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Abstract

In this thesis, we focus on the boundedness of p-adic integral operators on p-adic function

spaces. We prove the boundedness of p-adic generalized Hausdorff operator on weighted

p-adic Herz and Morrey-type spaces. We also take into account the boundedness of

commutator of same operator by considering symbol function either from central BMO

spaces or Lipschitz spaces defined on the local field Qn
p . Also, we introduce p-adic analog

of fractional Hausdorff operator and prove weak and strong type estimates for it and

related commutators. We compute sharp weak bounds for Hardy operator and its adjoint

operator. Furthermore, we establish the boundedness of weighted multilinear p-adic Hardy

operators on product of Herz-type spaces. Most of these results (in the form of chapter

in this thesis) has been published and remaining is under review in renowned journals of

mathematical science.
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Preface

The aim of this thesis is to study p-adic integral operators on p-adic function spaces.

Our main results include the boundedness of some integral operators like the p-adic

matrix Hausdorff operator, p-adic fractional Hausdorff operator, p-adic Hardy type

operators and weighted multilinear p-adic Hardy operator on function spaces.

In Chapter 2, we come up with the boundedness of Hausdorff operator, defined

by means of linear transformation A, on the weighted p-adic Morrey and weighted

p-adic Herz type spaces. Also, by imposing some special conditions on A, we discuss

the sharpness of the results presented in this Chapter. The contents of this Chapter

has been published in [60].

In Chapter 3, we investigate the boundedness of commutators of matrix Haus-

dorff operator on the weighted p-adic Herz-Morrey space with the symbol functions

in weighted central BMO and Lipschitz spaces. In addition, a result showing bound-

edness of Hausdorff operator on weighted p-adic λ-central BMO spaces is provided as

well. The contents of this Chapter has been published in [95].

In Chapter 4, we prove the weak and strong boundedness of fractional Hausdorff

operator and its commutator on weighted p-adic Lorentz spaces. The boundedness

of commutators is made possible when the symbol function b is taken from Lipschitz

class of functions. The contents of this Chapter has been published on arXiv [94] and

submitted for publication in well reputed journal of mathematics.

In Chapter 5, we consider continuity properties of another important averaging

operator defined on p-adic field, namely the p-adic Hardy operator. We computed the

sharp weak bounds for p-adic Hardy-type operators on the weighted p-adic Lebesgue

spaces Lq(w : Qn
p )(1 < q < ∞). The contents of this Chapter has been published in

[61].

Our study in Chapter 6 adds to and extends the results of Chapter 5 in two ways.

Firstly, we prove the weak boundedness of p-adic fractional Hardy-type operators on

the Lebesgue space L1(w : Qn
p ), and in case of Hardy operator obtain the sharpness

of weak bounds. Secondly, we give an intermediate result showing the sharp weak

iv



contents v

bounds for fractional Hardy operator on p-adic central Morrey space. The contents

of this Chapter has been submitted for publication [63].

In Chapter 7, we consider the multilinear version of p-adic weighted Hardy op-

erator. We studied the weighted boundedness of weighted multilinear p-adic Hardy

operator on the product of Herz-type spaces. The contents of this Chapter are on-

line on research gate [62] and will be submitted soon to some mathematical science

journal.

Naqash Sarfraz

Islamabad, Pakistan

August 10, 2020
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Chapter 1

Introduction to Some Integral

Operators on p-adic Linear Spaces

1.1 Introduction

Over the years, p-adic analysis has gained much attention because of its numerous ap-

plications in different fields of science, especially, in the field of mathematical physics

(see, for instance, [4, 5, 22, 98]). Back in 1989, in the book [100], Vladimirov et al.

proposed a formulation of p-adic quantum mechanics and introduced p-adic stochas-

tic process, p-adic pseudo-differential operators and p-adic quantum theory. Most

importantly, a systematic reconstruction of the well known p-adic Schwartz theory of

distributions was made in this very book. Since the appearance of this monograph,

the study of harmonic analysis on p-adic fields have taken the interest of many re-

searchers which resulted in various generalizations in operator theory and function

spaces. It has now become a key tool to describe the power decay law, the loga-

rithmic decay law [5] and Kohlrausch-Williams-Watts law. It proved itself a natural

base for development of various models of ultrametric diffusion energy landscape [4].

It also attracted a great deal of interest towards quantum mechanics [100], theoreti-

cal biology [23], quantum gravity [2, 8], string theory [89, 99] and spin glass theory

[3, 90]. In [4], it was shown that the p-adic analysis may be efficiently applied both to

relaxation in complex speed systems and processes combined with the relaxation of

a complex environment. p-adic analysis has a vital role in p-adic pseudo-differential

equations and stochastic process, see for example [68, 100]. Besides, in this day and

age many researchers have shown plenty of interest in the study of harmonic and

wavelet analysis, for instance, see [44, 45, 68].
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2 Introduction to Some Integral Operators on p-adic Linear Spaces

Here, in this thesis, our aim is to study some integral operators on function spaces

defined on the p-adic field. Therefore, in order to fulfill our objective, a brief intro-

duction of such a field is mandatory at this stage.

1.2 Preliminaries

Suppose a symbol Q denotes the field of rational numbers. The absolute value |x| of

x ∈ Q satisfies the below properties:

(i) |x| ≥ 0, |x| = 0 iff x = 0,

(ii) |xy| = |x||y|,
(iii) |x+ y| ≤ |x|+ |y|.
Therefore, the function | · | : Q→ R is termed as norm. Differently, let p be a prime

number, if a non-zero rational number x can be written in the form

x =
s

t
pk,

where the integer k = k(x) ∈ Z and s, t ∈ Z are not multiples of p, then the function:

| · |p : Q \ {0} → R,

defined as:

|x|p =

0 if x = 0,

p−k if x 6= 0.

satisfies all the axioms of a field norm with an additional property that:

|x+ y|p ≤ max{|x|p, |y|p}, (1.2.1)

and is commonly known as p-adic norm.

The field of p-adic numbers, denoted by Qp, is the completion of rational numbers

with respect to the p-adic norm | · |p. A p-adic number x ∈ Qp can be written in the

formal power series as (see [100]):

x = pγ
∞∑
k=0

αkp
k, (1.2.2)

where αi, k ∈ Z, α0 6= 0, αi ∈ {0, 1, 2, ..., p− 1}, i = 1, 2, · · ·. The p-adic norm ensures

the convergence of series (1.2.2) in Qp, because |pγβipi|p ≤ p−γ−i

The n-dimensional vector space Qn
p , n ≥ 1, consists of tuples x = (x1, x2, . . . , xn),

where xj ∈ Qp and j = 1, 2, . . . , n. The norm on this space is given by

|x|p = max
1≤j≤n

|xj|p.
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In non-Archimedean geometry, the ball and and its boundary are defined, respec-

tively, as:

Bk(a) = {x ∈ Qn
p : |x− a|p ≤ pk}, Sk(a) = {x ∈ Qn

p : |x− a|p = pk}.

We denote Bk(0) = Bk and Sk(0) = Sk for convenience. Additionally, for every

a0 ∈ Qn
p , a0 +Bk = Bk(a0) and a0 + Sk = Sk(a0).

The geometry of space Qn
p is different from the geometry of space Rn, which follows

from the non-Archimedean property. In particular, the Archimedean axiom is not true

in Qp. For two different balls in non-Archimedean geometry, either they are disjoint

or one is contained in the other.

The local compactness and commutativity of the group Qn
p under addition implies

the existence of Haar measure dx on Qn
p , such that∫

B0

dx = |B0| = 1,

where the notation |B| refers to the Haar measure of a measurable subset B of Qn
p .

Also, it is not difficult to show that |Bk(a)| = pnk, |Sk(a)| = pnk(1 − p−n), for any

a ∈ Qn
p .

1.3 Some p-adic Function Spaces

Next, we highlight some definitions of p-adic weighted function spaces which will be

used in the upcoming chapters. Taking the weight functions to be equal to unity, we

get the definitions of p-adic function spaces. Therefore, we might give the definition

of weight function first.

Definition 1.3.1 ([16]) Let β ∈ R . The set of all nonnegative locally integrable

function w(x) on Qn
p is represented by Wβ and undergoes the below properties:

(a) 0 < w(x) a.e.,

(b) ∞ >
∫
S0
w(x)dx,

(c) w(tx) = |t|βpw(x), for all x ∈ Qn
p and t ∈ Qp\{0}.

A symbol w(E) defines the weighted measure of a measurable subset E ⊂ Qn
p , that is

w(E) =
∫
E
w(x)dx. Clearly a weight w(x) ∈ Wβ needs not to be necessarily locally

integrable function. Importantly, if w(x) = |x|βp , then w(x) ∈Wβ but w(x) ∈ L1
loc(Qn

p )

if and only if β > −n.
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Definition 1.3.2 Suppose w(x) is a weight function on Qn
p . The p-adic space Lq(w;Qn

p ), (0 <

q <∞) is the set of all measurable functions f : Qn
p → R satisfying

‖f‖Lq(w;Qnp ) =

(∫
Qnp
|f(x)|qw(x)dx

) 1
q

<∞.

Now, we define weighted p-adic weak Lebesgue space as

Definition 1.3.3 Suppose w(x) is a weight function on Qn
p . A measurable function

f is in weighted weak Lebesgue space Lq,∞(w,Qn
p ) if:

‖f‖Lq,∞(w,Qnp ) = sup
λ>0

λw

(
{x ∈ Qn

p : |f(x)| > λ}
)1/q

<∞,

where

w({x ∈ Qn
p : |f(x)| > λ}) =

∫
{x∈Qnp :|f(x)|>λ}

w(x)dx.

When w = 1, the above space is reduced to weak Lebesgue space defined on p-adic

linear space [103].

1.3.1 Morrey-type Spaces on Qn
p

Definition 1.3.4 Suppose w is a weight function on Qn
p , λ ≥ −1

q
, where 1 ≤ q <

∞. The p-adic space Lq,λ(w;Qn
p ) is the set of all measurable functions f : Qn

p → R
satisfying

Lq,λ(w;Qn
p ) = {f ∈ Lqloc(w;Qn

p ) :‖ f ‖Lq,λ(w;Qnp )<∞},

where

‖f‖Lq,λ(w;Qnp ) = sup
γ∈Z,a∈Qnp

(
1

w(Bγ(a))λq+1

∫
Bγ(a)

|f(x)|qw(x)dx

)1/q

.

Obviously Lq,−1/q(w;Qn
p ) = Lq(w;Qn

p ), Lq,0(w;Qn
p ) = L∞(w;Qn

p ). When λ > 0, the

Morrey space Lq,λ(w;Qn
p ) is reduced to {0}. So, in this thesis, we always choose λ

from the interval −1/q ≤ λ < 0.

Definition 1.3.5 Suppose w is a weight function on Qn
p , λ ≥ −1

q
, where 1 ≤ q <∞.

The p-adic space Ḃq,λ(w;Qn
p ) is the set of all measurable functions f : Qn

p → R and is

defined as

Ḃq,λ(w;Qn
p ) = {f ∈ Lqloc(Q

n
p ) : ‖f‖Ḃq,λ(w;Qnp ) <∞},

where

‖f‖Ḃq,λ(w;Qnp ) = sup
γ∈Z

(
1

w(Bγ)λq+1

∫
Bγ

|f(x)|qw(x)dx

)1/q

.
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Obviously Lq,λ(w;Qn
p ) ⊂ Ḃq,λ(w;Qn

p ) and Ḃq,−1/q(w;Qn
p ) = Lq(w;Qn

p ). Also, it is

interesting to note that Ḃq,λ(w;Qn
p ) = {0} when λ < −1/q. When w = 1 the weighted

central Morrey space in p-adic field is central Morrey space in p-adic field which is

defined by

Definition 1.3.6 Suppose 1 ≤ q < ∞ and suppose −1
q
≤ λ < 0. A function f ∈

Lploc(Qn
p ) is said to belong to central Morrey spaces Ḃq,λ(Qn

p ) if

Ḃq,λ(Qn
p ) = sup

γ∈Z

(
1

|Bγ|1+λq
H

∫
Bγ

|f(x)|qdx
)1/q

<∞.

When λ = −1/q, then Ḃq,λ(Qn
p ) = Lq(Qn

p ). Evidently, Ḃq,λ(Qn
p ) is reduced to {0}

whenever λ < −1/q.

Definition 1.3.7 Suppose −1
q
≤ λ < 0, where ∞ > q ≥ 1. The p-adic space

WḂq,λ(Qn
p ) is the set of all measurable functions f : Qn

p → R satisfying

WḂq,λ(Qn
p ) = {f : ‖f‖WḂq,λ(Qnp ) <∞},

where

‖f‖WḂq,λ(Qnp ) = sup
γ∈Z
|Bγ|−λ−1/q

H ‖f‖WLq(Bγ),

and ‖f‖WLq(Bγ) is the local p-adic Lq-norm of f(x) restricted to the ball Bγ as

‖f‖WLq(Bγ) = sup
λ>0
|{x ∈ Bγ : |f(x)| > λ}|1/q.

Obviously for λ = −1/q, we have WḂq,λ(Qn
p ) = Lq,∞(Qn

p ) is a p-adic weak Lq space.

Also, Ḃq,λ(Qn
p ) ⊆ WḂq,λ(Qn

p ) for −1/q < λ < 0, where 1 ≤ q <∞.

1.3.2 Herz-type Spaces on Qn
p

Definition 1.3.8 Suppose w(x) is a weight function on Qn
p , α ∈ R and 0 < l, q <∞

then weighted homogeneous p-adic Herz space Kα,l
q (w;Qn

p ) is defined as below:

Kα,l
q (w;Qn

p ) = {f ∈ Lqloc(w;Qn
p\{0}) : ‖f‖Kα,l

q (w;Qnp ) <∞},

where

‖f‖Kα,l
q (w;Qnp ) =

( ∞∑
k=−∞

w(Bk)
αl/n‖fχk‖lLq(w;Qnp )

)1/l

. (1.3.1)
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Since Herz spaces are considered as a generalization of power weighted Lebesgue

spaces. Therefore, we have K0,q
q (w;Qn

p ) = Lq(w;Qn
p ).

When w = 1, the weighted p-adic Herz space is just a p-adic Herz space which can

be define as:

Kα,l
q (Qn

p ) = {f ∈ Lq(Qn
p ) : ‖f‖Kα,l

q (Qnp ) <∞},

where

‖f‖Kα,l
q (Qnp ) =

( ∞∑
k=−∞

pkαl‖fχk‖lLq(Qnp )

)1/q

.

Definition 1.3.9 Suppose w(x) is a weight function on Qn
p , α is a real number,

0 < q, l < ∞ and λ ∈ R+ then the weighted homogeneous p-adic Morrey-Herz space

MKα,λ
l,q (w;Qn

p ) is defined as:

MKα,λ
l,q (w;Qn

p ) = {f ∈ Lqloc(w,Q
n
p\{0}) : ‖f‖MKα,λ

l,q (w;Qnp ) <∞},

where

‖f‖MKα,λ
l,q (w;Qnp ) = sup

k0∈Z
w(Bk0)

−λ/n
( k0∑
k=−∞

w(Bk)
αl/n‖fχk‖lLq(w;Qnp )

)1/l

. (1.3.2)

Weighted p-adic Morrey-Herz space is reduced to p-adic Morrey-Herz space if w = 1

which can be defined as:

MK̇α,λ
l,q (Qn

p ) = {f ∈ Lqloc(Q
n
p \ {0}) : ‖f‖MK̇α,λ

l,q (Qnp ) <∞},

where

‖f‖MK̇α,λ
l,q (Qnp ) = sup

k0∈Z
p−k0λ

( ∞∑
k=−∞

pkαl‖fχk‖lLq(Qnp )

)1/l

.

A close observation of (1.3.1) and (1.3.2) reveals that by setting λ = 0 in (1.3.2)

we get the following equality MKα,0
l,q (w;Qn

p ) = Kα,l
q (w;Qn

p ).

1.3.3 BMO-type Spaces on Qn
p

Definition 1.3.10 [21] The weighted p-adic space BMO(w,Qn
p ) satisfies

‖f‖BMO(w,Qnp ) = sup
B

1

w(B)

∫
B

|f(x)− fB|w(x)dx <∞, (1.3.3)

where supremum is taken over all balls B of Qn
p and

fB =
1

|B|

∫
B

f(x)dx. (1.3.4)
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If w = 1, we get the p-adic space BMO(Qn
p ), see [91]. Now, we turn towards the λ-

central BMO space.

Definition 1.3.11 Suppose λ < 1
n

and∞ > q > 1. The p-adic space CMOq,λ(w,Qn
p )

is defined as:

‖f‖CMOq,λ(w,Qnp ) = sup
γ∈Z

(
1

w(Bγ)λq+1

∫
Bγ

|f(x)− fBγ |qw(x)dx

) 1
q

<∞, (1.3.5)

where

fBγ =
1

|Bγ|

∫
Bγ

f(x)dx. (1.3.6)

Remark: When λ = 0, the space CMOq,λ(w,Qn
p ) is just reduced to CMOq(w,Qn

p )

satisfying

‖f‖CMOq(w,Qnp ) = sup
γ∈Z

(
1

w(Bγ)

∫
Bγ

|f(x)− fBγ |qw(x)dx

)1/q

<∞.

Definition 1.3.12 Suppose δ ∈ R+. The Lipschitz space Λδ(Qn
p ) is the space of all

measurable functions f on Qn
p , such that:

‖f‖Λδ(Qnp ) = sup
x,h6=0∈Qnp

|f(x + h)− f(x)|
|h|δp

<∞.

The distribution function of f ∈ Qn
p with a measure w(x)dx is defined as:

µwf (λ) = w{x ∈ Qn
p : |f(x)| > λ}.

The decreasing rearrangement of f with respect to measure w(x)dx is as follows:

fw(t) = inf{λ > 0 : µwf (λ) ≤ t}, t ∈ R+.

Definition 1.3.13 The weighted Lorentz space Lq,s(w,Qn
p ) in p-adic field is the col-

lection of all functions f so that ‖f‖Lq,s(w,Qnp ) <∞, where

‖f‖Lq,s(w,Qnp ) =


(
s
q

∫∞
0

[t1/qfw(t)]s dt
t

)
, if 1 ≤ s <∞,

supt>0 t
1/qfw(t), if s =∞.
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For f ∈ Lq,s(w,Qn
p ) with 0 < s <∞, 0 < q ≤ r <∞, clearly

‖f‖Lr,s(w,Qnp ) ≤ C‖f‖Lq,s(w,Qnp ). (1.3.7)

If an operator T is bounded from Lq,1(w,Qn
p ) into Lr,∞(w,Qn

p ), then T is of weak type

(q, r). From (1.3.7), evidently,

w{x ∈ Qn
p : |Tf(x)| > λ} ≤ Cλ−r‖f‖rLq(w,Qnp ), 1 ≤ q ≤ r <∞,

justifies weak type (q, r) for T .

In Chapter 4, we shall come across the situation where the following Marcinkiewicz

theorem will be helpful for us.

Theorem 1.3.14 Suppose w(x) = |x|αp , α > −n, 1 ≤ q′ < q0, 1 ≤ r′, r0, r
′ 6= r0,

ϑ ∈ (0, 1) and
1

q
= (1− ϑ)/q′ + ϑ/q0,

1

r
= (1− ϑ)/r′ + ϑ/r0.

