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Preface 

Propagation of electromagnetic (EM) waves play a vital role in communication system. The 

ultraviolet radiations impinging on earth’s atmosphere ionize a fraction of neutral atmosphere 

which results into a mixture of charged particles (i.e. ions and electrons) as well as neutral 

particles. Since the collisions in the region of earth’s atmosphere above 80 km from earth, are 

very rare, therefore, under such conditions the recombination rate of charged species is very slow 

resulting a permanent ionized medium, named as ionosphere. A cold plasma may correspond to 

ionosphere under the presence of earth’s magnetic field where the effect of finite temperature 

and pressure variations are ignored. The ionosphere of plasma is highly magnetized under earth’s 

magnetic field; therefore, it can be treated as an anisotropic medium. Also, since the cold plasma 

can be considered as a model for the ionosphere, it is possible to investigate the diffraction 

mechanisms of the complex scatterers in the ionosphere such as airplanes or satellites. 

Measurements based on the artificial satellites moving in the ionosphere around the earth, 

communicating to earth station are affected drastically as the communicating signals radiated by 

satellite and diffracted by some obstacle get modified on interaction with ionosphere plasma 

(cold plasma) and also because of the nature of material of the body i.e. electric and magnetic 

susceptibilities or impedance. To quantify the results arising due to the effectiveness of cold 

plasma and nature of the material on the diffraction of electromagnetic waves, some theoretical 

models have been devised in the present thesis. Thesis is summarized in the order below.  

 

Chapter one contains literature survey of previous research study by the researchers, some basic 

description of plane wave, Fourier transform, cold plasma, analytic continuation, method of 



stationary phase (an asymptotic method) and a short note on Wiener-Hopf technique for general 

readers. 

Chapter two addresses diffraction of electromagnetic plane wave by a finite plate in the cold 

plasma. Helmholtz equation is derived with the combined use of Maxwell’s equations and 

electric field components in terms of magnetic field with cold plasma effects. Dirichlet boundary 

conditions assumed along the plate. Fourier transform is applied on the problem and using the 

general theory of Wiener-Hopf procedure is used to obtain the Wiener-hopf equation. The 

required diffracted field is obtained by inverse Fourier transform and then by the method of 

stationary phase. Graphs are plotted to analyze that how the separated field (diffracted field by 

finite plate) is affected by physical parameters in the presence and absence of cold plasma. The 

contents of this chapter are published in Physics of Wave Phenomena 26 (2018) 342-350. 

Chapter three explores the diffracted electromagnetic plane wave by a finite plate in the cold 

plasma. Helmholtz equation is derived with the combined use of Maxwell’s equations and 

electric field components in terms of magnetic field with cold plasma effects. Neumann 

boundary conditions assumed along the plate. Fourier transform is applied on the problem and 

using the general theory of Wiener-Hopf procedure is used to obtain the Wiener-Hopf equation. 

The required diffracted field is obtained by inverse Fourier transform and then by the method of 

stationary phase. Graphs are plotted to analyze that how the separated field (diffracted field by 

finite plate) is affected by physical parameters in the presence and absence of cold plasma. The 

contents of this chapter are published in Plasma Physics Reports 46 (2020) 1-9. 

Chapter four examines the diffracted electromagnetic plane wave by a finite plate in the cold 

plasma. Impedance is assumed on upper and lower surface of the plate. Therefore, Leontovich 



boundary conditions are considered to study the effects of impedance on separated field. 

Helmholtz equation is derived with the combined use of Maxwell’s equations and electric field 

components in terms of magnetic field with cold plasma effects. Fourier transform is applied on 

the problem and using the general theory of Wiener-Hopf procedure is used to obtain the 

Wiener-Hopf equations. The required diffracted field is obtained by inverse Fourier transform 

and then by the method of stationary phase. Graphs are plotted to analyze that how the separated 

field (diffracted field by finite plate) is affected by physical parameters in the presence and 

absence of cold plasma. 

Chapter five describes the diffracted electromagnetic plane wave by a symmetric finite plate in 

the cold plasma. Impedance on upper and lower surface of the plate is taken into an account. 

Leontovich boundary conditions are used to analyze the effects of impedance on the diffracted 

field by symmetric plate of finite length. Helmholtz equation is derived with the combined use of 

Maxwell’s equations and electric field components in terms of magnetic field with cold plasma 

effects. Fourier transform is applied on the problem and using the general theory of Wiener-Hopf 

procedure is used to obtain the Wiener-Hopf equations. The required diffracted field is obtained 

by inverse Fourier transform and then by the method of stationary phase. Graphs are plotted to 

analyze that how the separated field (diffracted field by finite plate) is affected by physical 

parameters in the presence and absence of cold plasma. 

Chapter six presents the diffracted electromagnetic plane wave by a slit of finite width in the cold 

plasma. Surface Helmholtz equation is derived with the combined use of Maxwell’s equations 

and electric field components in terms of magnetic field with cold plasma effects. Fourier 

transform is applied on the problem and using the general theory of Wiener-Hopf procedure is 

used to obtain the Wiener-Hopf equations. The required diffracted field is obtained by inverse 



Fourier transform and then by the method of stationary phase. Graphs are plotted to analyze that 

how the separated field (diffracted field by finite plate) is affected by physical parameters in the 

presence and absence of cold plasma. 
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Nomenclature

ε̄ dielectric permittivity tensor

ε1, ε2, εz elements of dielectric permittivity tensor

ω operating frequency

ωp plasma frequency

ωc cyclotron frequency

e electric charge

Ne electron density

Hdc magnitude of dc magnetic field vector

Hz magnetic field perpendicular to the plane

ηs surface impedance

η0 free surface impedance

ε0 electric permittivity in vacuum

µ0 magnetic permeability

l length parameter for plate and width parameter for slit

keff propagation constant

k wave-number

θ0 angle of incidence

θ observation angle

EM electromagnetic
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Chapter 1

Related literature survey and

Basic laws

Review of previous related studies for diffraction of electromagnetic waves by

semi-infinite, finite plates, slit and other different obstacles is made. Methodology of

solution is briefly discussed.

1.1 Background

The scattering of waves by semi-infinite plane, infinite plane, finite plane, slits

of finite width, gratings and periodic surfaces has always been a great interest of

analysis for researchers in the field of optics and electromagnetic theory. Regarding

the scattering analysis, various analytical and numerical techniques have been estab-

lished so far and many different structures have been assumed as an obstacle to study

the diffraction phenomena. The scattering and diffraction problems are tackled most

efficiently by using the number of methods of research. Poincare [1] and Sommerfeld

[2] studied the half-plane problems which explored the new ideas for extensive study

of scattering of sound and electromagnetic waves. The Wiener-Hopf technique [3,4]

as a function of group theoretic approach for analysis of propagation of waves and

scattering problems related to canonical geometries was studied rigorously. Riemann-

Hilbert method had been considered in the theory of diffraction and propagation of
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electromagnetic waves [5]. The mode-matching method had been applied for the

analysis of electromagnetic wave scattering [6]. Several classical problems based on

the analysis of line-source and point-source diffraction of electromagnetic waves had

been investigated which presented a canonical problem corresponding to the model

for GTD (geometrical theory diffraction). Kobayashi [7] studied and then investi-

gated the diffracted wave by a strip in using Wiener-Hopf technique to evaluate the

exact and asymptotic solutions. A brief historical perspective of Wiener-Hopf tech-

nique may be found in [8]. Diffraction phenomena of the plane waves by a finite

plate under the assumption of impedance on both sides of the surface of plate was

investigated using Wiener-Hopf technique [9].

The models proposed to elaborate the diffraction phenomena of electromagnetic (EM)

waves by an infinite slit in the conductible screen have been brought under the rig-

orous investigation through mathematical analysis. Morse and Rubenstein [10] used

the method of separation of variables for investigation of acoustic waves diffracted

by slits and ribbon. Clemmow [11] proposed a mathematical model for diffraction

by slit in which he derived a dual integral equation using spectrum description of

electromagnetic (EM) fields. He assumed the width of slit much larger or greater

than the wavelength giving the two complementary cases under the approximate

analysis. Hongo [12] investigated the diffraction phenomena due to parallel slits in

the conducting screen in which he used the Kobayashi potential technique. Imran

et al. extended the Hongo’s work to the slits in an impedance plane. He used the

Kobayashi potential technique to investigate the problem rigorously [13].

The EM-waves (electromagnetic waves) propagating across an ionized gas has got

the significant attention of researchers for many years. The scientists have studied

extensively on the radio waves or signals reflected from and transmitted through the

ionosphere [14-16]. It is known that plasma is such an ionized gas which is electrically

neutral and consists of substantially the same electron and ion densities. The study of

the problems modeled for the antenna characteristics, propagation of waves through

the plasma and radar cross section are of great importance. The wave propagation
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and antenna characteristics of artificial satellites play a vital role in communicating

the signals between the earth station and vehicles. The frequent existence of dc mag-

netic field in plasma allows it to behave as an anisotropic, the best example is here

that the earth magnetic field is effective in cold plasma. The small and negligible

effect of pressure variations and finite temperature make plasma as a cold plasma.

While analyzing the diffraction problem, researchers thought to investigate the effects

of cold plasma. Keeping focus on that idea, scientists worked on the scattering of

electromagnetic for different structures in the presence of cold plasma. The diffracted

electromagnetic plane wave by a half-plane with impedance had been studied to in-

vestigate the effects of cold plasma using Wiener-Hopf technique [17]. Khan et al.

analyzed the diffracted E-polarized plane wave by parallel plate wave-guide with im-

position of impedance immersed in cold plasma, Wiener-Hopf technique along with

mode matching analysis was used [18]. Ayub et al. investigated the affecting cold

plasma on the dominant TEM-wave radiated by parallel plate wave-guide with im-

position of impedance, radiator behaving as a horn type launcher of surface wave

and a horn with impedance loaded [19]. The diffraction of EM-plane wave by a finite

plate under the effects of cold plasma was investigated using Wiener-Hopf technique

by assuming Dirichlet conditions on the plate [20].

1.2 Plane Wave

The waves of the following form

ψ(x, y, z, t) = Re
{
ψ0 exp(±ι~k · ~r − ιωt)

}
, (1.1)

are called plane waves of homogeneous waves. The sign of plus the exponent presents

the wave propagating in the direction of ~k = [kx, ky, kz] which are denoted outgoing

waves. On the other hand, the sign of minus indicates the incoming waves which

propagate in the opposite direction of ~k.
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1.3 Cold Plasma (Non-thermal Plasma)

Plasma being a fourth or gaseous state of matter is an ionized gas which is elec-

trically neutral medium and contains substantially the same densities of ions and

electrons. If the effects of variations of the finite pressure force and temperature are

taken to be small and ignored then plasma is termed as cold plasma. For example,

cold plasma can be found in the flow discharge in a fluorescent tube.

1.4 Fourier Transform

This method of complex integral transformation is a mathematical tool which

helps in solving the differential equations. This mathematical tool can be utilized for

majority of the problems of finite and infinite domain. First suppose that s is real

then usual Fourier integral transform of f(x) for all x ∈ < can be defined as

F (s) =

∞∫
−∞

f(x)eιsxdx, (1.2)

and inversion can be defined as

f(x) =
1

2π

∞∫
−∞

F (α)e−ιαxds. (1.3)

Now suppose that α = σ+ιτ is a complex variable. We can define generalized Fourier

transform under suitable conditions on f . By starting with half-range transforms,

if |f(x)| < A1e
τ−x as x → ∞ and f(x) = 0 for x < 0, where A1 > 0 and τ− are

constants, then we have following function

F+(α) =

∞∫
0

f(x)eιαxdx, (1.4)

8



which is analytic in the region τ > τ− of complex s−plane. Now the inverse Fourier

transform of F+(α) can found as

f(x) =
1

2π

∫
C

F+(α)e−ιsxds, (1.5)

where C is a path of integration lying in the region of analyticity on which σ varies

from −∞ to ∞.

Similarly, if f(x) = 0 for x > 0 and |f(x)| < A2e
τ+x as x→ −∞, where A2 > 0 and

τ+ are constants, then

F−(α) =

0∫
−∞

f(x)eιsxdx, (1.6)

which is analytic in the region τ < τ+ of complex s−plane. Now the inverse Fourier

transform of F−(α) can found as

f(x) =
1

2π

∫
C

F−(s)e−ιαxds, (1.7)

where C is a path of integration lying in the region of analyticity on which σ varies

from −∞ to ∞. If the above results for half range transforms are combined as

|f(x)| <


A1e

τ−x as x→∞

A2e
τ+x as x→ −∞

(1.8)

with τ− < τ+, then Fourier transform for full-range defined by (1.2) is an analytic

function of s in the band of analyticity (strip) τ− < τ < τ+ and inverse Fourier trans-

form is defined by (1.3) with path of integration lying within the band of analyticity.

1.5 Analytic Continuation

If f(z) is an analytic function in a domain D and F (z) is analytic in a domain D′

such that F (z) = f(z) in D and D ⊂ D′, then F is said to be an analytic continuation
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of f .

Now we can say that analytic continuation is a process of extending an analytic

function defined in a domain to a larger domain. For example, the geometric series

at zero is given by

f(z) = 1 + z + z2 + z3 · · · , (1.9)

which is convergent in the open disk as D = {|z| < 1}. Multiplication of (1.1) by z

and subtraction of result from (1.9) gives

(1− z)f(z) = 1 ⇒ f(z) =
1

1− z
. (1.10)

Now we write (1.10) as

F (z) =
1

1− z
, (1.11)

which is analytic in D′ = C\{1}. Since {|z| < 1} ⊂ C\{1} i.e. D ⊂ D′ and F (z) =

f(z) therefore, F (z) is analytic continuation of f(z).

1.6 Method of Stationary Phase

Consider a function of the form

f(x) =

b∫
a

eιxh(t)g(t)dt, (1.12)

where h(t) is a real function (known as phase function) and g(t) can be complex

or real function and integration is along the real axis over the interval (a, b). The

stationary phase method helps in finding an asymptotic representation of (1.12).

Assume that there is one point t0 ∈ (a, b) such that h′(t0) = 0 but h′′(t0) 6= 0. In

accordance with the idea of the method of stationary phase, we assume that only the

neighborhood of the point t0 is of significance, and we write

ιxh(t) ∼= ιx

{
h(t0) +

1

2
h′′(t0)(t− t0)2

}
. (1.13)
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Then

f(x) ∼
∞∫

−∞

g(t0) exp

[
ιx

{
h(t0) +

1

2
h′′(t0)(t− t0)2

}]
dt (1.14)

This gives

f(x) ∼
[

2π

x|h′′(t0)|

]1/2
g(t0) exp

[
ιxh(t0)±ι

π

4

]
(1.15)

where the sign of + or − corresponds to h′′(t0) > 0 or h′′(t0) < 0, respectively. For

deep analysis about this method, see [21, 22]

1.7 Wiener-Hopf technique

This technique was initially utilized to solve the integral equation which presents

most of physical problems. An integral equation of that form is given by

∞∫
0

K(x− y)f(y)dy = g(x), 0 < x <∞ (1.16)

where the kernel difference k(x− y) and g(x) are known functions while the f(x) is

the function to be evaluated. The readers interested to know about this technique

generally, can study the salient points which are briefly outlined here. To proceed

the method, domain of integral equation is extended to negative real values of x that

is
∞∫
0

k(x− y)f(y)dy =


g(x), 0 < x <∞

h(x), −∞ < x < 0

(1.17)

where h(x) is an unknown function. Applying the Fourier transform on (1.17) we get

the Wiener-Hopf functional equation

G+(α) +H−(α) = K(α)F+(α) (1.18)

in which G+(α) and K(α) are half-range and full-range Fourier transform of known

functions g(x) and k(x), respectively whereas the quantities H−(α) and F+(α) are
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half-range Fourier transform of unknown functions h(x) and f(x), respectively. The

right side of (1.18) is product form which comes from original integral operator being

a convolution type. The subscripts +,− indicate the region of analyticity for their

respective functions. The functions with subscript + are analytic in the upper half

of complex α−plane and those with subscript − are analytic in the lower half of

complex α−plane and they overlap to form a strip or band of analyticity in which

all these functions are analytic. The Wiener-Hopf procedure depends on the product

factorization of transformed kernel function K(α), in the form

K(α) = K+(α)K−(α). (1.19)

Use (1.19) enables to re-write (1.18) as

G+(α)

K−(α)
+
H−(α)

K−(α)
= K+(α)F+(α). (1.20)

Note that right hand side is analytic in its indicated region of analyticity. For left

hand side, first term needs to be tackled therefore, defining the sum-factorization for

first term on the left hand side, in the form of

G+(α)

K−(α)
= L+(α) + L−(α). (1.21)

Inserting (1.21) in (1.20) and re-expressing the resulting equation as

L−(α) +
H−(α)

K−(α)
= K+(α)F+(α)− L+(α), (1.22)

in which left hand side shows analytic behavior in the lower-half of complex α−plane

and right hand side shows analytic behavior in the overlapping upper-half plane of

complex α−plane. Analytic continuation allows to equate both sides of (1.22) to an

entire function, J(α), say. J(α) may be evaluated or specified under the physical

constraints on the behavior of functions f(x), g(x), h(x) as x → 0 and their corre-

sponding transformed functions in (1.22) as |α| → ∞, and hence, F+(α) and H−(α)

12



are uniquely evaluated. The inverse Fourier transform finally results the required

unknown function f(x).
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Chapter 2

Analysis of Diffracted Wave by a

Finite Plate with Dirichlet

Conditions in Cold Plasma

This chapter addresses the investigation of electromagnetic plane wave diffraction

by a conducting plate of finite length in cold plasma. The boundary value problem

along with Fourier transform for the corresponding is used to formulate Wiener-Hopf

equation which is then solved by using Wiener-Hopf procedure in a standard way.

