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Abstract

Currently, Einstein’s general theory of relativity (GR) provides the best description for

the phenomena called gravity. But it is not the only theory that does the job. There is

the version given by Newton also. This version describes gravity as the force between the

objects. Such a force depends on masses of the objects involved and also on the distance

from each other. In GR, gravity is not a force. It is the curvature of the spacetime

resulting due to the presence of the matter. The gravitational field as described by

GR is a manifestation that space is the curved Riemannian one instead of the flat

Minkowski. The gravitational field gets geometrized in GR, which is a tensor theory of

the gravitational field instead of scalar one (Newtonian theory is a scalar theory). The

gravitational field is represented in terms of the metric tensor of the Riemannian space,

its source being the matter tensor. The components of the matter tensor source the

gravitational field in an elegant way determined by the Einstein filed equations (EFEs).

Continuous progress is being made in finding the solutions of the EFEs. Schwarzschild,

Reissner-Nordström, Kerr and Kerr-Newman spacetimes are the simplest vacuum solu-

tions of EFEs that describe the black holes. Reissner-Nordström is the charged gener-

alization of the Schwarzschild solution, both being spherically symmetric. Kerr metric

is the rotating generalization of the Schwarzschild metric. Introduction of the charge

in the Kerr metric gives the Kerr-Newman metric. Kerr and Kerr-Newman spacetimes

are axially symmetric. In the limit of mass being vanished, they reduce to Minkowski

metric in spheroidal coordinates. Spheroids are the geometric objects which we can take

as deformed spheres.

Apart from the research and interest in GR, there has been a growing interest in alternate

theories of gravity. One such theory is the Chern-Simons (CS) theory. The action of

this theory consists of the usual Einstein-Hilbert term and a new parity violating four-

dimensional correction. Two kinds of formulations exist in CS theory, namely dynamical

and non-dynamical. Black hole solutions have been developed in both the cases. Our

interest as regards to this thesis is the spacetime which has been developed in the former

formulation.

The solutions beyond GR can also be formulated by another method. Such method in-

volves the model independent parameterization of the metric. The metric thus obtained

must describe the black hole solution in any theory of gravity. The possible deviations

from the Kerr spacetime are measured by the deviation parameters.

The detailed outline of the thesis is as follows: Chapter 1 is about the preliminaries. In

Chapter 2, the Misner-Sharp mass is generalized for the spheroidal geometry. Misner-

Sharp mass is a type of quasilocal mass that previously worked only in the spherically

symmetric spacetimes. It also gives the location of the marginally outer trapped surface

in such spacetimes. The Misner-Sharp mass is extended for spheroids within GR and
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the location of marginally outer trapped surface is determined in this new setting. The

parameter which gives deviation from spherical geometry is kept small throughout the

analysis. In quantum physics, the energy density which defines the Misner-Sharp mass

(and ADM mass, named after Richard Arnowitt, Stanley Deser and Charles Misner)

becomes a quantum observable and one could conjecture that the gravitational radius

admits a similar description. The gravitational radius is made a quantum mechanical

operator which acts on the “horizon wave function”. The horizon wave function is given

by the quantum state of the source. The horizon quantum mechanics has been extended

to the case of spheroidal sources at the end of the chapter.

The next two chapters deal with the spacetimes in the alternate theories of gravity.

Chapter 3 involves spacetime in dynamical CS theory. This spacetime is valid in slow

rotation approximation and small coupling constant. The effects of the CS coupling

constant on some physical phenomena e.g. quasilocal mass, particle motion and energy

extraction process are studied.

Johannsen and Psaltis developed a rotating deformed Kerr-like metric in an alternate

theory of gravity other than GR. It is obtained by applying Newman-Janis algorithm to

a deformed Schwarzschild metric. Motivated by this spacetime, a charged analogue of

the Johannsen-Psaltis metric is developed in Chapter 4. Here the seed metric is taken

as the Reissner-Nordström spacetime. The new metric is studied for the event and

Killing horizons, the latter are also represented graphically. Lorentz violating regions

are analyzed by the determinant of the charged version of the Johannsen-Psaltis metric.

Analysis of the closed time-like curves are also included in this chapter. Considering

the motion of a particle on the equatorial plane, we obtain its energy and angular

momentum. Location of the circular photon orbits and innermost stable circular orbits

are also determined.

The Chapter 5 contains the summary and conclusion of the thesis.
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Chapter 1

Introduction

1.1 Gravity

Gravity is one of the basic interactions of nature others being electromagnetic, strong

and weak nuclear forces. Each of these forces has its own peculiar nature. Comparison

of strength of these fundamental forces shows that gravity is weakest of them all (nearly

1029 times weaker than weak force, 1036 times weaker than the electromagnetic force

and 1038 times weaker than the strong force). Despite this weakness in strength, gravity

has certain properties that make it distinguished from others. It is a long range attrac-

tive interaction. Unlike strong and weak interactions, there isn’t a length scale fixing

the range for gravitational interactions. It cannot be shielded. Negative gravitational

charges don’t exist to neutralize the positive ones, therefore the gravitational interaction

cannot be screened. Gravity is a universal interaction among all masses according to

the Newtonian gravitational theory and among all energies in the relativistic theory of

gravity as

E = mc2, (1.1)

where E,m and c denote energy, particle’s mass and speed of light respectively.

Gravitational physics finds its applications from macroscopic to microscopic scale. On

the macroscopic scale, it is connected to astrophysics and cosmology and on the oppo-

site side of the scale it is linked to particle physics and quantum physics. Universe’s

organization is done by gravity (despite being weak in strength) on the large distance

measures of cosmology and astrophysics. Such distances are outside the range of appli-

cability of strong and weak nuclear forces. We could try the electromagnetic force as

the dominant force on this scale. It could be of long range provided there existed large

scale things having some net electric charge. Our universe is electrically neutral, and the
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electromagnetic interaction due to its strength (stronger than gravitational interaction)

will neutralize some large scale net charge sharply. This leaves gravity to take control

over the immense distances of the universe.

The electromagnetic, strong and weak nuclear forces have been combined into a single

force called the Grand Unified Theory (GUT). Union of gravitational and the other three

forces has been termed as the Theory of Everything (ToE). Formulation of such a ToE

is amongst the important unresolved problems in physics.

It is quite obvious that this amazing gravitational interaction or gravity needs to be

explained mathematically. It must be represented by some equations that govern its

behavior. Currently gravity is best described by the theory of General Relativity (GR)

given by Einstein in 1915. It is important to briefly describe Newton’s universal law of

gravity and see the difference between two theories. Newton’s universal law of gravity

describes gravity as a force that acts on physical objects. This force depends directly on

their masses and is inversely proportional to the square of the distance between them.

Mathematically it is given as

F =
Gm1m2

r2
, (1.2)

where G is the gravitational constant having value 6.67× 10−11m3kg−1s−2, m1, m2 are

the masses of the objets and r denotes their distance from each other. Gravitational force

as described by Newton is an instantaneous force. The force experienced by an object

depends on the position of the second object at same instant. This is not acceptable by

the Special Theory of Relativity, presented by Einstein in 1905, as this theory restricts

that nothing can move faster than light.

Einstein’s pursuit for a relativistic version of a gravitational theory did not just give

some new formulation of relativistic gravitational field, but changed our whole concept

of space, time and gravity. He changed the previous concepts of space and time as

separate entities into a single continuum called the spacetime. According to his theory

of GR, the presence of matter causes the spacetime to curve or bend. The paths along

which all objects fall are straight paths in that curved spacetime. According to Newton,

sun applies force of gravity on earth and motion of earth around the sun is due to this

force. GR explains the same situation in this way: presence of sun causes the spacetime

to curve. Earth just follows the straight paths in such curved environment. Geometry

defines gravity.

GR deals with two important aspects:

(i) Effects of curvature on motion of matter,

(ii) Effects of matter on the curvature of spacetime.

John Wheeler has summarized these points in the form “matter tells space how to
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curve, and space tells matter how to move”. It is important for the interpretation of

many astrophysical objects such as black holes, pulars, end of a star, for the big bang

and our universe.

In the language of mathematics, GR is given by a set of coupled partial differential

equations known as the Einstein field equations (EFEs) which are given as follows

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.3)

where Rµν , R, gµν ,Λ, G, c, Tµν represent the Ricci tensor, Ricci scalar, metric tensor,

cosmological constant, Newton’s gravitational constant, speed of light in vacuum and

the energy-momentum tensor, respectively. The first two terms on the left hand side

are collectively known as the Einstein tensor represented by the symbol Gµν . Thus the

EFEs can also be written as

Gµν + Λgµν =
8πG

c4
Tµν . (1.4)

In 4 dimensions the total number of EFEs is 10. Thus we have a system of 10 coupled

nonlinear partial differential equations. The terms on the left of Eq. (1.3) denote the

geometry of the spacetime under consideration and on the right we have the terms which

are representative of the matter. The Ricci tensor is a symmetric tensor of rank 2 and

is a contraction of the Riemann tensor which is given by

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓαλγΓλβδ − ΓαλδΓ
λ
βγ , (1.5)

where Γαβδ denotes the Christoffel symbols having the mathematical form as

Γαβδ =
1

2
gασ (gβσ,δ + gδσ,β − gβδ,σ) , (1.6)

where gασ is the inverse of the metric tensor. By contracting the first and third indices

of the Riemann tensor i.e. Rαβγδ = Rαβαδ, one gets the Ricci tensor. The trace of the

Ricci tensor gives the Ricci scalar i.e. R = Rαα.

The energy-momentum tensor is a symmetric second rank tensor describing the matter

distribution at each event of the spacetime. In 4 dimensions its matrix form is written

as 
T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 . (1.7)
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The physical quantities represented by these components are as follows:

T 00 describes energy density of the matter,

T 0i denotes energy flux ×c−1 in the i-direction,

T i0 denotes momentum density ×c in the i-direction,

T ij represents flow of the i-component of momentum per unit area in the j-direction,

where i and j are indices representing the spatial coordinates.

The EFEs contain metric tensor and its partial derivatives. So they are basically a set of

coupled partial differential equations to be solved for the metric tensor. These solutions

can be exact or non-exact. Here we describe some of the exact vacuum solutions of EFEs

in GR that describe black holes. Before going into these solutions, we first describe what

black holes are and how they are formed.

1.2 Black holes

Black holes are the most important predications of GR. A black hole can be defined

as a region from which nothing can escape not even light. This is due to very strong

gravitational field. It is formed when an object having mass M shrinks to the size which

is less than its gravitational radius denoted by RH = 2GM/c2 .

The research for properties of black holes is being done rapidly. Considerable progress

has been made on understanding the properties of black holes, their astrophysical aspects

and details of the different physical phenomena. The connections between the black

hole theory with other apparently different concepts such as thermodynamics, quantum

theory and information theory are also being studied. The interest in black holes has

led to the existence of a new branch of physics termed as the black hole physics.

A black hole is formed due to the gravitational collapse of a massive star. A star is

acted upon by attractive gravitational forces and expanding forces of gases which are

heated due to nuclear reactions and as a result emit energy. Such a process is termed as

thermonuclear burning. The life journey of a star starts because of gravitational collapse

of a cloud of interstellar gas which has hydrogen and helium as its main constituents.

Compressional heating increases temperature of the core to that level at which the

thermonuclear reactions start, converting hydrogen to helium and emitting energy as a

consequence. The star then comes to a steady state where the energy produced in the

process of thermonuclear burning is being balanced with energy released in the form of

radiations. There comes a stage when this balance is disturbed. This happens when a

good quantity of hydrogen has been utilized and not enough nuclear fuel is left to balance

energy being given as radiations. The contraction due to gravity restarts. The core’s
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temperature is again increased by compressional heating for thermonuclear reactions

but this time helium burns. A considerable quantity of helium gets consumed in this

burning, core shrinks and a new phase of thermonuclear burning begins. Now what will

happen when there is no nuclear fuel to burn? There are two cases that happen in such

a situation. One is that the final object is an equilibrium star in which gravitational

force is being balanced by some nonthermal pressure source. The second case is that

the star continues to collapse, thus leading to the formation of black holes. Many kinds

of nonthermal pressures exist. There is electron Fermi pressure created due to the fact

that no two electrons can occupy the same quantum state (Pauli’s exclusion principle).

Similar Fermi pressures for neutrons and protons also exist. Repulsive nuclear forces

also contribute to nonthermal pressures. A star supported against gravity by electron

Fermi pressure is termed as the white dwarf. Stars supported by neutron Fermi pressure

and nuclear forces are known as neutron stars. Neutron stars and white dwarfs are

more dense and smaller as compared to ordinary stars. White dwarfs and neutron stars

have upper bound for their masses known as the Chandrasekhar limit and the Tolman-

Oppenheimer-Volkoff limit (or TOV limit) respectively. Chandrasekhar limit is about

1.4 solar mass (2.765 × 1030kg). It is the limit for the mass above which the electron

degeneracy pressure in the core of a star is not enough to equalize the star’s inward

gravitational force thus leading the white dwarf into further gravitational collapse into

a neutron star or a black hole. The TOV limit is the maximum mass of the cold non-

spinning neutron star. The analysis from gravitational waves produced by the merger of

neutron stars places the limit to be near 2.17 solar masses [1]. Previous studies suggested

limit at approximately 1.5 to 3.0 solar masses, for an initial stellar mass of 15 to 20 solar

masses [2]. For the neutron star having mass greater than this limit, it continuous to

the path of gravitational collapse into much more denser black holes.

Below we describe mathematical forms of a few vacuum solutions of EFEs that corre-

spond to black holes [3].

The Schwarzschild spacetime is the simplest static vacuum solution of EFEs. Mathe-

matically it is represented as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2, (1.8)

where M is the mass of the black hole. This solution was given by Karl Schwarzschild

in 1916 just one year after the development of EFEs.

The Reissner-Nordström spacetime is the charged generalization of the Schwarzschild
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spacetime and is given as

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (1.9)

Here black hole’s charge is represented by Q. Setting Q = 0, one gets the Schwarzschild

spacetime (1.8). The non-vanshing components of the Maxwell tensor Fµν are

F 01 = −F 10 =
Q

r2
.

The rotating generalization of the Schwarzschild spacetime is the Kerr metric. It is sta-

tionary and axisymmetric. In Boyer-Lindquist coordinates, its mathematical expression

is given by

ds2 = −
[
1− 2Mr

Σ

]
dt2 − 4aMr sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2 + sin2 θ

[
r2 + a2

+
2a2Mr sin2 θ

Σ

]
dφ2, (1.10)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr.

Here a denotes spin of the black hole. Setting a = 0, one gets the Schwarzschild space-

time.

The Kerr-Newman spacetime is the charged generalization of the Kerr metric as well

as rotating generalization of the Reissner-Nordström spacetime. It is also stationary,

axisymmetric and vacuum solution of EFEs. In Boyer-Lindquist coordinates, its math-

ematical expression is given by

ds2 = −
(

1− 2Mr

Σ
+
Q2

Σ

)
dt2 − 2a(2Mr −Q2) sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2

+ sin2 θ
(
r2 + a2 +

a2(2Mr −Q2) sin2 θ

Σ

)
dφ2, (1.11)

where Q and a denote the charge and spin of the black hole, respectively. Here Σ is

same as in the Kerr metric whereas ∆ modifies to r2 + a2 − 2Mr +Q2.

1.3 The horizons

1.3.1 Event horizon

For a black hole, an event horizon can be described as the boundary (horizon) between

its inside and its outside. For someone outside the event horizon, he cannot know about
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the happenings inside. If we consider a black hole as a ball, then its surface constitutes

an event horizon. Nothing can escape from that surface.

Mathematically, it is a null surface having null geodesics as its generators. These

geodesics are trapped inside the surface.

1.3.2 Killing horizon

The Killing equation is given by

∇akb +∇bka = 0, (1.12)

where∇a above is representing the covariant derivative. Solutions of the Killing equation

are called the Killing vectors. Killing horizon is a null hypersurface which is every where

tangent to the Killing vector field ka. The Killing vectors are null vectors on the Killing

horizon.

The relationship between the event and Killing horizons can be established by the fol-

lowing theorem [4]

Theorem 1.1. Let a stationary, asymptotically flat spacetime contain a black hole and

be a solution of Einstein equations with matter satisfying suitable hyperbolic equations.

Then the event horizon is a Killing horizon.

The Killing vector in such a case can be written as

ka = ta + Ωφa. (1.13)

This equation is a linear combination of Killing vectors related to time symmetry ta and

rotational symmetry φa for some constant Ω. The condition of ka being null gives

g33

(
Ω2 + 2Ω

g03

g33
+
g00

g33

)
= 0. (1.14)

The solutions for the above equation are

Ω± = −g03

g33
±

√
g2

03

g2
33

− g00

g33
. (1.15)

The angular velocity Ω± approaches the constant value g03/g33 on approaching event

horizon which is angular velocity of ZAMO (zero angular momentum observer) on hori-

zon and it must be single valued. This takes place when

g2
03 − g00g33 = 0. (1.16)
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The radius at which the above equation holds is known as the Killing horizon. In general,

the event and Killing horizons do not coincide for stationary spacetimes.

1.3.3 Trapped surfaces and apparent horizon

Trapped surface is an important concept in GR given by Penrose [5]. For a 2-dimensional

surface in a 4-dimsnsional spacetime, there exist two null directions which are normal

to the surface at each point. Let the outgoing and ingoing null normals to the surface

be denoted by l and n respectively. We denote the corresponding expansion scalars by

Θl and Θn. Trapped surface is then defined [5] as a compact, orientable and space-like

2-surface for which ΘlΘn > 0. Let us have the set of all such trapped surfaces. The

apparent horizon is then the boundary of these surfaces.

