Auction House Using Smart Contracts

ISLAMABAD

By

Raja Amad Iftikhar

Supervised By

Dr. Muhammad Usman

Department of Computer Sciences
Quaid-i-Azam University
Islamabad

2014-2018

ACKNOWLEDGMNET

In the name of ALLAH, Most Beneficent, Most Merciful.

First of all, thanks to Almighty Allah, through his mercy | was able to complete my
project.

I would like to express my deepest gratitude to all those who provided me the possibility
to complete this project. A special gratitude | give to my respected teacher and supervisor Dr.
Muhammad Usman, whose guidance and kindness helped me to coordinate in my project.
Furthermore, 1 would like to give thanks to all faculty members of computer science
department for their help, giving proper attention and time.

I would like to express my gratitude to my parents and all family members specially my
elder brother Raja Usman Iftikhar for his encouragement, which helped me throughout my
life.

My thanks and appreciation also goes to my class fellows and friends, who have willingly
helped me out with their abilities.

Raja Amad Iftikhar

2014-2018

Abstract

Auction House Using Smart Contracts is a decentralized application which operates
using the power of blockchain technology and Smart Contracts. People can buy and sell
products through auction without depending upon any third-party service like eBay. Smart
Contracts allow this application to run in trust-less and decentralized environment. People no
longer need to provide their private information like name, password, email address to access
features of website. Multisignature escrow service is implemented in which two out of three
people which are buyer, seller and arbiter (person who finalized the auction) vote to either

release fund to seller or refund amount to seller in case of any product related problem.

Table of Contents

Chapter 1 INTrodUCTION.........ccoiiiiiieieeee e 1
1.1 Problem DefINITION.........oouiiiii s 1
1.2 PropoSed SOIULIONociiiiiice ettt te et re e e e 1
G Yoo o= SRR RPPRR 2
1.4 ODJECLIVES ...ttt b bbbt bbbt bbb bbbt b e 2
1.5 Project OrganiZationc.cououeieieieieieiee ettt bbb bbbttt 3
1.5.1 SOftware ProCess MOUEL..........ccceiiiriirieietreretee ettt s sttt 3
1.5.2 Roles and ReSPONSIDIILIEScceiiiriiriirieieieesie ettt 3
1.5.3 TOOIS aNA TECRNIGUESc.veeenieieiieteee ettt sttt st st e sb et 4
1.6 Project Management PIaNc.ooioiiiioiiie ettt 5
1.6.1 Project DElIVEIabIESc.ooiieieieieeee ettt sttt st 10
1.6.2 RiSKS and CONLINGENCIESvecveeriiieteetiiteeteete st et e st eseetesteesae s e sbeessesesreessesesreessensesseenes 10
1.7 REPOI STIUCLUIE ...t 10
Chapter 2 Ethereum and Technologies Used in this Project..........c...c......... 11
2.1 The Origin Of EtNErEUMoiiii e e 11
2.2 GIODAI COMPULET ...ttt 11
2.3 Client Server Architecture VS Ethereum ArchiteCture...........ocooeieieieieieiciceeeeeee 12
2.4 ETNEIEUM CONCEPLS ...vviiveeeesieeie sttt ettt sttt sttt sttt et sne et e neenneanee e 15
2.4.1 SMAIT CONLFACTeveeeeierieetetert ettt ettt nr e e r e ne s r e aeenens 15
2.4.2 Ether and DeNOMINALIONS........cociuiirieirieierriee ettt sttt ettt ebenea 15
2.4.3 AATUIESSES ...ttt ettt sttt b bbb bbbt b et et e st e ae b e s be st et et e bt e besb et et et besbenaeneneas 15
244 (GBS ..ottt et bttt h et she bttt h e a b et e sheeatenbeshe et e ntesheete b e nbeens 16
2.4.5 BYIE COUB.....ueceeeieitieeecte st ettt ettt e et st e e e st e s te e s essesssessessesbsessensesssenseseessensesesseensenees 16
2.4.6 Ethereum Virtual Machine..........c.cevoniicineccreee s 16
2.5 T0OIS and TECANOIOGIESc.eeiiiieie e 17
2.5.1 GEth/PArity CHENTS......ccueeieiiitieeeestt ettt ettt ettt b e st ss et e s beeanebesreens 17
2.5.2 WEeb3jS aNd TIUFFIE ...ttt et e 17
2.5.3 GANACKE........ocuiiiriteic et 17
2.5.4 IMIELA-IMBSK ...ttt e et 18
2.5.5 REIMIX ..ttt b e sttt b e bbbt ebe e bt s bt et et e bbb et e e e ee 18

2.5.6 Inter Planetary File SYSEMooiiieirieeeeeese ettt 18

2.5.7 MONQODB ...ttt ettt s r e et r e r e e n e 18
Chapter 3 Requirement Gathering and Analysisc.ccccovevieeieeiieiieeninen, 20
3.1 PrOTUCE OVEIVIBW ..otttk bbb 20
3.2 MEJOT FUNCLIONS ...ttt bbb bbb bttt ens 21
3.3 Major INPULS N OULPULScveviiiieiieiieiesie ettt 21

TR 00 Y/ - YT g 10T U TSRS 21

3.3.2 MAJOT OULPULS ..eeuvieeeeeetesteeetesieseete et e st s ee et et e se et e s besseebesbessaenbesseensensesseensensenseensensens 21
3.4 Definitions, Acronyms and ADDIeVIationscccueverriiiereiieee e 21
3.5 OVBIVIBW ...ttt ettt sttt s ettt e bt e st e sbe e st e naeemeesbeeneeeseeneesseeneenreensenneeneens 22
3.6 USEI CharaCLerISTICSe.veueeiieiieiieeei et 22
BT CONSIIAINES ...ttt bbb bbb bbbt e e ans 22
3.8 Assumptions and DEPENUENCIESc.cceririiiriieisesie e 23
3.9 SPECITIC REQUITEIMENTSeeviiiieiieieiee ettt 23

3.9.1 FUNCLIONAl REQUITEMENTSueitiiiieieirierie ettt st sttt sttt eae st eaeeas 23

3.9.2 External Interface REQUITEMENLccvicuieiecieceee ettt re e 24

30,3 USEI INEEITACESveveuieieeieeie ettt sttt ettt sttt eb e st e b et ebeebesaesbeneas 24

3.10.4 SOFtWAIE INTEITACES ...c.vevereeeiietirieieerte ettt ettt 24

3.10.5 CommuUNICAtioN ProtOCONcc.ovveeieieiiisieeeces ettt es 24
3.11 Software SyStem ALIFHDULEScoi i 25

3111 REIADIITY . c.vveeeieieieieieieiee ettt 25

TN I N V7 1 = o | SRRSO 25

TR0 I B 1= ol U OO 25

3,114 MaINTAINADTTILY ...veveeeiiieceeiesee ettt st et besbe e e e besseeneenbe e 25

3115 POITADTIITY ...ttt st b ettt be e naeneas 25

3116 PEITOIMANCE ...ttt ettt sttt s b s b e 26
3.12 PrOdUCT FUNCLIONSviiieieiieeie ettt ene e e saesnaebesneesneanee e s 26

T80 N [0 I 1 (=T 1 TSSO 26

3.12.2 Create AUCTION ..ottt ettt ettt bbbt s b bbb 26

BLL2.3PIACE B ..ot 26

3.12.4 Display USEI AUCLIONSc.cceiuieieieiteeeeeitesteeeeste e e esteste s e e saestesseesbesteeraesestesssensestesseenes 26

3.12.5 Display All USErS AUCLIONS........c.ccueieireriesieeeesisiesieeesestessessesaessssessessessesessessessessesessesses 26
R U L - -3 B 1T To | -1 o SRR USRRRN 27
3.14 USE Case DESCIIPLIONcueiiieieeiieeie sttt ettt ettt e st ste b e be b e nneeneenrens 28

3.14.1 USE CASE 1: Create AUCTION ...veeeieeeeee ettt ettt eeae e e e et e e e eeae e e eseaeeesesesseessesaseeessanns 28

3.14.2 USe CaSe 2: PIACE Bil.....coveuirieiirieiiieieeiccteteec ettt 29
3.14.3 Use Case 3: REVEAI Bi........coovuiieiiiriirieieeeees ettt sttt st 30
3.14.4 Use case 4: FINAlIZE AUCTION........c.ooviuiriiieirieirieeeereieeee ettt 31
3.14.5 Use case 5: Release AMOouNt t0 SelIEr........cooi e 32
3.14.6 Use Case 6: SEArCh AUCLION.coriiiririeirteierte ettt ettt 33
3.14.7 Use case 7: Refund AmOUNE t0 BUYETecveviirieieriese ettt s 34
3.14.8 Use case 8: Confirm TranSaCtioNccceverieieirinerieieiee sttt 35
3.15 DOMAIN MOUEL ...ttt ae e ste e e beenresneenne s 36
3.16 Database ReQUITEMENTS.uuiiiieiieieie ettt sttt sttt st sre et sreesneaneeneens 36
BL16.1 COINDASE. ...ttt ettt b et b et b et bbbt b et bbb bt b et be et 37
3.18.2 DIFFICUILY ..ottt sttt st et e s e e beesaensesbeeneensene 37
3LL6.3 EXIIA UAIAeeviveieiieitee ettt ettt ettt ettt a et b e b bttt b saenbeneas 37
3L16.4 GAS THMIT..niiietiiisieietee ettt ettt sttt st et e ettt sb e s b et et besbesaenbeneas 37
BLLB.5 NONCE ..ttt et ettt e r e et ne e 38
BLL6.8 IMIIX NASN.....e bbb e 38
BLL6.7 PArENT NASK ...ttt 38
3.16.8 TIMESTAMP.....cetiiiiiieieieesie ettt e ettt e s et et e s e seese st e s eseseeseesesseseseesensessensaneas 38
BLLB.9 ATLOC. .ttt bbb b sttt b e bt b bbbt bt bebe b et ene aa 38
316,00 CONTIQ. 1ouriieeiieiiieet ettt et ettt et s ae e b e be e re et e b ne e s e beenaententeeneentenes 38
SLLB. 11 GBS ..ttt ettt ettt ettt h et h bt e bbbt e a b e bt bt et et e ehe e b e nbeeaeeen 39
Chapter 4 Software Design DesCription..........ccccevvveiiieiieeiiee e 41
AL INEPOTUCTION ...ttt bbbt bt n s 41
4.1.1 DESIGN OVEIVIEW ..ottt ete sttt et ste st etestesteetestesaeebesbesaeesaesesbeensestesteennessesseanes 41
4.1.3 Requirement Traceability MatriX.........cccooeiieieiiiiiceece et 42
4.2 System ArcChiteCtUre DESIONcveiueiieieeieie sttt sae st e sre e e e 42
4.2.1 Chosen SYSteM AFCHITECIUIEeocveiiceeiecte ettt sttt e e e b et eae s 42
4.3 USEr INtErfaC DESIGN ...c.ooueiiiiiiiiiiiieiiei ettt bbbttt 43
4.4 SEQUENCE DIAGIAM ...ttt ettt et 50
4.4, 1 CrEate AUCTION ..c.ooveieieieie ettt sttt sttt e et s b e st et e bt ebesbesbe st eseebesaesaeneas 50
A4 2 PIACE B ...ttt b et aen et b bt ne e 51
443 REVEAI BIl.......oiieiiieiiieieete et 52
4.4 A FINALIZE AUCTION ...ttt ettt ettt b s 53
4.5 Class/CoNtraCt DIAGIAMcuciiiiieiieiieiie ettt ae e sre e ste s e e sreaneesreas 55

