

Legal Document Search Engine

Project report by

Muhammad Suleman Tanveer

BSCS

Project Supervisor

Dr. Akmal Saeed Khattak

Department of Computer Sciences,

Quaid-i-Azam University,

Islamabad.

Session (2013-17)

DECLARATION

I hereby declare that I have developed this report entirely on the basis of my personal efforts under the

sincere guidance of my supervisor. All the sources used in this report have been cited and the contents

of this report have not been plagiarized. No portion of the work presented in this report has been

submitted in support of any application for any other degree of qualification to this or any other university

or institute of learning.

Muhammad Suleman Tanveer

A report submitted to

Department of Computer Science

Quaid-i-Azam University, Islamabad

As a partial fulfillment of the requirements for the award of the

degree of

BS in Computer Science.

Project Brief

Project Title:
Legal Document Search Engine

Developed By:
Muhammad Suleman Tanveer

Supervised By:
Dr. Akmal Saeed Khattak

Development Tools Used:
Eclipse Java Neon.3, JetBrains PyCharm 2016.3.1, Eclipse Java Mars 1.0

Operating System:
Windows 10

Document Design Tool:
MS Word 2013

 Dedicated to
To

The Holiest Man Ever Born,

PROPHET MUHAMMAD (S.A.W.A.S)

&

 To

My PARENT AND FAMILY

I am most indebted to my parents and family, whose affection has always been

the source of encouragement for

Me, and whose prayers have always been a key to my

Success.

&

To

THOSE LOVED ONES AND FRIENDS

Who always worried and prayed for my success and gave me continuous moral

support and encouragement.

&

To

 MY HONORABLE TEACHERS

Who have been a beacon of knowledge and a constant source of inspiration for

my whole life span.

ACKNOWLEDGEMENT

In the name of Allah, most Beneficent, most Merciful. First of all I want to thank to the

Almighty Allah on the completion of my project, as I completed this task only by His

favor and grace. At this moment this is due on me to than some personalities because

without their cooperation and supervision, I may be unable to complete this work.

First of all my respected teachers and my project supervisor, Dr. Akmal Saeed Khattak

whose door of kindness always remains open for all of his students. Completion of my

task would not be possible without his help, encouragement, dynamic supervision and

constructive criticism. I am highly indebted to express my gratitude to him for his entire

collaboration. Specail thanks to Dr. Rabbeh Ayaz Abbasi, Dr. Ghazanfar Farooq, Miss

Ifrah Farrukh Khan, Dr. Khalid Saleem, Dr. Mubashar Mushtaq, Dr. Mudassir

Azam Sindhu, Madam Memona Afsheen, Sir S. M. Naqi, Dr. Shuaib Karim, Mr.

Umer Rahseed and Dr. Muhammad Usman for their kind support and cooperation.

I am also very much thankful to my parents, family and friends whose prayers are treasure

of my life. I have no words to pay gratitude to them whose affection, guidance and

continuous encouragement did their best to shame my character.

In the end I would like to thank to all of my class fellows and my seniors. And especially

to those who help me in completing my survey.

Thanks Everyone…!

 Muhammad Suleman Tanveer

 2013-2017

Abstract

Legal Document Search Engine is a web based application that enables user to search legal

documents. Legal documents include court decisions, constitution and legislation. User will

provide a query and against that a query a list of ranked documents will be displayed to the user.

Two different ranked retrieval models are used to develop this search engine that are: tf-IDF and

BM25. After implementing both ranked retrieval models the system is evaluated against a query

set. Both models are evaluated against a same query set and then result are compared in order to

find the best ranked retrieval model for this system. For persuasion of the user a dynamic word

cloud has been made which is regenerated in response to every query along with auto-correction

and suggestions for the given words.

ii

Table of Contents

List of Figures .. v

List of Tables ... vii

Chapter 1 Software Project Management Plan 1

1.1 Introduction .. 1

1.1.1 Project Overview .. 1

1.1.2 Project Deliverables .. 1

1.2 Software Process Model ... 2

1.2.1 Roles and Responsibilities .. 2

1.2.2 Tools and Techniques ... 2

1.3 Project Management Plan... 2

1.3.1 Problem Analysis .. 2

1.3.1.1 Problem Understanding .. 2

1.3.1.2 Problem Survey ... 2

1.3.1.3 Proposed Solution ... 3

1.3.2 Legal Document Collection .. 3

1.3.2.1 Finding Resources ... 3

1.3.2.2 Understanding of Legal Documents .. 3

1.3.3 Survey ... 3

1.3.3.1 Collecting Related Research Papers .. 3

1.3.3.2 Reading Research Papers and Other Material .. 3

1.3.3.3 Propose a Solution .. 3

1.3.4 Architecture... 3

1.3.4.1 Diagrammatic View ... 4

1.3.4.2 Describing Architecture .. 4

1.3.5 Implementation ... 4

1.3.6 Finding and Results... 4

1.3.7 Timetable .. 4

1.3.8 Gant chart .. 5

iii

Chapter 2 Legal Document Search Engine Introduction 7

2.1 Introduction .. 7

2.2 Legal Documents.. 7

2.3 Scope .. 9

2.4 Motivation .. 9

Chapter 3 Literature Survey .. 11

3.1 Introduction .. 11

3.2 Westlaw and LexisNexis .. 11

Chapter 4 Architecture and Methodology .. 13

4.1 Introduction .. 13

4.2 Preprocessing ... 15

4.2.1 Tokenization ... 15

4.2.2 Stop Words Removal .. 16

4.2.3 Normalization ... 16

4.2.4 Stemming and Lemmatization .. 16

4.3 Inverted index ... 16

4.4 Ranking .. 17

4.4.1 Term Frequency and Weighting ... 18

4.4.1.1 TF-IDF .. 19

4.4.1.2 SMART ... 20

4.4.1.3 BM25 ... 21

4.4.2 Vector Space Model .. 23

4.4.2.1 Documents as Vectors .. 23

4.4.2.2 Queries as Vector .. 23

4.4.2.3 Length Normalization .. 25

4.5 Retrieval Performance Evaluation ... 28

4.5.1 Recall and Precision .. 28

4.5.1.1 Recall ... 28

4.5.1.2 Precision .. 29

4.5.1.1 The Harmonic Mean (F- Measure) .. 31

iv

Chapter 5 System Design .. 32

5.1 Introduction .. 32

5.2 Sequence Diagrams .. 32

5.3 Class Diagrams ... 35

Chapter 6 Legal Document Collection .. 37

6.1 Introduction .. 37

6.2 Collecting Legal Documents .. 37

6.2.1 Web Scraping .. 38

6.3 Document Classification .. 41

Chapter 7 Implementation ... 43

7.1 Introduction .. 43

7.2 Language Selection .. 43

7.3 Tools ... 44

7.4 IDEs .. 44

Chapter 8 Evaluation, Findings and Conclusion 47

8.1 Introduction .. 47

8.2 Evaluation... 47

8.2.1 Formation of Query Set .. 47

8.2.2 Executing Query Set and Results .. 50

8.3 Findings and Conclusion .. 65

8.4 Future Tasks ... 66

REFRENCES ... 67

v

List of Figures

Figure 1. 1 Project Planning Timetable (1) .. 4

Figure 1. 2 Project Planning Timetable (2) .. 5

Figure 1. 3 Gantt Chart (1) ... 5

Figure 1. 4 Gant Chart (2) .. 6

Figure 1. 5 Gant Chart (3) .. 6

Figure 2. 1 Court Decision Example ... 8

Figure 4. 1 Information Retrieval System Architecture ... 14

Figure 4. 2 Pre-processing ... 15

Figure 4. 3 Posting list example ... 17

Figure 4. 4 Inverted Index Example ... 17

Figure 4. 5 Ranked retrieval example (Google) ... 18

Figure 4. 6 Pivot Normalization ... 22

Figure 4. 7 Euclidean distance ... 24

Figure 4. 8 Euclidean Flaw Example .. 25

Figure 4. 9 Cosine Similarity Hyperspace [7] ... 27

Figure 4. 10 Precision and Recall example illustration .. 28

Figure 4. 11 Precision vs Recall .. 30

Figure 5. 1 Client Side Sequence Diagram ... 32

Figure 5. 2 Sequence Diagram for Server Side ... 33

Figure 5. 3 Sequence Diagram for Query Formulation .. 34

Figure 5. 4 Class Diagram for Search Engine ... 35

Figure 5. 5 Class Diagram for Query Formulation ... 36
Figure 6. 1 Beautiful Soup Object .. 38

Figure 6. 2 Supreme Court of Pakistan Website Structure .. 38

Figure 6. 3 Main page .. 39

Figure 6. 4 Page Containing Document .pdf .. 39

Figure 6. 5 Web Scraping Code .. 40

Figure 7. 1 Front end main page ... 45

Figure 7. 2 Front end with results .. 46

Figure 8. 1 Query Formation Process... 48

Figure 8. 2 Query 1 Result using tf-IDF .. 50

Figure 8. 3 Query 1 Result using BM2 ... 50

Figure 8. 4 Query 2 Result using tf-IDF……52

Figure 8. 5 Query 2 Result using BM25…… .. 51

Figure 8. 6 Query 3 Result using tf-IDF……53

Figure 8. 7 Query 3 Result using BM25…… .. 52

Figure 8. 8 Query 4 Result using tf-IDF……54

Figure 8. 9 Query 4 Result using BM25……… ... 53

Figure 8. 10 Query 5 Result using tf-IDF………55

Figure 8. 11 Query 5 Result using BM25………………. .. 54

file:///C:/Users/Suleman%20Tanveer/OneDrive/FYP/Final%20Documentation/Doc%20with%20results/Legal%20Document%20Search%20Engine.docx%23_Toc488332361
file:///C:/Users/Suleman%20Tanveer/OneDrive/FYP/Final%20Documentation/Doc%20with%20results/Legal%20Document%20Search%20Engine.docx%23_Toc488332362
file:///C:/Users/Suleman%20Tanveer/OneDrive/FYP/Final%20Documentation/Doc%20with%20results/Legal%20Document%20Search%20Engine.docx%23_Toc488332369
file:///C:/Users/Suleman%20Tanveer/OneDrive/FYP/Final%20Documentation/Doc%20with%20results/Legal%20Document%20Search%20Engine.docx%23_Toc488332370

vi

Figure 8. 12 Query 6 Result using tf-IDF………………………………………………………………………………………………………...........56

