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Preface

A Class of Generalized Triangle Groups as
Quotients of PGL(2, Z)

It is well known that the modular group PSL(2, Z) is generated by the linear
fractional transformations x : z — _71 andy: z— Z;—l which satisfy the relations x> =y* =

1. An additional relation in a group converts it into a quotient of the group. If the
additional relation is simply the power of the product of two generators x and y then it
turns out to be a triangle group A(l,m,n) =<x,y; xt=ym= (xy)™ = 1 >. The triangle
groups A(2,3,n) are especially important for being homomorphic images of the modular
group PSL(2,Z). If an additional relation is of the form (w(x,y))" where w(x,y) =
xP1ydixPzydz xPkydk then the group converts into a generalized triangle group

A(Imn)=<xy; xt=ym= wx,y)*=1>. It is known that the generalized

triangle group is infinite when (!E + i + i) < 1 and finite when (!l + i + i) > 1.7.
Howie, V. Metaftsis and R. M. Thomas proved a very important result about the
classification of finite generalized triangle groups.

A word w is defined as a finite sequence x;'x;2... x;*, where for each i, x; belongs
to the set of generators and each g; is either 1 or -1. The third relator leads to a word
which is of special interest in this thesis.

Several group theorists discussed one relator quotients of various groups. A
considerable number of them concentrated on one relator quotients of the modular
group. M. D. E. Conder is one of them who found quotients of the modular group by
inserting additional relations as words up to length 24. Y. T. Ulutas and I. N. Cangul, by
using a different technique, investigated one relator quotients of the modular group by

inserting additional relations as words up to length 21. Later on, a number of

researchers followed both the techniques, but all were restricted by considering



additional relations as words of finite lengths. In the entire discussion of one relator
quotients, length of the additional relation as a word is the centre point of our concern.

In this dissertation, our aim is to study a class of generalized triangle groups as
quotients of the modular group. Since, modular group is a two generator group, we
insert an additional relation of the form w(x,y) = xPtydixP2y9z  xPkydk in the finite
presentation of the group. We consider powers of the generators as terms of Fibonacci
sequence of numbers. That is we consider groups < x,y; x2=yi=wl,y) =1>
which are one relator quotient of the modular group and a class of generalized triangle
groups. There are two major parts to investigate in this class of groups. Firstly, we
determine additional relations for all lengths k, that is, the length of word w(x,y)-
which varies from 1 to infinity. Secondly, we insert these (infinite) number of additional
relations in finite presentation of the modular group and investigate the quotient
groups thus obtained.

This thesis comprises five chapters. In chapter one, we mentions some basic
concepts related to one relator quotients. This chapter contains finite presentations of
groups, quotient of a group, group action on suitable sets, coset diagrams, projective
general linear group, projective special linear group, triangle groups, generalized
triangle groups, Fibonacci sequence, words, reduced words, equivalent words, syllable

of a word, Tietze transformations, finite fields and projective lines over the finite fields.

In chapter two, there is a comprehensive survey of one relator quotients generally
and one relator quotients of the modular group particularly. This study not only
explains the results but also stresses upon the methodology adopted by various
researchers. One relator quotients of the modular group are of special importance due

to the interesting features of this group.



In chapter three, we generate words of all syllables. We use Fibonacci sequence of
numbers in the powers of the generators in the additional relation for generating words
of all syllables. We develop an algorithm by which we generate words. This algorithm
gives four outputs; words of all syllables, reduced form of the words, count the number
of x and y in words, and in their respective reduced forms. In the end, we divide words

in classes on the basis of Fibonacci sequence.

In chapter four, we find one relator quotients of the modular group related to
Fibonacci sequence of numbers. The words obtained in chapter three are used as
additional relation in the modular group so that they can later be investigated as
quotient groups. Finally, to identify these quotients we use Tietze transformation and in
certain cases ‘Groups, Algorithms and Programming’ (GAP). It is a class of generalized
triangle groups which we investigate as quotients of the modular group. Furthermore,
from this class of quotients we choose one quotient, which is the alternating group of
degree 4, that is, As and by taking action of As on the projective line over the finite field
Fos7, that is PL(F257) we construct an algebraic substitution box (S-box). By investigating
the security strength parameters of this S-box, we conclude that this S-box is highly

secure for the communication and highly preferable for cryptographic applications.

In chapter five, we determine number of all one relator quotients of the modular
group for each syllable by considering all possible additional relations. Furthermore, we
proved a number of results by which we find the number of cyclically reduced non-
equivalent words for each syllable k. The one relator quotients corresponding to these
cyclically reduced non-equivalent words are sufficient instead of finding all but
equivalent quotients. In this chapter, we also view the additional relations as circuits
(close paths) and find some interesting relationships between them. From the circuits

point of view, if we consider all the possibilities of the additional relation then there are



two types of circuits; one type consists of circuits having all triangles with one vertex
inside or all triangles with one vertex outside of the circuit and the second type consists
of circuits containing some (at least one) triangles with one vertex in side and some (at
least one) triangles with one vertex outside the circuit. First type depicts triangle groups
as quotients of the modular group and the other type depicts generalized triangle
groups as quotients of the modular group. The study of one relator quotients provides a

mechanism to determine all one relator quotients of any two-generator group.
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Chapter 1

Definitions and Basic Concepts

This introductory chapter provides a background knowledge and general information
in a formal way which enable the reader to go through this work without consulting
the literature. We include only those definitions which are specifically related to
generalized triangle groups and one relator quotients of a group. We adopt standard
notations as used in text books. We begin the current chapter with a summary of

basic concepts. References for further information are provided throughout.

Finite Presentation of a group

Let GG be a group having generators x, x2, x3, ... such that every element of G can be
written as a product of some of these generators and their powers.
Let

X ($1,$2,$3, ) ,Y (331,33'2,55‘3, ) s Z(ml,l'Q,l’g, ) y e

be defining relations for G such that each of them defines the identity element of G
and any other relator for GG is obtained from these relators. Therefore, G is written

3



as

G = (21,29, 23,... : X (x1,79,23,...), Y (x1,22,23,...), Z(21,Z2,73,...),...).

H. S. M. Coxeter and W. O. J. Moser [1] call a set of certain elements 1, xo, 3, ..., T,
of a group G, a set of generators if every element of G is expressible as a finite product
of their powers (including negative powers). Such a group is conveniently denoted by
the symbol (x1, xo, ..., ). When m = 1, we get a finite cyclic group < x > denoted
by C,,, where n is the order of the single generator z, that is " = 1, where 1 is a
notation for the identity element of the group C,,. It is important to mention here
that, the relation 2™ = 1 means that the order of z is exactly n, and not merely
divisor of n.

A presentation < S, R > is called finitely generated if the set S is finite, and is
finitely related if the set R is finite. A presentation < S, R > is called finite if both
S and R are finite; in that case G =< S, R > is called finitely presented.

As we know there is no co-relation between cardinality of the set S and order of
the group GG. Our interest is mainly in the quotients of linear groups, therefore we
refer to a wonderful paper by R. G. Swan [2] which discusses generators and relations
for some linear groups. Some finite presentations of well known groups are given as
follows.

C, =<z :2" =1 > cyclic group of order n

Sy =<,y : 2% =1y = (zy)* = 1 > is symmetric group of order 3!

Sy =<uz,y:2*=y>= (xy)? = 1 > is symmetric group of order 4!

INES

Ay =<uz,y: 2% =13 = (vy)® =1 > is an alternating group of order

oo

As =< z,y: 2% =y> = (ry)® = 1 > is an alternating group of order



Dy =< x,y: 22 = y"* = (2y)* = 1 > is a dihedral group of order 2n
Dy =< z,y:2*> = (xy)? = 1 > is an infinite dihedral group

Qs =<z,y:2* =1, 22 =92 yr =23y > or

Qs =< x,y : yry = x, ryr = y > quaternion group of order 8

7 X7 =<uxy:xy=yx > free product of Z and Z

CoxCy =< x,y: 2% = y> =1 > is also known as the modular group or PSL(2,7Z).

Tietze Transformation

In group theory, to transform a given finite presentation of a group into another -
often simpler- finite presentation of the same group is through Tietze transformations.
These transformations are named after H. F. F. Tietze who introduced them in a paper
in 1908.

Let S5 have the finite presentation as < z,y : 2° = y*> = (zy)? = 1 >. By using

Tietze transformations, let xy = z then the new presentation of Ss is < y, z : (2y)® =

yr=22=1>.

Finite Field

An integral domain which have finitely many elements is called a field. These are
finite fields and have an important role in many branches of mathematics, especially
in group theory. The most common examples of finite fields are Z, for prime p
or power of a prime p. Finite fields can be uniquely determined by the number of
elements it contains. That is, for every prime p and integer > 0 there exist a finite

field having ¢ = p" elements. Such fields are also expressed as GF(¢q) or F;, and known



as Galois field with ¢ = p” elements.
The ring Z of integers when quotient by its ideal nZ induces Z, = Z/nZ the
integer modulo n. If n is a prime then Z,, is in fact a field under this structure.

The construction of a finite field is illustrated through the following example.

Example 1 GF(3?) is constructed by choosing an irreducible polynomial f(t) = t*+

2t + 2 over Zsz. The elements of GF(3?) are listed as below.

FElements of GF(3%) | Elements of GF(3%) modulo f(t)
0 0
t t
t? t+1
t? 2t + 1
¢t 2
t° 2t
¢ 2t 4 2
t7 t+2
t8 1

Table—1: Elements of GF(32)

Projective Lines over Finite Fields

The one-dimensional projective space is called a projective line. A projective line
over the finite fields F}, contains the elements of GF'(q) together with the additional
point co. That is, PL(F;,) = F, U {oo}. Similarly, PL(Q) means the projective Ine

over rational field and PL(Q(y/n)) is projective line over the rational quadratic field.



Remark 2 An element x € F,, (where ¢ = p") is said to be a non-zero square in F,

if = a*(mod p) for some non-zero element a in F,.

As an example, consider Fy3 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,
19,20, 21,22} in which 24 = (22)?(mod 23). Thus, 24 is a non-zero square in Fb;.
In chapter two, we use the concept of triangle groups and generalized triangle

groups, so we are now defining these important concepts.

Triangle Group

The free product of two cyclic groups of order [ and m is represented as < z,y : 2! =
y™ =1 >. If the third relation is defined as some power (say n) of the product of =
and y then the new group is formed known as triangle group. The triangle groups are
denoted by A(l,m,n) and represented as A(l,m,n) =< x,y: 2! = y™ = (ay)" =1 >
where [, m and n are integers greater than or equal to 1. The finiteness of the triangle
groups is describe in [1] on the basis of {,m and n. If (} + + + 1) > 1 then A({,m, n)
are finite and infinite otherwise. The triangle groups A(2, 3, n) are infinite if and only

if n > 6. Whereas, for n < 5 the triangle groups are finite.

Generalized Triangle Group

A group G is called a generalized triangle group if it can be presented in the form
< ax,y:at =y™ =w" = 1>, where [,m,n are integers greater than or equal to
1and w = 2"y a2y a2y (k> 1,0 <r, <I1,0<s < m)and wis not a
proper power. The generalized triangle group is infinite whenever (% + % + %) <1

but for (% + % + %) > 1 the generalized triangle group may be finite. J. Howie, V.



Metaftsis and R. M. Thomas in [3] discuss finite generalized triangle groups with
their presentations. They prove a remarkable result about the classification of all
finite generalized triangle groups. They classifies all finite generalized triangle groups

as follows.

Theorem 3 Let G =< x,y : 2! = y™ = w" = 1 > be a finite generalized triangle
group, where w = x" Yy a2y 2. xRy 0 < r; <, 0 < s; < m, w is not a proper

power, and k > 2 then up to equivalence G is one of the following:

2

1. <z,y: 2% =y® = (zyzyzyey?)’ = 1 > is of order 576;

8
I

2. <z y:a’=193= (myxyng)g =1 > is of order 1440;

8
I

3. <zy:xd=y3= (xyxy2)2 =1 > is of order 180;

8
I

4. <y 13 =y = (xyx2y2)2 =1 > is of order 288;

8
Il

5. <x,y:a’=19y° = (xymyz)Q =1 > is of order 120;

6. <z,y:x>=15 = (zyzyzy?)’ =1 > is of order 1200;

8
I

7. <a,y:a®=1° = (zyzyzyey?)’ =1 > is of order 1200;

8
I

8. < x,y:x*=y*= (zyzyry®)® =1 > is of order 192;

9. < z,y: 22 =193 = (zyzy?)® =1 > is of order 24;

10. <zy:22=19°= (:py:pymy2)2 =1 > is of order 48;

11. <zy:22=19°= (mywyxyxy2)2 =1 > is of order 120;
12.<x,y:22=93 = (xyxyxyzxyng)? =1 > is of order 720;

13. <z,y:22=1>= (myxyxyxyxyzxy2)2 = 1 > is of order 2880;
or possibly

14. < z,y: 22 =1® = (syzyzyzy eyzyzy?)’ = 1 >, and



15. < z,y:a? =1° = (zyzyzyzy ey zyzy’ey?)’ =1 >.

Thus, the afore mentioned theorem is almost a complete classification of finite
generalized triangle groups. However, the last two groups listed in the above theorem
remain undecided as to whether they are finite or infinite. L. Levai, G. Rosenberger
and B. Souvignier [4] investigate these two groups seperately. They prove that the

3 = (xy:z:yxy:prxymnyyQ)Q = 1 > is finite and order of this

group < x,y : 12 =y
group is 424673280 while the group < z,y : 22 = 1° = (zyzyzyry’rylryryiey?)’ =
1 > is infinite. Thus, they include the finite group in the list of thirteen finite

generalized triangle groups and complete the list of fourteen finite generalized triangle

groups.

H. S. M. Coexter and W. O. J. Moser [1] describe the geometry of triangle groups
by determining the sum % + % + % In terms of [, m and n there are following three

cases.

If % + % + % = 1 it is an ‘Euclidean case’. In this case, the triangle groups are
infinite symmetric groups such as A(2,3,6), A(2,4,4) and A(3, 3, 3). If % + % +% > 1
it is a ‘spherical case’. In this case, the triangle groups are finite symmetric groups
such as A(2,3,2),A(2,3,3),A(2,3,4),A(2,3,5) and A(2,2,4). If 2 + L + 1 <1t
is ‘hyperbolic case’. In this case, the triangle groups are infinite symmetric groups.
For example, A(2,3,7) is an infinite symmetric group. One can see more about
generalized triangle groups in [5, 6] and about the groups generated by two operators

in [7].
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Modular Group

The modular group PSL(2,7Z) is a discrete group of motions in the lobachevsky plane.
It is therefore possible to express the modular group as a group generated by two linear
fractional transformations x : z — ’71 andy : z — jll such that 22 = land y® = 1
are its defining relations. That is, PSL(2,Z) =< z,y : 2 = y> = 1 > . It is therefore
PSL(2,Z) is a free product of the cyclic group of order 2 and the cyclic group of
order 3. The product of the generators zy is the translation z —— z 4+ 1. The linear
fractional transformation ¢ : z — 1 inverts = and y, that is, t? = (2t)? = (yt)* =1
and so extends the group PSL(2,7Z) to PGL(2,7). The extended modular group
PGL(2,Z) is then generated by x,y and t. Thereupon, PGL(2,Z) =< z,y,t : % =
Y=t = (at) = (yt)’ =1>

The PSL(2,Z) is a normal subgroup of index two in PGL(2,7Z). If Z is replaced
by the finite field F, in PGL(2,Z) then the group PGL(2,q) is obtained with the
linear fractional transformations z —— % where a,b,c,d € F, and ad — bc # 0.
Furthermore, the group PSL(2,q) is the subgroup of PGL(2,q).

