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Preface 

Flow due to rotating surfaces has been extensively investigated by many researchers. It is 

because of their applications in aeronautical science and other industrial and engineering 

branches. Rotating disks have applications in marine, vehicle industries, rotating heat exchanger, 

gas turbine, semiconductor manufacturing, magnetic storage drives, electronic gadgets having 

rotational parts, disk reactor for production of bio-fluids and rotating heat exchanger. Heat 

transport phenomenon by a stretching disk is still being given remarkable consideration by the 

engineers and scientists. It is in view of their applications in power generating, computer storage 

devices, medical equipment, crystal growth processes, electronic devices and air cleaning 

machines. Viscous as well as non-Newtonian liquids like Williamson model, Jeffrey model and 

second grade etc., are viewed supportive in above mechanical, biological and computer sciences 

applications. Therefore, the Williamson, Jeffrey, second grade and viscous fluid models are 

adopted in the mathematical modeling of this thesis. Fluid flow is examined by a stretched 

rotating disk or between rotating disks. Main stress is given to the flow by a rotating surface. 

Boundary layer concept for stretched surface is implemented. Concept of second law of 

thermodynamics is also used for the calculation of entropy generation. This thesis is designed as: 

Chapter one contains the basic concept about flow by a rotating disk, nanofluid, ferrofluid, 

magnetohydrodynamics boundary layer, viscous and non-Newtonian fluids, homogeneous and 

heterogeneous reactions and activation energy. Conservation laws and tensor form for viscous 

fluid, Williamson, Jeffrey and second grade fluids are presented. Solution procedure is discussed. 



Chapter two reports the heat, mass and motile microorganism transfer rates in radiated flow of 

nanomaterial by a rotating disk. The flow is discussed over a variable thicked surface of disk. 

Concept of microorganisms suspended nanoparticles is stabilized via bio-convection in the 

presence of buoyancy forces and magnetic field. Homotopy analysis method is used for 

convergent solution. The data of this chapter is published in  Chinese Journal of Physics, 56 

(2018) 2404-2423. 

Chapter three reports the mixed convective fluid flow (with silver and copper nanomaterials) by 

a rotating stretched disk. Energy expression is mathematically modeled subject to radiative flux, 

viscous dissipation and Ohmic heating. The flow under consideration is of nonlinear stretching 

attributes of disk. Concept of thermodynamics second law is implemented for the entropy rate. 

Nonlinear formulation based upon conservation laws is made. Attention is particularly given to 

the entropy generation and convergence analysis. Research of this chapter is reported in Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, 539 (2018) 335-346. 

Chapter four is generalized version of chapter two in view of five different types of nanoparticles 

and partial slip. The concept of motile microorganisms is dropped in this chapter. Silver, Copper, 

Copper oxide, Aluminum oxide  and Titanium oxide are used as nanoparticles and water as 

continuous phase fluid. The data of this research is published in Physica B: Condensed Matter, 

534 (2018) 173-183. 

Chapter five presents the flow of magnetic nanofluid or ferrofluid between two coaxially rotating 

stretchable disks. Both disks have different rotating and stretching velocities. Water based fluid 

comprising magnetite  nanomaterials is addressed. Furthermore the velocity and 

temperature jump at the solid-liquid interface are accounted. Series solutions are developed using 



homotopy analysis method (HAM). The data of this research in printed in Journal of 

Magnetism and Magnetic Materials, 413 (2016) 39-48. 

Chapter six provides us the mathematical modeling of statistical declaration and probable error 

about skin friction coefficients and Nusselt numbers for flow between two coaxially rotating 

stretchable disks. Furthermore the homogeneous and heterogeneous reactions are considered. 

Thermo-physical characteristics of nanofluids are scrutinized through Silver and Copper 

nanoparticles. Main consideration is given to the statistical declaration and probable error for the 

coefficients of skin friction and Nusselt numbers. HAM is used for the series solution 

developments. The research of this chapter is reported in International Journal of Hydrogen 

Energy, 42 (2017) 29107-29120. 

Chapter seven deals with entropy optimization and heat transport in 3D unsteady flow between 

two coaxially stretched disks. Energy equation is developed via Ohmic heating, heat source/sink 

and dissipation. Thermo-diffusion effect is further considered. The flow is conducting for time 

dependent MHD fluid. Thermal and velocity slip conditions at both the surface are implemented. 

Flow problem is modeled by using Navier-Stokes equations with entropy generation. 

Transformations (Von-Karman) are utilized to convert the nonlinear flow expressions into 

ordinary ones and then tackled for series solutions employing HAM. The contents of this chapter 

are accepted for publication in International Journal of Numerical Methods for Heat and 

Fluid Flow (2019). 

In chapter eight, the contents of chapter seven is generalized in view of thermo-diffusion and 

diffusion-thermo effects, nonlinear radiative flux, porous medium and Joule heating. The data of 

this research is published in Journal of Molecular Liquid, 262 (2018) 261-274. 



Chapter nine is extension of chapter eight in view of Jeffrey fluid model, thermal stratification 

and homogeneous and heterogeneous reactions. The findings of this chapter are reported in 

Results in Physics, 7 (2017) 2557-2567. 

In chapter ten, the data of chapter nine is generalized by considering second grade fluid and heat 

generation/absorption. In this chapter radiative heat flux is dropped. The results of this chapter is 

published in Results in Physics, 8 (2018) 223-230. 

Chapter eleven communicates the flow of Williamson fluid between two-coaxially stretchable 

rotating disks with entropy generation. MHD Williamson liquid is considered. Through second 

law of thermodynamics the entropy rate is obtained. Viscous dissipation, radiative heat flux and 

heat source/sink effects are considered for the modeling of energy equation. Transformation 

procedure converts the nonlinear flow expressions into ordinary differential equations. HAM is 

used for the development of convergent series solutions. The results of this research is published 

in International Journal of Heat and Mass Transfer, 127 (2019) 933-942. 

Chapter twelve is the extension of chapter eleven for Soret and Dufour effects and stratification 

in flow between two rotating disks with entropy generation. The observations data of this chapter 

are reported for publication in Scientia Iranica, (2019). 

 

 

 

 

 



 



 

Nomenclature  

 0B   Applied magnetic field strength 

 ŵT , T̂   Surface and ambient temperatures 

 b , cW ,    chemotaxis constant, maximum speed of 

swimming cell and the disk thickness index 

 a   the thickness coefficient of disk which is very 

small 

 k   mean absorption coefficient 

 ˆ
wC , Ĉ   surface and ambient concentration 

 ˆ
wN , N̂   surface and ambient density of gyrotactic 

microorganism 

     Stefan-Boltzman constant 

 0R   feature radius 

 ND   diffusivity of microorganisms 

 BD , TD   Brownian and thermophoretic diffusion 

coefficient respectively 

 ˆ ˆ ˆ, ,u v w   velocity field 

 , ,r z   cylindrical coordinates 

 , ,H F G    self similar axial, radial, tangential velocities 

 ,,,  temperature, concentration and density profile, 



disk thickness coefficient 

     is a dimensionless constant 

 Pr   Prandtl number 

 Re   Reynolds number 

 M   magnetic parameter 

 A   scaled stretching parameters 

 r   the dimensionless radius 

 , ,w rNt q q   thermophoresis parameter, heat flux and radiative 

heat flux 

 ,Pe    bioconvection Peclet number, independent 

variable 

 ,R Nb   radiation parameter, Brownian motion parameter 

 , , , ,h f g        axial, radial, tangential velocities, temperature, 

concentration and density profile 

 Le  and Lb   Lewis and bioconvection Lewis number 

 , ,nf f    angular velocity,dynamic viscosity of nanofluid 

and base fluid 

 , ,nf f s    electrical conductivity of nanofluid, base fluid, 

nanoparticles respectively 

 nf , f   kinematic viscosity of nanofluid and base fluid 

 

 



  

 ( ) ,p nfc    ( )p fc   

and  ( )p pc   

heat capacity of nanofluid, base fluid, 

nanoparticles 

 , ,nf s f     density of nanofluid, base fluid, nanoparticles 

 ( )nf   volumetric thermal expansion coefficient of 

nanofluid 

 ( ) , ( )f s    volumetric thermal expansion coefficient of base 

fluid, nanoparticles 

 GN  , Be   entropy generation rate, Bejan number 

 Br   Brinkman number 

 , ,nf f sk k k   thermal conductivity of nanofluid, base fluid, 

nanoparticles 

 ,    mixed convection parameter,, nanoparticles 

volume fraction 

 Ec   Eckert number 

 1̂T   and  2̂T   lower and upper disk temperatures 

 1 2,a a   Stretching rate of lower and upper disk 

 1 2,    angular velocity lower and upper disk 

 1 2,A A   scaled stretching parameters of lower and upper 

disks 

    pressure parameter 



 1 2 3, , ,      independent variable, slip and thermal slip 

parameters 

 h   distance between disks 

 1  and 2 , 3  velocity slip coefficients, thermal slip coefficient 

 ck   and  sk   rate constants 

C  and D , c  and  

d   

chemical species, concentrations 

,Sc     Schmidt number, ratio of diffusion coefficient 

1k  and 2k   homogeneous and heterogeneous reactions 

parameters 

 1̂   solutal concentration of lower disk 

 2̂   solutal concentration of upper disk 

 p̂  , 1,    2   fluid pressure,temperature and concentration 

difference parameter 

( )TD  and A   thermophoretic diffusion coefficient and 

dimensionless parameter 

 L   diffusive parameter 

 K   chemical reaction coefficient 

( )CTD , ( )TCD   nanoparticles volume fraction,are Soret and 

Dufour diffusivities ,   

 SD   solutal diffusivity 

 



 

  

 c   unsteadiness parameter 

 0A   unsteadiness parameter 

 ˆ ,mT    ˆm   mean temperature, mean concentration 

 Ld   modified Soret parameter 

 Q   heat generation/absorption parameter 

 Nd   modified Dufour parameter 

 K    porosity rate 

 D   coefficient of molecular diffusion 

 TK   ratio of thermal diffusion 

 sC   concentration susceptibility 

 K   rate of chemical reaction 

 0W   suction/injection rate 

     porosity parameter 

 , ,Du Sr Q   Dufour/Soret number and heat 

generation/absorption parameter 

 , , sSc R W   Suction/injection parameter 

 1 2,     ratio of relaxation to retardation times ,   

retardation time 

    Deborah number 



 1
   material parameter of second grade fluid 

 We   Weissenberg number 

  mD   the effective diffusivity rate of mass 

  mT   mean temperature of fluid 

  E   activation energy 

  1E   dimensionless activation energy 

  1 ,S   2S   thermal and solutal stratification parameter, 
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Chapter 1

Background and basic laws

First chapter focuses on the literature review for rotating disk, nanofluid, ferrofluid, magneto-

hydrodynamics, non-Newtonian fluids, heterogeneous-homogeneous reactions, activation energy

and entropy generation and basic laws for nanofluid flow.

1.1 Background

The flow created by an infinite rotating disk is known as Von Karman [1], swirling flow named

after the scientist Theodore Von Karman who introduced the problem in 1921. Application of

this problem is found in centrifugal compressors. This is a steady state flow in which vortic-

ity produced at a solid surface is not allowed to diffuse far away by convection, some of the

other examples includes the Blasius boundary layer with suction, etc. This problem finds its

application in many fields, including rotating machines, filtering systems, heat transfer and

mass transfer applications, geophysical applications etc. Flow investigation by stretchable ro-

tating disk has significance in different mechanical and industrial engineering process like food

processing technology, medical equipment, spin coating, manufacturing, air cleaning machine,

centrifugal pumps, electric power generating system, at high melting point liquid metals pump-

ing, turbo-machinery and gas turbines. Cochran [2] utilized the Von-Karman transformations

to analyze the rotating flow. Stewartson [3] was pioneer in discussing the flow between two

disks. Mellor et al. [5] and Chapple and Stokes [4] studied flow between two disks. Arora and

Stokes [6] considered fluid flow and heat transport between two rotating disks. Kumar et al.
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[7] examined liquid flow between two porous solid rotating disks. Hayat et al. [8] investigated

effect of thermally stratification on fluid flow between rotating stretchable disks. Convective

radiative flow of carbon nanotube is scrutinized by Imtiaz et al. [9]. Investigation of entropy

generation in MHD radiative flow with Ohmic heating and dissipation is done by Hayat et al

[10]. Some significant attempts for rotating disk are presented in refs. [11-15].

Nanofluid is termed as a material having nano sized particles in the traditional liquid. These

particles are named as nanoparticles. Because of its variety of applications many scientists and

engineers are working on this topic. Pioneering work on nanofluid was done by Choi [16]. Such

materials of fluids are basically the combination of nanoparticles in a suspension of base fluid.

Aforesaid small particles are usually made up of oxides, carbon nanotubes, carbides and met-

als. Frequently used base fluids are oil, water and glycol. Nanomaterials has some properties

which helps it in several applications like fuel chambers, mining and boiler gas outlet, local

refrigerator, caloric controlling, in crushing process, cooling engine automobile, hybrid electric

engines, pharmacological methods, temperature control and microelectronics. These fluids have

high thermal conductivity heat transport capability when compared with base fluid. They have

special characteristics that make them suitable for ultrasonic applications. Additional influ-

ence includes shear transformation of an instant compression ray and this property becomes

more operative when concentration enhances. Information of rheological implementation of

nanofluids is said to be more influential in view of their stability for convection applications.

In an alternative way, model containing two components are also taken. This phenomenon

attained much attention of the scientists due to such prospective applications. Another term

used to describe the suspension of nano sized particles is nanolubricants. Mainly oil is used as a

base fluid, they are used for engine and machine lubricants. It used to enhance the property of

anti-wear of base oils. The important nanofluids are ferrofluid which are the suspension of mag-

netic nanoparticles. Magnetic nanoparticles have both the magnetic and liquid characteristics.

Nanofluids behave like normal fluids in the absence of magnetic field. Ferrofluids are produced

by mixture of non-conducting fluids with colloidal suspension of magnetic particles. Magneto

nanofluids help the particles to move through the blood towards the tumor as nanofluids have

adhesion properties with tumor cells. In cancer therapy these particles have more absorption

power than micro particles. Usage of magnetic nanofluids includes hyperthermia, drug deliv-
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ery, magnetic cell separation, contrast augmentation in magnetic resonance imaging etc. Some

recent literature for nanofluid flow is presented in Refs. [17-30].

Non-Newtonian fluids have extensive applications in technological and industrial sectors.

Formulation of equations for these types of fluids is complex in comparison to the usual Naviers

Stokes equation. It is due to extra rheological parameters in the constitutive relations of such

materials. Applications related to geophysics, biological sciences and chemical processes involve

non-Newtonian materials. Materials such as foams, pastes, ketchup, lubricant, certain oils,

sugar solution, apple sauce, colloidal and suspension solutions, drilling muds, clay coating and

soaps are the non-Newtonian fluids. Tangent hyperbolic nanofluid radiative flow is presented

by Hayat et al. [31]. Turkyilmazoglu [32] worked on micropolar fluid bounded due to heated

sheet. Effect of non-Fourier heat flux on viscoelastic material (Jeffrey fluid) flow is presented

by Hayat et al. [33]. Rahman et al. [34] examined effect of slip on flow of Jeffrey nanofluid

through tapered artery with mild stenosis. Some more recent works on non-Newtonian fluids

can be seen through refs. [35-45].

The minimum amount of energy which is necessary for the atoms or molecules in any

chemical reaction through which reaction initiate is known as activation energy. This concept

was initiated by Svante Arrhenius (Swedish scientist) in 1889. Symbol for activation energy

is  in a chemical reaction and its unit is kcal/mol. The activation energy of some elements

and compounds which react with one another is zero. The threshold value of activation energy

is required for the atoms or molecules to react. It is measured as barrier between two energy

states. To start a reaction processes the threshold of barrier must be crossed. For continuation

of chemical reaction there is some certain range of molecules and atoms which are required

having translational energy which should be greater than or equal to activation energy. Maxwell

distribution is applied, and the molecules which have energy greater than the energy of barrier

will cross the threshold. Therefore the highest energy of barrier is the activation energy. The

effect of tunneling is ignored in this case and the barrier’s shape as well which shows the particles

which have energy greater than activation energy. However the number of particles with enough

energy that start the reaction totally depends on the energy, which is why a concept of pre-

exponential factor function in included of the temperature. This concept is usually utilized in

calculating rates and estimating cross sections. Some more investigations on this regards can
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be witnessed from refs. [46-55].

Several chemical reacting systems consist of heterogeneous-homogeneous reactions. Except

in the presence of catalyst some of the reactions does not work or may proceed very slow. Corre-

lation between homogeneous-heterogeneous reactions is very complex. Ceramics, fog dispersion,

food processing, crops damage via freezing, fog formation and polymer production, hydromet-

allurgical industry are applications of chemical reaction. Various scientists now are engaged in

the discussion of flows with homogeneous-heterogeneous reactions via different aspects [56-70].

Surface with varying thickness has many applications especially in marine, architectural,

civil, aeronautical processes and in mechanical engineering. By the help of variable thickness

of sheet the structural material becomes light and enhance the usage of material. Fluid flow

by variable thickness of sheet with non-Fourier heat flux and variable thermal conductivity is

presented by Hayat et al. [71]. Fluid flow of non-Newtonian liquid near stagnation point with

variable thicked surface is analyzed by Ramesh et al. [72]. Ostwald-de Waele fluid flow by

a rotating disk with variable thickness and decreasing index is illustrated by Xun et al. [73].

Effect of stagnation point flow and carbon nanotubes with variable thicked surface is explored

by Hayat et al. [74]. Fang et al. [75] worked on flow over a variable thicked stretching sheet.

At present the method of thermodynamic optimization of real devices and entropy genera-

tion minimization (EGM) are rapidly growing. Principle of thermodynamics method also called

"thermodynamic design", "thermodynamic optimization" and "finite time thermodynamics".

Basic rules of thermodynamics such as fluid mechanics and heat transfer are merged through

EGM. These type of principles are applied by EGM on schemes that are made by limited time

constraint, these processes are restricted by irreversibilities of mass, fluid flow and heat transfer.

Recent progress in this constraint includes heat exchanger design, storage optimization by melt-

ing and solidification, the various functions of refrigerators, power from hot-dry-rock deposits

and power plants having the heat exchangers that are fouled. Newton’s second law of motion

and laws of thermodynamics are the important principles on the basis of which heat transfer and

flow studies are based. First law of thermodynamics gives basic knowledge about energy of sys-

tem. Second law of thermodynamics shows that entire actuality developments are irreversible

and it is a significant apparatus to study the generation of entropy to assess the irreversibility in

the system. Entropy generation optimization governs the irreversibility associated to the natural
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developments for example a counter current flow of gas and gas in heat exchange. At present

the entropy generation optimization is a topic of different interests in few territories similar to

rotating disk reactors, porous media, propulsion ducts ,electromagnetic materials processing,

turbo machinery, electric cooling, heat transferring devices and combustions. Few current uti-

lizations of entropy analysis are solar heat exchangers in pseudo-optimization process, fuel rods

cooling nuclear industry, slurry systems, electromagnetic propulsion used in nuclear industry,

cooling of modern electronic systems, loss of heat from steam pipes and solar energy collectors

etc. The investigation of entropy generation optimization with MHD in which the flow study

is done due to rotating disk has gained significant consideration due to consistently developing

applications i.e., accelerators, power plant, micropumps, flow meters, filtration , MHD genera-

tors, nuclear reactors, and geothermal systems etc. Initially Bejan [76] showed how the entropy

production rate can be decreased in simple components for heat transport like heat exchanges

with prescribed heat flux distribution, counter flow gas to gas heat exchangers and sensible

heat units for energy storage. Ijaz et al. [77] studied entropy generation in flow of Sisko liquid

subject to heat generation/absorption. Flow is investigated over a stretched surface. Nonlinear

flow expressions are solved for series solutions via homotopy method. The obtained outcomes

predict that velocity field diminishes for higher material variable while thermal field increases

for larger radiation parameter and Biot number. Vatanmakan et al. [78] explored steam flow

in turbine blades with entropy generation and volumetric heating. Numerical simulation is

conducted through two phase Eulerian description for steam flow. Khan et al. [79] worked on

chemically reactive flow of Casson liquid with activation energy and entropy generation. Gul et

al. [80] studied Poiseulle flow of nanofluid with entropy generation. Xie and Jian [81] discussed

MHD two-layer electroosmotic flow with entropy generation through micro-parallel channels.

Ijaz et al. [82] scrutinized forced convection flow of viscous nanofluid for entropy generation.

Huminic and Huminic [83] analyzed heat transfer performances of hybrid nanomaterials with

entropy generation in a flattened tube. Farooq et al. [84] examined radiative flow of carbon

nanotubes with mixed convection. Kiyasatfar et al. [85] explored entropy production in flow of

power law fluid considering slip conditions.
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1.2 Concept of entropy

1.2.1 Definition

Randomness in the system or molecular disorder is called entropy.

1.2.2 Examples of entropy

1. Fig. 1 shows that for a substance of high temperature the entropy enhances (see link

https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chemistry_(Averill_and_Eldredge

Fig. 1.1: Entropy increases via temperature.

2. Fig. 2 tells that there is large entropy for larger molecules when compared with smaller

molecules (see link https://www.google.com/url?sa=i&url=http%3A%2F%2Fwww.chemhume.co.uk%2FA2CH

htm&psig=AOvVaw1X5LbZWSVGyWh9W-OVA8T-&ust=1574487855725000&source=images&cd=vfe&v

Fig. 1.2: Entropy via amount of molecules.
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3. Solids have lesser entropy than gas and liquid (See Fig. 1.3 and link https://www.google.com/url?sa=i&ur

=1574487259982000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPCer8WO_eUCFQAAAAAdAAA

Fig. 1.3: Entropy for solid, gas and liquid.

1.2.3 Types of processes

Reversible process

A process in which surrounding or system can take its original position from the final form

without changing the properties in thermodynamics of the universe is known as reversible

process (see Fig. 1.4).

Fig. 1.4: Reversible processes.

Irreversible process

A process that is not reversible is irreversible. Factors causes process irreversible are friction,

mixing of two gases, plastic deformation and chemical reaction.
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1.2.4 Proof that entropy always increases

In all natural process the entropy increase so entropy cannot conserved. Suppose a body at

temperature 1 radiates always a small heat . A cold body B at temperature 2 receives

that heat. If  be so small that 1 and 2 are not altered then entropy of A decrease by −
1

and entropy of B increased by 
2
. Further

 = 2 − 1 =


2
− 

1
 (1.1)

1  2 So
1

1

1

2
 (1.2)

 = 

µ
1

2
− 1

1

¶
 (1.3)

  0 (1.4)

1.3 Fundamental laws

1.3.1 Mass conservation law

Equation of continuity without any source or sink is expressed as

∇ · (V) + 


= 0 (1.5)

Here   and V are density, time and velocity. When liquid is considered incompressible then

Eq. (1.5) becomes

∇ ·V = 0 (1.6)

1.3.2 Momentum conservation law

Equation of motion is


V


=∇ · τ + b (1.7)

and for two phase nanofluid model we have


V


= −∇ · τ + b (1.8)
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In above expressions right hand side depicts the surface and body forces and left hand side

denotes an inertial force. Here mathematical expression for effective nanofluid density  is

 =  (1− ) +  (1.9)

Viscous fluid

For viscous fluid model the Cauchy stress tensor  has the form

τ = −̂I+ A1 (1.10)

here ̂  A1 and  are pressure, identity tensor, body force, first Rivlin-Erickson tensor.

Mathematically, A1 is defined as

A1 =∇V+(∇V)  (1.11)

where

∇V =

⎡⎢⎢⎢⎣
̂

− ̂


+ 1


̂


̂


̂

− ̂


+ 1


̂


̂


̂


1

̂


̂


⎤⎥⎥⎥⎦ (1.12)

Here   and  are nanoparticles volume fraction, subscripts for base fluid and nanoparticles

respectively. Further incompressible character of liquid is considered.

Second grade fluid model

The Cauchy stress tensor for second grade is expressed as:

 = −̂I+ A1 + ∗1A2 + ∗2A
2
1 (1.13)
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where ∗1 and ∗2 are two material constants. Second Rilvin-Erickson tensors is

A2 =
A1


+ (∇V)A1 +A1 (∇V)  (1.14)

For thermodynamics consistency, Clausius—Duhem inequality we have:

 º 0 ∗1 º 0 ∗1 + ∗2 = 0 (1.15)

Jeffrey fluid model

The Cauchy stress tensor for Jeffrey fluid model is expressed as:

 = −̂I+ 

1 + ∗1

µ
A1 + ∗2

A1



¶
 (1.16)

where ∗2 and ∗1 are retardation time and ratio of relaxation to retardation times respectively.

Williamson fluid model

For Williamson fluid model  is given by

 = −̂I+
h
∞ + (0 − ∞) (1− Γ̇)−1

i
̇ (1.17)

in which Γ 0 ∞ denote time constant, zero and infinite shear rate viscosity respectively and

̇ is expressed as

̇ =

r
1

2
(1)2 (1.18)

1.3.3 Conservation law of energy

Energy equation for nanofluid (Buongiorno model) can be written as

()
̂


= −∇q̃+ ∇ ·

−→
j  (1.19)

Here ̂    
−→
j  denote fluid temperature, specific heat, nanoparticles specific enthalpy,

heat flux and mass flux for nanoparticles diffusion respectively. Mass flux for diffusion of
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nanoparticles
−→
j  and heat flux  are defined as

−→
j  = −∇̂ − 

∇̂
̂∞

 (1.20)

q̃ = −∇̂ + 
−→
j  (1.21)

in which     are nanoparticles density, Brownian diffusion coefficient, thermal con-

ductivity and thermophoretic force respectively. Eq. (1.18) becomes


̂


= ∇2̂ + 

"

∇̂ ·∇̂

̂∞
+∇̂ ·∇̂

#
 (1.22)

which is the heat equation of nanofluid in Buongiorno model of nanofluid.

Energy equation for two phase model of nanofluid is written as

()
̂


= ∇2̂  (1.23)

where ()   and  highlight effective heat capacity, dynamic viscosity and effective

thermal conductivity. Note that  stands for nanofluid. These quantities are defined as

() = () (1− ) + () (1.24)

 =


(1− )25
 (1.25)




=

 + 2 − 2( − )

 + 2 + ( − )
 (1.26)

1.3.4 Conservation law of concentration

The concentration equation for nanofluids is

̂


+V ·∇̂ = − 1


∇ ·−→j  (1.27)
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After using Eq. (1.19), we get

̂


+V∇̂ = ∇2̂ +

∇2̂
̂∞

 (1.28)

1.4 Solution procedure

Governing equations for flow are mostly highly nonlinear. It is very complicated to find the

exact solution for these equations. There are numerous techniques which are used to solve

the nonlinear equations such as Adomian decomposition method, perturbation and homotopy

perturbation methods etc. Note that there are some limitations in these methods that are

dependent on large or small parameters in the equations and convergence. In this thesis the flow

problems will be solved by using homotopy analysis method [86−100] It has many advantages
such as it is independent of small/large parameters. We can adjust or control the convergence

of the problem by setting auxiliary parameter. We can freely choose the initial guesses and

base functions for the problem.
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Chapter 2

Rotating disk flow of nanomaterial

with gyrotactic microorganism and

variable thickness

Abstract: Here heat, concentration and motile microorganism transfer rates in magnetohy-

drodynamic (MHD) radiative flow of nanofluid are investigated. Variable thicked rotating disk

is examined. Concept of microorganisms suspended nanoparticles is stabilized through biocon-

vection. This concept is induced by combined effects of magnetic field and buoyancy forces.

Nonlinear differential systems are solved for series solutions. Velocity, temperature, concentra-

tion and motile density behaviors for different parameters are analyzed. Skin friction coefficient

and Nusselt number are numerically discussed. Temperature and concentration have opposite

behavior for larger Brownian motion parameter. Motile density reduces for bioconvection Peclet

number and bioconvection Lewis number.

Keywords: Nanofluid; Rotating disk; Variable thickness; Thermal radiation; Motile mi-

croorganism

2.1 Formulation

MHD flow of nanomaterial past a stretchable rotating disk of variable thickness is considered.

Applied magnetic field in −direction has strength 0. Brownian motion and thermophoresis

19



are analyzed. Motile gyrotactic microorganism in nanofluid is accounted. Furthermore thermal

radiation is considered. Disk is taken at  = ∗
³


0
+ 1
´−

. Disk is stretched with rate 1

and rotate subject to angular velocity Ω1 ̂ and ̂∞ are surface and ambient temperatures

respectively (see Fig. 1). By using the above assumptions the problems become

Fig. 2.1: Schematic diagram.

̂


+

̂


+

̂


= 0 (2.1)

̂
̂


− ̂2


+ ̂

̂


= 

2̂

2
− 


20 ̂ (2.2)

̂
̂


+

̂̂


+ ̂

̂


= 

2̂

2
− 


20 ̂ (2.3)

()

Ã
̂
̂


+ ̂

̂



!
=

Ã
 +

16∗̂ 3∞
3∗

!
2̂

2
+ ()

"


∞

µ




¶2
+

µ








¶#


(2.4)Ã
̂
̂


+ ̂

̂



!
= 

2̂

2
+



∞
2̂

2
 (2.5)

Ã
̂
̂


+ ̂

̂



!
= − 

̂ − ̂∞

"




Ã
̂
̂



!#
+

2̂

2
 (2.6)

̂ = 1 ̂ = Ω1 ̂ = 0 ̂ = ̂ ̂ = ̂ ̂ = ̂ at  = ∗
³


0
+ 1
´−



̂ = 0 ̂ = 0 ̂ = 0 ̂ = ̂∞ ̂ → ̂∞ ̂ → ̂∞ at  →∞

⎫⎬⎭  (2.7)
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where  electrical conductivity,  kinematic viscosity,  density, () and () are base

fluid specific heat and the effective heat capacity of the nanoparticles, ̂ and ̂∞ the surface

and ambient concentrations, ̂ and ̂∞ the surface and ambient densities of gyrotactic mi-

croorganism, ∗ Stefan-Boltzman constant, 0 feature radius,  thermal conductivity, ∗ mean

absorption coefficient, ∗ the small thickness coefficient of disk,  and  the Brownian dif-

fusion coefficient and thermophoretic diffusion coefficient respectively,  , ,  and  the

diffusivity of microorganisms, chemotaxis constant, maximum speed of swimming cell and the

disk thickness index. Letting

̂ = ∗0Ω̃ () ̂ = ∗0Ω̃() ̂ = 0Ω(1 + ∗)−̃()

̃ = ̂−̂∞
̂−̂∞  Φ̃ = ̂−̂∞

̂−̂∞  χ̃ = ̂−̂∞
̂−̂∞   = 

0
(1 + ∗) 

⎫⎬⎭ (2.8)

the resulting problems are reduced in the form

2̃ + ̃ 0 + ∗̃ 0 = 0 (2.9)

̃ 00
1

Re
(1 + ∗)2 − ̃ 2 + ̃2 − ̃̃ 0 − ̃ ̃ 0∗ −̃ = 0 (2.10)

̃00
1

Re
(1 + ∗)2 − 2̃ ̃− ̃̃0 − ̃ ̃0∗ −̃ = 0 (2.11)

1

Pr
(1 +)

1

Re
(1 + ∗)2 ̃

00 − ̃ ̃
0
∗ − ̃̃

0
+
1

Re
(1 + ∗)2

³
̃

0
Φ̃0 +̃

02´
= 0 (2.12)

1

Pr

1



1

Re
(1 + ∗)2Φ̃00 − ̃Φ̃0 − ∗̃ Φ̃0 +





1



1

Pr

1

Re
(1 + ∗)2 ̃

00
= 0 (2.13)

1



1

Re
(1 + ∗)2χ̃00 − ̃χ̃0 − ∗̃ χ̃0 − 



1

Re
(1 + ∗)2

³
Φ̃0χ̃0 + χ̃Φ̃00

´
= 0 (2.14)

̃() = 0 ̃ () = 1, ̃() = 1 ̃() = 1 Φ̃() = 1 χ̃() = 1

̃ (∞) = 0 ̃(∞) = 0 ̃(∞) = 0 Φ̃(∞) = 0 χ̃(∞) = 0

⎫⎬⎭ (2.15)
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where

∗ =
∗

0 + ∗
 Pr =

()


 Re =

Ω1
2
0


 1 =

1

Ω1
  =

16∗̂ 3∞
3∗

  =
20
Ω1



 =
() (̂ − ̂∞)

()∞
  =

()(̂ − ̂∞)
()

  =


()


 =



  =




  =

∗

0
 (2.16)

where ∗ is a dimensionless constant, Pr Prandtl number, Re Reynolds number,  magnetic

parameter, 1 scaled stretching parameters, 
∗ the dimensionless radius,  / thermophoresis

parameter,  bioconvection Peclet number,  radiation parameter,  Brownian motion

variable,  and  respectively the Lewis and bioconvection Lewis number and  disk thickness

coefficient.

