is found to decrease with increase in . It is noticed that the

velocity corresponding to the …rst solution shows a similar trend to that of the second solution

and it is found to be higher than those of the …rst solution for all values of .

143



s

R
e x1

/2
C

f

­1.6 ­0.8 0 0.8

0

2

4

6

First solution
Second solution

M = 0.05, 0.1, 0.15

s
c
= ­0.4499

s
c
= ­0.7731

s
c
= ­1.1188

Fig. 82: E¤ect of  on Re12 .



R
e1

/2
C

f

­1.6 ­1.55 ­1.5 ­1.45 ­1.4

­1

0

1

2

3

4

First solution
Second solution

A = 0.0, 0.05, 0.1


c
= ­1.4972


c
= ­1.5241


c
= ­1.5522

Fig. 83: E¤ect of  on Re12 

144





R
e­1

/2
N

u

­1.56 ­1.5 ­1.44 ­1.38

­2

­1

0

1

First solution
Second solution

A = 0.0, 0.05, 0.1


c
= ­1.4972


c
= ­1.5241


c
= ­1.5522

Fig. 84: E¤ect of  on Re¡12.



R
e1

/2
C

f

­1.6 ­1.5 ­1.4 ­1.3

­2

0

2

4
First solution
Second solution

* = 0.3, 0.5, 0.7


c
= ­1.5566


c
= ­1.5620


c
= ­1.5692

Fig. 85: E¤ect of ¤ on Re12 

145





R
e­1

/2
N

u

­1.6 ­1.55 ­1.5 ­1.45 ­1.4
­1

­0.5

0

0.5

1 First solution
Second solution

* = 0.3, 0.5, 0.7


c
= ­1.5566


c
= ­1.5620


c
= ­1.5692

Fig. 86: E¤ect of ¤ on Re¡12



f/ (

)

0 5 10 15

­1.6

­0.8

0

0.8

First solution
Second solution

s = 0.5, 1.0, 1.5

Fig. 87:  0() for several values of .

146






(

)

0 5 10 15

0

50

100

First solution
Second solution

s = ­0.75, ­0.74, ­0.73

Fig. 88: () for several values of .



f/ (

)

0 5 10 15

­1.5

­1

­0.5

0

0.5

1

First solution
Second solution

A = 0.0, 0.05, 0.1

Fig. 89:  0() for several values of .

147





f/ (

)

0 5 10 15

­1.6

­0.8

0

0.8

First solution
Second solution

* = 0.1, 0.3, 0.5

Fig. 810:  0() for several values of ¤



f/ (

)

0 5 10 15

­1.4

­0.7

0

0.7

First solution
Second solution

We = 3.1, 3.2, 3.3

Fig. 811:  0() for several values of 

148



Table 8.1: A comparison of Re12 for  = 00,  = 10 Pr = 10,  = 00, ¤ = 00

and  = 00

Upper solution () and lower solution [] 

  Wang [105] Soid et al. [106] Present study

() [] () [] () []

0 0 123258765 12325854

¡05 149567 149566976 14956667

¡115 108223 011670 108223117 011670214 10822298 011670213

¡12 093247335 023364973 093247131 023364972

¡124657 057452574 056398927 057451987 056400733

005 1 0

05 072188364

0 125253676 1252533

¡05 153308133 15330776

¡129 062952288 054290217 062951133 054290214

¡12906 059713221 057494863 059712483 05749298

¡129064 058849210 058356583 058846158 05835657
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Table 8.2: A comparison of Re¡12 for  = 01,  = 1 Pr = 1,  = 0, ¤ = 0

and  = 0

  Soid et al  [106] Present study

First solution Second solution First solution Second solution

01 1 164764430 16476415

05 164764430 12308236

0 123082763 052573067

¡05 ¡041366075 ¡041365927

¡14 ¡515777141 ¡750772285 ¡51577797 ¡75077223

¡1401 ¡543163891 ¡692183393 ¡54316397 ¡69218344

¡14017 ¡588601576 ¡626069817 ¡5886029 ¡62608658

¡1401774 ¡598573932 ¡614943330 ¡59855983 ¡61494436
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Table 8.3: Skin friction coe¢cient and heat transfer coe¢cient for  = 01,  = 05

