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Nomenclature

( ) Cartesian coordinates  power law index

τ shear stress Γ relaxation parameter

·

∗

shear rate A1 Rivlin-Erickson tensor

V velocity field  apparent viscosity

0 zero shear rate viscosities ∞ infinite shear rate viscosities

∗ viscosity ratio parameter I identity tensor

 pressure  kinematic viscosity

1 thermal diffusivity  thermal conductivity

 fluid density  specific heat

 temperature of fluid  nanoparticles volume friction

 temperature at the wall  concentration at the wall

∞ ambient temperature ∞ ambient concentration

 surface shear stress ( ) velocity components

 wall heat flux 0 constant velocity

 surface mass flux 0 constant suction velocity

 stream function  dimensionless variable

 wedge angle parameter 12 local Weissenberg numbers

∗ velocity ratio parameter  magnetic parameter
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 skin friction coefficient  radiative heat flux

 Nusselt number ∗ stefan-Boltzman constant

 local Sherwood number ∗ mean absorption coefficient

 Grashof number  thermal radiation parameter

Re local Reynolds number  inclination angle

 acceleration due to gravity Pr Prandtl number

 dimensionless temperature  suction parameter

 buoyancy parameter  Lewis number

 temperature of hot fluid  heat transfer coefficient

 electric conductivity  concentration near the fluid

 Brownian diffusion coefficient  thermophoresis parameter

 thermophoresis diffusion coefficient  Brownian motion parameter

 internal heat parameter 1 & 2 local Grashof numbers

 non dimensional thermal relaxation time  normal heat flux

 non dimensional solutal relaxation time  stretching/shrinking parameter

 volumetric coefficient of concentration expansion 1 concentration Biot number

 temperature ratio parameter 1 velocity slip parameter

 relaxation time of heat flux  relaxation time of mass flux

 volumetric coefficient of thermal expansion  Schmidt number

 volumetric coefficient of thermal expansion  thermal Biot number
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Chapter 1

Introduction

This chapter provides the motivation and literature review associated with the boundary layer

flow and heat transfer involving non-Newtonian fluids. Moreover it highlights the importance

of studying such fluids, especially the Carreau fluid. Additionally, a brief description of all

chapters of the thesis are included in this chapter.

1.1 Research Context

The motivation for this thesis has been stemmed from the widespread applications of non-

Newtonian fluids in industry and engineering. The main reason behind is the abundant existence

of such fluids in nature as well. Non-Newtonian behavior is also used in the mining industry,

where slurries and muds are often handled and in applications such as lubrication and biomedical

flows. The simulation of non-Newtonian fluid flows phenomena is therefore of importance to

industry. A considerable amount of work has been done in the regime of non-Newtonian fluids

and much more is needed in a variety of non-Newtonian fluid models. Due to relative simplicity

of the power-law model it has been studied by a number of researchers in order to investigate

non-Newtonian fluid with physical effects. But the power-law model has its limitations. In view

of the limitations of the power-law model, especially for very low and very high shear rates,

here we consider another viscosity model known as Carreau fluid model. Carreau fluid is a type

of generalized Newtonian fluids where viscosity depends upon the shear rate.

A modern rheologist, Carreau [1] in the year 1972, developed a non-Newtonian fluid model,
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called Carreau fluid model. This model is an importance model of non-Newtonian fluids which

is useful in chemical engineering industry and fits well with the suspensions of polymers behav-

ior in various flow situations. It further depicts the behavior of several industrial fluids at both

low and high shear rates. Moreover, four parametric Carreau model is the generalization of

Newtonian fluid which has the tendency to characterize the shear thinning as well as shear thick-

ening nature of fluid. Considering the significance of Carreau rheological model in innovative

technological processes, several researchers have dedicated their time to investigate the features

of such model. Tshehla [2] evaluated the flow problem past an inclined surface by taking Car-

reau fluid model. He further incorporated the energy equation in his study and obtained both

asymptotic and numerical solutions. Olajuwon [3] estimated the convective heat transfer during

the flow of an electrically conducting Carreau fluid over a vertical plate. Numerical solutions for

governing problem in the presence of thermal radiation and heat generation/absorption have

been computed via Runge-Kutta method. The flow of Carreau nanofluid with Ohmic heating

and viscous dissipation over a non-linear stretching surface is numerically analyzed by Reddy

et al. [4]. In another investigation of Carreau fluid flow past a circular cylinder by Hashim and

Khan [5]. It was noted dual solutions for flow field are possible to acquire in the presence of

uniform suction. In open literature, during the recent times, several researchers have evaluated

the flow and heat transfer attributes of Carreau fluid, for example, Animasaun and Pop [6],

Hayat et al. [7] and so forth.

In present era the study of nanofluid technology is used to control the heat transfer mech-

anism in different energy systems. The idea of nanofluids by hanging nanoparticles in base

fluids to improve their thermal conductivity was presented by Choi and Eastmann [8]. It is a

renowned fact that the traditional base fluids, including water, lubricants and organic fluids

possess limited heat transfer characteristics due to their low thermal properties. An experimen-

tal study [9] has reported that nanofluids need only 5% volumetric fraction of the nanoparticles

for an effective heat transfer enhancement. Due to recently developed technology, nanoflu-

ids encompass practical applications [10 − 12] in diverse fields inducing thermal absorption,
heating and cooling processing of energy, nuclear reactor and so forth. Recently, Buongiorno

[13] presented a model which includes the effect of thermophoresis and Brownian motion in

the convective transport of nanofluids in boundary layer flows and developed a new correla-
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tion structure (based on this explanation of the heat transfer mechanism) that can reproduce

nanofluid heat transfer data responsibly well. Many researchers investigated the characteristics

of nanofluids flow by incorporating the effects of Brownian motion and thermophoretic forces

[14−16]. Notably, Sheikholeslami et al. [17] examined the MHD flow and heat transfer analysis
of nanofluid by considering the natural convection and viscous dissipation. He performed the

numerical simulation for the velocity and temperature distributions of nanofluid.

Researchers now a days have shown great interest in the flows of non-Newtonian liquids in the

presence of magnetic field over a stretching sheet. The common examples of such magneto fluids

include plasmas, salt water and electrolytes. The basic concept behind magnetohydrodynamic

is that magnetic field which can induce current in a moving conductive fluid, which in turn

polarizes the fluid and reciprocally changes the magnetic field itself. The pioneer work on MHD

flow past a stretching surface was done by Palov [18]. After that, Andersson [19] inspected the

MHD flow of a viscous fluid. Moreover few latest studies in this direction can be seen through

the attempts [20−22]. Sakiadis [23] discussed the boundary layer behavior on a moving surface
and he applied similarity transformations to the boundary layer equations and then numerically

solved. Later on, Crane [24] simplified the work of Sakiadis.

In recent state of the art, investigations concerning the heat transfer phenomenon under the

influence of thermal radiation have attracted several researchers because of its enormous appli-

cations in engineering and industrial processes. As an example, it arises in space technology,

nuclear power plants, gas turbines, missiles, the chemical engineering, polymer industry and

the biomedicine, etc. It is important to mention that in high temperature difference process the

linear radiation is not valid because the non-dimensional parameter that is utilized as a part

of the linearized Rosseland approximation is merely the effective Prandtl number. However, in

case of non-linear approximation, we have three main parameters, like, Prandtl number, the

temperature ratio parameter and the radiation parameter. Till date, lots of work have been

done on the response of mechanism involving non-linear radiation. Cortell [25] modelled an

incompressible flow of viscous liquid with heat transfer by incorporating non-linear radiation.

He employed the Rosseland approximation to formulate the radiation term and obtained the

numerical solutions via Runge-Kutta method. Prasad et al. [26] evaluated the laminar buoy-

ancy driven flow from a spherical body with radiative heat transport phenomenon. Keller-box
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method based on implicit finite difference technique is implemented to solve the governing flow

problem. Sheikholeslami et al. [27] studied about the impacts of non-linear thermal radiation

on MHD fully developed flow and heat transfer of nanofluids due to rotating plates. Lin et

al. [28] proposed a numerical analysis to see the impact of nanoparticles shape on Marangoni

boundary layer flow and heat transfer of nanofluid with thermal radiation. They studied the

problem by considering five different types of nanoparticle shapes. The latest studies about

flow and heat transfer with thermal radiation include the works of Atles et al. [29], Rashid et

al. [30], Usman et al. [31] and Somro et al. [32], etc.

The boundary layer flows involving a variety of non-Newtonian fluids over stretching surfaces

have received considerable attention in the literature. Here we provide just a brief overview of

more notable studies. Initially, Mukhopadhy et al. [33] talked about the boundary layer flows

with impact of nonlinear radiation and heat transfer characteristics across a permeable plate.

Bird et al. [34], Gupta and Gupta [35] have studied the heat and mass transfer over stretching

sheets with constant surface temperature. The boundary layer flow on an inextensible contin-

uous flat sheet having constant velocity in a non- Newtonian power-law fluid was examined by

Erickson et al. [36]. The classical problem of two-dimensional flow induced by a nonlinearly

stretching sheet was investigated by Vajravelu [37]. Cortell [38] modified the problem by con-

sidering the nonlinear radiative heat transfer and fluid flow over a stretching sheet. In another

study, Cortell [39] discussed viscous flow and heat transfer over a nonlinearly stretching sheet.

Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching

sheet are presented by Hamad and Ferdows [40]. Akbar et al. [41] found the dual solutions

of MHD stagnation point flow over a Carreau fluid with shrinking sheet. Also Khan et al.

[42] discussed the multiple solutions of slip-flow and heat transfer performance of nanofluids

from a permeable shrinking surface with thermal radiation. Improvements in the study of non-

Newtonian fluids have been made by different authors [43− 46] From the last few years, heat

transfer over a shrinking sheet has a significant role due to its wide application in all most all

fields of science and engineering. The most common use of shrinking sheet occur in different

type of industrial processes like metallurgy and polymer industry. Another important applica-

tion in engineering industry is shrinking film. If flow is induced by shrinking sheet the fluid is

dragged towards a slot and consequently, it exhibits totally different physical properties from
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that of a stretching sheet because of its extremely complex physical character and structure.

From a physical perception, the vorticity produced at the shrinking surface is not constrained

inside the boundary layer and along these lines a condition shows up where some outside forces

are to be controlled. Identically, steady flow is possible only when some opposed force is applied

to escape the vorticity diffusion. Hashim et al. [47] investigated the dual solutions in flow of

a non-Newtonian fluid with homogeneous-heterogeneous reactions. Moreover, Khan et al. [48]

discussed the dual solutions of numerical simulation for flow and heat transfer to Carreau fluid

with magnetic field effect.

During the last few decades, the fluid flows across wedge shaped bodies are of fundamental

importance in numerous engineering applications. It has a vital importance in the fields of

geothermal industries, aerodynamics, enhanced oil recovery, heat exchangers and geothermal

systems, etc. Historically, a numerous literature on Falkner and Skan flow over a static wedge

can be found in the books of Gersten and Schlichting [49] and Leal [50]. In the last few

years, experts have taking much interest in the Falkner-Skan flow by considering the impacts

of numerous parameters. The solutions and their dependence on  (the wedge angle) were

latterly examined by Hartree [51]. He developed the solutions and velocity profile for different

approximations of pressure gradient parameter. The influence of suction/injection on forced

convective wedge flow with uniform heat flux was examined by Yih [52]. His numerical study

cast out that the flow separation only happens for the pressure gradient parameter  = 0.

Ishaq et al. [53] discussed the steady 2D magnetohydrodynamic wedge flow of micropolar fluid

in the presence of variable wall temperature. The study of Falkner-Skan flow of Carreau fluid

over a wedge in the presence of crossed diffusion and magnetic field was investigated by Raju

and Sandeep [54]. An analysis on MHD Falkner-Skan flow of Casson fluid past a wedge was

also performed by Raju and Sandeep [55]. Khan and Azam [56] discussed the unsteady heat

and mass transfer mechanisms in MHD Carreau nanofluid flow. Further, Khan and Azam [57]

studied the unsteady Falkner-Skan flow of MHD Carreau nanofluid past a static/moving wedge

with convective surface condition. Rajagopal et al. [58] discussed the Falkner-Skan flows of

a non-Newtonian fluid. Kuo [59] discussed the application of the differential transformation

method to the solutions of Falkner-Skan wedge flow. Recently, Khan and Hashim [60] explored

the boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet.
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Additionally, Khan and Hashim [61] investigated the impact of heat transfer on Carreau fluid

flow past a static/moving wedge.

A stagnation point flow happens when a flow imposes on a solid body. The initial task

related to stagnation point for two dimensional flows was completed by Hiemenz [62]. Nazar et

al. [63] studied the steady flow with two dimensional stagnation point in presence of micropolar

fluid passes over a sheet. MHD stagnation point in nano-fluid in presence of non-linear radiation

was discussed by Farooq et al. [64]. Heat transfer over a porous sheet by means of variable

thermal conductivity and thermal radiation was deliberated by Cortell [65]. Furthermore, the

numerical inspection of flow and heat transfer in cylindrical type axes was exposed by Lauriat

and Khellaf [66]. The Carreau fluid effects with inclined sheet were discovered by Tshehla [67].

Abbasi et al. [68] revealed the MHD Carreau fluid flow in curved channel.

Numerous aspects in boundary layer flow and heat transfer are non-similar. Non similarity

related to boundary layers originate an assortment for example variety in wall temperature, va-

riety in velocity of free-stream, suction/injection of fluid outcome at wall, surface mass transfer,

outcome of buoyancy force and effects of inclination angle. The non-similarity of boundary layer

can happen by in excess of one reason. There are numerous numerical techniques which are

suggested to treat with such problems of non-similar boundary layers and between them; the

famous technique is local non-similarity technique which is introduced by Sparrow et al. [69].

After them, many agents realize different problems of non-similar boundary layer. Muhaimin

and Kandasamy [70] exhibited an examination tends to the magnetic effects and chemical re-

action over a wedge with porosity. Chen [71] discussed the parabolic system with local non

similarity method After that, Massoudi [72] discovered the local nonsimilar solutions for the

flow of a non- Newtonian fluid over a wedge.
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Numerical Methodologies

1.1.1 RK-Fehlberg (Runge-Kutta) Method

An investigation of numerical solution for ordinary differential equations (ODEs) has been a

field of great interest within the fluid dynamics community for the past few decades. For that

reasons, several authors employed various numerical procedures to tackle fluid flow behavior.

Generally, many methods are available in literature for solving the initial value problems (IVPs)

comprising of ODEs. Here, we present a versatile and greatly implemented integration scheme

for IVPs, known as RK-Fehlberg (Runge-Kutta) method. The RK−Fehlberg is a numerical
method which can be applied to solve the IVPs. Let an IVP be specified as follows




=  ( )   (0) = 0 (1.1)

We are interested to find an approximation to the continuously differentiable solution  of IVP

(11) which may be the function of  The function  ( ) and the data 0 0 are known to

us. The RK−Fehlberg formula is given by

+1 =  + 

µ
16

135
0 +

6656

12825
2 +

28561

56430
3 − 9

50
4 +

2

55
5

¶
 (1.2)

where the coefficients 0 to 5 are, respectively defined as:

0 =  ( ) 

1 = 
¡
 +

1
4
  +

1
4
0
¢


2 = 
¡
 +

3
8
  +

3
32
0 +

9
32
1
¢


3 = 
¡
 +

12
13
  +

1932
2197

0 − 7200
2197

1 +
7296
2197

2
¢


4 = 
¡
 +   +

439
216

0 − 81 + 3860
513

2 − 845
4104

3
¢


5 = 
¡
 +

1
2
  − 8

27
0 + 21 − 3544

2565
2 +

1859
4104

3 − 11
40
4
¢


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.3)

Before employing the RK−Fehlberg scheme, at a very first step, we alter the non-linear equa-
tions into a system of first order ODEs along with associated boundary conditions. The new
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variables are introduced as follows:

 = 1  0 = 2  00 = 3  = 4 0 = 5  = 6 0 = 7 (1.4)

1.1.2 MATLAB Routine (bvp4c)

The MATLAB routine bvp4c is a built-in technique for solving two-point boundary value prob-

lems (BVPs). This solver uses finite difference method and make use of 3-stage Labatto IIIa

formula. It is a well-known fact that the BVPs are much difficult to tackle than IVPs. Hence,

any solver might fail, even with good guesses for the solution and unknown parameters. The

error control and mesh selection are supported by the residual of the continuous solution. As

bvp4c is a kind of residual methods which requires some initial guess to acquire the numerical

solutions. These guesses must fulfill the proposed boundary conditions. We often called this

method as ‘continuation’ and the detail of this technique is provided in a book by Shampine et

al. [73].

To implement this method, the leading equations are converted into a system of first order

ODEs. This followed performs a collocation method to solve the BVP involving:

0 () =  (  )   ≤  ≤  (1.5)

with general boundary condition (BC) given by:

 ( ()   ()  ) = 0 (1.6)

The argument  represents a vector of unknown parameters. We know that the approximated

solution () being a continuous function is given in the form of a third degree polynomial over

each subinterval [ +1] of a mesh  = 0  1 .......  = . This also satisfies the given

BC

(() ()) = 0 (1.7)

With the fourth-order interpolant of bvp4, () further satisfies the differential equations
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(collocates) at the corresponding end points and at the mid-point of these subinterval


0
() = ( ()) (1.8)


0
(( + +1)2) = (( + +1)2 (( + +1)2)) (1.9)


0
(+1) = (+1 (+1)) (1.10)

The elementary scheme of bvp4, which is known as Simpson’s method is renowned and

present in numerous codes. As () is a fourth order guess to a separate solution (), i.e.,

k()− ()k ≤ 4, where,  denotes the maximum of step sizes  = +1 −  and  rep-

resents a constant. After the evaluation of () at a given mesh with bvp4, we can estimate

it at each , or set of , in [ ] using bvp4c routine. In this routine the error estimation and

mesh selection are based on the residual of () defined by

 () = 0 ()− ( ()) (1.11)

1.2 Basic Conservations Laws

The mechanics of fluid is highly dependent on basic conservation laws, i.e., mass, momentum,

energy and concentration conservations. Mathematical formulation of these laws is given in the

form of PDEs.