The concept of action of a group G on a set X is fundamental in group theory. In

succeeding chapter we take the action of different groups on finite fields. Therefore,

to illustrate the concept, we give an example of action of group on a set.

a b

Example 4 Consider SL(2,R) = € Msyo, where a,b,c,d € R, ad —bc=1 ,,
c d

acting on the upper half plane C* = {z : Im(z) > 0} as z — ij:s, where the trans-

a b
formation represents the matrix

c d



a b
To see that SL(2,R) acts on C*, let A = € SL(2,R)

c d

such that ad — bc = 1. For z € C*, define A = aztb ihere Im(“z+b) > 0.

cz+d’ cz+d
For if z =z + 1y, then

az4+b __ a(z+iy)+b _ (ax+b)+i(ay)
cz+d c(ztiy)+d — (cz+d)+i(cy)

— [(az+b)+i(ay)][(cr+d)—i(cy)]
[(catd)+i(cy)][(cz+d)—i(cy)]

_ [acz?®+(ad+be)z+bd+acy?|+i[acry+ady—azy—bey)

(cx+d)?+(cy)?
_ [acz?®+(ad+-be)x+bd+acy?]+ilad—bc]y
o (cz-+d)?+(cy)?
and Im(gjj:S) = (ad — bc)y > 0, asy > 0 and ad — bc = 1.
e g
Take B = € SL(2,R). Heree, f,g,h € R and eh — fg = 1.
f h

Consider

(ZA)B — (az—l—b)B _ e( Z;IZ)JFQ e(az+b)+g(cz+d)

cz+d Fezty 4 T = F(az+b)+h(cz+d)

cz+d
_ (eatgc)z+(ebtgd)
(fa+hc)z+(fo+hd) -
ea+ gc fa+ he
eb+gd fb+ hd
therefore zA
10
Since I = € SL(2,R),
0 1
therefore, it implies 7' = X230 — 7,

0.Z+1

11

The following diagram shows the fundamental domain for the action of PSL(2,7Z)

on upper half plane.
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P

r el :'. T :'I'i % T bl rl': T 'I- it o + iy rl' 1 8 !Iu iz T -y :' 'I'.'Iu (1% 1
2 1

-1.% =1 =B.% 0.5 ] z

Figure—1: Fundamental Domain for the Action of Modular Group on Upper half plane

Coset Diagrams

A. Cayley introduces the concept of a graph in relation with a group. He uses two
different types of edges to present two generators of a finite group, namely S3. The
Cayley graph for a group represents the elements of the group. In fact, the vertices
of the Cayley graph are the elements of the group. Whereas, O. Schreier generalizes
this concept by introducing a graph whose vertices are the cosets of some subgroup
of the group. Thus, in this way, Cayley diagrams become a special case of Schreier’s
coset diagram by taking trivial subgroup. H. S. M. Coxeter and W. O. J. Moser [1]
use Cayley diagrams as well as Schreier’s coset diagrams to prove some interesting
results for finitely generated groups.

In 1970s, G. Higman introduces the concept of coset diagrams for the modular
group in an interesting way. His doctoral student Q. Mushtaq discusses various actions
of the modular group using these coset diagrams. Q. Mushtaq [8] gives a method
known as Parametrization to draw a coset diagram of the triangle group A(2,3,n)

for n € N. He [9, 10] also discusses action of the modular group on real quadratic

fields.
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The coset diagram for PSL(2,7Z) is given below, in Figure-2. When PSL(2,7Z)
acts on projective lines over the finite field, it means, there is a non-degenerate homo-
morphism from PSL(2,7Z) to PSL(2,q). When either of the generator do not belong

to the kernel of the homomorphism it is called non-degenerate homomorphism.

Figure 2: Coset Diagram for PSL(2,Z)

A coset diagram is connected if the corresponding action is transitive. That is,
there exist only one orbit as a result of the action.

In PSL(2,7Z), the generator y (of order 3) represented by an edge of a triangle and
so by y? it forms a triangle. Whereas, the generator z (of order 2) is represented by
an edge. All directions are taken as counter clockwise. The fixed points of x or y, if
they exist, are denoted by heavy dots. In PGL(2,7Z), the third generator ¢ represents
symmetry about the vertical axis.

For instance, consider the action of PGL(2,Z) on PL(Fig). We find the permu-

tation representations of 7,7 and ¢ from the linear transformations z : z —— ’71, Y

2 @ and ¢ : 2 — < respectively. Then,

7 : (1 18)(3 6)(0 0o)(4 14)(7 8)(2 9)(10 17)(11 12)(5 15)(13 16)

7:(21018)(379) (000 1) (415 6) (13 17 11) (5 16 14) (8) (12)
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7:(210)(45) (0 00) (6 16) (7 11) (3 13) (9 17) (14 15) (8 12) (1) (18)

10 2
- I
18
17 9
12 11 1 : 7 8
13 0 * 3
5 4
6
16
14 15

Figure 3: Action of PGL(2,Z) on PL(Fi9)

Equivalent and non-equivalent words

A word w is defined as a finite sequence x7'z3’... 2}, where for each 4, x; belongs to the

set of generators and each ¢; is either 1 or —1. Length of the word w is k in the above
expression. ‘Syllable’ is a term also used by many researchers for the length of a word,
but syllable of a word is particularly used for those words which are generated by the
two generators. If a group is generated by two generators (say x and y) then for a
word w(x,y) = xy a2y, "y the syllable is defined as the number of copies of
aPiyt for i € NU{0}, appears in w(z,y). In the word w(x,y) = a2 y* a™y*>...a ™y,
syllable is k. We denote ‘a word generated by = and y having syllable &’ by wy(x, ).

Let w be a word, then by the deletion of all trivial relations (such as zz~ !, z7 'z,
yy~ ' and y~'y) we get cyclically reduced form of the word. It is denoted by w* in
this dissertation. The cyclically reduced form of wy(z,y) is denoted by wj(z,y). In

PSL(2,Z), if w (z,y) is a word generated by x and y then cyclically reduced form of

the word is w(z,y) = xy* xy®...xy®*, (k > 1, each s; =1 or 2).
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We need words generated by the generators of the modular group and their reduced

forms in the upcoming chapters, so we are ellaborating these concepts here.

Example 5 Let w = xy’xyy ‘zz?y® be a word. Then the reduced form of w in
PSL(2,7Z) is xy* because

w=aytryy le?yP=aytr-1-2-1-1 =’z -2 = ay® - 1 = 212

Example 6 If w(z,y) is a word generated by x and y, and the generators appear
alternatively with powers of y as Fibonacci sequence then wsz(x,y) is a word expressed

as

w57(x,y) — Iy$y$y2$y3$y5$y8$yl3$y2lIy34l'y55ZL‘y89l’y144!L‘y233$y3775(7y6101'y987

15971, 25841, 41811, 67651} 10946[E 177111, 28657[L’ 46368x 750251, 121393

Y Y Y ) ) Y Y Y Y )

:Cy196418xy31781 1 $y514229,I’y832040l’y1346269$y21783092Uy352457833y5702887

.I'y9227465l’y1493035233y24157817l’y3908816937y63245986l’y102334155$y165580141

.Z'y267914296$y433494437.fy701408733(133/1 134903170$y183631 1903xy2971215073

48075269761, 77787420491‘y125862690251‘ 203650110741‘ 329512800991, 53316291173

1Y ) Y Y Y

86267571272x 139583862445$ 2258514337171, 365435296162

Ty Y Y )

The reduced form of wsz(x,y) in the modular group is

wi(r,y) = zyryzyry’ry’ryryryizyiryryrytrytryryry oyt eyrycy® eyt rysycyey?

zyxyry*ry?.

According to J. Howie, V. Metaftsis and R. M. Thomas [3], two cyclically reduced

words w,w € Z, * Z, are equivalent if one is transformed to the other by (i) Auto-
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morphism of Z, or of Z, (ii) Cyclic permutation (iii) Inversion (iv) Interchanging the
two free factors (if p = q).

According to Y. T. Ulutas and I. N. Cangul [11], ‘two words w and w’ are called
equivalent if one of them (say w’) is obtained from the word w = xPry? P2y ... xPrydr
by cutting some part from the beginning and pasting it at the end (or equivalently

cutting some part from the end and pasting it in the beginning) in the same order.’

xplyql

xPquz

xp3yQ3 \\} -
Figure 4: Cyclically Equivalent Words

In other words, if the word generated by the two generators x and y is of the form

w(z,y) = 2"y z"y®2... kY% then any word start from z"iy® and ends at x"i-1y%-1

is equivalent to the word w(z,y), where ¢ is the index of p and ¢ in the word w(z,y).

For example, the words x"2y®2x"3y%... ™y k2" y* and a3y 3"y .. xRy k" y S a2y 52

are equivalent to w(x,y) = 2" y" x"y*>... 2"y . Any two words which do not satisfy

any of the above definitions are called non-equivalent words.

Example 7 Let w = zyzyzy?zy> be a word then the words vy ryryry?, xy’xy3ryzy
and xyxy*xy3ry are equivalent to w. Whereas, the words xyxy*xyxy®, ryry>zy’ry

and zy3xyxy’xy are non-equivalent to the word w.
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Quotient of a group

Let G be a group with finite presentation as G =< S, R > where S be the set of
generators and R the set of relations. If an additional relation, which is generated by
the generators of (G, inserted in the finite presentation of G then the new structure is
called a quotient of the group.

If the group PSL(2,7Z) is finitely presented as < z,y : 2> = > = 1 > and w(x,y)
is a word generated by z and y; the generators of PSL(2,Z), then < z,y : 2% = ¢* =

w(z,y) =1 > is a quotient of the modular group.

Theorem 8 Ifw and w' are two equivalent words then inclusion of w and w' in finite

presentation of a group provides same quotients of the group.

It is important to mention here that  and y, whenever they appear in this disserta-
tion, varies from group to group. In particular, they are obviously not the generators

of the modular group.
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Chapter 2

Survey of One Relator Quotients

By inclusion of an additional relation in the existing relations of a group, we get a
quotient of the group. In this chapter, we give a short but comprehensive survey of one
relator quotients generally and one relator quotients of the modular group particularly.
This study not only comprises on the results but also on the methodology adopted
by different scholars in different times.

The study of one relator quotients of a group begins in 1901, while G. A. Miller
[7] uses finite presentations for describing groups generated by two operators. These
finite presentations gives a new dimension for the study of groups. G. A. Miller in
his another significant paper [12] describes quotients of a two generator group where
the additional relation is defined as some power of product of the two generators. In
other words, G. A. Miller considers triangle groups as one relator quotients of two-
generator groups. M. D. E. Conder [13] also investigates one relator quotients of the
modular group.

M. Edjvet [14] discusses certain quotients of triangle groups defined as (m, n, p; q) =<

19
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= y" = (xy)’ = [x,y]? = 1 > . Here [z,y] as usual is the commutator
x~ Yy~ lzy. This work is motivated by the work of J. Howie and R. M. Thomas who
obtain necessary and sufficient condition for (2,3, p;q) to be finite, apart from two
cases, (2,3,13;4) and (2,3,7;11). He obtains a necessary and sufficient condition for
(m,n,p;q) to be finite. He also discusses whether or not (2,3,13;4) and (2,3,7;11)
are finite. In his main theorem of finite quotients of the triangle groups, five out of
fourteen are two-relator quotients of the modular group.

V. Metaftsis and 1. Miyamoto [15] investigate one relator quotients of the group
defined by the product of two cyclic groups of order 3, that is, < z,y: 23 =93 =1 > .
This work is greatly inspired by [13] and they follow the same scheme as in [13] for
finding quotients of the group. They state: ‘In this paper we conduct a similar
investigation on the abstract group < z,y : 2 = y® = 1 > ; we determine all
possible equivalence classes of presentations for three relator quotients for a third
relator of length at most 14 and we find order of all quotients. If the length of
the third relator is increased to 16 the number of quotients is increased from 181
to 618 and it appears to be too great a task to present the results in the present
paper.” They also use a computer program to analyze the quotients. This program
creates all possible combinations for all the different sizes of the third relator and
then it reduces the list using the cyclic permutations of each additional relation and
of automorphisms of Zs * Z3. Specifically, this program compares each different word
and its cyclic permutations with all the other words and chooses one presentation from
each equivalence class. The well-known software CAYLEY and ‘Groups, Algorithms

and Programming’ (GAP) are used for identification of quotients.
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In two-generator groups, modular group is one of the most important and most
studied group. Furthermore, in the documentation for the award of Abel Prize in
2009, modular group was described as an important group. One relator quotients
of the modular group are of special importance due to the dynamic characteristics
of the modular group. Also, the modular group is a two-generator group, so the
addition of a relation converts it into a member of a class of generalized triangle
groups. Therefore, the one relator quotients of the modular group can also be viewed
as a class of generalized triangle groups.

Now the focus is-particularly-on one relator quotients of the modular group. For
this we discuss three major approaches, namely:

1. Tietze Transformation Method

2. Ulutas and Cangul’s approach

3. Allotrope of Carbon and Quotient of the Modular group

2.1 Tietze Transformation Method

Use of Tietze transformations is an important technique to find another presenta-
tion from one presentation of a group. M. D. E. Conder [13] use this technique to
find quotients of the modular group by inserting one additional relation in the fi-
nite presentation of the group. He is of the view that if we determine order of the
quotient then description of the quotient is not a difficult task. By using Tietze

1

transformations as u = xy and v = xy~" another presentation of the modular group

is < wu,v: (vutw)? = (v ) =1 > where v = zy 'y e eyt = vulv and
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y = y oz tay™! = u v, he looks up to the one relator quotients of the modular
group in the form < u,v : (vu™'v)? = (v"'v)? = w(u,v) = 1 > and he gives a com-
plete list of one relator quotients of the modular group with length of w(u,v) up to

24.

L(w(u,v)) | Additional Relation | Group order | Description

1 u 1 Trivial

2 u? 6 S3

2 wuv 6 Cs

3 u? 12 Ay

3 u?v 1 Trivial

4 u? 24 Sy

4 wdv 2 Cy

4 u?v? 18 Cs x S5
4 (uv)? 24 Cy x Ay
) u® 60 As

5 utv 3 Cs

5 udv? 1 Trivial

5 u?vuv 1 Trivial

6 u® Infinite Triangle group
6 ubv 2 Cy

6 utv? 6 Ss




L(w(u,v)) | Additional Relation | Group order | Description
6 wdo? 48 Cy~ Ay
6 wouv 2 C,

6 u?v?uw 42 C7 ~Cs
6 (u?v)? 48 Cy ~ Sy
6 (uv)? infinity 31, 6]
7 u’ infinite | Triangle group
7 uSv 1 Trivial
7 uPv? 3 Cs

7 uto? 1 Trivial
7 urouv 12 Ay

7 udvuv 1 Trivial
7 wdvuv 3 Cs

7 u?v?uv 1 Trivial
7 u2vuvu 1 Trivial

Table 1: One Relator Quotients of PSL(2,Z) upto the Length 7
M. Conder, G. Havas and M. F. Newman [16] extend work of [13]. They investigate
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all such one relator quotients of the modular group where the additional relator is
of length up to 36. Up to equivalence, there are 8296 more presentations and they
determine the order of all except five of the quotients which are the following.
<u,v: (vu)? = (v )? = vhouwtudvund =1 >
1 1 2,4, 2

<u,v: (vu)? = (v )? = uhuPvtuPour? = 1 >

<u,v: (vu)? = (v )? = Govtont?urtue® = 1 >
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3 3

<u,v: (vu)? = (v ) = Wdoutoiuv?

v?our? =1 >

<u,v: (vu)? = (v )? = GowvuvduPouvur? =1 > .

