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NOTATIONS 

Most of the set theoretic and group theoretic notations used in this thesis 

are standard, and are avai lab le in [7], [31] and [36]. However, some special 

notations which have been used extensively in this thesis are presented here. 

G 3
•
3 (2,2) = < U,V:U

J = v3 = 1 > . 

• u 3 3 2 :I 2 G (2,Z )=< II,V,1:1I = V =1 = (111) = (VI) = 1> . 

G 1''' (2,Z) = < If .. ", = 11 ~ = V;' = 1>. 

6(3,3,k) = < li t V :U
1 = \13 = (uvl = I > . 

Ry Q(.[;,) we shall mean the real quadratic field and by Q( r-;;) the imaginary 

quadmtic fi eld. The projective line over the finite field Fy is denoted by 

PL(F, ) = F., v {""}. 



ABSTRACT 

We have investigated properties of c;:erlain groups by 

tooking al their actions on suitable spaces. These actions are studied by 

using a graphical technique now known as coset diagrams for the group 

c3
,} (2, Z) . We have used these diagrams to establish a relat ionship 

between real and imaginary quadratic irrational numbers and the elements 

of the group. 

The aim of this research has been to study act ions of the group 

generated by the linear-fractional transformations ll: z --t z - I and 
z 

v: z ~ 2, which sati sfy the re lations u3 = \/3 = I on the projective li ne 
z+ 1 

over the real, imaginary quadratic field and the finite field. 

We have shown that the coset di agram for the actions of 
G 3.3(2, Z) on the rational project ive Ii.ne is connected and the action is 

transitive. Usi ng this we have shown that uJ = vJ = I are defining 
relations for the group, 

We have found out that if a is any real quadratic irrational 
number then the ambiguous numbers form a closed path in the coset 

diagram for the orb it aGo ),3 (2 , Z) and it is the only closed path contained 

in it. 

Nex t we have parametrized the act ions of the group G'3,J(2,Z) = 

< II, II,' : u3 = 1/3 = ,2 = (u1) 2 = (vl) l = I > on the projective li ne over the 

fi nite field F" , That is, each conj ugacy class of actions of C' 3,3 (2, Z) on 

PL(F,,) can be represented by a coset diagram D(8,q), where 8 E F" and 

q is a prime power. In particular, we have associated each conjugacy class 

of actions of the infin ite triangle groups b.(3,3,k) on PL(P,, ) with a coset 

diagram D(B,q) . 
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PREFACE 

The modular group PSL(2, Z) is generated by the linear fractional 

transfo rmations 
- I 

X :2--+ ­
z 

and z - I 1· 1 . f 1 Y: Z-+-- , W1 ICl s ah s -y (IC , relat ions, 

x2 = i = I . The importance of PSL(2, Z) stems from the fact that it is a di screte 

group of motions in the Lobachevsky plane. 

- I J 
Let v = xyx and lI = y. Then (2)V =-- and 111 =\1 = 1. So the group 

, + 1 

generated by /I and v is a proper subgroup of the modular group PSL(2, Z) and 

is isomorphic to the free product of the cyclic groups < II > and < v > of order 3. 

Since < lI , \I: Il ' = vJ = I > is a group of linear·fractional transformations of the 

0 2 +b 
form z -+ - - • 

cz+ d 
where a,b,c,d E Z and ad - be = 1. we denote it by 

G 1.J (2.Z ). Specifically, the linear-fractional transformations o f GJ.3 (2, Z) arc 

, - I d - I 1· 1 . fy hi · J J 1 u :z-) -- an \/ :z-) -- WIlel satls t e re allons, II = \I = , 
z z+ I 

As /I and \I have the same order, there is an automorphism interchanging 

1I and v and thi s yields the spli t ex tension GO},' (2, 2). The linear-fractional 

transformation I: z -t! inverts u and v , that is, t 2 = (111) 2 = (\11) 2 = 1 and so 
z 

extends Ihe group GJ
•
J (2.2) 10 G···· (2.2). The extended group G"·' (2.2) is 



Let q be a power of a prime p. Then by the projective line over the finite 

field I~ , we mean F" U {co}. we denote it by PL(1;~). The group C'" (2. q) is 

then the group of linear-fractional transformations of the foml Z --+ az + b , where 
cz+d 

a,b,c,d E F,/ and ad - be -:f::. 0, while G1,l(2,q) is its subgroup consisting of all 

those linear-fractiona l transformations of the form az +b 
z -> -- • where 

cz+ d 

a,b,e,d E 1',/ and ad - be is a nOll-zero square in ~. 

This thesis comprises five chaplers. The aim of chapter one is to provide 

background material for succeeding chapters. 

In chapter two, we show that the coset diagram for the action of 

e 1
,3 (2, Z) on the rational projective line is connected and the action is transitive. 

Using the coset diagrams we show that ,,1 = ,,1 = I are defining relations for the 

group. 

In chapter three, we study action of the group eJ.l (2, Z) on Q( J;;) and 

Q( ht) by lIsing coset diagrams. 

Let 11 be a non-square positive integer and Q(J;;) be a real quadrat ic 

fie ld. Consider a subset 
• I 0 +J;; 0

2
_ 11 

Q("I7)~{ :a,eeZ, e .. O, b~ eZ, 
c c 

(u,b,c) = I} of Q(,J;;). For a fixed non-square positive integer n , if the real 

d .. . I be a+"[;' d' lb ' . - a-.,[;, qua rallc m3tlOna num r a = an Its a ge ralc conjugate a = 
e e 

have different signs, then such an a is known as an ambiguous number. They 
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play an important role in c lassifying the orbits of G'·1 (2.Z) on Q(fn) , We have 

classified all the ambiguous numbers ill the orbit. If a and a are both positive 

(negative). a is called a totally pos iti ve (negat ive) number. 

Here, we have explored some intcl'cstjng group theoretic properties o f this 

action vis-a-vis the orbi t of a in GJ
•
3 (2,Z). It is known that the set of ambiguous 

num bers is finite and that the ambiguous numbers in the coset diagram fo r the 

orbi t aG J
•
3 (2,Z) form a closed path and it is the on ly closed path contained in i t 

The imaginary quad ratic fi elds are de fi ned by the sc i 

{a + bh : (/, b e Q} and denoted by Q(.r~-;;) , where II is a square-free positive 

illtegcr. 

In sect ion two of chapler three, we prove that if 

_'I+h Q'( r-)_ {a +h. a'+n Z O} a E V - II - . a,--,CE .C* then II does not 
c c c 

change its value in the orbit aG 3
•
l (2.Z). Also we show thaI the number of orbil~ 

or Q'(h) under the action of G"'(2,Z) is 2["(II)+2d(II+I)-4J and 

2I.d(n) + 2d(1I + J) - 6] accordingly 11 is even or odd, except for 11 = 3 for which 

there are exactl y e ight orbits. Also. the action of G l .J (2,Z) on Q'(h) is 

always inlrtmsit ive. 

In ch<lpter four , we consider cOI~ ugacy classes, which mise from tbe 

actions of .1(3, n, k) on projecti ve li ne over PL(F,,). Also. we prove that a one­

to-one correspondence can be established between the conj ugacy classes o f non­

degenerate homomorphism u: G' )'· (2,Z) -+ G ')'" (2,q), under the action of inner 

autolllorphisms of G')'· (2, q), and the non-triv ial conjugacy classes of elements 

J 



, h 

of G (2.q) suc.h that the correspondence assigns to any non-degenerate 

homomorphism a the class containing (IIV)a-. In other words we have 

parametrized the actions of C" .. (2,Z) on PL(F'I)' Also we consider the 

conjugacy classes which arise frol11 the actions of triangle groups .6(3, n, k) on the 

project ive line over PL(F'I)' 

In chapter fi ve, we parametrize the conjugacy classes o f' non-degenerate 

homomorphism which represent actions of 6.(3,3, k) =< If , \I : ul = v3 = (UV)k = I > 

on PL(F'I ) where q;:;: ± I(modk). Also, for various va lues of k, we lind the 

conditions for the existence of coset diagrams depicting the permutation actions 

of 6(3,3, k) on PL(F'I)' The conditions are polynomials with integer 

coefficients and the diagrams are such that every vertex in them is fixed by 

(iiv)*. In this way_ we get a homomorphic image of 6(3,3.k) as permutation 

groups on PL(Fq ).Also, we parametrize actions of C"'(2.Z) on PL(F¥} by 

the clements of Fir We prove that the conjugacy classes of non-degenerate 

homomorphism a are in one-la-one con'cspondence with the conjugacy classes 

of non-trivial clements of G'll (2,q), under a correspondence which assigns to 

the homomorphism CT the class containing (uv)u. Of course, this wi ll mean that 

we can actua ll y parametri ze the actions of C
ol

•

1 

(2,q) on PL(F'I) by the elements 

of F'I. We develop a useful mechanism by which one can construct a unique 

coset diagram ror each conjugacy class of these non-degenerate homomorphisms 

which depict the actions of C'll (2,Z) on PL(F'l)' 
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A paper ent itled Finite Presentation of (I Linear-Fractional Group 

containing results from chapter two has been accepted in Algebra Colloquium. 

Another paper entitled Aclion 0/ a Two Generator Group 011 a Real Quadratic 

Field containing some results of chapter three is accepted in Southeast Asirul 

Bulletin of Mathematics. Some results of Imag ;"w/JI Quadratic Fields from 

chapter three arc presented in The Fourth European Congress of MatJlematics 

2004 in Sweden (S tockholm University). A paper ent itled Parametrization of 

G' (2 ,Z) all PL(I~,) has been published in the Proceedi ngs or le M - 2002 

Sate ll ite ConFerence in Algebra and Related Topics (Advances in Algebra, 2003, 

264 - 270), held in Hong Kong trolll August 14 - 17,2002. A talk entitled Cosel 

Diagrams/or a Homomorphic Image of .1(3,3, k) containing results from chapter 

live was presented in the International Congress of Mathematicians - 2002 held in 

China (Beijing). The other four papers are submitted in we ll reputed international 

journals for publication. 
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CHAPTER ONE 

DEFINITIONS AND BASIC CONCEPTS 

The prime objective of this introductory chapter about definitions and 

basic concepts is to provide background to the material to be presented more 

formally in succeeding chapters. We have included only those definitions and 

descriptions, which are specifically relevant to the material embodied in this 

thesis. However, for comprehensive reference we suggest reference (29]. 

1.1 DEFINITIONS 

Let G be a group and X a set. By an act ion of G on X we mean a 

function II: X x G -+ X such that for all x in X and g, h in G, the following 

axioms are sati sfi ed [3\]. 

(i) «X,g)lI, h)1I = (x, gh)1I 

(ii) (x , 1)J-1 = x.1 = x, where I denotes the identity in the group G. 

Let liS take G to be any group. Let X = G and define x ': = g - I xg for 

x E X and g e G. It fo llows easily from the above axioms that thi s defines an 

action of G on itse lf. 
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Let G be a group acting on the set X and if a EX. we define the 

stabi lizer of a by 

G, =Stab(a) ={geG: aK = a} . 

LeI G be a group acting on the set X. Then a~ = ClG = {a ~ = 

ag: g E G} is ca ll ed an orbi t of a in G. Also G acts on X transitively if X #:- ¢ 

and for any a, b E X there ex ists g E G slich that ( I I; = b. 

The linear-fractional groups for different fields arose independently. Ln 

1852. A. F. Mobius studied syntheticaJ ly the field of complex numbers. The field 

of real numbers appeared in the work of Von Staudt in 1847 as the projective 

group on a line, with elements fanned by a sequence of projections from one li ne 

to another in the real projective plane (see in [1] and [7]. 

For the fi eld Z", the linear-fractional group and its subgroup was studied 

by E. Galois in 1832. In 1893, the linear-fractional group was stud ied by E. H. 

Moore for arbitrary finite fie lds, who estab li shed the simplicity of the projective 

spec ial linear group of divisor 2 for fi elds of order greater than 3. The 

homomorphism of general linear group of di visor 2 over a fie ld F to the linear­

fract ional group is implied in the work of E. Galois in 1832 and J. A. SerreL in 

1866, and was used by A. Cayley in 1880 to determine properties of linear­

fractionaltransformalions (see in [30] and [36]. 

Let F be a fi eld and 11 a positive integer. We write M ,,(F) for the set of 

all /1 X Ii maLrices with entries from F. Then 

GL(I/, F) = {A E M ,, (F): A is invertible}, the set of all nx n invert ible matrices, 

with en tries from F form s a group under the matrix multiplication. The group 

7 



GL(n, F) is known as the n -dimensional general linear group over F . The n­

dllnensional special linear group SL(I1, F) is defined to be the group of all II x n 

matrices with entries from F and detenninant I. that IS, 

SL(n, F ) = (A E GL(n, F) : deltA) = I}. The group SL(n, F) is a normal 

subgroup of GL(n, F) , due to the fact that the delerminant map 

det : GL(n, F) -+ FX, where F~ denotes the multiplicative group of non ~zero 

elements of F, is a group epimorphism and has SL(I1 , F) as its kernel. Thus 

GL(n, F)/SL(n, F) " F" . 

If F is a fi nite field and has q elements (where q is a prime power), then 

F can be denoted by Fq • In this case, the general linear group of dimension 17, 

over the field F" is GL(n,Fq). Similarly we define SL(n, Fq). Since all finite 

fields of the same order are isomorphic, therefore GL(n, Fq) and SL(n.Fq) are 

written as GL(n,q) and SL(I1,q) respectively. These are fini te groups and we 

can compute their orders as, lGL(n,q)1 = (q" - l)(q" - q) ... (q " - q".I) and 

\ ( \ 
\GL(n,q)\ 

SL lI,q) = . 
(q - I) 

Let V be an n-dimensional vectol' space over a field F. Then an 

isomorphism of V into itself is ca lled an automorphism of the vector space V. 

The general linear group GL(n,q) can be considered as the group of all 

automorphism of n -dimensional vector space over the fi eld Fq of q elements. 

The special linear group SL(n,q) is its normal subgroup consisting of 

au tomorphism of determinant I. For, the centre of either of these groups consists 

of the operations of the form x -+ fa where k E F'I and so the corresponding 
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projective groups namely. PGL(n,q) and PSL(I1.q), can be obtained by factoring 

out these cemres. 

Let X be any non-empty set. The set of all permutations defined on X is 

a group with composition of mappings as Ole binary operat ion defined in the 

group. Also, there is a one to one correspondence between actions o f G on X 

and representations of G by permutations of X . Thus an action gives rise to a 

permutation representation and vice - versa. 

Suppose that S is a permutation group acting on a set X. Let S be 

generated by XPX1' ...• x .. . Then the points of X are represented by the vertices 

of the diagram; and if I, III are points of X such that lx, = 111 , we represent this 

fact by a directed edge ' of colour i' joining I to 111 [6]. The resulting diagram 

wi ll be connected, that is to say any two of its vertices can be joined by an 

unbroken sequence of edges, if and only if S is transitive on X. In the case of a 

connected diagram the points of X can be identified with cosels N /l where N is 

the stabi li zer of some arbitrary point of X and g is an element of S. 

1.2 COSET DIAGRAMS 

Graphs have abundant applications in several branches of mathematics. 

They provide methods by which various algebraic and topological structures can 

be conceived. Graphical methods have been extensively used to study finitel y 

generated groups. The graphs have proven themselves as an economical 

mathematical technique to authenticate certain important results (see, [5], [6], 

(10), [12] , (13) , (17) , and [25]). For finite groups of small order the graphs can be 

used in lieu of Cayley tab le. They give the same information but in a much more 

effective way (see [6] , and [20]). 

9 



The method of representing group act ions by graphs has a long and rich 

history. The first paper in which graphs were used explicitly was by A. Cayley [6] 

in 1878. After A. Cayley, in 1893, Hurwitz used graphs to represent groups 

[8] , and [13] . Then in 1896, H. Maschke [19] used Cayley's colour graphs 10 

prove some important results on the representation of tinite groups, especially on 

the rotation groups of the regular bodies in three and fouNlimclls ional spaces. 

The Cayley's graphs were red iscovered by Dehn, ill 1910. For this reason , 

some authors call it as the Dehllzch Gruppenbild. But Cayley's priority is 

indisputable, as he described graphs much earl ier [13]. 

Later, mathematicians like O. Schreier, 1. H. C. Whitehead [35], 1-1 . S. M. 

Coxeter and W. O. 1. Moser [13], W. Burnside (5] , etc, contributed seminal 

papers cOnUtilling graphical representations of groups. 

In 1978, G. Higman propounded the idea of coset diagrams for the 

modular group. M. D. E. Conder [9] , [10] , and [II] and Q. Mushlaq [22 - 29] in 

their separate works have used these diagrams to solve cel1ain " identification 

problems". In O. Higman 'S words, ;'Q. Mushtaq laid the foundation of the theory 

of eo set diagrams for the modular group". 

A.Cayley [6] used graphs to study cel1ain groups in 1878. He represented 

the Illultiplication table of a group with given generators by graph, and proposed 

the use of colours to di stinguish the edges of the graphs associated with different 

generators. The Cayley diagram for a given group is a graph whose vertices 

represent the elements of the group, which are the cosets of the trivial subgroup. 

O. Schreier generalized this notion by cons idering a graph whose vertices 

represent the cosels of any subgroup. In 1965, Coxeter and Moser [13] used both 

Cayley and Schreier diagrams to prove some resu lts on finite ly generated groups. 

\0 



A coset diagram is a graph whose vertices arc the (right) eosets of a 

subgroup of fi nite index in a finitely generated group. The vertices representing 

eosels g and h (say), are joi ned by an SI- edge, of "colours i" directed from 

vertex g to vertex h . whenever. gs I = h. 

g->gs,=h 

It may well happen thai gSj = g, in which case the g - vertex is joined to 

itself by an si-ioop. 