Chapter 5 Software Implementation.............cccoeviiiiieiie e 58

5.1 Language SEIECTIONc.oiuiieiiieie et 58
5.2 TOOIS SEIBCTION.ottt 58
5.3 APPHICALION FIOW ... 59
5.4 ApPlIication SCrEENSNOLS.c.eiiiiiiciecie ettt are e 60
Chapter 6 SOftware TeSTINGcoviveiieiceieee e 63
8.1 INEFOAUCTION ...ttt 63
B.1.1 TESE APPIOACKH ...cutitieeiecteeteeee ettt ettt ettt et s et et e eae e s e s teeasensesreennenbenes 63
8.2 TS PIAN......eoiiieii s 64
6.2.1 Testing Tools and ENVIFONMENT..........cciiuieiiiiceetece et 64
8.3 TESE CASES ...ttt 64
6.3.1 Creatl AUCLION ..c.cveueieiiieiei ettt ettt b ettt b st b et ettt sb bt b e n e 64
B.3.2 PIACE Bl ...ttt bbb e bt 65
6.3.3 REVEAI Bil...... ettt 65
6.3.4 FINALIZE Bttt sttt bttt b e s nnenea 66
6.3.5 Release AmOUNT T0 SEIIEI......c.ooiiiee ettt 66
6.3.6 RETUND AMOUNT L0 BUYET ...c..iieieiiiieiieieriee ettt sttt ettt s ne s sbesneenes 67
6.3.7 SEAICN AUCTION ...ttt ettt ettt ettt sttt et st sb e sb et e st ebesbesaensenea 67
Chapter 7 Conclusion and Future Enhancements............ccccoeveveciieiieennnenn 69
A8 RS V1110 U PRSP 69
7.2 CONCIUSTON ..ttt bbbt b ettt e e eneene e 69
7.3 FULUIE ENNANCEMENTS ... ettt 69
RETEIEINCES ... e 70
USEE GUITE ...ttt bbb bbb bbbttt e e et e e e e st et eb e e st e neebenne 71
ENVITONMENT SEIUP. .. ittt st e b e nees 71

List of Figures

Figure 1.1(1/2) Project Gantt Chart...........cccooieiiiicii e 8
Figure 2.1 High level View of Client/Server ArchiteCture............cccocveveveieeiisvieve e, 14
Figure 2.2 Ethereum ArChITECTUE..........oiiii e e 14
Figure 3.1 Product High LEVEI VIBWccuiiiiiiiiiiiiec e 20
Figure 3.2 USECASE DIAGIAMeiiiiiiiiiiitiiie ettt sttt 27
Figure 3.3 DOMAIN MOUEL........ccoiieiiieicce et 36
FIgUre 3.4 GENESIS BIOCKccvciiiiiiiiiieece sttt ettt nas 37
Figure 3.5 Mongo-DDb Product SChEMAc.coveiiiiiiiiiccs e 40
Figure 4.1 Ethereum Architecture of APPlCALIONccociiiiiiiiiieeeee e 43
Figure 4.2 Index Page INErfaCecoiiiiiiiiiiiiie et 44
Figure 4.3 Create New AUCLION INtEIfaCEcceiviiiiicc e 45
Figure 4.4 P1ace Bid INTEITACEc.ooviiiiiiie e 46
Figure 4.5 Reveal Bid INTEITACEcvoiiiiee e 47
Figure 4.6 Finalize AUCHION INTEITACEccciiiiiiiii i 48
Figure 4.7 Release AMOUNt INEITACEccccoiiiiiiiiiecie e 49
Figure 4.8 Sequence Diagram Create AUCLIONccocvveieiieriiiieie e 50
Figure 4.9 Sequence Diagram Place Bidcccoeiiiiiiiiiiiiesiee e 51
Figure 4.10 Sequence Diagram Reveal Bid............cccooviiiiiiiiniiiieieeeeeeeeeeeeea 52
Figure 4.11 Sequence Diagram Place Bidccccooiiiiiniiiiiieeee e 53
Figure 4.12 Sequence Diagram Cancel AUCLION..........ccccciiiiiiiicic e 54
Figure 4.13 Sequence Diagram Refund Amount to BUYEr...........cccooveieviciiece s 55
Figure 4.14 Contract/Class DIAgramM........cccoeiieieiieiesieie et ee st 56
Figure 5.1 APPlICALION FIOWciuiiiiiiiiiiii e 59
Figure 5.2 INAeX PAQgE SCIEENciuiiiiiiiiiirti sttt 60
Figure 5.3 Create AUCLION SCIEEN.......cciiiicieiteeite ettt ettt sba e ste e sbeeneanas 60
FIgUre 5.4 P1ace Bid SCIEEN.........cuiiiieiiiti ettt sttt st be e re e sneennas 61
FIgure 5.5 REVEAI Boiuiiiiiiiiie ettt 61
Figure 5.6 Finalize AUCtION SCreeNSNOL...........coiiiiiiiiii e 62
Figure 5.7 Refund and Release Amount SCreenShotcooveirieieieieieieeseseeceeseias 62
Figure 7.1 Project DIFECIONYcooiiiiiriiiiisiisie sttt 71

List of Tables

Table 1.1(2/2) Project Management Plan ... s 7
Table 3.1 ADDIEVIALIONS......cccviiiiei ettt be st e e s be e e saae s eares 21
Table 3.2 Create AUCTIONccveii ittt e sb et e et e st e e e sbb e s sbee s sabesesbaeesares 28
TaDIE 3.3 PIACE Blvviiieiii ettt ettt sb et sb e 29
Table 3.4 REVEAI Bil.......c.ooi ittt et ebe e e eabe e st be e s be et 30
Table 3.5 FINAIZE AUCLION.......coiviiice ettt ettt e bt s ere e e eabe e s b e e sreeeenes 31
Table 3.6 Release AMOUNE 0 SEIHEEcvviiieeieee e 32
Table 3.7 SEATCN AUCTION......ciiviiiei ittt et ebe e et be e ebe e b e s abe e be e sbaesabe e 33
Table 3.8 Refund AMOUNE 10 BUYETcccooiiiieie ettt 34
Table 3.9 Confirm TranSaACHIONcccvii it sb e e ares 35
Table 4.1 Requirement Traceability MatriX.........ccocviiiiiriniiiiiiieree s 42
Table 4.2 User Interface Characteristics DeSCrPLIONcc.covereriieierenieieeeee e 43
TabIE 6.1 Create TSt CaASE ...vviiieiiicriie ettt ettt st e st e e sb e e s ebe e s st e s s st be e s sbesesbbeesabeeesabesenes 64
Table 6.2 P1ace Bid TESE CASE ...ccveiirieirieitee ittt ittt sttt e sre st e be et s ebe e sbaesabeebeesbaesreeenns 65
Table 6.3 REVEAl Bitl TESE CaASE......ccviiirieiiie ettt ettt et be e e ebbe e s bre e sare e e 65
Table 6.4 FINAlIZE Bit TSt CaASEccvvieiveeiieee ettt ettt s et te s e eabe e sbee e snae e e 66
Table 6.5 Release AMount to Seller TeSt CaSE.....c.ccvviiiiiiiiie et 66
Table 6.6 Refund Amount t0 BUuyer TSt CaSEcucuiiriririreierie e 67
Table 6.7 SEarch AUCLION TESE CaASEccvieiireeiiie ettt ettt ere e sabe e b e e sreeenns 67

Vi

Chapter 1 Introduction

“Education is the most powerful weapon which you can use to change the world.”
Nelson Mandela (1918-2013)

Chapter 1

Introduction

This chapter first introduces the Auction House Using Smart Contracts. It then

highlights the problem that has been addressed in this work. It also elaborates project
organization and project planning. Finally, this chapter elucidates the scope and objectives of
this project.

1.1 Problem Definition

The project is named as “Auction House using Smart Contract” which is an online
auction system. Currently there are many online auction systems on the internet. Three of the
most famous auction websites are: eBay.com, asteinrete.com and onsale.com. All of these
systems follow the centralized model. Users give their private information by registering on
these systems and the information is stored by the systems in their centralized databases
which is insecure. For buying and selling people have to rely on a third party, and if the
central server goes down, the whole website goes down. For online payments, people rely on
banks, which hold cash of user. If banks are compromised, all user’s cash can go to zero.
Moreover, websites have private data of users, which is not a good thing. These websites can

give away private data of user to other parties for business purposes.

1.2 Proposed Solution

Auction House Using Smart Contracts is designed to make web-based system which is
decentralized and distributed using blockchain technology. System will help users to sell their
items on website without giving away their private data such as username, email address, etc.
Moreover, this system will use cryptocurrency for buying and selling of auctions. Auction
House Using Smart Contracts uses Ethereum protocol. Ethereum is a software running on a
network of computers that ensures that data and small computer programs called smart

contracts are replicated and processed on all the computers on the network, without a central

Chapter 1 Introduction

coordinator. Ethereum has a blockchain, which contains blocks of data (transactions and
smart contracts). The blocks are created or mined by some participants and distributed to
other participants who validate them. The web-based system is designed in such a way that it
removes the involvement of third party like banks for payment of item bought by the user and
the need of storing user’s private data in database. This system utilizes blockchain technology
to store all the transactions ever executed by users in a trustless environment. User is hidden
behind a wallet address which is the public key of user and it is used to sign transactions
performed following the rules of public key cryptography. User pays by using cryptocurrency
residing on his wallet. Smart contracts are used to make agreements between two parties
during buying and selling of auctions. Auction House Using Smart Contracts removes the

need of banks or any other third party to perform payments.

1.3 Scope

The system should provide major functionalities such as add item for create auction,
time limit of created auction, place bid, reveal bid, finalize auction, display the currently
running auctions and multisignature escrow service. The system should allow users to
perform all activities of Auction House Using Smart Contracts. The system should put cost
on the user for creating new auctions. The system should display the ethereum status that is
users address, total balance they have in their wallet. The system should allow users to reveal
their bids they placed on auction. The system should allow users to display the current status
of their item they have placed for bidding. The system should only allow a third person
(except buyer and seller) to finalize the auction after all the bids have been revealed. The
person who finalized the auction will act as a third party in multisignature escrow service to
confirm whether item has been sent to seller or not. The system should take the ownership of
item from user and give the ownership to smart contract while it is being auctioned. If
nobody buys the item, the ownership should come back to its original owner. This system

should only be used by users who have created accounts for decentralized applications.

1.4 Objectives

The primary objective of the system is to create a decentralized web application using
smart contracts. Smart contracts will be stored on block-chain. This system will remove the
need of third party for storing private data of users. The users will perform transactions using
their public key. User will access the whole functionality of the system. This type of system

will increase security because it will be based on public key cryptography which will secure

2

Chapter 1 Introduction

all transactions. If any of the node on the network fails, it will not have any effect on the
functionality of the system. Users will buy items using ethereum software currency which is

ether.

1.5 Project Organization

This section explains about which process model will be followed, what are major roles
and responsibilities and which tools and techniques will be used in order to develop the
system. Its main reason is to create an environment that fosters interactions among the team

members with a minimum amount of disruptions, overlaps, and conflict.

1.5.1 Software Process Model

The software process model to be followed is Evolutionary Spiral Model. The reason
behind choosing this model is because of a new technology being used, student has no
previous experience on this technology and requirements can change with time because smart
contracts technology is still evolving, there might be requirements which cannot be fulfilled
at current stage, so it is reasonable to use this approach. This approach is quite suitable as
compared to other approaches of software process model as waterfall model is used when
requirements are well understood. The incremental approach is used when requirements are
well understood and increments can easily be defined. Evolutionary prototyping model is
used when requirements are not well understood. Rapid Application Development model is
used when the system is divided in modules. The approach of component-based development
follows when quality components are available. Spiral model is basically a risk driven
process model generator for software projects. The basic steps followed in this model are;
plan, determine goals, evaluate risks, develop and test. The advantages of using this approach
are; high amount of risk analysis hence, avoidance of risk is enhanced, additional
functionality can be added at a later date. The main disadvantage of using this approach is;

project’s success is highly dependent on the risk analysis phase.

1.5.2 Roles and Responsibilities

The *“Auction House Using Smart Contracts” is a single student project. Perform
communication with supervisor for a clear understanding of requirements. Meet the
stakeholders for requirement gathering. The supervisor has very important role in refinements
of requirement and testing of the system according to the given requirements. Implementation

of the project according to requirements and verify that system. Test the system and finally

3

Chapter 1 Introduction

deployment of that system for the end users. The following are the roles and responsibilities
of the student formulation are; project plan, requirements specification, analysis, architecture
specifications, component or object specification, source code, test plan and final

deliverable.

1.5.3 Tools and Techniques

Tools that are used for implementation of this system are visual studio code, Remix-
Solidity IDE, Ganache blockchain service, Meta-Mask, truffle test network, mongodb, Inter
Planetary File System. Argo UML tool and Microsoft Visio for UML diagrams such as use
case diagram, class diagram, activity diagram, domain model and Entity relationship diagram
and for writing documentation Microsoft word is used. For designing a plan of the system,
project libre is used.

The smart contracts will be developed using Solidity programming language. Html
will be used to create front end of application. CSS will be used as cascading style sheets to

style the contents. Bootstrap, JavaScript, JQuery will also be used.

