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General Abstract 

Primate testis acts as the main source for androgen and sperm under the functional 

regulation of pituitary gonadotropins. The understanding of the functional regulation of 

adult primate testis as well as the developmental aspects of maturation during puberty in 

primates is still not complete. The present thesis aimed to assess the localization and 

functional significance of kisspeptin signaling in adult non human primate testis as well 

as to characterize the pubertal and testicular development in a New World monkey. 

Rhesus macaque (Macaca mulatta) and common marmoset (Callithrix jacchus) 

were employed as primate models. To sort out the functional significance of 

kisspeptin signaling in the primate testis in vivo pharmacological approach was used by 

employing chemical hypophysectomy by using acyline (a GnRH receptor antagonist) in 

adult rhesus monkeys (n=4). Animals were given iv boluses of kisspeptin (50µg) 

and kisspeptin (50µg) with hCG (50IU). Blood samples were taken and 

testosterone and LH was analyzed in the plasma by specific RIAs. To find out 

the testicular localization of kisspeptin receptor immunocytochemistry was 

performed on paraffin embedded testis tissue from adult rhesus (n=2) and 

marmoset monkey (n=2) whereas for testicular localization of kisspeptin 

immunocytochemistry was performed on paraffin embedded testis tissue from adult 

rhesus monkey (n=2). 12 sections from each testis were used for immunocytochemical 

analysis. To characterize the pubertal testicular development, immature common 

marmoset (n=48) were observed for a period of 13 months for monthly changes 

in body weight, testis volume and serum testosterone. At the end of the study animals 

were sacrificed and testis tissue was collected and processed for paraffin embedding. 

PAS staining was conducted. Histological and morphometric data were 

determined. Results of the experiments demonstrated that kisspeptin, given as an 

intravenous bolus enhanced stimulated plasma testosterone in pituitary clamped adult 

male rhesus monkeys whereas the same bolus had no effect on the basal levels of plasma 

testosterone. The immunocytochemical localization revealed that kiss1r positive areas 

were present at the periphery of the seminiferous tubules in the adult rhesus testis. Same 
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pattern of localization for kiss1r was found in adult marmoset testis tissue. Whereas the 

kisspeptin like immunoreactivity was found to be present in the interstitial area of the 

adult rhesus testis tissue. The detailed examination revealed that the kiss1r localization 

was present around the spermatogonial stem cells (A spermatogonia) which are present at 

the periphery of the seminiferous tubules. While the kisspeptin like immunoreactivity 

was observed in the peritubular myoid cells, Leydig cells and underlying layers of 

basement membrane. Developmental studies showed that the start of pubertal activation 

in common marmoset occur around 7 months of age and was characterized by sudden 

peaks of serum testosterone accompanied by a rapid increase in the testis volume. 

Morphometric analysis revealed that the pubertal activation created a lumen in the center 

of seminiferous tubules. The germ cell compliment was observed to divide mitotically 

after the initial increase in serum testosterone depicted by presence of B spermatogonia in 

the seminiferous tubules after 7 months of age. The complete spermatogenesis 

characterized by the presence of sperm in epididymis was first observed around 12 month 

of age in the common marmoset testis. Although testis volume continued to grow after 12 

months of age, the qualitative maturity of testicular functions was achieved at one year of 

age in the male common marmoset. 

The present findings implicate that an active paracrine kisspeptin-kisspeptin 

receptor signaling is present in the adult primate testis; where the kisspeptin can enhance 

stimulated testosterone thus hinting towards an indirect action on the Leydig cell. The 

finding of the tubular immunolocalization of the kisspeptin receptor in primate testis 

where Sertoli cells were found to be positive further extends our in-vivo results and 

affirms the assumption of an indirect action of kisspeptin on Leydig cell via the Sertoli 

cells. However to understand the true nature of this signaling cascade further 

investigations at the cellular level are required. The developmental kinetics of the process 

of puberty including pubertal activation and testicular development in common marmoset 

mimics higher primate like pattern. Although the endocrine correlates for these 

developmental events need to be further substantiated in common marmoset. 



 
 

18 
 

 

 

 
 
 
 
 

         Chapter 1 
                                                                                           

                                                                        
                                                                          
 

  General Introduction 
 

 

 

 

                                                     
 

 

 

 

 

 

 

 



  Chapter 1  

19 
 

  
 General Introduction 

 

 

Reproductive functionality in primates is achieved by the endocrine 

communication between hypothalamus, pituitary and gonads. This interplay of hormones 

imposes a functional regulation which ensures the maintenance of reproductive capacity. 

Gonadotropin releasing hormone (GnRH) a decapeptide, is synthesized in hypothalamic 

neurons called GnRH neurons, and is released in the pituitary portal circulation 

(Silverman et al., 1977; Silverman et al., 1982). At the pituitary, GnRH acts on the 

gonadotrophs which expresses GnRH-receptor (GnRH-R). The GnRH-GnRH-R coupling 

at the gonadotroph results in synthesize and secretion of gonadotropins into the portal 

circulation (Knobil et al., 1980). Two types of gonadotropins are secreted in response 

towards a specific tone and frequency GnRH release namely luteinizing hormone (LH) 

and follicle stimulating hormone (FSH) (Kamberi et al., 1971; Neill et al., 1977). LH and 

FSH once released from pituitary reach gonads via peripheral circulation and acts on the 

Leydig cells and Sertoli cells, respectively. LH ensures the synthesis and secretion of sex 

steroids (steroidogenesis) from Leydig cells (Ascoli et al., 2002). FSH on the other hands 

is critical for proliferation of the developing Sertoli cell and affects the spermatogenesis 

quantitatively (Hackert and Griswold, 2002; Plant and Marshall, 2001). Testosterone is 

the primary steroid synthesized and released by the Leydig cells in response to the LH 

(Eik-Nes and Hall, 1965). Constant high levels of serum testosterone down regulates 

hypothalamic pituitary axis in terms of LH and the low serum levels of testosterone acts 

as a positive inducer of GnRH-LH secretion in male primates. Apart from the endocrine 

regulation a particular type of local intercellular communication also exists in the primate 

testis known as paracrine signaling. Paracrine signaling ensures the local interaction of 

testicular cells in delivering coordinated state of action to achieve the fine balance 

between the processes of steroidogenesis and spermatogenesis (Schlatt et al., 1997). 

The functional competence of an adult primate testis depends upon the 

developmental events during fetal and postnatal life. The postnatal phases of 
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development in higher primates include infantile, juvenile, pre-pubertal and pubertal and 

adult stages (Plant and Witchel, 2006). The major developmental events occur in 

infantile, juvenile and pre-pubertal phases whereas the main maturational events occur 

during the pre-pubertal and pubertal phase (Marshall and Plant, 1996; Waites et al., 

1985). Developmental events include cellular proliferation and rearrangement 

(Simorangkir et al., 2012). The maturational events include the initiation of the functional 

capacity of the testicular cells. The functional capacity is in turn characterized by the 

expression of nuclear receptors and the secretory response towards particular 

intratesticular stimuli (Griswold, 1988; McKinnel et al., 2001; Majumdar et al., 2012). 

The testicular developmental and maturational periods are generally characterized by 

intensive cellular proliferation, cell movement, cellular rearrangement in the juvenile 

phase of development whereas the attainment of functional capacity is observed after the 

onset of puberty (Schlatt et al., 1995). All these above mentioned events lead to a 

considerable increment in the testicular size during pubertal development and are 

anatomically depicted by a significant increase in the testicular volume (Plant et al., 

2005).  

The current thesis focuses on functional and developmental aspects of primate 

testis and accordingly the next sections will focus on the functional anatomy of the adult 

primate testis, the primate pubertal development, involvement of kisspeptin-kisspeptin 

receptor signaling in puberty and the postnatal and pubertal testicular development in 

primates.  

 

Primate testis 
 

Primate testis serves as a fundamental source for the production of male gametes 

(sperm) and testosterone through the process of spermatogenesis and steroidogenesis, 

respectively, under the influence of pituitary gonadotropins. Anatomically primate testis 

is divided into two functionally distinct compartments namely tubular and interstitial 

compartment (Schlatt et al., 1997). Tubular compartment contains Sertoli cell and 

developing spermatogonia whereas the interstitial compartment bears Leydig cells, 
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macrophages, sympathetic innervations and blood vessels. Sertoli cell serves as nurse cell 

for the developing spermatogonia whereas Leydig cell acts as the main source of 

steroidogenesis. Sertoli cells and Leydig cells are functionally regulated by FSH and LH, 

respectively. LH acts on Leydig cells through LH receptors (LHR) and initiates the 

process of steroidogenesis (Ascoli et al., 2002). Testosterone is the principal androgen 

synthesized through the side chain cleavage of cholesterol in the mitochondria of Leydig 

cell by the steroidogenesis (Preslock and Steinberger, 1977). The principal action for 

FSH is the control of Sertoli cell proliferation during development and maintenance of 

spermatogenesis quantitatively during adulthood (Plant and Marshall, 2001). 

Testosterone is the prime regulator of the testicular microenvironment during pubertal 

development and is also responsible for the maintenance of spermatogenesis qualitatively 

(Marshall et al., 1986; Schlatt et al., 1995; Weinbauer et al., 1988).  

Apart from endocrine regulation of testicular functions via pituitary 

gonadotropins, a distinctive intercellular communication exists between the testicular 

cells. This intra-testicular intercellular communication which is also known as paracrine 

signaling, plays an important part in the testicular development as well as the normal 

functioning of the adult testis (Schlatt et al., 2007). The Leydig cells inside the interstitial 

compartment release testosterone, the Sertoli cells which are present in the tubular 

compartment express androgen receptor (Suarez-Quian et al., 1999). In order to act on the 

Sertoli cell, the testosterone must reach the tubular compartment by crossing peritubular 

myoid cells and basement membrane. Spermatogenesis, a testicular process through 

which male spermatogonial stem cells, which are present at the periphery of the 

seminiferous tubules, are transformed through mitotic and meiotic division into motile 

sperm with the capacity to fertilize the ovum (de Kretser et al., 1998). During 

spermatogenesis, the developing spermatozoa are in direct communication with the 

Sertoli cells and the developmental requirements of the germ cells are met through the 

secretory activity of the Sertoli cells (de Kretser et al., 1998). Sertoli cell expresses 

androgen receptor as the key events during the process of spermatogenesis are dependent 

and/or regulated by testicular androgens indirectly through Sertoli cells (Rey et al., 2009). 

Testosterone and dihydrotestosterone (DHT) are the main androgens types which are 

present at high concentration inside the seminiferous tubules ((Preslock and Steinberger, 
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1977). This high intra-tubular concentration of androgens is mainly achieved by androgen 

binding protein secreted by Sertoli cells (Ritzen et al., 1982; Galdieri et al., 1984). 

The functional aspect of compartmentalization in the primate testis is to provide 

the proper environment and suitable conditions for the successful completion of 

steroidogenesis and spermatogenesis separately (Dym and Fawcet, 1970; Schlatt et al., 

1997). Although these two compartments are present in close proximity, a cytological 

barrier exists between these two compartments which not only separates them 

functionally but is also responsible for highly sensitive inter-compartmental 

communication through the exchange of chemicals via an active transport mechanism 

(Pelletier and Byers, 1992). The cell types and extracellular structure responsible for this 

barrier include peritubular myoid cells, basement membrane and Sertoli cells. Peritubular 

myoid cell acts as the first layer of this barrier and completely encircles the tubular 

compartment or the seminiferous tubules. Peritubular myoid cells are followed by 

basement membrane and Sertoli cells. Adjacent Sertoli cell creates junctional complexes 

and thus form another barrier known as blood testes barrier (Lui et al., 2003; Setchell, 

2008). Sertoli cell performs multiple functions in the tubules and is the main cell type 

responsible for establishing specific intra-tubular environment. Sertoli cells along with 

peritubular myoid cells and basement membrane work together to achieve the highly 

sensitive equilibrium created by this barrier for the proper functioning of the testis (Dym 

and Fawcet, 1970).  

Apart from testosterone, numerous proteins and growth factors have been shown 

to act as paracrine factors in testis. Like the Sertoli cell secreted factors which include 

transforming growth factor (TGF), insulin like growth factor (IGF), interleukines (IL), 

fibroblast growth factor (FGF) and stem cell factor (SCF) and peritubular myoid cell 

secreted factors like TGFβ, IGF, leukemia inhibiting growth factor (LIF) and peritubular 

factor that modulates Sertoli cell function (PModS) (Mullaney and Skinner, 1991; 

Skinner, 1991; Skinner et al., 1991). The proposed actions of these growth factors in the 

testis include modulation of cellular growth and proliferation as well as the modulation of 

steroidogenesis. Thus paracrine communication is highly important for the proper 



  Chapter 1  

23 
 

functioning of the adult testis, if this inter-compartmental communication is disrupted or 

compromised; the adult testis ceases to function properly.  

Primate puberty is a complex process of temporal growth involving integration of 

hypothalamus, pituitary and testis (Ojeda et al., 1980; Plant and Berker-Gibb, 2004). 

Pubertal testicular development significantly affects the future functional capacity of the 

testis during the adulthood. A timely progression into pubertal phase of development is 

vital for the normal functionality of the adult primate testis both qualitatively and 

quantitatively. 

 

Puberty in male primates 

 

Puberty is the temporal process of development which is characterized by the 

activation of hypothalamic GnRH neurons at a specific age during postnatal development 

(Ojeda et al., 1980; Plant, 2001; Plant and Berker-Gibb, 2004). The juvenile phase is 

characterized by a hypogonadotropic state. The level of GnRH and the GnRH mRNA in 

the hypothalamus of juvenile monkey were found to be similar to those in adult monkey 

brain implying that the release of GnRH, instead of the synthesis, in the juvenile period 

of development is compromised (Fraser et al., 1989). As the control of pulsatile GnRH 

release occurs within the hypothalamus (Plant, 1985). The neurobiological mechanism by 

which this restraint is implied is known as pre-pubertal hypothalamic restraining brake 

(Plant and Berker-Gibb, 2004). This brake is achieved by the combined action of many 

putative neurotransmitters and neuropeptides. γ-Amino butyric acid (GABA, an 

inhibitory neurotransmitter), neuropeptide Y (NPY) and glutamate (an excitatory amino 

acid) have been shown to play major role in establishing this pre-pubertal hypothalamic 

restraining brake on GnRH neurons (Terasawa and Fernandez, 2001). 

