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Preface 
 

A Class of Generalized Triangle Groups as 

Quotients of PGL(2, Z) 
 

It is well known that the modular group PSL(2, Z) is generated by the linear 

fractional transformations 𝑥 ∶  𝑧 →
−1

𝑧
 and 𝑦 :  𝑧 →

𝑧−1

𝑧
 which satisfy the relations x2 = y3 = 

1. An additional relation in a group converts it into a quotient of the group. If the 

additional relation is simply the power of the product of two generators x and y then it 

turns out to be a triangle group  ∆(𝑙, 𝑚, 𝑛) = < 𝑥, 𝑦 ; 𝑥𝑙 = 𝑦𝑚 = (𝑥𝑦)𝑛 = 1 >. The triangle 

groups ∆(2,3, 𝑛) are especially important for being homomorphic images of the modular 

group PSL(2,Z). If an additional relation is of the form (𝑤(𝑥, 𝑦))𝑛 where  𝑤(𝑥, 𝑦) = 

𝑥𝑝1𝑦𝑞1𝑥𝑝2𝑦𝑞2 . . . 𝑥𝑝𝑘𝑦𝑞𝑘  then the group converts into a generalized triangle group 

∆∗(𝑙, 𝑚, 𝑛) = < 𝑥, 𝑦 ;  𝑥𝑙 = 𝑦𝑚 = (𝑤(𝑥, 𝑦))𝑛 = 1 >. It is known that the generalized 

triangle group is infinite when  and finite when . J. 

Howie, V. Metaftsis and R. M. Thomas proved a very important result about the 

classification of finite generalized triangle groups.  

A word  𝑤 is defined as a finite sequence 𝑥1
𝜀1𝑥2

𝜀2 . ..   𝑥𝑘
𝜀𝑘 , where for each 𝒊, 𝒙𝒊 belongs 

to the set of generators and each 𝜺𝒊 is either 1 or -1. The third relator leads to a word 

which is of special interest in this thesis.  

Several group theorists discussed one relator quotients of various groups. A 

considerable number of them concentrated on one relator quotients of the modular 

group. M. D. E. Conder is one of them who found quotients of the modular group by 

inserting additional relations as words up to length 24. Y. T. Ulutas and I. N. Cangul, by 

using a different technique, investigated one relator quotients of the modular group by 

inserting additional relations as words up to length 21. Later on, a number of 

researchers followed both the techniques, but all were restricted by considering 



additional relations as words of finite lengths. In the entire discussion of one relator 

quotients, length of the additional relation as a word is the centre point of our concern. 

In this dissertation, our aim is to study a class of generalized triangle groups as 

quotients of the modular group. Since, modular group is a two generator group, we 

insert an additional relation of the form 𝑤(𝑥, 𝑦) = 𝑥𝑝1𝑦𝑞1𝑥𝑝2𝑦𝑞2 … 𝑥𝑝𝑘𝑦𝑞𝑘   in the finite 

presentation of the group. We consider powers of the generators as terms of Fibonacci 

sequence of numbers. That is we consider groups < 𝑥, 𝑦 ;  𝑥2 = 𝑦3 = 𝑤(𝑥, 𝑦) = 1 > 

which are one relator quotient of the modular group and a class of generalized triangle 

groups. There are two major parts to investigate in this class of groups.  Firstly, we 

determine additional relations for all lengths k, that is, the length of word 𝑤(𝑥, 𝑦)- 

which varies from 1 to infinity. Secondly, we insert these (infinite) number of additional 

relations in finite presentation of the modular group and investigate the quotient 

groups thus obtained.  

This thesis comprises five chapters. In chapter one, we mentions some basic 

concepts related to one relator quotients. This chapter contains finite presentations of 

groups, quotient of a group, group action on suitable sets, coset diagrams, projective 

general linear group, projective special linear group, triangle groups, generalized 

triangle groups, Fibonacci sequence, words, reduced words, equivalent words, syllable 

of a word, Tietze transformations, finite fields and projective lines over the finite fields. 

 

In chapter two, there is a comprehensive survey of one relator quotients generally 

and one relator quotients of the modular group particularly. This study not only 

explains the results but also stresses upon the methodology adopted by various 

researchers. One relator quotients of the modular group are of special importance due 

to the interesting features of this group.  

 



In chapter three, we generate words of all syllables. We use Fibonacci sequence of 

numbers in the powers of the generators in the additional relation for generating words 

of all syllables. We develop an algorithm by which we generate words. This algorithm 

gives four outputs; words of all syllables, reduced form of the words, count the number 

of x and y in words, and in their respective reduced forms. In the end, we divide words 

in classes on the basis of Fibonacci sequence.  

 

In chapter four, we find one relator quotients of the modular group related to 

Fibonacci sequence of numbers. The words obtained in chapter three are used as 

additional relation in the modular group so that they can later be investigated as 

quotient groups. Finally, to identify these quotients we use Tietze transformation and in 

certain cases ‘Groups, Algorithms and Programming’ (GAP). It is a class of generalized 

triangle groups which we investigate as quotients of the modular group. Furthermore, 

from this class of quotients we choose one quotient, which is the alternating group of 

degree 4, that is, A4 and by taking action of A4 on the projective line over the finite field 

F257, that is PL(F257) we construct an algebraic substitution box (S-box). By investigating 

the security strength parameters of this S-box, we conclude that this S-box is highly 

secure for the communication and highly preferable for cryptographic applications. 

 

In chapter five, we determine number of all one relator quotients of the modular 

group for each syllable by considering all possible additional relations. Furthermore, we 

proved a number of results by which we find the number of cyclically reduced non-

equivalent words for each syllable k. The one relator quotients corresponding to these 

cyclically reduced non-equivalent words are sufficient instead of finding all but 

equivalent quotients. In this chapter, we also view the additional relations as circuits 

(close paths) and find some interesting relationships between them. From the circuits 

point of view, if we consider all the possibilities of the additional relation then there are 



two types of circuits; one type consists of circuits having all triangles with one vertex 

inside or all triangles with one vertex outside of the circuit and the second type consists 

of circuits containing some (at least one) triangles with one vertex in side and some (at 

least one) triangles with one vertex outside the circuit. First type depicts triangle groups 

as quotients of the modular group and the other type depicts generalized triangle 

groups as quotients of the modular group. The study of one relator quotients provides a 

mechanism to determine all one relator quotients of any two-generator group. 
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Chapter 1

De�nitions and Basic Concepts

This introductory chapter provides a background knowledge and general information

in a formal way which enable the reader to go through this work without consulting

the literature. We include only those de�nitions which are speci�cally related to

generalized triangle groups and one relator quotients of a group. We adopt standard

notations as used in text books. We begin the current chapter with a summary of

basic concepts. References for further information are provided throughout.

Finite Presentation of a group

Let G be a group having generators x1; x2; x3; ::: such that every element of G can be

written as a product of some of these generators and their powers.

Let

X (x1; x2; x3; :::) ; Y (x1; x2; x3; :::) ; Z (x1; x2; x3; :::) ; :::

be de�ning relations for G such that each of them de�nes the identity element of G

and any other relator for G is obtained from these relators. Therefore, G is written

3



4

as

G = hx1; x2; x3; ::: : X (x1; x2; x3; :::) ; Y (x1; x2; x3; :::) ; Z (x1; x2; x3; :::) ; :::i.

H. S. M. Coxeter and W. O. J. Moser [1] call a set of certain elements x1; x2; x3; :::; xn

of a group G, a set of generators if every element of G is expressible as a �nite product

of their powers (including negative powers). Such a group is conveniently denoted by

the symbol hx1; x2; :::; xmi. When m = 1, we get a �nite cyclic group < x > denoted

by Cn, where n is the order of the single generator x; that is xn = 1; where 1 is a

notation for the identity element of the group Cn. It is important to mention here

that, the relation xn = 1 means that the order of x is exactly n, and not merely

divisor of n:

A presentation < S;R > is called �nitely generated if the set S is �nite, and is

�nitely related if the set R is �nite. A presentation < S;R > is called �nite if both

S and R are �nite; in that case G =< S;R > is called �nitely presented.

As we know there is no co-relation between cardinality of the set S and order of

the group G. Our interest is mainly in the quotients of linear groups, therefore we

refer to a wonderful paper by R. G. Swan [2] which discusses generators and relations

for some linear groups. Some �nite presentations of well known groups are given as

follows.

Cn =< x : x
n = 1 > cyclic group of order n

S3 =< x; y : x
2 = y3 = (xy)2 = 1 > is symmetric group of order 3!

S4 =< x; y : x
2 = y3 = (xy)4 = 1 > is symmetric group of order 4!

A4 =< x; y : x
2 = y3 = (xy)3 = 1 > is an alternating group of order 4!

2

A5 =< x; y : x
2 = y3 = (xy)5 = 1 > is an alternating group of order 5!

2
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D2n =< x; y : x
2 = yn = (xy)2 = 1 > is a dihedral group of order 2n

D1 =< x; y : x
2 = (xy)2 = 1 > is an in�nite dihedral group

Q8 =< x; y : x
4 = 1; x2 = y2; yx = x3y > or

Q8 =< x; y : yxy = x; xyx = y > quaternion group of order 8

Z� Z =< x; y : xy = yx > free product of Z and Z

C2�C3 =< x; y : x2 = y3 = 1 > is also known as the modular group or PSL(2;Z).

Tietze Transformation

In group theory, to transform a given �nite presentation of a group into another -

often simpler- �nite presentation of the same group is through Tietze transformations.

These transformations are named after H. F. F. Tietze who introduced them in a paper

in 1908.

Let S3 have the �nite presentation as < x; y : x3 = y2 = (xy)2 = 1 >. By using

Tietze transformations, let xy = z then the new presentation of S3 is < y; z : (zy)3 =

y2 = z2 = 1 >.

Finite Field

An integral domain which have �nitely many elements is called a �eld. These are

�nite �elds and have an important role in many branches of mathematics, especially

in group theory. The most common examples of �nite �elds are Zp for prime p

or power of a prime p. Finite �elds can be uniquely determined by the number of

elements it contains. That is, for every prime p and integer r > 0 there exist a �nite

�eld having q = pr elements. Such �elds are also expressed as GF (q) or Fq and known
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as Galois �eld with q = pr elements.

The ring Z of integers when quotient by its ideal nZ induces Zn = Z=nZ the

integer modulo n: If n is a prime then Zn is in fact a �eld under this structure.

The construction of a �nite �eld is illustrated through the following example.

Example 1 GF (32) is constructed by choosing an irreducible polynomial f(t) = t2+

2t+ 2 over Z3: The elements of GF (32) are listed as below.

Elements of GF (32) Elements of GF (32) modulo f(t)

0 0

t t

t2 t+ 1

t3 2t+ 1

t4 2

t5 2t

t6 2t+ 2

t7 t+ 2

t8 1

Table�1: Elements of GF (32)

Projective Lines over Finite Fields

The one-dimensional projective space is called a projective line. A projective line

over the �nite �elds Fq; contains the elements of GF (q) together with the additional

point 1: That is, PL(Fq) = Fq [ f1g: Similarly, PL(Q) means the projective lne

over rational �eld and PL(Q(
p
n)) is projective line over the rational quadratic �eld.
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Remark 2 An element x 2 Fq (where q = pr) is said to be a non-zero square in Fq

if x � a2(mod p) for some non-zero element a in Fq:

As an example, consider F23 = f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18;

19; 20; 21; 22g in which 24 � (22)2(mod 23): Thus, 24 is a non-zero square in F23:

In chapter two, we use the concept of triangle groups and generalized triangle

groups, so we are now de�ning these important concepts.

Triangle Group

The free product of two cyclic groups of order l and m is represented as < x; y : xl =

ym = 1 >. If the third relation is de�ned as some power (say n) of the product of x

and y then the new group is formed known as triangle group. The triangle groups are

denoted by �(l;m; n) and represented as �(l;m; n) =< x; y : xl = ym = (xy)n = 1 >

where l;m and n are integers greater than or equal to 1: The �niteness of the triangle

groups is describe in [1] on the basis of l;m and n: If
�
1
l
+ 1

m
+ 1

n

�
> 1 then �(l;m; n)

are �nite and in�nite otherwise. The triangle groups �(2; 3; n) are in�nite if and only

if n > 6: Whereas, for n � 5 the triangle groups are �nite.

Generalized Triangle Group

A group G is called a generalized triangle group if it can be presented in the form

< x; y : xl = ym = wn = 1 >; where l;m; n are integers greater than or equal to

1 and w = xr1ys1xr2ys2 :::xrkysk , (k � 1; 0 < ri < l; 0 < si < m) and w is not a

proper power. The generalized triangle group is in�nite whenever
�
1
l
+ 1

m
+ 1

n

�
� 1

but for
�
1
l
+ 1

m
+ 1

n

�
> 1 the generalized triangle group may be �nite. J. Howie, V.
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Metaftsis and R. M. Thomas in [3] discuss �nite generalized triangle groups with

their presentations. They prove a remarkable result about the classi�cation of all

�nite generalized triangle groups. They classi�es all �nite generalized triangle groups

as follows.

Theorem 3 Let G =< x; y : xl = ym = wn = 1 > be a �nite generalized triangle

group, where w = xr1ys1xr2ys2 :::xrkysk ; 0 < ri < l; 0 < si < m; w is not a proper

power, and k � 2 then up to equivalence G is one of the following:

1. < x; y : x2 = y3 = (xyxyxy2xy2)2 = 1 > is of order 576;

2. < x; y : x2 = y3 = (xyxyxy2)3 = 1 > is of order 1440;

3. < x; y : x3 = y3 = (xyxy2)2 = 1 > is of order 180;

4. < x; y : x3 = y3 = (xyx2y2)2 = 1 > is of order 288;

5. < x; y : x2 = y5 = (xyxy2)2 = 1 > is of order 120;

6. < x; y : x2 = y5 = (xyxyxy4)2 = 1 > is of order 1200;

7. < x; y : x2 = y5 = (xyxyxy2xy4)2 = 1 > is of order 1200;

8. < x; y : x2 = y4 = (xyxyxy3)2 = 1 > is of order 192;

9. < x; y : x2 = y3 = (xyxy2)2 = 1 > is of order 24;

10. < x; y : x2 = y3 = (xyxyxy2)2 = 1 > is of order 48;

11. < x; y : x2 = y3 = (xyxyxyxy2)2 = 1 > is of order 120;

12.< x; y : x2 = y3 = (xyxyxy2xyxy2)2 = 1 > is of order 720;

13. < x; y : x2 = y3 = (xyxyxyxyxy2xy2)2 = 1 > is of order 2880;

or possibly

14. < x; y : x2 = y3 = (xyxyxyxy2xyxy2xy2)2 = 1 >; and
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15. < x; y : x2 = y5 = (xyxyxyxy2xy2xyxy2xy2)2 = 1 >.

