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Preface 

Major interest in this thesis is to analyze entropy generation in hydrodynamic and 

magnetohydrodynamic flows of viscous and non-Newtonian fluids. Especially the non-Newtonian 

fluids have pivotal role in many industrial and technological processes such as extrusion of 

polymers, glass industries, medical equipment, automotive engines, power engineering, oil and 

food processing industries, aircraft engines, car brake systems, atomizers, turbine engineering and 

rotational air cleaners etc. In all such processes the flow of fluids, drag forces and transfer of heat 

is of paramount importance. The rheological characteristics of all the non-Newtonian fluids cannot 

be determined by a single fundamental equation. Therefore, several models for the study of such 

fluids have been proposed. In addition, the entropy of system, by second thermodynamics law, 

consistently increases. Entropy literally measures disorderliness in any system. It is generated by 

the irreversibility in a process. In all the real-world applications we always need to increase the 

efficiency of machines by decreasing the irreversibilities in the system. Thus more stress is given 

here to entropy optimization and Bejan number. Bejan number is employed to determine measure 

of ratio of thermal irreversibilities to total irreversibilities. Previous information witness that little 

attention is given to entropy generation in flow of non-Newtonian liquids. We will model problems 

for flow by stretching sheet and rotating disk. Results of pertinent involved parameters will be 

shown through graphical interpretations. Skin friction and Nusselt numbers will be discussed. 

Tabulated values will be used for comparative study of present analysis with previous literatures 

in limiting cases. This thesis consists of nine chapters Chapter wise detail is given as follows:  

Chapter one is about some basic definitions and a brief literature survey which provides 

background and motivation of the present research work. Further, solution procedure is discussed 

in detail. 

Chapter two is about nonlinear radiative mixed convective flow with entropy generation 

minimization rate and heat generation/absorption. A variable thicked stretchable sheet is taken as 

a source of fluid motion. Heat stretched sheet has nonlinear velocity. Velocity and temperature 

with respect to different parameters are examined. Entropy generation and Bejan number are 

sketched and discussed. These contents are published in Physica B: Condensed Matter 538 

(2018) 95–103. 

Chapter three is the extension of chapter two for numerical solution development of power law 



fluid flow. Flow subject to magnetohydrodynamics (MHD), viscous dissipation and convective 

conditions is addressed. Solution for governing nonlinear equations is obtained through ND solve 

technique. Entropy and Bejan numbers are discussed. The obtained results are summarized in the 

conclusion section. The material of this chapter is accepted for publication in Computer Methods 

and Programs in Biomedicine https://doi.org/10.1016/j.cmpb.2019.105262. 

 

Chapter four generalizes analysis of chapter three. It analyzes the entropy optimization of 

nonlinear thermal radiative nanofluid flow by a thin needle. Water is taken as a base-fluid having 

different types of nanomaterials. The resulting ordinary differential equations for the current flow 

problem are tackled through Shooting technique. Entropy optimization is explored in terms of 

temperature and velocity gradient. Effects of velocity and temperature through pertinent 

parameters are shown graphically. The obtained results are concluded in the last section. The 

contents of this chapter are published in Physica B: Condensed Matter 34 (2018) 113–119. 

Chapter five reveals the characteristics of entropy optimization in Sisko fluid flow with source/sink 

and nonlinear radiative heat flux. A rotating stretchable disk is considered as a source of motion 

for the fluid particles. Fluid characteristics are studied with nonlinear mixed convection, viscous 

dissipation and Brownian motion. Entropy is computed and shown graphically. Materials of this 

chapter are published in Journal of the Brazilian Society of Mechanical Sciences and 

Engineering (2018) 40:373 https://doi.org/10.1007/s40430-018-1288-0. 

Chapter six is the extension of chapter five. This chapter is about the entropy production in MHD 

nanofluid flow caused by a rotating disk having variable thickness. Nanofluid flow is studied in 

presence of Brownian motion and thermophoresis mechanisms. The source for flow is nonlinear 

stretching of the disk. The obtained problems are transformed through suitable transformations 

and solved by homotopy analysis method. Convergent solutions are developed Entropy is 

calculated as a function of velocity and temperature. Graphical results are obtained and discussed. 

Contents of this chapter are submitted for publication in Physica A.  

 

In chapter seven we study the dissipative convective flow of hybrid nanomaterials caused by 

stretchable disk with entropy optimization. Hybrid nanomaterials are used to increase the thermal 

properties of the material. Convective conditions are implemented on the disk. Skin friction, heat 

https://doi.org/10.1016/j.cmpb.2019.105262
https://doi.org/10.1016/j.cmpb.2019.105262


transfer, entropy minimization and Bejan number are analyzed for engineering interest. Content of 

this chapter are published in Materials Research Express 6(8) April 2019. Doi.10.1088/2053-

1591/ab1b88. 

In chapter eight, the concept of hybrid nanoparticles flow by a rotating disk is generalized in the 

presence of MHD and mixed convection. Heat properties are discussed with Joule heating and 

viscous dissipation. Governing equations are tackled through ND solve technique. Velocity, 

temperature, heat transfer rate, skin friction, entropy and Bejan number are numerically discussed. 

Results of this chapters are submitted for publication in Journal of Molecular liquids. 

 

Chapter nine is about entropy optimization for non-Newtonian fluid flow with Arrhenius activation 

energy and binary chemical reaction. Here we analyze the radiative mixed convective flow of 

Casson nanofluid over a stretching sheet. Heat transfer is with nonlinear thermal radiation, viscous 

dissipation and heat generation/absorption. Total entropy is calculated. Velocity is studied with 

uniform magnetic field and nonlinear mixed convection. Brownian motion and thermophoresis are 

considered. Governing equations are tackled by the built in ND solve technique. Results for 

velocity, temperature, concentration, entropy and Bejan number are presented. Material of this 

chapter is  published in Physica A: Statistical Mechanics and its Applications, 538, (2020), 

Article 122806. 

 

https://www.researchgate.net/journal/2053-1591_Materials_Research_Express
https://www.sciencedirect.com/science/journal/03784371
https://www.sciencedirect.com/science/journal/03784371
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Chapter 1. Background and fundamental expressions 

Introduction 

Recently much interest is seen in viscous and non-Newtonian fluids. Non-Newtonian materials are 

those materials in which shear stress and deformation rate are nonlinearly proportional to each 

other. Presently these liquids have many applications in biochemical, cosmetic and pharmaceutical 

industries such as paints production, syrups, cleansers, gases, oils and deodorizers etc. Other 

examples of such fluids are custards, starch suspensions, shampoo, toothpaste, salt solutions and 

many molten polymers etc. 

Initially Crane [1] started the work to examine viscous fluid flow over a stretching sheet. Several 

investigators [2-4] extended the work by considering mass transfer effects with different flow 

problems. Nadeem et al [5] studied characteristics of nanofluid taking water as a base fluid. 

Mukhopadhyay et al. [6] scrutinized effects of thermal radiation in flow generated by an 

exponentially stretching sheet. Characteristics of power law nanofluid by stretching surface with 

magnetic and slip effects is discussed by Zhang et al. [7]. Majeed et al. [8] scrutinized 

ferromagnetic fluid by a stretching plate. Flow with thermal nonlinear radiation over a stretchable 

surface is determined by Pal and Saha [9]. Weidman [10] formulated stagnation point flow towards 

an unsteady stretchable sheet. 

 Sisko [11] fluid model is significantly used due to its applications in prediction of both the 

characteristics of shear thickening and thinning fluids. Flow analysis of peristaltic Sisko fluid over 

convectively heated sheet is carried by Shaheen and Asjad [12]. Flow of Sisko fluid for the case 

of permeable stretching cylinder with Fourier heat conduction is explored by Malik et al. [13] 

Flows over stretching surfaces with heat transfer have key role in controlling quality of the 

industrial products. These processes mainly depend on the stretching and cooling rates. Makinde 

[14] analyzed viscous fluid flow with slip and Newtonian heating effects. Hayat et al. [15] 

examined effects of viscous dissipation in flow of magnetic nanofluid. Many researchers examined 

different aspects of stretching surfaces for both the cases of viscous and non-Newtonian liquids. 

Three-dimensional viscoelastic fluid flow over a stretching surface is studied by Hayat et al. [16]. 

Abbas et al. [17] investigated the mixed convective stagnation-point flow of a Maxwell fluid 

towards a vertical stretching surface. Hayat et al. [18] examined MHD stagnation-point flow of a 

micropolar fluid causedvby a non-linear stretching sheet. Mushtaq et al. [19] numerically studied 
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rotating flow of nanofluids generated by an exponential stretching sheet. Hayat et al. [20] 

investigated flow of second grade fluid with Joule heating effect. They utilized Homotopy 

technique [21-30] to get the series solution for proposed problem. Nanomaterial depends upon 

thermophoresis and Brownian motion. It was clearly observed that velocity of fluid particles shows 

increasing behavior for higher viscoelastic parameter. Additionally, the velocity gradient has 

opposite behavior for larger magnetic and viscoelastic parameters while more heat transfer is 

observed for higher Reynolds number. 

Modern fields of technology mainly depend on cooling effects for better efficiencies. The present 

sources for cooling processes are limited and insufficient for fulfilling industrial demands of such 

devices. Scientists are searching for more advanced methods of cooling due to their vast use in 

many technological processes. Keeping these applications in mind, air and liquid are considered 

the main available sources used for cooling purposes in many electronic devices. Cooling through 

air is the most common and convenient way but is not enough in modern era. It is having some 

deficiencies e.g. need of a large heat source/sink reservoir, it is less efficient, lower thermal 

conductivity etc. As compared to air cooling, liquid cooling is more efficient. However, it is also 

not as useful as needed because of its lower convective heat transfer properties. Researchers thus 

require some advanced methodologies with higher thermal conductance and advanced heat transfer 

abilities. Achieving higher thermal conductivity is the main objective of researches in modern 

cooling appliances. This is obtained by the conventional method of adding nanoparticles to the 

base fluids. Choi [31] utilized the nanomaterials taking water as a base-fluid to improve thermal 

characteristics of fluids and obtained better results. Such nanoparticles consisted of metals (Cu, 

Ag, Al, Au, etc.), nonmetals (CNT, etc.), metal oxides (CuO, ZnO, Al2O3, TiO2, etc.) and 

ceramics. These nanoparticles range from 1 to 100 nm in size [32-34]. It has been noted that 

thermal properties of the fluids have been increased by an appreciable amount of about 30% [35-

40]. Hayat et al. [41] examined the viscoelastic nanofluid flow bounded by a stretched surface. 

Many nanomaterials comprising. copper, silver, aluminum, gold, silver oxide, copper oxide and 

aluminum oxide etc. with different types of base-fluids were tried for thermal conductivities 

enhancement by various scientists [42-46]. Sheikholeslami [47] computed the solution for MHD 

Al2O3-water nanofluid in a porous space. Dogonchi and Ganji [48] analyzed radiative MHD flow 

subject to Cattaneo-Christov heat flux. 

Power law fluid flows along with natural convection have been thoroughly studied by many 
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researchers [49-53]. In these studies, heat and mass transfer rates play better role in the above 

industrial processes. Further the design has been precisely modified by calculating entropy 

generation since it reduces energy loses in manufacturing processes. Entropy is mainly generated 

by the irreversibilities in the system under consideration, that is why a proper knowledge of 

parameters related to such irreversibilities is crucial for finding best operating conditions. Bejan 

[54] has characterized impressive engineering designs whenever heat transfer or insulation of 

thermal energy were needed involving minimization of entropy production. Khan et al. [55] 

calculated entropy generation in flow of Williamson nanofluid with the effects of Joule heating 

and chemical reaction. Hayat et al. [56] examined entropy generation with thermo-diffusion impact 

on unsteady dissipative flow. Sheikholeslami et al. [57] numerically investigated Al2O3 water 

nanofluid flow with magnetic effects and thermal transport in a semi-annulus enclosure. Study of 

entropy generation with heat and mass transfer in mixed electro-kinetically and forced flow 

through a slit microchannel is examined by Matin and Waqar [58]. Escandon et al. [59] studied 

entropy optimization in electro-osmotic flows of non-Newtonian liquids inside a microchannel. 

Moreover, importance of permeable media in various industrial applications and thermal transport 

situations cannot be denied. Wood, sandstone, limestone and outflow of water in river beds are 

common examples of naturally existing porous medium. Porous medium has been characterized 

by utilizing Darcy law in case of viscous fluids. This situation can be further clarified by reviewing 

the previous literature in this regard [60-62]. 

Activation energy is considered as the least energy needed for stimulating particles and make their 

transport possible in chemical reactions. In fact it is regarded as a thermal barrier between two 

states of energy. Any chemical process just starts when this level is achieved. In a chemical process 

the atoms or molecules have an amount of energy which exceeds this limit of activation energy. 

Molecules with enough energy more than the activation energy can pass the energy barrier. This 

energy can be considered as the height of the barrier. Few research articles for activation energy 

with chemical reaction can be seen in the studies [63-67]. 

Previous literature reveals that study of cooling efficiency of nanoparticles is mainly dependent 

upon first law of thermodynamics. Since it is a fact that conversion of heat into same amount of 

useful work is impossible. Efficiency of the system is evaluated by determining amount of useful 

work. Amount of lost energy due to irreversibility effects is determined by second law of 
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thermodynamics. Therefore the rate of entropy generation is an important tool to determine such 

irreversibilities in energy processes.  

Mass Conservation expression 

Here mass in any isolated system can neither be created nor destroyed. 

Mathematically 

𝜕𝜌𝑓

𝜕𝑡
+ 𝛻. (𝜌𝑓𝑽) =0. 

For incompressible fluids 

𝛻. 𝑽 =0, 

or 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
 =0. 

In cylindrical form  

1

𝑟

𝜕𝑢

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑣𝜃
𝜕𝜃

+
𝜕𝑣𝑥
𝜕𝑥

 =0. 

Momentum Conservation law 

According to this law total momentum of the colliding particles in an isolated system, before and 

after the collision remain conserved. Mathematically one has 

𝜌𝑓𝑎𝑖 = 𝛻𝑝 + 𝑑𝑖𝑣𝑺 + 𝜌𝑓𝑩, 

where 𝜌𝑓 denotes the fluid density, S the extra stress tensor and B the body force. 

Energy conservation expression 

According to this law, energy can neither be created nor be destroyed in a thermodynamic system 

but can only be transformed from one form to another. Like potential energy is converted into 

kinetic energy, electrical into mechanical energy, light into chemical energy and chemical into 

heat energy etc.  

(1.3) 

(1.1) 

(1.2) 

(1.4) 

(1.5) 
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(𝜌𝑐𝑝)𝑓
𝑑𝑇

𝑑𝑡
= 𝜏. 𝐿 − 𝑑𝑖𝑣𝑞 − 𝑑𝑖𝑣𝑞𝑟. 

Here cp is the specific heat capacity, q heat flux and qr radiative heat flux. 

Law of Conservation of concentration 

According to this law the total concentration of the fluid particles in an isolated system remains 

conserved. Mathematically it is derived from Fick’s law. 

𝑑𝐶

𝑑𝑡
= −𝛻. 𝑗, 

with 

𝑗 = −𝐷𝛻𝐶. 

Expression. (1.7) takes the form  

𝑑𝐶

𝑑𝑡
= 𝐷𝛻2𝐶. 

Entropy 

Entropy in physical sense is a measure of disorderliness in a system and its surrounding. Basically 

heat transfer is one of the main sources for entropy production because with heat transfer some 

additional movements also occur e.g. internal movement of molecule, internal molecular vibration, 

friction, kinetic energy and spin moment etc. which result in losing of heat thus we are unable to 

transform heat fully into useful work. These additional factors create disturbance inside the system 

and its surroundings. 

It is also observed that such energy losses cannot be re-obtained so system can’t come to its original 

position without some extra work done on it. Therefore entropy is considered as the measure of 

irreversibilities. 

In all real-life processes, some sort of macroscopic as well as microscopic loss occur. This is 

because, every thermodynamic process is an irreversible process. 

In such process, a system generates finite amount of entropy σ of their own due to either some 

known or unknown cause. 

(1.8) 

(1.9) 

(1.7) 

(1.6) 
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Irreversibilities of the system are given by the entropy generation rate. These terms in the entropy 

generation rate are mainly due to thermal irreversibilities, fluid friction irreversibilities and 

magnetic irreversibilities etc.  

Bejan number 

To find the ratio of thermal irreversibilities to total irreversibilities in a system, a term known as 

Bejan number is used. This term shows either heat transfer irreversibilities dominates or other 

irreversibilities are more dominant. Bejan number is given by 

𝐵𝑒 =
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑑𝑢𝑒 𝑡𝑜 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
 

Homotopy analysis method 

One of the most convenient tools to solve system of nonlinear differential equations is through 

homotopy analysis method. The concept of homotopy is used in this method. Two functions f(x) 

and g(x) are said to be homotopic if one can be transformed into another function. This idea was 

first utilized by Liao [68] in 1992. This method is used due to its applications for solving nonlinear 

differential equations. Some advantages for this method are as follows. 

• It is independent of small/large parameter.  

• Convergence is guaranteed. 

• A great choice of linear operators and base function is available. 

Series solution for different nonlinear problems are developed using this technique. 

A nonlinear equation of the form  

𝑁[𝑢(𝑥)] = 0. 

Homotopic equation is given as 

(1 − 𝑞)𝐿[𝑢(𝑥, 𝑞) − 𝑢0(𝑛, 𝑞)] = 𝑞ℏ𝑁[𝑢(𝑥, 𝑞)] 

where ℏ ≠ 0 and 0 ≤ 𝑞 ≤ 1. 

(1.11) 

(1.12) 

(1.10) 
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For 𝑞 = 0 the above-mentioned condition is known as zeroth order deformation expression. For 

the values of q ranging from 0 to 1, the solution 𝑢(𝑥, 𝑞) approaches from initial guess 𝑢0(𝑥) to the 

ultimate solution 𝑢(𝑥) 

The solution can be obtained using some appropriate softwares e.g. maple and Mathematica. When 

the variables, initial guess and corresponding linear operators are selected in appropriate manner, 

series will converge for 1q = . 

( , ) ( ) 0u x q u x− =
 

( ,1) ( ) 0u x u x− =   

By Taylor series one has 

𝑢(𝑥, 𝑞) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)𝑞
𝑚

∞

𝑚=1

,  

𝑢𝑚(𝑥) =
1

𝑚!

𝜕𝑢(𝑥,𝑞)

𝜕𝑞𝑚
, 

𝐿[𝑢𝑚(𝑥) − 𝜒𝑚𝑢𝑚−1(𝑥)] = ℏ𝑅𝑢𝑚−1(𝑥), 

𝑅𝑚𝑢𝑚−1(𝑥) =
1

(𝑚 − 1)!

𝜕𝑚−1𝑢(𝑥, 𝑞)

𝜕𝑞𝑚−1
, 

𝜒𝑚 = {
0,𝑚 ≤ 1
1,𝑚 > 1

, 

𝑢(𝑥) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
∞
𝑚=1 .  

(1.13) 

(1.14) 

(1.15) 

(1.17) 

(1.20) 

(1.19) 

(1.16) 

(1.18) 
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Chapter 2 

Nonlinear radiative mixed convective flow with heat source and entropy 

generation 

Introduction 

Entropy generation in thermally radiative nonlinear mixed convective flow over a variable thicked 

surface is discussed. Entropy expression in terms of velocity and temperature is analyzed. 

Stretching of sheet is the main cause for the motion of flow analysis. Equation for entropy 

optimization is examined. Convergent solutions for the deformed systems are determined. 

Graphical solutions for velocity profile, temperature gradient and concentration are discussed. 

Total entropy is studied with nonlinear mixed convection and radiative heat flux. The obtained 

results are concluded in the final remarks. 

Formulation 

Here steady, 2𝐷 mixed convective flow of viscous liquid towards a variable thicked surface is 

analyzed. Magnetic field 𝐵 acts in transverse direction to sheet. Small Reynolds number implies 

no induced magnetic field. Heat source/sink and nonlinear thermal radiation effects are analyzed. 

Furthermore the impact of nonlinear mixed convection and simple chemical reaction are examined. 

Sheet lies parallel to 𝑥 -axis with stretching velocity 𝑈𝑤 = 𝑈0(𝑥 + 𝑏)
𝑛 (see Fig. 2.1). Here 𝑇𝑤is 

wall temperature while 𝑇∞ being ambient temperature. The relevant flow problems are: 
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Fig. 2.1. Flow geometry. 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣̂

𝜕𝑦
= 0, 

𝑢̂
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐

𝜕2𝑢

𝜕𝑦2
+ 𝑔(𝜆1(𝑇 − 𝑇∞) + 𝜆2(𝑇 − 𝑇∞)

2)

+𝑔(𝜆3(𝐶 − 𝐶∞) + 𝜆4(𝐶 − 𝐶∞)
2),

} 

(𝑢̂
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) =

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
+

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
+

𝑄

𝜌𝑐𝑝
(𝑇 − 𝑇∞), 

𝑢̂
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐾(𝐶 − 𝐶∞), 

𝑢̂ = 𝑈𝑤 = 𝑈0(𝑥 + 𝑏)
𝑛, 𝑣 = 0, 𝑇𝑤,  𝐶 = 𝐶𝑤  at 𝑦 = 𝐴1(𝑥 + 𝑏)

1−𝑛

2 ,
𝑢̂ = 0, 𝑣 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞ at 𝑦 → ∞,

} 

where 𝐵 = 𝐵0(𝑥 + 𝑏)
𝑛−1

2 , 𝑄 = 𝑄0(𝑥 + 𝑏)
𝑛−1, 𝐾 = 𝐾1(𝑥 + 𝑏)

𝑛−1. 

Here 𝑢̂, 𝑣 indicate velocity components, 𝜈 kinematic viscosity, 𝑔 gravitational acceleration, 𝜆1 and 

𝜆2 linear and nonlinear coefficients of thermal expansion, 𝜆3 and 𝜆4 linear and nonlinear 

coefficients of solutal expansion, 𝑇 temperature, 𝑇∞ ambient temperature, 𝐶 concentration, 𝐶∞ 

ambient concentration, 𝑘 thermal conductivity, 𝑞𝑟 radiative heat flux, 𝜌 density, 𝑐𝑝 specific heat, 

𝑄 coefficient of heat source/sink, 𝐷 diffusion coefficient, 𝐾 chemical reaction rate, 𝑈𝑤 stretching 

velocity, 𝑏 dimensional constant, 𝐴1 small variable regarding surface is sufficient thin and 𝑛 power 

(2.1) 

(2.2) 

(2.4) 

(2.3) 

(2.5) 
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law index. 

Considering the following transformations 

𝜂 = √
(𝑛+1)𝑈0(𝑥+𝑏)𝑛−1

2𝜈
𝑦,   𝜓 = √

2𝜈𝑈0(𝑥+𝑏)𝑛+1

𝑛+1
𝐹(𝜂),

𝑢̂ = 𝑈0(𝑥 + 𝑏)
𝑛𝐹′(𝜂), 𝑣 = −√

(𝑛+1)𝜈𝑈0(𝑥+𝑏)𝑛−1

2
(𝐹(𝜂) + 𝜂

𝑛−1

𝑛+1
𝐹′(𝜂)) ,

𝛩(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,  Φ =

𝐶−𝐶∞

𝐶𝑤−𝐶∞ }
 
 

 
 

. 

Incompressibility condition is trivially justified while the other expressions are 

𝐹‴ + 𝐹𝐹″ − (
2

𝑛+1
)𝐹′2 − (

2

𝑛+1
)𝐻𝑎𝐹′ +

2𝛼1

𝑛+1
(𝛩 + 𝛽𝑡𝛩

2)

+
2𝛼1𝑁

∗

𝑛+1
(𝛷 + 𝛽𝑐𝛷

2) = 0
}, 

𝛩″ +
4

3
𝑅𝑑  (𝛩(𝜃𝑤 − 1) + 1)

2[3𝛩′2(𝜃𝑤 − 1) + (𝛩(𝜃𝑤 − 1) + 1)𝛩
″]

+𝑃𝑟 𝐹 𝛩′ + (
2

𝑛+1
)𝑃𝑟 𝛿 𝛩 = 0

}, 

𝛷″ + 2𝑆𝑐 𝑅𝑒 𝐹 𝛷′ − (
2

𝑛+1
) 𝑆𝑐𝛽1𝛷 = 0, 

𝐹(𝛼) = 𝛼 (
1−𝑛

1+𝑛
) , 𝐹′(𝛼) = 0, 𝐹′(∞) = 0,

𝛩(𝛼) = 1, 𝛩(∞) = 0,
𝛷(𝛼) = 1,𝛷(∞) = 0,

}, 

where 𝛼(= 𝐴1√
(𝑛+1)𝑈0

2𝜈
) is the sheet thickness. 

