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0.3 Introduction

Traditional tools for reasoning, computing and formal modeling are crisp, precise and

deterministic in character. However, many practical problems under di¤erent �elds

have uncertainties. Traditional mathematical tools can never be used due to many

uncertainties existing in these problems. Traditionally, Probability theory is considered

as a useful tool to handle uncertainty. A very basic requirement for its application is

that a system must be stochastically stable. To establish it, a large number of trials is

required. So, a lot of time will be spent on it. In today�s fast pace life, humans have

scarcity of time. This means some non-traditional ways must be sought to tackle this

problem linked with uncertainty. For extraction of helpful information, specialists are

dedicated step by step. They have pulled in light of a legitimate concern for specialists

and experts in di¤erent �elds of science and innovation. In this regard, Zadeh made

a very nice attempt and introduced the theory of fuzzy sets [99]. Fuzzy sets not

only cope with uncertainty but also have ability to translate human linguistic terms

mathematically. Actually it was a great leap, and paced development many times.

Now there are many generalizations of fuzzy sets and they are perceived and useful to

manage uncertainty but every one of these speculations inherents certain challenges

as Molodtsov have demonstrated [66].

Molodtsov [66] showed up the soft set theory out of the blue for the �rst time as the

key notion as another numerical instrument meant for to handle uncertainty. This new

hypothesis is free from the troubles related with o¢ cially existing techniques. Here an

appropriate number of parameters are available, which makes it possible. Moreover,

soft sets contain many operations which are very handy to deal with various types of

situations. Numerous creators [8, 66, 67] gave a few activities in soft set theory and

hypothesis. The utilization of soft set hypothesis in a decision making issue is talked

about by Maji et al. [65]. Same creators also expanded classical soft sets to fuzzy soft

sets [63]. Roy and Maji displayed a method of question a¢ rmation from an uncertain

multi-eyewitness information and connected it to decision based issues in light of fuzzy

soft sets. Notion of parametric reduction in soft sets have been contemplated by many

authors [21, 7, 64]. Numerous scientists have contemplated the utilizations of soft sets

in alternate point of views [6, 19, 36].

In soft set theory, many authors [5, 8, 59, 66, 67] described several operations. There

is a quick development for soft set theory with applications now-a-days [28].
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One more theory, which tackles uncertainty in a non-traditional manner is called rough

set theory, presented by Pawlak [69, 73, 77, 78]. It is another numerical way to deal

with vague or dubious information. Pragmatic applications like information disclosure,

information investigation, machine learning, surmised grouping, struggle examination

is resolved in various zones. Subsequently, one of the fundamental headings of research

in rough set theory is normally the speculation of the Pawlak rough set theory. In light

of soft binary relations, rough set theory of Pawlak can be seen as a unique instance

of soft rough sets. Since its inception, it fascinated researchers and scholars. The

original rough set theory has potential to propose solutions of many problems even

now. Important use of rough set theory is that it helps to reduce the data without

losing useful information. Maji et al. [65] began the possibility of soft sets applications

in decision making. In this initial level work, lamentably mistakes were called regard

for as in [21] by Chen et al. The point of view displayed in [65] is dismissed by them.

Konga et al. in [51] demonstrated some odd conditions which happens when method

of parametric reduction in the event of soft sets gave in [21] is connected. So the idea

of normal parametric diminishment is presented by them.

The rough set theory is basically an augmentation of the set theory described by

inadequate and de�cient data [69, 70, 74]. The idea of rough set is persuaded by useful

needs especially in characterization and concept formation with de�cient data [75]. It

is not the same as and corresponding to di¤erent generalizations, such as multisets

and fuzzy sets [26, 75]. In this new emerging theory, there has been a rich interest.

The successful applications of rough set models have shown their bene�ts in many

problems [15, 16, 17, 18, 20, 23, 32, 59, 70, 71, 72, 76, 77, 78, 79, 94, 95, 105, 106, 107].

The roughness in algebraic structures is discussed by many scholars. In algebra, Iwinski

initiated the study of roughness [34]. Kuroki studied roughness in semigroups [52].

Rough groups, rough subgroups and rough ideals of rings are discussed by Biswas and

Nanda, and Davvaz, respectively, [14], [22]. By using algebraic and fuzzy algebraic

structures, T-roughness is discussed by Liu in [52], Qurashi and Shabir in [81, 82,

83], Mahmood et al. in [62], Akram et al. in [1] and Pomykala in [80]. Based

on pseudoorder in ordered semigroups, Shabir and Irshad presented roughness [88].

The properties of rough sets is discussed by Ali et al in hemirings [9]. In [112], the

generalized rough set is de�ned by Zhu based on binary relation. Moreover, recently,

Akram et al. presented Neutrosophic soft rough graphs with applications in [3] and

Akram et al. investigated some decision making methods in [2, 4].
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Maji et al. [65] began the possibility of soft sets applications in decision making. In

this initial level work, lamentably mistakes were called regard for as in [21] by Chen

et al. The point of view displayed in [65] is dismissed by them. Konga et al. in

[51] demonstrated some odd conditions which happen when method of parametric

reduction in the event of soft sets gave in [21] is connected. Many researchers have

proposed a roughness measure for fuzzy sets by mass assignment [10, 11]. Banerjee and

Pal in [12] have presented a roughness measure of a fuzzy set. The idea of fuzziness is

generally utilized in the theory of formal languages and automata. Numerous scientists

utilized this idea for the generalization of algebra.

Initially, a fuzzy set was de�ned by Zadeh in [99]. Fuzzy set theory has given an im-

portant scienti�c and mathematical tool to the description of those frameworks which

are unreasonably perplexing or uncertain. The fuzzy set theory is well established in

[49].

In [56], fuzzy semigroup was de�ned by Kuroki. The concepts of fuzzy subgroups and

fuzzy ordered semigroups were innovated by Rosenfeld and Kehayopulu and Tsingelis,

respectively in [84] and [45, 46]. Di¤erent types of fuzzy ideals in semigroups are

discussed by Kuroki [53, 54, 55].

Although rough and fuzzy set theory are two prominent notions to study uncertainty,

unpredictability and vagueness yet these theories are distinct in nature. It can be

combined in a good manner to solve many problems. Theory of fuzzy sets proposes

an exceptionally decent way to deal with vagueness. In 1990, Dubois and Prade [26],

presented the concepts of rough fuzzy sets and fuzzy rough sets.

Soft binary relation is a generalization of ordinary binary relations on a soft set. Single

binary relation is addressed by rough approximations in rough set theory. Di¤erent

binary relations can be treated in light of soft binary relations through rough approx-

imations. Rough set theory of Pawlak, in the sense of soft binary relations can also be

seen.

This thesis contains an investigation of rough approximations in the light of soft binary

relations by obtaining two soft sets. We approximate a set, a fuzzy set and a soft set to

get two sets of soft sets, two sets of fuzzy soft sets and two sets of soft sets, respectively.

These are called the upper approximation and lower approximation with respect to

the aftersets and foresets, respectively.

The above mentioned concepts will be applied on semigroups. The approximations of
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substructures , fuzzy substructures and soft substructures of semigroups are presented

along with suitable examples.

The lower and the upper approximations with soft equivalence relations are discussed.

The concept of soft equivalence relation is another way to present an information table.

By soft re�exive, soft symmetric and soft transitive binary relations, some properties

are viewed.

Fuzzy topologies and soft topologies induced by soft relations are presented. More-

over, Similarity relations associated with soft binary relations are given The idea of

parametric reduction by a soft binary relation is inspected. Di¤erent decision making

methods are also given along with algorithms and applications with respect to the

aftersets and the foresets.
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0.4 Chapter-wise Study

Seven chapters make this thesis.

Chapter one consists of introductory nature concepts, needed for the consequent

chapters.

Chapter two represents the notion of soft relations. We direct an investigation

through soft binary relations in rough approximations by obtaining two soft sets.

With the help of the aftersets and the foresets, we can approximate a set to get two

sets of soft sets. The related concepts of soft equivalence relations are also given. The

concept of soft equivalence relation is another way to present an information table.

This setup provides an opportunity to apply operations available in soft sets to extract

new knowledge from information tables. By taking soft re�exive, soft symmetric and

soft transitive binary relations, some properties are viewed. It is talked about for any

subset X; there is a related fuzzy subset respecting to every parameter. Finally, the

idea of parametric reduction by a soft binary relation is inspected. A procedure has

been displayed in the end.

In chapter three, we applied the concepts of chapter two on semigroups and the

approximations of substructures of semigroups are studied along with examples. The

problems of homomorphism have been talked about.

In chapter four, by using the aftersets and the foresets, we approximate a fuzzy set

to get two sets of fuzzy soft sets. The decision making by fuzzy set is provided ahead.

The decision method algorithm is also given.

In the chapter �ve, we applied the concepts of chapter four on semigroups and ap-

proximations of fuzzy substructures of semigroups are discussed along with examples.

In the chapter six; for obtaining two sets of soft sets, a soft set is approximated

by the aftersets and the foresets. Soft topologies induced by soft re�exive relations

are presented. Moreover, Similarity relations associated with soft binary relations are

given. A decision making method is given along with algorithms with respect to the

aftersets and the foresets and an application is provided in the end.

In chapter seven, we applied the concepts of chapter six on semigroups and approx-

imations of soft substructures of semigroups are presented along with examples.



Chapter 1

Preliminaries

This chapter contains some ideas concerning with an information system, semi-

groups, rough sets, fuzzy sets, soft sets and fuzzy soft sets which are valuable for

consequent chapters.

In the �rst section, some fundamental de�nitions about an information system

are recalled. The de�nition of a semigroup and its substructures are presented in the

second section along with some basic examples. In the third section, the notion of

rough set is presented along with some examples and basic results. Moreover, the

classi�cation of a rough set is also done in this section. Soft sets are introduced in

section four. The containment, equality, union, intersection, complement and product

of soft sets are given. Moreover, some results of soft sets in a semigroup are also

presented to form a basis of other chapters. Some basic results about fuzzy set theory

are introduced in section �ve. Some operations in fuzzy sets are also given here. Fuzzy

substructures are presented in this section along with examples. In the last section,

fuzzy soft sets and its substructures are presented. First, fuzzy soft sets operations

are given and fuzzy soft substructures related to semigroups are presented.

Now, some basic and useful ideas are given. U represents a non-empty �nite set unless

expressed otherwise throughout this chapter.

1



1. Preliminaries 2

1.1 Information systems: De�nitions and examples

De�nition 1.1.1 A binary relation J from U to W is a subset of U �W; where U
and W are sets.

J is a binary relation on U , if U =W .

De�nition 1.1.2 If J represents a binary relation on U; then J is said to be

(1) Re�exive, if (z; z) 2 J for all z 2 U .

(2) Symmetric, if (z; t) 2 J ) (t; z) 2 J for all z; t 2 U:

(3) Transitive, if (z; l) 2 J and (l; t) 2 J ) (z; t) 2 J for all z; l; t 2 U .

De�nition 1.1.3 A binary relation J is an equivalence relation if it is

(1) Re�exive

(2) Symmetric

(3) Transitive.

A set is partitioned by each equivalence relation into disjoint classes.

De�nition 1.1.4 A pair (U;A) ; where A is a non-empty �nite set of attributes and

U is a non-empty �nite set of objects, is an information system.

De�nition 1.1.5 [73] An associated equivalence relation for each subset of attributes

B � A; can be de�ned by INd(B) = f(m;n) 2 U �U : for every � 2 B; �(m) = �(n)g
and INd(B) = \�2BINd(�), where A is set of attributes and U is a universal set.

De�nition 1.1.6 [73] Let J be a family of equivalence relations and � 2 J. If

INd(J) = INd(J � �); then � is dispensable, otherwise indispensable in J. If each
� 2 J is indispensable in J; then the family J is independent, otherwise dependent. If
J is independent and R � J, then R is independent. If S is independent and S � J;
then S is called a reduct of J:

De�nition 1.1.7 [73] The COR(J) is de�ned as COR(J) = \RDC(J), where RDC(J)
is the family of all reducts of J.
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De�nition 1.1.8 [73] A pair KR = (U;A) is a knowledge representation system;

where � 6= U is a �nite set and � 6= A is a �nite set of primitive parameters. Every

primitive parameter � 2 A can be de�ned by a total function � : U ! V , where V is

the set of values of �:

If U = fm1;m2; :::;mng is a universe, A = f�1; �2; :::; �mg a set of attributes, V =

[mi=1Vi, then a triplet (U;A; V ) is called an information system or an information

table where V is values of the attribute �i. Moreover �i is a total function �i : U ! V .

Let KR = (U;A) be a knowledge representation system or a KR system and let

C;D � A be condition and decision parameters. A decision table is a KR system with
recognized condition and decision parameters, denoted by T = (U;A;C;D).

1.2 Semigroups: De�nitions and examples

Here, some detail about semigroups is presented.

De�nition 1.2.1 A semigroup is a set S 6= � having a binary operation "�" which is
associative.

De�nition 1.2.2 The product XY for two subsets X and Y of S in a semigroup S

can be de�ned as

XY = fxy : x belongs to X; y belongs to Y g:

De�nition 1.2.3 The Cartesian product S�T of semigroups S and T is a semigroup

if we de�ne (s; t)(s
0
; t
0
) = (ss

0
; tt

0
) for all t; t

0 2 T and s; s0 2 S.

De�nition 1.2.4 If xy 2 X for all x; y 2 X; then � 6= X of a semigroup S is said to

be a subsemigroup of S:

De�nition 1.2.5 If SX � X (XS � X), then � 6= X � S (where S is a semigroup);
is a left (right) ideal of a semigroup S:

Example 1.2.6 Let S = [0; 1] ; (S; ?) is a semigroup if the binary operation on S is

de�ned as:
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a ? b = max fa; bg for all a; b 2 S:

Consider the subset A = [0; 0:5] of S, then A is a subsemigroup of S. And, consider

the subset A = [0:5; 1] of S, this is an ideal of S:

De�nition 1.2.7 If SXS � X, then � 6= X � S is called an interior ideal of S for a
semigroup S:

Every ideal is an interior ideal but the converse is not true which is shown in the

following example.

Example 1.2.8 Let S = fa; b; c; dg be a semigroup with the following multiplication
table

� a b c d

a a a a a

b a a a a

c a a a b

d a a b c

Here A = fa; cg is an interior ideal of S, but neither left nor right ideal of S.

De�nition 1.2.9 If XSX � X, then a subsemigroup X of a semigroup S is called a

bi-ideal of S:

Every one-sided ideal is a bi-ideal but the converse is not true which is shown in the

following example.

Example 1.2.10 Consider the semigroup of Example 1.2.8. Here A = fa; cg is a
bi-ideal of S but neither left nor right ideal of S.

Throughout this thesis, we shall denote a subsemigroup, left ideal, right ideal, ideal,

bi-ideal and interior ideal by SS, LIL, RIL, IL BIL and IIL; respectively.



1. Preliminaries 5

1.3 Rough sets: De�nitions and examples

Pawlak at �rst proposed the theory of rough sets. It was utilized to deal with impre-

cision and de�ciency in data frameworks.

In this section, we will give a few ideas identi�ed with rough set theory. Moreover,

some examples are added to demonstrate these concepts.

[67] If U 6= � is a �nite set and J is an equivalence relation on U , then (U; J) is called
an approximation space. If M � U consists of union of some equivalence classes of

U , then M is de�nable. Otherwise it is not de�nable. If M is not de�nable, then we

can approximate it by the lower and upper approximations which are two de�nable

subsets of M as the following

J(M) = [f[m]J : [m]J �Mg and

J(M) = [f[m]J : [m]J \M 6= �g:

De�nition 1.3.1 [69] The upper approximation of a set M with respect to J is the

set of all objects which can be for certain classi�ed as M with respect to J (are possibly

M in view of J).

From the di¤erent representations of an equivalence relation, we obtain three construc-

tive de�nitions of lower approximation

1. Element based de�nition

J(M) = fm 2 U : [m]J �Mg;

2. Granule based de�nition

J(M) =
[

[m]J�M
[m]J ;

3. Subsystem based de�nition

J(M) =
[
fA 2 U=J : A �Mg;
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where [m]J = fn : mJng:

De�nition 1.3.2 [69] The upper approximation of a set M with respect to J is the

set of all objects which can be possibly classi�ed as M with respect to J (are possibly

M in view of J).

From the di¤erent representations of an equivalence relation, we obtain three construc-

tive de�nitions of upper approximation

1. Element based de�nition

J(M) = fm 2 U : [m]J \M 6= ;g;

2. Granule based de�nition

J(M) =
[

[m]J\M 6=;
[m]J ;

3. Subsystem based de�nition

J(M) =
\
fA 2 U=J : A \M 6= ;g;

where [m]J = fn : mJng:

A rough set is the pair (J(M); J(M)). Boundary region is represented by the set

J(M)�J(M). Clearly, if J(M) = J(M); then M is de�nable and J(M)�J(M) = �.

De�nition 1.3.3 [96] A subsetM of U represents a crisp set when its boundary region

is empty, i.e., J(M) = J(M).

The universe U can be separated into three disjoint regions, by using the lower and

upper approximations of a set M � U .
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(1) the positive region (POS)J(M) = J(M);

(2) the negative region (NEG)J(M) = U� J(M) = (J(M))c;

(3) the boundary region (BND)J(M) = J(M)� J(M):

Example 1.3.4 Consider a set U = f1; 2; 3; 4; 5; 6g as a universal set. De�ne J as
an equivalence relation such that, for the equivalence relation J on U :

1J1; 2J2; 2J3; 3J2; 3J3; 4J4; 5J6; 6J5; 5J5; 6J6

The equivalence relation induces four equivalence classes, which are the subsets C1 =

f1g; C2 = f2; 3g; C3 = f4g; C4 = f5; 6g; here we want to characterize the set D =

f3; 4; 5g with respect to J: For this we have

J (D) = f4g = C3

J (D) = f2; 3; 4; 5; 6g = C2 [ C3 [ C4:

Proposition 1.3.5 [67] Let J be an equivalence relation on a set U: If M and N are

subsets of U; then the given assertions are valid:

(1) J (M) �M � J (M)

(2) M � N ) J (M) � J (N)

(3) M � N ) J (M) � J (N)

(4) J (M \N) = J (M) \ J (N)

(5) J (M [N) � J (M) [ J (N)

(6) J (M [N) = J (M) [ J (N)

(7) J (M \N) � J (M) \ J (N) :

Example 1.3.6 Let (U; J) be an approximation space, and J be an equivalence rela-

tion, where U = fm1,m2,m3,:::,m8g. Consider the following equivalence classes:

E1 = fm1;m4;m8g; E2 = fm2;m5;m7g; E3 = fm3g; E4 = fm6g.

Let M = fm3;m5g and N = fm3;m6g

J(M) = fm3g and J(M) = fm2;m3;m5;m7g
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J(N) = fm3;m6g and J(N) = fm3;m6g

So J(M) = (fm3g,fm2,m3,m5,m7g) is a rough set and J(N) is a crisp set.

Example 1.3.7 [96] Consider a universe consisting of three elements U = f1; 2; 3g
and an equivalence relation J on U :

1J1; 2J2; 1J3; 3J1; 3J3

The equivalence relation induces two equivalence classes [1]J = [3]J = f1; 3g; [2]J =
f2g; now

P (U) = f;; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; Ug

is the set of all subsets of U: The following table summarizes the lower and upper

approximations, the positive, negative and boundary regions for all subsets of U .

M J(M) J(M) POS(M) NEG(M) BND(M)

; ; ; ; U ;
f1g ; f1; 3g ; f2g f1; 3g
f2g f2g f2g f2g f1; 3g ;
f3g ; f1; 3g ; f2g f1; 3g

f1; 2g f2g U f2g ; f1; 3g
f1; 3g f1; 3g f1; 3g f1; 3g f2g ;
f2; 3g f2g U f2g ; f1; 3g

U U U U ; ;

The above table shows

J(f1g) 6= J(f1g)

J(f3g) 6= J(f3g)

J(f1; 2g) 6= J(f1; 2g)

J(f2; 3g) 6= J(f2; 3g)

So f1g; f3g; f1; 2g; f2; 3g are rough sets with respect to J; and f2g; f1; 3g are crisp
sets with respect to J .

Throughout the thesis, we shall denote an equivalence relation by an E�relation.
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1.4 Soft sets and soft substructures

Molodtsov [66] showed up the soft set theory for the �rst time as the key notion to

handle uncertainty. Soft sets have many operations which are very handy to deal with

various types of situations. Many authors [5, 8, 60, 66, 67] described several operations

in soft set theory. This theory speaks about that every collection of objects in the

universe U can be accompanied by a set E of attributes (Characteristics or parameters)

for U .

Let P (U) denotes the power set of U and for A;B � E, where E is a universe set of

parameters, some basic de�nitions associated with soft sets are discussed.

De�nition 1.4.1 [67] De�ne J : A! P (U): Then (J;A) is called a soft set over U .

For the illustration of soft sets, Molodtsov gave many concrete examples. One of them

is presented here.

Example 1.4.2 Suppose that U = fh1; h2; h3; h4; h5; h6; h7g is a universe containing

six houses and A =

(
e1 = expensive, e2 = beautiful; e3 = wooden;

e4 = in green surroundings; e5 = in good repair

)
Consider a soft set (J;A) which describes the "attractiveness of houses" that Mr: X

wants to purchase. Here the soft set (J;A) points out the expensive houses, beautiful

houses, wooden houses and so on, according to Mr: X. Thus, J (e1) represents the

subset of U comprising of all the beautiful houses in U .

We can de�ne the soft set (J;A) completely as

J (e1) = fh1; h3; h4; h6g ; J (e2) = fh2; h3; h5g ;

J (e3) = fh4; h6g ; J (e4) = fh2; h3; h4; h5g

and J (e5) = fh1; h2; h3; h4; h5g :

This table represents a soft set (J;A) as
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(J;A) h1 h2 h3 h4 h5 h6 h7

e1 1 0 1 1 0 1 0

e2 0 1 1 0 1 0 0

e3 0 0 0 1 0 1 0

e4 0 1 1 1 1 0 0

e5 1 1 1 1 1 0 0

In this table, if hj 2 J (ei) ; then aij = 1; otherwise aij = 0: where aij is the (i; j) th
entry.

Now, some necessary operations of soft sets are discussed.

De�nition 1.4.3 [8] Over a common universe U; for two soft sets (J;A) and (L;B)

, if A � B and J(e) � L(e) for all e 2 A, then (J;A) is a soft subset of (L;B) and is
denoted by (J;A) � (L;B):

De�nition 1.4.4 [8] Over a common universe U , two soft sets (J;A) and (L;B) are

said to be soft equal if (J;A) � (L;B) and (L;B) � (J;A).

De�nition 1.4.5 [8] Let A be the set of parameters, U be an initial universe set.

(a) If J(a) = � for all a 2 A; then (J;A) is called a relative null soft set with the
parameter set A, denoted by �A.

(b) If L(e) = U for all e 2 A; then (L;A) is called a relative whole soft set with the
parameter set A, denoted by AU .

De�nition 1.4.6 [8] Over the common universe U; the union of two soft sets (J;A)

and (L;A) is the soft set (H;A); for all e 2 A such that H(e) = J(e) [ L(e):

De�nition 1.4.7 [8] Over the common universe U; the intersection of two soft sets

(J;A) and (L;A) is the soft set (H;A) for all e 2 A such that H(e) = J(e) \ L(e):

De�nition 1.4.8 [8] The product of two soft sets (J;A) and (L;A) over a universe

U is the soft set (JL;A) such that JL (e) = J(e)L(e) for all e 2 A:
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De�nition 1.4.9 [8] The relative complement of a soft set (J;A) is denoted by (J;A)r

and is de�ned by (J;A)r = (Jr; A) where Jr : A ! P (U) is a mapping given by

Jr(e) = U � J(e) for all e 2 A:

De�nition 1.4.10 Let (J;A) be a soft set over S and S be a semigroup. Then

(1) If J (e) is a SS of S for all e 2 A with J (e) 6= �, then (J;A) over S is called a soft
SS over S.

(2) If J (e) is an IL of S for all e 2 A with J (e) 6= �, (J;A) over S is called a soft IL
over S.

(3) If J (e) is a BIL of S for all e 2 A with J (e) 6= �, then (J;A) over S is a soft BIL
over S.

(4) If J (e) is an IIL of S for all e 2 A with J (e) 6= �, (J;A) over S is said to be a
soft IIL over S.

Example 1.4.11 Let S = fa; b; c; d; eg be a semigroup with the following multiplica-
tion table:

� a b c d e

a b b d d d

b b b d d d

c d d c d c

d d d d d d

e d d c d c

and A = fe1; e2g : De�ne (J;A) ; a soft set over S by

J (e1) = fa; b; c; dg ; J (e2) = fb; c; dg :

Here (J;A) is a soft SS of S. Also (J;A) is a soft LIL of S.

Example 1.4.12 Let S = fa; b; cg be a semigroup with the following multiplication
table:

� a b c

a a a c

b a b c

c a c c
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and A = fe1; e2g : De�ne (J;A) ; a soft set over S by

J (e1) = fa; b; cg ; J (e2) = fa; cg :

Here (J;A) is a soft IIL of S.

Example 1.4.13 Let S = fa; b; c; dg be a semigroup with the following multiplication
table:

� a b c d

a a a a d

b a b a d

c a a c d

d d d d d

and A = fe1; e2g : De�ne (J;A) ; a soft set over S by

J (e1) = fa; b; c; dg ; J (e2) = fa; dg :

Here (J;A) is a soft BIL of S.

Throughout this thesis, we shall denote a soft SS, soft LIL, soft RIL, soft BIL and

soft IIL by SSS, SLIL, SRIL, SBIL and SIIL; respectively.

1.5 Fuzzy sets and fuzzy substructures

Theory of fuzzy sets proposes an exceptionally decent way to deal with vagueness.

Fuzzy set theory, introduced by Zadeh in [99], has given an important scienti�c and

mathematical tool to the description of those frameworks which are unreasonably

perplexing or uncertain.

For convenience, we shall denote a fuzzy subset, fuzzy subsemigroup, fuzzy left ideal,

fuzzy right ideal, fuzzy ideal, fuzzy bi-ideal and fuzzy interior ideal by FS; FSS,

FLIL, FRIL, FIL; FBIL and FIIL; respectively, throughout this thesis.

De�nition 1.5.1 A FS, � in U is de�ned by a mapping � : U ! [0; 1]. A FS,

� : U �! [0,1] is non-empty if � is not a zero map.
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The value � (x) is known as the membership grade of the object x and the mapping �

is known as the membership function of U .

The families of all subsets and FS in U are denoted by P (U) and -F (U), respectivley.

De�nition 1.5.2 Let �1 and �2 be two FSs in U: Then �1 � �2 if and only if �1 (u) �
�2 (u) for all u 2 U: Moreover, �1 = �2 if and only if �1 � �2 and �1 � �2:

De�nition 1.5.3 A FS; � in U is called a null FS if � (u) = 0 for all u 2 U: A FS;
� is called a whole FS in U if � (u) = 1 for all u 2 U:

De�nition 1.5.4 A FS; � in U is said to be a constant FS in U if and only if

� : U �! [0,1] is a constant function.

We usually denote null FS by 0 and whole FS by 1.

De�nition 1.5.5 Intersection, union, and complement of FSs are given below:

� (x) ^ � (x) = (� \ �) (x)

� (x) _ � (x) = (� [ �) (x)

�c (x) = 1� � (x) ; where �; � 2 -F (U) and x 2 U:

More generally, if ffi : i 2 Ig is a family of FSs of U , then the union and intersection
are de�ned as

([i fi) (x) = _i (fi (x)) for all x 2 U:

(\i fi) (x) = ^i (fi (x)) for all x 2 U:

De�nition 1.5.6 For a number � 2 (0; 1], the �-cut or �-level set of a FS; � in U
is �� = fx 2 U : � (x) � �g which is a subset of U .

De�nition 1.5.7 If �(xy) � � (x)^� (y) for all x; y 2 S, then a FS; � in a semigroup
S is called a FSS of S.

De�nition 1.5.8 If �(xy) � � (y) (�(xy) � � (x)) for all x; y 2 S, then a FS; � in a
semigroup S is called a FLIL (FRIL) of S.
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De�nition 1.5.9 If � (xay) � � (a) for all x; y; a 2 S, then a FS; � in a semigroup
S is called a FIIL of S.

De�nition 1.5.10 If � (xyz) � � (x) ^ � (z) for all x; y; z 2 S; then a FSS; � in a
semigroup S is called a FBIL of S.

Example 1.5.11 Let S = fa; b; c; d; eg be a semigroup with the following multiplica-
tion table:

� a b c d e

a b b d d d

b b b d d d

c d d c d c

d d d d d d

e d d c d c

De�ne � : S ! [0; 1] by

a b c d e

� 0:5 0:5 0:3 1 0:1

Here, � represents a FSS of S. Also � represents a FLIL of S.

Example 1.5.12 Let S = f0; x; y; zg be a semigroup with the following multiplication
table:

� 0 x y z

0 0 0 0 0

x 0 0 0 0

y 0 0 0 x

z 0 0 x y

De�ne � : S ! [0; 1] by

0 x y z

� 0:7 0:3 0:7 0:3

Here, � represents a FIIL of S.
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Example 1.5.13 Let S = fa; b; c; dg be a semigroup with the following multiplication
table:

� a b c d

a a a a a

b a a a a

c a a a b

d a a b c

De�ne � : S ! [0; 1] by

a b c d

� 0:7 0:3 0:7 0:3

Here, � represents a FBIL of S.

1.6 Fuzzy soft sets and fuzzy soft substructures

Now, we give some results related to a fuzzy soft set which will be vital in the thesis.

De�nition 1.6.1 [85] A pair (J;A) is called a fuzzy soft set over U if J is a mapping

given by J : A! -F (U) and A � E (the set of parameters). Thus, J (e) is a fuzzy set

in U for all e 2 A: Hence, a fuzzy soft set over U is a collection of fuzzy sets in U:

De�nition 1.6.2 [85] Over a common universe U; for two fuzzy soft sets (J;A) and

(G;B), we say that (J;A) is a fuzzy soft subset of (G;B) if (1) J(e) is a fuzzy set of

G(e) for all e 2 A and (2) A � B .

De�nition 1.6.3 [85] Two fuzzy soft sets (J;A) and (G;B) over a common universe

U are said to be fuzzy soft equal if (J;A) is a fuzzy soft subset of (G;B) and (G;B) is

a fuzzy soft subset of (J;A).

De�nition 1.6.4 [85] Over the common universe U; the union of two fuzzy soft sets

(J;A) and (G;A) is the fuzzy soft set (H;A) for all e 2 A such that H(e) = J(e)_G(e):

De�nition 1.6.5 [85] Over the common universe U; the intersection of two fuzzy soft

sets (J;A) and (G;A) is the fuzzy soft set (H;A) for all e 2 A such that H(e) =

J(e) ^G(e):
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De�nition 1.6.6 [97] Let S be a semigroup and let (J;A) be a fuzzy soft set over S.

Then

(1) If J (e) is a FSS of S for all e 2 A with J (e) 6= 0, then (J;A) is called a fuzzy

SSS over S.

(2) If J (e) is a FIL(resp. FLIL, FRIL) of S for all e 2 A with J (e) 6= 0, then a

fuzzy soft set (J;A) over a semigroup S is called a fuzzy SIL (resp. fuzzy SLIL, fuzzy

SRIL) over S.

(3) If J (e) is a FIIL of S for all e 2 A with J (e) 6= 0, then a fuzzy soft set (J;A)

over a semigroup S is called a fuzzy SIIL over S.

(4) If J (e) is a FBIL of S for all e 2 A with J (e) 6= 0, then a fuzzy soft set (J;A)
over a semigroup S is called a fuzzy SBIL over S.

Example 1.6.7 Let S = f1; 2; 3; 4g be a semigroup with the following multiplication
table:

� 1 2 3 4

1 1 2 3 4

2 2 2 2 2

3 3 3 3 3

4 4 3 2 1

De�ne a fuzzy soft set (J;A) ; where A = fe1; e2g by

1 2 3 4

J (e1) 0:8 0:7 0:5 0:1

J (e2) 0:9 0:8 0:6 0:2

Here, J (e1) and J (e2) are FSS of S. Therefore, (J;A) is a fuzzy SSS of S.

Also J (e1) and J (e2) are FLILs of S. Therefore, (J;A) is a fuzzy SLIL of S.

Example 1.6.8 Consider the semigroup of Example 1.5.12.

De�ne a fuzzy soft set (J;A) ; where A = fe1; e2g by

0 x y z

J (e1) 0:7 0:3 0:7 0:3

J (e2) 0:7 0:4 0:7 0
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Here, J (e1) and J (e2) are FIIL of S. Therefore, (J;A) is a fuzzy SIIL of S.

Example 1.6.9 Consider the semigroup of Example 1.5.13.

De�ne a fuzzy soft set (J;A) ; where A = fe1; e2g by

a b c d

J (e1) 0:7 0:3 0:7 0:3

J (e2) 0:7 0:4 0:7 0

Here, J (e1) and J (e2) are FBIL of S. Therefore, (J;A) is a fuzzy SBIL of S.

Throughout this thesis, we shall denote a fuzzy SSS, fuzzy SLIL, fuzzy SRIL, fuzzy

SBIL and fuzzy SIIL by FSSS, FSLIL, FSRIL, FSBIL and FSIIL; respectively.



Chapter 2

Reduction of an information

system

In this chapter, we present an investigation of soft binary relations and some of

their properties. Furthermore, a soft equivalence relation o¤ers ascent to a fuzzy set for

every parameter and a fuzzy set related with the soft equivalence relation is discussed.

Soft similarity relations have also been examined. Finally, a parametric decrease have

been talked about in soft rough sets. At last, an application is displayed toward the

conclusion to explain this work.

2.1 Soft Binary Relations

This section represents the notion of soft binary relation from a set U to a setW . Some

basic concepts, characterizations and related properties with regard to soft binary

relation are proposed here. Throughout this chapter, a soft binary relation is denoted

by an SBRE.

De�nition 2.1.1 If (J;A) is a soft set over U �W , that is J : A! P (U �W ), then
(J;A) is said to be an SBRE from U to W , where A � E (parameters set) :

In fact (J;A) is a parameterized collection of binary relations from U to W . That is,

we have a binary relation J(e) from U toW for each parameter e 2 A. In what follows,
we shall denote the collection of all soft binary relations from U to W by �Br(U;W ):

18
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De�nition 2.1.2 If N �W , then we can de�ne two soft sets over U; by

JN (e) = fu 2 U : � 6= uJ (e) � Ng and

J
N
(e) = fu 2 U : uJ (e) \N 6= �g

where uJ (e) = fw 2W : (u;w) 2 J(e)g for each e 2 A:

Moreover, JN : A ! P (U) and J
N
: A ! P (U) and we say (U;W; J) a Generalized

soft approximation space.

In order to explain this concept, the following example is given.

Example 2.1.3 Let U = fx1; x2; x3; x4g and W = fb; c; wg and the set of attributes
be A = fe1; e2g.

De�ne J : A! P (U �W ) by

J(e1) = f(x1; b); (x1; c); (x2; w)g

and J(e2) = f(x2; b); (x2; w); (x4; b)g :

Let N = fb; wg �W . Then

x1J (e1) = fb; cg ; x2J (e1) = fwg ; x3J (e1) = �; x4J (e1) = �

and

x1J (e2) = �; x2J (e2) = fb; wg ; x3J (e2) = �; x4J (e2) = fbg :

Therefore,

JN (e1) = fx2g ; JN (e2) = fx2; x4g ;

J
N
(e1) = fx1; x2g ; J

N
(e2) = fx2; x4g :

Theorem 2.1.4 Let (U;W; J) be a Generalized soft approximation space and J : A!
P (U �W ) be an SBRE from U to W: For N1; N2 �W; the following properties hold:

(1) N1 � N2 ) JN1 � JN2

(2) N1 � N2 ) J
N1 � JN2

(3) JN1 \ JN2 = JN1\N2
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(4) J
N1 \ JN2 � JN1\N2

(5) JN1 [ JN2 � JN1[N2

(6) J
N1 [ JN2 = JN1[N2

(7) JW (e) � U for all e 2 A and if uJ (e) 6= � for all u 2 U; then JW (e) = U for all

e 2 A:

(8) J
W
(e) � U for all e 2 A and if uJ (e) 6= � for all u 2 U; then JW (e) = U for all

e 2 A:

(9) JN =
�
J
Nc�c

(10) J
N
=
�
JN

c�c
:

Proof. (1) Let u 2 JN1 (e) for e 2 A: Then � 6= uJ (e) � N1. As N1 � N2, we have
� 6= uJ (e) � N2: Thus u 2 JN2 (e) : Hence, JN1 � JN2 :

(2) Let u 2 JN1 (e) for e 2 A: Then uJ (e) \N1 6= �. As N1 � N2, we have

uJ (e) \N2 6= �: Thus u 2 J
N2 (e) : Hence, J

N1 � JN2 :

(3) Using (1) and the fact that N1 \N2 � N1; N2; we have JN1\N2 � JN1 ; JN2

so JN1\N2 � JN1 \ JN2 : Conversely, let u 2 JN1 (e) \ JN2 (e) for e 2 A) u 2 JN1 (e)
and u 2 JN2 (e) ) uJ (e) � N1 and uJ (e) � N2 ) uJ (e) � N1 \ N2: ) u 2
JN1\N2 (e)) JN1 \ JN2 � JN1\N2 : Hence, JN1 \ JN2 = JN1\N2 :

(4) Using (2) and the fact that N1 \N2 � N1; N2; we have J
N1\N2 � JN1 ; JN2

) J
N1\N2 � JN1 \ JN2 :

(5) Since N1; N2 � N1 [N2; so by using part (1) ; we get JN1 ; JN2 � JN1[N2 and so
JN1 [ JN2 � JN1[N2 :

(6) Since N1; N2 � N1 [N2; so by using part (2) ; we get J
N1 ; J

N2 � JN1[N2 implies
J
N1 [ JN2 � JN1[N2 : Conversely, let u 2 JN1[N2 (e) for e 2 A:

) uJ (e) \ (N1 [N2) 6= �) uJ (e) \N1 6= � or uJ (e) \N2 6= �:

) u 2 JN1 (e) or u 2 JN2 (e)) u 2
�
J
N1 [ JN2

�
(e)) J

N1[N2 � JN1 [ JN2 :

Hence, J
N1[N2 = J

N1 [ JN2 :
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(7) Since JW (e)=fu 2 U : uJ (e) �Wg � U for e 2 A; because

uJ (e) = fw 2W : (u;w) 2 J(e)g �W:

If uJ (e) 6= � for all u 2 U; then JW (e) = U for all e 2 A:

(8) By de�nition, J
W
(e) = fu 2 U : uJ (e) \W 6= �g � U: Moreover, if uJ (e) 6= �

for every u 2 U; then JW = U:

(9) Let u 2 JN (e) for e 2 A, � 6= uJ (e) � N , uJ (e) \N c = �, u =2 JN
c

(e)

, u 2
�
J
Nc

(e)
�c
: Hence, JN =

�
J
Nc�c

:

(10) By (9) ; JN =
�
J
Nc�c

: Therefore, JN
c
=
�
J
(Nc)c

�c
) JN

c
=
�
J
N
�c
: Hence,�

JN
c�c

= J
N
:

It is demonstrated by the following example that equality is not valid in (4) ; (5) and

(8) in general.

Example 2.1.5 Consider U = fm1;m2;m3;m4;m5g is a collection of �ve mobile
phones as the universal set. These mobile phones are classi�ed by attributes age and

color represented by A = fe1; e2g. Let W = fnew, used, old, black, whiteg be repre-
sented by W = fn; u; o; b; wg.

De�ne a relation J : A! P (W � U) by

J(e1) = f(n;m1); (n;m2); (o;m3); (o;m4) ; (u;m5)g and

J(e2) = f(b;m2); (b;m3); (w;m1); (w;m4) ; (w;m5)g :

Now, nJ (e1) = fm1;m2g, u (e1) = fm5g; oJ (e1) = fm3;m4g ;

and bJ (e2) = fm2;m3g ; wJ (e2) = fm1;m4;m5g :

Let N1 = fm1;m2;m3g � U and N2 = fm2;m4;m5g � U . Then N1 \N2 = fm2g

and N1 [N2 = fm1;m2;m3;m4;m5g. Therefore,

J
N1\N2(e1) = fng ; JN1[N2(e1) = fn; u; og ; J

N1(e1) = fn; og ;

J
N2(e1) = fn; o; ug ; JN1(e1) = fng ; JN2(e1) = fug.

Hence, J
N1(e1) \ J

N2(e1) = fn; og * fng = J
N1\N2(e1), JN1[N2(e1) = fn; o; ug *

fn; ug = JN1(e1) [ JN2(e1) and J
U
(e1) = fn; o; ug 6=W .
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Proposition 2.1.6 Let (U;W; J) be a generalized soft approximation space. Let fNig
be an arbitrary family of subsets of W . Then

(1) J\i2INi = \i2IJNi

(2) J
\i2INi

� \i2IJ
Ni
:

Proof. (1) Let u 2 J\i2INi (e) , � 6= uJ (e) � \i2INi , � 6= uJ (e) � Ni for all

i 2 I , u 2 JNi (e) for all i 2 I , u 2 \i2IJNi (e) : Hence, J\i2INi = \i2IJNi :

(2) Let u 2 J
\i2INi

(e)) uJ (e) \ (\i2INi) 6= �) uJ (e) \Ni 6= � for all i 2 I:

) u 2 J
Ni
(e) for all i 2 I ) u 2 \i2IJ

Ni
(e) : Hence, J

\i2INi
� \i2IJ

Ni
:

De�nition 2.1.7 If (J;A) is a soft set over U � U , then (J;A) is called an SBRE
on U .

In fact (J;A) is a parameterized collection of binary relations on U . That is, we have

a binary relation J(e) on U for each parameter e 2 A.

De�nition 2.1.8 An SBRE (J;A) on U is said to be a soft re�exive relation on U

if J (e) is a re�exive relation on U for all e 2 A.

De�nition 2.1.9 [27] An SBRE (J;A) on a set S is said to be soft re�exive if (a; a) 2
J (e) for all a 2 S and e 2 A.

In this case, each uJ(e) is non-empty and u 2 uJ(e): The approximation operators
have additional properties with respect to soft re�exive binary relation as follows:

Theorem 2.1.10 Let J : A ! P (U � U) be a soft re�exive relation on U: For � 6=
N � U , the properties below hold:

(1) JN (e) � N

(2) N � JN (e)

(3) J� = � = J
�

(4) J
W
(e) = U for all e 2 A:

Proof. (1) Let u 2 JN (e) : Then � 6= uJ (e) � N . But u 2 uJ (e), therefore u 2 N:
Therefore JN (e) � N:
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(2) Let u 2 N: Then uJ (e) 6= �. As u 2 uJ (e) \ N; so uJ (e) \ N 6= �: It follows

u 2 JN (e) : Hence, N � JN (e) :

(3) It is direct.