Considering

̃ = ̃( − ) = ̃() ̃ = ̃( − ) = ̃()

̃ = ̃( − ) = ̃() ̃ = ̃( − ) = ̃()

̃ = ̃( − ) = ̃() χ̃ = ̃( − ) = ̃()

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.17)

expressions (2.9− 215) are reduced as follows:

2̃ + ̃0 + ( + )∗̃ 0 = 0 (2.18)

̃ 00
1

Re
(1 + ∗)2 − ̃2 + ̃2 − ̃̃ 0 − ̃ ̃ 0( + )∗ −̃ = 0 (2.19)

̃00
1

Re
(1 + ∗)2 − 2̃ ̃ − ̃̃0 − ̃ ̃0( + )∗ −̃ = 0 (2.20)

1

Pr
(1 +)

1

Re
(1 + ∗)2 ̃

00 − ̃ ̃
0
( + )∗ − ̃̃

0
+
1

Re
(1 + ∗)2

³
̃

0
̃
0
+̃

02´
= 0 (2.21)

1

Pr

1



1

Re
(1 + ∗)2 ̃

00 − ̃̃
0 − ∗̃ ̃

0
+





1



1

Pr

1

Re
(1 + ∗)2 ̃

00
= 0 (2.22)

1

Pr

1


̃00 − ̃̃0 − ∗̃ ̃0 − 

1

Re
(1 + ∗)2

³
̃
0
̃0 + ̃̃

00´
= 0 (2.23)

̃(0) = 0 ̃(0) = 1, ̃(0) = 1 ̃(∞) = 0 ̃(0) = 1 ̃(0) = 1 ̃(0) = 1
̃(∞) = 0 ̃(∞) = 0 ̃(∞) = 0 ̃(∞) = 0

⎫⎬⎭ (2.24)
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Shear stresses (radial and tangential) are mathematically defined as

  =  ̂


¯̄
=0

=
∗Ω10(1+∗) ̃ 0(0)

0


  =  ̂


¯̄
=0

=
∗Ω10(1+∗) ̃0(0)

0


⎫⎬⎭ (2.25)

and

 =

q
2 + 2 (2.26)

The mathematical form of () is

Re =
|=0
(Ω1)2

=
1

∗
(1 + ∗) [(̃ 0(0))2 + (̃0(0))2]12 (2.27)

The Nusselt number is

 =
0

(̂ − ̂∞)

¯̄̄̄
¯
=0

 (2.28)

with heat flux  as

|=0 = − 
̂


+ 

¯̄̄̄
¯
=0

= −(̂ − ̂∞) (1 +) (1 + ∗) ̃
0
(0) (2.29)

Final expression of Nusselt number is

Re
1

+1 = − (1 +) (1 + ∗) ̃
0
(0) (2.30)

2.2 Methodology

Initial approximations and linear operators are

̃0() = 0

̃0() = 1
−

̃0() = −

̃0() = −

̃0() = −

̃0() = −

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.31)
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L̃ = ̃0 L̃ = ̃ 00 − ̃  L̃ = ̃00 − ̃0 L̃ = ̃
00 − ̃ L̃ = ̃

00 − ̃ L̃ = ̃00 − ̃ (2.32)

with

L̃[̄1] = 0
L̃
£
̄2

 + ̄3
−¤ = 0

L̃
£
̄4

 + ̄5
−¤ = 0

L
̃

£
̄6

 + ̄7
−¤ = 0

L̃
£
̄8

 + ̄9
−¤ = 0

L̃
£
̄10

 + ̄11
−¤ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.33)

where ̄ ( = 1− 11) are the constants.
Letting  ∈ [0 1] denotes the embedding parameter and

³
~̃ ~̃  ~̃ ~̃ ~̃ and ~̃

´
the aux-

iliary parameters.

2.2.1 Zeroth-order formulations

~̃N̃[( )  ( )] = (1− )L̃
h
( )− ̃0()

i
 (2.34)

~
̃
N
̃
[ ( )( ) ( )] = (1− )L

̃

h
 ( )− ̃0()

i
 (2.35)

~̃N̃[( )  ( )( )] = (1− )L̃ [( )− ̃0()]  (2.36)

~
̃
N
̃
[( )  ( )( )Φ( )] = (1− )L

̃

h
( )− ̃0()

i
 (2.37)

~
̃
N
̃
[Φ( )  ( )( ) ( )] = (1− )L

̃

h
Φ( )− ̃0()

i
 (2.38)

~̃N̃[( )Φ( )  ( )( ) ( )] = (1− )L̃ [Φ( )− ̃0()]  (2.39)

(0 ) = 0  (0 ) = 1,  (∞ ) = 0 (0 ) = 1 (∞ ) = 0 (0 ) = 1

(∞ ) = 0 Φ(0 ) = 1 Φ(∞ ) = 0 (0 ) = 1 (∞ ) = 0 (2.40)

where N̃ N  N̃ N N̃ and N̃ are

N̃[( )  ( )] = 2 +
( )


+ ( + )∗

 ( )


 (2.41)
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N̃ [ ( )( ) ( )] =
2 ( )

2
1

Re
(1 + ∗)2 −  2 +2

− ( )


− 

 ( )


( + )∗ − (2.42)

N̃[( )  ( )( )] =
2( )

2
1

Re
(1 + ∗)2 − 2

−( )


− 

( )


( + )∗ − (2.43)

N̃[( )  ( )( )Φ( )] =
1

Pr
(1 +)

1

Re
(1 + ∗)2

2( )

2
− 

( )


( + )∗ −

( )



+
1

Re
(1 + ∗)2

Ã


( )



Φ( )


+

µ
( )



¶2!
 (2.44)

N
̃
[Φ( )  ( )( ) ( )] =

1

Pr

1



1

Re
(1 + ∗)2

2Φ( )

2
−

Φ( )



−∗ Φ( )


+





1



1

Pr

1

Re
(1 + ∗)2

2( )

2
(2.45)

N̃[( )Φ( )  ( )( ) ( )] =
1

Pr

1



2( )

2
− 

( )


− ∗

( )



− 1
Re
(1 + ∗)2

µ
Φ( )



( )


+ 

2Φ( )

2

¶
(2.46)

2.2.2 m order problems

We can write

~
̃
R

̃
() = L

̃

h
̃()− ̆̃−1()

i


~
̃
R
̃ 
() = L

̃

h
̃()− ̆̃−1()

i


~̃R̃() = L̃ [̃()− ̆̃−1()] 

~
̃
R
̃
() = L

̃

h
̃()− ̆̃−1()

i


~̃R̃() = L̃
h
̃()− ̆̃−1()

i


~̃R̃() = L̃
£
̃()− ̆̃−1()

¤


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.47)
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̃(0 ) = ̃(0 ) = ̃(∞ ) = ̃(0 ) = ̃(∞ ) = ̃(0 ) = 0

̃(∞ ) = ̃(0 ) = ̃(∞ ) = ̃(0 ) = ̃(∞ ) = 0 (2.48)

where R̃ ()  R̃  ()  R̃ ()  R̃ ()  R̃ () and R̃ () are

R̃ () = 2̃−1 + ̃0−1 + ( + )̃ 0−1 (2.49)

R̃  () = ̃ 00−1
1

Re
(1 + ∗)2 −

−1X
=0

̃−1−̃ +
−1X
=0

̃−1−̃ −
−1X
=0

̃−1−̃ 0

−
−1X
=0

̃−1−̃ 0( + )∗ −
−1X
=0

̃−1 (2.50)

R̃ () = ̃00−1
1

Re
(1+∗)2−2

−1X
=0

̃−1−̃−
−1X
=0

̃−1−̃0−
−1X
=0

̃−1−̃0(+)
∗−̃−1

(2.51)

R̃ () =
1

Pr
(1 +)

1

Re
(1 + ∗)2 ̃

00
−1 −

−1X
=0

̃−1̃
0
−1( + )∗ −

−1X
=0

̃−1̃
0
−1

+
1

Re
(1 + ∗)2

Ã


−1X
=0

̃
0
−1̃

0
−1 +

−1X
=0

̃
0
−1̃

0
−1

!
 (2.52)

R
̃

() =
1

Pr

1



1

Re
(1+∗)2 ̃

00
−1−

−1X
=0

̃−1̃
0
−1−∗

−1X
=0

̃−1̃
0
−1+





1



1

Pr

1

Re
(1+∗)2 ̃

00
−1

(2.53)

R̃ () =
1

Pr

1


̃00−1 −

−1X
=0

̃−1̃0−1 − ∗
−1X
=0

̃−1̃0−1

− 1
Re
(1 + ∗)2

Ã
−1X
=0

̃
0
−1̃

0
−1 +

−1X
=0

̃−1̃
00
−1

!
 (2.54)

̆=

⎧⎨⎩ 0  ≤ 1
1   1

 (2.55)
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The solutions (̃() ̃() ̃() ̃() ̃() ̃()) comprising the special solutions

(̃∗() ̃∗() ̃∗() ̃
∗
() ̃

∗
() ̃

∗
()) are

̃() = ̃∗() + ̄1

̃() = ̃∗() + ̄2
 + ̄3

−

̃() = ̃∗() + ̄4
 + ̄5

−

̃() = ̃
∗
() + ̄6

 + ̄7
−

̃() = ̃
∗
() + ̄8

 + ̄9
−

̃() = ̃∗() + ̄10
 + ̄11

−

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.56)

where value of constants ̄ ( = 1− 11) by using boundary conditions are

̄3 = −̃∗(0) ̄5 = −̃∗(0) ̄7 = −̃
∗
(0) ̄9 = −̃

∗
() ̄11 = −̃∗()

̄1 = ̄2 = ̄4 = ̄6 = ̄8 = ̄10 = 0 (2.57)

2.3 Convergence analysis

The series solutions convergence is accelerated by ~̃ ~̃  ~̃ ~̃ ~̃ and ~̃ For appropriate

ranges of these variables the ~−curves are drawn at 13th order of approximations. It is apparent
from Figs. (2.2-2.4) that suitable ranges of parameters are −12 ≤ ~

̃
≤ −03 −12 ≤ ~

̃
≤

−02 −1 ≤ ~̃ ≤ −05 −12 ≤ ~
̃
≤ −09 −11 ≤ ~

̃
≤ −04 and −1 ≤ ~̃ ≤ −05

Table 1 is constructed to analyze the convergent series solutions. It is seen that 21st order of

approximation is enough for convergent homotopy solutions. Table 2 gives averaged squared

residual errors by optimal values of ~
̃
 ~

̃
 ~̃ ~̃ ~̃ and ~̃ Table 3 is constructed for validation

of our problem by giving comparison to numerical limiting solution by Xun et al. [21].

To obtain the values of ~̃ ~̃  ~̃ ~̃ ~̃ and ~̃, we have utilized concept of minimization

proposed by Liao [39] by characterizing the average squared residual errors.

̃ =
1

◦ + 1

◦X
=0

⎡⎣N
̃

Ã
X
=0

̃ () 

X
=0

̃ ()

!
=

⎤⎦2  (2.58)
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̃ =
1

◦ + 1

◦X
=0

⎡⎣N̃

Ã
X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ ()

!
=

⎤⎦2  (2.59)

̃ =
1

◦ + 1

◦X
=0

⎡⎣N̃

Ã
X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ ()

!
=

⎤⎦2  (2.60)

̃ =
1

◦ + 1

◦X
=0

⎡⎣N̃

Ã
X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ ()

!
=

⎤⎦2  (2.61)

̃ =
1

◦ + 1

◦X
=0

⎡⎣N̃

Ã
X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ ()

!
=

⎤⎦2  (2.62)

̃ =
1

◦ + 1

◦X
=0

⎡⎣N̃

Ã
X
=0

̃()

X
=0

̃ () 

X
=0

̃ () 

X
=0

̃ ()

!
=

⎤⎦2  (2.63)

Following Liao [31]

 = ̃ + ̃ + ̃ + ̃ + ̃ + ̃ (2.64)

where the total squared residual error is denoted by ,  = 05 and ◦ = 20 Total av-

erage squared residual error is minimized by using MATHEMATICA BVPh2.0. At 2 or-

der of approximations, the values of convergence control parameter are ̃ = −0525242

̃
= −0438242 ̃ = −0528742 ̃ = −118546, ̃ = −052956 and ̃ = −054956 and

 = 05 × 10−3. Table 2.1 is arranged for the individual average squared residual error at
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 = 2. Here we noticed that the  for higher order approximations is decreased.

Fig. 2.2: ~−curve for ̃00(0) and ̃ 0(0)

Fig. 2.3: ~−curve for ̃0(0) and ̃
0
(0)
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Fig. 2.4: ~−curve for ̃0(0) and ̃0(0)

Fig. 2.5: Total residue error.

Table 2.1: Convergence table for solutions when  = 1 ∗ = 03  = 12 Re = 1 ∗ = 02

 = 07 1 = 03 Pr = 19,  = 01  = 1  = 1  = 01  = 1  = 01  = 07
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Order of approximations −̃00(0) −̃ 0(0) −̃0(0) −̃0(0) −̃0(0) −̃0(0)
1 0.3444 0.5151 0.8488 0.3064 0.6760 0.7718

10 0.5964 0.4868 0.9367 0.1559 0.4429 0.5049

16 0.5965 0.4868 0.9352 0.1461 0.4448 0.5093

18 0.5966 0.4868 0.9353 0.1453 0.4451 0.5103

21 0.5966 0.4868 0.9353 0.1446 0.4455 0.5101

22 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101

24 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101

30 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101

40 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101

50 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101

Table 2.2: Individual averaged squared residual errors.

 ̃ 
̃
 

̃
 ̃ 

̃
 

̃


2 0.000045231 0.000070508 0.00548584 0.00365332 0.00091408 0.00254444

4 0.000012545 0.0000120884 0.00078887 0.000819915 0.000366413 0.00065585

8 3.25888×10−7 8.87321×10−7 4.25545×10−5 0.000127616 0.000181346 5.35894×10−6

10 1.23585×10−7 3.49176×10−7 2.02545×10−5 0.0000622279 0.000142131 2.25655×10−6

16 2.23584×10−9 8.34518×10−8 2.34554×10−7 0.0000110888 0.0000817474 1.25644×10−6

Table 2.3: Validation of results with Ref. [12] when  = 0  = Re = 1  =  = 1 =

 =  = 0

Articles −̃0(0) ̃ 0(0) −̃0(0)
Present 0.3959 0.5109 0.61598

Xun et al. [12] 0.396271 0.510231 0.615921

2.4 Discussion

For clear understanding of the nanofluid flow with involvement of microorganisms we examine

the physics of the problem by analyzing the behavior of flow parameters for the velocity, tem-

perature, concentration of nanoparticles, motile density, surface drag force and heat transfer
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rate by fixing  = 1 ∗ = 03  = 12 Re = 1 ∗ = 02  = 07 1 = 03 Pr = 19,  = 01

 = 1  = 1  = 01  = 1  = 01  = 07 ~
̃
= ~

̃
= ~̃ = ~̃ = ~̃ = ~̃ = −07

(See Figs. (2.5-2.30) and Tables 2.4 and 2.5).

2.4.1 Axial, radial and tangential velocity components

Figs. (26− 28) show impact of magnetic parameter  on axial, radial and tangential velocity

distributions. It is noticed that axial ̃() radial ̃() and tangential velocity ̃() profiles

decline for increasing  . For rising magnetic parameter the Lorentz force enhances an con-

sequently the resistance between particles occur. Examination of axial ̃(), radial ̃() and

tangential ̃() velocity distributions for elevating values of stretching parameter 1 is shown

in Figs. (29− 211) With increase in 1 the stretching rate enhances so velocity in axial and

radial direction increases while tangential velocity is decreasing function of 1 Impact of disk

thickness power law index  on velocities (̃() ̃() and ̃()) is shown in Figs. (212− 214)
Here magnitude of ̃() ̃() and ̃() decay for higher 

Fig. 2.6: Axial velocity ̃() via 
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Fig. 2.7: Radial velocity ̃() via 

Fig. 2.8: Tangential velocity ̃() via 

Fig. 2.9: Axial velocity ̃() via 1
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Fig. 2.10: Radial velocity ̃() via 1

Fig. 2.11: Tangential velocity ̃() via 1

Fig. 2.12: Axial velocity ̃() via 

34



Fig. 2.13: Radial velocity ̃() via 

Fig. 2.14: Tangential velocity ̃() via 

2.4.2 Temperature

Figs. (215 − 218) have been displayed to show impacts of involved variables on temperature
distribution ̃() Fig. 2.15 is portrayed for prediction of  on temperature. Here temperature

and layer thickness are enhanced for higher  It is due to more random motion of particles.

Influence of on thermal field is presented in Fig. 2.16. Clearly, temperature of liquid increases

when  is enhanced. In fact an increment of  induces the enhancement of thermophoresis

force which will in general move nanoparticles from hot to the cold side and thusly temperature

of liquid upgrades. For larger Prandtl number Pr the temperature decays (see Fig. 2.17). For

higher Pr the thermal conductivity of fluid reduces so temperature decays. For increasing values
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of  temperature of fluid enhances because radiation is ratio of enthalpy to kinetic energy (See

Fig. 2.18).

Fig. 2.15: Temperature ̃() via .

Fig. 2.16: Temperature ̃() via .
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Fig. 2.17: Temperature ̃() via .

Fig. 2.18: Temperature ̃() via Pr.

2.4.3 Concentration

Effect of involved parameters of concentration profile ̃() is seen in Figs. (219−222). Behavior
of Lewis number  is shown in Fig. 2.19. Concentration enhances for larger  Enhancement

of  is proportional to weaker mass diffusivity and thin concentration layer thickness. Impact

of  and  on concentration field is portrayed in Figs. 2.20 and 2.21. For larger  the

nanoparticles concentration decreases whereas reverse is found via larger . In fact for larger
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Pr the concentration decays (See Fig. 2.22).

Fig. 2.19: Concentration ̃() via 

Fig. 2.20: Concentration ̃() via 
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Fig. 2.21: Concentration ̃() via 

Fig. 2.22: Concentration ̃() via Pr 

2.4.4 Density

Figs. (2.23-2.27) predict impact of pertinent variables on density ̃() Figs. 2.23 and 2.24 plot

the influence of bioconvection Peclet number  and bioconvection Lewis number  on density

̃() Both parameters show decreasing impact on density ̃() Due to decrease in diffusivity

of microorganisms for higher  the motile density of fluid decays. Similarly diffusivity of

microorganisms decays for larger  which is responsible for decay in ̃() Impacts of Lewis

number  and Prandtl number Pr on ̃() are shown in Figs. 2.25 and 2.26. For larger

 the density ̃() enhances whereas reverse is noticed via Pr  Fig. 2.27 plots impact of

thermophoresis parameter  on motile density ̃() It is seen that motile density enhances
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for larger 

Fig. 2.23: Motile density via .

Fig. 2.24: Motile density via .
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Fig. 2.25: Motile density via .

Fig. 2.26: Motile density via .

Fig. 2.27: Motile density via .
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2.4.5 Surface drag force

Table 2.4 displays the numerical declaration for skin friction coefficient. It is clear that for

higher disk thickness coefficient  the drag force at surface reduces while opposite effect is

observed for larger stretching parameter 1 and magnetic parameter 

Table 2.4: Numerical analysis of skin friction versus   and 1

  1 Re

1.2 0.7 0.3 0.2245

1.3 0.2237

1.4 0.2229

1.2 0.8 0.2316

0.9 0.2393

0.7 0.4 0.2384

0.5 0.2549

2.4.6 Nusselt number

Impacts of  and on
³
Re

−1
+1

´
is displayed in Table 2.5. Magnitude of

³
Re

−1
+1

´
is more for higher  while it decays via larger  and 

Table 2.5: Computational analysis of
³
Re

−1
+1

´
.

   Re
−1
+1

0.1 1 0.1 -0.2235

0.2 -0.2490

0.3 -0.2707

0.1 1.1 -0.1961

1.2 -0.1735

1 0.2 -0.2097

0.3 -0.1992
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2.5 Conclusions

Here suspension of nanoparticles and gyrotactic microorganism in radiative flow by variable

thicked rotating disk is analyzed. Major results are summarized as follows:

• Magnetic parameter  has opposite impact on velocities (radial, axial and tangential).

• Temperature distribution is enhanced for   and 

• Larger   and Pr give rise to decay in the concentration.

• Impacts of   and Pr on motile density are decreasing.

• Behavior of skin friction for larger  is increasing.

•  and  decrease the heat transfer rate
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Chapter 3

Rotating disk flow of nanomaterial

with mixed convection and entropy

generation

Abstract: This chapter addresses mixed convective rorating flow of viscous fluid. Thermal radiation,

Joule heating, variable thickness and viscous dissipation have been accounted. Flow under consideration

is because of nonlinear stretching of disk. Water is used as base fluid while nanoparticles comprise silver

and copper. Fluid is electrically conducting subject to applied magnetic field with constant strength.

Heat generation and absorption are neglected. Entropy generation is utilized through second law of

thermodynamics. The effects of silver and copper nanoparticles on the thermal conductivity of continuous

phase fluid and entropy generation have been also examined. Total entropy generation rate is scrutinized

for different involved variables. Nonlinear formulation based upon conservation laws is made. Attention

is particularly given to the convergence in the computational process. Velocity and thermal gradients at

the surface of disk are obtained in tabular forms. Main conclusions have been indicated.

Keywords: Entropy generation; Bejan number; Rotating disk; Copper and silver nanopar-

ticles; Joule heating; Viscous dissipation; Thermal radiation.
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3.1 Problem formulation

Here steady, incompressible viscous liquid flow of silver and copper nanomaterial is addressed

by a rotating variable thicked surface of disk. A constant magnetic field is applied normal

to the flow. Induced magnetic field is ignored. Thermal radiation and Joule heating are also

considered in present flow configuration with additional effects of viscous dissipation. Disk is

located at  = ∗
³


0
+ 1
´−

with stretching rate 1 (in −direction) and angular velocity
Ω1 The components of flow velocity (̂ ̂ ̂) are in the directions of increasing (  )

respectively. Temperature at surface of disk is denoted by ̂ while ambient temperature being

̂∞ The schematic diagram and coordinate system are depicted in Fig. 3.1.

Fig. 3.1: Problem geometry.

The governing equations are

̂


+

̂


+

̂


= 0 (3.1)

̂
̂


− ̂2


+ ̂

̂


= 

2̂

2
− 


20 ̂+ 

()


(̂ − ̂∞) (3.2)

̂
̂


+

̂̂


+ ̂

̂


= 

2̂

2
− 


20 ̂ (3.3)

()

Ã
̂
̂


+ ̂

̂



!
=

Ã
 +

16∗̂ 3∞
3∗

!
2̂

2
+



()
20(̂

2+̂2)+


()

"µ
̂



¶2
+

µ
̂



¶2#


(3.4)
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with conditions

̂ = 1 ̂ = Ω1 ̂ = 0 ̂ = ̂ at  = ∗
³


0
+ 1
´−



̂ = 0 ̂ = 0 ̂ = ̂∞ at  →∞

⎫⎬⎭ (3.5)

in which ̂  ∗ ∗ ∗    ()         and () denote the temperature, Stefan-

Boltzman constant, small parameter regarding surface, mean absorption coefficient, scaled

boundary layer coordinate, effective dynamic viscosity, volumetric thermal expansion coefficient,

density, thermal conductivity, kinematic viscosity, electrical conductivity and heat capacitance.

These quantities are defined as [26]:

 =


(1−)25  () = () (1− ) + ()


=

+2−2(−)
+2+2(−) 

 =



  =  (1− ) + 


= 1 +

3




−1





+2


−



−1





() = () (1− ) + ()

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.6)

in which subscripts    and  stand for nanofluid, nanoparticle volume fraction nano-solid

particles and base liquid.

We consider

̂ = ∗0Ω1̃ () ̂ = ∗0Ω1̃() ̂ = 0Ω1(1 + ∗)−
³
Ω1

2
0



´ −1
+1

̃()

̃ = ̂−̂∞
̂−̂∞   = 

0
(1 + ∗)

³
Ω1

2
0



´ 1
+1



⎫⎪⎬⎪⎭ (3.7)

where 0  
∗ ̃  ̃ ̃ denote disk thickness coefficient, feature radius, power law index,

dimensionless radius and self-similar radial, tangential and axial velocities respectively.

Using these transformations the Eqs. (31− 35) become

2̃ + ̃ 0 + ∗̃ 0 = 0 (3.8)

̃ 00(Re)
1−
1+ (1 + ∗)2 1

(1−)52

µ
1

1−+ 




¶
− ̃ 2 + ̃2 − ̃̃ 0 − ̃ ̃ 0∗

−
µ


1−+ 




¶



̃ + 

Ã
1−+ ()

()


1−+ 




!
̃ = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.9)
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̃00(Re)
1−
1+ (1+∗)2

1

(1− )52

Ã
1

1− +




!
−2̃ ̃−

Ã


1− +




!



̃−̃̃0−̃ ̃0∗ = 0

(3.10)

1
Pr

³


+

´
(Re)

1−
1+ (1 + ∗)2

Ã
1

1−+ ()
()



!
̃
00 − ̃ ̃

0
∗ − ̃̃

0

+



Ã
1

1−+ ()
()



!
(̃ 2 + ̃2) +(Re)

1−
1+ (1 + ∗) 1

(1−)52

Ã
1

1−+ ()
()



!
(̃ 02 + ̃02) = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.11)

̃() = 0 ̃ () = 1, ̃() = 1 ̃() = 1

̃ (∞) = 0 ̃(∞) = 0 ̃(∞) = 0

⎫⎬⎭ (3.12)

Considering

̃ () = ̃( − ) = ̃()

̃ () = ̃( − ) = ̃()

̃ () = ̃( − ) = ̃()

̃ () = ̃( − ) = ̃()

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.13)

we obtain

2̃ + ̃0 + ( + )∗̃ 0 = 0 (3.14)

̃ 00(Re)
1−
1+ (1 + ∗)2 1

(1−)52

µ
1

1−+ 




¶
− ̃2 + ̃2 − ̃̃ 0 − ̃ ̃ 0( + )∗

−
µ


1−+ 




¶



̃ + 

Ã
1−+ ()

()


1−+ 




!
̃ = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.15)

̃00(Re)
1−
1+ (1 + ∗)2 1

(1−)52

Ã
1

1−+ 




!
− 2̃ ̃ − ̃̃0 − ̃ ̃0( + )∗

−
µ


1−+ 




¶



̃ = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.16)

1
Pr

³


+

´
(Re)

1−
1+ (1 + ∗)2

Ã
1

1−+ ()
()



!
̃
00 − ̃ ̃

0
( + )∗ − ̃̃

0

+



Ã
1

1−+ ()
()



!
(̃2 + ̃2) +(Re)

1−
1+ (1 + ∗) 1

(1−)52

Ã
1

1−+ ()
()



!
(̃ 02 + ̃02) = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.17)

̃(0) = 0 ̃(0) = 1, ̃(∞) = 0 ̃(0) = 1
̃(∞) = 0 ̃(0) = 1 ̃(∞) = 0

⎫⎬⎭ (3.18)
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Re =
Ω1

2
0


  =


2
0

Ω1
 Pr =

()


  =
16∗̂ 3∞
3∗

 1 =
1
Ω1


 =
2Ω21

(̂−̂∞)   =
 (̂−̂∞)

Ω21
  = ∗

0

³
Ω1

2
0



´ −1
+1



∗ = ∗
0+∗ 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.19)

in which Re denotes Reynold number  magnetic interaction parameter  the Eckert

number 1 the ratio of stretching rate to angular velocity  the mixed convection para-

meter, Pr the Prandtl number  disk thickness coefficient,  the radiation parameter and ∗

the dimensionless constant.

3.2 Quantities of engineers interest

3.2.1 Surface drag force

Drag force is defined as

 =

q
2 + 2

 (Ω1)
2
 (3.20)

where   and   is defined as

  = 
̂



¯̄̄̄
=0

=


∗Ω10(1 + ∗)
³
Ω20


´ 1
+1

̃ 0(0)

(1− )520
 (3.21)

  = 
̂



¯̄̄̄
=0

=


∗Ω10(1 + ∗)
³
Ω20


´ 1
+1

̃0(0)

(1− )520
 (3.22)

Total shear stress  is defined by

 =

q
2 + 2 (3.23)

Putting Eqs. (321) and (322) in Eq. (320) one arrives at

Re
−1
+1 =

|=0
 (Ω1)

2
=

1

(1− )52
1

∗
(1 + ∗) [(̃ 0(0))2 + (̃0(0))2]12 (3.24)
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3.2.2 Heat transfer rate

Mathematical expression of heat transfer rate is

 =
0

 (̂ − ̂∞)

¯̄̄̄
¯
=0

 (3.25)

where  is

|=0 = − 
̂


+ 

¯̄̄̄
¯
=0

= − (̂ − ̂∞)(1 + ∗)
µ
Ω20



¶ 1
+1

µ



+

¶
̃
0
(0) (3.26)

Finally, one has

Re
−1
+1 = −(1 + ∗)

µ



+

¶
̃
0
(0) (3.27)

3.3 Exploration of entropy generation

Dimensional equation of entropy generation is

 =


̂ 2

⎡⎣


Ã
̂



!2
+
16∗̂ 3∞
3∗

Ã
̂



!2⎤⎦+ 

̂
Φ+



̂
20(̂

2 + ̂2) (3.28)

where

Φ = 2
h¡

̂


¢2
+
¡
̂


¢2
+ 1

2

¡
̂

+ ̂

¢2i
+
£
1

̂

+ ̂



¤2
+
£
̂

+ ̂



¤2
+
£
 


¡
̂


¢
+ 1


̂


¤2


⎫⎬⎭  (3.29)

Φ = 2
h¡

̂


¢2
+ 1

2
(̂)2 +

¡
̂


¢2i
+
£
̂


¤2
+
£
̂


¤2
+
£
 


¡
̂


¢¤2
⎫⎬⎭  (3.30)
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Invoking Eq. (330) in (328), we arrive

 =


̂ 2

⎡⎣


Ã
̂



!2
+
16◦̂ 3∞
3◦

Ã
̂



!2⎤⎦
| {z }

Thermal irreversibility

+


̂

⎡⎣ 2
¡
̂


¢2
+ 2

2
(̂)2 + 2

¡
̂


¢2
+
£
̂


¤2
+
£
̂


¤2
+
£
 


¡
̂


¢¤2
⎤⎦

| {z }
Fluid friction irreversibility

+


̂
20(̂

2 + ̂2)| {z }
Joule dissipation irreversibility

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭


(3.31)

Equation (3.31) witnesses the contribution of three main sources for entropy generation i.e., heat

transfer with radiation effects, fluid friction irreversibility and Joule dissipation irreversibility.

