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Introduction 

 
Theories of rough sets [41, 42], fuzzy sets [48] and soft sets [37] 

are the most eminent and dynamic mathematical tools for modeling 

various types of data with uncertainty. Uncertainty and vagueness is often 

faced in the data assembled and studied for various purposes. The 

classical mathematical tools are not always convenient to describe such 

aspects of the real world problems. These theories are presented to handle 

the uncertainty in data in order to construct a productive mathematical 

model. The fuzzy set theory reflects the uncertain knowledge in a very 

fruitful way by grading the elements of the universe on the basis of their 

characteristics; where grades are assigned from the interval [0, 1]. 

The rough set theory acquires a completely different mathematical 

approach towards the uncertainty and ambiguity of the data. In this 

theory, the level of definiteness of the information associated to a set of 

objects is interpreted by two definable sets, called the lower and upper 

rough approximations, subject to the available information. 

Another problem in data analysis is to pinpoint the objects from a 

universe of discourse (a referential or a universe of objects) possessing a 

particular property or an attribute. This problem is magically ironed out 

by the soft set theory. Soft sets are defined with the help of a mapping, 

but entirely different in nature from that of a fuzzy set. This is a set-

valued mapping which associates to each attribute a set of objects 

(instead of a single value or a number) from a universe of discourse 

pertaining the property of that attribute. Both of these theories, i.e., the 

fuzzy set theory and the soft set theory diminished the gap between the 

classical mathematical methodologies and the vague data of the real 

world. 



 

 

Bipolarity of the information is also an essential aspect of data 

while modeling the real world problems. Bipolarity reveals the positive 

and negative aspects of the data. The positive part demonstrates the 

preferred information or the feasible data, while the negative part 

analyzes the inadmissible or implausible data. Bipolar information, 

therefore, increases the modeling and reasoning capabilities in all 

domains. 

In this thesis, we have hybridized the theory of rough sets with the 

theory of fuzzy sets and the theory of soft sets endowed with the bipolar 

information in three different directions. We have introduced the notions 

of the rough bipolar fuzzy sets, the rough bipolar soft sets and the rough 

fuzzy bipolar soft sets by defining the roughness in the bipolar fuzzy sets 

[29, 50], the bipolar soft sets [40] and the fuzzy bipolar soft sets [45]. 

This is done by developing the lower and upper rough approximations of 

these sets using the approach adopted by Pawlak [41, 42], who 

partitioned the universe of objects into granules (classes) of objects. We 

have also explored some characterizations of the rough bipolar fuzzy sets, 

the rough bipolar soft sets and the rough fuzzy bipolar soft sets. We have 

also developed the similarity relations, the accuracy measures and the 

roughness measures for these newly presented notions. 

The theory of semigroups is a substantial part of algebra and this 

theory is incomplete without the study of ideals. The theory of 

semigroups and the ideals in semigroups are also amalgamated with 

rough sets, along with the bipolar fuzzy sets, the bipolar soft sets and the 

fuzzy bipolar soft sets in this work. In this thesis, we have also defined 

and discussed the notions of different rough (left, right, two-sided, 

interior, bi-) ideals in the bipolar fuzzy semigroups, the bipolar soft 

semigroups and the fuzzy bipolar soft semigroups. 



 

 

The basic purpose to build the rough set theory, the fuzzy set 

theory and the soft set theory was to model many real world problems 

more efficiently. So, these theories have a great practicality in many areas 

of data analysis. An important application of these theories is the 

development of many decision making techniques. We have developed 

different decision making techniques using the rough approximations of 

the bipolar fuzzy sets, the bipolar soft sets and the fuzzy bipolar soft sets. 

We have also designed the algorithms for those techniques, accompanied 

by suitable examples. These algorithms also support different group 

decision making (GDM) problems when there is a group of decision 

makers having different opinions who intend to arrive at a single 

decision. 



 

 

 

Chapter-wise study 
 

This thesis consists of seven chapters which are briefly described 

below. 

Chapter 1 reviews previous work related to the fuzzy set theory, 

the soft set theory and the rough set theory. The bipolar fuzzy sets, the 

bipolar soft sets and the fuzzy bipolar soft sets are also discussed. Some 

basic definitions related to the ideals and fuzzy ideals in semigroups are 

also reviewed. 

Chapter 2 presents the rough bipolar fuzzy sets by defining the 

lower and upper rough approximations of the bipolar fuzzy sets in the 

Pawlak approximation space. The notion is further explained by 

exploring its structural properties. Based on these approximations, some 

similarity relations between the bipolar fuzzy sets are presented. The 

accuracy measure and the roughness measure for the lower and upper 

rough approximations of the bipolar fuzzy sets are also provided. The 

practical application of the proposed model in decision analysis is 

demonstrated with an algorithm for a group decision making problem, 

supported by an example. 

In Chapter 3, the concept of roughness developed in Chapter 2 is 

applied to the bipolar fuzzy ideals in semigroups and some properties of 

the rough bipolar fuzzy semigroups are investigated. The rough bipolar 

fuzzy (left, right, two-sided) ideals, the rough bipolar fuzzy interior ideals 

and the rough bipolar fuzzy bi-ideals are also defined and an overview of 

the properties of these ideals is presented. 

Chapter 4 presents the rough bipolar soft sets by defining the lower 

and upper rough approximations of the bipolar fuzzy sets in the Pawlak 

approximation space. The structural properties of these approximations 



 

 

are explored and some similarity relations between the bipolar soft sets 

based on these approximations, are presented. The practicality of the 

rough approximations of the bipolar soft sets in decision making 

techniques is demonstrated in two different directions by designing two 

different algorithms accompanied by suitable examples. 

In Chapter 5, the notions of bipolar soft semigroups and the bipolar 

soft subsemigroups are presented. The concept of rough bipolar soft sets 

developed in the Chapter 4 is infused with the theory of semigroups and 

the rough bipolar soft (left, right, two-sided) ideals, the rough bipolar soft 

interior ideals and the rough bipolar soft bi-ideals are also defined and 

some characterizations of these ideals are examined. 

Chapter 6 presents the rough fuzzy bipolar soft sets by defining the 

lower and upper rough approximations of the fuzzy bipolar soft sets in the 

Pawlak approximation space. The notion is further explored by studying 

its structural properties. Based on these approximations, some similarity 

relations between the fuzzy bipolar soft sets are presented. The accuracy 

measure and the roughness measure for the lower and upper rough 

approximations of the fuzzy bipolar soft sets are also provided. The 

practical application of the proposed model in decision analysis is 

demonstrated with an algorithm, supported by an example. 

In Chapter 7, the notions of fuzzy bipolar soft semigroups and the 

fuzzy bipolar soft subsemigroups are presented. The fuzzy bipolar soft 

ideals, the fuzzy bipolar soft interior ideals and the fuzzy bipolar soft bi-

ideals are also defined and discussed. The concept of rough fuzzy bipolar 

soft sets developed in the Chapter 4 is applied to the theory of fuzzy 

bipolar soft semigroups, the fuzzy bipolar soft ideals, the fuzzy bipolar 

soft interior ideals and the fuzzy bipolar soft bi-ideals. An overview of 

some characterizations of these ideals is also presented. 
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Chapter 1

Preliminaries

1.1 Introduction

Uncertainty and vagueness is often faced in the data assembled and studied for various

purposes. The classical mathematical tools are not always convenient to demonstrate

such aspects of the real world problems. The most eminent and dynamic mathematical

tools for modeling various types of data with uncertainty are the theories of rough sets,

fuzzy sets and soft sets. These theories are presented to handle the uncertainty in

data in order to formulate a productive mathematical model. For this purpose, Zadeh

[65] developed fuzzy set theory. This theory has tremendous applicability in both,

mathematics and computer sciences, for example, fuzzy logic, fuzzy automata, decision

making, medical science and engineering; see [3, 14, 22, 23, 25, 30, 35, 36, 40, 54]. This

theory proved to be very successful to administer the ambiguity observed in many types

of data. The fuzzy sets work with the help of a mapping which associates a degree

to each object in the universe of discourse. This degree belongs to the interval [0, 1]

and exhibits the measure of presence of a particular property or characteristic in the

objects. These properties are mostly uncertain to be completely present or completely

absent in the objects. For example, the set of emotional persons or the set of good

players. Thus, the fuzzy sets better re�ect the real knowledge about the objects.

Another problem in data analysis is to pinpoint the objects from a universe of

discourse (a referential or a universe of objects) possessing a particular property or an

attribute. Molodtsov [48] ironed out this problem magically by introducing the soft

sets in 1999. Soft sets are also de�ned with the help of a mapping, but entirely di¤erent

in nature from that of a fuzzy set. This is a set-valued mapping which associates to

each attribute a set of objects (instead of a single object or a number) from a universe

of discourse pertaining that particular attribute. Some important operations on the

soft sets were de�ned by Ali et al. [9]. Many other researchers have worked on the soft

1



1. Preliminaries 2

sets in di¤erent directions. For instance, [6, 11, 12, 13, 21, 27, 42, 43, 46, 56, 57, 69].

Soft sets are also combined with fuzzy sets to build new concepts; see [7, 10, 29,

28, 41, 44, 50]. Both, the fuzzy sets and the soft sets administer the problems of

uncertainty and imprecision. These theories diminished the gap between the classical

mathematical methodologies and the vague data of the real world.

A recent trend in contemporary information processing emphasizes on bipolar in-

formation: both from a knowledge representation point of view and from a processing

and reasoning one. Bipolarity of the information is an essential aspect of data while

modeling the real world problems in many sciences. Bipolarity reveals the positive and

negative aspects of the data. The positive part demonstrates the preferred information

or the feasible data, while the negative part analyzes the inadmissible or implausible

data. Bipolar information, therefore, increases the modeling and reasoning capabil-

ities in all domains. The bipolar representation of the information was introduced

by Dubois and Prade [26]. Zhang [67] equipped the fuzzy sets with bipolarity and

presented the bipolar fuzzy sets. Lee [38] de�ned a few elementary operations on the

bipolar fuzzy sets. Bipolar fuzzy sets were also studied by some other authors; see

[4, 5, 20, 34]. Bipolar soft sets were initiated by Shabir and Naz [61].

The rough set theory [52, 53] presented by Pawlak, acquires a completely di¤erent

mathematical approach towards the uncertainty and ambiguity of the data. This

theory provides an e¢ cient strategy to tackle the uncertain and doubtful data. In this

theory, the rough approximations of a set of objects interpret the level of de�niteness of

the information associated to the objects, subject to the available information. These

approximations make us able to speculate the exactness or uncertainty in the data.

This theory is raised by many authors; see [8, 15, 17, 19, 32, 37, 64, 68]. Rough sets

are also crossbred with soft sets and fuzzy sets to present innovative and practical

concepts; see [17, 18, 24, 29, 37, 45, 49].

1.2 Fuzzy sets

Zadeh [65] generalized the crisp sets to the fuzzy sets (abbreviated as FSs). An FS fU
in a universe U (6= �) is described with the help of a mapping fU : U ! [0; 1] which

associates a value fU (u) to each object u of the set U: This value portrays the extent

to which an object u satis�es the property of fU : The value fU (u) is known as the

belongingness grade of the object u and the mapping fU is known as the belongingness

map of U: The FS fU is non-empty if fU is not a zero map. Let U be a universe of

discourse (obviously non-empty) and let the collection of all FSs in U be symbolized

by Fz(U): Then, the formal de�nitions of operations on FSs, as established by Zadeh,

are given below.
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De�nition 1.2.1 For the FSs fU and gU in U; we say that fU is subset of gU ; that
is, fU � gU if and only if fU (u) � gU (u) for each u 2 U:

Clearly, fU = gU if and only if fU � gU and gU � fU .

De�nition 1.2.2 The null FS in U is de�ned by the mapping ;U : U �! [0; 1] ; such

that, ;U (u) = 0 for each u 2 U:

De�nition 1.2.3 The whole FS in U is de�ned by the mapping IU : U �! [0; 1] ;

such that, IU (u) = 1 for each u 2 U:

De�nition 1.2.4 The union and intersection of the FSs fU and gU in U are de�ned

as:

(fU [ gU )(u) = fU (u) _ gU (u) for each u 2 U;

(fU \ gU )(u) = fU (u) ^ gU (u) for each u 2 U:

De�nition 1.2.5 The compliment of an FS fU in U is symbolized by f 0U and de�ned

as:

f 0U (u) = 1� fU (u) for each u 2 U:

De�nition 1.2.6 An FS fU in U is taken to be constant in U; if and only if the

belongingness map fU : U �! [0; 1] is a constant function.

Example 1.2.7 Consider a group U = fp15; p20; p28; p35; p46; p60g of six persons of
same height, where each py 2 U is �y� years old. Let fU be an FS in U; describing

�how young a person is�. Then, fU is de�ned as:

U p15 p20 p28 p35 p46 p60

fU (py) 1 1 0:7 0:5 0:3 0

Let gU be another FS in U; describing �how tall a person is�, de�ned as:

U p15 p20 p28 p35 p46 p60

gU (py) 0:8 0:8 0:8 0:8 0:8 0:8

Then, gU is a constant FS in U:

1.3 Bipolar fuzzy sets

Zhang [67] enriched the FSs with the bipolar information and presented the idea of

the bipolar FSs (BFSs). These sets are capable to handle the fuzziness, as well as,

the bipolarity (the degrees of positivity and negativity) in the data. In the BFSs, the

belongingness degrees are expressed by a pair of belongingness maps.
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De�nition 1.3.1 [67] A BFS � in a non-empty universe U is de�ned as:

� = f(u; �P (u); �N (u)) : u 2 Ug;

where �P : U �! [0; 1] and �N : U �! [�1; 0] are the positive belongingness map and
the negative belongingness map, respectively.

The value �P (u) of the positive belongingness map denotes the degree of ful�lment

of an object u to the property of the BFS �, while the value �N (u) of the negative

belongingness map denotes the degree of ful�lment of the object u to some implicit

counter property of �. The object u is taken to be irrelevant to the property of �; if

�P (u) = 0 = �N (u): The set of all BFSs in U is symbolized by BFS(U). We can write

�(u) = (�P (u); �N (u)) for (u; �P (u); �N (u)) 2 �. Lee [38] de�ned some elementary

operations on the BFSs, which are given below.

De�nition 1.3.2 Let �; � 2 BFS(U). Then, � is contained in �, that is, � � �, if

�P (u) � �P (u) and �N (u) � �N (u) for each u 2 U: Clearly, � = � if and only if � � �

and � � �.

De�nition 1.3.3 The null BFS in U is symbolized by b; = (b;P ;b;N ); such that, b;P (u) =
0 and b;N (u) = �1 for each u 2 U: Thus, b;(u) = (0;�1) for each u 2 U:
De�nition 1.3.4 The whole BFS in U is symbolized by bI = (bIP ; bIN ); such that,bIP (u) = 1 and bIN (u) = 0 for each u 2 U: Thus, bI(u) = (1; 0) for each u 2 U:
De�nition 1.3.5 Let �; � 2 BFS(U). The union and intersection of � and � are the
BFSs in U de�ned as follows:

� [ � = f(u; �P (u) _ �P (u); �N (u) ^ �N (u)) : u 2 Ug;

� \ � = f(u; �P (u) ^ �P (u); �N (u) _ �N (u)) : u 2 Ug:

We write � [ � = (�P [ �P ; �N \ �N ) and � \ � = (�P \ �P ; �N [ �N ).

De�nition 1.3.6 The compliment �0 of � 2 BFS(U) is given by

�0 = f(u; 1� �P (u);�1� �N (u)) : u 2 Ug:

We write �0 = ((�0)P ; (�0)N ).

De�nition 1.3.7 A BFS � in U is said to be a constant BFS in U; if and only if the

belongingness maps �P : U �! [0; 1] and �N : U �! [�1; 0] are constant functions in
U:
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Example 1.3.8 Consider the data of Example 1.2.7, in which, the FS fU in U; ap-
proximates the degree to which a person is young. But, the degree to which a person is

old, may not be approximated by the compliment of fU . For instance, fU (p35) = 0:5.

But, the degree of p35 for �being old� is not 1 � fU (py) = 0:5, as a person aging 35

years, may be considered as a middle aged person, but not old. A BFS � in U; can

better de�ne the degrees of the persons for �being young�and �being old�, as below.

U p15 p20 p28 p35 p46 p60

�(py) (1; 0) (1; 0) (0:7; 0) (0:5;�0:1) (0:3:� 0:3) (0:� 0:8)

Another BFS � in U; describing the degrees of the persons for �being tall�and �being

short�, is de�ned as:

U p15 p20 p28 p35 p46 p60

�(py) (0:8; 0) (0:8; 0) (0:8; 0) (0:8; 0) (0:8; 0) (0:8; 0)

Then, � is a constant BFS in U:

1.4 Soft sets

The theory of soft sets, a state-of-the-art device to handle the ambiguities in math-

ematical models, was initiated by Molodtsov [48]. The foundation of this theory is

the conjecture that each set containing objects in the universe U is accompanied by

a set �E of attributes (characteristics or properties that the objects of U may possess)

for U: Molodtsov�s soft sets point out all the objects in U; which own some particular

attributes e 2 �E; employing a set-valued mapping. This mapping assigns to each

attribute e 2 �E, a subset of U comprising of those objects which possess the property

e. Let P (U) express the power set of U: Then, the formal de�nition of a soft set over

U is presented below.

De�nition 1.4.1 [48] A soft set over U is expressed by (�; �A); where �A � �E and

� : �A! P (U) is a set-valued mapping.

A soft set (�; �A) over U; thus, associates to each parameter e 2 �A a subset �(e) of U:

This subset �(e) contains the objects of U having the property e (according to �). The

elements of �(e) may be called the e�approximate objects of (�; �A). These sets cover
the problem (of uncertainty) that the objects pertaining a particular property often

di¤er according to the opinions of di¤erent persons. For instance, if (�1; �A) and (�2; �A)

are two soft sets over U; describing the opinions of two di¤erent persons, then �1(e)

and �2(e) may contain deferent objects for same parameter e 2 �A: Some necessary

operations on the soft sets are discussed in [9] and [42].
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1.5 Bipolar soft sets

The bipolar soft sets (BSSs) were proposed by Shabir and Naz [61] in 2009. These

sets are built to distinguish between the preferred and adverse sides of data. The

preferred part demonstrates the feasible information, while the adverse part analyzes

the inadmissible or implausible data. A BSS is obtained by de�ning two set-valued

mappings from two sets of attributes to the power set of U: One mapping is from

the set �E having positive attributes of the objects of U; while, the other is from the

attribute set : �E having the attributes implicitly adverse to those of �E. The set : �E
is pronounced and de�ned as the "counter" set of �E.

De�nition 1.5.1 [61] A BSS over U is symbolized by g = (�;  ; �A), where �A � �E

and �;  are set-valued mappings given by � : �A ! P (U) and  : : �A ! P (U) such

that �(e) \  (:e) = � for each e 2 �A.

Thus, a BSS (�;  ; �A) can be obtained by merging two soft sets (�; �A) and ( ;: �A)
together, such that �(e) and  (:e) are disjoint for each e 2 �A. Here, : �A is the counter
set of �A and : �A � : �E. The restriction �(e) \  (:e) = � is applied as a consistency

restraint. �(e) denotes the objects in U having a property e 2 �A and  (:e) denotes
the objects in U having a property :e, opposite to e. We denote the set containing
all BSSs over U by BSS(U). It is worth noting that an object lacking a property e,

may not have the opposite property :e. So, we may have  (:e) 6= U � �(e) for some

e 2 �E. This di¤erence is named as the degree of reluctance, which occurs due to the

inadequate knowledge or hesitancy in deciding for an object to have an attribute e or

:e. The BSSs beautifully highlight such objects neither possessing the property e, nor
:e. These sets can be better perceived from the following simple example.

Example 1.5.2 Suppose that U = fqi; i = 1; 2; 3; 4; 5g is a universe containing �ve
houses and �E = fe1 =costly, e2 =attractive, e3 =wooden, e4 =in natural surroundings,
e5 =properly maintainedg is a set of possible attributes for U: Let the "counter" set of
�E be : �E = f:e1 =cheap, :e2 =dull, :e3 =not wooden, :e4 =in urban area, :e5 =not
maintainedg. Take a BSS (�;  ; �A) expressing the "attractiveness of houses" that Mr.
X intends to purchase. Here, (�;  ; �A) points out the costly or cheep houses, attractive

or dull houses and so on, according to Mr. X and �A = fe1; e2; e3g � �E contains the

attributes of interest of Mr. X. We can construct the BSS (�;  ; �A) completely as:

�(e1) = fq1; q3; q4g, �(e2) = fq2; q3; q5g, �(e3) = fq4g and
 (:e1) = fq2; q5g,  (:e2) = �,  (:e3) = fq1; q2; q3; q5g.
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This BSS (�;  ; �A) can be seen in Figure 1.1 below.

Figure 1.1: BSS (�;  ; �A)

The BSS (�;  ; �A) can also be expressed in tabular form by putting the (i; j)th entry

aij of the table as:

aij =

8><>:
1 if qj 2 �(ei)

�1 if qj 2  (:ei)
0 otherwise

Hence, the tabular expression of the BSS (�;  ; �A) is shown in Table 1.1.

(�;  ; �A) q1 q2 q3 q4 q5

e1 1 �1 1 1 �1
e2 0 1 1 0 1

e3 �1 �1 �1 1 �1

Table 1.1: BSS (�;  ; �A)

Note that the houses q1 and q4 are not attractive, but at the same time, they are

not dull, as well. Here, fq1; q4g is the degree of reluctance of the BSS (�;  ; �A) for
e2 =attractive.

De�nition 1.5.3 [61] For any two BSSs g1 = (�1;  1; �A1); g2 = (�2;  2; �A2) 2
BSS(U), we say that g1 is a BS subset of g2, symbolized by g1e�g2 if

1) �A1 � �A2;

2) �1(e) � �2(e) and  1(:e) �  2(:e) for each e 2 �A1:

Two BSSs g1;g2 2 BSS(U) are equal if and only if each of them is a BS subset of

the other.

De�nition 1.5.4 [61] The relative null BSS over U is (�;U ; �A) 2 BSS(U), where

� : �A ! P (U) and U : : �A ! P (U) are given by �(e) = � and U(:e) = U for each

e 2 �A. We denote (�;U ; �A) by � �A.
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De�nition 1.5.5 [61] The relative whole BSS over U is (U ;�; �A) 2 BSS(U), where
U : �A ! P (U) and � : : �A ! P (U) are given by U(e) = U and �(:e) = � for each

e 2 �A. We denote (U ;�; �A) by U �A.

De�nition 1.5.6 [61] Let g1 = (�1;  1; �A1); g2 = (�2;  2; �A2) 2 BSS(U). Then,

their union and intersection are expressed as follows:

1. The extended union of g1 and g2 is a BSS

g1et"g2 = (�1e["�2;  1e\" 2; �A1 [ �A2)

over U; where �1e["�2 : �A1 [ �A2 ! P (U) is expressed as:

(�1e["�2)(e) =
8><>:

�1(e) if e 2 �A1 � �A2

�2(e) if e 2 �A2 � �A1

�1(e) [ �2(e) if e 2 �A1 \ �A2

and  1e\" 2 : :( �A1 [ �A2)! P (U) is expressed as:

( 1e\" 2)(:e) =
8><>:

 1(:e) if :e 2 (: �A1)� (: �A2)
 2(:e) if :e 2 (: �A2)� (: �A1)
 1(:e) \  2(:e) if :e 2 :( �A1 \ �A2)

2. The extended intersection of g1 and g2 is a BSS

g1eu"g2 = (�1e\"�2;  1e[" 2; �A1 [ �A2)

over U; where �1e\"�2 : �A1 [ �A2 ! P (U) is expressed as:

(�1e\"�2)(e) =
8><>:

�1(e) if e 2 �A1 � �A2

�2(e) if e 2 �A2 � �A1

�1(e) \ �2(e) if e 2 �A1 \ �A2

and  1e[" 2 : :( �A1 [ �A2)! P (U) is expressed as:

( 1e[" 2)(:e) =
8><>:

 1(:e) if :e 2 (: �A1)� (: �A2)
 2(:e) if :e 2 (: �A2)� (: �A1)
 1(:e) [  2(:e) if :e 2 :( �A1 \ �A2)

3. The restricted union of g1 and g2 is a BSS

g1etrg2 = (�1e[r�2;  1e\r 2; �A1 \ �A2)

over U; where �1e[r�2 : �A1 \ �A2 ! P (U) is expressed as (�1e[r�2)(e) = �1(e) [
�2(e) for each e 2 �A1 \ �A2, and  1e\r 2 : :( �A1 \ �A2) ! P (U) is expressed as

( 1e\r 2)(:e) =  1(:e)\ 2(:e) for each :e 2 :( �A1\ �A2), provided �A1\ �A2 6= �.
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4. The restricted intersection of g1 and g2 is a BSS

g1eurg2 = (�1e\r�2;  1e[r 2; �A1 \ �A2)

over U; where �1e\r�2 : �A1 \ �A2 ! P (U) is expressed as (�1e\r�2)(e) = �1(e) \
�2(e) for each e 2 �A1 \ �A2; and  1e[r 2 : :( �A1 \ �A2) ! P (U) is expressed as

( 1e[r 2)(:e) =  1(:e)[ 2(:e) for each :e 2 :( �A1\ �A2), provided �A1\ �A2 6= �.

De�nition 1.5.7 [61] The compliment of a BSS g = (�;  ; �A) over U is a BSS gc =
(�c;  c; �A) over U; where �c(e) =  (:e) and  c(:e) = �(e) for each e 2 �A.

1.6 Fuzzy bipolar soft sets

Fuzzy bipolar soft sets (FBSSs) were presented by Naz and Shabir [51]. Similar to

the BSSs, an FBSS is also constructed by employing two mappings. One mapping is

from the set �E of attributes to the fuzzy power set zz(U), which approximates the
degree of presence of the attributes in the objects of U:While, the other is from : �E to
zz(U), which approximates the degree of presence of the implicit counter attributes
in the objects of U: Following the discussion in [51], we present some de�nitions and

examples.

De�nition 1.6.1 A triplet ! = (�;  ; �A) is called an FBSS over U; where �A � �E and

�;  are mappings given by � : �A! zz(U) and  : : �A! zz(U) such that

0 � �(e)(u) +  (:e)(u) � 1

for each e 2 �A and for each u 2 U; where : �A stands for the "counter" set of �A.

Here, �(e) and  (:e) represent FSs in U: The value �(e)(u) denotes the degree of
presence of a property e in an object u of U; while  (:e)(u) denotes the degree of
presence of the adverse property :e in u. The restriction 0 � �(e)(x) +  (:e)(x) � 1
is applied as a consistency restraint. We symbolize the set containing all FBSSs over

U by FBSS(U).

Example 1.6.2 Consider the universe U = fq1; q2; q3; q4; q5g of houses and the at-
tribute sets �E and : �E, as in Example 1.5.2. The BSS de�ned in that example identi�es
the houses with attributes e or :e. We de�ne, here, an FBSS !1 = (�1;  1; �A1) over
U; describing the degree to which these houses pertain these attributes. Assume that
�A1 = fe1; e2; e3g and that Mr. X assigns the belongingness values f0:7; 0:6; 0:8; 0:5; 0:6g
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and f0:2; 0:3; 0:1; 0:5; 0:3g, as shown in Figure 1.2, to the houses in U for the attribute

e1, describing the degrees of how costly and how cheap are the houses, respectively.

0.2

0.3

0.1

0.5

0.3

0.7

0.6

0.8

0.5

0.6

Figure 1.2: Belongingness values of !1 for e1

Then, �1(e1) and  1(:e1) are the FSs in U given below.

�1(e1) = fq1=0:7; q2=0:6; q3=0:8; q4=0:5; q5=0:6g
 1(:e1) = fq1=0:2; q2=0:3; q3=0:1; q4=0:5; q5=0:3g
In the same way, we assume:

�1(e2) = fq1=0:8; q2=0:7; q3=0:8; q4=0:6; q5=0:6g
 1(:e2) = fq1=0:1; q2=0:1; q3=0:2; q4=0:2; q5=0:3g
�1(e3) = fq1=0:4; q2=0:6; q3=0:4; q4=0:6; q5=0:5g
 1(:e3) = fq1=0:5; q2=0:2; q3=0:5; q4=0:4; q5=0:5g
This FBSS can also be represented in tabular form by setting the entry against ei

and qj as (aij ; bij), where aij = �(ei)(qj) and bij =  (:ei)(qj). Hence, the tabular
representation of !1 = (�1;  1; �A1) is given by Table 1.2.

!1 q1 q2 q3 q4 q5

e1 (0:7; 0:2) (0:6; 0:3) (0:8; 0:1) (0:5; 0:5) (0:6; 0:3)

e2 (0:8; 0:1) (0:7; 0:1) (0:8; 0:2) (0:6; 0:2) (0:6; 0:3)

e3 (0:4; 0:5) (0:6; 0:2) (0:4; 0:5) (0:6; 0:4) (0:5; 0:5)

Table 1.2: Table of FBSS !1 = (�1;  1; �A1)

De�nition 1.6.3 For any two FBSSs !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U);
we say that !1 is an FBS subset of !2, symbolized by !1e�!2, if

1) �A1 � �A2;

2) �(e) � �1(e) and  (:e) �  1(:e) for each e 2 �A1.

Two FBSSs !1 and !2 over U are equal if and only if each of them is an FBS

subset of the other.
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De�nition 1.6.4 The relative null FBSS is (�; ~U ; �A) 2 FBSS(U), symbolized by � �A,

where �(e) = ;U and ~U(:e) = IU for each e 2 �A.

De�nition 1.6.5 The relative whole FBSS is ( ~U;�; �A) 2 FBSS(U), symbolized by
~U �A, where

~U(e) = IU and �(:e) = ;U for each e 2 �A.

De�nition 1.6.6 Let !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U). Then, their

unions and intersections are de�ned as under:

1. The extended union of !1 and !2 is an FBSS

!1et"!2 = (�1e["�2;  1e\" 2; �A1 [ �A2)

over U; where �1e["�2 : �A1 [ �A2 ! P (U) is given by:

(�1e["�2)(e) =
8><>:

�1(e) if e 2 �A1 � �A2

�2(e) if e 2 �A2 � �A1

�1(e) [ �2(e) if e 2 �A1 \ �A2

and  1e\" 2 : :( �A1 [ �A2)! P (U) is given by:

( 1e\" 2)(:e) =
8><>:

 1(:e) if :e 2 (: �A1)� (: �A2)
 2(:e) if :e 2 (: �A2)� (: �A1)
 1(:e) \  2(:e) if :e 2 :( �A1 \ �A2)

2. The extended intersection of !1 and !2 is an FBSS

!1eu"!2 = (�1e\"�2;  1e[" 2; �A1 [ �A2)

over U; where �1e\"�2 : �A1 [ �A2 ! P (U) is given by:

(�1e\"�2)(e) =
8><>:

�1(e) if e 2 �A1 � �A2

�2(e) if e 2 �A2 � �A1

�1(e) \ �2(e) if e 2 �A1 \ �A2

and  1e[" 2 : :( �A1 [ �A2)! P (U) is given by:

( 1e[" 2)(:e) =
8><>:

 1(:e) if :e 2 (: �A1)� (: �A2)
 2(:e) if :e 2 (: �A2)� (: �A1)
 1(:e) [  2(:e) if :e 2 :( �A1 \ �A2)

3. The restricted union of !1 and !2 is an FBSS

!1etr!2 = (�1e[r�2;  1e\r 2; �A1 \ �A2)

over U; where (�1e[r�2)(e) = �1(e)[�2(e) for each e 2 �A1\ �A2 and ( 1e\r 2)(:e) =
 1(:e) \  2(:e) for each :e 2 :( �A1 \ �A2), provided �A1 \ �A2 6= �.
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4. The restricted intersection of !1 and !2 is an FBSS

!1eur!2 = (�1e\r�2;  1e[r 2; �A1 \ �A2)

over U; where (�1e\r�2)(e) = �1(e)\�2(e) for each e 2 �A1\ �A2 and ( 1e[r 2)(:e) =
 1(:e) [  2(:e) for each :e 2 :( �A1 \ �A2), provided �A1 \ �A2 6= �.

De�nition 1.6.7 The compliment of an FBSS ! = (�;  ; �A) 2 FBSS(U) is an FBSS
!c = (�c;  c; �A), where �c(e) =  (:e) and  c(:e) = �(e) for each e 2 �A.

De�nition 1.6.8 An FBSS ! = (�;  ; �A) over U is said to be constant, if and only if

�(e) and  (:e) are constant FSs in U for each e 2 �A.

1.7 Rough sets

The rough set theory [52] implements a systematic procedure for dealing with vague-

ness in data due to a situation with doubtful information or inadequate knowledge.

The foundation of this theory is the conjecture that every object in the universe of

discourse pertains some sort of (exact or vague) information (data). Objects char-

acterized by the same information are indiscernible. If the indiscernible objects are

taken to be related to each other, then, an indiscernibility relation is obtained which

partitions the object in the universe. The infrastructure of the rough set theory stands

on such indiscernibility relations. The Pawlak approximation space (shortly written

as P-apx space) is the space (U;<); where < is an equivalence relation (shortly written
as eqv-rel) de�ned on the universe U: The relation < serves as an indiscernibility rela-
tion because it de�nes a partition U=< of the universe U into the equivalence classes

(eqv-classes) due to indiscernible objects of U: These eqv-classes of < are the main

constituents of the rough sets. The eqv-class of the element u 2 U under the relation

<, is symbolized by [u]< (or by [u], for convenience). On a subset X of U; the relation

< de�nes the following two operators.

X = fu 2 U : [u]< \X 6= �g;

X = fu 2 U : [u]< � Xg:

The subsets X and X of U; designated to the subset X of U; are called the upper and

lower approximations of X, subject to the relation <, respectively. Note that, both X
and X are unions of disjoint classes in U=<. Moreover;

Pos<X = X;

Neg<X = U �X;

Bnd<X = X �X
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are called the positive, negative and boundary regions (the associated regions) of

X in U . The information about X depicted by these regions is as follows:

� x 2 Pos<X means that X de�nitely contains x.

� x 2 Neg<X means that X certainly does not contain x.

� x 2 Bnd<X means that X may or may not contain x.

De�nition 1.7.1 [54] Take a P-apx space (U;<). A subset X � U is de�nable if

X = X; otherwise X is known as a rough set.

That is, X � U is rough if Bnd<X 6= �. By this, we mean that a subset X � U

is rough if there are some objects in U; whose belongingness in X is doubtful. Thus,

rough sets have a completely di¤erent approach towards the uncertainty of data. Using

the upper and lower approximations, one can judge how accurate is the information

attached to the objects. This can be better understood in the next example.

Example 1.7.2 Consider a set U containing �fteen balls of same size in a bag, out

of which, three are blue, �ve are green and seven are black. We de�ne a relation on

the collection of balls in the way such that two balls are related if these are of same

color. Surely, this relation turns to be an eqv-rel on U which partitions U into three

eqv-classes. Suppose that we pick out a sample X of four balls without seeing and after

picking up we see that three selected balls are blue and one is green. The sets U; X; X

and X as well as the associated regions of X can be seen in Figure 1.3.

Figure 1.3: Set X and associated sets.

The information about the balls in set X and its associated sets depicted from

Figure 1.3 can be interpreted in the following way.

� The lower approximation X; which is also the positive region of X; contains the
balls (blue balls) of U which have de�nitely gone to sample X:
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� The upper approximation X contains the balls (blue and green balls) of U which

have possibly gone to sample X:

� The di¤erence X � X contains exactly those balls (green balls), such that, the

selection of each of them in the sample X (deciding that which green ball has

gone to the sample) is doubtful. These balls comprise the boundary region of X:

� The black balls have, surely, no chance to be selected in the sample X: These
balls comprise the negative region of X:

The following theorem shows some important characteristics of the Pawlak�s rough

sets.

Theorem 1.7.3 [53] Take a P-apx space (U;<) and let M;N � U: Then, the subse-

quent asservations are true.

1. M �M �M ;

2. � = � = �;

3. U = U = U ;

4. (M) =M = (M);

5. (M) =M = (M);

6. (M)0 = (M 0);

7. (M)0 = (M 0);

8. M \N =M \N ;

9. M \N �M \N ;

10. M [N �M [N ;

11. M [N =M [N ;

12. M � N implies that M � N and M � N .
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1.8 Ideals in semigroups

This section reviews some de�nitions of ideals in semigroups and their characteri-

zations. Recall that, a semigroup comprises of a non-empty set on which a binary

operation is de�ned, satisfying the associative law. Throughout this work, � will

denote a semigroup, unless and otherwise speci�ed. Take M (6= �) � �:

� A subsemigroup of � is a set M � � such that ab 2 M for each a; b 2 M (that

is, MM �M).

� A left ideal of � is a set M � � such that xa 2 M for each a 2 M and x 2 �
(that is, �M �M).

� A right ideal of � is a set M � � such that ax 2M for each a 2M and x 2 �
(that is, M� �M):

� M is an ideal of � if it is right, as well as, left ideal of �:

� An interior ideal of � is a set M � � such that xay 2 M for each a 2 M and

x; y 2 � (that is, �M� �M).

� A bi-ideal of � is a subsemigroup M � � such that axb 2 M for each a; b 2 M
and x 2 � (that is, M�M �M).

A congruence relation (written as cng-rel) < on a semigroup � is an eqv-rel < on �
which is right and left compatible (that is, (m;n) 2 < implies that (am; an); (ma; na) 2
< for each a;m; n 2 �). Let [m]< represent the <-cng-class of m 2 �: For a cng-rel
< on �; we generally have [m]<[n]< � [mn]< for each m;n 2 �: A cng-rel < on �

is complete, if [m]<[n]< = [mn]< for each m;n 2 �: This can be observed in the

subsequent example.

Example 1.8.1 Let � = fs; t; u; vg represent a semigroup whose table of binary op-
eration is given below.

s t u v

s s t u v

t t t u v

u u u u v

v v v v u

We take two cng-rels <1 and <2 on �; such that <1 de�nes the cng-classes fsg; ftg
and fu; vg; while, <2 de�nes the cng-classes fsg; ft; ug and fvg: Observe that, [x]<1 [y]<1 =
[xy]<1 for each x; y 2 �: That is, <1 is a complete cng-rel on �: While, [v]<2 [v]<2 (
[vv]<2 for v 2 �; because [v]<2 = fvg, so, [v]<2 [v]<2 = fvvg = fug and [vv]<2 =
[u]<2 = ft; ug. This means, that, <2 is not a complete cng-rel on �.
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1.9 Bipolar fuzzy ideals in semigroups

The bipolar fuzzy ideals (BF-ids) in semigroups were de�ned by Kim et al. [34].

Yaqoob [63] studied BF-ids in LA-semigroups. This section reviews some de�nitions

about the BF-ids, BF left ideals (BFl-ids), BF right ideals (BFr-ids), BF interior ideals

(BFi-ids) and BF bi-ideals (BFb-ids) in a semigroup.

De�nition 1.9.1 [63] Let � be a semigroup and let �; � 2 BFS(�). The composition
� � � of the BFSs � and � in � is de�ned as:

� � � = (�P � �P ; �N � �N );

where

(�P � �P )(s) =
(

_
s=mn

(�P (m) ^ �P (n)) if s = mn for some m;n 2 �
0 otherwise

and

(�N � �N )(s) =
(

^
s=mn

(�N (m) _ �N (n)) if s = mn for some m;n 2 �
0 otherwise

for each s 2 �.

De�nition 1.9.2 [34] A BFS � in � is called a BF subsemigroup of � if for each

m;n 2 �,

�P (mn) � �P (m) ^ �P (n) and �N (mn) � �N (m) _ �N (n):

De�nition 1.9.3 [34] A BFS � in � is called a BFl-id (or BFr-id) of � if �P (mn) �
�P (n) and �N (mn) � �N (n) (or �P (mn) � �P (m) and �N (mn) � �N (n)) for each

m;n 2 �:

A BFS � in � is called a BF-id of � if it is both, a BFl-id and a BFr-id of �; that

is, �P (mn) � �P (m) _ �P (n) and �N (mn) � �N (m) ^ �N (n) for each m;n 2 �:

De�nition 1.9.4 [63] A BFS � in � is called a BFi-id of � if for each s; t; u 2 �,

�P (stu) � �P (t) and �N (stu) � �N (t):

De�nition 1.9.5 [34] A BF subsemigroup � of � is called a BFb-id of � if for each

s; t; u 2 �,

�P (stu) � �P (s) ^ �P (u) and �N (stu) � �N (s) _ �N (u):
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Example 1.9.6 Recall the semigroup � = fs; t; u; vg as established in Example 1.8.1.
Take some BFSs in �; de�ned below.

