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NOTATIONS 

Most of the set theoretic and group theoretic notations used in this thesis are standard, and 

are available in [8] , [9] and [26] . However, some special notations which have been used 

extensively in this thesis are presented in the following. 

G6,6(2,Z) =< u, v : 1,16 = v6 = 1 > 

G6,6(2,Z) =< u, v,t : u6 = v6 = t2 = (ut)2 = (vt)2 = 1 > 

/).(l,m,n) =< u, v : ut = vm = (uv)n = 1 > 

/).(6 ,6,k) =< 1,1 , v : u6 = v6 = (uv)k = 1 > 

/). * (l,m,n) =< u, v, t: ut = vm = ( 2 = (uv)n = (ut) 2 = (vt) 2 = 1 > 

/). * (6 ,6,k) =< u, v,t : u6 = v6 = t2 = (uv)k = (ut) 2 = (vt) 2 = 1 > 

/)'(6,6,k;n ) =< u,v,t : u6 = v6 = t2 = (uv)k = (uvu- 1v- 1)n = (Ut)2 = (vt)2 = 1 > 

Ga = Stab(a) = {gEG : ag = a} 

If A is a square matrix then the trace of the matrix A is denoted by TrCA) 

By Q( rn) we shall mean the real quadratic field and by Q( FYi) the imaginary quadratic 

field. The projective line over the finite field Fq is denoted by PL(Fq) = Fq U {oo}. 
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PREFACE 

An extension of degree 2 of the fie ld of rational numbers Q is called the quadratic fie ld. 

Since Q(,JYf':') = Q(..rn; ) if and only if n 1 = c2 n 2' where CEQ, therefore any quadratic fie ld 

has the form Q(rn) , where n is a square-free integer that is uniquely determined by the field. 

In what follows, n will always be taken to be this integer. When n > 0, Q(rn) is called a real, 

and when n < ° an imaginary, quadratic field. 

It is worthwhile to consider linear-fractional transformations x,y satisfying the relations 

x2 = ym = 1, with a view to studying an action of the group < x,y > on real quadratic fields. If 

y : z ~ az+db is to act on all real quadratic fields then a, b, c, d must be rational numbers and can 
cz+ 

be taken to be integers, so that (a
d
+d)b

2 
is rational. But if y : z ~ az+db is of order m one must 

a - c cz+ 

have ~:_~: = 0) 2+0)-2+2, where OJ is a primitive m - th root of unity . Now OJ 2 + (0 -2 is rational, 

for a primitive m - th root OJ, only if m = 1,2,3,4 or 6. So these are the only possible orders of 

y . The group < x,y > is C2 (cyclic group of order 2) when m = 1. When m = 2 , it is an 

infinite dihedral group and does not give inspiring information while studying its action on the 

real quadratic irrational numbers. For m = 3, the group < x, y > is the modular group 

PSL(2,Z) . A real quadratic irrational number a = a+;n is said to be totally positive if a and 

its algebraic conjugate a are both positive and said to be totally negative if both a and a are 

negative. A real quadratic irrational number a = a+;n is said to be ambiguous if both a and a 

are of opposite signs. 

It is known that the group G2,6 (2, Z) = < x,y : x2 = y6 = 1 > is generated by the linear 

. fractional transformations x and y, where (z)x = ~~ and (z )y = 3(~~1) are defined on the set of 



integers. 

If we let u = y , v = xyx then u, v can be considered as the linear fractional transformations 

defined by (z )u = 3(~1 1 ) and (z)v = 3;~1 . So the group G6,6(2,Z) = < u,v > is a subgroup of 

the group G2,6 (2, Z). That is, G6,6 (2, Z) = < u, v : u6 = v6 = 1 > is the group of linear 

fractional transformations of the form z ~ az+db , where a, b, e, d E Z and ad - be = 1 or 3. 
cz+ 

The linear-fractional transformation t: z ~ t inverts u and v, that is, t2 = (ut) 2 = 

(vt) 2 = 1 and so extends the group G6,6 (2, Z) to G6,6 (2, Z). The extended group G6,6 (2 , Z) has 

presentation < u, v,t : u6 = v6 = t2 = (ut)2 = (vt) 2 = 1 >. 

Triangle groups are represented by 6(l,m,n) = < x,y : Xl = ym = (xy)n = 1 >, where 

l,m,n are positive integers greater than or equal to one. It is well-known that 6(l,m,n) is 

isomorphic to.a subgroup of PSL(2 , C). 

Let q be a prime. Then by the projective line over the finite field F q, we mean Fq U {oo}. 

We denote it by PL(Fq ). The group G6,6(2,q) is then the group of linear fractional 

transformations of the form z ~ ::~, where a, b,e,dEFq and ad - be '* 0, while G6,6(2, q) is 

its subgroup consisting of all those linear fractional transformations of the form z ~ ::!, 
where a,b,c,d E Fq and ad - be is a non-zero square in Fq. 

This thesis comprises four chapters. The aim of chapter one is to provide background 

material for succeeding chapters. 

In chapter two, we show that for a given totally positive (negative) real quadratic irrational 

number there exists an alternating sequence of totally positive and totally negative numbers 

which terminate at an ambiguous number. The ambiguous numbers form a closed path in the 
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coset diagram of the orbit aG, where a E Q(Jn) and this is the only closed path in the 

diagram. We also show that the action of G6,6(2, Z) on the rational projective line is transitive 

and the coset diagram of this action is connected. Finally, we show that u6 = v6 = 1 are the 

defining relations for the group G6,6(2,Z). At the end, we show that the action of G6,6(2,Z) on 

Q(Jn) is intransitive. 

In chapter three, we study action of the group G6,6 (2, Z) on the imaginary quadratic field 

Q( Fn ) by using coset diagrams. In this chapter we show that the subset {a+-;:" : a, a2;n , C 

E Z,c '* O} of Q(Fn) is invariant under the action of G6,6 (2,Z) on Q(Fn) and the fixed 

points of the non identity elements of G6,6(2,Z) exists only when it acts on 

Q*(H) = {a+f3 : a, a~;3 ,c E Z,c '* O}. Also we show that the total number of orbits 

under the action of G6,6(2,Z) on the set Q*(Fn ) = {a+;; : a, a;;n ,c E Z,c '* O}, when 

n '* 3, are 2d(k) for n = 3k, k E Z and 4[d(k + 1) + d(k + 2) - 2] for n = 3k + 2, k E z, where 

den) is the arithmetic function. At the end, we show that the action of G6,6(2,Z) on Q(Fn) is 

intransitive. 

In chapter four, we parameterize the conjugacy classes of non-degenerate homomorphisms 

which represent actions of .0. (6 ,6,k) = < u, v : u6 = v6 = (uv)k = 1 > on the projective line 

over Fq , PL(Fq ), where q == ±l(modk) . Also, for various values of k, we find conditions for 

the existence of coset diagrams depicting the permutation actions of .0.(6,6,k) on PL(Fq ). The 

conditions are polynomials with integer coefficients and the diagrams are such that every 

vertex in them is fixed by (Z:l""vY. In this way , we get .0. (6 ,6,k) as permutation groups on 

PL(Fq ). Also, we parameterize actions of G6,6(2,Z) on PL(Fq ) by the elements of Fq . We 

prove that the conjugacy classes of non-degenerate homomorphisms (J are in one-to-one 
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correspondence with the conjugacy classes of non-trivial elements of F q , under a 

correspondence which assigns to the homomorphism a the class containing (uv)a. Of course, 

this will mean that we can actually parameterize the actions of G6.6 (2,Z) on PL(Fq ) by the 

elements of Fq • We develop a useful mechanism by which we can construct a unique coset 

diagram for each conjugacy class of these non-degenerate homomorphisms which depict the 

actions ofG6.6 (2,Z) onPL(Fq ). 

A paper containing results from chapter two has been published [M.Aslam and 

Q.Mushtaq, Closed paths in the coset diagrams for < y, ( : y6 = (6 = 1 > acting on real 

quadratic fields, Ars Comb., 71(2004) 267-288.]. Another paper containing some results from 

this chapter has been accepted in the International Journal of Mathematics, Game Theory and 

Algebra. A paper containing results from chapter three has been submitted in an international 

journal for publication. Two papers containing results from chapter four have also been 

submitted for publication in international journals. 
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CHAPTER ONE 

PRELIMINARIES 

In this chapter we have given an introduction of linear groups, quadratic fields, finite 

fields, projective lines over the finite and infinite fields, the modular group and triangle groups. 

We have described also coset diagrams and their brief history. We have given here only those 

definitions which are relevant to the research work embodied in this thesis. 

1.1 Group Actions 

Let G be a group and X be a non-empy set. By an action of G on X we mean a function 

}1 : X x G -+ X such that for all x in X and g, h in G the following axioms are satisfied (see, 

[5]). 

(i) ((x,g)}1,h)}1 = }1(x,gh) 

(ii) (x, 1)}1 = x. 1 = x, where 1 denotes the identity in the group G. 

For example, if G is a group and X = G then xg = g-lxg for x E X and g E G defines an 

action of G on itself. 

Let G be a group acting on a setX and if a E X, we denote the stabilizer of a by 

Ga = Stab(a) = {g E G : ag = a}. 

Let G be a group acting on the set X Then aG = aG = {ag = a.g : g E G} is called an 

orbit of a in G. Also G acts on X transitively if X =1= ¢ and for any a, b E X there exist g E G 

such that ag = b. 
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Let X be any non-empty set. The set of all permutations defined on X is a group with 

composition of mappings as the binary operation defmed in the group. Also, there is a one to 

one correspondence between actions of G on X and representations of G by permutations of X. 

Thus an action gives rise to a permutation representation and vice - versa. 

1.2 Quadratic Fields 

An extension of degree 2 of the field of rational numbers Q is called the quadratic field. 

Since Q(,j'Ff;) = Q(Fz) if and only ifni = c2n 2 , where CEQ, therefore any quadratic field 

has the form Q(fo), where n is a square-free integer, that is, uniquely determined by the field. 

In what follows, n will always to be a square free integer. 

When n > 0, Q(fo) is called a real, and when n < 0 an imaginary, quadratic field ([9], [13] 

and [21]). 

If a E QCfo) then a = a + bjn , where a, b E Q. The algebraic conjugate of 

a = a + bfo is defined by a= a - bfo. The trace of a, denoted by Tr(a) is defined as a +a 

and the norm of a, denoted by NCa) is defined as a a. An a E QCfo) is called an integer of 

QC.[ii) if Tr(a),NCa) E Z. For example, if a = l+f! belongs to Q(J5) then Tr(a) = 1 and 

N(a) = - 1, therefore a is an integer in Q(/5). The algebraic integers in an arbitrary quadratic 

field do not necessarily have unique factorizations. For example, the fields Q( F5) and 

Q(H) are not uniquely factorizable, because 21 = 3.7 = (1 + 2F5 )(1 - 2F5 ) and 

6 = 2.3 = F6. F6. All other quadratic fields Q(jn) with Inl :s 7 are uniquely factorable . 

As a fundamental basis of QCjn), that is, a basis of the ring of integers of the field 

QCJn) over the ring of rational integers Z, one can take {I, l+;n} when n == lCmod4) and 
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{I, In} when n == 2,3 (mod4) . 

Imaginary quadratic fields are the only type (apart from Q) with a finite unit group. This 

group has order 4 for Q(R) (and generator R), order 6 for Q(H) (and generator 

1+f3" ), and order 2 (and generator - 1) for all other imaginary quadratic fields. 

For real quadratic fields the unit group is isomorphic to the direct product {±1} x {E}, 

where {±l} is the group of order 2 generated by - 1 and {E} is the infinite cyclic group 

generated by a fundamental unit E. For example, for Q( J2), E = 1 + J2. 

1.3 Finite Fields 

Let F be a field. There is a unique ring homomorphism </J : Z ~ F, defined by 

</J (n) = 1 + 1 + ... +1, n times, for n::: ° and </J(- n) = - </J(n) . If </J is injective, it identifies Z 

with a subring of F; then F also contains the field of fractions Q of Z. In this case, we say that 

F is of characteristic zero. If </J is not injective, its kernel is an ideal pZ, where p > 0; then 

Z/pZ is an integral domain (infact, a field) from which it follows that p is a prime number. In 

this case, we say that F is of characteristic p. We write Fp for Z/pZ. The subfield Q or Fp, of F 

is the smallest subfield of F, it is called the prime subfield of F. For every prime number p 

there exist fie lds of characteristic p, e.g. , Fp. 

Fields which have finitely many elements play an important role in group theory also. The 

most familiar examples of such fields are the fields Zp for prime p, but these are not all. A 

finite field is uniquely determined up to isomorphism by the number of elements it contains; 

that this, number must be a power of a prime; and that for every prime p and integer r > 0, 

there exists a field with pr elements. The field with q = pr elements is written by GF(q) or Fq . 
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The ring Z of integers induces a natural ring structure on Zn = ZlnZ, the integer modulo n. 

If n, is a prime p, then Zp is in fact a field under this structure. (ZnY = {(ao,aj>" .,ar- I) 

at E Zn} , where n is a prime, is a field. It is obtained in the fo llowing way. 

We identify the sequence (ao,ai>" .. ,ar- I) with the polynomial a o +a J + . . . +ar_It r- 1 III 

the ring of polynomial Zp[t] and choose a polynomial fCt) of degree r which is irreducible in 

Zp[t] (that is, fit) has no zeros in Zp). 

We define multiplication of two sequences by multiplying the corresponding polynomials 

in Zp[t] and then reducing modulo J(t). It is always possible to choose fit) in such a way that 

the non-zero elements of the field are just the powers t, t2, •• . , tp r
- l , the last of these being the 

multiplicative identity 1. The field constructed in this way is called the Galois field with pr 

elements and is denoted by Fpr . 

For example, F32, is constructed by choosing an irreducible polynomial fit ) = t2 + 2t + 2 

over Z3 = {a, 1,2}. The elements of F32 may be listed as follows. 

Elements of F32 Elements of F 32 modulo fi t) 

° 0 

t t 

t2 t + 1 
( 3 2t + 1 

t4 2 

t5 2t 
-

t6 2t + 2 

t7 t + 2 

t8 1 
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We summarize the relevant properties of the finite fie lds. 

There is a finite field with n elements if and only if n is a prime power, n = q = pro 

If F is a finite field with q elements, then F is isomorphic with a Galois field Fq; in particular, 

the structure of the field does not depend on the choice of irreducible polynomiaIJCt). 

The mUltiplicative group of Fpr is a cyclic group of order pr - 1. A generator of this group is 

called a primitive element in the field. The group of field automorphisms of Fpr is a cyclic 

group of order r generated by the automorphism x 1-+ xp . 

Let K be a field of order q, the multiplicative group K* of non-zero elements of K is a 

cyclic group of order q - 1. The elements of K are roots of the polynomial x q - X. For example, 

K* = F7 = {1,2, 3, 4,5,6} = {(a 7 =)I,a,a2,a3 ,a4,a5 ,a6 }, where a = 3 is the primitive 

element of K*. K* = Fi t = {I, 2, 3, 4, 5, 6, 7, 8, 9, 10} = (a : all = 1) where the primitive 

element of K* is a = 2. 

1.4 A Projective Line over the Finite Field 

Let y be a vector space over a field F, y* = Y - {O}, and X,Y E Y*, then the statement 'for 

some ). E F* = F - {O} , x = ).y, defines an equivalence relation on V*, and the set of 

equivalence classes is called the projective space PG(V). We shall denote the class of x E V* 

by [x] E PG(V), and define a subspace [UJ of PG(V), to the image of a subspace U of V under 

the map x ---jo [x J. For geometric reasons it is convenient to say that if U has dimension k then 

[UJ has (projective) dimension k - 1; in particular if V = V(n,q), we write 

PG(V) = PG(n - 1,q). 
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We take V = V(2,q) for a vector space of dimension 2 over a finite field Fq. V has q2 

elements. The projective space over V = V(2, q) is the PG(1, q ) (called the projective line 

PL(Fq)) has q + I points. It may be represented by q symbols [l,z], (where z runs through Fq) 

and the additional symbol [0,1 ]. We often think of PG(l,q) = PL(Fq) as the set Fq U {oo}, 

where 00 is image of [0, 1] under the bijection [xo,x I] +-+ ~~. Thus PL(Fq ) = PG(1 ,q) = 

Fq U {co} = {O, 1,2,3, .. . ,q - I} U {oo}. 

1.5 Linear Groups 

Linear groups are important from the point of view of their applications in ~ '6ysics and 
~ 

other branches of sciences. They are easy to deal with in the sense that many of their properties 

can be discussed by ordinary computation. They have been found useful in giving counter 

examples to answer various group theoretical conjectures (see,e.g., [17]). 

Let V be a vector space of dimension n over a field F. The set HomF(V, V) of alI linear 

transformations of V is then a linear associative algebra. It possesses both the vector space and 

ring structures. The identity mapping 10f V is the multiplicative identity of HomF(V, V). An 

element if> of HomF(V, V) is called invertible if there is a mapping lfI in HomF(V, V) such that 

¢lfI = lfI¢ = 1. 