A surface is called marginally outer trapped surface (MOTS) if the expansion of outgoing

null geodesics vanishes [4, 6, 7, 8, 9, 10] i.e. Θl = 0.

In general, the expansion scalars associated with outgoing and ingoing geodesics are,

respectively, given by

Θ` = qµν ∇µlν , Θn = qµν ∇µnν , (1.17)

where µ, ν = 0, . . . , 3 and

qµν = gµν + lµ nν + nµ lν , (1.18)

represents the metric induced by the spacetime metric gµν on the 2-dimensional space-

like surface formed by spatial foliations of the null hypersurface generated by the out-

going null tangent vector ` and the ingoing null tangent vector n. This 2-dimensional

metric is purely spatial and has the following properties

qµν `
µ = qµν n

µ = 0, qµµ = 2, qµλ q
λ
ν = qµν , (1.19)

where qµν represents the projection operator onto the 2-space orthogonal to ` and n.

Given these definitions, it is evident that the study of marginally trapped surfaces in any

realistic system is a very complex topic, and determining their existence and location is

in general possible only by means of numerical methods.

8



1.4 From spheres to spheroids

Both Schwarzschild and Reissner-Nordström spacetimes are spherically symmetric. Here

the surfaces of constant t and constant r are spheres. In fact, for such surfaces, Eqs.

(1.8) and (1.9) reduce to

ds2 = r2dθ2 + r2 sin2 θdφ2, (1.20)

which is the line element for a sphere of radius r. Now, consider the Kerr black hole

given in Eq. (1.10). Taking its limit as M → 0, we get

gµν = −dt2 +
r2 + a2 cos 2θ

a2 + r2
dr2 +

(
r2 + a2 cos 2θ

)
dθ2 +

(
a2 + r2

)
sin2 θ dφ2. (1.21)

The above equation represents Minkowski spacetime in spheroidal coordinates. It can

also be written as

ds2 = −dt2 + dx2 + dy2 + dz2, (1.22)

where

x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ, z = r cos θ. (1.23)

Here a can be considered as deviation from the spherical geometry. The usual spherical

polar coordinates are recovered when a = 0.

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (1.24)

To determine the spatial part of Eq. (1.22), we determine the differentials of Eq. (1.23)

as

dx =
r√

r2 + a2
sin θ cosφdr +

√
r2 + a2 cos θ cosφdθ −

√
r2 + a2 sin θ sinφdφ, (1.25)

dy =
r√

r2 + a2
sin θ sinφdr +

√
r2 + a2 cos θ sinφdθ +

√
r2 + a2 sin θ cosφdφ, (1.26)

dz = cos θdr − r sin θdθ, (1.27)

which give

dx2 + dy2 + dz2 =
r2 + a2 cos 2θ

r2 + a2
dr2 +

(
r2 + a2 cos 2θ

)
dθ2 +

(
r2 + a2

)
sin2 θ dφ2. (1.28)

For a2 > 0, the above line element describes a prolate spheroid, which extends more

along the axis of symmetry than on the equatorial plane (see the yellow surface in

Figure. 1.1). In order to describe an oblate spheroid, which is flatter along the axis

of symmetry (see the red surface in Figure. 1.1), we can simply consider the mapping
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a → i a (so that a2 → −a2). For a = 0, one recovers the usual sphere (represented in

green in Figure. 1.1).

As with the Kerr case, we can also see what happens to the Kerr-deSitter spacetime

when mass vanishes. The Kerr-deSitter spacetime is

ds2 = − ∆r

I2Σ
(dt−a sin2 θ dφ)2 +

sin2 θ∆θ

I2Σ
(adt− (r2 +a2)dφ)2 +

Σ

∆r
dr2 +

Σ

∆θ
dθ2, (1.29)

where

∆r =
(
1− Λr2

3

)(
r2 + a2

)
− 2Mr,

∆θ =
(
1 +

Λa2 cos2 θ

3

)
,

I = 1 +
Λa2

3
,

Σ = r2 + a2 cos2 θ.

When M → 0, the Kerr-deSitter metric takes the form [11]

ds2 = Σ

[
dr2(

1− Λr2

3

)(
r2 + a2

) +
dθ2

∆θ

]
+

sin2 θ∆θ

ΣI2

[
adt− (r2 + a2)dφ

]2

−
(1− Λr2

3 )(r2 + a2)

ΣI2

[
dt− a sin2 θdφ

]2

. (1.30)

Figure 1.1: Spheroids: prolate spheroid with a2 > 0 (in yellow) compared to oblate
spheroid with a2 < 0 (in red) and to the reference sphere a2 = 0 (in green).

10



1.5 Modified Kerr spacetimes

Extremely massive, rotating black holes are believed to be present at the centre of most

of galaxies. The gravitational field outside such black holes is important not only for

the evolution of the captured compact objects but is also a source of gravitational waves

discovered recently [12]. A qualitative description of such a gravitational field is provided

by the Kerr metric in GR. According to the no-hair theorem [13, 14], Kerr metric is the

only axisymmetric, stationary, asymptotically flat, vacuum solution of EFEs that is

regular outside the event horizon and is specified by mass and spin.

GR has been put to test extensively in numerous ways. One such test is to see that the

black holes are described by the Kerr solution. This can be done in many ways [15, 16,

17]. The tests in the weak gravitational field regime can depend on the parameterized

post-Newtonian approach [18]. On the contrary, one must model the black hole metric

in terms of parametric deviations from the Kerr spacetime in order to take the test in

the strong gravitational regime.

Many modified Kerr spacetimes are available in literature. Such modified forms include

the Kerr black hole as the limiting case so that, if the deviations are set to zero, these

reduce to the Kerr metric. Two asymptotically flat metrics describing the superposition

of the Kerr solution with an arbitrary static vacuum Weyl field which differ in their

angular momentum distributions were developed in Ref. [19]. Collins et al. discussed

bumpy black holes, objects which are almost black holes but not quite general relativ-

ity’s black holes having multipoles that deviate slightly from black hole solution [20].

Glampedakis et al. formulated the quasi-Kerr metric [21]. It is constructed by adding

leading order deviations in the Kerr metric. These deviations appear in spacetime’s

quadrupole moment. The slowly rotating black hole in dynamical Chern-Simons (CS)

gravity, to leading order in the coupling constant has been derived independently in

Refs. [22, 23]. Vigeland et al. gave two model independent parametric deviations from

Kerr metric [24]. One of them is formulated from generalization of the quasi-Kerr and

bumpy metrics. The second one is built from the perturbations of the Kerr sapcetime

in Lewis-Papapetrou form. Johannsen and Psaltis [25] constructed a Kerr like metric

which depends on the set of free parameters in addition to mass and spin by using

Newman-Janis algorithm [26]. It has also been generalized to include the electric charge

Q [27].

In this thesis, we have focused on the metrics developed in [22, 23, 25, 27]. Below we

describe the mathematical forms of the spacetimes given there.
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In the slow rotation approximation a << M, the Kerr metric (1.10) takes the form

ds2
SK = −

[
U(r) +

2a2M cos2 θ

r3

]
dt2 − 4aM sin2 θ

r
dtdφ+

1

U(r)2

[
U(r)

− a2

r2

(
1− U(r) cos2 θ

)]
dr2 + Σdθ2 + sin2 θ

[
r2 + a2 +

2a2M sin2 θ

r

]
dφ2,

where U(r) = 1 − 2M/r and the terms upto O(a2) are retained. The solution corre-

sponding to the CS term is given as [22]

ds2 = ds2
SK +

5γ2a sin2 θ

4kr4

[
1 +

12M

7r
+

27M2

10r2

]
dtdφ, (1.31)

where γ is the CS coupling constant. The equation for the scalar field ϕ is

ϕ =

[
5

2
+

5M

r
+

9M2

r2

]
γa cos θ

4Mr2
. (1.32)

We note that the off-diagonal term which results in a weakened dragging effect has the

coupling constant contribution to O(aγ2).

The Johannsen and Psaltis metric is given by [25]

ds2 = −(1 + P (r, θ))
(

1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
(1 + P (r, θ))dtdφ+ Σdθ2

+
Σ(1 + P (r, θ))

∆ + a2 sin2 θP (r, θ)
dr2 +

[
sin2 θ(r2 + a2 +

2a2Mr sin2 θ

Σ
)

+P (r, θ)
a2 sin4 θ(Σ + 2Mr)

Σ

]
dφ2, (1.33)

where Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr and P (r, θ) has the general expression

P (r, θ) =
∞∑
k=0

(
ε2k + ε2k+1

Mr

Σ

)(M2

Σ

)k
. (1.34)

This metric has been constructed by applying the Newman-Janis algorithm on a de-

formed Schwarzschild metric. It is a solution of some unknown field equations which

are different from the EFEs due to the presence of the function P (r, θ). The infinite

parameters are constrained by the imposing the conditions of the asymptotic flatness

and consistency with the observational weak field constrains on the deviations from the

Kerr spacetime. In the simplest case ε3 is the only non-zero deviation parameter.
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The charged generalization of the above metric has the form [27]

ds2 = −(1 + P (r, θ))
(

1− 2Mr

Σ
+
Q2

Σ

)
dt2 − 2a(2Mr −Q2) sin2 θ

Σ
(1 + P (r, θ))dtdφ

+
Σ(1 + P (r, θ))

∆ + a2 sin2 θP (r, θ)
dr2 + Σdθ2 +

[
sin2 θ

(
r2 + a2 +

a2(2Mr −Q2) sin2 θ

Σ

)
+P (r, θ)

a2 sin4 θ(Σ + 2Mr −Q2)

Σ

]
dφ2, (1.35)

where ∆ and Σ are have the same expressions as in case of Kerr-Newman metric. It

is also constructed by applying the Newman-Janis algorithm on a deformed Reissner-

Nordström spacetime (this construction has been discussed in detail in Chapter 4). By

setting Q = 0, we obtain the Johannsen and Psaltis metric.

1.6 Geodesic equation

In Euclidean geometry, the shortest possible path between two points is a straight line.

But this is not the case in GR. Here the shortest possible path between two points is a

curve called the geodesic. For light particles i.e. photons, they are called null geodesics

and for massive particles, the name is time-like geodesics. In this thesis, both kind of

geodesics have been employed. Here we describe a derivation of the geodesics equation.

Let us denote the curve by xµ and parameterize it by some arbitrary parameter say λ.

This xµ is required to be the shortest curve between two points i.e. for such a curve the

arc-length s has the smallest value for some starting point Pi and final point Pf . This

gives

s =

∫ Pf

Pi

ds = extremum, (1.36)

where ds2 = gµνdx
µdxν . Eq. (1.36) can be rewritten as

s =

∫ λf

λi

ds

dλ
dλ =

∫ λf

λi

√
gµν

dxµ

dλ

dxν

dλ
dλ = extremum, (1.37)

where λi and λf are values of the parameter λ at the points Pi and Pf respectively. Eq.

(1.37) has the form of Hamilton’s principle having Lagrangian

L =
√
gµν ẋµẋν =

√
A, (1.38)

and, the time t being replaced by λ. Here overdot denotes derivative with respect to the

parameter λ. Therefore, the geodesics satisfy the Euler-Lagrange equation given by

d

dλ

∂L
∂ẋα

− ∂L
∂xα

= 0. (1.39)
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By substituting the values, the above equation takes the form

d

dλ

gµαẋ
µ

√
A
− gµν,αẋ

µẋν

2
√
A

= 0. (1.40)

So far we have not said any thing about the parameter λ. To make things easier, λ

can be taken to be proportional to the arc-length s. This gives A to be constant. This

assumption gives a simplified form of Eq. (1.40) as

∂gµα
∂λ

ẋµ + gµα
∂ẋµ

∂λ
− gµν,αẋ

µẋν

2
= 0. (1.41)

Using

gµα,λ = gµα,βẋ
β, (1.42)

gµα,βẋ
µẋβ =

(gµα,β + gβα,µ)

2
ẋµẋβ, (1.43)

Eq. (1.41) takes the form

d2xσ

dλ2
+

1

2
gσα
(
gµα,ν + gνα,µ − gµν,α

)dxµ
dλ

dxν

dλ
= 0. (1.44)

Thus the final form of the geodesic equation is

d2xσ

dλ2
+ Γσµν

dxµ

dλ

dxν

dλ
= 0. (1.45)

The above equation shows that geodesic equation is a second order ordinary differential

equation involving the Christoffel symbol which might not always be in a simple form.

This leads to difficulty in constructing the equation and also in its solution.

1.7 Mass in General Relativity

Eq. (1.2) describes the gravitational force between two masses which are distance r

apart. In the same way, the electromagnetic force between two charges Q1 and Q2

distance r apart is given as

F =
Q1Q2

4πε0r2
, (1.46)

where ε0 is permittivity of the free space. This equation is known as Coulomb’s law.

Another aspect of electromagnetic theory is that we can determine the total charge

enclosed by a closed surface S by Gauss law written as

Q =

∫
V
ρqdV = ε0

∮
S
E.dS, (1.47)
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where V denotes the volume of the surface and E is the electric field. The above equation

shows that the total charge contained inside the surface, given by volume integral of

charge density ρq, is given by surface integral of electric flux over the whole surface. In

this way, electric charge is described by the electric field. The information about the

electric charge can be obtained by determining the electric field.

The similarities between the gravitational force law and Coulomb’s law might lead one

to write a formula for the total mass enclosed by some surface similar to the Gauss law

i.e.

M =

∫
V
ρmdV =

∮
S
W (gµν , ∂gµν)dS, (1.48)

where ρm is mass density and W is some function of metric tensor gµν and its first order

derivative ∂gµν . But such a result for total mass has not been determined yet. In this

regard, problem lies with the mass density.

Einstein’s theory of relativity altered many previous concepts including how we see mass

in the presence of gravitational field. He gave an equation relating mass and energy given

in Eq. (1.1) which sets mass and energy equivalent to each other. Everything possesses

energy that includes the gravitational field too. Thus the path to generalize the Gauss

law to gravitation is not simple and easy. One must keep in mind that gravitational

field itself has the mass.

The structure of EFEs is reflective of their non-linear characteristic. A field that is

described by non-linear equations shows the property of self interactions. The fields

which are governed by linear equations follow the superposition principle. Electromag-

netic field is one such example. This superposition characteristic leads to the fact that

field being produced due to two sources is sum of the fields produced by those sources

individually. For example, if we know the relationship between a point charged source

and the electric field produced by it, then we can infer charge of that field configuration.

The same cannot be done for the gravitational field as it does not follow superposition

principle.

Einstein’s equivalence principle sets gravitational force equivalent to forces applied in an

accelerating frame of reference. It means (locally) an observer cannot decide if he is on

a gravitational body’s surface or the surface is accelerating. Thus a reference frame can

always be found where the gravitational field (at a point) vanishes. This leads to the

fact that gravitational field is non-local in nature. The connection between gravitational

field and mass density cannot be found as in the case of electromagnetic field. For such a

connection, one needs to specify mass at each point of a spacetime which is not possible.

Next we ask ourself if the energy density cannot be determined locally then what is the

solution in such a situation? In such situations, we use quasilocal approach i.e. mass
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is determined for some finite regions of spacetime. There exists the concept of total

energy of an isolated asymptotically flat spacetimes. These are the ADM (Arnowitt-

Deser-Misner) mass [28] (defined at spatial infinity) and Bondi-Sachs mass [29] at null

infinity. Many definitions for quailocal mass have been proposed, each being applicable

in different situations. There does not exist an expression which can serve as a unique

definition for this quasilocal mass. In fact, in 1982 a list of unsolved problems in classical

general relativity was given by Penrose [30]. The first problem on the list is ”find a

suitable quasilocal definition of energy-momentum”. The few definitions of quasilocal

mass are: Brown-York energy [31], the Misner-Sharp mass [32], the Komar mass [33], the

Bartnik mass [34], the Hawking mass [35], Hawking-Hayward mass [35, 36], the Geroch

mass [37] and the Penrose mass [38]. This thesis mainly involves Misner-Sharp mass

and Hawking mass in spheroidal geometry [39, 40, 41].

There are certain properties that a good definition of a quasilocal mass must satisfy [42]:

(i) A point in a spacetime has zero mass. It means that mass should become zero when

the surface contracts to a point.

(ii) A metric 2-sphere in a Minkowski space also has zero mass.

(iii) For special case of spherical symmetry, there exists a particular mass function which

should be a limit of any definition of quasilocal mass in spherical symmetry.

(iv) A quasilocal mass must give ADM mass and Bondi-Sachs mass at spatial and null

infinity, respectively.

(v) For a 2-surface S completely contained inside another surface S′, the mass enclosed

by S′ is greater than or equal to the corresponding expression for S.

1.8 Black holes as source of energy and acceleration

The study of motion of particles around the black holes is an interesting and important

problem in astrophysics. Such studies are not only helpful in understanding the geomet-

rical structure of spacetime but also give insight for high energy phenomenon happening

in the vicinity of these objects like formation of jets and acceleration disks.

One way to use the black hole as an energy source is the Penrose process [43]. The key

point in this process is that the rotational energy associated with a black hole is not

present inside its event horizon but in ergosphere which lies outside the event horizon.

