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Preface

Flow due to rotating surfaces has been extensively investigated by many researchers. It is
because of their applications in aeronautical science and other industrial and engineering

branches. Rotating disks have applications in marine, vehicle industries, rotating heat exchanger,

gas turbine, semiconductor manufacturing, magnetic storage drives, electronic gadgets having

rotational parts, disk reactor for production of bio-fluids and rotating heat exchanger. Heat
transport phenomenon by a stretching disk is still being given remarkable consideration by the
engineers and scientists. It is in view of their applications in power generating, computer storage

devices, medical equipment, crystal growth processes, electronic devices and air cleaning

machines. Viscous as well as non-Newtonian liquids like Williamson model, Jeffrey model and
second grade etc., are viewed supportive in above mechanical, biological and computer sciences
applications. Therefore, the Williamson, Jeffrey, second grade and viscous fluid models are
adopted in the mathematical modeling of this thesis. Fluid flow is examined by a stretched
rotating disk or between rotating disks. Main stress is given to the flow by a rotating surface.
Boundary layer concept for stretched surface is implemented. Concept of second law of
thermodynamics is also used for the calculation of entropy generation. This thesis is designed as:
Chapter one contains the basic concept about flow by a rotating disk, nanofluid, ferrofluid,
magnetohydrodynamics boundary layer, viscous and non-Newtonian fluids, homogeneous and
heterogeneous reactions and activation energy. Conservation laws and tensor form for viscous

fluid, Williamson, Jeffrey and second grade fluids are presented. Solution procedure is discussed.



Chapter two reports the heat, mass and motile microorganism transfer rates in radiated flow of
nanomaterial by a rotating disk. The flow is discussed over a variable thicked surface of disk.
Concept of microorganisms suspended nanoparticles is stabilized via bio-convection in the
presence of buoyancy forces and magnetic field. Homotopy analysis method is used for
convergent solution. The data of this chapter is published in Chinese Journal of Physics, 56
(2018) 2404-2423.

Chapter three reports the mixed convective fluid flow (with silver and copper nanomaterials) by
a rotating stretched disk. Energy expression is mathematically modeled subject to radiative flux,
viscous dissipation and Ohmic heating. The flow under consideration is of nonlinear stretching
attributes of disk. Concept of thermodynamics second law is implemented for the entropy rate.
Nonlinear formulation based upon conservation laws is made. Attention is particularly given to
the entropy generation and convergence analysis. Research of this chapter is reported in Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 539 (2018) 335-346.

Chapter four is generalized version of chapter two in view of five different types of nanoparticles
and partial slip. The concept of motile microorganisms is dropped in this chapter. Silver, Copper,
Copper oxide, Aluminum oxide and Titanium oxide are used as nanoparticles and water as
continuous phase fluid. The data of this research is published in Physica B: Condensed Matter,
534 (2018) 173-183.

Chapter five presents the flow of magnetic nanofluid or ferrofluid between two coaxially rotating
stretchable disks. Both disks have different rotating and stretching velocities. Water based fluid
comprising magnetite Fe;@, nanomaterials is addressed. Furthermore the velocity and

temperature jump at the solid-liquid interface are accounted. Series solutions are developed using



homotopy analysis method (HAM). The data of this research in printed in Journal of
Magnetism and Magnetic Materials, 413 (2016) 39-48.

Chapter six provides us the mathematical modeling of statistical declaration and probable error
about skin friction coefficients and Nusselt numbers for flow between two coaxially rotating
stretchable disks. Furthermore the homogeneous and heterogeneous reactions are considered.
Thermo-physical characteristics of nanofluids are scrutinized through Silver and Copper
nanoparticles. Main consideration is given to the statistical declaration and probable error for the
coefficients of skin friction and Nusselt numbers. HAM is used for the series solution
developments. The research of this chapter is reported in International Journal of Hydrogen
Energy, 42 (2017) 29107-29120.

Chapter seven deals with entropy optimization and heat transport in 3D unsteady flow between
two coaxially stretched disks. Energy equation is developed via Ohmic heating, heat source/sink
and dissipation. Thermo-diffusion effect is further considered. The flow is conducting for time
dependent MHD fluid. Thermal and velocity slip conditions at both the surface are implemented.
Flow problem is modeled by using Navier-Stokes equations with entropy generation.
Transformations (Von-Karman) are utilized to convert the nonlinear flow expressions into
ordinary ones and then tackled for series solutions employing HAM. The contents of this chapter
are accepted for publication in International Journal of Numerical Methods for Heat and

Fluid Flow (2019).

In chapter eight, the contents of chapter seven is generalized in view of thermo-diffusion and
diffusion-thermo effects, nonlinear radiative flux, porous medium and Joule heating. The data of

this research is published in Journal of Molecular Liquid, 262 (2018) 261-274.



Chapter nine is extension of chapter eight in view of Jeffrey fluid model, thermal stratification
and homogeneous and heterogeneous reactions. The findings of this chapter are reported in

Results in Physics, 7 (2017) 2557-2567.

In chapter ten, the data of chapter nine is generalized by considering second grade fluid and heat
generation/absorption. In this chapter radiative heat flux is dropped. The results of this chapter is

published in Results in Physics, 8 (2018) 223-230.

Chapter eleven communicates the flow of Williamson fluid between two-coaxially stretchable
rotating disks with entropy generation. MHD Williamson liquid is considered. Through second
law of thermodynamics the entropy rate is obtained. Viscous dissipation, radiative heat flux and
heat source/sink effects are considered for the modeling of energy equation. Transformation
procedure converts the nonlinear flow expressions into ordinary differential equations. HAM is
used for the development of convergent series solutions. The results of this research is published

in International Journal of Heat and Mass Transfer, 127 (2019) 933-942.

Chapter twelve is the extension of chapter eleven for Soret and Dufour effects and stratification
in flow between two rotating disks with entropy generation. The observations data of this chapter

are reported for publication in Scientia Iranica, (2019).
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Chapter 1

Background and basic laws

First chapter focuses on the literature review for rotating disk, nanofluid, ferrofluid, magneto-
hydrodynamics, non-Newtonian fluids, heterogeneous-homogeneous reactions, activation energy

and entropy generation and basic laws for nanofluid flow.

1.1 Background

The flow created by an infinite rotating disk is known as Von Karman [1], swirling flow named
after the scientist Theodore Von Karman who introduced the problem in 1921. Application of
this problem is found in centrifugal compressors. This is a steady state flow in which vortic-
ity produced at a solid surface is not allowed to diffuse far away by convection, some of the
other examples includes the Blasius boundary layer with suction, etc. This problem finds its
application in many fields, including rotating machines, filtering systems, heat transfer and
mass transfer applications, geophysical applications etc. Flow investigation by stretchable ro-
tating disk has significance in different mechanical and industrial engineering process like food
processing technology, medical equipment, spin coating, manufacturing, air cleaning machine,
centrifugal pumps, electric power generating system, at high melting point liquid metals pump-
ing, turbo-machinery and gas turbines. Cochran [2] utilized the Von-Karman transformations
to analyze the rotating flow. Stewartson [3] was pioneer in discussing the flow between two
disks. Mellor et al. [5] and Chapple and Stokes [4] studied flow between two disks. Arora and

Stokes [6] considered fluid flow and heat transport between two rotating disks. Kumar et al.



[7] examined liquid flow between two porous solid rotating disks. Hayat et al. [8] investigated
effect of thermally stratification on fluid flow between rotating stretchable disks. Convective
radiative flow of carbon nanotube is scrutinized by Imtiaz et al. [9]. Investigation of entropy
generation in MHD radiative flow with Ohmic heating and dissipation is done by Hayat et al
[10]. Some significant attempts for rotating disk are presented in refs. [11-15].

Nanofluid is termed as a material having nano sized particles in the traditional liquid. These
particles are named as nanoparticles. Because of its variety of applications many scientists and
engineers are working on this topic. Pioneering work on nanofluid was done by Choi [16]. Such
materials of fluids are basically the combination of nanoparticles in a suspension of base fluid.
Aforesaid small particles are usually made up of oxides, carbon nanotubes, carbides and met-
als. Frequently used base fluids are oil, water and glycol. Nanomaterials has some properties
which helps it in several applications like fuel chambers, mining and boiler gas outlet, local
refrigerator, caloric controlling, in crushing process, cooling engine automobile, hybrid electric
engines, pharmacological methods, temperature control and microelectronics. These fluids have
high thermal conductivity heat transport capability when compared with base fluid. They have
special characteristics that make them suitable for ultrasonic applications. Additional influ-
ence includes shear transformation of an instant compression ray and this property becomes
more operative when concentration enhances. Information of rheological implementation of
nanofluids is said to be more influential in view of their stability for convection applications.
In an alternative way, model containing two components are also taken. This phenomenon
attained much attention of the scientists due to such prospective applications. Another term
used to describe the suspension of nano sized particles is nanolubricants. Mainly oil is used as a
base fluid, they are used for engine and machine lubricants. It used to enhance the property of
anti-wear of base oils. The important nanofluids are ferrofluid which are the suspension of mag-
netic nanoparticles. Magnetic nanoparticles have both the magnetic and liquid characteristics.
Nanofluids behave like normal fluids in the absence of magnetic field. Ferrofluids are produced
by mixture of non-conducting fluids with colloidal suspension of magnetic particles. Magneto
nanofluids help the particles to move through the blood towards the tumor as nanofluids have
adhesion properties with tumor cells. In cancer therapy these particles have more absorption

power than micro particles. Usage of magnetic nanofluids includes hyperthermia, drug deliv-



ery, magnetic cell separation, contrast augmentation in magnetic resonance imaging etc. Some
recent literature for nanofluid flow is presented in Refs. [17-30].

Non-Newtonian fluids have extensive applications in technological and industrial sectors.
Formulation of equations for these types of fluids is complex in comparison to the usual Naviers
Stokes equation. It is due to extra rheological parameters in the constitutive relations of such
materials. Applications related to geophysics, biological sciences and chemical processes involve
non-Newtonian materials. Materials such as foams, pastes, ketchup, lubricant, certain oils,
sugar solution, apple sauce, colloidal and suspension solutions, drilling muds, clay coating and
soaps are the non-Newtonian fluids. Tangent hyperbolic nanofluid radiative flow is presented
by Hayat et al. [31]. Turkyilmazoglu [32] worked on micropolar fluid bounded due to heated
sheet. Effect of non-Fourier heat flux on viscoelastic material (Jeffrey fluid) flow is presented
by Hayat et al. [33]. Rahman et al. [34] examined effect of slip on flow of Jeffrey nanofluid
through tapered artery with mild stenosis. Some more recent works on non-Newtonian fluids
can be seen through refs. [35-45].

The minimum amount of energy which is necessary for the atoms or molecules in any
chemical reaction through which reaction initiate is known as activation energy. This concept
was initiated by Svante Arrhenius (Swedish scientist) in 1889. Symbol for activation energy
is E, in a chemical reaction and its unit is kcal/mol. The activation energy of some elements
and compounds which react with one another is zero. The threshold value of activation energy
is required for the atoms or molecules to react. It is measured as barrier between two energy
states. To start a reaction processes the threshold of barrier must be crossed. For continuation
of chemical reaction there is some certain range of molecules and atoms which are required
having translational energy which should be greater than or equal to activation energy. Maxwell
distribution is applied, and the molecules which have energy greater than the energy of barrier
will cross the threshold. Therefore the highest energy of barrier is the activation energy. The
effect of tunneling is ignored in this case and the barrier’s shape as well which shows the particles
which have energy greater than activation energy. However the number of particles with enough
energy that start the reaction totally depends on the energy, which is why a concept of pre-
exponential factor function in included of the temperature. This concept is usually utilized in

calculating rates and estimating cross sections. Some more investigations on this regards can



be witnessed from refs. [46-55].

