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Preface 

It is commonly known as the many materials like melts, muds, emulsions, tomato paste, shampoos, 

soaps, molten plastics, condensed milk, apple sauces, sugar solution, food stuffs, polymeric liquids etc 

do not hold the Newtonian’s law of viscosity and therefore known as the non-Newtonian fluids. The 

non-Newtonian fluids are charactertized as  three types namely, differential, rate and integral types. It 

is noted that the differential type fluids have been examined much in the literature compared with the 

rate type fluids. The rate type fluid models exhibit the characteristics of relaxation and retardation times 

which cannot be handled through differential type fluids. However these fluids are unable to predict 

shear thinning/thickening and normal stress effects. There are many chemical reacting system 

classification subject to species chemical reaction with bounded activation energy. Activation energy is 

an essential part in chemical reaction.  Such models arise in geo-thermal, chemical engineering, 

mechanics of water and oil storage processes. The communication between mass transfer and chemical 

reaction are typically exceptionally compound and can identified in the creation and utilization of 

reactant classes for different duties both inside fluid and mass transmission.  With these motivations 

in mind, the present thesis is organized as follows. 

Having all the above aspects in mind, in this thesis, we visualized the aspects of various type 

nonlinear fluids under different conditions and laws. The Fourier’s and Fick’s laws and their 

advanced forms are used for better modeling of heat and mass transport processes. The 

structure of this thesis is governed as follows. 

Literature review regarding previous published attempts, description of solution procedure and 

relations for conservation of mass, linear momentum and energy are given in chapter one. 

 

Chapter  two addresses three-dimensional nanomaterial flow of Maxwell material over a 

stretchable moving sheet. The flow in rotating frame is generated by linear stretched sheet. 



 

Furthermore, nanofluid mechanism is addressed subject to thermophoresis and Brownian 

diffusions. Chemical reaction at a stretchable surface is accounted via modified Arrhenius 

energy. Boundary layer approximation is utilized. Suitable variables lead to strong nonlinear 

ODEs. Numerical approach is implemented for solution development. The velocity 

components, temperature and mass concentration are scrutinized. Computational iterations for 

mass and heat transfer rates are discussed through tabulated forms. The observations of this 

chapter have been published in Applied Nanoscience March (2019), DOI: 10.1007/S13204-

019-00998-3 .  

Purpose of Chapters  three is to examine Darcy- Forchheimer in a rotating frame. Flow due to 

stretched sheet fills the porous space. Binary chemical reaction is entertained. Resulting system 

is numarically solved. The plots are arranged for rotational parameter, porosity parameter, 

coefficients of inertia, Prandtl number and Schmidt number. It is revealed that rotation on 

Velocity has opposite effects when compared with temperature and concentration distribution. 

Skin friction coefficient and local Nusselt and Sherwood numbers are numarically discussed. 

Motion of the fluid reduces for higher porosity parameter and inertia coefficient. The findings 

of this chapter have been published in International Journal of  Method for Heat and Fluid 

Flow, Vol.29 No.3, pp 935-948.https://doi.org/10.1108/HFF-06-2018-0292.  

Chpter four is prepared to examine outcome of activation energy in rotating flow of an 

Oldroyd-B nano liquid.. Flow is generated due to stretched surface. Binary chemical reaction 

is studied. Brownian and thermophoresis effects are considered. The system of nonlinear 

ordinary differential equations are derived. Convergent series solutions are obtained by 

homotopy analysis method. The resulting expressions for velocities, temperature and 

concentration are computed for different embedded parameters. It is found that velocities have 

decreasing effect when rotation parameter is enhanced. Brownian and thermophoresis are 

increasing functions of temperature and concentration. The physical quantities are sketched 



 

and discussed numerically. Concentration and temperature fields show decreasing behavior via 

Brownian and thermophoresis parameters This material is published in International Journal 

of Method for Heat and Fluid Flow, July (2019), DOI.org/10.1108/HFF-12-2018-0755.  

Chapter five explores  3D incompressible steady MHD flow of Oldroyd-B material in a rotating 

frame. The flow is caused through linearly stretched sheet. Applied magnetic field is accounted. 

Cubic autocatalytic chemical reaction is considered at the surface. Convective conditions at the 

boundary are considered for heat transport. Flow problem is modeled with the help of boundary 

layer approximations. Homotopy method is utilized for the series solutions. Impacts of 

Materials of these three chapters have been Accepted in Indian Journal of Physics 

Main aim of chapter six is to to study the three-dimensional rotating mixed convective flow of 

nanomaterial. Chemical reaction associated with Arrhenius energy is also accounted. Flow is 

created through exponential stretchable sheet. Slip mechanisms to nanomaterial like Brownian 

and thermophoresis diffusions are considered. Moreover, heat transfer analysis is developed in 

existence of heat source/sink and radiative flux. Similarity transformations are implemented to 

develop the system of nonlinear ordinary ones. Numerical approach (Built-in-Shooting) has 

been utilized to handle the governing mathematical system. Graphically impacts of pertinent 

parameters on the velocity, mass concentration and temperature are deliberated. Local Nusselt 

number and Sherwood number are examined and analyzed. It is noticed that temperature field 

enhances versus radiation and heat source/sink parameter while it decays through higher 

Prandtl number. The outcomes of this chapter are published in Applied Nanoscience, March 

(2019), DOI: https//doi.org/10.1007/s1320 

Chapter seven highlights to investigate three-dimensional steady rotating flow of rate type fluid 

(Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates the porous 

space via Darcy-Forchheimer relation. Flow caused by the exponential stretchable surface of 



 

sheet. Chemical reaction along with Arrhenius energy is considered at the surface. Energy 

expression is modeled subject to heat source/sink and radiation flux. Appropriate 

transformations leads to ordinary ones. Homotopy method is implemented for the series 

solutions. Pertinent parameters are discussed graphically. Special consideration is given to the 

engineering quantities like Sherwood and Nusselt numbers and discussed numerically through 

tabular form. Temperature distribution enhances versus higher radiation and heat source/sink 

parameter while decays for larger Prandtl number. Furthermore velocity shows decreasing 

trend through larger porosity and Deborah number. The obtained results are published in 

Applied Nanoscience, March (2019), DOI:10.1007/s13204-019-01008-2 

 

This  chapter eight is prepared to explores the three-dimensional steady incompressible flow 

of Oldroyd-B fluid subject to stretchable surface. The flow of material induced through 

stretchable surface with Darcy-Forchheimer medium. Homogeneous-heterogeneous reactions 

are considered. Convective boundary conditions and heat source/sink effects are considered for 

the heat transport. Boundary layer concept is used in the development of flow problem. Series 

solutions are obtained of the nonlinear system through homotopy technique. Physical 

significance of pertinent parameters are discussed and plotted graphically. Heat transfer rate is 

discussed numerically. The outcomes of this chapter are published in Applied Nanoscience, 

April (2019) , DOI:10.1007/s13204-019-01037-x. 



Nomenclature

V
0

velocity field

S∗ extra stress tensor

τ Cauchy stress tensor

I Identity tensor

Ω angular speed,

 reaction rate

0 reference velocity

b body force per unit mass

 heat flux

 radiative heat flux

j∗ mass flux

 density of liquid

 pressure gradient

A1 first Rivlin-Ericksen tensor

∇ vector differential operator

 heat capacity ratio

() effective heat capacity of nanoparticles

() heat capacity of fluid

 Brownian motion coefficient

 thermophoresis diffusion coefficient

∗1 
∗
2 fluid relaxation and retardation time

 stretching rate

TL viscous dissipation
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 specific heat at constant pressure

 heat transfer coefficient




covariant derivative

   velocity components

   space coordinates

 characteristics length

 dynamic viscosity

 mass diffusivity

0 positive constant

 kinematic viscosity

 () stretching velocity

2 heterogeneous strength

 ∗ transpose

 fluid temperature

 wall temperature

 hot fluid temperature

∞ ambient fluid temperature

 magnetic field

 fluid concentration

 wall concentration

∞ ambient fluid concentration

1 homogeneous strength

 activation energy
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∇C concentration gradient

 fluid thermal conductivity

 thermal diffusivity

 rotation parameter

 Boltmann constant

1 2 Deborah numbers for relaxation and retardation times

 temperature difference

 stretching rate

 porosity parameter

 inertia coefficient

1 activation energy

 Prandtl number

 chemical reaction rate

∗0 thermal expansion coefficient

0 solutal expansion coefficient

 tharmal radiation

 specific heat

 heat transfer coefficient

0 positive constant

 acceleration gravity

0 magnetic field strength
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∗∗ electrical conductivity

∗ stefan-Boltzmann constant

0 heat source/sink coefficient

 heat transfer coefficient

 gravitational acceleration

 activation energy parameter

 fitted rate constant

1 mixed convection parameter

 buoyancy ratio parameter

 Grashof number

 emperature exponent parameter

 heat source/sink variable

 mean absorption coefficient

 concentration exponent

 ( 0) heat generation parameter

 ( 0) heat absorption parameter

 Brownian motion parameter

 thermophoresis parameter

 permeability of porous medium

 thermal radiation parameter
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 Biot number

 Schmidt number

 surface drag force

 Schmidt number

 local Nusselt number

 drag coefficient

 non-uniform inertia coefficient

τ  components of Cauchy stress tensor

S
∗ components of Extra stress tensor

A components of first Rivlin-Ericksen tensor
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 local Sherwood number

 surface shear stress

∗ surface heat flux wall

∗ surface mass flux wall

Re local Reynolds number

N nonlinear operator

 unknown dependent function

 embedding variable

} auxiliary variable

L∗ linear operator

0 ()  0 ()  0 ()  0 () initial guesses

∗() ∗() ∗() ∗() general solutions

∗∗() 
∗
∗(),

∗
∗() 

∗
∗() special solutions

∗ arbitrary constants

 independent variable

 stream function

 0 () velocity field

 () thermal field

 () concentration field

 () micro-rotation velocity field
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Chapter 1

Review and some fundamental laws

1.1 Introduction

Review of previous related studies related to boundary layer flow, mixed convection, nano-

material, heat and mass transfer analysis with chemical reaction, thermal conductivity are

incorporated here. Mathematical formulation for viscous, Oldroyd-B fluid, maxwell fluid are

discussed for better understanding of upcoming chapters. The solution techniques like Ho-

motopy analysis method (), Optimal homotopy analysis method () are briefly

explained in present chapter.

1.2 Background

Recently nanomaterial in context of their enhanced thermal characteristics has become much

consideration of the investigators. Nanoparticles comprise base liquid with nanometer sized

particles, such as oxides, metals, carbides or carbon nanotubes. Nanomaterials have advantage

to improve their thermal conductivity and the convective heat transport coefficient when com-

pare with the base liquid. There are altered consumptions of nanomaterials in heat exchanger,

centrifugal and axial blades compressor, gas turbines blades, microelectronic board’s circuit

and numerous organic application. Thus Choi. [1] analyzed the impacts of nanomaterials in

base liquids which upgraded the thermal conductivity of base liquid. A numerical model of

nanoliquid which demonstrates the thermophoresis and Brownian development is examined by
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Buongiorno. [2] Frequent investigators have been considered various nanomaterial by taking

into single and two-phase models of nanoliquid. Hayat et al. [3] examined peristaltic flow of

viscoelastic nanomaterials subject to Hall and ion impacts. Hayat et al. [4] also evaluated silver

and copper water nanofluid flow with subject to radiation. The under discussion subject matter

has become a burning issue of many researchers besides they are engaged for investigation of

nanomaterials under different aspects (see Refs[5− 22]). Momentum and heat transport in

boundary layer flow subject to stretched sheet from both theoretical and practical perspectives

have been discussed by numerous researchers and engineers. It is because of their broader

applications like food production, polymer technology, advanced energy conversion system and

engineering and spinning of fiber in heat transfer at high temperature. Radiative heat transport

play very imperative role in these field. Thermal radiation impacts are important when com-

parison between the surface and the ambient temperature is enhanced. Viscoelastic material

flow effects with thermal radiation and mixed convection subject to porous wedge is inspected

by Rashidi et al. [23]. [24]. Mukhopadhyay presented thermal radiation with suction/blowing

effects on flow due to exponentially stretching. Radiative flux impacts in viscous material over

a stretchable surface is scrutinized by Hayat and Sajid. [25]  viscoelastic boundary layer

stretchable flow versus thermal radiation and non-uniform heat source/sink are presented by

Nandeppanavar et al. [26]. Bhattacharyya et al. [27] have examined radiative flux behavior in

micropolar liquid subject to porous shrinking surface. Second law analysis for variable viscosity

on a vertical plate with radiative flux is scrutinized by Makinde et al. [28] Some meaningful

consideration with numerous flow assumptions are presented [29− 44]
Materials which have nonlinear deformation upon the applications of shear stress are termed

as non-Newtonian. Non-Newtonian material (fluid) plays an important role in various parts of

mechanical engineering, textile industries and branches of applied science. There are numerous

applications of such materials for instance, honey, tomato, toothpaste, mud, shampoo, paints

and so many others. Not only single relation is required to examine the different character-

istics of non- Newtonian material. There are numerous non-Newtonian materials models like

Jeffrey model, Eyring model, Prandtl Eyring model, Casson model, second grade, Sisko model,

Oldroyd-B model, Carreaue model and so on. Here we have considered Oldroyd-B model which

is a rate material that exhibits properties of retardation and relaxation times. Zhang et al. [45]
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discussed heat transport characteristics in Oldroyd-B nanoliquid flow related time dependent

thin film stretchable sheet. Shivakumara et al. [46] scrutinized thermal convective instability in

flow of Oldroyd-B nanoliquid fluid subject to porous medium. Forced convective nanomaterial

flow of Oldroyd-B fluid between two isothermal stretchable disks with magnetic field is exam-

ined by Hashmi et al. [47]. Zhang et al. [48] explored thin film flow of Oldroyd-B nanoliquid

with Cattaneo-Christov double diffusion. They also considered chemical reaction and dissipa-

tion effects. Shehzad et al. [49] scrutinized 3D-forced convective Oldroyd-B fluid flow with

thermophoresis and Brownian diffusions. Kumar et al. [50] discussed the nanomaterial flow of

Oldroyd-B fluid subject to radiative flux and dissipation. Electrical conducting nanomaterial

flow of non-Newtonian liquid subject to porous stretchable sheet is discussed by Das et al.