If T is of weak type (q0, r0) and (q′, r′), then T is bounded from Lq,s(|x|αp ,Qn
p ) into

Lr,s(|x|αp ,Qn
p ), for all 1 ≤ s <∞.

1.4 Introduction to Some Integral Operators

In this thesis, some p-adic integral operators of our interest include the Hardy operator,

the fractional Hardy operator, the weighted Hardy operator, the matrix Hausdorff

operator and the fractional Hausdorff operator. A brief introduction to these operators

define on different underlying spaces is given in the next few subsections.

1.4.1 Hardy-type Operators on Rn

The operator

Hf(x) =
1

x

∫ x

0

f(y)dy, x > 0, (1.4.1)

was introduced by Hardy in [49] which satisfies the following inequality:

‖Hf‖Lq(R+) ≤
q

q − 1
‖f‖Lq(R+), 1 < q <∞. (1.4.2)

It was also shown that the constant q/(q−1) appearing in (1.4.2) is optimal. Knowing

its fundamental importance in analysis, Faris in [27] and Christ and Grafakos in [15]
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proposed an extensions of (1.4.1) and its adjoint to the n-dimensional Euclidian space

Rn of which the equivalent forms are:

Hf(x) =
1

|x|n

∫
|y|≤|x|

f(y)dy, H∗f(x) =

∫
|y|>|x|

f(y)

|y|n
dy, x ∈ Rn \ {0}. (1.4.3)

In addition, the corresponding norms of H and H∗ were computed in [15] which were

same as that of corresponding one dimensional Hardy operators.

Since the appearance of monographs cited above, the study of optimal bounds

for Hardy type operators on function spaces took the global attention and a good

number of research publications were produced in this direction. For instance, the

authors in [32] and [89] investigated this problem on power weighted Lebesgue and

Morrey spaces. Similar results on other function spaces including weak Lebesgue and

Campanato spaces were reported in [114]. Finally, the sharp estimates for Hardy

operator on higher dimensional p-adic product space were obtained in [83].

Let us turn our discussion towards optimal bounds for fractional Hardy type oper-

ators Hα and H∗α (see [33]) which are obtained by replacing |·|n with |·|n+α (0 ≤ α < n)

in each of the components of (1.4.3). In 1930, Bliss [7] worked out the following in-

equality for one-dimensional fractional Hardy operator:

‖Hαf‖Lq(R+) ≤ Csharp‖f‖Lp(R+),

where 0 < α < 1 < p < ∞, 1
p
− 1

q
= α and Csharp =

(
p′

q

)1/q
(

1
qα
B
(

1
qα
, 1
q′α

))1/q−1/p

.

The problem of sharp bounds for Hα on higher dimensional space is recently addressed

in [115]. Mizuta et al. [85] obtained the optimal bounds for Hα in the framework of

Banach function spaces. Recently, in [86], they computed the sharp constant for

the fractional Hardy operator on variable exponent Lebesgue spaces. Besides, the

weak type optimal bounds for the fractional Hardy and adjoint Hardy operators are

of special interest to many researcher, see for instance [36, 37, 38, 112]. In this

context, the book [24] and [48] are probably one of the most books for Hardy type

inequalities. For more details about weak bounds of Hardy type operators see some

late publications including [11, 36, 112].

In what follows the weighted Hardy operator which was defined in [10] is given by

Hψ(f)(x) =

∫ 1

0

f(tx)ψ(t)dt, x ∈ Rn,

where ψ : [0, 1] → [0,∞) is a measurable function. Interestingly, when ψ ≡ 1 and

n = 1, the weighted Hardy operator is reduced to classical Hardy operator given
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in (1.4.1). Xiao [110] proved the boundedness of Hψ on Lp(Rn), 1 ≤ p ≤ ∞ and

BMO(Rn). Moreover, he worked out corresponding operator norms as well. Fu et

al. [29] showed that Hψ is bounded on central Morrey spaces as well as on λ-central

BMO spaces by imposing size conditions on ψ. In addition, in the same paper, they

sharpen these size conditions on ψ. Some results showing boundedness of Hψ on other

function spaces were presented in [28, 79].

The weighted multilinear Hardy operator on Euclidean space was defined by Fu

et al. [31] and is given by

Hm
ψ (f1, · · ·, fm)(x) =

∫ 1

0

· · ·
∫ 1

0

f1(t1x) · · · fm(tmx)ψ(t1, · · ·, tm)dt1 · · · dtm, x ∈ Rn,

where ψ is a nonnegative function defined on [0, 1] × · · · × [0, 1]. In the same paper,

authors studied the boundedness of the very operator on the product of Lebesgue

spaces and central Morrey spaces. Moreover, the boundedness of weighted multilinear

Hardy operators on the product of Herz type spaces was shown in [41]. Finally, we

remark that the celebrated work on weighted Hardy and integral inequalities can be

found in the works by the authors in [65, 67, 69].

1.4.2 Hardy-type Operators on Qn
p

The Hardy operator Hp and its adjoint Hp,∗ on the p-adic field was first time defined

by Fu et al. in [34] and obtained their optimal bounds on Lq(Qn
p ). Central Morrey

space estimates for Hardy type operators along with their commutators on the p-adic

field are established in [109]. In [80], the authors turned towards higher dimensional

product spaces and computed the optimal estimates of Hardy type operators on p-adic

field. Finally, the n-dimensional fractional p-adic Hardy type operators are defined

and studied in [105], which for f ∈ Lloc(Qn
p ) and 0 ≤ α <∞, are given as:

Hp
αf(x) =

1

|x|n−αp

∫
|y|p≤|x|p

f(y)dy, Hp,∗
α f(x) =

∫
|y|p>|x|p

f(y)

|y|n−αp

dy, x ∈ Qn
p \ {0}.

When α = 0, we obtain p-adic Hardy type operators, see [38] for more details.

The weighted p-adic Hardy operator was defined and studied in [91]. For p-adic

numbers’ field Qp and Zp = {x ∈ Qp : 1 ≥ |x|p}, if Z∗p = Zp\{0}, then p-adic weighted

Hardy operator can be defined as:

Hp
ψf(x) =

∫
Z∗p
f(tx)ψ(t)dt,

where ψ is a nonnegative function defined on Z∗p. In a same paper [91], it was shown

that Hp
ψ is bounded on Lq(Qn

p ), ∞ > q > 1 as well as on BMO(Qn
p ). Later in 2013,
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authors in [16] established the boundedness of Hp
ψ on Herz type spaces on p-adic field.

Furthermore, weighted p-adic Hardy operator along with its commutator on p-adic

central Morrey spaces have been discussed in [108].

In what follows weighted multilinear p-adic Hardy operator was extensively studied

in the near past, see for example [18, 80, 81] and the reference therein. The weighted

multilinear Hardy operator on the p-adic field was defined in [81]:

Definition 1.4.1 Let x ∈ Qn
p , m ∈ N and f1, · · ·, fm be nonnegative measurable

functions on Qn
p , then

Hp,m
ψ (f1, · · ·, fm)(x) =

∫
Z∗p
· · ·
∫
Z∗p
f1(t1x) · · · fm(tmx)ψ(t1, · · ·, tm)dt1 · · · dtm,

where ψ is a nonnegative measurable function on Z∗p × · · · × Z∗p.

In the same paper, the authors computed the optimal estimates for weighted multi-

linear Hardy operator on p-adic field on the product of p-adic Lebesgue spaces along

with Morrey type spaces.

1.4.3 Hausdorff Operators on Rn

Hausdorff summability methods (Hausdorff operators) contributed a lot in the study

of one dimensional Fourier analysis, more specifically, in the study of summability

properties of classical Fourier series. Back in 1917, Hurwitz and Silverman [54] studied

number of methods related to the Hausdorff summability. The real breakthrough came

in 1921, when Hausdorff [49] not only rediscovered the same summability problems

but also associated them with a familiar moment problem for a finite interval. The

later publications in this topic include [6, 46, 90, 104]. In the manuscript [96], Siskakis

started working on composition operators as well as on Cesáro mean in Hp spaces. His

nice brief proof for H1 boundedness of Cesáro operator in [97] was an important result

in the context of developing theory of Hausdorff operator. In [39] and [40] extension

of results of [96] and [97] was made to the Fourier transform setting on the real line.

The research article [39] was the gateway for Móricz and other authors to attempt a

more general averaging operator than Cesáro.

Recent attention towards studying Hausdorff operators on function spaces is a

consequence of the paper [75] by Liflyand and Mórecz. In the paper, they proved that

the operator

HΦf(x) =

∫ ∞
0

Φ(t)

t
f
(x
t

)
dt, (1.4.4)
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is bounded from H1(R) into H1(R). The ensuing manuscript [73] extended these

results on the real Hardy spaces Hp(R), 0 < p < 1, by employing some smoothness

conditions on the kernel function Φ. Also, the article [76] on Hausdorff operator was

written in a quick succession of [75].

Besides its summability properties, the operator is considered as the generaliza-

tion of the operators like the Cesàro operator, Hardy type operators. These are the

properties of HΦ that served to encourage researchers to study it in high dimensional

Euclidian space Rn. In this perspective an extension of (1.4.4) was made in [70] and

is given by

HΦ,Af(x) =

∫
Rn

Φ(t)f(A(t)x)dt, (1.4.5)

where Φ ∈ L1
loc(Rn) and A(t) is a square matrix with detA(t) 6= 0 almost everywhere

in the support Φ.

Here, it may be quite appropriate to outline some developments in the theory

of Hausdorff operator during the recent years. A survey reveals that much of the

literature on Hausdorff operator is focused on its boundedness on the Hardy spaces

H1 [14, 64, 70, 75, 108] and a little on Hp, 0 < p < 1, [13, 74, 73]. Without

going into the detailed history, we mention a few recent publications which include

[9, 12, 13, 14, 72, 26, 56, 64, 70, 72, 74, 92, 108, 113]. The matrix Hausdorff operator

was defined in [12]:

HΦ,Af(x) =

∫
Rn

Φ(t)

|t|n
f(A(t)x)dt. (1.4.6)

If A(t) = diag[1/|t|, ..., 1/|t|], then we get another definition of Hausdorff operator

which was defined in the same paper [12]:

HΦf(x) =

∫
Rn

Φ(t)

|t|n
f

(
x

|t|

)
dt. (1.4.7)

In [12], atomic decomposition of Hardy spaces was employed for the boundedness of

Hausdorff operators in these spaces. Another important development made in [12]

was the introduction of rough Hausdorff operator defined by

H̃Φ,Ωf(x) =

∫
Rn

Φ(x/|y|)
|y|n

Ω(y′)f(y)dy, (1.4.8)

where the restriction Ω|Sn−1 of Ω on the unit sphere is integrable with respect to the

normed Lebesgue measure dy and Φ is a radial function defined on R+. If Ω = 1, we

get the following operator:

H̃Φf(x) =

∫
Rn

Φ(x/|y|)
|y|n

f(y)dy, (1.4.9)
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which is also focused to study in the same paper [12].

An extension of the operator in (1.4.9) is the fractional Hausdorff operator which

was studied by Lin and Sun [78] and is given as:

HΦ,β(f)(x) =

∫
Rn

Φ(|x|/|y|)
|y|n−β

f(y)dy, 0 ≤ β < n. (1.4.10)

It is important to mention here that if the kernel function Φ in (1.4.10) is selected

smartly then HΦ,β is reduced to the some classical operators like Hardy operator,

adjoint Hardy operator, Hardy-Littlewood-Pólya operator and Cesáro operator. Weak

and strong estimates of two kinds of multilinear fractional Hausdorff operator on

Lebesgue space were studied by Fan and Zhao in [26]. Similar estimates for the

commutators of fractional Hausdorff operator were reported in [56]. Gao and Zhao

[38] obtained the optimal estimates for fractional Hausdorff operators.

1.4.4 Hausdorff Operators on Qn
p

The study of Hausdorff operator on p-adic function spaces is solely due to Volosivets

[102, 101]. Suppose that Φ(t) is measurable on Qn
p , n× n matrix A(t) is nonsingular

almost everywhere and has the continuous components aij(t) : Qn
p → Qp and f(x) is

continuous on Qn
p . Then the Hausdorff operator is as follows

HΦ,A(f)(x) =

∫
Qnp

Φ(t)f(A(t)x)dt.

whenever Lebesgue integral exists.

In [102], Volosivets studied the boundedness of HΦ,A in the real Hardy spaces

H1(Qn
p ), the matrix A(t) was restricted to A(t) = a(t)E, where E is the identity

matrix. Subsequently, in [101], by replacing the condition on the form of the matrix

A with the constraints on its norm in Qn
p , he obtained the boundedness of HΦ,A in

H1(Qn
p ) and BMO(Qn

p ).

1.5 Our Contribution to the Theory of Hardy-type

Operators

We contributed to the theory of p-adic Hardy-type operators in many ways. Firstly,

we obtain the boundedness of p-adic matrix Hausdorff operator on p-adic Morrey and

Herz-type spaces. Also, under some special conditions on the norm of the matrix, we
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proved sharpness of these results. Secondly, we not only defined the commutators of

p-adic matrix Hausdorff operator on p-adic field:

Hb
Φ,A(f)(x) = b(x)HΦ,A(f)(x)−HΦ,A(bf)(x), (1.5.1)

but also introduced the p-adic analog of fractional Hausdorff operator in the following

form:

HΦ,β(f)(x) =

∫
Qnp

Φ(x|y|p)
|y|n−βp

f(y)dy, 0 ≤ β < n, (1.5.2)

where |y|p is considered to be equal to some power of p as an element of Qp. We also

define and studied the commutators generated by fractional Hausdorff operator and

the Lipschitz function. Finally, we remark that if β = 0, we get the another type of

Hausdorff operator and is as follows

HΦ(f)(x) =

∫
Qnp

Φ(x|y|p)
|y|np

f(y)dy, (1.5.3)

which was recently studied in [103]. Also, we computed optimal weak bounds for

p-adic Hardy type operators on weighted p-adic Lebesgue spaces and weighted p-adic

central Morrey spaces. Finally, we acquired sharp size stipulations on the kernal

function ψ such that weighted p-adic Hardy operator is bounded on product of Herz

type spaces.

1.5.1 References of Contribution

The contribution is cited in the reference list which include [60, 61, 62, 63, 94, 95].



Chapter 2

The Hausdorff Operator on

Weighted p-adic Morrey and

Herz-type Spaces

2.1 Introduction

In this Chapter, we will study Hausdorff operator on p-adic function spaces of power

weighted type including Lebesgue spaces, Morrey spaces, and Herz type spaces. Con-

trary to [101, 102], we employ a different methodology to prove our results. In ad-

dition, by imposing some conditions on the norm of the matrix A, we discuss the

sharpness of our results as well. These results are important in the sense that HΦ,A

is a p-adic Hardy-Littlewood operator and p-adic modified Hardy operator if A(t) is

diagonal matrix and Φ is suitably chosen. Secondly, the analysis presented in this

paper can be used to prove the boundedness of HΦ,A and its commutators on other

weighted function spaces of p-adic nature, see for example [95].

In the remaining of this section, we suggest some basic definitions and notation,

as well as some useful lemmas. We prove the main theorems stating the bounded-

ness of HΦ,A on weighted p-adic Herz-type spaces in the next Section. However, the

boundedness of HΦ,A on weighted p-adic Morrey-type spaces is proved in the last

Section.

Lemma 2.1.1 ([101]) Suppose D is an n×n matrix with entries dij ∈ Qp. Then the

norm of D, regarded as an operator from Qn
p to Qn

p , is

‖D‖ = max
1≤i≤n

max
1≤j≤n

|dij|p.

15
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The action of operator D with matrix {dij}ni,j=1 on x = (x1, x2, ..., xn) ∈ Qn
p can be

expressed as

Dx =

(
n∑
j=1

d1jxj, ...,

n∑
j=1

dnjxj

)
.

Lemma 2.1.2 Suppose that an n × n matrix D with entries dij ∈ Qp is invertible.

Then

‖D−1‖n ≥ | detD−1|p ≥ ‖D‖−n (2.1.1)

Proof. By virtue of (1.2.1) and Lemma 2.1.1, we have

|Dx|p ≤ max
1≤i≤n

∣∣∣∣∣
n∑
j=1

dijxj

∣∣∣∣∣
p

≤ max
1≤i≤n

max
1≤j≤n

|dij|p|xj|p ≤ ‖D‖|x|p

for any x ∈ Qn
p . Then, by replacing x with D−1x, we have

‖D‖−1|x|p ≤ |D−1x|p ≤ ‖D−1‖|x|p. (2.1.2)

Thus,

|{x ∈ Qn
p : ‖D‖−1|x|p ≤ 1}| ≥ |{x ∈ Qn

p : |D−1x|p ≤ 1}|
≥ |{x ∈ Qn

p : ‖D−1‖|x|p ≤ 1}|,

which leads to (2.1.1) without any essential difficulty, since |B0| = 1.

Lemma 2.1.3 ([21]) Let w ∈Wβ, γ ∈ Z and β > −n. Then we have

w(Bγ) = p(n+β)γ and w(Sγ) = p(n+β)γ · w(S0)

Here and in the sequel, for brevity’s sake, we use the following sign:

G(D, δ) =

‖D‖δ if δ > 0,

‖D−1‖−δ if δ ≤ 0,
(2.1.3)

where δ is a real number and D is a nonsingular matrix.

Evidently:

G(D, β(1/p+ 1/q)) =G(d, β/p)G(d, β/q), (2.1.4)

where p, q ∈ Z+.
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Lemma 2.1.4 Let β > −n, w(x) = |x|βp , D be any invertible matrix and x ∈ Qn
p ,

then

w(Dx) ≤

‖D‖βw(x) if β > 0,

‖D−1‖−βw(x) if β ≤ 0,

= G(D, β)w(x).

Proof. The definition of w(x) and (2.1.2) will do world of good to prove a lemma.

Lemma 2.1.5 Suppose β > −n, w(x) = |x|βp and D is any invertible matrix, then

we have

(i) w(DBk(a)) ≤ G(D, β)| detD|pw(Bk(a)),

(ii) w(Bk+logp ‖D‖) = w(S0)
p(n+β)

p(n+β) − 1
‖D‖n+βw(Bk).

Proof.(i) Since,

w(DBk(a)) =

∫
DBk(a)

|x|βpdx

=

∫
Bk(a)

|Dz|βp | detD|pdz

= | detD|p
∫
Bk(a)

w(Dz)dz.

The proof is completed courtesy Lemma 2.1.4.

(ii) Similarly,

w(Bk+logp ‖D‖) =

logp ‖D‖∑
j=−∞

w(Sk+j)

= w(S0)

logp ‖D‖∑
j=−∞

p(n+β)(k+j)

= w(S0)
p(n+β)

p(n+β) − 1
‖D‖n+βw(Bk),

where we employed Lemma 2.1.3 at the second and third step.
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2.2 Bounds of Hausdorff Operator on Weighted p-

adic Herz-type Spaces

The current section consists of results on the boundedness of p-adic Hausdorff operator

on p-adic Herz type spaces. The results and their proofs are as under:

Theorem 2.2.1 Let 1 ≤ q, l <∞, 0 ≤ λ > α, β > −n and w(x) = |x|βp , then HΦ,A

is bounded on MKα,λ
l,q (w;Qn

p ) and satisfy the following inequality

‖HΦ,A‖MKα,λ
l,q (w;Qnp )

≤ C‖f‖MKα,λ
l,q (w;Qnp )

∫
Qnp
| detA−1(t)|1/qp ‖A(t)‖(λ−α)(n+β)/nG(A−1(t), β/q)|Φ(t)|dt.

