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preface 

Navier-Stokes equations are the most fundamental equations in Newtonian fluid mechanics. 

But for the last few decades it has been genera1iy accepted that the Newtonian fluids, which 

have a relationship between the stress and the rate of strain, do not explain several 

phenomena observed for the fluids in industry and other technological applicat ions. 

Rheologica l properti es arnon-Newtonian fluids are described by their 50- ca lled constitutive 

equations. Due to complex.ity of fluids, several models main ly based on the empirical 

observ ations have been proposed. Amongst the several non-Newtonian flui d models, the 

second and third grade fluid models have attracted the attention of many researchers. The 

attract ion of slich fluid models stems largely due to the fact that thei r const itutive equations 

have been derived on the basis of first principle and un like many other ' phenomenological' 

models, there are no curve fittings or parameters to adjust. Though in both of these grades, 

there are material parameters that need to be measured. 

The equations of mot ion for second and third grade Ouids are highly non-linear and much 

complicated than the Navier-Stokes equat ions. There are very few cases in which exact 

ana l)l1ica l solutions of the Navier-Stokes equation can be obtained. These are even rare 

when the governing equations for non-Newtonian fluids are considered. Moreover. the 

equations for second and third grade are of higher order lhan the Navier-Stokes equations. 

However. there is no corresponding increase in the number of boundary cond itions. In these 

methods, solutions can be fou nd by assum ing certain physical or geometrica l properties of 

the flow field . 

It is necessary here to mention that in chaplers through 2-7 (which are all 

published/accepted papers), there are number of contributing authors but the major 

contribution is of the author of this dissertation. 

Keeping all the above motivations in mind, the layout of this thesis is as fo llows: 

I) Inverse so lutions for modeled non-linear equations that govern the steady flows of a 

second grade fluid arc discussed in chapter 2. The sohllion for stream function, 

ve locity components and pressure are obtained from the non-linear equation by 

considering two illustrat ive forms of the stream function. The presented graph ical 

resu lts indicate that increasing magnitude of viscoelasticity decreases the velocity. 

2) In chapter 3, the non-linear compatibil ity equat ion for the swirling flows ofa second 

grade fluid is modeled. The studies of swirling viscoelastic flows have been 



motivated by applications in rheology and tribology. The ana lytical solutions for the 

steady and unsteady ax isymmetric flows of Newtonian and second grade fluids are 

obtained. The analytical solutions are built for the streamlinesj velocity'Snd vorticity 

components. Finally. the results are also compared with the corresponding solutions 

for the Newtonian fluid . 

3) Chapter 4 deals with the modeling of equations for the unsteady flow of a second 

grade fluid in plane polar, axisymmetric cyl indrica l and spherical po lar coordinates, 

The express ions for the streamlines and velocity components arc given through the 

solution of the involved highly non· linear equations. Inverse methods have been 

employed for the so lutions. Several previous resu lts have been deduced from the 

presented analys is, 

4) The work of chapter 5 is concerned with the unsteady fl ow ofa third grade fluid over 

an infin ite plate, The ve locity fi eld is obtained by solving a non·linear equation. Two 

nows induced by the plate are considered , These flows are generated due to the shear 

stress, Both analyt ical and numerical so lut ions of non· linear equation with non· 

linear boundary conditions are deve loped. It is observed that there is a very good 

agreement between the numerical and pertlJ rbation so lu tion for small values of I 

(I < I). For I greater than 3, there is a sufficient discrepancy in the results that the 

perturbation so lu tion can no longer be accepted and the results from the numerical 

solution should only be used. However, when shear stress has an oscillatory 

character, then perturbation results are acceptable. 

5) The objective of chapter 6 is to di scuss the unsteady flow of a th ird grade fluid 

over an infinite plate with variable suction. The non-linear equation resulting from 

the momentum equation has been so lved using sim ilarity transformation and 

perturbation technique. It is noted that for short time (T = 4), a strong non

Newtonian efTect is present in the velocity field and velocity behaves as a Newtonain 

case for large time (r = IOO~ 
6) Chapter 7 is devoted to the flow of a third grade fluid over a porous plate) which 

executes oscillations in its own plane with superimposed blowing or suction. The 

modeled Ilon· linear equation has been so lved for the velocity fie ld . Moreover, 

increasing or dec reasing ve locity amplitude of [he osci llating porous plate is 

examined. Fina lly, it is seen that several interesting results of the previolls studies 

can be taken as the special cases of the presented analysis, 
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Chapter 0 

Introduction 

Multicomponent flows whether occurring in nature such us debris flows, avalanches, and mud 

slides, or in industrial applica.tions, such as fluidized beds, solids transport and many other 

chemical and agricultural processes, present a formidable challenge to engineers and scientists. 

To model and study the flow and behavior of slIch complex fluids, one can lise either statistical 

theories or continuum theories, in addition to the phenomenological/experimental approaches. 

Due to various properties of real fluids there are many models. The simplest model is Navier

Stokes model which is used for fluids of low molecular weight. However, it is wen known that 

materials with complex structures such as solutions and melts of polymers, plastic and synthetic 

fibers, certain oils and greases, soap and detergents, certain pharmaceutical and biological Ouids 

fall into the category of non-Newtonian fluids. During the last several years, generalization of 

Navier-Stokes model to highly non-linear constitutive laws have been proposed because of their 

interest in applications to industry and technology. In order to explain several non-standard 

features , such as normal stress effects, rod climbing, shear thinning and shear thickening, Rivlin

Ericksen Buids [1 ! of differential type are introduced. These fluids are rather complex from the 

point of view of partial differential equation theory. Nevertheless, several authors in fluid 

mechanics are now engaged with the equations of motion on non-Newtonian fluids of second 

and third grade. In particular, some authors are interested in studying a-grade fluids as self

consistent models and not as approximating models. Therefore, in studying dynamics they 

ask that all the flows meet the Clausius-Duhem inequality and that the specific Helmholtz free 

energy of the fluid is II. minimum at equilibrium [2J. On the other hand, it is under the same 
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hypothesis that the Navier-Stokes model is studied. That is, it is always assumed that some real 

fluids exist such that Navier-Stokes or n-grade fluids are exact models, and Dot truncations of 

viscoelastic flu ids. Moreover (as Doted in refs. [3,5]), different assumptions could heavily affect 

the rest state stability. Under these thermodytlamically hypothesis, several results concerning, 

existence and stability have been obtained [3,4, 5J. 

The formulation of shear stress fo r non-Newtonian fluids is a difficult problem, which has 

not progressed very far from a theoretical standpoint. However, there is no single model which 

clearly exhibits all the properties of non-Newtonian fluids. For a more fundamental under

standing, several empirical descriptions have established rheological models. For example, in 

most of these models, a Significant drag past solid walls has been observed. A discussion of the 

various differential, rate-type, and integral models can be found in Schowalter [6], Huilgol [7], 

and Rajagopa\ [8]. 

The flow of non-Newtonian fluids has gained considerable importance because of its appli

cations in various branches of science, engineering, and technology: particularly in material 

processing, chemical industries, geophysics, and bio-engineering. The study of non-Newtonian 

fluid fiow is also of s'ignific811t interest in oil reservoir engineering. For a variety of reasons , 

non..,Newtonian fluids are classified on the basis of their behavior in shear. A fluid with a linear 

relationship between the shear stress and the shear rale, giving rise to a constant viscosit.y, is 

alWl\YS characterized to be & Newtonian fluid. As a constant viscosity relation is not always 8 

Newtonian flu id relation because there are fluids like a. second grade fluid , a convected Maxwell 

fluid , and an Oldroyd fluid A and B that are certainly non-Newtonian, but also show a constanL 

viscosity. Second grade fluid model is a subclass of differential type fluids for wbich one can rea

sonably hope to obtain analytical solutions. The fluids of differential type have usually higher 

order partial differential equations than the Navier-Stokes equations. So the issue of whether 

the 'no-slip' boundary condition is sufficient to have a well-posed problem is very important. 

This question cannot be answered in any generalization for fluids of grade 2 or grade 3, one can 

provide some definite answers, while some partial answers are possible for fluids of grade n [91. 

In general , for fluids of the differential type of grade n, the equations of motion are of order 

(n + 1). Thus, if n > I, then the adherence boundary condition is insufficient for determinacy. 

The standard method used to overcome this difficulty is to resort the perturbation that lowers 
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the order of the equation 110 - 16], which is not mathematically rigorous. In fact, the workers 

are aware of this, but in the absence of any rational method for generating additional boundary 

conditions, they have no other way out of the impasse. It is possible that in flows in unbounded 

domains, 9.'e can obtain additional conditions based on the asymptotic structure of the Bow at 

infinity. Mansutti et aI. 1171 showed that results by perturbation method and of augmenting 

the boundary conrutions agree remarkably well. Rajagopal and Gupta have also discussed this 

issue in the reference [18J and studied the steady Row of a second-grade fluid past a porous 

plate. In another paper, Rajagopal jI9] studied some unidi rectional flows of a second grade 

Buid. In [20], Foote et at. studied the problem for the flow of an elastica-viscous fluid on an 

OSCillat ing porous plate. Hayat et al. [21 - 25J , Asghar et at. [261 and Siddiqui et at. [27 - 29] 

discussed the flows of differential type fluids in various geometrical configurations. 

In many fields, such as food industry, drilling operations and bio-engineering, the fluids, 

either synthetic or natural, are mixtures of djfferent constituents such as water , particle, oils, 

red cells and other long chain molecules; this combination imparts strong non-Newtonian char

acteristics to the resulting liquids; the viscosity function varies nOli-linearly with t he shear rate; 

elasticity is fe1t th rough elongationaJ effects and time-dependent effects. In these cases , the 

fluids have been treated as viscoelastic fluids . Because of the difficulty to suggest a single 

model which exhibits all properties of viscoelasti c fluids, they cannot be described as simply 

as Newtonian fluids. For this reason, many models or constitutive equatioDs have been pro

posed and most of them are empirical or semi-empirical. For more general three-dimensional 

representation, the method of continuum mechanics is needed. One of the most popular models 

fo r non-Newtonian fluids is the model that is called the second-grade fluid. Several authors 

[30 - 36) in fluid mechanics are now engaged with the equations of motion of second grade 

fluids. 

Exact solutions are very important not only because they are solutions of some fundamental 

flows but also because they serve as accuracy checks for experimental, numerical and asymptotic 

methods. Navier-Stokes equations are non-linear partial differential equations for viscous fluids. 

For this reason, there exist only a limited number of exact solutions in which the non-linear 

inertial terms do not disappear automatically. These analytic solutions become even rare if nOD

Newtonian constituti ve equations are considered in the equations of motion. This is because the 
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resultmg equations are highly non· linear partial differential equations. While studying second 

grade Buid the equations, in general, are one order higher than the Navier·Stokes equations. The 

third order equations of the second grade Huid Hows, in general, require an additional boundary 

and/or initial condition in addition to those required for solving the Navier-Stokes equations. 

The necessity of this extra condition can be avoided by the application of th6 inverse method. 

This provides the motivation that, in some specific situations, the inverse method becomes 

attractive in studying the non-Newtonian Huids. 

Usually, in the inverse method, the boundary conditions arc not prescribed and solution 

of the differential equations are sought by assuming specific geometrical or physical properties 

of the fie ld. Nemenyi 1371 has given an excellent survey along with the applications in various 

fields of the mechanks of continua. Kaloni and Huschilt [381 used the inverse methods to study 

plane steady Bow problems of a second grade Huid. Siddiqui and Kaloni [281 employed this 

approach to find the exact solutions for steady Haws of a second grade Huid in plane polar, 

axisymmetric cylindrical and axisymmetric spberical coordinates. 

There is a large class of processes which can be considered from the mathematical point of 

view as the motion of the Huid (liqu id) between two paraJlel plates, moving towards each other 

or in opposite directions with a constant velocity. These include such processes as the motion 

of a ftuid th rough a hydraulic pump and the motion of the underground Buid. We can observe 

that when the plates are approaching each other in a second grade Huid, the effort required is 

smaller than that when the plates are moving apart. When the plates are approaching each 

other it is of potential type and when they are moving away then it is of rotational nature. 

For such considerations the horizontal components of the velocity ti, 'lJ, do not depend on the 

vertical components z, whereas the vertical velocity w depends linearly on the <listance between 

the plates. This brings the motivation to model this situation in a second grade fluid and then 

to discuss few specific solutions of our interest in chapter 2. The contents of this work bas been 

published in Archives of Mechanics, 55, 373 - 387 (2003). 

The swirli ng flows have great importance in a number of industrial and prac~ical applica

tions. Spiral galaxies, atmospheric or oceanic circulation, bathtub vortices, or even stirring tea 

in a cup, are examples that illustrate the ubiquity of swirling Hows at all scales in nature. In 

sllch flows the flow is usually axisymmetric (independent of the meridional angle 0) and second 
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component of the velocity VG, is expressed in terms of the swirl n (angular momemwn per 

unit mass) " The resulting equations arising from the balance of linear momentum, are highly 

non~linear partial differential equations whose general solution in closed form is not possible to 

obtain . Few specific situations are considered in order to find the analytical solution of these 

equations both for Newtonian and non~Newtonian cases. Eleven steady and non-steady flows 

are discussed. This work has been publisbed in Nonlinear Dynamics, 35, 229 - 248 (2004), 

In chapter 4, the time dependent flow equations are modeled in plane polar, axisymmetric 

cylindrical, and axisymmetric spherical coordinates. The obtained equations are coupled by 

introducing the stream functions into a single equation, The governing equations thus obtained 

are highly non-linear partial differential equations, whose general solution is not possible even 

for the Newtonian fluid. The solutions of these equations help to understand the properties and 

behavior of the non-linear fluids. Applying the inverse method on the most general equation 

we have proposed solu~ions to that equations, and in return the conditions are obtained on t,he 

fluid, which have the given solutions, Several limiting situations along with their amplifications 

are deduced and are compared with the known results already given in the literature (both for 

Newtonian and second grade fluids), This attempt is accepted for publication in Mathematical 

Problems in Engineering. 

Although the second-grade fl uid model is able to predict the normal stress dlfferences, which 

are characteristics of non-Newtonian fluids, it does not take into account the shear thinning 

and thickening phenomena that many show, The third-grade fluid model represents a. fur~ 

ther, although inconclusive, attempt toward a comprehensive description of the properties of 

viscoelastic fluids. With this in view the flow of an incompressible unidirectional thermody

namicaUy compatible third grade fluid over an infinite plate is analyzed in chapter 5, The 

infinite plate is placed along x-axis and y-axis is perpendicular to it. The plate is under a 

variable shear stress depending upon time. Incidentally, t he time-dependent shear stress makes 

the boundary conditions nOD-linear, Two different situations are discussed when shear stress is 

proportional to eAt and eir..JL respectively. In the former case for positive ).. numerical and per

turbation solutions are obtained whereas in the latter case, only perturbation solution is given. 

1n the former case, it is observed that there is a very good agreement between the numerical 

and perturbation solution for small values of t (t < 1). For t greater than 3, there is a sufficienL 
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discrepancy in the results that the perturbation solution can no longer be accepted and the 

result.s from the numerical solution only should be used. However, when shear stress has an 

osci llatory character, the perturbation results are acceptable. It is found graphically that with 

an increase in second and third grade parameter the velocity decreases and the boundary layer 

thickness decreases. This analysis has been accepted in Canadian Journal of Physics. 

Chapter 6 is devoted to study the unsteady problem of an incompressible third grade fluid 

past a porous plate. The infinite porous plate is aligned along the x-axis and flow is planar. The 

flow is induced due to sudden motion of a plate. The modeled flow equation is a highly non· linear 

partial different.ial equation with all non-zero third grade material parameters. Also the equation 

is of fourth order and there are only two boundary conditions. Here, the partial differential 

equation is converted into an ordinary differential equation using similarity transformation, 

which has been solved using perturbation in the inverse powers of time. It is observed tbat with 

an increase in suction, the boundary layer thickness decreases and with an increase in blowing, 

the bOWldary layer thickness increases. It is also noted that for short time {-r = 4)1 a strong 

non-Newtonian effect is present in the velocity field and velocity behaves as a. Newtonian case 

for la.rge time (T = 100). These observations are published in Mathematical and Computer 

Modelling 38, 201 - 208 (2003), 

The flow of a third grade fluid induced due to the oscillations of a porous plate is presented 

in chapter 7. We have considered the thermodynamical t.bird grade model and flow iM unidirec

tional with constant suction/blowing. The modeled equation is a third order partial diffe.t·ential 

equation which is solved. by perturbation method. The porous plate is executing oscillations 

in its own plane with superimposed blowing or suction. An increasing or decreasing velocity 

amplitude of the oscillating porous plate js also examined. It is found that with the increase 

in material parameters of the third-grade fluid the velocity bOWldary layer thickness decreases 

in tbe case of suction and increases in the case of blowing and the amplitude of oscillation 

decreases for acceleration and increases for deceleration. Results for second grade and viscous 

flu ids are obtained from the present analysis as the special cases. The contents of this chapter 

hll.ve been published in Mathematical Problems in Engineering 2, 133 - 143 (2004). 
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Chapter 1 

Preliminaries and basic equations 

1.1 Introduction 

This chapter deals with basic definitions and derivations of the governing equations which wilJ 

provide background for the succeeding chapters. The general expression for the nth-Rivlin

Ericksen tensor is also derived. 

1.2 Non-Newtonian fluids 

An abundance of literatwe deals with the solution of various types of fluids . Amongst these 

fluids, the Newtonian Auid is the simplest to be solved, not only numerically but also analyti

cally. The governing equation that describes the flow of a Newtonian fluid is the Navier-Stokes 

equation. A literature survey indicated that applications of Newtonian fluid is very limited. 

This is due to the fact that many fluids used in the chemical, mechanical and other industries 

deviate Crom the Newtonian fl uids. They are non· Newtonian fluids and there has been relatively 

scarce information about these. Now j non-Newtonian fluids are increasingly being recognized 

as more appropriate in modern technological applications in comparison with Newtonian au
ids. Because of the non-linear nature of the dependence of stresses on the rate of strain for 

non-Newtonian fluids j the sohltion of flow problems for these fluids in general are more difficult 

to obtain. This is not only true of exact analytical solutions but even of nwnerical solutions. 

The non-Newtonian nature of the fluids also increases the order of the differential equation in 
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general. Due to complexity of fluids, there are several proposed models. In the present thesis 

we will consider subclasses o[ the differential type fluids namely second and third·grade flu ids. 

The constitutive equation for second-grade fluid is 

(1.1) 

where T is the Cauchy stress, -pI is the spherical part of the stress due to constraint of 

incompressibility, p is the scalar pressure, I is the identity tensor, J.t. Cq a.nd 0'2 are measurable 

material constants. They denote, respectively, the viscosity, elasticity and cross·viscosity. Al 

and A2 are Rivlin-Ericksen kinematical tensors [l] and they denote, respectively, the ra te of 

strain and acceleration. The Rivlin·Ericksen kinematical tensors An. are described as [I ] 

Ao - I , 

AI = (g"dV) + (gradV)T , (1.2) 

An+1 = d:
n + A n (gradV) + (gradV)T An. n ? 1, 

in which V denotes the velocity field, grad is the gradient operator. T is t.he transpose and 

cl /dL(·) = & (.) + (V ·grad) (.) is the material time derivat ive, where first term describes the 

loca.l part and the second term is the convective part. Using Eqs. (1.1 ) and (1.2) into the 

balance of linear momentum 
eN . 

Pdt = PX+dIVT, ( 1.3) 

and making use of some vector identities we get the following equation 

grad [~PIV12 + P - "I (v.\1'V+~ IAII') 1 + p1V1- Vx (V X V)J (1.4) 

= ~\1'V+" 1 [\1'Vd \1'(V x V) x Vl + ("1 +",) d,vAl+ PX· 

In above equations \72 is the Laplacian operator, p is the constant density, X is the body 

force , V , = BV lat, and lAd is the usual norm of matrix AI . We Dame above equation a 

Master equation as it wiD help us to model tbe governing equations in Cartesian, plane polar, 

axisymmetric cylindrical and axisymmetric spherical coordinates, which will be used in the ne."(t 
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chapters. 

Second order flulds are dilute polymeric solutions (e,g. poiyisobutylene, methyl-methacrylate 

in n butyl acetate, polyethylene oxide in water, etc.). The equation is frame invariant a.nd ap

plicable (or low shear rates. A detailed account on the cha..racteristics of second grade fluids 

is well documented by Dunn and Rajagopal 131, Theoretical investigations by Dunn and Fos

dick (391 and Fosdick and Rajagopai [21 have indicated that for an exact model, satisfying the 

Clausius-Duhem inequality and the assumption that the specific Helmholtz free energy be a 

minimum in equilibrium, the following conditions must hold: 

(1.5) 

A detailed discussion regarding the signs of the material parameter has been given in Dunn and 

Rajagopal [31. For third grade fluid, the expression for T is 

where 13 1,(32, and 133 are additional materiaJ constants. Fosdick and Rajagopal 12J has dis

cussed the thermodynamics of fluids modeled exactly through Eq. (1.6). The Clausius-Duhem 

inequality and the assumption that the specific Helmholtz free energy is minimum at equilibrium 

provide the following restrictions 

(1.7) 

1.3 Equation of continuity 

The conservation of mass for compressible Ruid is 

(1.8) 
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For incompressible fluid above equation simplifies to 

V · V=O. (1.9) 

1.4 Strain rate and vorticity tensors 

The velocity gradient tensor VV can be decomposed into a symmetric part D and antisym

metric part W 

1 1 . 
D =- (VV + VV T) = -'Y, 

2 2 
1 1 

W =- (VV - VVT) = -w 
22' 

(1.10) 

where ~ is called the rate of strain tensor and w is called the vortici ty tensor. Also it is noted 

that ~ = (VV + VVT) is equal to the first Rivlin-Ericksen kinematic tensor. The vorticity is 

defined by 

w= V V- VVT ='i1xV. (1.11) 

The reason for this is two fold. First, the rules governing the evaluation of vorticity are some

what simpler than those governing the velocity field. For e.'Cample, pressure gradient appear 

as a. source of linear momentum in Eq. (1.3), yet the pressure itself depends on the instanta

neous distribution of V . By focusing on vorticity, on the other hand, we may dispense with 

the pressure field entirely. The second reason for studying vorticity is that many flows are 

characterized by localized regions of intense rotation (i.e. vorticity). Smoke rings, dust whirls 

in the street, trailing vortices on aircraft wings, whirlpools, tidal vortices, tornadoes, hurricanes 

and the great red spot of Jupiter represent just a few examples, 

1.5 Gr adient operator 

The gradient. operator is defined as 

(1.12) 

in which ej (j = 1,2,3) are unit vectors. 
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1.6 Gradient of a scalar 

The gradient of a scalar point function can be ca1cuJated as 

(1.13) 

1. 7 Gradient of velocity 

The gradient of velocity V is defined as 

(1.14) 

where a matrix representation is given by 

and V, (I = 1,2,3) are the velocity components. 