�1 = f(s; 0:3;�0:4); (t; 0:4;�0:3); (u; 0:6;�0:1); (v; 0:6;�0:1)g;
�2 = f(s; 0:2;�0:2); (t; 0:4;�0:4); (u; 0:5;�0:5); (v; 0:5;�0:5)g;
�3 = f(s; 0:3;�0:1); (t; 0:4;�0:2); (u; 0:7;�0:2); (v; 0:7;�0:2)g;
�4 = f(s; 0:1;�0:1); (t; 0:3;�0:3); (u; 0:4;�0:4); (v; 0:4;�0:4)g:
Simple calculations con�rm that �1 is a BF subsemigroup, �2 is a BFl-id, �3 is a

BFi-id and �4 is a BFb-id of �:



Chapter 2

Rough bipolar fuzzy sets

2.1 Introduction

Roughness in FSs is studied by many researchers; see [17, 18, 24, 29, 49]. Zhang [67]

enriched the FSs with the bipolar information in 1994 and presented the concept of the

bipolar fuzzy sets (BFSs). Later in 2000, Lee [38] also discussed the BFSs. These sets

are able to handle the fuzziness, as well as, the bipolarity (the degrees of positivity and

negativity) in the data. We have investigated roughness in BFSs using the concept of

roughness furnished by Pawlak [52]. We have de�ned rough BFSs (written as RBFSs),

which are the approximations of the BFSs in a P-apx space. We have also studied

some characterizations of the RBFSs. Some similarity relations between the BFSs are

de�ned and discussed by applying their rough BF approximations (written as RBF-

apxes) in Section 2.4. Another interesting direction in this chapter is the uncertainty

measures, such as accuracy measure and roughness measure for the RBF-apxes of the

BFSs. Earlier in 1996, Banarjee and Pal [15] provided a roughness measure for the FSs

using �-cuts on the FSs. The roughness measures for the BFSs using the approach of

Banarjee and Pal, are de�ned and discussed in Section 2.5. These are the measures

which provide an estimation to investigate how accurate are the RBF-apxes of the

BFSs. Throughout this work, U is a non-empty universe and < is an eqv-rel on U:
Di¤erent applications of the bipolar and m-polar FSs are discussed in [4, 5, 20]. De-

cision making techniques are another important application of the BFSs. We present,

in the last section, a group decision making (GDM) problem and solve it using the

RBF-apxes of the BFSs. An algorithm is also designed to solve this GDM problem,

supported by a suitable example.

18
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2.2 Rough bipolar fuzzy sets

We present and describe the RBFSs in this section. The RBFSs are the approximations

of the BFSs in a P-apx space. We also give the interpretations of the RBF-apxes of

the BFSs.

De�nition 2.2.1 Take a P-apx space (U;<) and let � 2 BFS(U). The lower and

upper RBF-apxes of � with respect to (U;<) are the BFSs <(�) and <(�) in U; respec-
tively, de�ned by

<(�) = f(u; ^
y2[u]<

�P (y); _
y2[u]<

�N (y)) : u 2 Ug; (2.1)

<(�) = f(u; _
y2[u]<

�P (y); ^
y2[u]<

�N (y)) : u 2 Ug: (2.2)

If <(�) = <(�), then, � is said to be <�de�nable; otherwise, � is an RBFS in U:

Let <(�)(u) and <(�)(u) be symbolized by (�P (u); �N (u)) and (�P (u); �N (u)),
respectively. Then, the information about the object u interpreted by these RBF-

apxes is as follows:

� The degree of de�nite ful�lment of u to the property of � is given by �P (u).

� The degree of de�nite ful�lment of u to the counter property of � is given by
�N (u).

� The degree of possible ful�lment of u to the property of � is given by �P (u).

� The degree of possible ful�lment of u to the counter property of � is given by
�N (u).

The di¤erence �P (u)� �P (u) of possible and de�nite ful�lment measures the un-

certain ful�lment of u to the property of �. Similarly, �N (u) � �N (u) measures the

uncertain ful�lment of u to the counter property of �.

De�nition 2.2.2 A BFS � in U is referred to be classwise constant under an eqv-rel

< on U if and only if �(u) = �(u0), whenever, u0 2 [u]< for u; u0 2 U:

It is easy to note that the null BFS b;, the whole BFS bI and the constant BFSs
are classwise constant under each eqv-rel on U: Also, the lower RBF-apx <(�) and the
upper RBF-apx <(�) of � are classwise constant under <.

For the illustration of the RBF-apxes, we give a simple example.
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Example 2.2.3 Let U = fmi; i = 1; :::; 7g be a set containing some food items such
that m1;m2 are cakes, m3;m4 are some chilli products and m5;m6;m7 are pies. Let

< be a binary relation on U such that (mi;mj) 2 < if and only if mi and mj are of

same type. Then, < de�nes classes fm1; m2g; fm3; m4g and fm5; m6; m7g. Consider
a BFS � in U; de�ned as:

� = f(m1; 0:7;�0:2); (m2; 0:7;�0:2); (m3; 0:1;�0:9); (m4; 0:1;�0:9);

(m5; 0:5;�0:4); (m6; 0:5;�0:4); (m7; 0:5;�0:4)g:

It can be clearly seen, that, � is classwise constant under < and that the lower and

upper RBF-apxes of � under < are same. That is,

<(�) = f(m1; 0:7;�0:2); (m2; 0:7;�0:2); (m3; 0:1;�0:9); (m4; 0:1;�0:9);

(m5; 0:5;�0:4); (m6; 0:5;�0:4); (m7; 0:5;�0:4)g

= <(�):

This indicates, that, � is <�de�nable. Let � be another BFS in U; describing the

sweetness in the food items, as below.

� = f(m1; 1; 0); (m2; 0:8;�0:18); (m3; 0:1;�0:8); (m4; 0;�0:9);

(m5; 0:4;�0:4); (m6; 0:5;�0:2); (m7; 0:4;�0:35)g:

The RBF-apxes of � are calculated by De�nition 2.2.1 as:

<(�) = f(m1; 0:8; 0); (m2; 0:8; 0); (m3; 0;�0:8); (m4; 0;�0:8);

(m5; 0:4;�0:2); (m6; 0:4;�0:2); (m7; 0:4;�0:2)g; (2.3)

<(�) = f(m1; 1;�0:18); (m2; 1;�0:18); (m3; 0:1;�0:9); (m4; 0:1;�0:9);

(m5; 0:5;�0:4); (m6; 0:5;�0:4); (m7; 0:5;�0:4)g: (2.4)

Equations 2.3 and 2.4 show that, <(�) 6= <(�), rather, <(�) � � � <(�). So, �
is an RBFS in U: The upper RBF-apx <(�) demonstrates that the degree of possible
ful�lment of cakes (m1 and m2) to the trait of � (that is, the degree of possible sweetness

in cakes) is 1:0. But, <(�) interprets that the degree of de�nite sweetness in the cakes
is 0:8. Similarly, the degree of possible sourness in the cakes is �0:18, but the de�nite
sourness in them is 0.

2.3 Characterizations of rough bipolar fuzzy sets

This section studies some characterizations of the RBF-apxes of the BFSs.
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Lemma 2.3.1 Take a P-apx space (U;<). Then, every classwise constant BFS in U
is <�de�nable.

Proof. Take a classwise constant BFS � 2 BFS(U) and u 2 U: Then �P (y) =

�P (u) and �N (y) = �N (u) for each y 2 [u]<. Then

^
y2[u]<

�P (y) = _
y2[u]<

�P (y)

and

_
y2[u]<

�N (y) = ^
y2[u]<

�N (y):

Thus, we have

<(�) = f(u; ^
y2[u]<

�P (y); _
y2[u]<

�N (y)) : u 2 Ug

= f(u; _
y2[u]<

�P (y); ^
y2[u]<

�N (y)) : u 2 Ug = <(�):

Which shows, that, � is <�de�nable.

Corollary 2.3.2 Take a P-apx space (U;<). Then, every constant BFS in U is

<�de�nable.

Proof. The proof follows from Lemma 2.3.1, as every constant BFS in U can be

considered as a classwise constant BFS in U; under any eqv-rel < de�ned on U:
Some basic properties of the RBFSs are given below.

Theorem 2.3.3 Take a P-apx space (U;<) and let �; � 2 BFS(U). Then, the subse-
quent asservations hold.

1. <(�) � � � <(�);

2. <(bI) = bI = <(bI);
3. <(b;) = b; = <(b;);
4. <(<(�)) = <(�) = <(<(�));

5. <(<(�)) = <(�) = <(<(�));

6. <(�0) = (<(�))0;

7. <(�0) = (<(�))0;

8. <(� \ �) = <(�) \ <(�);



2. Rough bipolar fuzzy sets 22

9. <(� [ �) � <(�) [ <(�);

10. <(� [ �) = <(�) [ <(�);

11. <(� \ �) � <(�) \ <(�);

12. � � � implies that <(�) � <(�) and <(�) � <(�).

Proof. (1) The proof follows from De�nitions 1.3.2 and 2.2.1.

(2-3) The whole BFS bI and the null BFS b; in U are constant. Hence, bI and b; are
<�de�nable by Corollary 2.3.2. That is,

<(bI) = bI = <(bI);
<(b;) = b; = <(b;):

(4-5) The lower RBF-apx <(�) and the upper RBF-apx <(�) of � are classwise
constant under <. Hence, <(�) and <(�) are <�de�nable by Lemma 2.3.1. That is,

<(<(�)) = <(�) = <(<(�));

<(<(�)) = <(�) = <(<(�)):

(6) From De�nition 1.3.6, we obtain

<(�0) = f(x; _
y2[x]

(�0)P (y); ^
y2[x]

(�0)N (y)) : x 2 Ug

= f(x; _
y2[x]

(1� �P (y)); ^
y2[x]

(�1� �N (y))) : x 2 Ug

= f(x; 1� ^
y2[x]

�P (y);�1� _
y2[x]

�N (y)) : x 2 Ug = (<(�))0:

(7) Analogous to the proof of (6).

(8) From De�nition 1.3.5, we obtain

<(� \ �)

= f(x; ^
y2[x]

(�P (y) ^ �P (y)); _
y2[x]

(�N (y) _ �N (y))) : x 2 Ug

= f(x; ( ^
y2[x]

�P (y)) ^ ( ^
y2[x]

�P (y)); ( _
y2[x]

�N (y)) _ ( _
y2[x]

�N (y))) : x 2 Ug

= <(�) \ <(�):

(9) Again from De�nition 1.3.5, we obtain

<(� [ �)

= f(x; ^
y2[x]

(�P (y) _ �P (y)); _
y2[x]

(�N (y) ^ �N (y))) : x 2 Ug

� f(x; ( ^
y2[x]

�P (y)) _ ( ^
y2[x]

�P (y)); ( _
y2[x]

�N (y)) ^ ( _
y2[x]

�N (y))) : x 2 Ug

= <(�) [ <(�):
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(10) Analogous to the proof of (8).

(11) Analogous to the proof of (9).

(12) Since � � �; so, �P (z) � �P (z) and �N (z) � �N (z) for each z 2 U: Then we
obtain

<(�) = f(y; ^
z2[y]

�P (z); _
z2[y]

�N (z)) : y 2 Ug

� f(y; ^
z2[y]

�P (z); _
z2[y]

�N (z)) : y 2 Ug = <(�):

Thus, <(�) � <(�). Similarly, <(�) � <(�).

The assertions (8� 11) of Theorem 2.3.3 hold for any number of BFSs in U: Thus,

we have the subsequent asservations for any indexing set I.

Theorem 2.3.4 Take a P-apx space (U;<) and let f�i : i 2 Ig � BFS(U). Then,

the subsequent asservations hold.

1. <( \
i2I
�i) = \

i2I
<(�i);

2. <( [
i2I
�i) � [

i2I
<(�i);

3. <( [
i2I
�i) = [

i2I
<(�i);

4. <( \
i2I
�i) � \

i2I
<(�i):

Proof. (1) Take �i 2 BFS(U), where i 2 I: Then, we have

\
i2I
�i = f(u; ^

i2I
�Pi (u); _

i2I
�Ni (u)) : u 2 Ug:

By using Equation 2.1, we get

<( \
i2I
�i)

= f(u; ^
y2[u]<

( ^
i2I
�Pi (y)); _

y2[u]<
( _
i2I
�Ni (y))) : u 2 Ug

= f(u; ^
i2I
( ^
y2[u]<

�Pi (y)); _
i2I
( _
y2[u]<

�Ni (y))) : u 2 Ug

= \
i2I
<(�i):

(2) For �i 2 BFS(U), where i 2 I; we have

[
i2I
�i = f(u; _

i2I
�Pi (u); ^

i2I
�Ni (u)) : u 2 Ug:



2. Rough bipolar fuzzy sets 24

By using Equation 2.1 and De�nition 1.3.2, we get

<( [
i2I
�i)

= f(u; ^
y2[u]<

( _
i2I
�Pi (y)); _

y2[u]<
( ^
i2I
�Ni (y))) : u 2 Ug

� f(u; _
i2I
( ^
y2[u]<

�Pi (y)); ^
i2I
( _
y2[u]<

�Ni (y))) : u 2 Ug

= [
i2I
<(�i):

(3) Analogous to the proof of (1).

(4) Analogous to the proof of (2).

The inclusion in the assertions 9 and 11 of the Theorem 2.3.3 may be proper. This

can be observed in the subsequent example.

Example 2.3.5 Consider the collection U = fmi; i = 1; :::; 7g of food items and the
relation <; as described in Example 2.2.3. We take two BFS � and ! in U; de�ned as:

� = f(m1; 0:3;�0:4); (m2; 0:4;�0:5); (m3; 0:6;�0:3); (m4; 0:2;�0:5);

(m5; 0:5;�0:5); (m6; 0:6;�0:2); (m7; 0:8;�0:1)g;

! = f(m1; 0:6;�0:2); (m2; 0:3;�0:3); (m3; 0:8;�0:4); (m4; 0:4;�0:5);

(m5; 0:1;�0:7); (m6; 0:9; 0); (m7; 0:2;�0:8)g:

The lower RBF-apxes of � and !; as well as their union <(�) [ <(!), are given as:

<(�) = f(m1; 0:3;�0:4); (m2; 0:3;�0:4); (m3; 0:2;�0:3); (m4; 0:2;�0:3);

(m5; 0:5;�0:1); (m6; 0:5;�0:1); (m7; 0:5;�0:1)g;

<(!) = f(m1; 0:3;�0:2); (m2; 0:3;�0:2); (m3; 0:4;�0:4); (m4; 0:4;�0:4);

(m5; 0:1; 0); (m6; 0:1; 0); (m7; 0:1; 0)g;

<(�) [ <(!) = f(m1; 0:3;�0:4); (m2; 0:3;�0:4); (m3; 0:4;�0:4); (m4; 0:4;�0:4);

(m5; 0:5;�0:1); (m6; 0:5;�0:1); (m7; 0:5;�0:1)g: (2.5)

Now we calculate � [ ! and its lower RBF-apx as:

� [ ! = f(m1; 0:6;�0:4); (m2; 0:4;�0:5); (m3; 0:8;�0:4); (m4; 0:4;�0:5);

(m5; 0:5;�0:7); (m6; 0:9;�0:2); (m7; 0:8;�0:8)g;

<(� [ !) = f(m1; 0:4;�0:4); (m2; 0:4;�0:4); (m3; 0:4;�0:4); (m4; 0:4;�0:4);

(m5; 0:5;�0:2); (m6; 0:5;�0:2); (m7; 0:5;�0:2)g: (2.6)

Equations 2.5 and 2.6 verify that the inclusion (9) of Theorem 2.3.3 is proper. That

is,

<(� [ !) ) <(�) [ <(!):
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To observe the proper inclusion in (11) of Theorem 2.3.3, we consider the BFS �

de�ned in Example 2.2.3 and calculate � \ � and <(� \ �) as:

� \ � = f(m1; 0:3; 0); (m2; 0:4;�0:18); (m3; 0:1;�0:3); (m4; 0;�0:5);

(m5; 0:4;�0:4); (m6; 0:5;�0:2); (m7; 0:4;�0:1)g;

<(� \ �) = f(m1; 0:4;�0:18); (m2; 0:4;�0:18); (m3; 0:1;�0:5); (m4; 0:1;�0:5);

(m5; 0:5;�0:4); (m6; 0:5;�0:4); (m7; 0:5;�0:4)g: (2.7)

The upper RBF-apx of � is calculated as:

<(�) = f(m1; 0:4;�0:5); (m2; 0:4;�0:5); (m3; 0:6;�0:5); (m4; 0:6;�0:5);

(m5; 0:8;�0:5); (m6; 0:8;�0:5); (m7; 0:8;�0:5)g: (2.8)

<(�) \ <(�) is calculated from Equations 2.4 and 2.8, as:

<(�) \ <(�) = f(m1; 0:4;�0:5); (m2; 0:4;�0:5); (m3; 0:1;�0:5); (m4; 0:1;�0:5);

(m5; 0:5;�0:4); (m6; 0:5;�0:4); (m7; 0:5;�0:4)g: (2.9)

The Equations 2.7 and 2.9 verify that the inclusion in (11) of Theorem 2.3.3 is

proper. That is,

<(� \ �) ( <(�) \ <(�):

Theorem 2.3.6 Let < and � be two eqv-rels on U; such that, < � �. Then, �(�) �
<(�) and <(�) � �(�) for each � 2 BFS(U).

Proof. Take any � 2 BFS(U). Since < � �, we have [x]< � [x]� for each x 2 U:
Thus,

^
y2[x]�

�P (y) � ^
y2[x]<

�P (y)

and

_
y2[x]�

�N (y) � _
y2[x]<

�N (y)

for each x 2 U: So, De�nition 1.3.2 gives �(�) � <(�).
Similarly, <(�) � �(�).

Corollary 2.3.7 Let < and � be two eqv-rels on a non-empty set U: Then, the subse-
quent asservations hold for each � 2 BFS(U):

1. (< \ �)(�) � <(�) \ �(�);

2. (< \ �)(�) � <(�) [ �(�):
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Proof. (1) Let < and � be two eqv-rels on U: Then, <\ � is also an eqv-rel on U:
It is also clear that < \ � � < and < \ � � �. By Theorem 2.3.6, we have

(< \ �)(�) � <(�);

(< \ �)(�) � �(�)

for any � 2 BFS(U). This proves, that,

(< \ �)(�) � <(�) \ �(�)

for each � 2 BFS(U).
(2) Analogous to the proof of (1).

Theorem 2.3.8 Take a P-apx space (U;<) and let � 2 BFS(U). Then, the subse-

quent asservations are equivalent.

1. <(�) � �

2. � � <(�)

3. � is <�de�nable.

Proof. (1))(2) Take any � 2 BFS(U). Then, Theorem 2.3.3 gives,

� � <(�) = <(<(�)): (2.10)

But, assumption (1), that is <(�) � �, implies that,

<(<(�)) � <(�): (2.11)

Combining Expressions 2.10 and 2.11, we get � � <(�).
(2))(3) For � 2 BFS(U), assume that � � <(�). But, <(�) � �. So, � = <(�).

Which implies that,

<(�) = <(<(�)) = <(�):

Thus, � is <�de�nable.
(3))(1) Obvious.

Proposition 2.3.9 Take a P-apx space (U;<).

1. An <�de�nable BFS in U is constant, if < is the universal binary relation on
U:

2. Each BFS � in U is <�de�nable, if < is the identity relation on U:
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Proof. (1) Let � 2 BFS(U) be <�de�nable. Then <(�) = <(�). Which gives
<(�)(u) = <(�)(u). Hence,

( ^
y2[u]

�P (y); _
y2[u]

�N (y)) = ( _
y2[u]

�P (y); ^
y2[u]

�N (y))

for each u 2 U: We have [u] = U for each u 2 U; since < = U � U: So, the above

equation gives

^
y2U

�P (y) = _
y2U

�P (y) and ^
y2U

�N (y) = _
y2U

�N (y):

This clearly indicates that � is a constant BFS in U:

(2) Straightforward.

2.4 Similarity relations associated with RBF approxima-
tions

This section presents a few binary relations between the BFSs based on their RBF-

apxes and investigate their properties.

De�nition 2.4.1 Take a P-apx space (U;<)and let �; � 2 BFS(U). Then, we de�ne
� '< � if and only if <(�) = <(�);
� h< � if and only if <(�) = <(�);
� �< � if and only if <(�) = <(�) and <(�) = <(�).

Clearly, � �< � if and only if � '< � and � h< �. The relations '<; h< and �<
may be called lower RBF similarity relation, upper RBF similarity relation and RBF

similarity relation, respectively.

Proposition 2.4.2 The relations '<; h< and �< are eqv-rels on BFS(U).

Proof. Straightforward.

Theorem 2.4.3 Take a P-apx space (U;<). Then, the subsequent asservations hold
for each �; �; �; ! 2 BFS(U).

1. � h< � if and only if � h< (� [ �)< h �;

2. � h< � and � h< ! imply that (� [ �) h< (� [ !);

3. � � � and � h< b; imply that � h< b;;
4. � � � and � h< bI imply that � h< bI;
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5. If (� [ �) h< b;; then, � h< b; and � h< b;;
6. If (� \ �) h< bI; then, � h< bI and � h< bI:
Proof. (1) Let � h< �. Then <(�) = <(�). From Theorem 2.3.3, we have

<(� [ �) = <(�) [ <(�) = <(�) = <(�):

So, � h< (� [ �) h< �.
Converse holds by the transitivity of the relation h<.
(2) Let � h< � and � h< !. Then, <(�) = <(�) and <(�) = <(!). From Theorem

2.3.3, we have

<(� [ �) = <(�) [ <(�)

= <(�) [ <(!) = <(� [ !):

So, (� [ �) h (� [ !).
(3) � h< b; implies that <(�) = <(b;). Also � � � implies that,

<(�) � <(�) = <(b;) = b; � <(�):
Thus, <(�) = <(b;). Which shows that � h< b;.

(4) � h< bI implies that <(�) = <(bI). Also � � � implies that,

<(�) � <(�) = <(bI) = bI � <(�):
Thus, <(�) = <(bI). Which shows that � h< bI.

(5) This follows from (3).

(6) This follows from (4).

Theorem 2.4.4 Take a P-apx space (U;<). Then, the subsequent asservations hold
for each �; �; �; ! 2 BFS(U).

1. � '< � if and only if � '< (� \ �) '< �;

2. � '< � and � '< ! imply that (� \ �) '< (� \ !);

3. � � � and � '< b; imply that � '< b;;
4. � � � and � '< bI imply that � '< bI;
5. If (� [ �) '< b;; then, � '< b; and � '< b;;
6. If (� \ �) '< bI; then, � '< bI and � '< bI.



2. Rough bipolar fuzzy sets 29

Proof. Parallel to the proof of Theorem 2.4.3.

Theorem 2.4.5 Take a P-apx space (U;<). Then, the subsequent asservations hold
for each �; � 2 BFS(U).

1. � � � and � �< b; imply that � �< b;;
2. � � � and � �< bI imply that � �< bI;
3. If (� [ �) �< b;; then, � �< b; and � �< b;;
4. If (� \ �) �< bI; then, � �< bI and � �< bI.
Proof. This directly follows from De�nition 2.4.1, Theorems 2.4.3 and 2.4.4.

2.5 Accuracy measures for BFSs

An important application of the RBF-apxes of the BFSs is, that, these approximations

provide a scheme to investigate how accurately the belongingness maps of a BFSs

describe the objects. We introduce the degree of accuracy and the degree of roughness

for the positive and negative belongingness maps of the BFSs, separately. For this

purpose, we �rst de�ne the ��level cuts of a BFS and describe their basic properties.

De�nition 2.5.1 Let � 2 BFS(U). For 0 � � � 1, the ��level P-cut (positive cut)
of � is symbolized by �� and de�ned as:

�� = fu 2 U : �P (u) � �g: (2.12)

De�nition 2.5.2 Let � 2 BFS(U). For 0 � � � 1, the ��level N-cut (negative cut)
of � is symbolized by �� and de�ned as:�� = fu 2 U : �N (u) � ��g:

Lemma 2.5.3 Let �; � 2 BFS(U) and 0 � � � 1. Then, � � � implies the following.

1. �� � ��

2. �� � ��:

Proof. Direct outcome of De�nitions 2.5.1 and 2.5.2.

Lemma 2.5.4 Let � 2 BFS(U) and 0 � � � � � 1. Then, the following hold.

1. �� � ��

2. �1�� � �1��:
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Proof. Direct outcomes of De�nitions 2.5.1 and 2.5.2.
Note that <(��) is the lower approximation of the crisp set ��; while, <(�)� is the

��level P-cut of the lower RBF-apx <(�) of the BFS � in U: Thus, we conclude the
following, with the help of De�nitions 2.2.1, 2.5.1 and 2.5.2.

<(�)� = fu 2 U : <(�)P (u) � �g

= fu 2 U : ^
y2[u]<

�P (y) � �g;

<(�)� = fu 2 U : _
y2[u]<

�P (y) � �g;

<(�)� = fu 2 U : _
y2[u]<

�N (y) � ��g;

<(�)� = fu 2 U : ^
y2[u]<

�N (y) � ��g:

Lemma 2.5.5 Let � 2 BFS(U) and 0 � � � 1. Then, the subsequent assertions

hold.

1. <(��) = <(�)�;

2. <(��) = <(�)�;

3. <(��) = <(�)�;

4. <(��) = <(�)�:

Proof. (1) Let � 2 BFS(U) and 0 � � � 1. For the crisp set ��, we have

<(��) = fu 2 U : [u]< � ��g

= fu 2 U : y 2 �� for each y 2 [u]<g

= fu 2 U : �P (y) � � for each y 2 [u]<g

= fu 2 U : ^
y2[u]<

�P (y) � �g

= <(�)�:

The remaining parts can be veri�ed in the same manner.

Now, we de�ne the degree of accuracy and the degree of roughness for the positive

and negative belongingness maps of a BFS in U:

De�nition 2.5.6 Take a P-apx space (U;<). The degree of accuracy for the positive
belongingness map of the BFS � 2 BFS(U), with respect to the parameters �; � such
that, 0 � � � � � 1, is expressed as:

Dp<h�;�i(�) =
j<(��)j��<(��)�� :
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The degree of roughness for the positive belongingness map of � 2 BFS(U), with

respect to the parameters �; � such that, 0 � � � � � 1, is expressed as:

�<h�;�i(�) = 1�Dp
<
h�;�i(�):

De�nition 2.5.7 Take a P-apx space (U;<). The degree of accuracy for the negative
belongingness map of the BFS � 2 BFS(U), with respect to the parameters �; � such
that, 0 � � � � � 1, is expressed as:

Dn<h�;�i(�) =

��<(�1��)����<(�1��)�� :
The degree of roughness for the negative belongingness map of � 2 BFS(U), with

respect to the parameters �; � such that, 0 � � � � � 1, is expressed as:

%<h�;�i(�) = 1�Dn
<
h�;�i(�):

Notice that, <(��) (or <(��)) comprises of the objects of U having � (or �) as the
least degree of de�nite (or possible) ful�lment for �. Equivalently, <(��) (or <(��))
may be viewed as union of the eqv-classes of U having the degree of ful�lment atleast �

(or �) in the lower (or upper) RBF-apx of �. Therefore, the parameters � and � serve as

the thresholds of de�nite and possible ful�lment of the objects of U for �, respectively.

Hence, Dp<h�;�i(�)may be interpreted as the degree to which the positive belongingness

map of � is accurate, constrained to the threshold parameters � and �. Similarly,

Dn<h�;�i(�) denotes the degree to which the negative belongingness map of � is accurate,

constrained to the threshold parameters � and �. In other words, Dp<h�;�i(�) and

Dn<h�;�i(�) describe how accurate are the positive and the negative belongingness maps

of the BFS �, respectively. We explain these degrees in the subsequent example.

Example 2.5.8 Consider the set U = fmi; i = 1; :::; 7g; the relation < and the BFS
� 2 BFS(U); as in Example 2.2.3. That is, < de�nes classes fm1; m2g; fm3; m4g;
fm5; m6; m7g and

� = f(m1; 1; 0); (m2; 0:8;�0:18); (m3; 0:1;�0:8); (m4; 0;�0:9);

(m5; 0:4;�0:4); (m6; 0:5;�0:2); (m7; 0:4;�0:35)g:

Take � = 0:3 and � = 0:4. Then, ��level P-cuts �0:3 and �0:4 are calculated by using
Equation 2.12, as follows.

�0:3 = U � fm4g = �0:4:

��level N-cuts �0:6 and �0:7 are calculated by using Equation ??, as follows.

�0:6 = fm3;m4g = �0:7:
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The degree of accuracy for the positive belongingness map of � is calculated by using

De�nition 2.5.6, as follows.

<(�0:4) = fm1;m2;m5;m6;m7g;

<(�0:3) = fm1;m2;m3;m4;m5;m6;m7g;

Dp<h�;�i(�) =
j<(�0:4)j��<(�0:3)�� = 5

7
= 0:714:

While, the degree of accuracy for the negative belongingness map of � is calculated by

using De�nition 2.5.7, as follows.

<(�0:7) = fm3;m4g = <(�0:6);

Dn<h�;�i(�) =

��<(�0:7)����<(�0:6)�� = 2

2
= 1:0:

Hence, the positive belongingness map �P of � describes the sweetness in food items

accurate upto the degree 0:714. While the negative belongingness map �N of � describes

the sourness in food items accurately (upto the degree 1:0).

Theorem 2.5.9 Take a P-apx space (U;<), � 2 BFS(U) and 0 � � � � � 1. Then,
0 � Dp<h�;�i(�) � 1 and 0 � Dn

<
h�;�i(�) � 1.

Proof. Take a BFS � 2 BFS(U) and the parameters �; � be such that, 0 � � �
� � 1. To prove 0 � Dp<h�;�i(�) � 1; we show that j<(��)j �

��<(��)��. Using Lemma
2.5.4, we have �� � �� . Now, Theorem 1.7.3 gives that,

<(��) � <(��) � <(��):

So, j<(��)j �
��<(��)��, or the ratio j<(��)j

j<(��)j �uctuates between 0 and 1. Which certainly
yields

0 � Dp<h�;�i(�) � 1:

Similarly, it can be shown, that, 0 � Dn<h�;�i(�) � 1.

Corollary 2.5.10 For the P-apx space (U;<); � 2 BFS(U) and 0 � � � � � 1, we
have, 0 � �<h�;�i(�) � 1 and 0 � %<h�;�i(�) � 1.

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.9 verify these asservations directly.

Theorem 2.5.11 Take a P-apx space (U;<), � 2 BFS(U) and 0 � � � � � 1.

1. If � stands �xed, then Dp<h�;�i(�) and Dn
<
h�;�i(�) increase with the increase in

�.
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2. If � stands �xed, then Dp<h�;�i(�) and Dn
<
h�;�i(�) decrease with the increase in

�.

Proof. (1) Let � stand �xed, 0 � �1 � �2 � 1 and � 2 BFS(U): Using Lemma
2.5.4, we have ��2 � ��1 . Theorem 1.7.3 gives <(��2) � <(��1). That is,��<(��2)�� � ��<(��1)�� :
This implies that,

j<(��)j��<(��1)�� � j<(��)j��<(��2)�� :
That is, Dp<h�;�1i(�) � Dp<h�;�2i(�). This veri�es that Dp

<
h�;�i(�) increases with the

increase in �. In the same manner, it can be shown that Dn<h�;�i(�) increases with the

increase in �.

(2) Parallel to the proof of (1).

Corollary 2.5.12 Take a P-apx space (U;<), � 2 BFS(U) and 0 � � � � � 1.

1. If � stands �xed, then �<h�;�i(�) and %
<
h�;�i(�) decrease with the increase in �.

2. If � stands �xed, then �<h�;�i(�) and %
<
h�;�i(�) increase with the increase in �.

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.11 verify these asservations di-

rectly.

Theorem 2.5.13 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � � � implies the subsequent asservations.

1. Dp<h�;�i(�) � Dp
<
h�;�i(�), whenever, <(��) = <(��);

2. Dp<h�;�i(�) � Dp
<
h�;�i(�), whenever, <(��) = <(��);

3. Dn<h�;�i(�) � Dn
<
h�;�i(�), whenever, <(�

1��) = <(�1��);

4. Dn<h�;�i(�) � Dn
<
h�;�i(�), whenever, <(�

1��) = <(�1��):

Proof. (1) Let 0 � � � � � 1; � � � and <(��) = <(��) for �; � 2 BFS(U):

Lemma 2.5.3 gives, that, �� � ��. Theorem 1.7.3 gives that, <(��) � <(��), that is,
j<(��)j � j<(��)j. Which implies,

j<(��)j��<(��)�� � j<(��)j��<(��)�� :
Hence proved, that, Dp<h�;�i(�) � Dp

<
h�;�i(�).

The remaining parts can be proved in the same manner.
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Corollary 2.5.14 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � � � implies the subsequent asservations.

1. �<h�;�i(�) � �<h�;�i(�), whenever, <(��) = <(��);

2. �<h�;�i(�) � �<h�;�i(�), whenever, <(��) = <(��);

3. %<h�;�i(�) � %<h�;�i(�), whenever, <(�
1��) = <(�1��);

4. %<h�;�i(�) � %<h�;�i(�), whenever, <(�
1��) = <(�1��):

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.13 verify these asservations di-

rectly.

Theorem 2.5.15 Take a P-apx space (U;<), � 2 BFS(U) and 0 � � � � � 1. If �
is an eqv-rel on U; containing <. Then, the subsequent assertions hold.

1. Dp<h�;�i(�) � Dp
�
h�;�i(�)

2. Dn<h�;�i(�) � Dn
�
h�;�i(�).

Proof. 1) Let � 2 BFS(U) and let < and � be two eqv-rels on U; such that,

< � �. Theorem 2.3.6 states that <(�) � �(�) and <(�) � �(�). Using Lemma 2.5.3,

we get <(�)� � �(�)� and <(�)� � �(�)� . Lemma 2.5.5 gives

j<(��)j = j<(�)�j � j�(�)�j = j�(��)j ;��<(��)�� = j<(�)�j � j�(�)�j = j�(��)j :

Which implies,
j<(��)j��<(��)�� � j�(��)j

j�(��)j
:

That is, Dp<h�;�i(�) � Dp
�
h�;�i(�).

2) It can be veri�ed in the same manner as (1).

Corollary 2.5.16 Take a P-apx space (U;<), � 2 BFS(U) and 0 � � � � � 1. If �
is an eqv-rel on U containing <. Then, the subsequent assertions hold.

1. �<h�;�i(�) � ��h�;�i(�)

2. %<h�;�i(�) � %�h�;�i(�).

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.15 verify these asservations di-

rectly.
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Theorem 2.5.17 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � '< � implies the subsequent asservations.

1. Dp<h�;�i(� \ �) � Dp
<
h�;�i(�);

2. Dp<h�;�i(� \ �) � Dp
<
h�;�i(�);

3. Dn<h�;�i(� \ �) � Dn
<
h�;�i(�);

4. Dn<h�;�i(� \ �) � Dn
<
h�;�i(�):

Proof. (1) Let 0 � � � � � 1 and �; � 2 BFS(U) be such that � '< �. By

De�nition 2.4.1, <(�) = <(�). Then, Theorem 2.4.4 implies <(� \ �) = <(�). This
gives <(� \ �)� = <(�)�: That is,

j<((� \ �)�)j = j<(��)j : (2.13)

On the other hand, � \ � � �. Which implies that, <(� \ �) � <(�); that is,
<(� \ �)� � <(�)�. This gives��<((� \ �)�)�� � ��<(��)�� : (2.14)

Expressions 2.13 and 2.14 yield the following.

j<((� \ �)�)j��<((� \ �)�)�� � j<(��)j��<(��)�� :
This proves that Dp<h�;�i(� \ �) � Dp

<
h�;�i(�).

The remaining parts can be proved in the same manner.

Corollary 2.5.18 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � '< � implies the subsequent asservations.

1. �<h�;�i(� \ �) � �<h�;�i(�);

2. �<h�;�i(� \ �) � �<h�;�i(�);

3. %<h�;�i(� \ �) � %<h�;�i(�);

4. %<h�;�i(� \ �) � %<h�;�i(�):

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.17 verify these asservations di-

rectly.

Theorem 2.5.19 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � h< � implies the subsequent asservations.
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1. Dp<h�;�i(� [ �) � Dp
<
h�;�i(�);

2. Dp<h�;�i(� [ �) � Dp
<
h�;�i(�);

3. Dn<h�;�i(� [ �) � Dn
<
h�;�i(�);

4. Dn<h�;�i(� [ �) � Dn
<
h�;�i(�):

Proof. Parallel to the proof of the Theorem 2.5.17.

Corollary 2.5.20 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � h< � implies the subsequent asservations.

1. �<h�;�i(� [ �) � �<h�;�i(�);

2. �<h�;�i(� [ �) � �<h�;�i(�);

3. %<h�;�i(� [ �) � %<h�;�i(�);

4. %<h�;�i(� [ �) � %<h�;�i(�):

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.19 verify these asservations di-

rectly.

Theorem 2.5.21 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � �< � implies the subsequent asservations.

1. Dp<h�;�i(�) = Dp
<
h�;�i(�);

2. Dn<h�;�i(�) = Dn
<
h�;�i(�):

Proof. (1) Let 0 � � � � � 1 and �; � 2 BFS(U) be such that, � �< �.

From De�nition 2.4.1, we have <(�) = <(�) and <(�) = <(�). Then, Lemma 2.5.5
implies, that, <(��) = <(��) and <(��) = <(��). That is, j<(��)j = j<(��)j and��<(��)�� = ��<(��)��. This yields the following.

j<(��)j��<(��)�� = j<(��)j��<(��)�� :
This veri�es, that, Dp<h�;�i(�) = Dp

<
h�;�i(�).

(2) Analogous to the proof of (1).

Corollary 2.5.22 Take a P-apx space (U;<), �; � 2 BFS(U) and 0 � � � � � 1.

Then, � �< � implies the subsequent asservations.
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1. �<h�;�i(�) = �<h�;�i(�);

2. %<h�;�i(�) = %<h�;�i(�):

Proof. De�nitions 2.5.6, 2.5.7 and Theorem 2.5.21 verify these asservations di-

rectly.

2.6 Application of RBF approximations

Decision making is a major area to be conferred in almost all kinds of data analysis.

Researchers and experts use their knowledge to design algorithms in order to �nd a wise

and best decision. Many algorithms are designed by the researchers, in this regard, to

�nd a best decision [46, 55, 66]. All those algorithms provide the decision to choose

the best object. But, in some circumstances, the best decision becomes di¢ cult to be

taken and one has to look for another better option. So, it will always be advantageous

if the poor decision becomes apparent, in order to avoid the poor decision, as well.

There may also be a group of more than one decision makers, who desire to arrive at

a single decision. We present, in this section, an e¢ cient computational algorithm to

obtain the best, as well as, the poor decisions, for the group decision making (GDM)

problems by using the RBF-apxes. We consider a GDM problem in which a group

of decision makers wishes to decide for a best and a worst object, keeping in view

the degree of positivity, as well as, the degree of negativity examined in the objects.

Let the set containing objects be symbolized by A = faj : 1 � j � kg and the set
containing the BFSs describing the assessments ofm decision makers be symbolized by


 = f!i : 1 � i � mg. The information about the objects aj ; provided by each !i, is
represented by a table (called the table of 
) with (i; j)th entry as !i(aj) = (xij ; yij);

where the value xij denotes the degree of positivity and yij denotes the degree of

negativity in aj towards the property of !i. First, we assign the indiscernibility grades

to each object under consideration relative to each BFS !i: After that, we de�ne the

indiscernibility relations between the objects.

De�nition 2.6.1 The indiscernibility grades Gij corresponding to each object aj 2 A
and each BFS !i 2 
; are given by

Gij =

8><>:
P if xij � jyij j
N if xij � jyij j
O if xij = jyij j

(2.15)

where (xij ; yij) = !i(aj).

The indiscernibility grades depict the following information about the objects.
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� If Gij = P; the object aj has positive belongingness value xij higher than the

negative belongingness value jyij j ; with respect to !i.

� If Gij = N; the object aj has negative belongingness value jyij j higher than the
positive belongingness value xij ; with respect to !i.

� If Gij = O; the object aj has positive belongingness xij equal to the negative

belongingness jyij j ; with respect to !i.