(4) By de�nition, J
W
(e) = fu 2 U : uJ (e) \W 6= �g : As uJ (e) 6= � for every u 2 U;

therefore, J
W
= U:

De�nition 2.1.11 An SBRE (J;A) on U is a soft symmetric relation on U if J (e)

is a symmetric relation on U for all e 2 A.

The approximation operators have additional properties with respect to soft symmetric

binary relation as follows:

Lemma 2.1.12 If (J;A) is a soft symmetric relation on U , then v 2 uJ (e) implies
u 2 vJ (e) :

Theorem 2.1.13 Let J : A ! P (U � U) be a soft symmetric relation on U: For
� 6= N � U , the properties below are valid:

(1) J
(JN (e))

(e) � N

(2) N � J
�
J
N
(e)
�
(e) for all e 2 A:

Proof. (1) Let u 2 J
�
JN (e)

�
(e) : If uJ (e) 6= � for all e 2 A; then uJ (e)\JN (e) 6= � so

there exists atleast one u1 2 uJ (e)\JN (e) : This implies u1 2 uJ (e) and u1 2 JN (e) :
Now, u1 2 JN (e) implies u1J (e) � N: Also u1 2 uJ (e) and the relation is soft

symmetric implies u 2 u1J (e) : Thus, u 2 u1J (e) � N: It follows u 2 N: Therefore,

J

�
JN (e)

�
(e) � N:

(2) Let u 2 N: If u1 2 uJ (e) ; then u 2 u1J (e) ; because the relation is soft symmetric.
It is clear that u 2 u1J (e) \ N; so u1J (e) \ N 6= �: It means that u1 2 J

N
(e) )

uJ (e) � JN (e) implies u 2 J
�
J
N
(e)
�
(e) : Therefore, N � J

�
J
N
(e)
�
(e) :

De�nition 2.1.14 An SBRE (J;A) on U is a soft transitive relation on U if J (e)

is a transitive relation on U for all e 2 A.

The approximation operators have additional properties with respect to soft transitive

binary relation as described below:
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Theorem 2.1.15 Let J : A ! P (U � U) be a soft transitive relation from U to U:

For N � U , J
�
J
N
(e)
�
� JN for all e 2 A:

Proof. Let u 2 J
�
J
N
(e)
�
(e) : It follows uJ (e) \ JN (e) 6= � so there exists atleast

one u1 2 uJ (e) \ J
N
(e) such that u1 2 uJ (e) and u1 2 J

N
(e) : Now u1 2 J

N
(e)

implies that u1J (e) \ N 6= �. So there exists atleast one x 2 u1J (e) \ N such that

x 2 u1J (e) and x 2 N: But u1 2 uJ (e) implies (u; u1) 2 J (e) and x 2 u1J (e) implies
(u1; x) 2 J (e) : Since the relation is soft transitive so (u; x) 2 J (e) : It follows that
x 2 uJ (e) : Therefore, x 2 uJ (e) \N: This implies uJ (e) \N 6= �:

Therefore u 2 JN (e) : Thus, J
�
J
N
(e)
�
(e) � JN (e) : Hence, J

�
J
N
(e)
�
� JN :

Theorem 2.1.16 If an SBRE; (J;A) on U is soft re�exive and soft transitive, then

for any subset N � U; the following property holds:

J

�
J
N
(e)
�
= J

N
for all e 2 A:

Proof. Since it is soft transitive so by previous theorem

J
(JN (e))

� J
N
: It is also soft re�exive, therefore N � J

N
(e) : By using Theorem

2.1.4(2) ; J
N
(e) � J

(JN (e))
(e). Hence, J

(JN (e))
= J

N
:

De�nition 2.1.17 An SBRE; (J;A) on U is a soft equivalence relation on U if it is

soft re�exive, soft symmetric and soft transitive relation on U .

From now, a soft equivalence relation is represented by an SE-relation and soft equiva-

lence classes by SE-classes. And, an equivalence relation is represented by E�relation
and equivalence classes by E�classes.

De�nition 2.1.18 An SBRE; (J;A) on U is an SE-relation on U if J (e) for all

e 2 A; is an E�relation on U .

Theorem 2.1.19 Every information system (U;A; V ) can be represented by a soft

equivalence relation and vice versa.

Proof. Let (U;A; V ) be an information system. Then every attribute e 2 A induces
a function from U to V . That is e : U ! V de�ned as e (x) = ve 2 Ve. Where Ve is a
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set of all values associated with e, and
S
e2A

Ve = V . Now de�ne a soft relation (J;A)

on U as

J (e) = f(x; y) 2 U � U : e (x) = e (y)g for all e 2 A.

Clearly, J (e) is an equivalence relation for all e 2 A. Thus (J;A) is a soft equivalence
relation on U . Conversely, Let (J;A) be a SE�relation on U . Then J (e) partitions
the set U into equivalence classes for all e 2 A. To each class obtained by J (e) a value
ve can be associated. Let the collection of all ve is denoted by Ve. Now put

S
e2A

Ve = V .

Thus a soft equivalence relation (J;A) can be represented by an information system

(U;A; V ).

If (J;A) is an SE-relation on U; then each J (e) is an E�relation over U . Thus, J (e)
partitions the set U into E�classes uJ (e) :

To elaborate this concept, an example is added.

Example 2.1.20 Let U = f�1; �2; �3; �4; �5; �6g be a set where E = fe1; e2; e3; e4; e5; e6; e7g
and A = fe1; e2; e3; e4; e5g be the set of attributes.

De�ne an SE-relation J : A! P (U � U) for each parameter e 2 A:

The following SE-classes are obtained for each of the SE-relation.

For J (e1) ; the SE-classes uJ (e1) are f�1; �3g ; f�2; �4; �5; �6g :

For J (e2) ; the SE-classes uJ (e2) are f�1; �3; �6g ; f�2; �4; �5g :

For J (e3) ; the SE-classes uJ (e3) are f�1; �2; �4; �5g ; f�3g ; f�6g :

For J (e4) ; the SE-classes uJ (e4) are f�1; �2; �4; �5; �6g ; f�3g :

For J (e5) ; the SE-classes uJ (e5) is f�1; �2; �3; �4; �5; �6g :

A soft indiscernibility relation is obtained by the intersecting all the SE-relations in-

duced by parameters represented as INd (J;A) = \ei2AJ (ei) = !

In above example, the partition of U obtained by soft indiscernibility relation INd (J;A)

is f�1g ; f�2; �4; �5g ; f�3g and f�6g : It is evident that for each J (ei) (SE � relation)
where i = 1; 2; 3; 4; 5; (U; J (ei)) gives an approximation space. Also, (U; !) is an

approximation space.

In view of the above example, any subset M of U can be approximated by the SE-

relation J (ei) : The SE-class determined by the SE-relation J (ei) is denoted by
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uJ (ei) : The parameterized collection of subsets, denoted by
�
JM ; A

�
; is de�ned as

JM (ei) = [u2M fuJ (ei) : uJ (ei) �Mg for all ei 2 A; is said to be soft lower approxi-
mation of M with respect to SE-relation (J;A) : The parameterized collection of sub-

sets, denoted by
�
J
M
; A
�
; is de�ned as J

M
(ei) = [u2M fuJ (ei) : uJ (ei) \M 6= �g

for all ei 2 A; is said to be soft upper approximation ofM with respect to SE-relation

(J;A) :

The soft set
�
BJM ; A

�
de�ned by BJM (ei) = J

M
(ei)�JM (ei) for all ei 2 A is called

soft boundary region of M; with respect to SE-relation (J;A) : A subset M of U is

called totally rough with respect to SE-relation (J;A) if BJM (ei) 6= � for all ei 2 A:
A subset M of U is said to be partly de�nable with respect to SE-relation (J;A) if

BJM (ei) = � for some ei 2 A: A subsetM of U is called totally de�nable with respect

to SE-relation (J;A) if BJM (ei) = � for all ei 2 A:

Proposition 2.1.21 For the SE-relation (J;A) on U and for M;N � U;

(1)
�
JM ; A

�
�
�
J
M
; A
�

(2)
�
J�; A

�
=
�
J
�
; A
�
= �;

�
JU ; A

�
=
�
J
U
; A
�
= U

(3) M � N )
�
JM ; A

�
�
�
JN ; A

�
(4) M � N )

�
J
M
; A
�
�
�
J
N
; A
�

(5)
�
JM ; A

�
\
�
JN ; A

�
=
�
JM\N ; A

�
(6)

�
J
M
; A
�
[
�
J
N
; A
�
=
�
J
M[N

; A
�

(7)
�
JM ; A

�
[
�
JN ; A

�
�
�
JM[N ; A

�
(8)

�
J
M
; A
�
\
�
J
N
; A
�
�
�
J
M\N

; A
�

(9)
�
J
Mc

; A
�
=
�
JM ; A

�c
:

(10)
�
JM

c
; A
�
=
�
J
M
; A
�c
:

Proof. (1) Let u 2 JM (e) ) uJ (e) � M ) uJ (e) \M 6= � ) u 2 JM (e) : Hence,�
JM ; A

�
�
�
J
M
; A
�
:

(2) Straightforward.

(3) Let u 2 JM (e) : Then uJ (e) � M . As M � N , we have uJ (e) � N: Thus

u 2 JN (e) : Hence,
�
JM ; A

�
�
�
JN ; A

�
:
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(4) Let u 2 JM (e) : Then uJ (e)\M 6= �. As M � N , we have uJ (e)\N 6= �: Thus
u 2 JN (e) : Hence,

�
J
M
; A
�
�
�
J
N
; A
�
:

(5)Using part (3) and the fact that M \ N � M;N; we have JM\N � JM ; JN so

JM\N � JM \ JN :

Hence,
�
JM\N ; A

�
�
�
JM ; A

�
\
�
JN ; A

�
:

Conversely, let u 2 JM (e) \ JN (e)) u 2 JM (e) and u 2 JN (e)

) uJ (e) �M and uJ (e) � N ) uJ (e) �M \N

) u 2 JM (e))
�
JM ; A

�
\
�
JN ; A

�
�
�
JM\N ; A

�
:

Hence,
�
JM\N ; A

�
=
�
JM ; A

�
\
�
JN ; A

�
:

(6) Since M; N �M [N so by using part (4) ; we get J
M[N � JM ; JN which implies

J
M[N � JM [ JN : Hence,

�
J
M
; A
�
[
�
J
N
; A
�
�
�
J
M[N

; A
�
:

Conversely, let u 2 JM[N
(e) : Then uJ (e) \ (M [ N) (e) 6= � ) uJ (e) \M 6= � or

uJ (e) \N 6= �

) u 2 JM (e) or u 2 JN (e)) u 2
�
J
M [ JN

�
(e)

) J
M[N � JM [ JN )

�
J
M[N

; A
�
�
�
J
M
; A
�
[
�
J
N
; A
�
:

Hence,
�
J
M
; A
�
[
�
J
N
; A
�
=
�
J
M[N

; A
�
:

(7) Since M; N � M [ N; so by using part (3) ; we get JM ; JN � JM[N and so

JM [ JN � JM[N : Hence,
�
JM ; A

�
[
�
JN ; A

�
�
�
JM[N ; A

�
:

(8) Using part (4) and the fact that M \N �M; N; we have JM\N � JM ; JN

) J
M\N � JM \ JN : Hence,

�
J
M
; A
�
\
�
J
N
; A
�
�
�
J
M\N

; A
�
:

(9) Let u 2 JM (e), uJ (e) �M , uJ (e) \M 6= �, uJ (e) \M c = �

, u =2 JM
c

(e), u 2
�
J
Mc

(e)
�c
: Hence,

�
J
Mc

; A
�
=
�
JM ; A

�c
:

(10) By part (9) ;
�
J
Mc

; A
�
=
�
JM ; A

�c
: Therefore;

�
JM

c
; A
�c
=
�
J
(Mc)c

; A
�

)
�
JM

c
; A
�c
=
�
J
M
; A
�
: Hence,

�
JM

c
; A
�
=
�
J
M
; A
�c
:

It is demonstrated by the following example that equality is not valid in (7) and (8)

in general.
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Example 2.1.22 Let U = f�1; �2; �3; �4g be a set where E = fe1; e2; e3; e4; e5g and
A = fe1; e2; e3g be the set of attributes. De�ne a SE-relation J : A ! P (U � U)
for each e 2 A: Then E�classes for J(e1) are f�1; �4g and f�2; �3g ; for J(e2) are
f�1; �2; �4g and f�3g and for J(e3) are f�1g ; f�2; �3g and f�4g :

Let M = f�1; �3g and N = f�1; �2g so
�
JM ; A

�
can be represented as

JM (e1) = �; J
M (e2) = f�3g ; JM (e3) = f�1g :

And
�
JN ; A

�
can be represented as JN (e1) = �; JN (e2) = �; JN (e3) = f�1g :

Now, M [N = f�1; �2; �3g and
�
JM[N ; A

�
can be represented as

JM[N (e1) = f�2; �3g ; JM[N (e2) = f�3g ; JM[N (e3) = f�1; �2; �3g :

Evidently,
�
JM[N ; A

�
6=
�
JM ; A

�
[
�
JN ; A

�
:

Now, J
M
(e1) = U; J

M
(e2) = U; J

M
(e3) = f�1; �2; �3g :

And
�
J
N
; A
�
can be represented as

J
N
(e1) = U; J

N
(e1) = f�1; �2; �4g ; J

N
(e1) = f�1; �2; �3g :

Now, M \N = f�1g and
�
J
M\N

; A
�
can be represented as

J
M\N

(e1) = f�1; �4g ; J
M\N

(e2) = f�1; �2; �4g ; J
M\N

(e3) = f�1g :

Evidently,
�
J
M\N

; A
�
6=
�
J
M
; A
�
\
�
J
N
; A
�
:

2.2 Fuzziness associated with SE�relation

In this section, we discuss for any subset M of U , there is an associated FS; �i of U

for each ei 2 A : further we can also �nd a FS associated with a subset M of U for

INd (J;A) = !:

For an SE-relation (J;A) over U , each J (ei) where ei 2 A; gives a partition of U .
Hence, a FS; �i is de�ned of U for each J (ei) :

Let �i : U ! [0; 1] be de�ned as �i (u) =j uJ (ei) \M j � j uJ (ei) j :

Also, we can �nd a FS; � of U for INd (J;A) = !: It can be de�ned in the similar fash-

ion as explained above, that is � : U ! [0; 1] de�ned as � (u) = (j u! \M j � j u! j) :

In the following example, we see that for any subset of the universe U , there is a FS
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of U for each parameter. Hence, we have a fuzzy soft set.

Example 2.2.1 11 books to be arranged from left to right on a shelf. Here U =

fb1; b2; b3; b4; b5; b6; b7; b8; b9; b10; b11g and A = fe1; e2; e3; e4; e5g is a set of parameters
where e1 denotes the binding of books, e2 the publishing years of books, e3 the color of

book binding, e4 the category in which Mathematics books are placed, e5 the level of

books. We further characterize these parameters as follows:

� The binding of books includes hard binding, paper binding, leather binding and without
binding.

� The publishing year of books includes 2003-2005, 2006-2009, 2010-2014, 2015-2016
and 2017.

� The Color of book binding is red, yellow, blue, black and green.

� The mathematics books are �uid mechanics, ring theory and discrete mathematics.

� The level of book is Intermediate, BS, Masters and M.phil.

De�ne an SE-relation J : A! P (U � U) for each e 2 A: The SE-classes for each of
the SE-relation is obtained as follows:

For J (e1) ; the SE-classes uJ (e1) are fb1; b10g ; fb2; b4; b6; b7g ; fb3; b5; b8; b9g ; fb11g :

For J (e2) ; the SE-classes uJ (e2) are fb1g ; fb2; b11g ; fb4; b7g ; fb3; b5; b8; b9g ; fb6; b10g :

For J (e3) ; the SE-classes uJ (e3) are fb1g ; fb2g ; fb3; b4; b5; b7; b8; b9; b10g ; fb6g ; fb11g :

For J (e4) ; the SE-classes uJ (e4) are fb2g ; fb3; b4; b5; b7; b8; b9; b11g ; fb1; b6; b10g :

For J (e5) ; the SE-classes uJ (e5) are fb10g ; fb6g ; fb1; b2; b3; b4; b5; b7; b8; b9g ; fb11g :

Further SE-classes determined by INd (J;A) = \5i=1J (ei) = ! are fb1g ; fb2g ; fb6g ;

fb10g ; fb11g ; fb4; b7g ; fb3; b5; b8; b9g :

Let M = fb3; b4; b5; b7; b9g : Then

JM (e1) = �; J
M (e2) = fb4; b7g ; JM (e3) = �; JM (e4) = �; JM (e5) = �:

And,

J
M
(e1) = fb2; b3; b4; b5; b6; b7; b8; b9g ; J

M
(e2) = fb3; b4; b5; b7; b8; b9g

J
M
(e3) = fb3; b4; b5; b7; b8; b9; b10g ; J

M
(e4) = fb3; b4; b5; b7; b8; b9; b11g



2. Reduction of an information system 30

J
M
(e5) = fb1; b2; b3; b4; b5; b7; b8; b9g

Now, !M = fb4; b7g and !M = fb3; b4; b5; b7; b8; b9g :

Therefore, for each parameter ei where i = 1; 2; 3; 4; :::; fuzzy subsets of U for M =

fb3; b4; b5; b7; b9g are given below:

For J (e1) ; the FS; �1 isn
0
b1
; 0:5b2 ;

0:7
b3
; 0:5b4 ;

0:7
b5
; 0:5b6 ;

0:5
b7
; 0:7b8 ;

0:7
b9
; 0
b10
; 0
b11

o
:

For J (e2) ; the FS; �2 isn
0
b1
; 0b2 ;

0:7
b3
; 1b4 ;

0:7
b5
; 0b6 ;

1
b7
; 0:7b8 ;

0:7
b9
; 0
b10
; 0
b11

o
:

For J (e3) ; the FS; �3 isn
0
b1
; 0b2 ;

0:7
b3
; 0:7b4 ;

0:7
b5
; 0b6 ;

0:7
b7
; 0:7b8 ;

0:7
b9
; 0:7b10 ;

0
b11

o
:

For J (e4) ; the FS; �4 isn
0
b1
; 0b2 ;

0:7
b3
; 0:7b4 ;

0:7
b5
; 0b6 ;

0:7
b7
; 0:7b8 ;

0:7
b9
; 0
b10
; 0:7b11

o
:

For J (e5) ; the FS; �5 isn
0:6
b1
; 0:6b2 ;

0:6
b3
; 0:6b4 ;

0:6
b5
; 0b6 ;

0:6
b7
; 0:6b8 ;

0:6
b9
; 0
b10
; 0
b11

o
:

Further for !; FS; � isn
0
b1
; 0b2 ;

0:7
b3
; 1b4 ;

0:7
b5
; 0b6 ;

1
b7
; 0:7b8 ;

0:7
b9
; 0
b10
; 0
b11

o
:

The arrangement of the books for J (e1) is b1 = b10 = b11 � b2 = b4 = b6 = b7 � b3 =
b5 = b8 = b9:

The arrangement of the books for J (e2) is b1 = b2 = b6 = b10 = b11 � b3 = b5 = b8 =
b9 � b4 = b7:

The arrangement of the books for J (e3) is b1 = b2 = b6 = b11 � b3 = b4 = b5 = b7 =
b8 = b9 = b10:

The arrangement of the books for J (e4) is b1 = b2 = b6 = b10 � b3 = b4 = b5 = b7 =
b8 = b9 = b11:

The arrangement of the books for J (e5) is b6 = b10 = b11 � b1 = b2 = b3 = b4 = b5 =
b7 = b8 = b9:

The arrangement of the books for ! is b1 = b2 = b6 = b10 = b11 � b3 = b5 = b8 = b9 �
b4 = b7:
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Hence, the books b3; b5; b8 and b9 will not be placed adjacent to each other in the start.

Moreover, if M = U , then �i (u) = 1 and if M = �, then �i (u) = 0 for all u 2 U:

2.3 Similarity relations associated with soft binary rela-

tions

In this section, some soft binary relations between two crisp sets are de�ned based on

their rough approximations and their properties are investigated.

De�nition 2.3.1 Let (U; J) be a Generalized soft approximation space. De�ne the

following binary relations on P (W ) ; for N1; N2 �W:

N1 w N2 if and only if JN1 = JN2

N1 h N2 if and only if J
N1 = J

N2

N1 t N2 if and only if JN1 = JN2 and J
N1 = J

N2 :

These binary relations are named as the lower similarity relation , upper similarity

relation and similarity relation, respectively. Obviously, JN and J
N
are similar if and

only if they are both lower and upper similar.

Proposition 2.3.2 The relations w, h and � are E-relations.

Proof. It is direct.

Theorem 2.3.3 Let (U; J) be a Generalized soft approximation space and J : A !
P (U � U) be a soft re�exive binary relation on U: For Ni � U for i = 1; 2; 3; 4; the

following assertions hold:

(1) N1 h N2 if and only if N1 h (N1 [N2) h N2

(2) N1 h N2 and N3 h N4 imply that (N1 [N3) h (N2 [N4)

(3) N1 � N2 and N2 h � imply that N1 h �

(4) (N1 [N2) h � if and only if N1 h � and N2 h �
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Proof. (1) Let N1 h N2. Then J
N1 = J

N2 : By Theorem 2.1.4(6) ; we get J
N1[N2 =

J
N1 [ JN2 = JN1 = JN2 so N1 h (N1 [N2) h N2 . Converse holds by transitivity of
the relation h :

(2) Given that N1 h N2 and N3 h N4: Then J
N1 = J

N2 and J
N3 = J

N4 :

By Theorem 2.1.4(6) ; we get J
N1[N3 = J

N1 [ JN3 = J
N2 [ JN4 = J

N2[N4 : Thus,

(N1 [N3) h (N2 [N4) :

(3) Given N2 h �: This implies J
N2 = J

�
:

Also, N1 � N2 ) J
N1 � JN2 = J�: It follows that JN1 � J� but J� � JN1 : Therefore,

J
N1 = J

� ) N1 h �:

(4) Let N1 h � and N2 h �: Then J
N1 = J

�
and J

N2 = J
�
: By Theorem 2.1.4(6) ; we

get J
N1[N2 = J

N1 [ JN2 = J� [ J� = J�:

Thus, (N1 [N2) h �: Converse follows from (3) :

Theorem 2.3.4 Let (U; J) be a Generalized soft approximation space and J : A !
P (U �U) be a soft re�exive relation on U: For Ni � U for i = 1; 2; 3; 4; the assertions
given below hold:

(1) N1 w N2 if and only if N1 w (N1 \N2) w N2

(2) N1 w N2 and N3 w N4 imply that (N1 \N3) w (N2 \N4)

(3) N1 � N2 and N2 w � imply that N1 w �

(4) (N1 [N2) w � if and only if N1 w � and N2 w �

Proof. The veri�cation is like the evidence of Theorem 2.3.3.

Theorem 2.3.5 Let (U; J) be a Generalized soft approximation space and J : A !
P (U �U) be a soft re�exive relation on U: For Ni � U for i = 1; 2; 3; 4; the properties

are valid:

(1) N1 t N2 if and only if N1 h (N1 [N2) h N2 and N1 w (N1 \N2) w N2.

(2) N1 w N2 and N3 w N4 imply that (N1 \N3) [ (N2 \N4)

(3) N1 � N2 and N2 t � imply that N1 t �

(4) (N1 [N2) t � if and only if N1 t � and N2 t �
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Proof. It is an immediate consequence of Theorem 2.3.3 and 2.3.4.

2.4 Parametric reduction

The attributes reduction is designed to keep the classi�cation ability of conditional

parameters relative to the decision parameters in rough set theory. The decision values

are computed by conditional parameters and the parametric reduction is designed to

o¤er minimal subset of the conditional parameters set to keep the optimal choice

objects. Parametric reduction in soft and rough set theory play a vital role and it

saves time and expenses on several tests.

Moreover, in soft sets reduction of condition parameters is a meaningful concept [21].

The condition parametric reduction is possible while it does not disturb the ability

of classi�cation of decision parameters (in original data). Intention of study is to

classify ability of
P
(�i; �j) instead of its values. And classi�cation attitude of decision

parameter will be viewed by exiting some condition parameters from decision table.

For this purpose, the example presented by Maji et al. in [65] and Chen et al in [21],

is analyzed here. Here parameters of an SBRE are reduced one by one in order to

minimize the data and handle information easily.

Example 2.4.1 Considering U = f�1; �2; �3; �4; �5; �6g, a collection of six houses

where E =

(
expensive, beautiful, wooden, cheap, in green surroundings,

modern, in good repair, in bad repair

)
is a para-

metric set. Suppose Mr: X wants to purchase a house on the following parametric

set P = fbeautiful, wooden, cheap, in green surroundings, in good repairg : Symboli-
cally, P = fe1; e2; e3; e4; e5g : Let A = fe1; e2; e3; e4; e5; dg ; C = fe1; e2; e3; e4; e5g and
D = fdg where C and D are the sets of condition parameters and decision parameters,

respectively.

De�ne a SE-relation J : A! P (U � U) for each e 2 A:

The SE-classes are obtained for each of the SE-relation as follows:

For J (e1) ; the SE-classes uJ (e1) are f�1; �3g ; f�2; �4; �5; �6g :

For J (e2) ; the SE-classes uJ (e2) are f�1; �3; �6g ; f�2; �4; �5g :

For J (e3) ; the SE-classes uJ (e3) are f�1; �2; �4; �5g ; f�3g ; f�6g :
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For J (e4) ; the SE-classes uJ (e4) are f�1; �2; �4; �5; �6g ; f�3g :

For J (e5) ; the SE-classes uJ (e5) is f�1; �2; �3; �4; �5; �6g :

For decision-making, a decision parameter d is adjoined with table 1, where
P5
k=1 (�i; �j)k

is the value of (�i; �j) pair corresponding to J (ek). Those objects are placed adjacent

to each other which have the same values
P
(�i; �j) so we reset the table and elements

which have the same value, are put side by side to each other and elements of di¤erent

values are separated so we have Table 3 which is called original classi�cation table.

Our task is to �nd without distorting the classi�cation ability of the parameter d, it

is hoped to �nd the minimum number of condition parameters for decision making

without distorting the ability of classi�cation of parameter d.

If we kill e5 from Table 3; we get Table 4: It is obvious that deletion of e1 a¤ects the

classi�cation of d di¤erent from that in Table 3: Therefore e1 is a core parameter. If

we delete e2 from Table 3; we get another core parameter. If we proceed in the same

way, we �nd a set of core parameters fe1; e2; e3; e4g : But elimination of e5 does not
a¤ect the classi�cation capacity of decision parameter d, so e5 is dispensible in Table

4 and it is the condition parameter. Hence, Table 4 gives the same classi�cation with

least condition parameters.

Here, Table 1 represents SE�relation representation of houses under consideration

Table 2 represents SE�relation after adjoining decision parameter d

Table 3 represents SE-relation after the rearrangement of the decision parameter d

Table 4 represents SE�relation after eliminating the condition parameter e5:
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Table 1 Table 2

e1 e2 e3 e4 e5

(�1; �1) 1 1 1 1 1

(�1; �2) 0 0 1 1 1

(�1; �3) 1 1 0 0 1

(�1; �4) 0 0 1 1 1

(�1; �5) 0 0 1 1 1

(�1; �6) 0 1 0 1 1

(�2; �1) 0 0 1 1 1

(�2; �2) 1 1 1 1 1

(�2; �3) 0 0 0 0 1

(�2; �4) 1 1 1 1 1

(�2; �5) 1 1 1 1 1

(�2; �6) 1 0 0 1 1

(�3; �1) 1 1 0 0 1

(�3; �2) 0 0 0 0 1

(�3; �3) 1 1 1 1 1

(�3; �4) 0 0 0 0 1

(�3; �5) 0 0 0 0 1

(�3; �6) 0 1 0 0 1

(�4; �1) 0 0 1 1 1

(�4; �2) 1 1 1 1 1

(�4; �3) 0 0 0 0 1

(�4; �4) 1 1 1 1 1

(�4; �5) 1 1 1 1 1

(�4; �6) 1 0 0 1 1

(�5; �1) 0 0 1 1 1

(�5; �2) 1 1 1 1 1

(�5; �3) 0 0 0 0 1

(�5; �4) 1 1 1 1 1

(�5; �5) 1 1 1 1 1

(�5; �6) 1 0 0 1 1

(�6; �1) 0 1 0 1 1

(�6; �2) 1 0 0 1 1

(�6; �3) 0 1 0 0 1

(�6; �4) 1 0 0 1 1

(�6; �5) 1 0 0 1 1

(�6; �6) 1 1 1 1 1

e1 e2 e3 e4 e5 d

(�1; �1) 1 1 1 1 1 5

(�1; �2) 0 0 1 1 1 3

(�1; �3) 1 1 0 0 1 3

(�1; �4) 0 0 1 1 1 3

(�1; �5) 0 0 1 1 1 3

(�1; �6) 0 1 0 1 1 3

(�2; �1) 0 0 1 1 1 3

(�2; �2) 1 1 1 1 1 5

(�2; �3) 0 0 0 0 1 1

(�2; �4) 1 1 1 1 1 5

(�2; �5) 1 1 1 1 1 5

(�2; �6) 1 0 0 1 1 3

(�3; �1) 1 1 0 0 1 3

(�3; �2) 0 0 0 0 1 1

(�3; �3) 1 1 1 1 1 5

(�3; �4) 0 0 0 0 1 1

(�3; �5) 0 0 0 0 1 1

(�3; �6) 0 1 0 0 1 2

(�4; �1) 0 0 1 1 1 3

(�4; �2) 1 1 1 1 1 5

(�4; �3) 0 0 0 0 1 1

(�4; �4) 1 1 1 1 1 5

(�4; �5) 1 1 1 1 1 5

(�4; �6) 1 0 0 1 1 3

(�5; �1) 0 0 1 1 1 3

(�5; �2) 1 1 1 1 1 5

(�5; �3) 0 0 0 0 1 1

(�5; �4) 1 1 1 1 1 5

(�5; �5) 1 1 1 1 1 5

(�5; �6) 1 0 0 1 1 3

(�6; �1) 0 1 0 1 1 3

(�6; �2) 1 0 0 1 1 3

(�6; �3) 0 1 0 0 1 2

(�6; �4) 1 0 0 1 1 3

(�6; �5) 1 0 0 1 1 3

(�6; �6) 1 1 1 1 1 5
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Table 3 Table 4

e1 e2 e3 e4 e5 d

(�1; �1) 1 1 1 1 1 5

(�2; �2) 1 1 1 1 1 5

(�2; �4) 1 1 1 1 1 5

(�2; �5) 1 1 1 1 1 5

(�3; �3) 1 1 1 1 1 5

(�4; �2) 1 1 1 1 1 5

(�4; �4) 1 1 1 1 1 5

(�4; �5) 1 1 1 1 1 5

(�5; �2) 1 1 1 1 1 5

(�5; �4) 1 1 1 1 1 5

(�5; �5) 1 1 1 1 1 5

(�6; �6) 1 1 1 1 1 5

(�1; �2) 0 0 1 1 1 3

(�1; �3) 1 1 0 0 1 3

(�1; �4) 0 0 1 1 1 3

(�1; �5) 0 0 1 1 1 3

(�1; �6) 0 1 0 1 1 3

(�2; �1) 0 0 1 1 1 3

(�2; �6) 1 0 0 1 1 3

(�3; �1) 1 1 0 0 1 3

(�4; �1) 0 0 1 1 1 3

(�4; �6) 1 0 0 1 1 3

(�5; �1) 0 0 1 1 1 3

(�5; �6) 1 0 0 1 1 3

(�6; �1) 0 1 0 1 1 3

(�6; �2) 1 0 0 1 1 3

(�6; �4) 1 0 0 1 1 3

(�6; �5) 1 0 0 1 1 3

(�3; �6) 0 1 0 0 1 2

(�6; �3) 0 1 0 0 1 2

(�2; �3) 0 0 0 0 1 1

(�3; �2) 0 0 0 0 1 1

(�3; �4) 0 0 0 0 1 1

(�3; �5) 0 0 0 0 1 1

(�4; �3) 0 0 0 0 1 1

(�5; �3) 0 0 0 0 1 1

e1 e2 e3 e4 de5

(�1; �1) 1 1 1 1 4

(�2; �2) 1 1 1 1 4

(�2; �4) 1 1 1 1 4

(�2; �5) 1 1 1 1 4

(�3; �3) 1 1 1 1 4

(�4; �2) 1 1 1 1 4

(�4; �4) 1 1 1 1 4

(�4; �5) 1 1 1 1 4

(�5; �2) 1 1 1 1 4

(�5; �4) 1 1 1 1 4

(�5; �5) 1 1 1 1 4

(�6; �6) 1 1 1 1 4

(�1; �2) 0 0 1 1 2

(�1; �3) 1 1 0 0 2

(�1; �4) 0 0 1 1 2

(�1; �5) 0 0 1 1 2

(�1; �6) 0 1 0 1 2

(�2; �1) 0 0 1 1 2

(�2; �6) 1 0 0 1 2

(�3; �1) 1 1 0 0 2

(�4; �1) 0 0 1 1 2

(�4; �6) 1 0 0 1 2

(�5; �1) 0 0 1 1 2

(�5; �6) 1 0 0 1 2

(�6; �1) 0 1 0 1 2

(�6; �2) 1 0 0 1 2

(�6; �4) 1 0 0 1 2

(�6; �5) 1 0 0 1 2

(�3; �6) 0 1 0 0 1

(�6; �3) 0 1 0 0 1

(�2; �3) 0 0 0 0 0

(�3; �2) 0 0 0 0 0

(�3; �4) 0 0 0 0 0

(�3; �5) 0 0 0 0 0

(�4; �3) 0 0 0 0 0

(�5; �3) 0 0 0 0 0
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Therefore, an algorithm for the selection of a house is provided with least condition

parameters.

An algorithm to select a house:

Mr. X selected the house according to this algorithm listed as follows:

(1) Input the SE-relation (J;E) :

(2) Input the condition parameter C which is a subset of E:

(3) At last column of the table, input decision parameter d =
P
(�i; �j) achieved by

condition parameters in the table.

(4) Input is re-settled by putting the objects having the same value side by side to

each other for parameter d.

(5) Di¤erentiate those objects which have di¤erent values of d.

(6) Identify the core parameters.

(7) By eliminating all the dispensible parameters one by one, an output is obtained

which gives a table with minimum number of condition parameters which has the same

ability of classi�cation of d as in original table with d.

Now considering the example presented by authors in [24]: All the parameters are only

condition parameters here. For decision making, one or more decision parameters are

required. The decision parameter should be
P7
k=1 (�i; �j)k ; as mentioned in [24].

Example 2.4.2 Let A = fe1; e2; e3; e4; e5; e6; e7; dg ; C = fe1; e2; e3; e4; e5; e6; e7g and
D = fdg where C and D be the set of condition parameters and decision parameters,

respectively.

De�ne an SE-relation J : A! P (U � U) for each e 2 A:

The following SE-classes are obtained for each of the SE-relation.

For J (e1) ; the SE-classes uJ (e1) are f�1; �3g ; f�2; �4; �5; �6g :

For J (e2) ; the SE-classes uJ (e2) are f�1; �3; �6g ; f�2; �4; �5g :

For J (e3) ; the SE-classes uJ (e3) are f�1; �2; �4; �5g ; f�3g ; f�6g :

For J (e4) ; the SE-classes uJ (e4) are f�1; �2; �4; �5; �6g ; f�3g :

For J (e5) ; the SE-classes uJ (e5) are f�1g and f�2; �3; �4; �5; �6g :
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For J (e6) ; the SE�class uJ (e6) is f�1; �2; �3; �4; �5; �6g :

For J (e7) ; the SE-classes uJ (e7) are f�1g and f�2; �4; �5g ; f�3g ; f�6g :

Repeating the same procedure as in previous example, if we kill any of

e1; e2; e3; e4; e5; e7; then classi�cation pattern of d changes. So e6 is dispensible para-

meter here. Therefore elimination of e6 does not a¤ect the classi�cation pattern of

d.

Selection of a car:

The selection of a suitable car to buy is not an easy task. Suppose a person Mr:

X wants to select a car from the alternatives 1; 2; 3; 4; 5; 6; 7; 8; 9; 10: Let

U = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g be the universe of ten di¤erent cars and let
A = fe1; e2; e3g � E be the set of attributes, where e1 stands for Price, e2 stands for

color and e3 stands for car brands.

We further characterize these parameters as follows:

� The Price of a car includes under 30 lacs, between 31� 35 lacs and between 36� 40
lacs.

� The car brand includes Honda Accord, Audi, Mercedes benz and bmw.

�The Color of a car includes black, white and silver.

De�ne an SE-relation J : A! P (U�U) for each e 2 A which explains the requirement
of the car which a person Mr: X is going to buy. The following SE-classes for each

of the SE-relation are obtained as follows:

For J (e1) ; the SE-classes uJ (e1) are f1; 10g ; f2; 4; 6; 7g ; f3; 5; 8; 9g which
means that price of cars 1 and 10 is under 30 lacs, price of cars 2; 4; 6 and 7 is

between 31� 35 lacs and price of cars 3; 5; 8 and 9 is between 36� 40 lacs.

For J (e2) ; the SE-classes uJ (e2) are f1g ; f2g ; f3; 4; 5; 7; 8; 9; 10g ; f6g which
represents that car brand of the car 1 is Honda Accord, car brand of the car 2 is

Audi, car brand of the cars 3; 4; 5; 7; 8; 9; 10 is Mercedes benz and car brand of

the car 6 is bmw:

For J (e3) ; the SE-classes uJ (e3) are f10g ; f6g ; f1; 2; 3; 4; 5; 7; 8; 9g which
represents the color of the cars 1; 2; 3; 4; 5; 7; 8; 9 is black, the color of car j10

is white and the color of car j6 is silver.
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Further SE-classes determined by INd (J;A) = \3i=1J (ei) = ! are

f1g ; f2g ; f6g ; f10g ; f4; 7g ; f3; 5; 8; 9g :

LetM = f1; 2; 10g be a subset of U consisting of those cars which are most favorite
for Mr: X, then JM (e1) = f1; 10g ; JM (e2) = f2g ; JM (e3) = f10g : And,

J
M
(e1) = f1; 2; 4; 6; 7; 10g ; J

M
(e2) = f1; 2; 3; 4; 5; 7; 8; 9; 10g ; J

M
(e3) =

f1; 2; 3; 4; 5; 7; 8; 9; 10g :

Now, JM = f1; 2; 10g and J
M
= f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g : Therefore,

for each parameter ei where i = 1; 2; 3; 4; :::; FS of U for M = f1; 2; 10g are given
below:

For J (e1) ; FS; �1 is
n
1
1
; 0:252

; 03
; 0:254

; 05
; 0:256

; 0:257
; 08
; 09
; 1
10

o
:

For J (e2) ; FS; �2 is
n
1
1
; 12
; 0:13

; 0:14
; 0:15

; 06
; 0:17

; 0:18
; 0:19

; 0:110

o
:

For J (e3) ; FS; �3 is
n
0:25
1
; 0:252

; 0:253
; 0:254

; 0:255
; 06
; 0:67

; 0:258
; 0:259

; 1
10

o
:

Further for !; FS � is
n
1
1
; 12
; 03
; 04
; 05
; 06
; 07
; 08
; 09
; 1
10

o
:

It is obvious that Mr: X will select the car 1 which is under 30 lacs; brand is Honda

Accord and white in color.

Remark 2.4.3 The parametric reduction method which is introduced here is close to

the parametric reduction in rough sets. Here the parameters are ordered one by one

rather than a subset of parameters all in all. Additionally, speciality of this method over

other methods is that we reduce the parameters of an SBRE one by one rather than

the parameters of a soft set. If there should arise an occurrence of vast information,

it is pro�ciently utilized.



Chapter 3

Approximation of ideals in

semigroups by soft relations

In this chapter, aftersets and foresets are utilized to approximate a set. This results

in the formation of two sets which are soft sets. We call them the lower approximation

and the upper approximation in the sense of aftersets and the foresets. The behaviour

of these concepts are applied to semigroups. Further, approximations of substructures

of semigroups are studied. For better understanding, examples are addded to explain

the concepts in the chapter. Homomorphic images and their relations under semigroup

homomorphism are studied in the last.

3.1 Approximation by soft relations

Soft relations from one semigroup to another semigroup are applied in this section.

This is done to approximate a set in two di¤erent ways. We take a subset of S2; the

resulting approximation is the subset of S1 with respect to afterset. On the other hand

if a subset of S1 is taken then the resulting approximation is the subset of S2. In the

last of this section, we used soft compatible relation to approximate the subsets of two

di¤erent semigroups and proved some results.

If we take S1 = S2 = S in De�nition 2.1.2 and Y � S; then
�
JY ; A

�
;
�
J
Y
; A
�
;
�
Y J;A

�

40
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and
�
Y J;A

�
are soft sets over S de�ned as

JY (e) = fs 2 S : sJ (e) � Y g

J
Y
(e) = fs 2 S : sJ (e) \ Y 6= �g and

Y J (e) = fs 2 S : J (e) s � Y g
Y J (e) = fs 2 S : J (e) s \ Y 6= �g

for all e 2 A, where sJ (e) = ft 2 S : (s; t) 2 J(e)g where sJ (e) is called the afterset
of s and J (e) s = ft 2 S : (t; s) 2 J(e)g and is called the foreset of s for each e 2 A:

Generally sJ (e) 6= J (e) s and so JY (e) 6= Y J (e) and J
Y
(e) 6= Y J (e). However, if

J (e) is a symmetric relation, then they are equal.

Example 3.1.1 Let S = f1; 2; 3g be a non-empty set and A = fe1; e2g. De�ne J :
A! P (S � S) by J(e1) = f(1; 1); (2; 2) ; (3; 3); (1; 2)g and

J(e2) = f(1; 1); (2; 2) ; (3; 3); (2; 3)g. Thus 1J(e1) = f1; 2g, 2J(e1) = f2g, 3J(e1) =
f3g, 1J(e2) = f1g, 2J(e2) = f2; 3g, 3J(e2) = f3g and J(e1)1 = f1g, J(e1)2 = f1; 2g,
J(e1)3 = f3g, J(e2)1 = f1g, J(e2)2 = f2g, J(e2)3 = f2; 3g. Now if we take Y =

f1; 3g then JY (e1) = f3g, JY (e2) = f1; 3g, JY (e1) = f1; 3g, JY (e2) = f1; 2; 3g and
Y J(e1) = f1; 3g, Y J(e2) = f1g, Y J(e1) = f1; 3g, Y J(e2) = f1; 3g. This shows that�
JY ; A

�
6=
�
Y J;A

�
and

�
J
Y
; A
�
6=
�
Y J;A

�
.