1.8 Divergence of a vector 

The divergence of a vector is defined by 

v ·v (!.l5) 
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1. 9 Curl of a vector 

The curl of a vector is 

V'xV (1.16) 

1.10 Divergence of a tensor 

The divergence of a tensor is defined by 

V' . S = ek- . (8-·e·e·) = e'--2.. ( a) oS · 
OXk lJ 1 J J OXi . 

(1.17) 

1.11 Non-Cartesian frames 

All the definitions for gradient and divergence of a tensor remain valid in a non-Cartesian frame, 

provided that the derivative operation is also applied to the basis vectors as well. We illustrate 

this process in two important frames, cylindrical and spherical coordinate systems. 

Z 
¥ 

y 

y = r sin tl 

x = r cos tl x 
z=z 

Fig. 1.1. Cylindrical coordinate system 
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1.11.1 CyHndrical coordinates 

III cylindrical coordinate system, points are located by giving them values eo {r, O,.t}. which 

are related to {x = Z'h Y = :t'l, Z = Z'3} by (see Fig, 1.t) 

:t - TCOSe, y=rsinO, z=.:, 

r = (x2+y'l)I, (J = tan-I (~) 1 % = Z:, 

The basis vectors in this frame a.re related to the Cartesian ones by 

e r = cos () eI + sin () e l/1 e,r = cos I) er - sin () eo, 

eo = -sin(Je% +cos(J ell , ell=sin(J er+cos(J eo, 

The velocity V, a tensor S, gradient operator, gradY and divV in terms of these coordinates 

are respectively given by 

where a matrix representation is given by 

[ 

S~ S,' 
SOr Soo 

Su S~o 

J7 

(1.18) 



· ( a sinO a) v = (cosOer-sI08eo) COS(}a,. --r-ao 
(

a 0050 a) a + (sin() er + cosO eo) sine ar + -r-80 + e~a:: 

~ e':r +eO~:o+e,:, ~ (:r';:o,:J 

vv 

(1.20) 

where a matr ix representat ion is given by 

v . V _ aVr +! avo + Vr + av, 
ar ral) T 8z' 

(1.21) 

where we have used the following relations 

a a a a a are, ~ 0, ar eo = 01 ar e r = 01 aOer = eo, Bees = -er, 

a 
0, 

a a a 
ae e, - 8z er = 0, 8z eo = 0, 8z e, = O. 
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1.11.2 Spherical coordinates 

In a spherical coordinate system, points are located by giving them values to {r, e, ¢}, which 

are related to {x = Xl, Y = X2, Z = X3} by 

X rsinecos¢, Y = rsinesin¢, z = rcose, 

r ;,Ix' + y' + z', e ~ tan-1 
( ;,Ix'z+ Y'), ¢ ~ tan-1 (~) . 

z , . 

r sm tJi 
' . 

' . 
'. 

z = r cos tJi ._._._._. _. _._. -'-;, 

r 

Y, = r sin tfsin l' 

/. y 
r sin tf 

' . 

/" x = r sin tfcos;rJ 
, . 

' .' 

Fig. 1.2. Spherical frame of reference 

The basis vectors are related by 

er el sin e cos ¢ + e2 sin e sin ¢ + e3 cos e, 

ell el cos e cos ¢ + e2 cos e sin ¢ - e3 sin e, 
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and 

el = ersin8cos¢+e8COs8C05t/1-e~sin¢, 

e2 = er sin8sin¢+ eo cos O.sin¢+ e4'cosq" 

e3 = e,. cos (J - es sin 4>. 

In spherical coordinates we have the following: 

vv 

~ 1 t~ , 
Oil. YL Yt t r.lnoW + ,. + r co () 
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v -v (
8 18 1 8) 

= e,. or + eo-;: f)(} + e.p r sin 8 a¢ (VrOr + VOel} + Vofie;,) 

- (e, :r) -(V,e, + Voeo + V,e,) + (eo~:O) -(V,e, + V,e, + V.e,) 

+ (et/1rs~n(}~) . (V,.er + Voeo + V</Ie\,,» 

ou.. u,. 1 8uo 'tI,. 'tto cos () 1 all", 
= -+-+--+-+ +----

ar T ,'89 r rsin9 rsinO 8¢ 
18(2 18 _ 18u. 

= -,,,- r U')+-M(u,smO)+-·-O 8-" r V1' rVt1 rsm 'I' 

In deriving above expressions we have lIsed the fo llowing relations 

8 8 8 8 8 8 
ar e,. = 0, ar eo = 0, ore.p=O, aoe,. = eo , (jOe/} = - e,. , 80e. = 0, 

8 8 :rjJ e,p = - er sin () - eo cos O. 8¢er = el">sinO, 8rPeo = eQcosO, 

(1.24) 

1.12 Symmetric and antisymmetric part of the velocity gradi

ent 

Eulerian description of acceleration is given by 

(1.25) 

Since L = VV =Lij is a. second rank tensor and as every tensor of rank 2 can be written as a 

sum of symmetric and antisymmetric tensors, therefore 

(1 .26) 

where the symmetric part D is called the rate of strain tensor and antisymmetric part W is 

called the vorticity tensor. We know that the strain tensor is defined by 

I I ( T) ."= -(u"+u,,) = - L + L IJ 2 101 J,I 2 . 
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Hence 
1 

D ='2 (tl.jJ + Uj,i) = f:ij, (1.27) 

1 
W =2: (Uio1- U,.i) = 'WI)' (1.28) 

1.13 Rivlin-Ericksen tensor 

The n-th Rivlin Ericksen tensor is defined as 

(1.29) 

At. start we assume that there is no deformations at T = t 

Ao = C, (1') Ir=t= I (1.30) 

and 

d d [ T 1 AI (t) = dT IC, (T)[ = dT {F, (T)) F, (T) . (1.31) 

In above equation we have used C = F TF as the right Cauchy-Green tensor. 

Consider 

..'!.. (F, (T)) =..'!.. 8" = ~ (d<i) = /lui = L, 
dT dT OX; ax, d-r lJXj 

(1.32) 

where the position of the particle is ~i and 

(1.33) 

Therefore 

(1.34) 

At T = t, F, (7) = I , and thus 

(1.35) 
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Similarly from the definltion (1.29) for n = 2 we have 

(1.36) 

Consider 

dL = ~ (BY;) = ~ (dY;) = ~ [av + (V . V ) V] 
dT dr aXj a Xj dr ax; ar 

a ay; a a aL ay; 
= - -+-Vi ' V \Ij + \Ij. - vVa = - + vv ·vv +v ·v -
~~ ~ ~ ~ ~ 
aL 

= aT + L · L + V · VL. (1.37) 

Similarly 

(1.38) 

and thus, Eq. (1.36) becomes 

Again at r = t, F t{1'} = I and, therefore 

A ,(t) = LTL+ :~ + LTL + V . VL+ a~T + LTLT + V . VLT + LTL 

= :T (L + LT) + LT (L + LT) + (L + LT) L + V · VL + V · VLT (1.39) 

Similarly 

a T ( T) BA I T 
= aT Al + L AI + AlL + V . V L + L = fiT + L Al + A lL + V . VAl 

= (:T + V . V ) Al+ AIL + LTAl= :t Al + AIL + LTA! . 

d T A,(t) =-A,+ A, L + L A,. 
dt 
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We USC a different procedure to find a recurrence relation. We know that the strain In the fluid 

is measured by looking at the length of a fluid element t = 0 to t. Let dX be the fluid element 

at K and dx at :z; then the length at time t is 

cIz'(t) = C(t), cfXcfX. (1.4l) 

Also 

d<' (T) = C (T) : dXdX. (1.42) 

We know that 

C (T) = pi (T)PdT) = [P,(T)PdT)-Ij' P,(T)P,(T)-l 

_ (P-1 (T))T p i (T). FdT) p - 1 (T) = (F- 1 (T)) T C (T) p,' (T) 

and 
dn T dn 

- (C (T)) = (p-1 (T)) -I C(T) p -l (T) 
d'Tn ( 'Tn 

p T (T) [d~n (Cl (T))] P (T) = d~n (C (T)) 

at T = t 
d" 

pT (T) AnP (T) = -d (C (T)) 
Tn 

dXTpT (T) AnF (T) cfX = dd" C (T): cfXcfX 
Tn 

Forn=n+l 

As 
d d 

- (dx) = - (Pdx) = LFdx = Ldx 
dr dr 
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so 

A n+l 

and thus 

(1.43) 

where (:) indicates Lhe product of two tensors. 
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Chapter 2 

Few inverse solutions involving 

second grade fluid 

2.1 Introduction 

In general the second grade flow equations are more complicated. because of the addition of 

tlon·lincarities in the stress function. As a result the solutiolls are smaller in number . As the 

non-lincarities grow the complexities in solving these equations and their int.erpretation also 

grow. Ju a result the solutions are further restricted in comparison to viscous fluids in terms 

of t.he methods available. Ooe such attempt has been made in this chapter, whel'c we have 

considered tbe two dimensional Bow equations and then introduced the stream funct ion to 

obtain the compat ibility equation. Solutions then are found by usslUning specific forms of the 

stream function giving way to a large class of exact solutions. In each case, the expressions are 

constructed for the streamlines, velocity components and pressure distributions. Finally, the 

obtained expressions are compared with the known results in the Literature. 

Thus the problem at haud is the two-dimensional flow of a. second-grade Ruid near a stag

nation point which has been discussed over the last few years. Actually, in 1911, one of the 

Prandtl's students, Hiemenz, found the stagnation point flow which are analyzed exactly by the 

Navier-St.okes equations. With this motivation we extend the work for the second grade fluid. 

In stagnation point flow, a rigid wall occupies the entire x-axis, the fluid domain is y > 0 and 

the Row impinges on the wall orthogonally. The y-a.xis behaves as an imaginary wall and fluid 
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Bows on both sides of this walL Thus, the flow near y-axis needs to be analyzed. The dividing 

streamline is given by t/J(x,y) = xF(y) + G(y) . 

2.2 Governing non-linear equation 

Let us consider two parallel plates (see Figs. 2a,b,c) in some incompressible fluid (liquid) whose 

size is much larger than the distance between them h« l (where h is the distance between the 

plates and l is the length of the plates) and suppose that they are moving ~owards each other or 

in opposite directions. We not.e that when the plate5 are moving towards each other (see Fig. 

2a.) the force requ ired is lesser as compared to that when they are moving against each other 

(see Fig. 2b.). Of course it varies with the different character or grade of the fluid (liquid) . 

For Newtonian fluids (liquids) like water these experiments are much easier to perform than 

the non~Newtonian fl uids (liquids). For general analysis since we are dealing with viscoelastic 

fl uid in this chapter, so that the fluid considered between the impermeable or permeable plates 

is having the viscous as well as elastic properties, aDd one will have to put extra stress while 

approaching the plates towards each other or in opposite directions. 

We also assume that the horizontal velocity does not depend on the vert.ical coordinate 

(t.r. i:- t.r. (z) , v =F v (=») whereas the vertical velocity depends linearly on the distance between 

the plates (til IX z). Thus, the velocity field become [40J 

u=u(x,y,t), v=v(x,y,t)1 w=-2¢z, (2.1 ) 

IVhere ¢ is the relative velocity of the plates (assumed constant). 
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1 I Plate s MolTing 
apart 

fluid 
r 

.z=h 

1 I 
1 

¢' 

Fig. 2a. 

z-axts 

o 
~-plane 

Fig. 2c. 

--- 1- !--~---- i --f 
Fixed permeable plates 
through which fluid is Z=h 

passmg '\. t 
---1----- 2\ ----- i--

¢ 

Fig. 2b. 

Fig. 2. Geometry of the problem: (a) moving impermeable plates (b) .fixed permeable plates 

and (c) horizontal and vertical coordinates 

Using the velocity components defined in Eq. (2.1), the continuity equation (1.9) and Eq. 

(1.4) in component form give 

(2.2) 

(2.3) 

~: +p [~~ +uw] = (JL+al%t) \72v+aluV2w++PX2, (2.4) 

8PI 
8z = PX3, (2.5) 

where X = (Xl' X2, X3) is the body force, and the modified pressure and the strength of the 

vorticity are defined as 

(2.6) 
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in which 

w ~ (8u _ 8U) 
8x 8y , 

(2.7) 

Differentiating Eq. (2.3) with respect to y and Eq. (2.4) with respect to x and using 

integrability condition Plrll = Ply,; we obtain the following compatibility equation 

(2.8) 

Defining t he velocity component in terms of the Stokes' stream function W through the 

following relations 

8" 8" 'U = ¢x + -, v = rPy - -oy ox (2 .9) 

we see that the Eq. (2.2) is satisfied identically and Eq. (2.8) become 

in which 

and 

Remark 1 The solution .,p = 0 of Eq, (2.10) , corresponds to liquid potential motion, known 

as the motion near the stagnation point. 

We now consider the following special cases: 
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• For steady case a/at = 0 and Eq, (2 .10) becomes 

p [2¢V'" +¢ (X! + y :J V'" - {~, V',,}] (2.11) 

~ ~V'H a, [2¢V'" H (. :x + y :J V'" - {w, V4wl] - p (:.x, - ~x,) 

Note tha.t for steady cases, the continuity equation, the modified pressure fields, the 

velocity components in terms of stream function and the vorticity vector remains the 

same whereas the velocity field becomes independent. of time. 

• For 11 = 0 Bq. (2. 10) gives 

Here it is stated that the Ec'j, (2 ,12) is obtained when the velocity field, modified pressure, 

velocity components in terms of stream function and the continui ty equation are 

V(x,y , t) ~ lu(x,y,t), .(x,y,t), OJ, 
p, ~ p+~p("2+.2)_a, ["V'u+.V'v+~IA11], 

IAll - 4(~~)'+4(~)'+2(~~+~~)', (2.l3) 

aop aop au a. 
U = 8y' v = - ax' ax + 8y = 0, 

• For steady case Eqs. (2.12) reduces 

• Eq. (2.10) for unsteady viscous case is (see ref. [40)) 
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• Wh,n ¢ = 0 Eq. (2.15) ,eads as 

(2.16) 

• When ¢ = 0 and the How is steady then Eq. (2 .15) gives (see ref. [41]) 

(2.17) 

• For creeping unsteady flow o(second grade fluid when u = ¢x +~, v = rinJ-~ we have 

(~+Ol:,) V'.,',+QI [2¢V'v>+¢ (x:x +Y:y) V'v> - {.p, V·.p l] = p UxX, - :yXI) 
(2.18) 

• Fo, ¢ = 0 Eq. (2. 18) is 

• For steady flow above expression is 

(2.20) 

• For viscous fluid Eq. (2. 18) is (see ref. [41]) 

• (fl fI) ~V .p=P - X,--XI . fix fly 
(2.21) 

Note that the creeping flow for unsteady and steady viscous cases is the same. Also the 

velocity components, continui ty equation, vorticity function and velocity components remain 

the same as in non·crceping flows but the modified pressure is slightly changed, that is, for 

second-grade fluid 

(2.22) 
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and for viscous fluid the modified pressure is 

PI =P (2 ,23) 

2,3 Solutions of some special types 

Here we note that the compatibilit.y equation (2.10) is highly nonlinear differential equation 

and it is not possible to find its analytic solution in closed form. Even, Eq. (2.10) has no closed 

form analytic solution for the Newtonian fluid. In order to obtain the solution various workers 

[24,26,38,41,421 assumed palticular form of the stream function. Our interest in this chapter 

lies In finding the analytic solutions for the following two forms of the stream function: that is , 

flow where the stream function is linear with respect to :t or y 

>P(x,y) ~y{(x), 

W(x, y) ~ y{ (x) + ~(x), 

(2,24) 

(2,25) 

These type of flows are called the plane stagnation flows. Equation (2.24) represents the flow 

of e. fluid in the neighbourhood of a stagnation poin t; the motion can be joined at a distance 

with a potential flow about a stagnation point. Here, the stream function is lmcar in y and 

once it strikes the boundary it becomes stagnant and then moves towards horizontally. Then 

it does not remain linear in y rather purely becomes a function of:t. 

2,3,1 Solution when >p (x, y) ~ y~ (x) 

Substituting the value of T/J given in Eq. (2.24) into Eq. (2.10) we obtain 

where e (x) is an arbitrary function of x and primes denote the derivative with respect to :to 

The above equation can also be written as 
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Integra.tion of above equation yields 

Let us assume a particular choice for the functIOn ~ as: 

,(x) ~ J (1 + .leO") - ¢x (2.28) 

in which 6, Us and ,\ are arbitrary real constants, Making use of Eq, {2.28} into Eq. (2.27) we 

easily find 

6- ~u, 4¢ 
- P - ala~ as 

Putting the value of 6 i.o Eq. (2.28) we get 

and the stream function 1}J given by Eq. (2,24) become 

[ ~u, 4¢] ,p(x,y)~ ,-- Y(I+.leo,,)-¢xy. 
p al0'5 as 

(2.29) 

(2.30) 

(2.31) 

It is remarked here that the stream function (2.31) for a1 = ¢ = 0 gives the results as 

discussed by Berker [411. and for al = if! = 0, ,.\ = -1, ~ = -u (U > 0) we recover the 

solution of Riabouchinsky [421. 

Using Eq. (2,9) the velocity components are 

(2.32) 

v = 2¢y - [ J.t"s '.! - 4t;6] y"\a5ecr~'T;. 
p alO"S 0"5 

(2.33) 

In order to find the pressure field we substitute Eqs. (2 .32) and (2 .33) into Eqs. (2.3) and 

(2.4) I and then integrating the resulting equations we obtain 
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PI = Po+jJ.aAqS(1_0"~y2)e"'~:Z:_~p[a:2+4¢2(y2+.:2)_a2~2e211&%J (2.34) 

+aj [a,\Us ((ius - 2¢ogy2 _ 4.p) e"'&,1: + a:2 .>..20'~ (3 + a~2) e2
"'5,% + 8¢2] , 

where Po is an arbitrary constant, known as the reference pressure. 

In order to understand the streamline flow pattern we keep the stream function fixed Le., 

1/J(x,y) = n1l (say) and solve the resulting expression for y in terms of the variable x. This 

particular procedure in two-dimensional flow in which one variable is expressed in terms of the 

other varia.ble is called the functiona.l form. In this way one can see the streamline flow pattern 

through graphs. 

Eq. (2.1.6) for ¢(x, y) = nil gives the following expression 

Y= ( l +"eo~:Z:)t x¢' 
(2.35) 

where 

,~ 

I 
4¢ 
a, (2.36) 

ill which /J = poi p is the kinematic coefficient of viscosity and A = ad p is the second-grade 

parameter . 

Fig . 2.1. is plotted. fol' ¢ = 115 =.>.. = 1, fLip = 0.5, etI/p=O.l, ¢ = 15,20,25,30,40. Fig. 

2.1. describes the continuous streamline flow pattern. It should be mentioned here that these 

graphs simply defines the pattern of the flow for a patticular choice of the strea.m function. 
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Fig. 2.1. Streamline flow pattern for 1j; (x, y) = [~ - 4.£.] Y (1 + Aeasx ) - ¢xy 
p-Olas as 

2.3.2 Solutions when ?/J (x, y) = y~ (x) + TJ (x) 

To find another class of solution of Eq. (2.10) we use Eq. (2.25) into Eq. (2 .10) to get the 

following nonlinear differential equation 

From Eq. (2.37) we have the following equations: 
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acd 

wbere {(x) and 17 (x) are arbitrary functions of the variable x. Integrating these equations wi th 

respect to :& and then taking the constants of integration equal to zero we have 

(2.40) 

(2 .41) 

Here it can be seen that Eq. (2.40) is exactly the same as of Eq. (2.26). The solution of 

Eq. (2. 26) is given in Eq. (2.30). [n order to obtain the solution of Eq. (2.41) we substitute 

the solution given in Eq. (2.30) into 'Eq. (2. 41 ) and get 

Qlo(l + >'eO'~:C)17v + (J.' +30'11/l)1I'V -po( l +),eu,sZ}t(1 - 2p¢rl' +O~\C1~ (p-aw~) ea~z'l1' = 0 .. 

(2.42) 

Clearly to obtain the general solution of Eq. (2.42) is not easy; For analyt ic solution of 

above equation we consider the rollowing cases: 

Case 1 When 01 oF 0, rP". 0, as = 1, >. = 0 

We bave from Eg. (2.42) as 

(2.43) 

The above equation is of fifth order and for solution we substitute rt = A (x) and get 

(2.44) 
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Taking A(x) = P(x)e% the a.bove equation becomes 

",OP" + {3", (0 + ¢) + I'} P' + {3", (0 + 2¢) + 21' - pO} P ~ O. (2.45) 

Wcitillg P (x) ~ R(x), Eq. (2.45) reduces to 

The above equation is second order and its solution can be written as 

(
-C- VC' 

R(x) = A3 exp 2 4d) ( -C+VC' x+A"exp 2 4d) x, (2.47) 

where A3 and A" are arbitrary constants and 

C= 30,(0 +¢) +1', d= 3",(0 + 2¢) + 21' -po 0 = _1'_ -4¢. 
Qld aId' p- Ctt 

Equation (2.47) can also be written as 

where 

(
-C-VC'-4d) (-C+VC'-4d) 

I'lll = 2 ' lIta = 2 . 