The separated field is evaluated for an anisotropic medium using asymptotic expan-

sion and modified stationary phase method. The results for the isotropic medium

can be achieved by taking ε1 −→ 1, ε2 −→ 0. Graphical results are discussed for

separated field against observation angle for various physical parameters in isotropic

and anisotropic media.
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2.1 Modelling of the Helmholtz Equation

The dielectric permittivity tensor evaluated for cold plasma is presented by

ε̄ =


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

 , (2.1)

with

ε1 = 1−
(ωp
ω

)2 [
1−

(ωc
ω

)2]−1
, ε2 =

(ωp
ω

)2 [ ω
ωc
− ωc
ω

]−1
, (2.2)

and

εz = 1−
(ωp
ω

)2
, (2.3)

where

ω2
p =

Nee
2

mε0
, ωc =

|e|µ0Hdc

me

. (2.4)

Maxwell’s equations, which are well-known, are proved to be valid in cold plasma

with the dielectric permittivity tensor are used to obtain electric field components in

expressions of the magnetic field Hz as given by

Ex =
ιε1

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
+

ε2
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
, (2.5)

and

Ey =
ε2

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
− ιε1
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
. (2.6)

Then the Helmholtz’s equation satisfying Hz can be obtained using Maxwell’s equa-

tions along with (2.5) and (2.6), as given below:

∂xxHz (x, y) + ∂yyHz (x, y) + k2effHz (x, y) = 0, (2.7)
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Figure 2.1: Geometrical description of the model.

where propagation constant is

keff = k

√
ε21 − ε22
ε1

, k = ω
√
ε0µ0. (2.8)

Here, keff is dependent of k, ε1 and ε2, time is taken as behaving harmonically as

exp(−ιωt) and will be considered as suppressed throughout the analysis.

2.2 Mathematical Modelling of the Problem

An EM-plane wave incident on a conducting non-symmetric plate of finite length

is considered along y = 0 with extremities x = −l and x = 0 of the plate, as can be

seen in Fig. 2.1. The model is proposed for investigation of effects of cold plasma on

diffraction phenomena. The total field can be expressed as a sum of H inc
z (x, y) and

Hz(x, y)

H tot
z (x, y) = H inc

z (x, y) +Hz(x, y), (2.9)

where Hz(x, y) is the diffracted field and H inc
z (x, y) is the incident field of plane wave

making an angle θ0 with horizontal, which is defined as

H inc
z (x, y) = exp{−ιkeff (x cos θ0 + y sin θ0)}, (2.10)
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where keff is given in (2.8). Since the medium for present model is taken to be slightly

lossy, so for convenience of analyticity, we can consider that keff = Re{keff} +

ιIm{keff} has very small positive imaginary part (0 < Im{keff} � Re{keff}) and

the solution for real of keff can be attained by assuming Im{keff} −→ 0. The

boundary value problem (BVP) under consideration is expressed in terms of the

magnetic field and it is adequate to denote the diffracted field in different zones. The

total field H tot
z (x, y) in the range x ∈ (−∞,∞) , satisfying the Helmholtz’s equation

as [
∂xx + ∂yy + k2eff

]
H tot
z (x, y) = 0. (2.11)

The diffracted field satisfying Helmholtz’s equation can be extracted from above

equation as follows: [
∂xx + ∂yy + k2eff

]
Hz (x, y) = 0. (2.12)

Our aim is to determine the diffraction of incident electromagnetic (EM) plane wave

by a finite plate in cold plasma. To proceed further suitable boundary conditions are

required. Therefore, here for the present model, Dirichlet boundary conditions along

the plate assumed as

H tot
z (x, 0±) = 0, for − l ≤ x ≤ 0, (2.13)

and continuity relations are taken into account, which are defined as

H tot
z (x, 0+) = H tot

z (x, 0−), for −∞ < x < −l, x > 0,

∂yH
tot
z (x, 0+) = ∂yH

tot
z (x, 0−), for −∞ < x < −l, x > 0.

(2.14)
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2.3 Transformation of Problem

Fourier transformation w.r.t x variable for the present model is defined as

F (α, y) =
1√
2π

∞∫
−∞

Hz (x, y) eιαxdx

= F+ (α, y) + e−ιαlF− (α, y) + Fl (α, y) ,

(2.15)

where α = Re{α} + ιIm{α} = σ + ιτ . The asymptotic behavior of Hz (x, y) for

x −→ ±∞ is taken into account which is defined as

Hz (x, y) =

 O
(
e−Im{keff}x

)
for x −→∞,

O
(
eIm{keff}x cos θ0

)
for x −→ −∞.

(2.16)

F+ (α, y) behaving as a regular function of α lies in the upper-half of the α−plane

i.e. in the region Im {−keff} < Im {α} and F− (α, y) behaving as a regular function

of α lies in the lower-half of the α−plane i.e. in the region Im {α} < Im {keff cos θ0}

and both these regions together form a band of analyticity (i.e. a common region

where the upper- and lower-half planes are overlapped, can be seen in Fig. 2.2) and

all the functions including Fl (α, y) are analytic functions of α in that common region

i.e. in the region Im {−keff} < Im {α} < Im {keff cos θ0}, thus, we can define

F+ (α, y) =
1√
2π

∞∫
0

Hz (x, y) eιαxdx, (2.17)

F− (α, y) =
1√
2π

−l∫
−∞

Hz (x, y) eια(x+l)dx, (2.18)

Fl (α, y) =
1√
2π

0∫
−l

Hz (x, y) eιαxdx. (2.19)

F inc (α, 0) =
1− e−ιl(α−keff cos θ0)√
2πι (α− keff cos θ0)

. (2.20)
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Use of Fourier transform for (2.12)-(2.14) yields

(
d2

dy2
+ γ2

)
F (α, y) = 0, (2.21)

where γ (α) =
√
k2eff − α2.

Fl
(
α, 0+

)
= −F inc (α, 0) , (2.22)

Fl
(
α, 0−

)
= −F inc (α, 0) , (2.23)

and

F− (α, 0+) = F− (α, 0−) = F− (α, 0) ,

F+ (α, 0+) = F+ (α, 0−) = F+ (α, 0) ,

∂yF− (α, 0+) = ∂yF− (α, 0−) = ∂yF− (α, 0) ,

∂yF+ (α, 0+) = ∂yF+ (α, 0−) = ∂yF+ (α, 0) .

(2.24)

2.4 Modelling of Wiener-Hopf Equation

The solution of (2.21) satisfying the radiation conditions is given by

F (α, y) =

 A1 (α) e−ιγy y ≥ 0,

A2 (α) eιγy y < 0.
(2.25)

Now with the aid of (2.15) and (2.22)-(2.25), following Wiener-Hopf functional equa-

tion is computed as

F+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = AG(α), (2.26)

where K (α) is the kernel function and given by

K (α) =
1

ιγ
, (2.27)
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Figure 2.2: The description of analytic continuation in the complex
α−plane.

and

F̃ ′l (α, 0) =
1

2

[
F ′l
(
α, 0+

)
−F ′l

(
α, 0−

)]
, (2.28)

A = −ι (2.29)

G(α) =
1− e−ι(α−keff cos θ0)l√
2π (α− keff cos θ0)

. (2.30)

2.5 Wiener-Hopf Procedure

The kernel function arising from (2.26), given in (2.27) is factorized as

K (α) =
1

ιγ
= K+ (α)K− (α) (2.31)

and

γ (α) = γ+ (α) γ− (α) , (2.32)

The factors appearing in (2.31) and (2.32) are computed as

K± (α) =
e−ι

π
4√

keff±α
, (2.33)
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and

γ+ (α) =
√
keff + α, γ− (α) =

√
keff − α. (2.34)

The factors K+ (α) and γ+ (α) are regular functions of α in upper-half of the α−plane

Im{−keff} < Im{α} whereas the factors K− (α) and γ− (α) regular functions of α in

the lower-half of the α−plane Im{α} < Im{keff cos θ0}. The solution for large keffr(
r =

√
x2 + y2

)
may be obtained in an approximate form on the basis of analysis

made by using Wiener-Hopf technique. Equating the terms of (2.25) with positive

sign on one side of the equation and the terms with negative sign on the other side

results into the same function J(α), say, which is a polynomial function, thus J(α)

is an entire function. Analytic continuation (see Fig. 2.2) along with arguments

involving extended form of Liouville’s theorem allows to equate the function J(α) to

zero, hence, we obtain the following results

F+ (α, 0) =
AK+ (α)√

2π
(G1 (α) + T (α) C1) , (2.35)

F− (α, 0) =
AK− (α)√

2π
(G2 (−α) + T (−α) C2) , (2.36)

where

G1 (α) =
1

(α− keff cos θ0)

(
1

K+ (α)
− 1

K+ (keff cos θ0)

)
−exp (−ιlkeff cos θ0)R1 (α) ,

(2.37)

G2 (α) =
exp (ιlkeff cos θ0)

(α + keff cos θ0)

(
1

K+ (α)
− 1

K+ (−keff cos θ0)

)
−R2 (α) , (2.38)

C1 = K+ (keff )

(
G2 (keff ) +K+ (keff )G1 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (2.39)

C2 = K+ (keff )

(
G1 (keff ) +K+ (keff )G2 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (2.40)

R1,2 (α) =
E−1 [W−1 (−i (keff ± keff cos θ0) l)−W−1 (−i (keff + α) l)]

2πi (α∓ keff cos θ0)
, (2.41)

T (α) =
1

2πι
E−1W−1 (−ι (keff + α) l) , (2.42)
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E−1 = 2 exp (ιkeff l) (l)
1
2 (ι)−

1
2 , (2.43)

and

Wn− 1
2

(s) =

∞∫
0

vn exp (−v)

v + s
dv

= Γ (n+ 1) exp
(s

2

)
s

1
2
n− 1

2W− 1
2
(n+1), 1

2
n (s) ,

(2.44)

where Wm,n is called as Whittaker function and s = −ι (keff + α) l and n = 1
2
.

From (2.25) and (2.26), the diffracted field in transformed domain is given as

follows:

F (α, y) = − 1

K(α)

[
F+ (α, 0) + Fl (α, 0) + e−ιαlF− (α, 0)

]
e−ιγ|y|, (2.45)

where

Fl (α, 0) = −AG (α) , and A = −ι. (2.46)

The diffracted field in the xy−plane is obtained by inversion of F (α, y) that is defined

as

Hz(x, y) =
1√
2π

∫ ∞
−∞
F (α, y) e−ιαx−ιγ|y|dα. (2.47)

Insertion of (2.45) into (2.47) provides the following result

Hz(x, y) = − 1√
2π

∫ ∞
−∞

1

K(α)

[
F+ (α, 0) + Fl (α, 0) + e−ιαlF ′− (α, 0)

]
e−ιαx−ιγ|y|dα,

(2.48)

Now the diffracted field Hz(x, y) comprises of two fields Hsep
z (x, y) and H int

z (x, y)

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (2.49)
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where Hsep
z (x, y) is the separated field given as

Hsep
z (x, y) = − 1

2π

∞∫
−∞

AK+ (α) e(−ιαx−ιγ|y|)

K (α)K+ (keff cos θ0) (α− keff cos θ0)
dα

+
1

2π

∞∫
−∞

A exp (−ιl (α− keff cos θ0))K+ (−α) e(−ιαx−ιγ|y|)

K (α)K+ (−keff cos θ0) (α− keff cos θ0)
dα,

(2.50)

and H int
z (x, y) is the interacted field given as

H int
z (x, y) =

1

2π

∞∫
−∞

A
K (α)



K+ (α)R1 (α) e−ιlkeff cos θ0

−K+ (α) T (α) C1

+K+ (−α)R2 (−α) e−ιlα

−K+ (−α) T (−α) C2e−ιlα


e(−ιαx−ιγ|y|)dα. (2.51)

The separated field given by (2.50) have two parts, one presenting the diffraction

by the edge at x = 0 and other presenting the diffraction by edge at x = −l. The

interaction field given by (2.51) presents the interaction of the edges i.e of the one

edge of the plate upon the other.

2.6 Acquirement of Diffracted field

Now, to cope with the integral appearing in the result of diffracted field, asymp-

totic analysis may be used considering the field in the far field zone. For this purpose,

the polar co-ordinates as x = r cos θ, |y| = r sin θ are introduced and following trans-

formation helps in the deformation of contour.

α = −keff cos (θ + ιζ) for 0 < θ < π, −∞ < ζ <∞. (2.52)

Hence, applying the method of stationary phase, (2.47) takes the following form

Hz(x, y) =
ιkeff√
keffr

F (−keff cos θ, y) sin θ exp
(
ιkeffr + ι

π

4

)
. (2.53)
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Similarly, using the method of stationary phase for integrals in (2.50) and (2.51), we

obtain

Hsep
z (x, y) = − 1√

2π

ιkeff√
keffr

fsep (−keff cos θ) sin θ exp
(
ιkeffr + ι

π

4

)
, (2.54)

H int
z (x, y) = − 1√

2π

ιkeff√
keffr

fint (−keff cos θ) sin θ exp
(
ιkeffr + ι

π

4

)
, (2.55)

where

fsep (−keff cos θ) =
AK+ (−keff cos θ)

K (−keff cos θ)K+ (−keff cos θ0) (−keff cos θ − keff cos θ0)

− A exp (ιkeff (cos θ + cos θ0) l)K+ (keff cos θ)

K (−keff cos θ)K+ (keff cos θ0) (−keff cos θ − keff cos θ0)
,

(2.56)

and

fint (−keff cos θ) =
A

K (−keff cos θ)



K+ (−keff cos θ)R1 (−keff cos θ) eιlkeff cos θ0

+K+ (keff cos θ)R2 (keff cos θ) eιlkeff cos θ

−K+ (−keff cos θ) T (−keff cos θ) C1

−K+ (keff cos θ) T (keff cos θ) C2eιlkeff cos θ


.

(2.57)

The function given by (2.53) expresses the asymptotic representation of the far field

of the diffracted field as keffr −→ ∞. It can also be described that the asymptotic

expansion of Hz(x, y) proves to be valid for any value of observation angle everywhere

in the space. Observation depicts that the separated field is actually the diffraction

of EM-plane wave by a non-symmetric plate of finite length with edges x = 0 and

x = −l. The separated field is the resultant wave field providing an insight to the

physics of the problem. Whereas the interacted field appears due to the interaction

of one edge upon the other providing no physics of the problem. The separated field

provides the physical perception of diffraction phenomenon at the boundary defined

for associated model. Therefore, only the separated field is taken into account while

describing the diffraction phenomena at the defined boundary. Furthermore, the
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interaction field appears due to dual diffraction by the two edges which has already

been counted by the separated field (or diffracted field by a finite length plate). Also,

extending the plate length upto infinity discards the involvement of terms appearing

due to the interaction and consequently, the separated field appears to be diffracted

field. Therefore, only the separated field is focused to discuss graphically in the next

section.