1.2.1 The Mass Conservation

According to this law, the rate of change of mass in an arbitrary material volume Ω() is equal

to the rate of mass production in Ω(). This relation can be written as:

Z
Ω()

µ



+∇ · (V)

¶
Ω = 0 (1.12)

Because this is true all Ω() so the integrand identically vanishes:




+∇ · (V) = 0 (1.13)
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Expression (113) is the law of conservation of mass, also known as the continuity equation.

Here  represents the density of fluid,  the time and V the velocity field.

For an incompressible flow, we have

∇ ·V = 0 (1.14)

This is titled as continuity equation for an incompressible flow.

1.2.2 The Momentum Conservation

In accordance with Newton’s second law, which states that the rate of change of momentum of

a material volume equals the total force on the volume. Mathematically, it is given by

Z
Ω()

∙
V


+ (VV)

¸
Ω =

Z
Ω()

[B+ τ ] Ω (1.15)

We have from Eq. (115)

V


+ (VV)  = B+ τ  (1.16)

which is the momentum conservation law. In Eq. (116) τ is the stress tensor and B the

body forces per unit volume.

In a more convenient way, the conservation of linear momentum takes the form:



∙
V


+ (V ·∇)V

¸
= div τ + B (1.17)

1.2.3 The Energy Conservation

In physics, the conservation of energy is originated from the first law of thermodynamics. It is

mathematically composed as





= τ L− divq− divq (1.18)

In above expression,  is the specific heat of fluid and  the fluid temperature. Moreover,

the left-hand side (L.H.S) of Eq. (118) represents internal energy, first term on the right-hand
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side (R.H.S) depicts viscous dissipation and terms (divq and divq) elucidate the thermal and

radiative heat fluxes, respectively.

The energy flux q is given as

q = −∇ (1.19)

with  denotes the fluid thermal conductivity.

1.2.4 The Concentration Conservation

This law expresses that the aggregate concentration of the framework under perception remains

constant. Its expression is derived by Fick’s second law. In the presence of chemical reaction,

it takes the form




+ (V ·∇) = −∇ · j+ (1.20)

Here,  being the concentration of the fluid and j the normal mass flux and  "source" or

"sink" for .

The normal mass flux is usually given by the Fick’s first law

j = −∇ (1.21)

where  denotes the mass diffusivity.

1.2.5 The Energy Conservation for Nanoparticles

The conservation of energy for an incompressible nanofluid are expressed as





= −∇ · j−divq (1.22)

In the above equation, q be the thermal flux of nanofluids,  the specific enthalpy for nanofluid

and j the diffusive mass flux of nanoparticles.

Mathematical relations for q and j are as follows:

q= −∇ + j (1.23)
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j = −∇ − 
∇
∞

 (1.24)

Here,  denotes the density of nanoparticle,  and  are the Brownian and thermophoretic

diffusion coefficients.

Substituting Eqs. (123) and (124) into Eq. (122), we have the following form of energy

equation for nanofluid





= ∇2 + 

∙
∇ ·∇ +

∇ ·∇
∞

¸
 (1.25)

1.2.6 The Concentration Conservation for Nanoparticles

Mathematical form of the concentration equation for nanofluid is written by




+ (V ·∇) = − 1


∇ · j (1.26)

Making use of Eq. (124), we finally have




+ (V ·∇) = ∇2 +

∇2
∞

 (1.27)

1.3 The Carreau Rheological Model

In this thesis, we mainly study the flow and heat transfer problems for Carreau rheological

model over different stretched geometries. The constitutive relation for apparent viscosity in

Carreau fluid model is given as [4]:


³ ·

∗´
= ∞ + (0 − ∞)

h
1 + (Γ

·

∗
)2
i−1

2
 (1.28)

The two parameters, Γ and  appearing in the above relation are the relaxation time and the

power-law index respectively. Additionally, 0 and ∞ are the zero and infinite shear rate

viscosities, respectively. Further, the shear rate
·

∗
is defined by

·

∗
=

s
1

2

X


X


·

∗


·

∗
 =

r
1

2

¡
A21
¢
 (1.29)
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The Rivlin-Erickson tensor A1 is written as:

A1 = (gradV) + (gradV)
>  (1.30)

where V represents the velocity field and > denotes the transpose.
Note that the power-law index characterizes the fluid behavior and fluid is characterized as

shear thinning for 0    1 shear thickening for   1 Newtonian fluid for  = 1 and/or Γ = 0

and for large values of Γ the power-law model can be obtained. In the present work, we follow

[96] wherein the zero and infinite shear rate viscosities were set to 1 and 0001, respectively.

Thus, the apparent viscosity  for Carreau fluid model can be expressed as

 = 0[
∗ +(1−∗)[1 + (Γ ·∗)2]−12 ] (1.31)

where ∗ = ∞
0
is the dimensionless ratio of the infinite shear-rate viscosity to the zero shear-

rate viscosity and chosen to be less than unity in the present analysis.

Thus extra stress tensor is described as

τ = 0[
∗ +(1−∗)

h
1 + (Γ

·

∗
)2
i−1

2
A1 (1.32)

1.4 Objective and Contributions in this Thesis

The purpose of this thesis is to recognize and understand the boundary layer flows of heat and

mass transfer of Carreau fluid in the presence of infinite shear rate viscosity. In reality, before

this commencement, there had been no current investigations concerning the Carreau fluid

model along with infinite shear rate viscosity. This thesis includes ten chapters, overall covering

numerous aspects of Carreau fluid in different circumstances. The foremost contributions in

this thesis include the mathematical modeling and numerical simulations for the boundary

layer flows concerning Carreau fluid with infinite shear rate viscosity. A generous measure of

the work done in this thesis has just been published. Whatever is left of the thesis is sorted out

as follows:

Chapter 1: This chapter comprises the motivation, background and structure of the thesis.

Chapter 2: The basic intent in this chapter is to formulate a mathematical model for two
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dimensional Carreau fluid flow over a static/moving wedge in the presence of infinite shear rate

viscosity. The governing equations of momentum and energy conservations are formulated by

using the boundary layer theory. RK-Fehlberg integration scheme along with shooting technique

is used for numerical computation. These findings are published in "Results Phys., 8 (2018)

516− 523".
Chapter 3: In this chapter, we carried out the consequence of Carreau nano fluid flow with

infinite shear rate viscosity induces by a stretching sheet. The Buongiorno’s model for nanofluids

which integrate the effects of Brownian motion and thermophoresis are developed. Moreover,

the convective condition is utilized. The numerical results are plotted to see the impacts of

leading physical parameters on the flow fields. The results of chapter 3 are published in "Can.

J. Phys., (2017) https:doiorg101139cjp−−0222”
Chapter 4: The motivation of this chapter is to achieve the numerical simulation of MHD

Carreau fluid flow determined by a stretching sheet. In addition, the impacts of convective

boundary condition and magnetic field for radiative heat transfer are analyzed. The problem

becomes more complex with the addition of non-linear thermal radiation and viscous dissipation

effects in the energy equation. Again RK-Fehlberg method is used solve the reduced system of

ODEs. The results of this chapter are published in "Results Phys., 8 (2018) 524− 531".
Chapter 5: In this chapter we consider the problem of fluid flow due to a shrinking sheet.

The governing boundary layer equations are derived for a Carreau fluid flow with infinite shear

rate viscosity. Here multiple solutions are obtained. Heat transfer analysis is taken to examine

the thermal boundary layer. Non-dimensional variables are presented to reduce the governing

equations to a systems of coupled ODEs, which are then solved by RK method. The contents

of this research have been published in "Results Phys., 8 (2018) 926− 932".
Chapter 6: This chapter provides dual solutions of Carreau nano fluid flow over an inclined

shrinking sheet. The heat transfer analysis is studied by considering non-linear thermal radia-

tion and heat generation/absorption at the sheet. Moreover, nano-particles with the Brownian

motion and thermophoresis parameter are considered with convective boundary and new mass

flux conditions. The computed results exhibit the existence of dual solutions (first and second)

for both velocity and temperature fields. The consequences of this chapter have been submitted

in ”Physica Scripta”
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Chapter 7: This chapter considered the characteristics of Cattaneo-Christov heat flux

model involving Carreau fluid flow. In addition multiple solutions are obtained near the stag-

nation point flow of Carreau viscosity model by considering velocity slip at the surface. The

emerging leading non-linear equations have been solved numerically by means of RK Fhelberg

method. The outcomes of this chapter have been submitted in ”J. Braz. Soci. Mech. Sci. Eng.,

(BMSE)”.

Chapter 8: Current chapter investigates the three dimensional Carreau fluid flow. More-

over, the influences of convective boundary condition and magnetic field for radiative heat

transfer are analyzed. In energy equation, non-linear thermal radiation and heat genera-

tion/absorption effects are also taken into account. The numerical technique, namely, RK-

Fehlberg method is utilized to solve the reduced system of ODEs. The results of this chapter

are published in "J. Mol. Liq., 272 (2018) 474− 480".
Chapter 9: This chapter explores the local non-similar solutions of steady, MHD and

mixed convective flow of Carreau fluid. In addition flow is considered near a stagnation point.

Energy equation is evaluated in the presence of non-linear radiation effects. Moreover compar-

isons between similar and non-similar solutions are also presented. The leading PDEs of the

article are converted into an organization of nonlinear ODEs by using the local non-similarity

method (LNM). Moreover, final resulting non-dimensional set of coupled nonlinear ODEs are

solved with the help of bvp4c function in MATLAB. The outcomes of this chapter have been

published in "J. Braz. Soci. Mech. Sci. Eng., (BMSE) 41 (69) (2019) https://doi.

org/10100740430− 018− 1561− 2".
Chapter 10: Finally, in this chapter, the main conclusions are summarized, followed by

several recommendations intended to identify future research directions.
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Chapter 2

Two Dimensional Carreau Fluid

Flow over a Wedge with Infinite

Shear Rate Viscosity

This chapter investigates the steady two-dimensional flow over a moving/static wedge for a

Carreau viscosity model with infinite shear rate viscosity. Additionally, heat transfer analysis

is performed. Using suitable transformations, nonlinear PDEs are transformed into ODEs and

solved numerically using the Runge-Kutta Fehlberg method coupled with shooting technique.

The effects of various physical parameters on the velocity and temperature distributions are

displayed graphically and discussed qualitatively. A comparison with the earlier reported results

has been made with an excellent agreement. It is important to note that the increasing values

of the wedge angle parameter enhance the fluid velocity while the opposite trend is observed

for the temperature field for both shear thinning and thickening fluids. Generally, our results

reveal that the velocity and temperature distributions are marginally influenced by the viscosity

ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin

the momentum and thermal boundary layer thickness in shear thickening fluid and reverse is

true for shear thinning fluid.
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2.1 Mathematical Modelling

This section provides the derivation of boundary layer equations governing the steady two-

dimensional flow of an incompressible Carreau fluid flow with infinite shear rate viscosity. To

obtain such equations in the Cartesian coordinates ( ), we utilize the fundamental laws given

by Eqs. (116) and (119) (cf. Chapter 1). The extra stress tensor is defined as

τ = −I+ A1 (2.1)

The constitutive relation for apparent viscosity in Carreau fluid model is given as


³ ·

∗´
= ∞ + (0 − ∞)

h
1 + (Γ

·

∗
)2
i−1

2
 (2.2)

where
·

∗
is defined as

·

∗
=

s
1

2

X


X


·

∗


·

∗
 =

r
1

2

¡
A21
¢
 (2.3)

so

τ = −I+
∙
∞ + (0 − ∞)

h
1 + (Γ

·

∗
)2
i−1

2

¸
A1 (2.4)

or

τ = −I+ 0

∙
∗ + (1− ∗)

h
1 + (Γ

·

∗
)2
i−1

2

¸
A1 (2.5)

Let us assume the velocity vector as

V =(( ) ( ) 0)  (2.6)

The shear rate, given by Eq. (131) (cf. Chapter 1) in terms of velocity components becomes

·

∗
=

"
4

µ




¶2
+

µ



+





¶2#12
 (2.7)
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Upon substitution of Eq. (26) Eqs. (116) and (119) (cf. Chapter 1) turn into




+




= 0 (2.8)



µ




+ 





¶
= −


+




+




 (2.9)



µ




+ 





¶
= −


+




+




 (2.10)

where stress components   and  can be taken from Eq. (25) 

Making use of Eqs. (130) (cf. Chapter 1) in (26) and (27) one can have these components

in the form

 = 20




⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦  (2.11)

 =  = 0

µ



+





¶⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦ 
(2.12)

 = 20




⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦  (2.13)

Invoking Eqs. (211) − (213) into Eqs. (29) and (210) a straightforward calculation yields
the following governing equations:



µ




+ 





¶
= −



+0

µ
2

2
+

2

2

¶⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦
+0

µ



+





¶




⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦
+20









⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦  (2.14)
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

µ




+ 





¶
= −



+0

µ
2

2
+

2

2

¶⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦
+0

µ



+





¶




⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦
+20









⎡⎣∗ + (1− ∗)

"
1 + Γ2

(
4

µ




¶2
+

µ



+





¶2)#−1
2

⎤⎦  (2.15)

In order to convert these equations into non-dimensional form, let us use the Boussines ap-

proximations by assuming  and  as characteristics length and velocity. The following non-

dimensional quantities are considered

 = ∗  = ∗  = ∗  = ∗ and  = 2∗ (2.16)

In view of non-dimensional quantities (216), we can formulate the momentum transport equa-

tion as:

∗
∗

∗
+ ∗

∗

∗
= −

∗

∗

+1

µ
2∗

∗2
+

2∗

∗2

¶⎡⎣∗ + (1− ∗)

"
1 + 2

(
4

µ
∗

∗

¶2
+

µ
∗

∗
+

∗

∗

¶2)#−1
2

⎤⎦
+21

∗

∗


∗

⎡⎣∗ + (1− ∗)

"
1 + 2
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where the dimensionless variables 1 and 2 are defined by

1 =
0


and 2 =

Γ2

()2
 (2.19)

In agreement with the Boussines approximations, we can assume that ( ) = 1 and ( ) =

. Furthermore, the dimensionless parameter 1 and 2 have orders 
2 i.e.,  (1 2) = 2

Consequently, the boundary layer Eqs. (217) and (218) are written as

∗
∗

∗
+ ∗

∗

∗
= −

∗

∗
+ 1

2∗

∗2

⎡⎣∗ + (1− ∗)

"
1 + 2

µ
∗

∗

¶2#−1
2

⎤⎦
+1

∗

∗


∗

⎡⎣∗ + (1− ∗)

"
1 + 2

µ
∗

∗

¶2#−1
2

⎤⎦  (2.20)

0 = −
∗

∗
 (2.21)

Thus, Eqs. (220) and (221) seize their new dimensional form:
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0 = −1





 (2.23)
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where  = 0 is the kinematic viscosity.

The above equation in simplified form is
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 (2.24)

2.2 Flow Model for Wedge

Fig. 21: The flow geometry of the physical system.

2.3 Mathematical Description

Here we have considered the laminar, steady two-dimensional flow of an incompressible Carreau

viscosity fluid model past a static/moving wedge as shown through Fig. 21. We supposed that

fluid flow is induced by the stretching wedge with velocity  () =  while the free stream

velocity is  () =  where   and  are positive constants. Further  ()  0 shows
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the stretching wedge surface velocity and  ()  0 for constructing wedge surface velocity.

The wedge angle is assumed to be Ω =  where  = 2
+1

is related to the pressure gradient

It is anticipated that the surface temperature () at the sheet considered to be higher than

the ambient fluid temperature ∞ (  ∞)

On the basis of above assumptions and usual boundary layer approximations, Eq. (114)

Eqs. (115) and (118) turn into:
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= 0 (2.25)
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



+ 




= 1

2

2
 (2.27)

and the related boundary conditions for the present problem are:

(1) static wedge

 = 0  = 0  =  at  = 0 (2.28)

 =  () =   → ∞ as  →∞ (2.29)

(2) moving wedge

 =  () =   = 0  =  at  = 0 (2.30)

 =  () =   → ∞ as  →∞ (2.31)

Here  is the kinematic viscosity, 1 =



the thermal diffusivity with  the specific heat,

 the thermal conductivity and  the temperature of the fluid.