De�nition 3.1.2 An SBRE; (J;A) from a semigroup S1 to a semigroup S2 is called

soft compatible if (a; b) ; (c; d) 2 J (e)) (ac; bd) 2 J (e) for all a; c 2 S1 and b; d 2 S2
and e 2 A:

Example 3.1.3 Let S1 = f1; 2; 3g and S2 = fa; b; cg be two semigroups. The opera-
tions on both the semigroups are shown in the tables below:

� 1 2 3

1 1 2 3

2 1 2 3

3 1 2 3

� a b c

a a a c

b a b c

c a c c

and A = fe1; e2g. De�ne J : A! P (S1 � S2) by
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J(e1) = f(1; a); (2; b) ; (3; c); (1; b); (2; a) ; (1; c)g

and

J(e2) = f(1; a); (2; b) ; (3; c); (2; c); (2; a)g :

Then (J;A) is a soft compatible relation.

Now, in the next the shortend-form of a soft compatible relation will be SCRE

throughout the thesis.

Example 3.1.4 Let S = f1; 2; 3g be a semigroup. Then the operation on S in the
table is as follows:

� 1 2 3

1 1 2 3

2 1 2 3

3 1 2 3

and A = fe1; e2g. De�ne J : A! P (S � S) by

J(e1) = f(1; 1); (2; 2) ; (3; 3); (1; 2)g and J(e2) = f(1; 1); (2; 2) ; (3; 3); (2; 3)g. Then

(J;A) is an SCRE and soft re�exive relation on S.

If (J;A) is an SCRE from S1 to S2, even then aJ (e) :bJ (e) � (ab) J (e) for a; b 2
S1, indeed if x 2 aJ(e) and y 2 bJ(e); then (a; x) 2 J(e) and (b; y) 2 J(e). By

compatibility of (J;A), (ab; xy) 2 J(e) that is xy 2 (ab) J (e) for all x; y 2 S2: Similarly,
J (e)x:J (e) y � J (e) (xy) for x; y 2 S2:

The following examples shows that in general aJ (e) :bJ (e) 6= (ab) J (e) and J (e)x:J (e) y 6=
J (e) (xy).

Example 3.1.5 Let S1 = fa; b; c; dg and S2 = f1; 2; 3; 4g be two semigroups. The
operations on both the semigroups are shown in the tables below

� a b c d

a a a a d

b a b a d

c a a c d

d d d d d

� 1 2 3 4

1 1 2 3 4

2 2 2 2 2

3 3 3 3 3

4 4 3 2 1
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and A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) =

(
(a; 1); (b; 2) ; (c; 3); (d; 4); (a; 2) ; (a; 3) ;

(b; 4) ; (a; 4) ; (b; 1) ; (d; 1) ; (d; 2) ; (d; 3)

)
and

J(e2) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g:

Then J is an SCRE from the semigroup S1 to the semigroup S2.

aJ(e1) = f1; 2; 3; 4g ; bJ(e1) = f1; 2; 4g; cJ(e1) = f3g and dJ(e1) = f1; 2; 3; 4g :

Also,

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g :

But

aJ(e1):cJ(e1) = f2; 3g 6= f1; 2; 3; 4g = (ac) J(e1):

Now,

J(e1)1 = fa; b; dg ; J(e1)2 = fa; b; dg; J(e1)3 = fa; c; dg and J(e1)4 = fa; b; dg :

Also,

J(e2)1 = �; J(e2)2 = fa; b; c; dg ;

J(e2)3 = fa; b; c; dg and J(e2)4 = �:

But

J(e1)3:J(e1)1 = � 6= fa; b; c; dg = J(e1) (31) :

In general, if (J;A) is an SCRE on a semigroup S, then aJ (e) :bJ (e) � (ab) J (e),

indeed if x 2 aJ(e) and y 2 bJ(e) then (a; x) 2 J(e) and (b; y) 2 J(e). By com-
patibility of (J;A), (ab; xy) 2 J(e) that is xy 2 (ab) J (e). Similarly J (e) a:J (e) b �
J (e) (ab). The following example shows that in general aJ (e) :bJ (e) 6= (ab) J (e) and
J (e) a:J (e) b 6= J (e) (ab).

Example 3.1.6 Let S = fa; b; cg be a semigroup with the multiplication table as below:

� a b c

a a a c

b a b c

c a c c
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and A = fe1; e2g. De�ne J : A! P (S � S) by

J(e1) =

(
(a; a); (b; b) ; (c; c); (a; b);

(a; c) ; (b; a) ; (c; a)

)

and J(e2) = f(a; a); (b; b) ; (c; c)g. Then J is a soft re�exive and SCRE on S.

aJ(e1) = fa; b; cg ; bJ(e1) = fa; bg and cJ(e1) = fa; cg. Also, aJ(e2) = fag, bJ(e2) =
fbg and cJ(e2) = fcg. But cJ(e1)aJ(e1) = fa; cg 6= fa; b; cg = (ca) J(e). On the other
hand, J(e1)a = fa; b; cg ; J(e1)b = fa; bg and J(e1)c = fa; cg. Also, J(e2)a = fag,
J(e2)b = fbg and J(e2)c = fcg. But J(e1)cJ(e1)a = fa; cg

6= fa; b; cg = J(e) (ca).

De�nition 3.1.7 An SCRE; (J;A) from a semigroup S1 to a semigroup S2 is called

soft complete relation respecting to the aftersets if aJ (e) :bJ (e) = (ab) J (e) for all

a; b 2 S1 and e 2 A and is called soft complete relation respecting to the foresets if

J (e) a:J (e) b = J (e) (ab) for all a; b 2 S2 and e 2 A.

Now, in the next the shortend-form of a soft complete relation will be SCmR through-

out the thesis.

Neither SCmR respecting to the aftersets implies SCmR respecting to the foresets nor

SCmR respecting to the foresets implies SCmR respecting to the aftersets.

Example 3.1.8 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is an SCmR from the semigroup S1 to the semigroup S2 with respect to the

aftersets.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g :

Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

Simple calculations show that J is an SCmR with respect to the aftersets.
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Example 3.1.9 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g

and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4)g:

Then J is an SCmR from the semigroup S1 to the semigroup S2 with respect to the

foresets.

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

Also,

J(e2)1 = fag ; J(e2)2 = fag ; J(e2)3 = fag and J(e2)4 = fag :

Simple calculations show that J is an SCmR with respect to the foresets.

Example 3.1.10 Consider the semigroup of Example 3.1.6. De�ne J : A! P (S�S)
by J(e1) = f(a; a); (b; b) ; (c; c); (a; b); (a; c)g and J(e2) = f(a; a); (b; b) ; (c; c)g. Then J
is a soft re�exive and SCRE on S.

J(e1)a = fag ; J(e1)b = fa; bg and J(e1)c = fa; cg. Also, J(e2)a = fag, J(e2)b = fbg
and J(e2)c = fcg. Simple calculations show that (J;A) is a SCmR with respect to

the foresets. But this one is not SCmR respecting to the aftersets because aJ(e1) =

fa; b; cg ; bJ(e1) = fbg and cJ(e1) = fcg and cJ(e1):aJ(e1) = fcg : fa; b; cg = fa; cg 6=
(ca) J(e1) = fa; b; cg.

Theorem 3.1.11 Let (J;A) and (Z; A) be SBRE from non-empty sets S1 to S2 and

X1; X2 be non-empty subsets of S2. Then the following hold:

(1) X1 � X2 ) JX1 (e) � JX2 (e) for all e 2 A;

(2) X1 � X2 ) J
X1 (e) � JX2 (e) for all e 2 A;

(3)
�
JX1 ; A

�
\
�
JX2 ; A

�
=
�
JX1\X2 ; A

�
;

(4)
�
J
X1 ; A

�
\
�
J
X2 ; A

�
�
�
J
X1\X2 ; A

�
;

(5)
�
JX1 ; A

�
[
�
JX2 ; A

�
�
�
JX1[X2 ; A

�
;

(6)
�
J
X1 ; A

�
[
�
J
X2 ; A

�
=
�
J
X1[X2 ; A

�
;

(7) (J;A) � (Z;A) implies
�
JX1 ; A

�
�
�
ZX1 ; A

�
;
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(8) (J;A) � (Z;A) implies
�
J
X1 ; A

�
�
�
Z
X1 ; A

�
.

Proof. Straightforward.

Theorem 3.1.12 Let (J;A) and (Z;A) be SBRE from non-empty sets S1 to S2 and

Y1; Y2 be non-empty subsets of S1. Then the following hold:

(1) Y1 � Y2 ) Y1J (e) � Y2J (e) for all e 2 A;

(2) Y1 � Y2 ) Y1J (e) � Y2J (e) for all e 2 A;

(3)
�
Y1J;A

�
\
�
Y2J;A

�
=
�
Y1\Y2J;A

�
;

(4)
�
Y1J;A

�
\
�
Y2J;A

�
�
�
Y1\Y2J;A

�
;

(5)
�
Y1J;A

�
[
�
Y2J;A

�
�
�
Y1[Y2J;A

�
;

(6)
�
Y1J;A

�
[
�
Y2J;A

�
=
�
Y1[Y2J;A

�
;

(7) (J;A) � (Z;A) implies
�
Y1J;A

�
�
�
Y1Z;A

�
;

(8) (J;A) � (Z;A) implies
�
Y1J;A

�
�
�
Y1Z;A

�
.

Proof. Straightforward.

Corollary 3.1.13 Let (J;A) and (Z;A) be soft re�exive relations on a non-empty set

S and X; Y be non-empty subsets of S. Then the following hold:

(1) JX (e) � X � JX (e) for all e 2 A;

(2) X � Y ) JX (e) � JY (e) for all e 2 A;

(3) X � Y ) J
X
(e) � JY (e) for all e 2 A;

(4)
�
JX ; A

�
\
�
JY ; A

�
=
�
JX\Y ; A

�
;

(5)
�
J
X
; A
�
\
�
J
Y
; A
�
�
�
J
X\Y

; A
�
;

(6)
�
JX ; A

�
[
�
JY ; A

�
�
�
JX[Y ; A

�
;

(7)
�
J
X
; A
�
[
�
J
Y
; A
�
=
�
J
X[Y

; A
�
;

(8) (J;A) � (Z;A) implies
�
JX ; A

�
�
�
ZX ; A

�
;

(9) (J;A) � (Z;A) implies
�
J
X
; A
�
�
�
Z
X
; A
�
.

Proof. Straightforward.
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Corollary 3.1.14 Let (J;A) and (Z;A) be soft re�exive relations on a non-empty set

S and X; Y be non-empty subsets of S. Then the following hold:

(1) XJ (e) � X � XJ (e) for all e 2 A;

(2) X � Y ) XJ (e) � Y J (e) for all e 2 A;

(3) X � Y ) XJ (e) � Y J (e) for all e 2 A;

(4)
�
XJ;A

�
\
�
Y J;A

�
=
�
X\Y J;A

�
;

(5)
�
XJ;A

�
\
�
Y J;A

�
�
�
X\Y J;A

�
;

(6)
�
XJ;A

�
[
�
Y J;A

�
�
�
X[Y J;A

�
;

(7)
�
XJ;A

�
[
�
Y J;A

�
=
�
X[Y J;A

�
;

(8) (J;A) � (Z;A) implies
�
XJ;A

�
�
�
XZ;A

�
;

(9) (J;A) � (Z;A) implies
�
XJ;A

�
�
�
XZ;A

�
.

Proof. Straightforward.

Theorem 3.1.15 Let U and W be non-empty sets. Let (J;A) and (Z;A) be SBRE

from U to W . If ; 6= X �W; then

(1)
��
J \ Z

�X
; A
�
�
�
J
X
; A
�
\
�
Z
X
; A
�
.

(2)
�
(J \ Z)X ; A

�
�
�
JX ; A

�
[
�
ZX ; A

�
.

Proof. The proof with similar arguments of parts (7) and (8) of Theorem 3.1.11 are

obtained.

Now in the next Example, we show that there does not exist equality in above results.

Example 3.1.16 Let U = fa; b; c; d; eg and W = f1; 2; 3; 4; 5g and A = fe1; e2g.
De�ne J : A! P (U �W ) and Z : A! P (U �W ) by

J(e1) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ; (c; 5) ;

(b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (e; 1)

)

J(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g;

Z(e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g and



3. Approximation of ideals in semigroups by soft relations 48

Z(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 3)g:

Therefore,

(J \ Z) (e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g

and

(J \ Z) (e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g:

Now,

aJ(e1) = f1g; bJ(e1) = f1; 2; 5g; cJ(e1) = f3; 5g;

dJ(e1) = f1; 3; 4; 5g and eJ(e1) = f1; 5g

and

aZ(e1) = f1g; bZ(e1) = f1; 2g; cZ(e1) = f3g;

dZ(e1) = f4g and eZ(e1) = f2; 5g:

Also,

a (J \ Z) (e1) = f1g; b (J \ Z) (e1) = f1; 2g; c (J \ Z) (e1) = f3g;

d (J \ Z) (e1) = f4g and e (J \ Z) (e1) = f5g:

Let X = f1; 2g. Then

J
X
(e1) = fa; b; d; eg; Z

X
(e1) = fa; b; eg and

�
J \ Z

�X
(e1) = fa; bg:

This shows that

J
X
(e1) \ Z

X
(e1) = fa; b; eg 6= fa; bg =

�
J \ Z

�X
(e1) :

Now, let X = f5g. Then JX(e1) = �; ZX(e1) = � and (J \ Z)X (e1) = feg. This
shows that

JX (e1) [ ZX (e1) = � 6= feg = (J \ Z)X (e1) :

Theorem 3.1.17 Let U and W be non-empty sets. Let (J;A) and (Z;A) be SBRE

from U to W . ; 6= Y � U; then

(1)
�
Y
�
J \ Z

�
; A
�
�
�
Y J;A

�
\
�
Y Z;A

�
.

(2)
�
Y (J \ Z) ; A

�
�
�
Y J;A

�
[
�
Y Z;A

�
.

Proof. By using (7) and (8) of Theorem 3.1.12, similar proof can be obtained.

It is observed in the next Example that equality does not hold in above results.
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Example 3.1.18 Let U = fa; b; c; d; eg and W = f1; 2; 3; 4; 5g and A = fe1; e2g.
De�ne J : A! P (U �W ) and Z : A! P (U �W ) by

J(e1) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ; (c; 5) ;

(b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (e; 1)g

)
;

J(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g;

Z(e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ; (a; 5)g and

Z(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 3)g:

Therefore,

(J \ Z) (e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g

and

(J \ Z) (e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g:

Now,

J(e1)1 = fa; b; eg; J(e1)2 = fbg; J(e1)3 = fc; dg;

J(e1)4 = fdg and J(e1)5 = fb; c; d; eg;

and

Z(e1)1 = fa; bg; Z(e1)2 = fbg; 3Z(e1) = fcg;

Z(e1)4 = fdg and Z(e1)5 = fa; eg:

Also,

(J \ Z) (e1)1 = fa; bg; (J \ Z) (e1)2 = fbg; (J \ Z) (e1)3 = fcg;

(J \ Z) (e1)4 = fdg and (J \ Z) (e1)5 = feg:

Let Y = fa; bg. Then Y J (e1) = f1; 2; 5g;Y Z(e1) = f1; 2; 5g and Y
�
J \ Z

�
(e1) =

f1; 2g. This shows that

Y J (e1) \Y Z (e1) = f1; 2; 5g 6= f1; 2g =Y
�
J \ Z

�
(e1) :

Now, let Y = feg. Then Y J(e1) = �; Y Z(e1) = � and Y (J \ Z) (e1) = f5g. This
shows that

Y J (e1) [Y Z (e1) = � 6= f5g = Y (J \ Z) (e1) :
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Corollary 3.1.19 Let (J;A) and (Z;A) be soft re�exive relations on a non-empty set

S. If ; 6= X � S; then

(1)
��
J \ Z

�X
; A
�
�
�
J
X
; A
�
\
�
Z
X
; A
�
.

(2)
�
(J \ Z)X ; A

�
�
�
JX ; A

�
[
�
ZX ; A

�
.

(3)
�
X
�
J \ Z

�
; A
�
�
�
XJ;A

�
\
�
XZ;A

�
.

(4)
�
X (J \ Z) ; A

�
�
�
XJ;A

�
[
�
XZ;A

�
.

The following example shows that the equality does not hold in above results.

Example 3.1.20 Let U = fa; d; eg and A = fe1; e2g. De�ne J : A ! P (U � U)
and Z : A ! P (U � U) by J(e1) = f(a; a) ; (d; d) ; (e; e) ; (a; d) ; (d; a)g, J(e2) =
f(a; a) ; (d; d) ; (e; e)g, Z(e1) = f(a; a) ; (d; d) ; (e; e) ; (a; e) ; (e; a)g and

Z(e2) = f(a; a),(d; d) ; (e; e)g. Then (J \ Z) (e1) = f(a; a) ; (d; d) ; (e; e)g and

(J \ Z) (e2) = f(a; a),(d; d) ; (e; e)g. Now aJ(e1) = fa; dg; dJ(e1) = fa; dg and eJ(e1) =
feg

and aZ(e1) = fa; eg; dZ(e1) = fdg and eZ(e1) = fa; eg.

Also, a (J \ Z) (e1) = fag, d (J \ Z) (e1) = fdg and e (J \ Z) (e1) = feg. Let X =

fd; eg. Then JX (e1) = fa; d; eg; Z
X
(e1) = fa; d; eg and

�
J \ Z

�X
(e1) = fd; eg. This shows that J

X
(e1) \ Z

X
(e1) = fa; d; eg 6= fd; eg

=
�
J \ Z

�X
(e1). Now, let Y = fag. Then JY (e1) = �;ZY (e1) = � and (J \ Z)Y (e1) =

fag. This shows that JY (e1) [ ZY (e1) = � 6= fag = (J \ Z)Y (e1).

On the other hand, J(e1)a = fa; dg; J(e1)d = fa; dg and J(e1)e = feg and Z(e1)a =
fa; eg; Z(e1)d = fdg and Z(e1)e = fa; eg.

Also, (J \ Z) (e1)a = fag; (J \ Z) (e1)d = fdg and (J \ Z) (e1)e = feg. Then XJ (e1) =
fa; d; eg;X Z(e1) = fa; d; eg and X

�
J \ Z

�
(e1) = fd; eg. This shows that XJ (e1)\

XZ (e1) = fa; d; eg 6= fd; eg = X
�
J \ Z

�
(e1). Also, Y J(e1) = �; Y Z(e1) = � and

Y (J \ Z) (e1) = fag. This shows that Y J (e1)[ Y Z (e1) = � 6= fag = Y (J \ Z) (e1).

Theorem 3.1.21 Let (J;A) be an SCRE from a semigroup S1 to S2. For any non-

empty subsets X1 and X2 of S2; J
X1 (e) :J

X2 (e) � JX1X2 (e) for all e 2 A:
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Proof. Let u 2 JX1 (e) :JX2 (e). Then u = x1x2 for some x1 2 J
X1 (e) and x2 2

J
X2 (e). This implies that x1J (e) \ X1 6= � and x2J (e) \ X2 6= �, so their exist

elements a; b 2 S2 such that a 2 x1J (e) \X1 and b 2 x2J (e) \X2. Thus a 2 x1J (e),
b 2 x2J (e), a 2 X1 and b 2 X2. Now, (x1; a) 2 J (e) and (x2; b) 2 J (e) implies
that (x1x2; ab) 2 J (e), that is ab 2 x1x2J (e). Also, ab 2 X1X2 � S2, therefore,

ab 2 x1x2J (e)\ X1X2. Hence, u = x1x2 2 J
X1X2 (e).

Theorem 3.1.22 Let (J;A) be an SCRE from a semigroup S1 to S2. For any non-

empty subsets Y1 and Y2 of S1; Y1J (e) :Y2J (e) � Y1Y2J (e) for all e 2 A:

Proof. With the similar arguments as in the above Theorem, the proof is obtained.

If we take a soft re�exive relation and SCRE on a semigroup S, then the following

corollaries are proceeded.

Corollary 3.1.23 Let (J;A) be a soft re�exive and SCRE on a semigroup S. Then

for any non-empty subsets X and Y of S, J
X
(e):J

Y
(e) � JXY (e) for all e 2 A.

Corollary 3.1.24 Let (J;A) be a soft re�exive and SCRE on a semigroup S. Then

for any non-empty subsets X and Y of S, XJ(e):Y J(e) � XY J(e) for all e 2 A.

Theorem 3.1.25 Let (J;A) be an SCmR from a semigroup S1 to S2 (with respect

to the aftersets): Then for any non-empty subsets X1 and X2 of S2; JX1(e):JX2(e) �
JX1X2(e) for all e 2 A.

Proof. First we consider that JX (e) and JX2 (e) are non-empty and u 2 JX1 (e) :JY (e).
Then u = x1x2 for some x1 2 JX1 (e) and x2 2 JX2 (e). This implies that � 6=
x1J (e) � X1 and � 6= x2J (e) � X2. As x1x2J (e) = x1J (e) :x2J (e) � X1X2, we

have x1x2 2 �X1X2 (e). Hence, JX1(e):JX2(e) � JX1X2(e).

Theorem 3.1.26 Let (J;A) be an SCmR from a semigroup S1 to S2 (with respect

to the foresets): Then for any non-empty subsets Y1 and Y2 of S1; Y1J(e):Y2J(e) �
Y1Y2J(e) for all e 2 A.

Proof. The proof is simple.

With the similar arguments, the following corollaries are proceeded.
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Corollary 3.1.27 Let (J;A) be a soft re�exive relation and SCmR with respect to af-

tersets on a semigroup S. Then for any non-empty subsets X and Y of S, JX(e):JY (e) �
JXY (e) for all e 2 A.

Corollary 3.1.28 Let (J;A) be a soft re�exive and SCmR with respect to foresets

on a semigroup S. Then for any non-empty subsets X and Y of S, XJ(e):Y J(e) �
XY J(e) for all e 2 A.

Example 3.1.29 Consider the Example 3.1.3,

1J(e1) = fa; b; cg; 2J(e1) = fa; bg; 3J(e1) = fcg;

1J(e2) = fag; 2J(e2) = fb; cg and 3J(e2) = fcg:

Let X1 = fag and X2 = fb; cg be non-empty subsets of S2. Then J
X1(e1) = f1g and

J
X2(e1) = f2; 3g. Now, X1X2 = fa; cg and

J
X1X2(e1) = f1; 2; 3g 6= f2; 3g = f1gf2; 3g = J

X1(e1)J
X2(e1):

Example 3.1.30 Consider the Example 3.1.3,

J(e1)a = f1; 2g; J(e1)b = f1; 2g; J(e1)c = f1; 3g;

J(e2)a = f1; 2g; J(e2)b = f2g and J(e2)c = f2; 3g:

Let Y1 = f3g and Y2 = f1g be non-empty subsets of S1. Then Y1J(e1) = fcg and
Y2J(e1) = fa; b; cg. Now, Y1Y2 = f1g and

Y1Y2J(e1) = fa; b; cg * fa; cg = fcgfa; b; cg =Y1 J(e1):Y2J(e1):

Example 3.1.31 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g

and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then with respect to the aftersets; (J;A) is a SCmR.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g :
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Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

Let X1 = f4g and X2 = f1; 2; 3g be non-empty subsets of S2. Then JX1(e1) = � and
JX2(e1) = fa; b; c; dg. Now, X1X2 = f2; 3; 4g and

JX1X2(e1) = fa; b; c; dg * � = �fa; b; c; dg = JX1(e1)JX2(e1):

Example 3.1.32 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g:

Then J is a SCmR respecting to the aftersets from the semigroup S1 to the semigroup

S2.

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

Also, J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg :

Let Y1 = fa; c; dg and Y2 = fbg be non-empty subsets of S1. Then Y1J(e1) = f1; 2; 3; 4g
and Y2J(e1) = �. Now, Y1Y2 = fa; dg and

Y1Y2J(e1) = f1; 2; 3; 4g * � = f1; 2; 3; 4g� =Y1 J(e1):Y2J(e1):

Example 3.1.33 Consider the semigroup of Example 3.1.6. Let A = fe1; e2g. De�ne
J : A ! P (S � S) by J(e1) = f(a; a); (b; b) ; (c; c); (a; b); (a; c) ; (b; c)g and J(e2) =
f(a; a); (b; b) ; (c; c); (a; b)g. Then J is a soft re�exive and soft compatible relation on S.
Now, aJ(e1) = fa; b; cg; bJ(e1) = fb; cg; cJ(e1) = fcg; aJ(e2) = fa; bg; bJ(e2) = fbg
and cJ(e2) = fcg. Let X = fag and Y = fcg be non-empty subsets of S. Then
J
X
(e1) = fag and JY (e1) = fa; b; cg. Now, XY = fcg and JXY (e1) = fa; b; cg 6=

fa; cg = fagfa; b; cg = JX(e1)J
Y
(e1). On the other hand, JX(e1) = � and JY (e1) =

fcg. Now, XY = fcg and JXY (e1) = fcg 6= � = �fcg = JX(e1)JY (e1).

Example 3.1.34 Let S = fa; b; c; dg be a semigroup. The operation on S is as follows:
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� a b c d

a a a a d

b a b a d

c a a c d

d d d d d

and A = fe1; e2g. De�ne J : A! P (S � S) by

J(e1) =

(
(a; a); (b; b) ; (c; c); (a; b); (a; c) ; (b; c) ;

(c; b) ; (c; a) ; (b; a)

)
and

J(e2) = f(a; a); (b; b) ; (c; c); (d; d)g. Then (J;A) is a soft re�exive and SCmR (re-

specting to aftersets and foresets) on S. Now, aJ(e1) = fa; b; cg ; bJ(e1) = fa; b; cg,
cJ(e1) = fa; b; cg and dJ(e1) = fdg. Also, aJ(e2) = fag ; bJ(e2) = fbg, cJ(e2) = fcg
and dJ(e2) = fdg : Let X = fa; b; cg and Y = fb; cg be non-empty subsets of S. Then
JX(e1) = fa; b; cg and JY (e1) = �. Now, XY = fa; b; cg and JXY (e1) = fa; b; cg 6=
� = fa; b; cg� = JX(e1)J

X(e1). On the other hand, J(e1)a = fa; b; cg ; J(e1)b =
fa; b; cg, J(e1)c = fa; b; cg and J(e1)d = fdg. Also, J(e2)a = fag ; J(e2)b = fbg,
J(e2)c = fcg and J(e2)d = fdg. Then XJ(e1) = fa; b; cg and Y J(e1) = �. Now,

XY = fa; b; cg and XY J(e1) = fa; b; cg 6= � = fa; b; cg� = XJ(e1):
XJ(e1).

De�nition 3.1.35 Let (J;A) and (P;A) be SBRE on a non-empty set S. Then the

product (J � P;A) of (J;A) and (P;A) is an SBRE on S de�ned as follows:

(J � P ) (e) = f(x; y) 2 S � S :if there exists a 2 S such that (x; a) 2 J (e) and

(a; y) 2 P (e)g, for all e 2 A.

Lemma 3.1.36 Let (J;A) and (P;A) be SBRE on a semigroup S. Then

(1) (J � P;A) is soft re�exive if (J;A) and (P;A) are soft re�exive.

(2) (J � P;A) is SCRE if (J;A) and (P;A) are SCRE.

Proof. (1) Obvious.

(2) Let (x; y); (a; b) 2 (J � P ) (e). Then there are c; d 2 S such that (x; c); (a; d) 2 J (e)
and (c; y); (d; b) 2 P (e). Now, (xa; cd) 2 J (e) and (cd; yb) 2 P (e) ) (xa; yb) 2
(J � P ) (e). This implies that (J � P;A) is SCRE.
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Example 3.1.37 For semigroup S = fa; b; c; d; eg with multiplication table is as fol-
lows:

� a b c d e

a a e c d e

b a b c d e

c a e c d e

d a e c d e

e a e c d e

and A = fe1; e2g : De�ne J; P : A! P (S � S) by

J(e1) =

(
(a; a); (b; b) ; (c; c); (d; d) ;

(e; e); (a; d) ; (c; e)

)
;

P (e1) = f(a; a); (b; b) ; (c; c); (d; d) ; (e; e); (a; e)g ;

J(e2) = f(a; a); (b; b) ; (c; c); (d; d) ; (e; e)g and

P (e2) = f(a; a); (b; b) ; (c; c); (d; d) ; (e; e)g .

Then (J;A) and (P;A) are soft re�exive and SCRE on S. Now,

(J � P ) (e1) =

(
(a; a); (b; b) ; (c; c); (d; d) ;

(e; e); (a; e) ; (a; d) ; (c; e)

)
and

(J � P ) (e2) = f(a; a); (b; b) ; (c; c); (d; d) ; (e; e)g .

Thus,

aJ(e1) = fa; dg ; bJ(e1) = fbg ; cJ(e1) = fc; eg ;

dJ(e1) = fdg ; eJ(e1) = feg ;

aP (e1) = fa; eg ; bP (e1) = fbg ; cP (e1) = fcg ;

dP (e1) = fdg ; eP (e1) = feg and

a (J � �) (e1) = fa; d; eg ; b (J � �) (e1) = fbg ;

c (J � �) (e1) = fc; eg ;

d (J � �) (e1) = fdg ; e (J � �) (e1) = feg .

Let X = fa; b; cg be a non-empty subset of S. Then JX (e1) = fa; b; cg ; PX (e1) =
fa; b; cg and

�
J � P

�X
(e1) = fa; b; cg. But J

X
(e1) � P

X
(e1) = fa; b; c; eg * fa; b; cg =�

J � P
�X
(e1).
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On the other hand,

J(e2)a = fag ; J(e2)b = fbg ; J(e2)c = fcg ; J(e2)d

= fdg ; J(e2)e = feg ;

P (e2)a = fag ; P (e2)b = fbg ; P (e2)c = fcg ; P (e2)d

= fdg ; P (e2)e = feg and

(J � P ) (e2)a = fag ; (J � P ) (e2)b = fbg ; (J � P ) (e2)c

= fcg ;

(J � P ) (e2)d = fdg ; (J � P ) (e2)e = feg .

Let ; 6= X = fa; b; cg � S. Then XJ (e2) = fa; b; cg ;X P (e2) = fa; b; cg and
X
�
J � P

�
(e2) = fa; b; cg. But J

X
(e2)�P

X
(e2) = fa; b; c; eg* fa; b; cg =

�
J � P

�X
(e2).

However, if X is a subsemigroup (SS) of S then, the following Theorem is presented:

Theorem 3.1.38 Let (J;A) and (P;A) be soft re�exive and SCRE on a semigroup

S. For a SS; X of S, J
X
(e) :P

X
(e) �

�
J � P

�X
(e) for all e 2 A.

Proof. Let z 2 JX (e) :PX (e). Then z = xy for some x 2 JX (e) and y 2 PX (e).
This implies that xJ (e)\X 6= � and yP (e)\X 6= �, so their exist a; b 2 S such that
a 2 xJ (e) \X and b 2 yP (e) \X. Thus a 2 xJ (e) ; b 2 yP (e), a 2 X and b 2 X.
Since X is a SS of S, we have ab 2 X. Since (J;A) and (P;A) are soft re�exive and
SCRE, we have (x; a); (y; y) 2 J (e) and (a; a) ; (y; b) 2 P (e) ) (xy; ay) 2 J (e) and
(ay; ab) 2 P (e). This implies that (xy; ab) 2 (J � P ) (e)) ab 2 xy (J � P ) (e). Thus,
ab 2 xy (J � P ) (e) \X ) z = xy 2

�
J � P

�X
(e). Hence, J

X
:P
X �

�
J � P

�X
.

The following theorem has similar proof as above.

Theorem 3.1.39 Let (J;A) and (P;A) be soft re�exive and SCRE on a semigroup

S. For a SS; X of S, XJ (e) :Y P (e) �XY
�
J � P

�
(e) for all e 2 A.

Now in the next Example, we show that there does not exist equality in above results.

Example 3.1.40 Consider the Example 3.1.37, and take X = feg a SS of S. Then
J
X
(e1) = fc; eg ; P

X
(e1) = fa; eg and

�
J � P

�X
(e1) = fa; c; eg. But

�
J � P

�X
(e1) =

fa; c; eg * fa; eg = JX (e1) � P
X
(e1).
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Also, if Y = fag; then Y J (e1) = fa; dg ;Y P (e1) = fa; eg and Y
�
J � P

�
(e1) =

fa; d; eg. But Y
�
J � P

�
(e1) = fa; d; eg * fa; eg =Y J (e1) �Y P (e1).

3.2 Approximation of ideals in semigroups

Now the aftersets and foresets are applied to SCRE with J (e) 6= � for all e 2 A in

the following to approximate substructures of semigroups. It is observed that upper

approximation of a SS (LIL, RIL, BIL, IIL) of a semigroup is a SSS (SLIL, SRIL,

SBIL, SIIL) of the semigroup. Examples are proposed to verify that the converse

is not true. While SCmR are needed to �nd out lower approximation of a SS (LIL,

RIL, BIL, IIL) of a semigroup and are SSS (SLIL, SRIL, SBIL, SIIL) of the

semigroup.

De�nition 3.2.1 Let (J;A) be an SBRE from a semigroup S1 to S2. If the upper

approximation
�
J
X
; A
�
is a SS of S1 for ; 6= X � S2; then X is said to be the

generalized upper SSS of S1 respecting to the aftersets. The set X is said to be the

generalized upper SLIL (SRIL; SIL) of S1 respecting to the aftersets if
�
J
X
; A
�
is

a LIL (RIL, IL) of S1.

De�nition 3.2.2 Let (J;A) be an SBRE from a semigroup S1 to S2. If the upper

approximation
�
Y J;A

�
is a SS of S2 for ; 6= Y � S1; then Y is said to be the

generalized upper SSS of S2 respecting to the foresets. The set Y is said to be the

generalized upper SLIL (SRIL; SIL) of S2 with respect to the foresets if
�
Y J;A

�
is

a LIL (RIL, IL) of S2.

Theorem 3.2.3 Let (J;A) be an SCRE from a semigroup S1 to S2. Then

(1) If X is a SS of S2, then X is a generalized upper SSS of S1 respecting to the

aftersets.

(2) If Y is a SS of S1, then Y is a generalized upper SSS of S2 respecting to the

foresets.

(3) If X is a LIL(RIL, IL) of S2, then X is a generalized upper SLIL(SRIL, SIL)

of S1 respecting to the aftersets.

(4) If Y is a LIL(RIL, IL) of S1, then Y is a generalized upper SLIL(SRIL, SIL)

of S2 respecting to the foresets.
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Proof. (1) Suppose X is a SS of S2. If � 6= J
X
(e) for all e 2 A. Then by Theorem

3.1.21, J
X
(e) :J

X
(e) � J

XX
(e) � J

X
(e), that is J

X
(e) is a SS of S2 for all e 2 A

and so X is a generalized upper SSS of S1 respecting to the aftersets.

(2) The proof is a routine veri�cation and is similar to part (1).

(3) Suppose X is a LIL of S2. As we know that J
S2 (e) = S1 for all e 2 A, we have

from Theorem 3.1.21 S1J
X
(e) = J

S2 (e) :J
X
(e) � JS2X (e) � JX (e). Hence JX (e) is

a SLIL of S2 and so X is a generalized upper SLIL of S1 respecting to the aftersets.

(4) The proof is a routine veri�cation and is similar to part (3).

Now in the next Example, we show that there does not exist converse in above Theo-

rem.

Example 3.2.4 Let S1 = fa; b; c; d; eg and S2 = f1; 2; 3; 4; 5g be two semigroups with
the multiplication tables as follows:

� a b c d e

a b b d d d

b b b d d d

c d d c d c

d d d d d d

e d d c d c

� 1 2 3 4 5

1 1 5 3 4 5

2 1 2 3 4 5

3 1 5 3 4 5

4 1 5 3 4 5

5 1 5 3 4 5

Let A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ;

(c; 5) ; (b; 5) ; (d; 3) ; (d; 5) ; (d; 1)

)
and

J(e2) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ;

(c; 5) ; (b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (b; 3)

)
.

Then (J;A) is an SCRE from the semigroups S1 to S2: Now,

aJ(e1) = f1g ; bJ(e1) = f1; 2; 5g ; cJ(e1) = f3; 5g ;

dJ(e1) = f1; 3; 4; 5g ; eJ(e1) = f5g and
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aJ(e2) = f1g ; bJ(e2) = f1; 2; 3; 5g ; cJ(e2) = f3; 5g ;

dJ(e2) = f1; 3; 4; 5g ; eJ(e2) = f5g .

Also,

J(e1)1 = fa; b; dg ; J(e1)2 = fbg ; J(e1)3 = fc; dg ;

J(e1)4 = fdg ; J(e1)5 = fb; c; d; eg and

J(e2)1 = fa; b; dg ; J(e2)2 = fbg ; J(e2)3 = fb; c; dg ;

J(e2)4 = fdg ; J(e2)5 = fb; c; d; eg .

(1) Let X = f1; 2; 3g. Then X is not SS of S2 as f1; 2; 3g f1; 2; 3g = f1; 2; 3; 5g *
f1; 2; 3g but JX (e1) = fa; b; c; dg and J

X
(e2) = fa; b; c; dg are SSs of S1. Hence, X

is a generalized upper SSS of S1 respecting to the aftersets.

(2) Let Y = fa; b; cg. Then Y is not a SS of S1 as fa; b; cg fa; b; cg = fb; c; dg * fa; b; cg
but Y J (e1) = f1; 2; 3; 5g and Y J (e2) = f1; 2; 3; 5g are SSs of S2. Hence, Y is a

generalized upper SSS of S2 respecting to the foresets.

(3) LetX = f1; 2; 3g. ThenX is not a LIL of S2 as f1; 2; 3; 4; 5g f1; 2; 3g = f1; 2; 3; 5g *
f1; 2; 3g but JX (e1) = fa; b; c; dg and J

X
(e2) = fa; b; c; dg are LILs of S1. Hence, X

is a generalized upper SLIL of S2 respecting to the aftersets.

(4) Let Y = fd; eg. Then Y is not a LIL of S1 as fa; b; c; d; eg fd; eg = fc; dg *
fd; eagbut Y J (e1) = f1; 3; 4; 5g and Y J (e2) = f1; 3; 4; 5g are LILs of S2. Hence, Y is

a generalized upper SLIL of S1 respecting to the foresets.

Following corollary is proceeded by considering soft re�exive and SCRE on a semi-

group S.

Corollary 3.2.5 Let (J;A) be a soft re�exive and SCRE on a semigroup S. Then

(1) If X is a SS of S, then X is a generalized upper SSS of S respecting to the

aftersets.

(2) If X is a SS of S, then X is a generalized upper SSS of S respecting to the foresets.

(3) If X is a LIL(RIL, IL) of S, then X is a generalized upper SLIL (SRIL, SIL)

of S respecting to the aftersets.
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(4) If X is a LIL(RIL, IL) of S, then X is a generalized upper SLIL(SRIL, SIL)

of S respecting to the foresets.

In the next Example, we show that there does not exist converse in above Theorem.

Example 3.2.6 Let S = fa; b; c; d; eg be a semigroup with the multiplication table as
follows:

� a b c d e

a b b d d d

b b b d d d

c d d c d c

d d d d d d

e d d c d c

Let A = fe1; e2g. De�ne J : A! P (S � S) by

J(e1) =

8>><>>:
(a; a); (b; b) ; (c; c); (d; d) ; (e; e);

(a; b) ; (a; c) ; (a; d) ; (b; a) ; (b; c) ;

(b; d) ; (d; a) ; (d; b) ; (d; c) ; (e; c)

9>>=>>; and

J(e2) =

8>><>>:
(a; a); (b; b) ; (c; c); (d; d) ; (e; e);

(a; b) ; (a; c) ; (a; d) ; (b; a) ; (b; c) ;

(b; d) ; (d; a) ; (d; b) ; (d; c)

9>>=>>;.

Then (J;A) is a soft re�exive and SCRE on S. Now,

aJ(e1) = fa; b; c; dg ; bJ(e1) = fa; b; c; dg ; cJ(e1)

= fcg ; dJ(e1) = fa; b; c; dg ; eJ(e1) = fc; eg

and

aJ(e2) = fa; b; c; dg ; bJ(e2) = fa; b; c; dg ; cJ(e2)

= fcg ; dJ(e2) = fa; b; c; dg ; eJ(e2) = feg .

Also,
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J(e1)a = fa; b; dg ; J(e1)b = fa; b; dg ; J(e1)c

= fa; b; c; d; eg ; J(e1)d = fa; b; dg ;

J(e1)e = feg and

J(e2)a = fa; b; dg ; J(e2)b = fa; b; dg ; J(e2)c

= fa; b; c; dg ; J(e2)d = fa; b; dg ; J(e2)e

= feg .

(1) Let X = fa; b; cg. Then X is not a SS of S as fa; b; cg fa; b; cg = fb; c; dg * fa; b; cg
but J

X
(e1) = fa; b; c; d; eg and J

X
(e2) = fa; b; c; dg are SSs of S and thus

�
J
X
; A
�

is a SSS of S. Hence, X is a generalized upper SSS of S respecting to the aftersets.

(2) Let X = fa; b; cg. Then X is not a LIL of S as fa; b; c; d; eg fa; b; cg = fb; c; dg *
fa; b; cg but JX (e1) = fa; b; c; d; eg and J

X
(e2) = fa; b; c; dg are LILs of S and thus�

J
X
; A
�
is a SLIL of S. Hence, X is a generalized upper SLIL of S respecting to

the aftersets.

(3) Let X = fa; b; cg. Then X is not a SS of S as fa; b; cg fa; b; cg = fb; c; dg * fa; b; cg
but XJ (e1) = fa; b; c; dg and XJ (e2) = fa; b; c; dg are SSs of S and thus

�
J
X
; A
�
is

a SSS of S. Hence, X is a generalized upper SSS of S respecting to the foresets.

(4) Let X = fa; b; cg. Then X is not a LIL of S as fa; b; c; d; eg fa; b; cg = fb; c; dg *
fa; b; cgbut XJ (e1) = fa; b; c; dg and XJ (e2) = fa; b; c; dg are LILs of S and thus�
J
X
; A
�
is a SLIL of S. Hence, X is a generalized upper SLIL of S respecting to

the foresets.

De�nition 3.2.7 Let (J;A) be an SCRE from a semigroup S1 to S2. A non-empty

subset X of S2 is said to be generalized lower SSS of S1 respecting to the aftersets if�
JX ; A

�
is a SS of S1. The set X is said to be generalized lower SLIL(SRIL, SIL)

of S1 respecting to the aftersets if
�
JX ; A

�
is a LIL(RIL, IL) of S1.