Pr = 10,  = ¡13,  = 01 and  = 10

 ¤ Re12 Re¡12

First solution Second solution First solution Second solution

30 01 400142 ¡0238608 0943479 ¡053743

31 402985 ¡0242479 0843177 ¡0558032

32 405831 ¡0246062 0751221 ¡0578591

33 408681 ¡0249364 0666442 059908

02 403935 ¡0248459 0685843 ¡0578345

03 398833 ¡0248128 0706342 ¡0553149

04 393299 ¡0248106 072804 ¡0523119
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Chapter 9

Thermal Radiation Impact on

Williamson Nano‡uid Flow induced

by an Expanding/Contracting

Cylinder

In this chapter, numerical results for the transient ‡ow of Williamson nano‡uid generated by an expand-

ing/contracting circular cylinder are investigated. This critical review further explores the impact of

variable magnetic …eld, thermal radiation, velocity slip and convective boundary conditions. The non-

dimensional form of partially coupled ordinary di¤erential equations are solved numerically by utilizing

versatile Runge-Kutta integration scheme. The momentum, thermal and concentration characteristics

are investigated with respect to diverse active parameters, like, Weissenberg number, unsteadiness para-

meter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis
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parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The out-

comes of the systematic review of these parameters and forecast plots are illustrated. The study reveals

that multiple solutions for the considered problem exist for diverse physical parameters. The computed

results indicate that the skin friction and heat transfer coe¢cients are signi…cantly raised by the magnetic

parameter for upper branch solution.

9.1 Problem Statement

We modeled transient ‡ow of Williamson nano‡uid caused by an expanding/contracting cylin-

der. The geometrical view of the considered physical model is illustrated in Fig. 9.1. It is

assumed that cylinder diameter depends on time i.e., () = 0
p
1¡  where 0 is the positive

constant,  is the time and  is the expansion/contraction strength constant. A strength of

magnetic …eld () = 0p
1¡

is operated in ¡direction. The cylindrical surface is heated by

convection through a hot liquid with temperature  and coe¢cient of heat transfer  .
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Fig. 9.1: Schematic diagram of considered problem.

According to above mentioned assumptions, the leading equations for Williamson nano‡uids

‡ow are given by:

Continuity equation:

 ()


+

 ()


= 0 (9.1)
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Momentum equation:




+ 




+ 
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
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
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µ
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
 (9.2)

Energy equation:


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+ 
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
+ 




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
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1


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

 ()
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+
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
 (9.3)

Concentration equation:




+ 




+ 




=









µ






¶

+


1

1







µ






¶

 (9.4)

9.1.1 Boundary Conditions

The physically realistic boundary conditions are described as:

 =  +   = ¡
1

20

4

1¡ 
 ¡ 




= ( ¡  )  =  at  = () (9.5)

! 0  ! 1  ! 1 as !1 (9.6)

The slip velocity is given by
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 = 1




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

 (9.7)

9.1.2 Dimensionless forms of Equations

We introduce the following dimensionless variables:

 = ¡
1

0

2
p
1¡ 

()
p

  =

1

20

4

1¡ 

0
()  =

µ


0

¶2 1

1¡ 
,

 () =
 ¡ 1
 ¡ 1

  () =
 ¡1
 ¡1

 (9.8)

Substituting Eq. (98) into Eqs. (92)¡ (94), the ‡ow equations are reduced as:

 000(¤ + (1¡ ¤) (1¡ 00)¡1 + 00 (1¡ ¤) (1¡ 00)¡2)

+ 00
£
¤ + (1¡ ¤) (1¡ 00)¡1

¤
+



2
 002((1¡ ¤) (1¡ 00)¡2)

+ 00 ¡  02 ¡
¡
 0 +  00

¢
¡

0
= 0 (9.9)

