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Preface

Propagation of electromagnetic (EM) waves play a vital role in communication system. The
ultraviolet radiations impinging on earth’s atmosphere ionize a fraction of neutral atmosphere
which results into a mixture of charged particles (i.e. ions and electrons) as well as neutral
particles. Since the collisions in the region of earth’s atmosphere above 80 km from earth, are
very rare, therefore, under such conditions the recombination rate of charged species is very slow
resulting a permanent ionized medium, named as ionosphere. A cold plasma may correspond to
ionosphere under the presence of earth’s magnetic field where the effect of finite temperature
and pressure variations are ignored. The ionosphere of plasma is highly magnetized under earth’s
magnetic field; therefore, it can be treated as an anisotropic medium. Also, since the cold plasma
can be considered as a model for the ionosphere, it is possible to investigate the diffraction
mechanisms of the complex scatterers in the ionosphere such as airplanes or satellites.
Measurements based on the artificial satellites moving in the ionosphere around the earth,
communicating to earth station are affected drastically as the communicating signals radiated by
satellite and diffracted by some obstacle get modified on interaction with ionosphere plasma
(cold plasma) and also because of the nature of material of the body i.e. electric and magnetic
susceptibilities or impedance. To quantify the results arising due to the effectiveness of cold
plasma and nature of the material on the diffraction of electromagnetic waves, some theoretical

models have been devised in the present thesis. Thesis is summarized in the order below.

Chapter one contains literature survey of previous research study by the researchers, some basic

description of plane wave, Fourier transform, cold plasma, analytic continuation, method of



stationary phase (an asymptotic method) and a short note on Wiener-Hopf technique for general

readers.

Chapter two addresses diffraction of electromagnetic plane wave by a finite plate in the cold
plasma. Helmholtz equation is derived with the combined use of Maxwell’s equations and
electric field components in terms of magnetic field with cold plasma effects. Dirichlet boundary
conditions assumed along the plate. Fourier transform is applied on the problem and using the
general theory of Wiener-Hopf procedure is used to obtain the Wiener-hopf equation. The
required diffracted field is obtained by inverse Fourier transform and then by the method of
stationary phase. Graphs are plotted to analyze that how the separated field (diffracted field by
finite plate) is affected by physical parameters in the presence and absence of cold plasma. The

contents of this chapter are published in Physics of Wave Phenomena 26 (2018) 342-350.

Chapter three explores the diffracted electromagnetic plane wave by a finite plate in the cold
plasma. Helmholtz equation is derived with the combined use of Maxwell’s equations and
electric field components in terms of magnetic field with cold plasma effects. Neumann
boundary conditions assumed along the plate. Fourier transform is applied on the problem and
using the general theory of Wiener-Hopf procedure is used to obtain the Wiener-Hopf equation.
The required diffracted field is obtained by inverse Fourier transform and then by the method of
stationary phase. Graphs are plotted to analyze that how the separated field (diffracted field by
finite plate) is affected by physical parameters in the presence and absence of cold plasma. The

contents of this chapter are published in Plasma Physics Reports 46 (2020) 1-9.

Chapter four examines the diffracted electromagnetic plane wave by a finite plate in the cold

plasma. Impedance is assumed on upper and lower surface of the plate. Therefore, Leontovich



boundary conditions are considered to study the effects of impedance on separated field.
Helmbholtz equation is derived with the combined use of Maxwell’s equations and electric field
components in terms of magnetic field with cold plasma effects. Fourier transform is applied on
the problem and using the general theory of Wiener-Hopf procedure is used to obtain the
Wiener-Hopf equations. The required diffracted field is obtained by inverse Fourier transform
and then by the method of stationary phase. Graphs are plotted to analyze that how the separated
field (diffracted field by finite plate) is affected by physical parameters in the presence and

absence of cold plasma.

Chapter five describes the diffracted electromagnetic plane wave by a symmetric finite plate in
the cold plasma. Impedance on upper and lower surface of the plate is taken into an account.
Leontovich boundary conditions are used to analyze the effects of impedance on the diffracted
field by symmetric plate of finite length. Helmholtz equation is derived with the combined use of
Maxwell’s equations and electric field components in terms of magnetic field with cold plasma
effects. Fourier transform is applied on the problem and using the general theory of Wiener-Hopf
procedure is used to obtain the Wiener-Hopf equations. The required diffracted field is obtained
by inverse Fourier transform and then by the method of stationary phase. Graphs are plotted to
analyze that how the separated field (diffracted field by finite plate) is affected by physical

parameters in the presence and absence of cold plasma.

Chapter six presents the diffracted electromagnetic plane wave by a slit of finite width in the cold
plasma. Surface Helmholtz equation is derived with the combined use of Maxwell’s equations
and electric field components in terms of magnetic field with cold plasma effects. Fourier
transform is applied on the problem and using the general theory of Wiener-Hopf procedure is

used to obtain the Wiener-Hopf equations. The required diffracted field is obtained by inverse



Fourier transform and then by the method of stationary phase. Graphs are plotted to analyze that
how the separated field (diffracted field by finite plate) is affected by physical parameters in the

presence and absence of cold plasma.
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Nomenclature

g dielectric permittivity tensor

€1, €2, £ elements of dielectric permittivity tensor
w operating frequency

Wp plasma frequency

We cyclotron frequency

e electric charge

N, electron density

Hy. magnitude of dc magnetic field vector

H, magnetic field perpendicular to the plane
s surface impedance

Mo free surface impedance

€0 electric permittivity in vacuum

o magnetic permeability

[ length parameter for plate and width parameter for slit
Kers propagation constant

k wave-number

0o angle of incidence

0 observation angle

EM electromagnetic




Chapter 1

Related literature survey and

Basic laws

Review of previous related studies for diffraction of electromagnetic waves by
semi-infinite, finite plates, slit and other different obstacles is made. Methodology of

solution is briefly discussed.

1.1 Background

The scattering of waves by semi-infinite plane, infinite plane, finite plane, slits
of finite width, gratings and periodic surfaces has always been a great interest of
analysis for researchers in the field of optics and electromagnetic theory. Regarding
the scattering analysis, various analytical and numerical techniques have been estab-
lished so far and many different structures have been assumed as an obstacle to study
the diffraction phenomena. The scattering and diffraction problems are tackled most
efficiently by using the number of methods of research. Poincare [1] and Sommerfeld
2] studied the half-plane problems which explored the new ideas for extensive study
of scattering of sound and electromagnetic waves. The Wiener-Hopf technique [3,4]
as a function of group theoretic approach for analysis of propagation of waves and
scattering problems related to canonical geometries was studied rigorously. Riemann-

Hilbert method had been considered in the theory of diffraction and propagation of



electromagnetic waves [5]. The mode-matching method had been applied for the
analysis of electromagnetic wave scattering [6]. Several classical problems based on
the analysis of line-source and point-source diffraction of electromagnetic waves had
been investigated which presented a canonical problem corresponding to the model
for GTD (geometrical theory diffraction). Kobayashi [7] studied and then investi-
gated the diffracted wave by a strip in using Wiener-Hopf technique to evaluate the
exact and asymptotic solutions. A brief historical perspective of Wiener-Hopf tech-
nique may be found in [8]. Diffraction phenomena of the plane waves by a finite
plate under the assumption of impedance on both sides of the surface of plate was
investigated using Wiener-Hopf technique [9].

The models proposed to elaborate the diffraction phenomena of electromagnetic (EM)
waves by an infinite slit in the conductible screen have been brought under the rig-
orous investigation through mathematical analysis. Morse and Rubenstein [10] used
the method of separation of variables for investigation of acoustic waves diffracted
by slits and ribbon. Clemmow [11] proposed a mathematical model for diffraction
by slit in which he derived a dual integral equation using spectrum description of
electromagnetic (EM) fields. He assumed the width of slit much larger or greater
than the wavelength giving the two complementary cases under the approximate
analysis. Hongo [12] investigated the diffraction phenomena due to parallel slits in
the conducting screen in which he used the Kobayashi potential technique. Imran
et al. extended the Hongo’s work to the slits in an impedance plane. He used the
Kobayashi potential technique to investigate the problem rigorously [13].

The EM-waves (electromagnetic waves) propagating across an ionized gas has got
the significant attention of researchers for many years. The scientists have studied
extensively on the radio waves or signals reflected from and transmitted through the
ionosphere [14-16]. It is known that plasma is such an ionized gas which is electrically
neutral and consists of substantially the same electron and ion densities. The study of
the problems modeled for the antenna characteristics, propagation of waves through

the plasma and radar cross section are of great importance. The wave propagation



and antenna characteristics of artificial satellites play a vital role in communicating
the signals between the earth station and vehicles. The frequent existence of dc mag-
netic field in plasma allows it to behave as an anisotropic, the best example is here
that the earth magnetic field is effective in cold plasma. The small and negligible
effect of pressure variations and finite temperature make plasma as a cold plasma.

While analyzing the diffraction problem, researchers thought to investigate the effects
of cold plasma. Keeping focus on that idea, scientists worked on the scattering of
electromagnetic for different structures in the presence of cold plasma. The diffracted
electromagnetic plane wave by a half-plane with impedance had been studied to in-
vestigate the effects of cold plasma using Wiener-Hopf technique [17]. Khan et al.
analyzed the diffracted E-polarized plane wave by parallel plate wave-guide with im-
position of impedance immersed in cold plasma, Wiener-Hopf technique along with
mode matching analysis was used [18]. Ayub et al. investigated the affecting cold
plasma on the dominant TEM-wave radiated by parallel plate wave-guide with im-
position of impedance, radiator behaving as a horn type launcher of surface wave
and a horn with impedance loaded [19]. The diffraction of EM-plane wave by a finite
plate under the effects of cold plasma was investigated using Wiener-Hopf technique

by assuming Dirichlet conditions on the plate [20].

1.2 Plane Wave

The waves of the following form

U@y, 2, t) = Re {% exp(ik - 7 — Lwt)}, (1.1)

are called plane waves of homogeneous waves. The sign of plus the exponent presents
the wave propagating in the direction of k= |k, ky, k,] which are denoted outgoing
waves. On the other hand, the sign of minus indicates the incoming waves which

propagate in the opposite direction of k.



1.3 Cold Plasma (Non-thermal Plasma)

Plasma being a fourth or gaseous state of matter is an ionized gas which is elec-
trically neutral medium and contains substantially the same densities of ions and
electrons. If the effects of variations of the finite pressure force and temperature are
taken to be small and ignored then plasma is termed as cold plasma. For example,

cold plasma can be found in the flow discharge in a fluorescent tube.

1.4 Fourier Transform

This method of complex integral transformation is a mathematical tool which
helps in solving the differential equations. This mathematical tool can be utilized for
majority of the problems of finite and infinite domain. First suppose that s is real

then usual Fourier integral transform of f(z) for all x € R can be defined as
F(s) = ]Of(x)e”xdx, (1.2)
and inversion can be defined as
flz)=— / F(a)e™"*ds. (1.3)

Now suppose that o = o+17 is a complex variable. We can define generalized Fourier
transform under suitable conditions on f. By starting with half-range transforms,
if |f(z)] < Aje™" as ¢ — oo and f(x) = 0 for z < 0, where A; > 0 and 7_ are

constants, then we have following function

F+(a):/f(x)e“”dx, (1.4)



which is analytic in the region 7 > 7_ of complex s—plane. Now the inverse Fourier

transform of F («) can found as
fl@) = 5 [ Felaye s, (1.5

where C' is a path of integration lying in the region of analyticity on which o varies
from —oo to oo.
Similarly, if f(z) =0 for z > 0 and |f(x)| < Age™" as © — —o0, where Ay > 0 and

T4 are constants, then
0

F (a) = / F@)erda, (1.6)

which is analytic in the region 7 < 7, of complex s—plane. Now the inverse Fourier

transform of F_(«a) can found as
f(x) = —/F_(s)e_‘o‘xds, (1.7)

where C' is a path of integration lying in the region of analyticity on which o varies

from —oo to co. If the above results for half range transforms are combined as

A e™% aszx — o0
(@) < (1.8)

Age™* as x — —00

with 7 < 7, then Fourier transform for full-range defined by (1.2) is an analytic
function of s in the band of analyticity (strip) 7 < 7 < 7, and inverse Fourier trans-

form is defined by (1.3) with path of integration lying within the band of analyticity.

1.5 Analytic Continuation

If f(z) is an analytic function in a domain ® and F'(z) is analytic in a domain ®’

such that F'(z) = f(z) in® and ® C ®’, then F is said to be an analytic continuation



of f.

Now we can say that analytic continuation is a process of extending an analytic
function defined in a domain to a larger domain. For example, the geometric series
at zero is given by

f)=14+z2+22+2°, (1.9)

which is convergent in the open disk as ® = {|z| < 1}. Multiplication of (1.1) by z

and subtraction of result from (1.9) gives

(1—-2)f(z2)=1 = f(2)= . (1.10)

Now we write (1.10) as

F(z) = 7 (1.11)

which is analytic in ® = C\{1}. Since {|2| < 1} C €\{1} i.e. ® C ©" and F(z) =

f(z) therefore, F(z) is analytic continuation of f(z).