Proof. For k ∈ Z, use of Minkowski’s inequality, p-adic change of variables and

Lemma 2.1.4 give

‖(HΦ,A)χkf‖Lq(w;Qnp )

=

(∫
Sk

∣∣∣∣ ∫
Qnp
f(A(t)x)Φ(t)dt

∣∣∣∣qw(x)dx

)1/q

≤
∫
Qnp

(∫
Sk

|f(A(t)x)|qw(x)dx

)1/q

|Φ(t)|dt

=

∫
Qnp

(∫
A(t)Sk

|f(x)|qw(A−1(t)x)| detA−1(t)|pdx
)1/q

|Φ(t)|dt

=

∫
Qnp
‖fχA(t)Sk‖Lq(w;Qnp )| detA−1(t)|1/qp G(A−1(t), β/q)|Φ(t)|dt, (2.2.1)

where A(t)Sk denotes the set: {x : A−1(t)x ∈ Sk}. Hence, by definition of Sk and

(2.1.2), Evidently,

‖A(t)‖−1|x|p ≤ |A−1(t)x|p = pk.

Making use of the condition 1 ≤ q <∞, one has

‖fχA(t)Sk)‖Lq(w;Qnp

≤
(∫

|x|p≤‖A(t)‖pk
|f(x)|qw(x)dx

)1/q

≤ C

logp ‖A(t)‖∑
j=−∞

‖fχk+j‖Lq(w;Qnp ). (2.2.2)

Inequalities (2.2.1) and (2.2.2) together yield

‖(HΦ,Af)χk‖Lq(w;Qnp )

≤ C

∫
Qnp

logp ‖A(t)‖∑
j=−∞

‖fχk+j‖Lq(w;Qnp )| detA−1(t)|1/qp G(A−1(t), β/q)|Φ(t)|dt, (2.2.3)
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Hence, by means of Minkowski inequality and (2.2.3), we have

‖HΦ,Af‖MKα,λ
l,q (w;Qnp )

= sup
k0∈Z

p−k0λ(n+β)/n

{
k0∑

k=−∞

(
pkα(n+β)/n ‖(HΦ,Af)χk‖Lq(w;Qnp )

)l}1/l

≤ C

∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)|Φ(t)|

× sup
k0∈Z

p−k0λ(n+β)/n


k0∑

k=−∞

logp ‖A(t)‖∑
j=−∞

pkα(n+β)/n ‖fχk+j‖Lq(w;Qnp )

l


1/l

dt

≤ C

∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)|Φ(t)|

logp ‖A(t)‖∑
j=−∞

pj(λ−α)(n+β)/n

× sup
k0∈Z

p−(k0+j)λ(n+β)/n

{
k0+j∑
k=−∞

pkα(n+β)l/n ‖fχk‖lLq(w;Qnp )

}1/l

dt. (2.2.4)

Since, α < λ, therefore

logp ‖A(t)‖∑
j=−∞

pj(λ−α)(n+β)/n =
‖A(t)‖(λ−α)(n+β)/n

1− p(α−λ)(n+β)/n
. (2.2.5)

Substituting the value of this sum into (2.2.4), we get

‖HΦ,Af‖MKα,λ
l,q (w;Qnp )

≤ C‖f‖MKα,λ
l,q (w;Qnp )

∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)‖A(t)‖(λ−α)(n+β)/n|Φ(t)|dt.

Having slightly strict conditions on Φ and the norm of the matrix A, we get the

sharp result as below:

Theorem 2.2.2 Let 1 ≤ q, l < ∞, 0 ≤ λ, α < λ < α + n/q, β > −n, w(x) = |x|βp
and Φ be a non-negative function. Let there exists a constant C0 free from t in such

a way that ‖A(t)‖−1 ≥ 1
C0
‖A−1(t)‖ for every t ∈ supp(Φ), then HΦ,A is bounded on

MKα,λ
l,q (w;Qn

p ) if and only if∫
Qnp
‖A(t)‖(λ−α−n/q)(n+β)/nΦ(t)dt <∞.
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Proof. The sufficient part can be obtained from Theorem 2.2.1, so we are only

interested in necessary part. If ‖A(t)‖−1 ≥ 1
C0
‖A−1(t)‖, then the inequality (2.1.1)

reduces to

‖A(t)‖−n ' | detA−1(t)|p ' ‖A−1(t)‖n, (2.2.6)

and we divide the remaining proof into couple of cases which are as follows.

Case I: λ 6= 0.

For present case we choose

f0(x) = |x|(λ−α−n/q)(n+β)/n
p .

Obviously, f0 ∈ Lqloc(w;Qn
p\{0}), therefore, by Lemma 2.1.3, we have

‖(f0)χk‖qLq(w;Qnp ) =

∫
Sk

|x|(λ−α−n/q)(n+β)q/n
p w(x)dx = pk(λ−α)(n+β)q/nw(S0).

Also,

‖f0‖MKα,λ
l,q (w;Qnp ) = sup

k0∈Z
p−k0λ(n+β)/n

{
k0∑

k=−∞

(
pkα(n+β)/n‖(f0)χk‖Lq(w;Qnp )

)l}1/l

= w(S0)1/q sup
k0∈Z

p−k0λ(n+β)/n

{
k0∑

k=−∞

pkλ(n+β)l/n

}1/l

= w(S0)1/q pλ(n+β)/n

(pλ(n+β)l/n − 1)
1/l

<∞.

Also, with a stipulation λ < α + n/q, we get

HΦ,Af0(x) =

∫
Qnp
|A(t)x|(λ−α−n/q)(n+β)/n

p Φ(t)dt

≥ |x|(λ−α−n/q)(n+β)/n
p

∫
Qnp
‖A(t)‖(λ−α−n/q)(n+β)/nΦ(t)dt

= f0(x)

∫
Qnp
‖A(t)‖(λ−α−n/q)(n+β)/nΦ(t)dt.

Since HΦ,A is bounded on MKα,λ
l,q (w;Qn

p ), it follows that∫
Qnp
‖A(t)‖(λ−α−n/q)(n+β)/nΦ(t)dt ≤ ‖HΦ,A‖MKα,λ

l,q (w;Qnp )−→MKα,λ
l,q (w;Qnp ) <∞.

Case II: If λ = 0.

For the current case, the space MKα,λ
l,q (w;Qn

p ) reduces to Kα,l
q (w;Qn

p ) which is the
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weighted Herz space. In view of the condition α + n/q > 0, we choose

fε(x) = |x|−(α+n/q)(n+β)/n−ε/q
p χ{|x|p≥1} (2.2.7)

Hence, for k ≥ 0, we have

‖(fε)χk‖qLq(w;Qnp ) =

∫
Sk

|x|−(α+n/q)(n+β)q/n−ε
p w(x)dx = p−kα(n+β)q/n−kεw(S0).

Also,

‖fε‖K̇α,l
q (w;Qnp ) =

{
∞∑
k=0

(
pkα(n+β)/n‖(fε)χk‖Lq(w;Qnp )

)l}1/l

= w(S0)1/q

{
∞∑
k=0

p−kεl/q

}1/l

= w(S0)1/q pε/q

(pεl/q − 1)
1/l

<∞.

On the other hand, we get

HΦ,Afε(x) =

∫
Qnp
fε(A(t)x)χ{|A(t)x|p>1}Φ(t)dt

≥
(∫

‖A(t)‖≥ 1
|x|p

‖A(t)‖−(α+n/q)(n+β)/n−ε/qΦ(t)dt

)
|x|−(α+n/q)(n+β)/n−ε/q

p ,

which suggest that

HΦ,Afε(x) =

{
∞∑

k=−∞

pkα(n+β)l/n‖(HΦ,Afε)χk‖lLq(w;Qnp )

}1/l

≥

{
∞∑

k=−∞

pkα(n+β)l/n

(∫
Sk

|x|−(α+n/q)(n+β)q/n−ε
p

×

∣∣∣∣∣
∫
‖A(t)‖≥ 1

|x|p

‖A(t)‖−(α+n/q)(n+β)/n−ε/qΦ(t)dt

∣∣∣∣∣
q

w(x)dx

)l/q}1/l

≥ w(S0)1/q

{
∞∑

k=−∞

p−kεl/q
(∫
‖A(t)‖≥p−k

‖A(t)‖−(α+n/q)(n+β)/n−ε/qΦ(t)dt

)l}1/l

.

Let us take ε = p−m then |ε|p = pm. Therefore, for 0 ≤ m ≤ k we have

‖HΦ,Afε‖K̇α,l
q (w;Qnp )

≥ w(S0)1/q

∫
‖A(t)‖≥ε

‖A(t)‖−(α+n/q)(n+β)/n−ε/qΦ(t)dt

{
∞∑
k=m

p−kεl/q

}1/l

≥ εε/q‖fε‖K̇α,l
q (w;Qnp )

∫
‖A(t)‖≥ε

‖A(t)‖−(α+n/q)(n+β)/n−ε/qΦ(t)dt.
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Letting ε→ 0+, we get∫
Qnp
‖A(t)‖−(α+n/q)(n+β)/nΦ(t)dt ≤ ‖HΦ,A‖Kα,l

q (w;Qnp )−→Kα,l
q (w;Qnp ) <∞.

Here, it is important to note that we cannot take α = λ = 0 in Theorems 2.2.1 and

2.2.2 and therefore cannot deduce results for Lebesgue space Lq(w;Qn
p ). The reason

is that in case α = λ = 0, the series (2.2.5) will be no longer convergent.

2.3 Bounds of Hausdorff Operator on Weighted

Morrey-type Spaces

In a present section, we show the boundedness of HΦ,A on Morrey spaces Lq,λ(w;Qn
p ),

Moreover, the results for Lebesgue space Lq(w;Qn
p ) can be deduced from the Theorems

of this section by assigning special values to the parameters.

Theorem 2.3.1 Suppose 0 > λ ≥ −1/q ∞ > q > 1 and w(x) = |x|βp , then HΦ,A is

bounded on Lq,λ(w;Qn
p ) and satisfy the following inequality

‖HΦ,Af‖Lq,λ(w;Qnp )

≤ ‖f‖Lq,λ(w;Qnp )

∫
Qnp
| detA(t)|λpG(A(t), β(λ+ 1/q))G(A−1(t), β/q)|Φ(t)|dt.

Proof. Let f ∈ Lq,λ(w;Qn
p ), then an application of Minkowski’s inequality, p-adic

change of variables and Lemma 2.1.4, yields(
1

w(Bγ(a))λq+1

∫
Bγ(a)

|HΦ,Af(x)|qw(x)dx

)1/q

=

(
1

w(Bγ(a))λq+1

∫
Bγ(a)

∣∣∣∣ ∫
Qnp
f(A(t)x)Φ(t)dt

∣∣∣∣qw(x)dx

)1/q

≤
∫
Qnp

(
1

w(Bγ(a))λq+1

∫
Bγ(a)

|f(A(t)x)|qw(x)dx

)1/q

|Φ(t)|dt

≤
∫
Qnp

(
1

w(Bγ(a))λq+1

∫
A(t)Bγ(a)

|f(x)|qw(A−1(t)x)| detA−1(t)|pdx
)1/q

|Φ(t)|dt

=

∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)|Φ(t)|

×
(

1

w(Bγ(a))λq+1

∫
A(t)Bγ(a)

|f(x)|qw(x)dx

)1/q

dt. (2.3.1)
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Making use of the condition 1 + λq ≥ 0 and Lemma 2.1.5(i), we have(
1

w(Bγ(a))λq+1

∫
Bγ(a)

|HΦ,Af(x)|qw(x)dx

)1/q

≤
∫
Qnp

(
1

w(A(t)Bγ(a))λq+1

∫
A(t)Bγ(a)

|f(x)|qw(x)dx

)1/q

× (| detA(t)|pG(A(t), β))λ+1/q | detA−1(t)|1/qp G(A−1(t), β/q)|Φ(t)|dt

≤ ‖f‖Lq,λ(w;Qnp )

∫
Qnp
| detA(t)|λpG(A(t), β(λ+ 1/q))G(A−1(t), β/q)|Φ(t)|dt.

In the next Theorem, we sharpen the result by imposing special conditions on Φ

and on the norm of matrix A(t).

Theorem 2.3.2 Suppose 0 > λ > −1/q and ∞ > q > 1 , −n < β, w(x) = |x|βp and

Φ is a non-negative function. Suppose there exists a constant C0 free from t in such

a way that ‖A(t)‖−1 ≥ 1
C0
‖A−1(t)‖ for every t ∈ supp(Φ), then HΦ,A is bounded on

Lq,λ(w;Qn
p ) if and only if ∫

Qnp
‖A(t)‖(n+β)λΦ(t)dt <∞.

Proof. The sufficient part follows from Theorem 2.3.1, thus we will only prove the

necessary part. If ‖A(t)‖−1 ≥ 1
C0
‖A−1(t)‖, then the inequality (2.1.1) gives us (2.2.6).

Here, we consider the cases −1
q
< λ < 0 and λ = −1

q
, separately.

Case I: −1/q < λ <∞.

We consider f0(x) = |x|(n+β)λ
p , then by Lemma 2.4 in [21], f0 ∈ Lq,λ(w;Qn

p ) and

‖f0‖Lq,λ(w;Qnp ) > 0. Hence, we have

HΦ,Af0 =

∫
Qnp
|A(t)x|(n+β)λ

p Φ(t)dt

� |x|(n+β)λ
p

∫
Qnp
‖A(t)‖(n+β)λΦ(t)dt

= f0(x)

∫
Qnp
‖A(t)‖(n+β)λΦ(t)dt.

Therefore, ∫
Qnp
‖A(t)‖(n+β)λΦ(t)dt ≤ ‖HΦ,A‖Lq,λ(w;Qnp )−→Lq,λ(w;Qnp ).
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Case II: λ = −1/q.

In this case weighted Morrey space Lq,λ(w;Qn
p ) on p-adic field reduces to weighted

p-adic Lebesgue space Lq(w;Qn
p ). By taking α = 0 in (2.2.7) we choose

fε(x) = |x|−(n+β)/q−ε/q
p χ{|x|p≥1}.

In addition, taking l = q and following the same procedure as followed in the proof of

Theorem 2.2.2(Case II), it is easy to conclude that∫
Qnp
‖A(t)‖−(n+β)/qΦ(t)dt ≤ ‖HΦ,A‖Lq(w;Qnp )−→Lq(w;Qnp ).

Next, we give the following result for the boundedness of HΦ,A on p-adic central

Morrey space Ḃq,λ(w;Qn
p ) :

Theorem 2.3.3 Suppose ∞ > q > 1, 0 > λ > −1/q and w(x) = |x|βp , then HΦ,A is

bounded on Ḃq,λ(w;Qn
p ) and satisfy the following inequality

‖HΦ,A‖Ḃq,λ(w;Qnp ) ≤ ‖f‖Ḃq,λ(w;Qnp )w(S0)λ+1/q

(
p(n+β)

p(n+β) − 1

)λ+1/q

×
∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)‖A(t)‖(n+β)(λ+1/q)Φ(t)dt.

Proof. Let f ∈ Ḃq,λ(w;Qn
p ). In this case Bγ(a) = Bγ, therefore, we infer from (2.3.1)

that(
1

w(Bγ)λq+1

∫
Bγ

|HΦ,Af(x)|qw(x)dx

)1/q

=

∫
Qnp

(
1

w(Bγ)λq+1

∫
A(t)Bγ

|f(x)|qw(x)dx

)1/q

| detA−1(t)|1/qp G(A−1(t), β/q)Φ(t)dt.

In view of the condition that 1 + λq ≥ 0 and Lemma 2.1.5 (ii), we get(
1

w(Bγ)λq+1

∫
Bγ

|HΦ,Af(x)|qw(x)dx

)1/q

≤
(
w(S0)p(n+β)

p(n+β) − 1

)λ+1/q ∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)‖A(t)‖(n+β)(λ+1/q)Φ(t)

×
(

1

w(Bγ+logp ‖A(t)‖)λq+1

∫
Bγ+logp ‖A(t)‖

|f(x)|qw(x)dx

)1/q

dt

≤ w(S0)λ+1/q

(
p(n+β)

p(n+β) − 1

)λ+1/q

‖f‖Ḃq,λw (Qnp )

×
∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)‖A(t)‖(n+β)(λ+1/q)Φ(t)dt.
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Finally , the following theorem is stated without proof. The proof can easily be

obtained from the standard analysis presented in this Chapter.

Theorem 2.3.4 Suppose 0 > λ > −1/q and ∞ > q > 1, −n > β and Φ is a

non-negative function. Suppose there is a constant C0 free from t in such a way that

‖A(t)‖−1 ≥ 1
C0
‖A−1(t)‖ for every t ∈ supp(Φ), then HΦ,A is bounded on Ḃq,λ(w;Qn

p )

if and only if ∫
Qnp
‖A(t)‖(n+β)λΦ(t)dt <∞.



Chapter 3

Estimates for p-adic Hausdorff

Operator and Commutators

3.1 Introduction

The boundedness properties of commutator operators is an important aspect of har-

monic analysis as these are useful in the study of characterization of function spaces

and regularity theory of partial differential equations. The commutators of Haus-

dorff operator HΦ,A with locally integrable function b were defined in (1.5.1). The

boundedness of the analog of Hb
Φ,A on Rn and its special case, when A(t) is diagonal,

were discussed in [55, 56, 57, 59, 93, 106]. However, this topic still needs further

considerations in the sense of its boundedness on p-adic function spaces.

In the current Chapter, we mainly discuss the boundedness of Hb
Φ,A on p-adic

weighted Herz type spaces when b is either from CMOq2(w,Qn
p ) or Λδ(Qn

p ). In addition

an intermediate result stating the boundedness of matrix Hausdorff operator on p-adic

field on CMOq,λ(w,Qn
p ) spaces will be given at first.

3.2 Hausdorff Operator on p-adic CMOq,λ(w,Qn
p)

Having discussed the basic theory on p-adic function spaces and special result regard-

ing the matrix Hausdorff operator in Chapters 1 and 2, now we come up with the

following theroem:

Theorem 3.2.1 Suppose 1/n > λ > 0, ∞ > q > 1, −n < β and w(x) = |x|βp , then

HΦ,A is bounded on CMOq,λ(w,Qn
p ) and satisfies the following inequality:

‖HΦ,A‖CMOq,λ(w,Qnp ) ≤ K1‖f‖CMOq,λ(w,Qnp ),

26
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where

K1 =

∫
Qnp
| detA(t)|λpG(A−1(t), β/q)G(A(t), β(λ+ 1/q))|Φ(t)|dt.

Proof. Suppose f ∈ CMOq,λ(w,Qn
p ). By means of Fubini theorem and p-adic change

of variables we have:(
HΦ,Af

)
Bγ

=
1

|Bγ|

∫
Bγ

(∫
Qnp
f(A(t)x)Φ(t)dt

)
dx

=

∫
Qnp

(
1

|Bγ|

∫
Bγ

f(A(t)x)dx

)
Φ(t)dt

=

∫
Qnp

(
1

|Bγ|

∫
A(t)Bγ

f(x)dx

)
| detA−1(t)|pΦ(t)dt

=

∫
Qnp

(
1

|A(t)Bγ|

∫
A(t)Bγ

f(x)dx

)
Φ(t)dt

=

∫
Qnp
fA(t)BγΦ(t)dt.