Things get dragged in the ergosphere of the rotating spacetime. The process can be

pictured as follows: consider that matter falls into the ergosphere and it splits into two

pieces once it enters the ergoshphere. The momenta of the pieces is arranged so that

one piece escapes to infinity and the other one moves into the event horizon and is kind

of lost. It can be made possible that the matter fragment that had left for infinity has
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more energy than the original matter and the other fragment carries negative energy.

Since angular momentum is conserved, this leads to saying that more amount of energy

can be taken out from a black hole than the amount initially provided. The source of the

energy difference is black hole itself which loses some amount of angular momentum in

the process which gets converted into energy that is extractable. The maximum amount

of energy which a single particle gains is 20.7% [3]. By performing the process over and

over again causes a black hole to lose all of its rotational energy, thus taking the form

of a non rotating black hole e.g. the Schwarzschild.

Rotating black holes can also act as particle accelerators. A mechanism called BSW

(called after Bañados, Silk and West) mechanism has been suggested in Ref. [44] by

considering particle collision. It was shown that if two neutral particles collide at the

horizon of extremal Kerr spacetime, then the centre of mass energy, ECM , in such a

situation could be infinite.
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Chapter 2

The marginally trapped surfaces

in spheroidal spacetimes

2.1 Introduction

According to GR, black holes are portions of Lorentzian manifolds characterised by the

existence of an event horizon, from within which no signals can ever escape. In more

general gravitating systems, the local counterpart of the event horizon is given by a

marginally outer trapped surface (MOTS) [6, 7], which can be naively understood as

the location where the escape velocity equals the speed of light at a given instant. If the

system approaches an asymptotically static regime, the outermost MOTS should then

become the future event horizon, like it happens in the very simple Oppenheimer-Snyder

model [45].

For the particular case of a spherically symmetric self-gravitating source, one can employ

the gravitational radius, and the equivalent Misner-Sharp mass function. The spherically

symmetric line element can be written in the form

ds2 = gµν(xk) dxµ dxν + r2(xk)
(
dθ2 + sin2 θ dφ2

)
, (2.1)

where xk = (x0, x1) parameterize surfaces of constant angular coordinates φ and θ. For

the metric (2.1), the gradient ∇µr is orthogonal to surfaces having constant area given

by A = 4π r2, and one finds that the product [8, 46]

Θ`Θn ∝ gµν ∇µr∇νr, (2.2)
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precisely vanishes on marginally trapped surfaces. Moreover, if we set 1 here x0 = t and

x1 = r, EFEs yield the solution

g11 = 1− rH(t, r)

r
, (2.3)

where

rH(t, r) = 2m(t, r), (2.4)

is known as the gravitational radius determined by the Misner-Sharp mass function [32]

m(t, r) = 4π

∫ r

0
r̄2 ρ(t, r̄) dr̄, (2.5)

where ρ = ρ(t, r) is the matter density. According to Eq. (2.2), a MOTS exists where

g11 = 0, or where Eq. (2.4) satisfies

rH(t, r) = r, (2.6)

for r > 0. If the source is surrounded by the vacuum, the Misner-Sharp mass asymptoti-

cally approaches the ADM mass of the source, m(t, r →∞) = M , and the gravitational

radius likewise becomes the Schwarzschild radius RH = 2M . To summarise, the relevant

properties of the Misner-Sharp mass (2.5) are that

i) it only depends on the source energy density,

ii) it allows one to locate the (time dependent) MOTS via Eq. (2.4).

In this chapter the classical analysis of marginally trapped surfaces will be generalized

to the systems with a slightly spheroidal symmetry. Moreover, since it is hardly possi-

ble to describe analytically such systems if they evolve in time, we shall consider static

configurations as simple case studies. In particular, we shall deform a static spherically

symmetric spacetime, and study location of marginally trapped surfaces perturbatively

in the deformation parameter. In this respect, it is worth stressing that the assumption

of staticity will ultimately lead to matter distributions which break some of the energy

conditions. The cases presented here are therefore only intended to serve as toy mod-

els, whose purpose is to shed some light on the possible relation between these small

perturbations and a mass function.

Explicit expressions will be given for the deformed de Sitter spacetime. We shall also

study the case of a spheroidal spacetime containing source whose energy and pressure de-

part from such a symmetry. In both the cases, we will see that the location of marginally

1We shall use the coordinates (x0, x1, x2, x3) = (t, r, θ, φ), throughout the thesis. Moreover, we have
set G = c = 1.
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trapped surfaces is given by surfaces of symmetry, and can therefore be found by com-

puting the Misner-Sharp mass on the reference unperturbed (spherically symmetric)

spacetime.

2.2 Static spheroidal sources

In this section, we will investigate how the particular description for static spheri-

cally symmetric systems extends to the case in which the symmetry is associated with

(slightly) spheroidal surfaces. We start from the spherically symmetric metric given in

Eq. (2.1), with r the areal radius constant on the 2-spheres of symmetry, and assume

that the time dependence is negligible. EFEs then yield the solution (2.3), in which the

now time independent Misner-Sharp mass m = m(r) is determined by a static density

ρ = ρ(r) according to Eq. (2.5). It will also be assumed that the matter source also

contains a (isotropic) pressure term, such that the Tolman-Oppenheimer-Volkov equa-

tion of hydrostatic equilibrium is satisfied [47]. We then change to (prolate or oblate)

spheroidal coordinates and consider a localized source of spheroidal radius r = r0, say

with mass M0, surrounded by a fluid with the energy density ρ = ρ(r).

The central source only serves the purpose to avoid discussing coordinate singularities

at r = 0. In the interesting portion of space r > r0, the metric gµν is given as

gµν =− h(r, θ; a) dt2 +
1

h(r, θ; a)

(
r2 + a2 cos 2θ

a2 + r2

)
dr2 +

(
r2 + a2 cos 2θ

)
dθ2

+ sin2 θ
(
a2 + r2

)
dφ2, (2.7)

where h = h(r, θ; a) is a function to be determined. The surfaces of constant r now rep-

resent ellipsoids of revolution, or spheroids, on which the density is constant. Therefore,

by spheriodal symmetry, we mean dependence solely on the spheriodal radial coordinate

r.

For a2 > 0, the above metric can describe the spacetime outside a prolate spheroidal

source and for a2 < 0, it describes the spacetime outside an oblate spheroidal source.

It is also important to remark that a spacetime equipped with the metric represented

by Eq. (2.7) admits two trivial Killing vectors, namely ∂t and ∂φ. Furthermore, one

can easily see that the vanishing of g00 = −h(r, θ; a) gives the location of the Killing

horizons for spacetimes belonging to this class 2.

For consistency, the energy-momentum tensor Tµν of the source can be inferred from

the EFEs represented in Eq. (1.4). Here we put the cosmological constant equal to

2In a more general, time dependent spacetime, no such Killing structure would of course exist.
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zero for further analysis. The component of EFEs which is our main concern is the 00

component because it relates the Einstein tensor to density. For the analysis, energy

density is restricted to be spheroidally symmetric, so that we have the 00 component of

the EFEs in the form

G0
0 = −8π ρ(r), (2.8)

and we will therefore assume that the necessary pressure terms are present in order to

maintain equilibrium. In order to solve Eq. (2.8), we change variable from the azimuthal

angle θ to x ≡ cos θ. This transforms dθ2 to

dθ2 =
dx2

1− x2
. (2.9)

After making the required substitutions, the line element reads

ds2 =− h(r, x; a) dt2 +
1

h(r, x; a)

(
r2 + a2 x2

r2 + a2

)
dr2 +

r2 + a2 x2

1− x2
dx2

+
(
r2 + a2

)
(1− x2) dφ2. (2.10)

Given the symmetry of the system, we can restrict the analysis to the upper half spatial

volume 1 ≥ x ≥ 0 corresponding to 0 ≤ θ ≤ π/2. We then find

G0
0 =

1

4 (r2 + a2x2)3 h2

{
4
[
r4 + a2r2(4x2 − 1) + a4 x2 (1 + x2)

]
h3

+3 (1− x2)(r2 + a2x2)2 (∂xh)2

+2 (r2 + a2x2)h
[
x
(
2 r2 + a2

{
3x2 − 1

})
∂xh+ (x2 − 1) (r2 + a2 x2) ∂2

xh
]

+2h2
[
2
(
a2r2

{
1− 4x2

}
− a4 x2

{
1 + x2

}
− r4

)
+r
(
r2 + a2x2

) (
2 r2 + a2

{
1 + x2

})
∂rh
]}
, (2.11)

so that Eq. (2.8) appears to be a rather convoluted differential equation for the unknown

metric fuction h = h(r, x; a).

For completeness, we also show the remaining (non-vanishing) components of the Ein-

stein tensor, namely

G1
1 =

r2 (h− 1)

(r2 + a2 x2)2
, (2.12)

G2
2 =

x
[(
r2 + a2 x2

)
∂xh+ 2 a2 x (h− 1)h

]
+ r

(
r2 + a2 x2

)
h ∂rh

2 (r2 + a2 x2)2 h
, (2.13)
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and

G3
3 =

1

4 (r2 + a2 x2)3 h2

{
4 a2 h3

[
a2x2 + r2 (2x2 − 1)

]
+ 3 (1− x2)(r2 + a2x2)2 (∂xh)2

+2 (r2 + a2x2)h
[
x
(
r2 + a2

{
2x2 − 1

})
∂xh+ (x2 − 1) (r2 + a2 x2) ∂2

xh
]

+2h2
[
2 a2

(
r2 − x2

{
a2 + 2r2

})
+ r

(
r2 + a2 x2

) (
r2 + a2

)
∂rh
]}
, (2.14)

from which the complete stress energy momentum can be easily obtained for a generic

metric of the form (2.7) from EFEs (1.4).

We proceed by considering small departures from spherical symmetry, parameterised by

a2 � r2
0, and expand all expressions up to order a2. In particular, the energy density

must have the form

ρ ' ρ(0)(r) + a2 ρ(2)(r). (2.15)

There are no x dependent terms in this expression as it was assumed that density is

function of r only. For the unknown metric function h(r, x), the perturbed form is

h ' h(00)(r) + a2
[
h(20)(r) + x2 h(22)(r)

]
,

= 1−
2m(00)(r)

r
− 2 a2m(20)(r) + x2m(22)(r)

r
, (2.16)

where we introduced a Misner-Sharp mass function m(00), like in Eq. (2.5), for the

zero order term and corrective terms m(2i) at order a2 (with i = 0, 2 representing the

polynomial order in x). In fact, at zero order in a, Eq. (2.8) reads

G(0)
0
0

=
2m′(00)(r)

r2
= 8π ρ(0)(r), (2.17)

with primes denoting derivatives with respect to r. The relation (2.5) gives the solution

m(00).

At first order in a2, the component of the Einstein tensor in Eq. (2.11) contains two

terms,

G(2)
0
0
(r, x) = F (r) + x2 L(r), (2.18)

where F (r) and L(r) do not depend on x. Since ρ does not depend on x by construction,

we must have L(r) = 0, which yields

m′(22) +

(
1−

2m(00)

r

)−1 3m(22)

r
− 3

2 r2

(
m′(00) −

5m(00)

3 r

)
= 0. (2.19)
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Finally, we are left with

F (r) =−
2m′(20)

r2
−
m′(00)

r4
+

3m(00)

r5
+

2m(22)

r3

(
1−

2m(00)

r

)−1

,

=− 8π ρ(2), (2.20)

in which m(00) is determined by Eq. (2.17) and m(22) by Eq. (2.19). Eq. (2.20) can then

be used to determine m(20).

Once the metric function h = h(r, x; a) is obtained, one can determine the locations of

marginally trapped surfaces from the expansions of null geodesics defined in Eq. (1.17).

It will then be interesting to compare the result with the solutions of the generalised

Eq. (2.4), namely

2m(rH, x; a) = rH(x), (2.21)

where

m(r, x; a) ' m(00)(r) + a2
[
m(20)(r) + x2m(22)(r)

]
, (2.22)

is now the extended Misner-Sharp mass. We also note that Eq. (2.21) is equivalent to

h(rH, x; a) = 0, (2.23)

which will be checked below with a specific example.

We can just anticipate that we expect the location of the MOTS to respect the spheroidal

symmetry of the system and be thus given by the spheroidal deformation of the isotropic

horizon obtained in the limit a→ 0.

2.3 Application to specific spheroidal sources

In order to proceed and find more explicit results, the above general construction will be

applied to specific examples. The first example is of the spheroidally deformed de Sitter

metric in which the density is independent of θ while in the second (more complicated

metric) density has both radial and angular dependence.

2.3.1 Slightly spheroidal de Sitter

We start this case with the assumption of an inner core of radius r = r0 and mass M0,

which is here surrounded by a fluid with energy density

ρ(r) = ρ(0)(r) =
α2

4π r
, (2.24)
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where r > r0, and α is a constant independent of a (so that ρ(2) = 0). From Eq. (2.17),

we obtain

m(00) = M0 +
α2 (r2 − r2

0)

2
, (2.25)

which of course holds for r > r0. We further set α2 r2
0 'M0, so that

m(00)(r) '
α2 r2

2
. (2.26)

This case admits a MOTS when 2m(00)(r) = r, that is

rH = α−2, (2.27)

which is just the usual horizon for the isotropic de Sitter space. After substituting the

above value of m(00)(r) in Eq. (2.19), it takes the form

m′(22) +
3m(22)

(1− α2 r) r
− α2

4 r
= 0. (2.28)

The general solution of the above first order ordinary differential equation is

m(22)(r) =
1− α2 r

8α4 r3

{
1− (1− α2 r)

[
4− 8α4 (1− α2 r)C(22)

+2 (1− α2 r) ln(1− α2 r)
]}
, (2.29)

with C(22) an integration constant. For r ' α−2, the general solution reduces to

m(22)(r) =
α2

8

(
1− α2 r

)
+ o[(1− α2 r)2]. (2.30)

We can then determine m(20) from Eq. (2.20), which, on employing the above expansion

for m(22), reads

m′(20) '
3α2

8 r
, (2.31)

and yields

m(20)(r) ' C(20) +
3α2

8
ln(α2r), (2.32)

with C(20) another integration constant.

We then set C(20) = C(22) = 0 for simplicity. The unknowns in the structure of the

extended Misner-Sharp mass function given in Eq. (2.22) and also in the unknown

function h in Eq. (2.16) are given in Eqs. (2.26), (2.30), (2.32). After substituting

m(00), m(20) and m(22), the extended Misner-Sharp mass function takes the form

m(r, x; a) ' α2 r2

2
+
a2 α2

8

[
(1− α2 r)x2 + 3 ln(α2r)

]
, (2.33)
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for r ' α−2. Also, the expression of h is

h(r, x; a) '
(
1− α2 r

)
− a2 α2

4 r

[
3 log(α2 r) + x2 (1− α2 r)

]
. (2.34)

The condition (2.23) then admits two separate solutions, namely

r
(1)
H ' α−2, (2.35a)

and

r
(2)
H (x) ' a2 α2 (9− 2x2)

3 a2 α4 − 8
∼ a2 α2 2x2 − 9

8
, (2.35b)

the latter of which is clearly negative for α2 a � 1 (since 0 ≤ x2 ≤ 1). Therefore, we

expect that there exists a horizon, whose location r
(1)
H ' rH is given exactly by the

original (spherically symmetric) solution (2.27) for the unperturbed spacetime. This

expectation will have to be confirmed from the study of expansions of null geodesics on

r
(1)
H ' rH, but we should also add that this calculation does not imply uniqueness and

more marginally (outer) trapped surfaces could in principle develop.

2.3.1.1 Marginally trapped surfaces

Let us denote by S the surface defined by r = r
(1)
H ' α−2. In the limit of small

spheroidal deformation ( i.e., for α2 a� 1), one can easily obtain the tangent vectors to

the outgoing and ingoing null geodesics on S, from the conditions that they are light-like,

`2 = n2 = 0, and the normalization ` · n = −1.

To determine these null vectors, we need to study in some details the null geodesics for

the metric (2.10) with h given in Eq. (2.34). Since the gxx component of the metric (2.10)

is not well defined at x = 1 (θ = 0), it will be more convenient to work with the metric

in the form given originally in Eq. (2.7). The Lagrangian is given by

2L = gµν
dxµ

dλ

dxν

dλ
, (2.36)

where λ is the affine parameter along the geodesic. For the metric (2.7), it can be written

as

2L = −h(r, θ; a) ṫ2 +
r2 + a2 cos2 θ

r2 + a2

ṙ2

h(r, θ; a)
+
(
r2 + a2 cos 2θ

)
θ̇2

+
(
r2 + a2

)
sin2 θ φ̇2, (2.37)
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where again overdot represents the derivative with respect to the parameter λ. Since t

and φ are cyclic variables, one has the conserved conjugate momenta

pt = −h(r, θ; a) ṫ = −E, (2.38)

pφ =
(
r2 + a2

)
sin2 θ φ̇ = J, (2.39)

with constants E and J representing energy and angular momentum of the particle,

respectively. In particular one can always set φ̇ ∼ J = 0.

For purely radial geodesics to exist about S, the equation of motion for θ = θ(λ) with

J = 0, which reads

2h2
[(
r2 + a2 cos2 θ

)
θ̈ + 2 r ṙ θ̇ − a2 cos θ sin θ θ̇2

]
− E2 ∂θh

=
[
2 a2 h cos θ sin θ +

(
r2 + a2 cos2 θ

)
∂θh
](

h θ̇2 − E2

r2 + a2 cos2 θ

)
, (2.40)

must admit solutions with θ(λ) = θ0 and (at least locally) constant. We then notice

that

∂θh '
a2 α2

2 r
(1− α2 r) sin θ cos θ, (2.41)

so that Eq. (2.40) is trivially satisfied for θ = 0 or θ = π (corresponding to a motion

along the axis of symmetry) and for θ = π/2 (motion on the equatorial plane). Moreover,

for a general value of the angular coordinate θ, Eq. (2.41) ensures that ∂θh = h = 0 on

S (since this surface is defined by α2 r = 1) and Eq. (2.40) again reduces to an identity

on S. This shows that radial null geodesics exist everywhere in a neighbourhood of S

and can be straightforwardly used to determine that S is indeed a MOTS.