1

Pr

£
(1 +(1 + ( ¡ 1))30

¤0
+ 0 ¡0 + (

00 +
02) +  = 0 (9.10)

00 + 0 + (0 ¡0) +



[00 + 0] = 0 (9.11)

subjected to boundary conditions

(1) =   0(1) = + 1

h
¤ + (1¡ ¤)

¡
1¡ 00(1)

¢¡1
i


0(1) = ¡ (1¡ (1))   (1) = 1 (9.12)

 0(1)! 0 (1)! 0 (1)! 0 (9.13)
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The dimensionless physical variables         , 1   and  denote the

local Weissenberg number, the magnetic parameter, thermophoresis parameter, the Brownian

motion parameter, the Lewis number, the mass transfer parameter, the Biot number (convective

parameter), the unsteadiness parameter , the velocity slip factor, the heat generation/absorption

parameter, the temperature ratio parameter and the radiation parameter. The above-mentioned

parameters are



µ

=
8¡

(1¡ )240

¶

 

µ

=
20

2
0

4

¶

 

µ

=
( ¡ 1)

1

¶

 

µ

=
( ¡1)



¶





µ

=




¶

 
³
= ¡

0

2

´
 

µ

=
0 (1¡ )

2

¶

 

µ

=
20

4

¶



1

µ

=
21

(1¡ ) 20

¶

 

µ

=
 (1¡ )



¶

 

µ

=


1

¶

and 

µ

=
16¤¤ 31
3¤

¶

 (9.14)

9.1.3 Engineering Parameters

The most important physical and engineering related quantities are drag force along the cylin-

drical surface and rates of heat and mass transportation. The mathematical form of such

quantities is written as:

 =
 j=()

22
  =

()j=()

2 ( ¡ 1)
  =

()j=()

2 ( ¡1)
 (9.15)

where    and  are expressed as:

  = 0




"

¤ + (1¡ ¤)

µ

1¡ ¡




¶¡1
#

  = ¡

µ




¶

+   = ¡

µ




¶



(9.16)
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On substituting Eq. (98) into Eqs. (915) and (916), we obtain



 ()
=  00(1)

h
¤ + (1¡ ¤)

¡
1¡ 00(1)

¢¡1
i


 = ¡0(1)
h
1 +

n
[1 + ( ¡ 1)(1)]3

oi


 = ¡0(1) (9.17)

9.2 Numerical Procedure

The nonlinear ODEs (99) ¡ (911) along with (912) and (913) are solved by Runge-Kutta

Fehlberg method. In this approach, the BVP is converted into the IVP. Let  = 1 
0 = 2

 00 = 3  = 4 
0 = 5  = 6 

0 = 7 Making use of these variables into Eqs. (99¡ 913) 

the new system of ODEs is given below:

03
¡
¤ + (1¡ ¤) (1¡3)

¡1 +3 (1¡ ¤) (1¡3)
¡2
¢

+3
£
¤ + (1¡ ¤) (1¡3)

¡1
¤
+



2
23((1¡ ¤) (1¡3)

¡2)

+13 ¡ 22 ¡(2 + 3)¡2 = 0 (9.18)

1

Pr

£
(1 +(1 + ( ¡ 1)4)

35
¤0
+ 15 ¡5 + (57 +25) + 4 = 0 (9.19)

07 + 7 + (17 ¡7) +



[05 + 5] = 0 (9.20)

1(1) =  2(1) = + 1
h
¤ + (1¡ ¤) (1¡3(1))

¡1
i


5(1) = ¡ (1¡ 4(1))  7 (1) = 1 (9.21)
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2(1)! 1 4(1)! 2 6(1)! 3 (9.22)

We …nd the solution of the above system of …rst order di¤erential equations via Runge-Kutta

numerical technique, which requires seven initial conditions. But, the above system contains

three unknown values 1 2 and 3 i.e., 
00 (0), 0 (0) and (0) respectively. Thus, it is necessary

to select the appropriate values of these unknowns such that far …eld conditions (at in…nity)

with the suitable domain length 1 These guessed value are adjusted by Newton Raphson

method such that iterative process is terminated when the following condition is satis…ed:

P



¯
¯£

 ¡£¡1


¯
¯ · 10¡6.