Figure 8. 13 Query 6 Result using BM25…… .. 55

Figure 8. 14 Query 7 Result using tf-IDF………57

Figure 8. 15 Query 7 Result using BM25….. ... 56

Figure 8. 16 Query 8 Result using tf-IDF………58

Figure 8. 17 Query 8 Result using BM25…… .. 57

Figure 8. 18 Query 9 Result using tf-IDF………59

Figure 8. 19 Query 9 Result using BM25…… .. 58

Figure 8. 20 Query 10 Result using tf-IDF…….60

Figure 8. 21 Query 10 Result using BM25…….. .. 59

Figure 8. 22 Query 11 Result using tf-IDF…….61

Figure 8. 23 Query 11 Result using BM25….. ... 60

Figure 8. 24 Query 12 Result using tf-IDF…….62

Figure 8. 25 Query 12 Result using BM25….. ... 61

Figure 8. 26 Query 13 Result using tf-IDF…….63

Figure 8. 27 Query 13 Result using BM25….. ... 62

Figure 8. 28 Query 14 Result using tf-IDF…….64

Figure 8. 29 Query 14 Result using BM25….. ... 63

Figure 8. 30 Query 15 Result using tf-IDF…….65

Figure 8. 31 Query 15 Result using BM25….. ... 64

vii

List of Tables

Table 4. 1 Cosine Similarity Example ... 27

Table 8. 1 Query Set .. 49

Table 8. 2 Query 1 Results ... 50

Table 8. 3 Query 2 Results ... 51

Table 8. 4 Query 3 Results ... 52

Table 8. 5 Query 4 Results ... 53

Table 8. 6 Query 5 Results ... 54

Table 8. 7 Query 6 Results ... 55

Table 8. 8 Query 7 Results ... 56

Table 8. 9 Query 8 Results ... 57

Table 8. 10 Query 9 Results ... 58

Table 8. 11 Query 10 Results ... 59

Table 8. 12 Query 11 Results ... 60

Table 8. 13 Query 12 Results ... 61

Table 8. 14 Query 13 Results ... 62

Table 8. 15 Query 14 Results ... 63

Table 8. 16 Query 15 Results ... 64

Table 8. 17 Average Precision and Mean Average Precision ... 65

1

Chapter 1

Software Project Management

Plan

1.1 Introduction
In this chapter SPMP (Software Project Management Plan), a plan is described which will be

followed for our final year project for the degree of BS Computer Science. The project ‘Legal

Document Search Engine’ is basically a Research and Development based project.

1.1.1 Project Overview

The name of project is ‘Legal Document Search Engine’. This will be a web based

application for searching about legal information. This product will be available for free

for common citizens so that they can access legal information. Legal information refers to

court decision, contracts and legislation. To access legal information against a particular

information need, user’s information need is expressed in the form of a query. In response

to that query user is provided a list of ranked documents. Documents are shown to the user

according to their relevancy. The most relevant document is shown at very top, the second

most relevant document is placed at second positon and so on.

1.1.2 Project Deliverables

Possible project deliverables are given below.

 Survey report.

 Architecture.

 Evaluation Mechanism which will be used to evaluate the search engine.

 Document collection and classification.

 Product design.

 Design implementation.

 Implementation of algorithms for indexing of documents.

 Implementation of ranked retrieval models

Chapter 1 Software Project Management Plan

2

1.2 Software Process Model
We will be using waterfall process model. Requirements are pretty clear that’s why we are using

waterfall software process model.

1.2.1 Roles and Responsibilities

Since I am the only one who is dealing with this project so my responsibilities are to

complete all tasks define in time table before time. My roles are:

 Do analysis.

 Propose comprehensive solution.

 Design interface.

 Implementation of algorithms.

 Testing.

1.2.2 Tools and Techniques

Tools that I will be using are Eclipse JAVA Mars for implementation of algorithms, and

for inverted index, and MS-Word for documentation. First documents will be indexed and

different ranked retrieval models will be applied. Ranked retrieval models will be used for

ranking of result set.

1.3 Project Management Plan
Following are the tasks for our project.

1.3.1 Problem Analysis

Problem analysis consist of some of sub tasks. Estimated duration for this task is 11 days.

1.3.1.1 Problem Understanding

In this phase we will be dealing with problem understanding. Discussing it with

supervisor and having complete understanding of the project. Estimated time for

this subtask is 2 days.

1.3.1.2 Problem Survey

After the understanding of problem we will be doing survey of the problem.

Collecting information about the similar problems and their solution, matching

solution with our problem. Since this task involves lot of reading therefore

estimated time for this subtask is 1 week (8 days).

Chapter 1 Software Project Management Plan

3

1.3.1.3 Proposed Solution

After having understanding of the problem and having survey we then require to

propose a solution for our problem. This phase will take almost 2 days.

1.3.2 Legal Document Collection

In this phase we will be collecting legal documents. Estimated time for this task is 18 days.

This task consist of subtasks described below.

1.3.2.1 Finding Resources

In this task we will be finding resources from where we can collect legal

documents. These resources can be either court or internet (from official website

of Supreme Court of Pakistan). Estimated time for this task is 15 days.

1.3.2.2 Understanding of Legal Documents

The documents collected from previous task are need to be understood. For this

understanding we will require almost 4 days. Reading out different court

decision and understanding the structure of these documents.

1.3.3 Survey

In this phase we will be doing survey by reading different research papers and finding the

similar systems and their working. This task also involve some sub tasks.

1.3.3.1 Collecting Related Research Papers

In this task we will be browsing internet, visiting libraries in order to get related

research papers. Research papers related to information retrieval system and

legal information retrieval system. Estimated time for this task is 3 days.

1.3.3.2 Reading Research Papers and Other Material

In this task I shall be reading different research papers and referred books

recommended by the supervisor.

1.3.3.3 Propose a Solution

After reading different related research papers and article I would try to propose

a better problem solution. This task will require some brainstorming. Estimated

time for this task is 3 days.

1.3.4 Architecture

This phase involve the architecture design of our problem. This task involve some of sub

task described below.

Chapter 1 Software Project Management Plan

4

1.3.4.1 Diagrammatic View

In this task I shall be describing architecture of our system in the form of

diagram. Estimated time for this task is 2 days.

1.3.4.2 Describing Architecture

In this task I shall be describing the architecture of our project. The diagram

obtained from very previous task will be explained in detail. Estimated time for

this task will be 10 days.

1.3.5 Implementation

In this phase I will be dealing with implementation of our product. Probably a

period of 4 months will be given to this phase.

1.3.6 Finding and Results

After implementation of product the last task will be its evaluation. Different

experiments will be made to evaluate the system and at the end conclusion will be

provided.

1.3.7 Timetable

Figure 1. 1 Project Planning Timetable (1)

Chapter 1 Software Project Management Plan

5

Figure 1. 2 Project Planning Timetable (2)

1.3.8 Gant chart

Figure 1. 3 Gantt Chart (1)

Chapter 1 Software Project Management Plan

6

Figure 1. 4 Gant Chart (2)

Figure 1. 5 Gant Chart (3)

7

Chapter 2

Legal Document Search Engine

Introduction

2.1 Introduction
Information retrieval refers to the retrieval of information from a collection of documents with

respect to some information need expressed in the form of user’s query. User enters some

keywords against which a list of documents is displayed as a result. There are a number of

information retrieval systems which allows user to express their query with a set of key terms and

the result of the query is a list of documents, some of IR systems are Google, Yahoo, and Bing etc.

These IR systems are general, not very specific. What we are going to develop is a dedicated

information retrieval system that will work for a specific documents (legal documents). Also there

are numerous dedicated information retrieval system that work for a specific field like biology,

mathematics, and for computer science etc. We are going to develop a search engine for Legal

documents i.e., for court decisions of Supreme Court of Pakistan and constitution of Pakistan. This

may help common citizen for getting information about legal issues and can make decisions based

on related issues.

2.2 Legal Documents

Legal document is a document that grants some rights and states some contract based relationship.

These documents involve some text. Some of these texts may be a part of legislation, some of them

consist of contracts, police statements, official pleadings, warrants and court decisions. According

to research [12] the most commonly legal document used in information retrieval systems are

legislation and court decisions. Legal documents are in natural language text.

Decision of judges could also be counted in legal documents and are a source of law. Lawyers and

even civilians can build arguments for their current case based on the previous cases that will

support them and make their case strong. Usually decisions are written in natural language. Court

decisions have two basic components, opinions and facts. In opinion, judge give reason about the

case, explain concepts or interprets legislation. The other component i.e. facts of a case are very

important. The facts are the basis on which the judge has made his conclusion.

The law uses common words found in ordinary language in combination with specific

interpretations of legal terms. Characteristics of a court decision is shown in figure below.

Chapter 2 Legal Documents Search Engine Introduction

8

Figure 2. 1 Court Decision Example

Chapter 2 Legal Documents Search Engine Introduction

9

2.3 Scope
Legal document search engine is a web based application for searching legal information. Legal

information refers to court decision, contracts and legislation. To access legal information against

a particular information need, user’s information need is expressed in the form of a query. There

are two modes of retrieving information against an information need, one is push mode and other

is pull mode. In push mode, system recommends user for relevant information whereas in pull

mode user initiates request for an information need in the form of query. We will be dealing with

pull mode. Browsing and querying are included in pull mode. In browsing user navigates into

relevant information by following a path enabled by the structures on the documents, useful when

user don’t know what keywords to use. Whereas in querying mode user provide keywords for

his/her information need. It is useful when if user knows which keywords to use. A query will be

provided by the user. The query terms are than matched with the documents. On the basis of

matching, a number of documents are retrieved. These retrieved documents are than ranked

according to their relevancy. Different ranked retrieval models are used for ranking which includes

TF-IDF, vector space modelling, BM25 and SMART modelling.

2.4 Motivation
Information is knowledge and having access to more knowledge gives you a valuable advantage

over you competitor especially in case of legal case. If you have more knowledge about your case

you can make your case more strong by referring to the previous cases. Court decisions are also a

source of law, and right to get legal information is one of the basic right of any individual.