After substituting

θ̇ = 0, J = 0, L = 0, (2.42)

the Lagrangian (2.37) takes the form

2L =
1

h(r, θ; a)

(
r2 + a2 cos 2θ

r2 + a2
ṙ2 − E2

)
= 0, (2.43)

where we used the equation of motion (2.38). From Eq. (2.43), we then obtain

ṙ

E
= ±

√
r2 + a2

r2 + a2 cos 2θ
. (2.44)

By using Eqs. (2.38) and (2.44), we can write the two normalized null tangent vectors

as

` =
1

2
∂t +

h(r, θ; a)

2

√
r2 + a2

r2 + a2 cos2 θ
∂r, (2.45)
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n =
1

h(r, θ; a)
∂t −

√
r2 + a2

r2 + a2 cos2 θ
∂r. (2.46)

Now we determine the induced metric qµν on S. The non zero components are

q22 = r2 + a2 cos 2θ, (2.47)

q33 =
(
r2 + a2

)
sin2 θ. (2.48)

From Eq. (1.17) one can then conclude that

Θn = −
r
(
2 r2 + a2 + a2 cos2 θ

)√
(r2 + a2)(r2 + a2 cos2 θ)3

, (2.49)

which is always negative, and Θ` is calculated as

Θ` = −h(r, θ; a)
Θn
2
, (2.50)

which is positive for r > r
(1)
H and vanishes on the surface S, thus confirming our initial

conjecture.

2.3.1.2 Misner-Sharp mass

In the example considered in this section, we have found two results:

i) The location of the MOTS is given by the same value of the radial coordinate as for

the isotropic case (with a = 0). In particular, we have seen that

Θ` = −h(r, θ; a)
Θn
2

, (2.51)

for all angles θ.

ii) The second result is that h(rH, θ; a) = 0 exactly where the spherically symmetric

h(rH, θ; a = 0) = 0.

Putting the two results together, we then find that

2m(rH, θ; a) = 2m(rH) = rH , (2.52)

where m(r) = m(r, θ; a = 0). We can therefore conjecture that the relevant mass

function for determining the location of MOTS’s in (slightly) spheroidal systems is given

by the Misner-Sharp mass computed according to Eq. (2.5) on the reference isotropic

spacetime. This conjecture is somewhat reminiscent of the property of the original

Misner-Sharp mass that is given by the volume integral over the flat reference space.
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2.3.2 A non-spheroidal source

The previous example had density that did not depend on the angle θ but the function

h showed both radial and angular dependence i.e.

ρ = ρ(r), h = h(r, θ). (2.53)

Now we modify our case by taking density to be of the form ρ = ρ(r, θ) and h = h(r).

In this section, we want to consider the more complex case of a localised source of

spheroidal radius r = r0, with mass M0 and charge Q, surrounded by its static electric

field, with energy-momentum tensor T
(Q)
µν , and a suitable (electrically neutral) fluid. We

are again not interested in the inner structure of the central source, but only in the

portion of space for r > r0, where we assume the metric to be of the form [48] given in

Eq. (2.7) with

h(r, θ) = h(r) = 1− 2M

r
+
Q2

r2
. (2.54)

The metric thus is of the form

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1(
r2 + a2 cos 2θ

r2 + a2

)
dr2

+
(
r2 + a2 cos 2θ

)
dθ2 +

(
r2 + a2

)
sin2 θ dφ2. (2.55)

It is clear that the deformation parameter a now measures deviations from the spher-

ically symmetric Reissner-Nordström metric. In this respect, it is worth stressing that

such a deformation should be regarded as a simple example of a (most likely) unsta-

ble intermediate configuration [13] within the framework of a dynamical gravitational

collapse.

One can easily compute the corresponding energy-momentum tensor Tµν by means of the

EFEs. In particular, the (only) relevant component of the energy-momentum tensor, as

far as our argument is concerned, is T 0
0 . For completesness we give all the non-vanshing

components of EFEs as follows

8πT 0
0 = −

a2M
[(

cos2 θ − 3
) (
r2 + a2 cos2 θ

)
+ 4

(
r2 + a2

)
cos2 θ

]
r (r2 + a2 cos2 θ)3

− Q2

(r2 + a2 cos2 θ)3

[
2
(
r2 + a2

)
− r2 − a2 cos2 θ

]
, (2.56)

8πT 1
2 =

a2(Q2 −Mr)(a2 + r2) cos θ sin θ

r3(r2 + a2 cos2 θ)2
, (2.57)
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8πT 1
1 = −Q

2(2r2 + 3a2 + a2 cos 2θ)

2r2(r2 + a2 cos2 θ)2
+

a2M(3 + cos 2θ)

2r(r2 + a2 cos2 θ)2
, (2.58)

8πT 2
2 =

Q2(3a4 + 9a2r2 + 2r4 + 3a4 cos 2θ + a2r2 cos 2θ)

2r4(r2 + a2 cos2 θ)2

− a2M(2a2 + 7r2 + cos 2θ(2a2 + r2))

2r3(r2 + a2 cos2 θ)2
, (2.59)

8πT 3
3 =

Q2

8r4(r2 + a2 cos2 θ)3

[
4a2(3a4 + 8a2r2 + 5r4) cos 2θ + (3a2 + 2r2)(3a4

+ 8a2r2 + 4r4 + a4 cos 4θ)
]
− a2M

8r3(r2 + a2 cos2 θ)3

[
6a4 + 23a2r2

+ 12r4 + 4(2a4 + 6a2r2 + 5r4) cos 2θ + a2 cos 4θ(2a2 + r2)
]
. (2.60)

Eqs. (2.56)-(2.60) show that this energy-momentum tensor has separate contributions

proportional to the charge Q2 and the mass M , respectively,

Tµν = M T (M)µ
ν +Q2 T (Q)µ

ν , (2.61)

which will be analyzed separately.

For the part of the energy-momentum tensor associated to M , we consider an anisotropic

fluid form,

M T (M)µ

ν = (%+ p)uµ uν + p δµν + Πµ
ν , (2.62)

where % is the energy density of the fluid, p the radial pressure, u the time-like 4-velocity

of the fluid and Πµν is the traceless pressure tensor orthogonal to u,

Πµ
µ = Πµν u

ν = 0. (2.63)

Since the system is static, we can take

u =

(
1− 2M

r
+
Q2

r2

)−1/2

∂t. (2.64)

Thus we can write the T 0
0 component (our main concern) as

8πT 0
0 = −%+Q2 T (Q)0

0. (2.65)
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To analyze the effects of the deviation a2 on the electrostatic field, we expand the

electrostatic part of the Eqs. (2.56)-(2.60) in powers of a2 to obtain

8π T (Q)0

0 ' −
Q2

r4
+

2a2Q2 cos 2θ

r6
− 3a4Q2 cos2 θ(−1 + 3 cos 2θ)

2r8
+ o(a6), (2.66)

8π T (Q)1

2 '
a2Q2 cos θ sin θ

r5
− a4Q2 sin 4θ

4r7
+ o(a6), (2.67)

8π T (Q)1

1 ' −
Q2

r4
− a2Q2 sin2 θ

r6
− a4Q2 cos2 θ(−3 + cos 2θ)

2r8
+ o(a6), (2.68)

8π T (Q)2

2 '
Q2

r4
− a2Q2(−7 + cos 2θ)

2r6
+
a4Q2 cos2 θ(−9 + cos 2θ)

2r8
+ o(a6), (2.69)

8π T (Q)3

3 '
Q2

r4
+
a2Q2(2 + cos 2θ)

r6
− a4Q2 cos2 θ(1 + 7 cos 2θ)

2r8
+ o(a6). (2.70)

We only wish to discuss what happens for small deviation from spherical symmetry,

and will therefore assume a2 � Q2 � r2
0. As a further simplification, we also take

Q2 �M2, so that the Reissner-Nordström spacetime we deform is far from the extremal

configuration and admits the two horizons

r± = M ±
√
M2 −Q2, (2.71)

such that h(r±) = 0.

If we then put together all the previous assumptions, in every expansion we will be

allowed to neglect terms of order a2Q2 and higher. At leading order in a2, we get

% ' a2M

16π r5
(5 cos 2θ − 1) , (2.72)

T (Q)0

0 ' −
1

8π r4
, (2.73)

and the total energy density ρ, up to order a2, is given by

ρ(r) ' 1

8π

[
Q2

r4
+
a2M

2 r5
(5 cos 2θ − 1)

]
, (2.74)

from which one can easily see that the electrostatic contribution is constant on spheroids

of constant r, whereas the contribution proportional to M is not. The electrostatic con-

tribution falls within the treatment of the previous sections, and we are here particularly

interested in analyzing the effects of the latter.

2.3.2.1 Marginally trapped surfaces

We denote by S the surfaces defined by r = r±. Again as in the previous case, one then

finds that the tangent vector to the outgoing null geodesics on S by first evaluating the
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geodesics through Lagrangian. The Lagrangian for metric (2.55) takes the form

2L = −h(r) ṫ2 +
r2 + a2 cos2 θ

r2 + a2

ṙ2

h(r)

+
(
r2 + a2 cos2 θ

)
θ̇2 +

(
r2 + a2

)
sin2 θ φ̇2, (2.75)

with h = h(r) given in Eq. (2.54). Since t and φ are cyclic variables for the above

Lagrangian we still have the conserved momenta

pt = −h(r) ṫ = −E, (2.76)

pφ =
(
r2 + a2

)
sin2 θ φ̇ = J. (2.77)

We can again set φ̇ ∼ J = 0.

Whether the spacetime at hand admits radial geodesics can be determined from the

dynamical equation for θ = θ(λ) with J = 0, that is

(
r2 + a2 cos2 θ

)
θ̈ = −2 r ṙ θ̇ − a2 sin θ cos θ

r2 + a2

ṙ2

h(r)
+ a2 sin θ cos θ θ̇2. (2.78)

In particular, upon setting θ̇ = 0, we obtain

θ̈ = − a2 sin θ cos θ

(r2 + a2) (r2 + a2 cos2 θ)

ṙ2

h(r)
, (2.79)

which yields θ̈ = 0 on the equatorial plane (at θ = π/2) and along the axis of symmetry

(at θ = 0 or θ = π). For a general angular coordinate θ, however, θ̈ diverges for r → r±,

unless ṙ2/h ' 0 on S. Of course, the latter condition must be satisfied by outgoing null

geodesics if S is indeed a horizon. We moreover note that r = r(λ), with θ̇ = φ̇ = 0, can

be obtained from L = 0 and reads

ṙ2 =
r2 + a2

r2 + a2 cos2 θ
h2(r) ṫ2 =

r2 + a2

r2 + a2 cos2 θ
E2, (2.80)

so that ṙ2 ∝ h2(r) = 0 on S implies that E = 0 and ṫ is arbitrary for r = r±.

Let us compare with the behavior of null geodesics in the Schwarzschild spacetime, for

which the Lagrangian is given by

2L = −U(r) ṫ2 +
ṙ2

U(r)
+ r2

(
θ̇2 + sin2 θ φ̇2

)
, (2.81)
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with U(r) = 1− 2M/r. One immediately finds the conserved quantities

U(r) ṫ = E, (2.82)

r2 sin2 θ φ̇ = J, (2.83)

and the equation for θ = θ(λ) then reads 3

θ̈ = −2 θ̇ ṙ

r
+
J2 cos θ

r2 sin θ
. (2.84)

This equation clearly admits as solution θ̈ = θ̇ = 0 for φ̇ ∼ J = 0. Hence, L = 0 yields

the radial equation of motion

ṙ = ±E. (2.85)

From Eq. (2.82), it is easy to see that for U = 0 one can set E = ṙ = 0 and therefore

r = 2M and constant is a solution. We conclude that ṫ is arbitrary for null geodesics

trapped on the surface S, as above.

Finally, we remark that radial geodesics with E 6= 0 do not show any pathology in

Schwarzschild, since θ̈ in Eq. (2.84) remains finite on S. The same geodesics should

satisfy Eq. (2.79) in the metric Eq. (2.55), namely

θ̈ = − a2 sin θ cos θ

(r2 + a2 cos2 θ)2

E2

h(r)
, (2.86)

which instead diverges on S (with the exception of the equatorial plane and the symmetry

axis).

From Eqs. (2.76) and (2.80), we can write two null orthonormal vectors as follows

` =
1

2
∂t +

h(r)

2

√
r2 + a2

r2 + a2 cos2 θ
∂r, (2.87)

n =
1

h
∂t −

√
r2 + a2

r2 + a2 cos2 θ
∂r. (2.88)

Here again the 2-dimensional metric qµν is diagonal having components q22 = g22 and

q33 = g33. Here, g22 and g33 are inverses of g22 and g33 components of the metric tensor

respectively. The outgoing null expansion in this case is

Θ` = −h(r)
r
(
2 r2 + a2 + a2 cos2 θ

)√
(r2 + a2)(r2 + a2 cos2 θ)3

, (2.89)

which again vanishes on S.

3We do not employ the freedom to rotate the reference frame so that the geodesic motion occurs on
the equatorial plane θ = π/2 precisely for the purpose of comparing with the spheroidal case.
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2.4 Hawking (-Hayward) mass

The general Hawking-Hayward mass [35, 36] is defined as the surface integral

mH =
A1/2

32π3/2

∫
S

v

[
R+ Θ+Θ− −

σ+
αβ σ

αβ
−

2
− 2ωα ω

α

]
, (2.90)

where R denotes the induced Ricci scalar on the 2-surface S, Θ(±) and σ
(±)
αβ denote

the expansion scalars and shear tensors of a pair of outgoing and ingoing null geodesic

congruences from the surface S, respectively, ωα is the projection onto S of the com-

mutator of the null normal vectors to S, v is the volume 2-form on S and A the area

of S. For the metric (2.55), one immediately finds that ωα is of order a2 and, since we

are considering all expressions only up to order a2, the last term can be dropped. The

Hawking-Hayward mass then reduces to the Hawking mass, which we are now going to

determine.

According to the general contracted Gauss equation [36]

R+ Θ+ Θ− −
1

2
σ+
αβ σ

αβ
− = qαµ qβδ Rαβµδ, (2.91)

where qαµ as defined in Chapter 1, is the induced metric on the 2-surface S having

expression

qαµ = gαµ + lα nµ + lµ nα. (2.92)

On expanding in powers of a2,

qαµ ' qαµ0 + a2qαµ1 , (2.93)

Rαβµδ ' Rαβµδ(0) + a2Rαβµδ(1), (2.94)

we obtain

qαµ qβδ Rαβµδ ' qαµ0 qβδ0 Rαβµδ(0) + a2 qαµ0 qβδ0 Rαβµδ(1)

+ a2
(
qαµ1 qβδ0 + qαµ0 qβδ1

)
Rαβµδ(0). (2.95)

The components of qαµ are determined from Eqs. (2.92) and (2.93), which give

qαµ0 + a2qαµ1 ' gαµ0 + a2 gαµ1 + (lα0 + a2 lα1 )(nµ0 + a2nµ1 )

+ (lµ0 + a2lµ1 )(nα0 + a2nα1 ), (2.96)

where gαµ0 and gαµ1 are zeroth and first order terms of the metric tensor respectively,

and similarly for lα0 , lα1 and nα0 , nα1 . For the unperturbed Reissner-Nordström spacetime
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lα0 = nα0 = 0, for α = 2 and 3, so that, up to order a2, we have

q22
0 + a2 q22

1 = g22
0 + a2g22

1 + 2 a4 l21 n
2
1 ' g22

0 + a2 g22
1 ,

q33
0 + a2 q33

1 = g33
0 + a2g33

1 + 2 a4 l31 n
3
1 ' g33

0 + a2 g33
1 .

In particular, for the metric (2.55), we find

q22 ' 1

r2
− a2 cos2 θ

r4
. (2.97)

Similarly,

q33 ' 1

r2 sin2 θ
− a2

r4 sin2 θ
. (2.98)

Eq. (2.95) now reduces to

qαµ qβδ Rαβµδ '2
[
q22

0 q33
0 R2323(0) + a2 q22

0 q33
0 R2323(1)

+a2
(
q22

1 q33
0 + q22

0 q33
1

)
R2323(0)

]
, (2.99)

where

R2323 =
sin2 θ(r2 + a2)(2Mr −Q2)

r2 + a2 cos2 θ

'
(
2Mr −Q2

)
sin2 θ +

2a2M sin4 θ

r
. (2.100)

By using Eqs. (2.97)-(2.100), the contracted Gauss equation (2.91) takes the form

qαµ qβδ Rαβµδ = R+ θ+ θ− −
1

2
σ+
αβ σ

αβ
−

=
2
(
2Mr −Q2

)
r4

− 8a2M cos2 θ

r5
. (2.101)

Since q22 = g22 =(r2 + a2 cos2 θ) and q33 = g33 = (r2 + a2) sin2 θ, the volume 2-form

v =
√

det(qαβ) dθ dφ,

'
(
r2 + a2 3 + cos 2θ

4

)
sin θ dθ dφ. (2.102)

The area of S is then given by

A =

∫
S

v ' 4π

(
r2 +

2

3
a2

)
. (2.103)
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The Hawking mass is finally obtained from Eq. (2.90) with Eqs. (2.101) and (2.103),

which yields

mH(r) 'M
(

1 +
a2

3 r2

)
− Q2

2 r
. (2.104)

We are next going to recover this result in a different way.