In dimensionless form, the entropy number is

 =
³


+

´
̃
02
1(Re)

1−
1+ (1 + ∗)2

+
Re

1
(1−)52

⎡⎢⎢⎢⎣
2( + )222̃ 02 + 4̃2 + 4̃ ̃ 0( + )∗

+2̃02 + ∗2(Re)
2

1+ (1 + ∗)2 ̃02+

∗2(Re)
2

1+ (1 + ∗)2 ̃ 02 + ( + )2 (∗)2 2̃02

⎤⎥⎥⎥⎦
+




∗2(̃2 + ̃2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.32)

1 =
̂ − ̂∞

̂
=
∆

̂
  =

Ω
2
1

2
0

∆
  =

̂

∆Ω1
 (3.33)

Here 1 denotes the dimensionless temperature difference,  Brinkman number and  en-

tropy generation rate.

Irreversibility subject to heat transfer dominants when À 05. On the other side when

¿ 05 the viscous effects dominates. For  = 05 both effects are equal. The Bejan number

is addressed as

 =
     

  
 (3.34)
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or
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+

´
̃
02
1(Re)

1−
1+ (1 + ∗)2³



+

´
̃
02
1(Re)

1−
1+ (1 + ∗)2

+
Re
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⎡⎢⎢⎢⎣
2( + )2 (∗)2 2̃ 02 + 4̃2 + 4̃ ̃ 0( + )∗

+2̃02 + ∗2(Re)
2

1+ (1 + ∗)2 ̃02+

∗2(Re)
2

1+ (1 + ∗)2 ̃ 02 + ( + )2 (∗)2 2̃02

⎤⎥⎥⎥⎦
+∗2 


(̃2 + ̃2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 (3.35)

3.4 Homotopy procedure

We have

̃0() = 0

̃0() = −

̃0() = −

̃0() = 1
−

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.36)

L̃ = ̃0 L̃ = ̃ 00 − ̃  L̃ = ̃00 − ̃ L̃ = ̃
00 − ̃ (3.37)

with properties

L
̃
[̄1] = 0

L
̃

£
̄2

 + ̄3
−¤ = 0

L̃
£
̄4

 + ̄5
−¤ = 0

L̃
£
̄6

 + ̄7
−¤ = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.38)

in which the constants consist of ̄ ( = 1− 7).

3.5 Convergence analysis

Auxiliary parameters }̃ }̃  }̃ and }̃ provide us opportunity to adjust the convergence of

nonlinear problems. Figs. (3.2-3.3) display the ~-curves at 12th order of approximation. Per-

missible estimations of auxiliary variables for −2 and −2 nanofluids are established

in the ranges −15 ≤ }
̃
≤ −01 −11 ≤ }

̃
≤ −04 −12 ≤ }̃ ≤ −03 and −14 ≤ }̃ ≤ −1
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and −16 ≤ }̃ ≤ −02 −11 ≤ }̃ ≤ −03 −12 ≤ }̃ ≤ −03 and −14 ≤ }̃ ≤ −105 Table
(3.1− 32) demonstrate the convergence of ̃0(0) ̃ 0(0) ̃0(0) and ̃

0
(0) for Ag-water nanofluid

and Cu-water nanofluids. It is clear from Table 3.1 that ̃0(0) ̃
0
(0) ̃

0
(0) and ̃

0
(0) of Ag-water

nanofluid converge at 11, 15, 19 and 25 order of approximations respectively and Table

3.2 shows that ̃0(0) ̃
0
(0) ̃

0
(0) and ̃

0
(0) of −water nanofluid converge at 11, 16, 20

and 25 order of approximations respectively.

Fig. 3.2. ~−graphs for −water

Fig. 3.3. ~−graphs for −water
Table 3.1: Various order of approximations for −water nanofluid when  = 1, ∗ = 03

Pr = 19  = 12 Re = 09  = 05  = 05 ∗ = 02  = 07 1 = 03  = 01  = 04

52



Order of approximation −̃00(0) ̃ 0(0) −̃0(0) −̃0(0)
1 0.009994 0.1610 0.8197 0.8295

11 0.02034 0.2859 0.7965 0.5038

15 0.02034 0.2857 0.7957 0.5233

19 0.02034 0.2857 0.7980 0.5341

25 0.02034 0.2857 0.7980 0.5350

30 0.02034 0.2857 0.7980 0.5350

35 0.02034 0.2857 0.7980 0.5350

40 0.02034 0.2857 0.7980 0.5350

50 0.02034 0.2857 0.7980 0.5350

Table 3.2: Various order of approximations for −water nanofluid when  = 1, ∗ = 03

Pr = 19  = 12 Re = 09  = 05  = 05 ∗ = 02  = 07 1 = 03  = 01  = 04

Order of approximation −̃00(0) ̃ 0(0) −̃0(0) −̃0(0)
1 0.009994 0.1611 0.8197 0.8295

11 0.02034 0.2855 0.7962 0.5037

16 0.02034 0.2854 0.7958 0.5285

20 0.02034 0.2854 0.7970 0.5340

25 0.02034 0.2854 0.7970 0.5330

30 0.02034 0.2854 0.7970 0.5330

35 0.02034 0.2854 0.7970 0.5330

40 0.02034 0.2854 0.7970 0.5330

50 0.02034 0.2854 0.7970 0.5330

3.6 Discussion

This part shows the influences of dimensionless parameters on flow due to rotating disk. Figs.

(3.4 − 319) are plotted to show the important results of velocity components (axial (̃())

radial (̃()) and tangential (̃())) temperature ̃ (), Nusselt number
³
Re

−1
+1

´
and skin

friction
³
Re

−1
+1

´
for silver and copper water nanofluids. Figs. (3.4 − 34) display the

physical characteristics of −water and −water nanofluids velocities (̃() ̃() ̃()) for
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increasing values of magnetic variable  In fact with increase in  the Lorentz force is more

which produces resistance and consequently velocity reduces. Results for both −water and
−water nanofluids are qualitatively similar. Influence of power law index  on velocities

(̃() ̃() ̃()) of −water and −water nanofluids is shown in Figs. (3.5− 35). It is
evident from plots that motion of fluid particles enhances for larger  Physically with increase

in  the viscosity of fluid reduces and as a result velocity for both nanofluids is enhanced. Figs.

(3.6−36) elucidate the impact of parameter 1 on velocities (̃() ̃() ̃()) for −water
and −water nanofluids. Here axial (̃()) and radial (̃()) velocities fields enhance for
larger 1 It is because of an increase in stretching rate. It is noted that velocity for −water
nanofluid is more than −water nanofluids. Impact of mixed convection parameter  on
axial, radial and tangential velocities for −water and −water nanofluids is depicted in
Figs. (3.7−37). Magnitude of axial and radial velocities enhances for larger  while opposite
impact is noted for tangential velocity. For larger  thermal buoyancy force increases because 

is ratio of buoyancy to inertial forces. As a result axial and radial velocities grow (see Figs. 3.7a

and 3.7b). Results for both nanofluids are qualitatively similar. Velocities (̃() ̃() ̃()) for

larger nanoparticle volume fraction  are shown in Figs. (3.8 − 38). Here we noticed that
velocity profiles (̃() ̃() ̃()) are increasing functions of  Velocity for −water nanofluid
is more because copper nanoparticles are less dense when compared to silver nanoparticles.

Characteristics of magnetic parameter on temperature is sketched in Fig. 3.9. Temper-

ature increases for higher  Because of higher in Lorentz force more resistance is offered

to the nanoparticles motion. Hence more heat produces and thus temperature enhances for

both nanofluids. Figs. 3.10 and 3.11 disclose the effects of mixed convection parameter  and

nanoparticle volume fraction  on temperature of −water and −water nanofluids. Both
parameters have direct relation with temperature field. In both cases temperature is slightly

more for −water nanofluid because of its higher thermal conductivity. Fig. 3.12 displayed
temperature ̃() for larger Eckert number  A rise in temperature curves with higher  is

observed Due to inside friction of molecules the mechanical energy converted to thermal energy

is responsible for temperature enhancement. Behavior of temperature for larger radiation  is

shown in Fig. 3.13. Mean absorption coefficient decays for larger of  and temperature differ-

ence occurs due to diffusion flux which consequently enhances ̃() Results for both nanofluids
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are quite similar in this case.

Figs. (3.14 − 316) are portrayed to show the impacts of   and  on skin friction

coefficient for −water and −water. As expected the surface drag force enhances for larger
  and  Results are more obvious in case of −water nanofluid for all parameters when
compared with −water nanofluid. Figs. (3.17−319) display the behavior of Eckert number,
magnetic parameter and nanoparticle volume fraction on Nusselt number. Heat transfer rate

becomes less with  and  Magnitude of Nusselt number is more for −water nanofluid
(see Figs. 3.17 and 3.18). For higher  the magnitude of Nusselt number enhances (see Fig.

3.19). Here results of −water nanofluid dominant over −water nanofluid.

Fig. 3.4a: Axial velocity ̃() via 

Fig. 3.4b: Radial velocity ̃() via 
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Fig. 3.4c: Tangential velocity ̃() via 

Fig. 3.5a: Axial velocity ̃() via 

Fig. 3.5b: Radial velocity ̃() via 
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Fig. 3.5c: Tangential velocity ̃() via 

Fig. 3.6a: Axial velocity ̃() via 1

Fig. 3.6b: Radial velocity ̃() via 1
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Fig. 3.6c: Tangential velocity ̃() via 1

Fig. 3.7a: Axial velocity ̃() via 

Fig. 3.7b: Radial velocity ̃() via 
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Fig. 3.7c: Tangential velocity ̃() via 

Fig. 3.8a: Axial velocity ̃() via 

Fig. 3.8b: Radial velocity ̃() via 
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Fig. 3.8c: Tangential velocity ̃() via 

Fig. 3.9: Temperature ̃() via 

Fig. 3.10: Temperature ̃() via 
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Fig. 3.11: Temperature ̃() via 

Fig. 3.12: Temperature ̃() via 

Fig. 3.13: Temperature ̃() via 
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Fig. 3.14: Skin friction via 

Fig. 3.15: Skin friction via 

Fig. 3.16: Skin friction via 
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Fig. 3.17: Nusselt number via 

Fig. 3.18: Nusselt number via 

Fig. 3.19: Nusselt number via 
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3.7 Entropy analysis

Behaviors of dimensionless temperature difference parameter, radiation parameter, Brinkman

number, nanoparticle volume fraction and Reynolds number on local entropy generation and

Bejan number are examined in Figs. (320− 329)
Local entropy generation and Bejan number for larger temperature difference parameter 1

are graphically presented in Figs. 3.20 and 3.21 Here entropy generation rate and Bejan number

are increasing functions of 1 It is seen that () approaches to zero far from the boundary.

For larger 1 the heat transfer effects are more prominent than fluid friction and magnetic field

effects. That is why  enhances. Bejan number is more for −water when compared with
−water nanofluid. It is because of its higher heat conductive ability. Figs. 3.22 and 3.23
displayed impact of radiation  on () and  for silver and copper water nanofluids. Here

both entropy and Bejan numbers are increased versus  It is due to rise in internal energy

of system. It is also observed that  is more for silver water nanofluid. Figs. 3.24 and 3.25

show () and  for both −2 and −2 nanomaterials for higher  Physically,

Brinkman number governs the releasing of heat through viscous heating in to heat transport by

conduction process. Entropy generation is directly affected by Brinkman number closed to the

disk surface. Heat transport through conduction process is always higher than the heat released

by viscous phenomenon closed to the disk surface. More heat is produced inside the layers of

liquids particles and consequently entropy of the system upsures. Fig. 3.25 highlights that 

declines for larger . Effect of  nanoparticles here is less than  nanoparticles. Figs. 3.26

and 3.27 depict the influence of  on () and  Rate of entropy generation enhances for

larger  while opposite behavior is noticed for Bejan number for both nanofluids. It means that

as values of  increase then the heat transfer dominant over fluid friction and magnetic effects.

Figs. 3.28 and 3.29 are sketched to show the important effect of Re on () and  We

noticed that rate of entropy generation decays for larger Re while on contrary Bejan number

has higher values via increasing Re  Physically for larger Re the flow fluctuation in the fluid
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enhances so heat transfer increases and thus more entropy generation for both nanofluids.

Fig. 3.20: Entropy generation  via 1

Fig. 3.21: Bejan number  via 1
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Fig. 3.22: Impact of  on 

Fig. 3.23: Impact of  on 

Fig. 3.24:  impact on 
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Fig. 3.25:  impact on 

Fig. 3.26:  impact on 

Fig. 3.27:  impact on 
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Fig. 3.28: Re impact on 

Fig. 3.29: Re impact on 

3.8 Conclusions

Mixed convective radiative flow subject to Joule heating and dissipation is discussed. Main

findings are as follows:

• Axial ̃() radial ̃() and tangential ̃() velocities increase for larger power law index
of fluid and nanoparticle volume fraction.

• Temperature ̃() enhances for larger ,  and  in both  and  water nanofluids.

• Surface drag force increases for higher  and 

• Magnitude of temperature gradient Re
−1
+1 decays when  and  are enhanced.
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• Re impact on entropy generation rate  is opposite when compared with   and 

• Effect of  on Bejan number is reverse when compared with  and Re 

• Bejan number is more for −water nanofluid when compared with −water nanofluid.
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Chapter 4

Slip and Joule heating effects in

rotating disk flow with nanoparticles

Abstract: This chapter addresses the viscous fluid flow subject to five different types of nanoparticles

i.e., Silver, Copper, Copper oxide, Aluminum oxide and Titanium oxide. The flow is discussed by a

variable thicked surface of disk with Joule heating. The nonlinear PDE’s are converted to ordinary

ones through Von-Karman variables and then tackled for series solutions development via homotopy

method. Salient characteristics of appropriate flow paraemters are discussed graphically on the velocity

components, temperature, skin friction, and Nusselt number. It is witnessed that the velocity components

(i.e., axial, radial and tangential) decline via higher slip parameters. Also the axial velocity decreases

versus nanoparticle volume fraction. It is clearly remarked that the behavior of nanomaterials is more

than base liquid on the velocity components. Thermal field is increased subject to higher values of Eckert

number. Temperature in case of Silver-water nanomaterial is more than the other nanomaterials due to

its larger thermal conductivity. Skin friction diminishes versus slip variables.

4.1 Modeling

We analyze the incompressible water based nanofluids flow by a rotating disk with angular

velocity Ω1 and stretching rate 1. Nanoliquids are suspension of nanomaterials i.e., Copper,

Silver, Copper oxide, titanium oxide and aluminium with water as continuous phase liquid. The

disk of variable thickness is considered at  = ∗
³


0
+ 1
´−

. The energy equation is modeled

70



subject to Joule heating. Slip flow is considered. We consider cylindrical coordinates (  )

(see physical model in Fig. 4.1). Under the assumptions ̂

= ̂


= 0, (̂) = (̂) = () =

(1) and (̂) = () = () the equations for flow and heat transfer are as follows [10, 27]:

Fig. 4.1: Schematic diagram of problem

̂


+

̂


+

̂


= 0 (4.1)

̂
̂


+ ̂

̂


− ̂2


= 

2̂

2
− 


20 ̂ (4.2)

̂
̂


+ ̂

̂


+

̂̂


= 

2̂

2
− 


20 ̂ (4.3)

()

Ã
̂
̂


+ ̂

̂



!
= 

2̂

2
+ 

2
0(̂

2 + ̂2) (4.4)

with boundary conditions

̂ = 1 + 1
̂


 ̂ = Ω1 + 2

̂


 ̂ = 0 ̂ = ̂ at  = ∗

µ


0
+ 1

¶−


̂ = 0 ̂ = 0 ̂ = 0 ̂ = ̂∞ when  →∞ (4.5)
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where ∗ being thickness coefficient of disk is very small, 0 the feature radius,  the disk

thickness index,  the stretching rate and 1 and 2 the velocity slip coefficients, effective

nanofluid dynamic viscosity  , heat capacitance ()  thermal conductivity   density

 and electrical conductivity  are addressed as

 =


(1− )25
 (4.6)

 =  (1− ) +  (4.7)

() = () (1− ) + () (4.8)




=

 + 2 − 2( − )

 + 2 + 2( − )
 (4.9)




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (4.10)

Von Karman transformations are

̂ = ∗0Ω1̃ () ̂ = ∗0Ω1̃() ̂ = 0Ω1(1 + ∗)−
Ã
Ω1

2
0



! −1
+1

̃()

̃ =
̂ − ̂∞
̂ − ̂∞

  =


0
(1 + ∗)

Ã
Ω1

2
0



! 1
+1

 (4.11)

Incompressibility condition is trivially satisfied and Eqs. (4.2− 45) are transformed as

2̃ + ̃ 0 + ∗̃ 0 = 0 (4.12)

1

(1− )25(1− +


)

̃ 00(Re)
1−
1+ (1 + ∗)2 − ̃ 2 + ̃2 − ̃̃ 0 − ̃ ̃ 0∗

− 

(1− )25(1− +


)




̃ = 0 (4.13)
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1

(1− )25(1− +


)

̃00(Re)
1−
1+ (1 + ∗)2 − 2̃ ̃− ̃̃0 − ̃ ̃0∗

− 

(1− )25(1− +


)




̃ = 0 (4.14)

1

Pr





1

1− +
()
()


(Re)

1−
1+ (1 + ∗)2 ̃

00 − ̃ ̃
0
∗ − ̃̃

0
+







1− +
()
()


(̃ 2 + ̃2) = 0 (4.15)

with boundary conditions

̃() = 0 ̃ () = 1 + 1(1 + ∗) ̃ 0(),

̃ (∞) = 0 ̃() = 1 + 2(1 + ∗)̃0()

̃(∞) = 0 ̃() = 1 ̃(∞) = 0 (4.16)

Here

∗ =
∗

0 + ∗
  =

∗

0

Ã
Ω1

2
0



! −1
+1

 Re =
Ω1

2
0


 Pr =

()


 1 =

1

Ω1


1 =
1

0

Ã
Ω1

2
0



! 1
+1

 2 =
2

0

Ã
Ω1

2
0



! 1
+1

  =


2
0

Ω1
  =

Ω21
2

(̂ − ̂∞)
(4.17)

where ∗ indicates dimensionless constant, Pr Prandtl number, ∗ dimensionless radius,  co-

efficient of disk thickness, 1 scaled stretching parameter, Re Reynolds number, 1 and 2 slip

parameters,  magnetic parameter and  Eckert number.

Considering

̃ = ̃( − ) = ̃() ̃ = ̃( − ) = ̃()

̃ = ̃( − ) = ̃() ̃ = ̃( − ) = ̃() (4.18)
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Eqs. (4.12− 416) are reduced to

2̃ + ̃0 + ( + )∗̃ 0 = 0 (4.19)

1

(1− )25(1− +


)

̃ 00(Re)
1−
1+ (1+∗)2−̃2+̃2−̃̃ 0−̃ ̃ 0(+)∗− 

(1− +


)




̃ = 0

(4.20)

1

(1− )25(1− +


)

̃00(Re)
1−
1+ (1+∗)2−2̃ ̃−̃̃0−̃ ̃0(+)∗− 

(1− +


)




̃ = 0

(4.21)

1

Pr





1

1− +
()
()


(Re)

1−
1+ (1+∗)2 ̃

00−̃ ̃0(+)∗−̃̃0+





1− +
()
()


(̃2+̃2) = 0

(4.22)

̃(0) = 0 ̃(0) = 1 + 1̃
0(0), ̃(∞) = 0 ̃(0) = 1 + 2̃

0(0)

̃(∞) = 0 ̃(0) = 1 ̃(∞) = 0 (4.23)

In above expression prime depicts derivative with respect of  and ̃ ̃  ̃ and ̃ the axial, radial,

tangential velocities and temperature respectively.

At lower disk the shear stress in radial and tangential directions are   and  

  = 
̂



¯̄̄̄
=0

=


∗Ω10(1 + ∗)
³
Ω20


´ 1
+1

̃ 0(0)

0


  = 
̂



¯̄̄̄
=0

=


∗Ω10(1 + ∗)
³
Ω20


´ 1
+1

̃0(0)

0
 (4.24)

Total shear stress  is defined by

 =

q
2 + 2 (4.25)

Skin friction coefficients  is

Re
−1
+1 =

|=0
 (Ω)

2
=
1

∗
(1 + ∗) [(̃ 0(0))2 + (̃0(0))2]12 (4.26)
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Nusselt number is defined as

 =
0

 (̂ − ̂∞)

¯̄̄̄
¯
=0

 (4.27)

The wall heat flux  satisfies

|=0 = − 
̂



¯̄̄̄
¯
=0

= − (̂ − ̂∞)(1 + ∗)
Ã
Ω20



! 1
+1

̃
0
(0) (4.28)

and so

Re
−1
+1 = −(1 + ∗) ̃

0
(0) (4.29)

4.2 Solutions expressions

Expressions of initial approximations and operators satisfy

̃0() = 0 (4.30)

̃0() =
1

1 + 1(1 + ∗)
exp(−) (4.31)

̃0() =
1

1 + 2(1 + ∗)
exp(−) (4.32)

̃0() = exp(−) (4.33)

L̃ = ̃0 L̃ = ̃ 00 − ̃  L̃ = ̃00 − ̃ L̃ = ̃
00 − ̃ (4.34)

with

L
̃
[1] = 0

L̃
£
2

 + 3
−¤ = 0

L̃
£
4

 + 5
−¤ = 0

L
̃

£
6

 + 7
−¤ = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.35)

4.3 Convergence analysis

HAM has great benefit of adjusting the convergence region for nonlinear system of equations

by using appropriate }̃ }̃  }̃ and }̃ Curves are drawn at 14th order of iteration. Admissible
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ranges for all nanofluids are shown in Table 4.1. Solutions converge in the whole region of 

(0 ≤  ≤ 1) when }
̃
= }

̃
= }̃ = −07 and }̃ = −12 Tables (4.2− 46) show the convergence

of nanofluids for ̃00(0) ̃ 0(0) ̃0(0) and ̃
0
(0) Table 4.7 shows some physical properties of

nanofluids.

Table 4.1: Ranges of ~−curves for five nanofluids.

Nanofluids }̃ }̃ }̃ }̃

−water −14 to −03 −13 to −04 −15 to −01 −16 to −11
−water −15 to −03 −13 to −02 −14 to −02 −155 to −1
−water −14 to −03 −14 to −03 −155 to −03 −14 to −11
23−water −14 to −03 −13 to −02 −14 to −02 −14 to −105
2−water −14 to −03 −12 to −05 −14 to −02 −14 to −11

Fig. 4.2: ~−curves for ̃00(0) ̃ 0(0) ̃0(0) and ̃
0
(0)
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Fig. 4.3: ~−curves for ̃00(0) ̃ 0(0) ̃0(0) and ̃
0
(0)

Fig. 4.4: ~−curves for ̃00(0) ̃ 0(0) ̃0(0) and ̃
0
(0)

Fig. 4.5: ~−curves for ̃00(0) ̃ 0(0) ̃0(0) and ̃
0
(0)

77



Fig. 4.6: ~−curves for ̃00(0) ̃ 0(0) ̃0(0) and ̃
0
(0)

Table 4.2: Series solutions convergence for −water nanofluid.

Order of approximations () ̃00(0) ̃ 0(0) ̃0(0) ̃
0
(0)

1 -0.3901 -0.1376 -0.6238 -0.8219

5 -0.5795 -0.1353 -0.6676 -0.7710

10 -0.5795 -0.1418 -0.6656 -0.9006

11 -0.5796 -0.1418 -0.6656 -0.9232

16 -0.5796 -0.1418 -0.6656 -0.9702

25 -0.5796 -0.1418 -0.6656 -0.9702

35 -0.5796 -0.1418 -0.6656 -0.9702

Table 4.3: Series solutions convergence for −water nanofluid.

Order of approximations () ̃00(0) −̃ 0(0) −̃0(0) −̃0(0)
1 -0.3901 -0.1366 -0.6222 -0.8223

5 -0.5794 -0.1423 -0.6659 -0.7718

10 -0.5795 -0.1421 -0.6639 -0.9017

11 -0.5795 -0.1422 -0.6640 -0.9245

15 -0.5795 -0.1422 -0.6640 -0.9717

25 -0.5795 -0.1422 -0.6640 -0.9717

35 -0.5795 -0.1422 -0.6640 -0.9717
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Table 4.4: Convergence iterations for −water nanofluid.

Iterations ̃00(0) −̃ 0(0) −̃0(0) −̃0(0)
1 -0.3901 -0.1317 -0.6146 -0.8230

5 -0.5802 -0.1372 -0.6584 -0.7751

11 -0.5802 -0.1371 -0.6565 -0.9325

15 -0.5802 -0.1372 -0.6565 -0.9801

20 -0.5802 -0.1372 -0.6565 -0.9747

30 -0.5802 -0.1372 -0.6565 -0.9747

35 -0.5802 -0.1372 -0.6565 -0.9747

Table 4.5: Convergence of series solutions for 23−water nanofluid.

Order of approximations (23) ̃00(0) −̃ 0(0) −̃0(0) −̃0(0)
1 -0.3901 -0.1300 -0.6119 -0.8230

7 -0.5800 -0.1389 -0.6539 -0.8264

11 -0.5800 -0.1377 -0.6539 -0.9324

13 -0.5800 -0.1378 -0.6539 -0.9663

17 -0.5800 -0.1378 -0.6539 -0.9746

25 -0.5800 -0.1378 -0.6539 -0.9746

35 -0.5800 -0.1378 -0.6539 -0.9746

Table 4.6: Series solutions convergence for 2−water nanofluid.

Order of approximations (2) ̃00(0) −̃ 0(0) −̃0(0) −̃0(0)
1 -0.3901 -0.1302 -0.6122 -0.8235

10 -0.5802 -0.1375 -0.6541 -0.9106

11 -0.5802 -0.1376 -0.6542 -0.9341

12 -0.5802 -0.1377 -0.6542 -0.9535

17 -0.5802 -0.1377 -0.6542 -0.9766

25 -0.5802 -0.1377 -0.6542 -0.9766

35 -0.5802 -0.1377 -0.6542 -0.9766
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Table 4.7: Thermophysical properties of nanoparticles.

() (3) ()−1 ()  × 10−6(1)
Silver () 429 10490 6.30×107 235 18.9

Copper () 401 8933 5.96×107 385 16.7

Copper oxide () 76.1 6320 2.7×10−8 531.8 18.0

Aluminium oxide (23) 40 3970 1×10−10 765 8.5

Titanium oxide (2) 8.9538 4250 1×10−12 686.2 9.0

Water (2) 0.613 997.1 0.05 4179 210

4.4 Discussion

This section elucidates the influences of flow field, temperature, Nusselt number and skin friction

coefficient versus different flow parameters.

4.4.1 Axial, radial and tangential velocity components

Figs. (4.7− 427) show the outcome of axial, radial and tangential velocities via involved para-
meters for -water, -water, -water, 23-water and 2-water nanofluids. Impact

of disk thickness power law index  for velocity components (axial, radial and tangential) is pre-

sented in Figs. (4.7−49). It is clear from the Figs. that magnitude of axial velocity reduces for
larger  while radial and tangential velocities increase. Effects of , 23 and 2 water

nanofluids dominant over Ag and Cu water nanofluids. It is due to the fact because Ag and

Cu nanoparticles are more dense than rest of the nanoparticles. Behavior of constant number

∗ for all velocities components is shown in Figs. (4.10 − 412). For larger ∗ the axial, radial
and tangential velocities enhance. In fact with an increase in ∗ the radius 0 decreases so

less particles are in contact with the surface and consequently less resistance leads to increase

in velocity. Also Ag and Cu water nanofluids have less velocity when compared with other

nanofluids. Figs. (4.13 − 415) are organized to see the outcomes of ̃() ̃() and ̃() for

increasing values of stretching parameter 1 It is worth mentioning that velocities in radial and

axial directions are increasing while there is decrease in tangential velocity component. When

we increase the value of 1 the stretching rate at disk is increasing so axial and radial velocity
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enhance while decrease in tangential velocity is observed for reduction in Ω1. We noticed from

Fig. 4.15 that tangential velocity is less for Ag and Cu water nanofluid than , 23 and

2 water nanofluids (due to their higher densities). Fig. 4.16 shows that larger disk thickness

coefficient  lead to decrease in axial velocity component. Magnitude of axial velocity increases

for larger nanoparticles volume fraction  (see Fig. 4.17). Impact of velocity slip parameter 1

for ̃() and ̃() is displayed in Figs. 4.18 and 4.19. Here magnitude of velocity decays with

an increase in 1 In fact when slip velocity enhances then there is less transport of momentum

in radial direction. In these Figs. the results overlap for all nanofluids. Radial and tangential

velocities are reduced for larger 2 (see Figs. 4.20 and 4.21). Behavior of magnetic parameter

 against ̃() and ̃() is mentioned in Figs. 4.22 and 4.23. Both velocities reduce because

 is associated with resistive force known as Lorentz force. Power law index  affecting within

boundary layer of five nanofluids for ̃() and ̃() is illustrated in Figs. 4.24 and 4.25. For

higher  both velocities enhance. In fact the power of radius 0 decays and thus velocity en-

hances. Effect of Reynolds number Re on radial and tangential velocities is depicted in Figs.

4.26 and 4.27. These velocities increase for larger Re  For higher Re the viscosity decays so less

resistance is offered to fluid particles and so velocity enhances.

Fig. 4.7: ̃() versus 
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Fig. 4.8: ̃() versus 

Fig. 4.9: ̃() versus 

Fig. 4.10: ̃() versus ∗
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Fig. 4.11: ̃() versus ∗

Fig. 4.12: ̃() versus ∗

Fig. 4.13: ̃() versus 1
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Fig. 4.14: ̃() versus 1

Fig. 4.15: ̃() versus 1

Fig. 4.16: ̃() versus 
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Fig. 4.17: ̃() versus 

Fig. 4.18: ̃() versus 1

Fig. 4.19: ̃() versus 1
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Fig. 4.20: ̃() versus 2

Fig. 4.21: ̃() versus 2

Fig. 4.22: ̃() versus 
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Fig. 4.23: ̃() versus 

Fig. 4.24: ̃() versus 

Fig. 4.25: ̃() versus 

87



Fig. 4.26: ̃() versus Re 

Fig. 4.27: ̃() verssu Re 

4.4.2 Temperature

Figs. (4.28 − 433) portray the effect of involved parameter on temperature for -water,

-water, -water, 23-water and 2-water nanofluids. Graph of temperature ̃()

against constant number ∗ is shown in Fig. 4.28. Temperature rises for larger ∗ Behavior

of ̃() for increasing Re is analyzed in Fig. 4.29. Direct relation is observed between Re and

̃() Results overlap for all nanofluids. Fig. 4.30 assures the enhancement in temperature with

increase in  for -water, -water, -water, 23-water and 2-water nanofluids Fig.

4.31 shows that with rise in nanoparticle volume fraction ̃ the temperature enhances. Larger

values of ̃ correspond to larger thermal conductivity and thermal layer thickness. As a result
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the temperature increases. Effects of −water nanofluid dominant over −water, -
water, 23-water and 2-water nanofluids. It is because of its higher thermal conductivity.