The set of all invertible elements of HomF(V, V) forms a group. This group is denoted by 

GLn(V) and is called the general linear group of dimension (or degree) n. If V has dimension n 

then HomF(V, V) is denoted by GLn(V) and is called the general linear group of degree (or 

dimension) n. Closely related with HomF(V, V) is the set Mn(F) of all n x n matrices with 

entries from F. Both HomF(V, V) and Mn(F) are isomorphic as linear associative algebras. In 

Mn(F), the matrices which have non-zero determinant (that is, non-singular or invertible 
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matrices) form a group under multiplication. This group is denoted by GL(n,F) and is 

isomorphic to GLn(V). Consequently, GL(n,F) also is called the general linear group of 

dimension n. 

In general, if R is a ring with identity and Mn(R) is the ring of all n x n matrices with 

entries from R then the units of Mn(R) , that is, the invertible matrices, form the general linear 

group GL(n,R). 

Among the subgroups of GL(n,F) there are some which are very important and deserve 

special attention. One of these is the special linear group SL(n, F) of dimension n. 

The significance of the special linear group SL(2,Z) = {[au]: au E Z, 

i.j = 1,2, det([auJ) = I} is related to the fact that in a 2-dimensionallattice bases {el,e2} and 

{Ii ,/2} are related by the equations: 

/1 = ael + ee2 
/2 = bel +de2 

with a, b, c, d E Z and ad - be = ± 1. It is also required that the direction of rotation from /1 to 

/2 is the same as that from e 1, e2. This guarantees that ad - be = 1. 

SL(2,Z) act on the upper half plane as: g ~ [ : ~ ] belongs to SL(2, Z) and (z)g ~ : :;. 

[ 
- 1 0 ] Hence the matrix acts as the identity, so that we have an action of the group 
o - 1 

SL(2,Z)!N where N ~ {[ 0 ~ J [ ~l ~l ]}. This quotient group IS denoted by 

PSL(2,Z) and is called the modular group. The modular group act on the upper half plane. A 

fundamental domain for it is given by the shaded region of the following modular region. 
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1) 

The upper half plane is a model of Lobachevsky plane and the motions in it preserve the 

orientation which are represented as transformations z - az+db where a, b, e, d E R with 
cz+ 

ad- be = 1. Thus the modular group PSL(2 ,Z) is a discrete group of motions in the 

Lobachevsky plane. It is therefore possible to express the modular group as a group generated 

by two linear-fractional transformations x : z _ ~l and y : z _ z~ l such that x 2 = y3 = 1 

become its defining relations ([8]) . It is well-known that PSL(2, Z) is a free product of the 

cyclic group < x > of order 2 and the cyclic group < y > of order 3. 

The linear-fractional transformation t: z - + inverts x and y , that is, t2 = (xt) 2 

= (yt)2 = 1 and so extends the group PSL(2,Z) to PGL(2,Z). The extended modular group 

PGL(2,Z) is then generated by x, y and t and its defining relations are x2 = y3 = t2 = (xt)2 = 

(yt)2 = 1. 

Let q be a power of a prime p. Then the group PGL(2,q) is the group of all 

transformations z - az+db where a,b,e,d are in Fq and ad - be =1= 0, while the group PSL(2,q) 
cz+ 

is its subgroup consisting of all those linear-fractional transformations z - ~:! where ad - be 

is a non-zero square in F q. 
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If PGL(2,Z) act on PL(Fq ), then every element of PGL(2,q) gives a permutation on the 

points of PL(F q), and so PGL(2, q) is a subgroup of the symmetric group Sq+l. As the elements 

of PSL(2, q) give only even permutations, it is therefore a subgroup of the alternating group 

The linear-fractional groups for different fie lds arose independent ly. In 1852, A. F. 

Mobius studied the field of complex numbers. The field of real numbers appeared in the work 

of Von Staudt in 1847 as the projective group on a line, with elements formed by a sequence of 

projections from one line to another in the real projective plane ([8]) . 

For the field Zp , the linear-fractional group, and its subgroups were studied by E. Galois in 

1832. In 1893, the linear-fractional group was studied by E. H. Moore for arbitrary finite 

fields, who established the simplicity of the projective special linear group of divisor 2 for the 

fields 

of order greater than 3. The homomorphism of general linear group of divisor 2 over a field F 

to the linear-fractional group is implied in the work of E. Galois in 1832 and J. A. Serret in 

1866, and was used by A. Cayley in 1880 to determine properties of linear-fractional 

transformations ([26]). 

1.6 The Group G6,6(2, Z) 

It is worthwhile to consider linear-fractional transformations x,y satisfying the relations 

X 2 = ym = 1, with a view to studying an action of the group < x,y > on real quadratic fie lds. If 

y : z ~ az+db is to act on all real quadratic fi elds then a, b, c, d must be rational numbers and can cz+ 

be taken to be integers, so that (a
d
+d)b

2 
is rational. But ify : z ~ az+db is of order m one must 

a - c cz+ 
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have ~ = co 2 + co-2 + 2 where co is a primitive m - th root of unity. Now 0)2+ 00 - 2 is 
ad- be ' 

rational, for a primitive m - th root co, only if m = 1,2,3,4 or 6. So these are the only possible 

orders of y . The group < x, y > is trivial when m = 1. When m = 2 , it is an infinite dihedral 

group and does not give inspiring information while studying its action on the real quadratic 

irrational numbers. For m = 3, the group < x,y > is the modular group PSL(2,Z) and its action 

on real quadratic irrational numbers has been discussed in detail in [16] and [20]. 

It has been proved in [19] that the group G2,6 (2, Z) = < x, y : x2= y6= 1 > is generated by 

the linear fractional transformations x and y, where (z)x = ;; and (z)y = 3(~~ 1 ) are defined on 

the set of integers. 

1.7 Coset Diagrams 

The method of representing group actions by graphs has a long and rich history. Graphs 

have applications in several branches of mathematics. They provide methods by which various 

algebraic and topological structures can be visualized. Graphical methods have been explicitly 

used to study the finitely generated groups. The graphs have proven themselves as an 

economical mathematical technique to prove certain important results (see [3], [4] and [7]). For 

finite groups of small order the graphs can be used instead of multiplication tables; they give 

the same information but in a much more efficient way (see [4], [22] and [24]). The first paper 

in which graphs were used explicitly was by A. Cayley [4] in 1878. After A. Cayley, Hurwitz 

[7] used graphs in1893 to represent groups. Then in 1896, H. Maschke used Cayley's graphs to 

prove some important results on the representation of finite groups, especially on the rotation 

groups of the regular bodies in three and four-dimensional spaces. 

The Cayley's graphs were extensively used by Oehn, in 1910. Later, mathematicians like 
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O. Schreier, 1. H. C. Whitehead [26] , H. S. M. Coxeter and W. O. J. Moser [7], W. Burnside 

[3], et aI., contributed seminal papers containing graphical representations of groups. 

In 1978, G. Higman propounded the idea of coset diagrams for the modular group 

PSL(2,Z). M. D. E. Conder [5] and [6] have used these diagrams to solve certain ' identification 

problems'. In G. Higman's words, ' Q. Mushtaq laid the foundation of the theory of coset 

diagrams for the modular group in 1983 ' [10]. 

The Cayley diagram for a given group is a graph whose vertices represent the elements of 

the group, which are the co sets of the trivial subgroup. O. Schreier generalized this notion by 

considering a graph whose vertices represent the cosets of any subgroup. In 1965, Coxeter and 

Moser [7] used both Cayley and Schreier diagrams to prove some results on finitely generated 

groups. 

A coset diagram is a graph whose vertices are the (right) cosets of a subgroup of finite 

index in a finitely generated group. The vertices representing cosets v and u (say), are joined 

by an S; -edge, of "colour i" directed from vertex v to vertex u, whenever vS; = u. 

v ~ vS; = u 

It may well happen that vS; = v, in which case the v -vertex is joined to itself by an 

S; - loop or a fixed point. 

Formally, a coset diagram corresponding to a subgroup H of finite index in a finitely 

generated group G, is a directed edge, coloured graph, whose vertices are the (right) cosets of 

H in G and whose edges are defined as follows: we take a specific set of generators for G, and 

for each generator x and each vertex Hg, for some g in G, draw an edge of colour EX from Hg 
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to Hgx. This is very similar to the notion of a Schreier coset graph whose vertices represent the 

cosets of any given subgroup in a finitely-generated group, and also to that of a Caylay graph 

whose vertices are the group elements themselves, with trivial stabi lizer. These diagrams may 

be drawn for any finitely generated groups depicting actions on any arbitrary sets or spaces. 

Every connected coset diagram for a finite ly generated group G on a set of n points 

corresponds to a transitive permutation representation of G on that set, which is in fact 

equivalent to the natural action of G on the co sets of some subgroup H of index n. Coxeter and 

Moser [7] attribute these diagrams to Schreier. Steinberg [24] has proved that all finite simple 

groups of Lie type are two generators groups. It is also generally known that many, if not all, 

known finite simple groups are of Lie type. This means that all but a finite number of finite 

simple groups are two generator groups. 

Coset diagrams defined by O. Higman for the actions of PSL(2, Z) are special in a number 

of ways. First, they are defined for a particular group, namely PSL(2,Z) , which has a 

representation in terms of two generators x and y. Since there are only two generators, it is 

possible to avoid using colours as well as the orientation of edges associated with the 

involution x. For y, which has order 3 there is a need to distinguish y from y2. The 3- cycles of 

yare therefore represented by small triangles, with the convention that y permutes their 

vertices counterclockwise, while the fixed points of x and y if any, are denoted by heavy dots . 

Thus the geometry of the figure makes the distinction between x - edges and y - edges 

obvious. 

For instance, consider the action of PGL(2,Z) on PL(FI9) defined by x (z) = i, 
y (z ) = ZZI , t(z ) = i where z E PL(F 19) ' We calculate the permutation representations of x, y 
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and t as follows: 

X : (0 (0)(118)(29)(36)(4 14)(5 15)(78)(1017)(11 12)(13 16), 

y : (000 1)(2 10 18)(379)(4 156)(56 14)(8)(12)(13 17 11), and 

T : (0 (0)(1)(2 10)(3 13)(45)(6 16)(7 11)(8 12)(917)(1 4 15)(18) . 

2 

o 00 

16 5 

14 

4 

15 

6 

9 
3 

In 1983, Q. Mushtaq [15] studied the coset diagrams for the modular group extensively 

and proved that for each element () of a finite field F q , where q is a prime power, there exists a 

coset diagram for the natural permutation action of PGL(2,Z) on PL(Fq ). The thesis contains 

also some partial answers concerning the 'Reconstruction Conjecture '. That is, the way a 

diagram is reproducible from certain types of fragments. If we have certain fragments of a 

coset diagram, we can find the conditions for the existence of those fragments in the respective 

coset diagram. The condition in fact is a polynomial in Z[z]. The modular group PSL(2,Z) has 

many important homomorphic images. For many reasons connected with PGL(2,q) actions on 

surfaces, it is important to know when PGL(2,q) is an image of the extended modular group 

PGL(2, Z). The solution to that has been given in [15]. 
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Q. Mushtaq [1 7J in 1990 has parametrized the actions of ~(2, 3, 7) = < x,Y : x 2 = y3 = 

(xy) 7 = 1 > on the projective lines over the finite fi elds F q , with the help of coset diagrams. 

He also proved in this paper that for certain values of q, there is a natural homomorphism 

induced from ~(2, 3, 7) and that there exist vertices on the vertical line of symmetry in the 

diagram depicting these actions. 

In 1992, Q. Mushtaq [18J has shown that any homomorphism from PGL(2, Z) into 

PG L(2, q) , except in the case where the order of the images of x y is 6 but the images of x and y 

do not commute in PGL(2,q). He has also shown that every element in PGL(2, q) , not of order 

1,2, or 6 is the image of x y under some non-degenerate homomorphism. He has parametrized 

the conjugacy classes of non-degenerate homomorphisms a with the non-trivial elements of 

F q . Due to this parametrization, he has developed a useful mechanism by which one can 

construct a unique coset diagram for each conjugacy class, depicting the action of PGL(2, Z) on 

PL(F q ) . 

Coset diagrams for the orbit of the modular group acting on real quadratic fields give some 

interesting information. By using these coset diagrams, Q. Mushtaq [16J has shown that for a 

fixed value of n, a non-square positive integer, there are only a finite number of real quadratic 

irrational numbers of the form () = a+-; , where () and its algebraic conjugate 11= a--; have 

different signs, and that part of the coset diagram containing such numbers form a single 

circuit (closed path) and it is the only circuit in the orbit of () . 

Let n denote the projective line over the real quadratic field and PL(Fq ) denote the 

projective line over the finite field Fq with q elements. Coset diagrams for the orbits of the 

modular group acting on nand PL(Fq ) give some interesting information. By using these 
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diagrams in [20] , he has determined a condition for the existence of an orbit of modular group 

on n containing a circuit of a given type. If such a circuit exists, he has found a condition 

under which the orbit contains a real quadratic irrational number a along with its algebraic 

conjugate lX. As there are two projections from n to PL(F q ) , he has taken the care, when 

modular group acts on 8 and determined necessary and sufficient conditions for the existence 

of two orbits of modular group: one containing a along with t and the other containing a 

together with ~. 
a 

Coset diagrams may be used to provide diagramatic interpretations of several aspects of 

combinatorial group theory, such as the Reidemeister-Schreier procedure, as well as a proof of 

the Ree-Singerman theorem (on the cycle structures of generating-permutations for a transitive 

group). They can be used also as an equivalent to the Abelianized form of the 

Reidemeister-Schreier process. The same sort of method is also useful for the construction of 

infinite families of finite quotients of a given finitely-presented group. Use of coset diagrams 

to find torsion-free subgroups of certain finitely-presented groups has been instrumental in the 

construction of small volume hyperbolic 3-orbifolds and other hyperbolic 3-manifolds with 

interesting properties. They are also applied to the construction of arc-transitive graphs and 

maximal automorphism groups of Riemann surfaces [6]. 

1.8 Coset Diagrams for the Group G ;.6 (2, Z) 

The coset diagrams for the group G6.6(2,Z) are defined as follows. The six cycles of the 

transformation u are denoted by six unbroken edges of a hexagon (may be irregular) permuted 

anti-clockwise by u and the six cycles of the transformation v are denoted by six broken edges 
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of a hexagon (may be irregular) permuted anti-clockwise by v . Fixed points of u and v, if they 

exist, are denoted by heavy dots . This graph can be interpreted as a coset diagram, with the 

vertices identified with the cosets of Stab a (G6,6(2,Z) , the stabilizer of some vertex a of the 

graph, or as i-skeleton of the cover of the fundamental complex of the presentation which 

corresponds to the subgroup StabvCG6,6(2,Z) . 

A general fragment of the coset diagram of the action of G6,6 (2, Z) on Q(../n) will look as 

follows . 

~ I 

D
" , .. -:, .. 

... • - ... -. : I .:(j" .- ' ..... " ", ' --0' ---. ,.,. .....--.- .... , .... -- .. - -
~ I I .. ",: 

1 I 
I 

0
'·1 I " ! 

~ ~ 

'" or -- :. .... .. , ., .:.~"-,. . ...... -V-., n' .' .. • _.. -:. - 1" 

'. , , 
) 1 .. 
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CHAPTER TWO 

ACTION OF ON REAL 

FIELDS 

2.1 Introduction 

In this chapter we have shown that the action of G6,6 (2, Z) on the rational projective line 

PL(Q) is transitive and the linear fractional transformations u : z ~ 3(~~1) and v : z ~ 3~~1 

generate G6,6(2,Z). Using the coset diagrams we have shown that u6 = v6 = 1 are defining 

relations for the group. We have shown that the set of ambiguous numbers is finite and that 

part of the coset diagram containing these numbers forms a single closed path and it is the only 

closed path in the orbit of a. We have also concluded that in the action of G6,6(2,Z) on 

Q(rn), Stab a(G6,6(2,Z)) are the only non-trivial stabilizers and in the orbit aG6,6(2,Z) there is 

only one (up to isomorphism) non-trivial stabilizer. 

For a fixed non-square positive integer n, an element a = a+;n and its algebraic conjugate 

a= a-;n may have different signs. If such is the case then we shall call such a an ambiguous 

number. If a and a are both positive (negative), then we shall call a a totally positive 

(negative) number. Ambiguous numbers play an important role in the study of actions of the 

groups G2,m(2,Z) =< x,y : x2 = ym = 1 > for m = 1,2,3,4 or 6 on Q(rn). 

In this chapter, we have considered the action of a subgroup of G2,6(2,Z) = 

< x,y : x2 = y6 = 1 >, where (z)x = ..::L 
3z 
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transformations, on the real quadratic irrational numbers. 

If we let v = xyx, u = y then v can be considered as the linear-fractional transformation 

defined by (z)v = 1 - t and v6 = 1. Some number-theoretic properties of the ambiguous 

numbers belonging to the orbit of G2,6 (2,Z) when acting on Q*(fo ) = {a+f : a,c E Z, 

b = a2;n E Z, (a, b,c) = I} have been discussed in [1 9]. 