Thus, the afore mentioned theorem is almost a complete classi�cation of �nite

generalized triangle groups. However, the last two groups listed in the above theorem

remain undecided as to whether they are �nite or in�nite. L. Levai, G. Rosenberger

and B. Souvignier [4] investigate these two groups seperately. They prove that the

group < x; y : x2 = y3 = (xyxyxyxy2xyxy2xy2)
2
= 1 > is �nite and order of this

group is 424673280 while the group < x; y : x2 = y5 = (xyxyxyxy2xy2xyxy2xy2)2 =

1 > is in�nite. Thus, they include the �nite group in the list of thirteen �nite

generalized triangle groups and complete the list of fourteen �nite generalized triangle

groups.

H. S. M. Coexter and W. O. J. Moser [1] describe the geometry of triangle groups

by determining the sum 1
l
+ 1

m
+ 1

n
: In terms of l;m and n there are following three

cases.

If 1
l
+ 1

m
+ 1

n
= 1 it is an �Euclidean case�. In this case, the triangle groups are

in�nite symmetric groups such as �(2; 3; 6);�(2; 4; 4) and �(3; 3; 3): If 1
l
+ 1
m
+ 1
n
> 1

it is a �spherical case�. In this case, the triangle groups are �nite symmetric groups

such as �(2; 3; 2);�(2; 3; 3);�(2; 3; 4);�(2; 3; 5) and �(2; 2; 4): If 1
l
+ 1

m
+ 1

n
< 1 it

is �hyperbolic case�. In this case, the triangle groups are in�nite symmetric groups.

For example, �(2; 3; 7) is an in�nite symmetric group. One can see more about

generalized triangle groups in [5, 6] and about the groups generated by two operators

in [7].
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Modular Group

The modular group PSL(2;Z) is a discrete group of motions in the lobachevsky plane.

It is therefore possible to express the modular group as a group generated by two linear

fractional transformations x : z 7�! �1
z
and y : z 7�! �1

z+1
such that x2 = 1 and y3 = 1

are its de�ning relations. That is, PSL(2;Z) =< x; y : x2 = y3 = 1 > : It is therefore

PSL(2;Z) is a free product of the cyclic group of order 2 and the cyclic group of

order 3. The product of the generators xy is the translation z 7�! z + 1: The linear

fractional transformation t : z 7�! 1
z
inverts x and y, that is, t2 = (xt)2 = (yt)2 = 1

and so extends the group PSL(2;Z) to PGL(2;Z): The extended modular group

PGL(2;Z) is then generated by x; y and t: Thereupon, PGL(2;Z) =< x; y; t : x2 =

y3 = t2 = (xt)2 = (yt)2 = 1 >

The PSL(2;Z) is a normal subgroup of index two in PGL(2;Z): If Z is replaced

by the �nite �eld Fq in PGL(2;Z) then the group PGL(2; q) is obtained with the

linear fractional transformations z 7�! az+b
cz+d

where a; b; c; d 2 Fq and ad � bc 6= 0:

Furthermore, the group PSL(2; q) is the subgroup of PGL(2; q).

The concept of action of a group G on a set X is fundamental in group theory. In

succeeding chapter we take the action of di¤erent groups on �nite �elds. Therefore,

to illustrate the concept, we give an example of action of group on a set.

Example 4 Consider SL(2;R) =

8>><>>:
2664 a b

c d

3775 2M2�2; where a; b; c; d 2 R, ad� bc = 1

9>>=>>;,
acting on the upper half plane C+ = fz : Im(z) > 0g as z 7�! az+b

cz+d
, where the trans-

formation represents the matrix

2664a b

c d

3775
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To see that SL(2;R) acts on C+, let A =

2664a b

c d

3775 2 SL(2;R)
such that ad� bc = 1. For z 2 C+, de�ne zA = az+b

cz+d
, where Im(az+b

cz+d
) > 0.

For if z = x+ iy, then

az+b
cz+d

= a(x+iy)+b
c(x+iy)+d

= (ax+b)+i(ay)
(cx+d)+i(cy)

= [(ax+b)+i(ay)][(cx+d)�i(cy)]
[(cx+d)+i(cy)][(cx+d)�i(cy)]

= [acx2+(ad+bc)x+bd+acy2]+i[acxy+ady�axy�bcy]
(cx+d)2+(cy)2

= [acx2+(ad+bc)x+bd+acy2]+i[ad�bc]y
(cx+d)2+(cy)2

and Im(az+b
cz+d

) = (ad� bc)y > 0; as y > 0 and ad� bc = 1.

Take B =

2664e g

f h

3775 2 SL(2;R). Here e; f; g; h 2 R and eh� fg = 1.
Consider

(zA)B = (az+b
cz+d

)B =
e(az+b
cz+d

)+g

f(az+b
cz+d

)+h
= e(az+b)+g(cz+d)

f(az+b)+h(cz+d)

= (ea+gc)z+(eb+gd)
(fa+hc)z+(fb+hd)

:

As

AB =

2664a c

b d

3775
2664e g

f h

3775 =
2664ea+ gc fa+ hc

eb+ gd fb+ hd

3775
therefore (zA)B = zAB:

Since I =

26641 0

0 1

3775 2 SL(2;R);
therefore, it implies ZI = 1:Z+0

0:Z+1 = Z:

The following diagram shows the fundamental domain for the action of PSL(2;Z)

on upper half plane.
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Figure�1: Fundamental Domain for the Action of Modular Group on Upper half plane

Coset Diagrams

A. Cayley introduces the concept of a graph in relation with a group. He uses two

di¤erent types of edges to present two generators of a �nite group, namely S3. The

Cayley graph for a group represents the elements of the group. In fact, the vertices

of the Cayley graph are the elements of the group. Whereas, O. Schreier generalizes

this concept by introducing a graph whose vertices are the cosets of some subgroup

of the group. Thus, in this way, Cayley diagrams become a special case of Schreier�s

coset diagram by taking trivial subgroup. H. S. M. Coxeter and W. O. J. Moser [1]

use Cayley diagrams as well as Schreier�s coset diagrams to prove some interesting

results for �nitely generated groups.

In 1970s, G. Higman introduces the concept of coset diagrams for the modular

group in an interesting way. His doctoral student Q. Mushtaq discusses various actions

of the modular group using these coset diagrams. Q. Mushtaq [8] gives a method

known as Parametrization to draw a coset diagram of the triangle group �(2; 3; n)

for n 2 N: He [9, 10] also discusses action of the modular group on real quadratic

�elds.
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The coset diagram for PSL(2;Z) is given below, in Figure-2. When PSL(2;Z)

acts on projective lines over the �nite �eld, it means, there is a non-degenerate homo-

morphism from PSL(2;Z) to PSL(2; q):When either of the generator do not belong

to the kernel of the homomorphism it is called non-degenerate homomorphism.

Figure 2: Coset Diagram for PSL(2;Z)

A coset diagram is connected if the corresponding action is transitive. That is,

there exist only one orbit as a result of the action.

In PSL(2;Z); the generator y (of order 3) represented by an edge of a triangle and

so by y3 it forms a triangle. Whereas, the generator x (of order 2) is represented by

an edge. All directions are taken as counter clockwise. The �xed points of x or y, if

they exist, are denoted by heavy dots. In PGL(2;Z); the third generator t represents

symmetry about the vertical axis.

For instance, consider the action of PGL(2;Z) on PL(F19): We �nd the permu-

tation representations of x; y and t from the linear transformations x : z 7�! �1
z
; y :

z 7�! (z�1)
z

and t : z 7�! 1
z
respectively. Then,

x : (1 18)(3 6)(0 1)(4 14)(7 8)(2 9)(10 17)(11 12)(5 15)(13 16)

y : (2 10 18) (3 7 9) (0 1 1) (4 15 6) (13 17 11) (5 16 14) (8) (12)
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t : (2 10) (4 5) (0 1) (6 16) (7 11) (3 13) (9 17) (14 15) (8 12) (1) (18)

Figure 3: Action of PGL(2;Z) on PL(F19)

Equivalent and non-equivalent words

A word w is de�ned as a �nite sequence x�11 x
�2
2 ::: x

�k
k ; where for each i; xi belongs to the

set of generators and each �i is either 1 or �1. Length of the word w is k in the above

expression. �Syllable�is a term also used by many researchers for the length of a word,

but syllable of a word is particularly used for those words which are generated by the

two generators. If a group is generated by two generators (say x and y) then for a

word w(x; y) = xr1ys1xr2ys2 :::xrkysk ; the syllable is de�ned as the number of copies of

xpiyqi for i 2 N[f0g ; appears in w(x; y): In the word w(x; y) = xr1ys1xr2ys2 :::xrkysk ;

syllable is k. We denote �a word generated by x and y having syllable k�by wk(x; y).

Let w be a word, then by the deletion of all trivial relations (such as xx�1; x�1x;

yy�1 and y�1y) we get cyclically reduced form of the word. It is denoted by w� in

this dissertation. The cyclically reduced form of wk(x; y) is denoted by w�k(x; y): In

PSL(2;Z), if w (x; y) is a word generated by x and y then cyclically reduced form of

the word is w(x; y) = xys1xys2 :::xysk ; (k � 1; each si = 1 or 2).
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We need words generated by the generators of the modular group and their reduced

forms in the upcoming chapters, so we are ellaborating these concepts here.

Example 5 Let w = xy2xyy�1xx2y3 be a word. Then the reduced form of w in

PSL(2;Z) is xy2 because

w = xy2xyy�1xx2y3= xy2x � 1 � x � 1 � 1 = xy2x � x = xy2 � 1 = xy2:

Example 6 If w(x; y) is a word generated by x and y, and the generators appear

alternatively with powers of y as Fibonacci sequence then w57(x; y) is a word expressed

as

w57(x; y) = xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987

xy1597xy2584xy4181xy6765xy10946xy17711xy28657xy46368xy75025xy121393

xy196418xy317811xy514229xy832040xy1346269xy2178309xy3524578xy5702887

xy9227465xy14930352xy24157817xy39088169xy63245986xy102334155xy165580141

xy267914296xy433494437xy701408733xy1134903170xy1836311903xy2971215073

xy4807526976xy7778742049xy12586269025xy20365011074xy32951280099xy53316291173

xy86267571272xy139583862445xy225851433717xy365435296162:

The reduced form of w57(x; y) in the modular group is

w�57(x; y) = xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2

xyxyxy2xy2:

According to J. Howie, V. Metaftsis and R. M. Thomas [3], two cyclically reduced

words w;w
0 2 Zp � Zq are equivalent if one is transformed to the other by (i) Auto-
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morphism of Zp or of Zq (ii) Cyclic permutation (iii) Inversion (iv) Interchanging the

two free factors (if p = q).

According to Y. T. Ulutas and I. N. Cangul [11], �two words w and w0 are called

equivalent if one of them (say w0) is obtained from the word w = xp1yq1xp2yq2 ::: xpnyqn

by cutting some part from the beginning and pasting it at the end (or equivalently

cutting some part from the end and pasting it in the beginning) in the same order.�

Figure 4: Cyclically Equivalent Words

In other words, if the word generated by the two generators x and y is of the form

w(x; y) = xr1ys1xr2ys2 ::: xrkysk , then any word start from xriysi and ends at xri�1ysi�1

is equivalent to the word w(x; y), where i is the index of p and q in the word w(x; y).

For example, the words xr2ys2xr3ys3 ::: xrkyskxr1ys1 and xr3ys3xr4ys4 :::xrkyskxr1ys1xr2ys2

are equivalent to w(x; y) = xr1ys1xr2ys2 ::: xrkysk :Any two words which do not satisfy

any of the above de�nitions are called non-equivalent words.

Example 7 Let w = xyxyxy2xy3 be a word then the words xy3xyxyxy2; xy2xy3xyxy

and xyxy2xy3xy are equivalent to w. Whereas, the words xyxy2xyxy3; xyxy3xy2xy

and xy3xyxy2xy are non-equivalent to the word w:
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Quotient of a group

Let G be a group with �nite presentation as G =< S;R > where S be the set of

generators and R the set of relations. If an additional relation, which is generated by

the generators of G, inserted in the �nite presentation of G then the new structure is

called a quotient of the group.

If the group PSL(2;Z) is �nitely presented as < x; y : x2 = y3 = 1 > and w(x; y)

is a word generated by x and y; the generators of PSL(2;Z); then < x; y : x2 = y3 =

w(x; y) = 1 > is a quotient of the modular group.

Theorem 8 If w and w0 are two equivalent words then inclusion of w and w0 in �nite

presentation of a group provides same quotients of the group.

It is important to mention here that x and y; whenever they appear in this disserta-

tion, varies from group to group. In particular, they are obviously not the generators

of the modular group.



18



Chapter 2

Survey of One Relator Quotients

By inclusion of an additional relation in the existing relations of a group, we get a

quotient of the group. In this chapter, we give a short but comprehensive survey of one

relator quotients generally and one relator quotients of the modular group particularly.

This study not only comprises on the results but also on the methodology adopted

by di¤erent scholars in di¤erent times.

The study of one relator quotients of a group begins in 1901, while G. A. Miller

[7] uses �nite presentations for describing groups generated by two operators. These

�nite presentations gives a new dimension for the study of groups. G. A. Miller in

his another signi�cant paper [12] describes quotients of a two generator group where

the additional relation is de�ned as some power of product of the two generators. In

other words, G. A. Miller considers triangle groups as one relator quotients of two-

generator groups. M. D. E. Conder [13] also investigates one relator quotients of the

modular group.