Now we give the concept of indiscernibility relations on A associated with the BFSs

in 
. We say that two objects aj and ak are indiscernible, written as aj � ak; if and

only if they have same grades for each !i. Thus, when we say that the objects aj
and ak are indiscernible, it means that, either both the objects have positivity higher

than the negativity, or both the objects have negativity higher than the positivity, or

both the objects have equal measures of positivity and negativity. The indiscernibility

relation < between the objects of A is de�ned as:

< = f(aj ; ak) 2 A�A : aj � akg: (2.16)

Surely, < is an eqv-rel on A:
Now, we proceed to the decision values dj for the objects. For the eqv-rel <, we

write <(!i)(aj) = (xij ; yij) and <(!i)(aj) = (xij ; yij). Denote

zj =
m
�
i=1
(xij �

���yij���); (2.17)

zj =
m
�
i=1
(xij � jyij j): (2.18)

Then, zj represents the de�nite ful�lment of the object aj , while, zj represents the

maximum possible ful�lment of the object aj , towards all decision makers f!i : 1 �
i � mg. Thus, the uncertain (or doubtful) ful�lment of aj is given by the di¤erence
zj � zj . The decision will be taken on the basis of the decision parameter, de�ned

below.

De�nition 2.6.2 The decision parameter D has the values dj corresponding to each

object aj 2 A; given by
dj = zj + zj : (2.19)

This value gives the de�nite ful�lment zj of the object aj ; a double weightage than

to the uncertain (doubtful) ful�lment zj � zj , because we have

dj = zj + zj = 2zj � zj + zj ;
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or,

dj = 2zj + (zj � zj): (2.20)

We can rewrite Equation 2.20 as:

dj = 2
m
�
i=1
(xij �

���yij���) + m
�
i=1
((xij � jyij j)� (xij �

���yij���)) (2.21)

From Equation 2.21, it is clear that the higher the de�nite positive ful�lment xij of

aj ; the larger the value dj . Also, the higher the de�nite negative ful�lment
���yij��� of aj ;

the smaller the value dj . In this way, we identify the poor objects having lowest value

of dj . These are the objects with high de�nite negative ful�lment, according to !i.

Hence, our algorithm has the following main advantages.

� It manipulates technically the fuzziness of the data enriched with the bipolarity
of information.

� It accommodates the assessments of any (�nite) number of decision makers about
any (�nite) number of objects.

� It gives double weightage to the de�nite ful�lment of the objects, than to the
uncertain ful�lment.

� It yields a wise decision, containing the best, as well as, the poor decision, so
that, one can sidestep the poor decision.

Main steps of the algorithm are as follows.

Algorithm 2.6.3 The algorithm to decide for the best and poor objects in A; is given

below.

Step I: Input the BFSs 
.
Step II: Find out the eqv-rel < on A, using Formula 2.16.
Step III: Evaluate <(!i) and the values zj using Equations 2.1 and 2.17, respec-

tively.

Step IV: Evaluate <(!i) and the values zj using Equations 2.2 and 2.18, respec-
tively.

Step V: Find the decision values dj for each object aj 2 A; using Formula 2.19.
Step VI: Construct the decision table with rows of A and the decision parameter

D in the descending order with respect to the values of D. Choose p and q, so that

dp = max
j

dj and dq = min
j

dj. Then, ap is the best optimal object, while, aq is the poor

object to be decided. If p has more than one values, any one of ap�s can be selected.
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The �ow chart of Algorithm 2.6.3 is shown in Figure 2.1.

Figure 2.1: Flow chart of Algorithm 2.6.3.

Now we consider an illustration of the Algorithm 2.6.3, as follows.

Example 2.6.4 The GDM problem.

Let A = fai; i = 1; :::; 6g be a set containing some similar products and a company
X wishes to decide for one product to manufacture. Let 
 = f!1; !2; !3; !4g be a set
containing the BFSs describing the assessments of four independent experts, who are

assigned by the company to decide in the favour of a single product. Here, we have

1 � i � 4 and 1 � j � 6.
Step I:
The information about the objects aj ; provided by each !i, is represented in the

Table 2.1, where the (i; j)th entry !i(aj) = (xij ; yij) describes the assessment of !i
about the product aj . The value xij represents the degree to which the product aj is

suitable for being manufactured and the value yij represents the degree to which aj is

not favorable for production, according to the assessment of the expert !i.

g a1 a2 a3 a4 a5 a6

!1 (0:6;�0:3) (0:7;�0:4) (0:5;�0:5) (0:6;�0:6) (0:7;�0:3) (0:4;�0:4)
!2 (0:6;�0:4) (0:5;�0:5) (0:6;�0:3) (0:4;�0:5) (0:5;�0:5) (0:3;�0:4)
!3 (0:7;�0:2) (0:6;�0:3) (0:5;�0:2) (0:5;�0:5) (0:6;�0:4) (0:4;�0:4)
!4 (0:5;�0:4) (0:3;�0:3) (0:5;�0:5) (0:5;�0:3) (0:4;�0:4) (0:5;�0:3)

Table 2.1: Table of 


Step II:
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For the relation <; �rst we assign the indiscernibility grades to each object, corre-
sponding to each BFS !i 2 
, using Formula 2.15, as in Table 2.2.

A a1 a2 a3 a4 a5 a6

G1j P P O O P O

G2j P O P N O N

G3j P P P O P O

G4j P O O P O P

Table 2.2: Assignment of indiscernibility grades Gij

From Table 2.2, it can be clearly seen that, a2 and a5 got the same grades, while, a4
and a6 received the same grades. So, the Formula 2.16 leads to the following eqv-rel

on A.

< = f(a1; a1); (a2; a2); (a3; a3); (a4; a4); (a5; a5); (a6; a6);

(a2; a5); (a5; a2); (a4; a6); (a6; a4)g:

This relation serves as our key tool to evaluate the RBF-apxes of !i.

Step III:
The lower RBF-apxes <(!i) of each !i and the values zj are evaluated in Table

2.3, by using the Equation 2.1 and Equation 2.17, respectively.

<(!i) a1 a2 a3 a4 a5 a6

<(!1) (0:6;�0:3) (0:7;�0:3) (0:5;�0:5) (0:4;�0:4) (0:7;�0:3) (0:4;�0:4)
<(!2) (0:6;�0:4) (0:5;�0:5) (0:6;�0:3) (0:3;�0:4) (0:5;�0:5) (0:3;�0:4)
<(!3) (0:7;�0:2) (0:6;�0:3) (0:5;�0:2) (0:4;�0:4) (0:6;�0:3) (0:4;�0:4)
<(!4) (0:5;�0:4) (0:3;�0:3) (0:5;�0:5) (0:5;�0:3) (0:3;�0:3) (0:5;�0:3)
zj 1:1 0:7 0:6 0:1 0:7 0:1

Table 2.3: Calculations of <(!i) and zj

Step IV:
The upper RBF-apxes <(!i) of each !i and the values zj are evaluated in Table

2.4, by using the Equation 2.2 and Equation 2.18, respectively.

<(!i) a1 a2 a3 a4 a5 a6

<(!1) (0:6;�0:3) (0:7;�0:4) (0:5;�0:5) (0:6;�0:6) (0:7;�0:4) (0:6;�0:6)
<(!2) (0:6;�0:4) (0:5;�0:5) (0:6;�0:3) (0:4;�0:5) (0:5;�0:5) (0:4;�0:5)
<(!3) (0:7;�0:2) (0:6;�0:4) (0:5;�0:2) (0:5;�0:5) (0:6;�0:4) (0:5;�0:5)
<(!4) (0:5;�0:4) (0:4;�0:4) (0:5;�0:5) (0:5;�0:3) (0:4;�0:4) (0:5;�0:3)
zj 1:1 0:5 0:6 0:1 0:5 0:1

Table 2.4: Calculations of <(!i) and zj
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Step V:
The decision values dj for each aj 2 A are determined in Table 2.5, using Formula

2.19.

A a1 a2 a3 a4 a5 a6

zj 1:1 0:7 0:6 0:1 0:7 0:1

zj 1:1 0:5 0:6 0:1 0:5 0:1

dj 2:2 1:2 1:2 0:2 1:2 0:2

Table 2.5: Calculations of decision values dj

Step VI:
Now we construct our decision table by placing the set A in �rst row and the

decision parameter D in the second row. The table is rearranged in the descending

order with respect to the values of D. Decision table is given by the Table 2.6.

A a1 a2 a3 a5 a4 a6

D 2:2 1:2 1:2 1:2 0:2 0:2

Table 2.6: Decision table

We get max
j

dj = d1 = 2:2 and min
j

dj = d4 = d6 = 0:2. Hence p = 1 and q = 4; 6.

Thus, the product a1 is the best decision, while a4 and a6 are the poor selections. So,

the most favorable item which the company can manufacture is a1. But, in any case,

it should not go for the products a4 or a6.



Chapter 3

Rough bipolar fuzzy ideals in
semigroups

3.1 Introduction

The notion of RBFSs de�ned in Chapter 2 handles the vagueness and uncertainty, as

well as, bipolarity in data which can not be avoided in many real life problems. The

concepts of roughness, fuzziness and bipolarity are also correlated to the semigroups

in di¤erent manners by many authors to study the data having the structure of semi-

groups. Kuroki [36] presented the concept of fuzzy semigroup in 1991. Ideal theory in

semigroups is correlated to the FSs by many authors; see [1, 2, 31, 33, 56, 58, 59, 60].

Rough ideals in semigroups were initiated by Kuroki [37] in 1997. After that, Maji

et al. [41] applied the concept of roughness to the fuzzy semigroups. Later on, rough

fuzzy ideals in semigroups are studied in [52]. BF-ids in semigroups were presented by

Kim et al. [34]. The direction of this chapter is to extend this work and to the present

the RBF-ids of semigroups. In this chapter, we have discussed the BFSs and BF-ids

in a semigroup. We have also studied the roughness in the BF subsemigroups with

the help of a cng-rel de�ned on the semigroup and investigated some properties of the

RBF subsemigroup. RBF-id, RBFi-id and RBFb-id in the semigroups are de�ned and

discussed in this chapter.

3.2 Bipolar fuzzy sets in semigroups

In this section, we link the BF subsemigroups to the subsemigroups of a semigroup

and the BFl-ids (BFr-ids, BF-ids, BFi-id and BFb-id in semigroups to the left (right,

two-sided, interior, bi-) ideals of semigroups, using the ��level P-cuts and ��level N-
cuts of the BFSs as de�ned in Section 2.5. Throughout this chapter, � is a semigroup

43
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and < is a cng-rel on �: Recall the De�nition 2.5.1 of the ��level P-cuts and the
De�nition 2.5.2 of the ��level N-cuts of a BFS � in U; that are,

�� = fu 2 U : �P (u) � �g;

�� = fu 2 U : �N (u) � ��g;

respectively, for each 0 � � � 1.

Theorem 3.2.1 A BFS � in � is a BF subsemigroup of � if and only if �� and ��,

if non-empty, are subsemigroups of �, for each � 2 [0; 1].

Proof. Let � be a BF subsemigroup of �, and let a; b 2 ��. Then, �p(a) > � and

�p(b) > �. Since � is a BF subsemigroup of �, so

�p(ab) > �p(a) ^ �p(b) > �:

Which implies, ab 2 ��. So, �� is a subsemigroup of � for each �. Similarly �� is
a subsemigroup of � for each �.

Conversely, let �� and �� be non-empty subsemigroups of � for each � 2 [0; 1]; and
let a; b 2 �. Denote �p(a) ^ �p(b) by �� 2 [0; 1]. Then surely, �p(a); �p(b) > ��, and

so a; b 2 ��� . But ��� is a subsemigroup of �, so ab 2 ��� . Which yields �p(ab) > ��:

That is,

�p(ab) > �p(a) ^ �p(b): (3.1)

Now, denote �N (a) _ �N (b) by ��1; where �1 2 [0; 1]. Then �N (a); �N (b) 6 ��1,
and so a; b 2 ��1 . But ��1 is a subsemigroup of �, so ab 2 ��1 . Which yields

�N (ab) 6 ��1: That is,
�N (ab) 6 �N (a) _ �N (b): (3.2)

Assertions 3.1 and 3.2 prove that � is a BF subsemigroup of �.

Theorem 3.2.2 A BFS � in � is a BFl-id (BFr-id, BF-id) of � if and only if ��
and ��; if non-empty, are left (right, two-sided) ideals of �, for each � 2 [0; 1].

Proof. Let � be a BFl-id of � and let x 2 �. Then, for any � 2 [0; 1] and for
each a 2 ��, we have

�p(xa) > �p(a) > �:

Which implies, xa 2 �� for each x 2 � and a 2 ��. That is, �� is a left ideal of � for
each � 2 [0; 1]. Now, for each a 2 ��; we have

�N (xa) 6 �N (a) 6 ��:
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Which implies that, xa 2 �� for each x 2 � and a 2 ��. That is, �� is also a left ideal
of � for each � 2 [0; 1].

Conversely, let �� and �� be non-empty left ideals of � for each � 2 [0; 1] and let
a; b 2 �. Denote �p(b) by �� 2 [0; 1]. Then surely, b 2 ��� : Thus ab 2 ��� ; as ��� is a
left ideal of �. Which gives �p(ab) > ��. That is,

�p(ab) > �p(b): (3.3)

Now, denote �N (b) by ��1; where �1 2 [0; 1]. Then b 2 ��1 and ��1 is a left ideal of
�. Thus, ab 2 ��1 . Which gives �N (ab) 6 ��1. That is,

�N (ab) 6 �N (b): (3.4)

The expressions 3.3 and 3.4 prove that � is a BFl-id of �.

Similar is the proof when � is a BFr-id or a BF-id of �.

Theorem 3.2.3 A BFS � in � is a BFi-id of � if and only if �� and ��; if non-empty,
are interior ideals of �, for each � 2 [0; 1].

Proof. Let � be a BFi-id of � and let x; y 2 �. Then, for any � 2 [0; 1] and for
each a 2 ��, we have

�p(xay) > �p(a) > �:

Which implies, xay 2 �� for each x; y 2 � and a 2 ��. That is, �� is an interior ideal
of � for each � 2 [0; 1]. Now, for each a 2 ��; we have

�N (xay) 6 �N (a) 6 ��:

Which implies that, xay 2 �� for each x; y 2 � and a 2 ��. That is, �� is also an

interior ideal of � for each � 2 [0; 1].
Conversely, let �� and �� be non-empty interior ideals of � for each � 2 [0; 1] and

let a; b; c 2 �. Denote �p(b) by �� 2 [0; 1]. Then surely, b 2 ��� : Thus abc 2 ��� ; as
��� is interior ideal of �. Which gives �

p(abc) > ��. That is,

�p(abc) > �p(b): (3.5)

Now, denote �N (b) by ��1; where �1 2 [0; 1]. Surely, b 2 ��1 and ��1 is an interior
ideal of �. Thus, abc 2 ��1 for each a; c 2 �. Which gives �N (abc) 6 ��1. That is,

�N (abc) 6 �N (b): (3.6)

The expressions 3.5 and 3.6 prove that � is a BFi-id of �.
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Theorem 3.2.4 A BFS � in � is a BFb-id of � if and only if �� and ��, if non-

empty, are bi-ideals of �, for each � 2 [0; 1].

Proof. Let � be a BFb-id of �: Then, � is also a BF subsemigroup of �: Hence,
�� and ��, if non-empty, are subsemigroups of �, for each � 2 [0; 1], by Theorem
3.2.1. Now, let a; c 2 ��. Then, �p(a) > � and �p(c) > �. Since � is a BFb-id of �,

so for each b 2 �; we have

�p(abc) > �p(a) ^ �p(c) > �:

Which implies abc 2 �� for each a; c 2 �� and b 2 �. So, �� is a bi-ideal of � for each
�. Similarly, �� is a bi-ideal of � for each �.

Conversely, let �� and �� be non-empty bi-ideals of � for each � 2 [0; 1]; and let
a; b; c 2 �. Denote �p(a) ^ �p(c) by �� 2 [0; 1]. Then surely, �p(a); �p(c) > ��, and

so a; c 2 ��� . But, ��� is a bi-ideal of �. So abc 2 ��� for each b 2 �. Which yields
�p(abc) > ��: Or,

�p(abc) > �p(a) ^ �p(c): (3.7)

Now, denote �N (a)_�N (c) by ��1; where �1 2 [0; 1]. Then �N (a); �N (c) 6 ��1, and
so a; c 2 ��1 . But ��1 is a bi-ideal of �. So abc 2 ��1 for each b 2 �. Which yields
�N (abc) 6 ��1: Or,

�N (abc) 6 �N (a) _ �N (c): (3.8)

Assertions 3.7 and 3.8 prove that � is a BFb-id of �.

3.3 Rough bipolar fuzzy sets in semigroups

The RBFSs in semigroups are de�ned with the help of lower and upper RBF-apxes of

the BFSs in the semigroup �; on which a cng-rel < is de�ned. These approximations
are de�ned and discussed in this section. We also present the RBF subsemigroup of

�:

De�nition 3.3.1 Let < be a cng-rel on � and let � 2 BFS(�). The lower and upper
RBF-apxes of � under the relation <; are the BFSs <(�) and <(�) in �; respectively,
de�ned for each s 2 � as:

<(�) = f(s;<�P (s);<�N (s)) : s 2 �g;

<(�) = f(s;<�P (s);<�N (s)) : s 2 �g;

where,

<�P (s) = ^
t2[s]<

�P (t); <�N (s) = _
t2[s]<

�N (t);

<�P (s) = _
t2[s]<

�P (t); <�N (s) = ^
t2[s]<

�N (t):
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If <(�) = <(�), then, � is said to be <-de�nable; otherwise, � is an RBFS in �:

In Chapter 2, some characterizations of RBFSs in a non-empty set U having an

eqv-rel < were presented. These characterizations are also valid when the set U is

replaced by the semigroup � and the eqv-rel on U is replaced by a cng-rel on �: So

the results in Chapter 2 also hold for the lower and upper RBF-apxes of the BFSs in

�; given in the De�nition 3.3.1. Some other results are as follows.

Theorem 3.3.2 Let < be a cng-rel on �. Then,

<(�) � <(�) � <(� � �)

holds for each �; � 2 BFS(�).

Proof. Since < is a cng-rel on �, so [x]<[y]< � [xy]< for each x; y 2 �. Let
�; � 2 BFS(�). We have

<(�) � <(�) = (<�P � <�P ;<�N � <�N );

<(� � �) = (<(�P � �P );<(�N � �N )):

Take any s 2 �. If some x; y 2 � exist, such that s = xy; then we have

(<�P � <�P )(s) = _
s=xy

(<�P (x) ^ <�P (y))

= _
s=xy

(( _
a2[x]<

�P (a)) ^ ( _
b2[y]<

�P (b)))

= _
s=xy

( _
a2[x]<; b2[y]<

(�P (a) ^ �P (b)))

� _
s=xy

( _
ab2[xy]<

(�P (a) ^ �P (b))); since ab 2 [x]<[y]< � [xy]<

= _
ab2[s]<

(�P (a) ^ �P (b)); since xy = s

= _
t2[s]<; t=ab

(�P (a) ^ �P (b))

= _
t2[s]<

( _
t=ab

(�P (a) ^ �P (b)))

= _
t2[s]<

(�P � �P )(t) = <(�P � �P )(s):

Otherwise;

(<�P � <�P )(s) = 0 � <(�P � �P )(s):

Similarly, for each s 2 �, we have

(<�N � <�N )(s) � <(�N � �N )(s):

Thus, by De�nition 1.3.2, we have

<(�) � <(�) � <(� � �)

for each �; � 2 BFS(�).
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Theorem 3.3.3 Let < be a complete cng-rel on �. Then,

<(�) � <(�) � <(� � �)

holds for each �; � 2 BFS(�).

Proof. Since < is a complete cng-rel on �, so [x]<[y]< = [xy]< for each x; y 2 �.
Let �; � 2 BFS(�). We have

<(�) � <(�) = (<�P � <�P ;<�N � <�N );

<(� � �) = (<(�P � �P );<(�N � �N )):

Take any s 2 �. If some x; y 2 � exist, such that s = xy; then we have

(<�P � <�P )(s) = _
s=xy

(<�P (x) ^ <�P (y))

= _
s=xy

(( ^
a2[x]<

�P (a)) ^ ( ^
b2[y]<

�P (b)))

= _
s=xy

( ^
a2[x]<; b2[y]<

(�P (a) ^ �P (b)))

� _
s=xy

( ^
a2[x]<; b2[y]<

_
ab=t1t2

(�P (t1) ^ �P (t2))); where t1; t2 2 �

= _
s=xy

( ^
a2[x]<; b2[y]<

(�P � �P )(ab))

= _
s=xy

( ^
ab2[xy]<

(�P � �P )(ab)); since ab 2 [x]<[y]< = [xy]<

= _
s=xy

(<(�P � �P )(xy)) = <(�P � �P )(s):

Otherwise;

(<�P � <�P )(s) = 0 � <(�P � �P )(s):

Similarly, for each s 2 �, we have

(<�N � <�N )(s) � <(�N � �N )(s):

Thus, by De�nition 1.3.2, we get

<(�) � <(�) � <(� � �)

for each �; � 2 BFS(�).

De�nition 3.3.4 A BFS � in � is a lower (or upper) RBF subsemigroup of �; if

<(�) (or <(�)) is a BF subsemigroup of �, for the cng-rel < on �.

A BFS � in �; which is both, lower and upper RBF subsemigroup of �; is called

an RBF subsemigroup of �:
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Theorem 3.3.5 Let < be a cng-rel on �. Then, each BF subsemigroup of � is an

upper RBF subsemigroup of �.

Proof. Take a BF subsemigroup � of �. Then, �P (ab) � �P (a) ^ �P (b) and
�N (ab) � �N (a) _ �N (b) for each a; b 2 �: Now, for each x; y 2 �, we have

<�P (xy) = _
s2[xy]<

�P (s)

� _
s2[x]<[y]<

�P (s); since [x]<[y]< � [xy]<

= _
ab2[x]<[y]<

�P (ab); where s = ab

� _
a2[x]<; b2[y]<

(�P (a) ^ �P (b))

= ( _
a2[x]<

�P (a)) ^ ( _
b2[y]<

�P (b))

= <�P (x) ^ <�P (y)

and

<�N (xy) = ^
s2[xy]<

�N (s)

� ^
s2[x]<[y]<

�N (s); since [x]<[y]< � [xy]<

= ^
ab2[x]<[y]<

�N (ab); where s = ab

� ^
a2[x]<; b2[y]<

(�N (a) _ �N (b))

= ( ^
a2[x]<

�N (a)) _ ( ^
b2[y]<

�N (b))

= <�N (x) _ <�N (y):

This veri�es that <(�) is a BF subsemigroup of �. Therefore, � is an upper RBF
subsemigroup of �.

The converse statement of Theorem 3.3.5 is invalid generally, as exhibited in the

next example.

Example 3.3.6 The table of binary operation on a semigroup � = fa; b; c; dg is given
below.

a b c d

a a b b d

b b b b d

c b b b d

d d d d d
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Consider a binary relation < = f(a; a); (b; b); (c; c); (d; d); (b; d); (d; b)g on �: Then
< is a cng-rel on �; de�ning the cng-classes fag; fcg; fb; dg. We take a BFS � in �,
as below.

� = f(a; 0:4;�0:1); (b; 0:3;�0:2); (c; 0:4;�0:2); (d; 0:5;�0:3)g.
The upper RBF-apx of � is calculated as:

<(�) = f(a; 0:4;�0:1); (b; 0:5;�0:3); (c; 0:4;�0:2); (d; 0:5;�0:3)g:
Simple calculations verify that <(�) is a BF subsemigroup of �: But, � is not a

BF subsemigroup of �; as:

�P (cc) = �P (b) = 0:3

� �P (c) ^ �P (c) = 0:4:

Theorem 3.3.7 Let < be a complete cng-rel on �. Then, each BF subsemigroup of
� is a lower RBF subsemigroup of �.

Proof. Let < be a complete cng-rel on � and � be a BF subsemigroup of �. Now,
for each x; y 2 �, we obtain

<�P (xy) = ^
s2[xy]<

�P (s)

= ^
s2[x]<[y]<

�P (s); since [x]<[y]< = [xy]<

= ^
ab2[x]<[y]<

�P (ab); where s = ab

� ^
a2[x]<; b2[y]<

(�P (a) ^ �P (b))

= ( ^
a2[x]<

�P (a)) ^ ( ^
b2[y]<

�P (b))

= <�P (x) ^ <�P (y)

and

<�N (xy) = _
s2[xy]<

�N (s)

= _
s2[x]<[y]<

�N (s); since [x]<[y]< = [xy]<

= _
ab2[x]<[y]<

�N (ab); where s = ab

� _
a2[x]<; b2[y]<

(�N (a) _ �N (b))

= ( _
a2[x]<

�N (a)) _ ( _
b2[y]<

�N (b))

= <�N (x) _ <�N (y):

This veri�es that <(�) is a BF subsemigroup of �. Therefore, � is a lower RBF

subsemigroup of �.
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The converse statement of Theorem 3.3.7 is invalid generally, as exhibited in the

next example.

Example 3.3.8 Let � = fs; t; u; vg represent a semigroup whose table of binary op-
eration is given below.

s t u v

s s t u v

t t t u v

u u u u v

v v v v u

Consider a cng-rel < on �; de�ning cng-classes fsg; ftg and fu; vg. Then, < is a
complete cng-rel on �: We take a BFS � in �, as below.

� = f(s; 0:3;�0:4); (t; 0:4;�0:3); (u; 0:6;�0:2); (v; 0:8;�0:1)g.
The lower RBF-apx <(�) of � is calculated as:
<(�) = f(s; 0:3;�0:4); (t; 0:4;�0:3); (u; 0:6;�0:1); (v; 0:6;�0:1)g.
Simple calculations verify that <(�) is a BF subsemigroup of �: But, � is not a

BF subsemigroup of �; as:

�P (vv) = �P (u) = 0:6

� �P (v) ^ �P (v) = 0:8:

Next example shows that Theorem 3.3.7 is invalid if the cng-rel < is not complete.
Next example is established to verify this fact.

Example 3.3.9 Recall the semigroup � = fa; b; c; dg and the cng-rel < on �; as

established in Example 3.3.6. Then, < is not complete. We take a BFS � in �, as

below.

� = f(a; 0:4;�0:2); (b; 0:6;�0:4); (c; 0:4;�0:1); (d; 0:3;�0:3)g.
Then, � is a BF subsemigroup of �: The RBF-apxes of � are calculated by De�n-

ition 3.3.1 as:

<(�) = f(a; 0:4;�0:2); (b; 0:6;�0:4); (c; 0:4;�0:1); (d; 0:6;�0:4)g;
<(�) = f(a; 0:4;�0:2); (b; 0:3;�0:3); (c; 0:4;�0:1); (d; 0:3;�0:3)g.
Simple calculations verify that <(�) is also a BF subsemigroup of �; while, <(�)

is not a BF subsemigroup of �; as

<�P (ac) = <�P (b) = 0:3

� <�P (a) ^ <�P (c) = 0:4:
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3.4 Rough bipolar fuzzy ideals in semigroups

This section presents the notions of the RBFl-id, RBFr-id, RBF-id, RBFi-id and

RBFb-id of �: We also explore some of their characteristics.

De�nition 3.4.1 Let < be a cng-rel on � and let � 2 BFS(�). Then, � is a lower
RBFl-id (RBFr-id, RBF-id) of �; if <(�) is a BFl-id (BFr-id, BF-id) of �:

De�nition 3.4.2 Let < be a cng-rel on � and let � 2 BFS(�). Then, � is an upper
RBFl-id (RBFr-id, RBF-id) of �; if <(�) is a BFl-id (BFr-id, BF-id) of �:

A BFS � in �; which is both, lower and upper RBFl-id (RBFr-id, RBF-id) of �;

is called an RBFl-id (RBFr-id, RBF-id) of �:

Theorem 3.4.3 Let < be a cng-rel on �. Then,

<(� � �) � <(�) \ <(�)

holds for each BFr-id � and BFl-id � of �.

Proof. Take a BFr-id � and a BFl-id � of �. We obtain

<(� � �) = (<(�P � �P );<(�N � �N ));

<(�) \ <(�) = (<�P \ <�P ;<�N [ <�N ):

Now, for each s 2 �, we obtain

<(�P � �P )(s) = _
t2[s]<

(�P � �P )(t)

= _
t2[s]<

_
t=ab

(�P (a) ^ �P (b))

� _
t2[s]<

_
t=ab

(�P (ab) ^ �P (ab)); since � is a BFr-id

and � is a BFl-id of �:

= _
t2[s]<

(�P (t) ^ �P (t))

� _
t2[s]<

_
t02[s]<

(�P (t) ^ �P (t0))

= ( _
t2[s]<

�P (t)) ^ ( _
t02[s]<

�P (t0))

= <�P (s) ^ <�P (s)

= (<�P \ <�P )(s):

Similarly, for each s 2 �, we obtain

<(�N � �N )(s) � (<�N [ <�N )(s):
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Thus, De�nition 1.3.2 gives

<(� � �) � <(�) \ <(�)

for each BFr-id � and BFl-id � of �.

Theorem 3.4.4 Let < be a cng-rel on �. Then, each BFl-id (BFr-id, BF-id) of � is
an upper RBFl-id (RBFr-id, RBF-id) of �.

Proof. Take a BFl-id � of �. Then, �P (ab) � �P (b) and �N (ab) � �N (b) for each

a; b 2 �: Now, for each x; y 2 �, we obtain

<�P (xy) = _
s2[xy]<

�P (s)

� _
s2[x]<[y]<

�P (s); since [x]<[y]< � [xy]<

= _
ab2[x]<[y]<

�P (ab); where s = ab

� _
a2[x]<; b2[y]<

�P (b)

= _
b2[y]<

�P (b)

= <�P (y)

and

<�N (xy) = ^
s2[xy]<

�N (s)

� ^
s2[x]<[y]<

�N (s); since [x]<[y]< � [xy]<

= ^
ab2[x]<[y]<

�N (ab); where s = ab

� ^
a2[x]<; b2[y]<

�N (b)

= ^
b2[y]<

�N (b)

= <�N (y):

This veri�es that <(�) is a BFl-id of �. Therefore, � is an upper RBFl-id of �.
Similarly, the cases of BFr-id and BF-id of � can be veri�ed.

The converse statement of Theorem 3.4.4 is invalid generally, as exhibited in the

next example.
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Example 3.4.5 Let � = fk; l;m; ng represent a semigroup whose table of binary
operation is given below.

k l m n

k k k k n

l k l k n

m k k m n

n n n n n

Let < be a cng-rel on �; de�ning cng-classes fk; l; ng and fmg. We take a BFS �
in �, as:

� = f(k; 0:5;�0:1); (l; 0:7;�0:1); (m; 0:6;�0:1); (n; 0:8;�0:1)g.
The upper RBF-apx of � is calculated as:

<(�) = f(k; 0:8;�0:1); (l; 0:8;�0:1); (m; 0:6;�0:1); (n; 0:8;�0:1)g.
Simple calculations verify that <(�) is a BFl-id of �: But, � is not a BFl-id of �;

as:

�P (lm) = �P (k) = 0:5

� �P (m) = 0:6:

Theorem 3.4.6 Let < be a complete cng-rel on �. Then, each BFl-id (BFr-id, BF-id)
of � is a lower RBFl-id (RBFr-id, RBF-id) of �.

Proof. Let < be a complete cng-rel on � and � be a BFl-id of �. Now, for each

x; y 2 �, we obtain

<�P (xy) = ^
s2[xy]<

�P (s)

= ^
s2[x]<[y]<

�P (s); since [x]<[y]< = [xy]<

= ^
ab2[x]<[y]<

�P (ab); where s = ab

� ^
a2[x]<; b2[y]<

�P (b)

= ^
b2[y]<

�P (b)

= <�P (y)
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and

<�N (xy) = _
s2[xy]<

�N (s)

= _
s2[x]<[y]<

�N (s); since [x]<[y]< = [xy]<

= _
ab2[x]<[y]<

�N (ab); where s = ab

� _
a2[x]<; b2[y]<

�N (b)

= _
b2[y]<

�N (b)

= <�N (y):

This veri�es that <(�) is a BFl-id of �. Therefore, � is a lower RBFl-id of �. Similarly,
the cases of BFr-id and the BF-id of � can be veri�ed.

The converse statement of Theorem 3.4.6 is invalid generally, as exhibited in the

next example.

Example 3.4.7 Recall the semigroup � = fs; t; u; vg and the complete cng-rel < on
�; as established in Example 3.3.8. We take a BFS � in �, as below.

� = f(s; 0:2;�0:2); (t; 0:4;�0:4); (u; 0:5;�0:6); (v; 0:6;�0:5)g.
The lower RBF-apx <(�) of � is calculated as:
<(�) = f(s; 0:2;�0:2); (t; 0:4;�0:4); (u; 0:5;�0:5); (v; 0:5;�0:5)g.
Simple calculations verify that <(�) is a BFl-id of �: But, � is not a BFl-id of �;

as:

�P (vv) = �P (u) = 0:5

� �P (v) = 0:6:

Next example shows that Theorem 3.4.6 is invalid if the cng-rel < is not complete.
Next example is established to verify this fact.

Example 3.4.8 Let � = fa; b; c; dg be the semigroup as established in Example 3.3.6,
on which, we take a cng-rel < = f(a; a); (b; b); (c; c); (d; d); (b; c); (c; b)g: Then, < de�nes
the cng-classes fag; fb; cg; fdg and < is not complete. We take a BFS � in �, as below.

� = f(a; 0:5;�0:4); (b; 0:6;�0:6); (c; 0:4;�0:5); (d; 0:7;�0:7)g.
Then, � is a BFl-id of �: The RBF-apxes of � are calculated by De�nition 3.3.1

as:

<(�) = f(a; 0:5;�0:4); (b; 0:6;�0:6); (c; 0:6;�0:6); (d; 0:7;�0:7)g;
<(�) = f(a; 0:5;�0:4); (b; 0:4;�0:5); (c; 0:4;�0:5); (d; 0:7;�0:7)g.
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Simple calculations verify that <(�) is also a BFl-id of �; while, <(�) is not a
BFl-id of �; as

<�P (ba) = <�P (b) = 0:4

� <�P (a) = 0:5:

De�nition 3.4.9 Let < be a cng-rel on � and let � 2 BFS(�). Then, � is a lower
(or upper) RBFi-id of �; if <(�) (or <(�)) is a BFi-id of �.

A BFS � in �; which is both, lower and upper RBFi-id of �; is called an RBFi-id

of �:

Theorem 3.4.10 Take a cng-rel < on �. Then, each BFi-id of � is an upper RBFi-id
of �.

Proof. Take a BFi-id � of �. Then �P (abc) � �P (b) and �N (abc) � �N (b) for

each a; b; c 2 �. Now, for each x;w; y 2 �, we have

<�P (xwy) = _
s2[xwy]<

�P (s)

� _
s2[x]<[w]<[y]<

�P (s); since [x]<[w]<[y]< � [xwy]<

= _
abc2[x]<[w]<[y]<

�P (abc); where s = abc

� _
b2[w]<

�P (b)

= <�P (w)

and

<�N (xwy) = ^
s2[xwy]<

�N (s)

� ^
s2[x]<[w]<[y]<

�N (s); since [x]<[w]<[y]< � [xwy]<

= ^
abc2[x]<[w]<[y]<

�N (abc); where s = abc

� ^
b2[w]<

�N (b)

= <�N (w):

This veri�es that, <(�) is a BFi-id of �. Therefore, � is an upper RBFi-id of �.

The converse statement of Theorem 3.4.10 is invalid generally, as exhibited in the

next example.
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Example 3.4.11 Recall the semigroup � = fk; l;m; ng and the cng-rel < on �; as

established in Example 3.4.5. We take a BFS � in �, de�ned as below.

� = f(k; 0:7;�0:2); (l; 0:8;�0:2); (m; 0:4;�0:2); (n; 0:9;�0:2)g.
The upper RBF-apx of � is calculated as:

<(�) = f(k; 0:9;�0:2); (l; 0:9;�0:2); (m; 0:4;�0:2); (n; 0:9;�0:2)g.
Simple calculations verify that <(�) is a BFi-id of �: But, � is not a BFi-id of �;

as:

�P (klm) = �P (k) = 0:7

� �P (l) = 0:8:

Theorem 3.4.12 Let < be a complete cng-rel on �. Then, each BFi-id of � is a

lower RBFi-id of �.

Proof. Let < be a complete cng-rel on � and � be a BFi-id of �. Now, for each

x;w; y 2 �, we have

<�P (xwy) = ^
s2[xwy]<

�P (s)

= ^
s2[x]<[w]<[y]<

�P (s); since [x]<[w]<[y]< = [xwy]<

= ^
abc2[x]<[w]<[y]<

�P (abc); where s = abc

� ^
b2[w]<

�P (b)

= <�P (w)

and

<�N (xwy) = _
s2[xwy]<

�N (s)

= _
s2[x]<[w]<[y]<

�N (s); since [x]<[w]<[y]< = [xwy]<

= _
abc2[x]<[w]<[y]<

�N (abc); where s = abc

� _
b2[w]<

�N (b)

= <�N (w):

This veri�es that <(�) is a BFi-id of �. Therefore, � is a lower RBFi-id of �.

The converse statement of Theorem 3.4.12 is invalid generally, as exhibited in the

next example.
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Example 3.4.13 Recall the semigroup � = fs; t; u; vg and the complete cng-rel < on
�; as established in Example 3.3.8. We take a BFS � in �, as below.

� = f(s; 0:3;�0:1); (t; 0:4;�0:2); (u; 0:8;�0:3); (v; 0:7;�0:2)g.
The lower RBF-apx <(�) of � is calculated as:
<(�) = f(s; 0:3;�0:1); (t; 0:4;�0:2); (u; 0:7;�0:2); (v; 0:7;�0:2)g.
Simple calculations verify that <(�) is a BFi-id of �: But, � is not a BFi-id of �;

as:

�P (tuv) = �P (v) = 0:7

� �P (u) = 0:8:

Next example shows that Theorem 3.4.12 is invalid if the cng-rel < is not complete.
Next example is established to verify this fact.

Example 3.4.14 Let � = fa; b; c; dg be the semigroup as established in Example 3.3.6
and < be the cng-rel on � as in Example 3.4.8, which is not complete and de�nes the

cng-classes fag; fb; cg; fdg. We take a BFS � in �, as below.
� = f(a; 0:3;�0:4); (b; 0:4;�0:5); (c; 0:2;�0:2); (d; 0:7;�0:7)g.
Then, � is a BFi-id of �: The <-RBF-apxes of � are calculated by De�nition 3.3.1

as:

<(�) = f(a; 0:3;�0:4); (b; 0:4;�0:5); (c; 0:4;�0:5); (d; 0:7;�0:7)g;
<(�) = f(a; 0:3;�0:4); (b; 0:2;�0:2); (c; 0:2;�0:2); (d; 0:7;�0:7)g.
Simple calculations verify that <(�) is also a BFi-id of �; while, <(�) is not a

BFi-id of �; as

<�P (bac) = <�P (b) = 0:2

� <�P (a) = 0:3:

De�nition 3.4.15 Take a cng-rel < on � and let � 2 BFS(�). Then, � is a lower
(or upper) RBFb-id of �; if <(�) (or <(�)) is a BFb-id of �.

A BFS � in �; which is both, lower and upper RBFb-id of �; is called an RBFb-id

of �:

Theorem 3.4.16 Take a cng-rel < on �. Then, each BFb-id of � is an upper RBFb-
id of �.

Proof. Take a BFb-id � of �. Then, � is also a BF subsemigroup of �. Which
implies by Theorem 3.3.5, that, <(�) = (<(�P );<(�N )) is a BF subsemigroup of �.
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Now, for each x;w; y 2 �, we have

<�P (xwy) = _
s2[xwy]<

�P (s)

� _
s2[x]<[w]<[y]<

�P (s); since [x]<[w]<[y]< � [xwy]<

= _
abc2[x]<[w]<[y]<

�P (abc); where s = abc

� _
a2[x]<; b2[w]<; c2[y]<

(�P (a) ^ �P (c))

= ( _
a2[x]<

�P (a)) ^ ( _
c2[y]<

�P (c))

= <�P (x) ^ <�P (y)

and

<�N (xwy) = ^
s2[xwy]<

�N (s)

� ^
s2[x]<[w]<[y]<

�N (s); since [x]<[w]<[y]< � [xwy]<

= ^
abc2[x]<[w]<[y]<

�N (abc); where s = abc

� ^
a2[x]<; b2[w]<; c2[y]<

(�N (a) _ �N (c))

= ( ^
a2[x]<

�N (a)) _ ( ^
c2[y]<

�N (c))

= <�N (x) _ <�N (y):

This veri�es that, <(�) is a BFb-id of �. Therefore, � is an upper RBFb-id of �.