In order to find 7] (x) we make back substitutions to proceed as 

and A(x) = P(x)e% implies that 
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which after taking rtf = A (x) gives 

(2.48) 

where Ai (i = 5,6,7) arc constants of integrations. Substituting Eqs. (2.30) and (2.48) into 

Eq. (2.25) one obta.ins 

,p(.,y) = v [-"--¢(4 + ')] +A,,·+A,.+A, 
p - 0:1 

+ A3 2e(l+mI)~ + Aoj eO+m2):e. 
ml (1 + m1) TH2 {I + "ffl.o..I)2 

The velocity components and the pressure field are respectively given by 

I' u=---4</J, 
p- QI 

The streamline flow paUern for W = 022 (say) is given as 

where 
v 

<, = 1- A - 4¢, al = -1'- _ 4¢. 
p- 0"1 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

T he streamline flow pattern is plotted in Fig. 2.2. for ¢ = a = A = 1, ", /p = 0.5, CXI/P = 0. 1, 

A, = 1 (i = 3 - 7), ,p = 15, 20, 25,30,40. 
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F ig. 2.2. Streamline flow pattern for 

,,(x y) = y [-,,- - ¢ (4 + x)] + A] 2 e(l+ml)::a:; + A1 e(l+m2)::a: + Ase'" + A6X + A7 
'P-Q\ ffll(l+mll m2(I+m2)2 

Case 2 When Ctl f. 0, tP = 0, 005 = 1, ..\ i- 0 

then Eq. (2.42) after using 6 = ~ becomes 

To find the solut ion of Eq. (2.54) we make few substitutions to reduce its order . For this 

purpose we put r/ = A (x) which leaves it into a form which is one order less, that is 

Now substituting A(x) = P(x)e ll in Eq. (2.55) and then P' (x) = R(x) into the resulting 

expression we get 

"1 [ (1 + '\e') R'" + (3 + 4'\e') R" 1 = P [R" + (2 _ '\e') R: + (1 _ 2,1e') RJ . (2.56) 
+(3 + 6'\e') R' + (1 + 4,1e') R 

The Eq. (2.56) is third order. Its order can be reduced further by multiplying by e,1; and tben 

39 



integrating. After this process we have 

(2.57) 

where for simplicity the constant of integration is taken equal to zero. 

The solution of Eq. (2.57) for A = 0 is given by 

(2.58) 

Employing the same procedure as in case 1 we can write 

(2.59) 

where Cr (r = 5,6,7,8) are arbitrary constants. The stream function, the velocity components 

and the pressure field in this case are respectively given as 

where 

f.L U=--, 
p- CYI 

V = C5 + CYI C6e - (p/aIl x - C 7e x , 
(CYI + p) 

P = Po - ~P [a~ + cg + 2C7ae(l-P/cl.l)x + 2 ~~l-~~~ C7ae(l-p!a ll x] 

C2e2x + p2~2 e - 2(p!a l)x _ C p2Ci e(l-p!aIlx 
7 a l 7~ 

+CYI + (-t - 1) C7ae(l - p/a l )x 

+C
7 

Cial e(l-p/al)x _ C7 Cip3 e(1-p!al)x 
al - p af(al-p) 

_ CYI f.L 
CY=--, a2= --, 

CYI + P P - CYI 

40 

(2 .60) 

(2.61 ) 

(2.62) 

(2.63) 



and the stream function for 'ljJ = D33 (constant) is given by the following functional form 

(2.64) 

where 
V 

102 =--. 
1 - A 

The streamline flow pattern is sketched in Fig. 2.3. for ¢ = >. 

eil/ P = 0.1, Or = 1 (r = 5 - 8) , 'ljJ = 15,20,25, 30,40. 

0, 0'5 = I, 11-/ P = 0.5, 

(~(\ 
• .1\ ,' 

c~--~~--------+-----------------------~ 

-20 
-1 -0.5 0,5 1 l. ~J 

,', 

Fig. 2.3. Streamline flow pattern for 

'ljJ (x, y) = ~y + [-05X + p(Q~~p) 06e-(P/O'l)x + 07ex + 0 8] 
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Fig. 2.4. Streamline flow pattern for negative second-grade parameter for 

'lj; (x, y) = ~y + [-Csx + p(a~~p) C6 e-(p!at}x + C7ex + Cs] 
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Fig. 2.5 . Streamline flow pattern for positive second-grade parameter for 

'lj; (x, y) = -H-y + [-Csx + ~)C6e-(p!al)x + C7ex + Cs] 
p-al ptal +p) 
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2.4 Concluding remarks 

rn this chapter, tbe analytical solutions of non-linear equations governing the flow for a. second

grade fluid are obtained. Two different forms of the strea.m function are taken. In each problem 

of stream function, the various p08sihilitip.s of getting the analytical solutions are discussed. The 

B."<pressions for velocity prorl1c, streamline and pressure distribution arc constructed in each case. 

Our results indicate that velocity, stream function and pressure are strongly dependent upou 

the material parameter 01 of the second grade fluid. It is shown through graphs that increase in 

second-grade parameter (al = 0.15) leads to decrease in velocity. Also decrease in second grade 

parameter (O} = -0.5) increases the velocity (see Figs. 2.4 and 2.5). The present analysis are 

more general and several results of various authors (Aristov and Gitman [40J, Berker [411 and 

ftiabouchinsky [421) can be recovered in the limiting cases. 
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Chapter 3 

On solutions of some non-linear 

differential equations arising in 

Newtonian and non-Newtonian 

fluids 

3.1 Introduction 

This work is motivated by the analysis of Lakshmana [43). Lakshmana's 143} work is extended 

by considering the unattended parameters and then extended to second grade fluid. The mathe

matical modelling and the solution given are important from the unclel'standing of second grade 

fluids, The work has great importance in a number of industrial Of practical applications. Spiral 

galaxies, atmospheric or ocean circulation, bathtub vortices, or even stirring tea in a cup, are 

examples that illustrate the ubiquity of swh'ling Rows at all scales in nature, 

In this chapter, we develop the governing equation for an axisymmetric swirling flow of 

a second grade fluid, which is highly non-linear. The primary purpose of this chapter is to 

establish some analytical steady and unsteady solutions of the non-linear equation arising in the 

swirling flows both in Newtonian and non-Newtonian fluids . The solutions are obtained using 

various analytical methods including the Lie group method. The expressions for streamlines 
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and velocity components are given in each case explicitly. The obtained solutions are also 

compared in context of second grade without swirl and with the results of viscous fluid. 

3.2 Governing equation for swirling flow 

Let us consider the swirling flows in a second grade fluid in which the second component 

(O-cornponent) of the velocity is not zero. The compatibility equation obtained from the 

Stokes' stream function is to be solved by assuming a specific form of the vorticity. Tills gives 

us two unknown velocity components i.e., v;. and Vz" In order to obtain the Vo component of 

the velocity we substitute the stream function and its derivatives in the compatibility equation 

which comes from the Stokes' stream function. The angular momentum per unit mass about 

the axis of symmetry of the flow is 

(3.1) 

Note that we take the z-axis along the line of symmet ry of the flow or we can say that 

flow is symmetric about z- axis. The velocity components (VI" Vo, V:) are independent of the 

meridional angle O. If the meridional component of velocity Vo vanishes at every point of the 

flow, whereas V,.. and Vz are nOD-zero, then we obtain an axisymmetric flow and if the meridional 

component of velocity V9 does not vanish in the flow field region then the flow field IS usually 

expressed in terms of the swirl n. 
For the axisymmetric flow with tbe swirling motion! the velocity field is 

[ ( ) n(r,', ') )] V = Vr T,l',t I r I V~(r,z!t (3.2) 

On using above equation into Eqs. (1.4) and (1.9) we can wriLe 

(33) 

-+p --wVz --- =- /.t+O::l- - -Ill Va: 'Vw-- +--Ell, ap [av, nan] ( 8)(8") [( 2 ") na 2] ar at r'l fJr at 8z r2 r'l ar 
(3.') 

1 ap p [all v, all v. all] ( a) 1 2 [V. a 2 V, 8 ,] ( ) --+- -+--+-- = ~+<>I- -Ell+<>1 --Ell +--Ell, 3.5 rae T at r ar r az at r T 8:: T ar 
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where 

fi ~ 

IA~I ~ 

\7' ~ 

Differentiating Eq. (3.4) wit h respect to z and Eq, (3.G) with respect to r and then subtracting 

the resulting equations we obtain 

(3.8) 

Introducing the Stokes' stream func tion ¢ (r, z, t) through 

(3.9) 

the continuity equation (1.9) is identically satisfied and Eq, (3.8) gives 

Assuming P:F p(O) will reduce Eq. (3,5) in the following form 
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or 

[
DO 18(",,0)] ( 8)E'O ",8(""E'0) 

p a.+; 8(r,z) = M+"'at +-;:- 8(r,,) , (3.11) 

where 

(3.12) 

It should be pointed out that the Eqs. (3.10) and (3.11) are the compatibili ty equations 

for the present axisymmetric swirling flows. These equat.ions for 0.1 = 0 reduces to t be results 

of Goldstein [51J. In the next section we will find the solutions of these equations for both 

0.1 = 0 and et1 #- 0. 

3.3 Analytic solutions 

It is clear that the general solution of Eqs. (3.10) and (3. 11 ) is not possible because of the high 

nonlinearity. Thus, we discuss the special cases of these highly nonlinear partial differential 

equations by imposing specific conditions on the stream function ¢ and n . Let us first begin to 

find the particul ar solutions of Newtonian fluid both for steady and non-steady cases. Then we 

employ simila.r procedure in order to obtain the steady and uDsteady solutions for the second 

grade Auid. 

3,4 Steady cases 8/8t(·) = 0 

3,4.1 For viscous case '" = 0, '" = "'(r, z) and n = n(r) 

Here Eqs. (3.10) and (3,lJ) reduce to 

Differentiating Eq, (3.14) with respect to variable z we get 

D'", 
-=0 
8z' 
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which upon integration gives 

"(r, ,) = fer), + g(r), (3.15) 

where f(r) and g(r) are arbitrary functions to be determined. If we substitute Eq. (3.15) into 

Eq. (3,13), we get two non linear differential equations for /(7') and g(r) which is not possible 

to have the solutions. In order to get rid of this difficulty we let 

which leaves Eq. (3.13) as an identity and Eq. (3.15) a long with Eg. (3.16) gives 

or 

,(d'l _ ~ dl) + (d'9 _ ~ d9) = or', 
dr2 r dr dr2 r dr 

which finally helps in writing 

The solutions of above equations arc 

d'l Idl 
d1'2 - r dr 

",g I dg 
dr2 -;dr 

0, 

I(r} 

g(r} 

= Ar2+B, 

or' 
= T+ C1'2+D, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

in which A, B, C and D are constants of integration, On using the values of f{7') a.nd g(r) 

from Eqs. (3.19) and (3.20) into Eq. (3.15) we obtain the foUow ing expression for the stream 

function 

( or') ",(r,.} = (Ar' + B), + Cr' + 0 + ~ . (3.21) 
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Substituting Eq. (3.21) into Eq. (3.14) we obtain 

1 , d!l (d'ld) -(AT +8)-+" ---- n~o. 
r dr dr2 rdr 

(3.22) 

Clearly Vr and V, can be obtained through Eq. (3.21). For the determinat.ion of VB = 0/1' 

we have to solve Eq. (3.22) for n. In order to find n we substitute fJ = dO/d1' to get 

which gives 

From dflldT = fJ we now write 

in which c: and 01 are constants. 

dry ~ " (~ _ A _ .5!.) , 
dr 1'2 /I T/I 

_ ( I _~I _A,' 
1] = cr "e -;;;;-. 

(3.23) 

On sct.ting B = 0 a.nd c: = A6t!/I, Eq. (3.23) gives the solution of Lakshmana [43] i.e. 

(3.24) 

Prom Eq. (3.18) the velocity components are 

v, ~ _2. a .. ~ _!o AT' ~ -AT (3.25) 
r8z l' ' 

1 a<lt 1 1 1 
V. - --a ~-(2Arz+2Cr+-2.r3)=2(A'+C)+-'T', (3.26) 

T T r 2 

whereas the velocity component VB = O(1')/r can be obtained through Eq. (3.24) as 

(3.27) 

The vorticity components are defined through 

Ian av, avo Ian 
(r = -:;:-a-z' eo = W = -a-. - -ar-' (, = r 8r! (3.28) 
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which in the present case take the following form 

(3.29) 

When B 'f 0, then solution of Eq. (3.23) by using M'athematica is given by 

(3.30) 

where r(a,x) is the incomplete gamma function which is the generalization of the gamma 

function r(a) (see Appendix I) . The velocity components and the vorticity components for 

B"O",e 

B I 
V. = -(A,+-;:-l. v. =2(Az+C)+ 2",2, 

Vo = ~-Hd(~r+~ r{(1 -~),~:2}1' 

AD1 _~ 
(r = 0, (0 = w = - ar, C = -e 2". 

V 

(3.31) 

(3 .32) 

Here we remarlt that on setting B = ° in Eqs. (3 .30) to (3.32) we readily recover the solutiou 

given by Lakshmana [43). Moreover, by letting a = 0 in equations (3.31) a.nd (3.32) we recover 

the result of Roy [441 . 

On setting A = 0 in Eq. (3 .22), we obtain the foilowing solution for fl(?') 

and the corresponding velocity and vorticity components are respectively given by 

B 
Vr = --, 

r 
V: =20+-al', Vo=-+- 1'-"-, 1 2 Cl ~ ( v ) 2,,_8 

2 r r 2v - B 

where '1 and C2 are constants. 
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3.4.2 For ", f 0, n = n(r), '" = ",(r, z) 

For thls case Eq. (3. 11) is 

(3.36) 

where f3 = o'l/P is the second grade parameter. Differentiating Eq. (3.36) with respect to z 

and then integrating twice we get 

"'(r, z) = f(,·)z + g(r) . (3.37) 

Again assuming E2¢ = ar2 leaves Eq. (3.19) as an identity and Eq. (3.37) becomes 

,p(r,z) = (Ar2 + B)z+ (Cr2 + D+ d~ ,.4 ) . (3.38) 

On differentiating Eq. (3.38) with respect to z and substituting in Eq. (3.36) we have 

d'n (0 ) cPn (P ) dn P( A," + 8) d,' - r(Ar' + B)+ vr dr' = (1 - " HAr' + 8) -" dr' (3.39) 

Tbe genera! solution of Eq. (3 .39) is ooL easy to obtain, therefore , we give some specific 

cases; 

E-quation (3.39) for B = 0 CM be written as 

Ar [p~ (rl'n _.!: dn) _ dnj_ cPn _.!: dn 
1.1 dr dr2 rdr dr - dr2 rdr ' (3.40) 

In order to find the solution ofEq. (3.40) we put dOldr = 1/2 t.o have the following equation 

(3.41) 

where At = - (1 + iTA). 
The solution of Eq. (3 .41) is given as 

.-, [1 + A"j '=' [1 + A, j 112 = CJr-r J -2-,-lr + C4r ---Y- Y -2-' -ir (3.42) 
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and by putting fJ = dfl/dr we have the following 

(3.43) 

where Cj and C;4 are arbitrary constants, and J and Yare Bessel functions of first and second 

kind, respectively. 

The velocity and vorticity components are 

Vr = -Ar, 
1 

V, ~ 2(Az+C) + 2ar', V, ~ - ~ - ry,(r)dr, II 1 J 
r r 

(3.44) 

1 8 J (r = 0, (0 = -ar, (.: =;: tn. 1/2 (r) dr. (3.45) 

Equation (3.39) for A = 0 can be written as 

!!.. [p!: (<l'll _ ! dll) _ dll]_ d'll _ ! d!l 
rv ar dr2 r dr dr - dr2 r d7· . 

(3.46) 

The solution of Eq. (3.46) is obtained through Mathematioo and is directly given as 

O(r) = Cs +c/; pFq [~,21 ;;~] (3.47) 

H.rC[W}'{~- ~} }.{u,n,{-U},;;] , 
where C3, ~ I and Cs are constants. The velocity and vorticity components are 

1, _ _ r [B r'"] v;. = 0, V .. = 2C+ 2ar, Vo =cs+c3 2"PFq 211,2'2B{3 (3.48) 

+" c[{ H}'{~- ~}} , { {H}.{-U} ,;;], 
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(, ~ 0, <. ~ -ar, (3.49) 

(~ = ';;3 PFq[l+:V,3,;;J + C3PFq[2~ , 2,;~] 

+~ c[{{ ),n-:'}},W,n , {}},;~] 
+;r (e4 - 1) C [{ m ,U-:.}}, {{H}.{-m, ;~] , 

where pFq (generalized hypergeometric funct.ion) and G (the Meijer function) are defined in 

Appendix 2. 

3.4.3 For '" '" 0, (] ~ 0, '" ~ ",(T, z) 

Here Eq. (3.11) is automatica.lly satisfied and Eq. (3.10) becomes 

p [~8(", E',,) + ~ 8" E',,]- ~E"" ~ ", [! 8(", E",,) + ~ 8" E'''] . (3.50) 
r 8(r, z) r2 8z T 8{r,z) r:<l8z 

The above equation can also be written as 

p [~8(", E'1/J/r')]_ 1':E"" ~ ", [8(", E""'/r2)] . 
r 8(r. z) T 8(r, z) 

(3 .51) 

For solution of above equation let us take 

E'" ~ \O(r) (3.52) 

and obtain 

8" [( ') (' '" " ')] 2 (" ') Bz rp 2cp - Tcp + O't T cp - 3rr.p + 31f' - J.'T Tip - cp = 0, (3.53) 

where primes indicate differentiation with respect. to r. Differentiating Eq. (3.53) with respect 

to z and then solving the resulting equation we have 

w(r, z) ~ A(r)z + ii(r), (3.54) 

where >.(r) and Q{r) are functions of integration. 
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Since E'21/J = tp(r), so Eq. (3.54) becomes 

(
6' 1 6 B') 
ar' - ~ 8r + 8z' (A(r)z + <i(r)) = I"(r), 

or 

or 
" 1 I _"~ 1_, 

A - -A = 0, Q - -Q = I"(r), 
r r 

(3.55) 

The solution of first eqlttl.tion is 

(3.56) 

and so Eq. (3.54) becomes 

(3.57) 

in which C1 = cd2 and DI are arbitrary constants. 

Using Eq. (3.57) into Eq. (3.53) one obtains 

'P (C,,' + D,) (2'1' - rip') - I'" (rl"" - '1") + Q, (C, " + D,) (,"I"" - 3r'l''' + 31"') = O. 

(3.58) 

For viscous (Newtonian) case we get the following equation from Eq. (3.58) 

(3.59) 

The particular solutions of Eq. (3.59) are obtained by Berker 1411. However, we give the 

general solution of Eq. (3.59) with the help of Milthematica as follows. 

(3,60) 

where r is the gamma function and (71. C2 are arbitrary constants. 
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For Ql !- 0 and DI = 0 the solution of Eq. (3.SS) jg 

,, (r) = c,r' +clr'-"IC,P x pFq [{ 1 - 2;IP} ' {2 - 2;lfJ,3- 2;lfJ } ' ; ; ] (3.61) 

+" G [{{ ),(2» , {{D,l), {2- 2;l fJ }} ' ;;]. 

Equation (3.61) can be written as 

(3.62) 

where 

"I(r) = r~pFq [{ 1-2;.,.J {2- 2;lfJ,3 - 2;lfJ}' ;;], 

",(r) = G [{ () , (2j), ({D, I j,{2 - 2;IP)}' ;;] 

In order to find Q (r) we write 

-' d 
_"" (l_'j () , () () Q - - =r- -a =tpr =E2T +Eltpl T +E3tp:z T, 

r dr r 

and integration yields 

(3,63) 

Using Eq. (3.63) in equation Eq. (3.57) we obtain 

(3,64) 

Thus, the velocity and vorticity components in this case are 

(3.65) 

(3,66) 
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The Eq. (3.58) for Cl = 0 can be written as 

(3.67) 

Tbe solution of Eq. (3.67) is identical to that given by Siddiqui et ai. [281, The stream 

functions is thus given 

.p= ,D1+"r'+" r'+, iO+" / r (J r (/ ¢3(r)dr) or) or+<, J r (/ r (/ ¢,(r) or) dr) dr. 

(3.68) 

[n Eq. (3.68) 

and c6, E7 , E8, cD and EIO are constants and lFl is the confluent hypergeometric function of the 

first kind and is the special case of pFq for p = 1 and q = 1 (see Appendi"( 2). The confluent 

hypergeomet ric function can be obtained from ~he series expansion 

(3.69) 

Remal'k 2 Some. special rcsuUs are obtained when () and b are both. integers. 

1. If 8 < 0, and either b > 0 or b < 0, the series yields a polynomial with a Bnite number of 

terms. 

2. If b = 0 or negative integer, then IF} (9, h i 2:1) itself is infinite, 

3.4.4 !l(r) = !lor' +!l1 

We now speci fy our problem by considering the particular choice of n{r) , 

(3.70) 

where no and 0 1 are constants. Using Eq. (3.70) in Eq. (3. 11) we get 
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a~ 
-2pr!o az = n. 

As P::F 0, no I- 0 it implies that ~ = 0 and thus ~ = w(?·). 

