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Nomenclature 

𝜇௡௙ Effective dynamic viscosity of nanofluid 
𝑓 

Dimensionless velocity 

𝜈௡௙  Effective kinematic viscosity of nanofluid 𝑔  Dimensionless Angular velocity 

𝜌௡௙  Effective density of nanofluid 𝜃  Dimensionless Temperature 

𝑝 
Fluid pressure 𝜃௥   Variable viscosity parameter 

𝐶௡௙ 
Effective heat capacitance 

𝐾௡௙
Effective thermal conductivity of nanofluid 

𝐵ሺ𝑡ሻ  Magnetic field 𝛼௡௙ Effective heat diffusivity of nanofluid 

𝐾  Micropolar parameter 𝜙  Volume fraction ofnanofluid 

𝜎௘   Stfan Boltzmann constant 𝛽ோ Mean absorption constant 

𝜅  Curvature parameter 𝑀  Magnetic parameter 

𝑇 
Fluid temperature 𝑃𝑟 Prandtl number 

𝜎 
Electric charge density 𝑞௥   Radiative heat flux 

𝑆  Squeezing parameter 𝑅𝑑 Radiation parameter 

𝐻  Hartmann number 𝜆  Stretching or shrinking parameter 

𝑁𝑢  Nusselt number 𝐶௙  Skin friction coefficient 
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1 Introduction 

Heat management crises in various industrial applications demanded alternative technology. Choi 

and Eastman[1] introduced the idea of nanofluids in 1995 for the very first time. These novel fluids 

types were synthesized in laboratories by endowing solid particles of nano-sized in the base-fluid. 

The resulting formation was now a fluid with upgraded effective physical and thermal 

characteristics such as thermal conductivity or heat capacitance. Very soon after the emergence of 

these newly invented types of fluids, they capture the attention of researchers, engineers, and 

scientists to utilize this idea in real-world applications, such as the cooling system of vehicles, heat 

exchangers, manufacturing tools, paints, electronics devices and in medical engineering tools. In 

all these widespread applications, nanofluids have proved themselves capable to handle the 

significantly critical problems by enhancing the effective heat transfer ability of fluid material at 

a lower cost. Due to its adjustable physical and thermal properties such as effective density, heat 

capacitance or thermal conductivity nanotechnology is expected to cater as an effective and 

efficient medium of heat transfer. Following Choi many researchers have been contributed in the 

field of nanofluid, mention may be made to some very recent and important works. Ghadikolaei 

et al.[2] shows the effects of magnetism and porosity on micropolar dusty fluids with metallic 

nanoparticles. Nadeem et al.[3] presented a study that reveals the impact of magnetism and slips 

on the dynamics of a micropolar hybrid nanofluid over a cylindrical body. Alamri et al.[4] studied 

convective Poiseuille flow of a nanofluid on a plane porous medium. A heat convection case on a 

wavy surface was considered by Hassan et al.[5]. Malvandi et al.[6] presented a study that shows 

the effects of nano-particles transportation at film boiling of nanofluid over a vertical plate. 

Nadeem et al.[7] presented a theoretical investigation of nanofluid implications as a drug carrier 

in stenosed arteries with the MHD field. Sheikholeslami et al.[8] disclosed the influence of 

magnetism on nanofluid flow under forced convection in a lid-driven cavity. Nanofluid flow under 

natural convection in the presence of thermal radiations is also presented by Sheikholeslami et 

al.[9].  Shiekhalipour et al.[10] numerically analyzed the flow of a nanofluid in a trapezoidal 

microchannel. They investigated the results obtained with different models and compared them 

with the available experimental results. It is concluded in the study that the Eulerian model 

predicted outcomes are more comparable to the experimental observations. Nadeem et al.[11] 

solved the problem of  Falkner-Skan for static as well as moving wedge numerically. Chakraborty 

et al.[12] discussed the effects of an applied magnetic field for bioconvection in nanofluid 
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possessing gyrotactic microorganisms. Most of the commonly used models are lack of predicting 

the distortions of nano-particles size on the effective nanofluid’s viscosity. They concluded that 

rising numeric for the parameter of surface convection enhances the number of self-moving micro-

organisms. Koca et al.[13] reviewed the change in nanofluid’s viscosity by varying the size of the 

nano-particle and compared them with proposed models for effective viscosity of nanofluids. They 

found that the variation of almost 40% in the viscosity can be seen only by changing the particle 

size of nanofluids. Diglio et al.[14] suggested a geophysical application of the nanofluid as a heat 

carrier in Borehole heat exchangers. They conducted a numerical study to assess the use of 

different nanofluids instead of conventionally used fluids like glycol and water mixtures. The work 

aimed to find the best medium that can reduce borehole thermal resistance efficiently. They 

investigated the case with different types of solid particles including silver, copper, alumina, etc. 

and found that copper-based nanofluid provides a significant reduction in borehole thermal 

resistance. Carbon nanotubes are among the types of solid nano-particles that are frequently used 

as solid constituent in the nanofluid. These sheets of graphite soiled in cylindrical shape has 

tremendous application in medical and thermal engineering tools. They are used in drugs delivery 

system within the body[15]. Also, these nano particles have proven ability of penetrating into cell 

membrane and target tumor affected cells very effectively[16]. Experimental studies proved that 

they are less cytotoxic and do not harm the body immune system in side effects. Biosensing for 

disease diagnostic systems and health monitoring is another implication of tools that prevalently 

utilized CNT’s benefits. These materials have very distinctive thermo-physical properties as 

compared to other solid constituents of nanofluids. Carbon nanotubes are less dense as compared 

to metallic nanoparticles whereas they possess higher thermal conductivity. All these materials are 

environment friendly. Nadeem et al.[17] presented the mass and heat flow of a CNT based 

nanofluids. In this study, they have differentiated the impacts of single-walled and multi-walled 

carbon nanotubes on the heat flow phenomena. Akbar et al.[18] conducted a numerical 

investigation to the problem of CNT based nanofluid flow over a sensor sheet keeping fluid 

properties variable. Hussain et al.[19] presented a study that analyzed the case of CNT based 

nanofluid flow under forced convection between two rotating surfaces. They have found in their 

study that single-walled carbon nanotubes produce less drag and acquire a relatively high heat 

transfer rate as compared to multi-walled carbon nanotubes. Shahzadi et al.[20] examined the use 

of single-walled carbon nanotubes based nanofluid for the peristaltic flow through annulus. In this 
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study, the effective dynamic viscosity is considered as a function of radial distance from the 

boundaries and nanoparticle concentration. The results depicted that the highest velocity of 

SWCNT-based blood rises for ascending magnetude of viscosity parameter. 

Possessing two different phases, Nanofluids may produce rotational inertia at the micro-level. The 

Navier-Stokes model in its classical form is limited to the motion of fluids as a whole. This theory 

does not bother the intrinsic motion of fluid particles due to its microstructure. In many practical 

applications, however, these intrinsic motion plays a Vitol role in developing various dimensions 

of flow. On contrary to the Navier-Stokes model Eringin theory of micropolar [21,22] fluids take 

into account the inner structure and discusses the resulting intrinsic motion of fluid particles such 

as rotational or spin motion. This theory generalizes the classical Navier-Stokes model. 

Mathematically stress tensor is presented as the symmetric and asymmetric part. In addition, an 

equation representing the law of angular momentum conservation is also added to the system of 

regulation of equations. Researchers have contributed to the field considering that this is the theory 

that meticulously describes fluid motion. Nadeem et al.[23] studied the flow involving the 

stagnation point of a micropolar nanofluid on a cylindrical solid body. Shadloo et al.[24] worked 

out a solution of the heat and mass transfer on a continuous stretching sheet of a micropolar fluid. 

Subhani and  Nadeem[25] conducted a numerical study of unsteady magnetohydrodynamics of 

hybrid micropolar nanofluid. They found that the rate at which heat transfer for a hybrid nanofluid 

is much larger in magnitude than that for a simple nanofluid. Akbar et al.[26] analytically studied 

the pressure-driven flow of a micropolar biological fluid passing through oscillatory walls. They 

considered metachronal wave propulsion due to cilia beating and concluded that axial velocity in 

their case decreases with ascending values of the micropolar parameter while the same parameter 

rises the magnitude of micro-rotations. 

Magnetofluids are very important types of fluids that have a range of industrial applications. A 

relatively novel study namely magnetohydrodynamic was initiated by Hannes Alfven for 

electrically conducting fluids. The field of study can be analyzed by considering Maxwell’s 

equations of electromagnetism with that of other governing equations such as momentum or 

energy equations. Ma et al.[27] gave the numerical solution to the problem of the natural 

convectional flow of a nanofluid in a U-shaped cavity with MHD considerations. Haq et al. [28] 

discussed the magnetohydrodynamics of fluid in a corrugated cavity with natural convection. They 
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have applied the finite element technique to solve the problem and found that velocity and 

temperature tend to increase with corrugated frequency. Rashidi et al.[29] investigated the case of 

MHD nanofluid flow due to peristaltic motion with entropy generation phenomena. 

In dealing with viscous fluids researcher normally considers the case of constant viscosity. In real 

life situations however dynamic viscosity either depends on space or temperature variables as in 

the case of liquid fluids, It can be a function of pressure or stresses as in the case of solids or non-

Newtonian fluids, or it can exhibit variations with a density as in case of gases. In liquid materials 

however dynamic viscosity often varies with changing temperature. The variation in fluid 

temperature during heat passing through boundaries or variation due to heat production during the 

internal fraction of fluid molecules can affect the dynamic viscosity and hence in result disturb the 

flow behavior. This phenomenon can be observed in a wide range of fluid materials. Water and 

Coal slurries, for example, depicts the above scenario with variation in temperature. The viscosity 

of such fluids normally depends inversely on temperature. A rise in temperature may, therefore, 

fasten the mass transport phenomena. The situation is encountered very frequently in experimental 

studies hence the flow study of fluids with temperature-dependent dynamic viscosity is 

unavoidable most of the time. Ellahi et al.[30] discussed the effects of variable fluid viscosity on 

non-Newtonian fluid flow in a pipe. Xun et al.[31] investigated the bioconvection flow of 

nanofluids across two rotating surfaces with variable fluid viscosity. The result shows a remarkable 

variation in Nusselt number and Skin friction with viscosity variation of the fluid. Kharat et al.[32] 

investigated a nanofluid flow with solid-constituent as Cobalt Ferrite and Ethylene glycol under 

the influence of temperature-dependent dynamic viscosity. It is concluded from the study that 

viscosity increases with an increasing fraction of Cobalt Ferrite. Babu et al.[33] analyzed the flow 

across a slandering stretching sheet with variable viscosity. Convective boundary conditions are 

employed for both mass and heat transfer. A numerical solution is obtained for the problem under 

consideration. The study reveals that viscosity variation and the parameter for chemical reactions 

act oppositely on the concentration profile. Sobamowo et al.[34] studied the flow of a fourth-grade 

fluid with dynamic viscosity varying with temperature. The problem is solved with the 

perturbation technique.  

The governing equations of fluid dynamics in two-dimensional flow consist of a couple of 

equations that represent the law of conservation for linear momentum, an equation that describes 
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the heat flow through the system based on the laws of thermodynamics and an equation that embed 

the conservation of angular momentum when rotational inertia case is considered. In general form, 

these mathematical statements are higher-order non-linear partial differential equations. Although 

researchers have presented the exact solution of some very special cases of these equations by 

analytical techniques. These equations are cumbersome to deal with in most of the time due to its 

higher nonlinearity. Convective acceleration term is a source of nonlinearity in momentum 

equations for instance. The analytical techniques never yielded an explicit exact solution for most 

of the cases. In fact, neither the exact solution nor the existence of it in general form has yet been 

presented. Even for very special cases, the analytical solution is hard to find. Instead, researchers 

find the approximate solution with numerical methods. These numerical techniques are more 

promising to search for the solution with relatively less effort. Researchers have employed many 

effective numerical techniques to uncover different flow problems. We have set the central 

objective of this work to model different nanofluid flow problems keeping most of the involved 

parameters variable and solved the governing highly nonlinear differential equations with effective 

numerical methods. Different geometrical situations of the bounded and semi-infinite domain 

through which fluid flows are assumed such as the flow of fluid through squeezing channel and 

boundary layer flows. Throughout this work, we have considered a magnetic field acting along 

normal to the flow direction of the fluid. It has been observed that this field acts differently with 

both cases of boundary layer and of the flow between plates at a finite distance. Equations are 

modeled such that nanofluid’s effective viscosity is assumed as temperature-dependent. 

Table 1.1 Experimental values for thermo-physical quantities used in the study[17] 

Thermo-

physical 

properties 

 Pure water SWCNT  MWCNT  

𝐶௣ሺ𝐽/𝑘𝑔𝐾ሻ 4179.0 425 796 

𝜌 ሺ𝑘𝑔/𝑚³ሻ 997.10 2600 1600 

𝑘 ሺ𝑊/𝑚𝐾ሻ 0.6130 6600 3000 

Carbon nanotubes are taken as a solid constituent of water-based nanofluid for all of our assumed 

problems. Xue[35] model for thermal conductivity is taken into account. Standard values of 
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thermo-physical quantities associated with nanoparticles and base fluid that is used in our 

computations can be seen in 𝑻𝒂𝒃𝒍𝒆. 𝟏. 𝟏. 

Pressure dependence of fluids flow, viscosity variation with temperature and existence of magnetic 

field added into the non-linearity and complex form of governing equations. For most of the cases, 

these equations are in need of an effective numerical technique that has the capability to handle 

complex mathematical situations and non-linearity. Two different finite-difference numerical 

approaches are conducted to analyze the various assumed flow situations in this thesis. For the 

cases when the embedded governing equations can be written explicitly with a relatively smaller 

order of non-linearity, a built-in algorithm of MATLAB BVP4C package is incorporated. This 

method solves systems of nonlinear ordinary differential equations by applying the Lobatto IIIa 

formula. This technique solves the differential system by collocation approach. A continuous first-

order differentiable polynomial is guessed as the solution and then solves the governing system. 

The above solution guess is taken by keeping in mind the boundary conditions. In this thesis, the 

above technique is used mostly to authenticate our solution by providing a comparative study for 

relatively simple cases with that of the main numerical technique used. For original problems that 

arose in this thesis, we have incorporated 2nd order accurate finite difference scheme called Keller 

box. It is an implicit numerical scheme the algorithm of which can effectively be used on complex, 

high order non-linear, coupled systems of differential equations. This method is unconditionally 

stable. The idea is to shape the differential equation system into a linear algebraic equation system. 

This algebraic system is then set into matrix-vector forms, such as the coefficient matrix at each 

iterating stage is a banded matrix of order three. The next part of the scheme procedure is to split 

this banded coefficient matrices into distinguished upper and lower triangular matrices, which are 

manipulated algebraically to solve the system. The detailed procedure can be differentiated into 

four discrete steps. In the very beginning, the equations are written into a set of differential 

equations of the first order. Secondly, this resulting equation system is discreetized using a finite 

difference scheme. The third stage is to implement Newton’s linearization technique to linearize 

the set of algebraic equations. The final step is to apply matrix algebra to the linearized system. 

This very last job is accomplished by programming the algorithm in MATLAB software. Error 

tolerance for all of the problems considered in this thesis is set as 10ି଺. Since it was possible to 

find the transformations that transformed the ruling partial differential equations to similar 

ordinary differential equations, therefore, we write all problems included in this thesis as a similar 
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system of coupled nonlinear ordinary differential equations and then solve by the above method. 

Grid independence of the solution is also checked for all the problems. The step size and the 

boundary length is set such that the grid numbers do not affect the solution to six decimal places 

above the boundary length. For unbounded boundary layer problems, this length is set at 𝜂 ൌ 16. 

For this length, all the problems have passed the grid independence test.   

 The present Thesis consist of six chapters in which the first chapter is an introductory chapter 

while all others are expressed as: 

Chapter 2 includes the topic of hydromagnetic nanofluid flow across two parallel squeezing 

plates. Carbon nanotubes are assumed as the solid part of the water-based nanofluid flow. 

Nanofluid exhibit unsteady flow through squeezing solid boundaries. Radiative heat flux is also 

taken into considerations. Fluid dynamic viscosity is taken inversely related to the fluid 

temperature. The solution is obtained numerically with the Keller box method. In addition to the 

original problem, a simple case of constant viscosity is also solved with BVP4C MATLAB. 

Results obtained by both of these techniques are in very good agreement with each other. This 

work is submitted for publication in “AIP Advances”. 

Chapter 3 aims to present the squeezing flow of a micropolar viscous nanofluid with variable 

dynamic viscosity. Carbon nanotubes are taken as the solid constituent of nanofluid. Water is 

assumed as base fluid. It is assumed that the presence of carbon nanotubes in the base fluid may 

cause the inertial difference between the two phases of the nanofluid, which in result can produce 

rotational and spin motion within the fluid body. Graphical and numerical results of important 

physical quantities are determined using MATLAB and Tecplot software.  A second-order finite 

difference scheme is implemented to solve our problem. A Comparison study with previous 

literature is also done to authenticate our solution. The results obtained are published in “Physica 

Scripta”[36]. (2019):19;12. 

Chapter 4 considered a viscous nanofluid flow on a curved stretching surface, the dynamic 

viscosity of the fluid inversely depending on fluid temperature. In addition, a uniform MHD field 

acting perpendicular to the curved surface is taken into considerations, Temperature and velocity 

of viscous nanofluid are analyzed for sparsely distributed values of involved parameters such as 

magnetic parameter, nano-particles volume fraction or curvature parameters. The solution is 

obtained numerically by transforming the equations that governed the system to similar nonlinear 
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coupled ordinary differential equations and then solved the resulting similar differential equations 

with a finite difference implicit scheme. A comparison study is also presented for results validation 

with previous literature. An article that represents the contents of this chapter is published in 

“Microsystem Technologies”[37]. (2019):25;2881-2888. 

Chapter 5 includes the unsteady flow of a viscid nano-liquid above a permeable curved shrinking 

sheet with variable viscosity and magnetic field. On Navier stokes equations the boundary layer 

approximation is implemented also for thermal characteristics of the nanofluid  the energy equation 

is used to model the flow problem. Keller box method is incorporated to reveal the characteristics 

of the proposed flow situation. Dual solutions are obtained, which are characterized as the upper 

and lower solution. The skin friction coefficient, velocity, and velocity gradient graphs are plotted. 

Distinguished critical points have been obtained. It is found that at one side of these critical points 

multiple solutions exist, On the other side only a single (stable) solution exists, whereas on these 

particular points no solution exists at all. A Comparison study is also represented with that of 

previous literature. The temperature and pressure profiles are also plotted opposite to various 

effective parameters. The work is published in the “International Journal of Numerical 

Methods for Heat & Fluid Flow” [38]. (2019) DOI: 10.1108/HFF-04-2019-0346 

The main objective of Chapter 6 is to analyze the impact of temperature-dependent viscosities on 

the nanofluid flow while considering rotational inertia over the curvilinear surface. The governing 

set of equations are first transformed to similar ordinary differential equations and then these 

extremely nonlinear differential equations are unraveled numerically with the help of the finite 

difference sheme. A detailed explanation of the mathematical procedure that has been followed is 

also mentioned in the study. A reasonable comparison is also given for the simplest case with that 

of previous literature. This chapter is published as an article in “Processes”[39]. (2019):7;6;387
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2 Numerical solution of CNT based nanofluid flowing 

through squeezing channel. 