In this chapter, we have explored group-theoretic properties of this action vis-a-vis the 

orbit of a in G6,6(2,Z). We have shown that the set of ambiguous numbers in the orbit for the 

action of G6,6 (2, Z) on Q(..[ii) is finite and that part of the coset diagram containing these 

numbers form a single closed path and it is the only closed path in the orbit of a. We have 

shown here that in the action of G6,6(2,Z) on Q(..[ii), Stab a (G6,6(2, Z)) are the only non-trivial 

stabilizers and in the orbit aG6,6 (2,Z) there is only one (up to isomorphism) non-trivial 

stabilizer. 

We have used coset diagrams for the group G6,6 (2, Z) and studied its action on the 

projective line over real quadratic fields. In [19], it has been observed that if 

z * -1, 32
, ~I , 31 , 0,00 is one of the six vertices of a hexagon (with unbroken edges) in the 

coset diagram, then 

(i) z <-1 implies that (z)u > 0 , 

(ii) z> o implies that 31 < (z)u < 0 , 

(iii) 31 < z < 0 implies that -I ( ) - I T< zU<-3' 

(iv) ~ < z < ~ implies that -2 ( ) -I 
2 3 -3 < z u < T' 
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(v) ..:1. < z < ~ implies that 3 2 -1 < (z)u < ;2 ,and 

(vi) - 1 < z < ;2 implies that (z)u < -1. 

Also if z =1= 1, ~, t, +,0,00 is one of the six vertices of a hexagon (with broken edges) in 

the coset diagram, then 

(i) z < 0 implies that (z )v > 1 , 

(ii) z> 1 implies that ; < (z )v < 1 , 

(iii) 1- < z < 1 implies that t < (z)v < 1- ' 

(iv) ..l.<z<1.. 
2 3 implies that + < (z )v < t, 

(v) ..l.<z<..l. 
3 2 implies that o < (z)v < +, and 

(vi) 0< z < + implies that (z)v < O. 

We state here the following lemmas from [11] for later use. 

Lemma 2.1.1 An a = a+f E Q(rn) is a totally positive number if and only if one of the 

following is true. 

(i) a, b, c > 0, where b = a2;n 

(ii) a, b, c < 0, where b = a2;n 

Lemma 2.1.2 An a = a+f E Q( rn) is a totally negative number if and only if one of the 

following is true. 

(i) a < ° and b > 0, c > 0, where b = a2;n 
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(ii) a > 0 and b < O,e < 0, where b = a2;n 

Lemma 2.1.3 An a = a+[i E Q(.[ii) is an ambiguous number if and only if be < 0, 

where b = a2;n. 

Lemma 2.1.4 If A is an invertible 2 x 2 matrix with entries from R(or Fq) such thatA 2 ,A 3 

are not scalar matrices then A6 = ').,1, ° *- ')., E R if and only if {Tr(A)} 2 = 3 det(A). 

Proof 

LetA = [ a
e 

db ] then A3 = [ a
3 

+ 2abe + bed a
2
b + b

2
e + b~ + abd J. 

a2e + be2 + e~ + aed abc + 2bed + d 3 

If A6 = ').,1, then the trace of A3 is equal to zero and so a 3 + d 3 + 3abe + 3bed = O. This 

implies that (a + d)(a2 + ~ - ad + 3be) = 0 or (a + d)[(a + d)2 -3 (ad - be)] or 

(a + d)[ {Tr(A)} 2 - 3 det(A)] = O. But a + d *- 0; hence {TrCA )}2 = 3 det(A). 

2.2 Existence of Ambiguous Numbers 

Ambiguous numbers play an important role in the study of actions of the group G6,6 (2, Z) 

on Q(.[ii). We have proved here that Stab a (G6,6(2,Z)) are the only non-trivial stabilizers in 

the action of G6,6(2, Z) on Q(.[ii) and that there is only one (up to isomorphism) non-trivial 

stabilizer in the orbit aG6,6 (2, Z). 

Theorem 2.2.1 If a = a+[i E Q(.[ii) is a totally negative real quadratic irrational number 

then (a)v i is totally positive for i = 1,2,3,4 or 5. 
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Proof 

Ifa = a+ fo where b = a
2
-n then (a)v = 1 __ I = 1 - c 

c , C , 3a 3(a+fo) 
(3 a-c)+3 fo a- fo 

= -'----'---'-- X --
3(a+fo) a- fo 

- a+3b+fo . = 3b . Hence the new values of a and c are - a + 3b and 3b. Usmg these values, we then 

obtain the new value for b, that is, (-a+;~)2-n = -6a~9b+c. Similarly, the new values for a,b and 

c with respect to (a)v i are: 

a a b c 

i = I -a+3b - 6a+9b+c 3b 
3 

i = 2 -Sa + 6b + c -4a + 4b + c -6a + 9b + c 

i = 3 -7a+6b+2c -12a+9b+4c 3 (-4a + 4b + c) 
3 

i = 4 - Sa + 3b + 2c - 2a + b + c - 12a + 9b + 4c 

i = 5 - a+ c ..£. 3(-2a+ b+c) 
3 

If a is a totally negative number then by Lemma 2.1.2 , either a, b, c satisfy (I) or (Ii ). If (i ) 

is the case then from the above table the new a, b, c for (a)v i are all positive. Hence by Lemma 

2.1.1 (a) Vi are totally positive. 

Similarly, if (ii) is the case then it is easy to see that the new values of a, b, c for (a )v i are 

all negative. Then by Lemma 2.1.1 (a)v i are totally positive. 

Example 2.2.2 Let a = - 2 +13 then a = -2, c = 1, n = 3 and b = a2~n = 1. Because a 

is negative and b, c are positive therefore a is a totally negative real quadratic irrational 

number. We can easily tabulate the following information. 
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a -2 1 1 

(a)v 5 .ll. 3 3 

(a)v 2 17 13 22 

(a)v 3 22 l1.. 39 3 

(a)v4 15 6 37 

(a)v 5 3 ...L 18 3 

It is evident from the above information that the values of a,b and c for (a)v i , where 

i = 1,2,3,4 and 5, are positive. Therefore, (a)v i , for i = 1,2,3,4 and 5 are all totally positive. 

Theorem 2.2.3 If a = a+;n E Q(fo) is a totally positive real quadratic irrational number 

then (a)ui is totally negative forj = 1,2,3,4 or 5. 

Proof 

If a = a+./n • where b = a
2
-n then (a)u = _-_I - = ~~~:::)' Hence the new values of a c - c , 3(a+l) 

and c are respectively -a - c and 3(2a + b + c). Using these values, we then obtain the new 

value for b, that is, ~(;::~::; = ~. Similarly, the new values for a, band c with respect to (a)vi 

are: 

a a b c 

j = 1 -a-c .£ 3(2a+b+c) 
3 

j=2 -Sa - 3b - 2c 2a + b + c 12a + 9b + 4c 

j=3 -7a-6b-2c 12a+9b+4c 3(4a+4b+c) 3 

j=4 -5a-6b-c 4a + 4b + c 6a + 9b + c 
-

j =5 -a- 3b 6a+9b+c 3b 
3 
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If a is a totally positive number then by Lemma 2.1. 1, a, b, c either satisfy (i) or (ii) . If (i) 

is the case then from the above table the new a, b, c for (a)ui are such that a < 0 and b, c > O. 

Hence by Lemma 2.1.2 (a)ui are totally negative for) = 1, 2, 3, 4, 5. 

Similarly, if (ii) is the case then the new values of a,b,c for (a)u' , where) = 1,2, 3,4,5 

are such that a > 0 and b, c < O. Then by Lemma 2. 1.2 (a)ui are totally negative. 

Lemma 2.2.4 If a = a+;n E Q*(fo) is an ambiguous number then one of (a)v i , where 

i = 1, 2,3,4 or 5, is ambiguous and the other four are totally positive. 

Proof 

It is obvious that if l,m, n,p,q,r are the vertices of a hexagon then T, m, n,p, 7[, r are also 

vertices of a hexagon in a coset diagram for the action of the group G6,6 (2, Z) . . 

First we suppose that a is a negative number. Then the possibilities fo r a to be positive or 

negative are as fo llows: 

a (a)v (a)v2 (a)v3 (a)v4 (a)vS a (a) v (a)v2 (a)v3 (a)v4 (a)vS 

- + + + + + + - + + + + 

+ + - + + + 

+ + + - + + 

+ + + + - + 

+ + + + + -

Similarly, if a is a positive number then 
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a (a) v (a)v2 (a)v 3 (a)v4 (a)v 5 a (a)v (a)v2 (a) v3 (a)v4 (a)v 5 

+ - + + + + - + + + + + 

+ + - + + + I 

+ + + - + + 
+ + + + - + 
+ + + + + -

Therefore, from the above tables we can easily deduce that one of (a)v i , for i = 1, 2,3,4 or 

5 is ambiguous and the other four are totally positive. 

Example 2.2.5 Let a = 1 + J2 then a = 1,e = l ,n = 2 and b = Q2;n = - 1. As be < 0, 

therefore, a is an ambiguous real quadratic irrational number. We can easily tabulate the 

following information. 

a 1 - 1 1 

(a)v - 4 -14 -3 -3-

(a)v2 - 10 -7 -14 

(a)v3 -1 1 -17 -21 
3 

(a)v4 -6 -2 -17 

(a)vS 0 J.. - 6 3 

As it is evident from the above information, the values of a,b and e for (a) Vi , where 

i = 1,2,3 and 4, are negative, therefore, (a)v i , for i = 1,2,3 and 4 are all totally positive. As 

for (a)vS, be < 0, therefore, (a)v S is an ambiguous real quadratic irrational number. 
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Diagrammatically, the six vertices representing the six cycles of u and v will be as follows. 

Lemma 2.2.6 If a = a+f E Q*(fo) is an ambiguous number then one of (a)ui, for 

j = 1,2,3,4 or 5, is ambiguous and the other four are totally negative numbers. 

Proof 

First, we suppose that a is a positive number. The possibilities for a to be positive or 

negative are as follows: 

a (a)u (a) u2 (a)u3 (a) u4 (a)u S a (a)u (a)u2 (a)u 3 (a)u4 (a)u S 

+ - - - - - - + - - - -

- - + - - -

- - - + - -

- - - - + -

- - - - - + 

Similarly, if a is a negative number then: 
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a (a)u (a)u 2 (a)u 3 (a)u4 (a)u 5 a (a)u (a)u 2 (a)u 3 (a)u 4 (a)u S 

- + - - - - + - - - - -

- - + - - -

- - - + - -

- - - - + -

- - - - - + 

Therefore, from the above tables we can easily deduce that one of (a)vi, for) = 1,2,3,4 or 

5 is ambiguous and the other four are totally positive. 

We define the norm of a = a+f" by II a II = lal. 

Theorem 2.2.7 If a = a+f" E Q*(fo) is totally positive then 

(i) II (a)u' II > Il a ll ,for} = 1,2,3,4 and 5. 

(ii) II (a) Vi II < lIa II if (a)v i is totally negative for i = 1, 2,3,4, or S. 

Proof 

(i) If a = a+f" , where b = a
2
;n , then it is easy to caculate new values of a, b, c for (a)ui , 

where) = 1,2,3,4 and S, as follows . 

.. 

a a b c 

} = 1 -a - c s... 3(2a + b + c) 3 

} =2 -Sa - 3b - 2c 2a + b + c 12a+9b+4c 

}=3 - 7a - 6b - 2c 12a+9b+4c 3(4a + 4b + c) 3 

}=4 -Sa - 6b - c 4a + 4b + c 6a + 9b + c 

} =S - a - 3b 6a+9b+c 3b 3 
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Since a is a totally positive number so either a, b, c > 0 or a, b, c < O. If a, b, c > 0 (or 

a,b,c < 0) , II (a)ull = la+cl, II (a)u 2 II = 15a+3b+2cl , II(a)u3 11 = 17a+6b+2cl, II(a)u4 11 = 

15a +6b+cland ll(a)u 5
11 =la+3bl.Thus, II (a.)ui li > lI a ll ,forj= 1,2,3,4 and5. 

(ii) The new values of a,b,c for (a)v i , where i = 1,2,3,4, or 5, are tabulated as follows. 

a a b c 
--

i = 1 -a+ 3b -6a+9b+c 3b 
3 

i=2 -5a + 6b + c -4a+4b + c -6a + 9b + c 

i = 3 -7a + 6b + 2c - 12a+9b+4c 3(-4a+4b+c) 
3 

i = 4 -5a + 3b + 2c -2a + b + c -12a + 9b + 4c 

i = 5 -a+c £. 3 (- 2a + b + c) 3 

By Theorem 2.2.1, one of (a)v i
, for i = 1,2,3,4, or 5, is totally negative. Note also that 

since a is totally positive, there are only two possibilities, namely, either a, b, c > ° or 

a,b,c < 0. We deal with these possibilities one by one. 

We suppose that (a) v is totally negative. If a, b, c > 0 then from the above information, it 

is easy to see that - a+3b < 0. Hence -a < -a+ 3b < a or l-a+3cl < a or IICa)v ll < lIali . 

Similarly, for a, b, c < 0, we note that II (a)v II < II a II. 

Suppose that (a)v 2 is totally negative, therefore,(a)v must be totally positive. If a,b,c > 0 

then -a + 3b > 0, -6a + 9b + c > 0, -5a + 6b + c < 0 and -4a + 4b + c > 0. Since -5a + 

6b + c = (-4a + 4b + c) -a + 2b, therefore, -a + 2b < - 5a + 6b +c or -a < -5a + 6b + c < a 

or 1-5a+ 6b+cl < lal or IICa)v2 11 < lIali. Similarly, fora,b,c < 0, II (a)v 2 II < lI a ll· 
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Now, suppose that (a)v 3 is totally negative. Then (a)v and (a)v2 must be totally positive. 

If a, b, c > ° then -a + 3b > 0, -6a + 9b + c > 0, -Sa + 6b + c > 0, -4a + 4b + c > ° , 
-7a+6b+ 2c < ° and -12a+9b +4c > 0. Since -14a+ 12b +4c = (- 12a+9b+4c) 

-2a + 3b, therefore, -2a < - 14a + 12b + 4c or -a < -7a +6b +2c or -a < -7a + 6b + 2c < a 

or 1-7a+ 6b +2cl < lal or II (a)v 3 II < Iiali. Similarly, for a,b,c < 0, we obtain 

II (a)v3
11 < Iia II . 

Next, let (a)v4 be totally negative. Then (a)v, (a)v2 and (a)v3 are totally positive. If 

a,b,c> ° then . -Sa + 3b +2c < ° and -2a + b + c > 0. Since -Sa + 3b +2c = (-4a + 2b +2c) 

-a + b, therefore -a < -Sa +3b + 2c < a or I- Sa + 3b + 2c I < lal or II (a)v4 11 < Iia II· 

Similarly, for a,b,c < ° we get II (a)v4 II < Iiali . 

Finally, suppose that (a)v S is totally negative. Therefore (a)v, (a)v 2 , (a)v 3 and (a)v4 are 

totally positive. If a,b,c > ° then -a + c < 0, and so -a < -a + c < a or I-a + cl < lal or 

II (a)v5 II < Ii ali. Similarly,fora,b,c < ° we have II (a)vS II < lIali. 

Example 2.2.8 Let a = 3 + J3 then a = 3,c = l,n = 3 and b = a;n = 6 As a,b and c 

are positive therefore a is a totally positive real quadratic irrational number. We put this 

information in the following form. 
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a 3 6 1 

(a)u -4 ...l.. 39 3 

(a)u 2 -35 13 94 

(a)u 3 -59 94 111 T 
(a)u 4 - 52 37 73 

(a)u 5 -24 11. 18 3 

(a)v 15 J1.. 18 3 

(a)v 2 22 13 37 

(a)v 3 17 .ll. 39 3 

(a)v4 5 1 22 

(a)v 5 -2 ...l.. 3 3 

It is clear from here that (a)u', where) = 1,2,3,4 and 5, are totally negative numbers and 

II (a)uf II > Iiall for} = 1,2,3,4 and 5. Also, (a)v5 is a totally negative number such that 

II (a)v S II < Iiali . 

Theorem 2.2.9 If a = a+f" E Q*(fo) is a totally negative number. Then 

(i) II (a )v i II > II a II , for i = 1,2,3,4, or 5, and 

(ii) II (a)ui II < Ii all if (a)ui is totally negative for) = 1,2,3,4, and 5. 

Proof 

(i) If a = a+f" , where b = a2;n, then we can easily calculate new a, b, c for (a )v i as follows. 

33 



a a b e 

i = 1 -a+3b -6a+9b+c 3b 3 

i = 2 - 5a + 6b + e -4a + 4b + e -6a+ 9b + e 

i = 3 -7a + 6b + 2e -12a+9b+4c 3 (-4a + 4b + e) 3 

i = 4 -Sa + 3b + 2e -2a+ b + e - 12a + 9b + 4e 

i = 5 -a + e .£ 3(-2a + b+e) 3 

Since a is a totally negative number so a > 0, and b < O,e < ° or a < 0, and b > O,e > 0. 

If a> 0, and b < O,e < ° (or a < 0, and b > O,e > 0) then II(a)vll = l- a+3bl , 

II (a)v2
11 = 1-5a + 6b + el , II (a)v3 11 = 1-7a + 6b + 2el, II (a)v411 = I-Sa + 3b + 2el and II (a)vSII 

= I-a + e l. Hence, II (a)v i II > Iia II, for i = 1,2,3,4 and 5. 

