C-SCANNER FOR SEI CERT
RULES IMPLEMENTATION

-«

BY
Wania Zafar Abbasi
Registration 1D: 04071313035
Supervised By
Dr. Muddassar Azam Sindhu
Department of Computer Science
Quaid-i-Azam University
Islamabad

Acknowledgement

In the name of ALLAH, the Most Gracious, the Most Merciful. First of all, I thanks to Almighty

Allah because of His kindness and grace for completion of my project.

I would like to express my sincere gratitude to project supervisor Mr. Mudassar Azam Sindhu for
the continuous support of project, for his patience, motivation, enthusiasm, and immense
knowledge. His guidance helped me in all the time of development of project and writing of this

thesis document.

Wania Zafar Abbasi

Abstract

C scanner is a desktop-based application for recognizing vulnerabilities in C language. It has
been developed in Netbeans IDE in Linux OS. It is targeted for students and organizations with
C language.

This tools is very simple to use. The user inputs his code in C scanner and parse it. The code is
parsed and tokens are generated. Then it generates Abstract Syntax Tree for visual inspection
from the code and recognizes code according to rules defined by SEI CERT C Coding Standard.

Contents

ACKNOWIEAZEMENT ...ttt e et e e e et e e e e e bte e e e e bteeeesbteeeeeabaaeeeebaseeesstseesasaneessnssnnensnnes 1
Y o1 - [ot T PPV PR VOTTOUPTI 2
{07 01 (=T 01 (PP PRI 3
LISt OF TADIE .. ettt e b e b e s bt e s et et e b bt e be e s be e saee et e e beenbeenaeesane e 7
T o = (U TSP 8
(8 0T T o) =T PSPPI 9
Software Project Management PIan (SPIVIP)o ittt ettt e e eae e e evte e e e eabae e e nraeas 9
1. Software Project Management Plan (SPIMIP)uuii ittt e s e e e e e 10
11 INEFOTUCTION ettt ettt et s e s bt e e s bt e s bt e e s abeesabeeesabeesabbeesabeesabaeesareens 10
1.2 PrOJECT OVEIVIEW .. uuiiiiiiiiiiiiiiiteee ettt e e st et e e e s s s sttt e e e e s s sasaasbbaaaeeesssasssbaaaeeessssnsnssnaaaeeens 10
13 R olo] o1 PPN 10
1.4 oY [Tt fl Y V7T =1 o] 1SR 10
1.5 ProjeCt OrganiZation ...u.uuueeeeeii bbb ————————————————————————— 10
151 SOftWare ProCess MOTEL..........o.ooueriieeee e 10
152 Roles and ReSPONSIDIITIEScc.oviiriiririeeee e 10
153 TOOIS ANA TECHNIQUES ...ttt ettt ettt e st e e be et e s beeaa e besanetesreennas 11
1.6 Project ManagemeENnt PIanooo ittt ettt e e et ae e e et e e e e eatae e e e aat e e e e naeaeean 11
16.1 TASKS vttt ettt h bbbt ettt 11
1.6.2 o] 01 o] o RSP 11
ReqUIremMents and ANAIYSIS........cccverieiererieereeeese sttt et e et et e s e esseseesseestesseessessesssensesseensessennss 11
DESION PRASE ...ttt ettt ettt e te et s b e et e et e et be e beera e beeae e teabeeabeeteeraenbesreenrenreennas 13
1.6.3 RESOUICES ...ttt ettt e r s n e s b ne s r e ere e nesre s 16
1.6.4 Deliverables and MIlESTONESc.ccveirieiiiiniiiieee e 16
1.6.5 Dependencies and CONSLIAINTScvcieieriieeeieseee et sre et sre e et sreseesae e ese s e sseesesneenes 16
1.6.6 RiSKS aN0 CONTINGENCIESveeuveieeeeeiesie ettt ettt e te et esre et e saessaessesseessestesseensesseenes 16
1.6.7 F AN [0 0] 0 0T USSR 16
1.6.8 THMELADIE ..ttt 16

(0 0T T o1 =T PP PUPSPRNt 17
Software Requirement SPecifiCation (SRS)cccciiiiiiiiiiee ettt ettt e e e e te e e tbe e e vaeesaree s 17
2 Software Requirements SPeCIfiCation (SRS)cocciiiiiiiiie ettt e e e 18
2.1 [a A goTe IV Lot To] o WU ETO PR PP 18

2.2 g o Yo (W ot f @ 1V7<] VA T=L T U 18

file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868639
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868640
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868641
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868642
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868663
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868664

2.3 Definitions, Acronyms and AbBreviatioNns..........couciiiiiiiiei e 18

2.4 Yo J=Tol 1 (ol 2= To [N =T 4 =] o PP 18
2.4.1 External Interface REQUITEMENTS........ccuieieiiieeiecieeeee ettt s ae s e e ereens 18
2.4.2 USEI INTEITACES ...ttt sttt ettt ettt b et e s e e esesbesbentens 18
243 HArdWare INTEITACE.ei ettt neen 18
244 SOTIWAIE INTEITACE ...ttt 18

2.5 SOFtWAre ProdUCE FEATUIES ..ciiieiiiii ittt ettt ettt ree e s ee e e s e e s s sabee e e esnbee e s ssabeeeesnareeas 19

2.6 0L O R =T D 1= = - o N 19

2.7 USE CASES eeiiiiiiiiiiiiittet et e e ettt e e e e e ettt e e e e s e e s bt b ee et e e s e a s b e e te e e e e e e e b b e a e e e e e e e e e n e beeee e e e e e e nnreaaeeeas 20