With this Eg. (3.10) becomes 

whi ch can also be written 8.'1 

,!.. (!!..) (,!.. (!!..)) ~ = o. ar rar ar rar 

Illtegrating four times we get 

and the corresponding velocity and vorticity components are 

where A, B. V, D, no and 0 1 are constants, 

3.5 Unsteady cases 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

[n this section our interest lies in obtaining the unsteady solutions for viscous and second grade 

fluids. 

3.5.1 When "1 = 0, (l = (l(r, t) and '" = ",(r, z} 

Eq. (3.11) become 

ar! _ ~a",ar! _" (.!.- _ ~!..) r! = 0 at r 8z ar 81'2 r 8r 
(3.76) 



which gives 

.p(r, z) = f(r)z + 9(r), (3.77) 

and on putting E2-rJ; = ar2, we get 

(3.78) 

As before, using Eq. (3.78) into Eq, (3,76) we obtain 

8n I 2 8n 8' 18 
- --(AI' +B)--w(----)n=o. at r a7' 8,.2 r (11' 

(3.79) 

In order to find the solution of Eq. (3,79) we use three different methods: 

M ethod 1 

On introducing 

u, = h(t)r, n = n(u,), (3.80) 

into Eq. (3,79) we readily obtain 

(3.81) 

Choosing h( t) such that 

:~ - Ah(t) = -A);h'(t), (3.82) 

we get from Eq, (3,81) the following ordinary differential equation 

d'n (- (B-V)) dn 
JJ da~ + A'\Ul + ~ cia} = 0, (3.83) 

where>: is a constant. The Eq. (3.83) is similar to that discussed in section 3.2. The solut ion 

of Eq, (3 .83) is found through Mathematica and is given as 

... (A3:) -'+1l: [( B) A3:u'] n (ad = C7 - c62 -:u. - r 1 - _ --' 
JJ 211 ' 2IJ ' 

(3 .84) 
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where C6 and C1 are constants. 

To obtain the solution of Eq. (3.82) we put h-2 = 41 to have the following equation 

The solution of Eq. (3.85) is 

Since If> = h-2 so 

Also tTl = h(t)r gives 

d~ _ 
di + 2A<l> ~ 2A~. 

(' + -''')-1 tTl=r,\ C8e . 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

Using the value of tT! from Eq. (3.88) in Eq. (3.84) we get the unsteady solution of Eq_ 

(3.79) as 

(3.89) 

where ca, Cg and CIO are constants. 

The velocity and vorticity components are respectively given by 

I 
V, ~ -Ar, V.=2(Az+C)+2ar', (3.90) 

c, CIO _1L (AX) - 1+* [( B) AX", 1 Vo = -+-2" - r 1-- I 

"r 11 2/J ' 211 (X + cse- 2At) 

For B ~ 0, Eq. (3.83) beoome 

d'o 1 dO AX dO 
----+-a'- -O do-r tTl dtTl /J dUI - , 
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which is exactly the same as discussed by Lakshmana [431. The solution IS given as 

Using Eq. (3.88) in Eq. (3.93) we have 

and the corresponding velocity and vorticity components are 

Vr = - Ar. \Ii =- I-e.'\( Ol[ ( Ar' )] 
8 r P 2v (1 + Clle-2At) , 

AS A .
l 

/" 0 /" /" 1 - 2,,{ I+CII_- VIl ) 
'>r = , '>8 = -ar, '>1 = v ( 1 + CU e- 2AL ) e , 

where 01 is the constant of integration and ell = calX. 
When A = B = 0, then EQ, (3.83) become 

an _" (a' _ ~~) n ~ 0 at 8r' r 8r 

which upon using the similarity tral1sform 

reduces to 

The solution of Eq. (3.99) is 

r 
111 =--

2Vri 

in which 02 and 03 are constants of integration and which on using 7/1 = 2J;i gives 

(i() 

(3.93) 

(3 .94) 

(3.95 ) 

(3.96 ) 

(3.97) 

(3.98) 

(3.99) 

(3. \00) 

(3.101) 



Consequently, the velocity and vorticity compone.nt8 are 

Method 2 

av, V, 
(r """ 0, (6 = - ar, (, = 8r + ~. 

(3.102) 

(3.103) 

Here we apply separation of variable method to obtain the solution of Eq. (3.79). For that 

let us assume 

n(r, t) = Z(r)ij(t), (3.104) 

into Eq. (3.79) to have the following equation 

{~--(Ar + 8)--" ---- =0, -;(t) 1, d{ (d'Z I d{) 
f1(t) r dr dr2 r dr 

(3. 105) 

where prime denotes the differentiation with respect to time. We now discuss two cases in order 

to study Eq. (3.105). 

Case 1 ij' (t) = 0 implies that 7j(t) =constant= 110 (say) and Eq. (3.105) becomes a steady 

case which is already discussed in section 3.4,I. 

Case 2 If :;:( (t) "::f:. 0 then we choose Ti such t hat 

;( (t) 
ij(t) = --,,(cons'an'), 

which is solved to give the solution 

(3.106) 

where .\.0 is an arbitrary integration constant and Eq. (3,105) become 

(3.107) 

When ).1 :s: 0, we again have the steady case discussed in section 3.4,1. For).1 -F 0 we 

discuss few possible C8.'5es which are described as: 
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Subcase 1 For A :f:. 0, B F 0, we have the following solution 

e, (r) = "IFI [~, !, -~:2] (3.108) 

+6 .. 1Fl 1+--- 2-- -- . [ 
,I, B BAr'] 
2A 211' 2/)' 2v 

Subcase 2 For A =F 0, B = 0, we have the following solution 

~2(r ) = 7·'2&51Fl[1+;~,2,_~:2] (3.109) 

+0, G [{ {J,{I- ;~}} ,({O,I},{)), ~:']. 

Subcase 3 For A = 0, B #- 0, we have the following solution 

where 63, 64, 0'5, 0'6, 0'7, and &s are constants, K is the modified Bessel function of Lhe second 

kind, I is the modified Bessel function of the lirst kind, 1 Fl is the confluent hypergeometric of 

first. kind, and G is the Meijer function. The complete solution in all the subcases is given by 

n, (r, t) = (, (r) AO.-A", n, (r, t) = (, (r) Ao.-A", n3 (r, t) = (3 (r) AO.-A,l (3.111) 

and the velocity and vorticity components for subcases 1 and 2 are 

Vr = -Ar, (3.112) 

< 0 < < 1 tiZl \ _'\\' 1 d{2 \ _.\ \! ,. =, (J = -ar, h: = --d "'oe ,{2· = --d "'oe . r r . r r 
(3.113) 

The velocity and vorticity components for subcase 3 are 

Vr = 0, (3.114) 
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3.5.2 For "" ,. 0, n = !1(c, t) and .p = .p(r, =) 

Eq. (3.11) become 

p [8 (lJ'n Ian) 18" (B'n la'n 1 an)] at BT2 -;: ar - r 8z 8r3 - r 81'2 + r2 ar 
= [an _ !a,pan]_v (8'n _! an) at r {)z 8r BT2 r Or 

(3.115) 

(3.116) 

Differentiating Eq. (3.116) with respect to z and then integrating twice with respect to z' 

we obtain as before 

,,(c, ,) = f (r) z + 9 (,., (3.117) 

and E2-,p = ar2 gives 

,,(r,') = (Ar' + B), + (Or'+ D+ir4). (3.118) 

Using the value of t/J from Eq. (3,118) in Eq. (3 .116) we have the linear differential equation 

for determination of n 

(3.119) 

In order to get the solution of Eq. (3.119) 1 we introduce product of two functions as in 

viscous case 

n(r, t) = Z(r)~(t), (3.120) 
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which on inserting in Eq. (3.119) gives 

(3.121) 

For (3 = ~ = 0, B = O,we obtain the case already discussed in previous section, For {3 '# 0, 

B = 0, we discuss two cases;{ (t) = 0 and;/ (t) '# O. 

Case 1 [f 1/ (t) = 0 then ?j (t) =constant= 1;0 and we obtain the case already discussed in 

section previous section. 

Case 2 U ij' (t) !- 0 then we choose ij such that 

! = constant = -'\2 (say) 
~ 

which leaves Eq. (3.121) in the {allowing form 

The solution of Eq. (3. 123) is given by 

where C24, C25 and C26 are constants and the velocity and vorticity components are 
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(3.122) 

(3. 123) 

(3.124) 

(3.125) 



(3.126) 

where 'Xo is all arbitrary cor18tant. 

3.5.3 For v,. = -AT, I/; = 2 (Az + C) + jm", ", = 0 

we observe that YO = V(r, t) is governed by (3.11) with n =rV. Since 

(3.127) 

Writing 
j a 

(, = ~Or (TV) =( (3.128) 

we obtain from (3.11) the following equation 

o( -A (T O( +2() =!:~ (TO() , at 87' r ar 81' 
(3.129) 

In order to find a class of exact solutions of Eq. (3.129) we apply symmetry group methods 

to find ita symmetries and its reduction. The basis of our discussion is a theory conceived by 

S. Lie. Lie developed a general theory dealing with symmetries and group properties of differ

ential equations. The theory of Lie is a valuable tool for solving ordinary differential equations 

and partial differential equations. The word symmetry .is used in our everyday language in 

different meanings. In the one sense symmetric means something like weU proportioned and 

well-balanced, The symmetry generators of (3. 129) are 

a 
(3.130) 
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as well as the infinite superposition symmetries Xo. = Q (t, r) 8/8(, where Q satisfies Eq. (3.129) 

(see for e.g. [16] and refs. therein for symmetries of evolution equations). The linear parabolic 

equation 

(3 .131) 

also admits a similar Lie algebra of symmetry operators given by 

Y1 
a 

(3.132) = aI' 
Y2 

-a 
= (a(' 

Y3 
- a a 

2t 8I + r Or' 

Y4 
-2 8 _- 8 (-2 -) - 8 

4t a- + 4rt Or - r + 2t (-=, 
t r a( 

Yo. = Q (I, r) a_, 
8( 

where Q satisfies Eq. (3 .131). The Lie algebra of symmetry operators can be represented by 

the following table: 

lx l • .'(j J XI \' .' 2 X3 X~ Xa 

r () () 2X I 
') \' , ") y' X , I .... 4 -, J -

(Xl 

\' .. 2 0 0 0 0 ,- i\ a 

, '() - ') \' 0 0 Xa _J I 

· \'4 ') Y' -- 4 \" _.' j .' 4 0 .~ j \{ 
..:... J ' (i 

() 
X(X 

X - '\'aI \ ' - X(Z ~, Y n 
(Z ~. (1 • • 7 

Table 3.1. 

66 



Here 

(3.132.) 

(3.132b) 

where Q satisfies Eq. (3.131). Thus if we know a solution to Eq. (3.131), Eqs. (3 .1320., b) enables 

us to generate new solutions. For example, if~ = 1'J/ 2 is a soil.1tion, then so is 4t1"1/2 +r5/2, 

which is solution from Eq. (3.132b). This means that we can generate an infinite number of 

polynomial solutions by repeatedly using Eqs. (3.132a, b) . 

As a consequence of the similarity of the Lie algebras of operators for both the parabolic 

equations, one can transform Eq. (3.129) ~o the simpler form Eq. (3.131). The inver tible point 

transformation that reduces Eqs. (3.129) to (3.131) is 

I = 2~ (l-e'AT', 

'fo obt,ain the solution of Eq. (3.131) we write 

and get 

1'2 XII + (~ + '\1'2 ) X _ 0, 

1 dT 
-)" 

Tat -

(3.133) 

(3.134) 

(3.1350) 

(3.135b) 

where:\ is the arbitrary separation constant and prime denotes the differentiation with respect 

to ,'. The transformation X = r - 1/ 2 X converts Eq. (3 ,135a) into Bessel function of order zero 

=, = -= 
r2X +rX +.,\X= Q. (3.136) 
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The solution of (3.136) is given by 

(3.137) 

or 

and finally, from Eqs. (3.134), (3.135b) and (3.137) we have 

(3.138) 

where Jo ( V),f) is the Bessel function of the first kind of order zero and Yo ( v1r) is the 

Bessel function of the se<:ond kind of order zero. The solution of Eq. (3 .131 ) viz. Eq. (3. 132) ;s 

in the transfonned coordinate system (I, r, (). In tbe usua.l coordina.te system (t, r, () we have 

the following form via Eq. (3.133) 

(3 .139) 

where 61. 0'1 and ~ > 0 arc constants and the velocity components are 

n I J 1 , V .. =-Ar, VO=r=:;:- r<dr, V: =2(Az +C) + '2al' . (3.140) 

R em ark 3 One can use Eq. (3.132b) together with (3.139) to generate infinitely many solutions 

of (3.8 .3) . 

3.6 Conci usions 

We have developed the governing equations of motion for t he axially symmetric swirling flow 

of a second-grade fluid. Some exact, analytical, steady, and non-steady solutions for the non

linear equations of Newtonian and second-grade fluids are obtained. Va.rious methods are used 
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for obtaining the solutions of non-linear equations. The model and the analytical methods 

employed in this chapter have been shown to be useful for the theory analysis of viscoelastic 

fluid. Our analysis shows that the results obtained here are more general and several results 

obtained by different authors such Lakshmana [43J ) Roy [44] , Berker [41], Siddiqui et al. [28J, 

and Goldstein [51] can be recovered as special cases. 
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Chapter 4 

Inverse solutions for unsteady flows 

of a second grade fluid 

This work contains two parts In first part we develop the equations of motion in unsteady 

plane polar, axisymmetric cylindrical and axisymmetric spherical coordinates is given In the 

second part we solve these equations by choosing specific forms of the stream function in these 

coordinate system. The fluid equations and their solutions are important in the sense that 

the entire geometry of the system changes as one moves Cartesian coordinate system to these 

coordinate systems. For example, the flow in a pipe, flow around a. cylinder , How into a thin slit, 

flow around Ii sphere and Bow between coaxial cylinders a.od spheres, can not be demonstrated 

in Cartesian coordinates. 

This c.hapter is concerned with the modelling for the unsteady flow of a second grade fluid in 

unsteady plane polar, axisymmetric cylindrical and axisymmetric spherical polar coordinates. 

The analytical solution in each case are obtained by taking appropriate forms of the stream 

functions. The governing non-linear equations are solved in order to obtain the velocity compo

nents for flows in plane polar, axisymmetric cylindrical and spherical coordinates. The solutions 

obtained by the present analysis are also compared with the existing results in the literature. 
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4.1 Modelling for second-grade fluid in plane polar coordinates 

The unsteady velocity field is defined by 

v =1,,(r,O,'),v(r,O,'),ol. 

On substituting 

VV= \7u----- \7v--+-- 0 , [(, U 2 av) (, v 2 au) ] 
r 2 r2 8e' r2 r 2 89 , , 

!... ['J'V] = [!... ('J'U - ~ _ 2. a") !... ('J'v _ ~ + 2. au) 0] at at r2 r2 80 I at 7,2 ,,2 89 ' 1 

v x V = 00 w = - + - ---[ a"vla,,] 
" ar r rl)O' 

v x (V x V ) = Ivw, -,"",01, 

'J' (V x V ) x V = [-v'J'w, u'J'w, 0] , 

(4. 1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

into Eqs. (1.4) and (1.9), we obtain the continuity equation and component. form of momentum 

equation , in the absence of body forces, as follows 

au tL l av -+-+-- = 0 &r r raO ' 
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1 ap [& 1 ( 8) (, v 2 8U) '( ) [d' A') ; ae + P {}t + uw = iJ + O\~t 'V v - r2 + r2 {JO + 01 1,\7 W + 0'1 + 0'2 IV I 6' 

(4.11) 

ali ~ 0 
8 

. , (4.12) 

On using the following results 

(4.13) 
2 U 28v 'V u-- ---

r2 r2 {)O 

[divAn, 

the Eqs. (4.10) and (4.11) become 

ap [8u 1 ( 8)( 18w) , 8 (IA11) -+p--vw= ~+Ql- --- -OlvV'w+(al+o2}- -- , a,. at 8t rao 8r 2 
(4.14) 

(4.15) 

Equations (4.14) and {4.15} can also be written as 

(4.16) 

(4.17) 

where 
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1 (' ') (UOW 8W) 81 = P+ZP 'U +11 +0'1 -;: Be -tJ aT (4.18) 

_(
301+ 20

,) [4 (au)' +4 (~"V _~)' +2 (8v -~+ !8u)'l . 
4 ar rao r 81' r raB 

In order to obtain the compatibility equation we define tbe stream function 1/J = 1/J(r,O,t) 

through 

a", 
V=--

fff 
(4.19) 

we see that the continuity equation is satisfied identically and vorticity equation becomes 

Using Egs. (4.19) and {4.20} into Egs. (4.16) and (4.17) we obtain 

as, [18'''' a", ,] 1 ( ")"' a"" - + p --- - -\l "" = - I' + 0'1- -'\I,p - al-V "', 8r T at80 ar l' at {)() ar 
(4.21) 

(4.22) 

To obtain the single equation in terms of stream function we use the integrability condition 

Slr(J = SIOr to eliminate the pressure gradient. This can be obtained by differentiating Eq. 

(4 .21) with respect to () and Eg. (4.22) with respect to r and then subtracting the resulting 

expressions I.e. 

where 

v'", 

8 ("',V'",) 
a (r, 9) 

(4.24) 
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It is to be noted that the Eq. (4.23) for steady case reduces to the equation as discussed by 

Siddiqui et al. (281. 

4.2 Modelling of second grade fluid in axisymmetric cylindrical 

coordinates 

Here the velocity field i~ 

v = iu{r,z, t) ,O,w (r, z, t)i. 

Using above equation , we have 

, [, u ,] \) V= \} u - r2'O," w 1 

8['1' [8(,") 8'l at" v =\} v t = at \l U-,.2 ,0,at'iJ W , 

V x V ~ 0 n~- - - - 0 [ - (8W 8U) 1 , ar az ' , 

v' (V x V) ~ [0, - ( v'n - ~) ,0] , 

v' (V x V) x V ~ [-W ( v'n - ~) , 0, u ( v'n - ,n,) 1 ' 

V x (V x V) ~ (wn, 0, - un) . 

From Eqs. (1.4), (1.9) and (4.25) to (4.232) we get 

au u aw -+-+-=0, ar r az 
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(4 .25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4 .30) 

(4.31) 

(4.32) 

(4.33) 



lap r ae ~ 0, (4.35) 

where 

Using the results 

a' la a' '7'--a'+--a +a" r r r z 

- - - , 
, u 

'Vu-- ~ 

" 
an, an n .(') la ,20(-) n --,'Vw =-+ -,dJVAl =--IA11 +-- un +-, 
f}z 8r r r 287' r oz r 

(4.37) 

div (Ai), ~ 
. (') 1 a , 2 a ( -) 0, d,v A, , = 2 az lAd -; Or un , (4.38) 

~r (AD = ( T) 1'1 (au)' (aw)' (U)' (au ow)' tr AlA) = Al = 4 ar + 4 8z + 4 ~ + 2 fJz + ar ' 

the Eqs. {4.34} and (4.36) can be rewritten as 

afi [au -] aI' +p m+ wo = (4.39) 

-+p -+un afi [aw -] a. at (4.40) 
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Defining the generalized pressure 

(4.41) 

where 

(8U)' (8W)' (")' (au OW)' IAll =4 Or + 4 az +4 -;: +2 az + 8r 

we rewrite Eqs. (4 .39) and (4.40) in the form 

- ( -) [ -'] as, 8u - 8 8ll ,- n 2 8 - n -+p[--wnl=-(~+OI-)--OIW 'Vn-- +(01+0,) --(un)+- , a,· at 8t 8z r2 ,. 8z r 

(4 .42) 

To find the compatibility equation we define 

l iN 
U=--, " az 

I a;j, 
w= ---

r 81' 

and note that the continuity equation is satisfied identically and vorticity function is 

where 

Using Eqs. (4.44) and (4.45) in Eqs. (4 .42) and (4.43) we obtain 
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fJS2 _p [r fJ2;P + a~ E'~l = _.!. (~+ Ql~) ~E2;P_al a~ E';P+~ (al + a,) ~ (a~ E2:;j,) . 
8z 8tBr 8z r7. r {)t ar Bz r ar 8z r2 

(4.48) 

Differentiating Eq, (4.47) with respect to z and Eq. (4.48) with respect to r and then 

subtracting Eq. (4.47) from Eq. (4.48), we obtain 

where 

(4.50) 

Equation (4.23) for steady case reduces to Siddiqui et al, [28). 

4.3 Modelling of second-grade fluid in axisymmetric spherical 

coordinates 

The velocity field for this case is 

v =iu(R, O,t), v(R,O,t), OJ. (4.51) 

Using above we have 

(4.52) 
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(4.53) 

(4.54) 

(4.55) 

[ - 8v v I au] 
v x V ~ 0, 0, n ~ aR + R - Rae ' (4.56) 

Vx (V x V) ~ [vIT, - vTI, 0], (4.57) 

, [,_ IT] 
'il (V x V) = 0, 0, 'V n - R2 sin2 (J , (4.58) 

\7' (V x V) x V ~ [-v (\7'j'j - ,TI 2 ), U (\72TI - ,TI , ),0] . 
Rsm8 RsmO 

(4.59) 

On llsing the results (4.52) to (4.59) into Eqs. (1.4) and (1.9) we obtain, in the absence of body 

forces , the following equations 

(4.60) 

-+p --uTI fJp [au ] aR at = (f'+ at :t) (Vlu _ ~~ - ~~ cote - ~2 ~~) (4.61) 

- OI U ('V2n - R2~n2 8) + (a, + 0'2) div [ArlR' 

= (I' +0'1 :t) (V2
V - R2s~n28 + ~2 ~) (4.62) 

+O'1 u (V2n: - R2~n2 9) + (at + 0'2) div (Ai}(J' 

(4.63) 
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where 

Ii = 

lAd' = 

'1' = 

and n is the vorticity function , 

On using the following values 

22'11. 2v 28v 
'V u- - - - cotB - -- = 

R2 R2 R280 

v2v _ 'II +~8u = 
R'l sin 2 0 R2 80 

[divAn R 

[divAn, 

[divAn. = 0, 'rA, = '1 . V =0, 

equations (4 ,6l) to (4,63) are 
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(4.65) 

(4.66) 

(4.67) 

(4.69 ) 



01'1 defining 

s, ~ P + !plvl' - "1 (V.'J'v) _ (3"1 + 2",) lAd' 
2 4 

the Eqs. (4.67) and (4.68) can be rewritten as 

1 as, [Bv -] 
R 80 +p at +u!1 

Introducing the Stokes' stream function 

the continuity equation is identically satisfied and vorticity function become 

where 
87. 1_02 82 

D2 = 8R2 + ---w- 8r12.' 