1.6 Method of Stationary Phase

Counsider a function of the form

b

(o) = / 10 g (1)t (1.12)
where h(t) is a real function (known as phase function) and g(¢) can be complex
or real function and integration is along the real axis over the interval (a,b). The
stationary phase method helps in finding an asymptotic representation of (1.12).
Assume that there is one point tg € (a,b) such that h'(ty) = 0 but A"(ts) # 0. In
accordance with the idea of the method of stationary phase, we assume that only the

neighborhood of the point ¢ is of significance, and we write

oh(t) = ia {h(m) + L) e - to>2} . (1.13)

10



Then

(@) ~ 7g(t0) exp [m; {h(to) + %h”(to)(t _ t0)2} 1 dt (1.14)
This gives h L
f(z) ~ [%} / g(to) exp |:L5Eh(t0>:tbgj| (1.15)

where the sign of + or — corresponds to h”(ty) > 0 or h"(ty) < 0, respectively. For

deep analysis about this method, see [21, 22]

1.7 Wiener-Hopf technique

This technique was initially utilized to solve the integral equation which presents

most of physical problems. An integral equation of that form is given by
/K(fv—y)f(y)dyzg(x% 0<z<oo (1.16)
0

where the kernel difference k(x — y) and g(x) are known functions while the f(z) is
the function to be evaluated. The readers interested to know about this technique
generally, can study the salient points which are briefly outlined here. To proceed
the method, domain of integral equation is extended to negative real values of x that
is

o0

g(x), 0<zx<o0
/k(x —y)f(y)dy = (1.17)

0 h(xz), —oco<z<0

where h(z) is an unknown function. Applying the Fourier transform on (1.17) we get

the Wiener-Hopf functional equation
G () + H_(a) = K(a)F.(a) (1.18)

in which G, («) and K(«) are half-range and full-range Fourier transform of known

functions g(x) and k(z), respectively whereas the quantities H_(«) and F, («) are

11



half-range Fourier transform of unknown functions h(z) and f(x), respectively. The
right side of (1.18) is product form which comes from original integral operator being
a convolution type. The subscripts 4+, — indicate the region of analyticity for their
respective functions. The functions with subscript 4+ are analytic in the upper half
of complex a—plane and those with subscript — are analytic in the lower half of
complex a—plane and they overlap to form a strip or band of analyticity in which
all these functions are analytic. The Wiener-Hopf procedure depends on the product

factorization of transformed kernel function K'(«), in the form

K(a) = K. (a)K_(a). (1.19)

Use (1.19) enables to re-write (1.18) as

= K. (a)F.(a). (1.20)

Note that right hand side is analytic in its indicated region of analyticity. For left
hand side, first term needs to be tackled therefore, defining the sum-factorization for

first term on the left hand side, in the form of

= Ly(a) + L_(a). (1.21)

L_(a)+ — K. (a)F(a) — Ly (o), (1.22)

in which left hand side shows analytic behavior in the lower-half of complex a—plane
and right hand side shows analytic behavior in the overlapping upper-half plane of
complex av—plane. Analytic continuation allows to equate both sides of (1.22) to an
entire function, J(«), say. J(«) may be evaluated or specified under the physical
constraints on the behavior of functions f(x), g(z), h(z) as x — 0 and their corre-

sponding transformed functions in (1.22) as |a| — oo, and hence, F. («) and H_(«)
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are uniquely evaluated. The inverse Fourier transform finally results the required

unknown function f(z).
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Chapter 2

Analysis of Diffracted Wave by a
Finite Plate with Dirichlet

Conditions in Cold Plasma

This chapter addresses the investigation of electromagnetic plane wave diffraction
by a conducting plate of finite length in cold plasma. The boundary value problem
along with Fourier transform for the corresponding is used to formulate Wiener-Hopf
equation which is then solved by using Wiener-Hopf procedure in a standard way.
The separated field is evaluated for an anisotropic medium using asymptotic expan-
sion and modified stationary phase method. The results for the isotropic medium
can be achieved by taking ¢, — 1, e5 — 0. Graphical results are discussed for
separated field against observation angle for various physical parameters in isotropic

and anisotropic media.
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2.1 Modelling of the Helmholtz Equation

The dielectric permittivity tensor evaluated for cold plasma is presented by

E=1 189 & 0 ; (2.1)
0 0 e,
with
2 271 2 -1
w w w We W
and
| (“’p)Q (2.3)
Ey = - )
w
where
N, e? Hy.
Wl = _6, Wy = |e|,u—0d. (2.4)

meog me
Maxwell’s equations, which are well-known, are proved to be valid in cold plasma
with the dielectric permittivity tensor are used to obtain electric field components in

expressions of the magnetic field H, as given by

LE] OH, (z,y) €9 OH. (v,y)
B, = , 2.5
weo (63 —e3) Oy * weg (62 —€3) Oz (2:5)
and
g2 OH.(x,y) te1  OH. (z,y)
E, = — . 2.6
Yoweg(e2—¢22) oy weg (62 —€2)  Ox (2.6)

Then the Helmholtz’s equation satisfying H, can be obtained using Maxwell’s equa-

tions along with (2.5) and (2.6), as given below:

OucH (x,y) + Oy H. (x,y) + k2 H. (x,y) = 0, (2.7)
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Figure 2.1: Geometrical description of the model.

where propagation constant is

ef — &3
kepr =k , k = wy/eolio- (2.8)
€1

Here, kes¢ is dependent of k, e; and €9, time is taken as behaving harmonically as

exp(—wwt) and will be considered as suppressed throughout the analysis.

2.2 Mathematical Modelling of the Problem

An EM-plane wave incident on a conducting non-symmetric plate of finite length
is considered along y = 0 with extremities z = —[ and = = 0 of the plate, as can be
seen in Fig. 2.1. The model is proposed for investigation of effects of cold plasma on

diffraction phenomena. The total field can be expressed as a sum of H"¢(z,y) and

HZ(Ia y)
H(z,y) = H™(z,y) + H.(z,y), (2.9)

where H,(x,y) is the diffracted field and H™¢(x,y) is the incident field of plane wave

making an angle ¢y with horizontal, which is defined as
H"(x,y) = exp{—tkess(z cosy + ysinby)}, (2.10)
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where k. is given in (2.8). Since the medium for present model is taken to be slightly
lossy, so for convenience of analyticity, we can consider that k.;; = Re{kesr} +
tIJm{k.rr} has very small positive imaginary part (0 < IJm{k.sr} < Re{kess}) and
the solution for real of k.sf can be attained by assuming Jm{k.sr} —> 0. The
boundary value problem (BVP) under consideration is expressed in terms of the
magnetic field and it is adequate to denote the diffracted field in different zones. The
total field HI" (x,y) in the range x € (—o0, 00), satisfying the Helmholtz’s equation
as

(000 + Oy + kﬁff} H (z,y) = 0. (2.11)

The diffracted field satisfying Helmholtz’s equation can be extracted from above

equation as follows:

[0z + Oy + KZp5) H. (x,y) = 0. (2.12)

Our aim is to determine the diffraction of incident electromagnetic (EM) plane wave
by a finite plate in cold plasma. To proceed further suitable boundary conditions are
required. Therefore, here for the present model, Dirichlet boundary conditions along

the plate assumed as
H(z,0%) =0, for —1<z<0, (2.13)

and continuity relations are taken into account, which are defined as

H®(xz,07) = H(2,07), for —oco<ax<—I, x>0,
(2.14)

Oy HY (2,0%) = 8, H (x,07), for —oco <z < —I, x> 0.

17



2.3 Transformation of Problem

Fourier transformation w.r.t x variable for the present model is defined as

1 o
Floy) =—= [ H.(z,y)e*dx
Vor 4 (2.15)

=Fi (o,y) + e F_(a,y) + Fi (e, y),

where a = Re{a} + Im{a} = o + 7. The asymptotic behavior of H, (z,y) for

xr — o0 is taken into account which is defined as

O <e_jm{keff}x> for v — oo,

H, (v,y) = (2.16)

O <ejm{kﬁff}“°sgo> for x — —o0.

F. (a,y) behaving as a regular function of « lies in the upper-half of the a—plane
i.e. in the region Jm {—k.fr} < IJm{a} and F_ (a,y) behaving as a regular function
of a lies in the lower-half of the a—plane i.e. in the region Jm{a} < Jm{k.rscosty}
and both these regions together form a band of analyticity (i.e. a common region
where the upper- and lower-half planes are overlapped, can be seen in Fig. 2.2) and
all the functions including F; (o, ) are analytic functions of « in that common region

i.e. in the region Jm {—k.fr} < Im{a} < Im{k.sscosby}, thus, we can define

1 o
Fi(a,y) = —/HZ (x,y) e “"dx, (2.17)
V2
"o
X -l
F_(a,y) = TS / H, (z,y) ez, (2.18)
. 0
Fi(a,y) = — | H, (z,y) e “dx. (2.19)
V2
i
) 1 _ e—Ll(Oc—kJeff COSQ())
F"(a,0) = (2.20)

V271 (a — kepgcos )
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Use of Fourier transform for (2.12)-(2.14) yields

(j—; + v2> F(a,y) =0, (2.21)
where 7 (@) = W

Fi(a,0%) = =F"(a,0), (2.22)

Fi(@,07) = =F"(,0), (2.23)

and
F_(a,07) = F_(a,07) = F_ (a,0),

F—i— (Oé,O+) :‘F-‘r (aaoi) :‘F-‘r ((I,O),
0,F- (a,0%) = 0,F (a,07) = 8,F_ (,0),

(2.24)

8y.F+ (OZ, O+) = ayf+ (O{, 0_) = 8y.F+ (Oé, O) .

2.4 Modelling of Wiener-Hopf Equation

The solution of (2.21) satisfying the radiation conditions is given by

A (a)e™Y  y >0,
Flagy -4 = (2.25)
Ay (a) ey <.

Now with the aid of (2.15) and (2.22)-(2.25), following Wiener-Hopf functional equa-

tion is computed as
Fi(a,0) 4 e F_(a,0) + K (a) F (a,0) = AG(v), (2.26)

where K («) is the kernel function and given by

K(a) =~ (2.27)
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Figure 2.2: The description of analytic continuation in the complex
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and
~ 1
F (a,0) = 5 [F (o,0%) = F/ (o, 07)], (2.28)
A=—u (2.29)
g 1— efL(afkeff cos@o)l 530
a) = . .
() V27 (@ — ks cos ) (2:30)
2.5 Wiener-Hopf Procedure
The kernel function arising from (2.26), given in (2.27) is factorized as
1
K(a) = e =Ky (o) K- (a) (2.31)
and
v (@) =74 (@)7-(a), (2.32)
The factors appearing in (2.31) and (2.32) are computed as
Ks(a) = ——t (2.33)

\/k;effioz’
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and

Vi (@) = Vkepr +a, - () = \Vkepyr — a. (2.34)

The factors K4 () and 4 () are regular functions of « in upper-half of the a—plane
Jm{—k.sr} < Im{a} whereas the factors _ () and v_ (o) regular functions of « in
the lower-half of the a—plane Jm{a} < Jm{k.sscosfy}. The solution for large k.ssr
<r = \/W) may be obtained in an approximate form on the basis of analysis
made by using Wiener-Hopf technique. Equating the terms of (2.25) with positive
sign on one side of the equation and the terms with negative sign on the other side
results into the same function J(«), say, which is a polynomial function, thus J(«)
is an entire function. Analytic continuation (see Fig. 2.2) along with arguments
involving extended form of Liouville’s theorem allows to equate the function J(«) to

zero, hence, we obtain the following results

Fo(0,0) = % (G () + T (a) ), (2.35)
F_(a,0) = %27(;)) (G2 (=) + T (—)Ca), (2.36)
where
1 1 1
Gila) = (a0 — kegg cosby) (IC+ (a) K (ks cos 00)) —exp (=tlkery cos bo) Ra (@),
(2.37)
o) = &P (tlkesycosby) I 1 B N
G2 () (a4 kepscosby) (ICJr (a) IC+(—keffcos€0)) Rala), (2.38)
C = }C+ (keff) (g2 ( Eff) il ’,CCJ_%- <(];ej;i”)) << e:;]?) (keff)) ) (239)
oy Ex s it ;;;eg;c;s;;;@os—ggyl il at] g
T (a) = %E_lw_ (=t (kuys +a)1) (2.42)
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By = 2exp (thessl) ()2 ()72, (2.43)
and o
W,y (s) = / vtexp(~v)
;o Ut (2.44)
S\ 1,1
=T'(n+1)exp <§> §2"2W_ 1 (41,10 (8)

where W, ,, is called as Whittaker function and s = —¢ (ks + )l and n = %
From (2.25) and (2.26), the diffracted field in transformed domain is given as

follows:

F(a,y) = —@ [F4 (a,0) + Fi (@, 0) + e F_ (a,0)] e, (2.45)

where

Fi(a,0) = —AG (), and A= —. (2.46)

The diffracted field in the xy—plane is obtained by inversion of F («, y) that is defined

as

1 o
H.(x,y) = E/ F(a,y) e oWl dq, (2.47)

Insertion of (2.45) into (2.47) provides the following result

H.(z,y) = [ﬂ (a,0) + Fi (,0) + e L F (a,0)] e oWl gq,

1 <1
a vV 2T /—oo IC(Oé>
(2.48)

Now the diffracted field H,(z,y) comprises of two fields H:?(z,y) and H™(z,y)
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where HP(x,y) is the separated field given as

HZ?P (2,y) =

17 (—toz—irly])
/ AR, () e o

o ) K () Ky (keggcosby) (v — kesrcosby)

(2.50)

do,

L1 7 Aexp (—tl (0 — gy c03 00) K. (—a) el o7
27 IC () Ky (—keggcosby) (ov — kegrcosby)

and H"™(x,y) is the interacted field given as

Ky () Ry () e tkers costo

oo

1 A —Ki () T () Gy
%_ K (a)

H™ (2,y) = el-ee=ll g, (2.51)

+K4 (—a) Ry (—a) e74e
—K4 (—a) T (—a) Cpe™e

The separated field given by (2.50) have two parts, one presenting the diffraction
by the edge at x = 0 and other presenting the diffraction by edge at x = —I. The
interaction field given by (2.51) presents the interaction of the edges i.e of the one

edge of the plate upon the other.

2.6 Acquirement of Diffracted field

Now, to cope with the integral appearing in the result of diffracted field, asymp-
totic analysis may be used considering the field in the far field zone. For this purpose,
the polar co-ordinates as x = rcos 0, |y| = rsin@ are introduced and following trans-

formation helps in the deformation of contour.
a=—kepcos(0+1() for 0<O<m, —o0<(<o0. (2.52)
Hence, applying the method of stationary phase, (2.47) takes the following form

H.(z,y) = i;(—keff cos 6, y) sin 6 exp <LkeffT - LZ) . (2.53)
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Similarly, using the method of stationary phase for integrals in (2.50) and (2.51), we

obtain
H:P (z,y) = —L thiess fsep (—kess cos@)sin @ exp (Lkeffr + LZ> , (2.54)
vV 2 keffr 4
Hi”t (x,y) = —L thiess fint (—kegg cos)sin 6 exp (Lk:effr + Lz) , (2.55)
vV 2 keffr 4
where

AK 4 (—keggcos)
K (—=keprcos ) Ko (—kepfcosby) (—kesrcos® — keppcosby)
Aexp (thesr (cos@ + cosby) ) K (ke cosb)
IC(—kesrcost) Ky (keppcosby) (—keppcost — keprcosby)’

(2.56)

Jsep (=kegycost) =

and

Ky (—kesscos) Ry (—keysyscos ) etkesscosbo
A +K 4 (keppcos ) Ry (kegs cos @) ettherr cost

fint (—kesrcost) =
K (—kegs cos ) — Ky (—keppcos@) T (—kespcosf)Cy

—IC+ (keff COS 9) T (l{?eff COS 9) C2€lee.ff cos
(2.57)

The function given by (2.53) expresses the asymptotic representation of the far field
of the diffracted field as k.;sr — oo. It can also be described that the asymptotic
expansion of H,(z,y) proves to be valid for any value of observation angle everywhere
in the space. Observation depicts that the separated field is actually the diffraction
of EM-plane wave by a non-symmetric plate of finite length with edges x = 0 and
x = —[. The separated field is the resultant wave field providing an insight to the
physics of the problem. Whereas the interacted field appears due to the interaction
of one edge upon the other providing no physics of the problem. The separated field
provides the physical perception of diffraction phenomenon at the boundary defined
for associated model. Therefore, only the separated field is taken into account while

describing the diffraction phenomena at the defined boundary. Furthermore, the
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interaction field appears due to dual diffraction by the two edges which has already
been counted by the separated field (or diffracted field by a finite length plate). Also,
extending the plate length upto infinity discards the involvement of terms appearing
due to the interaction and consequently, the separated field appears to be diffracted
field. Therefore, only the separated field is focused to discuss graphically in the next

section.