Now we introduced the following suitable transformations:
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 = 

r
(+ 1)

2

−1
2  Ψ( ) =

r
2

+ 1

+1
2 ()  () =

 − ∞
 − ∞

, (2.32)

where Ψ denotes the stream function that satisfies equation of continuity with  = Ψ

and

 = −Ψ

which are defined as

 =  0()

 = −
r

2

+ 1

µ
+ 1

2

¶

−1
2 ()− 

µ
− 1
2

¶
−1 0() (2.33)

Thus the transformed non-linear momentum and energy equations can be described as:

∙
∗ + (1− ∗)

n
1 +2(

00
)2
o−3

2
n
1 + 2(

00
)2
o¸


000

+
00
+ 

∙
1−

³

0´2¸

= 0 (2.34)

00 +Pr 0 = 0 (2.35)

with related BCs

(0) = 0  0(0) =  (0) = 1 (2.36)

 0(∞)→ 1 (∞)→ 0 (2.37)

In the above equations, prime denotes the differentiation with respect to variable  ∗ =
³
∞
0

´
the viscosity ratio parameter with 0 the zero shear rate viscosity and ∞ the infinite shear

rate viscosity and chosen to be less than one in present study  the Weissenberg number, 

the stretching/shrinking parameter and Pr the Prandtl number. These quantities are defined

as follows:
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Here positive values of  show the favorable pressure gradient and negative values of  reveal

an opposing pressure gradient. Additionally,  = 0 i.e ( = 0) implies the fluid flow past a flat

plate and  = 1 i.e, ( = 1) means the stagnation point flow. Moreover the constant velocity

ratio parameter   0 and   0 classify with a moving wedge in the same and opposite

directions to the free stream, respectively; however,  = 0 is related to a static wedge.

2.4 Friction and Heat Transport Coefficients

The parameters of engineering interest in the flow and heat transfer problem are the local skin

friction coefficient  and the local Nusselt number  characterizing the surface drag and

wall heat transfer rate, can be defined as:

 =


2()2
,  =



 ( − ∞)
 (2.39)

where  is the surface shear stress and  the surface heat flux given by
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Upon using Eq. (239), the local skin friction coefficient and local Nusselt number become
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Re−12 = − 2√
2− 


0
(0)  (2.42)
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where Re = 

is the local Reynolds number.

2.5 Numerical Simulation and Validation

The system of governing equations (Eqs. (234) and (235)) is highly nonlinear and partially set

of coupled ordinary differential equations. To discover the solution of this system along with

boundary conditions (236) − (237), the shooting technique along with fourth order Runge—
Kutta integration scheme is developed. Since Runge—Kutta Fehlberg method solves only initial

value problem, and so Eqs. (234) and (235) are converted into set of first order equations. For

this purpose, we rewrite the above set of equations as given below:


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00
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i  (2.43)

00 = −Pr 0 (2.44)

The new variables defined below are employed to reduce the above higher order equations

into system of first order differential equations:

 = 1 
0 = 2 

00 = 3 
000 = 03

 = 4 0 = 5 
00
= 05 (2.45)

After inserting Eq. (245) into Eqs. (243) and (244), a new system of ordinary differential

equations is obtained as:
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
0
4 = 5 

0
5 = −Pr 15 (2.47)
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together with the boundary conditions
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The above system of equations is solved with shooting method, the following procedure is

utilized:

1. Firstly choose the limit of ∞ the best suited limit for ∞ is between 5 to 10.

2. Then select suitable initial guesses for 3 (0) and 5 (0)  Initially 3 (0) = −1 and 5 (0) =
05 are selected.

3. Then set of ODEs are solved with the fourth order Runge—Kutta Fehlberg scheme.

4. Finally, boundary residuals (absolute variations in given and calculated values of 2 (∞)
and 5 (∞) is calculated. The solution will converge if the entire values of boundary residuals
are less then tolerance error, which is considered 10−5.

5. If values of boundary residuals are larger than tolerance error, then values of 3 (0) and

5 (0) will be modified by Newton’s method.

2.6 Results and Discussion

This section is simply devoted to exploring the effects of various physical parameters on fluid

velocity and temperature. For this purpose, the numerical results are presented graphically to

illustrates their physical characteristics.

In order to examine results of the present problem a detailed numerical computation is

performed for steady two dimensional flow of Carreau viscosity model generated by a sta-

tic/moving wedge. The partially coupled set of Eqs. (234)− (235) with boundary conditions
(236) and (237) are solved numerically using Runge-Kutta fourth order method along with

shooting technique. Moreover, representative results for the skin friction and Nusselt number

are recorded through tables. The influence of non-dimensional parameters like    
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∗ and  on dimensionless fluid velocity and temperature distribution are determined and

presented through graphs. Additionally, the accuracy of our numerical results is verified with

earlier published results by Rajgopal et al. [58] and Kuo [59] for particular through Table 21.

The good agreement is reported between these results.

Figs. 22 are plotted to examine the influence of velocity ratio parameter  on temperature

 () and velocity  0 () profiles, for both shear thickening (  1) and shear thinning (  1)

fluids. Here temperature and velocity profiles are presented for two different values of . In

detail,  = 0 means wedge angle of zero degree relates to the flow over a flat plate and  = 1

relates the wedge point of 90 ◦, i.e; stagnation point flow. From Figs. 22(ab), we observed

that the fluid velocity is enhanced by uplifting values of the velocity ratio parameter for both

cases. Also it is observed that when flow is near the stagnation-point, the velocity profiles are

closer to each other. However, these Figs. show that the thickness of the momentum boundary

layer for shear thickening fluid is higher as compared with shear thinning fluid. Figs. 22(cd)

depict that by increasing values of the velocity ratio parameter, temperature profile decreases

in both cases, i.e., for shear thinning as well as shear thickening fluids. The thermal boundary

layer thickness reduces for both the flow over flat plate and near the stagnation-point. However,

the temperature profiles are closer to each other if flow is near to the stagnation-point and the

thermal boundary layer thickness is higher for shear thickening fluid.

Figs. 23 are designed to observe the effects of the wedge angle parameter  on the velocity

 0 () and temperature  () profiles in shear thinning and shear thickening fluids. From Figs.

23(ab) we observed that the fluid velocity is enhanced by increasing wedge angle parameter

in both cases. Physically, it is due to the wedge angle parameter that is related with pressure

gradient. Thus, positive values of the wedge angle parameter indicate a favorable pressure

gradient which enhance the flow. Further for positive values of  the velocity profile goes

nearer to the surface of the wedge, and opposite flow does not occur. Moreover, the momentum

boundary layer thickness reduces by increasing wedge angle parameter and then again it is

higher in case of shear thickening fluid. Figs. 23(cd) describe the impact of the wedge angle

parameter on temperature distribution. We observed that the fluid temperature is diminished

with increasing the wedge angle parameter. Moreover, the maximum temperature of the fluid

occurs for the flow over flat plate ( = 0). Physically, it is due to the fluid motion i.e., pressure
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gradient is zero and due to that fluid temperature increases at the surface of wedge. In the case

of static wedge the thermal boundary layer thickness is higher.

Figs. 24 describe the impact of viscosity ratio parameter ∗ on velocity and temperature

profiles for both shear thinning and thickening cases. Here, profiles are presented for two

different values of wedge angle parameter. Here  = 0 (wedge of zero degree) and  = 1

(wedge point of 90◦). We observe a minor dependence of velocity and temperature distributions

on ∗. However, it is interesting to note that graph of velocity and temperature disclose

quite the opposite trends with uplifting ∗ for the shear thinning and shear thickening fluids.

Additionally, these Figs. portray that the momentum and thermal layers thickness become

thick in shear thinning fluid as we increase the viscosity ratio parameter and quite the opposite

is true for shear thickening fluid. Figs. 25 show the impact of viscosity ratio parameter

∗ on the velocity and temperature profiles for both shear thinning and thickening cases with

two different values of . Here  = 0 (static wedge) and   0 and   0 show the moving

wedge in same and inverse directions, respectively. We observe again a little dependence of the

velocity and temperature distributions on ∗. Qualitatively, the effects of ∗ on the velocity

and temperature distributions are same as that of Figs. 24

Figs. 26 is a plot of the variation in the temperature distribution for various values of the

Weissenberg number  and Prandtl number  for both shear thinning and shear thickening

fluids. These Figs. exhibit that the temperature and thermal boundary layer thickness reduce

by uplifting the values of  and  in both shear thinning and shear thickening fluids.

Moreover, it can be observed that the maximum difference between the temperature profiles

occurs at smaller values of  and it reduces as  increases.

Table 21 is created to prove the authenticity of the given numerical results with the

previous published data for shear thinning (0    1) and shear thickening (  1) fluids and

found to be in outstanding agreement.

Table 22 is created to exhibit the influence of the viscosity ratio parameter ∗, velocity

ratio parameter  and wedge angle parameter  on the local skin friction coefficient for both

shear thinning and thickening cases. On the basis of this table it is noticed that the skin friction

coefficient is decreasing function for the wedge angle parameter and velocity ratio parameter in

both cases. It is also observed that the skin friction coefficient is a decreasing function for the
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viscosity ratio parameter in shear thinning case and reverse is true for shear thickening case.

Table 23 is constructed to depict the impact of the viscosity ratio parameter ∗, velocity

ratio parameter  and wedge angle parameter  on the Nusselt number for both cases when

 = 1 and = 3. It is observed that the Nusselt number is a decreasing function for velocity

ratio parameter and viscosity ratio parameter in both shear thinning and shear thickening

cases. It is further discovered that the Nusselt number increasing function for the viscosity

ratio parameter in shear thinning case and reverse is true for shear thickening case.
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Fig. 22: Simulated velocity  0 () and temperature  () profiles for  when  = 30.
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Fig. 23: Simulated velocity  0 () and temperature  () profiles for  when  = 3.
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Fig. 24: Simulated velocity  0 () and temperature  () profiles for  when  = 30,

Pr = 10.
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Fig. 25: Simulated velocity  0 () and temperature  () profiles for  when  = 30,

Pr = 10.
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Table 21: Contrast values of − 00(0) for different  when ∗ = = 0 and  = 1

 Rajagopal et al. [58] Kuo [59] Present study

0 − 0469600 0469600

03 0474755 0775524 0474755

06 0995836 0995757 0995836

12 1335722 1333833 1335722

Table 22: Numerical values of the skin friction coefficient 12 for different

∗  and  when Pr = 1 and  = 3

∗   12

 = 075  = 175

0 03 02 0961012 122977

02 0979278 120104

04 0996203 116925

08 1026900 109174

0001 0 02 0594385 0706434

03 0961107 122963

06 1310680 177143

12 223300 326384

0001 03 −03 1170530 156324

−02 1157030 154768

0 1084620 143226

02 0961107 122963
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Table 23: Numerical values of the local Nusselt number −12 for different

∗  and  when Pr = 1 and  = 3

∗   −12

 = 075  = 175

0 03 02 0916605 0860677

02 0912067 0865626

04 090800 0871354

08 0900932 0886604

0001 0 02 0795146 0758852

03 0916581 0860700

06 104584 0973570

12 144201 133020

0001 03 −03 0664451 0529774

−02 0722834 0605179

0 0825856 0740896

02 0916581 0860700
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Chapter 3

Steady Two-Dimensional Flow of

Carreau Nanofluid

The main focus of this chapter is to present the mathematical modelling and solution for

steady two-dimensional Carreau nanofluid flow over a stretching surface with infinite shear

rate viscosity. The effects of Brownian motion and thermophoresis under the influence of

convectively heated surface are analyzed. Using suitable transformations, nonlinear partial

differential equations are transformed into ordinary differential equations and solved numerically

using the Runge-Kutta Fehlberg method coupled with the shooting technique. The effects of

various physical parameters on the temperature and nanoparticles concentration distributions

are displayed graphically and discussed quantitatively. Finally, a correlation with accessible

results in special cases is performed and found with fabulous consent.
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3.1 Geometry of the Physical Model

Fig. 31: A sketch of the computational domain.

3.2 Governing Problem

Here heat and mass transfer analysis for the steady two-dimensional laminar boundary layer flow

of Carreau nanofluid in the presence of infinite shear rate viscosity over a non-linear stretching

sheet are carried out. The coordinate system is selected in such a way that −axis is measured
along the stretching sheet while −axis is normal to it and the fluid occupies the space   0.
The sheet velocity is assumed to be  () =  where  and  are positive constants. Heat

and mass transfer properties are explored through the Brownian motion and thermophoresis

effects. The temperature  and concentration  at the surface of sheet are considered

to be higher than the ambient temperature ∞ (  ∞) and ambient concentration ∞

(  ∞), respectively. The surface temperature is governed by the convective heating

process which is described by the heat transfer coefficient  and  temperature of hot fluid

below the surface.

The governing boundary layer equations for present flow are given by
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
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+ 




= 1

2

2
+ 

"



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
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
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¶2#
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



+ 




= 

2

2
+



∞
2

2
 (3.4)

with associated boundary conditions

 =  =   = 0 − 



=  ( −  )  =  at  = 0 (3.5)

→ 0  → ∞  → ∞   →∞ (3.6)

Here  the kinematic viscosity of the base fluid,  =
()

()
is the ratio of nanoparticles

heat capacity and the base fluid heat capacity,  the Brownian diffusion coefficient,  the

thermophoretic diffusion coefficient and ∞ the ambient fluid temperature

The following dimensionless quantities are used to transform the governing partial differen-

tial equations into a scheme of ordinary differential equations

 = 

r
(+ 1)

2

−1
2  Ψ( ) =

r
2

+ 1

+1
2 () (3.7)

 () =
 − ∞
 − ∞

,  =
 − ∞
 − ∞

. (3.8)

Consequently, the momentum, energy, and concentration equations and the relevant bound-
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ary conditions reduce to the following

∙
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1 +2(

00
)2
o−3

2
n
1 + 2(

00
)2
o¸


000
+

00−
µ
2

+ 1

¶³

0´2

= 0 (3.9)

00 +Pr 0 +Pr
h
0

0
+

¡
0
¢2i

= 0 (3.10)


00
+Pr

0
+

µ




¶
00 = 0 (3.11)

with

(0) = 0  0(0) = 1 
0
(0) = − [1− (0)]   (0) = 1 (3.12)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (3.13)

In the above equations,  the Lewis number,  the thermophoresis parameter,  the

Brownian motion parameter and  the Biot number. These quantities are defined as follows:

 =



  =

() ( −∞)
 ( )



 =
() ( − ∞)

 ( )∞
,  =

− (2 (+ 1))12


 (3.14)

3.2.1 Physical Parameters of Engineering Significance

The skin friction coefficient  the Nusselt number  and the Sherwood number 

are the parameters of engineering interest defining the surface drag force, temperature and

concentration flux at the surface, respectively. These parameters are defined as:

 =


2()
,  =



 ( − ∞)
  =



 ( − ∞)
 (3.15)

where ,  and  are given by
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 = 0

µ
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 (3.17)

Upon using Eq. (316) & (317) in (315), the skin friction coefficient, Nusselt number and

the Sherwood number become
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2

0
(0)  −12 = −

r
+ 1

2

0
(0)  (3.19)

where Re = 

is the local Reynolds number.

3.3 Solution Methodology

The nonlinear differential equations (39− 311) with boundary conditions (312)− (313) have
been solved numerically using Runge-Kutta Fehlberg order method along with shooting tech-

nique. So firstly Eqs. (39) (310) and (311) are converted into set of first order equations. For

this purpose, we rewrite the above set of equations as given below:


000
=

³
2
+1

´³

0
´2
− 

00h
∗ + (1− ∗) {1 + 2(

00
)2} {1 +2(

00
)2}−32

i  (3.20)

00 = −Pr
h
0

0
+

¡
0
¢2i− Pr 0 (3.21)


00
= −Pr0 −

µ




¶
00 (3.22)

The new variables defined below are utilized to reduce the above higher order equations into

system of first order differential equations:
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 = 1 
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00 = 07 (3.23)

After inserting Eq. (323) into Eqs. (320−322), a new system of ordinary differential equations
is obtained as:
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together with the boundary conditions
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For the purpose of numerical computations of the above system of equations using Runge-

Kutta method, the numerical computations require seven initial conditions but only four initial

conditions are known. However, the values of  0(∞)  (∞) and  (∞) are known and these end
values are used to guess three unknown initial conditions with the Newton Raphson iteration.

Here 1, 2, 3 are the initial guesses for the values of 
00(0),  (0) and 0 (0). Thus, in the

present study the value of  = max is taken to be 10 and step-size is taken to be ∆ = 001

with relative error tolerance 10−5
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3.4 Results and Discussion

The prime goal of this section is to comprehend the physical aspects of mathematical and

numerical model. The simulated results of non-dimensional temperature and concentration

fields are presented graphically for varying values of physical parameters. For illustration,

numerical results are shown in Tables 31 and 32 and Figs. 32− 39
Taking into account the obtained numerical results, Figs. 32(a− d) delineate the influence

of Weissenberg number  on the temperature  () and concentration  () profiles for both

shear thinning and shear thickening fluids. From these Figs., it is observed that for larger

values of the Weissenberg number, the temperature and nanoparticle concentration enhance in

shear thinning (  1) fluid but quite the opposite behavior is prominent in shear thickening

(  1) fluid. Same pattern has been exposed for thermal and concentration boundary layer

thicknesses.

The effects of thermophoresis parameter  on the temperature and nanoparticles concen-

tration profiles for both shear thinning and shear thickening fluids are presented through Figs

33(a− d) A similar behavior appears for both the temperature and nanoparticles concentra-
tion fields and we observed that the magnitude of the temperature distribution as well as the

nanoparticles volume fraction is increased for increasing values of thermophoresis parameter.

This is due to the thermophoresis force produced by the temperature gradient moves the fluid

fastly away from the sheet. In this manner it pushes the particles from hot surface towards

the ambient fluid and thus moves larger extent of the fluid. This leads to limited rise in fluid

temperature and concentration occur. Figs. 34(ab) present the effects of the Brownian mo-

tion parameter  on the temperature and nanoparticles concentration profiles. By varying

the values of , examining both the shear thinning and shear thickening fluids, we noticed

that the temperature and thermal boundary layer thickness are increased while nanoparticle

concentration and concentration boundary layer thickness are decreased. By definition, aug-

mentary the Brownian motion parameter, the intensity of this chaotic motion enhances the

kinetic energy of the nanoparticles and as a result nanofluid temperature grows.