Applying the following transformations 

𝐹(𝜂) = 𝑓(𝜂 − 𝛼) = 𝑓(𝜉),

𝛩(𝜂) = 𝜃(𝜂 − 𝛼) = 𝜃(𝜉),

𝛷(𝜂) = 𝜙(𝜂 − 𝛼) = 𝜙(𝜉).

} 

Equations (2.7 − 2.10) lead to 

𝑓‴ + 𝑓𝑓″ − (
2

𝑛+1
) 𝑓 ′2 − (

2

𝑛+1
)𝐻𝑎𝑓 ′ +

2𝛼1

𝑛+1
(𝜃 + 𝛽𝑡𝜃

2)

+
2𝛼1𝑁

∗

𝑛+1
(𝜙 + 𝛽𝑐𝜙

2) = 0
}, 

𝜃″ +
4

3
𝑅𝑑(𝜃(𝜃𝑤 − 1) + 1)

2[3𝜃 ′2(𝜃𝑤 − 1) + (𝜃(𝜃𝑤 − 1) + 1)𝜃
″]

+𝑃𝑟 𝐹 𝜃 ′ + (
2

𝑛+1
)𝑃𝑟 𝛿 𝜃 = 0

}, 


″
+ 2𝑆𝑐 𝑅𝑒 𝑓 

′
− (

2

𝑛+1
) 𝑆𝑐𝛽1 = 0, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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𝑓(0) = 𝛼 (
1−𝑛

1+𝑛
) , 𝑓 ′(0) = 1, 𝑓 ′(∞) = 0,

𝜃(0) = 1, 𝜃(∞) = 0,
𝜙(0) = 1 , 𝜙(∞) = 0.

} 

Here 𝐻𝑎 (=
𝜎𝐵0

2

𝜌𝑈0
) shows the Hartman number, 𝑃𝑟 (=

𝜌𝑐𝑝𝜈

𝑘
) Prandtl number, 𝛿 (=

𝑄0

𝜌𝑐𝑝𝑈0
) heat 

generation parameter ,𝛼1 (=
𝑔𝜆1(𝑇𝑤−𝑇∞)

𝑈0
2(𝑥+𝑏)2𝑛−1

) linear mixed convection parameter, 𝛽𝑡 (=
𝑔𝜆2(𝑇𝑤−𝑇∞)

2

𝑈0
2(𝑥+𝑏)2𝑛−1

) 

nonlinear mixed convection for temperature, 𝑁∗ (=
(𝐶𝑤−𝐶∞)𝜆3

(𝑇𝑤−𝑇∞)𝜆1
) the ratio of concentration to 

thermal buoyancy forces, 𝜃𝑤 (=
𝑇𝑤

𝑇∞
) temperature ratio parameter, 𝑅𝑑 (=

4𝜎∗𝑇∞
3

𝑘𝑘∗
) radiation 

parameter, 𝑆𝑐 (=
𝜈

𝐷
) Schmidt number, 𝑅𝑒 (=

𝑈𝑤(𝑥+𝑏)

𝜈
) Reynolds number, 𝛽1 (=

𝐾1

𝑈0
) chemical 

reaction parameter and 𝛽𝑐 (=
(𝐶𝑤−𝐶∞)

2𝜆4

(𝑇𝑤−𝑇∞)
) nonlinear mixed convection variable for concentration. 

Quantities of interest 

Surface drag force 

Mathematically surface drag force is 

1

2
𝐶𝑓𝑥 𝑅𝑒

0.5 =(
𝑛+1

2
)
1/2

𝑓 ′(0). 

Heat transfer rate 

Similarly heat transfer rate is 

𝑁𝑢𝑥 𝑅𝑒
−0.5 =− (

𝑛+1

2
) (1 +

4

3
𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃(0))

3) 𝜃 ′(0). 

Mass transfer rate 

Expression for Sherwood number is defined as 

𝑆ℎ𝑥 𝑅𝑒
−0.5 =− 

′
(0). 

Expression for entropy generation 

In dimensional form equation for entropy generation is given as 

𝑆𝐺 =
𝑘

𝑇∞
2 (1 +

16𝜎∗𝑇3

3𝑘𝑘∗
) (

𝜕𝑇

𝜕𝑦
)
2

+
𝜇

𝑇∞
(
𝜕𝑢

𝜕𝑦
)
2

+
𝑅∗𝐷

𝐶∞
(𝛻𝐶)2 +

𝑅∗𝐷

𝑇∞
(𝛻𝐶 ⋅ 𝛻𝑇) +

𝜎

𝑇∞
𝐵2(𝑢̂2), 

where 

(𝛻𝐶)2 = (
𝜕𝐶

𝜕𝑥
,
𝜕𝐶

𝜕𝑦
) . (

𝜕𝐶

𝜕𝑥
,
𝜕𝐶

𝜕𝑦
)

𝛻𝐶 ⋅ 𝛻𝑇 = (
𝜕𝐶

𝜕𝑥
,
𝜕𝐶

𝜕𝑦
) . (

𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦
) .
} 

Above expressions after utilizing boundary layer approximations yield 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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𝑆𝐺 =
𝑘

𝑇∞
2 (1 +

16𝜎∗𝑇3

3𝑘𝑘∗
) (

𝜕𝑇

𝜕𝑦
)
2

⏟            

Thermal irreversibility

+
𝜇

𝑇∞
(
𝜕𝑢

𝜕𝑦
)
2

⏟    

Fluid friction irreversibility

𝑅∗𝐷

𝐶∞
(
𝜕𝐶

𝜕𝑦
)
2

+
𝑅∗𝐷

𝑇∞
(
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
)

+
𝜎

𝑇∞
𝐵2(𝑢̂2)

⏟      

Joule dissipation irreversibility }
 
 
 
 

 
 
 
 

. 

Dimensionless entropy is defined as 

𝑁𝐺 = (1 +
4

3
𝑅𝑑[𝜃(𝜃𝑤 − 1) + 1]

3) (
𝑛+1

2
) 𝜃 ′2𝛼2

+(
𝑛+1

2
) 𝜆1

∗𝜃 ′𝜙′ + (
𝑛+1

2
)
𝛼2
∗

𝛼2
𝜆1
∗𝜙′2

+(
𝑛+1

2
)𝐵𝑟𝑓 ′′2 + 𝐻𝑎𝐵𝑟𝑓 ′2 }

 
 

 
 

, 

with 

𝛼2 =
𝑇𝑤−𝑇∞

𝑇𝑤
=
𝛥𝑇

𝑇𝑤
, 𝛼2
∗ =

𝐶𝑤−𝐶∞

𝐶∞
, 𝜆1
∗ =

𝑅∗𝐷

𝑘
(𝐶𝑤 − 𝐶∞),

𝐵𝑟 =
𝜇𝑈𝑤

2

𝑘𝛥𝑇
, 𝑁𝐺 =

𝑇∞𝑆𝐺𝜈

𝑘𝛥𝑇𝑈0(𝑥+𝑏)𝑛−1
.

} 

Here 𝛼2 denotes dimensionless temperature difference, 𝜆1
∗  dimensionless diffusion parameter, 𝐵𝑟 

Brinkman number and 𝑁𝐺 (=
𝑇∞𝑆𝐺𝜈

𝑘𝛥𝑇𝑈0(𝑥+𝑏)𝑛−1
) entropy generation rate. 

Bejan number (𝐵𝑒) has following definition 

𝐵𝑒 =
Entropy generated due to thermal irreversibilities

Total entropy generation
, 

𝐵𝑒 =
(1+

4

3
𝑅𝑑[𝜃(𝜃𝑤−1)+1]

3)(
𝑛+1

2
)𝜃′2𝛼2

(1+
4

3
𝑅𝑑[𝜃(𝜃𝑤−1)+1]

3)(
𝑛+1

2
)𝜃′2𝛼2

+(
𝑛+1

2
)𝜆1
∗𝜃′

′
+(

𝑛+1

2
)
𝛼2
∗

𝛼2
𝜆1
∗ 

′2

+(
𝑛+1

2
)𝐵𝑟𝑓′′2+𝐻𝑎𝐵𝑟𝑓′2 }

 
 

 
 
. 

Heat transfer irreversibility is prominent when 𝐵𝑒 ≥ 0.5. When 𝐵𝑒 ≤ 0.5 the effect of viscous 

irreversibilities dominates. For 𝐵𝑒 = 0.5 both the effects are same. 

Homotopy procedure 

This procedure provides opportunity to choose initial approximations along with linear operators. 

Thus we consider 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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𝑓0(𝜉) = 𝛼
1−𝑛

1+𝑛
+ 1 − 𝑒𝑥𝑝( − 𝜉),

𝜃0(𝜉) = 𝑒𝑥𝑝( − 𝜉),
𝜙0(𝜉) = 𝑒𝑥𝑝( − 𝜉),

}, 

 𝐿𝑓 = 𝑓
‴ − 𝑓, 𝐿𝜃 = 𝜃

″ − 𝜃, L = 
″
−  , 

with 

𝐿𝑓[𝑐1 + 𝑐2𝑒
𝜉 + 𝑐3𝑒

−𝜉] = 0,

𝐿𝜃[𝑐4𝑒
𝜉 + 𝑐5𝑒

−𝜉] = 0,

𝐿𝜙[𝑐6𝑒
𝜉 + 𝑐7𝑒

−𝜉] = 0,

}, 

where 𝑐𝑖 (𝑖 = 1 − 7) denote the arbitrary constants. 

Convergence analysis 

Auxiliary parameters ℏ𝑓 , ℏ𝜃 and  are chosen which provide us the choice to control the 

convergence of solutions for nonlinear equations. Fig. 2.2 shows the ℏ -curves for momentum, 

heat and concentration equations at various orders of approximation. Suitable values of such 

parameters vary as 1.5 0.2f−   − , 1.3 0.3−   − and 1.7 0.3−   − . Table 2.1 displays 

the convergent series solutions of momentum, energy and concentration for the current flow 

situation. Table 2.1 indicates that 𝑓″(0), (0)  and 
′
(0) converge at 15𝑡ℎ ,25𝑡ℎ and 19𝑡ℎ order 

of approximations respectively. 

  

(2.27) (2.26) 

(2.28) 

(2.27) 
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Table 2.1: Order of approximations when 𝛼1 = 0.3, 0.5,t n = =  𝛽𝑐 = 0.7, Ha=0.7, 

𝑃𝑟 =1.9, 𝑅𝑑 = 0.1, 0.3,w =  𝑁∗ = 0.2, 𝛿 = 0.5, 1.2,Sc = 𝑅𝑒 =1.0 and 𝛽1 = 0.5. 

 

 

Discussion 

Impacts of various dimensionless parameters on MHD viscous fluid flow over a variable thicked 

sheet is discussed in this section. Figs. (2.3 − 2.20) are portrayed for results of velocity 𝑓′(𝜉), 

temperature 𝜃(𝜉), concentration  (𝜉), skin friction 𝐶𝑢𝑓𝑥𝑅𝑒
(0.5) heat transfer rate 𝑁𝑢𝑥𝑅𝑒

(−0.5) 

and Sherwood number 𝑆ℎ𝑥𝑅𝑒
(−0.5). Effect of wall thickness on velocity profile and temperature 

gradient are exhibited in Figs. 2.3𝑎 and 2.3𝑏. Velocity profile due to wall thickness variable is 

given in Fig. 2.3𝑎. For increasing values of wall thickness parameter, less disturbance is created 

in the fluid by stretching of sheet. Hence velocity decreases. Effect of sheet thickness variable on 

temperature is given in Fig. 2.3𝑏. Here 𝜃(𝜉) decreases for wall thickness parameter. The reason is 

that less heat is transported to system and thus temperature decays. Impact of (𝛼1) mixed 

convection parameter on velocity profile is shown via Fig. 2.2. Velocity profile enhances for larger 

values of (𝛼1). Fig. 2.4 shows that the higher thermal buoyancy force is the reason to increase 

velocity profile. Behavior of heat generation parameter on temperature is sketched via Fig. 2.5. 

More heat is observed by introducing heat generation factor. So temperature increases. Fig. 2.6 

shows the behavior of mixed convection parameter due to temperature (𝛽𝑡). It tells that velocity 

Order of approximation 𝑓′′(0) −𝜃 ′(0) −
′
(0) 

1 0.1610 0.8295 1.55556 

11 0.2859 0.5038 1.26243 

15 0.2857 0.5233 1.25899 

19 0.2857 0.5341 1.25894 

25 0.2857 0.5350 1.25894 

30 0.2857 0.5350 1.25894 

35 0.2857 0.5350 1.25894 

40 0.2857 0.5350 1.25894 

50 0.2857 0.5350 1.25894 
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show increasing behavior for 𝛽𝑡. Fig. 2.7 shows the influence of magnetic parameter on the 

velocity. Since this parameter is about Lorentz force so enhancement in values of 𝐻𝑎 resist the 

fluid motion which reduces the velocity. Behavior of magnetic parameter 𝐻𝑎  on 𝜃̃(𝜉) is revealed 

in Fig. 2.8. Here temperature profile increases for larger 𝐻𝑎. Because Lorentz force give more 

resistance to the particles motion. Thus heat is generated and temperature enhances. Behavior of 

velocity for various estimations of 𝑛 is displayed through Figs. (2.9 − 2.11). These figures clearly 

show that particles motion increases for larger 𝑛. Physically the higher 𝑛 reduces the viscosity of 

fluid which enhances velocity profile. However decreasing trend is observed for temperature and 

increasing behavior for concentration profile. Fig. 2.12 highlights the impact of (𝑁∗) on velocity. 

This parameter increases the velocity field. Influence of Pr on temperature is drawn through Fig. 

2.13. By increasing Pr number thermal diffusivity decreases. So thickness of thermal boundary 

layer decreases and also decays the temperature field. Fig. 2.14 is shown to present the behavior 

of temperature 𝜃̃(𝜉) for variations of 𝑅𝑑 . Temperature enhances for higher  𝑅𝑑 . This is due to the 

conversion of internal energy into thermal energy. More heat is produced in the system which 

increases temperature profile. Similarly, Fig. 2.15 shows the influence of temperature difference 

ratio parameter 𝜃𝑤 on 𝜃̃(𝜉). From this figure it is inspected that temperature rises for larger 

estimations of 𝜃𝑤. Behavior of 𝑆𝑐 on concentration is sketched in Fig. 2.16. Higher values of 𝑆𝑐 

reduces the concentration profile. Skin friction pertaining to magnetic variable 𝐻𝑎 and mixed 

convection variables 𝛽𝑐 and 𝛽𝑡 are shown in Figs. (2.17 − 2.19). Drag force increases for larger 

𝐻𝑎, 𝛽𝑐 and 𝛽𝑡. Fig. (2.20) presents the effect of sheet thickness parameter and 𝑃𝑟 on heat transfer 

rate. It is investigated in this figure that rate of heat transfer increases for higher estimations of 

Prandtl number. 

 

Fig. 2.2. ℏ −curves for 𝑓″(0), 𝜃′(0) and 
′
(0). 
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Fig. 2.3a: 𝑓′(𝜉) via 𝛼. 

 

  

Fig. 2.3b: 𝜃(𝜉) via 𝛼. 

  

  

Fig. 2.4: 𝑓′(𝜉) via 𝛼1. 
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Fig. 2.5: 𝜃(𝜉) via 𝛿. 

 

  

    Fig. 2.6: 𝑓′(𝜉) via 𝛽
𝑡
. 

 

 

Fig. 2.7: 𝑓′(𝜉) via 𝐻𝑎. 
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Fig. 2.8: 𝜃(𝜉) via 𝐻𝑎. 

 

  

Fig. 2.9: 𝑓′(𝜉) via 𝑛. 

 

  

Fig. 10: 𝜃(𝜉) via 𝑛. 
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Fig. 2.11: 𝜙(𝜉) via 𝑛. 

 

 

Fig. 2.12: 𝑓′(𝜉) via 𝑁∗. 

 

 

Fig. 2.13: 𝜃(𝜉) via 𝑃𝑟. 
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Fig. 2.14: 𝜃(𝜉) via 𝑅𝑑 . 

 

 

Fig. 2.15: 𝜃(𝜉) via 𝜃𝑤. 

 

 

Fig. 2.16:   (𝜉) via 𝑆𝑐. 
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Fig. 2.17: Skin friction via 𝑁∗ and 𝛽
𝑐
. 

 

 

Fig. 2.18: Skin friction via 𝑁∗ and 𝐻𝑎. 

 

 

Fig. 2.19: Skin friction via 𝑁∗ and 𝛽
𝑡
. 
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Fig. 2.20: Nusselt number via 𝑃𝑟 and 𝛼. 

 

Fig. 2.21: Entropy generation 𝑁𝐺 via 𝛼2. 

 

 

Fig. 2.22: Bejan number 𝐵𝑒 via 𝛼2.  
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Fig. 2.23: Entropy generation 𝑁𝐺  via 𝐵𝑟. 

 

 

Fig. 2.24: Bejan number 𝐵𝑒 via 𝐵𝑟.  

 

 

Fig. 2.25: Entropy generation 𝑁𝐺 via 𝑅𝑑 . 
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Fig. 2.26: Bejan number 𝐵𝑒 via 𝑅𝑑. 

Entropy (𝑵𝑮(𝝃)) and Bejan number (𝐵𝑒) 

Influences of the temperature difference ratio parameter 𝛼2, thermal radiation parameter 𝑅𝑑 and 

Brinkman number 𝐵𝑟 on entropy generation 𝑁𝐺(𝜉) and Bejan number 𝐵𝑒 are displayed 

graphically via Figs.(2.21 − 2.26).  

Figs. 2.21 and 2.22 exhibit the characteristics of local entropy generation rate as well as Bejan 

number for higher values of 𝛼2. Magnitudes of entropy generation rate and Bejan number enhance 

for larger 𝛼2. It is very clear that 𝑁𝐺(𝜉) vanishes far away from the surface. For higher values of 

𝛼2, the impact of heat transfer rate is more prominent in comparison to fluid friction and magnetic 

impacts. That is why 𝐵𝑒 number increase. 

Figs. 2.23 and 2.24 show the effects of entropy generation 𝑁𝐺(𝜉) and 𝐵𝑒 number for higher 𝐵𝑟. 

Brinkman number is specifically identified near the surface. The production of heat inside the 

layers of the fluid particles which enhances the entropy. Fig. 2.24 shows a decreasing behavior of 

𝐵𝑒 for higher 𝐵𝑟. Influences of 𝑅𝑑 on 𝑁𝐺(𝜉) and 𝐵𝑒 are shown graphically through Figs. 2.25 and 

2.26. 𝑁𝐺(𝜉) and Be number enhancement is observed for higher values of 𝑅𝑑. Larger values of 

𝑅𝑑 gives more heat to the system. Hence heat transfer rate enhances and additional entropy 

generation is noted. 

Conclusions 

Entropy production rate in nonlinear mixed convective flow phenomenon of viscous fluid 

towards a sheet surface is studied. Key points are summarized as follows: 

• Velocity increases for higher power law index. 

• Temperature 𝜃̃(𝜉) grows against 𝑅𝑑. 

• Magnetic parameter enhances the coefficient of skin friction coefficient.. 
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• Entropy generation 𝑁𝐺(𝜉) increases for 𝑅𝑑 and 𝐵𝑟. 

• Bejan number 𝐵𝑒 decays for 𝐵𝑟 while reverse trend is noted for 𝑅𝑑.  
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Chapter 3 

Numerical analysis of entropy optimization for MHD power law 

fluid with convective boundary conditions 

Introduction 

The present chapter is prepared for two-dimensional flow of power law liquid. Energy expression 

with convective boundary conditions is considered. Concentration expression subject to activation 

energy is employed. Relevant problems are numerically solved and analyzed. 

Formulation 

Here two-dimensional power law fluid flow caused by a plane stretched surface is taken. Magnetic 

field is applied orthogonally. Convective conditions and viscous dissipation effects are considered. 

Sheet is stretched with two equal and opposite forces along the x-axis. Flow geometry of the related 

problem is shown in Fig. 3.1. 

 

Fig 3.1 Geometry of flow problem 

The given flow problems in mathematical form are given as  

𝜕𝑢̃

𝜕𝑥
+
𝜕𝑣̃

𝜕𝑦
= 0, 

(3.1) 

𝑢̃
𝜕𝑢̂

𝜕𝑥
+ 𝑣̃

𝜕𝑢̃

𝜕𝑦
=
𝐾0
𝜌

𝜕

𝜕𝑦
(
𝜕𝑢̃

𝜕𝑦
)
𝑛

−
𝜎

𝜌
𝐵0
2𝑢̃, 

(3.2) 

 

(𝑢̃
𝜕𝑇̃

𝜕𝑥
+ 𝑣̃

𝜕𝑇̃

𝜕𝑦
) =

𝑘

𝜌𝑐𝑝

𝜕2𝑇̃

𝜕𝑦2
+
𝑘

𝜌𝑐𝑝
(
𝜕𝑢̃

𝜕𝑦
)
𝑛+1

+
𝜎

𝜌𝑐𝑝
𝐵0
2𝑢̃2, 

(3.3) 
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𝑢̃
𝜕𝐶̃

𝜕𝑟
+ 𝑣̃

𝜕𝐶̃

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶̃

𝜕𝑦2
− 𝑘𝑟

2(𝐶̃ − 𝐶̃∞) (
𝑇̃

𝑇̃∞
)

𝑛

𝐸𝑥𝑝(−𝐸𝑎/𝑘𝑇), 
(3.4) 

 

along with the corresponding boundary conditions 

𝑢̃ = 𝑢̃𝑤 = 𝑎𝑥, 𝑣 = 0,−𝑘𝑓𝑣
𝜕𝑇̂

𝜕𝑦
= ℎ𝑓(𝑇∞ − 𝑇), 𝐶 = 𝐶𝑤 at 𝑦 = 0

𝑢̃ = 0, 𝑣 = 0, 𝑇̂ = 𝑇∞, 𝐶 = 𝐶∞ at 𝑦 → ∞

} 

 

(3.5) 

 

where 𝑇̂ is the fluid temperature, 𝑘𝑟 chemical reaction parameter, ℎ𝑓 dimensional coefficient, 𝐾0 

power law coefficient, dynamic viscosity 𝜇, thermal conductivity 𝑘, density 𝜌𝑓 , kinematic viscosity 

𝜈 , electrical conductivity 𝜎 and heat capacitance 𝑐𝑝. 

Using the following transformations 

𝜂 = √
𝑎

𝜐
𝑦, 𝑢̃ = 𝑎𝑥 𝑓 ′(𝑥), 𝑣 = −√𝑎𝑥 𝑓 ′(𝑥),

𝜃̃ ′(𝜂) =
𝑇̂ − 𝑇̂∞

𝑇̂𝑤 − 𝑇̂∞
, 

′
(𝜂) =  

𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

,
}
 
 

 
 

 

 

(3.6) 

one has 

𝑓𝑓″ − 𝑓 ′2 + 𝑛𝑀(𝑓″)𝑛−1𝑓‴ − 𝐻𝑎𝑓 ′ = 0,

1 21
( ) 0

Pr

nf EcM f EcHaf  +   + + + =

1

𝑆𝑐

″
+ 𝑓

′
− 𝛾 (1 + 𝜃𝑤𝜃)

𝑛𝐸𝑥𝑝[
−𝐸

1 + 𝜃𝑤𝜃
] = 0,

𝑓′(0) = 1,  𝑓′(∞) = 0,   𝜃′(0) = 𝛽(1 − 𝜃(0)) 𝜃(∞) = 0 𝜙̃(0) = 1,  𝜙̃(∞) = 0,}
  
 

  
 

 

 

 

(3.7) 

with 

B

Sc
D


= , 𝛾 =

𝑘𝑟
2

𝑎
, 𝜃𝑤 =

𝑇̂𝑤 − 𝑇̂∞

𝑇̂∞
, 𝑀 =

𝐾0
𝜌𝜈
(𝑎𝑥√

𝑎

𝜈
)𝑛−1, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
,

𝐸𝑐 =
𝑢̃𝑤
2

𝑐𝑝(𝑇̂𝑤 − 𝑇̂∞)
, 𝐸 =

𝐸𝑎

𝐾(𝑇̂𝑤 − 𝑇̂∞)
, 𝛽 =

ℎ∞
𝑘∞
√
𝜈

𝑎
,𝐻𝑎 =

𝜎𝐵0
2

𝑎𝜌 }
 
 

 
 

 

 

(3.8) 

 

where 𝑆𝑐 denotes Schmidt number, 𝛾 chemical reaction constant, 𝜃𝑤 temperature difference ratio 

parameter, 𝑀 material parameter, 𝑃𝑟 the Prandtl number , 𝐸𝑐 Eckert number, 𝐸 activation energy 

parameter, 𝛽 the convective parameter and 𝐻𝑎 the Hartman number. 
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Surface drag force 

Mathematical equation for skin friction is 

𝐶𝑓 =
𝜏𝑥𝑦
2

𝜌𝑓
2𝑢̃𝑤2

, 
(3.9) 

 

where 𝜏𝑥𝑦 denote shear stresses in transverse satisfying, 

1

0

0

( )n

xy

y

u
k

y
 −

=


=


 

 

(3.10) 

 

Equations (3.9) and (3.10) imply that 

𝐶𝑓𝑥 =
𝜏𝑤|𝑦=0

𝜌𝑓𝑢̃𝑤2
= −2𝑅𝑒−

1
𝑛+1[ (𝑓 ′′(0))]𝑛. 