2.7 Results and Discussion

In this section, the behavior of separated field versus observation angle 6 for
different physical parameters such as angle of incidence 6y, wave-number k, plate
length [, permittivity parameters €; and 5 in the isotropic medium and anisotropic
medium of cold plasma is discussed. In Figs. 2.3, keeping all other parameters fixed,
results for separated field for increasing values of 0, are presented. The incremental
trend of angle of incidence causes the amplification of separated field. It is also
observed by comparing Fig. 2.3b with Fig. 2.3a that presence of cold plasma causes
a reduction in the amplitude and expansion in the wavelength of separated field,
consequently the number of oscillation are lessened. In Figs. 2.4a, 2.4b, the separated
field is amplified by increasing the wave-number. The number of oscillations increases
for the increment in wave-number that means the wave frequency moves towards the
high frequency range. Figs. 2.5a, 2.5b are graphical descriptions of separated field
for variation of length of plate [. An amplification in the separated field is noticed
for increasing length of plate. The separated field oscillates rapidly on extending
the plate length as can be seen in Fig. 2.5a in the absence of cold plasma. On
comparative study of separated field plotted with effects cold plasma with that in
the absence of cold plasma, it is explored that presence of cold plasma has expanded
the wavelength, reduced the amplitude and consequently, the number of oscillation
are decreased. This means that presence of cold plasma as prevented the separated

field from dispersion. Fig. 2.6 shows the impact of €; on the separated field. The
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drastic effects of cold plasma on the amplitude of separated field has been studied.
The separated field is amplified by increasing ¢;, it happens due to fixed densities
of electrons and ions in cold plasma, an increase in operating frequency w causes an
increase in €; ~ 1 — (w,/w)? (for high range frequency signal). The electric field
of such a high frequency energizes the electrons to oscillate about the cold ionic
center, and such oscillating electrons get diffracted rapidly thereby amplifying the
separated field. In Fig. 2.7, opposite behavior of separated field is observed for e,.
The increasing value of €5 causes the reduction in signal frequency resulting into
decreasing amplitude of separated field by electron oscillation under low frequency.

Further, the separated field shows the nulls around observation angle 0 and 7.
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Figure 2.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma.
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2.8 Conclusions

From above analysis, we conclude that the diffraction of EM-plane wave finite
plate under the assumptions of Dirichlet conditions is affected rigorously by physical
parameters in the presence of cold plasma. It is noticed that separated field is
amplified by different angles of incidence, wave-number, plate length, £; and reduced

by £9.
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Chapter 3

Diffraction Affected by Cold
Plasma with Neumann Conditions

on Finite Plate

Present chapter elaborates the investigation of diffraction phenomenon of EM-
plane wave by a non-symmetric plate of finite length in cold plasma. The Wiener-
Hopf equation is formulated with the aid of boundary value problem along with
Fourier transform for present model. The theory of Wiener-Hopf procedure is used
to cope with resulting equation. Asymptotic expansion and method of stationary
phase are used to obtain the result for diffracted field by finite plate (separated field)
under the assumption of Neumann boundary conditions in the anisotropic medium.
The case of isotropic medium has been discussed by assigning the particular values
to elements of permittivity tensor. Impact of physical parameters has been discussed

graphically for the isotropic and anisotropic medium.
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3.1 Modelling of the Helmholtz Equation

The dielectric permittivity tensor evaluated for cold plasma is expressed as

E=1 189 & 0 ; (3.1)

]\[6“ e “‘ Ildc
— We = —| ’ .

2
- C
P mey m

(3.4)
The well known Maxwell’s equations are proved to be valid in cold plasma with
dielectric permittivity tensor given by (3.1). The electric field components in terms

of magnetic field obtained by combined use of Maxwell’s equation and permittivity

tensor (3.1) are described as

LE1 0H, (x,y) ) 0H, (x,y)
E, = , .
weg (62 —e3) Oy * weg (62 —e3) Ox (8:5)
and
e, OH.(z,y) ier  OH, (z,y)
E, = — . 3.6
Y weg(e?—¢e2) Oy weg (62 —€3)  Ox (3.6)

Then, the Helmholtz’s equation satisfying H, in cold plasma is obtained by Maxwell’s

equations along with use of (3.5) and (3.6), as follows :

artz (13 y) + ayy}[z (.Z', y) + kgffHZ (ma y) = 07 (37)
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Figure 3.1: Geometrical description of the model.
where ks is the propagation constant which is given as

2 _ 22

kg = k 516 2 and k= wy/Foh. (3.8)
1

Here, kcs¢ is dependent of k, e; and e9, time is taken as behaving harmonically as

exp(—wt) and will be considered as suppressed throughout the analysis.

3.2 Mathematical Modelling of the Problem

Here, for the present model EM-plane wave is considered to be incident on a
conductible non-symmetric finite length plate located along y = 0 with one end
located at origin i.e. at x = 0 and other end lies on the negative xr—axis that is
r = —I, as displayed in Fig. 3.1. The incident plane wave considered here makes an
angle 6y with horizontal axis.

The total field for the present model is expressed as

HY 2, y) = H™(2,y) + H,(z,y), (3.9)
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where H™ is the incident field, which is defined by
H"(z,y) = exp{—tkess(x cosy + ysinby)}, (3.10)

where k. is given in (3.8). For convenience of analysis, medium is considered to be
slightly lossy as in kepp = Re{kess} + 1 Im{kerr}, 0 < Im{kerr} < Re{kesr} and the
solution for real k.fr may be achieved by assuming Jm{k.rr} — 0. The boundary
value problem (BVP) under consideration is expressed in terms of the magnetic field
and it is adequate to denote the diffracted field in different regions. The total field
H'" (x,y) in the range x € (—o00, 00) , satisfying the Helmholtz’s equation is described
as

[0z + Oy + K25 HE (2,y) = 0. (3.11)

The diffracted field satisfying Helmholtz’s equation extracted from above equation is

expressed as

[am + Oyy + kgff} H, (v,y) =0. (3.12)

Our aim is to determine the diffraction of incident electromagnetic (EM) plane wave
by a non-symmetric plate of finite length in cold plasma. To proceed further suit-
able boundary conditions are required. Therefore, for the present model Neumann

boundary conditions on the surface of plate are considered, which are defined as
O,H" (2,0¥) =0, for —1<z<0 (3.13)

and continuity relations are defined as

H'(z,07) = H(2,07), for —oo<z < —Il, x>0,
(3.14)

O, HP (x,0%) = 0,H"(x,07), for —oco<z<—I, z>0.
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3.3 Transformation of Problem

Use of Fourier integral transform for x variable gives the solution of boundary

value problem

1 o0
Floyy) = — | H,(x,y)edx
Y Ve _é ’ (3.15)

=Ty (o, y) + e F_(a,y) + Fi (o, y),

where o = Re{a} + Im{a} = o + v7. The asymptotic behavior of the diffracted

field H,(x,y) for z — +o0 is defined as

O <e_jm{k5ff}z> for v — oo,

H, (v,y) = (3.16)

O <ejm{k€ff}“0890> for + — —o0.

Fi (a,y) is a regular function of « in upper-half of a—plane i.e. in the region
—Jm{kesr} < Im{a} whereas F_ (a, y) is a regular function of « in the lower-half of
a—plane i.e. in the region Jm{a} < Im{k.srcosfy} and the common region formed
by overlapping of these two regions, is a band of analyticity (see Fig. 3.2) in which all
the functions including F; (o, y) are analytic in which all the functions are analytic,

thus, these functions are defined as

1 o
Fi(a,y) = —/HZ (x,y) e “"dx, (3.17)
V2 J
X -l
F_ (a,y) = Nor / H, (z,y) e dz, (3.18)
. 0
Fi(a,y) = —/HZ (x,y) e ““dx. (3.19)
V2
i

1 — e—Ll(a—keff cos 90)

V271 (a — kepgcos )

Fme(a,0) = (3.20)
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Use of Fourier transform (3.12)-(3.14) yields,

(j—; + v“’) F (o) =0, (3.21)

where v (a) = /kZ;; — a?.

Oy Fi (0, 07) = =0, F™ (,0),

(3.22)
0,1 (@,07) = =9, (a,0),
and
Fo(a,0%) = F (a,07) = F- (a,0),
Fi(0,0%) = Fy (a,07) = Fy (a,0), (3.23)

0y F_ (a,0") = 0y F_ (a,07) = 9y F_ (0, 0),
ayf-+ (Oé, O+) = @y.}—+ (CY, 0_) == 8y.F+ (Oé, 0) .

3.4 Modelling of Wiener-Hopf Equation

The solution of (3.21) satisfying the radiation conditions is given by

A (@)e™¥  y >0,
Flay)=4 (@) (3.24)
Ay (a) ey <0,

Now with the aid of (3.15) and (3.22)-(3.24) the following functional Wiener-Hopf

equation is computed as
Fo(a,0) + e F (a,0) + K () Fi (o, 0) = AG(a), (3.25)
where K(«) is the kernel function, which is given as

K (a) = vy, (3.26)

Fi(a,0) = 5 [ (0,0%) = Fi (0,07)] (3.27)
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Complex o -plane Cold Plasma

Figure 3.2: The description of analytic continuation in the complex
a—plane.

A = —keff sin 90, (328)
g 1— e—L(a—keff Cos@o)l
= . 3.29
() V27 (o — ke gy cosby) (3.29)
3.5 Wiener-Hopf Procedure
The kernel factor arising from (3.25), given (3.26), is factorized as
K(a) =y =Ki(a)K_(a), (3.30)

The factors K, and K_ are computed as

IC:E (a) == €L%\/ k?eff:l:Oé, (331)

and

7 (@) =74 (@)v-(a), (3.32)

Vo (@) = Vkepr +a, 7= (a) = Vkep — . (3.33)

38



The factors K, (a) and 4 («) are regular functions of a in upper-half of the a—plane
Jm{—kerr} < IJm{a} whereas the factors K_ (o) and ~v_ (a) regular functions of
a in the lower-half of the a—plane Jm{a} < JIm{k.srcosby}. For large kessr
(7’ = \/m>, a solution in approximated form may be attained through made by
Wiener-Hopf technique. Equating the terms of (3.25) with positive sign on one side
of the equation and the terms with negative sign on the other side results into the
same function J(«), say, which is a polynomial function, thus J(«) is an entire func-
tion. Analytic continuation (see Fig. 3.2) along with arguments involving extended
form of Liouville’s theorem allows to equate the function J(«) to zero, hence, discard

of detailed calculations, we obtain the following results

AK (a)

}"jr (a,0) = o (G () + T () Cy), (3.34)
F (0,0) = A%%(TO‘) (Go(—a) + T (—a) Cy). (3.35)
where
1 1 1
Gi(a) = (ov — kegycosty) (IC+ (a) K. (kegg cos 00)) —exp (—kesy cos o) Ra (@),
(3.36)
o) = &P (tlkegycosby) I 1 B N
G2 () (o + kepycosth) (ICJr () IC+(—k;eff00590)) Ra(a), (3.37)
C1 = Koy (kegy) (g2 : eff) u ’,Cé((,;f;;)) ((e:ﬁ) (keff)) L (338)
o= K (hgy) (S G B G Ll TRy - 339
Riz(a) = P iy ;r]je{; C;Skijj” 208_9:;)1 B l)]’ (3.40)
T(a) = %E_lw_ (=t (kuys +a)1) (3.41)
E_y = 2exp (thesl) (1) (1)73, (3.42)
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and

W,y (p) = / %f“)du
y 4P (3.43)
p 1
=T+ e (5) "Wy 1. (),
where p = —t (kejy + @)l and n = —%. W is known as Whittaker function.

From (3.24) and (3.25), the diffracted field in transformed domain is given as

follows :

Floy) = — Fo (0,0) + F (a,0) + e F (a,0)] e, (3.44)

K(a)

where

Fi (@,0) = —AG (o), and A = —ks;sin ;. (3.45)

The diffracted field in the zy—plane is obtained by application of inverse Fourier

integral transform of F («,y) that is defined as

o0

1
/ F(a,y) el ga, (3.46)

H (v,y) = N

Inserting (3.44) in (3.46), we obtain

H.(z,y) = F (o, 0) + F/ (v, 0) + e F (a, 0)] el o,

171
kol
(3.47)

Now H,(x,y) comprises of two sub fields H*?(z,y) and H"(z,y) as described by
H.(2,y) = H:(z,y) + H" (2, y). (3.48)

Here, H:*(x,y) denotes the separated field and H™(z,y) denotes the interacted

field. After using (3.34), (3.35) and (3.45) in (3.47), H:*’(x,y) and H"(z,y) are
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evaluated as follows :

sz ly)
Hsep LC y / A’C-‘r ( ) dov
o2r ) K(a (kepfcosBy) (o — keggcosty)

(3.49)

1 / Aexp (=l (o — keppeos ) Ky (—a) el—taz=olyl)
+ 5= da,
27 K (a) Ky (—kegpcosty) (o — kesrcosby)

and
’C+ (Oé) Rl (Oé) elekeff cos g
1 ra KL (a)T () C
H™ (z,y) = By /ICA (@ T ()G elmtar=lldn. (3.50)
TJ RO K (ca) Ry (a) et

—K4 (=) T (—a) Coe™He

The separated field H(x,y) given by (3.49) have two parts. One presents the
diffraction by the edge at x = 0 and other presents the diffraction by edge at © = —I.
The interaction field H™ (z,y) given by (3.50) presents the interaction of one edge

upon other which is already counted by the separated field.

3.6 Acquirement of Diffracted field

The diffracted field in the far field zone now may be tackled by using the asymp-
totic evaluation of the integrals appearing in (3.46), (3.49) and (3.50). For this pur-
pose, the polar coordinates as z = rcosf, |y| = rsin@ are introduced and following

transformation helps in the deformation of contour.
a=—kercos(0+(), for0<f<m, —oo<(<o0. (3.51)
Hence, applying the method of stationary phase, (3.46) takes the form as follows :

H(z,y) = —L_F (- kegpcosB,y)sin 6 exp (Lk}effT + L%) . (3.52)

\/k’effr
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Similarly, after using the method of stationary phase to cope with the integrals

appearing in (3.49) and (3.50), we obtain the following results following results

1 Lk)eff . ™
H? (z,y) = ——== wep (—Kkerrcosf)sin 0 ex (Lk}e r—+ L—) , 3.53
(2, y) Nors keffrf p (—kegs cost) D (thessr + iy (3.53)
HM (z,y) = b theys fint (—kegg cos)sin 6 exp (Lk}effT + Lz) , (3.54)
vV 2 keffr 4
where

AK 4 (—keggcos)
K (—=keprcos ) Ko (—kepfcosby) (—kesrcos® — keppcosby)
Aexp (thesr (cos@ + cosby) ) K (ke cosb)
IC(—kesrcost) Ky (keppcosby) (—keppcost — keprcosby)’

(3.55)

Jsep (=kegycost) =

and

Ky (—kesscos) Ry (—keysyscos ) etkesscosbo

A +K 4 (keppcos ) Ry (kegs cos @) ettherr cost

in _ke ) =
Jint (ks s c056) IC(—keggcost)

— Ky (—keppcos@) T (—kespcosf)Cy

—IC+ (keff COS 9) T (l{?eff COS 9) C2€lee.ff cos
(3.56)

The result presented by (3.52) gives the asymptotic representation of the far field
of the diffracted field as k.;pr — oo. It can also be elaborated that the asymp-
totic expansion of H,(x,y) proves to be valid for every angle of observation in the
entire space. Observation depicts that the separated field is actually the diffraction
of EM-plane wave by a non-symmetric plate of finite length with one edge at z = 0
and other at x+ = —[. The separated field is the resultant wave field providing an
insight to the physics of the problem. Whereas the interacted field appears due to the
interaction with edge of plate upon the other providing no physics of the problem.
The separated field provides the physical perception of diffraction phenomenon at the
boundary defined for associated model. Therefore, only the separated field is taken

into account while describing the diffraction phenomena at the defined boundary.
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Furthermore, the interaction field appears due to dual diffraction by the two edges
which has already been counted by the separated field (or diffracted field by a finite
length plate). Also, extending the plate length upto infinity discards the involvement
of terms appearing due to the interaction and consequently, the separated field ap-
pears to be diffracted field. Therefore, only the separated field is focused to discuss

graphically in the next section.