 Although it was found that the pubertal activation can be achieved by the 

chemical stimulation of the hypothalamus (Plant et al., 1989). The precise 

neurobiological trigger was yet to be discovered until 2003. In 2003, a neuropeptide 

named kisspeptin along with its G-protein coupled receptor was demonstrated to be 
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involved in the pubertal activation of GnRH neurons in humans and primates (Terasawa 

et al., 2013). It has been shown that the kisspeptin action, via a G-protein coupled 

receptor (GPR54) present on the GnRH neurons, results in the pulsatile release of GnRH 

(Shahab et al 2005). This mode of release of GnRH is entrained by a neuro-biological 

setup known as GnRH pulse generator. Activation of GnRH pulse results in the 

generation of corresponding LH pulses from anterior pituitary gland (Plant, 2008). By 

binding to LH receptors, present on the Leydig cell membrane, these LH pulses are 

responsible for the activation of the process of steroidogenesis inside the Leydig cells 

(Ascoli et al., 2002). The sudden rise in serum testosterone acts on Sertoli cells present in 

the seminiferous tubules. Sertoli cells are expressing androgen receptor during this 

specific time of pubertal activation (Majumdar et al., 2012). This intra-testicular action of 

testosterone is very significant as the Sertoli cells show rapid response by attaining 

functional activity which is characterized by an increase in the cytoplasmic area and the 

initiation of secretory activity. Secretory activity is characterized by fluid secretion from 

Sertoli cells (Sharpe et al., 2003). Expression of androgen receptor by Sertoli cells during 

the pubertal onset is very important as the levels of testosterone are also high during early 

postnatal period (neonatal period) but Sertoli cells do not express steroid receptors during 

that period (Majumdar et al., 2012). The formation of lumen and the rapid increase in the 

Sertoli cell size eventually increase the seminiferous tubule diameter (Plant et al., 2005). 

The first sign of puberty at the testicular level is the rapid increase in the testicular 

volume. In parallel the A-spermatogonia, the spermatogonial stem cells present at the 

periphery of the seminiferous tubules also start to divide mitotically and the presence of 

B spermatogonia are observed. These events at the testicular axis are subsequent to the 

hypothalamic activation of the GnRH neurons (Plant, 2008).  

However, from testicular perspective the process of puberty is defined as the 

attainment of the ability of the testes to produce and release mature sperm. The process of 

spermatogenesis is characterized by mitotic and meiotic cell divisions of the 

spermatogonia. The process of meiosis needs to be performed in an immunologically 

controlled environment as the haploid sperm can initiate an immunogenic response from 

the macrophages present in the interstitial area of the testes (Meinhardt and Hedger, 

2011). To create the immunologic barrier inside the seminiferous tubule, Sertoli cell 
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creates tight junctional complexes between adjacent Sertoli cell membrane, these tight 

junctions forms the blood testes barrier (Lui et al., 2003; Setchell, 2008). Testosterone is 

responsible for the formation of this blood testes barrier by the Sertoli cells (McLachlan 

et al., 2002). Until the establishment of the blood testes barrier, the process of 

spermatogenesis could not proceed beyond the first mitotic divisions. For these reasons 

after the hypothalamic GnRH pulse activation, the presence of sperm either in the tubule 

lumen or in the epididymis is not observed immediately (Schlatt et al., 1995).   

Initiation of puberty in primates is triggered by resurgence of GnRH pulsatility 

which then leads to pulsatile LH release and gonadal development (Plant, 2001). GnRH 

pulsatility itself is regulated by a number of neuronal signals including glutamate, GABA 

and NPY. However recently, there has been much excitement about the central role of 

kisspeptin signaling which has been shown to be the most potent drive to the GnRH 

neurons (Terasawa et al., 2013). Therefore the next section represents a brief description 

on the basic biology of the kisspeptin-kisspeptin receptor signaling. 

 

Basic biology of kisspeptin and kisspeptin receptor signaling 
 

 Kisspeptin is a 145- amino acid precursor peptide encoded by KISS1 in humans. 

Endogenous forms of kisspeptin comprising 54, 14 and 13 amino acids in length have 

been isolated from human placenta (Murphy, 2005; Hilden et al., 2007). Chemically 

kisspeptins are included in RFamide peptide family; a structurally related group of 

peptides terminating with an arginine-phenylalanine-amide at their carboxy terminal 

(Dockery, 2004). The kisspeptin receptor in humans (KISS1R) is a 398 amino acid G-

protein coupled receptor with a short extracellular domain, seven transmembrane 

domains linked by extracellular and intracellular loops and an intracellular domain (Lee 

et al., 1999).  

Three concurrent discoveries revealed the natural ligand to this receptor as the 

peptide product of the metastasis suppressor gene Kiss1, termed kisspeptin (Kotani et al., 

2001; Muir et al., 2001; Ohtaki et al., 2001). The minimum sequence necessary to 
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activate KISS1R is the common C-terminal decapeptide which is commonly shared by all 

endogenous forms of kisspeptin peptide having different fragment length. Kiss1 is 

expressed in the CNS, pituitary, ovary, testis, and pancreas but is highly concentrated in 

placenta whereas Kiss1R is expressed in the CNS, testis, ovary, pancreas, intestine, liver, 

pituitary and placenta (Kotani et al., 2001; Muir et al., 2001; Ohtaki et al., 2001; Funes et 

al., 2003; Terao et al., 2004; Mead et al., 2007). Kiss1 is expressed by neurons in the 

hypothalamus and KISS1R is found to co-localize with GnRH (Irwig et al., 2004; Han et 

al., 2005; Kirilov et al., 2013). The stimulatory effect of kisspeptin on HPG axis is 

mediated via hypothalamic GnRH, as central or peripheral effects of kisspeptin are 

blocked by GnRH antagonist administration (Gottsch et al., 2004; Irwig et al., 2004; 

Matsui et al., 2004; Shahab et al., 2005).  

 The nomenclature for the kisspeptin and kisspeptin receptor has been officially 

recommended by the International Union of Basic and Clinical Pharmacology Committee 

on Receptor Nomenclature and Drug Classification. Human kisspeptin gene was 

designated as KISS1 where as non human kisspeptin gene was designated as Kiss1. The 

kisspeptin protein names for human and non human were given as KISS1 and Kiss1, 

respectively. For the kisspeptin receptor, KISS1R was designated for human gene 

whereas Kiss1r was designated for non-human gene (Kirby et al., 2010)  

 

Kisspeptin-Kiss1r signaling in primate puberty 
 

 Role of kisspeptin-kisspeptin receptor signaling in primate pubertal activation was 

discovered in 2003, when it was shown that mutations in KISS1R (GPR54) gene caused 

idiopathic hypogonadotropic hypogonadism (IHH) in humans (DeRoux et al., 2003; 

Funes et al., 2003; Seminara et al., 2003). Humans with inactivating mutations (loss of 

function mutation) in KISS1R have low gonadotropin levels, lack LH pulses and fail to 

undergo puberty (Seminara et al., 2003). Since 2003, a number of studies have shown 

that IHH is caused by inactivating mutations of KISS1R in humans (Lanfranco et al., 

2005; Semple et al., 2005; Pallais et al., 2006). On the other hand it has also been shown 

that activating mutations (gain of function mutations) of KISS1R cause precocious 
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puberty in humans, where the subjects experience puberty at much early age (Teles et al., 

2008). 

 The hypothalamic Kiss1 expression is increased during puberty in castrated non 

human primates and the intravenous (iv) administration of kisspeptin significantly 

enhances the serum LH levels in juvenile agonadal male rhesus monkeys (Shahab et al., 

2005). The involvement of kisspeptin-Kiss1r signalling, as a mediator in the negative 

feedback action of the testosterone on the GnRH release in monkeys has also been shown 

and kisspeptinergic neurons upstream to the GnRH neurons are involved in the negative 

feedback action of testicular testosterone on LH secretion in the adult male rhesus 

monkey (Shibata et al., 2007). The structural interactions between kisspeptinergic and 

GnRH neurons in the mediobasal hypothalamus (MBH) of the adult male rhesus 

monkeys has been demonstrated (Ramaswamy et al., 2008). It has been shown that 

kisspeptin is secreted in a pulsatile manner in the stalk median eminence and also 

stimulates GnRH release in vivo and the pubertal increase in the kisspeptin is 

accompanied by GnRH release in a pulsatile manner (Keen et al., 2008).  

 

Postnatal and pubertal testicular development in primates 

 

Postnatal development of primate testes until the end of juvenile period is 

characterized by a slow and steady increase in Sertoli cell numbers which is then 

followed, in pre-pubertal phase, by a burst of proliferation and an increase in cytoplasmic 

volume, mostly referred to as functional maturation of Sertoli cells (Sharpe et al., 2003). 

Quantitative increase of Sertoli cells results in the significant lengthening of the 

seminiferous cords (Marshall and Plant, 1996). Further into puberty a dramatic rise in 

germ cells occurs resulting in an enlargement of seminiferous tubule diameter and 

consequently a rapid increment in the size and weight of the testis. Seminiferous tubule 

length and Sertoli cell number stabilize during this period (Plant et al., 2005). It is 

concluded that testicular volume presents a valid readout of testicular maturation during 

puberty. In rhesus macaques the Sertoli cell number increases from approximately 40 

million at birth to 2,000 million in each testis in the adult (Sharpe, 1994), whereas the 
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undifferentiated spermatogonia increase from one million at birth to 600 million in the 

adult (Simorangkir et al., 2005). In human there is a 6-fold increase in testicular volume 

during the first year of life (Muller and Skakkebaek, 1983), whereas in new world 

monkeys a 13 fold increase is observed within the first 5 month (Abbot and Hearn, 1978; 

Rey et al., 1993). The distinctive 4-fold increase in Sertoli cell number in infancy, when 

gonadotropin levels are high, is then followed by an abated rate of proliferation in the 

juvenile phase of development when the serum levels of gonadotropins are very low 

(Plant et al., 2005). Until the onset of puberty, while the cords are slowly extending in 

length, no significant increase in the seminiferous cord diameter is detectable and the 

cords are devoid of a lumen. Thus the incremental rise in Sertoli cells number in the 

infancy and juvenile period, when Sertoli cells account for 95% of the seminiferous 

tubule mass, seems to be an innate feature of this period. 

The next section reviews the general notion of developmental characteristics and 

regulation of different cell types present in the testis.  

 

Sertoli cell 
 

 Enrico Sertoli, an Italian scientist first described the testicular cells in 1865 which 

bear his name. He described them as the large branched cells which are linked to the 

production of spermatozoa. The overall number of adult Sertoli cells establishes the 

upper limit of sperm production in the adult testis, and spermatogenic efficiency is highly 

associated with Sertoli cell supportive capacity, which in turn is the best indication of 

Sertoli cell function in the adult testis (Hess and Franca, 2005). Sertoli cells are columnar 

cells and extend from the basement membrane of the seminiferous epithelium to the 

lumen (Fawcet and Burgos, 1956). When fully differentiated they are mitotically arrested 

and act as nurse cells (Griswold, 1998). Forming a syncytium-like epithelial structure, 

Sertoli cells are embedding and holding the interconnected cohorts of germ cells (Russell, 

1980). The Sertoli cells are interconnected by specialized junctional complexes which are 

responsible for establishing the blood testis barrier (Fawcet and Burgos, 1956; Dym, 

1974; Russell, 1980). Approximately 40% of the Sertoli cell surface is in contact with the 
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surface of elongated spermatids (Griswold, 1995; Russell et al., 1986). In contrast, 

immature Sertoli cells form a simple columnar epithelium with limited cytoplasmic 

connections sharing the basement membrane with few A-spermatogonia. The immature 

Sertoli cell proliferates significantly in the infantile period owing to the high level of 

pituitary gonadotropins during this phase and thus creating nearly 95 % of the total 

seminiferous tubule cell mass along with germ cells which constitute 5 % (Rey et al., 

1993; Simorangkir at al., 2012). This numerical density of Sertoli cells in seminiferous 

tubule cross section diminishes during pre-pubertal stage as the Sertoli cell cytoplasm 

volume increases considerably along with an increase in germ cell population (Dang and 

Meusy-Dessolle, 1985). During the infant and juvenile period Sertoli cells increase in 

number without any significant increase in size and morphology (Simorangkir et al., 

2003). Apart from being mitotically active immature Sertoli cells are also characterized 

by their ability to secrete estrogens and anti-mullerian hormone (AMH) and presence of 

functional FSH receptors. At initiation of puberty a significant increase in cytoplasmic 

volume occurs apart from the mitotic proliferation (Marshall and Plant, 1996). This 

morphological change in Sertoli cells signifies an important first sign of puberty. An 

important and histological obvious feature is a re-arrangement of Sertoli cells at the 

beginning of puberty. While Sertoli cell nuclei are randomly distributed in the 

seminiferous cords prior to puberty, they are organized more epithelial-like with all 

nuclei being close to the basement membrane early into puberty. This epithelial re-

arrangement as well as the increase in number are associated with longitudinal expansion 

of the cords and are augmented by an increase in the number and volume of peritubular 

cells (Fawcett, 1975; Marshall and Plant, 1996).  

The pubertal onset is characterized by an intense proliferation of Sertoli cells and 

hence the testis size increases 10 fold (Marshall and Plant 1996; Plant et al., 2005). In the 

peri-pubertal time period, tubule diameters also increase to accommodate the growth of 

Sertoli cells during differentiation and the increasing number of germ cells. Now, Sertoli 

cells become closely interconnected and form the blood testes barrier. In consequence, 

the fluid accumulation occurs, which creates a lumen thus transforming the cords into 

seminiferous tubules (Fawcett, 1975) and evoking additional diametrical growth. These 

processes are coincident with the expansion of the germ cell population. At first, 
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spermatogonia populate the basement membrane below Sertoli cells. When meiotic 

differentiation starts, germ cells become engulfed in Sertoli cell extensions. The 

multiplied germ cells loose the contact to the basal lamina and move towards the centre 

of the tubules. The precedence of Sertoli cell proliferation prior to germ cell expansion is 

physiologically important. The maximum number of germ cells in the adult testis 

depends on the number of Sertoli cells because each Sertoli cell supports a limited 

number of germ cells (Orth et al., 1988). Therefore, adequate Sertoli cell expansion at the 

beginning of puberty is essential to provide the structural and functional basis in 

establishing the capacity of the testes to generate sperm later in life (Plant, 2005). In this 

respect the early phase of puberty is more relevant for future fertility than the second 

phase of puberty when germ cell differentiation starts after Sertoli cells have reached 

peak numbers and established the mitotic arrest. 

The ability of Sertoli cells to respond to gonadotropins is achieved much earlier 

than the actual pubertal onset (Arslan and Qazi, 1976; Arslan et al., 1981; Arslan et al., 

1993; Schlatt et al., 1995; Sameshima and Hamana, 1996; Ramaswamy et al., 2000). 

During the juvenile period male monkeys respond to exogenous FSH or hCG/testosterone 

treatment (Arslan et al., 1993; Schlatt et al., 1995). This response pertains to an almost 

immediate and robust proliferation and maturation of immature Sertoli cells along with 

an increase in A-spermatogonia. Thus a persistent low pre-pubertal level of 

gonadotropins is the limiting and critical factor maintaining the testes in a passive state. 