2.5 Adapted Misner-Sharp mass

The Misner-Sharp mass (2.5) is properly defined only for spherically symmetric space-

times. One could generalise it by integrating the matter density on the spatial volume

inside surfaces of symmetry, which are given by spheroids in the present case. In other

words, we replace Eq. (2.5) with

m(r) = M0 + 2π

π∫
0

r∫
r0

√
$(r̄, θ) ρ(r̄, θ) dr̄ dθ, (2.105)

where we recall that r = r0 is the coordinate of the inner core, and $ = (r2 +

a2 cos2 θ)2 sin2 θ denotes the determinant of the flat 3-metric in spheroidal coordinates,

$ij dxi dxj =
r2 + a2 cos 2θ

r2 + a2
dr2 +

(
r2 + a2 cos2 θ

)
dθ2 +

(
r2 + a2

)
sin2 θ dφ2. (2.106)

Eq. (2.105) then yields

m(r) 'M0 −
Q2

2

(
1

r
− 1

r0

)
+
a2M

3

(
1

r2
− 1

r2
0

)
. (2.107)

For r →∞, the above expression should equal the total ADM mass M , that is

M 'M0 −
M a2

3 r2
0

+
Q2

2 r0
. (2.108)

This allows us to express r0 and M0 so that Eq. (2.107) becomes

m(r) 'M
(

1 +
a2

3 r2

)
− Q2

2 r
= mH(r), (2.109)

from which the isotropic Misner-Sharp mass is obtained by taking a2 → 0.

This calculation therefore shows that, at least for spheroidal spacetimes like (2.55), one

can expect the Hawking mass function evaluated on surfaces of symmetry to equal the

adapted Misner-Sharp function evaluated inside volumes bounded by the same surfaces

of symmetry.
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2.6 Misner-Sharp and ADM mass

We should finally recall that the Misner-Sharp mass for the isotropic Reissner-Nordström

spacetime is given by (see Section 2.5)

m(r) 'M − Q2

2 r
, (2.110)

and the condition h(r±) = 0 that yields the horizons (2.71) can indeed be given in the

form of Eq. (2.4), that is 2m(r±) = r±. This implies that the results of the above

analysis for the metric (2.55) do not really differ from those for the de Sitter spacetime

in Section 2.3.1, and the isotropic Misner-Sharp mass remains a precious indicator of the

location of horizons. In this perspective, it actually appears just like an accident that

the asymptotic ADM mass computed for the isotropic reference spacetime (obtained by

setting a2 = 0) also determines the location of the horizons.

The conjecture that the isotropic Misner-Sharp mass determines the location of slightly

spheroidal horizons nonetheless remains somewhat surprising, if one considers that the

above isotropic Misner-Sharp mass m = m(r) does not coincide with the Misner-Sharp

mass adapted to the surfaces of symmetry of the spheroidal geometry. As shown above

it coincides with the Hawking quasilocal mass for the system.

2.7 Horizon quantum mechanics of deformation parameter

In quantum physics, the energy density which defines the Misner-Sharp mass (and ADM

mass M) becomes a quantum observable and the gravitational radius is expected to give

a similar description. The horizon quantum mechanics (HQM) was in fact proposed [49,

50, 51, 52] for describing the “fuzzy” Schwarzschild (or gravitational) radius of a localised

quantum source, by essentially lifting Eq. (2.4) to a quantum constraint acting on the

state vectors of matter and the gravitational radius. In this respect, the HQM is different

from most other attempts in which the gravitational degrees of freedom of the horizon,

or of the black hole solution, are instead quantised independently of the state of the

source. It however follows that, in order to extend the HQM to non-spherical systems,

we need to identify a mass function from which the location of a MOTS, r = rH, can

be uniquely determined and which depends only on the state of the matter source, like

the Misner-Sharp mass (2.5) for isotropic sources. The latter property is crucial in a

perspective in which one would eventually like to recover the geometric properties of

spacetimes from the quantum state of the whole matter-gravity system.
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The adapted Misner-Sharp mass and flat 3-dimensional metric are given in Eqs. (2.105)

and (2.106) respectively. It is easy to see that we can split the general volume measure

into two contributions, and similarly the adapted Misner-Sharp mass inside spheroids

can also be split as

m̃(r) =

∫
µ0 ρ+ a2

∫
µ2 ρ, (2.111)

where ρ = ρ(r) is the energy density, µ0(r; r̄, θ̄) = r̄2 sin θ̄Θ(r − r̄) dr̄ dθ̄ is the flat

volume measure for spherical domains, and µ2(r; r̄, θ̄) = cos2 θ̄ sin θ̄Θ(r − r̄) dr̄ dθ̄ its

deformation.

At the quantum level, if we wish to tell a spheroidal horizon from a spherical one,

from a local perspective [50], we must analyse the modification to the energy spectrum

of the source induced by the spheroidal deformation. As before, we will only con-

sider small perturbations with respect to a spherical system, and replace the adapted

Misner-Sharp (2.111) with the expectation value of the local Hamiltonian describing the

quantum nature of the source,

Ĥ(r) = Ĥ(0)(r) +
a2

Λ2
Ĥ(2)(r). (2.112)

In practice, this quantum prescription implies the following replacements∫
µ0 ρ

HQM−→ 〈 Ĥ(0)(r) 〉, (2.113)∫
µ2 ρ

HQM−→ Λ−2 〈 Ĥ(2)(r) 〉, (2.114)

where Λ ' r0 is such that ζ ≡ a/Λ � 1. One can then try and infer the structure

of the spectrum σ(Ĥ(r)) = {Eα(r) |α ∈ I}, with I a discrete set of labels (due to the

localised nature of the source), from the spectrum of the corresponding spherical system

σ(Ĥ(0)(r)) =
{
E

(0)
α (r) |α ∈ I

}
using the standard perturbation theory. We expand the

solution of the eigenvalue problem for Ĥ(r) as a Taylor series in ε, namely

Eα(r) = E(0)
α (r) + ζ2E(2)

α (r) + . . . , (2.115a)

and, omitting the radial dependence for the sake of brevity, we write the eigenvectors as

| Eα 〉 = | E(0)
α 〉+ ζ2 | E(2)

α 〉+ . . . . (2.115b)

At order ζ2, the perturbative solution is given by

Eα ' E(0)
α + ζ2 〈E(0)

α | Ĥ(2)(r) | E(0)
α 〉, (2.116a)
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and

| Eα 〉 ' | E(0)
α 〉+ ζ2

∑
β 6=α

〈E(0)
β | Ĥ(2)(r) | E(0)

α 〉

E
(0)
α − E(0)

β

| E(0)
β 〉. (2.116b)

The above expressions allow us to introduce a characterization of the deformation pa-

rameter a2 in a purely quantum framework.

In particular, Eq. (2.116b) implies

a2

Λ2
' Eα − E(0)

α

〈E(0)
α | Ĥ(2)(r) | E(0)

α 〉
. (2.117)

Moreover, given a quantum state for the source, we can express it either using the

deformed spectrum σ(Ĥ(r)),

| ψ 〉 =
∑
α

Cα(r) | Eα 〉, (2.118)

or the isotropic spectrum σ(Ĥ(0)(r)),

| ψ 〉 =
∑
α

C(0)
α (r) | E(0)

α 〉, (2.119)

and Eq. (2.116b) yields

Cα(r)− C(0)
α (r) ' a2

Λ2

∑
β 6=α

〈E(0)
β | Ĥ(2)(r) | E(0)

α 〉

E
(0)
α − E(0)

β

C
(0)
β (r). (2.120)

We now recall that the spectrum of the gravitational radius operator is related to the

source through the Hamiltonian constraint [49, 50](
R̂H(r)− 2 `p

mp
Ĥ(r)

)
| Ψ 〉 = 0, (2.121)

where | Ψ 〉 =
∑

α Cα,β| Eα 〉| RH,β 〉, and one therefore finds Cα,β = Cα(r) δα,β. One

can then infer how the spheroidal deformation affects the spectrum of the gravitational

radius and the form of the horizon wave function. Indeed, by means of the Hamiltonian

constraint one can immediately see that

RH,α ' R(0)
H,α + ζ2 〈R(0)

H,α | R̂
(2)
H (r) |R(0)

H,α 〉, (2.122)

with R̂
(2)
H (r) ≡ 2 `p Ĥ

(2)(r)/mp. Furthermore, recalling that the state of the geometry

in this language can be obtained by tracing away the contribution of the source from
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the general state | Ψ 〉, one obtains [49, 50]

| ψH 〉 =
∑
α

Cα(r) | RH,α 〉, (2.123)

and the horizon wave function is finally given by

ψH(RH,α)=〈R(0)
H,α | ψH 〉 = Cα(r),

'C(0)
α (r) +

a2

Λ2

∑
β 6=α

〈R(0)
H,β | Ĥ

(2)(r) |R(0)
H,α 〉

R
(0)
H,α −R

(0)
H,β

C
(0)
β (r). (2.124)

It will be interesting to apply the above treatment to specific cases, and also include

rotation [53].
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Chapter 3

Energy extraction and the centre

of mass energy in slowly rotating

Chern-Simons black holes

3.1 Introduction

One of the many interesting theories that modify gravity is the Chern-Simons (CS)

theory [54, 55]. The action for a CS gravity is written as [56]

S = k

∫ √
−gRdx4 +

γ

4

∫
dx4√−gϕ∗RR− 1

2

∫ √
−g(∇ϕ)2dx4, (3.1)

where k = 1/16π, ϕ is a scalar field, g is the determinant of the metric tensor gµν ,

R = gλαRλα is the Ricci scalar with Rλα being the Ricci tensor, ∗RR is the Pontryagin

density defined as
∗RR = ∗Rµρσν Rνµρσ, (3.2)

where the dual Riemann tensor is

∗Rµρσν =
1

2
ερσδγRµνδγ . (3.3)

Here ερσδγ represents the 4 dimensional Levi-Civita tensor. The first term is the standard

Einstein-Hilbert action, the second term is the CS correction term and the third term is

the scalar field term. CS theory has two types of independent theoretical formulations,

namely, dynamical and non-dynamical. In the non-dynamical theory, the CS scalar is a

priori prescribed function with the evolution equation becoming a differential constraint

on the space of allowed solutions. On the other hand, the dynamical theory has CS scalar
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as a dynamical field having its own evolution equation and energy-momentum tensor.

In recent years there has been an increasing interest in the dynamical CS theory.

In Refs. [57, 58, 59, 60], non-dynamical black hole solutions have been developed.

The solution in Refs. [57, 58] is determined by employing far-field approximation and

ϕ (the CS scalar field) being linearly proportional to the asymptotic time coordinate

t. This solution is stationary but not axisymmetric and gives correction to the frame

dragging effect. The slow rotation approximation was employed to obtain a rotating

black hole solution [59]. An exact rotating solution in non-dynamical theory is given in

Ref. [60] which is stationary and axisymmetric for arbitrary ϕ. In dynamical theory, the

solution in slow rotation approximation and small coupling constant has been discussed

in Chapter 1 (Eqs. (1.31)-(1.32)). The solution was extended to include the terms for

second order in spin parameter in Ref. [61]. The solution in slow rotation approximation

upto the 5th order in spin parameter has also been found [62]. The assumption of slow

rotation was relaxed in Ref. [63] where CS scalar field induced by a (rapidly) rotating

black hole (Kerr metric) in the dynamical theory was considered.

In this chapter, we investigate black holes under slow rotation approximation in dynam-

ical CS theory and study their different properties. Our focus is to see how the coupling

constant of CS theory effects different physical phenomena e.g. quasilocal mass, par-

ticle motion and energy extraction process. We will show that the Hawking mass and

efficiency of the Penrose process do not depend on the coupling constant, whereas, it is

interesting to note that the centre of mass energy shows a behavior that is dependent

on the coupling constant. All the computations are done to the second order in the spin

parameter and to the order aγ2 in the coupling constant where a is the spin parameter

and γ is CS coupling constant.

This chapter is organized as follows. In Section 3.2 we will discuss Hawking mass in CS

theory and study its relation to the coupling constant. Section 3.3 provides an analytical

expression for the centre of mass energy for two colliding neutral particles as a function

of CS coupling constant. In Section 3.4 energy extraction through Penrose process is

discussed.

3.2 Hawking mass

In this section we consider the Hawking mass. Let S be a spacelike 2-surface having area

A. Consider a null tetrad denoted by (lµ, nµ,mµ, m̄µ) on S. Here lµ and nµ respectively

represent outgoing and the ingoing future directed null vectors orthogonal to S and
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mµ, m̄µ are the tangent vectors to S. On S, the Hawking mass is given by [35]

mH(S) =

√
A

(4π)3

[
2π +

∫
S
ρρ́dS

]
. (3.4)

In the above expression ρ and ρ́ denote the spin coefficients of the Newman-Penrose

formalism [64]. They determine the expansions of the outgoing and ingoing null cones.

Hawking mass on the event horizons of Reissner-Nordström and Kerr black holes is

discussed in Ref. [65]. We discuss Hawking mass for spacetime (1.31) for the regions

outside the event horizon.

First we review briefly the null geodesics for metric (1.31) [56, 66]. The geodesics for a

spacetime geometry can be determined by Hamilton-Jacobi equation

∂Ŝ

∂λ
= −1

2
gµν

∂Ŝ

∂xµ
∂Ŝ

∂xν
, (3.5)

where Ŝ is the Jacobi action. Let

Ŝ =
m2λ

2
− Et+ Jφ+ Ŝr(r) + Ŝθ(θ). (3.6)

For null geodesics, we take particle’s mass m to be zero. Substitution of Eq. (3.6) and

the values of the inverse metric in Eq. (3.5) leads to a separable equation of the form

∆

(
dŜr
dr

)2

+

(
dŜθ
dθ

)2

+ E2

(
r3

2M − r
+

4a2M2(
r − 2M

)2)− E2a2 cos2 θ

+ J2 csc2 θ + J2 − J2a2

r
(
r − 2M

) +
4aMJE(
r − 2M

) − 20aπJEγ2

r3
(
r − 2M

)(1 +
12M

7r
+

27M2

10r2

)
,

(3.7)

where ∆ = r2 + a2 − 2Mr.

Eq. (3.7) is separable in variables r and θ and can be set equal to some separation

constant K. Simplification leads to

1

E2

(
dŜθ
dθ

)2

= η + a2 cos2 θ − ξ2 cot2 θ = Θ(θ), (3.8)

and

∆

E2

(
dŜr
dr

)2

= −η − ξ2 +
ξ2a2

r2 − 2Mr
− 4aMξ

r − 2M
+

r3

r − 2M
− 4a2M2(

r − 2M
)2

+
20aπξγ2

r3
(
r − 2M

)(1 +
12M

7r
+

27M2

10r2

)
, (3.9)
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where we have denoted η = K/E2 and ξ = J/E. Multiplying the above equation by ∆

and further simplification leads to the equation

∆2

E2

(
dŜr
dr

)2

= r4 −
(
r2 − 2Mr

)
(η + ξ2)− 4aMrξ

+
20aπξγ2

r2

(
1 +

12M

7r
+

27M2

10r2

)
+ a2

(
r2 + 2Mr − η

)
= R(r). (3.10)

In order to determine the equations involving the derivatives of t and φ, we determine

the Lagrangian L of the system, which for the metric (1.31) is

2L = g00
dx0

dλ

dx0

dλ
+ 2g03

dx0

dλ

dx3

dλ
+ g11

dx1

dλ

dx1

dλ
+ g22

dx2

dλ

dx2

dλ
+ g33

dx3

dλ

dx3

dλ
. (3.11)

The conserved conjugate momenta pt and pφ are

pt = g00ṫ+ g03φ̇ = −E , (3.12)

pφ = g03ṫ+ g33φ̇ = J . (3.13)

By solving the above equations, we thus obtain

ṫ =
g33E + Jg03

g2
03 − g33g00

, (3.14)

φ̇ = −g03E + Jg00

g2
03 − g33g00

. (3.15)

Substituting the values in the above equations we get

ṫ =
rE

r − 2M
− 2aML

r2(r − 2M)
+

10aπγ2L

r5
(
r − 2M

) − 2Ma2E
(
r cos2 θ + 2M sin2 θ

)
r2
(
r − 2M

)2 , (3.16)

φ̇ =
J

r2 sin2 θ
+

2aME

r2
(
r − 2M

) − 10aπγ2E

r5
(
r − 2M

) +
a2J

(
M − r +M cos 2θ

)
r4 sin2 θ

(
r − 2M

) . (3.17)

In terms of η and ξ, the above expressions take the form

ṫ

E
=

r

r − 2M
− 2aMξ

r2(r − 2M)
+

10aπγ2ξ

r5(r − 2M)
− 2Ma2

r2(r − 2M)2
(r cos2 θ + 2M sin2 θ),

(3.18)

φ̇

E
=

ξ

r2 sin2 θ
+

2aM

r2(r − 2M)
− 10aπγ2

r5(r − 2M)
+
a2ξ(M − r +M cos 2θ)

r4 sin2 θ(r − 2M)
. (3.19)