Using Minkowski’s inequality, Lemma 2.1.4 and Lemma 2.1.5(i) with a = 0, we are

down to:(
1

w(Bγ)λq+1

∫
Bγ

|HΦ,Af(x)− (HΦ,A)Bγ |qw(x)dx

)1/q

=

(
1

w(Bγ)λq+1

∫
Bγ

∣∣∣∣ ∫
Qnp

(f(A(t)x)− fA(t)Bγ )Φ(t)dt

∣∣∣∣qw(x)dx

)1/q

≤
∫
Qnp

(
1

w(Bγ)λq+1

∫
Bγ

∣∣∣∣f(A(t)x)− fA(t)Bγ

∣∣∣∣qw(x)dx

)1/q

|Φ(t)|dt

≤
∫
Qnp
| detA−1(t)|1/qp G(A−1(t), β/q)

×
(

1

w(Bγ)1+λq

∫
A(t)Bγ

∣∣∣∣f(x)− fA(t)Bγ

∣∣∣∣qw(x)dx

)1/q

|Φ(t)|dt

≤
∫
Qnp
| detA(t)|λpG(A−1(t), β/q)G(A(t), β(λ+ 1/q))

×
(

1

w(A(t)Bγ)λq+1

∫
A(t)Bγ

∣∣∣∣f(x)− fA(t)Bγ

∣∣∣∣qw(x)dx

)1/q

|Φ(t)|dt

≤ ‖f‖CMOq,λ(w,Qnp )

∫
Qnp
| detA(t)|λpG(A−1(t), β/q)G(A(t), β(λ+ 1/q))|Φ(t)|dt.

Thus, we completed the proof of Theorem 3.2.1.
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3.3 Weighted CBMO Estimates for Hb
Φ,A on Weighted

Herz-Morrey Spaces

The present section demonstrates that commutators of Hausdorff operator are bounded

when b ∈ CMOq(w,Qn
p ).

Theorem 3.3.1 Suppose 1 ≤ l, q, q1, q2 < ∞, 1/q + 1/q1 = 1/q2, α1 = α2 + n/q,

0 ≤ λ > α1, β > −n and w(x) = |x|βp . Assume that b ∈ CMOq(w,Qn
p ) and

ϕ(t) =| detA−1(t)|1/q1p G(A−1(t), β/q1) max

{
1, G(A−1(t), β/q)G(A(t), β/q)

}
|Φ(t)|.

Then the commutator operator Hb
Φ,A is bounded from MKα1,λ

l,q1
(w,Qn

p ) to MKα2,λ
l,q2

(w,Qn
p )

and satisfies the inequality:

‖Hb
Φ,Af‖MK

α2,λ
l,q2

(w,Qnp )
≤ CK2‖b‖CMOq2 (w,Qnp )‖f‖MK

α1,λ
l,q1

(w,Qnp )

where

K2 =

∫
‖A(t)‖≤1

‖A(t)‖(λ−α1)(n+β)/n

(
‖A(t)‖n

| detA(t)|p
+ logp

p

‖A(t‖

)
ϕ(t)dt

+

∫
‖A(t)‖>1

‖A(t)‖(λ−α1)(n+β)/n

(
‖A(t)‖n

| detA(t)|p
+ logp(p‖A(t)‖)

)
ϕ(t)dt.

Proof. Let f ∈MKα1,λ
l,q1

(w,Qn
p ) and b ∈ CMOq(w,Qn

p ),

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp ) =

(∫
Sk

∣∣∣∣ ∫
Qnp

(b(x)− b(A(t)x))f(A(t)x)Φ(t)dt

∣∣∣∣q2w(x)dx

)1/q2

≤
∫
Qnp

(∫
Sk

|(b(x)− b(A(t)x))f(A(t)x)|q2w(x)dx

)1/q2

|Φ(t)|dt

≤
∫
Qnp

(∫
Sk

|(b(x)− bBk)f(A(t)x)|q2w(x)dx

)1/q2

|Φ(t)|dt

+

∫
Qnp

(∫
Sk

|(bBk − bA(t)Bk)f(A(t)x)|q2w(x)dx

)1/q2

|Φ(t)|dt

+

∫
Qnp

(∫
Sk

|(b(A(t)x)− bA(t)Bk)f(A(t)x)|q2w(x)dx

)1/q2

|Φ(t)|dt

=I + II + III.
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By Hölder’s inequality, p-adic change of variables and Lemma 2.1.4, we estimate I as

below:

I ≤
∫
Qnp

(∫
Sk

|b(x)− bBk |qw(x)dx

)1/q(∫
Sk

|f(A(t)x)|q1w(x)dx

)1/q1

|Φ(t)|dt

≤
∫
Qnp

(∫
Bk

|b(x)− bBk |qw(x)dx

)1/q

×
(∫

A(t)Sk

|f(x)|q1| detA−1(t)|pG(A−1(t), β)w(x)dx

)1/q1

|Φ(t)|dt

≤
∫
Qnp
| detA−1(t)|1/q1p G(A−1(t), β/q1)

×
(∫

Bk

|b(x)− bBk |qw(x)dx

)1/q(∫
A(t)Sk

|f(x)|q1w(x)dx

)1/q1

|Φ(t)|dt

≤w(Bk)
1/q‖b‖CMOq(w,Qnp )

×
∫
Qnp
| detA−1(t)|1/q1p G(A−1(t), β/q1)‖fχA(t)Sk‖Lq1 (w,Qnp )|Φ(t)|dt. (3.3.1)

Similarly for III, first making p-adic change of variables and then making use of

Hölder’s inequality to have:

III ≤
∫
Qnp

(∫
Sk

|(b(A(t)x)− bA(t)Bk)f(A(t)x)|q2w(x)dx

)1/q2

|Φ(t)|dt

=

∫
Qnp

detA−1(t)|1/q2p G(A−1(t), β/q2)|

×
(∫

A(t)Sk

|(b(x)− bA(t)Bk)f(x)|q2w(x)dx

)1/q2

|Φ(t)|dt

≤
∫
Qnp

detA−1(t)|1/q2p G(A−1(t), β/q2)|

×
(∫

A(t)Sk

|b(x)− bA(t)Bk |
qw(x)dx

)1/q(∫
A(t)Sk

|f(x)|q1w(x)dx

)1/q1

|Φ(t)|dt

≤
∫
Qnp

detA−1(t)|1/q2p G(A−1(t), β/q2)|

× w(A(t)Bk)
1/q‖b‖CMOq(w,Qnp )‖fχA(t)Sk‖Lq1 (w,Qnp )|Φ(t)|dt.
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From (2.1.4) ,1/q + 1/q1 = 1/q2, and Lemma 2.1.5, the above inequality becomes:

III ≤‖b‖CMOq(w,Qnp )

∫
Qnp
| detA−1(t)|1/q2p G(A−1(t), β/q1)G(A−1(t), β/q)|

×G(A(t), β/q)| detA(t)|1/qp w(Bk)
1/q‖fχA(t)Sk‖Lq1 (w,Qnp )|Φ(t)|dt

=w(Bk)
1/q‖b‖CMOq(w,Qnp )

∫
Qnp
| detA−1(t)|1/q1p G(A−1(t), β/q1)

×G(A−1(t), β/q)G(A(t), β/q)‖fχA(t)Sk‖Lq1 (w,Qnp )|Φ(t)|dt. (3.3.2)

The estimation of II is more of a same to that of I and III except that in this

case, additionally, we have to bound the term |bBk − bA(t)Bk |. Therefore, in this case,

we will make use of the Hölder’s inequality, p-adic change of variables and Lemma

2.1.3 to have:

II ≤
∫
Qnp

(∫
Sk

|f(A(t)x)|q1w(x)dx

)1/q1(∫
Sk

w(x)dx

)1/q

|bBk − bA(t)Bk ||Φ(t)|dt

≤w(S0)1/qw(Bk)
1/q

×
∫
Qnp
| detA−1(t)|1/q1p G(A−1(t), β/q1)‖fχA(t)Sk‖Lq1 (w,Qnp )|bBk − bA(t)Bk ||Φ(t)|dt.

Next, if ‖A(t)‖ > 1, then there exists an integer 0 ≤ j such that:

pj < ‖A(t)‖ ≤ pj+1.

Therefore,

|bBk − bA(t)Bk | ≤
j∑
i=0

|bBk+i − bBk+i+1
|+ |bBk+j+1

− bA(t)Bk |.

Hölder’s Inequality together with the definition of CMOq(w,Qn
p ) yields:

|bBk+i − bBk+i+1
| ≤ 1

|Bk+i|

∫
Bk+i

|b(x)− bBk+i+1
|dx

≤ C

|Bk+i+1|

∫
Bk+i+1

|b(x)− bBk+i+1
|dx

≤ C

|Bk+i+1|

(∫
Bk+i+1

|b(x)− bBk+i+1
|qw(x)dx

)1/q

×
(∫

Bk+i+1

w(x)q
′/q

)1/q′
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≤Cw(Bk+i+1)1/q

|Bk+i+1|

(∫
Bk+i+1

|x|−βq′/qp

)1/q′

‖b‖CMOq(w,Qnp )

≤Cp
(n+β)(k+i+1)/q

p(k+i+1)n
p(k+i+1)(−β/q+n/q′)‖b‖CMOq(w,Qnp )

=C‖b‖CMOq(w,Qnp ).

The other term can be handled in a similar fashion as below:

|bBk+j+1
− bA(t)Bk | ≤

1

|A(t)Bk|

∫
A(t)Bk

|b(x)− bBk+j+1
|dx

≤ 1

|A(t)Bk|

(∫
Bk+j+1

|b(x)− bBk+j+1
|qw(x)dx

)1/q

×
(∫

Bk+j+1

w(x)−q
′/q

)1/q′

≤w(Bk+j+1)1/q

|A(t)Bk|

(∫
Bk+j+1

|x|−βq′/qp dx

)1/q′

× ‖b‖CMOq(w,Qnp )

≤p
(n+β)(k+j+1)/q

| detA(t)|ppkn
p(k+j+1)(−β/q+n/q′)‖b‖CMOq(w,Qnp )

=
p(j+1)n

| detA(t)|p
‖b‖CMOq(w,Qnp )

≤C ‖A(t)‖n

| detA(t)|p
‖b‖CMOq(w,Qnp ).

Therefore, for ‖A(t)‖ > 1

|bBk − bA(t)Bk | ≤ C

(
j + 1 +

‖A(t)‖n

| detA(t)|p

)
‖b‖CMOq(w,Qnp )

≤ C

{
logp(‖A(t)p‖) +

‖A(t)‖n

| detA(t)|p

}
‖b‖CMOq(w,Qnp ).

When ‖A(t)‖ ≤ 1, a similar argument yields:

|bBk − bA(t)Bk | ≤C
{

logp
p

‖A(t)‖
+
‖A(t)‖n

| detA(t)|p

}
‖b‖CMOq(w,Qnp ).

Therefore,

II ≤Cw(Bk)
1/q‖b‖CMOq(w,Qnp )

∫
Qnp
| detA−1(t)|1/q1p G(A−1(t), β/q1)|

×
(
‖A(t)‖n

| detA(t)|p
+ 1 + max

{
logp ‖A(t)‖, logp

1

‖A(t)‖

})
‖fχA(t)Sk‖Lq1 (w,Qnp )|Φ(t)|dt.
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Finally, we combine the estimates for I,II and III to have:

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

≤ Cw(Bk)
1/q‖b‖CMOq(w,Qnp )

×
∫
Qnp

(
‖A(t)‖n

| detA(t)|p
+ 1 + max

{
logp ‖A(t)‖, logp

1

‖A(t)‖

})
‖fχA(t)Sk‖Lq1 (w,Qnp )ϕ(t)dt.

In order to avoid repetition of the same factor in the subsequent calculations, we

let:

ψ(t) =

(
‖A(t)‖n

| detA(t)|p
+ 1 + max

{
logp(‖At)‖, logp

1

‖A(t)‖

})
ϕ(t)

Also, we take:

‖fχA(t)Sk‖Lq1 (w,Qnp ) =

(∫
A(t)Sk

|f(x)|q1dx
)1/q1

≤
(∫

|x|p≤‖A(t)‖pk
|f(x)|q1dx

)1/q1

≤ C

logp ‖A(t)‖∑
m=−∞

‖fχk+m‖Lq1 (w,Qnp ). (3.3.3)

Therefore,

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

≤ Cw(Bk)
1/q‖b‖CMOq(w,Qnp )

∫
Qnp

logp ‖A(t)‖∑
m=−∞

‖fχk+m‖Lq1 (w,Qnp )ψ(t)dt. (3.3.4)

Now, using Morrey-Herz space’s definition, the inequality (3.3.4), Minkowski’s

inequality and a stipulation α1 = α2 + n/q, we have:

‖Hb
Φ,Af‖MK

α2,λ
l,q2

(w,Qnp )

= sup
k0∈Z

p−k0λ(n+β)/n

( k0∑
k=−∞

pkα2(n+β)l/n‖(Hb
Φ,Af)χk‖lLq(w,Qnp )

)1/l

≤ C‖b‖CMOq(w,Qnp )

∫
Qnp

sup
k0∈Z

p−k0λ(n+β)/n

×
{ k0∑
k=−∞

( logp ‖A(t)‖∑
m=−∞

pk(α2+n/q)(n+β)/n‖fχk+m‖Lq1 (w,Qnp )

)l}1/l

ψ(t)dt

≤ C‖b‖CMOq(w,Qnp )

∫
Qnp

sup
k0∈Z

p−k0λ(n+β)/n

×
{ k0∑
k=−∞

( logp ‖A(t)‖∑
m=−∞

pkα1(n+β)/n‖fχk+m‖Lq1 (w,Qnp )

)l}1/l

ψ(t)dt
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≤ C‖b‖CMOq(w,Qnp )

∫
Qnp

logp ‖A(t)‖∑
m=−∞

pm(λ−α1)(n+β)/n

× sup
k0∈Z

p−(k0+m)λ(n+β)/n

( k0+m∑
k=−∞

pkα1(n+β)l/n‖fχk‖lLq1 (w,Qnp )

)1/l

ψ(t)dt.

Since α1 < λ, as a consequence

logp ‖A(t)‖∑
m=−∞

pm(λ−α1)(n+β)/n =
‖A(t)‖(λ−α1)(n+β)/n

1− p(α1−λ)(n+β)/n
. (3.3.5)

Hence,

‖Hb
Φ,Af‖MK

α2,λ
l,q2

(w,Qnp )
≤C‖b‖CMOq(w,Qnp )‖f‖MK

α1,λ
l,q1

(w,Qnp )

×
∫
Qnp
‖A(t)‖(λ−α1)(n+β)/nψ(t)dt.

Therefore, we conclude Theorem 3.3.1.

3.4 Lipschitz estimates for Hb
Φ,A on weighted p-adic

Herz-Morrey spaces

In the current section we will show that the boundedness of commutator of p-adic

matrix Hausdorff operator on p-adic Morrey-Herz space holds by taking b ∈ Λδ(Qn
p ).

Theorem 3.4.1 Let 1 ≤ q2 ≤ q1 <∞, 0 < l, δ <∞, 1/r = 1/q2 − 1/q1, β > −n and

w(x) = |x|βp , α1 = α2 +nδ/(n+β)+n(1/q2−1/q1), 0 ≤ λ > α1 and b ∈ Λδ(Qn
p ). Then

the commutator operator Hb
Φ,A is bounded from MKα1,λ

l,q1
(w,Qn

p ) to MKα2,λ
l,q2

(w,Qn
p ) and

satisfies the inequality:

‖Hb
Φ,Af‖MK

α2,λ
l,q2

(w,Qnp )
≤ CK3‖b‖Λδ(Qnp )‖f‖MK

α1,λ
l,q1

(w,Qnp )
,

where

K3 =

∫
Qnp
‖A(t)‖(n+β)(λ/n−α1/n) max{1, ‖A(t)‖δ}| detA−1(t)|1/q1p G(A−1(t), β/q1)ψ(t)dt.
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Proof. Let f ∈ MKα1,λ
l,q1

(w,Qn
p ), b ∈ Λδ(Qn

p ). Using the Minkowski’s inequality and

the Holder’s inequality to have:

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

=

[ ∫
Sk

∣∣∣∣ ∫
Qnp
f(A(t)x)(b(x)− b(A(t)x))Φ(t)dt

∣∣∣∣q2w(x)dx

]1/q2

≤
∫
Qnp

[ ∫
Sk

∣∣∣∣f(A(t)x)(b(x)− b(A(t)x))

∣∣∣∣q2w(x)dx

]1/q2

|Φ(t)|dt

≤
∫
Qnp

[ ∫
Sk

|f(A(t)x)|q1w(x)dx

]1/q1

×
[ ∫

Sk

|b(x)− b(A(t)x)|rw(x)dx

]1/r

|Φ(t)|dt, (3.4.1)

where 1/r = 1/q2−1/q1. It follows from the definition of Lipschitz space Λδ(Qn
p ) that

|b(x)− b(A(t)x)| ≤ C‖b‖Λδ(Qnp )|x− A(t)x|δp
≤ C‖b‖Λδ(Qnp ) max{|x|p, |A(t)x|p}δ

≤ pkδC‖b‖Λδ(Qnp ) max{1, ‖A(t)‖δ}, (3.4.2)

for each x ∈ Sk and for almost everywhere t ∈ Qn
p .