This signifies that  immature Sertoli cells are highly dependent on gonadotropins to 

induce proliferation and differentiation and that the ability and potential of Sertoli cell to 

proliferate and differentiate is established through mechanisms independent from puberty 

and already established long before pubertal induction (Schlatt et al., 1995). On the other 

hand high levels of gonadotropins in infancy cannot induce germ cell differentiation 

revealing that some important changes must have occurred during the early juvenile 

period creating the capacity of the testes to not only expand its somatic components but 

to kick start spermatogenesis in the more mature seminiferous epithelium. These 

molecular and cellular changes are attributed to the lack of androgen receptor expression 

by the Sertoli cell during infancy (Majumdar et al., 2012). 
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Germ cell 
 

 Although many changes occur in the early stages of puberty in the seminiferous 

epithelium, the first emergence of meiotic spermatocytes after a peak of spermatogonial 

proliferation is considered often as a first sign of pubertal maturation of the seminiferous 

tubules (Plant, 2005). The increment in the total germ cell number before puberty is much 

slower as compared to Sertoli cells or longitudinal outgrowth of tubules. Consequently, 

the number of germ cells expressed as a function of Sertoli cell number or per tubule 

cross section decreases during juvenile period. This relative decline does not reflect the 

actual progressive increment in germ cells per testis before puberty (Chemes, 2001;  

Marshall et al., 2005; Albert et al., 2010). It is important to note that only unbiased 

morphometric procedures provide actual and valid values on cell counts. In contrast to 

adult animals in which changes in germ cell counts can be expressed in relation to a fixed 

number of Sertoli cells, it is mandatory to use more complex evaluation strategies in 

immature testes as all cellular components expand. The pubertal proliferation of germ 

cell results in a loading of the seminiferous tubules with high numbers of germ cells until 

at the end of the puberty the germ cell mass accounts for more than 90% of seminiferous 

tubule volume (Plant, 2005). 

           In primates the undifferentiated spermatogonia (Type A) have been classified into 

two categories, dark (Ad) and pale (Ap) based on their nuclear staining pattern (Ehmcke 

et al., 2005). Ad spermatogonia are mitotically quiescent in adulthood and hence 

designated as reserve stem cell. Ap spermatogonia on the other hand are mitotically 

active with self renewal capacity. Their clonal expansion and splitting is responsible for 

the generation of differentiated spermatogonia (type B) and maintenance of a progenitor 

pool (Ehmcke and Schlatt, 2006). In rhesus monkeys Ad and Ap spermatogonia are 

mitotically active in pre pubertal primate testis as evident by robust S-phase labelling of 

A-spermatogonia in the infantile and juvenile testis. This expansion of both 

spermatogonial subtypes occurs irrespective of a hypogonadotropic environment. The 

post-natal pattern of Ad spermatogonial proliferation is similar to Ap spermatogonial 

expansion (Simorangkir et al., 2005) which reflects the expansion of Ap spermatogonia 
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in hypogonadotropic adult monkeys (Marshall et al., 2005). The regulatory mechanisms 

of the gonadotropin independent proliferation of Ad (in immature monkeys) and Ap 

spermatogonia (in immature and adult monkeys) is still unclear but indicates an 

autonomous regulation often found in stem cell systems. Nevertheless, the juvenile testis 

can attain the potential to successfully undergo spermatogenesis well before the onset of 

actual puberty (Marshall et al., 1984, 1986; Arslan et al., 1993; Schlatt et al., 1995). 

Random but rare appearance of type B spermatogonia has also been reported in the pre-

pubertal macaque testis (Cavicchia and Dym, 1978; Kluin et al., 1983). However, 

significant numbers of differentiated spermatogonia are only evident after the onset of 

puberty. 

 

Leydig cell 
 

Leydig in 1850 first reported masses of cells containing vacuoles and pigmented 

inclusions. These cells were later called after his name as Leydig cells. Leydig cells 

reside in the interstitial compartment of the testis and serve as the main source of 

testosterone production. Postnatal production of testosterone by the Leydig cell is 

regulated by the pituitary gonadotropin LH (Saez, 1994). The Leydig cell responsiveness 

towards pituitary LH is achieved early in primates i.e, during neonatal phase, as the 

gonadotropins levels are high during this phase and testosterone levels correspond to LH 

peaks (Frawley and Neill, 1979; Fouquet et al., 1984). Leydig cell number increases in a 

linear trend from birth towards puberty. The morphological differentiation of Leydig cells 

is a long process during pubertal development in primates, the peculiar correlation of 

pituitary LH and testosterone remains throughout this developmental period as after a 

long juvenile hiatus the rise in the levels of pituitary gonadotropin during the prepubertal 

period is followed by high levels of testosterone (Steiner and Bremner, 1981; Meusy-

Dessolle and Dang, 1985; Bernstein et al., 1991; Plant, 2006). 

The levels of testosterone are in turn correlated to the number and volume of 

Leydig cells. As shown by the Fouquet at al., 1984, rhesus monkeys show a strong 

positive correlation between Leydig cell number and plasma testosterone during postnatal 
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development. In rhesus macaques the post natal levels of plasma testosterone demonstrate 

four distinct phases, 1) a neonatal phase with moderate levels of testosterone and large 

Leydig cells, 2) a juvenile phase with very low levels of testosterone along with a 

significant reduction in Leydig cell size and volume, 3) a pre-pubertal phase with a rise in 

testosterone concentration along with a significant increase in Leydig cell size and 

volume and 4) a pubertal phase with increasing levels of testosterone but relatively 

unchanged Leydig cell volume (Steiner and Bremner, 1981; Fouquet at al., 1984; Meusy-

Dessolle and Dang, 1985; Arslan et al., 1986).  

The same pattern of postnatal testosterone secretion has been demonstrated in new 

world monkeys (Abbott and Hearn, 1978; Kholkute et al., 1983; Lunn et al., 1994; Rey et 

al., 1995; Kelnar et al., 2002; Chandolia et al., 2006). Immature and mature Leydig cells 

are present from birth to late puberty in the Cebus, a new world monkey. At birth and 

during infancy, immature Leydig cells represent the highest proportion, with mature 

Leydig cells comprising only 12%. The quantitative analysis of the postnatal testicular 

development in this monkey shows that in neonatal phase the interstitial tissue represents 

nearly half of the testicular parenchyma, with a progressive decrease during postnatal life 

to reduce to half of its size in late puberty. However, the absolute volume of interstitial 

tissue increases during development i.e. there is a 7 fold increase in the Leydig cell 

number during neonatal period which is followed by a stable period during juvenile until 

late puberty when there is a two fold increase. There are two periods of interstitial tissue 

growth, the first during the neonatal and early infantile periods, and the second, in mid to 

late puberty (Rey et al., 1991; Rune et al., 1994, 1996). As the pubertal activation of 

spermatogenesis is dependent on high intratesticular levels of testosterone, the 

physiological insensitivity of the neonatal testis towards high intratesticular testosterone 

is due to the absence of Sertoli cell androgen receptor expression during this period 

(McKinnel et al., 2001; Majumdar et al., 2012). 
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Rationale 

 

Kisspeptin in primate testis   

        While the central role of kisspeptin signaling in the control of reproductive axis is 

thoroughly demonstrated, the functional role of kisspeptin at the primate testis is yet to be 

defined. The available data from human and non human primate studies indicates an 

active kisspeptin-Kiss1r signaling in primate testis (Kotani et al., 2001; Muir et al., 2001; 

Ohtaki et al., 2001; Ramaswamy et al., 2007). The high expression levels of kisspeptin 

and moderate expression levels of kisspeptin receptor in adult human testis indicate a 

possible intratesticular role of kisspeptin signaling in primate testis. As the testicular 

paracrine signaling, featuring tens of molecules is a distinct feature of the adult primate 

testis (Schlatt et al., 1997) and it has been shown previously that hypothalamic 

neuropeptide, GnRH and GnRH receptors are present in the testis and affect 

steroidogenesis through paracrine signaling (Bambino et al., 1980; Bourne et al., 1980; 

Petersson et al., 1989). The possible involvement of kisspeptin in enhancing testicular 

steroidogenesis in adult male rhesus monkeys given an iv infusion of kisspeptin has been 

indicated, where the serum levels of testosterone were high for a given concentration of 

LH in these monkeys (Ramaswamy et al., 2007). The immunohistochemical localization 

of the kisspeptin and kisspeptin receptor in rodents and vertebrates testis has been 

reported recently (Anjum et al., 2012; Chianese et al., 2013; Hua et al., 2013), although 

the testicular localization in primate testis has not been reported to date.  

 

Pubertal testicular development in common marmoset (Callithrix jacchus) a New 

World monkey 

The pubertal and testicular development in New World monkeys is not well 

characterized to date. Whereas the specific age of puberty, the prepubertal developmental 

pattern as well as the hormonal correlates of pubertal activation and the subsequent 

testicular developmental patterns are thoroughly depicted in old world monkeys (Plant, 
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2005). Despite the fact that common marmoset (Callithrix jacchus) is a representative 

New World monkey; a certain degree of controversy exists regarding its pubertal age and 

subsequent testicular development. Common marmosets have a unique reproductive 

endocrinology as compared with higher primates where the LH is replaced by a chorionic 

gonadotropin (CG) like molecule having a shorter half life as compared with LH (Muller 

et al., 2004) as well the testicular steroidogenesis utilizes Δ4 pathway whereas in higher 

primates Δ5 pathway is utilized (Preslock and Steinberger, 1977). Apart from these 

physiological diversity, the high individual variation in the timing of pubertal onset, the 

possible impact of social status on the pubertal onset and the subsequent testicular 

development in common marmoset has not been assessed systematically in a large 

number of cohorts. Apart from the above mentioned physiological variation, an important 

physiological aspect of adult common marmoset is the resemblance of its testicular 

tubular organization towards human testis. It has been shown that adult marmoset testis 

shows highly similar seminiferous tubule organization with human (Millar et al., 2000; 

Wistuba et al., 2003) as well as the fetal and neonatal germ cell development in common 

marmoset mimic human like pattern (Mitchell at al., 2008).  While the use of common 

marmoset as a laboratory primate in toxicological and biomedical research has increased 

enormously in the recent years, owing to its small size, high breeding rate and longer life 

span in captivity (Carrion and Patterson, 2012; t’ Hart et al., 2012), the need for a better 

understanding of pubertal and testicular development in common marmoset is mandatory. 

Objectives 

 

The present study was designed for three objectives: 

1. To elucidate the possible involvement of kisspeptin in testicular steroidogenesis in 

adult rhesus monkeys (Macaca mulatta) through an in vivo approach. 

2. To determine the immunohistochemical localization of kisspeptin and kisspeptin 

receptor in adult primate testis. 

3. To characterize the pubertal onset and the subsequent testicular development in 

Common marmoset (Callithrix jaccchus) through in vivo and histomorphometric 

approaches. 
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Intratesticular action of kisspeptin in adult rhesus monkey (Macaca 
mulatta): An in vivo study 

Abstract 

Kisspeptin-kisspeptin receptor signaling in mammals has been implicated as an 

integral part of the reproductive cascade. Kisspeptinergic neurons upstream of GnRH 

neurons are involved in the activation of hypothalamic GnRH pulse generator during the 

pubertal onset. Thus, the major research focus either in rodents or in primates has been on 

the central effects of kisspeptin. The demonstration of the presence of KISS1R expression 

in human testes suggests additional, as yet unknown, physiological actions of kisspeptin-

kisspeptin receptor signaling at the distal component of the male reproductive axis. In this 

study we tried to explore the impact of kisspeptin at testis in the adult male rhesus 

monkey, a representative higher primate. We employed the pituitary gonadotropin 

hypophysectomised monkey to assess the intratesticular actions of iv bolus of kisspeptin. 

Plasma testosterone and plasma LH levels were monitored in a group of four adult male 

monkeys. The peripheral administration of human kisspeptin-10 (50µg, iv bolus) caused a 

single LH pulse followed by robust increase in plasma testosterone levels which sustained 

for the next 180 minutes. This potent increase in testosterone was abolished when 

kisspeptin was administered to acyline (a GnRH receptor antagonist) pretreated animals 

(n=4) (Acyline: 60 µg/kg and 120 µg/kg BW, sc, morning and evening, respectively, 1 

day before kisspeptin injection). However kisspeptin administration significantly 

(p<0.005) elevated hCG-stimulated testosterone levels in acyline-pretreated monkeys as 

compared with saline+hCG treatment. These results revealed a novel facet of kisspeptin-

Kiss1r signaling at the testis, where kisspeptin administration significantly enhanced 

stimulated testosterone secretion in adult intact male monkeys suggesting a possible 

paracrine action of kisspeptin in amplifying the responsiveness of the primate Leydig cell 

towards luteinizing hormone. 
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Introduction 

In male primates, GnRH pulses activate pituitary gland to release LH in a pulsatile 

fashion, activating the LH receptor present on the Leydig cell in such a manner that a 

response in the form of testosterone is produced. The pulsatile fashion of LH release is 

physiologically important as consistent high serum levels of LH down regulates the LH 

receptor on the Leydig cells which results in diminished testicular androgenic response. 

A single LH pulse will give rise to a corresponding testosterone peak. This LH-

testosterone loop shows a diurnal rhythm in adult male rhesus monkeys (Schlatt et al., 

2008).  Rhesus monkey also shows seasonality in terms of reproductive efficiency. 

Levels of testosterone and testicular functionality are greatly reduced in non breeding 

season as compared with the breeding season (Wickings and Nieschlag, 1980).  

Since the initial discovery of the role of kisspeptin-kiss1r signalling in primate 

puberty, most of the studies were focused on the central role of kisspeptin. Although the 

presence of kisspeptin and kiss1r transcripts in adult primate testis hints towards the 

possible role of kisspeptin signalling at the testis (Kotani et al., 2001; Muir et al., 2001; 

Ohtaki et al., 2001). On the other Ramaswamy found that in adult male rhesus monkeys 

(Macaca mulatta) the iv administration of kisspeptin given as a continuous infusion 

resulted in an increase in circulating LH levels which peaked after 2-4 hours of initial 

treatment and then followed by a decline (Ramaswamy et al., 2007). The interesting 

revelation made in this study was the disproportional relationship between circulating 

testosterone and LH, where testosterone levels were constantly high for a given 

concentration of LH during iv infusion of kisspeptin thus raising the possibility of an 

endocrine aspect of kisspeptin-kiss1r signaling within the primate testis. These results 

hint towards a possible role of kisspeptin signalling in regulating the testicular 

steroidogenic response towards LH.  
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In the light of the findings by Ramaswamy (2007), to further explore the possible 

role of kisspeptin at the testis, we decided to investigate the possibility of a kisspeptin iv 

bolus in enhancing basal testosterone levels in adult male monkey. As the kisspeptin has 

a central effect in enhancing hypothalamic GnRH release, the kisspeptin iv bolus would 

increase the serum levels of LH. This increased level of LH would enhance the 

testosterone levels in result of the kisspeptin bolus via the central mechanism.  