Chapter 1 Introduction

1.6 Project Management Plan

Chapter 1 Introduction

Wd 00:¢ Z1/02/TT
Wd 00:+ £ZT/02/TT
Wd 00:G /1/02/TT
IWd 00:G ZT/6T/TT
Wd 00:G ZT/ST/TT
Wd 00:+ £LT/ET/TT
Wd 00:G £T/ZT/TT
Wd 00:G ZT/T1/TT
Wd 00:G Z1/6/TT

Wd 00:S Z1/2/1T

Wd 00:2 £1/9/11

Wd 00:+ £T/9/1T

Wd 00:G £T1/9/1T
Wd 00:S £T/£/1T
Wd 00:2 ZT/¥/11

WV O0:TT LI/¥/TT
WV 00:6 ZI/¥/TT
Wd 00:S Z/T//T/TT
WY 00:0T ZT/€/1T
WV 00:6 ZI/€/TT

Wd 00:% £T/2/TT

Wd 00:T Z1/2/11

Wd 00:G ZT/T/TT
WV 00:0T ZE/€/TT
Wd 00:S £1/0C/TT

Wd
d
Wd
Wd
hd
Wd
nNd
d
Wd
Nd
d
Wd
Wd

00:Z s1/0c/01
00:+ £1/0€/0T
00:S /1/62/0T
00:S s1/82/01
00t Z1/€€/01
00:S /Z1/c2/oT
00:G s1/2z/01
00:S /1/02/0T
00:¢ /Z1/91/0T
00:+ £Z1/9T1/0T
00:S /1/81/01
00:S /1/Ss1/0T
00:G ZTI/cT/0T

Wd 00:+ ZT/0E/0T
Wd 00:S ST/TIT/9

ysur4

Wd 00:2 £1/02/TT ésAep 0
Wd 00:2 £1702/TT ésAep G20
WY 00:8 ZT/02/1TéAep T
WV 00:8 ZT/OT/TT ésAep ¢
WV 00:8 ZT/PT/TT1ésAep
Wd 00:2 ZT/€T/11 ésAep G20
WY 00:8 ZT/2T/TT ésAep 9
WV 00:8 ZT/OT/TT éSAep 7
WV 00:8 £T/8/TT ésAep ¢
WV 00:8 £T///TT1éAep T
Wd 00:Z £1/9/11 ésAep O
Wd 00:C £T/9/TT ésAep G20
WV 00:8 £T/S/TT ésAep ¢
WY 00:8 £T/S/TIT éshep ¢
WY 00:TT £LTI/¥/1T ésAep GZ°0
WV 00:6 Z1/¥/11 ésAep Gz 0
WV 00:8 ZT/+/TT ésAep G210
WY 00:8 ZT/¥/TT éshep p1
WY 00:6 ZT/S/TT éSAep GZ1°0
Wd 00:t £1/2/11 ésAep Gz 0
Wd 00:C £T/2/TT ésAep G20
WV 00:8 ZT/2/TT ésAep G0
WV 00:8 £T/T/TTéAep T
WV 00:8 ZT/T/IT éshep gz
WV 00:8 ZT/T/TIT ésAep o
Wd 00:2 ZT/0€/0T ésAep 0O
Wd 00:2 £T/0€/0T ésAep g2 0
WV 00:8 /T/62/0T éAep T
WV 00:8 £T/+2/0T ésAep §
INd 00:¢ ZT/€2/0T ésAep g2 0
WV 00:8 £T/cc/0T éhAep T
WY 00:8 ZT/12/0T éSsAep ¢
WV 00:8 ZT1/61/0T ésAep ¢
Wd 00:¢ £1/91/0T ésAep O
Wd 00:2 ZI/9T/0T ésAep Sz 0
WV 00:8 ZTI/9T/0T ésAep £
WY 00:8 ZT/+1/0T ésAep ¢
WY 00:8 Z1/6/0T ésAep g

WY 00:8 ZT/6/0T éshep cra 1 |

WV 00:8 ZT/6/0T ésAep ope
Jels uoneang

2UO0lSa|lN
bunss
Z 1o1deyn) asiAay
sjuawalinbay asegejeq
|2poiA ulewiog
bunaa
uondunsa asedasn
weibeiq asedasn
suoppung Pnpoid
SjUaWBIINDaY [BUOIPUNY-UON
2UO03S3IN
bunas
sjuawalinbay jeuoPUNy
sjuwa4inbay oypadsa
sapuapuadag pue suonRduwnssy
sjulensuon)
sonsuapeIeyd) 1asn
MDIAIBAQE
suoneIARIqY puUP SLLAUODY ‘suoniuyag
syndinQ pue synduj Jolejy
suonpung payoddns
suonpund Jolep
MBIAIBAQD P NpoUd
uonPNnponRuI=

_ SiSAjeuy puy bulisyjes sjuswiaainboy] 7 1o3deydHa

3UOIS3 1IN

bunaaw

T 123dey> asiAay
ue|d juawabeuely Paloid
buneap
uoneziuebiO Paloid
aAIP3Lqo

adoog

2U0ISaIN

bunaaw

uonnjos pasodold
uoniuyag wa|qo.id
uopPnponul

uoipnponul poloid T Joadeyoo |

sS1oeIjuo) Meuwls buisn 2sSnNoH uoipPnys
DuIen)

Ue|d JUSWARUEIA 199101d (2/T) T'T d|qeL

Wd 00:G 8T/9T1/9
Wd 00:S 8T1/11/9
Wd 00:S 81/91/9
WV 00:8 8T/1/9
Wd 00:S 81/1/9

Wd 00:S 8T/0£/S
Wd 00:S 81/1/9

Chapter 1 Introduction

Wd 00:¢ 8t1/sc/s
Wd 00+ 81/52/S
Wd 00:+ 81/12/S
Wd 00+ 8T1/+1I/S
Wd 00+ 81/2/S
Wd 00+ 81/0/+
Wd 00:+ 8IL/c€/v
Wd OO+ S8T/91/+
Wd 00+ 81/6/+
Wd 00+ 81/2/+
Wd 00:+ 81/92Z/<
Wd 00+ 8T/61/
Wd 00+ 81/21/€
Wd 00+ 81/S/€
Wd 00:+ 81/92/2
Wd 00:s 81/se/s
Wd 00:S 8I/sz/<s

Wd 00:2 Z1/sz/eT
Wd 00:+ Z1/Ssz/eT
Wd 00:S /ZT1/be/zT
Wd 00:€ ZT/61/2T
Wd 00:T £ZT/61/21
WV 00:0T ZI/61/2T
Wd 00:¥ L1/St/Tx

Wd 00:2 Z1/8T1/2T
Wd 00:+ ZT1/81/2T1
Wd 00:G ZT/61/CT
Wd 00:G Z1//1/2T
Wd 00:2C Z1/T1/2T
Wd 00+ ZT/TT/CT
Wd 00:G ZT1/ct1/2T
Wd 00:G z1/6/2T
Wd 00:G /1/2/21
Wd 00:G /Z1/9/21
IWd 00:T Z1/9/2T
nd 00:s /6T /CE

WV 00:8 81/21/9¢éshAep G
WV 00:8 81///9 ésAep ¢
WV 00:8 8T /72/9 :isAep 01
WV 00:8 81/1/9 é¢shep 0
WV 00:8 8T/T/9éAep T
WV 00:8 81/9¢/S é¢shep g
WV 00:8 81/9¢/S éshep /

Wd 00:€ 81/52/S sAep O
Wd 00:€ 81/52/S ésAep gZ2°0
INd 00:2 S1/1Z/S ésAep g2 0
Wd O0:€ 8I/+1/S is5Aep S 0
Wd 00:€ 81/2/S ésAep g2 0
INd 00:2 S1/0c/t sAep g2 0
INd 00:2 S1/ce/t 5Aep s 0
Wd 00:€ 8T/91/F i54Ap SZ°0
Wd 00:€ 81/6/+ ésAep g2°0
Wd 00:€ g1/2/+ és5Aep g2 0
INd 00:€ 81/9Z/€ isAep gZ 0
Wd 00:Z 8T/6T/€ és5Ap SZ°0
Wd 00:2€ 81/21/€ ésAep s 0
Wd 00:2 21/5/€ ésAep gz 0
WWd 00:€ wﬂ.\.@N\N ésAep gz 0
WV 00:8 81L/02/Z ésAep g6
WY 00:8 8L/oc/c csAvp <6

Wd 00:2 £1/S2/2T ésAep O
Wd 00:2 £1/S2/2T ésAep S2°0
WV 00:8 £1/02/2T ésAep g
Wd 00:T Z1/61/21 éshep GZ°0
WY 00:0T ZI/61/2T ésAep gz°0
WV 00:8 £1/6T1/2T ¢SAep GZ°0
WV 00:8 LT/6T/TT éshep /99
IWd 00:2 £1/81/2T ésAep 0
Wd 00:C £T/8T/CT ésAep G2 0
WV 00:8 ZT/81/2T ésAep ¢
WY 00:8 ZT/¥T/TT ésAep
IWd 00:2 ZT/TT/2ZT éSAep 0
Wd 00:2 £T/T1/2T ésAep Gz 0
WV 00:8 £1/6/2T ésAep g
WV 00:8 Z1/8/¢T ésAep ¢
WV 00:8 /1///2T éAep T
Wd 00:T £T1/9/2T ésAep G0
WY 00:8 £T1/9/2T ésAep G0
WY 00:8 £E/9/C¥ csAep v1

Z M3IASY
T M3INDY
MIINNY E
2UOISIIN
340M 31N)N4 pUR UOISNPUOD
saseD) 159 |

punse 1

2uoyS2a|ii
Dunaaw
bunaay
bunRasKW
Dun=a9W
bun=aaw
bunaay
bunRasKW
Dunoa9W
bDunsaw
bunaaw
bunR=a3KW
Dunsaw
bunaak
buniaa
bujpo>

uonejuswsduiico |

SUOIS|IN

bunsap

Sosed 1S9 |

S|00 | pue jusawuodiaug bunss |
yoeouddy 19|

uoipnpoaug

uonejusauwndog 1S9 aI4emljos 1ejdey)H= |

SU0IS3IN
bunaaw

wieibeiq penuo)/ssen
swelibeiq a>uanbag

2uUOIS3|IN

bunaaw

ubisa@ ao0ej1a3u] 13sN

ubisaq 24NPaIYdIy WSJSAS
XLeW Ajljigeadel | juawalinbay
MBIAIBAO ubisaq

co_uU:muOb:H

uonRdiioso Uublso(o41emMljos g Jojdeyoo |

ueld wawsabeuel 108foid (z/2)T°T s10eL

Chapter 1 Introduction

MeyD nues 1sfoud (¢/T)T'T 84nbi4

S TIRAT TTAN S =T i TIRAL AT == i TIRAL TN ST =1 -0 TIRAL TS =T -0 TIAAT T ST =T 0 TIRAT T = =1 i TIRAT 1T~ =]
ZL _29C) 7 LY 29y /1 X 229 M1 A E="n S P =N S LT _ACH) ST £ L _ACH) FT

S 1 TIAAT T i~ ST 1 TTRAL

1 291 Nt

Chapter 1 Introduction

|

Da.h;ﬁ_.,: Duin

Heyd nues 1eloud (2/2) T'T 24nbi4

n._nsn_b._"

s
'

]

-

— &

Chapter 1 Introduction

1.6.1 Project Deliverables
e Software Process Management Plane
e Software Requirements Specification
e Software Design Description

e Software Test Documentation

1.6.2 Risks and Contingencies
Smart Contracts technology is still evolving, some of the features like uploading image

in blockchain and displaying it might not be implementable.

1.7 Report Structure

Chapter 1 has briefly described the introduction of the system, what are actual problem
and proposed solution, its scope, objective, the organization of project, and project
management plan. Chapter 2 describes what the blockchain technology is. Chapter 3
describes the requirements of the system and to decide what the system should do and what
the system should not do. Briefly describes complete details of functional and non-functional
requirements specifications for the system. Chapter 3 gives the description of software
design. It entails the description about the chosen architecture design, user interface design.
Briefly describes the interaction and relation between the between actor and system objects
through sequence and class diagram. Chapter 4 gives the description of the testing of the
system. Briefly describe the test approaches, test plan, testing tool and environment and

finally the test cases of the system.

10

Chapter 2 Ethereum and Technologies Used in this Project

“Employ your time in improving yourself by other men’s writings, so that you shall gain
easily what others have laboured hard for.” Socrates (470 BC — 399 BC)

Chapter 2
Ethereum and Technologies Used in this

Project

The purpose of this chapter is to give a short introduction to Ethereum. It also gives

introduction to tools and technologies used in this project.

