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Preface 

Fluid dynamics is a branch of engineering science which deals with the analysis of different 

fluids flow in different geometries under their rheological behaviour.  Fluids can be classified 

into different categories depending upon their various rheological properties. The study of 

interaction between heat and mass transfer regarding non- Newtonian fluids flow past a 

stretching surfaces along with boundary layer characteristics has a remarkable role due to its 

extensive use in engineering and industrial applications namely, coal-oil slurries, food stuffs 

or industrial thermal design equipment, metal spinning, glass blowing,  metal extrusion etc.  

Therefore, interest of researchers and scientists immensely increased towards rheological 

features of non-Newtonian fluids. We have non-linear relationship between shear stress and 

shear rate which leads to flow diversity of non-Newtonians fluid models. Focus of present 

study is on rheological features of non-Newtonian fluid models. The thesis has been 

organized in the following manners. Introduction chapter is the literature survey about the 

applications of the non-Newtonian fluids flow in stratified medium along with analysis of 

physical effects. 

Thermally stratified boundary layer flow of a tangent hyperbolic fluid induced by a stretching 

cylinder is considered in chapter 2. The flow field is translated in terms of differential 

equations along with endpoint conditions. To execute the computing scheme, the modelled 

partial differential equations are converted in terms of ordinary differential equations with the 

application of suitable symmetry transformations. A numerical study is performed to identify 

the effects of the flow-controlling parameters namely, curvature parameter, power law index, 

Weissenberg number, thermal stratification parameter and Prandtl number. The physical 

quantities namely, the skin friction coefficient and the local Nusselt number are calculated at 

the cylindrical surface and elucidated through graphs and tables. The contents of this chapter 
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are published in “The European Physical Journal Plus, 132(9), (2017): 389”. https://doi 

10.1140/epjp/i2017-11677-3. 

In the presence of mixed convection the temperature and concentration stratification effects 

on tangent hyperbolic fluid flow are exposed in chapter 3. The key objective of this chapter is 

to study fluid flow through no slip condition. The flow regime characteristics are modelled in 

terms of partial differential equations. A similarity transformation is used to transform partial 

differential equations into system of coupled non-linear ordinary differential equations. A 

computational algorithm is executed to predict its numerical results. The effects of flow 

controlling parameters namely, mixed convection parameter, thermal stratification and solutal 

stratification parameters on velocity, temperature and concentration are examined and offered 

by means of graphical outcomes. The contents of this chapter are published in “Results in 

Physics 7(2017): 3659-3667”. https://doi.org/10.1016/j.rinp.2017.09.032. 

The flow characteristics of tangent hyperbolic fluid in the presence of thermal and solutal 

stratification effects are explored in chapter 4. The fluid flow is due to an inclined stretching 

cylindrical surface along with some pertinent effects, namely, heat generation, mixed 

convection and chemically reactive species. To be more specific, the researchers considered 

stratification effects, “either it is single stratification or double stratification” on flat surfaces. 

Numerical solution is obtained to visualize the effects of involved parameters on 

dimensionless quantities through graphs. Further, the skin friction coefficient, heat transfer 

rate and mass transfer rate are also computed and presented with the help of tables. The 

contents of this chapter are published in “The European Physical Journal Plus 132(12) 

(2017): 550”.  https://doi.org/10.1140/epjp/i2017-11822-0.  

In various attempts mostly researchers identified Eyring-Powell fluid flow towards flat 

surfaces supported with different physical effects but as yet few exploration are reported 

https://doi.org/10.1016/j.rinp.2017.09.032
https://doi.org/10.1140/epjp/i2017-11822-0
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subject to cylindrical stretching surfaces. Chapter 5 is dedicated to explore the physical 

aspects of magneto-hydrodynamic Eyring-Powell nanofluid flow both by flat and cylindrical 

inclined stretching surfaces along with chemically reactive species in vicinity of stagnation 

point manifested with mixed convection, thermal radiation, heat generation, temperature and 

concentration stratification effects. The strength of both fluid temperature and concentration 

adjacent to both surfaces is supposed to be higher as compared to ambient fluid. A 

mathematically modelled flow conducting differential equations are fairly transformed into 

system of coupled non-linear ordinary differential equations with the aid of suitable 

transformation. The numerical algorithm is developed to compute temperature, fluid velocity 

and concentration results. The compatibility of boundary conditions is validated by providing 

stream lines patterns subject to velocities ratio parameter. The impact of 

pertinent flow controlling parameters on dimensionless velocity, temperature 

and nanoparticle concentration profiles are discussed through graphical outcomes. Further, 

the influence of thermophoresis parameter and Brownian motion parameter are identified on 

heat and mass transfer rates by means of straight line curve fitting approximations. The 

contents of this chapter are published in “AIP Advances 7(6), (2017): 065103”. 

https://doi.org/10.1063/1.4985061. 

Thermophysical aspects of magnetohydrodynamic double stratified mixed convection 

nanofluid flow by assuming Eyring-Powell model over an inclined stretching cylinder is 

proposed in chapter 6. In this study, concentration equations admit the role of solutal 

stratification and chemical reaction effects. The system of ODE’s transformed from modelled 

PDE’s is solved numerically through shooting scheme in support with Runge–Kutta-Fehlberg 

technique. The effects of involved physical parameters on dimensionless velocity, 

temperature, and nanoparticle concentration distributions are identified by graphs and tables. 

The compatibility of boundary conditions is verified by plotting stream lines for different 

https://doi.org/10.1063/1.4985061
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values of velocities ratio parameter. At the end the work is justified by providing comparison 

with literature and an excellent agreement is observed. The contents of this chapter are 

published in "Journal of the Brazilian Society of Mechanical Sciences and Engineering 

39(9), (2017): 3669-3682”. https://doi.org/10.1007/s40430-017-0860-3. 

An analyse for mixed convection thermally stratified flow of Casson fluid in the presence 

of heat generation effects on stretching cylinder is explored in chapter 7. The flow problem 

narrated through partial differential equations is converted into system of non-linear 

ordinary differential equations through suitable transformation. The numerical solution is 

obtained by using shooting method with the aid of fifth order Runge-Kutta algorithm. The 

effects of controlling parameters on velocity and temperature profiles are depicted 

graphically. The numeric values for local skin friction coefficient and Nusselt number are 

reported with the aid of tables. Further, the obtained results are validated through table which 

leads to benchmark the quality of numerical communication. The contents of this chapter are 

published in "Chinese Journal of Physics 55(4), (2017): 1605-1614”. 

https://doi.org/10.1016/j.cjph.2017.05.002. 

The novelty of chapter 8 is to highlight the characteristics of the Casson nanofluid flow due 

to an inclined stretching cylinder manifested with various physical effects namely, magnetic 

field, mixed convection, heat generation, thermal radiations, temperature and concentration 

stratification along with chemical reaction. A mathematical model is developed in terms of 

differential equations. A self-constructed computational algorithm is executed to obtain the 

numerical solution of flow narrating equations. The dimensionless fluid velocity, temperature 

and nanoparticle concentration on varying physical parameters are demonstrated by means of 

graphical and tabular outcomes. The contents of this chapter are published in "The 

European Physical Journal E 41(3) (2018): 37”. https://doi.org/10.1140/epje/i2018-11641-

8. 

https://www.sciencedirect.com/topics/physics-and-astronomy/mixed-convection
https://www.sciencedirect.com/topics/physics-and-astronomy/heat-generation
https://www.sciencedirect.com/topics/physics-and-astronomy/partial-differential-equations
https://www.sciencedirect.com/topics/physics-and-astronomy/differential-equations
https://www.sciencedirect.com/topics/physics-and-astronomy/numerical-solution
https://www.sciencedirect.com/topics/physics-and-astronomy/skin-friction
https://www.sciencedirect.com/topics/physics-and-astronomy/nusselt-number
https://doi.org/10.1016/j.cjph.2017.05.002
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Both Newtonian and non-Newtonian nanofluids with stagnation point flow towards an 

inclined cylindrical surface are considered in chapter 9. The flow field is manifested with 

physical effects, namely thermal radiation, mixed convection, chemical reaction, temperature 

and concentration stratification, heat generation/absorption, magnetic field. The reduced 

system of ODE’s is obtained by transforming flow narrating PDE’s with the aid of 

appropriate transformation. A computational algorithm is executed to trace out the solution of 

an initial value problem. The influence of Brownian motion and thermophoresis parameters 

are reported on mass and heat transfer rates by way of both straight line and parabolic curve 

fitting schemes. The contents of this chapter are published in "The European Physical 

Journal Plus 132(10), (2017): 427”.  https://doi.org/10.1140/epjp/i2017-11679-1. 

Chapter 10 is dedicated to observe the non-Newtonian fluid flow towards the channel having 

infinite circular cylinder as an obstacle. Both upper and lower walls are considered at no slip 

condition and the right wall as an outlet is specified with Neumann condition. The left wall as 

an inlet is initiated with two different velocity profiles namely, the linear (constant) and 

parabolic Power law velocity profiles. The Power law fluid in each case strikes with an 

obstacle being placed in between channels, and the bifurcation of Power law fluid occurs 

around circular cylinder. The obtained outcomes with the help of finite element method are 

offered in terms of contour and line graphs. Besides this, the results are validated by 

developing comparison with existing work. The contents of this chapter are published in 

"Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (2019): 

176”. https://doi.org/10.1007/s40430-019-1664-4.  

The chapter 11 reports the extended novelty of the hydrodynamics. To be more specific, the 

flowing fluid stream admitting Newton’s law of viscosity is considered in a smooth 

rectangular channel. The various typical shaped cylinders are placed fixed in between 

rectangular channel as an obstacle. The shape of obstacles includes the triangle, square, 

hexagon, octagon and circle. The no-slip condition is carried at both the upper and lower 

https://doi.org/10.1007/s40430-019-1664-4
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walls of the channel. The right wall as an outlet is specified with the Neumann condition. The 

fluid is initiated at an inlet of the channel with the two different class of velocity profiles, 

namely the constant velocity profile and the parabolic profile. The whole physical designed is 

controlled mathematically in terms of Navier-Stokes equations. The solution is proposed with 

the finite element method and for the discretization of flow narrating equations the LBB-

stable finite element pair is utilized along with a hybrid meshing scheme. The primitive 

variables namely, the velocity and pressure are reported for each obstacle. The line 

integration around the outer surface of the triangle, square, hexagon, octagon and circular 

cylinders is carried for the evaluation of hydrodynamic forces. The statistical data for such 

hydrodynamic forces is recorded up-to nine various refinement levels. The contents of this 

chapter is published in “Journal of Molecular Liquids (2019): 111953”. 

https://doi.org/10.1016/j.molliq.2019.111953  

  

https://doi.org/10.1016/j.molliq.2019.111953
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Thesis Abstract 

The focus of this thesis is on the rheological features of Newtonian and non-Newtonian fluid 

models in a single or double stratified medium along with the various physical belongings 

namely, externally applied magnetic field, stagnation point, mixed convection, thermal 

radiation, Joule heating, heat generation/absorption, chemical reaction, and nanofluid flow 

field. The considered non-Newtonian fluid models includes Tangent hyperbolic fluid model, 

Eyring-Powell fluid model, Casson fluid model and Williamson fluid model. The case-wise 

mathematical modeling of the said fluid models along with the above mentioned physical 

effects is developed. The obtained differential system in terms of partial differential equations 

is translated into system of ordinary differential equations via suitable set of transformation. 

For solution purpose the numerical method named “Shooting method” is adopted. The 

quantity of interest includes the velocity, temperature, concentration, skin friction, heat 

transfer rate and mass transfer rate. The impact of flow controlling parameters are examined 

and offered by way of both line graphs and tables. Further, thesis contains evaluation of 

hydrodynamic forces namely drag force and lift force experienced by various regular shaped 

obstacles. Such obstacles are installed towards ongoing fluid in a rectangular channel. Both 

the Power law and viscous fluid models are entertained in this direction. The physics is 

developed in terms of partial differential equations. To obtain better solution, the finite 

element method is used. The quantities of interest includes the primitive variables namely 

velocity and pressure. The obtained outcomes are shared with the help of both contour plots 

and line graphs. The detail analysis on examination of forces is offered. The majority of the 

simulated results of present thesis are validated by developing comparison with an existing 

literatures which leads to surety of our findings. The completion of work on this thesis brings 

ten (10) research publications in well reputed peer reviewed international journals.  
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Introduction 

 

The study of non-Newtonian fluids has received notable attention due to its practical 

applications in engineering and industrial processes. For instance, sugar solutions, 

polymers, emulsions, synthetic lubricants, paints, pulps, blood as a biological fluid, food 

stuffs such as marmalades, jellies and jams etc. Just a few mentioned here are the 

well-known fluids having non-Newtonian characteristics. In non-Newtonian fluids it is 

difficult to narrate the rheological features accurately because of nonlinear relation 

between shear stresses and deformation rate. Although, number of constitutive laws some 

of them namely, Ostwald–de Waele power law [1-2], Carreau, Carreau–Yasuda [3-4], 

Cross [5], Sisko [6], Eyring [7-8], Barus [9], Ellis [10], Seely [11], Bingham Herschel–

Bulkley [12-13] are proposed to report the physical description of fluids exhibiting 

non-Newtonian properties. To be more specific, Ostwald–de Waele power law fluid model 

fits experimental data for molten chocolate, ball point pen ink and aqueous dispersion of 

polymer latex spheres, Carreau Carreau–Yasuda justified for experimental data for molten 

polystyrene, Cross fluid model suits to experimental data for aqueous limestone 

suspension and aqueous polyvinyl acetate dispersion, Sisko fluid model applies to 

experimental data for lubricating greases, Barus fluid model suits to experimental data for 

organic liquids and mineral oils, Ellis fluid model outfits to experimental data for 

poly(vynil chloride) and 0.6% w/w carboxymethyl cellulose (CMC) solution in water, 

Seely fluid model fits experimental data for polybutadiene solutions, Bingham Herschel–

Bulkley fluid model justified for experimental data for polybutadiene solutions. As yet a 

tremendous work has been done by [14-19] after considering some frequently used 

non-Newtonian fluid models through experimental, integral and numerical treatments. 

The Ellis model, Cross model, Carreaus model, and tangent hyperbolic model are the most 

deliberately used fluid models in the field of fluid mechanics. These fluids are quoted as 

fluids having pseudo-plastic features. Out of these tangent hyperbolic fluid model belongs 

 CHAPTER 1 
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to the shearing thinning non-Newtonian fluids like polymers, blood and paints are the few 

examples obeying tangent hyperbolic (TH) constitutive relations. Owing the importance of 

TH fluid numerious investigators contributed their findings on flow field properties of such 

fluid like Akbar et al. [20] discussed the numerical solution of TH fluid flow brought by 

stretched sheet. The flow narrating equations are solved by the fourth and fifth order 

Runge-Kutta-Fehlberg method. The numerical solution of TH fluid flow towards vertical 

cylinder having exponentially stretching was given by Naseer et al. [21]. The thermal 

radiation effect on tangent hyperbolic fluid flow with stagnation point assumption was was 

assumed by Hayat et al. [22].  

The study of interaction between heat and mass transfer regarding non-Newtonian fluids 

flow past a stretching surfaces along with boundary layer characteristics has a remarkable 

role due to its extensive use in engineering and industrial applications namely, coal-oil 

slurries, food stuffs or industrial thermal design equipment, metal spinning, glass blowing,  

metal extrusion etc. Therefore, interest of researchers and scientists immensely increased 

towards the rheological features of non-Newtonian fluid models. The non-linear 

relationship between shear stress and shear rate leads to flow diversity of non-Newtonians 

fluid models. In general, due to uncertainty in rheological topographies of non-Newtonian 

fluid models the single constitutive equation is not enough to confer the relation of shear 

stresses and shear rate. In this context, various model are proposed namely, 

White-Metzner, Rolie-Poly, Blatter fluid model (1995), Eyring-Powell (1994), FENE-CR 

(1988), Giesekus fluid model (1982), Phan-Thien-Tanner fluid model (1978), 

Johnson-Tevaarwerk (1977), Johnson-Segalman fluid model (1977), Carreau-Yasuda fluid 

model (1972), Carreau fluid model (1972), FENE-P (1966), Cross fluid model (1965), 

Seely fluid model (1964), Kaye-Bernstein-Kearsley-Zapas (K-BKZ, 1963), Sisko fluid 

model (1958), Criminale-Ericksen-Filbey (1957), Rivlin-Ericksen (1955), Glen fluid 

model (1955), Oldroyd-A (1950), Oldroyd-8 constants (1950), Oldroyd-B fluid model 

(1950), Reiner-Rivlin fluid model (1945), Generalized Burgers (1939), Burgers fluid 

model (1939), Eyring fluid model (1936), Williamson fluid model (1929), Ostwald-de 

Waele power law model (1923), Bingham Herschel-Bulkly (1922), Barus fluid model 

(1893), Maxwell fluid model (1867), etc. A non-Newtonian fluid model proposed by 

Eyring and Powell [23] was derived from molecular theory of gases instead of empirical 
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formulation. The Eyring Powell has plus point in this sense that it may turn into Newtonian 

mode at low and high shear rates. In heat and mass diffusion, Eyring Powell model claims 

its key role in numerous natural, industrial, and geophysical problems like underground 

energy transport, temperature and moisture distribution over agricultural pitches. 

Therefore, Eyring-Powell fluid model as non-Newtonian fluid model remained a matter of 

great notice for researchers, namely, Yoon and Ghajar [24] identified the impact of an 

infinite and zero shear rate viscosities on Eyring Powell fluid model. It was found that 

Eyring Powell reflects remarkable sensitivity for small zero shear rate viscosity but 

moderate attitude is observed for an infinite shear rate viscosity. Patel and Timol [25] 

presented numerical communication on Eyring Powell fluid. The Eyring Powell fluid flow 

adjacent to the linearly stretched flat surface was identified by Javed et al. [26]. Besides, 

the work on Eyring Powell fluid flow over a stretching surfaces with different physical 

effects is concerned, (see [27-32]). 

The Casson fluid model (1959) is one of the most commonly used rheological model and 

has certain advantages over non-Newtonian fluid models. When yield stress is dominant in 

contrast to shear stress this model exhibits solid like behaviour and deformation occurs 

when yield stress is less significant as compared to shear stress. The researchers admit the 

importance of this fluid model and identified the influence of different physical effects by 

considering Casson fluid flow over stretching surfaces. Like the unsteady flow field 

properties of Casson fluid was discussed by Mustafa et al. [33]. Nadeem et al. [34] studied 

the boundary layer flow of a Casson fluid along with heat transfer characteristics towards 

an exponentially shrinking surface in the presence of thermal radiation. Later on, the heat 

transfer properties of Casson fluid flow near stretching surface under stagnation point was 

analyse by Mustafa et al. [35]. Mukhopadhyay et al. [36] contributed extended study on 

Casson fluid flow regime. She further extended her work in [37] by entertaining 

non-linearly stretching surface. Furthermore, the magnetic field interaction and permeable 

effects are studied by Mukhopadhyay et al. [38] on Casson fluid model. Higher 

dimensional flow field of MHD Casson fluid with porous and convective assumptions was 

investigated by Mahanta and Shaw [39]. The study of Casson nanofluid flow field was 

reported in Ref. [40]. Das et al. [41] analysed unsteady Casson fluid flow. The slip effects 

towards Casson flow field was analytically probed by Ramesh and Devakar [42]. 
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Animasaun et al. [43] studied Casson boundary layer flow due to exponentially stretching 

surface with variable hydromagnetic properties. Raju et al. [44] discussed the heat and 

mass transfer of Casson fluid flow over an exponentially stretching porous sheet. The 

modified viscosity model in line with three dimensional field for Casson fluid model was 

debated by Sandeep et al. [45]. The extended version of novelty subject to entrophy 

generation, and Cattaneo-Chirstov heat flux model towards Casson fluid flow field can be 

assessed in Refs. [46-47].  

The Williamson fluid model [48] was proposed by Williamson in 1929. He presented a 

rheological equation to explore the hidden characteristics of pseudoplastic fluids flow and 

the obtained results were also supported experimentally. The pseudoplastic fluid as a thin 

layer (oblique) by considering Williamson model under gravitational force was given by 

Lyubimov and Perminov [49]. The perturbation findings for a pulsatile flow of 

Williamson fluid towards rock fracture was presented by Dapra and Scarpi [50]. The 

peristaltic flow of Williamson fluid towards an asymmetric channel was identified by 

Nadeem and Akram [51]. Vajravelu et al. [52] identified the peristaltic transport in 

Williamson fluid by assuming channels (asymmetric) having permeable walls. In 2013, for 

the first time the mathematical modelling and physical narration for Williamson fluid was 

presented by Nadeem et al. [53]. The heat transfer properties of Williamson fluid towards 

flat surface in the presence of nanoparticles was deliberated by Nadeem and Hussain [54]. 

Blood flow characteristics of Williamson fluid through stenosed arteries subject to 

permeable walls was reported by Akbar et al. [55]. The numerical solution of Williamson 

fluid flow in the presence of pressure dependent viscosity was discussed by Zehra et al. 

[56]. To predict pertinent features of pseudoplastic materials the role of maximum or 

minimum effective viscosities is very important. This is due to their dependence yields 

from molecular structure of fluid. Here, in Williamson model we have both maximum and 

minimum viscosities subject to pseudoplastic materials due to which Williamson model 

provides better outcomes. The trustful literature regarding recent developments on 

Williamson fluid flow can be found [57-65]. 

The Couette flow is the viscous fluid flow in space between two surfaces one of which is 

moving tangentially relative to the other. This type of configuration exists either between 
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two parallel plates or in the gap of two concentric cylinders. The flow in this case is 

induced due to drag force or applied pressure gradient. The viscometery and lightly loaded 

journal bearing refers to the importance of Couette flow. One can assess the detail in this 

direction in [66-70]. The stationary fluid flow due to effective pressure gradient towards 

pipe having uniform cross sectional area is termed as Poiseuille flow. In this case, the 

relative velocity between fluid particles with surface is considered zero. In 1838, Jean 

Poiseuille (1797-1869) initially identified Poiseuille flow experimentally. In the presence 

of smooth geometry configuration both the Couette and Poiseuille flow were investigated 

analytically. In some recent attempts Poiseuille flow can be assessed in [71-76]. For both 

the Couette and Poiseuille flow manifested with various useful assumptions the exact 

solutions are proposed. Still it remained a challenging task for the investigators to propose 

exact findings when an obstacle is placed in-between fluid flow domain. Owing the 

importance of flow field along with an obstacle many researchers contributed their efforts 

towards research society. This is due to wide range of applications in the field of 

engineering science [77-80]. In this thesis the analysis about flow around obstacles is 

limited to one of the non-Newtonian fluid known as Power law or Ostwald de Waele 

Equation. Owing the importance of the Power law fluid model many researchers offered 

their findings towards various geometrical configurations [81-88].  

The formation or decomposition of thermal layers in a fluid flow regime is termed as 

temperature stratification phenomena. Temperature stratification is also refers as thermal 

stratification and it arises because of combination of fluids having different densities or it 

occurs due to variations in temperature. The study of boundary layer flow, non-Newtonian 

fluids subject to heat transfer manifested with thermal stratification has received 

considerable attention by the researchers because of its frequent industrial application. To 

mention few of them are, the oxygen and hydrogen ratio is maintained by the way 

stratification to control the species growth rate in the case of ponds and lakes. Stratification 

can be temperature stratification or concentration stratification. The stratification 

phenomena occur due to variant of concentration and temperature differences in a 

concerned medium. For example in solar ponds (thermal energy storing setup), 

environmental and geophysical domains having heat rejection aspects such as seas, lake 

and rivers. Whereas oceanography, agriculture, astrophysics and various chemical 

https://en.wikipedia.org/wiki/Viscometer
https://en.wikipedia.org/wiki/Fluid_bearing
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processes also enclosed both thermal and solutal stratification. Furthermore, closed 

containers, heated walls environmental chambers are also supported by double diffusion 

occurrence. In fact, stratification has widespread uses in many industrial and natural 

phenomena. In real situation when mass and heat transfer mechanism run simultaneously, 

it becomes essential to analyse the convective mode of transportation in fluids under the 

influence of double stratification. Thus to describe the characteristics of the mixed 

convection flows in a doubly prescribed frame several analytical and experimental 

attempts have been made. For example, Yang et al. [89] discussed the laminar flow over a 

non-isothermal surface in the presence of free convection through thermally stratified 

medium. Transition and stability of buoyancy induced stratified flow was studied by 

Jaluria and Gebhart [90]. Thermally stratified fluids flow with natural convection along 

simple bodies was identified by Chen and Eichhorn [91]. Ishak et al. [92] presented 

stratified boundary layer flow with dual convection normal to horizontal surface. Narayana 

and Murthy [93] debated dual stratified medium aspects in power law fluid model. Chen 

and Lee [94] considered micro-polar fluid flow parallel to vertical plate with constant and 

uniform heat flux in a thermally stratified medium. Cheng [95] reported double 

stratification in power law fluid flow towards vertical porous wavy surface. 

Mukhopadhyay and Ishak [96] studied the dual convection flow in viscous fluid subject to 

cylindrical surface through thermally stratified medium and computed its solution 

numerically. The suspended nanoparticles in dual stratied field was debated in Ref. [97]. 

The flow regime micropolar fluid manifested with stratified medium was debated, see Ref. 

[98]. The Jeffrey fluid model manifested with dual stratification was examined by Hayat et 

al. [99]. 

Nanofluids are those fluids which contain solid particles having dimensions approximately 

less than 100nm. The term nanofluids was coined most probably by Choi and Eastman 

[100] in 1995. The performance mode of heat transfer is remarkably effected by nanofluids 

having low thermal conductivity measures like water, engine and ethylene glycol and 

therefore, they cannot congregate for cooling requirements. Whereas, metals exhibits 

larger values of thermal conductivity as compared to conventional heat transfer. 

Furthermore, the solid particles in nanofluids are made of carbides, oxides, and different 

metals namely, silicon, aluminium and copper. In short, the fluid contains nano sized 
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particles having higher thermal conductivity as compared to regular/base fluids. This fact 

enhances the use of nanoparticles for the purpose of improvement in thermal conductivity 

of base fluids.  Therefore, the existence of nano sized solid particles in the conventional 

fluids are foundation of enhancement in the heat transfer individualities. In a nanofluid 

thermal conductivity was discussed by Choi et al. [101] subject to the base fluids when 

solid nano size particles were entertained. After these findings, many experimental and 

theoretical attempts were made to explore the advantages of nano sized particles because of 

numerous potential applications of nano fluids in heat transfer such as refrigerator, heat 

exchangers, engine cooling, microelectronics, chiller, fuel cells and thermal engineering. 

Different researchers addressed for the improvement/development in nano-fluids 

[102-111]. Furthermore, magnetic nanofluid is a fluid that reflects properties of liquid and 

magnetic both. The optical modulators, non-linear optical substances, optical switches 

magneto-optical wavelength filters are few applications of magnetic nanofluids. Therefore, 

plenty of researchers [112-115] are attracted and motivated to look for further avenues 

subject to nanofluid flows past a different stretching surfaces having magnetic 

characteristics. 

The study of magnetic properties and the behavior of electrically conducting fluids is term 

as magnetohydrodynamics (MHD). An analysis of MHD flow in an electrically conducting 

fluid has attained considerable attention by scientists and researchers due to its abundant 

applications in industries namely, MHD power generators, flow of ionized gases, plasma 

structures, geothermal energy extractions, petroleum individualities, the isolation of hot 

plasma in nuclear reactor, continuous strips cooling or filaments, thinning and drawing 

process for copper wires in desire direction. Further, the magnetic field has numerous 

applications in the area of metallurgy and polymer industry. The metallurgical claim 

comprises the continuous strips cooling or filaments in, such as, annealing, thinning and 

copper wires drawing process. In all these circumstances, the stuff of the final product 

depends up on cooling rate. Therefore, an intelligent attempt of magnetic field is required 

to control cooling and stretching rates. Thereby we can improve the desired claims of the 

final product. Pavlov [116] reported the exact solution of momentum equation having 

magnetic field as a body force term. In this frame, as far as cylindrical geometries are 

concerned, Ishak et al. [117] studied the magneto-hydrodynamic flow transported due to 
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stretching cylinder by way of heat transfer. The governing flow equations are solved by 

utilizing Keller-box method. Singh and Makinde [118-120] explored the 

magneto-hydrodynamic characteristics of fluid flow along an inclined plate under 

volumetric heat generation phenomena. Later on, they anticipated slip flow of viscous fluid 

by way of isothermal reactive stretching sheet and axisymmetric slip flow on a vertical 

cylinder. Das et al. [121] debated magnetic field aspects along with slip effect assumption. 

The extended novelty in this direction can be assessed in Refs. [122-124].  
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Numerical Study of Thermally Stratified Flow of 

Tangent Hyperbolic Fluid Yields by Stretching 

Cylindrical Surface 

 

2.1 Introduction 
In this chapter the effects of temperature stratification on tangent hyperbolic fluid flow 

towards stretching cylindrical surfaces are studied. The fluid flow is achieved by taking no 

slip condition. The mathematical modelling of physical problem yields the nonlinear set of 

partial differential equations. These obtained partial differential equations are converted to 

a system of ordinary differential equations. Numerical investigation is done to elaborate 

the effects of involved physical parameters on dimensionless velocity and temperature 

profiles. A dimensionless number skin friction coefficient characterising the frictional 

force on boundary within fluid and wall is computed. Also, the local Nusselt number is 

computed and presented through table for further analysis. The obtained results are 

validated by developing comparison within existing literature which leads to justify the 

present developed model. 

2.2 Mathematical formulation 
The two dimensional thermally stratified TH fluid flow towards stretched cylindrical is 

considered. The surface temperature is supposed higher in strength as compared to ambient 

fluid. Fig. 2.1 represents the scenario of TH fluid flow brought by stretching cylindrical 

surface.  

 CHAPTER 2 
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Fig. 2.1. Physical illustration. 

 

The ultimate flow narrating differential equation for TH fluid flow can be written as:  
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(2.3) 

where , , , , andpn c k  denote time constant, kinematic viscosity, power law index, fluid 

density, specific heat at constant pressure and thermal conductivity respectively. The 

associated enpoint conditions are listed as follows: 

   

   

0
0

0

  
, ( ) , ( , ) 0, , ( )  ,  at ,

 

  
, ( ) , , 0, ,

 

w

Ub x
T x r T x T v x r u x r U x x r R

L L

c x
T x r T x T u x r r

L


      

    

 

(2.4) 

where,   is the stream function, and under this relation the Eq. (2.1) holds identically. 
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The relation is defined as: 
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(2.5) 

To solve Eqs. (2.2)-(2.3) subject to the boundary conditions Eq. (2.4), we have used 

following transformations: 
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(2.6) 

where, 0T , ( )T x , ( )wT x , R, '( )F  , ( )F  ,  , L and 
0U  denotes reference, ambient and 

surface temperatures, cylinder radius,fluid velocity, dimensionless variable, reference 

length and free stream velocity respectively. After incorporating Eqs. (2.5)-(2.6) into Eqs. 

(2.2)-(2.3) (momentum and energy equations), we have obtained following dimensionless 

forms: 
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the reduced endpoint conditions are given as: 
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(2.9) 

here, , , and PrK s  denotes Weissenberg number, curvature parameter, thermal 

stratification parameter and Prandtl number respectively. They are defined as follow: 

3
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At surface the skin friction is exercised as follows 
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where, shear stress and viscosity is denoted by symbols w  and  . The dimensionless 

form is achieved as  
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while the dimensionless form is: 
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2.3 Shooting scheme 
The flow Eqs. (2.7)-(2.8) with endpoint contraints Eq. (2.9) are solved numerically with 

the aid of shooting method having supportive fifth order Runge-Kutta algorithm. The 

neccassary conversion is exercised as follows:  
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the alike form of Eqs. (2.7)-(2.8) under new variables is given by: 
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the alternative endpoint contraints are  
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To perform integration of Eq. (2.16), we need  3 0p  reads as  '' 0 ,F  and  5 0p  reads as 

 ' 0T . The initial information  3 0p  and  5 0p  are not identified but we have far field 

information: 
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(2.18) 

It is important to note that the values of  ' 0T  and  '' 0F  are choosen in such a way that 

the Eq. (2.18) holds acceptably.  