Behavior of the Lewis number  on the temperature and concentration profiles is pre-

sented through Figs. 35(ab). It is observed that the Lewis number significantly affects the

temperature and nanoparticles concentration distributions for both shear thinning and shear
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thickening fluids. This is due to the fact that the augmented values of Lewis number parallel

to stronger viscous diffusion as compared to mass diffusion. This leads to a improvement in

molecular motions and their interactions due to this temperature of the fluid grows. On the

other hand, a relatively opposite behavior is noticed for the concentration profiles. Physically,

the mass transfer rate enhances as the Lewis number increases. For a base fluid of certain

momentum diffusivity, a higher Lewis number possesses low Brownian diffusion coefficient and

this result in a reduced penetration depth for the nanoparticle concentration boundary layer

thickness.

In order to illustrate the influence of the viscosity ratio parameter ∗ on the temperature

and concentration distributions we have plotted Figs. 36(ab) and 37(ab) examining both

shear thinning and shear thickening fluids. From these Figs., we observe a minor dependence of

temperature and concentration distributions on ∗. However, it is interesting to note that graph

of temperature and concentration disclose quite the opposite trends with uplifting ∗ for the

shear thinning and shear thickening fluids. Moreover the same trend is depicted for temperature

and concentration distributions. Additionally, these Figs. portray that the boundary layer

thickness becomes thin in shear thinning fluid as we increase the viscosity ratio parameter and

quite the opposite is true for shear thickening fluid.

The effects of Biot number  on the temperature and nanoparticles concentration distribu-

tion are illustrated in Figs. 38(ab) and 39(ab). These Figs. put in evidence that the effect

of enhancing Biot number is to increase significantly both temperature and related boundary

layer thickness. This is because of the fact that enhancing Biot number results in a reduction

in the thermal resistance of the surface and as a result of convective heat transfer to the fluid

rises. Qualitatively, similar results have been found for increasing effects of Biot number on the

nanoparticles concentration distribution.

Table 31 is created to demonstrate the influence of Prandtl number Pr, the thermophoresis

parameter , the Brownian motion parameter , viscosity ratio parameter ∗, Biot number

 and Lewis number  on the Nusselt number −12  for shear thinning and shear

thickening fluids. On the evident of table 31, the local Nusselt number is a decreasing function

of the thermophoresis parameter, Brownian motion parameter and Lewis number in shear

thinning and shear thickening fluids. Moreover the effect of viscosity ratio parameter ∗ on the
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Nusselt number are quite the opposite for shear thinning (  1) and shear thickening (  1)

fluids. By uplifting ∗ the Nusselt number is increased for shear thinning fluid and decreased

for shear thickening fluid. Table 32 provides numerical results of the reduced Sherwood

number −12 for selected values of viscosity ratio parameter, thermophoresis parameter,

Brownian motion parameter, Prandtl number, Biot number and Lewis number when  = 25

and = 20 are fixed. From this table, it can be seen that the Sherwood number enhances by

uplifting the Prandtl number, Lewis number and Brownian motion parameter in both cases. It

is also noted that rise in thermophoresis parameter depreciates the mass transfer rate in shear

thinning and shear thickening fluids. It is further observed that for increasing Biot number

and Nusselt number, Sherwood number is decreased for both shear thinning (  1) and shear

thickening (  1) cases. Additionally the effect of viscosity ratio parameter ∗ on the Sherwood

number are quite the opposite for shear thinning and shear thickening fluids. By increasing the

∗ the Sherwood number is increased for shear thickening and decreased for shear thing fluids.

To validate the accuracy of the outcomes, the comparison of the results of present study with

the existing reported works in the literature has been accomplished and tabulated in Table

33. The comparisons indicate excellent agreement with former pros.
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Fig. 32: Effect of Weissenberg number on temperature () and concentration () profiles.

50



η

θ

0 1 2 3 4
0

0.1

0.2

0.3

0.4 Le=0.7, Pr =2, m=5/2, We=2,
Nb=0.4, γ = 0.5, β*=0.001

Nt = 0.2, 0.4, 0.6

(a) n = 0.75

η

θ

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5 Le=0.7, Pr=2, m=5/2, We=2,
Nb=0.4, γ=0.5, β*=0.001

Nt = 0.2, 0.4, 0.6

(b) n = 1.75

η

φ

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Le=0.7, Pr=2, m=5/2, We=2,
Nb = 0.4, γ = 0.5, β*=0.001

Nt = 0.2, 0.4, 0.6

(c) n = 0.75

η

φ

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Le=0.7, Pr=2, m=5/2, We=2,
Nb=0.4, γ = 0.5, β*=0.001

Nt = 0.2, 0.4, 0.6

(d) n = 1.75

Fig. 33: Effect of Thermophoresis parameter  on temperature () and concentration

() profiles.
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Fig. 34: Effect of Brownian motion parameter on temperature () and concentration ()

profiles.
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Fig. 35: Effect of Lewis number on concentration () profile.
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Fig. 36: Effect of ∗ on temperature  () profile .
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Fig. 37: Effect of ∗ on concentration profile  ().
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Fig. 38: Effect of Biot number  on temperature  () profile .
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Fig. 39: Effect of Biot number  on concentration  () profile.
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Table 31 : Numerical values of the local Nusselt number −12 for different

     Pr ∗ when  = 25 and  = 2

∗     Pr −12

 = 07  = 17

00 02 04 07 05 30 0355630 0365701

02 0356590 0364943

05 0357821 0363465

07 0358532 0362453

09 0359177 0360662

01 02 04 07 05 20 0355635 0365697

04 0340856 0353319

06 0324911 0340433

01 02 05 07 05 30 0327875 0338728

07 0269675 0281788

09 0211655 0224270

07 05 30 0355635 0365697

10 0338606 0346846

14 0323415 0331075

02 0198773 0201527

04 0314801 0322421

08 0439855 0456354

12 0504607 0527490

20 0352722 0361211

30 0355635 0365697

40 0342344 0351365
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Table 32 : Numerical values of the local Sherwood number −12 for different

      ∗ when  = 25 and  = 2

∗     Pr −12

 = 07  = 17

00 02 04 07 05 30 1099024 1117449

02 1107000 1102998

05 1117527 1075874

07 1123788 1159907

09 1129561 1142954

01 02 04 07 05 20 1099066 1117383

04 1027651 1019262

06 0972770 0929015

01 02 05 07 05 30 1129594 1149216

07 1164477 1185032

09 1182824 1203461

07 05 30 1099066 1117383

10 1416732 1470551

14 1770195 1844287

02 1136428 1165137

04 1108624 1129932

08 1079755 1091175

12 1065296 1070680

20 0806678 0766691

30 1099066 1117383

40 1357110 1409126
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Table 33: Comparison of the results of the local rate of heat transfer at the surface

−12 for diverse values of Pr. when  = 01  = 10,  = 2

∗ = 0  = 3,  = 05 are fixed.

Pr   Ref[77] Present study

 = 07  = 17  = 07  = 17

1 01 10 061401 073544 0614011 0735441

3 01 10 124403 141979 1244032 1419790

5 01 10 166360 186146 1663601 1861463
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Chapter 4

Radiative Heat Transfer in

Stagnation Point Flow of MHD

Carreau Fluid over a Stretched

Surface

The current chapter presents a study of MHD stagnation point flow of Carreau fluid in the

presence of infinite shear rate viscosity. Moreover, heat transfer analysis in the existence of

non-linear radiation with convective boundary condition is performed. Effects of Joule heating

is observed and mathematical analysis is presented subject to viscous dissipation. The suit-

able transformations are employed to alter the leading partial differential equations to a set

of ordinary differential equations. The subsequent non-straight common ordinary differential

equations are solved numerically by an effective numerical approach specifically Runge-Kutta

Fehlberg method alongside shooting technique. The numerical results for Carreau fluid velocity

and temperature fields are presented graphically.
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4.1 Description of the Problem

We examine the steady boundary layer flow of an incompressible Carreau viscosity liquid model

in the region of stagnation point over a stretching surface. The flow is initiated by a linear

stretching surface. The coordinate system is designated in such a way that − axis is measured
alongside the stretching sheet while −axis is normal to it and fluid conquers the space   0.
The magnetic field 0 is uniform and applied in  direction and the induced magnetic field is

neglected under low magnetic Reynolds number assumption. The sheet velocity is assumed to

be () =  with   0 is stretching rate. The velocity of exterior flow is ∞ =  (  0)

where  is constant. Moreover, heat transfer analysis is completed along the nonlinear thermal

radiation with convective boundary condition at the surface. The viscous dissipation and Joule

heating effects are also incorporated.

Under the above assumptions and the usual boundary-layer approximations, the governing

boundary layer equations for present flow are given by




+




= 0 (4.1)





+ 




= ∞

∞


+ 

µ
2

2

¶⎡⎣∗ +(1−∗)(1 + Γ2µ


¶2)−1
2

⎤⎦
+(− 1)(1− ∗)Γ2

µ
2

2

¶µ




¶2(
1 + Γ2

µ




¶2)−3
2

+
20

(∞ − )  (4.2)





+ 




= 1

2

2
− 1






+

20


2

+




µ




¶2 ⎡⎣∗ +(1−∗)(1 + Γ2µ


¶2)−1
2

⎤⎦  (4.3)

Radiative heat flux used in Eq. (43) whose expression via Roseland approximation (cf.

Roseland [78]) is given by

 = −
µ
4∗

3∗
 4



¶
 (4.4)
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For a planer boundary layer flow over a heated surface, Eq. (45) can be written as (cf.

Shahzad et al. [79])

 = −16
∗

3∗

µ
 3





¶
 (4.5)

Using Eq. (45) the energy Eq.(43) can be composed as
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2

⎤⎦  (4.6)

The boundary conditions of the present problem are

 =  =   = 0 − 



=  ( −  ) at  = 0 (4.7)

 = ∞ →   → ∞ as  →∞ (4.8)

The following dimensionless quantities are utilized to change the governing partial differen-

tial equations into a scheme of ordinary differential equations

 = 

r



 Ψ( ) = 

√
()  () =

 − ∞
 − ∞

,

 =  0(),  = −√(), (4.9)

where  = ∞ + [1 + ( − 1)] with  =

∞ 

Consequently, momentum and energy equations with the relevant boundary conditions are

reduced to the accompanying ordinary differential equations
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with

(0) = 0  0(0) = 1 
0
(0) = − [1− (0)]  (4.12)

 0(∞)→ ∗ (∞)→ 0 (4.13)

where  =

q
20


is the magnetic parameter, ∗ =  the velocity ratio parameter,  =

∗
4∗ 3∞

the radiation parameter,  =
()2

(−∞)
the Eckert number and  = 



p


the local

Biot number

4.1.1 Physical Parameters of Engineering Significance

The skin friction coefficient and the Nusselt number are the parameters of engineering interest

which characterize the surface drag and wall heat transfer. These parameters are defined as

 =


2()
,  =



 ( − ∞)
 (4.14)

where  and  are given by
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Upon using Eq. (415), the local skin friction coefficient and local Nusselt number become
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¾
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4.2 Solution Methodology

The governing flow equations (Eqs. (410) and (411)) are highly nonlinear and partially coupled

set of ordinary differential equations. In order to find solution of these equations along side

boundary conditions (412)−(413), the shooting technique along with fourth-fifth order Runge—
Kutta integration scheme is utilized. Since Runge—Kutta Fehlberg method solves only initial

value problem. So firstly Eqs. (410) and (411) are converted into set of first order equations.

For this purpose, we rewrite the above set of equations as given below:


000
=

³

0
´2
− ∗2 − 

00 −2 (∗ −  0)h
∗ + (1− ∗) {1 + 2(

00
)2} {1 +2(

00
)2}−32

i  (4.17)

00 = −Pr 0 − 4

3





h
{1 + ( − 1) }3 0

i
−2 Pr

¡
 0
¢2

−Pr ¡ 00¢2 ∙∗ + (1− ∗)
n
1 +2(

00
)2
o−1

2

¸
 (4.18)

The new variables defined below are utilized to reduce above higher order equations into

system of first order differential equations:

 = 1 
0 = 2 

00 = 3 
000 = 03

 = 4 
0 = 5 

00 = 05 (4.19)

After inserting Eq. (419) into Eqs. (417) and (418), a new system of first-order ordinary
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differential equations is obtained as:


0
1 = 2 

0
2 = 3 

0
3 =

£
22 − 13 − ∗2 −2 (∗ − 2)

¤
∗ +(1−∗) £1 + 223

¤ £
1 +223

¤−3
2

 (4.20)


0
4 = 5 (4.21)


0
5 =
−3Pr15 − 12 ( − 1) [1 + ( − 1) 4]2 25

3 + 4 [1 + ( − 1) 4]3

−
3 Pr (3)

2
h
∗ + (1− ∗)

©
1 +2(3)

2
ª−1

2

i
3 + 4 [1 + ( − 1) 4]3

+
2 Pr (2)

2

3 + 4 [1 + ( − 1) 4]3
(4.22)

together with the boundary conditions

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

3

4

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

1

2

− (1− 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 (4.23)

where 1 and 2 are the initial guesses for 
00(0) and 0 (0) 

The RK-Fehlberg method is an iterative algorithm which tries to find appropriate initial

conditions for related initial value problem. For our problem, computations are based on the

following steps:

1. Firstly chose the limit of ∞ and the best suited limit for ∞ is between 5 to 10.

2. Then select suitable initial guesses for 3 (0) and 4 (0)  Initially 3 (0) = −1 and 4 (0) =
05 are selected.

3. Then set of ODEs are solved with the help of fourth-fifth order Runge—Kutta integration

scheme.

4. Finally, boundary residuals (absolute variations in given and calculated values of 2 (∞)
and 4 (∞)) is calculated. The solution will converge if entire values of boundary residuals are
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less then tolerance error, which is considered 10−5.

5. If values of boundary residuals are larger than tolerance error, then values of 3 (0) and

4 (0) will be modified by Newton’s method.

4.3 Results and Discussion

In order to examine results of the present study a numerical computation is performed for

MHD stagnation point flow of Carreau fluid with infinite shear rate viscosity and nonlinear

radiation over a convectively heated surface. The partially coupled set of Eqs. (410)− (411)
with boundary conditions (412) and (413) are tackled numerically using Runge-Kutta fourth-

fifth order method along with shooting technique. Moreover, representative outcomes about the

skin friction and Nusselt number are recorded through tables. The influence of non-dimensional

parameters like ∗  ∗ ,     and  on dimensionless fluid velocity and temper-

ature distributions are determined and presented through graphs. Additionally the accuracy of

our numerical results is verified with earlier published results by Mahapatra and Gupta [80],

Nazar et al. [81] and Ishak et al. [82] for particular cases through table 41. A good agreement

is reported between these results.

Fig. 41 represents a considerable variation in the velocity  0 () and the corresponding

boundary layer thickness at points where free stream velocity is different from sheet velocity.

It is noted that the velocity increases and the boundary layer thickness decreases with an

increase in ∗ for both shear thinning and thickening cases. Additionally an increasing value

of ∗ depicts a significantly decrement in temperature  ()  Fig. 42 is plotted to inspect

the impact of magnetic parameter  on temperature () and velocity  0() profiles, for both

shear thickening (  1) and shear thinning (  1) fluids. It is observed from these Figs. that

increasing the magnetic parameter results in diminishing the velocity field and enhancement in

temperature field. Physically  shows the ratio of electromagnetic force to the viscous force

and strong values of  represents an increase in the Lorentz force. This is drag-like force that

creates more resistance to transport phenomenon and fluid velocity as well as boundary layer

thickness diminish. Fig. 43 describes the impact of viscosity ratio parameter ∗ on velocity

 0 () and temperature () profiles for both hydromagnetic and hydrodynamic cases. It is
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adequate to note that plots of velocity and temperature uncover inverse pattern with increasing

∗. It is noted that velocity profile depicts a considerable decrease with the higher values of

∗ and opposite trend was observed for temperature profile. From Fig. 44 it is seen that

increasing values of  (power law index) expand the fluid velocity for ∗  1 and opposite trend

is observed for ∗  1. Moreover by increasing the values of power law index  from 08 to 16

temperature profile decreases, when stretching velocity is greater than the free stream velocity.

In addition when ∗  1 temperature profile decreases.

Fig. 45 is designed to observe the effects of the Biot number  and Prandtl number 

on the temperature profile () for both the hydrodynamic and hydro magnetic flows. From

these Figs., it is observed that stronger values of the Biot number result in higher convection

at the stretching sheet which increases the temperature of the fluid. It is also observed that

in hydrodynamic flow thermal boundary layer is thicker as compared to hydromagnetic flows.

Additionally increasing values of Pr decreases the temperature profile. Since the low Prandtl

number depicts fluids with high thermal conductivity and this creates thicker thermal boundary

layer structures than that for the large Prandtl number. Fig. 46 is a plot of the variation in

the temperature distribution for various values of the temperature ratio parameter  and the

radiation parameter  for both hydrodynamic and hydromagnetic flows. These results reveal

that temperature distribution decreases by increasing the values of radiation parameter. The

thermal boundary layer thickness contracts for the greater radiation parameter. And the results

are totally opposite for the temperature ratio parameter . The temperature ratio parameter

relates to higher wall temperature as compared to ambient fluid and as a result temperature

of the fluid increases. Additionally thermal boundary layer thickness rises for higher values

of the temperature ratio parameter. Fig. 47 describes the effects of Eckert number  on

temperature profile (). It is noted that the increasing values of Eckert number flourishes the

temperature profile.