Impact of Hartmann number  is predicted in Fig. 4.32. Here temperature has direct relation

with  Magnetic field depend upon Lorentz force which yield resistance to the nanomaterials

motion. Thus more heat is produced. It consequently boosts the thermal field and layer

thickness. Outcome of  against thermal field is shown in Fig. 4.33. We noticed that ̃()

enhances for larger . Effects of nanofluids on temperature dominant with respect to their

higher thermal conductivity. Hence silver water nanofluid dominants because  nanoparticles

have highest thermal conductivity than   23 and 2 nanoparticles

Fig. 4.28: Outcome of ∗ on ̃()

Fig. 4.29: Outcome of Re on ̃()
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Fig. 4.30: Outcome of  on ̃()

Fig. 4.31: Outcome of  on ̃()

Fig. 4.32: Outcome of  on ̃()
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Fig. 4.33: Outcome of  on ̃()

4.4.3 Surface drag force

Figs. (4.34−436) display the impact of slip parameters 1 and 2 stretching parameter 1 and
disk thickness index  on skin friction coefficient for -water, -water, -water, 23-

water and 2-water nanofluids. It is noted that surface drag force reduces for rising 1 and

2 while opposite trend is witnessed for 1 and Moreover skin friction decreases by enhancing

the density of nanoparticles. That is why dominance of nanofluids depends upon the densities

of respective nanoparticles.

Fig. 4.34: Behavior of 2 against (Re)
(−1)(+1)
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Fig. 4.35: Behavior of 1 against (Re)
(−1)(+1)

Fig. 4.36: Behavior of 1 against (Re)
(−1)(+1)

4.4.4 Nusselt number

Impact of disk thickness coefficient  stretching parameter 1, Eckert number  and disk

thickness index  on Nusselt number is analyzed in Figs. (4.37−439). It is remarked that heat
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transfer rate upsurges for larger  1 and  for all nanofluids

Fig. 4.37: Behavior of  against (1+r∗) ̃
0
(0)

Fig. 4.38: Behavior of 1 against (1+r
∗) ̃

0
(0)

93



Fig. 4.39: Behavior of  against (1+r∗) ̃
0
(0)

4.5 Conclusions

Here we studied partial slip and Joule heating in flow of nanomaterials. Main points are as

follows:

• For larger stretching parameter 1 the velocities in axial radial and tangential direction
are enhanced.

• Axial velocity reduces for higher nanoparticle volume fraction 

• With rise in slip parameters 1 and 2 the velocities in axial, radial and tangential direc-

tions are reduced.

• Velocity for TiO2-water nanofluid is highest.

• For larger  the temperature of fluid increases and impact of −water nanofluid dom-
inant over all.

• Reduction in surface drag force is noticed for larger 2 and 1

• Rate of heat transfer rises for increasing 1.
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Chapter 5

Flow of magnetite-Fe3O4

nanoparticles in presence of partial

slip conditions

Abstract: This chapter addresses the flow of magnetic nanofluid (ferrofluid) between two rotat-

ing stretchable disks with different rotating and stretching velocities. Water based fluid comprising

magnetite-Fe3O4 nanoparticles is addressed. Velocity slip and temperature jump at solid-fluid interface

are also taken into account. Appropriate transformations reduce the nonlinear PDE’s system to ordi-

nary ones. Homotopy solutions are established. Velocity, temperature, Nusselt number and skin friction

coefficient are analyzed. It is interesting to note that tangential velocity of fluid decreases for higher

velocity slip variable. Fluid temperature also reduces for increasing value of thermal slip parameter.

Nusselt number and skin friction at lower disk are enhanced for higher magnetic field strength.

5.1 Problem formulation

Consider an axisymmetric flow of incompressible ferrofluid bounded by two continuously stretch-

ing coaxial disks. Magnetite-Fe3O4 nanoparticles in water are known as ferrofluid. It is assumed

that the lower disk is located at  = 0 while the upper disk is at a constant distance  apart.

Both disks are rotating in axial direction with angular frequencies Ω1 and Ω2 Further both
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disks stretch in radial direction with 1 and 2 (see Fig. 5.1).

Fig. 5.1: Physical model.

Electrically conducting fluid is taken. Slip conditions for velocity and temperature are imposed.

The flow expressions are stated as
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The effective nanofluid dynamic viscosity  , density   heat capacitance ()  thermal

conductivity  and electrical conductivity  are

 =
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(1− )25
 (5.7)
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where  denotes the solid volume fraction of nanoparticles.

Using Von-Karman transformations [7]

̂ = Ω1̃
0() ̂ = Ω1̃() ̂ = −2Ω1̃() ̃ = ̂ − ̂2

̂1 − ̂2
 ̂ = Ω1

µ
 () +

1

2

2

2


¶
  =






(5.12)

the continuity equation is satisfied and Eqs. (52− 56) become
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Here Re depicts the Reynolds number,  the Hartmann number, Pr the Prandtl number, 1

and 2 the scaled stretching variables, 1 2 the velocity slip parameters, Ω the rotation

number and 3 the thermal slip parameter.

To acquire a more simplified form and to remove , Eq. (5.13) is differentiated with respect

to  as follows:
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and the pressure parameter  can be determined by using Eqs. (5.13) and (5.17)
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Also pressure term can be computed by integrating Eq. (5.15) w.r.t  and taking limit from 0

to . It is
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Shear stresses at lower rotating disk in radial and tangential directions are   and  
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Total shear stress is defined in the form

 =

q
2 + 2 (5.23)

98



At lower and upper disks, the 1 and 2 are expressed as
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where  = Ω1 is the local Reynolds number. Rates of heat transfer for lower and upper

disks are
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where wall heat flux  is given by
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Nusselt numbers are as follows:
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5.2 Solutions

We have
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L̃ = ̃ 0000 L̃ = ̃00 L̃ = ̃
00
 (5.33)
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with

L
̃

£
1 + 2 + 3

2 + 4
3
¤
= 0 (5.34)

L̃[5 + 6] = 0 (5.35)

L̃ [7 + 8] = 0 (5.36)

where  ( = 1− 8) are the constants.

5.3 Convergence analysis

The HAM is very powerful technique to construct the series solutions of highly nonlinear dif-

ferential system. In this technique, auxiliary variables }̃  }̃ and }̃ have important role for

adjusting the convergence of series solutions. The }−curves are displayed in order to obtain
meaning values ensuring the convergence (see Figs. (52− 54)). Admissible values of the aux-
iliary parameters are −1 ≤ }

̃
≤ −04 02 ≤ }̃ ≤ 07 and −11 ≤ }̃ ≤ −005. Further the

series solutions converge in the whole region of  (0 ≤  ≤ ∞) when }̃ = −1 }̃ = 05 and

}̃ = −05

Fig. 5.2: }̃−curve for ̃ 00(0)
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Fig. 5.3: }̃−curve for ̃0(0)

Fig. 5.4: }
̃
−curve for ̃0(0)

Table 5.1: Thermophysical properties of magnetite-Fe3O4 and water.

() (3) ()−1 (
3)

Ferrofluid (304) 9.7 5180 25000 3470600

Water (H2) 0.613 997.1 0.05 4166880.9

Table 5.2: HAM solutions convergence when Re = 1 = Ω = 03  = 2 = 05 2 = 07

3 = 01 1 = 04 Pr = 62 and  = 02
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Order of approximation −̃ 00(0) −̃0(0) −̃0(0)
1 0.718142 0.312365 0.350649

5 0.718050 0.331853 0.349395

10 0.718062 0.333083 0.349391

14 0.718063 0.333120 0.349391

16 0.718063 0.333122 0.349391

20 0.718063 0.333122 0.349391

25 0.718063 0.333122 0.349391

30 0.718063 0.333122 0.349391

35 0.718063 0.333122 0.349391

40 0.718063 0.333122 0.349391

45 0.718063 0.333122 0.349391

Table 5.1 is plotted for the thermophysical characteristics of magnetite-Fe3O4 and water.

Table. 5.2 ensures that the series solutions of functions ̃ 00(0) ̃0(0) and ̃
0
(0) are convergent at

six decimal places. It is also witnessed that the 14, 16 and 10 iterations are sufficient for

the convergence solutions respectively for ̃ 00(0) ̃0(0) and ̃
0
(0).

5.4 Discussion

Here impact of significant variables are discussed on the flow field, skin friction, temperature

and Nusselt number.

5.4.1 Radial and axial velocities

Characteristics ofRe on radial and axial velocities are portrayed in Figs. 5.5 and 5.6 respectively.

These Figs. show that by increasing Re there is a decrease in magnitude of radial and axial

velocities of fluid near the lower disk. It is in view of the fact that when Re increases then inertial

effects due to the rotation of lower plate increases which causes the flow slow. Negative values of

axial velocity near the lower disk demonstrates that upper disk is moving faster than the lower

disk. Influence of stretching parameter 2 on radial and axial velocities is presented in Figs.

5.7 and 5.8. By increasing stretching parameter of upper disk 2 the radial velocity reduces at
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lower disk and it enhances near upper disk while axial velocity ̃() decreases. Radial velocity

has negative value near the lower disk. It is because of high stretching and rotation at upper

disk. Likewise axial velocity also have negative value at lower disk (because of low stretching

at the surface of lower disk). Figs. 5.9 and 5.10 depict impact of velocity slip parameter 1 on

radial and axial components. Near the surface of lower and upper disks, the radial velocity of

fluid decreases as 1 is enhanced. There are two point of variation i.e.  = 02 and  = 075.

Fig. 5.10 shows that ̃() is decreased versus 1. This type of velocity shows that as fluid

become more rarefied velocity at both disks decreases because when slip velocity enhances then

there is less transport of momentum in radial direction.

Fig. 5.5: Impact of Re on ̃ 0()

Fig. 5.6: ̃() against Re 
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Fig. 5.7: ̃ 0() against 2

Fig. 5.8: ̃() against 2

Fig. 5.9: ̃ 0() against 1
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Fig. 5.10: Impact of 1 on ̃()

5.4.2 Tangential velocity

Impact of Reynolds number Re, Hartmann number  velocity slip parameter 2, rotational

parameter Ω and nanoparticles volume fraction  is shown in the Figs. (5.11 − 515). Fig.
5.11 indicates behavior of Re on tangential velocity ̃() Here the tangential velocity of fluid

decreases when Re is enhanced. Fig. 5.12 shows outcome of Hartmann number on ̃() Higher

 lead to reduction in the tangential velocity. As magnetic field yields retarding force. It

decelerates the motion of liquid particles. Effect of velocity slip parameter 2 is portrayed

in Fig. 5.13. Tangential velocity of fluid decreases near the lower disk but it has increasing

behavior towards the upper disk for larger values of 2 Due to slip the fluid velocity near the

disk is not equal to the stretching velocity of disk and under the effect of slip the pulling of

stretching disk is transmitted partially to fluid. Fig. 5.14 presents the impact of Ω on tangential

velocity. Here tangential velocity is diminished for both disks for larger Ω. Fig. 5.15 highlights
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the salient aspects of  on ̃() Liquid velocity decreases when  enhances.

Fig. 5.11: Impact of Re on ̃()

Fig. 5.12: ̃() against 
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Fig. 5.13: ̃() against 2.

Fig. 5.14: ̃() against Ω

Fig. 5.15: ̃() against 
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5.4.3 Dimensionless temperature

In Figs. (5.16− 518) the impact of Re  and 3 on thermal field is demonstrated. Fig. 5.16

witnesses impact of Re on temperature ̃() It shows that by increasing Re the temperature

enhances. Fig. 5.17 shows outcome of  on temperature. Fluid temperature increases when 

is enhanced. Physically, for higher  the thermal conductivity and thermal layer are increased.

Importance of thermal slip 3 on ̃ is portrayed in Fig. 5.18. Near the lower disk the fluid

temperature decreases while at upper disk the temperature is increased for increasing 5 In

fact when we increase thermal slip, resistance to transfer heat to the fluid particles enhances

and consequently the temperature decreases.

Fig. 5.16: ̃() against Re 

Fig. 5.17: ̃() against 
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Fig. 5.18: ̃() against 3

5.4.4 Skin friction coefficient

Table 5.3 depicts the impact of stretching variables, scaled stretching parameters, Reynolds

number Re and Hartmann number  on skin friction at both disks. It is found that at lower

disk the Re 1 reduces for higher velocity slip variables 1, 2 while it increases for the scaled

stretching parameters 1, 2 Re and  It also shows that skin friction coefficient at upper

disk reduces for increasing value of 1, 2 and  and it increases for higher 1, 2 and Re 

Table 5.3: Numerical investigation for (Re 1Re 2) versus various parameters.
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1 2 1 2 Re  Re 1 Re 2

0.5 0.7 0.4 0.9 0.3 0.5 1.3828 2.1972

0.6 1.2215 1.9391

0.7 1.1038 1.7393

0.5 0.8 1.3673 2.1892

0.9 1.3549 2.1829

0.7 0.5 1.5853 2.2393

0.6 1.7921 2.2813

0.4 1.0 1.4206 2.4130

1.1 1.4585 2.6296

0.9 0.4 1.3890 2.1970

0.5 1.3952 2.1972

0.3 0.6 1.3892 2.1950

0.7 1.3957 2.1930

5.4.5 Nusselt number

Table 5.4 witnesses outcome of thermal slip parameter 3 velocity slip parameter 1 solid

volume fraction  Reynolds number Re and Hartmann number  on Nusselt number at lower

and upper disks. Clearly the Nusselt number at lower disk is increased when 1  and  are

enhanced and it decays for larger values of 3 and Re . Moreover Nusselt number at upper disk

is decreasing function of 3 1 and  and increasing function of  and Re 

Table 5.4: Numerical investigation for
³
̃
0
(0) ̃

0
(1)
´
versus different parameters.
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3 1  Re  −


̃
0
(0) −


̃
0
(1)

0.9 0.5 0.2 0.3 0.5 0.55853 0.58602

1.0 0.52121 054686

1.1 0.48857 0.51261

0.9 0.6 0.55966 0.58453

0.7 0.56062 0.58330

0.5 0.3 0.70067 0.72876

0.4 0.87827 0.90705

0.2 0.4 0.55465 0.59082

0.5 0.55089 0.59551

0.3 0.6 0.55855 0.58600

0.7 0.55857 0.58598

5.5 Conclusions

Here flow and heat transport of ferrofluid induced by two stretched rotating disks with velocity

and thermal slips are explored. Keypoints are as follows:

• For increasing value of Re the magnitude of radial velocity of fluid decreases near the
surfaces of the disks.

• Outcomes of 2 and Ω on tangential velocity are different.

• Fluid temperature increases for larger solid volume fraction of nanofluid 

• Skin friction coefficient reduces for increasing velocity slip parameters.

• Heat transfer rate decreases by increasing thermal slip parameter.
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Chapter 6

Computations of probable error and

statistical declaration for radiated

reactive flow

Abstract: This chapter focuses upon computations of statistical declaration and probable error for

radiative flow between two stretchable rotating disks. Thermal radiation and Joule heating are present.

Homogenous and heterogeneous reactions are also implemented. The thermophysical characteristics of

nanofluids are scrutinized using silver and copper nanoparticles. Statistical declaration and probable

error for coefficient of skin friction and heat transfer rate are calculated. Convergent solutions of the

involved problems are obtained and discussed. Coefficient of skin friction and Nusselt number are

calculated and discussed. Radial and axial velocities have opposite impacts for stretching parameters

of lower and upper disks. Concentration decays for both Schmidt number and homogeneous reaction

variable. Coefficient of skin friction is less for larger rotational parameter at both disks. Opposite

behavior of heat transfer rate is observed at lower and upper disks for increasing Eckert number. For

limiting cases comparisons with previously available results [23, 52, 53] in the literature are made and

an excellent agreement is noticed.
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6.1 Physical model and mathematical formulation

Consider nanofluid flow between two continuously stretching rotating disks. Skin friction and

heat tranfer rate are discussed and calculated via statistical declaration and probable error.

We have considered  −2 and  −2 as nanoparticles. Lower disk is stretched and

rotating rate with 1 and Ω1 at  = 0. Both disks are at a distance  (see Fig. 6.1)

Fig. 6.1: Flow geometry.

Liquid is conducting electrically with magnetic field of strenght 0. Flow under consider-

ation is in presence of Joule heating and radiation. Homogeneous-heterogeneous reactions are

considered. The cubic autocatalytic homogeneous reaction is

 + 2→ 3 rate = 
2 (6.1)

at the stretched surface the first order isothermal reaction satisfies

 →  rate =  (6.2)

Here  and  are the rate constants and  and  are chemical species with concentrations

 and . We adopted cylindrical coordinates (  ) with velocity (̂ ̂ ̂). The resulting
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problems satisfies the following expressions

̂


+

̂


+

̂


= 0 (6.3)

̂
̂


+ ̂

̂


− ̂2


= − 1



̂


+ 

µ
2̂

2
+
1



̂


+

2̂

2
− ̂

2

¶
− 


20 ̂ (6.4)

̂
̂


+ ̂

̂


+

̂̂


= 

µ
2̂

2
+
1



̂
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2̂
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− ̂

2

¶
− 
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20 ̂ (6.5)

̂
̂


+ ̂

̂


= − 1


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2
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

̂
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̂
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
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µ
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¶
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̂ = 1 ̂ = Ω1 ̂ = 0 ̂ = ̂1 



=  




= − at  = 0

̂ = 2 ̂ = Ω2 ̂ = ̂2, → 0 → 0 at  =  (6.10)

in which ̂ indicates pressure, ̂  ̂1 and ̂2 the temperature of fluid, lower disk and upper

disk, ∗ Stefan Boltzmann constant,  the density, ∗ the mean absorption coefficient, 

the thermal conductivity  the electrical conductivity, () the heat capacitance and 

dynamic viscosity. These definitions satisfy

 =  (1− ) +  (6.11)




=

 + 2 − 2( − )

 + 2 + 2( − )
 (6.12)

() = () (1− ) + () (6.13)

 =


(1− )25
 (6.14)
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´

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where subscript  represents thermophysical properties of nanofluid,  for nano-solid particles,

 explains base fluid and  denotes the solid volume fraction of nanoparticles.

We consider Von-Karman transformations

̂ = Ω1̃
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



1

Re
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̃(0) = 0, ̃(1) = 0 ̃ 0(0) = 1 ̃
0(1) = 2 ̃(0) = 1

̃(1) = Ω ̃(0) = 1 ̃(1) = 0 ̃
0
(0) = 2̃(0) ̃(1) = 1

̃0(0) = −2̃(0) ̃(1) = 0  (0) = 0 (6.23)

115



with
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where RePr   Ω 1 2 1 and 2 and  denote the Reynolds number, Prandtl

number, Eckert number, Hartmann number, ratio of diffusion coefficients, Schmidt number, ro-

tation number, scaled stretching parameters, homogeneous reaction variable, and heterogeneous

reaction variable. For comparable size  =  = 1 i.e.,  = 1 one has

̃() + ̃() = 1 (6.25)

From expressions (6.21) and (6.22) one obtains
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subject to

̃
0
(0) = 2̃(0) ̃(1) = 1 (6.27)

Considering Eq. (6.17) and removing  we differentiate it with respect to  and obtain

1

(1− )25(1− +


)

̃  +Re

Ã
2̃ ̃ 000 + 2̃̃0 − 

1− +







̃ 00
!
= 0 (6.28)

Also the pressure parameter  can be obtained by using Eq. (6.17) and Eq. (6.24) as

∈= 1

(1− )25
̃ 000(0)−Re

µ
1− +






¶"
(̃ 0(0))2 − (̃(0))2 + 

1− +







̃ 0(0)

#
 (6.29)

Integrating Eq. (6.19) with respect to  to get pressure term and taking limit from 0 to  we

116



have

1

1− +



 = −2

"
Re ̃2 +

1

(1− )25(1− +


)
(̃ 0 − ̃ 0(0))

#
 (6.30)

At lower disk the shear stress in radial and tangential directions are   and  

  = 
̂



¯̄̄̄
=0

=
Ω1̃

00(0)
(1− )25

   = 
̂



¯̄̄̄
=0

=
Ω1̃

0(0)
(1− )25

 (6.31)

Total shear stress  is

 =

q
2 + 2 (6.32)

Mathematically 1 and 2 is defined as

1 =
|=0

 (Ω1)
2
=

1

Re(1− )25
[(̃ 00(0))2 + (̃0(0))2]12 (6.33)

2 =
|=
 (Ω1)

2
=

1

Re(1− )25
[(̃ 00(1))2 + (̃0(1))2]12 (6.34)

in which local Reynolds number is  =
Ω1

. Nusselt numbers are

1 =


 (̂1 − ̂2)

¯̄̄̄
¯
=0

 2 =


 (̂1 − ̂2)

¯̄̄̄
¯
=

 (6.35)

Wall heat flux  satisfies

|=0 = − 
̂


+ 

¯̄̄̄
¯
=0

= −(̂1 − ̂2)



Ã
 +

16∗̂ 32
3∗

!
̃
0
(0) (6.36)

|= = − 
̂


+ 

¯̄̄̄
¯
=

= −(̂1 − ̂2)



Ã
 +

16∗̂ 32
3∗

!
̃
0
(1) (6.37)

Nusselt numbers can be written as follows:

1 = −
µ



+

¶
̃
0
(0) 2 = −

µ



+

¶
̃
0
(1) (6.38)
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6.2 Solution technique

We have

̃0() = 1 − 212 −2
2 +1

3 +2
3 (6.39)

̃0() = 1 + (Ω− 1) (6.40)

̃0() = 1−  (6.41)

̃0() =
1 + 2

1 + 2
 (6.42)

L
̃
= ̃ 0000 L̃ = ̃00 L

̃
= ̃

00
 L

̃
= ̃

00
 (6.43)

with

L
̃

£
1 + 2 + 3

2 + 4
3
¤
= 0 (6.44)

L̃[5 + 6] = 0 (6.45)

L̃ [7 + 8] = 0 (6.46)

L
̃
[9 + 10] = 0 (6.47)

6.3 Convergence region

Figs. 6.2 and 6.3 are sketched for the graphical representation of convergence series solution

with the help of auxiliary variables }
̃
 }̃ }̃ and }̃. These variable show significant role in

series solutions. The suitable ranges for both −2 and −2 are −22 ≤ }̃ ≤ −04
−24 ≤ }̃ ≤ −01 −09 ≤ }̃ ≤ −01−12 ≤ }̃ ≤ −01 and −22 ≤ }̃ ≤ −04 −24 ≤ }̃ ≤
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−01 −08 ≤ }̃ ≤ −02−1 ≤ }̃ ≤ −01

Fig. 6.2: ~−curve for −water.

Fig. 6.3: ~−curve for −water.
Table 6.1 includes thermophysical properties of nanofluids (2). Also the conver-

gence of series solutions for both −2 and −2 is displayed in Tables (6.2 63). For

silver water nanofluid the 7 order of approximation is appropriate for convergence of veloc-

ity in −direction ̃ 00(0) and temperature ̃
0
(0) and 8 and 11 order of approximations are

sufficient for convergence of velocity in −direction ̃00(0) and concentration ̃
0
(0) (see Table

6.2) Now for copper water nanofluid 11 iteration is sufficient for the convergence of velocity

in both directions and temperature and concentration converge upto 10 and 15 order of

approximations respectively (see Table 6.3). Table 6.4 shows the comparison of present flow
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with previous literature and we found in an excellent agreement.

Table 6.1: Thermophysical properties of silver, copper and water.

() (3) ()−1 () (
3)  × 10−5(1)

Silver () 429 10490 6.30×107 235 2465150 1.89

Copper () 401 8933 5.96×107 385 3439205 1.67

Water (2) 0.613 997.1 0.05 4179 4166880.9 21

Table 6.2: Convergence series solutions for  −2 nanoliquid when  = 02 Re = 07

 = 01 1 = 04 2 = 07 Ω = 02  = 04  = 07  = 09 1 = 04 and 2 = 03

−water
Order of approximations −̃ 00(0) −̃00(0) −̃0(0) ̃

0
(0)

1 2.85359 0.794533 0.923518 0.229412

7 2.88268 0.798022 0.910076 0.229946

8 2.88268 0.798023 0.910076 0.229967

10 2.88268 0.798023 0.910076 0.229962

11 2.88268 0.798023 0.910076 0.229959

13 2.88268 0.798023 0.910076 0.229959

14 2.88268 0.798023 0.910076 0.229960

15 2.88268 0.798023 0.910076 0.229960

30 2.88268 0.798023 0.910076 0.229960

40 2.88268 0.798023 0.910076 0.229960

45 2.88268 0.798023 0.910076 0.229960
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Table 6.3: Convergence of series solution for −2r nanoliquid when  = 02 Re = 07

 = 01 1 = 04 2 = 07 Ω = 02  = 04  = 07  = 09 1 = 04 and 2 = 03

−water
Order of approximations −̃ 00(0) −̃00(0) −̃0(0) ̃

0
(0)

1 2.85390 0.798260 0.922977 0.229412

7 2.89500 0.800865 0.909389 0.229936

8 2.89513 0.800914 0.909393 0.229960

10 2.89510 0.800902 0.909392 0.229954

11 2.89509 0.800900 0.909392 0.229950

13 2.89509 0.800900 0.909392 0.229951

14 2.89509 0.800900 0.909392 0.229952

15 2.89509 0.800900 0.909392 0.229951

30 2.89509 0.800900 0.909392 0.229951

40 2.89509 0.800900 0.909392 0.229951

45 2.89509 0.800900 0.909392 0.229951

Table 6.4: Comparison of ̃ 00(0) and ̃0(0) with [3], [9] and [11] when  = 1 = 2 = = 0

and Re = 1.

Ω −1 −08 −03 00 05

̃ 00(0)[3] 0.06666 0.08394 0.10395 0.09997 0.06663

−̃0(0)[3] 2.00095 1.80259 1.30442 1.00428 0.50261

̃ 00(0)[9] 0.06666 0.08394 0.10395 0.09997 0.06663

−̃0(0)[9] 2.00095 1.80259 1.30442 1.00428 0.50261

̃ 00(0)[11] 0.06666 0.08399 0.10395 0.09997 0.0667

−̃0(0)[11] 2.00095 1.80259 1.30443 1.00428 0.50261

Present result for ̃ 00(0) 0.06666314 0.08394207 0.1039509 0.09997221 0.06663419

Present result for −̃0(0) 2.000952 1.802588 1.304424 1.004278 0.5026135
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6.3.1 Surface drag force

Here surface drag force at lower and upper disks for  = 01 and  = 07 is examined in

Table 6.5 and 6.6. It is noted that for silver and copper water nanofluids the skin friction is an

increasing behavior of Hartmann number, stretching parameter, nanoparticle volume fraction

while it depicts declining behavior for Reynolds number and rotation variable at lower disk. At

upper disk the surface drag force enhances versus  2 Re,  and it decreases for Ω It is

noted that  −2 and −2 nanoliquids have same results qualitatively.

Table 6.5: Analysis of (0 1) for both −2 and −2 nanofluid at  = 01

when Pr = 6.2, 1 = 04 and Ω = 02

 = 01

2 Re  Ω 0() 1() 0() 1()

0.7 0.7 0.2 0.2 5.225243 6.714171 5.2474 6.6843

0.8 5.530797 7.440644 5.5563 7.4062

0.9 5.835775 8.174176 5.8647 8.1346

0.7 0.8 5.198350 6.754186 5.2234 6.7198

0.9 5.171846 6.794497 5.1997 6.7554

0.7 0.3 7.308686 9.355921 7.3421 9.3113

0.4 10.80334 13.67265 10.849 13.613

0.2 0.3 5.193760 6.669382 5.2147 6.6404

0.4 5.170936 6.626625 5.19020 6.5989

Table 6.6: Analysis of (0 1) for both  −2 and −2 nanofluid at  = 07

when Pr = 6.2, 1 = 04 and Ω = 02
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 = 07

2 Re  Ω 0() 1() 0() 1()

0.7 0.7 0.2 0.2 5.327599 6.722489 5.349147 6.694619

0.8 5.625798 7.460950 5.650759 7.428612

0.9 5.923961 8.205939 5.952477 8.168640

0.7 0.8 5.317195 6.761664 5.341417 6.729878

0.9 5.307636 6.800607 5.334426 6.764926

0.7 0.3 7.441537 9.367453 7.474079 9.325591

0.4 10.97524 13.69127 11.02121 13.63493

0.2 0.3 5.289705 6.678586 5.310216 6.651652

0.4 5.259247 6.638323 5.278385 6.612600

6.3.2 Nusselt number

Behaviors of embedded parameters on Nusselt number at both disks for  = 01 and  = 07

are examined in Tables 6.7 and 6.8. It is noted that for both −2 and −2 nanofluids

the Nusselt number enhances for larger nanoparticle volume fraction  stretching parameter

1 radiation parameter  while it displays decreasing impact for Reynolds number Re and

Eckert number  at lower disk. At upper disk the Nusselt number is enhanced versus  ,

Re,  and it decreased only for 1 It is noted that both −2 and −2 nanoliquids

have similar results qualitatively.

Table 6.7: Analysis of (0 1) for both −2 and −2 at  = 01 when

Pr = 62, 1 = 04 2 = 07  = 04,  = 09 and Ω = 02
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 = 01

  Re 1 0() 1() 0() 1()

0.4 0.7 0.7 0.4 1.9530 2.4153 1.9513 2.4246

0.5 2.0532 2.5148 2.0515 2.5241

0.6 2.1535 2.6144 2.1518 2.6236

0.4 0.8 1.9282 2.4297 1.9266 2.4390

0.9 1.9034 2.4441 1.9018 2.4533

0.7 0.8 1.9251 2.4547 1.9232 2.4654

0.9 1.8971 2.4942 1.8949 2.5066

0.7 0.5 1.9888 2.3883 1.9891 2.3961

0.6 2.0237 2.3619 2.0261 2.3681

Table 6.8: Analysis of (0 1) for both −2 and −2 at  = 07 when

Pr = 62, 1 = 04 2 = 07  = 04,  = 09 and Ω = 02

 = 07

  Re 1 0() 1() 0() 1()

0.4 0.7 0.7 0.4 0.97233 2.9740 1.9513 2.4246

0.5 1.0735 3.0721 2.0516 2.5241

0.6 1.1745 3.1705 2.1518 2.6236

0.4 0.8 0.80738 3.0683 1.9266 2.4390

0.9 0.64243 3.1626 1.9018 2.4533

0.7 0.8 0.80587 3.0946 1.9232 2.4654

0.9 0.63979 3.2157 1.8949 2.5066

0.7 0.5 0.98604 2.9483 1.9891 2.3960

0.6 0.99264 2.9253 2.0262 2.3681

6.3.3 Statistical approach

Now we discuss outcome of important variables on flow and temperature. First we calculate

the surface drag force and Nusselt number of − and −water nanofluids for  In Tables

6.9 and 6.10 we construct the values of correlation coefficient 0. Values of 0 always range
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from -1 to 1. Interdependence of parameters on skin friction and Nusselt number for −2

and  −2 nanofluids is shown in these tables. Direction and magnitude of correlation is

found by coefficient of correlation (0)

Table 6.9: Esimations of 0 for (0 1).

0 0() 1()

 = 01  = 07  = 01  = 07

2 0.9999999 0.9999999 0.99999610 0.99999677

Re -0.9999911 -0.99970151 0.99999773 0.99999853

 0.98950025 0.98963065 0.99048074 0.99046514

Ω -0.9957896 -0.99803328 -0.99991022 -0.9996884

0 0() 1()

 = 01  = 07  = 01  = 07

2 0.99999989 0.9999999 0.9999966 0.9999972

Re -0.9999934 -0.9995802 0.9999996 0.9999984

 0.9895724 0.98968364 0.9904030 0.9903933

Ω -0.9965923 -0.9983263 -0.9998683 -0.9996204

Table 6.10: Values of 0 for Nusselt number.