2.1 The Origin of Ethereum

Bitcoin blockchain is primarily used for sending money between various parties on the
blockchain without the need for a central authority like bank. A 19 year old developer by
name Vitalik Buterin wanted to apply idea of decentralization (no central authority) to more
than just money transfer. He wanted to build applications that could run globally without any
central authority in control. For example, if you are a Facebook user, Facebook as a company
owns your data and they have the right to remove your account if they wish. In 10 years,

Facebook could shut down in which case all your data could be lost.

Vitalik Buterin proposed to add a scripting language to Bitcoin to be able to build
applications. However, after failing to gain agreement from the Bitcoin development team, in
January 2014, he officially published the white paper proposing the development of a new
platform with a more general scripting language. A team formed shortly and one of the
developers, Dr. Gavin Wood soon released the Ethereum yellow paper, which covered the
Ethereum Virtual Machine (EVM), the runtime environment that executes all of the smart
contracts. The development of the platform was funded through a crowdsale in July—August

2014, with the participants buying the Ethereum value token (ether).

2.2 Global Computer

Ethereum is a public, blockchain based distributed computing platform. It can be
thought of as one big computer made up of small computers around the world. You can write

applications and run them on this global computer. The platform guarantees that your

11

Chapter 2 Ethereum and Technologies Used in this Project

application will always run without any downtime, censorship, fraud or third-party
interference. Apart from running applications, Ethereum blockchain can also transfer money

between 2 parties without a central authority.

All these computers (also called nodes) are connected to one another and have a full
copy of the code and data. When you deploy your code on to the Ethereum blockchain, the
code is replicated across all the nodes in the network. When your application stores any data,
even that data is replicated across all the nodes. There are thousands of nodes in the network
and it is almost impossible for anyone to stop all the nodes. This ensures your application to

be always accessible.

2.3 Client Server Architecture VS Ethereum Architecture

One of the best ways to understand Ethereum is by comparing it with a traditional

client/server architecture, using example of web application.

A typical web application consists of server side code which is usually written in a
programming language like Java, C#, Ruby, Python. The frontend code is implemented using
HTML/CSS/JavaScript. This entire application is then hosted on a hosting provider like

Microsoft Azure, Google Cloud Platform.

Users interact with the web application using a client such as web browser or through an
API. Note that there is one web application which is centralized and all the clients interact
with this one application. When a client makes a request to the server, the server processes
the request, interacts with the database and/or cache, reads/writes/updates the database and

returns a response to the client.

In Ethereum, there is no central server to which all clients connect to. This means, in an ideal
decentralized world, every person who wants to interact with a dapp (Decentralized
Application) will need a full copy of the blockchain running on their computer/phone etc.
That means, before you can use an application, you have to download the entire blockchain

and then start using the application.

We don't live in an ideal world and it is unreasonable to expect everyone to run a
blockchain server to use these apps. But the idea behind decentralization is to not rely on a

single/centralized server. So, the community has come up with solution like Meta-Mask,

12

Chapter 2 Ethereum and Technologies Used in this Project

where you don't have to spend lot of your hard disk and RAM downloading and running a

full copy of the blockchain.
The Ethereum blockchain has 2 main components:

1. Database: Every transaction in the network is stored in the blockchain. When you
deploy your application, it is considered as a transaction. If you have for example a
Voting application that allows anyone to vote for candidates, a vote for a candidate
would be considered a transaction. All these transactions are public and any one can
see this and verify. This data can never be tampered with. To make sure all the nodes
in the network have same copy of the data and to ensure no invalid data gets written
to this database, Ethereum uses an algorithm called Proof of Work to secure the
network.

2. Code: The database aspect of blockchain just stores the transactions. But where is all
the logic to vote for candidate, retrieve the total votes etc. In Ethereum world,
developer write the logic/application code (called contract) in a language
called Solidity. The developer then uses the solidity compiler to compile it to
Ethereum Byte Code and then deploy that byte code to the blockchain (There are few
other languages that are used to write contracts but solidity is by far the most popular
and relatively easier option). So, not only does Ethereum blockchain store the

transactions, it also stores and executes the contract code.

So basically, the blockchain stores your data, stores the code and also runs the code in
the EVM (Ethereum Virtual Machine).

To build web based Dapps, Ethereum comes with a handy javascript library called
web3.js which connects to blockchain node. So, one can just include this library in any

framework like reactjs, angularjs etc and start building.

13

User

Web
Browser

Chapter 2 Ethereum and Technologies Used in this Project

User

Api
Caller

7 o e e e w7 B ~.
I' = HTML/CSS/Javascript \.
i |
i Server code running Ruby, Python, Java etc |
i |
i |
i |
i |
i D Y
Database !

|
\ |

450 O 1 7

Figure 2.1 High level View of Client/Server Architecture
Dapp Web Dapp Web
User Browser User Browser

/,_._. __________ et hmk 48 /,_ LI A N
I. Y \ I Y ‘
I HTML/CSS/JAVASCRIPT I l HTML/CSS/JAVASCRIPT I
. WEB3js | - WEB3js |
| Web Server : | Web Server :
| ! | !
| RPC I | RPC I
e e] SFEET ES SRS N S PO Y]
i | EVM - Ethereum Virtual Machine | | | | EVM - Ethereum Virtual Machine I |
! I il 1
.1| Block1 Block 2 Block m |4 .1 | Block Block 2 Blockm | 11

I Il | [
' X |: £
I | I | | [

. Blockchain .. . Blockchain ‘.
i N s ~ | | e b e s b e Vi b - s - S |
- Ethereum Dapp Instance 1 / i Ethereum Dapp Instance n /
N N

Y v — i — ¢ i S e D - -8 S - - 0. 4 - S -

Figure 2.2 Ethereum Architecture

14

Chapter 2 Ethereum and Technologies Used in this Project

2.4 Ethereum Concepts

There are concepts used in Ethereum which should be understood.

2.4.1 Smart Contract
In Ethereum applications are developed using solidity programming language and then

they are deployed on the blockchain. These applications are called smart contracts.

In general, contract is a written agreement between two or many parties that is intended
to be enforced by law. If we take this written contract and translate it in to code and deploy
on the blockchain, we get digital contracts. But the true power of this code on the blockchain
is that it can enforce the agreement between parties and that is the reason they are called
"smart contracts”. Once a contract is deployed to the blockchain, it can neither be stopped nor

modified. That is how the agreement is enforced.

2.4.2 Ether and Denominations

In the real world, each country has its own currency like USD, INR, RNB, GBP, EUR,
PKR etc, each blockchain has its own currency. In the case of Ethereum blockchain, the
native currency is called Ether. There are exchanges where you can convert Ether to any
other fiat currency like USD or EUR.

In the real world, currencies have various denominations. For example, a US Dollar is
equal to 100 cents and it has various denominations such as pennies (1 cent), nickel (5 cents),
dime (10 cents), quarter (25 cents). Depending on your country and currency, you probably

have various denominations as well.

Ether also has various denominations. The only two a developer or investor should keep
in mind are Ether and Wei. Wei is the lowest denomination and this is the denomination used

in smart contracts.

2.4.3 Addresses

To login to any website like Facebook, you usually use an email/username and password.
Your username is your identity in Facebook and you use your username/password to

authenticate with Facebook.

In Ethereum blockchain, address is your identity. An Ethereum address looks like this:

15

Chapter 2 Ethereum and Technologies Used in this Project

001d3f1ef827552ae1114027bd3ecf1f086ba0f9. An address has a corresponding private
key. An address is also called a public key. One can think of private key as a password that
only you know. You need this pair of address + private key to interact with the blockchain.

Few key things should be kept in mind:

1. Ethereum address is public and you can share it with anyone in the world.
2. The private key should never ever be shared with anyone.
3. The address and private key are not stored in any database. Only you are in control of

them.

2.4.4 Gas

One can deploy contracts on the Ethereum blockchain and execute transactions on it.
However, there is a cost associated with each interaction. You have to pay Ether to the miners

in the network to execute a transaction on the blockchain.

Who decides how much Ether to pay for a transaction? The answer is, the yellow paper
has specification on how many units of work a transaction has. For example, if your
transaction is to simply add two numbers, that is 3 units of work. If it is multiplication, that

would be 5 units of work and so on. This unit of work is called gas.

2.4.5 Byte Code

Smart contract code is usually written in a high level programming language such as
Solidity. This code gets compiled to something called the EVM bytecode which gets
deployed to the Ethereum blockchain. This is very similar to a programming language like
Java where the code gets converted to JVM Byte code. The Ethereum runtime environment

only understands and can execute the bytecode.

One of the benefits of this design is that it gives developers option to use other programming
languages to implement smart contracts. Currently, there are a handful of languages like

Vyper (similar to Python) that compiles down to the EVM bytecode.

2.4.6 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a simple but powerful, Turing complete 256bit
Virtual Machine that allows anyone to execute arbitrary EVM Byte Code. The EVM is part

of the Ethereum Protocol and plays a crucial role in the consensus engine of the Ethereum

16

Chapter 2 Ethereum and Technologies Used in this Project

system. It allows anyone to execute arbitrary code in a trust-less environment in which the

outcome of an execution can be guaranteed and is fully deterministic.

When you install and start the geth, parity or any other client, the EVM is started and it

starts syncing, validating and executing transactions.

2.5 Tools and Technologies

2.5.1 Geth/Parity Clients

Geth is the official client software provided by the Ethereum Foundation. It is written in
the Go programming language. When you start geth, it connects to other Ethereum clients
(also called nodes) in the network and downloads a copy of the blockchain. It will constantly
communicate with other nodes to keep it’s copy of the blockchain up to date. It also has the
ability to mine blocks and add transactions to the blockchain, validate the transactions in the
block and also execute the transactions. It also acts as a server by exposing APIs you can
interact with through RPC. It also comes with a JavaScript client (geth console) that can be

used to connect to the blockchain.

2.5.2 Web3js and Truffle

Web3js is a very popular JavaScript library that is used to interact with the Ethereum
blockchain. One can use this JavaScript library in any frontend framework to build a user

facing decentralized application.

Just like we have frameworks for web application development such as Ruby on Rails,
Python/Django etc, Truffle is one of the most popular frameworks used to develop dapps.
They abstract away lot of the complexities of compiling and deploying your contract on the

blockchain. It also has an in-built testing framework which one can use to test your contracts.

2.5.3 Ganache

Developers usually use an in-memory blockchain called ganache for development of
Dapps. One can either install a command line version called ganache-cli or the GUI version.
Another nice thing about ganache is that you get 10 test accounts loaded with 100 Ether for

your testing.

17

Chapter 2 Ethereum and Technologies Used in this Project

2.5.4 Meta-Mask

MetaMask is a bridge that allows you to visit the decentralized web of tomorrow in your
browser today. It allows you to run Ethereum decentralized applications right in your browser
without running a full Ethereum node. MetaMask includes a secure identity vault, providing a
user interface to manage your identities on different sites and sign blockchain transactions.
Metamask is just a Developer Preview right now, and has not been released to the general
public. So, it is recommended not to put serious funds in it, but use it to help prepare your

decentralized applications.

2.5.5 Remix

Remix is a browser IDE you can use to code your smart contracts. Not only can you use
it to as an editor but it can be used to compile and deploy your contracts to various networks
and interact with them directly from the IDE. It has many features to select various compiler

versions, debug your contracts and so on.

2.5.6 Inter Planetary File System
Interplanetary File System (IPFS) is a peer-to-peer distributed file system that seeks to
connect all computing devices with the same system of files. It also is a protocol designed to

create a permanent and decentralized method of storing and sharing files.

Just like anyone can run an Ethereum node, anyone can run an IPFS node and join the
network to form a global file system. The files are replicated across many nodes and it is
almost impossible to lose access to your files and is also censorship resistant. This is similar
to how your contract and data associated with it is stored on all the Ethereum nodes across

the network.

In this project large data files like image and description will be stored in IPFS and their

hash in blockchain.

2.5.7 MongoDB

MongoDB is a free and open source cross platform documented oriented database
program. Classified as a no No-Sql database program. In MongoDB records can be replicated
on multiple nodes. In this project MongoDB will be used to store products data and their

hashes on blockchain to maintain integrity of the system. Products will be queried and

18

Chapter 2 Ethereum and Technologies Used in this Project

displayed through MongoDB instead of blockchain in order to reduce the burden on the

blockchain ~ for querying thousands of products again and again.