2.1 Introduction 

In this chapter, we have presented a computational investigation of a nanofluid unsteady flow 

passing through parallel plates of infinite length. The plates are squeezing towards with certain 

velocity. In addition, with thermal radiations, an unsteady magnetic field normal to the plates are 

taken into account. Fluid dynamic viscosity is sensitive to temperature. Navier stokes model for 

viscous fluids is used to model the physical situation. The governing equations are partial 

differential equations which have a high nonlinearity. Appropriate variables of similarity are used 

to transform these equations into identical ordinary differential equations which are nonlinear 

coupled equations. Such reduced, extremely non-linear differential equations would then be 

numerically worked out using the Keller box technique. It is an implicit numerical scheme with 

second-order accuracy which is stable unconditionally. Moreover, for the simplest case of no 

volume fraction of carbon nanotubes and constant viscosity, An another numerical method 

‘BVP4c’ solves the problem. For investigating the flow behavior with the specified physical 

situations, computational and graphical results are obtained. 

2.2 Mathematical Modelling 
Let us assume a viscous nanofluid flowing through a squeezing channel. The edges of the channel 

are two parallel plates of infinite length. Both plates are at a distance ℎሺ𝑡ሻ ൌ 𝑙ሺ1 െ 𝛽𝑡ሻଵ/ଶ from 

the origin, O. For 𝛽 ൐ 0 the plates squeezed till they meet at 𝑡 ൌ 1/𝛽. An unsteady magnetic field 

acting in a perpendicular direction to the plates are taken into considerations with strength 𝐵ሺ𝑡ሻ ൌ

𝐵଴ሺ1 െ 𝛽𝑡ሻିଵ/ଶ, where B0 represents the initial magnetic intensity. Radiative heat transfer is also 

considered. Figure 2.1 represents the geometry of the assumed problem. 
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Figure 2.1 Flow geometry of fluid passing through squeezing plates 

The respective governing equations are given as: 

𝜕𝑈ሬሬ⃑

𝜕𝑥
൅

𝜕𝑉ሬ⃑

𝜕𝑦
ൌ 0, 

ሺ2.1ሻ
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𝜌௡௙
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൅
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ቇ െ 𝜎𝐵ଶሺ𝑡ሻ𝑈ሬሬ⃑ , 

ሺ2.2ሻ
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ሺ2.3ሻ

𝜕𝑇ሬ⃑

𝜕𝑡
൅ 𝑉ሬ⃑

𝜕𝑇ሬ⃑

𝜕𝑦
൅ 𝑈ሬሬ⃑

𝜕𝑇ሬ⃑

𝜕𝑥
ൌ െ

1

൫𝜌𝐶௣൯
௡௙

𝜕𝑞௥

𝜕𝑦
൅ 𝛼௡௙ ቆ

𝜕ଶ𝑇ሬ⃑

𝜕𝑦ଶቇ, 
ሺ2.4ሻ

Where Equation (2.1) is mass conservation, Equation (2.2) and (2.3) are mathematical expressions 

to embed linear momentum conservation along 𝑥 and 𝑦 directions with 𝑈ሬሬ⃑  and  𝑉ሬ⃑  are the respective 

velocities in 𝑥 and 𝑦 directions. Equation (2.4) represents energy conservation phenomena. 𝑇ത෠  is 

used for fluid temperature profile, 𝑝 symbolized the pressure distribution. The effective density is 

calculated as  𝜌௡௙ ൌ 𝜙𝜌஼ே் ൅ ሺ1 െ 𝜙ሻ𝜌௙ஶ ,where the effective heat capacity is taken as  

ሺ𝜌𝐶௣ሻ௡௙ ൌ 𝜙ሺ𝜌𝐶௣ሻ஼ே் ൅ ሺ1 െ 𝜙ሻሺ𝜌𝐶௣ሻ௙ஶ . Since we have used Carbon nanotubes in the base 

fluid as a solid constituent, the thermal conductivity is computed by the model proposed by Xue 

et al.[35] which  in mathematical form is written as:  
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௄೙೑

௄೑ಮ
ൌ

ଵିథାଶథ
಼಴ಿ೅

಼಴ಿ೅ష಼೑ಮ
୪୬

಼಴ಿ೅శ಼೑ಮ
మ಼೑ಮ

ଵିథାଶథ
಼೑ಮ

಼಴ಿ೅ష಼೑ಮ
୪୬

಼಴ಿ೅శ಼೑ಮ
మ಼೑ಮ

 . 𝜇௡௙ represent the nanofluid viscosity, which is defined as: 

 𝜇௡௙ ൌ
ఓ೑ಮ

ሺଵିథሻమ.ఱ, where 𝜇௙ஶ is the symbol used for base fluid viscosity which in our case vary 

inversely with temperature i.e.  
ଵ

ఓ೑ಮ
ൌ 𝑎൫𝑇ሬ⃑ െ 𝑇௥൯, Since  𝑎 ൌ ఋ

ఓ೑ಮ
,  𝑇௥ ൌ 𝑇ஶ െ ଵ

ఋ
 , 𝛿 and 𝑎  are 

constants, and  𝑎 ൐ 0  for liquids. The heat flux through radiations is calculated on the bases of 

Rosseland approximation which is:  𝑞௥ ൌ െ ସఙ೐

ଷఉೃ

డሬ்⃑ ర

డ௬
 , 𝜎௘ be Stefan Boltzmann constant and 𝛽ோ be 

the mean absorption parameter. The thermal difference of the fluid phases are so small that 𝑇ሬ⃑ ସ is 

taken as a linear function of fluid temperature𝑇ሬ⃑ ସ is replaced by a linear function of fluid 

temperature. i.e:  We expand 𝑇ሬ⃑ ସ in Taylor series about the temperature Tc such that 

𝑇ሬ⃑ ସ ൌ 4𝑇௖
ଷ𝑇ሬ⃑ െ 𝑇௖

ଷ. 

For the above system the relevant boundary conditions are: 

𝜕𝑈ሬሬ⃑

𝜕𝑦
ൌ 0, 𝑉ሬ⃑ ൌ 0,

𝜕𝑇ሬ⃑

𝜕𝑦
ൌ 0 𝑎𝑡 𝑦 ൌ 0,

  𝑈ሬሬ⃑ ൌ 0,       𝑉ሬ⃑ ൌ
𝑑ℎ
𝑑𝑡

, 𝑇ሬ⃑ ൌ 𝑇௛ 𝑎𝑡 𝑦 ൌ ℎሺ𝑡ሻ.
⎭
⎪
⎬

⎪
⎫

 ሺ2.5ሻ

The differential equations presented in equations (2.1-2.4) are mold t a set of similar ordinary 

differential equations. For the purpose, we introduced two new dimensionless functions 𝑓, 𝜃 and 

a similarity variable 𝜂 such as, 

𝑉ሬ⃑ ൌ
െ𝛽𝑙

2ሺ1 െ 𝛽𝑡ሻ
ଵ
ଶ

𝑓ሺ𝜂ሻ, 𝑈ሬሬ⃑ ൌ
𝛽𝑥

2ሺ1 െ 𝛽𝑡ሻ
𝑓ᇱሺ𝜂ሻ,

  𝜃 ൌ
𝑇ሬ⃑ െ 𝑇௖

𝑇௛ െ 𝑇௖
 ,                         𝜂 ൌ

𝑦

𝑙ሺ1 െ 𝛽𝑡ሻ
ଵ
ଶ

 

 

 

ሺ2.6ሻ

Applying the above transformations, the equation of continuity identically satisfies while the 

equations representing momentum and the energy conservations reduced to the form below: 
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𝑓௜௩ ൅
𝑓ᇱᇱ𝜃ᇱଶ

𝜃௥
ଶ ቀ1 െ 𝜃

𝜃௥
ቁ

ଶ ൅
𝑓ᇱᇱᇱ𝜃ᇱ

𝜃௥ ቀ1 െ 𝜃
𝜃௥

ቁ
൅

𝑓ᇱᇱ𝜃ᇱ′

𝜃௥ ቀ1 െ 𝜃
𝜃௥

ቁ
െ 𝐻𝑎ଶ𝑓ᇱᇱ

െ 𝐴ଵ𝑆 ൬1 െ
𝜃
𝜃௥

൰ ሺ𝜂𝑓ᇱᇱᇱ ൅ 3𝑓ᇱᇱ ൅ 𝑓ᇱ𝑓ᇱᇱ െ 𝑓𝑓ᇱᇱᇱሻ ൌ 0 

 

ሺ2.7ሻ

൬1 ൅
4

3ϵଵ
𝑅𝑑൰ 𝜃ᇱᇱ െ 𝑆

ϵଶ

ϵଵ
Prሺ𝑓𝜃ᇱ ൅ 𝜂𝜃ᇱሻ ൌ 0 

ሺ2.8ሻ

 𝑓 ൌ 0, 𝑓ᇱᇱ ൌ 0, 𝜃ᇱ ൌ 0 𝑎𝑡 𝜂 ൌ 0

𝑓 ൌ 1, 𝑓ᇱ ൌ 0, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 1 ሺ2.9ሻ

Where,  

𝐴ଵ ൌ ሺ1 െ 𝜙ሻଶ.ହ ቈ𝜙
𝜌஼ே்

𝜌௙ஶ
൅ ሺ1 െ 𝜙ሻ቉ , 𝑅𝑑 ൌ

4𝜎௘𝑇ሬ⃑ ଷ

𝐾௙ஶ𝛽ோ
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𝛽𝑙ଶ
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൫𝜌𝐶௣൯
௡௙
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௙ஶ

𝜌௙ஶ𝐾௙ஶ
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1 െ 𝜙 ൅ 2𝜙
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ln
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ln
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,

  ϵଶ ൌ ሺ1 െ 𝜙ሻ ൅ 𝜙
ሺ𝜌𝐶௣ሻ஼ே்

ሺ𝜌𝐶௣ሻ௙ஶ
,

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 

 

 

 

   The mathematical assertions derived for Skin-friction and Nusselt number are 

 𝐶௙ ൌ ሺ
ఓ೙೑

ఘ೙೑ሺ೏೓
೏೟

ሻమ

డ௎ሬሬ⃑

డ௬
ሻ௬ୀ௛ሺ௧ሻ and 𝑁𝑢 ൌ ሺሺ1 ൅ ସ

ଷఢଵ
𝑅𝑑ሻ

௟௄೙೑

௄೑ಮ்೓

డሬ்⃑

డ௬
ሻ௬ୀ௛ሺ௧ሻ, respectively, which is the 

dimensionless form is given as  

𝐶௙
∗ ൌ ௟మோ௘ೣ

ଶ௫మ 𝐶௙ඥ1 െ 𝛽𝑡 ൌ ଵ

஺భሺଵି భ
ഇೝ

ሻ
𝑓′′ሺ1ሻ,    𝑁௨

∗ ൌ ϵଵ ቀ1 ൅ ସ

ଷ஫భ
𝑅𝑑ቁ 𝜃′ሺ1ሻ 

2.3 Solution Procedure 

Boundary layer approximation has brought in to handle the general Naiver Stokes equation to 

model the desired physical problem. The obtained equations are nonlinear partial differential 

equations that are remodeled by implementing effective transformations. These transformations 
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convert the equations to similar ordinary differential equations. To find the numerical solution of 

the transformed non-linear differential equations, the Keller-box scheme is used. This numerical 

technique is composed of four separate procedures given in the proceeding sections. At the very 

beginning, the equations are transformed into a set of first-order differential equations, as 

mentioned below: 

𝑓ᇱ ൌ 𝑢 ሺ2.10ሻ 

𝑢ᇱ ൌ 𝑣 ሺ2.11ሻ 

𝑣ᇱ ൌ 𝑤 ሺ2.12ሻ 

𝜃ᇱ ൌ 𝑚 ሺ2.13ሻ 
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ሺ2.14ሻ 

𝐴ଶ𝑚ᇱ െ 𝐴ଷ𝜂𝑚 െ 𝐴ଷ𝑓𝑚 ൌ 0 ሺ2.15ሻ 

Where 𝑢, 𝑣, 𝑤 𝑎𝑛𝑑 𝑚 are the new variables adopted to write the above differential equations 

system as a set of  first-order, ordinary differential equations. It sets out the respective boundary 

conditions as follows: 

𝑣 ൌ 0, 𝑓 ൌ 0, 𝑚 ൌ 0 𝑎𝑡 𝜂 ൌ 0  
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 𝑢 ൌ 0,    𝑓 ൌ 1, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 1 

We now find the finite difference approximation of the governing system of 1st order equations. 

For the purpose let us consider the working domain as a rectangular net in the ሺ𝑥, 𝜂ሻ-plan consist 

of mesh points as shown in the schematic diagram in Figure 2.2. 

Figure 2.2 Mesh points functional diagram 

𝑖 𝑎𝑛𝑑 𝑗 are progressions of numbers that imply the coordinate’s position. The finite-difference 

form of any point will be ሺ ሻ௝ିଵ/ଶ
௜ ൌ ଵ

ଶ
ሾሺ ሻ௝ିଵ

௜ ൅ ሺ ሻ௝
௜ ሿ andሺ ሻ௝

௜ିଵ/ଶ ൌ ଵ

ଶ
ሾሺ ሻ௝

௜ିଵ ൅ ሺ ሻ௝
௜ ሿ. 

Now applying the above scheme on the system of equations. The leading four equations are 

discretized by centering at ሺ𝑥௜, 𝜂௝ିଵ/ଶሻ where the last two equations are discretized by centering 

atሺ𝑥௜ିଵ/ଶ, 𝜂௝ିଵ/ଶሻ. The resulting equations are given below: 

𝑓௝
௜ ൌ 𝑓௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑢௝

௜ ൅ 𝑢௝ିଵ
௜ ሻ 

ሺ2.16ሻ

𝑢௝
௜ ൌ 𝑢௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑣௝

௜ ൅ 𝑣௝ିଵ
௜ ሻ 

ሺ2.17ሻ



21 
 

𝑣௝
௜ ൌ 𝑣௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑤௝

௜ ൅ 𝑤௝ିଵ
௜ ሻ 

ሺ2.18ሻ

𝜃௝
௜ ൌ 𝜃௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑚௝

௜ ൅ 𝑚௝ିଵ
௜ ሻ 

ሺ2.19ሻ

ሾ
൫𝑤௝ െ 𝑤௝ିଵ൯

ℎ௝
൅

1

𝜃௥
ଶ

൫𝑤௝ െ 𝑤௝ିଵ൯
ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
െ

2
𝜃௥

൫𝑤௝ െ 𝑤௝ିଵ൯
ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1
𝜃௥

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

െ
1

𝜃௥
ଶ

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

൅
1
𝜃௥

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝑚௝ െ 𝑚௝ିଵ൯
ℎ௝

െ
1

𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൫𝑚௝ െ 𝑚௝ିଵ൯
ℎ௝

൅
1

𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝑚௝ ൅ 𝑚௝ିଵ൯
ଶ

4
െ 𝐻𝑎ଶ ൫𝑣௝ ൅ 𝑣௝ିଵ൯

2

൅
2
𝜃௥

𝐻𝑎ଶ ൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

െ
1

𝜃௥
ଶ 𝐻𝑎ଶ ൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

ଶ

4

െ 𝐴ଵ𝑆𝜂
൫𝑤௝ ൅ 𝑤௝ିଵ൯

2
െ

3
2

𝐴ଵ𝑆
൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
൅ 𝐴ଵ𝑆

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൅
3
𝜃௥

𝐴ଵ𝑆𝜂
൫𝑤௝ ൅ 𝑤௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2
൅

9
𝜃௥

𝐴ଵ𝑆
൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2

െ
3
𝜃௥

𝐴ଵ𝑆
൫𝑓௝ ൅ 𝑓௝ିଵ൯

2
൫𝑤௝ ൅ 𝑤௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2

െ
3

𝜃௥
ଶ 𝐴ଵ𝑆𝜂

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
െ

9

2𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4

൅
3

𝜃௥
ଶ 𝐴ଵ𝑆

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4

൅
1

𝜃௥
ଷ 𝐴ଵ𝑆𝜂

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଷ

8
൅

3

2𝜃௥
ଷ 𝐴ଵ𝑆𝜂

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଷ

8

െ
1

𝜃௥
ଷ 𝐴ଵ𝑆

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଷ

8
ሿ௜ ൌ 𝑀௝ିଵ/ଶ 
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ሾ𝐴ଶ
൫𝑚௝ െ 𝑚௝ିଵ൯

ℎ௝
െ 𝐴ଷ𝜂

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

െ 𝐴ଷ
൫𝑓௝ ൅ 𝑓௝ିଵ൯

2
൫𝑚௝ ൅ 𝑚௝ିଵ൯

2
ሿ௜ ൌ 𝑃௝ିଵ/ଶ 

ሺ2.21ሻ

Where 

𝑀௝ିଵ/ଶ ൌ െሾሺ𝑤ᇱሻ
௝ିଵ

ଶ
െ

2
𝜃௥

ሺ𝑤ᇱ𝜃ሻ
௝ିଵ

ଶ
൅

1

𝜃௥
ଶ ሺ𝑤ᇱ𝜃ଶሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଶ ሺ𝑤𝑚ሻ

௝ିଵ
ଶ

൅
1
𝜃௥

ሺ𝑣𝑚ᇱሻ
௝ିଵ

ଶ

െ
1

𝜃௥
ଶ ሺ𝑤𝑚𝜃ሻ

௝ିଵ
ଶ

െ
1

𝜃௥
ଶ ሺ𝑣𝑚ᇱ𝜃ሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଶ ሺ𝑣𝑚ଶሻ

௝ିଵ
ଶ

െ 𝐻𝑎ଶ𝑣
௝ିଵ

ଶ
൅

2
𝜃௥

𝐻𝑎ଶሺ𝑣𝜃ሻ
௝ିଵ

ଶ

െ
1
𝜃௥

𝐻𝑎ଶሺ𝑣𝜃ଶሻ
௝ିଵ

ଶ
െ 𝐴ଵ𝑆ሺ𝜂𝑤ሻ

௝ିଵ
ଶ

െ 3𝐴ଵ𝑆𝑣
௝ିଵ

ଶ
െ 5𝐴ଵ𝑆ሺ𝑢𝑣ሻ

௝ିଵ
ଶ

െ 𝐴ଵ𝑆ሺ𝑓𝑣ሻ
௝ିଵ

ଶ

൅
3
𝜃௥

𝐴ଵ𝑆ሺ𝜂𝑤𝜃ሻ
௝ିଵ

ଶ
൅

9
𝜃௥

𝐴ଵ𝑆ሺ𝑣𝜃ሻ
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ଶ
൅
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௝ିଵ
ଶ

൅
1

𝜃௥
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ሺ2.22ሻ

𝑃௝ିଵ/ଶ ൌ െሾ𝐴ଶሺ𝑚ᇱሻ
௝ିଵ

ଶ
െ 𝐴ଷ𝜂𝑚

௝ିଵ
ଶ

െ 𝐴ଷሺ𝑓𝑚ሻ
௝ିଵ

ଶ
ሿ௜ିଵ ሺ2.23ሻ

𝑀௝ିଵ/ଶ and 𝑃௝ିଵ/ଶ are the terms that are already known. 

