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Abstract 

ABSTRACT 

The study of gene ex press ion in ce ll s and tissues has become a major tool novvadays 

in different fi elds such as identifi cati on of di seases and SN Ps, deve lopment of drugs 

etc. DNA mieroarrays are being widely used for simultaneously measuring th e 

express ion leve ls of thousa nds of genes in a set of bi ologica l sampl es . The drawback 

of DNA Illi croa rra y ex perim ents is tha t they produce multiple mi ss ing ex press ion 

va lues due to numero us reasons. Man y algo rithm s developed fo r gene express ion 

analys is require complete data matrix as an in put. Hence to ana lyze th e data it is 

necessa ry to est imate the mi ss ing val ues . Either row or co lumn mean of the genes 

having mi ss ing va lues is incorporated at the place o f mi ss ing va lues or the genes 

hav ing mi ss ing va lues are to obta in a complete data matri x. Thi s results in the 

deletion of important information req uired fo r analys is hence producing mi s leading 

results. Thu s accurate methods are needed for the estimation of Miss ing Va lues. For 

thi s purpose a method us ing Gibbs Bayesian Vari able Se lection and Linea r regress ion 

has been deve loped in the current stud y to estim ate mi ss ing va lues. Thi s method 

se lects predictors i.e., ge nes hav ing im portant impact upon the data and then 

calculates the mi ss ing values on the basis of linear regress ion. Norma lized Root Mean 

Square [ I' mI' was used as a metric for testing the acc uracy of results generated by the 

developed algo ri thm . The Norm ali zed Root Mean Square Error va lues show that the 

deve loped algorithm ca lculates mi ss ing va lues more accurately as co mpared to some 

other previously developed methods. 

x 
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Introduction 

INTRODUCTION 

1.1 Background 

Ce ll s present in an y organism possess ident ica l genetic materia l. Sim il ar genes are not 

necessa ril y active in every ce ll. Sc ientists need to stud y the act ivity of genes in 

different types of cel ls in order to understand the normal funct ion of ce ll s as we ll as 

effect of ab normal gene funct ion upon ce ll s. It was chall enging for scientists to 

conduct genetic analysis on large sca le but with the advent of technology it became 

easy to carry out large sca le genetic analys is. DNA has a structural arrangement 

similar to a ladder twi sted into a heli x. 

Ce ll s are known as building blocks or fundam ental units of the li ving organism. Each 

ce ll consists of a nucleus whi ch contains the chromosomes . Chromosomes carry the 

instructions that are needed to control and gove rn the ce ll acti viti es resulting in the 

production of prote ins by the help of DNA (deoxyribon ucleic ac id) . DNA stores 

biological information of all li vi ng orga ni sms. DNA has a structural arrangement 

similar to a ladder twisted into a heli x. Molecu les of sugar and phosphate form the 

sides of ladder wh il e pairs of nucleot ide bases joined by the hydrogen bond s fo rm the 

rungs of ladder. The nucleot ide bases include Adenines, Thym ine, Cytos ine, and 

Guanine. Adenine a lways pairs with thymine while Cytos ine pairs with Guanine in 

base pairing. Each strand of double heli x consists of nucleotide sequence. A 

nucleot ide is made up of a molecul e of sugar, one molecul e of phos phate and one of 

the four bases. DNA sequence is spec ific ord er of the bases whi ch are arranged along 

the sugar phosphate backbone. DNA sequence encodes the genetic code. The genetic 

code is actu a ll y a set of instru cti ons by the help of whi ch the info rmati on encoded in 

the geneti c materi al (ei ther DNA or RNA sequences) is translated to produce proteins 

in li ving orga ni sms. The complete set of DNA of an organi sm is known as genome, 

containing all the inform ati on required to build and maintain an organism. The size of 

genomes va ry widely across organisms. All th e ce ll s of an orga ni sm contain same 

DNA and hence same set of instructi ons even th en ce ll s are different from each oth er. 

The reason is that DNA segments activate in some particular conditi ons and not in 

other conditions. These DNA segments are known as ge nes and the process by whi ch 

they act ivate is ca ll ed the ir ex press ion (Sebastiani et a I. , 2003). 

1 



Introduction 

The concept of gene ex press ion emerged in 196 1 along with the di scovery of 

messenger RNA (mRNA). The gene ex press ion leve l is defi ned as an integer va lue or 

the cont inuous measure hence prov id ing a quanti tat ive descript ion or gene express ion 

by measuring the amount of the interm ed iary molecules that are produced during this 

process . Expression profile of a gene is a set of ex pression leve ls that are measu red 

fo r that gene across different conditions (Sebastiani et a l. , 2003). 

Microarray technology offers a powerfu l approach for the ana lys is of gene ex pression 

on large sca le. Thousands of different genes can be simultaneo usly analyzed using 

mi croarray in hi sto logica l or cytologica l ex perim ent s. Microa rrays can be used fo r 

wide vari ety of purposes including identificati on of SNPs, analys is of alternat ive 

RNA spli cing, analys is of transcript ion factors binding to promoters, cancer 

class ificati on, di scovering the un known gene function , identifying the e ffects of 

spec ific therapy, study of gene regulation , di scovery of bi o marke r, di agnos is and 

prognos is of a di sease and drug deve lopm ent. Microarray ex periments are complex, 

time consuming and often very ex pensive. They generate large and complicated data 

sets that require signi fica nt effort to anal yze and va lidate (Gan et al. , 2006 ; 

Mo laeezadeh and Moradi, 2006; Yoon et a l. , 2007; Liew et a l. , 20 11). 

1.2 MiCl"oarrays 

Microarray is a seri es of single stranded DNA molecu les or target sequences that have 

been imm obili zed on to a ca rri er surface by the process of biochemi ca l synthes is. 

Ca rri er is a so lid surface and it can be a glass slide, a s ili ca chip or a nylon membrane. 

Microarrays are also known as DNA chi ps, bio-chips, gene chips, DNA mi croa rrays 

or simply the arrays. Most microarrays contain probes for 10,000 to 40 ,000 different 

genes. M icroarrays may have test sites ran ging from hundreds to many thousands of 

10 to 500 microns size range. Test sites of hi gh density m icroa rrays can be upto 106 in 

an area of I to 2 cn/. DNA target sequences are imm obili zed in an ord erl y and log ical 

fashion on the solid surface. Nucleic ac id probes whi ch are deri ved fro m a di seased 

ce ll are then hybridized to target sequences (I-le ll er, 2002). Acco rdin g to the 

nomenclature recommended by Phimi ster, 1999 "probe" is defin ed as a tethered 

nucleic ac id having known sequence whil e "target" is defin ed as a free nucleic ac id 

sample whose identity or abundance is to be detected. Se ri es of steps are fo ll o'vved in a 

typica l mi croa rra y expe riment in a defined ord er o f array fa bri ca ti on, target 

2 
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preparati on, hybridization, image capture and data anal ys is . A success ful I11l croarray 

ex perim ent requires a ll th e ste ps to be perfo rmed consistently and accurate ly in ord er 

to produce re liable and s ignifi cant results ( Majtan et a I. , 2004; Liew et aI. , 20 I I). 

Genera ll y, two types of microa rra ys have been deve loped ; Spotted DNA microa rra ys 

and Oli go nucleot ide genec hi ps. 

Fo r Spotted DNA mi croa rrays DNA probe may be single or doubl e stranded DNA 

deli vered on to the array. 

Figure 1. 1 

Spotted DNA rnicroarray 

Genes (DNA) 
PCR products or synthesized oligoillers 

G 'ne Z 

PCR mpllflcc tlon 
PC product purificfltioll 

Robotic spotting 

Spotted sr a 

Glass sllcle c rray 

Schematic Illustration of spotted genes 011 a glass slide array. 

Robotic spotters are used by glass slide arrays to spot genes on the glass slide. Each spot on 

the array represents a particular contiguous genes .!i-agment. Adapted .fi'0I11 Ol71 idi et al ., 

2011. 

Spotted DNA Mi croarrays are of two types ; Spotted cDNA M icroa rrays and 

Oligonucleotide arrays . 
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Spotted cDNA micro arrays consist ofa so lid sur face (e.g. , a mi croscope glass sli de, a 

sili ca chip or a nylon membrane) upon \,vh ich small amounts of nucleot ide sequences 

are placed in grid like arrangement. Each spot represents a spec ifi c gene, an ex pressed 

sequence tag or a clone. Expressed Sequence tags are fragments of cDNA sequence 

which prov ides a tag for a gene whose fu ll sequence or funct ion is not known. Probes 

or drops of cDNA are printed on th e surface of the array. Target mRNA is hybridized 

aga inst spot wh ich serves as a probe. The lengt h of cDNA probe ra nges from 500 to 

2500 base pa irs . DNA probe may be single or double stranded DNA de livered on to 

the array ( I-!ell er, 2002; Dubitzky et a I. , 2003; Sebast ian i et a I. , 2003; Ehrenreich, 

2006 ; Ness, 2006). 

Someti mes signi fica nt amount of va ri ati on in size and shapes of spots occurs. These 

va ri ati ons can occur among corresponding spots on di ffe rent m icroa rrays or between 

different spots present on the same microarray. Size of spot affects the probe amount 

that is ava il able fo r hybridizat ion. Shape of the spot affects the im age analys is. 

In te ns ity of fl uorescence labeling is affected by the inhomogeneous di stri butio n of 

sam pi e across the surface of cDNA 111 icroarray (Ness, 2006). 

The use of cDNAs of longer length ( greater than 300 base pairs) has its advantages 

and di sadva ntages. The hybridization of target and probe is strong due to longer 

length of cDNA. As a res ul t there will be littl e or no effect of point mutat ions or small 

deleti ons on hybri dizati on resul ts. Hence large set of genes of hum an patients hav ing 

minor di fferences among their genes can be stu died . cDNA mi croarrays are less 

costl y because a single PCR reacti on generates enough purified DNA for the 

prod uction of many thousand microarrays . Furthermore, due to long length of cDNA 

probes there is poss ibili ty of detect ion of all the transcripts produ ced e ither th ro ugh 

alte rn at ive RNA spli cing or alte rn ati ve promoter use (Ness , 2006) . 