Several chemical reacting systems consist of heterogeneous-homogeneous reactions. Except
in the presence of catalyst some of the reactions does not work or may proceed very slow. Corre-
lation between homogeneous-heterogeneous reactions is very complex. Ceramics, fog dispersion,
food processing, crops damage via freezing, fog formation and polymer production, hydromet-
allurgical industry are applications of chemical reaction. Various scientists now are engaged in
the discussion of flows with homogeneous-heterogeneous reactions via different aspects [56-70].

Surface with varying thickness has many applications especially in marine, architectural,
civil, aeronautical processes and in mechanical engineering. By the help of variable thickness
of sheet the structural material becomes light and enhance the usage of material. Fluid flow
by variable thickness of sheet with non-Fourier heat flux and variable thermal conductivity is
presented by Hayat et al. [71]. Fluid flow of non-Newtonian liquid near stagnation point with
variable thicked surface is analyzed by Ramesh et al. [72]. Ostwald-de Waele fluid flow by
a rotating disk with variable thickness and decreasing index is illustrated by Xun et al. [73].
Effect of stagnation point flow and carbon nanotubes with variable thicked surface is explored
by Hayat et al. [74]. Fang et al. [75] worked on flow over a variable thicked stretching sheet.

At present the method of thermodynamic optimization of real devices and entropy genera-
tion minimization (EGM) are rapidly growing. Principle of thermodynamics method also called
"thermodynamic design", "thermodynamic optimization" and "finite time thermodynamics".
Basic rules of thermodynamics such as fluid mechanics and heat transfer are merged through
EGM. These type of principles are applied by EGM on schemes that are made by limited time
constraint, these processes are restricted by irreversibilities of mass, fluid flow and heat transfer.
Recent progress in this constraint includes heat exchanger design, storage optimization by melt-
ing and solidification, the various functions of refrigerators, power from hot-dry-rock deposits
and power plants having the heat exchangers that are fouled. Newton’s second law of motion
and laws of thermodynamics are the important principles on the basis of which heat transfer and
flow studies are based. First law of thermodynamics gives basic knowledge about energy of sys-
tem. Second law of thermodynamics shows that entire actuality developments are irreversible
and it is a significant apparatus to study the generation of entropy to assess the irreversibility in

the system. Entropy generation optimization governs the irreversibility associated to the natural

10



developments for example a counter current flow of gas and gas in heat exchange. At present
the entropy generation optimization is a topic of different interests in few territories similar to
rotating disk reactors, porous media, propulsion ducts ,electromagnetic materials processing,
turbo machinery, electric cooling, heat transferring devices and combustions. Few current uti-
lizations of entropy analysis are solar heat exchangers in pseudo-optimization process, fuel rods
cooling nuclear industry, slurry systems, electromagnetic propulsion used in nuclear industry,
cooling of modern electronic systems, loss of heat from steam pipes and solar energy collectors
etc. The investigation of entropy generation optimization with MHD in which the flow study
is done due to rotating disk has gained significant consideration due to consistently developing
applications i.e., accelerators, power plant, micropumps, flow meters, filtration , MHD genera-
tors, nuclear reactors, and geothermal systems etc. Initially Bejan [76] showed how the entropy
production rate can be decreased in simple components for heat transport like heat exchanges
with prescribed heat flux distribution, counter flow gas to gas heat exchangers and sensible
heat units for energy storage. Ijaz et al. [77] studied entropy generation in flow of Sisko liquid
subject to heat generation/absorption. Flow is investigated over a stretched surface. Nonlinear
flow expressions are solved for series solutions via homotopy method. The obtained outcomes
predict that velocity field diminishes for higher material variable while thermal field increases
for larger radiation parameter and Biot number. Vatanmakan et al. [78] explored steam flow
in turbine blades with entropy generation and volumetric heating. Numerical simulation is
conducted through two phase Eulerian description for steam flow. Khan et al. [79] worked on
chemically reactive flow of Casson liquid with activation energy and entropy generation. Gul et
al. [80] studied Poiseulle flow of nanofluid with entropy generation. Xie and Jian [81] discussed
MHD two-layer electroosmotic flow with entropy generation through micro-parallel channels.
Ijaz et al. [82] scrutinized forced convection flow of viscous nanofluid for entropy generation.
Huminic and Huminic [83] analyzed heat transfer performances of hybrid nanomaterials with
entropy generation in a flattened tube. Farooq et al. [84] examined radiative flow of carbon
nanotubes with mixed convection. Kiyasatfar et al. [85] explored entropy production in flow of

power law fluid considering slip conditions.
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1.2 Concept of entropy

1.2.1 Definition

Randomness in the system or molecular disorder is called entropy.

1.2.2 Examples of entropy

1. Fig. 1 shows that for a substance of high temperature the entropy enhances (see link

https://chem.libretexts.org/Bookshelves/General Chemistry/Book%3A Chemistry (Averill and Eldredge

Entropy and Temperature

Q/ » ”:*‘

Entropy, &

S increases a large
amount with phase

changes

T
Melting point Boiling point
Temperature
CopyTigs © 0T Pesmon Msnpren Cmmangs. A8 RGP asried

Fig. 1.1: Entropy increases via temperature.

2. Fig. 2 tells that there is large entropy for larger molecules when compared with smaller
molecules (see link https://www.google.com /url?sa=i&url=http%3A %2F %2F www.chemhume.co.uk%2FA2CH
htm&psig=AOvVaw1X5LbZWSVGyWhIW-OVA8T-&ust=1574487855725000&source=images&cd=vfe&:

.Gasweaﬁsmﬁll % % ?

? space aver time e
5B Lo
2 P

Pile of bricks dropped from a lorry
Which arrangement is the more probable?

. | ) i

mare probable

s | =] == than order
[ N — e .

Fig. 1.2: Entropy via amount of molecules.
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3. Solids have lesser entropy than gas and liquid (See Fig. 1.3 and link https://www.google.com /url?sa=i&u
=1574487259982000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPCer8 WO eUCFQAAAAAJAAA

— Y

Fig. 1.3: Entropy for solid, gas and liquid.
1.2.3 Types of processes

Reversible process

A process in which surrounding or system can take its original position from the final form
without changing the properties in thermodynamics of the universe is known as reversible

process (see Fig. 1.4).

1 . l
20° —49 20°
Fig. 1.4: Reversible processes.

Irreversible process

A process that is not reversible is irreversible. Factors causes process irreversible are friction,

mixing of two gases, plastic deformation and chemical reaction.
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1.2.4 Proof that entropy always increases

In all natural process the entropy increase so entropy cannot conserved. Suppose a body at

temperature 77 radiates always a small heat d@. A cold body B at temperature 75 receives

that heat. If dQ be so small that T and T5 are not altered then entropy of A decrease by —T

and entropy of B increased by %. Further

_ _d@ 49
a8 =8 = 51 = 25 = 75,

1 1
T >1T5 So — < —
1 2 OTl T27

dSde(T%—TiJ,

ds > 0.

1.3 Fundamental laws

1.3.1 Mass conservation law

Equation of continuity without any source or sink is expressed as

op
V'(pV)ﬁ-E—O.

dq

(1.5)

Here p, t and 'V are density, time and velocity. When liquid is considered incompressible then

Eq. (1.5) becomes
V-V=0.

1.3.2 Momentum conservation law

Equation of motion is

dVv
2 _v. b
pdt T+ pb,

and for two phase nanofluid model we have

av
pnfﬁ =-V.r1 +pnfb

14
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In above expressions right hand side depicts the surface and body forces and left hand side

denotes an inertial force. Here mathematical expression for effective nanofluid density p,,; is

Viscous fluid

For viscous fluid model the Cauchy stress tensor 7 has the form
T=—pIl+ pAy, (1.10)

here p, I,b, Ay and d/dt are pressure, identity tensor, body force, first Rivlin-Erickson tensor.

Mathematically, A is defined as

A =VVH(VV), (1.11)
where
ol 0 1 01 ol
a “rtras &
_ o 7 10 o0
VV-| g iels o (112
el 19w Jeln
or r 09 0z

Here ¢, f and s are nanoparticles volume fraction, subscripts for base fluid and nanoparticles

respectively. Further incompressible character of liquid is considered.

Second grade fluid model

The Cauchy stress tensor for second grade is expressed as:

7= —pl+ pA1 + ajAs + a3A7, (1.13)
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where o and o are two material constants. Second Rilvin-Erickson tensors is

A
A, = % +(VV)' AL+ AL (VV), (1.14)

For thermodynamics consistency, Clausius—Duhem inequality we have:

w007 =0,0] + a5 =0, (1.15)

Jeffrey fluid model

The Cauchy stress tensor for Jeffrey fluid model is expressed as:

__ a 1% *dAl
e L (Al + =t > (1.16)

where A5 and A] are retardation time and ratio of relaxation to retardation times respectively.

Williamson fluid model

For Williamson fluid model 7 is given by

7= =Pl [ + (19— 1100) (1 =T9) '] 4 (1.17)

in which I', pg, t1o denote time constant, zero and infinite shear rate viscosity respectively and

¥ = 1/%tmce(A1)2. (1.18)

1.3.3 Conservation law of energy

4 is expressed as

Energy equation for nanofluid (Buongiorno model) can be written as
dT - -
(hcp) P —V.a+hV-j, (1.19)

N —
Here T, ¢p, hp, ¢, j p denote fluid temperature, specific heat, nanoparticles specific enthalpy,

heat flux and mass flux for nanoparticles diffusion respectively. Mass flux for diffusion of

16



.
nanoparticles j , and heat flux ¢ are defined as

- A vT

jp=-pDBVC —p,Dr T (1.20)
~ = I
d=—kVT+hy§p (1.21)

in which p,, Dp, k, Dr are nanoparticles density, Brownian diffusion coefficient, thermal con-

ductivity and thermophoretic force respectively. Eq. (1.18) becomes

dT . vl VT S
,OCP% = ]{TV2T + PsCp DTT— + DBVC -VT ; (122)

which is the heat equation of nanofluid in Buongiorno model of nanofluid.