2.8 [BTe] g oo 1 T o 1= U SPTPN 22

2.9 SOftWAre SYStemM AtEIIDULES ..ooieiiee e e e e e e ee e e e sabee e e e eareeas 22
29.1 REIADIIILY ...ttt sre et et e e aa e te s beenbesteeraentesneenns 22
2.9.2 AVAIADIIILY ..ot et b et e st e ra b e aeenes 22
2.9.3 SBCUILY ettt ettt ettt ettt e st e e te et e e te e b e beeaaestesbeenbesteesaesseeasessesbeensesteesnensesseensensenneas 23
294 PEITOMMANCE ...ttt ettt et e st et e te et e besseensesseessensessnensesseensessennsans 23
295 MaAINTATNADIITTY ...ttt sttt be e 23

2.10 Assumptions and CONSTIAINTSceiiiiiiiiiiiiie e cciee e e e ette e e e st e e e e stre e e e abee e e esabeeeseenbeeeeennsenas 23
2.10.1 Development Languages and TOOIS........ccuccieieiiiiiieiecie ettt sbe e e 23
2.10.2 OPEratiNg SYSIEIMccviitieieitieieste ettt ettt ettt e e st e e te et e sbeeasesbeeasebesbeensesteessenbesasensesseennas 23

2.11 Additional REQUIFEMENTSeeiiiiiiie ittt ettt ettt setee e e s st e e s e sabae e e e sabeeesesabeeessenseeeeenasenas 23

(0 0T T o1 =T o PP PPPPPRNt 24

SN R (=]l D= F-{ o PRSP ST ST 24

T3 =] 4 W D =T =4 TSP UR SRR 25

3.1 T Ao o [8 ot o] o PP P PP PR PRORN 25

3.2 PUPDOSE ...ttt n s nan e nnnan 25

3.3 Requirements Traceability IMatriXoccueeeieciiie e e e e saae e e s saeae e e esaaeeeeas 25

3.4 System ArchiteCtUral DESISNuuuiiiiiee e e e e e e e st re e e e e e e e e bateeeeaaeeeesnnnnns 26
34.1 Chosen SYStem AICRITECTUIE ..ottt st 26
3.4.2 Discussion 0f AIErNAtiVe DESIGNSc.ccveriieeeiirieeierie sttt eee s et et ae e esbe e essessesseenes 26
3.4.3 System INterface DESCIIPLIONcceeveiecieece et enes 27

3.5 Detailed Description of COMPONENTS........ociiciiiiieiiie ettt ettt e e et e e e era e e e e bre e e e nsaeeaens 27
351 L LT OO OSSP PPN 27

3.5.2 LI] OO PPRRPRRRRRTRRIN 27

file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868688
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868689

353 NS LTSS PO PURN 27

3.54 CONFOIMANCE REPOIToueiieiieiietert ettt st ese b e ne e 27
3.6 (U g N =T = [l BT = o RSP 28
3.6.1 Description of the USEr INErfaceccveviiiieiiceeee et 28
3.6.2 L T L0t SRR 28
INEEITACE 12 STAIT TOO! ... ettt sttt e s e eneesesreeneenesneenes 28
INEErface 2: INPUL COUR ...ttt ettt ettt 29
INEErTACE 31 PArSE TOKEN ... ettt sttt be b b es 29
INTErTACE 41 GENEIALE AST ..veiieiieieeeeterte ettt sttt ettt b st b e st et e st et et et eneeseebesbesbees 30
INterface 5: 1dENTITY COUEoieiriieieerte ettt se b e 30

3.7 SEQUENCE DIQGIaM c ittt ettt e e e s e s btr e e e e e e s s s saabtbaeeeesssasasbataeeessssassnssaeeeesssssnnsnns 31
3.8 (O T DIT- Y= =0 PP 32
(O 0T o) =T o SR SURNt 33
TaaTo11=Ta Y=Y ot - 14 o] o TSP 33
N 11 0] o (=T a =T o1 =Y o I PRSP 34
4.1 [aTa oo [0 d o o NP 34
4.2] LA o] o QY] [=T ot o PSSP 34
N 011 OSSOSO 34
[IC) (<] OO TS O OO OUOPOURUUTOPPTO PP PRROTRRN 35
PAISEI. ..ttt sttt b e et ae e e e e et e r e e b e e e reesane s re e r e e reenes 35
ADSITACT SYNTAX TIEE (AST) 1iiieieiieeeeert ettt ettt et st e st e e e et e sre e testeeseensesresssensesssessessennses 35
SEI CERT RUIEI ...ttt sttt sttt s e b st este st e te e et et eneenesbessenaentens 35

(O 0T T o) (=T ot TR PRSPPIt 39
=L 1 =SSP PPPP PP 39
L =T o = 2SO PP PP PPPTPPPPPPPIN 40
5.1 INEFOTUCTION Lottt ettt e st e s bt e e s bt e s bt e e sateesabteesabeesabeeenabeesabaeenaseens 40
5.2 I A Y o] o Y- Yol o 1SS 40
53 I T T @ o T =Tt f V=TSSR 40
5.4 TEST PlaN .ttt ettt st e st e bt e e s a b e e s bt e e s a b e e st e e e bte e e ba e e abeenateesbaeesbaeenes 40
54.1 FEatures t0 DB TESTEA.......ccueieieieeee ettt 40
54.2 Features NOt 10 DB TESTEA.ei et st 40
5.5 Testing Tools and ENVIFONMENTuiiiiieeee ettt e e e e e e e e sarra e e e e e s e e e nnrraaeeeaeeeenas 41

5.6 B =T A O 1Y <L 41

file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868713
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868714
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868723
file:///C:/Users/Lenovo/Desktop/FYP.docx%23_Toc529868724

C-Scanner For SEI CERT Rules IMPLEMENTATION

LIS O LI TSP P PRROR PR 41
TESE CASE 2: ..ttt ettt h ettt s b et b et b e h e et e b e e s Rt b e b s Rt e R e ae e bt sb e e nenr e ene e nenreenes 41
TESE CASE 3: ettt bbbttt 42
TESECASE 4.ttt 42