Considerabl y large amount of cost and effort is required for assembling large librari es 

correctl y identi fied and ann otated purified cDNA sequences . cDNA can hybridize to 

close ly re lated gene fam ili es due Lo the poss ible presence of repeatecl sequences. 

Hence it does not prov ide enough spec ifi city for many ap pli cati ons (Ness, 2006) . 
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Figu,oc 102 A skctch of cDNA mic,ooarray tcchnologyo 

A robot is used to precisely apply tiny droplets containing clones of cDNA to the glass slides. 

Then fluorescent tables are aI/ached to the II/RNA extmcted from the cell of interest. The 

labeled target is then aI/owed to hybridize with cDNA strands on slides. After the cOlI/pletion 

of hybridization is completed, scanning 1I1icroscope measures the brightness of each 

fluorescence dot. Adaptedfi'om Sebastiani et at. , 2003. 

Oligonucleotide arrays use oli gonucleotides as probes whi ch range from 40 to 60 mer 

or 50 to 70 base pairs in length . Oligonucleotides are rather short fra gments of single 

stranded DNA or RNA synthes ized on the bas is of sequence of ex isting genes ( 

Hell er, 2002; Majtan et aI. , 2004; Ehrenreich, 2006 ; Ness , 2006) . 

Properly designed oli go nucleotides can help to overcome the specificity and cDNA 

GC content prob lems. The major prob lem is relative ly hi gh cost to purchase 

oli go nucleotides and large sca le bioinforl11atics support required to des ign spec ifi c 

DNA fra gments with matched GC content for each gene. Hence the difference 

bet'vveen spotted cDNA microa rrays and oli go nucleotide arrays is that spotted cDNA 

mi croa rrays use predetermined probes while oligo nucleotide arrays fac ilitates to 

design the probe sequences (Ness, 2006). 
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Oli go nucleotide genechips or AfTymetri x genechips are the comm erciall y ava il able 

oli go nucleotide genechips that help to ca rry out pa rall el synthesis of oli gonucleot ides 

on large sca le. DNA pro be is synthes ized in-situ on thc surface of DNA chip. For the 

preparation of gen chips m(l tched sets of short oligo nucleotide pairs (current ly 12 

pairs of probe sets) are synthes ized using a photo lithographi c process (Ness, 2007). 

Oli go nucleotide pa ir consists of one perfec t matc hed o li go nuclco tidc and onc with a 

single mi smatch. Perfect matched probe has a sequence identi ca l to that of the target 

gene (Da lm a-Weiszhausz et aI. , 2006 ; Ness , 2007). The mi smatch probe differs from 

perfect matched probe by a single base present in the mi dd le of sequence. 

Oli go nucleotides of the length 25 bases per probe are used by genechips. Each probe 

spot has diam eter of approx im ately 18 mi cron meter hence fa cili ta ting alm ost 500,000 

probes per array (Ehrenre ich, 2006 ; Ness, 2007) . 

Segment of the genetic code 

... G~ TATAGTA~AAT GT G [ T G~T~ ATGATGT A~T n A TnT ATTA~ ] TATG TAG~TATG T AT n T . 

TGCTCATG,8. TGT CTGATGT.v.. TT AC 

TGCTCATGATGT CTGATGTATI.8.C 

F l uore~, ce nt image 

A probe pa ir consists of 
a PM and Iv11v1 probe 

PM probe 
MM probe 

Probe 
pair se t 

Figure 1.3 A sketch showing initial steps of Oligonucleotide Genechip. 

PM probe is Peif eci A;Jalched pl'Obe having sequence idenlical 10 largel gene. MM probe is 

fvlismalch Probe having a difference a/single gene ji-o ll1 PA;J probe. Adapled ji"om Sebasliani 

e l at. , 2003. 

If a part of genechi p surface is damaged even then enough probe sets wi ll be readable 

to carry out the ex perim ent. Furtherm ore, stati stical anal ys is can be perform ed due to 

th e presence o f multipl e probe sets, so that for each gene an ex press ion leve l and p 

va lue of express ion can be reported (Ness , 2006) . 
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Fo ll ow ing are the steps of typ ica l mi croarray experim ent as illustrated by Nguyen et 

ai. , (2002): 

I. Samples of known probes are immobil ized or spotted onto a glass sli de or 

microa rra y, each spot corresponding to a gene or Expressed seq uence Tags. 

2. mRNA of interes t was purified fro m ce ll pop ul ations. Poo ls of puri fied mRNA 

are then reverse transcribed into eDNA and then labe led with either red or 

green fiuorescent dyes (mostl y Cy3 or CyS is used) to di stingui sh between 

mRNAs of norm al ce ll s and treated or di seased ce ll s. 

3. These two populat ions of fiu orescentl y labe led cDNAs are then combined and 

hybridi zed to the probes on the array. Unbound cDNA is 'vvas hed o ff. 

4. Next, the amount of hybridizat ion that takes place is measured by a scanner. 

5. Thi s intensity is translated into a tab le with numeri ca l measures and saved into 

a text file. This text fi le contains data abo ut the level of fluorescence of each 

spot and background or foreground intensities . Foreground inten sity 

corresponds to spots of interest in l1licroarray. Background intensity is the 

noise resulting from hi gh sa lt and deterge nt concentrat ions during 

hybrid izat ion of target. 

6. These text fil es are then computati onall y and stati sti ca ll y analyzed acco rding 

to the need of the resea rcher. 

Br ightness of each fl uorescence spot revea ls the amo un t of spec ifi c D A 

fragment present in the target. 
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1.2 .1 Pri nciple of M icroarray 

Microarrays fun cti on upon the principa l of DNA hybridizat ion. According to Watson 

and Crick rule, two DNA strands hybridi ze or pair with each other by the formation of 

hydrogen bonds between the co mplementary nuc leoti de base pairs. There wo ul d be 

ti ghter and stronger non cova lent bonding between the complementary nuc leotides if 

complementary base pairs are higher in number. Microa rray chips are washed off 

after hybrid ization hence onl y stro ngly pa ired strands remain hybridized. Intensity of 

hybridizatio n is measured by the in tensity of the s ignal prod uced. Jntensity of signal 

depends upon the amount of target sample hybri dized to probe (Ga bi g and Wegrzyn, 

2001 ). 

a a 

b 

hybridi ze 
~ 

single-stranded, complementary 
nucleotide sequences a and b 

b 

formation of doubl e-he lical 
DNA sequence 

Figu" e 1.5 Hybridiza tion of two s in gle s t" and ed nucleic acid sequ ences to a 

double stranded helical complex. 

Microarrays work upon the principle of hybridization. Adapted from Werner Dubitzky, 2003 

1.2.2 Applications of M icroarray 

Microarray experim ent technique has been 'vv idely used in vari ety of biologica l studi es 

including cancer class ifi ca ti on, di scovery of unknown genes, and identifi cati on of 

effects of a specifi c therapy and to measure the express ion leve l of thousand of ge nes 

in a single experiment explained by Majtan et a I. , (2004). 

1.2 .2 .1 Gene Discovcl-Y and M apping or Gcnc Exprcss ion Profilcs 

For a particu lar organisl1l , a spec ific "gene express ion profi le" can be produced at 

different deve lopm ental stages using mi croarrays. I-Ience different pattern s that are 

spec ifi c for a growth conditi on, deve lopmental stage or drug treatment are generated. 

9 



Introduction 

These profil es are a di agnostic too l for num erous app li cat ions such as drug discovery 

and fermentation process opt imi za tion . 

1.2.2.2 Gene Regulation Studies 

Based on the assumpti on that genes regul ated in para ll el share com mon control 

mechani sms, mi croa rrays are helpful in identifi cation of rcgul ons (group of operons 

that are transcriptionall y co-regul ated by the same regul atory machinery) and 

descr iption of complex ce llul ar pathways. 

1.2.2.3 Compuative Genomics and Genotyping 

Microarrays serve as platform for genomic hybridizatio n experiments of whole 

genome array. This he lps in comparing genomes of close ly re lated orga ni sms, 

identifi cation of viru lence factors, exploration of molecul ar phylogeny, im provement 

of diagnostics, deve lopment of vaccines and identifi cation of changes in genetic 

contents of same strain. 

1.2.2.4 Drug Discovel'Y 

Microarray allows the comparison of express ion of many genes between "di sease" 

and "normal " ti ssues and ce ll s. This is helpful in identification of multiple potential 

drug candidates. 

1.2.2.5 Predicting Biochemical Pathways 

Inform ation generated by DNA mi croarrays can be helpful 111 prediction of 

biochemica l pathways in several \Nays: 

• Identifi cat ion of genes invo lved in producti on process. 

• Differences in genetic contents. 

• Difference of express ion profil es among wi ld type and improved strain s. 

1.2.2.6 Identification of SNPs 

Single nucleotide polymorphi sms are the most occurring mutat ions in DNA sequence. 

They occur at about one per 500- 1000 base pairs in the hum an genome. Different 

approaches have been deve loped fo r the detection of SNPs by DNA microarrays 

being helpful in assoc iat ion studies of complex di seases, pharm acogeneti cs, 
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popul ati on genetics and phys ica l mapping (S nijders et a I. , 2000; Mill er and Tang, 

2009). 

1.2.2.7 Path ogen Detection 

DNA microarray technology is most com mon ly used in ep idemio log ica l and clinica l 

importance for the detection of pathogen. Apa rt from the ident ificat ion of spec ies and 

strai ns, microarrays are be ing used to character ize spec ific character ist ics of ll1 icrob ial 

pathogens. Thi s ab ili ty of mi croarray inc ludes inves ti gation and stud y of mi crob ial 

virulence factors and ant ibiotic resista nce gcnes using signature scquences and 

characte ri stic genes (Kostrzynska and Bachand, 2006; Rasoo ly and Hero ld , 2008) . 