The expressions for ṙ and θ̇ are determined from the relations dŜ/dr = pr = ṙg11 and

dŜ/dθ = pθ = g22θ̇ respectively, where pr and pθ are the conjugate momenta. Thus we
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have

ṙ

E
= ± 1

∆g11

√
R, (3.20)

θ̇

E
= ±
√

Θ

g22
. (3.21)

We can write Θ(θ) = η + (ξ − a)2 − csc2 θ(ξ − a sin2 θ)2. For Θ > 0, we have

(η + ξ2 − aξ) > 0, (3.22)

where the equality holds for

ξ = a sin2 θ, (3.23)

θ = θ0 = constant. (3.24)

In this case we have

η = −a2 cos4 θ. (3.25)

With these values of ξ and η, the equations of motion take the form

ṫ =
r

r − 2M
− 2Ma2

r
(
r − 2M

)2 , (3.26)

ṙ = ±1, (3.27)

θ̇ = 0, (3.28)

φ̇ =
a

r
(
r − 2M

) − 10aπγ2

r5
(
r − 2M

)(1 +
12M

7r
+

27M2

10r2

)
, (3.29)

where we have taken E = 1 in the above equations. From Eqs. (3.26)-(3.29) we can

write outgoing and ingoing null 4-vectors as

lµ =

(
r

r − 2M
− 2Ma2

r
(
r − 2M

)2 , 1, 0,
a

r
(
r − 2M

) − 10aπγ2

r5
(
r − 2M

) [1 +
12M

7r
+

27M2

10r2

])
,

nµ =

(
1

2
+
a2 sin2 θ

2r2
,−

(
r − 2M

)
2r

+
a2
(
r − 2M

)
cos2 θ

2r3
− a2

2r2
, 0,

a

2r2
− 5aπγ2

r6

[
1 +

12M

7r

+
27M2

10r2

])
,

where we have multiplied the ingoing null 4-vector by (r − 2m)/2r + a2/2r2 − a2(r −
2M) cos2 θ/2r3 for the orthogonality condition l.n = −1 to hold and called it nµ. To

determine complex null 4-vector, we will employ certain properties that a null tetrad

and a metric tensor satisfy in Newman-Penrose formalism. Let us denote the complex
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null vector by m. In the component form it is represented as

mµ = (A,B,C,D), (3.30)

and its complex conjugate as m̄µ = (Ā, B̄, C̄, D̄). The null vectors mµ and m̄µ satisfy

the condition m.m̄ = 1. In terms of the null tetrad (lµ, nµ,mµ, m̄µ), the inverse metric

tensor can be written as [64]

gµν = −lµnν − lνnµ +mµm̄ν +mνm̄µ. (3.31)

By employing this and the orthogonality conditions mµm
µ = 0 = lµm

µ, one can de-

termine the components of the null vector mµ and its complex conjugate m̄µ. The

expression of mµ is given as

mµ =

(
ia sin θ√

2r
+
a2 cos θ sin θ√

2r2
, 0,

1√
2

[
1

r
− ia cos θ

r2
− a2 cos2 θ

r3

]
,

i√
2r sin θ

+
a cos θ√
2r2 sin θ

− ia2 cos2 θ√
2r3 sin θ

)
.

By replacing i by −i, m̄µ can be obtained. The null vectors (lµ, nµ,mµ, m̄µ) will be used

to determine the spin coefficients ρ and ρ′ appearing in the expression of the Hawking

mass. The formula for ρ is ∇µlνmνm̄µ and for ρ′, it is ∇µnνm̄νmµ, where ∇µ denotes

the covariant derivative. By substituting the values, we obtain the expressions for ρ and

ρ′ as follows

ρ =
1

r
+
ia cos θ

r2
− a2 cos2 θ

r3
, (3.32)

ρ′ = −

(
r − 2M

)
2r2

−
ia cos θ

(
r − 2M

)
2r3

+
a2

2r4

[
2r cos2 θ − 4M cos2 θ − r

]
. (3.33)

From these expressions, it is clear that l and n are not orthogonal to S. For this purpose

the coordinate system needs to be rotated such that

m0 = 0 = m1. (3.34)

Then ρ and ρ́ become real. Two rotations are performed for this purpose. First we do

a type II rotation [3]

nµ → nµ, mµ → mµ + β1n
µ, m̄µ → m̄µ + β̄1n

µ, lµ → lµ + β̄1m
µ + β1m̄

µ + β1β̄1n
µ,

(3.35)
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and then a type I rotation [3]

lµ → lµ, mµ → mµ + β2l
µ, m̄µ → m̄µ + β̄2l

µ, nµ → nµ + β̄2m
µ + β2m̄

µ + β2β̄2l
µ,

(3.36)

where β1 and β2 are complex functions. These two rotations lead to new rotated tetrad

given as

lµ → lµ + β̄1m
µ + β1m̄

µ + β1β̄1n
µ, (3.37)

nµ → nµ + β̄2 (mµ + β1n
µ) + β2

(
m̄µ + β̄1n

µ
)

+ β2β̄2

(
lµ + β̄1m

µ + β1m̄
µ + β1β̄1n

µ
)
,

(3.38)

mµ → mµ(1 + β2β̄1) + β2β1m̄
µ + nµ(β1 + β2β1β̄1) + β2l

µ. (3.39)

From Eq. (3.39) the conditions m0 = 0 = m1 give two equations

β2 = − β1n
1

l1 + β1β̄1n1
, (3.40)

n1β2
1m̄

0 + β1(n1l0 − n0l1)−m0l1 = 0. (3.41)

Eq. (3.41) is quadratic in the parameter β1 and has two solutions

β1a =

(
ir + a cos θ

)
csc θ

2
√

2ar2
(
r − 2M

)2

{
8
(

2M − r
)
r3 + a2

(
4M2 + 4Mr + 5r2

)

− a2
(

4M2 + 4Mr − 3r2
)

cos 2θ

}
, (3.42)

β1b = −
a
(
ir + a cos θ

)
sin θ

√
2r2

. (3.43)

The γ-independent behavior of β1 is due to the fact that only l3 and n3 components of

the null vectors lµ and nµ depend on γ which are not involved in the equation for β1.

In the Schwarzschild spacetime the spin coefficients are real, therefore, the null tetrad

need not be rotated. Both β1 and β2 are zero there. From Eq. (3.42) it is clear that the

limit a → 0 does not correspond to a physical situation and must be ignored. But β1b

tends to zero as a → 0 giving the Schwarzschild result. Therefore, we select this value

of β1. With this choice of β1, the expression for β2 given in Eq. (3.40) becomes

β2 =
−i
(
r − 2M

)
a sin θ

2
√

2r2
−
a2
(
r − 2M

)
cos θ sin θ

2
√

2r3
. (3.44)
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By using Eqs. (3.43)-(3.44), Eqs. (3.37)-(3.39) take the form

lµ =

(
r

r − 2M
− 2Ma2

r
(
r − 2M

)2 −
3a2 sin2 θ

4r2
, 1−

a2
(
r − 2M

)
sin2 θ

4r3
, 0,

2Ma

r2
(
r − 2M

)
− 10aπγ2

r5
(
r − 2M

)[1 +
12M

7r
+

27M2

10r2

])
, (3.45)

nµ =

(
1

2
+

(
3r + 2M

)
a2 sin2 θ

8r3
,−r − 2M

2r
+ a2

[
−

(
r − 2M

)2
sin2 θ

8r4
+

cos2 θ
(
r − 2M

)
2r3

− 1

2r2

]
, 0,

Ma

r3
− 5aπγ2

r6

[
1 +

12M

7r
+

27M2

10r2

])
, (3.46)

mµ =

(
0, 0,

1√
2

[1

r
− ia cos θ

r2
− a2 cos2 θ

r3

]
,

1√
2

[ i

r sin θ
+
a cot θ

r2
− ia2 cos2 θ

r3 sin θ

−
ia2 sin θ

(
r + 2M

)
2r4

])
. (3.47)

The spin coefficients ρ and ρ′ as determined from the above new null tetrad are

ρ =
1

r
+

a2

4r4

[
− r cos2 θ − 3r − 4M + 4M cos2 θ

]
, (3.48)

ρ′ = −1

2

(
r − 2M

)
r2

+
a2
(
r − 4M

)
2r4

− a2 sin2 θ

8r5

(
7r2 + 16M2 − 22Mr

)
. (3.49)

Consider the surface defined by r =constant and t =constant. The induced metric for

the surface in this case has the components given by g22 and g33 of the metric in Eq.

(1.31). The surface area element is

dS =
√
g22g33dθdφ = sin θ

√
Σ
(
r2 + a2 +

2a2M sin2 θ

r

)
dθdφ, (3.50)

where Σ = r2 + a2 cos2 θ. The surface area is A =
∫ π

0

∫ 2π
0 dS. From Eqs. (3.48)-(3.50) it

is clear that ρ, ρ′ and the area element are independent of the CS coupling constant γ.

As a result, the Hawking mass is independent of γ and is given by

mH = M − M2a2

r3
. (3.51)

This shows the dependence of Hawking mass on the mass M of the black hole, spin

parameter a and radius r upto order a2. This result matches with the Hawking mass for

the Kerr metric [68]. It also shows that Hawking mass is independent of the CS coupling

constant γ. Here it is important to mention that upto the order aγ2, the scalar field ϕ
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does not contribute to the total energy of the spacetime [22]. This is also evident from

Eq. (3.51) which shows the γ independnt behavior.

3.3 The centre of mass energy

In this section, we calculate the centre of mass energy ECM for the collision of two

neutral particles with equal masses i.e. m1 = m2 = m0 in the vicinity of the slowly

rotating Chern-Simons black hole. The particles are moving from infinity with equal

energies E1/m1 = E2/m2 = 1 towards the black hole having different angular momenta

J1 and J2. The motion and the collision of the particles takes place in the equatorial

plane (θ = π/2). The expression for the ECM given by Bañados, Silk and West (BSW)

[44] is
E2
CM

2m2
0

= 1− gµνuµ1u
ν
2 , (3.52)

where uµ1 =(ṫ1, ṙ1, θ̇1, φ̇1) and uµ2 =(ṫ2, ṙ2, θ̇2, φ̇2) represent the 4-velocity of the first and

second particle, respectively, with the overdot representing the derivative with respect

to the proper time τ . This formula is valid both for curved and flat spacetimes. In the

equatorial plane θ̇1 = θ̇2 = 0. By Giving variation 0-3 to indices µ and ν in Eq. (3.52),

one obtains

E2
CM

2m2
0

= 1−
(
g00ṫ1 + g03φ̇1

)
ṫ2 − g11ṙ1ṙ2 − φ̇2

(
g03ṫ1 + g33φ̇1

)
. (3.53)

The time-like geodesics for a particle of mass m are [66, 67]

dt

dτ
=

rε

r − 2M
− 2a£M

r2
(
r − 2M

) +
10aπ£γ2

r5
(
r − 2M

) [1 +
12M

7r
+

27M2

10r2

]
− 4εM2a2

r2
(
r − 2M

)2 ,

(3.54)

dφ

dτ
=

£

r2
+

2aεM

r2
(
r − 2M

) − 10aπεγ2

r5
(
r − 2M

)[1 +
12M

7r
+

27M2

10r2

]
− £a2

r3
(
r − 2M

) ,
(3.55)

(dr
dτ

)2
= ε2 +

(
2M − r

)(
£2 + r2

)
r3

− 4aMε£

r3
+

20aπγ2

r6
ε£

[
1 +

12M

7r
+

27M2

10r2

]

+ a2
(−r + ε2

(
r + 2M

)
r3

)
, (3.56)

where τ is the proper time, ε = E/m, and £ = J/m denote the specific energy and angu-

lar momentum of the particle per unit mass, respectively. These equations are velocity

components of a particle of mass m. After substituting the values of the components
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of the 4-velocities of particles from Eqs. (3.54)-(3.56), we obtain the expression for the

E2
CM as

E2
CM

2m2
0

=1−£1£2

r2
+

r

r−2M
−
√
S1S2

r2
(
r−2M

)+a

[
−14Mr5+189M2γ2π+120Mrγ2π+70πr2γ2

]

×

[
£1+£2

7r7
(
r − 2M

) − 2£2
1£2M + 2£2

2£1M −£2
1£2r −£2

2£1r + 2£1r
2M + 2£2r

2M

7r7
(
r − 2M

)√
S1S2

]

+
a2

2r4
(
r − 2M

)2

[
− 8M2r2 + 2£1£2

(
r2 − 2Mr

)
−

8£1£2M
2r2
(
r − 2M

)
√
S1S2

+ r
√
S1S2

[2£2
1Mr2

(
2M − r

)
+ 8M3r3 + £4

1

(
r − 2M

)2

S2
1

+
2£2

2Mr2
(

2M − r
)

+ 8M3r3 + £4
2

(
r − 2M

)2

S2
2

]]
,

where £1 and £2 are the angular momenta of the particles, S1 = 2Mr2 −£2
1 (r − 2M),

S2 = 2Mr2 − £2
2 (r − 2M). For a = 0 = γ, we recover the expression for the centre of

mass energy for the Schwarzschild metric. The above expression shows that the centre of

mass energy depends on rotation and the coupling constant γ2. The r →∞ limit of the

above expression gives ECM = 2m0, which is the same as if the particles are colliding in a

flat spacetime. The event horizon of the slowly rotating CS black hole is at rH = rH(Kerr)

where rH(Kerr) is the event horizon of the Kerr metric [22]. To the required order in

the spin parameter, the event horizon can be written as rH ' 2M − a2/2M. From Eq.

(??), we see that the centre of mass energy is finite at r = rH for finite £1 and £2 in

this slow rotation limit. As the expression shows that it might diverge at r = 2M , we

take limit r → 2M, and get the expression

ECM (r → 2M)=

m0

32
√

7M4

[
1792M6

[(
£1−£2

)2
+16M2

]
+a
(

£1−£2

)2(
£1+£2

)(
448M4−709πγ2

)

+28a2M2
(

5£2
1+6£1£2+5£2

2−16M2
)(

£1−£2

)2
]1/2

,

which is also finite for finite values £1 and £2. The profiles of the centre of mass energy

have been plotted in Figures (3.1) and (3.2). From the graphs it is clear that the centre of

mass energy increases with increase in the coupling constant γ and rotation parameter

a. Variation between different curves is obvious for small values of radius but as the

radius r increases, all curves merge together.
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Figure 3.1: Graph showing radial dependence of the centre of mass energy for some
values of γ, when a = 0.4,£1 = −3 and £2 = 2. In the solid curve γ = 0, dashed curve

is for γ = 0.2 and the dotted curve is for γ = 0.3.
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Figure 3.2: Graph showing radial dependence of the centre of mass energy for some
values of a, when γ = 0.4,£1 = −3 and £2 = 2. In the solid curve a = 0, dashed curve

is for a = 0.2 and the dotted curve is for a = 0.4.

3.4 The Penrose process

As described in Chapter 1, Penrose [43] proposed a mechanism for extraction of energy

from a rotating black hole. It is based on the existence of negative energy orbits in the

ergosphere. Consider a positive energy particle moving along a time-like geodesic into

the ergosphere. The particle decays into two photons, one crossing the event horizon and

the other escaping to infinity. The photon crossing the event horizon carries negative

energy while the other one carries more positive energy than the initial particle. It is
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assumed that such a decay occurs at the turning point of the equatorial radial geodesics

where ṙ = 0, then we have from Eq. (3.56)

[
r
(
r2+a2

)
+2Ma2

]
E2−2aJE

{
2M−10πγ2

r3

[
1+

12M

7r
+

27M2

10r2

]}
−J2

(
r−2M

)
−m2r∆=0.

(3.57)

The above equation is quadratic both in E and J , so we solve for both. The solution in

terms of E leads to

E =
1

[r(r2 + a2) + 2Ma2]

{
J
[
2aM − 10aπγ2

r3

(
1 +

12M

7r
+

27M2

10r2

)]
±
[
J2z + J2r2∆

+m2∆r(r(r2 + a2) + 2Ma2)
] 1

2

}
, (3.58)

and that for the angular momentum is given by

J =
1

r − 2M

{
−E
[
2aM−10aπγ2

r3

(
1+

12M

7r
+

27M2

10r2

)]
±
√
E2z + E2r2∆−m2∆(r2 − 2Mr)

}
,

(3.59)

where

z =
100a2π2γ4

r6

[
1 +

12M

7r
+

27M2

10r2

]2

− 40a2Mπγ2

r3

[
1 +

12M

7r
+

27M2

10r2

]
, (3.60)

and the following identity was used for simplification

r2∆− 4Ma2 =
[
r2(r2 + a2) + 2Ma2r

](
1− 2M

r

)
. (3.61)

Only positive sign is selected in Eq. (3.58) because we want the particle to have future

directed 4-momentum. For the particle to have negative energy we must have

J < 0,

and [
r2(r2 + a2) + 2Ma2r

]{
J2(1− 2M

r
) +m2∆

}
< 0.

The last equation is same as in Kerr spacetime as the terms involving the CS coupling

parameter get canceled out in the simplification. Thus the conditions for the particle to

have negative energy are same as for the Kerr spacetime [3] i.e.