By p-adic change of variables, Lemma 2.1.4, inequality (3.4.2) and according to

Lemma (2.1.3) w(Sk)w(B0) = w(Bk)w(S0), inequality (3.4.1) assumes the following

form

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

≤ C‖b‖Λδ(Qnp )

∫
Qnp
w(Bk)

δ/(n+β)+1/r‖fχA(t)Sk‖Lq1 (w,Qnp )

×max{1, ‖A(t)‖δ}| detA−1(t)|1/q1p G(A−1(t), β/q1)|Φ(t)|dt. (3.4.3)

Furthermore, in view of inequality (3.3.3) and 1/r = 1/q2 − 1/q1, we get:

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

≤ C‖b‖Λδ(Qnp )w(Bk)
δ/(n+β)+1/q2−1/q1

∫
Qnp

logp ‖A(t)‖∑
m=−∞

‖fχk+m‖Lq1 (w,Qnp )

×max{1, ‖A(t)‖δ}| detA−1(t)|1/q1p G(A−1(t), β/q1)|Φ(t)|dt. (3.4.4)

The factor max{1, ‖A(t)‖δ}| detA−1(t)|1/q1p G(A−1(t), β/q1)|Φ(t)| repeats itself many

times in the remaining proof of this theorem, so we let it be denoted by φ(t). With
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this we break our proof in two cases which are given by:

Case 1: 0 < λ, in the present case we first evaluate the inner norm ‖fχk+m‖Lq1 (w,Qnp )

as below:

‖fχk+m‖Lq1 (w,Qnp ) ≤ w(Bk+m)−α1/n

[ k+m∑
j=−∞

w(Bj)
α1l/n‖fχj‖lLq1 (w,Qnp )

]1/l

= w(Bk+m)−α1/nw(Bk+m)λ/n

× w(Bk+m)−λ/n
( k+m∑
j=−∞

w(Bj)
α1l/n‖fχj‖lLq1 (w,Qnp )

)1/l

= w(Bk+m)(λ−α1)/n‖f‖
MK

α1,λ
l,q1

(w,Qnp )

≤ p(k+m)(n+β)(λ−α1)/n‖f‖
MK

α1,λ
l,q1

(w,Qnp )
. (3.4.5)

Next, by virtue of equation (3.3.5), the inequality (3.4.4) becomes

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

≤ C‖b‖Λδ(Qnp )‖f‖MK
α1,λ
l,q1

(w,Qnp )
pk(n+β)(δ/(n+β)+1/q2−1/q1+(λ−α1)/n)

×
∫
Qnp

logp ‖A(t)‖∑
m=−∞

pm(n+β)(λ−α1)/nφ(t)dt

≤ C‖b‖Λδ(Qnp )‖f‖MK
α1,λ
l,q1

(w,Qnp )
pk(n+β)(δ/(n+β)+1/q2−1/q1+(λ−α1)/n)

×
∫
Qnp
‖A(t)‖(n+β)(λ−α1)/nφ(t)dt.
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Therefore, by definition of Morrey-Herz space and α1 = α2+nδ/(n+β)+n(1/q2−1/q1),

we have:

‖Hb
Φ,Af‖MK

α2,λ
l,q1

(w,Qnp )

≤ C‖b‖Λδ(Qnp )‖f‖MK
α1,λ
l,q1

(w,Qnp )
sup
k0∈Z

p−k0(n+β)λ/n

×
[ k0∑
k=−∞

pkl(n+β)(α2/n+δ/(n+β)+1/q2−1/q1+(λ−α1)/n)

×
(∫

Qnp
‖A(t)‖(n+β)(λ−α1)/nφ(t)dt

)l]1/l

≤ C‖b‖Λδ(Qnp )‖f‖MK
α1,λ
l,q1

(w,Qnp )

∫
Qnp
‖A(t)‖(n+β)(λ−α1)/nφ(t)dt

× sup
k0∈Z

p−k0(n+β)λ/n

[ k0∑
k=−∞

pkl(n+β)λ/n

]1/l

≤ C
p(n+β)λ/n

(pl(n+β)λ/n − 1)1/l
‖b‖Λδ(Qnp )‖f‖MK

α1,λ
l,q1

(w,Qnp )

∫
Qnp
‖A(t)‖(n+β)(λ−α1)/nφ(t)dt

≤ C‖b‖Λδ(Qnp )‖f‖MK
α1,λ
l,q1

(w,Qnp )

∫
Qnp
‖A(t)‖(n+β)(λ−α1)/nφ(t)dt, (3.4.6)

substituting back the value of φ(t) we get the desired result.

Case 2: When l ∈ [1,∞) and λ = 0

In this case Morrey-Herz spaces are reduced to the Herz spaces. It is clear that:

‖(Hb
Φ,Af)χk‖Lq2 (w,Qnp )

≤ C‖b‖Λδ(Qnp )

∫
Qnp
pk(n+β)(δ/(n+β)+1/q2−1/q1)

logp ‖A(t)‖∑
m=−∞

‖fχk+m‖Lq1 (w,Qnp )φ(t)dt. (3.4.7)

Hence, by using the Minkowski’s inequality and α1 = α2 +nδ/(n+β)+n(1/q2−1/q1),

we obtain:

‖Hb
Φ,Af‖Kα2

l,q2
(w,Qnp )

≤ C‖b‖Λδ(Qnp )

{ +∞∑
k=−∞

pk(n+β)α2l/n

×
[ ∫

Qnp
pk(n+β)(δ/(n+β)+1/q2−1/q1)

logp ‖A(t)‖∑
m=−∞

‖fχk+m‖Lq1 (w,Qnp )φ(t)dt

]l}1/l

≤ C‖b‖Λδ(Qnp )

∫
Qnp

{ +∞∑
k=−∞

( logp ‖A(t)‖∑
m=−∞

pk(n+β)α1/n‖fχk+m‖Lq1 (w,Qnp )

)l}1/l

φ(t)dt
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≤ C‖b‖Λδ(Qnp )

∫
Qnp

logp ‖A(t)‖∑
m=−∞

p−m(n+β)α1/n

( +∞∑
k=−∞

pkl(n+β)α1/n‖fχk‖lLq1 (w,Qnp )

)1/l

φ(t)dt

≤ C‖b‖Λδ(Qnp )‖f‖Kα1
l,q1

(w,Qnp )

×
∫
Qnp

max{1, ‖A(t)‖δ}| detA−1(t)|1/q1p G(A−1(t), β/q1)‖A(t)‖−(n+β)α1/n|Φ(t)|dt.(3.4.8)

By equations (3.4.6) and (3.4.8), we get the proof.



Chapter 4

Weak-Type Estimates of p-adic

Fractional Hausdorff Operators

4.1 Introduction

In this Chapter, among variety of Hausdorff operators, we choose to study the frac-

tional Hausdorff operator and related commutators on weak type spaces. These

spaces include weak Lebesgue spaces and central Morrey spaces. Using Marcinkiewicz

type interpolation theorem, we also give strong type estimates for these operators on

Lebesgue spaces. However, in the case of central Morrey space we establish the weak

estimates for a special case of fractional Hausdorff operator.

The first section contains results on the said boundedness of Hausdorff opera-

tor and the subsequent section comprises of similar results for the commutators of

the same operator. Finally, at the very end we prove the boundedness of Hausdorff

operator on weak p-adic central Morrey space.

4.2 Lebesgue Space Estimates for p-adic Fractional

Hausdorff Operator

We first give the weak type boundedness result for the fractional Hausdorff operator

following its proof.

Theorem 4.2.1 Suppose n > β ≥ 0, ∞ > q, r ≥ 1, −n < min{α, γ} and w(x) =

|x|αp . If Φ is radial function, n+α
q
− β = n+γ

r
and

Aq′(ψ, q) =

∫ ∞
0

|ψ(t)|q′t(n+α)(q′−1)−βq′−1dt <∞, (4.2.1)

38
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then

‖HΦ,β(f)‖Lr,∞(|x|γp ,Qnp ) ≤ K2‖f‖Lq(|x|αp ,Qnp ),

where

K2 = C

(
1− p−n

1− p−(n+γ)

)1/r

(1− p−n)1/q′A(ψ, q).

Proof. We first consider

HΦ,βf(x) =

∫
Qnp

Φ(x|y|p)
|y|n−βp w(y)1/q

f(y)w(y)1/qdy

=

∫
Qnp

Φ(x|y|p)
|y|n−β+α/q

p

f(y)w(y)1/qdy.

Applying Hölder’s inequality at the outset to have

|HΦ,βf(x)| ≤
{∫

Qnp

∣∣∣∣ Φ(x|y|p)
|y|n−β+α/q

p

∣∣∣∣q′dy}1/q′{∫
Qnp
|f(y)|q|y|αpdy

}1/q

=

{∫
Qnp

∣∣∣∣ Φ(x|y|p)
|y|n−β+α/q

p

∣∣∣∣q′dy}1/q′

‖f‖Lq(|x|αp ;Qnp ). (4.2.2)

Sine Φ is radial function then∫
Qnp

|Φ(x|y|p)|q
′

|y|(n−β+α/q)q′
p

dy =
∑
k∈Z

∫
Sk

|ψ(pl−k)|q′

pk(n−β+α/q)q′
dy

=(1− p−n)pl((n+α)(1−q′)+βq′)
∑
k∈Z

|ψ(pl−k)|q′p(l−k)((n+α)(q′−1)−βq′)−1+1

≤C(1− p−n)|x|−((n+α)(q′−1)−βq′)
p

∫ ∞
0

|ψ(t)|q′t(n+α)(q′−1)−βq′−1dt

=C(1− p−n)|x|−((n+α)(q′−1)−βq′)
p Aq′(ψ, q).

Therefore, by the stipulated condition n+α
q
− β = n+γ

r
, (5.2.1) becomes:

|HΦ,βf(x)| ≤C(1− p−n)1/q′A(ψ, q)|x|−(n+α)/q+β
p ‖f‖Lq(|x|αp ,Qnp )

=C(1− p−n)1/q′A(ψ, q)|x|−(n+γ)/r
p ‖f‖Lq(|x|αp ;Qnp ).

Let C1 = C(1− p−n)1/q′A(ψ, q)‖f‖Lq(|x|αp ,Qnp ), then for λ > 0,

{x ∈ Qn
p : |HΦ,βf(x)| > λ} ⊂ {x ∈ Qn

p : |x|p ≤ (C1/λ)r/n+γ}.
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Therefore,

‖HΦ,βf(x)‖Lr,∞(|x|γp ,Qnp ) ≤ sup
λ>0

λ

(∫
Qnp
χ{

x∈Qnp :|x|p<(C1/λ)r/n+γ

}(x)|x|γpdx
)1/r

= sup
λ>0

λ

(∫
|x|p<(C1/λ)r/n+γ

|x|γpdx
)1/r

= sup
λ>0

λ

( logp(C1/λ)r/n+γ∑
j=−∞

∫
Sj

pjγdx

)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

C1

=C

(
1− p−n

1− p−(n+γ)

)1/r

(1− p−n)1/q′A(ψ, q)‖f‖Lq(|x|αp ,Qnp )

=K2‖f‖Lq(|x|αp ,Qnp ).

Hence, we weak type estimate of HΦ,β have been obtained.

Next, using Marcinkiewicz interpolation theorem, we give strong type estimates

for HΦ,β.

Theorem 4.2.2 Suppose n > β ≥ 0, ∞ > q, r ≥ 1. Let also −n < min{α, γ},
w(x) = |x|αp , α > −n. If Φ is radial function, let n+α

q
− β = n+γ

r
and equation (4.2.1)

is valid for q ± ε instead of q, then

‖HΦ,βf‖Lr,s(|x|αp ,Qnp ) � ‖f‖Lq,s(|x|αp ,Qnp ).

Proof. Since 1 < q, r <∞, so we can find ε such that 1 < q− ε and 1 < r− ε. Then,

by Theorem (4.2.1) HΦ,β has weak types (q− ε, r− ε) and (q+ ε, r+ ε). Desired result

is acquired by using Theorem 1.3.14.

4.3 Lipschitz Estimates for the Commutator Op-

erator

Similar to previous section, this section contains weak and strong boundedness results

for the commutator operator. We prove the former one first.

Theorem 4.3.1 Let 1 < q < r < ∞, min{α, γ} > −n, (β + δ)− n+α
q

= −n+γ
r
, and

w(x) = |x|αp . If Φ is a radial function, b ∈ Λδ(Qn
p ), 0 < δ < 1 and

K3,q = C

∫ ∞
0

ψq
′
(t)t(q

′−1)(n+α)−βq′−1 max(1, t−δq
′
)dt <∞, (4.3.1)
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then

‖Hb
Φ,βf‖Lr,∞(|x|αp ,Qnp ) ≤ K4‖f‖Lq(|x|αp ,Qnp ), (4.3.2)

where

K4 = K3,q

(
1− p−n

1− p−(n+γ)

)1/r

(1− p−n)‖b‖Λδ(Qnp ).

Proof. By definition of Lipschitz space, we have

|Hb
Φ,β(f)(x)| ≤

∣∣∣∣ ∫
Qnp

Φ(x|y|p)
|y|n−β+α/q

p

(b(x)− b(0))f(y)|y|α/qp dy

∣∣∣∣
+

∣∣∣∣ ∫
Qnp

Φ(x|y|p)
|y|n−β+α/q

p

(b(y)− b(0))f(y)|y|α/qp dy

∣∣∣∣
≤‖b‖Λδ(Qnp )|x|δp

∫
Qnp

Φ(x|y|p)
|y|n−β+α/q

p

f(y)|y|α/qp dy

+ ‖b‖Λδ(Qnp )

∫
Qnp

Φ(x|y|p)
|y|n−β+α/q−δ

p

f(y)|y|α/qp dy

=I1 + I2.

We evaluate I2 first. Use of Hölder’s inequality gives:

I2 ≤‖b‖Λδ(Qnp )

{∫
Qnp

∣∣∣∣ Φ(x|y|p)
|y|n−β+α/q−δ

p

∣∣∣∣q′dy}1/q′{∫
Qnp
|f(y)|q|y|αpdy

}1/q

=‖b‖Λδ(Qnp )

{∫
Qnp

∣∣∣∣ Φ(x|y|p)
|y|n−β+α/q−δ

p

∣∣∣∣q′dy}1/q′

‖f‖Lq(|x|αp ,Qnp ). (4.3.3)

If |x|p = pl, l ∈ Z, then repeating the same process as in Theorem (4.2.1), we arrive

at: ∫
Qnp

|Φ(x|y|p)|q
′

|y|(n−β+α/q−δ)q′
p

dy =
∑
k∈Z

∫
Sk

|ψ(pl−k)|q′

pk(n−β+α/q−δ)q′ dy

=(1− p−n)
∑
k∈Z

ψq
′
(pl−k)p(l−k)((q′−1)(n+α)−(β+δ)q′−1+1)

× |x|−((n+α)(q′−1)−(β+δ)q′)
p

≤C(1− p−n)

∫ ∞
0

ψq
′
(t)t(q

′−1)(n+α)−(β+δ)q′−1dt

× |x|−((n+α)(q′−1)−(β+δ)q′)
p .
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Making use of above value, (5.2.2) becomes:

I2 ≤ C(1− p−n)‖b‖Λδ(Qnp )|x|−(n+α)/q+(β+δ)
p

×
(∫ ∞

0

ψq
′
(t)t(q

′−1)(n+α)−(β+δ)q′−1dt

)1/q′

‖f‖Lq(|x|αp ,Qnp ).

In order to estimate I1, we observe that it differ from I2 by a factor δ in the power

of |y|p. Thus, from (4.3.4), we infer that

I1 ≤ C(1− p−n)‖b‖Λδ(Qnp )|x|−(n+α)/q+(β+δ)
p

×
(∫ ∞

0

ψq
′
(t)t(q

′−1)(n+α)−βq′−1dt

)1/q′

‖f‖Lq(|x|αp ,Qnp ).

In view of the condition that (β + δ) − n+α
q

= −n+γ
r
, and the inequality (4.3.1),

we obtain

|Hb
Φ,β(f)(x)| ≤ K3,q(1− p−n)‖b‖Λδ(Qnp )|x|−(n+γ)/r

p ‖f‖Lq(|x|αp ,Qnp )

Let

C3 = K3,q(1− p−n)‖b‖Λδ(Qnp )‖f‖Lq(|x|αp ,Qnp ),

then for all λ > 0, we have

{x ∈ Qn
p : |Hb

Φ,βf(x)| > λ} ⊂ {x ∈ Qn
p : |x|p ≤ (C3/λ)r/n+γ}.

Ultimately,

‖Hb
Φ,βf(x)‖Lr,∞(|x|γp ,Qnp ) ≤ sup

λ>0
λ

(∫
Qnp
χ{

x∈Qnp :|x|p<(C3/λ)r/n+γ

}(x)|x|γpdx
)1/r

= sup
λ>0

λ

(∫
|x|p<(C3/λ)r/n+γ

|x|γpdx
)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

C3

=K3,q

(
1− p−n

1− p−(n+γ)

)1/r

(1− p−n)‖b‖Λδ‖f‖Lq(|x|αp ,Qnp )

=K4‖f‖Lq(|x|αp ,Qnp ).

Next, we will show that the strong type estimates also hold for Hb
Φ,β.

Theorem 4.3.2 Let 1 < q < r < ∞, 0 < δ < 1, min{α, γ} > −n, −n+γ
r

=

(β + δ)− n+α
q
, w(x) = |x|αp . If Φ is radial function, b ∈ Λδ(Qn

p ) and equation (4.3.1)

is true for q ± ε instead of q where 0 ≤ ε < ε0, then

‖Hb
Φ,βf‖Lr,s(|x|αp ,Qnp ) � ‖f‖Lq,s(|x|αp ,Qnp ).
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Proof. Since q, r ∈ (1,∞), so q ∈ (1, n/δ), we can find 0 ≤ ε < ε0 such that

q1 = q − ε ∈ (1, n/δ) and q2 = q + ε ∈ (1, n/δ). Also, we can choose r1 and r2 such

that r1 < r < r2 which satisfies

(β + δ)− n+ α

qi
= −n+ γ

ri
, i = 1, 2.

Using Theorem 4.3.1, we have:

‖Hb
Φ,βf‖Lri,∞(|x|γp ,Qnp ) � ‖f‖Lqi (|x|αp ,Qnp ).

But the equality 1/q = ϑ/q1 + (1− ϑ)/q2 implies a similar equality 1/r = ϑ/r1 + (1−
ϑ)/r2. Required result is obtained by using Theorem 1.3.14.

4.4 Hausdorff Operator on Weak p-adic Central

Morrey Space

Theorem 4.4.1 Let −1/q ≤ λ < 0. and let 1 ≤ q < ∞. Let Φ be a radial function,

that is Φ(x) = ψ(|x|p), where ψ is defined in all pk, k ∈ Z and f ∈ Ḃq,λ(Qn
p ), then

‖HΦf‖WḂq,λ(Qnp ) ≤ K1(1− p−n)1/q′‖f‖Ḃq,λ(Qnp ),

where K1 = C
∫∞

0
ψ(t)t−nλ−1dt.

Proof. Similar to the previous results, we decompose the integral as:

HΦf(x) =

∫
Qnp

Φ(x|y|p)
|y|np

f(y)dy

=
∑
k∈Z

∫
Sk

Φ(x|y|p)
|y|np

f(y)dy.

Applying Hölder’s inequality to get

|HΦf(x)| ≤
∑
k∈Z

((∫
Sk

|Φ(x|y|p)|q
′

|y|nq′p

dy

)1/q′(∫
Sk

|f(y)|qdy
)1/q)

≤
∑
k∈Z

((∫
Sk

|Φ(x|y|p)|q
′

|y|nq′p

dy

)1/q′(∫
Bk

|f(y)|qdy
)1/q)

≤‖f‖Ḃq,λ(Qnp )

∑
k∈Z

|Bk|1/q+λH

(∫
Sk

|Φ(x|y|p)|q
′

|y|nq′p

dy

)1/q′

. (4.4.1)
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If |x|p = pl, l ∈ Z, then Φ(x|y|p) = ψ(pl−k), then we take:

∑
k∈Z

|Bk|1/q+λH

(∫
Sk

|Φ(x|y|p)|q
′

|y|nq′p

dy

)1/q′

=
∑
k∈Z

pkn(1/q+λ)

(∫
Sk

|ψ(pl−k)|q′

pknq′
dy

)1/q′

=(1− p−n)1/q′
∑
k∈Z

|ψ(pl−k)|pknλ

=(1− p−n)1/q′plnλ
∑
k∈Z

|ψ(pl−k)|p(l−k)(−nλ)−1+1

≤C(1− p−n)1/q′plnλ
∫ ∞

0

ψ(t)t−nλ−1dt

=C(1− p−n)1/q′|x|nλp
∫ ∞

0

ψ(t)t−nλ−1dt,

where we majorized at the penultimate step and last step is courtesy of |x|p = pl.

Letting

K1 = C

∫ ∞
0

ψ(t)t−nλ−1dt

and substituting into the inequality (4.4.1), we get

|HΦ| ≤K1(1− p−n)1/q′ |x|nλp ‖f‖Ḃq,λ(Qnp ).