[51]. Gireesha et al. [52] discussed heat and mass transport in nanoliquid flow of Oldroyd-B

material with heat source/sink by a stretchable surface. Khan and Mahmood [53] discussed

combined effects of heat source/sink and thermophoretic diffusion effects on nanoliquid flow

of non-Newtonian fluid inside stretchable disks. Flow of Oldroyd-B nanomaterial with heat

source/sink and radiative flux is explored by Waqas et al. [54]. Refs. [55−86] represent various
fluid models subject to different flow assumptions.

There are many chemically reacting system classifications subject to species chemical re-

action with limited activation energy. The communication among mass transfer and chemical

reaction are typically exceptionally compound and can be detected in the creation and con-

sumption of reactant classes for various situations both inside liquid and mass transmission.

Activation energy is very important factor in chemical species. It is least obligatory energy

which is used to start chemical reaction. Activation energy concept is often applicable in these

areas such as geothermal, chemical engineering, oil and water emulsions, geothermal reservoirs.

Firstly Bestman [87] discussed the chemical reaction and activation energy with boundary layer

flow. He applied perturbation technique to investigate the role of activation energy. Makinde et

al. [88] reported impacts of mixed convection in unsteady flow with suction/injection, thermal

radiation and Arrhenius reaction. Maleque [89] reported exothermic/endothermic reaction in

mixed convection flow. Awad et al. [90] explored Arrhenius activation energy with rotating

fluid flow. Radiation effect in Casson-fluid flow with activation energy is examined by Sheikh

et al [91]. Khan et al. [92] discussed effect of activation energy impacts on entropy generation
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with radiation motion of nanomaterial. Rotating Maxwell fluid flow subject to with activation

energy is explored by Mustafa et al [93]. Khan et al. [94] elucidated the Cross nanofluid flow

with activation energy. Buoyancy effects on  nanofluid flow with chemical reaction acti-

vation energy is addressed by Hayat et al [95]. Latest attempts regarding activation energy can

be seen through studies [96− 99].
The homogeneity and heterogeneity are two chemical conceptions that we designate related

to the uniformity of a subject. The term homogeneous denotes to “same” and heterogeneous

refers to “different”. The chemical processes that occur in a single phase (liquid, gaseous or

solid) are homogeneous reaction. There are two broad classes of reactions namely homogeneous

and heterogeneous based on the physical state of present substances. The most important of

homogenous processes are the reactions inside gasses (for example, the combination of common

household gas and oxygen to yield a flame) and the processes between fluids or substances

melted in liquids (for instance, the reactions or processes between aqueous solutions of bases

and acids). From the theoretical point of view, homogeneous processes are the simpler of two

categories of processes because the chemical changes that take place are exclusively dependent

on the nature of interactions of reacting substances. In this considered flow analysis, we have

implemented the cubic autocatalytic chemical reaction at the surface. Mass diffusions are

assumed equal to examine the attributes of mass concentration. Refs. [100− 109].

1.3 Basic laws

1.3.1 Conservation law of mass

According to conservation law of mass, the mass cannot be created and it cannot be destroyed.

In mathematical expression it can be written as




+∇

³
V

0´
= 0 (1.1)

Mass conservation’s law for incompressible fluid takes the form

∇V0
= 0 (1.2)
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In Cartesian coordinates




+




+




= 0 (1.3)

1.3.2 Conservation law of linear momentum

This law states that total linear momentum of the system is conserved. It is derived from

Newton’s second law and mathematically can be represented as follows:


V

0


=∇τ ∗ + b∗ (1.4)

Cauchy stress tensor is defined by

τ ∗ = −I∗+S∗ (1.5)

In Cartesian coordinates and using velocity field V
0
= [ (  )   (  )   (  )] 

1.3.3 Conservation law of energy

The law of conservation of energy reveals that the total energy of the system remains constant.

It is derived from the first law of thermodynamics. In mathematical form we can express it in

the following way:





= τ ∗L∗ − divq∗ − divq∗ (1.6)

The term on the L.H.S of Eq. (1.6) denotes internal energy, first term on R.H.S denotes

viscous dissipation while the second and third terms represent thermal and radiative heat fluxes

respectively.

1.3.4 Equation of mass transport

The total concentration of the system under observation remains constant according to the

Equation of mass transport. Mathematically we have




= −∇j∗ (1.7)
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From Fick’s first law we have

j∗= −∇ (1.8)

Thus equation of mass transport becomes




= ∇2 (1.9)

1.4 Non-Newtonian Liquids

1.4.1 Viscous fluid

Those fluids which obey the Newton’s law of viscosity. Extra stress tensor for the Newtonian

fluid is as follows:

S∗=A1 (1.10)

Mathematically first Rivlin-Ericksen is

A1 = gradV
0
+
³
gradV

0´∗
 (1.11)

1.4.2 Maxwell fluid

It is the non-Newtonian fluid model and the simplest subclass of rate type fluids which elaborates

the features of linear viscoelastic fluids having only relaxation time. Extra stress tensor for a

Maxwell fluid is presented by

S∗ + ∗1

µ
S∗


− LS∗ − S∗L

¶
] = A1 (1.12)

1.4.3 Oldroyd- B liquid

Here one considers

τ ∗ = −I∗+S∗ (1.13)

an extra stress tensor is defined by

S∗ + ∗1

µ
S∗


− LS∗ − S∗L

¶
] = 

∙
A1 + ∗2

µ
A1


− LS∗ − S∗L

¶¸
 (1.14)
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1.5 Solution methodologies

1.5.1 Homotopy analysis method()

The idea of homotopy was firstly given by Liao [110] in 1992. This method deals highly nonlinear

problems. The detail procedure of this method is applied in chapters 4 5 7 and 8

1.5.2 Optimal homotopy analysis method()

The concept of minimization is used for average square residual errors.



∗ =

1

∗ + 1

∗X
=0

⎡⎣N

Ã
∗X
=0

 () 

∗X
=0

 ()

!
=∗

⎤⎦2  (1.15)

∗ =
1

∗ + 1

∗X
=0

⎡⎣N

Ã
∗X
=0

 () 

∗X
=0

 () 

∗X
=0

 ()

!
=∗

⎤⎦2  (1.16)



∗ =

1

∗ + 1

∗X
=0

⎡⎣N

Ã
∗X
=0

 () 

∗X
=0

 () 

∗X
=0

 () 

!
=∗

⎤⎦2  (1.17)

Total squared residual error is expressed as:

 = 

∗ + 


∗ + ∗ + 


∗  (1.18)
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Chapter 2

Numerical treatment for rotating

nanofluid flow with chemical

reaction and activation energy

Many analysts and researchers claim that nanomaterials can be employed to improve the ther-

mal performance of base material. Heat transport over stretchable surface has been examined

by numerous engineers due to their vast applications. We consider three-dimensional nanoma-

terial flow of Maxwell material over a stretchable moving sheet. The flow in rotating frame is

generated by linear stretched sheet. Chemical reaction at a stretchable surface is accounted via

modified Arrhenius energy. Boundary layer approximation is utilized. Suitable variables lead to

strong nonlinear ODEs. Numerical approach is implemented for solution development. Com-

putational iterations for mass and heat transfer rates are discussed through tabulated forms.

.
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2.1 Formulation

Here 3 Maxwell nanomaterial flow over a rotating frame is considered. The flow in rotating

frame is generated by linear stretched sheet. Schematic flow analysis is presented in Fig. 2.1

Fig. 2.1. Schematic flow analysis




+




+




= 0 (2.1)



+  


+  


− 2Ω =  

2
2

−∗1

⎛⎜⎜⎜⎝
2 

2
2

+ 2 
2

2
+2 

2
2

+ 2 2


+2 2


+ 2 2


−2Ω
³


+  


+  



´
+ 2Ω

³
 

− 



´
⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.2)



+  


+  


+ 2Ω =  2

2

−∗1

⎛⎜⎜⎜⎝
2 

2
2

+ 2 
2

2
+ 2 

2
2

+ 2 
2



+2 2


+ 2 2


+2Ω
³


+  


+  



´
+ 2Ω

³
 

− 



´
⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.3)





+ 




+ 




= 

2

2
+
()

()

Ã


µ








¶
+



∞

µ




¶2!
 (2.4)





+ 




+ 




= 

µ
2

2

¶
− 2

µ


∞

¶

−

 ( − ∞) +



∞

µ
2

2

¶
 (2.5)
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with

 =  () =   = 0  = 0  =   =  .as  = 0

 −→ 0  −→ 0  −→ ∞  −→ ∞ as  −→∞

⎫⎬⎭ (2.6)

Considering

 =
p



  =  0()  = ()  = − () 12 ()

() = −∞
−∞  () = −∞

−∞ 

⎫⎬⎭ (2.7)

One has

 000 +  00 −  02 + 2
¡
 − 1

0¢+ 1
¡
2 0 00 − 2 000

¢
= 0 (2.8)

00 + 0 −  0 − 2 ¡ 0 + 
¡
 02 −  00 + 2

¢¢
+ 1

¡
2 00 − 200

¢
= 0 (2.9)

00 +Pr
¡
0 +00 +02

¢
= 0 (2.10)

00 + 0 +



00 −  [1 + ] exp

∙
− 1

1 + 

¸
 = 0 (2.11)

 (0) =  (0) = 0,  0 (0) = 1  (0) =  (0) = 1

 0 (∞) −→ 0  (∞) −→ 0  (∞) −→ 0  (∞)−→0

⎫⎬⎭ (2.12)

dimensionless parameters are define as

 = Ω

 1 = ∗1,  =






 =
()(−∞)

()
  =

() (−∞)
()∞



 = 


 1 =

∞   = −∞

∞   =
2

 Re =

2



⎫⎪⎪⎪⎬⎪⎪⎪⎭  (2.13)

The physical quantities are given by

 =


(−∞) 

 =


(−∞) 

⎫⎬⎭ (2.14)

with

∗ = −  |=
∗ = − 


|=

⎫⎬⎭ (2.15)
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finally we have

Re
−05
 = −0 (0) 

Re
−05
 = −0 (0) 

⎫⎬⎭ (2.16)

2.2 Analysis

This section is organized for the physical interpretation of non-dimensional velocities  0() and

() and concentration () and temperature (). Fig 2.2 shows that how 1 affects the

velocity  0(). It is noticed that rising values of 1 show decreasing behavior of velocity  0()

and related layer thickness. Fig. 2.3 illustrates  outcome on  0(). Greater estimations of

 lead to lower velocity  0(). Also layer thickness for  is also reduced. Fig. 2.4 display

variation of 1 on velocity distribution (). Behavior of  () indicated that flow is negative in

 direction. It is seen that magnitude of  () enhances near the surface. Fig. 2.5 explains the

behavior of  on velocity  (). Here we noticed that magnitude of  () enhances for higher .