E < 0⇐⇒ J < 0,

and

r − 2M < −m
2∆r

J2
.
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Consider the scenario where a particle of mass m decays into two photons, one of which

goes inside the event horizon and other one escapes to infinity. The photon which crosses

the event horizon has negative energy and the other photon carries more energy than

the initial particle. Let E(0), E(1) and E(2) denote the energies of the initial particle and

photons respectively and J (0), J (1) and J (2) are their angular momenta. Let us take

m = 1 = E(0) and m = 0 for the initial particle and photons respectively. The angular

momentum of these particles can be obtained from Eq. (3.59)

J (0) =
1

r − 2M

{
− 2aM +

10aπγ2

r3

[
1 +

12M

7r
+

27M2

10r2

]
+
√
z + 2Mr∆

}
= α(0), (3.62)

J (1) = − 1

r − 2M

{
2aM − 10aπγ2

r3

[
1 +

12M

7r
+

27M2

10r2

]
+
√
z + r2∆

}
E(1) = α(1)E(1),

(3.63)

J (2) = − 1

r − 2M

{
2aM − 10aπγ2

r3

[
1 +

12M

7r
+

27M2

10r2

]
−
√
z + r2∆

}
E(2) = α(2)E(2) .

(3.64)

According to the law of conservation of energy and angular momentum

E(0) = E(1) + E(2), (3.65)

and

J (0) = J (1) + J (2) = α(0) = α(1)E(1) + α(2)E(2). (3.66)

Solving the above system of equations for E(1) and E(2) gives

E(1) = −1

2

[√
z + 2Mr∆

z + r2∆
− 1

]

' −1

2

[√
2M

r
− 1

]
+O(a2γ2),

E(2) =
1

2

[√
z + 2Mr∆

z + r2∆
+ 1

]

' 1

2

[√
2M

r
+ 1

]
+O(a2γ2),

which are the same as in Kerr metric as the terms involving the CS coupling constant

are of higher order than aγ2, so they are neglected . The gain in energy is

∆E =
1

2
[
√

2M/r − 1] = −E(1). (3.67)
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The efficiency of the energy extraction by the Penrose process is given by

η =
E(0) + ∆E

E(0)
=

1

2

(
1 +

√
2M

r

)
. (3.68)

For maximum efficiency one must consider the situation where the radial distance is

minimum. Therefore we consider the situation where r = rH . For Kerr metric the

maximum efficiency is found to be ηKerr = 1.207 (which corresponds to a = M) [3]. Since

we are dealing with slow rotation approximation, we cannot have a = M , therefore for

the metric in Eq. (1.31) the maximaum efficiency is less than ηKerr and is independent

of CS coupling constant γ.
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Chapter 4

Charging the Johannsen-Psaltis

spacetime

4.1 Introduction

The rotating solutions are not easy to find in GR. The van Stockum rotating solution

[69] was developed two decades later and it took more than forty years to discover the

rotating solution of Kerr. The Schwarzschild and Reissner-Nordström are solutions of

the EFEs in the spherically symmetric and static setting. The Kerr metric is the ro-

tating generalization of the Schwarzschild solution and Kerr-Newman spacetime is the

rotating generalization of the Reissner-Nordström solution as well as Kerr’s charged

generalization. The Newman-Janis algorithm [26] was used to develop exterior rotat-

ing solutions but later was applied for developing rotating interior metrics which were

matched to the exterior Kerr [70]. This algorithm is based on complex coordinate trans-

formation. It introduces rotation into the static spacetimes. Kerr and Kerr-Newman

spacetimes have been derived via Newman-Janis algorithm by using the Schwarzschild

and Reissner-Nordström spacetimes as seed metrics respectively [26, 71].

Johannsen-Psaltis spacetime [25] has been introduced in Chapter 1 (Eq. (1.33)). It is

derived by applying the Newman-Janis algorithm to a deformed Schwarzschild metric.

It is a stationary, axisymmetric, asymptotically flat vacuum solution of some unknown

field equations differing from the Einstein field equations due to the presence of function

P (r, θ). In addition to the spin and mass parameters, this metric contains at least one

parameter which measures the potential deviations from the Kerr spacetime. Setting

such deviation parameters to zero, one recovers the Kerr metric. It could be the ad-hoc

starting point for the investigation of deviations from general relativity [72]. In case of

modified theories of gravity, Newman-Janis formulation usually does not relate static

54



solutions with corresponding stationary solutions but can be applied to modified forms

of the Schwarzschild spacetime [73].

Most known astrophysical compact objects are either electrically neutral or slightly

charged. The Kerr-Newman metric is an exact electro vacuum solution of the Einstein-

Maxwell system of equations. It is an ideal model for the interaction between the

electromagnetic field and the gravitoelectric and gravitomagnetic components of gravity.

Therefore, it is significant both conceptually and theoretically.

Keeping in view the general relativity’s Kerr-Newman metric, we look for a charged

spacetime in the alternate theories of gravity. In the case of vector-tensor theories of

alternate gravity, an exact rotating solution has been developed recently [74]. Charged

rotating solutions in the limit of small Weyl corrections was developed in Ref. [75].

The main motivation for this chapter comes from the Johannsen-Psaltis spacetime. In

this chapter we take the deformed Reissner-Nordström spacetime as the seed metric and

construct the charged generalization of the Johannsen-Psaltis spacetime.

The outline of the chapter is as follows: The charged metric is developed in Section 4.2.

In Section 4.3 the event horizon and Killing horizon have been discussed. In Section 4.4

we analyze our metric for the existence of Lorentz violation regions and closed time-like

curves. In Section 4.5 innermost stable circular orbits (ISCO) and circular photon orbits

are computed.

4.2 The construction

The Reissner-Nordström metric is

gµν = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dθ2 + sin2 θr2dφ2, (4.1)

where M and Q denote mass and charge of the central object, respectively. The 4-

potential for the above metric is

Aµ =

(
−Q
r
, 0, 0, 0

)
. (4.2)

The (t − r) sector is modified by multiplying the corresponding component by the ex-

pression of the form 1 + P (r) where P (r) is given by [25]

P (r) =

∞∑
k=0

εk

(
M

r

)k
. (4.3)
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The deformed Reissner-Nordström spacetime thus takes the form

gµν = h(r)(1 + P (r))dt2 + h(r)−1(1 + P (r))dr2 + r2dθ2 + r2 sin2 θdφ2, (4.4)

where h(r) = 1−2M/r+Q2/r2. Setting εk = 0 gives the Reissner-Nordström spacetime.

The next step is to change from (t, r, θ, φ) to the Eddington-Finkelstein coordinates

(u′, r′, θ′, φ′) where

du′ = dt− dr

h
, (4.5)

r = r′, θ = θ′, φ = φ′. (4.6)

Using the above equations, Eq. (4.4) takes the form

ds2 = −h
(

1 + P (r)
)
du2 − 2

(
1 + P (r)

)
dudr + r2dθ2 + r2 sin2 θdφ2, (4.7)

having inverse

gµν = − 2(
1 + P (r)

)dudr +
h(

1 + P (r)
)dr2 +

1

r2
dθ2 +

1

r2 sin2 θ
dφ2, (4.8)

where we have removed the primes. The above inverse metric can also be expressed in

the Newman-Penrose formalism [64] as

gµν = −lµnν − lνnµ +mµmν +mνmµ, (4.9)

where (lµ, nµ,mµ,mµ) are the null vectors. For the metric in Eq. (4.8) these are given

as

lµ =
(

0, 1, 0, 0
)
, nµ =

1(
1 + P (r)

)(1,
−h
2
, 0, 0

)
, (4.10)

mµ =
1√
2r

(
0, 0, 1,

i

sin θ

)
, mµ =

1√
2r

(
0, 0, 1,− i

sin θ

)
. (4.11)

Next, we consider r to be complex and re-write the above null vectors as

lµ =
(

0, 1, 0, 0
)
, nµ =

1(
1 + P (r, r)

)(1,
−h(r, r)

2
, 0, 0

)
, (4.12)

mµ =
1√
2r

(
0, 0, 1,

i

sin θ

)
, mµ =

1√
2r

(
0, 0, 1,− i

sin θ

)
, (4.13)
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where bar denotes the complex conjugate and the expressions for h(r, r) and P (r, r) are

h(r, r) = 1−M
(

1

r
+

1

r

)
+
Q2

rr
, P (r, r) =

∞∑
k=0

(
ε2k + ε2k+1

M

2

(
1

r
+

1

r

))(
M2

rr

)k
.

(4.14)

Using the transformation

u′ = u− ia cos θ, r′ = r + ia cos θ, (4.15)

θ = θ′, φ = φ′, (4.16)

the null vectors in Eqs. (4.12)-(4.14) take the form

lµ =
(

0, 1, 0, 0
)
, nµ =

1(
1 + P (r′, θ′)

)(1,
−h(r′, θ′)

2
, 0, 0

)
, (4.17)

mµ =
1√
2r′

(
ia sin θ′,−ia sin θ′, 1,

i

sin θ′

)
, (4.18)

mµ =
1√
2r̄′

(
− ia sin θ′, ia sin θ′, 1,− i

sin θ′

)
. (4.19)

Here the expressions for h(r′, θ′), P (r′, θ′) are

h(r′, θ′) = 1− 2Mr′

Σ
+
Q2

Σ
, (4.20)

P (r′, θ′) =
∞∑
k=0

(
ε2k + ε2k+1

Mr′

Σ

)(
M2

Σ

)k
, (4.21)

where Σ is given by

Σ = r′2 + a2 cos2 θ′. (4.22)

Using Eqs. (4.17)-(4.22), the metric tensor gµν is written in terms of the coordinates

(u′, r′, θ′, φ′) as

g00 = −h (1 + P ) , g01 = − (1 + P ) , (4.23)

g03 = a (1 + P ) (h− 1) sin2 θ′, g13 = a (1 + P ) sin2 θ′, (4.24)

g22 = Σ, g33 = sin2 θ′
[
Σ− a2 (1 + P ) (h− 2) sin2 θ′

]
. (4.25)

In order to remove the off-diagonal terms g01 and g13, we use the transformation [25, 76]

du′ = dt−W (r′, θ′)dr, dφ′ = dφ−N(r′, θ′)dr, (4.26)

r = r′, θ = θ′, (4.27)

where

W (r′, θ′) =
g01g33 − g03g13

g00g33 − g2
03

, N(r′, θ′) =
g00g13 − g01g03

g00g33 − g2
03

. (4.28)
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This leads to the metric tensor given by

ds2 = −(1 + P (r, θ))
(

1− 2Mr

Σ
+
Q2

Σ

)
dt2 − 2a(2Mr −Q2) sin2 θ

Σ
(1 + P (r, θ))dtdφ

+
Σ(1 + P (r, θ))

∆ + a2 sin2 θP (r, θ)
dr2 + Σdθ2 +

[
sin2 θ

(
r2 + a2 +

a2(2Mr −Q2) sin2 θ

Σ

)
+P (r, θ)

a2 sin4 θ(Σ + 2Mr −Q2)

Σ

]
dφ2, (4.29)

where Σ = r2 +a2 cos2 θ, ∆ = r2 +a2−2Mr+Q2 and P (r, θ) has the general expression

given in Eq. (4.21) with r = r′ and θ = θ′. Setting Q = 0 gives the Johannsen-Psaltis

metric. With P = 0, the Kerr-Newman spacetime is recovered.

The function P (r, θ) contains infinite number of parameters. The first two parameters

ε0 and ε1 are set to zero by requiring that the metric must be asymptotically flat and

the next parameter ε2 is constrained at 10−4 by weak field tests of general relativity in

the parameterized post-Newtonian approach. Thus ε2 can also be set to zero. As in the

case of Ref. [25], we set εk = 0 for k > 3, which leads to P (r, θ) as

P (r, θ) =
ε3M

3r

Σ2
, (4.30)

which is the same as in Ref. [25]. Since ε3 is the only retained parameter, we drop the

subscript 3 in the rest of the chapter and represent it as ε. Applying the Newman-Janis

algorithm on the potential Aµ in Eq. (4.2) leads to

Aµ =

(
−Qr

Σ
,

Qr

∆ + a2P sin2 θ
, 0,

aQr sin2 θ

Σ

)
. (4.31)

Here the Ar component depends on θ. So it cannot be gauged away. This makes

the electromagnetic potential in Eq. (4.31) different from Kerr-Newman’s potential.

Expanding the Ar component in terms of powers of the deviation parameter ε, we obtain

Ar =
Qr

∆

(
1− a2εM3r sin2 θ

Σ2
+ higher order terms

)
. (4.32)

From the second term we see that the electromagnetic potential depends on mass M.

Thus we can consider the deviation parameter as a coupling between the gravitational

and electromagnetic fields.

The Maxwell tensor can be computed from the equation

Fµν = Aν,µ −Aµ,ν . (4.33)
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Using the potential in Eq. (4.31), the nonzero components of the Maxwell tensor are

Ftr = −
Q
(
r2 − a2 cos2 θ

)
Σ2

, Ftθ =
a2Qr sin 2θ

Σ2
, (4.34)

Frθ = −
a2M3Qr2ε sin θ cos θ

(
a2 cos 2θ − 3a2 − 2r2

)
Σ3(∆ + a2P sin2 θ)2

, (4.35)

Fφr = −
aQ sin2 θ

(
a2 cos2 θ − r2

)
Σ2

, Fφθ = −
aQr

(
a2 + r2

)
sin 2θ

Σ2
. (4.36)

From these components we see that the only component different from the Kerr-Newman’s

is the Frθ component. The metric tensor in Eq. (4.29) with P (r, θ) as in Eq. (4.30) and

the Maxwell tensor components (Eqs. (4.34)-(4.36)) do not satisfy the usual Einstein-

Maxwell equations. So, we assume that our metric is an electro vacuum solution to

some unknown field equations which are different from the Einstein-Maxwell equations

for nonzero P (r, θ).

4.3 The horizons

The event horizon (if it exists) is located at a radius rhor = H(θ), where H(θ) is the

solution of the equation [77]

g11 − 2g12

(
dH

dθ

)
+ g22

(
dH

dθ

)2

= 0. (4.37)

As g12 = 0 for the spacetime under consideration, so Eq. (4.37) reduces to

g11 + g22

(
dH

dθ

)2

= 0. (4.38)

For the case of θ = 0, π and θ = π/2 the above equation shortens to g11 = 0. For the pole

θ = 0 or θ = π, g11 ∝ ∆ having root r = HKN = r+ where HKN is the Kerr-Newman’s

event horizon. This is possible if ε 6= −(2Mr+ −Q2)2/M3r+ at which the denominator

of g11 vanishes. Here we will expand the function H(θ) [77], first around θ = 0 and then

the same analysis will be done for θ = π/2. Let θ = 0 + δθ. In this case r = H(δθ) is

given by

H(δθ) = HKN + δθ
dH

dθ
|θ=0 +

δθ2

2

d2H

dθ2
|θ=0 . (4.39)
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Putting r = H(θ) in Eq. (4.38) and expanding in terms of θ = δθ, we obtain for the

first order in δθ,(
dH
dθ |θ=0

)2
(2MHKN −Q2)

+ δθ

[
− 2

(
dH

dθ
|θ=0

)3

HKN + 2
dH

dθ
|θ=0

(
2MHKN

−Q2
)(√−a2 +M2 −Q2

1 + εM3HKN
(2MHKN−Q2)2

+
d2H

dθ2
|θ=0

)]
= 0. (4.40)

From the above equation it can be concluded that

dH

dθ
|θ=0= 0. (4.41)

For the second order in δθ2, we obtain the equation for d2H
dθ2
|θ=0 as

(
d2H

dθ2
|θ=0)2

(
1+

εM3HKN

(2MHKN−Q2)2

)
+

a2εM3HKN

(2MHKN−Q2)2
+
√
−a2+M2−Q2

d2H

dθ2
|θ=0= 0.

(4.42)

For the existence of null surface it is required that d2H
dθ2
|θ=0 must have a real solution.

This requirement leads to a lower and upper bound for ε as

εmin−pole = − b1
2M3HKN

− b1
√
M2 −Q2

2M3aHKN
, (4.43)

εmax−pole = − b1
2M3HKN

+
b1
√
M2 −Q2

2M3aHKN
, (4.44)

where b1 = 2MHKN −Q2.

When θ = π/2, the equation g11 = 0 gives

r2 + a2 − 2Mr +Q2 +
a2εM3

r3
= 0. (4.45)

At the equatorial plane, the maximum positive value of the parameter ε for the real

solution of Eq. (4.45) is given by

εmax−eq =
1

3125a2M2

[
150(b2 + 15)a4 − 20a2

(
8(7b2 + 40)M2 − 15(b2 + 15)Q2

)
+ 1024(b2 + 4)M4 − 160(7b2 + 40)M2Q2 + 150(b2 + 15)Q4

]
, (4.46)

where b2 =
√

16− 15a2

M2 − 15Q2

M2 . Thus the null surface at the equatorial plane exists for

the deviation parameter in the range ε < εmax−eq. By comparing maximum values of ε

at the equatorial plane and the pole, it is found that εmax−pole < εmax−eq.
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For the case of the equatorial plane, it is assumed that θ = π/2 + δθ so that H(θ) is

given by

H(π/2 + δθ) = Heq + δθ
dH

dθ
|θ=π/2 +

δθ2

2

d2H

dθ2
|θ=π/2, (4.47)

where Heq is the radius of the null surface at θ = π/2. Substituting r = H(π/2 + δθ) in

Eq. (4.38), and expanding in terms of δθ, we find that upto first order in δθ, dHdθ |θ=π/2=

0. In the second order in δθ, the real solution for d2H
dθ2
|θ=π/2 exists for all ε in the range

0 < ε < εmax−pole but same cannot be said for the range εmin−pole < ε < 0.