4] T =] Lol =L T ST 43

C-Scanner For SEI CERT Rules IMPLEMENTATION

List of Table

Table 1-1: TOOIS aNd TECANIQUES.......c.eiiiiiiieie s 11
Table 2-1: Definitions, Acronyms and ABDreviations ... 18
TADIE 2-2: USE CASE L...oieieiieie ettt ettt et ettt et e s e st e s te e s eesteeteesbesaeeseenbeameeneeaneeneeneeeneentenrean 20
TADIE 2-3: USE CASE 2.ttt ettt sttt s te et e e ste e st e be s s e saesbeenteseeeseesbesaeeseenbeaseeseeaneeneeneeeneentenne s 20
R0 L L O T USSR 21
R0 L T UL O T USROS 21
Table 3-1: Requirements Traceability MALIIXcccciveiiiiieiiie it sre e sre s 25
I Lo Lo I TS A O T USROS 41
I 10 Lo T A O T SRS 41
I 10 Lo T T A O T T TSSO 42

TADIE 541 TESE CASE 4 ..ottt ettt e e e e e e ettt e e e e e ea bttt eteeeseses st aeeeeesesasessbaeeteeenssasssnnreeeeessenaes 42

C-Scanner For SEI CERT Rules IMPLEMENTATION

List of Figure

Figurel.1: Requirement and ANGIYSIS. ...t 12

Figure 1.2:

DESIGN PRASE ... 14

FIQUIE 1,31 GANTE CRAMT ..ottt b ettt bt r e n e 15
Figure 2.1: USe CaSe DIAQIAMcciii ettt sttt ste ettt s be e ss e te s e e saesteesaesbeeteesbesreeneeneeans 19
Figure 2.2: DOMAIN IMOGEL.........cciiiii e e be et et s re e e nre e 22
Figure 3.1: SYSTEM ARCHITECTURAL DESIGNcccctiiiiiiiiiieisisesesie et 26
Figure 3.2: System Interface DESCHIPLIONcc.ciiiviiici it re e e 27
FIQUIE 3,32 STAM TOO ...ttt sttt n e 28
FIQUIE 3.47 INPUE COOR ...tttk b bbbttt b bbb n e 29
FIQUIE 3.5: PAISE TOKENeeuiiiiiietieiei ettt bbbttt b et b e e n e 29
FIQUIE 3.6: GENEIALE AST ...ttt b bbb bttt s bt b e bt nn e 30
FIQUPE 3.7: TAENTITY COUE.....c.eiiicici et et s e et e s ba et e s beeteesbesreeneesre e 30
Figure 3.9: SEQUENCE DIAGIAM.......ccuiiieieiecie ettt e st be s beete e besaeesbesbeesbesbeeteesbesreeseeneeans 31
FIgure 3.10: Class DIAGIAMccviiuiiieireieiie sttt ste et ste et be s te et e sbeese e besaeesaesbeeseesbeeteesbesreeneeseeans 32
FIQUIE 4.1: MAIN IMIBNU ...ttt st ettt et e st e e te et e s beete e besaeebesbe e st e sbeeteenbesreeneere e 35
FIQUIE 4.2: INPUL FIIE ..ottt b e n e 36
FIQUIE 4.3: BIOWSE FIl......cueiiiet bttt b e 36
FIQUIE 4.4: DISPIAY COUE ...ttt bbbttt e bt bbb 37
FIQUIE 4.5: PArSE TOKEN ..otttk b bbb bbbt nn b 37
FIQUIE 4.6: GENEIALE AST ..oiiiiiicti ettt s e ettt e s be e e e s te e ab e st e s teesbesbeese e besaeestesbeesbesbeetsenbesreenrenreans 38

Figure 4.7:

LABNEITY COUB ...ttt e et e et e sbeese e besreesbesteeeesbeetaesbesreas 38

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Chapter 1

Software Project Management
Plan (SPMP)

N

C-Scanner For SEI CERT Rules IMPLEMENTATION

1. Software Project Management Plan (SPMP)

1.1 Introduction

This is a C language scanning/checking tool. In this project, the user will input the code for
recognizing insecure code according to secure coding standard CERT. The tool will generate
tokens and also generate Abstract Syntax Tree for visual inspections. It will also identify
potential vulnerability sections according to the rules provided by SEI CERT C Coding Standard.

1.2 Project Overview

The aim of this project is to develop a tool that recognize vulnerable code on the basis of rule
provided by SEI CERT C Coding Standard. The tool also generates Abstract Syntax Tree for
visual inspections.

1.3 Scope

The project is intended to provide a tool for students and organization through which they can
see visual inspections of the code using abstract syntax tree and identify vulnerabilities and
undefined behavior resulting from coding errors before software is deployed.

1.4 Project Deliverables

Project deliverables for this tool are Software requirement Specifications (SRS), Software
Project Management Plan (SPMP), Software Design Description (SDD) and Software Test
Documentation (STD).

1.5 Project Organization

1.5.1 Software Process Model

Waterfall process model will be used for the development of this project. This model is linear-
sequential life cycle model. It is easy to manage because each phase must be completed before
the next phase can begin and there is no overlapping in the phases. Waterfall model works well
for smaller projects where requirements are very well understood. So | preferred to use this
model.

1.5.2 Roles and Responsibilities
There is no division of roles and responsibilities.

C-Scanner For SEI CERT Rules IMPLEMENTATION

1.5.3 Tools and Techniques
The tools and techniques used for this project are following:

Table 1-1: Tools and Techniques

Sr. Tool Purpose

1 MS Word It is used for documentation
purpose.

2 ProjectLibre It is used to make project
plan.

3 ArgoUML It is used to make diagrams.

4 Antlr 4 It is used for lexer and parser
generation.

1.6 Project Management Plan
The description of project management plan for this project. It explains how time and resources
are managed throughout the life cycle of this project.

1.6.1 Tasks

There are two phases of project plan. First is the requirement and analysis and second is the
design phase of this project. In requirements and analysis phase, the major tasks are to identify
requirements, define use cases, develop analysis model, develop SRS and review SRS.

In the second phase, the major tasks are develop a design using Object Oriented Approach,
design mode of user input, validate input, develop models and evaluate design.