Substituting Eqs. (4.73) and (4 .74) in Eqs. (4.71) and (4.72) we obtain 
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(4.70) 

(4.71 ) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 



(4.77) 

Differentiating Eq. (4.76) with respect to a and Eq. (4.77) with respect to R and then 

adding the resulting equation we get 

[ a D'~ {- D'~ }] 
P otl- a' - ,p'R' (1 a') 

where 

{
- D'~ } o~ 0 ( D'~ ) a~ 0 ( D2~ ) 
>/J, R'(I-a') ~ aRBa R'(l-a') - oaaR R'(I-u2 ) . 

(4.79) 

Note that the Eq.(4.18) for steady case reduces to Siddiqui et al. [28J , 

4.4 Solutions 

In this section we apply inverse method to obtain the solution of non-linear partial differential 

equations in sections 4.1, 4.2 , and 4.3, by considering the specific forms of the stream function . 

4 .4.1 F low where w(r, 0, t) = 'rn F(O, t) 

We choose 

>/J(r,O,') ~rnF(O,t) (4.80) 

in which the arbitrary function F depends upon Band t and n is an integer. Using Eq. (4 .80) 

into Eq. (4.23) we obtain 
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In above equation 

" ) , ( O'F(O, t) (, 0) F ' } C(o,' ~ n F O, t }+ 80' ~ n + OB' (o,t, 

fI(O,t) - (n-2)'+ ::,)C(O,t} . 

T."n9 n ~ 0, Eqs. (4.8I) ami (4.82) yield 

[
ac 2aFc ._,] p---! at ao 

C (0, t) 

and which gives the follow ing equations 

OC 
Pat ~ 

OF oH 
2p ae G + ~~H + 01 at -

OF 
4a1H ao ~ 

where 
a'F a'c 

C ~ 00" fI ~ 4C+ 00" 

0, 

0, 

O. 

(4.82) 

(4.83) 

(4.83a) 

(4.83b) 

(4 .83e) 

(4.84) 

It i.s worth mentioning that for 0:1 = 0 and fA 0 = 0 we get Jeffery-Ha.mel flows [46] and 

for at 0 = 0 we recover the analysis of reference (41] . 

Equation (4.83a) implies that G", G (t) which shows that G is steady and hence from Eq. 

(4.84) H is steady. From Eq. (4.83c) we assmne * I- 0 (since ~ = 0 =? F f F(O) and 

which contradicts the assumpt.ion (4.80» which implies H = O. Using t.hese lnformations In 

Eq. (4.83b) we get 

(4.85) 

The solution of above equation is 

F(O, t) ~ Adt) 0 + B, (t), (4.86) 
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where A7 (t) and B7 (t) are arbitrary functions. 

Now the expressions for strel;Ull function and velocity components are given through Eqs, 

(4.80) and (4.19) as 

~(r,e, I) = A, (1)0 + B,(t), 

v=O, 

For n = 1 Eq. (4.81) becomes 

which give rise to the following equations 

= 0, 

= 0, 

= 0, 

- 0, 

where 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

(4.90a) 

(4.90b) 

(4.90c) 

(4 .90d) 

(4.91) 

Now Eq. (4.90a) indicates that G is steady and hence through Eq. (4.91) H is steady and 

from Eq.{4.90c) we get 

(4.92) 

whose general solution is 

G(O,t) = A,(I)CDSO+B,(t)sinO , (4.93) 

where As (t) and 88 (t) are arbitrary functions of t. Substitution of Eq. (4.93) into Eq. (4.90b) 

yield 

F (8, t) = C (t) lA, (t) cos 6+ B,(t) sin Orl , (4.94) 
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where C(t) is function of integra.tion. The stream function (4.80) and velocity components 

(4.19) arc respectively given by 

,,(r,O,t) = rC(')iA,(t) cosO + B,(,)sinOr' , (4,95) 

" = C(,)!A,(,)sinO-Ba(,)oosOJlAa(t)cosO+B,(,),inOr', (4,96) 

v = -C(')iAa(') cosO + B, (')sinOr'. (4,97) 

For n = 2 we have following from Eq. (4.81) 

p --2F- = I.l. + Ol- Hr- -0', 2F-+2-El r-lac ae] ( 8) , [OEl aF] 2 
at ao at aoao' (4,98) 

which y ields 

(4.98a) 

(4.98b) 

where 

(4,99) 

.For the special case 01 = 0 we get; 

( 0 8) ( a'F) a' ( B'F) 
8, - 2F ao 4F + ao' = 0, 80' 4F + 80' = O. (4.100) 

In order to solve Eq. (4.100) we let 

F(O,t) = ~+Q(9), 9=0+ao' (4.101) 

to get ([or Q # 0) 
d'Q dQ 
ds3 + 4 (is = O. (4,102) 

Solving Eq. (4.102) and then inserting in Eq. (4. 101) we obtain 

F (0, ,) = a, + a, cos 2 (8 + a') + .,sin 2 (0 + a'), (4,103) 
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where ao. a2, 0.3 and (14 are the arbitrary constants. The stream function and velocity compo

nents are 

't/J('r\(}!t) = r2[a4.+a2cos2(O+aot)+a3sin2(B+agt )I, 

-u - 2r [-G.2sin2 (B + aot)+a3cos2(B+aot}), 

v = -2r(a4. +a2cos2(B+aot}+a3sin2(O+aot»). 

For OJ ",. 0, Eq. (980., b) gives 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

(4.108) 

where as (t) is arbitrary function. The possible solu tion of EQ. (4.108) for as (t) = 0 is given by 

1/J(1',O,t) = ,,2 [Bo cos 2B +Blsin2Ble~2t, u= 21' j-Oosin20+(hcos,20je>'21, 

tJ = -2r [00 cos 28 + 01 sin 20) e>'2 t , 

whe re t.2r 80 and B\ are arbi trary constants, 

For ottleT' value DJ n, Eq, (4.81) requires to satisfy 

8e 
0, (M+Ol:t ) H=O, ~ 

8t 
8e 8F 

nF- - (n - 2)-e ~ 0, 
ae ee 

aH aF 
nF 89 - (n - 4) 89 H ~ O. 

(4.109) 

(4.109.) 

(4.109b) 

(4.109c) 

where G and H are described in Eq, (4.82). From Eq. (4.109a) we get G",. G(t) and hence 

from Eq. (4.82), H t H(.) and we get H ~ O. Eq. (4.109c) issolved to get 

"~ 
G(O,t)~Gdt)F-'-, nt O. (4. 110) 

iu which CJ (t) is function of integration, 
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Eq. (4.110) toget.her with Eq. (4.82) forms a non-linear partial differential equation Cor the 

determination of F (except when n = 2). which is givCll as 

0' F, "T' 
80,+nF=Cdt)F . (4.111) 

The solution (stream function and velocity components) of Eq. (4.111) for n = 1 and 

Cl (t) = 0 is given by 

'" = r (A, (t)cosO + B, (I) sin 0), u = -A, (t) sin O+B, (t)cos8, v = - (A, (t) co, 0 + B, (t) sin 0). 

(4.112) 

The solution (stream function and velocity components) of Eq. (4.111) for n = 2 and 01 (t) =I 0 

is as follows 

V' = ,., [C'4(t) + AlO(I) COS 28 + BlO(t)Sin20j ,u=2rl-AlO(t)'in20+BIO(t)cos20), 

, = _2r [C,}t) +AlO(I)C0620+BlO(I)Sin20j. (4.113) 

in which Ai (£) and Bi (t) (i = 9,10) are arbitrary functions. 

For", = ",(",1), Eq. (4.111) b,com" 

(4.114) 

On lett ing 

"'(",t) = <1>, (r),'" (4.115) 

equation (4.114) becomes 

!.!!. [r.!!. {~.!!. (r°<l>,) }j-{'!.!!. (r8<1>,) = 0, 
rOr Or rar 8r rf)r ar 

(4.116) 

which on simplification gives 

(4.117) 
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where 
2 pAS 
~5= 11 + Qj'\s 

For steady case the solution of Eq. (4.114) is 

(4.118) 

wherc As. 8 s and C3 are arbitrary constants and the velocity componcnts are 

u= 0, V= - (C3r - ' + (As +2Bs) r+ 2Asrlnr). (4. 119) 

Here we remark that the solution given in Eq. (4.118) is in agreement to that given in Siddiqui 

and Kaloni [28] . 

The solution ofEq. (4.117), after substitu~ing in Eq. (4.115). for A4 = 84 = 0 is given as 

(4 .1 20) 

and the velocity com ponents are 

(4 .121) 

where In (~) and f(n (x) are the modified Bessel functions of firsL und second kind) respectively. 

4.4.2 Flow where )p(r, z, t) = r" F(z, t) 

Inserting 

:¢ (r, z, t) = r"F(z, t) (4.122) 

87 



inLo Eq. (4.49) we get 

For n = 2, Eq. (4.123) reduces to 

Tbe first integral of Eq. (4.5.3) is 

I'I'P (a'p (OP)' aF,) 
po 8:.3 + p 2F 8z2 - 8;; - 8z - ( fl'p (a'p)' la'P,) 201 F 8~4 + 8z 'l. - 2" f);;3 (4.t25) 

( a'p (8'P)') 
+02 2F 8z 'l. + 8z'l. ' 

where we have taken the function of integration equal to 'Zero. In order to solve Eq. (4.124) we 

define 

P(z,t)~ N +Q(,+2Nt) ~ N +Q(,)" ~ z+2Nt (4.126) 

to obtain the following equation 

d'Q (d'Q (dQ)') (d'Q (d'Q)') (dQd'Q (d'Q)') p. ds3 + P 2Q ds2 - d; = 2al Q ds4 + ds2 + 02 2 ds ds3 + ds2 . 

(4.127) 
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Lett,jng Ql = 0:2 = 0 in Eq. (4,127) and assuming 

(4.128) 

we get the following relation 

(4.129) 

On choosing ),6 = -1 we readily obtain Al2 = 211 (11 is the kinematic viscosity) , The 

e.xpressions for stream function (4.122) and velocity components (4,44) a.re 

;j; (r, z, t) - r' [N +2v('+2NW'] , (4.130) 

" ~ -2vr(,+2Nt(', (4.131) 

v = -2 [N + 2v (, + 2NW'] , (4.132) 

It is noted that the solutions (4,130) to (4.132) reduces to that of Berker solution (41) when 

N=O. 

For 01 i- 0, 0'2 i- 0 we assume [46 , 47) 

Q = Ao(l+CoeQ~~), s =z+2Nt (U33) 

into Eq. (4,127) and get, after a straight forward calculations, the following solution 

(4.134) 

where 

and Co is a constant, The stream function (4.122) and velocity components (4.44) in th is case 
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become 

(4.135) 

(4.136) 

(4.137) 

For n = 0, Eq. (4, 123) gives 

82F, 
P Dz 3 - (4. 138) 

8FiJ'F 
p 8z Dz2 - (4.139) 

8F8'F 
(5et l + 4(2) 8:: 8z2 = O. (4.140) 

Since * ¥- 0 thus Eq. (4.140) implies that 

F(z,t) ~a" (t)z+a,,(t), (4.141) 

where all (t) and al:,i (t) are arbitrary functions of time and above expression leads to the 

following values of the stream function (4.122) and velocity components (4.44) 

(4. 142) 

Writing 

(4.143) 

in Eq. (4.138) and then solving the resulting equation we obtain 

(4.144) 
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in which a, (i = 13,14,15,16) are arbitrary integration constants and 

The corresponding stream function (4.122) and velocity componenta (4.44) are 

(4.145) 

4 .4.3 F IQw where W(R,CT,t) = RnF(a,t) 

On specializing the solution of Eq, (4 .78) of the fonn 

'ii(R, o, t) = RnF(a,t) (4.146) 

we obtain 

where 

(4.148) 

G(o ,t) 

D''ii 
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FOT n ~ 0, Eqs. (4.147) and (4.148) become 

8'F 0 0'0 If 
O~ (1-0') -8" 0 1 ~ --" 1f~60+ (1-0')-8" HI ~ --,' 

(T 1 - 0" (J 1 - 0" 
(4.150) 

Equation (4. 149) give risc to the following partial differentia! equations 

(4.151) 

Equat.ions (4. 151 h 3 and Eqs. {4.150h 4 imply that G and H are not functions of t and . , 
hence Eq. (4.151)2 with the help of Eqs. (4.150h,2. become 

OF 0
1 

_ OF (~) _ _ 1_8F 1-0' O'F _ 8F8'F _ 0 
8rr - au 1 - (72 - I - (12 8u ( ) au~ - 80 8u2 - . 

Since ~ f 01 we get. ~ = 0 and whose general 501ution is 

F (0, t) ~ Co (t) a + CI (t), (4.152) 

where Co (t) and C} (t) are arbitrary constants and the stream function (4. 146) and velocity 

components (4.73) are found as 

-?< " Co(') 'i' ~ <-0(')0+ "'I ( ' ), u~ liT' v ~ O. (4.153) 
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For" ~ 1, Eqs. (4.147) and (4.148) yield 

(4.154 ) 

(4.155) 

Equation (4, 156) gives the following partial differential equations 

Again Eqs. (4 .156)12 give that G and hence H is steady, so that the Eq. (4.156)2 becomes 

(4.157) 

In order to find the solution of Eq. (4.157), we write this, a.fter some lengthy calculationsj 

the following expression 

(4.158) 

Integrating Eq. (4 .158) we obtain 

(4.159) 

where Cll (t), 0 12 (t) a nd Cl 3 (t) are arbitrary funct ions of the variable t. 

93 



Following La.ndau and Liftshitz 1471 (by setting functions of integration equal to zero) we 

assume the solution as 

F (0". t) = -.I, (I - c') (0" - a,,) -I • (4.160) 

wheIe As a.nd at1 are arbitra.ry real constants. [nserting Eq. (4.160) into Eq. (4.159) it follows 

'\, = -2~/p. (4.161) 

Using t he value of)'s in Eq. (4.160) one obtains 

(4.162) 

Substituting Eq. (4.162) into Eq. (4.15Gh we obtain the following 

, [ I 20' 1 - a2 1 [ "I { ~~:~.' + 2::i:~~:l + I~},:~J'} ]_ 0 

(a-a,,) (a-a,,) (a-a,,) (n +n) 2a+~+"(J-o)+"I-' 9611 :l - 3 - 4. { , ( 'l'r -. 
1 2 a-air (17-0lT):I (a all) 

(4.163 

It can be noted from Eq. (4. 163) that solution cannot be obtained for all values of the 

parameter an. Siddiqui et aL 128) found the solution of Eq. (4. 163) for steady cases when 

al? = -1, I, O. We are recasting the solution for the completeness. On setting a17 = ±l! EQ 

(4. 163) is satisfied identically and Eq. (4,]62) gives 

Fl.2 = -=f-211 (1 ±u)! for an = ± 1 (4.164) 

and for an = 0 and 7Ctl + 20'2 = 0, Eq. (4.162) become 

2" , 
F3=-(I-a ). 

a 
(4.165) 

The stream function (4.146) and the velocity components (4.13) for Ft, F2 and F3 are 

respectively given as 

(4.166) 
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For n ~ 2, Eqs. (4.147) and (4.148) redace '0 

a'F 1 a'c 1 
C~2F+ (1- a') -a "CI ~ --,c, H ~ (1 _a') -a "HI ~ --,H. 

a 1-0" a I -a 

On comparing the coefficients of R, Eq. (4.169) gives the following equations 

eCI 
at ~ 0, :a(CIF)~O, (~+~I:,)Hl~O, 

_ 2(01+"') [(I -a')~(C~+2aFCI)]. 
1 u

2 
+2 (G~ + 2uFGJ) - Gfi 

(4.167) 

(4 .168) 

(4.169) 

(4.170) 

(4.171) 

Equations (4.171h,3 together with Eq. (4.170) imply that G) and hence HI is steady. From 

Eq. (4.171), we get 

( 4.172) 

The solution of Eq. (4.172) is given as 

F(a, t) ~ (a' -1) C\ (t) + ~C, (t) [-20+ (J - a') (In(a - I) - In (a + 1)}j (4.173) 

and the stream f\ffiction and velocity components respectively are 

¢ ~ R'F(a,t),v ~2 (1-a')-I/'F(a,t), 

" = H4CJ(t)+C'(t) {In(<1 + 1)-ln(a -1) - ~} l' (4.l74) 
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where C} (t)and Cz (t) are arbitrary functions. 

For n = 3, Eqs. (4.147) and (4.148) lead to the following 

Equation (4,175) gives rise to the following 

For steady (It (,) = 0) and viscOllS case (0'1 = 0) , Eq. (4,178) gives p.H\ = 0 which 011 using 

Eq. (4.176) becoro.~ 

8' [ a'F] I' aa' 6F + (1 - q2) aa' = 0 

which on integration gives-

(4.179) 

where k1and k? are constants of integration, It is observed that the solution F obtained in Eq, 

(4, 179) is only satisfied through Eq. (4. 177) when the constants k1alld k'l are fixed to zero, So 

the solut.ion of Eq, (4,177) is 

F (0) = a (a 2 - 1) 0, - io, [-4 + 60' + 3a (a' - 1) {I - In (1 + aJ) + In (a - 1)]. (4.180) 
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The stream function and velocity components are 

~ ~ R3F (a, ').v~ 3R ( I -"'rl"F(.), 

u ~ R[(3a' - 1) C3 - ~C.a+ ~(3a' - 1)C. (lU(I +')) - ln (a - 1 )] . (4.181) 

When k\ :F 0, k2 ,,0, we have the following solution of Eq. (4 .179) 

F(~ ~ - , 1 [6k,a'+4 {'w' +6a (a' -1)C, +3C, (2 - 3a')} 1 
24 +30-(0-'-1) (',-6C,) (I n (0--1)-ln(a+1ll 

(4.182) 

where Gt (i = 3 - G) are constants. The stream function and the velocity components in this 

case are 

- 3 dF (' - 1/ ' '" ~ n F(a,I), u =R
da

, v = 3R 1 - a) F(a). (4.183) 

For n = 4, Eqs. (4.147) and (4.148) become 

P [R,aCI _ 4Faol R'] ~ 
at ao- (4.184) 

O ( ,)8'F ( ,) -1 = 12F + 1- a- 8a-2 ' G1 = 1 - (] G, 

H = (1-0-') ~:~ +20, HI = (I-a'f l 
H. (4.185) 

Following equations are obtained from Eq. (4 .184) 

= 0, F8a~1 = 0, (I' + " I :t) HI = 0, (4.186) 

= 2("1+"') [{(1 - a')/l.+6}(0~+4'FOI) ] 
1 a' -{0f:+2a( l - a'fI0'} . 
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The first and third equation::; io Eg. (4.186) imply that G1 and hence HJ is steady (not a 

function of t) . Since F#- 0, Eq. (4. 186h gives ~ = O. which on using Eq. (4. 185)1 gives the 

following solution 

U,ing Eq. (4. 185)1 in Eq. (4.187) we get 

( ') e'G (2) 1 - cr oa2 + 2G = A16 1 - u , 

( 4.187) 

( 4.188) 

Tb.e solution of Eq. (4.188) for steady case is given by Berker [41) and in order to avoid 

repetition we directly give the solution with stream function and velocity components as 

F _ k,u' (l -u'), (4.189) 

1/) = k3a(1-2a2)R2,u=2k3a(1 -2a2)R'l,11=4k3a2jl-o'ln'2, 

where k3 is a constan~, 

4.5 Conclusions 

fo this chapter, the governing eime dependent equations for plane polhr, axisymmetric cylindl'i. 

cal and spberical coordinates are derived. By assuming certo.hl forms of ~be stream function in 

different coordinate system, we obta.ined closed to eleven solutions of the resulting differential 

equations. The solutions obtained are found to be in well agreement to that of the previous 

solut ions for viscous and second grade fluids. The modeled compatibili ty equations in aJt the 

th ree coordina~e systems for steady cases reduce to Siddiqui et aL [28), whereas the solutions 

successfully verifies the results of Jaffery-Ha.mel [46J, Berker [41] , Squire [4 61 , and Landau and 

Liltshitz [47[. 
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Chapter 5 

Flow of a third grade fluid induced 

by a variable shear stress 

5.1 Introduction 

The solution of third grade fluid is far more complicated than the Navier-Stokes equations and 

for the second grade fluids . The second grade fluids though complicated are sometimes amenable 

to certain sohl~ion methods) whereas t.hird grade fluids do not yield solutions for these problems. 

Physically, if the second grade fluids are important by shear thickening properties, third grade 

fluids bave the significance because of the shear thinning properties. The nonlinearity enters 

further through the boundary conditions as well. 

This chapter comprises the flow of an .i ncompressible third grade fluid over an infinite wall. 