(ii) Again, we can write information about (a)ui , as follows. 

-- - -
a a b e 

j = 1 -a-e .£ 3(2a + b + e) 
3 

j=2 -Sa - 3b - 2e 2a + b + e 12a + 9b + 4e 

j=3 -7a - 6b - 2e 12a+9b+4c 3(4a + 4b + e) 
3 

j =4 -Sa - 6b - e 4a + 4b + e 6a + 9b + c 

j= 5 - a - 3b 6a+9b+c 3b 
3 

Since in Theorem 2.2.3, we have seen that if a is totally positive then (a)ui , where 

j = 1,2, 3,4 and 5 are totally negative. 

First, let us suppose that (a)u is totally positive. As a is totally negative, there are two 

possibilities, either a < 0, and b > 0, e > ° or a > 0, and b < 0, e < 0. If a < 0, and 

b> O,e > Othen-a-e > 0. Hence-a> - a - e > aorl-a - el < lal or II(a)ull < lI ali. 
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Similarly, II (a)ull < Iiall for a> 0, and b < O, C < 0. 

Now, suppose that (a)u2 is totally positive. Then (a)u must be totally negative.If a < 0, 

and b > 0, c > ° then 2a + b + c > 0, -a - c < 0, -Sa - 3b - 2c > 0 and 12a + 9b + 4c > 0. 

Since, - lSa-9b - 6c = (- 12a- 9b -4c) -3a-2c, therefore - 15a- 9b - 6c < - 3a. Hence 

a < - 5a - 3b - 2c < - a or I-Sa - 3b - 2c l < lal or II (a)u2
11 < II a II. Similarly, II (a)u2

11 < II a II 

for a > 0, and b < O,C < 0. 

Let (a)u 3 be totally positive. Then (a)u and (a)u 2 are totally negative. If a < 0, and b > 0, 

c > ° then -a - c < 0, 2a + b + c > 0, -Sa - 3b -2c < 0, 12a + 9b +4c> 0, -7a - 6b 

-2c> ° and 4a+4b +c > 0. Since -14a-12b -4c = (-12a-9b-4c) -2a-3b < -2a. Then 

- 7a - 6b - 2c < - a or a < -7a- 6b-2c < -a or 1-7a-6b -2c l < la l or II(a) u3
11 < Iiall 

Similarly, II(a)u3
11 < Iiall fora> 0, and b < O,C < 0. 

Next, suppose that (a)u4 is totally positive . Then (a)u, (a)u 2 and (a)u 3 are totally 

negative. If a < 0, and b > 0, c > ° then -a - c < 0, 2a + b +c > 0, - 5a - 3b -2c < 0, 

12a+9b +4c > 0, -7a-6b - 2c > 0, 4a+4b+ c > 0, -5a-6b - c > a and 6a+9b +c > 0. 

Since- lOa - 12b - 2c = (- 8a - 8b - 2c) -2a - 4b. Then - lOa - 12b - 2c < -2a or a < -5a -

6b - c < - a or I- Sa - 6b - cl < lal or II (a)u 4
11 < lI a II Similarly, II (a)u4

11 < Iia II for a > 0, 

and b < O,c < 0. 

Finally, we suppose that (a)u 5 is totally positive. If a < 0, and b > 0, c > ° then 

-a-3b> 0. This implies that a < - a - 3b < -a or l-a-3bl < lal or II(a)u5
11 < Iiali. 

Similarly, II(a)u5
11 < Iiall for a> 0, and b < O,c < 0. 
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Example 2.2.1 0 Let a = -3 + J2 then a = -3,c = l,n = 2 and b = a2~n = 7. As a is 

negative and b, c are positive therefore a is a totally negative real quadratic irrational number. 

The information is tabulated as follows. 

a -3 7 1 

(a)u 2 ...l.. 6 3 

(a)u 2 - 8 2 31 

(a)u 3 23 l..L 51 3 

(a)u 4 -28 17 46 

(a)u 5 -18 ..1§.. 21 3 

(a)v 24 .R 21 
3 

(a)v2 58 41 82 

(a)v 3 65 J..Ql. 123 3 

(a)v4 38 14 103 

(a)v5 4 ...l.. 42 
3 

It is clear from this information that (a)v i , where i = 1,2,3,4 and 5 are totally positive 

numbers and II (a)v i II > IIall , for i = 1,2,3,4 and 5. Also (a)u is a totally positive number 

such that II (a)ull < IIali. 

Theorem 2.2.11 If a = a+f" E Q* (rn) is a totally positive number, then there exists a 

sequence a( = a I) ' a 2' a 3' ... , a 11/ such that a i is alternately totally positive and totally negative 

number, for i = 1,2,3, ... ,m - 1 and am is an ambiguous number. 

Proof 

Since a = a I = a+f" is a totally positive number so by Theorem 2.2. 1 , one of (a )v i , for 
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i = 1,2,3,4 or 5, is totally negative. If (a)v i is totally negative then by Theorem 2.2.7, 

lI(a)v i li < Ii ali. Also (a)v i is totally negative, then, one of (a)vit-tf, for j = 1,2,3,4, and 5 is 

totally positive. If (a)viui is totally positive then by Theorem 2.2.9, II (a)v iui II < II (a)v i II 

< lI all . If we let, a = ai ' (a)vi = a 2 and (a)v i7-tf = a 3 and continue in this way we obtain an 

alternate sequence a I' a 2' a 3' ••• , a ", of totally positive and totally negative numbers such that 

sequence of non-negative integers so it must terminate. That is, after a finite number of steps 

we reach to a", such that II a", II < JYi. This means that, if am = a I ;rn then 
I 

II II - r;;; 2 r;;; 2 a~-n -am -Ia,l < ",n. Thus a l < ",n or a
l 
-n < 0 or -2- < 0 or a",a", < O. Hence a", IS an 

C I 

ambiguous number. 

Example 2.2.12 If a = 6 + J3 then a = 6,c = l ,n = 3 and b = a2;n = 33. As a,b,c 

are positive, therefore a is a totally positive real quadratic irrational number, therefore: 

a o = a 6 33 1 totally positive 

a I = (a o)v5 - 5 ..l 66 totally negative 
3 

a 2 =(a l )u5 4 13 1 totally positive 

a J = (a 2 )v5 -3 ..l 18 totally negative 
3 

a 4 = (aJu 5 2 I 1 totally positive 

as = (a 4 )v5 - 1 ..l -6 ambiguous 
3 

sequence of totally positive and totally negative numbers and a s is an ambiguous number. 

37 



The above information is depicted in the following coset diagram in which 0,1,2,3,4 and 

.' 

2.3 Existence of Closed Paths 

The ambiguous numbers play an important role in studying the action of G6,6(2,Z) on 

Q*(Jn ) U{ex:>} . Let a E Q* (.Jn ) and aG6,6(2, Z) denote an orbit of Q*(.Jn) . The existence of 

an ambiguous number in aG6,6(2, Z) is related to the stabilizers of G6,6(2,Z) . We describe the 

action ofG6,6(2,Z) on Q*(.Jn) U{ex:>} in the following way. 

Theorem 2.3.1 The ambiguous numbers in the coset diagram for the orbit aG6,6(2,Z), 

where a = a~;; E Q*(.Jn), form a closed path and it is the only closed path contained in it. 

Proof 

Let ko be an arbitrary ambiguous number in aG6,6(2,Z). We pass on to another ambiguous 
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number by successive applications of either ui or Vi, for i,j = 1,2,3, 4 or 5. Without loss of 

generality, we assume that (ko)ui is another ambiguous number. 

Since each hexagon, representing six edges of u or v, contains two ambiguous numbers 

(by virtue of Lemmas 2.2.4, 2.2.6) so at the second ambiguous number within the k - th 

hexagon, we successively apply the second generator, namely u (or v ) to reach the next 

ambiguous number in the (k + 1) - th hexagon. 

Suppose k - th hexagon (depicting either the six cycles of the generator u (or v ) contains 

two ambiguous numbers, namely a I and a 2' We assume that the k - th hexagon is the one 

which depicts the six cycles of the generator v Then a(k-I) = a(k-l)uEI a(k) = a(k)u E2 and 
• 2 I ' 2 I ' 

a(k+ l ) = a(k+l)u E) where E E E = 1 2 3 4 or 5 Also since a(k-l) = a(k) and a(k) = a(k+l) so 
2 I , I ' 2') ", , 2 I 2 I 

a ~k- l) uilvi2ui) = a~k+l). We can continue in this way and since by Lemma 3 [16J there are only 

finite number of ambiguous numbers of the form a = a~~ in Q*C/i1), after a finite number 

of steps we reach to the vertex (ambiguous number) a~k+m) = a~k-1). 

Hence the ambiguous numbers form a path in the coset diagram. The path is closed 

because there are only finite number of ambiguous numbers in the coset diagram. Since only 

the ambiguous numbers form a closed path and these are the only ambiguous numbers 

therefore all the ambiguous numbers form a single closed path in the coset diagram of the orbit 

Example 2.3.2 Let a = 2+[7 then a = 2,e = 3,n = 7 and b = a2;n = -1. As be < 0 

therefore a is an ambiguous number. We tabulate the information as follows. 
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a o = a 2 - 1 3 ambiguous 

a I = (a o)vS 1 1 -6 ambiguous 

a z = (a l )u3 - 1 - 1 6 ambiguous 

a 3 = (az)v - 2 1 - 3 ambiguous 

a 4 = (a Jus -1 -2 3 ambiguous 

as = (aJv 3 1 2 - 3 ambiguous 

a o = (a s)u 2 - 1 3 ambiguous 
--

The above information is depicted in the following coset diagram in which 0,1,2,3 ,4 and 5 

\ / " 

Theorem 2.3.3 The graph of the action of G6,6(2,Z) on the rational projective line is 

connected. 
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Proof 

To prove this we need only to show that for any rational number ko there is a path joining 

L t k b . . . I baTh (k)· -b -(a+b) -(3a+2b) -(2a+b) e 0 e a posItIve ratlOna num er, say, b' en 0 u' = 3(a+b) ' 3a+2b ' 3(2a+b) , ~ 

and -(33:+b), for} = 1,2,3,4 or 5. Suppose Ilko ll = max (lal ,lb l). Then II(ko)ull = 3(a+b), 

Therefore, II (ko)u"1I > II ko II for} = 1,2, 3,4, and 5. Similarly, if ko is a negative rational 

n b a 'th bOth (k) i - 3a-b 2a- b 3a-2b a-b d - b fi . - 1 2 3 4 urn er, b WI < en 0 v -~, 3a- b ' 3(2a- b) , 3a-2b an 3(a-b) ' or 1 - , , , or 

and II (ko)v S II = 3(a - b) . Hence II (ko)vi ll > Ilko II fo r i = 1, 2,3,4 or 5. If ko is positive then 

one of (ko)v i is negative. Ifwe let this negative number to be k] then Ilko II > Ilk] II . As k] is 

negative, one of (k])ui is positive. Let it be k2 , that is, k2 = (kJu'· where j = 1, 2,3,4 or 5. This 

implies that Ilk] II > II k2 II . If we continue in this way, we get a unique alternating sequence of 

positive and negative rational numbers ko,k], k 3 , ••• such that Il ko II > Ilk] II > II k2 11 > .... The 

decreasing sequence of positive integers must terminate after a finite number of steps. It will 

terminate only when ultimately we arrive at a hexagon with vertices - 1, -.} , -;1 , ~1 ,0, 00 or 

1,~ ,-},+, 0,00 . An alternating sequence of positive and negative rational numbers ko ,k ], 

kv'" such that Ilko II > Ilk] II > II k211 > . . . . shows that there is a path joining ko to 00. Hence 

every rational number occur in the coset diagram and that the diagram for the action of 

G6,6(2,Z) on the rational projective line is connected. 

Theorem 2.3.4 The action of G6,6(2, Z) on the rational projective line is transitive. 
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Proof We shall prove transitivity of the action by showing that there is a path from a rational 

number p to a rational number q, that is, there exists some h in 06,6(2,Z) such that ph = q. As 

we have shown in Theorem 2.3.3 that there exists a path joining p to 00, that is, there exists an 

... u En v l1n ) where 8 , = 0, 1,2, 3,4 or 5, E; = 1, 2,3, 4 or 5 , for i = 2,3, .. . ,n and 1J1I = 0,1, 2, 

3,4 or 5, 1J j = 1,2,3,4 or 5, where} = 2,3, ... ,n - 1. Similarly we can find another element g 2 

in 06,6(2,Z) such that 00 = qg2 Hence pg, = qg2 or pg,g~1 = q. That is, the action of 

06,6(2,Z) on the rational projective line is transitive. 

Now we find a finite presentation of 06,6(2,Z). 

Theorem 2.3.5 The linear fractional transformations v : z -jo 3z-1 and u : z -jo _-1_ 
3z 3(z+ l) 

generate 06,6(2,Z) and u6 = v6 = 1 are defining relations for the group 06,6(2, 2). 

Proof 

Suppose that u6 = v6 = 1 are not defining relations of 06,6(2 ,Z). Then there is a relation 

that neither u nor v can be 1. The coset diagram for the action of the group 06,6(2,Z) on the 

rational projective line PL(Q) does not contain any circuit. Suppose a contradiction, that is, a 

closed path exists in the coset diagram. Let there be n hexagons, depicting u and v, in the 

closed path. Since a hexagon depicting u always contains one positive number (vertex) and a 

hexagon depicting v always contains one negative number (vertex), we label these alternate 

negative and positive vertices by k, ,k2 , ... ,kn' If we let Ilk ll = max(la l, lbl), where k = ~ is a 

rational number, then Il k, II 2: II k2 11 2: ... 2: Il k" II 2: Il k, II gives a contradiction. Thus the coset 
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diagram does not contain any closed path. This shows that there are vertices in the coset 

diagram such that the path connecting them with 00 is of arbitrary length. Choose k > 0, so that 

the path between k and 00 is of length greater than n, that is there are more than n hexagons 

vl1n * 1 and so u6 = v6 = 1 are defining relations for the group G6,6(2, Z). 

2.4 Intransitive Action of 0 6,6(2, Z) 

In this section, we prove that the action of G6,6 (2, Z) on Q(.[ii) U {oo} is intransitive. 

Theorem 2.4.1 (i) If a = a~: E Q*(.[ii) then every element in aG6,6 (2 ,Z) is of the form 

(ii) If a = a
3
+

m
1 

E Q* (fo) then the elements in aG6 6 (2, Z) are either of the form a'+;; or 
c+ ' 3c 

~m ~m -3-'-' where the elements of the form -,- belong to Q*(fo) but the elements of the form 
c +1 3c +1 

a'+m 3cT belong to Q(fo)\Q*(fo)· 

(iii) If a = ~:~ E Q*(fo) then the elements in aG6,6(2, Z) are either of the form a';; or 

~m Am 
-3-'-' where the elements of the form -, - belong to Q*(fo) but the elements of the form 

c +2 3c +2 

a'+m 3cT belong to QCfo)\Q*(fo)· 

Proof 

(i) If a = a+c
m , where b = a

2
-n then (a)v = 1 - _1 = 1 _ c 
c , 3a 3(a+m) 

(3a-c)+3 rn a-rn 
= x--

3(a+rn) a-m 

= -a+33~rn . Hence the new values of a and c are -a + 3b and 3b respectively . Using these 
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values, we then obtain the new value for b. That is, (-a+~~) 2-n = -6a~9b+c. Similarly, the new 

values for a, band c with respect to (a)v i are listed in the following table. 

a a b c 

i = 1 - a+ 3b - 6a+9b+c 3b 
3 

i = 2 -Sa + 6b + c - 4a + 4b + c -6a + 9b + c 

i = 3 -7a + 6b + 2c - 12a+9b+4c 3 (-4a + 4b + c) 
3 

i = 4 -Sa + 3b + 2c -2a + b + c - 12a + 9b + 4c 

i = 5 - a+c ..f... 3(-2a + b + c) 3 

Similarly, we can calculate the new values of a,b,c for (a)ui, where) = 1,2,3,4, and 5, as 

follows. 

a a b c 

} = 1 -a-c ..f... 3(2a + b + c) 3 

} =2 -Sa - 3b - 2c 2a + b + c 12a + 9b + 4c 

} = 3 -7a - 6b - 2c 12a+9b+4c 3(4a+4b+c) 3 

}=4 - Sa - 6b - c 4a + 4b + c 6a + 9b + c 

} = 5 - a - 3b 6a+9b+c 3b 3 

5, e; = 1,2, 3,4 or 5, for i = 2,3, ... ,n and 1']" = 0,1, 2,3,4 or 5,1'] . = 1,2,3,4 or 5, where 
J 

} = 2, 3, ... ,n - 1. Now from the above tables we can easily see that if a = a~;; E Q*(jYi) 
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then every element in aG6,6 (2,Z) is of the form a';; and aG6,6(2,Z) c.Q*(fo). 