0 0() 1()

 = 01  = 07  = 01  = 07

 0.9999999 0.9999999 0.9999999 0.88087129

 -0.9999999 -0.9999999 0.9999999 0.8801457

Re -0.9999994 -0.999999 0.9999997 0.88377981

1 0.9999729 0.9801799 -0.9999789 0.8622275

0 0() 1()

 = 01  = 07  = 01  = 07

 0.9999999 0.9999999 0.9999999 0.9999999

 -0.999999 -0.999999 0.9999979 0.9999979

Re -0.9999979 -0.9999979 0.9999960 0.9999960

1 0.9999809 0.9999854 -0.9999869 -0.9999744
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6.3.4 Probable error (P.E)

Probable error of skin friction (drag force) and Nusselt number (heat transfer rate) for both

disks is shown in Tables 6.11 and 6.12 respectively. Probable error is dependent on the value

of 0. We calculate  to check how much authentic and accurate is value of 0 Fisher [51]

gave the idea of probable error. Mathematically

(0) =
1− 02√


× 06745

where  highlights the number of observations and value 0.6745 is utilized because in expression

̂ ± 06745̂ 50% of total area is covered in a normal distribution. Here ̂ and ̂ denote the

mean and standard deviation.

Table 6.11: Estimations of (0) for (0 1) for  −2.

(0) 0() 1()

 = 01  = 07  = 01  = 07

2 0.000000778 0.0000000778 0.000003037 0.000002515

Re 0.000007009 0.0002324429 0.000001767 0.000001144

 0.008134751 0.0080342496 0.007378744 0.007390779

Ω 0.003272347 0.0015302647 0.000069921 0.000242650

(0) 0() 1()

 = 01  = 07  = 01  = 07

2 0.00000000155 0.000000778 0.0000026480 0.0000021807

Re 0.00000511403 0.000326890 0.0000031153 0.0000012461

 0.00807914565 0.007993405 0.0074387136 0.0074461958

 0.0026495497 0.001302462 0.0001025671 0.0002955936

Table 6.12: Values of () for Nusselt number.
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() 0() 1()

 = 01  = 07  = 01  = 07

 0.0000000778 0.000000778 0.000000778 0.08725630

 0.0000000778 0.0000000778 0.0000000778 0.08775390

Re 0.0000004673 0.000000778 0.0000002336 0.085257588

1 0.0000211064 0.0152838165 0.0000164334 0.099911758

(0) 0() 1()

 = 01  = 07  = 01  = 07

 0.000000778 0.000000778 0.0000000778 0.0000000778

 0.000000778 0.000000778 0.000001635 0.000001635

Re 0.000001635 0.000001635 0.000003115 0.0000031153

1 0.000014875 0.000011371 0.000010202 0.0000199381

We conclude our final result as

0 ≺ (0)    

0 Â 6(0)   

6.3.5 Statistical declaration about parameters

Values of 0

(0)
for (0 1) and (0 1) are shown in Tables 6.13 and 6.14. We

conclude our result by checking the all values of 0

(0)
in tables that they are satisfying the

relation 0

(0)
Â 6. Hence we concluded that parameters are strongly related to the physical

characteristics and correlation is noteworthy.

Table 6.13: Values of 0

(0)
for (0 1).
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0

(0)
0() 1()

 = 01  = 07  = 01  = 07

2 128534.69 128534.69 329271.02 397613.02

Re 142672.43 4300.8643 565929.67 135.3035

 121.63866 123.17663 134.23432 134.01379

Ω 304.305053 652.1964991 14300.570 4119.8780

0

(0)
0() 1()

 = 01  = 07  = 01  = 07

2 645161219.4 128534.69 377642.2205 458567.0656

Re 195539.2127 125.050613 321027.1589 802502.5279

 122.484868 123.812522 133.1417034 133.0066153

 376.1364809 766.491690 9748.431027 3382.810152

Table 6.14: Values of 0

(0)
for (0 1).

0

(0)
0() 1()

 = 01  = 07  = 01  = 07

 128534.69 128534.69 128534.69 10.095217

 128534.69 128534.69 128534.69 10.0297046

Re 2139952.79 128534.69 4280820.6 10.3659959

1 47377.7100 64.1318809 60862.988 8.629890

0

(0)
0() 1()

 = 01  = 07  = 01  = 07

 128534.69 128534.69 128534.69 128534.69

 128534.69 128534.69 611619.5107 611619.5107

Re 611619.5107 611619.5107 321026.0032 321026.0032

1 67225.60672 87949.4635 98018.7120 50154.19801

6.4 Graphical illustration

This section is arranged for the physical interpretation of flow variables on the flow field, skin

friction, temperature and Nusselt number in the presence of both  − 2 and  −2
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nanoliquids.

6.4.1 Radial and axial velocity components

Impact of Reynolds number Re for velocity components (radial, axial) is described in Figs.

6.4 and 6.5. For an increase in Re the magnitude of velocity decreases for lower disk because

inertial forces have direct relation with Reynolds number. Here clearly remarked that velocity

for upper disk is more than lower one. Impact of 1 velocity components (radial, axial) is

shown in Figs. 6.6 and 6.7. Velocities in radial and axial directions enhance closed to the lower

disk for larger 1 and magnitude of these velocities decays near the upper disk. Negative values

of axial velocity near the upper disk indicate that velocity of lower disk is more than upper

disk. Figs. 6.8 and 6.9 indicate 2 effect on ̃ 0() and ̃(). Clearly these velocities at lower

disk decay for 2 while magnitude increases near upper disk. Physically, the stretching rate

of upper is more. Behavior of rotational parameter Ω is examined in Figs. 6.10 and 6.11. We

noted that ̃ 0() and ̃() decay near the lower disk and magnitude of these velocities increases

at upper disk. It is due to the fact that for larger Ω the rotation at upper disk enhances so

velocity is more at upper disk. Impact of Hartmann number for axial velocity is plotted in Fig.

6.12. Hartmann number is associated with the Lorentz force (which is resistive force) and as a

result the velocity decays. Graphs overlap for silver and copper water nanofluids.

Fig. 6.4: ̃ 0() via Re 
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Fig. 6.4: ̃() via Re 

Fig. 6.6: ̃ 0() via 1

Fig. 6.7: ̃() against 1
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Fig. 6.8: ̃ 0() against 2

Fig. 6.9: ̃() against 2

Fig. 6.10: ̃ 0() against Ω
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Fig. 6.11: ̃() against Ω

Fig. 6.12: ̃() against 

6.4.2 Tangential velocity

Impact of  on ̃() is displayed in Fig. 6.13. It is worthmentioning that ̃() decreases when

 is increased. Impact of 2 on ̃() is shown in Fig. 6.14. Here tangential velocity is more

for higher 2. Fig. 6.15 is displayed for Ω on ̃() Tangential velocity is increased for larger
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Ω Outcomes of Re on ̃() is examined in Fig. 6.16. Here ̃() for Re is enhanced

Fig. 6.13: ̃() against 

Fig. 6.14: ̃() against 2
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Fig. 6.15: ̃() against Ω

Fig. 6.16: ̃() against Re 

6.4.3 Temperature

Fig. 6.17 is displayed to predict impact of Hartmann number on () Temperature enhances

for higher  Resistive force in view of  increases. As a result temperature enhances. Figs.

6.18 and 6.19 show that temperature has opposite behavior for larger 1 and 2 Influence of

Re on temperature is described in Fig. 6.20. Here ̃() is increased for Re  Figs. 6.21 and

6.22 portrayed outcome of radiation parameter  and Eckert number  on ̃() Radiative

heat transfer rate enhances for higher  because for larger  the coefficient of mean absorption

decreases and thus fluid temperature increases (see Fig. 6.21). With an increase in values of

the  resistance between the particles enhances and heat produces. This leads to an increase
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in temperature (see Fig. 6.22).

Fig. 6.17: ̃() against 

Fig. 6.18: ̃() against 1
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Fig. 6.19: ̃() against 2

Fig. 6.20: ̃() against Re 

Fig. 6.21: ̃() against 
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Fig. 6.22: ̃() against 

6.4.4 Concentration

Figs. 6.23 and 6.24 are depicted to display the characteristics of 1 and 2 on concentration

field ̃(). For larger 1 the fluid concentration enhances while concentration reduces for larger

2 Fig. 6.25 displays the impact of Re on fluid concentration ̃(). Fluid concentration declines

versus rising Re  Schmidt number  impact on ̃() is portrayed in Fig. 6.26. For higher 

there is reduction in mass diffusivity because  is the ratio of viscosity to mass diffusivity so

there is reduction in the fluid concentration. Fig. 6.27 shows that concentration of fluid decays

by increasing 1 because reactants are consumed during the homogeneous reactions. Same

results are observed for  and  nanoparticles.

Fig. 6.23: ̃() against 1
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Fig. 6.24: ̃() against 2

Fig. 6.25: ̃() against Re 

Fig. 6.26: ̃() against 
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Fig. 6.27: ̃() against 1

6.5 Final remarks

Here MHD radiated reactive flow between two ratating disks is considered subject to Joule

heating. The key points are

• Radial and axial components are increased at lower disk for 1 while for 2 these com-
ponents are increased at upper disk.

• Tangential velocity for higher stretching and rotational parameters is enhanced

•  and  on temperature have similar effect.

• Stretching parameters 1 and 2 have opposite impact for concentration profile ().

• Concentration of fluid reduces for larger  and 1

• Surface drag force is less for larger Ω at both disks.

• Influences of 1 on heat transfer rate for upper and lower disks are opposite.

• All results are quantitatively similar for silver and copper water nanofluids.
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Chapter 7

Entropy optimized unsteady reactive

flow between two rotating disks with

thermo-diffusion effects

Abstract: This chapter communicates the salient aspects of thermo-diffusions in unsteady reactive

flow with entropy generation. The flow is discussed between two disks. Joule heating and heat gener-

ation/absorption contribution is incorporated in the thermal equation. Thermo-diffusion effect is also

considered. MHD fluid is considered. Velocity and thermal slip conditions at both disks are implemented.

Flow problem is modeled by using Navier-Stokes equations. Homotopy method for convergent series so-

lutions by resulting problems is implemented. The nonlinear expressions for total entropy generation

rate is obtained. The flow parameters are graphically discussed.

7.1 Modeling

Here we consider the MHD nanofluid flow between two rotating disks with chemical reaction.

Lower disk is located at  = 0 and upper disk at distance  apart. Both disks are stretched with

different rates i.e., 1 and 2. The corresponding angular velocities on lower and upper disks

are taken Ω1 and Ω2 Effects of velocity and thermal slips with Joule heating are accounted. ̂1

̂1 and ̂1 represent the temperature, solutal and nanofluid concentrations of lower disk while

temperature, solutal and nanofluid concentration of upper disk are denoted by ̂2 ̂2 and ̂2
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Magnetic field effects are taken through 2() =
20
1−∗ (see Fig. 7.1).

Fig. 7.1: Flow geometry.

The expressions which can govern the present problem are
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where we denote fluid temperature (̂ ), nanoparticles concentration (̂) solutal concentration

(̂) electrical conductivity () fluid pressure (̂), dynamic viscosity () thermal conductiv-

ity () density (), kinematic viscosity (), thermophoretic diffusion coefficient ( ) ( )

and () the Soret and Dufour diffusivities unsteadiness parameter (
∗), Brownian diffusion

coefficient () solutal diffusivity () chemical reaction coefficient () (1) and (2) the

velocity slip coefficients thermal slip coefficient (3) and heat capacitance of fluid and nanofluid

() and () respectively.
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equation (1) is satisfied identically and Eqs. (72− 78) become
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with

Re =
Ω1

2


 Pr =

()


  =

20

Ω1
 1 =

1

Ω1


2 =
2

Ω1
 Ω =

Ω2

Ω1
  =

Ω21
2

(̂1 − ̂2)
  =

() (̂1 − ̂2)

()2


 =
()(̂1 − ̂2)

()
  =

(̂1 − ̂2)

(̂1 − ̂2)
 0 =

∗

Ω1


∗ =
0

()Ω1
  =

 (̂1 − ̂2)

(̂1 − ̂2)
 ∗ =



Ω1
  =




 1 =

1


√
1− 



2 =
2


√
1− 

 3 =
3


√
1− 

 (7.17)

Note that Re denote Reynolds number,  the magnetic parameter, Pr the Prandtl number,

1 and 2 the stretching variables,  the Eckert number, Ω the rotational parameter,  the

thermophoresis variable,  the modified Dufour parameter,  Brownian motion variable,
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 the heat generation/absorption variable  the modified Soret variable,  the chemical

reaction variable, 1 2 the velocity slip variables,  the Schmidt number, 
0 the unsteadiness

parameter,  the dimensionless pressure constant and 3 the thermal slip parameter.

To omit  Eq. (7.12) is differentiated with respect to  and get

̃  +Re

µ
2̃ ̃ 000 + 2̃̃0 − 3

2
0̃ 00 − 0

2
̃ 000 −̃ 00

¶
= 0 (7.18)

and  can be determined by utilizing Eqs. (7.10) and (7.16) as follows:

 = ̃ 000(0) + Re
µ
−(̃ 0(0))2 + (̃(0))2 −0̃ 0(0)− 0

2
̃ 00(0)−̃ 0(0)

¶
= 0 (7.19)

Integrating Eq. (7.12) from 0 to  one obtain

 = 2

∙
Re

µ
0

2
̃ − ̃2

¶
− ̃ 0 + ̃ 0(0)

¸
 (7.20)

Denoting shear stresses   and   at lower disk in radial and tangential directions one have

  = 
̂



¯̄̄̄
=0

=
Ω1̃

00(0)

√
1− ∗

   = 
̂



¯̄̄̄
=0

=
Ω1̃

0(0)

√
1− ∗

 (7.21)

Total shear stress is

 =

q
2 + 2 (7.22)

Skin friction coefficients 0 and 1 at lower and upper disks are

0 =
|=0

( Ω1√
1−∗)

2
=

1

Re
[(̃ 00(0))2 + (̃0(0))2]12 (7.23)

1 =
|=

( Ω1√
1−∗)

2
=

1

Re
[(̃ 00(1))2 + (̃0(1))2]12 (7.24)

where  = Ω1
√
1−  is the local Reynolds number.

Heat transfer rates (0 1) are defined as

0 =

√
1− ∗

(̂1 − ̂2)

¯̄̄̄
¯
=0

 1 =

√
1− ∗

(̂1 − ̂2)

¯̄̄̄
¯
=

 (7.25)
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in which wall heat flux  is

|=0 = − 
̂



¯̄̄̄
¯
=0

= −(̂1 − ̂2)


√
1− ∗

̃
0
(0) (7.26)

|= = − 
̂



¯̄̄̄
¯
=

= −(̂1 − ̂2)


√
1− ∗

̃
0
(1) (7.27)

Nusselt numbers can be written as follows:

0 = −̃0(0) 1 = −̃0(1) (7.28)

Sherwood number is

 =


(1 −2)
 (7.29)

where

 = −

µ




¶¯̄̄̄
=0

 (7.30)

In dimensionless variables one has

(Re)−05 = −̃0(0)

(Re)−05 = −̃0(1) (7.31)

7.2 Entropy modeling

Volumetric expression for entropy generation is addressed as

 =


̂ 2

⎡⎣Ã̂



!2
+

Ã
̂



!2⎤⎦
| {z }

Thermal irreversibility

+


̂
Φ| {z }

Fluid friction irreversibility

+


̂
20(̂

2 + ̂2)| {z }
Joule dissipation irreversibility

+


̂

⎡⎣Ã̂



!2
+

Ã
̂



!2⎤⎦+ 

̂

"
̂



̂


+

̂



̂



#
| {z }

Diffusive irreversibility

 (7.32)
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Φ = 2
h¡

̂


¢2
+ 1

2
(̂)2 +

¡
̂


¢2i
+
£
̂


¤2
+
£
̂

+ ̂



¤2
+
£
 


¡
̂


¢¤2
⎫⎬⎭  (7.33)

 =


̂ 2

⎡⎣Ã̂



!2
+

Ã
̂



!2⎤⎦
| {z }

Thermal irreversibility

+


̂

⎡⎣ 2
¡
̂


¢2
+ 2

2
(̂)2 + 2

¡
̂
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̂

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⎤⎦
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Fluid friction irreversibility

+


̂
20(̂

2 + ̂2)| {z }
Joule dissipation irreversibility

+


̂

⎡⎣Ã̂



!2
+

Ã
̂



!2⎤⎦+ 



"
̂



̂
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+

̂



̂


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| {z }

Diffusive irreversibility

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭


(7.34)

Equation (7.34) represents the four factors which effect entropy generation. First, Second,

third and fourth term represent the thermal irreversibility, fluid friction irreversibility, Joule

heating irreversibility and diffusive irreversibility respectively. After making use of transforma-

tions we obtain

 = ̃
02
1

1

Re
+



Re
(12̃

02 +̃02 +̃ 002) +(̃ 02 + ̃2)

+12
1

Re
02 + 

1

Re
00 (7.35)

̂ =
̂1 − ̂2

2
 ̂ =

̂1 − ̂2
2

 1 =
̂1 − ̂2

̂
=
∆

̂
 2 =

̂1 − ̂2

̂

=
∆̂

̂



 =
Ω21

2

∆
  =

̂

∆Ω1
  =

2

2
  =

( − ∞)


 (7.36)

where ̂ ̂ 1 2   and  denote the mean temperature, mean concentration, temper-

ature difference parameter, concentration difference parameter, diffusive parameter, Brinkman

number and dimensionless parameter respectively.

Dimensionless form of Bejan number () is

 =
       

  
 (7.37)
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or

 =
̃
02
1

1
Re
+ 12

1
Re
̃
02
+  1

Re
̃
0
̃
0

̃
02
1

1
Re
+ 

Re
(12̃

02 +̃02 +̃ 0
02) +(̃ 02 + ̃2)

+12
1
Re
̃02 +  1

Re
̃
0̃0

 (7.38)

7.3 Technique Procedure

Initial approximations and linear operators are

̃0() =
1 + 411 − 221 − 212 −2

2 − 6112 +1
3 +2

3 + 211
3 + 221

3

(1 + 21)(1 + 61)


(7.39)

̃0() =
1 + 2 −  + 2Ω+ Ω

1 + 22
 (7.40)

̃0() =
1 + 3 − 

1 + 23
 (7.41)

̃0() = 1−  (7.42)

̃0() = 1−  (7.43)

L
̃
= ̃ 0000 L̃ = ̃00 L

̃
= ̃

00
 L̃ = ̃00L

̃
= ̃

00
 (7.44)

with

L̃
£
1 + 2 + 3

2 + 4
3
¤
= 0

L̃ [5 + 6] = 0

L
̃
[7 + 8] = 0

L̃ [11 + 12] = 0

L̃ [9 + 10] = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.45)

where  ( = 1− 12) are the constants.

7.4 Convergence analysis

HAM is very useful for solving nonlinear equations. To adjust convergence of nonlinear equa-

tions the convergence control variables }̃  }̃ }̃ }̃ and }̃ have vital role The ~−curves of
̃
00
(0) ̃

0
(0) ̃

0
(0), ̃0(0) and ̃

0
(0) are displayed in Fig. 7.2. Admissible ranges are −25 ≤
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}̃ ≤ −05 −28 ≤ }̃ ≤ −04, −29 ≤ }̃ ≤ −06 −29 ≤ }̃ ≤ −06 and -29 ≤ }̃ ≤ −06
Table 1 shows the convergence of ̃ 00(0) ̃

0
(0) ̃

0
(0) ̃0(0) and ̃

0
(0) upto 7 decimal places. It

illustrates that 11, 15, 19 and 25 orders of approximations are sufficient for ̃ 00(0) ̃
0
(0)

̃
0
(0) ̃0(0) and ̃

0
(0)

Fig. 7.2: ~−curves for ̃ 00(0) ̃0(0) ̃
0
(0) ̃0(0) and ̃

0
(0)

Table 7.1: Different iterations when Re = 03  = 05, Pr = 1, 1 = 04 2 = 09

Ω = 03 1 = 05 2 = 07 3 = 09  = 07  = 01  = 04  = 1  = 02

 = 04  = 01  = 04  = 03

Order of approximation −̃ 00(0) −̃0(0) −̃0(0) −̃0(0) −̃
0
(0)

1 0.71726100 0.34336328 0.15805891 1.0228750 0.99287500

6 0.71760417 0.34018052 0.10126114 1.1231882 1.0562045

13 0.71760417 0.34018052 0.10125987 1.1232292 1.0562331

14 0.71760417 0.34018052 0.10125994 1.1232291 1.0562331

15 0.71760417 0.34018052 0.10125996 1.1232291 1.0562331

20 0.71760417 0.34018052 0.10125996 1.1232291 1.0562331

30 0.71760417 0.34018052 0.10125996 1.1232291 1.0562331

40 0.71760417 0.34018052 0.10125996 1.1232291 1.0562331
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7.5 Discussion

7.5.1 Velocity and temperature

Figs. (73 − 712) show outcomes of magnetic parameter, Reynolds number, slip parameters,
stretching parameters, rotational parameter, thermophoresis parameter, Brownian motion pa-

rameter, heat source parameter, Eckert number and Prandtl number on velocity components

and temperature. Figs. 7.3((a)-(d)) describe the significance of magnetic parameter on ax-

ial, radial, tangential velocities and temperature. Magnitude of axial, radial and tangential

velocities is less for  (see Figs. 7.3 ((a)-(c)). Since  is related with Lorentz force which

acts opposite to liquid motion so velocity reduces. Temperature enhances for larger  (see

Fig. 7.3(d)). With increasing  the resistance between fluid enhances and thus more heat

produces and temperature grows. Figs. 7.4((a)-(d)) depict results of Reynolds number Re on

velocities ( ̃(), ̃ 0() and ̃()) and temperature ̃() At lower disk the magnitude of axial

and radial velocities enhances. It is because of decrease in viscous effects (see Figs. 7.4((a)-(b)).

In Fig. 7.4(c) for larger Re the tangential velocity ̃() reduces. Fig. 7.4(d) elucidate outcome

of Re on thermal field. It is noticed that thermal field boosts for larger Re  Figs. 7.5((a)-(d))

show the impact of velocity slip 1 2 and thermal slip 3 variables on velocity components

and temperature. Figs. 7.5((a)-(b)) depict that axial and radial velocities decay for larger 1

Fig. 7.5(c) depicts that tangential velocity is decreasing function of 2 Under slip condition

the stretching of disk is partially transmitted to the fluid and this causes the fluid velocity to

reduce. Impact of 3 on temperature is depicted in Fig. 7.5(d). Here temperature enhances

via 3 Figs. 7.6((a)-(c)) show the impact of stretching parameters 1 and 2 on axial (̃())

and radial (̃ 0()) velocities. Axial velocity increases at lower disk for larger 1 and magnitude

of velocity starts decreasing near the upper disk (see Fig. 7.6(a)). As expected the stretching

rate of lower disk (1) enhances for larger 1 Radial velocity is also increasing for larger 1

(see Fig. 7.6(b)) Magnitude of axial velocity reduces at lower disk for larger 2 and it boosts

near upper disk (see Fig. 7.6(c)). It is for an increase in stretching rate of upper disk (2). For

higher Ω the rotational velocity increases for upper disk which is responsible for an increase in

tangential velocity ̃() (see Fig. 7.7). Fig. 7.8 gives behavior of thermophoresis parameter 

on temperature ̃() When  enhances then thermophoresis force increases which tends to
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move nanoparticles from hot side to cold side and finally it enhances temperature of fluid. Fig.

7.9 depicts influence of  on ̃() Temperature increases in view of more random motion of

fluid particles for higher  Impact of  on temperature is shown in Fig. 7.10. For higher 

the temperature enhances. Impact of Eckert number  from 0 to 5 is portrayed in Fig. 7.11.

As  increases the mechanical energy of fluid is converted to thermal energy due to inside

friction of molecules. Hence temperature enhancement is observed. For larger values of Pr the

magnitude of temperature diminishes for decrease in liquid thermal diffusivity.

Fig. 7.3: Variation of  on ̃() ̃ 0() ̃() and ̃()
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Fig. 7.4: ̃() ̃ 0() ̃() and ̃() against Re 

Fig. 7.5: 1 2 and 3 variation for ̃() ̃
0() ̃() and ̃()
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Fig. 7.6: Variations of 1 and 2 on ̃() and ̃ 0()

Fig. 7.7: Ω variation for ̃().
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Fig. 7.8:  variation for ̃().

Fig. 7.9:  variation for ̃().

Fig. 7.10: ∗ variation for ̃().

153



Fig. 7.11:  variation for ̃().

Fig. 7.12: Pr variation for ̃().

7.5.2 Solutal (̃()) and nanoparticles (̃()) concentration profiles

Figs. (7.13 − 720) displayed the outcomes of parameters for solutal ̃() and nanoparticles
concentration ̃(). Impact of  on ̃() is examined in Fig. 7.13. Magnitude of ̃() reduces

for larger . Impact of modified Soret parameter  is elucidated in Fig. 7.14. Magnitude of

̃() enhances for larger  Here concentration layer thickness upsures. Outcome of chemical

reaction  on ̃() is analyzed in Fig. 7.15. Here ̃() is an increasing function of . Magnitude

of ̃() increases for larger thermophoresis  (see Fig. 7.16). Effect of  on ̃() is depicted

in Fig. 7.17. Magnitude of ̃() is decreasing for . Influence of  is opposite to the

Brownian diffusion coefficient. For smaller  the penetration depth of nanoparticle reduces
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and penetration depth for larger Sc decays. Moreover an enhancement in  leads to decay for

both concentration rate and heat transfer rate. Fig. 7.18 is displayed to show impact of 

on ̃() Increase in ̃() is noticed for larger . Temperature gradient enhances via . As

we know that concentration field is associated with temperature gradient and temperature is

an increasing function of  therefore larger Nt increase the concentration and related layer

thickness. Behavior of  on nanoparticles concentration ̃() is sketched in Fig. 7.19. With

increase in  the collision and random motion of nanoparticles of fluid grows which produces

more heat and eventually it results decrease in ̃() Clearly ̃() reduces against . Influence

of 0 on ̃() is depicted in Fig. 7.20. For higher 0 the nanoparticles concentration ̃()

reduces.

Fig. 7.13: Sc variation for ̃()

Fig. 7.14: Ld variation for ̃()
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Fig. 7.15: ∗ variation for ̃()

Fig. 7.16: Nt variation for ̃()

Fig. 7.17: Sc variation for ̃()
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Fig. 7.18: Nt variation for ̃()

Fig. 7.19: Nb variation for ̃()

Fig. 7.20: 0 variation for ̃()
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7.5.3 Entropy generation

Impacts of involved parameters on (()) and () are examined in Figs. (7.21-7.36). Oppo-

site effects of magnetic parameter  are observed for (()) and () in Figs. 7.21 and 7.22.

For larger M the entropy generation is sensitive for an enhancement (see Fig. 7.21). Physically

for larger (M) the relation between magnetic fields and fluid strengthens dissipative energy to

thermal diffusion. Also for larger M the resistance increases which causes more heat transfer

rate and as a result () increases. Behavior of  for Bejan number is highlighted in Fig.

7.22. Here  is decreased via We conclude from it that liquid friction irreversibility domi-

nants over heat and mass transfer irreversibilities. Figs. 7.23 and 7.24 are portrayed to show the

influence of Re on () and . Both (()) and () are reduced for higher Re. Retarding

force increases for more Re which resists the liquid flow and so entropy generation decreases.

Further Bejan number Be also reduces for higher Re (see Fig. 7.24). Friction between fluid is

more than heat transfer for larger Re  That is why  reduces. Figs. 7.25 and 7.26 show that

for more temperature difference 1 the entropy generation and Bejan number are enhanced.

For higher 1 the temperature of fluid enhances which increases the heat transfer rate and

consequently () increases (see Fig. 7.25). Since 1 is the dimensionless temperature differ-

ence parameter which increases the heat transfer contribution so Be increases (see Fig. 7.26).

Similar behavior of () and  is remarked for larger dimensionless concentration difference

parameter 2 (see Figs. 7.27 and 7.28). Impact of diffusion coefficient parameter  on ()

and  is sketched in Figs. 7.29 and 7.30. For higher  the () and  are enhanced. Effect

of Brinkman number  on () and  is displayed in Figs. 7.31 and 7.32. For higher 

entropy generation enhances while opposite impact is examined for . Brinkman number mea-

sures the relative importance of production of heat through transportation of heat production

by molecular conduction and viscous dissipation. Meaningful heat generation occurs between

the layers of fluid particles which is responsible for an increase in entropy generation ()

(see Fig. 7.31). For larger Br the contribution of viscous dissipation and Joule heating is more

than heat and mass transfer irreversibilities (see Fig. 7.32). Impact of thermal slip parameter

3 on () and  is depicted in Figs. 7.33 and 7.34. Both (()) and () against 3

are reduced. Figs. 7.35 and 7.36 elucidate the influence of thermophoresis parameter  on
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(()) and (). Clearly both (()) and () are decreased versus for higher Nt.

Fig. 7.21: () against 

Fig. 7.22:  against 
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Fig. 7.23: () against Re 

Fig. 7.24:  against Re 

Fig. 7.25: 1 variation for ()
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Fig. 7.26: 1 variation for 

Fig. 7.27: 2 variation for ()

Fig. 7.28:  against 2
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Fig. 7.29: () against 

Fig. 7.30:  against 

Fig. 7.31: () against 
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Fig. 7.32:  against 

Fig. 7.33: 3 variation for ()

Fig. 7.34:  against 3
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Fig. 7.35: () against 

Fig. 7.36: Nt variation for Be.

7.5.4 Skin friction

Behaviors of skin friction coefficient for slip parameter 1 Reynolds number Re and magnetic

parameter  are shown in Table 7.2. Results show that surface drag force at lower and upper

disks reduces for larger 1 For higher Reynolds number Re the surface drag force increases

at lower and upper disks. Opposite behaviors are observed at both lower and upper disks for

larger  .

Table 7.2: Analysis of (0 1) when Re = 03  = 05, Pr = 1, 1 = 04 2 = 09

Ω = 03 1 = 05 2 = 07 3 = 09  = 04  = 01  = 04  = 1  = 02

 = 04  = 01  = 04  = 03
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1 Re  0 1

0.5 0.3 0.5 0.79415 1.2575

0.6 0.70231 1.1093

0.7 0.63536 0.99463

0.5 0.4 0.79856 1.2574

0.5 0.80303 1.2576

0.3 0.6 0.79782 1.2563

0.7 0.80147 1.2552

0.8 0.80511 1.2542

7.5.5 Nusselt number

Impacts of Eckert number Ec, heat source  and thermophoresis  on Nusselt numbers of

lower and upper disk are displayed in Table 7.3. Magnitude of Nusselt number decreases for

  and  at lower disk. However opposite behaviors are observed for all these parameters

at upper disk.

Table 7.3: Analysis of (0 1) when Re = 0.3,  = 05, Pr = 1, 1 = 04 2 = 09

Ω = 03 1 = 05 2 = 07 3 = 09  = 07  = 01  = 04  = 1  = 02

 = 04  = 01  = 04  = 03

   0 1

0.4 0.4 0.1 0.10126 0.61712

0.5 0.097256 0.62102

0.6 0.093253 0.62493

0.4 0.5 0.045504 0.67379

0.6 -0.019176 0.73993

0.4 0.2 0.075502 0.64750

0.3 0.046172 0.68285

7.5.6 Sherwood number

Table 7.4 displays the physical importance of Sherwood numbers (0 1) for higher Schmidt

number, thermophoresis, Brownian motion and Reynolds number. For larger values of Sc the
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Sherwood number reduces at lower disk while opposite impact is found at upper disk. Rate

of mass transfer is more for higher Nt while mass transfer reduces at upper disk. Sherwood

number diminishes for larger  and Re at lower disk while at upper disk the opposite behavior

is found.

Table 7.4: Analysis of (0 1) when  = 05, Pr = 1, 1 = 04 2 = 09 Ω = 03

1 = 05 2 = 07 3 = 09  = 07  = 01  = 04  = 1  = 02  = 04

 = 01  = 04  = 03

   Re 0 1

1 0.1 0.4 0.3 1.0562 0.94638

1.1 1.0555 0.94782

1.2 1.0548 0.94926

1 0.2 1.1301 0.86278

0.3 1.2165 0.75716

0.1 0.5 1.0461 0.95492

0.6 1.0393 0.96053

0.4 0.4 1.0554 0.94901

0.5 1.0544 0.95168

7.6 Conclusions

Flow between two rotating disks with slip, chemical reaction and Joule heating is examined.