9.2.1 Validation of Numerical Results

Table 91 elaborates numerical outcomes of 
00
(1) for impermeable stretched cylinder 

00
(1) = 1

for varying 1 when ¤ =  =  =  = 0 This table reveals that rising values of 1 leads

to a decrease the skin friction magnitude. Moreover, it is observed that the obtained numerical

data is in extremely decent agreement with those presented by Wang and Ng [107], Ishak et al.

[108] and Abbas et al. [109] for stretched cylinder 
00
(1) = 1 and elucidates the accuracy and

validity of the current numerical scheme.

9.3 Discussion of Numerical Approach

The system of Eqs. (99) ¡ (911) with appropriate boundary conditions (912) and (913)

is solved numerically via shooting scheme. The impact of pertinent physical parameters on

the dimensionless velocity, temperature, nanoparticles concentration, skin friction coe¢cient,

Nusselt number and Sherwood number is illustrated graphically through Figs. 92¡ 918.
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In this investigation, dual nature of solutions is captured for some particular values of mass

transfer parameter  and shrinking parameter  by setting distinct initial guesses. The range of

controlling parameters is taken as: 01 · · 03 0 ·  · 02 01 ·  · 05 11 ·  · 25

0 ·  · ¡02 28 ·  · 35 01 ·  · 05 and 20 ·  · 10 The default values of

controlling parameters are considered as:  = 02 ¤ = 01 Pr = 50  = 20  = 02

 = 03  = 03  = 11  = 01  = 05  = 30  = ¡02  = 01 1 = 01 and

 = ¡15 throughout the computation, otherwise mentioned.

9.3.1 Momentum Boundary Layer

In this segment, our prime intention is to investigate the impact of active physical parameters

on the ‡ow characteristics, i.e., the skin friction coe¢cient and  0() which are demonstrated

graphically through Figs. 92¡ 97. The plots of skin friction coe¢cient against the shrinking

parameter  for particular values of  and 1 are shown in Fig. 92 and Fig. 93. From

Fig. 92 it is revealed that for rising values of the critical value  reduces from ¡19129 to

¡21633 and the magnitude of the absolute critical value jj increases. In upper branch solution

case, the ‡uid velocity is higher in comparison to lower branch solution. Physically, with a rise

in magnetic parameter , the drag force named as Lorentz force rises and therefore accelerates

the ‡ow for upper branch solution while an opposite behavior is noted for lower branch solution.

The impact of velocity slip parameter on the skin friction coe¢cient is illustrated through Fig.

93 In this plot, we noted existence range of dual solutions with respect to shrinking parameter

The dual solutions are calculated for    and beyond the critical value i.e.,   solutions

are not possible. The critical values  are lessening from ¡17267 to ¡23745 as velocity slip

parameter increases from 0 to 02 We reported that the upper solution is always higher than
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lower branch solution. In this sense, we noticed that reduced skin friction decreases in case of

upper branch solution and showing an opposite trend for lower branch solution. The variation

of magnetic parameter versus  0() is illustrated in Fig. 94. An enhancement in magnetic

…eld creates a resistive force, which have an ability to decelerate the ‡uid’s movement along

the stretched surfaces which generates a declination in the velocity …eld. From this plot, we

observe that the transverse magnetic …eld opposes the transport phenomenon. Therefore, for

larger values of magnetic parameter  velocity pro…le in case of …rst solution increases and it

decreases monotonically for second solution. Fig. 95 describes the pattern of  0() for distinct

1 for both …rst and second solutions. This …gure reveals that 
0() increases for higher 1 in

upper branch and reduces for lower branch solutions. The in‡uence of  0() for  is depicted

in Fig. 96 The curves depict that the velocity of the ‡uid rises for upper branch and reduces

for lower branch. Here, magnitude of the velocity rises for the …rst solution and reduces for

the second solution with higher  which justi…es that the upper solution is physically stable

in comparison to lower branch solution. The impact of  against  0() is demonstrated in Fig.