Currently in Pakistan there is no search engine available where a common citizen can access legal

information. Only lawyer community have access to the legal information and they pay some

amount per year for getting legal information. With the help of this search engine every person can

access legal information and take their decisions accordingly. Legal information includes previous

court decision and legislation. Case belongs to some category like murder case, missing person,

robbery, property case etc. The motivation is to develop a legal document search engine which

provide access to legal information to common citizen to Pakistan.

Moreover Pakistan bar council have a legal document search engine, but it is follows Boolean

retrieval model. This search is not publically available. Boolean retrieval model works in a way

that either we are in or out. Disadvantage of this model is feast or famine i.e., either we will have

too few hits or too many hits. Our focus is to use different term weighting schemes in ranked

retrieval model to overcome the short comes of Boolean retrieval model. Legal documents will be

retrieved using free text queries in English, against a query a list of legal documents is displayed

which are shown to the user according to their relevancy. On backend of search engine the

documents are indexed, in this way we can improve our searching and it will be better than Boolean

retrieval model (indexing and how documents are matched with query terms is described below in

detail). The reference to the matched documents against the query are pulled from the collection

of documents and shown to the user on the basis of ranking. Ranking refers to the relevancy of the

Chapter 2 Legal Documents Search Engine Introduction

10

document with the query, most relevant documents are shown to the user first. Different ranking

models are used for ranking of the documents described below. This type of legal document search

engine isn’t available in Pakistan. So it is a great step towards betterment for information retrieval

in legal case.

11

Chapter 3

Literature Survey

3.1 Introduction
In this chapter we will be explaining some survey made on existing legal documents search engines

and will try to explain the mechanism they are using for indexing their documents. Moreover we

will be describing what technique they are using for text processing also will suggest what

techniques we are going to use for the implementation of our search engine.

3.2 Westlaw and LexisNexis
There are some legal document search engines available like WESTLAW and LexisNexis.

WESTLAW is a legal research service for lawyers and legal professionals. WELSTLAW is used

in over 60 countries [2]. It include cases and statues of Australia, Hong Kong, Canada, European

Union, United Kingdom and United States. WESTLAW supports Boolean as well as natural

language searches. Documents on WESTLAW are indexed according to West Key Number

System. In 19th Century John B. West described the classification of legal documents. He divided

law into major categories which he called topics (such as Murder Case, Contracts etc.)[1]. He

created hundreds of subcategories and assigned them a number (key). This key number is used to

identify (refer) a case. The list of those key numbers can be seen on this link

(http://static.legalsolutions.thomsonreuters.com/product_files/westlaw/wlawdoc/wlres/keynmb06

.pdf). WESLAW include a feature named “keyCite”. It is a citation checking service which allow

customers to check whether case or statues are still good law. Good law means verification of

citation, because lawyers must determine whether a case has been overruled, modified or reversed

before making reference of that case.

WESTLAW introduced WestlawNext on February 08, 2010. It works in a way that suppose you

want to search “Can a municipality be held liable for civil rights violation by its employees?”

WestlawNext return some results, key cases ranked by relevance to your topic (your query). It also

search across content type like Cases, Statues and Pending and Proposed legislation. If you want

to search deeper it suggest related cases as well. When you enter a query it matches the related

documents by applying different algorithms and rank them by relevancy. It uses federated search

across multiple content types [3] (Federated search is an information retrieval technology that

allows simultaneous search of multiple searchable resources). When a user makes a query, it is

distributed to different search engines or other query engines that are participating in the

federation. The federal search then aggregates the results received from participating engines and

present it to the user). When they index them they assign them a key number means they are putting

Chapter 03 Literature and Survey

12

them in a category. This is helpful because if you don’t make (describe) your query well even it

can bring some good (related) documents on the bases of the selected category [4].Filters can also

be applied further on the result set. It also provides a facility to retrieve documents by references

like citation, keyCite etc. It also provide folder for storing portion of the result selected by user

[4]. WestlawNext has been renamed Thomson Reuters Westlaw, effective from February 2016

[5].

The LexisNexis is cooperation that provides legal document search. Its collection of documents

contains laws and statutes of United States. It also have case judgments and opinions for

jurisdiction such as Australia, Canada, France, Hong Kong, South Africa and United Kingdom.

These legal document search engine are based on NLP (Natural Language Processing) technique.

In NLP we are interested in semantics. It consist of five staged, tokenization, lexical analysis,

syntactic analysis, semantic analysis and pragmatic analysis [21]. But what we are going to build

is an IR system that uses a fraction of NLP and core mathematical model of information retrieval

system. The parts of NLP that we will be using are tokenization, stop word removal, stemming

and lemmatization and normalization and mathematical models are vector space model, tf-idf,

BM25, SMART.

13

Chapter 4

Architecture and Methodology

4.1 Introduction
In this chapter architecture and methodology of a search engine will be discussed. Inverted index

will be described along with different term weighting schemes like tf-IDF, BM25 and SMART.

These schemes are used for ranking. Ranking is very important in every search engine therefore

different schemes will be discussed along with their pros and cons. After discussing the

architecture of search engine different evaluation measures will discussed that will be taken after

the implementation of this product. These evaluation measure includes precision, recall and F-

measures. In the process of information retrieval user will provide its information need, this

information will be in the form of query. There will be a collection of document, these documents

must will be indexed. Before indexing the documents, there must be some pre-processing on

these them. Pre-processing is a process in which data (documents) are prepared for another

process (for indexing). Pre-processing includes tokenization, removal of stop words,

normalization and stemming. Detailed pre-processing techniques are described below in section

4.2. After pre-processing on the collection, it is ready for indexing. Indexing holds the vocabulary

(words used in the document) and it’s posting list. Posting list is a list which shows that in which

documents a particular word is appearing, it holds document id of it along with its frequency in

the corpus. Each document is different from the other on the basis of document id. Detail about

indexing is described in section 4.3. Once documents are indexed then user enters his/her

information need in the form of a query, his/her query is processed and on the basis of relevancy,

a list of relevant documents are retrieved. These retrieved documents are then ranked according

to their relevancy. Their relevancy is found by using different type of term weighting schemes

like TF-IDF, vector space model and BM25. The document which is most relevant is displayed

on the top and the second most is displayed on the second number and so on. First k (let say

k=10) documents are shown to the user. These k documents are most relevant to the provided

query. Detail about ranking is described in section 4.4. Figure 4.1 shows the diagrammatic view

of architecture of a search engine.

Chapter 4 Architecture and Methodology

14

Below (in Fig 4.1) is shown the architecture of a typical Information System.

Figure 4. 1 Information Retrieval System Architecture

Chapter 4 Architecture and Methodology

15

4.2 Preprocessing
Processing performed on a raw data for preparing it for another process is called preprocessing.

The first step towards text mining is preprocessing. Figure 4.2 shows the hierarchy of pre-

processing techniques.

Figure 4. 2 Pre-processing

Following are techniques of preprocessing.

4.2.1 Tokenization

Chopping a sequence of characters into collection of words is referred as tokenization. The

use of tokenization is to get or identify meaningful keywords.

Input: The court decides that, this hearing is done now.

Output: The court decides that this hearing is done now

Tokens of same types are stored (indexed) once [11]. (The term type referrers to a class of

all tokens containing the same character sequence).

Chapter 4 Architecture and Methodology

16

4.2.2 Stop Words Removal

Some frequent words that are used in documents which may have little value but they will

appear most of the times, these words are referred as stop words. The most common words

in a document is articles, pro-nouns and prepositions which do not give meaning about

document and their occurrence is high although they do not represent a document. So the

removal of these words (stop words) is necessary. Examples of stop words are a, an, is, the,

He etc.

4.2.3 Normalization

Now we have tokens but still there are some problems with these tokens. For example if

there is a token like U.S.A and if someone query like USA, it will not match. For these

related problems we have to normalize our tokens.

Token normalization is the process of canonicalizing tokens so that matches occur despite

superficial differences in the character sequence of the tokens [7]. For normalization of

tokens equivalence classes can be made. For example if the token anti-corruption and

anticorruption are both mapped on a term anticorruption, in both document and text query

then search against one term will retrieve the documents that contain either anti-corruption

or anticorruption.

4.2.4 Stemming and Lemmatization

In documents, usually different form of a word is used like implementing, implemented,

implements. These words are derived from some root word. Like in this case, all of the

words belong to root word which is ‘implement’. Stemming is used to replace derived

terms from their root (word stem). Stemming is the process that simply chops the ends of

word and hope for achieving it correctly whereas, Lemmatization do these thing in a proper

way. It uses vocabulary and morphological analysis of words (morphological analysis is a

method for identifying the total set of possible relationship). Lemmatization not only chops

the end of a derived word but also give the root (word stem) of word known as lemma [9].

4.3 Inverted index
An inverted index is an index which is used for storing mapping from content to its location in

collection of documents or files. Content can be of any type like numbers and free text etc. An

inverted index consist of posting lists associated with each term that is in the documents. The

structure of posting list is shown in figure 4.3.

Chapter 4 Architecture and Methodology

17

Figure 4. 3 Posting list example

A posting list is composed of different posting that contain the document id and payload (p),

payload is the information about the occurrence of word in a document which we can say term

frequency (tf). Term frequency (tf) tells us that how many time a word occurred in a particular

document d1, d2, d5 etc., are basically document ids. Documents can be identified by a unique

number that can have range from 0 to n.

An inverted index is composed of two components, vocabulary and occurrence. The term

vocabulary refers to the list of words used in the collection (all the documents). For each word in

the vocabulary there is a reference of the list of documents in which the particular word occurred,

this list represents the occurrence of word in the documents.

Figure 4. 4 Inverted Index Example

4.4 Ranking
Ranking is a key step in information retrieval system. When a user enters some query, this query

is processed and related documents against that particular query are retrieved. The number of

relevant documents can be very large. Ranking is very important because it reduces a large result

set to a smaller one. Most of the user don’t wade through 1000’s of results, instead of it user want

to look at a few of results usually first two or three of it. For this, documents must be ranked

accordingly i.e., most relevant document should appear at the top and second most important

document should be displayed on second number and so on. Documents are usually ranked on the

basis of their relevancy to the query i.e., documents which are related to given query should be

Chapter 4 Architecture and Methodology

18

retrieved. First k (let say k = 10) documents are displayed to the user among all the retrieved

documents, and these first k documents are shown on the basis of ranking as described above. Like

in google if we query something it gets millions of result but displays only some of them in first

list, the documents which are displayed in top k (let say k =10) list are on the basis of their ranking.