Formally. a coset diagram, corresponding to a subgroup H of fi nite index 

in a fi nitely generated group G, is a directed edge whose vertices are the (right) 

cosels of H in G and whose edges are defined as fo llows: we take a speci fic set 

of generators for G, and for each generator x and each vertex H", fo r some g 

in G, draw an edge from H R to H f!:~. This is very similar to the notion of a 

Schreier coset diagram whose veltices represent the eosels of any given subgraph 

in a finitely generated group, and also 10 that of a Cayley graph whose vertices are 

the group elements themselves, with trivial stabil izer. These diagrams may be 

drawn for any finitely generated group acting on any arbitrary sets or spaces. For 

example, a transiti ve permutation representat ion (on 12 points) of the group 

G =< u, v, w: u 2 = v
3 

= ",,4 = 1 > can be represented by the following 

diagram. 

11 



2 8 

3 1 
r-- -, 
I I 

I 4 ' / 6 I 
I " ~ I 
I ", 9 // : 

I ',/ I 
I 10 (2 I 
I I 
I 11 I 
~ _________________ J 

Here II acts as (4 10)(6 12)(3 7), v acts as (1 9 5), and IV acts as 

(I 2 3 4)(5 6 7 8)(9 10 11 12). 

Then in 1978, G. Higman introduced the coseL diagrams for the modular 

group PSL(2,Z). Coset diagrams defined by G. i-ligman for the actions of 

PSL(2, Z) arc special in a number of ways. First, they are defined for a particular 

group, namely PSL(2,Z), which has a representation in terms of two generators 

x and y. Since there are only two generators, it is possible to avoid us ing colours 

as we ll as the ori entation of edges associated with the involution x. For y, which 

has order 3, there is a need to distinguish y from y2. The 3 - cycles of yare 

therefore represented by small triangles, with the convention that y permutes 

their vert ices counterclockwise, while the fixed points of x and y. if any. are 

denoted by heavy dots. Thus the geometry of the figure makes the distinction 

between x ~ edges and y - edges obvious. 
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For instance, consider the action of PGL(2,Z) on PL(FI9 ). We can 

calculate the permutation representations of x, y and t as 

z -1 1 
(z )y = -- and (z )t = -, where z E PL(F;9)' 

z z 

-1 
(z)x =- , 

z 

x = (0 (0)(1 18)(2 9)(3 6)(4 14)(5 15)(7 8)(10 17)(11 12)(13 16), 

y= (O 00 1)(2 10 18)(3 7 9)(4 15 6)(5 16 14)(13 17 11)(8)(1 2), and 

t = (0 (0)(1)(2 10)(3 13)(4 5)(6 16)(7 11)(8 12)(9 17)(14 15)(18). 

11 
17 

12 13 

16 
5 

10 2 

o 

18 
1 

9 
7 

3 
8 

4 
6 

A coset diagram is a graph where the points of X are identified with the 

cosets N g • If 1C = {vo' el , VI ' e2 , " ' , ek , vk } is an alternating sequence of vertices 

and edges of a coset diagram, then 1C is a path in the diagram, joining Vo and 

Vk ' if ej joins vj _1 and Vj for each i and ej :j:. ej (i :j:. j). A closed path is one 

13 



whose initial and terminal vert ices coincide. A coset diagram is ca lled connected 

if any two vertices in the diagram are joined by a path. For example, the path fTom 

vertex v, to V I (i * j) , in the following figure 

v---_ / 
" ~ , , "y-' 'V. - J 

-----L , , 
, " ... ... .,/ 

~---+ 

corresponds to the word UV - Ill. Obviously the products of words appear as 

products of paths. A word is an element expressed as a product of the generators 

and their inverses. 

Every connected coset diagram for a finitely generated group G on a set 

of n points corresponds to a transitive permutation representation of G on the 

set, which is in fact equiva lent to the natural action of G on the eosets of some 

subgroup H of index n. 
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1.3 THE GROUP G'" (2, Z) =< tI, v : ti ' = v' = I > 

The significance of the special linear group 8L(2,2) is related to the fact 

that in a two-dimensional lattice basis {e., c2 } and {I. , 12} are related by the 

equations: 

I .. =ae. +ce2 

/2 = be. + del 

where tI, b, c, d E Z and ad - be = ±l. It is also required that the direction of 

rotation from j; to 12 is the same as that from el to e2 . This guarantees 

od -bc= 1. 

SL(2, Z) acts on the upper half plane as, g = l: bJ belongs to SL(2,Z) 
d 

and (=)g = ~ . I-Ience the matrix o,+b [-I 
cz+d 0 

0] acts as identity, so that, we have 
- I 

an action of the group SL(2,Z)/ N where N = {[~ ~J [~I ~I ]}. This 

quotient group is denoted by PSL(2, Z) and is called the modular group. It acts on 

the upper half plane. The shaded region of the fo llowing modular region gives a 

fundamental domain for it. 
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The upper half plane is a model of Lobachevsky plane and the motions in 

. 1 h·· . c· az +b h It t lat preserve t e onentatIOn are gIven as translormatIOns z ~ , were 
ez+d 

a, b, e, d E R and ad - be = ±1. Thus the modular group PSL(2, Z) is a discrete 

group of motions in the Lobachevsky plane, where Z is the set of integers. 

It is therefore possible to express the modular group as a group generated 

1 z -l 
by two linear-fractional transformations x: z ~ -=-- and y: z ~ -- such that 

z z 

x 2 
= l = 1 becomes its defining relations. Therefore, P SL(2, Z) is a free product 

of the cyclic groups < x > of order 2 and the cyclic group < y > of order 3. 

1 
The linear-fractional transformation t: z ~ - inverts x and y, that is, 

z 

t 2 = (xt)2 = (yt)2 = 1, and so extends the group PSL(2,Z) to PGL(2,Z). The 

extended modular group PGL(2,Z) is then generated by x, y, and t and its 

defining relations are: 

16 



Let q be a power of a prime p. Then the group PGL(2, q) is the group of 

. az+b 
transformatlOns z ~ , where a, b, e, d E ~I and ad - be "* 0, while the 

ez +d 

group PSL(2,q) is its subgroup of all those linear-fractional transformations 

az +b 
z ~ , where ad - be is a non-zero square in Fq • 

ez +d 

If PGL(2, Z) acts on PL(F'I) ' then every element of PGL(2, q) gIves a 

permutation on the points of PL(F'I)' and so PGL(2,q) is a subgroup of the 

symmetric group Sq+l. As the elements of PSL(2,q) give only even 

permutations, it is therefore a subgroup of the alternating group A'I+I . 

The modular group PSL(2, Z) is the best known example of a large class 

of Fuchsian groups. Such groups are studied via their action on a metric space 

called hyperbolic 2-space. The study of modular groups via its action on some 

spaces has been extended in a number of directions. Of particular importance is, 

for example, the Bianchi groups. They are (low dimensional) groups which act as 

isometries on hyperbolic 3-space and generalize the Fuchsian groups in a natural 

way. 

Let v = xyx and u = y. Then (z)v = 2 and u 3 = v3 = 1. So the group 
z + 1 

generated by u and v is a proper subgroup of the modular group PSL(2, Z) and 

is isomorphic to the free product of < u > and < v > of order 3. Since 

< u, v: u 3 = v3 = 1 > is a group of linear-fractional transformations of the form 

az +b 
z ----+-- , where a ,b,e,dEZ and ad - be=l, we denote it by G 3,3 (2,Z). 

cz +d 
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z -1 
Specifically, the linear-fractional transformations of G 3

,3 (2, Z) are u: z ~-­
z 

and v: z ~ 2 which satisfy the relations: 
z + 1 

(1.3.1) 

As u and v have the same order, there is an automorphism interchanging 

u and v and this yields the split extension G
03

,3 (2, Z) of G 3
,3 (2, Z). The linear-

fractional transformation t: z ~..!.. inverts u and v, that is, t 2 = (ut) 2 = (vt) 2 = 1 
z 

and so extends the group G 3,3 (2, Z) to G
03

,3 (2, Z), The extended group 

03,3 • • az + b 
G (2, Z) IS then the group of transformatIOns of the form z ~ -- , 

cz+d 

where a,b,e,d E Z and ad - be = ±1 and its defining relations are of the form: 

(1.3.2) 

Let q be a power of a prime p. Then by the projective line over the finite 

field F;j' we mean F;j u{oo}, we denote it by PL(Fq ). The group G
03

,3 (2,q) is 

then the group of linear-fractional transformations of the form z ~ az + b , where 
cz+d 

a,b,e,d E F;j and ad -be '* 0 , while G 3,3(2,q) is its subgroup consisting of all 

those linear-fractional transformations of the form 

a,b,e,d E F;j and ad - be is a non-zero square in F;j' 

18 
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1.4 COSET DIAGRAMS FOR THE GROUP G (2, Z) 

We use coset diagrams, described in section l.2, for the group 

.3,3 

G (2,Z) and study its action on PL(F'f)' The coset diagrams defined for the 

actions of Go'" (2,Z) are special in a number of ways. First, they are defined for a 

particular group, namely, G O)') (2, Z), which has a presentation in terms of three 

generators t, u and v. Since there are only three generators, it is possible to avoid 

using colours as well as the orientation of edges associated with the involution t. 

For u, and v both have order 3, there is a need to distinguish u from u 2 and v 

from v 2
• The three cycles of the transformation u are denoted by three unbroken 

edges of a u - triangle permuted anti-clockwise by u and the three cycles of the 

transformation v are denoted by three broken edges of a v - triangle permuted 

anti-clockwise by v The action of t is depicted by the symmetry about vertical 

axis because t 2 = (ut)2 = (vt) 2 = l. Fixed points of u and v, if they exist, are 

denoted by heavy dots. 

A part of the coset diagram of the action of G O)') (2,Z) on PL(F;,) will 

look as follows: 
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... I 
\ I 

.. ~ 7 .... / V ' 

For example, the following diagram depicts a permutation representation 

of G* (2, Z) on twelve points in which: 

u = (c e d)(f i j)(b g h) (a k m), 

v = (a b c)(d e f)(g h i)(m j k) , and 

t = (a b)(d e)(j i)(m g)(k h)(c)(f). 

b 

" .-

. ~ . 
e~ct 

.... ",. 

g 

h k 
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1.5 QUADRATIC FIELDS 

Now, we consider coset diagrams for the action of G 3
,3 (2, Z) on infinite 

spaces, namely, Q( Fn) and Q( h). In this case the coset diagrams are of 

infinite order, that is, the coset diagrams are with infinite number of vertices. 

A number n is said to be square free if its prime decomposition contains 

no repeated factors. All primes are therefore trivially square free. 

An algebraic integer of the form a + bFn , where n is square free, forms a 

quadratic field and is denoted by Q( Fn ). If n > 0 , the field is called real 

quadratic field, and if n < 0 , it is called an imaginary quadratic field. The integers 

in Q( 11) are simply called the integers. The integers in Q( ~) are called 

Gaussian integers, and the integers in Q( r-3) are called Eisenstein integers. The 

algebraic integers in an arbitary quadratic field do not necessary have unique 

factorization. For example, the fields Q(N) and Q(H) are not uniquely 

factorable. All other quadratic fields Q( Fn) with n ~ 7 are uniquely factorable. 

a+Fn 
An element a = is called real quadratic irrational number where 

c 

2 

n is a non-square positive integer and a, a - n ,c are relatively prime integers. 
c 

a+Fn 
An algebraic conjugate of a = is the real quadratic irrational number 

c 

a - Fn , we denote it by a. Note that a and a may have different signs. If this 
c 

is the case then the real quadratic irrational number a is called an ambiguous 
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number. If a and a both have the same sign positive (negative) then a IS 

called a totally positive (negative) number. 

Let F be an extension field of degree 2 over the field Q of rational 

numbers. Then any element x E F - Q is of degree two over Q and is a primitive 

element of F (that is, F = Q[x] and {I, x} is a base of F over Q). Let 

F(x) = x 2 + bx + c, where b, CEQ, be the minimal polynomial of such an element 

x E F. Then 2x = -b ± .J b 2 - 4c and so F = Q(.J b 2 - 4c ). Here, since b 2 - 4c is a 

rational number ..!..-= ln~ with 1, I11 EZ, we obtain F=Q(Ji;;)with 1, I11EZ. In 
m 111 

fact, it is possible to write F = Q(.j;;), where n is a square free integer. 

The imaginary quadratic fields are usually denoted by Q( h), where n is 

a square free positive integer. We shall denote the subset 

a + h a 2 + n b · ~ Th " d' fi ld { : a, , C E Z, C :;i: O} y Q ('V - n ). e Imagmary qua ratic Ie s are 
C C 

very useful in different branches of mathematics, for example, in [21] the Bianchi 

groups are the groups P SL2 (On), where On is the ring of integers of the imaginary 

quadratic number field Q( h). Interesting results are obtained by considering 

On as an Euclidean ring, that is, when n = 1, 2, 3, 7 or 11. 

In [23] , many properties of Q(.j;;) have been discussed for modular group 

PSL(2, Z ). In chapter three, we will discuss some fundamental results of 

Coset diagrams for the orbit of the group 0 3
,3 (2, Z) acting on real and 

imaginary quadratic fields give some interesting information. For the modular 
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group, Q. Mushtaq [23] has shown that for a fixed value of n (a non square 

positive integer) there are only a finite number of ambiguous numbers a, where 

a and that part of the coset diagram containing these numbers form a single 

closed path and it is the only closed path in the orbit of a. 

23 



CHAPTER TWO 

FINITE PRESENTATION OF G 3,3 (2, Z) 

2.1 INTRODUCTION 

In this chapter we have shown that the coset diagram for the action of the 

group G 3
,3 (2, Z), generated by the linear-fractional transformations u : z ~ z - 1 

z 

and v: z ~ 2, on the rational projective line is transitive and the coset 
z+l 

diagram for the action is connected. Using the coset diagrams we have shown that 

u 3 
= v3 

= 1 are defining relations for the group. 

2.2 ACTION OF G3
,3 (2, Z) ON THE RATIONAL PROJECTIVE LINE 

Lemma 2.2.1 

If k"* 1, 0, 00 then of the vertices k, ku and ku 2 of a u - triangle 

(unbroken lines), in a coset diagram for the action of G 3
,3 (2, Z) on any subset of 

the real projective line, one vertex is negative and two are positive. 
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Proof 

Consider a coset diagram for the action of G 3
,3 (2, Z) on any subset of the 

real projective line. If k * 1, 0, 00 is one of the three vertices of the triangle in the 

d· . () z -1 h coset lagram, smce z u = --, t en 
z 

a. if z < 0, then (z )u > 1, 

b. if z > 1, then 0 < (z )u < 1, and 

c. if ° < z < 1, then (z)u < 0. 

Thus, in particular, of the vertices k, ku and ku 2, one is negative and the 

other two are positive. Diagrammatically, it can be shown as: 

\ I 
~ (a)u .~_-----I.I (a) 
, 

/ 

I 
, (a)u 2 

I \ 

Fig-2.1 
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Lemma 2.2.2 

If k =F - 1, 0,00, then of the vertices k, kv and kv 2
, of a v - triangle 

(broken lines), in a coset diagram for the action of G 3
,3 (2,Z) on any subset of the 

real projective line, one vertex is positive and two are negative. 

Proof 

Consider a coset diagram for the action of G 3
,3 (2, Z) on any subset of the 

real projective line. If k =F - 1, 0, 00 is one of the three vertices of the triangle in 

the coset diagram, since (z)v = 2, then 
z +1 

a. if z < -1, then (z )v> 0, 

b. if z > 0, then -1 < (z)v < 0, and 

c. if-l<z<O, then (z)v<-l. 

Thus, one of the vertices k, kv and kv 2 one is positive and the other two are 

negative. Diagrammatically, it can be shown as: 

/ 
I 

\ + / 2 A (a)v 

Fig-2.2 
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Lemma 2.2.3 

Let k = ± a where a, b are positive integers with no common factor. For 
b 

k =F 0, 00, we define Ilkll = max(lal, Ibl), then 

a. if k is positive then, Ilkll < IIkvll and Ilkll < Ilkv2
11 , and 

b. if k is negative with b < 0, then Ilkll < Ilkull and Ilkll < Ilku 211· 

Proof 

If k is positive, then (k)v = ~ and (k)v 2 = - (a + b) and so Ilkll < Ilkvll 
a+b a 

and Ilkll < Ilkv 211. Now if k is negative, then (k)u = a - band (k)u 2 = ~ and so 
a a- b 

Theorem 2.2.4 

The coset diagram for the action of G 3
,3 (2, Z) on the rational projective 

line is connected. 

Proof 

To prove this we need only to show that for any rational number ko there 

is a path joining ko to 00 . 
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a . - b 
Let k = - be a positive rational number. Then (k )v.l = and 

o b 0 (a+b) 

- (a + b) C • 12Th b 1 223 lor } = or . en, y emma .., 
a 

II(kJvll = (a + b) and 

lI(kJv2 11 =(a+b), so, II(kJvJ II> llkoll for j= 1 or 2 respectively. Similarly, if 

k a. .. 1 b . h b 0 h (k) i a - b d - b o = - IS a negatIve ratlOna num er WIt <, t en 0 u = -- an --
b a a- b 

for i= l or 2 respectively. That is, II(kJull =(a-b)and lI (kJu211=(a- b). 

Hence II(kJ Uill > Ilkoll for i = 1 or 2 . 

If ko is positive then one of (kJ u i for i = 1, or 2 is negative. If we let 

this negative number to be kl then Ilko II > Ilklll. As kl is negative one of (kl )v
j 

, 

where j = 1, 2 is positive. Let it be k2' that is, k2 = (k l )v
J where j = 1 or 2. 

This implies that Ilklll > Ilk2 11. If we continue in this way, we obtain a unique 

alternating sequence of positive and negative rational numbers ko' kJ> k2' ... such 
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- - - ...... 

Fig-2.3 

The decreasing sequence of positive integers must terminate, and it can 

terminate only because ultimately the directed path leads to a u - triangle 

(unbroken lines) with the vertices 1,0, co or v - triangle (broken lines) with the 

vertices -1, 0, co. 