In pu ts Outputs 

~·I Ofllli:l 1 t i '):~', L e -- F'ro ~1I1 0 ~3i ~; 

D l a~J -lO ~j3 

M ic rca rrays E F iltilolo[!y 

(~~1 8!l8 expre s~3 ion) Dnl J tl1 rgets 

T es ' con pOL nels -----+ 

Figure 1.6 A pplications of MicroalTay. 

1.2 .3 Examining the Genc Exprcss ion 

r Dn.lJ efficacy 

\L Toxicolom' 

Gene express ion can be examined in two different ways : stati c and dynami c. [n stati c 

microarray experiments, gene ex press ion is an image at a s ingle tim e. [n tim e co urse 

ex periments or dynamic microarray ex perim ents, the express ion profil es of ge nes are 

measured aga in and aga in over a time period. Biological processes are dynami c and 

complex hence dynami c microarray experim ents are quite effective in ex pl oring 

gene's fun cti ons, interacti on of gene vvith their products as we ll as in the stud y of 

gene express ion profi le leve ls over a peri od of tim e. Hence tim e course mi croarra y 

ex periments or dynamic microa rray experim ents are a powerful too l for detecting the 

genes that are ex pressed peri odi ca ll y as we ll as to understand th e temporal pattern s of 
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gene express ion meaning that it is poss ible to monitor temporal va riati ons In gene 

express ion (Rasoo ly and Herold , 2008 ; Tchagang et a I. , 2010; Liew et a I. , 20 11 ), 

1.2.4 Micmarray Exprcssion Matrix 

The data generated from microa rray ex periment IS usuall y in the form of large 

matri ces consist ing of rows representing genes and co lumns representing 

ex perimental conditions (Babu, 2004), 

.A~1 1 
:\" 
~" '12 

)(2 1 :\4 
~" ' ~I '! 

y ,,' 

~/ 

+ + + • 

~:\" 'J" - I .r 1 _ 

+ + 

+ + 

+ + 

+ + 

y 
.' '1 n 

~X") " 
~/ II. 

+ • 

'Y ' II'1 
,'/I ll 

Figul'c 1.7 A m X n expression matrix X with 1n gcncs across n conditions 

and expl'ession va lue of genc c in condition j is dcnoted as Xi} • 

12 



1 ntroducti 0 n 

Table 1.1 Complete M icroarray Data Ma trix. 
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Rows represent genes and columns represent experimental conditions, Each cell represents a 

gene expression value according /0 the experimental conditions, 
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1.3 Missing Data 

One of the most importa nt prob lems of microa rray data IS that it contains mi ss ing 

va lues. 

Tablc 1.2 Data matrix containing missing va lu cs. 

X40 

YALODIC NA 

YA OIK NA 

YAL0l6lN 

X~ xw xm xw X90 XIOO X110 X120 X130 Xl~O Xl50 

0.215 0.15 ·0.35 IA O.5~ ·0.625 0.05 0.335 ·0.43 0.135 0.005 

Ni>. 

·0.1 0.025 IA 

YAl020C NA 

YAl022C 

YAl036C 

·0.04 

A 

I A 

·0.04 

0.29 NA 

·0.1 

0.15 

·0.28 ~A 

·0.215 

0.16 NA 

·0.12 

0.33 

·0.58 0.215 NA 

·0.57 NA NA 

·0.27 

·0.34 0.45 

YAl038W ·0.28 ·0.51 ·0.73 IA A A 

·0.44 NA NA 0 0.32 0.32 

·0.09 IA ·0. 5 0.13 ·0.6 NA 

·0.2 0.2 Il. 

·0.6 

·0.13 

0.33 iNA 

·0.53 IIA 

0.26 IA 

0.35 A 

YA 039C 

YAl040C 

YAl0.J4C NA 

YAL0-16C 

YAL048C 

0.06 

·0.04 A 

0.46 iNA 

·0.19 -0. 8 -0.07 0.31 -0.27 i A :~p' 

· 0.2~ 

·0.14 NA 

·1.22 

NA 

NA 

NA YAL049C NA 

YAL051W 

Y l056W 

0.59 

0.18 NA 

·0.3 'A 

·0.38 

IA 'O'O~A r~ljresc~tr-!A 

0'1~' ·0.05 ·0.28 0.21 0.34 NA 

.0.1 ~: . . ~4~ Tfss~qg da&.\: :~:~! NA 

YA 063C 

YAlOIJ.lW· NA 

VA 065C 

YAR007C NA 

·0.28 A 

·0.44 A 

·0.04 

NA 

·0.06 

0.11 ·0.2 NA 0.2~ NA 'iA 

·0.15 NA 

IA 

·0.26 

NA 

NA 

0.8,!A 

·0.19 

0.27 NA 

·OJ NA 

0.57 NA 

NA 

·0.05 

0.05 ,\p. 

·O.i).l ,\A 

NA 

0.02 

·0.14 

0.91 

0.42 'A 

M 

·0.2 

·0.38 

·0.56 ,\A 

0.1 7 NA 

·OJ 

·0.66 iNA 

0.03 

·0.79 A 

0.1 NA 

·0.89 

0.17 

·0.31 

O.1S I'A 

·0.1.1 

IA 

.87 

OJ6 · 0.2~ 

0.13 

0.125 I 

0.02 NA 

O. 6 

·0.17 A 

0.1 

·0.1~ 

·0.09 'A 

0.02 

NA 

0.16 

0.19 

0.08 NA 

·0. 1 'A 

0.02 

0.1 

0.1 

0.11 

0.01 

·0.39 

·0.49 

0.02 

·0.05 

·0.35 

·0.01 

Rows represent genes and columns represent experimental conditions. Each cell represents a 

gene express ion value according to the experill1ental conditions. Here iVA represents the 

111 issing values. 

1.3.1 OCCUHcnce of Miss in g Va lu es 

There are various reasons fo r the occurrence of mi ss ing va lues inc luding insufficient 

reso lution , image noise and corru pt ion , arti facts on 1l1icroarray, dust or scratches on 

slide, hybrid izat ion fa ilures and experimenta l errors during laborato ry process. These 

technical limi tations res ul t in co rrupted spots on microarray. When these co rrupted 

spots are filtered during im age ana lys is phase they prod uce mi ss ing data (L iew et ai. , 

2011 ). 
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Most of the tim es I to 10% of mi cro array data is mi ssing whi ch effccts up to 95% of 

genes (Hourani et ai. , 2009) . 

Severa l methods have been pro posed to deal with miss ing va lues whi ch either delete 

genes having miss ing values , replace mi ss ing va lues by zero or calcu late mi ss ing 

va lues by average or med ian of co rresponding rows or co lumns. These methods resul t 

in loss of useful information due to deletion of mi ss ing va lues. Change of variance 

occurs among the variab les by the subst ituti on of mi ss ing va lues with zeroes or row 

averages . Furthermore, co rrelati on of data is not considered which leads to estim ati on 

errors (J i et ai. , 2011 ; Mayer, 20 13). 
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Figure 1.8 A flow c1U1I't of a ty pical microarray ex pcl"imcnt. 
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1.4 Microarray Data Pl'ocessing and Imagc Ana lysis 

The data produced from microa rray experiments is a I'm,v data ca ll ed "hybridized 

microarray images", After the hybr idi za ti on step, the spo ts produced arc excited by 

laser. These spots are then scanned at suitabl e wave lengths in order to detect red and 

green dyes , Amount of bound nuc leic acid is represented by the amount of 

fl uorescence em i tted at exc i tation . Red , green and ye ll ow spots appear as a resul t of 

microarray experi ments, The intensity of fl uorescence leve l of these spo ts represents 

re lat ive expression leve l of genes. If cDNA fo r a d iseased gene is hi ghl y ex pressed, 

the spot woul d be red. If eDNA fo r normal gene is hi ghl y expressed, spot wo ul d be 

green, The spot wo uld be ye ll ow if gene is expressed to same extent in both 

conditions, Next step is "image quantitati on" during whi ch im ages are ana lyzed; 

intensity of each spot is measured and compared to background in tensity, M icroa rray 

data process ing and im age ana lys is steps have been ex plained by Qin et a i. , (2005) . 

raw image .I 
-----+i

L 
1, analyze image I 

I 

H 2, normalize 

~ 3, synthesize matrix ~1+-----------1 

rl 4. transform 1 
I 
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I 
I 

H 6. choose methodes) il+-----j 
\ validation 41 7. construct/validate! L 
'------+--+--+--+--+--+-~ .. I app ly mode ls If+---i 

set 

new 
information 

~ 8. interpret results 

1 

feedback 

-!< 
g 
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<u 

~ 

Figul'c 1.9 Steps of M icroarray ima ge analys is and data process in g. 

Adapted by Werner Dubitzky, 2003. 

1.4 .1 Ad drcss in g 

The red and green flu orescence intensities are sto red as a pair of 16 bi t T IFF fi les of 

scanned im ages . They are typica ll y from 2.5 to 20 MB in size. Di fferent flu orescence 

dyes abso rb and emit li ght at different wave lengths therefore sca nners generate 
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exc itat ion lights at different wave lengt hs and detect the different emIss Ion 

wave lengths. Im age is ana lysed to identify spots after com pl eti on of image 

generati on. 

1.4.2 Segmentation 

Segmentat ion of an im age is defined as a process in whi ch pi xe ls of a mlcroarray 

image are c lass ifi ed as foregro und (with in a spot) or background. Thi s is done in 

order to ca lc ul ate fluorescence intensities for each spotted DNA sequence as measures 

of abundance of transcript. A 'spot mask' is produced by thi s mcthod comprising of a 

set of foreground pixe ls for each spot. 