It is due to the reason that rotational frequency rises for larger (). Fig. 2.6 displays influence

of 1 on  (). Here we observed  () and layer thickness is enhanced for higher 1. Fig. 2.7

shows that larger rotation parameter  yield strong temperature field. Fig. 2.8 describes how

 affects the  (). Influence of  on  () is presented in Fig. 2.9. Here both thermophoresis

and Brownian motion have increasing behavior. Fig. 2.10 displays  effects on  (). Higher

 produces weaker thermal diffusivity which give degeneration in  (). Fig.2.11 indicated

effect of 1 on . We can see here that  is an increasing function of 1. Fig. 2.12 depicts 

effects on concentration  (). Both  and layer thickness are increased for larger . Influence

 of on concentration is shown in Fig. 2.13. Here behavior of mass concentration is reverse to

that of . Fig. 2.14 represents concentration field effects via activation energy 1. Thickness

of concentrated layer is more by increasing 1. Effect of  on  () is displayed in Fig. 2.15.

We can see that  () has decreasing trend via larger . Note that when  gradually increases,

then Brownian dispersion coefficient diminishes and thus concentration is weaker. Fig. 2.16.

depicts to portrayed the impacts of  reaction rate constant on nanoparticle concentration  ().

As expected the concentration is decreased when   0. Effect of  on  () is shown Fig. 2.17.

Obviously  () and  have inverse relation. It indicates that difference between ambient and

wall temperature is higher when mass layer thickness is enhanced.
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Tables 2.1 is sketched for the computational iterations of Nusselt number subject to ,

1, Pr,  and . We have seen that Nusselt number has lower impact for rising (, 1)

while, reverse behavior is observed for (Pr). Table 2.2 is plotted for computational iterations

of Sherwood number via , 1,  and . We analyzed that Sherwood number has small and

higher estimations for rising ( ) and (, 1) respectively.

Table. 2.1: Numerical iterations for local Nusselt number

  Pr   −0 (0)
0.3 0.2 1.0 0.1 0.3 0.456627

0.5 0.417498

0.3 0.292401

1.0 1.5 1.0 0.1 0.3 0.421987

2.0 0.367132

4.0 0.105183

0.3 0.5 1.5 0.1 0.3 0.421987

2.0 0..624356

3.0 0.748203

0.3 0.2 1.0 0.2 0.3 0.440829

0.5 0.397037

0.7 0.37063

0.3 0.2 1.0 0.2 0.1 0.495429

0.3 0.440829

0.5 0.390917
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Table. 2.2: Numerical iterations for local Sherwood number

  1  −0 (0)
1.0 0.3 1.0 1.0 0.710795

3.0 1.37655

5.0 1.84207

1.0 0.1 1.0 1.0 0.714662

0.3 0.494606

0.5 0.49365

1.0 0.2 2.0 1.5 0.492867

4.0 0.565425

6.0 0.60443

0.2 0.3 1.0 1.5 0.720555

2.0 0.717143

2.5 0.716795

b1 = 0.1, 0.2, 0.4, 0.5

l = 0.2
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Fig. 2.2. 1 against 
0 () 

l = 0.1, 0.3, 0.4, 0.6

b1 = 0.2
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Fig. 2.3.  against  0 () 
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l = 0.3

b1 = 0.2, 0.4, 0.6, 1.0

0 2 4 6 8
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Fig. 2.4. 1 against  () 

l = 0.2, 0.3, 0.4, 0.5

b1 = 0.2
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Fig. 2.5.  against  () 

b1 = 0.2, 0.4, 0.6, 0.8

l = 0.3, Nt = 0.1, Nb = 0.3, Pr = Sc = 1
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Fig. 2.6. 1against  () 

l = 0.1, 0.3, 0.5, 0.7

b1 = 0.2, Nt = 0.2, Nb = 0.3, Pr = Sc = 1
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Fig. 2.7.  against  () 

Nt = 0.5, 0.8, 1.0, 1.5

l = b1 = 0.2, Nb = 0.3, Pr = Sc = 1
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Fig. 2.8.  against  () 

Nb = 0.4, 0.7, 1.0, 1.5

b1 = l = 0.2, Nt = 0.1, Pr = Sc = 1
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Fig. 2.9.  against  () 
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Pr = 0.7, 1, 1.5, 2

l = b1 = 0.2, Nt = 0.1, Nb = 0.3, Sc = 1
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Fig. 2.10. Pr against  () 

b1 = 0.1, 0.3, 0.6, 0.9

l = 0.3, Nt = 0.3, Nb = 0.3, Sc = 2, d = 0.4

, s = 0.5, E1 = 2, n = 0.2
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Fig. 2.11. 1 against  () 

Nt = 0.2, 0.5, 0.7, 0.9

b1 = l = 0.5, Nb = 0.3s = d = 1
Sc = 1, E1 = 5, n = 0.2
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Fig. 2.12.  against  () 

Nb = 0.5, 0.6, 0.9, 1.5

b1 = l = 0.5, Nt = 0.3.Pr = Sc = 1
d = s = 1, E = 5, n = 0.2
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Fig. 2.13.  against  () 

E1 = 1.2, 3, 4

b1 = l = 0.2, Nt = Nb = 0.3,
Pr = Sc = 2, s = d = 1
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Fig. 2.14. 1 against  () 

Sc = 1, 2, 2.5, 3.5
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Fig. 2.15.  against  () 
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b1 = l = 0.5, Pr = Sc = 1, Nt = Nb = 0.3
d = 1, E1 = 1

s = 0.5., 1, 1.5, 2
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Fig. 2.16.  against  () 
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Fig. 2.17.  against  () 
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Fig. 2.17.  against  () 

2.3 Conclusion

We have following main points.

• Larger  and  exhibit decreasing trend for both velocities  0 () and  ().

• An increasing 1 lead to to decay velocity  0 () whereas reverse is seen for  () 

•  and  has increasing behavior for  ()

• Have seen increasing behavior in  and  for larger .

• Concentration field is decay for larger  and .

• An increasing 1 lead to to higher concentration whereas reverse is seen for 
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• Nusselt number has lower impact for rising (, 1) while, reverse behavior is observed for
(Pr).
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Chapter 3

Three dimensional rotating Darcy-

Forcheimer flow with activation

energy

Purpose of the article is to examine Darcy- Forchheimer in a rotating frame. Flow due to

stretched sheet fills the porous space. Binary chemical reaction is entertained. Resulting system

is numerically solved. The plots are arranged for rotational parameter, porosity parameter,

coefficients of inertia, Prandtl number and Schmidt number. It is revealed that rotation on

Velocity has opposite effects when compared with temperature and concentration distribution.

Motion of the fluid reduces for higher porosity parameter and inertia coefficient. Concentration

and temperature field have same behavior via inertia coefficient.

3.1 Formulation

Here we are interested to investigate rotating flow in a porous space. Dissipation and radiation

effects are neglected. Due to absence of radiation effect there is no electromagnetic radiation

generated by the thermal motion of charged particles in fluid. Effect of activation energy is

studied. Stretching surface coincides with the plane  ≥ 0.

∇V0
= 0 (3.1)
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
h³
V

0
∇
´
V

0
+ (Ω× (Ω× r)) +

³
2Ω×V0´i

= −∇+∇S∗ (3.2)

∗
³
V

0
∇
´
= ∇2 (3.3)

³
V

0
∇
´
= ∇2 − 2

µ


∞

¶

−

 ( − ∞)  (3.4)

Considering the velocity V
0
= [ (  )   (  )   (  )], temperature  =  (  )

and concentration  =  (  ) we obtain




+




+




= 0 (3.5)





+ 




+




− 2Ω = 

2

2
− 


− 2 (3.6)





+ 




+ 




+ 2Ω = 

2

2
− 


 − 2 (3.7)

µ




+ 




+ 





¶
= 

2

2
 (3.8)





+ 




+ 




= ∇2 − 2

µ


∞

¶

−

 ( − ∞)  (3.9)

The related boundary condition are:

 =   = 0  = 0  =   =  at  = 0

 −→ 0  −→ 0  −→ ∞  −→ ∞ when  →∞

⎫⎬⎭  (3.10)

Considering

 =
p



  =  0()  = (),  = − () 12 (),

() = −∞
−∞  () = −∞

−∞ 

⎫⎬⎭ (3.11)

Eq. (35) is trivially verified and Eqs.(36− 39) become:
Eq. (31) is trivially verified and Eqs.(32− 36) become:

 000 +  00 −  0 + 2 − (1 + ) 
02 = 0 (3.12)

00 + 0 −  0 − 2 0 −  − 
2 = 0 (3.13)
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00 +Pr 0 = 0 (3.14)

00 + 0 −  [1 + ] exp

∙
− 1

1 + 

¸
 = 0 (3.15)

with conditions

 = 0 ,  0 = 1  = 0  =  = 1 at  = 0

 0 −→ 0  → 0  −→ 0 −→0 at −→∞

⎫⎬⎭ (3.16)

Skin friction coefficient and local Nusselt and Sherwood numbers are

 =


(−∞) 

 =


(−∞) 

 =

2



 = 
¡



¢


⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.17)

with

 = −  |=
 = − 


|= 

⎫⎬⎭ (3.18)

Finally we have



√
Re =  00 (0) ,

√
Re

= −0 (0) 
√
Re

= −0 (0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.19)

3.2 Solution methodology

Present problem seems difficult for exact solutions. Therefore numerical method NDSolve of

MATHEMATICA is used. The function NDsolve discussed in Numerical Differential Equation

to find numerical solutions to differential equations. NDsolve handles both single differential

equations and sets of simultaneous differential equations. It can handle a wide range of ordinary

differential equations as well as some partial differential equations. It is built in method which

directly construct graphs for different embedded variables. Graphs are constructed for velocity,

temperature and concentration.
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3.3 Numerical results

Equations (312− 316) are solved numerically by utilizing NDSolve approach. This portion
is prepared to examine variations of embedded parameters on  0(),  () and (). Fig. 3.1

depicts the rotation parameter  effects on velocity distribution  0(). It is noticed that an

increment in rotation parameter  demonstrates a decrease in velocity  0(). Physically for

larger  the stretching rate of sheet reduces and so velocity diminishes. Fig. 3.2 explains

variation of  on  0(). The results of  on  0() are similar to that of . In fact for larger  the

fluid becomes more viscous which produces resistance for fluid to flow. Hence  0() reduces. Fig.

3.3 indicates velocity  0() for increasing . Here  0() is decreased by . Fig. 3.4 indicates

variation of  on  () and thermal layer thickness. Both physical quantities are increasing

function of . Fig. 3.5 explains temperature  () against porosity parameter. We noted that

temperature distribution has an increasing behavior for porosity. Physically we noted that due

to higher viscosity and resistance between the particles more heat produces and consequently

 () enhances. Fig. 3.6 depicts behavior of  for temperature. Clearly  is higher for .

Fig. 3.7 displayed  effects on  (). Here  () is a decreasing function of . As expected

thermal diffusivity decreased for higher Prandtl number and so thermal layer also decays. Fig.

3.8 presents  effects on concentration (). concentration is increased for higher . Influence

of  on () is plotted in Fig. 3.9. Clearly concentration is an increasing function of porosity

parameter . Fig. 3.10 displays effects of inertia coefficient  on concentration. It is seen that

concentration distribution () is enhanced via large . Fig.3.11 illustrates that larger Prandtl

number  yield lower concentration distribution () and related layer thickness. Fig. 3.12.

predicts outcome of activation energy 1. Here 1 enhanced concentration layer thickness. Fig.

3.13 demonstrated variation of  on concentration (). Clearly () is decreased by . Figs.

3.14 and 3.15 have been organized for  and  on concentration (). There is an increment

in  [1 + ] exp
h
− 1
1+

i
when  or  enhances. Physically as we enhance the values of 

the destructive rate of chemical reaction also increases. It is used to terminate or dissolve the

liquid specie more effectively and hence concentration reduces. Impact of Schmidt number 

on concentration can be seen from Fig. 3.16. Concentration larger thickness is decreased by

. Mass diffusivity reduces for larger  This is responsible for decrease in (). Numerical

estimation of skin friction coefficient for different rotational parameter, porosity parameter and
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inertial coefficient is illustrated in Table 3.1. Here skin friction coefficient is more via  , and

. Table 3.2 is prepared for √
Re
. It shows that local Nusselt number decreases via porosity 

and rotation  parameters. Table 3.3 exhibits an improvement in local Sherwood number √
Re

when either reaction rate  or Schmidt number  is increased. Sherwood number is decreasing

function of porosity parameter . Table 3.4 is constructed for validation of our problem. Good

agreement is seen from previous literature.