The flow is induced due to a variable shear stress. The variable shear stress of the third grade 

fluid make the boundary condition non-linear. This chapter is arranged os follows: 

In section 5.2, the modelling of the governing equation for flow of a third grade fluid is 

given. Section 5.3 deals with the formulation of the problem. Section 5.4 is decomposed into 

four subsections. In subsection 5.4.1, the solution is given when the shear stress is proportional 

to 1:::).1 (..\ is real 11I1U positive constant). Subsection 5.4.3 gives the analytical solutiuu of the 

problem when shear stress is proportional to eiwt (w is imposed frequency), Both the series 

and numerical solutions nrc given in subsection 5.4.1, whereas only series solution is obtained 

in subsection 5.4.3, Moreover, the results and discussion a rc presented in subsections 5.4.2. 
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and 5.4.4. Section 5.5 synthesis the concluding remarks. LL is found that with an increase in 

second-grade parametp.r and third-grade para.meter, the velocity decreaseR and thus boundary 

layer thickness increases. 

5.2 Modeling for variable suction in third grade fluid 

Consider the flow o[ a third grade fluid over a plate. The wall is infinite in extent and thus the 

velocity field depends only y and t. i.e. 

V = [u(y,t), 0, 0[, (5. l) 

which satisfies the equation of continuity. Making use of Eq. (5. 1), one can write 

(5.2) 

(5.3) 

(5. 4) 

(5.5) 

and thus through Eqs. (1.6) and (1.7) we can write 

(5.6) 

From above equation 

(d,vT) =- -P+'" - + - 1'-+0, --+V- +2P, -. a [ (au)'] B [ Bu (a'u B'u) (au)'] • Bx 8y ay 8y ByBt By' 8y' (5.7) 
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In absence of body forces, the momentum equation satisfies ~he following equatIons 

[iN l' P Tt+(V . V)V • ~(d>vT)" 

[OY l' P ilt + (V · V ) V , ~ (d>vT)" 

where subscripts indicates the x and y components of the momentum equation, 

From Eqs. (5,1) and Eqs. (5.7) to (5.10) one can write 

where 

Eliminating the pressure gradient between Eqs. (5.11) and (5. 12) finally yields 

(5.8) 

(5.9) 

(5. 10) 

(5.11) 

(5.12) 

(5.13) 

(5 .14 ) 

It should be pointed out Eq. (5.14) holds for second grade fluid when f3a = O. The equation 

whlch governs the viscous Bow can be taken for o} = 0 and fi3 = O. 

5.3 Problem formulation 

Let us consider the flow of a thermodynamic third grade fluid over an infinite plate at y = O. 

Choose the y-axis perpendicular to the plate. The plate is assumed under a variable shear 

stress with magnitude Cl'r (t) where CI is a constant having the dimension pUn (p is the density 

and Uo is some reference velocity). The governing non~li nea.r equation is taken from Eq, (5 ,14) 

as 

(5.15) 
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The Don-linear boundary conditions for the Bow under consideration are 

(5.10) 

u(y, t) ~ 0, as y_oo. (5.17) 

We shall now write the field equation and the boundary conditions. For that we use 

_ Ck:1UJ 6{33U6 _ tJ. - UJt Uo 
O'} = --, E= --,u.=- t= -, 1/=-Y. 

PV2 p/.l3 UO ' 1.1 /.I 
(5.18) 

in Eq. (5.15) and the boundary conditions (5 .16) and (5, 17), and then omitting the bars for 

simplicity we get 

(5. 19) 

(5.20) 

'U (1/. t) - 0 as 1/ _ 00, (5.21) 

In thjs chapter we discuss two cases (i) l' (t) = e)'t p, is real and posi tive consta.nt) und 

(ii ) r( t) = elWt (w is imposed frequency). In the former case since). is positive, it is prudent. 

Lu uutain a numerical solution besides an analytical solution in the form of pert urbaLion Heri~ 

in terms of E. In the latter case, on the other hand since the solution is essentially bounded 

cherefore, a perturbation solution should give acceptable results. 

5.4 Solution of the problem 

5.4.1 Solution for case 1: T (t) = e"t, ,\ is purely real (acceleration) 

N umerical solu t io n 

In problems of this type, usually no initial condition is given at t = O. For example, for a second 

grade fluid (f' = 0) Hayat et at. [211 and Rajagopal [19] derived the analytical solutions for 
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a nwnber of unsteady unidirectional Row problems, without using any initial condition. The 

jrutial condition, if derived , can be obtained from the solution. 

Bocuuse of the nonlineru:ity introduced on account of the third grade fluid parameter, a 

closed form anolytical solution, in general, is not feasible to obtain, and a numerical solution 

should be sought. For the latter, it appears that an initial condition must be prescribed at 

t = O. However, as Ariel \48] has recently demonstrated in an analogous situation, the initial 

condition can be deduced if appropriate transformations are used . 

We choose 

so that the differential equation for f takes the fo rm 

and the boundary conditions become 

(1+ !.)a/(O,t)+~ ,,,[a/(o,,)]' ~1 
OJ fj1} 3ee aT} , 

Next we introduce the transformation 

which leads us the boundary value problem 

(5.22) 

(5.23) 

/(00,') ~o. (5 .24) 

(5.25) 

(5.26) 

(5.27) 

Equation (5.26) has only the boundary conditions at 1] = ° and tj = 00, but not the initial 

condition at ~ = 0. But if we make the reasonable assumption that f is regular at e = 0, we 

do not need the initial condition to get the integration started at { = O. Equation (5.26) can 

tbus be integrated in the entire domain 0 '$ { < 00 n O::;: 1/ '$ 00. When one reaches e = 1, t he 

initial condition is recovered for the problem. Now either the original equation (5. 19) can be 
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integrated in the usual manner, or the integration can be further carried out of equation (5 .26) 

beyond ~ = 1. We have chosen the latter approach in the present work. 

The details of the integration scheme have been furnished in Ariel [48] and are omitted here, 

except that in the present work the situation is slightly complicated on account of the boundary 

condition at TJ = O. Now we have 

(5.28) 

which is a cubic in D f (O,~) / DTJ, that must be solved for each value of ~. Also at ~ = 0, the 

solution for f is 

(5.30) 

\(0) 

h=O.5 
t=() t=1 t=2 t=3 t=5 

Pat\r- Paur- Panl'- Patlr- PaUl'-
al 

f Ex.lCt b,"Don Exact b"tial Ex.lCt Imal Exact b"tial Exact b"tial 
0.2 0.1 -1.339476 -1.34Z'S4 -2.1ES549 -2197751 -3.~2 -357U781 -5.$3185 -5.853'l63 -13.222440 .8).142478 

02 -1.331485 -1.xsm -2.15793) -2177N -3.443Jl5 -353'7\lll -5.~2 .0.401501 -12.355852 -213.784337 
05 -1311407 -1.322416 -2039371 -2146119 -3.:<E2ffi7 -3.a::oo:a -5.033J27 -12.s:n€69 -11 .154726 -1334.267421 

1 -12:f8l) -1.:nE74 -2.D27334 -219:Hi9 -3.1 :;:a:B3 -5.455769 -4.727634 -37.477161 -10.24Cffi2 -5400.234261 
0.5 0.1 -1251fJJ7 -1.261516 -2055104 -2~ -3.32<BI2 -3'317P.62 -5.285334 -5.4ffi'rJ3 -12.62)225 -25.168523 

02 -129:940 -1.293241 -2.cm:936 -2057429 -3.247671 -3.m:t21 -5.097933 -5.4?a324 -11.854309 .os.923162 
05 -1.23:R9 -1 .249133 -1976187 -20<5241 -3.107124 -3312733 -4.79J754 .o.OOJ157 -10.776:':S8 -384.242334 

1 -1211545 -1.226331 -1916194 -2C03322 -2.97:mJ -3.629622 -4.522355 -13.3+1755 -8.942527 -1553.193693 
1 0.1 -1.149875 -1.153137 -1.ffi3191 -1.EaX?B3 -3.056i0i:l -3.1ca::m -4.885331 -5.(}D345 -11.7FHJ22 -14.5135:6 

02 -1 .14S323 -1.151593 -1 ffi5411 -H91251 -2.997434 -3002781 -4.7277Ff3 -4.9JX93 -1 1.147837 -21 .551781 
05 -1.133:S5 -1.147127 -1.823182 -1.87Zm -2.00J334 -3m:ces -4.4661e3 -5.C!IB47 -10224618 -82.210010 

1 -1.11E032 -1.1401E8 -1.773710 -1.848109 -2.7654:B -3lXl4S33 -4.233184 -5.'377002 -8.493322 -315.168407 
2 0.1 .{)~ .{).9339J3 -1.s::m::8 -1.641Xi27 -2.678170 -2.7C'e:E6 -4.324706 -4.433593 -10.6J3175 -11 .63:;051 

02 .{)ffi57Ld .{).999019 -1.133JJ34 -1.644$3 -2.B44E -2ffEll7 -4.216997 -4.402104 -10.107024 -11 .76JD3 
05 .{)!J'1Jl'Z2 .{).997566 -1.E05932 -1.s:xosa -2.5€6931 -2573475 -4.015481 -4.317206 -8~ -16.~ 

1 .{)9:Q324 .{).se5196 -1575504 -1.62a170 -2.48J478 -2B33103 -3.83J1 12 -4.:2fV656 ~.7T2fB5 -37.331574 

Table 5.1 Illustrating the variation of u (0), the velocity at the plate with aI, the vis

coelastic fluid parameter and €, the second-grade fluid parameter for A = 0.5 using (i) exact 

numerical solution and (ii) perturbation solution 

From Table 5.1, we observe that there is a very good agreement between the numerical 
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solution and the perturbation solution for t = 0 and small values of t (t < 1). For the values 

of t greater than 3, there is sufficient discrepancy in the results that the perturbation solution 

can no longer be accepted and the results from the numerical solution only should be used. 

o - .-. - - - _ .... ---

-0.5 

r ·1 

" .5 

·2 

A=O.S. 1=1 
E = a 1 

------- E = 0.5 

·2.5 +---_-~~-_-~--~-~--~-~-~-____i 
0.5 1.5 2.5 3.5 4.5 

Fig. 5.1. Variation of velocity profile u with 7) for t = 1. 

·0 .5 

., 
·1 .S 

·2 

::> 
·2 .5 

., 

·3 .5 

., 
0.5 1.5 

~ = 0.5, /=2 
E = 0 .1 

-------- , = 0.5 

2.5 ' .5 ' .5 

= -----: 

Fig. 5.2. Variation of velocity profile u with 7] for t = 2. 
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o --------------------- -

-2 

.. 
r.. al -2 

'" -, 
- '0 

-12 

-" 
0.5 1.5 

A = 0.5. 1=5 
£ = 0' 

----- - -- £ = 0.5 

2.5 3 3.5 =- '.5 

Fig. 5.3. Variation of velocity profile tL with r; for t = 5. 

Perturbation solution 

We perturb the velocity field tL in third grade parameter c as follows [49J . 

1£ (r;, tj c) = 1£0 (r;, t) + CUI (r;, t) + c2
U2 (r;, t) + . -.. (5.30) 

For c = 0, Eq. (5 .32) gives an exact solution for the reduced problem corresponding to a 

second-grade fluid. Using Eq. (5 .30) into Eqs. (5.19) and the boundary conditions (5 .20) and 

(5 .21) and then comparing the coefficients of like powers of c one obtains the following systems 

up to 0 (c2) as: 

Zeroth order system 

(5.31) . 

01£0 02uo I _ At o + QI.Q .Q - e , 
r; vr;vt 17= 0 

t > 0, ( 5.32) 

tLo (r;, t) ----) 0 as r; ----) 00. (5 .33) 

F irst order system 
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(5 .34) 

(5.35) 

U1 (7], t) ~ 0 as 7] ~ 00. (5.36) 

Second order system 

8112 8
2

u2 (8UO) 2 81l1 - 0 (5.38) 
87] + °1 87]8t + 87] 87] 1)=0 - , 

U2 (7], t) ~ 0 as 7] ~ 00. (5.39) 

The above systems after using the transformations 

reduce to the following: 

(5.41) 

(5.42) 

fO(7])~O as 7] ~00, (5.43) 

(5.44 ) 
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(1+ 3.\"",; (0) + 5 (fa (0))' = 0, (5.45) 

(5.46) 

(I + 5)'''Mf (ry) - SAil = - (to)' I;' - 2/oM" (5.47) 

(1+ 5A"I ) tHO) + Uo(O)' to (0) = 0, (5.48) 

(5.49) 

where prime denotes the differentiation with respect t.o .". 

After lengthy but straightforward calculations, the solutions of the above systems are 

where 

The expression for skin friction is given as 
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'From Eqs. (5.W) to (5.52) we can obt.ain 

J{ (1]) = Al (_c~e-c,,'1 +9~e-3CaII)! 

12('71) = A2 (_~e-':2TJ +25~e-5C(J"I) +82 [-cie-CJ"I +(2C() +C])2 e-(2CO+Cll'1]. 

5.4.2 Results and d iscuss ion 

(5.54) 

(5.55) 

(5.56) 

Fig. 5.1 is plotted for t.he velocity fie ld u against 7} for (al = O,I,2;t = 1;>. = 0.5 and 

,= 0.l iO.5). It is observed that with an increase in the viscoelastic parameter 0'1 the velocity 

increases near the boundary but then decreases away from the boundary thus causing the 

boundary layer th ickness to increase. Also it is found that when 011 is fixed Le. (01 = 0) and 

t he third-grade parameter is increased from £. = 0.1 to £. = 0.5 the velocity is again increased 

near the plate and then decreased away from the boundary, t hough the effect of third-grade 

fluid parameter is not as pronounced as that of the viscoelastic fluid parameter. Same behavior 

is observed when 01 = L and 0, = 2. In Figs . 5.2 and 5.3 the velocity field 1.l js p lotted 

against ~ for (OIl = 0, 'l, 2;t = 2;.\ = 0.5 and £ = 0.1: 0.5) and (01 = 0,1, 2i t = 5;'\ = 0.5 

and f = 0.1;0.5), l'especUvely. The similar observtl.l,iolls for the velocity field and the bouuJary 

layer thickness are seen in these figures as in Fig. 5.1 except. that the difference between the 

velocity profiles fo r , = 0.1 and £. = 0.5 become prominent as we increaSe! t from 2 to 5. 

5.4.3 Solution for case 2: "T (t) = e~t, ,\ is purely imaginary (osc illations) 

P erturbation solution 

We now discuss the case when the shear stress at the plate has an oscillating nature. For that 

we put).. = IW in T (t) and employing the same procedure as in section 5.3.1 one obtains 

'(o,t;<) ~ 110. (ry) oo,wt - !odry),inwtl 

+<1". (n) 00' 3wt - "dry) , in 3wtl 

+<'112. ('I) cos 5wt - "d'l) ,in5wtl + ... , 
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where the expressions for the functions fOR, fO!, fIR, fll' hR, f2I are straightforward to obtain, 

which can be easily obtained from Eqs. (5 .50) to (5 .52) by letting A = iw. Separating the real 

and imaginary parts we obtain 

fOR 

Rg + R13 + R14, f2I = Ig + h3 + h4, 

V 1 J V(w2Q,)2 + w2 + W2Ql, 
2 (1 +w2af) 

1 J V(w2al)2 + w2 - w2al, 
V2 (1 + w2af) 

~ J V(w2aI)2 + w2 + w2, h = ± ~ J V(w2ad2 + w2 - w2, 

R, V 1 J V(9w'Q,)' + 9w2 + 9w2Q1, 
2 (1 + 9w2af) 

J, ~ V 1 J V(9w2Q,)2 + 9w2 - 9w2Q1, 
2 (1 + 9w2af) 

R4 2w2al (2w2ai - 3), 14 = w (1 - 9w2ai) , 
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R14 = (a:7cos /571-brsin[571)e-~'1, 114 = (br cos 1571 +'ii7 sin Is"1) e-R&", 

RI3 = RIO - (alsR12 - bls l n) J 113 = Ito - (blsRll + Ci18 f12)' 

RI , = Ril cos 15'1 + IIJ sin [5"1, 112 = 111 cosls'l- RIl sin Isf/, 
e-~'I 

RII = R' I? [( R,+2RI )Rs+ I,(I, +2JIl!, 
5 + 5 

e- 14 '1 
III - R' n[(I,+2h)Rs -I,( R, +2RIl[, 

5 + 5 

RlO = e- (2RI+R3)1'I [alB cos (2ft + 13) 1] + bl 8 sin (2h + [3)1/) , 

110 = e-(2RI +R3)1'I [bIB cos (211 + 13 ) T} - al8 sin (2ft + [3) 1]J ' 

alS = alSa17 + blSb17 b blSb17 - alSal1 - 3 (- 5w ii ) 
2 .,-2 , 18 = 2' an = a l 6 - 01 16 , 

al7 + b17 ar7 + b17 

a l6 = 

bl6 = 

al5 = 

bl5 

Ul4 

bl4 

al3 

(2RI + R,)' - (2h + I,)' - (Rl + m', 
(2RI + R,)(2II + I,) - 2R,Is , bl7 = 3 (bl. + Sw<>I OI.) , 

(2RJ + RJ) (Ci13014 - bi3bI4) - (2[1 + fa) (b13'ii 14 + ai3(14) , 

= (2ft + [3) (a13a14 - b13bU) + (2 RJ + R3) (bUa14 + 'ii13(tH) I 

= (~-Il) (Rl- Ii) - 4RIIIRoI" 

= 2RII, (~ - m +2RoI, (Rl-f1) , 

= (' ') - - - , 2 0, R3 - I, - 2b,R,h b" = b,(R, - I,) + 20,R, I" 
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., 
n, 

b, 

R, = 
R, = 

I, = 

R, = 

I, = 

all = alO - 5wolb1o! bll = blO + 5Wo)alU) 

alO = 25 (Rl- I1) - (Ri - Ill, b10 = 50R,I, - 2R,I" ., = (Ri - Ii) (.,., - b,b,) - 2R, 10 (b,a, + a,b,) , 

b, = 2R,I, (0,., - ~,b,) + (Ri - m (b,li, + ":lb.), 

a, = R,{(RI-I1)'-4Rll1}-4(RI-I1)R,T?, d=ii2+'b" 

68 = 11{(Rr - /n~-4Rrlt}+4(R~-/nR.~rh C=~+illl, 

ii, = (nl-Il) - 9 (Rl- m, b, = 2R,I, + 2R,!" J8 = Rdil" 

ii, = (Ri-I£)(RI-I1)-4R,I,R,I.,b=R,+iI,. 

6, - 2R,ldRi-I£)+2R,1,(Rl-I1), a=R,+iI" 

= 

= 

= 
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in which fOR, for, hR, hI, and hR, f2I indicate the real and imaginary parts of fo, hand 12, 

respectively. 

0.25 

0 

-0.25 

-0 .5 
::l 

-0.75 

-1 

-1.25 GIl =0 

0 2 4 
'7 

6 8 

Fig. 5.4. Variation of velocity profile u with", for t = 7r /2, c = 0, w = 0.1 and al = 0; 1; 2. 
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0.1 
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-0.1 
(Xl=O 

-0.2 

0 2 4 6 8 

Fig. 5.5. Variation of velocity profile u with r; for t = 2?T, E. = 0, W = 0.5 and O!l = 0; 1; 2. 
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Fig. 5.6. Variation of velocity profile u with r; for t = 2?T, E. = 0.1, W = 0.5 and O!l = 0; 1; 2. 
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0 
::l 

-0.5 

-1 

0 2.5 5 

Ill ..• w=O. l 
112 ..• w=0.3 
113 ... w=0.7 

t=2T1, E=0.5/0:1=0.5 
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Fig. 5.7. Variation of velocity profile 1£ with 'f/ for t = 211", C = 0.5, Ql = 0.5 and 

w = 0.1; 0.3; 0.7. 

0 

-0.2 

-0.4 
>. x 

I-J 

-0.6 
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Fig. 5.8. Variation of shear stress Txy with'f/ for t = 211", C = 0.1, W = 0.5 and Ql = 0; 1; 2. 
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5.4.4 Results and discussion 

In Fig. 5.4 tt the velocity is plotted a.ga.in.9t '1 for a second-gra.de fluid (ctl = 0, I , 2; t = 7r 12;w = 

0.5; £; == 0). It is observed that with an increase m the viscoelastic flUJei parameter 01 the 

velocity decreascs and thus boundary layer thickness increases. Similar effects ure seen. in Fig. 

5.5 in which t = 2'/f and w = 0.5 ate taken instead of t = 11' 12 and w = 0.1 . in Fig. 5.6 the 

velocity u is plotted against 1] for a third-grade fluid (0'1 = O,l,2;t = 211'iW = D.Sif' = 0.1) . 

Figure 6 shows that with the increase in third-grade parameter the velocity decreases and the 

bmmdary layer thickness further increases. In Fig. 5.7 the velocity u is plotted against IJ for 

0'1 = 0.5, t = 2rr, f' = 0.5, and for various values of oscillating frequency (w = 0.1,0.3,0.7). 

It is clear from Fig. 5.7 that the ampli tude of the velocity decreases with an increase of the 

OScill ating frequency. Fig. 5.8 is plotted for the stress T ~11 at any point in the fluid against ." 

for various values of 0'1. 

The skin ~tion at the plate TJ = a can be obtained by finding the real part in the following 

equation 

(5.58) 

whe,e fOR (0). f'R (0). f'R (0) . fOI (0). f'l (0). f;1 (0) ace given as, 

fOR (0) 
R1R2+ Illt 

, fOI (0) ~ 
hR2- R112 

~ 

~+Ii Rj +q • 

f, R (0) ~ Rl ~ Ii [6Rlftld 314 (Ir - Rl) + ~14 (R! - IS) - ~Jl,ftl'l. 
fil (0) ~ 1 [ (' ') 1 (' ' ) 2 ] R~ + II - 6R}I}14 + 314 I} - R, + 3'[4 R3 - /3 + 3R:!hR4 I 

f'R (0) - R'o (0) + R;, (0) + R;. (0). (,1 (0) ~ I, (0) + i" (0) + I,. (0) . 