1.4.3 Information Extraction 

Fo ll o'vv ing is the process of information ex trac ti on from microarray im age. 

1.4.3 .1 Spot Foreground Intensity 

1n a scanned image, each pixe l represents the amoun t of hybridi zat ion that takes 

place. So for a particular spotted DNA sequence, total amount of hybridiza tion is 

proportional to tota l flu orescence at the locati on of pot. Hence foregro und inten it 

of spot is estimated a the average intensity of ali fore ground pixe ls. 

1.4.3.2 Spot Background Intensity 

Apart from leve l of hybridizat ion of every ta rget to probe, the measured in tensity of 

spot also includes the amount of non spec ific hybri dization and conta minat ions due to 

chemica ls on glass sli de, ca ll ed background in tensity. The sta nda rd method for the 

estim ation of background intensity of spot is based on the assum pt ion that the 

background leve l is same as the intensity in the close surroundin gs of spot. Most 

comm on method is to ca lcul ate sample mean or medi an of background pixe ls whi ch is 

considered as background est im ate or intensity of the spot. For thi s, an area nea r each 

spot is se lected, backgro und pixe ls in thi s area are identifi ed and at last backgro und 

intensity is ca lcul ated. 

1.4.3.3 Background Correction 

The next step of microarray im age process In g IS background co rrection. As the 

measured flu orescence intensity of spot also inc ludes the intensity due to 
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contaminat ion on slides apart from hybridization of mRNA samples to spotted DNA, 

background co rrection is recommended to reduce bias. To accurately quantify the 

nuorescence intensi ty of spot, background intensity is subtracted from foreground 

intensity, by fo ll owing equat ion: 

(1) 

Where II is intensi ty obtained after background correcti on, Ir is fo reground intensity 

and Ib is background intensity. 

1.4.4 Weak Spots or Missing Va lu es 

Even after background correction, a great number of low express ion spots are 

expected to have negative va lues . As it is a com mon approach to defi ne threshold and 

foreground intensity must exceed this threshold for the spot to be considered. Spot 

pixe ls are compared to background pixels. After compari son, if fraction of spot pixe ls 

is less than the given threshold and greater than median of background pixe ls, such 

spots are cons idered as weak spots. Hence the gene express ion co rresponding to thi s 

spot is set as miss ing. Furtherm ore if any spot has fluorescent intensity less than 

certain threshold , val ue of that spot is also defined as missing (Qin et al. , 2005) . 

1.4.5 Expression Ratios (The Primary Com parison) 

Microarray experiments are helpful in investi gating relat ionships between related 

bio logical samples based on express ion patterns and the simplest approach looks for 

differentially expressed genes. Ratios of red and green fluorescence are ca lcul ated to 

get a measure of express ion changes. But these ratios have a drawback that they treat 

up and down regulated genes differentl y producing different express ion ratios fo r 

gene upregulated and downregulated by same factor . Hence logarithm base 2 is 

wide ly used as alternative transformation of express ion ratios . It produces continuous 

spectrum of values and treats upregulated and downregul ated genes in a s imilar way 

(Babu , 2004). 

1.4.6 Normalization 

Normalization is the transformation applied to express ion data. For meaningful 

biological comparisons to be made, normalization adjusts individual hybridization 

intensities so that they can be appropriate ly balanced . Normalization is carri ed out to 
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remove the bias and imbalance between the red and green dyes. The imba lances may 

ari se due to vario us reasons li ke differences in print quality or position of the dye. It is 

app li ed to the log rati os of ex press ion. Hence is important to eliminate var iat ions 

among the data (Mehta, 2011 ). 

After pass ing through the normal ization procedure, the processed data ca ll ed "gene 

ex press ion matrix" is represented in the form of mat ri x. This data may contain 

mi ss ing va lues which are estimated by di f ferent imputati on techniques (Q in et ai. , 

2005) . 

1.5 NatUl"c of M issing Data 

It is required to empirica ll y examine the pattern of miss ing data in the data set. Litt le 

and Rubin , (2014) has class ified mi ss ing data into three main categories. These 

inc lude: 

• Missing complete ly at random (MCAR) 

• Missing at random (MAR) 

• Missing not at random (MNAR) or not missing at random (NMAR) 

1.5 .1 Missing completely at random 

The data is sa id to be mi ss ing complete ly at random 'vvhen probability of being 

mi ss ing is same for a ll cases. It means that causes of mi ss ing data are not related to 

the data. Hence in MCAR the probability of observatio n being mi ss in g, for a 

dependent variable, is not dependent upon observed and unobse rv ed measurements 

(Durrant, 2009 ; Pi yushimita, 20 I 0; Va n Buuren, 201 2; Littl e and Rubin , 201 4). 

1.5.2 Missing at random 

In this case miss ing values are not randoml y di stributed across all the observations 

rather they are random 1 y d istri buted with i n one or more grou ps or su bsam pies 

(Durrant, 2009; Piyushimita, 2010 ; Van Buuren, 201 2; Litt le and Rubin , 2014). 
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1.5.3 Miss in g not at "andom 

This cond it ion exists when neither MCA R nor MAR hold. It means that probabi lity of 

va lues of being mi ss ing va ri es for the reasons that are unknown (Durrant, 2009; 

Pi yushimita, 20 10; Van Buu ren, 20 12; Litt le and Rubin , 20 14). 

1.6 Statistical Pl"Ob!ems due to Missing Data 

Stat ist ica l analys is and interpreta ti on of resul ts of microa rray data is diffic ul t beca use 

of large and complicated datasets . The main purpose of stat isti ca l analysis of mi ss ing 

data is to est im ate the signi fica nce of diffe rential express ion of genes, whi ch is not 

poss ible due to the presence of mi ss ing data. The presence of miss ing data leads to the 

reducti on of sample s ize that is ava ilable for analys is. Furtherm ore, stati sti cal results 

based on mi ss ing data could be bi ased leading to erro neous results. I-Ience it is 

necessary to trea t mi ss ing da ta appropri ate ly in order to get acc urate res ul ts . 

1.7 Aim of Study 

The ma in aim of thi s study was to find a trustworthy method for bettcr imputat ion of 

miss ing data . The developed method uses Bayes ian variab le se lection to ex tract the 

important genes and then use regression to estimate mi ss ing va lues. Thi s method is 

compared to fi ve different imputati on meth ods to test th eir ability to predi ct mi ss ing 

data. 
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Materials and Methods 

MATERIALS AN]) METHO])S 

2.1 Data Collection and Software 

The da taset used has been taken from Spe llman et a l. , ( 1998). Thi s is a tim e se ries 

dataset which co nta ins sa mpl es taken from yeast cultures being synchroni zed by three 

separate approaches i. e., alpha facto r arrest , elutriati on and arres t of cdc- IS 

temperature sensitive mutant. The dataset is ava il able on I (las t accessed : 15 June, 

2014) downl oaded from the website named MfNE: Maxima l Informati on-based 

Nonparametric Exploration. It is in exce l form at conta ining 438 1 genes in rows whil e 

19 co lu mns represent the express ion of th e genes at di ffe rent tim es . 

R version 3.0 .2 (20 13-09-25) (Stati sti ca l Package, 2009) was used for carrying out the 

simul at ions to impute mi ss ing data. 

Microarray data contains mi ss ing va lues due to diverse reasons. M iss ing va lues affect 

the subsequent stat istical analys is leading to erroneous results. Hence it is important 

to accurate ly estimate mi ss ing va lues . 

One so lution to avoid miss ing data is to repeat mi croarray experim ents but thi s option 

is not feas ible as it is cos tl y and ti me consuming (Zhang et a l. , 2008) . Several 

different approaches have been pro posed to dea l with mi ss ing va lues . Some simpl e 

methods are the fol lowi ng: 

• One way is to delete expressIOn vecto rs (genes) or e li minate da ta obj ects 

whi ch contain mi ss ing va lues (G honeim et a l. , 2011). 

• Another method is to replace all the mi ss ing va lues, present in the data, by 

zero (Friedland et a l. , 2006b). 

• The corresponding row or co lumn average or medi an IS used to impute 

mi ss ing va lues (F ri edl and et al. , 2006b). 

I htt p://ww\ v .exp I oreda ta.11 et/Do\vl1l oacl s/Ge l1e-Express i 011 -Da ta-Set 
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2.2 Drawbacks of Above Methods 

Above described meth ods to impute mi ss ing va lues have some obvious drawbacks 

lead i ng to erroneous results. 

• Deletion of data objects or expression vectors having mi ss ing va lues cause 

loss of usefu l information. 

• De leting the variab les hav ing miss ing va lues resu lt in the reduction of sample 

size that is avai lab le fo r analysis. 

• Correlation of data is not considered by these methods (Troyanska ya et a I. , 

2001 ). 

2.3 Other statistical Methods to deal with Missing Values 

Several different methods have been proposed to dea l wi th mi ss ing va lues. Ma in 

approaches used are : 

2.3. 1 K Nearest Neighbors (KNN) Imputation 

KNN impute is the most standard method used to impute mi ss ing va lues introd uced 

by Troyanskaya et aI. , (200 1). KNN is a loca l method and it makes use of the 

simil ari ty structure of data fo r the imputa ti on of mi ss ing va lues (Fri edl and et a I. , 

2006a). 

2.3.1.1 Steps of KNN 

This method is di vided into two steps : 

2.3.1.1.1 Selection (~lSil11i/((r Genes 

In first step, a set of genes hav ing express ion profil es simil ar to the genes hav ing 

mi ss ing va lues are se lected. Suppose there is a gene g hav ing mi ss ing va lue in an 

ex periment n . Let 's say that Vg, 1/ is the mi ss ing va lue. KNN 'vvo uldfind k other genes 

have ex press ion profi le si milar to g in experim ents (2-N). These k genes will have 

known va lues fo r experiment n (Troyanskaya et ai. , 200 I ;Ghoneim et aI. , 2011 ). 
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2.3.1.1. 2 Predicting Missing Vallles 

In second step mi ss ing va lues are predicted using obse rved val ues of se lected genes. 