(Fig 4.5). Different ranked retrieval models are used for ranking the result set which includes TF-

IDF and vector space modelling etc. We will be using TF-IDF, BM25 and SMART technique

along with vector space model for ranking of documents (result).

Figure 4. 5 Ranked retrieval example (Google)

4.4.1 Term Frequency and Weighting

Now we will assign weight to terms in documents. This weight will depend upon the

occurrence of a term in a particular document. This weight will be used for computing

score between query term t and document d. This weighting scheme is known as term

frequency.

Term frequency tft,d of term t in a document d is defined as the number of times that t occurs

in d [12]. It is possible that a term would appear much more times in long documents than

in short ones. Therefore tf is often divided by document length as a way of normalization.

Chapter 4 Architecture and Methodology

19

TF(t) = (No. of times term t appears in a document) / (Total number of terms in a

document). The log frequency weight of a term t in document d is given by:

Term frequency only retain the information of occurrence of a term in a document, this

may cause some problem. Let’s take an example: Suppose we have two documents, d1 =

“John is quicker than Marry” and d2 = “Marry is quicker than John”. In view of term

frequency weighting, these documents are identical because tf of both documents is same

but actually they are not. We will be handling this problem in IDF (Inverse Document

Frequency).

Rare terms are more informative than frequent terms. Since rare terms do not get enough

weight so they can be neglected. We want a high rate for rare terms. For this we will be

using document frequency. Document frequency is defined to be number of documents in

the collection that contains a term t.

It is obvious that frequent terms like ‘that’, ‘from’ etc. will have high weight and may have

less importance but terms like ‘murder’, ‘robbery’ may have less weight but are more

informative. Thus we need to scale down the frequent terms while scale up the rare terms

by computing following [13]:

IDF(t) = log10 (N/dft).

N is total number of documents in collection and dft is document frequency of a term t.

One thing is to be noted that idf doesn’t effect on ranking of query involving only one term.

It will affect the ranking of documents for queries with at least two terms. Like if user

enters a query like “murder”, it will not affect the ranking of documents but if user enters

query like “murder case”, idf makes occurrence of ‘murder’ for much more in the final

document ranking than occurrence of ‘case’.

4.4.1.1 TF-IDF

Now we will combine the both definition, term frequency and inverse document

frequency to get a composite weight for each term in a document.

The tf-idf weighting scheme assigns term t a weight in document d is given by

Tf-idf(t,d) = log(1 + tf(t,d)) * idf(t)

Chapter 4 Architecture and Methodology

20

Tf-idf is best known weighting scheme in information retrieval [6]. It covers the

biasness factor created from tf(t) that frequent terms will get more weight than

rare terms. It increases with rarity of term in the collection. Also it increases with

the number of occurrence within a document.

For normalization purpose we can also use log-frequency weighting. The log-

frequency weight of a term t in a document d is given by:

Inverse document frequency (idf) measures how important a term is. In idf all

terms are considered equally important. In idf we give high weight to the rare

terms [10].

4.4.1.2 SMART

SMART is a weighting scheme for query vs document. SMART stand for

System for Mechanical Analysis and Retrieval of text. It is a combination of

different weights. The mnemonic for representing a combination of weights

takes the form ddd.qqq where the first triplet gives the term weighting of the

document vector, while the second triplet gives the weighting in the query

vector. The first letter in each triplet specifies the term frequency component of

the weighting, the second gives the document frequency component, and the

third gives the form of normalization used. It is quite usual to apply different

normalization function to the query vector and the document vector. For example

a weighting scheme is lnc.ltc

Document vector (ddd):

 I represents that the document vector has log-term frequency.

 n represents no idf (inverse document frequency).

 c represents cosine similarity.

Query vector (qqq):

 l represents log-weighted term frequency.

 t represents idf weighting.

 c represents cosine similarity.

Chapter 4 Architecture and Methodology

21

4.4.1.3 BM25

Most of the weighting models use document term frequency (tf), the number of

occurrences of the given query term in the given document, into consideration

as a basic factor for weighting documents. The classical tf.idf weighting scheme

formula is given by:

Tf-idf(t,d) = log(1 + tf(t,d)) * idf(t)

Where Tf-idf (t,d) is the weight of the document d for the term t. The above tf-

idf formula is based on two basic principles of weighting:

 For a given term, the higher its frequency in the collection the less likely

it is that it reflects much content [16].

 For a given term in a given document, if the term frequency (tf) is higher

within a document, it means term carries more information within the

document [16].

The term frequency (tf) is dependent on the document length. It needs to be

normalized by using a technique called term frequency normalization. The

reasons for the need of tf normalization are given below:

 The same term usually occurs repeatedly in long documents.

 A long document has usually a large size of vocabulary. Therefore it has

a greater chance of mapping any query on it.

Without normalization, tf-idf can produce biased weights with respect to the

document length. Since long document have a greater chance of mapping a query

term on it, therefore long documents will be preferred. To avoid this biasness we

will use tf normalization. A classical method of the tf normalization tuning is the

pivoted normalization approach proposed by Singhal et.al [17]. In pivoted

normalization we penalize a long document with a document length normalizer.

As described earlier that a long document has a better chance to match any query

so we need to normalize the document using pivot normalization. The formula

for pivot length normalization is given below:

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 = 1 − 𝑏 + 𝑏(
|𝑑|

𝑎𝑣𝑔_𝑑𝑙
)

The reason why we are calling it pivot normalizer is that it normalizes documents

around some pivot, and its pivot point is average document length. Average

document length refers to finding length of all the document in the corpus and

Chapter 4 Architecture and Methodology

22

then calculating its average. d is document length, b is a free parameter between

0 and 1 i.e., b є [0, 1]. The documents which are of greater length than average

document length are penalized, i.e. it will be given less importance and the

documents which are less than average document length are given some reward,

reward in the sense that it will be given high priority.

Figure 4. 6 Pivot Normalization

The formula for pivoted length normalization in vector space model is given by:

𝑓(𝑞, 𝑑) = ∑ 𝑐(𝑤, 𝑞)
ln[1 + ln[1 + 𝑐(𝑤, 𝑑)]]

1 − 𝑏 + 𝑏
|𝑑|

𝑎𝑣𝑔𝑑𝑙

 𝑙𝑜𝑔
𝑁 + 1

𝑑𝑓(𝑤)

𝑤є𝑞ᴖ𝑑

Where N is total number of documents in the collection, df (w) is total number

of documents containing word w, c(w,d) is word count of w in document d,

c(w,q) is word count of w in query q. In the denominator, there is pivot length

normalizer discussed above.

BM25 is a retrieval function that ranks the documents against a query. It also

uses idf as its base, removing the flaws of tf-idf stated above. For a given query

q, the score of a document d is given by:

Chapter 4 Architecture and Methodology

23

𝑓(𝑞, 𝑑) = ∑ 𝑐(𝑤, 𝑞)
(k + 1)c(w, d)

𝑐(𝑤, 𝑑) + 𝑘(1 − 𝑏 + 𝑏
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)

 𝑙𝑜𝑔
𝑁 + 1

𝑑𝑓(𝑤)

𝑤є𝑞ᴖ𝑑

In above stated formula f(q,d) is the score of a document d against query q, c(w,q)

is word count of w in query q, c(w,d) is word count of w in document d, avg_dl

is average document length, d is document length, N is total number of

documents in the collection, df(w) is document frequency containing word w, k

and b are free parameters usually chosen, in absence of an advanced

optimization, k є [0, +∞) and b є[0,1].

4.4.2 Vector Space Model

One of the most commonly used model for information retrieval is vector space model. In

the vector space model text is represented by a vector of terms [15].

4.4.2.1 Documents as Vectors

Suppose we have ha |V| dimensional vector space where V is the number of

words i.e. vocabulary. The terms (words) are the axes of the space. The

documents you can think of a vector from the origin pointing out some point in

the space. So we now have a very high dimensional space, tens of millions of

dimensions in a real system when you apply this to a web search engine. The

crucial property of these vectors is that they are very sparse vectors means most

of the entries are zero. Because each individual document only typically has a

few hundred or thousand words in it.

4.4.2.2 Queries as Vector

So then if we have vector space of documents the question may arise, how do

we handle query when a query comes in? The key idea is that we treat queries

exactly the same way: that also will be vectors in the same space and then if we

do that we can rank documents according to their proximity to the query in the

space. Proximity corresponds to the similarity of vectors or we can say that

reverse of distance between the vectors. We are doing this because we want to

get away from the Boolean model which results either you are in or out and have

a relative score, depending upon how well a document matches a query. We are

Chapter 4 Architecture and Methodology

24

going to rank more relevant documents higher than less relevant documents.

Let’s try all of this more precise.

So how can we formalize proximity in the space? The first attempt is to simply take the

distance between the two points i.e. the distance between the end points of the vectors. And

the standard way to do that in a vector space is by calculating the Euclidean distance

between the points. But using Euclidean distance isn’t a good idea because Euclidean

distance is large for the vectors of different lengths [14].

Figure 4. 7 Euclidean distance

Consider vector space shown in figure 4.7. So what we found is the distance between q

and d2 is large and particular is larger than the distance between q - d3 and q - d1. But if

we actually think of this in terms of information retrieval problem and try to look what is

in our space that tells us that something is wrong there. In this small example, two word

axes shown (as described earlier axes are term). On y-axis term is Gossip and on x-axis is

Jealous and our query q is somewhat “gossip and jealous”. If we look with our documents,

what we find is d1 seems have a lot to do with gossip and probably nothing to do with

jealous and d3 have a lot to do with jealous and nothing to do with gossip whereas d2

seems just a kind of document that we want to get, one that have a lot to do with both gossip

and jealous. So the term in the document d2 are very similar to the term in q so we want to

be saying that is actually the most similar document. So the solution to the problem is rather

than talking about distance what we want to start looking at angle in the vector space. So

Chapter 4 Architecture and Methodology

25

the idea is to consider angle between the vectors rather than distance. Let’s take and

experiment:

Suppose we take a document d and appended to itself taking as a new document d’.

Semantically d and d’ have the same content, they have the same information. But if we

are working with a regular vector space with Euclidean distance, distance between the two

documents will be quite large.