Main findings are as follows:

• For larger values of velocity slip parameter 1 the radial and axial velocities reduce but
temperature enhances via 3

• Temperature is enhanced for    and 

• Solutal and nanoparticle concentration reduce for larger 

• Solutal concentration reduces for larger  and 

•  and  have opposite impacts for concentration.
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• () enhances for larger ,  and .

• Surface drag force is decreasing function of 1

• Sherwood number reduces for  and Re.
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Chapter 8

Nonlinear radiative flow by rotating

disks with entropy generation and

Soret and Dufour effects

Abstract: A computational study is presented for nonlinear radiative flow between two impermeable

stretchable rotating disks. Thermo-diffusion and diffusion-thermo effects are also implemented. Fur-

ther nonlinear radiative heat flux, chemical reaction, dissipation and heat source/sink are considered.

Thermodynamics second law is used for the investigation of entropy generation and Bejan number.

Total entropy generation is inspected for various flow variables. Von-Karman transformations are im-

plemented to develop nonlinear ordinary differential systems. Resulting systems are tackled by semi

computational/analytical technique namely homotopy analysis technique. Particular consideration is

given to the convergence procedure. The impacts of different variables like magnetic interaction, poros-

ity, thermal diffusion, Prandtl number, diffusion thermo, radiation, heat source, Schmidt number and

chemical reaction on fluid velocity, concentration, temperature, volumetric entropy generation rate and

Bejan number are analyzed. Velocity, temperature and concentration gradients at the disk surface are

calculated numerically and discussed through Tables. Velocity reduces for both Hartmann number and

porosity. Hartmann number and radiation parameter enhance the entropy generation and Bejan number.
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8.1 Formulation

Here we consider the incompressible steady flow of viscous fluid between two stretchable rotating

disks. Our target is analyze the entropy generation in the flow with thermo-diffusion and

diffusion-thermo effects. Flow is generated due to stretching of two rotating disks. Lower disk

with stretching rate 1 is placed at  = 0and angular velocity Ω1 while upper disk situated

at  =  stretching rate 2 and rotational velocity Ω2 Liquid fills the porous space. Porous

medium has permeability ∗ In −direction the magnetic field is applied with strength 0

(see Fig. 8.1) Additionally heat transfer analysis is subject to nonlinear radiative flux, heat

source/sink and Joule heating. Chemical reaction effect is also taken in consideration. The

problem under consideration are

Fig. 8.1: Flow geometry.
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After employing transformations to Eqs. (8.2−87) the dimensionless forms of equations become
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0(0) = 1 ̃

0(1) = 2 ̃(0) = 1

̃(1) = Ω ̃(0) = 1 ̃(1) = 0 ̃(0) = 1 ̃(1) = 0  (1) = 0 (8.15)

 =
20
Ω1

  =


∗Ω1
 Pr =




  =

16∗̂ 32
3∗

  =
̂1

̂2
  =

2Ω21

(̂1 − ̂2)


 =
 (̂1 − ̂2)

(̂1 − ̂2)
  =

(̂1 − ̂2)

(̂1 − ̂2)
 ∗ =

0

Ω1
  =




 ∗ =



Ω1


 =
0√
Ω1

 1 =
1

Ω1
 2 =

2

Ω1
 Ω =

Ω2

Ω1
 (8.16)

We remove  from Eq. (8.17) by differentiating it with respect to  and obtain
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8.1.1 Physical quantities

Surface drag forces for upper 1 and lower disk 0 in dimensional form are
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where total shear stress  is
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Dimensionless forms become
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= 1
Re
[(̃ 00(0))2 + (̃0(0))2]12

1 =
|=
(Ω1)2

= 1
Re
[(̃ 00(1))2 + (̃0(1))2]12

⎫⎬⎭ (8.20)

where  =
Ω1


is Reynolds number.

171



Heat transfer rates are defined by

0 =


(̂1 − ̂2)

¯̄̄̄
¯
=0

 1 =


(̂1 − ̂2)

¯̄̄̄
¯
=

 (8.21)

where wall heat flux  is

|=0 = −  ̂

+ 

¯̄̄
=0



|= = −  ̂

+ 

¯̄̄
=



⎫⎪⎬⎪⎭ (8.22)

Nusselt numbers can be written as follows:

0 = −
¡
1 +3

¢
̃
0
(0) 1 = −

¡
1 +3

¢
̃
0
(1) (8.23)

Sherwood number for lower and upper disks are

0 =


(̂1−̂2)

¯̄̄
=0



1 =


(̂1−̂2)

¯̄̄
=



⎫⎪⎬⎪⎭ (8.24)

with

 = − 
̂



¯̄̄̄
¯
=0

  = − 
̂



¯̄̄̄
¯
=

 (8.25)

In dimensionless form the Sherwood numbers become

(Re)−050 = −̃0(0)
(Re)−051 = −̃0(1)

⎫⎬⎭ (8.26)

8.2 Solutions technique

We have

̃0() = +1 − 212 −2
2 − 3

2 +1
3 +2

3 + 2
3 (8.27)

̃0() = 1 + (Ω− 1) (8.28)

̃0() = 1−  (8.29)

̃0() = 1−  (8.30)
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L̃ = ̃ 0000 L̃ = ̃00 L̃ = ̃
00
 L̃ = ̃

00
 (8.31)

with

L̃
£
1 + 2 + 3

2 + 4
3
¤
= 0 (8.32)

L̃[5 + 6] = 0 (8.33)

L
̃
[7 + 8] = 0 (8.34)

L̃ [9 + 10] = 0 (8.35)

where ( = 1− 9) are the constants.

8.3 Entropy generation minimization

In this section mathematical modeling of entropy generation subject to nonlinear thermal ra-

diation, viscous dissipation, Joule heating and thermo-diffusion and diffusion-thermo effects is

presented. Dimensional entropy generation subject to magnetic field only

000 =


̂ 2

Ã
1 +

16∗̂ 32
3∗

!
[∇̂ ]2| {z }

heat transfer irreversibility

+


̂
Φ| {z }

viscous dissipation irreversibility

+
1

̂
[( − )( ×)]| {z }

Joule heating irreversibility

+


̂

[∇̂]2 + 

̂
[∇̂ ∇̂]| {z }

mass transfer irreversibility



⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.36)

Here ̂ and ̂ are mean temperature and concentration respectively and ∇ ∇ Φ and 

are defined as

∇̂ =
"
̂


̂ +

1



̂


̂ +

̂


̂

#
 (8.37)

∇̂ =
"
̂


̂ +

1



̂


̂ +

̂


̂

#
 (8.38)

Φ = 2
h¡

̂


¢2
+ 1

2
(̂)2 +

¡
̂


¢2i
+
£
̂


¤2
+
£
̂

+ ̂



¤2
+
£
 


¡
̂


¢¤2
⎫⎬⎭  (8.39)

 = ( ×) (8.40)
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After substituting Eqs. (8.37-8.40) in Eq. 8.36 we have

000 =


̂ 2

³
1 +

16∗̂ 32
3∗

´µ³
̂


´2
+
³
̂


´2¶
+

20
̂
(̂2 + ̂2)

+ 


³
2
h¡

̂


¢2
+ 1

2
(̂)2 +

¡
̂


¢2i
+
£
̂


¤2
+
£
̂

+ ̂



¤2
+
£
 


¡
̂


¢¤2´
+



̂

³
1

̂

+ 2̂

2
+ 2̂

2

´
+





³
̂


̂

+ ̂


̂


´


⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8.41)

Here first, second, third and fourth terms represent the heat transfer, viscous dissipation, Joule

heating and mass transfer irreversibilities respectively. In dimensionless form the entropy ex-

pression becomes

 = ̃
02
1

h
1 +(̃( − 1) + 1)3

i 1
Re

+


Re
(12̃

02 +∗̃02 +∗̃ 002)

+∗(̃ 02 + ̃2) + 
2

1
̃
02
+ ̃

0
̃
0
 (8.42)

̂ =
̂1 − ̂2

2
 ̂ =

̂1 − ̂2
2

 1 =
̂1 − ̂2

̂
=
∆̂

̂
 2 =

̂1 − ̂2

̂

=
∆̂

̂



 =
Ω21

2

∆̂
  =

̂

∆̂Ω1
 ∗ =

2

2
  =

(̂1 − ̂2)


 (8.43)

8.4 Convergence analysis

HAM provides us opportunity to tackle the nonlinear system of equations. We have ~
̃
 ~̃ ~̃

and ~
̃
as convergence control parameters which help us to control the convergence region. We

draw the ~−curves for ̃ 00(0) ̃0(0) ̃0(0) and ̃
0
(0) at 22nd order of approximations. Straight

regions for auxiliary parameters are noted as −11 ≤ ~̃ ≤ −01 −13 ≤ ~̃ ≤ −02 −10 ≤
~
̃
≤ −04 and −10 ≤ ~

̃
≤ −04 Solution converges for whole region of (0 ≤  ≤ ∞)

Table 1 is constructed to show the numerical values of velocity, temperature and concentration

for convergence. One can see that 23, 16, 45 and 33 iterations are enough for stable

solutions of ̃ 00(0) ̃0(0) ̃
0
(0) and ̃

0
(0) respectively. We can calculate the residual errors for
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̃  ̃ ̃ and ̃ by using formulae:

∆
̃
 =

1Z
0

[
̃
( ~̃ )]

2

∆
̃
 =

1Z
0

[
̃
(~̃)]2

∆̃
 =

1Z
0

[̃
(~̃)]

2

∆
̃
 =

1Z
0

[̃
(~̃)]

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

In Figs. (8.2(− )) the ~-curves for residual error of ̃  ̃ ̃ and ̃ are displayed for admissible

ranges of ~.

Fig. 8.2a: ~−curves for ̃ 00(0) ̃0(0) ̃0(0) and ̃
0
(0)
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Fig. 8.2b: Residual error for ̃ 

Fig. 8.2c: Residual error for ̃

Fig. 8.2d: Residual error for ̃
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Fig. 8.2e: Residual error for ̃

Table 8.1: Numerical values for convergence of series solution.

Order of approximation ̃ 0(0) −̃0(0) −̃0(0) −̃0(0)
1 0.0616667 1.55333 0.169042 0.950000

16 0.197796 1.40890 0.505364 1.38873

21 0.197792 1.40890 0.501088 1.38763

23 0.197793 1.40890 0.501430 1.38768

33 0.197793 1.40890 0.501795 1.38775

45 0.197793 1.40890 0.501810 1.38775

50 0.197793 1.40890 0.501810 1.38775

60 0.197793 1.40890 0.501810 1.38775

8.5 Physical results

In this portion we discussed the impact of involved variables on the temperature, velocity,

concentration, entropy generation, Bejan number, skin friction, Nusselt and Sherwood numbers

through differeent graphs and tables.

8.5.1 Velocity components

Figs. (8.3− 88) are sketched for influence of Hartmann number () and porosity parameter
() on velocities profiles

³
̃  ̃ 0 ̃

´
for upper and lower disks. Behaviors of axial, radial and

tangential velocities
³
̃  ̃ 0 ̃

´
at lower and upper disk against Hartmann number ( =
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0 05 1 15 2) are shown in Figs. (8.3− 85). Magnitude of
³
̃  ̃ 0 ̃

´
decline with increasing

Hartmann number () Physically for magnetic variable the Lorentz force creates resistance

between the fluid particles. Due to this resistance motion of the fluid particles slows down

throughout the system. Figs. (8.6 − 87) portrayed the influence of permeability parameter
(∗) on velocities

³
̃  ̃ 0 ̃

´
at both disks It is noted that velocities are decreasing functions

of (∗ = 01 05 09 13 17). Actually for larger permeability parameter (∗) resistance for

fluid particles to flow increases due to porosity and consequently magnitude of
³
̃  ̃ 0 ̃

´
decreases.

Fig. 8.3: Axial velocity via 

Fig. 8.4: Radial velocity via 
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Fig. 8.5: Tangential velocity via 

Fig. 8.6: Axial velocity via ∗

Fig. 8.7: Radial velocity via ∗
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Fig. 8.8: Tangential velocity via ∗

8.5.2 Temperature

Figs. (8.9− 814) highlight the trend of
³
̃()

´
at both disks for radiation parameter, Prandtl

number, Hartmann number, Eckert number, heat generation/absorption parameter, and Dufour

number. Fig. 8.9 delineates the trend of temperature
³
̃()

´
against Pr  For rising estimations

of Pr
³
̃()

´
shows decreasing trend. Since (Pr) is ratio of momentum diffusivity to thermal

diffusivity therefore for larger (Pr) decrease in thermal diffusivity occurs which causes reduction

in
³
̃()

´
(at both disks) Influence of  on

³
̃()

´
is revealed in Fig. 8.10. For increasing

values of ( = 05 1 15 20 25) fluid temperature enhances. Due to higher values of () mean

absorption coefficient decreases because it is in inverse relation with () so
³
̃()

´
increases.

Fig. 8.11 reveals the impact of Hartmann number on thermal field. With increasing values of

( = 05 1 15 2 25) increment in Lorentz force is noticed which produces resistance between

the liquid particles. This resistance produces more heat which is accountable for increase in³
̃()

´
 For higher estimation of Eckert number () behavior of temperature field at lower and

upper disks is noticed in Fig. 8.12. Eckert number shows the relation between kinetic energy

and enthalpy difference which is used to show the heat dissipation in the system. For larger

( = 05 1 15 20) due to increase in kinetic energy the friction inside the fluid enhances

which converts the mechanical energy to thermal energy. Therefore temperature is enhanced.

Fig. 8.13 discloses impact of heat generation parameter (∗) on
³
̃()

´
at lower and upper

disks. As we increase the values of (∗ = 03 06 09 12 15) more heat generated in the sys-
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tem and
³
̃()

´
enhances. Fig. 8.14 delineates impact of Dufour number () on temperature

distribution
³
̃()

´
 For higher estimation of Dufour number ( = 04 08 12 16 20) tem-

perature of the fluid enhances. An increase in energy flux is noticed for larger Dufour number

due to increase in concentration gradient which is responsible about temperature enhancement.

On can see that temperature near the lower disk is more when compared with upper disk.

Physically it is due to reason that temperature of lower disk is higher than upper disk i.e.

(̂1  ̂2).

Fig. 8.9: Temperature via Pr 

Fig. 8.10: Temperature via 
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Fig. 8.11: Temperature via 

Fig. 8.12: Temperature via 

Fig. 8.13: Temperature via ∗
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Fig. 8.14: Temperature via 

8.5.3 Concentration profile

Figs. (8.15−817) are portrayed to show the behavior of chemical reaction parameter (∗), Soret
number () and Schmidt number () on concentration

³
̃()

´
. Fig. 8.15 displays the outcome

of Schmidt number on
³
̃()

´
 Concentration is decreased for higher ( = 12 15 18 21 24).

Clearly mass diffusivity decays for higher  and this leads to reduction of concentration.³
̃()

´
via Soret number  is shown in Fig. 8.16. An enhancement in concentration and layer

thickness is observed for higher ( = 05 10 15 20 25) Here higher convective flow for more

temperature gradient occurs in view of larger ()  Fig. 8.17 displays the outcome of chemical

reaction parameter (∗) on concentration
³
̃()

´
 For rising values of (∗) fluid concentration
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³
̃()

´
enhances.

Fig. 8.15: Concentration profile via 

Fig. 8.16: Concentration via 
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Fig. 8.17: Concentration via ∗

8.5.4 Entropy generation

Figs. (8.18 − 827) show the trend of () and () at lower and upper disks for variation

of radiation parameter (), Brinkman number (), temperature ratio parameter () and

diffusion parameter (∗). Influence of Hartmann number () on () and () is displayed in

Figs. 8.18 and 8.19. It is noted that disorderedness in the flow system increases due to increase

in Lorentz force (which is resistive force) for larger () that is why entropy of the fluid also

enhances (see Fig. 8.18). Fig. 8.19 shows that for larger () the Bejan number enhances

due to dominant heat and mass transfer effects. Figs. 8.20 and 8.21 show the influence of

radiation parameter () on () and (). For larger values of radiation parameter ()

entropy generation enhances (see Fig. 8.20). Physically for larger () increase in internal

energy of the system is noticed and thus  enhances. For larger  heat and mass transfer

effects are more prominent than viscous effects. That is why () enhances near both disks (see

Fig. 8.21). Impact of () on () and () is elucidated in Figs. 8.22 and 8.23. For larger

values of () disorderedness of the system enhances (see Fig. 8.22) while opposite trend is

noticed for Bejan number () (see Fig. 8.23). Physically for larger () the conduction rate

is less by dissipation and thus () enhances. Figs. 8.24 and 8.25 are sketched to show the

impact of temperature ratio parameter () on () and (). It is worthmentioning that for

larger () total entropy of the system increases near the lower and upper disks due to heated

disks while between the disks () reduces (see Fig. 8.24). As we know that disks are heated
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so for larger () disorderedness near the disks is more and consequently entropy rate increases.

For larger () Bejan number () also rises at both disks due to dominant heat transfer effects

near the disks (see Fig. 8.25). Figs. 8.26 and 8.27 delineate the influence of  on () and

(). It is noted that both entropy generation and Bejan number are increasing functions of

diffusion parameter () For larger values of () diffusion rate of nanoparticles increases and

thus total entropy of the system and Bejan number increase.

Fig. 8.18: Entropy generation via 

Fig. 8.19: Bejan number via 
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Fig. 8.20: Entropy generation via 

Fig. 8.21: Bejan number via 

Fig. 8.22: Entropy generation via 
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Fig. 8.23: Bejan number via 

Fig. 8.24: Entropy generation via 

Fig. 8.25: Bejan number via 
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Fig. 8.26: Entropy generation via 

Fig. 8.27: Bejan number via 

8.5.5 Physical quantities

Tables (8.2-8.4) are computed to analyze the effects of Hartmann number, permeability para-

meter, Eckert number, Prandtl number, Dufour number, temperature ratio parameter, Soret

number and chemical reaction parameter on surface drag force (skin friction), heat transfer

(Nusselt number) and mass transfer (Sherwood number) at lower and upper disks. Drag force

at surface of lower and upper disk rises for larger () and () (see Table 8.2). Table 8.3 shows

that rate of heat transfer decreases near the lower disk while opposite trend is witnessed at up-

per disk for higher (), (Pr) and (). For larger () the Nusselt number displays increasing

effect at both disks. With rising () and (∗), the mass transfer increases near the lower disk
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while it diminishes near the upper disk (see Table 8.4).

Table 8.2: Skin frictions at lower and upper disks.

  0Re
−05
 1Re

−05


0.7 0.9 1.42272 1.05696

0.8 1.44408 1.08356

0.9 1.46568 1.11012

1.0 1.48748 1.13665

0.7 1.0 1.44408 1.08356

1.1 1.46568 1.11012

1.2 1.48748 1.13665

Table 8.3: Computational values of (0 1) at lower and upper disks.

 Pr   0 1

0.5 1.0 0.5 1.5 1.17924 3.72640

0.6 1.15043 3.77438

0.7 1.12160 3.82236

0.5 1.1 1.10673 3.81243

1.2 1.03229 3.90258

1.0 0.6 1.13481 3.85760

0.7 1.08795 4.00633

0.5 1.55 1.23203 4.07194

1.6 1.23852 4.45414

Table 8.4: Computational values of (0Re
−05
  1Re

−05
 ) at lower and upper disks.

 ∗ 0Re
−05
 1Re

−05


0.5 0.5 1.38775 0.413537

0.6 1.45912 0.315432

0.7 1.53454 0.204621

0.5 0.6 1.43133 0.396412

0.7 1.47417 0.379942

0.8 1.51631 0.364102
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8.6 Conclusions

Main results of present flow situation are as follows:

• Velocity profiles
³
̃  ̃ 0 ̃

´
at both disks are decreasing functions of () and (∗).

• Temperature distribution (̃()) shows decreasing trend for larger (Pr) while reverse is
remarked for (), (), (∗) and ().

• Temperature (̃()) is more near the lower disk than upper disk due to higher temperature
i.e. (1  2).

• Soret number () and Schmidt number () have opposite behavior on concentration
distribution (̃()).

• For larger (), () and () the entropy rate increases.

• Be decays for larger () while opposite impact is noticed for (), () and ().

•  and  is more near the disks while between the disks both quantities show decreasing

trend for larger ().

• Surface drag force is an increasing function of (∗) and () at lower and upper disks.

• Heat transfer rate has opposite impact at lower and upper disks for larger () and (Pr).
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Chapter 9

Nonlinear radiated flow of Jeffrey

fluid with heat source/sink and

thermal stratification

Abstract: MHD nonlinear radiated flow of viscoelastic liquid (Jeffrey fluid) is considered in this

chapter. The flow behavior is examinted between stretchable surfaces of rotating disks. Electrically

conducting liquid is considered. The modeling of energy equation is developed subject to nonlinear

radiative heat flux and thermal stratification. Furthermorer, homogeneous and heterogeneous reactions

are considered. The nonlinear flow expressions are solved for series solutions via homotopy method.

The characteristics of various parameters are examined and discussed graphically on the skin friction,

velocity, Nusselt number, temperature and concentration. Our obtained outcomes remark that the

velocity components are increased versus Deborah number. Velocity in axial direction is less near the

lower disk surface for larger ratio of relaxation to retardation times constant. Temperature field is boosts

against higher temperaturer ratio variable. Mass concentration shows contrast impact against Schmidt

number and homogeneous reaction variable. Heat transfer rate (Nusselt number) and skin friction

(drag force) enhances and decreases versus higher temperature ratio variable and ratio of relaxation to

retardation times respectively.
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9.1 Modeling

We examine flow of viscoelastic liquid by two stretchable rotating disks. Lower disk is at  = 0

upper disk is at distant  apart. Angular velocities of lower and upper disks are Ω1 and Ω2

respectively and 1 and 2 are their respective stretching rates Temperatures at lower and

upper disks are 1() = 0 + and 2() = 0 + (see Fig. 9.1).

Fig. 9.1: Flow geometry.

Effects of nonlinear thermal radiation and heat source/sink are considered. Homogeneous-

heterogeneous reactions are also taken into account. Homogeneous reaction for cubic auto-

catalysis is

 + 2→ 3 rate = 
2 (9.1)

and on the surface of catalyst the first order isothermal reaction is

 →  rate =  (9.2)

Here  and  are the rate constants and  and  are chemical species with concentrations 

and . We have used the cylindrical coordinates (  ) with velocity components (̂ ̂ ̂).

The relevant equations are

̂


+

̂


+

̂


= 0 (9.3)
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̂
̂


+ ̂

̂


− ̂2


= −


+



1 + ∗1

µ
2̂

2
+
1



̂


− ̂

2
+

2̂

2

¶
+

∗2
1 + ∗1

µ
2̂

3̂

3
+ 2̂

3̂

2

+2
̂



2̂

2
+ 2

̂



2̂


− 2̂

2
̂


− 2̂

2
̂


− 2̂

2

3
+

̂



2̂

2
+

̂



2̂



+2̂
3̂

2
+ 2̂

3̂

3
+

̂



2̂


+

̂



2̂

2

¶
− 


20 ̂ (9.4)

̂
̂


+ ̂

̂


+

̂̂


=



1 + ∗1

µ
2̂

2
+
1



̂


− ̂

2
+

2̂

2

¶
+

∗2
1 + ∗1

µ
2̂

3̂

3
+ 2̂

3̂

2

− ̂

2
̂


+

̂



2̂

2
+

̂



2̂


− 1



̂



̂


+

̂

2
̂


− 2̂̂

3
− 1



̂



̂



+2̂
3̂

2
+ 2̂

3̂

3
+

̂



2̂


+

̂



2̂

2

¶
− 


20 ̂ (9.5)

̂
̂


+ ̂

̂


= −


+



1 + ∗1

µ
2̂

2
+
1



̂


+

2̂

2

¶
+

∗2
1 + ∗1

µ
̂

3

2
+ 2̂

3̂

3

+̂
3̂

2
+ 2̂

3̂

2
+

̂



2̂


+

̂



2̂

2
+

̂



2̂

2
+

̂



2̂



+
̂



2̂

2
+

̂



2̂


+ 3̂

3̂

2
+ 3̂

3̂

3
+ 2

̂



2̂


+2

̂



2̂

2

¶
(9.6)

()

Ã
̂
̂


+ ̂

̂



!
= 

2̂

2
−∇ +0(̂ − ̂2) (9.7)

̂



+ ̂




= ∗

µ
2

2
+
1






+

2

2

¶
− 

2 (9.8)

̂



+ ̂




= ∗

µ
2

2
+
1






+

2

2

¶
+ 

2 (9.9)

with boundary conditions

̂ = 1 ̂ = Ω1 ̂ = 0 ̂ = ̂1() = ̂0 + 



=  




= − at  = 0

̂ = 2 ̂ = Ω2 ̂ = 0 ̂ = ̂2() = ̂0 + → 0 → 0 at  =  (9.10)

where ∗1 denotes ratio of relaxation to retardation times, 
∗
2 retardation time,  electrical

conductivity,  thermal conductivity,  kinematic viscosity,  specific heat,  the density, 0
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heat generation absorption coefficient and  radiative heat flux defined by

 =
−16∗̂ 3
3∗

̂


 (9.11)

in which ∗ and ∗ denote Stefan-Boltzmann constant and mean absorption coefficients respec-

tively. Letting [11]:

̂ = Ω1̃
0() ̂ = Ω1̃() ̂ = −2Ω1̃() ̃ = ̂ − ̂2

̂1 − ̂0


̂ = Ω1

µ
 () +

1

2

2

2


¶
  = 0̃  = 0̃,  =




 (9.12)

Mass conservation is satisfied and Eqs. (9.4− 910) are reduced to

̃ 000+Re(̃ 002−4̃ ̃ 0000−4∗̃ 02+4∗̃ ̃ 00)−Re(1+∗1)(̃
02−2̃ ̃ 00− ̃2−̃ 0)− (1+∗1) = 0

(9.13)


00
+ Re

³
2∗

0 − 2∗ 0 − 4000 + 
00

0´−Re(1 + ∗1)(2

0
 − 20 +) = 0 (9.14)

 0 +
2

1 + ∗1

00
+ 4Re 

0 − 

1 + ∗1

³
9

0

00
+ 10

000´− 2Re  = 0 (9.15)

̃
00
+(̃1 + 1)

2(3̃
02
1 + (̃1 + 1)̃

00
)− PrRe(̃ 0̃ + ̃ 0 − 2̃ ̃0 +∗̃) = 0 (9.16)

1

Re

1


̃
00
+ 2̃ ̃

0 − 1̃̃
2 = 0 (9.17)





1

Re
̃00 + 2̃ ̃0 + 1̃̃

2 = 0 (9.18)

with

̃(0) = 0, ̃(1) = 0 ̃ 0(0) = 1 ̃
0(1) = 2 ̃(0) = 1

̃(1) = Ω ̃(0) = 1−  ̃(1) = 0 ̃
0
(0) = 2̃(0) ̃(1) = 1

̃0(0) = −2̃(0) ̃(1) = 0  (0) = 0 (9.19)
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Re =
Ω1

2


  =

20
Ω1

  = ∗2Ω1 1 =
1

Ω1
 2 =

2

Ω1


Ω =
Ω2

Ω1
 Pr =




  =




 ∗ =

0

Ω1
 1 =

̂1 − ̂0

̂2

1 =


2
0

Ω1
 2 =



∗
  =




  =



∗
 ∗ =

2

2
 (9.20)

Here Re denotes Reynolds number,  Hartmann number,  Deborah number, 1 and 2

stretching parameters of lower and upper disks respectively, Ω ratio of angular velocities, Pr

Prandtl number,  thermal stratification parameter, ∗ heat generation/absorption parameter,

1 temperature ratio parameter, 1 and 2 homogeneous and heterogeneous reaction parameters

respectively,  ratio of diffusion coefficient and  Schmidt number. For eliminating the pressure

constant  and to get more simplified form of Eq. (9.13) we have taken the derivative with

respect to  and get

 ()+Re
³
2

00

000 − 4 () − 4 0 () + 4∗ 000 − 4∗ 0 00

´
+Re(1+∗1)(2

000
+2

0−
00
) = 0

(9.21)

When diffusion coefficients  and  are equal for both chemical species i.e.  = 1 then

̃() + ̃() = 1 (9.22)

Now Eqs. (917) and (918) yield

1

Re

1


̃
00
+ 2̃ ̃

0 − 1̃(1− ̃)2 = 0 (9.23)

with boundary conditions

̃
0
(0) = 2̃(0) ̃(1) = 1 (9.24)

Shear stresses   and   are defined as

  =


1 + ∗1

µ
̂


+

̂



¶
+ ∗2

µ
̂



+ ̂





¶µ
̂


+

̂



¶
 (9.25)

  =


1 + ∗1

̂


+ ∗2

µ
̂



+ ̂





¶
̂


 (9.26)
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where total shear stress  is

 =

q
2 + 2 (9.27)

Skin friction coefficients 1 and 2 for lower and upper disks are

Re05 1 =
|=0
(Ω1)2

=
1

(1 + ∗1)

⎡⎣ ³
̃ 00(0)−

³
2̃(0)̃ 000(0)− ̃ 0(0)̃ 00(0)

´

´2

+
³
̃0(0)−

³
2̃(0)̃00(0)− ̃ 0(0)̃0(0)

´

´2
⎤⎦12  (9.28)

Re05 2 =
|=
(Ω1)2

=
1

(1 + ∗1)

⎡⎣ ³
̃ 00(1)−

³
2̃(1)̃ 000(1)− ̃ 0(1)̃ 00(1)

´

´2

+
³
̃0(1)−

³
2̃(1)̃00(1)− ̃ 0(1)̃0(1)

´

´2
⎤⎦  (9.29)

where local Reynolds number is  =
Ω1

.

Heat transfer rate is defined as

1 =


(̂1 − ̂0)

¯̄̄̄
¯
=0

 2 =


(̂1 − ̂0)

¯̄̄̄
¯
=

 (9.30)

where  is wall heat flux given by

|=0 = − 
̂


+ 

¯̄̄̄
¯
=0

 (9.31)

|= = − 
̂


+ 

¯̄̄̄
¯
=

 (9.32)

Nusselt numbers can be written as follows:

1 = −
³
1 +(̃(0)1 + 1)

´
̃
0
(0) (9.33)

2 = −
³
1 +(̃(1)1 + 1)

´
̃
0
(1) (9.34)
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9.2 Solutions methodology and convergence

Homotopy analysis method (HAM) leads to the solutions development. Thus initial guesses

and auxiliary linear operators are

̃0() = 1 − 212 −2
2 +1

3 +2
3 (9.35)

̃0() = 1 + (Ω− 1) (9.36)

̃0() = (1− )(1− ) (9.37)

̃0() =
1

1 + 2
(1 + 2) (9.38)

L̃ = ̃ 0000 L̃ = ̃00 L̃ = ̃
00
 L̃ = ̃

00
 (9.39)

with

L
̃

£
1 + 2 + 3

2 + 4
3
¤
= 0 (9.40)

L̃[5 + 6] = 0 (9.41)

L
̃
[7 + 8] = 0 (9.42)

L
̃
[9 + 10] = 0 (9.43)

where  ( = 1−10) are the constants. There is no doubt that series solutions involve auxiliary
parameters ~

̃
 ~̃ ~̃ and ~̃ To acquire the admissible ranges we have drawn ~−curves at

17th order of approximations. Convergence regions are 01 ≤ ~
̃
≤ 1 −1 ≤ ~̃ ≤ −01

−08 ≤ ~̃ ≤ −01 and −15 ≤ ~̃ ≤ −01 Solution is convergent for entire region of 
(0 ≤  ≤ ∞) when ~̃ = 05 ~̃ = −05 = ~̃ = ~̃( Fig. 9.1) Table 9.1 is constructed to

show the order of convergence. Here ̃ 00(0) ̃0(0) ̃
0
(0) and ̃

0
(0) converge at 10th, 12th, 7th
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and 7th order of approximations respectively.