3.7 Results and Discussion

In the presented section, the separated field versus observation angle 6 under the
effects of physical parameters such as the angle of incidence 6y, the wave-number
k, the length of plate [ and the elements of permittivity tensor 1, €9 is elaborated
graphically. Figs. 3.3, 3.4 display the variation of separated field due to angle
of incidence by keeping all other parameters fixed with [ = 5 and [ = 25. The
comparative study of Fig. 3.4 with Fig. 3.3 elaborates that large value of plate length
causes the squeeze in wavelength, resulting an increase in number of oscillations and
amplification of the separated field. Effects of cold plasma can be seen by comparative
analysis of Figs. 3.3b, 3.4b with their respective Figs. 3.3a, 3.4a where there is no
cold plasma. By observation it is depicted that presence of cold plasma has expanded
the wavelength and caused of vertical shift in separated field. Figs. 3.5a, 3.5b are
sketched to display the fluctuation of separated field for wave-number. For increasing
wave-number, the number of oscillations of the separated field increase. This means
that wave frequency moves towards the high frequency range. Figs. 3.6a, 3.6b are
graphical description of separated field for variation of [ in the absence and presence
of cold plasma, respectively. Analysis of plot describes that extending the length
of plate amplifies the separated field. The comparative study of the separated field
in the presence of cold plasma with separated field in the absence of cold plasma
has explored that wavelength of separated field has expanded and vertical shift is

occurred. Fig. 3.7 explores the behavior of separated field for ;. A decay in the
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separated field occurs for the ;. Fig. 3.8 elaborates the behavior of separated field
for e9. The separated field gets a slight amplification for increasing values of €. An
enhancement in g5 is caused by an increase in cyclotron frequency. Consequently,
magnetic Lorentz force increases and leads to an enhancement in the amplitude of

separated field (field diffracted by a finite length plate).
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Figure 3.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma when [ = 5.
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3.8 Conclusions

This chapter has elaborated the analysis of EM-plane wave diffracted by finite
plate with Neumann conditions immersed in cold plasma, rigorously. It is noticed
that separated field gets affected by (a) extending the length of plate (b) keeping
different angle of incidence (¢) changing the wave-number (d) assigning different

values to permittivity elements of cold plasma.
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Chapter 4

Exact and Asymptotic Analysis of
Wave Diffracted by a Finite Plate

with Impedance in Cold Plasma

This chapter provides comprehensive briefing about the diffraction of electro-
magnetic (EM) plane wave by a non-symmetric finite plate with impedance lying
in the cold plasma. Leontovich boundary conditions are assumed to consider the
impedance on the both surfaces of the plate. Helmholtz equation is formulated using
the Maxwell’s equations with the effects of cold plasma. The Fourier transform is
applied and then Wiener-Hopf equations are obtained. The method stationary phase
(an asymptotic method) is used to get the result of diffracted field by a finite plate

(separated field). Behavior of separated field is discussed graphically.

4.1 Modelling of the Helmholtz Equation

The dielectric permittivity tensor to count the presence of cold plasma is defined

as
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and
| (“”)2 (4.3)
Ex=1—\— )
w
with
N,e? Hye
w2 = e, lelioHac (4.4)
meg m

It is known that Maxwell’s equations are proved to be valid in cold plasma with
dielectric permittivity tensor. Use of Maxwell’s equation along with (4.1) gives the

electric field components in terms of magnetic field which are expressed as

L&y 0H, (%y) €2 OH, (fﬂ,y)
o— 4.
o@D Oy T en@ D o 49)
and
€2 a]{z (Ly) (251 8-[—-IZ (xay)
E, = — . 4.
Y weg(e?—<3) Oy weg (62 —€3)  Ox (4.6)

Thus, the Helmholtz’s equation satisfying H, obtained from Maxwell’s equations

along with electric field components (4.5) and (4.6), is computed as follows :

OpeH (2,y) + 0y H., (x,y) + k:gfsz (z,y) =0, (4.7)

with propagation constant

g2 — g2
kepr =k ——=2, k= w\/Eolo. (4.8)
€1

Here, k. is dependent of k, €1 and €9, time dependence is taken to be as harmonically

behaving as exp(—uwwt) and will be counted as suppressed throughout the analysis.
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Figure 4.1: Geometrical description of the model.

4.2 Mathematical Modelling of the Problem

The finite non-symmetric plate with surface impedance is lying along y = 0 with
edges at x = —[ and =z = 0 as displayed in Fig. 4.1. The EM-plane wave incident on

the non-symmetric finite plate is taken as
H!"(z,y) = exp{—tkess(x cos by + ysinby)}, (4.9)

where amplitude of the magnetic field is taken 1 A /m and 6 is the angle of incidence

with x—axis. Here, the total field can be expressed as follows:
H(2,y) = H"(x,y) + HI (2, y) + H.(,y). (4.10)

Here, the function H,(x,y) is the diffracted field and H"*/(x, 1) denotes the reflected

field, which is defined as

Nssinfy — 1

H' (2,9) = exp{—tkesr(xrcosfy —ysinby)}. 4.11
z If

Nssinfy + 1

For convenience of analyzing the model, medium is assumed to be slightly lossy as

in kepp = Re{kesr} +Im{kesr}, 0 < Im{kesr} < Re{kesr} and the solution for real
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kess may be achieved by assuming Jm{k.ss} — 0. The boundary value problem
(BVP) under consideration is elaborated in terms of the magnetic field potential
and it is adequate to denote the diffracted field in the different regions. The total
field H" (x,y) in the range x € (—o0, 00), that satisfies the Helmholtz’s equation as

follows :

(000 4 Oy + k:gff} H (2,9) =0, (4.12)

diffracted field satisfying Helmholtz’s equation obtained from (4.12) is given as fol-

lows:

[0z + Oyy + k2] H. () = 0. (4.13)

Our focus is to evaluate the diffracted field of EM-plane wave incident on the non-
symmetric plate of finite length. Same impedance is assumed on both upper and lower
surface of the finite plate. Therefore, Leontovich boundary conditions are taken into

account to consider the effects of impedance as

2

k
0, H' (2, 0%) — 1 220, H!! (3, 07) = £1-LLyon, H(2,07), for —1 <2 <0, (4.14)
€1 Who

where 19 = \/i0/€0. The continuity conditions are

H'(xz,07) = H(2,07), for —oco <z < —I, x>0,
(4.15)

ayH,EOt(%Oﬂ = 3yH§°t(x,0’), for —co<x < —=l, x>0.

4.3 Transformation of the Problem

Now we apply the Fourier transform on the boundary value problem (BVP) with

respect to variable x as

1 o0
Floy) =—= [ H.(z,y)e*dx
Vor 4 (4.16)

=Fi (o,y) + e F_(a,y) + Fi (o, y),
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where a = Re{a} + Im{a} = o + 7. The asymptotic expression of H, (z,y) for

T — Fo00 is taken into account as

) ) O <e—3m{keff}x> for z — oo,
- (2,y) = 0 <63m{keff}xcos€o> for r — —o0.

(4.17)

Fi(a,y) is the regular function of « in the upper half-plane Jm{—k.;;} < Jm{a},

F_ (v, y) is the regular function of « in the lower half-plane Jm{a} < Jm{k.rs cosby}

and these both regions together generate a common region (or a band of analyticity)

Jm{—kesr} < Im{a} < Im{k.sscosby} in which all the functions including F(a, y)

are analytic, these functions are defined as

1 o
Felay) = = [ He(n.y) e,
V2
3
X —
F_(a,y) = E / H, (x,y) eba(x+l)dl~’
X 0
E (Oé, y) = = HZ (I’, y) eLaxdwa

\ 2T
-1

1 — 6—Ll(0¢—keff cos 00)

F (,0) = :
(@,0) V27 (o — ke g cos Bp)

1 (77S sin 0y — 1) 1 — e_"l(a_keff cos o )
V2T

The application of Fourier transform on (4.13)-(4.15) yields,

Frh (a,0) =

nssinfy +1) (o — kegpcosty)

2o,
<d—y2+7>f(a,y)=0,

where v (a) = /kZ;; — a?.
2

k
0, F" (cv, 0F) — aé}"wt(a, 0F) = ibﬁnoﬁs}—mt(a, 0%),
€1 Wit

95

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



and

F_(a,0") =F_(a,07) = F_ (0, 0),
Fi (O‘a0+) =Fy (O‘7O_) =Fy (Oé,O),
Oy F_ (a,0") = 0y F_ (a,07) = 9y F_ (, 0),

(4.25)

8y.7:+ (Oé, 0+) = ayf+ (Oé, 0_) = 8yf+ (Oé, 0) .

4.4 Modelling of Wiener-Hopf Equation

The solution of (4.23) satisfying the radiation conditions is given by

A () ey >0,
Flay)=4 (@) | (4.26)
Ay (o) ety < 0.

Now with the aid of (4.16), (4.24), (4.25) and (4.26), following coupled functional

equations are obtained as

Fi (0, 0) + e F (a,0) = [Fo(e, 0) + Fop (@, 0) ]

_@(i_j) [Fine(a, 0) + Frey (@,0)]
—%a(i—j) [Fila,0%) + F (a,07) ] (4.27)

1, k? -
+§(Lw—;::non) [Fi(e, 07) — F (e, 07) ]

—5 [Ai(0) — 4],
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Fi (0,0) + e F (,0) = ~ B [Fh(,0) + Floy (0,0)]

+ [an(a’ O) + ‘Frl‘ef (Oé, O) ]

al&
(02 ((6’“12?”‘ e i 00 A0 0] ] a2s)
agt)? + (ot
1 1 1 k:l;(;f
D) < / +\ ! _
3 oy 1 (ot g 07) = 7 007
€1 wio S

—I—% [Al (Oé) + AQ(Q)} .

Now we use certain approximations to attain result for high signal frequency such that
w > w,, while keeping it at the same order with w,, yielding the 1 ~ 1 — (w,/w)?
and €5 — 0 in the limit case. After approximations, the functional Wiener-Hopf

equations are computed as follows :
Fo(a,0) + e F (a,0) + S (a) Fi(a,0) = F! (a,0) + Frep (0,0, (4.29)

Fi(a,0) + e F_ (a,0) + K (o) F (a,0) = Fine(a,0) 4+ Fres (v, 0), (4.30)

where
Fi(,0) = % [Fi (e, 0%) = Fy (,07)] (4.31)
F(a.0) = § [# (0.07) = 7 (0,0)], 12
_ _ T o ‘E, (aa 0)
A (@) = —=Fi (a,0) + e (4.33)
Fi (a,0)

Ay (@) = Fi (o, 0) + (4.34)

iy(a)
The kernel functions appearing in the coupled system of Wiener-Hopf equations are

as follows:

S(a) = —iy(a) L (), (4.35)
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Figure 4.2: The description of analytic continuation in the complex
a—plane.

Lk
K (a) kgffnsﬁ (), (4.36)
where
k2. s
cle) = (14722, (437

4.5 Wiener-Hopf Procedure

The objective of this model is to observe the effect of EM-wave incident (which is
an ultimate result in the form of diffracted field) on a conductible plate of finite length
with surface impedance in the presence of cold plasma. The functional Wiener-Hopf
equations (4.29) and (4.30) for the boundary value problem are put to rigorous anal-
ysis through Wiener-Hopf method. The salient fact of Wiener-Hopf technique is that
being not a fundamentally numerical naturally that’s why it permits an additional
insight to physical and mathematical structure for diffracted field of incident EM-
wave. The kernel functions arising from (4.29) and (4.30) presented by (4.35) and

(4.36) are decomposed as

S(a) =8, (a)S_ (a), (4.38)
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K(a) =K (a)K_ (), (4.39)

and the factors appearing in (4.38) and (4.39) are given as follows :

St (o) =e "ty (a) Ly, (4.40)
Ky (o) = ;ff*ﬁ_,ci (a). (4.41)

Furthermore, the product decomposition of the function L£(«) appearing in (4.35)

and (4.36), presented by (4.37), is made as

L(a)=Ly () L_(a), (4.42)
where
o) — thegr/Ms
Ly (@) (1 + —\/E%E (a)) , (4.43)
and
Vi (@) = Vkess £ a. (4.44)

The factors with subscript of + are regular functions of « in upper-half of a—plane
(ImA{—Fkesr} < Im{a}) whereas the factors with subscript of - are regular functions
of a in the lower-half a—plane (Zm {a} <Zm{k}). Now plugging the (4.21) and
(4.22) in both (4.29) and (4.30), we get

Fl (a,0) + e F (a,0) + S (a) Fi (a,0) = AG(w), (4.45)
Fi(a,0)+ e F_(a,0) + K (a) F (a,0) = AG' (), (4.46)
where
B Nssinfy — 1 B .
A= { <—775 e 1) 1} ke sin 6y, (4.47)
;| (mssinfo—1
A = { (—m Sin 0o 1 1) + 1} L. (4.48)
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1 — G*Ll(a*keff cos o)
V21 (a0 — kegycosty)
Inserting F; (a,0) and F/ (a,0) explicitly from (4.45) and (4.46) into (4.33) and

G(a) =G'(a) = (4.49)

(4.34), we get

A (a) = ﬁ [F (@,0) + ¢ F (a,0) — AG(a)}

1 (4.50)
_m{f+(@,0)+e F_(a,0) — AG' ()},
Ay (a) = — L (a,0) + e (a,0) — AG(a) }

1 (4.51)
e @0+ (0,0~ AG (@)}

The Wiener-Hopf equations presented by (4.45) and (4.46) are derived through the
general theory of Wiener-Hopf procedure and the solution for large k. s 7 (T = \/W)
may be obtained in an approximate form through the analysis made by using Wiener-
Hopf technique. Now equating the terms of (4.45) and (4.46) with subscript of pos-
itive sign on one side of the equation and the terms with subscript of negative sign
on the other side give us consequently the same function 7 («), say, which is a poly-
nomial function, so is an entire function. Analytic continuation (see Fig. 4.2) along
with arguments involving extended form of Liouville’s theorem allows to equate the

function J (a) to zero, thus, we obtain the following results

F( >—%2f)<gl<a>+’r<a>cl>, (1.52)
A8 () -

P (0.0 = 2 (G (a4 T (), (4.53)
Fo(.0) = 2o (G @) 4 T (@) €)). (4.54)
Fo(a,0)= 2 oy LT —ayey, (4.55)
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where