De�nition 3.2.8 Let (J;A) be an SCRE from a semigroup S1 to S2. A non-empty

subset Y of S1 is said to be generalized lower SSS of S2 respecting to the foresets if�
Y J;A

�
is a SS of S2. The set Y is said to be generalized lower SLIL(SRIL, SIL)

of S2 respecting to the foresets if
�
Y J;A

�
is a LIL(RIL, IL) of S2.
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Example 3.2.9 Consider the Example 3.2.4 and take Y = f1; 3; 5g. Then Y is a LIL
of S2 but JY (e1) = fa; c; eg is not a LIL of S1 as fa; b; c; d; eg fa; c; eg = fb; c; dg *
fa; c; eg.

It is shown in the above Example that if (J;A) is a SCRE from a semigroup S1 to S2

and Y is a LIL of S2, then
�
JY ; A

�
is not a SLIL of S1.

Example 3.2.10 Consider the Example 3.2.6 and take Y = fc; d; eg. Then Y is a

LIL of S but JY (e1) = fcg is not a LIL of S as fa; b; c; d; eg fcg = fc; dg * fcg.
Similarly, Y J (e1) = feg is not a LIL of S as fa; b; c; d; eg feg = fc; dg * feg.

In the above example, we have shown that if (J;A) is a soft re�exive and SCRE on a

semigroup S and Y is a LIL of S even then
�
JY ; A

�
and

�
Y J;A

�
are not SLILs of

S. However, we have the following.

Theorem 3.2.11 Let (J;A) be an SCmR from a semigroup S1 to S2 respecting to the

aftersets. Then

(1) If X is a SS of S2, then X is a generalized lower SSS of S1 respecting to the

aftersets.

(2) If X is a LIL(RIL, IL) of S2, then X is a generalized lower SLIL(SRIL, SIL)

of S1 respecting to the aftersets.

Proof. (1) Suppose thatX is a SS of S2. It follows from Theorem 3.1.25 and Theorem

3.1.11(1), JX (e) :JX (e) � JXX (e) � JX (e) : Therefore, JX is a SS of S2. Hence, X
is a generalized lower SSS of S1 respecting to the aftersets.

(2) Suppose that X is a LIL of S2. It follows from Theorem 3.1.25 and Theorem

3.1.11(1); S2JX (e) = JS2 (e) :JX (e) � JS2X (e) � JX (e) : Therefore, JX is a LIL

of S2. Hence, X is a generalized lower SLIL(SRIL, SIL) of S1 respecting to the

aftersets.

The remaining cases can be proved likewise.

If we take a soft re�exive relation and SCmR on a semigroup S, then the following

corollary is proceeded.
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Corollary 3.2.12 Let (J;A) be a soft re�exive and SCmR respecting to aftersets on

S. Then

(1)
�
JX ; A

�
, if it is non-empty, is a SSS of S provided X is a SS of S.

(2)
�
JX ; A

�
, if it is non-empty, is a SLIL(SRIL, SIL) of S provided X is a LIL(RIL,

IL) of S.

Theorem 3.2.13 Let (J;A) be an SCmR from a semigroup S1 to S2 with respect to

the foresets. Then

(1) If Y is a SS of S1, then Y is a generalized lower SSS of S2 respecting to the

foresets.

(2) If Y is a LIL(RIL, IL) of S1, then Y is a generalized lower SLIL(SRIL, SIL)

of S2 respecting to the foresets.

If we take a soft re�exive relation and SCmR on a semigroup S, then the following

corollary is proceeded.

Corollary 3.2.14 Let (J;A) be a soft re�exive and SCmR on S with respect to the

foresets. Then

(1)
�
XJ;A

�
, if it is non-empty, is a SSS of S provided X is a SS of S .

(2)
�
XJ;A

�
, if it is non-empty, is a SLIL(SRIL, SIL) of S provided X is a LIL(RIL,

IL) of S.

The Parts of Theorem 3.2.11 and 3.2.13 do not hold in general as shown below.

Example 3.2.15 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is an SCmR from the semigroup S1 to the semigroup respecting to the aftersets.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :
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(1) Let X = f2; 3; 4g be a non-empty subset of S2 which is not a SS of S2 as

f2; 3; 4g f2; 3; 4g = f1; 2; 3g * f2; 3; 4g but JX(e1) = fa; b; c; dg is a SS of S1. Hence,
X is a generalized lower SSS of S1.

(3) Let X = f2; 3; 4g be a non-empty subset of S2 which is not a LIL of S2 as

f1; 2; 3; 4g f2; 3; 4g = f1; 2; 3; 4g * f2; 3; 4g but JX(e1) = fa; b; c; dg is a LIL of S1.
Hence, X is a generalized lower SLIL of S1.

Now, De�ne J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then J is an SCmR from the semigroup S1 to the semigroup S2 respecting to the

foresets.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

(2) Let Y = fb; c; dg be a non-empty subset of S1 which is not a SS of S1 as fb; c; dg fb; c; dg =
fa; b; c; dg * fb; c; dg but Y J(e1) = f1; 2; 3; 4g is a SS of S2. Hence, Y is a generalized

lower SSS of S2.

(4) Let Y = fb; c; dg be a non-empty subset of S1 which is not a LIL of S1 as

fa; b; c; dg fb; c; dg = fa; b; c; dg * fb; c; dg but Y J(e1) = f1; 2; 3; 4g is a LIL of S2.

Hence, Y is a generalized lower SLIL of S2.

Example 3.2.16 Consider the semigroup of Example 3.1.34, and A = fe1; e2g. De-
�ne J : A! P (S � S) by

J(e1) =

(
(a; a); (b; b) ; (c; c); (d; d) ; (a; b);

(a; c) ; (b; c) ; (c; b) ; (c; a) ; (b; a)

)
and

J(e2) = f(a; a); (b; b) ; (c; c); (d; d) ; (a; b) ; (b; a)g.

Then J is a soft re�exive and SCmR on S respecting to the aftersets and foresets.

Now, aJ(e1) = fa; b; cg ; bJ(e1) = fa; b; cg, cJ(e1) = fa; b; cg and dJ(e1) = fdg. Also,
aJ(e2) = fa; bg ; bJ(e2) = fa; bg, cJ(e2) = fcg and dJ(e2) = fdg. And, J(e1)a =
fa; b; cg ; J(e1)b = fa; b; cg, J(e1)c = fa; b; cg and J(e1)d = fdg. Also, J(e2)a =

fa; bg ; J(e2)b = fa; bg, J(e2)c = fcg and J(e2)d = fdg. Let X = fb; c; dg. Then
X is not a SS of S as fb; c; dg fb; c; dg = fa; b; c; dg * fb; c; dg but JX(e1) = fdg;
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JX(e2) = fc; dg and XJ(e1) = fdg; XJ(e2) = fc; dg are SSs of S and thus
�
JX ; A

�
is

a SSS of S. Hence, X is a generalized lower SSS of S.

Theorem 3.2.17 Let (J;A) be an SBRE from a semigroup S1 to S2. Then for any

RIL; X1 and LIL; X2 of S2, J
X1X2 � JX1 \ JX2.

Proof. Suppose that X1 is a RIL and X2 a LIL of S2, so by de�nition X1X2 �
X1S2 � X1 and X1X2 � S2X2 � X2 which implies that X1X2 � X1 \X2. It follows
from Theorem 3.1.11 (3); (5), J

X1X2 (e) � J
X1\X2 (e) � J

X1 (e) \ JX2 (e). Hence,
J
X1X2 � JX1 \ JX2 .

Theorem 3.2.18 Let (J;A) be an SBRE from a semigroup S1 to S2. Then for any

RIL; Y1 and LIL; Y2 of S1, Y1Y2J � Y1J\ Y2J .

Proof. The proof is similar to the proof of above Theorem.

Corollary 3.2.19 Let (J;A) be a soft re�exive relation on a semigroup S. Then for

any RIL; X and LIL; Y of S, J
XY � JX \ JY .

Corollary 3.2.20 Let (J;A) be a soft re�exive relation on a semigroup S. Then for

any RIL; X and LIL; Y of S; XY J � XJ\ Y J .

Theorem 3.2.21 Let (J;A) be an SBRE from a semigroup S1 to S2. Then for any

RIL; X1 and LIL; X2 of S2, JX1X2 � JX1 \ JX2.

Proof. Suppose that X1 is a RIL and X2 a LIL of S2, so by de�nition X1X2 �
X1S2 � X1 and X1X2 � S2X2 � X2 which implies that X1X2 � X1 \X2. It follows
from Theorem 3.1.11 (2); (4), JX1X2 (e) � JX1\X2 (e) = JX1 (e) \ JX2 (e). Hence,
JX1X2 � JX1 \ JX2 .

Theorem 3.2.22 Let (J;A) be an SBRE from a semigroup S1 to S2. Then for any

RIL; Y1 and LIL; Y2 of S2, Y1Y2J � Y1J\ Y2J .

Proof. The proof is simple and is similar to above Theorem.
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Corollary 3.2.23 Let (J;A) be a soft re�exive relation on a semigroup S. Then for

any RIL; X and LIL; Y of S; JXY � JX \JY .

Corollary 3.2.24 Let (J;A) be a soft re�exive relation on a semigroup S. Then for

any RIL; X and LIL; Y of S; XY J � XJ\ Y J .

De�nition 3.2.25 Let X be a non-empty subset of S2 and (J;A) be an SBRE from

a semigroup S1 to S2. Then X is said to be generalized lower (upper) SIIL of S1

respecting to the aftersets if
�
JX ; A

� �
respectively

�
J
X
; A
��

is an IIL of S1.

De�nition 3.2.26 Let Y be a non-empty subset of S1 and (J;A) be an SBRE from

a semigroup S1 to S2. Then Y is said to be generalized lower (upper) SIIL of S2

respecting to the foresets if
�
Y J;A

� �
respectively

�
Y J;A

��
is an IIL of S2.

Theorem 3.2.27 Let (J;A) be an SCRE from a semigroup S1 to S2. If X is an IIL

of S2, then X is a generalized upper SIIL of S1 respecting to the aftersets:

Proof. As X is an IIL of S2, so S2XS2 � X . It follows from Theorem 3.1.21 that

S1J
X
(e)S1 = J

S2 (e) :J
X
(e) :J

S2 (e) � J
S2XS2 (e) � J

X
(e). Hence,

�
J
X
; A
�
is a

SIIL of S1. Then X is said to be generalized upper SIIL of S1 respecting to the

aftersets.

It is found in the accompanying Example that converse of above Theorem is not true.

Example 3.2.28 Consider the semigroups of Example 3.1.3 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(1; a); (2; b) ; (3; c); (1; b); (2; a) ; (1; c) ; (3; a)g and

J(e2) = f(1; a); (2; b) ; (3; c); (2; c); (2; a)g :

Then (J;A) is an SCRE from the semigroup S1 to the semigroup S2. Now,

1J(e1) = fa; b; cg; 2J(e1) = fa; bg and 3J(e1) = fa; cg;

1J(e2) = fag; 2J(e2) = fa; b; cg and 3J(e2) = fcg:

Now, X = fag is not an IIL of S2 as fa; b; cg fag fa; b; cg = fa; cg * fag but J
X
(e1) =

f1; 2; 3g is an IIL of S1. Hence X is a generalized upper SIIL of S1 respecting to the

aftersets.
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Theorem 3.2.29 Let (J;A) be an SCRE from a semigroup S1 to S2. If Y is an IIL

of S1, then Y is generalized upper SIIL of S2 respecting to the foresets:

Proof. The proof is obtained in a similar way from above Theorem.

It is found in the following Example that converse of above Theorem is not true.

Example 3.2.30 Consider the semigroups of Example 3.1.3 and soft relation of above

example,

J(e1)a = f1; 2; 3g; J(e1)b = f1; 2g; J(e1)c = f1; 3g;

J(e2)a = f1; 2g; J(e2)b = f2g and J(e2)c = f2; 3g:

Now, Y = f1g is not an IIL of S1 as f1; 2; 3g f1g f1; 2; 3g = f1; 2; 3g * f1g but
Y J (e1) = fa; b; cg is an IIL of S2. Hence Y is a generalized upper SIIL of S2

respecting to the foresets.

If we take a soft re�exive relation and SCRE on a semigroup S, then the following

corollaries are proceeded.

Corollary 3.2.31 Let (J;A) be a soft re�exive and SCRE on a semigroup S. If X

is an IIL of S, then
�
J
X
; A
�
, is a SIIL of S.

Corollary 3.2.32 Let (J;A) be a soft re�exive and SCRE on a semigroup S. If X

is an IIL of S, then
�
XJ;A

�
, is a generalized upper SIIL of S.

The converse of above Theorems is not true.

Example 3.2.33 Consider the semigroup of Example 3.1.6, Let A = fe1; e2g. De�ne
J : A! P (S � S) by

J(e1) = f(a; a); (b; b) ; (c; c); (a; b) ; (a; c); (b; c)g

and J(e2) = f(a; a); (b; b) ; (c; c); (a; b); (a; c)g .

Then (J;A) is a soft re�exive and SCRE on S. Now

aJ(e1) = fa; b; cg ; bJ(e1) = fb; cg ; cJ(e1) = fcg ;

and aJ(e2) = fa; b; cg ; bJ(e2) = fbg ; cJ(e2) = fcg .
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Now, X = fcg is not an IIL of S as fa; b; cg fcg fa; b; cg = fa; cg * fcg but JX (e1) =
fa; b; cg and JX (e2) = fa; cg are IILs of S and thus

�
J
X
; A
�
is a SIIL of S. Hence

X is a generalized upper SIIL of S respecting to the aftersets. On the other hand,

J(e1)a = fag ; J(e1)b = fa; bg ; J(e1)c = fa; b; cg ;

and

J(e2)a = fag ; J(e2)b = fa; bg ; J(e2)c = fa; cg .

Now, X = fag is not an IIL of S as fa; b; cg fag fa; b; cg = fa; cg * fag but XJ (e1) =
fa; b; cg and XJ (e2) = fa; b; cg are IILs of S and thus

�
J
X
; A
�
is a SIIL of S. Hence

X is a generalized upper SIIL of S respecting to the foresets.

Theorem 3.2.34 Let (J;A) be an SCmR from a semigroup S1 to S2. If X is an IIL

of S2, then X is a generalized lower SIIL of S1 respecting to the aftersets.

Proof. As X is an IIL of S2, so S2XS2 � X. Then by Theorem 3.1.11 (2) and

Theorem 3.1.25, S1:JX (e)S1 = JS2 (e) :JX (e) :JS2 (e) � JS2XS2 (e) � JX (e). Hence,�
JX ; A

�
is a SIIL of S1. Thus, X is a generalized lower SIIL of S1 respecting to the

aftersets.

Example 3.2.35 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is an SCmR respecting to the aftersets from the semigroup S1 to the semigroup

S2.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

Let X = f2; 3; 4g be not an IIL of S2 as f1; 2; 3; 4g f2; 3; 4g f1; 2; 3; 4g = f1; 2; 3; 4g *
f2; 3; 4g but JX(e1) = fa; b; c; dg and JX(e2) = fa; b; c; dg are IILs of S1. Hence, X
is a generalized lower SIIL of S1 respecting to the aftersets.

Theorem 3.2.36 Let J be a SCRE from a semigroup S1 to S2. If Y is an IIL of

S1, then Y is a generalized lower SIIL of S2 respecting to the foresets.
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Proof. The proof is simple and is similar to above Theorem

Example 3.2.37 Consider the semigroup of example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then J is a SCmR respecting to the aftersets from the semigroup S1 to the semigroup

S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

Let Y = fb; c; dg be not an IIL of S1 as fa; b; c; dg fb; c; dg fa; b; c; dg = fa; b; c; dg *
fb; c; dg but Y J(e1) = f1; 2; 3; 4g and Y J(e2) = f1; 2; 3; 4g are IILs of S2. Hence, Y
is a generalized lower SIIL of S2 respecting to the foresets.

If we take a soft re�exive relation and SCmR on a semigroup S, then the following

corollaries are proceeded.

Corollary 3.2.38 Let (J;A) be a soft re�exive and SCmR on a semigroup S respect-

ing to aftersets. If X is an IIL of S, then
�
JX ; A

�
, if it is non-empty, is a SIIL of

S.

Corollary 3.2.39 Let (J;A) be a soft re�exive and SCmR on a semigroup S respect-

ing to foresets. If X is an IIL of S, then
�
XJ;A

�
, if it is non-empty, is a SIIL of

S.

Example 3.2.40 Consider the semigroup of Example 3.1.34, and A = fe1; e2g. De-
�ne J : A! P (S � S) by

J(e1) =

(
(a; a); (b; b) ; (c; c); (d; d) ; (a; b);

(a; c) ; (b; c) ; (c; b) ; (c; a) ; (b; a)

)
and J(e2) = f(a; a); (b; b) ; (c; c); (d; d)g.

Then (J;A) is a soft re�exive and SCmR on S respecting to the aftersets. Now,

aJ(e1) = fa; b; cg ; bJ(e1) = fa; b; cg, cJ(e1) = fa; b; cg and dJ(e1) = fdg. Also,

aJ(e2) = fag ; bJ(e2) = fbg, cJ(e2) = fcg and dJ(e2) = fdg.And, J(e1)a = fa; b; cg ; J(e1)b =
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fa; b; cg, J(e1)c = fa; b; cg and J(e1)d = fdg. Also, J(e2)a = fag ; J(e2)b = fbg,
J(e2)c = fcg and J(e2)d = fdg. Let X = fb; dg. Then X is not an IIL of S as

fa; b; c; dg fb; dg fa; b; c; dg = fa; b; dg * fb; dgbut JX(e1) = fdg; JX(e2) = fdg and
XJ(e1) = fdg; XJ(e2) = fdg are IILs of S and thus

�
JX ; A

�
is a SIIL of S. Hence,

X is a generalized lower SIIL of S.

De�nition 3.2.41 Let X be a non-empty subset of S2 and (J;A) an SBRE from

a semigroup S1 to S2. Then X is said to be generalized lower (upper) SBIL of S1

respecting to the aftersets if
�
JX ; A

� �
respectively

�
J
X
; A
��

is a BIL of S1.

De�nition 3.2.42 Let Y be a non-empty subset of S1 and (J;A) an SBRE from

a semigroup S1 to S2. Then Y is said to be generalized lower (upper) SBIL of S2

respecting to the foresets if
�
Y J;A

� �
respectively

�
Y J;A

��
is a BIL of S2.

Theorem 3.2.43 Let (J;A) be an SCRE from a semigroup S1 to S2. Then every

BIL; X of S2 is a generalized upper SBIL of S1 respecting to the aftersets.

Proof. Let X be a BIL of S2. It follows from 3.2.3(1);
�
J
X
; A
�
is a SSS of S2. By

Theorem 3.1.11 (2) and Theorem 3.1.21, J
X
(e)S1J

X
(e) = J

X
(e) :J

S2 (e) :J
X
(e) �

J
XS2X (e) � JX (e). Hence,

�
J
X
; A
�
is a SBIL of S1. Thus, X is a generalized upper

SBIL of S1.

Example 3.2.44 Consider the semigroups and soft relations of Example 3.2.4. Then

X = f1; 2; 3g is not a BIL of S2 as f1; 2; 3g f1; 2; 3; 4; 5g f1; 2; 3g = f1; 2; 3; 5g *
f1; 2; 3g but JX(e1) = fa; b; c; dg and J

X
(e2) = fa; b; c; dg are BILs of S1. Hence, X

is a generalized upper SBIL of S1 respecting to the aftersets.

Theorem 3.2.45 Let (J;A) be an SCRE from a semigroup S1 to S2. Then every

BIL; Y of S1 is a generalized upper SBIL of S2 respecting to the foresets.

Proof. The proof is simple and is similar to above Theorem.

Example 3.2.46 Consider the semigroups and soft relations of example 3.2.4.

Then Y = fa; b; cg is not a BIL of S1 as fa; b; cg fa; b; c; d; eg fa; b; cg = fb; c; dg *
fa; b; cg but Y J(e1) = f1; 2; 3; 5g and Y J(e1) = f1; 2; 3; 5g are BILs of S2. Hence, Y
is a generalized upper SBIL of S2 respecting to the foresets.
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If we take a soft re�exive and SCRE on a semigroup S, then the following corollaries

are proceeded.

Corollary 3.2.47 Let (J;A) be a soft re�exive and SCRE on a semigroup S. Then

every BIL; X of S is a generalized upper SBIL of S respecting to the aftersets.

Corollary 3.2.48 Let (J;A) be a soft re�exive and SCRE on a semigroup S. Then

every BIL; X of S is a generalized upper SBIL of S respecting to the foresets.

Example 3.2.49 Consider the semigroup of Example 3.2.6, Let A = fe1; e2g. De�ne
J : A! P (S � S) by

J(e1) =

8>><>>:
(a; a); (b; b) ; (c; c); (d; d) ; (e; e);

(a; b) ; (a; c) ; (a; d) ; (b; a) ; (b; c) ;

(b; d) ; (d; a) ; (d; b) ; (d; c) ; (e; c)

9>>=>>; and

J(e2) =

8>><>>:
(a; a); (b; b) ; (c; c); (d; d) ; (e; e);

(a; b) ; (a; c) ; (a; d) ; (b; a) ; (b; c) ;

(b; d) ; (d; a) ; (d; b) ; (d; c)

9>>=>>;.
Then (J;A) is a soft re�exive and SCRE on S. Now,

aJ(e1) = fa; b; c; dg ; bJ(e1) = fa; b; c; dg ;

cJ(e1) = fcg ; dJ(e1) = fa; b; c; dg ;

eJ(e1) = fc; eg and

aJ(e2) = fa; b; c; dg ; bJ(e2) = fa; b; c; dg ; cJ(e2)

= fcg ; dJ(e2) = fa; b; c; dg ; eJ(e2) = feg .

Also,

J(e1)a = fa; b; dg ; J(e1)b = fa; b; dg ;

J(e1)c = fa; b; c; d; eg ; J(e1)d = fa; b; dg ;

J(e1)e = feg and
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J(e2)a = fa; b; dg ; J(e2)b = fa; b; dg ;

J(e2)c = fa; b; c; dg ; J(e2)d = fa; b; dg ;

J(e2)e = feg .

Let X = fa; b; cg. Then X is not a BIL of S as fa; b; cg fa; b; c; d; eg fa; b; cg =
fb; c; dg * fa; b; cg but JX (e1) = fa; b; c; d; eg and JX (e2) = fa; b; c; dg are BILs of
S and thus

�
J
X
; A
�
is a SBIL of S. Hence, X is a generalized upper SBIL of S

respecting to the aftersets. Similarly, XJ (e1) = fa; b; c; dg and XJ (e2) = fa; b; c; dg
are BILs of S and thus

�
XJ;A

�
is a SBIL of S. Hence, X is a generalized upper

SBIL of S respecting to the foresets.

Theorem 3.2.50 Let (J;A) be an SCmR respecting to the aftersets from a semigroup

S1 to S2. Then every BIL; X of S2 is a generalized lower SBIL of S1 respecting to

the aftersets.

Proof. Let X be a BIL of S2. It follows from 3.2.11(1);
�
JX ; A

�
is a SSS of S2. By

Theorem 3.1.11(2) and Theorem 3.1.25, JX (e) :S1:JX (e) = JX (e) :JS2 (e) :JX (e) �
JXS2X (e) � JX (e). Hence,

�
JX ; A

�
is a SBIL of S1. Hence, X is a generalized lower

SBIL of S1.

Example 3.2.51 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is an SCmR respecting to the aftersets from the semigroup S1 to the semigroup

S2. Now,

aJ(e1) = f2; 3g ; bJ(e1) = f2; 3g; cJ(e1) = f2; 3g and dJ(e1) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g; cJ(e2) = f2g and dJ(e2) = f2g :

Then X = f2; 3; 4g is not a BIL of S2 as f2; 3; 4g f1; 2; 3; 4g f2; 3; 4g = f1; 2; 3; 4g *
f2; 3; 4g but JX(e1) = fa; b; c; dg and JX(e2) = fa; b; c; dg is a BIL of S1. Hence, X
is a generalized lower SBIL of S1 respecting to the aftersets.
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Theorem 3.2.52 Let (J;A) be an SCmR respecting to the foresets from a semigroup

S1 to S2. Then every BIL; Y of S1 is a generalized lower SBIL of S2 respecting to

the foresets.

Proof. The proof is simple and is similar to Theorem.

Example 3.2.53 Consider the semigroup of Example 3.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then J is an SCmR respecting to the foresets from the semigroup S1 to the semigroup

S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

Then Y = fb; c; dg be not a BIL of S1 as fb; c; dg fa; b; c; dg fb; c; dg = fa; b; c; dg *
fb; c; dg but Y J(e1) = f1; 2; 3; 4g is a BIL of S2. Hence, Y is a generalized upper

SBIL of S2 respecting to the foresets.

If we take a soft re�exive and SCmR on a semigroup S, then the following corollaries

are proceeded.

Corollary 3.2.54 Let (J;A) be a soft re�exive and SCmR on a semigroup S respect-

ing to aftersets. Then every BIL; X of S is a generalized lower SBIL of S with

respect to the aftersets.

Corollary 3.2.55 Let (J;A) be a soft re�exive and SCmR on a semigroup S with re-

spect to foresets. Then every BIL; X of S is a generalized lower SBIL of S respecting

to the foresets.

Example 3.2.56 Consider the semigroup of Example 3.1.34, and A = fe1; e2g. De-
�ne J : A! P (S � S) by
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J(e1) =

(
(a; a); (b; b) ; (c; c); (d; d) ; (a; b);

(a; c) ; (b; c) ; (c; b) ; (c; a) ; (b; a)

)
and

J(e2) = f(a; a); (b; b) ; (c; c); (d; d) ; (c; b) ;

(c; a) ; (b; a) ; (a; b); (a; c) ; (b; c)g:

Then (J;A) is a soft re�exive and SCmR respecting to the aftersets on S. Now,

aJ(e1) = fa; b; cg ; bJ(e1) = fa; b; cg; cJ(e1)

= fa; b; cg and dJ(e1) = fdg :

Also, aJ(e2) = fa; b; cg ; bJ(e2) = fa; b; cg; cJ(e2)

= fa; b; cg and dJ(e2) = fdg :

And,

J(e1)a = fa; b; cg ; J(e1)b = fa; b; cg; J(e1)c

= fa; b; cg and J(e1)d = fdg :

Also, J(e2)a = fa; b; cg ; J(e2)b = fa; b; cg; J(e2)c

= fa; b; cg and J(e2)d = fdg :

Let X = fc; dg be not a BIL of S as fc; dg fa; b; c; dg fc; dg = fa; c; dg * fc; dg but
JX(e1) = fdg and JX(e2) = fdg are BILs of S and thus

�
JX ; A

�
is a SBIL of S.

Hence, X is a generalized lower SBIL of S respecting to the aftersets. Similarly,
XJ(e1) = fdg and XJ(e2) = fdg are BILs of S and thus

�
XJ;A

�
is a SBIL of S.

Hence, X is a generalized lower SBIL of S respecting to the foresets.

3.3 Problems of Homomorphisms

A mapping  : S ! T , where S and T are semigroups is said to be a homomorphism

if  (ab) =  (a)  (b) for all a; b 2 S. If  is a homomorphism from a semigroup S to

a semigroup T , then kernel of  is de�ned as � = f(a; b) 2 S � S : (a) = (b)g. It is
well known that kernel of  is a congruence relation on S. Let S and T be semigroups

and fe : S ! T for e 2 Ag be the collection of homomorphisms. Then we have a soft
congruence relation (�;A) on S, where � (e) = kernel of e.
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Theorem 3.3.1 Let S and T be two semigroups and e be homomorphism from S to

T , for each e 2 A. If X is a non-empty subset of S, then e
�
�X (e)

�
= e(X) where

(A; �) is the soft congruence relation on S.

Proof. Since by Theorem 3.1.13(1), X � �X (e), it follows e (X) � e
�
�X (e)

�
. For

the converse inclusion, let y 2 e
�
�X (e)

�
. Then there exists an element x 2 �X (e)

such that e(x) = y. Now, x 2 �X (e) implies that there exists a 2 S such that

a 2 x� (e) \ X, that is a 2 x� (e) and a 2 X. Thus (x; a) 2 � (e), this implies that
e (a) = e (x). Then y = e (x) = e (a) 2 e (X), and so e

�
�X (e)

�
� e (X).

Hence e
�
�X (e)

�
= e(X).

If we have a soft relation on a semigroup T and a homomorphism from a semigroup

S to a semigroup T; then we can construct a soft relation on S as follows:

Lemma 3.3.2 Let  : S ! T be an onto homomorphism and (J2; A) be a soft relation

on T . De�ne J1 (e) = f(s; t) 2 S � S : ( (s) ;  (t)) 2 J2 (e)g for all e 2 A. Then the
following hold:

(1) (J1; A) is a soft relation on S.

(2) (J1; A) is soft re�exive if (J2; A) is soft re�exive.

(3) (J1; A) is SCRE if (J2; A) is a SCRE.

(4) (J1; A) is SCmR respecting to aftersets (respecting to foresets) if (J2; A) is a SCmR

respecting to aftersets (respecting to foresets) and  is one one.

(5) 
�
J
X
1 (e)

�
= J

(X)
2 (e) for X � S and e 2 A.

(6) 
�
JX1 (e)

�
� J(X)2 (e) and if  is one one, then 

�
JX1 (e)

�
= J

(X)
2 (e) for e 2 A.

Proof. (1) and (2) are obvious.

(3) Let (a; b); (c; d) 2 J1 (e).

Then ((a); (b)); ((c); (d)) 2 J2 (e). As (J2; A) is soft compatible, we have ((a)(c); (b)(d)) 2
J2 (e). This implies that ((ac); (bd))

2 J2 (e). Thus (ac; bd) 2 J1 (e). This shows that (J1; A) is a soft compatible relation
on S.

(4) Obviously aJ1 (e) :bJ1 (e) � (ab) J1 (e). Conversely, assume that x 2 (ab) J1 (e).
Then (ab; x) 2 J1 (e) =) ( (ab) ;  (x)) 2 J2 (e))
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( (a)  (b) ;  (x)) 2 J2 (e). This implies that  (x) 2 ( (a)  (b))J2 (e) =

 (a) J2 (e) : (b) J2 (e). Thus there exist t1 2  (a) J2 (e) and t2 2  (b) J2 (e) such that

 (x) = t1t2. As  is onto, we have s1; s2 2 S such that  (s1) = t1 and  (s2) = t2

and  (x) = t1t2 =  (s1)  (s2) =  (s1s2). As  is one one, we have x = s1s2. Now,

t1 2  (a) J2 (e))  (s1) 2  (a) J2 (e)) ( (a) ;  (s1)) 2 J2 (e)) (a; s1) 2 J1 (e).

This implies that s1 2 aJ1 (e). Similarly, s2 2 bJ1 (e). Now, x = s1s2 2 aJ1 (e) :bJ1 (e).
This implies that (ab) J1 (e) � aJ1 (e) :bJ1 (e). Hence, (ab) J1 (e) = aJ1 (e) :bJ1 (e).

The proof of parenthesis part is similar to the proof of this.

(5) Let b 2 
�
J
X
1

�
(e). Then there exists a 2 J

X
1 (e) such that (a) = b and

aJ1 (e) \ X 6= �. This implies there exists x 2 aJ1 (e) \ X. Now, (a; x) 2 J1 (e) )
( (a) ;  (x)) 2 J2 (e) )  (x) 2  (a) J2 (e). Also, (x) 2 (X). Thus  (a) J2 (e) \
 (X) 6= � ) b =  (a) 2 J

(X)
2 , that is 

�
J
X
1 (e)

�
� J

(X)
2 (e). Conversely, let

b 2 J(X)2 (e). This implies that bJ2 (e)\ (X) 6= �. So there exists a 2 bJ2 (e)\ (X),
that is (b; a) 2 J2 (e) and a 2  (X). Since  is onto so there exist x 2 X and s 2 S such
that a =  (x) and b =  (s). Thus ( (s) ;  (x)) = (b; a) 2 J2 (e) ) (s; x) 2 J1 (e).
This implies x 2 sJ1 (e) \ X, so we have s 2 J

X
1 (e), that is b =  (s) 2 

�
J
X
1 (e)

�
.

Thus J
(X)
2 (e) � 

�
J
X
1 (e)

�
. Hence 

�
J
X
1 (e)

�
= J

(X)
2 (e).

(6) Let b 2 
�
JX1 (e)

�
. Then there exists a 2 JX1 (e) such that (a) = b, and aJ1 (e) �

X. It can be easily shown that if aJ1 (e) � X then (a)J2(e) � (X). This implies

that b = (a) 2 J(X)2 (e). Now, suppose that  is one one and let b 2 J(X)2 (e). Then

there exists a unique a 2 S such that (a) = b and  (a) J2 (e) �  (X). As  is an

isomorphism so  (aJ1 (e)) =  (a) J2(e) and as  (a) J2 (e) �  (X) we have aJ1(e) �
X. This implies a 2 JX1 (e) and b =  (a) 2 

�
JX1 (e)

�
. Hence, 

�
JX1
�
= J

(X)
2 .

Theorem 3.3.3 Let  be a surjective homomorphism from a semigroup S to a semi-

group T and (J2; A) be a soft re�exive and SCRE respecting to aftersets (with respect

to foresets) on T . Let X � S. Then J
X
1 (e)

�
XJ1 (e)

�
is an IL of S if and only if

J
(X)
2 (e)

�
XJ1 (e)

�
is an IL of T .

Proof. Let JX1 (e) be IL of S. Then,

SJ
X
1 (e) � J

X
1 (e)) 

�
SJ

X
1 (e)

�
� 

�
J
X
1 (e)

�
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)  (S)
�
J
X
1 (e)

�
� 

�
J
X
1 (e)

�
. Since  is an epimorphism, we have by above Lemma

3.3.2, TJ
(X)
2 (e) � J

(X)
2 (e). Similarly, J

(X)
2 (e)T � J

(X)
2 (e). Thus, J

(X)
2 (e) is

an IL of T . Conversely, suppose that J
(X)
2 (e) is an IL of T . Now by Lemma 3.3.2,


�
J
X
1 (e)

�
= J

(X)
2 (e). Let y 2 J

X
1 (e) and s 2 S. This shows that  (s) 2 T

and  (y) 2 J
(X)
2 (e). Since J

(X)
2 (e) is an IL so  (s)  (y) 2 J

(X)
2 (e), that is

 (sy) 2 J(X)2 (e). Thus  (sy) J2 (e)\  (X) 6= �. This implies there exist z 2 X such

that  (z) 2  (sy) J2 (e), that is ( (sy) ;  (z)) 2 J2 (e) and so (sy; z) 2 J1 (e). Thus
z 2 syJ1 (e) \X. Hence sy 2 J

X
1 (e). Similarly, we can show that ys 2 J

X
1 (e). This

shows that J
X
1 (e) is an IL of S. Similarly, we can prove the parenthesis case.

Theorem 3.3.4 Let  be an isomorphism between the semigroups S and T and (J2; A)

be a soft re�exive and SCmR on T respecting to aftersets (respecting to soft foresets).

Let X � S. Consider J1 (e) = f(a; b) 2 S � S : ( (a) ;  (b)) 2 J2 (e)g, for all e 2 A.
Then JX1 (e)

�
XJ1 (e)

�
is an IL of S if and only if J(X)2 (e)

�
(X)J2 (e)

�
is an IL of

T .

Proof. It follows from Lemma 3.3.2, 
�
JX1 (e)

�
= J

(X)
2 (e). The theorem can be

proved on the same line as the proof of above theorem.



Chapter 4

Approximation of a fuzzy set by

soft relation

This chapter presents an investigation of soft binary relations and some of their proper-

ties. Two kinds of fuzzy topologies induced by soft re�exive relations are investigated.

Soft similarity relations have also been examined. We introduce the degree of accu-

racy for membership functions of fuzzy sets respecting to the aftersets and foresets. A

decision making problem on a fuzzy set is also presented.

4.1 Approximations by soft binary relations

This section de�nes the approximations of a FS by an SBRE. Some related properties

are proposed here.

De�nition 4.1.1 Let (J;A) be an SBRE from U to W and � be a FS in W . Then

we de�ne two fuzzy soft sets over U with respect to the aftersets by

J� (e) (u) =

8<: ^a02uJ(e)�
�
a
0
�

if uJ (e) 6= �

0 if uJ (e) = �

and

J
�
(e) (u) =

8<: _a02uJ(e)�
�
a
0
�

if uJ (e) 6= �

0 if uJ (e) = �

where uJ (e) = fw 2W : (u;w) 2 J(e)g and is called the afterset of u for u 2 U and

78
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e 2 A.

De�nition 4.1.2 Let � be a FS in U , we de�ne two fuzzy soft sets over W with

respect to the foresets by

�J (e) (w) =

8<: ^a02J(e)w�
�
a
0
�

if J (e)w 6= �

0 if J (e)w = �

and

�J (e) (w) =

8<: _a02J(e)w�
�
a
0
�

if J (e)w 6= �

0 if J (e)w = �

where J (e)w = fu 2 U : (u;w) 2 J(e)g and is called the foreset of w for w 2 W and

e 2 A.

Moreover, J� : A ! -F(U), J
�
: A ! -F(U) and �J : A ! -F(W ), �J : A ! -F(W ) and

we say (U;W; J) a Generalized Soft Approximation Space.

In order to explain these concepts, the following example is given.

Example 4.1.3 Suppose that Mr: X wants to buy a shirt for his own use. Let U =

fthe set of all shirts designsg = fd1; d2; d3; d4; d5; d6g andW = fthe colors of all designsg =
fc1; c2; c3; c4g and the set of attributes be A = fe1; e2; e3g = fthe set of stores near his houseg.

De�ne J : A! P (U �W ) by

J(e1) =

(
(d1; c1); (d1; c2); (d1; c3); (d2; c2) ; (d2; c4) ;

(d4; c2) ; (d4; c3) ; (d5; c3) ; (d5; c4) ; (d6; c1)

)
,

J(e2) = f(d1; c3); (d2; c3); (d4; c1); (d5; c1) ; (d6; c2) ; (d6; c3)g and

J(e3) = f(d3; c3); (d3; c1); (d2; c4); (d5; c3) ; (d5; c4)g :

represents the relation between designs and colors available on store ei for 1 � i � 3.
Then

d1J (e1) = fc1; c2; c3g ; d2J (e1) = fc2; c4g ; d3J (e1) = �;

d4J (e1) = fc2; c3g ; d5J (e1) = fc3; c4g ; d6J (e1) = fc1g and

d1J (e2) = fc3g ; d2J (e2) = fc3g ; d3J (e2) = �;

d4J (e2) = fc1g ; d5J (e2) = fc1g ; d6J (e2) = fc2; c3g and

d1J (e3) = �; d2J (e3) = fc4g ; d3J (e3) = fc1; c3g ;

d4J (e3) = �; d5J (e3) = fc3; c4g ; d6J (e3) = �
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where diJ (ej) represents the color of the design di available on store ej.

And

J (e1) c1 = fd1; d6g; J (e1) c2 = fd1; d2; d4g;

J (e1) c3 = fd1; d4; d5g; J (e1) c4 = fd2; d5g; and

J (e2) c1 = fd4; d5g; J (e2) c2 = fd6g;

J (e2) c3 = fd1; d2g; J (e2) c4 = �; and

J (e3) c1 = fd3g; J (e3) c2 = �;

J (e3) c3 = fd3; d5g; J (e3) c4 = fd2; d5g

where J (ej) ci represents the design of the color ci available on store ej.

De�ne � : W ! [0; 1] which represents the preference of the

color given by Mr:X such that

� (c1) = 0:9; � (c2) = 0:8; � (c3) = 0:4; � (c4) = 0 and

De�ne � : U ! [0; 1] which represents the preference of the

design given by Mr:X such that

� (d1) = 1; � (d2) = 0:7; � (d3) = 0:5; � (d4) = 0:1;

� (d5) = 0; � (d6) = 0:4:

Therefore, the lower and upper approximations (respecting to the aftersets as well as

foresets) are

d1 d2 d3 d4 d5 d6

J�(e1) 0:4 0 0 0:4 0 0:9

J
�
(e1) 0:9 0:8 0 0:8 0:4 0:9

J�(e2) 0:4 0:4 0 0:9 0:9 0:4

J
�
(e2) 0:4 0:4 0 0:9 0:9 0:8

J�(e3) 0 0 0:4 0 0 0

J
�
(e3) 0 0 0:9 0 0:4 0
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and
c1 c2 c3 c4

�J(e1) 0:4 0:1 0 0

�J(e1) 1 1 1 0:7

�J(e2) 0 0:4 0:7 0

�J(e2) 0:1 0:4 1 0

�J(e3) 0:5 0 0 0

�J(e3) 0:5 0 0:5 0:7

Hence, J�(ei) (d) gives the degree of de�nite ful�lment of the objects of dJ (ei) to � on

store ei and J
�
(ei) (d) gives the degree of possible ful�lment of the objects of dJ (ei)

to � on store ei for 1 � i � 3 with respect to aftersets. Similarly, �J(ei) (c) gives the
degree of de�nite ful�lment of the objects of J (ei) c to � on store ei and �J(ei) (c) gives

the degree of possible ful�lment of the objects of J (ei) c to � on store ei for 1 � i � 3
with respect to foresets.

Theorem 4.1.4 Let (U;W; J) be a Generalized Soft Approximation Space, that is

J : A ! P (U �W ) be an SBRE from U to W . For �; �1; �2 2 -F (W ), the following
properties for lower and upper approximations respecting to the aftersets hold:

(1) �1 � �2 ) J�1 � J�2

(2) �1 � �2 ) J
�1 � J�2

(3) J�1 \ J�2 = J�1\�2

(4) J
�1 \ J�2 � J�1\�2

(5) J�1 [ J�2 � J�1[�2

(6) J
�1 [ J�2 = J�1[�2

(7) J1 (e) (u) = 1 for all e 2 A if uJ (e) 6= �.

(8) J
1
(e) (u) = 1 for all e 2 A if uJ (e) 6= �.

(9) J� =
�
J
�c
�c
if uJ (e) 6= �.

(10) J
�
=
�
J�

c�c
if uJ (e) 6= �.

(11) J0 = 0 = J
0



4. Approximation of a fuzzy set by soft relation 82

Proof. For u 2 U , we have two cases: (i) If uJ (e) = � and (ii) If uJ (e) 6= �. If

uJ (e) = �, then all the above parts are trivial. So we consider only the case when

uJ (e) 6= �.

(1) Since �1 � �2, so J�1 (e) (u) = ^a02uJ(e)�1
�
a
0
�
� ^a02uJ(e)�2

�
a
0
�

= J�2 (e) (u). Hence, J�1 � J�2 .