19

Chapter 3 Requirement Gathering and Analysis

“Education is the key to unlock the golden door of freedom” George Washington(1860-1943)

Chapter 3
Requirement Gathering and Analysis

The purpose of the requirement gathering and analysis phase is to clear the

requirements of the system and to decide what the system should do and what the system
should not do. To clear the requirements like function and non-functional requirements for

the system and understand the major inputs and outputs for the system.

3.1 Product Overview

“Auction House Using Smart Contracts” is a system for buying and selling any type of
item using vickery auction. This system is basically a web-based application. It can run on
every system. This system will be implemented using ethereum software. The user can use
this system for different purposes such as buying and selling. The user will be able to buy or
sell an item by placing bid which will be ether. The highest bidder will get the item and the
rest of the bidders will be able to get their ether back which they placed for bidding. Placing
an item for selling will cost the seller some ether. System is decentralized so database will be
on every computer which is block-chain. Users can create their account(s) using MetaMask
or mist browser. The account of the user will contain the users ether and address (public key).

Private key stays on user’s computer.

Seller
Application
Ship Goods |
| L
Buyer " i
Application | !
| StartAuction()
Event: Bid Received or
EndAuction()
PlaceBid()
A ’
| 0 ©®
Smart Contract ’ J ’

Figure 3.1 Product High Level View
20

Chapter 3 Requirement Gathering and Analysis

3.2 Major Functions

Winner of the auction will pay the amount proposed by second highest bidder. After
winner is decided, amount will be stored in a contract. Amount can only be unlocked when
the contracts requirement is complete. If nobody places bid on item, auction will end without
a winner. Moreover, displaying the ethereum status which contains; user network address,
amount in ether user has. Display the user his active auctions and other active auctions placed

by other users on the system.

3.3 Major Inputs and outputs

The user gives some inputs to system and system will generate the response to those

inputs respectively.

3.3.1 Major Inputs

User enters item details. User enters description of item, image, starting price in ether,
item deadline in the form of date and time, then selects create auction. User selects start
auction to place the item for bidding. User cancels the auction by selecting cancel auction

button.

3.3.2 Major Outputs

User’s active auction and other users’ auctions are displayed. Bid successfully placed

message is displayed.

3.4 Definitions, Acronyms and Abbreviations

Table 3.1 Abbreviations

Smart A set of promises, specified in digital form, including protocols within
Contracts which the parties perform on these promises.
Solidity Programming language for smart contracts

BlockChain | A massive distributed database which lives on every computer

Ethereum Ethereum is a software running on a network of computers that ensures

that data and small computer programs called smart contracts are

21

Chapter 3 Requirement Gathering and Analysis

replicated and processed on all the computers on the network, without a
central coordinator. The vision is to create an unstoppable censorship-

resistant self-sustaining decentralized world computer.

Auction An auction is a process of buying and selling goods or services by
offering them up for bid, taking bids, and then selling the item to the
highest bidder.

Eth/Ether Ethereum’s inbuilt native cryptocurrency, used for paying for smart

contracts to run.

Truffle Truffle is a development environment, testing framework for ethereum.

MetaMask MetaMask is a bridge that allows you to visit the distributed web of
tomorrow in your browser today. It allows you to run ethereum
decentralized applications right in your browser without running a full

ethereum node.

Vickery A Vickrey auction is a type of sealed-bid auction. Bidders submit written
bids without knowing the bid of the other people in the auction. The

Auction highest bidder wins but the price paid is the second-highest bid.

3.5 Overview

The rest of topics contain the detailed information about functional, non-functional, the
overall functionality of the system, use cases and their description, domain model, and

database explanation.

3.6 User Characteristics

Users of this system can be any person. This is assumed that all the users have basic
knowledge of computer or laptop and knowledge of web application. Users must have
knowledge of how to use web-based applications and can able to perform certain tasks. Users

must know how to create ethereum wallet to access the decentralized application.

3.7 Constraints

Auction House Using Smart Contracts is a web-based system. It is not efficient to store

large images and description about product in blockchain. For maintaining integrity store the

22

Chapter 3 Requirement Gathering and Analysis

hash of images and description in blockchain. Moreover querying the blockchain again and
again for displaying products or applying search on products. So, use a separate database
other than blockchain to handle this issue. In vickery auction people cannot see each other bid
placed on product. Bids can only be seen when users reveal their bids after auction ends. In
blockchain world all transactions are public, so bid placed by users will also be public and
can be seen by other users. Implement a way to hide the bids so that no user can see others
bids. Put a specific time in which users can reveal their bid. After the time is over no bids can

be reveal anymore for the currently running auction.

3.8 Assumptions and Dependencies

This decentralized web-based application depends upon the availability of internet and
having an ethereum account. It is assumed that the users have any computer or laptop to

access the system.

3.9 Specific Requirements

3.9.1 Functional Requirements

Functional requirements are the software capabilities that must be present in order for the
user to carry out the services provided by the system, or to execute the use case. Include how
the product should respond to anticipated error conditions or invalid inputs. The system
allows user to access the system who have ethereum account with some ether plus connected
to any test network like ropsten or any other test network. The system gives the proper

message of any invalid entry. Main Functional Requirements are:

1. Implement Vickery auction

2. Highest bidder i.e. winner of the auction will pay the amount equal to second highest
bidder

3. Bid placed by users should not be visible to others

4. After auction ends all bidders must reveal their bids. Not revealing the bid will be
considered as a loss for that user.

5. Users who lost the auction will get their invested amount back. In case if a person has
not revealed his bid, his invested bid will not be sent back to his account.

6. Only a user except buyer and seller will finalize the auction after bid reveal time ends.

7. Implement a three-person voting multisignature escrow service in which two out of

three people (buyer, seller and the person who finalized auction) will vote to either

23

Chapter 3 Requirement Gathering and Analysis

send amount to seller of the product or send back the amount to buyer of the product
in case of any fraud or any other situation which includes product related problems.

8. The person who finalized the auction can only participate in voting including buyer
and seller.

9. Amount should only be transferred to its rightful honour when voting is complete.

3.9.2 External Interface Requirement
This section provides a detailed description of all inputs into and outputs from the

system. It also gives a description of the hardware, software and communication.

3.9.3 User Interfaces

Through user interface user will be able to interact with the system. This will be
Web-based application for the user. User can use this application through internet. User

would have ethereum account to access this application.

3.9.3.1 Create Auction
Input: Name, Description, image, Initial price, auction start and end time (using date

and time)
Output: Auction created successfully message.

3.9.3.3 Place Bid

Input: Bid value
Output: Bid placed successfully message

3.10.4 Software Interfaces

Auction House Using Smart Contracts is decentralized web-based application and it
will be implemented in Ethereum software therefore, this system can run on any operating
system. The internet is required to access the system. The system can be accessed through
browsers like google chrome, Firefox which support meta-mask plugin extension or mist

browser.

3.10.5 Communication Protocol
Communication protocols required for this system are; Hypertext transfer protocol

[http] for communication over the internet.

24

Chapter 3 Requirement Gathering and Analysis

3.11 Software System Attributes
3.11.1 Reliability

System should be reliable. There should be no occurrence of the failure. The system
should be able to work properly all-time means the extent to which it works as and when

needed. The system should give the proper response to every query performed by user.

3.11.2 Availability

System should be available to every user at any time. All the users should able to

access the system at any time as it does not depend upon the centralized server.

3.11.3 Security

Since the system is decentralized, all of user’s private data is on his computer.
System should be based on public key cryptography. User should only be able to access the
system through user own credentials and any other user should not be able to access to the
user private data. All transactions are signed by private key of user and transactions can be
verified using user’s public key to hold integrity in the system. User should not lose his

private key otherwise his data will be stolen by hackers.

3.11.4 Maintainability

There should be aspect of maintainability for the system. In some cases,
maintainability involves a system of continuous improvement learning from the past in order
to improve the ability to maintain systems, or improve reliability of systems based on
maintenance experience. The application should be easy to extend. The code should be
written in a way that it favours implementation of new functions. In order for future functions
to be implemented easily to the application. System is based on new technology so

improvements will occur with time.

3.11.5 Portability

This is a web-based system so the main purpose of developing web based system is
to improve the portability of system. To improve portability, system should run on variety of
platforms and variety of connection speeds. System should be lightweight therefore that it can
run on a machine with slow internet connection. To make the web application lightweight,

simple libraries and tools should be used at developing phase.

25

Chapter 3 Requirement Gathering and Analysis

3.11.6 Performance

Since this system is going to be decentralized and web based, one performance
requirement is the storage space. Higher storage space means more space for blockchain and
bigger workspace for user therefore higher the storage, better the performance. Performance
requirement by the user side is, web application should be developed as a lightweight web

application.
3.12 Product Functions
3.12.1 Add Item

User will give details about the item like name, image, description.

3.12.2 Create Auction
User will provide selling detail for item like starting bid, time limit for item being

sold to the system.

3.12.3 Place Bid

User can place bid for item after seller has started the auction and before deadline is

reached.

3.12.4 Display User Auctions

User can view his currently running auctions.

3.12.5 Display All Users Auctions
User can see all of the other users currently running auctions.
3.12.6 Reveal Bid

Users can reveal their bids given a specific time after auction time ends, so that
winner can be decided.

3.12.7 Finalize Auction
Auction will be finalized after bid reveal time ends, then winner will be decided
3.12.8 Release amount to seller

User will vote to transfer amount to seller.

26

Chapter 3 Requirement Gathering and Analysis

3.12.9 Refund amount to buyer

User will vote to refund amount to buyer

3.13 Use Case Diagram

List of use-cases mentioned in use case diagram are described in detail, therefore we
are able to look more precisely that how user can interact with system to perform tasks. There
will be only one user which is anonymous buyer as well as an anonymous seller meaning
buyer and seller cannot know true identity of each other.

Auction House Using Smart Contracts

. Create Auction
Place Bid

et
. “Search Auction

Seller

N

‘ Finalize Auction
é“‘
‘ Release Amount to Seller

Refund Amount to Buyer

Anonymous
Buyer

AN

Anonymous
Arbiter

Confirm Transaction

Figure 3.2 Usecase Diagram

Chapter 3 Requirement Gathering and Analysis

3.14 Use Case Description

3.14.1 Use case 1: Create Auction

Table 3.2 Create Auction

ID uc1
Name Create Auction
Primary Actor Anonymous Seller

Pre-Conditions

User has an ethereum account
User has ether in his account to make transaction
User is connected with any network instance associated with

ethereum

Post-Conditions

Information about the item and his owner address is stored in
the blockchain and other databases

Auction time Starts

Main Success

Scenario

User enters data in the given field (item name, description,
image, start Price)
User selects Create Auction

User provides ether for Create Auction transaction

Alternative flows

or Extensions

l1a. If user has less ether than ether required for transaction

1. Auction fail message will be displayed.

2a. If user selects add item before entering details

1. System gives error message and asks user to enter

item details.

Frequency

Could be nearly continuous until user has enough ether

28

Chapter 3 Requirement Gathering and Analysis

3.14.2 Use case 2: Place Bid

Table 3.3 Place Bid

ID ucC2
Name Place Bid
Primary Actor Anonymous Buyer

Pre-Conditions

i. User has an ethereum account
ii. User has ether in his account to make transaction
iii. User is connected with any network associated with
ethereum

iv. Auction time of item is not over

Post-Conditions

i. Bid is successfully placed and amount is deducted from
user account

ii. User bid is encrypted by the system

Main Success

Scenario

1. User enters amount of bid he wants to send

2. User selects Place Bid

Alternative flows

or Extensions

l1a. If user has less ether than ether required for transaction

2. Auction fail message will be displayed.

2a. If user selects Place Bid before entering details

2. System gives error message and asks user to enter Bid

Frequency

Could be nearly continuous until user has enough ether

29

Chapter 3 Requirement Gathering and Analysis

3.14.3 Use case 3: Reveal Bid

Table 3.4 Reveal Bid

ID UC3
Name Reveal Bid
Primary Actor Anonymous Buyer

Pre-Conditions

1. User has placed bid on the item
2. User has enough ether to perform the transactions

3. Auction time is finished

Post-Conditions

i. User bid is revealed by the system

Main Success

Scenario

1. User enter bid amount he sent earlier

2. User selects reveal bid

Alternative flows

or Extensions

1a. if user does not have enough ether

1. Transaction will fail

1b. if user enters wrong bid amount

2. Transaction will fail

Frequency

Can be performed multiple times for a single item

There will be a specific time in which bidders can reveal their bid

30

Chapter 3 Requirement Gathering and Analysis

3.14.4 Use case 4: Finalize Auction

Table 3.5 Finalize Auction

ID uc4
Name Finalize Auction
Primary Actor Anonymous Arbiter

Pre-Conditions

i. User is not the buyer or seller of the product

ii. Reveal Bid time is over

Post-Conditions

i. Auction is finalized and winner is decided
ii. Users who did not win the auction will be sent back their
invested bid

iii. Escrow service is created which locks the amount in it.