2.7 Results and Discussion

In this section, the behavior of separated field versus observation angle θ for

different physical parameters such as angle of incidence θ0, wave-number k, plate

length l, permittivity parameters ε1 and ε2 in the isotropic medium and anisotropic

medium of cold plasma is discussed. In Figs. 2.3, keeping all other parameters fixed,

results for separated field for increasing values of θ0 are presented. The incremental

trend of angle of incidence causes the amplification of separated field. It is also

observed by comparing Fig. 2.3b with Fig. 2.3a that presence of cold plasma causes

a reduction in the amplitude and expansion in the wavelength of separated field,

consequently the number of oscillation are lessened. In Figs. 2.4a, 2.4b, the separated

field is amplified by increasing the wave-number. The number of oscillations increases

for the increment in wave-number that means the wave frequency moves towards the

high frequency range. Figs. 2.5a, 2.5b are graphical descriptions of separated field

for variation of length of plate l. An amplification in the separated field is noticed

for increasing length of plate. The separated field oscillates rapidly on extending

the plate length as can be seen in Fig. 2.5a in the absence of cold plasma. On

comparative study of separated field plotted with effects cold plasma with that in

the absence of cold plasma, it is explored that presence of cold plasma has expanded

the wavelength, reduced the amplitude and consequently, the number of oscillation

are decreased. This means that presence of cold plasma as prevented the separated

field from dispersion. Fig. 2.6 shows the impact of ε1 on the separated field. The
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drastic effects of cold plasma on the amplitude of separated field has been studied.

The separated field is amplified by increasing ε1, it happens due to fixed densities

of electrons and ions in cold plasma, an increase in operating frequency ω causes an

increase in ε1 ≈ 1 − (ωp/ω)2 (for high range frequency signal). The electric field

of such a high frequency energizes the electrons to oscillate about the cold ionic

center, and such oscillating electrons get diffracted rapidly thereby amplifying the

separated field. In Fig. 2.7, opposite behavior of separated field is observed for ε2.

The increasing value of ε2 causes the reduction in signal frequency resulting into

decreasing amplitude of separated field by electron oscillation under low frequency.

Further, the separated field shows the nulls around observation angle 0 and π.
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(a)

(b)

Figure 2.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 2.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 2.5: The separated field for the length of plate in the absence (a)
and presence (b) of cold plasma.
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Figure 2.6: The separated field with ε1.

Figure 2.7: The separated field with ε2.
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2.8 Conclusions

From above analysis, we conclude that the diffraction of EM-plane wave finite

plate under the assumptions of Dirichlet conditions is affected rigorously by physical

parameters in the presence of cold plasma. It is noticed that separated field is

amplified by different angles of incidence, wave-number, plate length, ε1 and reduced

by ε2.
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Chapter 3

Diffraction Affected by Cold

Plasma with Neumann Conditions

on Finite Plate

Present chapter elaborates the investigation of diffraction phenomenon of EM-

plane wave by a non-symmetric plate of finite length in cold plasma. The Wiener-

Hopf equation is formulated with the aid of boundary value problem along with

Fourier transform for present model. The theory of Wiener-Hopf procedure is used

to cope with resulting equation. Asymptotic expansion and method of stationary

phase are used to obtain the result for diffracted field by finite plate (separated field)

under the assumption of Neumann boundary conditions in the anisotropic medium.

The case of isotropic medium has been discussed by assigning the particular values

to elements of permittivity tensor. Impact of physical parameters has been discussed

graphically for the isotropic and anisotropic medium.
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3.1 Modelling of the Helmholtz Equation

The dielectric permittivity tensor evaluated for cold plasma is expressed as

ε̄ =


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

 , (3.1)

where ε1, ε2 and εz are presented as follows:

ε1 = 1−
(ωp
ω

)2 [
1−

(ωc
ω

)2]−1
, ε2 =

(ωp
ω

)2 [ ω
ωc
− ωc
ω

]−1
, (3.2)

εz = 1−
(ωp
ω

)2
, (3.3)

with

ω2
p =

Nee
2

mε0
, ωc =

|e|µ0Hdc

m
. (3.4)

The well known Maxwell’s equations are proved to be valid in cold plasma with

dielectric permittivity tensor given by (3.1). The electric field components in terms

of magnetic field obtained by combined use of Maxwell’s equation and permittivity

tensor (3.1) are described as

Ex =
ιε1

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
+

ε2
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
, (3.5)

and

Ey =
ε2

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
− ιε1
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
. (3.6)

Then, the Helmholtz’s equation satisfying Hz in cold plasma is obtained by Maxwell’s

equations along with use of (3.5) and (3.6), as follows :

∂xxHz (x, y) + ∂yyHz (x, y) + k2effHz (x, y) = 0, (3.7)
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Figure 3.1: Geometrical description of the model.

where keff is the propagation constant which is given as

keff = k

√
ε21 − ε22
ε1

and k = ω
√
ε0µ0. (3.8)

Here, keff is dependent of k, ε1 and ε2, time is taken as behaving harmonically as

exp(−ιωt) and will be considered as suppressed throughout the analysis.

3.2 Mathematical Modelling of the Problem

Here, for the present model EM-plane wave is considered to be incident on a

conductible non-symmetric finite length plate located along y = 0 with one end

located at origin i.e. at x = 0 and other end lies on the negative x−axis that is

x = −l, as displayed in Fig. 3.1. The incident plane wave considered here makes an

angle θ0 with horizontal axis.

The total field for the present model is expressed as

H tot
z (x, y) = H inc

z (x, y) +Hz(x, y), (3.9)
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where H inc
z is the incident field, which is defined by

H inc
z (x, y) = exp{−ιkeff (x cos θ0 + y sin θ0)}, (3.10)

where keff is given in (3.8). For convenience of analysis, medium is considered to be

slightly lossy as in keff = Re{keff}+ ιIm{keff}, 0 < Im{keff} � Re{keff} and the

solution for real keff may be achieved by assuming Im{keff} −→ 0. The boundary

value problem (BVP) under consideration is expressed in terms of the magnetic field

and it is adequate to denote the diffracted field in different regions. The total field

H tot
z (x, y) in the range x ∈ (−∞,∞) , satisfying the Helmholtz’s equation is described

as [
∂xx + ∂yy + k2eff

]
H tot
z (x, y) = 0. (3.11)

The diffracted field satisfying Helmholtz’s equation extracted from above equation is

expressed as [
∂xx + ∂yy + k2eff

]
Hz (x, y) = 0. (3.12)

Our aim is to determine the diffraction of incident electromagnetic (EM) plane wave

by a non-symmetric plate of finite length in cold plasma. To proceed further suit-

able boundary conditions are required. Therefore, for the present model Neumann

boundary conditions on the surface of plate are considered, which are defined as

∂yH
tot
z (x, 0±) = 0, for − l ≤ x ≤ 0 (3.13)

and continuity relations are defined as

H tot
z (x, 0+) = H tot

z (x, 0−), for −∞ < x < −l, x > 0,

∂yH
tot
z (x, 0+) = ∂yH

tot
z (x, 0−), for −∞ < x < −l, x > 0.

(3.14)
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3.3 Transformation of Problem

Use of Fourier integral transform for x variable gives the solution of boundary

value problem

F (α, y) =
1√
2π

∞∫
−∞

Hz (x, y) eιαxdx

= F+ (α, y) + e−ιαlF− (α, y) + Fl (α, y) ,

(3.15)

where α = Re{α} + ιIm{α} = σ + ιτ . The asymptotic behavior of the diffracted

field Hz(x, y) for x −→ ±∞ is defined as

Hz (x, y) =

 O
(
e−Im{keff}x

)
for x −→∞,

O
(
eIm{keff}x cos θ0

)
for x −→ −∞.

(3.16)

F+ (α, y) is a regular function of α in upper-half of α−plane i.e. in the region

−Im{keff} < Im{α} whereas F− (α, y) is a regular function of α in the lower-half of

α−plane i.e. in the region Im{α} < Im{keff cos θ0} and the common region formed

by overlapping of these two regions, is a band of analyticity (see Fig. 3.2) in which all

the functions including Fl (α, y) are analytic in which all the functions are analytic,

thus, these functions are defined as

F+ (α, y) =
1√
2π

∞∫
0

Hz (x, y) eιαxdx, (3.17)

F− (α, y) =
1√
2π

−l∫
−∞

Hz (x, y) eια(x+l)dx, (3.18)

Fl (α, y) =
1√
2π

0∫
−l

Hz (x, y) eιαxdx. (3.19)

F inc (α, 0) =
1− e−ιl(α−keff cos θ0)√
2πι (α− keff cos θ0)

. (3.20)
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Use of Fourier transform (3.12)-(3.14) yields,

(
d2

dy2
+ γ2

)
F (α, y) = 0, (3.21)

where γ (α) =
√
k2eff − α2.

∂yFl (α, 0+) = −∂yF inc (α, 0) ,

∂yFl (α, 0−) = −∂yF inc (α, 0) ,
(3.22)

and

F− (α, 0+) = F− (α, 0−) = F− (α, 0) ,

F+ (α, 0+) = F+ (α, 0−) = F+ (α, 0) ,

∂yF− (α, 0+) = ∂yF− (α, 0−) = ∂yF− (α, 0) ,

∂yF+ (α, 0+) = ∂yF+ (α, 0−) = ∂yF+ (α, 0) .

(3.23)

3.4 Modelling of Wiener-Hopf Equation

The solution of (3.21) satisfying the radiation conditions is given by

F (α, y) =

 A1 (α) e−ιγy y ≥ 0,

A2 (α) eιγy y < 0.
(3.24)

Now with the aid of (3.15) and (3.22)-(3.24) the following functional Wiener-Hopf

equation is computed as

F ′+ (α, 0) + e−ιαlF ′− (α, 0) +K (α) F̃l (α, 0) = AG(α), (3.25)

where K(α) is the kernel function, which is given as

K (α) = ιγ, (3.26)

F̃l (α, 0) =
1

2

[
Fl
(
α, 0+

)
−Fl

(
α, 0−

)]
, (3.27)
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Figure 3.2: The description of analytic continuation in the complex
α−plane.

A = −keff sin θ0, (3.28)

G(α) =
1− e−ι(α−keff cos θ0)l√
2π (α− keff cos θ0)

. (3.29)

3.5 Wiener-Hopf Procedure

The kernel factor arising from (3.25), given (3.26), is factorized as

K (α) = ιγ = K+ (α)K− (α) , (3.30)

The factors K+ and K− are computed as

K± (α) = eι
π
4

√
keff±α, (3.31)

and

γ (α) = γ+ (α) γ− (α) , (3.32)

γ+ (α) =
√
keff + α, γ− (α) =

√
keff − α. (3.33)
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The factors K+ (α) and γ+ (α) are regular functions of α in upper-half of the α−plane

Im{−keff} < Im{α} whereas the factors K− (α) and γ− (α) regular functions of

α in the lower-half of the α−plane Im{α} < Im{keff cos θ0}. For large keffr(
r =

√
x2 + y2

)
, a solution in approximated form may be attained through made by

Wiener-Hopf technique. Equating the terms of (3.25) with positive sign on one side

of the equation and the terms with negative sign on the other side results into the

same function J(α), say, which is a polynomial function, thus J(α) is an entire func-

tion. Analytic continuation (see Fig. 3.2) along with arguments involving extended

form of Liouville’s theorem allows to equate the function J(α) to zero, hence, discard

of detailed calculations, we obtain the following results

F ′+ (α, 0) =
AK+ (α)√

2π
(G1 (α) + T (α) C1) , (3.34)

F ′− (α, 0) =
AK− (α)√

2π
(G2 (−α) + T (−α) C2) , (3.35)

where

G1 (α) =
1

(α− keff cos θ0)

(
1

K+ (α)
− 1

K+ (keff cos θ0)

)
−exp (−ιlkeff cos θ0)R1 (α) ,

(3.36)

G2 (α) =
exp (ιlkeff cos θ0)

(α + keff cos θ0)

(
1

K+ (α)
− 1

K+ (−keff cos θ0)

)
−R2 (α) , (3.37)

C1 = K+ (keff )

(
G2 (keff ) +K+ (keff )G1 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (3.38)

C2 = K+ (keff )

(
G1 (keff ) +K+ (keff )G2 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (3.39)

R1,2 (α) =
E−1 [W−1 (−ι (keff ± keff cos θ0) l)−W−1 (−ι (keff + α) l)]

2πι (α∓ keff cos θ0)
, (3.40)

T (α) =
1

2πι
E−1W−1 (−ι (keff + α) l) , (3.41)

E−1 = 2 exp (ιkeff l) (l)
1
2 (ι)−

1
2 , (3.42)
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and

Wn− 1
2

(p) =

∞∫
0

un exp (−u)

u+ p
du

= Γ (n+ 1) exp
(p

2

)
p

1
2
n− 1

2W− 1
2
(n+1), 1

2
n (p) ,

(3.43)

where p = −ι (keff + α) l and n = −1
2
. Wm,n is known as Whittaker function.

From (3.24) and (3.25), the diffracted field in transformed domain is given as

follows :

F (α, y) = − 1

K(α)

[
F ′+ (α, 0) + F ′l (α, 0) + e−ιαlF ′− (α, 0)

]
e−ιγ|y|, (3.44)

where

F ′l (α, 0) = −AG (α) , and A = −keff sin θ0. (3.45)

The diffracted field in the xy−plane is obtained by application of inverse Fourier

integral transform of F (α, y) that is defined as

Hz(x, y) =
1√
2π

∞∫
−∞

F (α, y) e−ιαx−ιγ|y|dα. (3.46)

Inserting (3.44) in (3.46), we obtain

Hz(x, y) = − 1√
2π

∞∫
−∞

1

K(α)

[
F ′+ (α, 0) + F ′l (α, 0) + e−ιαlF ′− (α, 0)

]
e−ιαx−ιγ|y|dα,

(3.47)

Now Hz(x, y) comprises of two sub fields Hsep
z (x, y) and H inc

z (x, y) as described by

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y). (3.48)

Here, Hsep
z (x, y) denotes the separated field and H int

z (x, y) denotes the interacted

field. After using (3.34), (3.35) and (3.45) in (3.47), Hsep
z (x, y) and H int

z (x, y) are
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evaluated as follows :

Hsep
z (x, y) = − 1

2π

∞∫
−∞

AK+ (α) e(−ιαx−ιγ|y|)

K (α)K+ (keff cos θ0) (α− keff cos θ0)
dα

+
1

2π

∞∫
−∞

A exp (−ιl (α− keff cos θ0))K+ (−α) e(−ιαx−ιγ|y|)

K (α)K+ (−keff cos θ0) (α− keff cos θ0)
dα,

(3.49)

and

H int
z (x, y) =

1

2π

∞∫
−∞

A
K (α)



K+ (α)R1 (α) e−ιlkeff cos θ0

−K+ (α) T (α) C1

+K+ (−α)R2 (−α) e−ιlα

−K+ (−α) T (−α) C2e−ιlα


e(−ιαx−ιγ|y|)dα. (3.50)

The separated field Hsep
z (x, y) given by (3.49) have two parts. One presents the

diffraction by the edge at x = 0 and other presents the diffraction by edge at x = −l.

The interaction field H int
z (x, y) given by (3.50) presents the interaction of one edge

upon other which is already counted by the separated field.

3.6 Acquirement of Diffracted field

The diffracted field in the far field zone now may be tackled by using the asymp-

totic evaluation of the integrals appearing in (3.46), (3.49) and (3.50). For this pur-

pose, the polar coordinates as x = r cos θ, |y| = r sin θ are introduced and following

transformation helps in the deformation of contour.

α = −keff cos (θ + ιζ) , for 0 < θ < π, −∞ < ζ <∞. (3.51)

Hence, applying the method of stationary phase, (3.46) takes the form as follows :

Hz(x, y) =
ιkeff√
keffr

F (−keff cos θ, y) sin θ exp
(
ιkeffr + ι

π

4

)
. (3.52)
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Similarly, after using the method of stationary phase to cope with the integrals

appearing in (3.49) and (3.50), we obtain the following results following results

Hsep
z (x, y) = − 1√

2π

ιkeff√
keffr

fsep (−keff cos θ) sin θ exp
(
ιkeffr + ι

π

4

)
, (3.53)

H int
z (x, y) = − 1√

2π

ιkeff√
keffr

fint (−keff cos θ) sin θ exp
(
ιkeffr + ι

π

4

)
, (3.54)

where

fsep (−keff cos θ) =
AK+ (−keff cos θ)

K (−keff cos θ)K+ (−keff cos θ0) (−keff cos θ − keff cos θ0)

− A exp (ιkeff (cos θ + cos θ0) l)K+ (keff cos θ)

K (−keff cos θ)K+ (keff cos θ0) (−keff cos θ − keff cos θ0)
,

(3.55)

and

fint (−keff cos θ) =
A

K (−keff cos θ)



K+ (−keff cos θ)R1 (−keff cos θ) eιlkeff cos θ0

+K+ (keff cos θ)R2 (keff cos θ) eιlkeff cos θ

−K+ (−keff cos θ) T (−keff cos θ) C1

−K+ (keff cos θ) T (keff cos θ) C2eιlkeff cos θ


.