Table 3.1: Skin friction coefficient via variation of ,  and 

   − 00 (0)
1 0.2 1 1.58724

2 1.862267

3 2.10932

0.5 0.1 1 1.41806

0.5 1.53031

1 1.67153

0.3 0.1 1 1.36352

2 1.58502

4 1.96195
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Table 3.2: Local Nusselt number −0 (0) via ,  and Pr 

   Pr −0 (0)
0 0.5 1 1 0.508972

1 0.485852

2 0.45752

0.2 0.1 1 1 0.542198

0.5 0.506965

0.9 0.467794

0.2 0.5 1 2 0.811336

3 1.06461

4 1.1.27979

0.2 0.5 0 2 0.844615

2 0.783173

3 0.734272
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Table 3.3: Estimation of local Showered number −0 (0) for , , , 1 and :

   1  −0 (0)
1 0.2 0.5 1 1 0.701962

3 1.36565

5 1.83376

1 0.1 0.5 1 1 0.703102

2 0.669718

4 0.547447

0.2 0.2 0.5 1 1.5 0.506206

2 0.573711

2.5 0.635773

1 0.2 0.1 1 1 0.72246

0.3 0.714078

0.5 0.701962

1 0.2 0.1 2 0.3 0.645658

3 0.600474

4 0.574834

Table 3.4: Comparative values of − 00(0) when  =  =  = 0 with refs. [16] and [54].
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− 00(0)
Hayat et al. [10] 1.000000

Mugahed [11] 0.999978

Present 1.000000
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Fig. 3.1.  variation on  0 () 
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Fig. 3.2.  variation on  0 () 
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Fig. 3.3.  variation on  0 () 
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Fig. 3.4.  variation on  () 
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Fig. 3.5.  variation on  () 
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Fig. 3.6.  variation on  () 
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Fig. 3.7. Pr variation on  ()
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Fig. 3.8.  variation on  () 
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Fig. 3.9.  variation on  () 
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Fig. 3.10.  variation on  () 
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Fig. 3.11. Pr variation on  ()
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Fig. 3.12. 1 variation on  () 

l = 0.5, b = 0.2, Fr = 2, Pr = 2,

Sc = 0.5, s = 5, E1 = 1, n = 0.5

d = 0, 1, 3, 5

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

h

f
h

Fig. 3.13.  variation on  ()
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Fig. 3.14.  variation on  ()
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Fig. 3.15.  variation on  () 
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Fig. 3.16.  variation on  () 
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3.4 Concluding remarks

The major findings here are

• An addition in porosity  causes decay in velocity  0 () besides we have seen reverse

trend in  () and  () fields.

•  is decreasing function of  0() and increasing function of  () respectively.

•  and  via  have similar results qualitatively.

• Opposite behavior of  is noticed on  () and  ().

• Inverse behavior of  on  and wall mass flux is noted.

• Concentration reduces when  or  enhances.

• Concentration  is decreasing function of reaction rate constant .

• Skin friction coefficient has similar qualitative results for  and .

• Temperature gradient −0 (0) is decreased by  and .
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Chapter 4

Local similar solution for flow of an

Oldroyd- B nanofluid with activation

energy

Main purpose of present attempt is to examine outcome of activation energy in rotating flow of

an Oldroyd-B nano liquid. Flow is generated due to stretched surface. Binary chemical reac-

tion is studied. Brownian and thermophoresis effects are considered. The system of nonlinear

ordinary differential equations are derived. Convergent series solutions are obtained by homo-

topy analysis method. The resulting profile for velocities, temperature and concentration are

captured for different embedded parameters. It is found that velocities 
0
and  have decreas-

ing effect when rotation parameter is enhanced. Brownian and thermophoresis are increasing

functions of temperature and concentration. The physical quantities are sketched and discussed

numerically. Concentration and temperature fields show decreasing behavior via Brownian and

thermophoresis parameters.

4.1 Formulation

Here we have considered three-dimensional, incompressible steady nanomaterial flow of Oldroyd

fluid. The flow is discussed in a rotating frame. Here sheet is rotating with angular speed Ω.

The concept of activation energy related to chemical reaction is implemented for the explanation
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of mass concentration. The Oldroyd-B model describes the flow viscoelastic materials in nature.

A three-dimensional flow assumes that a particle of liquid or fluid can go either up or down,

forward or backward, left or right. All flows are three-dimensional, but some can be estimated

to a two-dimensional or even one-dimensional flow to simplify the calculations without loss of

much accuracy. Arrhenius equation gives the quantitative basis of relationship between the rate

at which reaction proceeds through activation energy. In material chemistry binary reaction is a

chemical reaction containing two different elements. Some binary phases reactions are molecular

for example carbon tetrachloride. More typically binary phase refers to extended solids. Sheet

in x-direction is stretched with stretching velocity  = . The surface temperature is .

Flow geometry is shown in Fig. 4.1. To explain the physical characteristics of nanofluid,

Buongiorno model is used. The governing expressions in component forms are:

Fig. 4.1 : Flow geometry




+




+




= 0 (4.1)



+  


+  


− 2Ω + ∗1

⎛⎜⎜⎜⎝
2 

2
2

+ 2 
2

2
+2 

2
2

+ 2 2


+2 2


+ 2 2


−2Ω
³


+  


+  



´
+ 2Ω

³
 

− 



´
⎞⎟⎟⎟⎠ =



⎡⎣2
2

+ ∗2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
− 


2
2
− 


2
2

⎞⎠⎤⎦ 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.2)

33





+  


+  


+ 2Ω+ ∗1

⎛⎜⎜⎜⎝
2 

2
2

+ 2 
2

2
+ 2 

2
2

+2 2


+ 2 2


+ 2 2


+2Ω
³


+  


+  



´
+ 2Ω

³
 

− 



´
⎞⎟⎟⎟⎠ =



⎡⎣2
2

+ ∗2

⎛⎝  3
2

+  3
2

+  3
3

− 


2
2
− 


2
2
− 


2
2

⎞⎠⎤⎦ 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.3)





+ 




+ 




= 

2

2
+
()

()

Ã


µ








¶
+



∞

µ




¶2!
 (4.4)
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Prescribed conditions are

 =  () =   = 0  = 0  =   =  at  = 0

 −→ 0  −→ 0  −→ ∞  −→ ∞ at  −→∞

⎫⎬⎭ (4.6)
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⎫⎬⎭ (4.7)

applying Eqs. (47) continuity equation (41) is satisfied automatically while Eqs. (42)− (46)
become
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with

 (0) =  (0) = 0,  0 (0) = 1  (0) =  (0) = 1

 0 (∞) −→ 0  (∞) −→ 0  (∞) −→ 0  (∞)−→0

⎫⎬⎭ (4.12)

The involved definitions are
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Physical quantities are

√
Re

= −0 (0) 
√
Re

= −0 (0) 

⎫⎬⎭ (4.14)

4.2 Homotopic solutions

Homotopy analysis method requires initial guesses. The initial guesses for homotopy analysis

are (0 00 0).

0 () = 1− −

0 () = 0

0 () = −

0 () = −

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.15)

4.3 Convergence of the series solution

The series solutions involve auxiliary parameters } , }, } and }. −curves in Figs. 2a
and 2b have been displayed. The displayed figures witness that solutions convergence for

−15 ≤  ≤ −02, −15 ≤  ≤ −025 −15 ≤  ≤ −04 −16 ≤  ≤ −09.
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Fig. 4.2b −curves for 0(0) and 0(0)

Table 4.1. Series solutions convergence for 1 = 02, 2 = 03,  = 1  = 03  = 02

 = 1, = 1,  = 1, 1 = 1  = 02,  = −1

Order of approximations − 00(0) −0 (0) −0(0) −0 (0)
1 094000 017400 070000 00123

5 095746 029941 046985 01243

10 096420 030414 044000 02136

15 096347 030375 043350 02588

20 096362 030396 043185 02810

25 096364 030389 043132 02919

30 096361 030391 043115 02973

35 096361 030391 043115 02973

4.3.1 Optimal convergence

OHAM is also applied to the nonlinear equations to construct the series solutions. To calculate

the optimal estimations of ~  ~ ~ and ~ we have used the concept of average squared

residual errors.
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

∗ =

1

∗ + 1

∗X
∗=0

⎡⎣N

Ã
∗X
=0

 () 

∗X
=0

 ()

!
=∗∗

⎤⎦2  (4.17)
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
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Total squared residual error is expressed as:

∗ = 

∗ + 


∗ + ∗ + 


∗  (4.20)

where 

∗  


∗  


∗  


∗ represent squared residual error for velocity in  and  directions,

temperature and concentration respectively and ∗ is total squared residual error for whole

flow at ∗ = 05 and ∗ = 20. MATHEMATICA package BVPh2.0 is implemented to minimize

the total average squared residual error. The optimal estimations of control variables at 2nd

order are  = −124552  = −094552  = −109587 and  = −1248276 The total
squared averaged residual error is at 2nd order is  = 3853053× 10−3.Table 4.2 and Fig. 4.3
show the residual errors for temperature, velocities and concentration. It can be seen that total

residual error is decaying with larger approximations.

Fig. 4.3: Residual error.
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Table. 4.2: Squared residual errors for velocities, temperature and concentration.

∗ 

∗ 


∗ ∗ 


∗

2 0.0000983233 0.0000491617 0.00356342 0.000142148

4 0.0000157594 0.0000078797 0.000738246 0.0000163182

8 0.0000032464 0.0000016232 0.000100889 7.07181*10^-6

10 0.0000020204 0.0000010102 0.0000465819 4.59887*10^-6

16 0.0000007357 3.6786666×10−7 7.96709*10^-6 1.21654*10^-6

20 0.0000004519 2.25966667×10−7 3.76384*10^-6 5.39439*10^-7

4.4 Discussion

This section is developed to investigate embedded parameters effection an Oldroyd-B fluid flow

on nanofluid in rotating frame chemical reaction. Figs. (44− 421) and tables (43− 44) are
constructed to show the influence of involved variables on temperature, concentration, veloci-

ties, Nusselt number and Sherwood number. Fig. 4.4 shows the trend of  0 () against rotational

parameter (). Decrease in ( 0 ()) is noticed for higher ( = 0 02 04 05). As we increase ()

the stretching rate in −direction reduces which is responsible for decrease in ( 0 ())  Velocity
distribution ( 0 ()) for (1) is plotted in Fig. 4.5. It is seen that when (1 = 0 03 05 07)

increases than velocity field ( 0 ()) decays and thinner momentum boundary layer occurs. (2)

effects on ( 0 ()) is described in Fig. 4.6. Behavior of (2) on velocity is quite opposite to

that of (1). Physically (2 = 0 035 05 08) is directly related to retardation time so when

particles move from equilibrium to perturbed system there is more disturbance which tends to

increase the velocity. Rotation parameter () effect on ( ()) is presented in Fig. 4.7. Here

we noticed that magnitude of ( ()) enhances for higher ( = 01 02 03 04). It is due to the

reason that rotational frequency rises for larger (). Figs. 4.8 and 4.9 portray the effects of (1)

and (2) on ( ()). Behavior of ( ()) indicated that flow is negative in  direction. It is seen

that magnitude of ( ()) enhances near the surface for both parameters while for higher (1)

the velocity shows opposite effect away from the surface. Fig. 4.10 is portrayed for (1) im-

pacts on the temperature ( ()). It is observed that by enhancing (1 = 0 025 065 085) the

temperature of fluid rises. Fig. 4.11 displayed (2) impact on ( ()). Temperature and related

38



boundary thickness are reduced for larger (2 = 0 025 065 085). Fig. 4.12 is portrayed for

impact of () on ( ()). Increasing values of ( = 01 03 05 07) tend to enhance the tem-

perature field and thermal layer thickness. For larger () the thermophoresis force increases

through which particles travels from hotter to the colder region and consequently temperature

increases. Influence of () on temperature distribution is portrayed in Fig. 4.13. Here we have

noticed that thermal boundary layer thickness and temperature are reduced for larger values of

( = 01 03 05 07). Physically for higher Brownian effects the random motion of particles

occurs that responsible for larger ( ()). (Pr) effect on ( ()) is described in Fig. 4.14. For

higher (Pr = 1 2 25 3) thermal diffusivity of the fluid reduces. It means capability of fluid to

conduct heat reduces and consequently temperature reduces. Impact of () on concentration

field is depicted in Fig. 4.15. Schmidt number is the ratio of momentum to mass diffusivity so

for larger ( = 0 3 6 9) momentum diffusivity enhances and reduction in ( ()) is seen. Im-

pact of () for concentration distribution ( ()) is sketched in Fig. 4.16. Here concentration

distribution ( ()) rises for larger values of thermophoresis parameters ( = 0 05 1 15).