29 



v, 
/ ..... 

00 0 

Fig-2.4 

An alternating sequence of positive and negative rational numbers 

ko' kl , k2' ... such that Ilko II > Ilklll > Ilk211 .. ·· shows that there is a directed graph 

joining ko to co. This implies that every rational number occurs in the diagram and 

that diagram for the action of G 3
,3 (2, Z) on the rational projective line is 

connected. 

Theorem 2.2.5 

The action of G 3
,3 (2, Z) on the rational projective line is transitive. 

Proof 

We shall prove transitivity of the action by showing that if there is a path 

from a rational number p to a rational number q then there exists some g in 

G 3
,3 (2, Z) such that pg = q. 

As we have shown in theorem 2.2.4 that there exists a path joining ko to 
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that <Xl=pgl =p( U
6
' V'7'U 62 V'h . .. U

6i
V '7i ) where Gi = 0, 1 or 2 for i = 1,2, .. . ,m 

and 17 j = 0, 1 or 2, where j = 1, 2, ... , m . Similarly we can find another element 

g2 in G3.3(2,Z) such that <Xl= qg2' Hence pg l = qg2 or pg lg 2-
1 

= q.Thatis, 

the action of G 3
•
3 (2, Z) on the rational projective line is transitive. 

In the following theorem, we shall show that u 3 = v3 = 1 are defining 

relations for G 3
,3 (2, Z) . 

Theorem 2.2.6 

U
3 = v3 = 1 are defining relations for G 3

•
3 (2,Z). 

Proof 

Suppose u 3 = v3 = 1 are not defining relations of G 3
,3 (2, Z). Then there 

is a relation of the form u 6
' V'7' U 62 V 'h ... u 6m

v'7m = 1 where m ~ 1, Gi' 17 j = 1 or 2 

and i , j = 1,2, ... , m. We know that neither u nor v can be 1. 

The coset diagram (Fig-2.3) depicts that it does not contain any closed 

path. For if it contains a closed path and kp k2 , ... , k111 are the vertices of the 

triangles in the diagram such that ko > 0, then this leads to a contradiction 

Ilkoll > Ilklli > ... > IIk111 II > IlkJ So the coset diagram (Fig-2.3) does not contain any 

closed path. 

This shows that there are points in the diagram whose 'distance' from the 

point <Xl is arbitrarily large. Choose k > ° , so that the' distance' from the point ko 

to the point <Xl is greater than m. Define k
i 

= kU 61 
V '71 U 62 V'72 .. . U

6
'V'I; where 
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u 3 = V3 = 1 are defining relations for 

G3
,3 (2,Z). 

This of course shows also that u3 = v3 = t 2 = (ut)2 = (vt/ = 1 are defining 

.3,3 

relations for G (2, Z) =< u, v,t > . 
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CHAPTER THREE 

ACTION OF REAL AND IMAGINARY 

QUADRATIC FIELDS 

3.1 INTRODUCTION 

In this chapter, we are interested m studying an action of the group 

0 3
,3 (2, Z) =< u, v: u 3 = v3 = 1> , where u and v are linear-fractional 

z -1 -1 1'--
transformations z ~ -- and z ~ -- respectively on Q( "1/ n) and Q( "1/ - n) 

z z +1 

by using coset diagrams. 

Let n be a non-square positive integer and Q( Fn) be a real quadratic 

• I a+Fn 
field. Consider a subset Q ("1/ n) = { : a,c E Z, C;:f:. 0, 

C 

(a ,b,c)=1} ofQ(Fn) . 

For a fixed non-square positive integer n , if the real quadratic inational 

b a + Fn d· lb· . - a - Fn h d·f'i'. num er a = an Its a ge rmc conjugate a = ave I lerent 
c c 

signs. Such an a is known as an ambiguous number [23]. They play an important 
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role in classifying the orbits of G3,3 (2, Z) on Q( fn). In the action of G 3
,3 (2, Z) 

on Q( fn), Staba (G) are the only non-trivial stabilizers and in the orbit 

aG 3
,3 (2, Z); there is only one (up to isomorphism). We have also classified all 

the ambiguous numbers in the orbit. If a and a are both positive (negative), a is 

called a totally positive (negative) number. 

In this chapter, we explore some interesting group theoretic properties of 

this action vis-a.-vis the orbit of a in G3
,3 (2, Z). It is known that the set of 

ambiguous numbers is finite [23] and that the ambiguous numbers in the coset 

diagram for the orbit aG 3
,3 (2, Z) form a closed path and it is the only closed path 

contained in it. We have classified all the ambiguous numbers in the orbit. 

3.2 COSET DIAGRAMS FOR THE GROUP G 3,3 (2, Z) 

We use coset diagrams, as defined in chapter one, for the group G 3
,3 (2, Z) 

and study its action on the projective line over real and imaginary quadratic fields. 

For the action of G 3
,3 (2, Z) on the projective line over a real quadratic 

field, we have the following observations: 

(i) If k:t:-l,O,oo then of the vertices k, ku and ku 2 ofa u-triangle, ina 

coset diagram for the action of G 3
,3 (2, Z) on any subset of the 

projective line, one vertex is negative and two are positive. 
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(ii) If k 7:- -1, 0,00 then of the vertices k, kv and kv 2 of a v - triangle, in 

a coset diagram for the action of G3
•
3 (2, Z) on any subset of the 

(iii) 

(iv) 

proj ective line, one velie x is positive and two are negative. 

Let k = ± a where a, b are positive integers with no common factor. 
b 

For k 7:- 0,00 we define Ilkll = max(lal, Ibl). 

a 2 -n 
Let a be a totally positive quadratic number, then aa = 2 > 0 

C 

implying that ~ > 0 . Therefore, either b, c > 0 or b, c < O. If b, c > 0 , 
c 

a-Fn I I 
then as > 0 implies a - '\j n > 0 or a > '\j n and so a > 0 . 

c 

Now if b, c < 0 , then as a+Fn > 0 implies a+Fn < 0 or a <-Fn 
c 

and so a < O. 

Thus a is a totally positive quadratic number either a,b,c > 0 or 

a,b,c < o. 

(v) Let a be a totally negative quadratic number, then a and a both are 

- a2 -n b 
negative. Thus aa = -- > 0 implying that - > O. Therefore, 

c c 

either b,c> 0 or b,c < O. If b,c > 0 then as a + Fn < 0 but c> O. 
c 
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Thus a + fn < 0 or a < -fn and so a < o. Now if b,e < 0, then as 

a-fn I I 
--- < 0 but e < 0 . Thus a - '" n > 0 or a > '" n and so a > 0 . 

e 

Thus a is a totally negative quadratic number either a < 0 

and b,e > 0 or a > 0 and b,e < o. 

(vi) Let a be an ambiguous number, then a and a both have opposite 

- a2 -n b 
signs. Therefore, aa = -- < 0 implying that - < 0 and so band 

e e 

e have different SIgns and so be < o. Thus a IS an ambiguous 

number if be < 0 . 

Theorem 3.2.1 

(i) If a is a totally negative quadratic number then (a)u and (a)u2 are both 

totally positive quadratic numbers. 

(ii) If a is a totally positive quadratic number then (a)v and (a)v2 are both 

totally negative quadratic numbers. 

36 



Proof 

(i) Let a be a totally negative quadratic number. Then by observation (v), 

there are two possibilities either a < 0 and b,c > 0 or a > 0 and b,c < o. 

Let a < 0 and b,c > o. We can easily tabulate the following 

information: 

a a b c 

(a)u b-a - 2a + b + c b 

(a)u 2 c-a c -2a+ b +c 

From the above information we see that the new values of a, b 

and c for (a)u and (a)u 2 are positive, therefore, (a)u and (a)u 2 are 

totally positive quadratic numbers. 

Now, let a> 0 and b,c < o. Then the new values of a, band c 

for (a)u and (a)u 2 are negative, therefore, (a)u and (a)u 2 are totally 

positive quadratic numbers. 

(ii) Let a be a totally positive quadratic number. Then by observation (iv), 

there are two possibilities either a,b,c > 0 or a,b,c < o. 
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Let a,b,e > 0 . We can easily tabulate the following information: 

a a b e 

(a)v -a-e e 2a + b + e 

(a)v2 -a-b 2a + b + e b 

From the above information we see that the new value of a for 

(a)v and (a)v2 is negative and the new values of band e for (a)v and 

(a)v2 are positive, therefore, (a)v and (a)v2 are totally negative 

quadratic numbers. 

Now, let a,b,e < 0. Then the new value of a for (a)v and (a)v2 

IS positive and the new values of band e for (a)v and (a)v2 are 

negative, therefore, (a)v and (a)v2 are totally negative quadratic 

numbers. 

3.3 EXISTENCE OF AMBIGUOUS NUMBERS 

The coset diagrams depicting an orbit of the action of G 3
,3 (2, Z) on 

Q. ( .};,,) do not contain a closed path unless there is an ambiguous number in the 

orbit. A closed path, if it exists, will evolve the element g =U liIV'IIU li2VIJ2 ... U Ii"V'/" 

of G 3,3(2,Z), where BI = 0, 1 or 2, and Bi = 1 or 2, for i = 2, 3, ... ,n and 7711 = 0, 1 

or 2 and 77} = 1 or 2, where j=I,2, ... ,n- l fixing the element VI ofQ· (.};,,). 
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Let a E Q* (J";;) and aG 3
,3 (2, Z) denote the orbit of a in G 3

,3 (2, Z). The 

existence of ambiguous numbers in aG 3
,3 (2, Z) is related to the stabilizers of 

G3,3 (2,Z). We describe the action of G3,3(2,Z) on Q*(J";;) in the following 

theorems. 

Theorem 3.3.1 

(i) If a is an ambiguous number then one of (a)u and (a)u 2 is ambiguous 

and the other is totally positive. 

(ii) If a is an ambiguous number then one of (a)v and (a)v2 is ambiguous 

and the other is totally negative. 

Proof 

(i) First we suppose that a is a positive number. Then: 

-- --
a (a)u (a)u2 -

a (a)u (a)u2 

+ - + - + + 

+ + -

Similarly if a is a negative number, then: 
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a 

-

- - --
(a)u2 -

(a)u a (a)u (a)u2 

+ + + - + 

+ + -

Therefore, from the above tables we can easily deduce that one of 

(a)u and (a)u2 is ambiguous and the other is totally positive. 

(ii) First we suppose that a is a positive number. Then: 

-- --
(a)v2 

-
a (a)v a (a)v (a)v2 

+ - - - + -

- - + 

Similarly if a is a negative number, then: 

a (a)v (a)v2 
- -- --
a (a)v (a)v2 

- + - + - -

- - + 
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Therefore from the above tables we can easily deduce that one of 

(a)v and (a)v2 is ambiguous and the other is totally negative. 

Theorem 3.3.2 

The ambiguous numbers in the coset diagram for the orbit aG 3
,3 (2, Z) , 

where a = a + Fn E Q* (Fn) , form a closed path and it is the only closed path 
c 

contained in it. 

Proof 

If ko is an ambiguous number in aG 3,3 (2, Z), then either (ko )v
i is 

ambiguous or (ko)u j for i, j = 1 or 2. We may therefore assume that (ko)vi is an 

ambiguous number. 

Due to theorem 3.3.1, each triangle representing three edges of v or U 

contains two ambiguous numbers, so within the k - th triangle, we successively 

apply U (or v) to reach the next ambiguous number in the (k + l)th triangle. 

Suppose the k - th triangle depicting the three cycles of the generator v, 

contains two ambiguous numbers, namely a l and a 2. Then, a/k- I) = al(k-l)vG1 
, 

k k G d (k+ l ) (k+ l) G h a = a U 2 an a - a v 1 were 2 1 2 - 1 , &1 '&2'&3 =1 or 2. Also, since 

continue in this way and since by theorem 3 in [23 ] there are only a finite number 
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of ambiguous numbers, after a finite number of steps we reach the vertex 

(ambiguous number) a
2 

(k+m) = a,(k-') . 

Hence the ambiguous numbers form a path in the coset diagram. The path 

is closed because there are only a finite number of ambiguous numbers in a coset 

diagram. Since only ambiguous numbers form a closed path and these are the only 

ambiguous numbers therefore they form a single closed path in the coset diagram 

of the orbit aG 3
,3 (2, Z). 

3.4 CONCLUSION 

We conclude this section with the following observations. If we are given 

a real quadratic irrational number a, we can always find the closed path in the 

orbit aG 3
,3 (2, Z). If a is totally negative then one of (a)v i , for j = 1 or 2 is 

totally positive, and we can use theorem 5 [23] to find an ambiguous number in 

the same orbit. When we have an ambiguous number, the proof of theorem 3.3.2 

shows how to construct the closed path. This means that if a and j3 are two real 

quadratic irrational numbers, then we can test whether or not they belong to the 

same orbit. We can find closed paths in the orbits aG 3
,3 (2, Z) and j3G 3

,3 (2, Z) 

and see if they are same or not. Note that for a fixed value of n, a non-square 

positive integer, all possible ambiguous numbers do not lie in the same orbit. 
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3.5 G 3,3(2 Z) ACTION OF , ON IMAGINARY QUADRATIC 

FIELDS 

The Imagmary quadratic fields are defined by the set 

{a + bh : a, b E Q} and denoted by Q( h), where n is a square-free positive 

integer. In this section, we have proved that if 

_ a+h Q*( ~)_{a+h. a
2 

+n Z O} a - E '" - n - . a, , C E , C ::to then n does not 
C C C 

change its value in the orbit aG 3
,3 (2, Z). Also we show that the number of orbits 

of Q*(h) under the action of G 3,3 (2,Z) are 2[d(n)+2d(n+1) - 4] and 

2[d(n) + 2d(n + 1) - 6] accordingly n is even or odd, except for n = 3 for which 

there are exactly eight orbits. Also, the action of G 3
,3 (2, Z) on Q* (h) is 

always intransitive. 

Theorem 3.5.1 

If a= a+0 EQ* (0) , then n does not change its value in aG 3
,3 (2, Z ). 

C 

Proof 

Let a = a + h E Q* (h) and b = a
2 

+ n a-I 1 
Since (a)u = -- = I- -

C C a a 

c b-a+h = 1- ,- = . Therefore, the new values of a and c for (a)u are 
a+,,-n b 

b - a and b respectively. The new value of b for (a)u IS 
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(b-a)2 +n 
--'---~-- = -2a + b + c. Now 

b 

-1 -c -a-c+h 
(a)v=--= =-----

a+l a+c+h b+c+2a 

Therefore, the new values of a and c for (a)v are - a - c and 2a + b + c 

. ( -a - c) 2 + n .. 
respectively. The new value of b for (a)v IS = c. SImIlarly, we can 

2a + b + c 

calculate the new values of a, band c for (a)u 2 , (a)v2, (a)uv , (a)u 2v, (a)vu, 

(a)uv2, (a)vu 2 and (a)v 2u as follows: 
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a a b c 

(a)u b-a -2a+b +c b 

(a)v -a-c c 2a + b + c 

(a)u 2 c-a c -2a +b +c 

(a)v 2 -a- b 2a + b + C b 

(a)uv a -2b b - 4a +4b + c 

(a)u 2v 3a - b - 2c -2a+b +c - 4a + b + 4c 

(a)vu a+2b 4a+b + 4c c 

(a)uv2 3a - 2b-c - 4a + 4b + c -2a+b +c 

-

(a)vu 2 3a + b + 2c 2a +b + C 4a + b + 4c 

(a)v 2u 3a + 2b + C 4a+4b +c 2a + b + c 

~ 

~R~! 
; 4~ (0 

" ... ~ ~~'" .- ) , ~... , . - '" (.) , 
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From the above information we see that all the elements of aG 3
,3 (2, Z) 

are in Q*(h). That is, n does not change its value in aG 3,3 (2,Z). 

As we know from [29] the real quadratic irrational numbers are fixed 

points of the elements of PSL(2, Z) =< x, y: x 2 = y3 = 1> except for the group 

theoretic conjugates of x, y±1 and (xy) 11 • Now we want to see that when imaginary 

quadratic numbers are fixed points of the elements of G 3
,3 (2, Z). 

3.6 EXISTENCE OF FIXED POINTS IN Q* (h) AND ORBITS OF 

Q*(h) 

Remark 3.6.1 

Let (z)u = z. TIns implies 
z- l 
--=z 

z 

l±N * r-::: S' '1 1 . l' Z = E Q Cv'- 3). ImI ar y, (z )v = z Imp Ies 
2 

. - l±N * r-::: gIves z = E Q Cv'- 3). 
2 

Theorem 3.6.2 

gIVes Z2 - Z + 1 = O. Thus 

-1 
--=z. 
z+ l 

So, z2 + z + 1 = 0 

The fixed points under the action of G 3'\2,Z) on Q* (h ) exist only if 

n=3. 
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Proof 

Let g be a linear-fractional transformation in C 3
,3 (2, Z). Therefore, 

az + b az + b . ' 
(z )g can be taken as --, where ad - be = 1. Let --= z whIch gIves us the 

a+d a+d 

quadratic equation ez 2 + (d - a)z - b = O. It has the imaginary roots only if 

(d - a/ + 4be < 0 or (d + a)2 - 4(ad - be) < 0 or (a + d)2 < 4. That is, a + d = 0, ± 1. 

If a + d = 0, then g is an involution but there is not any involution in 

G3'\2,Z). Now, if a+d=±l,then as (traee(g)) 2 = det(g),order of g will be 

three and hence it is conjugate to the linear-fractional transformations U±I and 

V ±I. Since the fixed points of the linear-fractional transformations u and v (by 

l+N - l +N remark (3.6.1) are - and - respectively, therefore, the roots of the 
2 2 

quadratic equation ez 2 + (d - a)z - b = 0 belongs to the imaginary quadratic field 

Q* (N). If two elements of C 3
,3 (2, Z) are conjugate, then their corresponding 

determinant are also equivalent. 