Newton’s linearization is the very next step to follow. We replace variables 𝑓, 𝑢, 𝑣, 𝑤, 𝜃 𝑎𝑛𝑑 𝑚  

with 𝑓 ൅ 𝛿𝑓, 𝑢 ൅ 𝛿𝑢, 𝑣 ൅ 𝛿𝑣, 𝑤 ൅ 𝛿𝑤, 𝜃 ൅ 𝛿𝜃 𝑎𝑛𝑑 𝑚 ൅ 𝛿𝑚 respectively. The resulting linear set 

of equations are then written as: 

𝛿𝑓௝ െ 𝛿𝑓௝ିଵ െ
ℎ௝

2
൫𝛿𝑢௝ିଵ ൅ 𝛿𝑢௝൯ ൌ ሺ𝑟ଵሻ௝ 

ሺ2.24ሻ 
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𝛿𝑢௝ െ 𝛿𝑢௝ିଵ െ
ℎ௝

2
൫𝛿𝑣௝ିଵ ൅ 𝛿𝑣௝൯ ൌ ሺ𝑟ଶሻ௝ 

ሺ2.25ሻ 

𝛿𝑣௝ െ 𝛿𝑣௝ିଵ െ
ℎ௝

2
൫𝛿𝑤௝ିଵ ൅ 𝛿𝑤௝൯ ൌ ሺ𝑟ଷሻ௝ 

ሺ2.26ሻ 

𝛿𝜃௝ െ 𝛿𝜃௝ିଵ െ
ℎ௝

2
൫𝛿𝑚௝ିଵ ൅ 𝛿𝑚௝൯ ൌ ሺ𝑟ହሻ௝ 

ሺ2.27ሻ 

ሺ𝑎ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑎ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑎ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑎ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑎ହሻ௝𝛿𝑓௝ ൅ ሺ𝑎଺ሻ௝𝛿𝑓௝ିଵ ൅ ሺ𝑎଻ሻ௝𝛿𝑤௝

൅ ሺ𝑎଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑎ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑎ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑎ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑎ଵଶሻ௝𝛿𝑚௝ିଵ ൌ ሺ𝑟଺ሻ௝ 

 

ሺ2.28ሻ 

ሺ𝑏ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑏ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑏ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑏ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑏ହሻ௝𝛿𝑓௝ ൅ ሺ𝑏଺ሻ௝𝛿𝑓௝ିଵ ൅ ሺ𝑏଻ሻ௝𝛿𝑤௝

൅ ሺ𝑏଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑏ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑏ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑏ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑏ଵଶሻ௝𝛿𝑚௝ିଵ ൌ ሺ𝑟଻ሻ௝ 

 

ሺ2.29ሻ 

At the very end, the system of above-linearized equations is solved algebraically by setting these 

equations into matrix form, which are decomposed and written into banded matrices of upper and 

lower triangular types. A MATLAB script is programmed to solve the system by block elimination 

technique. A very fine step size of ∆𝜂 ൌ 0.005 is taken as a step size for all computations. Error 

tolerance is fixed at 10ି଺. Scheme results are authenticated by comparing them with the solution 

obtained from another MATLAB built-in solver BVP4C for the simplest case of constant dynamic 

viscosity. The data obtained from both methods appeared to be in good agreement with each other. 

Table 2.1 presents the comparison of said methods. 

Table 2.1 Comparison Table for Keller box and BVP4C methods. 𝑯𝒂 ൌ 𝟏. 𝟎, 𝑹𝒅 ൌ 𝟏. 𝟎, 𝑺 ൌ 𝟏. 𝟎 

𝜑 𝑓′′ሺ1ሻ 𝜃′ሺ1ሻ 

 Keller Box BVP4C Keller Box BVP4C 

0.025 െ5.0517 -5.0521 3.3159 3.3145 

0.05 െ4.9977 െ4.9985 2.7623 2.7616 

0.10 െ4.8769 െ4.8779 1.9801 1.9785 
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2.4 Results and Discussion 

Numerical, as well as graphical results, are determined in the presence of different involved 

parameters. The main theme of our work is to find the behavior in the presence of a temperature-

dependent viscosity parameter.  

 

Figure 2.3 Velocity variations with 

 Magnetic parameter 

 

Figure 2.4 Velocity variations with  

Squeezing parameter 

 

Figure 2.5 Velocity variations with variable  

Viscosity parameter 

 

Figure 2.6 Velocity variations with  

Radiation parameter 

Figure (2.2-2.5) represents the velocity profile variations with different physical parameters. 

Figure 2.2 depicts a boost in velocity with the 24agnitude of the Hartmann number. The same is 
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the case of the squeezing parameter as can be noticed in Figure 2.3. The velocity profile rises as 

the squeezing parameters get larger as squeezing walls provide a push to the fluid body along the 

moving direction. Figure 2.4 manifests a decline in velocity with a rise in the viscosity parameter.  

 

Figure 2.7 Temperature variations  versus  

Squeezing parameter 

 

Figure 2.8 Temperature variations versus  

Volume fraction of SWCNT 

 

Figure 2.9 Temperature variations versus variable 

Viscosity parameter 

 

Figure 2.10 Temperature variations versus  

Radiation parameter 

With an increase in radiation parameter heat loss from fluid mass occurs causing fluid more 

resistive to motion. Figure 2.5,  therefore shows a decline in velocity with radiation parameters. 

Figures (2.6-2.9) determines the variation of temperature profile with all involve physical 
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parameters. Since by increasing volume fraction of CNT’s, thermal conductivity of nanofluid raise, 

consequently fluid temperature increases as can be validated from Figure 2.7, while a decrease in 

temperature distribution is observed with rising values of squeezing parameter as can be observed 

in Figure 2.6. A rise in the viscosity parameter heightens the temperature distribution of the 

nanofluid as evident in Figure 2.8. The present study concluded that temperature distribution 

magnifies with ascending values of radiation parameters as represented in Figure 2.9. 

Table 2.2 shows that for fixed values of the variable viscosity parameter the Skin-friction 

coefficient increases with CNT concentration values while the same parameter decreases the 

intensity of the Nusselt number. Table 2.3. Presents the effect on the Nusselt number and skin-

friction of the squeezing parameters. The results show that both increase while keeping the variable 

viscosity parameter constant with the increase in the squeezing parameters.   

Table 2.2 Variations in Nusselt number and Skin-friction with volume fraction and viscosity parameter. 

 𝑯𝒂 ൌ 𝟏. 𝟎, 𝑹𝒅 ൌ 𝟏. 𝟎, 𝑺 ൌ 𝟏. 𝟎 

𝜽𝒓 𝜑 െ𝐶௙
∗ 𝑁௨

∗ 

 𝟎. 𝟎𝟐𝟓 𝟒. 𝟒𝟕𝟑𝟕𝟑 𝟒. 𝟐𝟑𝟕𝟕𝟏 

െ𝟏𝟎 𝟎. 𝟎𝟓 𝟒. 𝟓𝟒𝟐𝟏𝟖 𝟒. 𝟎𝟖𝟑𝟕𝟒 

 𝟎. 𝟏𝟎 𝟒. 𝟖𝟏𝟗𝟓𝟐 𝟑. 𝟗𝟒𝟗𝟎𝟐 

 𝟎. 𝟎𝟐𝟓 𝟒. 𝟑𝟐𝟒𝟖𝟖 𝟒. 𝟏𝟕𝟎𝟖𝟖 

െ𝟏𝟓 𝟎. 𝟎𝟓 𝟒. 𝟒𝟐𝟐𝟗𝟑 𝟒. 𝟎𝟑𝟗𝟐𝟕 

 𝟎. 𝟏𝟎 𝟒. 𝟕𝟏𝟑𝟕𝟎 𝟑. 𝟗𝟐𝟖𝟕𝟓 

 𝟎. 𝟎𝟐𝟓 𝟒. 𝟐𝟕𝟒𝟔𝟑 𝟒. 𝟏𝟑𝟗𝟐𝟒 

െ𝟐𝟎 𝟎. 𝟎𝟓 𝟒. 𝟑𝟕𝟕𝟗𝟔 𝟒. 𝟎𝟏𝟕𝟔𝟕 

 𝟎. 𝟏𝟎 𝟒. 𝟔𝟔𝟏𝟗𝟔 𝟑. 𝟗𝟏𝟖𝟑𝟔 
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The radiation parameter, when raised in magnitude, increases the strength of Skin friction as well 

as Nusselt number as shown in Table 2.4. A rise in the Skin friction can be observed with a hike 

in the magnitude of Hartmann’s number.  

Table 2.3Variations in  Nusselt number and Skin-friction with the Squeezing parameter and viscosity parameter. 

 𝑯𝒂 ൌ 𝟏. 𝟎, 𝑹𝒅 ൌ 𝟏. 𝟎, 𝝋 ൌ 𝟎. 𝟎𝟓 

𝜽𝒓 𝑺 െ𝐶௙
∗ 𝑁௨

∗ 

 𝟏. 𝟎 𝟒. 𝟓𝟒𝟐𝟏𝟖 𝟒. 𝟎𝟖𝟑𝟕𝟒 

െ𝟏𝟎 𝟐. 𝟎 𝟓. 𝟒𝟕𝟓𝟎𝟕 𝟗. 𝟒𝟗𝟖𝟕𝟗 

 𝟑. 𝟎 𝟔. 𝟑𝟖𝟐𝟕𝟎 𝟏𝟓. 𝟔𝟎𝟕𝟕𝟓 

 𝟏. 𝟎 𝟒. 𝟒𝟐𝟐𝟗𝟑 𝟒. 𝟎𝟑𝟗𝟐𝟕 

െ𝟏𝟓 𝟐. 𝟎 𝟓. 𝟐𝟏𝟎𝟐𝟒 𝟗. 𝟏𝟓𝟕𝟓𝟓 

 𝟑. 𝟎 𝟔. 𝟎𝟒𝟒𝟕𝟒 𝟏𝟒. 𝟖𝟖𝟎𝟕 

 𝟏. 𝟎 𝟒. 𝟑𝟕𝟕𝟗𝟔 𝟒. 𝟎𝟏𝟕𝟔𝟕 

െ𝟐𝟎 𝟐. 𝟎 𝟓. 𝟏𝟔𝟒𝟑𝟔 𝟗. 𝟎𝟏𝟑𝟖𝟓 

 𝟑. 𝟎 𝟔. 𝟎𝟎𝟒𝟒𝟏 𝟏𝟒. 𝟓𝟗𝟓𝟓𝟗 

A decrease in Nusselt number can be seen for viscosity parameter magnitude less than 10, where 

it increases for values of magnitude greater than or equal to 10 as shown in Table 2.5.  For all 

numeric obtained for the problem, it is very clear that with a rise in viscosity parameter a decrease 

in Nusselt number, as well as in Skin friction is observed.  
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Table 2.4 Variations in Nusselt number and Skin-friction with the Radiations parameter and viscosity parameter. 

   𝑯𝒂 ൌ 𝟏, 𝑺 ൌ 𝟐, 𝝋 ൌ 𝟎. 𝟎𝟓 

𝜽𝒓 𝑹𝒅 െ𝐶௙
∗ 𝑁௨

∗ 

 𝟎. 𝟓 𝟓. 𝟗𝟎𝟒𝟖𝟓 𝟏𝟎. 𝟏𝟏𝟑𝟏𝟐 

െ𝟏𝟎 𝟏. 𝟎 𝟓. 𝟒𝟕𝟓𝟎𝟕 𝟗. 𝟒𝟗𝟖𝟕𝟗 

 𝟐. 𝟎 𝟓. 𝟏𝟗𝟏𝟕𝟑 𝟖. 𝟔𝟕𝟗𝟐𝟒 

 𝟎. 𝟓 𝟓. 𝟒𝟏𝟗𝟗𝟏 𝟗. 𝟔𝟏𝟖𝟔𝟕 

െ𝟏𝟓 𝟏. 𝟎 𝟓. 𝟐𝟏𝟎𝟐𝟒 𝟗. 𝟏𝟓𝟕𝟓𝟓 

 𝟐. 𝟎 𝟓. 𝟏𝟏𝟐𝟐𝟑 𝟖. 𝟓𝟏𝟎𝟑𝟑 

 𝟎. 𝟓 𝟓. 𝟑𝟎𝟐𝟗𝟎 𝟗. 𝟒𝟏𝟗𝟏𝟕 

െ𝟐𝟎 𝟏. 𝟎 𝟓. 𝟏𝟔𝟒𝟑𝟔 𝟗. 𝟎𝟏𝟑𝟖𝟓 

 𝟐. 𝟎 𝟓. 𝟏𝟏𝟓𝟕𝟐 𝟖. 𝟒𝟑𝟒𝟐𝟐 

 

Table 2.5 Variations in Nusselt number and Skin-friction with Hartman number and viscosity parameter.  

 𝑹𝒅 ൌ 𝟏. 𝟎, 𝑺 ൌ 𝟐, 𝝋 ൌ 𝟎. 𝟎𝟓 

𝜽𝒓 𝑯𝒂 െ𝐶௙
∗ 𝑁௨

∗ 

 𝟎. 𝟓 𝟓. 𝟒𝟎𝟎𝟒𝟎 𝟗. 𝟓𝟏𝟓𝟕𝟕 

െ𝟏𝟎 𝟏. 𝟎 𝟓. 𝟒𝟕𝟓𝟎𝟕 𝟗. 𝟒𝟗𝟖𝟕𝟗 

 𝟐. 𝟎 𝟓. 𝟕𝟗𝟕𝟑𝟎 𝟗. 𝟒𝟓𝟐𝟐𝟑 

 𝟎. 𝟓 𝟓. 𝟎𝟖𝟐𝟕𝟕 𝟗. 𝟏𝟓𝟏𝟏𝟑 
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െ𝟏𝟓 𝟏. 𝟎 𝟓. 𝟐𝟏𝟎𝟐𝟒 𝟗. 𝟏𝟓𝟕𝟓𝟓 

 𝟐. 𝟎 𝟓. 𝟕𝟎𝟖𝟒𝟎 𝟗. 𝟏𝟖𝟓𝟓𝟗 

 𝟎. 𝟓 𝟓. 𝟎𝟏𝟕𝟏𝟑 𝟖. 𝟗𝟗𝟖𝟗𝟏 

െ𝟐𝟎 𝟏. 𝟎 𝟓. 𝟏𝟔𝟒𝟑𝟔 𝟗. 𝟎𝟏𝟑𝟖𝟓 

 𝟐. 𝟎 𝟓. 𝟕𝟑𝟎𝟓𝟓 𝟗. 𝟎𝟔𝟗𝟖𝟖 
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3 Micropolar nanofluid flow passing through 

squeezing walls. 

3.1 Introduction 

 This chapter deals with the inner structure of the fluid material that plays a Vitol role in fluid flow 

and thermal behavior of a fluid body. For instance, the existence of two different phases of 

nanofluids can produce rotational inertia in addition to the linear inertia. The classical Navier 

stokes equations, however, possess the very limited capability to analyze the flow of fluid based 

on inner structure. In contrast to the Navier stokes model, the Eringin theory for micropolar fluid 

can be utilized to discuss the dynamics of the fluid with rotational and spin inertia meticulously. 

This chapter deals with the effects of rotational and spin motion on the dynamics of fluid in the 

presence of temperature-dependent viscosity and unsteady MHD field acting in the normal 

direction to the solid surface.  

3.2 Mathematical Description 

Let us consider the flow of a micropolar viscous nanofluid between two infinite squeezing plates 

as shown in Figure 2.1. The plates are parallel and are at distant ℎሺ𝑡ሻ ൌ 𝑙ሺ1 െ 𝛽𝑡ሻଵ/ଶ from the 

origin. The two plates squeezed till they meet at 𝑡 ൌ 1/𝛽, where 𝛽 ൐ 0. Radiative heat transfer 

and an unsteady magnetic field is taken into consideration, which is directed normal to the plates, 

𝐵ሺ𝑡ሻ ൌ 𝐵଴ሺ1 െ 𝛽𝑡ሻିଵ/ଶ is the applied magnetic field, 𝐵଴ is the initial intensity of the applied 

magnetic field. The effective dynamic viscosity varies with temperature. Figure 2.1 describes the 

geometry of the problem. 

Taking into considerations the intrinsic mobility of fluid particles, the two-dimensional flow 

equations are: 

𝜕𝑈ሬሬ⃑

𝜕𝑥
൅

𝜕𝑉ሬ⃑

𝜕𝑦
ൌ 0 

ሺ3.1ሻ
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𝜕𝑈ሬሬ⃑

𝜕𝑡
൅ 𝑈ሬሬ⃑

𝜕𝑈ሬሬ⃑

𝜕𝑥
൅ 𝑉ሬ⃑

𝜕𝑈ሬሬ⃑

𝜕𝑦

ൌ െ
1

𝜌௡௙

𝜕𝑝
𝜕𝑥

൅
1

𝜌௡௙

𝜕
𝜕𝑥

ቌ൫𝜇௡௙ ൅ 𝜅൯
𝜕𝑈ሬሬ⃑

𝜕𝑥
ቍ ൅

1
𝜌௡௙

𝜕
𝜕𝑦

ቌ൫𝜇௡௙ ൅ 𝜅൯
𝜕𝑈ሬሬ⃑

𝜕𝑦
ቍ

൅
𝜅

𝜌௡௙

𝜕𝑁ሬሬ⃑

𝜕𝑦
െ 𝜎𝐵ଶሺ𝑡ሻ𝑈ሬሬ⃑  

 

 

 

ሺ3.2ሻ

𝜕𝑉ሬ⃑

𝜕𝑡
൅ 𝑈ሬሬ⃑

𝜕𝑉ሬ⃑

𝜕𝑥
൅ 𝑉ሬ⃑

𝜕𝑉ሬ⃑

𝜕𝑦

ൌ െ
1

𝜌௡௙

𝜕𝑝
𝜕𝑦

1
𝜌௡௙

𝜕
𝜕𝑥

ቌ൫𝜇௡௙ ൅ 𝜅൯
𝜕𝑉ሬ⃑

𝜕𝑥
ቍ െ

𝜅
𝜌௡௙

൅
1

𝜌௡௙

𝜕
𝜕𝑦

ቌ൫𝜇௡௙ ൅ 𝜅൯
𝜕𝑉ሬ⃑

𝜕𝑦
ቍ

െ
𝜅

𝜌௡௙

𝜕𝑁ሬሬ⃑

𝜕𝑥
 

 

 

 

 

ሺ3.3ሻ

𝜕𝑁ሬሬ⃑

𝜕𝑡
൅ 𝑈ሬሬ⃑

𝜕𝑁ሬሬ⃑

𝜕𝑥
൅ 𝑉ሬ⃑

𝜕𝑁ሬሬ⃑

𝜕𝑦
ൌ

1
𝜌௡௙𝑗

𝜕
𝜕𝑦

ቆ𝛾∗ 𝜕𝑁ሬሬ⃑

𝜕𝑦
ቇ െ

𝜅
𝜌௡௙𝑗

ሺ2𝑁ሬሬ⃑ ൅
𝜕𝑈ሬሬ⃑

𝜕𝑦
ሻ 

ሺ3.4ሻ

𝜕𝑇ሬ⃑

𝜕𝑡
൅ 𝑈ሬሬ⃑

𝜕𝑇ሬ⃑

𝜕𝑥
൅ 𝑉ሬ⃑

𝜕𝑇ሬ⃑

𝜕𝑦
ൌ 𝛼௡௙ ቆ

𝜕ଶ𝑇ሬ⃑

𝜕𝑦ଶቇ െ
1

ሺ𝜌𝐶௣ሻ௡௙

𝜕𝑞௥

𝜕𝑦
 

ሺ3.5ሻ

 

For the above system the relevant boundary conditions are: 

𝜕𝑈ሬሬ⃑

𝜕𝑦
ൌ 0, 𝑉ሬ⃑ ൌ 0,

𝜕𝑁ሬሬ⃑

𝜕𝑦
ൌ 0,

𝜕𝑇ሬ⃑

𝜕𝑦
ൌ 0 𝑎𝑡   𝑦 ൌ 0,

𝑈ሬሬ⃑ ൌ 0,       𝑉ሬ⃑ ൌ
𝑑ℎ
𝑑𝑡

,   𝑁ሬሬ⃑ ൌ െ𝑠
𝜕𝑈ሬሬ⃑

𝜕𝑦
, 𝑇ሬ⃑ ൌ 𝑇௛ 𝑎𝑡  𝑦 ൌ ℎሺ𝑡ሻ

 

 

(3.6) 

Here 𝑁ሬሬ⃑  represents angular velocity of fluid particles.  