The converse statement of Theorem 3.4.16 is invalid generally, as exhibited in the

next example.

Example 3.4.17 Recall the semigroup � = fk; l;m; ng and the cng-rel < on �; as

established in Example 3.4.5. We take a BFS � in �, de�ned as below.

� = f(k; 0:4;�0:3); (l; 0:3;�0:3); (m; 0:1;�0:3); (n; 0:2;�0:3)g.
The upper RBF-apx of � is calculated as:

<(�) = f(k; 0:4;�0:3); (l; 0:4;�0:3); (m; 0:1;�0:3); (n; 0:4;�0:3)g.
Simple calculations verify that <(�) is a BFb-id of �: But, � is not a BFb-id of �;

as:

�P (knl) = �P (n) = 0:2

� �P (k) ^ �P (l) = 0:3:

Theorem 3.4.18 Let < be a complete cng-rel on �. Then, each BFb-id of � is a

lower RBFb-id of �.
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Proof. Let < be a complete cng-rel on � and � be a BFb-id of �. Then, � is also a
BF subsemigroup of �. Which implies by Theorem 3.3.7, that, <(�) = (<(�P );<(�N ))
is a BF subsemigroup of �. Now, for each x;w; y 2 �, we have

<�P (xwy) = ^
s2[xwy]<

�P (s)

= ^
s2[x]<[w]<[y]<

�P (s); since [x]<[w]<[y]< = [xwy]<

= ^
abc2[x]<[w]<[y]<

�P (abc); where s = abc

� ^
a2[x]<; b2[w]<; c2[y]<

(�P (a) ^ �P (c))

= ( ^
a2[x]<

�P (a)) ^ ( ^
c2[y]<

�P (c))

= <�P (x) ^ <�P (y)

and

<�N (xwy) = _
s2[xwy]<

�N (s)

= _
s2[x]<[w]<[y]<

�N (s); since [x]<[w]<[y]< = [xwy]<

= _
abc2[x]<[w]<[y]<

�N (abc); where s = abc

� _
a2[x]<; b2[w]<; c2[y]<

(�N (a) _ �N (c))

= ( _
a2[x]<

�N (a)) _ ( _
c2[y]<

�N (c))

= <�N (x) _ <�N (y):

This veri�es that <(�) is a BFb-id of �. Therefore, � is a lower RBFb-id of �.

The converse statement of the Theorem 3.4.18 is invalid generally, as exhibited in

the next example.

Example 3.4.19 Recall the semigroup � = fs; t; u; vg and the complete cng-rel < on
�; as established in Example 3.3.8. We take a BFS � in �, as below.

� = f(s; 0:1;�0:1); (t; 0:3;�0:3); (u; 0:4;�0:4); (v; 0:5;�0:5)g.
The lower RBF-apx <(�) of � is calculated as:
<(�) = f(s; 0:1;�0:1); (t; 0:3;�0:3); (u; 0:4;�0:4); (v; 0:4;�0:4)g.
Simple calculations verify that <(�) is a BFb-id of �: But, � is not a BFb-id of �;

as:

�P (vsv) = �P (u) = 0:4

� �P (v) ^ �P (v) = 0:5:
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Next example shows that Theorem 3.4.18 is invalid if the cng-rel < is not complete.
Next example is established to verify this fact.

Example 3.4.20 Let � = fa; b; c; dg be the semigroup as established in Example 3.3.6
and < be the cng-rel on �; which de�nes the cng-classes fag; fb; cg; fdg. Then, < is
not complete. We take a BFS � in �, as below.

� = f(a; 0:3;�0:2); (b; 0:4;�0:3); (c; 0:2;�0:1); (d; 0:5;�0:4)g.
Then, � is a BFb-id of �: The <-RBF-apxes of � are calculated by De�nition 3.3.1

as:

<(�) = f(a; 0:3;�0:2); (b; 0:4;�0:3); (c; 0:4;�0:3); (d; 0:7;�0:7)g;
<(�) = f(a; 0:3;�0:2); (b; 0:2;�0:1); (c; 0:2;�0:1); (d; 0:7;�0:7)g.
Simple calculations verify that <(�) is also a BFb-id of �; while, <(�) is not a

BFb-id of �; as

<�P (aba) = <�P (b) = 0:2

� <�P (a) ^ <�P (a) = 0:3:



Chapter 4

Rough bipolar soft sets

4.1 Introduction

Rough sets and soft sets are both meant for managing the data confronted by ambiguity

and vagueness. Many authors have worked on the soft sets and their parameters; see

[6, 13, 21, 69]. Roughness in soft sets is de�ned by Feng et al. in [29]. Ali also discussed

the rough soft sets in [7]. In this chapter, we extend this concept to the BSSs and

de�ne the rough bipolar soft sets (RBSSs) using the RBS approximations (RBS-apxes)

of the BSSs in a P-apx space. Some characterizations of these RBS-apxes are explored

in Section 4.3. Some similarity relations on the set containing BSSs in the universe of

discourse are de�ned in Section 4.4 with the help of the lower and upper RBS-apxes

of the BSSs.

As mentioned earlier, the soft sets are built to characterize the objects according

to some particular attributes. Due to this quality, the soft sets are very useful and

applicable in many types of data analysis. Specially, they have great applicability in

decision analysis. Applications of di¤erent soft structures in decision making tech-

niques are discussed in [28, 43, 46, 47, 55, 61, 66]. In the last section of this chapter,

we apply the RBS-apxes of the BSSs to develop two interesting but important decision

making techniques. One is to decide between some objects pertaining some particular

attributes or their counter attributes; the other is to decide between the attributes

which are a¤ecting some particular objects. We also design the algorithms for those

applications and demonstrate the steps of algorithms by suitable examples.

4.2 Rough bipolar soft sets

De�nition 4.2.1 Take a P-apx space (U;<) and let g = (�;  ; �A) 2 BSS(U). The

lower and upper RBS-apxes of g with respect to (U;<) are the BSSs symbolized by

62
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g< = (�<;  <;
�A) and g< = (�<;  <; �A), respectively, where �<; �

<
are de�ned as:

�<(e) = fu 2 U : [u]< � �(e)g;

�
<
(e) = fu 2 U : [u]< \ �(e) 6= �g

for each e 2 �A, and  <;  
<
are de�ned as:

 <(:e) = fu 2 U : [u]< \  (:e) 6= �g;

 
<
(:e) = fu 2 U : [u]< �  (:e)g

for each :e 2 : �A. If g< = g
<
; then, g is said to be <�de�nable; otherwise, g is an

RBSS over U:

We claim that these RBS-apxes of a BSS are also BSSs.

Claim 4.2.2 Let g = (�;  ; �A) be a BSS. Then, �(e) \  (:e) = � for each e 2 �A,

that is, �(e) � U �  (:e) =  0(:e). Take the lower RBS-apx g< = (�<;  <;
�A) of

g. If u 2 �<(e) \  <(:e) for some e 2 �A, then, u 2 �<(e) and u 2  <(:e). Which
implies, [u]< � �(e) �  0(:e) and [u]< \  (:e) 6= �: That is, [u]< �  0(:e) and
[u]< \  (:e) 6= � which is not possible. Thus, �<(e) \  <(:e) = � and hence, g< is a
BSS over U: Similarly, the upper RBS-apx of g is a BSS over U:

The interpretation of these RBS-apxes of g, that is, the information about an
object u, interpreted by the RBS-apxes of g, is as follows:

� u 2 �<(e) depicts that u de�nitely possesses the attribute e.

� u 2  <(:e) depicts that u de�nitely possesses the attribute :e.

� u 2 �<(e)� �<(e) depicts that u probably has the attribute e.

� u 2  <(:e)�  
<
(:e) depicts that u probably has the attribute :e.

� u 2 (�<(e))0 depicts that u de�nitely does not have the attribute e.

� u 2 ( <(:e))
0 depicts that u de�nitely does not have the attribute :e.

Here, (�
<
(e))0 = U � �<(e) and ( <(:e))

0 = U �  <(:e):

Example 4.2.3 Suppose that U = fui; i = 1; 2; :::; 6g is a universe containing six
objects and �E = fei; i = 1; 2; :::; 5g is a set of possible attributes for U: Consider a BSS
g1 = (�1;  1; �A1) over U; with �A1 = fe1; e2; e3g de�ned as:
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�1(e1) = fu1; u3; u4; u6g; �1(e2) = fu2; u3; u5g; �1(e3) = fu3; u4; u5g;
 1(:e1) = fu2; u5g;  1(:e2) = �;  1(:e3) = fu2; u6g:
Take an eqv-rel < on U; de�ning classes fu1; u2; u3g; fu4; u5g and fu6g. Then, the

lower RBS-apx of g1 is g1< = (�1<;  1<;
�A1), where �1< and  1< are calculated by

using De�nition 4.2.1 as:

�1<(e1) = fu6g; �1<(e2) = �; �1<(e3) = fu4; u5g;
 1<(:e1) = U � fu6g;  1<(:e2) = �;  1<(:e3) = fu1; u2; u3; u6g:
The upper RBS-apx of g1 is g1

<
= (�1

<
;  1

<
; �A1), calculated as:

�1
<
(e1) = U; �1

<
(e2) = �1

<
(e3) = U � fu6g;

 1
<
(:e1) = �;  1

<
(:e2) = �;  1

<
(:e3) = fu6g:

Notice that g1< 6= g1
<
, so g1 is an RBSS. Also �1<(e) � �1(e) � �1

<
(e) and

 1<(:e) �  1(:e) �  1
<
(:e) for each e 2 �A1. This veri�es that g1< e� g1 e� g1

<
.

From these RBS-apxes, it can be concluded that the object u6 de�nitely possesses the

attribute e1, but the other objects may or may not possess e1. Similarly, the objects u4
and u5 de�nitely possess the attribute e3, while the objects u1; u2 and u3 may or may

not possess e3. But, the object u6 de�nitely possesses the attribute :e3.

4.3 Characterizations of rough bipolar soft sets

Theorem 4.3.1 Take a P-apx space (U;<) and let g = (�;  ; �A) 2 BSS(U). Then,

the subsequent asservations hold.

1. g< e� g e� g<;

2. � �A<
= � �A = � �A

<
;

3. U �A< = U �A = U �A
<
;

4. g<< = g< = (g<)
<
;

5. (g<)< = g
<
= (g<)

<
;

6. gc< = (g<)
c ;

7. gc< =
�
g<
�c
:

Proof. (1) Obvious.
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(2) The null BSS � �A = (�;U ; �A) has the lower and upper RBS-apxes symbolized
by � �A<

= (�<;U<; �A) and � �A

<
= (�

<
;U<; �A). We have for each e 2 �A

�<(e) = fu 2 U : [u]< � �(e)g

= fu 2 U : [u]< � �g = � = �(e);

�
<
(e) = fu 2 U : [u]< \�(e) 6= �g

= fu 2 U : [u]< \ � 6= �g = � = �(e);

U<(:e) = fu 2 U : [u]< \ U(:e) 6= �g

= fu 2 U : [u]< \ U 6= �g = U = U(:e);

U<(:e) = fu 2 U : [u]< � U(:e)g

= fu 2 U : [u]< � Ug = U = U(:e):

Thus, De�nition 1.5.3 implies that,

� �A<
= � �A = � �A

<
:

(3) Analogous to the proof of (2).

(4) The lower RBS-apx of the BSS g = (�;  ; �A) is symbolized by g< = (�<;  <;
�A).

Now, the lower and upper RBS-apxes of g< are symbolized by g<< = (�<<
;  <<

; �A)

and (g<)
<
= (�<

<
;  <

<
; �A), respectively. Note that, for each e 2 �A, we have

�<(e) = fu 2 U : [u]< � �(e)g = [
[u]<��(e)

[u]<:

That is, �<(e) is union of the eqv-classes of U contained in �(e): So,

�<<
(e) = fu 2 U : [u]< � �<(e)g = �<(e)

and

�<
<
(e) = fu 2 U : [u]< \ �<(e) 6= �g = �<(e)

for each e 2 �A. Similarly,

 <<
(:e) =  <(:e) =  <

<
(:e)

for each :e 2 : �A. Thus, from De�nition 1.5.3

g<< = g< = (g<)
<
:

(5) Analogous to the proof of (4).
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(6) We have gc< =
�
�c
<
;  c

<
; �A
�
and (g<)

c = ((�<)
c; ( <)

c; �A), where �c(e) =

 (:e) and  c(:e) = �(e) for each e 2 �A. So, we get

�c
<
(e) = fu 2 U : [u]< \ �

c(e) 6= �g = fu 2 U : [u]< \  (:e) 6= �g

=  <(:e) = (�<)
c(e)

and

 c
<
(:e) = fu 2 U : [u]< �  c(:e)g = fu 2 U : [u]< � �(e)g

= �<(e) = ( <)
c(:e)

for each e 2 �A. Which yields by De�nition 1.5.3, that, gc< = (g<)
c.

(7) Analogous to the proof of (6).

Proposition 4.3.2 Take a P-apx space (U;<). Then, the subsequent asservations

hold for each g1 = (�1;  1; �A1);g2 = (�2;  2; �A2) 2 BSS(U) and e 2 �A1 \ �A2.

1. �1<(e) [ �2<(e) � �1e[r�2<(e);
2. �1

<
(e) [ �2

<
(e) = �1e[r�2<(e);

3. �1<(e) \ �2<(e) = �1e\r�2<(e);
4. �1

<
(e) \ �2

<
(e) � �1e\r�2<(e);

5.  1<(:e) [  2<(:e) =  1e[r 2<(:e);
6.  1

<
(:e) [  2

<
(:e) �  1e[r 2<(:e);

7.  1<(:e) \  2<(:e) �  1e\r 2<(:e);
8.  1

<
(:e) \  2

<
(:e) =  1e\r 2<(:e).

Proof. (1) For the BSSs g1 = (�1;  1; �A1) and g2 = (�2;  2; �A2), take e 2 �A1 \ �A2.
Then, we obtain

�1<(e) [ �2<(e)

= fu 2 U : [u]< � �1(e)g [ fu 2 U : [u]< � �2(e)g

� fu 2 U : [u]< � (�1(e) [ �2(e))g

= fu 2 U : [u]< � (�1e[r�2)(e)g
= �1e[r�2<(e):
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Which proves assertion (1).

(2) Again, for the BSSs g1 = (�1;  1; �A1), g2 = (�2;  2; �A2) and for e 2 �A1 \ �A2,

we obtain

�1
<
(e) [ �2

<
(e)

= fu 2 U : [u]< \ �1(e) 6= �g [ fu 2 U : [u]< \ �2(e) 6= �g

= fu 2 U : [u]< \ (�1(e) [ �2(e)) 6= �g

= fu 2 U : [u]< \ (�1e[r�2)(e) 6= �g

= �1e[r�2<(e):
Which proves assertion (2).

In the same way, one can verify assertions (3-8).

Theorem 4.3.3 Take a P-apx space (U;<). Then, the subsequent asservations are
true for each g1 = (�1;  1; �A1);g2 = (�2;  2; �A2) 2 BSS(U).

1. g1 e� g2 implies that g1< e� g2< and g1
< e� g2

<
;

2. g1eurg2< = g1<eurg2<;
3. g1etrg2< e� g1<etrg2<;
4. g1eurg2< e� g1

<eurg2<;
5. g1etrg2< = g1<etrg2<.
Proof. (1) Assume that g1 e� g2. Then �1(e) � �2(e) and  1(:e) �  2(:e) for

each e 2 �A1, where �A1 � �A2. Which yields

�1<(e) = fu 2 U : [u]< � �1(e)g

� fu 2 U : [u]< � �2(e)g = �2<(e);

 1<(:e) = fu 2 U : [u]< \  1(:e) 6= �g

� fu 2 U : [u]< \  2(:e) 6= �g =  2<(:e)

for each e 2 �A1. Thus, from De�nition 1.5.3 , g1< e� g2<.
Similarly, it is veri�ed that g1

< e� g2<.
(2) From Proposition 4.3.2, we have

g1eurg2< = (�1e\r�2<;  1e[r 2<; �A1 \ �A2)

= (�1<
e\r�2<;  1<e[r 2<; �A1 \ �A2)

= g1<eurg2<:
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(3) Again, from Proposition 4.3.2, we have

g1etrg2< = (�1e[r�2<;  1e\r 2<; �A1 \ �A2)e� (�1<e[r�2<;  1<e\r 2<; �A1 \ �A2)

= g1<etrg2<:
(4-5) These can be veri�ed in the same way as (2-3) above.

The subsequent example shows the inclusions in (3) and (4) of the Theorem 4.3.3

may be proper.

Example 4.3.4 Consider the set U = fui; i = 1; 2; :::; 6g and the BSS g1 as in Exam-
ple 4.2.3. To observe the proper inclusion in (3) and (4) of the Theorem 4.3.3, take

another BSS g2 = (�2;  2; �A2) over U; where �A2 = fe1; e4g and �2 and  2 are given
as below.

�2(e) =

(
fu1; u3; u5g if e = e1

fu1; u2; u5; u6g if e = e4
 2(:e) =

(
fu2g if :e = :e1
fu4g if :e = :e4

The lower RBS-apx g2< = (�2<;  2<;
�A2) of g2 is calculated as:

�2<(e) =

(
� if e = e1

fu6g if e = e4
 2<(:e) =

(
fu1; u2; u3g if :e = :e1
fu4; u5g if :e = :e4

and the upper RBS-apx g2
<
= (�2

<
;  2

<
; �A2) of g2 is calculated as:

�2
<
(e) =

(
fu1; u2; u3; u4; u5g if e = e1

U if e = e4
 2

<
(:e) =

(
� if :e = :e1
� if :e = :e4

The restricted unions and intersections are calculated for the attributes �A1\ �A2 = fe1g:
First we show the proper inclusion in (3) of the Theorem 4.3.3. For this, we calculate

the restricted union g1etrg2 = (�1e[r�2;  1e\r 2; �A1 \ �A2) as:

(�1e[r�2)(e1) = �1(e1) [ �2(e1) = fu1; u3; u4; u5; u6g;
( 1e\r 2)(:e1) =  1(:e1) \  2(:e1) = fu2g:
The lower RBS-apx g1etrg2< = (�1e[r�2<;  1e\r 2<; �A1\ �A2) of g1etrg2 is calculated

as:

(�1e[r�2<)(e1) = fu4; u5; u6g;
( 1e\r 2<)(:e1) = fu1; u2; u3g:
The restricted union g1<etrg2< = (�1<e[r�2<;  1<e\r 2<; �A1 \ �A2) is calculated as:

(�1<
e[r�2<)(e1) = �1<(e1) [ �2<(e1) = fu6g;

( 1<
e\r 2<)(:e1) =  1<(:e1) \  2<(:e1) = fu1; u2; u3g:
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This veri�es the proper inclusion in (3), that is, g1etrg2< e� g1<etrg2<. To verify
the proper inclusion in (4) of the Theorem 4.3.3, we calculate the restricted intersection

g1eurg2 = (�1e\r�2;  1e[r 2; �A1 \ �A2) as:

(�1e\r�2)(e1) = �1(e1) \ �2(e1) = fu1; u3g;
( 1e[r 2)(:e1) =  1(:e1) [  2(:e1) = fu2; u5g:
The upper RBS-apx g1eurg2< = (�1e\r�2<;  1e[r 2<; �A1\ �A2) of g1eurg2 is calculated

as:

(�1e\r�2<)(e1) = fu1; u2; u3g;
( 1e[r 2<)(:e1) = �:

The restricted intersection g1
<eurg2< = (�1

<e\r�2<;  1<e[r 2<; �A1 \ �A2) is calcu-

lated as:

(�1
<e\r�2<)(e1) = �1

<
(e1) \ �2

<
(e1) = fu1; u2; u3; u4; u5g;

( 1
<e[r 2<)(:e1) =  1

<
(:e1) [  2

<
(:e1) = �:

This shows the proper inclusion in (4), that is, g1eurg2< e� g1
<eurg2<:

The following proposition points out the <�de�nable BSSs over U; when < is

identity or universal binary relation on U:

Proposition 4.3.5 Take a P-apx space (U;<).

1. If < is the identity relation on U; then each BSS over U is <�de�nable.

2. If < is the universal binary relation on U; then the <�de�nable BSSs are U �A
and � �A; where

�A � �E.

Proof. Straightforward.

Proposition 4.3.6 Take a P-apx space (U;<) and let g = (�;  ; �A) 2 BSS(U). Then,
the subsequent statements are equivalent.

1. g< e� g;
2. g e� g<;
3. g is <�de�nable.

Proof. (1))(2) Assume that g< e� g. From Theorem 4.3.3, we have (g<)<
e� g<.

Then, Theorem 4.3.1 yields

g e� g< = (g<)< e� g<
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(2))(3) Assume that g e� g<. But we have g< e� g. So, g = g<. This gives
g< = (g<)

<
= g<

Thus, g is <�de�nable.
(3))(1) Obvious.

Theorem 4.3.7 Take a P-apx space (U;<) and let � be an eqv-rel on U; such that,
< � �. Then, g� e� g< and g

< e� g� for each g 2 BSS(U).

Proof. Let g = (�;  ; �A) 2 BSS(U) for some �A � �E. Since < � �, we have

[u]< � [u]� for each u 2 U: Thus,

�
�
(e) = fu 2 U : [u]� � �(e)g

� fu 2 U : [u]< � �(e)g = �<(e)

for each e 2 �A. Similarly,  
�
(:e) �  <(:e) for each :e 2 : �A. Hence, g� e� g<. In the

same way, it can be veri�ed that g< e� g�.
4.4 Similarity relations associated with RBS approxima-

tions

This section establishes some binary relations between the BSSs based on their RBS-

apxes and investigate their properties.

De�nition 4.4.1 Take a P-apx space (U;<) and let g1;g2 2 BSS(U). Then, we

de�ne the following notions.

� g1 '< g2 if and only if g1< = g2<.

� g1 h< g2 if and only if g1
<
= g2

<
.

� g1 �< g2 if and only if g1< = g2< and g1
<
= g2

<
.

These relations may be termed as the lower RBS similarity relation, upper RBS

similarity relation and the RBS similarity relation, respectively. Obviously, g1 and g2
are RBS similar if and only if they are both, lower and upper RBS similar.

Note that if g1 '< g2; then, g1< = g2<. Which means that

(�1<;  1<;
�A1) = (�2<;  2<;

�A2):

That is, �A1 = �A2. Same is the case when g1 h< g2 and g1 �< g2. So, any two
lower RBS similar, upper RBS similar or RBS similar BSSs over U have same set of

attributes. This means that their restricted and extended intersections and unions

coincide.
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Proposition 4.4.2 The relations '<; h< and �< are eqv-rels on BSS(U).

Proof. Straightforward.

Theorem 4.4.3 Take a P-apx space (U;<). Then, the subsequent asservations hold
for each gi = (�i;  i; �Ai) 2 BSS(U); i = 1; 2; 3; 4.

1. g1 h< g2 if and only if g1 h< (g1etrg2) h< g2;
2. g1 h< g2 and g3 h< g4 imply that (g1etrg3) h< (g2etrg4), provided that

�A1 \ �A3 6= �;

3. g1 e� g2 and g2 h< � �A2
imply that g1 h< � �A1

;

4. g1 e� g2 and g1 h< U �A1 imply that g2 h< U �A2, provided that �A1 = �A2:

Proof. (1) Let g1 h< g2. Then, g1
<
= g2

<
and �A1 = �A2. From Theorem 4.3.3,

we have

g1etrg2< = g1<etrg2< = g1< = g2<:
So, g1 h< (g1etrg2) h< g2.

Converse holds by the transitivity of the relation h<.
(2) Let g1 h< g2 and g3 h< g4; with �A1 \ �A3 = �A2 \ �A4 6= �. Then, g1

<
= g2

<

and g3
<
= g4

<
with �A1 = �A2 and �A3 = �A4. From Theorem 4.3.3, we have

g1etrg3< = g1<etrg3< = g2<etrg4< = g2etrg4<:
Thus, (g1etrg3) h< (g2etrg4).

(3) We have g1 e� g2 and g2 h< � �A2
. Which implies that �A1 � �A2 and

g1
< e� g2< = � �A2

<
= � �A2

:

Restricting the attribute set of � �A2
to �A1, we get g1

< e� � �A1
. But � �A1

e� g1
<
, so

g1
<
= � �A1

= � �A1
. Which shows that g1 h< � �A1

.

(4) g1 h< U �A1 implies that g1
<
= U �A1

<
= U �A1 . By �A1 = �A2 we have U �A1 = U �A2 .

Clearly, g2 e�U �A2 . Then, g1 e� g2 implies that
g2
< e� U �A2< = U �A2 = U �A1 = g1< e� g2<

Which yields g2
<
= U �A2

<
. Hence, g2 h< U �A2 .

Theorem 4.4.4 Take a P-apx space (U;<). Then, the subsequent asservations hold
for each gi = (�i;  i; �Ai) 2 BSS(U); i = 1; 2; 3; 4.
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1. g1 '< g2 if and only if g1 '< (g1eurg2) '< g2;
2. g1 '< g2 and g3 '< g4 imply that (g1eurg3) '< (g2eurg4), provided that

�A1 \ �A3 6= �;

3. g1 e� g2 and g2 '< � �A2
imply that g1 '< � �A1

;

4. g1 e� g2 and g1 '< U �A1 imply that g2 '< U �A2, provided that �A1 = �A2:

Proof. Parallel to the proof of Theorem 4.4.3.

Theorem 4.4.5 Take a P-apx space (U;<). Then, the subsequent asservations hold
for each gi = (�i;  i; �Ai) 2 BSS(U); i = 1; 2.

1. g1 e� g2 and g2 �< � �A2
imply that g1 �< � �A1

;

2. g1 e� g2 and g1 �< U �A1 imply that g2 �< U �A2, provided that �A1 = �A2:

Proof. This directly follows from De�nition 4.4.1 and Theorems 4.4.3, 4.4.4.

4.5 Applications of RBS approximations

Decision making is a major area to be conferred in almost all kinds of data analysis.

There is often a desire to decide for the optimum object. But sometimes, a decision be-

tween the attributes also needs to be made. We propose algorithms for both situations

by applying the concept of RBS-apxes of a BSS. Let the set of attributes and the set

containing objects be symbolized by �E = fei : 1 � i � mg and U = fuj : 1 � j � ng,
respectively. The BSSs describing the assessment of the decision maker about the

objects is g = (�;  ; �E): We use, in this section, the representation of the BSS g as
given in Table 1.1 of Example 1.5.2. Recall that, the (i; j)th entry aij in the table of g
represents the information about the object uj provided by g for the attribute ei 2 �E.

4.5.1 Deciding between the attributes

There are many situations in which one needs to decide between some attributes or

parameters possessed by some objects, or when one is trying to �nd an attribute hav-

ing maximum e¤ect on the objects. The algorithm presented here helps to decide for

an attribute which is causing maximum e¤ect on the objects. First, we de�ne an indis-

cernibility parameter P for the objects uj of U: Then, we come to the indiscernibility
relation on U:
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De�nition 4.5.1 The indiscernibility parameter P, having the values pj correspond-
ing to each object uj 2 U; is de�ned by

pj =
m
�
i=1
aij

This parameter depicts the di¤erence between the number of positive attributes ei
and the number of negative attributes :ei possessed by the object uj 2 U: Now we

come to the indiscernibility relation on U associated with the BSS g. We say that two
objects uj and uk are indiscernible, written as uj � uk; if and only if they have same

indiscernibility value. That is, uj � uk if and only if pj = pk: The indiscernibility

relation < between the objects of U is established as:

< = f(uj ; uk) 2 U � U : uj � ukg: (4.1)

Surely, < is an eqv-rel on U: Now, denote �i =
n
�
j=1

aij and �i =
n
�
j=1

aij , where aij is the

(i; j)th entry in the table of g< and aij is the (i; j)th entry in the table of g
<
:

De�nition 4.5.2 The decision parameter D has the values di for each ei 2 �E, given

by

di = �i + �i:

Algorithm 4.5.3 The algorithm to decide for the best attribute in �E is as follows:

1. Input the BSS g = (�;  ; �E).

2. Find the eqv-rel < on the set U of objects, using Formula 4.1.

3. Evaluate g< and g
<
for the BSS g using the eqv-rel <. Find the values �i and

�i:

4. Find the decision values di for each attribute ei 2 �E using De�nition 4.5.2:

5. Construct the decision table having columns of �E and the decision parameter D

rearranged in descending order with respect to the values di. Choose k, so that,

dk = max
i

di. Then, ek is the best optimal attribute.

The �ow chart of Algorithm 4.5.3 is shown in Figure 4.1.
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Figure 4.1: Flow chart of Algorithm 4.5.3

For the illustration, we apply this algorithm to an example.

Example 4.5.4 We discuss the situation of a city X where many young citizens are
su¤ering from the cardiac attack, while it is usually considered to be a problem of

old age. Dr. Y, a cardiologist, is trying to search why this is occurring in early age

so frequently in the city. For this purpose, he takes a sample of heart patients of

age group (30-50 years) admitted in di¤erent hospitals of the city. The common risk

factors causing heart attacks are �E = fe1 = smoking, e2 = heavy drinking of alcohol,

e3 = diabetic, e4 = high cholesterol level, e5 = sedentary life style, e6 = high blood

pressureg, which will serve as the attribute set for U: The "counter" set of �E may be

taken as : �E = f:e1 = no smoking, :e2 = no drinking of alcohol, :e3 = non-diabetic,
:e4 = normal cholesterol level, :e5 = healthy life style, :e6 = normal blood pressureg.
To give an understanding of the procedure, we take a small sample U = ft1; t2; :::::; t8g
of eight patients.

1. The BSS g = (�;  ; �E) describing the history and examination report of patients
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under consideration taken by Dr. Y, is given in Table 4.1.

g t1 t2 t3 t4 t5 t6 t7 t8

e1 1 �1 1 1 1 1 �1 �1
e2 �1 1 1 �1 �1 1 1 1

e3 1 1 �1 1 0 �1 �1 1

e4 0 1 0 1 �1 �1 �1 0

e5 �1 1 0 �1 �1 1 1 �1
e6 1 �1 1 1 0 �1 1 �1

Table 4.1: The BSS (�;  ; �E)

2. The values of the indiscernibility parameter P, corresponding to the objects are
calculated in Table 4.2.

g t1 t2 t3 t4 t5 t6 t7 t8

e1 1 �1 1 1 1 1 �1 �1
e2 �1 1 1 �1 �1 1 1 1

e3 1 1 �1 1 0 �1 �1 1

e4 0 1 0 1 �1 �1 �1 0

e5 �1 1 0 �1 �1 1 1 �1
e6 1 �1 1 1 0 �1 1 �1
P 1 2 2 2 �2 0 0 �1

Table 4.2: Calculation of values of P

This table immediately gives the eqv-rel < on U; dividing U into eqv-classes ft1g,
ft2; t3; t4g, ft5g, ft6; t7g and ft8g.

3. Find g< and �i in Table 4.3 as:

g< t1 t2 t3 t4 t5 t6 t7 t8 �i

e1 1 �1 �1 �1 1 �1 �1 �1 �4
e2 �1 �1 �1 �1 �1 1 1 1 �2
e3 1 �1 �1 �1 0 �1 �1 1 �3
e4 0 0 0 0 �1 �1 �1 0 �3
e5 �1 �1 �1 �1 �1 1 1 �1 �4
e6 1 �1 �1 �1 0 �1 �1 �1 �5

Table 4.3: Calculation of g< and �i
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Table 4.4 gives g< and �i as:

g< t1 t2 t3 t4 t5 t6 t7 t8 �i

e1 1 1 1 1 1 1 1 �1 6

e2 �1 1 1 1 �1 1 1 1 4

e3 1 1 1 1 0 �1 �1 1 3

e4 0 1 1 1 �1 �1 �1 0 0

e5 �1 1 1 1 �1 1 1 1 2

e6 1 1 1 1 0 1 1 1 5

Table 4.4: Calculation of g< and �i

4. The decision values di for the attributes are calculated in Table 4.5.

5. Table 4.6 is the decision table of g:

�E �i �i di

e1 6 �4 2

e2 4 �2 2

e3 3 �3 0

e4 0 �3 �3
e5 2 �4 �2
e6 5 �5 0

Table 4.5: Calculation of di

�E D

e1 2

e2 2

e3 0

e6 0

e5 �2
e4 �3
Table 4.6: Decision table of g

We get max
i

di = d1 = d2 = 2 and hence k = 1; 2. Thus, Dr. Y comes to the

result that the most dominant reason of so frequent cardiac attacks in younger

generation of the city X is heavy smoking (e1) and heavy drinking of alcohol

(e2). This indicates the excessive use of alcoholic drinks and heavy smoking in

the city, which is to be controlled on �rst preference in order to overcome the

cardiac attacks in younger generation.

4.5.2 Deciding between the objects

While deciding in the favour of an object from a given set containing objects, sometimes

one may be unable to take the best decision, even when the best decision is known.

So, it will always be helpful if the worst decision also becomes visible. We design

an algorithm which provides the best, as well as, the worst decision. As already

discussed, the RBS-apxes of a BSS demonstrate the de�nite or the uncertain presence

of an attribute in an object. So, the decision made with the help of these RBS-apxes

is more reliable and re�ned, as compared to the decision made by just adding the
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values aij , as in [61]. Let �A = fei : 1 � i � mog be the set of choice attributes or the
attributes of interest for the decision problem and g = (�;  ; �A) be the BSS describing
the assessment of the decision maker about the objects. The indiscernibility parameter

P for the objects is given in De�nition 4.5.1 and the indiscernibility relation < on U
is found by Formula 4.1. For the relation <; we take the (i; j)th entry in the table of
g< as aij and the (i; j)th entry in the table of g

<
as aij : Denote

pj =
mo

�
i=1
aij and pj =

mo

�
i=1
aij

Now we proceed to the decisions values for the objects.

De�nition 4.5.5 The decision parameter D0 has the values d0j corresponding to each

object uj 2 U; given by
d0j = pj + pj

If jfei : uj 2 �(ei)gj and jf:ei : uj 2  (:ei)gj represent the number of positive at-
tributes ei and the number of negative attributes :ei possessed by uj , respectively,
then, we can write

pj =
mo

�
i=1
aij = jfei : uj 2 �(ei)gj � jf:ei : uj 2  (:ei)gj

Similarly,

pj =
���fei : uj 2 �<(ei)g���� ���f:ei : uj 2  <(:ei)g��� ;

pj =
���fei : uj 2 �<(ei)g���� ���f:ei : uj 2  <(:ei)g��� ;

where
���fei : uj 2 �<(ei)g��� is the number of attributes ei surely possessed by uj ,���fei : uj 2 �<(ei)g��� is the number of attributes ei probably possessed by uj ,���f:ei : uj 2  <(:ei)g��� is the number of attributes :ei probably possessed by uj ,���f:ei : uj 2  <(:ei)g��� is the number of attributes :ei surely possessed by uj .

So, d0j becomes

d0j =
���fei : uj 2 �<(ei)g���� ���f:ei : uj 2  <(:ei)g���
+
���fei : uj 2 �<(ei)g���� ���f:ei : uj 2  <(:ei)g��� :

Note that,

fei : uj 2 �<(ei)g � fei : uj 2 �
<
(ei)g

and

f:ei : uj 2  
<
(:ei)g � f:ei : uj 2  <(:ei)g:
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So, the attributes ei (or :ei) whose presence in a particular object is de�nite, are
automatically counted twice in the decision values for that object, while the attributes

with uncertain presence are counted once. On the other hand, the algorithm in [61]

treats all the attributes equally, regardless of whether the presence of these attributes

in the objects is de�nite or uncertain. The algorithm presented in this paper helps to

�nd a better decision in a natural way. Hence, this algorithm has two main advantages

over the algorithm presented in [61].

� It provides the best, as well as, the worst decision, so that, one can avoid taking
the worst decision.

� Using the RBS-apxes, the attribute whose presence in an object is de�nite, are
given double weightage as compared to the attributes whose presence is not

certain.

Algorithm 4.5.6 The algorithm to decide for the best object in U is, as follows:

1. Input the set of choice attributes �A � �E.

2. Input the BSS g = (�;  ; �A) and �nd the values of the parameter P.

3. Find the eqv-rel < on the set U of objects, using Formula 4.1.

4. Evaluate g< and g
<
for the BSS g under the eqv-rel <. Find the values pj and

pj :

5. Find the decision values d0j corresponding to each object uj 2 U:

6. Construct the decision table having rows of U and the decision parameter D0.

Rearrange the table in descending order with respect to the values d0j. Choose k

and l, so that d0k = maxj
d0j and d

0
l = minj

d0j. Then uk is the best optimal object,

while ul is the worst optimal object to be decided.

The �ow chart of Algorithm 4.5.6 is shown in Figure 4.2.
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Figure 4.2: Flow chart of Algorithm 4.5.6

As an illustration, we apply this algorithm to an example.

Example 4.5.7 Let U = fci; i = 1; 2; :::; 7g be a set containing some construction
companies considered by Mrs. Z for the construction of his home and consider the at-

tribute set as �E = fe1 =strong structure, e2 =innovative designs, e3 =good reputation,
e4 =competitive pricing, e5 =having own crew, e6 =skilled crew, e7 =high quality ma-

terials, e8 =decisiveness, e9 =�exibility, e10 =well organizedg and : �E = f:e1 =weak
structure, :e2 =traditional designs, :e3 =ill reputation, :e4 =high pricing, :e5 =not
having own crew, :e6 =unskilled crew, :e7 =low quality materials, :e8 =indecisive,
e9 =rigidity, e10 =disorganizedg. Let the "Quality Analysis of construction work" be
described by a BSS g = (�;  ; �A) with �A = fe1; e2; e3; e4; e5; e6g by

�(e1) = fc3; c4; c7g, �(e2) = fc1; c2; c4; c6g, �(e3) = fc3; c4; c5; c7g, �(e4) = fc3; c5g,
�(e5) = fc1; c2; c3; c4; c6; c7g, �(e6) = fc1; c3; c4; c6; c7g

and  (:e1) = fc2; c6g,  (:e2) = fc3; c7g,  (:e3) = fc2; c6g,  (:e4) = fc1; c4; c7g,
 (:e5) = fc5g,  (:e6) = fc2; c5g.

1. Input the choice attributes �A = fe1; e2; e3; e4; e5; e6g.
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2. The BSS g is presented and the parameter P is evaluated in Table 4.7.

g = (�;  ; �A) c1 c2 c3 c4 c5 c6 c7

e1 0 �1 1 1 0 �1 1

e2 1 1 �1 1 0 1 �1
e3 0 �1 1 1 1 �1 1

e4 �1 0 1 �1 1 0 �1
e5 1 1 1 1 �1 1 1

e6 1 �1 1 1 �1 1 1

P 2 �1 4 4 0 1 2

Table 4.7: The BSS g and parameter P

3. From Table 4.7, we immediately get the eqv-rel

< = f(c1; c1); (c2; c2); (c3; c3); (c4; c4); (c5; c5); (c6; c6); (c7; c7);

(c1; c7); (c7; c1); (c3; c4); (c4; c3)g:

This relation divides U into eqv-classes fc1; c7g; fc3; c4g; fc2g; fc5g and fc6g:

4. Find g< and pj in Table 4.8 as:

g< c1 c2 c3 c4 c5 c6 c7

e1 0 �1 1 1 0 �1 0

e2 �1 1 �1 �1 0 1 �1
e3 0 �1 1 1 1 �1 0

e4 �1 0 �1 �1 1 0 �1
e5 1 1 1 1 �1 1 1

e6 1 �1 1 1 �1 1 1

pj 0 �1 2 2 0 1 0

Table 4.8: Calculation of g< and pj

Table 4.9 gives g< and pj as:

g< c1 c2 c3 c4 c5 c6 c7

e1 1 �1 1 1 0 �1 1

e2 1 1 1 1 0 1 1

e3 1 �1 1 1 1 �1 1

e4 �1 0 1 1 1 0 �1
e5 1 1 1 1 �1 1 1

e6 1 �1 1 1 �1 1 1

pj 4 �1 6 6 0 1 4

Table 4.9: Calculation of g< and pj
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5. The decision values d0j for the companies cj are calculated in Table 4.10.