97 By de…nition of mass transfer parameter , we can analyze three cases ()   0 corresponds

to mass injection case ()  = 0 refers to the solid surface without permeability, and ()   0

indicates the mass suction case. Here, we discussed the case of mass suction and reported that

 0() decreases in …rst solution and a reverse is noted in second solution.

9.3.2 Thermal Boundary Layer

The variation in  for di¤erent parameters is illustrated in Figs. 98¡ 911 for stretching

and shrinking cylinder cases. Fig. 98 elaborates the magnetic parameter  impact on the

Nusselt number. The critical value  decreases from ¡19129 to ¡21633 as  rises from 01
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to 03. The heat transport rate increases for upper branch with magnetic parameter while a

reverse pattern is observed for lower branch and both solutions are terminated at critical value

. It is illustrated from Fig. 99, as 1 increases from 0 to 02,  decreases from ¡17267 to

¡23745. As the velocity slip parameter 1 rises, the rate of heat transport increases for upper

branch and decreases for lower branch. The variations of local Nusselt number against mass

transfer parameter  for distinct  are presented in Fig. 910. It is noted from this …gure

that the critical value related to suction parameter  decreases from 24101 to 24077 as the

Biot number  varies from 01 to 05. On the other hand, one can observe that the existence

domain for dual solutions reduces. Fig. 911 is plotted to examine the heat transport rate

e¤ects against shrinking parameter  for varying values of  It is noteworthy to mention

that the critical value relating to shrinking parameter  depreciates from ¡117267 to ¡20400

as radiation parameter  goes on 11 to 25. It is evident from this …gure that the existence

range of dual solutions decreases. Fig. 912 illustrates the impact of  on  (). Clearly,

Brownian motion parameter rises the temperature distribution for both solutions. It is due to

the fact that the di¤erent nanoparticles have various values of  which upgrades the rate of

heat transfer. Fig. 913 describes the impacts of Biot number versus temperature pro…les.

Biot number releases the heat energy to the ‡ow, it helps to raise the temperature pro…les for

upper and lower branch solutions.

9.3.3 Concentration Boundary Layer

Fig. 914 illustrates the distributions of Sherwood number against the shrinking parameter

. We have sketched these graphs for varying values of  by keeping the rest of parameters

…xed. As expected, the dual solution exists in case of shrinking cylinder. One can notice that
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when increases, the Sherwood number slightly rises for the …rst solution. On the other hand,

an increasing behavior is observed for the second solution and results are more prominent in

this case. This …gure further indicates that the range of  for which the multiple solutions are

possible enhances by higher values of magnetic parameter . Fig 915 describes the impact of

1 on Sherwood number. The plotted curves are visualized against shrinking parameter while

all other parameters are …xed. We noticed higher Sherwood number for growing values of 1

for the upper branch solution whereas a dual behavior for lower branch solution is observed.

Moreover, at the expansion of velocity slip parameter, the magnitude of critical values jj is

greater in comparison with lower values of 1. Variation in the pro…les of Sherwood number

for shrinking cylinder   0 is displayed in Fig 916 for di¤erent  It is reported that the

rise in Biot number  diminishes the  for both solutions. The critical values for varying

values of  with respect to mass transfer parameter  are computed and depicted in this …gure.

The role of  against concentration pro…le has been discussed in Fig 917 Physically, Lewis

number describes the relation of thermal to mass di¤usivity, hence for large value of  thermal

boundary layer is higher than concentration boundary layer. The existence of multiple solutions

is presented in this graph. The in‡uence of  on nanoparticles concentration is presented in

Fig 918 It is con…rmed that an increment in  declines the nanoparticles concentration for

both cases of …rst and second solutions.
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Table 91: The values of 
00
(1) in case of 