M. Edjvet [14] discusses certain quotients of triangle groups de�ned as (m;n; p; q) =<

19
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x; y : xm = yn = (xy)p = [x; y]q = 1 > : Here [x; y] as usual is the commutator

x�1y�1xy: This work is motivated by the work of J. Howie and R. M. Thomas who

obtain necessary and su¢ cient condition for (2; 3; p; q) to be �nite, apart from two

cases, (2; 3; 13; 4) and (2; 3; 7; 11): He obtains a necessary and su¢ cient condition for

(m;n; p; q) to be �nite. He also discusses whether or not (2; 3; 13; 4) and (2; 3; 7; 11)

are �nite. In his main theorem of �nite quotients of the triangle groups, �ve out of

fourteen are two-relator quotients of the modular group.

V. Metaftsis and I. Miyamoto [15] investigate one relator quotients of the group

de�ned by the product of two cyclic groups of order 3, that is, < x; y : x3 = y3 = 1 > :

This work is greatly inspired by [13] and they follow the same scheme as in [13] for

�nding quotients of the group. They state: �In this paper we conduct a similar

investigation on the abstract group < x; y : x3 = y3 = 1 > ; we determine all

possible equivalence classes of presentations for three relator quotients for a third

relator of length at most 14 and we �nd order of all quotients. If the length of

the third relator is increased to 16 the number of quotients is increased from 181

to 618 and it appears to be too great a task to present the results in the present

paper.� They also use a computer program to analyze the quotients. This program

creates all possible combinations for all the di¤erent sizes of the third relator and

then it reduces the list using the cyclic permutations of each additional relation and

of automorphisms of Z3 �Z3: Speci�cally, this program compares each di¤erent word

and its cyclic permutations with all the other words and chooses one presentation from

each equivalence class. The well-known software CAYLEY and �Groups, Algorithms

and Programming�(GAP) are used for identi�cation of quotients.
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In two-generator groups, modular group is one of the most important and most

studied group. Furthermore, in the documentation for the award of Abel Prize in

2009, modular group was described as an important group. One relator quotients

of the modular group are of special importance due to the dynamic characteristics

of the modular group. Also, the modular group is a two-generator group, so the

addition of a relation converts it into a member of a class of generalized triangle

groups. Therefore, the one relator quotients of the modular group can also be viewed

as a class of generalized triangle groups.

Now the focus is-particularly-on one relator quotients of the modular group. For

this we discuss three major approaches, namely:

1. Tietze Transformation Method

2. Ulutas and Cangul�s approach

3. Allotrope of Carbon and Quotient of the Modular group

2.1 Tietze Transformation Method

Use of Tietze transformations is an important technique to �nd another presenta-

tion from one presentation of a group. M. D. E. Conder [13] use this technique to

�nd quotients of the modular group by inserting one additional relation in the �-

nite presentation of the group. He is of the view that if we determine order of the

quotient then description of the quotient is not a di¢ cult task. By using Tietze

transformations as u = xy and v = xy�1 another presentation of the modular group

is < u; v : (vu�1v)2 = (u�1v)3 = 1 > where x = xy�1y�1x�1xy�1 = vu�1v and
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y = y�1x�1xy�1 = u�1v; he looks up to the one relator quotients of the modular

group in the form < u; v : (vu�1v)2 = (u�1v)3 = w(u; v) = 1 > and he gives a com-

plete list of one relator quotients of the modular group with length of w(u; v) up to

24.

L(w(u; v)) Additional Relation Group order Description

1 u 1 Trivial

2 u2 6 S3

2 uv 6 C6

3 u3 12 A4

3 u2v 1 Trivial

4 u4 24 S4

4 u3v 2 C2

4 u2v2 18 C3 � S3

4 (uv)4 24 C2 � A4

5 u5 60 A5

5 u4v 3 C3

5 u3v2 1 Trivial

5 u2vuv 1 Trivial

6 u6 Infinite Triangle group

6 u5v 2 C2

6 u4v2 6 S3
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L(w(u; v)) Additional Relation Group order Description

6 u3v3 48 C4 s A4

6 u3vuv 2 C2

6 u2v2uv 42 C7 s C6

6 (u2v)2 48 C2 s S4

6 (uv)3 infinity [3+; 6]

7 u7 infinite Triangle group

7 u6v 1 Trivial

7 u5v2 3 C3

7 u4v3 1 Trivial

7 u4vuv 12 A4

7 u3v2uv 1 Trivial

7 u3vu2v 3 C3

7 u2v2u2v 1 Trivial

7 u2vuvuv 1 Trivial

Table 1: One Re lator Quotients of PSL(2;Z) upto the Length 7

M. Conder, G. Havas andM. F. Newman [16] extend work of [13]. They investigate

all such one relator quotients of the modular group where the additional relator is

of length up to 36. Up to equivalence, there are 8296 more presentations and they

determine the order of all except �ve of the quotients which are the following.

< u; v : (vu�1v)2 = (u�1v)3 = u4vuv4u3vuv3 = 1 >

< u; v : (vu�1v)2 = (u�1v)3 = u4v2u2v4u2vuv2 = 1 >

< u; v : (vu�1v)2 = (u�1v)3 = u3vu2vu2v2uv2uv3 = 1 >
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< u; v : (vu�1v)2 = (u�1v)3 = u3vu2v2uv3u2vuv2 = 1 >

< u; v : (vu�1v)2 = (u�1v)3 = u3vuvuv3u2vuvuv2 = 1 > :

Most of their results are based on computer calculations. They use MAGMA

which provides excellent facility in identifying groups.

Thus, by Tietze transformations approach, one relator quotients of the modular

group are discussed with length up to 36 and �ve quotients are left without identi�-

cation.

2.2 Ulutas and Cangul�s Approach

Y. T. Ulutas and I. N. Cangul [17] investigate quotients of one of the Hecke group

H
�
1+
p
5

2

�
=< x; y : x2 = y5 = 1 > by inserting one additional relation. They

consider the additional relation up to the length 25: Y. T. Ulutas and I. N. Cangul

[11] �nd one relator quotients of PSL(2;Z) by inserting additional relation up to the

length 21. They use a di¤erent technique than that of [13]. However, their work of

[17] and [11] are not comprehensive nor fully correct. In [11], they �nd number of one

relator quotients of the modular group by developing two formulae. By considering k

as number of x and l as number of y in w(x; y); the number of cyclically reduced words

are equal to

0BB@ k

l � k

1CCA and number of cyclically reduced non-equivalent words are

equal to 1
k

8>><>>: �
d j (k;l�k)

2664'(d)
0BB@ k

d

l�k
d

1CCA
3775
9>>=>>; : They consider generators x and y as white

and black beads in a necklace and total number of possible ways to form a necklace for

certain number of x and y is the number of cyclically reduced non-equivalent words.
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H. B. Ozdemer, Y. T. Ulutas and I. N. Cangul [18] �nd normal subgroups of

the Hecke group H
�p
2
�
=< x; y : x2 = y4 = 1 > and also investigate one relator

quotients of H
�p
2
�
: They use additional relations having length up to 19.

M. Aslam, A. Ali and R. Ahmad [19] investigate one relator quotients of another

Hecke group H
�p
3
�
=< x; y : x2 = y6 = 1 > : They used the technique of [11] and

gave a comprehensive list of the quotients. They insert additional relation up to the

length 24. This completes the study of one relator quotients of well known Hecke

groups. But the length of the additional relation is point of concern, which is �nite

in all above investigations.

2.3 Allotrope of Carbon and Quotient of the Mod-

ular group

P. E. Schupp and I. Kapovich [20] prove that quotients of the modular group sat-

isfy a strong Mostow-type rigidity. The Cayley graph is the associated geometric

structure of such a quotient. Furthermore, isometry of the Cayley graphs shows the

corresponding quotients are isomorphic.

A. Torstensson [21] use coset diagrams to study quotients of �nitely presented

groups. In the �rst part, they describe couple of di¤erent applications of coset dia-

grams to study �nitely presented groups. In the second part, they con�ne themselves

to one relator quotients of the modular group. Thus, the diagrammatic study is also

a useful aspect of the study of one relator quotients of the modular group.
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Q. Mushtaq and A. Ra�q [22] consider the triangle group �(2; 3; 5) as an allotrope

of carbon (Fullerene C60) and they prove very interesting results. The coset diagrams

for the action of PSL(2;Z) on PL(F5n) depicts the diagrammatic analogs of the

Fullerene C60: By taking action of PSL(2;Z) on PL(F5n) and using Burnside�s lemma

they count the number of blocks of the adjacency matrix seperately for n to be even

or odd. Here, blocks of the adjancy matrix shows number of orbits occur in this

action.

Figure 5: Fullerene C60

In Figure-5, the similarity of the Fullerene C60 and the triangle group �(2; 3; 5) is

viewable easily. The black balls are considered as y3 whereas the edges between the

balls represent the generator x.

Q. Mushtaq and N. Mumtaz [23] investigate another triangle group �(2; 3; 7)

whose structure is similar to another carbon allotrope D168 Shewarzite. They not

only discuss the number of orbits of the action of PSL(2;Z) on PL(F7n) but also

some topological properties of the triangle group �(2; 3; 7). The action of PSL(2;Z)

on PL(F7n) gives the triangle group �(2; 3; 7) whose coset diagram is similar to the

structure of D168. One of the important theorem of [23] in which authors describe
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the similarity of the structure D168 with the triangle group �(2; 3; 7) is given below.

Theorem 9 If PSL(2;Z) acts on PL(F7n), then

��OrbPL(F7n )PSL(2; 7)�� = 1 +
(7n + 1)� 8

168
if n is odd��OrbPL(F7n )PSL(2; 7)�� = 2 +

(7n + 1)� 50
168

if n is even

The orbits of the coset diagram when PSL(2;Z) acts on PL(F7n) for n � 3 are

closely related to the structure ofD168 Schwarzite. The transitive action of PSL(2;Z)

on PL(F7) gives an orbit 
1 having 8 vertices. For n = 2, PSL(2;Z) acts on PL(F72)

obtaining two orbits 
1 and 
2 where 
2 have 42 vertices. When PSL(2;Z) acts on

PL(F7n) for n � 3, we obtain orbits 
1; 
2 and copies of 
3. The orbit 
3 and D168

Shwarzite both have genus 3, so these are topologically same.

Figure�6: Orbit 
3 in the Action of PSL(2;Z) on PL(F7n )

Thus, by summarizing the entire discussion, the triangle groups �(2; 3; 5) and

�(2; 3; 7) are one relator quotients of the modular group which are viewed as isotopes

of the carbon atom. Hence, the triangle group �(2; 3; k) occurs as a useful subgroup

of the homomorphic image of the modular group.
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Conclusion 10 In the entire discussion of one relator quotients of a group, syllable

of the additional relation is the centre point of concern. By using di¤erent techniques,

researchers �nd one relator quotients of di¤erent groups. But no one could �nd all

one relator quotients of any group and particularly of the modular group. There is a

limitation of the syllable of the additional relation while �nding one relator quotients of

the group. We try to deal with this limitation up to a certain level in this dessertation

in the next chapters.



Chapter 3

Additional Relation and The

Fibonacci Sequence

Our aim is to study a class of generalized triangle groups as quotients of the modular

group. Since, modular group is a two generator group, we insert an additional relation

of the form w(x; y) = xr1ys1xr2ys2 :::xrkysk in the �nite presentation of the group. By

insertion of w(x; y), the new presentation is < x; y : x2 = y3 = w(x; y) = 1 > which

is one relator quotient of the modular group as well as a class of generalized triangle

groups. To study the above class of one relator quotients of the modular group, we

divide the problem into two parts. Firstly, we �nd additional relations for all syllables.

Secondly, we insert these (in�nite) additional relations in the �nite presentation of

the modular group and investigate the quotients. In chapter three, we solve the �rst

part of the problem while in chapter four, we investigate the later part of the problem.

The following �owchart diagram shows the scheme of getting one relator quotients of

PSL(2;Z).

29
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start

Modular group

Quotients of
the modular

group
corresponding

to words of
length

Reduced words

Count number
of a and b

Generating words
from generators of

modular group

1(mod8)

Count number
of a and b in

reduced words

2(mod8)
3(mod8)

4(mod8)
5(mod8)

6(mod8)
7(mod8)

0(mod8)

Insert reduced words
in modular group

Flow Chart�1: Scheme for One Re lator Quotients of Modular Group

The word w(x; y) is the centre point of discussion. Without loss of generality,

w(x; y) begins from x and ends at y, That is w(x; y) = xr1ys1xr2ys2 :::xrkysk where ri

is 0 or 1 and si is 0; 1 or 2. If ri = 0 then xri vanishes similarly if si= 0 then ysi

vanishes. Thereupon, the choice we left for ri is 1 and for si it is 1 or 2. Here, if we let

ri = 1 then w(x; y) will be of the form w(x; y) = xys1xys2 :::xysk : Since, it is matter

of confusion that where we place si = 1 and where si = 2: So, in this situation, we

use Fibonacci sequence and place the powers of y as terms of Fibonacci sequence in

an order. Because of the relation y3 = 1 the higher powers of y ultimately reduces to

y0; y1 or y2 and occurs on di¤erent places. Thus, instead of placing 0; 1; 2 in powers

of y by our own choice, Fibonacci sequence provides an arrangement. Therefore,
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the general form of w(x; y) is xy1xy1xy2xy3:::xyk where k is kth term of Fibonacci

sequence. Thus, we are inquiring the class of one relator quotients of the modular

group which is of the form < x; y : x2 = y3 = xy1xy1xy2xy3:::xyk = 1 > where k

is the kth term of the Fibonacci sequence. In this chapter our discussion is about

w(x; y) = xy1xy1xy2xy3:::xyk = 1:

It is important to mention here that if we take all possible variations of powers of

y (which are 0; 1; 2) on all places, this will become a giant problem and beyond the

scope of a PhD thesis. Also, we are discussing a class of generalized triangle groups

so by Fibonacci sequence we get a class of generalized triangle groups as one relator

quotients of the modular group. However, up to certain syllable we discuss w(x; y)

with all variations of powers of y in chapter 5 and obtain some interesting and worthy

results. It is noteworthy that, now and onwards, whenever we write w(x; y) it means

the word is generated by the generators of the modular group.