Energy equation for two phase model of nanofluid is written as
T .
(peplny—r = kg VT, (1.23)

where (pcp)ng, fi,y and kyy highlight effective heat capacity, dynamic viscosity and effective

thermal conductivity. Note that nf stands for nanofluid. These quantities are defined as

(pcp)nf = (pcp)f(l - ¢) + (Pcp)s¢- (1-24)
Ky
/J’nf = (1 — ¢)2.57 (125)
@ _ ks + 2k —2¢(ky — ks) (1.26)
k‘f k5+2kf+¢(k‘f—k‘s) ' )
1.3.4 Conservation law of concentration
The concentration equation for nanofluids is
aC A 1 —
—+V.-VC=—-—V_-j 1.27
8t + ps J Y2 ( )
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After using Eq. (1.19), we get

oC R R V2T
4 V. = DpV? Dp—
ot +V.VC sVC + Dp T

1.4 Solution procedure

(1.28)

Governing equations for flow are mostly highly nonlinear. It is very complicated to find the

exact solution for these equations. There are numerous techniques which are used to solve

the nonlinear equations such as Adomian decomposition method, perturbation and homotopy

perturbation methods etc. Note that there are some limitations in these methods that are

dependent on large or small parameters in the equations and convergence. In this thesis the flow

problems will be solved by using homotopy analysis method [86 — 100]. It has many advantages

such as it is independent of small/large parameters. We can adjust or control the convergence

of the problem by setting auxiliary parameter. We can freely choose the initial guesses and

base functions for the problem.
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Chapter 2

Rotating disk flow of nanomaterial
with gyrotactic microorganism and

variable thickness

Abstract: Here heat, concentration and motile microorganism transfer rates in magnetohy-
drodynamic (MHD) radiative flow of nanofluid are investigated. Variable thicked rotating disk
is examined. Concept of microorganisms suspended nanoparticles is stabilized through biocon-
vection. This concept is induced by combined effects of magnetic field and buoyancy forces.
Nonlinear differential systems are solved for series solutions. Velocity, temperature, concentra-
tion and motile density behaviors for different parameters are analyzed. Skin friction coefficient
and Nusselt number are numerically discussed. Temperature and concentration have opposite
behavior for larger Brownian motion parameter. Motile density reduces for bioconvection Peclet
number and bioconvection Lewis number.

Keywords: Nanofluid; Rotating disk; Variable thickness; Thermal radiation; Motile mi-

croorganism

2.1 Formulation

MHD flow of nanomaterial past a stretchable rotating disk of variable thickness is considered.

Applied magnetic field in z—direction has strength By. Brownian motion and thermophoresis
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are analyzed. Motile gyrotactic microorganism in nanofluid is accounted. Furthermore thermal

—¢
radiation is considered. Disk is taken at z = a* (RLO + 1) . Disk is stretched with rate a;

and rotate subject to angular velocity €;. Tw and Too are surface and ambient temperatures

respectively (see Fig. 1). By using the above assumptions the problems become

Fig. 2.1: Schematic diagram.

o 0w i

or 0z r
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uE+7+w8z7V€)r2 P

(pen)s (025 + 02D ) = (54 20 T2) T ()
Pt \"or Tz ) T 3k 9.2 " PP

T \ 0z

wa_é_Fa@ =D @_{_&ﬂ
0z or |~ TP 92 T 022

w@_i_a@ - _ bWe ﬁ Na_é
0z o]  C,—-C. |0z 0z

~

92N
N 822 )

~ - ~ ~ ~ —<
'&:’r'al,ﬁ:’l“Qljwzo,T:Tw,C:Cw7N:Nwa.tZ:a*<RLO+1> 5
u=0, =0, w=0, T:Too, C’—>C’oo, ]\7—>Nooatz—>oo,
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where o electrical conductivity, v kinematic viscosity, p density, (pcp)s and (pc,), are base
fluid specific heat and the effective heat capacity of the nanoparticles, C, and Co the surface
and ambient concentrations, Nw and Noo the surface and ambient densities of gyrotactic mi-
croorganism, o* Stefan-Boltzman constant, Ry feature radius, k thermal conductivity, £* mean
absorption coefficient, a* the small thickness coeflicient of disk, Dg and Dy the Brownian dif-
fusion coefficient and thermophoretic diffusion coefficient respectively, Dy, b, W, and ¢ the
diffusivity of microorganisms, chemotaxis constant, maximum speed of swimming cell and the

disk thickness index. Letting

~ X i (2.8)
_T-Tw & _ C-Cu ~ _ N-Ny _ z *
V= To T ¢ = CoCo? X=Xy 1= R0(1+T )%
the resulting problems are reduced in the form
OF + H' 4+ ne*cF' = 0, (2.9)
_1 . - . .. .
F”Eu + )% 2+ G* - HF' — FF'sne* — MF =0, (2.10)
@"éu 417V 2R — B — FGsnet — MG =0, (2.11)
1 1 ~1 ~ - 1 ~f = ~12
— (14 R)=—(1 +r)%0" — Fdspe* — AV + —(1 *2<<N &+ N ): 2.12
PI"( +R)Re( + )Y ¥ sne v +Re( + ") by @' + Nt 0, (2.12)
1 11 ~ - . Nt 1 11 ~ 11
———(1+7)%d" - HY — e FO' + — ———(1+7")*J = 2.1
PricRo ") NEEY g e prre LT 0 (2.13)
11 ~ ~ Pe 1 ~ ~
— 1 * 2g~//_H~/_ el - (] *\2¢ <(I)/~/ ~(I)//) =0 2.14

(2.15)
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where

Nt

Lb

where €*

r* (pcp)pv QIRO 160*13 oB?
Ro+r* kT L= 91 ks o
_ (Pcp)pDT(Tw — 1) Nb — (PCp)p Dp(Cy — Cxx) Le — k
(pep) rTso 7 (pep) pv 7 (pep) DB’
v bW, a*
= — Pe=_—_° = — 2.1

is a dimensionless constant, Pr Prandtl number, Re Reynolds number, M magnetic

parameter, A; scaled stretching parameters, * the dimensionless radius, Nt/thermophoresis

parameter, Pe bioconvection Peclet number, R radiation parameter, Nb Brownian motion

variable, Le and Lb respectively the Lewis and bioconvection Lewis number and « disk thickness

coefficient.

Considering

n—a)=0(¢), (2.17)

9 =0(n—a)=0(8), x =xX1n—a)=x(),
expressions (2.9 — 2.15) are reduced as follows:
2f + 1 + (4 a)e'sf =0, (2.18)
[agr)* = P4 g —hf = [s(€+ a)e" = Mf =0, (2.19)
N"é (14792 —2f§—hi — f§'s(E+a)e* — Mg =0, (2.20)

h(0) =0, f(0) = Ay, §(0) =1, G(oo) =0, é( 0) =1,6(0
f o0) =

—(1+ R)R 1+ 20" = f0's(6+ a)e — 1 + é(l )% (Nbé’&b' + Nt@/2> —0, (2.21)

1 1 1 woc s Nt 1 1 1 w2

PrIcRe ") ¢ ~he —em f¢+NbLePrRe(1+r) 5 =0 (2.22)
LIV S TR —Pe—(1+r)2<(¢ + g%”)—o (2.23)
prp X M e X Re X¢ ) =5 ‘

/\
\_/
A
(=)
~—
I
—_

(2.24)



Shear stresses (radial and tangential) are mathematically defined as

_ ., 0u _ pr*Qi Ro(147%) ' (0)
TZT - ” 0z 2=0 - RO )
_ ov _ pur*Q Ro(14r*)5g'(0)
Ta0 = 1 52| mp = ™ :

;’LU \/ ;z'r 20"

The mathematical form of (Cy,) is

CpoRe= Z2l=0 _ Ly o oys(7(0)) + (3 (0))2V2

p(rin)? v
The Nusselt number is
Nug, = AROQwA :
w Too) z=0
with heat flux ¢, as
oT N e
qw]Z:[):—kg—i-qr =—k(Ty —Ts) (L + R) (1 +77)°0(0).
z=0

Final expression of Nusselt number is

Nug RetT = — (1 + R) (1+7°)°8(0).

2.2 Methodology

Initial approximations and linear operators are

ho(§) =0,
fo(§) = Are™%,
go(§) =%,

fo(¢) =75,
Po(€) = €7,
Xo(6) =e7t,

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)



(2.33)

where B; (i = 1 — 11) are the constants.
Letting ¢ € [0, 1] denotes the embedding parameter and (hﬁ, h P hg, Iy, hqg and ﬁ)”() the aux-

iliary parameters.

2.2.1 Zeroth-order formulations

ah N3 [H (&), F (& @)l = (1= q)L5, |H(E 0) = ho(€)] - (2.34)

ah NG IF(E,0), H(E a). G(& )] = (1= )L [ F(&,0) — fo(©)] (2:35)
agNG (G (€, @), (&), H(E ) = (1 = 0)L£5 [G(E.0) — G0(&)]. (2.36)
ahgNGlI(E, ), F (&), H(E0). 06 q)] = (L= )5 [9(6,0) =o()] . (2.37)
AN [@(6,0), F (€ @), H(E @), 96 a)) = (1 - q)L; [0(60) = do(&)] . (2:39)
ahsNx[x (€ 9), ®(£,9), F(§,9), H(E, q), 9(&, 9)] = (1 — ) L5 [2(€, q) — Xo(&)] (2.39)

H<07 Q) - 07 F(O,Q) - Ala F<007Q) = 07 G(07Q) = 17 G<OO7Q) = 07 19(07(1) = 17
¥(o0,q) = 0, ®(0,q9) =1, ®(c0,q) =0, x(0,9) =1, x(00,q) =0, (2.40)
where N, Ny, Nz, Ny, N& and Ny are

OH(,q)
73

OF(£,q)
oc

+ (£ + a)e's (2.41)

NE[H(€7Q)7F(€> Q)] =2F +
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2
0 F(&aQ)i(1+r*)2g_F2+G2

NFF(& ), H(E ), G(&q)] =

0¢2  Re
OF(§,q) . OF(&q) R
SH= e P (E+a)e— MF, (2.42)
- _ 82G(§5 q) 1 *\2¢
N3lG(&,9), F(€,q), H(E q)] = 57 oL+ )% —2FG
0G(&q) 9G(& q) *
—-H . F o s+ o) — MG, (2.43)
29 9
NoHE.0). Pl 0). HE. ) 006 0) = 51+ Rigs(l+r g S0 - p2e e+ ) — i

Re € o€ o€

- _ L1 2. 7€, q) 0®(&,q)

2
_CUG*Fa(I)(&Q) 4 Miii(l—i—r*)ka 1;2%2(_1)45)

0¢ Nb Le Pr Re

1 1 0%x(¢, Ix(E, L Ox(&,
NilX(E 0). ®(6.0). F(E.0). HE.0).9E.0)] = - )5(52 e

0P(&,q) x(&,q9) | 0*P(£,g)
oc oe X af2<“'4>)

1
—Pe—(1+7r*)*
eRe( +77) (

2.2.2 m' order problems

We can write

, () = Xmn-1(€), o
3R (€) = L5 [0() = XonBrn-1(6)]
B3R m(€) = L3 [6m(€) = Xmbm1(9)]
s Ren(€) = Ly [Gm () = Xon¥om 1(6)] |

RIS (Nbaﬁ(f,q) 9%(¢.q) +Nt<‘”<f’Q)>2>, (2.44)



ilm(()vq) = fm(ovq) = fm(OO7Q) = gm(ovq) = gm(OO7Q) = ém(oa Q) =0,

Qm(OO,q) = ¢m(07q) = ¢m(OO, Q) = im(ov Q) = }NCm(OO, Q) =0, (248)

where Rﬁ,m (5) ) Rf,m (5) ) R!},m (5) ) R@’m (6) ’ R&j,m (5) and R)‘(,m (5) are

Rﬁmz (5) = 2]?mfl + iL;n—l + (5 + O‘)egf;,n—lv (2'49)
N 1 m—1
Rin (&) = fﬁqﬁ (L4r7) 1kfk+zgm1kgk_zhm1kfk
k=0 k=0 k=0
m—1 m—1 ~
o1 k(€ +)e = > Mo, (2.50)
k=0 k=0
m—1 _ m—1 ~
Rm (€) = Gin— 1R (1477)% 2me 1k ) hmo1-kGh= ), Fe1-kGhs(E+0)€ =M1,
k=0 k=0 k=0
(2.51)
1 m— 1
Rjm (&) = P(1+R)R (14720, me 107,16 (E + a)e*
k=0 k=0
m—1 m—1
& R (Nb S O b+ NES Z)jnlé;”> , (2.52)
¢ k=0 k=0
m—1
111 el - N1
R(Z),m (g) = Pr Le Re(1+r )Qg(bm—l_z hm 1¢m 1 gne Z fm 1¢m 1 Nb Le Pr Re( + )2§0m 1
k=0
(2.53)