Following figure 1.1 and figure 1.2 shows tasks.

1.6.2 Description
Following is the description of major tasks of both analysis and design phases.

Requirements and Analysis
e Identify requirements

The main goal is to review case study and define requirements by meeting stakeholders.
e Define use cases
Define use cases and make a use case diagram.

e Develop SRS
Define functional and nonfunctional requirements and develop software requirement
specification document. It includes all other details of product like scope, purpose and
introduction.

e Review SRS
Review software requirement specification document.

C-Scanner For SEI CERT Rules IMPLEMENTATION

W 005 e Wy 008 VeI [P | AR) M@

Wd 005 ZTLL WY 008 Z/VEAI | ésfepg SHG U e A

Wd 005 LLIGE/D WY D0'8 £ IOEADL | iAep | SUBLRIND3Y M3y e 4

I 00 LUDEID) Wy 00’8 LVLZI}|ésfepg Ui ado@nag i

e 005 L1920 W 008 LLIBZL | fep | desuogerzy nuapy |

e 005 LTI W 00 24/52A04 | &fep | 5303 Auap| 1

Wd 00: ZHIDEID) WY 00:8 11/SZi0)|éskepy | ambay aseqejeq oo

e 005 ZUF2I0L WY 008 LWEZIL | éshepT ~y Walshs aewypg e

e 005 LLEZIDI W 009 21/L4A0 | é5fep g " jonpolg J/emyog e

e D05 LLEMDI W 009 ZWEMD | é5fep SRR [PL3pT £l

Wd 00:¢ LHDEID) WY 008 LLIEHOY éshepz) | wannbay Apuap) Zl

1D 1SEqqy JejE7 B1UEp Wd 00°5 ZHZIL} WY 00:8 LIEHIOL] shep Gl gu§ adofasag Wi
e 005 LLEWDL WY 00'8 216I04 | shep & Ry ase) wanay oo

Wd 00 ZLIBI0L WY 00'8 ZIZI0k | éshep g e |

Wd 00: ZLIZHI0) WY 00-8 ZV/ZI0k|éskeps | jeuy spuswannbay B

7 BIUEN 2IRMPIRY '5|00) Wd 00°5 ZHZIL) WY 008 L2/ |gskepyg | ~ambaypuesisieny | ¥ [4
Wd 00°5 L1628 Wy 008 LVBZE|islepz g waussBieueyy ol e

Wd 005 £4/52/8 Wy 08 LMLZ06 | ishep T uogezuefi paloy i

W 005 £49278 WY 0FB L1/BZiG | cAep | uoganpa| ief

7 BINEN2IRMDIEY 5|00) Wd 00 JHGLI6 WY 00:8 119z |iskepy |uewpsloigammyos | ¥ [H) ¢
Wd 00 LLISTR WY 008 215708 |ep | Buipuersiapuy) wspoy 4

7 BIEM2IRMDIEY 5|00) Wd 00:5 BHZH) WY 00-8 Z1/ST/6| é5Aep 08 pues) | 4]

SallEN snosay sl VEIS boneing AEN @

Figurel.1l: Requirement and Analysis

Design Phase
e Develop Design

Develop architectural design and interface design using Object Oriented Approach.
e Design mode of user input

Create mode of input layouts for this tool. Identify different inputs.
e Validate Input

Validate input by checking existence
e Develop Designs

Develop system sequence diagram and class diagram.
e Evaluate design

Evaluate and verify design.

1

AN

C-Scanner For SEI CERT Rules IMPLEMENTATION

Wd 005 LTl WY 0078 LW | ikep | A A0EE MY H 2

Nd D0S LUl WY 008 LUED | islep T " ey acopaa) gl %

asmpey'spoa) apdoag [TTA [WNd 0055 LWEZIM WY 003 LHEL/| ishep ¢ ubisag avepaju i
I Wd 00S LUETILL WY D8 2L | (slenT e ssE) we) H o

WNd D05 LU0 WY 008 LB | SlepE “py) AouanbaAG) EHIL

"l Wd 00°5 LUEL/H W 00:8 LHSH kI ishep § ubisag perg Bl o«

Mol 005 LUSHLL IV 0078 LIS | kep | Oxf3 TPy ol &

o 005 £WSHIL WV 008 LMEM |(SlenE N SRR W0 ﬁ &

Nd 0055 LLSHI WY 003 LHEH | ishep ¢ ubisag ejeg E L

Nd 005 LUELI WV 008 208 | ikep | “RINOINRANY MY Bl w

Nd D05 LUDNLL WY OOFG LI/ | (Slepg “Rrpasp copea) %

Nd 0055 LUEKI NV OOCB LHOIRE|iShep 9 [CLIFWHINY WALSAS H W

"7 BIURNL IR MPURY S100] 1 Nd 0055 LWLZI NV 008 Lrae|ishep g3 | iseq wagsis doganag —m.h £

SAUIeN oS3y 0553090 ysiuy uelg vogeing auey @

Figure 1.2: Design Phase

C-Scanner For SEI CERT Rules IMPLEMENTATION

|Sep 2017 Ock 2017 [2017 |Dec 2017 |7an 2018 I
oz Tio Tz fe4 loa Tos Tis Jze Jze Jos Tz Tie fee Jos o iz Tea Iz Tor Tia [z1 Ie=
w
|
|
|
&
—
1
|Sep 2017 Ock 2017 |Mow 2017 |ec 2017 |3an 2015 F
oz Tio iz Tee oo Jos Dhis ez [eo Ic:5 I12I [1g Tze oz Tio T17 Tz4 J=51 Joz T4 [z1 [=s
¢|11.-'3
—
|
|
| :
- v
1/12

Figure 1.3: Gantt chart

C-Scanner For SEI CERT Rules IMPLEMENTATION

1.6.3 Resources
Following are the resources needed.
e People

» Wania Zafar Abbasi
» Supervisor
e Software

» MS Word
> ProjectLibre
» ROSE

e Hardware

»> PC

1.6.4 Deliverables and Milestones
Deliverable and milestones are shown in figure 1.1 and figure 1.2.

1.6.5 Dependencies and Constraints

Dependencies and constraints are shown in figure 1.1 and figure 1.2.