3.1 Design of Algorithm for Generating Words of

all Syllables

In this section, we generate words of all syllables. For this, we develop an algorithm

by which we generate words. The algorithm is constructed in visual basic.net and we

have used data type of maximum range, that is, 64 bits. The 64 bits have the range

0 to 18446744073709551615 which is a large number and it provides su¢ ciently large

number of w(x; y). This algorithm gives four outputs; words of all syllable, reduced
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form of the words, count of the number of generators x and y (as alphabets) in words

and in their respective reduced forms. Finally, the words are divided into the classes

up to the equivalence of their syllable. The sequence of Fibonacci numbers plays vital

role in this classi�cation of words.

Characteristics involved in the Algorithm

The algorithm is based on the following characteristics.

1. It starts constructing words with x1y1.

2. The strings of the words are of the form w(x; y) = xy1xy1xy2xy3 : : : xyk

where powers of y are Fibonacci numbers.

3. The syllable of the string is any positive integer �n�.

4. If power of x(= c) is more than 1, it uses c(mod2) and if power of y(= d)

is more than 2 then d(mod3).

5. It counts number of x and y in words.

6. It counts number of x and y in reduced form of the words.

Algorithm

Imports System.Numerics

Module Module1

Sub Main()

�process(str)

Dim fstr As String = "x1y1"

�For i = 70 To 100

�Console.WriteLine(i & " " & �biter(i).ToString)
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�Next

�Console.ReadKey()

Dim objWriter As New System.IO.StreamWriter("a.txt")

For i = 2 To 90

fstr = fstr & "," & "x1y" & �biter(i).ToString

�Console.WriteLine("{0,3} {1}", i, fstr)

fstr = process(fstr, 0)

Dim orig = origstr(i)

Console.Write("{0,3} {1,-140}", i, output(fstr))

objWriter.Write("{0,3} {1,-140}", i, output(fstr))

Console.WriteLine("({0},{1}) -> ({2},{3})", CountCharacter(orig, "x"), countB(orig),

CountCharacter(fstr, "x"), countB(fstr))

objWriter.WriteLine("({0},{1}) -> ({2},{3})", CountCharacter(orig, "x"), countB(orig),

CountCharacter(fstr, "x"), countB(fstr))

�objWriter.WriteLine("{0}", orig)

If (i + 2) Mod 4 = 0 Then

Console.WriteLine("")

objWriter.WriteLine(vbCrLf)

End If

Next

objWriter.Close()

�output(fstr)

Console.ReadKey()
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End Sub

Function �biter(n As UInt64) As BigInteger

If n = 1 Or n = 2 Then

Return 1

Else

Dim num1, num2, sum As New BigInteger

num1 = 1

num2 = 1

sum = num1 + num2

Dim i As UInt64

For i = 3 To n

sum = num1 + num2

num1 = num2

num2 = sum

Next

Return sum

End If

End Function

Function origstr(n As UInt64)

Dim fstr = "x1y1"

Dim i As UInt64

For i = 2 To n

fstr = fstr & "," & "x1y" & �biter(i).ToString
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Next

Return fstr

End Function

Function countB(str As String) As BigInteger

Dim strtokens As String() = str.Split(",")

Dim y As BigInteger = 0

For Each tok As String In strtokens

Dim c As String = tok.Substring(3, tok.Length - 3)

y += BigInteger.Parse(c)

Next

Return y

End Function

Function output(str As String) As String

Dim strtokens As String() = str.Split(",")

Dim nstr As String = ""

For Each tok As String In strtokens

Dim c As String = tok.Substring(3, tok.Length - 3)

nstr += "xy" & If(c = "1", "", c)

Next

Return nstr

End Function

Public Function CountCharacter(ByVal value As String, ByVal ch As Char) As

UInt64
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Dim cnt As UInt64 = 0

For Each c As Char In value

If c = ch Then cnt += 1

Next

Return cnt

End Function

Function �bonacci(n As UInt64) As UInt64

If n = 1 Or n = 2 Then

Return 1

Else

Return �bonacci(n - 1) + �bonacci(n - 2)

End If

End Function

Function process(Str As String, op As Boolean) As String

Dim orig = Str

If op Then

Console.WriteLine("original: " & orig)

End If

Dim i As UInt64 = 0

�loop

Dim prev As String = ""

While (Not Str = prev)

prev = Str
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�remlast

Dim strtokens As String() = Str.Split(",")

Dim c As BigInteger = BigInteger.Parse(strtokens(strtokens.Count - 1).Substring(3,

strtokens(strtokens.Count - 1).Length - 3))

�Console.WriteLine("the value is {0}", c)

Str = Str.Substring(0, Str.Length - c.ToString().Length)

If (c Mod 3) = 0 Then

c = 3

Else

c = c Mod 3

End If

Str = Str + c.ToString()

�rem mid y

strtokens = Str.Split(",")

Dim newstr1 As String = ""

For i = 0 To strtokens.Count - 2

c = BigInteger.Parse(strtokens(i).Substring(3, strtokens(i).Length - 3))

c = c Mod 3

newstr1 = newstr1 & strtokens(i).Substring(0, 3) & c.ToString() & ","

Next

newstr1 = newstr1 & strtokens(strtokens.Count - 1)

Str = newstr1

Str = Str.Trim(",")
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�

If op Then

Console.WriteLine("modding y: " & Str)

End If

�rem mid y0

strtokens = Str.Split(",")

newstr1 = ""

Dim d As UInt64

For i = 0 To strtokens.Count - 2

c = BigInteger.Parse(strtokens(i).Substring(3, strtokens(i).Length - 3))

If c = 0 Then

d =Convert.ToUInt64(strtokens(i).Substring(1, 1)) + Convert.ToUInt64(strtokens(i

+ 1).Substring(1, 1))

newstr1 = newstr1 & "x" & CStr(d) & "y" & Convert.ToUInt64(strtokens(i +

1).Substring(3, strtokens(i + 1).Length - 3)) & ","

i = i + 1

Else

newstr1 = newstr1 & strtokens(i) & ","

End If

Next

If Not i = strtokens.Count Then

newstr1 = newstr1 & strtokens(strtokens.Count - 1)

End If
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Str = newstr1

Str = Str.Trim(",")

�

If op Then

Console.WriteLine("remvng y0: " & Str)

End If

�join mid x

strtokens = Str.Split(",")

newstr1 = ""

For i = 0 To strtokens.Count - 1

c = Convert.ToUInt64(strtokens(i).Substring(1, 1))

If c > 1 Then

c = c Mod 2

newstr1 = newstr1 & "x" & c.ToString() & strtokens(i).Substring(2, strtokens(i).Length

- 2) & ","

Else

newstr1 = newstr1 & strtokens(i) & ","

End If

Next

Str = newstr1

Str = Str.Trim(",")

�

If op Then
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Console.WriteLine("modd x: " & Str)

End If

�rem x0

strtokens = Str.Split(",")

newstr1 = ""

For i = 0 To strtokens.Count - 2

c = Convert.ToUInt64(strtokens(i + 1).Substring(1, 1))

If c = 0 Then

d = Convert.ToUInt64(strtokens(i).Substring(3, strtokens(i).Length - 3)) + Con-

vert.ToUInt64(strtokens(i + 1).Substring(3, strtokens(i + 1).Length - 3))

newstr1 = newstr1 & "x" & Convert.ToUInt64(strtokens(i).Substring(1, 1)) & "y"

& d & ","

i = i + 1

Else

newstr1 = newstr1 & strtokens(i) & ","

End If

Next

If Not i = strtokens.Count Then

newstr1 = newstr1 & strtokens(strtokens.Count - 1)

End If

Str = newstr1

Str = Str.Trim(",")

�
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If op Then

Console.WriteLine("remvng x0: " & Str)

End If

End While

Return Str

End Function

End Module

(This space is left due to a table on the next page)

The following Table-2 and Table-3 show the outcomes of the algorithm.
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Syllable Word

1 xy

2 xyxy

3 xyxyxy2

4 xyxyxy2xy3

5 xyxyxy2xy3xy5

6 xyxyxy2xy3xy5xy8

7 xyxyxy2xy3xy5xy8xy13

8 xyxyxy2xy3xy5xy8xy13xy21

9 xyxyxy2xy3xy5xy8xy13xy21xy34

10 xyxyxy2xy3xy5xy8xy13xy21xy34xy55

11 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89

12 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144

13 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233

14 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377

15 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610

16 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987

17 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597

18 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584

19 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

20 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181xy6765
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21 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946

22 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711

23 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657

24 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368

25 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368xy75025

26 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368xy75025xy121393

27 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368xy75025xy121393xy196418

28 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368xy75025xy121393xy196418xy317811

29 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368xy75025xy121393xy196418xy317811xy514229

30 xyxyxy2xy3xy5xy8xy13xy21xy34xy55xy89xy144xy233xy377xy610xy987xy1597xy2584xy4181

xy6765xy10946xy17711xy28657xy46368xy75025xy121393xy196418xy317811xy514229xy832040

Table 2: Words with F ibonacci Numbers as Powers
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Syllable Reduced Words

1 xy

2 xyxy

3 xyxyxy2

4 xyxyxy2xy3

5 xyxyxy

6 xyxyxyxy2

7 xyxyxyxy2xy

8 xyxyxyxy2xyxy3

9 xyxyxyxy2xy2

10 xyxyxyxy2xy2xy

11 xyxyxyxy2xy2xyxy2

12 xyxyxyxy2xy2xyxy2xy3

13 xyxyxyxy2xy2xyxy

14 xyxyxyxy2xy2xyxyxy2

15 xyxyxyxy2xy2xyxyxy2xy

16 xyxyxyxy2xy2xyxyxy2xyxy3

17 xyxyxyxy2xy2xyxyxy2xy2

18 xyxyxyxy2xy2xyxyxy2xy2xy

19 xyxyxyxy2xy2xyxyxy2xy2xyxy2

20 xyxyxyxy2xy2xyxyxy2xy2xyxy2xy3

21 xyxyxyxy2xy2xyxyxy2xy2xyxy

22 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2
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23 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy

24 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xyxy3

25 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2

26 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xy

27 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

28 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2xy3

29 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

30 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2

31 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy

32 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xyxy3

33 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2

34 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xy

35 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

36 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2xy3

37 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

38 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2

39 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy

40 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xyxy3

41 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2

42 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xy

43 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

44 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2xy3

45 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy
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46 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2

47 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy

48 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xyxy3

49 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2

50 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xy

51 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

52 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2xy3

53 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

54 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2

55 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy

56 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xyxy3

57 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2

58 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xy

59 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

60 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

xy3

61 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

62 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2

63 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy

64 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xyxy3
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65 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2

66 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xy

67 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxy2

68 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxy2xy3

69 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxy

70 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxyxy2

71 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxyxy2xy

72 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxyxy2xyxy3

73 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxyxy2xy2

74 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxyxy2xy2xy

75 xyxyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxyxy2xy2xyxy

xy2xy2xyxyxy2xy2xyxyxy2xy2xyxy2

Table 3: Reduced Words



48

3.2 Classi�cation of all Words

In Table-3, observe the pattern of the words and divide the words into eight classes

corresponding to their syllables, that is, for each i 2 f0; 1; 2; : : : ; 7g there is a class of

words having syllable i(mod8): Thereupon, eight classes of words emerge on the basis

of equivalence of words. Furthermore, obtain words of the same class by adding

number of copies of xyxyxy2xy2 after the �rst appearance of xy. For instance,

w1(x; y) = xy; w9 (x; y) = xyxyxyxy
2xy2 and w17(x; y) = xyxyxyxy2xy2xyxyxy2xy2:

The following Table-4 summarizes all the eight classes of words in the form of rela-

tions:

Syllable of the word Additional relations

k � 1(mod 8) xy(xyxyxy2xy2)� = 1

k � 2(mod 8) xy(xyxyxy2xy2)�xy = 1

k � 3(mod 8) xy(xyxyxy2xy2)�xyxy2 = 1

k � 4(mod 8) xy(xyxyxy2xy2)�xyxy2xy3 = 1

k � 5(mod 8) xy(xyxyxy2xy2)�xyxy = 1

k � 6(mod 8) xy(xyxyxy2xy2)�xyxyxy2 = 1

k � 7(mod 8) xy(xyxyxy2xy2)�xyxyxy2xy = 1

k � 0(mod 8) xy(xyxyxy2xy2)�xyxyxy2xyxy3 = 1

Table 4: Classification of all Words

where � is a non-negative integer for all the classes.

As the Fibonacci sequence 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; : : : appears

in the powers of y, and because of the relation y3 = 1 of the modular group, Fi-

bonacci sequence reduces to the form 1; 1; 2; 0; 2; 2; 1; 0; 1; 1; 2; 0; 2; 2; 1; 0; : : :. Here, it
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is noteworthy that there is a repetition of terms after every eight syllables. Hence,

this repetition continues up to in�nity due to the pattern of Fibonacci sequence,

that is, the method itself does not depend upon the range of 64 bits, because of

the repetition of 1; 1; 2; 0; 2; 2; 1; 0. Thus, by computer algorithm we get su¢ ciently

large number of words w(x; y) and after that the pattern of Fibonacci sequence

generates w(x; y) even for syllable greater than 264: That is, if k = 264 + 1 =

18; 446; 744; 073; 709; 551; 616 � 0(mod8) then w264+1(x; y) belongs to the class of syl-

lable 0(mod8) and thusw264+1(x; y) = xy(xyxyxy2xy2)2805843009213693951xyxyxy2xyxy3:

Correctness of the algorithm is also con�rmed through analysis. Words of di¤erent

syllables are obtained manually. They are then checked by using algorithm randomly

for many values. Both; manual and algorithm, provide the same results. The GAP

and the Tietze transformation are then used to identify the quotients for each w(x; y)

which also provide same quotients. This ensures correctness of the algorithm.

The advantage of this algorithm is that it provides w(x; y) of su¢ ciently large

syllable occurring in abundance, saving from chances of error and time. For the

e¤ective execution of the algorithm, processing power of the computer plays a vital

role.

Number of x and y in Words and in their Reduced Forms

The word w�k(x; y) is obtained from the word wk(x; y). But in order to generalize

the notion of w�k(x; y) for all syllables, formulae are devised for number of x and y

appear in w�k(x; y). Secondly, the pattern (position) of appearance of x and y in

w�k(x; y) needs to be observed. Thus, with this information, words of all syllables are
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generated. The symbols N(xwk) and N(ywk) are used for number of x and y in words

respectively. Similarly, N(xw�k) and N(yw�k) are used for number of x and y in the

reduced words respectively.