Fig. 9.2: ~−curves for ̃ 00(0) ̃0(0) ̃0(0) and ̃
0
(0)

Table 9.1: Solutions convergence when  = 03 Re = 0001 1 = 001 2 = 01 
∗ = 004

Ω =  = 05 1 = 12 1 = = 2 = 04  = 1 and ∗1 =  = ∗ = Pr = 07.

Order of approximations −̃ 00(0) −̃0(0) −̃0(0)
∼
0(0)

1 0.239942 0.4998439 0.2374571 0.2857132

7 0.239885 0.4996902 0.2445976 0.2857120

10 0.239884 0.4996881 0.2445976 0.2857120

12 0.239884 0.4996878 0.2445976 0.2857120

25 0.239884 0.4996878 0.2445976 0.2857120

30 0.239884 0.4996878 0.2445976 0.2857120

35 0.239884 0.4996878 0.2445976 0.2857120

40 0.239884 0.4996878 0.2445976 0.2857120

45 0.239884 0.4996878 0.2445976 0.2857120

9.3 Discussion

This section examines the behaviors of velocity, temperature, concentration, skin friction coef-

ficient and Nusselt number for the different involved variables.
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9.3.1 Axial, radial and tangential velocity components

Influence of magnetic parameter  on axial ̃() and tangential ̃() velocities are shown in

Figs. 9.3 and 9.4. For larger value of  both velocity profiles decay. In fact the magnetic

parameter is associated with the Lorentz force which provides resistive force and thus velocity

reduces. Figs. (9.5− 97) describe the behavior of axial, radial and tangential velocity profiles
for larger Reynolds number Re. Magnitude of radial and axial velocity profiles decay for lager

Re near both disks (see Figs. 9.5 and 9.6). There is increment in ̃() with rise in Re because

for larger Reynolds number the inertial forces are dominant (see Fig. 9.7). Figs. (9.8 − 910)
are portrayed to show the behavior of axial ̃(), radial ̃ 0() and tangential ̃() velocities

for larger Deborah number . At lower disk ̃() increases and magnitude of axial velocity at

upper disk decays for larger  (see Fig. 9.8). Magnitude of radial and tangential velocities at

both disks is increasing for larger  (see Figs. 9.9 and 9.10) Figs. (9.11− 913) are sketched to
explain the impact of 1 on axial, radial and tangential velocities. Magnitude of ̃() enhances

at lower disk while it shows decreasing impact at upper disk. With an increase in 1 the

stretching rate of lower disk enhances. That is why velocity is more at lower disk than upper

disk (see Fig. 9.11). Magnitudes of ̃ 0() and ̃() are increasing for higher 1 at both disks but

velocity near lower disk is more than upper disk. It is due to higher rate of stretching of lower

disk (see Figs. 9.12 and 9.13). Impact of 2 on axial, radial and tangential velocities is shown

in Figs. (9.14 − 916). Magnitude of ̃() and ̃ 0() enhance at upper disk while it decays at

lower disk for larger stretching parameter of upper disk 2 Larger 2 lead to an enhancement

of stretching rate of upper disk (see Figs. 9.14 and 9.15). For larger 2 the tangential velocity

also increases (see Fig. 9.16). Influence of ratio of relaxation to retardation times ∗1 is shown

in Figs. 9.17 and 9.18. Magnitude of axial velocity near both disks decreases with an increase

in ∗1 For larger 
∗
1 the relaxation time increases which means particles need more time to come

back from perturbed system to equilibrium system and so velocity reduces (see Fig. 9.17).

Tangential velocity is increasing function of ∗1 (see Fig. 9.18). Behavior of axial and tangential

velocities for larger Ω is shown in Figs. 9.19 and 9.20. For larger Ω both ̃() and ̃() are
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increased.

Fig. 9.3: Impact of  for ̃()

Fig. 9.4: Impact of  for ̃()
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Fig. 9.5: Impact of Re for ̃()

Fig. 9.6: Impact of Re for ̃ 0()

Fig. 9.7: Impact of Re for ̃()
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Fig. 9.8: Impact of  for ̃()

Fig. 9.9: Impact of  for ̃ 0()

Fig. 9.10: Impact of  for ̃()
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Fig. 9.11: Impact of 1 for ̃()

Fig. 9.12: Impact of 1 for ̃
0()

Fig. 9.13: Impact of 1 for ̃()
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Fig. 9.14: Impact of 2 for ̃()

Fig. 9.15: Impact of 2 for ̃
0()

Fig. 9.16: Impact of 2 for ̃()
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Fig. 9.17: Impact of ∗1 for ̃()

Fig. 9.18: Impact of ∗1 for ̃()

Fig. 9.19: Impact of Ω for ̃()
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Fig. 9.20: Impact of Ω for ̃()

9.3.2 Temperature

Figs. (9.21-9.25) illustrate the temperature. Temperature for thermal stratification parameter

 is shown in Fig. 9.21. Larger  gradually decreases the temperature difference between two

disks. For larger Prandtl number Pr there is reduction in temperature. Here thermal diffusivity

decays for larger Pr (see Fig. 9.22). Impact of radiation  on ̃() is depicted in Fig. 9.23. Rate

of radiative heat transfer reduces for larger  It is for decrease in mean absorption coefficient

and so fluid temperature increases. Temperature ratio parameter impact on ̃() is sketched in

Fig. 9.24. Fluid temperature rises for higher 1 Fig. 9.25 shows influence of heat source/sink

parameter ∗ on ̃() It shows that ̃() is increasing function of ∗

Fig. 9.21: Impact of  for ̃()
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Fig. 9.22: Impact of Pr for ̃()

Fig. 9.23: Impact of  for ̃()

Fig. 9.24: Impact of 1 for ̃()
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Fig. 9.25: Impact of ∗ for ̃()

9.3.3 Concentration

Figs. (9.26−930) are portrayed to show the influence of involved parameters on concentration.
Fig. 9.26 shows that for larger Re the concentration of fluid increases because inertial forces

are enhanced for larger Re which is in direct relation with mass. Figs. 9.27 and 9.28 depict

the effect of stretching parameters 1 and 2 on concentration. It is noted that fluid concen-

tration enhances with rise in 1 while it shows decreasing behavior for larger 2 Impact of

homogeneous reaction parameter 1 is shown in Fig. 9.29. Concentration of fluid decays with

an increase in 1 because reactants are consumed during the homogeneous reaction. Fig. 9.30

shows outcome of  on concentration of fluid. Here fluid concentration enhances for larger .

Fig. 9.26: Impact of Re for ̃()
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Fig. 9.27: Impact of 1 for ̃()

Fig. 9.28: Impact of 2 for ̃()

Fig. 9.29: Impact of 1 for ̃()
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Fig. 9.30: Impact of  for ̃()

9.3.4 Surface drag force

Influence of Reynolds number Re ratio of relaxation to retardation times constant ∗1 Deborah

number  and stretching parameter 1 on skin frictions of lower and upper disks is presented

in Figs. (9.31 − 934). Fig. 9.31 analyzes that for larger Re the surface drag force rises at
both disks. For larger values of ∗1 the skin friction coefficient decays at both disks. Surface

drag force is decreasing function of  at lower disk but it has increasing behavior near upper

disk (see Fig. 9.33). Fig. 9.34 is plotted to show the impact of 1 on skin friction coefficient.

Enhancement in surface drag force is noticed for larger 1

Fig. 9.31: Outcome of Re on Re
05 
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Fig. 9.32: Outcome of ∗1 on Re
05 

Fig. 9.33: Impact of  on Re
05 

Fig. 9.34: Impact of 1 on Re
05 
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9.3.5 Nusselt number

Table 9.2 is constructed to show the behavior of involved parameters on Nusselt number. Heat

transfer rate enhances for larger  and 1 while decrease in Nusselt number is observed for

increasing stratification parameter  at both disks. Enhancement in Nusselt number is observed

for increasing Pr at lower disk but it decreases near the upper disk. For larger Prandtl number

the heat transfer rate enhances at lower disk while at upper disk it shows decreasing behavior.

Table 9.2: Computations for Nusselt number.

 1  Pr 0 1

0.0 1.2 0.7 0.7 0.3000442 0.2999780

0.1 0.350484 0.350411

0.2 0.400922 0.400850

0.5 0.0 0.450044 0.449978

0.2 0.464093 0.464025

0.4 0.479270 0.479201

0.7 0.0 2.31304 2.31278

0.1 1.98213 1.98189

0.2 1.67913 1.67893

0.3 0.0 1.40158 1.40158

0.3 1.40163 1.40154

0.6 1.40167 1.40152

0.9 1.40172 1.40150

9.4 Closing remarks

Here we studied the radiative flow of Jeffrey fluid in presence of homogeneous-heterogeneous

reaction and heat source/sink effects. The main points are:

• For larger Deborah number  the axial, radial and tangential velocity components are
enhanced at lower disk.

• With an increase in ∗1 the magnitude of axial velocity reduces.
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• Temperature ̃() is increasing function of 1  and ∗

• Fluid concentration becomes less for larger 1 while increasing behavior is observed for
larger Re 

• Opposite impact for surface drag force is noticed at lower and upper disks for larger 

• Heat transfer rate at both disks is an increasing function of 1.

• Jeffrey fluid model reduces to viscous fluid when 1 = 2 = 0
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Chapter 10

Second grade fluid flow by rotating

disk with heat

generation/absorption and

homogeneous/heterogeneous

reactions

Abstract: Rotating flow is addressed of second grade liquid in this chapter. Heat and mass transport

are discussed. Heat generation/absorption is accounted. At the stretchable surface homogeneous and

heterogeneous reactions are considered. Series solutions are computed of the nonlinear flow expressions

subject to auxiliary variables through homotopy method. Main consideration in this chapter is given

to the graphical representation of the flow variables on the velocity components, concentration, temper-

ature, Nusselt number and skin friction coefficient. The graphical outcomes remark that the velocity

components (axial,radial,tangential) are increased against viscoelastic variable. Thermal field is oppo-

site impact versus heat source/sink and viscoelastic variables. The concentration profile is more versus

viscoelastic paraemter, Schmidt number and heterogeneous reaction variable. Magnitude of Nusselt

number as well as skin friction are upsurged via viscoelastic variable.
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10.1 Modeling

Consider the steady axisymmetric flow of second grade fluid by a rotating disk. Disk at  = 0

rotates with angular velocity Ω1 Stretching rate of disk is 1 Disk and ambient temperatures

are maintained at ̂ and ̂∞ respectively (see Fig. 10.1).

Fig. 10.1: Flow geometry.

Effects of heat generation/absorption are considered. Homogeneous-heterogeneous reactions

are also present. Homogeneous reaction for cubic autocatalysis is

 + 2→ 3 rate = 
2 (10.1)

and on the surface of catalyst the first order isothermal reaction is

 →  rate =  (10.2)

Here  and  are the rate constants and  and  are chemical species with concentrations 

and . We have used the cylindrical coordinates (  ) with velocity components (̂ ̂ ̂).

The relevant equations are

̂


+

̂


+

̂


= 0 (10.3)
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̂
̂


+ ̂

̂


− ̂2


= 

2̂

2
+

∗1


Ã
̂

3̂

2
+ ̂

3̂

3
+

̂



2̂

2
− 1



µ
̂



¶2
−

2̂

2
̂


+

̂



2̂


+

̂



2̂

2
+ 3

̂



2̂


+ 2

̂



2̂

2

¶
(10.4)

̂
̂


+ ̂

̂


+

̂̂


= 

2̂

2
+

∗1


µ
̂

3̂

2
+ ̂

3̂

3
− 2̂



2̂


+

2̂

2
̂


− 1



̂



̂



¶
(10.5)

()

Ã
̂
̂


+ ̂

̂



!
= 

2̂

2
+0(̂ − ̂∞) (10.6)

̂



+ ̂




= 

µ
2

2
+
1






+

2

2

¶
− 

2 (10.7)

̂



+ ̂




= 

µ
2

2
+
1






+

2

2

¶
+ 

2 (10.8)

with boundary conditions

̂ =  ̂ = Ω ̂ = 0 ̂ = ̂ 



=  




= − at  = 0

̂ = 0 ̂ = 0 ̂ = ̂∞ → 0 → 0 at  →∞ (10.9)

where ∗1 is material parameter of second grade fluid,  density,  specific heat,  thermal

conductivity,  kinematic viscosity, 0 heat generation absorption coefficient and  and 

are diffusion species coefficients. Considering

̂ = Ω1̃
0() ̂ = Ω1̃() ̂ = −2Ω1̃() ̃ = ̂ − ̂∞

̂ − ̂∞


̂ = Ω1

µ
 () +

1

2

2

2


¶
  = 0̃  = 0̃,  =




 (10.10)

equation (10.3) is trivially satisfied while Eqs. (10.4− 109) are reduced to

̃ 000 +Re(2̃ 002 + ̃02 − 2̃ ̃  + ̃ 0̃ 000)−Re(̃ 02 − 2̃ ̃ 00 − ̃2) = 0 (10.11)

̃
00
+Re

³
2̃ 0̃00 − 2̃ ̃000 − 3̃ 00̃0

´
−Re(2̃ 0̃ − 2̃ ̃0) = 0 (10.12)

̃
00
+PrRe(̃ 0̃ − 2̃ ̃0 +∗̃) = 0 (10.13)
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1

Re

1


̃
00
+ 2̃ ̃

0 − 1̃̃
2 = 0 (10.14)





1

Re
̃00 + 2̃ ̃0 + 1̃̃

2 = 0 (10.15)

with

̃(0) = 0, ̃(∞) = 0 ̃ 0(0) = 1 ̃
0(∞) = 0 ̃(0) = 1

̃(∞) = 0 ̃(0) = 1 ̃(∞) = 0 ̃0(0) = 2̃(0) ̃(∞) = 1

̃0(0) = −2̃(0) ̃(∞) = 0  (0) = 0 (10.16)

Re =
Ω1

2


 1 =

1

Ω1
  =

∗1
2

Pr =



 ∗ =

0

Ω1
 1 =


2
0

Ω1

2 =



  =




  =




 (10.17)

Here Re denotes Reynolds number, 1 stretching parameter,  Weissenberg number, Pr

Prandtl number, ∗ heat generation/absorption parameter, 1 and 2 the homogeneous and

heterogeneous reaction parameters respectively,  ratio of diffusion coefficient and  Schmidt

number. When diffusion coefficients  and  are equal for both chemical species i.e.  = 1

then

̃() + ̃() = 1 (10.18)

Now Eqs. (1014) and (1015) yield

1

Re

1


̃
00
+ 2̃ ̃

0 − 1̃(1− ̃)2 = 0 (10.19)

with boundary conditions

̃
0
(0) = 2̃(0) ̃(1) = 1 (10.20)

Skin friction coefficients in radial and tangential directions are  and  respectively
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 =
 

(Ω1)2
 (10.21)

 =
 

(Ω1)2
 (10.22)

Shear stresses   and   are defined by
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 (10.24)

Skin friction coefficients  and  in dimensionless forms are

Re  = ̃ 00(0) + Re[3̃ 0(0)̃ 00(0)− 2̃(0)̃ 000(0) + ̃(0)̃0(0)] (10.25)

Re  = ̃0(0) + Re[4̃ 0(0)̃0(0)− 2̃(0)̃00(0)] (10.26)

where local Reynolds number is  =
Ω1

.

Heat transfer rate is defined as

 =


(̂ − ̂∞)

¯̄̄̄
¯
=0

 (10.27)

in which wall heat flux  is given by

|=0 = − 
̂



¯̄̄̄
¯
=0

 (10.28)
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Nusselt number is

 = −̃0(0) (10.29)

10.2 Solutions methodology and convergence

Homotopy analysis method (HAM) leads to the solutions development. Thus initial guesses

and auxiliary linear operators are

̃0() = 1(1− exp(−)) (10.30)

̃0() = exp(−) (10.31)

̃0() = exp(−) (10.32)

̃0() = 1−
1

2
exp(−2) (10.33)

L
̃
= ̃ 000 − ̃ 0 L̃ = ̃00 − ̃ L

̃
= ̃

00 − ̃ L
̃
= ̃

00 − ̃ (10.34)

with

L̃
h
1 +2

 +3
−
i
= 0 (10.35)

L̃[4 +5
−] = 0 (10.36)

L̃
h
6

 +7
−
i
= 0 (10.37)

L̃
h
8

 +9
−
i
= 0 (10.38)

where  ( = 1−9) are the constants. There is no doubt that series solutions involve auxiliary
parameters ~̃  ~̃ ~̃ and ~̃ To acquire the admissible ranges we have drawn the ~−curves at
16th order of approximations. Convergence regions are −19 ≤ ~̃ ≤ −09 −18 ≤ ~̃ ≤ −06
−15 ≤ ~

̃
≤ −09 and −23 ≤ ~

̃
≤ −13 Solution is convergent for entire region of 

(0 ≤  ≤ ∞) when ~
̃
= ~̃ = −15 = ~

̃
and ~

̃
= −13 Table 1 is constructed to show the

order of convergence. ̃ 00(0) ̃0(0) ̃
0
(0) and ̃

0
(0) converge at 10th, 23th, 26th and 24th order
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of approximations respectively.

Fig. 10.2: ~−curves for ̃ 00(0) ̃0(0) ̃0(0) and ̃
0
(0)

Table 10.1: Solutions convergence when Re = 03 1 = 04  = 001 Pr = 15 1 = 2 =

04  = 1 and ∗ = 02.

Order of approximations ̃ 00(0) −̃0(0) −̃0(0)
∼
0(0)

1 0.0044 0.4300 0.6120 0.17741

5 0.0259 0.5479 0.3467 0.16148

10 0.0150 0.5599 0.3158 0.16483

22 0.0150 0.5573 0.3095 0.16958

23 0.0150 0.5572 0.3096 0.16959

24 0.0150 0.5572 0.3097 0.16961

26 0.0150 0.5572 0.3099 0.16961

30 0.0150 0.5572 0.3099 0.16961

40 0.0150 0.5572 0.3099 0.16961

10.3 Discussion

Present section is prepared just to investigate the effects of involved dimensionless variables

on velocity (axial, radial, tangential), temperature, concentration, skin friction coefficient and

Nusselt number.
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10.3.1 Axial, radial and tangential velocity components

Impact of viscoelastic parameter  on axial, radial and tangential velocity profiles is shown

in Figs. (10.3− 105). For larger values of  fluid viscosity decreases because  is inversely

proportional to the viscosity and hence fluid velocity (axial, radial and tangential) enhances.

Influence of Re on axial, radial and tangential velocities is shown in Figs. (10.6 − 108). It is
clear from these figures that for larger Reynolds number Re the axial, radial and tangential

velocities are reducing. In fact Re is directly proportional to the density of fluid. When density

enhances then velocities in radial, axial and tangential directions decay. Figs. (10.9 − 1011)
are portrayed to show the behavior of axial ̃(), radial ̃ 0() and tangential ̃() velocities for

stretching parameter 1Magnitude of ̃() and ̃
0() enhances for larger 1 because stretching

rate of disk is increasing through 1 (see Figs. 10.9 and 10.10) Decreasing behavior is observed

for tangential velocity ̃() with an increase in stretching parameter 1 With increase in 1

the rotational velocity Ω1 is reduced. It causes decrease in tangential velocity (see Fig. 10.11).

Fig. 10.3: Impact of  for ̃()
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Fig. 10.4: Impact of  for ̃ 0()

Fig. 10.5: Impact of  for ̃()

Fig. 10.6: Impact of Re for ̃()
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Fig. 10.7: Impact of Re for ̃ 0()

Fig. 10.8: Impact of Re for ̃()

Fig. 10.9: Impact of 1 for ̃()
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Fig. 10.10: Impact of 1 for ̃
0()

Fig. 10.11: Impact of 1 for ̃()

10.3.2 Temperature

Figs. (10.12−1015) are made to examine the temperature. Temperature for Prandtl number Pr
is shown is Fig. 10.12. Larger Pr gradually decreases the temperature of fluid because thermal

diffusivity decays for larger Pr. Fig. 10.13 shows influence of heat source/sink parameter ∗

on ̃() It shows that ̃() is increasing function of ∗ Impact of viscoelastic parameter 

on temperature is depicted in Fig. 10.14. Here decreasing effects are captured for larger .
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For larger Reynolds number Re there is decreasing impact of temperature (see Fig. 10.15).

Fig. 10.12: Impact of Pr for ̃()

Fig. 10.13: Impact of ∗ for ̃()
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Fig. 10.14: Impact of  for ̃()

Fig. 10.15: Impact of Re for ̃()

10.3.3 Concentration

Figs. (10.16 − 1020) are portrayed to show the influence of involved parameters on concen-
tration. Impact of homogeneous reaction parameter 1 is depicted in Fig. 10.16. As expected

the concentration of fluid decreases for higher 1 It is through the fact that reactants are

consumed during the homogeneous reaction. While opposite behavior of ̃() is captured for

larger heterogeneous reaction parameter 2 (see Fig. 10.17) For increasing value of 2 the

diffusion coefficient reduces and less diffused particles enhance the concentration. Increment in

concentration is noticed for larger  (see Fig. 10.18). As  is the ratio of momentum to mass

diffusivity. Therefore momentum diffusivity increases for larger  which in turn enhances the
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concentration. Fig. 10.19 shows that for larger  the concentration of fluid increases. Fig.

10.20 portrayed the influence of Re on concentration. It shows that ̃() enhances with increase

in Re 

Fig. 10.16: Impact of 1 for ̃()

Fig. 10.17: Impact of 2 for ̃()
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Fig. 10.18: Impact of  for ̃()

Fig. 10.19: Impact of  for ̃()

Fig. 10.20: Impact of Re for ̃()
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10.3.4 Surface drag force

Impacts of viscoelastic parameter  stretching parameter 1 and Reynolds number Re on

skin friction coefficient are shown in Figs. (10.21 − 1023). It is clear from the Figs. that

magnitude of skin friction coefficient in radial and tangential directions enhances for larger

1 and Re 

Fig. 10.21: Impact of  for  Re and  Re 

Fig. 10.22: Impact of 1 for  Re and  Re 
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Fig. 10.23: Impact of Re for  Re and  Re 

10.3.5 Nusselt number

Figs. (10.24− 1026) are sketched to analyze the effect of viscoelastic parameter  Prandtl

number Pr and heat generation/absorption parameter ∗ on Nusselt number Fig. 10.24 shows

that Nusselt number is increasing function of while reduction in heat transfer rate is noticed

for larger Pr and ∗ (see Figs. 10.25 and 10.26).

Fig. 10.24:  via We
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Fig. 10.25:  via Pr

Fig. 10.26:  via 
∗

10.4 Closing remarks

Here we consider the flow of second grade fluid accounting heat source/sink and homogeneous-

heterogeneous reactions. The main findings are:

• Increasing behavior of axial, radial and tangential velocities is captured for larger vis-
coelastic parameter .

• Temperature decreases for larger Prandtl number Pr while opposite behavior is noticed
for increasing heat source parameter ∗.

• Temperature is decreasing function of viscoelastic parameter 
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• Concentration decays for larger 1 while opposite behavior is examined for increasing 2

• Concentration shows similar behavior for larger Schmidt number  and viscoelastic pa-
rameter 

• Viscoelastic parameter  gives rise to surface drag force and Nusselt number.

• Heat transfer rate decays for larger Prandtl number Pr 

233



Chapter 11

Dissipative flow of Williamson fluid

with entropy generation

Abstract: This study is made to predict entropy generation in dissipative flow between two rotating

disks. Relations for Williamson fluid are adopted. Dissipation, heat source/sink and radiation are

considered. Convergent series solutions to nonlinear system is established. Outcomes of sundry variables

on physical quantities are arranged.

11.1 Constitutive equations

Here we are analyze steady and incompressible flow of Williamson fluid between two rotating

disks. Flow is taken axisymmetric. Entropy generation is examined for additional effects of

heat source/sink and thermal radiation. Stretching rate, angular velocity and temperature of

lower disk are 1 Ω1 and ̂1 while for upper disk the stretching rate, angular velocity and

temperature are denoted by 2 Ω2 and ̂2 respectively. We denote 0 as the magnetic strength
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applied in −direction (see Fig. 11.1).

Fig. 11.1: Flow geometry.

Governing equations for velocity and temperature are [11]:
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with boundary conditions

 = 1  = Ω1  = 0 ̂ = ̂1 at  = 0

 = 2  = Ω2  = 2 ̂ = ̂2 at  = 

⎫⎬⎭ (11.6)
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Radiative heat flux  is defined as
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 (11.10)

After substituting Eqs. (11.7− 1110) in Eqs. (11.1− 115) we get
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(0 + (0 − ∞)Γ̇)

¸
+

¡
̂

+ ̂



¢
(0 + (0 − ∞)Γ̇)


 (11.13)
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
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

³
̂ − ̂2

´
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

¢2
+
¡
̂

+ ̂



¢2
+2
¡
̂


¢2
+
¡
̂


¢2
+ 2

¡
̂


¢2
⎤⎦ (11.14)

Letting [2 7 8]:

̂ = Ω1̃() ̂ = Ω1̃() ̂ = Ω1̃() ̃ =
̂ − ̂2

̂1 − ̂2
 ̂ = Ω1 ()  =




 (11.15)

we obtain

2̃ + ̃0 = 0 (11.16)

(1+̈)̃ 00+Re(̃2−̃2−̃̃ 0−̃)+
∗2

̈
(̃ 00̃ 02+̃ 0̃0̃00)+

2

̈
(3̃ ̃ 02+̃ ̃02+̃ ̃0̃00) = 0

(11.17)

(1+̈)̃00−Re(2̃ ̃+̃0+̃)+
∗2

̈
(̃ 00̃ 0̃0+̃02̃00)+

2

̈
(2̃ ̃ 0̃0+̃0̃0̃00) = 0 (11.18)

Re
³
 0 + ̃̃0

´
−(1+̈)(̃ 0+2̃00)−∗2

̈
(̃ 03+̃ 0̃02+2̃ 0̃0̃ 00+2̃0̃0̃00)−4

̈
(2̃ ̃ 0̃0+̃02̃00) = 0

(11.19)

̃
00

PrRe
(1 +)− ̃̃

0
+



∗2Re
(1 +̈)(4̃2 +2(̃ 02 + ̃02) + 2̃02) +∗̃ = 0 (11.20)

̃(0) = 0 ̃(0) = 1 ̃(1) = 2 ̃(0) = 1 ̃(1) = Ω

̃(0) = 1 ̃(1) = 1  (1) = 0 (11.21)

̈ =

q
4̃2 +∗2(̃ 02 + ̃02) + 2̃02 (11.22)

 =
20
Ω1

  =
(0 − ∞)ΓΩ1

0
 Pr =




  =

16∗ 32
3∗



∗ =
0

Ω1
 1 =

1

Ω1
 2 =

2

Ω1
 Ω =

Ω2

Ω1
 Re =

2Ω1


 (11.23)
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11.1.1 Physical quantities

Surface drag force for radial and tangential directions at lower disk are

0 =
 |=0
0Ω1



0 =
|=0
0Ω1



⎫⎬⎭ (11.24)

In dimensionless form one obtains

0√
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Ã
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s
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´2
+ (̃0(0))2

¶
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³
̃0(0)

´2!
̃0(0)

(11.25)

where Re = 2Ω1

denotes Reynolds number.

At upper and lower disks the heat transfer rates are

0 =


(̂1 − ̂2)

¯̄̄̄
¯
=0

 1 =


(̂1 − ̂2)

¯̄̄̄
¯
=

 (11.26)

where  satisfies [10]:

|=0 = −  ̂

+ 

¯̄̄
=0



|=(Ω1)05 = −  ̂

+ 

¯̄̄
=



⎫⎪⎬⎪⎭ (11.27)

Nusselt numbers in dimensionless form are

0 = − (1 +) ̃
0
(0) 1 = − (1 +) ̃

0
(1) (11.28)

11.2 Solution technique

Initial approximations (̃0 ̃0 ̃0 and ̃0) and linear operators (L̃ L̃  L̃ and L̃) can be put
into the forms:

̃0 = 0 ̃0 = 1(1− ) +2 ̃0 = 1 + (Ω− 1) ̃0 = 1−  (11.29)

L̃ = ̃0L̃ = ̃ 00L̃ = ̃00L̃ = ̃
00
 (11.30)
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L
̃
[1] = 0

L̃ [2 + 3] = 0

L̃[4 + 5] = 0

L
̃
[6 + 7] = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(11.31)

where ( = 1− 9) are constants.

11.3 Determination of entropy generation

In thermo-fluidic irreversibility occurs by heat transfer and viscous effects of fluid. In present

analysis entropy generation is effected by heat transfer, viscous dissipation and Joule heating.

Equation for entropy generation in dimensional form is [15,18]:

000 =


̂ 2

Ã
1 +

16∗̂ 32
3∗

!
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+
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Φ| {z }

viscous dissipation irreversibility

+
1

̂
[(J−V)(V×B)]| {z }

Joule heating irreversibility



(11.32)

where ̂ is mean temperature and ∇̂  ∇̂ Φ and J are defined as

∇̂ =
"
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
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 (11.33)
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 (11.34)

Φ = (0 + (0 − ∞)Γ̇)
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¢2
⎤⎦  (11.35)

 = (V ×B) (11.36)
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Note that electric field effects are omitted. By putting Eqs. (1131− 1134) in Eq. (1130) we
get

000 =
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⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (11.37)

In Eq. (11.35) first, second and third terms are due to heat transfer irreversibility with radiation

effect, Joule heating irreversibility and viscous dissipation irreversibility respectively. After

applying transformations dimensionless one arrives at

 = [1 +] 021 +(̃2 + ̃2) +


∗2
(1 +̈)(4̃2 +∗2(̃ 02 + ̃02) + 2̃02) (11.38)

with

1 =
∆̂

̂
  =

2Ω21

∆̂


 =
000̂2

∆̂
 (11.39)

Bejan number is

 =
[1 +] 021

[1 +] 021 +(̃2 + ̃2) + 
∗2 (1 +̈)(4̃2 +∗2(̃ 02 + ̃02) + 2̃02)

(11.40)

11.4 Convergence analysis

HAM technique is applied for convergence of our solutions. There are auxiliary parameters ~̃

~̃  ~̃ and ~̃ which gave us freedom for controlling our convergence region. The regions of

~ for velocities and temperature where our solutions is convergent include −04 ≤ ~
̃
≤ −13
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−12 ≤ ~̃ ≤ −02 −12 ≤ ~̃ ≤ −03 and −12 ≤ ~̃ ≤ −06

Fig. 11.2: ~−curves of velocities (̃00(0) ̃ 0(0) ̃0(0)) and temperature (̃0(0))
Table 11.1: Numerical values for convergence of series solutions.

Order of approximation −̃00(0) ̃ 0(0) −̃0(0) −̃0(0)
1 0.4200000 0.4853426 0.9141499 0.4634267

20 1.022671 0.5113370 1.049157 0.8852918

22 1.022674 0.5113378 1.049155 0.8852522

23 1.022675 0.5113379 1.049155 0.8852446

24 1.022676 0.5113379 1.049155 0.8852409

26 1.022676 0.5113379 1.049155 0.8852388

30 1.022676 0.5113379 1.049155 0.8852388

40 1.022676 0.5113379 1.049155 0.8852388

50 1.022676 0.5113379 1.049155 0.8852388

11.5 Physical results

Behaviors of velocity, temperature, skin friction, Bejan number, entropy generation and Nusselt

number are analyzed in this section.
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11.5.1 Velocity components

Figs. (11.3 − 115) witness the influence of magnetic parameter () on axial, radial and
tangential velocities

³
̃ ̃  ̃

´
. For larger values of ( = 0 04 08 12 16) motion of the fluid

reduces. It is observed that for higher () the Lorentz force which is in direct relation with

() enhances so it produces resistance for fluid particles and consequently
³
̃ ̃  ̃

´
reduces.