A weighted average using kn own va lues of k genes in expcrimcnt 11 ure calcu lated and 

used as an est im ate of miss ing va lues in gene g (G hone im et aI. , 20 II ). 

Fo ll owing equation is used to ca lcu late the contributi ons of each gene to gene g on the 

basis of similar express ion profi les (HoUl'a ni et a I. , 2009): 

(2) 

Where k is the num ber of genes se lected on the basis of simil ar express ion profi les. Di 

is the distance between the i-tit gene and the gene to be imputed. 

2.3.1.2 Metrics Used for Ge ne Simila rity 

Common ly used metri cs for gene simil arity are Euclidean distance and Pea rson 

correlati on coeffic ient. Different researches show that Euc li dean distance IS more 

appropri ate even though it is sensiti ve to outli ers, as log transformin g the data 

suffi cientl y reduces the effect of outli ers on determinat ion of gene simil arity (Hourani 

and EI, 2009 ; Sahu et aI. , 2011) . 

2.3.1.3 Computation al Com plex ity of KNN 

KNN impute method has computati onal complex ity of approx imately O(m 2n) based 

upon the assumption that mi ss ing va lues are less than 20% (Sa hu et aI. , 20 11 ). 

2.3.2 Singular Value Decomposition Imputation 

SVD is a common technique for the ana lys is of mul tivariate data espec iall y gene 

express ion data , [t is a global method. It is a meth od in wh ich a set of mutuall y 

orthogonal express ion patterns is obtained. These express ion pattern s can then be 

combined linearl y so that express ion of all genes in the data set can be approx imated . 

These patterns are identi ca l to principal components of gene express ion matri x and 
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are al so referred to as ctgengenes. Hencc, SVD in vo lves linea r transform ati on of 

express ion data which is in the form of genes X arrays space wh ich is reduccd to 

etgengenes X eigenarrays space. Data is di ago nalized in thi s space and cach 

etgengenes is expressed onl y in its corresponding eigenarrays. At the cnd mi ss ing 

va lues are est im ated by regress ing genes against k most eigengenes (Al ter ct aI. , 2000 ; 

Troyanskaya et aI. , 200 1). 

Fo ll owing equation is used to represent SV D: 

(3) 

Matr ix VT contains e tgengcnes . The contribution of these e tgengenes to the 

express ion is measured by I, which contains correspond ing eigenva lues on the 

di agonal of the matri x. After that eigengenes are so rted by their eigenva lucs to 

identify k most e igengenes . Suppose that the miss ing value is represented by j and 

gene is represented by i. After the se lection of k most eigengenes from V1' matri x, to 

cstimate miss ing va lues gene i containing mi ss ing va lues is reg ressed aga inst k 

eigengenes . Then coe ffi cients of regress ion are used to reconstruct j using linear 

combination of k eigengenes . As SVO can only be perform ed on complete matri ces , 

A' is obtained by substituting row average for all the mi ss ing values present in matr ix 

A . Then an expectation minimization method is used to ob tain final est im ate. In thi s 

method , above al go rithm is used to estimate each mi ss ing va lue in A '. Thi s procedure 

is repeated on newly obta ined matri x. Each mi ss ing va lue of A' is esti mated 

iteratively until RMS E between t\-vo consecutive A ' fall s below the threshold of 0.01 

(Troyanskaya et aI. , 2001) . 

2.3.2.1 Computational Comp lexity of SVD 

The computational co mplex ity of SVD impute meth od is O(n2mi)where i stands 

for the number of iterations performed before the threshold va lue is reached (Sa hu et 

aI. , 2011). 
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2.3.3 Bayesian Principal C omponent Analysis Imputation 

BPCA is a globa l method and it uses probabi li stic Bayesian theo ry for mi ss ing va lue 

imputation. The whole gene express ion data set is represented by a matrix Y. BPCA 

di vides thi s data set into t'"vo data sets: 

~ Complete Data Set: hav ing no miss ing va lue, y,hl 

~ Incomplete data set: havi ng mi ss ing va lues , y llli.I.1 

2.3.3.1 Steps of BPCA 

There are three steps ofBP CA: 

1. Principa l component regress ion 

2. Bayesian Estimation 

3. Expectation minimization 

2.3.3. 1.1 Principal componellt regression 

In PC regress ion the mi ss ing part y "il' is es timated from observed part yohs . r irst, data 

matrix Y is normali zed. Novv transfo rm independent variab les X of data matrix Y to 

their principa l components. Bayes theorem is. used to ca lcu late probabi li stic PCA. So 

in thi s step a low rank approxi matio n of data set is performed. 

2.3.3.1.2 Bayesian Estimation 

Bayes ian estimation ca lculates posterior distribut ion of model parameter 0 and input 

matri x X using: 

p(8,XIY)ap(X,YI8)p(8) (4) 

Where p (0) is ca ll ed as prior di stribution . 

Bayesian estimation IS ca rri ed out on the ass umpti on that the res idual error and 

project ion of each gene on the principa l components behave as normal independent 
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random vari ab les \,vith parameters not kno'vv n. Bayesian estimat ion algo rithm is 

executed for both e whi ch is a model parameter and y "i
.
I S

• Then di stributions for 0 

and y" is
." , q (0) and q ( y "i

"") are ca lcul ated usin g fo ll owing equ ati on: 

(5) 

Here O!m e is posteri or o f miss ing va lue. Las t step is the imputation of miss ing values 

using fol lowing equation : 

y 'miss = f ymiss q(ymi.H )dyntiSS (6) 

2.3.3.1.3 Expectation Minimization 

Th is is last step of BPCA . fn this Bayes ian estimation is fol lowed by the iterations 

based on the Expectat ion Min imization of the unknown Bayesian pa rameters 

(l-I ourani and El, 2009; Liew et aI. , 20 11 ; Sahu et a l. . 20 11 ). 

2.3.4 Least Squares Im putation 

This method has been in troduced by B0 et a I. , (2004). ft uses mul tiple regress Ion 

model based upon least squares principa l. It uses co rrelati on between genes and 

between arrays to estim ate mi ss ing va lues . Two bas ic LS impu te meth ods are: 

LSimpute~ene: This method uses corre lation between genes. 

LSimpute_array: This method uses correlati on between arrays. 

The gene ex press ion matri x is represented by Y. For mi ss ing va lue est im at ion Vg,1I 

where g represents gene and n represents num ber of sampl e or experim ents, first of 

all k most co rrelated genes are se lected whi ch have simil ar ex press ion profil e to target 

gene and does not conta in mi ss ing va lues. At the end LS regress ion method is used 

for the est im ati on of mi ssing va lues Vg,II ' For the data hav ing strong co rrelat ion LS 

im pute perfo rm s better as it has the fl ex ibility to adj ust num ber of predi cto r genes k 

during regress ion (B0 et a I. , 2004; Ga n et a I. , 2006; l-I ourani et aI. , 2009) . 
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2.3 .5 Local Least Squares Imputation 

This method has been proposed by Kim et a!. , (2005). This algorithm uses linea r 

corre lation of the target gene with its k n (l r sl n ighbours (0 s I ct the most 

correlated genes. Least squares formulatio n of Ie most related gene and the non 

mi ss ing va lues i. e., IV, of g , are used to estimate mi ss ing va lues (Vg,i). IV , is a vector 

of non entri es that are not miss ing for gene g,. LLSilllpute uses the KN N process to 

find out Ie nearest neighbour gene using Euclidean di stance or Pearson correlation. 

These genes are sa id to be coherent to target ge nes . Row averages of res pective rows 

are used to fill mi ss ing val ues in these coherent genes . Then tvvo matrices A and B 

and a vector IV are fo rm ed based upon KNN ge nes. Fo r the estim at ion of miss ing 

va lues using k most corre lated genes, every element of matrix A and B and a vector IV 

is constructed as: 

0- Ct l 
1 \ '] 1 \ '-, 1 \ ' . (J. ~ ....,' I '- -

er- B\: ---lr _--1 . , _ --1 , , B1 2 ..... r ' 
\_ .J_ :"1 

er T 

<.::-> SI( / 

Figure 2.1 Matrix of k most similar genes for the estimation of missing values . 

Here i represents the number of experi ments, 0, and 0 2 represent mi ss ing values and k 

most similar genes to g are g,"/, .... , g,·k. A linear coefficient vector x is establi shed such 

that the square is minimized as: 

(7) 

Here x denotes a vector 'where the squ are is minimi zed hav ing Xi as the coefficients of 

linear combinat ion. Hence the mi ss ing va lues present in g can be ca lculated as 

fo llows : 

(8) 

(9) 
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In the above equati ons (1/ and 0.2 are actu a ll y the first and seco nd mi ss ing va lues 

present in the ta rget gene. So for mi ss ing va lue est im at ion of each gene, fi rst matri ces 

A and B and vector ware built up and then app ly algorithm for al l mi ss ing va lues. 

2.3.6 missForest 

Thi s package has been introd uced by Stekho ven and BLihlm ann , (20 12), deve loped in 

R language that can impute mi ss ing va lues for an y type of input data i. e., mi xed- type 

of va riables, catego rica l data, conti nuoll s c1ata, non linea r relat ions, complex 

in teracti ons and hi gh dimensionality (p » n). It is bas ica ll y a nOll parametri c mi ss ing 

va lue im putation method . Thi s algorithm lIses random fo rest (RF) method. RF is 

trained on the obse rved part of data matri x. For each variab le mi ssForest fit s the 

random forest on observed part to pred ict mi ss ing va lues. mi ssForest al go rithm 

continues to run iterative ly until some stopping criteri on is met. miss Forest 

cont inuous ly updates the im puted matri x variab le wise and then assess the 

performance between iterati ons by considering the difference between prev ious and 

new impu tat ion result. 