In order to explore the role of kisspeptin in enhancing the basal levels of 

testosterone, we needed to establish an endocrine model which can assure the possibility 

of direct testicular effect of kisspeptin on the basal testosterone levels which is 

independent of serum LH and also the central effect of kisspeptin in enhancing the serum 

LH levels should also be compromised. In order to block the pituitary secretion of LH we 

used Acyline, a GnRH receptor antagonist (Shahab et al., 2005). Acyline competes with 

GnRH for binding with GnRH receptor present at the pituitary thus blocking the effect of 

GnRH at the pituitary levels. After achieving this chemical hypophysectomy in terms of 

gonadotropins, any effect observed in the basal testosterone levels after the 

administration of kisspeptin iv bolus can be positively attributed to the kisspeptin 

signaling at the testis level. We selected adult male rhesus monkeys to test our hypothesis 

in exploring the testicular effect of kisspeptin signalling. 
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Materials and Methods 

Monkeys 

Four, 4-6 years old, intact male rhesus monkeys (Macaca mulatta), weighing 6.0-

8.0 kg were used in this study. Animals were housed in individual cages, under standard 

colony conditions, fed with monkey diet at 1300-1330 hours daily and supplemented with 

fresh fruits in the morning in the Primate Facility of the Department of Animals Sciences, 

Quaid-i-Azam University, Islamabad. Water was available ad libitum. The monkeys were 

trained for chair-restraint prior to the experiments in order to sample these animals 

without sedation or anaesthesia. Under ketamine sedation (5 µg/kg bw, im) animals were 

placed in primate chairs. After recovery from sedation the animals were allowed to sit on 

the chair for gradually increasing periods of time. The animals were habituated to chair 

restraint over several months. All experiments were approved by the Departmental 

Committee for Care and Use of Laboratory Animals and were performed in accordance 

with regulations of the Ethics Committee of the university.  

Catheterization  

To permit sequential withdrawal of the blood samples and iv administration of 

drugs, the animals were anesthetized with ketamine hydrochloride (Ketamax, 

Rotexmedica, Trittau, Germany, 5 µg/kg bw, im), and a teflon cannula (Vasocan Branule, 

B. Braun Melsungen AG, Belgium; 0.8mm/22G O.D) was inserted in the sephanous vein 

before initiation of sampling and the animals were restrained to the chair. The free end of 

the cannula was attached to a syringe via a butterfly tubing (20G diameter and 300mm 

length). Blood sampling and infusion of treatments were carried out when the animals 

had fully regained consciousness. 
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Pharmacological agents 

Human kisspeptin-10 (112-121) (Phoenix pharmaceuticals, Belmont, CA. USA) 

and GnRH receptor antagonist acyline (Bioqual, USA) were kindly provided by Dr. Tony 

M. Plant. hCG (Pregnyl®, N.V Organon Oss Holland) and heparin (Rotexmedica, 

Germany) were purchased locally. Working solutions of kisspeptin and hCG were made 

in normal saline while acyline was dissolved in 5% aqueous mannitol. Ketamine 

hydrochloride (Ketamax, Rotexmedica, Trittau, Germany) was purchased locally. 

Dosage 

Based upon previously reported centrally effective iv kisspeptin doses (10µg, 

30µg and 50 µg) in adult intact male rhesus monkeys (Ramaswamy et al., 2007; Wahab 

et al., 2008, 2011) the highest dose (50µg) of kisspeptin-10 was selected for exploring a 

possible direct testicular action in the present study. In our one of previous studies this 

dose of kisspeptin-10 was also found to be peripherally effective as it caused significant 

enhancement of plasma adiponectin levels in adult intact monkeys (Wahab et al., 2010). 

In-Vivo experimental design and blood sampling 

In order to examine our hypothesis of an intra-testicular action of kisspeptin-10 iv 

bolus in male monkeys, we used pituitary gonadotropin-clamped monkey model. The 

primary site for kisspeptin action is at hypothalamic GnRH neurons expressing kiss1r, 

this receptor coupling increase the GnRH pulse activity and subsequently increases the 

gonadotropin levels in blood circulation. To prevent this central action of kisspeptin 

administration being transduced at the pituitary level, chemical hypophysectomy was 

achieved by treating the animals with a potent GnRH receptor antagonist, acyline (Herbst 

et al., 2002; Shahab et al., 2005). Acyline competes with GnRH to bind with GnRH 

receptors at gonadotropes and blocking a secretory response from pituitary in response to 

GnRH and/or kisspeptin bolus.  
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The different sets of in-vivo experiments along with the treatments and 

pretreatments in this study are shown in Table 1. Same group of animals were used in 

each of these experiments. All the animals received the same treatments in each 

experiment. Animals were treated with acyline 24 and 12 hours before the experiment 

1(c), 2(a) and 2(b) in the Table 1. The morning (24hr prior) and evening (12 hour prior) 

treatment was given subcutaneously with two different doses (60µg/kg and 120 µg/kg 

BW, sc, 9:00 am and 9:00 pm respectively). Blood sampling for all experiments started 

between 0900-0930 hours, and samples (2.5-3 ml) were obtained at 30-min intervals. 

First sample (-30 min) was collected 30 min before the treatment (vehicle/ kisspeptin/ 

hCG/ hCG + kisspeptin). Samples were taken in heparinised syringes and immediately 

transferred into culture tubes kept on ice. After completion of the blood sampling, these 

culture tubes were centrifuged at 3000 rpm for 30 minutes and plasma was extracted and 

stored at -15˚C until assayed. After taking every sample, approx 1 ml of normal saline 

containing 5IU of heparin was injected to compensate the lost blood volume to prevent 

hypovolumic shock to the animals and blood clotting. 
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Table 2.1   Details of the experiments. 

Experiment # Administration 

        (iv) 

Time of 
the year 

Pretreatment Animal number 

1. (a) Vehicle Control Normal saline 

(1ml) 

May None 4 Male monkeys 

    (b) Kisspeptin Kisspeptin-10 

(50µg) 

May None 4 Male monkeys 

    (c) Kisspeptin Kisspeptin-10 

(50µg) 

hCG (50IU) at 
240min sample 

July Acyline (sc) 

12 hrs and 24 hrs 
prior sampling 

3 Male monkeys 

2. (a)   hCG+Saline hCG (50IU) 

+ 

Normal saline 

August Acyline (sc) 

12 hrs and 24 hrs 
prior sampling 

4 Male monkeys 

    (b) hCG+Kisspeptin hCG (50IU) 

+ 

Kisspeptin-10 

(50µg) 

August Acyline (sc) 

12 hrs  and 24 hrs 
prior  sampling 

4 Male monkeys 
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Effect of kisspeptin-10 on plasma testosterone and plasma LH in normal adult intact 

male monkeys  

Impact of peripheral administration of kisspeptin-10 (50µg) on basal testosterone 

and LH was monitored in normal adult intact male monkeys (n = 4). Kisspeptin-10 or 

normal saline (vehicle control, 1 ml) was administered intravenously (iv) immediately 

after taking 0 min sample.  

Effect of kisspeptin-10 on plasma testosterone in acyline pretreated adult intact 

male monkeys 

Impact of kisspeptin-10 administration (50µg) on plasma testosterone was 

monitored in pituitary clamped monkey by the help of acyline pre-treatment (12 and 24 

hr prior). Kisspeptin-10 (50µg) was administered intravenously (iv) immediately after 

taking 0 min sample and hCG was administered intravenously (iv) at 240 min sample.  

Effect of kisspeptin-10 on plasma testosterone and plasma LH in acyline pretreated 

hCG challenged adult intact male monkeys  

Impact of peripheral intravenous (iv) administration of kisspeptin-10 (50µg) on 

hCG stimulated testosterone secretion was determined in acyline pretreated adult 

monkeys (n = 4). Acyline pretreatment was given 12 and 24 hours before the start of the 

experiment to ensure the complete suppression of HPG axis. hCG (50 IU) and saline 

were given immediately after taking 0 min sample; and in the second set of experiment 

hCG (50 IU) and kisspeptin-10 (50µg) were administered after taking 0 min sample.  
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Plasma LH and testosterone measurement by specific RIA 

Plasma LH concentrations were determined by double antibody 

radioimmunoassay (RIA) with reagents supplied by NHPP (National Hormone & Peptide 

Program). The standard preparation used was rec-moLH-RP-1, tracer was prepared from 

AFP-6936A and antiserum was AFP 342994. The tubes were counted in a Gamma 

counter (LKB  Gamma Master 1277) for 1 minute. The sensitivity of the assay was 0.2 

ng/ml and the intra- and inter assay coefficients of variation were 8.8 % and 5.8 %, 

respectively. 

Plasma testosterone concentrations were determined by using specific solid phase 

competitive radioimmunoassay. The testosterone kits were purchased from Immunotech 

(Prague, Czech Republic). The assays were done according to the instructions given by 

the manufacturer. Tubes for testosterone were incubated at 37˚C. Tubes were then 

carefully decanted and placed in a Beckman Gamma counter (Gamma5500) for counting 

in-bound radioactivity. The counting time for each tube was one minute. The sensitivity 

of the assay was 0.025 ng/ml and intra- and inter assay coefficients of variants were 

14.8% and 15%, respectively.  

Statistics 

 Student’s t-test was employed using Microsoft Excel to determine differences 

between means of hCG+saline and hCG+kisspeptin stimulated testosterone values. 

Statistical significance was set at P<0.05. 
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Results 

Impact of peripheral administration of kisspeptin-10 on plasma testosterone and 

LH in normal adult intact male monkeys 

Peripheral administration of 50µg kisspeptin-10 in acyline untreated group 

induced a potent increase in plasma testosterone levels (Fig. 2.1). Within 30 min after 

peripheral administration of kisspeptin-10, a single LH pulse was observed in all the 

animals. Subsequently plasma testosterone level increased 2 fold and remained elevated 

for the next 2 to 3 hours, while vehicle administration which served as a negative control 

did not influence the LH or testosterone levels (Fig. 2.2). The animals were not showing 

any LH pulsatile activity during the sampling hours (Fig. 2.2) mainly because of the 

quiescent hypothalamic pituitary axis in the morning hours in late pubertal animals.   

 Impact of peripheral administration of kisspeptin-10 on plasma testosterone in 

acyline pretreated  adult intact male monkeys 

In acyline pretreated group the kisspeptin treatment in all the animals did not 

induce an increment in the plasma testosterone levels (Fig 2.3), The testicular tissue was 

responsive in terms of testosterone synthesis in the acyline pretreated group as hCG 

administration caused a sudden increase in plasma testosterone levels in all animals (Fig. 

2.3). 

 Impact of peripheral administration of hCG and hCG+kisspeptin-10 plasma 

testosterone and LH in acyline pretreated monkeys 

Administration of hCG (50IU)+saline in acyline pretreated monkeys caused a 

moderate but sustained increase in plasma testosterone levels (Fig 2.4). Administration of 

kisspeptin-10 (50µg) + hCG (50 IU) amplified plasma testosterone levels as compared to 

the hCG induced increase in saline+hCG treatment in all the individual animals without 

effecting plasma LH values (Fig 2.5). Pituitary gonadotropin clamping was successful by 

Acyline treatment was obvious as kisspeptin (50µg) treatment could not induce a LH 

peak in the animals (Fig 2.5). 
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Figure 2.1 Individual plasma LH and testosterone concentration in adult intact rhesus 

monkeys before and after iv administration of kisspeptin (arrow). 



Chapter 2      

48 

0

0.5

1

1.5

2

2.5

3

0

3

6

9

12

15

18

-30 0 30 60 90 120 150 180 210 240

L
H

 (
n

g
/m

l)

T
es

to
st

er
o

n
e 

(n
g

/m
l)

Animal 105
Plasma Testosterone

Plasma LH

0

0.5

1

1.5

2

2.5

3

0

3

6

9

12

15

18

-30 0 30 60 90 120 150 180 210 240

L
H

 (
n

g
/m

l)

T
es

to
st

er
o

n
e 

(n
g

/m
l)

Animal 205

0

0.5

1

1.5

2

2.5

3

0

3

6

9

12

15

18

-30 0 30 60 90 120 150 180 210 240

L
H

 (
n

g
/m

l)

T
es

to
st

er
o

n
e 

(n
g

/m
l)

Animal 305

0

0.5

1

1.5

2

2.5

3

0

3

6

9

12

15

18

-30 0 30 60 90 120 150 180 210 240

L
H

 (
n

g
/m

l)

T
es

to
st

er
o

n
e 

(n
g

/m
l)

Time (mins)

Animal 405

Figure 2.2 Individual plasma LH and testosterone concentration in intact rhesus monkeys 

before and after iv administration of saline (arrow). 
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Figure 2.3 Individual plasma testosterone concentration in acyline pretreated adult intact 

monkeys before and after the iv administration of kisspeptin and hCG (arrows). 
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Figure 2.4 Individual plasma LH and testosterone concentration in acyline pretreated adult 

intact monkeys before and after iv administration of saline+hCG (arrow). 
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Figure 2.5. Individual plasma LH and testosterone concentration of acyline pretreated intact 

monkeys before and after iv administration of kisspeptin+hCG (arrow). 
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Figure 2.6 Comparison of the mean plasma testosterone values of pre and post 

kisspeptin+hCG and saline+hCG treatment as well as the fold change observed between pre 

and post treatment for kisspeptin+hCG and saline+hCG. Mean plasma testosterone 

concentration were significantly higher (*P<0.005) in post kisspeptin+hCG treatment as 

compared to post saline+hCG treatment. The fold change in plasma testosterone levels 

observed in saline+hCG and kisspeptin+hCG was not found to be significant. 
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confounding effect of acyline on kisspeptin testicular action was less likely in the present 

study.  

Previous kisspeptin studies on primates have either utilized castrated animals 

(Shahab et al., 2005; Seminara et al., 2006) or the terminal signal for the HPG axis in 

males i.e., testosterone has not been assessed with regards to a direct testicular action of 

kisspeptin iv administration in higher primates (Plant et al., 2006). The observation of 

disproportional relationship between circulating testosterone and LH during continuous iv 

infusion of kisspeptin, when testosterone levels were constantly high for a given 

concentration of LH by Ramaswamy et al (2007) indicated about the possible action of 

kisspeptin within the testis. But the animals used in that study were not chemically 

hypophysectomised and were given a continuous kisspeptin infusion. The intratesticular 

action of kisspeptin can only be assessed by using chemical hypophysectomy as 

continuous kisspeptin infusion down regulates kiss1r (Seminara et al., 2006). We assume 

that the intratesticular action of kisspeptin can only be assessed by using gonadotropic 

hypophysectomised model given bolus injections of kisspeptin as performed in the 

present study. Our finding has implications for humans as the human testes have been 

shown to express KISS-1 and KISS1R transcripts (Kotani et al., 2001; Muir et al., 2001; 

Ohtaki et al., 2001). Clinical studies in humans are needed to explore the intratesticular 

role of kisspeptin during pubertal growth and senescence. 