Here ( ()) is decreasing function of ( = 0 03 06 09) showing in Fig. 4.17. Fig. 18 is

prepared to describe the effects of activation energy (1) on ( ())  We have noticed decay

in ( ()) for higher (1 = 0 04 08 1) Figs. 4.19 and 4.20 are sketched for the impacts of

 and  on concentration distribution ( ())  Here we can see that ( ()) increases near the

surface for both parameters. Fig. 4.21 presents the impact of (1) on ( ()) Here an increase

in concentration for larger (1) is noticed

Table 4.3 is prepared for numerical estimation of Nusselt number −0(0) via  1 2

  and Pr is shown. Decay in −0(0) is seen when  and Pr are enhanced while

opposite behavior is observed for 1 and 2. Table 4.4 shows the numerical value of local

Sherwood number via 1 2 , 1,  and . We have noticed has larger and small

values for increasing ( 1 1) and (  2 ) respectively. Table 4.5 shows the good

agreement with previous literature.
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Nb = 0.3, Pr = 1
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b2 = 0, 0.25, 0.65, 0.85

b1 = 0.25, Nt = 0.2,

Nb = 0.3, Pr = 1
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Nt = 0.1, 0.3, 0.5, 0.7

b1 = 0.25, b2 = 0.25,

Nb = 0.3, Pr = 1
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Fig. 4.12.  () against 

Nb = 0.1, 0.3, 0.5, 0.7

b1 = 0.25, b2 = 0.25,

Nt = 0.3, Pr = 1
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Fig. 4.13.  () against 

Pr = 1, 2, 2.5, 3

b1 = 0.25, b2 = 0.25,

Nt = 0.3, Nb = 0.2
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Fig. 4.14.  () against Pr 

Sc = 0, 3, 6, 9

b1 = b2 = 0.25, Nt = 0.2, Nb = 0.5

n = 0.1, Pr= 2, E1 = 0.4, s = 0.4
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Fig. 4.15.  () against 
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Nt = 0, 0.5, 1, 1.5

b1 = b2 = 0.25, Sc = 2, Nb = 0.5

n = 0.1, Pr= 2, E1 = 0.4, s = 0.4
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Fig. 4.16.  () against 

Nb = 0, 0.3, 0.6, 0.9

b1 = b2 = 0.25, Nt = 0.2, Pr = 2

E1 = 0.4, n = 0.3, d = 0.2, s = 0.4
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Fig. 4.17.  () against 

E1 = 0, 0.4, 0.8, 1

b1 = b2 = 0.25, Nt = 0.2, Nb = 0.5

n = 0.1, Pr = 2, d = 0.2, s = 0.4
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Fig. 4.18.  () against 1

d = 0, 0.6, 1.2, 2

b1 = b2 = 0.25, Nt = 0.2, Nb = 0.5

n = 0.1, Pr = 2, E1 = 0.4, s = 0.4
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Fig. 4.19.  () against 

s = 0, 0.3, 0.6, 0.9

b1 = b2 = 0.25, Nt = 0.2, Nb = 0.5

n = 0.1, Pr= 2, E1 = 0.4, d = 0.3
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Fig. 4.20.  () against 

b1 = 0, 0.5, 1, 1.5

b2 = 0.25, Nt = 0.2, Nb = 0.5

n = 0.1, Pr = 2, E1 = 0.4, d = 0.3
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Fig. 4.21.  () against 1
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Table 4.3:  estimation via different parameters

 1 2    −0 (0)
01 02 04 01 02 1 051331

02 050183

04 047488

01 0 02 01 02 1 051423

025 051721

045 052770

01 025 0 01 02 1 048786

025 050526

045 051580

01 02 02 01 02 1 050141

2 069530

3 076608

01 02 02 01 01 1 052458

03 0 047798

04 045631

01 02 02 02 01 1 050044

03 045959

04 042413
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Table 4.4: Numerical values of  via different parameters

1 2    1  −0 (0)
0 02 01 02 1 1 1 050681

025 053690

045 055397

02 0 01 02 1 1 1 054426

025 054012

045 053722

02 02 01 02 1 1 1 054090

03 040776

05 038663

02 02 02 01 1 1 1 053204

03 037635

05 029663

02 02 01 01 1 1 1 064628

2 072232

3 076496

02 02 01 01 1 07 1 056673

03 09 062021

04 1 064628

02 02 01 01 1 1 07 066353

09 065203

1 064628
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Table 4.5: Comparison for validation of problem with [54 55 56] when  = 2 = 0

2 Waqas et al. [54] Abel et al. [55] Megahed et al. [56] Present work

0.0 1.000000 0.999962 0.999978 1.0000

0.2 1.051889 1.051948 1.051945 1.051890

0.4 1.101903 1.101850 1.101848 1.101903

0.6 1.150137 1.150163 1.150160 1.150137

0.8 1.196711 1.196692 1.196690 1.196712

1.2 1.285363 1.285257 1.285253 1.285361

1.6 1.368758 1.368641 1.368641 1.368755

2.0 1.447651 1.447617 1.447616 1.447653

4.5 Concluding remarks

Key point is presented as below:

• Boundary layer approximation is reducing function of  for  0 and .

• 1 and 2 are increasing and decreasing function of 

• Increasing value of Pr show decay in the .

• Opposite behavior of 1 and 2 are noticed for velocity 
0 and .

•  and  are increasing function of both  and .

• Concentration profile  is increasing function of 1,  and 

• Increasing activation energy parameter 1 reduces concentration .

• Nusselt number () and Sherwood number have opposite behavior for (2).
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Chapter 5

Magnetic effects in rotating flow of

an Oldroyd-B fluid with chemical

reaction and convective surface

Here, we have investigated 3 incompressible steady  flow of Oldroyd-B material in a

rotating frame. The flow is caused through linearly stretched sheet. Applied magnetic field

is accounted. Cubic autocatalytic chemical reaction is considered at the surface. Convective

conditions at the boundary are considered for heat transport. Flow problem is modeled with

the help of boundary layer approximations. Homotopy method () is utilized for the series

solutions. Impacts of physical variable are interpreted through graph. Heat transfer rate is

presented in tabulated form.

5.1 Problem Formulation

Here we have investigated 3 incompressible steady  flow of Oldroyd-B material in a

rotating frame. Applied magnetic field is accounted. The flow is caused through linearly

stretched sheet. Convective conditions at the boundary are considered for heat transport.

Cubic autocatalytic chemical reaction is considered at the surface. Flow problem is modeled

with the help of boundary layer approximations. The mathematical procedure for the cubic

autocatalytic reactions are addressed as
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∗ + 2∗ → 3∗ rate = 
∗∗2 (5.1)

and

∗ → ∗ rate = 
∗∗ (5.2)

In components form, the flow equations are:




+




+




= 0 (5.3)



+  


+  


− 2Ω + ∗1

⎛⎜⎜⎜⎝
2 

2
2

+ 2 
2

2
+2 

2
2

+ 2 2


+2 2


+ 2 2


−2Ω
³


+  


+  



´
+ 2Ω

³
 

− 



´
⎞⎟⎟⎟⎠ =



⎡⎣2
2

+ ∗2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
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
2
2
− 


2
2

⎞⎠⎤⎦− 1
2
0


(+ ∗1


2
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.4)



+  


+  


+ 2Ω+ ∗1

⎛⎜⎜⎜⎝
2 

2
2

+ 2 
2

2
+ 2 

2
2

+2 2


+ 2 2


+ 2 2


+2Ω
³


+  


+  



´
+ 2Ω
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 

− 



´
⎞⎟⎟⎟⎠ =



⎡⎣2
2

+ ∗2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
− 


2
2
− 


2
2

⎞⎠⎤⎦− 1
2
0


( + ∗1


2
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.5)





+ 




+ 




= 

2

2
 (5.6)


∗∗


+ 

∗∗


+ 

∗∗


= 

2∗∗

2
− 

∗∗2 (5.7)





+ 




+




= 

2

2
+ 

∗∗2 (5.8)

with

 =  () =   = 0  = 0 −  

= 


( −  ) at  = 0


∗∗


= 
∗∗ 



= −k∗∗ at  = 0

 −→ 0  −→ 0  −→ 0  −→ ∞ ∗∗ −→ 0  −→ 0 at  =∞.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.9)
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Considering

 =
p



  =  0()  = ()

 = − () 12 () () = −∞
−∞ 

⎫⎬⎭ (5.10)

One has using transformation, continuity equation (53) is satisfied while Eqs., (54)− (59) are
converted into following differential equations

 000 + 2 ( − 1
0) + 1

¡
2 0 00 − 2 000 +2 00

¢
+ 00 −  02 + 2

³
 00

2 − 
0
 0

´
−2 0 = 0

⎫⎬⎭ (5.11)

00 + 0 −  0 − 2 ¡ 0 + 1
¡
 02 −  00 + 2

¢¢
+ 1

¡
2 00 − 200 +20

¢
+2

³
 000 − 000 −  000 + 0

00
´
−20 = 0

⎫⎬⎭ (5.12)

00 +Pr 0 = 0 (5.13)

1


00 + 0 − 1

2 = 0 (5.14)

1


00 + 0 + 1

2 = 0 (5.15)

 = 0 = ,  0 = 1, 0 = − [1−  (0)] ,

0 = 2 (0)  0 (0) = −2 (0) at  = 0

⎫⎬⎭ (5.16)

 0 −→ 0, 0 −→ 0,  −→ 0 −→1, −→0 at −→∞ (5.17)

the dimensionless parameters express in following definition

 = Ω

, 1 = 1 2 = 2  =

20
∗∗


 Pr = 


,  =




p




 = 

,  = 


, 1 =


2
0


, 2 =




p


.

⎫⎬⎭ (5.18)

For comparable mass diffusions we put  and  are equal, we have

 () +  () = 1 (5.19)

now Eqs. (514) and (515) becomes

1


00 + 0 − 1 (1− )2  (5.20)
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with boundary conditions

0 (0) = 2 (0)   (∞)−→ 1 (5.21)

Local Nusselt number  is expressed by formula

Mathematically, we have

 =


 ( − ∞)
 (5.22)

where hall flux is defined as

 = −


|=  (5.23)

Finally, one has

 (Re)
−5 = −0 (0)  (5.24)

5.2 Series solutions

Homotopy analysis procedure [76− 83] requires the initial guesses and linear operators in the
forms:

We have

0 () = 1− −

0 () = 0

0 () =

1+

−

0 () = 1− 1
2
−2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.25)

L () =  000 −  0

L = 00 − 

L () = 00 − 

L = 00 − 

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.26)
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with the following characteristics

L [∗1 +∗2
− +∗3

] = 0

L [∗4− +∗5
] = 0

L [∗6− +∗7
] = 0

L [∗8− +∗9
] = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.27)

where ∗ ( = 1− 9) designates are arbitrary constants

∗2 = ∗4 = ∗6 = ∗8 = 0

∗1 = −∗3 − ∗∗(0) ∗3 =


∗ ()


|=0 ∗5 = −
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i

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h
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|=0 −2 (∗ (0))
i


⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.28)

5.3 Convergence of series solution

In convergence analysis, auxiliary variables }  }, } } play an important role to regulate

the series solutions. Therefore, Figs. 1 and 2 are outlined for such purpose. The appropriate

ranges for the velocities, temperature and concentration expressions are lies in the domain

−18 ≤  ≤ −01, −16 ≤  ≤ −01 −21 ≤  ≤ 01 −21 ≤  ≤ 01

f '' 0
g' 0

-2.0 -1.5 -1.0 -0.5 0.0
Ñ

-1

0

1

Fig. 5.1. h curves for  00 (0) and 0 (0)

q ' 0
f' 0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
Ñ

-1

0

1

Fig. 5.2. h curves for 0 (0) and 0 (0)

Table 5.1 is delineated for the numerical iterations of convergence portion. From this Table,

it is noticed that 10th, 20th, 25th and 30th iterations are significant for the series convergence
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Table 5.1. Different iterations for the series solutions when  = 01 1 = 01 2 = 01

 = 03 Pr = 1  = 01 1 = 02 2 = 01  = 1

Order of approximations − 00(0) −0 (0) −0(0) 0 (0)

1 10215 012667 0088154 0049515

5 10313 014819 0085496 0052571

10 10318 014886 0085094 0060685

15 10318 014877 0085059 0066513

20 10318 014888 0085050 0073378

25 10318 014888 0085048 0079135

30 10318 014888 0085048 0082693

35 10318 014888 0085048 0082693
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Table 5.2. Heat transfer rate analysis for various flow parameters

1 2     0 (0)

0 0.25 0.2 0.5 1 0.1 0.61123

0.25 0.60345

0.4 0.59305

0.25 0 0.2 0.5 1 0.1 0.67754

0.2 0.68452

0.4 0.74561

0.25 0.25 0 1 0.1 0.8219

0.3 0.8117

0.5 0.7806

0.25 0.25 0.2 0.5 1 0.1 0.7852

2 0.9123

3 1.2501.