 

(3.11) 

 

Heat transfer rate 

In mathematical form, the rate of heat transfer is  

𝑁𝑢𝑥 =
𝑎𝑞𝑤

𝑘𝑓(𝑇̂𝑤 − 𝑇̂∞)
|
𝑦=0

, 
(3.12) 

with wall heat flux 𝑞𝑤 as 

𝑞𝑤|𝑦=0 = −𝑘𝑓
𝜕𝑇̂

𝜕𝑦
|
𝑦=0

= −𝑘𝑓(𝑇̂𝑓 − 𝑇̂∞)𝜃̃
′(0). 

(3.13) 

 

Putting Eq. (3.13) in Eq. (3.12) the following dimensionless form is obtained 

𝑁𝑢𝑥 = −
1

1Re n
−

+ 𝜃̃ ′(0). 
(3.14) 

 

Similarly, the local Sherwood number is given by 

𝑆ℎ𝑥 =
𝑎𝑞𝑚

𝐷𝐵(𝐶𝑤 − 𝐶∞)
|
𝑦=0

,  

(3.15) 

 

where 𝑞𝑚 is the mass flux and 
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𝑆ℎ𝑥 = −𝑅𝑒
−
1
𝑛+1 

′

(0). 
(3.16) 

 

 

Expression of entropy generation 

Dimensional expression for entropy is given by 

𝑆𝐺 =
𝑘𝑓

𝑇̂∞2
(
𝜕𝑇̂

𝜕𝑦
)

2

+
𝐾0

𝑇̂∞
(
𝜕𝑢̃

𝜕𝑦
)
𝑛+1

+
𝜎

𝑇̂∞
𝐵0
2𝑢̃2. 

 

(3.17) 

 

We can write 

𝑆𝐺 =
𝑘𝑓

𝑇̂∞2
(
𝜕𝑇̂

𝜕𝑦
)

2

⏟      

Thermal irreversibility

+
𝜇𝑓

𝑇̂∞
(
𝜕𝑢̃

𝜕𝑦
)
𝑛+1

⏟      

Fluid friction irreversibility

+
𝜎

𝑇̂∞
𝐵0
2𝑢̃2

⏟    

Joule dissipation irreversibility

.

}
 
 
 

 
 
 

 

 

 

(3.18) 

 

Equation (3.18) shows that entropy is generated by three main sources. First source is heat transfer 

generated by thermal radiation. The second source is friction of the fluid and third term appears 

due to Joule dissipation. Non-dimensional entropy generation 𝑁𝑔 is defined as 

𝑁𝑔 = 𝑁𝑔0 [(
𝜕𝜃

𝜕𝜂
)
2

+ 𝑃𝑟𝐸𝑐{𝑀(𝑓″)𝑛+1 + 𝐻𝑎𝑓 ′2}]}, 
 

(3.19) 

 

Here 𝐻𝑎 represents Hartmann number, 𝑀 material parameter and 𝑁𝑔0 (=
𝑎𝑘(𝑇̂𝑤−𝑇̂∞)

𝜈𝑇̂∞
). 

Definition of entropy generation satisfies 

𝑁𝐺 =
𝑁𝑔

𝑁𝑔0
= [(

𝜕𝜃

𝜕𝜂
)
2

+ 𝑃𝑟𝐸𝑐{𝑀(𝑓″)𝑛+1 + 𝐻𝑎𝑓 ′2}], 
 

(3.20) 

 

Bejan number (𝐵𝑒) is given by 

Be =
Entropy generated by heat transfer effect

Total entropy of the system
, 
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or 

𝐵𝑒 =
(
𝜕𝜃
𝜕𝜂
)
2

[(
𝜕𝜃
𝜕𝜂
)
2

+ 𝑃𝑟 𝐸 𝑐{𝑀(𝑓″)𝑛+1 + 𝐻𝑎𝑓 ′2}]

. 

 

(3.21) 

 

Solution procedure 

The governing equations are computed through built in ND solve technique. 

Discussion 

The characteristics of pertinent dimensionless variables on flow of power law fluids produced by 

a stretched surface are displayed graphically. Figs. (3.2 − 3.12) are sketched for impacts of 

velocity, temperature distribution 𝜃̃(𝜂), skin friction 𝐶𝑓𝑥𝑅𝑒
1

𝑛+1 and heat transfer 𝑁𝑢𝑥𝑅𝑒
1

𝑛+1. Fig. 

(3.2) shows the influence of velocity for magnetic parameter 𝐻𝑎. As this parameter is associated 

with Lorentz force so higher 𝐻𝑎 produce more resistance and consequently velocity reduces. 

Impact of velocity via material parameter 𝑀 is represented in Fig. (3.3). Velocity enhances for 

higher 𝑀. It is due to decay in the viscosity of fluid. Since 𝑀 is inversely proportional to viscosity. 

Therefore it causes an increase in velocity. Impact of velocity via power law index 𝑛 is portrayed 

in Fig. (3.4). It is clearly shown that movement in liquid particles enhances via 𝑛. Physically  

larger 𝑛 decrease the fluid’s viscosity and consequently velocity is enhanced. 

Fig. (3.5) shows that concentration distribution increases for larger values of 𝐸. Physically for 

larger 𝐸 the productive chemical reaction amount is increased. As a result concentration of fluid 

enhances. Impact of chemical reaction parameter 𝛾 on concentration of power law fluid with both 

shear thinning and thickening behavior is given in Fig. (3.6). There is decreasing trend for 

chemical reaction parameter. For higher 𝛾 the destructive amount of chemical reaction also 

enhances. Hence for larger 𝛾 the thickness of concentration boundary layer decays which decreases 

the concentration. Behavior of concentration via Schmidt number 𝑆𝑐 is sketched in Fig. (3.7). 

Since Schmidt number 𝑆𝑐 shows the relation between the thickness of the momentum layer with 

mass diffusivity. Hence larger values of 𝑆𝑐 lead to decay of concentration. Fig. (3.8) is displayed 

to observe the effect of temperature 𝜃̃(𝜂) via 𝐸𝑐. An enhancement in temperature for higher 𝐸𝑐 is 

shown. Internal friction converts mechanical energy into heat energy which is the reason for 
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enhancement of temperature. Magnetic parameter 𝐻𝑎  on 𝜃̃(𝜂) is indicated in Fig. (3.9). Here 

temperature enhancement is noted for larger values of 𝐻𝑎. Lorentz forces gives resistance to the 

motion of particles. Hence more heat is generated inside the system and thus temperature 

enhanced. Fig. (3.10) displays the influence of temperature via 𝑃𝑟. As Pr is inversely related to 

thermal diffusivity so decrease in temperature is observed. Fig. (3.11) indicates the impact of 

material parameter 𝑀 on temperature 𝜃̃(𝜂). It clearly shows increasing behavior due to growth in 

thickness thermal boundary layer. 

Behaviors of skin friction with respect to magnetic and material parameters are shown in Table 

3.1. Enhancement of drag force for larger 𝐻𝑎 and 𝑀 is observed. Similarly the influences of Eckert 

number 𝐸𝑐 and magnetic variable 𝑀 on Nusselt number are shown in Table. 3.4. Heat transfer rate 

decreases for 𝐸𝑐 and 𝑀. 

 

Fig 3.2 𝑓′(𝜂) via Ha 

 

 

Fig 3.3 𝑓′(𝜂) via M. 
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Fig 3.4 f’(η) via n. 

 

 

Fig 3.5 ϕ(η) via E. 

 

Fig 3.6 ϕ(η) via γ 
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Fig 3.7 ϕ(η) via Sc. 

 

 

Fig 3.8. θ(η) via Ec. 

 

 

Fig 3.9 θ(η) via Ha. 
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Fig 3.10 θ(η) via Pr. 

 

 

Fig 3.11 θ(η) via M. 

 

 

Fig 3.12 θ(η) via β. 
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Table 3.1 

M Ha Skin friction 

1.0   

1.1   

1.2   

 0.3  

 0.4  

 0.5  

 

Table 3.2 

Pr Ec M Ha  Nusselt 

Number 

6.0      

6.1      

6.2      

 0.1     

 0.2     

 0.3     

  1.0    

  1.1    

  1.2    
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Table 3.3 

Sc  Ec E n Sherwood 

Number 

1.0      

1.1      

1.2      

 0.5     

 0.6     

 0.7     

  0.1    

  0.2    

  0.3    

   0.6   

   0.7   

   0.8   

    0.1  

    0.2  

 

Entropy generation and Bejan number 

Behaviors of entropy generation 𝑁𝐺(𝜂) and Bejan number 𝐵𝑒 via pertinent parameters e.g Eckert 

number 𝐸𝑐, Hartman number 𝐻𝑎, material parameter 𝑀 and Pr number are studied in Figs. [3.13 −

3.20].  

Influences of 𝑁𝐺(𝜂) and 𝐵𝑒 for larger values of 𝐸𝑐 are sketched in Figs. 3.13 and 3.14. These 

show that both quantities are directly related to 𝐸𝑐. Since 𝐸𝑐  characterizes the heat dissipation in 

the system so more heat is dissipated which increases the entropy. For higher estimations of 𝐸𝑐 

the rate of heat transfer has more clear impact in comparison to magnetic and fluid friction effects. 

Due to this reason Bejan number tends to increase. Figs. 3.15 and 3.16 are drawn to show the 

effect of 𝐻𝑎 on 𝑁𝐺(𝜂) and 𝐵𝑒. Both 𝑁𝐺(𝜂) and 𝐵𝑒 number show increasing pattern for higher 

values of 𝐻𝑎. Physically production of more disturbance in the flow system is the reason for such 
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enhancement. That is why both 𝑁𝐺(𝜂) and 𝐵𝑒 are increased. Figs. 3.17 and 3.18 display 𝑁𝐺(𝜂) 

and 𝐵𝑒 for higher estimations of material parameter 𝑀. However entropy generation rate 𝑁𝐺(𝜂) 

and Bejan number 𝐵𝑒 show decreasing trend for increasing material parameter. For higher 𝑀 

concentration layer thickness decreases so less entropy is generated. Heat transfer for Be is less 

effective than magnetic and fluid friction effects. That is the Be decays. Figs. 3.19 and 3.20 

demonstrate the essential impact of 𝑃𝑟 on 𝑁𝐺(𝜂) and 𝐵𝑒. We note that entropy generation increases 

for larger  𝑃𝑟 but Bejan number decreases for higher 𝑃𝑟. Because larger values of 𝑃𝑟 results to an 

increase in momentum diffusivity of the liquid so particles move rapidly inside the system. It 

enhances the disturbance in the system and thus more entropy is generated.  

 

Fig. 3.13 NG(η) for Ec. 

 

 

Fig. 3.14 Be for Ec. 
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Fig. 3.15 NG(η) for Ha. 

 

 

Fig. 3.16 Be for Ha. 

 

Fig. 3.17 NG(η) for M. 
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Fig.3. 18 Be for M. 

 

  

Fig. 3.19 NG(η) for Pr 

 

Fig. 3.20 Be for Pr. 

Conclusions 

Stretched flow of power law fluid with convective conditions, Joule heating, Activation energy 

and viscous dissipation effects is examined. Key observations are concluded as follows: 

• Velocity grows for larger estimations of power law index of fluid. 
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• Temperature 𝜃̃(𝜂) increases for 𝐸𝑐. 

• Surface drag enhances for higher values of 𝐻𝑎. 

• Temperature gradient 𝑁𝑢𝑥𝑅𝑒
−1

𝑛+1 is inversely proportional to 𝐸𝑐 and 𝐻𝑎. 

• Entropy 𝑁𝐺(𝜂) is larger for higher 𝐸𝑐 and 𝐻𝑎 while reverse trend holds for 𝑀. 

• Bejan number 𝐵𝑒 decreases with 𝑃𝑟 and 𝑀 while it increases with 𝐻𝑎 and 𝐸𝑐.  
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Chapter 4 

Non-linear radiative flow caused by a thin moving needle with entropy 

generation 

Introduction 

Entropy optimization and heat transfer phenomenon in non-linear flow of nanoparticles by a thin 

moving needle are analyzed. Energy expression is studied along with viscous dissipation and 

thermal radiation. Water is used as a base fluid while copper, titanium dioxide and aluminum oxide 

are the nanomaterials. Non-linear governing equations are first transformed into ordinary ones and 

solved by shooting method for obtaining numerical results. Entropy expression with temperature 

and velocity gradients is calculated. Pertinent variables are used to obtain the nondimensionalized 

form. Entropy generation is analyzed by the help of thermodynamics’ second law. Results for 

temperature profile, velocity profile, concentration profile, surface drag and thermal transport are 

explored through graphical representation. Here outcomes disclose that surface drag and rate of 

heat transfer enhance for larger values of nanoparticle volume fraction. Drag force decreases for 

aluminum oxide while it increases for copper nanoparticles. Additionally the heat transfer rate 

reduces for higher radiation parameter. Temperature enhances for higher temperature ratio 

parameter. 

Formulation 

Flow of nanoparticles due to thin needle moving with constant velocity 𝑢𝑤 is discussed. A 

schematic flow diagram is shown in Fig. 4.1. Here ( ),x r  denote the axial and radial directions 

and “a” the needle size (see Fig. 4.1). The continuously moving needle is considered thin when 

thickness of needle does not exceed that of momentum and thermal boundary layer. Viscous 

dissipation and non-linear thermal radiation effects are incorporated in the energy equation. Water 

is taken as base-fluid while nanoparticles comprise oxides of aluminum, titanium and copper and. 

Pressure gradient is neglected. Entropy generation is analyzed mathematically. Moreover it is also 

assumed that 𝑇𝑤 and 𝑇∞ denote the constant and ambient temperature of the needle (𝑇𝑤 > 𝑇∞). 

The governing flow equations subject to above assumptions are: 



46 
 

 

Fig 4.1: Flow geometry 
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𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑟
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

1

(𝜌𝑐𝑝)𝑛𝑓
(

 
 
16𝜎∗𝑇3

3𝑘∗
𝜕2𝑇

𝜕𝑟2
+

16𝜎∗3𝑇2

3𝑘∗
(
𝜕𝑇

𝜕𝑟
)
2

)

 
 
+

𝜇𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

(
𝜕𝑢

𝜕𝑟
)
2

, 

with 

𝑢 → 𝑢𝑤,  𝑣 = 0,  𝑇 = 𝑇𝑤  at 𝑟 = 𝑅(𝑥),
𝑢 → 𝑢∞,  𝑇 = 𝑇∞   as 𝑟 → ∞,

} 

 

where (𝑢, 𝑣) represent respectively axial and radial components of velocity, (𝑥, 𝑟) the cylindrical 

coordinates, 𝑅(𝑥) the surface shape of axisymmetric body, (𝑐𝑝)𝑛𝑓 the specific heat, 𝜎∗ the Stefan-

Boltzman constant, 𝑘∗ the mean absorption coefficient, 𝜌𝑛𝑓 the density, 𝑇 the temperature, 𝑘𝑛𝑓 the 

thermal conductivity, 𝜇𝑛𝑓 the dynamic viscosity and (𝜌𝑐𝑝)𝑛𝑓 the heat capacity. These definitions 

are 

𝜈𝑛𝑓 =
𝜇𝑓

(1 −  )2.5[(1 −  )𝜌𝑓 +  𝜌𝑠]
,  𝜌𝑛𝑓 = (1 −  )𝜌𝑓 +  𝜌𝑠,

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓
,  (𝜌𝑐𝑝)𝑛𝑓 = (1 −  )(𝜌𝑐𝑝)𝑓 +  (𝜌𝑐𝑝)𝑠,

𝑘𝑛𝑓

𝑘𝑓
=
(𝑘𝑠 + 2𝑘𝑓) − 2 (𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) +  (𝑘𝑓 − 𝑘𝑠)
,

}
  
 

  
 

 

(4.1) 

(4.2) 

(4.5) 

(4.3) 

(4.4) 
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Here 𝜇𝑓 denotes the dynamic viscosity,    the solid volume fraction of nanoliquid, 𝜌𝑓 the density, 

𝜌𝑠 density of nanoparticle, 𝑘𝑓 the thermal conductivity, (𝜌𝑐𝑝)𝑠 nanoparticles’ heat capacity, (𝜌𝑐𝑝) 

the heat capacity for base fluid and 𝑘𝑠 the thermal conductivity of solid particles. Here 𝑛𝑓 stands 

for nanofluid and 𝑓 for base fluid.  

Table 4.1: Thermal properties of base fluid and nanoparticles. 

Base fluid
 and nanomaterials

   Water  Aluminum oxide  Titanium dioxide   Copper  

Molecular 
formula

  𝐻2𝑂   𝐴𝑙2𝑂3   𝑇𝑖𝑜2   𝐶𝑢  

 𝐶𝑃(𝐽/𝑘𝑔𝐾)  4179 765 686.2 385 

 𝜌(𝑘𝑔/𝑚3)  997.1 3970 4250 8933 

 𝑘(𝑊/𝑚𝐾)  0.613 40.0 8.954 400.0 

 𝛼 ∗ 107(𝑚2/𝑠)  1.47 131.1 30.9 1163.1 

 𝛽 ∗ 10−5(1/𝐾)  21 0.85 0.9 1.67 

 

We consider the transformations 

𝛹 = 𝜈𝑓𝑥𝑓(𝜂),  𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

,  𝜂 =
𝑈𝑟2

𝜈𝑓𝑥
,  𝑣 = −(

1

𝑟
)
𝜕𝛹

𝜕𝑥
,  𝑢 = (

1

𝑟
)
𝜕𝛹

𝜕𝑟
,

𝑢 = 2𝑈𝑓 ′(𝜂), 𝑣 = −
𝜈𝑓

𝑟
(𝑓(𝜂) − 𝜂𝑓 ′(𝜂)). }

 

 

 

 

Here 𝛹 indicates the stream function, 𝑣 (= −(
1

𝑟
)
𝜕𝛹

𝜕𝑥
) and 𝑢 (= (

1

𝑟
)
𝜕𝛹

𝜕𝑟
) the velocity components, 

𝜈𝑓 the kinematic viscosity and 𝑓(𝜂) the dimensionless stream function. Note that Eq. (4.5) depicts 

the size and shape of needle 𝑟 = 𝑅(𝑥) by setting 𝜂 = 𝑎 with its surface given by  

𝑅(𝑥) = (
𝜈𝑓𝑎𝑥

𝑈
)

1
2
. 

 

Equation (4.1) is automatically verified and the other expressions give 

2

(1 −  )2.5
(𝜂𝑓″)′ + (1 −  +  (

𝜌𝑠
𝜌𝑓
))𝑓𝑓″ = 0, 

 

(4.6) 

(4.8) 

(4.7) 
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𝑘𝑛𝑓

𝑘𝑓

1

𝑃𝑟

1

(1 −  + 
(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

)

[𝜃 ′ + 𝜂𝜃″] +
1

2
𝑓𝜃′ +

+
4

3
𝑅𝑑

1

𝑃𝑟

1

(1 −  + 
(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

)

(𝜃 (
w − 1) + 1)

2

[(𝜃 (
w − 1) + 1) (

𝜃

2

′

+ 𝜂𝜃″) + 3𝜃 ′2 (
w − 1)𝜂]

+
1

(1 −  )
2.5

(1 −  + 
(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓

)

𝐸𝑐𝜂𝑓 ′′2 = 0,

}
 
 
 
 
 
 

 
 
 
 
 
 

 

with 

𝑓(𝑎) =
𝑎𝜀

2
,  𝑓 ′(𝑎) =

𝜀

2
,   𝑓 ′(∞) =

1 − 𝜀

2
,

𝜃(𝑎) = 1,  𝜃(∞) = 0.
} 

Here 𝑃𝑟 (=
(𝜌𝑐𝑝)𝑓

𝜈𝑓

𝑘𝑓
) denotes the Prandtl number, 𝑅𝑑 =

4𝜎∗𝑇∞
3

𝑘∗𝑘𝑓
 the radiative variable, 𝜃𝑤 =

𝑇𝑤

𝑇∞
 the 

heating variable, 𝐸𝑐 (=
𝑈2

(𝑐𝑝)𝑓
(𝑇𝑤−𝑇∞)

) the Eckert number and 𝜀 (=
𝑢𝑤

𝑈
=

Needle velocity

Composite velocity
) the 

velocity ratio variable. 

Mathematically we have 

𝐶𝑓 =
𝜏𝑤
𝜌𝑓𝑈2

,

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
,
}
 

 
 

where 𝜏𝑤 and 𝑞𝑤 are given by 

𝜏𝑤 = 𝜇𝑛𝑓 (
𝜕𝑢

𝜕𝑟
)
𝑟=𝑎

= 𝜇𝑛𝑓
4𝑎𝑈2

𝜈𝑓𝑥
𝑓″(𝑎),

𝑞𝑤 = −𝑘𝑛𝑓 (
𝜕𝑇

𝜕𝑟
)
𝑟=𝑎

= −𝑘𝑛𝑓
2𝑎𝑈(𝑇𝑤 − 𝑇∞)

𝜈𝑓𝑥
𝜃 ′(𝑎).

}
 
 

 
 

 

Using Eq. (4.11-4.12), one has 

𝑅𝑒𝑥
0.5 𝐶𝑓 =

4𝑎
1
2

(1 −  )
2.5 𝑓

″(𝑎),

𝑅𝑒𝑥
−0.5𝑁𝑢𝑥 = −2𝑎

1
2
𝑘𝑛𝑓

𝑘𝑓
𝜃 ′(𝑎) (1 +

4𝑅𝑑
3

3

r ) ,
}
 
 

 
 

 

where 𝜏𝑤 symbolizes the shear stress, 𝑞𝑤 the wall heat flux and 𝑅𝑒𝑥 (=
𝑈𝑥

𝜈𝑓
) the local Reynolds 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.9) 
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number.  

Implementation of entropy equation 

The entropy generation per unit volume for incompressible two-dimensional flow with nonlinear 

thermal radiation is  

𝑆̇𝑔𝑒𝑛
′′′ =

𝑘𝑓

𝑇2
[
𝑘𝑛𝑓

𝑘𝑓
(
𝜕𝑇

𝜕𝑟
)
2

+
16𝜎∗𝑇3

3𝑘∗𝑘𝑓
(
𝜕𝑇

𝜕𝑟
)
2

]

Entropy production due to thermal transport⏟                              

+
𝜇𝑛𝑓

𝑇
(
𝜕𝑢

𝜕𝑟
)
2

Entropy production due to fluid friction⏟                          

. 

Basic form per unit volume of entropy generation rate is  

𝑆̇𝑔𝑒𝑛
′′′ = 𝑆̇𝑔𝑒𝑛,𝛥𝑇

′′′ + 𝑆̇𝑔𝑒𝑛,𝐹𝑟𝑐
′′′ . 