4.3.1 The Killing horizon

A Killing horizon is a null hypersurface on which there is a null Killing vector field. For

an axisymmetric and stationary spacetime, the Killing horizon is given by

g00g33 − g2
03 = 0, (4.48)

which for metric (4.29) becomes (1 + P )(∆ + a2P sin2 θ) sin2 θ = 0. When θ = 0 or π,

we have

g00g33 − g2
03 ∝

(
r2 + a2 − 2Mr +Q2

) [
1 +

εM3r

(r2 + a2)2

]
. (4.49)

As in the case of event horizon at the pole, the Killing horizon at the pole coincides with

the Kerr-Newman event horizon. From Eq. (4.49) the value of ε comes out to be

εkil−pol = − 16

3
√

3

( a
M

)3
. (4.50)

For the case of the equatorial plane, Eq. (4.48) takes the form

(1 +
εM3

r3
)(r2 + a2 − 2Mr +Q2 +

a2εM3

r3
) = 0. (4.51)

The second factor in the above equation is same as in Eq. (4.45) having two solutions

for ε < εmax−eq and single solution for negative ε.

In the extremal case when a2 + q2 > M , Eq. (4.51) has solutions for negative deviation

parameter only. At the pole Eq. (4.49) has two solutions for ε < εkil−pol, one solution

for ε = εkil−pol and no solution otherwise.

The Killing horizon for different positive values of ε are shown in Figures 4.1 to 4.3. In

these figures, we have taken a = 0.7, Q = 0.6 and M = 1. In Figure 4.1, ε = 0.389 <

εmax−eq, the outer and inner Killing horizons have spherical topology. In Figure 4.2 ε =

0.396 ≈ εmax−eq, they merge at the equatorial plane. In Figure 4.3 ε = 0.4 > εmax−eq,

disjoint Killing horizons appear above and below the equatorial plane.

Figures 4.4 and 4.5 represent the Killing horizons for negative ε. In Figure 4.4 the values
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Figure 4.1: Killing horizon for ε = 0.389, a = 0.7, Q = 0.6 and M = 1.

of a and Q are such that a2 +Q2 < M2. Here the outer and inner Killing horizons are

in the form of spherical surface. In Figure 4.5, a and Q are such that a2 + Q2 > M2.

The Killing horizon is in the shape of toroidal surface in such case.

4.3.2 The event horizon of the linearized charged Johannsen-Psaltis

metric

The charged Johannsen-Psaltis metric can be considered as a small perturbation of the

Kerr-Newman spacetime in terms of the deviation parameter ε. The modifications in

the Kerr-Newman metric components upto the first order in ε are

h00 = −
M3r

(
Σ− 2Mr +Q2

)
Σ3

, h11 =
M3r

(
Σ− 2Mr +Q2

)
Σ∆2

, (4.52)

h22 = 0, h03 =
aM3r sin2 θ

(
Q2 − 2Mr

)
Σ3

, (4.53)

h33 =
a2M3rε sin4 θ

(
2Mr −Q2 + Σ

)
Σ3

. (4.54)
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Figure 4.2: Killing horizon for ε = 0.396, a = 0.7, Q = 0.6 and M = 1.

The event horizon in this case can be determined from the equation [77]

g11
KN

(
1− εg11

KNh11

)
= 0, (4.55)

where g11
KN is the inverse of g11 component of the Kerr-Newman metric and h11 is given

in Eq. (4.52). The radius of the event horizon in this case has the form

rH = HKN (1 + χε) , (4.56)

where χ measures deviation from the Kerr-Newman event horizon HKN . Substituting

Eq. (4.56) in Eq. (4.55), and linearizing in terms of ε, we obtain

χ = − a2M3 sin2 θ

2
√
M2 − a2 −Q2(2MHKN −Q2 − a2 sin2 θ)2

. (4.57)

Thus the event horizon is located at the radius

rH = HKN

(
1− εa2M3 sin2 θ

2
√
M2 − a2 −Q2(2MHMN −Q2 − a2 sin2 θ)2

)
. (4.58)
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Figure 4.3: Killing horizon for ε = 0.4, a = 0.7, Q = 0.6 and M = 1.

The Kretschmann scalar for the linearized form of (4.29) diverges at r = 0, therefore it

represents a black hole for all values of ε.

4.4 Lorentz violations, closed time-like curves and regions

of validity

The metric (4.29) has the following determinant

det(gµν) = −sin2 θ

64Σ2

[
3a4+8a2r2+8r4+8εM3r+4a2(2r2+a2) cos 2θ+a4 cos 4θ

]2

, (4.59)

which is independent of the charge Q. It is semi-definite, negative and vanishes at two

values of radii for ε < −(2Mr+ − Q2)2/M3r+ which coincide with the location of the

Killing horizon. So, the charged spacetime does not contain any Lorentz violating region.

By using g33 component of metric (4.29), we plot the closed time-like curves and combine

them with the Killing horizons to show their location. These plots are shown in Figure

4.6. Also from g33 component, we can determine the upper bound for ε at the equatorial
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Figure 4.4: Killing horizon for a = 0.8, Q = 0.3, ε = −0.6 and M = 1.

plane and denote it with symbol εCTC and has the following expression

εCTC = −
r3
(
r2
(
r2 + a2

)
− a2

(
Q2 − 2Mr

))
a2M3 (r(2M + r)−Q2)

, (4.60)

while at the equatorial plane (4.45) gives the value of ε as

εhor = −
r3
(
r2 + a2 +Q2 − 2Mr

)
a2M3

, (4.61)

where symbol εhor shows that this is the value at the horizon for the equatorial plane.

It is clear that εCTC < εhor indicting that for the equatorial plane the regions of closed

time-like curves lie inside the inner Killing horizon. In the top panel of the Figure 4.6,

Q and a are such that a2 + Q2 < M2, resulting in an inner and outer Killing horizon

and the closed time-like region lying inside the inner Killing horizon. In the lower panel

a2 + Q2 > M2, resulting in the toroidal shaped horizon surrounding the closed time-

like region. So we conclude that the charged Johannsen-Psaltis metric does not contain

closed time-like curves outside the central object.
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Figure 4.5: Killing horizon for a = 0.96, Q = 0.43, ε = −0.6 and M = 1.

4.5 Innermost stable circular orbits and the circular pho-

ton orbits

Rotation of the central object has significant impact on the motion of particles in GR.

Consider a massive particle moving around a black hole. There exists a minimum radius

at which the stable circular motion is possible. This defines the innermost stable circular

orbits or the ISCO.

In this section, particle motion on the equatorial plane is considered. First particle’s

angular momentum and energy are computed which are later employed to determine the

ISCO and circular photon orbits.

The radial equation of motion is determined by solving the equation

pαp
α = −m2, (4.62)
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Figure 4.6: The Killing horizon and closed time-like curves for some values of ε, a and
Q. Mass M has been set to 1. On the top a = 0.3, Q = 0.2, ε = −0.3. On the bottom
a = 0.96, Q = 0.43, ε = −0.6. The dashed curves denote the inner and outer Killing

horizons and the solid region shows the closed time-like curve.
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for the radial momentum. Here pα is the 4-momentum of the particle of mass m. The

radial equation of motion, so obtained is

(
dr

dτ
)2 = R(r) = − 1

g11
(g00E2 + g33J2 − 2EJg03 +m2), (4.63)

where τ denotes the proper time. Here E is the energy of the particle and J denotes

particle’s angular momentum. These two quantities can be obtained by solving the

equations

R(r) = 0, (4.64)

dR(r)

dr
= 0. (4.65)

This gives
E

m
=

√
P1 + P2

P3
, (4.66)

where

P1 = 12a4M3r5ε
(
Mr −Q2

)(
M3ε+ r3

)4
+ a2r8

(
M3ε+ r3

)2[
Q4
(
− 7M6ε2 + 10M3r3ε

+ 8r6
)

+ 2Q2r
(

16M7ε2 − 9M6rε2 − 16M4r3ε+ 6M3r4ε− 14Mr6 + 6r7
)

+Mr2
(
− 40M7ε2 + 48M6rε2 − 15M5r2ε2 + 16M4r3ε− 6M2r5ε+ 20Mr6 − 12r7

)]
,

(4.67)

P2 = 2
[
2
(
r26 ∓ P4

)
− 48M12r14ε3 + 68M11r15ε3 − 32M10r16ε3 + 5M9r17(ε− 24)ε2

+ 168M8r18ε2 − 78M7r19ε2 + 12M6r20(ε− 8)ε+ 132M5r21ε− 60M4r22ε

+Q6r11
(
M3ε+ r3

)2(
7M3ε+ 4r3

)
− 3M3r23(8− 3ε) + 32M2r24

−Q4r12
(
M3ε+ r3

)2(
40M4ε− 19M3rε+ 22Mr3 − 10r4

)
+Q2r13(2M − r)

(
M3ε+ r3

)2(
38M4ε− 17M3rε+ 20Mr3 − 8r4

)
− 14Mr25

]
,

(4.68)

P3 = r13
[
8a2
(
Q2 −Mr

)(
M3ε+ r3

)2(
5M3ε+ 2r3

)
+ r3

(
Q2
(

7M3ε+ 4r3
)

+ r
(
− 12M4ε+ 5M3rε− 6Mr3 + 2r4

))2]
, (4.69)
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P4 =
[
a2r10

(
Q2 −Mr

)2(
M3ε+ r3

)6(
a2
(
M3ε+ r3

)
+ r3

(
− 2Mr +Q2 + r2

))2

(
9a2M6ε2 + 16M4r4ε− 2q2

(
5M3r3ε+ 2r6

)
− 6M3r5ε+ 4Mr7

)] 1
2
. (4.70)

The angular momentum is

J

m
= ± 1√

P3β

[(
∓ 2a2r6(Q6 +Q2r2M(8M − 5r) + rQ4(2r − 5M)

+M2r3(3r − 4M))(r3 + εM3)4 + a4r3(Q2 −Mr)(r3 + εM3)4(2Mr4 − 4M4rε

+Q2(−2r3 +M3ε)) + P4

)√
P1 + P2

]
, (4.71)

where

β = ar3(Mr −Q2)(M3ε+ r3)4(2r3
(
r(r − 2M) +Q2

)2
+ a2(Q2(2r3 −M3ε)

+Mr(4M3ε− 3M2rε− 2r3))). (4.72)

Here the upper sign indicates that the particle corotates with the black hole while the

lower sign refers to the opposite situation.

In the case ε = 0, the above expressions for the E and J reduce to the ones obtained for

the Kerr-Newman metric [78]

E

m
=

r2 − 2Mr +Q2 ± a(Mr − q2)1/2

r
√

(r2 − 3Mr + 2Q2 ± 2a(Mr −Q2)1/2)
, (4.73)

J

m
= ±(Mr −Q2)1/2(r2 + a2 ∓ 2a(Mr −Q2)1/2)∓ aQ2

r
√

(r2 − 3Mr + 2Q2 ± 2a(Mr −Q2)1/2)
. (4.74)

Taking Q = 0 = ε gives E and J for the Kerr metric [79]

E

m
=

r3/2 − 2Mr1/2 ± aM1/2

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

, (4.75)

J

m
= ± M1/2(r2 ∓ 2aM1/2r1/2 + a2)

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

. (4.76)

The ISCO is determined by numerically solving the equation

dE

dr
= 0. (4.77)

In Figure 4.7, radial dependence of ISCO is shown for some values of the parameters.
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Figure 4.7: The Inner most stable circular orbits for some values of ε, a and Q. Mass
M has been set to 1. In the upper graph a = 0.6 with varying values of charge Q.
Starting from the upper curve, the values of ε are −1, 1, 2 respectively. The lower graph
has been drawn for Q = 0.4 with various values of a. Starting from the upper line, the

values of ε are −2,−1, 2 respectively.

The circualr photon orbits are located where

E

m
→∞, J

m
→∞. (4.78)

In Figure 4.8, radial profile of the circular photon orbit is shown. As in the ISCO case,

increasing the value of ε decreases the radius of the photon orbits.
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Chapter 5

Summary and conclusion

Gravity is currently best described by the Einstein general theory of relativity which

has stood the test of time but only in weak gravitational field regime. In the strong

gravitational field, one needs to look for alternate theories. In this thesis, we have

focused on the spacetimes in both GR and the alternate theories of gravity.

The Chapter 1 contains the preliminaries. In the Chapter 2, we considered small

spheroidal deformations of static isotropic systems and studied how the MOTS is cor-

respondingly deformed. Our main motivation for this investigation is to generalise the

HQM [49, 50, 51, 52] beyond the spherical symmetry, for which we need a way to locate

the horizon from quantities solely determined from the quantum state of the source.

In this chapter, first, we studied a slightly spheroidal de Sitter space generated by an

energy density ρ ∝ 1/r, for which we provided a precise characterization of the structure

of the MOTS. From this analysis one can infer that the location of a MOTS appears to

be (analytically) the same function of the radial coordinate r for both the isotropic and

slightly spheroidal systems (where r is constant on surfaces of the respective symmetries).

Moreover, the discussion suggests that the appropriate generalization of the Misner-

Sharp mass, for determining the location of these hypersurfaces for small a2, is the the

usual Misner-Sharp mass computed for the isotropic space (that is, for a2 = 0). In

Section 2.3.2, we considered a spheroidal deformation of the Reissner-Nordström metric

for which a similar result is found for the location of the MOTS, although the energy-

momentum tensor of the corresponding source also contains a non-spheroidal component.

This suggests that the general situation is very rich.

Finally, it is important to remark again that, despite the classical instability [13] of the

last example, it is still possible that such a configuration appears as an intermediate

step during the collapse that leads to the formation of a black hole. Finally, in the
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last section we have qualitatively discussed the perturbation induced on the spectrum

of the isotropic source by these small spheroidal deformations within the framework

of quantum perturbation theory. This standard procedure allowed us to describe the

effects of the deformation parameter a on the spectrum of the operator associated with

the gravitational radius of the system (see Eq. 2.122), as well as on the local notion of

the horizon wave function (2.124), which represents the most important outcome of the

HQM formalism.

In Chapter 3, we discussed black holes in the modified gravity theory. One of the

modified gravity theories is the Chern-Simons gravity theory having two independent

formulations, namely, the non-dynamical theory and dynamical theory. Black hole solu-

tions have been developed in both the formulations but our focus in this chapter is the

solution of the CS gravity given in Ref. [22]. The solution has been developed under

the assumptions of small rotation parameter and small coupling constant. Setting the

coupling constant equal to zero, the solution reduces to Kerr in small rotation approx-

imation. Therefore, our focus in this chapter is to study the effects of the coupling

constant in different physical situations. First we studied the Hawking mass outside the

event horizon of the black hole and obtained an exact value. Our mathematical work

shows that the mH does not depend on γ. It just depends on the mass and spin parame-

ter like in Kerr’s case. Next, based on the BSW mechanism, we studied the dependence

of the coupling constant on the ECM for two neutral colliding particles of equal masses.

The graphs are drawn for different values of the coupling constant and rotation param-

eter. The graphical results show that both a and γ cause an increase in the centre of

mass energy. Next we studied the energy extraction through Penrose process and found

that the efficiency of the process is independent of the CS coupling constant γ but is

not exactly equal to the efficiency of the Kerr case due to the assumption of the small

rotation approximation.

One of the modified Kerr spacetimes is the Johannsen-Psaltis [25] metric. This metric

takes the deformed Schwarszchild spacetime as the starting point and applies Newman-

Janis algorithm to obtain a rotating spacetime. In Chapter 4, we have extended the

approach to obtain the charged analogue of the Johannsen-Psaltis metric. This has

been done by taking the Reissner-Nordström spacetime as the seed metric and applying

Newman-Janis algorithm to it. This leads to a spacetime which is stationary, axisym-

metric and asymptotically flat. It gives the Johannsen-Psaltis metric on setting charge

equal to zero. Setting the deviation parameter ε = 0 yields the Kerr-Newman metric.

The electromagnetic 4-potential contains the deviation parameter ε in its radial compo-

nent, thus inducing θ dependence in it. Thus Ar component cannot be gauged away,

so we have a nonzero Ar making the 4-potential Aµ different from the case of Kerr-

Newman. Further analysis of Ar revels its mass M dependence through the deviation

73



parameter ε which can be considered as a coupling between the gravitational and the

electromagnetic fields.

The event horizon of the charged Johannsen-Psaltis spacetime has been studied. Here

horizon is taken as a general function [77] of θ, H(θ), so that horizon is r = H(θ). The

equation which determinesH(θ) is given by (4.38). Next, the Killing horizon is discussed.

The graphs are drawn for various values of parameters M,Q, a, ε. The graphs show

that for ε < εmax−pole, the outer and inner horizons have spherical topology while for

ε ≈ εmax−pole Killing horizons intersect at the equatorial plane. In case of ε > εmax−pole,

disjoint Killing horizons appear above and below the equatorial plane. For negative ε, the

inner and outer Killing horizons are in the shape of the spherical surface for a2+Q2 < M

while the shape changes to a toroidal surface if a2 + Q2 > M . From the determinant

of the charged Johannsen-Psaltis metric we find that it is independent of the Lorentz

violating regions. The plots of the closed time-like curve and the Killing horizons show

that it is surrounded by the Killing horizon. Therefore, the charged Johannsen-Psaltis

metric does not contain closed time-like curves outside of the central body.

Considering the charged Johannsen-Psaltis metric as a perturbation of the Kerr-Newman

metric upto first order in ε, we find that its Kretschmann scalar diverges at r = 0,

therefore it represents a black hole for all values of ε.

The analysis of the ISCO and circular photon orbits shows the dependence on ε. Both

show decreasing behavior with the increase of ε.
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