(3.56)

The result presented by (3.52) gives the asymptotic representation of the far field

of the diffracted field as keffr −→ ∞. It can also be elaborated that the asymp-

totic expansion of Hz(x, y) proves to be valid for every angle of observation in the

entire space. Observation depicts that the separated field is actually the diffraction

of EM-plane wave by a non-symmetric plate of finite length with one edge at x = 0

and other at x = −l. The separated field is the resultant wave field providing an

insight to the physics of the problem. Whereas the interacted field appears due to the

interaction with edge of plate upon the other providing no physics of the problem.

The separated field provides the physical perception of diffraction phenomenon at the

boundary defined for associated model. Therefore, only the separated field is taken

into account while describing the diffraction phenomena at the defined boundary.

42



Furthermore, the interaction field appears due to dual diffraction by the two edges

which has already been counted by the separated field (or diffracted field by a finite

length plate). Also, extending the plate length upto infinity discards the involvement

of terms appearing due to the interaction and consequently, the separated field ap-

pears to be diffracted field. Therefore, only the separated field is focused to discuss

graphically in the next section.

3.7 Results and Discussion

In the presented section, the separated field versus observation angle θ under the

effects of physical parameters such as the angle of incidence θ0, the wave-number

k, the length of plate l and the elements of permittivity tensor ε1, ε2 is elaborated

graphically. Figs. 3.3, 3.4 display the variation of separated field due to angle

of incidence by keeping all other parameters fixed with l = 5 and l = 25. The

comparative study of Fig. 3.4 with Fig. 3.3 elaborates that large value of plate length

causes the squeeze in wavelength, resulting an increase in number of oscillations and

amplification of the separated field. Effects of cold plasma can be seen by comparative

analysis of Figs. 3.3b, 3.4b with their respective Figs. 3.3a, 3.4a where there is no

cold plasma. By observation it is depicted that presence of cold plasma has expanded

the wavelength and caused of vertical shift in separated field. Figs. 3.5a, 3.5b are

sketched to display the fluctuation of separated field for wave-number. For increasing

wave-number, the number of oscillations of the separated field increase. This means

that wave frequency moves towards the high frequency range. Figs. 3.6a, 3.6b are

graphical description of separated field for variation of l in the absence and presence

of cold plasma, respectively. Analysis of plot describes that extending the length

of plate amplifies the separated field. The comparative study of the separated field

in the presence of cold plasma with separated field in the absence of cold plasma

has explored that wavelength of separated field has expanded and vertical shift is

occurred. Fig. 3.7 explores the behavior of separated field for ε1. A decay in the
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separated field occurs for the ε1. Fig. 3.8 elaborates the behavior of separated field

for ε2. The separated field gets a slight amplification for increasing values of ε2. An

enhancement in ε2 is caused by an increase in cyclotron frequency. Consequently,

magnetic Lorentz force increases and leads to an enhancement in the amplitude of

separated field (field diffracted by a finite length plate).
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(a)

(b)

Figure 3.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma when l = 5.
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(a)

(b)

Figure 3.4: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma when l = 25.
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(a)

(b)

Figure 3.5: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 3.6: The separated field for length of plate in the absence (a) and
presence (b) of cold plasma.
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Figure 3.7: The separated field for ε1.

Figure 3.8: The separated field for ε2.
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3.8 Conclusions

This chapter has elaborated the analysis of EM-plane wave diffracted by finite

plate with Neumann conditions immersed in cold plasma, rigorously. It is noticed

that separated field gets affected by (a) extending the length of plate (b) keeping

different angle of incidence (c) changing the wave-number (d) assigning different

values to permittivity elements of cold plasma.
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Chapter 4

Exact and Asymptotic Analysis of

Wave Diffracted by a Finite Plate

with Impedance in Cold Plasma

This chapter provides comprehensive briefing about the diffraction of electro-

magnetic (EM) plane wave by a non-symmetric finite plate with impedance lying

in the cold plasma. Leontovich boundary conditions are assumed to consider the

impedance on the both surfaces of the plate. Helmholtz equation is formulated using

the Maxwell’s equations with the effects of cold plasma. The Fourier transform is

applied and then Wiener-Hopf equations are obtained. The method stationary phase

(an asymptotic method) is used to get the result of diffracted field by a finite plate

(separated field). Behavior of separated field is discussed graphically.

4.1 Modelling of the Helmholtz Equation

The dielectric permittivity tensor to count the presence of cold plasma is defined

as

ε̄ =


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

 , (4.1)
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ε1 = 1−
(ωp
ω

)2 [
1−

(ωc
ω

)2]−1
, ε2 =

(ωp
ω

)2 [ ω
ωc
− ωc
ω

]−1
, (4.2)

and

εz = 1−
(ωp
ω

)2
, (4.3)

with

ω2
p =

Nee
2

mε0
, ωc =

|e|µ0Hdc

m
. (4.4)

It is known that Maxwell’s equations are proved to be valid in cold plasma with

dielectric permittivity tensor. Use of Maxwell’s equation along with (4.1) gives the

electric field components in terms of magnetic field which are expressed as

Ex =
ιε1

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
+

ε2
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
, (4.5)

and

Ey =
ε2

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
− ιε1
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
. (4.6)

Thus, the Helmholtz’s equation satisfying Hz obtained from Maxwell’s equations

along with electric field components (4.5) and (4.6), is computed as follows :

∂xxHz (x, y) + ∂yyHz (x, y) + k2effHz (x, y) = 0, (4.7)

with propagation constant

keff = k

√
ε21 − ε22
ε1

, k = ω
√
ε0µ0. (4.8)

Here, keff is dependent of k, ε1 and ε2, time dependence is taken to be as harmonically

behaving as exp(−ιωt) and will be counted as suppressed throughout the analysis.
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Figure 4.1: Geometrical description of the model.

4.2 Mathematical Modelling of the Problem

The finite non-symmetric plate with surface impedance is lying along y = 0 with

edges at x = −l and x = 0 as displayed in Fig. 4.1. The EM-plane wave incident on

the non-symmetric finite plate is taken as

H inc
z (x, y) = exp{−ιkeff (x cos θ0 + y sin θ0)}, (4.9)

where amplitude of the magnetic field is taken 1 A/m and θ0 is the angle of incidence

with x−axis. Here, the total field can be expressed as follows:

H tot
z (x, y) = H inc

z (x, y) +Href
z (x, y) +Hz(x, y). (4.10)

Here, the function Hz(x, y) is the diffracted field and Href
z (x, y) denotes the reflected

field, which is defined as

Href
z (x, y) =

(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
exp{−ιkeff (x cos θ0 − y sin θ0)}. (4.11)

For convenience of analyzing the model, medium is assumed to be slightly lossy as

in keff = Re{keff}+ ιIm{keff}, 0 < Im{keff} � Re{keff} and the solution for real
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keff may be achieved by assuming Im{keff} −→ 0. The boundary value problem

(BVP) under consideration is elaborated in terms of the magnetic field potential

and it is adequate to denote the diffracted field in the different regions. The total

field H tot
z (x, y) in the range x ∈ (−∞,∞) , that satisfies the Helmholtz’s equation as

follows : [
∂xx + ∂yy + k2eff

]
H tot
z (x, y) = 0, (4.12)

diffracted field satisfying Helmholtz’s equation obtained from (4.12) is given as fol-

lows: [
∂xx + ∂yy + k2eff

]
Hz (x, y) = 0. (4.13)

Our focus is to evaluate the diffracted field of EM-plane wave incident on the non-

symmetric plate of finite length. Same impedance is assumed on both upper and lower

surface of the finite plate. Therefore, Leontovich boundary conditions are taken into

account to consider the effects of impedance as

∂yH
tot
z (x, 0∓)− ιε2

ε1
∂xH

tot
z (x, 0∓) = ±ι

k2eff
ωµ0

η0ηsH
tot
z (x, 0∓), for − l ≤ x ≤ 0, (4.14)

where η0 =
√
µ0/ε0. The continuity conditions are

H tot
z (x, 0+) = H tot

z (x, 0−), for −∞ < x < −l, x > 0,

∂yH
tot
z (x, 0+) = ∂yH

tot
z (x, 0−), for −∞ < x < −l, x > 0.

 (4.15)

4.3 Transformation of the Problem

Now we apply the Fourier transform on the boundary value problem (BVP) with

respect to variable x as

F (α, y) =
1√
2π

∞∫
−∞

Hz (x, y) eιαxdx

= F+ (α, y) + e−ιαlF− (α, y) + Fl (α, y) ,

(4.16)

54



where α = Re{α} + ιIm{α} = σ + ιτ . The asymptotic expression of Hz (x, y) for

x −→ ±∞ is taken into account as

Hz (x, y) =

 O
(
e−Im{keff}x

)
for x −→∞,

O
(
eIm{keff}x cos θ0

)
for x −→ −∞.

(4.17)

F+(α, y) is the regular function of α in the upper half-plane Im{−keff} < Im{α},

F−(α, y) is the regular function of α in the lower half-plane Im{α} < Im{keff cos θ0}

and these both regions together generate a common region (or a band of analyticity)

Im{−keff} < Im{α} < Im{keff cos θ0} in which all the functions including Fl(α, y)

are analytic, these functions are defined as

F+ (α, y) =
1√
2π

∞∫
0

Hz (x, y) eιαxdx, (4.18)

F− (α, y) =
1√
2π

−l∫
−∞

Hz (x, y) eια(x+l)dx, (4.19)

Fl (α, y) =
1√
2π

0∫
−l

Hz (x, y) eιαxdx, (4.20)

F inc (α, 0) =
1− e−ιl(α−keff cos θ0)√
2πι (α− keff cos θ0)

, (4.21)

F ref (α, 0) =
1√
2π

(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
1− e−ιl(α−keff cos θ0)

ι (α− keff cos θ0)
. (4.22)

The application of Fourier transform on (4.13)-(4.15) yields,

(
d2

dy2
+ γ2

)
F (α, y) = 0, (4.23)

where γ (α) =
√
k2eff − α2.

∂yF tot(α, 0∓)− αε2
ε1
F tot(α, 0∓) = ±ι

k2eff
ωµ0

η0ηsF tot(α, 0∓), (4.24)
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and

F− (α, 0+) = F− (α, 0−) = F− (α, 0) ,

F+ (α, 0+) = F+ (α, 0−) = F+ (α, 0) ,

∂yF− (α, 0+) = ∂yF− (α, 0−) = ∂yF− (α, 0) ,

∂yF+ (α, 0+) = ∂yF+ (α, 0−) = ∂yF+ (α, 0) .

(4.25)

4.4 Modelling of Wiener-Hopf Equation

The solution of (4.23) satisfying the radiation conditions is given by

F (α, y) =

 A1 (α) e−ιγy y ≥ 0,

A2 (α) eiotaγy y < 0.
(4.26)

Now with the aid of (4.16), (4.24), (4.25) and (4.26), following coupled functional

equations are obtained as

F ′+ (α, 0) + e−ιαlF ′− (α, 0) =
[
F ′inc(α, 0) + F ′ref (α, 0)

]
−α
(ε2
ε1

)[
Finc(α, 0) + Fref (α, 0)

]
−1

2
α
(ε2
ε1

)[
Fl(α, 0+) + Fl

(
α, 0−

) ]
+

1

2

(
ι
k2eff
ωµ0

η0η
)[
Fl(α, 0+)−Fl

(
α, 0−

) ]
−ιγ

2

[
A1(α)− A2(α)

]
,

(4.27)
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F+ (α, 0) + e−ιαlF− (α, 0) = −
α
(
ε2
ε1

)
(α ε2

ε1
)2 +

(k2eff
ωµ0

η0ηs
)2 [F ′inc(α, 0) + F ′ref (α, 0)

]
+
[
F ′inc(α, 0) + F ′ref (α, 0)

]
−

α
(
ε2
ε1

)
(α ε2

ε1
)2 +

(k2eff
ωµ0

η0ηs
)2 [F ′l (α, 0+) + F ′l

(
α, 0−

) ]
−1

2

1

(α ε2
ε1

)2 +
(k2eff
ωµ0

η0ηs
)2 (ιk2effωµ0

η0ηs
)[
F ′l (α, 0+)−F ′l

(
α, 0−

) ]
+

1

2

[
A1(α) + A2(α)

]
.

(4.28)

Now we use certain approximations to attain result for high signal frequency such that

ω � ωc, while keeping it at the same order with ωp, yielding the ε1 ≈ 1 − (ωp/ω)2

and ε2 → 0 in the limit case. After approximations, the functional Wiener-Hopf

equations are computed as follows :

F ′+ (α, 0) + e−ιαlF ′− (α, 0) + S (α) F̃l (α, 0) = F ′inc(α, 0) + F ′ref (α, 0) , (4.29)

F+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = Finc(α, 0) + Fref (α, 0) , (4.30)

where

F̃l (α, 0) =
1

2

[
Fl
(
α, 0+

)
−Fl

(
α, 0−

)]
, (4.31)

F̃ ′l (α, 0) =
1

2

[
F ′l
(
α, 0+

)
−F ′l

(
α, 0−

)]
, (4.32)

A1 (α) = −F̃l (α, 0) +
F̃ ′l (α, 0)

iγ (α)
, (4.33)

A2 (α) = F̃l (α, 0) +
F̃ ′l (α, 0)

iγ (α)
. (4.34)

The kernel functions appearing in the coupled system of Wiener-Hopf equations are

as follows:

S (α) = −ιγ (α)L (α) , (4.35)

57



Figure 4.2: The description of analytic continuation in the complex
α−plane.

K (α) =
ιk

k2effηs
L (α) , (4.36)

where

L (α) =

(
1 +

k2effηs

kγ (α)

)
, (4.37)

4.5 Wiener-Hopf Procedure

The objective of this model is to observe the effect of EM-wave incident (which is

an ultimate result in the form of diffracted field) on a conductible plate of finite length

with surface impedance in the presence of cold plasma. The functional Wiener-Hopf

equations (4.29) and (4.30) for the boundary value problem are put to rigorous anal-

ysis through Wiener-Hopf method. The salient fact of Wiener-Hopf technique is that

being not a fundamentally numerical naturally that’s why it permits an additional

insight to physical and mathematical structure for diffracted field of incident EM-

wave. The kernel functions arising from (4.29) and (4.30) presented by (4.35) and

(4.36) are decomposed as

S (α) = S+ (α)S− (α) , (4.38)
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K (α) = K+ (α)K− (α) , (4.39)

and the factors appearing in (4.38) and (4.39) are given as follows :

S± (α) = e−ι
π
4 γ± (α)L±, (4.40)

K± (α) =
eι
π
4

√
k

keff
√
ηs
L± (α) . (4.41)

Furthermore, the product decomposition of the function L(α) appearing in (4.35)

and (4.36), presented by (4.37), is made as

L (α) = L+ (α)L− (α) , (4.42)

where

L± (α) =

(
1±

ιkeff
√
ηs√

kγ± (α)

)
, (4.43)

and

γ± (α) =
√
keff ± α. (4.44)

The factors with subscript of + are regular functions of α in upper-half of α−plane

(Im {−keff} < Im {α}) whereas the factors with subscript of - are regular functions

of α in the lower-half α−plane (Im {α} < Im {k}). Now plugging the (4.21) and

(4.22) in both (4.29) and (4.30), we get

F ′+ (α, 0) + e−ιαlF ′− (α, 0) + S (α) F̃l (α, 0) = AG(α), (4.45)

F+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = A′G ′(α), (4.46)

where

A =

[(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
− 1

]
keff sin θ0, (4.47)

A′ = −
[(

ηs sin θ0 − 1

ηs sin θ0 + 1

)
+ 1

]
ι. (4.48)
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G(α) = G ′(α) =
1− e−ιl(α−keff cos θ0)√
2π (α− keff cos θ0)

(4.49)

Inserting F̃l (α, 0) and F̃ ′l (α, 0) explicitly from (4.45) and (4.46) into (4.33) and

(4.34), we get

A1 (α) =
1

S (α)

{
F ′+ (α, 0) + e−ιαlF ′− (α, 0)−AG(α)

}
− 1

ιγ (α)K (α)

{
F+ (α, 0) + e−ιαlF− (α, 0)−A′G ′(α)

}
,

(4.50)

A2 (α) = − 1

S (α)

{
F ′+ (α, 0) + e−ιαlF ′− (α, 0)−AG(α)

}
− 1

ιγ (α)K (α)

{
F+ (α, 0) + e−ιαlF− (α, 0)−A′G ′(α)

}
,

(4.51)

The Wiener-Hopf equations presented by (4.45) and (4.46) are derived through the

general theory of Wiener-Hopf procedure and the solution for large keffr
(
r =

√
x2 + y2

)
may be obtained in an approximate form through the analysis made by using Wiener-