11
Rim (&) = 573 - th 1K1 — sme* me 1K1

1 m m—1 Y
—Pe% (L+77) (Z —1 X1+ ZXm 1Pm-1 (2.54)

k= k=0

. 0, m<l1
Xm= . (2.55)
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The solutions (Am (&), fm(€), Gm(€)s Om(E), &, (€), X,n(€)) comprising the special solutions

*

(R, (©), Fia(€), G5a(€), 0 (E), Dra(€), X5,(€)) are

han(€) = 13 (€) + By,
i (€) = f (&) + Bae® + Bse,
G (&) = G5 (€) + Baet + Bse™* (2.56)
ém(é) = é;(f) + Bgeg + B76 3
G (&) = b (€) + Bse® + Boe™,
Xm(€) = Xi (&) + Buoe® + Buie ¢, |
where value of constants B; (i = 1 — 11) by using boundary conditions are
By = —[(0), Bs=~3;,(0), Br = ~0,,(0), By = ~0,,(&), Bui = ~%(),
Bl = BQ = B4 = Bg = Bg = BlO =0. (257)

2.3 Convergence analysis

The series solutions convergence is accelerated by hj, h 7 hg, hg, h& and hg. For appropriate
ranges of these variables the ii—curves are drawn at 13th order of approximations. It is apparent
from Figs. (2.2-2.4) that suitable ranges of parameters are —1.2 < ; < —0.3, —1.2 < hf <
-0.2, -1 < hg < 05, =12 < by < =09, —-1.1 < h& < —04 and -1 < Ry < —0.5.
Table 1 is constructed to analyze the convergent series solutions. It is seen that 21st order of
approximation is enough for convergent homotopy solutions. Table 2 gives averaged squared
residual errors by optimal values of h; , i 7> hg, hg, h& and hg. Table 3 is constructed for validation
of our problem by giving comparison to numerical limiting solution by Xun et al. [21].

To obtain the values of Ay, hf, hg, hg, h& and Ay, we have utilized concept of minimization

proposed by Liao [39] by characterizing the average squared residual errors.

e = kolﬂ > |V (Zﬁ@),Zf <5>) : (2.58)
= ' ' ISFLS
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_ k° mo m m
sﬁ;—koilz NF (Zﬂf),Zh(&),Zf}@)) : (2.59)
7=0 | =0 =0 =0 £=j5¢ |
1 ke o[ m m m 12
=T |V (Zp}(s),ZiL(s),Zﬂs)) : (2.60)
7=0 | i=0 i=0 i=0 =3¢ |
_ 1 e[ m m m m 12
em =TT D Ng)(Zé@,zﬁ@,Zf@),Z&(f)) . (261
J=0 | i=0 i=0 i=0 i=0 e=jo¢ |
B 1 k[ m m m m 12
FE————— (zm,zh@,zm,zé@) C ew
7=0 | i=0 i=0 i=0 =0 €=30¢ |
1 e [ m m m m 2
eh = g 2 |Vx (Zfdf),zﬁ(s),Zf@),z&@)) . (263)
7=0 | i=0 i=0 i=0 i=0 £=joe
Following Liao [31]
ey = el el 1ol 1l e+ ek, (2.64)

where the total squared residual error is denoted by ! 66 = 0.5 and k° = 20. Total av-
erage squared residual error is minimized by using MATHEMATICA BVPh2.0. At 2" or-
der of approximations, the values of convergence control parameter are h; = —0.525242,
hj = —0.438242, hy = —0.528742, hy = —1.18546, hy = —0.52956 and hg = —0.54956 and

el = 0.5 x 1073, Table 2.1 is arranged for the individual average squared residual error at
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m = 2. Here we noticed that the !, for higher order approximations is decreased.
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Fig. 2.3: h—curve for §'(0) and 5/(0).

29



L0y — o :
_ 05t o) ]
S 0.0} :
= _ost J— _ :
3 T\
=N _15t ,'II II.' I".,"\ _

-2.0f || \E

—2.5,;['}"'

1

15 10 —05 00
hy hy

Fig. 2.4: h—curve for (3(0) and Y'(0).

D.I}I}S N T T T T T T
\1 Total residus error
0.002F N\
s,
g 0001 ~
= ",
@ 5x1074f Ny
1% 1074} T~
1x1074} T
2 4 ] 8 10 12 14 16
m

Fig. 2.5: Total residue error.
Table 2.1: Convergence table for solutions when ¢ =1, ¢* =0.3, a = 1.2, Re=1,r* = 0.2,
M=07,A4=03,Pr=19, R=01,Le=1, Nb=1, Nt=0.1, Le=1, Pe=0.1, Lb=0.7.
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Order of approximations —h”(0) —f'(0) —g'(0) —91(0) —(}5/(0) -X'(0)

1 0.3444 0.5151 0.8488 0.3064 0.6760 0.7718
10 0.5964 0.4868 0.9367 0.1559 0.4429 0.5049
16 0.5965 0.4868 0.9352 0.1461 0.4448 0.5093
18 0.5966 0.4868 0.9353 0.1453 0.4451 0.5103
21 0.5966 0.4868 0.9353 0.1446 0.4455 0.5101
22 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101
24 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101
30 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101
40 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101
50 0.5966 0.4868 0.9353 0.1445 0.4456 0.5101

Table 2.2: Individual averaged squared residual errors.

m e e . e, et e,

2 0.000045231  0.000070508  0.00548584 0.00365332  0.00091408  0.00254444
4 0.000012545  0.0000120884  0.00078887 0.000819915  0.000366413  0.00065585
8  3.25888x1077 8.87321x1077 4.25545%x107° 0.000127616  0.000181346  5.35894x 1076
10 1.23585x1077  3.49176x1077 2.02545x107°  0.0000622279 0.000142131  2.25655x10~°
16 2.23584x1079 8.34518x10~% 2.34554x10~7 0.0000110888 0.0000817474 1.25644x10~6

Table 2.3: Validation of results with Ref. [12] when ¢ =0, Pr=Re=1, M = R= A, =
Nb= Nt =0.

Articles ') f(0) ~7(0)

Present 0.3959  0.5109  0.61598
Xun et al. [12] 0.396271 0.510231 0.615921

2.4 Discussion

For clear understanding of the nanofluid flow with involvement of microorganisms we examine
the physics of the problem by analyzing the behavior of flow parameters for the velocity, tem-

perature, concentration of nanoparticles, motile density, surface drag force and heat transfer
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rate by fixing¢=1,¢" =03, =12, Re=1,r*=02, M =0.7, 41 =03, Pr=1.9, R=0.1,
Le=1, Nb=1, Nt=0.1, Le=1, Pe=0.1, Lb= 0.7, hﬁzhf:hgzhé:h(}:hi:—oj
(See Figs. (2.5-2.30) and Tables 2.4 and 2.5).

2.4.1 Axial, radial and tangential velocity components

Figs. (2.6 —2.8) show impact of magnetic parameter M on axial, radial and tangential velocity
distributions. It is noticed that axial h(¢), radial f(¢) and tangential velocity (&) profiles
decline for increasing M. For rising magnetic parameter the Lorentz force enhances an con-
sequently the resistance between particles occur. Examination of axial fz(f), radial f (&) and
tangential g(&) velocity distributions for elevating values of stretching parameter A; is shown
in Figs. (2.9 —2.11). With increase in A; the stretching rate enhances so velocity in axial and
radial direction increases while tangential velocity is decreasing function of A;. Impact of disk

thickness power law index ¢ on velocities (h(£), f(§) and g(£)) is shown in Figs. (2.12 — 2.14).
Here magnitude of A(£), f(£) and §(€) decay for higher .

0.0F
C0s M=0,03,0.6,0.9
@ —eoo—olooooe —ooe
o /[
-15 /
0 5 10 15 20

Fig. 2.6: Axial velocity h(£) via M.
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Fig. 2.7: Radial velocity f(€) via M.
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Fig. 2.8: Tangential velocity g(&) via M.
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Fig. 2.9: Axial velocity h(€) via A;.
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Fig. 2.10: Radial velocity f(£) via A;.
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Fig. 2.11: Tangential velocity g(&§) via A;.
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Fig. 2.12: Axial velocity h(€) via s.
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Fig. 2.14: Tangential velocity (&) via .
2.4.2 Temperature

Figs. (2.15 — 2.18) have been displayed to show impacts of involved variables on temperature
distribution é(ﬁ ). Fig. 2.15 is portrayed for prediction of Nb on temperature. Here temperature
and layer thickness are enhanced for higher Nb. It is due to more random motion of particles.
Influence of Nt on thermal field is presented in Fig. 2.16. Clearly, temperature of liquid increases
when Nt is enhanced. In fact an increment of Nt induces the enhancement of thermophoresis
force which will in general move nanoparticles from hot to the cold side and thusly temperature
of liquid upgrades. For larger Prandtl number Pr the temperature decays (see Fig. 2.17). For

higher Pr the thermal conductivity of fluid reduces so temperature decays. For increasing values
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of R temperature of fluid enhances because radiation is ratio of enthalpy to kinetic energy (See

Fig. 2.18).
10 Fy |:
0.8
0.6
= \“' Nb=1.1,12,13,14
)
0.4 \
0.2 . ]
d M 3
0.0 C. 1
0 2 4 6 8 10
é
Fig. 2.15: Temperature 6(¢) via Nb.
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Fig. 2.16: Temperature 6(¢) via Nt.
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Fig. 2.17: Temperature 9(5) via R.
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Fig. 2.18: Temperature () via Pr.
2.4.3 Concentration

Effect of involved parameters of concentration profile éﬁ(é ) is seen in Figs. (2.19—2.22). Behavior
of Lewis number Le is shown in Fig. 2.19. Concentration enhances for larger Le. Enhancement
of Le is proportional to weaker mass diffusivity and thin concentration layer thickness. Impact
of Nb and Nt on concentration field is portrayed in Figs. 2.20 and 2.21. For larger Nb the

nanoparticles concentration decreases whereas reverse is found via larger Nt. In fact for larger
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Pr the concentration decays (See Fig. 2.22).
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Fig. 2.19: Concentration ¢(€) via Le.
1.0F

0.8
\\ Nb=0.1,0.15,03, .5
R

0.6
< \
04 N .
0.2 % R
0.0,
0 2 4 6 8 10
3

Fig. 2.20: Concentration ¢(¢) via Nb.
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2.4.4 Density

Figs. (2.23-2.27) predict impact of pertinent variables on density (). Figs. 2.23 and 2.24 plot
the influence of bioconvection Peclet number Pe and bioconvection Lewis number Lb on density
X(€). Both parameters show decreasing impact on density X(£). Due to decrease in diffusivity
of microorganisms for higher Pe the motile density of fluid decays.
microorganisms decays for larger Lb which is responsible for decay in (). Impacts of Lewis
number Le and Prandtl number Pr on x(¢) are shown in Figs. 2.25 and 2.26. For larger
Le the density x(§) enhances whereas reverse is noticed via Pr. Fig. 2.27 plots impact of

thermophoresis parameter Nt on motile density (). It is seen that motile density enhances

0.8“
06 \\ Nt=0,0.1,0.5,0.55
RN

0.2
4 o

0.0}, 1

o

&

Fig. 2.21: Concentration ¢(¢) via Nt.