1.6.6 Risks and Contingencies
There are no risks and contingencies.

1.6.7 Assignments
Assignments are shown in figure 1.1 and figure 1.2.

1.6.8 Timetable
All time and dates are mentioned in above figure 1.1 and figure 1.2.

16

N\

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Chapter 2

Software Requirement
Specification (SRS)

C-Scanner For SEI CERT Rules IMPLEMENTATION

2 Software Requirements Specification (SRS)

2.1 Introduction

This chapter covers the software requirement specification of the tool. The purpose of this
requirement specification and analysis is to clear the requirements of the tool and to decide what
the tool should do and what the tool should not do.

2.2 Product Overview

C Scanner is a tool for recognizing vulnerabilities in the C language tool. This tool is basically a
desktop-based application. This tool will be implemented using Netbeans IDE in Linux operating
system. The tool will generates Abstract Syntax Tree for visual inspections from the code and
also recognize vulnerable code according to the rules provided by SEI CERT C Coding Standard.

2.3 Definitions, Acronyms and Abbreviations
Table 2-1: Definitions, Acronyms and Abbreviations

AST Abstract Syntax Tree

SEI CERT C Coding It provides rules for secure coding in the C programming language
Standard

CERT Secure coding standard.

2.4 Specific Requirements
Following are specific requirements for interfaces like hardware or user or software.

2.4.1 External Interface Requirements

This section provides a detailed description of all inputs into and outputs from the system. It also
gives a description of the hardware, software and communication interfaces and provides basic
prototypes of the user interface.

2.4.2 User Interfaces
All interaction with user will be via GUI screen interface. It provides ease of use to users.

2.4.3 Hardware Interface
Hardware interfaces are not specified.

2.4.4 Software Interface
This tool is desktop-based application and it will be implemented in Linux, therefore, this system

will be run on Linux operation system.

C-Scanner For SEI CERT Rules IMPLEMENTATION /

2.5 Software Product Features
Here is the list of the functions the tool must perform or must let the user perform.

e Input the code
User clicks on the input section to input the code.
e Parse the Code
The tool parses the code and generate tokens
e Generate Abstract Syntax tree
The tool generates the Abstract Syntax tree for visual inspections.

e Recognize insecure code
The tool recognizes vulnerabilities in the code according to the rules provided by SEI CERT C
Coding Standard.

2.6 Use Case Diagram

C Checker

Input Code
Parse code

Generate AST
Jser

Recognize insecure
code

Figure 2.1: Use Case Diagram

C-Scanner For SEI CERT Rules IMPLEMENTATION

2.7 Use Cases
Table 2-2: Use Case 1

UC-1 name Input the Code

Primary User

actor

SiclGhllelsie - User inputs code to identify vulnerabilities present in the code.
& Interest User wants accurate, fast entry of code.
Pre- 1. Make sure the tool is installed correctly.
condition 2. Make sure the tool is started correctly.
Post- User has inputted the code.

condition

\ENrslteess 1. User inputs the code.

Scenario

Alternate 1(a). User doesn’t input the code.

Flow
Frequenc Every time user starts the tool to recognize insecure code.

Table 2-3: Use Case 2

UC-2 name Parse the Code

actor

SielUclee - User wants correct generation of tokens from the code.
& Interest

Make sure user inputs the code.
condition

All the tokens has generated correctly.
condition

Main Success MEEH] System
Scenario 1. User asks for parsing the code. 2. System parses the code and
generates tokens.

Alternate 2(a). The tool doesn’t parse the code.
Flow
Every time user starts the tool to recognize insecure code.

C-Scanner For SEI CERT Rules IMPLEMENTATION

Table 2-4: Use Case 3

UC-3 name Generate Abstract Syntax tree

=
actor

User wants to generate abstract syntax tree.
& Interest

Code has parsed.
condition

Abstract Syntax tree has generated.
condition

Main Success MUEH] System

Scenario 1. User asks to generate Abstract 2. System generates Abstract Syntax
Syntax tree. tree.
Alternate None.

Flow
Every time user starts the tool to recognize insecure code.

Table 2-5: Use Case 4

UC-4 name Recognize Insecure code
actor
User wants fast, correct and accurate recognition of insecure code.
& Interest
Pre- 3.4 User inputted the code.
condition 3.4 User parsed the code.
3.4 Abstract Syntax tree generated.

Post- Vulnerabilities from the code has identified.
condition

Main Success MUL:¢ System

Scenario 3. User asks to recognize 3. Vulnerabilities are identified from
vulnerabilities from the code. the code.

Alternate 2(a) . There are no vulnerabilities in the code.

Flow 2(b) . All the vulnerabilities are detected.

2(c) . Vulnerabilities are detected when there are no vulnerabilities.
2(d) . Vulnerabilities are not detected when there are vulnerabilities.
Every time user starts the tool to recognize insecure code.

C-Scanner For SEI CERT Rules IMPLEMENTATION

2.8 Domain Model

Token_Id

Token_MName

Source_File

is generated
against

NoOfNode

NoOfEdge
Depth

AttributeTypes

File_Id
Type
enerates
. & NoOfinputLines has
- I
MNoOfClasses
Language
inputs stores
Report_Id
User_ld MoOflines
generates generates
User_MName

F 3

2.9 Software System Attributes

Software system attributes define overall factors that affect run-time behavior, design, and user

Figure 2.2: Domain Model

experience. Here is detail of some software system attributes.

2.9.1 Reliability

The tool should be reliable and should never hang, other than as the result of an operating system
error. There should be no occurrence of the failure. The tool should give the proper response to

every query perform by user.

2.9.2 Availability

As tool will be used when installed on a pc in an operating system, and completely a desktop
based application so it requires an operating system on which it is installed. Hence it will be

e
L

available all the time to user whenever operating system is running on the user’s pc and
application is installed in it.