We introduce dimensionless functions 𝑓, 𝜃, 𝑔, and a similarity variable 𝜂 to convert the governing 

set of partial differential equations to a system of similar ordinary differential equations with the 

transformations, defined as: 
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𝑈ሬሬ⃑ ൌ
𝛽𝑥

2ሺ1 െ 𝛽𝑡ሻ
𝑓ᇱሺ𝜂ሻ,  𝑉ሬሬሬ⃑ ൌ

െ𝛽𝑙

2ሺ1 െ 𝛽𝑡ሻ
ଵ
ଶ

𝑓ሺ𝜂ሻ, 𝑁ሬሬ⃑ ൌ
െ𝛽𝑥

2𝑙ሺ1 െ 𝛽𝑡ሻ
ଷ
ଶ

𝑔ሺ𝜂ሻ, 

𝜃 ൌ
𝑇ሬ⃑ െ 𝑇௖

𝑇௛ െ 𝑇௖
 , 𝜂 ൌ

𝑦

𝑙ሺ1 െ 𝛽𝑡ሻ
ଵ
ଶ

 

Implicating the above transformations and dropping out the pressure gradient term by increasing 

the order of differentiation, the continuity equation satisfies identically while the momentum and 

the energy equations reduce to the below nonlinear differential system: 

𝑓௜௩ ൅
𝑓ᇱᇱ𝜃ᇱ′

𝜃௥ ቀ1 െ 𝜃
𝜃௥

ቁ
൅

𝑓ᇱᇱᇱ𝜃ᇱ

𝜃௥ ቀ1 െ 𝜃
𝜃௥

ቁ
൅

𝑓ᇱᇱ𝜃ᇱଶ

𝜃௥
ଶ ቀ1 െ 𝜃

𝜃௥
ቁ

ଶ െ 𝐻𝑎ଶ𝑓ᇱᇱ

െ 𝐴ଵ𝑆 ൬1 െ
𝜃
𝜃௥

൰ ሺ𝜂𝑓ᇱᇱᇱ ൅ 3𝑓ᇱᇱ ൅ 𝑓ᇱ𝑓ᇱᇱ െ 𝑓𝑓ᇱᇱᇱሻ ൅ 𝐾ሺ1 െ 𝜙ሻଶ.ହ𝑓ᇱᇱᇱ

൅ 𝐾ሺ1 െ 𝜙ሻଶ.ହ𝑔ᇱ ൌ 0 

 

 

 

ሺ3.7ሻ 

1
𝐴ଵ

൮
1

ቀ1 െ 𝜃
𝜃௥

ቁ
൅

𝐾ሺ1 െ 𝜙ሻଶ.ହ

2
൲ 𝑔ᇱᇱ ൅

1
𝐴ଵ

𝜃ᇱ𝑔ᇱ

𝜃௥ ቀ1 െ 𝜃
𝜃௥

ቁ
ଶ ൅

2𝑆
𝐴ଵ

𝐾ሺ1 െ 𝜙ሻଶ.ହሺ𝑓ᇱᇱ െ 2𝑔ሻ

൅ 𝑆ሺ𝑓𝑔ᇱ െ 𝑓ᇱ𝑔 െ 3𝑔 െ 𝜂𝑔ᇱሻ ൌ 0 

 

 

ሺ3.8ሻ 

𝐴ଶ𝜃ᇱᇱ െ 𝐴ଷሺ𝑓𝜃ᇱ ൅ 𝜂𝜃ᇱሻ ൌ 0 ሺ3.9ሻ 

 

𝑓ᇱᇱ ൌ 0, 𝑓 ൌ 0, 𝑔ᇱ ൌ 0, 𝜃ᇱ ൌ 0 𝑎𝑡 𝜂 ൌ 0

𝑓ᇱ ൌ 0, 𝑓 ൌ 1, 𝑔 ൌ െ𝑁଴𝑓ᇱᇱሺ1ሻ, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 1 

 

ሺ3.10ሻ

Where,  

𝐴ଵ ൌ ሺ1 െ 𝜙ሻଶ.ହ ቈሺ1 െ 𝜙ሻ ൅ 𝜙
𝜌஼ே்

𝜌௙ஶ
቉ , 𝐴ଶ ൌ ൬1 ൅

4
3ϵଵ

𝑅𝑑൰ , 𝐴ଷ ൌ 𝑆
ϵଶ

ϵଵ
𝑃𝑟,

𝑅𝑑 ൌ
4𝜎௘𝑇ଷ

𝐾௙ஶ𝛽ோ
, 𝑆 ൌ

𝛽𝑙ଶ

2𝜈௙ஶ
, 𝑃𝑟 ൌ

𝜇௙ஶ൫𝜌𝐶௣൯
௙ஶ

𝜌௙ஶ𝐾௙ஶ
 

The dimensionless shear stress and the thermal gradient coefficient is determined by the expression    
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𝐶௙ ൌ ଵ

ఘ೙೑ሺ೏೓
೏೟

ሻమ
ሺ൫𝜇௡௙ ൅ 𝜅൯ డ௎ሬሬ⃑

డ௬
൅ 𝜅𝑁଴ሻ௬ୀ௛ሺ௧ሻ and 𝑁𝑢 ൌ ሺሺ1 ൅ ସ

ଷఢଵ
𝑅𝑑ሻ

௟௄೙೑

௄೑்೓

డሬ்⃑

డ௬
ሻ௬ୀ௛ሺ௧ሻ, respectively, 

which is the dimensionless form given as  

𝐶௙
∗ ൌ 𝐶௙

ோ௘ೣ௟మ

ଶ௫మ ඥ1 െ 𝛽𝑡 ൌ ଵ

஺భቀଵି భ
ഇೝ

ቁ
ሺ1 ൅ ሺ1 െ 𝑁଴ሻ𝐾ሻ𝑓′′ሺ1ሻ,    𝑁௨

∗ ൌ ϵଵ ቀ1 ൅ ସ

ଷ஫భ
𝑅𝑑ቁ 𝜃′ሺ1ሻ 

3.3 Solution procedure 

The extremely non-linear partial differential equations enforcing assumed physics are written in 

dimensionless form and then transformed by selecting appropriate transformations into a set of 

similar ordinary differential equations. Equations ሺ3.7 െ 3.9ሻ  are the transformed differential 

equations and  ሺ3.10ሻ represent the considered boundary conditions. The proceeding step is to 

work out a solution to the above equations numerically. The equation governing linear momentum 

is an ordinary differential equation of the fourth order, while the equation of energy and angular 

momentum are ordinary differential equations of the second order. Five new dependent variables 

𝑢, 𝑣, 𝑤, 𝑞, 𝑎𝑛𝑑 𝑚 is introduced to convert the governing system of equations into a set of first-

order ordinary differential equations, which are given below: 

𝑓ᇱ ൌ 𝑢 ሺ3.11ሻ

𝑢ᇱ ൌ 𝑣 ሺ3.12ሻ

𝑣ᇱ ൌ 𝑤 ሺ3.13ሻ

𝑔ᇱ ൌ 𝑞 ሺ3.14ሻ

𝜃ᇱ ൌ 𝑚 ሺ3.15ሻ
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𝑤ᇱ െ
2
𝜃௥

𝑤ᇱ𝜃 ൅
1

𝜃௥
ଶ 𝑤ᇱ𝜃ଶ ൅

1

𝜃௥
ଶ 𝑤𝑚 ൅

1
𝜃௥

𝑣𝑚ᇱ െ
1

𝜃௥
ଶ 𝑤𝑚𝜃 െ

1

𝜃௥
ଶ 𝑣𝑚ᇱ𝜃 ൅

1

𝜃௥
ଶ 𝑣𝑚ଶ െ 𝐻𝑎ଶ𝑣

൅
2
𝜃௥

𝐻𝑎ଶ𝑣𝜃 െ
1
𝜃௥

𝐻𝑎ଶ𝑣𝜃ଶ െ 𝐴ଵ𝑆𝜂𝑤 െ 3𝐴ଵ𝑆𝑣 െ 5𝐴ଵ𝑆𝑢𝑣 െ 𝐴ଵ𝑆𝑓𝑣 ൅
3
𝜃௥

𝐴ଵ𝑆𝜂𝑤𝜃

൅
9
𝜃௥

𝐴ଵ𝑆𝑣𝜃 ൅
15
𝜃௥

𝐴ଵ𝑆𝑢𝑣𝜃 ൅
3
𝜃௥

𝐴ଵ𝑆𝑓𝑣𝜃 െ
9

𝜃௥
ଶ 𝐴ଵ𝑆𝑣𝜃ଶ െ

15

𝜃௥
ଶ 𝐴ଵ𝑆𝑢𝑣𝜃ଶ

െ
3

𝜃௥
ଶ 𝐴ଵ𝑆𝑓𝑣𝜃ଶ ൅

1

𝜃௥
ଷ 𝐴ଵ𝑆𝜂𝜃ଷ ൅

3

𝜃௥
ଷ 𝐴ଵ𝑆𝑣𝜃ଷ ൅

5

𝜃௥
ଷ 𝐴ଵ𝑆𝑢𝑣𝜃ଷ ൅

1

𝜃௥
ଷ 𝐴ଵ𝑆𝑓𝑣𝜃ଷ

൅
1
𝜃௥

𝐴ଵ𝑆𝜂𝑣𝑚 ൅
2
𝜃௥

𝐴ଵ𝑆𝑢𝑚 ൅
2
𝜃௥

𝐴ଵ𝑆𝑢ଶ𝑚 െ
2

𝜃௥
ଶ 𝐴ଵ𝑆𝜂𝑣𝑚𝜃 െ

4

𝜃௥
ଶ 𝐴ଵ𝑆𝑢𝑚𝜃

െ
4

𝜃௥
ଶ 𝐴ଵ𝑆𝑢ଶ𝑚𝜃 ൅

1

𝜃௥
ଷ 𝐴ଵ𝑆𝜂𝑣𝑚𝜃ଶ ൅

2

𝜃௥
ଷ 𝐴ଵ𝑆𝑢𝑚𝜃ଶ ൅

2

𝜃௥
ଷ 𝐴ଵ𝑆𝑢ଶ𝑚𝜃ଶ ൅ 𝐾ଵሺ𝑤

െ
2
𝜃௥

𝑤𝜃 ൅
1

𝜃௥
ଶ 𝑤𝜃ଶ ൅ 𝑞 െ

2
𝜃௥

𝜃𝑞 ൅
1

𝜃௥
ଶ 𝜃ଶ𝑞ሻ ൌ 0 

 

 

 

 

 

 

 

 

 

 

ሺ3.16ሻ

𝑞ᇱ െ
1
𝜃௥

𝜃𝑞ᇱ ൅
1
2

𝐾ଵ𝑞ᇱ െ
1
𝜃௥

𝐾ଵ𝜃𝑞ᇱ ൅
1

2𝜃௥
ଶ 𝜃ଶ𝑞ᇱ ൅

1
𝜃௥

𝑚𝑞

൅ 2𝑆𝐾ଵ ቆ𝑣 െ
2
𝜃௥

𝑣𝜃 ൅
1

𝜃௥
ଶ 𝑣𝜃ଶ െ 2𝑔 ൅

4
𝜃௥

𝑔𝜃 െ
2

𝜃௥
ଶ 𝑔𝜃ଶቇ

൅ 𝐴ଵ𝑆 ቆ𝑓𝑞 െ 𝑓𝑔 െ 3𝑔 െ 𝜂𝑞 െ
2
𝜃௥

𝑓𝑞𝜃 ൅
2
𝜃௥

𝑓𝑔𝜃 ൅
6
𝜃௥

𝑔𝜃 ൅
2
𝜃௥

𝜂𝑞𝜃 ൅
1

𝜃௥
ଶ 𝑓𝑞𝜃ଶ

െ
1

𝜃௥
ଶ 𝑓𝑔𝜃ଶ െ

3

𝜃௥
ଶ 𝑔𝜃ଶ െ

1

𝜃௥
ଶ 𝜂𝑞𝜃ଶቇ ൌ 0 

 

 

 

 

 

ሺ3.17ሻ

𝐴ଶ𝑚ᇱ െ 𝐴ଷ𝜂𝑚 െ 𝐴ଷ𝑓𝑚 ൌ 0 ሺ3.18ሻ

The associated boundary conditions are: 

𝑣 ൌ 0, 𝑓 ൌ 0, 𝑞 ൌ 0,    𝑚 ൌ 0 𝑎𝑡 𝜂 ൌ 0 

 𝑢 ൌ 0, 𝑓 ൌ 1, 𝑔 ൌ െ𝑁଴𝑓ᇱᇱሺ1ሻ, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 1 

We now find the finite difference replacement, which will switch a set of algebraic equations in 

place of the above differential equations. For the purpose, we reconsider the working domain as a 

rectangular net in the ሺ𝑥, 𝜂ሻ-plan as in Figure 2.2. 
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Applying the finite difference scheme as discussed in chapter 2 on the above system of equations. 

The first five equations are discretized by centering at ሺ𝑥௜, 𝜂௝ିଵ/ଶሻ where the last three equations 

are discretized by centering atሺ𝑥௜ିଵ/ଶ, 𝜂௝ିଵ/ଶሻ. The resulting system of equations becomes 

𝑓௝
௜ ൌ 𝑓௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑢௝

௜ ൅ 𝑢௝ିଵ
௜ ሻ 

ሺ3.19ሻ

𝑢௝
௜ ൌ 𝑢௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑣௝

௜ ൅ 𝑣௝ିଵ
௜ ሻ 

ሺ3.20ሻ

𝑣௝
௜ ൌ 𝑣௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑤௝

௜ ൅ 𝑤௝ିଵ
௜ ሻ 

ሺ3.21ሻ

𝑔௝
௜ ൌ 𝑔௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑞௝

௜ ൅ 𝑞௝ିଵ
௜ ሻ 

ሺ3.22ሻ

𝜃௝
௜ ൌ 𝜃௝ିଵ

௜ ൅
ℎ௝

2
ሺ𝑚௝

௜ ൅ 𝑚௝ିଵ
௜ ሻ 

ሺ3.23ሻ
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ሾ
൫𝑤௝ െ 𝑤௝ିଵ൯

ℎ௝
൅

1

𝜃௥
ଶ

൫𝑤௝ െ 𝑤௝ିଵ൯
ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
െ

2
𝜃௥

൫𝑤௝ െ 𝑤௝ିଵ൯
ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1
𝜃௥

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

െ
1

𝜃௥
ଶ

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

൅
1
𝜃௥

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝑚௝ െ 𝑚௝ିଵ൯
ℎ௝

െ
1

𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൫𝑚௝ െ 𝑚௝ିଵ൯
ℎ௝

൅
1

𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝑚௝ ൅ 𝑚௝ିଵ൯
ଶ

4
െ 𝐻𝑎ଶ ൫𝑣௝ ൅ 𝑣௝ିଵ൯

2

൅
2
𝜃௥

𝐻𝑎ଶ ൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

െ
1

𝜃௥
ଶ 𝐻𝑎ଶ ൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

ଶ

4

െ 𝐴ଵ𝑆𝜂
൫𝑤௝ ൅ 𝑤௝ିଵ൯

2
െ

3
2

𝐴ଵ𝑆
൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
൅ 𝐴ଵ𝑆

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൅
3
𝜃௥

𝐴ଵ𝑆𝜂
൫𝑤௝ ൅ 𝑤௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2
൅

9
𝜃௥

𝐴ଵ𝑆
൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2

െ
3
𝜃௥

𝐴ଵ𝑆
൫𝑓௝ ൅ 𝑓௝ିଵ൯

2
൫𝑤௝ ൅ 𝑤௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2

െ
3

𝜃௥
ଶ 𝐴ଵ𝑆𝜂

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
െ

9

2𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4

൅
3

𝜃௥
ଶ 𝐴ଵ𝑆

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4

൅
1

𝜃௥
ଷ 𝐴ଵ𝑆𝜂

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଷ

8
൅

3

2𝜃௥
ଷ 𝐴ଵ𝑆𝜂

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଷ

8

െ
1

𝜃௥
ଷ 𝐴ଵ𝑆

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଷ

8
൅ 𝐾ଵሺ

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

െ
2
𝜃௥

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1

𝜃௥
ଶ

൫𝑤௝ ൅ 𝑤௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
൅

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

െ
2
𝜃௥

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1

𝜃௥
ଶ

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
ሻሿ௜ ൌ 𝑀௝ିଵ/ଶ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ሺ3.24ሻ
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൫𝑞௝ െ 𝑞௝ିଵ൯
ℎ௝