\\Qk Pr=20.3,0.4,0.6,0.8
0.6 Q >

3

0.0', -‘—.—I_

Fig. 2.22: Concentration ¢(£) via Pr.
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for larger Nt.
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Fig. 2.23: Motile density via Pe.
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Fig. 2.24: Motile density via Lb.
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Fig. 2.25: Motile density via Pe.
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Fig. 2.27: Motile density via Pe.
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2.4.5 Surface drag force

Table 2.4 displays the numerical declaration for skin friction coefficient. It is clear that for
higher disk thickness coefficient « the drag force at surface reduces while opposite effect is
observed for larger stretching parameter A; and magnetic parameter M.

Table 2.4: Numerical analysis of skin friction versus «, M and Aj.

(0% M Al Cfa; Re

1.2 0.7 0.3 0.2245

1.3 0.2237
1.4 0.2229
1.2 0.8 0.2316
0.9 0.2393

0.7 04 0.2384

0.5 0.2549

2.4.6 Nusselt number

Impacts of R, Nt and Nbon (N Uy Re";J:l> is displayed in Table 2.5. Magnitude of (N Uy Ren;J:l>
is more for higher R while it decays via larger Nb and Nt.
Table 2.5: Computational analysis of (N Uy Ren;+11>.

R Nb Nt Nu,Rewit

01 1 0.1 -0.2235

0.2 -0.2490
0.3 -0.2707
0.1 1.1 -0.1961
1.2 -0.1735

1 02 -0.2097

0.3 -0.1992
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2.5 Conclusions

Here suspension of nanoparticles and gyrotactic microorganism in radiative flow by variable

thicked rotating disk is analyzed. Major results are summarized as follows:

Magnetic parameter M has opposite impact on velocities (radial, axial and tangential).

Temperature distribution is enhanced for Nb, Nt and R.

Larger Le, Nb and Pr give rise to decay in the concentration.

Impacts of Pe, Lb and Pr on motile density are decreasing.

Behavior of skin friction for larger M is increasing.

Nb and Nt decrease the heat transfer rate.
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Chapter 3

Rotating disk flow of nanomaterial
with mixed convection and entropy

generation

Abstract: This chapter addresses mixed convective rorating flow of viscous fluid. Thermal radiation,
Joule heating, variable thickness and viscous dissipation have been accounted. Flow under consideration
is because of nonlinear stretching of disk. Water is used as base fluid while nanoparticles comprise silver
and copper. Fluid is electrically conducting subject to applied magnetic field with constant strength.
Heat generation and absorption are neglected. Entropy generation is utilized through second law of
thermodynamics. The effects of silver and copper nanoparticles on the thermal conductivity of continuous
phase fluid and entropy generation have been also examined. Total entropy generation rate is scrutinized
for different involved variables. Nonlinear formulation based upon conservation laws is made. Attention
is particularly given to the convergence in the computational process. Velocity and thermal gradients at
the surface of disk are obtained in tabular forms. Main conclusions have been indicated.

Keywords: Entropy generation; Bejan number; Rotating disk; Copper and silver nanopar-

ticles; Joule heating; Viscous dissipation; Thermal radiation.
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3.1 Problem formulation

Here steady, incompressible viscous liquid flow of silver and copper nanomaterial is addressed
by a rotating variable thicked surface of disk. A constant magnetic field is applied normal
to the flow. Induced magnetic field is ignored. Thermal radiation and Joule heating are also
considered in present flow configuration with additional effects of viscous dissipation. Disk is
located at z = a* (RLO + 1> - with stretching rate a; (in r—direction) and angular velocity
Q4. The components of flow velocity (4, 0, w) are in the directions of increasing (r, ¥, z)

respectively. Temperature at surface of disk is denoted by T,, while ambient temperature being

Tso. The schematic diagram and coordinate system are depicted in Fig. 3.1.

By

Fig. 3.1: Problem geometry.

The governing equations are

ou ow U
e T T g 1
or + 0z r 0, (3:1)
on 9 0% oy BVns o -
o' Y A n——LB% —nT_Too; 3.2
u(?r r +w8z VfazQ Pnf oty Pnf ( ) (3:2)
00 av 0D 0% ony

90 LWL 520 =y, L0 Tl g2y 3.3
u8r+ r +w8z Ynf 92 Pnf 0¥ (3.3)

or  oT 160*T3 \ 0*T  Onf 9 0 o Haf a\?  [00\?
(pcp)"f <UE +w$> N <k”f+ 3k ) 822+(pcp)nfBO(u i )+(PCp)nf ($> - (5) 7

(3.4)
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with conditions

(3.5)

in which T, o*, a*, k*, 1, tnfs (BP)ngs Pufs Kngs Vngs Onyg and (pcp)ny denote the temperature, Stefan-
Boltzman constant, small parameter regarding surface, mean absorption coefficient, scaled
boundary layer coordinate, effective dynamic viscosity, volumetric thermal expansion coefficient,
density, thermal conductivity, kinematic viscosity, electrical conductivity and heat capacitance.

These quantities are defined as [26]:

kn ks+2k s —26(kf—ks
tng = s (08)ns = (PB) (1= 0) + (08)s8, T = T pr sty
- 3(2=—-1)¢
an:%, pnf:pf(1—¢)+03¢v ULff:l‘i‘ _1+g ! _>1 ) ¢> (36)
(5502)(55)
(pep)ng = (pcp)f(1 = @) + (pcp)sd,

in which subscripts nf, ¢, s and f stand for nanofluid, nanoparticle volume fraction, nano-solid
particles and base liquid.

We consider

o= 1 Roa Fn), = r* RoG(a). 1 = Rofhi(1+ 1) (220820 ) 7 fyy) (37)

P Q1 R2p;\ ntl
= e = e ()
where <, Ro,n, r*, F, G, H, denote disk thickness coefficient, feature radius, power law index,

dimensionless radius and self-similar radial, tangential and axial velocities respectively.

Using these transformations the Egs. (3.1 — 3.5) become

OF + H' + ne*cF' = 0, (3.8)

P(Re) I (1 4+ 1) L (wi%) LGP HE - e
P

(Bp)s 3.9
i M oan+)\ 1‘¢+<§5>f¢ {9_0 ( )
1—¢+Z—;¢ of 1—¢+Z—;¢ o
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1 1 - M o
G"(R 1+ —2FG— | ———— ”f HG —FGsne* =
(Re) 17 (147 (1_¢)5/2<1_¢+§_;¢> T=orEg G G'-FG'sne* =0,
(3.10)
% (kkaf T R) (Re) (1 +r ) (1 %Pcp)s > {9” - F{?,CTZG* - PI&,
ot G @
Inf 1 B2 2 = *yo__1 1 P12 Au2y
+MFEc T (1 ¢+(ZZ;));¢) (F* + G?) + Ec(Re) T (1 +1*) DL (1 ¢+((§Z£));¢’> (F'"*+G") =0,
(3.11)
H(a) =0, F(a) = A1, Gla) =1, d(a) =1,
()~ ()~ 1 ()~ (a) (3.12)
F(o0) =0, G(o0) =0, ¥(c0) =
Considering
H (n) = h(n —a) = h(¢),
F = £ — Q) = £ s
N(n) Jf(n ) {(5) (3.13)
G (n) =g —a) =g(¢),
9 (n) = 0(n—a) =06(5),
we obtain
2f + B + (£ + a)e'sf =0, (3.14)
~ 1-n ~ 5 ~ ~ ~
f"(Re)Tn (14 r*)2<(1_ql§)5/2 <1 ¢+Z;¢> — 24+ 3> —hf — fs(€+ a)e*
g (BR)s (3.15)
T ) LA SANGDTAR
1- ¢+—&¢ 1*¢+?}¢ o
§'(Re)To (1 4 1) = (1_¢i&¢> —2f5 — hi — fis(e + a)er
¢ (3.16)
| —M __ ) Infy
(=) 30
1 kng R) (R }jr—n 1 *\ 26 é” ry * 7a
& (%L + R) (Re) 170 (1 4+ 7)2% | —L gl LS (U
PCp
Onf 1 £2 ~2 —n *\G 1 1 £12 ~I12\ __
+MEc o <—1¢+((Z§§));¢) (f*+3g°) + Ec(Re)n (1 + 1) 1—9)5/2 <1¢+((ZZ£));¢> (f*+3g%) =0,
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01 R? B? 160*73
Re=2Mh =200 pr=lay polotls 4 =g

ve ? pfﬁl ) 3k*ky
P —1
20)2 Tw—T. « (1 R2 nt1
Fe=—"%_ )= 95l . °°)7a:%_< 1 on>" 7 (3.19)
ep(Tw—"T50) T 0 My
* _ _r*
€ = Rorro

in which Re denotes Reynold number, M magnetic interaction parameter, Fc the Eckert
number, A; the ratio of stretching rate to angular velocity, A the mixed convection para-
meter, Pr the Prandtl number, « disk thickness coefficient, R the radiation parameter and €*

the dimensionless constant.

3.2 Quantities of engineers interest

3.2.1 Surface drag force

Drag force is defined as

\/ T2+ T,
cp=+—"_ = (3.20)

Py (917“)2 7
where 7., and 7,9 is defined as
1
QR2 el oz
dil g QuRo(1+77)s (L) F(0) tor
Tar = :unf % o - (1 — ¢)5/2R0 3 ( . )
1
QR2 RS
00 pyr*Q Ro(1 4 7%)° (_};;p,:) 7 g(0) 599
TzG_,unf&Z:O— (1= o)/ R, . (3.22)

Total shear stress 7,, is defined by

Tw = \/T2, + T2 (3.23)

Putting Egs. (3.21) and (3.22) in Eq. (3.20) one arrives at

n—1 Tw|Z=0 1 1

Cfx Rern+1 = pf(T91)2 - (1 _ ¢)5/2F

(L+r)[(f(0)% + (57(0))2. (3.24)
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3.2.2 Heat transfer rate

Mathematical expression of heat transfer rate is

Nux — ARoqu ,
ke(Tw —Too) o
where ¢, is
~ 1
or . A QR2p\ ™ [k ~
= — knf— = —kp(Tr — Tio)(1 4+ r*)s [ —2£ nf 7 (0).
Gl ,—o 15, T F (T = Teo) (1 477) < i ) </<:f +R)6(0)

z=0

Finally, one has
=1 * knf ~/
NUzRe”Jrl :—(1+T )g k_+R 9(0)
f

3.3 Exploration of entropy generation

Dimensional equation of entropy generation is

N TE} kf E 3k*k}f E

w w

AN 2 N AN 2
ke | k oT 160*T3. [ OT
So==L |2 TR L + il Tl B2a2 4 %),
T T, 0

where
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(3.28)
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Invoking Eq. (3.30) in (3.28), we arrive

AN 2 . AN 2 N . "

oo Er Ru (01" 160778 (OT\T| | gy | 2(5)7+E @7 +2(5E)°
¢ kp \ 0z 3k°k; \ 0z 0
D

/ )]’

512 .
T | + 18+ 3 + 4

w
Thermal irreversibility Fluid friction irreversibility
Onf p2/s2 | ~2
+ = f BO ('U/ + v )
Ty

~~

Joule dissipation irreversibility

(3.31)
Equation (3.31) witnesses the contribution of three main sources for entropy generation i.e., heat
transfer with radiation effects, fluid friction irreversibility and Joule dissipation irreversibility.