! 1 1 —tlkey s cosO
- - — e thers et 4.56
v (a) (Oz B keff COS 90) (S-i- (OZ) S+ (keff CcOs 90)) € 1 (Oz) ) ( )

Uk y cos fo 1 1 R 4.57
G () = (@ 1 kupy cos ) <5+ (a) N 3+(—k;effc0s90)) — Ry (a), (4.57)

G (kepr) + Sy (kepr) Gi (kepr) T (k‘eff)>
1 — 8% (keps) T2 (Kegy)

(
Gi (keyy) + Sy (kerr) Go (kepp) T (keyr)
1 — 8% (keyp) T2 (Keyy) ) ’ (4.59)

, (4.58)

C1 =S (kegy) (

Cy = Sy (kegy) (

() = 1 1 1
! " (= keppeosy) \Ky (o) Ky (kepscosty)

) —e et R, (), (4.60)

2(0) =17 j—”/z;f;fcoes o) (IC+1(a) "X, (-kif cos 00)) ~Ra(a), (461)
Cl = K (Fegy) (% sy );%((k’; y ))ngQ((EZ ;j) (Eeyy) ) L (6
i b (P BT )
Rus () = E_ Wi (= (kefoiLk;Zf;zif;)gos_eg—l(_Ll (keff"‘a))]’ (4.64)
T (a) = %E_lw_ (=t (kegs + ) 1), (4.65)
By = 2exp (thessl) ()2 (1), (4.66)
and
Wy O _O/ %“:)du (4.67)

S 1 1
=I'(n+1)exp <§> SETEW_ () 4 (8) -

Here, W, ,, is named as Whittaker function and s = —¢ (kesp + ) l, n = —
Now plugging the (4.52)-(4.55) along with (4.47)-(4.49) in (4.50) and (4.51) gives us
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the following result :

[ S.(0)Gi(0) + 8 ()T ()¢ )
Av(@) | Asgn(y) IS (a) G (~a)
AQ (C() \/%S (Oé) _|_€—La18_ (Oé) 7— (—CY) Cg
. 1_e—Ua—keyfcosby)
\ (a—keff Coseo) ) (468)
Ky ()G (a) + Ky () T (@) Cf
A’ +eK_ (a) Gy (—)
\/%L’Y (a> K (04) +€—Lallc_ (Oé) T (-Oé) Cé )
. 1_e—U(a—keyfcosbp)
. (a*keff cos@o) )

The diffraction of EM-wave field obtained by the use of inverse Fourier transform of

(4.26) is defined as

1 i — L
Hz(xay>:\/_2_ﬂ_ /‘F(aay>€ do
- (4.69)
_ L Avle) emer=ll go,
vET | A

where A; (a) and A, (o) are given by (4.68). Substitution of (4.68) into (4.69) and
splitting up the diffracted field function H,(z,y) into two functions H(z,y) and

H™(x,y) as described by

H.(x,y) = H:(2,y) + H"(z,y), (4.70)
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where

sep _sgn (y) [
H (y) = 27 /S(a)
1
2%700 1y () K ()
and
He ) = 50 [
1A
27100 1y () K ()

AS 4 (a)
(afkeffcos@o)S+(keffcosﬁo)
AS—(a)efbl(afkeff cos 0
a—kergcosby)S4(—kerscosbo
(a—keg s cos00)Ss (—keg s cosbo)
A (@)
(a—keffCOSGO)IC+<keffcos@o)

A/Kz_(a)efd(afkeffcosﬁo)

- (a—keff cos&o)lCJr(—keff cosOo)

—S; () Ry () e thesscosto
+84 (@) T () Gy

~S4 (—a) Ry (—a) etle
+84 (=) T (—a) Coe™4e

Ky (@) Ry (or) e tthers cosbo

—Ki () T () G
+y (=) Ry (—a) e
—Ky (—a) T (—a) Che e

e(mraz=n1lyl) 1

—az—uyly
o W,

(4.71)

e(—raz=urlyl) 1.,

e(_LO‘x—L’”yl)da‘

(4.72)

In above (4.71) H:* (x,y) has two integrals in which the integrand with kernel func-

tion S(«) has two parts one for the edge x = 0 and other for edge x = —I, similarly,

integrand with kernel function K(a) has two parts one for the edge x = 0 and other

for edge x = —I, so evaluation of integrals will give the diffracted field for x = 0 as

well as for x = —[ whereas H™ (x,y) presented by (4.71) also have two integrands

corresponding to two kernels S(«) and K(«). Each integrand with its respective ker-

nel functions S(a) and KC(«) have two parts and on evaluating the integrals, one will

give the interaction field due extremity x = 0 of plate and other for the interaction

field due to extremity x = —I[ of plate.
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4.6 Acquirement of Diffracted Field

In the far field zone, the diffracted field now may be evaluated asymptotically.
For this purpose, the polar coordinates as * = rcos#f, |y| = rsinf are introduced

and following transformation helps in the deformation of contour.
a=—kepcos(@+1(), for0<f<m —o0<(<o00. (4.73)

Now applying the method of stationary phase for large k.ssr, (4.69) takes the follow-

ing form

Ay (—keprcost
H. (1. 6) = tkesy 1 (—kesycost)

Vkersr Ay (—kesycosb)

sin 0 exp (ikeffr + L%) . (4.74)

Similarly, integrals involved in (4.71) and (4.73) are evaluated asymptotically using

method of stationary phase as

L ikesy
H (r,0) = oo T . sgn (0) *P (—keypy cos0)
2 keffr{ (475)
+ ¢s€p (_keff COS 9) } Sineexp (l’k'effr —+ L%) ,
and
1k
Hmt (r,0) = eff — sgn (6 )wmt (— kef g COS 0)
VAT Effr{
(4.76)
+¢mt( effCOSQ }SlIlQeXp <Lk:effr—}-b4>
where

AS (—kepycos)
S (—keppcost) (—keprcos® — keppcosty) Sy (keppcosby)

AS_ (_keff coSs 9) e—Ll(—keff cosO—keyy 60590)
S (—kepscos) (—keppcos — kepycosby) Sy (—kess cosby)’

(4.77)

P*P (—keggcosl) =
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and

Ay (—kepscos)

¢°P (—kesycost) =

AK- (keff COs (9) e_Ll<_k6ff cos—keyf cos 00)

1y (—keppcos0) K (—kegppcost) (—keppcos — keppcosBy) Ky (kegscosby)

1y (—keprcos0) K (—keppcosO) (—keppcos® — keppcosty) Ky (—keppcosby)’

(4.78)

St (—keppcos ) Ry (—keyy cos @) e kers cosbo
A —S4 (—kegpcost) T (—kesscost)Cy
S (—heys cos0) +8_ (—kepr cos0) Ry (key s cosf) ettherscost

P (—kespcos) =

—8_ (—keprcos0) T (kesycos ) Coetthess cos?
(4.79)

Ky (=kesscos) Ry (—keysyscos ) ekess cosbo
A —K4 (—keppcosO) T (—kespcos)Cy
K(=keyy cos0) +K - (—kesycost) Ry (keyy cos @) etthers cos?

ngmt (—kesrcost) =

—K_ (=kesycos0) T (kesscos @) Chetkerscost
(4.80)

The result given by (4.75) presents the diffracted field evaluated asymptotically for
keppr — oo. In fact, it is the asymptotic form of H,(z,y) valid for all observation
angles in the entire region. It is observed that the wave field diffracted by the extrem-
ities x = 0 and x = —I[ of the plate plus the additional involvement of the geometrical
wave field results into the separated field. The separated field being the resultant
wave field will regard a physical perception to the model. But on the other hand,
the interacted field appearing due to the interaction of one edge upon other regards
no physics of the model, separately. The separated field provides the physical per-
ception of diffraction phenomenon at the boundary defined for the associated model.
Therefore, only the separated field is taken into account to discussion. Furthermore,
the interaction field generated as a result of double diffraction of EM-plane wave by
two edges is already counted by the separated field. Also the extending the plate

length upto infinity discards the contribution resulting from the interaction terms
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and consequently, the separated field appears to be diffracted field. Therefore, only

the separated field is focused to discuss graphically in the next section.

4.7 Results and Discussion

This section is devoted to elaborate the impact of physical parameters like angle
of incidence 0y, wave-number k, plate length [, surface impedance 7, and permittivity
element e; on separated field of EM-wave against observation angle in the absence
and presence of cold plasma. In Figs. 4.3a, 4.3b, sketch of separated field for three
different angles of incidence is displayed while keeping values of all other parameters
fixed. The observation predicts that separated field intensity gets sharp peaks at
observation angles § = 27/3,37/4,57/6 indicating the reflection of EM-wave for
respective angles of incidence 0y = /3, 7/4,7/6. The structure of non-symmetric
finite plate under consideration over here may work for physical aspect of scattering
mechanism at these particular values of observation angles. The maximum sharp
peak occurs at observation angle § = 3w /4 for its respective incidence angle 6, =
/4 in both the cases i.e. in the absence and presence of cold plasma. However,
wavelength expands in the presence of cold plasma. Figs. 4.4a, 4.4b are sketched
to display behavior of separated field for incremental trend of wave-number k. This
means that wave frequency excites to the high frequency range. In Figs. 4.5a,
4.5b, oscillations of the separated field increase due to increasing the length of plate.
According to observation, it is found that separated field in the far away region from
the origin, after the sharp peak, coincides even for three different values of length.
One can observe by comparing Figs. 4.4b, 4.5b with 4.4a, 4.5a, respectively, that
presence of cold plasma has expanded the wavelength of separated field. This means
that cold plasma helps in controlling the dispersion of diffracted waves. Figs. 4.6a,
4.6b have shown the behavior of separated field for three different values of surface
impedance in the absence and presence of cold plasma, respectively. Observation

describes that separated field for real value of surface impedance (surface resistance)
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is more fluctuated than for the pure imaginary (surface reactance) and imaginary
values (both surface resistance and surface reactance) of surface impedance. On
comparing Fig. 4.6b with Fig. 4.6a, it is found that cold plasma has reduced the
downward fluctuation of separated field. Fig. 4.7 is sketched to show the behavior
of separated field for ;. The slight variation in separated field has been depicted for
£1. Since €1 ~ 1 — (w,/w)? (for signal with high frequency) so an increase in £; while
keeping the number density of ions and electrons fixed in cold plasma, that’s why
separated field gets slightly oscillated for increasing ;. The electrons oscillate about
cold ionic centers due to electric field of high frequency signal and these oscillating
electrons scatter enormously due to increasing amplitude of the separated field. On
observing all the plots, it can be elaborated that separated field shows nullity around

observation angle of 0.
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Figure 4.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma.
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Figure 4.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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Figure 4.5: The separated field for length of plate in the absence (a) and
presence (b) of cold plasma.
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4.8 Conclusions

The chapter has investigated the EM-plane wave diffracted by a plate of non-
symmetric length with surface impedance in the presence of cold plasma. The ob-
servation depicts that diffraction of EM- plane wave is affected by (a) extending the
length of the plate (b) changing the angles of incidence (¢) changing the wave-number

(d) changing values of surface impedance and (e) permittivity of cold plasma.
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Chapter 5

Calculation of Diffraction by an
Impedance Finite Symmetric Plate
in Cold Plasma Using

Wiener-Hopf Technique

This chapter elaborates the analysis of diffraction of electromagnetic (EM) plane
wave by a plate of finite length symmetrically located in cold plasma. The impedance
is assumed on the upper and lower surface of the plate, therefore Leontovich boundary
conditions are assumed to consider the effects of impedance. Helmholtz’s equation
is formulated using the Maxwell’s equations with the effects of cold plasma. The
Fourier transform is applied and then Wiener-Hopf equations are obtained. The
modified stationary phase method is used to get the result of diffracted field by finite
symmetric plate (separated field). Graphical analysis of separated field for physical

parameters in the presence and absence of cold plasma is discussed, comprehensively.

74



5.1 Modelling of the Helmholtz Equation

The tensor of dielectric permittivity to consider the presence of cold plasma is

defined as
€1 —teg O
E=¢p LE9 €1 0 ) (5 1)
0 0 &,
2 271 2 -1
w w w We W
and
WA 2
=1- (_P> , 5.3
: - (53)
with
N 2
W2 = e e = lel poHac (5.4)
meog m

It is known that Maxwell’s equations are proved to be valid in cold plasma with
dielectric permittivity tensor, thus the electric field components in terms of magnetic
field with presence of cold plasma can be evaluated with the aid of Maxwell’s equation

along with (5.1), given by

L& OH, (x,y) €2 0H, (z,y)
E, = .
Toweg(e?—€2) Oy * weo (€2 —e2)  ox (5:5)
and
€2 aHZ (l’,y) (251 8-[—-IZ (‘ray)
FE, = — . .
Y weg(e?—<3) Oy weg (62 —€3)  Ox (5.6)

Thus, the Helmholtz’s equation satisfying H, obtained from Maxwell’s equations

with the use of electric field components (5.5) and (5.6), is computed as follows :

OpeH, (2,y) + 0y H., (x,y) + k:gfsz (z,y) =0, (5.7)
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Figure 5.1: Geometrical description of the model.

with the propagation constant

g2 — &2
kepr =k .k =wy/eolo. (5.8)
€1

Here, k.ss is dependent of k, ¢; and e, harmonic time dependence exp(—wwt) is

assumed and will be suppressed throughout the analysis.

5.2 Mathematical Modelling of the Problem

A symmetric plate of finite length with impedance loaded is located along y = 0
with edges at © = —[ and = = [ as displayed in Fig. 5.1. The incident field is taken
as

H" (2, y) = exp{—tkesf(x cosf + ysinby)}. (5.9)

Here, the amplitude of magnetic field is taken as 1 A/m and 6, is the angle of

incidence with x—axis. Here, the total field can be expressed as follows:

H?t(l" y) = Hinc(xv y) + H;nef(f&y) + Hz(x,y), (510)
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where H,(x,y) is the diffracted field and H®/(z,y) denotes the reflected field, which

is defined as

Nssinfy — 1

H (2,) = ( > exp{—tkess(zcosby —ysinby)}. (5.11)

Nssinfy + 1

For the convenience of analysis, medium for the present model is assumed to be
slightly lossy as in kepp = Redkepr} + Im{kesr}, 0 < Im{kesr} < Re{kepr} and the
solution for real k.s; may be achieved by assuming Jm{k.ss} — 0. The boundary
value problem (BVP) under consideration is expressed in terms of the magnetic field
and it is adequate to denote the diffracted field in the different regions. The total
field H" (x,y) in the range x € (—o0, 00), that satisfies the Helmholtz’s equation as
follows :

(00 + Oy + k'g’ff} H (2,9) =0, (5.12)

diffracted field satisfying Helmholtz’s equation extracted from (5.12) is given as fol-
lows:

[Oa + Oy + KZp5) H. (z,y) = 0. (5.13)

Our focus is to evaluate the diffracted field of EM-plane wave incident on a symmetric
plate of finite length under the effects of cold plasma. Impedance considered on both
surfaces of the finite plate is same. Therefore, Leontovich boundary conditions are

as follows :

2

k
6’yH§0t(x, 0F) — L?@xHi"t(x,Oﬂ = :tLﬂnonsH;Ot($,O¥), for |x|<1, (5.14)
1 Wo

where 19 = \/pi0/€0. The continuity conditions are

H'z,07) = H'Y2,07), —co <z < —I, | <z < o0,
(5.15)
O, HP (2,0%) = 0,H"(2,07), —co<z<—I, <z <00.