Using the transformations (4.6), equation (4.14) takes the form 

𝑁𝐺 =
𝑆̇𝑔𝑒𝑛
′′′

4𝑘𝑓𝑈
𝜈𝑓𝑥

=

𝜂𝜃 ′2 (
w − 1)

2

(

 
 
 

𝑘𝑛𝑓
𝑘𝑓

(𝜃 (
w − 1) + 1)

2

+
4

3
𝑅𝑑 (𝜃 ( w − 1) + 1))

 
 
 

+
4𝜂𝐸𝑐 𝑃𝑟( w − 1)

(1 −  )2.5 (𝜃 ( w − 1) + 1)
𝑓 ′′2

}
 
 
 
 

 
 
 
 

= 𝑁𝛥𝑇 +𝑁𝐹𝑟𝑐 , 

where 

𝑁𝛥𝑇 = 𝜂𝜃
′2 ( w − 1)

2

(

 
 

𝑘𝑛𝑓

𝑘𝑓

(𝜃( w −1)+1)

2 +
4

3
𝑅𝑑 (𝜃 ( w − 1) + 1)

)

 
 

Conductive irreversibility⏟                

,

}
 
 
 

 
 
 

 

𝑁𝐹𝑟𝑐 =
4𝜂𝐸𝑐 𝑃𝑟(

w − 1)

(1 −  )2.5 (𝜃 (
w − 1) + 1)

𝑓 ′′2

Viscous irreversibility⏟              

,

}
 
 

 
 

 

 

(4.14) 

(4.16) 

(4.15) 

(4.17) 

(4.18) 
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(𝑆̇𝑔𝑒𝑛
′′′ )

𝑐
=

4𝑘𝑓𝑈

𝜈𝑓𝑥
Characteristic entropy⏟              

}
 
 

 
 

. 

Bejan number is defined as follows: 

𝐵𝑒 =

𝑘𝑓
𝑇2
[
𝑘𝑛𝑓
𝑘𝑓
(
𝜕𝑇
𝜕𝑟
)
2

+
16𝜎∗𝑇3

3𝑘∗𝑘𝑓
(
𝜕𝑇
𝜕𝑟
)
2

]

𝑘𝑓
𝑇2
[
𝑘𝑛𝑓
𝑘𝑓
(
𝜕𝑇
𝜕𝑟
)
2

+
16𝜎∗𝑇3

3𝑘∗𝑘𝑓
(
𝜕𝑇
𝜕𝑟
)
2

] +
𝜇𝑛𝑓
𝑇 (

𝜕𝑢
𝜕𝑟
)
2
, 

By utilizing Eq. (4.6) we have 

𝐵𝑒

=

𝜂𝜃 ′2 (
w − 1)

2

(

 
 

𝑘𝑛𝑓
𝑘𝑓

(𝜃 (
w − 1) + 1)

2 +
4𝑅𝑑
3 (𝜃 (

w − 1) + 1)

)

 
 

𝜂𝜃 ′2 (
w − 1)

2

(

 
 

𝑘𝑛𝑓
𝑘𝑓

(𝜃 (
w − 1) + 1)

2 +
4
3𝑅𝑑 (𝜃 ( w − 1) + 1)

)

 
 
+

4𝜂𝐸𝑐 𝑃𝑟(
w − 1)

(1 −  )2.5 (𝜃 (
w − 1) + 1)

𝑓 ′′2

. 

 

Discussion 

Nonlinear radiative flow of nanomaterials (titanium dioxide, copper and aluminum oxide) over a 

thin moving needle is numerically examined with the help of Built-in-Shooting technique. Here 

results are well ordered for different parameters like the Prandtl number 𝑃𝑟, radiative parameter 

𝑅𝑑, temperature ratio 
w , Eckert number 𝐸𝑐 and velocity ratio variable 𝜀 on temperature 𝜃(𝜂), 

entropy generation (𝑁𝐺), skin friction coefficient, Nusselt number (Nu) and Bejan number (Be) 

(see Figs. 4.2–4.19). We take the value of Pr equal to 6.2 and the range of nanoparticle volume 

fraction 0 ≤ 𝜙 ≤ 1. Effect of radiative parameter (𝑅𝑑) is illustrated in Fig. 4.4. Here the performance 

of temperature 𝜃(𝜂) and their associated layer is smaller for higher (𝑅𝑑). Temperature of fluid 

particles at the needle surface is smaller when compared with ambient temperature for larger 

radiation parameter. Therefore, thermal field and associated layer thickness is decreased. Variation 

of temperature 𝜃(𝜂) for variable (
w ) is shown in Fig. 4.3. Here temperature is enhanced for higher 

(4.21) 

(4.19) 

(4.20) 
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w . Physically internal temperature of liquid particles increases for rising 
w . That is why 

temperature field is enhanced. The characteristics of velocity ratio variable (𝜀) on temperature is 

plotted in Fig. 4.4. Obviously temperature is enhanced with rising estimation of heating parameter. 

Temperature (𝜃(𝜂)) for (𝜙) is drawn in Fig. 4.5. Since larger (𝜙) result in improvement of 

convective heat transport. Therefore temperature field increases. Figs. 4.6 and 4.7 show the 

graphical performances for (𝑁𝐺) and Be with (a = 0.01) and various estimations of radiative 

parameter. Both (Be) and (𝑁𝐺) are decreased for higher (𝑅𝑑). Physically inside energy source of 

flow system enhances for higher (𝑅𝑑). Therefore (Be) and (𝑁𝐺) decay. Effects of Eckert number 

(Ec) on entropy generation and Bejan number (Be) are revealed in Figs. 4.8 and 4.9 respectively. 

Entropy generation rate (𝑁𝐺) is increased by enhancing Eckert number (Ec). However reverse trend 

is noted for Bejan number in case of Eckert number. Physically heat is a form of disorganized 

energy. Therefore, more heat transfer to the system is generated due to entropy. That is why kinetic 

energy of liquid particles converted low grade energy (heat energy) and consequently (𝑁𝐺) 

enhances. Bejan number is decreasing function of (Ec). Physically in the absence of dissipation 

the Bejan number (Be=1) at the surface and within the layer, entropy generation is just due to heat 

transport. Figs. 4.10 and 4.11 are arranged for the impact of heating parameter (
w ) on rate of 

entropy generation (𝑁𝐺) and (Be). Clearly both (𝑁𝐺) and (Be) enhance for different higher values 

of heating variable. Effect of velocity ratio variable (𝜀) on rate of entropy generation (𝑁𝐺) and (Be) 

is displayed in Figs.4. 12 and 4.13. 𝑁𝐺 decays with higher values of velocity ratio variable (𝜀) for 

both cases i.e., 0 ≤ 𝜀 ≤ 0.5 and 0.5 ≤ 𝜀 ≤ 1.0. The purpose of entropy generation analysis is to decay 

entropy by different flow parameters. Therefore the goal of entropy generation minimization is 

accomplished for larger values of velocity ratio variable when the needle travels slower than the 

free stream and the needle travels closer than the free stream. Figs. 4.14 and 4.15 disclosed that 𝑁𝐺 

and Be have reverse behavior for larger estimation of (𝜙). Influences of nanoparticle volume 

fraction (𝜙) and velocity ratio parameter (𝜀) on surface drag force 𝑅𝑒𝑥
0.5𝐶𝑓𝑥

 are portrayed in Fig. 

4.16. Clearly drag force is increased for all nanoparticles (titanium dioxide, copper and aluminum 

oxide). Surface drag force is larger for higher values of (𝜙) and velocity ratio parameter (𝜀). Fig. 

4.17 revealed that magnitude of heat transfer rate 𝑅𝑒𝑥
−0.5𝑁𝑢𝑥 enhances with increasing values of 

(𝜙). Physically thermal conductivity of base liquid (water) enhances for varying values of 

(titanium dioxide, copper and aluminum oxide). Therefore rate of heat transfer is enhanced. Effects 
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of radiative and heating parameter on heat transfer rate are plotted in Figs. 4.18 and 4.19. 

Magnitude of heat transfer rate decays for radiative parameter (see Fig. 4.18). Initially heat transfer 

rate enhances in the range 0 ≤ 𝜀 ≤ 0.5 and then it decays for 0.5 ≤ 𝜀 ≤1.0.  Magnitude of heat 

transfer rate increases for increasing range of heating parameter (see Fig. 4.19).  

 

Fig. 4.2: 𝜃(𝜂) via 𝑅𝑑 .  

 

Fig. 4.3: 𝜃(𝜂) via 
w . 

 

Fig. 4.4: 𝜃(𝜂) via 𝜀. 
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Fig. 4.5: 𝜃(𝜂) via  . 

 

 

Fig. 4.6: 𝑁𝐺via 𝑅𝑑 . 

 

 

Fig. 4.7: 𝐵𝑒 via 𝑅𝑑. 
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Fig. 4.8: 𝑁𝐺via 𝐸𝑐. 

 

 

Fig. 4.9: 𝐵𝑒 via 𝐸𝑐. 

 

Fig. 4.10: 𝑁𝐺via 
w . 
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Fig. 4.11: 𝐵𝑒 via 
w . 

 

 

Fig. 4.12: 𝑁𝐺via 𝜀. 

 

Fig. 4.13: 𝐵𝑒 via 𝜀. 
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Fig. 4.14: 𝑁𝐺  via  .  

 

 

Fig. 4.15: 𝐵𝑒 via  . 

 

 

Fig. 4.16: Effects of  and 𝜀 on 𝑅𝑒𝑥
0.5 𝐶𝑓 . 
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Fig. 4.17: Effects of  and 𝜀 on 𝑅𝑒𝑥
−0.5𝑁𝑢𝑥.  

  

Fig. 4.18: Effects of   and 𝜀 on 𝑅𝑒𝑥
−0.5𝑁𝑢𝑥. 

 

 

Fig. 4.19: Effects of   and 𝜀 on 𝑅𝑒𝑥
−0.5𝑁 𝑢𝑥 . 

 

Conclusions 

Entropy generation in thermally radiative flow of titanium dioxide, copper and aluminum oxide 

nanomaterials over a thin moving needle is examined. Main points are given as follows: 

• Enhancement in radiative parameter (𝑅𝑑) reduces in temperature. 
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• Thermal field enhances with increasing velocity ratio parameter (𝜀), heating parameter (
w  ) 

and (𝜙).  

• 𝑁𝐺 and Be are decreased for higher 𝑅𝑑. 

• Skin friction 𝑅𝑒𝑥
0.5𝐶𝑓𝑥 and (𝑅𝑒𝑥

−0.5𝑁𝑢𝑥) increase via (𝜙). 

• Heat transfer 𝑅𝑒𝑥
−0.5𝑁𝑢𝑥 for radiative parameter is decreased. 
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Chapter 5 

Entropy minimization in Sisko fluid flow with nonlinear thermal 

radiation 

Introduction 

This chapter demonstrates the salient characteristics of entropy minimization for the flow of Sisko 

fluid. Source for fluid motion is the stretchable rotating disk. Nonlinear mixed convection, viscous 

dissipation and Brownian motion are discussed. Entropy is calculated and discussed through 

graphical representation. Properties of heat transfer are examined with heat source/sink and 

nonlinear thermal radiation. The governing equations are solved for convergent solutions. Results 

are graphically shown.  

Formulation 

Here Sisko fluid flow generated by a rotating stretchable disk is presented. The rotating disk at 

𝑧 = 0 has an angular speed 𝛺. Stretching velocity of the disk is 𝑢 = 𝑟𝑎 (see Fig. 5.1). Thermal 

characteristics are scrutinized alongwith heat source/sink, nonlinear radiation and dissipation 

effects. Additionally nonlinear mixed convection is also considered. Furthermore thermophoresis 

as well as Brownian motion parameters are present. Entropy generation and dimensionless Bejan 

number are discussed graphically. The conservations laws of mass, momentum, energy as well as 

concentration for Sisko fluid flow yield: 

 

Fig. 5.1 Flow geometry 

𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
+
𝜕𝑤̂

𝜕𝑧
= 0, 

 

(5.1) 
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)
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2
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𝑛−1

2

] +

𝑔[𝜆1(𝑇̂ − 𝑇̂∞) + 𝜆2(𝑇̂ − 𝑇̂∞)
2] + 𝑔[𝜆3(𝐶̂ − 𝐶̂∞) + 𝜆4(𝐶̂ − 𝐶̂∞)

2],

}                   
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𝑟
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𝜕𝑧
)
2
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𝜕𝑧
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)
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2

], 

 

(𝑢̂
𝜕𝑇̂

𝜕𝑟
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𝜕𝑇̂

𝜕𝑧
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𝐷𝑇

𝑇∞
(
𝜕𝑇̂

𝜕𝑧
)
2

+
𝛼∗

𝜌𝑐𝑝
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𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣̂

𝜕𝑧
)
2

] +

𝛽∗

𝜌𝑐𝑝
[((

𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣̂

𝜕𝑧
)
2

)

𝑛−1

2

] +
𝑄∗

𝜌𝑐𝑝
(𝑇̂ − 𝑇̂∞) +

1

𝜌𝑐𝑝

16𝜎∗

3𝑘∗
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(𝑇̂3
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) ,

}
 
 

 
 

 

 

𝑢̂
𝜕𝐶̂

𝜕𝑟
+ 𝑤̂

𝜕𝐶̂

𝜕𝑧
=
𝐷𝑇

𝑇∞

𝜕2𝑇̂

𝜕𝑧2
+ 𝐷𝐵

𝜕2𝐶̂

𝜕𝑧2
, 

subject to the conditions 

𝑢̂ = 𝑟𝑎, 𝑣 = 𝑟𝛺, 𝑤̂ = 0, 𝑇̂ = 𝑇̂𝑤 , 𝐶̂ = 𝐶̂𝑤 ,  at 𝑧 = 0,

𝑢̂ = 0, 𝑣 = 0, 𝑇̂ → 𝑇̂∞, 𝐶 → 𝐶∞ when 𝑧 → ∞.
} 

Here 𝑇̂ is the fluid temperature, 𝜎∗ Stefan-Boltzman constant, 𝑘∗ the mean absorption coefficient, 

𝑎 dimensional constant, density 𝜌, absolute viscosity 𝜇, kinematic viscosity 𝜈, thermal conductivity 

𝑘, electrical conductivity 𝜎 and heat capacitance 𝑐𝑝. 

We consider Von-Karman transformations: 

 

 𝑢̂ = 𝑟𝛺𝑓( ), 𝑣 = 𝑟𝛺𝑔̃( ),

1
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nn n
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 

− − +  
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=  

  }
  
 

  
 

 

 

where 𝑛 denotes the power law index, 𝑓, 𝑔̃, ℎ̃, are velocity components and 𝑟∗ the radius. 

We obtain 

ℎ̃′ + 2𝑓 +
1−𝑛

1+𝑛
𝜉𝑓 ′ = 0, 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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where 𝑅𝑒 denotes the Reynold number, 𝐻𝑎 magnetic interaction parameter, 𝑃𝑟 the Prandtl number, 

𝐴 the ratio of stretching rate and angular velocity, Sc Schmidt number, 𝛽𝑡 non-linear mixed 

convection parameter due to temperature, 𝐸𝑐 the Eckert number, 𝜆 the mixed convection 

parameter, 𝑄∗ heat source/sink parameter, 𝜀 the dimensionless constant, 𝛼 disk thickness 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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coefficient, 𝛽𝑐 non-linear mixed convection parameter for concentration, 𝑁𝑡 thermophoresis 

parameter, 𝑁𝑏  Brownian motion, 𝜃𝑤 temperature ratio parameter, A material parameter and 𝑁∗ 

ratio of thermal to buoyancy forces parameter. 

Surface drag force 

We have 

𝐶𝑓 =
𝜏𝑤

1/2𝜌𝑓𝑈𝑤
2 , 

in which 𝜏𝑤 satisfies  

 𝜏𝑤 = (𝛼
∗ + 𝛽∗

𝜕𝑢

𝜕𝑧
)𝑛−1

𝜕𝑢

𝜕𝑧𝑧=0
 

From Eqs. (5.15) and (5.16) we get 

1

2
𝐶𝑓𝑥 𝑅𝑒

1

𝑛+1 = 𝐴𝑓 ′(0) − 𝑓′(0)𝑛 

Heat transfer rate 

Mathematically heat transfer is given as 

𝑁𝑢𝑥 =
𝑞𝑤𝑎

𝑘(𝑇̂𝑤−𝑇̂∞)
|
𝑧=0
, 

where the wall heat flux 𝑞𝑤 is 

𝑞𝑤|𝑧=0 = −𝑘 (1 +
16𝜎∗𝑇3

3𝑘𝑘∗
)

1

𝑛+1 𝜕𝑇̂

𝜕𝑧
. 

Putting Eq. (5.19) in Eq. (5.18), one has  

𝑅𝑒
−1
2 𝑁𝑢𝑥 = −(1 + 4/3𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃̃(0))

3𝜍𝜃̃ ′(0). 

Local Sherwood number is 

𝑆ℎ𝑥 =
𝑎𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
|
𝑧=0
, 

where 𝑞𝑚 denotes the mass flux and 

𝑆ℎ𝑥 𝑅𝑒
−1
𝑛+1 =− 

′
(0). 

Entropy generation 

Mathematically volumetric entropy rate in dimensional form after using boundary layer 

assumptions is 

(5.19) 

(5.16) 

(5.15) 

(5.17) 

(5.18) 

(5.20) 

(5.21) 

(5.22) 



63 
 

𝑆𝐺 =
𝑘

𝑇̂∞
2 (1 +

16𝜎∗

3𝑘𝑘∗
) (

𝜕𝑇̂

𝜕𝑧
)
2

+
𝑅𝐷

𝑇̂∞
(
𝜕𝐶̂

𝜕𝑧

𝜕𝑇̂

𝜕𝑧
) +

𝑅𝐷

𝐶̂∞
(
𝜕𝐶̂

𝜕𝑧
)
2

+

+
𝜇

𝑇̂∞
𝛼∗ [(

𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣̂

𝜕𝑧
)
2

] + 𝛽∗ [((
𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣̂

𝜕𝑧
)
2

)

𝑛−1

2

] .
}
 
 

 
 

 

In dimensionless form entropy generation number 𝑁𝐺  is given by 
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Here 𝛼1
∗ is the dimensionless temperature difference variable, 𝑁𝐺  entropy generation rate, 𝜆1

∗
 

diffusion parameter and Br Brinkman number. 

Bejan number (𝐵𝑒) is 

Be=
Thermal entropy generation 

Total entropy generation
, 

𝐵𝑒 =
(
𝑛+1

2
+ dR )𝜃̃′2

*

1

(
𝑛+1

2
+ dR )𝜃̃′2

*

1

+𝐵𝑟[
𝑛+1

2

*

1 𝜃̃′
′
+
𝑛+1

2
𝜆2𝜑′2]

+
𝑛+1

2
𝐵𝑟(𝑓̃′′2)+𝐻𝑎𝐵𝑟(𝑓̃′2) }

  
 

  
 

}
 
 
 
 

 
 
 
 

. 

Homotopy analysis 

The initial approximations and corresponding operators are 

𝑓0(𝜉) = 2A 𝑒𝑥𝑝( − 𝜉),

𝜃̃0(𝜉) = 𝑒𝑥𝑝( − 𝜉),
𝜙0(𝜉) = 𝑒𝑥𝑝( − 𝜉),

} 

𝐿𝑓̃ = 𝑓
′′ − 𝑓, 𝐿𝜃̃ = 𝜃̃

′′ − 𝜃̃,

L = 
″
−  ,

} 

(5.27) 

(5.26) 

(5.25) 

(5.24) 

(5.23) 

(5.29) 

(5.28) 
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with 

𝐿𝑓̃[𝑐2𝑒
𝜉 + 𝑐3𝑒

−𝜉] = 0,

𝐿𝜃̃[𝑐6𝑒
𝜉 + 𝑐7𝑒

−𝜉] = 0,

L [𝑐8𝑒
𝜉 + 𝑐9𝑒

−𝜉] = 0,}
 

 

 

In which 𝑐𝑖 (𝑖 = 1 − 9) represent the arbitrary constants. 

Convergence 

Homotopy analysis technique is utilized for solving system of nonlinear equations. Convergent 

solutions are found using this technique. The selection of initial guesses and linear operators is a 

key tool in this method. A better choice will provide us more accurate result. The graphs for h-

curves are shown in Fig. (5.2). At 15𝑡ℎ order of approximations, the ranges of convergence are 

−1.5 ≤ ℏ𝑓̃ ≤ −0.3, −1.6 ≤ ℏ𝑔̃ ≤ −0.3, −4.0 ≤ ℏ𝜃̃ ≤ −0.5 and −1.6 ≤ ℏ𝜙 ≤ −0.5. We note 

that 10𝑡ℎ , 15𝑡ℎ, 20𝑡ℎ and 25𝑡ℎ order of approximations are best for solutions convergence. 

Discussion 

Velocity 

Here velocity distribution, temperature as well as concentration are discussed through graphical 

representation Figs. (5.3 − 5.5) show the effect of 𝐴 on velocity profile. The axial, radial as well 

as tangential velocity components show increasing trend for material parameter 𝐴. The reason for 

this increase is the decrease in fluid viscosity. Hence velocity increases. Figs. (5.6) and (5.7) are 

portrayed to show effect of power index on velocity. For shear thinning fluids (𝑛 < 1) more 

increase in velocity is observed as compared to shear thickening case (𝑛 > 1). Figs. (5.8) and 

(5.9) are sketched for impact of stretching parameter A1 on velocity. Velocity increases for higher 

stretching parameter. The behavior of velocity through mixed convection parameter (𝛼1) is given 

through Figs. (10 − 12). Velocity shown an increasing behavior for higher (𝛼1). Which is due to 

an enhancement in thermal buoyancy forces. Fig. (5.13) is shown for impact of ratio of thermal 

to buoyancy forces parameter (𝑁∗) on velocity. It assists the velocity of fluid to increase. 

Temperature 

Figs. (5.14 − 5.19) show the impacts of various parameters like Prandtl number (𝑃𝑟), heat source 

parameter (𝑄∗), Brownian motion parameter, Eckert number (𝐸𝑐) as well as thermophoresis 

(5.30) 
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parameter (𝑁𝑡)  on temperature. For higher 𝑃𝑟 the thermal diffusivity decreases. It results to a 

decrement in temperature profile as given in Fig. (5.14). Fig. (5.15) portrayed the effect of 𝐸𝑐 on 

temperature. For larger values of Eckert number, large amount of kinetic energy is noticed. Thus 

temperature profile increases. Impact of heat source parameter (𝑄∗) on temperature distribution is 

given in Fig. (5.16). More heat is produced inside the system that is why temperature increases. 

Fig. (5.17) displays the influence of 𝑁𝑡 on temperature. Temperature is enhanced for higher 

thermophoresis effects. The impact of Brownian motion parameter on temperature profile is 

graphically shown in Fig. (5.18) for both shear thickening as well as shear thinning i.e. 𝑛 > 1 and 

𝑛 < 1. We have seen that temperature enhances for larger values of 𝑁𝑏 . Impact of 𝑅𝑑 on 

temperature profile is observed in Fig. (5.19). Larger 𝑅𝑑 convert the internal kinetic energy to 

thermal energy, which is the reason for temperature to increase. 

 Concentration 

Figs. (5.20 − 5.22) explains the behaviors of pertinent parameters like thermophoresis 𝑁𝑡, 

Brownian motion 𝑁𝑏 and Schmidt number on concentration profile. Impact of thermophoresis 

parameter on concentration is presented via Fig. (5.20). We know that   (𝜉) directly depends on 

temperature gradient and 𝑁𝑡 shows increasing behavior due to temperature gradient. That is why 

concentration profile increases (see Fig. [5.20]). Impact of Brownian motion on concentration is 

described in Fig. (5.21). The zig-zag collision of particles produces more resistance to motion of 

the particles. Heat is generated and consequently the concentration is decreased. Fig. (5.22)  

portrayed the behavior of Sc number on concentration field. Larger values of 𝑆𝑐 decreases mass 

diffusivity. Thus concentration tends to decrease in both the cases 𝑛 < 1 and 𝑛 > 1. 

 

Fig. 5.2: ℏ − curves. 
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Fig. 5.5. 𝑓(𝜉) via A. 

 

Fig. 5.4 ℎ(𝜉) via A. 

 

 

Fig. 5.5 𝑔(𝜉) via A.  
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Fig. 5.6 𝑓(𝜉) via 𝑛. 

 

 

Fig. 5.7 𝑔(𝜉) via 𝑛. 

 

 

Fig. 5.8 ℎ(𝜉) via 𝐴1. 

 



68 
 

 

Fig. 5.9 𝑓(𝜉) via 𝐴1. 

 

 

Fig. 5.10 𝑔(𝜉) via 𝐴1. 