In dimensionless form, the entropy number is

Ng = (’%fi + R) 6”1 (Re) T (14 1%)%
2(¢ + )23 f2+ A2 + AfF (€ + )e's
+%W Y +r*2(Re)1+Ln(1 )22y (3.32)
P2 (Re) T (14 702 2 4 (€ + 0)? ()2 25
—O—M%LBT’Fﬁ(]a + %),

oy = To—Too (AT 00 _ IySevy (3.33)
! T T, kAT 9T B ATQ, ‘

Here a7 denotes the dimensionless temperature difference, Br Brinkman number and Ng en-
tropy generation rate.

Irreversibility subject to heat transfer dominants when Be > 0.5. On the other side when
Be <« 0.5 the viscous effects dominates. For Be = 0.5 both effects are equal. The Bejan number
is addressed as

B Entropy generation due to heat transfer
e =

3.34
Total entropy generation ’ ( )

50



or

1—n

(k,:—ff + R) éaal(Re)H_n (14 r*)2%

Be = - — — \ (3.35)
(kaf + R) 0 a1 (Re)Tn (1 + %)%
2E + )2 () 22+ Af2 + A f1(€ + a)e's
+HE ke +202 4 P2 (Re) T (1 4+ 7%)255/ 24
r*%Re)ﬁ(l + T*)2gf/2 + (é + a)2 (6*)2 C2§I2
+MBTT’*2%£<];2 +3%).
3.4 Homotopy procedure
We have .
hO(g) = 07
~ _ e_g’
50(¢) (3.36)
0o(&) = €75,
fO(g) :A1€ 57 )
Lp=H, Li=f"—F L3=§"—§ Lz=0 -0, (3.37)
with properties
L;[B] =0,
L:[Byes + Bge ¢] =0,
f [_2 o ) (3.38)
,Cg [346§ + B56_£] =0,
ﬁé [Bﬁ@g + B7€75] =0,

in which the constants consist of B; (i =1 — 7).

3.5 Convergence analysis

Auxiliary parameters hj, 1 7 hg and hy provide us opportunity to adjust the convergence of
nonlinear problems. Figs. (3.2-3.3) display the h-curves at 12th order of approximation. Per-
missible estimations of auxiliary variables for Ag— H50O and Cu— H20 nanofluids are established

in the ranges —1.5 < ﬁ;z < -0.1, -11< ﬁf <04, -12<nh3 <-03and —1.4 < ﬁé < -1
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and —1.6 < h; < —0.2, —1.1 < ﬁf <-03, -1.2 < hy3 < -0.3 and —1.4 < hi < —1.05. Table
(3.1 — 3.2) demonstrate the convergence of 2/(0), f (0), § (0) and é,(O) for Ag-water nanofluid
and Cu-water nanofluids. It is clear from Table 3.1 that /(0), f (0), §' (0) and él(O) of Ag-water
nanofluid converge at 11*", 15t 19" and 25" order of approximations respectively and Table
3.2 shows that A/(0), f (0), § (0) and 9 (0) of Cu—water nanofluid converge at 11", 16" 20"

and 25" order of approximations respectively.
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Fig. 3.3. h—graphs for Cu—water

Table 3.1: Various order of approximations for Ag—water nanofluid when ¢ = 1, ¢* = 0.3,

Pr=19,a=12 Re=09,n=05, Ec=0.5,r*=02, M =07, A; =0.3, R=0.1, A\ =0.4.
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Order of approximation ~ —A”(0)  f/(0) —g(0) —él(O)

1 0.009994 0.1610 0.8197 0.8295
11 0.02034 0.2859 0.7965 0.5038
15 0.02034 0.2857 0.7957 0.5233
19 0.02034 0.2857 0.7980 0.5341
25 0.02034 0.2857 0.7980 0.5350
30 0.02034 0.2857 0.7980 0.5350
35 0.02034  0.2857 0.7980 0.5350
40 0.02034 0.2857 0.7980 0.5350
50 0.02034 0.2857 0.7980 0.5350

Table 3.2: Various order of approximations for Cu—water nanofluid when ¢ = 1, ¢* = 0.3,

Pr=19,a=12, Re=09,n=0.5, Fc=05,r=02, M =07, A1, =03, R=0.1, A=04.

Order of approximation ~ —A”(0)  f'(0) —g(0) —9/(0)

1 0.009994 0.1611 0.8197 0.8295
11 0.02034 0.2855 0.7962 0.5037
16 0.02034 0.2854 0.7958 0.5285
20 0.02034 0.2854 0.7970 0.5340
25 0.02034 0.2854 0.7970 0.5330
30 0.02034 0.2854 0.7970 0.5330
35 0.02034 0.2854 0.7970 0.5330
40 0.02034 0.2854 0.7970 0.5330
50 0.02034 0.2854 0.7970 0.5330

3.6 Discussion

This part shows the influences of dimensionless parameters on flow due to rotating disk. Figs.

(3.4 — 3.19) are plotted to show the important results of velocity components (axial (h(€)),
radial (f(€)) and tangential (§(¢))), temperature 6 (£), Nusselt number (Nux Ren__+11) and skin
friction (wa Rez_ﬁ> for silver and copper water nanofluids. Figs. (3.4a — 3.4c¢) display the

physical characteristics of Ag—water and Cu—water nanofluids velocities (h(§), f (), g(&)) for
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increasing values of magnetic variable M. In fact with increase in M the Lorentz force is more
which produces resistance and consequently velocity reduces. Results for both Ag—water and
Cu—water nanofluids are qualitatively similar. Influence of power law index n on velocities
(h(€), f(£), §(€)) of Ag—water and Cu—water nanofluids is shown in Figs. (3.5a — 3.5¢). It is
evident from plots that motion of fluid particles enhances for larger n. Physically with increase
in n the viscosity of fluid reduces and as a result velocity for both nanofluids is enhanced. Figs.

(3.6a— 3.6¢) elucidate the impact of parameter A; on velocities (h(€), f(€), §(£)) for Ag—water
and Cu—water nanofluids. Here axial (h(£)) and radial (f(€)) velocities fields enhance for
larger A;. It is because of an increase in stretching rate. It is noted that velocity for Ag—water
nanofluid is more than Cu—water nanofluids. Impact of mixed convection parameter A on
axial, radial and tangential velocities for Ag—water and Cu—water nanofluids is depicted in
Figs. (3.7a—3.7¢). Magnitude of axial and radial velocities enhances for larger A while opposite
impact is noted for tangential velocity. For larger A thermal buoyancy force increases because A
is ratio of buoyancy to inertial forces. As a result axial and radial velocities grow (see Figs. 3.7a
and 3.7b). Results for both nanofluids are qualitatively similar. Velocities (h(€), f(£), §(€)) for
larger nanoparticle volume fraction ¢ are shown in Figs. (3.8a — 3.8¢). Here we noticed that
velocity profiles (h(€), f(€), §(£)) are increasing functions of ¢. Velocity for Cu—water nanofluid
is more because copper nanoparticles are less dense when compared to silver nanoparticles.
Characteristics of magnetic parameter on temperature is sketched in Fig. 3.9. Temper-
ature increases for higher M. Because of higher in Lorentz force more resistance is offered
to the nanoparticles motion. Hence more heat produces and thus temperature enhances for
both nanofluids. Figs. 3.10 and 3.11 disclose the effects of mixed convection parameter A and
nanoparticle volume fraction ¢ on temperature of Ag—water and Cu—water nanofluids. Both
parameters have direct relation with temperature field. In both cases temperature is slightly
more for Ag—water nanofluid because of its higher thermal conductivity. Fig. 3.12 displayed
temperature 9(5) for larger Eckert number Fc. A rise in temperature curves with higher E'c is
observed. Due to inside friction of molecules the mechanical energy converted to thermal energy
is responsible for temperature enhancement. Behavior of temperature for larger radiation R is

shown in Fig. 3.13. Mean absorption coefficient decays for larger of R and temperature differ-

ence occurs due to diffusion flux which consequently enhances (€). Results for both nanofluids
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are quite similar in this case.

Figs. (3.14 — 3.16) are portrayed to show the impacts of M, ¢ and A on skin friction
coefficient for Ag—water and Cu—water. As expected the surface drag force enhances for larger
M, ¢ and A. Results are more obvious in case of Ag—water nanofluid for all parameters when
compared with Cu—water nanofluid. Figs. (3.17—3.19) display the behavior of Eckert number,
magnetic parameter and nanoparticle volume fraction on Nusselt number. Heat transfer rate
becomes less with Ec and M. Magnitude of Nusselt number is more for Cu—water nanofluid
(see Figs. 3.17 and 3.18). For higher ¢ the magnitude of Nusselt number enhances (see Fig.

3.19). Here results of Ag—water nanofluid dominant over Cu—water nanofluid.
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3.7 Entropy analysis

Behaviors of dimensionless temperature difference parameter, radiation parameter, Brinkman
number, nanoparticle volume fraction and Reynolds number on local entropy generation and
Bejan number are examined in Figs. (3.20 — 3.29).

Local entropy generation and Bejan number for larger temperature difference parameter oy
are graphically presented in Figs. 3.20 and 3.21. Here entropy generation rate and Bejan number
are increasing functions of ;. It is seen that Ng(§) approaches to zero far from the boundary.
For larger a; the heat transfer effects are more prominent than fluid friction and magnetic field
effects. That is why Be enhances. Bejan number is more for Ag—water when compared with
Cu—water nanofluid. It is because of its higher heat conductive ability. Figs. 3.22 and 3.23
displayed impact of radiation R on Ng(§) and Be for silver and copper water nanofluids. Here
both entropy and Bejan numbers are increased versus R. It is due to rise in internal energy
of system. It is also observed that Be is more for silver water nanofluid. Figs. 3.24 and 3.25
show Ng(€) and Be for both Ag— H2O and Cu— H2O nanomaterials for higher Br. Physically,
Brinkman number governs the releasing of heat through viscous heating in to heat transport by
conduction process. Entropy generation is directly affected by Brinkman number closed to the
disk surface. Heat transport through conduction process is always higher than the heat released
by viscous phenomenon closed to the disk surface. More heat is produced inside the layers of
liquids particles and consequently entropy of the system upsures. Fig. 3.25 highlights that Be
declines for larger Br. Effect of Cu nanoparticles here is less than Ag nanoparticles. Figs. 3.26
and 3.27 depict the influence of ¢ on Ng(§) and Be. Rate of entropy generation enhances for
larger ¢ while opposite behavior is noticed for Bejan number for both nanofluids. It means that
as values of ¢ increase then the heat transfer dominant over fluid friction and magnetic effects.
Figs. 3.28 and 3.29 are sketched to show the important effect of Re on Ng(£) and Be. We
noticed that rate of entropy generation decays for larger Re while on contrary Bejan number

has higher values via increasing Re. Physically for larger Re the flow fluctuation in the fluid
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enhances so heat transfer increases and thus more entropy generation for both nanofluids.
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3.8 Conclusions

Mixed convective radiative flow subject to Joule heating and dissipation is discussed. Main

findings are as follows:

e Axial h(€), radial f(£) and tangential §(€) velocities increase for larger power law index

of fluid and nanoparticle volume fraction.
e Temperature é(f) enhances for larger R, Fc and X in both Ag and C'u water nanofluids.
e Surface drag force increases for higher M and ¢.
e Magnitude of temperature gradient Nu, Ren;+11 decays when Fc and M are enhanced.
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e Re impact on entropy generation rate Ng is opposite when compared with R, Br and ¢.
e Effect of Br on Bejan number is reverse when compared with ¢ and Re.

e Bejan number is more for Ag—water nanofluid when compared with Cu—water nanofluid.
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Chapter 4

Slip and Joule heating effects in

rotating disk flow with nanoparticles

Abstract: This chapter addresses the viscous fluid flow subject to five different types of nanoparticles
i.e., Silver, Copper, Copper oxide, Aluminum oxide and Titanium oxide. The flow is discussed by a
variable thicked surface of disk with Joule heating. The nonlinear PDE’s are converted to ordinary
ones through Von-Karman variables and then tackled for series solutions development via homotopy
method. Salient characteristics of appropriate flow paraemters are discussed graphically on the velocity
components, temperature, skin friction, and Nusselt number. It is witnessed that the velocity components
(i.e., axial, radial and tangential) decline via higher slip parameters. Also the axial velocity decreases
versus nanoparticle volume fraction. It is clearly remarked that the behavior of nanomaterials is more
than base liquid on the velocity components. Thermal field is increased subject to higher values of Eckert
number. Temperature in case of Silver-water nanomaterial is more than the other nanomaterials due to

its larger thermal conductivity. Skin friction diminishes versus slip variables.