6. Table 4.11 is the decision table.

U c1 c2 c3 c4 c5 c6 c7

pj 0 �1 2 2 0 1 0

pj 4 �1 6 6 0 1 4

d0j 4 �2 8 8 0 2 4

Table 4.10: Calculation of d0j

U c3 c4 c1 c7 c6 c5 c2

D0 8 8 4 4 2 0 �2
Table 4.11: Decision table of g

We get max
j

d0j = d03 = d04 = 8 and min
j

d0j = d02 = �2. Hence k = 3; 4 and

l = 2. Thus, the companies c3 and c4 are the best selections, while c2 is the

worst selection. So, Mrs. Z can decide between any one of c3 and c4 for the

construction of her house. But, in any case, she must not go for c2.



Chapter 5

Rough bipolar soft ideals over
semigroups

5.1 Introduction

Semigroups are a substantial part of algebra and the study of semigroups is incomplete

without the study of ideals. The theory of semigroups and the ideals in semigroups

were amalgamated with rough sets and soft sets by many authors in many ways. For

instance, the rough ideals in semigroups were �rst discussed by Kuroki [37] and the

soft ideals over semigroups were initiated by Ali et al. [12]. Motivated by this idea, we

continue the work of Chapter 4 in the direction of the BS subsemigroups and bipolar

soft ideals (BS-ids) over semigroups. We further de�ne and discuss the notions of the

BS subsemigroups, BS left ideal (BSl-id), BS right ideal (BSr-id), BS interior ideal

(BSi-id) and BS bi-ideal (BSb-id) over a semigroup. The roughness in the BSSs and

the BS subsemigroups under a cng-rel de�ned on the semigroup are also studied. We

further present the rough BS left ideal (RBSl-id), rough BS right ideal (RBSr-id),

rough BS interior ideal (RBSi-id) and rough BS bi-ideal (RBSb-id) over a semigroup

by de�ning the lower RBSl-id, RBSr-id, RBSi-id and RBSb-id and the upper RBSl-id,

RBSr-id, RBSi-id and RBSb-id over a semigroup and investigate some of their basic

properties.

5.2 Bipolar soft sets over semigroups

The BSSs in semigroups are constructed by hybridizing the RBS-apxes of the BSSs

with the semigroups. Throughout this work, � is a semigroup and �E is the set of

attributes for �. Recall that a BSS over � is given by g = (�;  ; �A); where �A � �E and

�;  are mappings given by � : �A ! P (�) and  : : �A ! P (�) with the consistency

82
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restraint �(e) \  (:e) = � for each e 2 �A. The set containing all BSSs over � is

denoted by BSS(�).

De�nition 5.2.1 Let g1 = (�1;  1; �A1);g2 = (�2;  2; �A2) 2 BSS(�) for a semigroup
�: The product of g1 and g2 is a BSS g1b� g2 = (�1 � �2;  1 �  2; �A1 \ �A2) over �,

where

(�1 � �2)(e) = �1(e)�2(e);

( 1 �  2)(:e) = ( 01(:e) 02(:e))0

for each e 2 �A.

Here,  01(:e) denotes the crisp compliment ��  1(:e) of  1(:e):

De�nition 5.2.2 A BSS g over a semigroup � is a BS subsemigroup over � if and

only if g b� g e� g:

Theorem 5.2.3 A BSS g = (�;  ; �A) 2 BSS(�) over a semigroup � is a BS sub-

semigroup over � if and only if �(e) and  0(:e) are subsemigroups of � for each

e 2 �A.

Proof. Let g = (�;  ; �A) be a BS subsemigroup over �. Then, g b� g e� g: That is,
(� � �;  �  ; �A) e� (�;  ; �A):

This gives (� � �)(e) � �(e) and ( �  )(:e) �  (:e) for each e 2 �A. Which yields

�(e)�(e) � �(e) and ( 0(:e) 0(:e))0 �  (:e); that is,  0(:e) 0(:e) �  0(:e) for each
e 2 �A. Hence, �(e) and  0(:e) are subsemigroups of � for each e 2 �A.

Converse follows by reversing the above steps.

Theorem 5.2.4 Let g1 and g2 be any two BS subsemigroups over a semigroup �.
Then, their extended intersection g1eu"g2 and the restricted intersection g1eurg2 are
also BS subsemigroups over �.

Proof. Let g1 = (�1;  1; �A1) and g2 = (�2;  2; �A2) be BS subsemigroups over �.
From Theorem 5.2.3, �1(e1), �2(e2),  

0
1(:e1) and  02(:e2) are subsemigroups of � for

each e1 2 �A1 and e2 2 �A2. The extended intersection of g1 and g2 is

g1eu"g2 = (�1e\"�2;  1e[" 2; �A1 [ �A2):

The case is obvious when e 2 �A1 � �A2 or e 2 �A2 � �A1: Take e 2 �A1 \ �A2. Then,

�1(e) \ �2(e) and  01(:e) \  
0
2(:e) are subsemigroups of �. But,

 01(:e) \  02(:e) = ( 1(:e) [  2(:e))0:
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Thus, �1(e)\�2(e) and ( 1(:e)[ 2(:e))0 are subsemigroups of � for each e 2 �A1\ �A2.
Hence, g1eu"g2 is a BS subsemigroup over �. Similar is the proof of the restricted
intersection g1eurg2:

Note that, if g1 = (�1;  1; �A1) and g2 = (�2;  2; �A2) are BS subsemigroups over �
and �A1 \ �A2 = �; then g1et"g2 is surely a BS subsemigroup over �. But generally,
the restricted (or extended) union of two BS subsemigroups over � may not be a BS

subsemigroup over �. This is established in the subsequent example.

Example 5.2.5 Let � = f1; a; b; cg represent a semigroup whose table of binary op-
eration is given below.

1 a b c

1 1 a b c

a a a a a

b b b b b

c c b a 1

Let Ê = fei : i = 1; 2; 3; 4g. We take two BS subsemigroups g1 = (�1;  1; �A1) and
g2 = (�2;  2; �A2) over � with �A1 = fe1; e2g and �A2 = fe1; e2; e3g; de�ned below.

�1(e1) = f1; cg; �1(e2) = fag;
 1(:e1) = �;  1(:e2) = fcg;
�2(e1) = fbg = �2(e2); �2(e3) = f1; a; bg;
 2(:e1) = fa; cg;  2(:e2) = fcg =  2(:e3):
The restricted union g1etrg2 = (�1e[r�2;  1e\r 2; �A1 \ �A2) is calculated for
�A1 \ �A2 = fe1; e2g; as below.
(�1e[r�2)(e1) = f1; b; cg; (�1e[r�2)(e2) = fa; bg;
( 1e\r 2)(:e1) = �; ( 1e\r 2)(:e2) = fcg:
We �nd that b; c 2 (�1e[r�2)(e1). But, cb = a =2 (�1e[r�2)(e1): So, g1etrg2 (and

similarly g1et"g2) is not a BS subsemigroup over �.
5.3 Bipolar soft ideals over semigroups

In this section, we de�ne the BSl-ids, BSr-ids, BS-ids, BSi-ids and BSb-ids over the

semigroup �. Some characterizations of these ideals are also discussed.

De�nition 5.3.1 A BSS g = (�;  ; �A) over � is a BSl-id (BSr-id) over � if and only
if U �A b� g e� g (or g b� U �A e� g):

A BSS g 2 BSS(�) is a BS-id (BS ideal) over � if it is both, BSl-id and BSr-id

over �. Recall that U �A = (U ;�; �A) 2 BSS(�) is the relative whole BSS over �, where
U(e) = � and �(:e) = � for each e 2 �A.
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Theorem 5.3.2 A BSS g = (�;  ; �A) over � is a BSl-id (BSr-id, BS-id) over � if

and only if �(e) and  0(:e) are left (right, two-sided) ideals of � for each e 2 �A.

Proof. Let g = (�;  ; �A) be a BSl-id over �. Then, U �A b� g e� g: That is, (U �
�;� �  ; �A) e� (�;  ; �A): This gives

(U � �)(e) = U(e)�(e) = �:�(e) � �(e)

and

(� �  )(:e) = (�0(:e) 0(:e))0 = (�0 0(:e))0

= (�  0(:e))0 �  (:e)

for each e 2 �A: Which yields that, ��(e) � �(e) and � 0(:e) �  0(:e) for each
e 2 �A. Hence, proved that �(e) and  0(:e) are left ideals of � for each e 2 �A.

Converse follows by reversing the above steps.

Similarly, the cases of the BSr-ids and the BS-id can be veri�ed.

Theorem 5.3.3 Let g1 and g2 be any two BSl-ids (BSr-ids, BS-ids) over �. Then,
their extended intersection g1eu"g2 and the restricted intersection g1eurg2 are also BSl-
ids (BSr-ids, BS-ids) over �.

Proof. Parallel to the proof of Theorem 5.2.4.

Theorem 5.3.4 Let g1 and g2 be any two BSl-ids (BSr-ids, BS-ids) over �. Then,
their extended union g1et"g2 and the restricted union g1etrg2 are also BSl-ids (BSr-ids,
BS-ids) over �.

Proof. Let g1 = (�1;  1; �A1) and g2 = (�2;  2; �A2) be BSl-ids over �. From

Theorem 5.3.2, �1(e1), �2(e2),  
0
1(:e1) and  02(:e2) are left ideals of � for each e1 2 �A1

and e2 2 �A2: The extended union of g1 and g2 is

g1et"g2 = (�1e["�2;  1e\" 2; �A1 [ �A2):

The case is obvious when e 2 �A1 � �A2 or e 2 �A2 � �A1: Take e 2 �A1 \ �A2. Then,

�1(e) [ �2(e) and  01(:e) [  
0
2(:e) are left ideals of �: But,

 01(:e) [  02(:e) = ( 1(:e) \  2(:e))0:

Thus, (�1e["�2)(e) and ( 1e\" 2)0(:e) are left ideals of � for each e 2 �A1 \ �A2. Hence,
g1et"g2 is a BSl-id over �.

Similarly, the cases of the BSr-ids, BS-ids and the restricted union g1etrg2 can be
veri�ed.
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Theorem 5.3.5 Let � be a semigroup. Then, the following assertion holds for each

BSr-id g1 and BSl-id g2 over �.

g1b� g2 e� g1eurg2:
Proof. Let g1 = (�1;  1; �A1) be a BSr-id and g2 = (�2;  2; �A2) be a BSl-id over

�. We have

g1b� g2 = (�1 � �2;  1 �  2; �A1 \ �A2);

g1eurg2 = (�1e\r�2;  1e[r 2; �A1 \ �A2):

From Theorem 5.3.2, �1(e) and  
0
1(:e) are right ideals of � for each e 2 �A1, while

�2(e) and  
0
2(:e) are left ideals of � for each e 2 �A2: Then, for each e 2 �A1 \ �A2; we

have

(�1 � �2)(e) = �1(e)�2(e)

� �1(e) \ �2(e) = (�1e\r�2)(e) (5.1)

and

 01(:e) 02(:e) �  01(:e) \  02(:e)

= ( 1(:e) [  2(:e))0: (5.2)

Equation 5.2 gives

( 1 �  2)(:e) = ( 01(:e) 02(:e))0

�  1(:e) [  2(:e)

= ( 1e[r 2)(:e): (5.3)

The expressions 5.1 and 5.3 yield that,

g1b� g2 e� g1eurg2
for each BSr-id g1 and BSl-id g2 over �.

Corollary 5.3.6 Let � be a semigroup. Then, for each BSr-id g1 and BSl-id g2 over
�, the subsequent assertion hold.

g1b� g2 e� g1eu"g2:
Proof. This is veri�ed directly from Theorem 5.3.5, as g1eurg2 e� g1eu"g2:

De�nition 5.3.7 A BSS g = (�;  ; �A) over � is a BSi-id (BS interior ideal) over �

if and only if U �A b� g b� U �A e� g:
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Theorem 5.3.8 A BSS g = (�;  ; �A) over � is a BSi-id over � if and only if �(e)

and  0(:e) are interior ideals of � for each e 2 �A.

Proof. Let g = (�;  ; �A) be a BSi-id over �. Then, U �A b� g b� U �A e� g. Which gives
(U � � � U ;� �  ��; �A) e� (�;  ; �A):

That is, (U � � � U)(e) � �(e) and (� �  � �)(:e) �  (:e) for each e 2 �A: This

yields U(e)�(e)U(e) � �(e) and (�0(:e) 0(:e)�0(:e))0 �  (:e) for each e 2 �A: Thus,

we have ��(e)� � �(e) and � 0(:e)� �  0(:e) for each e 2 �A: Hence, proved that

�(e) and  0(:e) are interior ideals of � for each e 2 �A.

Converse follows by reversing the above steps.

Theorem 5.3.9 Let g1 and g2 be any two BSi-ids over �. Then, their extended

intersection g1eu"g2 and the restricted intersection g1eurg2 are BSi-ids over �.
Proof. Parallel to the proof of Theorem 5.2.4.

Theorem 5.3.10 Let g1 and g2 be any two BSi-ids over �. Then, their extended
union g1et"g2 and the restricted union g1etrg2 are also the BSi-ids over �.

Proof. Parallel to the proof of Theorem 5.3.4.

De�nition 5.3.11 A BS subsemigroup g = (�;  ; �A) over � is a BSb-id (BS bi-ideal)
over � if and only if g b� U �Ab� g e� g:

Theorem 5.3.12 A BSS g = (�;  ; �A) over � is a BSb-id over � if and only if �(e)

and  0(:e) are bi-ideals of � for each e 2 �A.

Proof. Let g = (�;  ; �A) be a BSb-id over �. Then, g is a BS subsemigroup over
�. From Theorem 5.2.3, �(e) and  0(:e) are subsemigroups of � for each e 2 �A. Since

g is a BSb-id over �, so, g b� U �Ab� g e� g: Which gives
(� � U � �;  �� �  ; �A) e� (�;  ; �A):

That is, (� � U � �)(e) � �(e) and ( � � �  )(:e) �  (:e) for each e 2 �A: This

yields �(e)U(e)�(e) � �(e) and ( 0(:e)�0(:e) 0(:e))0 �  (:e) for each e 2 �A: Thus,

we have �(e)��(e) � �(e) and  0(:e)� 0(:e) �  0(:e) for each e 2 �A: Hence, proved

that �(e) and  0(:e) are bi-ideals of � for each e 2 �A.

Converse follows by reversing the above steps.

Theorem 5.3.13 Let g1 and g2 be any two BSb-ids over �. Then, their extended
intersection g1eu"g2 and the restricted intersection g1eurg2 are also BSb-ids over �.

Proof. Parallel to the proof of Theorem 5.2.4.

The extended and restricted unions of g1 and g2 are not necessarily BSb-ids over
�; because these are not BS subsemigroups over �; as shown in Example 5.2.5.
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5.4 Rough bipolar soft sets over semigroups

The rough BSSs (or RBSSs) are de�ned with the help of lower and upper RBS-apxes

of a BSS over �; on which a cng-rel < is de�ned. These approximations are de�ned
in this section. The RBS subsemigroups over � are also discussed.

De�nition 5.4.1 Take a cng-rel < on � and let g = (�;  ; �A) 2 BSS(�). The

lower and upper RBS-apxes of g with respect to (�;<) are the BSSs symbolized by
g< = (�<;  <;

�A) and g< = (�<;  <; �A), respectively, where �<; �
<
are de�ned as:

�<(e) = fu 2 � : [u]< � �(e)g;

�
<
(e) = fu 2 � : [u]< \ �(e) 6= �g

for each e 2 �A, and  <;  
<
are de�ned as:

 <(:e) = fu 2 � : [u]< \  (:e) 6= �g;

 
<
(:e) = fu 2 � : [u]< �  (:e)g

for each :e 2 : �A. g is <�de�nable if g< = g
<
; otherwise, g is an RBSS over �:

In Chapter 4, some characterizations of the RBSSs over a non-empty set U having

an eqv-rel < were presented. These characterizations are also valid when the set U is

replaced by the semigroup � and the eqv-rel on U is replaced by a cng-rel on �: So

the results in Chapter 4 also hold for the lower and upper RBS-apxes of the BSSs over

�; given in the De�nition 4.2.1.

Theorem 5.4.2 Take a cng-rel < on � and g1;g2 2 BSS(�): Then, we have

g1
<b� g2< e� g1 b� g2<:

Proof. Let g1 = (�1;  1; �A1); g2 = (�2;  2; �A2) 2 BSS(�). We have

g1
<b� g2< = (�1

< � �2
<
;  1

< �  2
<
; �A1 \ �A2);

g1b� g2< = (�1 � �2
<
;  1 �  2

<
; �A1 \ �A2):

Take e 2 �A1 \ �A2 and s 2 (�1
< � �2

<
)(e) = �1

<
(e)�2

<
(e). Then, s = ab for some

a 2 �1
<
(e) and b 2 �2

<
(e). Which gives [a]< \ �1(e) 6= � and [b]< \ �2(e) 6= �:

Let c 2 [a]< \ �1(e) and d 2 [b]< \ �2(e). Then, cd 2 [a]<[b]< � [ab]< and also

cd 2 �1(e)�2(e); as, c 2 �1(e) and d 2 �2(e). This yields [a]<[b]<\�1(e)�2(e) 6= �: That

is, [ab]< \ (�1 � �2)(e) 6= �: So, ab = s 2 (�1 � �2
<
)(e). Hence, we get

(�1
< � �2

<
)(e) � (�1 � �2

<
)(e) (5.4)
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for each e 2 �A1 \ �A2: Now, let x 2 ( 1 �  2
<
)(:e): Then,

[x]< � ( 1 �  2)(:e) = ( 01(:e) 02(:e))0:

This means that,

[x]< \  01(:e) 02(:e) = �: (5.5)

We claim that, x =2 ( 1
<
(:e))0( 2

<
(:e))0. As if, x 2 ( 1

<
(:e))0( 2

<
(:e))0; then there

exist a 2 ( 1
<
(:e))0 and b 2 ( 2

<
(:e))0; such that x = ab. That is, a =2  1

<
(:e)

and b =2  2
<
(:e). Which means that, [a]< *  1(:e) and [b]< *  2(:e). Let c 2 [a]<;

c =2  1(:e); d 2 [b]< and d =2  2(:e). Then, cd 2 [a]<[b]< � [ab]< � [x]< and

cd 2 ( 1(:e))0( 2(:e))0. Therefore, [x]< \ ( 1(:e))0( 2(:e))0 6= �. Which contradicts

Equation 5.5. Hence our claim is true, that is,

x 2 (( 1
<
(:e))0( 2

<
(:e))0)0 = ( 1

< �  2
<
)(:e):

So, we have

( 1 �  2
<
)(:e) � ( 1

< �  2
<
)(:e) (5.6)

for each e 2 �A1 \ �A2: The assertions 5.4 and 5.6 prove that g1
<b� g2<e� g1b� g2<:

Corollary 5.4.3 Let � be a semigroup and fgi : 1 � i � ng � BSS(�). Then, for a

cng-rel < on �; we have b�ni=1gi<e� b�ni=1gi<:
Here, b�ni=1gi denotes the �nite product g1 b� g2 b�:::b� gn:

Theorem 5.4.4 For a semigroup �; a complete cng-rel < on � and g1; g2 2 BSS(�);
we have

g1<b� g2<e� g1 b� g2<:
Proof. Let g1 = (�1;  1; �A1); g2 = (�2;  2; �A2) 2 BSS(�). We have

g1<b� g2< = (�1< � �2<;  1< �  2<;
�A1 \ �A2);

g1b� g2< = (�1 � �2<;  1 �  2<;
�A1 \ �A2):

Take e 2 �A1\ �A2 and let s 2 (�1< ��2<)(e) = �1<(e)�2<(e). Then, we can write s = ab

for some a 2 �1<(e) and b 2 �2<(e). Which gives [a]< � �1(e) and [b]< � �2(e): Then,

[a]<[b]< � �1(e)�2(e). Since < is complete cng-rel, so, [a]<[b]< = [ab]<: Which gives

[ab]< � �1(e)�2(e). That is, [s]< = [ab]< � (�1 � �2)(e): So, s 2 (�1 � �2<)(e). Hence

(�1< � �2<)(e) � (�1 � �2<)(e) (5.7)
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for each e 2 �A1 \ �A2. Now, let x 2 ( 1 �  2<)(:e): Then, [x]<\( 1 �  2)(:e) 6= �:

That is,

[x]< \ ( 01(:e) 02(:e))0 6= �: (5.8)

We claim that,

x 2 ( 1< �  2<)(:e) = (( 1<(:e))
0( 2<(:e))

0)0:

As if, x =2 (( 1<(:e))
0( 2<(:e))

0)0;that is, x 2 ( 1<(:e))
0( 2<(:e))

0: Then, we can

write x = yz; for some y 2 ( 1<(:e))
0 and z 2 ( 2<(:e))

0: So, [y]<\  1(:e) = �

and [z]<\  2(:e) = �: That is, [y]<�  01(:e) and [z]<�  02(:e). Thus, [y]<[z]<�
 01(:e) 02(:e). Since < is complete, so, [y]<[z]< = [yz]< = [x]<: Which gives [x]< �
 01(:e) 02(:e). This contradicts Equation 5.8. So, our claim is true. That is, x 2
( 1< �  2<)(:e). So

( 1 �  2<)(:e) � ( 1< �  2<)(:e) (5.9)

for each e 2 �A1 \ �A2. The assertions 5.7 and 5.9 prove that g1< b� g2< e� g1b�g2<.
Corollary 5.4.5 For a semigroup �; a complete cng-rel < on � and fgi : 1 � i �
ng � BSS(�); we have b�ni=1gi<e� b�ni=1gi<:
Theorem 5.4.6 Take a cng-rel < on �. Then, the following assertion holds for each
BSr-id g1 and BSl-id g2 over �.

g1b� g2<e� g1
<eurg2<:

Proof. Let g1 = (�1;  1; �A1) be a BSr-id and g2 = (�2;  2; �A2) be a BSl-id over

�. Then �1(e) and  
0
1(:e) are right ideals for each e 2 �A1, while �2(e) and  

0
2(:e) are

left ideals of �, for each e 2 �A2: We have

g1b� g2< = (�1 � �2
<
;  1 �  2

<
; �A1 \ �A2);

g1
<eurg2< = (�1

<e\r�2<;  1<e[r 2<; �A1 \ �A2):

Take e 2 �A1 \ �A2 and s 2 (�1 � �2
<
)(e). Then [s]< \ (�1 � �2)(e) 6= �; that is,

[s]< \ �1(e)�2(e) 6= �: Let t 2 [s]< \ �1(e)�2(e). Then t 2 [s]< and t 2 �1(e)�2(e). We
can write t = ab, where a 2 �1(e) and b 2 �2(e). Now ab = t 2 �1(e), as �1(e) is

right ideal of � and ab = t 2 �2(e), as �2(e) is left ideal of Ŝ. So, t 2 [s]< \ �1(e) and
t 2 [s]< \ �2(e). Which means that,

[s]< \ (�1)(e) 6= � 6= [s]< \ (�2)(e):
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That is, s 2 �1
<
(e) \ �2

<
(e) = (�1

<e\r�2<)(e). So, we have
(�1 � �2

<
)(e) � (�1

<e\r�2<)(e) (5.10)

for each e 2 �A1 \ �A2: Now, let x 2 ( 1
<e[r 2<)(:e) = ( 1<)(:e) [ ( 2<)(:e). Then,

x 2 ( 1
<
)(:e) or x 2 ( 2

<
)(:e). Which means that,

[x]< �  1(:e) or [x]< �  2(:e): (5.11)

We claim that [x]< \  01(:e) 02(:e) = �. As if there is some y 2 [x]< \  01(:e) 02(:e).
Then, y = cd for some c 2  01(:e) and d 2  02(:e). But  01(:e) is a right ideal and
 02(:e) is a left ideal of �. So, y = cd 2  01(:e) and y = cd 2  02(:e). Which yields
y 2 [x]< \  01(:e) and y 2 [x]< \  02(:e). This contradicts the assertion 5.11. Thus
[x]< \  01(:e) 02(:e) = �. This gives [x]< � ( 01(:e) 02(:e))

0
. Which means that,

x 2 ( 1 �  2
<
)(:e). Thus, we have

( 1
<e[r 2<)(:e) � ( 1 �  2<)(:e) (5.12)

for each e 2 �A1 \ �A2. The assertions 5.10 and 5.12 prove that g1b�g2<e� g1
< eur g2<.

Theorem 5.4.7 Let < be a complete cng-rel on �. Then, the following assertion

holds for each BSr-id g1 and BSl-id g2 over �.

g1b� g2<e� g1<eurg2<:
Proof. Parallel to the proof of Theorem 5.4.6.

De�nition 5.4.8 Take a cng-rel < on � and let g 2 BSS(�). Then, g is a lower (or
upper) RBS subsemigroup over �; if g< (or g

<
) is a BS subsemigroup over �.

A BSS g = (�;  ; �A) over �; which is both, lower and upper RBS subsemigroup

over �; is called an RBS subsemigroup over �:

Theorem 5.4.9 Each BS subsemigroup over � is an upper RBS subsemigroup over

�.

Proof. Let g 2 BSS(�) be a BS subsemigroup over �. Then, g b� g e� g. From
Theorems 4.3.3 and 5.4.2, we have

g<b� g< e� g b� g< e� g<:
This veri�es that g< is a BS subsemigroup over �. Therefore, g is an upper RBS
subsemigroup over �.

The converse statement of the Theorem 5.4.9 is invalid generally, as exhibited in

the next example.
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Example 5.4.10 Let � = fa; b; c; dg represent a semigroup whose table of binary
operation is given below.

a b c d

a a b b d

b b b b d

c b b b d

d d d d d

Let Ê = fei : i = 1; 2; 3; 4g. Take a cng-rel < on �; de�ning the cng-classes

fag; fb; dg and fcg. We take a BSS g = (�;  ; �A) over � with �A = fe1; e2g; de�ned
below.

�(e1) = fc; dg; �(e2) = fb; cg;
 (:e1) = fag;  (:e2) = fa; dg:
Note that g is not a BS subsemigroup over � because c 2 �(e1); but cc = b =2 �(e1).

The upper RBS-apx <(g) = (�<;  <; �A) of g under the relation < is calculated as:
�
<
(e1) = fb; c; dg; �

<
(e2) = fb; c; dg;

 
<
(:e1) = fag;  

<
(:e2) = fag:

Simple calculations verify that <(g) is a BS subsemigroup over �: So, g is not a
BS subsemigroup over �, although, it is an upper RBS subsemigroup over �.

Theorem 5.4.11 Let < be a complete cng-rel on �. Then, each BS subsemigroup

over � is a lower RBS subsemigroup over �.

Proof. Let g be a BS subsemigroup over �. Then, g b� g e� g. From Theorems

4.3.3 and 5.4.4, we have

g< b� g< e� g b� g< e� g<:
This veri�es that g< is a BS subsemigroup over �. Therefore, g is a lower RBS
subsemigroup over �.

The converse statement of the Theorem 5.4.11 is invalid generally, as exhibited in

the next example.

Example 5.4.12 Let � = fs; t; u; vg represent a semigroup whose table of binary
operation is given below.

s t u v

s s t u v

t t t u v

u u u u v

v v v v u
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Let Ê = fei : i = 1; 2; :::; 5g and < be a complete cng-rel over �; de�ning cng-

classes fsg; ftg and fu; vg. We take a BSS g = (�;  ; �A) over � with �A = fe1g;
de�ned below.

�(e1) = ft; vg;  (:e1) = fsg:
Note that g is not a BS subsemigroup over � because v 2 �(e1); but vv = u =2 �(e1).

The lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e1) = ftg;  <(:e1) = fsg:
Simple calculations verify that <(g) is a BS subsemigroup over �: So, g is not a

BS subsemigroups over �; although, it is a lower RBS subsemigroup over �.

Theorem 5.4.11 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 5.4.13 Recall the semigroup � = fa; b; c; dg; the attribute set �E and the

cng-rel < as established in Example 5.4.10. Then, < is not complete. We take a BS
subsemigroup g = (�;  ; �A) over � with �A = fe2g; de�ned below.

�(e2) = fb; cg;  (:e2) = fag:
The lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e2) = fcg;  <(:e2) = fag:
We �nd that <(g) is not BS subsemigroup over �; because c 2 �<(e2); but we have

cc = b =2 �<(e2). So, g is not a lower RBS subsemigroup over �:

5.5 Rough bipolar soft ideals over semigroups

This section establishes the notions of the RBSl-ids, RBSr-ids, RBS-ids, RBSi-ids and

RBSb-ids over the semigroup � and examines their basic properties.

De�nition 5.5.1 Take a cng-rel < on � and let g 2 BSS(�). Then, g is a lower
(resp. upper) RBSl-id (RBSr-id, RBS-id) over �; if g< (resp. g

<
) is a BSl-id (BSr-id,

BS-id) over �:

A BSS g in �; which is both, lower and upper RBSl-id (RBSr-id, RBS-id) over �;
is called an RBSl-id (RBSr-id, RBS-id) over �:

Theorem 5.5.2 Take a cng-rel < on �. Then, each BSl-id (BSr-id, BS-id) over �
is an upper RBSl-id (RBSr-id, RBS-id) over �.
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Proof. Let g 2 BSS(�) be a BSl-id over �. Then, U �Ab� g e� g. From Theorem

4.3.3, we have U �Ab� g<e� g<: Now, from Theorems 4.3.1 and 5.4.2, we have

U �Ab� g< = U �A
<b� g<e� U �Ab� g< e� g<:

This veri�es that g< is a BSl-id over �. Therefore, g is an upper RBSl-id over �.
Similarly, the cases of BSr-ids and the BS-ids over � can be veri�ed.

The converse statement of the Theorem 5.5.2 is invalid generally, as exhibited in

the next example.

Example 5.5.3 Let � = fk; l;m; ng represent a semigroup whose table of binary
operation is given below.

k l m n

k k k k n

l k l k n

m k k m n

n n n n n

Let Ê = fe1; e2; e3g and < be a cng-rel over �; de�ning cng-classes fk; l; ng and
fmg. We take a BSS g = (�;  ; �A) over � with �A = fe1; e3g; de�ned below.

�(e1) = fk; lg; �(e3) = fl; ng;
 (:e1) = fmg;  (:e3) = fmg:
Note that g is not a BSl-id over � because k 2 �(e1); but nk = n =2 �(e1). The

upper RBS-apx <(g) = (�<;  <; �A) of g under the relation < is calculated as:
�
<
(e1) = fk; l; ng; �

<
(e3) = fk; l; ng;

 
<
(:e1) = fmg;  

<
(:e3) = fmg:

Simple calculations verify that <(g) is a BSl-id over �: So, g is not a BSl-id over
�; although, it is an upper RBSl-id over �.

Theorem 5.5.4 Let < be a complete cng-rel on �. Then, each BSl-id (BSr-id, BS-id)
over � is a lower RBSl-id (RBSr-id, RBS-id) over �.

Proof. Let g be a BSl-id over �. Then, U �Ab� g e� g. From Theorem 4.3.3, we have

U �Ab� g<e� g<: Now, from Theorems 4.3.1 and 5.4.4, we have

U �Ab� g< = U �A<b� g<e� U �Ab� g< e� g<:
This veri�es that g< is a BSl-id over �. Therefore, g is a lower RBSl-id over �.
Similarly, the cases of BSr-ids and BS-ids over � can be veri�ed.
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The converse statement of the Theorem 5.5.4 is invalid generally, as exhibited in

the next example.

Example 5.5.5 Recall the semigroup � = fk; l;m; ng and the attribute set Ê as

established in Example 5.5.3. Take a complete cng-rel < on �; de�ning classes fk; l;mg
and fng: We take a BSS g = (�;  ; �A) over � with �A = fe2; e3g; de�ned below.

�(e2) = fl;m; ng; �(e3) = fl; ng;
 (:e2) = fkg;  (:e3) = fmg:
Note that g is not a BSl-id over � because m 2 �(e2); but lm = k =2 �(e2). The

lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e2) = fng = �<(e3);

 <(:e2) = fk; l;mg =  <(:e3):
Simple calculations verify that <(g) is a BSl-id over �: So, g is not a BSl-id over

�; although, it is a lower RBSl-id over �.

Theorem 5.5.4 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 5.5.6 Recall the semigroup � = fs; t; u; vg and the attribute set �E as estab-

lished in Example 5.4.12. Take a cng-rel < on �; de�ning the cng-classes fsg; ft; ug;
and fvg: Then, < is not complete. We take a BSl-id g = (�;  ; �A) over � with
�A = fe4g; de�ned below.
�(e4) = fu; vg;  (:e4) = fsg:
The lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e4) = fvg;  <(:e4) = fsg:
We �nd that <(g) is not BSl-id over �; because v 2 �<(e4); but we have vv = u =2

�<(e4). So, g is not a lower RBSl-id over �:

De�nition 5.5.7 Take a cng-rel < on � and let g 2 BSS(�). Then, g is a lower (or
upper) RBSi-id over �; if g< (or g

<
) is a BSi-id over �.

A BSS g over �; which is both, lower and upper RBSi-id over �; is called an
RBSi-id over �:

Theorem 5.5.8 Take a cng-rel < on �. Then, each BSi-id over � is an upper RBSi-
id over �.

Proof. Let g be a BSi-id over �. Then, U �Ab� g b� U �A e� g. From Theorem 4.3.3,

we have U �Ab� g b� U �A<e� g<: Now, from Theorem 4.3.1 and Corollary 5.4.3, we have

U �Ab� g< b� U �A = U �A
< b� g< b� U �A<e� U �Ab� g b� U �A< e� g<:
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This veri�es that g< is a BSi-id over �. Therefore, g is an upper RBSi-id over �.

The converse statement of the Theorem 5.5.8 is invalid generally, as exhibited in

the next example.

Example 5.5.9 Recall the semigroup � = fk; l;m; ng; the attribute set Ê and the

cng-rel < on �; as established in Example 5.5.3. We take a BSS g = (�;  ; �A) over �
with �A = fe2; e3g; de�ned below.

�(e2) = fl; ng; �(e3) = fk; lg;
 (:e2) = fmg;  (:e3) = fmg:
Note that g is not a BSi-id over � as l 2 �(e2); but mlm = k =2 �(e2). The upper

RBS-apx <(g) = (�<;  <; �A) of g under the relation < is calculated as:
�
<
(e2) = fk; l; ng = �

<
(e3);

 
<
(:e2) = fmg =  

<
(:e3):

Simple calculations verify that <(g) is a BSi-id over �: So, g is not a BSi-id over
�; although, it is an upper RBSi-id over �.

Theorem 5.5.10 Let < be a complete cng-rel on �. Then, each BSi-id over � is a

lower RBSi-id over �.

Proof. Let g be a BSi-id over �. Then, U �Ab� g b� U �Ae� g. From Theorem 4.3.3, we

have U �Ab� g b� U �A<e� g<: Now, from Theorem 4.3.1 and Corollary 5.4.5, we have

U �Ab� g<b� U �A = U �A<b� g<b� U �A<e�U �Ab� g b� U �A< e� g<:
This veri�es that g< is a BSi-id over �. Therefore, g is a lower RBSi-id over �.

The converse statement of the Theorem 5.5.10 is invalid generally, as exhibited in

the next example.

Example 5.5.11 Recall the semigroup � = fk; l;m; ng; the set Ê and the complete

cng-rel < over �; as established in Example 5.5.5. We take a BSS g = (�;  ; �A) over
� with �A = fe1; e2g de�ned below.

�(e1) = fm;ng; �(e2) = fl; ng;
 (:e1) = flg;  (:e2) = fkg:
Note that g is not a BSi-id over � because m 2 �(e1); but kml = k =2 �(e1). The

lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e1) = fng = �<(e2);

 <(:e1) = fk; l;mg =  <(:e2):
Simple calculations verify that <(g) is a BSi-id over �: So, g is not a BSi-id over

�; although, it is a lower RBSi-id over �.
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Theorem 5.5.10 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 5.5.12 Recall the semigroup � = fk; l;m; ng and the attribute set �E as

established in Example 5.5.3. Take the cng-rel < on � de�ning the classes fk;m; ng
and flg: Then, < is not complete. We take a BSi-id g = (�;  ; �A) over � with �A =

fe2; e3g; de�ned below.
�(e2) = fk; l; ng; �(e3) = fng;
 (:e2) =  (:e3) = fmg:
The lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e2) = flg; �<(e3) = �;

 <(:e2) = fk;m; ng =  <(:e3):
We �nd that <(g) is not BSi-id over �; because l 2 �<(e2); but we have klm = k =2

�<(e2). So, g is not a lower RBSi-id over �:

De�nition 5.5.13 Take a cng-rel < on � and let g 2 BSS(�). Then, g is a lower
(or upper) RBSb-id over �; if g< (or g

<
) is a BSb-id over �.

A BSS g over �; which is both, lower and upper RBSb-id over �; is called an
RBSb-id over �:

Theorem 5.5.14 Take a cng-rel < on �. Then, each BSb-id over � is an upper

RBSb-id over �.

Proof. Let g 2 BSS(�) be a BSb-id over �. Then, g is BS subsemigroup over
� and g b� U �Ab� g e� g. So, g< is a BS subsemigroup over � from Theorem 5.4.9 and

g b� U �Ab� g<e� g< from Theorem 4.3.3. Now, from Theorem 4.3.1 and Corollary 5.4.3,

we have

g< b� U �Ab� g< = g< b� U �A<b� g<e� g b� U �Ab� g< e� g<:
This veri�es that g< is a BSb-id over �. Therefore, g is an upper RBSb-id over �.

The converse statement of the Theorem 5.5.14 is invalid generally, as exhibited in

the next example.

Example 5.5.15 Recall the semigroup � = fk; l;m; ng; the attribute set Ê and the

cng-rel < over � as established in Example 5.5.3. We take a BSS g = (�;  ; �A) over
� with �A = fe1; e2g; de�ned below.
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�(e1) = fl; kg; �(e2) = fl; ng;
 (:e1) = fmg =  (:e2):
Note that g is not a BSb-id over � because l 2 �(e1); but lnl = n =2 �(e1). The

upper RBS-apx <(g) = (�<;  <; �A) of g under the relation < is calculated as:
�
<
(e1) = fl; k; ng = �

<
(e2);

 
<
(:e1) = fmg =  

<
(:e2):

Simple calculations verify that <(g) is a BSb-id over �: So, g is not a BSb-id over
�; although, it is an upper RBSb-id over �.

Theorem 5.5.16 Let < be a complete cng-rel on �. Then, each BSb-id over � is a

lower RBSb-id over �.

Proof. Let g be a BSb-id over �. Then, g is BS subsemigroup over � and g b� U �Ab�
g e� g. So, g< is a BS subsemigroup over � from Theorem 5.4.11 and g b� U �Ab� g<e�
g< from Theorem 4.3.3. Now, from Theorem 4.3.1 and Corollary 5.4.5, we have

g<b� U �Ab� g< = g<b� U �A<b� g<e� g b� U �Ab�g< e� g<:
This veri�es that g< is a BSb-id over �. Therefore, g is a lower RBSb-id over �.

The converse statement of the Theorem 5.5.16 is invalid generally, as exhibited in

the next example.

Example 5.5.17 Recall the semigroup � = fs; t; u; vg; the attribute set Ê and the

complete cng-rel < over �; as established in Example 5.4.12. We take a BSS g =
(�;  ; �A) over � with �A = fe5g; de�ned below.

�(e5) = fs; ug;  (:e5) = ft; vg:
Note that g is not a BSb-id over � because s; u 2 �(e5); but svu = v =2 �(e5). The

lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e5) = fsg;  <(:e5) = ft; u; vg:
Simple calculations verify that <(g) is a BSb-id over �: So, g is not a BSb-id over

�; although, it is a lower RBSb-id over �.

Theorem 5.5.16 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 5.5.18 Recall the semigroup � = fk; l;m; ng; the attribute set �E as taken

in Example 5.5.3. Take the cng-rel < on � de�ning the classes fk;m; ng and flg:
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Then, < is not complete. We take a BSb-id g = (�;  ; �A) over � with �A = fe1; e3g;
de�ned below.