Our results demonstrate that kisspeptin exerts an intratesticular action in primate 

testes. This intratesticular action is in terms of an increased steroidogenic response 

towards plasma LH/hCG. Our results also demonstrate that kisspeptin cannot effect the 

basal androgen production in male rhesus monkey. While the mechanism through which 

kisspeptin enhance Leydig cell response to LH/hCG needs to be investigated at the 

cellular level. Immunocytochemical and cell culture approaches will help to further 

explain the peculiar pathway through which kisspeptin modulates Leydig cell’s 

steroidogenesis in primate testes. 
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Discussion 

Loci of kisspeptin action on levels other than hypothalamus have not been 

systematically assessed in primates. Our study aimed at assessing actions of kisspeptin at 

the testicular level in terms of testosterone production in the adult male rhesus monkey, a 

representative higher primate. In order to investigate the intratesticular action of 

kisspeptin without the influence of pituitary gonadotropic drive, we used pituitary 

gonadotropic clamped monkey model with pretreatment of acyline, a GnRH receptor 

antagonist. As the hypothalamic/pituitary influence on the testis is blocked in the acyline 

pretreated animals, seasonality does not play a role in our experiments. Despite the 

blockade of central influences at the hypothalamic pituitary level it was previously shown 

that seasonality does not affect the ability of the rhesus monkey testis to respond towards 

LH and the capacity of Leydig cells to secrete testosterone (Higashi et al., 1984; 

Wickings et al., 1981). 

In the Acyline untreated animals a single bolus of kisspeptin resulted in 

testosterone discharge which is preceded by a single LH pulse. Although baseline pre-

treatment levels differed the testicular testosterone response towards kisspeptin bolus was 

present in all four animals and showed similar amplitude (16ng/ml) with comparable 

kinetics with the maximum testosterone level reaching one hour after kisspeptin 

treatment. Regardless of basal testosterone levels our observation of an equivalent and 

analogous testosterone response in terms of the time and intensity towards a given dose of 

kisspeptin (50µg) is quite remarkable.  

In acyline treated animals the lack of testosterone response towards kisspeptin-10 

bolus affirmed the absence of pituitary responsive towards GnRH but also negated our 

hypothesis that kisspeptin might have a direct endocrine action on testes in terms of 

testosterone release. That the testicular tissue was responsive is confirmed by hCG bolus 

which resulted in testosterone release.  
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The significant amplification of hCG-induced testosterone release by co-

treatment with kisspeptin in clamped monkeys indicates a novel indirect action of 

kisspeptin on testosterone release. The amplified testosterone secretion was evident in all 

the animals used in this experiment and this response sustained for almost 2 hours. This 

observation reveals a thus far unknown intratesticular effect of kisspeptin and indicates a 

functional kisspeptin receptor signalling cascade in the primate testis. The potential 

mechanism through which kisspeptin enhances stimulated testosterone would likely to 

involve a direct action on Leydig cell or an indirect action via Sertoli cells or germ cells. 

Such notions are supported by presence of a certain level of paracrine signaling in the 

primate testis (Schlatt et al., 1997). It has been shown that testosterone production can be 

enhanced by secretory factors from the tubular compartment (Johnson and Ewing, 1971). 

FSH treatment of hypophysectomized rats not only increased testicular LH receptor 

number but also augmented the steroidogenic response of Leydig cells to LH (Kerr and 

Sharpe, 1985). Sertoli cells have also been shown in-vitro to secrete factors which 

increase Leydig cell steroidogenesis and this effect is augmented in the presence of LH 

or hCG (Papadopoulus et al., 1987; Papadopolus, 1991; Sharpe, 1985). Studies on the 

testicular localization of kisspeptin receptor are needed in order to specify the site of 

action of kisspeptin in the primate testis. It is likely that kisspeptin through a direct or 

indirect action leads to enhancement of sensitivity of LH receptors towards LH/hCG on 

the Leydig cells.  

It is important to mention that GnRH receptors are present in the testis and it has 

been demonstrated, though in a rodent model, that GnRH has a negative effect on in 

vitro testicular steroidogenesis (Bambino et al., 1980; Bourne et al., 1980; Petersson et 

al., 1989). This raises the possibility of a direct action of acyline in affecting testicular 

steroidogenesis in the current study and possibly confounding the testicular action of 

kisspeptin.  However this notion appears slim because testicular action of acyline was 

expected to actually stimulate testosterone while in the current study no such effect of 

acyline was observed on basal testosterone levels in acyline pretreated monkeys. 

Therefore we tend to hold that there were no functional effects of antagonism of 

testicular GnRH receptors by acyline at least on testosterone secretion. Hence a 
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Immunocytochemical localization of kisspeptin and kisspeptin receptor 
in primate testis 

Abstract 

Hypothalamic kisspeptin-kisspeptin receptor signaling in primates ensures the 

successful progression of juvenile phase into puberty during development and 

maintenance of reproductive activity during adulthood. Human testis has been shown to 

express high to moderate levels of KISS1 and KISS1R expression. We have recently 

demonstrated a novel intratesticular role of kisspeptin in enhancing stimulated 

testosterone in pituitary clamped adult rhesus monkeys. In the present study we aimed to 

sort out the immunocytochemical localisation of kisspeptin and kisspeptin receptor in 

adult primate testis tissue. Immunocytochemistry was performed on paraffin embedded 

testis tissue from adult rhesus monkey (Macaca mulatta), a representative higher primate 

(n=2) and common marmoset (Callithrix jacchus) a representative new world monkey 

(n=2). The immunolocalisation of kisspeptin receptor was found to be present inside the 

seminiferous tubules and concentrated around the peripheral areas rich in A 

spermatogonia. The localisation pattern for kisspeptin receptor was consistent in new 

world and old world monkey testis. The kisspeptin immunocytochemistry revealed an 

interstitial pattern of localisation where the Leydig cells along with testicular 

macrophages and peritubular myoid cells were found to be positive for the kisspeptin. 

These results demonstrate that primate testis is positive for kisspeptin receptor and 

kisspeptin localisation and imply that kisspeptin-kisspeptin receptor signalling might 

have an active role in primate testis involving the interplay of tubular and interstitial 

cells.     
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Introduction 

We have demonstrated a novel intratesticular role of kisspeptin in primate testis in 

enhancing stimulated testosterone production in pituitary gonadotropin clamped adult 

male monkeys (Chapter 1). Our in vivo results promise the presence of an active 

kisspeptin-kisspeptin receptor signaling at the testis. The specific localization of 

kisspeptin and its receptor in the primate testis is vital to understand the precise cellular 

type through which kisspeptin exerts its possible role in the testicular microenvironment. 

The testis contains different somatic cell types where each cell performs different 

functions. The intercellular communications between somatic cells as well as the 

communications between the germ cells and somatic cells are key features of the normal 

testicular functionality. The kisspeptin and kisspeptin receptor localisation has been 

recently reported for rodent and vertebrate testis (Anjum et al., 2012; Chianese et al., 

2013; Hua et al., 2013). In primate testis the cellular localisation for kisspeptin and 

kisspeptin receptor still need to be sorted out. The precise testicular cellular localisation 

would help further to delineate the role of kisspeptin-kisspeptin receptor signalling in 

primate testis. In the present study we aimed to carry out the immunohiostochemical 

localisation of kisspeptin and kisspeptin receptor in adult primate testis. In order to be 

concise e used testis tissue from Old World monkey (Macaca mulatta) and New World 

monkey (Callithrix jacchus) to assess the localisation pattern of kisspeptin and kisspeptin 

receptor across the primate testis. 

Previously the presence of GnRH, a hypothalamic neuropeptide has been reported 

in the testis. GnRH peptide had been isolated from the interstitial fluid and the functional 

GnRH receptors have been found to be present on the Sertoli cells and functionally 

GnRH affect the testicular steroidogenesis in a negative manner (Bambino et al., 1980; 

Bourne et al., 1980; Petersson et al., 1989).  
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Materials and Methods 

Animals

Two adult male rhesus monkeys (Macaca mulatta) were employed for testicular 

immunohistochemical analysis. These animals were obtained from the University of 

Pittsburgh Primate Facility’s breeding colony and aged 6-6.5 years and weigh around 10 

kg at the time of castration. Testicular tissues were obtained by castration via an inguinal 

incision. Surgeries were performed at the operation room of the facility. Anaesthesia was 

induced with Ketaject (Ketamine Hcl Inj., Usp; Phoenix Pharmaceuticals, MO, USA) via 

intramuscular injection and maintained by isoflurane inhalation. Animal husbandry and 

all experimental procedures involving the animals were performed in compliance with 

the University of Pittsburgh Guidelines for the Care and Use of Laboratory Animals and 

after IACUC approval were obtained. 

Two adult male common marmoset (Callithrix Jacchus) were also employed for 

testicular immunohistochemical analysis. The animals were obtained from University 

Hospital Munster (UKM) animal facility and were aged 3-4 years and weigh 400-500 

grams at the time of sacrifice. Animal husbandry and all experimental procedure were 

performed in compliance with the University of Munster and UniKilinikum Munster 

(UKM) guidelines. 

Testicular biopsy and tissue fixation 

Tissue samples from each testis were fixed overnight at room temperature in 

Bouin’s fixative; tissues were then washed and stored in 70% ethanol. Subsequently, 

tissues were embedded in paraffin, and were sectioned to 3µm thick section employing a 

Leica SM 2000R microtome. A total of 12 sections were taken from adult rhesus and 

marmoset monkey testis. 
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Antibodies and chemicals 

Primary antibody for kisspeptin (GQ2) was kindly provided by Dr. Stephan R 

Bloom. The primary antibody for KISS1R/GPR54 (Anti AXOR 12) was purchased from 

Phoenix Pharmaceuticals, Belmont, CA. USA. Chicken anti rabbit horse reddish 

peroxidase conjugated (Cat-Nr. sc 2955, Santa Cruz Biotechnologies, Heidelberg, 

Germany) was used as secondary antibody for kiss1r immunocytochemistry. Donkey anti 

sheep biotin was used as secondary and Streptavidin-HRP (horse reddish peroxidase) was 

used as tertiary antibody for kisspeptin immunocytochemistry. DAB (Diaminobenzidine, 

Cat.-Nr. D-4168) tablets were purchased from Sigma-Aldrich, Munich, Germany.  

Dilutions and concentrations 

KISS1R/GPR54 primary antibody (Anti AXOR 12) and secondary antibody 

(chicken-anti-rabbit-HRP-conj. Sc-2955) both were used at a dilution of 1:100. The 

antibodies were diluted in 25% chicken serum in 0.5% BSA in TBS. For kisspeptin the 

primary antibody (GQ2) was used at a dilution of 1:120,000 as previously described 

(Ramaswamy et al., 2008) and the secondary and tertiary antibodies were used at a 

dilution of 1:100 and 1:500 respectively. The primary, secondary and tertiary antibodies 

for kisspeptin were diluted in 25% donkey serum in 0.5% BSA in TBS. 

Controls 

Human placental tissue was used as a positive control and secondary antibody 

omission was used as negative controls for kisspeptin and kiss1r. Human placental tissue 

was kindly provided by the Gynaecology Clinic of the University Hospital Muenster, 

Germany. Placental tissues were fixed in sera fixative, embedded in paraffin and were 

sectioned to 3µm thick section employing a Leica SM 2000R microtome. 
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Immunocytochemistry for kisspeptin receptor (kiss1r) 

A total of 6 sections were used from each testis from adult rhesus and marmoset 

monkeys were used for kisspeptin receptor immunocytochemistry. The tissue sections 

were deparaffinated in paraclear, rehydrated in an ethanol row, washed in running tap 

water and rinsed with distilled water. Antigen retrieval was performed using citrate buffer 

(pH 6.0) and heating in a microwave to approx. 80°C for 2 minutes. Tissue sections were 

washed in tris buffered saline (TBS), incubated in 3 % H2O2, washed in distilled water 

then again washed in TBS. Blocking of unspecific binding sites was performed using 25 

% chicken serum and 0.5 % bovine serum albumin (BSA) in TBS for 30 mins. After 

blocking the sections were incubated with primary antibody Anti AXOR 12 (anti-GPR54; 

Cat.-Nr. 375-398, Phoenix Pharmaceuticals, Belmont, CA. USA, dilution 1:100) in 

humid chamber at 4°C over night. Next morning sections were washed in TBS, incubated 

with secondary antibody (chicken-anti-rabbit Horse raddish-peroxidase conjugated, Cat.-

Nr. sc 2955, Santa Cruz Biotechnologies, Heidelberg, Germany; diluted at 1:100) for 1 

hour in wet chamber. Sections were then washed with TBS and then stained with DAB 

was performed as specified by the manufacturer. Sections were then counterstained using 

Mayer’s hemalaun. After counterstaining sections were dehydrated and mounted using 

permanent mounting medium.  

Immunocytochemistry for kisspeptin 

A total of 6 sections from each testis from adult rhesus and marmoset were used 

for kisspeptin immunocytochemistry. Tissue sections were treated the same way as 

mention in the previous sections. The blocking was performed using 25% donkey serum 

in 0.5% BSA in TBS for 30 mins. Sections were then incubated with primary antibody 

(GQ2, dilution 1:120,000) in humid chamber at 4°C overnight. Next morning sections 

were washed in TBS and then incubated with secondary antibody (Donkey- anti-sheep 

biotin, dilution 1:100) for 1 hour in wet chamber. Section were again washed with TBS 

and incubated with tertiary antibody (Streptavidin-HRP conj, dilution 1:500) for 30 mins. 

Section were then washed with TBS, stained with DAB as per manufacturer’s 



Chapter 3      

62 

instructions, counterstained using Mayer’s hemalaun, dehydrated and mounted using 

permanent mounting medium. 

Microscopy 

Slides were analyzed using an Olympus BX61 microscope (Melville, NY, USA) 

with an attached Retiga 4000R camera (QImaging, Surrey, BC, Canada). All images were 

acquired digitally using QCapture imaging software (QImaging, Surrey, BC, Canada). 
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Results 

Testicular immunocytochemistry for kisspeptin receptor  

Immunohistochemical localisation for kisspeptin receptor showed a positive 

staining in the all the primate testis tissue used (Fig 3.1 & 3.3). Slides revealed a strong 

signal at the outer periphery of the seminiferous tubules in rhesus and marmoset testis 

(Fig 3.1 & 3.3). Human placenta was used as positive control (Fig 3.2). Positive control 

along with the negative controls clearly demonstrates the specificity of the antibody (Fig 

3.2). Detailed examination revealed a peculiar localization pattern which is quite 

remarkable. The interstitial tissue was devoid of any localisation in all the testicular 

sections employed. The specific peripheral pattern of localisation in seminiferous tubules 

is consistent in all the testicular samples used. Cytological analysis reveals that the kiss1r 

positive signal is present both on the Sertoli cell membrane and concentrated around A 

spermatogonia in the seminiferous tubules. The observation of a peripheral localisation 

pattern found in the seminiferous tubules of rhesus and marmoset testis tissue is a novel 

finding of the study.  

In conclusion the immunocytochemical localisation of kisspeptin receptor in the 

adult primate testis is found to be in the seminiferous tubules. The immunoreactivity was 

evident only in the seminiferous tubules and no immunolocalization was found in the 

interstitial compartment. The results are consistent across human and monkey tissue 

samples. The peripheral area of the seminiferous tubules was positive for the kisspeptin 

receptor and this staining pattern is also similar in all the tissue samples used. Although 

Sertoli cell membrane harbouring undifferentiated spermatogonia exhibited strong 

staining as compared with those areas of Sertoli cell membrane which are devoid of any 

undifferentiated spermatogonia.  
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Figure 3.1 Immunocytochemistry for kisspeptin receptor (Kiss1r) in adult rhesus monkey 

testis sections (40x) (A,B,C,D). Positive kiss1r-like immunoreactivity at the periphery of the 

seminiferous tubule (arrows). 