77



5.3 Transformation of the Problem

Now we apply the Fourier transform on the boundary value problem (BVP) with

respect to variable x as

oo

1
=—— | H,(z,y)e*dz
v2r J (5.16)

= Uy (a,y) + ¢ (a,9) + Fi (),

F(a,y)

where a = Re{a} + (Im{a} = o + ¢7. The asymptotic expression of H, (x,y) for
x — %00 is taken into account as

O (eijm{keff}z) for v — oo,

H, (v,y) = (5.17)

O <ejm{k€ff}“0590> for r — —o0.

Fi(a,y) is the regular function of « in the upper-half plane Jm{—k.s¢} < IJm{a},
F_(a,y) is the regular function of « in the lower-half plane Jm{a} < Im{k.rs cos by}
and both these regions generate a band of analyticity (common region) in which all

the functions including F;(«,y) are analytic, therefore

Fi(a

E\H
3

/ H. (z,y) e Dz, (5.18)
l

1
F_(« —— | H.(z,y) ey, 5.19
\/ 2T / ( )

l

Fila,y) = L/HZ x,y) e dx, 5.20

(. y) vrd| (z,y) (5.20)
- ebl(afkeff cosGo) . efbl(afkeff cosGo)

F(a,0) = V2 (o — keggcosfp) ’ (5:21)

Fref (a’ O) _ 1 (773 s%n 90 o 1) eLl(a—keff cos90> . e—Ll(a—keff cos90> | (522)
V2 \nssinfy + 1 (a0 — keppcosby)
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The application of Fourier transform on (5.13)-(5.15) yields,

d? 9
(d—y2 +7 > F(a,y) =Y (523)
where v (a) = /kZ;; — a?.
k}2
0,F (e, 07) — a2 F'®! (01, 07) = %0~ LL o, F1° (a1, 07), (5.24)
€1 Who

and
F_(o,07) = F_(,07) = F_ (a,0),

‘F+ (04,0+) :]:-‘r (aaoi) :f-‘r (O./,O),
Oy F_ (a,07) = 9, F_ (a,07) = 9y F_ (e, 0),

(5.25)

ayf+ (CY, O+) = 3y.7:+ (CY, 0_) = 8y.7':+ (Oé, O) .

5.4 Modelling of Wiener-Hopf Equation

The solution of (5.23) satisfying the radiation conditions is given by

A (@)e™¥  y >0,
Fay) = (@) (5.26)
Ay (a) e y <0,
Now with the aid of (5.16), (5.24), (5.25) and (5.26), following coupled functional

equations are obtained as

ebalfg_ (Oz, 0) + e—wcl]:/_ (Oz, 0) = [.7-"2-’”0(04, 0) + ‘7:7,'ef (O./, 0) }
_a(gﬁ) [Fine(,0) + Fref (2, 0) ]

€1

_%a(i_j) [Fi0,0%) + Fi (o, 07) ] (5.27)

5 (=L o) [Fi(,07) = Fi (,07) ]

5 [Ai(0) 4],
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Ty (,0) + e T (a,0) = —— a(iz)ff > [Fine(@,0) + F e (@,0) ]
(@22)2 4 (non)

+ [‘/—-;{nc(a7 0) + ‘/—_Zef (Oé, O) }

a(2)

— 4 [Fi(a,0%) + F/ (o, 07) ]
(a22)2 + (Lipyn)?

! 1 (Lszfnon)[ (o, 07) — F/ (a O_)}
kgff )2 Wito ! ) l )

—f-% [Al (O./) + AQ(Q)} .

(5.28)

For high frequency signal, we use certain approximations such that w > w., while
keeping it at the same order with w,, yielding the £; ~ 1 — (w,/w)? and €5 — 0 in the
limit case. After approximations, the system of Wiener-Hopf functional equations
are computed as follows :

ebalf'g_ (O./, 0) + e—LOélJT_'/_ (a’ O) ) (OZ) -/T:.l (057 0) = F,

mc

(@,0) + Flop (a,0),  (5.29)

e F (a,0) + e F_ (a,0) + K () F| (a,0) = Finea,0) + Frey (a,0),  (5.30)

where
Fi(a,0) = 5 [Fi (0,0°) = Fi (0,07)] (5.31)
Fila0) = 3 [ 0.0 = 7 (0.07)] 522
_ _ T o Nl, (av O)
Ay (a) = =Fi (o, 0) + ) (5.33)
_ T o ‘/—:-/ (Oé,O)
Ay (@) = Fi(,0) + ) (5.34)

The kernel factors appearing in the coupled system of Wiener-Hopf equations are as

follows:

S(a)=—vy(a)L(a), (5.35)
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a—plane.

vk
K (a) kgffnsﬁ(a), (5.36)
where
k2, g
L(a)= (1 - mf(Z)) , (5.37)

5.5 Wiener-Hopf Procedure

The main objective of this model is to observe the effect of cold plasma on
diffracted field of EM-wave incident on a conductible plate of finite length with
impedance loaded. The functional Wiener-Hopf equations (5.29) and (5.30) for the
boundary value problem are put to rigorous analysis through Wiener-Hopf method.
The salient fact of this method or analysis is that its procedure is not fundamen-
tally numerical in nature that’s why it permits an additional insight to physical and
mathematical structure for diffracted field of incident EM-wave. The kernel functions

arising from (5.29) and (5.30) presented by (5.35) and (5.36) are decomposed as

S(a) =8, (a)S_ (a), (5.38)
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K (a) = K. () K_ (a), (5.39)

and the factors appearing in (5.38) and (5.39) are computed as

St (o) =e "ty (a) Ly, (5.40)
Ky (a) = ;ff*ﬁ_,ci (a). (5.41)

Furthermore, the product decomposition of function £ («) appearing in (5.35) and

(5.36), presented by (5.37), is made as

L(a)=Ly () L_(a), (5.42)
where
o) = thepfy/Ms
Ly (@) (1 + N (a)) , (5.43)
and
V(@) = Vkeps £ a, (5.44)

where the factors Sy (a), Ky (), L4 (o) and 74 () are regular functions of « in
upper-half of a—plane (Jm {—k.sr} < IJm{a}) whereas the factors S_ (a), K_ (),
L_ («) and v_ («) are regular function of « in the lower-half of a—plane

(Om{a} < Im{kcsscosby}). Now using (5.21) and (5.22) in both (5.29) and (5.30),

we get
e F (@, 0) + e F (,0) + S (a) Fi (a,0) = AG(a), (5.45)
e Fy (o, 0) + e F_ (a,0) + K (o) F (o, 0) = A'G'(a) (5.46)
where
A= M&O—l 1k inb (5.47)
N Nssin @y + 1 eff SIY0, ’
r | (s sinfy — 1
A = [ <—775 Sndo T 1) + 1} L. (5.48)
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ebl(a—keff cos@o) . e—Ll(a—keff cos@o)
V21 (a0 — keggcosby)
Inserting F; (a,0) and F| (v, 0) explicitly from (5.45) and (5.46) into (5.33) and

Gla)=G'(a) = (5.49)

(5.34), we get

A () = ﬁ [ F (a,0) + e F' (,0) — AG(a))
X (5.50)
IEORA0) {e ' Fy (a,0) + e F_ (o, 0) — AG'(a) },
Ay (0) = — ga) [ F (a,0) + e F' (,0) — AG(a))
X (5.51)

T A @@ {e ' Fy (o, 0) + e F_(a,0) — AG'(a)},

The Wiener-Hopf equations presented by (5.45) and (5.46) are derived through the
general theory of Wiener-Hopf procedure and analysis may be used to obtain a solu-
tion approximated for large keysr <r = \/m) . Now equating the terms of (5.45)
and (5.46) with positive sign on one side of the equation and the terms with negative
sign on the other side give us consequently the same function, say J («) which is a
polynomial function so is an entire function. Analytic continuation (see Fig. 5.2)
along with arguments of extended form of Liouville’s theorem allows the polynomial
function J («) to equate to zero, precluding the detailed calculations, thus we obtain

the following results

/ o .AS+ <a> Q Q
Fl (,0) = —r (G1 (o) + T () Cy), (5.52)
iy~ AS—(a)
F (a,0) = Ner (Go (=) + T (—a)Cy), (5.53)
. A/ + (a) / Q ! a /
Fy (a,O)——m (G1(a) + T () Cy), (5.54)
F_(a,0) = M (Gy(—a) + T (—a)C)), (5.55)

V271
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where

gl (a) _ e—leeff cos 6o 1 _ 1 . eleEff COSHOR1 (O{) (5 56)
(¢ — kegppcosby) \ Sy (o) Sy (kesscosby) T

_ eleeff cos Og 1 1 k. coso
92 (@) = 0 Toesy cos o) (3+ (@)~ Si (s cos 90)> —e TR, (@), (5:57)

Go (kers) + Sy (keyy) Gr (keps) T (k‘eff)>
Ci =8, (ke , 5.58
1= 5 ff)( 1 — 8% (keps) T? (kesy) (5:58)

G1 (kegr) + Sy (kepy) Go (keps) T (keff))
Cy =8, (k. , 5.59
2= 5 ff)( 1 — 8% (kepp) T2 (Keyr) (5:59)

/ _ e_leeff cosfo 1 1 tlke s cosBp
g (@) = (a0 — kegscosby) (IC+ (a) Ky (kess cos 90)> — PR (), (5:60)

! _ elecff cosfo 1 1 —lke§ cosBg
Gz (@) = (o + kepycosth) (IC+ (a) Ky (—keyss cos 90)) e Ra(a),

(5.61)

: Ga (kers) + Ky (Kepr) G (keps) T (keff))
¢ =K, (k. , 5.62
=Ko (hegs) ( 1— K% (kegs) T2 (kegy) (5:62)

: Gi (kerr) + Ky (Kegr) Go (heys) T (keff))
C, =K, (k. , 5.63
2 = Koo (hegs) ( 1= K% (keyp) T2 (kegy) (5:63)

_ B Vo (= (kg £ keppcosby)) — Wi (=l (keyr + a))]
Riz (@) = 2mis (o F kegg cosby) - (564
1
T(a) =5 B aWer (=t (kess + ) 1), (5.65)
By = 2exp (thepsl) ()7 ()72, (5.66)
and
W, 1 (s) = /U”L(—“)du

;) VTS (5.67)

N

=T+ 1) exp (5) s W00 (5).

Here, W), ,, is named as Whittaker function and s = —¢ (kesr + ) l, n = —

N[ =

Now substitution of (5.52-5.55) along with (5.49) in (5.45) and (5.46) gives us the
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following result :

( \
elS, () Gy () + e S, (a) T () C
A; (@) ~ Asgn (y) +e7 S (a) G2 (—a)
Ar(a) | V2rS(a) +e oS (a) T (—a)Cs
eLl(oszeff cos 90)_67Ll(a7keff cos 0()
\ - (a—kef s cosbp) )
, C(5.68)
e, (0) G (@) + €K, (0) T (a) €
Al +e K- (@) G (—a)
Vemy () K(a) e K_(a) T (—a)C}
_ eLl<a7keff cos 90)_67Ll<a7k€ff cos 0()
\ (a—ke‘ff cos 90) )

The diffraction of EM-wave field obtained by the application of inverse Fourier trans-

form of (5.26) is defined as

o0

1
/ F(a,y) e "““da

H.(z,y) = Von

N (5.69)
. Ar (@) eraw=ulyl 7,
- m/ Ay (@) dov

oo

where A; () and As (o) are given by (5.68). Substitution of (5.68) into (5.69) and

splitting up the diffracted field function H,(x,y) into two parts as mentioned below

H,(x,y) = H:"(x,y) + H" (2, y), (5.70)
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where

0 B AS.,_(a)ebl(aikeff 60590)
Hsep (.I‘ ) — Sgn (y) ]- (Oc—k‘eff C0590)8+(keff 60590) e(,bam,yﬂy“da
z ? y 27T S (a) AS_ (a)e—Ll a—keff cos 0
> (afkeff 00590)8+(7k8ff cos 90)

oo Ay (a)eLl(a_keff o 90)
i 1 (a—keff 00500>K+<k5ff cos@o)
21 ) vy (o) K («) WK ()~ ok costo)
oo (a—k:eff COSOO)IC+(—keff cos@o)

—az—uyly
o W) da,

(5.71)

and

_S+ (Ck) Rl (Oé) eLl(oH-keff cos o)

, 7 +S. ()T (a) Crett
H™ (2,y) = 39;@) / SA +@) TG e(rar=l) gy

(Oé) _S+ (—Oé) R2 (—Oé) e*Ll(aJrkeff cos )

+S, (—a) T (—a) Cye™e
Ky (0) Ri () etlethers costo)

17w K (@) T (o) Gl
2 ) vy (o) K (a) Ky (—a) R (—a) el@thess coso)

—00

(—az=ilyl) gy

K (=0) T (~a) Gje~
(5.72)

In above (5.71) H:? (x,y) has two integrals in which the integrand with kernel func-
tion S(«) has two parts one for the edge x = [ and other for edge x = —I[, similarly,
integrand with kernel function K(«) has two parts one for the edge x = 0 and other
for edge x = —I[, so evaluation of integrals will give the diffracted field for x = [ as
well as for x = —[ whereas H'™ (x,y) presented by (5.72) also have two integrands
with kernels S(a) and K(«). Each integrand with its respective kernel functions S(«)
and KC(«) have two parts and on evaluating the integrals, one will give the interaction
field due extremity x = 0 of plate and other for the interaction field due to extremity

xr = —I[ of plate.
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5.6 Acquirement of Diffracted Field

Now the diffracted field in the far field zone may be evaluated asymptotically.
For this purpose, the polar coordinates as * = rcos#f, |y| = rsinf are introduced

and following transformation helps in the deformation of contour.
a=—keppcos(@+1(), for0<fh<m —o0o<(<o0. (5.73)

Now applying the method of stationary phase (an asymptotic method) for large ke ssr,

(5.69) takes the following form

thesy Ay (—kesscost)

H.(r,0) = ——
V Kesr Ay (—keppcosb)

sin f exp (Lkeffr + L%) . (5.74)

Similarly, integrals appearing in (5.71) and (5.72) are evaluated asymptotically using

method of stationary phase and results are obtained as

Hsep (T, 9) _ Lk:eff { — sgn (0) 1/186p (_keff COS 9)

27 S Fes st (5.75)

+ ¢*P (—keyss cos0) } sin 6 exp (Lkeffr + L%) ’

and
1 vk
H™ (r,0) = — L sgn (0) ™ (~keys cos0)
V2T Kepsr (5.76)
_i_(blnt( effCOSH }SlneeXp (Lkeffr+b4>
where

AS, ( eff COSs 9) ebl(_keff cosO—keyy COSGO)
S (—kepfrcos) (—kesrcost — keppcosty) Sy (kegscosby)

B AS_ (-
S (—keppcos) (—keppcost — keppcosBy) Sy (—keppcosbh)’

(5.77)

Y*P (—kesycost) =

eff COS 6‘) ( keffcosg_kcffC0S90>
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and

¢°P (—kesycost) =

it (—kesrcost) =

¢ (—kespcos) =

A’IC+ (_keff COS 9) e—Ll(—k’eff cosO0—keyy 00590)
1y (—keppcos0) K (—keppcos) (—keppcos — keppcos o) Ky (kegrcosby)
AK_ (keff Ccos 6’) e_bl(_kﬁff cos 0—ke f cos 00)
1Y (—keppcos0) K (—kescosO) (—keppcos @ — keppcosby) Ky (—kesscosby)’

(5.78)

A
S (—kesgcosh)

Sy (—kesscos) Ry (—k.pscos @) e i kess cosOtke s cosbo)
—8 (—kesscosO) T (—keyscosO)Crethers cost

+8_ (=kespcos0) Ry (keppcos ) et —kers cosf=kess cosbo)

—8_ (—keprcos0) T (kesycos ) Coetthers cos?