(ii) From the preceding tables we can easily see that every element in aG6,6(2,Z) where ~:::: ' 

. . h a'+,/n a'+,/n a'+,/n ( ~) 
IS elt er of the form -,- or -, -, whence the elements of the form - , - belong to Q* "n 

3c 3c +1 3c +1 

a'+,/n but the elements of the form -,- belong to Q(fo)\Q*(fo). 
3c 

(iii) From the preceding tables we can easily see that every element in aG6,6 (2,Z) for a = ~::; 

. . h a'+ ,/n a'+Jii a'+ ,/n Q ( r.;) 
IS elt er of the form -,- or - , -, whence the elements of the form -, - belong to *" n 

3c 3c +2 3c +2 

a'+,/n but the elements of the form -,- belong to Q(.;n)\Q*(fo) . 
3c 

Theorem 2.4.2 The action of G6,6(2,Z) on Q(.;n) u {<Xl} is intransitive. 

Proof 

The non-square positive integer n can be of three types, namely, n = 3m, n = 3m + 1, and 

n = 3m + 2, where m E Z. We consider the three cases one by one. 

(i) Consider n = 3m. If we take a = ~, then a = 0, e = 3 and b = a2;n = -m. Hence 

a E Q*(fo). Also if we take f3 = fo then f3 E Q*(Jn). Similarly if we take r = 1+; when 

m is odd and take r = ~ when m is even. Hence r E Q*(fii). Since according to Theorem 

2.4. 1, the elements of the form a~~ , ~:::: and ~:~ lie in different orbits ofQ(fii) , so there 

are at least three orbits of Q(fii) . Hence the action of G6,6 (2, Z) on Q(fii) is intransitive. 

(ii) Let n = 3m + 1. If we take a = I+;n, then a = I,e = 3 and b = a2;n = -m. Hence 

a E Q*(.;n). Also if we take f3 = fo then f3 E Q*(.;n). Similarly, if we take r = 1+; 
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when m is even and take r = ;; when m is odd then r E Q*( jii ). As the elements of the 

form a~;; , ~:-:; and ~:~ lie by virtue of Theorem 2.4. 1, in different orbits of Q( jii ), so 

there are at least three orbits of Q( jii). Hence the action of G6,6 (2, Z) on Q( jii ) is 

intransitive. 

(iii) Suppose n = 3m + 2. If we take a = jii then a E Q*( jii ). Also if we take f3 = 1+; 
when m is odd and take f3 = ;; when m is even then ~ E Q*(jii). Thus, there are at least two 

orbits ofQ(jii) , and so the action ofG6,6(2,Z) on Q(jii) is intransitive. 

We conclude this chapter by highlighting the following points. If n = 3m + 2, m E Z then 

there does not exist any real quadratic irrational number of the form a = a~;; in Q* (jii). So 

there does not exist any orbit containing elements of the form a = a~;; in Q* ( jii ) where 

n = 3m + 2. If we are given a real quadratic irrational number a, we can find the closed path in 

the orbit aG6,6(2,Z). Ifa is totally negative then one of (a) vi , for} = 1,2, 3,4 or 5 is totally 

positive, and we can use Theorem 2.2.11 to find an ambiguous number in the same orbit. The 

existence of an ambiguous number assures the existence of a closed path. This means that if a 

and f3 are two real quadratic irrational numbers then we can find out whether or not they 

belong to the same orbit. We can then look for closed paths in the orbits aG6,6(2, Z) and 

fJG6,6(2,Z) and see if they are same or not. It is important to note that for a fixed value of a 

non-square positive integer n, all possible ambiguous numbers do not lie in the same orbit. 

For instance, if we take n = 7, then (1 + /7)U 5V 5U5 v3u5v5U 5v 5U3v 5 = (1 + /7) and 

(1 - /7)U5v5U 5V 3U5 V5U 5V5 U3V5 = (1 - /7). If we let a = (1 + /7) and f3 = (1 - /7) then 

aG6,6(2, Z) n f3G6,6(2, Z) is empty. That is, a and f3 do not lie in the same orbit. 
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CHAPTER THREE 

ACTION OF G6,6(2,Z) ON IMAGINARY 

QUADRATIC FIELDS 

3.1 Introduction 

In this chapter, we have studied an action of the group G6,6(2,Z) on the imaginary 

quadratic fields Q(.j-n), where n is a square free positive integer. Using the coset diagrams 

we have shown that the action of G6,6(2 ,Z) on Q*(Fn) = {a+;;n : a, a~;n ,e E Z,e * O} is 

always intransitive. 

Let F be an extension field of degree two over the field Q of rational numbers. If n is a 

negative square free integer then Q( fo) is called an imaginary quadratic field and the 

elements of Q( fo) are of the form a + b fo with a, b E Q. The imaginary quadratic fields are 

usually denoted by Q(Fn). Imaginary quadratic fields are the only type (apart from Q) with a 

finite unit group. This group has order 4 for Q(R) (and generator Ff), order 6 for Q(H) 

(and generator (1 + 0)/2), and order 2 (and generator - 1) for all other imaginary quadratic 

fields. We shall denote the subset {a+{; : a, a~;n ,e E Z,e * O} by Q*(Fn). 

Theorem 3.1.1 If a = a+:;:n E Q*(Fn), then n does not change its value in the orbit 

aG6,6(2,Z), that is aG6,6(2,Z) c Q*(Fn). 
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Proof 

If a = a+~ , where c = 3k and d = a
2
;n, then the new values of a,c,d for (a )ui, where 

j = 1,2,3,4 and 5 are as follows. 

a a d c 

(a)u - a- 3k k 3(2a+d+3k) 

(a)u 2 -5a - 3d- 6k 2a+d+ 3k 3(4a + 3d + 4k) 

(a)u 3 -7a - 6d- 6k 4a+ 3d+ 4k 3(4a + 4d + 3k) 

(a)u 4 -5a- 6d - 3k 4a + 4d+ 3k 3(2a+3d+k) 

(a)u S -a - 3d 2a + 3d+ k 3d 

S' '1 I () 1 1 1 c (3a-c)+3Fn a- Fn . - a+3d+Fn H th 
lml ar y, a v = - 3; = - 3(a+Fn) = 3(a+Fn) X a- Fn = 3d . ence e 

new values of a and c fo r (a)v are -a + 3d and 3d respectively. Using these values, we then 

obtain the new value for d, that is, (-a+;~ 2+n = - 6a;9d+c . Similarly, the new values for a,d and 

c with respect to (a)v i , for i = 1,2,3,4 and 5 are: 

a a d c 

(a)v -a+3d - 2a + 3d+ k 3d 

(a)v 2 -5a+ 6d+ 3k -4a+ 4d+ 3k 3 (-2a + 3d + k) 

(a)v 3 -7a+ 6d+ 6k - 4a+ 3d+4k 3 ( -4a + 4d + 3 k) 

(a)v4 -5a + 3d+ 6k -2a+ d+ 3k 3(-4a + 3d + 4k) 

(a) vS - a+3k k 3(-2a+d+3k) 

(a)uv a + 6k 4a + d + 12k 3k 

(a)vu a- 6d d 3 (-4a + 12d + k) 
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From the above information we see that every element in aG6,6(2, Z) is of the form a+{; . 

Hence the non-square positive integer n does not change its value in the orbits aG6,6(2,Z) and 

3.2 Existence of Fixed Points in Q*(r-n ) 

Theorem 3.2.1 The fixed points under the action of G6,6 (2, Z) on Q*(Fn) exist only if 

n = 3. 

Proof 

Let g be a non-identity linear fractional transformation in G6,6(2 , Z). Then (z)g can be 

taken as az+db where ad - be = 1 or 3. If az+b = Z we get the quadratic equation 
cz+ cz+d ' 

ez2 + (d - a)z - b = O. It has the imaginary roots only if (d - a)2 + 4be < 0 or 

Cd + a) 2 - 4(ad - be) < 0. 

If ad - be = 1 then (a + d) 2 < 4, and so a + d = O, ±I. 

If a + d = 0 then g is an involution and hence conjugate to the linear fractional 

transformations v3 or u3 • 

If a + d == ± 1 then because (Tr(g)) 2 = det(g) , the order of g will be three and hence 

conjugate to the linear fractional transformations V±2 or u ±2 . 

Next, we consider the case when ad - be == 3. Since (a + d) 2 < 12, therefore, 

a + d = O, ±I ,±2,±3 . 

If a + d = ° then g is an involution and hence conjugate to the linear fractional 

transformations v3 or u3 • 
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If a + d = ± 1, ±2 then the order of g must be infinite and so g is conjugate to (uv) m, where 

m is a positive integer .. 

If a + d = ±3 then as (Tr(g»2 = 3 det(g), therefore, order of g will be six and hence it is 

conjugate to the linear fractional transformations V±l or U±l. Hence the fixed points of g are 

imaginary provided it is conjugate to the linear fractional transformations V±l, V±2, v3 , U±l, U±2 

or u3. Since the fixed points of u and v are -3±f3 and 3±f3 respectively and the conjugates 

of v and u have the same discriminant, therefore, the imaginary fixed points of the elements of 

G6,6(2,Z) are contained in Q*(/=3). 

3.3 Orbits ofQ*(/=3) 

If a = a+.;;n E Q(Fn) is such that ac < 0 then a is called a totally negative imaginary 

quadratic number and totally positive if ac > O. 

Note that cd is always positive because d = a2;n and so c and d will have the same sign. 

Hence an imaginary quadratic number a = a+.;;n E Q(Fn) is totally negative if either a < 0 

and c,d > 0 or a > 0 and c,d < O. Similarly, a = a+.;;n E Q(Fn) is totally positive if either 

a,c,d> 0 or a,c,d < O. 

Theorem 3.3.1 If a = a+.;;n E Q(Fn) is a totally negative imaginary quadratic number 

then (a )v i is totally positive for i = 1,2,3,4 or 5. 

Proof 

If a = a+Fn d = a2+n then (a) v = 1 __ I = 1 _ c = (3a-c)+3Fn x a-Fn = 
c' c , 3a 3(a+Fn) 3(a+Fn) a-Fn 

-a+3:;Fn . Hence the new values of a and c for (a)v are -a + 3d and 3d respectively. Using 
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these values, we then obtain the new value for d. That is, (-a+~~ 2+n - 6a+9d+c 
3 

new values for a,d and c with respect to (a)v i are: 

a a d c 

i = 1 - a+3d -6a+9d+c 3d 3 

i = 2 - 5a+ 6d+ c -4a + 4d+ c -6a+9d+c 

i = 3 -7a+ 6d+ 2c - 12a+9d+4c 3 (-4a + 4d + c) 3 

i = 4 -5a+ 3d+ 2c -2a+ d+ c -12a + 9d+ 4c 

i = 5 -a+c c 3(-2a + d+ c) 3 

Similarly, the 

If a is a totally negative number then either a < 0 and c, d > 0 or a > 0 and c, d < O. 

If a < 0 and c,d > 0 then from the preceding table the new a,d,c for (a)v i are all positive, 

and hence (a )v i are totally positive for i = 1,2, 3,4 or 5. 

Similarly, if a > 0 and c,d < 0 then the new values of a,d,c for (a)v i are all negative, and 

hence (a )vi for i = 1,2,3,4 or 5 are totally positive. 

Note that there are hexagons (with unbroken sides) in which all six vertices are totally 

positive or five are totally positive and the sixth is neither totally positive nor totally negative. 

Theorem 3.3.2 If a = a+~ E Q(Fn) is a totally positive imaginary quadratic number 

then (a)ui is totally negative for) = 1,2,3,4 or 5. 

Proof 

s· ( ) I I - a- c+Fn 
mce z u = 3(~+1)' therefore, (a)u = 3(~+1) = 3 (2a+d+c) 

c, = 3 (2a + d + c) and d, a~+n c 
= -c-,- = 3' 
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Similarly, the values of a,d,c for (a)ui can be tabulated in the following fashion. 

a a d c 

) = 1 -a- c .£. 3(2a +d + c) 
3 

} =2 -5a - 3d - 2c 2a+ d+ c 12a+ 9d+ 4c 

} =3 - 7a - 6d -2c 12a+9d+4c 3(4a + 4d+ c) 
3 

} = 4 - 5a - 6d - c 4a + 4d+ c 6a+ 9d+ c 

} = 5 -a - 3d 6a+9d+c 3d 3 
--'----

Since a is totally positive, either a, d, c > 0 or a, d, c < O. 

If a,d,c > 0, then from the preceding table we see that (a)ui is totally negative for 

) = 1,2, 3, 4 or 5 and on the other hand if a, d,c < 0 then (a)ui is totally negative for 

) = 1,2,3,4 or 5. 

Note that there are hexagons (with broken sides) in which all six vertices are totally 

negative or five are totally negative and the sixth is neither totally positive nor totally negative 

Let the norm of a = a+~ be defined as II a II = lal . 

Theorem 3.3 .3 If a = a+~ E Q( Fn) is totally positive imaginary quadratic number 

then II (a)u'" II > IIa II , for} = 1,2, 3,4 and 5. 

Proof 

If a = a+;n , where d = a
2
; n, then we can easily calculate new values of a, c, d for (a)ui , 

where) = 1,2, 3, 4 and 5 as follows. 
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a a d c 

j = 1 -a - c .f.. 3(2a + d+ c) 3 

j =2 - 5a - 3d - 2c 2a + d+ c 12a + 9d+ 4c 

j =3 -7a- 6d - 2c 12a+9d+4c 3(4a + 4d + c) 3 

j =4 -5a- 6d - c 4a + 4d+ c 6a + 9d+ c 

j=5 - a - 3d 6a+9d+c 3d 
3 

Since a is a totally positive number, therefore, either a, c, d > 0 or a, c, d < O. 

Ifa,c,d> 0 (or a,c,d< O) ,then II(a)ull = Ia+cl, II (a)u 2 II = 15a+3d+2cl, II(a)u3 11 = 

17a+6d+2cl, lI(a)u4 11 = 15a+6d+cl and II (a)u 5 II = la+3dl. Thus, II(a)uili > IIall , for 

j= 1,2,3,4and5. 

Theorem 3.3.4 If a = a+~ E Q(Fn) is totally negative imaginary quadratic number, 

then II (a)v i II > IIall ,fori= 1,2,3,4 or5. 

Proof 

If a = a+~ , where d = a
2
;-n, then the new values for a, c, d for (a)v i are as follows. 

a a d c 

i = 1 -a+3d -6a+9d+c 3d 
3 

i = 2 -5a+6d+ c -4a + 4d+ c -6a + 9d+ c 

i = 3 -7a+ 6d+ 2c - 12a+9d+4c 3 (-4a + 4d + c) 
3 

i=4 -5a + 3d + 2c -2a+ d+ c - 12a+ 9d+4c 

i = 5 -a+c ..£. 3(-2a+d+c) 
3 
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Since a is a totally negative number so either a > 0, and d < 0, c < ° or a < 0, and 

d> O,c > 0. 

If a> ° and d < O,C < ° (or a < ° and d> O,c > 0) then II(a)vli = I-a + 3dl, II (a)v 2 II = 

1-5a+6d+cl, II(a)v3 11 = 1-7a+6d+2cl, II (a)v 4 II = 1-5a+3d+2cl and II(a)v5 11 = l-a+cI

Hence, II (a)v i II > II a II, for i = 1,2,3,4 and 5. 

Theorem 3.3.5 (i) If a = a+..;;' E Q(Fn), where c > ° then the denominator of every 

element in aG6,6 (2, Z) is also positive. 

(ii) If a = a+..;;' E Q(Fn), where c < ° then the denominator of every element in 

aG6,6(2,Z) is also negative. 

Proof 

We can tabulate the following information. 

54 



a a d c 

(a)u -a-c ..£.. 3(2a+d+c) 3 

(a)u 2 - 5a- 3d- 2c 2a + d+ c 12a+ 9d+ 4c 

(a)u 3 -7a - 6d- 2c 12a+9d+4c 3(4a + 4d+ c) 
3 

(a)u 4 -5a- 6d - c 4a + 4d+ c 6a+ 9d+ c 

(a)u 5 -a-3d 6a+9d+c 3d 
3 

(a) v -a+3d -6a+9d+c 3d 
3 

(a)v2 -5a+ 6d+ c -4a+ 4d+ c -6a+ 9d+ c 

(a)v 3 -7a + 6d+ 2c -12a+9d+4c 3 ( -4a + 4d + c) 3 

(a)v4 -5a + 3d + 2c -2a+ d+ c - 12a + 9d + 4c 

(a)v 5 -a+c .E... 3 (-2a + d+ c) 
3 

(a)uv a+2c 4a + d+ 4c c 

(a)vu a- 6d d - 12a + 36d + c 

(i) Since a = a+;n with c > 0, therefore d is also positive because d and c have the same 

sign. Using this fact, we can easily see from the above table that every element in aG6,6 (2,Z) 

has positive denominator. 

eii) Since a = a+;n with c < 0, therefore d is also negative because d and c have the 

same sign. Using this fact, we can easily see from the above table that every element in 

aG6,6(2,Z) has negative denominator. 