Most of their results are based on computer calculations. They use MAGMA
which provides excellent facility in identifying groups.

Thus, by Tietze transformations approach, one relator quotients of the modular

group are discussed with length up to 36 and five quotients are left without identifi-

cation.

2.2 Ulutas and Cangul’s Approach

Y. T. Ulutas and I. N. Cangul [17] investigate quotients of one of the Hecke group
H (%) =< z,y : 22 = y°> = 1 > by inserting one additional relation. They
consider the additional relation up to the length 25. Y. T. Ulutas and I. N. Cangul
[11] find one relator quotients of PSL(2,Z) by inserting additional relation up to the
length 21. They use a different technique than that of [13]. However, their work of
[17] and [11] are not comprehensive nor fully correct. In [11], they find number of one
relator quotients of the modular group by developing two formulae. By considering k

as number of x and [ as number of 3 in w(x, y), the number of cyclically reduced words

k
are equal to and number of cyclically reduced non-equivalent words are
l—k
k
equal to ¢ . (%z Y o(d) ! . They consider generators x and y as white
- -k
4

and black beads in a necklace and total number of possible ways to form a necklace for

certain number of x and y is the number of cyclically reduced non-equivalent words.
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H. B. Ozdemer, Y. T. Ulutas and I. N. Cangul [18] find normal subgroups of
the Hecke group H (\/5) =< z,y: 22 = y* = 1 > and also investigate one relator

quotients of H (\/5) . They use additional relations having length up to 19.

M. Aslam, A. Ali and R. Ahmad [19] investigate one relator quotients of another
Hecke group H (\/§) =< x,y:2°=y%=1>. They used the technique of [11] and
gave a comprehensive list of the quotients. They insert additional relation up to the
length 24. This completes the study of one relator quotients of well known Hecke
groups. But the length of the additional relation is point of concern, which is finite

in all above investigations.

2.3 Allotrope of Carbon and Quotient of the Mod-

ular group

P. E. Schupp and I. Kapovich [20] prove that quotients of the modular group sat-
isfy a strong Mostow-type rigidity. The Cayley graph is the associated geometric
structure of such a quotient. Furthermore, isometry of the Cayley graphs shows the

corresponding quotients are isomorphic.

A. Torstensson [21] use coset diagrams to study quotients of finitely presented
groups. In the first part, they describe couple of different applications of coset dia-
grams to study finitely presented groups. In the second part, they confine themselves
to one relator quotients of the modular group. Thus, the diagrammatic study is also

a useful aspect of the study of one relator quotients of the modular group.



26

Q. Mushtaq and A. Rafiq [22] consider the triangle group A(2, 3,5) as an allotrope
of carbon (Fullerene Cgp) and they prove very interesting results. The coset diagrams
for the action of PSL(2,Z) on PL(Fs») depicts the diagrammatic analogs of the
Fullerene Cg. By taking action of PSL(2,7) on PL(Fs») and using Burnside’s lemma
they count the number of blocks of the adjacency matrix seperately for n to be even
or odd. Here, blocks of the adjancy matrix shows number of orbits occur in this

action.

Figure 5: Fullerene Cgo

In Figure-5, the similarity of the Fullerene Cgy and the triangle group A(2,3,5) is
viewable easily. The black balls are considered as y® whereas the edges between the
balls represent the generator x.

Q. Mushtaq and N. Mumtaz [23] investigate another triangle group A(2,3,7)
whose structure is similar to another carbon allotrope D168 Shewarzite. They not
only discuss the number of orbits of the action of PSL(2,Z) on PL(F) but also
some topological properties of the triangle group A(2,3,7). The action of PSL(2,7Z)
on PL(Fr) gives the triangle group A(2,3,7) whose coset diagram is similar to the

structure of D168. One of the important theorem of [23] in which authors describe
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the similarity of the structure D168 with the triangle group A(2,3,7) is given below.

Theorem 9 If PSL(2,Z) acts on PL(Frn), then

™+1)—8
‘OprL(F7n)PSL(2,7)‘ = 1+ % an 18 odd

"+1)—50
‘Orpr(FW)PSL(Q,?)‘ = 2+ % if n is even

The orbits of the coset diagram when PSL(2,Z) acts on PL(Fm) for n > 3 are
closely related to the structure of D168 Schwarzite. The transitive action of PSL(2,7)
on PL(Fy) gives an orbit 7, having 8 vertices. For n = 2, PSL(2,7) acts on PL(Fr2)
obtaining two orbits v, and 7, where 7, have 42 vertices. When PSL(2,7Z) acts on
PL(F) for n > 3, we obtain orbits ~y,, v, and copies of v5. The orbit 75 and D168

Shwarzite both have genus 3, so these are topologically same.

Figure—6: Orbit ~y3 in the Action of PSL(2,Z) on PL(Fyn)

Thus, by summarizing the entire discussion, the triangle groups A(2,3,5) and
A(2,3,7) are one relator quotients of the modular group which are viewed as isotopes
of the carbon atom. Hence, the triangle group A(2,3, k) occurs as a useful subgroup

of the homomorphic image of the modular group.
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Conclusion 10 In the entire discussion of one relator quotients of a group, syllable
of the additional relation is the centre point of concern. By using different techniques,
researchers find one relator quotients of different groups. But no one could find all
one relator quotients of any group and particularly of the modular group. There is a
limitation of the syllable of the additional relation while finding one relator quotients of
the group. We try to deal with this limitation up to a certain level in this dessertation

i the next chapters.



Chapter 3

Additional Relation and The

Fibonacci Sequence

Our aim is to study a class of generalized triangle groups as quotients of the modular
group. Since, modular group is a two generator group, we insert an additional relation
of the form w(x,y) = 2™ y* 2™ y*>...2™y** in the finite presentation of the group. By
insertion of w(z,y), the new presentation is < z,y : 2? = y® = w(z,y) = 1 > which
is one relator quotient of the modular group as well as a class of generalized triangle
groups. To study the above class of one relator quotients of the modular group, we
divide the problem into two parts. Firstly, we find additional relations for all syllables.
Secondly, we insert these (infinite) additional relations in the finite presentation of
the modular group and investigate the quotients. In chapter three, we solve the first
part of the problem while in chapter four, we investigate the later part of the problem.
The following flowchart diagram shows the scheme of getting one relator quotients of
PSL(2,7Z).

29
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Generating words

start —>» from generators of
modul ar group | Count number

of aand b
Reduced words
Count number
Modular group J L. of aandb in
Insert reduced words reduced words

in modular group

l — 0(mod8)
K » 1(mod3)
Quotientsf > 2(mod8)
the@nodular » 3(mod8)
grotp — 4(mod3)
corresponding
toBvords@f » 5(mod8)
length > 6(mod8)
» 7(mod8)

Flow Chart—1: Scheme for One Relator Quotients of Modular Group

The word w(x,y) is the centre point of discussion. Without loss of generality,
w(z,y) begins from z and ends at y, That is w(z,y) = 2™ y" 2"y .x ™ y** where 1;
isOor1ands; is 0,1 or 2. If r;, = 0 then x™ vanishes similarly if s;= 0 then y*
vanishes. Thereupon, the choice we left for r; is 1 and for s; it is 1 or 2. Here, if we let
r; = 1 then w(zx,y) will be of the form w(z,y) = zy* xy®...xy®. Since, it is matter
of confusion that where we place s; = 1 and where s; = 2. So, in this situation, we
use Fibonacci sequence and place the powers of y as terms of Fibonacci sequence in
an order. Because of the relation y* = 1 the higher powers of y ultimately reduces to
y°, y' or y? and occurs on different places. Thus, instead of placing 0,1, 2 in powers

of y by our own choice, Fibonacci sequence provides an arrangement. Therefore,
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the general form of w(z,y) is zytaytry?xy3...xy® where k is k' term of Fibonacci
sequence. Thus, we are inquiring the class of one relator quotients of the modular
group which is of the form < z,y : 22 = 3® = aylwylay’ry®..2yF = 1 > where k
is the k' term of the Fibonacci sequence. In this chapter our discussion is about
w(z,y) = zytoytaoy?zy®. oyt = 1.

It is important to mention here that if we take all possible variations of powers of
y (which are 0,1,2) on all places, this will become a giant problem and beyond the
scope of a PhD thesis. Also, we are discussing a class of generalized triangle groups
so by Fibonacci sequence we get a class of generalized triangle groups as one relator
quotients of the modular group. However, up to certain syllable we discuss w(z,y)
with all variations of powers of y in chapter 5 and obtain some interesting and worthy
results. It is noteworthy that, now and onwards, whenever we write w(z,y) it means

the word is generated by the generators of the modular group.

3.1 Design of Algorithm for Generating Words of

all Syllables

In this section, we generate words of all syllables. For this, we develop an algorithm
by which we generate words. The algorithm is constructed in visual basic.net and we
have used data type of maximum range, that is, 64 bits. The 64 bits have the range
0 to 18446744073709551615 which is a large number and it provides sufficiently large

number of w(x,y). This algorithm gives four outputs; words of all syllable, reduced
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form of the words, count of the number of generators x and y (as alphabets) in words
and in their respective reduced forms. Finally, the words are divided into the classes
up to the equivalence of their syllable. The sequence of Fibonacci numbers plays vital

role in this classification of words.

Characteristics involved in the Algorithm

The algorithm is based on the following characteristics.
1. It starts constructing words with zly!.
2. The strings of the words are of the form w(z,y) = zytaylzy?zy?. .. vy*
where powers of y are Fibonacci numbers.
3. The syllable of the string is any positive integer ‘n’.
4. If power of z(= ¢) is more than 1, it uses ¢(mod2) and if power of y(= d)
is more than 2 then d(mod3).
5. It counts number of  and y in words.
6. It counts number of x and y in reduced form of the words.
Algorithm
Imports System.Numerics
Module Modulel
Sub Main()
’ process(str)
Dim fstr As String = "x1y1"

"For 1 = 70 To 100

’ Console.WriteLine(i & " " & fibiter(i).ToString)
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"Next

’Console.ReadKey()

Dim objWriter As New System.IO.StreamWriter("a.txt")

For 1 = 2 To 90

fstr = fstr & "," & "x1y" & fibiter(i). ToString

"Console.WriteLine("{0,3} {1}", i, fstr)

fstr = process(fstr, 0)

Dim orig = origstr(i)

Console.Write("{0,3} {1,-140}", i, output(fstr))

objWriter.Write("{0,3} {1,-140}", i, output(fstr))

Console.WriteLine("({0},{1}) -> ({2},{3})", CountCharacter(orig, "x"), countB(orig),
CountCharacter(fstr, "x"), countB(fstr))

objWriter.WriteLine(" ({0},{1}) -> ({2},{3})", CountCharacter(orig, "x"), countB(orig),
CountCharacter(fstr, "x"), countB(fstr))

" objWriter. WriteLine("{0}", orig)

If (i + 2) Mod 4 = 0 Then

Console. WriteLine("")

objWriter. WriteLine(vbCrLf)

End If

Next

objWriter.Close()

" output(fstr)

Console.ReadKey()
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End Sub

Function fibiter(n As Ulnt64) As Biglnteger
Ifn=10rn=2 Then
Return 1

Else

Dim numl, num2, sum As New Biglnteger
numl =1

num?2 = 1

sum = numl + num?2

Dim i As Ulnt64

Fori =3 Ton

sum = numl + num?2

numl = num?2

num2 = sum

Next

Return sum

End If

End Function

Function origstr(n As Ulnt64)
Dim fstr = "x1y1"

Dim i As Ulnt64

Fori =2 Ton

fstr = fstr & "," & "x1y" & fibiter(i).ToString



35

Next

Return fstr

End Function

Function countB(str As String) As BigInteger
Dim strtokens As String() = str.Split(",")
Dim y As Biglnteger = 0

For Each tok As String In strtokens

Dim ¢ As String = tok.Substring(3, tok.Length - 3)
y += Biglnteger.Parse(c)

Next

Return y

End Function

Function output(str As String) As String
Dim strtokens As String() = str.Split(",")
Dim nstr As String = ""

For Each tok As String In strtokens

Dim ¢ As String = tok.Substring(3, tok.Length - 3)

nstr += "xy" & If(c ="1", "", ¢)

Next

Return nstr

End Function

Public Function CountCharacter(ByVal value As String, ByVal ch As Char) As

Ulnt64
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Dim cnt As Ulnt64 = 0

For Each ¢ As Char In value

If ¢ = ch Then cnt +=1

Next

Return cnt

End Function

Function fibonacci(n As Ulnt64) As Ulnt64
Ifn=10rn=2 Then

Return 1

Else

Return fibonacci(n - 1) 4 fibonacci(n - 2)

End If

End Function

Function process(Str As String, op As Boolean) As String
Dim orig = Str

If op Then

Console.WriteLine("original: " & orig)

End If

Dim i As Ulnt64 = 0
”loop

Dim prev As String = ""
While (Not Str = prev)

prev = Str
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"remlast
Dim strtokens As String() = Str.Split(",")
Dim ¢ As Biglnteger = Biglnteger.Parse(strtokens(strtokens.Count - 1).Substring(3,
strtokens(strtokens.Count - 1).Length - 3))
"Console. WriteLine("the value is {0}", ¢)
Str = Str.Substring(0, Str.Length - c¢.ToString().Length)
If (¢ Mod 3) = 0 Then
c=3
Else
¢ =c¢ Mod 3
End If
Str = Str + c.ToString()
"rem mid y
strtokens = Str.Split(",")
Dim newstrl As String = ""
For i = 0 To strtokens.Count - 2
c = Biglnteger.Parse(strtokens(i).Substring(3, strtokens(i).Length - 3))
¢ =c Mod 3
newstrl = newstrl & strtokens(i).Substring(0, 3) & c.ToString() & ","
Next

newstrl = newstrl & strtokens(strtokens.Count - 1)

Str = newstrl

Str = Str. Trim(",")
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If op Then

Console.WriteLine("modding y: " & Str)
End If

“rem mid y0

strtokens = Str.Split(",")

newstrl = ""

Dim d As Ulnt64

For i = 0 To strtokens.Count - 2

c = Biglnteger.Parse(strtokens(i).Substring(3, strtokens(i).Length - 3))

If c = 0 Then

d = Convert. ToUInt64 (strtokens(i).Substring(1, 1)) + Convert. ToUInt64(strtokens(i
+ 1).Substring(1, 1))

newstrl = newstrl & "x" & CStr(d) & "y" & Convert.ToUInt64(strtokens(i +
1).Substring(3, strtokens(i + 1).Length - 3)) & ","

i=i+1

Else

newstrl = newstrl & strtokens(i) & ","

End If

Next

If Not i = strtokens.Count Then

newstrl = newstrl & strtokens(strtokens.Count - 1)

End If
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Str = newstrl
Str = Str.Trim(",")
If op Then
Console. WriteLine("remvng y0: " & Str)
End If
”join mid x
strtokens = Str.Split(",")
newstrl = ""
For i = 0 To strtokens.Count - 1
¢ = Convert. ToUInt64(strtokens(i).Substring(1, 1))
If ¢ > 1 Then
¢ = c Mod 2
newstrl = newstrl & "x" & c.ToString() & strtokens(i).Substring(2, strtokens(i).Length
-2 &
Else
newstrl = newstrl & strtokens(i) & ","
End If
Next
Str = newstrl
Str = Str. Trim(",")

Y

If op Then
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Console. WriteLine("modd x: " & Str)
End If
'rem x0
strtokens = Str.Split(",")
newstrl = ""

For i = 0 To strtokens.Count - 2

¢ = Convert.ToUInt64(strtokens(i + 1).Substring(1, 1))

If c = 0 Then

d = Convert.ToUInt64 (strtokens(i).Substring(3, strtokens(i).Length - 3)) + Con-
vert. ToUInt64(strtokens(i 4+ 1).Substring(3, strtokens(i 4+ 1).Length - 3))

newstrl = newstrl & "x" & Convert. ToUInt64 (strtokens(i).Substring(1, 1)) & "y"
&d&""

i=i+1

Else

newstrl = newstrl & strtokens(i) & ","

End If

Next

If Not i = strtokens.Count Then

newstrl = newstrl & strtokens(strtokens.Count - 1)

End If

Str = newstrl

Str = Str.Trim(",")

Y



If op Then

Console.WriteLine("remvng x0: " & Str)
End If

End While

Return Str

End Function

End Module

(This space is left due to a table on the next page)

The following Table-2 and Table-3 show the outcomes of the algorithm.