Definition 3.6.3 

If a = a + h E Q* (h) is such that ae < 0 then a is called a totally 
e 

negative imaginary quadratic number and is called totally positive imaginary 

quadratic number if ae> O. 
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2 

As b = a + n , therefore, be is always positive. So, b and e have same 
e 

. I~T .. d' b a + h · r-- . 11 sIgn. :-:tence an Imagmary qua ratIc num er a = E Q ("II - n) IS tot a y 
e 

negative if either a < 0 and b, e > 0 or a > 0 and b, e < O. Similarly, 

a + h · r--. 11 "'f' h a = EQ (.y-n) Istota yposItivei eit er a,b,e > O or a,b,e < O. 
e 

Theorem 3.6.4 

(i) If a is a totally negative imaginary quadratic number then (a)u and (a)u 2 

are both totally positive imaginary quadratic numbers. 

(ii) If a is a totally positive imaginary quadratic number then (a)v and (a)v 2 

are both totally negative imaginary quadratic numbers. 

Proof 

(1') L a + h b 11 ... d' b H et a = e a tota y negatlve Imagmary qua ratic num er. ere 
e 

are two possibilities either a < 0 and b, e > 0 or a > 0 and b, e < O. 

Let a < 0 and b, e > O. We can easily tabulate the following 

information. 
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(ii) 

a a b c 

(a)u b-a -2a + b + c b 

(a)u 2 c-a c - 2a + b +c 

From the above information, we see that the new values of a, b 

and c for (a)u and (a)u 2 are positive, therefore, (a)u and (a)u 2 are both 

totally positive imaginary quadratic numbers. 

Now, let a > 0 and b, c < o. Then the new values of a, band C 

for (a)u and (a)u 2 are negative, therefore, (a)u and (a)u 2 are both 

totally positive imaginary quadratic numbers. 

L a+h b 11 .... d' b H et a = e a tota y posItive Imagmary qua ratic num er. ere 
c 

are two possibilities either, a, b, c > 0 or a, b, c < O. 

Let a, b, c > 0 . We can easily tabulate the following information. 

a a b c 

(a)v -a-c c 2a + b + c 

(a)v 2 -a-b 2a + b + c b 
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From the above information, we see that the new value of a for 

(a)v and (a)v 2 is negative and the new values of band c for (a)v and 

(a)v 2 are positive, therefore, (a)v and (a)v2 are both totally negative 

imaginary quadratic numbers. 

Now, let a, b, c < O. Then the new value of a for (a)v and (a)v 2 is 

positive and the new values of band c for (a )v and (a )v2 are negative, 

therefore, (a)v and (a)v 2 are both totally negative imaginary quadratic 

numbers . 

The converse of the above theorem is not true. For example, there 

are triangles in which all three veliices are totally positive or all three 

vertices are totally negative. 

Theorem 3.6.5 

(i) 
a + r-;" 

If a = where c > 0 then the denominator of every element in 
c 

aG 3
•
3 (2, Z) is also positive. 

(ii) If a = a + r-;" where c < 0 then the denominator of every element in the 
c 

orbit aG 3
,3 (2, Z) is also negative. 
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Proof 

(i) 

(ii) 

S· a + h . h h fi . 1 . . A b d lllce a = WIt c > 0 , t ere ore, b IS a so posItIve. sane 
c 

always have same sign. Using this fact, we can easily see from the 

information given in theorem 3.5.1 that every element in aG 3
•
3 (2,Z) has 

positive denominator. 

S· a + h . h h fi . 1 . b d lllce a = WIt c < 0 t ere ore, b IS a so negatIve as an 
c 

c always have same sIgn. Using this fact we can easily see from the 

information given in theorem 3.5.1 that every element in aG 3
•
3 (2,Z) has 

negative denominator. 

Definition 3.6.6 

Theorem 3.6.7 

(i) Let a be a totally negative imaginary quadratic number. Then IICa)ull > Iiall 

and Ilc a)u 211 > Iiall ' and 
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(ii) Let a be a totally positive imaginary quadratic number. Then IICa)vll > Iiall 

and IICa)v211 > Iiali. 

Proof 

(i) Let a be a totally negative imaginary quadratic number. Then either, 

a < 0 and b, e > 0 or a> 0 and b, e < O. Let us take a < 0 and b, e > o. 

Then, by theorem 3.6.4(i), Ca )u and Ca )u 2 both are totally positive 

Imagmary quadratic numbers. Thus, IICa)ull = Ib - al > lal = Iiall, and 

IICa)u211 = Ie - al > lal = Ilall· Similarly, we have the same result for a > 0 and 

b, e < O. 

(ii) Let a be a totally positive imaginary quadratic number. Then either, 

a, b, e > 0 or a, b, e < O. Let us take a, b, e > 0 . Now using the information 

given m theorem 3.5,1, we can easily see that 

IICa)vll = 1- a - el = la + el > lal = Iiall , and IICa)v211 = 1- a - bl = la + bl > lal = Iiall, 

Similarly, we have the same result for a, b, e < O. 

Theorem 3.6.8 

Let a be a totally positive or negative imaginary quadratic number. Then 

there exists a sequence a = a ), a 2 , .. " am such that a i is alternately totally 

negative and totally positive number for i = 1,2,3, .. " m - 1 and Il am il = 0 or I , 
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Proof 

Let a = a l be a totally positive imaginary quadratic number, then, by 

theorem 3.6 .4(i), (a)u or (a)u 2 is totally negative imaginary quadratic number. If 

(a)u is totally negative imaginary quadratic number, then put a 2 = (a)u and by 

theorem 3.6.7 (i), Ilalll > Ila2 11. Now if (a)u 2 is totally negative imaginary quadratic 

number, then put a 2 = (a)u 2. In this case we have also Ilalll > Ila2 11. 

Now if (a)u is totally negative imaginary quadratic number, then (a)uv or 

(a)uv 2 is totally positive imaginary quadratic number. If (a)uv is totally positive 

imaginary quadratic number, put (a)uv =a3 and so by theorem 3.6.7(ii), 

II(a)uvll < II(a)ull < Iiall or IIa311 < IIa211 < Ilalll and continue in this way we obtain an 

alternate sequence ai' a 2, ... , alii of totally positive and totally negative numbers 

such that Iia III > Iia 211 > Iia 311 > ... > Iia III II· Since Iia III, Iia 211, Iia 311, ... , Iia III II is a decreasing 

sequence of non negative integers, therefore, it must terminate and that happens 

1 h 1 . 1 h" d' b a' + h on y w en u tlmate y we reac at an Imagmary qua ratlc num er alii =---
c 

such that Ilalllll = la 'i = 0 or 1. It can be shown diagrammatically as: 
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Theorem 3.6.9 

There are exactly eight orbits of Q* (r-;;) under the action of the group 

G3,3(2,Z) for n = 3. 

Proof 

As we have seen in theorem 3.6.8, we get a decreasing sequence of non 

negative integers Ilalll, Ila2 11, Ila3 11, ... , Ilamil such that Ilalll > IIa2 11 > IIa3 11 > ... > Ilamil 

which must terminate and that happens only when ultimately we reach at an 

imaginary quadratic number am = a' + r-3 such that Ilamil = la'i = 0 or 1. 
e 

-1+r-3 +1+H or - then because - - are the fixed 
2 2 

points of u and v, therefore, we can not reach at an imaginary quadratic number 

whose norm is equal to zero. So in this case there are four orbits, namely, 
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1 + r-J 03,3 (2 Z) 1- r-J 0 3,3 (2 Z) 
2 " 2 " 

and 

- 1-r-J ~ ___ 0 3,3(2,Z) of Q*(,,-3). 
2 

N 'f h . . d' b at + .J-3 h ow, I we reac at an Imagmary qua ratlc num er alii = suc 
c 

that Ilalllll =Iatl = 0, 
.J-3. .J-3 * ~ then alii =--. SInce alii =--EQ (,,-3), 

c c 

. .J-3.J-3.J-3 .J-3 
c=±1, ±3. That IS, alii =--, --, -- and --. 

1 -1 3 -3 

Now, if a = .J-3, we can easily calculate the values of a, b and cas : 
1 

a 0 3 1 

(a)u 3 4 3 

(a)v -1 1 4 

(a)u 2 1 1 4 

(a)v 2 -3 4 3 

Hence, from the above table, .J-3 1 + .J-3 and - 1 + .J-3 lie m 
, 4 4 

a0 3
,3 (2, Z). 
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...J-3 ,--;; - 1 + ..J-3 1 + ..J-3 
Similarly, If a = --, then - v- 3, and 

- 1 - 4-4 
lie in 

G3,3 (2 Z) 'f = .J-3 th ..J-3 1+..J-3 d - 1+..J-3 1" G33 {2 Z) a , , 1 a , en , an Ie In a ' \, , 
3 3 1 1 

. ..J-3 ..J-3 1+..J-3 -1+..J-3 33 and If a = --, then --, and lie in aG ' (2, Z). 
-3 -3 -1 - 1 

..J-3 N N ..J-3 Thus -- -- -- and -- lie in four different orbits. Hence 
, 1 ' - 1 ' 3 -3 

there are exactly eight orbits of Q* (..J-3) . 

Remark 3.6.10 

(1') If a + h *,-- h . . . 1 1 'f a= EQ (v -n ) , ten Staba(G) IS non-tnvla on y 1 n=3. 
c 

P . 1 l'f + 1 + N h artlcu ar y, 1 a = - - t en Staba (G) =- C3 . 

2 

(ii) * ,--;; N N In Q Cv - 3), there are four elements of norm zero, namely, - -, --, 
1 - 1 

N N -- and -- . 
3 - 3 

(iii) In Q* (..J-3), there are twelve elements of norm one, namely, 

±l±N ±l±N 
d 

±1±..J-3 an . 
2 4 1 
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Theorem 3.6.11 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Let a E Q. (h), where n -:t 3, then 

if a=h, then h , l+h and -l+h lie in aG3,3 (2,Z) , 
n+I n+I 

, h h I+h I+h 33 If a = -- then -- and lie in aG ' (2, Z), 
n' n ' 1 1 

h if a = -2-' where n is even, then a is the only element of norm zero in 

aG 3
,3 (2, Z), 

h if a=--, 
n\ 

where k\ = ~ and n\ -:t lorn, then a is the only element of 
n\ 

norm zero In aG 3
,3 (2, Z), and 

l'f I+h h d 1 1 ' h nl a= , were I+n=c\c2 an C\ -:tIor n+ ,tlen alS teo y 
C\ 

element of norm one in aG 3
,3 (2, Z), 
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Proof 

(i) Let a = h, then we can easily tabulate the following information, 

(ii) 

a 0 n 1 

(a)u n n+ 1 n 

(a)v - 1 1 n + 1 

(a)u 2 1 1 n + 1 

(a)v2 -n n+ 1 n 

Hence, from the above table, we see that h , 1 + hand 
n +1 

- l +h 1" 0 3•3 (2 Z) lem a " 
n + 1 

h if a = --, then we can calculate the new values of a, band cas: 
n 
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a 0 1 n 

(a)u 1 n+ 1 1 

(a)v -n n n + 1 

(a)u 2 n n n + 1 

(a)v 2 - 1 n+ 1 1 

h l+h Hence, from the above table, we see that and 
n 

- l+h 1" 0 3•3 (2 Z) Ie III a " 
1 

(iii) h n 
If a = --, and I = -, then we can calculate the new values of a, band 

2 2 

cas: 

a 0 I] 2 

(a)u I] I] + 2 I] 

(a)v -2 2 I] + 2 

(a)u 2 2 2 I] + 2 

(a)v 2 - I] I] + 2 I] 

59 



(iv) 

(v) 

Hence, from the above table, we see that a is the only element of 

norm zero in aG 3
,3 (2, Z). 

h n 
Let a = --, where k, = - and n, 1= lor n, then 

n, n, 

a 0 k, n, 

(a)u k, n, +k, k , 

(a)v -n, n, n, +k, 

(a)u 2 n, n, n, +k, 

(a)v 2 -k, n, +k, k, 

Hence, from the above table, we see that a is the only element of 

norm zero in aG 3
,3 (2, Z). 

. l+h 
Now If a = , where 1 + n = C 'C 2 and c, 1= 1 or n + 1, then the new 

c, 

values of a, band c can be calculated as: 
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a 1 c2 c, 

(a)u c2 -1 - 2+c, +c2 c2 

(a)v - l - c, c, 2 + c, + c2 

(a)u 2 c, - 1 c, - 2 + c, + c2 

(a)v 2 -1- c2 2 + c, + c2 c2 

If c, = 2, then II( a)u 211 = 1 implies that If 

c, = -2, then II(a)vll = 1 implies that (a)v = 1 + h. That is, 1 + h and 
C2 2 

1 + h lie in the same orbit, and 1 + hand 1 + h lie in the same 
(n+1) - 2 _(n+1) 

2 2 

orbit. 

N 'f n + 1 h' n + 1 Th ow, 1 c, -=t 1,2 or --,n+1,t at IS, C2 -=tn+ l,-- or 1. en 
2 2 

l+h d - l+h 1" G 3•3 (2 Z) ---an lema, . 
c, C2 

Example 3.6.12 

Let us find the orbits of Q. (-J -14) by using the theorem 3.6.11. 
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(i) '--;-:;14 1+.J-14 d -1+.J-14 10 
0 b O 

-v -1"+, an Ie III one or It. 
15 15 

(ii) 
.J-14 1+.J- 14 - 1+.J- 14 0 0 0 

-- and he III one orbIt. 
- 1 ' - 15 - 15 

(iii) 
.J- 14 1+.J- 14 - 1+.J- 14 0 0 0 

-- and he III one orbIt. 
14 ' 1 1 

(iv) 
.J-14 1+.J-14 -1+.J-14 0 0 0 

-- and he III one orbIt. 
- 14 ' - 1 - 1 

(v) .J-14 10 
0 bO Ies III one or It. 

2 

(vi) .J-14 10 
0 bO Ies III one or It. 

-2 

(vii) .J-14 10 
0 bO Ies III one or It. 

7 

(viii) .J-14 10 
0 bO Ies III one or It. 

-7 

(ix) 1+.J- 14 10 
0 bO Ies III one or It. 

3 
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(x) -1+.J-14 1" b' les III one or It. 
3 

(xi) 
1+.J-14 
--- lies in one orbit. 

-3 

(xii) - 1+.J-14 1" b' les III one or It. 
- 3 

(xiii) 1+.J- 14 1" b' les III one or It. 
5 

(xiv) - 1+ .J- 14 1" b' les III one or It. 
5 

(xv) 
1+.J-14 
--- lies in one orbit. 

-5 

(xvi) - 1+.J- 14 1" b' les III one or It. 
-5 

So, there are sixteen orbits of Q* (h) for n = 14. 
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Remark 3.6.13 

(i) If a+h . ~ 
a = E Q (v - n), then aG 3

,3 (2, Z) does not contain the 
c 

conjugates of the elements of aG 3
,3 (2, Z). Since a = a + hand 

c 

a-h 
a = lie in two different orbits. Therefore, aG 3'\2, Z) and 

c 

aG 3
,3 (2, Z) are always disjoint. 

(ii) The elements of norm zero and one In Q* (h), play a vital role to 

identify the orbits of Q* (h). 

Definition 3.6.14 

If n is a positive integer then den) denotes the arithmetic function defined 

by the number of positive divisors of n. 

Theorem 3.6.15 

If n =f::. 3, then the total number of orbits of Q * ( h) under the action of 

G 3
,3 (2, Z) are: 
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(i) 2[d(n) + 2d(n + 1) - 6] if n is odd, and 

(ii) 2[d(n) + 2d(n + 1) - 4] if n is even. 

Proof 

First suppose that n is odd, then n + 1 is even. Let the divisors of n are 

± 1, ± n1 , ± n2 ,± ... ± n and the divisors of n + 1 are 

± 1, ± 2, ± m1 , ± m2 ,± ... ± (n + 1), ± (n + 1). Then by theorem 3.6.11(i), there exist 
2 

two orbits of Q' (h) corresponding to the divisors ± 1 of nand ± (n + 1) of 

n + 1. By theorem 3.6.11(ii), there exists two orbits of Q ' (h) corresponding to 

the divisors ± n of nand ± 1 of n + l. By theorem 3.6. 11(v), there exists two 

orbits of Q*ch) corresponding to the divisors ± 2, ± (n + 1) of n + l. Now we 
2 

are left with 2d(n) - 4 divisors of n and 4d(n + 1) -16 divisors of n + 1. Thus 

total orbits are 2d(n) - 4 + 4d(n + 1) -16 + 8 = 2d(n) + 4d(n + 1) -12= 2[ den) + 2d(n + 1) - 6]. 

Now, if n IS even, then the total orbits are 

[2(d(n) - 4] + [4d(n + 1) - 8] + 4 = 2d(n) + 4d(n + 1) - 8 = 2[d(n) + 2d(n + 1) - 4]. 

Example 3.6.16 

Now, by using above theorem, the orbits of Q' ( .J - 14) and Q' ( r-15) are: 
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(i) The orbits of Q·(.J-14) are: 

2[ d (n) + 2d (n + 1) - 4] = 2[ d (14) + 2d (15) - 4] = 2[ 4 + 8 - 4] = 16. 

(ii) The orbits of Q. (r-I5) are: 

2[d(n) + 2d(n + 1) - 6] = 2[d(15) + 2d(16) - 6] = 2[4 + 10 - 6] = 16. 

Theorem 3.6.17 

There are 2d (n) elements of Q. ( h) of norm zero. 

Proof 

a' +h . ~ II II I '1 h Let am = E Q (-v-n) such that am = a =O,then am =--. 
c c 

S· h. r- h b a
2 
+ n n h . b d" f Ince am =--EQ (-v-n), were =--=-, t at IS, cmust ea IVISorO 

c C c 

n. Hence there are 2d (n) elements of Q. (h) of norm zero. 