23 /
C-Scanner For SEI CERT Rules IMPLEMENTATION /

. /
2.9.3 Security
There is no such security constraints. Because this project is a tool and in this tool there is not
any confidential data to keep it secure.

2.9.4 Performance
The tool should support C language code with no performance penalty.

2.9.5 Maintainability
There should be aspect of maintainability for the tool. The tool should be easily extended. The
code should be written in a way that it allows implementation of new functions.

2.10 Assumptions and Constraints

2.10.1 Development Languages and Tools
e Development tool
» Netbeans IDE 8.1
e Programming language
» Java

2.10.2 Operating System
The tool will be built on Linux by using Java as programing language and it will install and run
on Linux.

2.11 Additional Requirements

There are additional requirements needed.

C-Scanner For SEI CERT Rules IMPLEMENTATION

Chapter 3
System Design

3. System Design

3.1 Introduction

Software Design Description (SDD) is the representation of a software design to be used for
communication design information to its stakeholders. It shows how the software system will be
structured to satisfy the requirements. The SDD is performed in two stages. The first is a
preliminary design in which the overall system architecture and data architecture is defined. In
the second stage, that is the detailed design stage, more detailed data structures are defined and
algorithms and codes are developed for the defined architecture

3.2 Purpose

The purpose of this chapter is to provide a description of the design of the tool to allow for
software development to proceed with an understanding of what is to be built and how it is
expected to build. The Software Design Description provides information necessary to provide
description of the details for the software and system to be built.

Requirements Traceability Matrix
Requirement Traceability Matrix or RTM captures all requirements proposed by the client or
development team and their traceability in a single document delivered at the conclusion of the
life-cycle. The main purpose of Requirement Traceability Matrix is to see that all test cases are
covered so that no functionality should miss while testing. It is used to track all the requirements
and whether or not they are being met by the current process and design.

Traceability matrix of this system is shown below.

Project Name C Scanner

Project Itis a C language Scanning Tool.

Description

Requirement Requirement Name Sequence Test Class Interface
Id Diagram Case Diagram

ucC:1 Input Code Yes Yes Yes Yes
ucC:2 Parse Code Yes Yes Yes Yes
uC:3 Generate AST Yes Yes Yes Yes
uc:4 Recognize Insecure Yes Yes Yes Yes

Code

C-Scanner For SEI CERT Rules IMPLEMENTATION

3.4 System Architectural Design

System Architecture Diagram is used to represent the components of system and interaction
between them. Interaction between components of our system is shown in diagram. Double

arrow line represents the interaction from both sides. Similarly single arrow represents one way
interaction. A system architecture is a conceptual model that defines the structure, behavior, and
more views of a system. An architecture description is a formal description and representation of
a system, organized in a way that supports reasoning about the structures and behaviors of the

system. System architecture design of C Scanner is shown in figure below.

User Interface

3.4.1 Chosen System Architecture
Chosen system architecture is 2-tier. Users can download and install this tool.

3.4.2 Discussion of Alternative Designs
An alternative design was to add database (for storing user’s record) and to make it a 3-tier

application.

Figure 3.1: SYSTEM ARCHITECTURAL DESIGN

26

N\

27

N\

C-Scanner For SEI CERT Rules IMPLEMENTATION

3.4.3 System Interface Description

System interface describes the flow of resources. It is the logical characteristics of each interface
between the software product and the hardware components of the system. Figure shows the
software interface of the tool.

Code Token

Inputs Senerates

Generaltes Senerates

AST

N—_ _/
[]

[Hardware]

Conformance Report

Figure 3.2: System Interface Description

3.5 Detailed Description of Components
Here is the detailed description of components of system architecture.

3.5.1 User

User inputs the code and asks for parsing the code to generate tokens. User asks to generate AST
against tokens and asks to recognize vulnerabilities from the code. User finally asks for insecure
code.

3.5.2 Token
User generates token by parsing the code. Tokens are generated against the inputted code.

3.5.3 AST
User asks to generate AST and AST is generated against the tokens.

3.5.4 Conformance Report
User asks to identify vulnerable code and vulnerabilities are checked according to the rules
provided by SEI CERT C Coding Standard.

28 7
C-Scanner For SEI CERT Rules IMPLEMENTATION ///

/

3.6 User Interface Design
User interface is the logical characteristics of each interface between the software product and its
users. In this section user interface of tool is discussed.

3.6.1 Description of the User Interface

User can interact with the tool by using GUI screen interface of desktop. When user clicks on
tool icon start page will appear. Start page has two buttons Input code and Exit. When user will
click on input code a new screen will appear for entering the code. User will selects his/her own
code and clicks parse button. Now next screen will appear where tokens are generated and to
generate AST click on the generate AST button. When user will click on generate AST button a
new screen will appear where AST will appear. To identify insecure code, User will click on the
Identify Code button and then a new screen appear where vulnerabilities are identified.

3.6.2 Interfaces
Interface 1: Start Tool

WELCOME TO CScanner

Input Code Exit

Figure 3.3: Start Tool

C-Scanner For SEI CERT Rules IMPLEMENTATION

Interface 2: Input code

Enter Filename

Browse File

Parse Token

Interface 3: Parse token

Figure 3.4: Input Code

Token 1
Token 2
Token 3
Token 4

Generate AST

Figure 3.5: Parse Token

2

AN

C-Scanner For SEI CERT Rules IMPLEMENTATION

Interface 4: Generate AST

\N

earmpilatisn st

transl. <EOF>

transiationl v exierralDeclarat on

externalbeclarstion Functionbefi~gion
declaration dec aratierSpacifiers daclarator cormaey
declarationSpeciers initDeclaratorl’st | declarationSpacifier arn:tnelclarmr i";rn:

’—-"'A"‘a
declarationSpccifier declarstionSpecifier iniIDccllarutnr tyweSpecifier directDeclarator | parameterTypslist | bl
lassSp=cih P waid fune parameterlis: ste
eut!zm unlld directeclarater parameterDeclaration selecic
directDeclarator | parameterTypelist |

| da(lareﬂelisae{iflura daclarator awiich [expression
F

du:lumﬁur&pe:ifiur directDeclarater assigrmeniSxpression

parametesList

paramsterD sclsration tyneSzecfier eipr conditionalExpression

declaraidonSpecfiers dcclalrninr Inic IngicalOrExpreassion

declarationSpecifer diunncldarmr legicalandExprassien blockttemList
typaspaciliar i irEhisiE DT Eprassion

bloeklemList
ink mxclusive OrExpression blockem
endExpression declsration
I slen pecifiers InitDecl st ;
ralationalexpression declarationSzecfier imitiaclarator
saftExpression typeSpecifier declarator - [GUIETEC
additiveFxpressien it dlr:cmeldrmr assignmentFapression :
S - l l T

Identify Code

Figure 3.6: Generate AST
Interface 5: Identify Code

Rule 1-False
Rule 2-True

Main Menu Exit

Figure 3.7: Identify Code

31 #
C-Scanner For SEI CERT Rules IMPLEMENTATION /

3.7 Sequence Diagram

Sequence diagram depicts the objects and classes involved in the scenario and the sequence of
messages exchanged between the objects needed to carry out the functionality of the system. A
sequence diagram is an interaction diagram that shows how objects operate with one another and
in what order. It is a construct of a message sequence chart. A sequence diagram shows object
interactions arranged in time sequence.

StartTool ‘ InputFile ‘ParseToken ‘GenerateAST ‘Identify_code

I | | I |

StartTooll)
InputFile()
BrowseFile()
ParseToken()

)F‘a:se[)

GenerateAST() »

B)ASTD
dentify_code()

L)RUIE[:I

Exit()

Figure 3.9: Sequence Diagram

C-Scanner For SEI CERT Rules IMPLEMENTATION

3.8 Class Diagram
Class diagram shows the classes of the system, their interrelationships including inheritance, association
and aggregation, operations and attributes of the classes.

Here is class diagram of C Checker

StartTool InputFile ParseTokens
- filel: File_
| o b reader : File R,eader | o1 L
- filemame : String
+ StartTool {) : woid . A + ParseTokens {) : void
L + InputFile) : void 01| !
T Rule
GenerateAST 01 - treenode : ParseTree
- = - nextSibling : ParseTree
- InputFile : 5tring - nodeText : String

+DCLA1()z woid
+INT31(}: woid

+ GenerateAST ()@ void

. +INT331(}:woid
0.1 +EXP35():void
] +FLP30 [):woid
o1 +inorderT | parentParseTree, parser.CParser,rule:5tring) : String
0.1 — + getnextSibling { node:ParseTree) : ParseTree T
L‘ | + getText | parent:ParseTree, parser:CParser) : String
Le 1 |
| | 0.1 .
Clexer | fid 1
1 |]
- tokensMame : String] | Identify_Cade
CParser
+ Clexer { input:CharStream) : void - vocabulary @ String[]
+ getTokensMName |) : 5tring - -
+ ldentify_Code () : vioid
+ CParser | input:TekenStream | @ void

L.* — + getVacabulary [}: Viocabulary
+ getRuleMames (|) : String[]

Figure 3.10: Class Diagram

C-Scanner For SEI CERT Rules IMPLEMENTATION

Chapter 4
Implementation

C-Scanner For SEI CERT Rules IMPLEMENTATION

4. Implementation

4.1 Introduction

Implementation is realization of technical specification or algorithm as a program, software
component or other computer system through computer programming and development. In this
chapter we provide you framework and language details of the tool. Screen shots are also given
below

4.2 Framework selection

The tool is implemented in net beans framework using Antlr4 parser generator. Antlr4 helps to
generate parser for C language.

4.3 Operating System selection

The Operating system preferred is Linux (Ubuntu 16.04). In future it can be for IOS and
windows with little changes in code.

4.4 Language

Language used for tool is Java.

4.5 Tool

e Antlr-4: It is used to generate lexer and parser for C language using the grammar.
e Netbeans IDE 8.1: It is used for Implementation.

4.6 Implementation Detail

The main purpose of the tool is the implementation of the SEI CERT C language rules. The steps
involve in the implementation of the rules are:

e Write grammar for the C language.

e Using Antlr4, lexer and parser are automatically generated from the grammar of the
language.

e Lexer is used to generate tokens from the program.

e Parser is used to check the syntax of the program.

e Abstract Syntax Tree is used to visualize formal syntactic definition of the language.

e In-order traversal of AST is used to implement SEI CERT C language rules.

Antlr4:

Antlr 4 is a lexer and parser generator. This automatically generates lexer and parser from the
grammar of the language. [10]

C-Scanner For SEI CERT Rules IMPLEMENTATION

Lexer:

Lexer is used for lexical analysis of the program. In lexical analysis (scanning), we have a series of
tokens where token is a name for a set of input strings with related structure. It maps characters of the
source code into tokens and eliminate white spaces. [9]

Parser:

Parser is used for syntax analysis of the code. In syntax analysis (or parsing), we want to
interpret what those tokens mean. A parser tries to map a program to the syntactic elements
defined in the grammar. [9]

Abstract Syntax Tree (AST):
Antlr4 is used to generate AST of the program.