Main Success

Scenario

1. User selects finalize Auction

Alternative flows or

Extensions

1a. if user does not have enough ether

1. Transaction will fail

Frequency

Only one time for single item

31

Chapter 3 Requirement Gathering and Analysis

3.14.5 Use case 5: Release Amount to Seller

Table 3.6 Release Amount to Seller

ID ucs
Name Release Amount to Seller
Primary Actor Anonymous Seller, Anonymous Buyer, Anonymous Arbiter

Pre-Conditions

1. amount is locked in Escrow

Post-Conditions

Amount from the Escrow is released

Main Success

Scenario

1. User selects Release amount to seller option
2. Repeat step 1 until at least two of three users have voted to

release amount to seller

Alternative flows

or Extensions

1a. If nobody votes to release amount

1. Amount stays locked in the escrow

Frequency

Only one for a single item

32

Chapter 3 Requirement Gathering and Analysis

3.14.6 Use case 6: Search Auction

Table 3.7 Search Auction

ID uceé
Name Search Auction
Primary Actor Anonymous Buyer, Anonymous Seller, Anonymous Arbiter

Pre-Conditions

None

Post-Conditions

Searched auction is displayed to user

Main Success

Scenario

1. User selects a category
2. Relevant item(s) are short listed

3. Item(s) are displayed to users

Alternative flows

or Extensions

1a) If no item is found according to users search category

1. No items are displayed to user

Frequency

Could be nearly continuous

33

Chapter 3 Requirement Gathering and Analysis

3.14.7 Use case 7: Refund Amount to Buyer

Table 3.8 Refund Amount to Buyer

ID Uc7
Name Refund Amount to Buyer
Primary Actor Anonymous Seller, Anonymous Buyer, Anonymous Arbiter

Pre-Conditions

1. Amount is locked in Escrow

Post-Conditions

i. Amount from the escrow has been released

Main Success

Scenario

1. User selects Release amount to seller option
2. Repeat step 1 until at least two of three users have voted to

release amount to seller

Alternative flows

or Extensions

la. If nobody votes to release amount

1. Amount stays locked in the escrow

Frequency

Only one time for single item

34

Chapter 3 Requirement Gathering and Analysis

3.14.8 Use case 8: Confirm Transaction

Table 3.9 Confirm Transaction

ID ucs
Name Confirm Transaction
Primary Actor Anonymous Seller, Anonymous Buyer, Anonymous Arbiter

Pre-Conditions

1. User has a account in Meta-Mask

2. User is accessing functionality of a Smart Contract

Post-Conditions

I. Transaction is processed

Main Success

Scenario

1. User perfroms any functionality like Placing Bid or Creating

Auction

2. Meta-Mask will show the cost to perform transaction

3. User can select to confirm or reject transaction

Alternative flows

or Extensions

l1a. If user selects Reject transaction

1. Transaction will be rejected

Frequency

Can occur as many times until user accesses the system to perform

any functionality

35

Chapter 3 Requirement Gathering and Analysis

3.15 Domain Model

Domain Model contains four objects, Anonymous User, Auctioned item, Bid and
Escrow. Zero or many Items are sold by one user and one or many items get one or many
bids. One or many items have only zero or one successful bid. Zero or many bids are placed
by one user. Only three participants can vote in escrow to release amount in order to send it
to its rightful honour. Object Bid contains attribute fake amount and encrypted amount for
example, fake ether placed by user to confuse other buyers and encrypted ether which is the
actual ether he placed on the item. Object item contains attributes name, image, description,
category, starting price of item, and auction end time of item. Anonymous user contains
attributes Ethereum_address which is user’s public key and ether. Escrow contains
information about highest bid value, buyer address (who is the winner of auction), seller
address and arbiter address (the person who finalized the auction). These participants will

vote to either release the amount to seller or refund the amount to buyer.

Places

1..1

0._*
1...1 _ < _

Fake Amount Recieves . Ethereum_address

Encrypted_Amount 11 Ether

_ =

Name
. 1.1 Image :
Has Successfol Description “Sells
Category
Starting Price
Auction_End_Time
Seller_ethereum_address

>
Fighet g omd _

Buyer_address

Seller_address 1.1 <

Arbiter_address 3 Votes for releasing amount

amount
releaseCount
refundCount

Figure 3.3 Domain Model

3.16 Database Requirements

System under development is based on the next web which is called web3. System is
decentralized and it has a massive distributed database which is called blockchain.

Blockchain is available on every computer, unlike the traditional databases which are

36

Chapter 3 Requirement Gathering and Analysis

installed on the server side. Working with decentralized applications, they assume that you
have access to the blockchain on your computer. Ethereum downloads the whole chain
ledger. In current scenario system will create its own block-chain using ganache network,
later on application can be brought on ethereum block-chain to bring it live on the public

network. Genesis Block of block-chain is:

Figure 3.4 Genesis Block

Attributes are on left side with their values in genesis block on right side.

3.16.1 Coinbase
e Itisan address (160-bit address)
e Itissetin the miner
e It is where ether go during mining

e Also called beneficiary or ether-base

3.16.2 Difficulty

A scalar value corresponding to the difficulty level of the block. This can be

calculated from the previous block difficulty level and the timestamp.

In simple words: A number that increases the mining time.

3.16.3 Extra data

An optimal free, but max 32 — byte long space to conserve smart things for eternity.

3.16.4 Gas limit

A scalar equal to the current limit of gas expenditure per block.

37

Chapter 3 Requirement Gathering and Analysis

In simple words: A number that stops too complex contracts from executing.

3.16.5 Nonce

A 64 - bit hash which proves combined with the mix-hash that a sufficient amount of

computation has been carried out on the block.

In simple words: A hash that proves that a certain block has been mined

3.16.6 Mix hash

A 256 - bit hash which proves combined with the nonce that a sufficient amount of

computation has been carried out on this block.

In simple words: Combined with the nonce it proves that proof of work is done.

3.16.7 Parent hash

The keccak 256 — bit hash of the parent block’s header in it’s entirely. It is a complete
hash of the parent block’s header including nonce and mix-hash. It points to the parent block.

The foundation of a block-chain. Only in the genesis block it can be zero.

3.16.8 Timestamp

A scalar value equal to the reasonable output of Unix’s time () at this block’s
inception. Used to verify order of the blocks within the chain, also if the time between two
blocks is getting too long the difficulty decreases. If the time is shorter then difficulty is

automatically increased.

3.16.9 Alloc.

Allows defining a list of pre-filled wallets. (Pre-allocate accounts with ether)

3.16.10 Config.

Chain configuration field. It is the core configuration which determines the block-

chain settings.
Chain-id: Tells about the id of chain

Home-stead-block: Homestead is the second major release of ethereum. The value zero

means that you are using this release.

38

Chapter 3 Requirement Gathering and Analysis

EIP: It stands for Ethereum Improvement Proposal, where developers propose ideas on how

to improve ethereum and contribute to this project.

3.16.11 Gas

Gas is a unit, which represents the amount paid for the code (Smart Contract)

execution. Efficient code consumes less gas.

New blocks created will contain same attributes. New block will contain hash of

previous block(s) which creates the whole chain.

This chapter gives complete information of requirement gathering and analysis to
clear the requirements of the system and to decide what the system should do and what the

system should not do.

The second database will be the Inter Planetary File System IPFS for storing large data like
product image and its description, to reduce the size of blockchain storage, only hash of the
product images and description will be stored in blockchain to maintain integrity of the

system.

The third database will be the Mongo-Db for storing all the product related information and
displaying that information in front end, because it is not a good idea to query the blockchain
again and again to display hundreds of products information. The products specific data
except image and description (only their hash will be stored), will be stored in blockchain as
well. The data in blockchain and Mongo-dB will remain consistent. Mongo-Db schema for

product is:

39

Chapter 3 Requirement Gathering and Analysis

var ProductSchema = new Schema {

blockchainId: Number,
name: String,

category: String,
ipfsImageHash: String,
ipfsDescHash: String,
auctionStartTime: Number,
auctionEndTime: Number,
price: Number,

condition: Number,
productStatus: Number

Figure 3.5 Mongo-Db Product Schema

40

Chapter 4 Software Design Description

“Knowledge is of no value unless you put it into practise.” Anton Chekhov (1860-1904)

Chapter 4
Software Design Description

This chapter first gives the complete description of software design. It then elaborates

the architectural design and detailed description of components of system. Finally, this
chapter elucidates the user interface design and interaction diagrams mainly system sequence

diagrams and class/contract diagram.

4.1 Introduction

Software Design Description (SDD) is the representation of a software design to be used
for communication design information to its stakeholders. It shows how the software system
will be structured to satisfy the requirements. The SDD is performed in two stages. The first
is a preliminary design in which the overall system architecture and data architecture is
defined. In the second stage, that is the detailed design stage, more detailed data structures are

defined and algorithms and codes are developed for the defined architecture.

4.1.1 Design Overview

Software design is an iterative process through which requirements are translated into
a blueprint for constructing the software. It shows how end user can interact with the system
therefore it mainly focuses on user interface design. Design begins with requirement model
and at each stage, software design work products are reviewed for clarity, correctness,
completeness and consistency with the requirements and with one another. Software design
sits at the technical kernel of software engineering and is applied regardless of the software
process model that is used. The requirements are translated clearly through designing class

diagram, sequence diagram, system sequence diagram and user interface interactions.

41

Chapter 4 Software Design Description

4.1.3 Requirement Traceability Matrix

Table 4.1 Requirement Traceability Matrix

Requirement Requirement Name Sequence Test Class/Contract Interface
Id Diagram Case Diagram

ucC:1 Create Auction Yes Yes Yes Yes

ucC:2 Place Bid Yes Yes Yes Yes

ucC:3 Reveal Bid Yes Yes Yes Yes

uC:4 Search Auction No Yes No Yes

ucC:5 Finalize Auction Yes Yes Yes Yes

ucC:6 Release Amount to Yes Yes Yes Yes
Seller

uc:7 Refund Amount to Yes Yes Yes Yes
Buyer

ucC:8 Confirm Transaction Yes No No No

4.2 System Architecture Design

4.2.1 Chosen System Architecture

The chosen architecture for this system is Ethereum Architecture as explained in
chapter 2. Interacting between components of system is shown in diagram. In current context
architecture will contain user interfaces, for data storage there will be BlockChain, Mongo-
Db and IPFS.

42

Chapter 4 Software Design Description

User
P
Mongo-Db Web Front End IPFS
<
] K

Nodejs Server

Block 3

A

Block 1 - Block 2

Ethereum Blockchain

Figure 4.1 Ethereum Architecture of Application

4.3 User Interface Design

User interface design creates an effective communication between user and a computer.
User interface design begins with the identification of user, task, and environmental

requirements.

4.3.1 Description of User Interface Design

Table 4.2 User Interface Characteristics Description

Characteristic | Description

Window Multiple windows allow different information to be displayed

simultaneously on the user’s screen.

Icon Icons different types of information. On some systems, icons represent

files; on others, icons represent processes.

Menu Commands are selected from a menu rather than typed in a command
language.
Pointing A pointing device such as a mouse is used for selecting choices from a

menu or indicating items of interest in a window.

43

Interface 1: Index Page

Chapter 4 Software Design Description

Index page shows Ethereum status and currently running auctions. User can

click on the button “Create an Auction” to go to the next page where item can be added and

auction can be created. Interface is shown in figure 4.2.

Auction House Using Smart Contracts

Create Auction

Ethereum Status

Network Address: adapoejspjep94uS03asnkdaler....

Ether: 100 eth

Categories

Cell phones and ...
Art

Products To Buy

Image Image

Details Details

Products In Reveal Stage

Image

Image

Details

Details

Figure 4.2 Index Page Interface

44

Interface 2: Create New Auction

Chapter 4 Software Design Description

This interface shows ethereum status and two forms. First form is for adding

item and second form is for item bidding detail. Interface is shown in figure 4.3.

Auction House Using Smart Contracts

Create Auction

Ethereum Status

Ether: 100 eth

Network Address: adapoejspjep94uS03asnkdaler....