Theorem 3.6.18 

There are 4d (n + 1) elements of Q. ( h) of norm one. 
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Proof 

Let 
a'+h . ,-

a m = EQ(-V- n ) 
c 

that Ilamil = la'i = 1, then such 

± 1 + h h a
2 

+ n 1 + n l ' b d" f 1 am = ,were b = --=--, tlat IS, emust e a Ivlsor 0 n+ . 
e e e 

Hence there are 4dCn + 1) elements of Q* C h) of norm one. 

Theorem 3.6.19 

The action of G 3
,3 (2, Z) on Q* C h) is intransitive. 

Proof 

If n is even, then the minimum value of n in Q* C h) is 2. So, by 

theorem 3.6.15, the total orbits are 2[dCn) + 2dCn + 1) - 4] = 2[2 + 2(2) - 4] = 4. So, 

the action of G 3
,3 (2, Z) on Q* C h) must be intransitive. 

Now, if nis odd, then the minimum value of n in Q*Ch) is five, when 

n:;t: 3. So, by theorem 3.6.15, the total orbits are 

2[dCn) + 2dCn + 1) - 6] = 2[2 + 2C 4) - 6] = 8. So, the action of G 3
,3 (2, Z) on Q* C h) 

must be intransitive. 

According to theorem 3.6.9, there are exactly eight orbits of Q*Ch) 

when n = 3 under the action of the group G 3
,3 (2, Z). 
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Thus, the action of G3.3 (2, Z) on Q* (h) is intransitive. 

So, far, we have considered action of G 3'\2,Z) on Q(Fn) and Q(h). 

In this case, coset diagrams were infinite, that is, the number of vertices are 

infinite. Now in chapters four and five, we consider coset diagrams for the action 

of G 3'\2,Z) on PL(Fq ). Here we get coset diagrams of finite order, that is, 

coset diagrams with finite number of veliices. 

We are going to consider actions of G 3,3(2,Z) on PL(F,). But first notice 

that there is a projection of PL(Q) onto PL(Fq ). Here, if 1= m is a rational 
n 

m 
number in the lowest terms, then I maps on -=-, where bars indicating, taking 

n 

residues modulo prime p, unless Ii = 0, when I maps on 00. If g : z ~ az + b IS 
cz+d 

any element of the group G 3
,3 (2 ,Z) , or indeed any element of GL(2,Q) whose 

determinant is a unit modulo p , then g can be taken to act on PL(Fq ) by 

az + b d h' .. . h h . f G 3 3 (2 Z) Th h z ~ _ an t IS prOjectIOn commutes WIt t e actIOn 0 ', . us t e 
cz+d 

coset diagram for the action of G 3,3(2,Z) on PL(Fq ) can be obtained from the 

coset diagram for the action of G 3,3 (2, Z) on P L(Q) by identifying appropriate 

points. The projection also commutes with t : z ~!, so that the diagram for the 
z 

action of G 3
,3 (2, Z) admits an axis of symmetry such that reflection in this axis 

expresses the action t. 
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Next notice that for appropriate e, P, the coset diagram for the action of 

G 3
,3 (2, Z) on P L(Fq ) will also be an image under a projection of the diagram for 

the orbit 00 3
,3 (2, Z). In fact, if the positive square free integer n is a quadratic 

residue modulo P (and P does not divide 2n) then in the integer ring R of the 

field Q( Fn), P factorizes as the product of two distinct primes PI and P2' and 

~ (i = 1, or 2) is naturally isomorphic to z ~ ~ = F" Thus, we can construct 
P i qZ I 

two distinct projection from PL(QFn) to PL(F,) using the primes PI andp2 in 

the same way that we used the prime P previously (R is not necessarily a 

principle integral domain); so we cannot talk about writing an element r 111 

Q( Fn) as a fraction a in lowest terms; but R in a Dedikind domain so that if Pi 
b 

is a prime ideal of R, any element I of R can be written as a when Pi does not 
b 

divide both a and b. This all that is necessary to construct the projection. 
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CHAPTER FOUR 

* 3 , 11 

PARAMETRIZATION OF ACTIONS OF G (2,Z) 

4.1 INTRODUCTION 

In this chapter, we have considered conjugacy classes, which arise from 

the actions of ~(3, n, k) =< U I , VI : U I
3 = VI" = (UIVI)k = 1> on projective line over 

PL(Fq ). Also, we have proved that a one-to-one correspondence can be 

established between the conjugacy classes of non-degenerate homomorphisms 

.3,11 .3, 11 

(J' : G (2,Z) ~ G (2,q) , under the action of inner automorphisms of 

.J.n .l.II 

G (2, q), and the non-trivial conjugacy classes of elements of G (2, q) such 

that the correspondence assigns to any non-degenerate homomorphism (J' the 

class containing (u l VI )(J'. Of course this means that we can in fact parametrize the 

• . 3. 11 •• 

actIOns of G (2,Z) on PL(Fq ). Also we have consIdered the conjugacy classes 

which arise from the actions of ~(3, n, k) on the projective line over PL(Fq ). 

In the last section, we find a condition in the form of a polynomial with 

integer coefficients for the existence of actions of 

on which yield 
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~(3, n, k) as groups of permutations defined on PL(Fq ), where q IS a pnme 

congruent to ± 1 modulus k. 

Let G 3,11 (2, Z) be the group of linear-fractional transformations of the 

form 
az +b 

z~--, where a, b,e,dEZand ad - be= l , generated by U I ,VI ez+d 

satisfying the relations: 

(4.1.1) 

The linear-fractional transformation t : z ~.!. inverts both U I and VI ' that 
z 

IS, t 2 = (U I t) 2 = (VI t) 2 = 1 and so extends the group G 3
,1I (2,Z) to G *)'" (2,Z). 

*3,11 

The extended group G (2, Z) is then the group of transformations of the form: 

az+b 
z~--

ez+d 
(4.1.2) 

where a ,b,e, d E Z and ad - be = ±1 and its defining relations are of the form 

3 11 2 ( )2 ( )2 U I = VI = t = U I t = VI t = 1 > (4.1.3) 

The group G *)'" (2, q) is then the group of linear-fractional transformations 

of the form z ~ az + b , where a,b,e,d E Fq and ad - be -::j:; 0, while G 3
,1I (2, q) is its 

ez+d 

subgroup consisting of all those linear-fractional transformations of the form 

az +b h b d d' . z ~ -- , were a, , e, E Fq an ad - be IS a non-zero square In Fq. 
ez +d 
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The group ~(3 , n, k) IS the triangle group with presentation 

< UI ' VI : UI
3 = VI" = (U I VI)k = 1>. By adjoining an involution t, which inverts 

both u l and V I ' the groups ~(3, n, k) can be extended to the triangle groups 

/).. (3 ,n, k) =< UI> VI> t: UI
3 = VI" = (u l VI) k = t 2 = (u l t) 2 = (VI t) 2 = 1 > . The 

triangle group ~(3, n, k) is of index 2 in ~. (3, n, k) and so IS normal in 

~. (3, n, k). The group ~. (2, n, k) has Coxeter group 

Gk,l,1II =< x , y , t : x 2 = yk = (xy)' = t 2 = (xt) 2 = (yt) 2 = (xyt)1II = 1 as its factor 

group [13]. 

4.2 CONJUGACY CLASSES OF THE NON-DEGENERATE 

HOMOMORPHISMS 

.3,11 .3 ,11 

The homomorphism 0': G (2, Z) ~ G (2, q) amounts to choosing 

- 3 -" 2 ( )2 ( )2 1 ul = VI = t = ul t = VI t = (4.2.1) 

We call 0' to be non-degenerate homomorphism with the condition that 

the orders of UI and VI are the same as orders of (ul)O' and (vl)O' respectively, 

• .3,11 •• 

we mean neIther of the generators UI> VI of G (2, Z) lIes III the kernel of 0', so 

that their images ul and VI are of orders 3 and n respectively. Both G 3
,,, (2, Z) 

.J ,II 

and G (2, Z) have index 2 in their automorphism groups. Let 6 be the 

automorphism on G· (2, Z) defined by U I6 = tu/, VI6 = vI> and t6 = t. The 

homomorphism 0" = 60' is called the dual homomorphism of 0'. This, of course, 
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respectively. Since the elements U I , VI' t as well as 1u/, v,, 1 satisfy the relations 

(4.2.1), therefore the solutions of these relations occur in dual pairs. Of course, if 

0" is conjugate to r then 0"' is conjugate to r'o The parameter of 0", or of the 

conjugacy class containing 0", is the parameter of ul V,. 

We define a pair U" v" satisfying the relations U,3 = v;" = 1, in G 3,11 (2, q) 

to be invertible if there exists 1 in Go3

, .. (2, q) such that 12 = 1, 1u/ = u, -' and 

We need the following easy but useful result for later use. 

Lemma 4.2.1 

A non-singular 2 x 2 matrix M with entries in Fq , where q is not a 

power of 2, represent, an involution in G
0 3

," (2, q) if and only if the trace(M) IS 

zero. 

Lemma 4.2.2 

If u,' VI are the elements of G
o3

, .. (2, q) such that U, is of order 3 and v, 

IS of order n and let VI and ~ are matrices representing ul and v" 

respectively. If rand m l are the traces of V, ~ and ~ respectively, and the 

determinant of V, ~ to be equal to one, then either r2 + rm, + m~ = 3 or the pair 

(u" VI) is invertible. 
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Proof 

.3, 11 • • 

Let ul and VI be the elements of G (2, Z), satlsfymg the relations 

ii,' ~ ii," ~ 1 and ii, and ii, be represented by the matrices U, ~ [: ~] and 

V, ~ [; {] are the elements of GL(2,q). Then, since iii ~ 1, and U,' 13 a 

scalar matrix, and hence the determinant of VI is a square in Fq . Thus, replacing 

VI by a suitable scalar multiple, we assume that det(V I ) = 1. 

Since, for any matrix M, M3 = AI if and only if (trace(M)) 2 = det(M) , 

so we may assume that trace(VI) = a + d = -1 and det(V I ) = 1. Thus, 

VI = [a b]. Since UI
3 = 1 implies that the trace(VI) = -1, every element 

c -a- 1 

of GL(2, q) of trace equal to -1 has upto scalar multiplication, a conjugate of the 

form [~ =:J We can therefore assume that U, has theform [~ = :J 
Also, since vl/l = 1, V; /I is a scalar matrix and hence the determinant of V; 

is a square in Fq . Thus replacing V; by a suitable scalar multiple, we assume the 

determinant of V; equal to 1 so that we have det(V;/I) = 1. We observe that 

det(V; /I) = 1 or detCV; ") = -1 depending upon the value of the integer n being 

odd or even. Since m l be the trace of V;. So, the characteristic equation of VI is 
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(4.2.2) 

Thus and therefore, 
[

e f] ~= 
g m,-e 

giving 

det(V,) = e(m, - e) - fg = 1, so that 

1+ fg+e 2 - em, =0 (4.2.3) 

Now suppose that there exists an invertible element t 111 G
03

." (2,q) 

satisfying 

-2 - - - -
t = (u, t)2 = (v, t) 2 = 1 (4.2.4) 

_ [I m] Let a matrix representing t be T = n j' Then, S111ce t IS an 

involution, by lemma 4.2.1 , j = -I yields T = [I m]. 
n -I 

Let be a matrix representing of 
.3,11 

G (2,q). 

U,T = [ - n 1], which again by lemma 4.2.1, and (ul)2 = 1, implies that 
I-n m+1 

m+1 = n (4.2.5) 

Similarly, choosing ~T to be a matrix representing the element v/ of 

.3 ,11 

G (2 ,q), we obtain 

[ 
el + fn em - fl ] 

~T= . 
gl + n(m, - e) mg -/(m, - e) 
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Since v/ is also an involution, therefore, by the arguments given above, 

we have mg-/(m, -e) =-(el + f n), which together with equation (4.2.5) yields 

21e + fn + ng -1m, - gl = O. That is, 

I (2e - g - m, ) + n( f + g ) = 0 (4.2.6) 

Now for T to be a non-singular matrix, we should have det(T) *- 0 , that 

IS: 

(4.2.7) 

-
Thus the necessary and sufficient conditions for the existence of t III 

.J ,II -

G (2, q) are the equations (4.2.5), (4.2.6) and (4.2.7). Hence t exists III 

GO) ," (2, q) unless nl _ /2 - n2 = O. 

-
If both 2e - g - m , and f + g are equal to zero, then the existence of t is 

trivial. If not, then i = - (f + g) ,and so equation (4.2.6) is equivalent to 
n (2e- g-m, ) 

• -. .3 , 11 

(2e - g - m, )( m - 2e - f) *- O. Thus, there eXIst, t III G (2, q) such that 

-2 - - - -
t = (U,t) 2 = (V,t)2 = 1 unless (f+ g )2 = (2e-g-m,)((m -2e-f). 

Simplification gives 

(f - g )(f - g + 2e - m, ) = 4 + f g - m; (4.2. 8) 
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Now implies that the 

trace(U I V;) = f - g - m l + e. Let trace(U I V;) = r. Using equation (4.2.3) and 

substituting the value of r in equation (4.2.8), we obtain: 

(4.2.9) 

Lemma 4.2.3 

Any non-trivial element g, whose order is not equal to 2 and whose dual 

.3, 11 • • 

IS also not of order 2, of G (2, q) IS the Image of uv under some non-

.3,11 .3,11 

degenerate homomorphism of G (2, Z) into G (2, q) . 

Proof 

.3,11 

Using lemma 4.2.2, we show that every non-trivial element of G (2,q) 

is a product of an element of order 3 and an element of order n. So we find 

elements up VI and t of G*3." (2,q) satisfying the relations (4.2.1). Let up VI and 

- [a kC] [ e !if] t be represented by the matrices U I = , V; = 
c -a- 1 f ml-e 

and 

[0 -k] T = 1 0' where a, c, e, f, k are elements of F:" with k "* 0, so that 

1 + a + a 2 + kc
2 = ° (4.2.10) 

Also, assuming the determinant of V; to be equal to 1, we have 

(4.2.11) 

77 



We take u l VI in a given conjugacy class. A matrix representing u l VI IS 

given by 

[ 
ae + kef a/if + ek(m l - e) ] 

UI~ = . 
ee-af - f kef -a(m l -e)-m l +e 

Its trace, which we denote by r, is given by 

r = traee(U I ~ ) = a(2e - m l ) + 2/ife + (e - m l ) (4.2.1 2) 

Also, det(U I ~) = det(U I ) det(~) = 1, as determinant of U I and ~ is 

asswned to be 1. Also 

U V,T = [ a/if + kem l - kee 
I I 

kef -ami +ae-m l +e 

ake - k
2
ef ] 

- kee + a/if + /if 

So, traee(U I ~ T) = k(2af - 2ee + f + em l ). Let traee(U I ~ T) = ks , so that, 

s = 2af - e(2e - m l ) + f (4.2.13) 

Hence, we have 

(4.2 .14) 

Since g = ul VI (or its dual ul VI t ) are not of order 2, the class to which we 

want them to belong do not consist of involutions, so that (ul VI )2 "* 1 and 

(ul vi) 2 "* 1. Thus the traces of the matrices U I ~ and U I ~ T are not equal to 

zero, by lemma 4.2. 1. Hence r "* 0, and s"* 0, so that we have e = r 2 "* 0; and it 
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is sufficient to show that we can choose a, c, e, f, k in F'", so that r 2 is indeed 

equal to (), and we choose it arbitrarily in Fq to satisfy the conditions, and we 

then choose r to satisfy () = r2. From equation (4.2 .14), we have 

ks 2 = 3 - ml
2 - r2 + r. If r2 - r "* 3 - m~, we select k according to the above 

argument. 

Any quadratic polynomial Az2 + J1Z + U, with coefficients in Fq takes at 

1 q + 1 d' . 1 east -- Istmct va ues, as 
2 

z runs through Fq; since the equation 

Az2 + J1Z + U = k has at most two roots for fixed k; and there are q elements in 

Fq , and q is odd. In particular, e2 - eml and _lif2 - 1 each take at least q + 1 
2 

distinct values as e and f run through F'". Hence we can find e and f so that 

e2 - eml = _lif2 -1. 

Finally by substituting the values of r, s, e, f, k in equations (4.2.13) and 

(4.2.14) we can find the values of a and c. Now these two equations are linear 

equations for a and c with determinant - (2e - ml)2 - 4lif2 = 4 - ml
2 , which is 

non-zero, so that we can find, a and c satisfying equation (4.3.10). 

Lemma 4.2.4 

Any two non-degenerate homomorphisms CY, T of G *)'" (2, Z) into 
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Proof 

Let (J : GO"" (2,Z) ~ G O" " (2,q) be the non-degenerate homomorphism 

such that UI ))I has parameter e constructed as in the proof of lemma 4.2.3. We 

also suppose that the non-degenerate homomorphism has the same parameter e. 

First, since there are just two classes of elements of order 2 in G O" " (2, Z), 

one in G O"" (2, q) and the other not, we can pass to a conjugate of r in which tr 

. [0 -k'] IS represented by 1 ° for some k' -:f:. ° in Fq . Then because U I rand tultr 

[
a' 

are both of order 3, u l r must be represented by a matrix 
c' 

k'c' ] and 
- a' - l 

because v I r is of order n and v I t r is of order 2, v I r must be represented by a 

matrix [
e' k'f' ~ 
f ' " m l -e 

with a', c', e', j', k' , satisfying the equations (4.2.3), 

(4 .2.6) and (4.2.7). Then e=r,2 =r2 , and (3-m~)-e+r=k 's' 2 . Hence 

e -:f:. 0, (3 - m12) - e + r -:f:. 0; so it fo llows that k'/ k is a square in Fq . 

• • . 3, 11 

Now vl(J and vir are both of order n and so are conjugate III G (2, q). 