0.25 0.25 0.2 0.5 1 0 0.55672

0.1 0.78152

0.3 0.82342
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l = 0.2, b2 = 0.3, M = 0.1

b1 = 0, 0.3 , 0.5, 0.7
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Fig. 5.3. 
0
() versus 1

l = 0.2, b1 = 0.3, M = 0.4

b2 = 0, 0.3, 0.7, 1
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Fig. 5.4. 
0
() versus 2
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Fig. 5.5. 
0
() versus 

l = 0.2, b1 = 0.3, b2 = 0.2
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Fig. 5.6. 
0
() versus 
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b1 = 0.0, 0.3, 0.6, 0.9

l = 0.2, b2 = 0.25
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Fig. 5.7.  () versus 1
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Fig. 5.8.  () versus 2
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Fig. 5.9.  () versus 

l = 0.7 , b1 = 0.3 , b2 = 0.25
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Fig. 5.10.  () versus 
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Pr = 1, 2, 2.5, 3

b1 = 0.1, b2 = 0.5, M = 0.5, g = 0.6
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Fig. 5.11.  () versus Pr

b1 = 0.1, b2 = 0.5, M = 0.5, Pr = 1.
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Fig. 5.12.  () versus 
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Fig. 5.13.  () versus 1
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Fig. 5.14.  () versus 
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Fig. 5.15.  () versus 2

5.3.1 Results and discussion

This segment is documented to explore the physical influences of interesting flow variables. For

this determination, we have outlined Figs. For this we have plotted Fig. (53− 515). Figs.
5.1and 5.2 represent the convergence of series solutions in graphical form. Tables 5.1 and 5.2

highlight the iterations for convergence analysis and heat transfer rate respectively. In Fig. 5.3,
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we outlined the velocity profile versus different estimations of relaxation variable. Here we have

seen that curves of velocity profile decay against larger relaxation parameter. Furthermore,

layer thickness also declines via larger relaxation parameter. Fig.5. 4 portrayed for the impact

of retardation variable on the velocity field. Here velocity field monotonically increases for

the rising values of retardation variable. Also layer thickness enhances via higher retardation

parameter. In Fig. 5.5, we have discussed the behavior of rotation variable on the velocity field.

Here velocity monotonically declines versus rising estimations of rotation parameter. Magnetic

parameter effects on velocity distribution  0 () is presented in Fig. 5.6. Here the velocity

distribution is enhanced for larger value of magnetic parameter  Behaviors of relaxation

and retardation variables on the velocity distribution  () are presented in Figs. 5.7 and

5.8. Initially  () declines near the surface of sheet and then upsurges when the relaxation

parameter increases ( 57). In Fig. 5.8, velocity field decays in the whole portion versus

higher values of retardation variable (see Fig5.8). Moreover, layer thickness diminishes via

larger retardation variable. Salient characteristic of rotation variable on the velocity field in

 direction is portrayed in Fig. 5.9. Here same behavior is noticed for rotation variable is

similar as Fig. 5.8. Fig. 5.10 is portrayed for the impacts of magnetic parameter  in velocity

distribution  ()  Fig. 5.11 is characterized for the variation of temperature field versus Prandtl

number. Here temperature field declines versus higher impact of Prandtl number. Physically

Prandtl number is ratio of viscous diffusion rate to thermal diffusion rate. Therefore, for larger

Prandtl number, the thermal diffusion rate decays due to which viscous diffusion rate enhances

and as a result thermal field decays. Also thermal layer declines through rising estimations

of Prandtl number. Biot number attributes on the thermal profile is highlighted in Fig. 5.12.

Physically, Biot number is the dimensionless quantity utilized in the heat transport calculations.

Biot number gives a simple index of the ratio of heat transport resistances of and at the surface

of stretchable sheet. This ratio governs whether or not temperatures inside a body will diverge

meaningfully in space while the body cools or heats over time, from a thermal gradient applied

to its stretchable surface. The Biot number has a variability of applications, with transient

heat transport and utilizes in extended surface heat transport calculations. Here thermal field

is an increasing behavior versus higher Biot number.

Figs. 5.13-5.15 are delineated to discuss the mass concentration versus Schmidt number,
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homogeneous reactive variable and heterogamous reactive variable respectively. In Fig. 5.13, we

have examined that the mass concentration declines against higher estimations of homogenous

reactive parameter. Fig. 5.14 is outlined the impact of Schmidt number on mass concentration.

Here both mass concentration as well as solute layer increases against rising estimation of

Schmidt number. Same behavior for the heterogeneous reactive variable is noticed on the mass

concentration in Fig. 5.15 is similar as Fig. 5.14.

5.4 Concluding remarks

The key observations of present investigation are as follows:

• Velocity field shows contrast behavior against relaxation and retardation variables.

• Velocity distribution is enhanced for larger value of magnetic parameter 

• Temperature of the system decays versus higher Prandtl number.

• Thermal field upsurges through rising values of Biot number.

• Concentration of species decays versus homogeneous reactive variable.

• For larger Schmidt number concentration enhances.

• Heat transfer rate is more against higher estimations of retardation parameter and Prandtl

number.
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Chapter 6

Theoretical description of Arrhenius

energy in binary chemically rotating

mixed convective flow with radiative

flux

The main aim of present analysis is to study the three-dimensional rotating mixed convective

flow of nanomaterial. Chemical reaction associated with Arrhenius energy is also accounted.

Flow is created through exponential stretchable sheet. Slip mechanisms to nanomaterial like

Brownian and thermophoresis diffusions are considered. Moreover, heat transfer analysis is

developed in existence of heat source/sink and radiative flux. Similarity transformations are

implemented to develop the system of nonlinear ordinary ones. Numerical approach (−−
) has been utilized to handle the governing mathematical system. Graphically impacts

of pertinent parameters on the velocity, mass concentration and temperature are deliberated.

Local Nusselt number and Sherwood number are examined and analyzed. It is noticed that

temperature field enhances versus radiation and heat source/sink parameter while it decays

through higher Prandtl number.
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6.1 Mathematical description

Here we intend to investigate rotating flow of nanomaterials. The fluid is induced by an ex-

ponential stretching of surface. Slip mechanisms of thermophoresis and Brownian motion are

considered. Let the sheet is stretched with velocity and rotating in axis with angular speed

Ω = Ω.




+




+




= 0 (6.1)
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2

2
+ ∗0 ( − ∞) + 0 ( −∞)  (6.2)
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 =  () = 0exp
¡



¢
  = 0  = 0  =   =  at  = 0

 −→ 0  −→ 0  −→ ∞  −→ ∞ at  −→∞

⎫⎬⎭ (6.6)

Mathematically  is expressed as

 = −4
∗

3


¡
 4
¢


 (6.7)

We expand  4 in Taylor series about ∞ and neglecting higher term we have

 4 =  4∞ + 4
3
∞( − ∞) + 6 2∞( − ∞)2 +  (6.8)

or

 4 = −3 4∞ + 4 3∞ (6.9)
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Then the radiative term becomes


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 (6.10)

and finally the energy expression is
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We have

 000 +  00 − 2 02 + 4 = 0 + 1 ( +) = 0 (6.13)

00 + 0 − 2 00 − 4 0 = 0 (6.14)
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with boundary condition

 (0) =  (0) = 0,  0 (0) = 1  (0) =  (0) = 1

 0 (∞) −→ 0  (∞) −→ 0  (∞) −→ 0  (∞)−→0

⎫⎬⎭ (6.17)
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These variables are expressed as
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Re
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 = − (1 +) 0 (0) 

Re
−05
 = −0 (0) 
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6.2 Graphical presentations

This section of article is established to elaborate the different pertinent flow variables on the non-

dimensional velocities  0(), ()  () and (). 1 effects on velocity  0() is presented in Fig.

6.1. Here we can see that velocity enhanced in existence of buoyancy force. For 1  0 assisting

flow while 1  0 the opposing flow situation. Fig. 6.2 displayed 1 impacts on . Here sharp

growth in thermal layer versus higher 1. Fig. 6.3 indicates temperature for increasing . Here

temperature is enhanced by increasing . Physically heat flux provide more heat which shows

an increment in temperature and also thermal layer thickness. Impacts of  on  is presented

in Fig. 6.4. Fig. 6.5 predicts outcome of . Here we have seen  and thermal layer thickness

are enhanced for heat source as compare to heat sink. Fig. 6.6 shows that the  is increased via

increasing Brownian motion . Fig. 6.7 demonstrated variation of thermophoresis parameter

 on . Here we have observed that the temperature function boosts up versus rising .

Fig. 6.8 depicts temperature exponent variable  effects on the temperature . Fig. 6.9

depicted thermophoretic effect on nanoparticle concentration . As thermophoresis parameter

 is enhances, an increment is occurred in the nanoparticle concentration . Fig. 6.10 is

illustrated for the behavior of  on . Here nanoparticle concentration decays when an

enhancement is occurred in the Brownian variable. Fig. 6.11 is depicted for relationship among

activation energy 1 and . There is enhancement in concentration layer thickness for larger 1.

6.12 predicts that nanoparticle concentration declines through larger . Fig. 6.13 displayed

variation in chemical reaction variable on . Here we observed a reduction in  when chemical
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reaction variable   0 is increased. Fig. 6.14 depicted marginal rise in  via fitted rate

constant  is varied. Salient Aspects of temperature difference  on  has been depicted in Fig.

6.15. Here larger value of  lead to decay in Concentration .

Tables 6.1 and 6.2 are established to show the numerical iterations for Nusselt and Sher-

wood numbers versus different estimations of 1,  ,       and 1, , , .

As expected, when 1 and  are enhanced the magnitude of Re
−05
 enhances. While

reverse impact is noticed for Re
−05
 versus larger radiation and temperature variables.

An enhancement in  occurred degeneration in Re
−05
 local and Re

−05
 Sherwood

numbers.
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Fig. 6.1. 1 effercs on  0 () 
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Fig. 6.2. 1 effercs on  () 

A = 0.4, S = 0.1, Nt = 0.2,

Nb = 0.1, Pr = 0.7
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Fig. 6.3.  effercs on  () 
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Fig. 6.4. Pr effercs on  ()
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S = 0.01, 0.05, 0.09, 0.13

R = 0.3, A = 0.4, Nt = 0.2,

Nb = 0.1, Pr = 0.7
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Fig. 6.5.  effercs on  ()

Nb = 0.1, 0.7, 1.5, 3

A = 0.4, R = 0.3, S = 0.1, Pr = 0.7, Nt = 0.1
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Fig. 6.6.  effercs on  ()

Nt = 0, 0.7, 0.15, 2

R = 0.3, A = 0.4, S = 0.1, Nb = 0.2, Pr = 0.7
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Fig. 6.7.  effercs on  ()

A = 0.1, 0.3, 0.6, 0.9

R = 0.3, S = 0.6 , Nt = 0.2, Nb = 0.1, Pr = 0.7
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Fig. 6.8.  effercs on  ()
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Nb = 0.3, Pr = 0.7 , s = d = 1, B = 0.4
Sc = 0.7 , E1 = 5, n = 0.2 , R = 0.3

Nt = 0.2 , 0.5 , 0.7 , 0.9
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Fig. 6.9.  effercs on  () 

Nt = 0.3, Pr = Sc = 0.7, B = 0.4, R = 0.4
d = s = 1, E1 = 5, n = 0.2

Nb = 0.5, 0.6, 0.9, 1.5
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Fig. 6.10.  effercs on  () 

E1 = 1.2, 3, 4

Nt = Nb = 0.3, R = 0.4, B = 0.3

Pr = Sc = 0.7, s = d = 1
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Fig. 6.11. 1 effercs on  () 

Sc = 1, 2, 2.5, 3.5

Nt = 0.1, Nb = 0.3, Pr = 0.7, B = 0.4
s = d = 1, E1 = 1, R = 0.3
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Fig. 6.12.  effercs on  () 
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Pr = Sc = 0.7, Nt = Nb = 0.3
d = 1, E1 = 1, B = 0.4, R = 0.3

s = 0.5., 1, 1.5, 2
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Fig. 6.13.  effercs on  () 

Nt = Nb = 0.3, Pr = Sc = 0.7,
s = d = 1, E1 = 1, R = 0.4, B = 0.3

n = 0.5, 1.5, 2, 2.5
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Fig. 6.14.  effercs on  () 

Nt = Nb = 0.3, B = R = 0.3
Pr = Sc = 0.7s = 1, E1 = 1

d = 1, 3, 5, 10
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Fig. 6.15.  effercs on  () 
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Table. 6.1: Numerical computations of Re
−05


1     −0 (0)
0.1 1.0 0.1 0.2 0.1 0247272

0.3 0.2799348

0.6 0.315281

0.3 0.1 0.1 0.2 0.1 0.279934

0.4 0.217172

0.6 0.185516

0.3 0.4 0.1 0.2 0.1 1.06447

0.3 0.158539

0.5 0.0593043

0.3 0.4 0.2 0.2 0.1 0.155239

0.113359

1.55569

0.3 0.4 0.2 0.2 0.1 0.495425

0.3 0.440829

0.5 0.390917
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Table 6.2: Numerical computations of Re
−05


  1     −0 (0)
1.0 0.3 1.0 1.0 0.3 0.2 0.2 0.710795

3.0 1.37655

5.0 1.84207

1.0 0.1 1.0 1.0 0.3 0.2 0.2 0.714662

0.3 0.494606

0.5 0.49365

1.0 0.2 2.0 1.5 0.3 0.2 0.2 0.492867

4.0 0.565425

6.0 0.60443

1 0.3 1 1.5 0.3 0.2 0.2 0.4720555

2.0 0.71743

2.5 0.716795

1 0.3 1 1.5 0.1 0.2 0.2 0.309259

0.5 0.561866

0.7 0.651723

1 0.3 1 1 0.1 0.1 0.2 0.309259

0.3 0.295926

0.5 0.147104

1 0.3 1 1 0.3 0.2 0.1 0.6070015

0.3 0.40694

0.5 0.349741
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6.3 Concluding remarks

Key points of present analysis are

• Larger 1 and  exhibit increasing trend in 

• Thermal layer thickness are enhanced for heat source as compare to heat sink.