2.4 Results and discussion 
The current flow analysis focuses on the physical aspects of the non-Newtonian tangent 

hyperbolic fluid flow over stretching cylinder through thermally stratified medium. The 

solution of Eqs. (2.7)-(2.8)) is calculated with the help of well-known numerical technique 

i.e. shooting method. The authenticity of calculated results is attained by giving 

comparasion with an existing work. Table 2.1 contains the evaluation of skin friction 

coefficient with published results (Akbar et al. [20]) via variations in Weissenberg number 

and power index. It is observed that the current results match with the previous one up to 
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significant number of digits. In Table 2.2, a comparison of local Nusselt number is 

established with previous trustful literature (Wang [125], Golra and Sidawi [126], Khan 

and Pop [127] and Hussain et al. [128]). This table ensures that computed results are 

accurate which gives confidence on computed results. The primitive varaibles namely the 

temperature and velocity are evaluated and offered graphically. In detail, Fig. 2.2 reflects 

inciting values velocity towards curvature parameter. In actual, when we increase 

curvature parameter, radius of cylinder decreases and hence surface contact area will 

reduces so that less resistance is obtainable to fluid particles which ultimately increase the 

fluid velocity. Fig. 2.3 paints the inverse variation of TH fluid velocity towards positive 

values of power law index. Fig. 2.4 depicts the attitude of fluid velocity towards 

Weissenberg number. It is noticed that TH fluid velocity reflects decline values for positive 

values of Weissenberg number. Brings enhancement in Weissenberg number cause 

increament in relaxation time as a results the resistance is developed and TH fluid velocity 

declines. Figs. 2.5-2.8 are plotted to examine the variation in temperature distribution. In 

detail, Fig. 2.5 shows higher values of temperature via positive variation in curvature 

parameter. As we know that the Kelvin temperature is an average kinetic energy so, an 

increase in curvature parameter causes increase in velocity particles, as a result average 

kinetic energy increases which reflects increase in mean temperature of fluid. Fig. 2.6 

addresses the Pr impact on TH fluid temperature. Prandtl number has inverse relation with 

thermal conductivity of the fluid so the greater Pr values corresponds weaker diffusion of 

energy. That is why, significant decline in TH fluid temperature is observed towards 

Prandtl number. Fig. 2.7 identify that for positive values of   the temperature profile 

decreases. On increasing the value of Weissenberg number the relaxation time of the fluid 

increases which creates resistance to the fluid particles. So, less will be the average kinetic 

energy which confirms the decline in fluid temperature. Fig. 2.8 shows that the higher 

values in stratification parameters brings decline nature in temperature. This is due to drop 

in convective potential difference between ambient temperature and cylindrical surface. 

Figs. (2.9)-(2.10) are plotted to examine the skin friction coefficient and Nusselt number 

with relation to flow parameters. Particularly, Fig. 2.9 is constructed for the different 

values of n, K and  . It is seen that the skin friction shows decline nature for positive 

values of both and .n . Fig. (2.10) depicts the behaviour of local Nusselt number towards 
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stratification, curvature parameters, and Prandtl number. It is seen that in absolute sense, 

the local Nusselt number enhances for increasing values of Prandtl number while reverse 

variations are noticed for positive values of thermal stratification parameter. Further, it is 

noticed that the skin friction coefficient (absolute sense) and Nusselt number variations are 

enriched for cylindrical surface as compared to flat surface. 
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2.5 Graphical outcomes 

 

Fig. 2.2. Impact of K on fluid velocity  

 

Fig. 2.3. Impact of n on fluid velocity. 
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Fig. 2.4. Impact of  on fluid velocity. 

 

Fig. 2.5. Impact of K on fluid temperature. 
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Fig. 2.6. Impact of Pr on fluid temperature. 

 

Fig. 2.7. Impact of  on fluid temperature. 
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Fig. 2.8. Impact of S  on fluid temperature. 

 

 

Fig. 2.9. Influence of power law index n  and Weissenberg number    

on skin friction coefficient for both plate and cylinder when Pr 1.2and 0.1S  . 
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Fig. 2.10. Influence of Pr and s   

on heat transfer rate for both plate and cylinder when 0.1 and 0.1n   . 

 

Table 2.1: Comparison of skin friction coefficient  

n    Akbar et al. [20] Present results 

0.0 0.0 1 1 

0.0 0.3 1 1 

0.0 0.5 1 1 

0.1 0.0 0.94868 0.94916 

0.1 0.3 0.94248 0.94321 

0.1 0.5 0.93826 0.93801 

0.2 0.0 0.89442 0.89447 

0.2 0.3 0.88023 0.88056 
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Table 2.2: Comparison of local Nusselt number  

𝐏𝐫 Hussain et 

al. [128] 

Khan and 

Pop [127] 

Golra and 

Sidawi 

[126] 

Wang [125] Present 

results 

0.07 0.0656 0.0663 0.0656 0.0656 0.0661 

0.2 0.1695 0.1691 0.1691 0.1691 0.1691 

0.7 0.4539 0.4539 0.4539 0.4539 0.4541 

2.0 0.9114 0.9113 0.9114 0.9114 0.9113 

7.0 1.8954 1.8954 1.1905 1.1854 1.8945 

20.0 3.3538 3.3539 3.3539 3.3539 3.3555 

70.0 6.4621 6.4622 6.4622 6.4622 6.4611 

 

2.6 Conclusion  
The key results of present analysis are:  

 The TH fluid shows an inciting velocity towards curvature parameter because 

larger values of curvature parameter reflects less resistance towards fluid flow. 

 An increase in power law index turns to the fluid characteristics from shear 

thinning to shear thickening as a result fluid motion retarded. 

 An enhancement in Weissenberg number brings an increase in relaxation time 

due to which resistance increases so that fluid velocity exhibit declined curves.  

 The fluid temperature admits decline nature towards Prandtl number because of 

an inverse relation of Prandtl number with thermal conductivity.  

 Higher values of Weissenberg number enlarge the relaxation time i.e. fluid 

particles takes more time to transfer heat and hence temperature reduces. 

 An inciting values of thermal stratification parameter reduces the conventional 

potential difference due to which fluid temperature drops.  

 It is seen that the skin friction coefficient (absolute sense) shows higher values 

for curvature parameter while opposite variations are noticed for positive values 

of Weissenberg number and power law index.  

 It is observed that (in absolute sense) the Nusselt number admits inciting nature 
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towards Prandtl number and curvature parameter while opposite trend is noticed 

for stratification parameter. 

 In absolute sense, the Nusselt number and skin friction coefficient variations are 

enriched for cylindrical surface as compared to flat surface. 
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Temperature and Concentration Stratification 

Effects on Non-Newtonian Fluid Flow Past a 

Cylindrical Surface 

 

 

3.1 Introduction  
The theme of present chapter is to report the numerical solution of mixed convection 

tangent hyperbolic fluid flow towards stretching cylindrical surface immersed in a double 

stratified media. The fluid flow is attained through no slip condition. The flow regime 

characteristics are modelled in terms of partial differential equations. A suitable set of 

transformation is used to transform partial differential equations into coupled non-linear 

ordinary differential equations. A computational algorithm is executed to predict 

numerical results. The effects of flow controlling parameters namely, mixed convection 

parameter, thermal stratification and solutal stratification parameters on velocity, 

temperature and concentration are examined and offered by means of graphical outcomes.  

3.2 Mathematical formulation 
A steady incompressible two dimensional boundary layer flow of tangent hyperbolic fluid 

brought by an inclined stretching cylindrical surface is considered. Flow situation is taken 

with double stratification along with mixed convection effect. The ultimate mathematical 

formulation is as follows: 

   
0,

ru rv

x r

 
 

 
 

(3.1) 
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Here, , , ,n   , , andcT g   represents power law index, density of fluid, kinematic 

viscosity, coefficients of thermal expansion and solutal expansion, inclination of cylinder 

with x-axis and gravity respectively. 

The  (stream function) fulfils the continuity Eq. (3.1) identically and can be defined as: 

 1  1 
,    .

    
u v

r r x r

     
     

    
 

(3.4) 

To achieve dimensionless form we have considered the transformation given as: 

 

1 1
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  
 

(3.5) 

Once incorporating Eqs. (3.4)-(3.5) into Eq. (3.2). The dimensionless form of momentum 

equation can be written as: 
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(3.6) 
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 
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(3.7) 

The flow parameters are: 

3

0 0

2

21 *
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Re
m

x

U UGr Gr
K N a

a R x Gr L


 


       

(3.8) 

here, *Gr  and Gr  are Grashof number due to concentration and temperature respectively 
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and defined as: 

3 3

0 0

2 2

( ) ( )
* , .T w T wg C C x g T T x

Gr Gr
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(3.9) 

The skin coefficient at cylindrical surface is  

2
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,w
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(3.10) 
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(3.11) 

The dimensionless expression is given by 

    
21/2Re (1 ) '' 0 '' 0 .x fC n F n F    (3.12) 

3.3 Stratification modelling 
The mutual interaction of temperature and concentration stratification is considered on 

tangent hyperbolic fluid model. The surface temperature as well as concentration are 

hypothetical greater in strength as compared to ambient fluid. The reduced energy and 

concentration equations under boundary layer approximation are given by: 
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(3.14) 

where , , andpk c D  denotes thermal conductivity, specific heat at constant pressure and 

mass diffusivity respectively. Both temperature and concentration boundary conditions for 

the double stratified tangent hyperbolic fluid flow are given as:  
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L L
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(3.15) 
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where,        0 0, , , , and ,w wC T C x T x C x T x   represents concentration and reference 

temperature, ambient concentration and temperature, surface concentration and 

temperature respectively. For dimensionless form we used:  

22 2

0

0 0

, ( ) , ( ) ,
2 w w

U C C T Tr R

R L C C T T
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(3.16) 

by using Eq. (3.16) in Eqs. (3.13)-(3.14), we obtained: 
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(3.17) 
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(3.18) 

the transformed boundary conditions are 
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(3.19) 

while involved variables are defined as: 

1 2Pr , , , .
pc c e
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k b D d
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(3.20) 

Both Nusselt and Sherwood numbers are defined as follows: 
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(3.21) 

In dimensionless form, these quantities can be written as: 



31 
 

 

 

1

2

1

2

Re ' 0 ,

Re ' 0 .

x x

x

Nu

Sh









 

 

 

(3.22) 

 

3.4 Numerical treatment 
The problem given by Eqs. (3.6), (3.17) and (3.18) along with (3.7) and (3.19) is solved by 

shooting method. The computational algorithm is prepared as: 
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the alike form of Eqs. (3.6), (3.17) and (3.18) is prearranged as: 
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) 

and the corresponding end conditions are given as follows: 
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(3.24) 

The additional endpoint conditions are given by 
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(3.25) 

3.5 Results and discussion 
Tables (3.1)-(3.3) are assembled to examine the surface quantities. Table (3.1) depicts the 

skin friction coefficient variations (in absolute sense) for positive values of Weissenberg 

number, power law index and curvature parameter. It is seen that the skin friction 

coefficient near the cylindrical surface is an increasing function of curvature parameter, 

while opposite attitude is perceived for power law index and Weissenberg number. In 

addition, the negative sign subject to skin friction coefficient values remarks the drag 

force exerted by cylindrical surface to fluid particles. Table (3.2) is constructed to offer 

the variations in Nusselt number. It is found that Nusselt number shows higher values 

towards both Prandtl number and curvature parameter while opposite trends are noticed 

for higher values of thermal stratification parameter. The influence of curvature 

parameter, solutal stratification parameter and Schmidt number is reported on Sherwood 

number by way of Table. 3.3. It is observed that the Sherwood number reflects higher 

values for curvature parameter, solutal stratification parameter and Schmidt number. 

Tables. 3.4 and 3.5 provide the comparison between skin friction coefficient and local 

Nusselt number with existing literature. We have noticed excellent match up-to significant 

numerical digits which yield the surety of present work in a limiting sense. Figs. 3.1-3.6 

are plotted to examine the influence of some involved physical parameters namely, 

curvature parameter K , inclination ,  thermal stratification parameter 
1k , 
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Weissenberg number  , mixed convention parameter 
m , and n on velocity profile. Fig. 

3.1 indicate the impact of K  on velocity. It is observed that for large values of K  the 

fluid velocity exhibits an inciting nature. Here larger values of K  corresponds decrease 

in radius of cylinder so that the interaction of fluid particles with cylindrical surface is 

lesser which implies the resistance towards decrease in fluid flow. As a result fluid 

velocity increases significantly. Fig. 3.2 report the influence of inclination   on 

velocity profile. It is found that there is an inverse relation between  and fluid velocity 

that is for large values of   the velocity profile decreases. An increase in  towards 

x-axis give significant rise to gravity component due to cos  which drops the buoyancy 

force so that the driven force become weaker. As a result flow rate decreases which 

declines the velocity. Fig. 3.3 identify the effect of thermal stratification parameter 
1k  

on velocity distribution. It is noticed that the fluid velocity exhibits decreasing values for 

positive variations in 1k . Fig. 3.4 incorporate the graphical trend of   on velocity 

profile. It is noticed that velocity shows deceasing behavior via  .  This is due to 

increment in relaxation time. The effect of mixed convention parameter m  on velocity 

is depicted in Fig. 3.5. For larger values of 
m  the velocity profile increases. Physically, 

this is because of the larger values of buoyancy force. Fig. 3.6 point to the impact of 

power law index n  on tangent hyperbolic fluid velocity. It is seen that there is an 

inverse relation between n  and fluid velocity. That is, for higher values of n  the 

tangent hyperbolic fluid velocity shows declined behaviour. Figs. 3.7-3.10 reflect the 

impact of flow controlling parameters namely,
1, , ,and PrK k  

on temperature profiles. 

In detail, Fig. 3.7 indicate that the influence of curvature parameter K  on temperature 

distribution. It is observed that the temperature shows an inciting trend via K . An 

increase in K  reduces the surface contact area subject to fluid particles and hence less 

resistance is faced by particles due to which their average velocity enhances. Since, the 

Kelvin temperature is defined by an average kinetic energy therefore temperature 

increases. Fig. 3.8 painted the impact of inclination   on temperature. It is noticed that 

there is an inverse relation between inclination and fluid temperature, i.e., for large 

values of  the temperature profile decreases. The impact of thermal stratification 
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parameter 
1k on temperature distribution is examine and offered in Fig. 3.9. It is seen 

that for the positive values of 
1k  yield decline nature of temperature because higher 

values of 
1k  means convective potential between ambient temperature and cylindrical 

surface drops. Fig. 3.10 is plotted to examine the influence of Prandtl number Pr on 

temperature. It is clear from graphical trend that the temperature profile reflects an 

inverse nature for higher values of Prandtl number Pr. This fact is due to inverse relation 

of Pr with thermal diffusivity and it is well-known fact that the fluid with higher values of 

Pr has weaker thermal diffusion so that the temperature declines. Figs. 3.11 and 3.12 

illustrate concentration variations towards both solutal stratification parameter
2k and 

Schmidt number Sc . To be more specific, Fig. 3.11 depicts the decline trend of 

concentration distribution for positive values of solutal stratification parameter 2k  For 

higher values of 
2k the potential difference between cylindrical surface and ambient fluid 

concentration drops down so that the related concentration boundary layer thickness 

decreases. Fig. 3.12 shows the impact of Sc on fluid concentration. It is noticed that for 

larger values of Sc  the fluid concentration decreases. This fact is quite similar to Prandtl 

number’s impact on temperature. Actually, mass diffusivity own inverse relation with Sc  

therefore, larger values of Sc  corresponds thinner concentrated boundary layer. Figs. 

3.13-3.15 are provided to inspect the flow pattern of tangent hyperbolic fluid in a double 

stratified media. The stream lines pattern claims the movement of fluid particles due to 

stretching of cylindrical surface so that the compatibility of endpoint conditions is attained. 

Further, it is clear from Figs. 3.13-3.15 that on increasing curvature parameter values, fluid 

momentum increases which is due to positive alteration in the fluid velocity.  
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3.6 Graphical outcomes 

 

Fig. 3.1. Effect of curvature parameter on velocity 

profile. 

 

Fig. 3.2. Effect of an inclination on velocity  

profile. 

 

Fig. 3.3. Effect of thermal stratification parameter on 

velocity profile. 

 

Fig. 3.4. Effect of Weissenberg number on velocity              

profile. 
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Fig. 3.5. Effect of mixed convection parameter on 

velocity profile. 

 

Fig. 3.6. Effect of power law index on velocity 

profile. 

 

Fig. 3.7. Effect of curvature parameter on temperature 

profile. 

 

Fig. 3.8. Effect of an inclination on temperature profile. 
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Fig. 3.9. Effect of thermal stratification parameter on 

temperature profile. 

 

Fig. 3.10. Effect of Prandtl number on temperature 

profile. 

 

Fig. 3.11 Effect of solutal stratification parameter on 

concentration profile. 

 

Fig. 3.12 Effect of Schmidt number on concentration 

profile. 
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Fig. 3.13. Stream lines pattern when 0.2K  . 

 

Fig. 3.14. Stream lines pattern when 0.4K  . 

 

Fig. 3.15. Stream lines pattern when 0.6.K   
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Table 3.1. Variation in Ref xC towards , and .K n   

K  n    ''(0)F  Ref xC  

0.1 0.1 0.1 0.4358 -1.1613 

0.2 - - 0.5160 -1.2138 

0.3 - - 0.5940 -1.2702 

0.1 0.1 0.1 0.4358 -1.1613 

- 0.2 - 0.4717 1.1022 

- 0.3 - 0.5022 -1.0130 

0.1 0.1 0.1 0.4358 -1.1613 

- - 0.2 0.4410 -1.1610 

- - 0.3 0.4513 -1.1591 

 

Table 3.2. Variation in Nusselt number towards
1,Pr and .K k  

K  Pr  1k  - '(0)  

0.1 1.1 0.1 1.5325 

0.2 - - 1.5917 

0.3 - - 1.6304 

0.1 1.1 0.1 1.5325 

- 1.2 - 1.6217 

- 1.3 - 1.6729 

0.1 1.1 0.1 1.5325 

- - 0.2 1.5012 

- - 0.3 1.4709 

 

Table 3.3. Numerical values of Sherwood number for
2, and .K k Sc  

K  2k  Sc  - '(0)  

0.1 0.1 2.1 1.7071 

0.2 - - 1.8802 

0.3 - - 2.1040 

0.1 0.1 2.1 1.7071 

- 0.2 - 1.8543 

- 0.3 - 2.1006 

0.1 0.1 2.1 1.7071 

- - 2.2 1.7343 

- - 2.3 1.7554 
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Table 3.4. Skin friction coefficient comparison via power law index n  

and Weissenberg number   when 
0

1 0 and =0 .K k    

n    Akbar et al. 

[20] 

Rehman et al. 

[129] 

Present 

outcomes 

0.0 0.0 1 1 1 

0.0 0.3 1 1 1 

0.0 0.5 1 1 1 

0.1 0.0 0.94868 0.94916 0.94916 

0.1 0.3 0.94248 0.94321 0.94321 

0.1 0.5 0.93826 0.93801 0.93801 

0.2 0.0 0.89442 0.89447 0.89447 

0.2 0.3 0.88023 0.88056 0.88056 

 

Table 3.5. Local Nusselt number comparison via Pr when 
0

1 0 and 0 .K k      

𝐏𝐫 Wang [125] Golra and 

Sidawi [126] 

Khan and 

Pop [127] 

Rehman et al. 

[129] 

Present 

outcomes 

0.07 0.0656 0.0656 0.0663 0.0661 0.0661 

0.20 0.1691 0.1691 0.1691 0.1691 0.1691 

0.70 0.4539 0.4539 0.4539 0.4541 0.4541 

2.00 0.9114 0.9114 0.9113 0.9113 0.9113 

7.00 1.1854 1.1905 1.8954 1.8945 1.8945 

20.0 3.3539 3.3539 3.3539 3.3555 3.3555 

70.0 6.4622 6.4622 6.4622 6.4611 6.4611 

 

3.7 Concluding remarks 
In this chapter tangent hyperbolic fluid flow yield by cylindrical stretched surface 

(acutely inclined) is considered. A mathematical formulation is developed in terms of 

partial differential equations. A numerical solution is obtained by means of computational 

algorithm. The summary of present study is itemized as follows:  

 The compatibility of tangent hyperbolic fluid flow regime endpoint conditions is 

certified through stream lines patterns. 
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 The tangent hyperbolic fluid velocity increases on both mixed convention 

parameter ( m ) and curvature parameter ( K ), while it shows an inverse relation 

towards power law index ( n ),Weissenberg number ( ), an inclination ( ),  and 

thermal stratification parameter ( 1k ). 

 The temperature of tangent hyperbolic fluid is an increasing function of curvature 

parameter ( K ), and an inclination ( ),  but opposite nature is notify for thermal 

stratification parameter ( 1k ) and Prandtl number ( Pr ). 

 The tangent hyperbolic fluid concentration reflects declined trend for both solutal 

stratification parameter ( 2k ) and Schmidt number ( Sc )  

 In absolute sense, the skin friction coefficient is an increasing function of 

curvature parameter ( K ), while an inverse relation is observed in case of both 

power law index ( n ) and Weissenberg number ( ). 

 Heat transfer rate enhances via Prandtl number ( Pr ), and curvature parameter ( K ), 

whereas an inverse relation is found for thermal stratification parameter ( 1k ). 

 Mass transfer rate enhances for solutal stratification parameter ( 2k ),curvature 

parameter ( K ), and Schmidt number (Sc). 
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Numerical Solution of Chemically Reactive 

Non-Newtonian Fluid Flow: Dual Stratification 

 

 

4.1 Introduction 
The focus of the present chapter is to study the tangent hyperbolic fluid flow induced by 

acutely inclined cylindrical surface in the presence of both temperature and concentration 

stratification effects. To be more specific, fluid flow is attained by considering no slip 

condition, which implies bulk motion of fluid particles. The flow field situation is 

manifested with heat generation, mixed convection and chemical reaction. The flow field 

arising is modelled through partial differential equations which narrate complete 

description of the present problem. To trace out the solution, a set of suitable 

transformation is introduced which convert these modelled partial differential equations 

into ordinary differential equations. In addition, self-coded computational algorithm is 

executed to inspect the numerical solution of these reduced equations. The effect logs of 

involved parameters are elaborated by way of graphical trends. Further, the variations of 

physical quantities are examined and given with the aid of tables. 

4.2 Mathematical formulation 
Two dimensional flow of tangent hyperbolic fluid (THF) is considered due to stretching 

inclined cylindrical surface. The flow field is manifested with thermal and solutal 

stratification. Moreover, the role of chemical reaction, heat generation and mixed 

convection is also considered. The boundary layer approximation reduces the continuity, 

momentum, heat and mass equations to: 

   
0,

rv ru

r x

 
 

 
 

(4.1) 

 CHAPTER 4 
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(4.4) 

The x-axis is supposed as axial direction of cylinder while r-axis is perpendicular to it. 

Whereas, 00, , , , , , , , , , andT c pg Q n k D c      denotes time constant, gravity, 

fluid density, heat generation coefficient, power law index, thermal conductivity, 

coefficient of thermal expansion, kinematic viscosity, coefficient of solutal expansion, an 

inclination, mass diffusivity and specific heat respectively. The endpoint conditions are 

given as: 
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(4.5) 

the stream function is prescribed as: 
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(4.6) 

To attain dimensionless form we used: 
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(4.7) 

Owning Eq. (4.7) one can obtained: 
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(4.9) 
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with the modified boundary conditions 

(4.10) 
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(4.11) 

where,
2 1, , , , ,Pr, , , ,c mHR k Sc D k N   and K  denotes chemical reaction parameter, 

solutal stratification parameter, Schmidt number, heat generation parameter, thermal 

stratification parameter, Prandtl number, ratio of concentration to thermal buoyancy forces 

, mixed convection parameter, Weissenberg number and curvature parameter respectively 

and given as follows: 
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(4.12) 

and: 



45 
 

3 3

0 0

2 2

( ) ( )
* and .T w T wg C C x g T T x

Gr Gr
 

 

 
   

(4.13) 

The skin friction coefficient (SFC) is prescribed as: 
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(4.14) 

The dimensionless form of SFC is given by 
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0Rex

U x
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  denotes local Reynolds number.  

Surface quantaties are given by: 
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(4.16) 

in dimensionless practice we have: 

   ' 0 , ' 0 .
Re Re

x

x x

Nu Sh
T C     

(4.17) 

For instance in the absence of concentration equation if we neglect mixed convection and 

heat generation effects the Eqs. (4.8)-(4.9) reduces to problem reported by Rehman et al. 

[129].  

4.3 Numerical scheme 
To implement shooting method the system given by Eqs. (4.8)-(4.10) with endpoint 

conditions given by Eqs. (4.11) is firstly converted into first order system of differential 

equations. For this purpose the useful substitution is prescribed as:  
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one can get: 
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(4.18) 
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(4.19) 

The reduced system Eqs. (4.18)-(4.19) is an IVP. To integrate we need numeric values for 

 3 0p i.e.  '' 0f ,  5 0p  i.e.  ' 0T and  7 0 implies '(0)p C . Moreover, the initial 

conditions  3 0p ,  5 0p  and  7 0p  are missing but we have additional endpoint conditions: 
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(4.20) 

The integration is carried in this way the Eq. (4.20) hold fairly. 

4.4 Analysis 
Tables. 4.1-4.3 are constructed to examine the impact of involved physical parameters on 

SFC, HTR and MTR. In detail, Table. 4.1 depicts the SFC variations (in absolute sense) 

for positive values of , , and Pr.K n   It is seen that the SFC near the cylindrical surface 

is an increasing function of both and PrK while opposite trend is seen for and .n   The 
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negative sign with the values of skin friction coefficient physically shows that the 

cylindrical surface exerts drag force on fluid particles. Table. 4.2 is design to provide the 

variations of HTR towards
1, Pr, and .K k  It is found that when we increase the values of 

both and PrK  the HTR show an inciting nature but opposite trends are noticed for 

higher values of 
1 and .k   The influence of 

2, andK k Sc  is reported on MTR by way of 

Table. 4.3. The mass transfer rate reflects higher values for 
2, andK k Sc . It is noticed that 

in the absence of concentration equation, thermal stratification, mixed convection and heat 

generation effects retraced the problem reported by Akbar et al. [20]. Table. 4.4 provide the 

comparative values of skin friction coefficient towards both power law index and 

Weissenberg number. An excellent match is found with the existing values which confirm 

the execution of computational algorithm. Figs. 4.1(a-d) are used to examine the stream 

lines patterns towards curvature parameter. It is seen that for higher values of curvature 

parameter the fluid velocity enhances. The accelerated magnitude is witness from stream 

lines because for large curvature parameter the adjacent distance among stream lines 

decreases. The Figs. 4.2-4.7 are plotted to identify that how '( )f   is effected via flow 

controlling parameters namely, curvature, mixed convection, thermal stratification 

parameter, an inclination, Weissenberg number and power law index. In detail, Fig. 4.2 is 

plotted to report the impact of K  on '( )f  . It is noticed that the THF velocity varies 

directly, that is, for lager values of K  the THF velocity enhances. Actually, large 

variation in K  implies decrease in radius of curvature. The contact surface area reduces 

and less resistance is faced by THF particles as a result fluid flow accelerates. Fig. 4.3 

paint the impact of   on '( ).f   It is seen that for inciting values of  , '( )f 

decreases. The fact behind is that for large values of  along x-axis, the effect of gravity 

reduces which cause decline in '( )f   and within a momentum boundary layer. The 

effect of 
m  on '( )f  is shown in Fig. 4.4. It is found that for higher values of 

m , 

'( )f   increases with in a boundary layer. Physically, this is due to increase in the 

buoyancy force. Fig. 4.5 identify that there exist an inverse relation between 
1k  and 

'( )f  because for positive values of 
1k the THF velocity decreases and also concerned 

momentum boundary layer. Fig. 4.6 portrait the impact of   on '( )f  . It is seen that for 
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 , '( )f   shows decline trend because on increasing values of   the relaxation time of 

the THF fluid increases which offers resistance to the THF fluid particles as a result the 

'( )f   decreases. Fig. 4.7 discloses the impact of n  on '( ).f   It is concluded that 

there exist an inverse relation between n  and '( )f  because for positive large values of 

n  the THF velocity curve declines. Figs. 4.8-4.13 are potted to envision the impact of 

1, , ,Pr, , andHK D k    on THF temperature. In detail, the influence of K  on ( )T   

is examined and elaborated through Fig. 4.8. It is noticed that for higher values of K  the 

THF temperature increases. The Kelvin temperature is evaluated as an average kinetic 

energy of fluid particles. Therefore, on increasing K , the velocity incites. This is due to 

an increase in kinetic energy, corresponding to increase in THF temperature. Fig. 4.9 

illustrate the effect of HD  on ( ).T   It is observed that an increase in 
HD  results an 

increase in ( ).T   This fact is due to significant amount of heat produced via inciting 

values of 
HD  so the temperature of THF increases. Fig. 4.10 depicts the impact of Pr on 

( ).T   It is seen that there exist an inverse relation between Pr  and ( ).T   Moreover, 

fluids with high Pr  corresponds weaker diffusion energy. So, an increase in Pr , results 

a strong reduction in ( )T   which is due to thinner thermal boundary layer. Fig. 4.11 

report the inverse relation between  and ( )T   because for higher values of   the 

( )T  decreases. The fact behind is that on increasing  about x-axis, the effect of 

gravity is less which results decrease in ( )T  . Fig. 4.12 paint the impact of 
1k  on 

( )T  and it is seen that an increase in 
1k the temperature of THF decreases because for 

higher values of 
1k  the convective potential between cylindrical surface and ambient 

fluid drops. The drop of convective potential, results in decreasing ( )T   and related 

thermal boundary layer also. Fig. 4.13 is used to examine the effect of   on ( )T  . We 

found direct relation between   and ( )T  because large values of   claims increase 

in relaxation time of THF particles due to which the resistance increases. An increase in 

resistance causes decease in velocity. The drop in average kinetic energy leads to decline 

trend in THF temperature. Figs. 4.14-4.16 illustrate the influence of Sc , 
2k  and 

cR  on 

THF concentration. In detail, Fig. 4.14 is plotted to inspect the impact of Sc on ( )C  . The 
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mass diffusivity varies inversely via Sc so larger values of Sc  results concentration 

boundary layer decline, as a result ( )C   decreases. Fig. 4.15 identify that an increase in 

2k , the concentration distribution decreases. This fact is similar to the relation of 
1k  

towards ( ).T   Fig. 4.16 is used to examine the impact of 
cR on ( ).C   It is clearly seen 

that for large values of 
cR the concentration profile shows declined trend. 
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4.5 Graphical outcomes 

 

Fig. 4.1(a). Stream lines pattern for K=0.1. 

 

Fig. 4.1(b). Stream lines pattern for K=0.2. 

 

Fig. 4.1(c). Stream lines pattern for K=0.5. 

 

Fig. 4.1(d). Stream lines pattern for K=0.9. 
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Fig. 4.2. Effect of K on '( )f  . 

 

Fig. 4.3. Effect of  on '( )f  . 

 

Fig. 4.4. Effect of 
m on '( )f  . 

 

Fig. 4.5. Effect of 
1k on '( )f  . 
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Fig. 4.6. Effect of  on '( )f  . 