Theorem 11 If syllable of the word w(x; y) is k and k is any non-negative integer

such that k = 4p+ r for some non-negative integers p and r then

Proof. Since syllable of the word w(x; y) is k and k is a non-negative integer,

divide all non-negative integers into subsets each subset containing four elements.

Let =1 = f0; 1; 2; 3g; =2 = f4; 5; 6; 7g;...;=k = f4(k � 1); 4(k � 1) + 1; 4(k � 1) +

2; 4(k � 1) + 3g; ::: .

For =1 : If k = 0 then 0 = 4 � 0 + 0 implies that N(xw�k) = 2 � 0 + 2 = 2; that

is, a word of syllable 0 have two x. In other words, w(x; y) = x2 = 1 is the word of

syllable 0 or the trivial word.

If k = 1; then 1 = 4 � 0+1 (where r = 1) implies that N(xw�k) = 2 � 0+1 = 1: Also

w1(x; y) = xy shows N(xw�1 ) = 1:

If k = 2; then 2 = 4 � 0+2 (where r = 2) implies that N(xw�k) = 2 � 0+2 = 2: Also

w2(x; y) = xyxy shows N(xw�2 ) = 2:

If k = 3; then 3 = 4 � 0+3 (where r = 3) implies that N(xw�k) = 2 � 0+3 = 3: Also

w3(x; y) = xyxyxy
2 shows N(xw�3 ) = 3: Thus, the theorem holds for all elements of

=1:
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For =n : Since =n = f4(n�1); 4(n�1)+1; 4(n�1)+2; 4(n�1)+3g; it is assumed

that the result holds for =n and it requires only to be proved for the neighboring set;

=n+1 = f4n; 4n+ 1; 4n+ 2; 4n+ 3g:

For =n+1 : As every 4th term of the Fibonacci sequence is multiple of 3 and these

numbers appear in the power of y, so y vanishes at every 4th place. Then x on the

left of y and x on the right of y multiply and gives x2 which is equal to 1. Thus, in

every 4 terms two x vanishes and only two x increases.

If k = 4n; then N(xw�k) = is equal to the number of x in 4(n � 1)th term +2

= 2n+ 2:

If k = 4n + 1; then N(xw�k) = number of x in (4(n � 1) + 1)th term +2 =

(2n� 1) + 2 = 2n+ 1:

If k = 4n+ 2; then N(xw�k) = number of x in (4(n� 1) + 2)th term +2 = 2n+ 2:

If k = 4n + 3; then N(xw�k) = number of x in (4(n � 1) + 3)th term +2 =

(2n+ 1) + 2 = 2n+ 3. Thus, the theorem is proved for all elements of =n+1; that is,

the result holds for all non-negative integers.

Theorem 12 If syllable of the word w(x; y) is k and for some non-negative integers

p and r, k = 8p� r then
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N(yw�k) =

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

6p+ 3 if r = 0

6p if r = 1

6p� 1 if r = 2

6p� 3 if r = 3

6p+ 1 if r = 4

6p� 2 if r = 5

6p� 4 if r = 6

6p� 5 if r = 7 :

9>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>;
Proof. Since syllable of the word w(x; y) is k and k is a non-negative integer, the

non-negative integers are divided into subsets, each containing eight elements.

Let =0
1 = f0; 1; 2; 3; 4; 5; 6; 7g; =0

2 = f8; 9; 10; 11; 12; 13; 14; 15g;...;=0
k = f8(k �

1); 8k � 7; 8k � 6; 8k � 5; 8k � 4; 8k � 3; 8k � 2; 8k � 1g; ::: .

For =0
1 : If k = 0 then 0 = 8 � 0� 0 and so N(yw�k) = 6 � 0 + 3 = 3; that is, a word

of syllable 0 has three y. Hence, w(x; y) = y3 = 1 is a word of syllable 0 or a trivial

word.

If k = 1; then 1 = 8 � 1� 7 and so N(yw�k) = 6 � 1� 5 = 1: That is w(x; y) = xy:

If k = 2; then 2 = 8 � 1� 6 and so N(yw�k) = 6 � 1� 4 = 2: That is w(x; y) = xyxy:

If k = 3; then 3 = 8�1�5 and so N(yw�k) = 6�1�2 = 4: That is w(x; y) = xyxyxy
2:

If k = 4; then 4 = 8 � 1 � 4 and so N(yw�k) = 6 � 1 + 1 = 7: That is w(x; y) =

xyxyxy2xy3:

If k = 5; then 5 = 8 �1�3 and so N(yw�k) = 6 �1�3 = 1: That is w(x; y) = xyxyxy:
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If k = 6; then 6 = 8 � 1 � 2 and so N(yw�k) = 6 � 1 � 1 = 5: That is w(x; y) =

xyxyxyxy2:

If k = 7: then 7 = 8 � 1 � 1 and so N(yw�k) = 6 � 1 = 6: That is w(x; y) =

xyxyxyxy2xy:

If k = 8; then 8 = 8 � 1 � 0 and so N(yw�k) = 6 � 1 + 3 = 9: That is w(x; y) =

xyxyxyxy2xyxy3: Thus, the statement is true for all elements of =0
1:

For =0
n : Since =

0
n = f8(n�1); 8n�7; 8n�6; 8n�5; 8n�4; 8n�3; 8n�2; 8n�1g;

we assume that the result holds for nth set. We prove it for the neighboring set.

For =0
n+1 : Since powers of y are from Fibonacci sequence

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987; ::: (3.1)

By using the order of y which is 3, these terms reduce to the form

1; 1; 2; 0; 2; 2; 1; 0; 1; 1; 2; 0; 2; 2; 1; 0; ::: (3.2)

As each =0
i contains eight elements and every eight terms of the above sequence

contains nine y; therefore, every 4th term of the above sequence is multiple of 3; that

is, y vanishes at every 4th position. So, by addition of 3rd and 5th term, it reduces

3 y. Hence, in every eight terms the number of y increases to 6. Note that =0
n+1 =

f8n; 8(n+1)�7; 8(n+1)�6; 8(n+1)�5; 8(n+1)�4; 8(n+1)�3; 8(n+1)�2; 8(n+1)�1g:

If k = 8n; then N(yw�k) = Number of y in 8(n � 1)th term+6 = (6n � 3) + 6 =

6n+ 3 = 6(n+ 1)� 3.

If k = 8(n+1)�7; thenN(yw�k) = number of y in (8n�7)th term+6 = (6n�5)+6 =

6n+ 1 = 6(n+ 1)� 5:
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If k = 8(n+1)�6; thenN(yw�k) = number of y in (8n�6)th term+6 = (6n�4)+6 =

6n+ 2 = 6(n+ 1)� 4.

If k = 8(n+1)�5; thenN(yw�k) = number of y in (8n�5)th term+6 = (6n�2)+6 =

6n+ 4 = 6(n+ 1)� 2.

If k = 8(n+1)�4; thenN(yw�k) = number of y in (8n�4)th term+6 = (6n+1)+6 =

6n+ 7 = 6(n+ 1) + 1.

If k = 8(n+1)�3; thenN(yw�k) = number of y in (8n�3)th term+6 = (6n�3)+6 =

6n+ 3 = 6(n+ 1)� 3.

If k = 8(n+1)�2; thenN(yw�k) = number of y in (8n�2)th term+6 = (6n�1)+6 =

6n+ 5 = 6(n+ 1)� 1.

If k = 8(n+1)� 1; then N(yw�k) = number of y in (8n� 1)th term+6 = 6n+6 =

6n + 6 = 6(n + 1). Thus, the result holds for all elements of =0
n+1; that is for all

non-negative integers.

For illustration of the above two theorems, the following example is given for

di¤erent syllables.

Example 13 (a) If syllable of the word w(x; y) is 56 and 56 = 4(14) + 0 then by

Theorem 11; p = 14 and r = 0. Therefore, N(xw�56) = 2(14) + 2 = 30.

Also 56 = 8(7)� 0 then by Theorem 12; N(yw�56) = 6(7) + 3 = 45:

(b) If syllable of the word w(x; y) is 57 and 57 = 4(14) + 1 then by Theorem 11,

p = 14 and r = 1: Therefore, N(xw�57) = 2(14) + 1 = 29:

Also 57 = 8(8)� 7 then by Theorem 12; N(yw�57) = 6(8)� 5 = 43:

Number of x and y in w(x; y) and in w�(x; y) are given in the following table.
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Syllable (N(xw);N(yw)) (N(xw�);N(yw�))

1 (01; 01) (01; 01)

2 (02; 02) (02; 02)

3 (03; 04) (03; 04)

4 (04; 07) (04; 07)

5 (05; 12) (03; 03)

6 (06; 20) (04; 05)

7 (07; 33) (05; 06)

8 (08; 54) (06; 09)

9 (09; 88) (05; 07)

10 (10; 143) (06; 08)

11 (11; 232) (07; 10)

12 (12; 376) (08; 13)

13 (13; 609) (07; 09)

14 (14; 986) (08; 11)

15 (15; 1596) (09; 12)

16 (16; 2583) (10; 15)

17 (17; 4180) (09; 13)

18 (18; 6764) (10; 14)

19 (19; 10945) (11; 16)

20 (20; 17710) (12; 19)

21 (21; 28656) (11; 15)

22 (22; 46367) (12; 17)

23 (23; 75024) (13; 18)

24 (24; 121392) (14; 21)

25 (25; 196417) (13; 19)

26 (26; 317810) (14; 20)

27 (27; 514228) (15; 22)

28 (28; 832039) (16; 25)

29 (29; 1346268) (15; 21)

30 (30; 2178308) (16; 23)

31 (31; 3524577) (17; 24)

32 (32; 5702886) (18; 27)

33 (33; 9227464) (17; 25)

34 (34; 14930351) (18; 26)

35 (35; 24157816) (19; 28)

36 (36; 39088168) (20; 31)

37 (37; 63245985) (19; 27)

38 (38; 102334154) (20; 29)

39 (39; 165580140) (21; 30)

40 (40; 267914295) (22; 33)

41 (41; 433494436) (21; 31)

42 (42; 701408732) (22; 32)

43 (43; 1134903169) (23; 34)

44 (44; 1836311902) (24; 37)

45 (45; 2971215072) (23; 33)
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Syllable (N(xw);N(yw)) (N(xw�);N(yw�))

46 (46; 4807526975) (24; 35)

47 (47; 7778742048) (25; 36)

48 (48; 12586269024) (26; 39)

49 (49; 20365011073) (25; 37)

50 (50; 32951280098) (26; 38)

51 (51; 53316291172) (27; 40)

52 (52; 86267571271) (28; 43)

53 (53; 139583862444) (27; 39)

54 (54; 225851433716) (28; 41)

55 (55; 365435296161) (29; 42)

56 (56; 591286729878) (30; 45)

57 (57; 956722026040) (29; 43)

58 (58; 1548008755919) (30; 44)

59 (59; 2504730781960) (31; 46)

60 (60; 4052739537880) (32; 49)

61 (61; 6557470319841) (31; 45)

62 (62; 10610209857722) (32; 47)

63 (63; 17167680177564) (33; 48)

64 (64; 27777890035287) (34; 51)

65 (65; 44945570212852) (33; 49)

66 (66; 72723460248140) (34; 50)

67 (67; 117669030460993) (35; 52)

68 (68; 190392490709134) (36; 55)

69 (69; 308061521170128) (35; 51)

70 (70; 498454011879263) (36; 53)

71 (71; 806515533049392) (37; 54)

72 (72; 1304969544928656) (38; 57)

73 (73; 2111485077978049) (37; 55)

74 (74; 3416454622906706) (38; 56)

75 (75; 5527939700884756) (39; 58)

76 (76; 8944394323791463) (40; 61)

77 (77; 14472334024676220) (39; 57)

78 (78; 23416728348467684) (40; 59)

79 (79; 37889062373143905) (41; 60)

80 (80; 61305790721611590) (42; 63)

81 (81; 99194853094755496) (41; 61)

82 (82; 160500643816367087) (42; 62)

83 (83; 259695496911122584) (43; 64)

84 (84; 420196140727489672) (44; 67)

85 (85; 679891637638612257) (43; 63)

86 (86; 1100087778366101930) (44; 65)

87 (87; 1779979416004714188) (45; 66)

88 (88; 2880067194370816119) (46; 69)

89 (89; 4660046610375530308) (45; 67)

90 (90; 7540113804746346428) (46; 68)

Table 5: Number of x and y in w(x;y) and w�(x;y)



Chapter 4

A Class of Generalized Triangle

Groups

In previous chapter, we discussed words w(x; y), their reduced forms w�(x; y), formu-

lae showing number of x and y in w(x; y) and in w�(x; y); and �nally we obtained

eight classes of words and consequently of additional relations. In this chapter, we

insert these w�(x; y) = 1 in �nite presentation of PSL(2;Z) so that one-relator quo-

tients of the modular group are obtained which are in the form < x; y : x2 = y3 =

w�(x; y) = 1 >. We take advantage of Tietze transformations and �Groups, Algo-

rithms and Programming�(GAP) for identi�cation of these quotients. In second part

of this chapter, we discuss some applications of quotients of PSL(2;Z) in cryptogra-

phy. The important non-linear component of cryptographic schemes is substitution

box. The formation of substitution box have a variety of methods but here we use a

quotient of PSL(2;Z) and its coset diagram to have a strong and an e¢ cient substi-

tution box. This substitution box is not only have high non-linearity but also resistive

57
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against linear and di¤erential attacks.

4.1 A Class of Generalized Triangle Groups as Quo-

tients of the Modular Group

In this section we deal with one relator quotients of the modular group corresponding

to the words generated in the previous chapter as expressed in Table�4 . We insert

the additional relations in PSL(2;Z) and then identify the one relator quotient of the

modular group. The following is the main theorem in which quotients of the modular

group are determined.