Hopf technique. Now equating the terms of (4.45) and (4.46) with subscript of pos-

itive sign on one side of the equation and the terms with subscript of negative sign

on the other side give us consequently the same function J (α), say, which is a poly-

nomial function, so is an entire function. Analytic continuation (see Fig. 4.2) along

with arguments involving extended form of Liouville’s theorem allows to equate the

function J (α) to zero, thus, we obtain the following results

F ′+ (α, 0) =
AS+ (α)√

2π
(G1 (α) + T (α) C1) , (4.52)

F ′− (α, 0) =
AS− (α)√

2π
(G2 (−α) + T (−α) C2) , (4.53)

F+ (α, 0) =
A′K+ (α)√

2π
(G ′1 (α) + T ′ (α) C ′1) , (4.54)

F− (α, 0) =
A′K− (α)√

2π
(G ′2 (−α) + T ′ (−α) C ′2) , (4.55)
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where

G1 (α) =
1

(α− keff cos θ0)

(
1

S+ (α)
− 1

S+ (keff cos θ0)

)
− e−ιlkeff cos θ0R1 (α) , (4.56)

G2 (α) =
eιlkeff cos θ0

(α + keff cos θ0)

(
1

S+ (α)
− 1

S+ (−keff cos θ0)

)
−R2 (α) , (4.57)

C1 = S+ (keff )

(
G2 (keff ) + S+ (keff )G1 (keff ) T (keff )

1− S2
+ (keff ) T 2 (keff )

)
, (4.58)

C2 = S+ (keff )

(
G1 (keff ) + S+ (keff )G2 (keff ) T (keff )

1− S2
+ (keff ) T 2 (keff )

)
, (4.59)

G ′1 (α) =
1

(α− keff cos θ0)

(
1

K+ (α)
− 1

K+ (keff cos θ0)

)
−e−ιlkeff cos θ0R1 (α) , (4.60)

G ′2 (α) =
eιlkeff cos θ0

(α + keff cos θ0)

(
1

K+ (α)
− 1

K+ (−keff cos θ0)

)
−R2 (α) , (4.61)

C ′1 = K+ (keff )

(
G2 (keff ) +K+ (keff )G1 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (4.62)

C ′2 = K+ (keff )

(
G1 (keff ) +K+ (keff )G2 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (4.63)

R1,2 (α) =
E−1 [W−1 (−ιl (keff ± keff cos θ0))−W−1 (−ιl (keff + α))]

2πι (α∓ keff cos θ0)
, (4.64)

T (α) =
1

2πι
E−1W−1 (−ι (keff + α) l) , (4.65)

E−1 = 2 exp (ιkeff l) (l)
1
2 (ι)−

1
2 , (4.66)

and

Wn− 1
2

(s) =

∞∫
0

vn exp (−v)

v + s
du

= Γ (n+ 1) exp
(s

2

)
s

1
2
n− 1

2W− 1
2
(n+1), 1

2
n (s) .

(4.67)

Here, Wm,n is named as Whittaker function and s = −ι (keff + α) l, n = −1
2
.

Now plugging the (4.52)-(4.55) along with (4.47)-(4.49) in (4.50) and (4.51) gives us
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the following result :

A1 (α)

A2 (α)

 =
Asgn (y)√

2πS (α)



S+ (α)G1 (α) + S+ (α) T (α) C1

+e−ιαlS− (α)G2 (−α)

+e−ιαlS− (α) T (−α) C2

−1−e−ιl(α−keff cos θ0)

(α−keff cos θ0)



− A′√
2πιγ (α)K (α)



K+ (α)G ′1 (α) +K+ (α) T (α) C ′1

+e−ιαlK− (α)G ′2 (−α)

+e−ιαlK− (α) T (−α) C ′2

−1−e−ιl(α−keff cos θ0)

(α−keff cos θ0)


,

(4.68)

The diffraction of EM-wave field obtained by the use of inverse Fourier transform of

(4.26) is defined as

Hz(x, y) =
1√
2π

∞∫
−∞

F (α, y) e−ιαxdα

=
1√
2π

∞∫
−∞

 A1 (α)

A2 (α)

 e−ιαx−ιγ|y|dα.

(4.69)

where A1 (α) and A2 (α) are given by (4.68). Substitution of (4.68) into (4.69) and

splitting up the diffracted field function Hz(x, y) into two functions Hsep
z (x, y) and

H int
z (x, y) as described by

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (4.70)
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where

Hsep
z (x, y) =

sgn (y)

2π

∞∫
−∞

1

S (α)

 − AS+(α)

(α−keff cos θ0)S+(keff cos θ0)

+ AS−(α)e
−ιl(α−keff cos θ0)

(α−keff cos θ0)S+(−keff cos θ0)

 e(−ιαx−ιγ|y|)dα

+
1

2π

∞∫
−∞

1

ιγ (α)K (α)

 A′K+(α)

(α−keff cos θ0)K+(keff cos θ0)

− A′K−(α)e−ιl(α−keff cos θ0)

(α−keff cos θ0)K+(−keff cos θ0)

 e(−ιαx−ιγ|y|)dα,

(4.71)

and

H int
z (x, y) =

sgn (y)

2π

∞∫
−∞

A
S (α)



−S+ (α)R1 (α) e−ιlkeff cos θ0

+S+ (α) T (α) C1

−S+ (−α)R2 (−α) e−ιlα

+S+ (−α) T (−α) C2e−ιlα


e(−ιαx−ιγ|y|)dα

+
1

2π

∞∫
−∞

A′

ιγ (α)K (α)



K+ (α)R1 (α) e−ιlkeff cos θ0

−K+ (α) T (α) C ′1

+K+ (−α)R2 (−α) e−ιlα

−K+ (−α) T (−α) C ′2e−ιlα


e(−ιαx−ιγ|y|)dα.

(4.72)

In above (4.71) Hsep
z (x, y) has two integrals in which the integrand with kernel func-

tion S(α) has two parts one for the edge x = 0 and other for edge x = −l, similarly,

integrand with kernel function K(α) has two parts one for the edge x = 0 and other

for edge x = −l, so evaluation of integrals will give the diffracted field for x = 0 as

well as for x = −l whereas H int
z (x, y) presented by (4.71) also have two integrands

corresponding to two kernels S(α) and K(α). Each integrand with its respective ker-

nel functions S(α) and K(α) have two parts and on evaluating the integrals, one will

give the interaction field due extremity x = 0 of plate and other for the interaction

field due to extremity x = −l of plate.
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4.6 Acquirement of Diffracted Field

In the far field zone, the diffracted field now may be evaluated asymptotically.

For this purpose, the polar coordinates as x = r cos θ, |y| = r sin θ are introduced

and following transformation helps in the deformation of contour.

α = −keff cos (θ + ιζ) , for 0 < θ < π −∞ < ζ <∞. (4.73)

Now applying the method of stationary phase for large keffr, (4.69) takes the follow-

ing form

Hz(r, θ) =
ιkeff√
keffr

 A1 (−keff cos θ)

A2 (−keff cos θ)

 sin θ exp
(
ikeffr + ι

π

4

)
. (4.74)

Similarly, integrals involved in (4.71) and (4.73) are evaluated asymptotically using

method of stationary phase as

Hsep
z (r, θ) =

1√
2π

ιkeff√
keffr

{
− sgn (θ)ψsep (−keff cos θ)

+ φsep (−keff cos θ)
}

sin θ exp
(
ιkeffr + ι

π

4

)
,

(4.75)

and

H int
z (r, θ) =

1√
2π

ιkeff√
keffr

{
− sgn (θ)ψint (−keff cos θ)

+ φint (−keff cos θ)
}

sin θ exp
(
ιkeffr + ι

π

4

)
,

(4.76)

where

ψsep (−keff cos θ) =
AS+ (−keff cos θ)

S (−keff cos θ) (−keff cos θ − keff cos θ0)S+ (keff cos θ0)

− AS− (−keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

S (−keff cos θ) (−keff cos θ − keff cos θ0)S+ (−keff cos θ0)
,

(4.77)
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and

φsep (−keff cos θ) =
A′K+ (−keff cos θ)

ιγ (−keff cos θ)K (−keff cos θ) (−keff cos θ − keff cos θ0)K+ (keff cos θ0)

− A′K− (keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

ιγ (−keff cos θ)K (−keff cos θ) (−keff cos θ − keff cos θ0)K+ (−keff cos θ0)
,

(4.78)

ψint (−keff cos θ) =
A

S (−keff cos θ)



S+ (−keff cos θ)R1 (−keff cos θ) e−ιlkeff cos θ0

−S+ (−keff cos θ) T (−keff cos θ) C1

+S− (−keff cos θ)R2 (keff cos θ) eιlkeff cos θ

−S− (−keff cos θ) T (keff cos θ) C2eιlkeff cos θ


,

(4.79)

φint (−keff cos θ) =
A′

K (−keff cos θ)



K+ (−keff cos θ)R1 (−keff cos θ) eιlkeff cos θ0

−K+ (−keff cos θ) T (−keff cos θ) C ′1

+K− (−keff cos θ)R2 (keff cos θ) eιlkeff cos θ

−K− (−keff cos θ) T (keff cos θ) C ′2eιlkeff cos θ


.

(4.80)

The result given by (4.75) presents the diffracted field evaluated asymptotically for

keffr −→ ∞. In fact, it is the asymptotic form of Hz(x, y) valid for all observation

angles in the entire region. It is observed that the wave field diffracted by the extrem-

ities x = 0 and x = −l of the plate plus the additional involvement of the geometrical

wave field results into the separated field. The separated field being the resultant

wave field will regard a physical perception to the model. But on the other hand,

the interacted field appearing due to the interaction of one edge upon other regards

no physics of the model, separately. The separated field provides the physical per-

ception of diffraction phenomenon at the boundary defined for the associated model.

Therefore, only the separated field is taken into account to discussion. Furthermore,

the interaction field generated as a result of double diffraction of EM-plane wave by

two edges is already counted by the separated field. Also the extending the plate

length upto infinity discards the contribution resulting from the interaction terms
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and consequently, the separated field appears to be diffracted field. Therefore, only

the separated field is focused to discuss graphically in the next section.

4.7 Results and Discussion

This section is devoted to elaborate the impact of physical parameters like angle

of incidence θ0, wave-number k, plate length l, surface impedance ηs and permittivity

element ε1 on separated field of EM-wave against observation angle in the absence

and presence of cold plasma. In Figs. 4.3a, 4.3b, sketch of separated field for three

different angles of incidence is displayed while keeping values of all other parameters

fixed. The observation predicts that separated field intensity gets sharp peaks at

observation angles θ = 2π/3, 3π/4, 5π/6 indicating the reflection of EM-wave for

respective angles of incidence θ0 = π/3, π/4, π/6. The structure of non-symmetric

finite plate under consideration over here may work for physical aspect of scattering

mechanism at these particular values of observation angles. The maximum sharp

peak occurs at observation angle θ = 3π/4 for its respective incidence angle θ0 =

π/4 in both the cases i.e. in the absence and presence of cold plasma. However,

wavelength expands in the presence of cold plasma. Figs. 4.4a, 4.4b are sketched

to display behavior of separated field for incremental trend of wave-number k. This

means that wave frequency excites to the high frequency range. In Figs. 4.5a,

4.5b, oscillations of the separated field increase due to increasing the length of plate.

According to observation, it is found that separated field in the far away region from

the origin, after the sharp peak, coincides even for three different values of length.

One can observe by comparing Figs. 4.4b, 4.5b with 4.4a, 4.5a, respectively, that

presence of cold plasma has expanded the wavelength of separated field. This means

that cold plasma helps in controlling the dispersion of diffracted waves. Figs. 4.6a,

4.6b have shown the behavior of separated field for three different values of surface

impedance in the absence and presence of cold plasma, respectively. Observation

describes that separated field for real value of surface impedance (surface resistance)
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is more fluctuated than for the pure imaginary (surface reactance) and imaginary

values (both surface resistance and surface reactance) of surface impedance. On

comparing Fig. 4.6b with Fig. 4.6a, it is found that cold plasma has reduced the

downward fluctuation of separated field. Fig. 4.7 is sketched to show the behavior

of separated field for ε1. The slight variation in separated field has been depicted for

ε1. Since ε1 ≈ 1− (ωp/ω)2 (for signal with high frequency) so an increase in ε1 while

keeping the number density of ions and electrons fixed in cold plasma, that’s why

separated field gets slightly oscillated for increasing ε1. The electrons oscillate about

cold ionic centers due to electric field of high frequency signal and these oscillating

electrons scatter enormously due to increasing amplitude of the separated field. On

observing all the plots, it can be elaborated that separated field shows nullity around

observation angle of 0.
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(a)

(b)

Figure 4.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 4.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 4.5: The separated field for length of plate in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 4.6: The separated field for surface impedance in the absence (a)
and presence (b) of cold plasma.
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Figure 4.7: The separated field for ε1.
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4.8 Conclusions

The chapter has investigated the EM-plane wave diffracted by a plate of non-

symmetric length with surface impedance in the presence of cold plasma. The ob-

servation depicts that diffraction of EM- plane wave is affected by (a) extending the

length of the plate (b) changing the angles of incidence (c) changing the wave-number

(d) changing values of surface impedance and (e) permittivity of cold plasma.
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Chapter 5

Calculation of Diffraction by an

Impedance Finite Symmetric Plate

in Cold Plasma Using

Wiener-Hopf Technique

This chapter elaborates the analysis of diffraction of electromagnetic (EM) plane

wave by a plate of finite length symmetrically located in cold plasma. The impedance

is assumed on the upper and lower surface of the plate, therefore Leontovich boundary

conditions are assumed to consider the effects of impedance. Helmholtz’s equation

is formulated using the Maxwell’s equations with the effects of cold plasma. The

Fourier transform is applied and then Wiener-Hopf equations are obtained. The

modified stationary phase method is used to get the result of diffracted field by finite

symmetric plate (separated field). Graphical analysis of separated field for physical

parameters in the presence and absence of cold plasma is discussed, comprehensively.
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5.1 Modelling of the Helmholtz Equation

The tensor of dielectric permittivity to consider the presence of cold plasma is

defined as

ε̄ = ε0


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

 , (5.1)

ε1 = 1−
(ωp
ω

)2 [
1−

(ωc
ω

)2]−1
, ε2 =

(ωp
ω

)2 [ ω
ωc
− ωc
ω

]−1
, (5.2)

and

εz = 1−
(ωp
ω

)2
, (5.3)

with

ω2
p =

Nee
2

mε0
, ωc =

|e|µ0Hdc

m
. (5.4)

It is known that Maxwell’s equations are proved to be valid in cold plasma with

dielectric permittivity tensor, thus the electric field components in terms of magnetic

field with presence of cold plasma can be evaluated with the aid of Maxwell’s equation

along with (5.1), given by

Ex =
ιε1

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
+

ε2
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
, (5.5)

and

Ey =
ε2

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
− ιε1
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
. (5.6)

Thus, the Helmholtz’s equation satisfying Hz obtained from Maxwell’s equations

with the use of electric field components (5.5) and (5.6), is computed as follows :

∂xxHz (x, y) + ∂yyHz (x, y) + k2effHz (x, y) = 0, (5.7)
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Figure 5.1: Geometrical description of the model.

with the propagation constant

keff = k

√
ε21 − ε22
ε1

, k = ω
√
ε0µ0. (5.8)

Here, keff is dependent of k, ε1 and ε2, harmonic time dependence exp(−ιωt) is

assumed and will be suppressed throughout the analysis.

5.2 Mathematical Modelling of the Problem

A symmetric plate of finite length with impedance loaded is located along y = 0

with edges at x = −l and x = l as displayed in Fig. 5.1. The incident field is taken

as

H inc
z (x, y) = exp{−ιkeff (x cos θ0 + y sin θ0)}. (5.9)

Here, the amplitude of magnetic field is taken as 1 A/m and θ0 is the angle of

incidence with x−axis. Here, the total field can be expressed as follows:

H tot
z (x, y) = H inc

z (x, y) +Href
z (x, y) +Hz(x, y), (5.10)
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where Hz(x, y) is the diffracted field and Href
z (x, y) denotes the reflected field, which

is defined as

Href
z (x, y) =

(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
exp{−ιkeff (x cos θ0 − y sin θ0)}. (5.11)

For the convenience of analysis, medium for the present model is assumed to be

slightly lossy as in keff = Re{keff}+ ιIm{keff}, 0 < Im{keff} � Re{keff} and the

solution for real keff may be achieved by assuming Im{keff} −→ 0. The boundary

value problem (BVP) under consideration is expressed in terms of the magnetic field

and it is adequate to denote the diffracted field in the different regions. The total

field H tot
z (x, y) in the range x ∈ (−∞,∞) , that satisfies the Helmholtz’s equation as

follows : [
∂xx + ∂yy + k2eff

]
H tot
z (x, y) = 0, (5.12)

diffracted field satisfying Helmholtz’s equation extracted from (5.12) is given as fol-

lows: [
∂xx + ∂yy + k2eff

]
Hz (x, y) = 0. (5.13)

Our focus is to evaluate the diffracted field of EM-plane wave incident on a symmetric

plate of finite length under the effects of cold plasma. Impedance considered on both

surfaces of the finite plate is same. Therefore, Leontovich boundary conditions are

as follows :

∂yH
tot
z (x, 0∓)− ιε2

ε1
∂xH

tot
z (x, 0∓) = ±ι

k2eff
ωµ0

η0ηsH
tot
z (x, 0∓), for | x |≤ l, (5.14)

where η0 =
√
µ0/ε0. The continuity conditions are

H tot
z (x, 0+) = H tot

z (x, 0−), −∞ < x < −l, l < x <∞,

∂yH
tot
z (x, 0+) = ∂yH

tot
z (x, 0−), −∞ < x < −l, l < x <∞.