 

Fig. 4.7. Effect of n on '( )f  . 

 

Fig. 4.8. Effect of K on ( )T  . 

 

Fig. 4.9. Effect of 
HD on ( )T  . 
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Fig. 4.10. Effect of Pr on ( )T  . 

 

Fig. 4.11. Effect of  on ( )T  . 

 

Fig. 4.12. Effect of 
1k on ( )T  . 

 

Fig. 4.13. Effect of  on ( )T  . 
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Fig. 4.14. Effect of Sc on ( )C  . 

 

Fig. 4.15. Effect of 
2k on ( )C  . 

 

Fig. 4.16. Effect of 
cR on ( )C  . 
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Table 4.1. Variation in SFC via , , and Pr.K n   

 

K  

 

n  

 

  

 

Pr  

Ref xC  

0.4 0.1 0.1 2.0 -1.2108 

0.6 - - - -1.9104 

0.8 - - - -1.9443 

- 0.1 - - -1.2108 

- 0.3 - - 1.1017 

- 0.5 - - -1.0023 

- - 0.1 - -1.2108 

- - 0.3 - -1.1710 

- - 0.5 - -1.1083 

- - - 2.0 -1.2108 

- - - 2.2 -1.2129 

- - - 2.4 -1.2147 

 

Table 4.2. Variation in HTR via 
1, Pr, and .K k   

K  Pr  1k    - '(0)T  

0.4 2.0 0.1 0.1 0.8350 

0.6 - - - 0.9625 

0.8 - - - 1.0444 

- 2.0 - - 0.8345 

- 2.2 - - 0.9015 

- 2.4 - - 0.9824 

- - 0.1 - 0.8350 

- - 0.3 - 0.7892 

- - 0.5 - 0.6905 

- - - 0.1 0.8350 

- - - 0.3 0.7108 

- - - 0.5 0.6012 
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Table 4.3. Variation in MTR via 
2, and .K k Sc  

K  2k  Sc  - '(0)C  

0.4 0.1 0.1 1.8081 

0.6 - - 1.9901 

0.8 - - 2.015 

- 0.1 - 1.8081 

- 0.3 - 1.9655 

- 0.5 - 2.0008 

- - 0.1 1.8081 

- - 0.3 1.8252 

- - 0.5 1.8434 

 

Table 4.4. Comparison of SFC with existing work when 0.K   

n    Akbar et al. [20] Rehman et al. 

[129] 

Present  

0.0 0.0 1.00000 1.00000 1.0000 

0.0 0.3 1.00000 1.00000 1.0000 

0.0 0.5 1.00000 1.00000 1.0000 

0.1 0.0 0.94868 0.94916 0.9491 

0.1 0.3 0.94248 0.94321 0.9432 

0.1 0.5 0.93826 0.93801 0.9380 

0.2 0.0 0.89442 0.89447 0.8944 

0.2 0.3 0.88023 0.88056 0.8805 

 

4.6 Concluding remarks 
 The key findings of present analysis are itemized as follows: 

 THF velocity increases via m  and K  while it shows inverse behaviour for 

1, , and .k n   

 Temperature of THF is an increasing function of , andHK D   but it reflects 

opposite trend towards 1k , Pr  and  . 

 Concentration of THF declines for positive values of 2k , cR  and Sc .  
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 In absolute sense, the SFC increases for large values of K  and Pr , while an 

opposite behaviour is observed in that case of and .n   

 The HTR enhance via Pr  and K  while  an inverse relation is seen for both 

1k  and .  

 The MTR enhances towards K , Pr and Sc.  

 Stream lines pattern of THF flow due to stretching cylindrical surface (see Figs. 

4.1(a-d)) are offer for positive values of K .  
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Magneto-nanofluid Numerical Modelling of Chemically 

Reactive Eyring-Powell Fluid Flow Towards both Flat and 

Cylindrical an Inclined Surfaces: A Comparative Study 

 

 

5.1 Introduction 

In this chapter the combined effects of both chemical reaction and dual stratification on 

boundary layer magneto-hydrodynamic Eyring Powell nanofluid flow both for flat and 

cylindrical inclined stretching surfaces under the region of stagnation point along with heat 

and mass transfer characteristics are investigated. The flow situation is carried out by 

considering physical effects namely, thermal radiation and heat generation. To be more 

specific, the fluid flow is entertained through no slip condition i-e the velocity of particles 

is directly related to velocity of surface due to stretching. The physical situation within the 

real concerned constraints is translated in terms of differential equations as a boundary 

value problem. To make implementation of possible computational algorithm, firstly the 

intricate PDE’s are transformed into ODE’s by using suitable transformation; secondly 

resulting BVP is converted into an IVP. These constructed ordinary differential equations 

are solved numerically by shooting technique charted with Runge-Kutta scheme. The 

effects of involved physical parameters are explored with the aid of graphical outcomes 

and tabular values. A straight line curve fitting way of communication is executed to 

inspect the impact of both thermophoresis parameter and Brownian motion parameter on 

heat and mass transfer rates. 

5.2 Problem illustration 
A steady laminar magneto-hydrodynamic and incompressible boundary layer stagnation 

point flow of non-Newtonian (Eyring Powell nanofluid-model) fluid with zero pressure 

gradient as shown in Fig. 5.1 is considered. The nanofluid flow yields an inclined 

 CHAPTER 5 
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stretching cylinder undergoing with first order chemical reaction. Further, both the heat 

and mass transfer characteristics are identified by incorporating, thermal radiation, 

temperature and concentration stratification. 

 

 

Fig. 5.1 Physical geometry of the fluid model. 

The strength of temperature and concentration near the cylindrical surface are assumed to 

be higher than the ambient fluid. In addition, the magnetic field is applied perpendicular to 

the fluid flow and impact of an induced magnetic field is neglected due to low Reynolds 

number assumption. Moreover, the radial direction is considered perpendicular to x-axis 

(i.e. taken as r-axis). The axial direction of cylinder is aligned with the x-axis.  

5.3 Momentum formulation 
The flow characteristics of Eyring Powell nano model is explained through the generally 

accepted differential equation (in the absence of magnetic field and stagnation point we 

have basic equations, see Ref. [30]) i-e continuity and momentum equations in a two 

dimensional frame of reference. The simplified differential equations are: 

   ˆ ˆ
0,

ru rv

x r

 
 

 
 

(5.1) 
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(5.2) 

and the corresponding boundary conditions are: 

ˆ ˆ ˆ ˆ( ) , 0,at , ' , when ,eu U x ax v r R u u a x r        (5.3) 

where ˆ, , and , , , , , , , and ,e o T Cc u B g        denotes kinematic viscosity, fluid 

density, Eyring-Powell fluid parameters, free stream velocity, electrical conductivity, 

uniform magnetic field, gravity, thermal expansion coefficient, concentration expansion 

coefficient, and an inclination respectively. We incorporate transformation of the form 

(Ref. [30]): 
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(5.4) 

here,    , , , ' , andoU R f f    denotes reference velocity, radius of cylinder, 

dimensionless variable, velocity of fluid past a stretching cylinder, and stream function 

respectively. The relation in terms of stream function can be written as: 

  
ˆ ˆ,    ,

  

xru v
r r
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(5.5) 

by incorporating transformation given by Eq. (5.4) into Eq. (5.2), the resulting reduced 

differential equations are given as: 
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(5.7) 

and: 
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with: 
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The surface quantity is: 
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(5.10) 

here,  and w  denotes fluid viscosity and shear stress respectively. In non-dimensional 

form the skin friction coefficient is prearranged as: 
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Re 2 '' 0 ( 1) '' 0 .
3

x f
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
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(5.11) 

 

5.4 Temperature and concentration formulation 
Here the Eyring-Powell nanofluid flow towards both flat and cylindrical stretching 

surfaces is considered. The flow narrating differential equations (in the absence heat 

generation and chemical reaction we have fundamental equations, see Ref. [29]) i-e energy 

and concentration under boundary layer assumption reduces to: 
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(5.13) 

here, 

* 4

*

ˆ4
( )
3

r
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q

k r

 
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
 represents Rosseland radiative heat flux, therefore Eq. (5.12) can 

be written as: 
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(5.14) 

subjected to endpoint conditions:  

   

   

0 0

0 0

    ˆ ˆ ˆˆ ˆ ˆ, ( )   ,  , ( )      at  ,
  

    ˆ ˆ ˆˆ ˆ ˆ, ( )   ,  , ( )    as    ,
  

w w

b x d x
T x r T x T C x r C x C r R

L L

c x e x
T x r T x T C x r C x C r

L L
 

      

      

 

(5.15) 

where, 
* ˆ ˆˆ ˆ, , , , , , , , ,andp B T o oc D D T T Q C C R   stands for thermal diffusivity, specific heat 

capacity at constant pressure, Brownian diffusion coefficient, thermophoretic diffusion 

coefficient, fluid temperature, ambient temperature, heat generation coefficient, fluid 

concentration, ambient concentration and rate of chemical reaction respectively. Further, 

( )
, ( ), ( ), , , , ,and

( )

p

w w

f

c
T x C x L b c d e

c





  represents the ratio of nanoparticles heat 

capacity to the base fluid heat capacity, prescribed surface temperature, prescribed surface 

concentration, reference length and dimensionless constants repectively. To find out the 

solution of Eqs. (5.13)-(5.14) under endpoint conditions Eq. (5.15), we considered 

following transformation of the form and given as: 
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(5.16) 

here, ˆˆ , , ando oT C   denotes reference temperature, reference concentration and stream 

function respectively. By incorporating transformation given by Eq. (5.16) into Eqs. 

(5.13)-(5.14), the resulting reduced differential equations are given as: 



63 
 

     

 
       

   
2

1

4 4
1 2 1 '' 2 1 '

3 3

' '
Pr 1 2 ' ' ' Pr 0,

'

T TK R K R

f fNt
Nb K

Nb f m Q

    

     
   

  

   
      

   

  
            

 

(5.17) 

                

     

21 2 '' '' Pr ' ' '

2 ' ' 0,

Nt
K Le f f f m

Nb

Nt
K Rc

Nb

           

     

 
     

 

 
    

 

 

(5.18) 

the transformed endpoint conditions are given as: 
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(5.19) 

here, 
1 2, Pr, , , , , , , andTR Nb Nt m Q Le m Rc  denotes, thermal radiation parameter, 

Prandtl number, Brownian motion parameter, thermophoresis parameter, thermal 

stratification parameter, heat generation parameter, Lewis number, solutal stratification 

parameter and chemical reaction parameter, respectively and are defined as follows: 
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(5.20) 

The expressions of local Nusselt and Sherwood number are defined as: 
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(5.21) 

 

the non-dimensional form of these expressions are well-defined and given as: 
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5.5 Computational scheme 
The system is solved by using computational algorithm. Order reduction is done by 

entertaining: 
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(5.24) 

and: 
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(5.25) 

For integration purpose of system of equations given by Eq. (5.24) as a initial value 

problem (IVP) we need  

           3 5 7'' , ' and ' when 0,p f p p             (5.26) 

Further, we observed that the three initial conditions namely, 

     3 5 7, and when 0p p p      are stated but we own: 

     2 4 6, 0, and 0, when .p A p p        (5.27) 

The numerical computation up-to four decimal precision as convergence standards are 

achieved by maintaining 0.025   as a step size.  

5.6 Results and discussion  

The adopted parameter values for present study are given as an inclination 
045  , 

magnetic field parameter   = 0.1, curvature parameter K = 0.1, Prandtl number Pr = 1.3, 

thermal radiation parameter 0.1TR  , mixed convection parameter m = 0.1, 

thermophoresis parameter 𝑁𝑡 =0.1,  Eyring-Powell fluid parameters M   0.1, 

Brownian motion parameter 𝑁𝑏 = 0.1 , velocities ratio parameter A = 0.1, ratio of 

concentration to thermal buoyancy forces N = 0.1, heat generation parameter Q = 0.1 

thermal stratification parameter 1m = 0.1, solutal stratification parameter 2m  = 0.1, 

chemical reaction parameter 0.1Rc  and Lewis number 0.1Le  . The results are 

obtained by maintaining these values otherwise indicated on graphs where needed. Tables. 

5.1-5.4 are presented to inspect the influence of pertinent flow controlling parameters 

namely, curvature parameter, Prandtl number, Eyring-Powell fluid parameters, thermal 

stratification parameter, solutal stratification parameter and Lewis number on skin friction 
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coefficient, local Nusselt and Sherwood numbers. In detail, Tables 5.1-5.2, in absolute 

sense reflects that skin friction coefficient is an increasing function of curvature parameter, 

thermal stratification parameter, solutal stratification parameter and Prandtl number while 

decreasing function of fluid parameter. Table 5.3 shows that local Nusselt number shows 

an inciting nature for positive values of curvature parameter and Prandtl number but it has 

opposite attitude towards thermal stratification parameter. The impact of curvature 

parameter, solutal stratification parameter, Lewis and Prandtl numbers is presented with 

the aid of Table 5.4. It is observed that local Sherwood number shows an inciting nature 

towards curvature parameter, Lewis number and Prandtl number while it reflects decline 

behavior for the positive values of solutal stratification parameter. 

 

5.6.1 Velocity distributions 

The influence of physical parameters namely, velocities ratio parameter, magnetic field 

parameter, mixed convection parameter, and Eyring-Powell fluid parameters on 

Eyring-Powell fluid flow towards both flat and cylindrical surface embedded in double 

stratified medium is presented with the aid of Figs. 5.2-5.12. In detail, Figs. 5.2-5.6 are 

plotted to identified the movement of particles towards a cylindrical surface for velocities 

ratio parameter i-e 0.0, 0.5,1.0,1.5,2.0A  . To be more specific, Fig. 5.2 scrutinizes the 

stream lines for 1A  , which implies equal values of free stream velocity and stretching 

velocity because the velocities ratio parameter ( A ) is defined as the ratio of free stream 

velocity to the stretching velocity. Further it was found that stream lines are symmetric 

about radial direction. Figs. 5.3-5.4 are constructed to examine the stream lines for 1A  , 

in other words when stretching velocity exceeds against free stream velocity. Physically, 

the boundary layer thickness increases largely when stretching velocity is dominant as 

compare to free stream velocity. Further, Fig. 5.3 is plotted for 0A  , which mean the free 

stream velocity is absolutely zero and from Fig. 5.3. It is also observed that the disturbance 

of particles is only due to stretching velocity. Fig. 5.4 is plotted for 0.5A  . It is worth 

mentioning that the involvement of free stream velocity is little significant as compared to 

0A  . But still lesser then stretching velocity i.e at cylindrical surface the particle 

disturbance is significant as compared to far away from surface. In Figs. 5.5-5.6 stream 

lines are switches accordingly to the velocities ratio parameter 1A  . In this case free 
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stream velocity exceeds stretching velocity. The thickness of boundary layer decreases 

when A  increases. In actual when A  increases, we yields increase in free stream 

velocity for fixed values of stretching velocity, ultimately straining motion adjacent to the 

stagnation region brings inciting acceleration of free stream as a result thinning of 

boundary layer is observed. The effects of velocities ratio parameter on velocity of fluid for 

flat and cylindrical geometry are identified by means of Fig. 5.7. It was observed that the 

frequent fluctuations in momentum occurred for altering values of velocities ratio 

parameter. The increasing values of velocities ratio parameter reflects positive attitude in 

the velocities of fluids towards flat and cylindrical surface. It can be seen that momentum 

boundary layer is formed for 1A   but an inverted boundary layer is emerged for the case 

of 1A . When velocities ratio parameter achieve unity that is 1A  , at this stage free 

stream velocity and stretching velocity becomes equal so that momentum boundary layer 

do not appear. Fig. 5.8 is plotted to examine the influence of magnetic field parameter on 

velocity of fluid towards both flat and cylindrical surface. As expected, the inciting values 

of magnetic parameter brings decline in velocity profiles. In actual, when we enhance 

magnetic field parameter a resistive force named as Lorentz force actively participate to 

offer resistance against fluid particles as a result horizontal velocity decreases. Fig. 5.9 

depicts the attitude of velocity distributions for both surfaces towards mixed convection 

parameter and it is noticed that by increasing values of mixed convection parameter the 

velocity profile shows inciting nature for both cases. Physically, this is due to enhancement 

of thermal buoyancy force. So the higher values of mixed convection parameter lead to 

increase in velocity within boundary layer. The impact of Eyring-Powell fluid parameter is 

presented for both flat and cylindrical surfaces through Fig. 5.10. It is noticed that an 

increase in Eyring-Powell fluid parameter cause decrease in velocity of fluid. This fact is 

due to inverse relation of fluid parameter with fluid viscosity while increase in fluid 

parameter values reflects decrease in fluid viscosity due to which motion of fluid particles 

enhances and collectively the fluid velocity shows higher values. Fig. 5.11 is plotted to 

examine the impact of fluid parameter on velocity profile. It is noticed that for positive 

values of fluid parameter the velocity exhibits decline nature. Fig. 5.12 depicts the fluid 

velocity variations against an inclination α. It is noticed that there is an inverse relation 

between an inclination α and velocity profile. For large values of an inclination α the 
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velocity profile decreases. When we increase an inclination α about x-axis the effect of 

gravity is reduced which brings decline in fluid velocity with in a boundary layer. 

5.6.2 Temperature distributions 

The impact of involved physical parameters namely, Brownian motion parameter, 

thermophoresis parameter, Prandtl number, Lewis number, curvature parameter, thermal 

radiation parameter, heat generation parameter and thermal stratification parameter on 

temperature distributions both for flat and cylindrical surface is elaborated in Figs. 

5.13-5.21. The temperature variations for both cases against Brownian motion parameter 

are given by Fig. 5.13. It is seen that temperature distributions are found to be increasing 

function of Brownian motion parameter. The positive values of Brownian motion 

parameter corresponds random motion and collision among nano size particles in the flow 

regime which leads to production of plenty of heat and of course temperature distribution 

in absolute sense. The influence of thermophoresis parameter over a temperature is 

illustrated with the help of Fig. 5.14. It is seen that temperature distributions for both cases 

are mount function of thermophoresis parameter. This fact is due to huge amount of pulled 

nanoparticles towards cold surface from hot one, as a result temperature increases. From 

Fig. 5.15, we noticed inverse relation of temperature with Pr because inciting values of 

Prandtl number corresponds less diffusion of energy due to which temperature profile 

decreases. The impact of Lewis number is given through Fig. 5.16. It is evident from 

figure, for higher values of Lewis number the temperature distributions for geometries 

shows decline behaviour. Fig. 5.17 paints the temperature variation against curvature 

parameter towards cylindrical geometry. It is clearly seen that temperature distribution 

increases for increasing values of curvature parameter. Since Kelvin temperature is defined 

as an average kinetic energy so increase in curvature of cylinder, velocity of the fluid 

increases, that results in increase of kinetic energy which increases temperature. Note that 

the temperature of fluid starts decreasing near the cylindrical surface and increases far 

away from surface. Fig. 5.18 witnessed that the temperature profiles of both cases show an 

inciting attitude towards thermal radiation parameter. This fact is due to sufficient heat 

transfer into the fluid. Because by increasing thermal radiation parameter more heat is 

produced and hence this heat transfers to the fluid. The influence of heat generation 

parameter on temperature profiles for both cases is given by Fig. 5.19. It is observed that 
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the fluid temperature remarkably increased against heat generation parameter. In actual, 

during heat generation process energy is produced which consequently brings 

enhancement in temperature profile. Fig. 5.20 depicts the attitude of temperature 

distribution towards thermal stratification parameter for both flat and cylindrical surfaces. 

It is noticed that the temperature profile decreases for increase in thermal stratification 

parameter. This is because of decline in temperature difference between surface of cylinder 

and ambient fluid therefore, temperature profile decreases. Fig. 5.21 identify that there is 

direct relation between an inclination α and temperature of the fluid. We have noticed that 

for large values of an inclination α the temperature profile increases because an increase in 

inclination α about x-axis the effectiveness of gravity is significant which cause increase in 

temperature profile. 

5.6.3 Nanoparticle concentration distributions 

The influence of physical parameters named as Brownian motion parameter, 

thermophoresis parameter, chemical reaction parameter, Lewis number and solutal 

stratification parameter towards both the flat and cylindrical geometry is portrayed through 

Figs. 5.22-5.26. Particularly, the impact of both thermophoresis and Brownian motion 

parameters are identified by means of Fig. 5.22 and Fig. 5.23 respectively. The effect of 

chemical reaction parameter on fluid concentration is explored with the aid of Fig. 5.24. 

The physical illustration of Lewis number towards fluid concentration is shown in Fig. 

5.25. The influence of positive alterations of solutal stratification parameter on 

concentration distribution is given in Fig. 5.26. In detail, Fig. 5.22 portrays the variation in 

nanoparticles concentration for both cases against positive values of thermophoresis 

parameter. It is observed that the nanoparticles concentration field of both cases shows 

inciting nature towards thermophoresis parameter. This fact is due to huge transfer of 

nanoparticles from cold region to hot one which yields an increment in concentration 

distributions. The influence of Brownian motion parameter for both cases in nanoparticles 

concentration is depicted through Fig. 5.23. It shows that with gradual growth in Brownian 

motion parameter, nanoparticles concentration distribution shows the tendency to decline. 

The effect of chemical reaction parameter for both flat and cylinder is illustrated in Fig. 

5.24 and it is perceived that the nanoparticle concentration field for both cases is 

diminishing function of chemical reaction parameter. Furthermore, decline in solute 
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nanoparticle concentration is noticed due to remarkable disturbance in fluid molecules. 

The impact of Lewis number on nanoparticle concentration distribution is examined for 

flat and cylindrical geometry and justified through Fig. 5.25. The upsurge in Lewis number 

yields a thin nanoparticle concentration boundary layer along with frail diffusivity of 

molecules towards each fluid. Fig. 5.26 is plotted to inspect the variation of nanoparticle 

concentration towards positive values of solutal stratification parameter for plate and 

cylindrical surface. It is observed that there is a decline in fluid concentration within a 

boundary layer with increment in solutal parameter. Essentially, this effect is due 

convective potential drop between both ambient and surface concentration. 

5.6.4 Straight line approximations 

The straight line curve fitting approach is entertained to inspect the impact of both 

thermophoresis and Brownian motion parameters towards both heat and mass transfer rate. 

To be more specific, the effect of both thermophoresis parameter (variation encountered 

through red color) and Brownian motion parameter (variation encountered through blue 

color) on heat transfer rate are explained via Fig. 5.27. It is observed that heat transfer rate 

shows decline nature for both thermophoresis and Brownian motion parameter. The mass 

transfer rate variations towards both thermophoresis parameter (variation encountered 

through blue color) and Brownian motion parameter (variation encountered through red 

color) are identified by Fig. 5.28. Here, we observed that mass transfer rate enhances for 

Brownian motion parameter but opposite trend is noticed for thermophoresis parameter. 

5.7 Results validation 
Tables 5.5-5.6 are constructed for comparison of both skin friction coefficient and heat 

transfer rate with existing values. An excellent agreement is found for both physical 

quantities (skin friction coefficient and heat transfer rate) which lead to surety of present 

work. In detail, we have considered a steady MHD laminar boundary stagnation point flow 

of Eyring-Powell nano fluid brought by an inclined stretching cylindrical surface. In the 

absence of both heat and mass transfer, after incorporating 0mA K    , we obtained 

the case (see Ref. [130] ) in which Eyring-Powell fluid flow yields by flat stretching 

surface manifested with magnetic field effects. Further, these results are verified by 

developing comparison (when 0M   ) with Fathizedeh et al. [131] for skin friction 

coefficient towards different values of magnetic field parameter. We compare our findings 
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with both of them by substituting 0mA K M       and it is seen from Table 5.5 

that the current values are in an excellent match with existing values for skin fiction 

coefficient via various values of magnetic field parameter. In addition, in the absence of 

mass transfer characteristics if we substitute 1 2 0 and 0m M m m Q          , 

Eq. (5.6) and Eq. (5.17) reduces to the flow problem given by Ishak and Nazar [132]. 

Further, if we incorporate 0K   along with 1 2 0 and 0m M m m Q          , 

Eq. (5.6) and Eq. (5.17) reduces to flow problem reported in Ref. [133]. Particularly, Table 

5.6 presents the comparison of our findings with existing results regarding heat transfer 

rate for different values of Pr in a limited sense. From Table 5.5 we found an excellent 

match which guarantees the present work.  
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5.8  Graphical outcomes 

 

Fig. 5.2. Stream lines pattern for 1.0A . 

 

Fig. 5.3. Stream lines pattern for 0.0A . 

 

Fig. 5.4. Stream lines pattern for 0.5A . 

 

Fig. 5.5. Stream lines pattern for 1.5A . 
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Fig. 5.6. Stream lines pattern for 2.0A . 

 

Fig. 5.7. Impact of velocities ratio parameter on velocity 

profile. 

 

 

Fig. 5.8. Impact of magnetic field parameter on velocity 

profile. 

 

Fig. 5.9. Impact of mixed convection parameter on 

velocity profile. 



74 
 

 

Fig. 5.10. Impact of Eyring Powell fluid parameter (M) 

on velocity profile. 

 

Fig. 5.11. Impact of Eyring Powell parameter ( ) on 

velocity profile. 

  

 

Fig. 5.12. Impact of an inclination on velocity  

profile. 
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Fig. 5.13. Impact of Brownian motion parameter on 

temperature profile. 

 

Fig. 5.14. Impact of thermophoresis parameter on 

temperature profile. 

 

 

Fig. 5.15. Impact of Prandtl number on temperature 

profile. 

 

Fig. 5.16. Impact of Lewis number on 

temperature profile. 



76 
 

 
Fig. 5.17. Impact of curvature parameter on 

temperature profile. 

 
Fig. 5.18. Impact of thermal radiation parameter on 

temperature profile. 

 
Fig. 5.19. Impact of heat generation parameter on 

temperature profile. 

 
Fig. 5.20. Impact of thermal stratification parameter 

on temperature profile. 
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Fig. 5.21. Impact of an inclination on 

temperature 

profile. 

 
Fig. 5.22. Impact of thermophoresis parameter on 

concentration profile. 

 
Fig. 5.23. Impact of Brownian motion 

parameter on concentration profile. 

 
Fig. 5.24. Impact of chemical reaction parameter on 

concentration profile. 
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Fig. 5.25. Impact Lewis number on 

concentration 

profile. 

 
Fig. 5.26. Impact of solutal stratification parameter 

on concentration profile. 
 

 

Fig. 5.27 Impact of both thermophoresis and 

Brownian motion parameter on heat transfer 

rate. 

 

Fig. 5.28 Influence of both thermophoresis and 

Brownian motion parameter on mass transfer rate. 
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5.9 Straight line curve fitting analysis 
The influence of both thermophoresis and Brownian motion parameters on heat and mass 

transfer rates are evaluated in this section by means of straight line curve fitting 

approximation. The least square method proposed by Guass and Legendre is utilized. The 

normal equations for quadratic approximations can be written as: 

1 2

2

1 2

,

.

i i

i i i i

na a X Y

a X a X X Y

 

 

 

  

 

(5.28) 

To trace out straight line approximation for heat transfer rate towards thermophoresis and 

Brownian motion parameters i-e andNt Nb  . Let ( )i iX Nt  and ( '(0))i iY    we 

get, 

2
( ) 0.3, ( ) 0.05,

( '(0)) 1.0536, ( ) ( '(0)) 0.1761,

i i

i i i

Nt Nt

Nt 

 

   

 

 
 

 

by incorporating these values in Eq. (5.28) for straight line, we have 

1 2

1 2

2 0.3 1.0311,

0.3 0.05 0.1531,

a a

a a

 

 
 

(5.29) 

by solving system of equations given by (5.29), we get 

1 2'(0) a a Nt    (5.30) 

here, 
21 0.56249, and 0.31299a a    Similarly, line curve fitting for heat transfer rate 

for Brownian motion parameter is entertained as follows 

2
( ) 0.4, ( ) 0.10,

( '(0)) 0.9996, ( ) ( '(0)) 0.19746,

i i

i i i

Nb Nb

Nb 

 

   

 

 
 

 

3 4

3 4

2 0.4 0.9996,

0.4 0.1 0.19746,

a a

a a

 

 
 

(5.31) 

then the straight line approximations towards Brownian motion parameter is given by: 

3 4
'(0) ( ) ,P Nb a a Nb     (5.32) 



80 
 

where, 3 40.4998and 0.00062a a   .  

Straight line curve fitting approximations for mass transfer rate towards thermophoresis 

and Brownian motion parameters are processed as follows: 

2
( ) 0.3, ( ) 0.05,

( '(0)) 0.4861, ( ) ( '(0)) 0.0694,

i i

i i i

Nt Nt

Nt 

 

   

 

 
 

 

5 6

5 6

2 0.3 0.4861,

0.3 0.05 0.0694,

a a

a a

 

 
 

(5.33) 

after solving this system we obtained 

5 6'(0) a a Nt    (5.34) 

here, 5 60.3485 and 0.70299.a a     

In similar fashion, straight line for mass transfer rate towards Brownian motion parameter 

are evaluated as follows; 

2
( ) 0.4, ( ) 0.10,

( '(0)) 0.7569, ( ) ( '(0)) 0.1989,

i i

i i i

Nb Nb

Nb 

 

   

 

 
 

 

7 8

7 8

2 0.4 0.7569,

0.4 0.1 0.1989,

a a

a a

 

 
 

(5.35) 

solution of this system corresponds 

7 8'(0) ( ) ,P Nb a a Nb     (5.36) 

here, 7 80.37664and 0.012060a a  .  
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Table. 5.1. The variation skin friction coefficient number for , Pr and .K M  

 

K  

 

Pr  

 

M  

 

''(0)f  

1

32
1

Re (1 ) ''(0) ( ''(0))
2 3

f x

M
C M f f


    

0.2 - - -0.4014 -0.4413 

0.4 - - -0.4193 -0.4616 

0.6 - - -0.4368 -0.4802 

- 1.2 - -0.4014 -0.4413 

- 1.4 - -0.4029 -0.4429 

- 1.6 - -0.4044 -0.4445 

- - 0.2 -0.4014 -0.4413 

- - 0.4 -0.3839 -0.4603 

- - 0.6 -0.3549 -0.4609 

 

Table. 5.2. The variation skin friction coefficient number for 1 2, and .m m  

 

  

 

1m  

 

2m  

 

''(0)f  

1

32
1

Re (1 ) ''(0) ( ''(0))
2 3

f x

M
C M f f


    

0.2 - - -0.6176 -0.6786 

0.4 - - -0.6170 -0.6779 

0.6 - - -0.6163 -0.6771 

- 0.2 - -0.6163 -0.6771 

- 0.4 - -0.6186 -0.6797 

- 0.6 - -0.6208 -0.6821 

- - 0.2 -0.6163 -0.6771 

- - 0.4 -0.6196 -0.6808 

- - 0.6 -0.6214 -0.6827 
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Table. 5.3. The variation Nusselt number for 1,Pr and .K m  

 

K  

 

Pr  

 

1m  

 

'(0)  
4

(1 ) '(0)
3Rex

Nu
    

     

0.2 - - 0.5029 0.5699 

0.4 - - 0.6268 0.7104 

0.6 - - 0.7312 0.8287 

- 0.2 - 0.5029 0.5699 

- 0.4 - 0.5667 0.5716 

- 0.6 - 0.6252 0.5733 

- - 0.2 0.5029 0.5699 

- - 0.4 0.4934 0.5672 

- - 0.6 0.4831 0.5645 

 

Table. 5.4. The variation Sherwood number for 2, , and Pr.K m Le  

 

K  

 

2m  

 

Le  

 

Pr  
'(0)

Rex

Sh
   

0.2 - - - 0.5295 

0.4 - - - 0.6228 

0.6 - - - 0.7075 

- 1.2 - - 0.6665 

- 1.4 - - 0.5980 

- 1.6 - - 0.5295 

- - 0.2 - 0.5295 

- - 0.4 - 0.5538 

- - 0.6 - 0.5781 

- - - 1.2 0.5295 

- - - 1.4 0.5340 

- - - 1.6 0.5385 

 

  



83 
 

Table 5.5 Skin friction coefficient comparison for various values of magnetic field 

parameter  . 