Figure 4. 8 Euclidean Flaw Example

So we don’t want to do that instead what we want to notice the angle between the two

vectors is zero corresponding to maximal similarity. So the idea is we got to rank

documents according to angle between the document and the query. So following two

notions are equivalent.

 Rank documents in decreasing order of the angle between query and document.

 Rank documents in increasing order of the cosine (query, document).

Cosine is a monotonically decreasing function for the interval [0o, 180o]. Therefore cosine

serve as a kind of inverse of angle. Well that might still make it seem a strange thing to use

instead we could’ve just taken the reciprocal of angle and negative of angle and that can

serve our purpose too but it turns out that cosine measure is actually standard because it’s

actually very efficient way for calculating the similarly between query and document, any

transcendental function other than cosine may take long time to compute the result.

4.4.2.3 Length Normalization

The starting point towards cosine similarity is getting idea about length of a

vector and how to normalize length of a vector. A vector can be normalized by

dividing each of its components by its length. For this we use the L2 norm:

Chapter 4 Architecture and Methodology

26

||x||2 = √∑ixi
2

Dividing a vector by its L2 norm makes it a unit vector on the surface of unit

hyperspace around the origin. If we go back to example we had earlier of two

documents d and d’ (d appended to itself) one can see that these documents, if

they are both length normalized will go back to exactly the same position and

because of that once you length normalize vectors long and short documents will

have comparable weights. So in cosine measure we do length normalization. For

calculation cosine similarity we have a formula given below:

The function cos (q,d) is the cosine of the angle between the two documents. The

way we do that, in the numerator we calculate dot product of query vector and

document vector. The denominator is considering the lengths of vectors. So the way

of calculating cosine similarity is to normalize the query and document vector

separately and the finding the dot product of the normalized vectors. Where qi is

the tf-idf weight of term i in the query and di is the tf-idf weight of term i in the

document.

For length normalized vectors, cosine similarity is simply the dot product of query

and document vector.

𝑐𝑜𝑠(𝑞, 𝑑) = ∑(qi di)

|𝑉|

𝑖=1

Chapter 4 Architecture and Methodology

27

Figure 4. 9 Cosine Similarity Hyperspace [7]

In above vector space we can take any vector and we can map it down to the hyperspace

by doing the length normalization. After doing that we will have all the vectors touching

the surface of the hyperspace (the dotted line in figure 4.8). So then when we want to order

documents by similarity to the query, we simply compute the cosine of the angle between

the document and the query. Cosine will be highest for small angles since we described

earlier that cosine is monotonically decreasing function. So if we order these documents in

terms of cosine of the angle, the document that will be ranked first will be d2 because it is

making smallest angle with the query, the document which will be ranked second will be

d1 and then d3 will be at last. Let’s take an example for computing cosine similarity among

some text.

For calculating the cosine similarity between two documents d1 and d2, they are

transformed in vectors as shown in the table below.

Each word in document defines a dimension in Euclidean space and the frequency of each

word represents the dimension value. Now cosine similarity can be computed for two

documents: “Murder person case” and “Missing person case person”

1.2 + 1.0 + 0.1 + 1.1

√12 + 12 + 02 + 12 √22 + 02 + 12 + 12
 ≅ 0.72

Table 4. 1 Cosine Similarity Example

 Person Murder missing Case

d1 1 1 0 1

d2 2 0 1 1

Chapter 4 Architecture and Methodology

28

4.5 Retrieval Performance Evaluation

For retrieval performance evaluation, one should consider the retrieval task that is to be evaluated.

Retrieval task can be of two types, one is named as batch mode. In batch mode the user provides

an information need in the form of query and receives the answer back, the other consists of a

whole interaction session. In this session user specifies his information need through a series of

interactive steps with the system. Further, the retrieval task could also comprise a combination of

both of the two strategies. Since both batch and interactive query tasks are quite different processes

therefore their evaluation is also different. In this chapter we will be discussing the evaluation of

systems that processes batch mode only.

4.5.1 Recall and Precision

Let’s take an example query q from a test collection and its set R of relevant documents.

Let |R| be the number of documents in this set. Assume that a given retrieval strategy

process the information request q and generates a document answer set A. Let |A| be the

number of documents in this set. Moreover, let |RA| be the number of documents in the

intersection of the sets R and A. Figure 4.10 illustrates these sets.

Figure 4. 10 Precision and Recall example illustration

4.5.1.1 Recall

Recall is the fraction of relevant documents (the set R) which have been

retrieved.

Recall = |RA| / |R| OR Recall = Retrieved documents / Relevant documents

Chapter 4 Architecture and Methodology

29

4.5.1.2 Precision

Precision is the fraction of retrieved documents (the set A) which are relevant.

Precision = |RA|/|A| OR Recall = Relevant documents / Retrieved documents.

Let’s take an example to explain the concept of recall and precision. Assume that a set Rq

containing the relevant documents for a query q has been identified. Moreover assume that

the set Rq is composed of the following documents.

 Rq = { d3, d5, d9, d25, d39, d44, d56, d71, d89, d123 }

 There are ten documents which are relevant to the query q.

Assume an algorithm returns, for the query q, a ranking of the documents in the answer

as follows.

Ranking for query q:

1. d123

2. d84

3. d56

4. d6

5. d8

6. d9

7. d511

8. d129

9. d187

10. d25

11. d38

12. d48

13. d250

14. d113

15. d3

The documents that are relevant to the query q are underlined. If we examine this ranking,

starting from the top documents, one can observe the following points.

 The document d123 which is ranked as number 1 is relevant. This document have

10% of all the relevant documents in the set Rq. Thus we can calculate precision by

using formula:

Precision = Relevant / Retrieved

Precision = 1 / 1 *100 = 100%

Chapter 4 Architecture and Methodology

30

Recall = Retrieved / Total Relevant Docs

Recall = 1 / 5 *100 = 20%

 The document d56 which is ranked 3rd is the next relevant document. At this point

we have

Precision = 2/3 * 100 = 66.67%

Recall = 2 / 5 * 100 = 40% (means 2 of the 5 relevant doc seen)

Thus if we proceed with our examination of the ranking generated, we can plot a graph of

precision vs recall shown in figure 4.11. The precision at levels of recall higher than 50%

drops to 0 because not all relevant documents have been retrieved. This precision versus

recall is usually base on 11 standard recall instead of 10 which are 0%, 10%, 20% …,

100%.

Figure 4. 11 Precision vs Recall

In the above example, the precision and recall figures are for a single query, but what for

several distinct queries? In this case, for each query a distinct precision vs recall curve is

generated. To evaluate the retrieval performance of an algorithm over all test queries, we

average the precision figures at each recall level as follows.

 P (r) = ∑
Pi(r)

𝑁𝑞

𝑁𝑞

𝑖=0

Where P(r) is the average precision level at point r, Nq is the number of queries, Pi(r) is

the precision recall level r for the i-th query.

Chapter 4 Architecture and Methodology

31

Since recall and precision are not always the most appropriate measure for evaluating

retrieval performance, so some of the alternative measures are discussed below.

4.5.1.1 The Harmonic Mean (F- Measure)

One possible solution for having more appropriate measure for evaluating

retrieval performance of search engine is to get a mashup kind of precision and

recall measures. To get the mashup we take harmonic mean F of precision and

recall, which is computed as:

 F(i) =
2

1

𝑟(𝑖)
+

1

𝑝(𝑖)

where r(i) is the recall for the i-th document in the ranking, p(i) is the precision

of the i-th document in the ranking and F(i) is the harmonic mean for recall r(i)

and precision p(i). The function F have value in the interval [0, 1]. If F = 0, it

means that no relevant document have been retrieved and if F = 1 says that all

the documents are relevant. The function F will have higher value for the higher

value of both recall and precision. Therefore it finds the best possible

compromise between precision and recall.

32

Chapter 5

System Design

5.1 Introduction
In this chapter we will start designing our product. System design for our system includes

sequence diagram and class diagram. There are three sequence diagrams, each for client side,

server side and for query generation. Since we got two major functions of our product, one is

search engine and second is automated query formulation so two class diagrams were made. One

for search engine and second for automated query formulation.

5.2 Sequence Diagrams
Figure 5.1 represents the sequence diagram for client side.

Figure 5. 1 Client Side Sequence Diagram

Chapter 5 System Design

33

Figure 5.2 represents sequence diagram for server side of our search engine.

Figure 5. 2 Sequence Diagram for Server Side

Chapter 5 System Design

34

Figure 5.3 shows sequence diagram for query formulation.

Figure 5. 3 Sequence Diagram for Query Formulation

Chapter 5 System Design

35

5.3 Class Diagrams
Since there two class diagrams so figure 5.4 shows class diagram for search engine and figure

5.5 shows class diagram for query formulation.

Figure 5. 4 Class Diagram for Search Engine

Chapter 5 System Design

36

Figure 5.5 shows the class diagram for query formulation.

Figure 5. 5 Class Diagram for Query Formulation

37

Chapter 6

Legal Document Collection

6.1 Introduction
In this chapter we will be moving our discussion forward towards document collection phase, this

phase is a first step towards search engine implementation phase. Since we are going to build a

‘Legal Document Search Engine’, the first step will be collection of legal documents. For this,

there will be a need resource(s) from where we can collect legal documents also the method used

in the collection phase will be described. Moreover we will classify each legal document to some

class manually i.e., civil petition cases class, criminal appeal cases class and human right cases

etc. and will describe what kind of cases these classes will contain i.e. definition of the classes.

6.2 Collecting Legal Documents
Before collecting documents we must be clear what we are looking for i.e., what documents are

referred as legal documents? As described earlier in section 2.2, a legal document is a document

that grants some rights and states some contract based relationship. These documents involve some

text. Some of these texts may be a part of legislation, some of them consist of contracts, police

statements, official pleadings, warrants and court decisions. The most commonly legal document

used in information retrieval systems are legislation and court decisions.