So we can pass to a conjugate of r with VI(J = VIr. Then t(J and tr are 

involutions which inveli VI (J , and so belong to N « VI (J », there are two 

classes of such involutions, one in G O"" (2,q) and the other not. Because t(J is 

[0 -k] [0 -k'l 1 ° and tr is conjugate to 1 ° J and k'/ k is a square, t(J and tr either 

* 3,11 

both belong to G (2, q) or neither. Hence they are conjugate in N « VI a » . 
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That is, passing to a new conjugate, we can assume VI 0'" = vir, to'" = tr. This 

means that in the notations above, we can assume k' = k, f' = f and e' = e. We 

can also, by multiplying the matrix representing u l r by a scalar, assume, r = r' 

and s = s'. Then the equations (4.2.10), (4.2.11), (4.2.12) and (4.2.13) with 

a, c, e, f , k and then with a', c', e', f', k' and ensure that a = a', c = c'. That is, 

0'" = r. 

We now put together the lemmas (4.2.3) and (4.2.4) to obtain the 

following. 

Theorem 4.2.5 

.3,11 

The conjugacy classes of non-degenerate homomorphisms of G (2, Z) 

into G
o3

, .. (2, q) are in one to one correspondence with the non-trivial conjugacy 

classes of elements of G
o3

, .. (2, q) under a correspondence which assigns to any 

non-degenerate homomorphism 0'" the class containing (u l VI )0'". 

Proof 

.3.11 .3.11 

Let 0'" be a non-degenerate homomorphism of G (2,Z) into G (2,q) 

such that it maps U I , VI to UI , VI' Let () be the parameter of the class represented 

by ul VI ' Now 0'" is determined by u I ' VI and each () gives us this pair u I ' VI ' so 

that 0'" is associated with () . We shall call the parameter () of the class 

containing U I ' VI' the parameter of the non-degenerate homomorphism of 

.3.11 .3,11 

G (2, Z) into G (2, q). 
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[
ek - ak] 2 2 Now UIT = implies that det(UIT ) = - k(a + a + ke ) = k 

-a-1 -ek 

(by equation (4.2.10), Also 

(UIT)VI = [ eke - akf eee - ak(m l - e) ] 
- ae - e - ekf - akf - ek(ml - e) - kf 

implies that trac~(U,T)v.,) = 2cke- 2akf - ckm, - kf = - k(2af - 2cke + kf + ckm,) = -ks. If 

iii ' VI ' t satisfy the relations (4.2.1), then so do tii/, VI' t. So that the solutions of 

relation (4.2.1) occur in dual pairs. Hence replacing the solutions in lemma 4.2.3 

by tii/, v" t, we interchange r by - ks (where r = traee(UI V; », to get the new 

parameter ks 2
• We then find the relationship between the parameters of dual non­

degenerate homomorphisms. 

Corollary 4.2.6 

.3,11 .3,11 , 

If (J': G (2, Z) ~ G (2, q) is a non-degenerate homomorphism, (J' IS 

its dual and e, ¢ are their respective parameters then e + ¢ = 3 - m l
2 + r . 

Proof 

.3, 11 .3, 11 

Let (J': G (2,Z) ~ G (2, q) be a non-degenerate homomorphism 

satisfying the relations u l (J' = iii ' VI (J' = VI and t(J' = t. Let (J" be the dual of (J'. 

As in lemma 4.2.3 , we choose the matrices U I = [a ek], V; = [e !if 1 
k -a-1 f ml-e 

[
0 - k] _ .J ... 

and T = 1 0 ' representing iii ' VI and t , respectively, of G (2, q). Now by 
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lemma 4.2.1, we have trace(UI ~) = 0 if and only if (171 VI) 2 = 1. Also, we have 

{trace(UI ~ T)} / k = s = 0 if and only if (171 vJY = 1. 

Now det(UI ~) = 1, thus giving the parameter of 171 VI equal to r 2 = e, 
say. Also SInce trace(UI~T) = ks and det(UI~T) = k (since 

det(UI) = 1, det(~ ) = 1 and det(T) = k), we obtain the parameter of 171 VI t equal 

to ks 2
, which we will denote by ¢. Thus e + ¢ = r2 + ks 2

• Substituting the values 

from equation (4.3.14), we thus obtain e+¢=3-m~ +r. Hence if e is the 

parameter of the non-degenerate homomorphism (5', then ¢ = 3 - m~ + r - e is 

the parameter of the dual (5" of (5'. 

4.3 TRIANGLE GROUPS 

In this section we discuss the triangle groups 

11(3,n,k) =< Up VI : UI
3 = VI" = (UIVI)k = 1 >, where 3 ~ n ~ k. We shall find a 

condition in the form of a polynomial with integer coefficients for the existence of 

. f ,J... 3 " 2 2 2 
actlOnso G (2,Z) =< ul ,vpt:UI =VI =t =(ult) =(v/) =1 > on PL(F,,) , 

which yield !1(3,n,k) as groups of permutations defined on PL(Fq ), where q IS 

a prime congruent to ± 1 modulus k. 

For positive integers I , nand k, the triangle groups [2, 16] 11(l,n,k) are 

the groups with abstract presentation < Up VI : u/ = VI" = (u l vll = 1 > . When 

! + ~ + ~ > 1, this group is finite , and is one of the finite spherical groups (either 
1 n k 

cyclic or dihedral, or isomorphic to A4 , S 4 or A5) in pmiicular the 2 -sphere can 

be tessellated using a triangle whose interior angles are 7r, 7r and 7r When 
1 n k 
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1 1 1 
- + - + - = 1 the group is infinite but soluble and the Euclidean plane can be 
Ink ' 

tessellated using a triangle with angles 7r, 7r and 7r . Finally, if ! +..!. +..!. < 1, 
Ink Ink 

then the triangle group 6(3, n, k) is infinite but insoluble and the hyperbolic plane 

can be tessellated using a hyperbolic triangle with angles 7r, 7r and 7r 
Ink 

The triangle groups have long received special attention. They have been 

subjects of extensive study primarily by Brahana [3], Miller [20] and Sinkov [32]. 

In [27], it has been mentioned that in the finite case the triplet (I, n, k) can 

have the values (4, 3, 1), (4, 3, 2), (4, 3, 3), (4, 3, 4) and (4, 3, 5) , that is, when 

! +..!. +..!. > 1, and (2, 3, k) where k 2 6. Therefore the triplet attains the values 
Ink 

(2, 3, k) where k < 6 in the finite case and k 2 6 in the infinite case. 

It has been described in [25] that 6(2,3, k) is trivial, S3' A4 , S5 and A5 if 

k = 1,2,3,4 and 5 respectively. The group 6(2,3, k) when k = 6, deserves 

special treatment. It is an extension by the cyclic group C6 , of a free Abelian 

group of rank 2, and in particular is soluble. This group has been studied 

extensively in [20] and [22]. 

When k = 7, the group 6(2, 3, k) has been investigated extensively 

because of the fact that Hurwitz groups are non-trivial quotients of these groups. 

A detailed account of these groups is available in [25], [33] and [34]. 

Eviritt [14] and [15] has shown that the triangle group 6(2, q, r) IS a 

homomorphic image of 6(p, q, r) for p even and possesses Higman-property, 
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that is, each of /).(p , q, r) for 1 1 1 l' . h h' - + - + - < contams among Its omomorp Ie 
Ink 

images all but finitely many of the alternating or symmetric groups. He has 

further proved that: 

a. /)'(3,3, r) has Higman-property for all r ~ 4. 

b. /)'(3, 5, r) has Higman-property for all r ~ 40. 

c. /),(3, q, r) possesses Higman-property for all q ~ 7 pnme and 

r ~ 4q. 

Actions of the extended modular group on PL(F,,) have been 

parametrized by Mushtaq in [26]. In [25], Mushtaq has parametrized actions of 

/)'(2,3, 7) on PL(F:). It has shown that if f} is a root of the equation 

f}3 - 5f} 2 + 6f} - 1 = 0 in F:, ,where q satisfies the conditions of Macbeath [18], 

then corresponding to f} there exists a pair (x, y) such that x2 = y3 = (xy) 7 = 1. 

In [22] and [25], conditions in form of equations are found whose roots in 

F", for suitable prime numbers q, guarantee only those actions of PGL(2,Z) on 

PL(F,,) which evolve /).* (2, 3, 6) and /).* (2,3, 7). 

Now we have devised a method by which we can obtain /).* (3, n, k) 

through the actions of 
.3 ,11 

G (2, Z) on P L( F" ) by using the parametrization 

technique as developed in lemma 4.2.3. We will see in the following that the 

method evolves polynomials I(f}) E Z[z] such that for each root of I(f}) = 0 in 

F" , for suitable q, there exists a triplet of linear-fractional transformations 
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(UI , VI , t) such that they satisfy the relations UI
3 

= VI" = t 2 = (UI t) 2 = (VI t) 2 = 1 

and generate the group f..0 (3, n, k ) . 

Theorem 4.3.1 

If k is a prime number and q == ±l(modk) then there exists a polynomial 

f E Z[ z] such that corresponding to each zero () of f there exists a pair U, V of 

elements of G oJ ... (2, q) such that U
I
3 = VI" = (u

l 
VI ) k = 1. 

Proof 

We suppose that the matrix M is a product of two non-singular 2 x 2 

matrices U I and VI corresponding to ul and VI of 

characteristic equation of U I V; IS 

.3 , 11 

G (2,q) . Then, the 

(4.3.1) 

Here, the determinant of M = f.. and the trace of M = r. Equation (4.3.1) 

implies that, 

(4.3.2) 

Multiplying equation (4.3.2) by UIV; on both sides. We obtain, 

(4.3.3) 

Substituting the value of (UI V;)2 from equation (4.3.2) in equation (4.3.3), 

we get 
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(4.3.4) 

On recursion, equation (4.3.4) yields 

(4.3.5) 

Furthermore, if we let, 

f( ) - (k-I) k-I (k-2) k-3 r - 0 r - I r + ... (4.3.6) 

We can then substitute () for r 2 111 fer) and obtain a polynomial, say 

f, in () . 

Note that U I ~ has order k if (U I ~)k is a scalar multiple of the identity 

matrix. This happens if f(()) = O. Since k is prime and q == ±l(modk), there 

will be k -1 zeros of f(()) = 0 and each zero (); of f(()) = 0 will yield a pair 
2 

of linear-fractional-transformations u, v of elements of G 3
•

11 (2, q) such that 

- 3 -II (--)k 1 u l = VI = U I VI =. 

When k is not a prime, we have the same conditions as given theorem 

5.5.4 and theorem 5.5.5. 

We conclude here by mentioning that we have dealt with the actions of 

GO)." (2, q) on PL(Fq ) which yield triangle groups 11(3,n, k) where q is 

congruent to ± 1 modulus k and 3::::; n::::; k . In the case where q is incongruent 

to ± 1 modulus k, the group G 3,1I(2,q) does not contain any element of order k, 

so its action is not faithful. 
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In the following, we list conditions in form of equations f(O) = 0 for the 

existence of triangle groups /),(3, n, k) where 1 :s; k :s; 20. 

Triangle Minimal equation satisfied by 0 

grouJ:! 

/),(3, n,1) 0 - 4= 0 

/),(3 , n,2) 0 = 0 

/),(3, n,3) 8 - 1= 0 

/),(3, n,4) 8 -2= 0 

/),(3 , n,S) 02 -30 + 1 = 0 

/),(3, n,6) 8-3=0 

/).(3 ,n,7) 0 3 
- S02 + 60 - 1 = 0 

/),(3, n,8) 02 - 40+2 = 0 

/),(3, n,9) 0 3 
- 602 + 90 - 1 = 0 

/),(3, n,1 0) 02 - SO + S = 0 

/).(3,n,1l) 8 5 -98 4 +288 3 -358 2 +158 - 1= 0 

/),(3, n,12) 8 2 
- 48 + 1 = 0 

/),(3 , n,13) 86 
- 1185 + 458 4 

- 848 3 + 708 2 
- 218 + 1 = 0 

/).(3 ,n,14) 86 - 12085 + 5584 - 12083 + 1268 2 
- 568 + 7 = 0 

/),(3 , n,1S) 8 7 
- 1386 + 6685 

- 16584 + 21083 
- 12682 + 288 - 1 = 0 

88 



Triangle Minimal equation satisfied by f} 

~ 

L1(3, n,16) ()6 -12()5 + 54()4 -112()3 + l06() 2 - 40() + 4 = 0 

L1(3, n,17) ()8 -15()7 + 91()6 - 286()5 + 495()4 - 462()3 + 21 O()2 - 36() + 1 = 0 

L1(3, n,18) ()6 - 12()5 + 54()4 - 11 2()3 +l05()2 -36()+3= O 

L1(3, n,19) ()9 _17()8 +12Q97 -45::ti +100195 -12876'4 +924)93 -33Q92 +45()-1 = 0 

L1(3,n,20) ()8 -17()7 +104()6 -352()5 + 661()4 -680()3 + 356()2 -80()+5=O 
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CHAPTER FIVE 

~ (3,3, k ) AND 

G *3 , 3 (2, Z ) 

PARAMETRIZATION OF ACTIONS OF 

5.1 INTRODUCTION 

In this chapter, we want to deal with 

~(3 , 3 , k) =< u, v: u3 = v3 = (UV) k = 1 > , k"* 3, we need a triangle with angles 

7r 7r 7r S· 7r 7r 7r d h· . h 1 Th - , - , -. 111ce - + - + - "* 7r we cannot 0 t IS 111 t e pane. us we can 
3 3 k 3 3 k 

replace the plane by the sphere if k < 3 or by a hyperplane if k > 3. If k < 3 , the 

group is finite, because there are only a finite number of triangles. 

Also, we parameterize the conjugacy classes of non-degenerate 

homomorphism which represent actions of ~(3,3 , k) =< u, v: u3 = v3 = (UV) k = 1 > 

on PL(Fq ) where q == ± l(modk). Also, for various values of k, we shall find 

the conditions for the existence of coset diagrams depicting the permutation 

actions of ~(3, 3, k) on PL(Fq ). The conditions are polynomials with integer 

coefficients and the diagran1s are such that every vertex in them is fixed by 

(u v ) k . In this way, we get a homomorphic image of ~(3,3 , k) as permutation 

groups on PL(Fq ). 
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In second section of this chapter, we have shown that any non- degenerate 

homomorphism from G3,3 (2,Z) into G3'\2,q) can be extended to a 

.3 ,3 +3,3 

homomorphism G (2,Z) into G (2,q). It has been shown also that every 

element in G 3
,3 (2, q), not of order 1 or 3 is the image of uv under some non­

degenerate homomorphism. We have parameterized the conjugacy classes of non­

degenerate homomorphism cr with the non-trivial elements of Fq • 

The group il(3,3, k) IS the triangle group with presentation 

< u, v: u 3 = v 3 = (UV)k = 1 > . Let q be a prime power and Fq denote the finite 

field of order q. A one-to-one correspondence can be established between the 

conjugacy classes of non -degenerate homomorphisms 

.3 . 3 .3.3 

cr : G (2, Z) ~ G (2, q), under the action of mner automorphisms of 

GO) , ) (2 ,q), and the non-trivial conjugacy classes of elements of GO) ' ) (2,q) such 

that the correspondence assigns to any non-degenerate homomorphisms cr the 

class containing (uv)cr. In this chapter we have considered the conjugacy classes 

which arise from the action of il(3,3,k) on the projective line over Fq . 

It is well known in [13] that il(3,3, k) is finite precisely when k = 1, 2 : 

il(3,3, k) is respectively C3 and the alternating group A4 , being isomorphic to the 

group of rotations of the regular tetrahedron. The group il(3,3, k) is infinite for 

k c. 3. 

In [11], it has been mentioned that il(3,3,k) for k = 3 is soluble, its 

commutator subgroup is a free abelian group on two generators, and the 

associated factor commutator group is cyclic of order k. It has been described in 

[1 5] that il(3,3, k) possesses Higman property that an infinite triangle group 
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contains among its homomorphic images of all but finitely many of the All or SII 

groups for k ~ 4. 

5.2 COSET DIAGRAMS FOR THE TRIANGLE GROUP ~ (3,3, k) 

We use coset diagrams as defined in chapter one for the group 

G O),) (2,Z) and study its action on PL(Fq ) . For example, the following diagram 

depicts a permutation representation ofthe G O) , ) (2, Z) on P L(F?) in which: 

u acts as (1 0 (0)(2 4 6)(3)(5), 

v acts as (0 6 (0)(1 3 5)(2)(4), and 

t acts as (0 (0)(2 4)(3 5)(1)(6) , 

represent the group ~(3,3,7). The coset diagram is as under: 

5 3 e:: ---- _. 
... "..,. 

... "..,. 

oLoo 
... " ... 

2 4 
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5.3 RELATION BETWEEN THE NON-DEGENERATE 

HOMOMORPHISMS AND THE PARAMETERS 

.3,3 .3,3 

A homomorphism 0": G (2,Z) ~ G (2,q) is called a non-degenerate 

homomorphism, with the orders of u and v are the same as the orders of (u)O" 

and (v)O" , if neither of the generators u, v lies in the kernel of 0". The group 

.3, J 

G (2,q) has a natural permutation representation on PL(F,) and therefore any 

non-degenerate homomorphisms 0" and r are called conjugate if r = O"p for 

some inner automorphism p of 

respectively by u, v and t. 

. ] ,) 

G (2,q). We denote UO", vo" and to" 

We now give the method by which, for any () in F',/, we can find a non­

trivial conjugacy class of pairs (u, v) and corresponding to this class we can 

construct a coset diagram depicting the action. 

5.4 PARAMETRIZATION OF THE ACTIONS 

Let U ~ [ : :] be an element of G L (2, q) which yields the element ii of 

G O],] (2,q). Then, since u3 = 1, U 3 is a scalar matrix, and hence the determinant 

of U is a square in Fq . Thus, replacing U by a suitable scalar multiple, we 

assume that the determinant of U is equal to one. 

Since, for any matrix M, M3 = AI if and only if (trace(M)) 2 = det(M) . 