Table 42 shows the joint effects of the magnetic parameter  and the velocity ratio

parameter ∗ on the wall shear stress 12. Both parameters increase the magnitude of

the wall shear stress 12 for both shear thinning and thickening fluids. The skin friction is

reduced for the higher values of the Weissenberg number  in the shear thinning fluid and is

increased in the shear thickening fluid. Moreover, it is seen that the Nusselt number −12
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is decreased with as the strong magnetic field reduce the extent of heat transfer rate. Table

43 describes the effect of radiation parameter  on the Nusselt number 
−12. The

amount of heat transfer rate decreases with the increasing values of  In addition the Nusselt

number increases with strong values of Prandtl number. It is because of the fact that the

Prandtl number controls the relative thickness of the thermal boundary layer.
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Table 41 : Contrast values of − 00(0) for ∗ when ∗ = = = 0 and  = 1

∗ Mahapatra and Gupta [80] Nazar   [81] Ishak   [82] Present results

001 − − 09980 0998028

010 09694 09694 09694 0969650

020 09181 09181 09181 0918165

050 06673 06673 06673 0667686
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Table 42 : Surface drag force 12 and heat transfer rate −12 for

different values of ∗  ∗ and  when Pr = 15  = 03

 = 15  = 01 and  = 1

  ∗ ∗ 12 −12

 = 075  = 175  = 075  = 175

0 3 03 0001 −0784896 −1053800 0500565 0502467

03 −0806517 −1090060 0500368 0502376

06 −0867699 −1194930 0499803 0502112

08 −0926226 −1298290 0499255 0501852

03 2 −0831271 −1012570 0500599 0501957

3 −0806517 −1090060 0500368 0502376

35 −0795918 −1125350 0500266 0502540

4 −0786367 −1158540 0500172 0502682

03 3 03 −0806517 −1090060 0500368 0502370

07 −0427685 −0490977 0504149 0504164

13 0505230 0598867 0501464 0501690

17 1197720 1827620 0497663 0499169

03 3 03 00 −0806437 −1090210 0500367 0502377

02 −0821804 −1059190 0500513 0502218

04 −0836166 −1024390 0500645 0502024

06 −0849679 −1007155 0500765 0366731
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Table 43 : Heat transfer rate −12 for different values of

∗ Pr   and  when  = 03 ∗ = 03

 = 01 and  = 3

    ∗ −12

 = 075  = 175

2 15 07 02 0001 0273236 0272824

4 0266097 0264471

6 0258931 0257190

8 0253453 0251803

2 1 0181550 0182882

12 0207981 0208794

14 0247517 0247571

16 0303518 0302598

15 17 0435903 0429010

27 0576677 0564581

37 0711888 0694991

07 04 0503225 0511048

06 0645731 0663615

08 0734863 0760775

02 00 0273236 0272824

02 0273218 0272874

04 0273201 0272930

06 0273184 0224812

08 0273168 0236665
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Chapter 5

OnMultiple Solutions of Carreau

Fluid Flow over an Inclined

Shrinking Sheet

This chapter presents the multiple solutions of a non-Newtonian Carreau fluid flow over a

nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing

boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The

suitable transformations are employed to alter the leading partial differential equations to a set

of ordinary differential equations. The consequential non-linear ODEs are solved numerically

by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method ac-

companied by shooting technique. Multiple solutions are presented graphically and results are

shown for various physical parameters. It is important to state that the velocity and momentum

boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening

fluid while opposite trend is observed for shear thinning fluid. Another important observation

is that the wall shear stress is significantly decreased by the viscosity ratio parameter ∗ for

the first solution and opposite trend is observed for the second solution.
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5.1 Mathematical Formulation

Here, we have discussed a two dimensional laminar steady boundary layer flow of an incom-

pressible Carreau fluid flow over an inclined shrinking sheet which is inclined with an acute

angle  The −axis is along the sheet in the direction of motion and −axis is normal to it.
The sheet has uniform temperature  with ∞ (  ∞) as the ambient fluid temperature

and it is moving with a non-linear velocity  = . The parameters  and  ( 0) are

positive real numbers relating to the shrinking rate.

With Carreau fluid model and usual boundary layer approximations, the governing equations

of mass, momentum and energy can be written as




+




= 0 (5.1)


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¶⎡⎣∗ +(1−∗)(1 + Γ2µ
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¶2)−1
2

⎤⎦
+(− 1)(1− ∗)Γ2

µ
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¶µ

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¶2(
1 + Γ2

µ




¶2)−3
2

+ ( − ∞) cos() (5.2)





+ 




= 1

2

2
 (5.3)

The relevant momentum and thermal boundary conditions for the present problem are

 = − =   = − ()  =  at  = 0 (5.4)

→ 0  → ∞ as  →∞ (5.5)

Now using the dimensionless variables (cf. Chapter 3, Eq. (37 − 38)) into Eqs. (51)
to (53) and boundary conditions (54) and (55), one can get the following set of ordinary
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differential equations

∙
∗ + (1− ∗)

n
1 +2(

00
)2
o−3

2
n
1 + 2(

00
)2
o¸


000

+
00 −

µ
2

+ 1

¶³

0´2

+ cos() = 0 (5.6)

00 +Pr 0 = 0 (5.7)

the corresponding boundary conditions

(0) =   0(0) = −1 (0) = 1 (5.8)

 0(∞)→ 0 (∞)→ 0 (5.9)

Further,  =
³

2
+1

´
1

22−1  (−∞) is the local Grashof number and  = −
(+1)

2

−1
2



0 the suction parameter.

5.1.1 Engineering Parameters of Interest

The parameters of engineering interest in the flow and heat transfer of Carreau fluid are the

skin friction  and the Nusselt number  These parameters characterize as surface drag

and wall heat transfer which can be defined

 =


2()
,  = − 

( − ∞)

µ




¶
 (5.10)

where  is given by

 = 0

µ




¶⎡⎣∗+(1−∗)(1 + Γ2µ


¶2)−1
2

⎤⎦  (5.11)

Using the variables (511), we obtain
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³

00
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´2¾−1

2

#


Re−12  = −
r

+ 1

2

0
(0)  (5.12)

5.2 Numerical Method and Validation

The nonlinear differential equations (56) and (57) with boundary conditions (58) and (59)

have been solved numerically using Runge-Kutta Fehlberg fourth-fifth order method along with

shooting technique. Thus, Eqs. (56) and (57) have been converted into first-order equations

as follows:


0
1 = 2 (5.13)


0
2 = 3 (5.14)


0
3 =

h³
2
+1

´
22 − 13 − cos ()

i
∗ +(1−∗) £1 + 223

¤ £
1 +223

¤−3
2

 (5.15)


0
4 = 5 (5.16)


0
5 = −Pr 15 (5.17)

where 1 =  , 2 =  0 3 =  00, 4 =  5 = 0 and boundary conditions (58) and (59) become

1(0) =  2(0) = −1 2(∞) = 0 4(0) = 1 4(∞) = 0 (5.18)

In view of the above boundary conditions, out of five only three initial conditions are

known and we begin solution procedure by two initial guesses of  00(0) and 0(0) with the

Newton-Raphson iteration to assure the iteration convergence required to satisfy asymptotically

boundary conditions at infinity. Thus, in the present study the value of  = max is taken to

be 10 and step-size is taken to be ∆ = 001 with relative error tolerance 10−5 It is critical

to take note that the dual solutions are attained by setting two different initial guesses for the
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values of  00(0), where both profiles (upper and lower solutions) satisfy the far field boundary

conditions (59 and 510 ) asymptotically but with different shape.

5.3 Results and Discussion

In the present segment we will examine the behavior of skin friction coefficient, Nusselt num-

ber, velocity and temperature profiles for different values of developing parameter such as

Weissenberg number , power law index , viscosity ratio parameter ∗, inclination angle ,

suction parameter  and Grashof number .

Here, we assigned physically realistic numerical values to the controlling parameters with a

particular true objective to get a knowledge about the momentum and thermal fields. For this

we fixed  = 15  = 12  = 30  = 2 ∗ = 01  = 15 Pr = 1 and  = 3 as the

default values. Scheme of skin friction coefficient and Nusselt number in contrast to distinctive

estimations of physical parameter is displayed in Figs. 51− 55. In actual, when we study
the infinite shear rate viscosity in the case of shrinking sheet then eventually two solutions may

appeared. Fig. 51 shows the variation of skin friction coefficient verses  for power law index

. It is observed through this Fig. that dual solutions exist for   , where the critical

values of  are  = 182181 19810 19066. Here, we can see that both the branches describe a

decreasing behavior for increasing values of power law index  Also we can see that increasing

values of power law index  flourish the critical values. Through Fig. 51 it is also noted that

the solution does not exist for   

Fig. 52 discloses the effect of viscosity ratio parameter ∗ on the skin friction coefficient

in shrinking case. For both the situations, the critical values of  corresponding to several

values of viscosity ratio parameter ∗ are listed in this Fig. For the dual solution, it is seen

through graphs that the skin friction decreases with the increase of viscosity ratio parameter.

As a consequence of computations performed in this study, it is depicted from this Fig. that

dual solutions exist for  = (19700 19490 19231) and where   1 are the critical value

of , a point for which upper and lower solutions get together. We can also see that beyond

 = (19700 19490 19231)  , no solution exists because the boundary layer separates from

the surface at a critical value () beyond which the boundary layer approximation is not valid.

77



It is also observed that critical values decreases for increasing values of ∗.

Fig. 53 depicts the behavior of ∗ on Nusselt number. For the first solution, it is seen

through graphs that the Nusselt number increases with the increase of viscosity ratio parameter.

On the other hand, for second solution it can be observed that increasing viscosity ratio para-

meter decreases the Nusselt number. Dual solutions exist for  = (19700 19490 19231)  .

For    dual solutions does not exist. It can also seen that for increasing values of viscosity

ratio parameter critical values decreases.

From Fig. 54 we noticed that the increasing value of Weissenberg number  increases

the skin friction coefficient for both the first and second solutions. Physically Weissenberg

number is the ratio of the relaxation time of the fluid and the specific process time. It grows

the thickness of fluid and that is why velocity of the fluid depreciates. Critical values of  in Fig.

54 are  = 19139 19229 19329. Here solutions exist for   While the opposite behavior

was observed in Fig. 55. Increasing values of Weissenberg number reduce the Nusselt number

in both first and second solutions. Dual solutions exist for  (= 19139 19229 19329)  

It can also observed that for increasing values of Weissenberg number  critical value also

increases.

Figs. 56− 59 are the velocity and temperature profiles for emerging parameters. Through
Fig. 56, it portrays that when we increase , temperature profile for both first and second

solution presents the same increasing behavior. Physically  is the ratio of elastic forces and

viscous forces, it enhances the thickness of fluid so temperature increases.

In Fig. 57 dual velocity profiles are shown for suction parameter  = 2 3 and 4 Con-

sequently, we observed that in case of higher suction, there happens more separation between

these two solutions. These plots designate that boost in the fluid velocity is marked with in-

creasing values of the suction parameter  in case of first solution, whereas the fluid velocity

decreases by enriching suction parameter for the second solution. Furthermore, a cautious per-

ception of Fig. 57 states that the thickness of boundary layer can be boosted with the growth

of suction parameter . Actually, the suction lessens the drag force to avoid the separation of

boundary layer.

For completeness we have also included plots of the velocity field for varying values of the

viscosity ratio parameter ∗ examining both the first and second solutions. From Fig. 58
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we see the little dependence of the velocity field on ∗ Increasing ∗ gives the reduction in

velocity profile because ∗ is a viscosity ratio parameter. It is sufficient to note that plots of

velocity reveal quite the opposite trend with uplifting ∗ when compared with those of the local

Weissenberg number 

Fig. 59 shows in detail the characteristics of momentum layer for varying value of the

Grashof number . It is observed that uplifting values of  result in an increase in velocity

and corresponding boundary layer thickness for first solution and for second solution a dual

trend is noticed. Thickness of boundary layer increases near the wall and decreases beyond the

wall. The Grashof number () is a dimensionless number which approximates the ratio of the

buoyancy to viscous force acting on a fluid. It frequently rises the fluid in both solutions.

The influence of inclination angle  on velocity and temperature profile is presented in Fig.

510. In order to investigate the impact of the inclination angle  on the boundary layer flow,

we fix the value of emerging parameters and varying the value of , examining both the first

and second solution. From Figs. 510(a) and 510(b), we noticed that increasing the values

of the inclination angle  decreases the velocity profiles while the opposite trend is observed

for temperature profile. Physically increase in inclination angle decrease the buoyancy forces

so velocity profile decreases.

Table 51 is drawn for the different values of the suction parameter  to analyze the skin

friction coefficient and local Nusselt number. It is observed from this table that the magnitude

of both the skin friction and Nusselt number increases with the increase of suction parameter.

Moreover, Table 52 results are in good agreement with earlier works in particular cases and

admirable agreement has been noted.
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Table 51 : Analysis for skin friction and rate of heat transfer with  = 0,  = 1,  = 0

and  = 0

  00(0) 0(0)

2 09882 −15790
3 26180 −28137
4 37321 −38676

Table 52 : Comparison of the results for the reduced Nusselt number −0(0) when  = 0

 = 0  = 1  = 0 ∗ = 0  = 0 and  = 0

Pr Ref. [83] Ref. [84] Ref. [85] Ref. [86] Present study

First solution Second solution

07 04539 04539 04539 0454374 0454501 0377110

20 09113 09114 09114 0911155 0911411 0881301

70 18954 18954 18954 1822020 1895400 1880900
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Chapter 6

Dual Solutions of Carreau Nanofluid

Flow over an Inclined Shrinking

Sheet

This chapter deals with the dual solutions of Carreau viscosity model over a shrinking sheet

with infinite shear rate viscosity. The effects due to heat transfer mechanism along with the

nano-particles are also considered with the thermophoresis and Brownian motion. The study

is explored under the response of non-linear thermal radiation and heat generation/absorption.

Moreover, convective boundary conditions are also taken into account. The governing equations

are transformed into nonlinear ODEs by using suitable transformations. These developing

leading non-linear equations have been solved numerically by means of Runge-Kutta Fhelberg

method. The graphs of the velocity, temperature and concentration profiles are presented. Dual

solutions are detected and exist for the shrinking sheet. Additionally, the critical values have

been achieved by utilizing the plots of reduce skin friction and Nusselt number. The analysis

reveals that the multiple solutions occurs for the certain choice of essential physical parameters;

for example, suction parameter , Grashof number 1, 2, inclination angle , Lewis number

, Brownian motion  and thermophoresis parameter .
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6.1 Geometry of the Physical Model

Fig. 61 : Physical configuration of the system.

6.2 Mathematical Formulation

Consider a steady two-dimensional flow of an incompressible Carreau nanofluid over a inclined

shrinking sheet which is inclined an acute angle . A cartesian coordinate system is employed in

such a way that the −axis is a coordinate measured along the shrinking sheet and the −axis is
occupied to be normal to the sheet. We assume that the shrinking sheet has a variable velocity

(). Furthermore, effects of heat and mass transfer are measured while the conditions at the

surface are of convective type (see Fig 61). Also behavior of thermal radiation and heat gen-

eration/absorption are taken into account. Moreover, flow analysis consists of Brownian motion

and thermophoresis effects. Under the usual boundary layer and Rosseland approximations,

the present flow problem is governed by the following equations:




+




= 0 (6.1)
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
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2
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The boundary conditions related to the given problem are:

 = −()  =  − 



=  ( −  ) −




= ( −) at  = 0 (6.5)

→ 0  → ∞ ,  → ∞ as  →∞ (6.6)

By considering the dimensionless variables (Eq. (37− 38) cf. Chapter 3), the momentum,
energy and concentration equations are transformed as
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00 +Pr0 +



00 = 0 (6.9)

Here (  1) is temperature ratio parameter,  =
0

()
the internal heat parameter (where

the heat source (  0) or sink (  0)), 1 =
³

2
+1

´
1

22−1  ( − ∞) and 2 =³
2
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´
1

22−1 ( − ∞) are the local Grashof numbers.

And the related boundary conditions (65) and (66) after using variables (Eq. (37 − 38)
cf. Chapter 3) become

(0) =   0(0) = −1 0(0) = − [1− (0)]  0(0) = −1 [1− (0)]  (6.10)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (6.11)

In above equation 1 =



p


is the mass Biot number.

6.2.1 Engineering Parameters of Interest

Here skin friction coefficient  Nusselt number  and Sherwood number  are

 =


2()
,  =
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 (6.12)

where ,  and  are given by
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Using the variables (613), we obtain
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Re−12  = − 
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¾
 (6.15)

Re−12  = −
r

+ 1

2
0 (0)  (6.16)

6.3 Numerical Results and Discussion

This segment shows the information of the validations and some physical outcomes. The detail

of the effects of 1 and 2 on the flow, heat and mass transfer characteristics of Carreau

nanofluid toward a shrinking sheet has been showed in this section . This empowers us to

complete the numerical calculations for the velocity, temperature and concentration fields with

the boundary layer for different values of the important parameters. For numerical investigation,

we selected the values to relevant parameters as  = 15  = 30◦  = 2  = 12 ∗ = 05

1 = 15 2 = 15 Pr = 1  = 1  = 1  = 01  = 12  = 1  = 05 1 = 01

 = 02 and  = 3 We fixed these values in the whole study. It is observed that the governing

system of differential equations hold multiple solutions. Therefore, it is very important to find

out the critical range (knowingly critical values) corresponding to the leading parameters for

the existence of multiple solutions.