Now after the understanding of a legal document we start to collect legal documents. We will be

dealing with court decisions of Supreme Court of Pakistan only. There are a huge number of court

decision made by Supreme Court of Pakistan but for this search engine we will be considering

only 500 decision to be indexed. These decisions can be found at official website of Supreme Court

of Pakistan http://www.supremecourt.gov.pk. These decision are in portable document format

(pdf). There were two ways of getting those documents, by downloading each document one by

one and the other option was to build a web scraper. We preferred making a web scrapper.

http://www.supremecourt.gov.pk/

Chapter 6 Legal Document Collection

38

6.2.1 Web Scraping

Web scraping also known as web data extraction, is an automated software technique of

extracting information from web. We made web scraper in python using Beautiful Soup

library in pyCharm IDE. This library is used for pulling data out of HTML and XML files.

The general idea for web scraping is to extract data from web and convert it to a suitable

format which can be analysed. We began explaining web scraper using following code:

Figure 6. 1 Beautiful Soup Object

In the above code request method sends a GET request to the URL

http://www.supremecourt.gov.pk/web/page.asp?id=103 (Supreme Court of Pakistan) and

gets the text of the listed URL. After that whole source code is converted into text then the

plain_text is formatted in Beautiful Soup object. The soup object contains all of the HTML

in the original document. Beautiful Soup is essentially a set of wrapper functions that make

it simple to select common HTML elements like <p> and <a> tags [19]. After having all

of the HTML document in a formatted manner we than traverse through the information

we need. In the website there was a hyperlink which contains another hyperlink and the

second hyperlink was our targeted file which is to be downloaded. Diagram below can

explain the architecture.

Figure 6. 2 Supreme Court of Pakistan Website Structure

http://www.supremecourt.gov.pk/web/page.asp?id=103

Chapter 6 Legal Document Collection

39

So for this purpose we had to go to doc1.pdf, download it using command

wget.download(href) and then go back to main page jump to page 2, download

doc2.pdf and then go back to main page and the process goes on until all the documents

are downloaded. Below is the picture shown of the main page containing the links to

the documents.

Figure 6. 3 Main page

 The page that contains the document in .pdf extension is shown below in figure 6.4.

Figure 6. 4 Page Containing Document .pdf

Chapter 6 Legal Document Collection

40

So this concludes the document collection phase. We described the sources from where

we collected legal documents and then described the way all the documents are

collected. We described what technique used for getting legal documents (court

decision) from the source. The only source from where all the documents are collected

is an official website of Supreme Court of Pakistan. Python programming language is

used for making web scraper. The IDE used for python programming is pyCharm

2016.3.1. One can get confused in the difference between web crawler and web

scraper. Web crawler also known as web spider, is a software program that visits the

websites and reads their pages and other information to build entries for a search

engine index. Whereas web scraping also known as web data extraction, is an

automated software technique of extracting information from web for example to

download the files from web and reading the related information. I made web scraper

for downloading the legal documents from the website of Supreme Court of Pakistan.

At the end of this discussion we are showing the code for making a web scraper in

python in the figure given below.

Figure 6. 5 Web Scraping Code

Chapter 6 Legal Document Collection

41

6.3 Document Classification
There are almost 500 documents that are collected in document collection phase. Now these

documents have to be arranged in such a way that each of them belong to some class. This

classification is done manually. After reading all the document there are two broader

characteristics of court decision identified, described below.

 Appeal

When court gives decision about a particular case, there is a right of appeal to both

of the parties, the appellant and the respondents, to request for reviewing the case

in higher court. Any of the two parties can appeal against a decision if they are not

satisfied with it.

 Petition

A petition is a way of getting your voice heard in Parliament. It’s a written request,

asking the House of Commons, or the Government, to take action on something.

One will prepare petition and get people who agree with you to sign it. More

formally “a petition is a written application from a person, public official or a group

of person asking that some authority to be exercised to provide right, favours and

relief” [20].

In our collection of legal documents, following are the case classes that are identified to be indexed

with a brief explanation.

 Civil Cases Appeal

Appeal can be made on civil cases. These cases involves dispute among two

civilians or two parties. When a party files a complaint about any other party, they

are involved in a civil case. Some examples of civil cases are contract violation,

child custody and divorce matters etc. Total of 150 court decisions are collected of

this category.

 Civil Shariat Cases

Shariat is an Islamic law derived from Quran and Hadith. The cases involve in

Shariat law are Islamic law related issues for example blasphemy (Toheen e

Risaalt). Only 1 decision collected of this category.

 Criminal Cases Appeal

Appeal can be made on Criminal cases. These cases deals with those acts that are

criminal of offensive. Example of these cases are murder cases etc. Total of 30

decisions are collected of this category.

 Intra Court Appeal

Intra court appeal is an appeal that is made before the bench of two or more judges

against a decision made by a single judge. Only 3 decisions are collected of this

category.

Chapter 6 Legal Document Collection

42

 Constitutional Petition

Petitions that are submitted to enforce those fundamental rights which are provided

by constitution are called constitutional petitions. Fundamental rights include right

to live, right to business etc. Total of 60 decisions collected of this category.

 Criminal Petition

Petition can also be made on criminal cases. These cases deals with the criminal or

offensive act. Total of 40 decision collected of this category.

 Human Right Cases

This type of case involve human right issues. For example action taken on

unprecedented load shedding in the country. Total of 25 decision collected of this

category.

 Civil Miscellaneous Cases

Appeals made on the decision made by lower court in higher court are referred as

miscellaneous cases. For example: if a decision is made by high court and one of

the party isn’t satisfied with the decision, they can appeal to review the decision in

higher court like Supreme Court. These type of cases in higher court are referred as

miscellaneous cases. Total of 25 decision collected of this category.

 Suo Moto Cases.

Suo Moto is a Latin word that means ‘on its own motion’. When government of

court official acts of its own initiative. It is not a result of party asking. A recent

example is: A three-member bench of Supreme Court of Pakistan headed by Chief

Justice of Pakistan heard a suo moto case regarding the 10 year old child torture

[Dawn news Jan 18, 2017]. Total of 30 decision are collected on sue moto cases.

 Constitution of Pakistan

Rules and regulation for smooth running of a state are defined in this document.

 Cyber Crime Bill of Pakistan

Prevention of electronic crimes bill was passed in National Assembly in 2016 in

which punishment of unauthorized access are defined.

So this concludes the document classification phase. In this phase we described what the main

characteristics of court decision are. Moreover different classes are stated with a brief explanation

of each class. With this discussion our documentation phase completes. The next phase will be

implementation phase of “Legal Document Search Engine”.

Chapter 7 Implementation

43

Chapter 7

Implementation

7.1 Introduction
In this phase we will be heading towards implementation of our search engine. We will be

providing tools that are used in implementation phase and language used. Word Cloud also has

been made for this system. It will make a word cloud for the top ten documents using frequency

analyser i.e., the word which occurs the most will be given a larger font and then the font will vary

according to the frequency of a particular word. This word cloud is dynamic i.e., it is regenerated

in response to every query. Furthermore, auto-corrector also has been made for this system. It will

find the best match of a given word against the vocabulary and will execute accordingly after

correcting it, if needed. Levenshtein minimum edit distance algorithm is used for auto-correction.

Moreover, for the persuasion of the user, system provides suggestion for the typed word. These

suggestions are generated from the vocabulary of the system.

7.2 Language Selection

 JAVA

JAVA is used for implementation of Legal Document Search Engine. Java is an object

oriented language that enable less dependencies in implementation. Since it is a web

based application so JSPs (Java Server Pages) and Servlets is used.

 Servlets

A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is

a special type of servlet that handles an HTTP request and provides and HTTP

response, usually in the form of and HTML page.

 Java Server Pages

Java Server Pages (JSPs) are a Sun Microsystems specification for combining

Java with HTML to provide dynamic content for Web pages. When you create

dynamic content, JSPs are more convenient to write than HTTP servlets

because they allow you to embed Java code directly into your HTML pages, in

contrast with HTTP servlets, in which you embed HTML inside Java code.

 HTML

HTML is hypertext mark-up language is used for developing front end of our web

application. Bootstrap is also used with it in order to make the user interface more

attractive.

Chapter 7 Implementation

44

 JavaScript

JavaScript is an object oriented programming language used to create interactive

effects within web browser.

 JQuery

It is a fast, small, and feature-rich JavaScript library. It makes things like

HTML document traversal and manipulation, event handling, animation, and

Ajax much simpler with an easy-to-use API that works across a multitude of

browser.

7.3 Tools
Tools that are used in the implementation are:

 Notepad++ , Sublime

 Apache Tomcat 7.0

7.4 IDEs
Eclipse IDE will be used for the implementation of the system. Two different version will be used.

i. Eclipse Java Mars 1.0

This IDE will used for query generation and tasks related query generation like calculating

F-measures, average precision, mean average precision etc.

ii. Eclipse JEE Neon

This IDE will be used for making front end of our system and execution of query and

generating results (ranked results) and rest of the function. Below are some of the screen

shots of the front end of the Legal Documents Search Engine.

Chapter 7 Implementation

45

Figure 7.1 shows the main page of our search engine.

Figure 7. 1 Front end main page

Chapter 7 Implementation

46

When user enters some query, a list of ranked document is returned. Figure 7.2 shows the list that

is returned on the response of a query.

Figure 7. 2 Front end with results

47

Chapter 8

Evaluation, Findings and

Conclusion

8.1 Introduction
In this phase we will be heading towards evaluation of our implemented search engine. Different

evaluation measures are already discussed in chapter 4 and will be used in this phase. Different

measures will be compared in order to find the best technique for our search engine. At the end of

this, conclusion will be provided along with the efficiency of our system and future tasks.

8.2 Evaluation
Our search engine is implemented using vector space model and using this model we used two

different weighting schemes. One is classical tf-IDF (term frequency-Inverse Document

Frequency) and the other is Okapi BM25, that means two different weighting schemes are used in

one search engine in order to find the best weighting scheme for high precision of our system. First

system is made robust enough to handle both type of weighting scheme and then a query set is

applied on each of them in order to find the best results. For evaluation we used the following

measures:

 Recall

 Precision

 Average Precision (AP)

 Mean Average Precision (MAP)

 F-measures.

8.2.1 Formation of Query Set

For evaluation of our system we must have to have a query set with the help of which

different (used) weighting scheme can be compared on the basis of results against queries.

There are two basic method of query formulation. One is: take the system to the concerned

people and ask them to generate some query according to their information need. Note

those queries along with their results. Second one is: build an automated system for

generation of queries. We choose the second option. We made a system that takes most

used words (a word that occurs the most number of times in the collection) in a class (a

Chapter 8 Evaluation, Findings and Conclusion

48

class consist of many documents) and combine them to form a query. For whole corpus

(collection) the vocabulary size is 45492 and among that word types query words will be

selected. Fig 8.1 shows the process of formation of query.