2.3.6.1 Steps 

• Cons ider X =(Xh X], X], .... , Xp) to be an 11 x p dimensional data matri x. 

• At start use mean imputation to est im ate mi ss ing va lues of X. 

• Sort variabl es of X according to the amount of mi ss ing va lues starting with 

the lowest va lue. 

• Now use random forest to impute miss ing val ues. 

• Stopping criterion is met as soon as difference between newly imputed 

data matr ix and prev ioLi s one increase for first time. 

• Difference for set of continuous var iab les N is defined as : 

(10) 
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• And for set of categorica l va ri ab les F as : 

IINA 
(11) 

Here NA is nUll1ber of miss ing va lues in categori ca l variabl e. 

• After the imputation of mi ss ing va lues, perform ance of algo rithm IS 

assessed using normali zed root mea n square error. 

An OOB (o ut-of-bag) est im ation error is produced for the observed part of va ri able by 

fittin g RF on that observed part. 

2.4 Proposed Algorithm and its Working 

The proposed approach uses Gibbs Bayes ian va ri abl e se lection algorith m to se lect the 

important predi ctors and then impute mi ss ing va lues using linear regress ion. 

2.4.1 Gibbs Bayesian Variab le Selection Algorithm 

Selection of predictors is a crucial problem while bui lding a regress ion model in 

stati stics. A wide vari ety of methods have been proposed to find out the potentia l 

predictors like AIC, BIC and Cp and some step wise proced ures like for'vvard 

regress ion and backward regress ion. These methods include or exc lude the va riabl es 

sequentiall y based upon their R2 considerations (George and McCu ll och, 1993). 

BVS identifies the important predictor variables from a gene express ion mi croa rray 

data set on the base of their posterior probabilities. Geo rge and McCull och, (1993) 

proposed a Bayesian va ri able se lection method i. e., Stochast ic Search Var iab le 

Se lect ion (SSVS) to identify the pred ictor va riabl es on the bas is of hi gher posteri or 

probabi li ty. [n the mi croa rray gene express ion data sets these predictor va ri ab les are 

to be chosen from the genes i. e. , those genes which play an important ro le in ce ll 

regulation. 
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2.4.1.1 Bayesian Var-iable Selection A lgorithm 

Suppose there is 11 x p covariate matrix X=(X 1 ... Xp), also known as set of potential 

predictors and an n dimensiona l vecto r Y of dependent va riables being linked by a 

norm al linear mode l: 

(12) 

In the above equation fJ = (fJl, ... ,fJpJ is an unknown p vector and rl is a sca lar whi ch is 

also unknown. This hi erarchical model has a key feature that each component of fJ is 

modell ed as obtained from a mi xture of two norma l di stributions hav ing different 

va ri ances . A latent variable Yj is in trod uced having val ue of either 0 or I and it 

determines about the inclusion or exc lusion o f fJi in the mode l, hence according to 

George and McCu ll och, ( 1993) the norm al mi xture is represented by 

(13) 

And 

P(Yi = 1) = 1 - P(Yi = 0) = Pi (14) 

Ci and and l11i are the prior parameters. When Y'i=O then fli~N(O, rD indi cating the 

absence of covariates hence prior di stribution of fJi is close to zero . When Y'i=1, 

fli~N( 0, czrD assuming that little prior information is ava il able about fJi and hence 

the covariates are included in the model. At the end inverse gamma conjugate pri or is 

used to calcul ate prior on res idual variance rl (George and McCu ll och, 1993, 1997) : 

(15) 

2.4.1.1.1 Gibbs S ampler 

It is an MCMC method to estim ate the desired posterior di stributions. It IS an 

ada ptation of Metropo li s algo rithm (George and McCul loch, 1993). 

SVSS uses Gibbs sampler to avoid the compu tational complex iti es whil e ca lcu lat ing 

all the 2P posterior probabilities inf(Y IY). It generates a sequence 
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Y I y m , ... , (16) 

hence convergIn g rapid ly in di stributi on to y~ f(yIY). Such sequ ence is obtained 

effi c ientl y. There are possibilities of thi s sequence to contain valuable informati on of 

va riable se lecti on due to hi gh probability. The reason is that Y \,vith hi gh probability 

occur more freq uentl y and hence can be easi ly identified and are of actual interest. 

Whi le the Y whi ch occur less often are do not occur at a ll are not important. An 

auxi li ary Gibbs sequence is generated using Gibbs sampler in whi ch seq uence in 

equation (16) is em bedded. 

Po 0 0 pi 1 1 pj j j ,(J ,Y, ,U,y, ... , ,U,Y, ···, (17) 

B O
, (50 are initiali zed to be th e least square estimates of equation ( 12). yo is ini tiali zed 

as y O == (1,1, ... ,1). lnverse ga mma distribution is used fo r sampling and obta ining 

va lues of coeffic ient vector pi and variance d . [n th e final step yi is obtai ned by 

sampling using the conditi onal distribut ion. Repeated success ive sampling results in 

prediction of Gibbs sequence. As a result length of subsequence increases and 

empiri ca l distribution of the rea li zed Y va lues will jo in the actu al posteriorf(yIY). 

Now the seq uence ( 17) contains relevant in forma ti on to be used for variabl e se lection . 

When the sequence has reached an approxim ate stationarity thcn thosc va lucs of Y 

wh ich corresponds to the most prom isi ng su bset hav i ng hi gh freq uency wi II appear. 

Their occurrence is due to larges t probabi lity under f(YlY) (George and McCu ll och, 

1993; Li and Zhang, 20 I 0) . 

2.4.2 Linear Regression to Estimate missing Values 

Fo r linear regress ion suppose that Y is a dependent va ri abl e and X j, ... ,Xp is a set of 

cova ri ates or potenti a l predictors. Now based on the resulting model obtained from 

Gibbs Bayes ian Variab le se lecti on, a regress ion model is fitted and used to impute 

mi ss ing va lues. For va ri able Yj with miss ing va lues 

(18) 

In the above equat ion X~ ... X~ are the se lected subsets of Xl ... Xp . p~ ... p; are th e 

new parameters that have been dravm from posteri or predictive di stributi on of 

mi ss ing da ta. At the end miss ing va lues are ca lcul ated by: 

31 



Materials and Methods 

y = P~ + Pixl + Pixz + ... + P~Xq (19) 

2.4.3 Input 

The code takes two datasets as an in pu t, the compl ete dataset and the incomplete 

dataset I. e., one havin g ml ss lll g va lues In Excel format. 5%, 10%, 20% and 40% 

mI ss Ing va lues have been produced artific ia lly In the dataset uSIn g th e prodNA 

function of mi ssForest package . This function bas ica ll y deletes the entri es complete ly 

at random accord in g to the spec ifi ed amo unt in the complete clata set. 

Table 2.1 Complete dataset. 

i .le 'fALCOIC YAL014C YAL016I!J YAL020C YALOnC YAL036C YA~038W YA L0 39C YAL040C YA CMC YALC~6C YAL~8( YALC4ge YAL051W 

X40 ·0.07 0.215 0.15 ·0. 35 ·0.415 0.54 ·0.625 0.05 O.llS -0.4 3 .1l5 .C05 - .2 .155 

X50 -0. 23 0.09 0.15 -0.28 - .59 0.33 -0.6 -0.24 0.05 -0.,6 0.23 0.02 -0.32 0.2 

X60 -OJ 0.025 0.22 -0.215 -0.58 0.215 -0.4 -0.19 ·0.04 -0.39 0.125 -0.05 ·0.32 0. 23 

X70 0.03 ·0.04 0.29 -0.15 -0.57 0.1 ·0.2 ·0.14 ·0.13 -0.32 0.02 -0. 2 -0.32 026 

XSO -0.04 -O . O~ -0.1 0.16 -0.09 -0.27 -0.13 -1.22 0.02 -0.66 0.09 0.1 -0.33 -0.04 

X90 -0.12 -0.02 0.15 -0.12 -0.34 0.45 0.33 -0.16 0.04 0.03 0.16 0.1 ·0.26 0.34 

X100 -0.28 -0.5! -0.73 0.26 0.49 0.62 -0.53 -0.21 -0.14 -0.79 -0.16 0.11 0.09 -0.31 

X110 -0.44 -O.OS 0.19 0.32 0.32 0.26 0.2 0.24 0.1 -0.02 0,01 - .23 ·0.27 

120 -0.09 -0.15 O.ll 1.15 -0.6 -0.18 -0.47 0.91 -0.89 -C.!7 -0.01 0,37 -0.29 

Xll .12 0,46 0.29 ·0.2 0.2 0.27 0.35 0.35 0.42 0.05 0.1 -0.39 0.04 0.27 

X1'O .06 -0.19 -0.08 -0.07 0.31 -0.27 0.18 0.11 0.58 -0.97 -0.14 -0.49 0.18 -0,35 

X1S -0.04 0.04 0.16 -O.OS -0.28 0.21 0.34 .52 -0.2 0.17 -0.09 1.92 0.82 OJ 

X160 .31 0.18 -0.05 0.43 -0.01 -0.4 0.28 -0.48 0.03 -OJ1 0.02 .02 -0.07 -1.19 

X170 0.59 -0. 3 0.12 0.07 -0048 -0.11 0.16 -O. ll -0.38 0.18 -0.27 -0. 3 0.25 0.19 

X180 .34 -0.38 -0.17 0,61 - .4 -0,55 0.15 -0.26 ·0.31 -0. 4 0.16 -0.05 0.08 ·0,44 

X190 -0.28 0.07 0.11 -0.2 -0.59 0.24 0.11 -0.03 -0.56 0.46 -0.25 -0.35 -0.18 0.11 

X200 - . 9 -0.04 -0.15 0.49 0.54 ·0.19 0.57 -0.2 0.17 0.4 0.19 -0.01 -0,42 0.14 

Xll0 -0.44 O.ll 0.03 -0.43 -0.09 0.27 0.32 0.11 -0.3 0.87 0.08 -0.25 -0.08 0.17 

X22 .31 -0.06 -0.26 0.8 1.03 -0,5 0.23 -0.05 0.36 -0.24 -0.11 .53 .02 0.27 

RO\1ls represent experimental conditions and columns represent genes. 