 
  

 

Fathizadeh et al. [131] 

 

Akbar et al. [20] 

 

Present outcomes 

0.0 -1 -1 -1 

0.5 - -1.11803 -1.1180 

1.0 -1.41421 -1.41421 -1.4142 

5.0 -2.44948 -2.44949 -2.4494 

10 -3.31662 -3.31663 -3.3166 

 

Table 5.6 Comparison of heat transfer rate for various value of Prandtl number Pr. 

 

Pr 

 

Ishak and Nazar 

[132] 

 

Grubka and Bobba 

[133]  

 

Present outcomes 

0.72 0.8086313 0.8086 0.8089 

1.00 1.0000000 1.000 1.0000 

3.00 1.9236825 1.9237 1.9239 

10.0 3.7206739 3.7207 3.7208 

 

5.10 Conclusions  
In this attempt a simultaneous way of study is executed to envision the characteristics of 

magneto-nano stagnation point Eyring-Powell fluid flow yields by inclined stretching 

surfaces (i-e flat and cylindrical surfaces). The flow analysis is encountered with pertinent 

physical effects namely, dual convection, chemical reactive species, heat generation, 

temperature stratification, and nanoparticle concentration stratification. The physical 

situation within the real concerned constraints is translated into of boundary value 

problem. To be more specific, a computational algorithm (shooting method charted with 

Runge-Kutta scheme) is successfully applied to obtain numerical results both for flat and 

cylindrical surfaces. The concluding key points of present analysis are itemized as follows:  

 The compatibility of boundary conditions subject to stagnation point flow is 

validated through stream lines pattern (see Figs. 5.2-5.6) for concerned values of 
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velocities ratio parameter. Further, the obtained results are compared with existing 

values which yield the surety of present work. 

 It is noticed that the impacts of physical parameters are significantly enriched for 

cylindrical surface as compared to flat surface. 

 The mutual influence of both thermophoresis and Brownian motion parameters on 

heat and mass transfer rate is deliberated via straight line curve fitting approach for 

cylindrical surface and it seems to be first step in this direction.  

 It is found that heat transfer normal to the cylindrical surface shows decline nature 

towards both thermophoresis and Brownian motion parameters while mass transfer 

rate shows an inciting attitude for Brownian motion parameter but inverse relation 

is observed for thermophoresis parameter.  

 It is noticed that the velocity distributions show inciting attribute towards both 

mixed convection parameter, Eyring Powell fluid parameter (M) and velocities 

ratio parameter while opposite trends is found in the case of Eyring Powell fluid 

parameter ( ) and magnetic field parameter.  

 The fluid temperature reflects an increasing behaviour for thermal radiation, heat 

generation, curvature, thermophoresis, Brownian motion parameters and 

inclination but opposite attribute is noticed for thermal stratification parameter, 

Lewis and Prandtl numbers.  

 The nanoparticle concentration distribution enhances for thermophoresis parameter 

while opposite nature is observed for solutal stratification, chemical reaction, 

Brownian motion parameters and Lewis number.  
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Thermophyscial Aspects of Stagnation Point 

Magneto-Nanofluid Flow Yields by an Inclined Stretching 

Cylindrical surface: A Non-Newtonian Fluid Model 

 

6.1 Introduction 

In this chapter, we have considered magneto-hydrodynamic Eyring-Powell nanofluid flow 

brought by an included stretching cylindrical surface under the region of stagnation point. 

To report thermophysical aspects, Joule heating, thermal radiations, mixed convection, 

temperature stratification and heat generation effects are considered. The flow conducting 

differential equation is fairly converted into a non-linear ordinary differential equation by 

means of appropriate transformation. A numerical scheme is made against the obtained 

equations through shooting method supported with fifth order Runge-Kutta scheme. The 

trend of fluid temperature after varying Eckert number, thermophoresis parameter, 

Brownian motion parameter, thermal radiation parameter, heat generation parameter, 

Lewis number and thermal stratification parameter will be observed. Further, the obtained 

results are validated by providing comparison with existing values which sets a benchmark 

of quality of computational algorithm.  

 

6.2 Flow field formulation 
An incompressible magnetohydrodynamic boundary layer flow of Eyring- Powell 

nanofluid is considered under the region of stagnation point. The fluid flow is brought by 

an inclined cylindrical surface due to no slip condition. To inspect thermophysical 

properties imperative effects namely, Joule heating, thermal radiations, mixed convection, 

temperature stratification and heat generation are incorporated. In addition, concentration 

equation admits the role of chemical reaction and solutal stratification. The strength of both 

temperature and concentration near the cylindrical surface are assumed to be higher than 

 CHAPTER 6 
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the ambient fluid values. The radial direction is considered perpendicular to x-axis and 

taken as r-axis. The axial line of cylinder is aligned parallel to x-axis.  

 

Fig. 6.1. Physical illustration of flow model. 

The simplified momentum differential equation (in the absence of magnetic field and 

stagnation point we have basic equations [30]) are: 

   
0,

ru rv

x r

 
 

 
 

(6.1) 

 

 
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3 2

0
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1 1

2

1 1 1
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e
e e

T c

u u u u u
v u

r x r c r r c

u Bu u
u u u

r c r r c r x

g T T C C


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


   

   

      
      

      

    
       

    

   

 

(6.2) 

the corresponding boundary conditions are: 

( ) , 0,at , ' , when ,eu U x ax v r R u u a x r        (6.3) 

where, , , , , , , , , , , , and ,e o T Cc u Ec B g        denotes kinematic viscosity, fluid 

density, Eyring-Powell fluid parameters, free stream velocity, electrical conductivity, 

Eckert number, uniform magnetic field, gravity, thermal expansion coefficient, 

concentration expansion coefficient, and an inclination respectively. For solution we own: 
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 

11
22 22 2

0 0

0 0

  
,  ( ),

2   

'( ), ,

U U xr R
R F

R L L

U x UR
u F v F

L r L


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


 

   
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   

  

 

(6.4) 

here,    , , , ' , andoU R F F    denotes reference velocity, radius of cylinder, 

dimensionless variable, velocity of fluid past a stretching cylinder and stream function, 

respectively. The relations via stream function are: 

  
,    ,

  

xru v
r r

 
   

(6.5) 

by incorporating transformation given by Eq. (6.4) into Eq. (6.2), the resulting reduced 

differential equation is given as: 

   

      

   

2

3 2 2
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    

     

   
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(6.6) 

 ' ( ) 1, ( ) 0,    at    0,

'( ) , when ,

F F
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  

 
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(6.7) 

here,: 

23 2

0 0

2

*

2

1 1 '
, , ,  , ,  ,

2

, and ,
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m

x
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R a L c c a a
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
 

  


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(6.8) 

and: 

3 3
*0 0

2 2

( ) ( )
, .w T w CT T g x C C g x

Gr Gr
 

 

 
   

(6.9) 

The skin friction coefficient at the surface of cylinder is defined as:  

2

3

3

2

1 1
, ,

6e

w
f wU

r R

u u u
C

r c r c r


 

 


      
       

       
 

(6.10) 

here,  and w  denotes fluid viscosity and shear stress respectively. In non-dimensional 

form the skin friction coefficient is prearranged as: 
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    
31/2 2

Re 2 '' 0 ( 1) '' 0 .
3

x f

M
C F M F


    

(6.11) 

6.3 Temperature and nanoconcentration formulation  
The flow field is manifested with Joule heating, temperature stratification, concentration 

stratification, thermal radiation, heat generation and chemical reaction effects. The 

strength of both temperature and concentration is supposed to be greater as compared to 

ambient temperature and concentration respectively. Both the energy and concentration 

equations (in the absence of Joule heating, heat generation and chemical reaction we 

consider fundamental equations [29]) under boundary layer assumption reduces to: 
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(6.12) 
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(6.13) 

here, 
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
 represents Roseland radiative heat flux, therefore Eq. (6.12) can 

be written as: 
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(6.14) 

subject to the endpoint conditions:  
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C x r C x C T x r T x T r R

L L

c x e x
T x r T x T C x r C x C r

L L
 

      

      

 

(6.15) 

where, 
*, , , , , , , , ,andp B T o oc D D T T Q C C R    stands for thermal diffusivity, specific heat 

capacity at constant pressure, Brownian diffusion coefficient, thermophoretic diffusion 

coefficient, fluid temperature, ambient temperature, heat generation/absorption coefficient, 

fluid concentration, ambient concentration and rate of chemical reaction respectively. 
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Further, 
( )

, ( ), ( ), , , , ,and
( )

p

w w

f

c
T x C x L b c d e

c





  represents the ratio of nanoparticles 

heat capacity to the base fluid heat capacity, prescribed surface temperature, prescribed 

surface concentration, reference length and dimensionless constants respectively. To find 

out the solution of Eqs. (6.13)-(6.14) under endpoint conditions Eq. (6.15), we have 

considered following transformations: 

 

   

1
2

1
2

2 2

0 0 0

2

0

0 0

  
'( ), , ,  

2   

  
 ( ), ,  C ,

  w w

U x U UR r R
u F v F

L r L R L

U x T T C C
R F T

L T T C C


  




    

  
     

 

   
   

  

 

(6.16) 

here, ˆˆ , , ando oT C   denotes reference temperature, reference concentration and stream 

function respectively. By incorporating transformation given by Eq. (6.16) into Eqs. 

(6.13)-(6.14), the resulting reduced differential equations are given as: 

     

 

       

   

 

2

1

2 2

4 4
1 2 1 '' 2 1 '

3 3

' '

Pr 1 2 ' ' ' Pr ' 0,

p pK R T K R T

F T F T
Nt

Nb K T C T F QT
Nb

Ec F

  

   

   

 

   
      

   

 
  

        
     

 

(6.17) 

                

     

21 2 '' '' Pr ' ' '

2 ' ' 0,

Nt
K C T Le F C F C F

Nb

Nt
K C T RcC

Nb

        

  

 
     

 

 
    

 

 

(6.18) 

the transformed endpoint conditions are given as: 

   

   

1 21 , 1 ,    at    0,

0 , 0, when .

T C

T C

    

  

    

  

 

(6.19) 

here, 1 2, Pr, , , , , , , andpR Nb Nt Q Le Ec Rc   denotes, thermal radiation parameter, 

Prandtl number, Brownian motion parameter, thermophoresis parameter, thermal 

stratification parameter, heat generation parameter, Lewis number, solutal stratification 

parameter, Eckert number and chemical reaction parameter, respectively and are defined as 
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follows: 
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* *

*
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(6.20) 

The surface quantaties are defined as: 

 r r=R
0

0

, + q  ,
( )

,  ,
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x w

w r R

w
w

w r R

xq T
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rD C C
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

 
   

  

 
    

  

 

(6.21) 

the non-dimensional form of these expressions are well-defined and given as: 

 

 

1/ 2

1/ 2

4
Re 1 ' , at 0,

3

Re ' , at 0.

x x p

x
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 





 
    

 

  

 

(6.22) 

 

6.4 Computational algorithm  
For order reduction we entertain 

2 3 2 5 7'( ), ' ''( ), '( ), '( ),p F p p F p T p C         (6.23) 

equivalently:  
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(6.24) 

and: 
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(6.25) 

For integration purpose of Eq. (6.24) as an initial value problem (IVP) we need 

           3 5 7'' , ' and ' when 0.p F p T p T           (6.26) 

Further, we observed that the three initial conditions namely, 

     3 5 7, and when 0p p p      are missing but some additional boundary 

conditions are: 

     2 4 6, 0, and 0, when 0p A p p        (6.27) 

The numerical computation up-to four decimal precision as convergence standards are 

achieved by maintaining 0.025   as a step size.  
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6.5 Results and discussion  
Tables 6.1-6.4 are presented to depict the significance of admissible flow controlling 

parameters namely, Eckert number, Eyring-Powell fluid parameter, Prandtl number, 

curvature parameter, thermal stratification parameter, solutal stratification parameter, 

chemical reaction parameter and Lewis number on skin friction coefficient, local Nusselt 

and Sherwood numbers numerically. In detail, Tables 6.1-6.2 represents skin friction 

coefficient against various values of curvature parameter, Prandtl number, Eyring-Powell 

fluid parameter, magnetic field parameter, thermal stratification parameter and solutal 

stratification parameter. Physically, the numerical values of skin friction coefficient means 

the amount of drag force offered by cylindrical surface to fluid particles. It is observed that 

the drag force increases on increasing values of Eyring-Powell fluid parameter, curvature 

parameter, Prandtl number, thermal stratification parameter and solutal stratification 

parameter while opposite behaviour is noticed for magnetic field parameter. Tables 6.3-6.4 

indicate the impacts of various physical parameters on Nusselt and Sherwood numbers. 

The numerical values of Nusselt number and Sherwood number corresponds to the transfer 

of heat and mass respectively from cylindrical surface to the fluid (normal to the surface). 

It is revealed that heat transfer rate shows remarkable increase for curvature parameter and 

Prandtl number but inverse attitude is observed for both thermal stratification parameter 

and Eckert number. As far as mass transfer at cylindrical surface is concerned it is found 

that mass transfer rate shows an inciting nature for positive values of curvature parameter, 

Schmidt number. The present findings are validated by developing comparison in a 

limiting sense towards skin friction coefficient. In detail, in the absence of both heat and 

mass transfer characteristics if 
00 and 0mM A K        , the present case 

reduces to a problem given by Fathizedeh et al. [131] and if we incorporate 

00 and 0mA K      , our problem matches with Akbar et al. [20]. An excellent 

agreement is found (see Table 6.5) with both studies which leads to justify the present 

work. Fig. 6.1 provides the physical illustration of flow model while Fig. 6.2 and Fig. 6.3 

are plotted to examine the stream lines for 1A  , in other words when stretching velocity 

exceeds free stream velocity. Physically, the boundary layer thickness increases largely 

when stretching velocity is dominant as compared to free stream velocity. To be more 
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specific, Fig. 6.2 paints when A=0, which mean the free stream velocity is absolutely zero 

and from Fig. 6.2, it is seen that the disturbance of particles is only due to stretching 

velocity. Whereas, Fig. 6.3 is plotted for the value of A=0.5 and it means the involvement 

of free stream velocity is little significant as compare to A=0 but still is lesser then 

stretching velocity so that the particle disturbance is significant at cylindrical surface as 

compared to far away from surface. In Fig. 6.4 and Fig. 6.5 stream lines are switches 

accordingly to the velocities ratio parameter 1A  . In this case free stream velocity 

exceeds stretching velocity. The thickness of boundary layer decreases when A  

increases. In actual when A  increases, we yield increase in free stream velocity  for 

fixed values of stretching velocity, ultimately straining motion adjacent to the stagnation 

region brings inciting acceleration of free stream as a result thinning of boundary layer is 

observed. In Fig. 6.2- 6.5 greenish color shows how much the streamlines are close to each 

other for several values of velocities ratio parameter A . Fig. 6.6-6.9 illustrates that how 

velocity profile are affected by varying involved flow controlling parameters. To be more 

specific, Fig. 6.6 reveals that there is an inverse relationship between inclination and 

velocity profile because for large values of an inclination the velocity profile decreases. 

The reason behind is when we increase an inclination about x-axis the effect of gravity is 

lesser which causes decreasing in velocity profile within boundary layer. Fig. 6.7 classifies 

the effect of mixed convention parameter over velocity profile. It is seen that for larger 

values of mixed convention parameter the velocity profile increases with in a boundary 

layer. Physically, this is because of the large buoyancy force. Fig. 6.8 specifies that by an 

increasing magnetic field parameter the velocity profile decreases. The fact behind is that 

on increasing values of magnetic field parameter the resistive force known by Lorentz 

force starts actively participate and offer resistance to fluid particles and hence velocity 

decreases. Fig. 6.9 suggests that there exist direct relation between Eyring-Powell fluid 

parameter and velocity distribution i-e an increase in Eyring-Powell fluid parameter the 

velocity profile increase. Specifically, Eyring-Powell fluid parameter has inverse relation 

with viscosity of fluid. On increasing fluid parameter the fluid viscosity decreases and 

particles are free to move and hence average velocity of fluid increases. Fig. 6.10-6.19 are 

plotted to examine the influence of pertinent flow controlling parameters over temperature 

profile. In detail, Fig. 6.10 examines the impact of Eckert number on temperature profile. It 



94 
 

is seen that for high values of Eckert number the temperature distribution increases. Fig. 

6.11 indicates that for large values of curvature parameter the temperature distribution 

shows an inciting nature. Kelvin temperature is proportional to average kinetic energy so, 

an increase in curvature parameter, velocity profile of the fluid increases which causes 

increase in kinetic energy and due to which temperature profile increases. Fig. 6.12 paints 

the impact of Prandtl number and as expected by increasing Prandtl number temperature 

profile decreases because for higher values of Prandtl number less will be the diffusion of 

energy. So, an increase in Prandtl number results a strong reduction in temperature profile 

of the fluid which causes thinner boundary layer. In Fig. 6.13, it is seen the fluid 

temperature decreases for the larger values of Lewis number while Fig. 6.14 illustrates the 

effect of heat generation parameter over temperature profile. It is identify that an increase 

in heat generation parameter results an increase in temperature profile. Here symbolic heat 

is produced during heat a generation phenomenon which causes increase in temperature 

profile. The impact of Brownian motion parameter on temperature profile is given by Fig. 

6.15. It is seen that higher values of Brownian motion parameter brings an increase in fluid 

temperature profile within boundary layer. In actual, growth of Brownian motion increase 

in the random motion and collision among nanoparticles of the fluid which produces more 

heat and eventually temperature increases. Influence of thermophoresis parameter on 

temperature profile is depicted in Fig. 6.16. It is noticed that higher values of 

thermophoresis parameter corresponds an increase in temperature profile. Due to 

increasing values of thermophoresis parameter, more nanoparticles are pulled towards the 

cold surface from hot one which ultimately results an increase in temperature. Fig. 6.17 is 

used to explain the impact of thermal radiation parameter on temperature profile. For large 

values of thermal radiation parameter temperature profile increases. Actually, for higher 

values of thermal radiation parameter plenty of heat is transfer into fluid flow regime as a 

result temperature shows an inciting values. From Fig. 6.18, it is examined that the 

temperature profile decreases for an inciting values of thermal stratification parameter. 

Actually, this effect is due to drop of convective potential between surface of cylinder and 

ambient temperature. Fig. 6.19 identify that there is an inverse relation between inclination 

and temperature profile. For large values of inclination the temperature profile decreases. 

The fact is that for an inciting value of an inclination the gravity effects are actively 
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participated to reduce the movement of fluid particles and hence average kinetic energy 

decreases due to which fluid temperature drops. Figs. 6.20-6.24 are used to classify that 

how concentration profile are effected by Brownian motion parameter, solutal 

stratification parameter, thermophoresis parameter, Lewis number and chemical reaction 

parameter. In detail, the impact of Brownian motion parameter on nanoparticle 

concentration profile is depicted in Fig. 6.20. It is seen that gradual growth of Brownian 

motion parameter is the cause of decline in values of nanoparticle concentration 

distributions. Influence of thermophoresis parameter on concentration profile is depicted in 

Fig. 6.21. It is noticed that increasing values of thermophoresis parameter reflects an 

increase in concentration profile because increasing values of thermophoresis parameter 

corresponds lager amount of nanoparticles pulled from colder region to hotter one which 

brings enhancement in concentration profiles. The influence of Lewis number on 

nanoparticle concentration profile is given by Fig. 6.22. It is noticed that the upsurge in 

Lewis number yields a thin nanoparticle concentration boundary layer with frail molecular 

diffusivity. Fig. 6.23 indicates the relation between concentration profile for different 

values of chemical reaction parameter. Decline in nanoparticles concentration and its allied 

boundary layer thickness is noticed because of large disturbance in fluid molecules. Fig. 

6.24 signals that an increase in solutal stratification parameter the concentration 

distribution decreases. For higher values of solutal stratification parameter we have drop of 

potential difference between surface conditions and ambient concentration which yields 

decline in values of concentration distributions. 
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6.6 Graphical outcomes 

 

Fig. 6.2. Stream lines pattern for A = 0.0. 

 

 

Fig. 6.3. Stream lines pattern for A = 0.5. 

 

 

Fig. 6.4. Stream lines pattern for A = 1.5. 

 

 

Fig. 6.5. Stream lines pattern for A = 2.0. 
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Fig. 6.6. Effect of an inclination over velocity  

profile. 

 

Fig. 6.7. Effect of mixed convection parameter over 

velocity profile. 

 

 

Fig. 6.8. Effect of magnetic field parameter over 

velocity profile. 

 

Fig. 6.9. Influence of fluid parameter over velocity 

profile. 
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Fig. 6.10. Influence of Eckert number over 

temperature profile. 

 

Fig. 6.11. Influence of curvature parameter over 

temperature profile. 

 

 

Fig. 6.12. Influence of Prandtl number over 

temperature profile. 

 

Fig. 6.13. Influence of Lewis number over temperature 

profile. 
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Fig. 6.14. Influence of heat generation parameter over 

temperature profile. 

 

Fig. 6.15. Influence of Brownian motion parameter over 

temperature profile. 

 

Fig. 6.16. Influence of thermophoresis parameter over 

temperature profile. 

 

Fig. 6.17. Influence of thermal radiation parameter over 

temperature profile. 
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Fig. 6.18. Influence of thermal stratification parameter 

over temperature profile. 

 

Fig. 6.19. Influence of an inclination over temperature 

profile. 

 

Fig. 6.20. Influence of Brownian motion parameter 

over concentration profile. 

 

Fig. 6.21. Influence of thermophoresis parameter over 

concentration profile. 
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Fig. 6.22. Influence of Lewis number over 

concentration profile. 

 

Fig. 6.23. Influence of chemical reaction parameter over 

concentration profile. 

 

Fig. 6.24. Influence of solutal stratification parameter over  

concentration profile. 
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Table. 6.1. The variation skin friction coefficient number for , Pr and .K M  

K  Pr  M  - ''(0)F  1

32
1

Re (1 ) ''(0) ( ''(0))
2 3

f x

M
C M F F


    

0.1 1.1 0.1 0.3923 0.4322 

0.3 1.1 0.1 0.4105 0.4525 

0.5 1.1 0.1 0.4249 0.4713 

0.1 1.1 0.1 0.3923 0.4322 

0.1 1.3 0.1 0.3939 0.4338 

0.1 1.5 0.1 0.3953 0.4352 

0.1 1.1 0.1 0.3923 0.4322 

0.1 1.1 0.3 0.3761 0.4509 

0.1 1.1 0.5 0.3479 0.4791 

 

Table. 6.2. The variation skin friction coefficient number for 1 2, and .    

 

  

 

1  

 

2  

        

- ''(0)F  

1

32
1

Re (1 ) ''(0) ( ''(0))
2 3

f x

M
C M F F


    

0.1 0.1 0.1 0.5926 0.6576 

0.3 0.1 0.1 0.6569 0.6569 

0.5 0.1 0.1 0.6561 0.6561 

0.1 0.1 0.1 0.5926 0.6576 

0.1 0.3 0.1 0.5996 0.6609 

0.1 0.5 0.1 0.6016 0.6629 

0.1 0.1 0.1 0.5926 0.6576 

0.1 0.1 0.3 0.6027 0.6621 

0.1 0.1 0.5 0.6183 0.6657 
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Table. 6.3. The variation Nusselt number for 1,Pr , and .K Ec   

 

K  

 

Pr  

 

Ec  

 

1  

4
(1 ) '(0)

3Rex

Nu
T    

0.1 0.1 0.1 0.1 0.3946 

0.3 0.1 0.1 0.1 0.5101 

0.5 0.1 0.1 0.1 0.6256 

0.1 0.1 0.1 0.1 0.3946 

0.1 0.3 0.1 0.1 0.5658 

0.1 0.5 0.1 0.1 0.7355 

0.1 0.1 0.1 0.1 0.3946 

0.1 0.1 0.3 0.1 0.3838 

0.1 0.1 0.5 0.1 0.3766 

0.1 0.1 0.1 0.1 0.3946 

0.1 0.1 0.1 0.3 0.3927 

0.1 0.1 0.1 0.5 0.3908 

 

Table. 6.4. The variation Sherwood number for 2, , , and .K Sc Rc Ec  

 

K  

 

Sc  

 

2  

 

Rc  

 

Ec  
'(0)

Rex

Sh
C   

0.1 0.1 0.1 0.1 0.1 0.3197 

0.3 0.1 0.1 0.1 0.1 0.4571 

0.5 0.1 0.1 0.1 0.1 0.5838 

0.1 0.1 0.1 0.1 0.1 0.3197 

0.1 0.3 0.1 0.1 0.1 0.5207 

0.1 0.5 0.1 0.1 0.1 0.7217 

0.1 0.1 0.1 0.1 0.1 0.3197 

0.1 0.1 0.3 0.1 0.1 0.3453 

0.1 0.1 0.5 0.1 0.1 0.3709 

0.1 0.1 0.1 0.1 0.1 0.3197 

0.1 0.1 0.1 0.3 0.1 0.3439 

0.1 0.1 0.1 0.5 0.1 0.3681 

0.1 0.1 0.1 0.1 0.1 0.3197 

0.1 0.1 0.1 0.1 0.3 0.3089 

0.1 0.1 0.1 0.1 0.5 0.2981 
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Table 6.5 Comparison results for skin friction coefficient towards magnetic field parameter
 . 

 
  

 

Fathizadeh et al. [131] 

 

Akbar et al. [20] 

 

Present values 

0.0 -1 -1 -1 

0.5 - -1.11803 -1.1182 

1.0 -1.41421 -1.41421 -1.4145 

5.0 -2.44948 -2.44949 -2.4496 

10 -3.31662 -3.31663 -3.3168 

 

6.7 Concluding remarks 
Present work is made to report thermophysical characteristics of MHD Eyring-Powell 

nanofluid flow brought by an inclined stretching cylindrical surface. The flow analysis 

carried out in the presence of Joule heating, thermal radiations, temperature stratification, 

heat generation, solutal stratification and chemical reaction effects. The flow situation is 

mathematically modelled in terms of partial differential equations. An appropriate 

transformation is utilized to transform partial differential equations into system of coupled 

non-linear ordinary differential equations. A computational algorithm is executed to 

offered numerical solution. The variations in fluid velocity, temperature and nanoparticle 

concentration towards pertinent flow controlling parameters are recorded and reported by 

way of graphs. Some physical quantities are calculated at cylindrical surface and 

demonstrated through tables. The core findings are itemized as follow: 

 The compatibility of boundary conditions is attained through stream lines patterns 

via velocities ratio parameter. 

 It is found that fluid velocity reflects an inciting attitude for positive values of 

mixed convection parameter, Eyring-Powell parameter and curvature parameter 

but opposite trends are noticed for thermal stratification parameter and inclination. 

 The temperature distribution shows mounts values for Eckert number, 

thermophoresis parameter, thermal radiation parameter, Brownian motion 

parameter, an inclination, heat generation parameter. Whereas it reflects opposite 

trends for Prandtl number, thermal stratification parameter and Lewis number. 
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 The fluid nanoparticle concentration distribution increases for thermophoresis 

parameter while the concentration decline towards solutal stratification parameter, 

Brownian motion parameter, Lewis number and chemical reaction parameter. 

 The physical quantity (skin friction coefficient) increases for Prandtl number, 

curvature parameter, thermal stratification parameter, and solutal stratification 

parameter but opposite trend is observed for an inclination and fluid parameter.  

 The heat transfer rate exhibits positive variations due to curvature parameter, 

Prandtl number and an inverse relation is verified for Eckert number and thermal 

stratification parameter. 

 An inciting nature is observed for mass transfer rate towards solutal stratification 

parameter, chemical reaction parameter, solutal stratification parameter and 

curvature parameter.  

 The present findings are validated by developing comparison with existing 

literature. An excellent agreement is found which leads to validate the present 

work.  
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Numerical Communication for MHD Thermally Stratified 

Dual Convection Flow of Casson Fluid Yields by Stretching 

Cylinder 

 

 

7.1 Introduction 

This chapter reports the comparative study of magnetohydrodynamic mixed convection 

boundary layer flow of Casson fluid brought by both flat and cylindrical stretching 

surfaces. Flow field analysis is accounted with thermal stratification phenomena. The 

temperature is assumed to be higher across the surface of cylinder as compared to ambient 

fluid. The arising mathematically modelled partial differential equations of Casson fluid 

flow are successfully converted into ordinary differential equations with the source of 

suitable transformation. The numerical solutions are computed through the application of 

shooting technique charted with fifth order Runge-Kutta algorithm. The effect logs of an 

interesting physical parameters namely, magnetic field parameter, mixed convection 

parameter, thermal stratification parameter, heat generation parameter, curvature 

parameter and Prandtl number are discussed graphically. Further, the variations of skin 

friction coefficient and heat transfer rate are identified by way of tables.  

7.2 Mathematical modelling 
In this study, we considered steady two dimensional, an incompressible 

magnetohydrodynamic boundary layer flow of Casson fluid brought by both flat and 

cylindrical stretching surfaces. Flow field analysis is taken with thermal stratification 

phenomena along with heat generation effects. The temperature is supposed to be higher 

near the cylindrical surface as compared to ambient fluid.  

 CHAPTER 7 
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Fig. 7.1. The physical model and coordinates system.  

The steady two dimensional equations under boundary layer approximation for Casson 

fluid model, in usual notation are given as follow: 

   
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(7.3) 

the axial line of cylinder is considered as x-axis and radial direction perpendicular to axial 

line is taken as r-axis. So that, u , v ,  , ,g pc , 0, ,T B   and 0Q  denotes velocity 

components in the x and r direction, kinematic viscosity, gravity, specific heat at constant 

pressure, fluid density, coefficient of thermal expansion, magnetic field and heat 

generation coefficient, respectively. The endpoint conditions are given as:  
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(7.4) 

For solution we own: 
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(7.5) 

where, 
0U , L , ( )F  , '( )F   denotes free stream velocity, reference length, 

dimensionless variable, velocity of fluid towards both flat and cylindrical stretching 

surfaces because prime denotes differentiation with respect to   (similarity variable). 

Whereas, b and c are positive constants,   is the stream function, which identically 

satisfies the continuity Eq. (7.1) and is defined as: 
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(7.6) 

by substituting Eqs. (7.5)-(7.6) in Eqs. (7.2)-(7.3), one can get: 
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the transformed endpoint conditions are: 
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where, ,  K, m , Pr, , ,HS  and M denotes Casson fluid parameter, curvature 

parameter, mixed convection parameter, Prandtl number, thermal stratification parameter, 

heat generation parameter and magnetic field parameter respectively and defined as 

follow: 
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(7.10) 

Furthermore, Gr denotes thermal Grashof number which is defined as: 
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The surface quatity is:  
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(7.12) 

where, 
w  and   denotes shear stress and viscosity of fluid respectively. The 

dimensionless form of skin friction coefficient is prearranged as: 

 1/2 1
0.5Re 1 '' 0 .x fC F



 
  
 

 
(7.13) 

The local Nusselt number is defined as: 
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in dimensionless form it can be written as: 

 1/ 2Re ' 0 .x xNu T    (7.15) 

 

7.3 Shooting method 
For solution we let  
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and: 
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(7.17) 

where, 1 2and   are initial guessed values. For the integration of first order system i-e 

Eq. (7.16) as a IVP with the aid of fifth order Runge-Kutta scheme, we required values for 

 3 0y i.e.  '' 0F , and  5 0y  i.e.  ' 0T . Newton’s method is than used to estimate the 

values of  '' 0F and  ' 0T till the solution approaches to zero with the desired efficiency 

of 410  along step size 0.025   by way of additional conditions given as: 

 

 

2

4

0,

0.

y

y

 

 
 

(7.18) 

 

7.4 Discussion 
The magnetohydrodynamic Casson fluid flow towards both flat and cylindrical stretching 

surfaces are considered in the presence of an important physical effects namely, thermal 

stratification, heat generation and mixed convection. A numerical study is executed to 

inspect the flow field situation. The obtained results are validated by developing 

comparison with existing literature. An excellent match is found which confirms the 

numerical treatment. To be more specific, Table. 7.1 shows the comparison of Nusselt 

number with previously published results. Whereas, Tables. 7.1-7.2 are used to examine 

the variation of physical quantities for positive values of involved flow controlling 

parameters like Casson fluid parameter, curvature parameter, mixed convection parameter, 

Prandtl number, thermal stratification parameter, heat generation parameter and magnetic 

field parameter. Particularly, Table 7.2 is constructed to determine the behaviour of skin 

friction coefficient  1/20.5 Ref xC for distinct values of physical variables namely, 

, , ,Pr,mK S  and H . Here, we observed that skin friction coefficient shows an 
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increasing behaviour for larger values of , ,PrK   and S . However, opposite situation is 

noticed for m  and H . Whereas, Table 7.3 is constructed to determine the behaviour of 

local Nusselt number for distinct values of physical variables , , ,Pr,mK S  and H . 