Before using an automated system for generating queries there is a need to understand what

will be the relevancy criteria of a retrieved document. For our system the relevancy criteria

will be its class i.e., a query is made up against a class, and if the retrieved document

belongs to the same class of which the query is, we say the document is relevant. Below is

the query set shown in the form of table along with their classes.

Figure 8. 1 Query Formation Process

Chapter 8 Evaluation, Findings and Conclusion

49

Table 8. 1 Query Set

Query

No.

Query Class

q1 court election appellant respondent Civil Appeal

q2 election court cma order Civil Miscellaneous Appeal

q3 court petitioner respondent Civil Petition

q4 constitution court pakistan assembly Constitution of Pakistan

q5 court pakistan constitution asc Constitution Petition

q6 criminal appeal court case Criminal Appeal

q7 cma bar court council Criminal Miscellaneous Appeal

q8 criminal original petitions Criminal Original Petition

q9 criminal court petitioner Criminal Petition

q10 justice court petition review Criminal Review Petition

q11 Prevention electronic crimes bill Cyber Crime Bill Pakistan

q12 court order justice dr Human Right Case

q13 intra court appellant case Intra Court Appeal

q14 privatization pakistan psmc government Steel Mills Cases and Order

q15 suo moto sindh order case Suo Moto Case

This query set will be used for the evaluation of our search engine. One by one every query will

be executed on both of the system (one system is with tf-IDF and other is with BM25) and results

will be compared in the very next section.

Chapter 8 Evaluation, Findings and Conclusion

50

8.2.2 Executing Query Set and Results

One by one query results are shown below. All the results are calculated on the basis of

first 10 retrieved documents against a query.

Table 8. 2 Query 1 Results

Figure 8. 3 Query 1 Result using BM25

Ranking (Q1) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

R R R R R R R IR R R

Recall 0.006 0.013 0.020 0.026 0.033 0.040 0.046 0.046 0.053 0.060

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.875 0.89 0.9

F-measure 0.011 0.025 0.039 0.050 0.063 0.076 0.087 0.060 0.066 0.011

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

R IR R IR R IR R R IR IR

Recall 0.006 0.006 0.013 0.013 0.020 0.020 0.026 0.033 0.033 0.033

Precision 1.0 0.5 0.67 0.5 0.6 0.5 0.57 0.62 0.56 0.5

F-measure 0.011 0.091 0.025 0.005 0.038 0.038 0.49 0.062 0.062 0.061

Figure 8. 2 Query 1 Result using tf-IDF

Chapter 8 Evaluation, Findings and Conclusion

51

Table 8. 3 Query 2 Results

Figure 8. 4 Query 2 Result using tf-IDF Figure 8. 5 Query 2 Result using BM25

Ranking (Q2) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

IR IR R IR IR R R R R IR

Recall 0.0 0.0 0.020 0.020 00.020 0.041 0.062 0.083 0.104 0.104

Precision 0.0 0.0 0.33 0.25 0.2 0.3 0.42 0.5 0.56 0.5

F-measure 0.0 0.0 0.037 0.037 0.036 0.073 0.108 0.142 0.175 0.172

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR IR IR IR IR IR IR IR R

Recall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.020

Precision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

F-measure 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.033

Chapter 8 Evaluation, Findings and Conclusion

52

Table 8. 4 Query 3 Results

 Figure 8. 6 Query 3 Result using tf-IDF Figure 8. 7 Query 3 Result using BM25

Ranking (Q3) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

IR IR IR R IR IR IR IR IR R

Recall 0.0 0.0 0.0 0.013 0.013 0.013 0.013 0.013 0.013 0.027

Precision 0.0 0.0 0.0 0.25 0.2 0.167 0.142 0.125 0.111 0.2

F-measure 0.0 0.0 0.0 0.024 0.024 0.024 0.023 0.023 0.023 0.232

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR R IR IR R IR IR IR IR

Recall 0.0 0.0 0.013 0.013 0.013 0.024 0.024 0.024 0.024 0.024

Precision 0.0 0.0 0.33 0.25 0.2 0.33 0.28 0.25 0.22 0.2

F-measure 0.0 0.0 0.025 0.024 0.024 0.049 0.049 0.048 0.048 0.047

Chapter 8 Evaluation, Findings and Conclusion

53

Table 8. 5 Query 4 Results

Figure 8. 8 Query 4 Result using tf-IDF Figure 8. 9 Query 4 Result using BM25

Ranking (Q4) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

IR IR IR IR IR IR IR IR IR IR

Recall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Precision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F-measure 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR IR IR IR IR IR IR IR IR

Recall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Precision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F-measure 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Chapter 8 Evaluation, Findings and Conclusion

54

Table 8. 6 Query 5 Results

Figure 8. 10 Query 5 Result using tf-IDF Figure 8. 11 Query 5 Result using BM25

Ranking (Q5) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R R R IR R IR R R R IR

Recall 0.015 0.030 0.046 0.046 0.0691 0.061 0.07 0.092 0.107 0.107

Precision 1.0 1.0 1.0 0.75 0.8 0.67 0.714 0.75 0.78 0.7

F-measure 0.029 0.058 0.087 0.086 0.113 0.111 0.127 0.163 0.188 0.185

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)
R IR IR R IR R R R R R

Recall 0.015 0.015 0.015 0.030 0.030 0.046 0.061 0.080 0.092 0.107

Precision 1.0 0.5 0.33 0.5 0.4 0.5 0.57 0.62 0.67 0.7

F-measure 0.029 0.029 0.28 0.056 0.055 0.084 0.110 0.141 0.161 0.185

Chapter 8 Evaluation, Findings and Conclusion

55

Table 8. 7 Query 6 Results

Figure 8. 12 Query 6 Result using tf-IDF Figure 8. 13 Query 6 Result using BM25

Ranking (Q6) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R IR IR IR IR IR IR IR IR R

Recall 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.071

Precision 1.0 0.5 0.33 0.25 0.2 0.167 0.148 0.25 0.111 0.2

F-measure 0.067 0.065 0.063 0.061 0.059 0.057 0.056 0.054 0.053 0.104

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR R IR IR IR IR IR IR R IR

Recall 0.0 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035

Precision 0.0 0.5 0.333 0.25 0.2 0.167 0.142 0.125 0.222 0.2

F-measure 0.0 0.065 0.063 0.061 0.059 0.057 0.056 0.054 0.107 0.104

Chapter 8 Evaluation, Findings and Conclusion

56

Table 8. 8 Query 7 Results

Figure 8. 14 Query 7 Result using tf-IDF Figure 8. 15 Query 7 Result using BM25

Ranking (Q7) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R R IR IR IR IR IR IR IR IR

Recall 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Precision 1.0 1.0 0.67 0.5 0.4 0.3 0.3285 0.285 0.22 0.2

F-measure 0.333 0.571 0.500 0.444 0.4 0.342 0.332 0.307 0.283 0.266

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)
R R IR IR R IR IR IR IR IR

Recall 0.2 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.6

Precision 1.0 1.0 0.67 0.5 0.6 0.5 0.42 0.37 0.33 0.3

F-measure 0.333 0.571 0.500 0.444 0.6 0.545 0.499 0.461 0.428 0.4

Chapter 8 Evaluation, Findings and Conclusion

57

Table 8. 9 Query 8 Results

Figure 8. 16 Query 8 Result using tf-IDF Figure 8. 17 Query 8 Result using BM25

Ranking (Q8) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

R IR IR IR IR IR IR IR IR IR

Recall 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167

Precision 1.0 0.5 0.33 0.25 0.2 0.167 0.142 0.125 0.11 0.1

F-measure 0.286 0.250 0.221 0.200 0.182 0.167 0.153 0.142 0.133 0.125

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR IR IR R IR R IR IR IR

Recall 0.0 0.0 0.0 0.0 0.167 0.167 0.333 0.333 0.333 0.333

Precision 0.0 0.0 0.0 0.0 0.2 0.16 0.28 0.25 0.22 0.2

F-measure 0.0 0.0 0.0 0.0 0.182 0.167 0.304 0.285 0.266 0.249

Chapter 8 Evaluation, Findings and Conclusion

58

Table 8. 10 Query 9 Results

Figure 8. 18 Query 9 Result using tf-IDF Figure 8. 19 Query 9 Result using BM2

Ranking (Q9) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R R R R R R R IR IR IR

Recall 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.175 0.175 0.175

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.875 0.787 0.8

F-measure 0.048 0.029 0.139 0.181 0.222 0.260 0.297 0.291 0.285 0.279

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR IR IR IR IR IR IR IR IR

Recall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Precision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F-measure 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Chapter 8 Evaluation, Findings and Conclusion

59

Table 8. 11 Query 10 Results

Figure 8. 20 Query 10 Result using tf-IDF Figure 8. 21 Query 10 Result using BM25

Ranking (Q10) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

IR IR IR R IR IR R IR IR IR

Recall 0.0 0.0 0.0 0.167 0.167 0.167 0.333 0.333 0.333 0.333

Precision 0.0 0.0 0.0 0.25 0.2 0.167 0.28 0.25 0.22 0.2

F-measure 0.0 0.0 0.0 0.200 0.182 0.167 0.304 0.284 0.264 0.249

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR R IR IR IR IR IR IR IR IR

Recall 0.0 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167

Precision 0.0 0.5 0.33 0.25 0.2 0.17 0.14 0.12 0.11 0.1

F-measure 0.0 0.2510 0.222 0.200 0.182 0.167 0.153 0.142 0.133 0.125

Chapter 8 Evaluation, Findings and Conclusion

60

Table 8. 12 Query 11 Results

Figure 8. 22 Query 11 Result using tf-IDF Figure 8. 23 Query 11 Result using BM25

Ranking (Q11) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R IR IR IR IR IR IR IR IR IR

Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Precision 1.0 0.5 0.3 0.25 0.2 0.16 0.14 0.12 0.11 0.1

F-measure 1.0 0.666 0.46 0.4 0.33 0.286 0.248 0.222 0.199 0.181

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR R IR IR IR IR IR IR IR

Recall 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Precision 0.0 0.0 0.33 0.25 0.2 0.17 0.14 0.12 0.11 0.1