 

 

Fig. 5.11 ℎ(𝜉) via 𝛼1. 
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Fig. 5.12 𝑓(𝜉) via 𝛼1. 

 

 

Fig. 5.13 𝑓(𝜉) via 𝑁∗. 

 

 

Fig. 5.14 𝜃(𝜉) via 𝑃𝑟.  
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Fig. 5.15 𝜃(𝜉) via 𝐸𝑐. 

 

 

Fig. 5.16 𝜃(𝜉) via 𝑄∗.  

 

 

Fig. 5.17 𝜃(𝜉) via 𝑁𝑡. 
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Fig. 5.18 𝜃(𝜉) via 𝑅𝑑 .  

 

 

Fig. 5.19   (𝜉) via 𝑁𝑡. 

 

 

Fig. 5.20   (𝜉) via 𝑁𝑏 . 
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Fig. 5.21   (𝜉) via 𝑆𝑐. 

 

 

Fig. 5.22 𝑁𝑔(𝜉) via 𝐴.  

 

  

Fig. 5.23 𝐵𝑒 via 𝐴. 
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Fig. 5.24 𝑁𝑔(𝜉) via 𝐵𝑟. 

 

 

Fig. 5.25 𝐵𝑒 via 𝐵𝑟. 

 

 

Fig. 5.26 𝑁𝑔(𝜉) via 𝐿.  
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Fig. 5.27 𝐵𝑒 via 𝐿. 

 

 

Fig. 5.28 𝑁𝑔(𝜉) via 𝛼1
∗. 

 

 

Fig. 5.29 𝐵𝑒 via 𝛼1
∗. 
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Fig. 5.30 𝑁𝑔(𝜉) via 𝑅𝑑. 

 

 

Fig. 5.31 𝐵𝑒 via 𝑅𝑑 . 

8: Entropy generation and Bejan number (𝑩𝒆) 

Our main aim here is to study entropy and Bejan number. Expression for irreversibilities is 

deliberated through entropy generation rate. The effects of various variables on entropy have been 

discussed here. Figs. (5.22 − 5.31) are plotted to present the impacts of Brinkman number (𝐵𝑟), 

temperature ratio parameter 𝛼1, diffusion parameter 𝜆1
∗, radiation parameter 𝑅𝑑 and Schmidt on 

entropy generation and Be number Fig. (5.22) portrays the behavior of fluid parameter on entropy 

generation rate 𝑁𝑔(𝜉). Higher fluid parameter 𝐴 increases the shear rate which decreases motion 

of the fluid. Consequently less entropy is produced inside the system. But larger values of 𝐴, 

increases Bejan number near the disk by providing more thermal energy to the system due to higher 

viscous effects while decreasing trend is observed away from the disk in case of shear thickening 

fluids (see Fig. (5.23) ). Figs. (5.24) and (5.25) portray the effects of Brinkman number on 

entropy generation rate 𝑁𝑔(𝜉) and Bejan number 𝐵𝑒. For larger values of 𝐵𝑟, entropy of the system 
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increases while decreasing behavior is noted for Bejan number. Since 𝐵𝑟 is the ratio of heat 

transfer due to conduction with the heat produced by viscous heating. Higher values of Br produces 

heat inside the system. Thus an increase in the disturbance of the whole system occurs for both 

𝑛 < 1 and 𝑛 > 1. Reverse trend is seen for 𝐵𝑒. Figs. (5.26) and (5.27) are sketched for impacts 

of diffusion parameter 𝐿 on 𝑁𝑔(𝜉) and Bejan number. More disorderliness inside the system is 

observed due to diffusivity of the fluid. Thus more entropy is generated for diffusion parameter. 

Impact of thermal as well as fluid transfer irreversibilities are more dominant than viscous 

irreversibilities. That is why Bejan number shows increasing behavior. Effect of temperature ratio 

parameter 𝛼1
∗ on 𝑁𝑔(𝜉) and Bejan number is designed via Figs. (5.28) and Fig. (5.29). 

Temperature difference always produces more disturbance inside the system, which results an 

enhancement in entropy. For higher 𝛼1
∗, the heat transfer irreversibilities are dominant than the 

fluid friction and viscous irrversibilities. That is the reason for Bejan number to increase. 

Increasing values of 𝑅𝑑 provides more heat to system which increases heat transfer rate. So more 

entropy generation is shown. See Figs. (5.30) and (5.31). 

Conclusions 

Sisko fluid flow caused by a stretchable rotating disk along with entropy has been analyzed. Main 

results include the following points: 

• Velocity is increased for larger values 𝐴 and 𝐴1. 

• Higher estimations of 𝑁𝑡, 𝐸𝑐 and 𝑄∗ enhance the temperature ditribution. 

• Reverse trend on concentration is noted for 𝑁𝑡 and 𝑁𝑏 . 

• Entropy increases for higher values of 𝐵𝑟, 𝛼, 𝑅𝑑 and diffusion parameter 𝐿 while decreasing 

effect is seen for Sc. 

• Entropy decreases in case of shear thinning fluids than for shear thickening fluids. 

• Bejan number 𝐵𝑒 decreases for higher values of 𝐵𝑟 while increases for 𝑅𝑑. 

  



77 
 

Chapter 6 

Rotating disk of nanofluid with entropy generation 

Introduction 

This chapter addresses magnetohydrodynamic viscous nano-fluid flow caused by a variable 

thicked rotatable disk. Entropy is determined in terms of velocity and temperature. Nanofluid 

properties are studied along with thermophoresis and Brownian motion. Conservation of energy 

comprises of dissipation, convective heat transport and Joule heating. Entropy generation is 

studied. Nonlinear stretching velocity of the disk causes the flow. Transformations lead to ordinary 

differential system. Total entropy generation rate is analyzed. Nonlinear computations have been 

carried out. Convergent series solutions are established. Radial, axial and tangential velocities are 

plotted and interpreted. Entropy equation for dissipation, Brownian diffusion and thermophoresis 

effects is examined. Velocity profile and temperature in dimensionless form are graphically shown 

and described in detail. Key outcomes are summed up in the conclusions. 

Formulation 

Consider steady mixed convective nanofluid flow caused by a rotating disk with variable surface 

thickness. Magnetic field of constant strength 𝐵0 is exerted in 𝑧 − direction. Convective boundary 

conditions and Joule heating are studied. Additionally the impacts of mixed convection and 

viscous dissipation are examined. Disk at 𝑧 = 𝑎 (
𝑟

𝑅0
+ 1)

−𝜍

 is stretched with stretching rate 𝑎 (in 

radial direction) and angular speed 𝛺. The velocity components (𝑢̂, 𝑣, 𝑤̂) in the direction of (𝑟, 𝜃, 

𝑧) are shown. Here 𝑇̂𝑓 is the disk temperature while 𝑇̂∞ being the ambient temperature. Geometry 

regarding the flow situation and coordinates are given in Fig. 6.1. 
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Fig 6.1 Geometry of flow problem 

The equations and conditions relevant under consideration are 

𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
+
𝜕𝑤̂

𝜕𝑧
= 0, 

 

𝑢̂
𝜕𝑢

𝜕𝑟
+ 𝑤̂

𝜕𝑢

𝜕𝑧
−
𝑣̂2

𝑟
= 𝜈

𝜕2𝑢̂

𝜕𝑧2
−
𝜎𝑓

𝜌𝑓
𝐵0
2𝑢̂ + 𝑔𝛽(𝑇̂ − 𝑇̂∞), 

 

𝑢̂
𝜕𝑣̂

𝜕𝑟
+ 𝑤̂

𝜕𝑣̂

𝜕𝑧
+
𝑢𝑣̂

𝑟
= 𝜈

𝜕2𝑣̂

𝜕𝑧2
−
𝜎𝑓

𝜌𝑓
𝐵0
2𝑣, 

 

(𝜌𝑐𝑝)𝑓 (𝑢̂
𝜕𝑇̂

𝜕𝑟
+ 𝑤̂

𝜕𝑇̂

𝜕𝑧
) 

= 𝑘𝑓
𝜕2𝑇̂

𝜕𝑧2
+ (𝜌𝑐𝑝)𝑝 [

𝐷𝑇
𝑇∞
(
𝜕𝑇̂

𝜕𝑧
)

2

+ 𝐷𝐵 (
𝜕𝑇̂

𝜕𝑧

𝜕𝐶

𝜕𝑧
) + 𝜎𝑓𝐵0

2(𝑢̂2 + 𝑣2) + 𝜇𝑓 (
𝜕𝑢̂

𝜕𝑧
)
2

], 

𝑢̂
𝜕𝐶

𝜕𝑟
+ 𝑤̂

𝜕𝐶

𝜕𝑧
=
𝐷𝑇

𝑇∞

𝜕2𝑇̂

𝜕𝑧2
+ 𝐷𝐵

𝜕2𝐶

𝜕𝑧2
, 

 

𝑢̂ = 𝑟𝑎, 𝑣 = 𝑟𝛺, 𝑤̂ = 0, −𝑘
𝜕𝑇̂

𝜕𝑧
= ℎ1(𝑇̂𝑓 − 𝑇̂),−𝐷𝑚

𝜕𝐶

𝜕𝑧
= ℎ2(𝐶𝑓 − 𝐶)  at 𝑧 = 𝑎 (

𝑟

𝑅0
+ 1)

−𝜍

,

𝑢̂ = 0, 𝑣 = 0, 𝑇̂ = 𝑇̂∞, 𝐶 = 𝐶∞ when  𝑧 → ∞,
} 

where 𝑇̂ denotes fluid temperature, 𝜎∘ Stefan-Boltzman constant, 𝑘∘ mean absorption coefficient, 

𝑎 dimensional constant, 𝜂 scaled boundary layer coordinate, dynamic viscosity 𝜇𝑓 , density 𝜌𝑓 , 

thermal conductivity 𝑘𝑓, kinematic viscosity 𝜈𝑓, electrical conductivity 𝜎𝑓 and heat capacitance 

(6.3) 

(6.1) 

(6.2) 

(6.4) 

(6.5) 

(6.6) 
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𝑐𝑝𝑓. 

We consider 

𝑢̂ = 𝑟∗𝑅0𝛺𝐹̃(𝜂), 𝑣 = 𝑟
∗𝑅0𝛺𝐺̃(𝜂), 𝑤̂ = 𝑅0𝛺(1 + 𝑟

∗)−𝜍 (
𝛺𝑅0

2𝜌𝑓

𝜇𝑓
)

−1

𝑛+1
𝐻̃(𝜂),

𝜗̃ =
𝑇̂−𝑇̂∞

𝑇̂𝑓−𝑇̂∞
, 𝛷 =

𝐶−𝐶∞

𝐶𝑓−𝐶∞
, 𝜂 =

𝑧

𝑅0
(1 + 𝑟∗)𝜍 (

𝛺𝑅0
2𝜌𝑓

𝜇𝑓
)

1

𝑛+1
,

}
 
 

 
 

 

where 𝑅0 represents the radius, 𝜍 thickness index, 𝑛 the power law index, 𝐹 the radial component 

of velocity, 𝐺 the tangential component, 𝐻 the axial component and 𝑟∗ the nondimensional radius 

constant. 

Using appropriate transformations, the Eqs. (6.1 − 6.7) become 

2𝐹̃ + 𝐻̃′ + 𝜂𝜀𝜍𝐹̃′ = 0, 

 

(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍𝐹̃′′ − 𝐹̃2 + 𝐺̃2 − 𝐻̃𝐹̃′ − 𝐹̃𝐹̃′𝜍𝜂𝜀 

−𝐻𝑎𝐹̃ + 𝜆𝜗̃ = 0, ) 

 

(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍𝐺̃ ′′ − 2𝐹̃𝐺̃ − 𝐻̃𝐺̃ ′ − 𝐹̃𝐺̃ ′𝜍𝜂𝜀 − 𝐻𝑎𝐺̃ = 0, 

 

1

𝑃𝑟 𝑅𝑒)
1−𝑛
1+𝑛∗2𝜍

𝑁𝑇(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍 𝜗̃′2 + 𝑁𝐵(𝑅𝑒)
1−𝑛

1+𝑛 𝜗̃′𝛷′

+𝐻𝑎𝐸𝑐(𝐹̃2 + 𝐺̃2) + 𝐸𝑐(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)𝜍𝐹̃′2 = 0) ,}
 
 

 
 

 

 

𝑁𝑇

𝑁𝐵
(𝑅𝑒)

1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍𝜗̃′′ + (𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍𝛷″ − 𝑆𝑐𝜍𝜂𝜀𝐹̃𝜗̃′ − 𝑆𝑐𝐻̃𝛷′ = 0, 

 

𝐻̃(𝛼) = 0, 𝐹̃(𝛼) = 𝐴, 𝐺̃(𝛼) = 1,

𝜗̃′(𝛼) = −𝑟1(1 − 𝜗̃(𝛼)),𝛷
′(𝛼) = −𝑟1(1 − 𝛷(𝛼))

𝐹̃(∞) = 0,𝛷(∞) = 0, 𝐺̃(∞) = 0, 𝜗̃(∞) = 0.

} 

Considering, 

(6.9) 

(6.8) 

(6.12) 

(6.7) 

(6.10) 

(6.11) 

(6.13) 
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𝐻̃(𝜂) = ℎ̃(𝜂 − 𝛼) = ℎ̃(𝜉),

𝐹̃(𝜂) = 𝑓(𝜂 − 𝛼) = 𝑓(𝜉),

𝐺̃(𝜂) = 𝑔̃(𝜂 − 𝛼) = 𝑔̃(𝜉),

𝜗̃(𝜂) = 𝜃̃(𝜂 − 𝛼) = 𝜃̃(𝜉),

𝛷(𝜂) = 𝛷(𝜂 − 𝛼) =  (𝜉),}
 
 

 
 

 

we obtain 

2𝑓 + ℎ̃′ + (𝜉 + 𝛼)𝜀𝜍𝑓 ′ = 0, 

 

𝑓 ′′(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍 − 𝑓2 + 𝑔̃2 − ℎ̃𝑓 ′ − 𝑓𝑓 ′𝜍(𝜉 + 𝛼)𝜀 

−𝐻𝑎𝑓 + 𝜆𝜃̃ = 0, ) 

 

𝑔̃′′(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍 − 2𝑓𝑔̃ − ℎ̃𝑔̃′ − 𝑓𝑔̃′𝜍(𝜉 + 𝛼)𝜀 − 𝐻𝑎𝑔̃ = 0, 

 

1

𝑃𝑟 𝑅𝑒)
1−𝑛
1+𝑛

∗2𝜍

𝑁𝑇(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍𝜃̃ ′
2
+𝑁𝐵(𝑅𝑒)

1−𝑛

1+𝑛 𝜃̃ ′
′

+𝐻𝑎𝐸𝑐(𝑓2 + 𝑔̃2) + 𝐸𝑐(𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)𝜍𝑓 ′2 = 0,

}

}
 
 

 
 

 

 

𝑁𝑇

𝑁𝐵
(𝑅𝑒)

1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍𝜗̃′′ + (𝑅𝑒)
1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍
″
− 𝑆𝑐𝜍𝜂𝜀 − 𝑆𝑐ℎ̃

′
= 0, 

 

ℎ̃(0) = 0, 𝑓(0) = 𝐴, 𝑓(∞) = 0, 𝑔̃(0) = 1,

𝜃̃ ′(0) = −𝑟1(1 − 𝜃̃(0)), 
′
(0) = −𝑟2(1 −  (0)) 

𝑔̃(∞) = 0, 𝜃̃(0) = 1, 𝜃̃(∞) = 0,

} 

 

𝑅𝑒 =
𝛺𝑅0

2

𝜈𝑓
, 𝐻𝑎 =

𝜎𝑓𝐵0
2

𝜌𝑓𝛺
, 𝑃𝑟 =

(𝜌𝑐𝑝)𝑓𝜈𝑓

𝑘𝑓
, 𝐴 =

𝑎

𝛺
,

𝜀 =
𝑟∗

1+𝑟∗
, 𝜏 =

(𝜌𝑐𝑝)𝑝

(𝜌𝑐𝑝)𝑓
, 𝑁𝑇 =

𝜏𝐷𝑇(𝑇̂𝑓−𝑇̂∞)

𝜈𝑓𝑇̂∞
, 𝑁𝐵 =

𝜏𝐷𝐵(𝐶𝑓−𝐶∞)

𝜈𝑓
,

𝐸𝑐 =
𝑟2𝛺2

𝑐𝑝(𝑇̂𝑓−𝑇̂∞)
, 𝜆 =

𝑔𝛽𝑓(𝑇̂𝑓−𝑇̂∞)

𝑟𝛺2
, 𝛼 =

𝑎

𝑅0
2 (
𝛺𝑅0

2𝜌𝑓

𝜇𝑓
)

−1

𝑛+1
,

}
 
 
 

 
 
 

 

where 𝑅𝑒 is the Reynold number, 𝐻𝑎 magnetic parameter, 𝑃𝑟 the Prandtl number, 𝐴 the ratio of 

(6.18) 

(6.17) 

(6.16) 

(6.15) 

(6.14) 

(6.20) 

(6.19) 

(6.21) 
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velocity to stretching parameter, 𝜀 the nondimensional constant, 𝜏 the ratio of specific heats, 𝑁𝑇, 

thermophoresis, 𝑁𝐵 Brownian motion, 𝐸𝑐 the Eckert number, 𝜆 the mixed convection and 𝛼 the 

thickness coefficient. 

Quantities of interest 

Surface drag force 

Mathematically surface drag force is 

𝐶𝑓 =
√𝜏𝑧𝑟2 + 𝜏𝑧𝜃

2

𝜌𝑓(𝛺𝑟)2
, 

where 𝜏𝑧𝑟 and 𝜏𝑧𝜃 are shear stresses in radial and tangential directions respectively. We have 

𝜏𝑧𝑟 = 𝜇𝑛𝑓
𝜕𝑢

𝜕𝑧
|
𝑧=0

= 𝜇𝑓𝑟
∗𝛺1(1 + 𝑟

∗)𝜍 (
𝛺𝑅0

2𝜌𝑓

𝜇𝑓
)

1

𝑛+1
𝑓 ′(0), 

 

𝜏𝑧𝜃 = 𝜇𝑛𝑓
𝜕𝑣̂

𝜕𝑧
|
𝑧=0

= 𝜇𝑓𝑟
∗𝛺1(1 + 𝑟

∗)𝜍 (
𝛺𝑅0

2𝜌𝑓

𝜇𝑓
)

1

𝑛+1
𝑔̃′(0). 

Total shear stress  𝜏𝑤  is defined as 

𝜏𝑤 = √𝜏𝑧𝑟2 + 𝜏𝑧𝜃
2 . 

Equations (22) − (25) imply that 

𝐶𝑓𝑥 𝑅𝑒
𝑛−1
𝑛+1 =

𝜏𝑤|𝑧=0
𝜌𝑓(𝑟𝛺)2

=
1

𝑟∗
(1 + 𝑟∗)𝜍[(𝑓 ′(0))2 + (𝑔̃′(0))2]1/2. 

 

Heat transfer rate 

Mathematically the rate of heat transfer is 

𝑁𝑢𝑥 =
𝑅0𝑞𝑤

𝑘𝑓(𝑇̂𝑓−𝑇̂∞)
|
𝑧=0

, 

in which wall heat flux 𝑞𝑤 satisfies 

𝑞𝑤|𝑧=0 = −𝑘𝑓
𝜕𝑇̂

𝜕𝑧
|
𝑧=0

= −𝑘𝑓(𝑇̂𝑓 − 𝑇̂∞)(1 + 𝑟
∗)𝜍 (

𝛺𝑅0
2𝜌

𝜇
)

1
𝑛+1

𝜃̃ ′(0). 

Using Eq. (6.28) in Eq. (6.27) we have the following form  

𝑁𝑢𝑥 𝑅𝑒
−1
𝑛+1 = − (1 + 𝑟∗)𝜍𝜃̃ ′(0). 

(6.24) 

(6.25) 

(6.26) 

(6.23) 

(6.22) 

(6.28) 

(6.27) 

(6.29) 
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Local Sherwood number satisfies 

𝑆ℎ𝑥 =
𝑅0𝑞𝑚

𝐷𝐵(𝐶𝑓−𝐶∞)
|
𝑧=0

, 

 

where 𝑞𝑚 denotes the mass flux and 

𝑆ℎ𝑥 𝑅𝑒
−1
𝑛+1 = − (1 + 𝑟∗)𝜍

′
(0). 

 

Entropy generation 

Dimensional expression for entropy generation rate in terms of velocity, temperature and 

concentration is 

𝑆𝐺 =
𝑘𝑓

𝑇̂𝑓
2 (
𝜕𝑇̂

𝜕𝑧
)
2

+
𝜇𝑛𝑓

𝑇̂𝑓
𝛷∗ +

𝑅𝐷𝐵

𝐶𝑓
(𝛻𝐶)2 +

𝑅𝐷𝐵

𝐶𝑓
(𝛻𝐶 ⋅ 𝛻𝑇̂) +

𝜎𝑓

𝑇̂𝑓
𝐵0
2(𝑢̂2 + 𝑣2), 

where 

𝛷 = 2 [(
𝜕𝑢

𝜕𝑟
)
2

+ (
𝜕𝑤̂

𝜕𝑧
)
2

+
1

𝑟2
(
𝜕𝑣̂

𝜕𝜃
+ 𝑢̂)

2

] + [
1

𝑟

𝜕𝑤̂

𝜕𝜃
+
𝜕𝑣̂

𝜕𝑧
]
2

+ [
𝜕𝑤̂

𝜕𝑟
+
𝜕𝑢

𝜕𝑧
]
2

+ [𝑟
𝜕

𝜕𝑟
(
𝑣̂

𝑟
) +

1

𝑟

𝜕𝑢

𝜕𝜃
]
2

,

} 

(𝛻𝐶)2 = (
𝜕𝐶

𝜕𝑟
,
1

𝑟

𝜕𝐶

𝜕𝜃
,
𝜕𝐶

𝜕𝑧
) . (

𝜕𝐶

𝜕𝑟
,
1

𝑟

𝜕𝐶

𝜕𝜃
,
𝜕𝐶

𝜕𝑧
)

𝛻𝐶 ⋅ 𝛻𝑇̂ = (
𝜕𝐶

𝜕𝑟
,
1

𝑟

𝜕𝐶

𝜕𝜃
,
𝜕𝐶

𝜕𝑧
) . (

𝜕𝐶

𝜕𝑟
,
1

𝑟

𝜕𝐶

𝜕𝜃
,
𝜕𝐶

𝜕𝑧
)
}. 

In view of boundary layer assumptions, we can write 

𝑆𝐺 =
𝑘𝑓

𝑇̂𝑓
2 (
𝜕𝑇̂

𝜕𝑧
)
2

⏟    

Thermal irreversibility

+
𝜇𝑓

𝑇̂𝑓
[
2 (

𝜕𝑢

𝜕𝑟
)
2

+
2

𝑟2
(𝑢̂)2 + 2 (

𝜕𝑤̂

𝜕𝑧
)
2

+[
𝜕𝑣̂

𝜕𝑧
]
2

+ [
𝜕𝑢

𝜕𝑧
]
2

+ [𝑟
𝜕

𝜕𝑟
(
𝑣̂

𝑟
)]
2]

⏟                    

Fluid friction irreversibility

𝑅𝐷𝐵

𝐶𝑓
((
𝜕𝐶

𝜕𝑟
)
2

+ (
𝜕𝐶

𝜕𝑧
)
2

) +
𝑅𝐷𝐵

𝐶𝑓
(
𝜕𝐶

𝜕𝑟

𝜕𝑇̂

𝜕𝑟
+
𝜕𝐶

𝜕𝑧

𝜕𝑇̂

𝜕𝑧
)

+
𝜎𝑓

𝑇̂𝑓
𝐵0
2(𝑢̂2 + 𝑣2)

⏟          

Joule dissipation irreversibility

,

}
 
 
 
 
 

 
 
 
 
 

. 