4.1 Modeling

We analyze the incompressible water based nanofluids flow by a rotating disk with angular
velocity €1 and stretching rate a;. Nanoliquids are suspension of nanomaterials i.e., Copper,
Silver, Copper oxide, titanium oxide and aluminium with water as continuous phase liquid. The

—<
disk of variable thickness is considered at z = a* (RLO + 1) . The energy equation is modeled
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subject to Joule heating. Slip flow is considered. We consider cylindrical coordinates (r, 9, z)

(see physical model in Fig. 4.1). Under the assumptions % = % =0,0(u) =0(0) =0(r) =

O(1) and O(w) = O(z) = O(9) the equations for flow and heat transfer are as follows [10, 27]:

A

/.r
--ﬁ

Fig. 4.1: Schematic diagram of problem

oL u Ow
—+t=-+-=0 4.1
or r + 0z ’ (4.1)
o1 on v o T
= o= — — = Unf7—5 — — Byl 4.2
“or +waz r g2 Pnf 0%, (4.2)
o ov  uv 0% onf o
U W=+ — — —=DBji 4.3
“a +w8z+ r 922 Pnf 0 (4.3)
T aT T o,
(pCp)nf (UW + w§> = knfﬁ + JnfBg<u2 + ’1)2), (44)
with boundary conditions
o1l O A -
U = 7“@1+)\18—Z’17=T521+>\28—Z,w:0,TZTwatz:a*(RLO—i-l) ,
4 = 0, 0=0, %=0,T="Tx when z— oo, (4.5)
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where a* being thickness coefficient of disk is very small, Ry the feature radius, ¢ the disk
thickness index, a the stretching rate and Ay and Ay the velocity slip coefficients, effective
nanofluid dynamic viscosity p,,¢, heat capacitance (pcp)ng, thermal conductivity ki, r, density

pny and electrical conductivity o, are addressed as

Ky
= — 4.
Pnf 1— )25 (4.6)
(pcp)nf = (pcp)f(l —¢)+ (PCp)s¢, (4.8)
ng _ ks + 2k — 2¢(ky — ks) (49)
ky ks + 2ks 4+ 2¢(ky — ks)’ ’
322—-1)9
Inf 4 (1) . (4.10)
o s _(os _
(B (E-)e
Von Karman transformations are
) =
. - U R nth
= "Ry F(n), 9 =r"RoG(n), ¥ = RoQu(l+7r")"° <1M—0pf> H(n)
f
1
~ T — T z QlR%pf et
v = —— n=—(1+r"° . 4.11
" o ) ( o (4.11)
Incompressibility condition is trivially satisfied and Eqs. (4.2 — 4.5) are transformed as
2F + H' +ne*sF' =0, (4.12)
L FRe)TE(1 4 )E — B2 G2 HF — FFene
=051~ 6+ Z0)
M nf =
Inl f — ), (4.13)

(-9 (L -6+ 20) oy
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1
T 050 6129
M Onf

G"(Re)1¥n (14 1*)% — 2FG — HG' — FGene*

_ G =0, 4.14
=07 -6+ 50 o5 o
i@%(fm) (142 — P et — B +
Prkp1—o+&aeo
%%(1}2 + @) =0, (4.15)
TP 1=¢+ (o, @

with boundary conditions

H(a) = 0, F(a) = Ay +7(1+77) F(a),

F(oo) = 0, G(a) =1+v(1+7)G" (),
G(o) = 0, 9(a) =1, 9(cc) = 0. (4.16)
Here
PN=
R e G e IR S R

1 1
)\1 QIR%Pf nl )\2 QlR%pf et O'fBg Q%Tz
Y1 = 5 y Vo =5 | ——— , M = —— Fc=—7"—71417
! Ry ( My >Ry g P (Tw — Two)Cp )

where €* indicates dimensionless constant, Pr Prandtl number, * dimensionless radius, a co-
efficient of disk thickness, A; scaled stretching parameter, Re Reynolds number, v, and ~, slip
parameters, M magnetic parameter and Fc Eckert number.

Considering

O T
1 I
Nat S
3 =
| |
Q Q
~— ~—
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Sl
| 3
|
22
1 I
[yl
m =
N~— m

(4.18)
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Egs. (4.12 — 4.16) are reduced to

2f + B + (£ + a)e'sf =0, (4.19)
1 i H—Z *\26_ 2 ~2 T F_ £l *_ M Inf F_
(1 _ ¢)2.5(1 — o+ Z_;Cb)f (Re) (1+T ) I+ =hf'=ff §(£+a)€ (1 — o1t Z_;¢) oy /=0,
(4.20)
! §'(Re) 7 (1474)% — 2 —hg - fs(E+a)e’ - —— Tl g,

(=051 - ¢+ 29) =6+ 29) o

(4.21)
1 Eny 1 l-n oocill w « T Onf MEc 9 .9
Y (Re)Trn (140%)%0 — fO ()" —hl +—L ——— —(f*4+5%) =0,
o kf1—¢+%¢( o) T (14+r7)%0" = f0 s (+a)e Uf1_¢+<(5§§));¢(f )
(4.22)
h(0) = 0, f(0) = A1 +71f(0), f(o0) =0, §(0) = 1 +7,7'(0),
g(oo) = 0, 6(0) =1, H(cc) =0. (4.23)

In above expression prime depicts derivative with respect of £ and iL, f , g and 0 the axial, radial,
tangential velocities and temperature respectively.

At lower disk the shear stress in radial and tangential directions are 7., and 7.9

1

2 P ~
pa|  wrQuRo(1+r)s (T (o)

Top = — =i
zr Nf 9z o RO )
1
" N QR? CES
9o prpr* Qi Ro(1 + ™) (—;J’,pf) ()
T0 = By . = i . (4.24)
z=

Total shear stress 7,, is defined by

Tw = \/T2, + T2 (4.25)

Skin friction coefficients C'y, is

"7} _ Tw|z: _ 1 *\S[/ £/ ~/
CpeRerit = e = we (LTI O + (7O, (4.26)
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Nusselt number is defined as

Nu, = %%OQw .
kp(Tw —Too) 0
The wall heat flux ¢, satisfies
oT QRZp; \ "
w kf— = —ki(Ty — Too)(1+7")° 0),
delocs == by | =t ><+>(W 0)

and so

4.2 Solutions expressions

Expressions of initial approximations and operators satisfy

hﬂ(g) =0,
. A
(&) = T e o9
1
go(€) Ty 1) p(=¢),
0o(€) = exp(—¢)
L; =", L’f:f"—ﬁ Li=3"—3g, L —0" -4,

with
L;[c1] =0,

[, [0265 + c3e” ] 0,
L [0465 + cse 5] =0,
L 0,

3 [(366E + cre 5]

Y

4.3 Convergence analysis

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
(4.33)

(4.34)

(4.35)

HAM has great benefit of adjusting the convergence region for nonlinear system of equations

by using appropriate 7, ﬁf, hg and hy. Curves are drawn at 14th order of iteration. Admissible
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ranges for all nanofluids are shown in Table 4.1. Solutions converge in the whole region of &
(0 <€ <1) when Ay, = hj = hg = —0.7 and %5 = —1.2. Tables (4.2 — 4.6) show the convergence
of nanofluids for A”(0), f'(0), §'(0) and éI(O). Table 4.7 shows some physical properties of
nanofluids.

Table 4.1: Ranges of A—curves for five nanofluids.

Nanofluids hy, ﬁf hg hy
Ag—water —1.4to—-03 —-13to—-04 —-15to-0.1 —1.6to—1.1
Cu—water —1.5to -03 —-1.3to—-0.2 —-1.4to —-0.2 —1.55 to —1

CuO—water —14to—-03 —-14to-03 —-1.55to—-0.3 —-1.4to—-1.1
AlsOz—water —1.4to —-0.3 —1.3to—-02 —14to—-0.2 —1.4to—1.05
TiOy—water —14to—-03 —-12to—-05 —-14to—-0.2 —1.4to—1.1

l.Ol, T T T ]

=)
—_ 0.5¢ Ag-water f

250 <15 <10  -05 00
s hy g, By

Fig. 4.2: h—curves for 1”(0), f/(0), §(0) and éI(O).
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Table 4.2: Series solutions convergence for Ag—water nanofluid.

/

Order of approximations (Ag)  h”(0) f(0) d'(0) 6 (0)
1 -0.3901 -0.1376 -0.6238 -0.8219
5 -0.5795 -0.1353 -0.6676 -0.7710
10 -0.5795 -0.1418 -0.6656 -0.9006
11 -0.5796 -0.1418 -0.6656 -0.9232
16 -0.5796 -0.1418 -0.6656 -0.9702
25 -0.5796 -0.1418 -0.6656 -0.9702
35 -0.5796 -0.1418 -0.6656 -0.9702

Table 4.3: Series solutions convergence for Cu—water nanofluid.

Order of approximations (Cu)  h"(0)  —f'(0) —g'(0) —é/(O)
1 -0.3901 -0.1366 -0.6222 -0.8223
) -0.5794 -0.1423 -0.6659 -0.7718
10 -0.5795 -0.1421 -0.6639 -0.9017
11 -0.5795 -0.1422 -0.6640 -0.9245
15 -0.5795 -0.1422 -0.6640 -0.9717
25 -0.5795 -0.1422 -0.6640 -0.9717
35 -0.5795 -0.1422 -0.6640 -0.9717
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Table 4.4: Convergence iterations for CuO—water nanofluid.

Iterations  1”(0) —f(0) —g(0) —8'(0)

1 -0.3901 -0.1317 -0.6146 -0.8230
5 -0.5802 -0.1372 -0.6584 -0.7751
11 -0.5802 -0.1371 -0.6565 -0.9325
15 -0.5802 -0.1372 -0.6565 -0.9801
20 -0.5802 -0.1372 -0.6565 -0.9747
30 -0.5802 -0.1372 -0.6565 -0.9747
35 -0.5802 -0.1372 -0.6565 -0.9747

Table 4.5: Convergence of series solutions for AloO3—water nanofluid.