Theorem 14 Let G =< x; y : x2 = y3 = w�(x; y) = 1 > be one relator quotient of

PSL(2;Z) where w�(x; y) is the reduced form of w(x; y) = xr1ys1xr2ys2 : : : xrkysk and

risi are terms of the Fibonacci sequence. Then up to equivalence G is one of the eight

groups; trivial group, C2, C3, S3, A4, C3 � S3, ((((C2 �D8) : C2) : C3) : C3) : C2 and

< x; y : x2 = y3 = (xyxyxy2xy2)� = 1 > :

Proof. As the words w(x; y) = xr1ys1xr2ys2 : : : xrkysk are divided into eight classes

with respect to their syllables, as shown in Table -4. Then, for each class of words

having syllable i(mod8) where i 2 f0; 1; 2; :::; 7g, the quotients of PSL(2;Z) are of the

form:

G1 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)� = 1 >

G2 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xy = 1 >

G3 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xyxy2 = 1 >
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G4 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xyxy2xy3 = 1 >

G5 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xyxy = 1 >

G6 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xyxyxy2 = 1 >

G7 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xyxyxy2xy = 1 >

G0 =< x; y : x
2 = y3 = xy(xyxyxy2xy2)�xyxyxy2xyxy3 = 1 >

In all cases, � is a non-negative integer and each quotient Gi,where i 2 f0; 1; 2; : : : ; 7g,

is associated with words of syllable i(mod8).

First, the additional relation of G1 is xy(xyxyxy2xy2)� = 1. For � = 0, the

additional relation is xy = 1 implying that x = 1 = y, and the quotient is a trivial

group. For � = 1, the additional relation is xy(xyxyxy2xy2) = 1 or xyx = yxyxy2xy2

or xy2x = 1. It gives x = 1 = y. Thus, the quotient G1 is a trivial group. Other

values of � similarly follow the pattern of � = 1 because it increases the number of

copies of xyxyxy2xy2. Thus, for all values of �, quotient G1 is a trivial group.

For G2: The additional relation of G2 is xy(xyxyxy2xy2)�xy = 1. For � = 0, the

additional relation is xyxy = 1. Thus, the quotient is < x; y : x2 = y3 = (xy)2 = 1 >

which is S3. For � = 1, the additional relation is xy(xyxyxy2xy2)xy = 1 which

implies that yxyxy2xy2 = xy2xy2x or (xy)2 = 1. Hence, the quotient is S3. For other

values of �; in a similar way as for � = 1 the quotient G2 is S3.

For G3: The additional relation of G3 is xy(xyxyxy2xy2)�xyxy2 = 1. For � = 0

it becomes xyxyxy2 = 1. This implies that xyx = yxy2 or x = 1 = y. This shows that

the quotient is a trivial group. Hence, similarly for other values of �, the quotient G3

is trivial group.

Similarly, By using GAP, we �nd G5 and G7 which are expressed in the following
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pictures taken from GAP.

Group G5

Group G7

Thus, by using Tietze transformation and by using GAP we �nd the other quotients

and summarize the results in the following table.
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Syllable of the word Quotients of the Modular Group

G1 k � 1(mod 8) Trivial group

G2 k � 2(mod 8) S3

G3 k � 3(mod 8) Trivial group

G4 k � 4(mod 8) C2

G5 k � 5(mod 8)

G6 k � 6(mod 8) C2

G7 k � 7(mod 8) C3

G0 k � 0(mod 8)
Table 6: A Class of Quotients of the Modular Group

Thus, we obtain a class of generalized triangle groups as quotients of PSL(2;Z)

corresponding the word (of any syllable) and conclude that this class contains trivial

group, C2, C3, S3, A4, C3 � S3, ((((C2 �D8) : C2) : C3) : C3) : C2 and < x; y : x2 =

y3 = (xyxyxy2xy2)� = 1 >. This completes the proof.

Remark 15 It is pertinent to mention here that the group < x; y : x2 = y3 =

(xyxyxy2xy2)2 = 1 > is described by J. Howie, V. Metaftsis and R. M. Thomas in

[3] as one of the �nite generalized triangle groups of order 576. Whereas, we identify

the above-mentioned group as a quotient of PSL(2;Z) and further the description of

its structure is ((((C2 �D8) : C2) : C3) : C3) : C2.

Remark 16 It is worthwhile to note that there is a single quotient Gi corresponding

to each class of syllable i(mod8) except for i = 0 or 5.
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Remark 17 Eight out of fourteen �nite generalized triangle groups are one relator

quotients of PSL(2;Z). Our method/proposed scheme is applicable on all two gen-

erator groups. We can also view that all �nite generalized triangle groups are two

generator groups. So, the proposed method is su¢ cient to �nd one relator quotients

of all �nite generalized triangle groups. This study of quotients is comprehensive and

provides a methodology to determine all one relator quotients of any two-generator

group.

4.2 Quotients of the Modular Group and Alge-

braic Substitution Box

Historical Development

With rapid advancement in communication technology, the maintenance of data se-

curity has become a great challenge for cryptographers. In this regard, block encryp-

tion algorithm plays vital role in cryptographic systems. The important component

of block encryption algorithm is the S-box. The security strength of the S-box de-

termines the security strength of the entire cryptosystem. It is therefore established

that the S-box plays an important role in the security of cryptographic schemes.

The DES [24] was proposed by a well-known computer production company in

1977, and the DES investigations drove the re�nement in the cryptographic system

enormously. Later, a group of university students broke the DES security. This led

to the realization that of some other secure and e¢ cient encryption method has to
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be evolved. In 2002, the Advanced Encryption Standard (AES) was created by J.

Daemen and V. Rijmen [25] which is now the standard for the encryption. The S-box

has a vital role in quality of encryption. Utilization of a weak S-box is tantamount

to compromising on the security of encryption process. Therefore, before using an

S-box in a cryptosystem, it is pertinent to assess its strength. The analyses for mea-

suring strength include nonlinearity method (NL), linear approximation probability

method (LAP), bit independence criterion (BIC), di¤erential approximation proba-

bility method (DAP) and strict avalanche criterion (SAC). Some studies related to

the construction of S-box and its strength are in [26, 27]. The analyses of S-box in

image encryption based on majority logic criteria are investigated in [28, 29]. More

investigation on the S-box based on a chaotic map is conducted in [30], hyperchaotic

system-based S-box in [31], and chaotic neural network-based S-box in [32]. G. Chen,

Y. Chen and X. Liao [33] described an S-box based on three-dimensional chaotic

baker maps. U. Hayat and N. A. Azam [34] used elliptic curves to construct an S-box

by considering the ordinate of the curve for this construction. Altaleb et al. [35]

investigate the construction of an S-box by using the projective general linear group.

Thus, various aspects of construction of an S-box are investigated to get a secure

and better S-box which enables better encryption. For example, recently, attackers

have been successful in breaking the loops of AES. Thus, the need for an e¢ cient

method to generate dynamic S-boxes exists. The construction of an S-box using the

group graphs is presented as an alternative S-box design technique. It exponentially

improved security and e¢ cacy which is vividly visible in subsequent work in this

section. We propose an e¢ cient technique for the construction of an S-box by using
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action of a quotient of PSL(2;Z) on PL(F257). The permutations obtained in this

way are used to draw a coset diagram. The vertices of the coset diagram are consid-

ered in a special way for constructing an S-box. The S-box generated in this way is

highly secure, closely meeting the optimal values of the standard S-box. All the tests

for the security strength are performed and compared with other S-boxes con�rming

that the proposed S-box is highly secure.

The purpose of this study is to establish a scheme for the construction of an S-box

by taking action of one of the quotients of the modular group (e.g. we choose A4)

on the projective line over the �nite �eld, that is PL(F257). The proposed scheme is

presented in the following �ow chart.
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Flow Chart 2: Pr ocedure for the Construction of S�Box

4.2.1 S-Box Based on Action of a Group and Coset Diagrams

In the proposed scheme, �rstly we take action of A4 on PL(F257), then in the second

step, we draw a coset diagram of the action, and �nally we construct an S-box by

using vertices of the coset diagram. The action of the modular group on PL(Fp)

evolves a coset diagram in which each vertex is �xed by (xy)p. In order to draw a
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coset diagram for < x; y : x2 = y3 = (xy)n = 1 >, where n is of our own choice, there

is a method given by Q. Mushtaq [8], known as parametrization method.

Action of A4 on Projective Line over the Finite Field PL(F257)

The linear fractional transformations of the generators x and y act on each element

of PL(F257) produces the following permutation representations of x and y.

x : (055 00)(157 01)(019 002)(183 003)(004 20)(192 005)(006 150)(007 096)(008

024)(009 026)(029 010)(034 011)(012 044)(013 074)(014 inf)(211 015)(016 241)(251

017)(018 256)(021 189)(022 135)(023 093)(025 102)(027 128)(028 230)(203 030)(207

031)(032 182)(092 033)(035 158)(036 058)(037 179)(140 038)(039 063)(071 040)(041

126)(122 042)(043 136)(153 045)(237 046)(047 129)(048 239)(049 049)(098 050)(051

061)(052 053)(141 054)(056 086) (057 168)(184 059)(060 225)(062 077)(064 167)(164

065)(066 171)(067 105)(068 070)(069 083)(072 075)(073 209)(076 212)(078 254)(079

191)(080 200)(081 109)(082 255)(084 160)(085 205)(087 154)(088 166)(116 089)(090

162)(091 100)(094 206)(095 137)(165 097)(099 104)(226 101)(253 103)(106 248)(107

146)(108 161)(110 174)(175 111)(112 155)(113 138)(219 114)(115 133)(117 228)(118

221)(119 197)(188 120)(220 121)(123 195)(124 177)(125 201)(250 127)(130 173)(131

198)(132 240)(134 142)(139 178)(143 151)(144 231)(247 145)(147 172)(148 190)(149

242)(152 170)(156 238)(159 244)(243 163)(169 196)(176 204)(180 218)(181 186)(185

194)(235 187)(193 252)(199 229)(202 216)(208 223)(210 213)(214 245)(215 217)(222

246)(224 234)(227 249)(232 233)(236 236).

y : (00 241 inf)(121 242 01)(256 120 240)(113 02 100)(239 128 141)(230 070

003)(171 011 238)(004 090 177)(151 237 064)(087 005 049)(236 154 192)(222 027
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006)(214 019 235)(190 131 007)(110 051 234)(008 075 209)(166 233 302)(009 072

184)(169 232 057)(010 089 164)(152 231 077)(134 012 101)(229 107 140)(195 162

013)(079 046 228)(014 060 186)(181 227 055)(199 104 015)(137 042 226)(225 016

249)(148 105 017)(136 093 224)(189 084 018)(157 052 223)(074 020 050)(221 167

191)(132 033 021)(208 109 220)(022 115 206)(126 219 035)(145 174 023)(067 096

218)(059 024 045)(217 182 196) (163 056 025)(185 078 216)(153 073 026)(168 088

215)(111 085 028)(156 130 213)(179 029 040)(212 062 201)(095 044 030)(197 146

211)(175 183 031)(058 066 210)(173 034 036)(207 068 205)(116 037 097)(204 125

144)(119 099 038)(142 122 203)(129 039 243)(202 112 255)(147 041 248)(200 094

250)(043 061 247)(180 198 251)(047 102 159)(139 194 082)(150 048 253)(193 091

245)(149 081 053)(160 092 188)(103 054 246)(187 138 252)(086 063 244)(178 155

254)(165 071 065)(170 076 176)(127 133 069)(108 114 172)(135 080 083)(161 106

158)(124 123 098)(118 117 143).

The coset diagram for the action of A4 on PL(F257) consists of two types of the

circuits, given below.

Figure 7: Type�A Circuit F igure 8: Type�B Circuit

(a) In Type-A circuit, there are four triangles and this type of circuit occurs

twenty-one times in the coset diagram. There is no �x point of x nor of y in Type-A
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circuit. Thus, Type-A circuits use 252 vertices of the coset diagram.

(b) In type-B circuit, there are only two triangles and this type of circuit occurs

only once in the coset diagram. In this circuit, there are two �xed points of x. Thus,

Type-B circuit utilized only six vertices of the coset diagram.

Construction of S-Box using Coset Diagram

After drawing the coset diagram, we proceed towards construction of S-box from the

coset diagram. There are twenty-two circuits in the coset diagram, so the �rst step

is how to choose a circuit. The second step is the selection of vertices of that circuit

in a speci�c manner. Therefore, for the �rst part, instead of randomly choosing the

circuits we choose the circuits by using a sequence, known as Fibonacci sequence

1; 1; 2; 3; 5; 8; :::. We de�ne mapping as � : PL(F257) ! PL(F257) by �(k) = Sum of

the �rst k terms of the Fibonacci sequence. Then, choose the circuit in which �(x)

occurs. By this mapping, we can easily and systematically choose the circuits one

by one. For illustration, �(1) = 1, we pick the circuit of the coset diagram having 1

as the vertex, that is, the circuit shown in Figure-9. Similarly, for �(0) = 0; �(2) =

1 + 1 = 2; �(3) = 1 + 1 + 2 = 4; and so on. Secondly, after choosing the circuit

of the coset diagram, now we select the vertices of that circuit in a special manner.

We initiate from the vertex �(1) = 1 and apply xy; (xy)2, and (xy)3 (because of the

third relator of A4 ) on �(1) and note the vertices, which are (1; 52; 149). Then, in the

same circuit we choose the smallest number from the remaining vertices of the circuit,

which is 53, apply xy and its powers to get (53; 223; 109). Continue the process by

choosing the smallest from the remaining vertices of the circuit and apply xy and its
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powers so that all the vertices of the circuit are utilized. We can view the entries of

the circuit containing �(1) = 1 in (starting from row 1 column 12 of) Table-7, except

in�nity. It is important to mention here that if �(x) appears in the previous circuit

then it means it is already utilized so move on. But, if �(x) appears in the new

circuit, then apply xy and its powers in the similar fashion and note the permutation.

Continue the process till all the vertices of the coset diagram are exhausted yielding

258 entries in an order. Ignore 1 and 256. Thus, a 16 � 16 S-box is constructed as

shown in Table-7. It is important to mention here that whenever �(x) > 256 take

modulo class 257. It seems easy to �nd �(x) in modulo class 257 but this is not so.

We use an online PowerMod Calculator for these calculations. The entire scheme

of constructing an S-box is based on the action of a �nite triangle group A4, coset

diagram, and Fibonacci sequence. These all inculcate the natural patterns in the

scheme which gives a very suitable and e¤ective S-box as a result.