41
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Syllable | Word

1 Ty

2 TYTY

3 ryTYTY?

4 ryzyxy oy’

5 ryzyry?rysry®

6 ryzyxy’ryPrytry®

7 ryzyxytryPryPrytoyt?

8 ryzyxy ryPryPrydryBry?t

9 syzyryrytoyP oy oy oy

10 syzyryryt P oy oy oy ey

11 syzyreyteyP oy oy ey oy Py

19 syzyrryteyP oy oy ey ey Pyt ny 4

13 pyzyryryt eyt oy py ey ey gty Wy 2

14 syzyryryt eyt oy oy ey ey gy Wy 238 3T

15 syzyryryt eyt ey oy B ey ey ey mySmy My 23 gy ST 4y 10

16 syzyryryt eyt oy S oy ey ey pySmy My 23 gy 1y 510 1y 987

17 syzyryryt eyt ey S oy ey ey rySmy My 238 gy ST 4y 510 1y 987 1y 1597

18 syzyryryt eyt ey B ey oy ey S my My 2 gy T oy 510y 87 1y 1997 1y 2584
19 pyzyryryt ey ey ey S oy ey ey P my My 238 gy 3T 4y 510 1y 987 1y 1597 1, 2584 1 4181
20 pyzyryryt Pyt ey B oy oy ey pySmy iy 23 gy T 1y 510y 987 1y 1597 1 2584 ) 181 6765
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21 $y.1'yl’y2 xnyy5 $y8$y13$y21.Z'y34:Uy5533y89.I'y144$y233.’17y377$y610$y987$y1597$y258433y4181

29 ZEyl'y:Cy2 iCy3ZIZ'y5 $y8$y131'y21Q]y34l‘y55$y89xy144$y23333'y377£€y61037y9871}y15971’y2584£€y4181

23 q:ya:yxy%y?’:cy5:cy8:cy13xy21:cy34:cy55a:ysgxy1441:y233xy377xy610xy987a:y1597a:y2584a:y4181

24 xymyxyzxy?’x?fxysxymxy?lxy34xy55xysg:l:y144a:y233xy377xy610xy987$y1597xy2584xy4181
28657xy46368

25 Iy[L’yJIyQ l,y?)l,yfx xnyy13xy2lxy34my55xy89xy144xy233xy377xy610:z:y987xy1597xy2584xy4181
286571’y46368[)§'y75025

26 l‘yl’yl’y2 xnyyE) C(IySJIy13ZEy2l$y34IySSZEySgl’y1441Ey233ZL’y377fL’y610l‘y987[)3y1597$y2584$y4181
286571’y46368Z)Z'y75025Iy121393

27 IL‘yZL'yCCy2 J]y317y5 xnyyl?’xyzlxy34xy55xysgxy144my233xy377xy610xy987xy1597xy2584xy4181
286571’y46368$y75025$y1213931‘y196418

28 IL‘yl'yl’y2 $y31}y5 $y8$y13$y21{L‘y34$y55$y89ZL‘y144{Ey233I’y377l'y610$y987l'y1597xy2584$y4181
286571’?/46368$y75025$y121393$y196418$y317811

29 Zlfyl‘yl'yQ l’y3$y5 xnyyISIyﬂxy34l,y55my89:L,y144Iy233l.y377l.y610xy987l,y1597$y2584my4181
28657£L'y46368$y75025$y121393Iy196418$y317811l’y514229

30 l’yl’yl’y2 l’y3l'y5 :Bygzvyl%ymxy34:17y55a:y89:Ey144a:y233:By377:763/610xy987£y1597$y2584a:y4181

46368 ,.,,75025 ,.,,121393 ,.,,196418 .., 317811 .., 514229 ,., 832040

Y Ty 1Y Ty Ty Ty LY

Table 2: Words with Fibonacci Numbers as Powers
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Syllable | Reduced Words

1 Ty

2 TYTY

3 ryTYTY?

4 ryzyxyiry?

5 TYrYTY

6 ryTYTYTY?

7 TYTYTYTY>TY

8 ryryryry’ryry’

9 ryryryry’Ty?

10 ryzyryry’ry’ry

11 ryxyryxy ey ryry?

12 ryryxryry’ry ryry?cy

13 ryryryry ryryry

14 ryryryry’ry>ryryry?

15 ryryryry ey ryryry’ry

16 ryzyryry ey ryryrylryry’
17 ryryryry’ryleyryry’cy?

18 vyxyxryxry ey ryryryirycy

19 vyxyryxry ey ryryry? ey ryry?
20 vyxyryxry ey ryryry? eyl ryry? oy’
21 ryxyryxy ry?ryryrylry?ryry
22 ryxyryxy’ry’ryryry? ey’ ryryry?
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23 | xyxyryxy’zy*ryryry’rylryryrylcy

24 | syzyryryieyieyryry?ryleyrycytoyry?

25 | ayzyryryieyieyryryl eyl eyrycytoy?

26 | syryryryieyteyryryl eyl ryrycyt oyl cy

27 | zyxyzyxyiry’ryryry? vyl ryryryioy?oycy?

28 | zyxyzyxyiry’ryryry?ryiryvyryioytrycytay?

29 | zyxyzyxyiry’ryryry?ryiryryzytay?oyxy

30 | zyxyryzy eyioyryrytoylryryry ey oyrycy?

31 | zyxyryzy ey’ oyryry’ryleyryry eyt eyryry’ oy

32 | zyxyryzy eytoyryrytryleyryryl eyt eyrycytoycy

33 | zyxyryzy rytryryrylryleryryry eyt ryryry’ oy

34 | zyxyryzy eytoyryrytryleyryry eytoyrycytyley

35 | zyxyryry eytoyryxytrylryryryleytoyrycytoy? oy cy?

36 | zyxyryzy rytryryrylryleyryry eyt eyrycyt oyl ey ry? oy

37 | zyxyryzy eytryryrytrylryryryleyteyycytylryry

38 | zyxyryzy rytryryrylryleyryry eyt ryryryl oyl ey rycy?

39 | zyxyryzy eytryryrylryleyryry eyt ryrycyt oyl eyryry oy

40 | syzyryzy?ryiryryxytoy?eycyvy? eyl ryrycyt oyl oy ey syl oy oy’
41 | zyzyzyrylrylaeyrycylaoyleyeyey eyl eyryry? eyl eyryrytoy?

42 | zyryryrylrylryrycytoyteyryey eyl eyryryl eyl eyryryt oyt cy
43 | zyzyryrylrylryryrytoyteyeyey eyl eyryryl eyt eyryryl oyt oy cy?
44 | zyzyryrylryleyryrytoyteyeyey ey eyryryl eyl eyryryt oyt eycytoy®
45 | zyzyzyrylryleyrycyteyieycycy eyl eyryryl eyt ryryryteytoycy
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46

zyzyryry*ry*ryzyzytry’ryryryt eyt ryryy* eyt eyeyeyt ey ryrycy?

47

vyzyryry ey ryryrylry?ryrycyi eyt eyryry? eyt ey ey eyt oyt eyrycy ey

48

zyryryry ey’ eyzyry’ eyt ryrycyt ey’ eycycy eyt eycyry* eyt rycy eyt ey cy®

49

zyryryry*ry’eyzyry’ eyt cyrycyt ey eycycyt eyt eycycy* eyt ryrycyt cy?

50

zyryryryrry’eyryry’ eyt ryrycyt ey’ eycycyt eyt rycyry? eyt rycycyt oyt ey

51

zyryryzryrry’yryry’ eyt ryrycyt ey’ eycycy eyt eycycy? eyt rycy eyt ey ey cy?

52

zyryryry ey’ eyzyry’ eyt ryrycy ey eycyeyt eyt eysyry* eyt rycy eyt ey’ ey eyt ey?

53

ryryryzry* ey’ ryryry’ eyt ryrycyt ey’ eycycy eyt eycycyt eyt rycycyt ey ey cy

54

zyryryry ey’ eyzyry’ eyt ryrycyt ey eycycyt eyt ryzyry’ eyt ryrycyt ey’ eycycy?

95

zyryzyry ey’ eyzyry’ eyt ryrycyt ey eycycyt eyt ryzyry’ eyt ryrycyt ey’ eycy eyt ey

56

zyryryry ey’ eyzyry’ eyt ryrycyt ey’ eycyeyt eyt eycyry? eyt rycycyt eyt eycy ey oy ey

57

zyryryry ey’ ryryry’ eyt ryrycyt ey’ eycyeyt eyt eysyry? eyt rysycyt eyt ey ey syt ey

58

zyryryry’ry’ryryryt ey’ rycycy’ eyt cycyry’ ey eyeyey eyl cycycy* eyt cycy syt ey ey

99

zyryryry’ry’cycyzyt ey’ ryrycy’ eyt cyryry’ ey’ eyeyeyt eyt ryry sy eyt cycy ey ey ey cy?

60

zyryryry’ry’cyzyrytry’ryrycy’ eyt cyryry’ ey’ eyeyeyt eyt rycy sy’ eyt cycycy ey’ ey cy?

{Eyg

61

ryryryry’ry*eyzyzytry’eyrycy* eyt ryryry’ eyt eycyeyt ey eyy eyt eyt cyryry* ey ey ey

62

zyryryry’ry*cyzyzyiry’eyrycy? eyt ryryry’ eyt eycyeyt ey’ eycycyt eyt cyryry* ey eycy

x>

63

zyryryry*ry*eyzyzyiry*eyrycyt eyt ryryry* eyt eyeyeyt ey eycycyt eyt cyrycy* eyt ey ey

xylay

64

zyryryry’ry*ryzyzyiry*eyrycyt eyt ryryry* eyt eyeyeyt ey eycycyt eyt cyry sy’ eyt ey ey

zy*ryry®




47

65 | zyryryry’rylryryryleyeyryryieyieycyeyl eyt eyryryl oyl ryrycy eyt oy ey
vytaytryryryoy?

66 | ryryryry ey ryryrylry?ryryeyieyteyryry? eyl eyeyyt oyt eyryry eyt oy cy
vytaytryryryieyiaey

67 | zyryryry ey ryryrytrylryryeyieyteyryry? eyl eyeyyt oyt eyryry eyt ey cy
vytaylryryry ey eycy?

68 | zyryryry ey ryryrylrylryryeyieyteyryry? eyl eyey gty eyryry eyt ey cy
vy2xytryxryryeylryryey®

69 | zyxyryzy rytryryrylryleyryryi eyt eyrycyt oyl ey cyryl eyt oyy gty oy xy
vyleytryryry’rylrysy

70 | zyxyzyryirylryryry? oyl eyrvyryieyleyryry? oy eyvyryt oyt oy cy gl oyl oy oy
vy?xytryxryry eyl rysyry?

71 | zyxyzyryrylryryry’ oy ryvyryiryleycyry? oyl eyvyryt oyt oy yryl oyl oy oy
rvy2eytryryryrylryryrytcy

72 | zyryvyryirytryryryleyiryrvyryirytrycyry? oy eyvyryt oyt oy cyryl oyl oy oy
ry2xytryxryry eyl rysyrytoyy®

73 | zyxyryryirytryryryteyiryrvyryiryteycyryt oyt eyvyryt eyt ey cyryl oyl ey oy
ry2xytryxyry eyl rysyrytoy?

74 | xyxyxyxy ryiryryry?rytryryrylayteycyeyt eyt eycy ey eyt eyryry? oyt rycy
vy ey ryryryi eyl ryryrylrytcy

75 | xyxyxyry ryiryryrylrylryryrylaytoycyeyt eyl eycy ey eyt eyryryl oyt rycy

zy*ry?eyzyrytryryrycy* eyt rycy?

Table 3: Reduced Words
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3.2 Classification of all Words

In Table-3, observe the pattern of the words and divide the words into eight classes
corresponding to their syllables, that is, for each i € {0,1,2,...,7} there is a class of
words having syllable i(mod8). Thereupon, eight classes of words emerge on the basis
of equivalence of words. Furthermore, obtain words of the same class by adding
number of copies of zyxyxy?xy? after the first appearance of xy. For instance,
wi(z,y) = vy, we (z,y) = ryryryry’zy? and wir(z,y) = vyryryry’zy’eyryryay?.

The following Table-4 summarizes all the eight classes of words in the form of rela-

tions:
Syllable of the word Additional relations
k = 1(mod 8) vy (zyryzy*ry®) = 1
k = 2(mod 8) vy(zyryzy’zy®) vy = 1
k = 3(mod 8) vy (vyxryzy*ry®) oyry? = 1
k = 4(mod 8) vy (zyryzy’ry®)  vyrylry® =1
k = 5(mod 8) vy (vyryzy’ry®) vyry = 1
k = 6(mod 8) vy (zvyryzy’zy®)  vyryry? = 1
k = 7(mod 8) vy(xyryry?zy®) eyryryley = 1
k = 0(mod 8) vy(xyryry?zy®) eyzyryleyry’ = 1

Table 4: Classification of all Words
where ) is a non-negative integer for all the classes.