Further, let A = K1(1− p−n)1/q′‖f‖Ḃq,λ(Qnp ). Since λ < 0, we have

‖HΦf‖WḂq,λ(Qnp ) ≤ sup
γ∈Z

sup
t>0

t|Bγ|−λ−1/q
H |{x ∈ Bγ : A|x|nλp > t}|1/q

= sup
γ∈Z

sup
t>0

t|Bγ|−λ−1/q
H |{|x|p ≤ pγ : |x|p < (t/A)1/nλ}|1/q.

If γ ≤ logp(t/A)1/nλ, then for λ < 0, we obtain

sup
t>0

sup
γ≤logp(t/A)1/nλ

t|Bγ|−λ−1/q
H |{|x|p ≤ pγ : |x|p < (t/A)1/nλ}|1/q

= sup
t>0

sup
γ≤logp(t/A)1/nλ

t|Bγ|−λH

= sup
t>0

sup
γ≤logp(t/A)1/nλ

tp−nγλ
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sup
t>0

sup
γ≤logp(t/A)1/nλ

t|Bγ|−λ−1/q
H |{|x|p ≤ pγ : |x|p < (t/A)1/nλ}|1/q

= sup
t>0

sup
γ≤logp(t/A)1/nλ

t|Bγ|−λH

= sup
t>0

sup
γ≤logp(t/A)1/nλ

tp−nγλ

=A

=K1(1− p−n)1/q′|‖f‖Ḃq,λ(Qnp ).

Now, if γ > logp(t/A)1/nλ, then for λ ≥ −1/q, we have:

sup
t>0

sup
γ>logp(t/A)1/nλ

t|Bγ|−λ−1/q
H |{|x|p ≤ pγ : |x|p < (t/A)1/nλ}|1/q

= sup
t>0

sup
γ>logp(t/A)1/nλ

tpγn(−λ−1/q)||x|p < (t/A)1/nλ|1/q

= sup
t>0

sup
γ>logp(t/A)1/nλ

tpγn(−λ−1/q)(t/A)1/λq

=A

=K1(1− p−n)1/q′‖f‖Ḃq,λ(Qnp ).

Therefore,

‖HΦf‖WḂq,λ(Qnp ) ≤K1(1− p−n)1/q′ |‖f‖Ḃq,λ(Qnp ).



Chapter 5

Optimal Weak Type Estimates for

p-adic Hardy Operators

5.1 Introduction

A brief history regarding the boundedness of Hardy type operators and their optimal

bounds on function spaces has been given in Chapter 1. In this Chapter, we will

auquire the optimal weak bounds for fractional p-adic Hardy operator and its adjoint

operator. Our results include all feasible cases of power weighted weak type estimate

for p-adic Hardy type operators. Our method of proving main results involves a

frequent use the following formula:∫
Qnp
f(x)w(x)dx =

∑
γ∈Z

∫
Sγ

f(x)w(x)dx.

However, the optimality of the bounds is obtained by employing the idea of use of

power function given in [110].

From this point forward, the notation Lq(|x|ρp) will be reserved for Lq(|x|ρp,Qn
p )

and Lq,∞(|x|ρ) stand for Lq,∞(|x|ρ,Qn
p ). The next section comprises of results showing

optimal weak bounds for p-adic Hardy operator while the last section includes similar

results for its adjoint operator.

5.2 Sharp Weak-tye Estimates for p-adic Hardy

Operators

This section considers the problem of obtaining optimal weak bounds for Hp
α and Hp.

In this regard our main results and corollaries are as under:

46
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Theorem 5.2.1 Let 1 < q < n+β
α
, 1 ≤ r <∞, 0 < α ≤ β

q−1
< n. If n+β

q
− α = n+γ

r
,

then

‖Hp
α‖Lq(|x|βp )→Lr,∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

1− p
β
q−1
−n

)1/q′

.

Corollary 5.2.2 Let 1 < q < n
α
, 1 ≤ r <∞. If n

q
− α = n

r
, then

‖Hp
α‖Lq(Qnp )→Lr,∞(Qnp ) = 1.

Theorem 5.2.3 Let 1 < q <∞, 1 ≤ r <∞. If n+β
q

= n+γ
r
, then

‖Hp‖Lq(|x|βp )→Lr,∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

1− p
β
q−1
−n

)1/q′

.

Corollary 5.2.4 Let 1 < q <∞, then

‖Hp‖Lq(Qnp )→Lq,∞(Qnp ) = 1.

Since the proofs of Theorems 5.2.1 and 5.2.3 follows similar pattern, we only prove

Theorem 5.2.1.

Proof of Theorem 5.2.1: Employing Hölder’s inequality at the initial stage to

get:

|Hp
αf(x)| =

∣∣∣∣ 1

|x|n−αp

∫
|y|p≤|x|p

f(y)dy

∣∣∣∣
≤|x|α−np

(∫
|y|p≤|x|p

|f(y)|q|y|βpdy
)1/q(∫

|y|p≤|x|p
|y|−βq′/qp dy

)1/q′

. (5.2.1)

Easy computation leads to

(∫
|y|p≤|x|p

|y|−βq′/qp dy

)1/q′

=

( logp |x|p∑
j=−∞

∫
Sj

p−jβq
′/qdy

)1/q′

=(1− p−n)1/q′
( logp |x|p∑

j=−∞

pj(n−
β
q−1

)

)1/q′

=

(
1− p−n

1− p
β
q−1
−n

)1/q′

|x|
n
q′−

β
q

p , (5.2.2)
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where, at the second step, the convergence of the series is by virtue of the condition

that β
q−1

< n. In view of the condition n+β
q
− α = n+γ

r
and (5.2.2), the inequality

(5.2.1) assumes the following form:

|Hp
αf(x)| ≤

(
1− p−n

1− p
β
q−1
−n

)1/q′

‖f‖Lq(|x|βp )|x|
α−n+β

q
p

=

(
1− p−n

1− p
β
q−1
−n

)1/q′

‖f‖Lq(|x|βp )|x|
−n+γ

r
p .

Next, we let Cf
1 =

(
1−p−n

1−p
β
q−1−n

)1/q′

‖f‖Lq(|x|βp ), then for any λ > 0, we get

{x ∈ Qn
p : |Hp

αf(x)| > λ} ⊂
{

x ∈ Qn
p : |x|p <

(
Cf

1

λ

) r
n+γ
}
.

Thus,

‖Hp
αf‖Lr,∞(|x|γp) = sup

λ>0
λ

(∫
Qnp
χ{x∈Qnp :|Hp

αf(x)|>λ}(x)|x|γpdx
)1/r

≤ sup
λ>0

λ

(∫
Qnp
χ{

x∈Qnp :|x|p<
(
Cf1 /λ

)r/(n+γ)}(x)|x|γpdx
)1/r

= sup
λ>0

λ

(∫
|x|p<

(
Cf1 /λ

)r/(n+γ) |x|γpdx)1/r

= sup
λ>0

λ

( logp

(
Cf1 /λ

)r/(n+γ)∑
j=−∞

∫
Sj

|x|γpdx
)1/r

=(1− p−n)1/r sup
λ>0

λ

( logp

(
Cf1 /λ

)r/(n+γ)∑
j=−∞

pj(n+γ)dx

)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

Cf
1

=

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

1− p
β
q−1
−n

)1/q′

‖f‖Lq(|x|βp ).

On the other hand, suppose

f0(x) = |x|
− β
q−1

p χ{x∈Qnp :|x|p≤1}(x),
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then

‖f0‖Lq(|x|βp ) =

(∫
|x|p≤1

|x|
− β
q−1

p dx

)1/q

=(1− p−n)1/q

( 0∑
j=−∞

pj(n−
β
q−1

)

)

=

(
1− p−n

1− p
β
q−1
−n

)1/q

. (5.2.3)

Also,

Hp
αf0(x) =

1

|x|n−αp

∫
|y|p≤|x|p

f0(y)dy

=
1

|x|n−αp

∫
|y|p≤|x|p

|y|
− β
q−1

p χ{x∈Qnp :|y|p≤1}(y)dy

=
1

|x|n−αp


∫
|y|p≤|x|p |y|

− β
q−1

p dy, |x|p ≤ 1;∫
|y|p≤1

|y|
− β
q−1

p dy, |x|p > 1.

By necessary splitting of integration domains as done in (5.2.2) and (5.2.3), we get

Hp
αf0(x) =

1− p−n

1− p
β
q−1
−n

|x|
α− β

q−1
p , |x|p ≤ 1;

|x|α−np , |x|p > 1.

Let C2 = 1−p−n

1−p
β
q−1−n

, then

{x ∈ Qn
p : |Hp

αf0(x)| > λ} ={|x|p ≤ 1 : |x|
α− β

q−1
p C2 > λ} ∪ {|x|p > 1 : |x|α−np C2 > λ}.

When 0 < λ < C2, with consideration 0 < α ≤ β
q−1

< n to have

{x ∈ Qn
p : |Hp

αf0(x)| > λ} ={|x|p ≤ 1} ∪ {|x|p > 1 : |x|α−np > λ/C2}
={x ∈ Qn

p : |x|p < (C2/λ)1/(n−α)}.
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Therefore, for n− α > 0 < n+ γ, we have

‖Hp
αf0‖Lr,∞(|x|γp) = sup

0<λ<C2

λ

(∫
Qnp
χ{x∈Qnp :|x|p<(C2/λ)1/(n−α)}(x)|x|γpdx

)1/r

= sup
0<λ<C2

λ

(∫
|x|p<(C2/λ)1/(n−α)

|x|γpdx
)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

sup
0<λ<C2

λ

(
C2

λ

)(n+γ)/r(n−α)

=

(
1− p−n

1− p−(n+γ)

)1/r

C2

=

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

1− p
β
q−1
−n

)1/q′

‖f0‖Lq(|x|βp ).

When λ ≥ C2 and α = β
q−1

, we have

{x ∈ Qn
p : |Hp

α(f0)(x)| > λ} = ∅.

Also, if λ ≥ C2 and α < β
q−1

, then

{x ∈ Qn
p : |Hp

α(f0)(x)| > λ} =

{
x ∈ Qn

p : |x|p < (C2/λ)
1

β
q−1−α

}
.

The condition β
q−1

< n implies the inequality: β
q−1

< n+β
q
, which together with the

condition n+β
q
− α = n+γ

r
, yields β

q−1
− α < n+γ

r
. Therefore,

‖Hp
αf0‖Lr,∞(|x|γp) = sup

λ≥C2

λ

(∫
|x|p<(C2/λ)

1
−α+β/(q−1)

|x|γpdx
)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

sup
λ≥C2

C

(
n+γ
r

)(
β
q−1
−α
)−1

2 λ1−
(
n+γ
r

)(
β
q−1
−α
)−1

=

(
1− p−n

1− p−(n+γ)

)1/r

C2

=

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

1− p
β
q−1
−n

)1/q′

‖f0‖Lq(|x|βp ).

Hence,

‖Hp
αf‖Lq(|x|βp )→Lr,∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

1− p
β
q−1
−n

)1/q′

.
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5.3 Sharp Weak-type Estimates for Adjoint p-adic

Hardy Operators

Likewise this section contains the results having sharp weak bounds for adjoint Hardy

operator. The first theorem gives the operator norm of fractional p-adic adjoint Hardy

operator:

Theorem 5.3.1 Let 1 < q < n+β
α
, 1 ≤ r <∞. If n+β

q
− α = n+γ

r
, then

‖Hp,∗
α ‖Lq(|x|βp )→Lr,∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

p(n+γ
r

)q′ − 1

)1/q′

An obvious corollary of Theorem 5.3.1 is achieved by taking β = γ = 0, as given

below:

Corollary 5.3.2 Let 1 < q < n
α
, 1 ≤ r <∞. If n

q
− α = n

r
, then

‖Hp,∗
α ‖Lq(Qnp )→Lr,∞(Qnp ) =

(
1− p−n

p
nq′
r − 1

)1/q′

The next Theorem 5.3.3 and its corollary give the operator norms of p-adic adjoint

Hardy operator:

Theorem 5.3.3 Let 1 < q <∞, 1 ≤ r <∞. If n+β
q

= n+γ
r
, then

‖Hp,∗‖Lq(|x|βp )→Lr,∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

p(n+β
r

)q′ − 1

)1/q′

Corollary 5.3.4 Let 1 < q <∞, then

‖Hp,∗‖Lq(Qnp )→Lq,∞(Qnp ) =

(
1− p−n

p
n
q−1 − 1

)1/q′

As in the previous section, we will prove only Theorem 5.3.1, the proof of other result

can be obtained similarly.

Proof of Theorem 5.3.1: By Hölder’s inequality:

|Hp,∗
α f(x)| =

∣∣∣∣ ∫
|y|p>|x|p

f(y)

|y|n−αp

dy

∣∣∣∣
≤
(∫

|y|p>|x|p
|f(y)||y|βpdy

)1/q(∫
|y|p>|x|p

|y|
(α−n−β

q
)q′

p dy

)1/q′

. (5.3.1)
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Now, the inequality (5.3.1) possesses two factors and the factor on the right side

is computed as:(∫
|y|p>|x|p

|y|
(α−n−β

q
)q′

p dy

)1/q′

=

( ∞∑
j=logp |x|p+1

∫
Sj

pjq
′(α−n−β

q
)

)1/q′

=(1− p−n)1/q′
( ∞∑
j=logp |x|p+1

pjq
′(α−n+β

q
)

)1/q′

=

(
1− p−n

p(n+β
q
−α)q′ − 1

)1/q′

|x|
α−n+β

q
p . (5.3.2)

By virtue of the condition n+β
q
− α = n+γ

r
and (5.3.2), we rewrite the inequality

(5.3.1) as below:

|Hp,∗
α f(x)| ≤

(
1− p−n

p(n+γ
r

)q′ − 1

)1/q′

|x|−
n+γ
r

p ‖f‖Lq(|x|βp ) = Cf
3 |x|

−n+γ
r

p ,

where

Cf
3 =

(
1− p−n

p(n+γ
r

)q′ − 1

)1/q′

‖f‖Lq(|x|βp ).

Now,

{x ∈ Qn
p : |Hp,∗

α f(x)| > λ} ⊂ {x ∈ Qn
p : |x|p < (Cf

3 /λ)
r

n+γ }.

Thus,

‖Hp,∗
α f‖Lr,∞(|x|γp) ≤ sup

λ>0
λ

(∫
Qnp
χ{x∈Qnp :|x|p<(Cf3 /λ)r/(n+γ)}(x)|x|γpdx

)1/r

= sup
λ>0

λ

(∫
|x|p<(Cf3 /λ)r/(n+γ)

|x|γpdx
)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

Cf
3

=

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

p(n+γ
r

)q′ − 1

)1/q′

‖f‖Lq(|x|βp ).

To prove the optimality of the constant, we let

f0(x) = |x|
α−n−β
q−1

p χ{|x|p>1},
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then making use of the condition q < n+β
α
, we obtain

‖f0‖Lq(|x|βp ) =

(∫
|x|p>1

|x|
β+(α−n−β) q

q−1
p dx

)1/q

=

( ∞∑
j=1

∫
Sj

pj
(
β+(α−n−β) q

q−1

)
dx

)1/q

=(1− p−n)1/q

( ∞∑
j=1

p
jα
q−1

(
q−n+β

α

))1/q

=

(
1− p−n

p(n+γ
r

)q′ − 1

)1/q

. (5.3.3)

On the other hand,

Hp,∗
α f0(x) =

∫
|y|p>|x|p

f0(y)

|y|n−αp

dy

=

∫
|y|p>|x|p

|y|
(α−n) q

q−1
− β
q−1

p χ{y∈Qnp :|y|p>1}(y)dy

=


∫
|y|p>|x|p |y|

(α−n) q
q−1
− β
q−1

p dy, |x|p > 1∫
|y|p>1

|y|
(α−n) q

q−1
− β
q−1

p dy, |x|p ≤ 1,

which in view of equations (5.3.2) and (5.3.3) yields

Hp,∗
α f0(x) =

1− p−n

p(n+γ
r

)q′ − 1

|x|
−(n+γ

r
)q′

p , |x|p > 1

1, |x|p ≤ 1

Let C4 = 1−p−n

p(
n+γ
r )q′−1

, then

{x ∈ Qn
p : |Hp,∗

α f0(x)| > λ} ={|x|p ≤ 1 : C4 > λ} ∪ {|x|p > 1 : C4|x|
−(n+γ

r
)q′

p > λ}.

Obviously for λ > C4, we have

{x ∈ Qn
p : |Hp,∗

α f0(x)| > λ} = ∅,

and for λ < C4

{x ∈ Qn
p : |Hp,∗

α f0(x)| > λ} = {x ∈ Qn
p : |x|p < (C4/λ)

r
(n+γ)q′ }.
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Therefore,

‖Hp,∗
α f0‖Lr,∞(|x|γp) = sup

0<λ<C4

λ

(∫
|x|p<(C4/λ)

r
(n+γ)q′

|x|γpdx
)1/r

= sup
0<λ<C4

λ

( logp(C4/λ)
r

(n+γ)q′∑
j=−∞

∫
Sj

|x|γpdx
)1/r

=(1− p−n)1/r sup
0<λ<C4

λ

( logp(C4/λ)
r

(n+γ)q′∑
j=−∞

pj(n+γ)

)1/r

=

(
1− p−n

1− p−(n+γ)

)1/r

sup
0<λ<C4

λ

(
C4

λ

)1/q′

=

(
1− p−n

1− p−(n+γ)

)1/r

C4

=

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

p(n+γ
r

)q′ − 1

)1/q′

‖f0‖Lq(|x|βp ).

Hence,

‖Hp,∗
α ‖Lq(|x|βp )→Lr,∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/r(
1− p−n

p(n+γ
r

)q′ − 1

)1/q′

Remark In this Chapter, all the theorems are proved under the condition that 1 <

q < ∞. Therefore, there arise a problem regarding the weak type operator norm of

p-adic Hardy operator when q = 1, which we will address in the next Chapter.



Chapter 6

Sharp Weak Bounds for p-adic

Hardy Operators on p-adic Linear

Spaces

6.1 Introduction

This Chapter is a continuation of a couple of results about p-adic Hardy-type op-

erators presented in Chapter 5, where we have obtained optimal weak bounds for

these operators on weighted p-adic Lebesgue spaces Lq(|x|ρp,Qn
p ), 1 < q < ∞. How-

ever, when q = 1, the results of Chapter 5 remain no more true. Therefore, there

arise a question regarding the weak type endpoint estimates for fractional Hardy type

operators on p-adic field. Here, in this Chapter, we will answer this question.

In this Chapter, weak boundedness of p-adic fractional Hardy operator and its

adjoint operator is established on weighted p-adic Lebesgue space Lq(w,Qn
p ) at the

endpoint q = 1. In some cases, we obtain sharp constants for these boundedness in-

equalities. Moreover, we obtain the optimal weak estimates for p-adic Hardy operator

on p-adic central Morrey space.

6.2 Endpoint Estimates for p-adic Fractional Hardy

Operator

Here, we show that the weak bound for p-adic fractional Hardy type operators on

p-adic weighted weak Lebesgue space Lq,∞(|x|βp ) at q = 1 is not sharp. However, if we

take β = 0 then it becomes sharp and the same is proved in the results of the current

section.