Dimensionless form of 𝑁𝐺  is given as 

 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 
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𝑁𝐺 = 𝜃̃
′2𝛼1(𝑅𝑒)

1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍

+
𝐵𝑟

𝑅𝑒

[
 
 
 
 
2(𝜉+𝛼)2𝜀2𝜍2𝑓̃′2+4𝑓̃2+4𝑓̃𝑓̃′(𝜉+𝛼)𝜀𝜍

+2ℎ̃′2+𝑟∗2(𝑅𝑒)
2
1+𝑛(1+𝑟∗)2𝜍𝑔̃′2+

𝑟∗2(𝑅𝑒)
2
1+𝑛(1+𝑟∗)2𝜍𝑓̃′2+(𝜉+𝛼)2𝜀2𝜍2𝑔̃′2]

 
 
 
 

+𝐻𝑎𝐵𝑟𝑟∗2(𝑓2 + 𝑔̃2) +
𝛽1𝛼2

𝛼1
((𝑅𝑒)

1−𝑛

1+𝑛 (1 + 𝑟∗)2𝜍 +
1

𝑅𝑒
(𝜉 + 𝛼)2𝜀2𝜍2 (𝛼1𝜃̃

′2 + 𝛼2
′2
))
}
 
 
 

 
 
 

 

 

𝛼1 =
𝑇̂𝑓−𝑇̂∞

𝑇̂𝑓
=
𝛥𝑇

𝑇̂𝑓
, 𝛼2 =

𝐶𝑓−𝐶∞

𝐶𝑓

 𝐵𝑟 =
𝜇𝑓𝛺

2𝑅0
2

𝑘𝑓𝛥𝑇
, 𝑁𝐺 =

𝑇̂𝑓𝑆𝐺𝜈𝑓

𝑘𝑓𝛥𝑇𝛺
.
} 

Here 𝛼1 and 𝛼2 are the dimensionless temperature difference and concentration parameters, 𝐵𝑟 

Brinkman number and 𝑁𝐺 (=
𝑇̂𝑓𝑆𝐺𝜈

𝑘𝑓𝛥𝑇𝛺
) entropy generation rate. 

Thermal irreversibility dominates when 𝐵𝑒 ≥ 0.6. When 𝐵𝑒 ≤ 0.5 the viscous effects dominate. 

For 𝐵𝑒 = 0.5 have equal effects. Similarly Bejan number (𝐵𝑒) is 

 

𝐵𝑒 =
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
, 

 

𝐵𝑒 =
𝜃̃′2𝛼1(𝑅𝑒)

1−𝑛
1+𝑛(1+𝑟∗)2𝜍

𝜃̃′2𝛼1(𝑅𝑒)
1−𝑛
1+𝑛(1+𝑟∗)2𝜍

+
𝐵𝑟

𝑅𝑒

[
 
 
 
 2(𝜉+𝛼)2𝜀2𝜍2𝑓̃′2+4𝑓̃2+4𝑓̃𝑓̃′(𝜉+𝛼)𝜀𝜍

+2ℎ̃′2+𝑟∗2(𝑅𝑒)
2
1+𝑛(1+𝑟∗)2𝜍𝑔̃′2+

𝑟∗2(𝑅𝑒)
2
1+𝑛(1+𝑟∗)2𝜍𝑓̃′2+(𝜉+𝛼)2𝜀2𝜍2𝑔̃′2]

 
 
 
 

+𝐻𝑎𝐵𝑟𝑟∗2(𝑓̃2+𝑔̃2)+
𝛽1𝛼2
𝛼1

((𝑅𝑒)
1−𝑛
1+𝑛(1+𝑟∗)2𝜍+

1

𝑅𝑒
(𝜉+𝛼)2𝜍2(𝛼1𝜃̃′2+𝛼2

′2
))

.

 

  

Homotopy procedure 

Initial guesses and corresponding linear operators are 

ℎ̃0(𝜉) = 0, 

 

𝑓0(𝜉) = 𝐴 𝑒𝑥𝑝( − 𝜉), 

 

(6.40) 

(6.38) 

(6.41) 

(6.39) 

(6.36) 

(6.37) 
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𝑔̃0(𝜉) = 𝑒𝑥𝑝( − 𝜉), 

 

𝜃̃0(𝜉) = 𝑒𝑥𝑝( − 𝜉), 

 

0 (𝜉) = 𝑒𝑥𝑝( − 𝜉), 

 

𝐿ℎ̃ = ℎ̃
′, 𝐿𝑓̃ = 𝑓

′′ − 𝑓, 𝐿𝑔̃ = 𝑔̃
′′ − 𝑔̃, 𝐿𝜃̃ = 𝜃̃

′′ − 𝜃̃, L = 
″
−  , 

 

with 

𝐿ℎ̃[𝑐1] = 0,

𝐿𝑓̃[𝑐2𝑒
𝜉 + 𝑐3𝑒

−𝜉] = 0,

𝐿𝑔̃[𝑐4𝑒
𝜉 + 𝑐5𝑒

−𝜉] = 0,

𝐿𝜃̃[𝑐6𝑒
𝜉 + 𝑐7𝑒

−𝜉] = 0,

L [𝑐8𝑒
𝜉 + 𝑐9𝑒

−𝜉] = 0,}
  
 

  
 

 

In which 𝑐𝑖 (𝑖 = 1 − 9) denote the constants. 

Convergence analysis 

Auxiliary variables ℏℎ̃, ℏ𝑓̃ , ℏ𝑔̃, ℏ𝜃̃ and ℏ


 give us the favor to control the convergence of given 

nonlinear problems. Fig. 2 shows the ℏ -curves for velocity, temperature and concentration. 

Permissible ranges of auxiliary variables are −1.6 ≤ ℏℎ̃ ≤ −0.2, −1.5 ≤ ℏ𝑓̃ ≤ −0.3, −1.6 ≤

ℏ𝑔̃ ≤ −0.3, −4.0 ≤ ℏ𝜃̃ ≤ −0.5 and −1.6 ≤ ℏ

≤ −0.6. Table 6.1 indicates series solutions 

convergence of momentum as well as energy constraints for the given problem. Table 6.1 indicates 

that ℎ̃′(0), (0),f


𝑔̃′(0), 𝜃̃′(0) and 
′
(0) converge at 11𝑡ℎ, 15𝑡ℎ, 19𝑡ℎ, 25𝑡ℎ and 20𝑡ℎ orders 

respectively. 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 
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Fig 6.2 ℏ − 𝑐𝑢𝑟𝑣𝑒𝑠 

Table 6.1: Different order approximations for 𝜍 = 1, 𝜀 = 0.3, 𝛼 = 1.2, 𝑅𝑒 =0.9, 𝑛 = 0.5, 𝑟∗ =

0.2, 𝐻𝑎 = 0.7, 𝐴 = 0.3, 𝑃𝑟 =1.9, 𝐸𝑐 = 0.5, 𝑎𝑛𝑑 𝜆 = 0.4  

 

 

Discussion 

Influence of various flow variables of rotating disk are displayed graphically. Figs. (6.3 − 6.20) 

are sketched for results of different velocity components, temperature 𝜃̃(𝜉), skin friction 

(𝐶𝑓𝑥𝑅𝑒
𝑛−1

𝑛+1) and Nusselt number (𝑁𝑢𝑥𝑅𝑒
−1

𝑛+1). Figs. (6.3𝑎 − 6.3𝑐) display the physical 

characteristics of velocities ( ( ),h  𝑓(𝜉), 𝑔̃(𝜉)) for increasing magnetic parameter 𝐻𝑎. Since 

Hartman number mainly rely on Lorentz force, therefore an increase in 𝐻𝑎 provides more Lorentz 

force which provides resistance which reduces the velocity. Impact of power law index 𝑛  on 

Order of 

approximations 

−ℎ̃′′(0) 𝑓 ′(0) −𝑔̃′(0) −𝜃̃ ′(0) −
′
(0) 

1 0.009994 0.1610 0.8197 0.8295 1.55556 

11 0.02034 0.2859 0.7965 0.5038 1.26243 

15 0.02034 0.2857 0.7957 0.5233 1.25899 

19 0.02034 0.2857 0.7980 0.5341 1.25894 

25 0.02034 0.2857 0.7980 0.5350 1.25894 

30 0.02034 0.2857 0.7980 0.5350 1.25894 

35 0.02034 0.2857 0.7980 0.5350 1.25894 

40 0.02034 0.2857 0.7980 0.5350 1.25894 

50 0.02034 0.2857 0.7980 0.5350 1.25894 
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velocities (ℎ̃(𝜉), 𝑓(𝜉), 𝑔̃(𝜉)) is demonstrated in Figs. (6.4𝑎 − 6.4𝑐). It is apparent from graphs 

that movement for liquid particles increases for larger 𝑛. Larger 𝑛 decreases the viscosity of fluid 

and consequently the velocity of fluid is enhanced. Figs. (6.5𝑎 − 6.5𝑐) clarify the impact of 𝐴 on 

different components of velocity (ℎ̃(𝜉), 𝑓(𝜉), 𝑔̃(𝜉)). Here axial (ℎ̃(𝜉)) and radial (𝑓(𝜉)) 

components are larger for higher 𝐴. It is due to more stretching rate. Impacts regarding mixed 

convection parameter 𝜆 on velocity components are displayed by Figs. (6.6𝑎 − 6.6𝑐). Magnitudes 

of axial and radial velocities are enhanced for larger 𝜆 while converse is observed for tangential 

component. For increasing values of 𝜆 the higher buoyancy force results an enhancement in axial 

and radial components of velocity. (see Figs. 6.6𝑎 and 6.6𝑏). 

Magnetic parameter 𝐻𝑎  influence on temperature 𝜃̃(𝜉) is indicated in Fig. 6.7. Here temperature 

enhances for larger 𝐻𝑎. Higher Lorentz force enhances the temperature. Figs. 8 discloses the effect 

of mixed convection 𝜆 on temperature distribution. Mixed convection 𝜆 is in direct relation to 

temperature field. Fig. 6.9 displayed the graph of temperature 𝜃̃(𝜉) for Eckert number 𝐸𝑐. 

Temperature curves enhances with higher 𝐸𝑐. Effect of 𝑆𝑐 on concentration field is sketched in 

Fig. 6.10. Increasing values of 𝑆𝑐 decreases concentration. Fig. 6.11 and 6.13 illustrate the 

impacts of 𝑁𝑇 and 𝑁𝐵 on temperature. Both Figs. show increasing behaviors due to more boundary 

layer thickness. Similarly Figs. 6.12 and 6.  14 are drawn to show the impacts of 𝑁𝑇 and 𝑁𝐵 on 

concentration. Fig. 6.12 illustrates that concentration increase for larger 𝑁𝑇 . However it decays 

with Brownian motion parameter 𝑁𝐵. 

Drag forces concerning 𝐻𝑎 and 𝜆 parameters are observed via Figs. 6.15 and 6.16. Enhancement 

of surface drag force for larger 𝐻𝑎, and 𝜆 is observed. Figs. (6.17 − 6.20) are displayed for impact 

of Eckert number 𝐸𝑐, magnetic parameter 𝐻𝑎, 𝑁𝑇 and 𝑁𝐵 on Nusselt number. Heat transfer decays 

for higher 𝐸𝑐, 𝐻𝑎, 𝑁𝑇 and 𝑁𝐵.  
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Fig. 6.3a: h(ξ) via Ha.  

 

 

Fig. 6.3b: f(ξ) via Ha. 

 

Fig. 6.3c: g(ξ) via Ha.  
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Fig. 6.4a: h(ξ) via n. 

 

Fig. 6.4b: Impact of n on f(ξ).  

 

Fig. 6.4c: Impact of n on g(ξ).  
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Fig. 6.5a: Impact of A on h(ξ). 

 

 Fig. 6.5b: Impact of A on f(ξ). 

 

Fig. 6.5c: Effect of A on g(ξ). 
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Fig. 6.6a: Effect of λ on h(ξ) 

 

Fig. 6.6b: f(ξ) via λ. 

 

Fig. 6.6c: g(ξ) via λ.  
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Fig. 6.7: Temperature θ(ξ) via Ha. 

 

Fig. 6.8: Temperature θ(ξ) via λ. 

 

Fig. 6.9: Temperature θ(ξ) via Ec. 
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Fig. 6.10: Temperature   (ξ) via Sc. 

 

Fig. 6.11: Temperature θ(ξ) via 𝑁𝑇. 

 

Fig. 6.12: Concentration   (ξ) via 𝑁𝑇. 
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Fig. 6.13: Temperature θ(ξ) via 𝑁𝐵. 

 

Fig. 6.14: Concentration   (ξ) via 𝑁𝐵. 

 

Fig. 6.15: Skin friction via Ha. 
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Fig. 6.16: Skin friction via λ. 

 

Fig. 6.17: Nu via Ec. 

 

Fig. 6.18: Nu via Ha.  
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Fig. 6.19: Nu via 𝑁𝑇. 

 

Fig. 6.20. Nu via 𝑁𝐵. 

Entropy generation (𝑵𝑮(𝝃)) and Bejan number (𝑩𝒆)  

Influences of dimensionless parameters 𝛼1, Eckert number 𝐸𝑐, Brinkman number 𝐵𝑟 and Reynolds 

number 𝑅𝑒 on entropy generation rate 𝑁𝐺(𝜉) and Bejan number 𝐵𝑒 are analyzed in Figs. (6.21 −

6.28).  

Entropy and Bejan number for higher 𝛼1 are exhibited graphically through Figs. 6.21 and 6.24. It 

is observed that 𝑁𝐺(𝜉) tends to zero far from the surface. For higher 𝛼1 the effect of heat transfer 

is more dominating when compared with fluid friction effect as well as magnetic effect. Hence 𝐵𝑒 

enhances. Figs. 6.23 and 6.24 are outlined to demonstrate outcomes of radiation parameter 𝐸𝑐 on 

𝑁𝐺(𝜉) and 𝐵𝑒. Both increase for higher 𝐸𝑐 due to increase in kinetic energy of system. Figs. 6.25 

and 6.26 display entropy generation 𝑁𝐺(𝜉) and Bejan number 𝐵𝑒 for Brinkman number. 𝐵𝑟 is 

specifically identified close to surface of disk. Large amount of heat produced inside the system 

increases disturbance in the system. Fig. 6.26 demonstrates that 𝐵𝑒 decays for higher estimations 

of Br. Figs. 6.27 and 6.28 portrayed the impact of 𝑅𝑒 on 𝑁𝐺(𝜉) and 𝐵𝑒. We noted that entropy 
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decreases while Bejan number increases for higher 𝑅𝑒. For larger 𝑅𝑒 stream variance in the liquid 

improves so heat transfer increments and thus more disturbance is observed. 

 

Fig. 6.21 𝑁𝐺(𝜉) via α₁. 

 

 

Fig. 6.22: Be via α₁. 

 

Fig. 6.23:𝑁𝐺(𝜉) via Ec. 
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Fig. 6.24: Be via Ec. 

 

Fig. 6.25: 𝑁𝐺(𝜉) via Br. 

 

Fig. 6.26: Be via Br.  
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Fig. 6.27: 𝑁𝐺(𝜉) via Re. 

 

Fig. 6.28: Be via Re 

Conclusions 

Convective fluid flow caused by rotating disk is examined with viscous dissipation, convective 

conditions and Joule heating effects. Key points are summarized as: 

• Magnitudes of velocity components increases for larger values of power law index of fluid 

• Temperature 𝜃̃(𝜉) improves for larger 𝑅𝑒, 𝐸𝑐 and 𝜆. 

• Drag force increases for higher estimations of 𝐻𝑎. 

• Magnitude of temperature gradient 𝑁𝑢𝑥𝑅𝑒
−1

𝑛+1 is in inverse relation to 𝐸𝑐 and 𝐻𝑎. 

• Entropy generation rate𝑁𝐺(𝜉) grows for higher 𝐸𝑐 and 𝐵𝑟 while reverse behavior is observed 

for 𝑅𝑒. 

• Bejan number 𝐵𝑒 decreases with 𝐵𝑟 while it increases for 𝑅𝑒. 
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Chapter 7 

Dissipative convective flow of hybrid nanomaterials with entropy 

optimization 

Introduction 

Three-dimensional incompressible flow of hybrid nanofluid is presented by a stretchable surface 

of disk. Heat generation, radiation and viscous dissipation effects are considered. Computations 

are arranged for total entropy rate. Convective condition of heat transfer at the boundary is 

implemented. Outcomes of pertinent variables on the heat transfer irreversibility rate, porosity 

irreversibility rate, viscous dissipation irreversibility rate, Bejan number and total irreversibility 

rate are discussed. Special consideration is given to the engineering quantities like skin friction 

coefficient and heat transfer rate. It is concluded that entropy rate against radiation enhances. 

Formulation 

Here we have discussed three-dimensional dissipative hybrid nanofluid flow due to stretchable 

surface of disk. Disk at 𝑧 = 0. is rotating with 𝛺 (angular velocity) and stretching with rate 𝑎. 

Physical model of flow is presented in Fig. 7.1. 

 

 

Fig. 7.1: Flow diagram 

The governing equations are 

𝜕𝑢∗

𝜕𝑟
+
𝑢∗

𝑟
+
𝜕𝑤∗

𝜕𝑧
= 0, 

(7.1) 

𝑢∗
𝜕𝑢∗

𝜕𝑟
−
𝑣∗2

𝑟
+ 𝑤∗

𝜕𝑢∗

𝜕𝑧
= 𝜈ℎ𝑛𝑓

𝜕2𝑢∗

𝜕𝑧2
, 

(7.2) 
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𝑢∗
𝜕𝑣∗

𝜕𝑟
+
𝑢∗𝑣∗

𝑟
+ 𝑤∗

𝜕𝑣∗

𝜕𝑧
= 𝜈ℎ𝑛𝑓

𝜕2𝑣∗

𝜕𝑧2
, 

(7.3) 

(𝜌𝑐𝑝)ℎ𝑛𝑓 (𝑢
∗
𝜕𝑇̃

𝜕𝑟
+ 𝑤∗

𝜕𝑇̃

𝜕𝑧
) = 𝑘ℎ𝑛𝑓

𝜕2𝑇̃

𝜕𝑧2
+ 𝜇ℎ𝑛𝑓 ((

𝜕𝑢∗

𝜕𝑧
)
2

+ (
𝜕𝑣∗

𝜕𝑧
)
2

) + 𝑄0(𝑇̃ − 𝑇̃∞)

+
16𝜎∗𝑇̃∞

3

3𝑘∗
𝜕2𝑇̃

𝜕𝑧2
,

}
 
 

 
 

 

 

(7.4) 

with boundary conditions 

𝑢∗ = 𝑟𝑎, 𝑣∗ = 𝑟𝛺, 𝑤∗ = 0,−𝑘
𝜕𝑇̃

𝜕𝑧
= ℎ1(𝑇̃𝑓 − 𝑇̃) at 𝑧 = 0,

𝑢∗ = 0, 𝑣∗ = 0, 𝑇̃ = 𝑇̃∞ at 𝑧 → ∞,

} 

(7.5) 

in which 𝑥, 𝑦, 𝑧 highlights the Cartesian coordinates, 𝑢∗, 𝑣∗, 𝑤∗ the velocities components, 𝜈ℎ𝑛𝑓 

the kinematic viscosity, 𝜎ℎ𝑛𝑓 the electrical conductivity, 𝐵0 the magnetic field strength, 𝜌ℎ𝑛𝑓 the 

density, (𝜌𝛽)ℎ𝑛𝑓 the thermal expansion coefficient, 𝑔 the gravity, 𝑇̃ the temperature, (𝜌𝑐𝑝)ℎ𝑛𝑓 the 

specific heat capacity, 𝑄0 the heat generation, 𝑘ℎ𝑛𝑓 the thermal conductivity, 𝑘∗ the mean 

absorption coefficient, 𝜎∗ the Stefan-Boltzmann constant, 𝜇ℎ𝑛𝑓 the dynamic viscosity, 𝑇̃∞ the 

ambient temperature, a the dimensional constant and ℎ1 coefficient of heat transfer. In above 

expressions ℎ𝑛𝑓 denotes the hybrid nanofluid and 𝑛𝑓 the nanofluid. 

Thermophysical characteristics of nanomaterial and hybrid nanofluid 

The thermal properties of solid nanomaterials and hybrid nanofluid are defined as 

𝜌𝑛𝑓 = (1 −  )𝜌𝑏𝑓 +  𝜌𝑠 , (7.6) 

𝜌ℎ𝑛𝑓 = 
𝐴𝑙
𝜌𝐴𝑙 + 

𝑐𝑢
𝜌𝑐𝑢 + (1 − 

𝐴𝑙
− 

𝑐𝑢
) 𝜌𝑏𝑓 , 

(7.7) 

(𝜌𝑐𝑝)ℎ𝑛𝑓 = (1 − 
𝐴𝑙
− 

𝑐𝑢
) (𝜌𝑐𝑝)𝑏𝑓 + 

𝐴𝑙
(𝜌𝑐𝑝)𝐴𝑙 + 

𝑐𝑢
(𝜌𝑐𝑝)𝑐𝑢. 

(7.8) 

The thermal conductivity of nanofluid (𝑘𝑛𝑓) as well as hybrid nanofluid (𝑘ℎ𝑛𝑓) are 

  

𝑘𝑛𝑓 =
(𝑘𝑠 + 2𝑘𝑏𝑓) − 2 (𝑘𝑏𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑏𝑓) +  (𝑘𝑏𝑓 − 𝑘𝑠)
𝑘𝑏𝑓 , 

(7.9) 

𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
=

(

𝐴𝑙
𝑘𝐴𝑙 + 

𝑐𝑢
𝑘𝑐𝑢

 .𝐴𝑙+ 𝜑𝑐𝑢
+ 2𝑘𝑏𝑓 + 2(

𝐴𝑙
𝑘𝐴𝑙 + 𝜑𝑐𝑢𝑘𝑐𝑢) − 2(𝜑𝐴𝑙 + 𝜑𝑐𝑢)𝑘𝑏𝑓)

(
𝜑𝐴𝑙𝑘𝐴𝑙 + 𝜑𝑐𝑢𝑘𝑐𝑢
𝜑𝐴𝑙 + 𝜑𝑐𝑢

+ 2𝑘𝑏𝑓 − (𝜑𝐴𝑙𝑘𝐴𝑙 + 𝜑𝑐𝑢𝑘𝑐𝑢) − (𝜑𝐴𝑙 + 𝜑𝑐𝑢)𝑘𝑏𝑓)
. 

 

(7.10) 
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Dynamic viscosity of hybrid nanofluid (𝜇ℎ𝑛𝑓) and nanofluid (𝜇𝑛𝑓) are 

𝜇𝑛𝑓 =
𝜇𝑏𝑓

(1 − 𝜑)2.5
, (7.11) 

𝜇ℎ𝑛𝑓 =
𝜇𝑏𝑓

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5
. (7.12) 

Considering the transformations 

𝑢∗ = 𝑟𝛺𝑓 ′(𝜂), 𝑣∗ = 𝑟𝛺𝑔(𝜂), 𝑤∗ = (𝜈𝑏𝑓𝛺)
1
2ℎ(𝜂),

𝜃 =
𝑇̂ − 𝑇̂∞

𝑇̂𝑓 − 𝑇̂∞
    𝜂 = 𝑧 (

𝛺

𝜈𝑏𝑓
)

1
2

,
}
 
 

 
 

 

 

(7.13) 

one obtains  

2𝑓 + ℎ′ = 0, (7.14) 

𝐴4
(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5

𝑓″ − 𝑓2 − ℎ𝑓 ′ + 𝑔2 = 0, 
(7.15) 

𝐴4
(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5

𝑔″ − 2𝑓𝑔 − ℎ𝑔′ = 0, 
(7.16) 

𝐴2
1

Pr 
𝜃 ′′(𝐴5 + 𝑅𝑑) − ℎ𝜃

′ +
𝐸𝑐𝐴2

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5
(𝑓 ′′2 + 𝑔′2) + 𝑄𝜃𝐴2 = 0 

(7.17) 

 

ℎ(0) = 0,  𝑓(0) = 𝐴,  𝑔(0) = 1,  𝜃 ′(0) = −𝛽1(1 − 𝜃(0))  at 𝜂 = 0,
𝑓 → 0,  𝑔 → 0,  𝜃 → 0   when 𝜂 → ∞.