F-measure 0.0 0.0 0.49 0.4 0.33 0.29 0.24 0.222 0.199 0.181

Chapter 8 Evaluation, Findings and Conclusion

61

Table 8. 13 Query 12 Results

Figure 8. 24 Query 12 Result using tf-IDF Figure 8. 25 Query 12 Result using BM25

Ranking (Q12) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R R R IR IR IR IR IR IR IR

Recall 0.041 0.083 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Precision 1.0 1.0 1.0 0.75 0.6 0.5 0.428 0.375 0.333 0.33

F-measure 0.078 0.097 0.222 0.214 0.206 0.2 0.193 0.187 0.181 0.176

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR IR IR IR IR IR IR IR IR

Recall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Precision 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F-measure 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Chapter 8 Evaluation, Findings and Conclusion

62

Table 8. 14 Query 13 Results

Figure 8. 26 Query 13 Result using tf-IDF Figure 8. 27 Query 13 Result using BM25

Ranking (Q13) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)

IR R IR IR IR IR IR IR IR IR

Recall 0.0 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333

Precision 0.0 0.5 0.333 0.25 0.2 0.167 0.142 0.125 0.111 0.1

F-measure 0.0 0.399 0.331 0.295 0.249 0.222 0.199 0.181 0.166 0153

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)

IR IR IR IR R IR IR IR R IR

Recall 0.0 0.0 0.0 0.0 0.333 0.333 0.333 0.333 0.67 0.67

Precision 0.0 0.0 0.0 0.0 0.2 0.167 0.142 0.125 0.222 0.2

F-measure 0.0 0.0 0.0 0.0 0.249 0.222 0.199 0.181 0.333 0.308

Chapter 8 Evaluation, Findings and Conclusion

63

Table 8. 15 Query 14 Results

Figure 8. 28 Query 14 Result using tf-IDF Figure 8. 29 Query 14 Result using BM25

Ranking (Q14) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R R IR IR IR IR IR IR IR IR

Recall 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Precision 1.0 1.0 0.67 0.5 0.4 0.33 0.28 0.25 0.22 0.2

F-measure 0.666 1.0 0.802 0.666 0.57 0.499 0.437 0.4 0.360 0.333

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)
R R IR IR IR IR IR IR IR IR

Recall 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Precision 1.0 1.0 0.67 0.5 0.4 0.33 0.28 0.25 0.22 0.2

F-measure 0.666 1.0 0.802 0.666 0.57 0.499 0.437 0.4 0.360 0.333

Chapter 8 Evaluation, Findings and Conclusion

64

Table 8. 16 Query 15 Results

Figure 8. 30 Query 15 Result using tf-IDF Figure 8. 31 Query 15 Result using BM25

Ranking (Q15) 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tf
-I

D
F

Document:

Relevant (R)

/Irrelevant(IR)
R R R R R IR R R IR R

Recall 0.034 0.068 0.103 0.137 0.172 0.172 0.206 0.241 0.241 0.275

Precision 1.0 1.0 1.0 1.0 1.0 0.83 0.85 0.87 0.78 0.8

F-measure 0.065 0.127 0.186 0.240 0.293 0.285 0.332 0.377 0.368 0.409

B
M

2
5

Document

Relevant (R)

/Irrelevant(IR)
R IR R IR IR R IR R R IR

Recall 0.034 0.034 0.068 0.068 0.068 0.103 0.103 0.137 0.172 0.172

Precision 1.0 0.5 0.67 0.5 0.4 0.5 0.428 0.5 0.56 0.5

F-measure 0.065 0.404 0.123 0.119 0.116 0.170 0.166 0.215 0.263 0.255

Chapter 8 Evaluation, Findings and Conclusion

65

8.3 Findings and Conclusion
Our goal was to implement our product using two different weighting schemes in order to find the

best one in terms of relevancy and ranking. We made a query set and applied them on both of the

systems (tf-IDF and BM25). On some queries tf-IDF was better than BM25, somewhere BM25

was better than tf-IDF and against some queries the result was same. But on average we concluded

that tf-IDF was much better than BM25 for the kind of vocabulary that our search engine is using.

We can prove our argument on the basis of average precision (AP) and mean average precision

(MAP).

APq(i) =
∑ 𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠(

𝑛

𝑖=0

Total No. of Relevant Document in q(i)

MAP =
∑ 𝐴𝑃𝑞(𝑖)

𝑛

𝑖=0

Total No.of Queries (n)

Table 8. 17 Average Precision and Mean Average Precision

tf
-I

D
F

 Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

AP 0.98 0.43 0.23 0.0 0.863 0.6 1.0 1.0 1.0 0.265 1.0 1.0 0.5 1.0 0.941

MAP 72.06%

B
M

2
5

 Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

AP 0.69 0.1 0.333 0.0 0.65 0.361 0.867 0.24 0.0 0.5 0.333 0.0 0.211 1.0 0.65

MAP 40.00%

From the above table we can see that MAP (mean average precision) of the system using tf-IDF is

higher than by using BM25 although for some queries BM25 shows better results but overall tf-

IDF is better. At the end we conclude that tf-IDF is good for such kind of vocabulary that we are

using for our search engine as compared to BM25.

Chapter 8 Evaluation, Findings and Conclusion

66

8.4 Future Tasks
In future this system can be implemented using some other weighting scheme like SMART and

some other schemes and then can be compared with this system in order to get higher precision

and accuracy. Moreover this system uses vector space model, in future a touch of probabilistic

model can be included in order to make this system more efficient.

In future SEO (search engine optimization) can be done on this system to improve the efficiency

of this system. It is the process of getting traffic from the “free”, “organic”, “editorial” or “natural”

search results on search engines. In future a lawyer profile can also be made in order to book a

lawyer for some cases. Also legal dictionary can also be integrated with this system if anyone

wants to search meaning of a legal term. Moreover, document summarization can also be

implemented in order to give a short view of document to the user before opening it.

References

67

REFRENCES

1. Thomas Reuters WESTLAW. http://westlawinternational.com (Retrieved on October 2016).

2. John B. West, West publishing Company, “Multiplicity of Reports”.

http://www.hyperlaw.com//90-99-docs/1909-multiplicity_of_reports_jbwest.html

(Retrieved on October 2016).

3. Westlaw Next, The world’s most Advanced Search Engine.

http://info.legalsolutions.thomsonreuters.com/pdf/wln2/L-355700_v2.pdf (Retrieved on

October 2016).

4. Thomson Reuters Westlaw, http://legalsolutions.thomsonreuters.com/law-

products/westlaw-legal-research/ (Retrieved on October 2016)

5. http://legalsolutions.thomsonreuters.com/law-products/westlaw-legal-research/all-content

(Retrieved on November 2016)

6. “What does tf-idf means.”www.tfidf.com (Retrieved on December 2016).

7. C. D. Manning, P. Raghavan and H. Schutze. “Introduction to Information Retrieval,

Cambridge University Press”. Cambridge University Press 2008.

8. Synonymous [2016]. Inverted Index for Text Retrieval.

(http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/ditp/ditp_ch4.pdf) (Retrieved on

December 2016)

9. R. Baeza – Yates, B. Ribeiro – neto , Modern Information Retrieval. McGraw-Hill, Inc. New

York, NY, USA, 1986.

10. H. Wu and R. Luk and K. Wong and K. Kwok. “Interpreting TF-IDF term weights as making

relevance decisions”. ACM Transactions on Information Systems, 2008.

11. Marie-Francine Moen, “Innovative Techniques for Legal Text Retrieval”. Artificial

Intelligence and Law vol. 9: pp. 29–57, 2001

12. Raffaella Bernardi, “Term Frequency and Inverted Document Frequency”

http://disi.unitn.it/~bernardi/Courses/DL/Slides_11_12/measures.pdf (visited on Nov 2016).

13. G. Salton, A. Wong, and C. S. Yang, “A Vector Space Model for Automatic Indexing”.

Communications of the ACM, vol. 18, nr. 11, pp. 613-620, 1975.

14. Amit Singhal, “Modern Information Retrieval: A Brief Overview”. Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, Vol. 24, No. 4, pp. 35-42,

2001.

15. G. Salton and M. J. McGill. “Introduction to modern information retrieval”. McGraw-Hill,

Inc. New York, NY, USA, 1983

16. Ben He & I. Ounis, “Term Frequency Normalization Tuning for BM25 and DFR Models”.

D.E. Losada and J.M. Fern´andez-Luna (Eds.): ECIR 2005, LNCS 3408, pp. 200–214, 2005.

17. A. Singhal, C. Buckley, and M. Mitra. “Pivoted document length normalization”.

Proceedings: SIGIR ’96 Proceedings of the 19th annual international ACM SIGIR conference

on Research and development in information retrieval’, pg 21-29, Zurich, Switzerland, 1996.

18. Leonard Richardson, “Beautiful Soup Documentation”. Release 4.4.0, January 2017.

http://westlawinternational.com/
http://www.hyperlaw.com/90-99-docs/1909-multiplicity_of_reports_jbwest.html
http://info.legalsolutions.thomsonreuters.com/pdf/wln2/L-355700_v2.pdf
http://legalsolutions.thomsonreuters.com/law-products/westlaw-legal-research/
http://legalsolutions.thomsonreuters.com/law-products/westlaw-legal-research/
http://legalsolutions.thomsonreuters.com/law-products/westlaw-legal-research/all-content
http://www.tfidf.com/
http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/ditp/ditp_ch4.pdf
http://disi.unitn.it/~bernardi/Courses/DL/Slides_11_12/measures.pdf

References

68

19. Frances Zlotnick, Stanford University “Web Scraping with Beautiful Soup”

(http://web.stanford.edu/~zlotnick/TextAsData/Web_Scraping_with_Beautiful_Soup.html)

visited on January 2017).

20. Farlex, The free Legal Dictionary, http://legal-dictionary.thefreedictionary.com (Retrieved

on January 2017).

21. R. Herbrich and T. Graepel, “Handbook of Natural Language Processing (2nd edition)”. CRC

Press USA, 2010.

http://web.stanford.edu/~zlotnick/TextAsData/Web_Scraping_with_Beautiful_Soup.html
http://legal-dictionary.thefreedictionary.com/