55



56 Sharp Weak Bounds for p-adic Hardy Operators on p-adic Linear Spaces

Theorem 6.2.1 Suppose −n < γ, −n+ α < β and γ > β − α. If f ∈ L1(|x|βp ), then

‖Hp
α‖L1(|x|βp )→L(n+γ)/(n−α+β),∞(|x|γp) ≤

(
1− p−n

1− p−(n+γ)

)(n−α+β)/(n+γ)

.

Proof. Since

|Hp
αf(x)| =

∣∣∣∣ 1

|x|n−αp

∫
|y|p≤|x|p

f(y)dy

∣∣∣∣
=

∣∣∣∣ 1

|x|n−αp

∫
|y|p≤|x|p

f(y)|y|βp |y|−βp dy

∣∣∣∣
≤|x|−(n−α+β)

p ‖f‖L1(|x|βp ). (6.2.1)

Let C1 = ‖f‖L1(|x|βp ), then

{x ∈ Qn
p : |Hp

αf(x)| > λ} ⊂ {x ∈ Qn
p : |x|p < (C1/λ)1/(n−α+β)}.

Thus,

‖Hp
αf‖L(n+γ)/(n−α+β),∞(|x|γp)

= sup
λ>0

λ

(∫
Qnp
χ{x∈Qnp :|Hp

αf(x)|>λ}(x)|x|γpdx
)(n−α+β)/(n+γ)

≤ sup
λ>0

λ

(∫
Qnp
χ{

x∈Qnp :|x|p<
(
C1/λ

)1/(n−α+β)}(x)|x|γpdx
)(n−α+β)/(n+γ)

= sup
λ>0

λ

(∫
|x|p<

(
C1/λ

)1/(n−α+β) |x|γpdx)(n−α+β)/(n+γ)

= sup
λ>0

λ

( logp

(
C1/λ

)1/(n−α+β)∑
j=−∞

∫
Sj

|x|γpdx
)(n−α+β)/(n+γ)

=(1− p−n)(n−α+β)/(n+γ) sup
λ>0

λ

( logp

(
C1/λ

)1/(n−α+β)∑
j=−∞

pj(n+γ)dx

)(n−α+β)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α+β)/(n+γ)

sup
λ>0

λ

(
C1

λ

)
=

(
1− p−n

1− p−(n+γ)

)(n−α+β)/(n+γ)

‖f‖L1(|x|βp ). (6.2.2)
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Theorem 6.2.2 Let 0 < α < n and n+ γ > 0. If f ∈ L1(Qn
p ), then

‖Hp
α‖L1(Qnp )→L(n+γ)/(n−α),∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

.

Proof. Taking β = 0 in Theorem 6.2.1, we infer from inequality (6.2.2) that

‖Hp
αf‖L(n+γ)/(n−α),∞(|x|γp) ≤

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

‖f‖L1(Qnp ). (6.2.3)

Conversely, let

f0(x) = χ{x∈Qnp :|x|p≤1}(x),

then

‖f0‖L1(Qnp ) = 1.

Also,

Hp
αf0(x) =

1

|x|n−αp

∫
|y|p≤|x|p

f0(y)dy

=
1

|x|n−αp

∫
|y|p≤|x|p

χ{x∈Qnp :|y|p≤1}(y)dy

=
1

|x|n−αp


∫
|y|p≤|x|p dy, |x|p ≤ 1;∫
|y|p≤1

dy, |x|p > 1.

Since |Blogp |x|p |H = |x|np |B0|H , therefore,

Hp
αf0(x) =

|x|αp , |x|p ≤ 1;

|x|α−np , |x|p > 1.

Now,

{x ∈ Qn
p : |Hp

αf0(x)| > λ} ={|x|p ≤ 1 : |x|αp > λ} ∪ {|x|p > 1 : |x|α−np > λ}.

Since 0 < α < n, therefore, when λ ≥ 1, then

{x ∈ Qn
p : |Hp

αf0(x)| > λ} = ∅,

and when 0 < λ < 1, then

{x ∈ Qn
p : |Hp

αf0(x)| > λ} = {x ∈ Qn
p : (λ)1/n < |x|p < (1/λ)1/n−α}.
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Ultimately we are down to:

‖Hp
αf0‖L(n+γ)/(n−α))),∞(|x|γp)

= sup
0<λ<1

λ

(∫
Qnp
χ{x∈Qnp :(λ)1/α<|x|p<(1/λ)1/(n−α)}(x)|x|γpdx

)(n−α)/(n+γ)

= sup
0<λ<1

λ

(∫
(λ)1/α<|x|p<(1/λ)1/(n−α)

|x|γpdx
)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<λ<1

λ

( logp λ
1/(α−n)∑

j=logp λ
1/α+1

pj(n+γ)

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<λ<1

λ

(
p(logp λ

1/α+1)(n+γ) − p(logp λ
1/(α−n)+1)(n+γ)

1− p(n+γ)

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<λ<1

λ

(
λ(n+γ)/α − λ(n+γ)/(α−n)

p−(n+γ) − 1

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<λ<1

(
1− λ(n+γ)/αλ(n+γ)/(n−α)

1− p−(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

sup
0<λ<1

(
1− λ(n+γ)/αλ(n+γ)/(n−α)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

‖f0‖L1(Qnp ). (6.2.4)

We thus conclude from (6.2.3) and (6.2.4) that

‖Hp
α‖L1(Qnp )→L(n+γ)/(n−α),∞(|x|γp) =

(
1− p−n

1− p−(n+γ)

)1/q

.

6.3 Endpoint Estimates for p-adic Adjoint Frac-

tional Hardy Operator

This Section contains results regarding weak endpoint estimates for p-adic adjoint

fractional Hardy operator Hp,∗
α on Lebesgue space. However, contrary to the results

of previous section, we are unable to find sharp bounds even in the un-weighted case.
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Theorem 6.3.1 Suppose −n+ α < β, −n < γ and γ > β − α. If f ∈ L1(|x|βp ), then

‖Hp,∗
α ‖L1(|x|βp )→L(n+γ)/(n−α+β),∞(|x|γp) ≤

(
1− p−n

1− p−(n+γ)

)(−α+n+β)/(γ+n)

.

Proof. Obviously,

|Hp,∗
α f(x)| =

∣∣∣∣ ∫
|y|p>|x|p

f(y)

|y|n−αp

dy

∣∣∣∣
=

∣∣∣∣ ∫
|y|p>|x|p

f(y)|y|α−(n+β)
p |y|βpdy

∣∣∣∣.
Since α− n < β and |y|p > |x|p, we have:

|Hp,∗
α f(x)| ≤|x|−(n−α+β)

p

∫
|y|p>|x|p

|f(y)||y|βpdy. (6.3.1)

Notice that the right hand sides of inequalities (6.2.1) and (6.3.1) are same, there-

fore, applying the definition of Lq(|x|γp) and following the steps as followed in estab-

lishing the inequality (6.2.2), we obtain

‖Hp,∗
α f‖L(n+γ)/(n−α+β),∞(|x|γp) ≤

(
1− p−n

1− p−(n+γ)

)(−α+n+β)/(γ+n)

‖f‖L1(|x|βp ). (6.3.2)

Theorem 6.3.2 Let 0 < α < n and n+ γ > 0. If f ∈ L1(Qn
p ), then

‖Hp,∗
α ‖L1(Qnp )→L(n+γ)/(n−α),∞(|x|γp) '

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

.

Proof. We take β = 0 in Theorem 6.3.1, then from the inequality (6.3.2), we get

‖Hp,∗
α ‖L1(Qnp )→L(n+γ)/(n−α),∞(|x|γp) ≤

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

. (6.3.3)

Conversely let Hp,∗
α be bounded from L1(Qn

p ) to L(n+γ)/(n−α),∞(|x|γp). Let f0(x) =

|x|−(α+n)
p χ{|x|p>1}(x), then

‖f0‖L1(Qnp ) =

∫
|x|p>1

|x|−n−αp dx

=(1− p−n)
∞∑
j=1

p−jα

=p−α
1− p−n

1− p−α
. (6.3.4)
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Also,

Hp,∗
α f0(x) =

∫
|y|p>|x|p

f0(y)

|y|n−αp

χ{|y|p>1}(y)dy

=

∫
|y|p>|x|p

|y|−2n
p χ{|y|p>1}(y)dy.

Hence,

Hp,∗
α f0(x) =


∫
|y|p>|x|p |y|

−2n
p dy, |x|p > 1;∫

|y|p>1
|y|−2n

p dy, |x|p ≤ 1.
(6.3.5)

Let us first consider∫
|y|p>|x|p

|y|−2n
p dy =

∞∑
j=logp |x|p+1

∫
Sj

p−2jndy

=(1− p−n)
∞∑

j=logp |x|p+1

p−jn

=p−n|x|−np .

By a similar pattern as followed in (6.3.4), we obtain∫
|y|p>1

|y|−2n
p dy = p−n.

Therefore, equation (6.3.5) takes the following shape

Hp,∗
α f0(x) = p−n

|x|−np , |x|p > 1;

1, |x|p ≤ 1.

Let

C2 = p−n,

then

{x ∈ Qn
p : |Hp,∗

α f0(x)| > λ} = {|x|p ≤ 1 : C2 > λ} ∪ {|x|p > 1 : C2|x|−np > λ}.

Evidently, if λ > C2, then

{x ∈ Qn
p : |Hp,∗

α f0(x)| > λ} = ∅.

On the other side if λ ≤ C2, then

{x ∈ Qn
p : |Hp,∗

α f0(x)| > λ} = {x ∈ Qn
p : |x|p < (C2/λ)1/n}.
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Ultimately, we are lead to

‖Hp,∗
α f0‖L(n+γ)/(n−α),∞(|x|γp)

≤ sup
0<λ<1

λ

(∫
Qnp
χ{|x|p<(C2/λ)1/n}(x)|x|γpdx

)(n−α)/(n+γ)

= sup
0<λ<C2

λ

(∫
|x|p<(C2/λ)1/(β+n)

|x|γp
)(n−α)/(n+γ)

= sup
0<λ<C2

λ

( logp(C2/λ)1/n∑
j=−∞

∫
Sj

pjγdx

)(n−α)/(n+γ)

= (1− p−n)(n−α)/(n+γ) sup
0<λ<C2

λ

( logp(C2/λ)1/n∑
j=−∞

pj(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

sup
0<λ<C2

λ

(
C2

λ

)(n−α)/n

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

C
(n−α)/n
2 sup

0<λ<C2

λ1−(n−α)/n

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

C2

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)
pα − 1

pn − 1
‖f0‖L1(Qnp ).

Since Hp,∗
α is bounded from L1(Qn

p ) to L(n+γ)/(n−α),∞(|x|γp), therefore,(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)
pα − 1

pn − 1
≤ ‖Hp,∗

α ‖L1(Qnp )→L(n+γ)/(n−α),∞(|x|γp). (6.3.6)

From the inequalities (6.3.3) and (6.3.6), we conclude that

‖Hp,∗
α ‖L1(Qnp )→L(n+γ)/(n−α),∞(|x|γp) '

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

.

6.4 Optimal Weak Bounds for p-adic Hardy Oper-

ator on p-adic Morrey-type Spaces

The present section investigates the weak boundedness of p-adic Hardy operator on p-

adic central Morrey spaces. Most importantly, we have acquired the optimal constant.
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Theorem 6.4.1 Let −1/q ≤ λ < 0 and 1 ≤ q <∞, and if f ∈ Ḃq,λ(Qn
p ), then

‖H‖Ḃq,λ(Qnp )→WḂq,λ(Qnp ) = 1.

Proof. Applying Hölder’s inequality:

|Hpf(x)| ≤ 1

|x|np

(∫
B(0,|x|p)

|f(y)|qdy
)1/q(∫

B(0,|x|p)

dy

)1/q′

=|x|nλp ‖f‖Ḃq,λ(Qnp ).

Let C = ‖f‖Ḃq,λ(Qnp ). Since λ < 0, then

‖Hf‖WḂq,λ(Qnp ) ≤ sup
γ∈Z

sup
t>0

t|Bγ|−λ−1/q
H

∣∣{x ∈ Bγ : C|x|nλp > t}
∣∣1/q

= sup
γ∈Z

sup
t>0

t|Bγ|−λ−1/q
H

∣∣{|x|p ≤ pγ : |x|p < (t/C)1/nλ}
∣∣1/q.

If γ ≤ logp(t/C)1/nλ, then for λ < 0, we obtain

sup
t>0

sup
γ≤logp(t/C)1/nλ

t|Bγ|−λ−1/q
H

∣∣{|x|p ≤ pγ : |x|p < (t/C)1/nλ}
∣∣1/q

≤ sup
t>0

sup
γ≤logp(t/C)1/nλ

tp−γnλ

= C

= ‖f‖Ḃq,λ(Qnp ).

If γ > logp(t/C)1/nλ, then for λ+ 1/q > 0, we get

sup
t>0

sup
γ>logp(t/C)1/nλ

t|Bγ|−λ−1/q
H |{|x|p ≤ pγ : |x|p < (t/C)1/nλ}|1/q

≤ sup
t>0

sup
γ>logp(t/C)1/nλ

tp−γn(λ+1/q)(t/C)1/qλ

= C

= ‖f‖Ḃq,λ(Qnp ).

Therefore,

‖Hf‖WḂq,λ(Qnp ) ≤ ‖f‖Ḃq,λ(Qnp ),

which implies that

‖H‖Ḃq,λ(Qnp )→WḂq,λ(Qnp ) ≤ 1. (6.4.1)
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To show that the constant 1 is optimal, we employ the idea of use of power function

given in [110]. Hence, we suppose

f0(x) = χ{|x|p≤1}(x),

then,

‖f0‖Ḃq,λ(Qnp ) = sup
γ∈Z

(
1

|Bγ|1+λq
H

∫
Bγ

χ{|x|p≤1}(x)dx

)1/q

.

Since λ < 0, thus if γ < 0 then

sup
γ∈Z
γ<0

(
1

|Bγ|1+λq
H

∫
Bγ

dx

)1/q

= sup
γ∈Z
γ<0

p−nγλ = 1.

Since λ+ 1/q > 0, thus if γ ≥ 0 then

sup
γ∈Z
γ≥0

(
1

|Bγ|1+λq
H

∫
B0

dx

)1/q

= sup
γ∈Z
γ≥0

p−nγ(λ+1/q) = 1.

Therefore,

‖f0‖Ḃq,λ(Qnp ) = 1.

Moreover,

Hpf0(x) =

1, |x|p ≤ 1;

|x|−np , |x|p > 1,

which implies that |Hpf0(x)| ≤ 1.

Next, in order to construct weak central Morrey norm we take following couple of

cases:

Case 1. When 0 ≥ γ, then

‖Hf0‖WLq(Bγ) = sup
0<t≤1

t|{x ∈ Bγ : 1 > t}|1/q = pnγ/q,

and

‖Hf0‖WḂq,λ(Qnp ) = sup
γ<0
|Bγ|−λ−1/q

H ‖f‖WLq(Bγ) = sup
γ<0

p−nγλ = 1 = ‖f0‖Ḃq,λ(Qnp ).

Case 2. When 0 < γ, we have

‖Hf0‖WLq(Bγ) = sup
0<t≤1

t|{x ∈ B0 : 1 > t} ∪ {1 ≤ |x|p < pγ : |x|−np > t}|1/q.
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For further analysis this case is divided into two more cases:

Case 2(a). If 1 < γ < logp t
−1/n, then

‖Hf0‖WLq(Bγ) = sup
0<t≤1

t{1 + pnγ − 1}1/q = sup
0<t≤1

tpnγ/q.

Case 2(b). If 1 < logp t
−1/n < γ, then:

‖Hf0‖WLq(Bγ) = sup
0<t≤1

t(1 + t−1 − 1)1/q = sup
0<t≤1

t1−1/q.

Now, for −1/q ≤ λ < 0, and 1 ≤ q <∞, from case 2(a) and 2(b), we obtain

‖Hf0‖WḂq,λ(Qnp )

= max

{
sup

0<t≤1
sup

1<γ≤logp(1/t)1/n
tp−nγλ, sup

0<t≤1
sup

1<logp(1/t)1/n<γ

t1−1/qp−nγ(λ+1/q)

}
= max

{
sup

0<t≤1
t1+λ, sup

0<t≤1
t1+λ

}
= 1 = ‖f0‖Ḃq,λ(Qnp ).

Hence, using the (Ḃq,λ(Qn
p ),WḂq,λ(Qn

p )) boundedness of H in each case, we get

1 ≤ ‖H‖Ḃq,λ(Qnp )→WḂq,λ(Qnp ). (6.4.2)

Finally, combining inequalities (6.4.1) and (6.4.2), we arrive at:

‖H‖Ḃq,λ(Qnp )→WḂq,λ(Qnp ) = 1.



Chapter 7

Boundedness of Weighted

Multilinear p-adic Hardy Operator

on Herz-Type Spaces

7.1 Introduction

In the last two Chapters, we mainly focussed on the multidimensional case of p-

adic Hardy-type operators. In this Chapter, we consider another variant of Hardy

operator, namely, the weighted Hardy operator. Like Hardy operator, the weighted

Hardy operator has a long bibliographic history of boundedness results on function

spaces. Since, we are concerned with p-adic analog of multilinear weighted Hardy

operator, therefore, in the remaining of this thesis, we confine ourselves within this

context.

Multilinear operators are studied in analysis because of their natural appearance

in numerous physical phenomenons and their purpose is not merely to generalize the

theory of linear operators. A reader can see the papers [25, 31, 42] and the references

therein for better understanding of multilinear operators. The purpose of this Chapter

is to study the boundedness of Hp,m
ψ on the product of p-adic Herz spaces and p-adic

Morrey-Herz spaces. The corresponding operator norms are also acquired.

65
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7.2 Boundedness of Hp,m
ψ on the Product of Herz

Spaces

In the current section we throw light on the boundedness of Hp,m
ψ on the product of

p-adic Herz spaces. Furthermore, norm of the very operator is attained as well. We

state and prove our first result.