As the Fibonacci sequence 1,1,2,3,5,8,13,21,34, 55,89, 144, 233,377, . .. appears
in the powers of y, and because of the relation y*> = 1 of the modular group, Fi-

bonacci sequence reduces to the form 1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,.... Here, it
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is noteworthy that there is a repetition of terms after every eight syllables. Hence,
this repetition continues up to infinity due to the pattern of Fibonacci sequence,
that is, the method itself does not depend upon the range of 64 bits, because of
the repetition of 1,1,2,0,2,2,1,0. Thus, by computer algorithm we get sufficiently
large number of words w(z,y) and after that the pattern of Fibonacci sequence
generates w(x,y) even for syllable greater than 24, That is, if £ = 26 + 1 =

18,446, 744,073,709, 551,616 = 0(mod8) then wqss 1 (z,y) belongs to the class of syl-

)2805843009213693951 1.0, 10y 10,2 3 )3,

lable 0(mod8) and thus wyes 1 (x, y) = xy(vyryry?ry?

Correctness of the algorithm is also confirmed through analysis. Words of different
syllables are obtained manually. They are then checked by using algorithm randomly
for many values. Both; manual and algorithm, provide the same results. The GAP
and the Tietze transformation are then used to identify the quotients for each w(z, y)
which also provide same quotients. This ensures correctness of the algorithm.

The advantage of this algorithm is that it provides w(z,y) of sufficiently large
syllable occurring in abundance, saving from chances of error and time. For the

effective execution of the algorithm, processing power of the computer plays a vital

role.

Number of r and y in Words and in their Reduced Forms

The word wj(x,y) is obtained from the word wy(z,y). But in order to generalize
the notion of wj(z,y) for all syllables, formulae are devised for number of z and y
appear in w;(x,y). Secondly, the pattern (position) of appearance of z and y in

wi(x,y) needs to be observed. Thus, with this information, words of all syllables are
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generated. The symbols N (x,, ) and N(y,, ) are used for number of x and y in words
respectively. Similarly, N(x,:) and N(y,) are used for number of r and y in the

reduced words respectively.

Theorem 11 If syllable of the word w(x,y) is k and k is any non-negative integer

such that k = 4p + r for some non-negative integers p and r then

2p+2 ifr=00r2
N(x,)=42pt1 ifr=1
2p+3  ifr=3

Proof. Since syllable of the word w(z,y) is k and k is a non-negative integer,
divide all non-negative integers into subsets each subset containing four elements.

Let S1 = {0,1,2,3}, Sy = {4,5,6,7},..., Sy = {4(k — 1), 4(k — 1) + 1,4(k — 1) +
2,4(k — 1)+ 3}, ... .

For 3 : If K = 0 then 0 = 4 -0+ 0 implies that N(z,;) = 2-0+ 2 = 2, that
is, a word of syllable 0 have two z. In other words, w(z,y) = 2? = 1 is the word of
syllable 0 or the trivial word.

If k=1, then 1 =4-0+1 (where r = 1) implies that N(z,;) =2-0+1 = 1. Also
w(z,y) = xy shows N(z,:) = 1.

If k=2, then 2 = 4-0+2 (where r = 2) implies that N (z,:) =2-0+2 = 2. Also
wo(r,y) = xyzy shows N(z.;) = 2.

If k=3, then 3 = 4.0+ 3 (where r = 3) implies that N (z,:) =2-0+3 = 3. Also
ws(z,y) = ryzyry® shows N (zws) = 3. Thus, the theorem holds for all elements of

3.
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For &, : Since S, = {4(n—1), 4(n—1)+1, 4(n—1)+2, 4(n—1)+3}, it is assumed
that the result holds for &, and it requires only to be proved for the neighboring set;

St = {4n,4n + 1,4n + 2, 4n + 3}.

For 3,11 : As every 4th term of the Fibonacci sequence is multiple of 3 and these
numbers appear in the power of y, so y vanishes at every 4th place. Then x on the
left of ¥ and x on the right of y multiply and gives #? which is equal to 1. Thus, in

every 4 terms two z vanishes and only two x increases.

If k = 4n, then N(x,r) = is equal to the number of z in 4(n — 1)th term +2

=2n+ 2.

If k = 4n + 1, then N(x,:) = number of z in (4(n — 1) + 1)th term +2 =

2n—1)+2=2n+1.
If k = 4n + 2, then N(x,:) = number of z in (4(n — 1) + 2)th term +2 = 2n + 2.

If k = 4n + 3, then N(x,:) = number of z in (4(n — 1) + 3)th term +2 =
(2n + 1) + 2 = 2n + 3. Thus, the theorem is proved for all elements of .1, that is,

the result holds for all non-negative integers. m

Theorem 12 If syllable of the word w(z,y) is k and for some non-negative integers

p andr, k=8p—r then
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6p+3 ifr=0

6p ifr=1
6p—1 if r=2
6p—3 ifr=3
6p+1 ifr=4
6p—2 ifr=>5

6p—4 ifr==6

\ 6p—5 ifr="7. )

Proof. Since syllable of the word w(z,y) is k and k is a non-negative integer, the
non-negative integers are divided into subsets, each containing eight elements.

Let &) = {0,1,2,3,4,5,6,7}, &, = {8,9,10,11,12,13,14,15},.... S, = {8(k —
1),8k — 7,8k — 6,8k — 5,8k — 4,8k — 3,8k — 2,8k — 1}, ... .

For §) : If k=0 then 0 =8-0— 0 and so N(yu;) = 6-0+ 3 = 3, that is, a word
of syllable 0 has three y. Hence, w(z,y) = y*> = 1 is a word of syllable 0 or a trivial

word.
Ifk=1,then 1=8-1-7andso N(y,:) =6-1—5=1. That is w(z,y) = vy,
If k=2, then 2 =816 and so N(y,:) =6-1—4 = 2. That is w(z,y) = zyzy.
If k = 3, then 3 = 8-1—5 and so N (y;) = 6-1—2 = 4. That is w(z,y) = zyryry*.
If k=4, then 4 =8-1—4and so N(yu:) = 6-1+1=7. That is w(z,y) =
xyxyxy>xys.

If k=5,then5=8-1-3 and so N(y,;) = 6-1—3 = 1. That is w(x, y) = zyzyry.
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If k=6, then 6 =8-1—2and so N(y,;) = 6-1—1=5. That is w(z,y) =
ryTyTYTY?.
If k=7 then7=28-1-1and so N(yu;) = 6-1 = 6. That is w(z,y) =
ryTyTYTY>TY.
If k=28 then 8 =8-1—0and so N(yu;) = 6-1+3 = 9. That is w(z,y) =
ryzyryry’ryry®. Thus, the statement is true for all elements of 3.
For &', : Since &, = {8(n—1),8n— 7,80 —6,8n—5,8n—4,8n —3,8n—2,8n — 1},
we assume that the result holds for nth set. We prove it for the neighboring set.
o

For S, ., : Since powers of y are from Fibonacci sequence

1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377,610, 987, ... (3.1)
By using the order of y which is 3, these terms reduce to the form
1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0, ... (3.2)

As each ) contains eight elements and every eight terms of the above sequence
contains nine y, therefore, every 4th term of the above sequence is multiple of 3, that
is, y vanishes at every 4th position. So, by addition of 3rd and 5th term, it reduces
3 y. Hence, in every eight terms the number of y increases to 6. Note that %;Z =
{8n,8(n+1)—-7,8(n+1)—6,8(n+1)—>5,8(n+1)—4, 8(n+1)—3, 8(n+1)—2,8(n+1)—1}.

If k = 8n, then N(y,:) = Number of y in 8(n — 1)th term+6 = (6n — 3) + 6 =
6n+3=6(n+1)—3.

If k = 8(n+1)—7, then N(y,;) = number of y in (8n—7)th term+6 = (6n—5)+6 =

6n+1=6(n+1)—5.
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If k = 8(n+1)—6, then N(y,;) = number of y in (8n—6)th term+6 = (6n—4)+6 =
6n+2=6(n+1)—4.

If k = 8(n+1)—5, then N(y,:) = number of y in (8n—5)th term+6 = (6n—2)+6 =
6n+4=6(n+1)—2.

If k = 8(n+1)—4, then N(y,;:) = number of y in (8n—4)th term+6 = (6n+1)+6 =
6n+7=6(n+1)+1.

If k = 8(n+1)—3, then N(y,:) = number of y in (8n—3)th term+6 = (6n—3)+6 =
6n+3=6(n+1)—3.

If k = 8(n+1)—2, then N(y,:) = number of y in (8n—2)th term+6 = (6n—1)+6 =
6n+5=6(n+1)—1.

If k =38(n+1)—1, then N(y,:) = number of y in (8n — 1)th term+6 = 6n +6 =
6n + 6 = 6(n + 1). Thus, the result holds for all elements of J,;, that is for all
non-negative integers. m

For illustration of the above two theorems, the following example is given for

different syllables.

Example 13 (a) If syllable of the word w(x,y) is 56 and 56 = 4(14) 4+ 0 then by
Theorem 11, p = 14 and v = 0. Therefore, N(x,z, ) = 2(14) + 2 = 30.

Also 56 = 8(7) — 0 then by Theorem 12, N(y,z: ) = 6(7) + 3 = 45.

(b) If syllable of the word w(x,y) is 57 and 57 = 4(14) + 1 then by Theorem 11,
p =14 and r = 1. Therefore, N(z,; ) = 2(14) + 1 = 29.

Also 57 = 8(8) — 7 then by Theorem 12, N (yu: ) = 6(8) — 5 = 43.

Number of x and y in w(z,y) and in w*(z,y) are given in the following table.
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Syllable | (N(x,),N(y,)) | (N(x,.),N(y,.)) | 23 | (23,75024) (13,18)
1 (01,01) (01,01) 24 | (24,121392) (14,21)
2 (02,02) (02, 02) 25 | (25,196417) (13,19)
3 (03,04) (03,04) 26 | (26,317810) (14, 20)
4 (04, 07) (04, 07) 27 | (27,514228) (15,22)
5 (05,12) (03,03) 28 | (28, 832039) (16, 25)
6 (06, 20) (04, 05) 29 | (29, 1346268) (15,21)
7 (07, 33) (05, 06) 30 | (30, 2178308) (16, 23)
8 (08, 54) (06, 09) 31 | (31,3524577) (17, 24)
9 (09, 88) (05,07) 32 | (32,5702886) (18,27)
10 (10, 143) (06, 08) 33 | (33,9227464) (17,25)
11 (11,232) (07,10) 34 | (34,14930351) | (18,26)
12 (12, 376) (08,13) 35 | (35,24157816) | (19,28)
13 (13,609) (07, 09) 36 | (36,39088168) | (20,31)
14 (14, 936) (08,11) 37 | (37,63245985) | (19,27)
15 (15, 1596) (09, 12) 38 | (38,102334154) | (20,29)
16 (16, 2583) (10,15) 39 | (39,165580140) | (21,30)
17 (17, 4180) (09, 13) 40 | (40,267914295) | (22,33)
18 (18,6764) (10, 14) 41 | (41,433494436) | (21,31)
19 (19, 10945) (11,16) 42 | (42,701408732) | (22,32)
20 (20, 17710) (12,19) 43 | (43,1134903169) | (23,34)
21 (21, 28656) (11,15) 44 | (44,1836311902) | (24,37)
22 (22, 46367) (12,17) 45 | (45,2971215072) | (23,33)
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Syllable | (N(x,,),N(y,,)) (N(x,.),N(y,.)) | 68| (68,190392490709134) (36, 55)
46 (46, 4807526975) (24, 35) 69 | (69,308061521170128) (35,51)
47 (47, 7778742048) (25, 36) 70 | (70,498454011879263) (36,53)
48 (48, 12586269024) (26, 39) 71 | (71,806515533049392) (37,54)
49 (49, 20365011073) (25,37) 72 | (72, 1304969544928656) (38,57)
50 (50, 32951280098) (26, 38) 73 | (73,2111485077978049) (37, 55)
51 (51,53316291172) (27, 40) 74 | (74, 3416454622906706) (38,56)
52 (52, 86267571271) (28,43) 75 | (75, 5527939700884756) (39, 58)
53 (53,139583862444) (27, 39) 76 | (76,8944394323791463) (40, 61)
54 (54, 225851433716) (28,41) 77 | (77,14472334024676220) | (39,57)
55 (55, 365435296161 (29, 42) 78 | (78,23416728348467684) | (40, 59)
56 (56, 591286729878) (30, 45) 79 | (79,37889062373143905) | (41,60)
57 (57, 956722026040) (29, 43) 80 | (80,61305790721611590) | (42,63)
58 (58,1548008755919) | (30, 44) 81 | (81,99194853094755496) | (41,61)
59 (59, 2504730781960) | (31, 46) 82 | (82,160500643816367087) | (42,62)
60 (60,4052739537880) | (32, 49) 83 | (83,259695496911122584) | (43,64)
61 (61,6557470319841) | (31,45) 84 | (84,420196140727489672) | (44,67)
62 (62,10610209857722) | (32,47) 85 | (85,679891637638612257) | (43,63)
63 (63,17167680177564) | (33,48) 86 | (86,1100087778366101930) | (44, 65)
64 (64, 27777890035287) | (34, 51) 87 | (87,1779979416004714188) | (45,66)
65 (65, 44945570212852) | (33, 49) 88 | (88,2880067194370816119) | (46,69)
66 (66, 72723460248140) | (34, 50) 89 | (89, 4660046610375530308) | (45,67)
67 (67,117669030460993) | (35, 52) 90 | (90, 7540113804746346428) | (46,68)

Table 5: Number of z and y in w(z,y) and w*(z,y)




Chapter 4

A Class of Generalized Triangle

Groups

In previous chapter, we discussed words w(z,y), their reduced forms w*(z,y), formu-
lae showing number of x and y in w(z,y) and in w*(z,y), and finally we obtained
eight classes of words and consequently of additional relations. In this chapter, we
insert these w*(z,y) = 1 in finite presentation of PSL(2,7Z) so that one-relator quo-
tients of the modular group are obtained which are in the form < z,y : 2% = 3® =
w*(z,y) = 1 >. We take advantage of Tietze transformations and ‘Groups, Algo-
rithms and Programming’ (GAP) for identification of these quotients. In second part
of this chapter, we discuss some applications of quotients of PSL(2,7Z) in cryptogra-
phy. The important non-linear component of cryptographic schemes is substitution
box. The formation of substitution box have a variety of methods but here we use a
quotient of PSL(2,7Z) and its coset diagram to have a strong and an efficient substi-

tution box. This substitution box is not only have high non-linearity but also resistive

57



o8

against linear and differential attacks.

4.1 A Class of Generalized Triangle Groups as Quo-

tients of the Modular Group

In this section we deal with one relator quotients of the modular group corresponding
to the words generated in the previous chapter as expressed in Table—4 . We insert
the additional relations in PSL(2,7Z) and then identify the one relator quotient of the
modular group. The following is the main theorem in which quotients of the modular

group are determined.

Theorem 14 Let G =< z,y : 22 = 3 = w*(x,y) = 1 > be one relator quotient of
PSL(2,Z) where w*(x,y) is the reduced form of w(x,y) = ™ y* a™y%2 ... x"™*y** and
r;8; are terms of the Fibonacci sequence. Then up to equivalence G is one of the eight
groups; trivial group, Cy, Cs, Sz, Ay, C3 x S3, ((((Cy x Dg) : Cy) : C3) : C3) : Cy and
<z,y:2? =19 = (zyzyxy’ry?)r =1 > .