�(e1) = fk; l; ng; �(e3) = fmg;
 (:e1) = fmg;  (:e3) = fk; l; ng:
The lower RBS-apx <(g) = (�<;  <; �A) of g under < is calculated as:
�<(e1) = flg; �<(e3) = �;

 <(:e1) = fk;m; ng;  <(:e3) = �:
<(g) is not BSb-id over �; because l 2 �<(e1); but lml = k =2 �<(e2). So, g is not

a lower RBSb-id over �:



Chapter 6

Rough fuzzy bipolar soft sets

6.1 Introduction

Fuzzy bipolar soft sets (FBSSs) are built to manage the fuzziness, as well as bipolarity

of the data with respect to multiple characteristics at a single platform. These sets are

presented by Naz and Shabir [51]. In this chapter, we aim to explore the roughness in

FBSSs and to initiate the notion of the rough FBSSs (RFBSSs) over the universe U of

discourse. The RFBSSs are de�ned with the help of the lower and upper RFBS-apxes

of the FBSSs in the P-apx space. Roughness in di¤erent soft and fuzzy structures is

de�ned by many researchers. Rough FSs are studied in [18, 24, 29]. Malik and Shabir

[45] studied rough BFSs. Rough soft sets are discussed in [7, 29]. We have presented the

RFBSSs in Section 6.2. Some characterizations of the RFBSSs are studied in Section

6.3 and some similarity relations on the set containing FBSSs over U are de�ned in

Section 6.4 with the help of their RFBS-apxes. Another exotic feature of this chapter

is the uncertainty measures, such as accuracy measure and roughness measure for the

RFBS-apxes of the FBSSs. Earlier in 1996, Banarjee and Pal [15] provided a roughness

measure for the FSs using �-cuts on the FSs. The roughness measures for the FBSSs

using the approach of Banarjee and Pal, are de�ned and discussed in Section 6.5.

These are the measures which provide an estimation to investigate how accurate are

the RFBS-apxes of the FBSSs.

As mentioned earlier, the FBSSs are built to handle fuzziness, as well as bipolarity

of the data with respect to multiple attributes. Due to this quality, these sets have great

practicality and applicability in decision making techniques, which is an important

application of the FBSSs. Applicability of the rough sets, FSs and soft sets in decision

analysis are discussed in [28, 43, 45, 46, 47, 55, 61, 66]. The last section of this

chapter presents an application of the RFBS-apxes of the FBSSs. An algorithm is also

designed for that application, supported by a suitable example to illustrate the steps

100
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of the algorithm.

6.2 Rough fuzzy bipolar soft sets

Roughness in the FBSSs using an eqv-rel < on the universe U (6= �) possessing an

attribute set �E is discussed in this section by de�ning the upper and lower RFBS-apxes

of FBSSs in the P-apx space (U;<).

De�nition 6.2.1 Take a P-apx space (U;<) and ! = (�;  ; �A) 2 FBSS(U). The

upper and lower RFBS-apxes of ! in (U;<) are the FBSSs <(!) = (�
<
;  

<
; �A) and

<(!) = (�<;  <;
�A), respectively, where �<(e), �

<
(e),  <(:e),  

<
(:e) are FSs in U;

de�ned by

�<(e)(u) = �(e)<(u) = ^
y2[u]<

�(e)(y);

�
<
(e)(u) = �(e)

<
(u) = _

y2[u]<
�(e)(y);

 <(:e)(u) =  (:e)<(u) = _
y2[u]<

 (:e)(y);

 
<
(:e)(u) =  (:e)<(u) = ^

y2[u]<
 (:e)(y)

for each e 2 �A and for each u 2 U: If <(!) = <(!), then, ! is said to be <�de�nable;
otherwise, ! is an RFBSS over U:

The interpretation of these RFBS-apxes of !, that is, the information about an

object u of U; depicted by the above de�ned FSs is as follows.

� �<(e)(u) indicates the degree to which u de�nitely has the property e.

� �<(e)(u) indicates the degree to which u probably has the property e.

�  <(:e)(u) indicates the degree to which u probably has the property opposite
to e.

�  <(:e)(u) indicates the degree to which u de�nitely has the property opposite
to e.

De�nition 6.2.2 Let < be an eqv-rel on the universe U: an FBSS ! = (�;  ; �A) over
U is referred to be classwise constant under < if �(e)(u) = �(e)(u0) and  (:e)(u) =
 (:e)(u0), whenever, u0 2 [u]< for u; u0 2 U:
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It is easy to note that the relative null FBSS � �A, the relative whole FBSS
~U �A and

the constant FBSS are all classwise constant under each eqv-rel < on U: The subsequent
example presents a classwise constant FBSS. The RFBS-apxes of an arbitrary FBSS

over U are also explained in this example.

Example 6.2.3 Let U = fq1; q2; q3; q4; q5g contain �ve houses and �E = fe1 =costly,
e2 =attractive, e3 =wooden, e4 =in natural surroundings, e5 =properly maintainedg
be a set of attributes for U: Let the counter set of �E be : �E = f:e1 =cheap, :e2 =dull,
:e3 =not wooden, :e4 =in urban area, :e5 =not maintainedg. Let the house q1 be in
some locality A, the houses q2 and q3 be in a locality B and the houses q4 and q5 be

in a locality C. We de�ne a binary relation < on U; such that, two houses are related
in < if and only if they are in same locality. Then, < is an eqv-rel on U; de�ning

the eqv-classes fq1g; fq2; q3g and fq4; q5g. We construct an FBSS ! = (�;  ; �A) over

U; describing the assessment of Mr. A, who intends to buy a house, preferring the

attribute set �A = fe2; e5g. Let the FBSS ! be de�ned as follows.
�(e2) = fq1=0:8; q2=0:6; q3=0:6; q4=0:5; q5=0:5g;
 (:e2) = fq1=0:1; q2=0:3; q3=0:3; q4=0:4; q5=0:4g;
�(e5) = fq1=0:5; q2=0:4; q3=0:4; q4=0:6; q5=0:6g;
 (:e5) = fq1=0:5; q2=0:4; q3=0:4; q4=0:4; q5=0:4g:
Then, ! is a classwise constant FBSS over U: Now, consider another FBSS !1 =

(�1;  1; �A1) over U with �A1 = fe1; e2; e3g, which demonstrates the assessment of some
other person about the houses of U: Let !1 be de�ned as given below.

�1(e1) = fq1=0:7; q2=0:6; q3=0:8; q4=0:5; q5=0:6g;
 1(:e1) = fq1=0:2; q2=0:3; q3=0:1; q4=0:5; q5=0:3g;
�1(e2) = fq1=0:8; q2=0:7; q3=0:8; q4=0:6; q5=0:6g;
 1(:e2) = fq1=0:1; q2=0:1; q3=0:2; q4=0:2; q5=0:3g;
�1(e3) = fq1=0:4; q2=0:6; q3=0:4; q4=0:6; q5=0:5g;
 1(:e3) = fq1=0:5; q2=0:2; q3=0:5; q4=0:4; q5=0:5g:
The lower RFBS-apx <(!1) = (�1<;  1<;

�A1) of !1 is calculated as below.

�1<(e1) = fq1= ^
y2[q1]

�1(e1)(y); q2= ^
y2[q2]

�1(e1)(y); :::; q5= ^
y2[q5]

�1(e1)(y)g

= fq1= ^
y=q1

�1(e1)(y); q2= ^
y=q2;q3

�1(e1)(y); :::; q5= ^
y=q4;q5

�1(e1)(y)g
= fq1=0:7; q2=(0:6 ^ 0:8); q3=(0:6 ^ 0:8); q4=(0:5 ^ 0:6); q5=(0:5 ^ 0:6)g
= fq1=0:7; q2=0:6; q3=0:6; q4=0:5; q5=0:5g:
In the same way, the following FSs are calculated for each e 2 �A1.

�1<(e2) = fq1=0:8; q2=0:7; q3=0:7; q4=0:6; q5=0:6g;
�1<(e3) = fq1=0:4; q2=0:4; q3=0:4; q4=0:5; q5=0:5g;
 1<(:e1) = fq1=0:2; q2=0:3; q3=0:3; q4=0:5; q5=0:5g;
 1<(:e2) = fq1=0:1; q2=0:2; q3=0:2; q4=0:3; q5=0:3g;
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 1<(:e3) = fq1=0:5; q2=0:5; q3=0:5; q4=0:5; q5=0:5g:
For the upper RFBS-apx <(!1) = (�1

<
;  1

<
; �A1) of !1, the FSs �1

<
(ei) and

 1
<
(:ei) are calculated for i = 1; 2; 3 as below.
�1
<
(e1) = fq1=0:7; q2=0:8; q3=0:8; q4=0:6; q5=0:6g;

�1
<
(e2) = fq1=0:8; q2=0:8; q3=0:8; q4=0:6; q5=0:6g;

�1
<
(e3) = fq1=0:4; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;

 1
<
(:e1) = fq1=0:2; q2=0:1; q3=0:1; q4=0:3; q5=0:3g;

 1
<
(:e2) = fq1=0:1; q2=0:1; q3=0:1; q4=0:2; q5=0:2g;

 1
<
(:e3) = fq1=0:5; q2=0:2; q3=0:2; q4=0:4; q5=0:4g:

By comparing belongingness values of the above FSs, one can easily see that �1<(e) �
�1(e) � �1

<
(e) and  1<(e) �  1(e) �  1

<
(e) for each e 2 �A1. This veri�es <(!1) e�

!1 e� <(!1), by using De�nition 1.6.3.

6.3 Characterizations of rough fuzzy bipolar soft sets

Lemma 6.3.1 Let < be an eqv-rel de�ned on U: Then, every classwise constant FBSS
over U is <�de�nable.

Proof. Take a classwise constant FBSS ! = (�;  ; �A) 2 FBSS(U). The lower

and upper RFBS-apxes of ! under < are <(!) = (�<;  <; �A) and <(!) = (�
<
;  

<
; �A),

respectively. For e 2 �A and u 2 U; let �(e)(u) = ce;u, where ce;u 2 [0; 1] is a constant.
Then, for any e 2 �A and u 2 U; we have

�<(e)(u) = ^
y2[u]<

�(e)(y) = ^
y2[u]<

ce;u = ce;u

and

�
<
(e)(u) = _

y2[u]<
�(e)(y) = _

y2[u]<
ce;u = ce;u:

Which shows that, �<(e)(u) = �
<
(e)(u) for each e 2 �A and u 2 U: Similarly, we have

 <(:e)(u) =  
<
(:e)(u) for each :e 2 : �A and u 2 U: This proves, that, <(!) = <(!).

Thus, ! is <�de�nable.

Corollary 6.3.2 Let < be an arbitrary eqv-rel de�ned on a non-empty �nite set U:

Then, every constant FBSS over U is <�de�nable.

Proof. Proof can be deduced from Lemma 6.3.1, as every constant FBSS over U

can be considered as a classwise constant FBSS over U; under any eqv-rel < de�ned
on U:
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Theorem 6.3.3 Take a P-apx space (U;<) and let ! = (�;  ; �A) 2 FBSS(U). Then,
the subsequent asservations are true.

1. <(!) e� ! e� <(!);

2. <(� �A) = � �A = <(� �A);

3. <( ~U �A) =
~U �A = <( ~U �A);

4. <(<(!)) = <(!) = <(<(!));

5. <(<(!)) = <(!) = <(<(!));

6. <(!c) = (<(!))c ;

7. <(!c) =
�
<(!)

�c
:

Proof. (1) Obvious by the De�nition 6.2.1.
(2) The relative null FBSS � �A = (�; ~U ; �A) over U is constant. Hence � �A is

<�de�nable, by Corollary 6.3.2. That is,

<(� �A) = � �A = <(� �A):

(3) The relative whole FBSS ~U �A = ( ~U;�; �A) over U is constant. Hence ~U �A is

<�de�nable. That is,
<( ~U �A) =

~U �A = <( ~U �A):

(4) The lower RFBS-apx of the FBSS ! = (�;  ; �A) is symbolized by <(!) =
(�<;  <;

�A). Since, <(!) is a classwise constant FBSS, so, <(!) is <�de�nable by
Lemma 6.3.1. Which proves that,

<(<(!)) = <(!) = <(<(!)):

(5) Analogous to the proof of (4).

(6) By using De�nitions 1.6.7 and 6.2.1, the FBSSs <(!c) and (<(!))c are described
as <(!c) = (�c<;  c<; �A) and (<(!))c = ((�<)

c; ( <)
c; �A). Notice that,

�c
<
(e)(u) = _

y2[u]<
�c(e)(y) = _

y2[u]<
 (:e)(y)

=  <(:e)(u) = (�<)
c(e)(u)

and

 c
<
(:e)(u) = ^

y2[u]<
 c(:e)(y) = ^

y2[u]<
�(e)(y)

= �<(e)(u) = ( <)
c(:e)(u)

hold for each e 2 �A and for each u 2 U: Which immediately gives <(!c) = (<(!))c :
(7) Analogous to the proof of (6).
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Lemma 6.3.4 Take a P-apx space (U;<). Then, the subsequent asservations are true
for any !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U) and for any e 2 �A1 [ �A2.

1. (�1
<e["�2<)(e) = (�1e["�2<)(e);

2. (�1
<e\"�2<)(e) � (�1e\"�2<)(e);

3. (�1<
e["�2<)(e) � (�1e["�2<)(e);

4. (�1<
e\"�2<)(e) = (�1e\"�2<)(e);

5. ( 1
<e[" 2<)(:e) � ( 1e[" 2<)(:e);

6. ( 1
<e\" 2<)(:e) = ( 1e\" 2<)(:e);

7. ( 1<
e[" 2<)(:e) = ( 1e[" 2<)(:e);

8. ( 1<
e\" 2<)(:e) � ( 1e\" 2<)(:e):

Proof. (1) Let !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U): The case is

obvious for e 2 �A1 � �A2 or e 2 �A2 � �A1: For e 2 �A1 \ �A2 and u 2 U; we have,

(�1
<e["�2<)(e)(u) = �1

<
(e)(u) _ �2

<
(e)(u)

= ( _
y2[u]<

�1(e)(y)) _ ( _
y2[u]<

�2(e)(y))

= _
y2[u]<

(�1(e)(y) _ �2(e)(y))

= _
y2[u]<

(�1e["�2)(e)(y)
= (�1e["�2<)(e)(u):

Which shows that,

(�1
<e["�2<)(e) = (�1e["�2<)(e):

(2) Again, for !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U), the case is obvious
when e 2 ( �A1 � �A2) [ ( �A2 � �A1): For e 2 �A1 \ �A2 and u 2 U; we have,

(�1
<e\"�2<)(e)(u) = �1

<
(e)(u) ^ �2

<
(e)(u)

= ( _
y2[u]<

�1(e)(y)) ^ ( _
y2[u]<

�2(e)(y))

� _
y2[u]<

(�1(e)(y) ^ �2(e)(y))

= _
y2[u]<

(�1e\"�2)(e)(y)
= (�1e\"�2<)(e)(u):
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Which shows that,

(�1
<e\"�2<)(e) � (�1e\"�2<)(e):

(3-8) Analogous to the proof of (1) and (2).

Theorem 6.3.5 Take a P-apx space (U;<). Then, the subsequent asservations are
true for any !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U).

1. !1 e� !2 implies that <(!1) e� <(!2) and <(!1) e� <(!2)

2. <(!1eu"!2) = <(!1)eu"<(!2);
3. <(!1eur!2) = <(!1)eur<(!2);
4. <(!1et"!2) e� <(!1)et"<(!2);
5. <(!1etr!2) e� <(!1)etr<(!2);
6. <(!1eu"!2) e� <(!1)eu"<(!2);
7. <(!1eur!2) e� <(!1)eur<(!2);
8. <(!1et"!2) = <(!1)et"<(!2);
9. <(!1etr!2) = <(!1)etr<(!2):
Proof. (1) Given that !1 e� !2, that is, (�1;  1; �A1) e� (�2;  2; �A2). Then, �1(e),

�2(e),  1(:e),  2(:e) are FSs in U; such that �1(e) � �2(e) and  1(:e) �  2(:e) for
each e 2 �A1, where �A1 � �A2. This yields

�1<(e) = �1(e)< � �2(e)< = �2<(e)

and

 1<(:e) =  1(:e)
< �  2(:e)

<
=  2<(:e)

for each e 2 �A1. Thus, <(!1) e� <(!2): Similarly, one can verify, that, <(!1) e� <(!2).
(2) The FBSSs <(!1)eu"<(!2) and <(!1eu"!2) are described as

<(!1)eu"<(!2) = (�1<e\"�2<;  1<e[" 2<; �A1 [ �A2)

and

<(!1eu"!2) = (�1e\"�2<;  1e[" 2<; �A1 [ �A2)

Now, Lemma 6.3.4 states that,

(�1e\"�2<)(e) = (�1<e\"�2<)(e)
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and

( 1e[" 2<)(:e) = ( 1<e[" 2<)(:e)
hold for each e 2 �A1 [ �A2. The above equations assert that,

<(!1eu"!2) = <(!1)eu"<(!2):
(3) This is deduced from (2).

(4) The FBSSs <(!1et"!2) and <(!1)et"<(!2) are described as
<(!1et"!2) = (�1e["�2<;  1e\" 2<; �A1 [ �A2)

and

<(!1)et"<(!2) = (�1<e["�2<;  1<e\" 2<; �A1 [ �A2):

Lemma 6.3.4 states that the expressions

(�1e["�2<)(e) � (�1<e["�2<)(e)
and

( 1e\" 2<)(:e) � ( 1<e\" 2<)(:e)
hold for each e 2 �A1 [ �A2. Which prove that,

<(!1et"!2) e� <(!1)et"<(!2):
(5) This expression is deduced from (4).

(6-9) The proof is same as the proof of (2-5).

The proper inclusions (4-7) of the above theorem may be proper, as exhibited in

the subsequent example.

Example 6.3.6 Consider the universe U of �ve houses, the relation < on U; the

attribute sets �E and : �E and the FBSS !1, as established in Example 6.2.3. Take

another FBSS !2 = (�2;  2; �A2) over U; with �A2 = fe1; e2g as given below.
�2(e1) = fq1=0:6; q2=0:6; q3=0:7; q4=0:7; q5=0:6g;
 2(:e1) = fq1=0:3; q2=0:2; q3=0; q4=0:2; q5=0:3g;
�2(e2) = fq1=0:7; q2=0:6; q3=0:6; q4=0:7; q5=0:6g;
 2(:e2) = fq1=0:1; q2=0:2; q3=0:1; q4=0:1; q5=0:2g:
The lower RFBS-apx <(!2) = (�2<;  2<;

�A2) of !2 is evaluated as below.

�2<(e1) = fq1=0:6; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;
�2<(e2) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;
 2<(:e1) = fq1=0:3; q2=0:2; q3=0:2; q4=0:3; q5=0:3g;
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 2<(:e2) = fq1=0:1; q2=0:2; q3=0:2; q4=0:2; q5=0:2g:
For the upper RFBS-apx <(!2) = (�2

<
;  2

<
; �A2) of !2, the FSs �2

<
(ei) and

 2
<
(:ei) are calculated for i = 1; 2 as below.
�2
<
(e1) = fq1=0:6; q2=0:7; q3=0:7; q4=0:7; q5=0:7g;

�2
<
(e2) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;

 2
<
(:e1) = fq1=0:3; q2=0; q3=0; q4=0:2; q5=0:2g;

 2
<
(:e2) = fq1=0:1; q2=0:1; q3=0:1; q4=0:1; q5=0:1g:

To observe the proper inclusion in (5), the restricted union !1etr!2 = (�1e[r�2;  1e\r 2; �A1\
�A2) of the FBSSs !1 and !2 is calculated as:

(�1e[r�2)(e1) = fq1=0:7; q2=0:6; q3=0:8; q4=0:7; q5=0:6g;
(�1e[r�2)(e2) = fq1=0:8; q2=0:7; q3=0:8; q4=0:7; q5=0:6g;
( 1e\r 2)(:e1) = fq1=0:2; q2=0:2; q3=0; q4=0:2; q5=0:3g;
( 1e\r 2)(:e2) = fq1=0:1; q2=0:1; q3=0:1; q4=0:1; q5=0:2g:
Now, the FSs (�1e[r�2<)(e) and ( 1e\r 2<)(:e) of the FBSS <(!1etr!2) described

by (�1e[r�2<;  1e\r 2<; �A1 \ �A2) are evaluated for e 2 �A1 \ �A2, as below.

(�1e[r�2<)(e1) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;
(�1e[r�2<)(e2) = fq1=0:8; q2=0:7; q3=0:7; q4=0:6; q5=0:6g;
( 1e\r 2<)(:e1) = fq1=0:2; q2=0:2; q3=0:2; q4=0:3; q5=0:3g;
( 1e\r 2<)(:e2) = fq1=0:1; q2=0:1; q3=0:1; q4=0:2; q5=0:2g:
The restricted union <(!1)etr<(!2) = (�1<e[r�2<;  1<e\r 2<; �A1\ �A2) is calculated

below.

(�1<
e[r�2<)(e1) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;

(�1<
e[r�2<)(e2) = fq1=0:8; q2=0:7; q3=0:7; q4=0:6; q5=0:6g;

( 1<
e\r 2<)(:e1) = fq1=0:2; q2=0:2; q3=0:2; q4=0:3; q5=0:3g;

( 1<
e\r 2<)(:e2) = fq1=0:1; q2=0:2; q3=0:2; q4=0:2; q5=0:2g:

Notice that,

( 1e\r 2<)(:e2)(q2) � ( 1<e\r 2<)(:e2)(q2):
This immediately yields the proper inclusion in (5). That is,

<(!1etr!2) e) <(!1)etr<(!2):
Similarly, one can observe the proper inclusion in (4). That is,

<(!1et"!2) e) <(!1)et"<(!2):
Next, we verify the proper inclusion in (7) of the Theorem 6.3.5. The restricted

intersection !1eur!2 = (�1e\r�2;  1e[r 2; �A1 \ �A2) of !1 and !2 is calculated as:

(�1e\r�2)(e1) = fq1=0:6; q2=0:6; q3=0:7; q4=0:5; q5=0:6g;
(�1e\r�2)(e2) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;
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( 1e[r 2)(:e1) = fq1=0:3; q2=0:3; q3=0:1; q4=0:5; q5=0:3g;
( 1e[r 2)(:e2) = fq1=0:1; q2=0:2; q3=0:2; q4=0:2; q5=0:3g:
Now, the FBSS <(!1eur!2) = (�1e\r�2<;  1e[r 2<; �A1 \ �A2) is evaluated below for

e 2 �A1 \ �A2.

(�1e\r�2<)(e1) = fq1=0:6; q2=0:7; q3=0:7; q4=0:6; q5=0:6g;
(�1e\r�2<)(e2) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;
( 1e[r 2<)(:e1) = fq1=0:3; q2=0:1; q3=0:1; q4=0:3; q5=0:3g;
( 1e[r 2<)(:e2) = fq1=0:1; q2=0:2; q3=0:2; q4=0:2; q5=0:2g:
The restricted intersection <(!1)eur<(!2) = (�1<e\r�2<;  1<e[r 2<; �A1\ �A2) is cal-

culated below.

(�1
<e\r�2<)(e1) = fq1=0:6; q2=0:7; q3=0:7; q4=0:6; q5=0:6g;

(�1
<e\r�2<)(e2) = fq1=0:7; q2=0:6; q3=0:6; q4=0:6; q5=0:6g;

( 1
<e[r 2<)(:e1) = fq1=0:3; q2=0:1; q3=0:1; q4=0:3; q5=0:3g;

( 1
<e[r 2<)(:e2) = fq1=0:1; q2=0:1; q3=0:1; q4=0:1; q5=0:1g:

Notice that,

( 1e[r 2<)(:e2)(q2) � ( 1<e[r 2<)(:e2)(q2):
Which immediately shows the proper inclusion in (7). That is,

<(!1eur!2) e( <(!1)eur<(!2):
Similarly, one can observe the proper inclusion in (6). That is,

<(!1eu"!2) e( <(!1)eu"<(!2):
Theorem 6.3.7 Take a P-apx space (U;<) and let ! 2 FBSS(U). Then, the subse-
quent asservations are equivalent.

1. <(!) e� !;

2. ! e� <(!);

3. ! is <�de�nable.

Proof. (1))(2) Assume that <(!) e� !. From Theorem 6.3.5, we have <(<(!))e� <(!). Then, Theorem 6.3.3 yields

! e� <(!) = <(<(!)) e� <(!):
Thus, <(!) e� !.

(2))(3) Assume that ! e� <(!). From Theorem 6.3.3, we have <(!) e� !. So,

! = <(!). This gives <(!) = <(<(!)) = <(!). Thus, ! is <�de�nable.
(3))(1) Obvious.
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Proposition 6.3.8 Take a P-apx space (U;<).

1. Let < be the identity relation on U: Then, each FBSS over U is <�de�nable.

2. Let < be the universal binary relation on U and ! 2 FBSS(U) be <�de�nable.
Then, ! is a constant FBSS over U:

Proof. (1) Let < be the identity relation on U: Then, each eqv-class is singleton
subset of U: Which implies that each FBSS over U is classwise constant. Hence, each

FBSS over U is <�de�nable, by Lemma 6.3.1.
(2) Let < = U � U and let ! = (�;  ; �A) 2 FBSS(U) be <�de�nable. Then,

<(!) = <(!). Which gives (�<;  <; �A) = (�
<
;  

<
; �A). That is, �<(e)(u) = �

<
(e)(u)

and  <(:e)(u) =  
<
(:e)(u) for each e 2 �A and for each u 2 U: This yields

^
y2[u]<

�(e)(y) = _
y2[u]<

�(e)(y)

and

_
y2[u]<

 (:e)(y) = ^
y2[u]<

 (:e)(y)

for each e 2 �A and for each u 2 U: Since, [u]< = U for each u 2 U; so, we get

^
y2U

�(e)(y) = _
y2U

�(e)(y)

and

_
y2U

 (:e)(y) = ^
y2U

 (:e)(y)

for each e 2 �A and for each y 2 U: Which clearly shows that, ! is a constant FBSS

over U:

Theorem 6.3.9 Take a P-apx space (U;<): Take another eqv-rel � on U; such that,
< � �. Then �(!)e� <(!) and <(!) e� �(!) for any FBSS ! over U:

Proof. Take ! = (�;  ; �A) 2 FBSS(U) for any �A � �E. Since < � �, we have

[u]< � [u]� for each u 2 U: Thus, we get

F �(e)(u) = ^
y2[u]�

�(e)(y)

� ^
y2[u]<

�(e)(y) = �<(e)(u)

for each u 2 U and for each e 2 �A. Hence, �
�
(e) � �<(e) for each e 2 �A. Similarly,

 
�
(:e) �  <(:e) for each :e 2 : �A. Thus, �(!)e� <(!). In the same way, one can

verify, that, <(!) e� �(!).
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6.4 Similarity relations associated with RFBS approxi-
mations

This section establishes some binary relations between the FBSSs based on their RFBS-

apxes and investigate their properties.

De�nition 6.4.1 Take a P-apx space (U;<). We de�ne the following binary relations
for !1; !2 2 FBSS(U);

!1 '< !2 if and only if <(!1) = <(!2);
!1 h< !2 if and only if <(!1) = <(!2);
!1 �< !2 if and only if <(!1) = <(!2) and <(!1) = <(!2):

We may term these relations as the lower RFBS similarity relation, upper RFBS

similarity relation and the RFBS similarity relation, respectively. Obviously, !1 and

!2 are RFBS similar if and only if they are both, lower and upper RFBS similar.

Proposition 6.4.2 The relations '<; h< and �< are eqv-rels on FBSS(U).

Proof. Straightforward.

Theorem 6.4.3 Take a P-apx space (U;<). Then, the subsequent asservations hold
for f!i = (�i;  i; �Ai) : i = 1; 2; 3; 4g � FBSS(U).

1. !1 h< !2 if and only if !1 h< (!1et"!2) h< !2;
2. !1 h< !2 and !3 h< !4 imply that (!1et"!3) h< (!2et"!4);
3. !1 e� !2 and !2 h< � �A2

imply that !1 h< � �A1
;

4. !1 e� !2 and !1 h< ~U �A1
imply that !2 h< ~U �A2

, provided that �A1 = �A2;

5. (!1et"!2) h< � �A1[ �A2 if and only if !1 h< � �A1
and !2 h< � �A2

;

6. (!1eu"!2) h< ~U �A1[ �A2 implies that !1 h<
~U �A1

and !2 h< ~U �A2
.

Proof. (1) Let !1 h< !2. Then, <(!1) = <(!2): From Theorem 6.3.5, we get

<(!1et"!2) = <(!1)et"<(!2) = <(!1) = <(!2):
So, !1 h< (!1et"!2) h< !2.
Converse holds by transitivity of the relation h<.
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(2) Given that !1 h< !2 and !3 h< !4. Then, <(!1) = <(!2) and <(!3) = <(!4).
From Theorem 6.3.5, we get

<(!1et"!3) = <(!1)et"<(!3)
= <(!2)et"<(!4) = <(!2et"!4):

Thus, (!1et"!3) h< (!2et"!4).
(3) Given that, !2 h< � �A2

. Which implies <(!2) = <(� �A2
) = � �A2

. Also !1 e� !2

implies that <(!1) e� <(!2) = � �A2
. Restricting the attribute set of � �A2

to �A1 � �A2,

we get <(!1) e� � �A1
. But, � �A1

e� <(!1). So, <(!1) = � �A1
= <(� �A1

). Which shows

that, !1 h< � �A1
.

(4) !1 h< ~U �A1
implies that <(!1) = <( ~U �A1

) = ~U �A1
= ~U �A2

; as �A1 = �A2. Also

given that, !1 e� !2. So, we get

<(!2) e� <( ~U �A2
) = ~U �A2

= ~U �A1

= <(!1) e� <(!2):
This gives <(!2) = <( ~U �A2

): Hence, !2 h< ~U �A2
.

(5) Let !1 h< � �A1
and !2 h< � �A2

. Then, we have <(!1) = <(� �A1
) = � �A1

and

<(!2) = <(� �A2
) = � �A2

. From Theorem 6.3.5, we get

<(!1et"!2) = <(!1)et"<(!2) = � �A1
et"� �A2

= � �A1[ �A2 = <(� �A1[ �A2):

Thus, (!1et"!2) h< � �A1[ �A2 . Converse follows from (3).

(6) This assertion follows from (4).

Note that in (1) and (2) of Theorem 6.4.3, !1 h< !2 means that <(!1) = <(!2).
Which indicates �A1 = �A2 by using De�nition 1.6.3. Thus, the attribute sets of RFBS

similar (lower, upper or both) FBSSs are same. Hence, their restricted and extended

unions, as well as intersections coincide. Same is the case when !1 '< !2 or !1 �< !2.

Theorem 6.4.4 Take a P-apx space (U;<). Then, the subsequent asservations hold
for f!i = (�i;  i; �Ai) : i = 1; 2; 3; 4g � FBSS(U).

1. !1 '< !2 if and only if !1 '< (!1eu"!2) '< !2;
2. !1 '< !2 and !3 '< !4 imply that (!1eu"!3) '< (!2eu"!4);
3. !1 e� !2 and !2 '< � �A2

imply that !1 '< � �A1
;

4. !1 e� !2 and !1 '< ~U �A1
imply that !2 '< ~U �A2

, provided that �A1 = �A2;
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5. (!1et"!2) '< � �A1[ �A2 implies that !1 '< � �A1
and !2 '< � �A2

;

6. (!1eu"!2) '< ~U �A1[ �A2 if and only if !1 '< ~U �A1
and !2 '< ~U �A2

:

Proof. Parallel to the proof of Theorem 6.4.3.

Theorem 6.4.5 Take a P-apx space (U;<). Then, the subsequent asservations hold
for f!i = (�i;  i; �Ai) : i = 1; 2; 3; 4g � FBSS(U).

1. !1 �< !2 if and only if !1 h< (!1et"!2) h< !2 and !1 '< (!1eu"!2) '< !2;
2. !1 e� !2 and !2 �< � �A2

imply that !1 �< � �A1
;

3. !1 e� !2 and !1 �< ~U �A1
imply that !2 �< ~U �A2

, provided that �A1 = �A2;

4. (!1et"!2) �< � �A1[ �A2 implies that !1 �< � �A1
and !2 �< � �A2

;

5. (!1eu"!2) �< ~U �A1[ �A2 implies that !1 �< ~U �A1
and !2 �< ~U �A2

:

Proof. It can be directly deduced from Theorems 6.4.3 and 6.4.4.

6.5 Accuracy measures for FBSSs

An important application of the RFBS-apxes of the FBSSs is, that, these approxi-

mations provide a scheme to investigate how accurately the belongingness maps of a

FBSS describe the objects. We introduce the degree of accuracy and the degree of

roughness for the positive and negative belongingness maps of the FBSSs, separately.

For this purpose, we �rst de�ne the ��level cuts of a FBSS and describe their basic
properties.

De�nition 6.5.1 Let ! = (�;  ; �A) 2 FBSS(U). For 0 � � � 1, the ��level P-cut
(positive cut) of ! relative to the attribute e 2 �A is symbolized by !he;�i and de�ned

as:

!he;�i = fu 2 U : �(e)(u) � �g: (6.1)

De�nition 6.5.2 Let ! = (�;  ; �A) 2 FBSS(U). For 0 � � � 1, the ��level N-cut
(negative cut) of ! relative to the attribute e 2 �A is symbolized by !he;�i and de�ned

as:

!he;�i = fu 2 U :  (:e)(u) � �g: (6.2)

Lemma 6.5.3 Let !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) 2 FBSS(U) and 0 � � � 1.
Then, !1 � !2 implies that, !1he;�i e� !2he;�i and !

he;�i
1

e� !
he;�i
2 for each e 2 �A1:
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Proof. It can be directly deduced from De�nitions 6.5.1 and 6.5.2.

Lemma 6.5.4 Let ! = (�;  ; �A) 2 FBSS(U) and 0 � � � � � 1. Then, we have

!he;�i e� !he;�i and !he;�i e� !he;�i for each e 2 �A:

Proof. It can be directly deduced from De�nitions 6.5.1 and 6.5.2.

With the help of De�nitions 6.2.1, 6.5.1 and 6.5.2, we conclude the following state-

ments for ! = (�;  ; �A).

<(!)he;�i = fu 2 U : �<(e)(u) � �g

= fu 2 U : ^
y2[u]<

�(e)(y) � �g;

<(!)he;�i = fu 2 U : _
y2[u]<

�(e)(y) � �g;

<(!)he;�i = fu 2 U : _
y2[u]<

 (:e)(y) � �g;

<(!)he;�i = fu 2 U : ^
y2[u]<

 (:e)(y) � �g:

Lemma 6.5.5 Let < be an eqv-rel on U and ! = (�;  ; �A) 2 FBSS(U): Then, the

subsequent asservations hold for each e 2 �A and 0 � � � 1.

1. <(!he;�i) = <(!)he;�i;

2. <(!he;�i) = <(!)he;�i;

3. <(!he;�i) = <(!)he;�i;

4. <(!he;�i) = <(!)he;�i:

Proof. (1) For the crisp set !he;�i, we have the following.

<(!he;�i) = fu 2 U : [u]< � !he;�ig

= fu 2 U : �(e)(y) � � for each y 2 [u]<g

= fu 2 U : ^
y2[u]<

�(e)(y) � �g

= <(!)he;�i:

The remaining parts can be veri�ed in the same manner.

Now, we de�ne the degree of accuracy and the degree of roughness for the positive

and negative belongingness maps of an FBSS over U:
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De�nition 6.5.6 Take a P-apx space (U;<). The degree of accuracy for the positive
belongingness map of ! = (�;  ; �A) 2 FBSS(U), relative to the attribute e 2 �A and

the parameters �; � satisfying 0 � � � � � 1, is expressed as:

Dp<he;�;�i(!) =

��<(!he;�i)����<(!he;�i)�� :
The degree of roughness for the positive belongingness map of ! relative to the attribute

e 2 �A and the parameters �; � satisfying 0 � � � � � 1, is expressed as:

�<he;�;�i(!) = 1�Dp
<
he;�;�i(!):

De�nition 6.5.7 Take a P-apx space (U;<). The degree of accuracy for the negative
belongingness map of ! = (�;  ; �A) 2 FBSS(U), relative to the attribute e 2 �A and

the parameters �; � satisfying 0 � � � � � 1, is expressed as:

Dn<he;�;�i(!) =

��<(!he;�i)����<(!he;�i)�� :
The degree of roughness for the negative belongingness map of ! relative to the attribute

e 2 �A and the parameters �; � satisfying 0 � � � � � 1, is expressed as:

%<he;�;�i(!) = 1�Dn
<
he;�;�i(!):

Notice that, <(!he;�i) (or <(!he;�i)) comprises of the objects of U having � (or

�) as the least degree of de�nite (or possible) ful�lment towards the attribute e in

!. Equivalently, <(!he;�i) (or <(!he;�i)) may be viewed as union of the eqv-classes of
U having the degree of ful�lment atleast � (or �) in the lower (upper) RFBS-apx of

!. Therefore, the parameters � and � serve as the thresholds of de�nite and possi-

ble ful�lment of the objects of U towards the attribute e in !, respectively. Hence,

Dp<he;�;�i(!) may be interpreted as the degree to which the positive belongingness

map of ! is accurate, constrained to the threshold parameters � and �. Similarly,

Dn<he;�;�i(!) denotes the degree to which the negative belongingness map of ! is accu-

rate, constrained to the threshold parameters � and �. In other words, Dp<he;�;�i(!)

and Dn<he;�;�i(!) describe how accurate are the positive and the negative belongingness

maps of the FBSSs, respectively. We explain these degrees in the subsequent example.

Example 6.5.8 Consider the set U = fqi : i = 1; 2; :::; 7g; the relation < de�ning

eqv-classes fq1g; fq2; q3g and fq4; q5g and the FBSS !1 = (�1;  1; �A1) over U as in

Example 6.2.3. Take � = 0:6; � = 0:3; and e = e1. Then, ��level P-cuts !he1;0:6i and
!he1;0:3i are calculated using Equation 6.1, as follows.

!he1;0:6i = fq1; q2; q3; q5g;

!he1;0:3i = fq1; q2; q3; q4; q5g:
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The ��level N-cuts !he1;0:6i and !he1;0:3i are calculated using Equation 6.2, as

follows.

!he1;0:6i = fq1; q2; q3; q4; q5g;

!he1;0:3i = fq1; q2; q3; q5g:

The degree of accuracy for the positive belongingness map of ! relative to e1 2 �A1 is

calculated using De�nition 6.5.6, as follows.

<(!he1;0:6i) = fq1; q2; q3g;

<(!he1;0:3i) = fq1; q2; q3; q4; q5g;

Dp<he1;0:6;0:3i(!) =

��<(!he1;0:6i)����<(!he1;0:3i)�� = 3

5
= 0:6:

While, the degree of accuracy for the negative belongingness map of ! relative to e1 2
�A1 is calculated by using De�nition 6.5.7, as follows.

<(!he1;0:3i) = fq1; q2; q3g;

<(!he1;0:6i) = fq1; q2; q3; q4; q5g;

Dn<he1;0:6;0:3i(!) =

��<(!he1;0:3i)����<(!he1;0:6i)�� = 3

5
= 0:6:

Hence, both (positive and negative) belongingness maps of ! describes the expensiveness

or cheapness of houses accurate upto the degree 0:6.

Theorem 6.5.9 Take a P-apx space (U;<), ! 2 FBSS(U) and 0 � � � � � 1.

Then, 0 � Dp<he;�;�i(!) � 1 and 0 � Dn
<
he;�;�i(!) � 1 for each e 2 �A.

Proof. Take an FBSS ! = (�;  ; �A) 2 FBSS(U) and the parameters �; � satisfy-
ing 0 � � � � � 1. To prove 0 � Dp<he;�;�i(!) � 1; we show that��<(!he;�i)�� � ��<(!he;�i)��
for each e 2 �A. From Lemma 6.5.4, we have !he;�i � !he;�i. Now, Theorem 1.7.3 gives

that,

<(!he;�i) � <(!he;�i) � <(!he;�i):

So,
��<(!he;�i)�� � ��<(!he;�i)��, or the ratio j<(!he;�i)jj<(!he;�i)j �uctuates between 0 and 1. Which

certainly yields

0 � Dp<he;�;�i(!) � 1:

Similarly, one can verify that, 0 � Dn<he;�;�i(!) � 1 for each e 2 �A.
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Corollary 6.5.10 For the P-apx space (U;<); ! 2 FBSS(U) and 0 � � � � � 1, we
have, 0 � �<he;�;�i(!) � 1 and 0 � %<he;�;�i(!) � 1 for each e 2 �A.

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.9 certify these asservations di-

rectly.

Theorem 6.5.11 Take a P-apx space (U;<), ! = (�;  ; �A) 2 FBSS(U); e 2 �A and

0 � � � � � 1.

1. If � stands �xed, then Dp<he;�;�i(!) and Dn
<
he;�;�i(!) increase with the increase

in �.

2. If � stands �xed, then Dp<he;�;�i(!) and Dn
<
he;�;�i(!) decrease with the increase

in �.