Theorem 3.3.6 If a = a+[I E Q*(H) is a totally positive imaginary quadratic number, 

then there exists a sequence a(= aJ,a 2 ,a3 , ... ,am such that a; is alternately totally positive 

and totally negative, fori = 1,2,3, ... ,m-l and lIamll = Oor3. 
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Proof 

Since a = a+j; is a totally positive imaginary quadratic number, therefore by Theorem 

3.3.2, one of (a)vi, for i = 1,2,3,4 or 5, is totally negative. If (a)vi is totally negative then by 

Theorem 3.3.4, II (a )vi II < Iia II . Also since (a)v i is totally negative, then, one of (a)viui , for 

j = 1,2,3,4, and 5 is totally positive. If (a)viui is totally positive then by Theorem 3.3.3, 

II (a)viui II < II (a)v i II < II a II . If we let, a = a I ' (a) Vi = a 2 , (a)viui = a 3 and continue in this 

way we obtain an alternate sequence a I ' a 2 ' a 3" .• , a", of totally positive and totally negative 

numbers such that Ii al II > IIa 2 11 > II a3 11 > ... > Ila", II . Since Iia l II , Ila 2 11, Il a3 11. .. . , Ila m II is a 

decreasing sequence of non-negative integers, therefore it must terminate. After a finite 

number of steps, the sequence terminates at a", such that Ila m II = 0 or 3. If am = -3±[-3 or 

3±f3 and since -3±[-3 and 3±f3" are the fixed points of u and v respectively, it does not end 

at an imaginary quadratic number whose norm is equal to zero, because otherwise we reach at 

am = If! such that Il am II = o. 

Theorem 3.3.7 There are exactly six orbits of Q*( /=3) under the action of G6,6(2,Z). 

Proof 

As we have seen in Theorem 3.3 .6, we can obtain a decreasing sequence of non-negative 

which must terminate and that happens only when ultimately we reach at an imaginary 

d · b al+H II II If -3+H 3+H d qua ratlc num er am =-c- such that am = lall = 0 or 3. am = -6 or ~ an 

because -3±[-3 and 3±f3 are the fixed points of v and u respectively , therefore we cannot 
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reach at an imaginary quadratic number whose norm is equal to zero. Therefore, in this case, 

there are four orbits of Q*(H). That is, -3+fI G6.6(2, Z), -3-fI G6.6(2,Z), 3+fI G6.6(2,Z) 

and 3-fI G6,6 (2,Z). Also, there are only two elements r-: and '1 in Q*(H) whose 

norm is equal to zero. Since r-: and '1 lie in two different orbits other than 

-3+./-3 G (2 Z) -3-./-3 G ( Z) 3+H G (Z) 3-H (Z) h 6 6,6" 6 6,6 2, , -6- 6,6 2, and - 6-G6,6 2, , hence t ere are 

exactly six orbits of Q* (H) under the action of G6,6 (2, Z). 

3.4 Orbits ofQ*(Fn) 

Now we look at the orbits of Q*(Fn), when n * 3. 

Remark 3.4.1 

(i) Ifn = 3k, where k E Z, then there does not exist any element of norm 1 or 2 in Q*(Fn). 

(ii) Ifn = 3k+ 1, where k E Z, then Q*(Fn) is empty. 

(iii) If n = 3k + 2, where k E Z, then Q* (Fn) contains elements of norm 1 and of norm 2, 

but not of norm zero. 

Theorem 3.4.2 If a = a+{; E Q*(Fn), where n * 3, is a totally positive imaginary 

quadratic number, then there exists a sequence a( = a I)' a 2' a 3' ... , a 1/1 such that a i is 

alternately totally positive and totally negative, for i = 1,2,3, ... , m - 1 and II a 1/1 II = 0, 1 or 2. 

Proof 

Since a = a+{; is a totally positive imaginary quadratic number, therefore by Theorem 

3.3.1, one of (a) Vi, for i = 1,2,3,4 or 5, is totally negative. If (a)v i is totally negative then by 
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Theorem 3.3.3, II (a)v i II < Iia II. Also since (a)v i is totally negative, then one of (a)viui , for 

j = 1,2,3,4, and 5 is totally positive. If (a)viui is totally positive then by Theorem 3.3 .4, 

II (a)viui II < II (a)v i II < II a II. If we let ,a = a I ' (u)yi= a 2 , (u)yiu/= U 3 and continue in this way 

we obtain an alternate sequence a I , a 2' a 3' •• • , a", of totally positive and totally negative 

a decreasing sequence of non-negative integers, therefore, it must terminate. 

For the square-free positive integer n there are three possibilities, namely 3k, 3k + 1 and 

3k + 2 where k E Z. 

If n = 3k then there does not exist any element of norm 1 or of norm 2 in Q* (Fn), but 

elements ( ~ ) of norm zero exist in Q*(Fn) . Hence in this case, after a finite number of 

steps we reach to am such that Ila", II = o. 

If n = 3k + 1 then there does not exist any element of the form a+:;n such that a~;n E Z. 

Hence in this case, Q* (Fn) becomes the empty set. 

If n = 3k + 2 then there does not exist any element ( ~ ) of norm zero in Q* (Fn), but 

elements of norm 1 and of norm 2 exist in Q* (Fn). Hence in this case, after a finite number 

of steps we reach to a", such that II a", II = 1 or 2. 

Theorem 3.4.3 Let a E Q*(Fn), where n * 3. 

CO) If ±1+Fn h k k h ±2+Fn C Z) 1 a = ±3 ,were n = 3 + 2, E Z, t en ±3(k+2) E aG6,6 2, 0 

C") If ±2+Fn k k h ±1+Fn G C2 Z) 11 a = ±3 , where n = 3 + 2, E Z, t en ±3(Ml) E a 6,6 , 0 

Ciii) If a = ±l;;:n , where n = 3k+2,k E Z and k~l = k2 E Z and k
"

k2 * ±1, then there 
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does not exist any element of norm 1 Cother than a) or of norm 2 in aG6,6C2,Z). 

Civ) If a = ±1;-;n, where n = 3k + 2, k E Z and t 2 = k 2 E Z and kl , k 2 "* ±1 then there does 

not exist any element of norm 1 or of norm 2 Cother than a) in aG6,6C2,Z). 

Proof 

Ci) Let a = I+;n, where n = 3k + 2, k E Z. Then: 

a 1 k+l 3 

(a)u -4 1 3(k+ 6) 

(a)u 2 -3k- 14 k+6 9k+ 33 

(a)u 3 - 6k - 19 3k+ 11 3C4k+l1) 

(a)u 4 -6k- 14 4k+ 11 9k+ 18 

(a)u S -3k-4 3k+ 6 3(k + 1) 

(a)v 3k+ 2 3k+ 2 3(k+l) 

(a)v 2 6k+4 4k+ 3 3(3k + 2) 

(a)v 3 6k+ 5 3k+ 3 3(4k + 3) 

(a)v 4 3k+4 k+ 2 3(3k + 3) 

(a)v S 2 1 3(k + 2) 

From the preceding table we see that ~:: E aG6,6(2,Z). 

Similarly, let n = 3k + 2, when k E Z. If a = -I+;n, {J = 1+::, Y = - 1~;n then 

-2+Fn 2+Fn - 2+Fn Z) 
3 (k+2) E aG6,6 (2, Z), - 3(k+2) E {JG6,6 (2, Z) and - 3(k+2) E yG6,6 (2 , . 

C") L t 2+Fn 11 e a = - 3 -' where n = 3k + 2,k E Z. We can easily tabulate the following 

information. 

59 



a 2 k+2 3 

(a)u -5 1 3(k+ 9) 

(a)u2 -3k - 22 k+9 9k+ 54 
-

(a)u3 -6k- 32 3k+ 18 3(4k+ 19) 

(a)u4 -6k - 25 4k+ 19 9k+24 

(a)u5 -3k- 8 3k+ 8 3(k+ 2 ) 

(a)v 3k+ 4 3k+ 3 3(k+ 2) 

(a)v2 6k+ 5 4k+ 3· 3(3k+3) 

(a)v3 6k+4 9k+ 6 3(4k + 3) 

(a)v4 3k+ 2 k+l 3(9k+ 6) 

(a)v5 1 1 3(k + 1) 

From the preceding table we note that ~~~ E aG6,6(2,Z). Similarly, it is clear that if 

_ -2+Fn 2+Fn -2+Fn - 1+Fn 
a - 3 ' P =---3 - and y -3' where n = 3k + 2, k E Z, then 3(k+ l) E aG6,6 (2,Z) , 

- l+Fn f3 - 1+Fn 
-3 (k+2) E G6,6 (2, Z) and -3 (k+2) E yG 6,6 (2, Z). 

(iii) Let a = I~:n, where n = 3k+ 2,k E Z and ~+I = k2 E Z.and k
"

k 2 * ±l. Then the 
I I 

information is tabulated in the following way. 
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a 1 k2 3k , 

(a)u -1 - 3k , k, 3(2 + 3k , + k2) 

(a)u2 - 5 - 6k, - 3k2 2 +3k,+k2 12 + 12k, + 9k2 
(a )u3 -7-6k , -6k2 4+4k,+3k2 3(4 + 3kl + 4kJ 

(a)u 4 -5 - 3k , - 6k2 4 + 3k , + 4k2 6 + 3k , + 9k2 
(a)u 5 -1 - 3k2 2 + k, + 3k2 3k2 
(a)v - 1 + 3k2 -2 + k, + 3k2 3k2 

(a)v2 -5 + 3k , + 6k2 -4 + 3k , + 4k2 - 6 + 3k , + 9k2 
(a)v 3 -7 + 6k , + 6k2 -4 + 4k, + 3k2 3(-4 + 3k1 + 4k2 ) 

(a)v 4 -5+6k , +3k2 -2 + 3k , + k2 - 12 + 12k, + 9k2 
(a)v 5 - 1 + 3k , k, 3(-2 + 3k , + k2) 

From the preceding table we note that there does not exist any element of norm 1 (other 

than a) or of norm 2 in aG6,6 (2,Z). Similarly, if a = -I;;:n , where k~l = k2 E Z. and 

k p k 2 '4= ±1 then there does not exist any element of norm 1 (other than a) or of norm 2 in 

(iv) Let a = 2~:: ' where n = 3k + 2,k E Z and k~2 = k2 E Z and k, ,k2 '4= ±l. We mention 

the obtained information in the following table. 
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a 2 k2 3k, 

(a )u -2 - 3k , k, 3(4 + 3k, + kJ 

(a)u 2 -1 0 - 6k, - 3k2 4+3k,+k2 24 + 12k, + 9k2 
(a)u 3 -14 - 6k, - 6k2 8 + 4k, + 3k2 3(8 + 3k 1 + 4k2) 

(a)u 4 -1 0 - 3k, - 6k2 8 + 3k, + 4k2 12 + 3k, + 9k2 
(a)u 5 -2 - 3k2 4 + k, + 3k2 3k2 

(a)v -2 + 3k2 -4 + k, + 3k2 3k2 

(a)v2 - 10 + 3k, + 6k2 - 8 + 3k, + 4k2 - 12 + 3k, + 9k2 

(a)v 3 - 14 + 6k, + 6k2 - 8+4k , +3kz 3(-8 + 3k1 + 4kz) 

(a)v 4 - 10 + 6k, + 3kz -4 + 3k, + k2 -24 + 12k, + 9kz 

(a)v 5 -2 + 3k, k, 3(-4 + 3k, + k z) 

From the preceding table we note that there does not exist any element of norm 2 (other 

than a) or of norm 1 in aG6,6(2,Z). Similarly, if a = -2;;:n, where k:
1
2 = kz E Z and 

k I' k2 '* ± 1 then there does not exist any element of norm 2 (other than a) or of norm 1 in 

If n is a positive integer then den) is the arithmetic function defined by the number of 

positive divisors of n. For example, d(1) = 1,d(2) = 2,d(3) = 2,d(4) = 3,d(5) = 2 and 

d(6) = 4. 

Theorem 3.4.4 

(i) If n = 3k where k E Z and n '* 3 then the total nUlJlber of orbits of Q*(Fn ) under the 

action of G6,6(2,Z) is 2d(k). 

(ii) If n = 3k + 2 where k E Z then the total number of orbits of Q* (Fn ) under the action of 

G6,6 (2, Z) is equal to 4[d(k + 1) + d(k + 2) - 2]. 

62 



Proof 

(i) As we have seen in Theorem 3.3.6, if n = 3k where k E Z and n *- 3 then there exists a 

alternate sequence a" a 2' a 3 ' • •. , a //I of totally positive and totally negative numbers such that 

lIa, II > IIa 2 11 > IIa 3 11 > ... > 1I00m II and 110./1/ II = O. This means that am is of the form ;;: . As 

r;: E Q*(Fn) , therefore, 3: = 1- E Z and hence c divides k. This shows that the total 

number of orbits of Q* (Fn) under the action of G6,6(2,Z), for n = 3k is equal to 2d(k). 

(ii) By Theorem 3.4.2, if n = 3k + 2 where k E Z then there exists a alternate sequence 

a"a 2 ,aW •• ,am of totally positive and totally negative numbers such that 110., 11 > 11 0. 2 11 

II II II II II II . . ±1+Fn ±2+Fn > a3 > ... > am and 0./1/ = 1 or 2. ThIS means that am IS of the form 3c or 3c . 

By virtue of Theorem 3.4.3 (i) and (ii), corresponding to the divisors ± 1, ±(k + 1) of k + 1 and 

±l,±(k + 2) of k + 2 there exist eight orbits of Q*(Fn). Here we are left with 2d(k + 1) - 4 

divisors of k + 1 and 2d(k + 2) - 4 divisors of k + 2. By Theorem 3.4.3 (iii) and (iv), there are 

4d(k + 1) - 8 and 4d(k + 2) - 8 more orbits. Hence the total number of orbits of Q*(Fn ) are 

8 +4d(k + 1) - 8+4d(k+ 2) - 8 = 4 [d(k + 1)+d(k+ 2) -2]. 

Example 3.4.5 (i) When n = 6 and 6 = 3(2), we get k = 2 and so corresponding to the 

four divisors of 2, namely ±1 ,±2, there are exactly 4 orbits of Q*(H), namely, 

2d(k) = 2d(2) = 2(2) = 4. 

(ii) When n = 11 and 11 = 3 (3) + 2, we get k = 3 and so corresponding to the six divisors of 

4, namely ±1,±2,±4 and four divisors of 5, namely ±1,±5. Therefore the possible orbits of 

Q*( CiT) ar l+RT G (2 Z) -l+RT G (2 Z) '" - 1 1 e 3 6,6" 3 6,6" I+RT G (2 Z) -l+RT G (2 Z) 
-3 6,6" -3 6,6" 
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I+FIT G (2 Z) 
6 6,6" 

- I+FIT G (2 Z) 
6 6,6" 

I+FIT G (2 Z) 
-6 6,6" 

- I+FIT G (2 Z) 
-6 6,6" 

I+FIT G (2 Z) 
12 6,6" 

- I+FIT G (2 Z) 
12 6,6" 

I+FIT G (2 Z) 
- 12 6,6" 

- I+FIT G (2 Z) 
- 12 6,6 " 

2+FIT G (2 Z) 
5 6,6" 

- 2+FIT G (2 Z) 
5 6,6" 

2+FIT G (2 Z) 
-5 6,6" 

-2+FIT G (2 Z) 
-5 6,6" 

2+FIT G (2 Z) 
15 6,6" 

-2+FIT G (2 Z) 
15 6,6" 

2+FIT G (2 Z) 
-15 6,6, 

d -2+FIT G (2 Z) B I+FIT 2+FIT I ' 'h b' - I+FIT -2+FIT I' , h an -15 6,6" ut 3 ' 15 Ie m t e same or It, 3 ' 15 Ie m t e 

b't I+FIT 2+FIT I' 'h b' - I+FIT -2+FIT I ' 'h b' same or 1, -3 ' - 15 Ie m t e same or It, -3 '-15 Ie III t e same or It, 

2+FIT I+FIT I' , th b't -2+FIT - I+FIT I' , th b't 2+FIT I+FIT 
3 ' 12 Ie III e same or 1 , 3 ' 12 Ie III e same or I , -3 ' - 12 

lie in the same orbit and -2+,:;:rr - I+FIT lie in the same orbit. Hence there are 12 orbits of 
- 12 

Q*(FIT), Now, we can verify that 4[d(k+l)+d(k+2)-2] = 4[d(4)+d(5)-2] = 

4[3+2-2]=12, 

Theorem 3.4.6 The action of G6,6 (2, Z) on Q* (Fn) is intransitive, 

Proof 

Since by Theorem 3,3,7, there exist six orbits of Q"' (H) and the minimum value of 

4 [d(k + 1) + d(k + 2) - 2] is 8, therefore there exist at least six orbits of Q*(J-n) and so the 

action of G6,6 (2, Z) on Q* (Fn ) is intransitive, 

So far, we have considered action of G6,6 (2,Z) on Q(jii) and Q(Fn) , In this case, coset 

diagrams were infinite, that is, the number of vertices are infinite, Now in chapter four, we 

consider coset diagrams for the action of G6,6(2,Z) on PL(Fq ), In this case we get coset 

diagrams of finite order, that is, coset diagrams with finite number of vertices , 

We shall consider actions of G6,6(2,Z) on PL(Fq ) , But first notice that there is a 

projection of PL(Q) onto PL(Fq ) , Here, if I = '~ is a rational number in the lowest terms, then 
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I maps on ~ where bars indicate residues modulo prime q, unless n = 0, when I is mapped 

on 00. If g : z ~ ::! is any element of the group G6,6 (2, Z) or indeed any element of GL(2, Q) 

whose determinant is a unit modulo p then g is let to act on PL(Fq ) by z ~ ~z+!. This 
cz+d 

projection commutes with the action of G6,6 (2, Z). Thus the coset diagram for the action of 

G6,6(2,Z) on PL(Fq ) can be obtained from the coset diagram for the action of G6,6 (2, Z) on 

P L(Q) by identifying appropriate points. The projection also commutes with t : z ~ 3
1z, so 

that the diagram for the action of G6,6(2,Z) admits an axis of symmetry which is the action of 

t. 