(5.15)
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5.3 Transformation of the Problem

Now we apply the Fourier transform on the boundary value problem (BVP) with

respect to variable x as

F (α, y) =
1√
2π

∞∫
−∞

Hz (x, y) eιαxdx

= eιαlF+ (α, y) + e−ιαlF− (α, y) + Fl (α, y) ,

(5.16)

where α = Re{α} + ιIm{α} = σ + ιτ . The asymptotic expression of Hz (x, y) for

x −→ ±∞ is taken into account as

Hz (x, y) =

 O
(
e−Im{keff}x

)
for x −→∞,

O
(
eIm{keff}x cos θ0

)
for x −→ −∞.

(5.17)

F+(α, y) is the regular function of α in the upper-half plane Im{−keff} < Im{α},

F−(α, y) is the regular function of α in the lower-half plane Im{α} < Im{keff cos θ0}

and both these regions generate a band of analyticity (common region) in which all

the functions including Fl(α, y) are analytic, therefore

F+ (α, y) =
1√
2π

∞∫
l

Hz (x, y) eια(x−l)dx, (5.18)

F− (α, y) =
1√
2π

−l∫
−∞

Hz (x, y) eια(x+l)dx, (5.19)

Fl (α, y) =
1√
2π

l∫
−l

Hz (x, y) eιαxdx, (5.20)

F inc (α, 0) =
eιl(α−keff cos θ0) − e−ιl(α−keff cos θ0)√

2πι (α− keff cos θ0)
, (5.21)

F ref (α, 0) =
1√
2π

(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
eιl(α−keff cos θ0) − e−ιl(α−keff cos θ0)

ι (α− keff cos θ0)
. (5.22)
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The application of Fourier transform on (5.13)-(5.15) yields,

(
d2

dy2
+ γ2

)
F (α, y) = 0, (5.23)

where γ (α) =
√
k2eff − α2.

∂yF tot(α, 0∓)− αε2
ε1
F tot(α, 0∓) = ±ι

k2eff
ωµ0

η0ηsF tot(α, 0∓), (5.24)

and

F− (α, 0+) = F− (α, 0−) = F− (α, 0) ,

F+ (α, 0+) = F+ (α, 0−) = F+ (α, 0) ,

∂yF− (α, 0+) = ∂yF− (α, 0−) = ∂yF− (α, 0) ,

∂yF+ (α, 0+) = ∂yF+ (α, 0−) = ∂yF+ (α, 0) .

(5.25)

5.4 Modelling of Wiener-Hopf Equation

The solution of (5.23) satisfying the radiation conditions is given by

F (α, y) =

 A1 (α) e−ιγy y ≥ 0,

A2 (α) eιγy y < 0.
(5.26)

Now with the aid of (5.16), (5.24), (5.25) and (5.26), following coupled functional

equations are obtained as

eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0) =
[
F ′inc(α, 0) + F ′ref (α, 0)

]
−α
(ε2
ε1

)[
Finc(α, 0) + Fref (α, 0)

]
−1

2
α
(ε2
ε1

)[
Fl(α, 0+) + Fl

(
α, 0−

) ]
+

1

2

(
ι
k2eff
ωµ0

η0η
)[
Fl(α, 0+)−Fl

(
α, 0−

) ]
−ιγ

2

[
A1(α)− A2(α)

]
,

(5.27)
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eιαlF+ (α, 0) + e−ιαlF− (α, 0) = −
α
(
ε2
ε1

)
(α ε2

ε1
)2 +

(k2eff
ωµ0

η0η
)2 [F ′inc(α, 0) + F ′ref (α, 0)

]
+
[
F ′inc(α, 0) + F ′ref (α, 0)

]
−

α
(
ε2
ε1

)
(α ε2

ε1
)2 +

(k2eff
ωµ0

η0η
)2 [F ′l (α, 0+) + F ′l

(
α, 0−

) ]
−1

2

1

(α ε2
ε1

)2 +
(k2eff
ωµ0

η0η
)2 (ιk2effωµ0

η0η
)[
F ′l (α, 0+)−F ′l

(
α, 0−

) ]
+

1

2

[
A1(α) + A2(α)

]
.

(5.28)

For high frequency signal, we use certain approximations such that ω � ωc, while

keeping it at the same order with ωp, yielding the ε1 ≈ 1− (ωp/ω)2 and ε2 → 0 in the

limit case. After approximations, the system of Wiener-Hopf functional equations

are computed as follows :

eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0) + S (α) F̃l (α, 0) = F ′inc(α, 0) + F ′ref (α, 0) , (5.29)

eιαlF+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = Finc(α, 0) + Fref (α, 0) , (5.30)

where

F̃l (α, 0) =
1

2

[
Fl
(
α, 0+

)
−Fl

(
α, 0−

)]
, (5.31)

F̃ ′l (α, 0) =
1

2

[
F ′l
(
α, 0+

)
−F ′l

(
α, 0−

)]
, (5.32)

A1 (α) = −F̃l (α, 0) +
F̃ ′l (α, 0)

ιγ (α)
, (5.33)

A2 (α) = F̃l (α, 0) +
F̃ ′l (α, 0)

ιγ (α)
. (5.34)

The kernel factors appearing in the coupled system of Wiener-Hopf equations are as

follows:

S (α) = −ιγ (α)L (α) , (5.35)
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Figure 5.2: The description of analytic continuation in the complex
α−plane.

K (α) =
ιk

k2effηs
L (α) , (5.36)

where

L (α) =

(
1 +

k2effηs

kγ (α)

)
, (5.37)

5.5 Wiener-Hopf Procedure

The main objective of this model is to observe the effect of cold plasma on

diffracted field of EM-wave incident on a conductible plate of finite length with

impedance loaded. The functional Wiener-Hopf equations (5.29) and (5.30) for the

boundary value problem are put to rigorous analysis through Wiener-Hopf method.

The salient fact of this method or analysis is that its procedure is not fundamen-

tally numerical in nature that’s why it permits an additional insight to physical and

mathematical structure for diffracted field of incident EM-wave. The kernel functions

arising from (5.29) and (5.30) presented by (5.35) and (5.36) are decomposed as

S (α) = S+ (α)S− (α) , (5.38)
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K (α) = K+ (α)K− (α) , (5.39)

and the factors appearing in (5.38) and (5.39) are computed as

S± (α) = e−ι
π
4 γ± (α)L±, (5.40)

K± (α) =
eι
π
4

√
k

keff
√
ηs
L± (α) . (5.41)

Furthermore, the product decomposition of function L (α) appearing in (5.35) and

(5.36), presented by (5.37), is made as

L (α) = L+ (α)L− (α) , (5.42)

where

L± (α) =

(
1±

ιkeff
√
ηs√

kγ± (α)

)
, (5.43)

and

γ± (α) =
√
keff ± α, (5.44)

where the factors S+ (α), K+ (α) , L+ (α) and γ+ (α) are regular functions of α in

upper-half of α−plane (Im {−keff} < Im {α}) whereas the factors S− (α), K− (α) ,

L− (α) and γ− (α) are regular function of α in the lower-half of α−plane

(Im {α} < Im {keff cos θ0}). Now using (5.21) and (5.22) in both (5.29) and (5.30),

we get

eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0) + S (α) F̃l (α, 0) = AG(α), (5.45)

eιαlF+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = A′G ′(α) (5.46)

where

A =

[(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
− 1

]
keff sin θ0, (5.47)

A′ = −
[(

ηs sin θ0 − 1

ηs sin θ0 + 1

)
+ 1

]
ι. (5.48)
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G(α) = G ′(α) =
eιl(α−keff cos θ0) − e−ιl(α−keff cos θ0)√

2π (α− keff cos θ0)
(5.49)

Inserting F̃l (α, 0) and F̃ ′l (α, 0) explicitly from (5.45) and (5.46) into (5.33) and

(5.34), we get

A1 (α) =
1

S (α)

{
eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0)−AG(α)

}
− 1

ιγ (α)K (α)

{
eιαlF+ (α, 0) + e−ιαlF− (α, 0)−A′G ′(α)

}
,

(5.50)

A2 (α) = − 1

S (α)

{
eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0)−AG(α)

}
− 1

ιγ (α)K (α)

{
eιαlF+ (α, 0) + e−ιαlF− (α, 0)−A′G ′(α)

}
,

(5.51)

The Wiener-Hopf equations presented by (5.45) and (5.46) are derived through the

general theory of Wiener-Hopf procedure and analysis may be used to obtain a solu-

tion approximated for large keffr
(
r =

√
x2 + y2

)
. Now equating the terms of (5.45)

and (5.46) with positive sign on one side of the equation and the terms with negative

sign on the other side give us consequently the same function, say J (α) which is a

polynomial function so is an entire function. Analytic continuation (see Fig. 5.2)

along with arguments of extended form of Liouville’s theorem allows the polynomial

function J (α) to equate to zero, precluding the detailed calculations, thus we obtain

the following results

F ′+ (α, 0) =
AS+ (α)√

2π
(G1 (α) + T (α) C1) , (5.52)

F ′− (α, 0) =
AS− (α)√

2π
(G2 (−α) + T (−α) C2) , (5.53)

F+ (α, 0) =
A′K+ (α)√

2π
(G ′1 (α) + T ′ (α) C ′1) , (5.54)

F− (α, 0) =
A′K− (α)√

2π
(G ′2 (−α) + T ′ (−α) C ′2) , (5.55)
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where

G1 (α) =
e−ιlkeff cos θ0

(α− keff cos θ0)

(
1

S+ (α)
− 1

S+ (keff cos θ0)

)
− eιlkeff cos θ0R1 (α) , (5.56)

G2 (α) =
eιlkeff cos θ0

(α + keff cos θ0)

(
1

S+ (α)
− 1

S+ (−eff cos θ0)

)
−e−ιlkeff cos θ0R2 (α) , (5.57)

C1 = S+ (keff )

(
G2 (keff ) + S+ (keff )G1 (keff ) T (keff )

1− S2
+ (keff ) T 2 (keff )

)
, (5.58)

C2 = S+ (keff )

(
G1 (keff ) + S+ (keff )G2 (keff ) T (keff )

1− S2
+ (keff ) T 2 (keff )

)
, (5.59)

G ′1 (α) =
e−ιlkeff cos θ0

(α− keff cos θ0)

(
1

K+ (α)
− 1

K+ (keff cos θ0)

)
− eιlkeff cos θ0R1 (α) , (5.60)

G ′2 (α) =
eιlkeff cos θ0

(α + keff cos θ0)

(
1

K+ (α)
− 1

K+ (−keff cos θ0)

)
− e−ιlkeff cos θ0R2 (α) ,

(5.61)

C ′1 = K+ (keff )

(
G2 (keff ) +K+ (keff )G1 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (5.62)

C ′2 = K+ (keff )

(
G1 (keff ) +K+ (keff )G2 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (5.63)

R1,2 (α) =
E−1 [W−1 (−ιl (keff ± keff cos θ0))−W−1 (−ιl (keff + α))]

2πiι (α∓ keff cos θ0)
, (5.64)

T (α) =
1

2πι
E−1W−1 (−ι (keff + α) l) , (5.65)

E−1 = 2 exp (ιkeff l) (l)
1
2 (ι)−

1
2 , (5.66)

and

Wn− 1
2

(s) =

∞∫
0

vn exp (−v)

v + s
du

= Γ (n+ 1) exp
(s

2

)
s

1
2
n− 1

2W− 1
2
(n+1), 1

2
n (s) .

(5.67)

Here, Wm,n is named as Whittaker function and s = −ι (keff + α) l, n = −1
2
.

Now substitution of (5.52-5.55) along with (5.49) in (5.45) and (5.46) gives us the
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following result :

A1 (α)

A2 (α)

 =
Asgn (y)√

2πS (α)



eιαlS+ (α)G1 (α) + eιαlS+ (α) T (α) C1

+e−ιαlS− (α)G2 (−α)

+e−ιαlS− (α) T (−α) C2

− e
ιl(α−keff cos θ0)−e−ιl(α−keff cos θ0)

(α−keff cos θ0)



− A′√
2πιγ (α)K (α)



eιαlK+ (α)G ′1 (α) + eιαlK+ (α) T (α) C ′1

+e−ιαlK− (α)G ′2 (−α)

+e−ιαlK− (α) T (−α) C ′2

− e
ιl(α−keff cos θ0)−e−ιl(α−keff cos θ0)

(α−keff cos θ0)


.

(5.68)

The diffraction of EM-wave field obtained by the application of inverse Fourier trans-

form of (5.26) is defined as

Hz(x, y) =
1√
2π

∞∫
−∞

F (α, y) e−ιαxdα

=
1√
2π

∞∫
−∞

 A1 (α)

A2 (α)

 e−ιαx−ιγ|y|dα.

(5.69)

where A1 (α) and A2 (α) are given by (5.68). Substitution of (5.68) into (5.69) and

splitting up the diffracted field function Hz(x, y) into two parts as mentioned below

:

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (5.70)
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where

Hsep
z (x, y) =

sgn (y)

2π

∞∫
−∞

1

S (α)

 − AS+(α)e
ιl(α−keff cos θ0)

(α−keff cos θ0)S+(keff cos θ0)

+ AS−(α)e
−ιl(α−keff cos θ0)

(α−keff cos θ0)S+(−keff cos θ0)

 e(−ιαx−ιγ|y|)dα

+
1

2π

∞∫
−∞

1

ιγ (α)K (α)


A′K+(α)e

ιl(α−keff cos θ0)

(α−keff cos θ0)K+(keff cos θ0)

− A′K−(α)e
−ιl(α−keff cos θ0)

(α−keff cos θ0)K+(−keff cos θ0)

 e(−ιαx−ιγ|y|)dα,

(5.71)

and

H int
z (x, y) =

sgn (y)

2π

∞∫
−∞

A
S (α)



−S+ (α)R1 (α) eιl(α+keff cos θ0)

+S+ (α) T (α) C1eιαl

−S+ (−α)R2 (−α) e−ιl(α+keff cos θ0)

+S+ (−α) T (−α) C2e−ιαl


e(−ιαx−ιγ|y|)dα

+
1

2π

∞∫
−∞

A′

ιγ (α)K (α)



K+ (α)R1 (α) eιl(α+keff cos θ0)

−K+ (α) T (α) C ′1eιαl

+K+ (−α)R2 (−α) e−ιl(α+keff cos θ0)

−K+ (−α) T (−α) C ′2e−ιαl


e(−ιαx−ιγ|y|)dα.

(5.72)

In above (5.71) Hsep
z (x, y) has two integrals in which the integrand with kernel func-

tion S(α) has two parts one for the edge x = l and other for edge x = −l, similarly,

integrand with kernel function K(α) has two parts one for the edge x = 0 and other

for edge x = −l, so evaluation of integrals will give the diffracted field for x = l as

well as for x = −l whereas H int
z (x, y) presented by (5.72) also have two integrands

with kernels S(α) and K(α). Each integrand with its respective kernel functions S(α)

and K(α) have two parts and on evaluating the integrals, one will give the interaction

field due extremity x = 0 of plate and other for the interaction field due to extremity

x = −l of plate.
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5.6 Acquirement of Diffracted Field

Now the diffracted field in the far field zone may be evaluated asymptotically.

For this purpose, the polar coordinates as x = r cos θ, |y| = r sin θ are introduced

and following transformation helps in the deformation of contour.