Create Auction

Name:
l |

Description

Image

| | Browse |

Auction Start Time

(412212012 | (v |

Auction End Time
(47222012 | (v |

| Create Auction |

Figure 4.3 Create New Auction Interface

45

Chapter 4 Software Design Description

Interface 3: Place Bid

This page shows the detail of item currently being auctioned. User can place

bid for this item and click on “Place Bid”. This interface is shown in Figure 4.4.

Auction House Using Smart Contracts Create Auction

Ethereum Status

Network Address: adapoejspjep94u503asnkdaler....

Ether: 100 eth

Place Bid

Item Name

Enter Bid Amount

Image | |
Enter Amount to Send

Enter Secret Text
Auction Ends in .. | |

Place Bid

Figure 4.4 Place Bid Interface

46

Chapter 4 Software Design Description

Interface 4: Reveal Bid Interface

Bidders can reveal their bid after auctions in a specific time. Interface is

shown in figure 4.5.

Auction House Using Smart Contracts Create Auction

Ethereum Status

Network Address: adapoejspjep94uS03asnkdaler.. .

Ether: 100 eth

Item Name Reveal time endsin ...

Enter Bid Amount

Image | |
Enter Secret Text

[Reveal Bid |

Auction has ended

Figure 4.5 Reveal Bid Interface

47

Chapter 4 Software Design Description

Interface 5: Finalize Auction Interface

User can finalize auction using this interface. Only a person except buyer and

seller can finalize the auction. Interface is shown in figure 4.6.

Auction House Using Smart Contracts Create Auction

Ethereum Status

Network Address: adapoejspjep94u503asnkdaler....

Ether: 100 eth

Item Name

Image [Finalize Auction]

Auction has ended

Figure 4.6 Finalize Auction Interface

48

Chapter 4 Software Design Description

Interface 6: Release/Refund Amount Interface

The person who finalized the auction, buyer and seller can vote using this

interface. Interface is shown in figure 4.7.

Auction House Using Smart Contracts Create Auction

Ethereum Status

Network Address: adapoejspjep94u503asnkdaler....

Ether: 100 eth

ltem Name

Winner of auction is: asdkjabefkaj....

Image 0 of 3 people have voted to release amount to seller

0 of 3 People have voted to refund amount to buyer

Auction has ended

[Release Amount to Seller | [Refund Amount to Buyer |

Figure 4.7 Release Amount Interface

49

Chapter 4 Software Design Description

4.4 Sequence Diagram

Sequence diagram are used to model the interaction between the actors and the objects in
a system and interaction between the objects themselves. A sequence diagram shows
interactions that take place during a particular use case or use case scenario. Decentralized
controlled structure is used for making sequence diagrams. In the decentralized control
structure participating objects directly communicate with other objects without any
controlling object [4].

4.4.1 Create Auction

The user adds auction details and addProductToStore() method of smart contract is
called, Meta-Mask asks for confirmation before signing the transaction, after confirmation
and successfully storing the transaction in blockchain, item successfully added message is
returned to user. Adding product also creates an event which of new Product which stores

data in Mongo-Db as well. Sequence diagram is shown in figure 4.8

addProductToStore(_productld,_name,category,_description,image,
_auctionStartTime,_auctionEndTime,_startPrice)

————————— Message: Confirm Transaction?— — — — — — — — — —

Lonfirmation Reply-

if(result > 0)

ExecuteContractMethod()

else

Figure 4.8 Sequence Diagram Create Auction

50

Chapter 4 Software Design Description

4.4.2 Place Bid

Bid is placed by the person who wants to buy the item. Meta-Mask will ask for the

transaction confirmation. Sequence Diagram is shown in figure 4.9

Bid(_productid,_bid)

If(result > 0) :
ExecuteCo r@ctM ethod()

Figure 4.9 Sequence Diagram Place Bid

51

Chapter 4 Software Design Description

4.4.3 Reveal Bid

Users who placed bid will reveal their bids after auction end time. Sequence diagram is

shown in figure 4.10.

revealBid(_productld,_amount,_secret)

If(result > 0)
ExecuteContractMethod()

Figure 4.10 Sequence Diagram Reveal Bid

52

Chapter 4 Software Design Description

4.4.4 Finalize Auction

After bid reveal time ends, auction is finalized by the user who is not buyer or seller.
After finalizing winner is decided. Then escrow contract is created in which buyer, seller and
the person who finalized the auction will vote to either release amount to seller or refund

amount to buyer. Sequence diagram is shown in figure 4.11.

finalizeAuction(_productid)

—{onfirmation Reply e e
Ifiresult > 0)
ExecuteContractMethod() —

- = = = 8id reveal Successfully Message = = === == = = = ===
Escrowi_productld,_buyer,_seller,_arbiter)

else

Figure 4.11 Sequence Diagram Place Bid

53

Chapter 4 Software Design Description

4.4.5 Release Amount to Seller

At least two out of three persons will vote to release funds from escrow and send it to

seller. Sequence diagram is shown in figure 4.12.

AmountToSeller(_productld)

——Confirmation Reply

_______________ Vote successful message — — = - - ——————— - - releaseAmounToSeller_productid,_buyer,

_seller,_arbiter)
—————————————— Transaction Aborted Message — — - - - — - ——-——-—-

Figure 4.12 Sequence Diagram Cancel Auction

54

Chapter 4 Software Design Description

4.4.6 Refund Amount to Buyer

At least two out of three persons will vote to release funds from escrow and
refund it back to buyer in case of any product related problem. Sequence diagram is shown in
fig 4.13.

efundAmountToBuyer(_productid)

Cmmmmmmmmm— - Message: Confirm Transaction?------------

Confirmation Reply- S B
If(result > 0)
ExecuteContractMethod() -

== == =00 SUCCROS R MESSINR. = = mm e m e e Ix = . 3
VO SUCCETIN iesa refundAmountToBuyer(_productid,_buyer,

_seller,_arbiter)
- ~Transaction Aborted Message - — — - ;

else
all

Figure 4.13 Sequence Diagram Refund Amount to Buyer

4.5 Class/Contract Diagram

Smart Contracts are used instead of classes for developing decentralized applications.
Like classes, object-oriented concepts can be applied on smart contracts like inheritance.

There is no official release on how to represent smart contracts on paper. In this case we will

95

Chapter 4 Software Design Description

use class diagrams for showing smart contracts on paper and modelling the static view of
application. Programming language used in this project is solidity which is a contract-
oriented language. Concepts used in contract-oriented programming are almost the same as
they are in object-oriented programming. User defined structures are also used in smart
contracts. It is better not to create controller contracts because the more contracts to be

executed, the more cost is put on the user. Executing Contracts costs ether.

Escrow <<Enumeration>> EcommerceStore

ErT P tatu:
f—productld. uint e i +productIndex:uint
'Pbu)'“: address F— Pfoduclstams
+seller: .addrcss Sold stores: mapping
+arbiter: 'adflrcss Unsold ! productIdinStore: mapping
+$f:lul]1)t: lll)mtsed ot L) productEscrow: mapping
R e +addProductToStore(_name, _category,
+releaseAmount: mapping B SN imageLink, _descLink,

+releaseCountt: uint S - - : -
+refundAmount: mapping — _auctlorgfeta)rtT:me,_aucnonEndT:me

+refundCount: uint

: +getProduct(_productld)
towner:address +bid(_productld,_bid): payable
+escrowInfo() +revealBid(_productld, amount,_secret)
+releaseAmountToSeller(caller) +highestBidderInfo(_productld)
+refund AmountToBuyer(caller) has +totalBids(_productld)
+stringtoUint(s)
<<Struct>> +finalizeAuction(_productld)
Product +escrowAddressForProduct(_productld)
T +escrowInfo(_productld)
+na;ne S g +releaseAmountToSeller(_productld)
: +refundAmountToBuyer(_productld)

+category : string
+imagelink: string
+desclLink : string has
+auctionStartTime : uint |

+auctior? En dTilme : vint <<Struct>>
+startPrice : uint Bid
+highestBidder : address

+highestBid : uint bidder: address
+secondHighestBid: uint revealed:bool
+totalBids: uint value: vint
+ProductStatus:Status timestamp: uint

_+bids: mapping

Figure 4.14 Contract/Class Diagram

This chapter covers the complete description of software design. It has provided a
detailed description regarding architecture design, components of the system and user

interface description. Finally, interaction between the object and human actor are shown by

56

Chapter 4 Software Design Description

interaction diagram and relationship between the instances is shown by class diagram.

System testing and test cases are to be discussed in the next chapter.

57

Chapter 5 Software Implementation

Chapter 5

Software Implementation

This document describes the project implementation for developing the project planner
and scheduler.

5.1 Language Selection

® Solidity
Programming language used for the development of smart contracts

® Html/CSS
Used for designing web pages

® JavaScript
Used for scripting and validation

5.2 Tools Selection
e Visual Studio Code
o Nodejs Server
e Mongo-Db
e Inter Planetary File System
e Web Browser
¢ Meta-Mask
e Ganache

58

Chapter 5 Software Implementation

«)

Release or Refund
Fuction Call()

(13)

FinalizeAuction()

5.3 Application Flow
15
EcommerceStore escrow()Lb Egcmﬁ
(Smart Contract) (Sma
Contract)
w
] 18
(3) Meta-Mask Signs € ~
P » Transaction with User
AddProductToStore() Private Key (10)
revealBid()
Transaction Pass/Fail message Bid()

Create Auction Page

A

(2)

Index page

(1)

Seller

(9), (11), (14), (19)

Product Detail

Page

(12)

Arbiter

(16 /

Index Page

(6)

Buyer

Figure 5.1 Application Flow

59

Chapter 5 Software Implementation

5.4 Application Screenshots
Screenshot for Index Page

Auction House Using Smart Contracts List tem

Ethereum Status

Your address: 0xf60661d09e958369¢cc8Tb358c4e5aBbda48011b8
Your wallet balance: 99.3332314 ETH

Categories Products To Buy

Art

Books

Cameras

Cell Phones & Accessories
Clothing

Computers & Tablets

Gift Cards & Coupons
Musical Instruments & Gear

Pet Supplies Iphone 8
Pottery & Glass Starting Price: = 1.1 Ether
Sporting Goods Auction End Time: Auction has ended

Tickets Details
Toys & Hobbies
Video Games

Products In Reveal Stage

Figure 5.2 Index Page Screen

Screenshot for Create Auction

Auction House Lising Smart Contracts Listltem How To

Ethereum Satus

Wour acres
Vour walet balarce 59 33323 ETH

List an item

Mame

Description

Upsosd | Choose File | 1o fie chosen

Category | An v

Time

Time

Figure 5.3 Create Auction Screen

60

Chapter 5 Software Implementation

Screenshot for Place Bid

Auction House Using Smart Contracts List ltems

Ethereum Status

Your address. (xfG0661d09e958360cc8Tb358c4e5aB8bdad8011b8
Your wallet balance: 992974309 ETH

Product Details

Start Price: = 2.1
Your Bid

Enter Bid Amount
Enter Amount To Send

- Enter Secret Text
Auction ends in 7 minutes

A ot il

Submit Bid

Product Description

asdasdasdasdasdagewrsdgbovbdth
Figure 5.4 Place Bid Screen

Screenshot for Reveal Bid

Auction House Using Smart Contracts List ltems

Ethareum Status

Your address: (xb953b15da3f607e144112b43d770139075be8B90
Your wallet balence: 96 9714544 ETH

Product Details

Start Price: = 2.1
Reveal Bid

Auction ends in 2 minules are lafl
for revealing all bids
Amaount You Bid

Enter Secret Text

Reveal Bid

Auction has ended

Product Description

dasd: Sk bdth

Figure 5.5 Reveal Bid

61

Chapter 5 Software Implementation

Screenshot for Finalize Auction

Auction House Using Smart Contracts List tems

Ethereum Status

Your address: 0xb853b15da3f697e144f12b43d770139075ba8890
Your wallet balance: 86.9714544 ETH

Product Details

Start Price: = 2.1

Auction has ended

Product Description

asdasdasdasdasdagewrsdgbcvbdth

Figure 5.6 Finalize Auction Screenshot

Screenshot for Refund and Release Amount

Auction House Using Smart Contracts List ltems

Ethereum Status

Your address: (nad82aeb0dd44d5187776d%eBaBb2blaaTiaTcdd
Your wallet balance: 988825627 ETH

Product Details

Start Price: = 2.1

Auction has ended. Product sold to Oxb853b15da3f697e144112b43d770139075be8880 for = 2.1 The money is in the
escrow. Two of the three participants (Buyer, Seller and Arbiter) have to either release the funds to seller or refund the
money to the buyer

Buyer: 0xb953b15da3f607e144112b43d770139075be8890

Saller: 0xf60661c09e958369ccB7b358c4e5a8bdad8011b8

Arbiter: OxadB82aeb0dd44d5187776id%e88b2b0asTaTcad

Amount in escrow is: = 2.1

0 of 3 participants have agreed to release funds

0 of 3 participants have agreed o refund the buyer

Release Amount to Seller Refund Amount to Buyer

Auction has ended

Product Description

d. d. gbovbdth

Figure 5.7 Refund and Release Amount Screenshot

62

Chapter 6 Software Testing

Victory belongs to the most preserving.” Will Durant (1769-1821)

Chapter 6
Software Testing

This chapter describes software testing and software testing processes. This chapter

further elaborates the acceptance test cases which are used to test the functional and non-

functional requirements after coding of software

6.1 Introduction

Software test document involves the documentation of artefacts that should be
developed before or during the testing of software. Software testing is the process of
evaluating a system or its component(s) with the intent to find whether it satisfies the
specified requirements or not. Testing is executing a system in order to identify any gaps,

errors, or missing requirements in contrary to the actual requirements.