Theorem 7.2.1 Suppose α, α1, α2, · · ·, αm is any arbitrary real numbers, 1 < p, p1, · ·
·, pm, q, q1, · · ·, qm <∞ and let also α1 + α2 + · · ·+ αm = α, 1

p1
+ 1

p2
+ · · ·+ 1

pm
= 1

p
,

1
q1

+ 1
q2

+ · · ·+ 1
qm

= 1
q
, then Hp,m

ψ is bounded from K̇α1,p1
q1

(Qn
p )× · · · × K̇αm,pm

qm (Qn
p ) to

K̇α,p
q (Qn

p ) if∫
Z∗p
· · ·
∫
Z∗p
|t1|−(α1+n/q1)

p · · · |tm|−(αm+n/qm)
p ψ(t1, · · ·, tm)dt1 · · · dtm <∞. (7.2.1)

Conversely, if q1, q2, · · ·, qm = mq, p1, p2, · · ·, pm = mp and Hp,m
ψ is bounded from

K̇α1,p1
q1

(Qn
p )× · · · × K̇αm,pm

qm (Qn
p ) to K̇α,p

q (Qn
p ) then (7.2.1) holds. Furthermore,

‖Hp,m
ψ ‖K̇α1,p1

q1
(Qnp )×···×K̇αm,pm

qm (Qnp )→K̇α,p
q (Qnp ) =

∫
Z∗p
· · ·
∫
Z∗p
|t1|−(α1+n/q1)

p ...|tm|−(αm+n/qm)
p

× ψ(t1, · · ·, tm)dt1 · · · dtm. (7.2.2)

Proof. We will prove the Theorem only for m = 2 which will work for every m ∈ N.
As 1/q = 1/q1 + 1/q2 use of Minkowski’s inequality and Hölder’s inequality give:

‖Hp,2
ψ (f1, f2)χk‖Lq(Qnp ) =

(∫
Sk

∣∣∣∣ ∫ ∫
Z∗p
f1(t1x)f2(t2x)ψ(t1, t2)dt1dt2

∣∣∣∣q)1/q

≤
∫ ∫

Z∗p

(∫
Sk

∣∣∣∣f1(t1x)f2(t2x)

∣∣∣∣q)1/q

ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p

(∫
Sk

|f1(t1x)|q1dx
)1/q1(∫

Sk

|f2(t2x)|q2dx
)1/q2

× ψ(t1, t2)dt1dt2

=

∫ ∫
Z∗p

(∫
t1Sk

|f1(x)|q1dx
)1/q1(∫

t2Sk

|f2(x)|q2dx
)1/q2

× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2.
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Now for each t1, t2 ∈ Z∗p, nonnegative integers m, l exists such that |t1|p = p−m and

|t2|p = p−l. Therefore, we easily have:

‖Hp,2
ψ (f1, f2)χk‖Lq(Qnp ) ≤

∫ ∫
Z∗p

(
‖f1χk−m‖Lq1 (Qnp ).‖f2χk−l‖Lq2 (Qnp )

)
× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2.

Hence, by means of Minkowski’s inequality and Hölder’s inequality together with

1/p1 + 1/p2 = 1/p and α = α1 + α2, we get:

‖Hp,2
ψ (f1, f2)‖K̇α,p

q (Qnp )

=

( ∞∑
k=−∞

pkαp‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

)1/p

≤
( ∞∑
k=−∞

pkαp
(∫ ∫

Z∗p

(
‖f1χk−m‖Lq1 (Qnp ).‖f2χk−l‖Lq2 (Qnp )

)

× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

)p)1/p

≤
∫ ∫

Z∗p

( ∞∑
k=−∞

pkαp
(
‖f1χk−m‖Lq1 (Qnp ).‖f2χk−l‖Lq2 (Qnp )

)p)1/p

× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p

( ∞∑
k=−∞

pkα1p1‖f1χk−m‖p1Lq1 (Qnp )

)1/p1

×
( ∞∑
k=−∞

pkα2p2‖f2χk−l‖p2Lq2 (Qnp )

)1/p2

|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p

( ∞∑
k=−∞

pkα1p1‖f1χk‖p1Lq1 (Qnp )

)1/p1

×
( ∞∑
k=−∞

pkα2p2‖f2χk‖p2Lq2 (Qnp )

)1/p2

|t1|−(α1+n/q1)
p |t2|−(α2+n/q2)

p ψ(t1, t2)dt1dt2

≤‖f1‖K̇α1,p1
q1

(Qnp )‖f2‖K̇α2,p2
q2

(Qnp )

∫ ∫
Z∗p
|t1|−(α1+n/q1)

p |t2|−(α2+n/q2)
p ψ(t1, t2)dt1dt2.

Hence,

‖Hp,2
ψ (f1, f2)χk‖K̇α1,p1

q1
(Qnp )×K̇α2,p2

q2
(Qnp )→K̇α,p

q (Qnp )

≤
∫ ∫

Z∗p
|t1|−(α1+n/q1)

p |t2|−(α2+n/q2)
p ψ(t1, t2)dt1dt2. (7.2.3)
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Conversely, let Hp,2
ψ be bounded from K̇α1,p1

q1
(Qn

p ) × K̇α2,p2
q2

(Qn
p ) to K̇α,p

q (Qn
p ). For

0 < ε < 1, we let

f1(x) =

0 if |x|p < 1,

|x|−α1−(n/q1)−ε
p if |x|p ≥ 1,

f2(x) =

0 if |x|p < 1,

|x|−α2−(n/q2)−ε
p if |x|p ≥ 1.

It is quite evident that f1χk = f2χk = 0 for k < 0. Our interest lies only for k ≥ 0.

So, we proceed as follows.

‖f1χk‖Lq1 (Qnp ) =

(∫
Sk

|x|−(α1+(n/q1)+ε)q1
p

)1/q1

= (1− p−n)1/q1p−k(α1+ε).

In a similar fashion, we have:

‖f2χk‖Lq2 (Qnp ) = (1− p−n)1/q2p−k(α2+ε).

Hence,

‖f1‖K̇α1,p1
q1

(Qnp ) =

( ∞∑
k=−∞

pkα1p1‖f1χk‖p1Lq1 (Qnp )

)1/p1

=(1− p−n)1/q1

( ∞∑
k=0

pkα1p1p−k(α1+ε)p1

)1/p1

=(1− p−n)1/q1

( ∞∑
k=0

p−kp1ε
)1/p1

=(1− p−n)1/q1
pε

pp1ε − 1
.

Similarly,

‖f2‖K̇α2,p2
q2

(Qnp ) =(1− p−n)1/q2
pε

pp2ε − 1
.

It is obvious to see that when |x|p < 1 then Hp,2
ψ (f1, f2) = 0. We will evaluate the

case as:

Hp,2
ψ (f1, f2) =

∫ ∫
|x|−1

p ≤|t|p≤1

f1(t1x)(t2x)ψ(t1, t2)dt1dt2

=|x|−(α1+n/q+2ε)
p

∫ ∫
|x|−1

p ≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α1−n/q2−ε

p ψ(t1, t2)dt1dt2.
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Now, for k ≤ 0, we have Hp,2
ψ (f1, f2)χk = 0. By the definition of Herz space, we

have:

‖Hp,2
ψ (f1, f2)χk‖pK̇α,p

q (Qnp )
=
∞∑
k=0

pkαp‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

=
∞∑
k=0

pkαp
{∫

Sk

(|x|−(α+n/q+2ε)
p

×
∫ ∫

p−k≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α2−n/q2−ε

p ψ(t1, t2)dt1dt2)qdx

}p/q
=(1− p−n)p/q

∞∑
k=0

pkαp(p−k(α+2ε)p)

×
(∫ ∫

p−k≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α2−n/q2−ε

p ψ(t1, t2)dt1dt2

)p
.

Next, for any l ≤ k, we get

‖Hp,2
ψ (f1, f2)χk‖K̇α,p

q (Qnp )

≥(1− p−n)1/q

( ∞∑
k=l

p−2kεp

)1/p

×
(∫ ∫

p−l≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α2−n/q2−ε

p ψ(t1, t2)dt1dt2

)
=(1− p−n)1/q

( ∞∑
k=0

p−2kεp

)1/p

×
(
p−2lε

∫ ∫
p−l≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α2−n/q2−ε

p ψ(t1, t2)dt1dt2

)
=(1− p−n)1/q p2ε

(p2εp − 1)1/p

×
(
p−2lε

∫ ∫
p−l≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α2−n/q2−ε

p ψ(t1, t2)dt1dt2

)
.

Since q1 = q2 = 2q, 1/p = 1/p1 + 1/p2 and p1 = p2 = 2p, we have:

‖Hp,2
ψ (f1, f2)χk‖K̇α,p

q (Qnp )

≥‖f1‖K̇α1,p1
q1

(Qnp )‖f2‖K̇α2,p2
q2

(Qnp )

×
(
p−2lε

∫ ∫
p−l≤|t|p≤1

|t1|−α1−n/q1−ε
p |t2|−α2−n/q2−ε

p ψ(t1, t2)dt1dt2

)
.



70 Boundedness of Weighted Multilinear p-adic Hardy Operator on Herz-Type Spaces

We take ε = p−l, then letting l→∞, we have ε→ 0. Ultimately, we get

‖Hp,2
ψ (f1, f2)χk‖K̇α1,p1

q1
(Qnp )×K̇α2,p2

q2
(Qnp )→K̇α,p

q (Qnp )

≥
∫ ∫

Z∗p
|t1|−(α1+n/q1)

p |t2|−(α2+n/q2)
p ψ(t1, t2)dt1dt2. (7.2.4)

From (7.2.3) and (7.2.4), we get the required proof.

7.3 Boundedness of Hp,m
ψ on the Product of Morrey-

Herz Spaces

In this Section, the operator Hp,m
ψ is proved to be bounded on the product of Morrey-

Herz spaces. Similar to previous Section, norm of the operator is computed in this

case also. The outset of this Section is the main result which is stated and proved as

below.

Theorem 7.3.1 Suppose α, α1, α2, · · ·, αm is any arbitrary real numbers, 1 < p, p1, · ·
·, pm, q, q1, · · ·, qm < ∞ and let also α1 + α2 + · · · + αm = α, λ, λ1, · · ·, λm > 0,
1
p1

+ 1
p2

+ · · ·+ 1
pm

= 1
p
, 1
q1

+ 1
q2

+ · · ·+ 1
qm

= 1
q
, λ1 + · · ·+λm = λ, then Hp,m

ψ is bounded

from MK̇α1,λ1
p1,q1

(Qn
p )× · · · ×MK̇αm,λm

pm,qm (Qn
p ) to MK̇α,λ

p,q (Qn
p ) if∫

Z∗p
· · ·
∫
Z∗p
|t1|−(α1+n/q1−λ1)

p · · · |tm|−(αm+n/qm−λm)
p ψ(t1, · · ·, tm)dt1 · · · dtm <∞.(7.3.1)

Conversely, if q1, q2, ...qm = mq, p1, p2, · · ·, pm = mp, α1 = · · · = αm = (1/m)α,

λ1 = ··· = λm = (1/m)λ and Hp,m
ψ is bounded from MK̇α1,λ1

p1,q1
(Qn

p )×···×MK̇αm,λm
pm,qm (Qn

p )

to MK̇α,λ
p,q (Qn

p ) then (7.3.1) holds. Furthermore,

‖Hp,m
ψ ‖MK̇

α1,λ1
p1,q1

(Qnp )×···×MK̇αm,λm
pm,qm (Qnp )→MK̇α,λ

p,q (Qnp )

=

∫
Z∗p
· · ·
∫
Z∗p
|t1|−(α1+n/q1−λ1)

p · · · |tm|−(αm+n/qm−λm)
p ψ(t1, · · ·, tm)dt1 · · · dtm.(7.3.2)

Proof. From the previous theorem, we have:

‖Hp,2
ψ (f1, f2)χk‖Lq(Qnp ) ≤

∫ ∫
Z∗p

(
‖f1χk−m‖Lq1 (Qnp ).‖f2χk−l‖Lq2 (Qnp )

)
× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2.

For 1/p = 1/p1 + 1/p2, α = α1 + α2 and λ = λ1 + λ2. Applying Hölder’s inequality

together with Minkowki’s inequality, we are down to:

‖Hp,2
ψ (f1, f2)‖MK̇α,λ

p,q (Qnp ) = sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

)1/p
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≤ sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp
(∫ ∫

Z∗p
‖f1χk−m‖Lq1 (Qnp ).‖f2χk−l‖Lq2 (Qnp )

× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

)p)1/p

≤
∫ ∫

Z∗p
sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp
(
‖f1χk−m‖Lq1 (Qnp ).‖f2χk−l‖Lq2 (Qnp )

)p)1/p

× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p
sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkα1p1‖f1χk−m‖p1Lq1 (Qnp )

)1/p1

×
( k0∑
k=−∞

pkα2p2‖f2χk−l‖p2Lq2 (Qnp )

)1/p2

|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p
sup
k0∈Z

p−k0λ1
( k0∑
k=−∞

pkα1p1‖f1χk−m‖p1Lq1 (Qnp )

)1/p1

× sup
k0∈Z

p−k0λ2
( k0∑
k=−∞

pkα2p2‖f2χk−l‖p2Lq2 (Qnp )

)1/p2

× |t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p
sup
k0∈Z

p−(k0−m)λ1

( k0∑
k=−∞

pkα1p1‖f1χk‖p1Lq1 (Qnp )

)1/p1

× sup
k0∈Z

p−(k0−l)λ2
( k0∑
k=−∞

pkα2p2‖f2χk‖p2Lq2 (Qnp )

)1/p2

× |t1|−(α1+n/q1−λ1)
p |t2|−(α2+n/q2−λ2)

p ψ(t1, t2)dt1dt2

≤
∫ ∫

Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p ψ(t1, t2)dt1dt2

× ‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
‖f2‖MK̇

α2,λ2
p2,q2

(Qnp )
.

Conversely, we define

f1(x) = |x|−(α1+n/q1−λ1)
p , x ∈ Qn

p ,

f2(x) = |x|−(α2+n/q2−λ2)
p , x ∈ Qn

p .

When α1 6= λ1 and α2 6= λ2, we arrive at:

‖f1χk‖Lq1 (Qnp ) =

(∫
Sk

|x|−(α1+n/q1−λ1)q1
p

)1/q1

=(1− p−n)1/q1pk(λ1−α1).
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Also, it is not difficult to obtain

‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
= (1− p−n)1/q1

pλ1

(pp1λ1 − 1)1/p1
.

Similarly, we can get

‖f2‖MK̇
α2,λ2
p2,q2

(Qnp )
= (1− p−n)1/q2

pλ2

(pp2λ2 − 1)1/p2
.

For λ = λ1 + λ2, α = α1 + α2 and 1/q = 1/q1 + 1/q2, we get

Hp,2
ψ (f1, f2)(x) = |x|−(α+n/q−λ)

p

∫ ∫
Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p ψ(t1, t2)dt1dt2.

Ultimately, we have:

‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

=

(∫
Sk

|x|−(α+n/q−λ)q
p

(∫ ∫
Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p

× ψ(t1, t2)dt1dt2

)q
dx

)p/q
=

(∫
Sk

|x|−(α+n/q−λ)q
p dx

)p/q(∫ ∫
Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p

× ψ(t1, t2)dt1dt2

)p
=(1− p−n)p/qp−k(α−λ)p

(∫ ∫
Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p

× ψ(t1, t2)dt1dt2

)p
.
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Since λ1 = λ2 = (1/2)λ, p1 = p2 = 2p and q1 = q2 = 2q, we have:

‖Hp,2
ψ (f1, f2)‖MK̇α,λ

p,q (Qnp ) = sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

)1/p

=(1− p−n)1/q sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαpp−k(α−λ)p

×
(∫ ∫

Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p

× ψ(t1, t2)dt1dt2

)p)1/p

=(1− p−n)1/q sup
k0∈Z

p−k0λ
( ∞∑
k=−∞

pkλp
)1/p

×
∫ ∫

Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p ψ(t1, t2)dt1dt2

=(1− p−n)1/q pλ

(pλp − 1)1/p

×
∫ ∫

Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p ψ(t1, t2)dt1dt2

=‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
‖f2‖MK̇

α2,λ2
p2,q2

(Qnp )

×
∫ ∫

Z∗p
|t1|−(α1+n/q1−λ1)

p |t2|−(α2+n/q2−λ2)
p ψ(t1, t2)dt1dt2.

When α1 = λ1 and α2 = λ2, we have

‖f1χk‖q1Lq1 (Qnp ) = ‖f2χk‖q2Lq2 (Qnp ) =

∫
Sk

|x|−np dx = (1− p−n)1/q1 .

It is not hard to see that

‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
= pλ1(1− p−n)1/q1

1

(pλ1p1 − 1)1/p1
,

‖f2‖MK̇
α2,λ2
p2,q2

(Qnp )
= pλ2(1− p−n)1/q2

1

(pλ2p2 − 1)1/p2
.

So,

Hp,2
ψ (f1, f2)(x) = |x|−n/qp

∫ ∫
Z∗p
|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2.
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Now, we have:

‖Hp,2
ψ (f1, f2)χk‖Lq1 (Qnp ) = (1− p−n)1/q

∫ ∫
Z∗p
|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2.

Thus,

‖Hp,2
ψ (f1, f2)‖MK̇α,λ

p,q (Qnp ) = sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

)1/p

=(1− p−n)1/q sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp
)1/p

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

As λ1 = α1 and λ2 = α2, we get λ = α. Hence

‖Hp,2
ψ (f1, f2)‖MK̇α,λ

p,q (Qnp ) =pλ(1− p−n)1/q 1

(pλp − 1)1/p

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2

=‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
‖f2‖MK̇

α2,λ2
p2,q2

(Qnp )

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−n/q2p ψ(t1, t2)dt1dt2.

This shows (7.3.2) is also valid in this particular case.

Furthermore, when either α1 = λ1 or α2 = λ2 holds, we assume former holds but the

later doesn’t, then on the basis of previous computations we have:

‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
= pλ1(1− p−n)1/q1

1

(pλ1p1 − 1)1/p1
,

‖f2‖MK̇
α2,λ2
p2,q2

(Qnp )
= pλ2(1− p−n)1/q2

1

(pλ2p2 − 1)1/p2
.

We definitely have the following representation

Hp,2
ψ (f1, f2)(x) = |x|−(α2+n/q−λ2)

p

∫ ∫
Z∗p
|t1|−n/q1p |t2|−(α2+n/q2−λ2)

p ψ(t1, t2)dt1dt2.

Taking norm on both sides, one has

‖Hp,2
ψ (f1, f2)χk‖Lq(Qnp ) =(1− p−n)1/qp−k(α2−λ2)

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−(α2+n/q2−λ2)

p ψ(t1, t2)dt1dt2.
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At the very end, we obtain

‖Hp,2
ψ (f1, f2)‖MK̇α,λ

p,q (Qnp ) = sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαp‖Hp,2
ψ (f1, f2)χk‖pLq(Qnp )

)1/p

=(1− p−n)1/q sup
k0∈Z

p−k0λ
( k0∑
k=−∞

pkαpp−(α2−λ2kp)
)1/p

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−(α2+n/q2−λ2)

p ψ(t1, t2)dt1dt2

=(1− p−n)1/qpλ
1

(pλp − 1)1/p

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−(α2+n/q2−λ2)

p ψ(t1, t2)dt1dt2.

Since α1 = α2 = (1/2)α, p1 = p2 = 2p, q1 = q2 = 2q and λ1 = λ2 = (1/2)λ, we get:

‖Hp,2
ψ (f1, f2)‖MK̇α,λ

p,q (Qnp ) =‖f1‖MK̇
α1,λ1
p1,q1

(Qnp )
‖f2‖MK̇

α2,λ2
p2,q2

(Qnp )

×
∫ ∫

Z∗p
|t1|−n/q1p |t2|−(α2+n/q2−λ2)

p ψ(t1, t2)dt1dt2.

In this case (7.3.2) also holds, so we conclude the proof.
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Littlewood-Pólya Operators, Acta Math. Sinica 29 (2013) 137–150.

[35] G. Gao, Boundedness for commutators of n-dimensional rough Hardy operators

on Morrey-Herz spaces, Comput. Math. Appl, 64(4) (2012), 544–549.

[36] G. Gao, X. Hu and C. Zhong, Sharp weak estimates for Hardy-type Operators,

Ann. Funct. Anal. 7(3) (2016), 421–433.



bibliography 79

[37] G. Gao and F. Zhao, Sharp weak bounds for Hausdorff operators, Anal. Math.

41 (2015), 163–173.

[38] G. Gao and Y. Zhong, Some estimates of Hardy Operators and their commuta-

tors on Morrey-Herz spaces, J. Math. Inequal. 11(1) (2017), 49–58.
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