(2) Since �1 � �2; so J
�1 (e) (u) = _a02uJ(e)�1

�
a
0
�
� _a02uJ(e)�2

�
a
0
�

= J
�2 (e) (u). Hence, J

�1 � J�2 .

(3) Consider
�
J�1 \ J�2

�
(e) (u) = J�1 (e) (u) ^ J�2 (e) (u)

=
�
^a2uJ(e)�1 (a)

�
^
�
^a2uJ(e)�2 (a)

�
= ^a2uJ(e) (�1 (a) ^ �2 (a))

= ^a2uJ(e) (�1 ^ �2) (a) = J�1\�2 (e) (u). Hence, J�1 \ J�2 = J�1\�2 .

(4) Consider
�
J
�1 \ J�2

�
(e) (u) = J

�1 (e) (u) ^ J�2 (e) (u)

=
�
_a2uJ(e)�1 (a)

�
^
�
_a2uJ(e)�2 (a)

�
� _a2uJ(e) (�1 ^ �2) (a) = J

�1\�2 (e) (u). Hence,

J
�1 \ J�2 � J�1\�2 .

(5) Consider
�
J�1 [ J�2

�
(e) (u) = J�1 (e) (u) _ J�2 (e) (u)

=
�
^a2uJ(e)�1 (a)

�
_
�
^b2uJ(e)�2 (b)

�
= ^a;b2uJ(e) (�1 (a) _ �2 (b))

� ^a2uJ(e) (�1 _ �2) (a) = J
�1[�2 (e) (u). Hence, J�1 [ J�2 � J�1[�2 .

(6) Consider
�
J
�1 [ J�2

�
(e) (u) = J

�1 (e) (u) _ J�2 (e) (u)

=
�
_a2uJ(e)�1 (a)

�
_
�
_a2uJ(e)�2 (a)

�
= _a2uJ(e) (�1 (a) _ �2 (a))

= _a2uJ(e) (�1 _ �2) (a) = J
�1[�2 (e) (u). Hence, J

�1 [ J�2 = J�1[�2 .

(7) Consider J1 (e) (u) = ^a2uJ(e)1 (a) = ^a2uJ(e) (1) = 1, because uJ (e) 6= �.

(8) Consider J
1
(e) (u) = _a2uJ(e)1 (a) = _a2uJ(e) (1) = 1, because uJ (e) 6= �.

(9) Consider J
�c
(e) (u) = _a2uJ(e)�c (a) = _a2uJ(e) (1� � (a)) =

�
^a2uJ(e)� (a)

�c
=
�
J� (e) (u)

�c
. Therefore,

�
J
�c
(e) (u)

�c
= J� (e) (u). Hence, J� =

�
J
�c
�c
.

(10) By part (9) ; J� =
�
J
�c
�c
, therefore, J�

c
=

�
J
(�c)c

�c
) J�

c
=
�
J
�
�c
.

Hence, J
�
=
�
J�

c�c
.

(11) Straightforward.
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Theorem 4.1.5 Let (U;W; J) be a Generalized Soft Approximation Space, that is

J : A ! P (U �W ) be an SBRE from U to W . For �; �1; �2 2 -F (U), the following
properties for lower and upper approximations respecting to the foresets hold:

(1) �1 � �2 ) �1J � �2J

(2) �1 � �2 ) �1J � �2J

(3) �1J\ �2J = �1\�2J

(4) �1J\ �2J � �1\�2J

(5)
�1J[ �2J � �1[�2J

(6) �1J[ �2J = �1[�2J

(7) 1J (e) (u) = 1 for all e 2 A if J (e)w 6= �.

(8) 1J (e) (u) = 1 for all e 2 A if J (e)w 6= �.

(9) �J =
�
�cJ
�c

if J (e)w 6= �:

(10) �J =
�
�cJ
�c
if J (e)w 6= �:

(11) 0J = 0 = 0J

Proof. Straightforward.

It is demonstrated by the following example that equality is not valid in (4) and (5)

assertions of above Theorems in general.

Example 4.1.6 Consider U = fn; u; o; b; wg and W = fm1;m2;m3;m4g. Let A =

fe1; e2g be the set of attributes. De�ne J : A! P (U �W ) by

J(e1) = f(n;m1); (n;m2); (o;m3); (o;m4) ; (u;m1) ; (o;m2) ; (n;m3) ; (u;m4)g ,

J(e2) = f(b;m3); (b;m1); (b;m2) ; (w;m1) ; (w;m3) ; (w;m4)g .

Now,

nJ (e1) = fm1;m2;m3g ; uJ (e1) = fm1;m4g ; oJ (e1) = fm2;m3;m4g ,

bJ (e1) = �; wJ (e1) = �

and

nJ (e2) = � ; u (e2) = � ; oJ (e2) = �;

bJ (e2) = fm1;m2;m3g ; wJ (e2) = fm1;m3;m4g .
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Moreover,

J (e1)m1 = fn; ug ; J (e1)m2 = fn; og ; J (e1)m3 = fn; og ;

J (e1)m4 = fo; ug

and

J (e2)m1 = fb; wg ; J (e2)m2 = fbg ; J (e2)m3 = fb; wg ;

J (e2)m4 = fwg .

De�ne �1; �2; �1 \ �2; �1 [ �2 :W ! [0; 1] by

m1 m2 m3 m4

�1 0:1 0 0:5 0:4

�2 0:2 1 0:3 0:6

�1 \ �2 0:1 0 0:3 0:4

�1 [ �2 0:2 1 0:5 0:6

And
n u o b w

�1 0:1 0:5 0:3 0:6 0:8

�2 0 0:1 0:4 1 0:7

�1 \ �2 0 0:1 0:3 0:6 0:7

�1 [ �2 0:1 0:5 0:4 1 0:8

Therefore,

(e1) (o)

J
�1 0:5

J
�2 1

J�1 0

J�2 0:3

J
�1\�2 0:4

J�1[�2 0:5

and

(e1) (m4)

�1J 0:5

�2J 0:4

�1J 0:3

�2J 0:1

�1\�2J 0:3

�1[�2J 0:4

Hence,

J
�1(e1) (o) \ J

�2(e1) (o) = 0:5 � 0:4 = J�1\�2(e1) (o) and

J�1[�2(e1) (o) = 0:5 � 0:3 = J�1(e1) (o) [ J�2(e1) (o) .
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And

�1J(e1) (m4) \ �2J(e1) (m4) = 0:4 � 0:3 = �1\�2J(e1) (m4) and

�1[�2J(e1) (m4) = 0:4 � 0:3 = �1J(e1) (m4) [ �2J(e1) (m4) .

Theorem 4.1.7 Let (J;A) and (Z;A) be two SBRE from non-empty sets U to W

and �1; �2 be non-empty FS of W . Then the following hold:

(1) (J;A) � (Z;A) implies
�
J�1 ; A

�
�
�
Z�1 ; A

�
;

(2) (J;A) � (Z;A) implies
�
J
�1 ; A

�
�
�
Z
�1 ; A

�
.

Proof. Straightforward.

Theorem 4.1.8 Let (J;A) and (Z;A) be two SBRE from non-empty sets U to W

and Y1; Y2 be non-empty subsets of U . Then the following hold:

(7) (J;A) � (Z;A) implies
�
�1J;A

�
�
�
�1Z;A

�
;

(8) (J;A) � (Z;A) implies
�
�1J;A

�
�
�
�1Z;A

�
.

Proof. Straightforward.

Theorem 4.1.9 Let (J;A) and (Z;A) be SBRE from non-empty sets U to W and �

be a FS of W . Then

(1)
��
J \ Z

��
; A
�
�
�
J
�
; A
�
\
�
Z
�
; A
�
.

(2)
�
(J \ Z)� ; A

�
�
�
J�; A

�
[
�
Z�; A

�
.

Proof. It follows from parts (1) and (2) of Theorem 4.1.7.

It is found in the accompanying Example that equality is not valid in above Theorem.

Example 4.1.10 Let U = fa; b; c; d; eg and W = f1; 2; 3; 4; 5g and A = fe1; e2g.
De�ne J : A! P (U �W ) and Z : A! P (U �W ) by

J(e1) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ; (c; 5) ;

(b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (e; 1)

)

J(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g;
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Z(e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g and

Z(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 3)g:

Therefore,

(J \ Z) (e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g

and

(J \ Z) (e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g:

Now,

aJ(e1) = f1g; bJ(e1) = f1; 2; 5g; cJ(e1) = f3; 5g;

dJ(e1) = f1; 3; 4; 5g and eJ(e1) = f1; 5g

and

aZ(e1) = f1g; bZ(e1) = f1; 2g; cZ(e1) = f3g;

dZ(e1) = f4g and eZ(e1) = f2; 5g:

Also,

a (J \ Z) (e1) = f1g; b (J \ Z) (e1) = f1; 2g; c (J \ Z) (e1) = f3g;

d (J \ Z) (e1) = f4g and e (J \ Z) (e1) = f5g:

De�ne �1 :W �! [0; 1] by

1 2 3 4 5

�1 0:1 0:5 0 0:7 0

Then �1 is a FS of W but

a b c d e

J
�1 (e1) 0:1 0:5 0 0:7 0:1

Z
�1 (e1) 0:1 0:5 0 0:7 0:5

(J \ Z)�1 (e1) 0:1 0:5 0 0:7 0

This shows that

J
�1 (e1) \ Z

�1 (e1) 6=
�
J \ Z

��1 (e1) :
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Now, De�ne �2 :W �! [0; 1] by

1 2 3 4 5

�2 0:2 0:7 1 0:6 1

Then �2 is a FS of W but

a b c d e

J�2 (e1) 0:1 0:5 0 0:7 0:1

Z�2 (e1) 0:1 0:5 0 0:7 0:5

(J \ Z)�2 (e1) 0:1 0:5 0 0:7 0

This shows that

J�2 (e1) [ Z�2 (e1) 6= (J \ Z)�2 (e1) :

Theorem 4.1.11 Let (J;A) and (Z;A) be SBRE from non-empty sets U to W . If �

is a FS of U; then

(1)
�
�
�
J \ Z

�
; A
�
�
�
�J;A

�
\
�
�Z;A

�
.

(2)
�
� (J \ Z) ; A

�
�
�
�J;A

�
[
�
�Z;A

�
.

Proof. It follows from parts (1) and (2) of Theorem 4.1.8.

It is found in the accompanying Example that equality is not valid in above Theorem.

Example 4.1.12 Let U = fa; b; c; d; eg and W = f1; 2; 3; 4; 5g and A = fe1; e2g.
De�ne J : A! P (U �W ) and Z : A! P (U �W ) by

J(e1) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ; (c; 5) ;

(b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (e; 1)g

)
;

J(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g;

Z(e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ; (a; 5)g and

Z(e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 3)g:

Therefore,

(J \ Z) (e1) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g
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and

(J \ Z) (e2) = f(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5)g:

Now,

J(e1)1 = fa; b; eg; J(e1)2 = fbg; J(e1)3 = fc; dg;

J(e1)4 = fdg and J(e1)5 = fb; c; d; eg;

and

Z(e1)1 = fa; bg; Z(e1)2 = fbg; 3Z(e1) = fcg;

Z(e1)4 = fdg and Z(e1)5 = fa; eg:

Also,

(J \ Z) (e1)1 = fa; bg; (J \ Z) (e1)2 = fbg; (J \ Z) (e1)3 = fcg;

(J \ Z) (e1)4 = fdg and (J \ Z) (e1)5 = feg:

De�ne �1 : U �! [0; 1] by

a b c d e

�1 0:3 0 0:4 0:5 0

Then �1 is a FS of U but

1 2 3 4 5

�1J (e1) 0:3 0 0:5 0:5 0:5

�1Z (e1) 0:3 0 0:4 0:5 0:3

�1(J \ Z) (e1) 0:3 0 0:4 0:5 0

This shows that
�1J (e1) \�1 Z (e1) 6=�1

�
J \ Z

�
(e1) :

Now, De�ne �2 : U �! [0; 1] by

a b c d e

�2 0:5 1 0:7 0:1 1

Then �2 is a FS of U but
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1 2 3 4 5

�2J (e1) 0:5 1 0:1 0:1 0:1

�2Z (e1) 0:5 1 0:7 0:1 0:5

�2 (J \ Z) (e1) 0:5 1 0:7 0:1 1

This shows that
�2J (e1) [�2 Z (e1) 6= �2 (J \ Z) (e1) :

Theorem 4.1.13 Let (U;W; J) be a Generalized Soft Approximation Space. For fi 2 I : �ig �
-F (W ), the following properties for lower and upper approximations respecting to the

aftersets hold:

(1) J (\i2I�i) (e) = \i2IJ�i (e) for all e 2 A

(2) J ([i2I�i) (e) � [i2IJ�i (e) for all e 2 A

(3) J
([i2I�i) (e) = [i2IJ

�i (e) for all e 2 A

(4) J
(\i2I�i) (e) � \i2IJ

�i (e) for all e 2 A.

Proof. (1) Take �i 2 -F (U), where i 2 I. Then we have

J (\i2I�i) (e) (u) = ^a2uJ(e)(^i2I�i)(a) = ^i2I(^a2uJ(e)�i(a)) = \i2IJ�i (e) (u) for all
e 2 A and u 2 U .

(2) Take �i 2 -F (U), where i 2 I. Then we have

J ([i2I�i) (e) (u) = ^a2uJ(e)(_i2I�i)(a) � _i2I
�
^a2uJ(e)�i (a)

�
= [i2IJ�i (e) (u) for all

e 2 A and u 2 U .

(3) It has a comparable proof to the proof of (1).

(4) It has a comparable proof to the proof of (2).

Theorem 4.1.14 Let (U;W; J) be a Generalized Soft Approximation Space. For fi 2 I : �ig �
-F (U), the following properties for lower and upper approximations respecting to the

foresets hold:

(1) (\i2I�i)J (e) = \i2I �iJ (e) for all e 2 A

(2) ([i2I�i)J (e) � [i2I �iJ (e) for all e 2 A

(3)
([i2I�i)J (e) = [i2I J

�i (e) for all e 2 A
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(4) (\i2I�i)J (e) � \i2I J
�i (e) for all e 2 A.

Proof. It has a comparable proof to the proof of above Theorem.

If (J;A) is a soft re�exive relation then each uJ(e) ( resp. J(e)u) is non-empty and

u 2 uJ(e) ( resp. u 2 J(e)u). It is not necessary that uJ(e) = J(e)u.

If (J;A) is a soft E�relation n U , then uJ(e) = J(e)u and fuJ(e) : u 2 Ug is a
partition of U . Also, in this case, �J (e) = J� (e) and �J (e) = J

�
(e) for all � 2 -F (U).

The approximation operators have additional properties with respect to soft re�exive

binary relation as follows:

Theorem 4.1.15 For � 2 -F (U), the following properties for lower and upper approx-
imations with respect to the aftersets hold:

(1) J� (e) � � for all e 2 A

(2) � � J� (e) for all e 2 A

(3) J� (e) � J� (e) for all e 2 A.

Proof. For u 2 U ,

(1) Consider J� (e) (u) = ^a2uJ(e)� (a) � � (u), because u 2 uJ (e), therefore J� (e) (u) �
� (u). Hence, J� (e) � �.

(2) Consider � (u) � _a2uJ(e)� (a) = J
�
(e) (u). Hence, � � J� (e).

(3) It directly follows from (1) and (2).

Theorem 4.1.16 For � 2 -F (U), the following properties for lower and upper approx-
imations with respect to the foresets hold:

(1) �J (e) � � for all e 2 A

(2) � � �J (e) for all e 2 A

(3) �J (e) � �J (e) for all e 2 A.

Proof. It has a comparable proof to the proof of above Theorem.
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Theorem 4.1.17 Let (J;A) and (Z;A) be two soft re�exive relations on a non-empty

set U such that J (e) � Z (e) for all e 2 A. Then Z� (e) � J� (e) and J� (e) � Z� (e)
for all � 2 -F (U) and for all e 2 A with respect to the aftersets.

Proof. Let � 2 -F (U). Since J (e) � Z (e), we have uJ (e) � uZ (e) for all u 2 U and
e 2 A. Therefore, ^a2uJ(e)� (a) � ^a2uZ(e)� (a) and _a2uJ(e)� (a) � _a2uZ(e)� (a) for
all u 2 U . By de�nition 4.1.1, Z� (e) � J� (e) and J� (e) � Z� (e) with respect to the
aftersets.

Theorem 4.1.18 Let (J;A) and (Z;A) be two soft re�exive relations on a non-empty

set U such that J (e) � Z (e) for all e 2 A. Then �Z (e) � �J (e) and �J (e) � �Z (e)

for all � 2 -F (U) and for all e 2 A with respect to foresets.

Proof. It has a comparable proof to above theorem.

Corollary 4.1.19 Let (J;A) and (Z;A) be two soft re�exive relations on a non-empty

set U . Then the following assertions hold for all � 2 -F (U) and for all e 2 A with

respect to the aftersets.

(1) (J \ Z)� (e) � J� (e) \ Z� (e)

(2) (J \ Z)� (e) � J� (e) [ Z� (e).

Proof. (1) Let (J;A) and (Z;A) be two soft re�exive relations on a non-empty set U .

Then (J \ Z;A) is also a soft re�exive relation on U . Also, (J \ Z) (e) � J (e) and

(J \ Z) � Z (e). By Theorem 4.1.17, (J \ Z)� (e) � J� (e) and (J \ Z)� (e) �

Z
�
(e) for any � 2 -F (U). This proves that (J \ Z)� (e) � J

�
(e) \ Z� (e) for all

� 2 -F (U) and for all e 2 A.

(2) This can be proved as (1).

Corollary 4.1.20 Let (J;A) and (Z;A) be two soft re�exive relations on a non-empty

set U . Then the following assertions hold for all � 2 -F (U) and for all e 2 A with

respect to the foresets.

(1) �(J \ Z) (e) � �J (e)\ �Z (e)

(2) �(J \ Z) (e) � �J (e)[ �Z (e).

Proof. It has a comaprable proof as above Theorem.
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4.2 Fuzzy topologies induced by soft re�exive relations

This section investigates two kinds of fuzzy topologies induced by soft re�exive rela-

tions and related results are also considered.

De�nition 4.2.1 [68] A family T � -F (U) of FS on U is called a fuzzy topology for

U if it satis�es the three axioms given below:

(1) 0; 1 2 T .

(2) 8�; � 2 T ) � \ � 2 T .

(3) �j 2 T for all j 2 J =) [j2J�j 2 T .

The pair (U; T ) is called a fuzzy topological space. The elements of T are called fuzzy

open sets.

Theorem 4.2.2 If (J;A) is a soft re�exive relation on U , then Te = f� 2 -F (U) :
J� (e) = � g is a fuzzy topology on U for each e 2 A.

Proof. (1) Take e 2 A. By Theorem 4.1.4, J0 (e) = 0 and J1 (e) = 1. This implies

that 0; 1 2 Te.

(2) Let �; � 2 Te. This implies that J� (e) = � and J� (e) = �.

Now, by using Theorem 4.1.4, J�\� (e) = J� (e) \ J� (e) = � \ �. This implies that
� \ � 2 Te.

(3) Let �j 2 Te for j 2 J. This implies that J�j (e) = �j for j 2 J . Since the relation
is soft re�exive, so by Theorem 4.1.15, J[j2J�j (e) � [j2J�j . Since, �j � [j2J �j ,
by using Theorem 4.1.4; J�j (e) � J[j2J�j (e). This implies [j2JJ�j (e) � J[j2J�j (e).
This implies [j2J�j � J[j2J�j (e). Therefore, J[j2J�j (e) = [j2J�j . Hence, [j2J�j 2
Te.

Theorem 4.2.3 If (J;A) is a soft re�exive relation on U , then T
0
e = f� 2 -F (U) :

�J (e) = � g is a fuzzy topology on U for e 2 A.

Proof. It has a comparable proof to the proof of above theorem.

Remark 4.2.4 In the above two theorems, corresponding to each e 2 A, we con-

structed two fuzzy topologies on U . If we de�ne Te = f� 2 -F (U) : J� (e) = � for all
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e 2 Ag, then Te is a fuzzy topology on U and Te = \e2ATe. Similarly, if we de�ne
T
0
e = f� 2 -F (U) : �J (e) = � for all e 2 Ag, then T 0

e is a fuzzy topology on U and

T
0
e = \e2AT

0
e.

De�nition 4.2.5 Let (J;A) be a soft re�exive relation over U . De�ne a binary rela-

tion RJ on U by xRJy , xJ (e) y for some e 2 A where x; y 2 U . Then RJ is called
the binary relation induced by the soft binary relation (J;A).

Remark 4.2.6 (J;A) is a soft re�exive relation over U ) RJ is a re�exive relation

over U .

Theorem 4.2.7 Let (J;A) be an SBRE over U and RJ be the induced binary relation

by (J;A) over U . For �1; �2 2 -F (U), the following properties for lower and upper
approximations respecting to the aftersets hold:

(1) �1 � �2 ) RJ (�1) � RJ (�2)

(2) �1 � �2 ) RJ (�1) � RJ (�2)

(3) RJ (�1) \RJ (�2) = RJ (�1 \ �2)

(4) RJ (�1) \RJ (�2) � RJ (�1 \ �2)

(5) RJ (�1) [RJ (�2) � RJ (�1 [ �2)

(6) RJ (�1) [RJ (�2) = RJ (�1 [ �2) :

Proof. Straightforward.

Theorem 4.2.8 Let (J;A) be an SBRE over U and RJ be the induced binary relation

by (J;A) over U . For �1; �2 2 -F (U), the following properties for lower and upper

approximations respecting to the foresets hold:

(1) �1 � �2 ) (�1)RJ � (�2)RJ

(2) �1 � �2 ) (�1)RJ � (�2)RJ

(3) (�1)RJ\ (�2)RJ = (�1 \ �2)RJ

(4) (�1)RJ\ (�2)RJ � (�1 \ �2)RJ

(5) (�1)RJ[ (�2)RJ � (�1 [ �2)RJ

(6) (�1)RJ[ (�2)RJ = (�1 [ �2)RJ .
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Proof. Straightforward.

Theorem 4.2.9 If (J;A) is a soft re�exive relation on U , then TRJ = f� 2 -F (U) :
RJ (�) = � g is a fuzzy topology on U with respect to the aftersets.

Proof. (1) By Theorem 4.2.7, RJ (0) = 0 and RJ (1) = 1. This implies 0; 1 2 TRJ .

(2) Let �; � 2 TRJ . This implies RJ (�) = � and RJ (�) = �.

Now, by using Theorem 4.2.7; RJ (� \ �) = RJ (�) \ RJ (�) = � \ �. This implies
� \ � 2 TRJ .

(3) Let �j 2 TRJ for j 2 J. This implies RJ (�j) = �j for j 2 J. By de�nition

RJ ([j2J�j) = [j2J�j . Hence, [j2J�j 2 TRJ .

Theorem 4.2.10 If (J;A) is a soft re�exive relation on U , then T
0
RJ
= f� 2 -F (U)

: (�)RJ = � g is a fuzzy topology on U .

Proof. It has a comaparable proof to above Theorem 4.2.9.

4.3 Similarity relations associated with soft binary rela-

tions

In this section, some binary relations between FS are de�ned based on their rough

approximations and their properties are investigated.

De�nition 4.3.1 Let (J;A) be a soft re�exive relation over U . For �1; �2 2 -F (U),
we de�ne

�1 wA �2 if and only if J�1 = J�2

�1 hA �2 if and only if J
�1 = J

�2

�1 tA �2 if and only if J�1 = J�2 and J
�1 = J

�2.

De�nition 4.3.2 Let (J;A) be an SBRE over U . For �1; �2 2 -F (U), we de�ne

�1 wF �2 if and only if �1J = �2J

�1 hF �2 if and only if �1J = �2J
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�1 tF �2 if and only if �1J = �2J and �1J = �2J .

These binary relations are named as the lower fuzzy similarity relation , upper fuzzy

similarity relation and fuzzy similarity relation, respectively. Obviously, �1 and �2 are

similar if and only if they are both lower and upper similar and �1 and �2 are similar

if and only if they are both lower and upper similar:

Proposition 4.3.3 The relations wA, hA and �A are E�relations on -F (U).

Proof. Straightforward.

Proposition 4.3.4 The relations wF , hF and �F are E�relations on -F (U).

Proof. Straightforward.

Theorem 4.3.5 Let (J;A) be a soft re�exive relation on U . For �i 2 -F (U) where
i = 1; 2; 3; 4 the following assertions hold:

(1) �1 hA �2 if and only if �1 hA (�1 [ �2) hA �2

(2) �1 hA �2 and �3 hA �4 imply that (�1 [ �3) hA (�2 [ �4)

(3) �1 � �2 and �2 hA 0 imply that �1 hA 0

(4) (�1 [ �2) hA 0 if and only if �1 hA 0 and �2 hA 0

(5) �1 � �2 and �1 hA 1 imply that �2 hA 1

(6) If (�1 \ �2) hA 1 then, �1 hA 1 and �2 hA 1.

Proof. (1) Let �1 hA �2. Then J
�1 = J

�2 . By Theorem 4.1.4(6), we get J
�1[�2 =

J
�1 [ J�2 = J�1 = J�2 so �1 hA (�1 [ �2) hA �2. Converse holds by transitivity of
the relation hA.

(2) Given that �1 hA �2 and �3 hA �4. Then J
�1 = J

�2 and J
�3 = J

�4 .

By Theorem 4.1.4(6), we get J
�1[�3 = J

�1 [ J�3 = J
�2 [ J�4 = J

�2[�4 . Thus,

(�1 [ �3) hA (�2 [ �4).

(3) Given �2 hA 0. This implies J
�2 = J

0
.
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Also, �1 � �2 ) J
�1 � J�2 = J0. It follows that J�1 � J0 but J0 � J�1 . Therefore,

J
�1 = J

0 ) �1 hA 0.

(4) Let �1 hA 0 and �2 hA 0. Then J
�1 = J

0
and J

�2 = J
0
. By Theorem 4.1.4(6),

we get J
�1[�2 = J

�1 [ J�2 = J0 [ J0 = J0.

Thus, (�1 [ �2) hA 0. Converse follows from (3).

(5) Given �1 hA 1. This implies J
�1 = J

1
.

Also, �1 � �2 ) J
�2 � J�1 = J1 = 1 � J�2 . Therefore, J�2 = J1 ) �2 hA 1.

(6) It follows from (5).

Theorem 4.3.6 Let (J;A) be a soft re�exive relation on U . For �i 2 -F (U) where
i = 1; 2; 3; 4 the following assertions hold:

(1) �1 hF �2 if and only if �1 hF (�1 [ �2) hF �2

(2) �1 hF �2 and �3 hF �4 imply that (�1 [ �3) hF (�2 [ �4)

(3) �1 � �2 and �2 hF 0 imply that �1 hF 0

(4) (�1 [ �2) hF 0 if and only if �1 hF 0 and �2 hF 0

(5) �1 � �2 and �1 hF 1 imply that �2 hF 1

(6) If (�1 \ �2) hF 1 then, �1 hF 1 and �2 hF 1.

Proof. It has a comaparable proof as the proof of above Theorem 4.3.5.

Theorem 4.3.7 Let (J;A) be a soft re�exive relation on U . For �i 2 -F (U) where
i = 1; 2; 3; 4 the following assertions hold:

(1) �1 wA �2 if and only if �1 wA (�1 \ �2) wA �2

(2) �1 wA �2 and �3 wA �4 imply that (�1 \ �3) wA (�2 \ �4)

(3) �1 � �2 and �2 wA 0 imply that �1 wA 0

(4) (�1 [ �2) wA 0 if and only if �1 wA 0 and �2 wA 0

(5) �1 � �2 and �1 wA 1 imply that �2 wA 1

(6) If (�1 \ �2) wA 1 then, �1 wA 1 and �2 wA 1.

Proof. The veri�cation is like the evidence of Theorem 4.3.5.
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Theorem 4.3.8 Let (J;A) be a soft re�exive relation on U: For �i 2 -F (U) where

i = 1; 2; 3; 4 the following assertions hold:

(1) �1 wF �2 if and only if �1 wF (�1 \ �2) wF �2

(2) �1 wF �2 and �3 wF �4 imply that (�1 \ �3) wF (�2 \ �4)

(3) �1 � �2 and �2 wF 0 imply that �1 wF 0

(4) (�1 [ �2) wF 0 if and only if �1 wF 0 and �2 wF 0

(5) �1 � �2 and �1 wF 1 imply that �2 wF 1

(6) If (�1 \ �2) wF 1 then, �1 wF 1 and �2 wF 1.

Proof. It has a comaparable proof as Theorem 4.3.7.

Theorem 4.3.9 Let (J;A) be a soft re�exive relation on U: For �i 2 -F (U) where
i = 1; 2 the assertions below hold:

(1) �1 � �2 and �2 tA 0 imply that �1 tA 0

(2) �1 � �2 and �1 tA 1 imply that �2 tA 1

(3) (�1 [ �2) tA 0, then �1 tA 0 and �2 tA 0

(4) (�1 \ �2) tA 1, then �1 tA 1 and �2 tA 1

(5) �1 tA �2 if and only if �1 hA (�1 [ �2) hA �2 and �1 wA (�1 \ �2) wA �2.

Proof. It is an immediate consequence of Theorems 4.3.5 and 4.3.7.

Theorem 4.3.10 Let (J;A) be a soft re�exive relation on U: For �i 2 -F (U) where
i = 1; 2; 3; 4 the following assertions hold:

(1) �1 � �2 and �2 tF 0 imply that �1 tF 0

(2) �1 � �2 and �1 tF 1 imply that �2 tF 1

(3) (�1 [ �2) tF 0, then �1 tF 0 and �2 tF 0

(4) (�1 \ �2) tF 1, then �1 tF 1 and �2 tF 1

(5) �1 tF �2 if and only if �1 hF (�1 [ �2) hF �2 and �1 wF (�1 \ �2) wF �2.

Proof. It is an immediate consequence of Theorems 4.3.6 and 4.3.8.
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4.4 Accuracy measures

The approximation of FSs presents a method to investigate how accurately the mem-

bership functions of FSs describe the objects. In this section, we introduce the degree

of accuracy and the degree of roughness for membership functions of FSs respecting

to the aftersets and foresets. For this purpose, ��level cuts of FSs are de�ned and
present some of its properties.

De�nition 4.4.1 Let U be a non-empty universe and � 2 -F (U). For 0 � � � 1, the
��level cut of � is denoted by �� = fu 2 U : � (u) � �g.

Lemma 4.4.2 Let U be a non-empty universe and �; � 2 -F (U). For 0 � � � 1,

� � � implies that �� � ��.

Proof. It is an immediate consequence of De�nition 4.4.1.

Lemma 4.4.3 Let U be a non-empty universe and � 2 -F (U) and 0 � � � � � 1.

Then �� � ��:

Proof. The proof is a direct consequence of De�nition 4.4.1.

J (��) is the lower approximation of the crisp set �� while
�
J� (e)

�
�
is the ��level cut

of J� (e) with respect to the aftersets. Therefore,�
J� (e)

�
�
=

n
u 2 U : J� (e) (u) � �

o
=

�
u 2 U : ^a2uJ(e) � (a) � �

	
and�

J
�
(e)
�
�
=

�
u 2 U : _a2uJ(e) � (a) � �

	
for all e 2 A.

Similarly, for � 2 -F (U), we have�
�J (e)

�
�
=

n
u 2 U : �J (e) (u) � �

o
=

�
u 2 U : ^a2J(e)u � (a) � �

	
and�

�J (e)
�
�
=

�
u 2 U : _a2J(e)u � (a) � �

	
for all e 2 A.

with respect to the foresets.
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Lemma 4.4.4 Let (J;A) be a soft re�exive relation on a non-empty universe U , � 2
-F (U) and 0 � � � 1. Then, the following assertions hold with respect to the aftersets:

(1) J (��) (e) =
�
J� (e)

�
�
for all e 2 A.

(2) J
(��)

(e) =
�
J
�
(e)
�
�
for all e 2 A.

Proof. (1) Let � 2 -F (U) and 0 � � � 1. For the crisp set ��, we have

J (��) (e) = fu 2 U : uJ (e) � ��g

= fu 2 U : � (a) � � for all a 2 uJ (e)g

=
�
u 2 U : ^a2uJ(e)� (a) � �

	
=

�
J� (e)

�
�
for all e 2 A.

(2) It can be veri�ed in the similar way as (1).

Lemma 4.4.5 Let (J;A) be a soft re�exive relation on a non-empty universe U , � 2
-F (U) and 0 � � � 1. Then, the following assertions hold with respect to the foresets:

(1) (��)J (e) =
�
�J (e)

�
�
for all e 2 A.

(2)
(��)
J (e) =

�
�J (e)

�
�
for all e 2 A.

Proof. It has a comaparable proof as the proof of above lemma.

Now, we de�ne the degree of accuracy and the degree of roughness for membership

functions of a FS; in a non-empty �nite universe.

De�nition 4.4.6 Let (J;A) be a soft re�exive relation on a non-empty universe U .

The degree of accuracy for the membership of � 2 -F (U), with respect to �; � such that
0 � � � � � 1 and with respect to the aftersets, is denoted and de�ned as

J(�;�) (�) (ei) =
���J (��) (ei)��� = ����J(��) (ei)���� for all ei 2 A.

Similarly, the degree of accuracy for the membership of � 2 -F (U), with respect to �;
� such that 0 � � � � � 1 and with respect to the foresets, is denoted and de�ned as

(�;�)
J (�) (ei) =

���(��)J (ei)��� = ���(��)J (ei)��� for all ei 2 A.
The degree of roughness for the membership of � 2 -F (U), with respect to �; � such
that 0 � � � � � 1 and with respect to the aftersets, is denoted and de�ned as
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�J(�;�) (�) (ei) = 1� 
J
(�;�) (�) (ei) for all ei 2 A.

Similarly, the degree of roughness for the membership of � 2 -F (U), with respect to �;
� such that 0 � � � � � 1 and with respect to the foresets, is denoted and de�ned as

(�;�)�
J (�) (ei) = 1� (�;�)

J (�) (ei) for all ei 2 A.

Note that, in case of SE�relation, the concept of the foresets and aftersets coincides.
Further, J (��) (e) or J(

��) (e) comprise of the objects of U having � or � as the least

degree of de�nite or possible ful�lment in � for all e 2 A. Equivalently, J (��) (e) or
J
(��) (e) can be seen as the union of the SE�classes of U having degree of ful�lment
atleast � or � in the lower or upper fuzzy approximation of � with respect to the

aftersets: Therefore, � and � serve as the thresholds of de�nite and possible ful�lment

of the objects of � or � in �, respectively. Hence, J(�;�) (�) (e) may be interpreted

as the degree to which the membership functions of � is accurate, constrained to

the thresholds � and �. In other words, J(�;�) (�) (e) describes how accurate are the

membership functions of the FSs with respect to the aftersets. These degrees are

illustrated in the following example.

Example 4.4.7 Let U = ft1; t2; t3; t4; t5; t6; t7; t8; t9; t10; t11g be a collection of trees
of di¤erent types and A = fe1; e2; e3; e4g be a set of parameters such that e1 stands
for the attribute Height, e2 stands for Age, e3 stands for Fruitibility and e4 stands

for the Thickness. De�ne a SE�relation J : A ! P (U � U) for each e 2 A. The
corresponding SE�class for each of the SE�relation is obtained as follows:

For J (e1), the SE�classes tJ (e1) are ft1; t10g, ft2; t4; t6; t7g, ft3; t5; t8; t9g, ft11g.

For J (e2), the SE�classes tJ (e2) are ft1g, ft2; t11g, ft4; t7g, ft3; t5; t8; t9g, ft6; t10g.

For J (e3), the SE�classes tJ (e3) are ft1g, ft2g, ft3; t4; t5; t7; t8; t9; t10g, ft6g, ft11g.

For J (e4), the SE�classes tJ (e4) are ft10g, ft6g, ft1; t2; t3; t4; t5; t7; t8; t9g, ft11g.

De�ne a FS; � : U ! [0; 1] by

� (t1) = 0:9; � (t2) = 0:6; � (t3) = 0:3; � (t4) = 0;

� (t5) = 0:2; � (t6) = 0:4; � (t7) = 0:6; � (t8) = 0:8;

� (t9) = 1; � (t10) = 0; � (t11) = 1:

Take � = 0:7 and � = 0:6. Then ��level cuts �0:6 and �0:7 are calculated as
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�0:6 = ft1; t2; t7; t8; t9; t11g

�0:7 = ft1; t8; t9; t11g.

Now,

J (�0:7) (e1) = ft11g , J (�0:7) (e2) = ft1g ,

J (�0:7) (e3) = ft1; t11g , J (�0:7) (e4) = ft11g .

And,

J
(�0:6) (e1) = ft1; t2; t3; t4; t5; t6; t7; t8; t9; t10; t11g ,

J
(�0:6) (e2) = ft1; t2; t3; t4; t5; t7; t8; t9; t11g ,

J
(�0:6) (e3) = ft1; t2; t3; t4; t5; t7; t8; t9; t10; t11g ,

J
(�0:6) (e4) = ft1; t2; t3; t4; t5; t7; t8; t9; t11g .

The degree of accuracy for the membership of � is calculated as

J(�;�) (�) (e1) =
���J (�0:7) (e1)��� = ���J (�0:6) (e1)��� = 1=11 = 0:091

J(�;�) (�) (e2) =
���J (�0:7) (e2)��� = ���J (�0:6) (e2)��� = 1=9 = 0:111

J(�;�) (�) (e3) =
���J (�0:7) (e3)��� = ���J (�0:6) (e3)��� = 1=5 = 0:200

J(�;�) (�) (e4) =
���J (�0:7) (e4)��� = ���J (�0:6) (e4)��� = 1=9 = 0:111.

Hence, J(�;�) (�) (ei) shows the degree to which the membership function of � is accu-

rate constrained to the parameters � and � for i = 1; 2; 3; 4 with respect to aftersets.

Similarly, we can calculate with respect to foresets.

Theorem 4.4.8 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

� 2 -F (U) and 0 � � � � � 1. Then, 0 � J(�;�) (�) (e) � 1 for all e 2 A respecting to
the aftersets.

Proof. For a FS; � 2 -F (U) and �; � 2 [0; 1] such that 0 � � � � � 1. By using

Lemma 4.4.3, �� � ��. Now, J (��) (e) � J
(��)

(e) � J
(��) (e). Thus

���J (��) (e)��� �����J(��) (e)���� so the ratio ����J (��) (e) =J(��) (e)���� �uctuates between 0 and 1 which yields
certainly 0 � J(�;�) (�) (e) � 1 for all e 2 A.
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Corollary 4.4.9 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

� 2 -F (U) and 0 � � � � � 1. Then, 0 � �J(�;�) (�) (e) � 1 for all e 2 A respecting to
the aftersets.

Proof. It is an immediate consequence of De�nition 4.4.6 and Theorem 4.4.8.

Theorem 4.4.10 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

� 2 -F (U) and 0 � � � � � 1.

(1) If � stands �xed, then J(�;�) (�) (e) increases with the increase in �.

(2) If � stands �xed, then J(�;�) (�) (e) decreases with the increase in � for all e 2 A.

Proof. (1) Let � stands �xed and let 0 � �1 � �2 � 1. Using Lemma 4.4.3, we have

��2 � ��1 . Then J
(��2) (e) � J(��1) (e) and

����J(��2) (e)���� � ����J(��1) (e)����. This implies
that���J (��) (e)��� = ����J(��1) (e)���� � ���J (��) (e)��� = ����J(��2) (e)����. That is J(�;�1) (�) (e) � J(�;�2) (�) (e).
This shows that J(�;�) (�) (e) increases with the increase in � for all e 2 A.

(2) It has a comaparable proof as the proof of (1).

Corollary 4.4.11 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

� 2 -F (U) and 0 � � � � � 1.

(1) If � stands �xed, then �J(�;�) (�) (e) decreases with the increase in �.

(2) If � stands �xed, then �J(�;�) (�) (e) increases with the increase in � for all e 2 A.

Proof. It is an immediate consequence of De�nition 4.4.6 and Theorem 4.4.10.

Theorem 4.4.12 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

�; � 2 -F (U) and 0 � � � � � 1. Then, � � � implies the following assertions for all
e 2 A and respecting to the aftersets.

(1) J(�;�) (�) (e) � 
J
(�;�) (�) (e), whenever J

(��) (e) = J
(��) (e)

(2) J(�;�) (�) (e) � 
J
(�;�) (�) (e), whenever J

(��) (e) = J (��) (e).

Proof. (1) Let 0 � � � � � 1 and �; � 2 -F (U) be such that � � �. Then

�� � ��. Thus, J (��) (e) � J (��) (e) that is
���J (��) (e)��� � ���J (��) (e)���. This implies that
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���J (��) (e)��� = ����J(��) (e)���� � ���J (��) (e)��� = ����J(��) (e)����. Hence, J(�;�) (�) (e) � J(�;�) (�) (e).
(2) It has a comaparable proof as the proof of (1).

Corollary 4.4.13 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

�; � 2 -F (U) and 0 � � � � � 1. Then, � � � implies the following assertions for all
e 2 A respecting to the aftersets.

(1) �J(�;�) (�) (e) � �
J
(�;�) (�) (e), whenever J

(��) (e) = J
(��) (e)

(2) �J(�;�) (�) (e) � �
J
(�;�) (�) (e), whenever J

(��) (e) = J (��) (e).

Proof. It is an immediate consequence of De�nition 4.4.6 and Theorem 4.4.12.

Theorem 4.4.14 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

� 2 -F (U) and 0 � � � � � 1. If (Z;A) is a soft re�exive relation on U such

that J (e) � Z (e). Then, J(�;�) (�) (e) � 
Z
(�;�) (�) (e) for all e 2 A respecting to the

aftersets.

Proof. Let � 2 -F (U) and let (J;A) and (Z;A) be two soft re�exive relations on U
such that J (e) � Z (e) for all e 2 A. Then J� (e) � Z� (e) and J� (e) � Z� (e). Also,
J (��) (e) � Z(��) (e) and J(��) (e) � Z(��) (e). By lemma 4.4.4,���J (��) (e)��� =

����J� (e)�
�

��� � ����Z� (e)�
�

��� = ���Z(��) (e)��� and����J(��) (e)���� =
����J� (e)����� � �����Z� (e)��

���� = ����Z(��) (e)���� .
Rearranging and dividing the above two equations, we get

���J (��) (e)��� = ����J(��) (e)���� ����Z(��) (e)��� = ����Z(��) (e)����. Hence, J(�;�) (�) (e) � Z(�;�) (�) (e) for all e 2 A.
Corollary 4.4.15 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

� 2 -F (U) and 0 � � � � � 1. If (Z;A) is a soft re�exive relation on U such

that J (e) � Z (e). Then, �J(�;�) (�) (e) � �
Z
(�;�) (�) (e) for all e 2 A respecting to the

aftersets:

Proof. It is an immediate consequence of De�nition 4.4.6 and Theorem 4.4.14.
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Theorem 4.4.16 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

�; � 2 -F (U) and 0 � � � � � 1. Then, � 'A � implies the following assertions for
all e 2 A with respect to the aftersets are true.