Proof. As the words w(zx,y) = "y z"y2 ... x"ky are divided into eight classes
with respect to their syllables, as shown in Table -4. Then, for each class of words
having syllable i(mod8) where i € {0,1,2,...,7}, the quotients of PSL(2,7) are of the
form:

G =<umy:2* =y = ay(vyryzy’zy>)* =1 >

Gy =< z,y: 2% = ® = zy(vyaryzy?ry?) oy = 1 >

Gz =<,y : 2% = y® = zy(zyryry’zy®) vyry? = 1 >
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Gy =< m,y: 2% =y = zy(zyryry’zy®) vyryoy’ = 1 >

Gs =< z,y: 2* = y* = ay(vyryry*ey® ) oyry = 1 >

]
I

3

Ge =< z,y : 2* =y = zy(zyryay’cy?) ayzyry® = 1 >

8
I

3

Gr =< x,y: 2* = y* = ay(vyryry* ey’ vyzyry’vy = 1 >

s
I

P = zy(zyzyzy’ry® ) eyzyrytoyzy® = 1 >

Go=<uz,y:2°=y

In all cases, A is a non-negative integer and each quotient G;,wherei € {0,1,2,...,7},
is associated with words of syllable i(mod8).

First, the additional relation of Gy is xy(zyryzy*zy?)* = 1. For X = 0, the
additional relation s xy = 1 implying that x = 1 = y, and the quotient is a trivial
group. For A = 1, the additional relation is vy(xyzyzy*ry?) = 1 or zyx = yryryxy?
or xy*x = 1. It gives x = 1 = y. Thus, the quotient G4 is a trivial group. Other
values of A similarly follow the pattern of A = 1 because it increases the number of
copies of xyxyxy? xy®. Thus, for all values of X\, quotient G, is a trivial group.

For Gy: The additional relation of Gy is xy(zyxyzy*zy*) oy = 1. For A =0, the
additional relation is xyzy = 1. Thus, the quotient is < x,y : 2> = y> = (zy)* =1 >
which is S3. For A\ = 1, the additional relation is xy(zyryzy*zy?)ry = 1 which
implies that yxyxy*ry? = xy’vy*x or (xy)? = 1. Hence, the quotient is Ss. For other
values of X\, in a stmilar way as for A = 1 the quotient G5 is S3.

For G3: The additional relation of Gs is xy(xyryry’ry?) xyzy* = 1. For A =0
it becomes vyxyxy? = 1. This implies that xyx = yxy? or x = 1 = y. This shows that
the quotient is a trivial group. Hence, similarly for other values of A, the quotient G
18 trivial group.

Similarly, By using GAP, we find G5 and Gy which are expressed in the following
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pictures taken from GAP.

» g:=FreeGroup(2);
[ <free group on the generators [ £1
»for i in [1..7]

do

r

z:=g/[g.l"2,g.2~3,g.1%g.2%(g.1l*g.2*g.1l*g.2*%g.1l*g.2"2*g_1l*g.2~2)*i*g.1l*g.2*g.1*g._2];
Print ("n",i ,"->", StructurelDescription(Z));
od;

1-»C3
I-»pd
3-=03
4-=Rd
5-»C3
g-hd
T-=L3

Group G5

» g:=Freekzroup(2);

[ <free group on the generators [ £1, £2 1=
»for i in [1..7]
do

G:=g/[g.1"2,g.2"3,g.1*g.2*(g.1l*g.2*g.1l*g.2*g.l*g._.2"2%g.1%g.2~2)~i*g._l*g.2*g.1l*g.2%g.1l*g.2~2*g._.1l*g.2];
Print("n",i ,"->",Structurelescription(G));
odd

1-=C3
2-=C3
3-=C3
4-=3
5-=C3
&-=C3
T-=C3

Group Gr

Thus, by using Tietze transformation and by using GAP we find the other quotients

and summarize the results in the following table.
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Syllable of the word | Quotients of the Modular Group

G1 | k= 1(mod38) Trivial group
Gy | k = 2(mod 8) S3
G5 | k = 3(mod38) Trivial group
G4 | k = 4(mod 8) Cy

{C3 for A = odd number
Ay for A = even number

G5 | k = 5(mod38)

Gs | k = 6(mod38) Cy
G7 | k= T7(mod38) Cs
Cy X 5; ford=20
{ ((((C2 x DS):CZ):C3) : C3):C2 fori=1
Gy | k = 0(mod 8) <x,y:x? =y? = (xyxyxy®xy?)® otherwise

Table 6: A Class of Quotients of the Modular Group
Thus, we obtain a class of generalized triangle groups as quotients of PSL(2,7)

corresponding the word (of any syllable) and conclude that this class contains trivial
group, Cy, C3, S3, Ay, C3 x Sz, (((Cy x Dg) : Cy) : C3) : C3) : Cy and < z,y : 2 =

y? = (vyryzy?ry?)* =1 >. This completes the proof.

Remark 15 [t is pertinent to mention here that the group < z,y : 22 = y® =

(ryzyzy’ry?)? = 1 > is described by J. Howie, V. Metaftsis and R. M. Thomas in
[3] as one of the finite generalized triangle groups of order 576. Whereas, we identify
the above-mentioned group as a quotient of PSL(2,7) and further the description of

its structure is ((((Cy x Dg) : Cy) : C3) : C3) : Cs.

Remark 16 [t is worthwhile to note that there is a single quotient G; corresponding

to each class of syllable i(mod8) except fori =10 or 5.
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Remark 17 Fight out of fourteen finite generalized triangle groups are one relator
quotients of PSL(2,7). Our method/proposed scheme is applicable on all two gen-
erator groups. We can also view that all finite generalized triangle groups are two
generator groups. So, the proposed method is sufficient to find one relator quotients
of all finite generalized triangle groups. This study of quotients is comprehensive and

provides a methodology to determine all one relator quotients of any two-generator

group.

4.2 Quotients of the Modular Group and Alge-
braic Substitution Box

Historical Development

With rapid advancement in communication technology, the maintenance of data se-
curity has become a great challenge for cryptographers. In this regard, block encryp-
tion algorithm plays vital role in cryptographic systems. The important component
of block encryption algorithm is the S-box. The security strength of the S-box de-
termines the security strength of the entire cryptosystem. It is therefore established
that the S-box plays an important role in the security of cryptographic schemes.
The DES [24] was proposed by a well-known computer production company in
1977, and the DES investigations drove the refinement in the cryptographic system
enormously. Later, a group of university students broke the DES security. This led

to the realization that of some other secure and efficient encryption method has to
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be evolved. In 2002, the Advanced Encryption Standard (AES) was created by J.
Daemen and V. Rijmen [25] which is now the standard for the encryption. The S-box
has a vital role in quality of encryption. Utilization of a weak S-box is tantamount
to compromising on the security of encryption process. Therefore, before using an
S-box in a cryptosystem, it is pertinent to assess its strength. The analyses for mea-
suring strength include nonlinearity method (NL), linear approximation probability
method (LAP), bit independence criterion (BIC), differential approximation proba-
bility method (DAP) and strict avalanche criterion (SAC). Some studies related to
the construction of S-box and its strength are in [26, 27]. The analyses of S-box in
image encryption based on majority logic criteria are investigated in [28, 29]. More
investigation on the S-box based on a chaotic map is conducted in [30], hyperchaotic
system-based S-box in [31], and chaotic neural network-based S-box in [32]. G. Chen,
Y. Chen and X. Liao [33] described an S-box based on three-dimensional chaotic
baker maps. U. Hayat and N. A. Azam [34] used elliptic curves to construct an S-box
by considering the ordinate of the curve for this construction. Altaleb et al. [35]
investigate the construction of an S-box by using the projective general linear group.
Thus, various aspects of construction of an S-box are investigated to get a secure
and better S-box which enables better encryption. For example, recently, attackers
have been successful in breaking the loops of AES. Thus, the need for an efficient
method to generate dynamic S-boxes exists. The construction of an S-box using the
group graphs is presented as an alternative S-box design technique. It exponentially
improved security and efficacy which is vividly visible in subsequent work in this

section. We propose an efficient technique for the construction of an S-box by using
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action of a quotient of PSL(2,7Z) on PL(Fs57). The permutations obtained in this
way are used to draw a coset diagram. The vertices of the coset diagram are consid-
ered in a special way for constructing an S-box. The S-box generated in this way is
highly secure, closely meeting the optimal values of the standard S-box. All the tests
for the security strength are performed and compared with other S-boxes confirming

that the proposed S-box is highly secure.

The purpose of this study is to establish a scheme for the construction of an S-box
by taking action of one of the quotients of the modular group (e.g. we choose Ay)
on the projective line over the finite field, that is PL(Fbs57). The proposed scheme is

presented in the following flow chart.
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|5tar‘t|

¥

As asQuotient of Projective line over the
Action of A; on PL(Fz5;) finite field PL{F.s7)

|

[ Permutations of x and y ]

|

Coset Diagram of the
Action

the modular group

stepl Selection of patch of the diagram by using
R T{x)=sum up to yth term of Fibonacci sequence
s
Take smallest entry of the patch
Step Il N
and apply (xy)', for n=1,2,3
.
PR S Repeat Step | and Step 11, till all the
Step Il . vertices of the coset diagram utilized
A
16x16 matrix is formed, then apply
Step IV a permutation of Sass

Proposed 5-Box

Flow Chart 2: Procedure for the Construction of S—Box

4.2.1 S-Box Based on Action of a Group and Coset Diagrams

In the proposed scheme, firstly we take action of Ay on PL(Fjs7), then in the second
step, we draw a coset diagram of the action, and finally we construct an S-box by
using vertices of the coset diagram. The action of the modular group on PL(F))

evolves a coset diagram in which each vertex is fixed by (zy)P. In order to draw a
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coset diagram for < z,y : 2% = y® = (zy)" = 1 >, where n is of our own choice, there

is a method given by Q. Mushtaq [8], known as parametrization method.

Action of A, on Projective Line over the Finite Field PL(Fss57)

The linear fractional transformations of the generators x and y act on each element
of PL(F557) produces the following permutation representations of T and 7.

Z : (055 00)(157 01)(019 002)(183 003)(004 20)(192 005)(006 150)(007 096)(008
024)(009 026)(029 010)(034 011)(012 044)(013 074)(014 inf)(211 015)(016 241)(251
017)(018 256)(021 189)(022 135)(023 093)(025 102)(027 128)(028 230)(203 030)(207
031)(032 182)(092 033)(035 158)(036 058)(037 179)(140 038)(039 063)(071 040)(041
126)(122 042)(043 136)(153 045)(237 046)(047 129)(048 239)(049 049)(098 050)(051
061)(052 053)(141 054)(056 086) (057 168)(184 059)(060 225)(062 077)(064 167)(164
065)(066 171)(067 105)(068 070)(069 083)(072 075)(073 209)(076 212)(078 254)(079
191)(080 200)(081 109)(082 255)(084 160)(085 205)(087 154)(088 166)(116 089)(090
162)(091 100)(094 206)(095 137)(165 097)(099 104)(226 101)(253 103)(106 248)(107
146)(108 161)(110 174)(175 111)(112 155)(113 138)(219 114)(115 133)(117 228)(118
221)(119 197)(188 120)(220 121)(123 195)(124 177)(125 201)(250 127)(130 173)(131
198)(132 240)(134 142)(139 178)(143 151)(144 231)(247 145)(147 172)(148 190)(149
242)(152 170)(156 238)(159 244)(243 163)(169 196)(176 204)(180 218)(181 186)(185
194)(235 187)(193 252)(199 229)(202 216)(208 223)(210 213)(214 245)(215 217)(222
246)(224 234)(227 249)(232 233)(236 236).

¥ : (00 241 inf)(121 242 01)(256 120 240)(113 02 100)(239 128 141)(230 070

003)(171 011 238)(004 090 177)(151 237 064)(087 005 049)(236 154 192)(222 027



67

006)(214 019 235)(190 131 007)(110 051 234)(008 075 209)(166 233 302)(009 072
184)(169 232 057)(010 089 164)(152 231 077)(134 012 101)(229 107 140)(195 162
013)(079 046 228)(014 060 186)(181 227 055)(199 104 015)(137 042 226)(225 016
249)(148 105 017)(136 093 224)(189 084 018)(157 052 223)(074 020 050)(221 167
191)(132 033 021)(208 109 220)(022 115 206)(126 219 035)(145 174 023)(067 096
218)(059 024 045)(217 182 196) (163 056 025)(185 078 216)(153 073 026)(168 088
215)(111 085 028)(156 130 213)(179 029 040)(212 062 201)(095 044 030)(197 146
211)(175 183 031)(058 066 210)(173 034 036)(207 068 205)(116 037 097)(204 125
144)(119 099 038)(142 122 203)(129 039 243)(202 112 255)(147 041 248)(200 094
250)(043 061 247)(180 198 251)(047 102 159)(139 194 082)(150 048 253)(193 091
245)(149 081 053)(160 092 188)(103 054 246)(187 138 252)(086 063 244)(178 155
254)(165 071 065)(170 076 176)(127 133 069)(108 114 172)(135 080 083)(161 106

158)(124 123 098)(118 117 143).

The coset diagram for the action of Ay on PL(Fs57) consists of two types of the

circuits, given below.

Figure 7: Type—A Clircuit Figure 8: Type—B Clircuit

(a) In Type-A circuit, there are four triangles and this type of circuit occurs

twenty-one times in the coset diagram. There is no fix point of T nor of 7y in Type-A
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circuit. Thus, Type-A circuits use 252 vertices of the coset diagram.
(b) In type-B circuit, there are only two triangles and this type of circuit occurs
only once in the coset diagram. In this circuit, there are two fixed points of . Thus,

Type-B circuit utilized only six vertices of the coset diagram.

Construction of S-Box using Coset Diagram

After drawing the coset diagram, we proceed towards construction of S-box from the
coset diagram. There are twenty-two circuits in the coset diagram, so the first step
is how to choose a circuit. The second step is the selection of vertices of that circuit
in a specific manner. Therefore, for the first part, instead of randomly choosing the
circuits we choose the circuits by using a sequence, known as Fibonacci sequence
1,1,2,3,5,8,.... We define mapping as 5 : PL(Fys7) — PL(Fss7) by f(k) = Sum of
the first k terms of the Fibonacci sequence. Then, choose the circuit in which 5(z)
occurs. By this mapping, we can easily and systematically choose the circuits one
by one. For illustration, 3(1) = 1, we pick the circuit of the coset diagram having 1
as the vertex, that is, the circuit shown in Figure-9. Similarly, for 5(0) = 0,5(2) =
141 =263) =1+1+2 =4, and so on. Secondly, after choosing the circuit
of the coset diagram, now we select the vertices of that circuit in a special manner.
We initiate from the vertex 3(1) = 1 and apply zy, (zy)?, and (zy)* (because of the
third relator of A4 ) on (1) and note the vertices, which are (1,52,149). Then, in the
same circuit we choose the smallest number from the remaining vertices of the circuit,
which is 53, apply zy and its powers to get (53,223,109). Continue the process by

choosing the smallest from the remaining vertices of the circuit and apply xy and its
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powers so that all the vertices of the circuit are utilized. We can view the entries of
the circuit containing (1) = 1 in (starting from row 1 column 12 of) Table-7, except
infinity. It is important to mention here that if §(x) appears in the previous circuit
then it means it is already utilized so move on. But, if f(x) appears in the new
circuit, then apply zy and its powers in the similar fashion and note the permutation.
Continue the process till all the vertices of the coset diagram are exhausted yielding
258 entries in an order. Ignore oo and 256. Thus, a 16 x 16 S-box is constructed as
shown in Table-7. It is important to mention here that whenever 5(z) > 256 take
modulo class 257. It seems easy to find (z) in modulo class 257 but this is not so.
We use an online PowerMod Calculator for these calculations. The entire scheme
of constructing an S-box is based on the action of a finite triangle group A4, coset
diagram, and Fibonacci sequence. These all inculcate the natural patterns in the

scheme which gives a very suitable and effective S-box as a result.