2.4.4 Imputin g M iss in g Va lu es by Mean Imputa tion 

Then impute.mea n function of the IIot Deck Imputation package of R is used to 

impute mi ss ing va lues. Thi s method basicall y est im ate the co lumn mean of the 

com plete cases fo r m iss i ng va lues. 
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2.4.5 Gibbs Baycsa in Variab lc Sclcction and Lincar rcgrcssion 

For the se lection of predictors GibbsBvs method of Bayes ian Variab le Selecti on 

paekaae of R is li e; d and a model is deve loped based on those predictors. 

2.4.5.1 Parameters of Gibbs Bayesian Variab le Selection 

Prior distributi on fo r regress ion para meters as we ll as prior distributi on over mode l 

space should be set initi all y. Possible choices fo r prior di stribution fo r regression 

parameters are Robust, Liangetal , gZe llner and Ze llnerSiow wh il e th ose for prior 

distribution over model space are Constant and ScottBerger. Poss ible choices fo r 

model at which s imulation process starts are: 

• N ull: the model onl y with intercept 

• Full: the model being defin ed by the formu la 

• A vector p (i.e ., number of covariates present in the mode l) zeroes and ones 

defi ning the model. 

i\ method has bcen developed based upon lincar rcgrcssion to calculate thc mi ss ing 

va lucs . 

2.4.6 Normalizcd root Mcan Squarc E rror 

To ca lculate N RM SE for the given complete data matrix, impu ted data matri x and 

data matri x with miss ing va lues, NRMSE is used. It is the perform ance measure and 

implemented in mi ssForest R package . 

For full understanding of the proposed algo rithm , it has been tested on the data hav in g 

5, 10, 20 and 40 percent miss ing val ues and is ex plained in Results and Discuss ion 

section. 
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RESULTS 

The main aim of this study was to deve lop a method that can estim ate the mi ss ing 

va lues more prec ise ly based upon the identi fi ca tion of the most important pred ictors . 

The other methods for mi ss ing data identificat ion li ke KNN, SVD, LS lmpute, 

LLS lm pute, mi ssFo rest and BPCA do not identi fy the predictors. I-Ience a method 

was deve loped that in volves the identi fica ti on of predi ctors and then estimati on of 

mi ss ing va lues us ing regress ion. The methods are then compared on the bas is of the ir 

NRMSE val ues. If the NRM SE va lues li e close to 0 the est im ation is considered to be 

good and reliable but if NRMSE va lues li es nea r I then the results of estimation are 

poor and not much reli able. Gibbs Bayesian Variable Se lection alo ng with linear 

regress ion shows better results as compared to the other methods. 

3.1 Resu lts of Proposed Algorithm 

The NRM SE val ues decrease along with the increase in mi ss ing percentage of the 

va lues in dataset. Thi s shows that using Gibbs Bayesian va ri abl e se lecti on to se lect 

the important predictors which ha ve significant effect and then predicting the missing 

va lues using those predictors in linea r regress ion prod uces bette r results. Tab le 3. 1 

shows the NRMSE va lues fo r 5%, 10%, 20% and 40% miss ing percentages . For 5 

percent mi ss ing data NRMSE va lues li es between 0.02 to 0.1 onl y once showing 

drasti c increase in error rate when NRMSE is 0.109122. For 10 percent miss ing data 

NRMSE li es between 0.008 to 0.05 , NRMSE va lues li e between 0.03 to 0.2 fo r 20 % 

mi ss ing values hav ing a drasti c increase in error when NRMSE is 0.2428 19, whil e for 

40% miss ing percentage NRMSE va lues li e between 0.03 to 0.07 showing no drastic 

increase in NRM SE va lue. Figure 3. 1 to Fi gure 3.4 sho'vvs the behavi our of NRM SE 

for 5%, 10%,20% and 40% mi ss ing percentages respective ly. Fi gure 3.5 shows that 

the perfo rm ance of proposed algo rithm gets better along with the increase in mi ss ing 

percentage. For 5 %, 10 % and 20 % mi ss ing data there is a signifi cant increase and 

decrease ofNRMSE but fo r 40% mi ss ing data there is no drastic change in NRM SE. 
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Table 3.1 NRMSE values of proposed algorithm for first 500 iterations for 

given missing percentages (5%,10%,20% and 40%). 

NRMSE at 

Sr . # NRMSE at 5% NRMSEatl0% NRMSE at 20% 40% 

1 0.058336 0.041237 0.242819 0.039842 

2 0.076179 0.008854 0.048969 0.078389 

3 0.044825 0.051376 0.04246 0.078389 

4 0.109122 0.046337 0.024596 0.07264 

5 0.027699 0.036999 0.039855 0.049404 

In above table second column represents NRMSE value at 5% missing data, third column 

represents NRMSE value at 10% missing data, fourth column represents NRMSE value at 

20% missing data andfifth column represents NRMSE value at 40% missing data. 
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Figure 3.1 Results of proposed algorithm at 5% missing percentage. 

In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 5% missing percentage. 
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Figure 3.2 Results of proposed algorithm at 10% missing percentage. 

In above figure, x-axis represents number of iterations and y --axis represents NRMSE values 

at 10% missing percentage. 
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Figure 3.3 Results of proposed algorithm at 20% missing percentage. 
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In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 20% missing percentage. 
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Results of proposed algorithm at 40% missing percentage. 

In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 40% missing percentage. 
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Figure 3.5 Results of proposed algorithm for given missing percentages (5%, 

10%,20%,40%) 
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In above figure, x-axis represents number of iterations and y - axis represents NRlIIJSE values 

at 5% (bL ue Line), 10% (i'ed line), 20% (green line) and 40% (pwple line) missing percentoge. 

3.2 Results of KNN 

Drastic changes have been observ ed for all the percentages of mi ssi ng va lues . Figure 

3.6 shows the poor estimation of mi ss ing va lues a long with the increase in mi ss ing 

percentage of va lues in data. The NRMS E val ues of the data li es close to 0 at 5% 

mi ss ing percentage (shown in Table 3.2) but it increases alo ng with the increase in 

mi ss ing percentage. Thi s shows that KNN ca lcul ates va lues more prec ise ly with loyv 

mi ss ing percentage . 

Table 3.2 NRMSE values of KNN for first 500 iterations for given missing 

percentages (5%, 10%, 20(Yo and 40<10) . 

NRMSE at 

Sr. # NRMSE at 5% NRMSE at 10% NRMSE at20% 40% 

1 0. 10432 1 0.10432 1 0.10432 1 0.1043 2 1 

2 0.104321 0.133 526 0.2038 57 0.290718 

') 0.100041 0. 10004 1 0. 10004 1 0.10004 1 J 

4 0.142654 0.142654 0. 142654 0.1 42654 

5 0.114296 0.1 14296 0.114296 0. 1/ 4296 

In above table second coLumn represents NRJ\lfSE value at 5% missing data, third co Lull1n 

represents NRA;JSE value at 10% missing data, fourth column represents NRA;JSE value at 

20% missing data andfijih column represents NRJo.;JSE value at 40% missing data. 
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40%) 

Results of KNN for given missing percentages (5%, 10%, 20%, 

In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 5% (blue line), 10% (red line), 20% (green line) and 40% (purple line) missing percentage. 

3.3 Results of SVD 

The NRMSE for the SVD estimation increases gradually along with the increase in 

missing percentage as shown in Figure 3.7. Table 3.3 shows values ofNRMSE. 

Table 3.3 NRMSE values of SVD for first 500 iterations for given missing 

percentages (5%, 10%,20% and 40%). 

NRMSEat NRMSE at 

Sr. # 5% NRMSE at 10% NRMSE at 20% 40% 

1 0.087504 0.121827 0.180946 0.260561 

2 0.069007 0.094092 0.170804 0.261514 

3 0.078219 0.113484 0.171377 0.278108 

4 0.099708 0.138852 0.174941 0.274315 

5 0.088644 0.117303 0.162411 0.25085 

In above table second column represents NRMSE value at 5% missing data, third column 

represents NRMSE value at 10% missing data, fourth column represents NRMSE value at 

20% missing data and fifth column represents NRMSE value at 40% missing data. 
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Figure 3.7 Results of SVD for all missing percentages (5%, 10%,20%,40%) 

In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 5% (blue line), 10% (red line), 20% (green line) and 40% (purple line) missing percentage. 

3.4 Results of LLS Impute 

The NRMSE increases drastically for 40% missing data (as shown in Figure 3.8) 

depicting that the poor estimation of missing values at greater percentage. So the LLS 

impute method performs better for the data with less missing percentage but its 

performance gets poor as the missing percentage increases. 

Table 3.4 shows values of NRMSE for 5%, 10%, 20% and 40% missing percentages 

as imputed by LLS Impute method. 

40 



Results 

Table 3.4 NRMSE values of LLS Impute for first 500 iterations for given 

missing percentages (5%, 10%,20%, and 40%). 