Proof. (1) Let � stand �xed and let 0 � �1 � �2 � 1. For any e 2 �A , we

have !he;�2i � !he;�1i from Lemma 6.5.4. This gives <(!he;�2i) � <(!he;�1i): That is,��<(!he;�2i)�� � ��<(!he;�1i)��. Which implies that,��<(!he;�i)����<(!he;�1i)�� �
��<(!he;�i)����<(!he;�2i)�� :

That is, Dp<he;�;�1i(!) � Dp<he;�;�2i(!). This veri�es that, Dp
<
he;�;�i(!) increases with

the increase in �. In the same manner, one can verify that, Dn<he;�;�i(!) increases with

the increase in �.

(2) Analogous to the proof of (1).

Corollary 6.5.12 Take a P-apx space (U;<), ! = (�;  ; �A) 2 FBSS(U); e 2 �A and

0 � � � � � 1.

1. If � stands �xed, then �<he;�;�i(!) and %
<
he;�;�i(!) decrease with the increase in �.

2. If � stands �xed, then �<he;�;�i(!) and %
<
he;�;�i(!) increase with the increase in �.

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.11 verify these asservations di-

rectly.

Theorem 6.5.13 Take a P-apx space (U;<) and !1; !2 2 FBSS(U): Then, !1e�!2
implies the subsequent asservations for each e 2 �A1 and 0 � � � � � 1.

1. Dp<he;�;�i(!1) � Dp
<
he;�;�i(!2), whenever, <(!1he;�i) = <(!2he;�i);

2. Dp<he;�;�i(!1) � Dp
<
he;�;�i(!2), whenever, <(!1he;�i) = <(!2he;�i);
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3. Dn<he;�;�i(!1) � Dn
<
he;�;�i(!2), whenever, <(!

he;�i
1 ) = <(!he;�i2 );

4. Dn<he;�;�i(!1) � Dn
<
he;�;�i(!2), whenever, <(!

he;�i
1 ) = <(!he;�i2 ):

Proof. (1) Let !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) and 0 � � � � � 1. Given that
!1e�!2 and <(!1he;�i) = <(!2he;�i). Lemma 6.5.3 gives, that, !1he;�i � !2he;�i. The-

orem 1.7.3 gives that, <(!1he;�i) � <(!2he;�i), or,
��<(!1he;�i)�� � ��<(!2he;�i)��. Which

implies that, ��<(!1he;�i)����<(!1he;�i)�� �
��<(!2he;�i)����<(!2he;�i)�� :

Hence proved, that, Dp<he;�;�i(!1) � Dp
<
he;�;�i(!2) for each e 2 �A1.

The remaining parts can be proved in the same manner.

Corollary 6.5.14 Take a P-apx space (U;<) and !1; !2 2 FBSS(U): Then, !1e�!2
implies the subsequent asservations for each e 2 �A1 and 0 � � � � � 1.

1. �<he;�;�i(!1) � �<he;�;�i(!2), whenever, <(!1he;�i) = <(!2he;�i);

2. �<he;�;�i(!1) � �<he;�;�i(!2), whenever, <(!1he;�i) = <(!2he;�i);

3. %<he;�;�i(!1) � %<he;�;�i(!2), whenever, <(!
he;�i
1 ) = <(!he;�i2 );

4. %<he;�;�i(!1) � %<he;�;�i(!2), whenever, <(!
he;�i
1 ) = <(!he;�i2 ):

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.13 certify these asservations di-

rectly.

Theorem 6.5.15 Take a P-apx space (U;<), ! 2 FBSS(U) and 0 � � � � � 1. If �
is an eqv-rel on U containing <; then, Dp<he;�;�i(!) � Dp

�
he;�;�i(!) and Dn

<
he;�;�i(!) �

Dn�he;�;�i(!) for each e 2 �A.

Proof. Let < and � be two eqv-rels on U; satisfying < � �. Theorem 6.3.9 states

that <(!)e��(!) and <(!)e��(!) for any ! 2 FBSS(U). From Lemma 6.5.3, we get

<(!)he;�i � �(!)he;�i and <(!)he;�i � �(!)he;�i for each e 2 �A. Lemma 6.5.5 gives��<(!he;�i)�� = ��<(!)he;�i�� � ���(!)he;�i�� = ���(!he;�i)��
and ��<(!he;�i)�� = ��<(!)he;�i�� � ���(!)he;�i�� = ���(!he;�i)�� :
This implies the following for each e 2 �A:��<(!he;�i)����<(!he;�i)�� �

���(!he;�i)�����(!he;�i)�� :
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That is, Dp<he;�;�i(!) � Dp
�
he;�;�i(!) for each e 2 �A. On the same lines, one can verify,

that, Dn<he;�;�i(!) � Dn
�
he;�;�i(!) for each e 2 �A.

Corollary 6.5.16 Take a P-apx space (U;<), ! 2 FBSS(U) and 0 � � � � � 1.

If � is an eqv-rel on U containing <; then, �<he;�;�i(!) � ��he;�;�i(!) and %
<
he;�;�i(!) �

%�hee;�;�i(!) for each e 2 �A.

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.15 certify these asservations di-

rectly.

Theorem 6.5.17 Take a P-apx space (U;<), 0 � � � � � 1 and !1 = (�1;  1; �A);

!2 = (�2;  2; �A) 2 FBSS(U); such that, !1 '< !2: Then, the subsequent asservations
hold for each e 2 �A.

1. Dp<he;�;�i(!1eu"!2) � Dp<he;�;�i(!1) _Dp<he;�;�i(!2);
2. Dn<he;�;�i(!1eu"!2) � Dn<he;�;�i(!1) _Dn<he;�;�i(!2):
Proof. (1) Let 0 � � � � � 1 and !1 '< !2. Then, <(!1) = <(!2). Theorem

6.4.4 implies that, <(!1eu"!2) = <(!1). This gives <(!1eu"!2)he;�i = <(!1)he;�i: That
is, ��<((!1eu"!2)he;�i)�� = ��<(!1he;�i)�� : (6.3)

On the other hand, !1eu"!2e�!1. Which implies that, <(!1eu"!2)e�<(!1): That is,
<(!1eu"!2)he;�i � <(!1)he;�i. This gives��<((!1eu"!2)he;�i)�� � ��<(!1he;�i)�� : (6.4)

Equation 6.3 and Equation 6.4 yield the following.��<((!1eu"!2)he;�i)����<((!1eu"!2)he;�i)�� �
��<(!1he;�i)����<(!1he;�i)�� :

This proves that Dp<he;�;�i(!1eu"!2) � Dp<he;�;�i(!1) for each e 2 �A. Similarly, we have

Dp<he;�;�i(!1eu"!2) � Dp<he;�;�i(!2) for each e 2 �A. Which proves the following for each

e 2 �A.

Dp<he;�;�i(!1eu"!2) � Dp<he;�;�i(!1) _Dp<he;�;�i(!2):
(2) Analogous to the proof of (1).

Corollary 6.5.18 Take a P-apx space (U;<), 0 � � � � � 1 and !1 = (�1;  1; �A);

!2 = (�2;  2; �A) 2 FBSS(U); such that, !1 '< !2: Then, the subsequent asservations
hold for each e 2 �A.
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1. �<he;�;�i(!1eu"!2) � �<he;�;�i(!1) ^ �
<
he;�;�i(!2);

2. %<he;�;�i(!1eu"!2) � %<he;�;�i(!1) ^ %
<
he;�;�i(!2):

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.17 verify these asservations di-

rectly.

Theorem 6.5.19 Take a P-apx space (U;<), 0 � � � � � 1 and !1 = (�1;  1; �A);

!2 = (�2;  2; �A) 2 FBSS(U); such that, !1 h< !2: Then, the subsequent asservations
hold for each e 2 �A.

1. Dp<he;�;�i(!1et"!2) � Dp<he;�;�i(!1) _Dp<he;�;�i(!2);
2. Dn<he;�;�i(!1et"!2) � Dn<he;�;�i(!1) _Dn<he;�;�i(!2):
Proof. Parallel to the proof of the Theorem 6.5.17.

Corollary 6.5.20 Take a P-apx space (U;<), 0 � � � � � 1 and !1 = (�1;  1; �A);

!2 = (�2;  2; �A) 2 FBSS(U); such that, !1 h< !2: Then, the subsequent asservations
hold for each e 2 �A.

1. �<he;�;�i(!1et"!2) � �<he;�;�i(!1) ^ �
<
he;�;�i(!2);

2. %<he;�;�i(!1et"!2) � %<he;�;�i(!1) ^ %
<
he;�;�i(!2):

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.19 verify these asservations di-

rectly.

Theorem 6.5.21 Take a P-apx space (U;<), 0 � � � � � 1 and !1 = (�1;  1; �A);

!2 = (�2;  2; �A) 2 FBSS(U); such that, !1 �< !2: Then, the subsequent asservations
hold for each e 2 �A.

1. Dp<he;�;�i(!1) = Dp
<
he;�;�i(!2);

2. Dn<he;�;�i(!1) = Dn
<
he;�;�i(!2):

Proof. (1) Let 0 � � � � � 1 and !1 �< !2. Then, <(!1) = <(!2) and <(!1) =
<(!2). Lemma 6.5.5 implies, that, <(!1he;�i) = <(!2he;�i) and <(!1he;�i) = <(!2he;�i).
This yields the following for each e 2 �A.��<(!1he;�i)����<(!1he;�i)�� =

��<(!2he;�i)����<(!2he;�i)�� :
This veri�es, that, Dp<he;�;�i(!1) = Dp

<
he;�;�i(!2) for each e 2 �A.

(2) Analogous to the proof of (1).
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Corollary 6.5.22 Take a P-apx space (U;<), 0 � � � � � 1 and !1 = (�1;  1; �A);

!2 = (�2;  2; �A) 2 FBSS(U) be such that !1 �< !2: Then, the subsequent asservations
hold for each e 2 �A.

1. �<he;�;�i(!1) = �<he;�;�i(!2);

2. %<he;�;�i(!1) = %<he;�;�i(!2):

Proof. De�nitions 6.5.6, 6.5.7 and Theorem 6.5.21 verify these asservations di-

rectly.

6.6 Application of RFBS approximations

Decision making is a major area to be conferred in almost all kinds of data analysis.

It is often required to decide for the optimum object in U: But sometimes, one may be

unable to make the best decision, even when the best decision is known. In that case,

it may be helpful if the worst decision also becomes visible. We propose an algorithm

which provides the best, as well as, the worst decision. With the help of this algorithm,

one can avoid making the worst decision as well. Let U be the sets of objects under

consideration, �E be the set of attributes for U and let �A = fei : 1 � i � ng be a subset
of �E containing the attributes of interest or the choice attributes. The information

about the objects is represented by an FBSS ! = (�;  ; �A) in tabular form, whose

(i; j)th entry (aij ; bij) depicts the information about the object uj 2 U relative to the

attribute ei 2 �A. First we assign the indiscernibility grades to each object and then

de�ne the indiscernibility relation with the help of indiscernibility grades associated

with !.

De�nition 6.6.1 The indiscernibility grades Gij corresponding to each object uj 2 U
and each attribute ei 2 �A are given by

Gij =

8><>:
P if aij � bij

N if aij � bij

O if aij = bij

(6.5)

The indiscernibility grades depict the following information about the objects.

� If Gij = P; the object uj has positive belongingness value aij higher than the

negative belongingness value bij ; relative to ei.

� If Gij = N; the object uj has negative belongingness value bij higher than the

positive belongingness value aij ; relative to ei.
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� If Gij = O; the object uj has positive belongingness aij equal to the negative

belongingness bij ; relative to ei.

Now we give the concept of indiscernibility relation on U associated with the FBSS

!. We say that two objects uj and uk are indiscernible, written as uj � uk; if and only

if they have same grades for each ei. Thus, when we say that the objects uj and uk are

indiscernible, it means that, either both the objects have positivity higher than the

negativity, or both the objects have negativity higher than the positivity, or both the

objects have equal measures of positivity and negativity. The indiscernibility relation

< between the objects of U is constructed as:

< = f(uj ; uk) 2 U � U : uj � ukg: (6.6)

Surely, < is an eqv-rel on U:

De�nition 6.6.2 The indiscernibility parameter N has the values nj corresponding

to each object uj 2 U; given by

nj =
n
�
i=1
(aij � bij):

The parameter N represents the di¤erence between the degree of positivity and

the degree of negativity for each object uj ; cumulative to all parameters. In the same

way, the values of the parameter N< can be calculated by nj< =
n
�
i=1
(aij<

� bij<) and

the parameter N
<
by nj< =

n
�
i=1
(aij

< � bij
<
), where (aij<; bij<) and (aij

<; bij
<
) are

the (i; j)th entries in the tables of <(!) and <(!), respectively. Here, nj< represents
the de�nite ful�lment of the object uj , while, nj< represents the maximum possible

ful�lment of the object uj , towards !. Thus, the uncertain (or doubtful) ful�lment

of uj is given by the di¤erence nj< � nj<
.The table of ! is consistent if and only if

< � IND(N), where IND(N) is the eqv-rel on U; dividing U into the classes having

same values nj . Now, we proceed to the decision values dj for the objects.

De�nition 6.6.3 The values dj of the decision parameter D for each object uj 2 U;
given by

dj = nj<
+ nj

<:

This value gives the de�nite ful�lment nj< of the object uj ; a double weightage

than to the uncertain (doubtful) ful�lment nj< � nj<, because we have

dj = nj<
+ nj

< = 2nj<
� nj< + nj

<;
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or,

dj = 2nj<
+ (nj

< � nj<): (6.7)

We can rewrite Equation 6.7 as:

dj = 2
n
�
i=1
(aij<

� bij<) +
n
�
i=1
((aij

< � bij
<
)� (aij< � bij<)) (6.8)

From Equation 6.8, it is clear that the higher the de�nite positive ful�lment aij of uj ;

the larger the value dj . Also, the higher the de�nite negative ful�lment bij of uj ; the

smaller the value dj . In this way, we identify the poor objects having lowest value

of dj . These are the objects with high de�nite negative ful�lment to !. Hence, our

algorithm has the following main advantages.

� It manipulates technically the fuzziness of the data enriched with the bipolarity
of information.

� It accommodates the opinions about the objects with respect to any (�nite)
number of attributes.

� It gives double weightage to the de�nite ful�lment of the objects, than to the
uncertain ful�lment.

� It yields a wise decision, containing the best, as well as, the poor decision, so
that, one can sidestep the poor decision.

Main steps of the algorithm are as follows.

Algorithm 6.6.4 The algorithm to decide for the best and the worst object in U is

as follows.

1. Input the set of choice attributes �A � �E.

2. Input the FBSS ! = (�;  ; �A).

3. Construct the indiscernibility relation < on U and �nd the values of the indis-

cernibility parameter N: Check the consistency of the table of !.

4. Evaluate <(�;  ; �A) and <(�;  ; �A) for the FBSS (�;  ; �A) using the indiscerni-
bility relation < de�ned in Formula 6.6. Also �nd the values nj< and nj

<.

5. Find the decision values dj = nj<
+ nj

< for each object uj 2 U:

6. Construct the decision table having columns of U and the decision parameter D

only, by rearranging in the descending order with respect to the decision values

dj. Choose k and l, so that dk = max
j

dj and dl = min
j

dj. Then uk is the best

optimal object, while ul is the worst optimal object to be decided.
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The �ow chart of Algorithm 6.6.4 is shown in Figure 6.1.

Figure 6.1: Flow chart of Algorithm 6.6.4

As an illustration, we apply this algorithm to an example.

Example 6.6.5 Take a collection U = fc1; c2; c3; c4; c5; c6g of some construction com-
panies considered by Mrs. X for the construction of her home and consider the attribute

set �E = fe1 =strong structure, e2 =innovative designs, e3 =high quality materials,
e4 =good reputation, e5 =well organized, e6 =competitive pricing, e7 =having own

crew, e8 =decisiveness, e9 =�exibility, e10 =skilled crewg and : �E = f:e1 =weak
structure, :e2 =traditional designs, :e3 =low quality materials, :e4 =ill reputation,
:e5 =disorganized, :e6 =high pricing, :e7 =not having own crew, :e8 =indecisive,
:e9 =rigidity, :e10 =unskilled crewg. Let the "Quality Analysis" of construction work
be described by an FBSS ! = (�;  ; �A) given in Table 6.1.

1. Input �A = fe1; e2; e4; e6; e7; e10g.

2. Input the FBSS ! = (�;  ; �A) as in Table 6.1.

! c1 c2 c3 c4 c5 c6

e1 (0:6; 0:2) (0:5; 0:5) (0:6; 0:3) (0:3; 0:5) (0:6; 0:2) (0:4; 0:4)

e2 (0:6; 0:4) (0:5; 0:4) (0:6; 0:2) (0:7; 0:3) (0:5; 0:5) (0:3; 0:4)

e4 (0:7; 0:1) (0:4; 0:4) (0:6; 0:2) (0:3; 0:5) (0:5; 0:4) (0:4; 0:4)

e6 (0:5; 0:5) (0:6; 0:3) (0:4; 0:5) (0:6; 0:3) (0:4; 0:5) (0:5; 0:4)

e7 (0:4; 0:5) (0:3; 0:6) (0:6; 0:2) (0:7; 0:2) (0:6; 0:4) (0:4; 0:4)

e10 (0:7; 0:1) (0:6; 0:3) (0:5; 0:3) (0:5; 0:4) (0:4; 0:5) (0:3; 0:5)

Table 6.1: FBSS ! = (�;  ; �A)
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3. The indiscernibility grades are assigned to cj 2 U and the values of the indis-

cernibility parameter N are calculated in Table 6.2.

! c1 c2 c3 c4 c5 c6

e1 P O P N P O

e2 P P P P O N

e4 P O P N P O

e6 O P N P N P

e7 N N P P P O

e10 P P P P N N

N 1:7 0:4 1:6 0:9 0:5 �0:2

Table 6.2: Calculations of Gij and the values of N

We �nd that

< = f(c1; c1); (c2; c2); (c3; c3); (c4; c4); (c5; c5); (c6; c6)g

= IND(N):

Which indicates that the table of ! is consistent.

4. Since < is the identity relation on U; so, ! is <�de�nable by Theorem 6.3.8.

That is, <(!) = <(!). This gives nj< = nj = nj
< for each cj 2 U:

5. The values dj = nj<
+ nj

< = 2nj of the decision parameter D for each cj 2 U;
are evaluated in the Table 6.3.

U c1 c2 c3 c4 c5 c6

e1 (0:6; 0:2) (0:5; 0:5) (0:6; 0:3) (0:3; 0:5) (0:6; 0:2) (0:4; 0:4)

e2 (0:6; 0:4) (0:5; 0:4) (0:6; 0:2) (0:7; 0:3) (0:5; 0:5) (0:3; 0:4)

e4 (0:7; 0:1) (0:4; 0:4) (0:6; 0:2) (0:3; 0:5) (0:5; 0:4) (0:4; 0:4)

e6 (0:5; 0:5) (0:6; 0:3) (0:4; 0:5) (0:6; 0:3) (0:4; 0:5) (0:5; 0:4)

e7 (0:4; 0:5) (0:3; 0:6) (0:6; 0:2) (0:7; 0:2) (0:6; 0:4) (0:4; 0:4)

e10 (0:7; 0:1) (0:6; 0:3) (0:5; 0:3) (0:5; 0:4) (0:4; 0:5) (0:3; 0:5)

N 1:7 0:4 1:6 0:9 0:5 �0:2
D 3:4 0:8 3:2 1:8 1:0 �0:4

Table 6.3: Calculation of the decision parameter D



6. Rough fuzzy bipolar soft sets 126

6. Table 6.4 is the decision table.

U D

c1 3:4

c3 3:2

c4 1:8

c5 1:0

c2 0:8

c6 �0:4

Table 6.4: The decision table of !

We get max
j

dj = d1 = 3:4 and min
j

dj = d6 = �0:4. Hence k = 1 and l = 6.

Thus, the company c1 is the best selection. If Mrs. X could not make a deal with

c1 for some reason, then, c3 will be the second best decision. But, in any case,

she must not go for c6.



Chapter 7

Rough fuzzy bipolar soft ideals
over semigroups

7.1 Introduction

Rough ideals in semigroups were �rst discussed by Kuroki [37] in 1997. Soft ideals over

semigroups were initiated by Ali et al. [12]. Fuzzy ideals in semigroups were discussed

by many authors; see [1, 2, 31, 33, 56, 58, 59, 60]. Later on, Yang [62] presented

the fuzzy soft ideals over semigroups. These concepts motivate the idea of continuing

the work of Chapter 6 in the direction of the semigroups and ideals in semigroups.

We de�ne and discuss the notion of the FBS subsemigroups, FBS left ideals (FBSl-

ids), FBS right ideals (FBSr-ids), FBS two-sided ideals (FBS-ids), FBS interior ideals

(FBSi-ids) and FBS bi-ideals (FBSb-ids) over semigroups. The roughness in FBSSs

and FBS subsemigroups under a cng-rel de�ned on the semigroup is also studied. We

further present the concept of roughness in FBSl-ids, FBSr-ids, FBS-ids, FBSi-ids and

FBSb-ids over a semigroup by de�ning the lower and upper RFBS-apxes of these ideals

over a semigroup and investigate some of their basic properties.

7.2 Fuzzy bipolar soft sets over semigroups

The fuzzy bipolar soft (FBS) subsemigroups are constructed by hybridizing the RFBS-

apxes of the FBSSs with the semigroups. Throughout this chapter, � is a semigroup,
�E is the set of attributes for � and < is a cng-rel on �. Recall that an FBSS over
a semigroup � is symbolized by ! = (�;  ; �A); where �A � �E and �;  are mappings

given by � : �A! zz(�) and  : : �A! zz(�) with a consistency restraint

0 � �(e)(a) +  (:e)(a) � 1 (7.1)

127
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for each e 2 �A and for each a 2 �. We denote the set containing all FBSSs over � by
FBSS(�).

De�nition 7.2.1 For any two FBSSs !1 = (�1;  1; �A1); !2 = (�2;  2; �A2) over �; the
composition !1b� !2 of !1 and !2 is the FBSS (�1 � �2;  1 � 2; �A1 \ �A2) over �; where

(�1 � �2) (e)(a) =

8><>: _
a=bc

(�1(e)(b) ^ �2(e)(c))
if a = bc

for some b; c 2 �
0 otherwise

and

( 1 �  2) (:e)(a) =

8><>: ^
a=bc

( 1(:e)(b) _  2(:e)(c))
if a = bc

for some b; c 2 �
0 otherwise

for each e 2 �A1 \ �A2 and for each a 2 �:

De�nition 7.2.2 An FBSS ! = (�;  ; �A) over � is called an FBS subsemigroup over
�; if for each a; b 2 � and for each e 2 �A; we have

�(e)(ab) > �(e)(a) ^ �(e)(b);

 (:e)(ab) 6  (:e)(a) _  (:e)(b):

Example 7.2.3 Let � = fa; b; c; dg represent a semigroup whose table of binary op-
eration is given below.

a b c d

a a b b d

b b b b d

c b b b d

d d d d d

Let Ê = fei : i = 1; 2; 3; 4g and let ! = (�;  ; �A) be an FBSS over � with �A =

fe1; e3g; such that:
�(e1) = fa=0:2; b=0:6; c=0:6; d=0:5g;
 (:e1) = fa=0:7; b=0:1; c=0:2; d=0:4g;
�(e3) = fa=0:3; b=0:7; c=0:3; d=0:4g;
 (:e3) = fa=0:6; b=0:2; c=0:5; d=0:5g:
Simple calculations verify that ! is an FBS subsemigroup over �.

Theorem 7.2.4 Let !1 and !2 be any two FBS subsemigroups over �. Then, their
restricted intersection !1eur!2 and extended intersection !1eu"!2 are also FBS sub-
semigroups over �.
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Proof. Take FBS subsemigroups !1 = (�1;  1; �A1) and !2 = (�2;  2; �A2) over �.
Their extended intersection is given by !1eu"!2 = (�1e\"�2;  1e[" 2; �A1[ �A2): Take any
a; b 2 �: Then, the following cases arise.

Case I:

Let e 2 �A1 \ �A2: Since !1 and !2 are FBS subsemigroups over �, so we have the

following for each a; b 2 �.

(�1e\"�2)(e)(ab) = �1(e)(ab) ^ �2(e)(ab)

> (�1(e)(a) ^ �1(e)(b)) ^ (�2(e)(a) ^ �2(e)(b))

= (�1(e)(a) ^ �2(e)(a)) ^ (�1(e)(b) ^ �2(e)(b))

= (�1e\"�2)(e)(a) ^ (�1e\"�2)(e)(b):
Similarly,

( 1e[" 2)(:e)(ab) 6 ( 1e[" 2)(:e)(a) _ ( 1e[" 2)(:e)(b)
for each a; b 2 � and e 2 �A1 \ �A2:

Case II:

Let e 2 A1 �A2: Then, for each a; b 2 �; we have

(�1e\"�2)(e)(ab) = �1(e)(ab)

> �1(e)(a) ^ �1(e)(b)

= (�1e\"�2)(e)(a) ^ (�1e\"�2)(e)(b):
Similarly,

( 1e[" 2)(:e)(ab) 6 ( 1e[" 2)(:e)(a) _ ( 1e[" 2)(:e)(b)
for each a; b 2 � and e 2 A1 �A2:

Same is the case when e 2 A2 �A1:
Thus, by De�nition 7.2.2, it is proved that the extended intersection !1eu"!2 is

an FBS subsemigroups over �. In the same way, it can be shown that the restricted

intersection !1eur!2 is an FBS subsemigroup over �.
The extended or restricted union of !1 and !2 may not be an FBS subsemigroup

over �. This is shown in the subsequent example.

Example 7.2.5 Let � = fk; l;m; ng represent a semigroup whose table of binary
operation is given below.

k l m n

k k k k n

l k l k n

m k k m n

n n n n n
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Let Ê = fe1; e2; e3g: We take two FBS subsemigroups !1 = (�1;  1; �A1) and !2 =
(�2;  2; �A2) over � with �A1 = fe1; e3g and �A2 = fe1; e2g; de�ned as below.

�1(e1) = fk=0:2; l=0:6; m=0:1; n=0:5g;
 1(:e1) = fk=0:4; l=0:2; m=0:6; n=0:5g;
�1(e3) = fk=0:9; l=0:5; m=0:3; n=0:1g;
 1(:e3) = fk=0:1; l=0:4; m=0:5; n=0:8g;
�2(e1) = fk=0:3; l=0:2; m=0:7; n=0:4g;
 2(:e1) = fk=0:5; l=0:6; m=0:1; n=0:5g;
�2(e2) = fk=0:7; l=0:6; m=0:5; n=0:4g;
 2(:e2) = fk=0:3; l=0:4; m=0:5; n=0:6g:
Simple calculations verify that !1eu"!2 and !1eur!2 are FBS subsemigroups over

�. The restricted union !1etr!2 = (�1e[r�2;  1e\r 2; �A1 \ �A2) is calculated below.

(�1e[r�2)(e1) = fk=0:3; l=0:6; m=0:7; n=0:5g;
( 1e\r 2)(:e1) = fk=0:4; l=0:2; m=0:1; n=0:5g:
We �nd that

(�1e[r�2)(e1)(lm) = (�1e[r�2)(e1)(k) = 0:3
� (�1e[r�2)(e1)(l) ^ (�1e[r�2)(e1)(m) = 0:6:

So, !1etr!2 (and similarly !1et"!2) is not an FBS subsemigroups over �.
Note that !1et"!2 is trivially an FBS subsemigroups over � if �A1 \ �A2 = �: Recall

the De�nition 6.5.1 of the ��level P-cuts and the De�nition 6.5.2 of the ��level N-cuts
of ! relative to the attribute e 2 �A; de�ned respectively as:

!he;�i = fu 2 � : �(e)(u) � �g;

!he;�i = fu 2 � :  (:e)(u) � �g

for each 0 � � � 1.

Theorem 7.2.6 An FBSS ! = (�;  ; �A) over � is an FBS subsemigroup over � if

and only if !he;�i and !he;�i, if non-empty, are subsemigroups of �, for each � 2 [0; 1]
and for each e 2 �A.

Proof. Let ! = (�;  ; �A) be an FBS subsemigroup over �. Take any e 2 �A and

a; b 2 !he;�i. Then, �(e)(a) > � and �(e)(b) > �. Since ! is an FBS subsemigroup of

�, so

�(e)(ab) > �(e)(a) ^ �(e)(b) > �:

Which implies ab 2 !he;�i. So, !he;�i is a subsemigroup of � for each � 2 [0; 1] and for
each e 2 �A. Similarly, !he;�i is a subsemigroup of � for each � 2 [0; 1] and for each
e 2 �A.
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Conversely, let !he;�i and !he;�i be non-empty subsemigroups of� for each � 2 [0; 1]
and for each e 2 �A: Take any a; b 2 � and denote �(e)(a)^�(e)(b) by �e 2 [0; 1]. Surely,
�(e)(a); �(e)(b) > �e, and so a; b 2 !he;�ei. But !he;�ei is a subsemigroup of �. So

ab 2 !he;�ei. Which yields �(e)(ab) > �e: That is,

�(e)(ab) > �(e)(a) ^ �(e)(b): (7.2)

Now, denote  (:e)(a)_ (:e)(b) by �:e; where �:e 2 [0; 1]. Then,  (:e)(a);  (:e)(b) 6
�:e, and so a; b 2 !he;�:ei. But !he;�:ei is a subsemigroup of �. So ab 2 !he;�:ei.

Which yields  (:e)(ab) 6 �:e: That is,

 (:e)(ab) 6  (:e)(a) _  (:e)(b): (7.3)

Assertions 7.2 and 7.3 combine to prove that ! is an FBS subsemigroup over �.

7.3 Fuzzy bipolar soft ideals over semigroups

We construct and confer, in this section, the FBSl-ids, FBSr-ids, FBS-ids, FBSi-ids

and FBSb-ids over the semigroup �.

De�nition 7.3.1 An FBSS ! = (�;  ; �A) over � is called an FBSl-id over �; if for

each a; b 2 � and for each e 2 �A; we have

�(e)(ab) > �(e)(b);

 (:e)(ab) 6  (:e)(b):

De�nition 7.3.2 An FBSS ! = (�;  ; �A) over � is called an FBSr-id over �; if for

each a; b 2 � and for each e 2 �A; we have

�(e)(ab) > �(e)(a);

 (:e)(ab) 6  (:e)(a):

De�nition 7.3.3 An FBSS ! = (�;  ; �A) over � is called an FBS-id over �; if it

is both, an FBSl-id and an FBSr-id over �: That is, for each a; b 2 � and for each

e 2 �A; we have

�(e)(ab) > �(e)(a) _ �(e)(b);

 (:e)(ab) 6  (:e)(a) ^  (:e)(b):

Theorem 7.3.4 The extended intersection !1eu"!2 and the restricted intersection !1eur!2
of any two FBSl-ids (FBSr-ids, FBS-ids) !1 and !2 over a semigroup � are FBSl-ids

(FBSr-ids, FBS-ids) over �.
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Proof. Let !1 = (�1;  1; �A1), !2 = (�2;  2; �A2) be any two FBSl-ids over �.

Their extended intersection is given by !1eu"!2 = (�1e\"�2;  1e[" 2; �A1[ �A2): Take any
a; b 2 �: Then, the following cases arise.

Case I:

Let e 2 �A1 \ �A2: Since !1 and !2 are FBSl-ids over �, so, we have the following

for each a; b 2 �:

(�1e\"�2)(e)(ab) = �1(e)(ab) ^ �2(e)(ab)

> �1(e)(b) ^ �2(e)(b)

= (�1e\"�2)(e)(b):
Similarly,

( 1e[" 2)(:e)(ab) 6 ( 1e[" 2)(:e)(b)
for each a; b 2 � and e 2 �A1 \ �A2:

Case II:

Let e 2 A1 �A2: Then, for each a; b 2 �; we have

(�1e\"�2)(e)(ab) = �1(e)(ab)

> �1(e)(b) = (�1e\"�2)(e)(b):
Similarly,

( 1e[" 2)(:e)(ab) 6 ( 1e[" 2)(:e)(b)
for each a; b 2 � and e 2 A1 �A2:
Same is the case when e 2 A2 �A1:
Thus, be De�nition 7.3.1, it is proved that the extended intersection !1eu"!2 is

an FBSl-id over �. In the same way, it can be shown that the restricted intersection

!1eur!2 is an FBSl-id over � and that, !1eu"!2 and !1eur!2 are FBSr-ids and FBS-ids
over �.

Theorem 7.3.5 Let � be a semigroup and !1; !2 be two FBSl-ids (FBSr-ids, FBS-

ids) over �. Then, their extended union !1et"!2 and restricted union !1etr!2 are also
FBSl-ids (FBSr-ids, FBS-ids) over �.

Proof. Let !1 = (�1;  1; �A1), !2 = (�2;  2; �A2) be any two FBSl-ids over �. Their
extended union is given by !1et"!2 = (�1e["�2;  1e\" 2; �A1 [ �A2): Take any a; b 2 �:
Then, the following cases arise.

Case I:
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Let e 2 �A1 \ �A2: Since !1 and !2 are FBSl-ids over �, so, we have the following

for each a; b 2 �:

(�1e["�2)(e)(ab) = �1(e)(ab) _ �2(e)(ab)

> �1(e)(b) _ �2(e)(b)

= (�1e["�2)(e)(b):
Similarly,

( 1e\" 2)(:e)(ab) 6 ( 1e\" 2)(:e)(b)
for each a; b 2 � and e 2 �A1 \ �A2:

Case II:

Let e 2 A1 �A2: Then, for each a; b 2 �; we have

(�1e["�2)(e)(ab) = �1(e)(ab)

> �1(e)(b) = (�1e["�2)(e)(b):
Similarly,

( 1e\" 2)(:e)(ab) 6 ( 1e\" 2)(:e)(b)
for each a; b 2 � and e 2 A1 �A2:
Same is the case when e 2 A2 �A1:
Thus, be De�nition 7.3.1, it is proved that the extended union !1et"!2 is an FBSl-

id over �. In the same way, it can be shown that the restricted union !1etr!2 is an
FBSl-id over � and that, !1et"!2 and !1etr!2 are FBSr-ids and FBS-ids over �.
Theorem 7.3.6 Let � be a semigroup. Then, for each FBSr-id !1 and FBSl-id !2
over �, the following assertion hold.

!1b� !2 e� !1eur!2:
Proof. Let !1 = (�1;  1; �A1) be an FBSr-id and !2 = (�2;  2; �A2) be an FBSl-id

over �: We have

!1b� !2 = (�1 � �2;  1 �  2; �A1 \ �A2);

!1eur!2 = (�1e\r�2;  1e[r 2; �A1 \ �A2):

Take any s 2 �. If there exist elements a; b 2 �, such that s = ab; then for each

e 2 �A1 \ �A2; we obtain

(�1 � �2)(e)(s) = _
s=ab

(�1(e)(a) ^ �2(e)(b))

� _
s=ab

(�1(e)(ab) ^ �2(e)(ab)); since !1 is FBSr-id

and !2 is FBSl-id over �:

= �1(e)(s) ^ �2(e)(s); since ab = s

= (�1e\r�2)(e)(s):
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Otherwise

(�1 � �2)(e)(s) = 0 � (�1e\r�2)(e)(s)
for each e 2 �A1 \ �A2: Similarly, for each s 2 � and for each e 2 �A1 \ �A2, we have

( 1 �  2)(:e)(s) � ( 1e[r 2)(:e)(s):
Thus, proved that,

!1b� !2 e� !1eur!2
for each FBSr-id !1 and FBSl-id !2 over �:

Corollary 7.3.7 For each FBSr-id !1 and FBSl-id !2 over �, the following assertion
hold.

!1b� !2 e� !1eu"!2
Proof. Theorem 7.3.6 veri�es it directly, as !1eur!2 e� !1eu"!2:

Theorem 7.3.8 An FBSS ! = (�;  ; �A) over the semigroup � is an FBSl-id (FBSr-id,
FBS-id) over � if and only if !he;�i and !he;�i; if non-empty, are left (right, two-sided)

ideals of �, for each � 2 [0; 1] and for each e 2 �A.

Proof. Let ! = (�;  ; �A) be an FBSl-id over �. Take any e 2 �A, x 2 � and

a 2 !he;�i. Then, �(e)(a) > �. Since ! is an FBSl-id over �, so

�(e)(xa) > �(e)(a) > �:

Which implies xa 2 !he;�i. So, !he;�i is a left ideal of � for each � 2 [0; 1] and for each
e 2 �A. Similarly, !he;�i is a left ideal of � for each � 2 [0; 1] and for each e 2 �A.

Conversely, let !he;�i and !he;�i be non-empty left ideals of � for each � 2 [0; 1]
and for each e 2 �A: Take any a; b 2 � and denote �(e)(b) by �e 2 [0; 1]. Then surely,
b 2 !he;�ei. But !he;�ei is a left ideal of �. So ab 2 !he;�ei. Which yields �(e)(ab) > �e:

That is,

�(e)(ab) > �(e)(b): (7.4)

Now, denote  (:e)(b) by �:e; where �:e 2 [0; 1]. Then,  (:e)(b) 6 �:e, and so b 2
!he;�:ei. But !he;�:ei is a left ideal of �. So ab 2 !he;�:ei. Which yields  (:e)(ab) 6
�:e: That is,

 (:e)(ab) 6  (:e)(b): (7.5)

Assertions 7.4 and 7.5 prove that ! is an FBSl-id over �.

A similar proof follows when ! is an FBSr-id or an FBS-id over �.



7. Rough fuzzy bipolar soft ideals over semigroups 135

De�nition 7.3.9 An FBSS ! = (�;  ; �A) over � is called an FBSi-id over � if for

each a; b; c 2 � and for each e 2 �A; we have

�(e)(abc) > �(e)(b);

 (:e)(abc) 6  (:e)(b):

Theorem 7.3.10 The extended intersection !1eu"!2 and the restricted intersection
!1eur!2 of any two FBSi-ids !1 and !2 over a semigroup � are FBSi-ids over �.

Proof. Parallel to the proof of Theorem 7.3.4.

Theorem 7.3.11 The extended union !1et"!2 and the restricted union !1etr!2 of any
two FBSi-ids !1 and !2 over a semigroup � are FBSi-ids over �.

Proof. Parallel to the proof of Theorem 7.3.5.

Theorem 7.3.12 An FBSS ! = (�;  ; �A) over the semigroup � is an FBSi-id over �
if and only if !he;�i and !he;�i; if non-empty, are interior ideals of �, for each � 2 [0; 1]
and for each e 2 �A.

Proof. Let ! = (�;  ; �A) 2 FBSS(�) be an FBSi-id over �. Take any e 2 �A;

a 2 !he;�i and x; y 2 �. Then, �(e)(a) > �. Since ! is an FBSi-id over �, so

�(e)(xay) > �(e)(a) > �:

Which implies xay 2 !he;�i. So, !he;�i is an interior ideal of � for each � 2 [0; 1] and
for each e 2 �A. Similarly, !he;�i is an interior ideal of � for each � 2 [0; 1] and for
each e 2 �A.

Conversely, let !he;�i and !he;�i be non-empty interior ideals of � for each � 2 [0; 1]
and for each e 2 �A: Take any a; b; c 2 � and denote �(e)(b) by �e 2 [0; 1]. Then surely,
b 2 !he;�ei. But !he;�ei is an interior ideal of �. So abc 2 !he;�ei. Which yields

�(e)(abc) > �e: That is,

�(e)(abc) > �(e)(b): (7.6)

Now, denote  (:e)(b) by �:e; where �:e 2 [0; 1]. Then,  (:e)(b) 6 �:e, and so

b 2 !he;�:ei. But !he;�:ei is an interior ideal of �. So, abc 2 !he;�:ei. Which yields

 (:e)(abc) 6 �:e: That is,

 (:e)(abc) 6  (:e)(b): (7.7)

The expressions 7.6 and 7.7 prove that ! is an FBSi-id over �:
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De�nition 7.3.13 An FBS subsemigroup ! = (�;  ; �A) over a semigroup � is called

an FBSb-id over � if for each a; b; c 2 � and for each e 2 �A; we have

�(e)(abc) > �(e)(a) ^ �(e)(c);

 (:e)(abc) 6  (:e)(a) _  (:e)(c):

Theorem 7.3.14 The extended intersection !1eu"!2 and the restricted intersection
!1eur!2 of the FBSb-ids !1 and !2 over a semigroup � are FBSb-ids over �.