െ
1
𝜃௥

൫𝑞௝ െ 𝑞௝ିଵ൯
ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1
2

𝐾ଵ
൫𝑞௝ െ 𝑞௝ିଵ൯

ℎ௝
െ

1
𝜃௥

𝐾ଵ
൫𝑞௝ െ 𝑞௝ିଵ൯

ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1

2𝜃௥
ଶ 𝐾ଵ

൫𝑞௝ െ 𝑞௝ିଵ൯
ℎ௝

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
൅

1
𝜃௥

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

൅ 2𝑆𝐾ଵ ൭
൫𝑣௝ ൅ 𝑣௝ିଵ൯

2
െ

2
𝜃௥

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
1

𝜃௥
ଶ

൫𝑣௝ ൅ 𝑣௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
െ ൫𝑔௝ ൅ 𝑔௝ିଵ൯ ൅

1
𝜃௥

൫𝑔௝ ൅ 𝑔௝ିଵ൯൫𝜃௝ ൅ 𝜃௝ିଵ൯

െ
1

𝜃௥
ଶ ൫𝑔௝ ൅ 𝑔௝ିଵ൯

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
൱

൅ 𝐴ଵ𝑆 ൭
൫𝑓௝ ൅ 𝑓௝ିଵ൯

2
൫𝑞௝ ൅ 𝑞௝ିଵ൯

2
െ

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑔௝ ൅ 𝑔௝ିଵ൯
2

െ 3
൫𝑔௝ ൅ 𝑔௝ିଵ൯

2

െ 𝜂
൫𝑞௝ ൅ 𝑞௝ିଵ൯

2
െ

2
𝜃௥

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
2
𝜃௥

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൫𝑔௝ ൅ 𝑔௝ିଵ൯
2

൅
6
𝜃௥

൫𝑔௝ ൅ 𝑔௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
2

൅
2
𝜃௥

𝜂
൫𝑞௝ ൅ 𝑞௝ିଵ൯

2
൫𝜃௝ ൅ 𝜃௝ିଵ൯

2
൅

1

𝜃௥
ଶ

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4

െ
1

𝜃௥
ଶ

൫𝑓௝ ൅ 𝑓௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
൫𝑔௝ ൅ 𝑔௝ିଵ൯

2
െ

3

𝜃௥
ଶ

൫𝑔௝ ൅ 𝑔௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4

െ
1

𝜃௥
ଶ 𝜂

൫𝑞௝ ൅ 𝑞௝ିଵ൯
2

൫𝜃௝ ൅ 𝜃௝ିଵ൯
ଶ

4
൱ ൌ 𝑁௝ିଵ/ଶ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ሺ3.25ሻ

ሾ𝐴ଶ
൫𝑚௝ െ 𝑚௝ିଵ൯

ℎ௝
െ 𝐴ଷ𝜂

൫𝑚௝ ൅ 𝑚௝ିଵ൯
2

െ 𝐴ଷ
൫𝑓௝ ൅ 𝑓௝ିଵ൯

2
൫𝑚௝ ൅ 𝑚௝ିଵ൯

2
ሿ௜ ൌ 𝑃௝ିଵ/ଶ 

ሺ3.26ሻ

Where 
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𝑀௝ିଵ/ଶ ൌ െሾሺ𝑤ᇱሻ
௝ିଵ

ଶ
െ

2
𝜃௥

ሺ𝑤ᇱ𝜃ሻ
௝ିଵ

ଶ
൅

1

𝜃௥
ଶ ሺ𝑤ᇱ𝜃ଶሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଶ ሺ𝑤𝑚ሻ

௝ିଵ
ଶ

൅
1
𝜃௥

ሺ𝑣𝑚ᇱሻ
௝ିଵ

ଶ

െ
1

𝜃௥
ଶ ሺ𝑤𝑚𝜃ሻ

௝ିଵ
ଶ

െ
1

𝜃௥
ଶ ሺ𝑣𝑚ᇱ𝜃ሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଶ ሺ𝑣𝑚ଶሻ

௝ିଵ
ଶ

െ 𝐻𝑎ଶ𝑣
௝ିଵ

ଶ
൅

2
𝜃௥

𝐻𝑎ଶሺ𝑣𝜃ሻ
௝ିଵ

ଶ

െ
1
𝜃௥

𝐻𝑎ଶሺ𝑣𝜃ଶሻ
௝ିଵ

ଶ
െ 𝐴ଵ𝑆ሺ𝜂𝑤ሻ

௝ିଵ
ଶ

െ 3𝐴ଵ𝑆𝑣
௝ିଵ

ଶ
െ 5𝐴ଵ𝑆ሺ𝑢𝑣ሻ

௝ିଵ
ଶ

െ 𝐴ଵ𝑆ሺ𝑓𝑣ሻ
௝ିଵ

ଶ

൅
3
𝜃௥

𝐴ଵ𝑆ሺ𝜂𝑤𝜃ሻ
௝ିଵ

ଶ
൅

9
𝜃௥

𝐴ଵ𝑆ሺ𝑣𝜃ሻ
௝ିଵ

ଶ
൅

15
𝜃௥

𝐴ଵ𝑆ሺ𝑢𝑣𝜃ሻ
௝ିଵ

ଶ
൅

3
𝜃௥

𝐴ଵ𝑆ሺ𝑓𝑣𝜃ሻ
௝ିଵ

ଶ

െ
9

𝜃௥
ଶ 𝐴ଵ𝑆ሺ𝑣𝜃ଶሻ

௝ିଵ
ଶ

െ
15

𝜃௥
ଶ 𝐴ଵ𝑆ሺ𝑢𝑣𝜃ଶሻ

௝ିଵ
ଶ

െ
3

𝜃௥
ଶ 𝐴ଵ𝑆ሺ𝑓𝑣𝜃ଶሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝜂𝜃ଷሻ

௝ିଵ
ଶ

൅
3

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝑣𝜃ଷሻ

௝ିଵ
ଶ

൅
5

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝑢𝑣𝜃ଷሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝑓𝑣𝜃ଷሻ

௝ିଵ
ଶ

൅
1
𝜃௥

𝐴ଵ𝑆ሺ𝜂𝑣𝑚ሻ
௝ିଵ

ଶ

൅
2
𝜃௥

𝐴ଵ𝑆ሺ𝑢𝑚ሻ
௝ିଵ

ଶ
൅

2
𝜃௥

𝐴ଵ𝑆ሺ𝑢ଶ𝑚ሻ
௝ିଵ

ଶ
െ

2

𝜃௥
ଶ 𝐴ଵ𝑆ሺ𝜂𝑣𝑚𝜃ሻ

௝ିଵ
ଶ

െ
4

𝜃௥
ଶ 𝐴ଵ𝑆ሺ𝑢𝑚𝜃ሻ

௝ିଵ
ଶ

െ
4

𝜃௥
ଶ 𝐴ଵ𝑆ሺ𝑢ଶ𝑚𝜃ሻ

௝ିଵ
ଶ

൅
1

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝜂𝑣𝑚𝜃ଶሻ

௝ିଵ
ଶ

൅
2

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝑢𝑚𝜃ଶሻ

௝ିଵ
ଶ

൅
2

𝜃௥
ଷ 𝐴ଵ𝑆ሺ𝑢ଶ𝑚𝜃ଶሻ

௝ିଵ
ଶ

൅ 𝐾ଵሺ𝑤
௝ିଵ

ଶ
െ

2
𝜃௥

ሺ𝑤𝜃ሻ
௝ିଵ

ଶ
൅

1

𝜃௥
ଶ ሺ𝑤𝜃ଶሻ

௝ିଵ
ଶ

൅ 𝑞
௝ିଵ

ଶ

െ
2
𝜃௥

ሺ𝜃𝑞ሻ
௝ିଵ

ଶ
൅

1

𝜃௥
ଶ ሺ𝜃ଶ𝑞ሻ

௝ିଵ
ଶ

ሻሿ௜ିଵ 

 

 

 

 

 

 

 

 

 

 

 

 

 

ሺ3.27ሻ

𝑁௝ିଵ/ଶ ൌ െሾ𝑞ᇱ
௝ିଵ

ଶ
െ

1
𝜃௥

ሺ𝜃𝑞ᇱሻ
௝ିଵ

ଶ
൅

1
2

𝐾ଵ𝑞ᇱ
௝ିଵ

ଶ
െ

1
𝜃௥

𝐾ଵሺ𝜃𝑞ᇱሻ
௝ିଵ

ଶ
൅

1

2𝜃௥
ଶ ሺ𝜃ଶ𝑞ᇱሻ
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൅
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𝜃௥
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ଶ
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𝑃௝ିଵ/ଶ ൌ െሾ𝐴ଶሺ𝑚ᇱሻ
௝ିଵ

ଶ
െ 𝐴ଷ𝜂𝑚

௝ିଵ
ଶ

െ 𝐴ଷሺ𝑓𝑚ሻ
௝ିଵ

ଶ
ሿ௜ିଵ ሺ3.29ሻ

Since the superscripts “𝑖” represent unknown terms and “𝑖 െ 1” represents terms that are already 

known, where  0 ൑ 𝑗 ൑ 𝐽 shows the number of iterations along 𝜂 direction. Hence 𝑀௝ିଵ/ଶ and 

𝑁௝ିଵ/ଶ and 𝑃௝ିଵ/ଶ contains only known terms. 

We now incorporate Newton’s linearization technique. We replace 𝑓, 𝑢, 𝑣, 𝑤, 𝑔, 𝑞, 𝜃 𝑎𝑛𝑑 𝑚 by 

𝑓 ൅ 𝛿𝑓, 𝑢 ൅ 𝛿𝑢, 𝑣 ൅ 𝛿𝑣, 𝑤 ൅ 𝛿𝑤, 𝑔 ൅ 𝛿𝑔, 𝑞 ൅ 𝛿𝑞, 𝜃 ൅ 𝛿𝜃 𝑎𝑛𝑑 𝑚 ൅ 𝛿𝑚 respectively, and write 

the resulting equations into the form given below: 

𝛿𝑓௝ െ 𝛿𝑓௝ିଵ െ
ℎ௝

2
൫𝛿𝑢௝ ൅ 𝛿𝑢௝ିଵ൯ ൌ ሺ𝑟ଵሻ௝ 

3.30 

𝛿𝑢௝ െ 𝛿𝑢௝ିଵ െ
ℎ௝

2
൫𝛿𝑣௝ ൅ 𝛿𝑣௝ିଵ൯ ൌ ሺ𝑟ଶሻ௝ 

3.31 

𝛿𝑣௝ െ 𝛿𝑣௝ିଵ െ
ℎ௝

2
൫𝛿𝑤௝ ൅ 𝛿𝑤௝ିଵ൯ ൌ ሺ𝑟ଷሻ௝ 

3.32 

𝛿𝑔௝ െ 𝛿𝑔௝ିଵ െ
ℎ௝

2
൫𝛿𝑞௝ ൅ 𝛿𝑞௝ିଵ൯ ൌ ሺ𝑟ସሻ௝ 

3.33 

𝛿𝜃௝ െ 𝛿𝜃௝ିଵ െ
ℎ௝

2
൫𝛿𝑚௝ ൅ 𝛿𝑚௝ିଵ൯ ൌ ሺ𝑟ହሻ௝ 

3.34 

ሺ𝑎ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑎ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑎ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑎ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑎ହሻ௝𝛿𝑓௝ ൅ ሺ𝑎଺ሻ௝𝛿𝑓௝ିଵ ൅ ሺ𝑎଻ሻ௝𝛿𝑤௝

൅ ሺ𝑎଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑎ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑎ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑎ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑎ଵଶሻ௝𝛿𝑚௝ିଵ

൅ ሺ𝑎ଵଷሻ௝𝛿𝑔௝ ൅ ሺ𝑎ଵସሻ௝𝛿𝑔௝ିଵ ൅ ሺ𝑎ଵହሻ௝𝛿𝑞௝ ൅ ሺ𝑎ଵ଺ሻ௝𝛿𝑞௝ିଵ ൌ ሺ𝑟଺ሻ௝ 

 

 

3.35 

ሺ𝑏ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑏ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑏ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑏ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑏ହሻ௝𝛿𝑓௝ ൅ ሺ𝑏଺ሻ௝𝛿𝑓௝ିଵ ൅ ሺ𝑏଻ሻ௝𝛿𝑤௝

൅ ሺ𝑏଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑏ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑏ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑏ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑏ଵଶሻ௝𝛿𝑚௝ିଵ

൅ ሺ𝑏ଵଷሻ௝𝛿𝑔௝ ൅ ሺ𝑏ଵସሻ௝𝛿𝑔௝ିଵ ൅ ሺ𝑏ଵହሻ௝𝛿𝑞௝ ൅ ሺ𝑏ଵ଺ሻ௝𝛿𝑞௝ିଵ ൌ ሺ𝑟଻ሻ௝ 

 

 

3.36 
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ሺ𝑐ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑐ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑐ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑐ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑐ହሻ௝𝛿𝑓௝ ൅ ሺ𝑐଺ሻ௝𝛿𝑓௝ିଵ ൅ ሺ𝑐଻ሻ௝𝛿𝑤௝

൅ ሺ𝑐଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑐ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑐ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑐ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑐ଵଶሻ௝𝛿𝑚௝ିଵ ൅ ሺ𝑐ଵଷሻ௝𝛿𝑔௝

൅ ሺ𝑐ଵସሻ௝𝛿𝑔௝ିଵ ൅ ሺ𝑐ଵହሻ௝𝛿𝑞௝ ൅ ሺ𝑐ଵ଺ሻ௝𝛿𝑞௝ିଵ ൌ ሺ𝑟 ሻ௝ 
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The above system of linearized equations is now set into matrix-vector form as: 

𝐴𝜑 ൌ 𝑅 3.38 

A is a block tri-diagonal matrix system given below: 

𝐴 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ሾ𝐴ଵሿ ሾ𝐶ଵሿ
ሾ𝐵ଵሿ ሾ𝐴ଶሿ ⋱

⋱ ⋱

     ⋱                 ⋱              ⋱
ሾ𝐵௝ିଵሿ ሾ𝐴௝ିଵሿ ሾ𝐶௝ିଵሿ

ሾ𝐵௝ሿ ሾ𝐴௝ሿ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝜑 ൌ ൦

ሾ𝛿ଵሿ
ሾ𝛿ଶሿ

⋮
ሾ𝛿௃ሿ

൪ , 𝑅 ൌ ൦

ሾ𝑅ଵሿ
ሾ𝑅ଶሿ

⋮
ሾ𝑅௃ሿ

൪ , ൣ𝑅௝൧ ൌ

⎣
⎢
⎢
⎢
⎡
ሺ𝑟ଵሻ௝

ሺ𝑟ଶሻ௝

⋮
:

ሺ𝑟 ሻ௝⎦
⎥
⎥
⎥
⎤

 , 𝑤ℎ𝑒𝑟𝑒 ሾ𝛿ଵሿ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝑤଴
𝛿𝑞଴
𝛿𝑚଴
𝛿𝑓ଵ
𝛿𝑣ଵ
𝛿𝑤ଵ
𝛿𝑞ଵ
𝛿𝑚ଵ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, ൣ𝛿௝൧ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝑢௝ିଵ

𝛿𝑔௝ିଵ

𝛿𝜃௝ିଵ

𝛿𝑓௝

𝛿𝑣௝

𝛿𝑤௝

𝛿𝑞௝

𝛿𝑚௝ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 2 ൑ 𝑗 ൑ 𝐽 

This system is then solved with the block elimination technique by splitting A into a lower and 

upper triangular matrix and implementing matrix algebra. This very last step is programmed in 

MATLAB.  

For the purpose of solution verification a numerical comparison with C.Y.Wang[40] is 

presented, who solved the squeezing problem with the same conditions by a series solution 

method. Statistics obtained in both studies are in very good agreement with each other as can be 

observed in Table 3.1. 
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Table 3.1 Comparison Table for velocity gradient near the plates  𝑯𝒂 ൌ 𝟎, 𝑹𝒅 ൌ 𝟎, 𝝋 ൌ 𝟎, 

𝑺 𝒇ᇱᇱሺ𝟏ሻ 

 C. Y. Wang[40] Keller Box 

െ𝟎. 𝟗𝟗𝟓𝟐 െ𝟐. 𝟒𝟏𝟎 െ𝟐. 𝟏𝟑𝟕𝟎𝟗 

െ𝟎. 𝟒𝟗𝟗𝟕 െ𝟐. 𝟕𝟏𝟔𝟏 െ𝟐. 𝟓𝟑𝟖𝟒𝟒 

െ𝟎. 𝟏𝟎𝟎 െ𝟐. 𝟗𝟒𝟓𝟐 െ𝟐. 𝟖𝟔𝟖𝟖𝟕 

𝟎. 𝟎 െ𝟑. 𝟎𝟎𝟎 െ𝟐. 𝟗𝟓𝟐𝟒𝟗 

𝟎. 𝟏𝟏𝟓𝟕𝟔 െ𝟑. 𝟎𝟔𝟐𝟐 െ𝟑. 𝟎𝟓𝟎𝟖𝟓 

𝟎. 𝟒𝟏𝟑𝟖 െ𝟑. 𝟐𝟏𝟔𝟎 െ𝟑. 𝟑𝟏𝟓𝟖𝟐 

𝟐. 𝟎𝟖𝟏 െ𝟑. 𝟗𝟏𝟎 െ𝟒. 𝟗𝟓𝟑𝟎 

3.4 Graphical Results 

Computational results are plotted using MATLAB plot facility and with Tecplot software. These 

graphical results represent the behavior of quantities of physical interest such as temperature, 

velocity, Nusselt number and Skin friction with various parameters that are considered in the 

problem. 

Figure 3.1 and Figure 3.2 depicts the streamlines pattern and velocity vector behavior of the 

assumed flow situation respectively. The flow is analyzed in the region between the origin and 

plates. Since origin split the channel into two symmetrical geometry with identical flow conditions, 

the graphical results are plotted only for one portion 𝑖. 𝑒 0 ൑ 𝜂 ൑ 1. 
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Figure 3.1 Streamlines patterns Figure 3.2 Velocity vectors 

 

Figure 3.3 Velocity distribution profile with  

Magnetic parameter 

 

Figure 3.4 Velocity distribution profile with   

Squeezing parameter 
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Figure 3.5 Velocity distribution profile with 

 variable Viscosity parameter 

 

Figure 3.6 Velocity distribution profile with 

 Radiation parameter 

It has been observed that for squeezing plates the flow momentum away from the origin is 

strengthened with the magnitude of the applied magnetic field. Fluid velocity is maximum near 

the origin while it reduces toward the solid walls. 𝑆 ൐ 0 represents the case when both plates move 

towards each other. Evidently from Figure 3.4, the velocity distribution in the field rises with 

values of the squeezing parameter. The behavior can be justified with the development of pressure 

by the moving walls on the incompressible fluid material. The cohesive forces of the fluid material 

enhance the resisting strength of solid boundaries, the velocity profile as shown in Figure 3.5 falls 

with the rise in the magnitude of the viscosity parameter. Since viscosity is inversely proportional 

to temperature, the loss of heat through radiation amplifies the cohesive forces. An increase in 

radiation parameter, therefore, resists the flow. The same is the case with the micro-rotational 

parameter as the rotational inertia affects the linear flow potential inversely.  
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Figure 3.7 Velocity distribution profile with  

Micropolar parameter 

Figure 3.8 Variations in Temperature with  

Squeezing parameter 

Figure 3.9 Variations in Temperature with 

 Volume fraction parameter 

 

Figure 3.10 Variations in Temperature with 

 Radiation parameter 

Fluid temperature is lowest near the origin while it is maximum at the solid boundaries. The 

temperature distribution of the fluid decreases for squeezing parameters and enhances for rising 

values of volume fraction and radiation parameter. Figures (3.8-3.10) are plots for temperature 

profile varying with different physical parameters. 
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Figure 3.11 Angular velocity variations with  

Magnetic parameter 

Figure 3.12 Angular velocity variations with 

Micropolar parameter  

 

Figure 3.13 Angular velocity variations with 

 variable Viscosity parameter 

Figure 3.14 Angular velocity variations with  

Radiation parameter 

Figures (3.11-3.15) are the Angular velocity profile of Micro-rotations plotted with respect to 

different parameters. Angular velocity profile attains its maximum amplitude in the very middle 

of the region while it reduces towards the solid boundaries. A flow reversal phenomenon can be 

seen as exhibited due to the rotational inertial very near to the plates. Similar to the case of linear  
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Figure 3.15 Angular velocity variations with  

Squeezing parameter 

Figure 3.16 Nusselt number profile with 

 Magnetic parameter 

Figure 3.17 Nusselt number profile with 

 Radiation parameter 

 

Figure 3.18 Nusselt number profile with 

 Squeezing parameter 

velocity profile angular velocity increases with rising values of the magnetic parameter while it 

decreases with values of micro-rotation and radiation parameter. Strength of viscosity and 

squeezing on the other hand work differently as it does with linear momentum.  
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Figure 3.19 Skin friction versus  

Magnetic parameter 

Figure 3.20 Skin friction versus  

Micropolar parameter 

Figure 3.21 Skin friction versus variable  

Viscosity parameter 

 

Figure 3.22 Skin friction versus  

Magnetic parameter 

Angular velocity profile increases with rising values of variable viscosity parameter whereas it 

decreases with values of squeezing parameter as can be seen in Figure 3.13 and Figure 3.15. 