6.3.1 Flow Characteristics

The given section describes the impact of different physical parameters on the flow character-

istics. Important quantities like skin friction coefficient 12 and the velocity profile 
0()

are presented for the different physical parameters like Grashof numbers 1 and 2 incli-

nation angle , viscosity ratio parameter ∗, Lewis number , nonlinear radiation parameter

 and suction/injection parameter . Our study reveals that there is a region   1 for which

unique solution exist and dual nature solution exists for the   . It is also mentioned that

for    the given ordinary differential equations have no solution. Here  is the critical value

of  also depending on other physical parameters.
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Figs. 62(a− b) represent the paths of the local skin friction coefficient 12 for the

different values of the Grashof numbers 1 and 2, while the other parameters are fixed.

These figures show that multiple solution exists for different values of   . In Fig. 62 (a)

as Grashof number goes from lower to higher values the local skin friction coefficient increases

at the surface for first solution and opposite trend is observed for the lower branch solution.

The critical values of the fixed parameters are  = 11222 09830 08520 as Grashof number

goes from 15 25 35. Similarly, in Fig. 62 (b) growing values of 2 shows a monotonically

increase in the skin friction coefficient for the first solution and decrease for the second solution.

The critical values of the fixed parameters are  = 11762 10706 09832 as 2 increases from

1− 3.
The non-dimensional velocity profiles  0() for different values of inclination angle  and

viscosity ratio parameter ∗ are presented in Figs. 63(a− b). In Fig. 63 (a) the dual velocity
profile exist for different values of the inclination angle  for  = 3. Dual profile shows increasing

values of  decreases the velocity profile for both first and second solution. It is noticed from

Fig. 63 (b) that an increment in viscosity ratio parameter monotonically increases both the

first and second solution.

Figs. 64(a− b) is the plot for different values of the 1 and 2. In both the figures

dual nature velocity profile exists. An increase in 1 and 2 increases the first solution and

quite opposite trend is observed for the second solution. Moreover, momentum boundary layer

thickness reduces in first solution and increases in the second solution.

Numerical results are presented through Figs. 65(a− b) for the velocity profile for different
values of important parameters like Lewis number  and suction parameter . Here we have

noticed dual nature velocity profiles in both the figures. It is observed from Fig. 65 (a)

that for various values of Lewis number gives monotonically decrease in the first solution and

this solution is physically feasible and stable while the second solution is definitely not. It is

perceived from Fig. 65 (b) that as the suction parameter  is increased the non-dimensional

velocity profile for the first solution while velocity profiles are depressed with higher values of

 for second solution.
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6.3.2 Thermal characteristics

In given section we presents the heat transfer characteristics for the Carreau nanofluid flow

over a shrinking sheet. Figs. 66− 69 are drawn to see the impact of various physical
parameters like inclination angle , viscosity ratio parameter ∗, nonlinear radiation parameter

, thermophoresis parameter , suction parameter , Prandtl number Pr, Grashof number

1 and 2 on the Nusselt number and temperature profile  (). With the help of these plots

we depict the dual nature solution for the heat transfer mechanism for various values of the

pertinent parameters as expressed above.

The trajectories of the Nusselt number −12 for various Grashof numbers 1 and

2 are presented in Figs. 66(a− b) for the shrinking parameter . These plots clearly

indicate that dual nature of solutions exist for the specific Grashof numbers 1 = 15 25 35

and 2 = 1 2 3

As we observed that critical values of  are same as we have for in case of skin friction

coefficient. The values of  corresponding to various values of 1 are 11222, 09830, 08520

in Fig. 66 (a) and critical values of 2 = 11762, 10740, 09832 in Fig. 66 (b). It is stated

that increasing values of Grashof number 1 increases the first and second solution and no

similarity solution exist for   . It is clarified from Fig. 66 (b) that increasing values of

2 increases the first solution while in second solution Nusselt number 
−12 depicts a

decreasing behavior with stronger 2 at the boundary.

The influence of inclination angle  and thermal Biot number  is presented through Fig.

67(a− b) for fixed values of physical parameters. First solution increases by growing values of
inclination angle . However when we consider the branches of second solution the temperature

profile  () decreases with a rise in inclination angle  within the thermal boundary layer. It

is clear from Fig. 67 (b) that increasing values of thermal Biot number  increases both the

first and second solution of the temperature profile  ().

In Fig. 68 (a) the dual nature behavior is observed on the temperature profile  () for

nonlinear radiation parameter . It is observed that growing values of  reduces the tem-

perature profile  () and also the thermal boundary layer thickness becomes thinner for both

the first and second solution. Graphical representation of Fig. 68 (b) shows the enhance in

temperature profile within the boundary layer for increasing values of thermophoresis parameter
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 for both first and second solution.

The suction is very important phenomena to retain the steady flow adjacent the sheet by

delaying the separation. The effects of suction parameter are essential in investigative as well

as practical point of view. Fig. 69 (a) demonstrates the temperature profile  () for different

values of suction parameter . From this figure it is observed that temperature profile decreases

by increasing values of  from 2 − 4 for both the first and second solution. Similarly in Fig.
69 (b) increasing values of  decreases the temperature profile for both the first and second

solution.

6.3.3 Concentration characteristics

Here we will discuss the different outcomes of the pertinent parameters on the concentration

profile  (). In case of shrinking sheet dual solution exist for the concentration profile  ()

with fixed parameters. The nanoparticles concentration at the wall is represented by Figs.

610(a− b) to see the impact of1 and2 against the suction parameter . For the Sherwood
number critical values of  are same as we have for skin friction coefficient and Nusselt number.

In Fig. 610 (a) increasing values of 1 uplifting the first solution as well as second solution.

It is clear from Fig. 610 (b) that up growing values of 2 gives increasing behavior for the

first solution and shows opposite trend for the second solution.

Figs. 611(a− b) are the plots of the concentration profile  () against the nonlinear

radiation  and thermophoresis parameter . Increasing values of  makes the reduction

in concentration profile  () for both the first and second solution. While, increasing values of

 shows the increase in concentration profile  () for upper and lower branch solution. Too

see the impact of Prandtl number Pr and suction parameter  on the concentration profile  ()

we have made the Figs. 612(a− b). In Fig. 612 (a) increasing values of Pr gives reduction
in concentration profile  () for both the upper and lower branch solution. Similarly, in Fig.

612 (b) increasing values of suction parameter  gives decrement in concentration profile  ().
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Chapter 7

Multiple Solutions with

Cattaneo—Christov Double-Diffusion

Model of Carreau Fluid Flow

This chapter considered a numerical computation for multiple solutions near by the stagnation

point flow of Carreau viscosity model past a shrinking sheet with infinite shear rate viscosity.

Energy and concentration equations are developed with the help of theory of Cattaneo-Christov

double diffusion. Such diffusions are established as a part of expressing the solutal and thermal

relaxation times framework. The emerging leading non-linear equations have been solved nu-

merically by means of Runge-Kutta Fhelberg method. The obtained numerical results have been

displayed graphically and some exciting features like multiple solutions are established. The

critical values are computed for the suction and shrinking parameters. Moreover, the critical

values have been attained by using the plots of reduced skin friction. This study discloses that

the multiple solutions occur for the different essential physical parameters for example suction

parameter , stretching/shrinking parameter , magnetic parameter  Prandtl number Pr

velocity slip parameter 1, viscosity ratio parameter 
∗, Schmidt number , non-dimensional

thermal relaxation time  and non-dimensional solutal relaxation time 
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7.1 Geometry of the Physical Model

Fig. 71 : Physical model of the problem (a) stretching sheet and (b) shrinking sheet

7.2 Problem Formulation

7.2.1 Flow Equation

Let us consider a stagnation point flow of Carreau fluid past a shrinking sheet. The stretching

velocity of the sheet is nonlinear as () =  (stretching sheet) and () = − (shrink-
ing sheet) where  is constant. Moreover, () = () and ∞() =  are the mass flux

velocity and free stream velocity, respectively in which  is a constant. We take the steady

two-dimensional flow of Carreau fluid model with following assumptions:

(1) Velocity slip

(2) Incompressible fluid

(3) MHD

(4) Cattaneo-Christov double diffusion model for heat and mass flux

The continuity and momentum equations after boundary layer approximations can be ex-

pressed as:
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subject to appropriate boundary conditions

 = () +   = () at  = 0 (7.3)

→ ∞() as  →∞ (7.4)

We assume the partial slip at the wall as  = 


∙
1 + Γ2

³
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´2¸−12
 where  is the

velocity slip factor.

The dimensionless quantities (Eq. (49) cf. Chapter 4) are utilized to change the governing

partial differential equations into a scheme of ordinary differential equations thus Eq. (72)

becomes
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with the related boundary conditions

(0) =   0(0) = + 1
00(0)(1 +2( 00(0)2))

−1
2   0(∞)→ 1 (7.6)

where  = −√

the mass transfer parameter and 1 = 

p


the velocity slip parameter.
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7.2.2 Energy and Concentration Equations

The relevant energy and concentration equations are



µ
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= −∇q (7.7)
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= −∇J (7.8)

The Cattaneo-Christov heat and mass flux fulfill the following relations
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¸
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Here for  = 0 and  = 0 the above equations regain laws due to Fourier and Fick. For

an incompressible and steady fluid the above reduce to

q+  [V∇q− q∇V] = −∇ (7.11)

J+  [V∇J− J∇V] = −∇ (7.12)

Thus Eqs. (77), (78)  (711) and (712) are transformed as
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The relevant boundary conditions are

 =   =  at  = 0 (7.15)

 → ∞ ,  → ∞ as  →∞ (7.16)

Defining the following variables

 () =
 − ∞
 − ∞

, () =
 − ∞
 −∞

 (7.17)

we finally reached at

00 +Pr 0 − Pr ( 00 + 200) = 0 (7.18)

00 + 0 − (
00 + 200) = 0 (7.19)

(0) = 1 (0) = 1 as  → 0 (7.20)

(∞)→ 0 (∞)→ 0 as  →∞, (7.21)

where  =  is the non-dimensional thermal relaxation time,  =  the non-dimensional

solutal relaxation time and  = 

the Schmidt number.

7.2.3 Engineering Parameters of Interest

The skin friction coefficient  is defined as

 =


2()
 (7.22)

where  is the surface shear stress and is given by
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 = 0

µ

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¶2)−1
2

⎤⎦  (7.23)

Using Eq. (723), we obtain

Re12  = 
00
(0)

"
∗+(1−∗)

½
1 +2

³

00
(0)
´2¾−1

2

#
 (7.24)

7.3 Results Validation and Discussion

This section provides the validation and information of different physical outcomes. The impact

of stagnation point, partial slip condition, MHD and viscosity ratio parameter on flow, heat and

mass transfer properties of an electrically conducted Carreau fluid over a shrinking surface has

been discussed. The results which are given by plots are utilized to achieve a parametric study

of the non-dimensional parameters, specifically the magnetic parameter , shrinking parameter

 suction parameter , Weissenberg number, Prandtl number Pr, viscosity ratio parameter

∗, solutal relaxation time  and thermal relaxation time  For numerical examination, we

allotted the values to the controlling parameters as  = 05  = 12 ∗ = 09  = 3 Pr = 1

 = 03 1 = 01  = 1  = 02  = 02 and  = 3. We fixed these values in the whole

study except the plots and table wherein they are mentioned. Dual solutions are presented

with the main aim of the critical values of the pertaining parameters. First (upper) and second

(lower) solutions are represented by solid and dashed lines, respectively.

7.3.1 Validation of Numerical Outcomes

To confirm the validity and consistency of numerical results, we conducted a numerical com-

parison between the obtained results and previously published data. These comparison can be

found in Tables. 71 and 72 with Wang [87], Yacob and Ishak [88] and Golra Gireesha [89]

for different values of shrinking parameters. In Tables 71 and 72 results of skin friction are

validated against the published work for different values of shrinking parameter  with excellent

agreement.
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7.3.2 Flow Characteristics

The attained numerical results pertaining to these figures show that dual solutions exist for

certain choice of shrinking parameter  which further depends on viscosity ratio parameter ∗

and magnetic parameter  It is also observed that when value of  is equal to a specific value

say critical value then there is only one solution. Solution exists till the critical value and no

solution can be found   ∗ . From Fig. 72, it is noticeable that skin friction decreases for an

increase in viscosity ratio parameter ∗. It is depicted from this Fig. that dual solutions exist

for ∗ = −20441−20600−20944 Moreover, we can also noticed that beyond the values of
∗ = −20441−20600−20944 no solution exists because the boundary layer separates from
the surface at the critical value (∗) beyond which the boundary layer approximation is not

valid. The critical values of  decreases as viscosity ratio parameter ∗ goes from 04 to 09.

Fig. 73 makes clear that the enhancement in magnetic parameter gives a quick monotonic

increase in the local skin friction. Physically, this is because of the fact that the execution of

magnetic field creates enhancement in drag force.

The non-dimensional velocity profiles  0 () for diverse values of magnetic parameter and

suction parameter  are explained in Figs. 74 and 75. It is inferred from Fig. 74 that rise in

magnetic parameter  increases the first solution but quite the opposite behavior is observed

for the second branch solution. Moreover, thickness of momentum boundary layer declines in

the case of upper solution whereas it boosts for the second solution. Physically, this is because of

the Lorentz force. An increase in magnetic field rises the Lorentz force and hence, accelerate the

first solution. The inverse is true for the second solution. According to Fig. 75 dimensionless

velocity field  0() decreases as suction parameter  increases. Moreover, it is depicted that

velocity boundary layer thickness decreases for the first solution with enhancement in suction

parameter . But for the second solution, growing values of  decreases the velocity profile near

the solid boundary and after the definite distance from the surface they go on increasing again.

7.3.3 Thermal Characteristics

In this segment our attention is to focused only on the thermal characteristics of Carreau fluid

flow over a shrinking sheet. In order to validate the heat transfer characteristics the effect of

few parameters such as magnetic parameter , velocity slip parameter 1, suction parameter 
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and Prandtl number Pr on temperature profile are presented from Figs. 76− 79 From these
Figs., we once again illustrate that the dual nature solution can also be observed in the heat

transfer analysis in the range of the same values of shrinking parameter  and for fixed values

of other parameters as expressed previously.

Suction is extremely fundamental marvels to hold the steady flow adjacent the sheet by

delaying the separation. The impact of suction parameter is important in investigative and in

addition handy perspective. Fig. 76 shows the temperature profile  () for various estimations

of suction parameter . From this Fig. it is observed that temperature profile  () diminishes

by expanding estimations of  from 1 to 2 for both the first and second solutions. We further

observed that in case of suction  = 01, Fig. 77 represents the dual nature of temperature

profile  () for different values of magnetic parameter  . For assumed set of fixed values,

this Fig. characterizes that the temperature distribution  () is reduced in case of the first

solution. However, it should be prominent that an opposite trend of temperature profile  ()

is seen in the second solution.

Graphical perspective of Fig. 78 affirms the diminishment in non-dimensional temperature

profile  () inside the boundary layer for higher values of velocity slip parameter 1 for both

first and second solutions. The thickness of boundary layer drops off as the magnitude of 1

expanded. However, for first solution of temperature profile has a smaller magnitude in com-

parison with the second one. Fig. 79 represents the dual nature behavior of non-dimensional

thermal relaxation time  on the temperature field  (). Increasing values of  reduce the

temperature and thermal boundary layer thickness. Physically, it is because of the material

particle wants more time for heat transfer to its adjacent particles due to thermal relaxation

enrichment.

Fig. 710 is a plot for the dual temperature profile  () for some definite values of the

parameter (  −1) with Prandtl number Pr. Agreeing to the pattern shown in Fig. 710 one
can detect that there is a reduction in the temperature profile  () as well as the boundary

layer thickness. Physically, this is because of the Prandtl number Pr. Prandtl number has

an opposite relation with thermal diffusivity. Increasing values of Pr correspond to a fragile

thermal diffusivity and henceforth temperature reduces.
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7.3.4 Concentration Characteristics

Our next goal is to present the multiple solutions for the concentration distribution  () for

different values of Schmidt number . Graphical view of Fig. 711 portrayed the reduction in

the first solution of non dimensional concentration profile  () within the boundary layer for

growing values of Schmidt number  while for the second solution, it is noted that the function

 () increases near the sheet and for larger values of  and it appears to be decreasing type

after this small region for the rest of the boundary layer flow. Schmidt number  is the ratio

of viscous to molecular diffusion rates. Thus higher Schmidt number  gives the low mass

diffusivity. It specifies decay in the concentration profile  ().
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Fig 72 : Effect of the viscosity ratio parameter ∗ on wall shear stress 12.
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Fig. 710 : Effect of Prandtl number Pr on temperature profile ()
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Fig. 711 : Effect of Schmidt number  on concentration profile ()
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Table 71 : Values of skin friction coefficient  00(0) for different values of 

 Wang [87] Yacob and Ishak [88] Present study

50 −1026475 − −102647543
30 − − −4276534
20 −188731 −1887307 −1887270
10 0 0 0

05 07133 0713295 0713276

00 1232588 1232588 1232553

Table 72 : A comparison of the skin friction 12for  when  = 1,  = 0,

∗ = 0  = 0,  = 0,  =  = 0

Wang [87] Golra and Gireesha [89] Present study

 First Second First Second First Second

solution solution solution solution solution solution

−025 140224 − 140225 − 1402199

−050 14957 − 149566 − 1495626

−075 148930 − 148928 − 1489267

−100 132882 0 132881 0 1328804

−115 108223 0116702 108223 011670 1082230 0116702

−120 − − 093247 023363 0932467 0233650

−12465 055430 − − − 0584261 0554297
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Chapter 8

Heat Generation/Absorption and

Thermal Radiation Impacts on

Three Dimensional Flow of Carreau

Fluid

The current chapter numerically investigates the three-dimensional flow and heat transport

caused by a bidirectional stretching sheet. One phenomenal aspect of this review is to con-

sider the impact of infinite shear rate viscosity. For this reason, Carreau rheological model is

accounted as a working liquid for the flow mechanism. In addition, heat transport features of

the flow fields have been inspected by utilizing the impacts of magnetic field, thermal radiation

and heat generation/absorption. We have incorporated the appropriate dimensionless trans-

formations to alter the basic conservation equations into a set of partially couples ODEs. The

associated system of reduced ODEs together with physical boundary restrictions are numer-

ically integrated via versatile and extensively validated, Runge-Kutta Fehlberg method. The

problem is governed by active physical parameters such as, viscosity ratio parameter, magnetic

parameter, Weissenberg number, nonlinear radiation parameter, heat generation/absorption

parameter, Biot number, Prandtl number and temperature ratio parameter. We exhibit and

explain the impacts of these active parameters on dimensionless fluid velocity, fluid tempera-
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ture, skin friction and Nusselt number by means of tables and graphs. From this study, it is

observed that fluid velocity is depressed by higher values of magnetic parameter; however, a

reverse trend is noted for fluid temperature.