(1) J(�;�) (� \ �) (e) � 
J
(�;�) (�) (e)

(2) J(�;�) (� \ �) (e) � 
J
(�;�) (�) (e).

Proof. (1) Let �; � 2 -F (U) and 0 � � � � � 1 such that � 'A �. By de�n-

ition 4.3.1, J� (e) = J� (e). Now by Theorem 4.3.7, J�\� (e) = J� (e). Therefore,

J (�\�)� (e) = J (�)� (e). Therefore,
���J (�\�)� (e)��� = ���J (�)� (e)���. On the other hand,

� \ � � � which implies (� \ �)� � �� that is J
(�\�)� (e) � J

(�)� (e). Therefore,���J (�\�)� (e)��� � ���J (�)� (e)���. Hence, by re-setting, we get ���J (�\�)� (e)��� = ���J (�\�)� (e)��� ����J (�)� (e)��� = ���J (�)� (e)���. Hence, J(�;�) (� \ �) (e) � J(�;�) (�) (e) for all e 2 A.
(2) This can be proved in the same manner as (1).

Corollary 4.4.17 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

�; � 2 -F (U) and 0 � � � � � 1. Then, � 'A � implies the following assertions for
all e 2 A with respect to the aftersets are true.

(1) �J(�;�) (� \ �) (e) � �
J
(�;�) (�) (e)

(2) �J(�;�) (� \ �) (e) � �
J
(�;�) (�) (e).

Proof. The proof is direct consequence of De�nition 4.4.6 and Theorem 4.4.16.

Theorem 4.4.18 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

�; � 2 -F (U) and 0 � � � � � 1. Then, � hA � implies the following assertions for
all e 2 A with respect to the aftersets are true.

(1) J(�;�) (� [ �) (e) � 
J
(�;�) (�) (e)

(2) J(�;�) (� [ �) (e) � 
J
(�;�) (�) (e).

Proof. It has a comaparable proof as the proof of Theorem 4.4.16.

Corollary 4.4.19 Let (J;A) be a soft re�exive relation on a non-empty universe U ,

�; � 2 -F (U) and 0 � � � � � 1. Then, � hA � implies the following assertions for
all e 2 A respecting to the aftersets are true.
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(1) �J(�;�) (� [ �) (e) � �
J
(�;�) (�) (e)

(2) �J(�;�) (� [ �) (e) � �
J
(�;�) (�) (e).

Proof. The proof is direct consequence of De�nition 4.4.6 and Theorem 4.4.18.

Theorem 4.4.20 Let (J;A) be a soft re�exive relation on a non-empty universe U , �;

� 2 -F (U) and 0 � � � � � 1. Then, � �A � implies that J(�;�) (�) (e) = 
J
(�;�) (�) (e)

for all e 2 A with respect to the aftersets.

Proof. Let 0 � � � � � 1 and �; � 2 -F (U) such that � �A �. By de�nition

4.3.1, J� (e) = J� (e) and J
�
(e) = J

�
(e). By Lemma 4.4.4, J (��) (e) = J (��) (e)

and J
(��) (e) = J

(��) (e), that is
���J (��) (e)��� = ���J (��) (e)��� and ���J (��) (e)��� = ���J (��) (e)���.

This yields
���J (��) (e)��� = ���J (��) (e)��� = ���J (��) (e)��� = ���J (��) (e)���. Hence, J(�;�) (�) (e) =

J(�;�) (�) (e) for all e 2 A.

Corollary 4.4.21 Let (J;A) be a soft re�exive relation on a non-empty universe U , �;

� 2 -F (U) and 0 � � � � � 1. Then, � �A � implies that �J(�;�) (�) (e) = �
J
(�;�) (�) (e)

for all e 2 A respecting to the aftersets.

Proof. The proof is a direct consequence of De�nition 4.4.6 and Theorem 4.4.20.

Note: Similarly we can prove the results corresponding to foresets.

4.5 Decision making

Soft set was de�ned by Molodtsov and applied in decision making problems by (Maji

et al. [64, 65]). The evaluation of all the decision parameters is involved by the results

of soft sets depending on decision making. Moreover, for the evaluation of decision

parameters, there is not a uniform criterion generally (Feng et al. [29]). So, there are

limitations on previous decision approaches. On fuzzy soft set theory, decision making

is done by the authors Roy and Maji in [85]. The limitations in Roy and Maji�s method

[85] is overcomed by Feng�s et al. [29].

Depending on fuzzy soft rough set theory, the decision making methods by soft binary

relations are proposed in this section. This approach helps to use data provided by
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decision makers and further information is not required. Hence, the results should

avoid the paradox results.

The existing approaches to decision making problems based on fuzzy soft set are mainly

focussed on the choice value ci (Roy and Maji [85]) of the membership degree about

the parameter set for the given object in universe U and the score of an object oi

according to the comparison table. Then select the object of the universe U with

maximum choice value ci or maximum score as the optimum decision.

As the rough lower approximation and upper approximation are two most closed to

the approximated set of the universe. Therefore, we obtain two most closed values

J� (ei) (xj) and J
�
(ei) (xj) with respect to the aftersets to the decision alternative

xj 2 U of the universe U by the fuzzy soft lower and upper approximations of the

fuzzy set �. So, we rede�ne the choice value i for the decision alternative xi on the

universe U with respect to the aftersets as follows:

j =

nX
i=1

J� (ei) (xj) +

nX
i=1

J
�
(ei) (xj) ; xj 2 U:

Taking the object xj 2 U in universe U with the maximum choice value j as the

optimum decision for the given decision making problem and by taking the object

xj 2 U in universe U with the minimum choice value j as the worst decision for the

given decision making problem. In general, if there exist two or more object xj 2 U
with the same maximum (minimum) choice value j , then take one of them random

as the optimum (worst) decision for the given decision making problem.

Algorithm 1:

An algorithm for the approach to a decision making problem is presented here with

respect to aftersets. The decision algorithm is as follows:

(1) Compute the lower fuzzy soft set approximation J� and upper fuzzy soft set ap-

proximation J
�
of the fuzzy set � respecting to the aftersets:

(2) Compute the sum of lower approximation
nX
i=1

J� (ei) (xj) and the sum of upper

approximation
nX
i=1

J
�
(ei) (xj) corresponding to each i with respect to the aftersets.

(3) Compute the choice value j =
nX
i=1

J� (ei) (xj) +
nX
i=1

J
�
(ei) (xj) ; xj 2 U with
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respect to the aftersets:

(4) The best decision is xk 2 U if k = maxj j ; j = 1; 2; :::; jU j :

(5) The worst decision is xk 2 U if k = minj j ; j = 1; 2; :::; jU j :

(6) If k has more than one value, then any one of xk may be chosen.

Algorithm 2:

Here we present an algorithm for the approach to a decision making problem with

respect to foresets. The decision algorithm is as follows:

(1) Compute the lower fuzzy soft set approximation �J and upper fuzzy soft set ap-

proximation �J of the fuzzy set � with respect to the foresets:

(2) Compute the sum of lower approximation
nX
i=1

�J (ei) (xj) and the sum of upper

approximation
nX
i=1

�J (ei) (xj) corresponding to each i with respect to the foresets.

(3) Compute the choice value 
0
j =

nX
i=1

�J (ei) (xj) +
nX
i=1

�J (ei) (xj) ; xj 2 U with

respect to the foresets:

(4) The best decision is xk 2 U if 
0
k = maxj 

0
j ; j = 1; 2; :::; jU j :

(5) The worst decision is xk 2 U if 
0
k = minj 

0
j ; j = 1; 2; :::; jU j :

(6) If k has more than one value, then any one of xk may be chosen.

4.5.1 An Application of the Decision Making Approach

This subsection shows the steps of decision making proposed in this section by using

an example.

Example 4.5.1 Consider the soft relations of Example 4.1.3 again, where a person

wants to select a shirt out of six shirt designs and four shirt colors.
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De�ne � : W ! [0; 1] which represents the preference of the

color given by Mr: X such that

� (c1) = 0:3; � (c2) = 0:1; � (c3) = 0; � (c4) = 0:5 and

De�ne � : U ! [0; 1] which represents the preference of the

color given by Mr: X such that

� (d1) = 1; � (d2) = 0:7; � (d3) = 0:5;

� (d4) = 0:1; � (d5) = 0; � (d6) = 0:4:

Consider the following table after applying the above algorithm.

Table : The results of decision algorithm with respect to the aftersets

J� (e1) J� (e2) J� (e3) J
�
(e1) J

�
(e2) J

�
(e3) Choice value j

d1 0 0 0 0:3 0 0 0:3

d2 0:1 0 0:5 0:5 0 0:5 1:6

d3 0 0 0 0 0 0:3 0:3

d4 0 0:3 0 0:1 0:3 0 0:7

d5 0 0:3 0 0:5 0:3 0:5 1:6

d6 0:3 0 0 0:3 0:1 0 0:7

And,

Table : The results of decision algorithm with respect to the foresets

�J (e1)
�J (e2)

�J (e3)
�J (e1)

�J (e2)
�J (e3) Choice value 

0
j

c1 0:4 0 0:5 1 0:1 0:5 2:5

c2 0:1 0:4 0 1 0:4 0 1:9

c3 0 0:7 0 1 1 0:5 3:2

c4 0 0 0 0:7 0 0:7 1:4

Here the choice value j =
3X
i=1

J� (ei) (xj) +
3X
i=1

J
�
(ei) (xj) is calculated with respect

to the aftersets and the choice value 
0
j =

3X
i=1

�J (ei) (xj)+
3X
i=1

�J (ei) (xj) is calculated

with respect to the foresets.



4. Approximation of a fuzzy set by soft relation 109

It is clear that the maximum choice value is k = 1:6 = 2 = 5; scored by the shirt

of designs d2 and d5 and the decision is in favour of selecting the shirt of design d2

or d5: Moreover, the shirts of designs d1 and d3 are totally ignored. Hence, Mr: X

will choose the shirt of design d2 or d5 for his personal use and he will not select the

shirts of design d1 and d3 with respect to the aftersets. Similarly, the maximum choice

value is 
0
k = 3:2 = 3; scored by the shirt of color c3 and the decision is in favour of

selecting the shirt of color c3: Moreover, the shirt of color c4 is totally ignored. Hence,

Mr: X will choose the shirt of color c3 for his personal use and he will not select the

shirt of color c4 with respect to foresets.



Chapter 5

Rough approximation of a fuzzy

set in semigroups based on soft

relations

In the present chapter, with reference to the aftersets and foresets, a new approach

is being presented. This way gives two sets named as fuzzy soft sets. Further, two

approximations such as upper and lower are obtained while using the aftersets and

foresets. For better understanding, these concepts are applied on semigroups. More-

over, two approximations such as upper and lower fuzzy substructures of semigroups

are studied.

5.1 Approximation of ideals in semigroups

Approximations of FSS ( FLIL, FRIL, FBIL, FIIL) of a semigroup are presented

with the help of SCRE. This is proceeded with the help of aftersets and the foresets. It

is noticed that the two approximations such as upper and lower of a fuzzy substructures

like FSS ( FLIL, FRIL, FBIL, FIIL) of a semigroup are fuzzy soft substructures

of the semigroup. During this process a SCmR, aftersets and foresets are utilized. To

verify our results some examples will be presented.

De�nition 5.1.1 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2.

For any non-empty FS; � of S2; if the upper approximation
�
J
�
; A
�
is a FSS of

110
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S1; then � is said to be generalized upper FSSS of S1 respecting to the aftersets. If�
J
�
; A
�
is a FLIL (FRIL, FIL) of S1; then the FS; � is said to be generalized upper

FSLIL (FSRIL, FSIL) of S1 respecting to aftersets.

De�nition 5.1.2 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2.

For any non-empty FS; � of S1; if the upper approximation
�
�J;A

�
is a FSS of S2;

then � is said to be generalized upper FSSS of S2 respecting to the foresets. If
�
�J;A

�
is a FLIL (FRIL, FIL) of S2; then FS; � is said to be generalized upper FSLIL

(FSRIL, FSIL) of S2 respecting to the foresets,

Next, some results related to FSS; FLIL, FRIL of a semigroup are presented for

upper approximations.

Theorem 5.1.3 Let (J;A) be an SCRE from a semigroup S1 to a semigroup S2.

(1) Then � is a generalized upper FSSS of S1 respecting to the aftersets, if � is a

FSS of S2.

(2) Then � is a generalized upper FSSS of S2 respecting to the foresets, if � is a FSS

of S1.

(3) Then � is a generalized upper FSLIL (FSRIL, FSIL) of S1 respecting to the

aftersets, if � is a FLIL (FRIL, FIL) of S2.

(4) Then � is a generalized upper FSLIL (FSRIL, FSIL) of S2 respecting to the

foresets if � is a FLIL (FRIL, FIL) of S1.

Proof. (1) Suppose � is a FSS of S2. For x; y 2 S1;

J
�
(e) (x) ^ J� (e) (y) =

�
_p2xJ(e)� (p)

�
^
�
_q2yJ(e)� (q)

�
= _p2xJ(e) _q2yJ(e) (� (p) ^ � (q))
� _p2xJ(e) _q2yJ(e) (� (pq))
� _pq2(xy)J(e) (� (pq))
= _a02(xy)J(e)�

�
a
0
�

= J
�
(e) (xy) :

Hence, J
�
(e) is a FSS of S1 for all e 2 A and so � is a generalized upper FSSS of

S1 respecting to the aftersets.
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(2) The proof is simple like the proof of part (1).

(3) Suppose � is a FLIL of S2. For x; y 2 S1;

J
�
(e) (y) = _q2yJ(e)� (q)

� _p2xJ(e) _q2yJ(e) � (pq)
� _pq2(xy)J(e) (� (pq))
= _a02(xy)J(e)�

�
a
0
�

= J
�
(e) (xy) :

Hence, J
�
(e) is a FLIL of S1 for all e 2 A and so � is a generalized upper FSLIL of

S1 respecting to the aftersets.

(4) The proof is simple like part (3).

Likewise; other cases can be proved.

It is followed by the next Example that the converse of the parts of above Theorem

do not hold in general.

Example 5.1.4 For two semigroups S1 = fa; b; c; d; eg and S2 = f1; 2; 3; 4; 5g with
the multiplication tables as follows:

� a b c d e

a b b d d d

b b b d d d

c d d c d c

d d d d d d

e d d c d c

� 1 2 3 4 5

1 1 5 3 4 5

2 1 2 3 4 5

3 1 5 3 4 5

4 1 5 3 4 5

5 1 5 3 4 5

Let A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ;

(c; 5) ; (b; 5) ; (d; 3) ; (d; 5) ; (d; 1)

)
and

J(e2) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1) ;

(c; 5) ; (b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (b; 3)

)
.

Then (J;A) is an SCRE from the semigroup S1 to S2 with J (e) 6= �: Now,
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aJ(e1) = f1g ; bJ(e1) = f1; 2; 5g ; cJ(e1) = f3; 5g ;

dJ(e1) = f1; 3; 4; 5g ; eJ(e1) = f5g and

aJ(e2) = f1g ; bJ(e2) = f1; 2; 3; 5g ; cJ(e2) = f3; 5g ;

dJ(e2) = f1; 3; 4; 5g ; eJ(e2) = f5g .

Also,

J(e1)1 = fa; b; dg ; J(e1)2 = fbg ; J(e1)3 = fc; dg ;

J(e1)4 = fdg ; J(e1)5 = fb; c; d; eg and

J(e2)1 = fa; b; dg ; J(e2)2 = fbg ; J(e2)3 = fb; c; dg ;

J(e2)4 = fdg ; J(e2)5 = fb; c; d; eg .

(1) De�ne � : S2 �! [0; 1] by

1 2 3 4 5

� 0:5 0:4 0:3 1 0:1

Then � is not a FSS and FLIL of S2 as � (1:2) = � (5) = 0:1 � � (1) ^ � (2) but

a b c d e

J
�
(e1) 0:5 0:5 0:3 1 0:1

J
�
(e2) 0:5 0:5 0:3 1 0:1

Clearly, J
�
(e1) and J

�
(e2) are FSSs and FLILs of S1. Hence, � is a generalized

upper FSSS and FSLIL of S1 respecting to the aftersets.

(2) De�ne � : S1 �! [0; 1] by

a b c d e

� 0:2 0:7 0:8 0 0:9
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Then � is not a FSS and FLIL of S1 as � (c:b) = � (d) = 0 � 0:7 = � (c) ^ � (b) but

1 2 3 4 5

�J (e1) 0:7 0:7 0:8 0 0:9

�J (e2) 0:7 0:7 0:8 0 0:9

Clearly, �J (e1) and �J (e2) are FSSs and FLIL of S2. Hence, � is a generalized upper

FSSS and FSLIL of S2 respecting to the foresets.

De�nition 5.1.5 Let (J;A) be an SCRE from a semigroup S1 to a semigroup S2.

For a non-empty FS; � of S2; if
�
J�; A

�
is a FSS of S1; then � is said to be generalized

lower FSSS of S1 respecting to the aftersets. If
�
J�; A

�
is a FLIL(FRIL, FIL) of

S1, then FS; � is said to be generalized lower FSLIL (FSRIL, FSIL) of S1 respecting

to the aftersets.

De�nition 5.1.6 Let (J;A) be an SCRE from a semigroup S1 to a semigroup S2.

For a non-empty FS; � of S1; if
�
�J;A

�
is a FSS of S2; then � is said to be generalized

lower FSSS of S2 respecting to the foresets. If
�
�J;A

�
is a FLIL(FRIL, FIL) of S2;

then FS; � is said to be generalized lower FSLIL (FSRIL, FSIL) of S2 respecting

to the foresets.

Example 5.1.7 Consider the semigroups and soft relations of Example 5.1.4,

De�ne � : S2 �! [0; 1] by

1 2 3 4 5

� 0:7 0:7 0:8 0 0:9

Then � is a FLIL of S2 and

a b c d e

J
�
(e1) 0:7 0:7 0:8 0 0:9

But, J
�
(e1) is not a FLIL of S1 as J

�
(e1) (ac) = J

�
(e1) (d) = 0 � 0:7 = J

�
(e1) (a)^

J
�
(e1) (c) :
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In the above example, we have shown that if (J;A) is a SCRE from the semigroup

S1 to S2 and � is a FLIL of S2 even then
�
J�; A

�
is not a FSLIL of S1. Moreover,

some results related to lower approximations for FSS (FLIL, FRIL) of a semigroup

respecting to aftersets are presented as follows.

Theorem 5.1.8 Let (J;A) be an SCmR respecting to the aftersets from a semigroup

S1 to a semigroup S2.

(1) Then � is a generalized lower FSSS of S1 respecting to the aftersets, if � is a FSS

of S2.

(2) Then � is a generalized lower FSLIL (FSRIL, FSIL) of S1 respecting to the

aftersets, if � is a FLIL (FRIL, FIL) of S2.

Proof. (1) Let x; y 2 S1 and � be a FSS of S2. Then

J� (e) (xy) = ^a02(xy)J(e)�
�
a
0
�

= ^a02xJ(e):yJ(e)�
�
a
0
�

= ^p2xJ(e); q2yJ(e)� (pq)
� ^p2xJ(e) ^q2yJ(e) (� (p) ^ � (q))
�
�
^p2xJ(e)� (p)

�
^
�
^q2yJ(e)� (q)

�
= J� (e) (x) ^ J� (e) (y) :

Hence, J� (e) is a FSS of S1 for all e 2 A and so � is a generalized lower FSSS of S1
respecting to the aftersets.

(2) Let � be a FLIL of S2. Then for x; y 2 S1; we have,

J� (e) (xy) = ^a02(xy)J(e)�
�
a
0
�

= ^a02xJ(e):yJ(e)�
�
a
0
�

= ^p2xJ(e); q2yJ(e)� (pq)
� ^q2yJ(e)� (q)
= J� (e) (y) :

Hence, J� (e) is a FLIL of S1 for all e 2 A and so � is a generalized lower FSLIL of
S1 respecting to the aftersets.

Now, results related to lower approximations interms of FSS (FLIL, FRIL) of a

semigroup respecting to foresets are being given.



5. Rough approximation of a fuzzy set in semigroups based on soft
relations 116

Theorem 5.1.9 Let (J;A) be an SCmR respecting to the foresets from a semigroup

S1 to a semigroup S2.

(1) Then � is a generalized lower FSSS of S2 respecting to the foresets, if � is a FSS

of S1.

(2) Then � is a generalized lower FSLIL (FSRIL, FSIL) of S2 respecting to the

foresets, if � is a FLIL (FRIL, FIL) of S1.

Proof. The proof is simple like the proof of Theorem 5.1.8.

Example 5.1.10 For two semigroups S1 = fa; b; c; dg and S2 = f1; 2; 3; 4g with the
multiplication tables as follows:

� a b c d

a a a a d

b a b a d

c a a c d

d d d d d

� 1 2 3 4

1 1 2 3 4

2 2 2 2 2

3 3 3 3 3

4 4 3 2 1

and A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is an SCmR respecting to the aftersets. from the semigroup S1 to the semigroup

S2.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

(1) De�ne � : S2 �! [0; 1] by

1 2 3 4

� 0:2 0:4 0:6 0:8
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Then � is not a FSS and FLIL of S2 as � (4:3) = � (2) = 0:4 � 0:6 = � (4) ^ � (3)
but

a b c d

J� (e1) 0:4 0:4 0:4 0:4

J� (e2) 0:4 0:4 0:4 0:4

Clearly, J� (e1) and J� (e2) are FSSs and FLILs of S1. Hence, � is a generalized

lower FSSS and FSLILs of S1 respecting to the aftersets.

De�ne J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then J is an SCmR respecting to the foresets from the semigroup S1 to the semigroup

S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

(1) De�ne � : S1 �! [0; 1] by

a b c d

� 0:1 0:3 0:5 0:7

Then � is not a FSS and FLI of S1 as � (cb) = � (a) = 0:1 � 0:3 = � (c) ^ � (b) but

1 2 3 4

�J (e1) 0:7 0:7 0:7 0:7

�J (e2) 0:1 0:1 0:1 0:1

Clearly, �J (e1) and �J (e2) are FSSs and FLIs of S2. Hence, � is a generalized lower

FSSS and FSLIs of S2 respecting to the foresets.

Theorem 5.1.11 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2.

Then for any FRIL; �1 and FLIL �2 of S2, J
�1�2 � J�1 \ J�2.
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Proof. Suppose that �1 is a FRIL and �2 a FLIL of S2, so by de�nition �1�2 �
�1 \ �2. It follows from Theorem 4.1.4 (part (2) and (4)), J

�1�2 (e) � J
�1\�2 (e) �

J
�1 (e) \ J�2 (e). Hence, J�1�2 � J�1 \ J�2 .

The next Theorem has similar proof as Theorem 5.1.11.

Theorem 5.1.12 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2.

Then for any FRIL; �1 and FLIL �2 of S1, �1�2J � �1J \�2 J .

Theorem 5.1.13 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2.

Then for any FRIL; �1 and FLIL; �2 of S2, J�1�2 � J�1 \ J�2.

Proof. Suppose that �1 is a FRIL and �2 a FLIL of S2 , so by de�nition �1�2 �
�1 \ �2. It follows from Theorem 4.1.4 (part (1) and (3)), J�1�2 (e) � J�1\�2 (e) =

J�1 (e) \ J�2 (e). Hence, J�1�2 � J�1 \ J�2 .

The next Theorem has similar proof as Theorem 5.1.13.

Theorem 5.1.14 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2.

Then FRIL; �1 and FLIL; �2 of S2, �1�2J � �1J\ �2J .

Discussion related to FIILs of a semigroup are presented below.

De�nition 5.1.15 Let (J;A) be an SBRE from a semigroup S1 to a semigroup S2

and � be a non-empty FS of S2. Then � is said to be generalized lower (upper) FSIIL

of S1 respecting to the aftersets if
�
J�; A

� �
respectively

�
J
�
; A
��

is a FIIL of S1.

De�nition 5.1.16 Let � be a non-empty FS of S1 and (J;A) be an SBRE from a

semigroup S1 to a semigroup S2. Then � is said to be generalized lower (upper) FSIIL

of S2 respecting to the foresets if
�
�J;A

� �
respectively

�
�J;A

��
is a FIIL of S2.

Theorem 5.1.17 Let (J;A) be an SCRE respecting to the aftersets from a semigroup

S1 to a semigroup S2. Then � is a generalized upper FSIIL of S1 respecting to the

aftersets; if � is a FIIL of S2.
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Proof. Suppose � is a FIIL of S2. For x; a; y 2 S1;

J
�
(e) (a) = _q2aJ(e)� (q)

� _
p2xJ(e) _q2aJ(e) _r2yJ(e)� (pqr)

� _(pqr)2(xay)J(e)�
�
a
0
�

= _a02(xay)J(e)�
�
a
0
�

= J
�
(e) (xay) :

Hence, J
�
(e) is a FIIL of S1 for all e 2 A and so � is a generalized upper FSIIL of

S1 respecting to the aftersets.

It is found in the accompanying Example that converse to above Theorem is not

precise.

Example 5.1.18 For two semigroups S1 = f1; 2; 3g and S2 = fa; b; cg with the mul-
tiplication tables as follows:

� 1 2 3

1 1 2 3

2 1 2 3

3 1 2 3

� a b c

a a a c

b a b c

c a c c

and A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) = f(1; a); (2; b) ; (3; c); (1; b); (2; a) ; (1; c) ; (3; a)g and

J(e2) = f(1; a); (1; b) ; (1; c); (2; a); (2; b) ; (3; c)g :

Then (J;A) is an SCRE from S1 to S2. Now,

1J(e1) = fa; b; cg; 2J(e1) = fa; bg and 3J(e1) = fa; cg;

1J(e2) = fa; b; cg; 2J(e2) = fa; bg and 3J(e2) = fcg:

De�ne � : S2 �! [0; 1] by

a b c

� 0 0:1 0:1
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Then � is not a FIIL of S2 as � (bca) = � (a) = 0 � 0:1 = � (c) but

1 2 3

J
�
(e1) 0:1 0:1 0:1

J
�
(e2) 0:1 0:1 0:1

Clearly, J
�
(e1) and J

�
(e2) are FIILs of S1. Hence, � is a generalized upper FSIIL

of S1 respecting to the aftersets.

Next upper approximations are being related to FIIL of a semigroup concerning

foresets.

Theorem 5.1.19 Let (J;A) be an SCRE respecting to the foresets from a semigroup

S1 to a semigroup S2. Then � is a generalized upper FSIIL of S2 respecting to the

foresets; if � is a FIIL of S1.

Proof. It has similar proof as Theorem 5.1.17.

Moreover the next example shows that the converse of above Theorem is not true.

Example 5.1.20 Consider the Example 5.1.18,

J(e1)a = f1; 2; 3g; J(e1)b = f1; 2g; J(e1)c = f1; 3g;

J(e2)a = f1; 2g; J(e2)b = f1; 2g and J(e2)c = f1; 2; 3g:

De�ne � : S1 �! [0; 1] by

1 2 3

� 0 0:1 0:1

Then � is not a FIIL of S1 as � (231) = � (1) = 0 � 0:1 = � (3) but

a b c

�J (e1) 0:1 0:1 0:1

�J (e2) 0:1 0:1 0:1

Clearly, �J (e1) and �J (e2) are FIILs of S2. Hence, � is a generalized upper FSIIL

of S2 respecting to the foresets.



5. Rough approximation of a fuzzy set in semigroups based on soft
relations 121

Now, lower approximations are described interms of FIIL of a semigroup respecting

to aftersets.

Theorem 5.1.21 Let (J;A) be an SCmR respecting to the aftersets from a semigroup

S1 to a semigroup S2. Then � is a generalized lower FSIIL of S1 respecting to the

aftersets, if � is a FIIL of S2.

Proof. Let � be a FIIL of S2. For x; a; y 2 S1;

J� (e) (xay) = ^a02(xay)J(e)�
�
a
0
�

= ^a02xJ(e):aJ(e):yJ(e)�
�
a
0
�

= ^p2xJ(e); q2aJ(e); r2yJ(e)� (pqr)
� ^q2aJ(e)� (q)
= J� (e) (a) :

Hence, J� (e) is a FIIL of S1 for all e 2 A and so � is a generalized lower FSIIL of
S1 respecting to the aftersets.

Example 5.1.22 Consider the Example 5.1.10 and A = fe1; e2g. De�ne J : A !
P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is an SCmR respecting to the aftersets from S1 to S2.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

De�ne � : S2 �! [0; 1] by

1 2 3 4

� 0:4 0:6 0:8 1

Then � is not a FIIL of S2 as � (143) = � (2) = 0:6 � 1 = � (4) but
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a b c d

J� (e1) 0:6 0:6 0:6 0:6

J� (e2) 0:6 0:6 0:6 0:6

Clearly, J� (e1) and J� (e2) are FIILs of S1. Hence, � is a generalized lower FSIIL

of S1 respecting to the aftersets.

Now, FIIL of a semigroup respecting to foresets for lower approximations are pre-

sented below.

Theorem 5.1.23 Let (J;A) be an SCmR respecting to the foresets from a semigroup

S1 to a semigroup S2. Then � is a generalized lower FSIIL of S2 respecting to the

foresets, if � is a FIIL of S1.

Proof. The proof is simple and is similar to Theorem 5.1.21.

Example 5.1.24 Considering the Example 5.1.10 and A = fe1; e2g. De�ne J : A!
P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then J is an SCmR respecting to the foresets from the semigroup S1 to the semigroup

S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

De�ne � : S1 �! [0; 1] by

a b c d

� 0 0:3 0:5 0:7

Then � is not a FIIL of S1 as � (cba) = � (a) = 0 � 0:3 = � (b) but

1 2 3 4

�J (e1) 0:7 0:7 0:7 0:7

�J (e2) 0 0 0 0
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Clearly, �J (e1) and �J (e2) are FIILs of S2. Hence, � is a generalized lower FSIIL

of S2 respecting to the foresets.

Now, we discuss FBILs of a semigroup.

De�nition 5.1.25 Let � be a non-empty FS of S2 and (J;A) an SBRE from a

semigroup S1 to a semigroup S2. Then � is said to be generalized lower (upper)

FSBIL of S1 respecting to the aftersets if
�
J�; A

� �
respectively

�
J
�
; A
��

is a FBIL

of S1.

De�nition 5.1.26 Let � be a non-empty FS of S1 and (J;A) an SBRE from a

semigroup S1 to a semigroup S2. Then � is said to be generalized lower (upper) FSBIL

of S2 respecting to the foresets if
�
�J;A

� �
respectively

�
�J;A

��
is a fuzzy FBIL of S2.

Now, discussion about upper approximations for FBIL of a semigroup respecting to

aftersets are presented here.

Theorem 5.1.27 Let (J;A) be an SCRE from a semigroup S1 to a semigroup S2.

Then every FBIL; � of S2 is a generalized upper FSBIL of S1 respecting to the

aftersets.

Proof. Let � be a FBIL of S2. Obviously, � is a FSS of S2; therefore by Theorem

5.1.3, J
�
(e) is a FSS of S1 for all e 2 A: For x; a; y 2 S1;

J
�
(e) (x) ^ J� (e) (y) =

�
_p2xJ(e)� (p)

�
^
�
_q2yJ(e)� (q)

�
= _p2xJ(e) _q2yJ(e) � (p) ^ � (q)
� _p2xJ(e) _r2yJ(e) _q2zJ(e) (� (prq))
� _prq2(xyz)J(e)� (prq)
= _a02(xyz)J(e)�

�
a
0
�

= J
�
(e) (xay) :

Hence, J
�
(e) is a FBIL of S1 for all e 2 A and so � is a generalized upper FSBIL

of S1 respecting to the aftersets.

Example 5.1.28 Considering the Example 5.1.4,
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De�ne � : S2 �! [0; 1] by

1 2 3 4 5

� 0:7 0:6 0:2 0 0:1

Then � is not a FBIL of S2 as � (152) = � (5) = 0:1 � 0:6 = � (1) ^ � (2)but

a b c d e

J
�
(e1) 0:7 0:7 0:2 0:7 0:1

J
�
(e2) 0:7 0:7 0:2 0:7 0:1

Clearly, J
�
(e1) and J

�
(e2) are FBILs of S1. Hence, � is a generalized upper FSBIL

of S1 respecting to the aftersets.

Now, discussion about upper approximations for FBIL of a semigroup respecting to

foresets are presented here

Theorem 5.1.29 Let (J;A) be an SCRE from a semigroup S1 to a semigroup S2 for

all e 2 A. Then every FBIL; � of S1 is a generalized upper FSBIL of S2 respecting
to the foresets.

Proof. The proof is simple and is similar to Theorem 5.1.27.

Example 5.1.30 Considering the Example 5.1.4.

De�ne � : S1 �! [0; 1] by

a b c d e

� 1 0:5 0:7 0:9 0:2

Then � is not a FBIL of S1 as � (cae) = � (d) = 0:9 � 0:2 = � (c) ^ � (e) but

1 2 3 4 5

�J (e1) 1 0:5 0:9 0:9 0:9

�J (e2) 1 0:5 0:9 0:9 0:9

Clearly, �J (e1) and �J (e2) are FBILs of S2. Hence, � is a generalized upper FSBIL

of S2 respecting to the foresets.
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Some discussion about lower approximations for FBIL of a semigroup respecting to

aftersets are presented here.

Theorem 5.1.31 Let (J;A) be an SCmR respecting to the aftersets from a semigroup

S1 to a semigroup S2. Then every FBIL; � of S2 is a generalized lower FSBIL of S1

respecting to the aftersets.

Proof. Let � be a FBIL of S2. Obviously, � is a FSS of S2; therefore by Theorem

5.1.8, J� (e) is a FSS of S1 for all e 2 A: For x; a; y 2 S1;

J� (e) (xay) = ^a02(xay)J(e)�
�
a
0
�

= ^a02xJ(e):aJ(e):yJ(e)�
�
a
0
�

= ^p2xJ(e); q2aJ(e); r2yJ(e)� (pqr)
�
�
^p2xJ(e)� (p)

�
^
�
^r2yJ(e)� (r)

�
= J� (e) (x) ^ J� (e) (y) :

Hence, J� (e) is a FBIL of S1 for all e 2 A and so � is a generalized lower FSBIL of
S1 respecting to the aftersets.

Example 5.1.32 Considering the Example 5.1.10 and A = fe1; e2g. De�ne J : A!
P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 2) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (b; 2) ; (c; 2) ; (d; 2)g:

Then J is a SCmR respecting to the aftersets from the semigroup S1 to S2. Now,

aJ(e1) = f2; 3g ; bJ(e1) = f2; 3g; cJ(e1) = f2; 3g and dJ(e1) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g; cJ(e2) = f2g and dJ(e2) = f2g :

De�ne � : S2 �! [0; 1] by

1 2 3 4

� 0:7 0:2 0:1 0:4

Then � is not a FBIL of S2 as � (312) = � (3) = 0:1 � 0:2 = � (3) ^ � (2) but
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a b c d

J� (e1) 0:1 0:1 0:1 0:1

J� (e2) 0:2 0:2 0:2 0:2

Clearly, J� (e1) and J� (e2) are FBILs of S1. Hence, � is a generalized lower FSBIL

of S1 respecting to the aftersets.

Further, discussion about lower approximations for FBIL of a semigroup respecting

to the foresets are presented here.

Theorem 5.1.33 Let (J;A) be an SCmR respecting to the foresets from a semigroup

S1 to a semigroup S2. Then FBIL; � of S1 is a generalized lower FSBIL of S2

respecting to the foresets.

Proof. The proof is simple and is similar to Theorem 5.1.31.

Example 5.1.34 Considering the Example 5.1.10 and A = fe1; e2g. De�ne J : A!
P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then J is an SCmR respecting to the foresets from a semigroup S1 to a semigroup S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

De�ne � : S1 �! [0; 1] by

a b c d

� 0:1 0:8 0:6 0:7

Then � is not a FBIL of S1 as � (cab) = � (a) = 0:1 � � (c) ^ � (b) but

1 2 3 4

�J (e1) 0:7 0:7 0:7 0:7

�J (e2) 0:1 0:1 0:1 0:1

Clearly, �J (e1) and �J (e2) are FBILs of S2. Hence, � is a generalized lower FSBIL

of S2 respecting to the foresets.



Chapter 6

Approximation of a soft set by

soft relation

In this chapter, some fundamental thoughts identi�ed with rough sets and soft sets are

given. Two kinds of soft topologies induced by soft re�exive relations are investigated.

Soft similarity relations have also been examined. A decision making problem is given

based on a soft set.

6.1 Approximations by Soft Binary Relations

This section presents soft set approximations by an SBRE from a set U to a set W .

Some related properties are proposed here.

De�nition 6.1.1 Let (J;A) be an SBRE from U to W and G : A! P (W ) be a soft

set in W . Then we de�ne two soft sets over U; by

JG (e) = fu 2 U : � 6= uJ (e) � G (e)g and

J
G
(e) = fu 2 U : uJ (e) \G (e) 6= �g

where uJ (e) = fw 2W : (u;w) 2 J(e)g and is called the afterset of u, for e 2 A and
u 2 U .

Moreover, JG : A! P (U) and J
G
: A! P (U).

127
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De�nition 6.1.2 Let (J;A) be an SBRE from U to W and L : A! P (U) be a soft

set in U; two soft sets in W are de�ned by

LJ (e) = fw 2W : � 6= J (e)w � L (e)g and
LJ (e) = fw 2W : J (e)w \ L (e) 6= �g

where J (e)w = fu 2 U : (u;w) 2 J(e)g and is called foreset of w, for each w 2W and

e 2 A:

Moreover, LJ : A! P (W ) and LJ : A! P (W ).

In order to explain these concepts, the following example is given.

Example 6.1.3 Suppose that Mr: X wants to buy a shirt for his own use. Let U =

fthe set of all shirts designsg = fd1; d2; d3; d4; d5; d6g andW = fthe colors of all designsg =
fc1; c2; c3; c4g and the set of attributes be A = fe1; e2; e3g = fthe set of stores near his houseg.

De�ne J : A! P (U �W ) by

J(e1) =

(
(d1; c1); (d1; c2); (d1; c3); (d2; c2) ; (d2; c4) ;

(d4; c2) ; (d4; c3) ; (d5; c3) ; (d5; c4) ; (d6; c1)

)
,

J(e2) = f(d1; c3); (d2; c3); (d4; c1); (d5; c1) ; (d6; c2) ; (d6; c3)g and

J(e3) = f(d3; c3); (d3; c1); (d2; c4); (d5; c3) ; (d5; c4)g :

represents the relation between designs and colors available on store ei for 1 � i � 3:
Then

d1J (e1) = fc1; c2; c3g ; d2J (e1) = fc2; c4g ; d3J (e1) = �;

d4J (e1) = fc2; c3g ; d5J (e1) = fc3; c4g ; d6J (e1) = fc1g and

d1J (e2) = fc3g ; d2J (e2) = fc3g ; d3J (e2) = �;

d4J (e2) = fc1g ; d5J (e2) = fc1g ; d6J (e2) = fc2; c3g and

d1J (e3) = �; d2J (e3) = fc4g ; d3J (e3) = fc1; c3g ;

d4J (e3) = �; d5J (e3) = fc3; c4g ; d6J (e3) = �.

where diJ (ej) represents the color of the design di available on store ej :
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And

J (e1) c1 = fd1; d6g; J (e1) c2 = fd1; d2; d4g;

J (e1) c3 = fd1; d4; d5g; J (e1) c4 = fd2; d5g; and

J (e2) c1 = fd4; d5g; J (e2) c2 = fd6g;

J (e2) c3 = fd1; d2; d6g; J (e2) c4 = �; and

J (e3) c1 = fd3g; J (e3) c2 = �;

J (e3) c3 = fd3; d5g; J (e3) c4 = fd2; d5g:

where J (ej) ci represents the design of the color ci available on store ej :

De�ne G : A! P (W ) which represents the preference of the

color given by Mr: X such that

G (e1) = fc1; c2g ; G (e2) = fc2; c3g ; G (e3) = fc1; c3; c4g and

De�ne H : A! P (U) which represents the preference of the

design given by Mr: X such that

H (e1) = fd1; d3; d6g ; H (e2) = fd1; d5g ; H (e3) = fd3; d4; d5; d6g :

Therefore, for each parameter the lower JG(e) and upper J
G
(e) (respecting with after-

sets as well as foresets) are

d1 d2 d3 d4 d5 d6

JG(e1) 0 0 0 0 0 1

J
G
(e1) 1 1 0 1 0 1

JG(e2) 1 1 0 0 0 1

J
G
(e2) 1 1 0 0 0 1

JG(e3) 0 1 1 0 0 1

J
G
(e3) 0 1 1 0 1 0

and
c1 c2 c3 c4

HJ(e1) 1 0 0 0

HJ(e1) 1 1 1 0

HJ(e2) 0 0 0 0

HJ(e2) 1 0 1 0

HJ(e3) 1 0 1 0

HJ(e3) 1 0 1 1
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Hence, JG(ei) gives the degree of de�nite ful�lment of the objects of dJ (ei) to G on

store ei and J
G
(ei) gives the degree of possible ful�lment of the objects of dJ (ei) to G

on store ei for 1 � i � 3 respecting to aftersets. Similarly, HJ(ei) gives the degree of
de�nite ful�lment of the objects of J (ei) c to H on store ei and HJ(ei) gives the degree

of possible ful�lment of the objects of J (ei) c to H on store ei for 1 � i � 3 respecting
to the foresets.