} 
(7.18) 

Here 𝐸𝑐 (=
𝑟2𝛺2

𝑐𝑝(𝑇𝑓−𝑇∞)
) represents the Eckert number, 𝑃𝑟 (=

(𝜌𝑐𝑝)𝑏𝑓
𝜈𝑏𝑓

𝑘𝑏𝑓
) Prandtl number, 𝑅𝑑 =

(
16𝜎∗𝑇∞

3

3𝑘∗𝑘𝑏𝑓
)radiation parameter, 𝐴 (=

𝑎

𝛺
) stretching parameter, 𝛽1 Biot number and 𝑄 (=

𝑄0

(𝜌𝑐𝑝)𝑏𝑓
𝛺
) 

heat generation parameter. Mathematically 𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5 are: 

𝐴1 = (1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢 +
(𝜌𝛽)𝐴𝑙𝜑𝐴𝑙 + (𝜌𝛽)𝑐𝑢𝜑𝑐𝑢

(𝜌𝛽)𝑏𝑓
), 

(7.19) 

𝐴2 =
1

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢 +
(𝜌𝑐𝑝)𝐴𝑙𝜑𝐴𝑙 + (𝜌𝑐𝑝)𝑐𝑢𝜑𝑐𝑢

(𝜌𝑐𝑝)𝑏𝑓
)

, 
(7.20) 
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𝐴3 =
𝜎ℎ𝑛𝑓

𝜎𝑏𝑓
=

1 + 3(
𝜎𝐴𝑙𝜑𝐴𝑙 + 𝜎𝑐𝑢𝜑𝑐𝑢

𝜎𝑏𝑓
− 𝜑𝐴𝑙 − 𝜑𝑐𝑢)

(
𝜎𝐴𝑙 + 𝜎𝑐𝑢
𝜎𝑏𝑓

+ 2) − (
𝜎𝐴𝑙𝜑𝐴𝑙 + 𝜎𝑐𝑢𝜑𝑐𝑢

𝜎𝑏𝑓
− 𝜑𝐴𝑙 − 𝜑𝑐𝑢)

, 

(7.21) 

𝐴4 = (1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢 +
𝜑𝐴𝑙𝜌𝐴𝑙 + 𝜑𝑐𝑢𝜌𝑐𝑢

𝜌𝑏𝑓
), 

(7.22) 

𝐴5 =
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
=

𝑘𝐴𝑙𝜑𝐴𝑙 + 𝑘𝑐𝑢𝜑𝑐𝑢
𝜑𝐴𝑙 + 𝜑𝑐𝑢

+ 2𝑘𝑏𝑓 − 2(𝜑𝐴𝑙 + 𝜑𝑐𝑢)𝑘𝑏𝑓 + 2(𝑘𝐴𝑙𝜑𝐴𝑙 + 𝑘𝑐𝑢𝜑𝑐𝑢)

𝑘𝐴𝑙𝜑𝐴𝑙 + 𝑘𝑐𝑢𝜑𝑐𝑢
𝜑𝐴𝑙 + 𝜑𝑐𝑢

+ 2𝑘𝑏𝑓 − (𝜑𝐴𝑙 + 𝜑𝑐𝑢)𝑘𝑏𝑓 − (𝑘𝐴𝑙𝜑𝐴𝑙 + 𝑘𝑐𝑢𝜑𝑐𝑢)
. 

(7.23) 

Entropy equation 

Mathematically we can write 

𝑆𝐺 =
𝑘𝑏𝑓

𝑇̃𝑓
2
(
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
+
16𝜎∗𝑇̃∞

3

3𝑘∗𝑘𝑏𝑓
)(
𝜕𝑇̃

𝜕𝑧
)

2

⏟                  

heat transfer irreversibility

+
𝜇ℎ𝑛𝑓

𝑇̃𝑓
[(
𝜕𝑢∗

𝜕𝑧
)
2

+ (
𝜕𝑣∗

𝜕𝑧
)
2

]
⏟                

viscous dissipation irreversibility

.

}
 
 

 
 

 

 

(7.24) 

In view of Eq. (7.13), the dimensionless form of above expression yields 

𝑁𝐺 = (𝐴5 + 𝑅𝑑)𝛼1𝜃
′2 +

𝐵𝑟

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5
(𝑓 ′′2 + 𝑔′2), 

(7.25) 

where 𝛼1 (=
𝛥𝑇

𝑇̃𝑓
) depicts temperature ratio variable and 𝐵𝑟 (=

𝜇𝑏𝑓𝛺
2𝑟2

𝑘𝑏𝑓𝛥𝑇
) the Brinkman number. 

Mathematically 𝐵𝑒 is 

𝐵𝑒 =
(𝐴5 + 𝑅𝑑)𝛼1𝜃

′2

(𝐴5 + 𝑅𝑑)𝛼1𝜃 ′2 +
𝐵𝑟

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5
(𝑓 ′′2 + 𝑔′2) + 𝐴3𝐻𝑎𝐵𝑟𝑓2

. 
 

(7.26) 

Quantities of engineering interest 

Surface drag force 

We have 

𝐶𝑓 =
√𝜏𝑧𝑟2 + 𝜏𝑧𝜃

2

𝜌ℎ𝑛𝑓(𝛺𝑟)2
, 

 

(7.27) 

where 𝜏𝑧𝑟 and 𝜏𝑧𝜃 satisfy the following relation 
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𝜏𝑧𝑟 = 𝜇ℎ𝑛𝑓
𝜕𝑢̂

𝜕𝑧
|
𝑧=0

=
1

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5
(
𝛺

𝜈
)

1
2
𝑟𝑓 ′′(0),

𝜏𝑧𝜃 = 𝜇ℎ𝑛𝑓
𝜕𝑣

𝜕𝑧
|
𝑧=0

=
1

(1 − 𝜑𝐴𝑙 − 𝜑𝑐𝑢)2.5
(
𝛺

𝜈
)

1
2
𝑟𝑔′(0).

}
 
 

 
 

 

 

(7.28) 

The total stress 𝜏𝑤 is represented by 

𝜏𝑤 = √𝜏𝑧𝑟2 + 𝜏𝑧𝜃
2 . 

(7.29) 

Invoking Eq. (7.28) in Eq. (7.27) we can write 

𝐶𝑓𝑥 𝑅𝑒
1
𝑛+1 =[(𝑓 ′′(0))2 + (𝑔′(0))2]1/2. 

(7.30) 

Heat transfer rate 

Mathematically 

𝑁𝑢𝑥 = (
𝑟𝑞𝑤

𝑘𝑏𝑓(𝑇̃𝑓 − 𝑇̃∞)
)
𝑧=0

, 
(7.31) 

where 𝑞𝑤 is defined as  

𝑞𝑤 = −(𝑘ℎ𝑛𝑓
𝜕𝑇̃

𝜕𝑧
)
𝑧=0

− (
16𝜎∗𝑇̃∞

3

3𝑘∗
𝜕𝑇̃

𝜕𝑧
)
𝑧=0

. 
(7.32) 

From Eqs. (7.31) and (7.32), one arrives at 

𝑁𝑢𝑥 𝑅𝑒
−1
𝑛+1 =− (

𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
+ 𝑅𝑑)𝜃

′(0). 
(7.33) 

In the above expressions 𝜏𝑧𝑟 , 𝜏𝑧𝜃, 𝐶𝑓 , 𝜏𝑤, 𝑅𝑒
1

𝑛+1, 𝑁𝑢𝑥 and 𝑞𝑤 denote shear stress components in 

radial and tangential direction, skin friction coefficient, total shear stress, Reynolds number, 

Nusselt number and wall heat flux. 

Results and analysis 

Here results are presented through Built-in-Shooting method. The influences of pertinent variables 

on three-dimensional hybrid nanomaterial flow by rotating stretchable disk are scrutinized through 

various plots. Figs. 7.2-7.15 are plotted for the impacts of different parameters like stretching 

parameter, Eckert number, Biot number, radiation parameter, heat source/sink parameter on 

velocity components i.e., (ℎ(𝜉)), (𝑓(𝜉)) and (𝑔(𝜉))), 𝜃(𝜉) temperature, entropy generation, 

𝑁𝑢𝑥𝑅𝑒𝑥
−0.5 Nusselt number and Bejan number. Effect of stretching variable (𝐴 =
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0.1,0.3,0.6,0.9,1.2,1.5)  on velocities ℎ(𝜉) and 𝑓(𝜉) is given in Figs. 7.2 and 7.3. It is clear from 

plots that both velocity components enhance versus larger stretching variable. Physically for higher 

𝛾1 the stretching rate enhances due to which velocity components become higher. 

Fig. 7.4 identifies the impact of Eckert number (𝐸𝑐 = 0.0,0.2,0.4,0.6,0.8,1.0) on 𝜃(𝜉). An 

increase in temperature field for rising values of 𝐸𝑐 is noted. In fact such increase is conversion of 

huge amount of mechanical energy into heat energy caused by the internal frictions of the 

molecules. Effect of (𝛽1 = 0.1,0.2,0.4,0.6,0.8,1.0) on 𝜃(𝜉) is displayed in Fig. 7.5. It is clear from 

this plot that movement of material particles enhances for Biot number. Physically it is due to 

decay in viscosity of liquid and thus fluid temperature increases. Fig. 7.6 is made to study how 

radiation parameter affects the thermal field. Increasing behavior of thermal field is noticed in Fig. 

7.7 for larger heat source parameter. 

Figs. 7.8 and 7.9 are sketched to examine the heat transfer rate against Eckert number, radiation 

parameter and Biot number. Here heat transfer rate (Nusselt number) decreases with increase in 

Eckert number while it enhances via higher Biot number. 

Entropy generation rate 

Figs. 7.10 and 7.11 are sketched to study how radiation parameter affects the entropy rate and 

Bejan number. Here we can see that both 𝑁𝐺(𝜉) and 𝐵𝑒 increase against larger radiation parameter. 

Physically more heat is generated in the working fluid in the presence of larger radiative parameter. 

Figs. 7.12 and 7.13 are drawn to show the behavior of Brinkman number on 𝑁𝐺(𝜉) and 𝐵𝑒. 

Physically the Brinkman number shows relation of heat conduction through viscous dissipation 

from disk surface to heat transport through molecular conduction. Production of heat inside the 

layers enhances the entropy and disorderliness in the system (see Fig. 7.12). Fig. 7.13 highlights 

that 𝐵𝑒 declines with 𝐵𝑟. Figs. 7.14 and 7.15 are drawn to portray the impact of stretching variable 

on 𝑁𝐺(𝜉) and 𝐵𝑒. An increase in entropy generation for larger values of  𝐴 is noticed. Physically 

for increasing stretching variable more disturbances in the liquid particles is noted so heat transfer 

upsurges and thus entropy enhances. Moreover Be number increases for higher 𝐴 (see Fig. 7.15). 



105 
 

 

𝐹𝑖𝑔. 7. 2: 𝛾1 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 ℎ(𝜉). 

 

 

𝐹𝑖𝑔. 7.3: 𝛾1 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑓(𝜉) 

 

 

𝐹𝑖𝑔. 7.4: 𝐸𝑐 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝜃(𝜉). 
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𝐹𝑖𝑔. 7.5: 𝛽1 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝜃(𝜉). 

 

 

𝐹𝑖𝑔. 7. 6: 𝑅 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝜃(𝜉) 

 

 

𝐹𝑖𝑔. 7.7: 𝑄 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝜃(𝜉) 
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𝐹𝑖𝑔. 7.8: 𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑣𝑖𝑎 𝐸𝑐 𝑎𝑛𝑑 𝑅. 

 

 

𝐹𝑖𝑔. 7.9: 𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑣𝑖𝑎 𝛽1 𝑎𝑛𝑑 𝑅. 

 

𝐹𝑖𝑔. 7.10: 𝑁𝐺(𝜉) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅. 
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𝐹𝑖𝑔. 7.11: 𝐵𝑒(𝜉) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅 

 

𝐹𝑖𝑔. 7.12: 𝑁𝐺(𝜉) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐵𝑟 

 

 

𝐹𝑖𝑔. 7.13: 𝐵𝑒(𝜉) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐵𝑟 
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𝐹𝑖𝑔. 7. 14: 𝑁𝐺(𝜉) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛾1 

 

 

𝐹𝑖𝑔. 7.15: 𝐵𝑒(𝜉) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛾1 

Conclusions 

The remarkable results are listed as follows: 

• Velocity components increase versus stretching variable. 

• Temperature field increases for Eckert number and radiation parameter. 

• 𝑁𝑢𝑥𝑅𝑒𝑥
−0.5 declines against Eckert and Biot numbers. 

• 𝑁𝐺(𝜉) upsurges for higher estimations of 𝐸𝑐 and 𝐵𝑟. 

• 𝐵𝑒 decreases with 𝐵𝑟 while it enhances with radiation parameter. 
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Chapter 8 

Entropy analysis in magnetohydrodynamic Hybrid nanofluid 

flow due to a rotating disk 

Introduction 

The salient features of three-dimensional magnetohydrodynamic hybrid nanofluid flow by a 

rotating disk have been investigated in this chapter. Velocity with mixed convection and magnetic 

properties has been anlayzed for radial, tangential and axial directions. Entropy rate and Bejan 

number are key points to be discussed. Effects for total irreversibilities are calculated. Low 

Reynolds number and boundary layer approximations are used to formulate relevant systems. 

Transformation procedure yield nonlinear system of ordinary differential equations. Such resultant 

systems are numerically solved by ND solve method. Nusselt and Sherwood number are addressed. 

Formulation 

We examined MHD steady three-dimensional flow of hybrid nanofluid due to a rotating 

stretchable disk. The stretched disk at 𝑧 = 0 rotates with a angular speed 𝛺. 𝐻0 is value of uniform 

magnetic field and flow description is in Fig. (8.1). Heat properties are studied with Joule heating 

and dissipation effects. Boundary layer expressions are: 

 

 

Fig. 8.1 Flow configuration. 

𝜕𝑢̃

𝜕𝑟
+
𝜕𝑤̃

𝜕𝑧
+
𝑢̂

𝑟
= 0, 

 

(8.1) 
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𝑢̃
𝜕𝑢̃

𝜕𝑟
+ 𝑤̃

𝜕𝑢̃

𝜕𝑧
−
𝑣̃2

𝑟
=
𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓

𝜕2𝑢̃

𝜕𝑧2
−
𝜎ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
𝐵0
2𝑢̃ + 𝑔 { 1 (𝑇̃ − 𝑇̃∞) + 2 (𝑇̃ − 𝑇̃∞)

2}, 

 

𝑢̃
𝜕𝑣̃

𝜕𝑟
+ 𝑤̃

𝜕𝑣̃

𝜕𝑧
+
𝑢̃𝑣̃

𝑟
= 𝜈

𝜕2𝑣̃

𝜕𝑧2
−
𝜎ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
𝐵0
2𝑣̃, 

 

(𝑢̃
𝜕𝑇̃

𝜕𝑟
+ 𝑤̂

𝜕𝑇̃

𝜕𝑧
) =

𝑘𝑓

(𝜌𝑐𝑝)ℎ𝑛𝑓

𝜕2𝑇̃

𝜕𝑧2
+

𝜎ℎ𝑛𝑓

(𝜌𝑐𝑝)ℎ𝑛𝑓
𝐵0
2(𝑢̃2 + 𝑣̃2) +

𝜇ℎ𝑛𝑓

(𝜌𝑐𝑝)ℎ𝑛𝑓
((
𝜕𝑢̃

𝜕𝑧
)
2

+ (
𝜕𝑢̃

𝜕𝑧
)
2

), 

 

𝑢̃
𝜕𝐶

𝜕𝑟
+ 𝑤̃

𝜕𝐶

𝜕𝑧
=
𝐷𝑇
𝑇∞

𝜕2𝑇̃

𝜕𝑧2
+ 𝐷𝐵

𝜕2𝐶

𝜕𝑧2
, 

with 

𝑢̃ = 𝑐𝑟, 𝑣̃ = 𝑟𝛺, 𝑤̃ = 0, 𝑇̃ = 𝑇̃𝑤, 𝐶 = 𝐶𝑤 at 𝑧 = 0,

𝑢̃ = 0, 𝑣̃ = 0, 𝑇̃ = 𝑇̃∞, 𝐶 = 𝐶∞ at 𝑧 → ∞,
} 

 

where 𝑢, 𝑣, 𝑤 represent the velocities in radial, tangential and axial directions respectively 𝜎∘ 

Stefan-Boltzman constant, 𝑐 dimensional constant, 𝜌𝑓 density, 𝜇𝑓 absolute viscosity of fluid , 𝑘𝑓 

thermal conductivity, 𝜎𝑓 electrical conductivity, 𝜈𝑓 kinematic viscosity, 𝐶 concentration, 𝑇̂ 

ambient fluid temperature, 𝐶 ambient concentration and 𝑐𝑝𝑓 heat capacitance. 

Quantities of engineering interest 

Mathematically the equation for drag force is given as 

𝐶𝑓 =
−2√𝜏𝑧𝑟2 + 𝜏𝑧𝜃

2

𝜌𝑓(𝛺𝑟)2
, 

where 𝜏𝑧𝑟 and 𝜏𝑧𝜃 show the radial and tangential stress components respectively. These are  

𝐶𝑓𝑟 𝑅𝑒 = − 2
𝐴1
𝐴2𝐴2

(𝑓 ′′(0))2, 

 

𝐶𝑓𝜃 𝑅𝑒 = − 2
𝐴1
𝐴2
(𝑔̃′(0))2. 

 

Total stress 𝜏𝑤 is given by 

(8.2) 

(8.5) 

(8.4) 

(8.3) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 
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𝜏𝑤 = √𝜏𝑧𝑟2 + 𝜏𝑧𝜃
2 . 

Equations (8.8 − 8.10) yield  

𝐶𝑓𝑟 𝑅𝑒 = − 2
𝐴1
𝐴2
[
1

𝐴2
(𝑓 ′′(0))2 + (𝑔̃′(0))2]. 

 

Heat transfer rate 

Heat transfer rate in dimensional form is 

𝑁𝑢𝑥 =
𝑐𝑞𝑤

𝑘𝑛𝑓(𝑇̂𝑤 − 𝑇̂∞)
|

𝑧=0

, 

where 𝑞𝑤 the wall heat flux is 

𝑞𝑤|𝑧=0 = −𝑘𝑓
𝜕𝑇̂

𝜕𝑧
|
𝑧=0

. 

Putting Eq. (8.13) in Eq. (8.12) we get 

𝑁𝑢𝑥 𝑅𝑒
−1
𝑛+1 =− 𝜃̃ ′(0). 

 

Similarly the local Sherwood number is 

𝑆ℎ𝑥 =
𝑅0𝑞𝑚

𝐷𝐵(𝐶𝑓 − 𝐶∞)
|
𝑧=0

, 

 

in which the mass flux 𝑞𝑚 satisfies  

𝑆ℎ𝑥 𝑅𝑒
−1
𝑛+1 =− 𝜑′(0). 

 

Entropy 

Entropy generation is given as 

𝑆𝐺 =
𝑘ℎ𝑛𝑓

𝑇̃∞2
(
𝜕𝑇̃

𝜕𝑧
)

2

+
𝜇𝑛𝑓

𝑇̃∞
𝛷∗ +

𝜎𝑓

𝑇̃∞
𝐵0
2(𝑢̂2 + 𝑣2), 

where 

𝛷∗ = (
𝜕𝑢̂

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

. 

(8.17) 

(8.13) 

(8.14) 

(8.12) 

(8.11) 

(8.15) 

(8.16) 

(8.18) 

(8.10) 
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We can write 

 

𝑆𝐺 =
𝑘ℎ𝑛𝑓

𝑇̃∞2
(
𝜕𝑇̃

𝜕𝑧
)

2

⏟      

Thermal irreversibility

+
𝜇𝑛𝑓

𝑇̃∞
[(
𝜕𝑢̂

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

]
⏟              

Fluid friction irreversibility

+
𝜎𝑓

𝑇̃∞
𝐵0
2(𝑢̃2 + 𝑣̃2)

⏟          

Joule dissipation irreversibility

.

}
 
 
 

 
 
 

 

 

In nondimensional form the entropy generation 𝐸𝑔 has the following expression 

 

𝐸𝑔 = 𝐴4𝜃̃
′2 +

𝐴1 𝑃𝑟 𝐸 𝑐

𝜃̃𝑤
[𝑓 ′′2 + 𝑔̃′2]

+
𝐴3𝐻𝑎 𝑃𝑟 𝐸 𝑐𝑅𝑒

𝜃̃𝑤[𝑓 ′2 + 𝑔̃2] }
 
 

 
 

, 

 

𝜃̃𝑤 =
𝑇̂𝑤 − 𝑇̂∞

𝑇̂∞
=
𝛥𝑇

𝑇̂∞
, 𝐴1 =

𝜇ℎ𝑛𝑓

𝜇𝑓
, 𝐴3 =

𝜎ℎ𝑛𝑓

𝜎𝑓
, 𝐴4 =

𝑘ℎ𝑛𝑓

𝑘𝑓
. 

 

Here 𝑇𝑐 is the temperature difference parameter, 𝐴1, 𝐴3, 𝐴4 the dimensionless parameters and 𝐸𝑔 

entropy generation rate. 

Heat transfer irreversibility dominates when 𝐵𝑒 ≫ 0.5. For 𝐵𝑒 ≪ 0.5 the viscous effects are 

dominant while both are equal for 𝐵𝑒 = 0.5. Bejan number (𝐵𝑒) is given as 

 

Be=
Thermal entropy 

Total entropy 
, 

or 

(8.20) 

(8.21) 

(8.19) 

(8.22) 
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𝐵𝑒 =
𝐴4𝜃̃

′2

𝐸𝑔 = 𝐴4𝜃̃ ′2 +
𝐴1 𝑃𝑟 𝐸 𝑐

𝜃̃𝑤
[𝑓 ′′2 + 𝑔̃′2]

+
𝐴3𝐻𝑎 𝑃𝑟 𝐸 𝑐𝑅𝑒

𝜃̃𝑤[𝑓 ′2 + 𝑔̃2] }
 
 
 
 

 
 
 
 

. 

Discussion 

Influences of pertinent parameters on MHD hybrid nanofluid flow due to rotating disk are 

presented graphically. Figs. ( 8.2 − 8.12 ) are shown for velocity 𝑓′(𝜉), temperature 𝜃̃(𝜉), skin 

friction 𝐶𝑓𝑥𝑅𝑒
(1/2) and Nusselt number 𝑁𝑢𝑥𝑅𝑒

−(1/2). Fig. 2 depicts the impact of 𝐴 on radial 

component of velocity 𝑓′(𝜉). Here velocity is enhanced for higher 𝐴. The reason for it is the 

increase in stretching rate of disk. Velocity profile shows more increase in case of hybrid 

nanoparticles when compared with simple nanoparticles. Influence of mixed convection 

parameters 𝜆1 and 𝜆2 on radial component of velocity is shown via Figs. (8.3) and (8.4). Velocity 

is enhanced for higher values of 𝜆1 and 𝜆2. Since convection parameter shows the ratio between 

buoyancy and inertial forces so more buoyancy force is observed for larger convection parameter. 

It increases the velocity. Influences of 𝑅𝑒   on velocity components are given in Figs. (8.5-8.7). It 

is obvious from the graphs that movement of liquid particles decreases for higher 𝑅𝑒. Physically 

it is due to higher viscous forces of the fluid which provides internal friction to the fluid particles 

and consequently velocity components in axial, tangential and radial directions decrease. Fig. 8.8 

portrays outcomes of Eckert number 𝐸𝑐 on temperature 𝜃̃(𝜉). An enhancement in temperature for 

higher values of 𝐸𝑐 is noted. Conversion of mechanical energy into heat energy during the frictions 

of the molecules is the main reason for an increase in temperature of system. Influence of 𝑚 (shape 

parameter) on temperature profile is given in Fig. (8.9). Different shaped nanoparticles e.g. brick, 

spherical, platelets and cylindrical were considered. In case of hybrid nanoparticles, the platelets 

are seen more efficient for heat transfer rate. Influence of Re on temperature profile is given 

through Fig. (8.10). For higher estimations of Re, the fluid particles speed up, which causes more 

collision between the particles. It produces internal heat in system and thus temperature profile 

increases. The contribution of both nanoparticles in the hybrid nanofluid for higher thermal 

properties is taken at different percentages as shown in Fig. (8.11). By taking equal amount of 

(8.23) 
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both particles there is less efficiency. Taking 70%  𝐴𝑙2𝑂3 and 30% of 𝐶𝑢 gives better results than 

any other quantity as shown in Fig. (8.11).  

Drag forces (presented in Tables. 8.3 and 8.4 ) are showing the impacts of different parameters on 

skin friction components. Surface drag force is decreased for larger mixed convection parameters 

𝜆1, 𝜆2 and stretching parameter 𝐴. Table. 8.5 portrays the influence of Re and 𝐸𝑐 on Nusselt 

number. Heat transfer rate increases with and 𝐸𝑐.  

 

Fig.8.2 f′(η) via A. 

 

 

Fig.8.3 f′(η) via λ₁ 
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Fig.8.4 f′(η) via λ₂. 