So, we may assume that trace (U) = a + d = - 1 and det( U) = 1. Thus 

[
a b] U = 
c -a- I ' 

Similarly, V = [e f]. 
g - e - 1 

Since iT 3 = 1 
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implies that the trace(li ) = - 1, every element of GL(2, q) of trace equal to - 1 

has upto scalar multiplication, a cot\iugate of the form [~ = :J We can therefore 

[0 -1] assume that U has the form . 
1 -1 

Now let a matrix corresponding to t, be represented by T = [~ ~ J 
Since t 2 = 1, the trace of T is zero. So, upto scalar multiplication, we can assume 

- [0 -k] - 2 - 2 that the matrix representing t has the form 1 0' Because (lit) = (v t ) = 1, 

the trace of lit and vt is zero and so b = kc and f = gk. 

Thus we can take the matrices corresponding to generators li, v and t of 

.J,J 

G (2, q) as: 

U= [
a kC ] 
c -a-I ' 

where a, c, e, g , k E Fq • Then, 

(5.4.1) 

and 

(5.4.2) 

because the determinants of U and V are one. 
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This certainly evolves elements satisfying the relations 

U3 = V 3 = AI, where A is a scalar and I is the identity matrix. The non-

degenerate homomorphism 0' IS determined by U, v because one-to-one 

correspondence assigns to 0' the class containing uv. So we only have to check 

on the conjugacy class 

[ 
ae + gkc 

UV = 
ec - ag - g 

agk - kce - kc ] 

gkc + ae + a + e + 1 

r = a(2e + 1) + 2kgc + (e + 1) 

Also 

of uv. The 

has the trace 

UVT = [ agk - ge c - kae - kce - kC] . 
gkc + ae + a + e + 1 - kec + gka + kg 

If trace(UVT) = ks, then 

s = 2ag - c(2e + 1) + g 

So the relationship between (5.4.3) and (5.4.4) is 

We set 

matrix 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

Now for each conjugacy class of pairs (u, v) we can draw a coset 

diagram. 
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By D(B,q), we shall mean a coset diagram associated with the conjugacy 

.3.3 .3,3 

class of non-degenerate homomorphisms (J' from G (2, Z) into G (2, q) 

corresponding to B E Fq . 

5.5 A CONDITION FOR THE EXISTENCE OF CERTAIN COSET 

DIAGRAMS 

As we have mentioned earlier, in this chapter we shall concentrate on the 

group .0.(3,3, k) , where k > 2. We shall also discuss in particular the special case 

when 8 = 3. We shall use the coset diagrams to determine the group .0.(3,3, k) . In 

order to do so, we shall find a condition for the existence of a coset diagram in 

which every vertex is fixed by (UV)k . 

For each 8 in Fq , there exists a non-trivial conjugacy class of pairs U, v 

of elements of G O), ) (2,q), where both u and v are of orders 3. Each pair u, v 
.3 . 3 .3,3 

determines the non-degenerate homomorphism (J' from G (2,Z) to G (2,q). 

Once we have obtained U, v we can draw a coset diagram depicting the 

permutation action of (uv) on PL(Fq ). Here we are interested in coset diagrams 

in which every vertex is fixed by (UV) k. Finally we will concentrate on a 

particular case, that is, when 8 = 3. Such diagrams exist for certain 8 in ~J and 

these 8 ' s are special in the sense that they satisfy certain polynomial equations. 

That is, for the solution 8' s of polynomial f(8) , obtained from the relation 

(UV)k = 1. we get certain diagrams in which every vertex is fixed by (UV) k 

depending upon the value of k. We shall consider the cases for all k > 2, as the 

case is trivial when k = 1 and for k = 2, 8 has only one root, that is, O. The 
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following theorem gives a method for finding a condition for the existence of a 

coset diagram in which every vertex is fixed by (uv/. That is, it will give a 

condition for the existence of a coset diagram for the homomorphic image of 

,0.(3,3, k) on PL(Fq ). 

Theorem 5.5.1 

Let U and V be two non-singular 2 x 2 matrices corresponding to the 

generators u and v of G*)') (2,q). Let det(UV) = 1 and its trace be r. Then for a 

positive integer k 

(S.S.I) 

Proof 

Since det(UV) = 1 and trace of UV IS r, therefore the characteristic 

equation of UV is 

(UV)2 -rUV +1 = ° (S.S.2) 

On recursion, equation (S.S.2) yield 

(S.S.3) 

Corollary 5.5.2 

Let k be any positive integer greater than 2. Then, 

(i) if k = 2n + 1 and n > 0, then 
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(ii) if k = 2n for all positive integers n, then 

Theorem 5.5.3 

If k is a prime integer and q = ±l(modk) then there exists a polynomial 

g m Z[ z] such that corresponding to each zero e of g the diagram D( e, q) 

depicts an action of ~(3,3,k) on PL(Fq ). 

Proof 

If e and q are known we can determine (by using equations (S.4 .1) to 

(S.4.6)) U, v and 1; and thus can draw a coset diagram corresponding to the 

conjugacy class of non-degenerate homomorphisms representing the natural 

. .3.3 

actIOn of G (2,Z) on PL(Fq ). 

Furthermore, by equation (S.S.3), if we take, 

f( ) =(k-I) k-I _(k-2) k-3 r 0 r I r + ... (S.S.6) 

We can substitute e for r2 in fer) and obtain a minimal polynomial, 

say g in e. 

Now (UV) has order k if and only if (UV)k is a scalar multiple of the 

identity matrix 1. This happens if and only if gee) = O. Since k is prime and 
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k - l 
q == ±(modk), there will be -- zeros of g(B) = 0 and each zero Bj of 

2 

g( B) = 0 will yield a coset diagram in which every vertex is fixed by (uvy , 

where UV =1:- 1. Since no non-trivial linear-fractional transformation fixes more 

than two vertices in D( B, q) , we have (uv/ = 1. Thus, for each zero Bj of 

g( B) = 0, there will exist a coset diagram D( B, q) depicting the action of 

ti(3 ,3,k) on PL(F,, ). 

When k is not a prime, we have two cases to deal with, namely, 

(i) when k is odd, and 

(ii) when k is even. 

In the following we deal with them separately. 

Theorem 5.5.4 

If k is a positive odd integer (which is not a prime) and q == ±l(modk) 

then g(B) = 0 splits in F" into equations gk ,A B) = 0 and g(B) = 0 where d IS 

the least prime divisor of k , and 

(i) if Bj is zero of g kId (B) = 0 then D( Bj , q) depicts an action of 

ti(3,3, k / d) on P L(Fq ) , and 

(ii) if ep j is zero of g k (B) = 0 then D(ep j ' q) depicts an action of 

ti(3,3,k) on PL(F,,). 
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Proof 

The proof is similar to theorem 5.5.3 except that in equation (5.5 .6) we 

substitute k id for k, where d is the least prime divisor of k. Note that 

gee) = gk ld (e)gk (e). 

Theorem 5.5.5 

If k > 2 is an even integer and a positive integer d divides k, where 

d < k and q = ±l(modk), then gee) = e(IT(dlk )gk ld(e» and corresponding to 

each ei , where g k (e i ) = 0, there exists D( ei' q) depicting an action of 

!::.(3 ,3,kld) on PL(Fq ) . 

Proof 

Since k> 2 is an even integer, then gee) will split in Fq into factors 

namely, gkl2 (e) and gk (e), where gk l2 (e) is obtained from equation (5.5 .6) by 

taking kl 2 instead of k and gk(e) = g(e)/gkI2 (e). 

If k 12 is prime, we proceed as in theorem 5.5.3 and if k 12 is odd, we 

proceed as in theorem 5.5.4. If k l2 is even, the polynomial gkl2 (e) splits into 

factors , gk l4 (e) and gil (e) where gk l4 (e) is obtained from equation (5.5 .6) by 

replacing k by k 14. Here gil (e) = gkl2 (e)/ gk l4 (e). We continue in this way 

(keeping in mind when k 12 is prime, odd or even) until we get no more factors. 

In this way, we get gee) = e(ITdlkgk ld(e». If ei is zero of gk/Ae) = 0, then 

every vertex of D( ei , q) will be fixed by (uv) kid where d < k and UV =I; 1. Again 

by the fact that no non-trivial linear-fractional transformation fixes more than two 
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vertices in D(e,q), we get (UV)k/d = 1. So, the diagram D(e,q) will depict an 

action of ~(3,3, k / d) on PL(Fq ) . 

5.6 CONJUGACY CLASS CORRESPONDING TO e = 3 

Considering the case for e = 3, we observe that this is the only parameter, 

which gives the coset diagrams D(3, p) for the actions of ~(3 ,3 , k) on 

PL(Fq ). Thus, we have proved the following theorem. 

Theorem 5.6.1 

For any coset diagram D(e,p), where p = 12n±1 for a positive integer 

n, e = 3 if and only if uv has order 6. 

Proof 

Put k = 6 in equation (5 .5.6), then fer) = r 5 
- 4r 3 + 3r. As e = r2, we 

can substitute e for r2 in f er) and obtain a polynomial in e . Now (UV)6 is a 

multiple of I if fer) = O. That is, r(r 4 - 4r 2 + 3) = O. Substituting r 2 = e , we 

get r(e 2 - 4e + 3) = O. If we take r = 0 then e being equal to r 2 will be zero 

and so the class of non-degenerate homomorphisms a will contain involutions. 

That is, in this case we will get (UV) 2 = 1, which gives us a group known as the 

tetrahedral group of order 12 [1 3]. Since we are taking k to be different from 2 

therefore r =F- O. 

Hence f(B) = B2 - 4B + 3 = (B - 1)(B - 3) = O. 
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Again () = 1 evolves a conjugacy class of non-degenerate homomorphism 

(J": .6.(3,3,3) ~ G· (2,q) . This implies that () = 3 if and only if (17V) 6 = 1. 

As an illustration, we now give an exan1ple for () = 3. 

Example 5.6.2 

The coset diagram D(3,13) IS a homomorphic Image of an action of 

.6.(3,3,6) on PL(F13)' 

Proof 

By equation (5.4.6), () = r 2 and so r 2 = 3 == 16 implies that r = ±4. Let 

us take r = 4. Now substitute the value of r in (5.4.5) and suppose that k = 1. 

We get S2 = 3 == 16 implying that s = ±4. Let us choose s = 4. If we suppose 

e = 0 in equation (5.4.2) we have /2 = -1 == 25, that is, / = ±5. Suppose / = 5 

and substitute the value of r , s, d , k and / in equations ( 5.4.3) and (5.4.4) to 

obtain 3 = a + 10c and - 1 = 1 Oa - c. Solving these equations for a and c we get 

a = -2 and c = 7. Thus U = , V = , and T = . So, om [-2 7] [0 5] [0 -1] 
7 1 5 - 1 1 0 

. . . '11 b - - 2z + 7 - 5 - - 1 . 1 prOjectIve Images WI e u : z ~ , v :~ --, t ;z ~ - respectIve y, 
7z +1 5z -1 z 

where z E PL(F) 3)' 

The linear-fractional transformation 17, v and t act respectively as: 

(0 7 10)(1 12 5)(2 8 6)(9 11 (0)(3)(4), 

(0 8 (0)(1 11 9)(3 5 4)(7 12 10)(2)(6), and 
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(0 (0)(1 12)(2 6)(3 4)(7 11)(9 10)(5)(8) yielding the coset diagram 

D(3,13) : 

7 

12 ~--~----~~-~-~-~-~-=-~-~~--~----~ 1 

6 2 

... "-
... "-... .... 

~- ----2. 
4 3 

We note that each vertex of the diagram is fixed by (uv) 6 . As no non­

trivial linear-fractional transformation can fix more than two veliices therefore 

(UV)6 = 1. Thus; the above coset diagram D(3,13) is a homomorphic image of 

1l(3,3,6). 
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4.7 CONJUGACY CLASSES OF THE NON-DEGENERA TE 

HOMOMORPHISM 

In this section, we have parametrized the actions of G
o 3

, 3 (2, Z) on 

P L(Fq ) , except for a few uninteresting ones, by the elements of Fq . It is also 

proved that the conjugacy classes of non-degenerate homomorphism (J' are in 

one-to-one correspondence with the conjugacy classes of non-trivial elements of 

G
03

, 3 (2, q), under a correspondence which assigns to the homomorphism (J' the 

class containing (uv)(J'. Of course, this will mean that we can actually 

.J,J 

parametrize the actions of G (2,q) on PL(Fq ) , except for a few uninteresting 

ones, by the elements of Fq • We have developed a useful mechanism by which 

one can construct a unique coset diagram, attributed to Graham Higmam [26], for 

each conjugacy class of these non-degenerate homomorphism which depict the 

.3.3 

actions of G (2 ,Z) on PL(F:). 

z-1 -1 1 
The transformations u: z ~ --, v : z ~ -- and t: z ~ - generate 

z z+ 1 z 

G
03

, 3 (2 ,Z) , subject to defining relations (1.3.2). Thus to choose a homomorphism 

.3 , ) .3, J 

(J':G (2,Z)~G (2,q) amounts to choosing u=u(J', V=V(J' and t=t(J', in 

.3.3 

G (2, q) such that 

-3 -3 -2 (--)2 (--)2 1 u = v = t = ut = vt = (5.7.1) 

Both G 3,3(2,Z) and G
o3

, 3 (2,Z) have index 2 in their automorphism 

. .3.3 
groups. Let 0 be the automorphIsm on G (2,Z) defined by uo = tut, vo = v, 

and to = t. The homomorphism (J" = 0(J' is called the dual homomorphism of (J'. 
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This, of course, means that if a maps u, v, t to u, v, t , then a' maps u, v, t to 

tut, v, t respectively. Since the elements u, v, t as well as tut, v, t satisfy the 

relations (5.7.1), therefore the solutions of these relations occur in dual pairs . Of 

course, if a is conjugate to r then a' is conjugate to r '. The parameter of a, 

or of the conjugacy class containing a, is the parameter of uv. 

Thus for each e, which is a square in Fq , there exists a unique coset 

diagram. It is unique for e in Fq in the sense that the diagram is the same except 

for the labels for any element in the conjugacy class that, it represents; only the 

vertices vary. Hence if we know e, we can find some homomorphism a and 

hence, we can draw a coset diagram. 

We define a pair u, V, satisfying the relations u3 = v3 = 1, in G 3
•
3 (2,q) 

to be invertible if there exists tin G*3.3 (2,q) such that t 2 = 1, Fut = u- I and 

tvt = V-I. 

5.8 PARAMETERS FOR THE CONJUGACY CLASSES OF 

G *J·J (2,q) 

If the natural mapping GL(2,q) ---) G*3.3 (2,q) maps a matrix Mto the 

,3.3 (tr(M)/ 
element g of G (2, q) then () = is an invariant of the conjugacy class 

det(M) 

of g . We refer to it as the parameter of g or of the conjugacy class. Of course, 

every element in Fq is the parameter of some conjugacy class in G*)') (2,q). For 

instance, the class represented by a matrix with characteristic polynomial 

Z2 - (}z + e -:F 0 if e -:F 0 or Z2 - 1 if e = 0 . 
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If q is an odd and g is not an involution, then g belongs to G 3'\2, q) if 

az +b 
and only if 8 is a square in Fq • On the other hand, g: z ~ , where 

ez+d 

a, b, e, d E F
q

, has a fixed point in the natural representation of GO]' ] (2, q) on 

PL(~/) if and only if the discriminant, a2 + d 2 
- 2ad + 4be, of the quadratic 

equation e e + k( d - a) - b = 0 is a square in ~/ . Since we have the determinant 

ad - be is 1 and the trace a + d is r , then the discriminant is (8 - 4). Thus, g 

has fixed point in the natural representation of G O] ' ] (2, q) on PL(Fq ) if and only 

if (8 - 4) is a square in ~/. 

With the help of equation 5.5.6, we can construct the following table. 

k Equation satisfied by 8 
-

1 8=4 

2 8=0 

3 8 - 1 = 0 

4 8 -2= 0 

5 8 2 -38 + 1 = 0 

6 8 -3= 0 

7 8 3 
- 58 2 + 68 - 1 = 0 

8 8 2 
- 48 + 2 = 0 

9 8 3 
- 68 2 + 98 - 1 = 0 
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10 8 2 -58 + 5 = 0 

11 8 5 -98 4 +288 3 -358 2 +158-1=0 

12 8 2 
- 48 + 1 = 0 

13 8 6 
- 1185 + 4584 

- 8483 + 70e 2 
- 218 + 1 = 0 

14 8 6 - 12085 + 5584 - 12083 + 12682 
- 568 + 7 = 0 

15 8 7 - 1386 +6685 - 16584 +21083 - 12682 +288-1=0 

16 8 6 
- 128 5 + 548 4 

- 112 8 3 + 106 8 2 
- 408 + 4 = 0 

17 8 8 -158 7 + 918 6 
- 2868 5 + 4958 4 

- 4628 3 + 2108 2 
- 368 + 1 = 0 

18 8 6 - 128 5 + 548 4 
- 112 8 3 + 105 8 2 - 36 8 + 3 = 0 

19 8 9 -17 8 8 + 1208 7 
- 4558 6 + 10018 5 -12878 4 + 92428 3 

-

3308 2 + 458 - 1 = 0 

20 8 8 
- 178 7 + 104 8 6 

- 352 8 5 + 6618 4 
- 680 8 3 + 

356 8 2 
- 808 + 5 = 0 

Lemma 5.8.1 

If t inverts both; and ~ of G
o3

,3 (2, q), then ;~ is of order 3 or 1. 