NRMSE at 

Sr.# NRMSE at5% NRMSEatl0% NRMSE at20% 40% 

1 0.125879 0.162152 0.217123 3.86E+08 

2 0.102662 0.123407 0.169914 3.22E+ 19 

3 0.10878 0.152962 0.176747 5.694894 

4 0.161068 0.201203 0.224032 0.817376 

5 0.107877 0.160089 0.185147 0.791383 

In above table second column represents NRMSE value at 5% missing data, third column 

represents NRMSE value at 10% missing data, fourth column represents NRMSE value at 

20% missing data and fifth column represents NRMSE value at 40% missing data. 
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Figure 3.8 

20%,40%) 

Results of LLS impute for given missing percentages (5%, 10%, 

In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 5% (blue line), 10% (red line), 20% (green line) and 40% (purple line) missing percentage. 
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3.5 Results of BPCA 

For all the mI ss In g percentages. Tab le 3.5 shows that NRMSE va lues of BPCA 

estimation li es close to 1 rather th an 0 which means that it does not provide much 

re liab le results of estimation. Figure 3.9 shows that at lower mi ssi ng percentage, the 

error rate of estim ation is much hi gher as compared to that at hi gher percentage i. e., at 

40 percent miss ing data . 

Table 3.5 NRMSE values of BPCA for first 500 iterations for given missing 

percentages (50;;" 10%,20%,40%). 

NRMSE at 

SL # NRMSE at 5% NRMSE at 10% NRMSE at20% 40% 

1 0.77913 0.776885 0.7632 18 0. 723067 

2 0.780988 0.779482 0.774488 0.732742 

3 0. 779226 0.77 1872 0.764569 0.743539 

4 0.770387 0.763297 0.749412 0.701004 

5 0.778057 0.775844 0.762 16 1 0.722 136 

In above table second column repJ'esents NRJvISE value at 5% missing data, third column 

repJ'esents NRJvfSE value at 10% miss ing data, fo urth colull1n repJ'esents NRJvfSE value at 

20% miss ing data and fift h column J'epresents NRNISE value at 40% miss ing data. 
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In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 5% (blue line), 10% (red line), 20% (green line) and 40% (purple line) missing percentage. 

3.6 Results of missForest 

The NRMSE values of missForest lies close to 1 (as shown in Table 3.6) for all 

missing percentages which means that it has a poor perfonnance of estimation. Figure 

3.10 shows the behavior ofNRMSE values for missForest. 

43 



Results 

Table 3.6 NRMSE values of missForest for first 500 iterations for given 

missing percentages (5%, 10%, 20%,40%). 

Sr. NRMSE at 

# NRMSE at5% NRMSEatl0% NRMSEat20% 40% 

1 0.665168 0.688834 0.784794 0.870111 

2 0.756582 0.72854 0.830988 0.83544 

3 0.774101 0.72557 0.789154 0.850927 

4 0.771974 0.781072 0.75844 0.845835 

5 0.648772 0.700445 0.713732 0.785122 

In above table second column represents NRMSE value at 5% missing data, third column 

represents NRMSE value at 10% missing data, fourth column represents NRMSE value at 

20% missing data andfifth column represents NRMSE value at 40% missing data. 
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Figure 3.10 Results of missForest for given missing percentages (5%, 10%, 

20%,40%) 

In above figure, x-axis represents number of iterations and y -axis represents NRMSE values 

at 5% (blue line), 10% (red line), 20% (green line) and 40% (purple line) missing percen tage_ 
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DISCUSSION 

DNA mi croarray has been wide ly used by sc ienti sts to measure the expression leve l 

of large number of ge nes simultaneously. The DNA microarray produces an im age 

after scanning and the results are then converted to num eri ca l va lues and saved into a 

tex t fil e. Thi s text fi le contai ns num eri ca l va lues of express ion leve l of every gene. 

The text file also contains mi ss ing va lues being a very comm on problem of 

mieroarray data analys is. Usuall y I to 10 percent of the data entries are mi ssi ng in an 

ordinary mi croarray which affects upto 95 percent of genes. There are several reasons 

behind the generati on of mi ss ing ex press ion va lues . Several methods have been 

developed to estim ate the MVs. The most tr ivi al methods are row and co lumns based 

estim ation, repl ac ing the MVs by zero or e liminate the genes whi ch contain MVs. 

Other computati onal meth ods have also been deve loped to deal with MVs . These 

meth ods have some drawbacks (Troyanskaya et a I. , 2001 ; Sahu et a I. , 20 I I). 

The main purpose of thi s study is to deve lop a meth od that can impute MVs more 

prec ise ly and with less erro r. The deve loped method uses Gib bs Bayesian Var iable 

Selection and Linear Regress ion to est imate MVs . Thi s method has been tested on 

microa rray tim e series data set of Saccharomyces cerevisiae. It has been tested for 

four different percentages of MVs i.e., 5%, 10%, 20% and 40%. The results of th e 

deve loped algo rithm have been analyzed on the bas is of NRMSE between th e actual 

data set and th e data set who's MVs have been ca lculated. The results of the 

deve loped algo rithm has been compared to five other methods i.e .. KNN, SVD, 

LLS l1l1pu te, BPCA and mi ssForest. NRMSE has been L1 sed as a metri c For 

compari so n. 

Tab le 4. 1 shows the average N RMSE values of different meth ods for a ll th e four 

percentages of MVs. NRMSE va lues of deve loped algorithm li es between 0.03 to 

0.06 \-v hi ch is much better than oth er meth ods. The usual beha viour o r· NRMSE 

values shows that it increases with the increase in the percentage of MVs. Still the 

deve loped a lgo rithm has the minimum NRMSE values generated as compared to 

oth er meth ods whi ch show th at it outperform s other meth ods. 
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Table 4.1 Average NRMSE values of proposed algorithm (GIbbsBvs + 

Regression), KNN, SVD, BPCA, missForest and LLSImpute, for given missing 

percentages (5%, 10%,20%, and 40%) 

Proposed LLS 

algorithm KNN SVD BPCA miss Forest Impute 

NRMSE 

at5% 0.063232 0.113127 0.084616 0.777557 0.72332 0.121253 

NRMSE 

at 10% 0.036961 0.118968 0.117111 0.773476 0.724892 0.159962 

NRMSE 

at 20% 0.07974 0.133034 0.172096 0.76277 0.775421 0.194593 

NRMSE 

at 40% 0.063733 0.150406 0.26507 0.724498 0.837487 6.45E+18 

Rows represent values of NRMSE for 5%, 10%, 20% and 40% missing percentage of values 

while each column represents different techniques to impute missing values. Each cell 

represents values of NRMSE for different techniques. 
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Figure 4.1 Results of proposed algorithm along with increasing percentage of 

missing values. 
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In above figure x-axis represents the percentage of missing values (5%, 10%, 20% and 40%) 

while y-axis represents the NRMSE values obtained at missing percentages by proposed 

algorithm. 

Figure 4.2 shows the comparison of all already existing methods except LLSTmpute 

with the newly developed method. The graph of the LLSlmpute has been shown 

seperately in Figure 4.3 as it shows a strange behaviour with the increase in 

percentage of MY s. It is clear from the figure that the NRMSE values of estimation of 

MVs by the BPCA and missForest method lies close to 1 hence showing the poor 

perfom1ance of these two methods. While the NRMSE values of estimation of MV s 

by the SVD and KNN method and the developed algorithm lies close to 0 which 

shows their better perfonnance. The figure shows that NRMSE values of KNN lies 

between 0.1 to 0.2 and those of SVD lies between 0 to 0.3 while NRMSE values of 

the developed algorithm (GibbsBvs+Reg) lies betwen 0 to 0.1 for all the percentages 

of MVs. This figure hence shows that the developed algorithm (GibbsBvs+Reg) 

outperfom1s all other methods in the estimation of MVs and imputes MVs more 

precisely as compared to all other methods. 
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Figure 4.2 Comparison of results of already existing methods (KNN, SVD, 

BPCA, missForest) with the proposed algorithm (GibbsBvs+Reg) 
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In above figure x-axis represents the percentage of missing values (5%, 10%, 20% and 40%) 

while y-axis represents the NRMSE values obtained at missing percentages by different 

methods i.e., proposed method (GibbsBvs+Reg represented by blue line), KNN (red line), 

SVD( green line), BPCA (purple line), missForest (light blue line). 

Figure 4.3 shows the strange behavior of NRMSE of llsimpute method. The NRMSE 

values for 5%, 10% and 20% are 0.121253, 0.159962 and 0.194593 respectively 

while for 40% it is 6.45E+ 18. This shows the poor performance of llsimpute at higher 

percentage of missing values. 
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Results of LLSlmpute method for all percentages of missing 

In above figure x-axis represents the percentage of missing values (5%, 10%, 20% and 40%) 

while y-axis represents the NRMSE values obtained at missing percentages. 

4.1 Conclusion 

In this study the main focus was on statistical challenges faced during the imputation 

of missing data obtained from micro array. These statistical challenges involve 

differential gene expression issues. For the imputation of microarray missing data, I 

developed a method using Gibbs Bayesian Variable Selection to find out the 

important predictors and then impute missing values based on those predictors. 

Furthermore the results of this method were compared with previously developed 

other six methods. The preliminary tests indicate that the developed algorithm 
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Discussion 

(G ibbsBvs+Reg) produces more accurate results as compared to other methods lIsing 

N RM SE as a metri c. The NRM SE for fO Lir mi ss ing percentages does not drastica ll y 

increase along with the increase of mi ss ing percentage in the case of GibbsBvs+Reg 

while NRMS E increases along \vith the increase o f mi ss ing pcrcentagc in casc of 

BPCA, mi ssForest and LLS Impute. Hence the deve loped al gorithm outperformed 

rest of the methods. 
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Appendix 

R Package Usage 

impute Used fo r Ie nea rest neighbour imp utation of mi ss ing va lues . 

Uses column mean of compl ete cases to impute mi ss ing 
I-IotDecIdm putatioll 

va lues. 

Thi s method provides a set of different PCA 

pcaMethocJs implementat ions to calcu late the mi ss ing va lues. It includes 

SV D, BPCA and LLS lmpute method s. 

missForest Used to impute miss ing va lues in case of mi xed type data. 

Used to analyze var iable se lection problem in linear 
BVS 

regression models from Bayes ian perspective. 
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