Theorem 6.1.4 Let (J;A) be an SBRE from U to W , that is J : A ! P (U �W ) :
For G1 : A ! P (W ) and G2 : A ! P (W ) ; the properties given below for lower and

upper approximations respecting to the aftersets hold:

(1) G1 (e) � G2 (e)) JG1 (e) � JG2 (e)

(2) G1 (e) � G2 (e)) J
G1 (e) � JG2 (e)

(3) JG1 (e) \ JG2 (e) = JG1\G2 (e)

(4) J
G1 (e) \ JG2 (e) � JG1\G2 (e)

(5) JG1 (e) [ JG2 (e) � JG1[G2 (e)

(6) J
G1 (e) [ JG2 (e) = JG1[G2 (e)

(7) JW (e) � U for all e 2 A and if for all u 2 U; uJ (e) 6= � then JW (e) = U

(8) J
W
(e) � U for all e 2 A and if uJ (e) 6= � for all u 2 U; then JW (e) = U; where

W : A! P (W ) such that W (e) =W for all e 2 A:

(9) JG1 (e) =

�
J
(Gc1)

�c
(e)

(10) J
G1 (e) =

�
J(G

c
1)
�c
(e) :

Proof. (1) Let u 2 JG1 (e) : Then � 6= uJ (e) � G1 (e). As G1 (e) � G2 (e), we have

� 6= uJ (e) � G2 (e) : Thus u 2 JG2 (e) : Hence, JG1 (e) � JG2 (e) :

(2) Let u 2 JG1 (e) : Then uJ (e) \G1 (e) 6= �. As G1 (e) � G2 (e), we have

uJ (e) \G2 (e) 6= �: Thus u 2 J
G2 (e) : Hence, J

G1 (e) � JG2 (e) :

(3) Using part (1) and the fact that G1 (e) \G2 (e) � G1 (e) ; G2 (e) ; we have

JG1\G2 (e) � JG1 (e) ; JG2 (e) so JG1\G2 (e) � JG1 (e) \ JG2 (e) : For the reverse
inclusion, let u 2 JG1 (e) \ JG2 (e)) u 2 JG1 (e) and u 2 JG2 (e)
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) uJ (e) � G1 (e) and uJ (e) � G2 (e)) uJ (e) � G1 (e) \G2 (e)

) u 2 JG1\G2 (e) ) JG1 (e) \ JG2 (e) � JG1\G2 (e) : Hence, JG1 (e) \ JG2 (e) =
JG1\G2 (e) :

(4) Using part (2) and the fact that G1 (e) \G2 (e) � G1 (e) ; G2 (e) ; we have

J
G1\G2 (e) � JG1 (e) ; JG2 (e)) J

G1\G2 (e) � JG1 (e) \ JG2 (e) :

(5) Since G1 (e) ; G2 (e) � G1 (e) [G2 (e) ; so by using part (1) ; we get

JG1 (e) ; JG2 (e) � JG1[G2 (e) and so JG1 (e) [ JG2 (e) � JG1[G2 (e) :

(6) Since G1 (e) ; G2 (e) � G1 (e) [G2 (e) ; so by using part (2) ; we get

J
G1 (e) ; J

G2 (e) � JG1[G2 (e) which implies JG1 (e) [ JG2 (e) � JG1[G2 (e) :

For the reverse inclusion, let u 2 J
G1[G2 (e) ) uJ (e) \ (G1 (e) [G2 (e)) 6= � )

uJ (e) \G1 (e) 6= � or uJ (e) \G2 (e) 6= �) u 2 JG1 (e) or u 2 JG2 (e)

) u 2
�
J
G1 (e) [ JG2

�
(e) ) J

G1[G2 (e) � J
G1 (e) [ JG2 (e) : Hence, JG1[G2 (e) =

J
G1 (e) [ JG2 (e) :

(7) By de�nition, JW (e) = fu 2 U : � 6= uJ (e) �W (e)g � U; because uJ (e) =

fw 2W : (u;w) 2 J(e)g �W: If uJ (e) 6= � for all u 2 U; then JW (e) = U:

(8) By de�nition, J
W
(e) = fu 2 U : uJ (e) \W (e) 6= �g � U:Moreover, If uJ (e) 6= �

for every u 2 U; then JW (e) = U:

(9) Let u 2 JG1 (e), � 6= uJ (e) � G1 (e), uJ (e) \Gc1 (e) = �

, u =2 JG
c
1 (e), u 2

�
J
(Gc1)

�c
(e) : Hence, JG1 (e) =

�
J
(Gc1)

�c
(e) :

(10) By part (9) ; JG1 (e) =
�
J
(Gc1)

�c
(e) ; therefore JG

c
1 (e) =

�
J
(Gc1)

c
�c
(e) :

) JG
c
1 (e) =

�
J
G1
�c
(e) : Hence,

�
J(G

c
1)
�c
(e) = J

G1 (e) :

It is demonstrated by the following example that equality is not valid in (4) and (5)

in general.

Example 6.1.5 ConsiderW = fm1;m2;m3;m4g is a collection of four mobile phones
as the universal set. These mobile phones are classi�ed by attributes age and color

represented by A = fe1; e2g. Let U = fnew, used, old, black, whiteg be represented by
U = fn; u; o; b; wg :
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De�ne a relation J : A! P (U �W ) by

J(e1) = f(n;m1); (n;m2); (o;m3); (o;m4) ; (u;m5)g

and

J(e2) = f(b;m2) ; (b;m3) ; (w;m1) ; (w;m4) ; (w;m5)g :

Now, nJ (e1) = fm1;m2g, u (e1) = fm5g ; oJ (e1) = fm3;m4g and bJ (e2) = fm2;m3g ;
wJ (e2) = fm1;m4;m5g :

De�ne G1 : A! P (W ) by G1 (e1) = fm1;m2;m3g and G1 (e2) = fm1;m3g :

And,

De�ne G2 : A! P (W ) by G2 (e1) = fm2;m4;m5g and G2 (e2) = fm1;m4g :

Then (G1 \G2) (e1) = G1 (e1) \ G2 (e1) = fm2g and (G1 [G2) (e1) = G1 (e1) [
G2 (e1) = fm1;m2;m3;m4;m5g : Therefore,

J
G1\G2 (e1) = fng ; JG1[G2 (e1) = fn; u; o; b; wg ;

J
G1(e1) = fn; og ; J

G2(e1) = fn; u; og ; JG1(e1) = fng ; JG2(e1) = fug :

Hence, J
G1 (e) \ JG2 (e) * JG1\G2 (e)

JG1[G2 (e) * JG1(e1) [ JG2(e1):

Theorem 6.1.6 Let (J;A) be an SBRE from U to W , that is J : A ! P (U �W ) :
For H1 : A ! P (U) and H2 : A ! P (U) ; the following properties respecting to

foresets hold:

(1) H1 (e) � H2 (e)) H1J (e) � H2J (e)

(2) H1 (e) � H2 (e)) H1J (e) � H2J (e)

(3) H1J (e)\ H2J (e) = H1\H2J (e)

(4) H1J (e)\ H2J (e) � H1\H2J (e)

(5) H1J (e)[ H2J (e) � H1[H2J (e)

(6) H1J (e)[ H2J (e) = H1[H2J (e)
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(7) UJ (e) �W for all e 2 A and if uJ (e) 6= � for all u 2 U; then UJ (e) = U

(8) UJ (e) �W for all e 2 A and if uJ (e) 6= � for all u 2 U; then UJ (e) = U

(9) H1J (e) =
�
(Hc

1)J
�c
(e)

(10) H1J (e) =
�
(Hc

1)J
�c
(e) :

Proof. The proof is obtained in a similar way from 6.1.4.

Theorem 6.1.7 Let (J;A) and (K;A) be two SBRE from a non-empty set U to a

non-empty set W and let (G1; A) and (G2; A) be two soft sets over W . Then the

following assertions hold:

(1) (J;A) � (K;A) implies
�
JG1 ; A

�
�
�
KG1 ; A

�
;

(2) (J;A) � (K;A) implies
�
J
G1 ; A

�
�
�
K
G1 ; A

�
.

Theorem 6.1.8 Let (J;A) and (K;A) be two SBRE from a non-empty set U to a

non-empty set W and let (L;A) be a soft set over U . Then the assertions following

hold:

(1) (J;A) � (K;A) implies
�
LJ;A

�
�
�
LK;A

�
;

(2) (J;A) � (K;A) implies
�
LJ;A

�
�
�
LK;A

�
.

Theorem 6.1.9 Let (J;A) and (K;A) be two SBRE from a non�empty set U to a

non-empty set W . If (G;A) is a soft set over W; then

(1)
��
J \K

�G
; A
�
�
�
J
G
; A
�
\
�
K
G
; A
�
.

(2)
�
(J \K)G ; A

�
�
�
JG; A

�
[
�
KG; A

�
.

Proof. The results are proceeded by parts (1) and (2) of Theorem 6.1.7.

Observed that converse of above results is not valid. Now we discuss it in the next

example.

Example 6.1.10 Let U = fa; b; c; d; eg and W = f1; 2; 3; 4; 5g and A = fe1; e2g.
De�ne J : A! P (U �W ) and K : A! P (U �W ) by

J(e1) =

(
(e; 5) ; (d; 4) ; (a; 1) ; (c; 3) ; (b; 1) ; (c; 5) ;

(b; 5) ; (d; 3) ; (d; 5) ; (d; 1) ; (e; 1) ; (b; 2)

)
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J(e2) = f(b; 2) ; (e; 5) ; (a; 1) ; (d; 4) ; (c; 3)g;

K(e1) = f(e; 2) ; (a; 1) ; (e; 5) ; (b; 1) ; (d; 4) ; (c; 3) ; (b; 2)g and

K(e2) = f(b; 2) ; (a; 1) ; (d; 4) ; (e; 5) ; (b; 3) ; (c; 3)g:

Therefore,

(J \K) (e1) = f(b; 2) ; (a; 1) ; (c; 3) ; (d; 4) ; (e; 5) ; (b; 1)g

and

(J \K) (e2) = f(a; 1) ; (d; 4) ; (e; 5) ; (c; 3) ; (b; 2)g:

Now,

aJ(e1) = f1g; bJ(e1) = f1; 2; 5g; cJ(e1) = f3; 5g;

dJ(e1) = f1; 3; 4; 5g and eJ(e1) = f1; 5g

and

aK(e1) = f1g; bK(e1) = f1; 2g; cK(e1) = f3g;

dK(e1) = f4g and eK(e1) = f2; 5g:

Also,

a (J \K) (e1) = f1g; b (J \K) (e1) = f1; 2g; c (J \K) (e1) = f3g;

d (J \K) (e1) = f4g and e (J \K) (e1) = f5g:

De�ne (G1; A) ; a soft set over W by G1 (e1) = f1; 2g and G1 (e2) = f2; 4; 5g :

Then

J
G1 (e1) = fa; b; d; eg; K

G1(e1) = fa; b; eg and
�
J \K

�G1 (e1) = fa; bg:
This shows that

J
G1 (e1) \K

G1 (e1) = fa; b; eg 6= fa; bg =
�
J \K

�G1 (e1) :
Now,

De�ne (G2; A) ; a soft set over W by G2 (e1) = f5g and G2 (e2) = f1; 3; 4g :

Then JG2(e1) = �; KG2(e1) = � and (J \K)G2 (e1) = feg. This shows that

JG2 (e1) [KG2 (e1) = � 6= feg = (J \K)G2 (e1) :
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Theorem 6.1.11 Let (J;A) and (K;A) be two SBRE from a non-empty set U to a

non-empty set W . If (L;A) is a soft set over U; then

(1)
�
L
�
J \K

�
; A
�
�
�
LJ;A

�
\
�
LK;A

�
.

(2)
�
L (J \K) ; A

�
�
�
LJ;A

�
[
�
LK;A

�
.

Proof. The results follows from parts (1) and (2) of Theorem 6.1.8.

The counter parts are not valid as in the example below:

Example 6.1.12 Let U = fa; b; c; d; eg and W = f1; 2; 3; 4; 5g and A = fe1; e2g.
De�ne J : A! P (U �W ) and K : A! P (U �W ) by

J(e1) =

(
(a; 1) ; (b; 2) ; (e; 5) ; (b; 1) ; (c; 5) ; (b; 5) ;

(d; 3) ; (d; 5) ; (c; 3) ; (d; 4) ; (d; 1) ; (e; 1)g

)
;

J(e2) = f(a; 1) ; (c; 3) ; (d; 4) ; (b; 2) ; (e; 5)g;

K(e1) = f(a; 1) ; (c; 3) ; (d; 4) ; (b; 2) ; (e; 5) ; (b; 1) ; (a; 5)g and

K(e2) = f(a; 1) ; (c; 3) ; (b; 2) ; (e; 5) ; (b; 3) ; (d; 4)g:

Therefore,

(J \K) (e1) = f(a; 1) ; (d; 4) ; (e; 5) ; (b; 2) ; (b; 1) ; (c; 3)g

and

(J \K) (e2) = f(d; 4) ; (a; 1) ; (c; 3) ; (e; 5) ; (b; 2)g:

Now,

J(e1)1 = fa; b; d; eg; J(e1)2 = fbg; J(e1)3 = fc; dg;

J(e1)4 = fdg and J(e1)5 = fb; c; d; eg;

and

K(e1)1 = fa; bg; K(e1)2 = fbg; 3K(e1) = fcg;

K(e1)4 = fdg and K(e1)5 = fa; eg:

Also,

(J \K) (e1)1 = fa; bg; (J \K) (e1)2 = fbg; (J \K) (e1)3 = fcg;

(J \K) (e1)4 = fdg and (J \K) (e1)5 = feg:
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De�ne (L1; A) ; a soft set over U by L1 (e1) = fa; bg and L1 (e2) = fc; dg :

Then L1J (e1) = f1; 2; 5g; L1K(e1) = f1; 2; 5g and L1
�
J \K

�
(e1) = f1; 2g. This

shows that

L1J (e1) \L1 K (e1) = f1; 2; 5g 6= f1; 2g =L1
�
J \K

�
(e1) :

Now,

De�ne (L2; A) ; a soft set over U by L2 (e1) = feg and L2 (e2) = fa; bg :

Then L2J(e1) = �;
L2K(e1) = � and L2 (J \K) (e1) = f5g. This shows that

L2J (e1) [L2 K (e1) = � 6= f5g = L2 (J \K) (e1) :

Proposition 6.1.13 Let (J;A) be an SBRE from U to W . Let Gi : A! P (W ) for

i 2 I be an arbitrary family of soft subsets of W . Then the following properties hold
with respect to the aftersets:

(1)J\i2IGi (e) = \i2IJGi (e)

(2)J
\i2IGi

(e) � \i2IJ
Gi
(e) :

Proof. (1) Let u 2 J\i2IGi (e) , � 6= uJ (e) � \i2IGi (e) , � 6= uJ (e) � Gi (e)

for all i 2 I , u 2 JGi (e) for all i 2 I , u 2 \i2IJGi (e) : Hence, J\i2IGi (e) =
\i2IJGi (e) :

(2) Let u 2 J
\i2IGi

(e) ) uJ (e) \ (\i2IGi (e)) 6= � ) uJ (e) \ Gi (e) 6= � for all

i 2 I ) u 2 J
Gi
(e) for all i 2 I ) u 2 \i2IJ

Gi
(e) : Hence, J

\i2IGi
(e) � \i2IJ

Gi
(e) :

Proposition 6.1.14 Let (J;A) be an SBRE from U to W . Let Hi : A! P (U) be an

arbitrary family of soft subsets of U . Then the properties below are valid with respect

to the aftersets:

(1) \i2IHiJ (e) = \i2I HiJ (e)

(2) \i2IHiJ (e) � \i2I HiJ (e) :

If (J;A) is a soft re�exive relation, then each uJ(e) (resp. J (e)u) is non-empty and u 2
uJ(e) (resp. u 2 J (e)u) : It is not necessary that uJ(e) = J(e)u: The approximation
operators have additional properties with respect to soft re�exive binary relation as

follows:
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Theorem 6.1.15 Let (J;A) be a soft re�exive relation on U . For a soft subset G :

A! P (U), the following properties hold respecting to the aftersets:

(1) JG (e) � G (e)

(2) G (e) � J
G
(e)

(3) J� (e) = � (e) = J
�
(e)

(4) J
W
(e) = U for all e 2 A:

Proof. (1) Let u 2 JG (e) : Then � 6= uJ (e) � G (e). But u 2 uJ (e), therefore
u 2 G (e) : Therefore, JG (e) � G (e).

(2) Let u 2 G (e) : Then u 2 uJ (e) \ G (e) ; so uJ (e) \ G (e) 6= �: This implies that
u 2 JG (e) : Therefore, G (e) � JG (e).

(3) It is direct.

(4) By de�nition, J
W
(e) = fu 2 U : uJ (e) \W (e) 6= �g : As uJ (e) 6= � for every

u 2 U; therefore, JW (e) = U:

Theorem 6.1.16 Let (J;A) be a soft re�exive relation on U . For a soft subset H :

A! P (U), the following properties hold respecting to the foresets:

(1) HJ (e) � H (e)

(2) H (e) � HJ (e)

(3) �J (e) = � (e) = �J (e)

(4) UJ (e) =W for all e 2 A:

The approximation operators have additional properties respecting to soft symmetric

binary relation as follows:

Lemma 6.1.17 If (J;A) is a soft symmetric relation on U , then v 2 uJ (e) implies
u 2 vJ (e) :

Proof. Straightforward.

Theorem 6.1.18 Let J : A ! P (U � U) be a soft symmetric relation on U: For a
soft subset G : A! P (U), the following properties hold:
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(1) G (e) � J(J
G(e))

(e)

(2) G (e) � J
�
J
G
(e)
�
(e)

Proof. (1) Let u 2 J
�
JG(e)

�
(e) for uJ (e) 6= � for all e 2 A: It proceeds uJ (e) \

JG (e) 6= � so there exists atleast one u1 2 uJ (e) \ JG (e) : This implies u1 2 uJ (e)
and u1 2 JG (e) : Now, u1 2 JG (e) implies u1J (e) � G (e) : Also u1 2 uJ (e) and
the relation is soft symmetric so u 2 u1J (e) : Thus, u 2 u1J (e) � G (e) : Therefore,

u 2 G (e) : Therefore, J
�
JG(e)

�
(e) � G (e) : Hence, J(J

G(e)) � G:

(2) Let u 2 G (e) : If u1 2 uJ (e) ; then u 2 u1J (e) ; because the relation is soft

symmetric. It is clear that u 2 u1J (e)\G (e) ; so u1J (e)\G 6= �: It means that u1 2
J
G
(e) ) uJ (e) � J

G
(e) implies u 2 J

�
J
G
(e)
�
(e) : Therefore, J

�
J
G
(e)
�
(e) � G (e) :

Therefore, G � J
�
J
G
(e)
�
:

Theorem 6.1.19 Let J : A ! P (U � U) be a soft symmetric relation on U: For a
soft subset H : A! P (U), the following properties hold respecting to foresets:

(1) (
HJ(e))J (e) � H (e)

(2) H (e) �(HJ(e)) J (e)

The approximation operators have additional properties with respect to soft transitive

binary relation as follows:

Theorem 6.1.20 Let J : A ! P (U � U) be a soft transitive relation on U: For
a soft subset G : A ! P (U) ; the following property hold respecting to aftersets:

J

�
J
G
(e)
�
(e) � JG (e) :

Proof. Let u 2 J
�
J
G
(e)
�
(e) : This implies uJ (e) \ JG (e) 6= � so there exists atleast

one u1 2 uJ (e) \ J
G
(e) such that u1 2 uJ (e) and u1 2 J

G
(e) : Now u1 2 J

G
(e)

implies that u1J (e) \ G (e) 6= �. So there exists atleast one x 2 u1J (e) \ G (e) such
that x 2 u1J (e) and x 2 G (e) : But u1 2 uJ (e) implies (u; u1) 2 J (e) and x 2 u1J (e)
implies (u1; x) 2 J (e) : Since the relation is soft transitive so (u; x) 2 J (e) : It follows
that x 2 uJ (e) : Therefore, x 2 uJ (e) \ G (e) : This implies uJ (e) \ G (e) 6= �:

Therefore u 2 JG (e) : Thus, J
�
J
G
(e)
�
(e) � JG (e) : Hence, J

�
J
G
(e)
�
� JG (e) :

Theorem 6.1.21 Let J : A! P (U �U) be a soft transitive relation on U: For a soft
subset H : A! P (U) ; the following property holds respecting to foresets:
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(HJ(e))J (e) � HJ (e) :

Proof. Straightforward.

Theorem 6.1.22 If an SBRE; J : A! P (U�U) on U is soft re�exive and soft tran-
sitive, then for any soft subset G : A! P (U) ; the following property holds respecting

to afterset:

J

�
J
G
(e)
�
= J

G
(e) :

Proof. Since it is soft transitive so by previous result J
(JG(e))

(e) � J
G
(e) : It is

also soft re�exive therefore G (e) � J
G
(e) : By using Theorem 6.1.4(2) ; J

G
(e) �

J
(JG(e))

(e). Hence, J
(JG(e))

(e) = J
G
(e) :

Theorem 6.1.23 If an SBRE; J : A ! P (U � U) on U is soft re�exive and soft

transitive, then for any soft subset H : A ! P (U) ; the following property holds

respecting to foreset:

(HJ(e))J = HJ (e) :

Proof. Straightforward.

If (J;A) is a SE�relation on U; then each J (e) is an E�relation on U . Thus,

J (e) partitions the set U into E�classes uJ (e) : In this case, uJ (e) = J (e)u and

fuJ (e) : u 2 Ug is a partition of U . Also, in this case, = GJ (e) = JG (e) and
GJ (e) = J

G
(e) :

To elaborate this concept, consider the next example:

Example 6.1.24 Let U = f�1; �2; �3; �4; �5; �6g be a set where E = fe1; e2; e3; e4; e5; e6; e7g
and A = fe1; e2; e3; e4; e5g be a set of attributes.

De�ne an SE�relation J : A! P (U � U) for each parameter e 2 A:

The following SE�classes are obtained for each of the SE�relation.

For J (e1) ; the SE�classes uJ (e1) are f�1; �3g ; f�2; �4; �5; �6g :

For J (e2) ; the SE�classes uJ (e2) are f�1; �3; �6g ; f�2; �4; �5g :

For J (e3) ; the SE�classes uJ (e3) are f�1; �2; �4; �5g ; f�3g ; f�6g :
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For J (e4) ; the SE�classes uJ (e4) are f�1; �2; �4; �5; �6g ; f�3g :

For J (e5) ; the SE�classes uJ (e5) are f�1; �2; �3; �4; �5; �6g :

A soft indiscernibility relation is obtained by the intersection of all the E�relations
induced by parameters represented as INd (J;A) = \ei2AJ (ei) = �

In above example, the partition of U obtained by soft indiscernibility relation INd (J;A)

is f�1g ; f�2; �4; �5g ; f�3g and f�6g : It is evident that for each J (ei) (SE�relation)
where i = 1; 2; 3; 4; 5; (U; J (ei)) gives an approximation space. Also, (U; �) is an

approximation space.

Recall that if (J;A) is a SE�relation on U and (G1; A) is a soft set over U; then

JG (e) = fu 2 U : uJ (e) � G (e)g and

J
G
(e) = fu 2 U : uJ (e) \G (e) 6= �g for all e 2 A:

The soft set
�
BJG1 ; A

�
de�ned as BJG1 (e) = J

G1 (e)� JG1 (e) for all e 2 A is named
soft boundary region of G1; respecting to SE�relation (J;A) : A soft subset G1 of U
is called totally rough respecting to SE�relation (J;A) if BJG1 (e) 6= � for all e 2 A:
A soft subset G1 of U is said to be partly de�nable with respect to SE�relation (J;A)
if BJG1 (e) = � for some e 2 A: A soft subset G1 of U is called totally de�nable with

respect to SE�relation (J;A) if BJG1 (e) = � for all e 2 A:

Proposition 6.1.25 For the SE�relation (J;A) on U and for soft sets G1 and G2

over U; the assertions given below hold:

(1)
�
JG1 ; A

�
�
�
J
G1 ; A

�
(2)

�
J�; A

�
=
�
J
�
; A
�
= �;

�
JU ; A

�
=
�
J
U
; A
�
= U

(3) G1 (e) � G2 (e))
�
JG1 ; A

�
�
�
JG2 ; A

�
(4) G1 (e) � G2 (e))

�
J
G1 ; A

�
�
�
J
G2 ; A

�
(5)

�
JG1 ; A

�
\
�
JG2 ; A

�
=
�
JG1\G2 ; A

�
(6)

�
J
G1 ; A

�
[
�
J
G2 ; A

�
=
�
J
G1[G2 ; A

�
(7)

�
JG1 ; A

�
[
�
JG2 ; A

�
�
�
JG1[G2 ; A

�
(8)

�
J
G1 ; A

�
\
�
J
G2 ; A

�
�
�
J
G1\G2 ; A

�
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(9)
�
J
Gc1 ; A

�c
=
�
JG1 ; A

�
:

(10)
�
JG

c
1 ; A

�c
=
�
J
G1 ; A

�
:

Proof. (1) Let u 2 JG1 (e) ) uJ (e) � G1 (e) ) u 2 JG1 (e) : Hence,
�
JG1 ; A

�
��

J
G1 ; A

�
:

(2) Straightforward.

(3) Let u 2 JG1 (e) : Then uJ (e) � G1 (e). As G1 (e) � G2 (e), we have uJ (e) �
G2 (e) : Thus u 2 JG2 (e) : Hence,

�
JG1 ; A

�
�
�
JG2 ; A

�
:

(4) Let u 2 JG1 (e) : Then uJ (e) \ G1 (e) 6= �. As G1 (e) � G2 (e), we have uJ (e) \
G2 (e) 6= �: Thus u 2 J

G2 (e) : Hence,
�
J
G1 ; A

�
�
�
J
G2 ; A

�
:

(5)Using part (3) and the fact thatG1 (e)\G2 (e) � G1 (e) ; G2 (e) ; we have JG1\G2 (e) �
JG1 (e) ; JG2 (e) so JG1\G2 (e) � JG1 (e) \ JG2 (e) :

Hence,
�
JG1\G2 ; A

�
�
�
JG1 ; A

�
\
�
JG2 ; A

�
:

Conversely, let u 2 JG1 (e) \ JG2 (e)) u 2 JG1 (e) and u 2 JG2 (e)

) uJ (e) � G1 (e) and uJ (e) � G2 (e)) uJ (e) � G1 (e) \G2 (e)

) u 2 JG1 (e))
�
JG1 ; A

�
\
�
JG2 ; A

�
�
�
JG1\G2 ; A

�
:

Hence,
�
JG1\G2 ; A

�
=
�
JG1 ; A

�
\
�
JG2 ; A

�
:

(6) Since G1 (e) ; G2 (e) � G1 (e) [G2 (e) so by using part (4) ; we get

J
G1 (e) ; J

G2 (e) � J
G1[G2 (e) which implies J

G1 (e) [ JG2 (e) � J
G1[G2 (e) : Hence,�

J
G1 ; A

�
[
�
J
G2 ; A

�
�
�
J
G1[G2 ; A

�
:

For the reverse inclusion, let u 2 JG1[G2 (e) :

) uJ (e) \ (G1 [G2) (e) 6= �) uJ (e) \G1 (e) 6= � or uJ (e) \G2 (e) 6= �

) u 2 JG1 (e) or u 2 JG2 (e)) u 2
�
J
G1 [ JG2

�
(e)

) J
G1[G2 (e) � JG1 (e) [ JG2 (e))

�
J
G1[G2 ; A

�
�
�
J
G1 ; A

�
[
�
J
G2 ; A

�
:

Hence,
�
J
G1 ; A

�
[
�
J
G2 ; A

�
=
�
J
G1[G2 ; A

�
:

(7) Since G1 (e) ; G2 (e) � G1 (e) [ G2 (e) ; so by using part (3) ; we get JG1 (e) ;
JG2 (e) � JG1[G2 (e) and so JG1 (e) [ JG2 (e) � JG1[G2 (e) : Hence,

�
JG1 ; A

�
[�

JG2 ; A
�
�
�
JG1[G2 ; A

�
:
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(8) Using part (4) and the fact that G1 (e) ; G2 (e) � G1 (e)\G2 (e) ; we have J
G1 (e) ;

J
G2 (e) � J

G1\G2 (e)) J
G1 (e) \ JG2 (e) � JG1\G2 (e) :

Hence,
�
J
G1 ; A

�
\
�
J
G2 ; A

�
�
�
J
G1\G2 ; A

�
:

(9) Let u 2 JG1 (e), uJ (e) � G1 (e), uJ (e) \Gc1 (e)

= �, u =2 JG
c
1 (e), u 2

�
J
Gc1 (e)

�c
: Hence,

�
J
Gc1 ; A

�c
=
�
JG1 ; A

�
:

(10) By part (9) ;
�
J
Gc1 ; A

�c
=
�
JG1 ; A

�
; therefore;

�
J
(Gc1)

c

; A
�c
=
�
JG

c
1 ; A

�
)
�
J
G1 ; A

�c
=
�
JG

c
1 ; A

�
:Hence,

�
JG

c
1 ; A

�c
=
�
J
G1 ; A

�
:

It is demonstrated that the equality is not valid in (7) and (8) in general.

Example 6.1.26 Let U = f�1; �2; �3; �4g be a set where E = fe1; e2; e3; e4; e5g and
A = fe1; e2; e3g be a set of attributes. De�ne a SE�relation J : A ! P (U � U) for
each e 2 A; such that the E�classes for J(e1) are f�1; �4g and f�2; �3g ; for J(e2) are
f�1; �2; �4g and f�3g and for J(e3) are f�1g ; f�2; �3g and f�4g :

De�ne G1 : A! P (U) such that

G1 (e1) = f�1; �3g ; G1 (e2) = f�1; �2g ; G1 (e3) = f�1; �4g :

And,

De�ne G2 : A! P (U) such that

G2 (e1) = f�1; �2g ; G2 (e2) = f�2; �3g ; G2 (e3) = f�2; �3; �4g ;

so
�
JG1 ; A

�
can be represented as

JG1 (e1) = �; J
G1 (e2) = f�3g ; JG1 (e3) = f�2; �3; �4g :

And
�
�G2 ; A

�
can be represented as

JG2 (e1) = U; J
G2 (e1) = f�1; �2; �4g ; JG2 (e1) = f�1; �2; �3g :

Now,

De�ne G1 [G2 : A! P (U) such that

G1 [G2 (e1) = f�1; �2; �3g ; G1 [G2 (e2) = f�1; �2; �3g ;

G1 [G2 (e3) = f�1; �2; �3; �4g ;
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and
�
JG1\G2 ; A

�
can be represented as

JG1[G2 (e1) = f�2; �3g ; JG1[G2 (e2) = f�3g ; JG1[G2 (e3) = f�1; �2; �3; �4g :

Evidently,
�
JG1[G2 ; A

�
6=
�
JG1 ; A

�
[
�
JG2 ; A

�
:

Now,
�
J
G1 ; A

�
can be represented as

J
G1 (e1) = U; J

G1 (e2) = f�1; �2; �4g ; J
G1 (e3) = f�1; �4g :

And
�
J
G2 ; A

�
can be represented as

J
G2 (e1) = U; J

G2 (e1) = U; J
G2 (e1) = f�2; �3; �4g :

Now,

De�ne G1 \G2 : A! P (U) such that

G1 \G2 (e1) = f�1g ; G1 \G2 (e2) = f�2g ; G1 \G2 (e3) = f�4g ;

and
�
J
G1\G2 ; A

�
can be represented as

J
G1\G2 (e1) = f�1; �4g ; J

G1\G2 (e2) = f�2; �3g ; J
G1\G2 (e3) = f�4g :

Evidently,
�
J
G1\G2 ; A

�
6=
�
J
G1 ; A

�
\
�
J
G2 ; A

�
:

6.2 Soft topologies induced by soft re�exive relations

In this section, we investigate two kinds of soft topologies induced by soft re�exive

relation.

De�nition 6.2.1 [89] A family T � S (U) of soft sets in U is called a soft topology

over U if it satis�es the following three axioms:

(1) �; U 2 T; where � : A ! P (U) and U :A ! P (U) are de�ned as � (e) = � and

U (e) = U for all e 2 A:

(2) 8 (G1; A) ; (G2; A) 2 T ) (G1 \G2; A) 2 T:

(3) 8 (Gj ; A)j2J 2 T =) [j2J (Gj ; A) 2 T:

The pair (U; T;A) is called a soft topological space over U . The elements of T are

called soft open sets.
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Theorem 6.2.2 If (J;A) is a soft re�exive relation on U , then

TJ(e) = fG : A! P (U) : JG (e) = G (e) foralle 2 Ag

is a soft topology on U with respect to the aftersets.

Proof. (1) Take e 2 A; by Theorem 6.1.25; J� (e) = � (e) and JU (e) = U for all

e 2 A: It proceeds �; U 2 TJ(e):

(2) Let (G1; A) ; (G2; A) 2 TJ(e) be two soft sets: This implies JG1 (e) = G1 (e) and

JG2 (e) = G2 (e) : Now, by using Theorem 6.1.25; JG1\G2 (e) = JG1 (e) \ JG2 (e)

= G1 (e) \G2 (e) = (G1 \G2) (e) : This implies (G1 \G2; A) 2 TJ(e):

(3) Let (Gj ; A) 2 TJ(e) for j 2 J: This implies JGj (e) = Gj (e) for j 2 J: Now, by us-
ing Theorem 6.1.25; J[j2JGj (e) � [j2JJGj (e) : Therefore, J[j2JGj (e) � [j2JGj (e) :
Since, Gj (e) � [j2JGj (e) for j 2 J: By using Theorem 6.1.25; JGj (e) � J[j2JGj (e) :
This implies [j2JJGj (e) � J[j2JGj (e) : This implies [j2JGj (e) � J[j2JGj (e) : There-
fore, J[j2JGj (e) = [j2JGj (e) : Hence, ([Gj ; A) 2 TJ(e):

Theorem 6.2.3 If (J;A) is a soft re�exive relation on U , then

T
0
J(e) = fL : A! P (U) :L J (e) = L (e) foralle 2 Ag

is a soft topology on U respecting to the foresets.

Proof. In a like way, the proof is obtained from above Theorem.

De�nition 6.2.4 Let (J;A) be a soft re�exive relation over U . De�ne a binary rela-

tion RJ on U by xRJy , xJ (e) y for some e 2 A where x; y 2 U: Then RJ is called
the binary relation induced by soft binary relation (J;A) :

Theorem 6.2.5 Let (J;A) be an SBRE on U and RJ be the induced binary relation

by (J;A) : For two soft sets G1 : A ! P (U) and G2 : A ! P (U) ; the following

properties, respecting to the aftersets hold:

(1) G1 (e) � G2 (e)) RJG1 (e) � RJG2 (e)

(2) G1 (e) � G2 (e)) RJG1 (e) � RJG2 (e)

(3) RJG1 (e) \RJG2 (e) = RJ (G1 \G2) (e)



6. Approximation of a soft set by soft relation 145

(4) RJG1 (e) \RJG2 (e) � RJ (G1 \G2) (e)

(5) RJG1 (e) [RJG2 (e) � RJ (G1 [G2) (e)

(6) RJG1 (e) [RJG2 (e) = RJ (G1 [G2) (e) :

Proof. Straightforward.

Theorem 6.2.6 Let (J;A) be an SBRE on U and RJ be the induced binary relation

by (J;A) : For two soft sets L1 : A ! P (U) and L2 : A ! P (U) ; the following

properties respecting to the foresets hold:

(1) L1 (e) � L2 (e)) L1RJ (e) � L2RJ (e)

(2) L1 (e) � L2 (e)) L1RJ (e) � L2RJ (e)

(3) L1RJ (e)\ L2RJ (e) = (L1 \ L2)RJ (e)

(4) L1RJ (e)\ L2RJ (e) � (L1 \ L2)RJ (e)

(5) L1RJ (e)[ L2RJ (e) � (L1 [ L2)RJ (e)

(6) L1RJ (e)[ L2RJ (e) = (L1 [ L2)RJ (e) :

Proof. Straightforward.

Theorem 6.2.7 If (J;A) is a soft re�exive relation on U , then

TRJ = fG : A! P (U) : RJG (e) = G (e) foralle 2 Ag

is a soft topology on U respecting to the aftersets.

Proof. (1) By Theorem 6.1.25; RJ� (e) = � (e) and RJU (e) = U for all e 2 A: It
follows �; U 2 TRJ (e):

(2) Let (G1; A) ; (G2; A) 2 TRJ (e) be two soft sets: This implies RJG1 (e) = G1 (e) and
RJG2 (e) = G2 (e) for all e 2 A: Now, by using Theorem 6.1.25;

RJ (G1 \G2) (e) = RJG1 (e) \RJG2 (e) = G1 (e) \G2 (e) = (G1 \G2) (e) :

This implies (G1 \G2; A) 2 TRJ (e) for all e 2 A:

(3) Let Gj 2 TRJ (e) for j 2 J: This implies RJGj (e) = Gj (e) for all e 2 A: Now, by
using Theorem 6.2.5; RJ ([j2JGj) (e) = [j2JRJGj (e) = [j2JGj (e) :
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Theorem 6.2.8 If (J;A) is a soft re�exive relation on U , then

T
0
RJ
= fL : A! P (U) :L RJ (e) = L (e) foralle 2 Ag

is a soft topology on U respecting to the foresets.

Proof. With the similar argument, the proof is obtained from Theorem 4.2.9.

6.3 Soft similarity relations associated with soft binary

relations

In this section, binary relations between soft sets are de�ned based on their rough

approximations and investigate their properties.

De�nition 6.3.1 Let (J;A) be a soft re�exive relation on U . De�ne the following

binary relations on S (U) by

(G1; A) wA (G2; A) if and only if
�
G1J;A

�
=
�
JG2 ; A

�
(G1; A) hA (G2; A) if and only if

�
G1J;A

�
=
�
J
G2 ; A

�
(G1; A) tA (G2; A) if and only if

�
G1J;A

�
=
�
JG2 ; A

�
and

�
G1J;A

�
=
�
J
G2 ; A

�
:

De�nition 6.3.2 Let (J;A) be a soft re�exive relation on U . De�ne the following

soft binary relations on S (U) by

(L1; A) 'F (L2; A) if and only if
�
L1J;A

�
=
�
L2J;A

�
(L1; A) hF (L2; A) if and only if

�
L1J;A

�
=
�
L2J;A

�
(L1; A) �F (L2; A) if and only if

�
L1J;A

�
=
�
L2J;A

�
and

�
L1J

G1 ; A
�
=
�
L2J;A

�
:

These soft binary relations may be called the lower soft similarity relation , upper

soft similarity relation and soft similarity relation, respectively. Obviously, JG (e) and

J
G
(e) are soft similar if and only if they are both lower and upper soft similar.

Proposition 6.3.3 The relations wA, hA and �A are equivalence relations on U .

Proof. Straightforward.
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Proposition 6.3.4 The relations 'F , hF and �F are E�relations on U .

Proof. The proof is simple.

Next some results related are given.

Theorem 6.3.5 Let (J;A) be a soft re�exive relation on U: De�ne soft sets (Gi; A)

over U for i = 1; 2; 3; 4; then the properties below are valid respecting to aftersets:

(1) (G1; A) hA (G2; A) if and only if (G1; A) hA ((G1; A) [ (G2; A)) hA (G2; A)

(2) (G1; A) hA (G2; A) and (G3; A) hA (G4; A) imply that ((G1; A) [ (G3; A)) hA
((G2; A) [G4 (e))

(3) (G1; A) � (G2; A) and (G2; A) hA (�;A) imply that (G1; A) hA (�;A)

(4) ((G1; A) [ (G2; A)) hA (�;A) if and only if (G1; A) hA (�;A) and (G2; A) hA
(�;A) :

Proof. (1) Let (G1; A) hA (G2; A). Then J
G1 (e) = J

G2 (e) : By Theorem 6.1.25(6) ;

we get J
G1[G2 (e) = J

G1 (e)[JG2 (e) = JG1 (e) = JG2 (e) so (G1; A) hA ((G1; A) [ (G2; A)) hA
(G2; A). Converse holds by transitivity of the relation hA :

(2) Given that (G1; A) hA (G2; A) and (G3; A) hA (G4; A) : Then J
G1 (e) = J

G2 (e)

and J
G3 (e) = J

G4 (e) :

By Theorem 6.1.25(6) ; we get J
G1[G3 (e) = J

G1 (e) [ JG3 (e) = J
G2 (e) [ JG4 (e) =

J
G2[G4 (e) : Thus, ((G1; A) [ (G3; A)) hA ((G2; A) [ (G4; A)) :

(3) Given (G2; A) hA (�;A) : This implies J
G2 (e) = J

�
(e) :

Also, (G1; A) � (G2; A)) J
G1 (e) � JG2 (e) = J� (e) : It follows that JG1 (e) � J� (e)

but J
�
(e) � JG1 (e) : Therefore, JG1 (e) = J� (e)) (G1; A) hA (�;A) :

(4) Let (G1; A) hA (�;A) and (G2; A) hA (�;A) : Then J
G1 (e) = J

�
(e) = (�;A)

and J
G2 (e) = J

�
(e) : By Theorem 6.1.25(6) ; we get J

G1[G2 (e) = J
G1 (e)[ JG2 (e) =

J
�
(e) [ J� (e) = J� (e) :

Thus, ((G1; A) [ (G2; A)) hA (�;A) : Converse follows from (3) :

Theorem 6.3.6 Let (J;A) be a soft re�exive relation on U: De�ne soft sets (Li; A)

over U for i = 1; 2; 3; 4; then the properties given below are valid respecting to foresets:
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(1) (L1; A) hF (L2; A) if and only if (L1; A) hF ((L1; A) [ (L2; A)) hF (L2; A)

(2) (L1; A) hF (L2; A) and (L3; A) hF (L4; A) imply that ((L1; A) [ (L3; A)) hF
((L2; A) [ (L4; A))

(3) (L1; A) � (L2; A) and (L2; A) hF (�;A) imply that (L1; A) hF (�;A)

(4) ((L1; A) [ (L2; A)) hF (�;A) if and only if (L1; A) hF (�;A) and (L2; A) hF
(�;A) :

Proof. The veri�cation is like the evidence of Theorem 6.3.5.

Theorem 6.3.7 Let (J;A) be a soft re�exive relation on U: De�ne soft sets (Gi; A)

over U for i = 1; 2; 3; 4; then the properties below are valid respecting to aftersets:

(1) (G1; A) wA (G2; A) if and only if (G1; A) wA ((G1; A) \ (G2; A)) wA (G2; A)

(2) (G1; A) wA (G2; A) and (G3; A) wA (G4; A) imply that ((G1; A) \ (G3; A)) wA
((G2; A) \ (G4; A))

(3) (G1; A) � (G2; A) and (G2; A) wA (�;A) imply that (G1; A) wA (�;A)

(4) ((G1; A) [ (G2; A)) wA (�;A) if and only if (G1; A) wA (�;A) and (G2; A) wA
(�;A) :

Proof. The veri�cation is like the evidence of Theorem (7).