6.1.1 Test Approach

Manual testing includes testing a software manually without using any automated tool
or any script. The tester takes over the role of an end-user and tests the software to identify
any unexpected behaviour or bug. There are different stages for manual testing such as unit
testing, system testing, and user acceptance testing. Testers use test plans, test cases, or test
scenarios to test a software to ensure the completeness of testing. Manual testing also
includes exploratory testing, as testers explore the software to identify errors in it. Unit
testing is the process of testing program components, such as methods or object and classes.

Individual method or function are simplest type of the component.

Test-first development is an approach to development where tests are written before the
code to be tested. Small code changes are made and the code is refactored until all tests

execute successfully.

63

Chapter 6 Software Testing

6.2 Test Plan

Test planning is an activity that ensures that there is initially a list of tasks and
milestones in a baseline plan to track the progress of the project. Test plan determines the
scope and the risk that need to be tested and are not to be tested. Deciding fail and pass
criteria.

6.2.1 Testing Tools and Environment

This setup consists of the physical setup which includes hardware, and logical setup
that includes operating system, client operating system, blockchain database, front end
running environment, browser (if web application), or any other software components

required to run this software product.
6.3 Test Cases

6.3.1 Create Auction

Table 6.1 Create Test Case

ID T1

Description Random Item details will be added to the system, and transaction will

be executed

Tester User
Setup Login through MetaMask
Instructions: 1. Select create new auction

Enter item name Iphone X

Enter item description efg

2
3
4. Add item image (iphone.png)
5. Enter price (1 ether)

6. Add auction start time (current time)

7. Add auction end time (20 mins after current time)

8. Press Create Auction button

Expected Results | Message will be generated that you have successfully added the item

Actual Result As expected

Status Pass

64

Chapter 6 Software Testing

6.3.2 Place Bid
Table 6.2 Place Bid Test Case
ID T2
Description Random Bid will be placed for the item.
Tester User
Setup Login through MetaMask, item is already added to the system

Instructions:

1. Enter Bid Amount (2 ether)

2. Enter Amount to Send (3 ether)
3. Enter Secret Text (abcdefgh)

4. Press Place Bid

Expected Message will be generated that you have successfully placed bid
Results

Actual Result | As expected

Status Pass

6.3.3 Reveal Bid

Table 6.3 Reveal Bid Test Case

ID T3

Description The amount that was placed as a bid on item will be revealed

Tester User

Setup Login through MetaMask, User has added bid for the item before

auction time ends

Instructions:

1. Enter Bid Amount (2 ether)
2. Enter Secret Text (abcdefgh)

Expected Results | Message will be generated that your bid is successfully revealed

Actual Result

As expected

Status

Pass

65

6.3.4 Finalize Bid

Table 6.4 Finalize Bid Test Case

ID T4

Description A user except buyer or seller will finalize the auction
Tester User

Setup Login through MetaMask, Bid reveal time is over

Instructions:

1. Press Finalize Auction Button

Expected Results

Message will be generated that auction is finalized successfully and

winner is decided

Actual Result

As expected

Status

Pass

Chapter 6 Software Testing

6.3.5 Release Amount to Seller

Table 6.5 Release Amount to Seller Test Case

ID T5

Description User will vote for release amount to seller

Tester User

Setup Login through MetaMask and use three accounts of buyer, seller

and arbiter

Instructions:

1. Select one of three accounts and press Release amount to
seller

2. Repeatstep 1

Expected Results

Message will be generated that amount has been released from

escrow and sent to its rightful honour

Actual Result

As expected

Status

Pass

66

Chapter 6 Software Testing

6.3.6 Refund Amount to Buyer

Table 6.6 Refund Amount to Buyer Test Case

ID T6

Description User will vote for refund amount to buyer

Tester User

Setup Login through MetaMask and use three accounts of buyer, seller

and arbiter

Instructions:

1. Select one of three accounts and press Refund amount to
buyer
2. Repeatstep 1l

Expected Results

Message will be generated that amount has been released from

escrow and sent to its rightful honour

Actual Result

As expected

Status Pass
6.3.7 Search Auction
Table 6.7 Search Auction Test Case
ID T7
Description User will search the item being auctioned by using category
Tester User
Setup Login through MetaMask

Instructions:

1. Select category Cell Phones and Accessories

Expected Result

Items related to that category will be displayed

Actual Result

As expected

Status

Pass

67

Chapter 6 Software Testing

This chapter has given the complete description of a software testing of the system. It has
elaborated the test case approach, test plan and test case of the features that need to be tested.
This chapter further explained the testing approaches, tools and environment for testing a

system, and finally contains the detailed description of the test cases of the product.

68

Chapter 7 Conclusion and Future Enhancements

Victory belongs to the most preserving.” Will Durant (1769-1821)

Chapter 7

Conclusion and Future Enhancements

This document describes the project conclusions and future enhancements i.e. what

type of new features can be added with time.

7.1 Summary

This application has removed the need of 3™ party to run web application. This

application is completely decentralized using the power of blockchain technology. People can
buy and sell products without depending upon any third-party service like eBay. Smart
Contracts allow this application to run in trust-less and decentralized environment.

7.2 Conclusion

People no longer need to provide their private information like name, password, email
address to access features of website.

People can buy and sell products without giving away their private information to
anyone.

Large data like product images and description are not stored in blockchain. IPFS is
used to store them and their link in the form of hash is stored in the blockchain. As a
result, there will be no burden on blockchain to store large amounts of data.
Blockchain is not used to query products and display them on web. Mongo-Db is used
instead. There may be thousands of products on the website, so querying them from
blockchain again and again will be very much hectic. The problem of handling large
amount of data is solved

Multisignature Escrow service in the form of Smart Contract is implemented to avoid
any fraud from seller or product related problems

Need for third party to run a website is removed.

7.3 Future Enhancements

This technology is still under development and research. Future enhancements can be

Escrow service should be created in a different way in future

Blockchain application for android are not yet possible. But in future it will be, so this
application can be developed for iOS and android

Products tracking and shipping service can also be implemented to help user track his
package

69

References

References

[1] P. Mohapatra. “Chapter 10 Software Requirement Specifications” in Software
Engineering lifecycle approach, 1% edition, New Age International (P) Ltd., Ansari Road,
New Delhi: New age international (P) limited, publishers, 2010, pp. 211-228.

[2] P. Mohapatra. “Chapter 14 Object-oriented Design™ in Software Engineering A lifecycle
approach, 1* edition, New Age International (P) Ltd., Ansari Road, New Delhi: New age
international (P) limited, publishers, 2010, pp. 295-321.

[3] Craig Larman “Chapter 6 Use cases and Functionl Requirement” in Applying UML and
Patterns, 3" edition, Don O’Hagan, 75 Arlington Street Suite 300 Boston MA 02116 USA:
Addison Wesley Publishing, 2004, pp. 115-174.

[4] Yogesh Singh, Ruchika Malhotra “Chapter 6 Object-Oriented Design” in Object-
Oriented Software Engineering, 3" edition, Asoke K. Ghosh, Rajkaml Electric Press, Plot no.
2, phase 4, HSIDC, Sonepat, Haryana: PHI Learning Private Limited, 2012, pp. 203-259.

[5] Satoshi Nakamoto, “Bitcoin White paper”. Internet: https://bitcoin.org/bitcoin.pdf, Oct.
31, 2008.

[6] Eric Petroff, “Ethereum White Paper”. Internet: https://www.ethereum.org, July 30, 2013.

[7] John V. Duca, “Subprime Mortgage crisis”. Internet:

https://www.federalreservehistory.org/essays/subprime_mortgage_crisis, July 10, 2013

[8] Investopedia Staff, “The Collapse of Lehman Brothers” Internet:

https://www.investopedia.com/articles/economics/09/lehman-brothers-collapse.asp,
December 11, 2017

[9] Ethereum Project Solidity team, “Solidity Documentation” Internet:

https://solidity.readthedocs.io/en/develop/, Feb 1, 2017

70

References

User Guide

Environment Setup

1.
2.

Install Ganache Blockchain GUI software from https://truffleframework.com/ganache
Download Meta-Mask Plugin from https://metamask.io. It is only available for
Google Chrome and Mozilla FireFox.
Create Truffle Project using windows Command line using these commands:

e mkdir any name (give name to folder)

e cdany name

o truffle unbox webpack

e rm contracts/ConvertLib.sol constracts/Metacoin.sol

e npm install
Download Inter Planetary File System from https://dist.ipfs.io/#go-ipfs

e Enter these commands in cmd

e |Ipfsinit

e Ipfs daemon (to start ipfs at localhost)
Download Mongo-Db community edition from:
https://www.mongodb.com/download-center. For installation follow tutorial on this
link: https://docs.mongodb.com/master/tutorial/install-mongodb-on-windows/
User any editor for coding. | recommend Visual Studio Code. Download from here:
https://code.visualstudio.com/
Copy Private key of any account from Ganache and import it in to Meta-Mask to
create account.
Your project directory should look like this:

B app
& build

B contracts

migrations

test

8]

I§ node_modules
¥

6

.babelrc

) .eslintignore

) .eslintrc
box-img-lg.png
box-img-sm.png

sl package-lockjson

(sl package,json

M products

B serverjs

B trufflejs

@ webpack.configjs

Figure 7.1 Project Directory

71

References

9. Go to package.json file and enter this lines:
e “ethereumjs-util”: “5.1.2”
e “nodemon”: “*1.11.0”
e “mongoose”: “4.11.7”
o “ipfs-api”: “18.1.1”
e Go to cmd and enter npm install
10. Your environment will be ready. For integration of mongo-Db and blockchain create
a server.js file and use these commands:
var ecommerce_store_artifacts = require(’./build/contracts/EcommerceStore.json’)
var contract = require(‘truffle-contract’)
var Web3 = require(‘web3")
var provider = new Web3.providers.HttpProvider("http://localhost:7545")
var EcommerceStore = contract(ecommerce_store_artifacts)
EcommerceStore.setProvider(provider)

//Mongoose setup to interact with the mongodb database

var mongoose = require('mongoose’)

mongoose.Promise = global.Promise

var ProductModel = require('./product’)
mongoose.connect('mongodb://localhost:27017/Auction_dapp’)

var db = mongoose.connection

db.on(‘error’, console.error.bind(console, ‘'MongoDB connection error:'));

I/ Express server which the frontend with interact with
var express = require(‘express’);
var app = express()

app.use(function (req, res, next) {
res.header(‘Access-Control-Allow-Origin’, *")
res.header(‘'Access-Control-Allow-Headers', 'Origin, X-Requested-With, Content-
Type, Accept)
next()

by

app.listen(3000, function() {
console.log('Auction House Ethereum server listening on port 3000!");

1)

e No need to use same names like Ecommerce or auction. You can use your
own names according to your project

72

References

Open 3 cmds

In first cmd give command “mongod”

In second cmd give command “mongo”

In third cmd give command “node server.js”
Mongo-Db server will start

11. Run front end using command in cmd: “npm run dev”

12. It is recommended to install Git bash for running commands instead of using cmd.

13. For coding smart Contracts use this online compiler: https://remix.ethereum.org/ and
then save the file in your project contracts directory

14. After coding your smart contracts, start ganache blockchain using command:
“truffle migrate --compile-all --reset --network development”

73