Figures (3.16-3.18) are graphical results of Nusselt number versus volume fraction with variation 

in magnetic parameter, radiation parameter and squeezing parameter. It can be seen that 
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temperature gradient very near to the solid boundary increases for increasing magnitude of 

magnetic and squeezing parameter whereas it decreases for radiation parameter. Figures (3.19-

3.22) are graphical results of the Skin friction versus volume fraction parameter. Skin-friction 

coefficient drops in magnitude for rising values of Hartmann number, curvature parameter, 

variable viscosity parameter and squeezing parameter. 
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4 Carbon Nanotubes based nanofluid flow over a 

stretching Curved surface 

4.1 Introduction 

The impact of temperature dependent viscosity on the dynamics of pressure-driven nanofluid flow 

is examined in the present chapter. Considaration is provided for the application of uniform 

magnetic field along the direction radial to the curvilinear surface. The physical scinerio is 

embedded successfully by the classical continuum model of Navier stoke’s. For mathematical 

simplicity the governing set of equations are cut down in size by knocking out the terms of less 

significance. The process is known as boundary layer approximation. Appropriate tranformations 

are incorporated on the differential equations that translate the system of partial differential 

equations into a similar set of ordinary differential equations. These are ordinary differential 

equations of extremely high non-linearity, which are workout numerically by the implicite, second 

order finite difference method. Graphical and numerical results depict the impact of temperature-

sensitive viscosity and other physical parameters on the flow of nanofluid. The parameter of 

viscosity apparently resists the flow velocity and increases nanofluid temperature distribution. The 

Skin friction near the boundary wall is also raised by the viscosity parameter.  

4.2 Mathematical Description 

Let us assume a two-dimensional flow of a nanofluid on a curvilinear solid surface with radius 𝑅. 

Nanofluid is asserted as incompressible and exhibiting steady flow. Flow is analyzed in 

coordinates 𝑟 and 𝑠 as set out in Figure 4.1. Surface stretched velocity is inferred as  𝑈௪ along 

𝑠 െ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. A steady and invariable magnetic field acting on the fluid along 𝑟 െ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is 

taken with strength 𝐵଴. 
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Figure 4.1 Functional diagram 

The governing equations in curvilinear coordinates are given as: 

𝑅 డ௨

డ௦
൅ డ

డ௥
ሾሺ𝑟 ൅ 𝑅ሻ𝑣ሿ ൌ 0,  ሺ4.1ሻ

𝜌௡௙ ቀ𝑣 డ௩

డ௥
െ ௨మ

௥ାோ
൅ 𝑢 ቀ ோ

௥ାோ
ቁ డ௩

డ௦
ቁ ൌ െ డ௣

డ௥
൅ ଵ

ሺ௥ାோሻ

డ

డ௥
൬ሺ𝑟 ൅ 𝑅ሻ𝜇௡௙

డ௩

డ௥
൰ ൅

                   ோ

ሺ௥ାோሻ

డ

డ௦
ቀ𝜇௡௙ሺడ௨

డ௥
൅ ோ

ሺ௥ାோሻ

డ௩

డ௦
െ ௨

௥ାோ
ሻቁ െ ଵ

௥ାோ
𝜇௡௙ሺడ௨

డ௥
൅ ோ

ሺ௥ାோሻ

డ௩

డ௦
െ ௨

௥ାோ
ሻ,  

ሺ4.2ሻ

𝜌௡௙ ቀ𝑣 డ௨

డ௥
൅ 𝑢 ቀ ோ

௥ାோ
ቁ డ௨

డ௦
൅ ௨௩

௥ାோ
ቁ ൌ െ ோ

ሺ௥ାோሻ

డ௣

డ௦
൅ ଵ

ሺ௥ାோሻ

డ

డ௥
ቆሺ𝑟 ൅ 𝑅ሻ𝜇௡௙ሺడ௨

డ௥
൅ ோ

ሺ௥ାோሻ

డ௩

డ௦
െ

௨

௥ାோ
ሻቇ ൅ ோ

ሺ௥ାோሻ

డ

డ௦
ቀ𝜇௡௙ሺ ோ

ሺ௥ାோሻ

డ௨

డ௦
൅ ௩

௥ାோ
ሻቁ െ 𝜎𝐵ଶ𝑢,  

ሺ4.3ሻ

𝑣 డ்

డ௥
൅ ோ

ሺ௥ାோሻ

డ்

డ௦
ൌ 𝛼௡௙ ቀడమ்

డ௥మ ൅ ଵ

ሺ௥ାோሻ

డ்

డ௥
ቁ  ሺ4.4ሻ

𝑢 represent the velocity along 𝑠 while 𝑣 shows the velocity of the fluid in 𝑟 െ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. T is fluid 

temperature. The pressure distribution is depicted with the symbol 𝑝 , which is not ignorable in the 

case of the curved surface. The effective density, viscosity and thermal conductivity for chosen 

materials are computed as it is taken in previous chapters.   
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We now intend to write the above equations into non-dimensional form by introducing some  

 variables. i.e.: 𝑠∗ ൌ ௦

௅
  , 𝑅∗ ൌ ோ

ఋ
 ,  𝑟∗ ൌ ௥

ఋ
 , 𝑃∗ ൌ ௣

ఘ೙೑௎ಮ
మ , where L depicts the horizontal length 

scale, 𝛿 is the boundary layer stiffness at 𝑥 ൌ 𝐿, we obtained an estimate of it by taking (
ఋ

௅
ሻ ൌ

𝑂ሺ𝑅௘
ିଵ/ଶሻ, where 𝑅௘ ൌ ௎ಮ௅

ఔಮ
, 𝑈ஶ is the uniform fluid velocity aligned in s-direction.  

The incorporated boundary layer approximation reduces the governing nonlinear partial 

differential equations to the form given below for very large values of Reynold number. 
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డ௥
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The relevant boundary conditions: 

𝑢 ൌ 𝜆𝑎𝑠, 𝑣 ൌ 0, 𝑇 ൌ 𝑇௪ 𝑎𝑡 𝑟 ൌ 0,

  𝑢 → 0,          
𝜕𝑢
𝜕𝑟

→ 0 𝑇 ൌ 𝑇ஶ 𝑎𝑡 𝑟 → ∞.
ൡ 

 

ሺ4.8ሻ

Choosing suitable similarity transformations and introducing dimensionless functions 𝑓, 𝜃, and 

similarity variable 𝜂  

𝑢 ൌ 𝑎𝑠𝑓ᇱሺ𝜂ሻ, 𝑣 ൌ െ
𝑅

𝑟 ൅ 𝑅
ඥ𝑎𝜈ஶ𝑓ሺ𝜂ሻ, 𝜃 ൌ

𝑇 െ 𝑇ஶ

𝑇௪ െ 𝑇ஶ
, 𝜂 ൌ ඨ

𝑎
𝜈ஶ

𝑟, 𝑝 ൌ 𝜌௡௙𝑎ଶ𝑠ଶ𝑃ሺ𝜂ሻ 
ሺ4.9ሻ

The associated momentum and the energy equations given in  𝐸𝑞𝑠ሺ4.5 െ 4.7ሻ are transformed to 

the following partial differential equation given below by applying suitable similarity 

transformations above: 

డ௉

డఎ
ൌ ௙ᇱమ

ఎା఑
  ሺ4.10ሻ
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Using ሺ4.10ሻ into ሺ4.11ሻ we get 
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𝜃ᇱᇱ ൅ ଵ

ሺఎା఑ሻ
𝜃′ ൅ 𝑃𝑟 ஫మ

஫భ

఑

ሺఎା఑ሻ
𝑓𝜃′ ൌ 0  ሺ4.14ሻ 

The transformed boundary conditions are given as: 

 𝑓 ൌ 0, 𝑓ᇱ ൌ 𝜆, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 0  

 𝑓′ → 0, 𝑓ᇱᇱ → 0, 𝜃 → 0 𝑎𝑠  𝜂 → ∞                                                    

We are also interested in finding the skin friction coefficient 𝐶௙ near the boundaries which can be 

written as  𝐶௙ ൌ ఛೢ

ఘ೑ಮ௎ೢ
మ, where 𝜏௪ ൌ 𝜇௡௙ ቀడ௨

డ௥
൅ ௨

௥ାோ
ቁ |௥ୀ଴ , Using the above relations we have 

𝐶௙𝑅𝑒௦
ଵ/ଶ ൌ ଵ

ሺଵିథሻమ.ఱቀଵି భ
ഇೝ

ቁ
ሺ𝑓ᇱᇱሺ0ሻ ൅ ଵ

௄
ሻ,  where 𝑅𝑒௦ ൌ ௔௦మ

ఔ೑ಮ
 is the local Reynolds number. 

4.3 Solution Technique 

Navier-Stokes’ classical model is embedded in the considered physical situation. The terms with 

relatively no impact are then drop out using boundary layer approximation. The governing 
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equations are highly non-linear coupled partial differential equations. These mathematical 

assertions are written in dimensionless form at first stage and then converted into a set of ordinary 

differential equations by inducing a few new variables into the system. We now are interested to 

solve these similar equations with an implicit finite difference numerical technique. The obtained 

regular, nonlinear differential equations are transformed into a series of ordinary differential 

equations of the first order. The system then is discretized with a central difference scheme 

followed by linearization by Newton’s linearization method. This linearized system is then set into 

a tridiagonal matrix form. Matrix algebra following the Block elimination technique is 

programmed in MATLAB to execute the very last step. The method we have incorporated on our 

problem is well known as the Keller box scheme. The present problem is also evident in scheme 

effectivity on complex situations since governing equations are highly non-linear and can merely 

be solved with conventional techniques. Keller box executed the solution with very much freedom 

of choosing the desired values of involved parameters. A comparison study with previous literature 

is also presented to validate the solution obtained from the above mathematical technique. Table 

4.1 shows numeric obtained by the present scheme as well as by previous work of Rosca et al.[41]. 

Both of these results are in very good agreement with each other. 

4.4 Results and Discussion 

Graphical and Numerical results are determined in the presence of different physical 

parameters. The main theme of our work is to find the behavior in the presence of 

temperature-dependent viscosity. 
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Figure 4.2 Pressure distribution versus  

Curvature parameter 

Figure 4.3 Pressure distribution versus  

Stretching parameter 

Equation ሺ𝟒. 𝟏𝟏ሻ can be solved to find dimensionless pressure readings. Figure 4.2 and Figure 

4.3 shows plots of pressure variation with curvature and stretching parameter. A decrease in 

momenta is evident from the graphical results as the magnitude of the variable viscosity parameter 

is raised, while the magnetic parameter absorbs the opposite behavior as shown in Figure 4.4 and 

Figure 4.6. Velocity variation with volume fraction of the curvature and carbon nanotubes can be 

seen respectively in Figure 4.7 and Figure 4.5. From the results it is shown that the velocity profile 

decreases with an increase in curvature parameter, while an increase in velocity along s-direction 

is observed with the increase in volume fraction of carbon nanotubes. 
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Figure 4.4 Velocity variations with variable  

Viscosity parameter 

Figure 4.5 Velocity variations with  

Volume fraction parameter 

Figure 4.6 Velocity variations with  

Magnetic parameter 

Figure 4.7 Velocity variations with  

Curvature parameter 

Figures (4.8-4.11) show a variation in Temperature with various parameters including viscosity 

parameter, curvature, volume fraction and magnetic parameter. 

In Figure 4.8 it is shown that the fluid temperature rises for ascending values viscosity parameter. 

As the abundance of solid particles increases the thermal conductivity of the nanofluid also rises, 

it can be validated from Figure 4.9 that a rise in the volume fraction of carbon nanotubes increase 

the distribution of temperature in the fluid. Similarly , with the raising values of both magnetic and 

curvature parameters, the temperature distribution within the fluid increases as can be seen in 

Figure 4.10 and Figure 4.11, 
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Figure 4.8 Temperature variations with variable 

Viscosity parameter 

Figure 4.9 Temperature variations with  

Volume fraction parameter 

Figure 4.10 Temperature variations with  

Magnetic parameter 

Figure 4.11 Temperature variations with  

Curvature parameter 

Figure 4.12 and Figure 4.13 shows the variation of velocity gradient with curvature and 

stretching parameter. 
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Figure 4.12 Velocity gradient with  

Curvature parameter 

 

Figure 4.13 Velocity gradient with  

Stretching parameter 

Table 4.2 gives numeric for values of dimensionless shear stress near the wall. Readings indicate 

that skin friction increases both for the growing degree of curvature parameter  and with the 

increased weight of the viscosity parameter . 

Table 4.1 Comparison Table for െ𝑪𝒇𝑹𝒆𝒔
𝟏/𝟐 with different values of the curvature parameter. 

 𝝀 ൌ 𝟏, 𝑴 ൌ 𝟎, 𝝓 ൌ 𝟎. 𝟎, 𝜽𝒓 → ∞ 

𝜅 Roşca et al.[41]   Present results 

5 1.15076 1.20000 

10 1.07172 1.10000 

20 1.03501 1.05001 

30 1.02315 1.03331 

40 1.01729 1.02503 

50 1.01380 1.02001 

100 1.00687 1.01002 

200 1.00342 1.00504 
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1000 1.00068 1.00100 

∞ 1.00000 1.00000 

 

Table 4.2  Numerical values of െ𝑪𝒇𝑹𝒆𝒔
ି𝟏/𝟐 with different values of curvature and variable viscosity parameters.  

𝝀 ൌ 𝟏, 𝑴 ൌ 𝟐, 𝝓 ൌ 𝟎 

𝜅  𝜃௥ ൌ െ3  𝜃௥ ൌ െ5  𝜃௥ ൌ െ10  𝜃௥ ൌ െ15 

5 1.02312 1.13681 1.24017 1.27892  

10 0.93787 1.04208 1.13682 1.17234  

20 0.89524 0.99472 1.08514 1.11906  

50 0.86966 0.96630 1.05414 1.08708  

100 0.86114 0.95682 1.04381 1.07642  

500 0.85432 0.94924 1.03554 1.06789  

1000 0.85347 0.94830 1.03450 1.06683  
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5 Unsteady flow of a CNT based nanofluid over a 

porous shrinking curved surface 

5.1 Introduction 

This chapter represents the study of a carbon nanotubes based nanofluid flowing over a curved 

shrinking surface. The surface is considered to be permeable. An unsteady magnetic field acting 

along the radial direction is also considered. Navier-Stokes model for viscous fluids is used to 

embed the physical situation. Curvilinear coordinates 𝑟 𝑎𝑛𝑑 𝑠 are introduced to model the 

problem. The dependence of viscosity on temperature makes the proposed model highly non-linear 

and coupled with the energy equation. Consequently, the resulting non-linear partial differential 

equations are first reformed by proper transformations into a set of ordinary differential equations, 

and then numerically addressed by the Keller box method. This study reveals the existence of dual 

solutions. Graphical, as well as numerical results, are obtained for both the solutions. It has been 

observed that there exists a point called a critical point for certain parameters about which either a 

single or dual solution exists. On this very specific point, however, no solution exists. Graphical 

results are obtained to study the variation of these critical points with respect to different involved 

parameters.  

5.2 Mathematical description 

The radius R of the curved shrink surface depends on 𝑅ሺ𝑡ሻ ൌ 𝑅଴√1 െ 𝛼𝑡, where 𝑅଴  is a positive 

constant, as shown in Figure 1. For accelerated sheet 𝛼 ൐ 0 whereas for decelerated sheet 𝛼 ൏ 0.  

The sheet is shrinking with the velocity  𝑈௪ሺ𝑠, 𝑡ሻ in 𝑠-direction at   𝑡 ൌ 0. The fluid is electrically 

conducting. An unsteady external magnetic field 𝐵ሺ𝑡ሻ ൌ 𝐵଴ሺ1 െ 𝛼𝑡ሻଵ/ଶis applied along 𝑟 െ

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 while the induced magnetic field is negligible. The surface is assumed to be permeable 

with mass flux velocity 𝑉௪ሺ𝑟, 𝑡ሻ which corresponds to the suction/injection of the fluid. 
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Figure 5.1 Flow diagram 

The governing equations can be articulated as: 
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𝑢 ൌ  𝜆
𝑈௪

ሺ1 െ 𝛼𝑡ሻ
, 𝑣 ൌ 𝑉௪ሺ𝑠, 𝑡ሻ, 𝑇 ൌ 𝑇௪, 𝑎𝑡 𝑟 ൌ 0,

  𝑢 ൌ 0,       
𝜕𝑢
𝜕𝑟

ൌ 0,       𝑇 ൌ 𝑇ஶ, 𝑎𝑡 𝑟 → ∞. ⎭
⎬

⎫
 

 

ሺ5.5ሻ 

 𝜆 ൐ 0, represent stretching and 𝜆 ൏ 0 is the shrinking parameter. The stretching/shrinking 

velocity is given as: 𝑈௪ ൌ 𝑎𝑠, in which 𝑎 is positive constant. Also, 

 𝑉௪ ൌ െට
௔ఔಮ

ሺଵିఈ௧ሻ
S, represents mass transfer through the surface, for the suction 𝑆 ൐ 0 and for the 

injection 𝑆 ൏ 0. 