223 \
157 52

242 109

149 53
S

Figure 9: A Circuit of the Coset Diagram Containing T(1)

121
220

87 192
Figure 10: Type B Clircuit
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000

181

014

016

060

055

241

249

186

227

225

001

052

149

053

223
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081
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208
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002

235
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019
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245

091

113
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214
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004

050
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013
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090

074

195

098

123
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007

218

198

17

180

67

96

190

105

131

251

148

12

30

142

42

203

095

044
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137

122

226

134

018

120

160

021

084

092

033

188

240

132

189

006

048

128

027

141

246

054
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253

103

150
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032

196

232

057

088
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166

215
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168

169

217

046

064

191

079

221

117

118
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151
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237

228

015
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099

038

229

104

119

146

140

107

211

199

003

031

068

028

070
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085

207

175

111

183

230

078
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194

082

202

185

112

254

216

139

155

255

023

224

110

043

093

145

051

247

174

061

234

136

025

159

086

039

244

047

056

063

243

102

163

129

022

080

094

069

135

115

083

127

200

133

206

250

035

161

114

041

219

172

106

147

108

126

248

158

011

036

066

034

023

130

058

173

213

156

171

210

008

045

073

009

153

059

024

075

184

026

072

209

010

040

065

029

089

037

071

179

097

116

164

165

005

236

154

049

087

192

062

152

076

077

201

144

125

212

176

170

231

204

Table 7: 16x16 Matriz Evolved from Coset Diagram

For more variability, we apply one of the permutations from Sy56 on the outcome

presented in Table-7 to change the positions of the elements.

This permutation

increases the randomness of the elements and gives the proposed S-box with high

nonlinearity, as shown in Table-8. The permutation o € Ss56 used here is as follows:

(001 195 199 236 194 185 207 251 082 026 096 155 104 175 052 132 197 030 149




71

216 233 167 043 118 024 011 221 146 047 241 171 140 090 148 248 121 242 069 008
055 240 042 045 200 143 162 021 142 190 157 131 074 184 161 127 062 218 211 124
208 097 153 039 087 202 041 100 066 072 170 232 178 065 010 073 007 015 059 238
231 122 058 234 182 023 219 061 086 133 051 247 018 048 222 137 098 077 125 228
014 029 220 165 094 214 166 003 244 130 209 112 189 203 169 033 243 187 076 113
145 070 255 053 037 168 107 223 226 224 116 108 044 006 114 068 054 180 103 046
204 201 111 147 159 013 213 181 129 225 078 177 152 115 016 093 019 109 079 227
229 085 192 176 188 057 212 235 063 193 249 105 173 164 102 084 040 253 210 237
239 080 217 099 071 134 034 110 049 135 089 035 032 009 036 215 128 092 191 139
117 138 252 038 245 163 246 160) (000 151 083 172 020 183 028 150 198 230 120 056
067 205 136 027 095 064 002 106 250 174) (005 088 179 141 156 050 154 060 081 158

123 101 025 254 031 012 126 196 091 186 075 206 144 022) (004) (017) (119).

(This space is left because of the table on the next page)
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151 (129 |29 |93 |81 |240 | 171|105 |75 | 229 |78 | 195|132 | 216 | 37 | 226
79 | 158 | 165 | 69 | 242 |97 | 131|106 | 63 | 252 | 109 | 66 | 163 | 186 | 145 | 38
76 | 166 | 249 | 4 154 | 208 | 213 | 183 | 148 | 184 | 199 | 77 | 101 | 21 | 152 | 15
211 {230 | 17 | 103 | 205 | 155 | 157 | 173 | 74 | 82 | 248 | 126 | 149 | 190 | 45 | 169
64 |6 25 |98 |58 22434 |48 |56 |1 142 | 40 | 191 | 243 | b7 | 42
197 [ 203 | 114 | 222 | 92 | 95 | 156 | 160 | 180 | 80 | 210 | 46 | 198 | 137 | 9 91
178 | 212 | 179 | 167 | 3 128 [ 23 | 107 |33 |99 | 204 |2 139 | 227 | 146 | 138
24 |43 |83 162|239 14 |39 [30 |71 |245 |8 | 175|119 |47 |90 | 223
124 | 236 | 244 | 12 | 54 | 150 | 255 | 136 | 192 | 251 | 52 | 147 | 28 | 120 | 177 | 65
185126 |44 | 207|189 |31 |233 117|104 |53 |219|116 |49 |118 |19 |70
247118 |0 86 | 182 |27 | 254 |13 | 133 |87 | 130|241 | 67 | 193 | 187 | 84
246 | 225 | 5 217 | 214 | 8 89 |16 | 172 |62 | 143 |51 | 144 | 174 | 32 | 127
68 | 100 | 61 |20 |250 | 159 |44 | 196 | 121 | 123 | 221 | 215 | 72 | 110 | 231 | 209
234|164 | 181 | 50 | 140 | 237 | 55 | 200 | 7 36 |39 | 238 |11 | 206 | 161 | 96
170 [ 112 | 73 [ 253 | 10 | 220 | 35 | 168 | 134 | 141 | 153 | 108 | 102 | 94 | 88 | 194
60 | 135|202 | 176 | 218 | 115 | 113 | 125 | 111 | 22 | 228 | 235 | 188 | 232 | 122 | 201

Analysis for Evaluating the Strength of S-box

Table 8: Proposed S—Box

The criteria generally selected to test the S-box are nonlinearity, strict avalanche

criteria, bit independence criteria, linear approximation probability, and differential

approximation probability. For testing the strength of the proposed S-box, we discuss
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each of them in the following. We also compare the results with recently developed

S-boxes.

Non-Linearity

Nonlinearity (NL) is one of the significant criteria for the performance evaluation of
the S-box which measures the randomness of the values of the S-box. The NL of
proposed S-box is 110.50 which is higher than that of [36, 37, 38, 39, 40, 41, 42].
The higher the NL, the stronger the S-box. Hence, the NL of the proposed S-box
guarantees a secure communication. The NL of the proposed S-box is expressed in

Table-9 and comparison with [36, 37, 38, 39, 40, 41, 42] is in Table-12.

Function of S-box | O 1 2 3 4 5 6 7

Non-Linearity 112 | 110 | 112 | 110 | 110 | 108 | 112 | 110

Table 9: Non—Linearity of the Proposed S—Box

Strict Avalanche Criteria

The concept of strict avalanche criteria (SAC) was introduced by Webster and Tavares
[43] which measures the confusion creation of an S-box by measuring the change in
output bits due to the change in input bits. The minimum and the maximum value
of SAC of the proposed S-box are 0.40625 and 0.578125, whereas the average value is
0.503175 (Table-10) which is much closer to 0.5, the ideal value of SAC. The lesser
deviation from 0.5, the stronger the S-box. The comparison of SAC of the proposed
S-box with that of [36, 37, 38, 39, 40, 41, 42] is in Table-12, which depicts that the

proposed S-box has better SAC performance.
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0

2

3

4

5

6

7

0.453125

0.546875

0.484375

0.453125

0.484375

0.515625

0.500000

0.500000

0.484375

0.484375

0.453125

0.484375

0.546875

0.531250

0.453125

0.515625

0.406250

0.515625

0.531250

0.500000

0.515625

0.500000

0.531250

0.56250

0.531250

0.515625

0.437500

0.515625

0.531250

0.421875

0.500000

0.546875

0.531250

0.531250

0.500000

0.515625

0.453125

0.500000

0.468750

0.531250

0.515625

0.515625

0.546875

0.453125

0.515625

0.546875

0.453125

0.515625

0.515625

0.531250

0.484375

0.578125

0.500000

0.453125

0.500000

0.546875

0.468750

0.515625

0.546875

0.484375

0.468750

0.531250

0.546875

0.484375

Differential Approximation Probability

Table 10: Strict Avalanche Criteria

Differential approximation probability (DAP) is a measure to analyse the resistance of

the S-box against differential attacks. The smaller the DAP, the higher the resistance

against attacks. The DAP of the generated S-box is 0.0234375 which is exceptionally

good. This DAP value is near to the optimal value 0.0156. This reflects that the

S-box generated by group action and using coset diagrams has the ability of high

resistance against differential attacks. The comparison of DAP of proposed S-box

with that of some other known S-boxes is given in Table-12.

Bit Independence Criteria

Bit independence criteria also measures the strength of the S-box. The BIC value of

the generated S-box is 109.21 (Table-11). The comparison with that of [36, 37, 38,
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39, 40, 41, 42] is in Table-12. This BIC value is sufficiently good and assures secure

communication and better encryption in cryptographic application.

0 1 2 3 4 5 6

— 106 | 110 | 110 | 108 | 108 | 110
106 | — 108 | 110 | 110 | 110 | 106
110 | 108 | — 108 | 112 | 110 | 110
110 | 110 | 108 | — 108 | 110 | 108
108 | 110 | 112 | 108 | — 110 | 110
108 | 110 | 110 | 110 | 110 | — 110
110 | 106 | 110 | 108 | 110 | 110 | —

Linear Approximation Probability

Linear approximation probability (LAP) criteria measure the strength or resistance of

Table 11: Bit Independence Criteria

the S-box against linear attacks. The smaller the LAP value, the higher the strength

of security of the S-box. The LAP of the generated S-box is 0.0859375 which is smaller

than that of [36, 37, 38, 39, 40, 41, 42]. This depicts that the proposed scheme has

ability to generate a strong, efficient, and attack resistant S-box.

The comparison of NL, SAC, BIC, LAP, and DAP with other known S-boxes

is given in Table-12. The NL and the BIC value of the proposed S-box are higher

than that of the others. The least values of LAP and DAP show the proposed S-

box is highly resistive against the linear as well as differential attacks.

And the

confusion/diffusion creation criteria SAC is also closer to the standard value 0.5000.
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Hence, the perfect combination of all (NL, SAC, BIC, LAP, and DAP) shows the

proposed S-box is a secure choice for encryption.

S-boxes Nonlinearity | SAC | BIC | LAP | DAP
Proposed S-box 110.50 0.5031 | 109.21 | 0.0860 | 0.0234
Jakimoski and Kocarev [36] | 103.25 0.5059 | 104.29 | 0.1250 | 0.0469
Tang et. al. [37] 104.88 0.4966 | 102.96 | 0.1328 | 0.0391
Belazi and Eilatif [38] 105.50 0.5000 | 103.78 | 0.1250 | 0.0468
Ullah et. al. [39] 106.00 0.5020 | 103.00 | 0.1250 | 0.0469
Wang et. al. [40] 110.00 0.4937 | 103.86 | 0.1250 | 0.0391
Razaq et. al. [41] 106.75 0.5032 | 103.64 | 0.1484 | 0.0469
Liu et. al. [42] 104.50 0.4980 | 104.64 | 0.1250 | 0.0469

Table 12: Strength Comparison of Proposed S—Box

Majority Logic Criteria

Majority logic criteria (MLC) measures image encryption strength of the S-box. En-
tropy, correlation, contrast, energy, and homogeneity are the components of MLC.
We used JPEG image of a baboon for this analysis. Figures 11(a) and 11(c) show the
original image and the histogram, while Figures 11(b) and 11(d) show the encrypted
image and encrypted histogram. Specially, the entropy value which is 7.9832 is better
than that of [25, 39, 41, 44, 45]. The entropy value is very close to the ideal value,
which is 8. The values of contrast, correlation, energy, and homogeneity also indicate
the proposed scheme provides a strong S-box which is suitable for encryption appli-

cations. The results of this analysis in comparison with well-known S-boxes are in
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Figure—11: image Encryption with Proposed S—BOX
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Baboon Image Entropy | Energy | Contrast | Homogeneity | Correlation
Daemen and Rijmen [25] | 7.9325 | 0.0211 | 7.2240 0.4701 0.0815
Proposed S-box 7.9832 | 0.0157 | 10.4027 | 0.3909 0.00073
Ullah et.al.[39] 7.9824 | 0.0172 | 8.7348 0.4074 —0.0043
Razak et.al.[41] 7.9551 | 0.0174 | 8.5267 0.4088 0.00044
Khan et.al.[44] 7.9612 | 0.0210 | 8.1213 0.4011 —0.0512
Belazi et.al.[45] 7.9252 | 0.0222 | 8.0391 0.4428 0.0119

Table 13: Majority Logic Criteria Comparision
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Result Discussion

The nonlinearity of the proposd S-box is very high which shows the security strength
of the S-box. The resistance against the linear attacks and the differential attacks is
measured by the LAP value and the DAP value. Both the values of the proposed S-box
are very small which is suitable and better for the strength of an S-box. Furthermore,
the SAC of the proposed S-box is 0.503 which is very close to 0.5, perfect value of
SAC. Similarly, the BIC value of the proposed S-box is better than the other well
known S-boxes. Table-12 shows the comparison of all the values. This means, the
proposed S-box is an excellent choice for the cryptographic applications because it is
a perfect combination of NL, SAC, LAP, DAP and BIC. The image of babon is used
for MLC. The values of contrast, energy, homogeneity, correlation and entropy shows

that the proposed S-box is suitable for image encryption.

Conclusion

In this chapter, we found one relator quotients of the modular group related to Fi-
bonacci sequence of numbers. The words obtained in chapter three are now utilised
as additional relation in the modular group and then the resultant quotients are in-
vestigated. Finally, to identify these quotients we used Tietze transformations and on
some places ‘Groups, Algorithms and Programming’ (GAP). This is a class of gen-
eralized triangular group which we investigated as quotients of the modular group.
Furthermore, from this class of quotients we choose one quotient, which is A4, and by

taking action of A4 on PL(Fy57) we construct an algebraic S-box. By investigating



79

the security strength parameters of this S-box, we conclude this S-box is highly secure

for the communication and highly preferable for cryptographic applications.
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Chapter 5

All one Relator Quotients of the

Modular Group

Since one relator quotients of the modular group are of the form < x,y : 22 = 3® =
w(z,y) = 1 > where w(z,y) = 2"y a™y%...x"y*. In chapter three, we fixed the
powers of the generators as Fibonacci sequence of numbers and found one relator
quotients of the modular group. To find one relator quotients of the modular group
with all variations of powers of x and y and for all syllable of w(x,y) is a gigantic
problem. A step towards this problem, we find number of cyclically reduced non-
equivalent words with all variations of powers of = and y and for all syllable of w(z, y).
By this we come to know that how many one relator quotients of the modular group
exists corresponding to each syllable k. Thus, by considering all variations of powers
of the generators in w(z,y) we are able to count the number of one relator quotients
of the modular group. For this goal, we prove some important results in this chapter.