• Concentration decays when an enhancement is occurred in the Brownian variable 

• Larger values of  and  decline in  and .

• Temperature exponent  shows decreasing behavior in .

• Local Nusselt number and Sherwood number have decreasing behavior via large values of
 and opposite behavior is seen for 
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Chapter 7

Darcy-Forchheimer flow of Maxwell

fluid with activation energy and

thermal radiation over an

exponential surface

The main purpose of this article is to investigate three-dimensional steady rotating flow of rate

type fluid (Maxwell fluid) over an exponential stretching surface. The Maxwell fluid saturates

the porous space via Darcy-Forchheimer relation. Flow caused by the exponential stretchable

surface of sheet. Chemical reaction along with Arrhenius energy is considered at the surface.

Energy expression is modeled subject to heat source/sink and radiation flux. Appropriate trans-

formations leads to ordinary ones. Homotopy method is implemented for the series solutions.

Pertinent parameters are discussed graphically. Special consideration is given to the engineer-

ing quantities like Sherwood and Nusselt numbers and discussed numerically through tabular

form. Temperature distribution enhances versus higher radiation and heat source/sink para-

meter while decays for larger Prandtl number. Furthermore velocity shows decreasing trend

through larger porosity and Deborah number.

69



7.1 Modeling

Here 3 rotating Darcy-Forchheimer flow of Maxwell liquid is considered. Fluid is saturated

through Darcy-Forchheimer relation. Effects of Joule heating and dissipations effects are ne-

glected. The flow expressions in compact form is addressed as

∇V0
= 0 (7.1)


h³
V

0
∇
´
V

0
+ (Ω× (Ω× r)) +

³
2Ω×V0´i

= −∇+∇S∗ (7.2)

∗
³
V

0
∇
´
= ∇2 (7.3)
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In components form we have
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Mathematically  is expressed as

 = −4
∗

3


¡
 4
¢


 (7.10)
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After Taylor series we have

 4 =  4∞ + 4
3
∞( − ∞) + 6 2∞( − ∞)2 + ... (7.11)

neglecting higher order terms we have

 4 = −3 4∞ + 4 3∞ (7.12)
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Using Eq. (713) in Eq. (78) we get
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With boundary constrains we have
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One have
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These parameters are expressed as
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Local Nusselt number  and Sherwood number  are expressed by formula
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7.2 Homotopic solutions

The initial approximations and linear operators are requires for series solution. Here (0 00 0)

are initial guesses and linear operators
³
L∗  L∗, L∗ L∗

´
which are selected in the forms

∗0 () = 1− −

∗0 () = 0

∗0 () = −

∗0 () = −
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with

L∗ [∗1 +∗2− +∗3] = 0

L∗ [∗4− +∗5] = 0

L∗ [∗6− +∗7] = 0

L∗ [∗8− +∗9] = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.25)
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where ∗ ( = 1− 9) signify the arbitrary constants

7.2.1 Convergence analysis

Series solution involves the auxiliary parameters } }. and . The − curve in Fig. 1 and
2 show graphically the convergence region. It is clear from this figures that the convergence

lies within the domain −01 ≤  ≤ −04, −01 ≤  ≤ −045 −01 ≤  ≤ −04 −10 ≤  ≤
−04

f '' 0
g ' 0

b1 = 0.1, l = 0.2, b = 0.3, Fr = 1
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Fig. 7.1. −curves for  and 
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b = 0.3, b1 = 0.1, l = 0.2, Fr = 1, Pr = 0.7
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Fig. 7.2. −curves for  and 

Table 7.1. Convergence iterations for flow expressions versus various pertinent parameters

Order of approximations − 00(0) −0 (0) −0(0) −0 (0)
1 12548 0044000 078100 10777

5 16289 011210 036826 12517

10 18335 015374 036124 14466

15 18710 016253 036011 15281

20 18818 016531 035768 15738

25 18850 016621 035423 16010

30 189766 017654 03163 17564

35 189766 017654 03163 17564
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Table 7.2. Numerical results for Nusselt number

1   1    0 (0)

0 03 1 03 02 02 1 015098

025 015434

045 015923

025 0 1 03 02 02 1 013747

03 014868

05 015348

025 02 1 03 02 02 1 014337

2 015240

4 016566

025 02 1 01 02 02 1 0061208

02 010195

04 018549

025 02 1 02 01 02 1 0021850

04 0078896

06 013759

025 02 1 03 02 02 1 015434

03 0040617

04 0022277

025 02 1 03 02 02 1 014337

2 025775

3 030917
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Table 7.3. Numerical approximations for local Sherwood number

  1    −0 (0)
10 03 10 02 05 10 16563

30 23471

50 29159

10 02 10 02 05 10 19482

04 19639

05 20119

10 02 20 02 05 15 23279

40 28722

50 32793

1 02 1 02 05 15 19429

20 23389

25 24981

1 02 1 01 05 1 16150

03 16476

05 16680

1 02 1 02 01 1 16212

03 16302

05 16584
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l = 0, 1, 3, 5
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Fig. 7.3.  0 () against 

b1 = 0, 0.2, 0.5, 0.8

l = 1, b = 2, Fr = 1
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Fig. 7.4.  0 () against 1

b = 0, 1, 2, 3

l = 1, b1 = 0.25, Fr = 1
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Fig. 7.5.  0 () against 

Fr = 0, 3, 7, 10
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Fig. 7.6.  0 () against 

b1 = 0.25, b = 0.1, Fr = 1
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0 2 4 6 8

-0.15

-0.10

-0.05

0.00

h

gh


Fig. 7.7.  () against 

l = 0.2, b = 0.1 , Fr = 1

b1 = 0, 0.25 , 0.45 , 0.65
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Fig. 7.8.  () against 1
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l = 0.2, b1 = 0.25 , Fr = 1

b = 0, 0.3, 0.6, 0.9
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Fig. 7.9.  () against 

Fr = 0, 2, 4, 6

l = 0.2, b1 = 0.25, b = 1
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Fig. 7.10.  () against 

l = 0, 0.8, 1.5, 2

b1 = 0.25, Pr = 0.1, b = 0.4,

Fr = 1, A = 0.2, S = 0.1, R = 0.1,
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Fig. 7.11.  () against 

l = 0.2, b1 = 0.4,
Fr = 1, A = 0.2, S = 0.1, R = 0.1,

b = 0, 0.25, 0.65, 0.85
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Fig. 7.12.  () against 

b1 = 0.25, l = 0.2, b = 0.4,

Fr = 1, A = 0.2, S = 0.1, R = 0.1,

Pr = 1, 3, 6, 9
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Fig. 7.13.  () against Pr 

b1 = 0.25 , l = 0.2, Pr = 1,
b = 2, Fr = 1, A = 0.5, S = 0.2,

R = 0.1, 0.5 , 1, 1.3
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

Fig. 7.14.  () against 
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b1 = 0.25, l = 0.2, Pr = 1,

Fr = 1, A = 0.2, S = 0.1, R = 0.1,

b = 0, 3, 6, 9
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Fig. 7.15.  () against 

b1 = 0.25, l = 0.2, Pr = 1,
b = 2, A = 0.2, S = 0.1, R = 0.1,

Fr = 0, 4, 8, 12
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Fig. 7.16.  () against 

b1 = 0.25 , l = 0.2, Pr = 1,
b = 2, Fr = 1, S = 0.1, R = 0.1,

A = 0.1, 0.5, 1, 1.7
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Fig. 7.17.  () against 

b1 = 0.25 , l = 0.2, Pr = 1,

b = 2, Fr = 1, A = 0.5, R = 0.1,

S = -0.5, 0, 0.3 , 0.5
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Fig. 7.18.  () against 

b1 = 0.25, Pr = 1, B = 0.2, E1 = 1

n = 1, d = 1, s = 1

Sc = 1, 2, 3, 5
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Fig. 7.19.  () against 

b1 = 0.25, Pr = 1, Sc = 4, E1 = 1

n = 1, d = 1, s = 1

B = 0, 1, 2, 3

0 1 2 3 4 5 6
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Fig. 7.20.  () against 
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b1 = 0.25, Pr = 1, Sc = 3, B = 0.5

n = 1, d = 1, s = 1

E1= 1, 3, 5, 7
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Fig. 7.21.  () against 1

b1 = 0.25, Pr = 1, Sc = 3, B = 0.5
E1 = 1, d = 3, s = 3

n = -1, -0.5, 0, 0.6
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Fig. 7.22.  () against 

b1 = 0.25, Pr = 1, Sc = 2, B = 0.5

E1 = 1, n = 0.5, s = 3

d = 1, 3, 4, 5
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Fig. 7.23.  () against 

b1 = 0.25, Pr = 1, Sc = 2, B = 0.5

E1 = 1, n = 0.5, d = 1.

s = 1, 3, 5, 7

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

h

f
h

Fig. 7.24.  () against 

7.3 Discussion

Here we investigate the impact of embedded parameters on the Darcy-Forchheimer Maxwell

fluid flow in rotating frame with activation energy. For this purpose Figs. 7.3-7.24 are plotted.

Table 1, it is observed that the 30th iteration is sufficient for all the flow expressions. Tables

7.2 and 7.3 are plotted to analysis the  and  numerically. Impact of rotation parameter

on  0 () is presented in Fig. 7.3. Here velocity decays versus rotation parameter. Physically

stretching rate decreases for rising estimations of rotation parameter and thus velocity field

is declined. Velocity field via larger 1 in highlighted in Fig. 7.4. Similarly velocity of fluid

particles decays through higher 1. It is due to fact that stretching velocity decays through

larger values of 1 .Fig. 7.5 explains the variation of  on  0(). The results of  is similar
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on velocity field as Figs. 7.3 and 7.4. Fig. 7.6 indicates the velocity field for increasing .

Here velocity is decreased by larger . Physically resistive force enhances when an increment

is occurred in . Behavior of rotating parameter on  () in Fig. 7.7. Here we can that

 () is decreased versus rotation parameter. Similar impact on  () is observed through rising

estimations of  in Fig. 7.8. Fig. 7.9 is presented to discuss the salient behavior of  on  ().

Here we noticed that  () is an increasing function of porosity variable. Same behavior of

 () versus  is sketched in Fig. 7.10. Fig. 7.11 shows the salient characteristics of  on 

Fig. 7.11. Here both thermal layer and temperatur. Fig. 7.13 is prepared to point out the

impact of Prandtl number on temperature distribution. Here we can see that both thermal field

and associated layer decline versus higher Prandtl number field increase versus higher values

of . Fig. 7.12. is portrayed for the influence of 1 on temperature field. ere sharp growth in

thermal field is seen when 1 attend the maximum range. . Fig. 7.14 designates temperature

field against higher radiation variable. Here curves of thermal field boosts up through rising

radiative variable. Also thermal layer boost up versus higher radiative parameter. Fig. 7.15

elucidates temperature field against . Fig. 7.16 illustrates the performance of  on thermal

field. Clearly thermal distribution enhances against . Temperature exponent influence on

thermal field is existed in Fig. 7.17. Clearly thermal field enhances via larger temperature

exponent parameter. Fig. 7.18 predicts the salient outcome of heat  on thermal field. Here

  0 shows the heat source and   0 designate the heat sink and  = 0 signpost there

is no heat source/sink. Here we have noticed that both  and thermal layer enhanced versus

larger heat source/sink parameter. Inspiration of  on concentration field is portrayed in Fig.