A 

DC 

B
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Figure 3.2 Controls for kisspeptin receptor immunocytochemistry. A) Primary antibody 

omitted negative control, adult rhesus testis (40x). B) Isotype control, adult rhesus testis (40x). 

C) Positive control, human placenta (40x). D) Primary antibody omitted control, human

placenta (40x). 
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DC 
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Figure 3.3 Immunocytochemistry for kisspeptin receptor (Kiss1R) in adult common 

marmoset testis (A, B and C) (40X). Primary antibody omitted negative control (D) (40X). 

Note the peripheral localisation of the kiss1r-like immunoreactivity at the periphery of the 

seminiferous tubules (Arrows). 
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Testicular immunocytochemistry for kisspeptin 

The interstitial area was found positive for kisspeptin immunolocalisation in adult 

male rhesus monkey testis. The different cell types in interstitial area were found positive 

for the kisspeptin. Based on the location and the shape of these cells, we concluded that 

the most persistent and strong localisation was shown by the peritubular myoid cell along 

with the underlying layers of the basal lamina which forms the basement membrane 

around the seminiferous tubules (Fig. 3.4, Thin arrows). The other interstitial cells types 

were also seem to show positive kisspeptin-like immunoreactivity (Fig 3.4, thick arrows). 

However the precise identification of the cell type of these positive cells needs further 

labelling. Surprisingly the tubular area failed to show any immunoreactivity for 

kisspeptin in adult male rhesus testis.  
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 Figure 3.4 Immunocytochemistry for kisspeptin in adult rhesus testis A, B, C, D. (A, B, D 

40x) (C, 60x). Peritubular myoid cells and basement membrane (Thin arrow), Interstitial 

cells (thick arrows). 

A 
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Discussion 

Previously a novel in vivo intratesticular action of kisspeptin in enhancing Leydig 

cell steroidogenesis in the presence of LH/hCG in the pituitary gonadotropin clamped 

adult monkey model has been demonstrated (Chapter 2). In the current study we aimed to 

sort out the cellular localisation of kisspeptin and kisspeptin receptor in the adult primate 

testis. Immunocytochemistry as a tool was employed to identify the peculiar testicular 

cell type positive for kisspeptin and its receptor. The Sertoli cell localisation for 

kisspeptin receptor (kiss1r) was the novel finding of this study. The same pattern of 

localisation for kiss1r was observed in adult rhesus and marmoset testis. According to our 

in vivo data (Chapter 2), the finding of Sertoli cell localisation for kisspeptin receptor 

makes sense at least from an androgenic perspective. The Sertoli cell is known to secrete 

factors which enhance Leydig cell steroidogenesis in the presence of LH (Saez et al., 

1989). It seems that kisspeptin indirectly enhances Leydig steroidogenesis via Sertoli 

cells instead of a direct endocrine action at the Leydig cell membrane.  

On the other hand the kisspeptin positive areas were found to be present in the 

interstitial region of the adult rhesus monkey testis. Surprisingly all the interstitial cell 

types were found positive. The cells which were found positive for kisspeptin like 

immunoreactivity included Leydig cells, testicular macrophages and peritubular myoid 

cells along with layers of basement membrane. The finding of non tubular localisation for 

kisspeptin in the current study is not surprising as it has been shown recently that 

kisspeptin like immunoreactivity is present in the interstitial compartment in mouse and 

frog testis where Leydig cells are found positive for kisspeptin like immunoreactivity 

(Anjum et al., 2012; Hua et al., 2013; Chianese et al., 2013). Although human sperm 

were shown positive for the kisspeptin like immuoreactivity (Pinto et al., 2012), but in 

our experiment we failed to observe any tubular areas positive for kisspeptin like 

immunoreactivity.  
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It seems that the interstitial compartment of the primate testis is responsible for the 

kisspeptin secretion which in turn acts on the Sertoli cells and induces the release of 

factors. These factors acts back on the Leydig cells and enhance the responsiveness of the 

LH receptor present on the Leydig cell membrane towards the LH. This idea is 

supported by previous studies where Sertoli cell produced factors that influenced 

testosterone secretion from the Leydig cell or affect Leydig cell response 

towards gonadotropins (Lejuene et al., 1992). 

Apart from the androgenic perspective, another possible functional role of the 

kisspeptin-kisspeptin receptor signaling in the primate testis could be its involvement in 

defining the spermatogonial stem cell niche environment. As the peripheral area of the 

seminiferous tubules which was found positive for kisspeptin receptor like 

immunoreactivity in adult primate testis, harbours A spermatogonia which are also 

known as the undifferentiated spermatogonia or spermatogonial stem cells (Ehmcke and 

Schlatt, 2006; Ehmcke et al., 2006). This same site is involved in aiding the mitotic 

multiplication of the Ap spermatogonia to become B spermatogonia as well as the self 

renewal activity of A spermatogonia. This anatomical area had been suggested as the 

spermatogonial stem cell niche region because of its fundamental involvement in the 

initiation of spermatogenesis and spermatogonial stem cell renewal activity (de Rooij, 

2009). The niche region is defined as the area which provides all the required factors 

needed by the spermatogonial stem cells for their mitotic multiplication and self renewal 

activity. The specialised niche region in testis is anatomically composed of Sertoli cell 

membrane encircling the A spermatogonia. It seems that kisspeptin through its receptor 

might be involved in playing a role in this niche region. Parenthetically, kisspeptin was 

initially found to be involved in the metastatic cancer as an anti metastatic peptide (also 

known initially as metastin) where the primary action of kisspeptin was suggested to 

either block or stop metastasis (Lee et al., 1996; Lee and Welch, 1997; Murphy, 2004). It 

has been shown that the antimetastatic effects are achieved by kisspeptin in metastatic 

cancer by inhibiting chemotaxis and cell migration (Hori et al., 2001; Yan et al., 2001; 

Harms et al., 2003; Navenot et al., 2009). 
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During the postnatal testicular development, the germ cells migrate from the 

centre of the seminiferous tubules to the peripheral area. During their migration these 

cells are called gonocytes and once they establish a physical contact with the basement 

membrane, these cells are known as A spermatogonia or spermatogonial stem cells 

(Culty, 2009). A spermatogonia do not show any migratory property in the primate testis. 

The peculiar localisation of kisspeptin and kisspeptin receptor in adult primate testis leads 

us to propose that kisspeptin via kisspeptin receptor signaling might be involved in 

hindering the migratory property of A spermatogonia in the adult testis. The migratory 

male germ cells known as gonocytes in postnatal primate testis must reach their niche 

regions in order to exhibit self renewal and mitotic capacity (Culty, 2009). The kisspeptin 

signaling by restraining the germ cells inside the niche regions might assist in 

establishing the self renewal ability and aid in establishing the spermatogenic capacity of 

the primate testis. Further studies employing in vitro tissue cultures on juvenile, pubertal 

and adult testis tissue is required to sort out the physiological significance of the presence 

of kisspeptin signalling in the primate spermatogenic dynamics.  

Nonetheless the present study highlights a novel testicular site of localization of 

both kisspeptin and its receptor in higher primates. Present findings also suggest a role 

for kisspeptin-kisspeptin receptor signalling in the primate testis relevant to testicular 

endocrine action or possibly spermatogenesis, which might be supplementary to already 

well established central kisspeptin signalling relevant to control of the reproductive axis.  
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Pubertal and testicular development in common marmoset (Callithrix 

jacchus): a New World monkey model 

 

 

Abstract 
 

 

The common marmoset (Callithrix jacchus) became an attractive non-human 

primate model due to its small size and long life span in captivity. Adult marmoset share 

high testicular organizational similarity with the human testis but the details of pubertal 

testicular development in this monkey has been poorly explored. Aims of the present 

study were to describe onset and kinetics of pubertal testis growth and function in 

common marmosets.  Immature common marmosets (n=48) were observed for 13 months 

either starting from birth or at an age of less than 12 months. Monthly changes in body 

weight and testicular volume were recorded. Testosterone was assayed by 

radioimmunoassay in serum samples. At the end of the study the testis tissue was 

collected, fixed and embedded in paraffin. Histological and morphometric data were 

determined. In the first six months a rapid rise in body weight but not in testis volume 

was observed. At this point some animals entered puberty (rise in testis volume (TV), 

increase in testosterone) reaching adult testis size (> 200mm³) already at 10 month of age. 

Others showed delayed entry into puberty until 12 or 13 months. While testosterone 

levels corresponded with early or late onset of puberty, body weight did not. At 15-18 

months of age, body weights were similar in all monkeys but testis size and testosterone 

levels were highly variable. Histological analysis reveals that the onset of puberty is 

accompanied by an increase in the tubule diameter and the formation of a tubular lumen. 

Increase in the diameter and length of seminiferous tubules leads to a continuous increase 

in tubule weight. Motile sperm were first observed in the epididymis at 12 months of age. 

Marmoset puberty begins earliest at 6 month of age. In contrast to a uniform increase of 
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body weight, pubertal onset is highly variable between individual animals. Onset of 

testicular growth and steroidogenesis are synchronized.  

Our data indicate that the hypothalamus in marmosets controls growth and 

gonadal function independently. Whether body weight gain is a prerequisite for pubertal 

activation is unclear. The high variability of pubertal development appears to depend on 

the timing of the GnRH-pulse generator as morphological and functional parameters 

develop normally once initiated. Preliminary observations are indicative for a control of 

the hpg-axis during puberty via social factors. This observation needs to be substantiated 

in future studies. 
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Introduction 

Common marmoset (Callithrix jacchus) a New World primate, has become an 

attractive laboratory animal in biomedical research and toxicology owing to its small 

size, high breeding rate and long life span in captivity (Abbott et al., 2003; Mansfield, 

2003; Zühlke and Weinbauer, 2003: ‘t Hart et al., 2012). Common marmoset has been 

proposed as animal model in research areas which include aging, arthritis, multiple 

sclerosis, neuroscience and Parkinson’s disease (Eslamboli, 2005; Austad and Fischer, 

2011; Petersen and Yu, 2011; Carrion and Patterson, 2012). The benefit of a non human 

primate model over the rodent model is very important for medical research as the basic 

physiology of postnatal reproductive development is different between rodents and 

primates (Plant, 2012).  

Apart from being a model animal for medical research an important physiological 

aspect of adult common marmoset is the resemblance of its testicular tubular organization 

towards human testis. It has been shown that adult marmoset testis show highly similar 

seminiferous tubule organization with human (Millar et al., 2000; Wistuba et al., 2003) as 

well as the fetal and neonatal germ cell development in common marmoset mimic human 

like pattern (Mitchell at al., 2008). These findings highlight common marmoset as an 

attractive non human primate for the study of testicular morphogenesis and fertility 

research (Gassei and Schlatt, 2007). 

The process of primate puberty and testicular development on the other hand has 

been characterized on the basis of data generated in higher primates (Plant et al., 2005; 

Plant, 2006, 2008; Plant and Witchel, 2006). In comparison with Old World monkeys 

(2.5-3 years), the New World monkeys need a lot less post natal time to reach sexual 

maturation (12 months) (Plant and Witchel, 2006). Apart from a significant difference in 

the time period required for the sexual maturation the question that how similar is the 

process of puberty in terms of hormonal and gonadal parameters between Old World 

monkeys and New World monkeys has never been addressed.  
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On the contrary, the limited data available on the pubertal and testicular 

development in common marmoset have been controversially argued thus fabricating a 

perplexed picture in terms of the hallmarks of the pubertal testis development (Li et al., 

2005). However recent findings in common marmoset points towards a unique 

reproductive endocrinology which involve the presence of a chorionic gonadotropin (CG) 

like molecule instead of LH in HPG axis interplay. This CG like molecule has a much 

shorter serum half life as compared with LH  (Muller at al., 2004). The reason for the 

dissension regarding pubertal testicular ontogeny mainly arise due to the fact that nearly 

all of the reports regarding pubertal and testicular development in common marmoset 

were conducted well before the findings of the presence of CG like molecule instead of 

LH, except for Chandolia (2006). The unique reproductive endocrinology in the common 

marmoset is also present in terms of steroid hormone resistance where the unbound 

plasma testosterone in new world primates were found to be around 20-40 ng/dl as 

compared to 3-9 ng/dl in old world monkey and 10 ng/dl in humans (Puggeat et al., 

1984). Adult common marmosets have also been shown to exhibit a strong social 

regulation of fertility both in male and females and to date it is unclear whether this 

phenomenon also impacts the timing of pubertal onset in common marmoset (Abbot et 

al., 1999; Baker et al., 1999).  

The general notion to date is that in common marmoset the pubertal activation of 

HPG axis occurs between 6-12 months of age (Li et al., 2005). This high variation of 

time is critical for selecting animals for developmental and testicular research and might 

affect the outcome of these studies. While keeping the above mentioned background, we 

aimed to investigate the pubertal and testicular development in common marmoset by 

using a simplistic approach of observing immature common marmoset monthly for body 

weight, testis volume and blood samples for a period of 13 months. At the end of the 

study animals were sacrificed and testis tissue was collected, fixed and embedded in 

paraffin for histological and morphometric analysis. 
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Materials and Methods 
 

 

Animals and sampling 

Immature common marmosets (n=48) were observed for 13 months either starting 

from birth or at an age of less than 12 months. Animals were housed in the central animal 

facility of the University Hospital Muenster (UKM). Animals were either housed in their 

respective family cages or were housed in the cages where all animals were males and 

were of the same age approximately (± 1 month). Animals were fed fresh fruits in the 

morning and feed ration in the evening. Water was ad libitum.  

Body weight and testicular volume samples were recorded monthly. Also the 

blood samples were collected from the femoral vein of each animal during the collection 

of body weight and testicular volume. All the samples were collected between 0800 and 

1030. The serum was separated from the collected blood samples and stored at -20 C till 

assayed. For the testis volume the testis length and width was measured using vernier 

caliper and the testicular volume was calculated using an established ellipsoid formula. 

 

Hormone assay 

 

Testosterone (T) was assayed in serum samples using an in-house (CeRA, 

Muenster, Germany) developed RIA method. Serum testosterone was measured by a 

solid-phase, double-antibody RIA technique, using a commercially available iodinated 

tracer (testosterone-3-(0-carboxymethyl) oximino-2-[12T] iodohistamine, (Amersham 

International, Braunschweig, Germany) and an antiserum raised in rabbit against 

testosterone-3(carboxymethyloxime)-BSA. The bound/free separation was performed by 

addition of a solution of solid-phase antirabbit immunoglobulins (Immunobead Second 

Antibody, Biorad, Munich, Germany). The recovery after ether extraction was monitored 

by addition of trace amounts of [lß,2ß- 3H]testosterone (NET-187, NEN, Boston, MA) 

and the final results were corrected accordingly. The sensitivity was 2 pg/tube (0.07 
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nmol/l). In 10 consecutive assays the intra-assay coefficients of variation (mean ±SEM) 

were 8.43+1.42, 4.2+0.59 and 4.37+0.63% for control sera with low, middle and high 

testosterone concentrations, respectively. The corresponding inter-assay coefficients of 

variations were 16.62, 6.26 and 3.85%, respectively. 