Similar behavior is noted near lower and upper disk. Figs. (11.6-11.11) are sketched to examine

the effect of stretching parameters of lower and upper disks (1 = 0 02 04 06 08 and 2 =

0 02 04 06 08) on
³
̃ ̃  ̃

´
 It is noted that axial and radial velocities are increasing

functions of (1 and 2) while opposite impact is seen for tangential velocity (̃()). Physically

for larger (1 and 2) the stretching rates of respective disks become greater. That is why the

axial and radial velocities increase. Also rotational velocity is in inverse relation with tangential

velocity so (̃()) decays for larger (1 and 2). Impact of Weissenberg number () on axial,

radial and tangential velocities is displayed in Figs. (11.12 − 1114). It is analyzed that axial
and tangential velocities are increasing functions of ( = 0 05 1 15 2) while radial velocity

decays for (). It is due to an increase in viscosity. Fig. 11.15 shows impact of rotational

parameter (Ω) on (̃())  Increasing trend of (̃()) is noticed for larger (Ω = 0 03 06 09 12).

Fig. 11.3: ̃ via 
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Fig. 11.4: ̃ via 

Fig. 11.5: ̃ via 

Fig. 11.6: ̃ via 1
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Fig. 11.7: ̃ via 1

Fig. 11.8: ̃ via 1

Fig. 11.9: ̃ via 2
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Fig. 11.10: ̃ via 2

Fig. 11.11: ̃ via 2

Fig. 11.12: ̃ via 
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Fig. 11.13: ̃ via 

Fig. 11.14: ̃ via 

Fig. 11.15: ̃ via Ω
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11.5.2 Temperature

Figs. (11.16−1119) are displayed for outcomes of Weissenberg number (), heat source para-

meter (∗), Eckert number () and radiation parameter (). Fig. 11.16 elucidates the effect

of Weissenberg number () on temperature
³
̃()

´
 It is worthmentioning that temperature

of the fluid rises for larger ( = 0 05 1 15 2). It is due to an increase in resistance for more

viscosity. For larger values of heat source parameter (∗ = 0 03 06 09 12) temperature

(̃()) enhances (see Fig. 11.17). For rising (∗) more heat is provided to the system and so

temperature enhances. Behaviors of (̃()) for larger Eckert number ( = 0 02 04 06 08)

and radiation parameter ( = 0 03 06 09 12) are mentioned in Figs. 11.18 and 11.19. It

is noticed that both parameters are used to boost up the temperature (̃()) Eckert number

actually witnesses the heat dissipation in the system because it is relation between enthalpy

difference and kinetic energy. Hence for larger () the kinetic energy enhances which increases

the friction inside the fluid and consequently temperature of fluid (see Fig. 11.18). Mean ab-

sorption coefficient reduces for larger () which is responsible for an increase in temperature

(̃()) (see Fig. 11.19)

Fig. 11.16: ̃ via 
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Fig. 11.17: ̃ via ∗

Fig. 11.18: ̃ via 

Fig. 11.19: ̃ via 
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11.5.3 Bejan number and entropy generation

Figs. (11.20− 1129) analyze the impacts of Hartmann number () Brinkman number (),

Weissenberg number () stretching parameter of lower disk (1) and radiation parameter ()

on Bejan number () and entropy generation () at lower and upper disks. One can easily

examine that entropy rate enhances for larger () while Bejan number behaves oppositely for

higher (). As we increase the values of ( = 0 04 08 12 16) the Lorentz force enhances

which produces resistance in the system and consequently disorderedness also increases (see

Fig. 11.20). With increasing values of () the viscous dissipation irreversibility dominant

over than heat transfer irreversibility so Bejan number reduces (see Fig. 11.21). Effect of ()

on entropy generation and Bejan number () is delineated in Figs. 11.22 and 11.23. For

larger ( = 0 02 04 06 08) entropy generation () enhances (see Fig. 11.22). In fact

when we increase () dissipation produces less conduction rate and thus enhances entropy

generation increases. We can see that Bejan number is equals to 1 when ( = 0) In fact for

( = 0) the viscous dissipation irreversibility vanishes and only heat transfer irreversibility

retains. Hence for ( = 0) Bejan number is maximum and when we increase  from 0.2 to

0.8 then it starts decreasing (see Fig. 11.23). Figs. 11.24 and 11.25 disclose the behavior of

Bejan number () and entropy generation () for variation of Weissenberg number ()

at lower and upper disks. It is worthmentioning that for larger ( = 0 02 04 06 08)

the entropy generation increases and Bejan number reduces. Viscosity difference enhances for

larger () which increases the resistance and ultimately disorderedness (entropy generation

) in the system (see Fig. 11.24). Bejan number reduces via () (see Fig. 11.25). Entropy

generation () and Bejan number () trend for rising stretching parameter (1) is shown in

Figs. (11.26 and 11.27). Here Bejan number and entropy generation have opposite impacts for

variation of (1 = 0 01 02 03 04). It is analyzed that entropy generation () and Bejan

number () are increased via larger radiation parameter () Increase in internal energy of

the system is noticed for higher ( = 0 02 04 06 08). That is why disorderedness in the

system enhances (see Fig. 11.26). With higher radiation () the heat transfer irreversibility
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becomes more prominent than viscous dissipation irreversibility therefore () rises.

Fig. 11.20:  via 

Fig. 11.21:  via 
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Fig. 11.22:  via 

Fig. 11.23:  via 

Fig. 11.24:  via 
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Fig. 11.25:  via 

Fig. 11.26:  via 1

Fig. 11.27:  via 1
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Fig. 11.28:  via 

Fig. 11.28:  via 

Fig. 11.29:  via 
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11.5.4 Skin friction and Nusselt number

Tables 11.2 and 11.3 depict behaviors of skin friction coefficient and heat transfer rates at lower

and upper disks respectively for larger Weissenberg number (), Hartmann number () and

radiation parameter (). It is shown that at lower disk the magnitude of surface drag force in

radial and transverse directions increases for larger ( = 01 02 03). Furthermore opposite

impacts of 0 and 0 are noticed for larger () (see Table 11.2). Table 11.3 delineates that

heat transfer rate enhances at lower and upper disks with increasing () while for larger ()

the Nusselt number reduces.

Table 11.2: Surface drag force at lower disk for different values of  and 

  0 −0

0.1 0.4 0.550420 1.12934

0.2 0.590397 1.20342

0.3 0.630044 1.27751

0.1 0.5 0.538203 1.15981

0.6 0.526205 1.19000

Table 11.3: Heat transfer rate at lower and upper disks for larger values of  and 

  −̃(0) −̃(1)
1.0 0.1 0.88524 3.2134

1.1 0.78022 3.0975

1.2 0.68606 2.9933

1.0 0.2 0.94264 3.3089

0.3 0.99978 3.4040

11.6 Conclusions

Main results are mentioned below:

• Axial and tangential velocities increase for larger ()

• Impacts of ∗  and  on temperature are increasing.
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• Entropy generation (disorderedness) in the system is more for larger () (), () and

()

• Bejan number is equals to 1 (maximum) when ( = 0) and it starts decreasing with

increasing ()

• Surface drag force (0 0) rises for larger ()

• Opposite impacts of () and () are noticed for heat transfer rate.

255



Chapter 12

Novel aspects of Soret and Dufour

in entropy generation minimization

for Williamson fluid flow

Abstract: MHD flow of Williamson fluid between two rotating disks is discussed. Soret and Dufour

effects are analyzed. Impacts of stratification, viscous dissipation and activation energy are also con-

sidered. Bejan number and entropy generation for stratified flow is discussed. Von-Karman relations

lead to ordinary differential equations (ODEs). Convergent solution of complicated ODE’s is found

by homotopic procedure. The results of physical quantities are discussed through plots and numerical

values.

12.1 Formulation

Steady flow of Williamson fluid between two rotating stretchable disks is studied. Our aim is

to scrutinize the entropy generation minimization () in flow with effects of Dufour/Soret,

stratification and viscous dissipation. Chemical reaction with activation energy is also investi-

gated. Flow is initiated due to stretching of disks. The lower at ( = 0) and upper at ( = )

disks have respective angular velocities Ω1 and Ω2 Flow is caused by stretching of lower disk.

Lower and upper disks correspond to temperatures (̂1 ̂2) and concentration (̂1 ̂2). A
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uniform magnetic field of strength (0) is exerted in the −direction (see Fig. 12.1) 

Fig. 12.1 Flow geometry.

An extra stress tensor () of Williamson fluid is

 =

∙
∞ +

(0 − ∞)
1− Γ̇

¸
A (12.1)

where (A) denotes first Rilvin-Erickson tensor, (0) the zero shear rate viscosity and (∞)

infinite shear rate viscosity and (Γ  0) a time constant. Here (̇) is defined by

γ̇ =

r
1

2
( A2) (12.2)

Through Eq. (12.1) one obtains

 = (0 + (0 − ∞)Γ̇)A (12.3)

which further yields

  = 2 ((0 − ∞)Γ̇ + 0)

µ
̂



¶
  = 2 ((0 − ∞)Γ̇ + 0)

µ
1



̂


+

̂



¶


  = 2 ((̃0 − ̃∞)Γ̇ + ̃0)

µ
̂



¶
  =   = ((0 − ∞)Γ̇ + 0)

µ
1



̂


+

̂


− ̂



¶


  =   = ((0 − ∞)Γ̇ + 0)

µ
̂


+

̂



¶
   =  = ((0 − ∞)Γ̇ + 0)

µ
1



̂


+

̂



¶
(12.4)
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̇ =

vuuut 2
h¡

̂


¢2
+
¡
̂


¢2
+
¡
̂

+ 1


̂


¢2i
+
¡
1

̂

+ ̂


− ̂



¢2
+
¡
̂

+ 1


̂


¢2
+
¡
̂

+ ̂



¢2  (12.5)

Mathematical statements for problem under consideration satisfy

̂


+

̂


+

̂


= 0 (12.6)



µ
̂
̂


+ ̂

̂


− ̂2



¶
= −̂


+

 


+

 


+

  − 


− 20 ̂ (12.7)



µ
̂
̂


+ ̂

̂


+

̂̂



¶
=

 


+

 


+ 2

 


− 20 ̂ (12.8)



µ
̂



+ ̂

̂



¶
= −̂
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+

 


+

 


+

 


 (12.9)

"
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#
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1
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

!
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(12.10)
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´Ã ̂
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!

exp

µ−

̂
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 (12.11)

  = [(0 − ∞)Γ̇ + 0]

"
2

µ
̂



¶2
+ 2

µ
̂



¶2
− 2 ̂



̂


+

µ
̂



¶2
+

̂2

2
+ 2

̂2

2
+

µ
̂



¶2
+

µ
̂



¶2#
(12.12)

̂ = 1 ̂ = Ω1 ̂ = 0 ̂ = ̂1 =  + ̂0 ̂ = ̂1 =  + ̂0 at  = 0

̂ = 2 ̂ = Ω2 ̂ = 0 ̂ = ̂2 =  + ̂0 ̂ = ̂2 =  + ̂0 at  =  (12.13)

where in (  ) directions the velocity components are (̆ ̆ ̂) respectively, (̂) the hy-

drostatic pressure, () specific heat, () density of fluid, () thermal conductivity, ()

the effective diffusivity rate of mass, () the Susceptibility of concentration, ( ) thermal-

diffusion ratio, () the reaction rate, () electrical conductivity, () activation energy where¡
 = 861× 10−5¢ the Boltzmann constant, () the fitted rate constant and () mean

258



temperature of fluid.

Suitable transformations for this analysis are

̂ = Ω1 ̃ ()  ̂ = Ω1̃ ()  ̂ = Ω1̃ () 

̃ () =
̂ − ̂2

̂1 − ̂0
 ̃ () =

̂

2Ω21
 ̃ () =

̂ − ̂2

̂1 − ̂0
  =




 (12.14)

Eq. (121) is satisfied and Eqs. (12.7− 1213) take the forms

̃0 + 2̃ = 0 (12.15)

(1 +̈) ̃ 00+Re(−̃+̃2−̃̃ 0−̃)+
∗2
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³
̃ 00̃ 02 + ̃00̃0̃ 0

´
+
2

̈

³
̃00̃0̃ 0 + 3̃ 02̃ + ̃02̃

´
= 0

(12.16)

(1 +̈) ̃00 −̃ +
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´
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0
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³
̃0̃0̃00 + 2̃0̃ ̃ 0

´
− 2̃̃ = 0

(12.17)

Re( 0 + ̂0̂)− ∗2

̈

³
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= 0 (12.18)

Re ̃
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= 0 (12.19)

Re ̃
00 −Re̃

³
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´
−Re () ̃0̃+ 

³
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´
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³
̃+ 

´
−∗ (Re)

³
1 + 1̃

´
exp

µ −1
1 + 1̃

¶
̃ = 0 (12.20)

with boundary conditions

̃ (0) = 1 ̃ (0) = 0 ̃ (0) = 1 ̃ (0) = 1−  ̃ (0) = 1−  at  = 0,

̃ (1) = 2 ̃ (1) = Ω ̃ (1) = 0  (1) = 0 ̃ (1) = 0 at  = 1 (12.21)
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̈ =

r
4̃2 +Re

³
̃
02 + ̃02

´
+ 2̃02 (12.22)

where
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Ω1
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  =
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³
̂1 − ̂0

´  (12.23)

Here (Re) represents local Reynold number, () Eckert number, (Pr) Prandtl number, ()

Weissenberg number, () magnetic field parameter, () Schmidt number, () Dufour num-

ber, () Soret number, () thermal stratification parameter, () solutal stratification parame-

ter, (1) dimensionless activation energy, (
∗) dimensionless reaction rate and () temperature

difference parameter.

Radial and tangential shear stresses and heat transfer rate at lower disk are


̂1
=

 |=0
0Ω1

 
̆
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
³
̂1 − ̂0

´ (12.24)

where () is

 = −̂


 (12.25)

Definitions of Nusselt number and skin friction coefficients at lower disk are

1 = −
√
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⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(12.26)

At upper disk (radial, tangential) the shear stresses and Nusselt number are


̂2
=

 |=
0Ω1

 
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
³
̂1 − ̂0

´ (12.27)
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Thus Nusselt number and skin friction for upper disk are obtained as:

2 = −
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(1) 


̂2√
Re
=

∙
1 + () ̃ 0 (1)

r
4̃2 (1) + 2̂02 (1) + Re

³
̃02 (1) + ̃ 02 (1)

´¸



̂2√
Re
=

∙
1 + () ̃0 (1)

r
4̃2 (1) + Re

³
̃02 (1) + ̃ 02 (1)

´
+ 2̂02 (1)

¸


⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(12.28)

For lower and upper disks the Sherwood numbers are

 =



³
̂1 − ̂0

´
¯̄̄̄
¯̄
=0

  =



³
̂1 − ̂0

´
¯̄̄̄
¯̄
=

 (12.29)

where () is

 = −
"

̂



#
 (12.30)

Thus after using transformations the Sherwood numbers are

0√
Re
= −̃0 (0) 

1√
Re
= −̃0 (1) 

⎫⎬⎭ (12.31)

12.2 Solution technique

Auxiliary linear operators and initial approximations are:

L̃ = ̃0 L̃ = ̃ 00 L̂ = ̃00 L̃ = ̃
00
 L̃ = ̃

00
 (12.32)

̃0 = 0 ̃0 = 1 −1 exp(−) +2 ()  ̃0 = 1 +  (Ω− 1) 

̃0 = (1− ) (1− 1)  ̃0 = (1− ) (1− 2)  (12.33)
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with

L
̃
[1] = 0

L
̃
[2 + 3] = 0

L̃ [4 + 5] = 0

L̃ [6 + 7] = 0

L
̃
[8 + 9] = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12.34)

where the constants are  ( = 1− 5)

12.3 Convergence

Auxiliary variables (~̃ ~̃, ~̃, ~̃, ~̃ ) have prominent role in convergence analysis. Fig. 12.2

displayed ~−curves for mth order of approximation. The solutions are found convergent for the
regions −17 ≤ ~

̃
≤ −03 −12 ≤ ~

̃
≤ −03 −10 ≤ ~̃ ≤ −04, −09 ≤ ~̃ ≤ −06 and −10 ≤

~̃ ≤ −07 Table 1 consists of numerical values of velocity, temperature and concentration. To
show the numerical values of velocity, concentration and temperature distribution Table 12.1 is

constructed. Clearly the meaningful solutions of ̃0 (0)  ̃ 0(0) ̃0 (0)  ̃
0
(0)  ̃

0
(0) started from

20th order of approximations.

Fig. 12.1: ~− 

Table 12.1: Series solutions convergence for Ω = 02 1 = 01 2 = 04 1 = 05 
∗ = 05

1 = 05 1 = 2 = 002  = 05  = 01  = 07  = 1 Re = 07

262



 = 02, Pr = 06  = 03 ~̃ = ~̃ = ~̃ = ~̃ = ~̃ = −08

Order of approximation −̃ (0) ̃ 0(0) −̃0 (0) ̃
0
(0) −̃0 (0)

1 0.20000 0.5272 1.0380 -0.1108 0.6884

5 0.20000 0.4809 1.192 -0.09493 0.6863

11 0.20000 0.4812 1.192 0.09682 0.5462

16 0.20000 0.4812 1.192 0.2655 0.4127

20 0.20000 0.4812 1.192 0.2655 0.3554

25 0.20000 0.4812 1.192 0.2655 0.3554

30 0.20000 0.4812 1.192 0.2655 0.3554

40 0.20000 0.4812 1.192 0.2655 0.3554

12.4 Entropy

In presence of thermal irreversibility, Joule heating irreversibility, viscous dissipation irre-

versibility and mass transfer irreversibility, the formulation of entropy generation is presented.

Its dimensional form is represented by

00 =
1

̂
Φ| {z }

Viscous dissipation irreversibility

+


̂ 2

³
∇̂

´2
| {z }

Thermal irreversibility

+


̂
20(̂

2 + ̂2)| {z }
Joule dissipation irreversibility

+


̂

h
∇̂

i2
+



̂

h
∇̂∇̂

i
| {z }

mass transfer irreversibility



(12.35)

where
³
̂

´
and

³
̂

´
are mean concentration and temperature respectively and

³
∇̂

´
³

∇̂
´
and (Φ) are defined as

∇̂ =
Ã
̂



!
̂ +

Ã
1



̂



!
̂ +

Ã
̂



!
̂ (11.36)

∇̂ =
Ã
̂



!
̂ +

Ã
1



̂



!
̂ +

Ã
̂



!
̂ (11.37)

Φ = (0 + (0 − ∞)Γ̈)

⎡⎣ 2 h¡̂ ¢2 + ̂


̂

− ̂


̂

+ ̂2

2
+
¡
̂


¢2i
+
¡
̂


¢2
+¡

̂


¢2
+ ̂2

2
+
¡
̂


¢2
+
¡
̂


¢2
⎤⎦⎫⎬⎭  (12.38)
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After applying transformation one has

 = 1

∙
Re ̃

02
+
³
1 + ̃

´2¸
+ (Re) ()

³
̃2 + ̃2

´
+ () (1 +̈)

h
4̃2 +Re ̃ 02 +Re ̃02 + 2̃02

i
+

∙
2

1

¸ ∙
Re ̃

02
+
³
̃+ 1

´2¸
+ 

h³
̃ + 1

´³
2 + ̃

´
+Re ̃

0
̃
0i
 (12.39)

Dimensionless parameters are

1 =
̂1 − ̂0

̂
  =


³
̂1 − ̂0

´


  =
0

2Ω21


³
̂1 − ̂0

´ 
 =

2̂
00



³
̂1 − ̂0

´  2 = ̂1 − ̂0

̂

 (12.40)

Here () and () are Brinkman number and local entropy generation respectively, (1) and

(2) are temperature and concentration ratio parameters and () diffusion parameter.

Here the dimensionless form of Bejan number () is

 =
       

  
 (12.41)

or

 =

1

∙
Re ̃

02
+
³
1 + ̃

´2¸
+ 

h
2
1

i ∙
Re ̃

02
+
³
1 + ̃

´2¸
+

h³
1 + ̃

´³
2 + ̃

´
+Re ̃

0
̃
0i


h³
1 + ̃

´³
2 + ̃

´
+Re ̃

0
̃
0i
+ (Re) ()

³
̃2 + ̃2

´
+ 1

∙
Re ̃

02
+
³
1 + ̃

´2¸
+2

1

∙
Re ̃

02
+
³
1 + ̃

´2¸
+ () (1 +̈)

h
4̃2 +Re ̃ 02 +Re ̃02 + 2̃02

i


(12.42)

12.5 Discussion

This section emphasis on the discussion of graphical interpretation of various physical parame-

ters for velocity, temperature, entropy generation, Bejan number, skin friction, Nusselt number

and Sherwood number.
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Figs. (123− 128) are designed to analyze the behavior of Hartmann number () and
Weissenberg number () on

³
̃ ()

´

³
̃ ()

´
and (̃ ()) in axial, radial and transverse di-

rections. These quantities are discussed for both upper and lower disks. Figs. (123− 125)
analyzed behavior of () for axial

³
̃ ()

´
 radial

³
̃ ()

´
and tangential (̃ ()) velocities at

both disks. It is noticed that magnitude of velocities
³
̃ ()

´

³
̃ ()

´
, (̃ ()) decays with the

increment in Hartmann number (). A resistive force is produced when transverse magnetic

field acts. Such force acting as Lorentz force generates resistance and it decreases the veloc-

ity. Influence of Weissenberg number () on
³
̃ ()

´

³
̃ ()

´
and (̃ ()) is shown in Figs

(126− 128). The axial and radial velocities
³
̃ ()

´
and

³
̃ ()

´
rise with larger Weissenberg

number () while tangential velocity (̃ ()) reduces. For higher () the angular velocity

(Ω1) enhances and so
³
̃ ()

´
and

³
̃ ()

´
increase (see Figs. 126 and 127).

Fig. 12.3 Axial velocity ̃ () via 
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Fig. 12.4 Radial velocity ̃ () via 

Fig. 12.5 Tangential velocity ̃ () via 

Fig. 12.6 Axial velocity ̃ () via 
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Fig. 12.7 Radial velocity ̃ () via 

Fig. 12.8 Tangential velocity ̃ () via 

12.5.1 Temperature

Figs. (129− 1212) illustrate the trend of temperature
³
̃()

´
against Dufour number (),

thermal stratification parameter (1), Weissenberg number () and Prandtl number (Pr) 

Fig. 129 discloses impact of () on
³
̃()

´
at lower and upper disks. Fluid temperature

via () enhances. Energy flux is enhanced due to rise in concentration gradient for varying

() and it leads to enhance the fluid temperature. Temperature near lower disk is more when

compared with upper disk. Physically it is because of higher temperature of lower disk than

upper disk i.e.
³
̂1 Â ̂2

´
. Fig. 1210 delineates the impact of thermal stratification parameter

(1) on
³
̃()

´
. For larger estimation of (1) the temperature decreases due to occurrence of
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potential drop between ambient fluid temperature and surface condition. Fig. 1211 shows role

of Weissenberg number () on
³
̃()

´
. Temperature increases for higher estimation of ().

Behavior of Prandtl number (Pr) on ̃() is identified in Fig. 1212. For larger (Pr) thermal

diffusivity has smaller value which causes reduction in temperature
³
̃()

´


Fig. 12.9 ̃ () via 

Fig. 12.10 ̃ () via 
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Fig. 12.11 ̃ () via 

Fig. 12.12 ̃ () via Pr 

12.5.2 Concentration

Figs (1213− 1218) are sketched to show the trend of concentration
³
̃ ()

´
for variations of

Schmidt number (), Soret number (), dimensionless activation energy parameter (1),

dimensionless reaction rate (), temperature difference parameter () and solutal stratification

parameter (2). For growing values of () the concentration
³
̃ ()

´
decays. It is due to fact

that mass diffusivity reduces for higher () due to which concentration
³
̃ ()

´
decreases (see

Figs. 1213).. Effect of Soret number () on
³
̃ ()

´
is displayed in Fig. 1214 It is observed

that concentration
³
̃ ()

´
increases for larger (). Temperature gradient enhances for larger

() which tends to more convective flow. Hence concentration distribution
³
̂ ()

´
enhances.
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Fig. 1215 reveals that concentration
³
̃ ()

´
increases for larger dimensionless activation

energy parameter (1)  Generative chemical reaction is promoted due to decrease in Arrhenius

function
³

̂

̂∞

´
exp

³
−
̂

´
 When () increases then concentration

³
̃ ()

´
enhances. Fig.

1216 is portrayed to discuss chemical reaction parameter (∗) on
³
̃ ()

´
. For larger () the

reduction in concentration
³
̃ ()

´
is noticed. Due to concentration gradient this behavior shows

weak buoyancy effect thus reduction occurs for
³
̃ ()

´
. Fig. 1217 reveals that concentration³

̃ ()
´
reduces for larger temperature difference parameter (). From Fig. 1218 it can be seen

that concentration
³
̃ ()

´
is decreasing function of larger solutal stratification parameter (2).

Fig. 12.13 ̃ () via 

Fig. 12.14 ̃ () via 
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Fig. 12.15 ̃ () via 1

Fig. 12.16 ̃ () via ∗

Fig. 12.17 ̃ () via 1
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Fig. 12.18 ̃ () via 

12.5.3 Entropy generation minimization

This section emphasis on graphical interpretation of pertinent variables of entropy generation

() and Bejan number (). Br effects on () and () are shown in Fig. 1219 and 1220

Opposite trend is witnessed for () due to increment in disorderedness of system for larger

(). For larger estimation of () due to dissipation the less conduction rate is produced

and thus entropy generation () enhances. Impacts of diffusion () on () and () are

portrayed in Figs. 1221 and 1222 Both () and () are increased for larger (). For

increasing () the nanoparticles diffusion rate enhances and so Bejan number and total entropy

of the system rise.  effect on () and () is discussed by Figs. 1223 and 1224. For

larger () the entropy generation increases while Bejan number reduces. Figs. (1225− 1228)
show impacts of solutal and thermal stratification parameters (2) and (1) on () and () 

Both () and () are reduced for larger estimation of (1) and (2). Figs. 1229 and 1230

clearly reveals influence of () on () and ()  Enhancement is witnessed in () with an

increment of magnetic parameter (). For growing () the fluid resistance rises due to rise

in Lorentz force and consequently () increases. Bejan number () reduces for larger () 
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Here irreversibility of fluid friction prevailed over the heat and mass transfer irreversibilities.

Fig. 12.19 Entropy generation  () via 

Fig. 12.20 Bejan number  via 

273



Fig. 12.21 Entropy generation  () via 

Fig. 12.22 Bejan number  via 

Fig. 12.23 Entropy generation  () via 
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Fig. 12.24 Bejan number  via 

Fig. 12.25 Entropy generation  () via 

Fig. 12.26 Bejan number  via 
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Fig. 12.27 Entropy generation  () via 

Fig. 12.28 Bejan number  via 

Fig. 12.29 Entropy generation  () via 
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Fig. 12.30 Bejan number  via 

12.5.4 Skin friction and Nusselt and Sherwood numbers

Influence of Reynold number (Re) and (We) on skin friction coefficient at lower and upper disks

is analyzed in Figs. 1231 and 1232. There is an increase in skin friction at both disks for larger

Re while for higher () drag force at lower disk increases and it decays at upper disk From

Figs. 1233 and 1234 it can be seen that for increasing Eckert number () and Weissenberg

number (We) the heat transfer rate decay near surface of lower and upper disks. Figs. 1235

and 1236 are drawn to analyze stratification variable () on Sherwood number. For varying

() the Sherwood number near the surface of lower disk reduces. However near upper disk the

Sherwood number has reverse behavior.

Fig. 12.31 Skin friction via Re and We
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Fig. 12.32 Skin friction via Re and We

Fig. 12.33 Nusselt number via  and We

Fig. 12.34 Nusselt number via  and We
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Fig. 12.35 Sherwood number via  and 1

Fig. 12.36 Sherwood number via  and 1

12.6 Conclusions

The following observations are worthmentioning.

• Velocities.
³
̃ ()

´

³
̃ ()

´
and (̃ ()) reduce for () at both disks while

³
̃ ()

´
and³

̃ ()
´
are increasing functions of ().

• For larger () and (Pr) the temperature
³
̃ ()

´
decays while increasing trend is noticed

for () and ().

• Opposite trend of concentration
³
̃ ()

´
is noticed for () and () 

• Increasing behavior of (Re) for skin friction is observed.
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• Entropy rate through (), () and () enhances while it decreases for thermal and

solutal stratification parameters () and ().

• Bejan number has decreasing behavior for larger (), (), ()  and () while it in-

creases for larger () 
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Chapter 13

Thesis Conclusion

This thesis addresses in particular the nonlinear flows of both viscous and non-Newtonian liq-

uids. Modeling for rotating disk problems is designed. Three non-Newtonian fluid models

under discussion are second grade, Williamson and Jeffrey. In these problems formulation, the

two types of nanoliquids are considered. The novel aspects of Brownian motion, thermophoresis

and thermophysical properties of nanoliquids are addressed. Analysis for thermal radiation, mi-

croorganism bioconvection, mixed convection, magnetohydrodynamics, dissipation and Ohmic

heating are considered. Entropy concept is modeled employing second thermodynamic relation.

Applied magnetic field effects in flows by rotating disk with variable thickness is investigated.

The velocity and thermal slip conditions are considered. Porous medium, homogeneous and

heterogeneous reactions and Soret and Dufour effects are also investigated. Stratification is

analyzed. The velocity, temperature and concentration are discussed. Nusselt and Sherwood

numbers and entropy generation are advanced with respect to considered flows.

This thesis is organized in the form of twelve chapters. The first chapter has introductory

material. Bioconvection flow with microorganism and nanoparticles is considered in chapter

two. Nonlinear stretching to rotating disk is modeled in chapter three. Partial slip is fea-

tured in chapter four. Ferrofluid flow between two axially rotating disks is investigated in

chapter five. Statistical declaration and probable error in the presence of homogeneous and

heterogeneous reactions are presented in chapter six. Chapters seven and eight investigate

the entropy generation and thermos effects in non-radiated flow for rotating disk. Chapters

nine to twelve are for flows of Jeffrey, second grade and Williamson liquids in the presence
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of homogeneous-heterogeneous reactions and radiation. Viscous dissipation, activation energy

and heat source/sink are considered.

Key findings of whole thesis are mentioned below:

• Axial velocity profile
³
̃ ()

´
is decaying by greater values of   ∗ and 1. Opposite

trend is noticed for rising   and 

• Radial velocity
³
̃ ()

´
is increasing function of Re,1 1  and  on the other side

it decays for ∗ 1 and 2

• Tangential velocity enhances for higher estimation of    ∗ReΩ  ∗1 and  and

decreases for 1  2 and ∗

• Density profile (̃ ()) decays for increasing Pr and  however it shows opposite

impact for greater  and ∗

• Temperature impact against  ∗ and Du is increasing and temper-

ature shows decreasing behavior for Pr 3  and We.

• It is observed that concentration field
³
̃ ()

´
rises for  ∗ 2 and 1 and

decays for Pr  1 and Z.

• Entropy generation enhances for greater 1  2  and We while opposite

trend is seen for greater Re 3  and Z.

• Bejan number boosts for higher 1  2  and  however it show decaying behavior

for   3 and Z.

• Surface drag force decays for increasing 2 1 and ∗1 and it depicts increasing behavior

for   and 

• Nusselt number increases for   and Ec.
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