1
121

157

149

242

81

53

52

223

220
109

208

Figure 9: A Ci rcuit of the Coset Diagram Containing T (1)

Figure 10: Type B Circuit
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000 181 014 016 060 055 241 249 186 227 225 001 052 149 053 223

109 081 220 242 121 208 157 002 235 138 019 100 245 091 113 252

187 214 193 004 050 124 013 020 090 074 195 098 123 162 177 007

218 198 17 180 67 96 190 105 131 251 148 12 30 142 42 203

095 044 101 137 122 226 134 018 120 160 021 084 092 033 188 240

132 189 006 048 128 027 141 246 054 239 253 103 150 222 032 196

232 057 088 233 166 215 182 168 169 217 046 064 191 079 221 117

118 167 151 143 237 228 015 197 099 038 229 104 119 146 140 107

211 199 003 031 068 028 070 205 085 207 175 111 183 230 078 178

194 082 202 185 112 254 216 139 155 255 023 224 110 043 093 145

051 247 174 061 234 136 025 159 086 039 244 047 056 063 243 102

163 129 022 080 094 069 135 115 083 127 200 133 206 250 035 161

114 041 219 172 106 147 108 126 248 158 011 036 066 034 023 130

058 173 213 156 171 210 008 045 073 009 153 059 024 075 184 026

072 209 010 040 065 029 089 037 071 179 097 116 164 165 005 236

154 049 087 192 062 152 076 077 201 144 125 212 176 170 231 204
Table 7: 16�16 Matrix Evolved from Coset Diagram

For more variability, we apply one of the permutations from S256 on the outcome

presented in Table-7 to change the positions of the elements. This permutation

increases the randomness of the elements and gives the proposed S-box with high

nonlinearity, as shown in Table-8. The permutation � 2 S256 used here is as follows:

(001 195 199 236 194 185 207 251 082 026 096 155 104 175 052 132 197 030 149
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216 233 167 043 118 024 011 221 146 047 241 171 140 090 148 248 121 242 069 008

055 240 042 045 200 143 162 021 142 190 157 131 074 184 161 127 062 218 211 124

208 097 153 039 087 202 041 100 066 072 170 232 178 065 010 073 007 015 059 238

231 122 058 234 182 023 219 061 086 133 051 247 018 048 222 137 098 077 125 228

014 029 220 165 094 214 166 003 244 130 209 112 189 203 169 033 243 187 076 113

145 070 255 053 037 168 107 223 226 224 116 108 044 006 114 068 054 180 103 046

204 201 111 147 159 013 213 181 129 225 078 177 152 115 016 093 019 109 079 227

229 085 192 176 188 057 212 235 063 193 249 105 173 164 102 084 040 253 210 237

239 080 217 099 071 134 034 110 049 135 089 035 032 009 036 215 128 092 191 139

117 138 252 038 245 163 246 160) (000 151 083 172 020 183 028 150 198 230 120 056

067 205 136 027 095 064 002 106 250 174) (005 088 179 141 156 050 154 060 081 158

123 101 025 254 031 012 126 196 091 186 075 206 144 022) (004) (017) (119).

(This space is left because of the table on the next page)
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151 129 29 93 81 240 171 105 75 229 78 195 132 216 37 226

79 158 165 69 242 97 131 106 63 252 109 66 163 186 145 38

76 166 249 4 154 208 213 183 148 184 199 77 101 21 152 15

211 230 17 103 205 155 157 173 74 82 248 126 149 190 45 169

64 6 25 98 58 224 34 48 56 1 142 40 191 243 57 42

197 203 114 222 92 95 156 160 180 80 210 46 198 137 9 91

178 212 179 167 3 128 23 107 33 99 204 2 139 227 146 138

24 43 83 162 239 14 59 30 71 245 85 175 119 47 90 223

124 236 244 12 54 150 255 136 192 251 52 147 28 120 177 65

185 26 44 207 189 31 233 117 104 53 219 116 49 118 19 70

247 18 0 86 182 27 254 13 133 87 130 241 67 193 187 84

246 225 5 217 214 8 89 16 172 62 143 51 144 174 32 127

68 100 61 20 250 159 44 196 121 123 221 215 72 110 231 209

234 164 181 50 140 237 55 200 7 36 39 238 11 206 161 96

170 112 73 253 10 220 35 168 134 141 153 108 102 94 88 194

60 135 202 176 218 115 113 125 111 22 228 235 188 232 122 201
Table 8: Proposed S�Box

Analysis for Evaluating the Strength of S-box

The criteria generally selected to test the S-box are nonlinearity, strict avalanche

criteria, bit independence criteria, linear approximation probability, and di¤erential

approximation probability. For testing the strength of the proposed S-box, we discuss
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each of them in the following. We also compare the results with recently developed

S-boxes.

Non-Linearity

Nonlinearity (NL) is one of the signi�cant criteria for the performance evaluation of

the S-box which measures the randomness of the values of the S-box. The NL of

proposed S-box is 110:50 which is higher than that of [36, 37, 38, 39, 40, 41, 42].

The higher the NL, the stronger the S-box. Hence, the NL of the proposed S-box

guarantees a secure communication. The NL of the proposed S-box is expressed in

Table-9 and comparison with [36, 37, 38, 39, 40, 41, 42] is in Table-12.

Function of S-box 0 1 2 3 4 5 6 7

Non-Linearity 112 110 112 110 110 108 112 110

Table 9: Non�Linearity of the Proposed S�Box

Strict Avalanche Criteria

The concept of strict avalanche criteria (SAC) was introduced byWebster and Tavares

[43] which measures the confusion creation of an S-box by measuring the change in

output bits due to the change in input bits. The minimum and the maximum value

of SAC of the proposed S-box are 0:40625 and 0:578125, whereas the average value is

0:503175 (Table-10) which is much closer to 0:5, the ideal value of SAC. The lesser

deviation from 0:5, the stronger the S-box. The comparison of SAC of the proposed

S-box with that of [36, 37, 38, 39, 40, 41, 42] is in Table-12, which depicts that the

proposed S-box has better SAC performance.
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0 1 2 3 4 5 6 7

0:453125 0:546875 0:484375 0:453125 0:484375 0:515625 0:500000 0:500000

0:484375 0:484375 0:453125 0:484375 0:546875 0:531250 0:453125 0:515625

0:406250 0:515625 0:531250 0:500000 0:515625 0:500000 0:531250 0:56250

0:531250 0:515625 0:437500 0:515625 0:531250 0:421875 0:500000 0:546875

0:531250 0:531250 0:500000 0:515625 0:453125 0:500000 0:468750 0:531250

0:515625 0:515625 0:546875 0:453125 0:515625 0:546875 0:453125 0:515625

0:515625 0:531250 0:484375 0:578125 0:500000 0:453125 0:500000 0:546875

0:468750 0:515625 0:546875 0:484375 0:468750 0:531250 0:546875 0:484375

Table 10: Strict Avalanche Criteria

Di¤erential Approximation Probability

Di¤erential approximation probability (DAP) is a measure to analyse the resistance of

the S-box against di¤erential attacks. The smaller the DAP, the higher the resistance

against attacks. The DAP of the generated S-box is 0:0234375 which is exceptionally

good. This DAP value is near to the optimal value 0:0156. This re�ects that the

S-box generated by group action and using coset diagrams has the ability of high

resistance against di¤erential attacks. The comparison of DAP of proposed S-box

with that of some other known S-boxes is given in Table-12.

Bit Independence Criteria

Bit independence criteria also measures the strength of the S-box. The BIC value of

the generated S-box is 109:21 (Table-11). The comparison with that of [36, 37, 38,
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39, 40, 41, 42] is in Table-12. This BIC value is su¢ ciently good and assures secure

communication and better encryption in cryptographic application.

0 1 2 3 4 5 6

� 106 110 110 108 108 110

106 � 108 110 110 110 106

110 108 � 108 112 110 110

110 110 108 � 108 110 108

108 110 112 108 � 110 110

108 110 110 110 110 � 110

110 106 110 108 110 110 �
Table 11: Bit Independence Criteria

Linear Approximation Probability

Linear approximation probability (LAP) criteria measure the strength or resistance of

the S-box against linear attacks. The smaller the LAP value, the higher the strength

of security of the S-box. The LAP of the generated S-box is 0:0859375 which is smaller

than that of [36, 37, 38, 39, 40, 41, 42]. This depicts that the proposed scheme has

ability to generate a strong, e¢ cient, and attack resistant S-box.

The comparison of NL, SAC, BIC, LAP, and DAP with other known S-boxes

is given in Table-12. The NL and the BIC value of the proposed S-box are higher

than that of the others. The least values of LAP and DAP show the proposed S-

box is highly resistive against the linear as well as di¤erential attacks. And the

confusion/di¤usion creation criteria SAC is also closer to the standard value 0:5000.
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Hence, the perfect combination of all (NL, SAC, BIC, LAP, and DAP) shows the

proposed S-box is a secure choice for encryption.

S-boxes Nonlinearity SAC BIC LAP DAP

Proposed S-box 110:50 0:5031 109:21 0:0860 0:0234

Jakimoski and Kocarev [36] 103:25 0:5059 104:29 0:1250 0:0469

Tang et. al. [37] 104:88 0:4966 102:96 0:1328 0:0391

Belazi and Eilatif [38] 105:50 0:5000 103:78 0:1250 0:0468

Ullah et. al. [39] 106:00 0:5020 103:00 0:1250 0:0469

Wang et. al. [40] 110:00 0:4937 103:86 0:1250 0:0391

Razaq et. al. [41] 106:75 0:5032 103:64 0:1484 0:0469

Liu et. al. [42] 104:50 0:4980 104:64 0:1250 0:0469

Table 12: Strength Comparison of Proposed S�Box

Majority Logic Criteria

Majority logic criteria (MLC) measures image encryption strength of the S-box. En-

tropy, correlation, contrast, energy, and homogeneity are the components of MLC.

We used JPEG image of a baboon for this analysis. Figures 11(a) and 11(c) show the

original image and the histogram, while Figures 11(b) and 11(d) show the encrypted

image and encrypted histogram. Specially, the entropy value which is 7.9832 is better

than that of [25, 39, 41, 44, 45]. The entropy value is very close to the ideal value,

which is 8. The values of contrast, correlation, energy, and homogeneity also indicate

the proposed scheme provides a strong S-box which is suitable for encryption appli-

cations. The results of this analysis in comparison with well-known S-boxes are in
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Table 13.

(a) (b)

(c) (d)

Figure�11: image Encryption with Proposed S�BOX

Baboon Image Entropy Energy Contrast Homogeneity Correlation

Daemen and Rijmen [25] 7:9325 0:0211 7:2240 0:4701 0:0815

Proposed S-box 7:9832 0:0157 10:4027 0:3909 0:00073

Ullah et:al:[39] 7:9824 0:0172 8:7348 0:4074 �0:0043

Razak et:al:[41] 7:9551 0:0174 8:5267 0:4088 0:00044

Khan et:al:[44] 7:9612 0:0210 8:1213 0:4011 �0:0512

Belazi et:al:[45] 7:9252 0:0222 8:0391 0:4428 0:0119

Table 13: Majority Logic Criteria Comparision
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Result Discussion

The nonlinearity of the proposd S-box is very high which shows the security strength

of the S-box. The resistance against the linear attacks and the di¤erential attacks is

measured by the LAP value and the DAP value. Both the values of the proposed S-box

are very small which is suitable and better for the strength of an S-box. Furthermore,

the SAC of the proposed S-box is 0:503 which is very close to 0:5, perfect value of

SAC. Similarly, the BIC value of the proposed S-box is better than the other well

known S-boxes. Table-12 shows the comparison of all the values. This means, the

proposed S-box is an excellent choice for the cryptographic applications because it is

a perfect combination of NL, SAC, LAP, DAP and BIC. The image of babon is used

for MLC. The values of contrast, energy, homogeneity, correlation and entropy shows

that the proposed S-box is suitable for image encryption.

Conclusion

In this chapter, we found one relator quotients of the modular group related to Fi-

bonacci sequence of numbers. The words obtained in chapter three are now utilised

as additional relation in the modular group and then the resultant quotients are in-

vestigated. Finally, to identify these quotients we used Tietze transformations and on

some places �Groups, Algorithms and Programming�(GAP). This is a class of gen-

eralized triangular group which we investigated as quotients of the modular group.

Furthermore, from this class of quotients we choose one quotient, which is A4, and by

taking action of A4 on PL(F257) we construct an algebraic S-box. By investigating
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the security strength parameters of this S-box, we conclude this S-box is highly secure

for the communication and highly preferable for cryptographic applications.
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Chapter 5

All one Relator Quotients of the

Modular Group

Since one relator quotients of the modular group are of the form < x; y : x2 = y3 =

w(x; y) = 1 > where w(x; y) = xr1ys1xr2ys2 :::xrkysk : In chapter three, we �xed the

powers of the generators as Fibonacci sequence of numbers and found one relator

quotients of the modular group. To �nd one relator quotients of the modular group

with all variations of powers of x and y and for all syllable of w(x; y) is a gigantic

problem: A step towards this problem, we �nd number of cyclically reduced non-

equivalent words with all variations of powers of x and y and for all syllable of w(x; y):

By this we come to know that how many one relator quotients of the modular group

exists corresponding to each syllable k. Thus, by considering all variations of powers

of the generators in w(x; y) we are able to count the number of one relator quotients

of the modular group. For this goal, we prove some important results in this chapter.

81
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5.1 Number of One-Relator Quotients of the Mod-

ular Group

Number of one relator quotients of the modular group are equal to the number of

cyclically reduced non-equivalent words for every k; the syllable of w(x; y): Therefore,

�rstly we �nd all the possibilities for the additional relator w(x; y) = 1 for each syllable

k then �nd number of cyclically reduced non-equivalent words. In the following

theorem we obtain a formula for the number of all possible words for any syllable k.

Theorem 18 Let w(x; y) = xys1xys2 :::xysk be the word generated by x and y then

for a speci�c syllable k; there are exactly 2k words generated by x and y.

Proof. In w(x; y); positions and powers of x are �xed. Therefore, it is su¢ cient

to count the possibilities of ys1ys2 :::ysk : By using the multiplication rule of counting,

if k objects each have two possibilities then there are exactly 2k arrangments of the

objects. Thus, there are 2k words having syllable k generated by x and y.

As an illustration, we choose a �x k and �nd all the words of syllable k which are

generated by x and y.