 

 

Fig.8.5 f′(η) via Re 

 

 

Fig. 8.6 f(η) via Re.  
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Fig.8.7 g(η) via Re 

 

 

 Fig. 8.8 θ(η) via Ec 

 

 

Fig. 8.9 θ(η) via m. 
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Fig.8.10 θ(η) via Re. 

 

 

Fig.8.11 θ(η) via different concentrations 

 

 

Fig. 8.13 Be(η) via Ec. 
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Fig. 8.14 Eg(η) via 𝜃̃𝑤 

 

 

Fig.8.14 Eg(η) via Ec  

 

 

Fig. 8.15 Be(η) via 𝜃̃𝑤 

Entropy generation rate (𝑁𝐺(𝜉))  

The influences of 𝐸𝑐 and temperature difference parameter on 𝑁𝐺(𝜉) and 𝐵𝑒 are shown through 

Figs. (8.12 − 8.15). Behavior of Ec number on entropy  and Bejan number is sketched graphically 
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in Figs. (8.12) and (8.13). Since Ec is related to kinetic energy of system, so by increasing Ec 

more kinetic energy is produced inside the system and thus entropy increases. Effect of thermal 

irreversibilities is more than fluid friction and magnetic irreversibilities. So Bejan number increase 

for higher values of Ec as shown in Fig (8.13). Effect of temperature ratio parameter for entropy 

𝐸𝑔 and Bejan number 𝐵𝑒 is given in Figs. (8.14) and (8.15). The main reason for entropy of the 

system to decrease is lower temperature difference. Less heat is transferred to the system and so 

less entropy is observed. Yet the effect of thermal irreversibilities is dominates than the total 

irreversibilities. Hence larger values of temperature ratio parameter increases the Bejan number. 

Conclusions 

MHD radiative flow of hybrid nanofluid due to a rotating stretchable disk is analyzed with Joule 

heating, mixed convection and dissipation effects. The obtained results are: 

• Velocity components are higher for stretching and mixed convection parameters. 

• Temperature 𝜃̃(𝜉) is an increasing function of 𝐸𝑐. 

• Drag force in radial direction decreases for larger 𝐴, 𝜆1, 𝜆2 and Re. 

• Temperature gradient 𝑁𝑢𝑥𝑅𝑒
−1

𝑛+1 increases for higher Ec. 

• Entropy enhances for larger values of 𝐸𝑐. 

• Bejan number 𝐵𝑒 increases for 𝐸𝑐 and temperature ratio parameter. 
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Chapter 9 

Entropy minimization in flow of non-Newtonian nanofluid with 

activation energy and binary chemical reaction. 

Abstract: Our motivation here is to analyze the radiative mixed convective flow of Casson 

nanofluid over a stretching surface. The properties of heat transfer with nonlinear thermal 

radiation, viscous dissipation and heat generation/absorption are analyzed. Total entropy is first 

calculated and then shown graphically for different involved parameters. Velocity is studied with 

uniform magnetic field and nonlinear mixed convection. Brownian diffusion, activation energy 

and thermophoresis effects are considered. Governing equations are converted from partial 

differential equations into their corresponding ordinary ones using appropriate transformations. 

ND solve technique is utilized to solve these equations. Main outcomes are presented graphically. 

Mathematical description 

Here flow of MHD mixed convective Casson nanofluid with entropy minimization and Bejan 

number has been investigated. Non-linear thermal radiation, mixed convection, activation energy 

and viscous dissipation are examined. Sheet is stretched with a stretching rate 𝑎. Joule heating and 

convective boundary conditions for heat transfer are considered 𝑇𝑤 and 𝐶𝑤 are the values of wall 

temperature and wall concentration respectively (see Fig. 9.1). 
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𝐹𝑖𝑔. 9.1: 𝐹𝑙𝑜𝑤 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 

Magnetic field is applied in normal direction to the sheet. Governing equations are: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0,      (9.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜇 (1 +

1

𝛽
) (

𝜕2𝑢

𝜕𝑦2
) + 𝑢𝑒

𝑑𝑢𝑒

𝑑𝑥
−
𝜎𝐵0

2

𝜌
(𝑢 − 𝑢𝑒)

+𝑔(𝜆1(𝑇 − 𝑇∞) + 𝜆2(𝑇 − 𝑇∞)
2) + 𝑔(𝜆3(𝐶 − 𝐶∞) + 𝜆4(𝐶 − 𝐶∞)

2),
}   (9.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
+ 𝜏 (𝐷𝐵

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
+
𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

) +
𝜇

𝜌𝑐𝑝
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

+
𝜎

𝜌𝑐𝑝
𝐵0
2𝑢2 +

𝑄∗

𝜌𝑐𝑝
(𝑇 − 𝑇∞),

}  (9.3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
+ 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
− 𝑘𝑟

2(𝐶 − 𝐶∞) (
𝑇

𝑇∞
)
𝑛

𝑒𝑥𝑝 [
−𝐸𝑎

𝜅𝑇
],   (9.4) 

𝑢 = 𝑢𝑤 = 𝑎𝑥, 𝑣 = 0,−𝑘
𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑓 − 𝑇), 𝐶 = 𝐶𝑤,  at 𝑦 = 0,

𝑢 = 𝑢𝑒 = 𝑐𝑥, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ when 𝑦 → ∞,
}   (9.5) 

where 𝜌 denotes the density,𝑢, 𝑣 the velocity components, 𝐵0 the strength of magnetic field, 𝑥, 𝑦 

the Cartesian coordinates, 𝜇 the dynamic viscosity, 𝑢𝑒 the free stream velocity, 𝛽 the Casson 
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parameter or material parameter, 𝑔 the gravity acceleration, 𝑇 the temperature, 𝜎 the electrical 

conductivity, 𝛼 the thermal diffusivity, 𝑐𝑝 the specific heat capacity, 𝑞𝑟 the radiative flux 

coefficient, 𝐷𝐵 the diffusion coefficient, 𝑄∗ the heat generation coefficient, 𝐶 the concentration, 

𝐷𝑇 the thermophoretic coefficient, 𝜆1 and 𝜆2 the coefficient of linear and nonlinear thermal 

expansion, 𝑇∞ the ambient temperature, 𝜆3 and 𝜆4 the coefficient of linear and nonlinear 

concentration expansion, 𝐶∞ the ambient concentration, 𝑘𝑟
2 the coefficient of chemical reaction, 𝑛 

the fitted rate constant,𝑇𝑓 the fluid or surface temperature,ℎ𝑓 the coefficient of convective heat 

transport, 𝐶𝑤 the surface concentration, 𝜅 the Boltzmann constant, 𝐸𝑎the coefficient of activation 

energy, 𝜈the kinematic viscosity and 𝜏 the ratio of base fluid and nanoparticles heat capacities. 

Mathematically 𝑞𝑟 is addressed as: 

𝑞𝑟 = −
16𝜎∗

3𝑘∗
[3𝑇2 (

𝜕𝑇

𝜕𝑦
)
2

+ 𝑇3
𝜕2𝑇

𝜕𝑦2
],    (9.6) 

where𝜎∗symbolizes the Stefan-Boltzmann coefficient and 𝑘∗ signifies the absorption coefficient. 

Transformations for the given flow problem are: 

𝜂 = √
𝑎

𝜈
𝑦, 𝑢 = 𝑎𝑥𝑓 ′(𝜂), v = −√𝑎𝜈𝑓(𝜂),

𝜃 =
𝑇−𝑇∞

𝑇𝑓−𝑇∞
, 𝜙 =

𝐶−𝐶∞

𝐶𝑓−𝐶∞
.

}    (9.7) 

Condition of incompressibility is identically satisfied and Eqs. (9.2-9.5) yield 

(1 +
1

𝛽
) 𝑓‴ − 𝑓 ′

2
+ 𝑓𝑓″ − 𝐻𝑎(𝑓 ′ − 𝐴) + 𝐴2

+𝜆𝜃(1 + 𝛽𝑡
∗𝜃) + 𝜙𝜆𝑁∗(1 + 𝛽𝑐

∗𝜙) = 0,
}    (9.8) 

1

𝑃𝑟
𝜃 ′′ +

4

3
𝑅𝑑(𝜃(𝜃𝑤 − 1) + 1)

2(3𝜃 ′2(𝜃𝑤 − 1) + 𝜃(𝜃𝑤 − 1) + 1)𝜃
″

+𝛾𝜃 + 𝑁𝑡𝜃 ′2 + 𝑁𝑏𝜃 ′𝜑′+ 𝑓𝜃 ′ + 𝐻𝑎𝐸𝑐𝑓 ′2 + 𝐸𝑐 (1 +
1

𝛽
) 𝑓 ′′2 = 0,

}  (9.9) 

1

𝑆𝑐
𝜑′′+

1

𝑆𝑐
(
𝑁𝑡

𝑁𝑏
) 𝜃″ + 𝑓𝜑′+ 𝜎1(𝛼1𝜃 + 1)

𝑚 𝑒𝑥𝑝 [
−𝛤

1+𝛼1𝜃
] = 0,   (9.10) 

𝑓(0) = 0,       𝑓 ′(0) = 1,       𝑓 ′(∞) = 𝐴,

𝜃 ′(0) = −𝛽𝑡(1 − 𝜃(0)),   𝜙(0) = 1,

𝜃(∞) = 0,           𝜙(∞) = 0.

}   (9.11) 

The dimensionless variables are addressed as 
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𝐻𝑎 =
𝜎𝐵0

2

𝜌𝑎
, 𝑃𝑟 =

𝜌𝑐𝑝𝜈

𝑘
, 𝐴 =

𝑐

𝑎
, 𝜃𝑤 =

𝑇𝑤

𝑇∞
, 𝛤 =

𝐸𝑎

𝜅𝑇∞
, 𝑅𝑑 =

16𝜎∗𝑇∞
3

3𝑘𝑘∗
,

𝛽𝑡
∗ =

𝜆3(𝑇𝑤−𝑇∞)

𝜆1
,   𝛽𝑐

∗ =
𝜆4(𝐶𝑤−𝐶∞)

𝜆3
,   𝜆 =

𝐺𝑟𝑥

𝑅𝑒𝑥
2 , 𝐸𝑐 =

𝑎2𝑥2

𝑐𝑝(𝑇𝑤−𝑇∞)
, 𝛾 =

𝑄0

𝑎𝜌𝑐𝑝
,

𝐺𝑟𝑥 =
𝑔𝜆1(𝑇𝑤−𝑇∞)𝑥

3

𝜈2
, 𝐺𝑟∗ =

𝑔𝜆3(𝐶𝑤−𝐶∞)𝑥
3

𝜈2
, 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑓−𝑇∞)

𝑇∞𝜈
, 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑓−𝐶∞)

𝜈
,

𝑁∗ =
𝐺𝑟𝑥

∗

𝐺𝑟𝑥
=
𝜆3(𝐶𝑤−𝐶∞)

𝜆1(𝑇𝑤−𝑇∞)
,   𝑆𝑐 =

𝜈

𝐷𝐵
,  𝜎1 =

𝑘𝑟
2

𝑎
, 𝛽𝑡  =  

ℎ𝑓

𝑘
√
𝜈

𝑎
 ,   𝛼1 =

𝑇𝑓−𝑇∞

𝑇∞
.
}
 
 
 

 
 
 

 (9.12) 

where Ha denotes the magnetic parameter, 𝑃𝑟 the Prandtl number, 𝐴 the stretching parameter, 𝜃𝑤 

the temperature difference parameter, 𝛽𝑡
∗, 𝛽𝑐

∗ the nonlinear mixed convections for temperature and 

concentration, 𝜆 the mixed convection variable, 𝛤 the activation energy parameter, 𝑅𝑑 the radiation 

parameter, 𝜆1 the thermal buoyancy parameter, 𝑅𝑒𝑥 the local Reynold number, 𝜆2 the ratio of 

thermal to concentration buoyancy, 𝐺𝑟𝑥
∗, 𝐺𝑟𝑥 the concentration and temperature respectively, 𝐸𝑐 

the Eckert number, 𝛾  the heat generation parameter, 𝑁𝑏 Brownian diffusion parameter, 𝑁∗ ratio 

of concentration to buoyancy forces, 𝑆𝑐 the Schmidt number, 𝑁𝑡 the thermophoresis constant, 𝜎1 

the chemical reaction parameter, 𝛽𝑡 the Biot number and 𝛼1 the ratio of temperature parameter. 

Physical quantities 

Mathematical equations for drag force, heat and mass transfer rates are:  

𝐶𝑓 =
2𝜏𝑤

𝜌𝑢𝑤
2 ,      (9.13) 

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
|
𝑦=0
,     (9.14) 

𝑆ℎ𝑥 =
𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
|
𝑦=0
,     (9.15) 

where ,w 𝑞𝑤 are 𝑞𝑚 are defined  

𝜏𝑤 = 𝜇 (1 +
1

𝛽
)
𝜕𝑢

𝜕𝑦
|
𝑦=0
,     (9.16) 

𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

+ 𝑞𝑟 ,     (9.17) 

𝑞𝑚 = −𝐷𝐵
𝜕𝐶

𝜕𝑦
|
𝑦=0
.      (9.18) 

Finally, we have 

1

2
𝐶𝑓𝑥 𝑅𝑒

0.5 =(1 +
1

𝛽
) 𝑓″(0),     (9.19) 

𝑅𝑒−0.5𝑁𝑢𝑥 = −(1 +
4

3
𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃(0))

3)𝜃 ′(0),   (9.20) 
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𝑆ℎ𝑥 𝑅𝑒
−0.5 = −𝜙′(0).     (9.21) 

Entropy generation 

Entropy is shown as 

𝑆𝐺 =
𝑘

𝑇∞
2 (1 +

16𝜎∗𝑇3

3𝑘𝑘∗
) (

𝜕𝑇

𝜕𝑦
)
2

+
𝜇

𝑇∞
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

+
𝜎𝐵0

2

𝑇∞
𝑢2

+
𝑅𝐷

𝑇∞
(
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
) +

𝑅𝐷

𝐶∞
(
𝜕𝐶

𝜕𝑦
)
2

,
}    (9.22) 

The dimensionless form is 

𝑁𝐺 = (1 + 𝑅𝑑(𝜃(𝜃𝑤 − 1) + 1)
3𝜃 ′2𝛼1

∗

+(1 +
1

𝛽
)𝐵𝑟𝑓 ′′2 + 𝐻𝑎𝐵𝑟𝑓 ′2 +

𝛼2
∗

𝛼1
∗ 𝐿𝜙′

2 + 𝐿𝜃 ′𝜙′,
}    (9.23) 

where the dimensionless parameters are defined as 

𝛼1
∗ =

∆𝑇

𝑇∞
,         𝑁𝐺 =

𝑆𝐺𝑇∞𝜈

𝑘∆𝑇𝑎
,          𝐵𝑟 =

𝜇𝑢𝑤
2

𝑘∆𝑇

𝐿 =
𝑅𝐷(𝐶𝑓−𝐶∞)

𝐶∞
,            𝛼2

∗ =
∆𝐶

𝐶∞
.

}    (9.24) 

Note that ,Br 𝛼1
∗, 2 , 

𝑁𝐺  and 𝐿 denote respectively the Brinkman number, nondimensional 

temperature ratio variable, concentration ratio variable, entropy generation rate and diffusive 

variable. 

Mathematically Bejan number is 

𝐵𝑒 =
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑑𝑢𝑒 𝑡𝑜 ℎ𝑒𝑎𝑡 𝑎𝑛𝑑 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
,    (9.25) 

Solution technique 

ND Solve is a numerical solver of differential equations. With the help of ND Solve technique we 

can handle various ODE's system as well as some specific PDE's system. For general ODE's 

system having number of equation n  . .i e  1 2 3( , , ,... )nq q q q , number of dependent variable n  ( .i e  

1 2 3, , ,... )nu u u u , independent variable x and conditions according to the order system of ODE's. By 

ND Solve technique this system can be handled as 

1 2 3[{ , , ,... ,nNDSolve q q q q  boundary conditions 1 2 3 min max},{ , , ,... },{ , , }]nu u u u x x x . 

 

Discussion 

This section elaborates the detail of involved variables on velocity profile, temperature and 
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concentration fields. 

Velocity 

Fig. 9.2 shows the influence of 𝑁∗ on velocity. More fluid motion is noted for higher values of 𝑁∗ 

and therefore velocity is increased. Velocity field versus magnetic field is portrayed in Fig. 9.3. 

Since more Lorentz force is for increasing values of Ha, therefore fluid motion is opposed. Hence 

velocity decreases as seen in Fig. 9.3. Velocity is showing an increasing behavior for nonlinear 

mixed convection thermal variable in Fig. 9.4. Physically, temperature difference between the 

liquid particles increases which is the reason for the fluid velocity enhancement. Fig. 9.5 sketches 

the effect of nonlinear mixed variable subject to concentration on velocity. Here velocity field 

boosts up subject to larger nonlinear mixed convection variable subject to concentration. Fig. 9.6 

displays the behavior of 𝛽 on velocity distribution. For larger 𝛽, relaxation time is increased which 

reduces velocity of the fluid. Fig. 9.7 portrayed the impact of 𝐴 on velocity distribution. Increasing 

trend is observed around stagnation point. No boundary layer exists when both sheet/wall and free 

stream velocity are same. 

 

𝐹𝑖𝑔. 9. 2: 𝑓′(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑁∗. 
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𝐹𝑖𝑔. 9.3: 𝑓′(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎. 

 

𝐹𝑖𝑔. 9.4: 𝑓′(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛽𝑡
∗. 

 

𝐹𝑖𝑔. 9.5: 𝑓′(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛽𝑐
∗. 
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𝐹𝑖𝑔. 9.6: 𝑓′(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛽. 

 

𝐹𝑖𝑔. 9.7: 𝑓′(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐴. 

Temperature 

Behaviors of different involved parameters such as thermophoresis parameter 𝑁𝑡 , temperature ratio 

parameter 𝜃𝑤, Brownian motion 𝑁𝑏, Eckert number 𝐸𝑐, Prandtl 𝑃𝑟 and radiation parameter 𝑅𝑑 on 

temperature are shown though Figs. 9.8-9.13. For larger 𝑁𝑡, motion of particles from hot to cold 

region increases which enhances temperature as given in Fig. 9.8. Similarly Brownian motion 

parameter 𝑁𝑏 is responsible for enhancement in thermophoresis force, thus temperature rises (See 

Fig. 9.9). Increasing behavior is noted for larger values of temperature difference parameter and 

consequently it rises the temperature (see Fig. 9.10). Effect of 𝑃𝑟 number on temperature is given 

in Fig. 9.11. Temperature decreases for higher 𝑃𝑟. Fig. 9.12 displays the temperature distribution 
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via Eckert number Ec. The internal friction between the layers result in the conversion of 

mechanical into thermal energy. Consequently, temperature of the system rises. Similarly more 

temperature distribution is observed for 𝑅𝑑 . (See Fig. 9.13). Fig. 9.14 is presented to portray the 

influence of 𝛾 on temperature. Since more heat is provided which increases the temperature. 

 

𝐹𝑖𝑔. 9.8: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑁𝑡. 

 

 

𝐹𝑖𝑔. 9.9: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑁𝑏 . 
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𝐹𝑖𝑔. 9.10: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝜃𝑤 . 

 

𝐹𝑖𝑔. 9.11: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑃𝑟. 

 

𝐹𝑖𝑔. 9.12: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐸𝑐. 
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𝐹𝑖𝑔. 9.13: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅𝑑. 

 

𝐹𝑖𝑔. 9.14: 𝜃(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛾. 

Concentration 

Figs. 9.15-9.18 portray the influence of chemical reaction 𝜎1, thermophoresis 𝑁𝑡 , Brownian motion 

𝑁𝑏 , Schmidt number 𝑆𝑐 and activation energy 𝛤 on concentration. Effect of chemical reaction on 

concentration field is shown in Fig. 9.15. It is noticed that concentration decreases for larger 𝜎1. 

For increasing 𝜎1 the destruction increases. Hence concentration decreases. Fig. 9.16 shows the 

impact of Schmidt number 𝑆𝑐 on concentration field. Larger 𝑆𝑐 results into decay of mass diffusion 

as well as its boundary layer. The effect of 𝑁𝑡 on concentration profile is drawn through Fig. 9.17. 

Concentration increases for larger 𝑁𝑡. Effect of activation energy on concentration profile is shown 

in Fig. 9.18. Larger activation energy decays the Arrhenius function and it increases the productive 

chemical reaction. Thus concentration of the nanoparticles increases. 
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𝐹𝑖𝑔. 9.15: 𝜙(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝜎1. 

 

𝐹𝑖𝑔. 9.16: 𝜙(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑆𝑐. 

 

𝐹𝑖𝑔. 9.17: 𝜙(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑁𝑡. 
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𝐹𝑖𝑔. 9.18: 𝜙(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 Г. 

Entropy 

This section describes in detail the quantities of engineering interests such as entropy optimization 

and Bejan number through different involved parameters. Figs. 9.19-9.32 are displayed for such 

purpose. Behaviors of 𝛽 on 𝑁𝐺  and 𝐵𝑒 are shown via Figs. 9.19 and 9.20. Higher 𝛽 requires more 

relaxation time which is responsible for losing more heat. That is why entropy of the system 

declines (see Fig. 9.19). However for Bejan number the opposite trend is seen in Fig. 9.20. Here 

heat and mass transfer irreversibilities are dominating the viscous irreversibility and thus 𝐵𝑒 

number increases. Behaviors of Brinkman number on 𝑁𝐺  and 𝐵𝑒 are represented in Figs. 9.21 and 

9.22. Here contrast impact is noticed for larger Brinkman number on both entropy and Bejan 

number. In Fig. 9.21 entropy increases while in Fig. 9.22 Bejan number decreases. Brinkman 

number 𝐵𝑟 always increases the entropy generation due to the heat conducting towards the fluid. 

(see Fig. 9.21). While opposite is the case for Bejan number. (See Fig. 9.22). Larger Hartmann 

number resists the fluid motion which enhances the entropy as given in Fig. 9.23. However 

increasing behavior is observed for Bejan number (see Fig. 9.24). Figs. 9.25 and 9.26 are sketched 

for the graphical interpretation of radiation parameter on both entropy and Bejan number. Clearly 

both entropy and well as Bejan number monotonically boosts up against larger radiation parameter. 

Figs. 9.27 and 9.28 highlight the salient features of Re on entropy as well as Bejan number. Clearly, 

both show inverse behavior against larger Re. Behavior of 𝜎1 on 𝑁𝐺  and 𝐵𝑒 is displayed in Figs. 

9.29 and 9.30. For higher 𝜎1, an enhancement in 𝑘𝑟 is observed which results an increase in entropy 

generation. While Bejan number decays against reaction parameter (see Fig. 9.30). Influences of 
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diffusion parameter 𝐿 on 𝑁𝐺  and 𝐵𝑒 are shown through Figs. 9.31 and 9.32. Both increase for 

larger 𝐿 due to more disturbance produced in the system and thus entropy enhances. 

 

𝐹𝑖𝑔. 9.19:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛽. 

 

𝐹𝑖𝑔. 9.20: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝛽. 

 

𝐹𝑖𝑔. 9.21:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐵𝑟. 



135 
 

 

𝐹𝑖𝑔. 9.22: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐵𝑟. 

 

𝐹𝑖𝑔. 9.23:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎. 

 

𝐹𝑖𝑔. 9.24: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝑎. 
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𝐹𝑖𝑔. 9.25:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅𝑑 . 

 

𝐹𝑖𝑔. 9.26: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅𝑑. 

 

𝐹𝑖𝑔. 9.27:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅𝑒. 
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𝐹𝑖𝑔. 9.28: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝑅𝑒. 

 

𝐹𝑖𝑔. 9.29:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝜎1. 

 

𝐹𝑖𝑔. 9.30: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝜎1. 
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𝐹𝑖𝑔. 9.31:𝑁𝑔(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐿. 

 

𝐹𝑖𝑔. 9.32: 𝐵𝑒(𝜂) 𝑣𝑒𝑟𝑠𝑢𝑠 𝐿. 

Concluding remarks 

Here nonlinear radiative and mixed convective flow of Casson fluid is discussed. Heat generation, 

activation energy and magnetic effects are calculated. Key points are: 

• Velocity of the liquid particles enhances versus 𝑁∗ while it declines against magnetic 

parameter. 

• Thermal field is more prominent against larger Eckert number, Brownian motion and 

thermophoresis variables. 

• Concentration field declines against reaction variable. 

• Entropy and Bejan number show inverse impact against material parameter. 
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