(5.79)

A/
IC(—kesscost)

Ky (—keprcos0) Ry (—keps cos @) et(“hesscosbkesscosto)
—Ky (—keppcos0) T (—kesy cos @) Cretkerscost

+K_ (—keprcos8) Ry (kesp cos @) et ke cosbikeys cosbo)

—K_ (—keyycos0) T (kesy cos ) Chekerscost

(5.80)

The result given by (5.74) presents the diffracted field evaluated asymptotically for

kepyr — oo. In fact, it is the asymptotic form of H,(z,y) valid for all observation

angles in the entire region. It is observed that the wave field diffracted by the extrem-

ities x = [ and x = —[ of the plate plus the additional involvement of the geometrical

wave field results into the separated field. The separated field being the resultant

wave field will regard a physical perception to the model. But on the other hand,

the interacted field appearing due to the interaction of one edge upon other regards

no physics of the model, separately. The separated field provides the physical per-

ception of diffraction phenomenon at the boundary defined for the associated model.
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Therefore, only the separated field is taken into account to discussion. Furthermore,
the interaction field generated as a result of double diffraction of EM-plane wave by
two edges is already counted by the separated field. Also the extending the plate
length upto infinity discards the contribution resulting from the interaction terms
and consequently, the separated field appears to be diffracted field. Therefore, only

the separated field is focused to discuss graphically in the next section.

5.7 Results and Discussion

This section highlights the impact of pertinent parameters like angle of incidence
0y, wave-number k, plate length [, surface impedance 7, and permittivity element &,
on separated field of EM-wave against observation angle in the absence and presence
of cold plasma. In Figs. 5.3a, 5.3b, sketch of separated field for three different angles
of incidence is visualized while keeping values of all other parameters fixed. The
observation predicts that separated field intensity gets sharp peaks at observation
angles 0 = 27/3,3m/4, 57 /6 indicating the reflection of EM-wave for respective an-
gles of incidence 0y = 7/3,7/4,7/6. The structure of finite length symmetric plate
under consideration over here may work for physical aspect of scattering mechanism
at these particular values of observation angles. The maximum sharp peak occurs at
observation angle § = 37 /4 for its respective incidence angle y = 7/4 in both the
cases i.e. in the absence and presence of cold plasma. However, wavelength expands
in the presence of cold plasma. Figs. 5.4a, 5.4b are sketched to display behavior
of separated field for incremental trend of wave-number k. This means that wave
frequency excites to the high frequency range. On observing the sketches, it is found
that number of oscillations increase here due to the symmetric plate as compared to
the non-symmetric plate in previous chapter. In Figs. 5.5a, 5.5b, oscillations of the
separated field increase due to increasing the length of plate. According to observa-
tion, it is found that separated field in the far away region from the origin, after the

sharp peak, coincides even for three different values of length. One can observe by
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comparing Figs. 5.4b, 5.5b with 5.4a, 5.5a, respectively, that presence of cold plasma
has expanded the wavelength of separated field. Figs. 5.6a, 5.6b have shown the be-
havior of separated field for three different values of surface impedance in the absence
and presence of cold plasma, respectively. Observation describes that separated field
for real value (surface resistance) of surface impedance is more fluctuated than for the
pure imaginary (surface reactance) and imaginary value (both surface resistance and
surface reactance) of surface impedance. Fig. 5.7 is sketched to show the behavior
of separated field for ;. The drastic effects on separated field have been predicted
due presence of cold plasma. Since £; ~ 1 — (w,/w)? (for signal with high frequency)
so an increase in €; while keeping the number density of ions and electrons fixed in
cold plasma, that’s why separated field gets oscillated with increasing behavior of ¢;.
The electrons oscillate about cold ionic centers due to electric field of high frequency
signal and these oscillating electrons scatter enormously due to increasing amplitude
of the separated field. The separated field shows the nullity around the observation

angle of 0 for all physical parameters corresponding to the present model.
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Figure 5.3: The separated field for angle of incidence in the absence (a) and
presence (b) of cold plasma.
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Figure 5.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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Figure 5.5: The separated field for length of plate in the absence (a) and
presence (b) of cold plasma.
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Figure 5.6: The separated field for surface impedance in the absence (a)
and presence (b) of cold plasma.
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5.8 Conclusions

This chapter has elaborated about the EM-plane wave incident on a plate of
finite symmetric length (which ultimately gives the diffracted field) with surface
impedance in the presence of the cold plasma. It has been observed that diffraction
of EM-plane wave by the plate of finite symmetric length undergoes the variation
due to (a) extending the plate length (b) different angles of incidence (¢) increasing
the wave-number (d) different values of surface impedance and (e) permittivity of

cold plasma.
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Chapter 6

Wiener-Hopf Analysis of
Diffracted Wave in Cold Plasma by

an Impedance Slit of Finite Width

Present chapter elaborates the analysis of diffraction of electromagnetic (EM)
plane wave by a slit of finite width under the effects of cold plasma. The impedance
is imposed on the slit and to consider the effects of impedance, Leontovich boundary
conditions are assumed. Helmholtz’s equation is formulated using the Maxwell’s
equations with the effects of cold plasma. The Fourier transform is applied and then
Wiener-Hopf equations are obtained. The method of stationary phase is used to get
the result of diffracted field due to slit of finite width (separated field). Graphical

analysis of separated field is discussed comprehensively.

6.1 Modelling of the Helmholtz Equation

The tensor of dielectric permittivity to consider the effects of cold plasma is

defined as
€1 —teg O
E=¢c0| teg & 0 |- (6.1)
0 0 P
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and
| (“”)2 (6.3)
Ex=1—\— )
w
with
N, e? Hy,
w2 = e, lelioHac (6.4)
meg m

It is known that Maxwell’s equations are proved to be valid in cold plasma with
dielectric permittivity tensor, thus, the electric field components evaluated in terms
of magnetic field with the effects of cold plasma with the aid of Maxwell’s equations

along with (6.1) are described as

L1 OH, (z,y) ) OH, (z,y)
B, - , 6.5
weo (63 —€3) Oy T weg (e —€2) Oz (6.5)
and
€2 aHz (azy) (251 aHz (x,y)
P _ . 6.6
Y weg(e?—¢€2) Oy weo (63 —€3) Oz (6.6)

Thus, the Helmholtz’s equation satisfying H, obtained from Maxwell’s equations

along with electric field components (6.5) and (6.6), is computed as follows :
8szz ($7 y) + 8yy}Iz ('Ia y) + kgfsz (17, y) = 07 (67)

with propagation constant

2 2
€1 — &)

k’eff =k s k= Wr/Eolbo- (68)

€1

Here, k.fs is dependent of k, €; and €9, harmonic time dependence exp(—iwt) is

assumed and will be suppressed throughout the analysis.
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Figure 6.1: Geometrical description of the model.

6.2 Mathematical Modelling of the Problem

A slit of finite width with surface impedance is located symmetrically along y = 0
with edges at x = —[ and z = [. The wave incident at the one edge x = —I[ of reflects
back in the direction opposite to the incident field whereas the wave incident on the
other edge z = [ of the slit reflects at an angle of m — 6y with the horizontal axis as

can be seen in Fig. 6.1. The incident field is taken as
H"(z,y) = exp{—tkess(x cos Oy + ysinby)}, (6.9)

Here, the amplitude of magnetic field is taken as 1 A/m and 6, is the angle of
incidence with xr—axis. Here, the total field can be expressed as follows:

H(z,y) = H"(x,y)+H* (z,y) + H.(z,y), for y>0 (6.10)

Hx,y) = H.(x,y), for y<0

where H.(x,y) is the diffracted field and H!®/(z,y) denotes the reflected field, which

is defined as

Nssinfy — 1

H (2,9) = ( ) exp{—tkess(zcosby —ysinby)}. (6.11)

Nssinfy + 1
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For convenience of analysis, the medium for the present model is assumed to be
slightly lossy as in ks = Re{kesr} + Im{kesr}, 0 < Jm{kesr} < Refkess} and
the solution for real k.ss is achieved by assuming Jm{k.;r} — 0. The boundary
value problem (BVP) under consideration is expressed in terms of the magnetic field
potential and it is adequate to denote the diffracted field in the different regions.
The total field H" (z,y) in the range = € (—00,00), that satisfies the Helmholtz’s

equation as follows :

[Oua + Oyy + k2] H (2,y) = 0, (6.12)

diffracted field satisfying Helmholtz’s equation extracted from (6.12) is given as fol-

lows:

[am + Oyy + szf} H, (z,y) = 0. (6.13)

Our focus is to evaluate the diffracted field of EM-plane wave incident on a slit of
finite width. Same effects of impedance are assumed on both the surfaces. Therefore,

Leontovich boundary conditions are considered as

k2
O,H (x,07) — L@angot(x, 0F) = - pon, H (2, 07), for |z] > 1,  (6.14)
€1 Who

where 19 = \/o/€o.

6.3 Transformation of the Problem

Now applying the Fourier transform on the boundary value problem (BVP) with

respect to variable x as

oo

1
— | H.(z,y)e"*dx
v2r J (6.15)

= F (o, y) + e F_(a,y) + Fi (a,y),

Fla,y) =
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where o = Re{a} + (Im{a} = o + 7. The asymptotic expression of H, (x,y) as

T — Fo00 is taken into account as

) ) O (e—ﬁm{keff}x> for z — oo,
2 (2,y) = 0 <63m{keff}xcos€o> for r — —o0.

(6.16)

Fi(a,y) is a regular function of « lying in the upper-half of a—plane —Jm{k.ss} <

Jm{a}, F_(a,y) is a regular function of a lying in the lower-half of a— plane

Jm{a} < Im{k.srcosby} and these together generates a band of analyticity in which

all the functions including F;(«, y) are analytic. Now we write

1 oo
F —/H e e,
+ Vim /

1
]:'_ / Hz el J:+l)d 7
\/ 2m

eLl(a—keff cos 00) . e—Ll(a—k’eff cos 00)

V27 (o — kepycosty)

F(,0) =

Y

Frel (a,0) =

V2r

The application of Fourier transform on (6.13)-(6.15) yields,

nssinfy + 1 t(a — keppcosby)

d2
<_dy —i—v)]—"(oz y) =0,
where v (a) = /kZ;; — a?.

2

k
0,F"! (v, 0F) — Oéﬁ]:'to'f(a, 0F) = :i:Lﬂnoﬁs}—tOt(Oz, 0%).
&1 W
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1 (775 sin 00 — 1) ebl(aikeff COSHO) _ efbl(a*keff COSHO)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)



6.4 Modelling of Wiener-Hopf Equation

The solution of (6.22) satisfying the radiation conditions is given by

Ay (a) e >0,
Fla,y) = 1@ Y (6.24)
Ay (a)e” y <.

Now with the aid of (6.16), (6.23) and (6.24), following coupled functional equations

are obtained as

wmc

1
e F(a,0) + e F (a,0) = 3 [Fine(,0) = Flo s (0, 0) ]

1 E9 Lszf
505 ) o0 = Fem]

1/ gy Uk .
+§(a6_j+ L) [File, 0%) + Fi (0,07) |

5 [A1(0) + Aa(0)],

6Lo{l'F—i- (Oé, 0) + e_mlf— (a7 O) - = 2 ['Fi/nc(a7 0) + "T-.qlﬂef (Oé, 0)}

1
+§ [‘an(a7 0) + ‘/—_Zef (a7 0) }

- k2 9 [‘Fl/(a> O+) - ]:l, (O" 07) ] (6.26)

g e ) [Fi (e 07) + T (e, 07) ]

+% (@) + As(a)].

Here
Fi(a,07) — Fi(a,07) = 2F4(ar, 0)

Fli(a,0M) — Fi(a,07) = 2F, (o, 0)

(6.27)

To obtain the result for high frequency signal, we use the certain approximations
such that w > w,., while keeping it at the same order with w,, yielding the ; ~

1 — (wp/w)? and 5 — 0 in the limit case. After approximations, the Wiener-Hopf
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functional equations are computed as follows :

~ 1
CUF (0,0) + € F (0,0) 48 (@) Fi (@,0) = 5| Fpuele, 0) = Flop (,0)

) (6.28)
vk }
eszfn [Enc(a’ O) - Fref (aa 0) ]7
ad —ald 7~/ o Lk / /
T (0,0) + € F (0,0) + K (@) F (0.0) = —g— [ Fhocle, 0) + Freg (0,0)
—i—% []:mc(a, 0) + Frer (e, 0) } ,
(6.29)
where
Fi(a,0) = % [Fi (a,0") + F (,07)] (6.30)
F{(0,0) = 3 [F (0,0%) + 7 (,07)] (6.31)
_ _ T o Nl, (aa O)
Ay (o) = =F (a,0) + @) (6.32)
 F (o 0) — 7 (a,0)
Ay (a) = —F (a,0) “e) (6.33)

The kernel factors appearing in the coupled system of Wiener-Hopf equations are as

follows :
S(a)=—y(a)L(a), (6.34)
Lk
K (o) = L(a), 6.35
(@)= g £ (6.3
where
a) = kaﬂ?s
L(a) = (H—lm (a)), (6.36)

6.5 Wiener-Hopf Procedure

The main objective of this model is to observe the behavior of EM-wave incident

on a slit of finite width (which is an ultimate result in the form of diffracted field)
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Complex o -plane Cold Plasma

-Im ik gy}

Figure 6.2: The description of analytic continuation in the complex
a—plane.

immersed in cold plasma. The functional Wiener-Hopf equations (6.28) and (6.29)
for the boundary value problem are put to rigorous analysis through Wiener-Hopf
method. The salient fact of this analysis is that its procedure is not a fundamentally
numerical technique in nature that’s why it predicts an additional physics of the
problem and mathematical structure for diffracted field of incident EM-wave. The
kernel functions arising from (6.28) and (6.29) presented by (6.34) and (6.35) are
decomposed as

S(a) =8, (a)S_ (a), (6.37)
K(a) =Ky (a)K_(a), (6.38)

and the factors appearing in (6.37) and (6.38) are computed as

St (o) = e Vg (o) Ly, (6.39)

et \/E
Ly
Keppy/Ms

Furthermore, the product decomposition of the function presented by (6.37) is formed

Ki(a)= (). (6.40)

as

L(a)=Ly(a)L_ (), (6.41)
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where

_ theriy/Ms
Lo(0) = (1 + N (a)> : (6.42)
and
Vi (@) = Vkess £, (6.43)

where the factors with subscript + are regular functions of « in upper half of complex
a—plane (—=JIm{k.ss} < Im{a}), F_(a,y) whereas the factors with subscript — are
regular functions of « in the lower half of complex a—plane (Jm{a} < Im{k.sfcosbty}).