Let k = 5 then by Theorem-18 there are 25 = 32 total words.
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N(xw) N(yw) cyclically reduced words
5 5 xyxyxyxyxy
5 6 xyxyxyxyxy2

5 6 xyxyxyxy2xy
5 6 xyxyxy2xyxy
5 6 xyxy2xyxyxy
5 6 xy2xyxyxyxy
5 7 xyxyxyxy2xy2

5 7 xyxyxy2xy2xy
5 7 xyxy2xy2xyxy
5 7 xy2xy2xyxyxy
5 7 xy2xyxyxyxy2

5 7 xyxyxy2xyxy2

5 7 xyxy2xyxy2xy
5 7 xy2xyxy2xyxy
5 7 xyxy2xyxyxy2

5 7 xy2xyxyxy2xy
5 8 xyxyxy2xy2xy2

5 8 xyxy2xy2xy2xy
5 8 xy2xy2xy2xyxy
5 8 xy2xy2xyxyxy2

5 8 xy2xyxyxy2xy2

5 8 xyxy2xy2xyxy2

5 8 xy2xy2xyxy2xy
5 8 xy2xyxy2xyxy2

5 8 xyxy2xyxy2xy2

5 8 xy2xyxy2xy2xy
5 9 xyxy2xy2xy2xy2

5 9 xy2xy2xy2xy2xy
5 9 xy2xy2xy2xyxy2

5 9 xy2xy2xyxy2xy2

5 9 xy2xyxy2xy2xy2

5 10 xy2xy2xy2xy2xy2

Table 14: All words of length 5

We extend this table with other variations of N(xw) and N(yw) which are in�nite

in number.

From Table-14, it is very clear that 5C0 words having �ve y and no y2; 5C1 words

having four y and one y2; 5C2 words having three y and two y2; 5C3 words having two

y and three y2 and 5C4 words having one y and four y2; and 5C5 words having no y
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and �ve y2: Thus, in general, kCi represents the number of words having syllable k

with y2 appearing i times and y appears k � i times.

5.2 Additional Relations in view of Circuits

In the discussion of all possible non-equivalent words for each syllable k, �rstly we

eliminate the cyclically equivalent words. Figure-4 is an easy way to understand

cyclically equivalent words. Secondly, there exist inverses of the words. Inverses are

just the conversion of inside triangles to outside triangles and outside triangles of the

circuit to inside. Thus, algebraically words and their inverses play the same role. We

therefore eliminate the inverses. One can view this in the following �gures-12 and

�gure-13.

n2k­1 triangles

n2k triangles

n1 triangles

n2 triangles

n3 triangles

n4 triangles

Figure 12: Ci rcuit of the type (n1;n2;:::;n2k)
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n2k­1 triangles

n2k triangles n3 triangles

n4 triangles

n1 triangles
n2 triangles

Figure 13: Inverse of the Ci rcuit (n1;n2;:::;n2k)

Now we discuss non-equivalent words. For any syllable k, we prove the result for

number of non-equivalent words. These non-equivalent words contain x, y and y2.

There are two types of circuits corresponding to additional relations.

Type-IThese circuits consists of all triangles with one vertex inside or all triangles

with one vertex outside of the main frame of the circuit. This type of circuits exists

only when the word is of the form (xy)k or (xy2)k: It is pertinent to mention here

that addition of such words gives triangle groups as quotient of the modular group.

For di¤erent values of k, geometry of the triangle groups is discussed in chapter 1.

For k > 6, the triangle groups are of in�nite order and �nite for other values of k.

Type-II These circuits consists of some triangles with one vertex inside and some

triangles with one vertex out side of the main frame of the circuits. These circuits are

always of even length. Length of the circuit is the number of variations from inside
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triangles to outside triangles and outside triangles to inside triangles. A Circuit of

length two is represented by (a; b) with a number of triangles inside and b number

of triangles outside of the main frame of the circuit. A theorem of Q. Mushtaq [47]

which assures there exists a real quadratic irrational number of the type � = a+
p
n

c

where n is square free positive integer, in the circuit of the orbit of PSL(2;Z) acting

on PL(Fq): The length of the circuits also depends upon the syllable of the word. For

illustration, let k = 6 and consider all cyclically reduced non-equivalent words. The

word xyxyxyxyxyxy or (xy)6 shows that all the triangles are inside the circuit (so

of Type-I) and gives the triangle group �(2; 3; 6). The word xyxyxyxyxyxy2 depicts

that �ve triangles are inside the circuit while one triangle is outside the circuit and

the circuit is is of the form (5; 1). Similarly, the circuit for the word xyxyxyxyxy2xy2

is (4; 2) and for xyxyxyxy2xy2xy2 is (3; 3). The circuit corresponding to the word

xyxyxyxy2xyxy2 consists of three triangles inside, one triangle outside, one triangle

inside and one triangle outside, that is, circuit is of the type (3; 1; 1; 1) and length

of the circuit is four. Same is the case with xyxyxy2xyxyxy2; xyxyxy2xyxy2xy2

and xyxyxy2xy2xyxy2: Now the only remaining word is xyxy2xyxy2xyxy2. Here,

the circuit is of the form (1; 1; 1; 1; 1; 1); that is, six triangles alternatively inside and

outside of the main frame of the circuit.

On the other hand, due to di¤erent combinations of circuit types one can reversely

�nd cyclically reduced non-equivalent words. Precisely, all the combinations of mak-

ing 6 (in even combinations) are 6 = 6+ 0 = 5+ 1 = 4+ 2 = 3+ 3 = 1+ 1+ 1+ 3 =

1 + 2 + 1 + 2 = 1 + 1 + 2 + 2 = 2 + 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1: These nine



87

combinations provide nine cyclically reduced non-equivalent words.

Figure 14(a): Circuit (1;1;1;1;1;1) Figure 14(b): Circuit (1;2;2;1) Figure 14(c): Circuit (4;2)

1

Figure 14(d): Circuit (1;1;1;3) Figure 14(e): Circuit (1;1;2;2) Figure 14(f): Circuit (1;2;1;2)

Figure 14(g): Circuit (5;1) Figure 14(h): Circuit (6;0) Figure 14(i): Circuit (3;3)

5.3 Number of Cyclically Reduced Non-Equivalent

Words

If two words w and w
0
are equivalent by de�nition then the corresponding quotients

are isomorphic. So, there is a need to identify the equivalent words which we eliminate

from the total possibilities to get a small list of non-equivalent words and consequently

quotients of the modular group.
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Remark 19 Let w(x; y) = xys1xys2 ::: xysk be a word and all si0s are same in w(x; y)

then no other word is equivalent to w(x; y):

Proof. Obvious from the de�nition.

Remark 20 Let w(x; y) = xys1xys2 ::: xysk be a word and si0s are alternatively 1 and

2. Then the words equivalent to w(x; y) are either 1 or 2. If s1 = sk then there are

two equivalent words while otherwise only one equivalent word.

Proposition 21 If w(x; y) = xys1xys2 ::: xysk be a word then the words which are

equivalent to w(x; y) are at the most k � 1.

The following theorem is important because it gives the number of non-equivalent

words for a �xed syllable k.

Theorem 22 If k is the syllable of a word w(x; y) then number of cyclically non-

equivalent words are 2+
k�1X
i=1

ti; where ti =
l
kCi
k

m
for 1 � i � k � 1:

Proof. If syllable of w(x; y) = k; then by Theorem-18 there are exactly 2k words

of syllable k which are distributed in k+1 classes as 2k=
kX
i=0

kCi. Also each row of the

Pascal triangle satis�es 2k=
kX
i=0

kCi. Therefore, there is a relationship between rows

of the Pascal triangle and the number of cyclically non-equivalent words. Thereupon,

we utilize the similarity of rows of the Pascal triangle with syllable of the words. The

kth row of Pascal triangle is associated with the words of syllable k. And each element

kCi (for 1 � i � k) of the row k represents i number of y2 appear in w�k(x; y);

that is, N(y2w�k) = i: Clearly, kC0 and kCk represent (xy)k and (xy2)k: These words
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have no other equivalent words by Remark 19. For the remaining kC1 to kCk�1; we

represents each class having kCi words by 	i: Every class 	i is non-empty so there

exists a word say w1(x; y) 2 	i: Then by proposition-21, there are k � 1 other words

must exist which are equivalent to w1(x; y): If kCi > k; then there exists another

word say w2(x; y) 2 	i and by proposition-21 there exist k� 1 more words which are

equivalent to w2(x; y): Similarly, If kCi > 2k; then there exist some w3(x; y) 2 	i and

the process continues until, one reaches on a point where kt � kCi < k(t + 1) with

t a non-negative integer. Thus, there are exactly t words each have k � 1 number of

equivalent words. Along with those, there is a unique word having less than k � 1

equivalent words and the existence of such words is discussed in remark 20. Thus, the

total number of cyclically non-equivalent words for each 	i are ti =
l
kCi
k

m
: Hence,

number of cyclically non-equivalent words are 2 +
k�1X
i=1

ti: This completes the proof.

In cyclically non-equivalent words another important property exists. That is,

some words and their inverses both exist in cyclically non-equivalent words. Accord-

ing to J. Howie, V. Metaftsis and R. M. Thomas [3] words and their inverses are

equivalent especially in the case when they are treated as additional relation in a

group. Furthermore, by Theorem-8, if the equivalent words are inserted in a group

as additional relation then the corresponding quotients are same. Thus, there is a

need to identify and then eliminate either words or their inverses from the cyclically

non-equivalent words, to get a precise list of non-equivalent words. In this connection,

�rstly we establish a result for the number of non-equivalent words (by eliminating in-
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verses of the words) for each syllable k: After that, we discuss some prperties of words

and their inverses which help to identify equivalent and non-equivalent quotients.

Theorem 23 If k is the syllable of a word w(x; y) then number of non-equivalent

words are 1+
[ k2 ]X
i=1

ti where ti =
l
kCi
k

m
for 1 � i � k� 1 and

�
k
2

�
is the greatest integer

function.

Proof. If syllable of w(x; y) = k; then by Theorem-18, there are exactly 2k words

of syllable k which are distributed in k+1 classes as 2k=
kX
i=0

kCi. Also the sum of each

row of the Pascal triangle also satis�es 2k=
kX
i=0

kCi. So, there is a relationship between

rows of the Pascal triangle and the number of cyclically reduced non-equivalent words

for corresponding syllable. Theorem 22 gives cyclically non-equivalent words. Now by

eliminating inverse of each word we get number of cyclically reduced non-equivalent

words. As, inverses can be get by replacing y to y2and y2 to y in w(x; y): Therefore,

avoiding the inverses we consider number of y greater than number of y2 in w(x; y), or

otherwise. That is, this divides the Pascal triangle in to two equal halves vertically.

Figure 15: Pascal Triangle Division for Non�Equivalent Words
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Therefore, we now only consider cyclically reduced words having 0 to k
2
number of

ones in power of y. By using Theorem-22, it becomes kC0+
[ k2 ]X
i=1

ti where ti is number

of cyclically reduced words in each 	i: This completes the proof.

Proposition 24 Let N (xw) = k1, N (yw) = k2 be the two possible numbers then the

number of cyclically reduced non-equivalent words for [k1; k2] and for [k1; 3k1�k2] are

equal.

As an illustration of all the above discussion, we provide the following example.

Example 25 Consider Table-14 of all words of length 5. Then by Theorem 8, Theo-

rem 18, Theorem 22, Theorem 23 and Proposition 24 we have the following Table-15

of cyclically reduced non-equivalents words which give di¤erent quotients.

N(xw) N(yw) Cyclically reduced non� equivalent words
5 5 xyxyxyxyxy
5 6 xyxyxyxyxy2

5 7 xyxyxyxy2xy2

5 7 xyxyxy2xyxy2

Table 15: Cyclically Reduced Non�Equivalent words

Thus, the classi�cation of all one relator quotients of the modular group on the

basis of equivalent and non-equivalent words is presented. It gives a method (in the

form of Theorem 8, Theorem18, Theorem 22, Theorem 23 and Proposition 24) to �nd

a precise list of quotients which is su¢ cient instead of inquiring all the quotients of

the modular group for that syllable.

Now we discuss some other relationship between the equivalent words which helps

us to investigate non-equivalent words and consequencelly quotients of the modular

group. By using the inversion, one can easily prove xyr is equivalent to xy3�r where r
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is either 1 or 2: By using this fact, the words xyr1xyr2 and xy3�r2xy3�r1 are also equiv-

alent and consequently by adding these words in PSL(2;Z); the resultant quotients

are also same. Similarly, we can extend this for the words of higher syllables.

Proposition 26 Let PSL(2;Z) =< x; y : x2 = y3 = 1 > be the modular group then

the one-relator quotients Q1 =< x; y : x2 = y3 = xyr1xyr2xyr3 :::xyrk = 1 > and

Q2 =< x; y : x
2 = y3 = xy3�rkxy3�rk�1 :::xy3�r1 = 1 > are isomorphic where for each

i; ri is either 1 or 2.

Concluding the entire discussion, we are now giving a brief table presenting number

of words for each syllable and number of cyclicall reduced non-equivalent words for
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each syllable.

Syllable of the words Total number of words Number of cyclically reduced
non-equivalent words

1 2 1
2 4 2
3 8 2
4 16 4
5 32 4
6 64 9
7 128 10
8 256 22
9 512 30
10 1024 66
11 2048 84
12 4096 212
13 8192 316
14 16384 711
15 32768 1095
16 65536 2453
17 131072 3856
18 262144 8636
19 524288 57558
20 1048576 30837
21 2097152 49935
22 4194304 111061
23 8388608 182362
24 16777216 405867
25 33554432 671091

Table�16: Number of non�equivalent words

By using the Theorem-23, one can extend the table-16 of non-equivalent words

upto any syllable k:

Conclusion

Firstly we discussed number of all possible words for any syllable k 2 N. For this,

Pascal triangle gives number of all such possible combinations. Secondly, we elimi-

nated the cyclically equivalent words from the total possible words. A formula was

established in this regard. Furthermore, we reduced the list by eliminating the in-
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verses of the words and established a formula for cyclically reduced non-equivalent

words for each syllable k 2 N. Thus, in consequence of Theorem-22 and Theorem-23,

a precise list for number of cyclically reduced non-equivalent words was obtained.

Thus, in this chapter, we discussed number of one relator quotients of the modular

group with no limits on syllable of the aditional relation.
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