α = −keff cos (θ + ιζ) , for 0 < θ < π, −∞ < ζ <∞. (5.73)

Now applying the method of stationary phase (an asymptotic method) for large keffr,

(5.69) takes the following form

Hz(r, θ) =
ιkeff√
keffr

 A1 (−keff cos θ)

A2 (−keff cos θ)

 sin θ exp
(
ιkeffr + ι

π

4

)
. (5.74)

Similarly, integrals appearing in (5.71) and (5.72) are evaluated asymptotically using

method of stationary phase and results are obtained as

Hsep
z (r, θ) =

1√
2π

ιkeff√
keffr

{
− sgn (θ)ψsep (−keff cos θ)

+ φsep (−keff cos θ)
}

sin θ exp
(
ιkeffr + ι

π

4

)
,

(5.75)

and

H int
z (r, θ) =

1√
2π

ιkeff√
keffr

{
− sgn (θ)ψint (−keff cos θ)

+ φint (−keff cos θ)
}

sin θ exp
(
ιkeffr + ι

π

4

)
,

(5.76)

where

ψsep (−keff cos θ) =
AS+ (−keff cos θ) eιl(−keff cos θ−keff cos θ0)

S (−keff cos θ) (−keff cos θ − keff cos θ0)S+ (keff cos θ0)

− AS− (−keff cos θ) e−il(−keff cos θ−keff cos θ0)

S (−keff cos θ) (−keff cos θ − keff cos θ0)S+ (−keff cos θ0)
,

(5.77)
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and

φsep (−keff cos θ) =
A′K+ (−keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

ιγ (−keff cos θ)K (−keff cos θ) (−keff cos θ − keff cos θ0)K+ (keff cos θ0)

− A′K− (keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

ιγ (−keff cos θ)K (−keff cos θ) (−keff cos θ − keff cos θ0)K+ (−keff cos θ0)
,

(5.78)

ψint (−keff cos θ) =
A

S (−keff cos θ)

×



S+ (−keff cos θ)R1 (−keff cos θ) e−ιl(−keff cos θ+keff cos θ0)

−S+ (−keff cos θ) T (−keff cos θ) C1e−ιlkeff cos θ

+S− (−keff cos θ)R2 (keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

−S− (−keff cos θ) T (keff cos θ) C2eιlkeff cos θ


,

(5.79)

φint (−keff cos θ) =
A′

K (−keff cos θ)

×



K+ (−keff cos θ)R1 (−keff cos θ) eιl(−keff cos θ+keff cos θ0)

−K+ (−keff cos θ) T (−keff cos θ) C ′1e−ιlkeff cos θ

+K− (−keff cos θ)R2 (keff cos θ) e−ιl(−keff cos θ+keff cos θ0)

−K− (−keff cos θ) T (keff cos θ) C ′2eιlkeff cos θ


.

(5.80)

The result given by (5.74) presents the diffracted field evaluated asymptotically for

keffr −→ ∞. In fact, it is the asymptotic form of Hz(x, y) valid for all observation

angles in the entire region. It is observed that the wave field diffracted by the extrem-

ities x = l and x = −l of the plate plus the additional involvement of the geometrical

wave field results into the separated field. The separated field being the resultant

wave field will regard a physical perception to the model. But on the other hand,

the interacted field appearing due to the interaction of one edge upon other regards

no physics of the model, separately. The separated field provides the physical per-

ception of diffraction phenomenon at the boundary defined for the associated model.
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Therefore, only the separated field is taken into account to discussion. Furthermore,

the interaction field generated as a result of double diffraction of EM-plane wave by

two edges is already counted by the separated field. Also the extending the plate

length upto infinity discards the contribution resulting from the interaction terms

and consequently, the separated field appears to be diffracted field. Therefore, only

the separated field is focused to discuss graphically in the next section.

5.7 Results and Discussion

This section highlights the impact of pertinent parameters like angle of incidence

θ0, wave-number k, plate length l, surface impedance ηs and permittivity element ε1

on separated field of EM-wave against observation angle in the absence and presence

of cold plasma. In Figs. 5.3a, 5.3b, sketch of separated field for three different angles

of incidence is visualized while keeping values of all other parameters fixed. The

observation predicts that separated field intensity gets sharp peaks at observation

angles θ = 2π/3, 3π/4, 5π/6 indicating the reflection of EM-wave for respective an-

gles of incidence θ0 = π/3, π/4, π/6. The structure of finite length symmetric plate

under consideration over here may work for physical aspect of scattering mechanism

at these particular values of observation angles. The maximum sharp peak occurs at

observation angle θ = 3π/4 for its respective incidence angle θ0 = π/4 in both the

cases i.e. in the absence and presence of cold plasma. However, wavelength expands

in the presence of cold plasma. Figs. 5.4a, 5.4b are sketched to display behavior

of separated field for incremental trend of wave-number k. This means that wave

frequency excites to the high frequency range. On observing the sketches, it is found

that number of oscillations increase here due to the symmetric plate as compared to

the non-symmetric plate in previous chapter. In Figs. 5.5a, 5.5b, oscillations of the

separated field increase due to increasing the length of plate. According to observa-

tion, it is found that separated field in the far away region from the origin, after the

sharp peak, coincides even for three different values of length. One can observe by
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comparing Figs. 5.4b, 5.5b with 5.4a, 5.5a, respectively, that presence of cold plasma

has expanded the wavelength of separated field. Figs. 5.6a, 5.6b have shown the be-

havior of separated field for three different values of surface impedance in the absence

and presence of cold plasma, respectively. Observation describes that separated field

for real value (surface resistance) of surface impedance is more fluctuated than for the

pure imaginary (surface reactance) and imaginary value (both surface resistance and

surface reactance) of surface impedance. Fig. 5.7 is sketched to show the behavior

of separated field for ε1. The drastic effects on separated field have been predicted

due presence of cold plasma. Since ε1 ≈ 1− (ωp/ω)2 (for signal with high frequency)

so an increase in ε1 while keeping the number density of ions and electrons fixed in

cold plasma, that’s why separated field gets oscillated with increasing behavior of ε1.

The electrons oscillate about cold ionic centers due to electric field of high frequency

signal and these oscillating electrons scatter enormously due to increasing amplitude

of the separated field. The separated field shows the nullity around the observation

angle of 0 for all physical parameters corresponding to the present model.
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(a)

(b)

Figure 5.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 5.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 5.5: The separated field for length of plate in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 5.6: The separated field for surface impedance in the absence (a)
and presence (b) of cold plasma.
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Figure 5.7: The separated field for ε1.
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5.8 Conclusions

This chapter has elaborated about the EM-plane wave incident on a plate of

finite symmetric length (which ultimately gives the diffracted field) with surface

impedance in the presence of the cold plasma. It has been observed that diffraction

of EM-plane wave by the plate of finite symmetric length undergoes the variation

due to (a) extending the plate length (b) different angles of incidence (c) increasing

the wave-number (d) different values of surface impedance and (e) permittivity of

cold plasma.
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Chapter 6

Wiener-Hopf Analysis of

Diffracted Wave in Cold Plasma by

an Impedance Slit of Finite Width

Present chapter elaborates the analysis of diffraction of electromagnetic (EM)

plane wave by a slit of finite width under the effects of cold plasma. The impedance

is imposed on the slit and to consider the effects of impedance, Leontovich boundary

conditions are assumed. Helmholtz’s equation is formulated using the Maxwell’s

equations with the effects of cold plasma. The Fourier transform is applied and then

Wiener-Hopf equations are obtained. The method of stationary phase is used to get

the result of diffracted field due to slit of finite width (separated field). Graphical

analysis of separated field is discussed comprehensively.

6.1 Modelling of the Helmholtz Equation

The tensor of dielectric permittivity to consider the effects of cold plasma is

defined as

ε̄ = ε0


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

 , (6.1)
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ε1 = 1−
(ωp
ω

)2 [
1−

(ωc
ω

)2]−1
, ε2 =

(ωp
ω

)2 [ ω
ωc
− ωc
ω

]−1
, (6.2)

and

εz = 1−
(ωp
ω

)2
, (6.3)

with

ω2
p =

Nee
2

mε0
, ωc =

|e|µ0Hdc

m
. (6.4)

It is known that Maxwell’s equations are proved to be valid in cold plasma with

dielectric permittivity tensor, thus, the electric field components evaluated in terms

of magnetic field with the effects of cold plasma with the aid of Maxwell’s equations

along with (6.1) are described as

Ex =
ιε1

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
+

ε2
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
, (6.5)

and

Ey =
ε2

ωε0 (ε21 − ε22)
∂Hz (x, y)

∂y
− ιε1
ωε0 (ε21 − ε22)

∂Hz (x, y)

∂x
. (6.6)

Thus, the Helmholtz’s equation satisfying Hz obtained from Maxwell’s equations

along with electric field components (6.5) and (6.6), is computed as follows :

∂xxHz (x, y) + ∂yyHz (x, y) + k2effHz (x, y) = 0, (6.7)

with propagation constant

keff = k

√
ε21 − ε22
ε1

, k = ω
√
ε0µ0. (6.8)

Here, keff is dependent of k, ε1 and ε2, harmonic time dependence exp(−ιωt) is

assumed and will be suppressed throughout the analysis.
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Figure 6.1: Geometrical description of the model.

6.2 Mathematical Modelling of the Problem

A slit of finite width with surface impedance is located symmetrically along y = 0

with edges at x = −l and x = l. The wave incident at the one edge x = −l of reflects

back in the direction opposite to the incident field whereas the wave incident on the

other edge x = l of the slit reflects at an angle of π − θ0 with the horizontal axis as

can be seen in Fig. 6.1. The incident field is taken as

H inc
z (x, y) = exp{−ιkeff (x cos θ0 + y sin θ0)}, (6.9)

Here, the amplitude of magnetic field is taken as 1 A/m and θ0 is the angle of

incidence with x−axis. Here, the total field can be expressed as follows:

H tot
z (x, y) = H inc

z (x, y)±Href
z (x, y) +Hz(x, y), for y ≥ 0

H tot
z (x, y) = Hz(x, y), for y ≤ 0

(6.10)

where Hz(x, y) is the diffracted field and Href
z (x, y) denotes the reflected field, which

is defined as

Href
z (x, y) =

(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
exp{−ιkeff (x cos θ0 − y sin θ0)}. (6.11)
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For convenience of analysis, the medium for the present model is assumed to be

slightly lossy as in keff = Re{keff} + ιIm{keff}, 0 < Im{keff} � Re{keff} and

the solution for real keff is achieved by assuming Im{keff} −→ 0. The boundary

value problem (BVP) under consideration is expressed in terms of the magnetic field

potential and it is adequate to denote the diffracted field in the different regions.

The total field H tot
z (x, y) in the range x ∈ (−∞,∞) , that satisfies the Helmholtz’s

equation as follows : [
∂xx + ∂yy + k2eff

]
H tot
z (x, y) = 0, (6.12)

diffracted field satisfying Helmholtz’s equation extracted from (6.12) is given as fol-

lows: [
∂xx + ∂yy + k2eff

]
Hz (x, y) = 0. (6.13)

Our focus is to evaluate the diffracted field of EM-plane wave incident on a slit of

finite width. Same effects of impedance are assumed on both the surfaces. Therefore,

Leontovich boundary conditions are considered as

∂yH
tot
z (x, 0∓)− ιε2

ε1
∂xH

tot
z (x, 0∓) = ±ι

k2eff
ωµ0

η0ηsH
tot
z (x, 0∓), for |x| ≥ l, (6.14)

where η0 =
√
µ0/ε0.

6.3 Transformation of the Problem

Now applying the Fourier transform on the boundary value problem (BVP) with

respect to variable x as

F (α, y) =
1√
2π

∞∫
−∞

Hz (x, y) eιαxdx

= eιαlF+ (α, y) + e−ιαlF− (α, y) + Fl (α, y) ,

(6.15)
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where α = Re{α} + ιIm{α} = σ + ιτ . The asymptotic expression of Hz (x, y) as

x −→ ±∞ is taken into account as

Hz (x, y) =

 O
(
e−Im{keff}x

)
for x −→∞,

O
(
eIm{keff}x cos θ0

)
for x −→ −∞.

(6.16)

F+(α, y) is a regular function of α lying in the upper-half of α−plane −Im{keff} <

Im{α}, F−(α, y) is a regular function of α lying in the lower-half of α− plane

Im{α} < Im{keff cos θ0} and these together generates a band of analyticity in which

all the functions including Fl(α, y) are analytic. Now we write

F+ (α, y) =
1√
2π

∞∫
l

Hz (x, y) eια(x−l)dx, (6.17)

F− (α, y) =
1√
2π

−l∫
−∞

Hz (x, y) eια(x+l)dx, (6.18)

Fl (α, y) =
1√
2π

l∫
−l

Hz (x, y) eιαxdx, (6.19)

F inc (α, 0) =
eιl(α−keff cos θ0) − e−ιl(α−keff cos θ0)√

2πι (α− keff cos θ0)
, (6.20)

F ref (α, 0) =
1√
2π

(
ηs sin θ0 − 1

ηs sin θ0 + 1

)
eιl(α−keff cos θ0) − e−ιl(α−keff cos θ0)

ι (α− keff cos θ0)
. (6.21)

The application of Fourier transform on (6.13)-(6.15) yields,

(
d2

dy2
+ γ2

)
F (α, y) = 0, (6.22)

where γ (α) =
√
k2eff − α2.

∂yF tot(α, 0∓)− αε2
ε1
F tot(α, 0∓) = ±ι

k2eff
ωµ0

η0ηsF tot(α, 0∓). (6.23)
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6.4 Modelling of Wiener-Hopf Equation

The solution of (6.22) satisfying the radiation conditions is given by

F (α, y) =

 A1 (α) e−ιγy y ≥ 0,

A2 (α) eιγy y < 0.
(6.24)

Now with the aid of (6.16), (6.23) and (6.24), following coupled functional equations

are obtained as

eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0) =
1

2

[
F ′inc(α, 0)−F ′ref (α, 0)

]
+

1

2

(
α
ε2
ε1

+
ιk2eff
k

ηs

)[
Finc(α, 0)−Fref (α, 0)

]
+

1

2

(
α
ε2
ε1

+
ιk2eff
k

ηs

)[
Fl(α, 0+) + Fl

(
α, 0−

) ]
−ιγ

2

[
A1(α) + A2(α)

]
,

(6.25)

eιαlF+ (α, 0) + e−ιαlF− (α, 0) = − 1

2
(
α ε2
ε1
− ιk2eff

k
ηs
)[F ′inc(α, 0) + F ′ref (α, 0)

]
+

1

2

[
F ′inc(α, 0) + F ′ref (α, 0)

]
−

α
(
ε2
ε1

)
(α ε2

ε1
)2 +

(k2eff
k
ηs
)2 [F ′l (α, 0+)−F ′l

(
α, 0−

) ]
−1

2

1

(α ε2
ε1

)2 +
(k2eff

k
ηs
)2 (ιk2effk ηs

)[
F ′l (α, 0+) + F ′l

(
α, 0−

) ]
+

1

2

[
A1(α) + A2(α)

]
.

(6.26)

Here

F±(α, 0+)−F±(α, 0−) = 2F±(α, 0)

F ′±(α, 0+)−F ′±(α, 0−) = 2F ′±(α, 0)
(6.27)

To obtain the result for high frequency signal, we use the certain approximations

such that ω � ωc, while keeping it at the same order with ωp, yielding the ε1 ≈

1 − (ωp/ω)2 and ε2 → 0 in the limit case. After approximations, the Wiener-Hopf

102



functional equations are computed as follows :

eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0) + S (α) F̃l (α, 0) =
1

2

[
F ′inc(α, 0)−F ′ref (α, 0)

]
+
ιk2effηs

2k

[
Finc(α, 0)−Fref (α, 0)

]
,

(6.28)

eιαlF+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = − ιk

2k2effηs

[
F ′inc(α, 0) + F ′ref (α, 0)

]
+

1

2

[
Finc(α, 0) + Fref (α, 0)

]
,

(6.29)

where

F̃l (α, 0) =
1

2

[
Fl
(
α, 0+

)
+ Fl

(
α, 0−

)]
, (6.30)

F̃ ′l (α, 0) =
1

2

[
F ′l
(
α, 0+

)
+ F ′l

(
α, 0−

)]
, (6.31)

A1 (α) = −F̃l (α, 0) +
F̃ ′l (α, 0)

ιγ (α)
, (6.32)

A2 (α) = −F̃l (α, 0)− F̃
′
l (α, 0)

ιγ (α)
. (6.33)

The kernel factors appearing in the coupled system of Wiener-Hopf equations are as

follows :

S (α) = −ιγ (α)L (α) , (6.34)

K (α) =
ιk

k2effηs
L (α) , (6.35)

where

L (α) =

(
1 +

k2effηs

kγ (α)

)
, (6.36)

6.5 Wiener-Hopf Procedure

The main objective of this model is to observe the behavior of EM-wave incident

on a slit of finite width (which is an ultimate result in the form of diffracted field)

103



Figure 6.2: The description of analytic continuation in the complex
α−plane.

immersed in cold plasma. The functional Wiener-Hopf equations (6.28) and (6.29)

for the boundary value problem are put to rigorous analysis through Wiener-Hopf

method. The salient fact of this analysis is that its procedure is not a fundamentally

numerical technique in nature that’s why it predicts an additional physics of the

problem and mathematical structure for diffracted field of incident EM-wave. The

kernel functions arising from (6.28) and (6.29) presented by (6.34) and (6.35) are

decomposed as

S (α) = S+ (α)S− (α) , (6.37)

K (α) = K+ (α)K− (α) , (6.38)

and the factors appearing in (6.37) and (6.38) are computed as

S± (α) = e−ι
π
4 γ± (α)L±, (6.39)

K± (α) =
eι
π
4

√
k

keff
√
ηs
L± (α) . (6.40)

Furthermore, the product decomposition of the function presented by (6.37) is formed

as

L (α) = L+ (α)L− (α) , (6.41)
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where

L± (α) =

(
1±

ιkeff
√
ηs√

kγ± (α)

)
, (6.42)

and

γ± (α) =
√
keff ± α, (6.43)

where the factors with subscript + are regular functions of α in upper half of complex

α−plane (−Im{keff} < Im{α}), F−(α, y) whereas the factors with subscript − are

regular functions of α in the lower half of complex α−plane (Im{α} < Im{keff cos θ0}).