Now using (6.21) and (6.22) in both (6.28) and (6.29), we get
e Fl (@, 0) + e ' F (a,0) + S (a) Fi (o, 0) = AG(v), (6.44)

e F, (a,0) + e F_(a,0) + K (o) F (a,0) = AG'(a), (6.45)

where

1 . _1 k2 5 . : _1
Azﬁ[_(H%) ey sinfy + 1" (l_&)] (6.46)

Nssinfy + 1 k Nssinfy + 1
.A’:l tk sin 6y 1+nssin90—1 +1 1_773511190—1 (6.47)
2| keppns nssinfy + 1 L Nesinfy+1/ |’ ’

ebl(a—keff cos@o) . e—Ll(a—keff cos@g)
V21 (ow — kegy cosby)
Inserting F; (a,0) and F| (a,0) explicitly from (6.44) and (6.45) into (6.32) and

G(a) =G'(a) =

(6.48)

(6.33), we get

A o) = g A€ FL(0,0) + e F (0,0) — AG (o)
1 (6.49)
Ty (@)K (@) {e ' Fy (a,0) + e F_ (o, 0) — AG'(a) },
A2 (0) =5 <1a) {eLF, (0,0) + e F" (a,0) — AG(a)}
1 (6.50)
@ O @0+ F (0,0) - AT )
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The Wiener-Hopf equations presented by (6.44) and (6.45) are derived through
the general theory of Wiener-Hopf procedure and an exact and asymptotic solution
may be obtained for large kegsr <r = \/W) . Now equating the terms of (6.47)
and (6.48) with positive sign on one side of the equation and the terms with negative
sign on the other side give us consequently the same function, say J («), which
is a polynomial function so is an entire function. Analytic continuation (see Fig.
6.2) along with arguments involving extended form of Liouville’s theorem allows the

function J («) to equate to zero, finally we obtain the following results

, AS
Fo (a0 = 25 6 @)+ Tl e, (6.51)
S_
F' (a,0) = “4?2;0‘) (Ga (—a) + T (—a) Cs), (6.52)
A/IC ! ! !
Fu(.0) = 222 (G 0) 4 T (@) €)). (6.53
AI’C_ !/ ! /
Fo (.0 = 2t (@ (o) 1T (o)), (6.59
where
B e—leeff cos by 1 1 k. + 1 0860
6 0) = & ooty (57~ S grey) < R @ 659
B el,lkeff cos g 1 1 ke s co50o
Ga () = (a4 keggcosty) <S+ (@) Sy (—kess cos@o)) —e TR, (o),
(6.56)
G ( eff) + Sy (Kepy) Gi (keps) T (k‘eff)>
Ci =84 (ke , 6.57
= S (her) ( — 8% (kepp) T (kepy) (6:57)
Gr (Kery) + Sy (Kegy) Go (kepr) T (keff))
Cy =S, (k. , 6.58
2= 5 ff)( 1— 8% (kes) T (Keys) (6.:58)
g (a) _ e Ukesycosbo 1 B 1 _ okerscosboa (CL/) (6 59)
! (a = keppeosty) \ Ky (o) Ky (keppcosby) P A
/ _ eblkgff cos o 1 1 —lker cosBp
Gz (a) = (a0~ keyycosby) (IC+ (a) Ky (—kegscos 90)) —e TR, (a),

(6.60)
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ct =K () (AT QUSRI ) (oo
= (B BT ) i
Ris(a) = E_y [W_ (= (/feff;jeoif ;ZS f;)gos 6]0/;/ (= (Kegy + @)} (6.63)
T(a) = %E_lw_ (=t (koys + ) 1), (6.64)
E_y = 2exp (thesl) (1) (1)72, (6.65)
and
[ 0" ex (—v)
W, _1(s) = Y EPTY)
’ 0/ Vs (6.66)

S
=T'(n+1)exp (§> P TEW_ 30 10 (5).

Here, W), ,, is named as Whittaker function and p = —¢ (kepy + ) l, n = —%.
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Now substitution of (6.51)-(6.54) along with (6.48) in (6.49) and (6.50) gives the

result as
( )
eSS, () Gy () + eS8, (a) T () C
A («) A +e S (a) Gy (—a)
Ar(a) | V27S(a) +elS_ () T (—a)C
B ebl(a—keff cos 90) _E—Ll<a—keff cos 90)
L (afkeff cos 90)

. ’ y (6.67)
e 'K (@) G (@) + 'K () T (@) €

_ A'Sgn(y) e K- (a) G (~a)
V2my (@) K (o) +e K (a) T (—a) Cy

B ebl(a—keff cos 90> _e—Ll(a—keff cos 90>
(afkeff cos 00)

Y

\ /

The diffraction of EM-wave field obtained by the implementation of inverse Fourier

transform of (6.24) is defined as

H.(z,y) = L / F (o, y) e da
2
. (6.68)
_ L Ar(a) o=yl gy
Ver S | As(a)

where A; (a) and A, («) are given by (6.67). Substitution of (6.67) into (6.68) and
splitting up the diffracted field function H,(z,y) into two parts as are mentioned

here

H.(z,y) = H*(z,y) + Hé”t(x,y), (6.69)
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where

oo AS+(O¢)€Ll(aikeff cos 00)
1 1 o (a—k cos 6 )S (k cos 6 ) or—
Sep E— _ - eff 0)o+\FReff 0 (—taz—1ylyl|)
H () = 27 / S (a) + AS_ ()~ (o Rers eonto0 ‘ o
— 00 (afkeff c0590)5+(7keff COS@o) (6 70)
oo A"C—o-(a)eLl(a_kﬁff COSGO) .
N sgn (y) / 1 (a—kep s cos80) K (e s cosfo) c(oz—lul) g,
27T L,.)/ (a) IC (Oé) _ A/’C,(a)eid(aikeff CDSGO) )
0 (a—keff 00590)K+<—keff cos@o)
and
—S+ (Oé) R1 (Oé) ebl(a+k€ff cos o)
o0 val
H™ (z,y) = QL / SA TG e(—ror=lul g
7T_oo (O-/) _S+ (—Oé) RQ (—O./) ele(aJrkeff cos fp)
+84 (=a) T (—a) Cae™*!
’C+ (Oé) Ry (Q{) eLl(aJrkeff cos fp)
0 . ! jal
+ sgn (y) / 'A/ ’C+ (Oé) T (Oé) Cle e(—Lowc—L’Y|y|)da_
27 . 1y () K () K, (—a) Ry (—a) e Hlethers coso)

K (=0) T (~0) G~
(6.71)

In above (6.71) H:*? (x,y) has two integrals in which the integrand with kernel func-
tion S(«) has two parts one for the edge x = [ and other for edge x = —1 of the slit,
similarly, integrand with kernel function («) has two parts one for the edge = = [
and other for edge x = —I[, so evaluation of integrals will give the diffracted field for
z = [ as well as for x = —[ whereas H™ (z,y) presented by (6.72) also have two
integrands with kernels S(a) and K(a). Each integrand with its respective kernel
functions S(«) and K(«) have two parts and on evaluating the integrals, one will
give the interaction field due extremity x = 0 of slit and other for the interaction

field due to extremity x = —[ of the slit.
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6.6 Acquirement of Diffracted Field

Now the diffracted field in the far field zone may be evaluated asymptotically.
For this purpose, the polar coordinates as * = rcos#f, |y| = rsinf are introduced

and following transformation helps in the deformation of contour.
a=—kepcos(@+i¢), for0<f<m —o0o<(<o0. (6.72)

Now applying the method of stationary phase for large k.ssr, (6.68) takes the follow-

ing form

Ay (—keoppcost
H.(r.6) = theys 1 (=kegy cost)

sin f exp (Lkeffr + L%) : (6.73)
VKerr Ay (—kesycosb)

Similarly, integrals appearing in (6.70) and (6.71) are evaluated asymptotically using

the method of stationary phase as follows :

1 Lk‘eff
H (7,6) = —— P (—k, 0
(1.0) = {59 ()4 (kg cos0) -

+ ¢s€p (_keff COS 9) } Sineexp (l’k'effr —+ L%) ,

and
1 vk
Hmt (r,0) = et {—sgn( )W"t( kepscos@)
V21 Kepsr (6.75)
+ ™ (— keggcost) }sm&exp <Lk5€ff7“+b4>
where

AS-i— ( eff COoSs 9) ebl(fkeff cosO—keyy coseo)
S (—kepfcosO) (—keprcos® — keppcosby) Sy (kegscosbh)

B AS_ (-
S (—kepfcos) (—keppcost — keppcosby) Sy (—kegscosby)’

(6.76)

P (=kery cost) =

eff COS 9) ( kegfcosO—kegy cos 90)
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and

A’IC+ (_keff COS 9) e—Ll(—k’eff cosO0—keyy 00590)
1y (—keppcos0) K (—keppcos) (—keppcos — keppcos o) Ky (kegrcosby)
AK_ (keff Ccos 6’) e_bl(_kﬁff cos 0—ke f cos 00)
1Y (—keppcos0) K (—kescosO) (—keppcos @ — keppcosby) Ky (—kesscosby)’

(6.77)

¢°P (—kesycost) =

A

mnt [ _
Y (hep cost) S (—kesgcosh)

Sy (—kesscos) Ry (—k.pscos @) e i kess cosOtke s cosbo)
—8 (—kesscosO) T (—keyscosO)Crethers cost

+8_ (=kespcos0) Ry (keppcos ) et —kers cosf=kess cosbo)

—8_ (—keprcos0) T (kesycos ) Coetthers cos?
(6.78)

A/
IC(—kesscost)

¢ (—kespcos) =

Ky (—keprcos0) Ry (—keps cos @) et(“hesscosbkesscosto)
—Ky (—keppcos0) T (—kesy cos @) Cretkerscost

+K_ (—keprcos8) Ry (kesp cos @) et ke cosbikeys cosbo)

—K_ (—keyycos0) T (kesy cos ) Chekerscost
(6.79)

The result given by (6.74) presents the diffracted field evaluated asymptotically for
keggr — oo. In fact, it is the asymptotic form of H,(z,y) valid for any value of
observation angle in the entire space. It is observed that the wave field diffracted
by the slit with edges * = —[ and x = [ yields the separated field. The separated
field provides the physical perception of diffraction phenomenon at defined bound-
ary. Therefore, only the separated field is taken into account for discussion because
it describes the physical insight to the diffraction phenomenon. Furthermore, the
interaction field generated as a result of double diffraction of EM-wave by two edges

is already counted in the form of separated field by the slit with edges at x = —I
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and z = [. Also, expanding the slit width upto infinity discards the contribution of
interaction quantities and consequently, the separated field appears to be diffracted
field. Therefore, only the separated field is focused to discuss graphically here in the

next section.

6.7 Results and Discussion

This section elaborates the graphical behavior of separated field versus angle of
observation for different physical parameters as angle of incidence 6, wave-number £k,
width of slit 21, surface impedance 7, and permittivity element €; in the presence and
absence of cold plasma. Figs. 6.3a, 6.3b display the behavior of separated field for
varying values of 6y while keeping all other parameters fixed. The observation predicts
that separated field intensity gets sharp peaks at 6 = 27/3,37w/4,57/6 indicating
the reflected wave of EM-wave incident at 6y = /3, 7/4,7/6, respectively. The
structure of slit of finite width under consideration over here may work for physical
aspect of scattering mechanism at these particular values of observation angles. The
maximum sharp peak occurs at observation angle § = 57 /6 for respective incidence
angle 6y = 7/6 in the absence of cold plasma but presence of cold plasma grabs this
position and gives it to the observation angle § = 27/3 for its respective incidence
angle 6y = /3. It is also observed that separated field gets more fluctuated in the
region of far away from the origin which does not happen in case of finite plate. Figs.
6.4a, 6.4b are sketched to display behavior of separated field for different values of
wave-number. For increasing the wave-number, oscillations of separated field are
increased. This means that wave frequency moves towards the high frequency range.
In Figs. 6.5a, 6.5b, the separated field for different values of width of slit is observed.
According to observation, the separated field gets more oscillated for expanding the
width of slit. Figs. 4.6a,4.6b show the separated field for real (surface resistance),
pure imaginary (surface reactance) and imaginary values (both surface resistance

and surface reactance) of surface impedance. The separated field for real and pure
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imaginary surface impedance are summed up giving separated field very close to that
for the real surface impedance. From the figures it can be predicted that oscillations
or separated field are reduced. Fig. 6.7 is sketched to show the behavior of separated
field for £1. It is observed that presence of cold plasma has affected the separated field
drastically. Since g1 ~ 1 — (w,/w)? (for signal with high frequency) so an increase in
plasma permittivity e; while keeping the number density of ions and electrons fixed
in cold plasma, that’s why separated field is predicted to be more oscillated for ¢;.
The electrons oscillate about cold ionic centers due to electric field of high frequency
signal and these oscillating electrons scatter enormously due to increasing oscillations
of the separated field. The separated field shows the nullity around the observation

angle of 0 for all physical parameters corresponding to the present model.
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Figure 6.3: The separated field with incident angle in the absence (a) and
presence (b) of cold plasma.
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Figure 6.4: The separated field for wave-number in the absence (a) and
presence (b) of cold plasma.
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Figure 6.5: The separated field for finite width of slit in the absence (a)
and presence (b) of cold plasma.
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6.8 Conclusions

The chapter has elaborated the diffraction of EM-wave by a slit of finite width
with the effect of impedance in the presence of cold plasma. The observation depicts
that diffraction of EM-wave has been affected due to (a) the expansion of width of
the slit (b) different angles of incidence (¢) the variation of wave-number (d) different

values of surface impedance and (e) permittivity of cold plasma.
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