SEIl CERT Rule:

These rules are used for secure coding in the C programming language and to develop safe,
reliable and secure systems. These rules eliminate undefined program behaviors and exploitable
vulnerabilities resulting from coding errors before the program is deployed. [11]

4.7 Screen Shots
e o

File Edit View Window Help

Welcome to CScanner

Input Code Exit

Figure 4.1: Main Menu

C-Scanner For SEI CERT Rules IMPLEMENTATION

File Edit Wiew Window Help

EiS

k4

¥

‘fi\enama

| Browse File

Figure 4.2: Input File

— —
File Edit Wiew Window Help

EAN

(E5 anaconda3 (&3 Medical (&3 Public

(5 c-Scanner (&5 Music (&5 Template

(E5 Desktop [E5 NetBeansProjects (& videos

(i Documents (& NewFolder (& visual_Pa

(& Downloads (& Pictures (& workspac|
ELS T
File Mame: | ‘
Files of Type: | Al Files B

(Lopen] (cancr

|ﬂ|aname

‘ Browse File

Figure 4.3: Browse File

C-Scanner For SEI CERT Rules IMPLEMENTATION

File Edit View Window Help

[extern void flint) S
void func(int expr) { N
switch (expr) {
inti=4;
il
case O
=17
default:
printf("%din”, i);
}
}
v
<« T

/homejwania/NetBeansProjects/CChecker/DCLAL txt

File Edit View Window Help

Browse File

Figure 4.4: Display Code

Parse Token

lextern
void

f

(

int

i

]
void
fune
(

int
expr

aefau\t
brintf
(

"%din”
b

I

v

T

Figure 4.5: Parse Token

Generate AST

\

C-Scanner For SEI CERT Rules IMPLEMENTATION

Figure 4.6: Generate AST

FLP30-C.False
INT31-C.False
INT33-C.False

DCL41-C. Do not declare variables inside a switch statement before the first case label
EXP35-C.False

Figure 4.7: Identify Code

=

C-Scanner For SEI CERT Rules IMPLEMENTATION

Chapter 5
Testing

5 Testing

5.1 Introduction

Testing is the process of evaluating a system or its component(s) with the intent to find whether
it satisfies the specified requirements or not. In simple words, testing is executing a system in
order to identify any gaps, errors, or missing requirements in contrary to the actual requirements.
According to ANSI/IEEE 1059 standard, Testing can be defined as - A process of analyzing a
software item to detect the differences between existing and required conditions (that is
defects/errors/bugs) and to evaluate the features of the software item.

5.2 Test Approach

User acceptance testing (UAT) also called beta testing or end user testing, consist of a process of
verifying that a solution works for the user. It is not system testing (ensuring software does not
crash and meets documented requirements), but rather is there to ensure that the solution will
work for the user i.e. test the user acceptance the solution (software vendors often refer to as
Beta testing).

This should be undertaken by a subject-matter expert (SME), preferably the owner or client of
the solution under test, and provides a summary of the findings for confirmation to proceed after
trail or overview. In software development, UAT as one of the final stages of a project often
occurs before a client or customer accepts the new system. Users of the system perform test in
line with what occur in real life scenarios.

5.3 Testing Objectives

For checking whether the requirement in SRS are fulfilled or not we have to make test on these
cases.

UAT has following objectives.

User Acceptance test make test case against the requirements.

User Acceptance test check actual function, input, expected result, actual result, procedure to
make test case, pass/fail status against each test case.

5.4 TestPlan

5.4.1 Features to be tested

Features to be tested are all according to user prospective. For example

e Input code.

e Parse Token.

e Generate AST.

e Identify Code.

5.4.2 Features not to be tested

Features not to be tested are from the developer’s point of view. For example
e How much power is used by processor?

e How much memory is consumed by the tool?

e Software risk factor.

C-Scanner For SEI CERT Rules IMPLEMENTATION

e Maintainability.

5.5 Testing Tools and Environment
As this is beta testing (testing by the user) so no specific tools and environment is required.

5.6 Test Cases

A test case is a test set, which has a set of test data, preconditions, expected results and post
conditions, developed for a particular test scenario in order to verify compliance against a
specific requirement. Test Case acts as the starting point for the test execution, and after applying
a set of input values, the application has a definitive outcome and leaves the system at some end
point or also known as execution post condition

Following are the test cases of the tool.

Test Case 1:

Purpose
Setup

Instruction
Expected Result
Actual Result

Test Case 2:

Purpose
Setup

Instruction
Expected Result
Actual Result

Table 5-1: Test Case 1

Input Code
1. Open the tool.
2. Click input code.
Input code by entering source code or by browsing source file.
Code inputted.
Code inputted.

Table 5-2: Test Case 2

Parse Token
1. Open the tool.
2. Click input code.
3. Input code by entering source code or by browsing source
file.

Click Parse Token.
Token generated.
Token generated.

Test Case 3:

Purpose Generate AST

Setup 1. Open the tool.
2. Click input code.
3. Input code by entering source code or by browsing source file.
4. Click Parse Token.

Instruction Click Generate AST.
Expected Result AST generated.
Actual Result AST generated.

Test Case 4:
Purpose Identify Code.
Setup 1. Open the tool.

2. Click input code.
3. Input code by entering source code or by browsing source file.
4. Click Parse Token.
5. Click Generate AST.
Instruction Click Identify code.
Expected Result All Insecure code sections are identified.
Actual Result All Insecure code sections are identified.

C-Scanner For SEI CERT Rules IMPLEMENTATION

References:
[1] Software Project Management Plan IEEE 1058-1998.

[2] Chapter 10. Software Requirement Specifications Software Engineering A lifecycle approach
by P. Mohapatra

[3] Chapter 6. Use cases and Functional Requirement Applying UML and Patterns by Craig

Larman

[4] Chapter 13. Design Concepts and Principles, Software Engineering A Practitioner’s Approach
by R.S. Pressman

[5] https://en.wikipedia.org/wiki/Traceability matrix

[6] https://en.wikipedia.org/wiki/C_(programming_language)
[7] Chapter 8. Software Testing lan_Sommerville _Software_Engineering_9" edition

[8] SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems
2016 Edition

[9] A Practical Approach to Compiler Construction-Springer International Publishing (2017)

[10] https://en.wikipedia.org/wiki/ANTLR
[11] https://en.wikipedia.org/wiki/CERT_C_Coding_Standard

https://en.wikipedia.org/wiki/Traceability_matrix
https://en.wikipedia.org/wiki/ANTLR