We shall point out that for appropriate () and q, the coset diagram for the action of 

G6,6(2,Z) on PL(Fq ) will also be an image under a projection of the diagram for the orbit 

aG6,6(2,Z). In fact, if the positive square free integer n is a quadratic residue modulo q (and q 

does not divide 2n) then in the integer ring R of the field Q(.[ii) , q factorizes as the product of 

two distinct primes ql and q2' and Rlq;(i = 1, or 2) is naturally isomorphic to z ~ ZlqZ = Fq. 

Thus, we can construct two distinct projections from PL(Q(.[ii)) to PL(Fq ) using the primes 

q I and q 2 in the same way that we used the prime q previously (R is not necessarily a principal 

integral domain); so we cannot talk about writing an element r in Q(.[ii) as a fraction t in 

lowest terms; but R is a Dedekind domain so that if qi is a prime ideal of R, any element I of R 

can be written as t when q; does not divide both a and b. This is all that is necessary to 

construct the projection. 
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CHAPTER FOUR 

L1(6,6,k) & PARAMETRIZATION OF ACTIONS OF 

G;,6(2,Z) 

4.1 Introduction 

In this chapter, we parameterize the conjugacy classes of non-degenerate homomorphisms 

which represent actions of ~(6,6, k) on PL(Fq ) where q == ±l(modk). Also, for various values 

of k we shall find the conditions for the existence of coset diagrams depicting the permutation 

actions of ~(6,6,k) on PL(Fq ). The conditions are polynomials with integer coefficients and 

the diagrams are such that every vertex in them is fixed by (uv) k. In this way, we get 

~(6, 6 , k) as permutation groups on PL(Fq ). 

In second section of this chapter, we show that any non-degenerate homomorphism from 

G6,6 (2,Z) into G6,6 (2, q) can be extended to a homomorphism G6,6 (2,Z) into G6,6 (2,q). We 

show also that every element in G6,6 (2, q) , not of order 1 or 3 is the image of uv under some 

non-degenerate homomorphism. We parameterize the conjugacy classes of non-degenerate 

homomorphism CJ with the non-trivial elements of Fq . 

Let q be a prime power and F q denote the finite field of order q. A one-to-one 

correspondence is established between the conjugacy classes of non-degenerate 

homomorphisms CJ : G6,6(2,Z) .... G6.6(2,q), under the action of inner automorphisms of 

G6,6(2,q), and the non-trivial conjugacy classes of elements of G6,6(2,q) such that the 
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correspondence assigns to any non-degenerate homomorphisms (J' the class containing (uv)(J'. 

It is known [19J that the group G2,6 (2, Z) = < x,y : x 2 = y6 = 1 > is generated by the 

linear fractional transformations x and y, where (z)x = ;; and (z)y = 3(~~ 1 ) are defined on the 

set of integers. 

If we let u = y , v = xyx then v can be considered as the linear fractional transformation 

defined by (z )v = 3~~1 . So the group G6,6(2,Z) = < u, v > is a proper subgroup of the group 

G2,6(2,Z) . Thus G6,6(2,Z) = < u, v : u6 = v6 = 1 > is the group of linear fractional 

transformations of the form z ~ az+db, where a, b, e, d E Z and ad - be = 1 or 3. Specifically, 
cz+ 

the linear fractional transformations of G6,6(2,Z) are u : z ~ 3(~~ 1 ) and v : z ~ 3~~1 which 

satisfy the relations 

4.1.1 

The linear fractional transformation t:z ~ -& inverts u and v, that is, t2 = (ut) 2 = 

(vt)2 = 1 and so extends the group G6,6(2,Z) to G6,6(2,Z). The extended group G6,6(2,Z) is 

then the group of linear fractional transformations of the form z ~ ::~ , where a, b, e, d E Z 

and ad - be = I or ±3 and its finite presentation is given by 

G6,6(2,Z) = < u, v, t : u6 = v6 = t2 = (ut)2 = (vt)2 = 1 > 4.1.2 

Let PL(Fq) denote the projective line over the Galois field Fq , where q is a prime number. 

The points of PL(Fq) are the elements of Fq together with the additional point 00. The group 

G6,6 (2, q) is then the group of linear fractional transformations of the form z ~ ::!, where 

a,b,e,d E Fq and ad-be =1= 0, while G6,6(2,q) is its subgroup consisting of linear fractional 

transformations of the form z ~ az+db, where a, b, e, d E Fq and ad - be is a non-zero square in 
cz+ 
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For positive integers I, m and n, the triangle groups 6(l,m,n) are the groups with abstract 

presentation < u, v : u' = vm = (uv)n = 1 >. When + + *" + *' > 1, this group is finite, and 

is one of the finite spherical groups (either cyclic or dihedral, or isomorphic to A4,S4 or As); in 

particular the 2-sphere can be tesselated using a triangle whose interior angles are 7, ~ and 

~. When + + *" + *' = 1, the group is infinite but soluble and the Euclidean plane can be 

tesselated using a triangle with angles 7, ~ and ~. Finally, if + + ;, + *' < 1, then the 

triangle group 6(l, m, n) is infinite but insoluble and the hyperbolic plane can be tesselated 

using a hyperbolic triangle with angles 7, ~ and ~ . 

The triangle groups have long received special attention. They have been subjects of 

extensive study primarily by Brahana [3] , Miller [19] and Sinkov [27]. It is known that by 

adjoining an involution t, which inverts both u and v, the groups 6(6,6, n) can be extended to 

the triangle groups 6*(6,6,n) = < u,v,t : u6 = v6 = (uv)n = t2 = (ut)2 = (vt)2 = 1 >. The 

triangle group 6(6,6,n) is of index 2 in 6*(6,6,n) and so is normal in 6 *(6,6,n). By [9], the 

group 6*(2,m,n) has Coxeter group Gk,l,m =< x,y,t : x 2 = yk = (xy)' = t2 = (xt) 2 = (yt)2 

= (xyt)m = I > as its factor group. 

In this chapter we have discussed the triangle groups 6(6,6,n) where 2 ~ n. The group 

6(6, 6,n) is infinite except for n = 1. In this case it is the cyclic group of order 6, that is, C6. 

4.2 Parameters for the Conjugacy Classes ofG;,6(2,Z) 

The transformations u : z -+ 3(~~1) ' V : z -+ 1 - t and t : z -+ t generate G6,6(2,Z) , 

subject to defining relations (4. l. 2) . Thus to choose a homomorphism 
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a : 0 6,6 (2, Z) ~ 0 6,6 (2, q) amounts to choosing u = ua, v = va and 7 = ta , in 0 66 (2, q) 

If the natural mapping OL(2, q) ~ 0 66 (2, q) maps a matrix M to the element g of 

0 6,6(2,q) then () = (tr(M)) 2/det(M) is an invariant of the conjugacy class of g. We refer to it 

as the parameter of g or of the conjugacy class. Of course, every element in Fq is the parameter 

of some conjugacy class in 0'6,6(2,q). For instance, the class represented by a matrix with 

characteristic polynomial z 2 - ()z + () if () =1= 0 or z2 - 1 if () = o. 

It is an easy fact that if U and V are two non-singular 2 x 2 matrices corresponding to the 

generators u and v of 0 6,6 (2, Z) with det( UV) = 1 and trace r, then of course UV will satisfy 

its characteristic equation 

(UV)2 - rUV + 1 = 0 4.2.1 

(UV) 2 = rUV - 1 4.2.2 

MUltiplying equation (4.2.2) by UVon both sides. We obtain, 

(UV) 3 = r(UV)2 - (UV)l 4.2.3 

Substituting the value of (UV) 2 from equation (4.2.2) in equation (4.2.3), we get 

(UV)3 = (r2 - l)UV - r1 4.2.4 

On recursion, equation (4.2.4) yields 

( UV) k = {( k"O 1 ) rk- J - ( k 12 ) rk- 3 + ... } UV 

- {( k"O 2 )rk- 2 - ( k 13 )rk- 4 + . .. }1 

Furthermore, if we let 
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and substitute r2 = e in the polynomial fir) if k is odd and r = /8 otherwise, we obtain a 

polynomialf(e). 

A divisor d of a positive integer k is called a proper divisor if 1 < d < k. Let 

gkce) = /k(e), if k IS a prime number. For example, g2(e)=/2(e)=/8, 

g3ce) =/3(e) = e-l , gs(e) =/s(e) = e 2 -3e+ 1 and so on. If d!,d2 , ... ,dn are the proper 

divisors of a positive integer k, then one can find a polynomial gk(e) = g I (O)::~~; .. gd (0) . The 
c I 2 n 

degree of the minimal polynomial IS thus given by, 

deg(fkCe» = k;! if k is odd. If k is a prime then deg(gk(e» = k;!, on the other hand if 

k = pn, where p is a prime, then deg(g k (e» = p"-r-I 
• 

= 6(6
2
-46+3) = e - 3 

6(6- 1) 

16(6) 
g 2 (6).g 3 (6) 

We conclude here by mentioning that the actions of G6,6(2,Z) on PL(Fq ) which yield 

triangle groups .il * (6,6,k) where q is congruent to ±l(modk). In the case where q is 

incongruent to ± 1 Cmod k), the group G6,6 (2, Z) does not contain any element of order k. Thus 
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its action is not faithful. 

In the following, we list conditions in form of equations f(f) = 0 for the existence of 

triangle groups ~(6 , 6 , k) for 1 ~ k ~ 20. 

Triangle Group 

~(6, 6,1 ) 

~(6,6,2) 

~(6, 6,3 ) 

~(6,6,4) 

~(6,6,5) 

~(6, 6,6) 

~(6,6, 7) 

~(6,6,8) 

~(6, 6, 9) 

~(6,6, 10) 

~(6, 6,11) 

~(6,6, 12) 

~(6,6, 13) 

~(6,6, 14) 

~(6,6, 15) 

Minimal Equation satisfied by () 

f)-4=0 

f)=0 

f) -I = 0 

f) -2= 0 

f)2 - 3f) + 1 = 0 

f)-3=0 

f)3 - 5f)2 + 6f) - 1 = 0 

f)2 - 4 f) + 2 = 0 

f)3 - 6f)2 + 9f) - 1 = 0 

f) 2 - Sf) + 5 = 0 

f)s - 9f)4 + 2 8f)3 - 35f)2 + 15f) - I = 0 

f)2 - 4f) + I = 0 

f)6 - lIf)s + 4Sf)4 - 84f)3 + 70f)2 - 2 If) + I = 0 

f)3 - 7f)2 + I4f) - 7 = 0 

f)4 - 9f)3 + 26f)2 - 24f) + 1 = 0 
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~(6,6, 16) 

~(6, 6, 17) 

- 368 + 1 = 0 

~(6,6, 18) 

~(6,6, 19) 

+ 9248 3 - 33082 + 458 - 1 = 0 

~(6, 6,20) 

4.3 Parametrization of the Actions of ~(6, 6, k) 

Let U ~ [ : ~ ] be an element of GL(2,q) which yields the element u of G:,6(2,q). 

Then, since u 6 = 1, therefore, [J6 is a scalar matrix, and hence the det( U) is a square in F q, 

where q = ±1 (mod 12). Thus, replacing U by a suitable scalar multiple, we assume that 

det(U) = 1. 

Since, for any matrix M, ~ = AI, where A is a non-zero real number, if and only if 

(Tr(M») 2 = 3 det(M) . So, we may assume that Tr( U) = a + d = .f3 and det(U) = l. Thus 

U= [a b J. Similarly, V= [e f J. 
c -a + !3 g -e + !3 

N I _ . [ 1m] . -2 1 ow et a matrix corresponding to t , be represented by T = . ' Smce t = , 
n } 

the trace of T is zero. So, up to scalar multiplication, we can assume that the matrix 
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representing 7 has the fonn [ ~ ~k J. Because Cu7) 2 ~ 1, then TrC un ~ 0 and so 

b = kc. 

Thus we can consider U = [a kc 
c -a + J3 

kf 

-e+ J3 

as matrices corresponding to generators U, v and t of G6,6(2,q), where a,c,e,J,k E Fq. 

Then, 

1 + a2 + ke2 
- J3 a = 0 4.3 .1 

and 

1 + e2 + if - J3 e = 0 4.3.2 

because the determinants of U and Vare 1. 

This certainly evolves elements satisfying the relations [J6 = r = AI, where A is a 

non-zero scalar and I is the identity matrix. 

UV-[ a kc J[ e kf J-[ 
c -a + ./3 / -e + ./3 

ae + kef akf - kee + ./3 ke ] 

ce - a/+ J3/ ae + ke/+ 3 - aJ3 - eJ3 

The matrix UV has the trace 

r = 2(ae + kef) + 3 - J3 (a + e) 4.3.3 

If Tr( UVT) = ks, then 

s = 2af- e(2e -./3) -./3f 4.3.4 

So the relationship between (4.3 .3 ) and (4.3.4) is 
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r2 + ks2 = 4a2e2 + 4k2e2.f + Saeejk+ 9 + 3a2 + 3e2 + 6ae + 12ae + 12kef 

-4J3 a2e - 4J3 akef -4J3 ae 2 - 4J3 keef - 6J3 a - 6J3 e + 4ka2.f + 3if 

-4J3 aif + 3ke2 + 4ke2 e 2 - 4/3 kee 2 + 4J3 akef - 8kaeef - 6 kef + 4/3 keef 

= 4e2 (a2 + ke2
) + 4if (a 2 + ke 2

) + 3(e2 + if) + 3(a2 + ke2 ) - 4J3 a(e2 + k.f) 

-4J3 e(a2 + ke 2 ) + 9 + 1Sae + 6kef- 6J3 a - 6J3 e 

= 4(a2 + ke 2 )(e2 + if) + (e 2 + if)(3 - 4J3 a) + (a2 + ke 2 )(3 - 4J3 e) + 9 

+lSae + 6 kef ~ 6/3 a - 6J3 e 

= 4(3ae - J3 a - J3 e + 1) + (3J3 e - 12ae - 3 + 4J3 a) + (3J3 a - 12ae - 3 

+4J3 e) + 9 + 1Sae + 6kef- 6J3 a- 6J3 e 

= 7 - 3 J3 a - 3/3 e + 6ae + 6kef 

= 7 - 3J3 (a + e) + 6(ae + kef) 

= 7 + 3[2(ae + kef) - J3 (a + e)] 

= 7 + 3(r - 3) 

We set 

4.3.5 

4.3.6 

Example 4.3.1 In" this example we consider an action of G6,6(2,Z) on PL(FI3). Suppose 

that (J = 3, then by (4.3.6), (J = r2 and so r2 = 3 == 16(mod 13) implies that r = ±4. We 

consider r = 4. Substituting the value of r in (4.3.5) and supposing that k = 2, we get 
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S2 = -3 == 49. This implies that s = ±7. We choose s = 7. If we suppose a = 1 in equation 

(4.3.1), we obtain c2 = 1, that is, c = ±l. If we suppose c = 1 and substitute the values of 

r,s,a,k and c in equations (4.3 .3) and (4.3.4), we obtain 5 = 4f-2e and -3 =2f+2e. 

Solving these equations for e and J, we obtain e ~ f ~ -4. Thus U ~ [ I : J 
[ 

-4 - 8 ] [ 0 -2 ] 
V = -4 8 and T = O· So, u, v and t will be -u . z -jo z+2 

• z+3 ' 

v : z --jo ~~~, and t : z --jo ~2 respectively. 

Ifwe now consider the action ofu, v and t on PL(F'3) , we obtain 

u : (059 26 11)(00 1 4 12 7 10)(3)(8), 

v : (0 12 4 35 11)(00 1 10 8 6 2)(7)(9) , and 

t : (0 00)(1 11)(2 12)(3 8)(4 6)(5 10)(7 9). 

We can easily verify that every element of PL(F13) is fixed by(uv)6. 

4.4 Parametrization of the Actions of ~(6, 6, k; n) 

Let ~(6 , 6 , k; n) denote the generalized triangule group < u,v,t : u6 = v6 = (uv)k = 

(uvu-' v-')n = t2 = (ut) 2 = (vt) 2 = 1 >. Clearly, ~(6 , 6 , k;n) is a factor group of ~(6,6, k). 