00
(1) = 1 for varying 1 when  = ¤ =  =

 = 0

1 Wang and Ng [107] Ishak et al. [108] Abbas et al. [109] Present result

0 ¡11778 ¡117810 ¡11860 ¡11863

01 ¡10116 ¡ ¡1068 ¡101923

05 ¡06638 ¡ ¡0664 ¡0669442

10 ¡04739 ¡ ¡04743 ¡0478448

20 ¡03070 ¡ ¡03073 ¡0310147

50 ¡01532 ¡ ¡01534 ¡0155021

10 ¡00848 ¡ ¡00850 ¡0085875

20 ¡ ¡ ¡004536 ¡00457963

30 ¡ ¡ ¡00310 ¡00313121

50 ¡ ¡ ¡00210 ¡00192143
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Chapter 10

Conclusions and Forthcoming Work

The research performed in this thesis has contributed in a number of ways in the …eld of

non-Newtonian ‡uid mechanics. Particularly, this thesis has focused on the mathematical

modelling for the non-Newtonian Williamson ‡uid by incorporating the e¤ects of in…nite shear

rate viscosity. Additionally, the interest in this thesis was the transient behavior of Williamson

‡uid in various circumstances. This …nal chapter summarizes the results of this thesis and also

suggest directions for future work.

10.1 Summary of Results

The key outcomes of this research work are precised as follows:

² The non-dimensional velocity pro…les in addition to temperature pro…les were reduced

with an increment in the unsteadiness parameter.

² An increment in the Weissenberg number resulted in a decrease in ‡uid velocity; however,

quite the opposite behavior was true for temperature …eld.
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² On uplifting the viscosity ratio parameter, the momentum boundary-layer thickness was

raised while an inverse behavior was observed for thermal boundary-layer thickness.

² The ‡uid temperature and its related thermal boundary-layer thickness were uplifted with

higher temperature ratio and radiation parameters.

² The temperature …eld and thermal boundary-layer thickness were depressed by higher

Prandtl number while an opposite trend was true for growing a Biot number.

² The augmented magnetic parameter was depreciated the nano‡uid temperature as well

as corresponding boundary-layer thickness.

² The in‡uence of Brownian movement versus temperature and concentration pro…les was

opposite to each other.

² The ‡uid temperature along with thermal boundary-layer thickness were developing func-

tions of Biot number.

² The ‡uid temperature was substantially raised by higher thermal conductivity parameter.

² The temperature and nanoparticles concentration were uplifted with an increment in

thermophoretic parameter.

² The heat transport coe¢cient was noted to grow up with a higher Prandtl number.

² An increment in temperature di¤erence parameter reduced the nanoparticles concentra-

tion.

² The friction coe¢cient was signi…cantly raised by a higher Weissenberg number.
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² Due to the higher thermophoresis parameter, the rate of heat transfer was found to

decrease.

² It was observed that dual solutions occurred only for de…nite ranges of the shrinking

parameter, while the solution was unique for the stretching case.

² We observed a substantial decline in local Sherwood number with an increment in Biot

number.

² The nanoparticles concentration was reduced by increasing the values of Lewis number.

10.2 Suggestions for Future Work

This thesis is mainly concerned with the numerical solutions for transient ‡ow of Williamson

‡uid due to diverse stretched geometries. The consequences of our numerical computations

leave room for further development and expansion for the work that has just been carried out.

However, there are still few suggestions that will be pursued in the future research, which are

described as follows:

² This thesis presents the mathematical modelling for the 2D boundary layer ‡ows. How-

ever, it could be extended for unsteady 3D boundary layer ‡ow of Williamson ‡uid.

² We plan to extend this study for ‡uid ‡ow through complex geometries like, ‡ow through

annular pipe, ‡ow through curved surface, rotating disk, ‡ow in a nozzle, thin …lm ‡ow,

channel ‡ow, peristaltic ‡ow, ‡ow in cavity, ‡ow in air ducts and ‡ow through bundles of

circular …bres.
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² Regarding the numerical simulation, it could be interesting to study the Williamson ‡uid

‡ows via advanced numerical methods, namely: the …nite di¤erence method (FDM), …nite

volume method (FVM), …nite element method (FEM) and lattice Boltzmann method

(LBM).
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