Proof. Parallel to the proof of Theorem 7.2.4.

The extended or restricted union of !1 and !2 may not be FBSb-ids over�; because

these are not FBS subsemigroups over �; as shown in Example 7.2.5.

Theorem 7.3.15 An FBSS ! = (�;  ; �A) over the semigroup � is an FBSb-id over

� if and only if !he;�i and !he;�i, if non-empty, are bi-ideals of �, for each e 2 �A and

for each � 2 [0; 1].

Proof. Let ! = (�;  ; �A) be an FBSb-id over �. Then, ! is also an FBS subsemi-
group over �. So, !he;�i and !he;�i are subsemigroups of �, for each e 2 �A and for

each � 2 [0; 1] by Theorem 7.2.6. Now take any e 2 �A; b 2 � and a; c 2 !he;�i. Then
surely, �(e)(a) > � and �(e)(c) > �. Since ! is an FBSb-id over �, so

�(e)(abc) > �(e)(a) ^ �(e)(c) > �:

Which implies abc 2 !he;�i. So, !he;�i is a bi-ideal of � for each � 2 [0; 1] and for each
e 2 �A. Similarly, !he;�i is a bi-ideal of � for each � 2 [0; 1] and for each e 2 �A.

Conversely, let !he;�i and !he;�i be non-empty bi-ideals of � for each � 2 [0; 1] and
for each e 2 �A: By Theorem 7.2.6, ! is an FBS subsemigroup over �. Now take any

a; b; c 2 � and denote �(e)(a) ^ �(e)(c) by �e 2 [0; 1]. Surely, �(e)(a); �(e)(c) > �e,

and so a; c 2 !he;�ei. But !he;�ei is a bi-ideal of �. So abc 2 !he;�ei. Which yields

�(e)(abc) > �e: That is,

�(e)(abc) > �(e)(a) ^ �(e)(c): (7.8)

Now, denote  (:e)(a)_ (:e)(c) by �:e; where �:e 2 [0; 1]. Then  (:e)(a);  (:e)(c) 6
�:e, and so a; c 2 !he;�:ei. But !he;�:ei is a bi-ideal of �. So abc 2 !he;�:ei for each

b 2 �. Which yields  (:e)(abc) 6 �:e: That is,

 (:e)(abc) 6  (:e)(a) _  (:e)(c): (7.9)

Assertions 7.8 and 7.9 prove that ! is an FBSb-id over �.
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7.4 Rough fuzzy bipolar soft sets over semigroups

The RFBSSs are de�ned using the lower and upper RFBS-apxes of an FBSS over �;

on which a cng-rel < is de�ned. These approximations are de�ned in this section.

The RFBS subsemigroups over � are also de�ned and some characterizations are

investigated.

De�nition 7.4.1 The lower and upper RFBS-apxes of an FBSS ! = (�;  ; �A) 2
FBSS(�) under the cng-rel < are the FBSSs <(!) = (�<;  <; �A) and <(!) = (�

<
;  

<
; �A)

over �, respectively, where �<(e), �
<
(e),  <(:e),  

<
(:e) are FSs in �; de�ned by

�<(e)(u) = �(e)<(u) = ^
y2[u]<

�(e)(y);

�
<
(e)(u) = �(e)

<
(u) = _

y2[u]<
�(e)(y);

 <(:e)(u) =  (:e)<(u) = _
y2[u]<

 (:e)(y);

 
<
(:e)(u) =  (:e)<(u) = ^

y2[u]<
 (:e)(y)

for each e 2 �A and for each u 2 �: If <(!) = <(!), then, ! is said to be <�de�nable;
otherwise, ! is an RFBSS over �:

In Chapter 6, some characterizations of the RFBSSs over a non-empty set U having

an eqv-rel < were presented. These characterizations are also valid when the set U is

replaced by the semigroup � and the eqv-rel on U is replaced by a cng-rel on �: So

the results in Chapter 6 also hold for the lower and upper RFBS-apxes of the FBSSs

over �; given in the De�nition 7.4.1.

Theorem 7.4.2 For the cng-rel < on � and for each !1; !2 2 FBSS(�); the follow-
ing holds.

<(!1) b� <(!2) e� <(!1b� !2)
Proof. Since < is a cng-rel on �, so [x]<[y]< � [xy]< for each x; y 2 �. For any

!1 = (�1;  1; �A1), !2 = (�2;  2; �A2) 2 FBSS(�), we have

<(!1) b� <(!2) = (�1
< � �2

<
;  1

< �  2
<
; �A1 \ �A2);

<(!1b� !2) = (�1 � �2
<
;  1 �  2

<
; �A1 \ �A2):
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Take any s 2 �. If some x; y 2 � exist, such that s = xy; then we have the following

for each e 2 �A1 \ �A2:

(�1
< � �2

<
)(e)(s) = _

s=xy
(�1

<
(e)(x) ^ �2

<
(e)(y))

= _
s=xy

(( _
a2[x]<

�1(e)(a)) ^ ( _
b2[y]<

�2(e)(b)))

= _
s=xy

( _
a2[x]<; b2[y]<

(�1(e)(a) ^ �2(e)(b)))

� _
s=xy

( _
ab2[xy]<

(�1(e)(a) ^ �2(e)(b))); since ab 2 [x]<[y]< � [xy]<

= _
ab2[s]<

(�1(e)(a) ^ �2(e)(b)); since xy = s

= _
t2[s]<; t=ab

(�1(e)(a) ^ �2(e)(b))

= _
t2[s]<

( _
t=ab

(�1(e)(a) ^ �2(e)(b)))

= _
t2[s]<

(�1 � �2)(e)(t) = <(�1 � �2)(e)(s):

Otherwise we have

(�1
< � �2

<
)(e)(s) = 0 � �1 � �2

<
(e)(s)

for each e 2 �A1 \ �A2: Similarly, for each s 2 � and for each e 2 �A1 \ �A2, we have

( 1
< �  2

<
)(:e)(s) �  1 �  2

<
(:e)(s):

Hence, proved that, <(!1) b� <(!2) e� <(!1b� !2):
Theorem 7.4.3 Let < be a complete cng-rel on �. Then, the following holds for each
!1; !2 2 FBSS(�).

<(!1) b� <(!2) e� <(!1b� !2)
Proof. Since < is a complete cng-rel on �, so [x]<[y]< = [xy]< for each x; y 2 �.

Let !1 = (�1;  1; �A1), !2 = (�2;  2; �A2) 2 FBSS(�). We have

<(!1) b� <(!2) = (�1< � �2<;  1< �  2<;
�A1 \ �A2);

<(!1b� !2) = (�1 � �2<;  1 �  2<;
�A1 \ �A2):
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Take any s 2 �. If some x; y 2 � exist, such that s = xy; then for each e 2 �A1 \ �A2,

we have

(�1< � �2<)(e)(s) = _
s=xy

(�1<(e)(x) ^ �2<(e)(y))

= _
s=xy

(( ^
a2[x]<

�1(e)(a)) ^ ( ^
b2[y]<

�2(e)(b)))

= _
s=xy

( ^
a2[x]<; b2[y]<

(�1(e)(a) ^ �2(e)(b)))

� _
s=xy

( ^
a2[x]<; b2[y]<

_
ab=t1t2

(�1(e)(t1) ^ �2(e)(t2))); where t1; t2 2 �

= _
s=xy

( ^
a2[x]<; b2[y]<

(�1 � �2)(e)(ab))

= _
s=xy

( ^
ab2[xy]<

(�1 � �2)(e)(ab)); since ab 2 [x]<[y]< = [xy]<

= _
s=xy

(�1 � �2<(e)(xy)) = �1 � �2<(e)(s):

Otherwise;

(�1< � �2<)(e)(s) = 0 � �1 � �2<(e)(s)

for each e 2 �A1 \ �A2: Similarly, for each s 2 � and for each e 2 �A1 \ �A2; we have

( 1< �  2<)(:e)(s) �  1 �  2<(:e)(s):

Hence, proved that <(!1) b� <(!2) e� <(!1b� !2):
Theorem 7.4.4 For the cng-rel < on �; the FBSr-id !1 and the FBSl-id !2 over �,
the subsequent asservations hold.

1. <(!1b�!2) e� <(!1)eur<(!2);
2. <(!1b�!2) e� <(!1)eur<(!2):
Proof. (1) Take an FBSr-id !1 = (�1;  1; �A1) and an FBSl-id !2 = (�2;  2; �A2)

over �. We have

<(!1b�!2) = (�1 � �2
<
;  1 �  2

<
; �A1 \ �A2);

<(!1)eur<(!2) = (�1
<e\r�2<;  1<e[r 2<; �A1 \ �A2):

:
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Now, for each s 2 � and for each e 2 �A1 \ �A2; we have

�1 � �2
<
(e)(s) = _

t2[s]<
(�1 � �2)(e)(t)

= _
t2[s]<

_
t=ab

(�1(e)(a) ^ �2(e)(b))

� _
t2[s]<

_
t=ab

(�1(e)(ab) ^ �2(e)(ab)); since !1 is FBSr-id

and !2 is FBSl-id

= _
t2[s]<

(�1(e)(t) ^ �2(e)(t))

� _
t2[s]<

_
t02[s]<

(�1(e)(t) ^ �2(e)(t0))

= ( _
t2[s]<

�1(e)(t)) ^ ( _
t02[s]<

�2(e)(t
0))

= �1
<
(e)(s) ^ �2

<
(e)(s)

= (�1
<e\r�2<)(e)(s):

Similarly, for each s 2 � and for each e 2 �A1 \ �A2; we have

 1 �  2
<
(:e)(s) � ( 1

<e[r 2<)(:e)(s):
Thus, proved, that,

<(!1b�!2) e� <(!1)eur<(!2):
(2) Analogous to the proof of (1).

De�nition 7.4.5 An FBSS ! over � is a lower (or upper) RFBS subsemigroup over
�; if <(!) (or <(!)) is an FBS subsemigroup over �.

An FBSS ! = (�;  ; �A) over �; which is both, lower and upper RFBS subsemigroup

over �; is called an RFBS subsemigroup over �:

Theorem 7.4.6 Each FBS subsemigroup over � is an upper RFBS subsemigroup

over �.

Proof. Take an FBS subsemigroup ! = (�;  ; �A) over �. Then, we have �(e)(ab) �
�(e)(a) ^ �(e)(b) and  (:e)(ab) �  (:e)(a) _  (:e)(b) for each a; b 2 � and for each
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e 2 �A: Now, for x; y 2 � and e 2 �A, we have

�
<
(e)(xy) = _

s2[xy]<
�(e)(s)

� _
s2[x]<[y]<

�(e)(s); since [x]<[y]< � [xy]<

= _
ab2[x]<[y]<

�(e)(ab); where s = ab

� _
a2[x]<; b2[y]<

(�(e)(a) ^ �(e)(b))

= ( _
a2[x]<

�(e)(a)) ^ ( _
b2[y]<

�(e)(b))

= �
<
(e)(x) ^ �<(e)(y)

and

 
<
(:e)(xy) = ^

s2[xy]<
 (:e)(s)

� ^
s2[x]<[y]<

 (:e)(s); since [x]<[y]< � [xy]<

= ^
ab2[x]<[y]<

 (:e)(ab); where s = ab

� ^
a2[x]<; b2[y]<

( (:e)(a) _  (:e)(b))

= ( ^
a2[x]<

 (:e)(a)) _ ( ^
b2[y]<

 (:e)(b))

=  
<
(:e)(x) _  <(:e)(y):

This veri�es that <(!) is an FBS subsemigroup over �. Therefore, ! is an upper
RFBS subsemigroup over �.

The converse statement of Theorem 7.4.6 is invalid generally, as exhibited in the

next example.

Example 7.4.7 Recall the semigroup � = fa; b; c; dg and the attribute set �E; as es-
tablished in Example 7.2.3. Take a binary relation < on �; de�ning classes fag; fb; cg
and fdg: Then, < is a cng-rel on �. We take an FBSS ! = (�;  ; �A) over � with
�A = fe1; e2g; de�ned below.
�(e1) = fa=0:1; b=0:3; c=0:4; d=0:6g;
 (:e1) = fa=0:5; b=0:5; c=0:4; d=0:1g;
�(e2) = fa=0:2; b=0:5; c=0:4; d=0:9g;
 (:e2) = fa=0:7; b=0:4; c=0:6; d=0:1g:
The upper RFBS-apx <(!) = (�<;  <; �A) of ! under < is calculated as:
�
<
(e1) = fa=0:1; b=0:4; c=0:4; d=0:6g;

 
<
(:e1) = fa=0:5; b=0:4; c=0:4; d=0:1g;

�
<
(e2) = fa=0:2; b=0:5; c=0:5; d=0:9g;
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<
(:e2) = fa=0:7; b=0:4; c=0:4; d=0:1g:

Simple calculations verify that <(!) is an FBS subsemigroup over �: But, we �nd
that,

�(e1)(cc) = �(e1)(b) = 0:3

� �(e1)(c) ^ �(e1)(c) = 0:4:

So, ! is not an FBS subsemigroup over �. Although, it is an upper RFBS subsemi-

group over �.

Theorem 7.4.8 Let < be a complete cng-rel on �. Then, each FBS subsemigroup

over � is a lower RFBS subsemigroup over �.

Proof. Let ! = (�;  ; �A) be an FBS subsemigroup over �. Now, for each x; y 2 �
and for each e 2 �A, we have

�<(e)(xy) = ^
s2[xy]<

�(e)(s)

= ^
s2[x]<[y]<

�(e)(s); since [x]<[y]< = [xy]<

= ^
ab2[x]<[y]<

�(e)(ab); where s = ab

� ^
a2[x]<; b2[y]<

(�(e)(a) ^ �(e)(b))

= ( ^
a2[x]<

�(e)(a)) ^ ( ^
b2[y]<

�(e)(b))

= �<(e)(x) ^ �<(e)(y)

and

 <(:e)(xy) = _
s2[xy]<

 (:e)(s)

= _
s2[x]<[y]<

 (:e)(s); since [x]<[y]< = [xy]<

= _
ab2[x]<[y]<

 (:e)(ab); where s = ab

� _
a2[x]<; b2[y]<

( (:e)(a) _  (:e)(b))

= ( _
a2[x]<

 (:e)(a)) _ ( _
b2[y]<

 (:e)(b))

=  <(:e)(x) _  <(:e)(y):

This veri�es that <(!) is an FBS subsemigroup over �. Therefore, ! is a lower RFBS
subsemigroup over �.

The converse statement of the Theorem 7.4.8 is invalid generally, as exhibited in

the next example.
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Example 7.4.9 Let � = fs; t; u; vg represent a semigroup whose table of binary op-
eration is given below.

s t u v

s s t u v

t t t u v

u u u u v

v v v v u

Let Ê = fei; i = 1; 2; :::; 5g and let < be a cng-rel over �; de�ning cng-classes

fsg; ftg and fu; vg. Then, < is a complete cng-rel over �: We take an FBSS !

= (�;  ; �A) over � with �A = fe1g; de�ned below.
�(e1) = fs=0:4; t=0:5; u=0:5; v=0:6g;
 (:e1) = fs=0:3; t=0:4; u=0:4; v=0:3g;
�(e2) = fs=0:6; t=0:7; u=0:8; v=0:9g;
 (:e2) = fs=0:1; t=0:2; u=0:1; v=0:1g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e1) = fs=0:4; t=0:5; u=0:5; v=0:5g;
 <(:e1) = fs=0:3; t=0:4; u=0:4; v=0:4g;
�<(e2) = fs=0:6; t=0:7; u=0:8; v=0:8g;
 <(:e2) = fs=0:1; t=0:2; u=0:1; v=0:1g:
Simple calculations verify that <(!) is an FBS subsemigroup over �: But, we �nd

that,

�(e1)(vv) = �(e1)(u) = 0:5

� �(e1)(v) ^ �(e1)(v) = 0:6:

So, ! is not an FBS subsemigroups over �, although, it is a lower RFBS subsemigroup

over �.

Theorem 7.4.8 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 7.4.10 Recall the semigroup � = fa; b; c; dg and the attribute set �E; as
established in Example 7.2.3. The binary relation < de�ning the classes fag; fcg;
fb; dg is a cng-rel on � and < is not complete. We take an FBS subsemigroup !

= (�;  ; �A) over � with �A = fe1; e2g; de�ned below.
�(e1) = fa=0:4; b=0:6; c=0:4; d=0:3g;
 (:e1) = fa=0:2; b=0:4; c=0:5; d=0:3g;
�(e2) = fa=0:1; b=0:2; c=0:1; d=0:3g;
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 (:e2) = fa=0:4; b=0:3; c=0:5; d=0:6g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e1) = fa=0:4; b=0:3; c=0:4; d=0:3g;
 <(:e1) = fa=0:2; b=0:4; c=0:5; d=0:4g;
�<(e2) = fa=0:1; b=0:2; c=0:1; d=0:2g;
 <(:e2) = fa=0:4; b=0:6; c=0:5; d=0:6g:
We �nd that

�<(e1)(ac) = �<(e1)(b) = 0:3

� �<(e1)(a) ^ �<(e1)(c) = 0:4

So, <(!) is not FBS subsemigroups over �; that is, ! is not lower RFBS subsemi-
group over �:

7.5 Rough fuzzy bipolar soft ideals over semigroups

We establish and elaborate, in this section, the notions of the RFBS-ids, RFBSi-ids

and RFBSb-ids over �: Some characterizations of the lower and upper RFBS-ids, lower

and upper RFBSi-ids and lower and upper RFBSb-ids over � are also discussed.

De�nition 7.5.1 An FBSS ! over � is a lower (resp. upper) RFBSl-id (RFBSr-id,

RFBS-id) over �; if <(!) (resp. <(!)) is an FBSl-id (FBSr-id, FBS-id) over �:

An FBSS ! over � is called an RFBSl-id (RFBSr-id, RFBS-id) if it is both, lower

and upper RFBSl-id (RFBSr-id, RFBS-id) over �:

Theorem 7.5.2 Each FBSl-id (FBSr-id, FBS-id) over � is an upper RFBSl-id (RFBSr-
id, RFBS-id) over �.

Proof. Take an FBSl-id ! = (�;  ; �A) over �. Then, �(e)(ab) � �(e)(b) and

 (:e)(ab) �  (:e)(b) for each a; b 2 � and for each e 2 �A: Now, for each x; y 2 �
and for each e 2 �A, we have

�
<
(e)(xy) = _

s2[xy]<
�(e)(s)

� _
s2[x]<[y]<

�(e)(s); since [x]<[y]< � [xy]<

= _
ab2[x]<[y]<

�(e)(ab); where s = ab

� _
a2[x]<; b2[y]<

�(e)(b)

= _
b2[y]<

�(e)(b)

= �
<
(e)(y)
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and

 
<
(:e)(xy) = ^

s2[xy]<
 (:e)(s)

� ^
s2[x]<[y]<

 (:e)(s); since [x]<[y]< � [xy]<

= ^
ab2[x]<[y]<

 (:e)(ab); where s = ab

� ^
a2[x]<; b2[y]<

 (:e)(b)

= ^
b2[y]<

 (:e)(b)

=  
<
(:e)(y):

This veri�es that <(!) is an FBSl-id over �. Therefore, ! is an upper RFBSl-id over
�. Similarly, the cases of FBSr-id and FBS-id over � can be veri�ed.

The converse statement of the Theorem 7.5.2 is invalid generally, as exhibited in

the next example.

Example 7.5.3 Recall the semigroup � = fk; l;m; ng and Ê = fe1; e2; e3g as estab-
lished in Example 7.2.5. Let < be a cng-rel over �; de�ning cng-classes fk; l; ng and
fmg. We take an FBSS ! = (�;  ; �A) over � with �A = fe1; e3g; de�ned below.

�(e1) = fk=0:1; l=0:2; m=0:1; n=0:4g;
 (:e1) = fk=0:5; l=0:6; m=0:7; n=0:4g;
�(e3) = fk=0:7; l=0:6; m=0:1; n=0:8g;
 (:e3) = fk=0:2; l=0:3; m=0:3; n=0:1g:
The upper RFBS-apx <(!) = (�<;  <; �A) of ! under < is calculated as:
�
<
(e1) = fk=0:4; l=0:4; m=0:1; n=0:4g;

 
<
(:e1) = fk=0:4; l=0:4; m=0:7; n=0:4g;

�
<
(e3) = fk=0:8; l=0:8; m=0:1; n=0:8g;

 
<
(:e3) = fk=0:1; l=0:1; m=0:3; n=0:1g:

Simple calculations verify that <(!) is an FBSl-id over �: But, we �nd that,

�(e1)(ml) = �(e1)(k) = 0:1

� �(e1)(l) = 0:2:

So, ! is not an FBSl-id over �, although, it is an upper RFBSl-id over �.

Theorem 7.5.4 Let < be a complete cng-rel on �. Then, each FBSl-id (FBSr-id,

FBS-id) over � is a lower RFBSl-id (RFBSr-id, RFBS-id) over �.
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Proof. Let ! = (�;  ; �A) be an FBSl-id over �. Now, for each x; y 2 � and for

each e 2 �A, we have

�<(e)(xy) = ^
s2[xy]<

�(e)(s)

= ^
s2[x]<[y]<

�(e)(s); since [x]<[y]< = [xy]<

= ^
ab2[x]<[y]<

�(e)(ab); where s = ab

� ^
a2[x]<; b2[y]<

�(e)(b)

= ^
b2[y]<

�(e)(b)

= �<(e)(y)

and

 <(:e)(xy) = _
s2[xy]<

 (:e)(s)

= _
s2[x]<[y]<

 (:e)(s); since [x]<[y]< = [xy]<

= _
ab2[x]<[y]<

 (:e)(ab); where s = ab

� _
a2[x]<; b2[y]<

 (:e)(b)

= _
b2[y]<

 (:e)(b)

=  <(:e)(y):

This veri�es that <(!) is an FBSl-id over �. Therefore, ! is a lower RFBSl-id over
�. Similarly, the cases of FBSr-id and FBS-id over � can be veri�ed.

The converse statement of the Theorem 7.5.4 is invalid generally, as exhibited in

the next example.

Example 7.5.5 Recall the semigroup � = fs; t; u; vg; the attribute set Ê and the

complete cng-rel < over �; as established in Example 7.4.9. We take an FBSS !

= (�;  ; �A) over � with �A = fe2; e3g; de�ned below.
�(e2) = fs=0:1; t=0:2; u=0:6; v=0:3g;
 (:e2) = fs=0:7; t=0:6; u=0:3; v=0:3g;
�(e3) = fs=0:2; t=0:4; u=0:6; v=0:8g;
 (:e3) = fs=0:5; t=0:4; u=0:3; v=0:2g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e2) = fs=0:1; t=0:2; u=0:3; v=0:3g;
 <(:e2) = fs=0:7; t=0:6; u=0:3; v=0:3g;
�<(e3) = fs=0:2; t=0:4; u=0:6; v=0:6g;
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 <(:e3) = fs=0:5; t=0:4; u=0:3; v=0:3g:
Simple calculations verify that <(!) is an FBSl-id over �: But, we �nd that,

�(e2)(uv) = �(e2)(v) = 0:3

� �(e2)(u) = 0:6:

So, ! is not an FBSl-id over �; although, it is a lower RFBSl-id over �.

Theorem 7.5.4 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 7.5.6 Recall the semigroup � = fa; b; c; dg and the attribute set �E; as es-
tablished in Example 7.2.3. Take a cng-rel < on �; de�ning the cng-classes fag; fb; cg;
fdg; then < is not complete. We take an FBSl-id ! = (�;  ; �A) over � with �A =

fe1; e3g; de�ned below.
�(e1) = fa=0:3; b=0:4; c=0:2; d=0:6g;
 (:e1) = fa=0:6; b=0:3; c=0:4; d=0:1g;
�(e3) = fa=0:5; b=0:6; c=0:5; d=0:7g;
 (:e3) = fa=0:5; b=0:3; c=0:4; d=0:1g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e1) = fa=0:3; b=0:2; c=0:2; d=0:6g;
 <(:e1) = fa=0:6; b=0:4; c=0:4; d=0:1g;
�<(e3) = fa=0:5; b=0:5; c=0:5; d=0:7g;
 <(:e3) = fa=0:5; b=0:4; c=0:4; d=0:1g:
We �nd that

�<(e1)(ba) = �<(e1)(b) = 0:2

� �<(e1)(a) = 0:3:

So, <(!) is not an FBSl-id over �; that is, ! is not lower RFBSl-id over �.

De�nition 7.5.7 An FBSS ! over � is a lower (or upper) RFBSi-id over �; if <(!)
(or <(!)) is an FBSi-id over �.

An FBSS ! over �; which is both, lower and upper RFBSi-id over �; is called an

RFBSi-id over �:

Theorem 7.5.8 Each FBSi-id over � is an upper RFBSi-id over �.
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Proof. Take an FBSi-id ! = (�;  ; �A) over �. Then �(e)(abc) � �(e)(b) and

 (:e)(abc) �  (:e)(b) for each a; b; c 2 �. Now, for each x;w; y 2 � and for each

e 2 �A, we have

�
<
(e)(xwy) = _

s2[xwy]<
�(e)(s)

� _
s2[x]<[w]<[y]<

�(e)(s); since [x]<[w]<[y]< � [xwy]<

= _
abc2[x]<[w]<[y]<

�(e)(abc); where s = abc

� _
b2[w]<

�(e)(b)

= �
<
(e)(w)

and

 
<
(:e)(xwy) = ^

s2[xwy]<
 (:e)(s)

� ^
s2[x]<[w]<[y]<

 (:e)(s); since [x]<[w]<[y]< � [xwy]<

= ^
abc2[x]<[w]<[y]<

 (:e)(abc); where s = abc

� ^
b2[w]<

 (:e)(b)

=  
<
(:e)(w):

This veri�es that <(!) is an FBSi-id over �. Therefore, ! is an upper RFBSi-id over
�.

The converse statement of the Theorem 7.5.8 is invalid generally, as exhibited in

the next example.

Example 7.5.9 Recall the semigroup � = fk; l;m; ng; the attribute set Ê for � and

the cng-rel < over �; as established in Example 7.5.3. We take an FBSS ! = (�;  ; �A)
over � with �A = fe2; e3g; de�ned below.

�(e2) = fk=0:65; l=0:5; m=0:6; n=0:75g;
 (:e2) = fk=0:4; l=0:3; m=0:3; n=0:15g;
�(e3) = fk=0:92; l=0:84; m=0:81; n=0:99g;
 (:e3) = fk=0; l=0:1; m=0:11; n=0g:
The upper RFBS-apx <(!) = (�<;  <; �A) of ! under < is calculated as:
�
<
(e2) = fk=0:75; l=0:75; m=0:6; n=0:75g;

 
<
(:e2) = fk=0:15; l=0:15; m=0:3; n=0:15g;

�
<
(e3) = fk=0:99; l=0:99; m=0:81; n=0:99g;

 
<
(:e3) = fk=0; l=0; m=0:11; n=0g:
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Simple calculations verify that <(!) is an FBSi-id over �: But, we �nd that,

 (:e2)(llm) =  (:e2)(k) = 0:4


  (:e2)(l) = 0:3:

So, ! is not an FBSi-id over �, although, it is an upper RFBSi-id over �.

Theorem 7.5.10 Let < be a complete cng-rel on �. Then, each FBSi-id over � is a

lower RFBSi-id over �.

Proof. Let ! = (�;  ; �A) be an FBSi-id over �. Now, for each x;w; y 2 � and for
each e 2 �A, we have

�<(e)(xwy) = ^
s2[xwy]<

�(e)(s)

= ^
s2[x]<[w]<[y]<

�(e)(s); since [x]<[w]<[y]< = [xwy]<

= ^
abc2[x]<[w]<[y]<

�(e)(abc); where s = abc

� ^
b2[w]<

�(e)(b)

= �<(e)(w)

and

 <(:e)(xwy) = _
s2[xwy]<

 (:e)(s)

= _
s2[x]<[w]<[y]<

 (:e)(s); since [x]<[w]<[y]< = [xwy]<

= _
abc2[x]<[w]<[y]<

 (:e)(abc); where s = abc

� _
b2[w]<

 (:e)(b)

=  <(:e)(w):

This veri�es that <(!) is an FBSi-id over �. Therefore, ! is a lower RFBSi-id over
�.

The converse statement of the Theorem 7.5.10 is invalid generally, as exhibited in

the next example.

Example 7.5.11 Recall the semigroup � = fs; t; u; vg; the attribute set Ê and the

complete cng-rel < over �; as established in Example 7.4.9. We take an FBSS !

= (�;  ; �A) over � with �A = fe1; e3g; de�ned below.
�(e1) = fs=0:2; t=0:4; u=0:6; v=0:8g;
 (:e1) = fs=0:6; t=0:5; u=0:3; v=0:2g;
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�(e3) = fs=0:4; t=0:5; u=0:5; v=0:6g;
 (:e3) = fs=0:1; t=0:1; u=0:1; v=0:1g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e1) = fs=0:2; t=0:4; u=0:6; v=0:6g;
 <(:e1) = fs=0:6; t=0:5; u=0:3; v=0:3g;
�<(e3) = fs=0:4; t=0:5; u=0:5; v=0:5g;
 <(:e3) = fs=0:1; t=0:1; u=0:1; v=0:1g:
Simple calculations verify that <(!) is an FBSi-id over �: But, we �nd that,

�(e1)(vvs) = �(e1)(u) = 0:6

� �(e1)(v) = 0:8:

So, ! is not an FBSi-id over �, although, it is a lower RFBSi-id over �.

Theorem 7.5.10 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 7.5.12 Recall the semigroup � = fa; b; c; dg and �E as established in Exam-

ple 7.2.3. Take the cng-rel < on � from Example 7.5.6. Which is not complete, and

de�nes the cng-classes fag; fb; cg; fdg. We take an FBSi-id ! = (�;  ; �A) over � with
�A = fe2; e3g; de�ned below.
�(e2) = fa=0:3; b=0:4; c=0:2; d=0:5g;
 (:e2) = fa=0:3; b=0:1; c=0:2; d=0g;
�(e3) = fa=0:4; b=0:6; c=0:5; d=0:7g;
 (:e3) = fa=0:6; b=0:2; c=0:4; d=0g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e2) = fa=0:3; b=0:2; c=0:2; d=0:5g;
 <(:e2) = fa=0:3; b=0:2; c=0:2; d=0g;
�<(e3) = fa=0:4; b=0:5; c=0:5; d=0:7g;
 <(:e3) = fa=0:6; b=0:4; c=0:4; d=0g:
We �nd that

�<(e2)(bac) = �<(e2)(b) = 0:2

� �<(e2)(a) = 0:3:

So, <(!) is not an FBSi-id over �; that is, ! is not lower RFBSi-id over �:

De�nition 7.5.13 An FBSS ! over � is a lower (or upper) RFBSb-id over �; if

<(!) (or <(!)) is an FBSb-id over �.
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An FBSS ! over �; which is both, lower and upper RFBSb-id over �; is called a

RFBSb-id over �:

Theorem 7.5.14 For the cng-rel < on �; each FBSb-id over � is an upper RFBSb-id
over �.

Proof. Take an FBSb-id ! = (�;  ; �A) over �. Then, ! is also an FBS subsemi-
group over �. Which implies by Theorem 7.4.6, that, <(!) = (�<;  <; �A) is an FBS
subsemigroup over �. Now, for each x;w; y 2 � and for each e 2 �A, we have

�
<
(e)(xwy) = _

s2[xwy]<
�(e)(s)

� _
s2[x]<[w]<[y]<

�(e)(s); since [x]<[w]<[y]< � [xwy]<

= _
abc2[x]<[w]<[y]<

�(e)(abc); where s = abc

� _
a2[x]<; b2[w]<; c2[y]<

(�(e)(a) ^ �(e)(c))

= ( _
a2[x]<

�(e)(a)) ^ ( _
c2[y]<

�(e)(c))

= �
<
(e)(x) ^ �<(e)(y)

and

 
<
(:e)(xwy) = ^

s2[xwy]<
 (:e)(s)

� ^
s2[x]<[w]<[y]<

 (:e)(s); since [x]<[w]<[y]< � [xwy]<

= ^
abc2[x]<[w]<[y]<

 (:e)(abc); where s = abc

� ^
a2[x]<; b2[w]<; c2[y]<

( (:e)(a) _  (:e)(c))

= ( ^
a2[x]<

 (:e)(a)) _ ( ^
c2[y]<

 (:e)(c))

=  
<
(:e)(x) _  <(:e)(y):

This veri�es that <(!) is an FBSb-id over �. Therefore, ! is an upper RFBSb-id over
�.

The converse statement of the Theorem 7.5.14 is invalid generally, as exhibited in

the next example.

Example 7.5.15 Recall the semigroup � = fk; l;m; ng; the attribute set Ê for � and

the cng-rel < over �; as established in Example 7.5.3. We take an FBSS ! = (�;  ; �A)
over � with �A = fe1; e2g; de�ned below.

�(e1) = fk=0:76; l=0:75; m=0:71; n=0:78g;



7. Rough fuzzy bipolar soft ideals over semigroups 152

 (:e1) = fk=0:13; l=0:15; m=0:16; n=0:11g;
�(e2) = fk=0:85; l=0:82; m=0:83; n=0:8g;
 (:e2) = fk=0:12; l=0:14; m=0:15; n=0:1g:
The upper RFBS-apx <(!) = (�<;  <; �A) of ! under < is calculated as:
�
<
(e1) = fk=0:78; l=0:78; m=0:71; n=0:78g;

 
<
(:e1) = fk=0:11; l=0:11; m=0:16; n=0:11g;

�
<
(e2) = fk=0:85; l=0:85; m=0:83; n=0:85g;

 
<
(:e2) = fk=0:1; l=0:1; m=0:15; n=0:1g:

Simple calculations verify that <(!) is an FBSb-id over �: But, we �nd that,

�(e2)(knl) = �(e2)(n) = 0:8

� �(e2)(k) ^ �(e2)(l) = 0:82:

So, ! is not an FBSb-id over �; although, it is an upper RFBSb-id over �.

Theorem 7.5.16 Let < be a complete cng-rel on �. Then, each FBSb-id over � is a
lower RFBSb-id over �.

Proof. Let ! = (�;  ; �A) be an FBSb-id over �. Then, ! is also an FBS subsemi-
group over �. Which implies by Theorem 7.4.8, that, <(!) = (�<;  <; �A) is an FBS
subsemigroup over �. Now, for each x;w; y 2 � and for each e 2 �A, we have

�<(e)(xwy) = ^
s2[xwy]<

�(e)(s)

= ^
s2[x]<[w]<[y]<

�(e)(s); since [x]<[w]<[y]< = [xwy]<

= ^
abc2[x]<[w]<[y]<

�(e)(abc); where s = abc

� ^
a2[x]<; b2[w]<; c2[y]<

(�(e)(a) ^ �(e)(c))

= ( ^
a2[x]<

�(e)(a)) ^ ( ^
c2[y]<

�(e)(c))

= �<(e)(x) ^ �<(e)(y)

and

 <(:e)(xwy) = _
s2[xwy]<

 (:e)(s)

= _
s2[x]<[w]<[y]<

 (:e)(s); since [x]<[w]<[y]< = [xwy]<

= _
abc2[x]<[w]<[y]<

 (:e)(abc); where s = abc

� _
a2[x]<; b2[w]<; c2[y]<

( (:e)(a) _  (:e)(c))

= ( _
a2[x]<

 (:e)(a)) _ ( _
c2[y]<

 (:e)(c))

=  <(:e)(x) _  <(:e)(y):
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This veri�es that <(!) is an FBSb-id over �. Therefore, ! is a lower RFBSb-id over
�.

The converse statement of the Theorem 7.5.16 is invalid generally, as exhibited in

the next example.

Example 7.5.17 Recall the semigroup � = fs; t; u; vg; the attribute set Ê and the

complete cng-rel < over �; as established in Example 7.4.9. We take an FBSS !

= (�;  ; �A) over � with �A = fe2g; de�ned below.
�(e2) = fs=0:1; t=0:1; u=0:4; v=0:2g;
 (:e2) = fs=0:6; t=0:5; u=0:3; v=0:3g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e2) = fs=0:1; t=0:1; u=0:2; v=0:2g;
 <(:e2) = fs=0:6; t=0:5; u=0:3; v=0:3g:
Simple calculations verify that <(!) is an FBSb-id over �: But, we �nd that,

�(e2)(uvu) = �(e2)(v) = 0:2

� �(e2)(u) ^ �(e2)(u) = 0:4:

So, ! is not an FBSb-id over �; although, it is a lower RFBSb-id over �.

Theorem 7.5.16 is invalid if the cng-rel < is not complete. Next example is estab-
lished to verify this fact.

Example 7.5.18 Recall the semigroup � = fa; b; c; dg; the attribute set �E and the

cng-rel < on � (which is not complete); as taken in Example 7.5.12. Now, take an

FBSb-id ! = (�;  ; �A) over � with �A = fe1; e4g; de�ned below.
�(e1) = fa=0:7; b=0:8; c=0:6; d=0:9g;
 (:e1) = fa=0:2; b=0:1; c=0:3; d=0:1g;
�(e4) = fa=0:3; b=0:5; c=0:4; d=0:6g;
 (:e4) = fa=0:4; b=0:3; c=0:4; d=0:2g:
The lower RFBS-apxes <(!) = (�<;  <; �A) of ! under < are calculated as:
�<(e1) = fa=0:7; b=0:6; c=0:6; d=0:9g;
 <(:e1) = fa=0:2; b=0:3; c=0:3; d=0:1g;
�<(e4) = fa=0:3; b=0:4; c=0:4; d=0:6g;
 <(:e4) = fa=0:4; b=0:4; c=0:4; d=0:2g:
We �nd that

�<(e1)(aba) = �<(e1)(b) = 0:6

� �<(e1)(a) ^ �<(e1)(a) = 0:7:
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So, <(!) is not an FBSb-id over �; that is, ! is not lower RFBSb-id over �:
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List of abbreviations 

 

BF   Bipolar fuzzy 

BFb-id  Bipolar fuzzy bi-ideal 

BF-id  Bipolar fuzzy ideal 

BFi-id  Bipolar fuzzy interior ideal 

BFl-id  Bipolar fuzzy left ideal 

BFr-id  Bipolar fuzzy right ideal 

BFS  Bipolar fuzzy set 

BS   Bipolar soft 

BSb-id  Bipolar soft bi-ideal 

BS-id  Bipolar soft ideal 

BSi-id  Bipolar soft interior ideal 

BSl-id  Bipolar soft left ideal 

BSr-id  Bipolar soft right ideal 

BSS  Bipolar soft set 

Cng-class  Congruence class 

Cng-rel  Congruence relation 

Eqv-class  Equivalence class 

Eqv-rel  Equivalence relation 

FBS  Fuzzy bipolar soft 

FBSb-id  Fuzzy bipolar soft bi-ideal 

FBS-id  Fuzzy bipolar soft ideal 

FBSi-id   Fuzzy bipolar soft interior ideal 

FBSl-id  Fuzzy bipolar soft left ideal 

FBSr-id  Fuzzy bipolar soft right ideal 

FBSS  Fuzzy bipolar soft set 



FS   Fuzzy set 

GDM  Group decision making 

P-apx  Pawlak approximation 

RBF  Rough bipolar fuzzy   

RBF-apx  Rough bipolar fuzzy approximation 

RBFb-id  Rough bipolar fuzzy bi-ideal 

RBF-id  Rough bipolar fuzzy ideal 

RBFi-id  Rough bipolar fuzzy interior ideal 

RBFl-id  Rough bipolar fuzzy left ideal 

RBFr-id  Rough bipolar fuzzy right ideal 

RBFS  Rough bipolar fuzzy set 

RBS  Rough bipolar soft 

RBS-apx  Rough bipolar soft approximation 

RBSb-id  Rough bipolar soft bi-ideal 

RBS-id  Rough bipolar soft ideal 

RBSi-id  Rough bipolar soft interior ideal 

RBSl-id  Rough bipolar soft left ideal 

RBSr-id  Rough bipolar soft right-ideal 

RBSS  Rough bipolar soft set 

RFBS  Rough fuzzy bipolar set 

RFBS-apx  Rough fuzzy bipolar soft approximation 

RFBSb-id Rough fuzzy bipolar soft bi-ideal 

RFBS-id  Rough fuzzy bipolar soft ideal 

RFBSi-id  Rough fuzzy bipolar soft interior ideal 

RFBSl-id  Rough fuzzy bipolar soft left ideal 

RFBSr-id  Rough fuzzy bipolar soft right ideal 

RFBSS  Rough fuzzy bipolar soft set 
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