Here, we found that local Nusselt number shows an increasing behaviour for greater values 

of , mK   and Pr . However, opposite situation is noticed for , S and H . 

7.4.1 Velocity profiles  

The physical illustration of Casson fluid flow is given by Fig. 7.1 while Figs. 7.2-7.5 are 

plotted to examine the influence of Casson fluid parameter, curvature parameter, mixed 

convection parameter and magnetic field parameter on dimensionless velocity profile. In 

detail, Fig. 7.2, depicts the influence of   on velocity profile for both flat and cylindrical 

geometry. It is seemed that the velocity profile decreases for higher values of Casson fluid 

parameter  . Fig. 7.3 represents the influence of curvature parameter K on velocity profile 

for cylinder. It shows that the larger values of curvature parameter K is the cause of 

increase in velocity profile. The curvature parameter K  has inverse relation with radius 

of curvature. When we increase curvature parameter, the radius of cylinder decreases and 

hence contact surface area of cylinder with fluid reduces which offers less resistance to 

fluid flow. So an increase in curvature parameter K causes an increase in velocity profile. 

Fig. 7.4 includes the effect of mixed convection parameter m  on velocity profile for both 

flat and cylindrical surfaces. It is noticed that for higher iterations of mixed convection 

parameter m , velocity of the fluid increases. Physically, it is due to an inciting attitude of 

thermal buoyancy force. The influence of magnetic field parameter on velocity profile is 

displayed through Fig. 7.5. It is seen that for positive values of magnetic field parameter 

the velocity profile decreases. In actual, when we enhance magnetic field parameter a 

resistive force named as Lorentz force becomes actively participate to offer resistance 

against fluid particles as a result horizontal velocity decreases. 

7.4.2 Temperature profiles 

Figs. 7.6-7.10 are plotted to inspect the impact of involved physical parameters namely, 

heat generation parameter, curvature parameter, Prandtl number and thermal stratification 

parameter on temperature profile. To be more specific, Fig. 7.6, shows the impact of H  
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on temperature profile for both flat and cylindrical geometry. It is clearly seen that for 

positive values of H , temperature of fluid rises. In actual, during heat generation process 

energy is produce which brings enhancement in temperature. In addition, sometimes for 

higher values of H , we may have over shoot in temperature profile. Such type of over 

shoot can be controlled by introducing heat sink which helps to reduce temperature of 

fluid. Fig. 7.7 represents the effect of curvature parameter K on temperature profile for 

cylindrical case. It shows that the temperature distribution increases due to increase in 

curvature parameter K. As Kelvin temperature is define as an average kinetic energy so 

when we increase curvature of cylinder, velocity of fluid increases. Note that the 

temperature of fluid start decreasing near the cylindrical surface and increases far away 

with respect to surface. Fig. 7.8 identifies the influence of Prandtl number Pr on 

temperature profile for both sheet and cylinder and an inciting values of Pr correspond less 

diffusion of energy due to which temperature profile shows decline nature. Fig. 7.9 

represents the impact of the stratification parameter S over the temperature gradient 

 'T  and temperature  T  . The presence of stratification S is the cause of decrease in 

the temperature in a flow regime and due to this temperature gradient decrease (absolute 

sense). The thermal boundary layer thickness also decreases with an increase in the 

stratification parameter S. The buoyancy factor  wT T reduces within the boundary 

layer for positive values of stratification parameter S. The temperature distribution decays 

from the largest value at the wall to zero in the free stream that is temperature converges at 

the outer edge of the boundary layer. Fig. 7.10 paints the influence of stratification 

parameter S for both flat and cylindrical geometry. It is witnessed that the temperature 

profile decreases for increasing values of H  and this is because of decline in temperature 

difference between both surfaces and ambient fluid therefore, temperature profile 

decreases.  
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7.5 Graphical outcomes 

 

Fig. 7.2. Impact of   on  'F  . 

 

Fig. 7.3. Impact of K  on  'F  . 

 

Fig. 7.4. Impact of m  on  'F  . 

 

Fig. 7.5. Impact of M  on  'F  . 
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Fig. 7.6. Impact of H on  T  . 

 

Fig. 7.7. Impact of K on  T  . 

 

Fig. 7.8. Impact of Pr on  T  . 

 

Fig. 7.9. Impact of S on  T  &  'T  . 
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Fig. 7.10. Impact of S  on  T  . 

 

Table. 7.1 The comparison of  1/ 2Re ' 0x xNu T    for Prandtl number. 

 

Pr 

Bidin and 

Nazar 

[134] 

( 0)E K   

Mukhopadhyay  

[135] 

( 0)St S M    

Present study 

 

( , 0)HK S M       

1.0 0.9547 0.9547 0.9547 

2.0 1.4714 1.4714 1.4714 

3.0 1.8961 1.8961 1.8961 
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Table. 7.2. Numerical values of skin friction 
1/20.5 Ref xC for distinct values of 

, , ,Pr,mK S   and H  

K    
m  

Pr  S  
H   '' 0F  

1/ 20.5 Ref xC
 

0.1 - - - - - -0.7652 -0.3826 

0.2 - - - - - -0.8073 -0.4036 

0.3 - - - - - -0.8497 -0.4248 

- 1.3 - - - - -0.7652 -0.3826 

- 1.4 - - - - -0.7760 -0.3884 

- 1.5 - - - - -0.7857 -0.3928 

- - 0.1 - - - -0.7652 -0.3826 

- - 0.2 - - - -0.7358 -0.3679 

- - 0.3  - - -0.7071 -0.3535 

- - - 0.6 - - -0.7633 -0.3816 

- - - 0.7 - - -0.7652 -0.3826 

- - - 0.8 - - -0.7670 -0.3835 

- - - - 0.1 - -0.7652 -0.3826 

- - - - 0.2 - -0.7703 -0.3851 

- - - - 0.3 - -0.7754 -0.3877 

- - - - - 0.1 -0.7652 -0.3826 

- - - - - 0.2 -0.7640 -0.3821 

- - - - - 0.3 -0.7626 -0.3813 

 

Table. 7.3. Comparison value of  ' 0T against the parameter. 

K    
m  

Pr  S  
H   ' 0T  

0.1 - - - - - 0.8254 

0.2 - - - - - 0.8599 

0.3 - - - - - 0.8948 

- 1.3 - - - - 0.8254 

- 1.4 - - - - 0.8225 

- 1.5 - - - - 0.8200 

- - 0.1 - - - 0.8254 

- - 0.2 - - - 0.8322 

- - 0.3 - - - 0.8387 

- - - 0.6 - - 0.7542 

- - - 0.7 - - 0.8254 

- - - 0.8 - - 0.8930 

- - - - 0.1 - 0.8254 

- - - - 0.2 - 0.7958 

- - - - 0.3 - 0.7662 

- - - - - 0.1 0.8254 

- - - - - 0.2 0.7789 

- - - - - 0.3 0.7275 
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7.6 Concluding remarks 
The magneto-thermally stratified Casson fluid flow in the presence of mixed convection is 

investigated numerically. The behaviour of dimensionless velocity and temperature 

profiles are identified under different physical parameters. The key results of this study are 

summarized and itemized as follow: 

 The velocity profile shows an inciting nature for higher values of mixed convection 

parameter 
m  and curvature parameter K  , while it shows opposite behaviour for 

both Casson fluid parameter   and magnetic field parameter M .  

 The temperature increases significantly for greater values of both 
H  and 

curvature parameter K , whereas it shows decline attitude via thermal stratification 

parameter S and Prandtl number Pr. 

 In absolute sense, the skin friction coefficient shows decreasing behaviour towards 

mixed convection parameter 
m  and heat generation parameter 

H  but increasing 

via Casson fluid  , K , Pr and stratification parameter S . 

 The local Nusselt number is reducing function of Casson fluid parameter  , 

thermal stratification parameter S and heat generation parameter 
H  but 

increasing via curvature parameter K , 
m  and Prandtl number Pr . 

 It is seems that the obtained variations (see Figs. 7.2, 7.4-7.6, 7.8-7.10) are 

remarkably enormous for cylindrical geometry as compares to plane geometry i-e 

plate. 
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Nanoparticles Individualities in both Newtonian and Casson 

Fluid Models by Way of Stratified Media: A Numerical 

Analysis 

 

 

8.1 Introduction 
The current chapter contains simultaneous analysis on both Newtonian and non-Newtonian 

nanofluid models. The fluid flow is achieved by entertaining no-slip condition subject to 

stretched cylindrical surface. The flow regime is manifested with pertinent physical 

effects, namely temperature stratification, concentration stratification, thermal radiation, 

heat generation, magnetic field, dual convection and chemical reaction. The strength of 

fluid temperature and nanoparticles concentration adjacent to an inclined cylindrical 

surface is assumed to be higher than the ambient flow field. A mathematical model is 

developed in terms of partial differential equations. A self constructed numerical algorithm 

is executed to report numerical solution. The resultant annotations are illustrated through 

both tables and graphs. Moreover, analysis is certified through comparison with existing 

values in a limiting sense.  

8.2 Mathematical formulation 
We have assumed steady laminar magneto-hydrodynamic an incompressible boundary 

layer stagnation point flow of both Casson ( 0)   and Newtonian ( )  nanofluid. The 

fluid flow is brought by stretching cylindrical surface. The flow field is manifested with 

physical effects namely, magnetic field, dual convection, temperature stratification, 

concentration stratification, thermal radiation, heat generation and chemical reaction. An 

axial line of the cylinder is taken parallel to x-axis and the radial direction is considered 

 CHAPTER 8 
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perpendicular to x-axis and named as r-axis. Presently the steady two dimensional 

equations for the Casson nanofluid model are given as: 
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rv ru
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 signifies Roseland radiative heat flux. Therefore, Eq. (8.3) can 

be written as: 
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the end point conditions are given by: 
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(8.6) 

where, 0 0 0, , , , , , , , , , , , , , , , , ande T c p B Tu B g c D D T T Q C C R       

  represents the 

kinematic viscosity, fluid density, free stream velocity, electrical conductivity, uniform 

magnetic field, gravity, thermal expansion coefficient, concentration expansion 
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coefficient, an inclination, thermal diffusivity, specific heat capacity at constant pressure, 

Brownian diffusion coefficient, thermophoretic diffusion coefficient, fluid temperature, 

ambient temperature, heat generation/absorption coefficient, fluid concentration, ambient 

concentration and rate of chemical reaction respectively. Likewise,

 
, ( ), ( ), , , , and

( )

p

w w

f

c
T x C x L b c d e

c





 denotes the ratio of nanoparticles heat capacity to 

the base fluid heat capacity, surface temperature, surface concentration, reference length 

and positive constants respectively. We use the following transformation to get the 

transformed forms of Eqs. (8.2)-(8.5): 

1
2 2

2
0 0 0

1
2 2

0

0 0

( ), ( ), ,
2

( ), ( ) , ( ) ,
w w

U x U v UR r R
u F v F

L r L R vL

U vx C C T T
RF C T

L C C T T

  

    

  
     

 

   
   

  

 

(8.7) 

here, 0 0 0, , ( ), , andU R F T C   denotes reference velocity, radius of cylinder, velocity of 

fluid over a stretching cylinder, reference temperature, reference concentration and stream 

function respectively. The stream function in terms of velocity components can be written 

as: 

1 1
, ,u v

r r r x

     
     

    
 

(8.8) 

by using the transformation given by Eq. (8.7) into Eqs. (8.2)-(8.5) the subsequent reduced 

differential equations are: 

 

 

2

2 2

1
1 1 2 ( ) 2 ( ) ( ) ( ) ( )

( ( ) ) ( ) ( ) cos 0,m

K F KF F F F

F A A T NC

     


     

 
           

 

     

 

(8.9) 
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       

     

 
        

 

   
            

   

 

(8.10) 
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   21 2 ( ) ( ) Pr ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) 0,c

Nt
K C T Le F C F C F

Nb

Nt
K C T R C

Nb

        

  

 
          

 

 
    

 

 

(8.11) 

and the transformed end point conditions become: 

1 2( ) 1, ( ) 0, ( ) 1 , ( ) 1 , at 0,

( ) , ( ) 0, ( ) 0, when ,

F F T C

F A T C

      

   

       

    

 

(8.12) 

where, 
1 2, , , , , , ,Pr, , , , 0, , , andm T cK A N R Nb Nt Q Le R      denote curvature 

parameter, Casson fluid parameter, magnetic field parameter, velocities ratio parameter, 

mixed convection parameter, ratio of concentration to thermal buoyancy forces, thermal 

radiation parameter, Prandtl number, Brownian motion parameter, thermophoresis 

parameter, thermal stratification parameter, heat generation parameter, Lewis number, 

Solutal stratification parameter and chemical reaction parameter respectively and are 

well-defined as below: 
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   
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(8.13) 

here, andGr Gr  categorized as Grashof numbers subject to temperature and 

concentration respectively and are defined as follow: 

3 3

0 0

2 2

( ) ( )
, ,T w C wg T T x g C C x

Gr Gr
v v

  
   

(8.14) 

and the surface quantity is: 

2

1
, 1 ,

2

w
f w

r R

u
C

U r


 


 

   
     

  
 

(8.15) 



122 
 

where and w  denotes the viscosity of the fluid and the shear stress respectively. In 

dimensionless practice, it is written as: 

1
0.5 Re 1 (0),f xC F



 
  

 
 

(8.16) 

with  

2

0Rex

U x

vL
   be the local Reynolds number. 

The expression for the both local Nusselt and the local Sherwood numbers are given as: 

 
0

0

, ,
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, ,
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x w r r R

w r R

w
w

w r R

xq T
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Sh j D

D C C r







 
    

  

 
    

  

 

(8.17) 

the dimensionless form of these expressions 

 are pre-arranged as: 

4
1 ( ), as 0,

3Re

( ), as 0.
Re

x
d

x

x

x
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R T

Sh
C

 

 

 
    

 

  

 

(8.18) 

8.3 Computational scheme 
For the implementation of the computational algorithm, the partial differential equations 

are converted into ordinary differential equations and then the coupled nonlinear ordinary 

differential equations (8.9)-(8.11) subject to the end point conditions (8.12) are solved by 

using shooting scheme along with the Runge-Kutta fifth order algorithm. For order 

reduction: 

2

2
1 2 3 42

64
5 6 7
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( ), , , ( ),

( )( ) ( ) ( )
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d d d d
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
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    

    

 

(8.19) 
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by taking into account these replacements, the identical appearance of Eqs. (8.9)- (8.11) 

with new variables is given as: 

 
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(8.20) 

the end point conditions under concerning new variables are given as: 
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(8.21) 

now for the integration of the system given by Eqs. (20) we need  

3 5 7( ) ( ), ( ) ( ) and ( ) ( ) when 0,Z F Z T Z T             (8.22) 
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additionally, we have noticed that the three initial conditions namely, 

3 5 7( ), ( ) and ( ) when 0,Z Z Z      are missing but we have end point conditions: 

 2 4 6( ) , ( ) 0, and 0 when ,Z A Z Z        (8.23) 

the integration of the system of first order ordinary differential equations is carried by 

electing complementary values for 
2

2

( ) ( ) ( )
, and when 0,

d F dT dC

d d d

  


  
  such that 

the distant conditions given by Eq. (8.23) holds satisfactory. 

8.4 Results and discussion 

8.4.1 Tabular trends 

The variations of local skin friction coefficient, local Nusselt number and local Sherwood 

number are offered through Tables. 8.1-8.3. In detail, Table. 8.1 is used to inspect the 

impact of curvature parameter, Casson fluid parameter, mixed convection parameter and 

Prandtl number on local skin friction coefficient. Table. 8.2 identified the variations of 

Nusselt number via curvature parameter, Prandtl number and thermal stratification 

parameter whereas Table. 8.3 demonstrate the influence of curvature parameter, Lewis 

number and Solutal stratification parameter on local Sherwood number. In absolute sense, 

it is noticed that the skin friction coefficient is an increasing function of both , andK  . 

On the other hand it shows an opposite behaviour for the increasing values of 
m . 

Moreover, the local skin friction coefficient is independent of Prandtl number. The 

negative sign of local skin friction implies the drag forced exerted by cylindrical surface 

towards Casson fluid particles. In context of Table 8.2 it has been observed through the 

local Nusselt number shows an increasing behaviour for the greater values of K and Pr. 

However opposite variation is observed for the increasing values of the parameter 1 . The 

negative sign in local Nusselt number relates the transfer of heat normal to the cylindrical 

surface. As far as the Table 8.3 is concerned it is clearly observed that the local Sherwood 

number depicts an increasing attitude for the increasing values of , andK Le . On the 

other hand, it shows a decreasing nature towards 
2 . The Eqs. (8.2)-(8.4) narrates MHD 

Casson nanofluid flow induced by stretching cylindrical surface in the presence of 

externally applied magnetic field. The flow regime is manifested with double stratification, 
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heat generation and chemical reaction effects. In absence of concentration equation and by 

setting 
00, 0, 0 , 0, 0 and 0TA N R Nb Nt       our results match with Rehman et 

al. [136]. Tables 8.4-8.5 are constructed in this regard. Particularly Table 8.4 shows the 

comparative values of the local skin friction coefficient while Table 8.5 depicts the 

comparative values of local Nusselt number. From both tables one can see that we found an 

excellent match which yields the surety of present modelled work.  

8.4.2 Velocity distribution 

The impact of various physical parameters namely the magnetic field parameter, mixed 

convection parameter, Casson fluid parameter and curvature parameter towards both 

Casson fluid and the Newtonian fluid are presented with the help of graphical outcomes. In 

detail, Fig. 8.1 shows the influence of  on the velocity profile for both the cylindrical and 

flat surface. It is observed that for both the flat and cylindrical surfaces the velocity profile 

decreases towards the positive value of the Casson fluid parameter  . Fig. 8.2 depicts the 

impact of the curvature parameter K on the velocity profile for both the Casson and the 

Newtonian fluids. It shows that the larger values of the curvature parameter K  results 

increase in velocity profiles for both fluid models. The curvature parameter has an inverse 

relation towards radius of curvature. Therefore, the radius of cylinder decreases for 

increasing values of curvature parameter and thus it reduces the contact surface area of the 

cylinder with the fluid particles and hence offers less resistance to the fluid flow. Thus an 

increase in the curvature parameter causes an increase in the velocity distributions. Fig. 8.3 

demonstrated the influence of mixed convection parameter 
m  on the velocity profile. It is 

observed that for higher iterations of the mixed convection parameter, the velocity profile 

increases. Actually, it is due to the inciting nature of the thermal buoyancy force. Fig. 8.4 is 

plotted to observe the impact of the magnetic field parameter on the velocity of the fluid for 

both the Casson and the Newtonian fluid. The stimulating values of the magnetic field 

parameter produces reduction in the velocity profile. In actual, when we increase the 

magnetic field parameter, a resistive force named as Lorentz force contribute actively and  

offers resistance to the fluid particles which brings decline in the horizontal velocity. From 

Figs. 8.1-8.4 it can be observed that for larger values of  , the fluid velocity '( )F   
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asymptotically converges to zero. These reflections are justified because the endpoint 

condition given by Eq. (8.12) is compatible with the trends depicted in Figs. 8.1-8.4. 

8.4.3 Temperature distribution 

The impacts of involved physical parameters namely, the thermophoresis parameter, Lewis 

number, curvature parameter, thermal radiation parameter, heat generation parameter and 

thermal stratification parameter on temperature distribution for both fluids i.e. Casson and 

Newtonian fluids are provided with the aid of the graphical trends. In detail, the effect of 

thermophoresis parameter over the temperature distribution is examined and given in Fig. 

8.5. It is observed that the temperature distributions of both fluids are increasing function 

of the thermophoresis parameter. This is due to large amount of nanoparticles, which are 

pulled from hot surface towards the cold one, so that the temperature increases. The 

influence of the Lewis number is illustrated through Fig. 8.6. It is seen that for the 

increasing values of the Lewis number, the temperature distribution for both fluids reflects 

decaying performance. One can conclude the graphical trend mathematically with the 

support of Eq. (8.12) that the large value of  , the fluid temperature for both cases 

asymptotically converges to zero. Fig. 8.7 depicts an increasing behavior of temperature 

distribution of both the fluids towards the thermal radiation parameter. This is due to 

transfer of huge amount of heat into the fluid because an increase the thermal radiation 

parameter, more heat is produced and thus transfer to the fluid. Fig. 8.8 represents the 

impact of heat generation parameter on temperature profile for both the Casson and the 

Newtonian fluid flow. It is seen that the fluid temperature increases by increasing the heat 

generation parameter. In real practice, increase in heat generation parameter produces heat 

energy which yields inciting values of fluid temperature. Fig. 8.9 represents the behaviour 

of temperature distribution towards thermal stratification parameter for both types of 

fluids. It is noticed that the temperature profile decreases due to the increase in the thermal 

stratification parameter. This happens due to decrease in temperature difference between 

surface fluid and the ambient fluid, thus the temperature profile decreases. The variation in 

1 0.0,0.1, 0.2   yields 
1( ) 1 (1 0.0,0.1, 0.2) (1,0.9,0.8)T       . These initial 

approximations of fluid temperature for both fluid models can be seen in Fig. 8.9. In 

addition, the graphical trends given by Figs. 8.5-8.9 are compatible with the boundary 

condition given in Eq. (8.12).  
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8.4.4 Nanoparticle concentration distribution 

The graphical representation against different physical parameters namely chemical 

reaction parameter, Lewis Number, and Solutal stratification parameter for both fluid 

models is provided through Figs. 8.10-8.13. In detail, the impact of the Brownian motion 

parameter on nanoparticle concentration for both fluids is given with the aid of Fig. 8.10. It 

shows that the nanoparticle concentration distribution shows decrease with the increment 

in the values of Brownian motion parameter. The graphical trend reflects the asymptotic 

decline in concentration via positive values of Brownian motion parameter and this effect 

is justified mathematically, (see Eq. (8.12)). The influence of the chemical reaction 

parameter on fluid concentration for both Casson and the Newtonian fluid is explained in 

Fig. 8.11. It is observed that the nanoparticle concentration field for both fluids is 

decreasing function of chemical reaction parameter. This is due to the noteworthy 

disturbance in the fluid molecules, so that a decrease in the nanoparticle concentration is 

observed. The influence of the Lewis number on the nanoparticle concentration 

distribution for both fluids is explained with the aid of Fig. 8.12. Here, an increase in the 

Lewis number produces a thin nanoparticle concentration boundary layer along with a 

weak diffusivity of molecules to each fluid. Fig. 8.13 is designed to investigate the 

variation of the nanoparticle concentration towards positive values of the Solutal 

stratification parameter for both the Casson and the Newtonian fluids. It is witnessed that 

by increasing the solutal parameter, a decline in the fluid concentration within the 

boundary layer is recorded. This effect occurs due to the drop of the convective potential 

between both fluids and the ambient marks. The variation in 
2 0.0,0.1, 0.2   yields

2( ) 1 (1 0.0,0.1, 0.2) (1,0.9,0.8)C       . Such initial approximation of 

nanoparticle concentration for both fluid models can be seen in Fig. 8.13. Further, the Figs. 

8.10-8.13 are compatible with the endpoint condition given in Eq. (8.12).  
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8.5 Graphical results 

 
Fig. 8.1. Velocity profile towards Casson fluid parameter. 

 
Fig. 8.2. Velocity profile towards curvature parameter. 

 
Fig. 8.3. Velocity profile towards mixed convection 

parameter. 

 
 

Fig. 8.4. Velocity profile towards magnetic field 

parameter. 
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Fig. 8.5. Temperature profile towards thermophoresis 

parameter. 

 

Fig. 8.6. Temperature profile towards  

Lewis number. 

 

Fig. 8.7. Temperature profile towards thermal radiation 

parameter. 

 
Fig. 8.8. Temperature profile towards heat generation 

parameter. 
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Fig. 8.9. Temperature profile towards thermal 

stratification parameter. 

 

Fig. 8.10. Concentration profile towards Brownian 

motion parameter. 

 

Fig. 8.11. Concentration profile towards chemical 

reaction parameter. 

 

Fig. 8.12. Concentration profile towards 

Lewis number. 
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Fig. 8.13. Concentration profile towards Solutal stratification parameter. 

 

Table. 8.1. Numerical values of local skin friction coefficient via various parameters. 

 

  



T
(


)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5



C
(


)

0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red Curves = Casson Fluid Model

Blue Curves = Newtonain Fluid Model


2

= 0.0, 0.1, 0.2

K    
m  Pr  (0)F  1

0.5 Re 1 (0)f xC F


 
  

 
 

0.4 - - - -0.7863 -2.3589 

0.5 - - - -0.9204 -2.7612 

0.6 - - - -1.0539 -3.1617 

- 1.1 - - -0.7969 -2.3907 

- 1.2 - - -0.8110 -2.4330 

- 1.3 - - -0.8236 -2.4708 

- - 0.2 - -0.4064 -1.2192 

- - 0.4 - -0.4008 -1.2024 

- - 0.6 - -0.3953 -1.1859 

- - - 0.8 -0.4092 -1.2276 

- - - 1.0 -0.4092 -1.2276 

- - - 1.2 -0.4092 -1.2276 
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Table. 8.2. Numerical values of local Nusselt number via various parameters. 

 

Table. 8.3. Numerical values of local Sherwood number via various parameters. 

 

  

K  Pr  
1   0T   4

1 (0)
3Re

x
d

x

Nu
R T

 
  

 
 

0.3 - - 0.7817 1.09438 

0.5 - - 1.1299 1.58186 

0.7 - - 1.4716 2.06024 

- 1.5 - 1.4024 1.96336 

- 1.7 - 1.4712 2.05968 

- 1.9 - 1.5332 2.14648 

- - 0.2 0.2585 0.36190 

- - 0.4 0.1939 0.27146 

- - 0.6 0.1293 0.18102 

K  
2  Le  Pr  

(0)
Re

x

x

Sh
C  

0.2 - - - 1.4913 

0.3 - - - 1.8466 

0.4 - - - 2.1845 

- 0.1 - - 1.1297 

- 0.2 - - 1.0858 

- 0.3 - - 1.0420 

- - 0.4 - 1.1546 

- - 0.5 - 1.1627 

- - 0.6 - 1.1706 

- - - 1.3 1.4752 

- - - 1.5 1.5020 

- - - 1.7 1.5271 
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Table. 8.4. Comparison with local skin friction coefficient. 

 
   

m  Pr  
1  

Q  Rehman et 

al. [136]
 

Present 

values
 

0.1 - - - - - -0.3826 -0.3826 

0.2 - - - - - -0.4036 -0.4036 

0.3 - - - - - -0.4248 -0.4248 

- 1.3 - - - - -0.3826 -0.3826 

- 1.4 - - - - -0.3884 -0.3884 

- 1.5 - - - - -0.3928 -0.3928 

- - 0.1 - - - -0.3826 -0.3826 

- - 0.2 - - - -0.3679 -0.3679 

- - 0.3 - - - -0.3535 -0.3535 

- - - 0.6 - - -0.3816 -0.3816 

- - - 0.7 - - -0.3826 -0.3826 

- - - 0.8 - - -0.3835 -0.3835 

- - - - 0.1 - -0.3826 -0.3826 

- - - - 0.2 - -0.3851 -0.3851 

- - - - 0.3 - -0.3877 -0.3877 

- - - - - 0.1 -0.3826 -0.3826 

- - - - - 0.2 -0.3821 -0.3821 

- - - - - 0.3 -0.3813 -0.3813 
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Table. 8.5. Comparison with local Nusselt number. 

 

K    
m  Pr  

1  
Q  Rehman et 

al. [136] 

Present 

values 

0.1 - - - - - 0.8254 0.8254 

0.2 - - - - - 0.8599 0.8599 

0.3 - - - - - 0.8948 0.8948 

- 1.3 - - - - 0.8254 0.8254 

- 1.4 - - - - 0.8225 0.8225 

- 1.5 - - - - 0.8200 0.8200 

- - 0.1 - - - 0.8254 0.8254 

- - 0.2 - - - 0.8322 0.8322 

- - 0.3 - - - 0.8387 0.8387 

- - - 0.6 - - 0.7542 0.7542 

- - - 0.7 - - 0.8254 0.8254 

- - - 0.8 - - 0.8930 0.8930 

- - - - 0.1 - 0.8254 0.8254 

- - - - 0.2 - 0.7958 0.7958 

- - - - 0.3 - 0.7662 0.7662 

- - - - - 0.1 0.8254 0.8254 

- - - - - 0.2 0.7789 0.7789 

- - - - - 0.3 0.7275 0.7275 

 

8.6 Concluding remarks 
The present work is devoted to report numerical communication subject to both the 

Newtonian and Casson fluid flow brought by stretching cylindrical surface. The flow 

regime carry stagnation point, magnetic field, mixed convection, double stratification, heat 

generation and chemical reaction effects. A numerical solution is presented and the key 

observations are given as: 
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 The velocity distribution shows an increasing behaviour towards the increasing 

values of the mixed convection parameter 
m  and the curvature parameter K , but 

opposite trends are noticed for the Casson fluid parameter   and the magnetic 

field parameter  . 

 The temperature profile shows an inciting nature towards the positive values of the 

thermophoresis parameter Nt, thermal radiation parameter 
TR  and the heat 

generation parameter Q whereas it shows a decline curves towards the increasing 

values of the Lewis number Le , and the thermal stratification parameter 
1 .  

 For both cases the concentration distribution is a decreasing function of the 

Brownian motion parameter Nb, chemical reaction parameter 
cR , Lewis number 

Le  and the Solutal stratification parameter 
2 . 

 It is noticed that Casson fluid as a non-Newtonian fluid model reflects significant 

variations towards an involved physical parameters in contrast to Newtonian fluid 

model. 
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A Comparative Study of Nanofluids Flow Yields by an 

Inclined Cylindrical Surface in a Double Stratified Medium 

 

9.1 Introduction  

In this attempt, we have considered both Newtonian and non-Newtonian nanofluids flow 

with stagnation point towards an inclined cylindrical surface. The flow field own thermal 

radiation, mixed convection, chemical reaction, temperature, concentration stratification, 

heat generation/absorption and magnetic field. The reduced system of ODE’s is obtained 

by transforming flow narrating PDE’s with the aid of appropriate transformation. Shooting 

method is used for solution. To be more specific, the effects of an involved pertinent flow 

parameters are discussed for both 0   (Newtonian fluid) and 0.5   (non-Newtonian 

fluid). The non-Newtonian fluid reflects considerable variations towards flow parameters 

as compared to Newtonian fluid. Further, the compatibility of endpoint conditions is 

validated by providing stream lines pattern towards velocities ratio parameter. In addition, 

the influence of thermophoresis and Brownian motion parameters are reported on mass and 

heat transfer rates by way of both straight line and parabolic curve fitting scheme.  