5.5 Concluding remarks 

Here we have constructed the results for the flow of il third-grade fluid on a plat.e. The flow 

is generat.ed due to a. variable shear stress of the plate and the solution of non· linear partial 
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differential equation is presented. The problem considered is more general and several limiting 

cases are obtained as the particular problem of the presented analysis. Specifically, the results 

for ViliCOU8 find second-grade fluid flows due to a. variable shear stress (which are not yet in the

literature to the best, of our knowledge) can be recovered by taking 0:1 = £ = 0 and f. = 0, 

respectIVely. Our investigation shows that the perturbation technique is adequate for the case 

when the variable shear stress bas as oscillatory character, however, if the shear stress grows 

exponentially with time then the perturbation solution can be accepted only for small values 

of time. For moderate to large values of time, the numerical solution must be used. 

117 



Chapter 6 

Time dependent flow of a third 

grade fluid in the case of suction 

6.1 Introduction 

We emphasize that the process of suction/blowing has its importance in many engineering 

applicatioIl5 such as in the design of thrust bearing and radial diffusers and therma.l oil recovery. 

Suction is appUed to chemical processes to remove reactants. Blowing is used to add reactants, 

cool the surfaces, prevent corrosion or scaling and reduce the drag. Hopefully, the subsequent 

anlllysis will help understand the phenomena in some more details. 

This chapter examines the flow of an incompressible third grade fluid over an infinite. porous 

plate. The flow analysis bas been carried out for sudden motion of a plate. The governing nOD

linear partial differential equation resulting from the momentum equation is solved analytically. 

For the analytic solution , the perturbation method has been employed. Special emphasis has 

been given to the influence of suction and tbe material parameter of tbe third grade fluid on 

the Bow. Several known results of interest are found to follow as particuJar cases of the solution 

of the problem considered. It is observed from the solution that non·Newtonian effects on 

the velocity are present for small time. For large time the velocity and shear stress for the 

Newtonian and non·Newtonian fluids are the same. 
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6.2 Governing problem 

We consider an infinite permeable plate ahgned along thE! z - a.xis. We mean by permeab1e 

pla.tes that the plates with very fine holes distributed uniformly throughout the plate through 

which fluid can How freely and continuously. Suddenly, the plate is set into motion with velocity 

Va along the x-axis. The auid at y > 0 is at rest far away £rom the plate. The velocity field 

for the present flow analysis is 

V~(u(y,t), "(y,'), 0) , (6.l) 

which together with continuity equation (1.9) gives 

v ~ V (,) 

in which V (t) < 0 corresponds to the variable suction velocit.y and thus Eq. (6.1) DOW becomes 

V~ (u(y.'), V(t) , 0). (6.2) 

Using above dennition of velocity, Eq. (1.4) yields 

[
lJu /)u] 

P 81 + V(') /)y = 

W(t) /)p, 
p--=--at oy 1 

(6.4) 

(6.5) 

Eliminating the pres5W'e P3 from Eqs. (6.3) and (6.4) one can write 
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au + V(t) 8u a, ay (6.6) 

where f3 = 0'1/ p, I = 6(t3~ + (33)/ p and Cl = t311 p. Note that P3 is a linear function in y and in 

writing Eq. (6.6) we have used the expression (1.6) for the Cauchy stress tensor . 

The appropriate boundary conditions are 

"(0, t) ~ u, 
·u(y, ,) ~ 0 

Introducing tbe non-dimensional variables 

u. = Uo/, 

the governing problem becomes 

[(0, T) - I , 

[ ~ 0 

in which 

V(t) ~ U,V(T), 
"t_ 

fJ~ UfifJ, 
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t > 0, (6.7) 

as y --t 00. 

(6.8) 

(6.9) 

for T> 0, (6.10) 

.., ~ -I 00, 

v' "' - (6.11) "(= u,/y, c: = U~c. 
0 



6.3 Perturbation solution 

Writing 
y - J V(t)dt < - JV(7)d7 

~ ~ 2jVt ~ 2.fF ' (6. 12) 

1 1 
I(ry, T) = 10('1) + - !1(~) + 2"(~) + ... , 

T T 
(6 .13) 

into Eq. (6.9) and conditions (6.10) and then equating the coefficients of like powers of 1/, we 

get the following systems: 

System of order zero 
" , 

10 + 2ry/o = 0, 

System of order one 

/0(0, T) = 1, 

lo(oc",) = O. 

11(0,7) = 1, 

/1(00, T) = O. 

The solution of the zeroth order system is 

for 

for 

T > 0, 

r;:. 0, 

where erf('I1) i.s the error function and erfc(71) is the complementary error function. 
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(6.14) 

(6.15) 

(6,16) 

(6.17) 

(6.18) 



SubstitutiDIl of Eq. (6.18) into Eq. (6. 16) we ha.ve 

(IU9) 

Not e t hat the solution or Eq. (6.19) is the sum of complementary function and particular 

integral. The complementary function satisfies 

" , Ii + 2ryfl + 4fl ~ O. (6.20) 

Writing 

(6 .21) 

and using into Eq. (6.20) we obtain 

j=0,1,2,31 4,., . (6.22) 

On substituting Eq. (6.22) into Eq. (6.21 ) the complementary function and particular integral 

are of the following type 

f - 'P 3 _,.,2 7 (2 3 . 2.8 5 2.4 .74 7 4.2.184 \I) _ 31')2 
11'- .,;;'1] e - ll'S/2 3''1] +3.51/ + 3.5.7. 671 + 5.7.9.8rl e . 

The general solution is 

where 
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(6.23) 

(6,24) 

(6.26) 



Using It (O) = 0, we have "0 = 0 and thus the expression for /I is 

Let us write 

~ 

F(Tf) = L "2n+l fJ21l+1 = "3113 + "5.,.,5 + "11'/1 + (1gfJ9 + ' , .. 
n=l 

On comparing Eqs. (6.26) and (6.28) we can write 

., 2 - = --- = -0,1172475 , 3w~~ , 

(6,27) 

(6,28) 

(6,29) 

The calculations of coefficients "2n+l are described in terms of " 3 in Table 6.1. as follows: 

.. 1.60000000 ill 0,05858760 ill 0,00005584 0, 0, ., 
!!2 [,40952381 ""- 0,01769331 "'" 0,00001094 
" 0, " .. 0,87619048 !a 0,00478697 .,. 0,00000201 0, 0, 0, 

"" 0.42528139 "'- 0,00117728 ""- 0,00000035 0, 0, '" 
!ill. 0,17053169 !ill. 0,00026620 m 0,00000006 
" " '" 

'lab1e 6.1 

There is one constant "I in Eq. (6.27). The value of a l is calculated by imposing the fact 

that the displacement thickness has to vanish at t = 0 [501 and get 

(6,30) 

The graphs are shown in Figs. 6.1, 6.2 and 6.3 in which velocity varies with respect to the 

oooMdimensional distance to the plate, for various values of time and suction parameter Le ., 

T = 4, -p = -4,;:Y = 4, .. .. 1" = 4, 7J = -2, 'if = 2, .... ; = 100, 'P = -2, -;y = 2 and V = -0.05, 0, 

0.05. For V = 0 we get the result of Erdogan [SOJ. 
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Fig. 6.1. Variation of f with 7] for V (t) = O. 
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71 
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Fig. 6.2. Variation of f with TJ for V (t) = -0.05. 
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Fig. 6.3. Variation of f with TJ for V (t) = 0.05. 

6.4 Shear stress at the plate 

The shear stress at the plate is 

which in terms of non-dimensional variables is 
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(6 .31 ) 

(6 .32) 



Using Eqs. (6.12) and (6.13) into above we obtain at y = ° the following 

where 

>.(t) = _ J V(t)dt 
2yVt 

(6 .33) 

(6 .34) 

Figs. 6.4 and 6.5 shows the variation of the shear stresses at the plate for various values of 

time and the suction parameter. In these graphs we have taken 7J = -1, 'Y = 1 and 7J = 0, 'Y = ° 
and V(t) = 0, -1. It is clear from the graphs that for small times (u;t < 5) non-Newtonian 

effects occur and for large times (u;t ~ 5) it become weak and behaves like a Newtonian fluid. 

Moreover, it is shown in Fig. 6.5 that with the introduction of the suction parameter V, the 

boundary layer thickness decreases. 

v =0 

-0.5 

-~ 11' .• • . N • ..t.oni ..... 
~ • '" 

-~ . 5 c. .. . Non - N.<Ot.oni ..... 

-t 

4 

Fig. 6.4. Variation of shear stress at the plate for various values of time and for V (t) = 0. 
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V =-1 

- 0.5 

-1 GO . •• • lII.o.t.oni.,., 

~ 

" -1 .5 
" 

c. .. . ilion - lII.o.t.oni.&TI 

-t 

-t . 5 

4 10 

Fig. 6.5. Variation of shear stress at the plate for various values of time and for V (t) = -1. 

6.5 Special cases 

6.5.1 Case 1 

At V (T) = 0, 73 = 0, 'Y = 0 and ~ = 0, we obtain the familiar first Stokes' problem [51,52] of a 

plate suddenly set into motion. The solution is given by 

f (7]) = U [1 - erf (7] . )] , (6.35) 

where 

• e 
7] = 2vr' (6.36) 

6.5.2 Case 2 

At V (T) = 0,73 '=1= 0, 'Y = 0 and ~ = 0, we readily recover the result of Teipel [30] , the impulsive 

motion of a flat plate in a viscoelastic fluid and the solution is given by 

(6.37) 
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where 

6.5.3 Case 3 

1 
«Ql = -2.,fif' 

For V (-r) = ~,p = 0, 'Y = 0 and l = 0, we obtain the solution of the form [53J 

(6.38) 

The graph is shown for f( = - 2, 0, 1,2,4,6 in Fig. 6. It is observed that for J( > 23, f (77) 

IS exactly one and for J( < - 11 it is no more real. 

It ,. _t , 0, 1, I , i, , 

••• 

• 

.. , 
Fig, 6,6, Variation of the function f with '1 for different values of parameter K. 
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6.6 Concluding remarks 

In this chapter, an analysis is made for the How of a third grade fluid on the plate with vudnble 

suction, The fonowing conclusiolUi can be drawn from the present study. 

1. It is found that with an increase in suction, the boundary layer thickness decreases and 

with an increase in blowing the boundary layer thickness increases. 

2. From Eq. (6,12), it is again noted that for short time (7:: 4) a strong non·Newtonian 

effect is present in the velocity field and velocity behaves as a Newtonian case for large 

time (r = 100). 

3. Introd~lction of the similarity parameter TJ leads to an exact. solution of the governing 

non-linear partial differential equation. 
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Chapter 7 

Flow of a third grade fluid induced 

due to the oscillations of a porous 

plate 

7.1 Int roduction 

This chapter describes the How of a. third-grade fluid on a porous plate which executes oscil

lations in its own plane with superimposed injection (blowing) or suction. The analysis also 

examines the behavior of an increasing or decreasing velocity amplitude of the oscillating porous 

plate. The non-linear problem has been solved using perturbation method. The obtained results 

are compared with those known from the literature. The result indicates that a combination 

of suction/injection and decreasing/increasing velociLy am plitude is possible for a third-grade 

fluid. 

7.2 P roblem formulation 

Here, we consider a thermodynamic compatible t hird grade fl uid flow on a porous plate. We 

choose x-axis along and y-axis perpendicular to the plate. For t > 0, tbe plate starts oscil· 

lating. The governing equation for constant suction Vo « 0) can be obtained from Eq. (6.6) 
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as 

(7.1) 

where Yo > 0 is ~he blowing velocity. The above equation holds for a thermodynamic third 

grade fluid. 

The expression for the shear stress is 

(7.2) 

The boundary conditions are [541 

u (0, t) = U(t) = Uoe(Po-iw)', w > 0, t > 0, Po = constant i- 0, (7.3) 

u(y , t) ...... O as y __ oo, 

where Po is the accelerating/decelerating parameter . 

Defining the following non-dimensional parameters 

equations (7.1) to (7.4) give 

d=2J=' 
tPl = i:,p, 

T=wt c=&' , .. ' 
wu' tP1. = =p.i 

J --+ 0 as '1 --I 00, 
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(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 



7. 3 Solution of t he problem 

We suppose that. the IlQIHlimensionoJ. velocily / can oe (>.'(p(l.n(Jed In power series in ¢2 as: 

(7.10) 

On substituting Eq, (7.10) into Eqs. (7.6) to (7.9) and then equating the like powers of ¢1 we 

obtain the following systems: 

Zeroth order sys te m 

(7.11) 

(7.12) 

/0-0 as '1_00, (7.13) 

1 1810 [a2/0 r. &'10] 
TO = ~Uo 1'"0 = '2 aT} + tPl aT/OT + v2d a,/l ' (7. 14) 

First order system 

8h+l'id8h~ ~82h+¢ [a'h +l'ida'h]+<l8'fo(8fo)'. 
aT Ift7 2 011' 1 a~'ar 1ft7' , a~2 8~ 

(7.15) 

IdO,r) ~ 0, (7.16) 

(7 .17) 

(7.18) 

Zeroth order solution 

We write 

(7.19) 
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Making use of above equation, Eqs. (7.11) to (7.13) give 

(7.20) 

Yo (0) ~ I, (7.21) 

Yo (00) = O. (7.22) 

The solution of Eq. (7.20) along with conciltions (7.21) and (7.22) is obtained by employing a. 

procedure used by Foote et al. [201 . Tbe solution of Eq. (7.20) subject to conciltions (7.21) and 

(7.22) "ads as 

(7.23) 

The real part of the zeroth order solution is 

in which 

A = 

C, = 

'on -

= P COl [PCoI +Q (..tid-Con)] 
..tid - COR - ..tid - COR C51 + (..tid - COR) , ' 

CII 
= [PCOI+Q(..tid-CO:)] , C2I= [PICoI+QI(..tid-C~R)], 

C751 + (..tid - COR) C51 + ( ..tid - Con) 
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C,. = 

P = 

Q -
PI -

PI CO, [PI CO, + QI (VZd - COR)] 
I2d - COR - I2d - COR Cel, + (l2d - COR)' ' 

I2d (cgR - 3CORCg, ) + c (CaR - Ca,) + 2CORCO', 

I2d (3C.lRco, - CJ,) + 2COORCO' - (c5. - cg,) , 

312d (CaRCIR - cg'OI' - 2Co"Co,CII) + ~ (CIR - cl,) 

+2C(ConCIR - CO/Gil) + 2 (CORCI I + CO/GIR) I 

Ql = 3V2d (2CORCO/C1R + egnGII - cs/ell) + CIRCU 

+2c(ConClI + COIGIR) - 2 (GbRC1R - CO/Glf). 

The expression for shear stress at the plate now is 

First order solution 

Using Eq. (7.24) into Eg. (7.15) we can write 

We lake the solution of above equation in the form 

and ob ta.in 
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The corresponding boundary conditions are 

g, (0) ~ 0, (7.29) 

g, (00) ~ O. (7.30) 

The solution of Eq. (7.28) consists of complementary function and particular integral. The 

solution of Eq. (7.28) subject to conditions (7.29) and (7.30) is 

A' 
9, (~) = A* (eO, - e"') . (7.31 ) 

The real part of h through Eq. (7.27) is 

where 

" (~, T) ~ e(""+"') [q, cos (3T - k.~) + q, si n (3T - k.~)[ 

_e3(cr+kI'l) [ql cos 3 (T - ~77) + Q2 sin 3 (T - ka77)J ' 

q, ~ al+bn _ an-bl A' ~27A'A 9A'B 3AC 0 
a2 +b2 ' Q2 - a2 +b2' + + +, 

A ~ J'id¢" B ~ ~ [1+6¢,(C-i)[, C =-J'id, D ~-3(c-i) . 

(7.32) 

a = [27J'id¢, (kl- 3k,ki) 1 + ~[( k1- kl) (1 + 6¢, c) + 12k, 10,0, [ - 3J'idk, - 3c, 

b = [27J'id¢d3k1k, - k!) 1 + ~[2k'k"1+ 6¢,,) - 60, (k1 - k1)[ - 3J'idk, + 3, 

= k1+~-6k?~, n=4kr'-2-4k1kit kl = (Con + CIR¢I +Can¢D, 

'" ~ (COl +CIl¢, +C21 ¢l) , It, ~ (EoR+ E'R¢, +E'R¢l) , k, ~ (Eo, +EIl¢, +E21¢l) , 

EoR - J'id-VJ(tP+3C)'+9+tP+3C, EoI~-VJ(tP+3C)'+9-tP-3C, 
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F, = V2d(&on - 3EoRE5r) + 3c(E5R - E5r) + 6EoREol , 

Q2 = V2d (3EgREw - &Or) +6cEOR £ol - 3 (E6n- Egl ) , 

P, = 3V2d (EgREW - E51EIR - 2£oREoIEll ) + ~ (E1R - E11) 

+6c (EOREIR - &JlElI ) + 6 (EORElI + EOIEln) , 

Q3 = 3V2d (2EonEo/EIR + E5nElf - EJ,EII ) + SlnEl/ 

+6c (£oREll + £oIEIR) - 6 (EOREW - EOIEII). 

Hence the velocity profile up to the first order is obtained by combining the zeroth arde! 

and first order solution in Eq. (7.10) as 

We observe from Eg. (7.33) that this solution satisfies the boundary conditions given in Eqs. 

(7.3) and (7 .4). 

The non-dimensional stress at the plate (7) = 0) is given by 
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7.4 Special cases 

To understand the different pbysicaJ aspects of the solutioo (7.33) , we discuss some spech!.1 

cases: 

7.4.1 Oscillating p late (Newtonian fluid with c ~ d ~ 0) 

Stokes' second problem [55 , 56J can be obtained by taking c = Ii = ¢ l = tP2 = 0, Le. , 

(7.35) 

where NS in the subscript stands for Navier-Stokes. 

7.4.2 Osci llating plate (Newtonian fluid with c= d # 0) 

New solutions of Stokes second problem [54] are recovered by taking 1>1 = ¢2 = 0 and c = d =F 0 

from solution (7.33) i.e., 

fNr(n , T) - eXP[CT + (v'2d-jj (d'+ C)2 + 1+d'+c)n] (7.36) 

xeo+- ( N(d' +C)2+1+d'++] , 

where NT in the subscript indicates new solutions of Thrbutu et at. [54]. 

7.4.3 Osci llating plate (Viscoelastic fluid with c~ d # 0, 1/>, # 0) 

The results of viscoelastic second-grade fluid [25) are readily obtained by taking rP2 = 0 in the 

solution (7.33), that is 

IvE(n, r) ~ exp [eT + (Con + C'R¢, + c2R¢lhl x cos [T - (COl + ClI¢, + c 2I ¢ll ~l . 
(7.37) 

Here V E stands for viscoelastic. 
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7.4.4 Oscillating porous plate (Third grade fluid with c ~ O. d 1 0, "'I 10, 

4>,10) 

For c = 0, d f.; 0, 1/11 i= 0 and <h ¥- 0, solution (7.33) gives 

f (T}, T) = exp [(COR + C1RrPl + C2R¢O 11) x COS [T - (COl + ClftPl + C2l¢r) 17] 

where 

+¢2{e(3CTt-~'1) [iii cos (3r - k4T/) + q2 sin (3, - k.t11) ] (7.38) 

_e3(cT+kl'l) [iii cos 3 (T - k211) +;n sin3 (T - k21J)]}, 

ill ~ 

af+bn ~ an-bl 
-, 112= ~, 

Q2+b2 (l-!+fi2 

Ii ~ [27/2d¢1 (kl- 3klki) 1 + Nkl-~) + 12kl k,¢.i - 3/2<1kl' 

b ~ [27/2d4>1 (3k;k' -~) 1 + ~12klk-, - 6¢1 (kl- 1:1)J - 3/2dk, + 3, 

t = k~+k~-6k?kit n=4k?~-4kliq, 

k1 = (Con+CIRtPl+8~Rq'Jr), k2= (C01+ClltPl+C2lrPr). 

kJ = (Eon + E1Rt/11 + E2Rrf>?) , kot = (Eol + Ell"') + E2I¢n t 

COR ~ /2d - j..Jd.4+l + ,fl, CO! ~ - j..Jd.4+l - d2, 
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p 

A 
QI 

EoR 

P, 

p, 

Q3 

~ 

~ 

~ 

~ 

= 

= 

= 

r. (-3 -, -,) - - - '" (-' - -3) (-' -,) v2d COR - 3GOReOr + 2ConCOh Q = v2d 3GOReOI - COl - COR - COl , 

3hd(a~R GIR - Ct, GIR -28on COl Gil) + 4 (8~R-C~f) +2(COR elf +001 GIR) I 

312a(2COR Col C1R+C6R 811 - 861 elf) +C1R 011 - 2 (COR 81R - COl G\r) ! 

I'id-VJd'+9 +,f!. , E,JI~ - VJd.' + 9-,f!. , 

l'id ( EgR - 3EoREgr) + 6E,JREor, Q, ~ l'id (3E~REor - Egr) - 3 ( EJR - ~r) , 

3nd (E6REIR - E5/EIR - 2EoREoIElI ) + ~ (E?R - E?/) + (j (EoR~1 + SorEIR) , 
3l'id (2EoREorEIR + ~REII - ~rEII) + Ell/SIr - 6 (EoRSIR - EorEII) . 
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The solution for the velocity component f is plotted in Figs. 7. 1 and 7.2 for different values 

of ¢l and rP2 and for a fixed time T = 27T" as a function of the suction/blowing velocity Va, given 

by d = 2:/k. The values d = 0, rPl = 0 and ¢2 = 0 refer to the classical Stokes problem. It 

is noted that the boundary layer thickness is controlled by the suction velocity (Va < 0) i.e., it 

decreases with an increase in the suction velocity. 

In case of blowing (Va > 0), the boundary layer thickness becomes large as is expected 

physically. 