Now using (6.21) and (6.22) in both (6.28) and (6.29), we get

eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0) + S (α) F̃l (α, 0) = AG(α), (6.44)

eιαlF+ (α, 0) + e−ιαlF− (α, 0) +K (α) F̃ ′l (α, 0) = A′G ′(α), (6.45)

where

A =
1

2

[
−
(

1 +
ηs sin θ0 − 1

ηs sin θ0 + 1

)
keff sin θ0 +

k2effηs

k

(
1− ηs sin θ0 − 1

ηs sin θ0 + 1

)]
, (6.46)

A′ = 1

2

[
ιk sin θ0
keffηs

(
1 +

ηs sin θ0 − 1

ηs sin θ0 + 1

)
+

1

ι

(
1− ηs sin θ0 − 1

ηs sin θ0 + 1

)]
, (6.47)

G(α) = G ′(α) =
eιl(α−keff cos θ0) − e−ιl(α−keff cos θ0)√

2π(α− keff cos θ0)
. (6.48)

Inserting F̃l (α, 0) and F̃ ′l (α, 0) explicitly from (6.44) and (6.45) into (6.32) and

(6.33), we get

A1 (α) =
1

S (α)

{
eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0)−AG(α)

}
− 1

ιγ (α)K (α)

{
eιαlF+ (α, 0) + e−ιαlF− (α, 0)−A′G ′(α)

}
,

(6.49)

A2 (α) =
1

S (α)

{
eιαlF ′+ (α, 0) + e−ιαlF ′− (α, 0)−AG(α)

}
+

1

ιγ (α)K (α)

{
eιαlF+ (α, 0) + e−ιαlF− (α, 0)−A′G ′(α)

}
,

(6.50)
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The Wiener-Hopf equations presented by (6.44) and (6.45) are derived through

the general theory of Wiener-Hopf procedure and an exact and asymptotic solution

may be obtained for large keffr
(
r =

√
x2 + y2

)
. Now equating the terms of (6.47)

and (6.48) with positive sign on one side of the equation and the terms with negative

sign on the other side give us consequently the same function, say J (α), which

is a polynomial function so is an entire function. Analytic continuation (see Fig.

6.2) along with arguments involving extended form of Liouville’s theorem allows the

function J (α) to equate to zero, finally we obtain the following results

F ′+ (α, 0) =
AS+ (α)√

2π
(G1 (α) + T (α) C1) , (6.51)

F ′− (α, 0) =
AS− (α)√

2π
(G2 (−α) + T (−α) C2) , (6.52)

F+ (α, 0) =
A′K+ (α)√

2π
(G ′1 (α) + T ′ (α) C ′1) , (6.53)

F− (α, 0) =
A′K− (α)√

2π
(G ′2 (−α) + T ′ (−α) C ′2) , (6.54)

where

G1 (α) =
e−ιlkeff cos θ0

(α− keff cos θ0)

(
1

S+ (α)
− 1

S+ (keff cos θ0)

)
− eιlkeff cos θ0R1 (α) , (6.55)

G2 (α) =
eιlkeff cos θ0

(α + keff cos θ0)

(
1

S+ (α)
− 1

S+ (−keff cos θ0)

)
− e−ιlkeff cos θ0R2 (α) ,

(6.56)

C1 = S+ (keff )

(
G2 (keff ) + S+ (keff )G1 (keff ) T (keff )

1− S2
+ (keff ) T 2 (keff )

)
, (6.57)

C2 = S+ (keff )

(
G1 (keff ) + S+ (keff )G2 (keff ) T (keff )

1− S2
+ (keff ) T 2 (keff )

)
, (6.58)

G ′1 (α) =
e−ιlkeff cos θ0

(α− keff cos θ0)

(
1

K+ (α)
− 1

K+ (keff cos θ0)

)
− eιlkeff cos θ0R1 (α) , (6.59)

G ′2 (α) =
eιlkeff cos θ0

(α + keff cos θ0)

(
1

K+ (α)
− 1

K+ (−keff cos θ0)

)
− e−ιlkeff cos θ0R2 (α) ,

(6.60)
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C ′1 = K+ (keff )

(
G2 (keff ) +K+ (keff )G1 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (6.61)

C ′2 = K+ (keff )

(
G1 (keff ) +K+ (keff )G2 (keff ) T (keff )

1−K2
+ (keff ) T 2 (keff )

)
, (6.62)

R1,2 (α) =
E−1 [W−1 (−ιl (keff ± keff cos θ0))−W−1 (−ιl (keff + α))]

2πι (α∓ keff cos θ0)
, (6.63)

T (α) =
1

2πι
E−1W−1 (−ι (keff + α) l) , (6.64)

E−1 = 2 exp (ιkeff l) (l)
1
2 (ι)−

1
2 , (6.65)

and

Wn− 1
2

(s) =

∞∫
0

vn exp (−v)

v + s
du

= Γ (n+ 1) exp
(s

2

)
p

1
2
n− 1

2W− 1
2
(n+1), 1

2
n (s) .

(6.66)

Here, Wm,n is named as Whittaker function and p = −ι (keff + α) l, n = −1
2
.
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Now substitution of (6.51)-(6.54) along with (6.48) in (6.49) and (6.50) gives the

result as

A1 (α)

A2 (α)

 =
A√

2πS (α)



eιαlS+ (α)G1 (α) + eιαlS+ (α) T (α) C1

+e−ιαlS− (α)G2 (−α)

+e−ιαlS− (α) T (−α) C2

− e
ιl(α−keff cos θ0)−e−ιl(α−keff cos θ0)

(α−keff cos θ0)



− A′Sgn (y)√
2πιγ (α)K (α)



eιαlK+ (α)G ′1 (α) + eιαlK+ (α) T (α) C ′1

+e−ιαlK− (α)G ′2 (−α)

+e−ιαlK− (α) T (−α) C ′2

− e
ιl(α−keff cos θ0)−e−ιl(α−keff cos θ0)

(α−keff cos θ0)
,



(6.67)

The diffraction of EM-wave field obtained by the implementation of inverse Fourier

transform of (6.24) is defined as

Hz(x, y) =
1√
2π

∞∫
−∞

F (α, y) e−ιαxdα

=
1√
2π

∞∫
−∞

 A1 (α)

A2 (α)

 e−ιαx−ιγ|y|dα.

(6.68)

where A1 (α) and A2 (α) are given by (6.67). Substitution of (6.67) into (6.68) and

splitting up the diffracted field function Hz(x, y) into two parts as are mentioned

here

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (6.69)
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where

Hsep
z (x, y) =

1

2π

∞∫
−∞

1

S (α)

 − AS+(α)e
ιl(α−keff cos θ0)

(α−keff cos θ0)S+(keff cos θ0)

+ AS−(α)e
−ιl(α−keff cos θ0)

(α−keff cos θ0)S+(−keff cos θ0)

 e(−ιαx−ιγ|y|)dα

+
sgn (y)

2π

∞∫
−∞

1

ιγ (α)K (α)


A′K+(α)e

ιl(α−keff cos θ0)

(α−keff cos θ0)K+(keff cos θ0)

− A′K−(α)e
−ιl(α−keff cos θ0)

(α−keff cos θ0)K+(−keff cos θ0)

 e(−ιαx−ιγ|y|)dα,

(6.70)

and

H int
z (x, y) =

1

2π

∞∫
−∞

A
S (α)



−S+ (α)R1 (α) eιl(α+keff cos θ0)

+S+ (α) T (α) C1eιαl

−S+ (−α)R2 (−α) e−ιl(α+keff cos θ0)

+S+ (−α) T (−α) C2e−ιαl


e(−ιαx−ιγ|y|)dα

+
sgn (y)

2π

∞∫
−∞

A′

ιγ (α)K (α)



K+ (α)R1 (α) eιl(α+keff cos θ0)

−K+ (α) T (α) C ′1eιαl

+K+ (−α)R2 (−α) e−ιl(α+keff cos θ0)

−K+ (−α) T (−α) C ′2e−ιαl


e(−ιαx−ιγ|y|)dα.

(6.71)

In above (6.71) Hsep
z (x, y) has two integrals in which the integrand with kernel func-

tion S(α) has two parts one for the edge x = l and other for edge x = −l of the slit,

similarly, integrand with kernel function K(α) has two parts one for the edge x = l

and other for edge x = −l, so evaluation of integrals will give the diffracted field for

x = l as well as for x = −l whereas H int
z (x, y) presented by (6.72) also have two

integrands with kernels S(α) and K(α). Each integrand with its respective kernel

functions S(α) and K(α) have two parts and on evaluating the integrals, one will

give the interaction field due extremity x = 0 of slit and other for the interaction

field due to extremity x = −l of the slit.
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6.6 Acquirement of Diffracted Field

Now the diffracted field in the far field zone may be evaluated asymptotically.

For this purpose, the polar coordinates as x = r cos θ, |y| = r sin θ are introduced

and following transformation helps in the deformation of contour.

α = −keff cos (θ + iζ) , for 0 < θ < π, −∞ < ζ <∞. (6.72)

Now applying the method of stationary phase for large keffr, (6.68) takes the follow-

ing form

Hz(r, θ) =
ιkeff√
keffr

 A1 (−keff cos θ)

A2 (−keff cos θ)

 sin θ exp
(
ιkeffr + ι

π

4

)
. (6.73)

Similarly, integrals appearing in (6.70) and (6.71) are evaluated asymptotically using

the method of stationary phase as follows :

Hsep
z (r, θ) =

1√
2π

ιkeff√
keffr

{
− sgn (θ)ψsep (−keff cos θ)

+ φsep (−keff cos θ)
}

sin θ exp
(
ιkeffr + ι

π

4

)
,

(6.74)

and

H int
z (r, θ) =

1√
2π

ιkeff√
keffr

{
− sgn (θ)ψint (−keff cos θ)

+ φint (−keff cos θ)
}

sin θ exp
(
ιkeffr + ι

π

4

)
,

(6.75)

where

ψsep (−keff cos θ) =
AS+ (−keff cos θ) eιl(−keff cos θ−keff cos θ0)

S (−keff cos θ) (−keff cos θ − keff cos θ0)S+ (keff cos θ0)

− AS− (−keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

S (−keff cos θ) (−keff cos θ − keff cos θ0)S+ (−keff cos θ0)
,

(6.76)
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and

φsep (−keff cos θ) =
A′K+ (−keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

ιγ (−keff cos θ)K (−keff cos θ) (−keff cos θ − keff cos θ0)K+ (keff cos θ0)

− A′K− (keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

ιγ (−keff cos θ)K (−keff cos θ) (−keff cos θ − keff cos θ0)K+ (−keff cos θ0)
,

(6.77)

ψint (−keff cos θ) =
A

S (−keff cos θ)

×



S+ (−keff cos θ)R1 (−keff cos θ) e−ιl(−keff cos θ+keff cos θ0)

−S+ (−keff cos θ) T (−keff cos θ) C1e−ιlkeff cos θ

+S− (−keff cos θ)R2 (keff cos θ) e−ιl(−keff cos θ−keff cos θ0)

−S− (−keff cos θ) T (keff cos θ) C2eιlkeff cos θ


,

(6.78)

φint (−keff cos θ) =
A′

K (−keff cos θ)

×



K+ (−keff cos θ)R1 (−keff cos θ) eιl(−keff cos θ+keff cos θ0)

−K+ (−keff cos θ) T (−keff cos θ) C ′1e−ιlkeff cos θ

+K− (−keff cos θ)R2 (keff cos θ) e−ιl(−keff cos θ+keff cos θ0)

−K− (−keff cos θ) T (keff cos θ) C ′2eιlkeff cos θ


.

(6.79)

The result given by (6.74) presents the diffracted field evaluated asymptotically for

keffr −→ ∞. In fact, it is the asymptotic form of Hz(x, y) valid for any value of

observation angle in the entire space. It is observed that the wave field diffracted

by the slit with edges x = −l and x = l yields the separated field. The separated

field provides the physical perception of diffraction phenomenon at defined bound-

ary. Therefore, only the separated field is taken into account for discussion because

it describes the physical insight to the diffraction phenomenon. Furthermore, the

interaction field generated as a result of double diffraction of EM-wave by two edges

is already counted in the form of separated field by the slit with edges at x = −l
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and x = l. Also, expanding the slit width upto infinity discards the contribution of

interaction quantities and consequently, the separated field appears to be diffracted

field. Therefore, only the separated field is focused to discuss graphically here in the

next section.

6.7 Results and Discussion

This section elaborates the graphical behavior of separated field versus angle of

observation for different physical parameters as angle of incidence θ0, wave-number k,

width of slit 2l, surface impedance ηs and permittivity element ε1 in the presence and

absence of cold plasma. Figs. 6.3a, 6.3b display the behavior of separated field for

varying values of θ0 while keeping all other parameters fixed. The observation predicts

that separated field intensity gets sharp peaks at θ = 2π/3, 3π/4, 5π/6 indicating

the reflected wave of EM-wave incident at θ0 = π/3, π/4, π/6, respectively. The

structure of slit of finite width under consideration over here may work for physical

aspect of scattering mechanism at these particular values of observation angles. The

maximum sharp peak occurs at observation angle θ = 5π/6 for respective incidence

angle θ0 = π/6 in the absence of cold plasma but presence of cold plasma grabs this

position and gives it to the observation angle θ = 2π/3 for its respective incidence

angle θ0 = π/3. It is also observed that separated field gets more fluctuated in the

region of far away from the origin which does not happen in case of finite plate. Figs.

6.4a, 6.4b are sketched to display behavior of separated field for different values of

wave-number. For increasing the wave-number, oscillations of separated field are

increased. This means that wave frequency moves towards the high frequency range.

In Figs. 6.5a, 6.5b, the separated field for different values of width of slit is observed.

According to observation, the separated field gets more oscillated for expanding the

width of slit. Figs. 4.6a, 4.6b show the separated field for real (surface resistance),

pure imaginary (surface reactance) and imaginary values (both surface resistance

and surface reactance) of surface impedance. The separated field for real and pure
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imaginary surface impedance are summed up giving separated field very close to that

for the real surface impedance. From the figures it can be predicted that oscillations

or separated field are reduced. Fig. 6.7 is sketched to show the behavior of separated

field for ε1. It is observed that presence of cold plasma has affected the separated field

drastically. Since ε1 ≈ 1− (ωp/ω)2 (for signal with high frequency) so an increase in

plasma permittivity ε1 while keeping the number density of ions and electrons fixed

in cold plasma, that’s why separated field is predicted to be more oscillated for ε1.

The electrons oscillate about cold ionic centers due to electric field of high frequency

signal and these oscillating electrons scatter enormously due to increasing oscillations

of the separated field. The separated field shows the nullity around the observation

angle of 0 for all physical parameters corresponding to the present model.
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(a)

(b)

Figure 6.3: The separated field with incident angle in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 6.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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(a)

(b)

Figure 6.5: The separated field for finite width of slit in the absence (a)
and presence (b) of cold plasma.
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(a)

(b)

Figure 6.6: The separated field for surface impedance in the absence (a)
and presence (b) of cold plasma.
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Figure 6.7: The separated field for ε1.
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6.8 Conclusions

The chapter has elaborated the diffraction of EM-wave by a slit of finite width

with the effect of impedance in the presence of cold plasma. The observation depicts

that diffraction of EM-wave has been affected due to (a) the expansion of width of

the slit (b) different angles of incidence (c) the variation of wave-number (d) different

values of surface impedance and (e) permittivity of cold plasma.
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