8.1 Geometry of the Physical Model

Fig. 81 : The considered physical model and boundary conditions.

8.2 Mathematical Formulation

Steady three-dimensional flow of an electrically conducting Carreau fluid caused by a bidi-

rectional stretching surface is considered and described through Fig. 81. The outcomes of

thermal radiation and convective boundary conditions are also exhibited to model the problem.

The rectangular coordinates system is selected wherein the flow in direction measures the dis-

tance along the surface and direction is normal to it. As the flow is taken to be laminar thus,

a uniform magnetic field is applied parallel to the −direction.
The mass, momentum and energy conservations can be described by the system of three-

dimensional equations in the following form
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Radiative heat flux used in Eq. (84) which is given by a Rosseland approximation [79] as:

 = −
µ
4∗

3∗
 4



¶
 (8.5)

For a planer boundary layer flow over a heat surface, Eq. (85) can be written as
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in view of Eq. (86) energy Eq. (84) which can be composed as
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The resulting boundary conditions of the present problem are
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 = () =   = () =   = 0 − 



=  ( −  ) at  = 0 (8.8)

→ 0  → 0  → ∞ as  →∞ (8.9)

The accompanying dimensionless quantities are used to change the governing PDEs into a

scheme of ODEs
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The momentum and energy equations with the relevant boundary conditions are compacted

in the following form
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with

(0) = 0 (0) = 0  0(0) = 1 
0
(0) =  

0
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 0(∞)→ 0 0(∞)→ 0 (∞)→ 0 (8.15)

with 1 =
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
as the local Weissenberg numbers.

8.2.1 Parameters of Engineering Interest

The local skin friction coefficients 12 
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Upon making use of Eq. (816), the dimensionless form of local skin friction coefficient and

local Nusselt number are
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where Re =


and Re =



are the local Reynolds numbers.

8.3 Validation of the Code

To establish the validation of the present numerical code, the comparison tables (Table 81

and 82 are constructed with available published results for various values of velocity ratio

parameter . We have assumed the limiting case of Newtonian fluid by taking the values

1 = 2 =  = ∗ = 0 and  = 1. Therefore, the computed results of skin friction

coefficients − 00 (0) and −00 (0) are compared in Tables 81 and 82 with those of Areil [90],
Hayat et al. [91] and Khan et al. [92]. A remarkable correspondence is noted between present

computations and previous works.
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8.4 Analysis of the Results

In this section, we aim to discuss the influence of involved physical parameters on the fluid

velocities and temperature distributions. This numerical study analyses the impacts of non-

dimensional magnetic parameter, velocity ratio parameter, Weissenberg numbers, heat gener-

ation/absorption parameter, radiation parameter, temperature ratio parameter and Prandtl

number on the flow field and heat transfer characteristics. Further, the computed results of

non-dimensional skin frictions and Nusselt number are plotted graphically and explained phys-

ically.

First, we will discuss the impacts of viscosity ratio parameter ∗ on both the velocity profiles

 0 () and 0 () by keeping all other parameters fixed. Fig. 82(a) presents the variation of

horizontal velocity profiles  0 () for different values of ∗ in case of shear thinning and shear

thickening fluids . It is seen that the fluid velocity increases with higher values of viscosity ratio

parameter for shear thinning (  1) fluid and an inverse is observed in case of shear thickening

(  1) fluid. Moreover, it has been viewed that the associated boundary layer thickness is

smaller in case of shear thinning fluid as compare to the shear thickening fluid. The velocity

profiles along −directions for varying values of viscosity ratio parameter ∗ are plotted in
Fig. 82(b). It is apparent from these plots that a rise in viscosity ratio parameter leads to

raise the fluid velocity as well as momentum boundary layer thickness for shear thickening fluid

( = 17). However, the non-dimensional velocity profiles decrease in case of shear thinning

fluid ( = 07).

The influence of Weissenberg number 1 on dimensionless velocity components in  and

 −directions are depicted graphically in Figs. 83(ab). It is interesting to note that these
profiles show an opposite behavior for the cases of shear thinning and shear thickening fluids.

In Fig. 83(a), we found that growing values of Weissenberg number lower the velocity profiles

 0 () in case of ( = 07) while it enhances the velocity in case of ( = 17). From these sketches

we notice that the thickness of momentum boundary layer reduces for shear thinning case and

grows for shear thickening case with higher Weissenberg number. In all the cases, the far field

boundary conditions are fulfilled asymptotically at  = 4. The computation results of velocity

distributions  0 () and 0 () with varying values of magnetic parameter  for two different

values of power-law index are illustrated in Figs. 84(ab). As expected, the fluid velocity
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decreases in both the cases with an increase in magnetic parameter. This means that the

applied magnetic field has retarding effect on the velocity distributions for both shear thinning

and shear thickening cases. This is in conformity with the fact that the presence of magnetic

parameter generates a force called Lorentz force which resist the fluid motion. Consequently,

the momentum boundary layer thickness reduces for higher values of  . However, the fluid

velocities as well as the associated boundary layer thicknesses in the case of shear thickening

fluid are greater than those of shear thinning fluid.

In Figs. 85(ab) the evolution of temperature distributions with variation in heat genera-

tion/absorption parameter  and Biot number  are described. In these figures, the temperature

curves are sketched for two different cases of power-law index  i.e., (  1) and (  1). From

Fig. 85(a), it can clearly be viewed that at any point inside the boundary layer, the tempera-

ture profiles  () increases whenever the heat generation/absorption parameter gets the larger

values. It is apparent that fluid temperature is higher in case of shear thinning fluid. Also, we

see that the thermal boundary layer thickness represents a significant growth with an increment

in heat generation/absorption parameter. The impact of Biot number on dimensionless tem-

perature profiles is illustrated in Fig. 85(b). It is sighted that there is a strong impact of Biot

number on temperature profiles in case of both shear thinning and thickening fluid. It is clearly

shown that the simulated result of non-dimensional temperature demonstrates an accelerating

conduct with rising values of Biot number . Physically, Biot number is associated with heat

transfer at the surface and an increase in  causes an enhancement in thermal boundary layer

which produces a significant rise in temperature profiles.

Consequences of magnetic parameter on temperature distribution are elucidated through

Fig. 86(a). It is demonstrated through this figure that for both the cases of shear thinning

and shear thickening fluids, a reasonable rise in fluid temperature is noted for higher magnetic

parameter. At all points with in the boundary layer, the fluid temperature takes higher values

for shear thinning fluid. In addition, it may be noted that the corresponding thermal boundary

layer thickness increases with growing  . The obtained curves of non-dimensional fluid tem-

perature for various values of thermal radiation parameter  are exposed in Fig. 86(b). It

is depicted from this figure that temperature profiles increase with increase in radiation para-

meter for both the fluids. However, larger temperature is seen to occur for higher values of 
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in case of shear thinning fluid. Further, the thermal boundary layer thickness argument with

larger values of . Fig. 87(a) demonstrates the temperature distribution for a variation

of temperature ratio parameter . As expected, the temperature curves start with a greater

value and show a significant drop in temperature values as they progress with in the boundary

layer. We notice that  = 5 is sufficient for all the curves to satisfy the far field boundary condi-

tion. In an examination of this figure, it is observed that the dimensionless temperature inside

the boundary layer increase substantially with an increase in the temperature ratio parameter.

Physically, this is due to fact that the temperature ratio parameter transmits to higher wall

temperature as associated to ambient fluid and as a result temperature of the fluid rises. More-

over, thermal boundary layer thickness enhances for augmented values of . The calculated

results of non-dimensional temperature distributions for several values of Weissenberg number

1 are delineated through Fig. 87(b). These results are computed for both shear thinning

and shear thickening fluids by keeping the other parameter fixed. We found that for a fixed

nonzero value of , there is tendency of growing values of 1 cause for decreasing the fluid

temperature for shear thickening fluid. However, an inverse behavior is noted in shear thinning

fluid. That is, temperature profiles rise with the escalating values of Weissenberg number.

Tables 83 and 84 illustrates how the skin friction coefficients 
12
 

³



´


12
 

and Nusselt number −12 varies with different values of magnetic parameter  , Weis-

senberg numbers1 and2, velocity ratio parameter  and viscosity ratio parameter 
∗. It

is found that the magnitude of skin friction in −direction
³¯̄̄


12
 

¯̄̄´
is significantly raise by

 and  for both shear thinning and shear thickening fluids. In addition, it may be prominent

from the table that 
12
  (absolute value) augments with the increase of 1 and 2

for shear thickening fluid and a quite opposite is true for shear thinning fluid. Similarly, the

absolute value of skin friction in −direction
³



´


12
  is reduced by increasing the val-

ues of 1 and 2 in case of shear thinning fluid and it enhances in case of shear thickening

fluid. In Table 84, an increasing behavior of Nusselt number is detected for Prandtl number,

temperature ratio parameter, radiation parameter, Biot number and viscosity ratio parameter

in case of both shear thinning and shear thickening fluids.
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Fig. 82: Impact of viscosity ratio parameter ∗ on the velocity distribution.
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Table 81: Comparison of skin friction coefficient  00 (0) for different values of 

 Ariel (HPM)[90] Ariel (Exact)[90] Hayat et al.[91] Khan et al. [92] Present study

0 1 1 1 1 1

01 1017027 1020264 1020260 1020264 1021368

02 1034587 1039497 1039495 1039497 1040403

03 1057470 1057956 1057955 1057956 1058713

04 1070529 1075788 1075788 1075788 1076429

05 1088662 1093095 1093095 1093095 1093641

06 1106797 1109946 1109947 1109946 1110416

07 1124882 1126397 1126398 1126397 1126803

08 1142879 1142488 1142489 1142488 1142840

09 1160762 1158253 1158254 1158253 1158560

10 1178511 117372 1173721 1173720 1173988
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Table 82: Comparison of skin friction coefficient −00 (0) for different values of 

 Ariel (HPM)[92] Ariel (Exact) [92] Hayat et al. [93] Khan et al. [94] Present study

0 0 0 0 0 0

01 0070399 0066847 0066847 00668485 0067168

02 0158231 0148737 0148737 01487382 0149165

03 0254347 0243360 0243359 02433607 0243812

04 0360599 0349209 0349209 03492087 0349651

05 0476290 0465205 0465205 04652046 0465622

06 0600833 0590529 0590529 05905229 0590916

07 0733730 0724532 0724532 07245312 0724887

08 0874551 0866683 0866683 08666822 0867007

09 1022922 1016539 1016540 1016538 1016833

10 1178511 1173721 1173722 1173720 1173988
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Table 83 : Simulated results of skin friction coefficient for different values of

∗   and  when Pr = 15  = 03  = 15 and  = 1

 1 2  ∗ 
12
 

³



´


12
 

 = 07  = 17  = 07  = 17

0 20 30 03 01 −096576 −123795 −0235881 −0260041
05 −105705 −138301 −0275319 −0304764
10 −128613 −177192 −0368224 −0417119
05 30 −100816 −148675 −027389 −0307439

40 −0971859 −157466 −0272806 −0309481
50 −0943704 −165085 −0271948 −0311099
20 40 −105673 −138407 −0271584 −0312067

50 −105641 −138509 −0267719 −0319361
60 −105609 −138604 −0263946 −0326424
30 05 −108077 −143047 −0491202 −0596501

08 −111272 −150366 −0838253 −1177371
10 −113227 −155324 −1082581 −1659611
03 02 −107179 −136512 −0276514 −0302914

06 −112406 −12825 −0280966 −0294813
09 −115806 −12019 −0284034 −0287698
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Table 84 : Simulated results of Nusselt number for different values of

∗ Pr   and  when  = 03 1 = 2 2 = 3 and  = 03

Pr    ∗ −12

 = 07  = 17

20 15 07 03 01 0212502 0214189

40 0225145 0227655

60 0234926 0237297

80 0241992 0244088

20 14 0205926 0208535

16 0222134 0222603

19 0276641 0271983

2 0305472 0299078

17 0257005 0254897

27 0278454 0274306

37 0294968 0289157

07 06 0390918 0396423

09 0523059 0537322

12 0615242 0638114

04 0212726 0213903

06 0212859 0213679

08 0212982 0213417
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Chapter 9

Local Non-similar Solutions of

Convective Flow of Carreau Fluid

In this chapter we study a realistic methodology to inspect the non-similar solutions for the

two-dimensional steady Carreau fluid flow in the presence of applied magnetic field and mixed

convection within the sight of infinite shear rate viscosity. With the help of local non-similar

method, we presented the non-linear PDEs for the flow and heat transfer analysis. The leading

PDEs are converted into non-linear ODEs by using the local non-similarity method (LNM).

The final resulting non-dimensional set of coupled non-linear ODEs are then solved with the

help of bvp4c function in MATLAB. This investigation covers numerous physical aspects of

flow and heat transfer. Major outcomes in the form of velocity enhancement and temperature

reduction for the higher values of buoyancy parameter () are observed. On the other hand, for

increasing values of thermal radiation parameter  the temperature of the fluid increases while

for larger values of suction/injection parameter the temperature of the fluid reduces. Parallel

variation of buoyancy parameter and Weissenberg number show a slight difference regarding

local similar and local non-similar solution while computing the local skin friction number.

The enhancement in buoyancy parameter causes enhancement in local skin friction as well as

local Nusselt number. Additionally, this investigation is validated through a comparison with

previous results.
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9.1 Problem Statement

The impact of magnetic field in stagnation point flow of a Carreau fluid with heat transfer

analysis is considered. The fluid flow in this case is due to a mixed convection and porosity of

the plate. Here Cartesian coordinates system is utilized. Since −axis is a coordinate dignified
the horizontal axis and −axis is along the normal to the porous plate. We assume that the
fluid moves with constant velocity 0. Moreover, a uniform magnetic field of strength 0 is

applied normal to the plate and the induced magnetic field is neglected under low magnetic

Reynolds number assumption. Furthermore, heat transfer analysis is completed along the

thermal radiation effects.

Figure 91: Physical configuration and coordinate system

Using the Carreau fluid model proposed by Carreau [1] in 1975 the governing equation

describing the conservation of mass, momentum and energy are given by




+




= 0 (9.1)
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+
20

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



+ 




= 1

2

2
− 1






 (9.3)

along with the corresponding BCs defined as follows

 = 0  = −0 (constant)  =  at  = 0 (9.4)

→ ∞  → ∞ as  →∞ (9.5)

With a specific end goal to improve our calculation and analysis, we follow the following

dimensionless transformations

Ψ( ) =
p
0( )  ( ) =

 − ∞
 − ∞

  = 

r
0


 (9.6)

Equation (91) is indistinguishably satisfied by means of stream function Ψ( ) such that

 =
Ψ


  = −Ψ


  =



Re2
 (9.7)

The velocity components are then defined as

 = 0
0()  = −

r
0



µ
1

2
 + 




+ 









¶
 (9.8)

Radiative heat flux utilized in Eq. (93) is specified by the Roseland approximation [80]

To convert Eqs. (92− 93) into ordinary differential equations, we utilized Eqs. (96− 98).
Thus, we obtain the following system of equations:
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with related boundary conditions

 0( 0) = 0 ( 0) = 2− 2 


 ( 0) = 1 at  = 0 (9.11)

 0(∞) = 1 (∞) = 0 as  =∞ (9.12)

The additional parameters are expressed

 =


Re2
  =

 ( − ∞)3


  =

0



 =

µ
Γ220


¶12
  =

20

0
(9.13)

 =
∗

4∗ 3∞
  =

0

()12


where  is known as a stream wise coordinate. For   0 means assisting the flow and   0

means buoyancy opposite force of the flow. It is observed that after transformation, Eqs. (99)

to (910) still contain 

term and its clear that this issue is non-similar boundary layer issue

and may be comprehended utilizing local non-similarity method.

9.2 Local Non-similar Solution Method

One, most of the time utilized idea in the arrangement of non-similar boundary layers is the

rule of local similarity. As indicated by this perception, the right-hand sides of Eqs. (99) and
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(910) are expected to be necessarily small so it might approaches to zero, coming about an

arrangement of ordinary differential equations is simplified Therefore, first level of truncation

or the local similarity solution is attractive for calculation but indicates the numerical outcomes

of unclear accuracy. This is because of doubt on whether to disregard the right-hand side of

the conditions or not when  is not small To overwhelmed such a problem Sparrow and Yu [93]

proposed the local non-similarity method to find the solution of the non-similar boundary layer

equations. To get the local non-similar arrangement of Eqs. (99) to (912), first we remove the

term  by describing the new dependent variables.