81
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5.1 Number of One-Relator Quotients of the Mod-

ular Group

Number of one relator quotients of the modular group are equal to the number of
cyclically reduced non-equivalent words for every k; the syllable of w(x,y). Therefore,
firstly we find all the possibilities for the additional relator w(x,y) = 1 for each syllable
k then find number of cyclically reduced non-equivalent words. In the following

theorem we obtain a formula for the number of all possible words for any syllable k.

Theorem 18 Let w(x,y) = xy®ay®™...xy* be the word generated by x and y then

for a specific syllable k, there are exactly 2% words generated by = and v.

Proof. In w(x,y), positions and powers of x are fized. Therefore, it is sufficient
to count the possibilities of y**y®2...y**. By using the multiplication rule of counting,
if k objects each have two possibilities then there are exactly 2% arrangments of the

objects. Thus, there are 2F words having syllable k generated by x and y. =

As an illustration, we choose a fix k and find all the words of syllable k& which are

generated by x and y.

Let k = 5 then by Theorem-18 there are 2° = 32 total words.



83

=
5
&
=
S
g
S~—

cyclically reduced words
TYTYTYTYTY
ryryTyTyTy’
TyTyTyTy’Ty
TyTyTyTyTy
TyTy TYTYTY
Ty TyTyTYTY
TyryTyTy Ty’
ryzryry’Ty’ry
ryzy Ty ryry
ry Ty ryryry
ry ryTryryry’
TyTyTyTyry’
ryxy ryry’ry
Ty ryTyryTy
ryzy ryryry’
Ty wyryTy>ry
cyzyry Ty Ty’
ryxy’ Ty’ Ty’ Ty
wy ry eyt ryy
vy wy’ryryry’
vy wyryTy Ty’
ryzy’ryryry?
wy ryryxy’ ey
wy ryzy’ryry’
ryzy Tyry Ty’
vyl wyry ey Ty
cyzy ry Ty ry’
$y2$y2$y2l’y2l’y
vy wy’ry’ryxy®
wy ryryxy’ ey’

2

2

QO OO OO0 0000000000000 NI J|J OO O O] Ot

vy’ wyry vy ry’
10 rytayl oyl oy oy?
Table 14: All words of length 5

Ot Ot Ot Ot O O Ot Ot Ot O O] Ot Ot Ot O O Ot Ot O O O Ot Ot Ot O] Ot Ot O] Ot O Ot Ot

We extend this table with other variations of N(z,) and N (y,,) which are infinite

in number.

From Table-14, it is very clear that 5Cyy words having five y and no 32, 5C; words
having four y and one 32, °C, words having three y and two 32, °?C; words having two

y and three 3% and °C, words having one y and four 32, and Cs words having no y
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and five 32. Thus, in general, *C; represents the number of words having syllable k

with 32 appearing i times and y appears k — i times.

5.2 Additional Relations in view of Circuits

In the discussion of all possible non-equivalent words for each syllable k, firstly we
eliminate the cyclically equivalent words. Figure-4 is an easy way to understand
cyclically equivalent words. Secondly, there exist inverses of the words. Inverses are
just the conversion of inside triangles to outside triangles and outside triangles of the
circuit to inside. Thus, algebraically words and their inverses play the same role. We
therefore eliminate the inverses. One can view this in the following figures-12 and

figure-13.

n, , triangles ~ A A A
/Y YY nJriangI&s\

n, triangles <] n, triangles

A AA

<
\A A A n, triangles /
n, triangles Y Y Y

Figure 12: Circuit of the type (ni,n2,...,nok)
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é 5 n, triangles
n,. . triangles "-7 YY \

\

n, triangles n, triangles

YYY
Y YY

AA A
V n, triangles

n, triangles

Figure 13: Inverse of the Circuit (ni,na,...,n2k)

Now we discuss non-equivalent words. For any syllable k, we prove the result for
number of non-equivalent words. These non-equivalent words contain z, y and 2.

There are two types of circuits corresponding to additional relations.

Type-I These circuits consists of all triangles with one vertex inside or all triangles
with one vertex outside of the main frame of the circuit. This type of circuits exists
only when the word is of the form (zy)* or (zy?)*. It is pertinent to mention here
that addition of such words gives triangle groups as quotient of the modular group.
For different values of k, geometry of the triangle groups is discussed in chapter 1.
For k > 6, the triangle groups are of infinite order and finite for other values of k.

Type-II These circuits consists of some triangles with one vertex inside and some
triangles with one vertex out side of the main frame of the circuits. These circuits are

always of even length. Length of the circuit is the number of variations from inside
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triangles to outside triangles and outside triangles to inside triangles. A Circuit of
length two is represented by (a,b) with a number of triangles inside and b number

of triangles outside of the main frame of the circuit. A theorem of Q. Mushtaq [47]

a++/n

which assures there exists a real quadratic irrational number of the type a = =

where n is square free positive integer, in the circuit of the orbit of PSL(2,Z) acting
on PL(F,). The length of the circuits also depends upon the syllable of the word. For
illustration, let k& = 6 and consider all cyclically reduced non-equivalent words. The
word ryryryryryry or (xy)6 shows that all the triangles are inside the circuit (so
of Type-I) and gives the triangle group A(2,3,6). The word ryzyryryryzry® depicts
that five triangles are inside the circuit while one triangle is outside the circuit and
the circuit is is of the form (5,1). Similarly, the circuit for the word xyzryryryzy?ry?
is (4,2) and for zyryzyry?xy*ry® is (3,3). The circuit corresponding to the word
ryryryry?ryxry? consists of three triangles inside, one triangle outside, one triangle
inside and one triangle outside, that is, circuit is of the type (3,1,1,1) and length
of the circuit is four. Same is the case with zyxyzy?zyryzy?, ryryzy?zyry?cy?
and xyzyxy’ay?ryxry?. Now the only remaining word is zyzy?zyzy?zyry?. Here,
the circuit is of the form (1,1,1,1,1,1), that is, six triangles alternatively inside and

outside of the main frame of the circuit.

On the other hand, due to different combinations of circuit types one can reversely
find cyclically reduced non-equivalent words. Precisely, all the combinations of mak-
ing 6 (in even combinations) are 6 =6+0=5+1=4+2=34+3=1+1+1+3=

1+2414+2=14+14+242=2424+1+1=1+14+1+1+1+4 1. These nine
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combinations provide nine cyclically reduced non-equivalent words.

A
Y Y V(Y YY
_{AY44AYY %

Y Y

Figure 14(a): Circuit (1,1,1,1,1,1)  Figure 14(b): Circuit (1,2,2,1) Figure 14(c): Circuit (4,2)
Figure 14(d): Circuit (1,1,1,3) Figure 14(e): Circuit (1,1,2,2) Figure 14(f): Circuit (1,2,1,2)

IIY\VVV VY'Y
AAA\YYY

Figure 14(g): Circuit (5,1) Figure 14(h): Circuit (6,0) Figure 14(3): Circuit (3,3)

5.3 Number of Cyclically Reduced Non-Equivalent

Words

If two words w and w’ are equivalent by definition then the corresponding quotients
are isomorphic. So, there is a need to identify the equivalent words which we eliminate
from the total possibilities to get a small list of non-equivalent words and consequently

quotients of the modular group.
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Remark 19 Let w(z,y) = xy® zy®... zy** be a word and all sys are same in w(z,y)

then no other word is equivalent to w(x,y).
Proof. Obvious from the definition. m

Remark 20 Let w(z,y) = xy* xy®... zy* be a word and s, are alternatively 1 and
2. Then the words equivalent to w(x,y) are either 1 or 2. If s; = sy, then there are

two equivalent words while otherwise only one equivalent word.

Proposition 21 If w(x,y) = xy®zy®>... xy®* be a word then the words which are

equivalent to w(x,y) are at the most k — 1.

The following theorem is important because it gives the number of non-equivalent

words for a fixed syllable k.

Theorem 22 If k is the syllable of a word w(x,y) then number of cyclically non-
k—1

equivalent words are 2+Z t;, where t; = [kkcw for1 <i<k-—1.
i=1

Proof. If syllable of w(z,y) = k, then by Theorem-18 there are exactly 2% words
k
of syllable k which are distributed in k+1 classes as 2’“22 ¥C;. Also each row of the

=0
k

Pascal triangle satisfies 2’“22 kC;. Therefore, there is a relationship between rows
of the Pascal triangle and th;::_lumber of cyclically non-equivalent words. Thereupon,
we utilize the similarity of rows of the Pascal triangle with syllable of the words. The
k" row of Pascal triangle is associated with the words of syllable k. And each element

FC; (for 1 < i < k) of the row k represents i number of y? appear in wj(x,y),

that is, N (yfuk) = 4. Clearly, *Cy and *Cj, represent (zy)* and (ry?)*. These words
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have no other equivalent words by Remark 19. For the remaining *C; to *Cj_;, we
represents each class having *C; words by ¥,. Every class ¥; is non-empty so there
exists a word say w'(z,y) € ¥,;. Then by proposition-21, there are k — 1 other words
must exist which are equivalent to w!(x,y). If *C; > k, then there exists another
word say w?(z,y) € ¥; and by proposition-21 there exist k& — 1 more words which are
equivalent to w?(x,y). Similarly, If *C; > 2k, then there exist some w?(x,y) € ¥; and
the process continues until, one reaches on a point where kt < *C; < k(t + 1) with
t a non-negative integer. Thus, there are exactly ¢ words each have k — 1 number of
equivalent words. Along with those, there is a unique word having less than k£ — 1

equivalent words and the existence of such words is discussed in remark 20. Thus, the

total number of cyclically non-equivalent words for each ¥, are t; = [kﬂ . Hence,

k—1

number of cyclically non-equivalent words are 2 + Z t;. This completes the proof.
i=1

[ |

In cyclically non-equivalent words another important property exists. That is,
some words and their inverses both exist in cyclically non-equivalent words. Accord-
ing to J. Howie, V. Metaftsis and R. M. Thomas [3] words and their inverses are
equivalent especially in the case when they are treated as additional relation in a
group. Furthermore, by Theorem-8, if the equivalent words are inserted in a group
as additional relation then the corresponding quotients are same. Thus, there is a
need to identify and then eliminate either words or their inverses from the cyclically
non-equivalent words, to get a precise list of non-equivalent words. In this connection,

firstly we establish a result for the number of non-equivalent words (by eliminating in-
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verses of the words) for each syllable k. After that, we discuss some prperties of words

and their inverses which help to identify equivalent and non-equivalent quotients.

Theorem 23 If k is the syllable of a word w(x,y) then number of non-equivalent
(5]
k
words are 1+ Z t; where t; = [ kCz
i=1

W for1 <i<k-—1 and [g} 18 the greatest integer

function.

Proof. If syllable of w(x,y) = k, then by Theorem-18, there are exactly 2¥ words

k
of syllable k which are distributed in k41 classes as 2"‘22 *C;. Also the sum of each
=0
k
row of the Pascal triangle also satisfies 2" :Z k(5. So, there is a relationship between
=0
rows of the Pascal triangle and the number of cyclically reduced non-equivalent words

for corresponding syllable. Theorem 22 gives cyclically non-equivalent words. Now by
eliminating inverse of each word we get number of cyclically reduced non-equivalent
words. As, inverses can be get by replacing y to y2and 3? to y in w(z,y). Therefore,
avoiding the inverses we consider number of y greater than number of y? in w(z,y), or

otherwise. That is, this divides the Pascal triangle in to two equal halves vertically.

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 | 45 10 1
1 11 55 | 165 | 330 | 462 | 462 330 | 165 55 11 1
1 12 66 | 220 | 495 792 924 792 495 | 220 | 66 12 1
1 13 78 | 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 9?1 364 | 1001 2002 3003 | 3432 | 3003 | 2002 1001 364 91 14 1
1 15 | 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 | 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
Figure 15: Pascal Triangle Division for Non—Equivalent Words
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Therefore, we now only consider cyclically reduced words having 0 to § number of
3]

ones in power of y. By using Theorem-22, it becomes *Cj+ Z t; where t; is number
i=1

of cyclically reduced words in each W,. This completes the proof. m

Proposition 24 Let N (z,,) = k1, N (yu) = ko be the two possible numbers then the

number of cyclically reduced non-equivalent words for [ky, ka| and for [ky, 3k — ks| are

equal.
As an illustration of all the above discussion, we provide the following example.

Example 25 Consider Table-14 of all words of length 5. Then by Theorem 8, Theo-
rem 18, Theorem 22, Theorem 23 and Proposition 24 we have the following Table-15

of cyclically reduced non-equivalents words which give different quotients.

N(zy) | N(yw) | Cyclically reduced non — equivalent words
) 5) TYTYTYTYTY
5 6 TYTYTYTYTY>
5 7 TYTYTYTY> TY?
5 7 ryryTy’TYTY?

Table 15: Cyclically Reduced Non—FEquivalent words

Thus, the classification of all one relator quotients of the modular group on the
basis of equivalent and non-equivalent words is presented. It gives a method (in the
form of Theorem 8, Theorem18, Theorem 22, Theorem 23 and Proposition 24) to find
a precise list of quotients which is sufficient instead of inquiring all the quotients of
the modular group for that syllable.

Now we discuss some other relationship between the equivalent words which helps
us to investigate non-equivalent words and consequencelly quotients of the modular

group. By using the inversion, one can easily prove zy" is equivalent to zy3~" where r
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is either 1 or 2. By using this fact, the words zy" zy" and zy> "2xy>~" are also equiv-
alent and consequently by adding these words in PSL(2,7Z), the resultant quotients

are also same. Similarly, we can extend this for the words of higher syllables.

Proposition 26 Let PSL(2,7Z) =< z,y : 22 = y> = 1 > be the modular group then
the one-relator quotients Q =< wz,y : 2> = y3 = zy"wyzy™..ay™ = 1 > and

Qy =< x,y: 2% =% = w2 a1y = 1 > are isomorphic where for each

i, r; 18 either 1 or 2.

Concluding the entire discussion, we are now giving a brief table presenting number

of words for each syllable and number of cyclicall reduced non-equivalent words for
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each syllable.

Syllable of the words | Total number of words | Number of cyclically reduced
non-equivalent words

1 2 1
2 4 2
3 8 2
4 16 4
5 32 4
6 64 9
7 128 10
8 256 22
9 512 30
10 1024 66
11 2048 84
12 4096 212
13 8192 316
14 16384 711
15 32768 1095
16 65536 2453
17 131072 3856
18 262144 8636
19 524288 57558
20 1048576 30837
21 2097152 49935
22 4194304 111061
23 8388608 182362
24 16777216 405867
25 33554432 671091

Table—16: Number of non—equivalent words

By using the Theorem-23, one can extend the table-16 of non-equivalent words

upto any syllable k.

Conclusion

Firstly we discussed number of all possible words for any syllable £k € N. For this,
Pascal triangle gives number of all such possible combinations. Secondly, we elimi-
nated the cyclically equivalent words from the total possible words. A formula was

established in this regard. Furthermore, we reduced the list by eliminating the in-
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verses of the words and established a formula for cyclically reduced non-equivalent
words for each syllable £ € N. Thus, in consequence of Theorem-22 and Theorem-23,
a precise list for number of cyclically reduced non-equivalent words was obtained.
Thus, in this chapter, we discussed number of one relator quotients of the modular

group with no limits on syllable of the aditional relation.
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