Order of approximations (Al,Os)  1"(0)  —f(0) —g(0) —6'(0)

1 -0.3901 -0.1300 -0.6119 -0.8230
7 -0.5800 -0.1389 -0.6539 -0.8264
11 -0.5800 -0.1377 -0.6539 -0.9324
13 -0.5800 -0.1378 -0.6539 -0.9663
17 -0.5800 -0.1378 -0.6539 -0.9746
25 -0.5800 -0.1378 -0.6539 -0.9746
35 -0.5800 -0.1378 -0.6539 -0.9746

Table 4.6: Series solutions convergence for T¢0Os—water nanofluid.

Order of approximations (Ti0)  h"(0)  —f'(0) —g'(0) —0(0)

1 -0.3901 -0.1302 -0.6122 -0.8235
10 -0.5802 -0.1375 -0.6541 -0.9106
11 -0.5802 -0.1376 -0.6542 -0.9341
12 -0.5802 -0.1377 -0.6542 -0.9535
17 -0.5802 -0.1377 -0.6542 -0.9766
25 -0.5802 -0.1377 -0.6542 -0.9766
35 -0.5802 -0.1377 -0.6542 -0.9766
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Table 4.7: Thermophysical properties of nanoparticles.

KW/mk)  plkg/m®) o(Um)™" c,(J/kgk) B x 107°(1/k)

Silver (Ag) 429 10490 6.30x107 235 18.9
Copper (Cu) 401 8933 5.96x107 385 16.7
Copper oxide (CuO) 76.1 6320 2.7x1078 531.8 18.0
Aluminium oxide (Al203) 40 3970 1x10710 765 8.5
Titanium oxide (Ti0s)  8.9538 4250 1x10712  686.2 9.0
Water (H20) 0.613 997.1 0.05 4179 210

4.4 Discussion

This section elucidates the influences of flow field, temperature, Nusselt number and skin friction

coefficient versus different flow parameters.

4.4.1 Axial, radial and tangential velocity components

Figs. (4.7 —4.27) show the outcome of axial, radial and tangential velocities via involved para-
meters for Ag-water, Cu-water, CuO-water, AlsOs-water and TiOo-water nanofluids. Impact
of disk thickness power law index ¢ for velocity components (axial, radial and tangential) is pre-
sented in Figs. (4.7—4.9). It is clear from the Figs. that magnitude of axial velocity reduces for
larger ¢ while radial and tangential velocities increase. Effects of CuQO, AloO3 and TiOs water
nanofluids dominant over Ag and Cu water nanofluids. It is due to the fact because Ag and
Cu nanoparticles are more dense than rest of the nanoparticles. Behavior of constant number
¢* for all velocities components is shown in Figs. (4.10 — 4.12). For larger ¢* the axial, radial
and tangential velocities enhance. In fact with an increase in €* the radius Ry decreases so
less particles are in contact with the surface and consequently less resistance leads to increase
in velocity. Also Ag and Cu water nanofluids have less velocity when compared with other
nanofluids. Figs. (4.13 — 4.15) are organized to see the outcomes of h(¢), f(€) and §(¢) for
increasing values of stretching parameter A;. It is worth mentioning that velocities in radial and
axial directions are increasing while there is decrease in tangential velocity component. When

we increase the value of A; the stretching rate at disk is increasing so axial and radial velocity
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enhance while decrease in tangential velocity is observed for reduction in €2;. We noticed from
Fig. 4.15 that tangential velocity is less for Ag and Cu water nanofluid than CuO, Al,O3 and
Ti0O4y water nanofluids (due to their higher densities). Fig. 4.16 shows that larger disk thickness
coefficient « lead to decrease in axial velocity component. Magnitude of axial velocity increases
for larger nanoparticles volume fraction ¢ (see Fig. 4.17). Impact of velocity slip parameter v,
for iL(f) and f (&) is displayed in Figs. 4.18 and 4.19. Here magnitude of velocity decays with
an increase in ;. In fact when slip velocity enhances then there is less transport of momentum
in radial direction. In these Figs. the results overlap for all nanofluids. Radial and tangential
velocities are reduced for larger 7, (see Figs. 4.20 and 4.21). Behavior of magnetic parameter
M against f (€) and g(&) is mentioned in Figs. 4.22 and 4.23. Both velocities reduce because
M is associated with resistive force known as Lorentz force. Power law index n affecting within
boundary layer of five nanofluids for f(£) and §(¢) is illustrated in Figs. 4.24 and 4.25. For
higher n both velocities enhance. In fact the power of radius Ry decays and thus velocity en-
hances. Effect of Reynolds number Re on radial and tangential velocities is depicted in Figs.
4.26 and 4.27. These velocities increase for larger Re . For higher Re the viscosity decays so less

resistance is offered to fluid particles and so velocity enhances.

0.0F '
Ag
\ m—-
———— Cu0
-o1-% - o\ T Ab Oy |
B Y N I Ti0,
¢=03,06,09,12
0.2
-0.3 /

—0.4] \“--—L e

0 2 4 6 8 10
£

Fig. 4.7: h(€) versus s.

h(€)
|

81



047
A Ag
———Cu
03 ———— Culd |
————— Al Oz
6,09,1.2 -
L0z
=
0.1
0.0
0 2 4 6 8 10
¢
Fig. 4.8: f(£) versus s.
T | T
Ag
——— Cu
0.6 Cu0
————— Al 0y
$=03,06,0912 ____ rio,
% 0.4 A
g
0.2
0.0} : :
0 2 4 6 8 10
4
Fig. 4.9: g(&) versus s.
0.00 \ | '
-0.05 \ e
=== Cul
—0.10 €=01,0203,04 4o
015 o
A
= -0.20 A
‘.,“ 1
-0.25 \\ ‘L -
-0.30 .
-0.35 N
0 2 4 6 8 10

3
Fig. 4.10: h(€) versus €*.

82



0.30F

—— ag
——— Cu
0.25 e
————— Al 0y
0.20 p34—t—— rio,
9
2015
0.10
0.05
e, T
0.00f, = . -]
0 2 4 6 8 10
&
Fig. 4.11: f(€) versus €*.
j Ag
——— Cu
———— Cul
s 1,152 T Ah 0 |
—————————— Ti0a
w
hy
e ... 1
4 6 8 10
é
Fig. 4.12: g(&) versus €*.
0.0 '
Ag
_01 ——— Cu
——— Cu0
b N AL 0
02 \\\\ A=03,04,05,06  —— 0,
-0.3 -
X 04 \\\\\‘74‘ : *
by \‘\\?(M4 e
-0.6 [%\\-_ .
~0.7 . . - —
0 2 1 6 8 10
3

Fig. 4.13: h(€) versus A;.

83



\\ ——— w0
P AL 0;
04 A=03,04,05,0. 0y ]

A
By
N / Ek
0.0, = .
0 2 4 6 8 10

&
Fig. 4.14: f(€) versus A;.

0.6 %
i A=03.04.05.06

W 0.4
g
Ag
——=— Cu
0.2 Cud —
————- Abh
""""" Ti03
0.0, I,
0 2 4 6 8 10

h(€)

Fig. 4.16: h(€) versus .

84



0.0
Ag
~0.1 o ]
11141214 A
on $=11,12,13,14 oy |
5
= —0.3 §7<*
—04 I/\Q\‘ T e s np
-0.5 \1_““‘4‘;:4-
0 2 4 6 8 10
3
Fig. 4.17: h(€) versus ¢.
0.00
\ Ag
-0.05 Tk
~0.10 IR
_—015 v1=0.01,01,02,03 _____ ro, |

= ~020 S il
-0.25 \‘*-/
~0.30 \\-23 N oo

-035 A o
0 2 4 6 8 10
3
Fig. 4.18: h(€) versus 7.
0.25F A
——— Cu
——— Cu0
0.20 y;=03,06,09, 12— ——— AL 0; ]
""""" - 1":0;
— 0.15
i
oy
0.10
0.05
0.0}, .
0 2 4 6 8 10

Fig. 4.19: f(€) versus 7.

85



0.30[

0.25
0.20
2
2015
0.10 — :: ]
=——— Cul
oost / My = o0
.......... 10,
0.00}, | |
0 2 4 6 8 10
£
Fig. 4.20: f(€) versus 7s.
1.0F
— ag
——— Cu
0 8 \ ———— Cul

W esnenes
""""" Ti0; i
0.6 \\ v =0, 0.2, 04, 0.8

%\

0.2
0.0 _
’ : 4 6 8 10
£
Fig. 4.21: g(&) versus 7y,
0.30F;
Ag
——— Cn
0.25 g
v
s Ty ]
0.20 .04,08,1.2
e
Zo1s
0.10
0.05
0.00},
’ 2 4 6 8 10

¢
Fig. 4.22: f(€) versus M.

86



Ag
——— Cu
———— Cud
0.6 ——- AL0;
""""" TiO3
M=0.0.4,08,12
G 04
b \
0.2 %\Q
0.0}
0 2 4 6 8 10
é
Fig. 4.23: g(&) versus M.
' |
0.30 @Q\ o
———— Cu0
0.25 N T A10;
=0.1.2.3 | Ti0
020 _ n=0,1,2,3 2
< .
<< 0.15 \ “x{
N\
0.05 o
0.00 %-pr —
0 2 4 6 8 10

Fig. 4.24: f(€) versus n.

0.8

A8

At

' ———— Cu0
————— AL 0

1=0,1,2,3 | = e Tio,

0.6 \

04 %

2(é)

0.2 AN
NN
0.0}, %M‘
0 2 4 6 8 10

Fig. 4.25: g(&) versus n.

87



0.30F§
0.25
0.20

G
= 0.15

0.10

0.05

0.00F

Fig. 4.27: g(&) verssu Re.

4.4.2 Temperature

Figs. (4.28 — 4.33) portray the effect of involved parameter on temperature for Ag-water,
Cu-water, CuO-water, AloOs-water and TiOs-water nanofluids. Graph of temperature é({)
against constant number €* is shown in Fig. 4.28. Temperature rises for larger €*. Behavior
of B(¢) for increasing Re is analyzed in Fig. 4.29. Direct relation is observed between Re and
é(f ). Results overlap for all nanofluids. Fig. 4.30 assures the enhancement in temperature with
increase in n for Ag-water, Cu-water, CuO-water, AloOs-water and TiOs-water nanofluids. Fig.
4.31 shows that with rise in nanoparticle volume fraction ¢ the temperature enhances. Larger

values of g~{> correspond to larger thermal conductivity and thermal layer thickness. As a result
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the temperature increases. Effects of Ag—water nanofluid dominant over Cu—water, CuO-
water, AloOs-water and Ti0Os-water nanofluids. It is because of its higher thermal conductivity.
Impact of Hartmann number M is predicted in Fig. 4.32. Here temperature has direct relation
with M. Magnetic field depend upon Lorentz force which yield resistance to the nanomaterials
motion. Thus more heat is produced. It consequently boosts the thermal field and layer
thickness. Outcome of Ec against thermal field is shown in Fig. 4.33. We noticed that é(f)
enhances for larger Fc. Effects of nanofluids on temperature dominant with respect to their
higher thermal conductivity. Hence silver water nanofluid dominants because Ag nanoparticles

have highest thermal conductivity than Cu, CuQ, AlsOs and Ti0O2 nanoparticles.
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