9.2 Mathematical description 
We have considered a steady laminar magneto-hydrodynamic incompressible boundary 

layer flow of both Newtonian and non-Newtonian (Williamson model) nanofluids with 

zero pressure gradient. The nanofluids flow is induced by an inclined cylinder in the 

presence of chemically reactive species. Further, both the heat and mass transfer 

characteristics are identified by an incorporating thermal radiation, temperature and 

concentration stratification effects. Moreover, the cylinder axial line is ranged parallel to 

x-axis and radial direction is aligned normal to x-axis and considered as r-axis.  

 CHAPTER 9 
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Fig. 9.1. Geometry of flow model. 

The generally accepted differential equations namely, concentration, energy, and 

momentum are sufficient to depicts the flow fields characteristics in a two dimensional 

frame of reference. Therefore, the finalized form of these differential equations under 

boundary layer approximation is given as: 
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here, 

* 4

*

4
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3

r

T
q

k r

 
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
, therefore Eq. (9.3) can be rewritten as: 
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subjected to endpoint conditions:  
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(9.6) 

For dimensionless practice of Eqs. (9.2)-(9.5) along with Eq. (9.6), we have 

transformation: 
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The velocity components subject to stream function can be written as: 
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(9.8) 

after utilizing Eq. (9.7) into Eqs. (9.2)-(9.5), we obtained: 
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the reduced endpoint conditions are given as: 
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here, the involved parameters are given as follow: 
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here, thermal  Grashof number Gr , and solutal Grashof number *Gr  are identified as: 
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The skin friction coefficient subject to Williamson fluid model is given as:  
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the corresponding dimensionless form is prearranged as: 
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The local Nusselt and Sherwood number are written as: 
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the corresponding dimensionless forms are given as: 
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9.3 Computational algorithm 
The non-linear system of ODE’s i-e Eqs. (9.9)-(9.11), under endpoint conditions given by 

Eq. (9.12) is solved with the aid of shooting scheme together with R-K algorithm. The 

order has been reduced by the implementing  

2 3 2 5 7
'( ), ' ''( ), '( ), '( ),w F w w F w T w C         (9.19) 

the equivalent form of Eqs. (9.9)-(9.11) under new variables defined above can be written 

as: 
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under new variables the endpoint conditions are given as follow: 
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For integration of Eq. (9.20) we required: 
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further, we observed that the three initial conditions namely, 

     3 5 7, and when 0w w w      are not available but additional conditions are 

given: 

     2 4 6, 0, and 0, when 0.w A w w        (9.23) 

The iterative solution is carried out against suitable values of  '' 0F ,  ' 0T and  ' 0C  so 

that  Eq. (9.23) holds absolutely.  

9.4 Physical outcomes 

9.4.1 Tabular values 

Tables 9.1, 9.2 and 9.3 are constructed numerically to inspect the impact of pertinent flow 

controlling parameter namely, curvature parameter K , magnetic field parameter  , 

Weissenberg number  , Prandtl number Pr , solutal stratification parameter 
2 , Lewis 

number Le  and thermal stratification parameter 
1  on skin friction coefficient, local 

Nusselt number and Sherwood number. Particularly, Table 9.1 shows that skin friction 

coefficient increases (in absolute sense) towards  ,  , K and Pr. From Table 9.2, it is 

clearly seen that local Nusselt number increases for positive values of K and Pr but it has 

opposite attitude towards 
1 . The influence of K , 

2 , Le and Pr is presented with the aid 

of Table 9.3. It is observed that local Sherwood number shows significant decline for the 

positive values of 
2 while opposite attitude is noticed against K , Le and Pr. In the 

absence of Eq. (9.10) and Eq. (9.11), when we incorporate mixed convection parameter, 

velocities ratio parameter, magnetic field parameter, curvature parameter and an 
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inclination equals to zero i-e 
00, 0, 0, 0,and 0 ,mK A         . We retrace the 

problems given in [53] and [137]. Therefore, Table 9.4 is constructed to validate our 

current results with existing literature. An excellent match has been found which confirms 

the accuracy of numerical algorithm.  

9.4.2 Key to the graphs 

Eqs. (9.9)-(9.11) subject to boundary conditions given by Eq. (9.12) represent 

mathematical formulation of stagnation point Williamson nanofluid (non-Newtonian fluid 

model) flow towards an inclined cylinder on attendance of mixed convection, magnetic 

field, double stratification, thermal radiation and heat generation/absorption effects. For 

0  , the Eqs. (9.9)-(9.11) represents Williamson nanofluid as a non-Newtonian fluid 

model whereas 0   narrates Newtonian nanofluid flow. The graphical results (fig. 9.2 

and figs. 9.6-9.17) are offered for different physical parameters by setting 0.5 

(non-Newtonian fluid) and 0  (Newtonian fluid). To be more specific, fig. 9.2 and figs. 

9.6-9.17, the red long dashes curves represent Williamson nanofluid variations as a 

non-Newtonian fluid model while solid green curves represent Newtonian nanofluid 

variations.  

9.4.3 Velocity profiles 

The physical illustration of flow problem is given by fig. 9.1. The effects of velocities ratio 

parameter A  on nanofluids flow are illustrated in fig. 9.2. It was observed that the 

frequent fluctuations in momentum of both Newtonian and non-Newtonian fluids are 

occurred for altering values of velocities ratio parameter. The increasing values of 

velocities ratio parameter reflects positive attitude in the velocities of both fluids. It is 

observed that momentum boundary layer is formed 1A   but an inverted boundary layer 

is emerged for the case of 1A . When velocities ratio parameter achieve unity that is 1A 

, at this stage free stream and stretching velocities becomes equal so that momentum 

boundary layer disappears. The stream lines pattern for 1A   is offered through fig. 9.3. 

In this case, the stretching rate overcomes the free stream condition so that the thickness of 

boundary layer shows inciting values in contrast to free stream velocity. Fig. 9.4 

scrutinizes the stream lines for 1A  , which implies to equal values of free stream velocity 

and stretching velocity. It was found that stream lines are symmetric about radial direction. 
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The variation of stream lines for 1A   is reported in fig. 9.5. For 1A  , the free stream 

velocity remarks greater values against stretching velocity so that the straining movement 

of fluid particles near stagnation region brings enhancement in fluid flow which yields 

decline in boundary layer. Fig. 9.6 depicts the impact of   on velocity profile for both 

fluids. As expected, an inciting values of  brings decline in velocity profiles. In actual, 

when we enhance the value of   a resistive force named as Lorentz force actively 

participates to offer resistance towards fluid particles. As a result horizontal velocity 

decreases. The effects of 
m  on velocity are given by fig. 9.7 and it is noticed that by 

increasing values of 
m  the velocity profile shows an inciting nature for both cases.  

9.4.4 Temperature profiles 

Fig. 9.8 depicts the attitude of temperature distribution towards 
1  and it is noticed that 

the temperature profile show decline trends in curves for increasing 
1 . This fact is due to 

decline in temperature strength between ambient and cylindrical surface. The influence of 

both heat generation (positive values of Q ) and heat absorption parameter (negative 

values of Q ) on temperature profiles for both fluids is illustrated through Fig. 9.9 and Fig. 

9.10 respectively. In Fig. 9.9 it is observed that the fluid temperature remarkably increases 

while opposite trend is noticed in Fig. 9.10 against heat absorption parameter. For positive 

variations of Q , the heat energy is generated due to which temperature rises while heat 

energy is released in case of heat absorption parameter and hence declines in the 

temperature distribution for both fluids. From Fig. 9.11, it is witnessed that the temperature 

of both fluids shows an inciting attitude towards 
dR . This fact is due to plenty of heat 

transfer into the fluid because of increasing 
dR , more heat is produced and hence transfer 

towards flow regime. Fig. 9.12 paints the temperature variation against K . It is clearly 

seen that fluid temperature increases for inciting values of K . The positive variations of 

K  admits decrease in radius of cylinder so that less resistance is faced by fluid particles 

which confirms the acceleration generated by fluid particles and increase in average kinetic 

energy. The average kinetic energy is termed as Kelvin temperature therefore, an 

enhancement in average kinetic energy yields the positive variations of fluid temperature. 
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From fig. 9.13, it is evident that an inciting values of Pr corresponds less diffusion of 

energy due to which temperature profile decreases.  

9.4.5 Concentration profiles 

The influence of Nt  over a temperature is illustrated with the help of Fig. 9.14. It is seen 

that temperature distributions for both fluids are mount function of Nt .. This fact is due to 

huge amount of pulled nanoparticles towards cold surface from hot one, as a result 

temperature increases. Fig. 9.15 is plotted to inspect the variation of nanoparticle 

concentration for both Newtonian and non-Newtonian fluid towards positive values of 
2

. It is observed that there is a decline in fluid concentration within a boundary layer for 

increment in 
2 . Essentially, this effect is similar as the fluid variations are noticed against

1 . The effect of 
cR  for both Newtonian and non-Newtonian fluid is illustrated in Fig. 

9.16. It is perceived that the nanoparticle concentration field of both fluids is diminishing 

function of 
cR . Further, decline in solute nanoparticle concentration is noticed due to 

remarkable disturbance in fluid molecules. The influence of Nb on both Newtonian and 

non-Newtonian is depicted through Fig. 9.17. It shows that with gradual growth in Nb

nanoparticle concentration distribution shows a decline tendency. The influence of both 

Nt  and Nb on heat transfer rate as well as on mass transfer is identified by means of 

straight line and parabolic approximations via Figs. 9.18-9.19. To be more specific, Fig. 

9.18 portray the effect of both Nt  (variation encountered through green color) and Nb  

(variation encountered through red color) on heat transfer rate. The heat transfer rate shows 

decline nature for both Nt and Nb . The mass transfer rate variation towards both Nt  

(variation encountered through red color) and Nb  (variation encountered through green 

color) are identified by Fig. 9.19.  Here, we observed that mass transfer rate is an 

increasing function of Nb but opposite trend is noticed for higher values of Nt . 
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9.5 Graphical outcomes 

 

Fig. 9.2. Velocity profiles for various values of A . 

 

Fig. 9.3. Stream lines pattern of Williamson fluid flow for

1A  . 

 

Fig. 9.4. Stream lines pattern of Williamson fluid flow 

for 1A  . 

 

Fig. 9.5. Stream lines pattern of Williamson fluid flow for 

1.A  
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Fig. 9.6. Velocity profiles for various  

values of  . 

 

Fig. 9.7. Velocity profiles for various  

values of 
m . 

 

Fig. 9.8. Temperature profiles for various  

vales of 
1 . 

 

Fig. 9.9. Temperature profiles for various positive  

values of Q . 
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Fig. 9.10. Temperature profiles for various negative  

values of Q . 

 

Fig. 9.11. Temperature profiles for various  

values of 
dR . 

 

Fig. 9.12. Temperature profiles for various  

values of K . 

 

Fig. 9.13. Temperature profiles for various  

values of Pr . 

 



T
(


)

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red curves for Non-Newtonian Fluid (  = 0.5 )

Green curves for Newtonian Fluid (  = 0 )

Q = -0.1, -0.3, -0.5



T
(


)

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
d

= 0.1, 0.3, 0.5

Red curves for Non-Newtonian Fluid (  = 0.5 )

Green curves for Newtonian Fluid (  = 0 )



T
(


)

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red curves for Non-Newtonian Fluid (  = 0.5 )

Green curves for Newtonian Fluid (  = 0 )

K = 0.0, 0.1, 0.2

Frame 001  10 Jun 2017  | | | | |Frame 001  10 Jun 2017  | | | | |



T
(


)

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red curves for Non-Newtonian Fluid (  = 0.5 )

Green curves for Newtonian Fluid (  = 0 )

Pr = 1.0, 1.5, 2.0



148 
 

 

Fig. 9.14. Temperature profiles for various values of Nt . 

 

Fig. 9.15. Nanoparticle concentration  profiles for 

various values of 
2 . 

 

Fig. 9.16. Nanoparticle concentration profiles for various 

values of 
cR . 

 

Fig. 9.17. Nanoparticle concentration profiles for various 

values of Nb . 
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Fig. 9.18. Influence of both Nt  and Nb on heat 

transfer rate. 

Fig. 9.19. Influence of both Nt  and Nb on mass 

transfer rate. 

 

9.6 Straight line and parabolic curve fitting 
In this section, we have evaluated the behavior of both heat and mass transfer rates by way 

of straight line and parabolic curve fitting approximation towards both Nt, and Nb in the 

absence of thermal radiation effects. The least square method was utilized here and it was 

proposed by Guass and Legendre. The normal equations for quadratic approximations can 

be written as: 

2

0 1 2

2 3

0 1 2

2 3 4 2

0 1 2

,

,

,

i i i

i i i i i

i i i i i

na a X a X Y

a X a X a X X Y

a X a X a X X Y

  

  

  

  

   

   

 

 

 

 

 

where, 1,2i   for straight line and 1,2,3i   for parabolic curve fitting approximations. 

To trace out straight line and parabolic approximation for heat transfer rate towards Nt. and 

Nb. Let ( )i iX Nt  and ( '(0))i iY T   we get, 
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2
( ) 0.3, ( ) 0.05,

( '(0)) 1.0314, ( ) ( '(0)) 0.1539,

i i

i i i

Nt Nt

T Nt T

 

   

 

 
 

(9.24) 

by incorporating these values in Eq. (9.24) for straight line, we have 

0 1

0 1

2 0.3 1.0314,

0.3 0.05 0.1539,

a a

a a

 

 
 

(9.25) 

by solving system of equations given by (9.25), we get 

0 1'(0)T a a Nt    (9.26) 

here, 
0 10.54000, and 0.16200.a a    For parabolic curve fitting, we have 

2 3

4

2

( ) 0.6, ( ) 0.14, ( ) 0.036,

( ) 0.0098, ( '(0)) 1.5233,

( ) ( '(0)) 0.30147, ( ) ( '(0)) 0.069813,

i i i

i i

i i i i

Nt Nt Nt

Nt T

Nt T Nt T

  

  

   

  

 

 

 

(9.26) 

by incorporating these numeric values into (9.24), we obtained 

2 3 4

2 3 4

2 3 4

3 0.6 0.14 1.5233,

0.6 0.14 0.036 0.30147,

0.14 0.036 0.0098 0.069813,

a a a

a a a

a a a

  

  

  

 

(9.27) 

by common algebraic practise this system gives parabolic curve fitting relation for heat 

transfer rate towards Nt i-e 

2

2 3 4'(0) ( ) ( )T P Nt a a Nt a Nt      (9.28) 

where, 
2 3 40.55369, 0.32299, and 0.39999.a a a     Similarly, line and parabolic 

curve fitting for heat transfer rate for Nb is entertained as follow: 

0 1

0 1

2 0.4 0.9963,

0.4 0.1 0.19413,

b b

b b

 

 
 

(9.29) 

then the straight line approximations towards Nb is given by:  

0 1'(0) ( ) ,T P Nb b b Nb     (9.30) 

where, 
0 10.54945and 0.25650.b b    Now for parabolic curve fitting approximations, 

we have: 
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2 3 4

2

( ) 0.9, ( ) 0.35, ( ) 0.1530, ( ) 0.0707,

( '(0)) 1.4211, ( ) ( '(0)) 0.40653, ( ) ( '(0)) 0.153958,

i i i i

i i i i i

Nb Nb Nb Nb

T Nb T Nb T

   

     

   

  
 

 

2 3 4

2 3 4

2 3 4

3 0.9 0.3500 1.4211,

0.9 0.3500 0.1530 0.40653,

0.3500 0.1530 0.0707 0.153952,

b b b

b b b

b b b

  

  

  

 

(9.31) 

than solution of system corresponds 

2

2 3 4'(0) ( ) ( )T P Nb b b Nb b Nb      (9.32) 

here, 
2 3 40.54817, 0.22707,and 0.05445.b b b      Straight line and Parabolic curve 

fitting approximations for mass transfer rate towards Nt and Nb are processed as follow: 

2
( ) 0.3, ( ) 0.05,

( '(0)) 0.4528, ( ) ( '(0)) 0.06591,

i i

i i i

Nt Nt

C Nt C

 

   

 

 
 

 

0 1

0 1

2 0.3 0.4528,

0.3 0.05 0.06591,

c c

c c

 

 
 

(9.33) 

after solving this system we obtained 

0 1'(0)C c c Nt    (9.34) 

here, 
0 10.28670 and 0.40199.c c    Now for parabolic approximation we have, 

2 3 4

2

( ) 0.6, ( ) 0.14, ( ) 0.036, ( ) 0.0098,

( '(0)) 0.6366, ( ) ( '(0)) 0.12105,

( ) ( '(0)) 0.02726,

i i i i

i i i

i i

Nt Nt Nt Nt

C Nt C

Nt C

   

   

 

   

 



 

 

2 3 4

2 3 4

2 3 4

3 0.6 0.14 0.6366,

0.6 0.14 0.036 0.12105,

0.14 0.036 0.0098 0.02726,

c c c

c c c

c c c

  

  

  

 

 

(9.35) 

by solving this system we gain 

2

2 3 4'(0) ( ) ( )C P Nt c c Nt c Nt     , (9.36) 

here, 
2 3 40.30489, 0.67349,and 0.89999.c c c     In similar fashion, straight line and 

parabolic approximations for mass transfer rate towards Nb are evaluated as follow: 



152 
 

2
( ) 0.4, ( ) 0.10,

( '(0)) 0.7236, ( ) ( '(0)) 0.1677,

i i

i i i

Nb Nb

C Nb C

 

   

 

 
 

 

0 1

0 1

2 0.4 0.7236,

0.4 0.1 0.1677,

d d

d d

 

 
 

(9.37) 

solution of this system corresponds 

0 1'(0) ( ) ,C P Nb d d Nb     (9.38) 

here, 
0 10.13200and 1.14900.d d   For parabolic relation, we have 

2 3 4

2

( ) 0.9, ( ) 0.35, ( ) 0.1530, ( ) 0.0707,

( '(0)) 1.2465, ( ) ( '(0)) 0.4292, ( ) ( '(0)) 0.1761,

i i i i

i i i i i

Nb Nb Nb Nb

C Nb C Nb C

   

     

   

  
 

2 3 4

2 3 4

2 3 4

3 0.9 0.35 1.2465,

0.9 0.35 0.15 0.4292,

0.35 0.153 0.0707 0.1761,

d d d

d d d

d d d

  

  

  

 

(9.39) 

after solving by common algebraic practise, we get 

2

2 3 4'(0) ( ) ( )C P Nb d d Nb d Nb     , (9.40) 

where, 
2 3 40.20844, 0.70226, and 0.03102d d d    . 
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Table 9.1. Impact of , , and PrK   on skin friction coefficient.  

    K  Pr  ''(0)F  2Re ''(0) '' (0)f xC F F   

0.1 0.1 0.1 1.1 -1.0502 -1.1605 

0.2 0.1 0.1 1.1 -1.0508 -1.1612 

0.3 0.1 0.1 1.1 -1.0514 -1.1619 

0.1 0.1 0.1 1.1 -1.0502 -1.1605 

0.1 0.2 0.1 1.1 -1.1240 -1.3767 

0.1 0.3 0.1 1.1 -1.2396 -1.3933 

0.1 0.1 0.1 1.1 -1.0502 -1.1605 

0.1 0.1 0.2 1.1 -1.2227 -1.2227 

0.1 0.1 0.3 1.1 -1.2859 -1.2859 

0.1 0.1 0.1 1.1 -1.0502 -1.1605 

0.1 0.1 0.1 1.2 -1.0504 -1.1607 

0.1 0.1 0.1 1.3 -1.0508 -1.1617 

 

Table 9.2. Impact of 
1,Pr andK   on local Nusselt number. 

K  Pr  
1  

'(0)T  4
(1 ) '(0)

3Re
d

x

Nu
R T    

0.1 1.1 0.1 0.3456 0.0806 

0.2 1.1 0.1 0.4246 0.0991 

0.3 1.1 0.1 0.5000 0.1167 

0.1 1.1 0.1 0.3456 0.0806 

0.1 1.2 0.1 0.3529 0.0823 

0.1 1.3 0.1 0.3602 0.0840 

0.1 1.1 0.1 0.3456 0.0840 

0.1 1.1 0.2 0.3341 0.0779 

0.1 1.1 0.3 0.3223 0.0752 
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Table 9.3. Impact of 
2, , and PrK Le  on local Sherwood number. 

K  
2  Le  Pr  

'(0)
Re x

Sh
C   

0.1 0.1 0.1 1.1 0.2478 

0.2 0.1 0.1 1.1 0.2719 

0.3 0.1 0.1 1.1 0.2927 

0.1 0.1 0.1 1.1 0.2478 

0.1 0.2 0.1 1.1 0.2809 

0.1 0.3 0.1 1.1 0.2508 

0.1 0.1 0.1 1.1 0.2478 

0.1 0.1 0.2 1.1 0.2721 

0.1 0.1 0.3 1.1 0.3005 

0.1 0.1 0.1 1.1 0.2478 

0.1 0.1 0.1 1.2 0.2523 

0.1 0.1 0.1 1.3 0.2569 

 

Table 9.4. Comparison of Ref xC  with existing work. 

  Nadeem et al. [53] Bilal et al. [137] Present values 

0.0 1.00000 1.00000 1.0000 

0.1 0.976588 0.97665 0.9765 

0.2 0.939817 0.938238 0.9398 

0.3 0.88727 0.887147 0.8872 

 

9.7 Conclusion 
A simultaneous way of study is executed to report to the flow characteristics of both 

Newtonian and non-Newtonian nanofluids flow carried out by an inclined cylindrical 

surface in a double stratified medium. The flow regime variations are proposed for an 

involved pertinent parameters namely, K ,  ,  , A , 
m , 

1 2,  dR , Pr , Q , Nt , Nb , 

and 
cR . The amplitude of heat and mass transfer rates are demonstrated by means of 

straight line and parabolic curve fitting approach. The key outcomes of present analysis are 

itemized as follow: 
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 The stream lines pattern towards A  (see figs. 9.3-9.5) yields the compatibility of 

endpoint conditions. 

 The impact of both Nt  and Nb  on both heat and mass transfer rates is presented 

by way of straight line and parabolic curve fitting approach. 

 It was noticed that heat transfer rate shows decline nature for positive values of 

both Nt  and Nb . Whereas, mass transfer rate is increasing function of Nb but 

an inverse relation is found for Nt . 

 The velocity distribution shows remarkable inciting attribute for positive values of 

both 
m and A  while opposite trend is noticed in the case of  . 

 The temperature distribution is an increasing function of Q , 
dR , K  and Nt  but 

an inverse attribute is observed for 
1 , Q (negative values) and Pr. 

 The nanoparticle concentration distribution reflects diminishing trends for positive 

values of 
2 , 

cR and Nb . 

 It is found that the impacts of involved physical parameter are remarkably enriched 

for non-Newtonian (Williamson model) nanofluid as compared to Newtonian 

(viscous model) nanofluid.  
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A Potential Alternative CFD Simulations for Steady 

Carreau-Bird Law Based Shear Thickening Model 

 

10.1 Introduction 
The current chapter provides the numerical investigation on an infinite length circular 

cylinder placed as an obstacle in the flow of non-Newtonian fluid. To be more specific, a 

channel of length 2.2 m and with the height 0.41 m is considered. The Power law fluid 

model is carried out with Carreau-Bird law as a non-Newtonian fluid model and both the 

Power law linear (constant) and parabolic velocity profiles are initiated simultaneously at 

an inlet of the channel. The right wall as an outlet is carried with Neumann condition. The 

relative velocity of Power law fluid particles with both the lower and upper walls is taken 

zero. A mathematical model is structured in terms of non-linear differential equations. A 

well trusted numerical technique named as finite element method is adopted commercially. 

The (LBB)-stable element pair is utilized to approximate the velocity and pressure. The 

non-linear iterations are stopped when the residual is dropped by 610 . The impact of 

Power law index and Reynolds number on the primitive variables is inspected. The 

obtained observations in this direction are provided by means of both the contour plots and 

line graphs. Due to circular obstacle both the drag and lift coefficients are evaluated around 

outer surface of an obstacle towards the higher values of the Power law index. The 

numerical values of drag and lift coefficients up-to various refinement mesh levels of 

domain are provided by way of tables. 

10.2 Mathematical formulation 
The physical design can be studied by means of the mathematical model. This model can 

be constructed by using mathematical language and concepts. The chemistry, biology, 

earth science, physics, electrical engineering, computer science, political science, 

economics, sociology and psychology to mention just a few are the subjects where the 

   CHAPTER 10 
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mathematical models are constructed for the better description of system and factors 

effecting the various components of system. In the field of fluid dynamics, the most 

generally accepted laws of conservation are i) law of conservation of mass and ii) law of 

conservation of momentum. To develop mathematical model for our problem, the law of 

conservation of mass yielded an equation of continuity as follows: 

( , , , )
( ( , , , )V( , , , )) 0,

x y z t
x y z t x y z t

t





 


 (10.1) 

In rectangular coordinates Eq. (10.1) can be written as: 

( ) ( ) ( )
0,

u v w

t x y z

      
   

   
 (10.2) 

Here two-dimensional, incompressible, non-Newtonian steady state flow is under 

consideration (i.e ( , , , )x y z t   and V V(t) ). Eq. (10.2) reduces to: 

( , ) ( , )
0.

u x y v x y

x y

 
 

 
 (10.3) 

The law of conservation of momentum gives the flow equation as follows: 

V( , , , )
( , , , ) ( , , ) ( , , , ) ,

D x y z t
x y z t p x y z x y z t B

Dt
       

(10.4) 

here, , , ,V, , , , and ,t p B   represents Del operator, time, fluid density, fluid velocity, 

pressure, stress tensor for the Power law fluid model, body force and the viscosity of fluid, 

respectively. Since an incompressible time independent fluid flow in the absence of body 

force ( 0)B  is considered therefore, the Eq. (10.4) reduces to: 

V( , )
( , ) .

D x y
p x y

Dt
   

 

(10.5) 

In both x and y components the Eq. (10.5) can be written as:  

( , )( , )( , ) ( , ) ( , )
( , ) ( , ) ,

xyxx
x yx yu x y u x y p x y

u x y v x y
x y x x y




    
     

     
 

(10.6) 

( , ) ( , )( , ) ( , ) ( , )
( , ) .

yx yyx y x yv x y v x y p x y
u x y v

x y y x y

 


    
     

     
 

(10.7) 
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The relation between the stress tensor and the rate of strain tensor for the Power law fluid 

can be written as: 

1
2 ( ) ,

2

ji
ij ij

j i

uu
S

x x
 

 
      

 

(10.8) 

using Eq. (10.8) into Eqs. (10.6)-(10.7), we get : 

( , ) ( , ) ( , )
( , ) ( , )

( , ) ( , ) ( , )
2 ( ( , ) ) ( , )( ) ,

u x y u x y p x y
u x y v x y

x y x

u x y u x y v x y
x y x y

x x y y x



 

   
   

   

      
    

       

 

(10.9) 

 

( , ) ( , ) ( , )
( , ) ( , )

( , ) ( , ) ( , )
2 ( ( , ) ) ( , )( ) ,

v x y v x y p x y
u x y v x y

x y y

v x y u x y v x y
x y x y

y y x y x



 

   
   

   

       
     

       

 

(10.10) 

the apparent viscosity via Carreau-Bird law is defined as: 

n 1
2 2

2 2( , ) ( , ) ( , ) ( , )
2 ( ) ( ) ,

u x y v x y u x y v x y
K

x y y x




        
       

        

 

(11.10) 

here, n is the power law index, and K is consistency coefficient. 

10.3 Problem description 

10.3.1 Power law linear velocity at inlet  

In this section, the non-Newtonian fluid flow is introduced in channel of finite length 2.2 m 

with height 0.41 m. The non-Newtonian fluid model is Power law fluid model. The Power 

law fluid is considered in channel having circular cylinder as an obstacle. The obstacle is 

centred at (0.2, 0.2) m. The inlet Power law flow velocity is considered linear (constant) 

that is 
mean 0.2U   while the outlet is settled with Neumann condition. The upper and 

lower walls are considered with no slip condition which implies the relative velocity of the 

Power law particles and the side walls is zero in magnitude. The geometrical illustration of 

present problem is given in Fig. 10.1. 
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Fig. 10.1. Schematic diagram when Powel law velocity is linear at inlet. 

The fluid flow illustrated in Fig. 10.1 is mathematically modeled in terms of nonlinear 

differential equations, see Eqs. (10.9)-(10.11) along with following constraints:  

maxInlet bounday , 0,

Outlet boundary 0,

Side walls 0, 0,

Cylindricalsurface 0, 0.

u U v

u v

x x

u v

u v

 

 
 

 

 

 

 

 

(10.12) 

 

10.3.2 Power law parabolic velocity profile at inlet 

In this section, the Power law fluid with parabolic profile at inlet of channel is considered. 

The outlet of channel is taken with Neumann condition. Both upper and lower walls of 

channel are at no slip condition. The circular cylinder is place as an obstacle in channel. 

The obstacle is centred at (0.2, 0.2) m. The length and height of channel is 2.2 m and 0.41 

m respectively. Fig. 10.2 is the flow diagram of present case.  
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Fig. 10.2. Schematic diagram when Powel law velocity is parabolic at inlet. 

The flow illustration is controlled through mathematical formulation. The flow narrating 

differential subject to flow problem given in Fig. 10.2 can be studied through Eqs. 

(10.9)-(10.11) with following conditions: 

mean max

2
Inlet bounday , 0,

3

Outlet boundary 0,

Side walls 0, 0,

Cylindricalsurface 0, 0.

u U U v

u v

x x

u v

u v

  

 
 

 

 

 

 

 

 

(10.13) 

 

The involved Reynolds number for Power law model is written as: 

2 n n

mean( )
Re ,

U D 





  
(10.14) 

here, D  denotes characteristic length,  is fluid density,   is fluid viscosity and n 

stands for Power law index. The range 0 n 1   implies shear thinning case while n 1

implies shear thickening characteristics. In present analysis the range of Power law index is 

considered 1 n 5   with step size n 0.5  . 

10.3.3 Benchmark quantities 

The placement of an obstacle yields two benchmark quantitates namely, the drag 

coefficient  

(
DC ) and the lift coefficient (

LC ). The dimensionless form of these quantities can be written 

as: 

2

mean

2
,

( )

D
D

F
C

U D
  

 

(10.15) 

 

2

mean

2
,

( )

L
L

F
C

U D
  

 

(10.16) 
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here, the drag and lift forces are represented by andD LF F . Further, 
mean, andU D  

denotes fluid density, mean velocity and the characteristic length respectively. The 

benchmark quantities namely, the drag and lift coefficients will appear when an obstacle is 

placed at right angle to oncoming fluid. It is important to note that the drag force can exist 

without lift force. When height of channel is 0.4m and obstacle is placed at (0.2, 0.2), the 

lift coefficient will vanish. Therefore, to seek the lift force the height of channel is selected 

0.41m to bring obstacle little offset. The numerical values of both the drag and lift 

coefficients are evaluated at various refined mesh levels for better accuracy. 