For large Reynolds number, Eqs. (1) to (5), are reduced to the following 

 

𝜌௡௙ ቀ ௨మ

௥ାோ
ቁ ൌ డ௣

డ௥
,   ሺ5.6ሻ

𝜌௡௙ ቀడ௨

డ௧
൅ ௨௩

௥ାோ
൅ 𝑣 డ௨

డ௥
൅ 𝑢 ቀ ோ

௥ାோ
ቁ డ௨

డ௦
ቁ ൌ െ𝜌௡௙

ோ

ሺ௥ାோሻ

డ௣

డ௦
൅ 𝜇௡௙ ቀడమ௨

డ௥మ ൅ ଵ

ሺ௥ାோሻ

డ௨

డ௥
െ ௨

ሺ௥ାோሻమቁ ൅

       
డఓ೙೑

డ௥
ሺడ௨

డ௥
െ ௨

ሺ௥ାோሻ
ሻ െ 𝜎𝐵ଶ𝑢,  

 

ሺ5.7ሻ

డ்

డ௧
൅ 𝑣 డ்

డ௥
൅ ோ

ሺ௥ାோሻ

డ்

డ௦
ൌ 𝛼௡௙ ቀడమ்

డ௥మ ൅ ଵ

ሺ௥ାோሻ

డ்

డ௥
ቁ,   ሺ5.8ሻ

𝑢 ൌ 𝜆
𝑎𝑠

ሺ1 െ 𝛼𝑡ሻ
, 𝑣 ൌ െඨ

𝑎𝜈ஶ

ሺ1 െ 𝛼𝑡ሻ
𝑆, 𝑇 ൌ 𝑇௪ 𝑎𝑡    𝑟 ൌ 0,

 𝑢 ൌ 0,                                       
𝜕𝑢
𝜕𝑟

ൌ 0, 𝑇 ൌ 𝑇ஶ 𝑎𝑡   𝑟 → ∞.⎭
⎪
⎬

⎪
⎫

 

 

ሺ5.9ሻ 

By using the following transformation  
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ሺ5.10ሻ 

 Equations ሺ5.6 െ 5.8ሻ are transformed into  
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ഇೝ

ቁ
െ ଵ

ሺఎା఑ሻమ

௙ᇲ

ቀଵି ഇ
ഇೝ

ቁ
െ

𝑀ଵ𝑓ᇱ൱ െ 𝛽 ቀଵ

ଶ
𝜂𝑓ᇱᇱ ൅ 𝑓ᇱቁ ൅ ఑

ሺఎା఑ሻ
ቀ𝑓𝑓ᇱᇱ െ 𝑓ᇱଶ ൅ ଵ

ሺఎା఑ሻ
𝑓𝑓ᇱቁ,  

 

 

ሺ5.12ሻ

From Eqs. ሺ5.11ሻ and ሺ5.12ሻ, it follows that  

ଵ

஺భ
ቌ

ሺఎା఑ሻ௙೔ೡ

ቀଵି ഇ
ഇೝ

ቁ
൅ ଶ௙ᇲᇲᇲ

ቀଵି ഇ
ഇೝ

ቁ
൅ ଶሺఎା఑ሻ௙ᇲᇲᇲఏᇲ

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ ൅ ௙ᇲᇲఏᇲ

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ െ ௙ᇲఏᇲᇲ

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ െ ଶ௙ᇲఏᇲ

ఏೝ
మቀଵି ഇ

ഇೝ
ቁ

య ൅
ሺఎା఑ሻ௙ᇲᇲఏᇲᇲ

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ ൅

ଶሺఎା఑ሻ௙ᇲᇲఏᇲ

ఏೝ
మቀଵି ഇ

ഇೝ
ቁ

య െ ௙ᇲᇲ

ቀଵି ഇ
ഇೝ

ቁሺఎା఑ሻ
൅ ௙ᇲ

ቀଵି ഇ
ഇೝ

ቁሺఎା఑ሻమ
െ ௙ᇲఏᇲ

ሺఎା఑ሻఏೝቀଵି ഇ
ഇೝ

ቁ
మ െ 𝑀ଵሺ𝑓ᇱ ൅ ሺ𝜂 ൅ 𝜅ሻ𝑓ᇱᇱሻቍ െ

𝛽 ቀଷ

ଶ
ሺ𝜂 ൅ 𝜅ሻ𝑓ᇱᇱ ൅ ଵ

ଶ
𝜂𝑓ᇱᇱ ൅ ଵ

ଶ
𝜂ሺ𝜂 ൅ 𝜅ሻ𝑓ᇱᇱᇱ ൅ 𝑓ᇱቁ െ 𝜅ሺ𝑓ᇱ𝑓ᇱᇱ െ 𝑓𝑓ᇱᇱᇱሻ ൅ ఑

ሺఎା఑ሻ
ቀ𝑓𝑓ᇱᇱ െ

ଵ

ሺఎା఑ሻ
𝑓𝑓ᇱ െ 𝑓ᇱଶቁ ൌ 0,  

 

 

 

ሺ5.13ሻ 

 

𝜃ᇱᇱ ൅
1

ሺ𝜂 ൅ 𝜅ሻ
𝜃ᇱ ൅ 𝑃𝑟 ൬

𝜖ଶ

𝜖ଵ
൰

𝜅
ሺ𝜂 ൅ 𝜅ሻ

𝑓𝜃ᇱ െ 𝑃𝑟 ൬
𝜖ଶ

𝜖ଵ
൰

𝛽
2

𝜂𝜃ᇱ ൌ 0, 
5.14 

𝑓 ൌ 𝑆,            𝑓ᇱ ൌ 𝜆, 𝜃 ൌ 1 at 𝜂 ൌ 0,
𝑓ᇱ → 0, 𝑓ᇱᇱ → 0, 𝜃 → 0 as 𝜂 → ∞.

ൠ
5.15 

Where  𝑀ଵ ൌ ሺ1 െ 𝜙ሻଶ.ହ𝑀ଶ. The coefficient of Skin friction is defined as 𝐶௙ ൌ ఛೢ

ఘ೑ಮ௎ೢ
మ, in which 

𝜏௪ ൌ 𝜇௡௙ ቀడ௨

డ௥
െ ௨

௥ାோ
ቁ |௥ୀ଴, that consequently lead to 𝐶௙𝑅𝑒௦

ଵ/ଶ ൌ ଵ

ሺଵିథሻమ.ఱቀଵି భ
ഇೝ

ቁ
ሺ𝑓ᇱᇱሺ0ሻ െ ଵ

఑
ሻ. The 

local Reynolds number is given by 𝑅𝑒௦ ൌ ௔௦మ

ఔ೑ಮ
 . The properties of involved physical parameters 

have been presented in Table 2.1. 
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5.3 Solution procedure 

In the innovative Keller Box method, four new dependent variables namely 𝑢, 𝑣, 𝑤 𝑎𝑛𝑑 𝑚 are 

familiarized to reduce the Eqs. ሺ5.13ሻ and ሺ5.14ሻ along with allied conditions given in Eq. ሺ5.15ሻ 

beneath as: 

𝑓ᇱ ൌ 𝑢,  ሺ5.16ሻ

𝑢ᇱ ൌ 𝑣,  ሺ5.17ሻ

𝑣ᇱ ൌ 𝑤,  ሺ5.18ሻ

𝜃ᇱ ൌ 𝑚,  ሺ5.19ሻ

ଵ

஺భ
ቌ

ሺఎା఑ሻ௪ᇲ

ቀଵି ഇ
ഇೝ

ቁ
൅ ଶ௪

ቀଵି ഇ
ഇೝ

ቁ
൅ ଶሺఎା఑ሻ௪௠

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ ൅ ௩௠

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ െ ௨௠ᇲ

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ െ ଶ௨௠

ఏೝ
మቀଵି ഇ

ഇೝ
ቁ

య ൅
ሺఎା఑ሻ௩௠ᇲ

ఏೝቀଵି ഇ
ഇೝ

ቁ
మ ൅

ଶ൫ሺఎା఑ሻ൯௩௠

ఏೝ
మቀଵି ഇ

ഇೝ
ቁ

య െ ௩

ቀଵି ഇ
ഇೝ

ቁሺఎା఑ሻ
൅ ௨

ቀଵି ഇ
ഇೝ

ቁሺఎା఑ሻమ
െ ௨௠

ሺఎା఑ሻఏೝቀଵି ഇ
ഇೝ

ቁ
మ െ 𝑀ଵሺ𝑢 ൅ ሺ𝜂 ൅ 𝜅ሻ𝑣ሻቍ െ

𝛽 ቀଷ

ଶ
ሺ𝜂 ൅ 𝜅ሻ𝑣 ൅ ଵ

ଶ
𝜂𝑣 ൅ ଵ

ଶ
𝜂ሺ𝜂 ൅ 𝜅ሻ𝑤 ൅ 𝑢ቁ ൅ 𝜅ሺ𝑓𝑤 െ 𝑢𝑣ሻ ൅ ఑

ሺఎା఑ሻ
ቀ𝑓𝑣 െ 𝑢ଶ െ

ଵ

ሺఎା఑ሻ
𝑓𝑢ቁ ൌ 0,  

 

 

 

ሺ5.20ሻ

𝑚ᇱ ൅ ଵ

ሺఎା఑ሻ
𝑚 ൅ 𝑃𝑟 ஫మ

஫భ

఑

ሺఎା఑ሻ
𝑓𝑚 െ 𝑃𝑟 ஫మ

஫భ

ఉ

ଶ
𝜂𝑚 ൌ 0,   ሺ5.21ሻ

𝑓 ൌ 𝑆,                𝑢 ൌ 𝜆, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 0,
𝑢 → 0,                 𝑣 → 0, 𝜃 → 0 𝑎𝑠 𝜂 → ∞.ൠ 

ሺ5.22ሻ

The schematic structure of mesh points in a rectangular plan is already shown in Figure 2.2. The 

coordinate’s position is indicated by the numbers 𝑖 𝑎𝑛𝑑 𝑗. The finite-difference form of any point 

will be ሺ ሻ௝ିଵ/ଶ
௜ ൌ ଵ

ଶ
ሾሺ ሻ௝ିଵ

௜ ൅ ሺ ሻ௝
௜ ሿ andሺ ሻ௝

௜ିଵ/ଶ ൌ ଵ

ଶ
ሾሺ ሻ௝

௜ିଵ ൅ ሺ ሻ௝
௜ ሿ. Consequently, the first four 

equations are discretized by placing at ሺ𝑥௜, 𝜂௝ିଵ/ଶሻ where the last two equations are discretized by 

fixing at ሺ𝑥௜ିଵ/ଶ, 𝜂௝ିଵ/ଶሻ.  
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𝑓௝
௜ ൌ 𝑓௝ିଵ

௜ ൅
ℎ௝

2
൫𝑢௝ିଵ

௜ ൅ 𝑢௝
௜൯, 

ሺ5.23ሻ

𝑢௝
௜ ൌ 𝑢௝ିଵ

௜ ൅
ℎ௝

2
൫𝑣௝ିଵ

௜ ൅ 𝑣௝
௜൯, 

ሺ5.24ሻ

𝑣௝
௜ ൌ 𝑣௝ିଵ

௜ ൅
ℎ௝

2
൫𝑤௝ିଵ

௜ ൅ 𝑤௝
௜൯, 

ሺ5.25ሻ

𝜃௝
௜ ൌ 𝜃௝ିଵ

௜ ൅
ℎ௝

2
൫𝑚௝ିଵ

௜ ൅ 𝑚௝
௜൯. 

ሺ5.26ሻ

The heat equation now can be written as 

ሾ
൫௠ೕି௠ೕషభ൯

௛ೕ
൅

൫௠ೕା௠ೕషభ൯

ଶሺఎା఑ሻ
൅ 𝑃𝑟 ஫మ

஫భ

఑

ሺఎା఑ሻ

൫௙ೕା௙ೕషభ൯

ଶ

൫௠ೕା௠ೕషభ൯

ଶ
െ 𝑃𝑟 ఉఎ஫మ

ଶ஫భ
𝜂

൫௠ೕା௠ೕషభ൯

ଶ
ሻሿ௜ ൌ

𝑁௝ିଵ/ଶ, 

ሺ5.27ሻ 

Where 𝑁௝ିଵ/ଶ ൌ െሾడ௠

డఎ
൅ ଵ

ሺఎା఑ሻ
𝑚௝ିభ

మ
൅ 𝑃𝑟 ஫మ

஫భ

఑

ሺఎା఑ሻ
ሺ𝑓𝑚ሻ

௝ିభ
మ

െ 𝑃𝑟 ஫మ

஫భ

ఉ

ଶ
𝜂𝑚௝ିభ

మ
ሿ௜ିଵ,  ሺ5.28ሻ

where 𝑀௝ିଵ/ଶ is the sum of known terms of the linear momentum equation.  Similarly, the 

momentum equation is discretized as done in the preceding case. 

In view of Newton’s linearization method. 𝑓, 𝑢, 𝑣, 𝑤, 𝜃  and 𝑚  respectively by taking  𝑓 ൅ 𝛿𝑓, 𝑢 ൅

𝛿𝑢, 𝑣 ൅ 𝛿𝑣, 𝑤 ൅ 𝛿𝑤, 𝜃 ൅ 𝛿𝜃 𝑎𝑛𝑑 𝑚 ൅ 𝛿𝑚 lead to the following: 

𝛿𝑓௝ െ 𝛿𝑓௝ିଵ െ
ℎ௝

2
൫𝛿𝑢௝ ൅ 𝛿𝑢௝ିଵ൯ ൌ ሺ𝑟ଵሻ௝, 

ሺ5.29ሻ 

𝛿𝑢௝ െ 𝛿𝑢௝ିଵ െ
ℎ௝

2
൫𝛿𝑣௝ ൅ 𝛿𝑣௝ିଵ൯ ൌ ሺ𝑟ଶሻ௝, 

ሺ5.30ሻ 

𝛿𝑣௝ െ 𝛿𝑣௝ିଵ െ
ℎ௝

2
൫𝛿𝑤௝ ൅ 𝛿𝑤௝ିଵ൯ ൌ ሺ𝑟ଷሻ௝, 

ሺ5.31ሻ 

𝛿𝜃௝ െ 𝛿𝜃௝ିଵ െ
ℎ௝

2
൫𝛿𝑚௝ ൅ 𝛿𝑚௝ିଵ൯ ൌ ሺ𝑟ସሻ௝, 

ሺ5.32ሻ 
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ሺ𝑎ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑎ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑎ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑎ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑎ହሻ௝𝛿𝑓௝ ൅ ሺ𝑎଺ሻ௝𝛿𝑓௝ିଵ ൅

ሺ𝑎଻ሻ௝𝛿𝑤௝ ൅ ሺ𝑎଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑎ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑎ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑎ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑎ଵଶሻ௝𝛿𝑚௝ିଵ ൌ

ሺ𝑟ହሻ௝, 

ሺ5.33ሻ 

ሺ𝑏ଵሻ௝𝛿𝑣௝ ൅ ሺ𝑏ଶሻ௝𝛿𝑣௝ିଵ ൅ ሺ𝑏ଷሻ௝𝛿𝑢௝ ൅ ሺ𝑏ସሻ௝𝛿𝑢௝ିଵ ൅ ሺ𝑏ହሻ௝𝛿𝑓௝ ൅ ሺ𝑏଺ሻ௝𝛿𝑓௝ିଵ ൅

ሺ𝑏଻ሻ௝𝛿𝑤௝ ൅ ሺ𝑏଼ሻ௝𝛿𝑤௝ିଵ ൅ ሺ𝑏ଽሻ௝𝛿𝜃௝ ൅ ሺ𝑏ଵ଴ሻ௝𝛿𝜃௝ିଵ ൅ ሺ𝑏ଵଵሻ௝𝛿𝑚௝ ൅ ሺ𝑏ଵଶሻ௝𝛿𝑚௝ିଵ ൌ

ሺ𝑟଺ሻ௝. 

ሺ5.34ሻ 

In matrix‐vector form: 

𝐴𝜑 ൌ 𝑅.  ሺ5.35ሻ 

If A is a block tri‐diagonal matrix system, then  

𝐴 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ሾ𝐴ଵሿ ሾ𝐶ଵሿ
ሾ𝐵ଵሿ ሾ𝐴ଶሿ ⋱

⋱ ⋱

⋱ ⋱ ⋱
ሾ𝐵௝ିଵሿ ሾ𝐴௝ିଵሿ ሾ𝐶௝ିଵሿ

ሾ𝐵௝ሿ ሾ𝐴௝ሿ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝜑 ൌ ൦

ሾ𝛿ଵሿ
ሾ𝛿ଶሿ

⋮
ሾ𝛿௃ሿ

൪, 

 

 

 ሺ5.36ሻ 

ൣ𝑅௝൧ ൌ

⎣
⎢
⎢
⎡
ሺ𝑟ଵሻ௝

ሺ𝑟ଶሻ௝

⋮
ሺ𝑟଺ሻ௝⎦

⎥
⎥
⎤
 , 𝑤ℎ𝑒𝑟𝑒 ሾ𝛿ଵሿ ൌ

⎣
⎢
⎢
⎢
⎢
⎡
𝛿𝑤଴
𝛿𝑚଴
𝛿𝑓ଵ
𝛿𝑣ଵ
𝛿𝑤ଵ
𝛿𝑚ଵ⎦

⎥
⎥
⎥
⎥
⎤

, ൣ𝛿௝൧ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝑢௝ିଵ

𝛿𝜃௝ିଵ

𝛿𝑓௝

𝛿𝑣௝

𝛿𝑤௝

𝛿𝑚௝ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑅 ൌ ൦

ሾ𝑅ଵሿ
ሾ𝑅ଶሿ

⋮
ሾ𝑅௃ሿ

൪ , 2 ൑ 𝑗 ൑ 𝐽. 

 

ሺ5.38ሻ 

This MATLAB based block elimination technique is employed to vet the presented results as a 

second check and found an excellent agreement. 

For the computational purpose, the step size of Δ𝜂 ൌ 0.001 is considered and the results are 

obtained by setting the error tolerance to the order 10ି଺ in all the cases. Choosing the values of 

involved parameters is critical when it affects the computational time. Another inevitable source 

of error is the unbounded domain that must be finite for computational purposes. For numerical 
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simulations the step size or boundary layer edge which would sufficient enough to attain the 

boundary conditions asymptotically for all values of physical parameters is castoff, 𝜂 ൌ 16.  The 

validation of results will be discussed in Table 5.1, which shows clearly that both the upper and 

lower solutions branches  agree excellently with [41]. In addition, we now also have checked for 

the grid-independence of our solution. For the purpose, we increase the grid resolution by reducing 

the step size by half and compared the numerical results with the previous one. These two results 

are identical. Hence, we can regard our solution as a grid-independent.  

Table 5.1 Comparison of 𝒇ᇱᇱሺ𝟎ሻ for existing analytical and our numerical solutions  

 𝜿 → ∞, 𝜷 ൌ 𝟎, 𝑺 ൌ 𝟐, 𝝓 ൌ 𝟎, 𝑴 ൌ 𝟎, 

  Roşca and Pop [41]  Current study 

𝜆  Upper branch  Lower branch  Upper branch  Lower branch 

െ0.5  0.85355  0.14644  0.85355  0.14644 

െ0.6  0.97947  0.22052  0.97947  0.22052 

െ0.7  1.08340  0.31659  1.08340  0.31659 

െ0.8  1.15777  0.44222  1.15777  0.44222 

െ0.9  1.18460  0.61539  1.18460  0.61539 

െ0.99  1.089  0.891  1.08900  0.89100 

 

5.4 Results and Analysis 

Graphical results of different physical quantities like velocity, pressure, temperature and skin 

friction profiles are executed in the below section using MATLAB software. Figures 5.3 and 5.4 

represents pressure distribution in fluid with shrinking and suction parameter respectively. It can 

be observed that pressure profile increases for raising the magnitude of shrinking and suction 

parameters. 
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Figure 5.2 Pressure variations with  

Shrinking parameter 

 

Figure 5.3 Pressure variations with  

Suction parameter 

Figures (5.5-5.7) show skin friction plots opposite to the shrinking parameter. Graphic data shows 

that the coefficient of skin friction decreases for the increasing curvature parameter and escalates 

for the variable viscosity parameters both for the upper and lower solutions. For the suction 

parameter, the lower and the upper solution skin friction profiles are in opposite conduct as can be 

verified in Figure 5.7 Since the skin friction profile increases in the case of the upper solution 

branch, whereas, it decreases in the case of lower solution branch. It is learnt that the critical value 

of the shrinking parameter increases in the negative direction with the rising magnitude of the 

suction parameter as shown in Figure 5.7. On the other hand, these critical values remain the same 

for increasing curvature parameter and variable viscosity parameter as seen in Figures 5.5 and 5.6.  