Theorem 6.3.8 Let (J;A) be a soft re�exive relation on U: De�ne soft sets (Li; A)

over U for i = 1; 2; 3; 4; then the properties below are valid respecting to foresets:

(1) (L1; A) 'F (L2; A) if and only if (L1; A) 'F ((L1; A) \ (L2; A)) 'F (L2; A)

(2) (L1; A) 'F (L2; A) and (L3; A) 'F (L4; A) imply that ((L1; A) \ (L3; A)) 'F
((L2; A) \ (L4; A))

(3) (L1; A) � (L2; A) and (L2; A) 'F (�;A) imply that (L1; A) 'F (�;A)

(4) ((L1; A) [ (L2; A)) 'F (�;A) if and only if (L1; A) 'F (�;A) and (L2; A) 'F
(�;A) :

Proof. The proof is obtained in a similar way from Theorem 6.3.7.
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Theorem 6.3.9 Let (J;A) be a soft re�exive relation on U . De�ne soft sets (Gi; A)

over U for i = 1; 2; 3; 4; then the properties below are valid respecting to aftersets:

(1) (G1; A) tA (G2; A) if and only if (G1; A) hA ((G1; A) [ (G2; A)) hA (G2; A) and
(G1; A) wA ((G1; A) \ (G2; A)) wA (G2; A).

(2) (G1; A) � (G2; A) and (G2; A) tA (�;A) imply that (G1; A) tA (�;A)

(3) ((G1; A) [ (G2; A)) tA (�;A) if and only if (G1; A) tA (�;A) and (G2; A) tA
(�;A) :

Proof. It is simple consequence of Theorems 6.3.5 and 6.3.7.

The next results are simple.

Theorem 6.3.10 Let (J;A) be a soft re�exive relation on U . De�ne soft sets (Li; A)

over U for i = 1; 2; 3; 4; then the properties below are valid with respect to foresets:

(1) (L1; A) �F (L2; A) if and only if (L1; A) hF ((L1; A) [ (L2; A)) hF (L2; A) and
(L1; A) 'F ((L1; A) \ (L2; A)) 'F (L2; A).

(2) (L1; A) � (L2; A) and (L2; A) �F (�;A) imply that (L1; A) �F (�;A)

(3) ((L1; A) [ (L2; A)) �F (�;A) if and only if (L1; A) �F (�;A) and (L2; A) �F
(�;A) :

Proof. It is like the proof of Theorem 6.3.9.

6.4 Approach towards Decision making

Depending on soft rough set theory, the decision making methods by soft binary re-

lations are proposed in this section. This approach helps to use data provided by

decision makers and further information is not required. Hence, the results should

avoid the paradox results.

We obtain two values JG (ei) and J
G
(ei) which are most closed with respect to the

aftersets by the soft lower and upper approximations of the soft set G. Therefore, the

choice value i is rede�ned with respect to the aftersets as follows:
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i =

nX
j=1

dij +

nX
j=1

dij

In a decision making problem, the maximum choice value i is the optimum decision

for the object xi 2 U and the minimum choice value i is the worst decision for the

object xi 2 U . For the given decision making problem, if the same maximum choice

value i belongs to two or more objects xi 2 U , then take one of them as the optimum
decision randomly.

Algorithm 1:

An approach to a decision making problem in the form of an algorithm with respect

to the aftersets is provided below. The decision algorithm is as follows:

(1) Compute the lower soft set approximation JG and upper soft set approximation

J
G
of a soft set G with respect to the aftersets:

(2) Corresponding to each xi 2 U; we calculate dij which is 0 if xi =2 JG (ej) and is
1 if xi 2 JG (ej) : Similarly, we calculate dij which is 0 if xi =2 J

G
(ej) and is 1 if

xi 2 J
G
(ej) :

(3) Compute the choice value i =
nX
j=1

dij +

nX
j=1

dij with respect to the aftersets:

(4) The best decision is xk 2 U if k = maxi i; i = 1; 2; :::; jU j :

(5) The worst decision is xk 2 U if k = mini i; i = 1; 2; :::; jU j :

(6) If the value of k is more than one, then we can chose any one of xk.

Algorithm 2:

An approach to a decision making problem in the form of an algorithm respecting to

the foresets is provided below. The decision algorithm is as follows:

(1) Compute the lower soft set approximation HJ and upper soft set approximation
HJ of a soft set H with respect to the foresets:

(2) Corresponding to each xi 2 U; we calculate cij which is 0 if xi =2 HJ (ej) and is 1

if xi 2 HJ (ej) : Similarly, we calculate cij which is 0 if xi =2 HJ (ej) and is 1 if xi 2
HJ (ej) :

(3) Compute the choice value 
0
i =

nX
j=1

cij +
nX
j=1

cij with respect to the foresets:
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(4) The best decision is xk 2 U if 
0
k = maxi 

0
i; i = 1; 2; :::; jU j :

(5) The worst decision is xk 2 U if 
0
k = mini 

0
i; i = 1; 2; :::; jU j :

(6) If the value of k is more than one, then we can chose any one of xk.

6.4.1 An application of the decision making approach

By an example in this subsection, an application of the decision making approach is

given.

Example 6.4.1 Consider the soft relations of Example 6.1.3 again, where a person

wants to select a shirt out of six shirt designs and four shirt colors.

De�ne G : A! P (W ) which represents the preference of the

color given by Mr: X such that

G (e1) = fc1; c4g ; G (e2) = fc2; c5g ; G (e3) = fc2; c3; c4g and

De�ne H : A! P (U) which represents the preference of the

design given by Mr: X such that

H (e1) = fd2; d3; d6g ; H (e2) = fd1; d3g ; H (e3) = fd1; d2; d5; d6g :

Consider the following table after applying the above algorithm.

Table : The results of decision algorithm with respect to aftersets

di1 di2 di3 di1 di2 di3 Choice value i
d1 0 0 1 1 0 0 2

d2 0 0 1 1 0 1 3

d3 1 1 0 0 0 1 3

d4 0 0 1 0 0 0 1

d5 0 0 1 1 0 1 3

d6 1 0 1 1 1 0 4

And,
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Table : The results of decision algorithm with respect to foresets

ci1 ci2 ci3 ci1 ci2 ci3 Choice value 
0
i

c1 0 0 0 1 1 0 2

c2 0 0 1 1 1 0 3

c3 0 0 0 0 1 1 2

c4 0 1 1 1 0 1 4

Here the choice value i =
3X
j=1

dij +

3X
j=1

dij is calculated with respect to the aftersets

and the choice value 
0
i =

3X
j=1

cij +

3X
j=1

cij is calculated with respect to the foresets.

The shirt of designs d6 scores the maximum choice value k = 4 = 6; and the decision

is in favour of the shirt of design d6 for selection. Moreover, the shirts of designs d4

are totally ignored. Hence, Mr: X will choose the shirt of design d6 for his personal

use and he will not select the shirt of design d4 with respect to the aftersets. Similarly,

the shirt of color c4 scores the maximum choice value 
0
k = 4 = 4 and the decision

is in favour of the shirt of color c4 for selection: Moreover, the shirts of color c1 and

c3 are totally ignored. Hence, Mr: X will choose the shirt of color c4 for his personal

use and he will not select the shirts of color c1 and c3 with respect to the foresets.



Chapter 7

Approximation of soft ideals by

soft relations in semigroups

In the last chapter, we applied the concepts of chapter six on semigroups and

approximations of SSSs, SLIL (SRIL), SIILs and SBILs of semigroups are studied.

Moreover, for the illustration of the concepts, some examples are considered.

7.1 Approximation by soft relations

Theorem 7.1.1 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

For any two soft sets (G1; A) and (G2; A) over S2 and for all e 2 A; J
G1 (e) :J

G2 (e) �
J
G1G2 (e).

Proof. Let u 2 J
G1 (e) :J

G2 (e). Then u = g1g2 for some g1 2 J
G1 (e) and g2 2

J
G2 (e). It follows g1J (e) \ G1 (e) and g2J (e) \ G2 (e) are non-empty, so their exist
elements a; b 2 S2 such that a 2 g1J (e) \ G1 (e) and b 2 g2J (e) \ G2 (e). Thus
a 2 g1J (e), b 2 g2J (e), a 2 G1 (e) and b 2 G2 (e). Now, (g1; a) 2 J (e) and (g2; b) 2
J (e) implies that (g1g2; ab) 2 J (e), that is ab 2 g1g2J (e). Also, ab 2 G1 (e)G2 (e),
therefore, ab 2 G1 (e)G2 (e) \ g1g2J (e). Hence, u = g1g2 2 J

G1G2 (e).

The proof of next theorem is a routine veri�cation and hence can be obtained from

above theorem.

Theorem 7.1.2 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

153
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For any two soft sets (L1; A) and (L2; A) over S1; L1J (e) :L2J (e) � L1L2J (e) for all

e 2 A:

Theorem 7.1.3 Let (J;A) be an SCmR respecting to the aftersets from S1 to S2

(S1 and S2 are semigroups): For any two soft sets (G1; A) and (G2; A) over S2;

JG1(e):JG2(e) � JG1G2(e) for all e 2 A.

Proof. First we consider that JG1 (e) and JG2 (e) are non-empty and u 2 JG1 (e) :JG2 (e).
Then u = g1g2 for some g1 2 JG1 (e) and g2 2 JG2 (e). It shows G1 (e) � g1J (e) 6= �
and G2 (e) � g2J (e) 6= �. As g1g2J (e) = g1J (e) :g2J (e) � G1 (e)G2 (e), we have

u = g1g2 2 JG1G2 (e). Hence, JG1G2(e) � JG1(e):JG2(e). Now, if one of JG1 (e) and
JG2 (e) is empty then � = JG1 (e) :JG2 (e) � JG1G2 (e).

The proof of next theorem is a routine veri�cation and hence can be obtained from

above theorem.

Theorem 7.1.4 Let (J;A) be an SCmR respecting to the foresets from S1 to S2 (S1

and S2 are semigroups): For any two soft sets (L1; A) and (L2; A) over S1; L1J(e):L2J(e) �
L1L2J(e) for all e 2 A.

Example 7.1.5 For two semigroups S1 = f1; 2; 3g and S2 = fa; b; cg with the multi-
plication tables as follows:

� 1 2 3

1 1 2 3

2 1 2 3

3 1 2 3

� a b c

a a a c

b a b c

c a c c

and A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) = f(1; a); (3; c); (2; c); (2; a) ; (2; b)g

and

J(e2) = f(1; b); (1; a); (3; c); (2; a) ; (1; c) ; (2; b)g :

Then (J;A) is an SCRE from the semigroup S1 to the semigroup S2.

1J(e1) = fag; 2J(e1) = fa; b; cg and 3J(e1) = fcg

1J(e2) = fa; b; cg; 2J(e2) = fa; bg; 3J(e2) = fcg:



7. Approximation of soft ideals by soft relations in semigroups 155

De�ne (G1; A) and (G2; A) ; two soft sets over S2 by

G1 (e1) = fag , G1 (e2) = fa; bg and G2 (e1) = fb; cg , G2 (e2) = fa; cg :

Then J
G1(e1) = f1; 2g and J

G2(e1) = f2; 3g. Now, G1 (e1)G2 (e1) = fa; cg and

J
G1G2(e1) = f1; 2; 3g 6= f2; 3g = f1; 2gf2; 3g = J

G1(e1)J
G2(e1):

Example 7.1.6 Consider the semigroups and soft relations of Example 7.1.5,

J(e1)a = f1; 2g; J(e1)b = f2g and J(e1)c = f2; 3g

J(e2)a = f1; 2g; J(e2)b = f1; 2g; J(e2)c = f1; 3g:

De�ne (L1; A) and (L2; A) ; two soft sets over S1 by

L1 (e1) = f1; 2g , L1 (e2) = f3g and L2 (e1) = f2; 3g , L2 (e2) = f1g :

Then, L1J(e2) = fcg and L2J(e2) = fa; b; cg. Now, L1 (e2)L2 (e2) = f1g and

L1L2J(e2) = fa; b; cg * fa; cg = fcgfa; b; cg =L1 J(e2):L2J(e2):

Example 7.1.7 For two semigroups, S1 = fa; b; c; dg and S2 = f1; 2; 3; 4g with the
multiplication tables as follows:

� a b c d

a a a a d

b a b a d

c a a c d

d d d d d

� 1 2 3 4

1 1 2 3 4

2 2 2 2 2

3 3 3 3 3

4 4 3 2 1

and A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (b; 2) ; (c; 2) ; (c; 3) ; (d; 2) ; (b; 3) ; (d; 3); (a; 3)g

and

J(e2) = f(d; 2) ; (a; 2) ; (b; 2) ; (c; 2)g:

Then (J;A) is an SCmR respecting to the aftersets from the semigroup S1 to the

semigroup S2.

aJ(e1) = f2; 3g ; bJ(e1) = f2; 3g ; cJ(e1) = f2; 3g and dJ(e1) = f2; 3g :
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Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

De�ne (G1; A) and (G2; A) ; two soft sets over S2 by

G1 (e1) = f4g , G1 (e2) = f2; 3g and G2 (e1) = f1; 2; 3g , G2 (e2) = f2; 4g :

Then JG1(e1) = � and JG2(e1) = fa; b; c; dg. Now, G1 (e1)G2 (e1) = f2; 3; 4g and

JG1G2(e1) = fa; b; c; dg * � = �fa; b; c; dg = JG1(e1)JG2(e1):

Example 7.1.8 Consider the semigroups of Example 7.1.7

and A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) = f(a; 1) ; (a; 2) ; (a; 3) ; (d; 4); (a; 4) ; (d; 1) ; (d; 3) ; (d; 2)g and

J(e2) = f(d; 1) ; (d; 3) ; (d; 4) ; (d; 2)g:

Then (J;A) is an SCmR from S1 to S2 respecting to the aftersets.

J(e1)1 = fa; dg ; J(e1)2 = fa; dg ; J(e1)3 = fa; dg and J(e1)4 = fa; dg :

Also, J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg :

De�ne (L1; A) and (L2; A) ; two soft sets over S1 by

L1 (e1) = fa; c; dg , L1 (e2) = fag and L2 (e1) = fbg , L2 (e2) = fa; bg :

Then L1�(e1) = f1; 2; 3; 4g and L2�(e1) = �. Now, L1 (e1)L2 (e1) = fa; dg and

L1L2J(e1) = f1; 2; 3; 4g * � = f1; 2; 3; 4g� =L1 J(e1):L2J(e1):

7.2 Approximation of soft ideals in semigroups

By an SCRE; (J;A) and J (e) 6= � for all e 2 A; we approximate a SS (LIL, RIL,
BIL, IIL) of a semigroup respecting to the aftersets (resp. respecting to the foresets).

We show that upper approximation of a SSS (SLIL, SRIL, SBIL, SIIL) of a

semigroup is a SSS (SLIL, SRIL, SBIL, SIIL) of the semigroup and give counter

examples. We also show that lower approximation of a SSS (SLIL, SRIL, SBIL,

SIIL) of a semigroup by an SCmR is a SSS (SLIL, SRIL, SBIL, SIIL) of the
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semigroup and give counter examples. Throughout the remaining paper, (J;A) is a

soft relation from S1 to S2 (S1 and S2 are semigroups) and uJ (e) 6= � for all u 2 S1
and e 2 A and J (e)w 6= � for all w 2 S2 and e 2 A:

De�nition 7.2.1 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups).

If the upper approximation
�
J
G
; A
�
is a SSS of S1 for any soft set (G;A) over S2;

then (G;A) is said to be generalized upper SSS of S1 respecting to the aftersets. The

soft set (G;A) is called generalized upper SLIL (SRIL, SIL) of S1 respecting to the

aftersets if
�
J
G
; A
�
is a SLIL (SRIL, SIL) of S1.

De�nition 7.2.2 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups).

If the upper approximation
�
LJ;A

�
is a SSS of S2 for any soft set (L;A) over S1;

then (L;A) is said to be generalized upper SSS of S2 respecting to the foresets. The

soft set (L;A) is called generalized upper SLIL (SRIL, SIL) of S2 respecting to the

foresets if
�
LJ;A

�
is a SLIL (SRIL, SIL) of S2.

Theorem 7.2.3 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

Then

(1) If (G;A) is a SSS of S2, then (G;A) is a generalized upper SSS of S1 respecting

to the aftersets.

(2) If (L;A) is a SSS of S1, then (L;A) is a generalized upper SSS of S2 respecting

to the foresets.

(3) If (G;A) is a SLIL (SRIL, SIL) of S2, then (G;A) is a generalized upper SLIL

(SRIL, SIL) of S1 respecting to the aftersets.

(4)If (L;A) is a SLIL (SRIL, SIL) of S1, then (L;A) is a generalized upper SLIL

(SRIL, SIL) of S2 respecting to the foresets.

Proof. (1) Let (G;A) be a SSS of S2. If � 6= J
G
(e) for e 2 A. Then by Theorem

7.1.1, J
G
(e) :J

G
(e) � JGG (e) � JG (e), that is JG(e) is a SS of S1 for e 2 A and so

(G;A) is a generalized upper SSS of S1 respecting to the aftersets.

(2) With similar arguments the proof is obtained from part (1).

(3) Suppose (G;A) is a SLIL of S2. As we know that J
S2 (e) = S1 for all e 2 A. We

have from Theorem 7.1.1, S1J
G
(e) = J

S2 (e) :J
G
(e) � JS2G (e)
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� JG (e). Hence JG (e) is a LI of S1 and so (G;A) is a generalized upper SLIL of S1
respecting to the aftersets.

(4) This part has a routine and similar veri�cation to part (3).

The other cases can be demonstrated comparatively.

It is found in the accompanying Example that converse of above Theorem is not true.

Example 7.2.4 For two semigroups S1 = fa; b; c; d; eg and S2 = f1; 2; 3; 4; 5g with
the multiplication tables as follows:

� a b c d e

a b b d d d

b b b d d d

c d d c d c

d d d d d d

e d d c d c

� 1 2 3 4 5

1 1 5 3 4 5

2 1 2 3 4 5

3 1 5 3 4 5

4 1 5 3 4 5

5 1 5 3 4 5

Let A = fe1; e2g. De�ne J : A! P (S1 � S2) by

J(e1) =

(
(a; 1) ; (c; 3) ; (e; 5) ; (b; 1) ; (d; 4) ;

(c; 5) ; (b; 5) ; (d; 3) ; (b; 2) ; (d; 5) ; (d; 1)

)
and

J(e2) =

(
(a; 1) ; (b; 2) ; (c; 3) ; (e; 5) ; (b; 1) ;

(c; 5) ; (b; 5) ; (d; 5) ; (d; 4) ; (d; 3) ; (d; 1) ; (b; 3)

)
.

Then (J;A) is an SCRE from the semigroups S1 to the semigroup S2: Now,

aJ(e1) = f1g ; bJ(e1) = f1; 2; 5g ; cJ(e1) = f3; 5g ;

dJ(e1) = f1; 3; 4; 5g ; eJ(e1) = f5g and

aJ(e2) = f1g ; bJ(e2) = f1; 2; 3; 5g ; cJ(e2) = f3; 5g ;

dJ(e2) = f1; 3; 4; 5g ; eJ(e2) = f5g .

Also,

J(e1)1 = fa; b; dg ; J(e1)2 = fbg ; J(e1)3 = fc; dg ;

J(e1)4 = fdg ; J(e1)5 = fb; c; d; eg and
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J(e2)1 = fa; b; dg ; J(e2)2 = fbg ; J(e2)3 = fb; c; dg ;

J(e2)4 = fdg ; J(e2)5 = fb; c; d; eg .

De�ne (G;A) ; a soft set over S2 by G (e1) = f1; 2; 3g and G (e2) = f2; 3; 4g and de�ne
(L;A) ; a soft set over S1 by L (e1) = fa; b; cg and L (e2) = fa; b; eg :

(1) (G;A) is not a SSS of S2 as f1; 2; 3g f1; 2; 3g = f1; 2; 3; 5g * f1; 2; 3g and f2; 3; 4g f2; 3; 4g =
f2; 3; 4; 5g * f2; 3; 4g but JG (e1) = fa; b; c; dg and J

G
(e2) = fa; b; c; dg are SSs of S1.

Hence, (G;A) is a generalized upper SSS of S1 respecting to the aftersets.

(2) (L;A) is not a SSS of S1 as fa; b; cg fa; b; cg = fb; c; dg * fa; b; cg and fa; b; eg fa; b; eg =
fb; c; dg * fa; b; eg but LJ (e1) = f1; 2; 3; 5g and LJ (e2) = f1; 2; 3; 5g are SSs of S2.
Hence, (L;A) is a generalized upper SSS of S2 respecting to the foresets.

(3) (G;A) is not a SLIL of S2 as f1; 2; 3; 4; 5g f1; 2; 3g = f1; 2; 3; 5g * f1; 2; 3g and
f1; 2; 3; 4; 5g f2; 3; 4g = f2; 3; 4; 5g * f2; 3; 4g but JG (e1) = fa; b; c; dg and JG (e2) =
fb; c; dg are LILs of S1. Hence, (G;A) is a generalized upper SLIL of S1 respecting
to the aftersets.

(4) (L;A) is not a SLIL of S1 as fa; b; c; d; eg fa; b; cg = fb; c; dg * fa; b; cg and
fa; b; c; d; eg fa; b; eg = fb; c; dg * fa; b; eg but LJ (e1) = f1; 2; 3; 5g and LJ (e2) =

f1; 2; 3; 5g are LILs of S2. Hence, (L;A) is a generalized upper SLIL of S2 respecting
to the foresets.

De�nition 7.2.5 Let (J;A) be a SCRE from S1 to S2 (S1 and S2 are semigroups).

A soft set (G;A) over S2 is said to be generalized lower SSS of S1 respecting to the

aftersets if
�
JG; A

�
is a SSS of S1. The soft set (G;A) is called generalized lower

SLIL (SRIL, SIL) of S1 respecting to the aftersets if
�
JG; A

�
is a SLIL (SRIL,

SIL) of S1.

De�nition 7.2.6 Let (J;A) be a SCRE from S1 to S2 (S1 and S2 are semigroups).

A soft set (L;A) over S1 is said to be generalized lower SSS of S2 respecting to the

foresets if
�
LJ;A

�
is a SSS of S2. The soft set (L;A) is called generalized lower SLIL

(SRIL, SIL) of S2 respecting to the foresets if
�
LJ;A

�
is a SLIL (SRIL, SIL) of S2.

Example 7.2.7 Consider the Example 7.2.4 and De�ne (G;A) ; a soft set over S2 by

G (e1) = f1; 3; 5g and G (e2) = f1; 2g : Then (G;A) is a SLIL of S2 but JG (e1) =
fa; c; eg is not a LIL of S1 as fa; b; c; d; eg fa; c; eg = fb; c; dg * fa; c; eg.
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It is veri�ed in the above example, that if (J;A) is a SCRE from S1 to S2 and (G;A)

is a SLIL of S2 even then
�
JL; A

�
is not a LIL of S1. However, the next theorem is

proceeded.

Theorem 7.2.8 Let (J;A) be an SCmR respecting to the aftersets from S1 to S2 (S1

and S2 are semigroups). Then

(1) If (G;A) is a SSS of S2, then (G;A) is a generalized lower SSS of S1 respecting

to the aftersets.

(2) If (G;A) is a SLIL (SRIL, SIL) of S2, then (G;A) is a generalized lower SLIL

(SRIL, SIL) of S1 respecting to the aftersets.

Proof. (1) Let (G;A) be a SSS of S2. If � 6= JG(e) for e 2 A. Then by Theorem
7.1.3 and Theorem 6.1.7(1), JG (e) :JG (e) � JGG (e) � JG (e) : Therefore,

�
JG; A

�
is

a SSS of S1. Hence, (G;A) is a generalized lower SSS of S1 respecting to aftersets.

(2) Suppose that G is a SLIL of S2. If � 6= JG(e) for e 2 A. Then by Theorem 7.1.3

and Theorem 6.1.7(1); S1JG (e) = JS2 (e) :JG (e) � JS2G (e) �

JG (e) : Therefore,
�
JG; A

�
is a SLIL of S1. Hence, (G;A) is a generalized lower SLIL

of S1 respecting to the aftersets.

The rest of the cases can be demonstrated comparably.

The proof of next theorem is a routine veri�cation and hence can be obtained from

above theorem.

Theorem 7.2.9 Let (J;A) be an SCmR respecting to the foresets from S1 to S2 (S1

and S2 are semigroups). Then

(1) If (L;A) is a SSS of S1, then (L;A) is a generalized lower SSS of S2 respecting

to the foresets.

(2) If (L;A) is a SLIL (SRIL, SIL) of S1, then (L;A) is a generalized lower SLIL

(SRIL, SIL) of S2 respecting to the foresets.

The converse of parts of Theorems 7.2.8 and 7.2.9 do not hold generally as shown by

following example.

Example 7.2.10 Consider the Example 7.1.7 and A = fe1; e2g. De�ne J : A !
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P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 3) ; (c; 2) ; (c; 3) ; (b; 2) ; (d; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (c; 2) ; (d; 2) ; (b; 2)g:

Then (J;A) is an SCmR from S1 to S2 respecting to the aftersets.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

De�ne (G;A) ; a soft set over S2 by G (e1) = f2; 3; 4g and G (e2) = f2; 4g :

(1) (G;A) is not a SSS of S2 as f2; 3; 4g f2; 3; 4g = f1; 2; 3g * f2; 3; 4g and f2; 4g f2; 4g =
f1; 2; 3g * f2; 4g but JG(e1) = fa; b; c; dg and JG(e2) = fa; b; c; dg; which show that�
JG; A

�
is a SSS of S1. Hence, (G;A) is a generalized lower SSS of S1 respecting to

the aftersets.

(2) (G;A) is not a SLIL of S2 as f1; 2; 3; 4g f2; 3; 4g = f1; 2; 3; 4g * f2; 3; 4g and
f1; 2; 3; 4g f2; 4g = f1; 2; 3; 4g * f2; 4g but JG(e1) = fa; b; c; dg and JG(e2) = fa; b; c; dg;
which show that

�
JG; A

�
is a SLIL of S1. Hence, (G;A) is a generalized lower SLIL

of S1 respecting to the aftersets.

Now, De�ne J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 3) ; (d; 4) ; (d; 2)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 4) ; (d; 1) ; (d; 3) ; (a; 3) ; (d; 4); (d; 2)g :

Then (J;A) is an SCmR from S1 to S2 respecting to the foresets.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

De�ne (L;A) ; a soft set over S1 by L (e1) = fb; c; dg and L (e2) = fb; c; dg :

(1) (L;A) is not a SSS of S1 as fb; c; dg fb; c; dg = fa; b; c; dg * fb; c; dg but LJ(e1) =
f1; 2; 3; 4g and LJ(e2) = f1; 2; 3; 4g; which show that

�
JG; A

�
is a SSS of S2. Hence,

(L;A) is a generalized lower SSS of S2 respecting to the foresets.

(2) (L;A) is not a SLIL of S1 as fa; b; c; dg fb; c; dg = fa; b; c; dg * fb; c; dg but
LJ(e1) = f1; 2; 3; 4g and LJ(e2) = f1; 2; 3; 4g; which show that

�
JG; A

�
is a SLIL of

S2. Hence, (L;A) is a generalized lower SLIL of S2 respecting to the foresets.
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Theorem 7.2.11 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups).

Then J
G1G2 � JG1 \ JG2 for any SRIL; (G1; A) and SLIL; (G2; A) of S2.

Proof. Suppose that (G1; A) is a SRIL and (G2; A) a SLIL of S2, so by de�nition

G1 (e) � G1 (e)S2 � G1 (e)G2 (e) and G2 (e) � S2G2 (e) � G1 (e)G2 (e) which implies
that G1 (e)\G2 (e) � G1 (e)G2 (e). It follows from Theorem 6.1.7 (3); (5), J

G1G2 (e) �
J
G1\G2 (e) � JG1 (e) \ JG2 (e). Hence, JG1G2 � JG1 \ JG2 .

The proof of the next theorem is a routine veri�cation and hence can be obtained from

above theorem.

Theorem 7.2.12 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups).

Then L1L2J � L1J\ L2J for any SRIL; (L1; A) and soft SLIL; (L2; A) of S1.

Theorem 7.2.13 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups).

Then JG1G2 � JG1 \ JG2 for any SRIL; (G1; A) and SLIL; (G2; A) of S2.

Proof. Let (G1; A) be a SRIL and (G2; A) a SLIL of S2, so by de�nitionG1 (e)G2 (e) �
G1 (e)S2 � G1 (e) andG1 (e)G2 (e) � S2G2 (e) � G2 (e) which implies thatG1 (e)G2 (e) �
G1 (e) \ G2 (e). It follows from Theorem 6.1.7 (2); (4), JG1G2 (e) � JG1\G2 (e) =

JG1 (e) \ JG2 (e). Hence, JG1G2 � JG1 \ JG2 .

The proof of the next theorem is a routine veri�cation and hence can be obtained from

above theorem.

Theorem 7.2.14 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups).

Then L1L2J � L1J\ L2J for any SRIL; (L1; A) and SLIL; (L2; A) of S2.

Next, the approximations of SIILs in semigroups are described and discussed.

De�nition 7.2.15 Let (G;A) be a soft set over S2 and (J;A) an SBRE from S1 to

S2 (S1 and S2 are semigroups). Then (G;A) is said to be generalized lower (upper)

SIIL of S1 respecting to the aftersets if
�
JG; A

� �
respectively

�
J
G
; A
��

is a SIIL of

S1.

De�nition 7.2.16 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups)

and (L;A) be a soft set over S1. Then (L;A) is said to be a generalized lower (upper)
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SIIL of S2 respecting to the foresets if
�
LJ;A

� �
respectively

�
LJ;A

��
is a SIIL of

S2.

Theorem 7.2.17 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

If (G;A) is a SIIL of S2, then (G;A) is a generalized upper SIIL of S1 respecting to

the aftersets:

Proof. As (G;A) is a SIIL of S2, it follows from Theorem 7.1.1 that S1J
G
(e)S1 =

J
S2 (e) :J

G
(e) :J

S2 (e) � J
S2GS2 (e) � J

G
(e). Therefore,

�
J
G
; A
�
is a SIIL of S1.

Hence, (G;A) is a generalized upper SIIL of S1 respecting to the aftersets.

It is found in the accompanying Example that converse of above Theorem is not true.

Example 7.2.18 Consider the semigroups of Example 7.1.5 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(1; a); (3; c); (1; b); (2; a) ; (2; b) ; (1; c) ; (3; a)g and

J(e2) = f(1; a); (2; b) ; (3; c); (2; c); (2; a)g :

Then (J;A) is a SCRE from the semigroup S1 to the semigroup S2. Now,

1J(e1) = fa; b; cg; 2J(e1) = fa; bg and 3J(e1) = fa; cg;

1J(e2) = fag; 2J(e2) = fa; b; cg and 3J(e2) = fcg:

Now, de�ne (G;A) ; a soft set over S2 by G (e1) = fag and G (e2) = fag ; which is
not a SIIL of S2 as fa; b; cg fag fa; b; cg = fa; cg * fag but JG (e1) = f1; 2; 3g and
J
G
(e2) = f1; 2; 3g ; which show that

�
J
G
; A
�
is a SIIL of S1. Hence, (G;A) is a

generalized upper SIIL of S1 respecting to the aftersets.

The next theorem has a routine veri�cation.

Theorem 7.2.19 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

If (L;A) is a SIIL of S1, then (L;A) is a generalized upper SIIL of S2 respecting to

the foresets:

The example below describes that the counter part of above theorem is not valid

generally.
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Example 7.2.20 Consider the Example 7.1.5 and soft relation of example 7.2.18,

J(e1)a = f1; 2; 3g; J(e1)b = f1; 2g; J(e1)c = f1; 3g;

J(e2)a = f1; 2g; J(e2)b = f2g and J(e2)c = f2; 3g:

Now, de�ne (L;A) ; a soft set over S1 by L (e1) = f1g and L (e2) = f2; 3g which is not
a SIIL of S1 as f1; 2; 3g f1g f1; 2; 3g = f1; 2; 3g * f1g and f1; 2; 3g f2; 3g f1; 2; 3g =
f1; 2; 3g * f2; 3g but LJ (e1) = fa; b; cg and LJ (e2) = fa; b; cg ; which shows that�
LJ;A

�
is a SIIL of S2. Hence (L;A) is a generalized upper SIIL of S2 respecting

to the foresets.

Theorem 7.2.21 Let (J;A) be an SCmR respecting to the aftersets from S1 to S2

(S1 and S2 are semigroups). If (G;A) is a SIIL of S2, then (G;A) is a generalized

lower SIIL of S1 respecting to the aftersets.

Proof. As (G;A) is a SIIL of S2, we have by Theorem 6.1.7 (2) and Theorem 7.1.3,

S1J
G (e)S1 = J

S2 (e) :JG (e) :JS2 (e) � JS2GS2 (e) � JG (e). Hence,
�
JG; A

�
is a SIIL

of S1. Thus, (G;A) is a generalized lower SIIL of S1 respecting to the aftersets.

Example 7.2.22 Consider the semigroup of Example 7.1.7 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (a; 3) ; (b; 3) ; (c; 2) ; (c; 3) ; (d; 2) ; (b; 2) ; (d; 3)g and

J(e2) = f(a; 2) ; (c; 2) ; (d; 2) ; (b; 2)g:

Then (J;A) is an SCmR respecting to the aftersets from S1 to S2.

aJ(e2) = f2; 3g ; bJ(e2) = f2; 3g ; cJ(e2) = f2; 3g and dJ(e2) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g ; cJ(e2) = f2g and dJ(e2) = f2g :

De�ne (G;A) ; a soft set over S2 by G (e1) = f2; 3; 4g and G (e2) = f2; 4g which
is not a SIIL of S2 as f1; 2; 3; 4g f2; 3; 4g f1; 2; 3; 4g = f1; 2; 3; 4g * f2; 3; 4g and
f1; 2; 3; 4g f2; 4g f1; 2; 3; 4g = f1; 2; 3; 4g * f2; 4g but JG(e1) = fa; b; c; dg and JG(e2) =
fa; b; c; dg; which show that

�
JG; A

�
is a SIIL of S1. Hence, (G;A) is a generalized

lower SIIL of S1 respecting to the aftersets.

The proof of the next theorem is a routine veri�cation.
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Theorem 7.2.23 Let (J;A) be an SCmR respecting to the foresets from S1 to S2 (S1

and S2 are semigroups). If (L;A) is a SIIL of S1, then (L;A) is a generalized lower

SIIL of S2 respecting to the foresets.

Example 7.2.24 Consider the semigroup of Example 7.1.7 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 3) ; (a; 4) ; (d; 1) ; (d; 2) ; (d; 3) ; (d; 4)g :

Then (J;A) is an SCmR respecting to the foresets from S1 to S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

De�ne (L;A) ; a soft set over S1 by L (e1) = fb; c; dg and L (e2) = fb; c; dg which is
not a SIIL of S1 as fa; b; c; dg fb; c; dg fa; b; c; dg = fa; b; c; dg * fb; c; dg but LJ(e1) =
f1; 2; 3; 4g and LJ(e2) = f1; 2; 3; 4g is an IIL of S2. Hence, (L;A) is a generalized
lower SIIL of S2 respecting to the foresets.

Now, we describe the approximations in SBILs of semigroups.

De�nition 7.2.25 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups)

and (G;A) be a soft set over S2. Then (G;A) is said to be generalized lower (upper)

SBIL of S1 respecting to the aftersets if
�
JG; A

� �
respectively

�
J
G
; A
��

is a SBIL

of S1.

De�nition 7.2.26 Let (J;A) be an SBRE from S1 to S2 (S1 and S2 are semigroups)

and (L;A) be a soft set over S1. Then (L;A) is said to be a generalized lower (upper)

SBIL of S2 respecting to the foresets if
�
LJ;A

� �
respectively

�
LJ;A

��
is a SBIL of

S2.

Theorem 7.2.27 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

Then every SBIL (G;A) of S2 is a generalized upper SBIL of S1 respecting to the

aftersets.
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Proof. Let (G;A) be a SBIL of S2. It follows from Theorem 7.2.3(1);
�
J
G
; A
�
is a

SSS of S2. By Theorem 6.1.7 (3) and Theorem 7.1.1, J
G
(e)S1J

G
(e) = J

G
(e) :J

S2 (e) :J
G
(e) �

J
GS2G (e) � JG (e). Hence,

�
J
G
; A
�
is a SBIL of S1. Thus, (G;A) is a generalized

upper SBIL of S1.

Example 7.2.28 Consider the semigroups and soft relation of Example 7.2.4. De�ne

(G;A) ; a soft set over S2 by G (e1) = f1; 2; 3g and G (e2) = f1; 2g which is not a SBIL
of S2 as f1; 2; 3g f1; 2; 3; 4; 5g f1; 2; 3g = f1; 2; 3; 5g * f1; 2; 3g and f1; 2g f1; 2; 3; 4; 5g f1; 2g =
f1; 2; 5g * f1; 2g but JG(e1) = fa; b; c; dg and JG(e2) = fa; b; dg; which show that�
J
G
; A
�
is a SBIL of S1. Hence, (G;A) is a generalized upper SBIL of S1 respect-

ing to the aftersets.

The next theorem has a routine veri�cation.

Theorem 7.2.29 Let (J;A) be an SCRE from S1 to S2 (S1 and S2 are semigroups).

Then every SBIL; (L;A) of S1 is a generalized upper SBIL of S2 respecting to the

foresets.

Example 7.2.30 Consider the semigroups and soft relations of example 7.2.4. De�ne

(L;A) ; a soft set over S1 by L (e1) = fa; b; cg and L (e2) = fa; bg which is not a SBIL
of S1 as fa; b; cg fa; b; c; d; eg fa; b; cg = fb; c; dg * fa; b; cg and fa; bg fa; b; c; d; eg fa; bg =
fb; dg * fa; bg but LJ(e1) = f1; 5; 3; 2g and LJ(e2) = f1; 5; 3; 2g; which show that�
LJ;A

�
is a SBIL of S2. Hence, (L;A) is a generalized upper SBIL of S2 respecting

to the foresets.

Theorem 7.2.31 Let (J;A) be an SCmR respecting to the aftersets from S1 to S2

(S1 and S2 are semigroups). Then every SBIL; (G;A) of S2 is a generalized lower

SBIL of S1 respecting to the aftersets.

Proof. Let (G;A) be a SBIL of S2. It follows from Theorem 7.2.8(2);
�
JG; A

�
is a

SSS of S2. By Theorem 3.1.11(2) and Theorem 7.1.1, JG (e) :S1:JG (e) = JG (e) :JS2 (e) :JG (e) �
JGS2G (e) � JG (e). Hence,

�
JG; A

�
is a SBIL of S1. Hence, (G;A) is a generalized

lower SBIL of S1.

Example 7.2.32 Consider the semigroup of Example 7.1.7 and A = fe1; e2g. De�ne
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J : A! P (S1 � S2) by

J(e1) = f(a; 2) ; (b; 2) ; (c; 2) ; (a; 3) ; (c; 3) ; (d; 2) ; (b; 3) ; (d; 3)g and

J(e2) = f(d; 2) ; (a; 2) ; (b; 2) ; (c; 2)g:

Then (J;A) is an SCmR respecting to the aftersets from S1 to S2. Now,

aJ(e1) = f2; 3g ; bJ(e1) = f2; 3g; cJ(e1) = f2; 3g and dJ(e1) = f2; 3g : Also,

aJ(e2) = f2g ; bJ(e2) = f2g; cJ(e2) = f2g and dJ(e2) = f2g :

De�ne (G;A) ; a soft set over S2 by G (e1) = f2; 3; 4g and G (e2) = f2; 4g which
is not a SBIL of S2 as f2; 3; 4g f1; 2; 3; 4g f2; 3; 4g = f1; 2; 3; 4g * f2; 3; 4g and
f2; 4g f1; 2; 3; 4g f2; 4g = f1; 2; 3; 4g * f2; 4g but JG(e1) = fa; c; b; dg and JG(e2) =
fa; c; b; dg; which show that

�
JG; A

�
is a SBIL of S1. Hence, (G;A) is a generalized

lower SBIL of S1 respecting to the aftersets.

The next theorem has a routine veri�cation.

Theorem 7.2.33 Let (J;A) be an SCmR respecting to the foresets from S1 to S2 (S1

and S2 are semigroups). Then every SBIL; (L;A) of S1 is a generalized lower SBIL

of S2 respecting to the foresets.

Example 7.2.34 Consider the semigroup of Example 7.1.7 and A = fe1; e2g. De�ne
J : A! P (S1 � S2) by

J(e1) = f(d; 1) ; (d; 3) ; (d; 4) ; (d; 2)g and

J(e2) = f(a; 1) ; (a; 2) ; (a; 4) ; (d; 1) ; (a; 3) ; (d; 3) ; (d; 2) ; (d; 4)g :

Then (J;A) is an SCmR respecting to the foresets from S1 to S2.

J(e2)1 = fdg ; J(e2)2 = fdg ; J(e2)3 = fdg and J(e2)4 = fdg : Also,

J(e2)1 = fa; dg ; J(e2)2 = fa; dg ; J(e2)3 = fa; dg and J(e2)4 = fa; dg :

De�ne (L;A) ; a soft set over S1 by L (e1) = fb; c; dg and L (e2) = fb; c; dg which is
not a SBIL of S1 as fb; c; dg fa; b; c; dg fb; c; dg = fa; b; c; dg * fb; c; dg but LJ(e1) =
f1; 2; 3; 4g and LJ(e1) = f1; 2; 3; 4g; which show that

�
LJ;A

�
is a SBIL of S2. Hence,

(L;A) is a generalized upper SBIL of S2 respecting to the foresets.
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Conclusion

This investigation was dedicated to the discourse of soft binary relations. Some fun-

damental ideas with respect to soft binary relations were proposed. All these ideas

are fundamental supporting structures for innovative work on soft set theory. The

novelty of this work is that how the number of parameters for a soft equivalence re-

lation can be lessened to the minimum without aggravating its original classi�cation

ability. A conclusion can be drawn with minimum parameters by utilizing a soft equiv-

alence relation. It has been talked about that parametric decrease can be made in this

new setting. Another algorithm is exhibited for the parametric lessening proposed by

a soft binary relation. Moreover, two kinds of fuzzy topologies and two kinds of soft

topologies induced by soft re�exive relations are investigated. An approach to decision

making problem is presented depending upon on a fuzzy set.

With the inspiration of concrete thoughts introduced, an investigation on the theoret-

ical parts of these generalized ideas is more valuable and need more consideration. An

expansion of this work is

� An endeavor can be made toward this path by concentrating on the theoretical
establishment of these generalized ideas which are very valuable instruments.

� Additionally, investigation of the axiomatization of the approximation operators is
a fascinating issue to be address.

� Besides and in this way, more positive arrangement in reality is acquired in basic
decision making problems.

�We trust that within the near future, the idea of roughness using soft binary relations
will be connected with other algebraic structures and it is our desire this work would

�ll in as a foundation for additional examination of the semigroup theory.

� The subject of this work might be stretched out to further results under di¤erent
environments of soft binary relations.

� In future, we will use a soft tolerance relation to handle this concept in a di¤erent
way engaging any algebraic structure.
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