 

Tissue collection, fixation and histology 

 

 At the end of the study each animal was anesthetized with ketamine and body 

weight and testicular volume are measured, subsequently the animals were sacrificed by 

exsanguinations. The testis tissues were removed and weights of testes were recorded 

immediately. Testis tissues were then placed in Bouin’s solution overnight. The next day 

the testis tissues were dehydrated in ascending grades of alcohol (70%, 80%, 90%, 100% 

for 1 hour each) and then two xylol washes each for one hour in histomaster. The tissues 

were then embedded in liquid paraffin and allowed to cool. 2.5-3 µm thick sections were 

cut. Total of six sections were used from the left testis of each animal. Periodic Acid 

Schiff staining was conducted.  

 

Microscopy and histo-morphometry 

Slides were analyzed using an Olympus BX61 microscope (Melville, NY, USA) 

with an attached Retiga 4000R camera (QImaging, Surrey, BC, Canada). All images were 

acquired digitally using QCapture imaging software (QImaging, Surrey, BC, Canada). 

Pictures were taken from five independent positions from each section at 20X (5 

pictures/section) using the camera fitted on the microscope. A total of 30 pictures from 

each testis were used for point counting and morphometric measurements. 

Volume densities, expressed as the percent of testicular parenchyma were 

determined by point counting. Randomness and sufficient sampling were ensured by the 

use of 6 sections from each testis. A total of 120 points were scored for each testis. 

Volume density of various components multiplied by testis weight yielded the total 

weight of that component per testis. For tubule diameter 60 measurements were taken 

from each testis (10 measurements from each section).  Round tubules were selected for 
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measurements. For point counting square shaped grid was used and four corners of grid 

were observed in terms of their location on interstitium, tubule epithelium and tubule 

lumen.  

Statistics 

All data were expressed as mean ±SEM unless stated otherwise.  
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Results 
 

Mean body weight, mean bi-testis volume and mean plasma testosterone 

The mean body weight in immature common marmoset showed accelerated 

growth rise during the first seven months of age which was followed by a passive rise 

(Fig. 4.1). The mean testis volume shows an abated increase till the first six months of 

age, which is then followed by relatively sharp increase up till 16 months of age (Fig 

4.2). The testis volume of the individual animal shows a period of quiescent 

developmental up till 24 weeks of age (Fig 4.3). The increase in testis volume was first 

observed around 28 weeks (7 months) which then followed a highly diverse individual 

pattern where some animals reach adult size around 44 weeks (9-10 months) while others 

show a slow rise in the testis volume. Mean serum testosterone levels of male common 

marmoset from birth till 18 months showed a sudden rise in serum testosterone at 7 

month of age (Fig 4.4). The sudden rise in serum testosterone at 7 month of age is the 

first sign of the pubertal activation of hypothalamic pituitary gonadal axis and it also 

correlates with the rise in the testicular volume.  
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Figure 4.1 Mean body weight in common marmoset from birth till 21 months of age (n=48). 
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Figure 4.2 Mean bi-testis volume in common marmoset from birth till 21 months of age 

(n=48). 
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Figure 4.3 Bi-testis volume of the individual common marmoset (n=48). 
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Figure 4.4 Mean serum testosterone levels from birth till 25 months of age in common 

marmoset (n=48). 
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Testicular histo-morphometric analysis 

The seminiferous tubule diameter showed an increasing trend after 24 weeks (6 

months) onwards up till 68 weeks of age (16 months) (Fig 4.5). The timing of the initial 

increase in the seminiferous tubule diameter correlates with serum levels of testosterone 

(Fig 4.4). The presence of a tubule lumen was also observed from 24 weeks (6 months) 

onwards (Fig 4.6 and 4.7) which in turn is the testicular tubular response towards the 

higher levels of serum testosterone. With advancing age the percentage of the 

seminiferous tubules exhibit a decreasing trend and the percentage of the lumen 

demonstrated an increasing trend (Fig 4.6), While the weight of the seminiferous tubules 

increased from 28 weeks onwards (Fig 4.7). Our testicular morphometric analysis 

completely correlates with increasing levels of serum testosterone observed from 28 

weeks onwards in immature male common marmoset. Histological analysis for the 

Sertoli cell arrangement demonstrated that randomly placed Sertoli cell are observed up 

till 5 months of age, at 6 month Sertoli cells arranged themselves towards the periphery in 

epithelial like fashion around (Table. 4.1). Gonocytes were observed around 5 months of 

age while the A spermatogonia were first observed around 6 month of age and the 

occasional B spermatogonia were first observed around 7 month of age, whereas sperm 

were found in the epididymis at 12 months of age (Table. 4.1).  

Our manual measurements of the testis volume in common marmoset were quite 

accurate as the testis weight and the volume were highly comparable as seen in the (Fig. 

4.8). The relative testis weight also show an increasing trend after 28 weeks (Fig. 4.9). 

Note the sudden increase in the bi-testis weight and bi-testis volume in the age groups of 

44 weeks and 52 weeks (Fig 4.9). This sudden increase in testis weight and testis volume 

is also observed in the seminiferous tubule diameter of the same age group (Fig.4.5). The 

reason for this two fold increase in the testis weight in these two groups might be due the 

spermatogonial expansion which was observed at 52 weeks (12 months) of age in terms 

of the presence of elongated spermatids as well as the epididymal sperm (Table 1). 
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Figure 4.5 Seminiferous tubule diameter from 16 weeks onwards till 96 weeks in common 

marmoset (n=48). 
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Figure 4.6 Percentage of seminiferous tubules, interstitial area and tubule lumen during 

development in common marmoset (n=48). 
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Figure 4.7 Calculated weight of seminiferous epithelium, interstitial area and the tubule 

lumen during development in common marmoset (n=48). 
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Figure 4.8 Bi-testis weight and bi-testis volume of the sacrificed common marmoset (n=48). 
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 Figure 4.9 Relative testis weight of the sacrificed common marmoset (n=48). 
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Table 4.1  Description of advanced germ cell type, Sertoli cell arrangement and the 
presence or absence of sperm in the epididymis of common marmoset over the 
course of development (n=48). 

 

 

 

 

 

 

 

 

Age Most advanced 

Germ cell type 

Sertoli cell nuclei 

arranegment 

Epipdidymal 

sperm 

4 Months 

n= 6 

Gonocytes Centrally placed 

Randomly arranged 

No 

5 Months 

n= 3 

A spermatogonia Centrally placed 

Randomly arranged 

No 

6 Months 

n= 6 

A spermatogonia Peripherally placed 

epithelial arrangement 

No 

7 Months 

n= 3 

B spermatogonia Epithelial-like 

arrangement 

No 

8 Months 

n= 5 

Secondary 

spermatocytes 

Epithelial-like 

arrangement 

No 

10 Months 

n= 3 

Round spermatids Epithelial-like 

arrangement 

No 

12 Months till 20 

months 

n= 22 

Elongating 

spermatids  

Epithelial-like 

arrangement 

Yes 
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Body weight, bi-testis volume, serum testosterone in individual animals from birth 

till the sacrifice and the bi-testis weight, seminiferous tubule diameter and moset 

advanced germ cell type on the day of sacrifice 

The individual animal’s body weight, bi-testis volume and serum testosterone 

concentration are presented from birth till the day of sacrifice. The bi-testis weight which 

was measured after the removal of the testis, the serum testosterone concentration on the 

day of sacrifice along with the histomorphometric data including the seminiferous tubules 

diameter and the most advanced germ cell type present are also shown. Note the sudden 

rise in serum testosterone at 7 month of age  (Fig 4.10, 4.11, 4.13, 4.14, 4.15, 4.16, 4.18, 

4.18, 4.26, 4.28, 4.36, 4.38) while some animals fail to show a substantial rise in serum 

testosterone at 7 months of age. In these animals the substantial rise in serum testosterone 

is seen either before 7 months of age (6 months) (Fig 4.17, 4.20, 4.25, 4.32)  or after 7 

months of age (Fig 4.21, 4.22, 4.23, 4.24, 4.27, 4.30, 4.31, 4.33, 4.35, 4.37, 4.39, 4.40). 

Interestingly the seminiferous tubule diameter and most advanced germ cell type were 

found to be similar in the animals from same age group but having different testosterone 

levels. Animal # 596 (Fig 4.12) did not show a testosterone rise at 7 month of age but the 

seminiferous diameter is comparable along with the most advanced germ cell type with 

those animals which show substantial rise at 7 month of age and were in the same age 

group as animals# 596 at the sacrifice day (Fig 4.10, 4.11, 4.13). Few animals did not 

show any testosterone rise during the complete sampling period (Fig 4.19, 4.29), but the 

testis weight and seminiferous tubule diameter of these animals were comparable with the 

other animals from the same age group. The significant rise in bi-testis weight was 

observed in 12 month old group (Fig 4.21, 4.22, 4.23) as the testis weight doubled as 

compared with the 11 month old group (Fig 4.19, 4.20). This sudden increase in testis 

weight was mainly due to the spermatogonial expansion as the sperms were observed in 

the epididymis in the 12 month old group (Table. 1). Although the seminiferous tubules 

diameter did not show a remarkable difference in these two age groups.  
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Figure 4.10  Body weight, serum testosterone and bi-testis volume from birth till 7 month of 

age in common marmoset (#597) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.11 Body weight, serum testosterone and bi-testis volume from birth till 7 month of 

age in common marmoset (#595) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.12 Body weight, serum testosterone and bi-testis volume from birth till 7 month of 

age in common marmoset (#596) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.13 Body weight, serum testosterone and bi-testis volume from birth till 8 month of 

age in common marmoset (#578) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.14 Body weight, serum testosterone and bi-testis volume from birth till 8 month of 

age in common marmoset (#591) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.15 Body weight, serum testosterone and bi-testis volume from birth till 8 month of 

age in common marmoset (#590) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.16  Body weight, serum testosterone and bi-testis volume from birth till 8 month of 

age in common marmoset (#573) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.17  Body weight, serum testosterone and bi-testis volume from birth till 8 month of 

age in common marmoset (#579) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.18  Body weight, serum testosterone and bi-testis volume from birth till 9 month of 

age in common marmoset (#567) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.19  Body weight, serum testosterone and bi-testis volume from birth till 11 month of 

age in common marmoset (#551) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure  4.20  Body weight, serum testosterone and bi-testis volume from birth till 11 month 

of age in common marmoset (#557) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.21  Body weight, serum testosterone and bi-testis volume from birth till 12 month of 

age in common marmoset (#535) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.22   Body weight, serum testosterone and bi-testis volume from birth till 12 month 

of age in common marmoset (#537) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.23  Body weight, serum testosterone and bi-testis volume from birth till 12 month of 

age in common marmoset (#538) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.24  Body weight, serum testosterone and bi-testis volume from birth till 14 month of 

age in common marmoset (#520) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.25  Body weight, serum testosterone and bi-testis volume from birth till 14 month of 

age in common marmoset (#518) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.26  Body weight, serum testosterone and bi-testis volume from birth till 14 month of 

age in common marmoset (#517) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.27  Body weight, serum testosterone and bi-testis volume from birth till 14.5 month 

of age in common marmoset (#513) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.28  Body weight, serum testosterone and bi-testis volume from birth till 15.5 month 

of age in common marmoset (#503) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.29  Body weight, serum testosterone and bi-testis volume from birth till 15.5 month 

of age in common marmoset (#497) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.30  Body weight, serum testosterone and bi-testis volume from birth till 15.5 month 

of age in common marmoset (#491) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.31  Body weight, serum testosterone and bi-testis volume from birth till 16 month of 

age in common marmoset (#492) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.32  Body weight, serum testosterone and bi-testis volume from birth till 16 month of 

age in common marmoset (#504) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.33  Body weight, serum testosterone and bi-testis volume from birth till 16 month of 

age in common marmoset (#487) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.34  Body weight, serum testosterone and bi-testis volume from birth till 19.5 month 

of age in common marmoset (#456) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.35  Body weight, serum testosterone and bi-testis volume from birth till 19.5 month 

of age in common marmoset (#457) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.36  Body weight, serum testosterone and bi-testis volume from birth till 19.5 month 

of age in common marmoset (#454) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.37  Body weight, serum testosterone and bi-testis volume from birth till 20 month of 

age in common marmoset (#443) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.38  Body weight, serum testosterone and bi-testis volume from birth till 20 month of 

age in common marmoset (#444) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.39  Body weight, serum testosterone and bi-testis volume from birth till 20 month of 

age in common marmoset (#427) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.40  Body weight, serum testosterone and bi-testis volume from birth till 20 month of 

age in common marmoset (#431) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.41  Body weight, serum testosterone and bi-testis volume from birth till 21 month of 

age in common marmoset (#419) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Figure 4.42  Body weight, serum testosterone and bi-testis volume from birth till 22.5 month 

of age in common marmoset (#202) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.43  Body weight, serum testosterone and bi-testis volume from birth till 22.5 month 

of age in common marmoset (#183) (Line graph) and the bi-testis weight, serum testosterone 

on the day of sacrifice along with tubule diameter (Column graph) and most advanced germ 

cell type (Text box). 
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Figure 4.44  Body weight, serum testosterone and bi-testis volume from birth till 24 month of 

age in common marmoset (#169) (Line graph) and the bi-testis weight, serum testosterone on 

the day of sacrifice along with tubule diameter (Column graph) and most advanced germ cell 

type (Text box). 
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Discussion 
 

 

 

The pubertal and testicular development in common marmoset was highlighted 

almost 30 years ago (Abbot and Hearn, 1978; Jackson and Edmonds, 1984). Since these 

classical reports the testicular characterization during development in common marmoset 

has been attempted regarding Sertoli cells and Leydig cell morphology (Rune et al., 

1991; Rune et al., 1992). The observational attempts to unravel the ontogeny of pubertal 

onset in common marmoset has been scarce (Dixon, 1986; Chandolia et al 2006). Apart 

from these above mentioned studies, it is interesting to note here that nearly all of the 

other studies conducted on common marmoset to unravel the postnatal aspect of sexual 

development at the testis level were manipulative instead of observatory (Lunn et al., 

1990, 1992, 1994, 1997; Sharpe et al., 2000, 2003).  

The scarcity of the available observational data creates poor understanding of  the  

pubertal and testicular development and poised a question on the validity of the data 

generated by studies involving hormonal manipulation. For example, Abbot and Hearn 

reported that testis volume and plasma testosterone began to rise on 250th day or 7th 

month of age (Abbott and Hearn, 1978). This postnatal time is considered as start of 

puberty and the end of the juvenile phase and is charatectrized by night time increase in 

LH pulses followed by an sudden increase in testis volumen in higher primates (Plant, 

2005). Jackson and Edmonds pointed 60th week (14 months) of age to be considered as 

testicular maturity interms of accomplishement of spermatogenesis where all stages of 

spermatogonia were present (Jackson and Edmonds, 1984). On the other hand Kholkute 

et al (1983) considered 12-16 month old marmosets as prepubertal animals.  