Figures (5.8-5.10) offer skin friction graphs opposite to that of the suction parameter. It was 

revealed that skin friction profile decreases when increase in curvature parameter values occure, 

whereas it increases with variable viscosity parameter. For the shrinking parameter, the coefficient 

of skin friction increases for both the upper and lower branches of the solution.Although the critical 

values, in this case, vary, as input for the shrinking parameter is changed. It is obvious and can be 

seen from Figure 5.9 that when the extent of the shrinking parameter is increased the critical value 

of the suction parameter also increased, whereas in the case of curvature and variable viscosity 

parameter the critical points are invariant as noticed in Figures 5.8 and 5.10.  
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Both the velocity and velocity gradient graphs with varous parameters are plotted in Figures (5.11-

5.14) for two different solutions. The velocity distribution decreases in magnitude for increasing 

values of shrinking parameter, while the velocity gradient also increases with higher values of the 

shrinking parameter as shown in Figures 5.11 and 5.12 for both upper and lower branch solutions. 

The two solutions exhibit the opposite trend for the suction parameter in the velocity profile. The 

lower branch velocity profile lessens in magnitude with the growing suction parameter values 

while increasing for the upper branch of the solution as shown in Figures 5.13 and 5.14. For both 

upper and lower cases, the magnetic parameter weakens the velocity distribution along r-direction 

as evident from Figure 5.15 as well as along s-direction as can be seen in Figure 5.16.  

The plots of Figures (5.17-5.20) represent temperature variation with different physical 

parameters. It can be realized in Figure 5.17 that temperature rises as the curvature parameter 

increases. The same is the case for CNT’s volume fraction as revealed in Figure 5.18. However, 

the suction parameter reduces the temperature as noticed in Figure 5.19. From Figure 5.20, it can 

be concluded that a rise in the variable viscosity increases the fluid temperature. 
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Figure 5.4 Skin friction versus  

Curvature parameter 

 

Figure 5.5 Skin friction versus variable  

Viscosity parameter 

 

Figure 5.6 Skin friction versus  

Porosity parameter 

Figure 5.7 Skin friction versus  

Curvature and Suction parameter 
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Figure 5.8 Skin friction versus  

Shrinking parameter 

 

Figure 5.9 Skin friction versus variable  

Viscosity parameter 

 

Figure 5.10 Velocity and Velocity gradient with 

Shrinking parameter (Lower Solution) 

 

Figure 5.11 Velocity and Velocity gradient with 

Shrinking parameter (Upper Solution) 
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Figure 5.12 Velocity and Velocity gradient versus 

Suction parameter (Lower Solution) 

 

Figure 5.13 Velocity and Velocity gradient versus 

Suction parameter (Upper Solution) 

 

Figure 5.14 Velocity along r-direction Figure 5.15 Velocity along s-direction 
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Figure 5.16 Temperature variation versus  

Curvature parameter 

Figure 5.17 Temperature variation versus  

CNT volume fraction 

Figure 5.18 Temperature variation versus  

Suction parameter 

Figure 5.19 Temperature variation versus variable 

Viscosity parameter 
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6 Computational study of CNT nanofluid flow on a 

curved surface with micro-rotational inertia  

6.1 Introduction 

This chapter provides a computational study of the nanofluid flow on the curvilinear surface in the 

presence of the magnetic field. Carbon nanotubes are considered to be the solid constituent. The 

fluid is viscous with viscosity depending inversely on the temperature of the fluid. Micro-rotations 

and spin motions are also taken into considerations.  Eringin micropolar fluids theory is used to 

model the problem in the curvilinear coordinates system. The set of equations depicting the above 

situations are non-linear coupled partial differential equations, which are first converted to a 

system of ordinary differential equations and then numerically addressed using an affective finite 

differential technique.Numerical and graphical results of quantities of physical significance are 

presented and discussed, such as Nusselt number, skin friction, and couple stress.  

6.2 Mathematical description 

Let us consider a steady incompressible nanofluid flow on a curved surface as shown in Figure 

5.1 Single-walled carbon nanotubes are taken as the solid part of the nanofluid with the viscosity 

varying as an inverse function of temperature. 𝑈௪ is the velocity with which the surface is stretched 

while 𝑉௪ represents the mass transfer velocity through the permeable surface. Though for 

electrically conducting fluid the induced magnetic field is neglected, there exists an applied 

uniform magnetic field acting along the 𝑟-direction. The fluid particles are assumed to possess 

rotational as well as spin inertia. The equations below are derived using the Eringin theory of micro 

fluids that can be regarded as a generalized form of classical Navier-Stokes theory. 

The overruling equations in curvilinear coordinates are: 

𝑅
𝜕𝑢
𝜕𝑠

൅
𝜕

𝜕𝑟
ሾሺ𝑟 ൅ 𝑅ሻ𝑣ሿ ൌ 0, 

ሺ6.1ሻ
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ሺ6.5ሻ

The relevant boundary conditions are: 

𝑢 ൌ  𝜆𝑈௪ሺ𝑠ሻ         𝑣 ൌ 𝑉௪ሺ𝑠, 𝑡ሻ  𝑇 ൌ 𝑇௪ 𝑎𝑡 𝑟 ൌ 0

      𝑢 → 0,                         
𝜕𝑢
𝜕𝑟

→ 0      𝑇 ൌ 𝑇ஶ 𝑎𝑡 𝑟 → ∞
ቑ  ሺ6.6ሻ 

𝑁 is the angular velocity of the fluid element, 𝐾ଵ represent the micro-rotation viscosity of the fluid 

whereas   𝛾∗ ൌ 𝑗ሺ𝜇௡௙ ൅ ௄భ

ଶ
ሻ is the spin gradient viscosity of the fluid. 𝑗 is the micro-inertial density. 

𝑈௪ሺ𝑠ሻ is the surface stretching velocity, which is taken as 𝑈௪ሺ𝑠ሻ ൌ 𝑎𝑠, 𝑎 is a dimensionless 

positive constant. 𝜆 is a dimensionless constant known as a stretching parameter. For stretching 

we only put 𝜆 ൐ 0 Also we have taken 𝑉௪ ൌ െ√𝑎𝜈ஶS, where 𝑆 is a constant parameter that 

represents mass transfer through the surface. Since we have considered the suction phenomena 

throughout the study. For suction, we have 𝑆 ൐ 0. 

Incorporating  boundary layer approximation for very large Reynolds number values, the nonlinear 

partial differential equations described above are reduced to the form given below. 

𝜌௡௙ ቀ ௨మ

௥ାோ
ቁ ൌ డ௣

డ௥
   ሺ6.7ሻ
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ቁ   ሺ6.9ሻ

The boundary conditions now are: 

𝑢 ൌ 𝜆𝑎𝑠, 𝑣 ൌ െඥ𝑎𝜈ஶ𝑆, 𝑇 ൌ 𝑇௪ 𝑎𝑡 𝑟 ൌ 0,

  𝑢 → 0,             
𝜕𝑢
𝜕𝑟

→ 0                   𝑇 ൌ 𝑇ஶ 𝑎𝑡 𝑟 → ∞.
ቑ  (6.10)

Choosing suitable similarity transformations and introducing dimensionless functions 𝑓, 𝜃, and 

similarity variable 𝜂  

𝑢 ൌ 𝑎𝑠𝑓ᇱሺ𝜂ሻ, 𝑣 ൌ െ
𝑅

𝑟 ൅ 𝑅
ඥ𝑎𝜈ஶ𝑓ሺ𝜂ሻ, 𝜃 ൌ

𝑇 െ 𝑇ஶ

𝑇௪ െ 𝑇ஶ
 , 

 𝜂 ൌ ඨ
𝑎

𝜈ஶ
𝑟, 𝑝 ൌ 𝜌௡௙𝑎ଶ𝑠ଶ𝑃ሺ𝜂ሻ 

ሺ6.11ሻ

The momentum and energy equations are transformed into the following system of non-linear 

Ordinary Differential Equations by applying the similarity transformations above: 

డ௉
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Using Equation 6.12 into 6.13 we get 
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Now the boundary conditions in the dimensionless form are: 

 𝑓 ൌ 𝑆, 𝑓ᇱ ൌ 𝜆, 𝜃 ൌ 1 𝑎𝑡 𝜂 ൌ 0  

 𝑓′ → 0, 𝑓ᇱᇱ → 0, 𝜃 → 0 𝑎𝑠  𝜂 → ∞                                                    

We are also interested in finding the skin friction coefficient (𝐶௙௥ሻ, Couple stress ሺ𝐶௠௥ሻ  and 

Nusselt number ሺ𝑁𝑢ሻ near the boundaries, which can be written as  𝐶௙௥𝑅𝑒௦
ଵ/ଶ ൌ
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𝑁𝑢𝑅𝑒௦
ଵ/ଶ ൌ െϵଵ𝜃ᇱሺ0ሻ , where 𝑅𝑒௦ ൌ ௔௦మ

ఔ೑ಮ
 is the local Reynolds number. 

6.3 Solution procedure: 

Eringin theory of micropolar fluid is used to model the assumed problem. The governing set of 

equations is a Set of five non-linear partial differential equations in curvilinear coordinates. 

Boundary layer approximation is incorporate on the system of equations to avoid the terms of 

negligible effects. Suitable similarity transformations are implemented in the system. The reduced 

model is now a series of ordinary differential equations which are strongly nonlinear in nature. 

The entity of temperature-dependent viscosity molds the momentum equations highly non-linear. 

A powerful finite difference method “Keller box” is incorporated to work out the solution of the 

governing set of coupled non-linear differential equations. This technique is composed of four 

distinct procedures. The very first step is the transformation of governing equations into a series 

of differential equations of the first order. In the second phase, these equations are discretized 

using a central difference scheme, followed by linearization with Newton’s linearization. The very 

last step is to write the linearized set of algebraic equations into block tri-diagonal form and solve 

them by matrix algebra. Numerical and graphical results are obtained by programming this very 

last step into MATLAB. The simplest case of the problem is matched with a previously published 

test for solution authentication purposes. As can be seen, in 𝑇𝑎𝑏𝑙𝑒. 4.1. the data appear to be in 

very good agreement with the reported results. Tecplot 360 is also utilized to plot streamlines and 

isotherms. 𝜂ஶ ൌ 16 is set as the edge of the boundary layer. A very fine Step size of  △ 𝜂 ൌ 0.005 

is taken for the calculations. Error tolerance is set at 10ି଺.  

6.4 Results and Analysis 

Equations ሺ6.16 െ 6.18ሻ are governing non-linear ordinary differential equations. The above 

system of simultaneous equations is solved numerically with a powerful finite difference 

scheme with the help of MATLAB software. Numerical results obtained are then represented 

graphically with the help of MATLAB and Tecplot graphic utility. Figure 6.1 and Figure 6.2 

show streamline patterns and pressure variation respectively.  
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Figure 6.1 Streamlines patterns 

 

              Figure 6.2 Pressure  distribution with variable  

                                 Viscosity parameter 

 

Figures (6.3-6.11) are the isotherm plots executed with different physical parameters. It can be 

concluded from the results that temperature distribution within the fluid rises with an increase 

in the curvature parameter as well as with the solid fractions of single-walled carbon nanotubes. 

Suction, on the other hand, lowers the temperature distribution within the fluid as can be seen 

in Figures (6.9-6.11). 

Velocity profile along s-direction is represented in Figures (6.12-6.15) with respect to different 

physical parameters. It can be seen that flow is opposed by suction as well as the curvature 

parameter. The flow of the fluid rises for increasing the values of the Hartmann parameter.  
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Figure 6.3 Isotherm with k = 5 Figure 6.4 Isotherm with k = 10 Figure 6.5 Isotherm with k = 15 

 

Figure 6.6 Isotherm with 𝝋 ൌ  𝟎. 𝟎𝟓 Figure 6.7 Isotherm with 𝝋 ൌ 𝟎. 𝟏𝟎 Figure 6.8 Isotherm with 𝝋 ൌ 𝟎. 𝟏𝟓 

 

Figure 6.9 Isotherm with S = 0.50 Figure 6.10 Isotherm with S = 2.0 Figure 6.11 Isotherm with S = 3.0 
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Figures (6.16-6.19) depict variations in the skin friction coefficient near the boundaries, where 

Figures (6.19-6.23) are a couple stress plots near the curved surface. Graphical results show 

that both the skin friction and couple stress parameter decrease for the micropolar parameter, 

variable viscosity parameter, and suction parameter.  

 

Figure 6.12 Velocity variations versus  

Curvature parameter 

 

Figure 6.13 Velocity variations versus  

Magnetic parameter 

 

Figure 6.14 Velocity variations versus  

variable viscosity parameter 

 

Figure 6.15 Velocity variations versus  

Porosity parameter 
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Besides that, a decrease in couple stress with rising values of the magnetic parameter can be 

noticed in Figure 6.23. For the ascending magnitude of the curvature parameter, it is evident 

from the study that the skin friction profile increases whereas the couple stress decreases.  

 

 

Figure 6.16 Skin friction versus Micropolar 

parameter 

 

Figure 6.17 Skin friction versus  

Curvature parameter 

 

Figure 6.18 Skin friction versus Variable viscosity 

parameter 

 

Figure 6.19 Skin friction versus  

Porosity parameter 

 

The behavior of temperature gradient near the surface can be understood with the help of 

Nusselt number versus solid fraction graphs mentioned as Figures (6.24-6.27). Heat transfer 
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near walls for both multi-walled and single-walled carbon nanotubes is compared in Figure 

6.24 for increasing Prandtl number. 

 

Figure 6.20 Couple stress variations with Micropolar 

parameter 

 

Figure 6.21 Couple stress variations with Curvature 

parameter 

 

Figure 6.22 Couple stress variations with 

 Magnetic parameter 

 

Figure 6.23 Couple stress variations with variable 

Viscosity parameters 

It is concluded that both SWCNT and MWCNT exhibit similar behavior for changing values 

of Prandtl number. i.e. In both of the cases, Nusselt number increases in magnitude, however 

SWCNT as solid constituent always enhances the heat transfer capability of the fluid as can be 

seen. Figure 6.26 and Figure 6.27 show a decrease in Nusselt number with growing  

parameters of curvature and  variable viscosity, whereas Figure 6.28 validates an increment in 

the temperature gradient near the wall with increasing values of the suction parameter.  
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Figure 6.24 Couple stress variations with Porosity 

parameter 

 

Figure 6.25 Nusselt number variations with Prandtl 

number for SWCNT and MWCNT 

 

Figure 6.26 Nusselt number variations with 

Curvature parameter 

 

Figure 6.27 Nusselt number variations with variable 

viscosity parameters 
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Figure 6.28 Nusselt number variations with Porosity parameter 
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7 Thesis Conclusion 
This thesis represents the implications of powerful Numerical schemes on different fluid flow 

problems. Two major types of geometrical situations are examined. The channel flow between two 

plates and a semi-infinite boundary layer flow. Nanofluids are considered as the types of fluids 

possess the high potential of industrial application due to their efficient capabilities of heat transfer. 

Water is taken as a base-fluid, whereas carbon nanotubes are chosen as a solid constituent in this 

work, since they are among the nano-particles of exceptional properties , such as low density and 

high thermal heat capacity. In particular, single-walled carbon nanotubes are used as they work 

more effectively than that of multi-walled carbon nanotubes. A comparison of both multi-walled 

and single-walled carbon nanotubes is also presented. Fluids are considered viscous whose linear 

as well as rotational behavior in different geometrical situations are studied.  

The second and third chapters represent the case of fluid flow between two plates at a finite 

distance from each other. These plates squeezed towards each other with a certain velocity. 

Numerical investigations are accomplished to analyzed the viscous flows through the squeezing 

channel. The equations which govern these physical situations are originally partial differential 

equations which are converted by appropriate transformations into ordinary differential equations. 

The solution of differential equations which have emerged are carried out numerically by finite 

difference schemes. Graphical and numerical results are obtained keeping dynamic viscosity 

variable. It is set to vary inversely with fluid temperature.  

It can be concluded from the data obtained that linear flow momentum is enhanced by the 

magnitude of the unsteady magnetic field as well as with plates squeezing parameters, where the 

same decreases with the values of variable viscosity parameter and thermal radiation parameter. 

The study evidently concluded a fall in magnitude of linear momentum as the magnitude of the 

micro-rotations parameter is increased. 

 Temperature distribution across the flow channel depicts a fall with the squeezing parameter, 

whereas this temperature profile shows a rise in magnitude with the volume fraction of solid 

constituent of carbon nanotubes, variable viscosity parameter as well as with radiation parameter.  
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The angular velocity profile is found to be strengthened by the applied external magnetic field and 

viscosity parameter while it falls in strength along the channel with values of the micropolar 

parameter, thermal radiation as well as with squeezing parameter.  

Data are also computed for both Nusselt number and Skin friction. It can be concluded that for the 

system with temperature-dependent viscosity, the skin friction coefficient increases for squeezing 

parameter as well as for the magnetic parameter. The magnitude of micro-rotation and variable 

viscosity parameters is observed to decrease the Skin friction near the walls. The heat transfer rate 

decline with radiation parameter while it increases for squeezing parameter. 

Proceeding three chapters four, five and six represents the boundary layer flow of nanofluids over 

a curvilinear surface. The graphical and numerical data obtained in case of fluid injection through 

boundary and stretching of solid surface with certain velocity evidently concluded a rise in the 

magnitude of both velocity and temperature distribution  across the boundary layer with ascending 

values of carbon nanotubes volume fraction and magnetic parameters. The temperature 

distribution decreases while the linear momentum profile increases for the rising magnitude of 

temperature-dependent viscosity parameter and dimensionless curvature parameter. Also for the 

same case of stretching velocity the skin friction near the solid surface increase with variable 

viscosity parameter whereas it decreases for curvature parameter. In the case of shrinking surface 

and suction of fluid through the solid wall, the problem is found to possess dual solutions. These 

two distinguished solutions are named as upper and lower solution branches. Some previous 

studies suggested that of these two solutions, only the upper solution can be regarded as a stable 

solution. Graphical and numerical results are executed for the said case keeping the viscosity of 

the nanofluid temperature-dependent. In the case of a shrinking surface, it is perceived that for 

both types of solution, the skin fraction increases by raising the magnitude of the viscosity 

parameter. It is also sound that the temperature of the fluid falls with the increasing values of the 

suction parameter while it augments for the viscosity parameter, curvature parameter, and the 

carbon nanotubes volume fractions parameter. The critical values are the points where the two 

solutions coincide. Graphical results of skin friction coefficient versus shrinking and suction 

parameter depict that these critical points achieved soon for smaller values of suction parameter 

and magnitude of the shrinking parameter. 
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Chapter six provides an extensive review of flow over the curvilinear surface with micro-rotation 

and spin motions. These reevaluation efforts are commendable enough to classify the enhancement 

in heat transfer and thermal conductivity of micropolar fluid with nanoparticle conductive 

properties. Dynamic viscosity is supposed to be an inverse function of fluid temperature. It is 

concluded that with variable dynamic viscosity, the velocity distribution of the fluid increases with 

the magnetic parameter, whereas an increase in the magnitude of variable viscosity parameter 

resists the fluid flow. Within the proposed circumstances of temperature-dependent viscosities, the 

magnitude of Skin friction drops with rising values of the micropolar parameter while it rises with 

the increasing magnitude of the curvature parameter. Also, The results show that when using 

single-walled carbon nanotubes, the heat transfer coefficient is improved in contrast to multi-

walled nanotubes. The employed method comparison is revealed with already available results for 

the authentication of our technique.  
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