Figure 7.2 gives the effect of material parameter of third grade fluid . It is observed that 

with an increase in third grade parameter rP2, the boundary layer thickness rapidly decreases 

in the case of suction (Va < 0) and increases in the case of blowing (Va> 0), when compared 

with the viscoelastic case [25] and viscous case [54]. 

f c=O, ¢1=0, ¢2 =0 
1 +1 ... d= - 2 

+2 ... d=-l 
0.8 +3 ... d=- O. 5 

+4 ... d=- O. 25 
0.6 +5 ... d =O 

+6 ... d=0.25 
0.4 +7 ... d=0.5 

0. 2 

1 
-0.2 

- 0.4 

Fig. 7.1. Influence of suction/blowing on the velocity distribution at T = 27T" 
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f c=o, ¢1=0.1 ,¢2=0.1 
1 +1 ... d=-1.25 

+2 ... d =-l 
O.S +3 ... d =-o. 75 

+4 ... d=-0.55 
0.6 +5 ... d=o 

+6 ... d=0.25 
0.4 +7 ... d=0.5 

0.2 

4 
- 0.2 

-0.4 

Fig. 7.2. Influence of suction/blowing on the velocity distribution at r = 271' 

7.4.5 Oscillating plate with acceleration/deceleration (Third grade fluid with 

d = 0, c =I 0, ¢l =I 0, ¢2 =I 0) 

In this section, the superposition of two time dependent functions is taken into account . One 

of which is due to the oscillation of the plate with imposed frequency wand the second is an 

exponential increase or decrease of the velocity amplitude of the plate with the parameter /30' 

For d = 0, c i= 0, ¢l i= 0 and ¢2 i= 0, solution (7.33) takes the following form 

f (17, r) = exp [cr + (COR + CIR¢1 + C2R¢f) 17] x cos [7' - (COl + Cll¢1 + C21¢f) 17] 

+¢2{ e(3cr+k37)) ['iiI cos (3r - k417) + '(12 sin (37' - k417)] 
_e3(CT+kl 7)) [ill cos3 (r - k217) + il2 sin3 (r - k217)]}, 
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or 

Y (17,7) = ~~TJ(':;) = exp [(COR + C1R¢1 + C2R¢!) 17] x cos ['r - (COl + ClltPJ + CUrP!) 11J 

where 

iii ~ 

b ~ 

k, ~ 

k3 ~ 

BIll 

p 

PI 

Q, 

+tP2{ e(2C'1"+k3'7) [q1 cos (3T - k41/) + (fa sin (3T - ~'7)] (7.39) 

_e(2CT+3kl'1) [qt COS 3 ('T - ~T/) + if:;! sin3 (r - k2't/)]}, 

(il + bTi an-bl 9 (-2 -2) --:::;-'--,-;;:, i[,~ _, a~-2[ k,-k, (J+6¢,c)+12k,k,¢d-3c, 
Q;2 + b2 ii2 + b2 

~[2klk2 (1 + 61>1c) - 6¢1 (ki - ~)J + 3, 1= 'kt + k~ - 6kr~, n = 4kfk2 - 4klk~, 

-

~ 

~ 

~ 

(COR + C1RtPl +CZR¢O, k2 = (COl +(\,4>1 + cwpn, COlt = -/..Jc.2+T. +c, 

('&R+ EIRrPl + E2R¢n, k4 = (EOI + El1¢1 + EUrP!) , Cor = -J )c2+ 1 -c, 

P, _ EOI [P,EOI- Q,EOR ] E- _ P, _ EO/ [PJEo' - QJEoR] 
- - -2 - ,2R - - - - 2 ' 

-Eon. -EOR Eo/ - E5R -EvR -EOR E51- EOR 

c (C5n - C~/) + 2ConCo/, Q = 2CCORCOJ - (C5n - 051) , 

~ (ern -8f/) +2c(COR GIR - COl elf) +2 (COR ell + COl GI n), 

GIR ell + 2c (COR Cll + COl GIR) - 2 (COR GIR - cOf elf) , 
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P2 = 

P3 

Q3 = 

The parameter c = /3o/w gives the variation of the amplitude of the plate velocity and 

c = 0, ¢1 = 0 and ¢2 = 0 implies the classical viscous case. The solution (7.39) is plotted in 

Figs. 7.3 and 7.4 for (T = 2rr, ¢1 = 0, ¢2 = O)and (T = 2rr, ¢1 = 0.1 , ¢2 = 0.1), respectively. 

Figs. 7.3 and 7.4 show the variation of /30' ¢1 and ¢2 ' It is noted that with an increase in third 

grade parameter ¢2 the amplitude of the oscillations rapidly increases/decreases according to 

/30 > 0//30 < O. 

g 
1 

0.75 

0.5 

0.25 

- 0. 25 

- 0.5 

- 0.75 

d=O, </>1=0, </>2=0 
+1 ... c=-2 
+2 ... c=-l 

+3 ... c=-0.5 
+4 ... c=2 

4 

Fig. 7.3 . Influence of increasing or decreasing amplitude of the plate on the normalized velocity 

distribution at T = 2rr. 
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g 
1 

0.8 

0.6 

0.4 

0.2 

-0.2 

-0.4 +1 

d=O, ¢1=0.1, ¢2=O.1 
+1 ... c=-2 
+2 ... c=-l 

+3 ... c=-O.S 
+4 ... c=O 

+5 ... c=O.2 

4 

Fig. 7.4. Influence of increasing or decreasing amplitude of the plate on the normalized velocity 

distribution at T = 2rr. 

7.5 Conclusions 

We have presented here results for the flow field of a fluid, which is called the third order fluid 

or the fluid of grade three, on an oscillating plate with superimposed blowing or suction. The 

analysis presented is further concerned with an increasing or decreasing velocity amplitude of 

the oscillating plate. It is noted that suction causes reduction in the boundary layer thickness 

as expected. Also, the amplitude of the oscillation decreases for acceleration and increases for 

deceleration when there is an increase in the material parameters of the second and third grade 

fluids. In addition it is also found that the results in references [54] and [25] can be recovered 

as the special cases of the problem considered by taking the parameters ¢l and ¢2 equal to zero 

and ¢2 to be zero, respectively. This provides a useful mathematical check. 
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Chapter 8 

Concl uding remarks of the thesis 

rn this dissertation, the analytical solutions of non-linear equations governing the flow for a 

second-grade and third-grade fluids are obtained. 

1. For second grade fluid t.wo dimensional unsteady equations Itrc derived jn Cartesian, 

P lane-Polar I Axisymmetric Cylindrical 10 terms of swirl, and Axisymmetric Spherical 

Coordinates. Equations then are coupled in terms of t he stream function so-called the 

compatibility equations. Several different forms of the stream function are taken. In each 

problem of stream function , the various possibilities of getting the analytical solutions are 

discussed. The expressions [or velocity profile, streamline and pressure distribution are 

constructed in each casc. 

2. The present second grade models as well as sol utions are more general and several results 

of various authors Aristov and Gitman ]401~ Berker ]411. Riabouchinsky ]421, Lakshmana 

[43[ , Roy [44J , Siddiqui et aI. [28[ , Goldstein [51[ , Jaffery-HameJ (by Squire) [4G[ , J nhnl" 

et ai, [53] and Landau and Liftshitz [47\ ,can be recovered in the limiLing cases. 

3. For a t hird grade Hu id since the equa.tions are much more complicated, so only the uni

directional Haws are considered in three different situations: 

4 . [n the first case flow is generated due to a variable shear stress and our investigation 

shows that the pertu rbation technique is adequate for the case when the variable shear 

stress has as oscillatory character, however, if t he shear stress grows exponentially with 
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time then the perturbation solution can be accepted only for small values of time. FOI' 

modetate to large values of time! the nwnerical solution must be used. 

5. In ~he second case the concept of variable suction is used when all the three third grade 

material parameters are non-zero and the introduction of the similarity p».rameter leads 

to the solution. It is found that with an increase in suction, the boundary layer ~hlc.kness 

decreases and with an increase in blowing the boundary layer thickness increases. FUrhter, 

it is noted that for short time (r = 4) a strong non-Newtonian effect is present in the 

velocity field and velocity behaves as a Newtonian case for large time (r = 100). 

G. Finally, in the third case the third grade thermodynamic model is considered with su

perimposed blowing or suction and with an increasing or decreasing velocity amplitude 

of the oscillating plate. It is noted that suction causes reduction in the boundary layer 

thickness as expected. Also! the amplitude of the oscillation decreases for acceleration 

and increases for deceleration when there is an increase in the material parameters of the 

second and third grade fluids. In addition it is also found that the results of viscous and 

second grade fluid are recovered as a special cases of Lim presen~ analysis. 

7. The results of Stokes I & II problem [551, Teipel (30J I Erdogan [501, Thrbatu et at. [54) . 

Hayat et al. (251 , can he recovered as special cases of Lhe present analYSIS of third grade 

stUdy. 
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TABLE A 

Summary of the differential operators involving the V' - operator in 

rectangular Cartesian coordinate system (x, y, z) 

(V' . V) = 
OVx OVy oVz 
a+a+a' x y z 

(V'2 s) 
02S 02s 02s 

= ox2 + oy2 + oz2' 

( ovx ) (ovx ) (Ovx ) (OVY) (ovy) V'V = Txx ox + Txy oy + Txz OZ + Tyx ox + Tyy oy 

( OVy) (Ovz ) (ovz ) (Ovz ) +Tyz oz + Tzx ox + Tzy oy + Tn OZ ' 

os 
[V'Sl x = OX' 

[V' Vl = OVz _ OVy 
X x oy OZ' [V' Vl = OVx _ OVz 

X Y OZ OX' [V' Vl = OVy _ OVx 
X z OX oy , 

[ 1 
= OT xx OT yx OT zx [V'. 1 _ OT xy OT yy OT zy 

V' . T x ax + By + OZ ' T y - ox + oy + OZ ' 

OT xz OT yz OT zz 
= -+-+-ox oy OZ ' 

02vx 02Vx 02Vx 

OX2 + Oy2 + OZ2 ' 
02Vz 02Vz 02Vz 

OX2 + Oy2 + OZ2 ' 
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(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 



[V.VW I. - (OW.) (OW.) (OW.) 
tI'J: ax + Vy 8y + v" f);; , 

IV,VWI, ~ (OW') (ow,) (Ow,) 
V:Jl ax + tit.' 8y + V-, 8z ' (A8) 

IV.VW I, ~ (OW') (OW') (ow.) Vx ax + VII 8y + tlz 8::. I 

{VV}n } ~{ } ~ ~() ~ {VV :>:11 = aX.' V V z: = ax' {VV}y.o:: = By' V V!l1I = ay ' 

i VY}"~ (VV),. ~ ~~, {VV}" ~ ~~, {VV}" ~ ~v;, (A9) 

{V · VT } .. ~ {V· V ), •• , {V · VT}.,~(V.V)'." {V,VT } .. ~(V·V)'." 

{V,VT},. ~ (V · V)"., {V . VT },,~(V · V)"" (V · VT) ,.~(V . V) "(f.J O) 

{V· v,},. - (V · V)"" {V · VT}"~(V·V) T .,, {V·,\h},,~(V . V)"" 

088 
where the operator (V , V ) = til: 8x + tly By + V z 8z· 
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TABLE B 

Summary of the differential operators involving the V' - operator in 

cylindrical coordinate system (r, e, z) 

(B1) 

(B2) 

(T: V'Y) ( 
aVr ) ( 1 aVr Vo ) ( avr ) ( avl) ) ( 1 aVI) vr ) Trr ar + Trl) ~ ae - -:;: + Trz az + Tl)r a7' + TI)O ~ ae --:;: 

( aVI) ) ( av:: ) (l avz) ( avz) +Tl)z az +Tzr ar +Tzl) ~ ae +Tzz az ' 

as 1 as as 
[V'S] r = ar' [V'S]I) = ~ ae' [V'sL = az' 

av av 1 a 1 aVr [V' x Y ] _ ~ av:: _ aVI) 
r - r ae az ' [V' x Y]I) = _r - _z, [V' x Y] = -- (rVI)) - --, 

az ar Z r ar r ae 

[V'. T]r 

[V'T]I) 

[V'. T]z 

[V'2y] r 

[V'2y] I) 

[V'2YL 

1 a 1 a TI)l) 
= --a (TTrr) + - aeTl)r - - , 

r r r r 
1 a (2 ) 1 a a T I)r - T rl) 

= 2'-a r Trl) + -aeTI)I) + -a Tzl) + , 
T r r z r 
1 a 1 a a 

= --a (rTrz) + -aeTI):; + -a Tzz , r T r z 
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(B3) 

(B4) 

(B5) 

(B6) 

(B7) 



IV.VWI, ~ 
(aw,) Caw, w,) (aw,) 

tlr or +ve r 80 -7 +v~ & ! 

IV ·VWI, ~ 
(aw,) (law, W,) (8W') 

Vr or +vo ;: Be +r +v~ 8z ' (B81 

Iv·vwI, ~ (aw,) caw,) (aw.) v,. ar +V8 ;: eo +'11: 8z ' 

(VV}n 
av, av, av. 

~ ar' (VVI" ~ 8r' (VV)" ~ &.' 
(VV)" 

1 aVr v, lovo tiT 18v:: (B9) ~ ---- (VV)" ~; ao +-;:, (VV)" =; ao ' r 80 • 
(VV)" 

av, av, ( ) avo 
~ , (VV)., ~ 8,' lilV ':l = oz' az 

{V,VT) .. ~ 

V(J Vo 
(V· \7)1"rr - -{1"rO+'Or} , {V· VT}rO = (V· V)TrO + - (TrT - TOO), 

• r 

{v. VT)" = 
Vo Vo 

(V. V)T" - -r", (V. VT)" = (V. V)T" + - (Tn - TOO). 
r r 

{v. v.)" ~ 

Vo Vo 
(V· V) r" + - (T" + r,,) , (V· VT),. = (V· V) T" + -T,." (BIO) • • r 

{V. ~7TL -
Vo Vo (V. V)T~r - -1"1/1, {V. VT)..., = (V. V)T~O +-rrZ! 

r • 

{V, VT)" ~ (V · "\7)1"::::. 

where the operator 
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TABLE C 

Summary of the differential operators involving the V - operator in 

spherical coordinate system (r , B, ¢) 

[V ,,-]o 

(V , V) 
1 8 2 1 8 (vo sin B) 1 8v¢ 

r2 8r (r vr) + -r s-in-B 8B + -r -si-n-B -8-¢ , 

1 8 ( 2 8s) 1 8 (' B 8S) 1 8
2 
s -- r - + - sm - + -----;;:-

r2 81' 81' 1'2 sin B 8B 8B r2 sin2 B 8B2 ' 

8s 
[Vs]r = 8r' 

1 8s 
[Vs]o = -:;. 8B' 

1 8, 1 8vo 
---(v¢smB) - ----
r sin B 8B r sin B 8¢ , 
1 8 1 8v¢ 
-- (rve) ---
r 8r r 8B ' 

[Vs] = _ 1_ 8s 
¢ r sin B 8¢' 

[V x V] = _1_8vr _ ~ 8 (rv¢) , 
o r sin B 8¢ r 8r 

1 8 (2) 1 8 , 1 8 TOO - 7 ¢¢ 
"2i:l r t rr + -, -B !:'IB (70r smB) - -, -B !:'IA, 7¢r - , r ur r sIn ursIn u'f' r 

(Cl) 

(C2) 

(C4) 

(C5) 

(C6) 

1 8 (3) 1 8 , 1 8 (70r - T rO) - T ¢¢ cot B 
= 3'i:l r 7rO + - , -B !:'IB (7oosmB) + -, -B '-lA, 70</> + , r ur rsm u rSIn UIV r 

1 8 (3) 1 8 ( 'B) 1 8 (7 </>r - 7 rt/J) + 7 ¢O cot B 
= 3'i:l r 7 r¢ + -, -B '-lB 70¢Sm + - , -B !:'I A, 7¢¢ + , r ur r sm u r sm u'f' r 
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[V'Vj, 

[V'vj, 

[V'vj. 

[V , VWI, 

JV . VWI, 

IV.VWI. 

8vr aVB 8u., 
~ ar' (VV)" ~ ar' IVY},. = B, ' 

I~ • I~ ~ I~ 
= ;: 80 - r {VV}" ~ ;: 80 + r' (VV) .. ~;: 80 ' 

_1_ au,. _ V41 {} 1 8110 v~ 
= rsin98¢ r VV #/=1'sin 08rjJ --;-cotO, 

{VV)~ 

Ivy)" 

[VV}" 

iVV} .. 
1 au", Vr VO 

~ ---- + - +-cot;9 
rsinOa¢ 7' r ' 

{V· Vr ) .. r ~ (V· V)-r,....- (~) (7"rO + TOr) - (~) (Trill + Tdor), 

{V. Vr}" ~ (V. V) TrO + (~) (7"r .. - T/lO) - (~) (T"$O + Trfl cot 0) , 

{Y·Vr},. ~ (V· V)Tr.; - (~) Tefl + C':) [(orrr - TOO) + Tr9CO~8J I 

(V · Vr)" = (V · V ) TOr + (~) (Trr - TOO) - (~) (T941 + 7"410' cot 0), 

(V.Vr)" = (V . V ) TOO + (":) (r r8 + TOr) - C':) (TO;' + T cWI) cot 8, 
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(C7) 

(CB) 

(Cg) 

(CIO) 



{V'Vr}8~ = (V'V)T8ci+(~)Tr.+C;)['TOr+('T88-T~)Cot9J, 

{V·Vr) ... - {V'V)r.,-C:)r",+(v:)[(r"-r",)+r,,cot9[, (e ll) 

(V.Vr) .. = (V.V)r .. +(~)r.,+(v:)h,+(r,,-r,,)col91. 

{V . Vr) .. = (V ' V)r .. +(,;")[{r,.+r ... )+(r,.+r .. )cot91. 

where the opera.tor 
{) Vila v. {) 

(V·V) =v,-+--+---. 81· r 80 TsinO{)¢ 
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TABLE D 

Summary of the vector identities 

Vrs = rVs + sVr 

(V-sV) (V s -V) + s ('\7 -V) 

V-[VxW] = W -[V x V] - V-['\7 x W] 

[VxsV] = [VsxV] + s ['\7 x V] 

(V - '\7) V 

[V-VV] 
1 

= "2 V (V -V) - [V x [V x V]] 

[V-VW] [V - VW] + W('\7 -V) 

(s8: VV) s ('\7 -V) 

[V-s8] = Vs 

[V-ST] [V S - T] + S [V -T] 

V(V -W) = [(VV) -W] + [('\7W) -V] 

(T : VV) (V- [T -V]) - (V. ['\7 -T]) 

[8 -V] [V-8]=V 

[UV -W] = U(V-W) 

[W-UV] = (W -U)V 

(UV: WZ) = (UW : VZ) = (U - Z) (V -W) 

(T : UV) = ([T -U] -V) 

(UV: T) = (U [V -T]) 

T -T = T2 2 _ 3 , T-T - T ' ''_ 

(8: T) = LLOijTij 
i j 
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Appendix 

1. The incomplete gamma function and the gamma function ate related through 

where ru (Q, x) is the upper incomplete gamma function and r dei, x) is the lower in

complete gamma function and are defined by 

where I Fl is the confluent hypergeometric fUllction of the first kind. For "a" an integer 

n 
n-l k 

r u (n, x) = (n - l )!e-:t L zk
l 

= (n - l)! e-Xefl_l (x), 
.1:=0 • 

[ 
n-I 'l f r..(n,x) = (n - 1)1 1 - e - xL:: ~! = (n - l)! [1- e-%en_1 (x)l, 
Ie:O 

where en (:t) is the exponential sum function and is defined by 

( )
_ ..rxk _ .f(n+ l ,x) 

en X - L. k' - e f ( ) . 
,1,=0 • n+l 

2. HypergeometricP FQ [{ al, .... .. , ap} I {o}, .... .. , bq} , Z1 is the generalized hypergeometric func-

tion pFq (a , b ; i). For example 

HypergeometricPFQ [{I , 2, I} , {2, I} , xl ~ _1_. 
I - x 

BypergeometricPFQ [{at, , .. "" ap } I {h, ...... , uq }, Z1 has series expansion 
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We can differentiate and integrate HypergeometricP FQ as foUows: 

Differentiate !HypetgeometricP FQ [{ al, 1l2, Cl3} , (bt, b2) , xJ • x] 

1 ( [(l+"I,I+a',I+a'I,]) = b l..- tlt ll2a3HypergcometricPFQ 
IV"~ {l+blol+b21,x 

Integrate fHypergeomeLricP FQ [{ a1, a2, a3} , {b}, b:l} ,xl, xl 

= xr(b"r(b'){[xr(bl I)r(b, 1)( I~al)( 1+",)( l+aJ 

HypergeometricPFQReguJarized [ {a} -1,1l2 -1,1l3 -I}, ] 

(bl-I,b,-I},x 

+ x(-I+a"(-I+o,)( 1+0,) }, 

where HypergeometricP FQRegularized({ a1 , ...... , ap } , {b l • .. .. ,.j bq } ,Z1 is the regularized 

generalized hypel'geometric funct ion pFq (a, hj Z) / {f (61) I ..... , f (bq )} and MeijerG 

is the r.,'IeijerG function 

For example 

MeijerGI{{I, I}, { }}, {{I}, (O} ),xJ = 

Meij.,G [({ ), { }}, {(OJ, m Hl = 

log(l +x}, 
cosJ2x 

.jX 

For fit = 1, n = 2, p = 2, q = 2, we ha.ve the following properties: 

Differentiate IMeijerG I{ {a" a,} , {a" a,} } , {{bd , {b" b,}} ,xl, xl 
.. [{{-I,a1-I,a,-I),{a,-I,a,-I}},] 

= MelJerG . I 

({b,-I), {O,b, -I,b, -I}} ,x 
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lnto!:'ato IMoijecC I{ {ai, a,} , {a" a.}} , {{b l } , {b" b.}} , xl , xl 

.. [{{I, I +a lo l +a2},{I +a"I+a'}}'j = MeuerG . 
{{I +btl, to, I + b,,1 + b3}},X 
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