7.19. Since Schmidt number is the ratio of momentum to mass diffusivity, so an increase in

the values of Schmidt number the mass concentration decays. Fig. 7.20 clearly designates

that an enhancement in concentration exponent , there is a reduction in the concentration

field. Also mass concentration thickness decays versus larger concentration exponent. Fig. 7.21

is organized to deliberate the salient features of activation energy variable on concentration.

Clearly mass concentration decays through higher values of activation energy variable. Also

concentration layer thickness declines versus this parameter. Figs. 7.22 is organized for the

impact of  on concentration. Here it is noticed that concentration distribution decreases for

higher fitted rate constant variable. Figs. 7.23 and 7.24 arranged to examine the effects of
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 and  on  (). Here contrast behavior of concentration distribution is observed for higher

estimations of these variable. Clearly concentration of fluid particles boosts against larger 

(  723). But decreasing behavior is noticed for chemical rate parameter ( 724).

7.4 Concluding remarks

Key points are presented as below

• Velocity decays versus larger estimations of ,  and 

• Velocity of liquid particles decreases in  direction through rising values of 1 and .

• Curves of thermal field boosts up through rising radiative variable 

• Fluid temperature enhances against larger radiation, heat source/sink parameters.

• Concentration of fluid particles boosts up versus higher values of .

• Decreasing behavior is noticed for chemical rate parameter 

• Concentration decays via larger 1 and .

• Rotation parameter has opposite performance on Sherwood and Nusselt numbers.
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Chapter 8

Theoretical and analytical analysis

of shear rheology of Oldroyd-B fluid

with homogeneous-heterogeneous

reactions

This research article communicates an analytical investigation for (3) steady incompressible

Oldroyd-B fluid flow subject to stretchable surface. The flow of material induced through

stretchable surface with Darcy-Forchheimer medium. Homogeneous-heterogeneous reactions

are considered. Convective boundary conditions and heat source/sink effects are considered

for the heat transport. Boundary layer concept is used in the development of flow problem.

Series solutions are obtained of the nonlinear system through homotopy technique. Physical

significance of pertinent parameters are discussed and plotted graphically. Heat transfer rate

is discussed numerically.

8.1 Formulation

The cubic autocatalysis at the surface is defined as

∗ + 2∗ → 3∗ rate = 
∗∗2 (8.1)
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and

∗ → ∗ rate = 
∗∗ (8.2)

where ∗∗ and  respectively indicate the concentrations of species ∗ and ∗ and  and 

are the rate constants.

In components form, the flow equations are




+




+




= 0 (8.3)



+  


+ 


+ ∗1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2
2

+ 2 2


+2 2


+ 2 2


⎞⎠ =



⎡⎣2
2

+ ∗2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
− 


2
2
− 


2
2

⎞⎠⎤⎦− 

− 2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.4)



+  


+  


+ ∗1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2

2

+2 2


+ 2 2


+ 2 2


⎞⎠ =



⎡⎣2
2

+ ∗2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
− 


2
2
− 


2
2

⎞⎠⎤⎦− 

 − 2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.5)





+ 




+




= 

2

2
+

0


( − ∞)  (8.6)


∗∗


+ 

∗∗


+ 

∗∗


= 

2∗∗

2
− 

∗∗2 (8.7)





+ 




+




= 

2

2
+ 

∗∗2 (8.8)

with

 =  () =   = 0  = 0 −  

= 


( −  ) at  = 0


∗∗


= 
∗∗ 



= −k∗∗ at  = 0

 −→ 0  −→ 0  −→ 0  −→ ∞ ∗∗ −→ 0  −→ 0 at  =∞.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.9)

Considering

 =
p



  =  0()  = ()

 = − () 12 () () = −∞
−∞ 

⎫⎬⎭ (8.10)
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Continuity equation (83) is trivially satisfied while Eqs., (84)− (88) becomes

 000 +  0 + 1
¡
2 0 00 − 2 000

¢
+  00

+2

³
 00

2 − 
0
 0

´
− (1 + ) 

02 = 0

⎫⎬⎭ (8.11)

00 −  + 0 −  0 + 1
¡
2 00 − 200

¢
+2

³
 000 − 000 −  000 + 0

00
´
− 

2 = 0

⎫⎬⎭ (8.12)

1


00 + 0 − 1

2 = 0 (8.13)

1


00 + 0 + 1

2 = 0 (8.14)

 = 0 = ,  0 = 1, 0 = − [1−  (0)] , 0 = 2 (0) 

0 (0) = −2 (0) at  = 0
 0 −→ 0, 0 −→ 0,  −→ 0 −→1, −→0 at −→∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.15)

For comparable mass diffusions we put  and  are equal, we have

 () +  () = 1 (8.16)

now Eqs. (813) and (814) becomes

1


00 + 0 − 1 (1− )2  (8.17)

with

0 (0) = 2 (0)   (∞)−→ 1 (8.18)

The heat transfer rate is mathematically defined as

 =
∗

 ( − ∞)
 (8.19)

where hall flux is defined as

∗ = −



|=  (8.20)
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Finally, one has

 (Re)
−05 (8.21)

8.2 Homotopic solutions

Initial guesses and linear operators are requires in homotopy analysis method

0 () = 1− −

0 () = 0

0 () =

1+

−

0 () = 1− 1
2
−2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.22)

L () =  000 −  0

L = 00 − 

L () = 00 − 

L = 00 − 

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.23)

with the following characteristics

L [∗1 +∗2
− +∗3

] = 0

L [∗5− +∗5
] = 0

L [∗6− +∗7
] = 0

L [∗8− +∗9
] = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.24)

where ∗ ( = 1− 9) designates are arbitrary constants

∗2 = ∗4 = ∗6 = ∗8 = 0

∗1 = −∗3 − ∗(0) ∗3 =
()


|=0 ∗5 = −()


|=0
∗7 =

1
1+

h
()


|=0 − ( (0))
i


∗9 =
1

1+2

h
()


|=0 −2 ( (0))

i


⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.25)
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8.2.1 Convergence analysis

In series solutions auxiliary variables } , }, } and } play an important role to adjust the

convergence portion. Therefore we have plotted −curves for such analysis in Figs. 1 and 2.
From these plots the valuable ranges are−18 ≤  ≤ −01, −16 ≤  ≤ −01−21 ≤  ≤ 01
−21 ≤  ≤ 01

Table 1 is sketched for the numerical iterations of convergence analysis.

f '' 0 =
g ' 0 =

b = 0.2, b1 = 0.25 = b2
Fr = 1
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Fig. 8.1. −curves for  00 (0) and 0 (0) 

q ' 0 =
f ' 0 =

b = 0. b1 = 0.25 = b2 = Fr = 1
A = 0.3, g = 0.1, k1 = 0.2,
k2 = 0.1, Pr = 1.5, Sc = 2
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Fig. 8.2. −curves for 0 (0) and 0 (0)
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Fig. 8.3.  0 versus 
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Fig. 8.4.  0 versus 1
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Fig. 8.5.  0 versus 2
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Fig. 8.6.  0 versus 
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Fig. 8.7.  versus 
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Fig. 8.8.  versus 1
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Fig. 8.9.  versus 2
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Fig. 8.10.  versus 
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Pr = 1, 2, 3, 4
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Fig. 8.11.  versus Pr 
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Fig. 8.12.  versus 
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Fig. 8.13.  versus 
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Fig. 8.14.  versus 
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Fig. 8.15.  versus 1
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Fig. 8.16.  versus 2
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Fig. 8.17. Nusselt number versus  and 
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Fig. 8.18. Nusselt number versus  and Pr 

Table 8.1. Different iterations for series solutions when  = 01 1 = 01 2 = 01

 = 03 Pr = 1  = 01 1 = 02 2 = 01  = 1

Order of approximations − 00(0) −0 (0) −0(0) 0 (0)

1 10215 012667 0088154 0049515

5 10313 014819 0085496 0052571

10 10318 014886 0085094 0060685

15 10318 014877 0085059 0066513

20 10318 014888 0085050 0073378

25 10318 014888 0085048 0079135

30 10318 014888 0085048 0082693

35 10318 014888 0085048 0082693

8.2.2 Discussion

This section is established to explore the impacts of interesting variables on velocity, temper-

ature and concentration fields. For this purpose we have plotted Figs.(83− 818). Porosity
variable behavior on velocity  0 () is presented in Fig. 8.3. Velocity diminishes versus larger

porosity variable. Physically, due to porous media more resistance occurred to the flow parti-

cles which make the velocity of fluid weaker. In Fig. 8.4, we have plotted the impact of fluid

relaxation variable on velocity field. Here we observed that the velocity of material particles
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enhances versus larger relaxation variable. Furthermore, boundary layer shows an increasing

impact against larger relaxation variable. Fig. 8.5 is outlined to show the velocity field against

retardation variable. Here we noticed that velocity field declines via higher retardation para-

meter. Inertia variable impact on velocity field is highlighted in Fig. 8.6. Here velocity curves

slowly increases when the inertia variable takes the maximum range. Also layer thickness up-

surges versus larger inertia variable. Inspiration of porosity variable on  () is depicted in Fig.

8.7. Here initially velocity of liquid particles increases and then show decreasing impact when

the porosity variable take the maximum values. Salient aspects of relaxation and retardation

variable on is outlined in Figs. 8.8 and 8.9. From these sketches we can see that velocity field

monotonically decays initially near the stretchable surface and then monotonically upsurges

against larger relaxation and retardation variables. Fig. 8.10 is revealed for the impact of

Forchheimer number or inertia coefficient variable on  (). Here we noticed that velocity com-

ponent in y-direction upsurges versus larger Forchheimer number. It is also noticed that layer

thickness enhances against larger Forchheimer number. Behavior of Prandtl number on thermal

field is recorded in Fig. 8.11. Lesser thermal field is noticed against higher Prandtl number.

Characteristics of Biot number on thermal field is shown in Fig. 8.12. Here temperature is an

increasing function of larger Biot number. Physically, larger Biot number increases the convec-

tion process at the stretchable surface which leads to upsurges the temperature field. Fig. 8.13

predicts the salient attributes of heat generation/absorption or heat source/sink variable on the

thermal field. In this study,   0 highlights the heat generation or heat source and   0

signifies the absorption or sink and  = 0 signposts there is no heat generation/absorption or

heat source/sink. But here we have only presents the effect of heat generation on the ther-

mal field. Thermal field is an increasing behavior against heat generation variable. Fig. 8.14

highlights the salient attributes of Schmidt number on mass concentration field. Physically,

Schmidt number is the combination of momentum and mass diffusivity. Here mass concen-

tration increases against higher Schmidt number. Also concentration layer thickness upsurges

versus rising estimations of Schmidt number. Attributes of homogeneous reactive variable on

mass concentration is sketched in Fig. 8.15. Here we have examined reduction in solutal layer

and as well as in mass concentration via higher homogeneous reactive variable. Behavior of het-

erogeneous reactive variable on mass concentration is revealed in Fig. 8.16. From this sketch,
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we have examined that concentration of reaction species at the surface upsurges against higher

estimation of heterogeneous reactive variable. Graphical sketch of heat transfer rate against

various flow variables like porosity parameter, Biot number and Prandtl number is highlighted

in Figs. 8.17 and 8.18. From these sketches, we have noticed that magnitude of heat transfer

decays versus higher estimations of porosity parameter and Biot number.

8.3 Concluding remarks

The valuable results of the presented problem are recorded below:

• Velocity of material particles in x-direction decays against higher porosity variable.

• Velocity shows contrast impact against relaxation and retardation variables.

• Thermal declines versus Prandtl number.

• Temperature is an increasing function of larger Biot number.

• Higher heat generation variable upsurge the temperature of material particles.

• Schmidt number is increasing function of concentration.

• Concentration presents contrast impact against homogeneous and heterogeneous reactive
parameters.

• Magnitude of heat transfer rate decays against larger porosity parameter and Biot number.
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Chapter 9

Future work

Our intention in this chapter is to modeling and analysis for nonlinear flow due to stretched

surface through several possible directions. It is worthmentioning that results of modeled

problems are useful in processes relating to metallurgy, polymer extrusion, glass fiber, food

processing industries and paper production etc.

The attempted problem can further be modeled and scrutinized through following charac-

teristic.

• Flow considering activation energy analysis in entropy generating.

• Rotating flow with homogeneous-heterogeneous reaction over an exponentially surface

with convective boundary.

• Buoyancy effects in chemical reaction with Cattaneo-Christov heat flux and porous sur-
face.
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