Let the new dependent variable are

 =



  =




  =




and  =




 (9.14)

After substituting the above variables, Eqs. (99) to (912) become
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1

2
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¡
 0 − 0

¢
(9.16)

and the boundary conditions are

 0( 0) = 0 ( 0) = 2− 2( 0) ( 0) = 1 (9.17)

 0(∞) = 1 (∞) = 0 (9.18)

Since  and  are two extra unknown functions, it is necessary to find two more equations

to find  and  Secondary equation for  and  with their BCs are resulting by taking the

derivative of the above Eqs. (915) to (916) with respect to  and this leads to
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¡
0− 0
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with the associated boundary conditions

0( 0) = 0 ( 0) + 2( 0) = 0 ( 0) = 0 0(∞) = 0 (9.21)

Eqs. (920) to (922) serve as auxiliaries to the governing equations (915) to (918). It would

be noticed that, this type of local non-similarity solution is also recognized as second level of

truncation or referred as two equations non-similarity method [94]. To transmit this method

to the third level of truncation (or three equations model) in a same way, we again take the

derivative of the auxiliary equations (920) to (922) with respect to  while the representing

equations and their boundary conditions are obtained with approximation [95]. This provides

the following equations and boundary conditions
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0( 0) = 0 5( 0) + 2



( 0) = 0 ( 0) = 0 0(∞) = 0 (∞) = 0 (9.24)

With a specific end goal to formulate the three-equations model, first we neglect term  

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and  

in the second level of truncation while,  


and  


are neglected in the third level

of truncation. The method of reasoning for this diminishment is like the idea in determining

the local similarity model; however, with an essential difference in the results. In local sim-

ilarity model, it is proposed that derivatives including  are small when  is not small.

Correspondingly, in diminishing Eqs. (915) to (916), it was hypothesized that the differenti-

ation of the auxiliary functions [

and 


] are adequately small for  values not almost zero

with the goal that they might be dismissed [93] On account of local similarity method, the

result is that a piece of the momentum and energy equations itself is lost, yet for the local

non-similarity method, the decline is presented in auxiliary equations (Eqs. (915) to (916)),

so that the non-similarity terms in the auxiliary equations are reserved. As a consequence, the

local non-similarity methodology would produce more precise outcomes contrasted with the

local similarity method [94]. Hence, the governing equations and its auxiliary equations could

be united as

∙
∗ + (1− ∗)

n
1 +2(

00
)2
o−3

2
n
1 + 2(

00
)2
o¸


000

+
1

2


00
+  −

³

0 − 1

´
= 

¡
 00 −  00

¢
 (9.25)

1

Pr

µ
1 +

4

3

¶
00 +

1

2
0 = 

¡
 0 − 0

¢
 (9.26)

∙
∗ + (1− ∗)

n
1 +2(

00
)2
o−3

2
n
1 + 2(

00
)2
o¸


000

+ 000 1
2
(1− ∗)(− 1)

n
1 +2(

00
)2
o−5

2
2 0000

n
3 + 2(

00
)2
o

n
22 0000 + ( 00)2 


(2)

o
+
1

2


00
+
1

2


00 −
³

0´
+  +  = 

¡
00 − 00

¢
+ ( 00 −  00) (9.27)

1

Pr

µ
1 +

4

3

¶
00 +

1

2
0 +

1

2
0 =  0− 0 + 

¡
0− 0

¢
 (9.28)

137



∙
∗ + (1− ∗)

n
1 +2(

00
)2
o−3

2
n
1 + 2(

00
)2
o¸


000

+000(1− ∗)
µ
− 3
2

¶n
1 +2(

00
)2
o−5

2
n
1 + 2(

00
)2
o½

22 0000 +
¡
 00
¢2 


(2)

¾
+000(1− ∗)

n
1 +2(

00
)2
o−3

2

½

¡
 00
¢2 


(2) + 22 0000

¾
+000(1− ∗)

µ
− 3
2

¶n
1 +2(

00
)2
o−5

2
n
1 + 2(

00
)2
o½

22 0000 +
¡
 00
¢2 


(2)

¾
+ 000(1− ∗)

µ
− 3
2

¶µ
− 5
2

¶n
1 +2(

00
)2
o−7

2

½
22 0000 +

¡
 00
¢2 


(2)

¾2
n
1 + 2(

00
)2
o

+ 000(1− ∗)
µ
− 3
2

¶n
1 +2(

00
)2
o−5

2


½
22 0000 +

¡
 00
¢2 


(2)

¾2
+000 (1− ∗)

n
1 +2(

00
)2
o−3

2


½
22 0000 +

¡
 00
¢2 


(2)

¾
+ 000(1− ∗)

µ
− 3
2

¶n
1 +2(

00
)2
o−5

2


½
22 0000 +

¡
 00
¢2 


(2)

¾
+ 000 (1− ∗)

n
1 +2(

00
)2
o−3

2
(2 0000




(2) + 220000 + 22 0000

+2 0000



(2) +  002

2

2
(2)) +

1

2
 00 +

1

2
00 +

1

2
00 +

1

2
00 −0 + 2+ 

=  00 + 02 − 00 −  00 + [200 − 00 − 00]  (9.29)

1

Pr

µ
1 +

4

3

¶
00 +

1

2
(0 + 20 + 0) = 20− 20

+ 0− 0 + 
¡
0 + 0− 0 − 0

¢
 (9.30)

138



 0( 0) = 0 ( 0) = 2− 2( 0) ( 0) = 1

 0(∞) = 1 (∞) = 0

0( 0) = 0 ( 0) + 2( 0) = 0 ( 0) = 0 0(∞) = 0 ( 0) = 0

0( 0) = 0 5( 0) + 2



( 0) = 0 0(∞) = 0 (∞) = 0 (9.31)

9.2.1 Parameters of Engineering Interest

The skin friction coefficient  and Nusselt number  are defined as

 =
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2()
  =



( − ∞)
(9.32)

where  is the surface shear stress and  the surface heat flux are given by
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Using Eq. (933), we obtain
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where Re =
0


is the local Reynolds number.
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9.3 Validation of Results and Discussion

Remembering the true objective to see the physical outcomes of the issue, numerical simulation

of the heat transfer in the existence of thermal radiation and mixed convection is investigated.

Also the stagnation point and MHD flow of a Carreau fluid in the presence of infinite shear rate

viscosity is discovered. The local non-similar ordinary differential equations (926) to (931) are

highly nonlinear in nature. Therefore, Eqs. (926) to (931) with related boundary conditions

(932) have been solved numerically by utilizing bvp4c function in MATLAB. The outcomes

which are given by plots are used to achieve the parametric study of the non-dimensional pa-

rameters, specifically magnetic parameter  , suction parameter , Weissenberg number ,

Prandtl number , thermal radiation parameter  viscosity ratio parameter 
∗ and buoy-

ancy parameter . For numerical inspection, we fixed the values to the governing parameters as

 = 01,  = 12, ∗ = 09,  = 1,  = 1,  = 01  = 02 1 =


() 2 =

2

2
()

and  = 01. We fixed these values in the whole study with 1 and 2 are treated as a constant

in the present analysis. Moreover, the exactness of our numerical outcomes is checked with

distributed outcomes by Minkowcyz and sparrow [94] and Mohammad et al. [95] for particular

cases through table 91. And a decent agreement is accounted between these outcomes.

9.3.1 Flow and Thermal Characteristics

The effect of buoyancy parameter  on velocity  0 () and temperature  () profiles in presence

of thermal radiation  and magnetic field are revealed in Fig. 92. It is important to note

that the increasing values of buoyancy parameter  increase the fluid velocity  0 () but in Fig.

93 opposite behavior is observed for the temperature profile  ()  Moreover momentum and

thermal boundary layer thickness decline by enhancing the values of buoyancy parameter 

Since variation of  actually means a variation of distance along the surface. This demonstrates

that an assisting buoyancy force acts like a favorable pressure gradient. The special effects of

buoyancy force play a significant role on the movement of liquid by another consolidated porous

medium.

Fig. 94 illustrates the influence of ∗ on dimensionless velocity profile  0() for a stable

value of velocity ratio parameter ∗ from 01 to 09. According to this, we observed that in
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case of raise in velocity of the fluid is marked with increasing values of the viscosity ratio

parameter ∗. Also increasing values of viscosity ratio parameter ∗ decreases the boundary

layer thickness. Fig. 95 is deliberated to see the impact of ∗ on temperature profile  (). It

is noticed from this Fig. that increasing values of ∗ decreased the temperature profile  ().

The influence of the magnetic parameter on the velocity profile  0() has been portrayed

in Fig. 96. It is clear from Fig. 96 that the velocity profile  0() decreases for magnetic

parameter  . Actually  indicates the ratio of electromagnetic force and the viscous force.

Fixed numbers of  from 1 to 2 signifies the rise in the Lorentz force. This is a drag-like force

that makes more protection from transport phenomenon and fluid velocity and in addition

boundary layer thickness lessens.

Figs. 97 and 98 illustrate the impact of suction parameter  on dimensionless velocity

 0() and temperature profiles () in the existence of thermal radiation  and buoyancy force

 effects. In present Figs. solutions are noted for  = 1 2 3 and 4. We noticed that higher

values of suction parameter  increases the velocity profile  0() and it is also observed that in

Fig. 98 higher values of  decrease the temperature profile (). In the existence of suction,

the hot fluid is pressed near the wall thus diminishes the thickness of thermal boundary layer

and thins out the thermal boundary layers. Subsequently the nearness of suction diminishes

the momentum boundary layer thickness yet expands the thermal boundary layer thickness.

The influence of Weissenberg number  on velocity profile  0 () can be observed from

Fig. 99. Here we taken only the assisting flow (  0). This is clear from Fig. 99 that ve-

locity profile  0() decreases by increasing the Weissenberg number . Actually, Weissenberg

number  is the relation of relaxation time of the fluid and a certain process in which time

growths the viscosity of liquid. Consequently, there is a decrease in the velocity of fluid .

The significance of thermal radiation  on the dimensionless velocity 
0() and tempera-

ture profiles () has been revealed in Figs. 910 and 911 in the presence of magnetic field

 and uniform suction . It is noticed that the increasing values of thermal radiation  de-

creases the velocity profile  0(). Meanwhile it is noticed that temperature profile () increases

because of the fact that thermal radiation is linearly proportional with temperature, increase

in  will enhances the temperature distribution in the boundary layer region.

Fig. 912 represents the temperature profile () for the Prandtl number  Here tem-
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perature decreases with the raise in . Physically the lower Prandtl number shows fluids

with high thermal conductivity and this generates thicker thermal boundary layer structures

than that for the larger Prandtl number. Figs 913 and 914 are drawn to see the impact of

different parameters on skin friction coefficient 12. In Fig. 913, boosting up the values

of thermal radiation parameter , the skin friction decreases. Fig. 914 is drawn to see the

behavior of Weissenberg number on the skin friction coefficient. An increase the Weissenberg

number decreases the skin friction coefficient. Fig. 915 shows the impact of thermal radiation

parameter on Nusselt number. Rise in  increases the Nusselt number. Similarly in Figs.

916 and 917 increasing values of Prandtl number  and buoyancy parameter  increase the

Nusselt number −12.

Table 92 is drawn to see the difference between the local similar solution and non similar

solutions. By varying the different values of  and  we get the values which provide us a

clear difference for small values of  between similar and non similar solution.

Table 93 displays the combined effects of the buoyancy parameter , Weissenberg number

, magnetic parameter  and the ∗ on the wall shear stress 12. The local skin

friction is increased for the higher values of the buoyancy parameter  for both shear thinning

and thickening fluids. Moreover, it is observed that the local Nusselt number −12 is

reduced with  as the strong magnetic field reduces the extent of heat transfer rate.
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Fig. 92: Effect of  on  0()
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Fig. 911: Effect of  on ()
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Table 91: Comparison of  00( 0) and −0( 0) for different  when
 = 0  = 1 ∗ = 0  = 0 and  = 0.

 Minkowcyz and Sparrow [94] Mohammad et.al [95] Present analysis

 00( 0) −0( 0)  00( 0) −0( 0)  00( 0) −0( 0)
0 033206 029268 03320573 02926804 0336152 02926804

04 073916 035774 07391622 03577421 0756096 0393098

1 121795 041054 12179529 04105355 1229612 0439667

15 156566 044106 15656630 04410137 1553340 0465358

25 218819 048619 21881869 04861908 2082919 0500098

50 352696 056067 35269162 05606733 3065828 0548641

70 447647 060283 44764563 06028282 3682789 0571250

Table 92: Comparison of local similar and non-similar solutions.

() Re
12
  Re

12
 

Local similar solution Local non-similar solution

(0 01) 03332 03322

(04 02) 11296 07640

(10 03) 24250 13031
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Table 93: Surface drag force 12 and heat transfer rate 
−12 for different

values of ∗   and  when Pr = 1  = 01  = 12 and  = 01

   ∗ Re
12
  Re

−12
 

 = 02  = 12  = 02  = 12

0 01 01 01 1103666 1097716 1165848 1165621

02 1235347 1230015 1180536 1175999

04 1360804 1357905 1195692 1185011

04 0 1420915 1417158 1198884 1187337

01 1360804 1357905 1195692 1185011

02 1296216 1294104 1192176 1182400

04 02 02 1319936 1288553 1193129 1182272

04 1424149 1269513 1196981 1181784

06 1634509 1245230 1203404 1181046

04 02 01 01 1296216 1294104 1192176 1182400

03 1295788 1294183 1190420 1182831

09 1294642 1294428 1185205 1184127
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Chapter 10

Conclusions and Future Research

This thesis studies the various types of boundary layer flows of a non-Newtonian fluid model in

the presence of infinite shear rate viscosity. For this purpose, a detailed mathematical modeling

of Carreau viscosity model in the presence of infinite shear rate viscosity for different geometries

was performed. These formulation enabled us to solve and analyze the diverse features of this

model in the presence of infinite shear rate viscosity. Additionally, the heat and mass transfer

characteristics of Carreau fluid were also analyzed. Two numerical approaches namely RK-

Fhelberg and Matlab built-in routine bvp4c were adopted to obtain solutions.

To conclude this thesis, we précis its main contributions and suggest a number of directions

for further research.

10.1 Conclusions

In the current thesis, boundary layer flows with heat and mass transfer of the non-Newtonian

Carreau fluid model were considered. Boundary layer equations for steady 2 and 3 Carreau

fluid flows were derived in the presence of infinite shear rate viscosity. The governing nonlinear

partial differential equations of the laminar boundary layer flows were converted into nonlinear

ordinary differential equations using suitable transformations. The emerging leading non-linear

equations have been solved numerically by means of Runge-Kutta Fhelberg and bvp4c methods.

The obtained numerical results have been displayed graphically and some exciting features like,

multiple solutions are also established. Basically numerical outcomes were obtained to depict
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the characteristics of fluid velocity, temperature and concentration fields.

The following conclusions are drawn in this thesis:

• It was noted that the momentum and thermal boundary layers thicknesses were higher

for shear thickening (  1) fluid when compared with shear thinning fluid (0    1).

• By uplifting the power-law index  in both shear thinning (0    1) and shear thick-

ening (  1) fluids, a decrease in the skin friction coefficient was observed.

• By uplifting Weissenberg number , the skin friction coefficient was decreased and

Nusselt number was increased.

• The velocity distribution was decreased by increasing viscosity ratio parameter ∗ for both
hydro-magnetic and hydrodynamic flows and quite the opposite was true for temperature

distribution.

• By increasing the wedge angle parameter , a reduction was observed in the momentum
and thermal boundary layer thicknesses.

• It was observed that by increasing the velocity ratio parameter , velocity profile was
increased and opposite trend was noted in temperature profile.

• An amazing feature of present work is that for second solution of velocity, temperature
and concentration showed a higher boundary layer thickness as compared to first solution.

• This investigation has explored that an enhancement in the magnetic parameter showed

a rise in temperature of the fluid while an opposite behavior was observed for the fluid

velocity.

• The magnitude of local skin friction 12 was improved by enhancing magnetic pa-

rameter  .

• It was important to observe that rate of heat transfer was increased due to the higher
velocity slip parameter 1 and magnetic parameter  for both solutions.

• The outcomes indicate that the higher values of heat generation/absorption parameter 
upraised the fluid temperature.
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• It seems that the greater values of temperature ratio parameter  raised the rate of heat
transfer.

• The momentum boundary layer thickness was increased by increasing Grashof number

and viscosity ratio parameter.

• It is significant to observe that the rate of heat transfer was improved due to higher
Grashof number 1 for both solutions.

• It is found that the nanoparticles concentration at the wall was raised by Grashof number
1 for both the first and second solutions.

10.2 Future Research Directions

There is a lot of freedom for further work with respect to this thesis. Inside this assem-

blage of work we have explored the numerical solutions and mathematical modelling for non-

Newtonian Carreau fluid in the presence of infinite shear rate viscosity. In addition, we have

studied theoretically, the qualities of heat and mass transfer to the Carreau fluid due to stretch-

ing/shrinking sheets. Absolutely there is a lot of work remaining in this exceptionally fascinating

non-Newtonian fluid model. Here, we will list some but not all of the many possible extensions.

Firstly, the choice of different geometries, like, flows over curved stretching surface, flows in

channel, flows over rotating disk may also be future considerations. Additionally, a transient

nature can be captured for such flows for Carreau fluid model. Secondly, it could be interesting

to study the Carreau fluid flows with infinite shear rate viscosity via advance numerical schemes

like finite volume or finite element methods etc.
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