Proof 

From section 5.4, we have 

T = [/ m ] , where 
n -/ 
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kg 2 + e2 + e + 1 = 0 (5.8.1) 

Let trace(UV) = r = gk - g + e + 1 implies gk - g = r - e - 1. We note 

that the det(UV) IS - g 2 k _ e 2 _ e = -(g 2 k + e 2 + e) = 1 . Because, 

-2 -- --
t = (ut)2 = (vt)2 = 1, then by lemma 4.2.1, m = n -I and so 

(2e - g + 1)1 + (gk + g)n = 0 (5.8.2) 

Now for T to be a non-singular matrix, we should have det(T) * 0 , that 

d~Y .~ IS : 

(5.8.3 

-
Thus the necessary and sufficient conditions for the existence of t 

.3.3 - .3. 3 

G (2,q) are the equations (5.8.2) and (5.8.3) . Hence t exists in G (2,q) 

unless nl _ 12 - n2 = O. Of course, ifboth 2e - g + 1 and gk + g are equal to zero, 

then the existence of t is trivial. If not, then !... = - (gk + g) , and so equation 
n (2e - g + 1) 

(5.8.3) is equivalent to (gk + g)2 + (2e - g + 1)2 + (2e - g + 1)(gk + g) * O. Thus, 

there exist, t III such that 
-2 -- --
t = (ut) 2 = (vt) 2 = 1 unless 

(gk+g) 2+(2e-g+ 1)(gk+g) =-(2e-g +1/. But if (gk+ g)2+ (2e-g+ 1) 

(gk + g) = -(2e - g + 1) 2 , then, 

+ gk + g = - (4 e 2 + g 2 + 1 + 4 e - 2 g - 4 eg ) = - [4 e 2 + 4 e + 1 + 

g2 _ 2g - 4eg] = _{4g2k_3+g 2 -2g- 4eg]. Simplification gives: 

(gk - g) 2 + (gk - g) + 2e(gk - g) - g 2 k = 3 (5.8.4) 
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Since gk - g = r - e - 1, equation (S.8.4) can be further simplified as: 

r2 - r - 2 = 0 (S.8.S) 

Equation (S.8 .S) implies that r2 - 2 = r. Squaring both sides of this 

equation we obtain r4 + 4 - 4r2 = r2. Now substitute r2 = 8 to obtain 

8 2 
- S8 + 4 = 0 which gives 8 = 1, 4. 

Now, 8 = 1 implies that the order of uv is 3 and 8 = 4 implies that the 

order of uv is 1. 

Next, we shall find a relationship between the parameters of the dual 

homomorphism. We first prove the following. 

Lemma 5.8.2 

Any non-trivial element g of G
o3

•

3 

(2, q) whose order is not equal to 1 or 3 

.3,3 

is the image of uv under some non-degenerate homomorphism (J' of G (2, Z) 

. .3,3 

mto G (2,q). 

Proof 

Using lemma S.8.1, we show that every non-trivial element of G
03

•

3 

(2,q) 

-
is a product of two elements of order 3. So we find elements u, v and t , satisfying 

the relations (S.7.1) with uv in a given conjugacy class. 

The class to which we want uv do not consist of involutions because 

g = uv is not of order 2. Thus the traces of the matrices UV and UVT are not 
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equal to zero, by lemma 4.2.1. Hence , =t:- 0 , and s =t:- 0, so that we have 

() = ,2 =t:- 0 ; and it is sufficient to show that we can choose a, c, e, k in Fq so that 

,2 is indeed equal to (). The solution of () is therefore arbitrarily in Fq . We can 

choose, to satisfy ,2 = () . Equation (5.4.5) yields ks 2 = 2 +' _,2. If ,2 =t:- 2 +, 

we select k as above. 

Any quadratic polynomial Az2 + f.1Z + v , with coefficients in Fq takes at 

1 q + 1 d' . 1 east -- Istmct va ues, as 
2 

z runs through F;,; since the equation 

Az2 + f.1Z + v = k has at most two roots for fixed k; and there are q elements in 

2? q + 1 F;" where q is odd. In particular, e + e and - kg- -1 each take at least --
2 

distinct values as e and f run through F;,. Hence we can find e and f so that 

e2 + e = _kg 2 - 1 (equation 5.4.2). 

Finally by substituting the values of ',s,k,e,g in equations (5.4.3) and 

(5.4.4) we obtain the values of a and c. These equations are linear equations for 

a and c with determinant - (2e + 1)2 - 4kg 2 = 3. It is non-zero, so that we can 

find a and c satisfying equation (5.4.1). 

It is clear from (5.4.5) and (5.4.6) that () = 0 when, = 0 and () = 1 or 4 

when s = O. The possibility that () = 0 gives rise to the situation where uv is of 

order 2. Similarly, the possibility () = 1 leads to the situation where uv is of order 

3, and similarly () = 4 yields uv is of order 1. 
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Lemma 5.8.3 

Any two non-degenerate homomorphism a , r of G O)') (2, Z) into 

G O)') (2 ,q) are conjugate if (uv)a = (uv)r . 

Proof 

Let a: G O) ') (2 ,Z) ---+ GO ),) (2 ,q) be the non-degenerate homomorphism 

such that uv has parameter () constructed as in the proof of lemma 5.8.2 . We 

.3 ,3 . 3. 3 

also suppose that the non-degenerate homomorphism r : G (2, Z) ---+ G (2, q) 

has the same parameter () . 

First, since there are just two classes of elements of order 2 in G O) ') (2, Z), 

one in G O) ' ) (2, Z) and the other not, we can pass to a conjugate of r in which tr 

[
0 - k'1 is represented by 1 ° for some k' =t ° in F;,. Then because ur and vr are 

[
a' k'C'] both of order 3, ur must be represented by a matrix, , and vr must 
C - a-l 

be represented by a matrix e g, with a', c', e', g', k' satisfying the [ ' k"] 
g ' -e'-l 

equations (5.4.1), (5.4.2) and (5.4.3). Then and 

(2 + r) - () = k'S,2 = ks2 . Here since () and (2 + r) - () are non-zero, so it follows 

1 k' . . F tlat - IS a square III q' 
k 

. 3,:1 

Now va and vr are both of orders 3 and so are conjugate in G (2,q). 

So we can pass to a conjugate of r with va = vr . As to' and tr are involutions 
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which invert vo-, and so belong to N( < vo- » there are two classes of such 

involutions, one in G' (2,q) and the other not. Because to' is [~ -Ok] and IT is 

[
0 - k'] k' conjugate to and - is a square, to- and tr either both belong to 
10k 

G O] , ] (2, q) or neither. Hence they are conjugate in N ( < vo- » . That is, passing to 

a new conjugate we can assume vo- = vr , to- = tr. This means that in the 

notations above, we can assume k' = k , g = g' and e = e'. We can also, by 

multiplying the matrix representing ur by a scalar, assume r = r' and s = s' . 

Then the equations (5.4.1), (5.4.2), (5.4.3) and (5.4.4) with a, c, e, k, g and then 

with a', c', e', g', k' and ensure that a = a' and c = c' . That is 0- = r. 

Theorem 5.8.4 

.3,3 

The conjugacy classes of non-degenerate homomorphism of G (2, Z) 

into G O]'] (2,q) are in one-to-one correspondence with the non-trivial conjugacy 

classes of elements of G O]'] (2 ,q) under a correspondence which assigns to any 

non-degenerate homomorphism 0- the class containing (uv)o-. 

Proof 

.3,3 .3 , 3 

Let 0-: G (2,Z) ~ G (2,q) be a non-degenerate homomorphism such 

that it maps u, v to u, v. Let e be the paran1eter of the class represented by uv. 

Now 0- is determined by u, v and each e evolves a pair u, v so that 0- is 

associated with e. We shall call the parameter e of the class containing uv , the 
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.3 , 3 .3 , 3 

parameter of the non-degenerate homomorphism of G (2,Z) into G (2,q). 

Now 

[ 
ck -ak] UT-

- a-I -ck 

implies that det(UT) = - k( a2 + a + kc2) = k (equation 5.4. 1). Also, 

( ) 
[ 

kec-akg k 2gc +ak(e+l)] 
UT V= 

- ae - e - kgc - akg - kg + ck(e + 1) 

implies that trac~(JJT)V) = 2kec- 2akg- kg+ kc = -l(2akg- 2kec+ kg- kc) = -ks. If 

u, v,t satisfy the relations (5.7.l), then so do fut, v, t. So that the solution of 

relation (5.7.l) occur in dual pairs. Hence replacing the solutions in lemma 5.8.2 

_-- - - [fr((UT)V)]2 k2i 
by fut, v, t, we have e = = -- = ks 2

• We then find a relationship 
det(UT) k 

between the parameters of the dual non-degenerate homomorphism. 

There is an interesting relationship between the parameters of the dual 

non-degenerate homomorphism. 

Corollary 5.8.5 

If (J: G,
3

, 3 (2,Z) ~ G·
3

, 3 (2,q) is a non-degenerate homomorphism, (J' IS 

its dual and e, ¢ are their respective parameters then e + ¢ = r + 2 . 
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Proof 

Let a: G O)') (2 ,Z) ~ G O)') (2,q) be a non-degenerate homomorphism 

- - -
satisfying the relations ua = u, va = v and ta = t. Let a' be the dual of a. As in 

section 5.4, we choose the matrices U = [a Ck ], V = [e gk ] and 
a -a-l g -e- l 

T ~ [~ -Ok l representing u, v, t, respectively such that they satisfy the 

equations from (5.4.1) to (5.4.5). Now by lemma 4.2.1 , we have trace(UV) = 0 if 

and only if (;~)2 = 1. Also, we have trace(UVT) = s = 0 if and only if 
k 

(;~t) 2 = 1. Now det(UV) = 1, thus giving the parameter of ;~ equal to r2 = e, 
say. Also since trave(UVT) = ks and det(UVT) = k (since det(U) = 1, det(V) = 1 

and det(T) = k), we obtain the parameter of ;~t equal to ks2, which we denote 

by ¢. Thus e + ¢ = r2 + ks2. Substituting the values from equation (5.4.5), we 

thus obtain e + ¢ = r + 2 . Hence if e is the parameter of the non-degenerate 

homomorphism a , then ¢ = r + 2 - e is the parameter of the dual a' of a. 

Theorem 5.8.4, of course, means that we can actually parametrize the non­

degenerate homomorphism of GO) . ) (2,Z) into GO) , ) (2,q) except for a few 

uninteresting ones, by the elements of F;,. Since GO ) ' ) (2, q) has a natural 

permutation representation on any homomorphism 

a: GO) . ) (2 ,Z) ~ G O)') (2,q) gives rise to an action of GO)') (2,Z) on PL(F;). This 

action is represented by a coset diagram D( e, q). We can draw a coset diagram 

representing a conjugacy class of non-degenerate homomorphism corresponding 
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to each parameter e, which is a square in F;" by determining u, v with the help 

of theorem S. 8.4 . 

Example 5.B.6 

Let us consider an action of G O]'] (2, Z) on P L(F., I) and draw a coset 

diagram for this action. Suppose e = S, then by equation (S.4 .6) , e = r2 and so 

r2 = S == 16(modl1) implies that r = ±4. Let us take r = 4. Substituting the 

value of r in (S.4.S) and supposing that k = 1, we get S2 = -10 == 1. This implies 

that s = ±1 . Let us choose s = 1. If we suppose e = 3 in equation (S.4.2) we have 

g2 = -13 == 9, that is, g = ±3. Suppose g = 3 and substitute the values of 

r, s, e, k and g in equations (S.4.3) and (S.4.4) to obtain 0 = 7 a + 6c and 

- 2 = 6a - 7 c . Solving these equations for a and c, we obtain a = 4 and c = -1 . 

Thus U = , V = and T = . So, our U , v and t will be [ 4 -1] [3 3] [0 -1] -- -
-1 - S 3 -4 1 0 

4z- 1 - 3z+3 - -1 
u : z ~ , v: z ~ -- and t : z ~ - respectively. 

-z -S 3z -4 z 

-
If we now consider the action of u, v and t , we obtain 

-
u=(O 9 3)(00 7 6)(1 S 8)(2 10 4) , 

-
v = (0 2 10)(00 1 S)(3 9 8)(4 6 7), and 

-
t = (0 (0)(1 10)(2 S)(3 7)(4 8)(6 9). 

The coset diagram for this action will be 
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10 1 

\ ~ 

9 ~ 6 
I 

\ I 
I 

I 

8 4 

Example 5.S.7 

Let us again consider an action of G O)') (2,Z) on PL(F;]) and draw a coset 

diagram for the non-degenerate homomorphism 0". As in example 5.8.6, e = 5 

implies that r = 4. Since for the dual homomorphism, we have e + ¢ = r + 2 

which gives ¢ = 1. By Corollary 5.8.5, ks 2 = ¢ . Let us take k = 1. Then S2 = 1 

implies that s = ±1. Let us choose s = 1. Solving equations (5.8.3) and (5.4.4), 

we have r = 4, e = 2, a = -4 and c = -3. Thus U = , V = [-4 -3] [2 2] 
- 3 3 2 -3 

and T ~ [~ ~ 1] respectively. So, our ;, -;; and ; will be ~: z --> :::~ , 
2z + 2 - 1 

v : z --) and t: z --) =-- respectively, giving the action 
2z-3 z 
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-
u = (0 10 2)(1 00 5)(3 8 9)(4 7 6) , 

-
v = (0 3 10)(1 7 00)(2 6 4)(5 8 9), and 

-
t = (0 00)(1 10)(2 5)(3 7)(4 8)(6 9). 

The coset diagram for this action will be: 

3 7 

Thus, both the actions III above examples for the non-degenerate 

homomorphism and its dual have the same coset diagram except the labeling of 

the vertices is different. 
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5.9 PARAMETRIZATION OF THE ACTIONS OF ~ (3 ,3 , k ; n 1 ) 

Let ~(3, 3, k; n1) denotes 

u=[: kc 1 As we have, 
-a-l 

U - I =[-a-1 -akc 1 and V -I 
- c 

[ ae + kgc 
UV = 

ec - ag - g kgc 

U - IV - I = [ae + a + c + kgc 
and 

ec + c - ag 

From the equation (5.4.3) , the trace of UV is, 

r = 2ae + 2kgc + a + e + 1 

Also, 

UVU-IV-I = 

(ae + kgc)(ae + a + c + kgc + 1) 

+ (akg - kce - kc)(ec + c - ag) 

the triangular group 

and V=[; -:~J So, 

=[-e-1 -:g 1 Thus, 
- g 

akg - kce - kc 

+ 1] + ac + a + e 

+ 1 akg + kg - kec l kgc + ae 

(5.9.1) 

(ae + kgc)(akg + kg - kec) 

+ (akg - kec - kc)(kgc + ae) 

(ec - ag - g)(ae + a + e + kgc + 1) (ec - ag - g)(akg + kg - kec) 

+ (kgc + ac + a + e + 1)(ec + c - ag) + (kgc + ac + a + e + l)(kgc + ae) 

Let I be the trace of w = UVU-IV- I , then 

1= 2(ae+ kg)(kgc+ae+a+e+ 1) +(c+ce-ag)(akg- kce- kc) + (ce - ag- g)(akg-kce+kg) 

By equation (5.9.1) , we have 
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Simplification gives, 

41 = 2r2 - 2r - 2ks2 + 4 (S.9.2) 

By equation (S.4.S), we have 

1 ==- 2-ks2 (S.9.3) 

or 

(S.9.4) 

Since det(W) = 1 and trace(W) = I , therefore the characteristic equation of 

W is: 

W2-IW+I=O (5.9.S) 

or 

(S.9 .6) 

Multiplying equation (S .9.6) by W to obtain 

(S.9.7) 

Substituting the value of W2 from equation (S.9.6) in equation (S.9.7), we 

get 

(S.9.8) 
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On recursion, equation (5 .9.8) yields 

(5.9.9) 

Furthermore, if we let 

(5.9.10) 

One can find a minimal polynomial for positive integer n l by the 

equation: 

(5.9.11) 

where d l , d2 , ... dill' are the divisors of n such that 1 < d; < k, i = 1, 2, ... , m and 

/" (8) is obtained by the equation (5.9.10). , 

The degree of the minimal polynomial is obtained as: 

deg[gll, (8)] = deg[/'" (8)] - I deg[gd, (8)] 

where 
_ {nl - 1, if nl is Odd} 

deg[J" (8)] - n . 
, _ I , if nl is even 

2 

Also, 

(5.9.12) 

k k-I 
P P 

deg[g pk (8)] = 2" - -2-' 

where p is a prime. Thus, one can construct the following table: 
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I n, I Minimal equation satisfied by 1 

I _ I 
1=2 

11 
I 

12 
1= 0 

I J 
12 - 1 = 0 

14 
12 - 2 = 0 

15 
14 - 3/2 + 1 = 0 

1

6 z2-3=0 

17 
16 

- 5/ 4 + 6/ 2 - 1 = 0 

Is 14 - 4/2 + 2 = 0 

1

9 16 
- 6/4 + 91 -1 = 0 

1

10 14 - 5/2 + 5 = 0 

and so on. 
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Example 5.9.1 

Let us consider an action of G
03

•

3 

(2,Z) on PL(F;I) and draw a coset 

diagram for this action. Suppose 1= 1, then by equation (5.9.3) , and supposing 

that k = 1, we get S2 = 1. This implies that s = ±1 . Let us choose s = 1. If we 

suppose e = 2 in equation (5.4.2) we have g2 = -7 == 4 , that is, g = ±2. Suppose 

g = 2 and substituting the values of k and s in equation (5.4.5) to obtain r = 4. 

Putting the values of r , s, e, k and g in equations (5.4.3) and (5.4.4) to obtain 

5a + 4c = 1 and 4a - 5c = - 1. Solving these equations for a and c, we obtain 

a~-4 and c~-3. Thus uf: -33j, v~ [~ ~3] and T~ [~ ~1] 

respectively. So, our u, v 
4z +3 2z+2 

and t will be u: z --) --, v : z --) and 
3z-3 2z-3 

t : z --) -=-!. respectively, giving the action; 
z 

-
u = (0 10 2)(1 00 5)(3 8 9)(4 7 6) , 

-
v = (0 3 10)(1 7 (0)(2 6 4)(5 8 9), and 

-
t = (0 (0)(1 10)(2 5)(3 7)(4 8)(6 9). 

The coset diagram for this action is same as in example 5.8.7, in which 

every vertex ofthe diagram is fixed by (iTVU -l:V- I)3 and (uv/. 
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