As a clear understanding of the process of primate puberty and the precise time 

period required for different post natal developmental stages in common marmoset is still 

under debate and vividly argued. We attempted to unravel the pubertal ontogeny interms 

of testicular growth in common marmoset. We selected an observatory approach where 
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the animals were not manipulated in any way. Thus a normal postnatal growth pattern 

was observed by collecting monthly samples for body weight, testis size and serum 

testosterone. We found out that the activation of hypothalamic pituitary gonadal axis in 

terms of the presence of high serum levels of testosterone in common marmoset occurs 

around (28 weeks ±2). Few animals did not show any testosterone rise till 10 or 12 

months, although their testis size was comparable with animals which have shown 

testosterone rise at 7 month of age. As in common marmoset the predominant trigger for 

testosterone is a CG-like molecule having a short serum half life, unlike the LH in higher 

primates. We assumed that the animals, which failed to show any testosterone rise up till 

10th or 12th of age, have actually already gone through the pubertal activation of 

testosterone but the testosterone peaks were missed in once a month blood sampling 

regime, as the CG-like molecule is active for a very short time in serum as compared with 

LH. Our assumption is also supported by the histomorphometric data where the animals 

with low serum testosterone depicted ongoing spermatogenesis at 10 and 12 month of 

age. We propose that for the correct analysis of the testosterone status of the 6-12 months 

old marmoset monkeys, weekly blood sampling regime should be employed because 

normally it is not possible to histologically analyze the testis tissue if the respective 

animals is to be employed for further experimentation. Our testosterone data also 

mimicked the classical findings documented by Abbot and Hearn (Abbott and Hearn, 

1978). Although it was shown previously that in common marmoset the quiescent 

juvenile period lasts till 35 weeks (8.5 months) of age (Lunn et al., 1997; Kelnar et al., 

2002). Our data concerning the body weight gain pattern depicted an important aspect of 

postnatal development in common marmoset. The maximum body weight gain had been 

observed well within the first 6 months of age, or in other words before the pubertal 

activation. After 6 months the animals showed a slow rise in the body weight. Either this 

initial weight is a prerequisite for the pubertal activation is unknown. It seems that 

growth and reproductive axis are controlled independently in common marmoset where 

the time courses for somatic and reproductive development do not overlap.  

At the testicular level the major germ cell migration towards the periphery and the 

arrangement of Sertoli cell nuclei in an epithelial like fashion seems to be completed well 

within the first 6 months of development. After 6 month of age the seminiferous tubules 
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in common marmoset showed a rapid response towards the high serum levels of 

testosterone by the formation of a lumen around 28 weeks (7 month) of age. The 

formation of the lumen is indicative of the fluid secretion from Sertoli cells which attain 

functional maturity characterized by an increase in Sertoli cell cytoplasm (Sharp et al., 

2003). As depicted by the point counting, due to the increase in size the of the Sertoli 

cells, the percentage of the epithelial area also increased sharply after 7 month of age. 

The formation of lumen and the increase in the Sertoli cell size collectively increase the 

seminiferous tubule diameter at the start of the puberty. The increase in tubule diameter 

as well as in the testis volume observed after 44 week (10 months) was mainly due to the 

proliferation of germ cell as the B spermatogonia, primary spermatocytes and secondary 

spermatocytes were observed during this time. So the initial increase in testis size 

observed at 7 month of age is caused by somatic activation while the increase in testis 

size observed after 8-10 months of age is due to the increase in the germ cell compliment. 

Sperm were first observed in the epididymis at 12 months of age and the testis weight and 

testis volume increased almost two fold as compared with the 10 month old age group. 

This sudden increase in testis volume at 12 month of age is not the start of puberty in 

common marmoset. Thus a one year old marmoset should be considered a pubertal 

animal, although the testis volume continues to increase after this age but the 

spermatogenesis is qualitatively achieved at this time. So the time from the normal onset 

of puberty till the presence of epididymal sperm in common marmoset seems to be 

around 5 months. This time period is very short as compared with higher primates and 

also shows that testicular cells in common marmosets are normally capable of a swift 

response towards pituitary gonadotropins. Our endocrine, orchidectomy and histological 

data in common marmoset suggest a similar pattern of pubertal testicular development 

towards higher primates but requiring a significantly less time to achieve these 

developmental features as their higher primate counterparts.  

In conclusion the puberty in common marmoset is not initiated before 6 months of 

age. Pubertal onset is preceded by a period of accelerated somatic growth. The 

hypothalamic control of the somatic and reproductive axis seems to be in a chronological 

order where the pubertal growth comes later. Either this early weight gain is a 

prerequisite for the normal pubertal initiation remains to be answered. The Sertoli 
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arrangement and germ cell migration seems to be completed before the onset of puberty 

in common marmoset. Further studies on the involvement of kisspeptin in pubertal 

activation, dynamics of GnRH and CG interplay at the pituitary level, the timing of the 

androgen expression by developing Sertoli cells and the hormonal regulation of germ cell 

development are needed to fully characterize hypothalamic and gonadal ontogeny of 

pubertal development in common marmoset. 
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General Discussion 
 

 

 

 The current thesis focuses on functional and developmental aspects of the primate 

testis. The specific aims and objectives of the present study were firstly to sort out a 

possible functional role of kisspeptin-kisspeptin receptor signaling in adult primate testis, 

secondly to sort out the cytological localization of the kisspeptin receptor in the adult 

primate testis and thirdly to characterize the pubertal testicular development in common 

marmoset: a new world monkey. To achieve these objectives, three separate experiments 

were conducted using an in vivo approach. For the first two objectives adult animals were 

employed whereas for the third objective immature animals were used. The animal 

models selected in the current study included Old World monkeys and New World 

monkeys. Rhesus monkey (Macaca mulatta): a representative higher primate was 

employed for the first and second objective whereas common marmoset (Callithrix 

jacchus) was employed in the second and third objective.  

 The primate testis performs two main functions namely spermatogenesis and 

steroidogenesis where successful spermatogenesis is dependent on the availability of 

testosterone through the process of steroidogenesis. The first objective which is 

the functional aspect of kisspeptin-kisspeptin receptor signaling in the adult 

primate testis was sorted out in terms of the ability of the kisspeptin to affect the 

testosterone secretion (steroidogenesis). It is interesting to note that the 

kisspeptin has the ability to enhance the serum levels of testosterone but this 

increase in the testosterone levels is due an increase in the LH levels. Increased 

LH secretion is in turn occasioned by action of kisspeptin at the hypothalamus 

resulting in an enhanced GnRH release. In general, to observe an effect of a 

given iv bolus on the testosterone secretion which is solely at the testis level, it 

is a prerequisite that the testis should not be exposed to pituitary gonadotropins.  
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 In the first experiment, to observe an effect of kisspeptin which is solely at the 

testis level and to prevent the kisspeptin to influence pituitary LH secretion, pituitary 

gonadotropin clamped monkey model was employed. The chemical hypophysectomy was 

employed and achieved by pretreating the animals with acyline, a GnRH receptor 

antagonist. In the pituitary clamped monkey model, the kisspeptin (50µg) given as an iv 

bolus significantly enhances stimulated testosterone levels while having no effect on the 

basal testosterone levels. This result demonstrates that kisspeptin does not affect Leydig 

cells directly, as the direct action of kisspeptin at the Leydig cells would result in an 

effect on the basal testosterone levels. Although the observation of an effect on the 

stimulated testosterone levels indicates the presence of a functional kisspeptin-kisspeptin 

receptor signaling cascade which can affect the Leydig cell responsiveness towards 

LH/hCG. However, it seems that kisspeptin-kisspeptin receptor signaling can only 

influence the Leydig cell steroidogenesis in the presence of LH/hCG. These results also 

hint towards an indirect action of kisspeptin on Leydig cells via another testicular cell 

type. As the paracrine interaction exist between different testicular cell types and this 

local communication is necessary for the proper functioning of the testis (Schlatt et al., 

1997). So it is plausible that kisspeptin-kisspeptin receptor signaling affect Leydig cell 

steroidogenesis indirectly through another testicular cell type. Sertoli cell, germ cell and 

peritubular myoid cell are the other cell types present in the testis where Sertoli cells has 

been shown to secrete factors which have the ability to modify Leydig cell 

steroidogenesis (Saez et al., 1989).  It has been demonstrated in vitro that Sertoli cell 

factors increased Leydig cell steroidogenesis and this effect was augmented in the 

presence of LH or hCG (Papadopoulus et al., 1987; Papadopolus, 1991; Sharpe, 1985). 

 The second objective was to find out the testicular cell type positive for 

kisspeptin receptor. To localize the specific cell type immunocytochemistry was 

employed on the testis tissue obtained from two adult rhesus monkeys as well as 

two adult common marmoset monkeys. The testicular immunocytochemistry 

revealed that the kisspeptin receptor is localized inside the seminiferous tubules. 

The area found positive for the kisspeptin receptor was the outer periphery of the 

seminiferous tubules. This area contains the undifferentiated A spermatogonia 

along with the basal surface of the Sertoli cells. The detailed analysis revealed 
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that Sertoli cell membrane around the A spermatogonia exhibited strong staining 

for kisspeptin receptor. The same staining pattern was also found in the new 

world monkey testis. The kisspeptin like immunoreactivity was found to be 

present in the interstitial area. It has been shown previously that interstitial area 

was positive for kisspeptin like immunoreactivity in mouse and vertebrate testis 

(Anjum et al., 2012; Chianese et al., 2013: Hua et al., 2013). In particular Leydig 

cell were found positive for kisspeptin in these above mentioned studies. These 

immunocytochemical findings not only support our previous finding of an 

indirect action of kisspeptin on Leydig cell steroidogenesis but might also reveal 

a much unexpected and important aspect of kisspeptin-kisspeptin receptor 

signaling at the testis level. As kisspeptin was initially discovered as an anti-

metastatic peptide, initially called metastin found in the metastatic cancerous 

tissue (Lee et al., 1996; Lee and Welch, 1997). Kisspeptin has been shown to 

influence metastasis through its antimetastatic effects by inhibiting chemotaxis 

and cell migration (Hori et al., 2001; Yan et al., 2001; Harms et al., 2003; Nash 

and Welch, 2006; Navenot et al., 2009). During the testicular development the 

germ cell migrate from the center of the tubules towards the periphery. During 

migration, these cells are called gonocytes (Culty, 2009) and once they reach the 

periphery and establish contact with the basement membrane they are known as 

undifferentiated A spermatogonia (Plant, 2010). It is not clear that whether these 

cells inherently lost the migratory ability once they establish the contact with 

basement membrane or this migratory ability is somehow compromised through 

the action of another cell i.e. Sertoli cell. As the peripheral area of seminiferous 

tubules which exhibited strong signal for kisspeptin receptor has also been 

implicated as spermatogonial stem cell niche (de Rooij, 2009). It seems that 

kisspeptin receptor is the new candidate for the spermatogonial stem cell niche 

region. Further studies are needed to delineate the precise role of kisspeptin 

receptor as a niche player in primate testis. Keeping in view the finding of an 

efficacious intratesticular action of kisspeptin on stimulated testosterone and the 

immunocytochemical finding of a tubular localization for kisspeptin receptor 

where Sertoli cells were found to be the main cell type positive for kisspeptin 
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receptor signal, it is probable that kisspeptin might act on the Sertoli cells via 

kisspeptin receptor and the receptor activation initiates a secretory response from 

the Sertoli cells which in turn enhances the responsiveness of the Leydig cells 

towards LH/hCG. This notion is supported by previous studies where Sertoli cell 

produced factors have been shown to influence testosterone secretion from the 

Leydig cell or affect Leydig cell response towards gonadotropins (reviewed in 

Lejuene et al., 1992). 

 The third objective of the study was to characterize the pubertal and 

subsequent testicular development in common marmoset (Callithrix jacchus): a 

representative New World monkey model. Common marmoset exhibits unique 

reproductive endocrinology in terms of the presence of a chorionic gonadotropin (CG) 

like molecule instead of LH in HPG axis interplay. This CG-like molecule has a much 

shorter serum half life as compared with LH  (Muller at al., 2004). Combined with the 

classical report about the different steroidogenic pathway (Δ4) used by marmoset leydig 

cells compared with higher primates including man (Preslock and steinberger, 1977). 

And the lack of the availability of functional data on the dynamics of hypothalamic-

pituitary-gonadal axis during puberty in the presence of CG instead of LH not only 

obscure the recent efforts to associate pituitary and testicular interplay during pubertal 

development in common marmoset (Chandolia et al., 2006) but also demands different 

approach towards understanding the pubertal ontogeny in common marmoset. Our 

results demonstrated that the earliest pubertal onset characterized by high serum 

testosterone levels in common marmoset was found to occur around 7 months of 

age. The major body weight gain was observed in the first 6 months employing 

that the somatic growth and pubertal growth do not coincide in this monkey. The 

puberty in higher primates is preceded by a juvenile phase of development 

characterized by stable testis volume, low serum testosterone and a rapid body 

weight gain (Plant, 2005, 2006). Common marmoset shows a somewhat higher 

primate like pattern of postnatal development although higher primates require 

much longer time to reach puberty whereas the common marmoset require 

significantly less time, depicting a highly responsive testicular tissue towards 

pituitary gonadotropins. At the testis level the time period from the first 
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testosterone peak to the presence of epididymal sperm was around 5 months. 

These 5 months are characterized by rigorous somatic and germ cell activity at 

the testis. While the major cellular activity shown by a prepubertal and juvenile 

testis is in terms of gonocyte migration from the center of the seminiferous 

tubules towards the periphery. This migratory activity was completed before the 

onset of puberty indicating that the germ cell migration is an innate ability of 

gonocytes to reach the peripheral areas of the seminiferous tubules and is also 

independent of HPG axis interplay. This feature had been documented before and 

found to be highly similar with gonocytes migration in human testis (Mitchell et 

al., 2008). In conclusion common marmoset has a swift progression from an 

immature state to a mature stage and one year old marmoset testis show 

qualitatively established spermatogenesis although the quantitative 

spermatogenic out continue to increase after one year of age. 

 The overall conclusion of the current thesis is that the non human 

primates offer an excellent model to study the primate testis biology as the testicular 

morphology and functionally is preserved across non-human primate models. The 

findings of the current thesis emphasize that further studies are needed to delineate the 

involvement of kisspeptin-kisspeptin receptor signaling in the Sertoli cell functionality by 

using pharmacological approaches in in vitro and organ culture model. Also the possible 

involvement of kisspeptin receptor in spermatogonial stem cell niche in the context of 

germ cell migratory ability in the immature testis as well as its role as an anti 

migratory signal for the A spermatogonia in the adult primate testis needs to be 

examined. In common marmoset, studies are needed to characterize the endocrine 

requirements for the pubertal onset in terms of kisspeptin signaling at hypothalamic level 

as well as the kinetics of the gonadotropic secretory activity from the pituitary gland 

during pubertal activation and the downstream requirement by LH/CG receptor present 

on Leydig cells for activation and producing an adequate androgenic response during 

pubertal..activation.   
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