10.4 Computational scheme 
The fluid flow in a channel without any obstacle may have an exact solution but when 

obstacles are accounted to ongoing fluid it becomes difficult to report exact solution. To 

find the numerical solution, the finite difference method, finite element method and finite 

volume method are prominent methods. Out of these the finite element method [138] is 

powerful tool to encounter boundary value problems. The conforming element pair 

2 1p p  is utilized for the velocity and pressure approximation. This element is a stable 

element pair satisfying inf-sup condition [139]. The location of degrees of freedom for this 

finite element pair is shown in Fig. 10.3. This pair has 15 local degrees of freedom for two 

dimensional flows. The convergence criterion for the non-linear defect is set as follows: 

1
6

1
10 .

n n

n

 









  

(10.17) 

Here,   is the general solution component. The freedom regarding choice of discretization 

is one of the big benefits of finite element method. The discretization for computation is the 

preprocessing stage of finite element method. The computational domain can be 

discretized by way of line elements, triangular elements, rectangular elements etc. An 

accurate representation of complex geometry, an inclusion of dissimilar material 

properties, and easy representation of the total solution and capturing of local effects are 

the advantages of sub division of larger system into smaller. The key steps involved in this 

method are itemized as follows:  

1. Domain discretization.  
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2. Establish simpler finite element equations. 

3. Combine/Assemble element equations. 

4. Incorporate boundary constraints or initial conditions. 

5. Solve the developed equations. 

6. Post processing (Visualization). 

 

Fig. 10.3. Schematic diagram for 
2 1p p element pair. 

In this attempt the channel as a computational domain is discretized via triangular and 

rectangular elements. For better solution, the eight various meshing levels are reported. 

The detail in this direction is provided by way of Figs. 10.4-10.11. The degrees of freedom 

(DOFs) for each refinement level is provided in Table 10.17.  

 

 

Fig. 10.4 

 

Refinement Level-1 

Channel consists of 824 domain 

elements and 112 boundary elements. 
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Fig. 10.5 

 

Refinement Level-2 

Channel consists of 1365 domain 

elements and 159 boundary elements. 

 

Fig. 10.6 

 

Refinement Level-3 

Channel consists of 2198 domain 

elements and 204 boundary elements 

 

Fig. 10.7 

 

Refinement Level-4 

Channel consists of 4200 domain 

elements and 298 boundary elements. 

 

 

Fig. 10.8 

 

Refinement Level-5 

Consists of 6232 domain elements and 

374 boundary elements. 

 

Fig. 10.9 

 

Refinement Level-6 

Channel consists of 11422 domain 

elements and 468 boundary elements. 
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Fig. 10.10 

 

Refinement Level-7 

Channel consists of 26286 domain 

elements and 970 boundary elements. 

 

Fig. 10.11 

Refinement Level-8 

Channel consists of 63373 domain 

elements and 1851 boundary elements. 

 

10.5 Analysis 
The Power law fluid flow in a channel is investigated by considering both linear (constant) 

and parabolic profiles at an inlet. The observations in this direction are discussed 

section-wise namely, section –I and section-II. Simulations are performed at refinement 

level-8 for both linear (constant) and parabolic profiles.  

 Section -I 

The problem given by Eqs. (10.9)-(10.12) is nonlinear in character. To report numerical 

solution the numerical method named finite element method is utilized. The obtain 

outcomes are provided by way of Figs. 10.12-10.20. The flow visualization of the Power 

law fluid in a finite length channel towards the higher values of Power law index is 

examined and provided with the help of Figs. 10.12-10.14. In detail, Fig. 10.12 is devoted 

to present the Power law fluid flow when Power law index is taken n = 1. It is seen that the 

Power law fluid initiated with linear velocity profile as an inlet velocity strikes with circle 

and the stagnation point region is created at right angle to the flow direction and fluid 

moves around the circular cylinder with larger velocity while the fluid near the side walls 

admits zero velocity due to no slip condition. It is important to note that the Power law fluid 

model turns into viscous fluid model at n = 1. The impact of Power law index n = 2 and n = 

3 on Power law fluid is inspected and the outcomes in this regard are identified in Fig. 
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10.13 and Fig. 10.14 respectively. Since the positive values of Power law index implies the 

shear thickening fluid therefore, iterating the Power law index n = 2 and n = 3 reflects large 

stagnation point region when the Power law fluid strikes with left face of circular obstacle. 

The speedy bifurcation in-between 0.1 0.5x   occurs as the Power law index increases. 

The way of line graph for velocity examination is executed to inspect the flow aspects of 

Power law fluid towards different iterations of Power law index that is n 1,2,3  at 

different location of channel namely, [(0, 0), (0, 0.41)], [(0.1,0), (0.1, 0.41)], [(0.2,0), 

(0.2,0.41)], [(0.3,0), (0.3,0.41)], [(1,0), (1,0.41)] and [(2,0), (2,0.41)]. The inlet Power law 

velocity is taken 
max 0.2U  . The line graph of velocity (see Fig. 10.15) at location x = 0 

validate the inflow velocity for all values of Power law index that is n =1, 2 and 3. The line 

graph of velocity at location x = 0.1 reflects deformation of Power law fluid towards an 

obstacle. Such variations are reported in Fig. 10.16. The velocity line graph at location 

0.2x  is provided in Fig. 10.17. It is noticed that at this location the Power law fluid 

bifurcates significantly. From, Figs. 10.15-10.16 one can see easily that for higher values 

of Power law index (n = 2 and n = 3) the fluid velocity is lesser in magnitude as compared 

to Newtonian fluid (n = 1) because for n = 2 and n= 3 the fluid becomes more viscous. 

Surprising it is noticed that the bifurcation towards higher values of Power law index (n = 2 

and n = 3) is higher in strength as compared to n = 1, for location 0.3x  , see Figs. 10.18. 

The Fig. 10.19 and Fig. 10.20 provide the variations in velocity in terms of line graph at 

location 1 and 2x x   respectively. From these plots it can be concluded that the initial 

velocity profile that is linear (constant) at an inlet of channel cannot be recovered at an 

outlet. This is due to non-compatible assumption “the no slip condition at walls and linear 

(constant) velocity at an inlet”.  

  



166 
 

 Section-II 

Analysis on the Power law fluid when parabolic velocity profile is taken at an inlet is 

elaborated in this section. The computational scheme is implemented. The method used in 

this regard is finite element method. The obtained outcomes are presented by way of 

graphs and tables. Figs. 10.21-10.23 are plotted to provide the impact of Power law index 

when parabolic inlet flow velocity of Power law fluid is considered. The iteration in Power 

law index that is n = 1, 2 and 3 implies shear thickening fluids. Fig. 10.21 is plotted when 

Power law index is taken n = 1. At this value the Power law fluid model turns into 

Newtonian fluid model. Further, for iteration n = 2 and n = 3 surprisingly noticed that the 

speedy bifurcation occurs at location 0.1 0.5x   of the channel. One can observed from 

the Figs. 10.21-10.23 that the stagnation point region towards left face of an obstacle 

increases for higher values of the Power law index. The corresponding pressure increases 

significantly at this zone. Higher the values of Power law index, more pressure at left face 

of an obstacle. Figs. 10.24-10.26 are evident for this fact. The line graphs are also provided 

for better description of the Power law fluid deformation due to circular obstacle. Fig. 

10.27 is the line graph of velocity at location x = 0 (inlet of channel) for n =1, 2 and 3. The 

maximum velocity for the parabolic profile is taken 
max 0.3U  . Such assumption is 

justified in Fig. 10.27. Fig 10.28 reports the Power law fluid deformation at location x = 

0.1. Further, the clear bifurcation of Power law fluid can be assessed in Fig. 10.29 at 

location x = 0.2. It is observed from Figs. 10.28-10.29 that the magnitude of velocity for n 

=1 is higher as compared to n = 2 and n = 3. This is due to viscosity effects because by 

increasing Power law index the fluid becomes more viscous. The Fig. 10.30, Fig. 10.31 and 

Fig. 10.32 shows velocity line graphs at locations 0.3, 1 and 2x x x    respectively. It 

is seen from Figs. 10.31-10.32 that the parabolic profile (inlet flow velocity assumption) is 

retraced at outlet of channel.  
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10.6 Graphical results 

 Section-I 

 
Fig. 10.12. Velocity plot when n =1, 

mean 0.2U   and Re = 20. 

 
Fig. 10.13. Velocity plot when n = 2, 

mean 0.2U   and Re = 10. 

 
Fig. 10.14. Velocity plot when n = 3, 

mean 0.2U   and Re = 5. 
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Fig. 10.15. Line graph of Power law linear velocity profile at location 0.x   

 
Fig. 10.16. Line graph of Power law linear velocity profile at location 0.1.x   

 
Fig. 10.17. Line graph of Power law linear velocity profile at location 0.2.x   
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Fig. 10.18. Line graph of Power law linear velocity profile at location 0.3.x   

 
Fig. 10.19. Line graph of Power law linear velocity profile at location 1.x   

 
Fig. 10.20. Line graph of Power law linear velocity profile at location 2.x   
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Table 10.1: Numerical values of drag and lift coefficients when 

max 0.2 .with mesh level-1U   

 

 

 

 

Refinement 

Level-1 

n DC  
LC  

1.5 8.6546 -0.013507 

2 15.997 -0.36968 

2.5 32.508 -0.70465 

3 69.598 0.68874 

3.5 151.83 0.17555 

4 334.59 1.4553 

4.5 738.48 5.8203 

5 1632.5 16.892 

 

Table 10.2: Numerical values of drag and lift coefficients when 

max 0.2 with mesh level-2.U   

 

 

 

 

Refinement 

Level-2 

n DC  
LC  

1.5 8.6022 0.10413 

2 16.475 0.54782 

2.5 34.511 1.1245 

3 76.001 1.6229 

3.5 170.55 2.1833 

4 386.18 3.0244 

4.5 878.78 4.2750 

5 2005.7 5.9499 
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Table 10.3: Numerical values of drag and lift coefficients when 

max 0.2 with mesh level-3.U   

 

 

 

 

Refinement 

Level-3 

n DC  
LC  

1.5 8.6254 0.087501 

2 16.593 0.48322 

2.5 34.779 1.0173 

3 76.855 1.5238 

3.5 172.74 2.2427 

4 391.10 3.6760 

4.5 888.10 6.8543 

5 2021.2 14.585 

 

Table 10.4: Numerical values of drag and lift coefficients when 

max 0.2 .with mesh level-4U   

 

 

 

 

Refinement 

Level-4 

n DC  
LC  

1.5 8.6164 0.13278 

2 16.695 0.57157 

2.5 35.497 1.1339 

3 79.341 1.6566 

3.5 181.22 2.4246 

4 416.89 3.8802 

4.5 965.05 6.5248 

5 2241.7 11.279 
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Table 10.5: Numerical values of drag and lift coefficients when 

max 0.2 with mesh level-5.U   

 

 

 

 

Refinement 

Level-5 

n DC  
LC  

1.5 8.6281 0.13842 

2 16.741 0.55529 

2.5 35.625 1.0428 

3 79.753 1.3990 

3.5 182.47 1.7208 

4 421.23 2.0644 

4.5 977.53 2.3444 

5 2280.1 1.6548 

 

Table 10.6: Numerical values of drag and lift coefficients when 

max 0.2 .with mesh level-6U   

 

 

 

 

 

Refinement 

Level-6 

n 
DC  LC  

1.5 8.6167 0.16342 

2 16.816 0.58054 

2.5 35.911 1.0819 

3 80.761 1.4588 

3.5 185.61 1.8303 

4 431.02 2.2711 

4.5 1007.4 2.7725 

5 2367.0 3.1896 
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Tables 10.1-10.6 are provided when the Power law fluid model is considered towards 

channel and an inlet velocity profile is considered linear (constant). The impact of Power 

law index namely n = 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 on drag and lift coefficients are 

evaluated for six different refined mesh structures for an accuracy. It is noticed that for the 

higher values of the Power law index both the drag and lift coefficients increases.  
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 Section-II 

 

Fig. 10.21. Velocity plot when n = 1, max 0.3U  and Re = 20. 

 

Fig. 10.22. Velocity plot when n = 2, max 0.3U  and Re = 10. 

 

Fig.10. 23. Velocity plot when n = 3, max 0.3U   and Re = 5. 
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Fig. 10.24. Pressure plot when n = 1, max 0.3U   and Re = 20. 

 

Fig. 10.25. Pressure plot when n = 2, max 0.3U   and Re = 10. 

 

Fig. 10.26. Pressure plot when n = 3, max 0.3U  and Re = 5. 
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Fig. 10.27. Line graph of Power law parabolic velocity profile at location 0.x   

 

 
Fig. 10.28. Line graph of Power law parabolic velocity profile at location 0.1.x   

 
Fig. 10.29. Line graph of Power law parabolic velocity profile at location 0.2.x   
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Fig. 10.30. Line graph of Power law parabolic velocity profile at location 0.3.x   

 
Fig. 10.31. Line graph of Power law parabolic velocity profile at location 1.x   

 
Fig. 10.32. Line graph of Power law parabolic velocity profile at location 2.x   
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Table 10.7: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-1.U   

 

 

 

 

Refinement 

Level-1 

n   

1.5 9.5964 -0.028461 

2 16.949 0.32324 

2.5 33.442 0.71828 

3 70.466 0.88759 

3.5 152.18 0.94013 

4 331.47 0.74999 

4.5 725.43 -0.25092 

5 1590.0 -3.726 

 

Table 10.8: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-2.U   

 

 

 

 

Refinement 

Level-2 

n 
DC  LC  

1.5 9.4436 -0.087989 

2 17.247 0.48552 

2.5 35.164 1.0113 

3 76.097 1.5356 

3.5 168.57 2.2438 

4 377.29 3.6031 

4.5 847.32 6.3893 

5 1909.2 12.495 
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Table 10.9: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-3.U   

 

 

 

 

Refinement 

Level-3 

n 
DC  LC  

1.5 9.6406 0.059579 

2 17.793 0.45586 

2.5 36.889 0.93759 

3 81.234 1.3414 

3.5 182.80 1.9091 

4 416.40 2.9291 

4.5 953.04 4.7585 

5 2189.0 8.0252 

 

Table 10.10: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-4.U   

 

 

 

 

Refinement 

Level-4 

n 
DC  LC  

1.5 9.5856 0.093698 

2 17.816 0.53352 

2.5 37.158 1.0750 

3 82.334 1.6323 

3.5 186.86 2.5035 

4 427.67 4.1503 

4.5 984.07 7.4840 

5 2271.8 14.380 
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Table 10.11: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-5.U   

 

 

 

 

Refinement 

Level-5 

n 
DC  LC  

1.5 9.6397 0.10608 

2 17.933 0.51939 

2.5 37.368 1.0307 

3 83.067 1.5209 

3.5 189.35 2.2469 

4 435.61 3.5628 

4.5 1008.2 6.1400 

5 2342.2 11.302 

 

Table 10.12: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-6.U   

 

 

 

 

Refinement 

Level-6 

n 
DC  LC  

1.5 9.6322 0.13090 

2 17.963 0.54648 

2.5 37.562 1.0735 

3 83.741 1.5967 

3.5 191.41 2.3953 

4 441.24 3.8662 

4.5 1023.5 6.7791 

5 2385.1 12.625 
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Table 10.13: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-7.U   

 

 

 

 

Refinement 

Level-7 

n 
DC  LC  

1.5 9.6395 0.12978 

2 17.975 0.54648 

2.5 37.701 1.0784 

3 84.221 1.6043 

3.5 192.90 2.3863 

4 446.44 3.8645 

4.5 1039.3 6.8143 

5 2432.4 12.816 

 

Table 10.14: Numerical values of drag and lift coefficients when 

max 0.3 with mesh level-8.U   

 

 

 

 

Refinement 

Level-8 

n 
DC  LC  

1.5 9.6408 0.13175 

2 17.994 0.54753 

2.5 37.724 1.0727 

3 84.291 1.5963 

3.5 193.32 2.4024 

4 447.49 3.9073 

4.5 1042.8 6.9203 

5 2443.4 13.049 
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Table 10.15: Numerical values of drag and lift coefficients for Newtonian fluid model 

when max 0.2.U   

 

Refinement levels 

 Newtonian case (n = 1) 

DC  LC  

1 5.1671 -0.055807 

2 4.8794 -0.038878 

3 4.8317 -0.057457 

4 4.8014 0.0086052 

5 4.8040 0.012904 

6 4.7944 0.046508 

 

Table 10.16: Numerical values of drag and lift coefficients for Newtonian fluid model 

when 
max 0.3.U   

Refinement levels Newtonian case (n = 1) 

DC  
LC  

1 6.0207 -0.099437 

2 5.6119 -0.10289 

3 5.5796 -0.091933 

4 5.5892 -0.050458 

5 5.5930 -0.038479 

6 5.5863 0.020429 

7 5.582 0.0084230 

8 5.5811 0.010207 

 

Table 10.17: DOFs statistics for various refinement levels. 

Refinement levels DOFs Refinement levels DOFs 

1 1680 5 10899 

2 2694 6 19071 

3 4131 7 43542 

4 7533 8 102984 
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Tables. 10.7-10.14 offer the numerical values due to both the drag and lift coefficients 

when the Power law fluid model is considered towards channel of length 2.2 m with height 

0.41 m. Both the drag and lift forces are generated due to placement of circular cylinder 

centered at (0.2, 0.2) m. The numerical values are evaluated for different values of Power 

law index that is n = 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 up-to 8-refinement levels subject to 

domain meshing of channel. Owing the level 8 values it is noticed that when we iterate 

Power law index namely, n = 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 the drag and lift coefficient 

values enhances significantly. Since the Power law fluid model is considered and it is well 

known fact that for n = 1 the Power law fluid model reduces to Newtonian case. Schaefer 

and Turek [140] consider Newtonian fluid flow in a channel having circular obstacle 

centred at (0.2, 0.2). The benchmark quantities are calculated in this attempt and the most 

reliable digits proposed for the drag and lift coefficients were 

5.579535 and 0.010618D LC C   respectively. It is important to note that they consider 

parabolic profile at an inlet of channel. Table 10.15 reports the numerical values of drag 

and lift coefficients for linear (constant) profile at various refinement levels when n = 1. 

Table 10.16 reports the numerical data for both the drag and lift coefficients at various 

refinement levels when n = 1. It can be seen that a good agreement is found with Schaefer 

and Turek [140]. Especially at 8th refinement level.  

10.7 Conclusion 
The present attempt deals finite element analysis on non-Newtonian fluid flow in a channel 

when both the lower and upper walls with no slip condition. The right wall is specified with 

the Neumann condition. Two different velocity profiles of Power law fluid are initiated at 

an inlet namely, linear (constant) and parabolic velocity profile. The Power law fluid in 

each case strikes with an obstacle being placed within channel and the bifurcation of Power 

law fluid occurs around circular cylinder. The concluding observations are itemized as 

follows: 

 The leading stagnation point region increases towards higher values of Power law 

index that is n = 1, 2 and 3 both for linear and parabolic profiles initiated at an inlet 

of Power law fluid.  
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 For n = 1 (Newtonian fluid) in the laminar flow zone, the Power law fluid velocity 

remarks significant magnitude of velocity as compared to iteration of Power law 

index n = 2 and 3. 

 For higher values of the Power law index that is n = 1, 2 and 3 the pressure in 

leading point region increases. 

 Pressure singularities occur at an inlet in case of linear (constant) velocity profile of 

Power law fluid. 

 Power law fluid with parabolic profile initiated at an inlet is more realistic approach 

than that of Power law fluid with linear (constant) profile.  

 Both drag and lift coefficients are increasing functions of iteration in Power law 

index that is n = 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5.  

  



185 
 

 

Object Dependent Optimization of Hydrodynamic Forces in 

Liquid Stream: Finite Element Analysis 

 

11.1 Introduction  
The present chapter reports the extended novelty of the hydrodynamics. To be more 

specific, the flowing fluid stream admitting Newton’s law of viscosity is considered in a 

smooth rectangular channel. The various typical shaped cylinders are placed fixed in 

between rectangular channel as an obstacle. The shape of obstacles includes the triangle, 

square, hexagon, octagon and circle. The no-slip condition is carried at both the upper and 

lower walls of the channel. The right wall as an outlet is specified with the Neumann 

condition. The fluid is initiated at an inlet of the channel with the two different class of 

velocity profiles, namely the constant velocity profile and the parabolic profile. The whole 

physical designed is controlled mathematically in terms of Navier-Stokes equations. The 

solution is proposed with the finite element method and for the discretization of flow 

narrating equations the LBB-stable finite element pair is utilized along with a hybrid 

meshing scheme. The primitive variables namely, the velocity and pressure are reported 

for each obstacle. The line integration around the outer surface of the triangle, square, 

hexagon, octagon and circular cylinders is carried for the evaluation of hydrodynamic 

forces. The statistical data for such hydrodynamic forces is recorded up-to nine various 

refinement levels.  

11.2 Problem Description 
The rectangular channel having length 2.2m and height 0.41m is considered as a 

computational domain. The Newtonian fluid is taken in a rectangular channel. The 

boundary assumption includes the no-slip condition at both upper and lower walls that is 

the relative velocity of fluid particles and the lower/upper walls is zero. The right wall is 

treated as an outlet of the channel and it is carried with notable Neumann condition while 

   Chapter 11 
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the left wall of the channel is considered as an inlet. The two different types of velocity 

profiles are considered with which the Newtonian fluid enters into the channel. The 

velocity supposition includes the constant velocity profile and the parabolic velocity 

profile. The incoming fluid strikes with the obstacles being placed fixed in a channel. The 

triangle, square, hexagon, octagon and circular shaped cylinders are taken as an obstacle in 

present work. 

11.3 Mathematical Model 
To investigate the fluid flow towards the triangle, square, hexagon, octagon and circular 

shaped cylinders as an obstacle being placed in between the rectangular channel, the most 

acceptable mathematical model named Navier-Stokes equations is considered. To attain 

the concluding flow narrating differential equations firstly one can initiate with the 

equation of continuity as follows: 

( , , , )
( ( , , , )V( , , , )) 0,

x y z t
x y z t x y z t

t





 


 

(11.1) 

and the momentum equation can be written as: 

2V( , , , )
( , , , ) ( , , ) V( , , , ) ( , , , ) ,

D x y z t
x y z t p x y z x y z t x y z t B

Dt
        

(11.2) 

to attain the dimensionless form of the Eq. (11. 2), the following setup is taken: 

* * *

* 2 2

* 1
, ,

V( , , , )
V ( , , , ) , , ,m m

m

m m mm

x y z t
x y z t B

U

D D
D p p B

U t t U U

 
      

 
 

 

(11.3) 

by use of Eq. (11.3) into Eq. (11.2), one can get 

*
* * *2 * *

*

V ( , , , )
( , , ) V ( , , , ) ,

m m

D x y z t
p x y z x y z t B

Dt D U




      

(11.4) 

here , 
1

Re m mD U




  is termed as the Reynolds number. Further, by dropping “*” one can 

render  

2V( , , , ) 1
( , , ) V( , , , ) ,

Re

D x y z t
p x y z x y z t B

Dt
      

(11.5) 
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here, V is the velocity field,   is viscosity,  is fluid density, p represents the 

pressure, B is the body force.   is the del operator, mU  be the reference velocity, mD  

be the characteristic length and Re  is the symbolic notation of Reynolds number. In the 

absence of body force ( 0)B  , and by considering two dimensional an incompressible 

steady fluid flow in a rectangular channel, the concluding mathematical flow narrating 

differential equations are:  

0,
u v

x y

 
 

 
 

(11.6) 

2 2

2 2
Re Re ,

u u p
v

x y x

u u
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   
    
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 


 
 

(11.7) 

2 2
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 
 
 

  
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  
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(11.8) 

The endpoint condition for constant velocity profile can be written as: 

Inlet bounday , 0,

Outlet boundary 0,

Side walls 0, 0.

cu U v

u v

x x

u v

 

 
 

 

 

 

(11.9) 

The mathematical endpoint expressions for the assumption of the parabolic velocity profile 

case can be summarized as follows:  

 Inlet bounday 4. . , 0,

Outlet boundary 0,

Side walls 0, 0.

Maxu U y H y v

u v

x x

u v

  

 
 

 

 

 

(11.10) 

The fluid flow around an object produces both the lift and drag force. It is all about the 

position of object in a fluid because it is correct to say that the existence of drag force does 

not imply the existence of lift force. In present case the height of channel is selected 0.41m 

so that the obstacles becomes offset with center (0.2, 0.2)m and when fluid past the 

triangle, square, hexagon, octagon and circular shaped obstacles, both the drag and lift 

forces will appear. To investigate these benchmark quantities, the dimensionless 

expression for the lift and drag coefficients are written as follows: 
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2
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(11.11) 

2
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F
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D
D

U D
  

(11.12) 

the symbolic notation for the lift coefficient is fL  and fD  is the symbolic notation for the 

drag coefficient, whereas mean , andF FU L D  denotes mean velocity, lift force and drag 

force respectively.  

11.4 Computational Scheme 
The Eq. (11.1) represents the equation of continuity while the Eq. (11.2) is Lagrangian 

form of Navier-Stokes equation. To achieve dimensionless form, the setup provided in Eq. 

(11.3) is utilized and the ultimate dimensionless form of the Eq. (11.2) is written in Eq. 

(11.5). Using the assumption of time independent and two dimensional incompressible 

flow of Newtonian fluid in the rectangular channel leads to Eq. (11.6), Eq. (11.7) and Eq. 

(11.8). To be more specific, the Eq. (11.6) is two dimensional continuity equation. In the 

absence of body force, the two dimensional incompressible mathematical exercise subject 

to Eq. (11.5) reduces to Eq. (11.7) and Eq. (11.8) as x-component and y-component 

respectively. The mathematical expression for the case of constant velocity profile 

assumption is given in Eq. (11.9) while the Eq. (11.10) own the mathematical form for the 

assumption of parabolic velocity profile. The attention is to find the solution of Eqs. 

(11.6)-(11.10) case wise. Since the differential system provided in Eqs. (11.6)-(11.10) is 

highly nonlinear therefore to find exact solution seems not possible. Therefore, we have 

used finite element method to report better approximations. The finite element simulation 

is known as finite element analysis (FEA). The FEA is one of the prominent directory 

adopted by researchers to examine real life phenomena like thermal transport and fluid 

flow field. The Eqs. (11.6)-(11.10) for both the velocities assumptions namely, the linear 

velocity profile and the parabolic velocity profile, are solved against each obstacle. The 

primitive variables which includes the velocity and the pressure are evaluated for each 

case. To evaluate the accurate values of the lift and drag coefficients towards triangle, 

square, hexagon, octagon and circle, the fine meshing around each obstacle is carried. To 

offer broader frame the simulations are recorded for extremely coarse meshing (level-1), 
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extra coarse meshing (level-2), courser meshing (level-3), coarse meshing (level-4), 

normal meshing (level-5), fine meshing (level-6), finer meshing (level-7), extra fine 

meshing (level-8), and extremely fine meshing (level-9). The adopted parametric values 

for the case of constant velocity profile is as follows: 2 / 7,mean cU U  0.001,  and 

1.   To fix the Reynolds number Re = 20, for both triangle and square obstacle the 

characteristic length is selected 0.07mD   while for hexagon, octagon and circular 

obstacle it is selected as 0.1mD  . The adopted values for the case of parabolic velocity 

profile are 1, 0.001,   and for fixing Reynolds number Re = 20, the mean inflow 

velocity is taken as a reference velocity 
2

2 / 7,
3

mean MaxU U  where 3 / 7,MaxU  is the 

maximum inflow velocity of the parabolic profile for both triangle and square obstacle 

with characteristic length 0.07mD  . For hexagon, octagon and circle with characteristic 

length 0.1mD  , the mean inflow velocity is considered as a reference velocity 

2
0.2,

3
mean MaxU U  where 0.3,MaxU   is the maximum inflow velocity of the parabolic 

profile.  

11.5 Analysis 
The flow around triangle, square, hexagon, octagon and circular shaped obstacles in a 

rectangular domain is investigated and discussed case-wise namely, OBSTACLE -I, 

OBSTACLE -II, OBSTACLE -III, OBSTACLE -IV and OBSTACLE -V. 

11.5.1 OBSTACLE-I 

In this case the triangle shaped cylinder is consider as an obstacle being placed towards 

ongoing Newtonian fluid in a rectangular channel. The vertices of triangle are selected as 

follows: (0.165, 0.165), (0.235, 0.165) and (0.165, 0.235). The boundary assumption for 

computational domain can be written as: 
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Inlet bounday 2 / 7 or 4. . ( ), 0,

Outlet boundary 0,

Channel side walls 0, 0,

Triangle outer surface 0, 0.

c Maxu U U y H y v

u v

x x

u v

u v

   

 
 

 

 

 

 

(11.13) 

 

 

 

The Eq. (11. 13) represents the assumption of both the constant and parabolic velocity 

profiles. To examine the flow field properties the FEM is used and the outcomes are 

recorded for nine various refinement levels. Figs. 11.1-11.9 and Tables 11.1-11.3 provided 

the finite element simulation for triangle obstacle. In detail, Fig. 11.1 is domain 

discretization of rectangular channel and termed as extremely coarse meshing (level-1). In 

this level the computational domain consists of 1005 domain elements (DEs) and 113 

boundary elements (BEs). The Fig. 11.2 shows the normal meshing (level-5) for 

rectangular channel having triangle shaped cylinder as an obstacle. The discretization 

contains 7544 DEs and 406 BEs. The extreme fine meshing is provided in Fig. 11.3 and it 

consist of 132202 DEs and 2062 BEs. Further, the detail of meshing statistics against each 

level for channel with triangle obstacle is provided in Table. 11.1. Fig. 11.4 is velocity plot 

when the Reynolds number is taken fixed of value Re = 20 and the flow is initiated with 

constant velocity profile at an inlet of channel. It is seen that the incoming fluid strikes with 

triangle obstacle and the speedy bifurcation occurs. The velocity of fluid increases due to 

collision with triangle obstacle. It can be seen that the velocity of particles with both upper 

and lower walls of channel seems absurd. The corresponding pressure distribution is given 

with the help of Fig. 11.5. One can see that the pressure is maximum at left face of triangle. 

The stagnation point exists at right face where the pressure seems maximum. The 

assumption of no-slip condition at both upper and lower walls with constant velocity 

entrances of fluid leads to maximum pressure at (0, 0) and (0, 0.41). The Fig. 11.6 and Fig. 

11.7 are plotted when the fluid is initiated with the parabolic velocity profile. Particularly, 

Fig. 11.6 reports the velocity distribution for the fixed value of Reynolds number Re = 20. 

It is observed that the Newtonian fluid strikes with triangle and creates stagnation point 

region at left face of obstacle. The fluid bifurcation happens around triangle obstacle. The 

fluid gain momentum after striking with obstacle and obstacle disturbance can be observed 

up-to length of channel x = 1. The corresponding pressure distribution for parabolic 

velocity profile being initiated at an inlet of channel is given by means of Fig. 11.7. Fig. 
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11.8 reports the line graph study of u-velocity at various position of channel for the first 

case that is the fluid enters into channel with linear velocity 2 / 7 0.28cU   . Such 

assumption is graphically testified at the position x = 0.0. The significant bifurcation occurs 

for the channel length x = 0.1. One can see from Fig. 11. 8, at x = 0.3, the fluid just left the 

obstacle and travels with uniform distribution at both upper and lower half of channel. At x 

= 2.0 it can be seen that the fluid attain the bulk motion down the stream. It is important to 

note that initially the fluid is initiated with constant velocity profile so there should be a 

constant profile at an outlet of channel but we achieved parabolic view. This happens due 

to non-compatible assumptions which includes; the zero velocity of both upper and lower 

walls; the relative velocity of walls and fluid particles should be zero that is the no-slip 

assumption at upper and lower walls; the constant velocity with which fluid enters into 

channel. When fluid enters into channel with constant profile the walls offer resistance to 

flow due to no-slip condition and hence maximum pressure is observed at an inlet of 

channel with corner points that is (0, 0) and (0, 0.41). Such corners points are termed as 

pressure singularities. Fig. 11.9 offers the line graph study of u-velocity for the case of 

parabolic velocity profile. The graphical justification for the parabolic velocity profile 

being assumed at inlet of channel can be seen at x = 0.0. Later, the significant bifurcation 

can be observed at x = 0.1 and x = 0.3. The velocity line graph at channel of length x = 2.0 

shows that the fluid retrace its profile. This happens due to selection of parabolic velocity 

profile at an inlet of channel because with this assumption the pressure singularities got 

eliminated. The striking of fluid with triangle shaped obstacle give birth to two benchmark 

quantities namely, the drag coefficient and the lift coefficient. These benchmark quantities 

are evaluated by performing line integration around the outer surface of triangle. 