As we have seen in the previous section U = [a kc J, V = [e kf J' this 
c -a + J3 f -e + J3 

gives 
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after using (4.3.1) to (4.3 .5) , we get r2 - ks2 = 21 + 3r - 6 4.4.1 

Thus r2 + ks2 = 3r - 2, implies that 

r2 = 1+ 3r - 4 4.4.2 

Since det(UVU- I V-I) = 1 and its trace is equal to I, therefore the characteristic equation of 

uvu-I V- I is 

(UVU- I V-I)2 - 1(UVU- I V-I) + J = 0 4.4.3 

or 

4.4.4 

MUltiplying equation (4.4.4) by UVU-I V-Ion both sides. We obtain, 

(UvtJ- I V-I)3 = l(UVU- I V- I)2 - (UVU- I V- I)J 4.4.5 

Substituting the value of(UVU-1 V-I)2 from equation (4.4.4) in equation (4.4 .5), we get 

4.4.6 

On recursion, equation (4.4.6) yields 

( UVU- I V-I) n = {( n 0 1 ) In- I - ( n"1 2 ) In- 3 + ... } UVU- I V-I 

- {( nO 2 )In-2 - ( n"1 3 )In-4 + .. . }J 

Furthermore, if we let 

Let/k(l) denote the polynomial obtained by putting n = k in Jtl). If d l ,d2 , ... ,dn are the 
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fk(l) 
proper divisors of a positive integer k, then one can find a polynomial g k (l) = -=-g,-, I (-,).-=-gd~2(,":"") .. -::-.gd-II(-' ) , 

where gk(l) = fk(l) if k is a prime number. The degree of the minimal polynomial gk(l) is thus 

given by, deg(gk(l» = degCik(l» - 2::=1 degCidll(l», where deg(fk( l) ) = k-l. If k is prime, 

then degCik (l) = k - 1. On the other hand if k = pn, where p is prime, then 

degCi
k 

(I» = pn - pn-l. For various values of n, we obtain the minimal equations satisfied by 

[. We list them as follows. 

11.. Minimal Equation satisfied by I 

1 Z- 2 = 0 

2 [ = 0 

3 [2 - 1 = 0 

4 [ 2 _ 2 = 0 

5 [4 - 3 f2 + 1 = 0 

6 [2 - 3 = 0 

7 [6 _ 5Z4 + 6 [2 - 1 = 0 

8 Z4 - 4 [2 + 2 = 0 

9 Z6 - 6[4 + 9 [2 - 1 = 0 

10 [4 _ 5/2 + 5 = 0 

11 [10 _ 9[8 + 28[6 - 35[4 + 15[2 - 1 = 0 

12 Z4 - 4[2 + 1 = 0 

77 



13 [ 12 _ 11l lO + 45[8 - 84[6 + 70[4 - 2 112 + 1 = 0 

14 [6 _ 7[4 + 14[2 - 7 = 0 

15 [8 _ 9[6 + 26[4 - 24[2 + 1 = 0 

16 [8 _ 8[6 + 20[4 - 16[2 + 2 = 0 

17 

- 36[2 + 1 = 0 

18 [6 - 6[4 + 9[2 - 3 = 0 

19 

- 330[4 + 45Z2 - 1 = 0 

20 [8 _ 8[6 + 19[4 - 12Z2 + 1 = O. 

Example 4.4.1 Here we consider an action of G6,6 (2,Z) on PL(F13 ). Suppose that [ = 1, 

since r2 = [+ 3r - 4 then we have r = 3±f3 == 5, 11(mod 13). Let us take r = 5. Substituting the 

value of r in (4. 3. 5) and supposing that k = - 1, we get S2 = 25 . This implies that s = ±5 . We 

choose s = 5. If we suppose a = 2 in equation (4 . 3. 1) we have c2 = 36, that is, c = ±6. 

Suppose c = 6 and substitute the values ofr,s,a, kand c in equations (4 . 3.3) and (4 .3 .4), to 

obtainf ~ - 3 and e ~ - 6. Thus U ~ [ ~ ~3 J V ~ [ 2 -11 J So, u and v will be 

Ii : z -+ z-3 and v . z -+ 2z-1 respectively 
3z+1 • z+ ! . 

The action of Ii and v on PL(F13) yields the following permutations 

Ii : (0 10 4 00 9 3)(1 6 7 12 2 11)(5)(8) , 
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V : (0 12 00 2 1 7)(3 11 5 8 6 9)(4)(10) 

and they are such that every element of PL(F 13 ) is fixed by (uVU- 1V - I ) 3 and (UV ) 7. 

In this section, we have parametrized actions of G6,6(2,Z) on PL(F q ) , except for a few 

uninteresting ones, by the elements of F q . We have shown that any homomorphism from 

G6,6 (2, Z) into G6,6 (2, q) can be extended to a homomorphism from G6,6 (2, Z) into G;',6(2, q) . 

We have shown also that every element in G6,6 (2, q) , not of order 1, or 3 is the image of uv 

under some non-degenerate homomorphism from G6,6(2,Z) into G6,6(2,q). We have proved 

that the conjugacy classes of non-degenerate homomorphisms 0' are in one-to-one 

correspondence with the conjugacy classes of non-trivial elements of G6,6(2,q), under a 

correspondence which assigns to the homomorphism 0' the class containing (uv)O' . Of course, 

in this way we have actually parametrized the actions of G6,6 (2, q) on PL(Fq ) , except for a few 

uninteresting ones, by the elements of F q . We have developed a useful mechanism by which a 

unique coset diagram can be constructed [18], for each conjugacy class ofthese non-degenerate 

homomorphism which depict the actions of G6,6(2, Z) on PL(Fq ) . 

4.5 Conjugacy Classes of the Non-degenerate 

Homomorphisms 

The transformations u : z ~ 3(~~1) ' V : z ~ 1 - 3
1
z and t : z ~ 3

1
z generate G;',6(2, Z) , 

subject to defining relations (4. l. 2). Thus to choose a homomorphism 

0' : G6,6(2,Z) ~ G6,6(2,Z) amounts to choosing u = UO' , V = VO' and 7 = to' , in G;' 6(2,Z) 

such that u 6 = v 6 = 7 2 = (u7 )2 = (V7)2 = 1. 

The homomorphism 0' is called non-degenerate if neither of the generators u, v of 
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G66 (2,Z) lies in the kernel of cr, that is, the images u and v are of orders 6. Two 

homomorphisms cr \ and cr 2 from G6 6 (2, Z) to G6 6 (2, Z) are called conjugate if there exists an , , 

inner automorphism p of G6,6(2, Z) such that cr 2 = pcr \. Both G6,6(2 ,Z) and G6,6 (2, Z) have 

index 2 in their automorphism groups. Let 0 be the automorphism on G6,6(2,Z) defined by 

uo = fut, vo = v, and to = t. 

The homomorphism cr l = ocr is called the dual homomorphism of cr. This, of course, 

means that if cr maps u, v,t to u,v, t , then cr l maps u, v,t to tut, v , t respectively. Since the 

elements u,v,t as well as t ut,v,t satisfy the relations (4. 1.1), therefore the solutions of 

these relations occur in dual pairs. Of course, if cr \ is conjugate to cr 2 then cr~ is conjugate to 

cr~ . The parameter of cr, or of the conjugacy class containing cr, is the parameter ofuv. 

Thus for each e, which is a square in Fq, there exists a unique coset diagram. It is unique 

for e in Fq in the sense that the diagram is the same except for the labels in the' conjugacy class 

that it represents. Hence for some e, we can find a pair u, v , for a homomorphism cr, and 

consequently a coset diagram. 

A pair u, v, satisfying the relations u 6 = v 6 = 1, in G6,6 (2, q) is called invertible ifthere 

exists t in G6,6 (2, Z) is such that t 2 = 1, ! u t = u- I and tv! = v -I. 

By D(e, q) we shall mean a coset diagram associated with the conjugacy class of 

non-degenerate homomorphisms a of G6,6(2,Z) into G6,6(2,q) corresponding to e E F q . For 

each conjugacy class of pairs (u ,v) we can draw a coset diagram D(e,q). 

We need the following easy but useful result for later use. 
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Lemma 4.5.1 A non-singular 2 x 2 matrix M with entries in F q, where q is not a power of 

2, represents, an involution in 0 '6 6 (2, q) if and only if the Tr(M) is zero. 

Lemma 4.5.2 Ifu, v are elements of 0'66(2,q) and uv =1= 1, then either uv is of order 

3 or 7 inverts both u and v. 

Proof 

Let Ube an element of OL(2,q) which yields the element u of 0'6 6(2,q). Since (u) 6 = 1, 

therefore we can assume that U has the form . 
[ 

0 -1 ] 
1 -/3 

Let V = [a b ] and T = [ 1m] where 1 + a 2 + be - /3 a = 0 
e -a + /3 n - I 

Now suppose that there exists a transformation l 10 0'6,6(2,Z) such that 

7 2 
= (u7)2 = (V7)2 = 1. Let r be the trace of UV. Then r = 3 + b - e - /3 a. Now 

[ 

0 -1 
UT= 

1 -/3 
- n I ] give us -n + m - /3 I = 0 or 

1-/3n m - /31 

m=n+/31 4.5.1 

Also VT = [a b 
e -a + /3 

al + bn am - bl ] 

cl - an + /3 n em + al - /3 I 
yields 

2al + bn + em - /31 = 0 or 2a! + bn + e(n + /31) - /31 = 0 or 2a! + bn + en + /3 cl) 

-/3! = O. Hence 

(2a + J3 c - J3)! + (b + c )n = 0 4.5.2 
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Now for Tto be a non-singular matrix, we have det(T) =1= 0, that is, 

-p - mn =1= 0 or 12 + mn =1= 0 or 12 + n(n + /3 1) =1= 0 or f2 + n2 + /3 nl =1= 0 or 

4.5 .. 3 

Thus the necessary and sufficient conditions for the existence of 7 in G'6 6 (2, q) are the 

equations (4.5.2), and (4.5.3). Hence 7 exists in G'66(2 , q) unless (f)2+1 +J3(f) = O. Of 

course, if both 2a + J3 c - J3 and b + c are equal to zero, then the existence of 7 is trivial. If 

not then ..L = -(b+e) and so equation (4.5 .3 ) is equivalent to (b + c)2 + (2a + 
, n 2a+,/3 e-,/3 , 

/3 C _/3)2 + (2a + /3 c -/3 )(b + c) =1= O. Thus there exists 7 in G'66(2,q) such that 

7 2 = (U7)2 = (V7) 2 = 1 unless (b + C)2 + (2a + J3 c - J3)2 = J3 (2a + J3 c-

/3)(b + c). This yields (b - C)2 + 4bc + 4a2 + 3c2 + 3 + 4/3 ac - 4/3 a - 6c = 

/3 (2ab + /3 be - 13 b + 2ac + /3 c2 - /3 c). 

After simplification we get r2 - 3r + 2 = O. So, r2 = 3r - 2 and after squaring both sides, we 

get ()2 - 58 + 4 = O. This implies that () = 1 or 8 = 4. 

By the table in Section 2 , 8 = 1 implies that the order of uv is 3 and () = 4 gives the 

order ofuv is 1, so neglecting it because (uv) =1= 1, the parameter ofuv is 1 and the order 

ofuv is 3. 

In our subsequent work we shall find a relationship between the parameters of the dual 

homomorphisms. We first need to prove the following. 

Lemma 4.5.3 Any non trivial element g of G'6,6(2,q) whose order is not equal to 2 and 

whose dual is also not of order 2, is the image of uv under some non-degenerate 

homomorphism (J of G6 6 (2, Z) into G6 6 (2, q). , , 

82 



Proof 

Using lemma 4.5.2, we show that every non-trivial element of G"66(2,q) is a product of 

two elements of order 3. So we find elements u, v and, 'T of G"6,6 (2, q) satisfying the relations 

(4.1.2) with uv in a given conjugacy class. Since g = u . v (or its dual u . v. 'T) are not of 

order 2, the class to which we want U. v to belong does not consist of involutions, so that 

(u. v)2 =1= 1 and (u. v. 'T)2 =1= 1. Thus the traces of the matrices UVand UVT are not equal to 

zero, by Lemma 4. 5. 1. Hence r =1= 0, and S =1= 0, so that we have e = r2* 0; and it is sufficient to 

show that we can choose a, c, e, k,f in Fq so that r2 is indeed equal to e. The solution of e is 

therefore arbitrari ly in F q . We can choose r to satisfy e = r2. Equation (4.3.5), yields 

1cs2 = -2 + 3r - r2. Ifr2 =1= -2 + 3r, we select k as above. 

Any quadratic polynomial Az2 + J1Z + v, with coefficients in Fq takes at least (q + 1)/2 

distinct values, as z runs through Fq . Since the equation AZ2 + J1Z + v = k has at most two roots 

for fixed k and there are q elements in F q, where q is odd throughout in this chapter. In 

particular, a2 - /3 a and -kc2 - 1 each taking at least (q + 1)/2 distinct values as a and c run 

through Fq • Similarly, e2 - /3 e and -if - 1 each takes at least (q + 1)/2 distinct values as e 

andfrun through F q . Hence we can find a and c so that a 2 - j3 a = -kc2 - 1 and e, fso that 

e2 
- /3 e = -if - 1. 

Finally, by substituting the values ofr,s,a,c,e,J, k in equations (4.3 .3) and (4.3.4) we 

obtain the values of e and! These equations are linear equations for e andfwith determinant 

(2a - /3)2 + 4kc2 = 4a2 + 3 - 4/3 4kc2 = 4(a2 + kc2 - /3 a) + 3 = - 4 + 3 = -1. It is 

non-zero, so that we can find e andfsatisfying equation (4.3.2) . It is obvious from (4.3.5) 

and (4.3.6) that e = ° when r = ° and e = I or 4 when S = 0. By the table in the Section 2, 
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the possibility that e = 0 gives rise to the situation where u. v is of order 2. Similarly, the 

possibility e = 1 leads to the situation where u. v is of order 3 and e = 4 yields u. v of 

order 1. 

Theorem 4.5.4 The conjugacy classes of non-degenerate homomorphisms of G6,6(2,Z) 

into G6,6(2,q) are in one-to-one correspondence with the non-trivial conjugacy classes of 

elements of G6,6 (2, q) under a correspondence which assigns to any non-degenerate 

homomorphism a the class containing (uv)a. 

Proof 

Let a : G6 6 (2, Z) ~ G6 6 (2, q) be a non-degenerate homomorphism such that it maps u, v , , 

to U,V. Let e be the parameter of the class represented by u v. Now a is determined by u,v 

and each e evolves a pair u,v, so that a is associated with e. We shall call the parameter e of 

the class containing u v, the parameter of the non-degenerate homomorphism of G6,6 (2, Z) 

into G6 6(2, q). Now UT = [ ck -ak ] implies that det( UT) = -k(a2 + a + kc 2
) = k 

, -a+ 13 - ck 

. [ kec - akf k
2
fc + ak(e - 13) J' . (equatIOn 4.1). Also, (UT)V = ImplIes 

-ae + ej3 - kfc - akf + kf/3 + ck(e - 13) 

that Tr((UT) V) = 2kec - 2akf + 13 kf - 13 kc = -k( -2ce + 2af - j3f + 13 c) = -ks. If 

u,v,t satisfy the relations (4.1.2), then so do tut,v,t. So that the solution of relations 

(4.1.2) occur in dual pairs. Hence replacing the solutions in Lemma 4.5.3 by tut, v, t, we 

have e = [T;~;(~~V] 2 = k2t = ks2 . We then find a relationship between the parameters of the 

dual non-degenerate homomorphisms. 
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There is an interesting relationship between the parameters of the dual non-degenerate 

homomorphisms. We discuss this as follows. 

Corollary 4.5.5 If cr : G6,6 (2, Z) --+ G6,6 (2, q) is a non-degenerate homomorphism, cr I is 

its dual and 8, ~ are their respective parameters then 8 + ~ = 3r - 2. 

Proof 

Let a: G6,6(2, Z) -> G6,6(2, q) be a non-degenerate homomorphism satisfying the relations 

ucr = u, vcr = v and tcr = t. Let cr' be the dual of cr . As previouly in this Section , we choose 

the matnces U = , V = and T = , . [a ck ] [e f k ] [ 0 - k ] 
c - a + J3 f - e + J3 1 0 

representing u , v and t, respectively such that they satisfy the equations from (4. 3. I) to 

(4. 3.5). Now by Lemma 4.5.1, we have Tr(UV) = 0 if and only if (uv)2 = 1. Also, we have 

{Tr(UVTJ} /k = s = 0 if and only if (uvt)2 = 1. Then det(UV) = 1, thus giving the 

parameter of u v equal to r2 = 8. Also since Tr(UV1) = ks and det(UVT) = k (since 

det(U) = 1, det(V) = 1 and det(T) = k), we obtain the parameter ofuvt equal to ks2
, which 

we denote by ~. Thus e + ~ = r2 + ks2. Substituting the values from equation (4. 3.5), we 

therefore obtain 8 + ~ = 3r - 2. Hence if 8 is the parameter of the non-degenerate 

homomorphism cr, then ~ = 3r - 2 - e is the parameter of the dual cr' of cr . 

Theorem 4. 5.4, of course, means that we can actually parametrize the non-degenerate 

homomorphisms of G6,6(2,Z) to G6,6(2,q) except for a few uninteresting ones, by the elements 

of F q. Since G6,6(2, q) has a natural permutation representation on PL(F q) , any homomorphism 

cr : G6,6(2, Z) --+ G6,6(2, q) gives rise to an action of G6,6(2,Z) on PL(Fq ). This action is 

represented by a coset diagram D(8,q) . We can draw a coset diagram representing a conjugacy 
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class of non-degenerate homomorphisms corresponding to each parameter e, which is a square 

in Fq , by determining 11, v with the help of Theorem 4.5.4. 
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