Particularly, Table. 11.2 offer the values of both the drag and lift coefficient for the 

constant velocity profile while Table. 11.3 report the values of both the drag and the lift 

coefficient for the case of parabolic velocity profile. Both results are carried at fixed value 

of Reynolds number Re = 20. For the case of the constant velocity profile the most refined 

value of drag coefficient is 2.9253 and lift coefficient is 0.23208. For the parabolic velocity 

profile at level-9, the refined value of drag coefficient is 6.0074 and lift coefficient is 

-0.69112.  
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Fig. 11.1. Extremely coarse meshing when triangle is taken as an obstacle. 

 

Fig. 11.2. Normal meshing when triangle is taken as an obstacle. 

 

Fig. 11.3. Extremely fine meshing when triangle is taken as an obstacle. 
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Fig. 11.4. Velocity plot for triangle obstacle when 
2

0.07, and Re 20.
7

m cD U    

 

Fig. 11.5. Pressure plot for triangle obstacle when
2

0.07, and Re 20.
7

m cD U   . 

 

Fig. 11.6. Velocity plot for triangle obstacle when 
3

0.07, and Re 20.
7

m MaxD U    

 

Fig. 11.7. Pressure plot for triangle obstacle when 
3

0.07, and Re 20.
7

m MaxD U    



194 
 

 
Fig. 11.8. Velocity line graphs at various position of channel having triangle obstacle and 

2
0.07, and Re 20.

7
m cD U    

 
Fig. 11.9. Velocity line graphs at various position of channel having triangle obstacle and 

3
0.07, and Re 20.

7
m MaxD U    
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11.5.2 OBSTACLE-II 

The square shaped cylinder is taken as an obstacle towards incoming fluid flow in a 

channel. In two dimensional frame, (0.165, 0.235), (0.165, 0.165), (0.235, 0.165) and 

(0.235, 0.235) are the vertices of square in rectangular channel of length 2.2 m and height 

0.41m. The endpoint assumptions for both the constant and parabolic velocity profiles are 

as follows: 

Inlet bounday 2 / 7 or 4. . ( ), 0,

Outlet boundary 0,

Channel side walls 0, 0,

Square outer surface 0, 0.

c Maxu U U y H y v

u v

x x

u v

u v

   

 
 

 

 

 

 

(11.14) 

The solution is obtained by means of finite element method and the outcomes in this 

direction are shared with the help of Figs. 10-18 and Tables. 4-6. In detail, the Fig. 10 

provides the extremely coarse meshing of rectangular channel having square as an 

obstacle. In this level the geometry is discretized into 1020 DEs and 116 BEs. The normal 

meshing for present case is shown in Fig. 11.11 and it contains 7702 DEs and 416 BEs. For 

better approximation the extremely fine meshing is performed and shown in Fig. 11.12 and 

it contains 132928 DEs and 2102 BEs. The summary of nine various meshing scheme for 

the channel with square shaped obstacle is presented in Table. 11.4. Fig. 11.13 shows the 

velocity distribution for the fixed value of Reynolds number Re = 20 when fluid is initiated 

with constant velocity profile. The fluid strikes with left face of square and the bifurcation 

occurs. It can be noticed that the stagnation point appears at left face of obstacle. The 

corresponding pressure distribution is shared in Fig. 11.14. One can see that the pressure 

appears maximum at left face of obstacle and at the corner points of channel that is (0, 0) 

and (0, 0.41). Later, the pressure varies linearly down the stream in the channel. The points 

(0, 0) and (0, 0.41) are termed as pressure singularities and they appeared due to 

non-compatible choice of assumption at walls, and the fluid velocity at an inlet. Fig. 11.15 

and Fig. 11.16 are plotted when the fluid flow is initiated with parabolic profile towards 

square obstacle in a channel. From Fig. 11.15 it is seen that the velocity of fluid near the 

walls is zero and after collision with obstacle the fluid velocity increases significantly. 

From Fig. 11.16 it is observed that the pressure is maximum at left face of square obstacle 

and the pressure singularities are eliminated. The line graph of u-velocity for both the 
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constant and parabolic profiles is examined. To be more specific, Fig. 11.17 provides the 

line graph study of u-velocity when the fluid is initiated with constant velocity profile at an 

inlet of channel. At position x = 0.0, the assumption is justified that is the constant velocity. 

It can be seen that at x = 0.1 the fluid bifurcate significantly. At x = 0.2 the fluid distribution 

is uniform towards upper and lower part of square obstacle and at this stage fluid velocity 

reflects higher value. The u-velocity examination is performed at position x = 1.0 and it is 

noticed that the fluid velocity cannot reshaped its initial constant velocity profile due to 

appearing of pressure singularities. Fig. 11.18 provides the u-velocity line graphs for the 

case of parabolic velocity profile. Fig. 11.18 contains evaluation at various position of 

channel which includes x = 0.0, 0.1, 0.2 and 2. The initial assumption of parabolic velocity 

profile can be seen at x = 0.0 and the fluid deformation is observed at x = 0.1. The 

symmetric distribution of fluid towards square obstacle is seen at x = 0.2. The u-velocity 

examination is performed at x =2.0 and one can easily seen that the fluid velocity recovers 

its initial assumption of parabolic velocity profile. The line integration is performed around 

the boundary of square obstacle and both the drag and the lift coefficients are evaluated. 

Particularly, Table 11.5 provides both the drag and lift coefficient values at nine meshed 

levels for the case of the constant velocity profile. The most trustful value of drag 

coefficient is 3.0686 and lift coefficient is 0.034400. Table 6 contains the statistics for drag 

and lift coefficients when the fluid is initiated with the parabolic velocity profile. The most 

refined values are obtained for simulation at an extremely fine meshing level. Accordingly, 

the drag coefficient is 3.7945 and the left coefficient is 0.0086561.  
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Fig. 11.10. Extremely coarse meshing when square is taken as an obstacle. 

 

Fig. 11.11. Normal meshing when square is taken as an obstacle. 

 

Fig. 11.12. Extremely fine meshing when square is taken as an obstacle. 
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Fig. 11.13. Velocity plot for square obstacle when 
2

0.07, and Re 20.
7

m cD U    

 

Fig. 11.14. Pressure plot for square obstacle when
2

0.07, and Re 20.
7

m cD U   . 

 

Fig. 11.15. Velocity plot for square obstacle when 
3

0.07, and Re 20.
7

m MaxD U    

 

Fig. 11.16. Pressure plot for square obstacle when 
3

0.07, and Re 20.
7

m MaxD U    
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Fig. 11.17. Velocity line graphs at various position of channel having square obstacle with 

2
0.07, and Re 20

7
m cD U    . 

 
Fig. 11.18. Velocity line graphs at various position of channel having square obstacle with 

3
0.07, and Re 20

7
m MaxD U   . 
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11.5.3 OBSTACLE-III 

The channel with length 2.2m and height 0.41m is considered a computational domain. 

The hexagon shaped obstacle is placed fixed in between channel with vertices (0.2, 0.25), 

(0.165, 0.235), (0.165, 0.165), (0.2, 0.15), (0.235, 0.165), and (0.235, 0.235). For the 

present case the boundary conditions in terms of mathematical form can be written as: 

Inlet bounday 0.2 or 4. . ( ), 0,

Outlet boundary 0,

Channel side walls 0, 0,

Hexagon outer surface 0, 0.

c Maxu U U y H y v

u v

x x

u v

u v

   

 
 

 

 

 

 

(11.15) 

For hexagon shaped obstacle the flow narrating differential system that is Eqs. 

(11.6)-(11.8) along with Eq. (11.15) is solved by using finite element method and the 

ultimate outcomes are presented with help of Figs. 11.19-11.27 and Tables 11.7-11.9. Figs. 

11.19-11.21 are meshing structure of geometry of the problem. To be more specific, Fig. 

11.19 shows the extreme coarse meshing of rectangular channel having hexagon shaped 

obstacle. This level contains 1010 DEs and 108 BEs. The level-5 also known as normal 

meshing is presented in Fig. 11.20. It is improved meshing with respect to extremely coarse 

meshing. The whole geometry is discretized into 7698 DEs and 388 BEs. Fig. 11.21 is 

extremely fine meshing of rectangular channel having hexagon as an obstacle. In this level, 

the geometry is discretized at best and contains 132430 domain elements and 2108 

boundary elements. Rest of meshing statistics for other levels is summarized in Table 11.7. 

For fixing Reynolds number Re = 20, the simulation is performed for the constant velocity 

profile initiated at inlet of channel. The velocity and pressure snapshots are provided in 

Fig. 11.22 and Fig. 11.23 respectively. From, Fig. 11.22 it is noticed that the stagnation 

point appears at left face of hexagon obstacle and here the pressure seems maximum. 

Further, from Fig. 11.23, it is noticed that the pressure is maximum at corner points of 

channel (0, 0) and (0, 0.41) while the pressure varies linearly towards down the stream in 

channel. Fig. 11.24 and Fig. 11.25 are plotted for the case of parabolic velocity profile 

being initiated at an inlet of channel along with hexagon obstacle. Particularly, Fig. 11.24 

is velocity snapshot at Reynolds number Re = 20 and Fig. 11.25 shows the pressure 

distribution. From Fig. 11.24 one can seen that the significant disturbance in fluid due to 

hexagon obstacle travels up-to 0.9x  . Later, the fluid bifurcation disappears and fluid 



201 
 

moves uniformly towards outlet. From, Fig. 11.25 one can noticed that the pressure 

singularities are eliminated due to considering of parabolic velocity profile. The pressure is 

maximum at left face of the hexagon obstacle and varies linearly towards the outlet of 

channel. The line graph study is performed for both the constant and parabolic velocities 

and offered in Fig. 11.26 and Fig. 11.27. Particularly, Fig. 11.26 reports the u-velocity line 

graph examination when fluid enters in a rectangular channel with constant velocity. The 

line graph of constant velocity assumption can be seen at x = 0.0. The deformation of fluid 

about hexagon is observed at position x = 0.1. The fluid distribution is symmetric at 

position x = 0.2. At this position the fluid moves with higher velocity and hence the 

momentum increases due to collision of fluid with hexagon obstacle. The velocity curve at 

x = 1.0 reflects that as yet the fluid cannot reshape the initial velocity being initiated at 

inlet. Fig. 11.27 reports the line graph view of u-velocity for the case of parabolic velocity 

profile. The variation in u-velocity is reported for the positions x =0.0, 0.1, 0.2 and 2.0. The 

line graph view of the parabolic velocity profile can be seen at x = 0.0 while the bifurcation 

can be observed at x =0.1. The symmetric distribution in a channel can be noticed at x = 

0.2. The hexagon obstacle disturbance reduces and fluid reshaped its initial assumption of 

parabolic velocity profile at position x = 2.0. The line integration is performed at outer 

surface of hexagon and both the lift and drag coefficients are evaluated. Table 11.8 

provides the statistical data of drag and lift coefficients at nine refinement levels for the 

constant velocity assumption. The most purified value is recorded at extremely fine level 

that is level -9. The drag coefficient is noticed 4.5619 and lift coefficient is 0.039569. Table 

9 reports the drag and lift coefficient values at nine different refinement levels for the 

parabolic velocity assumption. It is noticed that at level-9, the drag coefficient value is 

5.3844 and the lift coefficient value is 0.0093881. 
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Fig. 11.19. Extremely coarse meshing when hexagon is taken as an obstacle. 

 

Fig. 11.20. Normal meshing when hexagon is taken as an obstacle. 

 

Fig. 11.21. Extremely fine meshing when hexagon is taken as an obstacle. 
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Fig. 11.22. Velocity plot for hexagon obstacle when 0.1, 0.2 and Re 20.m cD U    

 

Fig. 11.23. Pressure plot for hexagon obstacle when 0.1, 0.2 and Re 20.m cD U   . 

 

Fig. 11.24. Velocity plot for hexagon obstacle when 0.1, 0.3 and Re 20.m MaxD U    

 

Fig. 11.25. Pressure plot for hexagon obstacle when 0.1, 0.3 and Re 20.m MaxD U    
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Fig. 11.26. Velocity line graphs at various position of channel having hexagon obstacle 

with 0.1, 0.2 and Re 20m cD U    . 

 
Fig. 11.27. Velocity line graphs at various position of channel having hexagon obstacle 

with 0.1, 0.3 and Re 20m MaxD U   . 
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11.5.4 OBSTACLE-IV 

The octagon obstacle is placed fixed in between channel with vertices (0.2, 0.25), (0.165, 

0.235), (0.15, 0.2), (0.165, 0.165), (0.2, 0.15), (0.235, 0.165), (0.25, 0.2), and (0.235, 

0.235). The viscous fluid is taken with constant and parabolic velocity profiles at an inlet 

and the complete mathematical notation for the present case can be written as: 

Inlet bounday 0.2 or 4. . ( ), 0,

Outlet boundary 0,

Channel side walls 0, 0,

Octagon outer surface 0, 0.

c Maxu U U y H y v

u v

x x

u v

u v

   

 
 

 

 

 

 

(11.16) 

To examine the fluid flow towards channel having octagon shaped cylinder as an obstacle, 

solved the differential system Eqs. (11.6)-(11.8) along with Eq. (11.16) is solved by using 

finite element method. The solution in this direction is offered by means of Figs. 

11.28-11.36 and Tables 11.10-11.12. The pre-processing stage involved in finite element is 

discretization. Therefore, the computational domain for the present case is discretized 

up-to nine refinement levels. Table 11.10 provides the complete statistics in this regard. 

The first level named extremely coarse level divides computational into 878 domain 

elements and 108 boundary elements. The geometric illustration for extremely coarse 

meshing is given in Fig. 11.28. The meshing is improved up-to 6738 domain elements and 

388 boundary elements. Such level is termed as normal meshing and the geometric 

illustration in this direction is offered as Fig. 11.29. For better solution of fluid flow around 

octagon obstacle, the improved meshing is performed which includes the 125748 domain 

elements and 2010 boundary elements. This level is termed as extremely fine meshing. The 

Fig. 11.30 is provided in this regard. The meshing statistics for all levels is summarized in 

Table 11.10. The results presented in Fig. 11.31 and Fig. 11.32 are for the case of constant 

velocity profile. Particularly, Fig. 11.31 reports the velocity distribution for fluid flow 

around octagon shaped obstacle. The corresponding pressure distribution is given in Fig. 

11.32. From both figures one can conclude that the stagnation point appears on left face of 

octagon where the pressure seems high. For octagon shaped obstacle the pressure 

singularities appears at corners of channel namely, (0, 0) and (0, 0.41) when the constant 

velocity profile is assumed. Fig. 11.33 and Fig. 11.34 depicts the velocity and pressure 

distribution respectively, when the fluid is initiated with parabolic velocity profile at an 
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inlet. The pressure singularities disappears due to choice of parabolic velocity profile. For 

better insight the velocity line graphs are plotted for both the constant and parabolic 

velocity profiles. To be more specific, Fig. 35 is the line graph study of u-velocity at 

various position of channel namely, x =0, 0.1, 0.2 and 2. It can be observed that the at an 

inlet x =0.0 one has constant velocity profile while at x =0.1 the fluid bifurcation occurs due 

to octagon obstacle being place towards ongoing viscous fluid. The u-velocity line graph x 

=2 indicates that the fluid cannot reshaped the constant velocity profile at an outlet. The 

line graph study of u-velocity for the parabolic velocity assumption is performed at 

different position of channel namely, x = 0.0, 0.1, 0.3 and 2. The Fig. 11.36 is evident in 

this direction. The parabolic velocity profile can be see at x = 0.0. The significant 

bifurcation occurs at x = 0.1 while the symmetric distribution in both upper and lower part 

of channel about octagon shaped obstacle can be seen at x = 0.3. The line graph at x = 2.0 

reflects that fluid retrace the parabolic velocity profile at an outlet of channel. The fluid 

flow around octagon obstacle produces drag and lift forces on an obstacle. To evaluate the 

strength of these forces, the line integration around the outer surface of an octagon is 

performed and the observation in this direction is provided by way of Table 11.11 and 

Table 11.12. Particularly, Table 11.11 offers both the drag and lift coefficient values at 

nine various refinement levels for the case of constant velocity profile. The most accurate 

value of drag and lift coefficient is 4.5372 and 0.042178 respectively. Table 11.12 reports 

the value of drag and lift coefficient for the case parabolic velocity profile at nine different 

meshing levels. The level nine is extreme fine meshing and therefore the purified value of 

drag coefficient is 5.3294 and lift coefficient is 0.0058913. 
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Fig. 11.28. Extremely coarse meshing when octagon is taken as an obstacle. 

 

Fig. 11.29. Normal meshing when octagon is taken as an obstacle. 

 

Fig. 11.30. Extremely fine meshing when octagon is taken as an obstacle. 
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Fig. 11.31. Velocity plot for octagon obstacle when 0.1, 0.2 and Re 20.m cD U    

 

Fig. 11.32. Pressure plot for octagon obstacle when 0.1, 0.2 and Re 20.m cD U   . 

 

Fig. 11.33. Velocity plot for octagon obstacle when 0.1, 0.3 and Re 20.m MaxD U    

 

 

Fig. 11.34. Pressure plot for octagon obstacle when 0.1, 0.3 and Re 20.m MaxD U    
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Fig. 11.35. Velocity line graphs at various position of channel having octagon obstacle 

with 0.1, 0.2 and Re 20m cD U   . 

 
Fig. 11.36. Velocity line graphs at various position of channel having octagon obstacle 

with 0.1, 0.3 and Re 20m MaxD U   . 
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11.5.5 OBSTACLE-V 

The circular shaped cylinder is placed fixed in between channel as an obstacle towards 

ongoing Newtonian fluid. The channel is carried with length 2.2m and height 0.41m. The 

circle is taken with radius 0.05m along with the center (0.2, 0.2)m. The assumption remains 

same that is the both upper and lower walls are at no-slip condition. The fluid flow is taken 

with both constant and parabolic velocity profiles at an inlet of channel while the outlet of 

channel is specified with Neumann condition. For solution the nine different meshing 

schemes are carried and the statistics in this regard is offered in Table 11.13. In detail, the 

channel is discretized with 882 DEs and 108 BEs. Such level is called extremely coarse 

meshing. The second level is known by an extra coarse meshing and this level admits 1512 

DEs and 160 BEs. The third level is known as courser meshing and it consists of 2422 DEs 

and 206 BEs. The coarse meshing is called the level fourth and it consists of 4522 DEs and 

306 BEs. The level five is known by normal meshing and in this level the channel is 

uniformly meshed with 6722 DEs and 388 BEs. The level six is termed as fine meshing and 

in such case the rectangular channel is discretized into 12162 DEs and 484 BEs. The level 

seven named as finer meshing. The channel at this stage is manage with 28244 DEs and 

1040 BEs. The extra fine level is eight one and it consists of 69592 DEs and 2014 BEs. The 

level nine is called as extremely fine meshing. It consists of 125658 DEs and 2014 BEs. 

The whole discretization is also summarized in Table 11.13. The velocity snap shot for 

linear velocity profile case is given in Fig. 11.37 and the corresponding pressure 

distribution is reported in Fig. 11.38. The velocity distribution for parabolic case is shared 

with the help of Fig. 11.39 and the corresponding pressure distribution is given as Fig. 

11.40. To examine the drag and lift forces experienced by circular shaped obstacle we have 

performed line integration around circumference of circle. Table 11.14 offers the drag and 

lift coefficient data for the case of constant velocity profile. Such values are collected at 

nine various meshed levels. The most accurate outcomes are noticed at extremely fine 

meshing level. The drag coefficient at this level is recorded 4.7944 and the lift coefficient is 

noticed 0.045508. Table 11.15 contains values of drag and lift coefficient for the case of 

parabolic velocity profile. The statistics is provided up-to nine different mesh levels. The 

level-9 simulation includes the drag coefficient 5.5811 and lift coefficient 0.010207.  
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Fig. 11.37. Velocity plot for circular obstacle when 0.2 and Re 20cU   . 

 

Fig. 11.38. Pressure plot for circular obstacle when 0.2 and Re 20cU   . 

 

Fig. 11.39. Velocity plot for circular obstacle when 0.3 and Re 20MaxU   . 

 

Fig. 11.40. Pressure plot for circular obstacle when 0.3 and Re 20MaxU   . 
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Fig. 11.41. Geometric illustration of obstacles.  

 

11.6 Results benchmarking 
The benchmark problem subject to flow around obstacle in rectangular channel was given 

by Schäfer et al. [140]. In this problem they considered the height of channel 0.41m and 

2.2m. The simulation for circular obstacle being placed fixed in between channel at centre 

(0.2, 0.2)m was performed by fixing the value of Reynolds number Re = 20. They offered 

the value of drag coefficient 5.579535fD  and lift coefficient 0.010618fL   as a 

reliable values when the fluid is initiated with the parabolic velocity profile at an inlet of 

channel. Here, we commercially optimized the values of drag and lift coefficients by 

considering the various shapes of obstacles namely, triangle, square, hexagon, octagon and 

circle. Further, we consider both the constant and parabolic velocity profiles case-wise at 

an inlet of channel. Owing the parabolic velocity profile, it is noticed that the drag 

coefficient for triangle obstacle is 6.0074fD   and lift coefficient is -0.69112.fL   For 

the square obstacle case the drag coefficient is 3.7945fD  and lift coefficient is 

0.0086561.fL  When hexagon is taken as an obstacle, the values of drag and lift 

coefficients are noticed 5.3844 and 0.0093881f fD L   respectively. Further, when we 

take octagon shaped obstacle the observed drag coefficient is noticed 5.3294fD   and 
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lift coefficient is 0.0058913.fL   Since, we have used finite element method 

commercially, therefore to validate our drag and lift coefficient values for triangle, square, 

hexagon and octagon as an obstacles towards ongoing fluid in between rectangular channel 

having height 0.41m and length 2.2m, we have considered circular shaped obstacle with 

same constraints being used in Ref. [140]. We have noticed that for circular shaped 

obstacle the value of drag coefficient is 5.5811fD   and lift coefficient is 

0.010207.fL   These values are in a close agreement with the values proposed by 

Schäfer et al. [140] that is 5.579535fD  and 0.010618fL  . It is important to note that 

in present analysis to retain Re = 20 the perpendicular side of triangle and side length of 

square are taken as characteristic length with numeric value 0.07mD   while for hexagon, 

octagon and circle it is taken 0.1.mD  The characteristic length description for each 

obstacle is also given in Fig. 11.41.  
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Table. 11.1. Statistics for DEs and BEs when triangle is taken obstacle. 

Mesh level Domain elements Boundary elements 

1 1005 113 

2 1689 167 

3 2629 213 

4 4853 315 

5 7544 406 

6 13548 508 

7 31197 1073 

8 74240 2062 

9 132202 2062 

 

Table. 11.2. Statistics for both drag and lift coefficients when triangle is taken obstacle 

with
2

0.07, and Re 20
7

m cD U    (constant velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 3.1750 0.26966 

2 3.1096 0.27194 

3 3.0436 0.23533 

4 2.9753 0.23676 

5 2.9572 0.23338 

6 2.9449 0.22834 

7 2.9319 0.23194 

8 2.9269 0.23313 

9 2.9253 0.23208 

 

Table. 11.3. Statistics for both drag and lift coefficients when triangle is taken obstacle 

with
3

0.07, and Re 20
7

m MaxD U   (parabolic velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 6.3821 -0.29744 

2 6.2656 -0.38954 

3 6.1337 -0.66866 

4 6.0820 -0.67412 

5 6.0535 -0.69019 

6 6.0361 -0.68980 

7 6.0152 -0.69074 

8 6.0080 -0.68856 

9 6.0074 -0.69112 
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Table. 11.4. Statistics for DEs and BEs when square is taken obstacle. 

Mesh level Domain elements Boundary elements 

1 1020 116 

2 1716 172 

3 2696 218 

4 4938 322 

5 7702 416 

6 13696 520 

7 31816 1096 

8 75368 2102 

9 132928 2102 

 

Table. 11.5. Statistics for both drag and lift coefficients when square is taken obstacle with 

2
0.07, and Re 20

7
m cD U   (constant velocity profile). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 3.3490 0.12121 

2 3.2529 0.041828 

3 3.1646 0.040822 

4 3.1145 0.025501 

5 3.0958 0.030957 

6 3.0857 0.033826 

7 3.0743 0.033211 

8 3.0699 0.034143 

9 3.0686 0.034400 

 

Table. 11.6. Statistics for both drag and lift coefficients when square is taken obstacle with 

3
0.07, and Re 20

7
m MaxD U   (parabolic velocity profile). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 4.0847 0.12126 

2 3.9819 0.031317 

3 3.8822 0.012820 

4 3.8374 -0.0085030 

5 3.8226 0.0044956 

6 3.8127 0.0063199 

7 3.7989 0.0060534 

8 3.7950 0.0081053 

9 3.7945 0.0086561 
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Table. 11.7. Statistics for DEs and BEs when hexagon is taken obstacle. 

Mesh level Domain elements Boundary elements 

1 1010 108 

2 1726 160 

3 2686 206 

4 4956 306 

5 7698 388 

6 13708 484 

7 31496 1040 

8 75402 2108 

9 132430 2108 

 

Table. 11.8. Statistics for both drag and lift coefficients when hexagon is taken obstacle 

with 0.1, 0.2 and Re 20m cD U    (constant velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 4.7449 0.017025 

2 4.7008 -0.0014085 

3 4.6374 0.024829 

4 4.5978 0.016693 

5 4.5882 0.034250 

6 4.5791 0.037992 

7 4.5696 0.038859 

8 4.5639 0.039698 

9 4.5619 0.039569 

 

Table. 11.9. Statistics for both drag and lift coefficients when hexagon is taken obstacle 

with 0.1, 0.3 and Re 20m MaxD U    (parabolic velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 5.4908 -0.033100 

2 5.4549 -0.052569 

3 5.3968 -0.013332 

4 5.4002 -0.023184 

5 5.4021 -0.0020708 

6 5.3983 -0.0073047 

7 5.3902 0.0080837 

8 5.3851 0.0094143 

9 5.3844 0.0093881 
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Table. 11.10. Statistics for DEs and BEs when octagon is taken obstacle. 

Mesh level Domain elements Boundary elements 

1 878 108 

2 1442 156 

3 2296 206 

4 4296 298 

5 6738 388 

6 12184 488 

7 28522 1036 

8 69382 2010 

9 125748 2010 

 

Table. 11.11. Statistics for both drag and lift coefficients when octagon is taken obstacle 

and 0.1, 0.2 and Re 20m cD U    (constant velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 5.1739 -0.069273 

2 5.1376 0.026477 

3 4.6817 -0.032702 

4 4.6266 0.018584 

5 4.5851 0.0088819 

6 4.5683 0.030466 

7 4.5511 0.037610 

8 4.5394 0.042764 

9 4.5372 0.042178 

 

Table. 11.12. Statistics for both drag and lift coefficients when octagon is taken obstacle 

and 0.1, 0.3 and Re 20m MaxD U    (parabolic velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 5.8833 -0.097363 

2 5.9483 0.024889 

3 5.4218 -0.086903 

4 5.4066 -0.023445 

5 5.3690 -0.040017 

6 5.3618 -0.0084999 

7 5.3434 -5.8831E-4 

8 5.3299 0.0067864 

9 5.3294 0.0058913 
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Table. 11.13. Statistics for DEs and BEs when circle is taken obstacle. 

Mesh level Domain elements Boundary elements 

1 882 108 

2 1512 160 

3 2422 206 

4 4522 306 

5 6722 388 

6 12162 484 

7 28244 1040 

8 69592 2014 

9 125658 2014 

 

Table. 11.14. Statistics for both drag and lift coefficients when circle is taken obstacle and 

0.2 and Re 20cU    (constant velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 5.1671 -0.055807 

2 4.8794 -0.038878 

3 4.8317 -0.057457 

4 4.8197 -0.036253 

5 4.8014 0.0086052 

6 4.8040 0.012904 

7 4.8005 0.046219 

8 4.7965 0.045115 

9 4.7944 0.045508 

 

Table. 11.15. Statistics for both drag and lift coefficients when circle is taken obstacle and 

0.3 and Re 20MaxU   (parabolic velocity profile case). 

Mesh level Drag coefficient ( fD ) Lift coefficient ( fL ) 

1 6.0207 -0.099437 

2 5.6119 -0.102890 

3 5.5788 -0.133150 

4 5.5796 -0.091933 

5 5.5892 0.050458 

6 5.5930 0.038479 

7 5.5863 0.010429 

8 5.5812 0.010423 

9 5.5811 0.010207 
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11.7 Conclusion 

The rectangular domain with the constraints    0, 2.2 x 0,0.41 m   is considered as a 

computational domain. The fluid holding Newton’s law of viscosity is taken in a channel. 

Both the upper and lower walls of the channel are at rest and the relative velocity of fluid 

particles and both walls is zero. The right wall of the channel is specified with Neumann 

condition. Five different shapes of cylinders are taken as an obstacle in between channel 

towards incoming fluid flow from an inlet. The obstacle shapes includes triangle, square, 

hexagon, octagon and circle. The analysis is performed for both the constant and parabolic 

velocity profiles with which the fluid flow has initiated an inlet of channel. The physical 

design is controlled mathematically in terms of Navier-Stokes equations. The finite 

element method is adopted to examine the flow field in the channel along with typical 

obstacles. Later, the drag and lift forces experienced by each obstacle are evaluated by 

performing the line integration around the outer surface of obstacles. For the assumption of 

a constant velocity profile for each obstacle, the pressure singularities are observed at 

corner points of the channel. Due to these singularities, one cannot recover the constant 

velocity profile at an outlet of channel. Such singularities can be eliminated by assuming 

the parabolic velocity profile at an inlet of the channel for each obstacle. Therefore, for the 

flow in a channel having both upper and lower walls at no-slip condition, the most realistic 

approach is to assume the parabolic velocity profile an inlet rather than to move-on with a 

constant velocity profile. Further, the compatibility of choice of velocity is independent of 

geometric illustration of an obstacle. Furthermore, both the drag and lift coefficients are 

found object dependent. To the best of our knowledge no reference data for triangle, 

square, hexagon and octagon shaped obstacles is available in the literature with the present 

proposed constraints. The optimized path from triangle to circular shaped obstacle could 

serve as reference values for the upcoming studies.  
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Thesis General Concluding Remarks 

 

The prime findings of present thesis is itemized as follows: 

 The fluid velocities subject to tangent hyperbolic, Eyring-Powell, Casson and 

Williamson models are found increasing function of curvature parameter. 

 The fluid temperature subject to tangent hyperbolic, Eyring-Powell, Casson and 

Williamson models reflects decline values towards thermal stratification 

parameter.  

 The fluid concentration subject to tangent hyperbolic, Eyring-Powell, Casson and 

Williamson models shows an inverse variation towards solutal stratification 

parameter. 

 The surface quantities which includes Nusselt number and Skin friction coefficient 

are enriched for cylindrical surface as compared to flat surface. 

 For flow in a channel the most realistic approach is to assume the parabolic velocity 

profile at an inlet rather than to move-on with a constant velocity profile. 

 The compatibility of choice of velocity profile is independent of geometric 

illustration of installed obstacle towards ongoing fluid stream. 

 Both drag and lift forces experienced by installed obstacles are increasing function 

of Power law index. 
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