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Preface 

Low thermal efficiency of working fluids is a main problem for several heat transport 

mechanisms in the engineering applications. Thus several researchers are engaged to develop an 

innovative way for improvement of thermal efficiency of working fluids. Many researchers have 

suggested different mechanisms to enhance the thermal efficiency of working fluids. Out of 

these, the insertion of nanoparticles in the working fluid known as nanomaterial is quite 

attractive. In addition the nanoliquid has vital role for cooling rate requirements with high 

thermal efficiency. Presently nanofluid dynamics has received remarkable attention of 

researchers due to its thermal transport in several areas. Nanofluids have applications in engine 

cooling, transformer cooling, microwave tubes, impingement jets, high-power lasers, renewable 

energies, lubrication, cooling of welding, thermal storage and solar water heating, heat 

exchangers, automotive, heating and tempering process, nuclear reactors, combustion and 

medicine and electronic chips cooling etc. High efficient oils and lubricants can be developed by 

the use of nanofluid. Magnetonanofluid dynamics is an attractive field of research in which 

physics of electrically conducting liquids like plasma and electrolytes or salt water and liquid 

metals has been analyzed. Mixture of working liquid and magnetic nanoparticles is termed as 

magnetonanofluid. Magnetonanofluids execute intrinsic role in MHD pumps and accelerators, 

some arterial diseases and hyperthermia, cancer tumor treatment, reduction of blood during 

surgeries and sink float separation etc. 

Heat transfer in rotating flows is interesting area of research. It is because of their enormous 

applications in manufacturing of crystal growth, computer storage device, thermal power 

generation, gas turbine rotors etc. It is recognized fact that the nanofluids have pivotal role in the 

intensification of heat transfer. Thus we inspired to study nonlinear rotating flow problems in the 



presence of nanoparticles. It is noted that two-dimensional nonlinear flow problems subject to 

fixed frame in literature are much studied when compared with the three-dimensional nonlinear 

flow problems in rotating frame. Keeping such facts in mind the present thesis is organized for 

three-dimensional nonlinear flow problems of nanofluids subject to rotating frame. The present 

thesis is designed as follows. 

Chapter one has literature review of relevant previous published works and relations for 

conservations of mass, momentum, energy and concentration. Tensor forms for non-Newtonian 

fluids (Maxwell, Oldroyd-B and Jeffrey) are presented. Fundamental concept of optimal 

homotopy analysis method is included in this chapter. 

Chapter two elaborates three dimensional rotating flow of nanoliquid induced by a stretchable 

sheet. Darcy-Forchheimer porous space is considered. Thermophoretic diffusion and random 

motion aspects are retained. Heat and mass flux conditions are implemented at stretchable 

surface. Convergent series solutions have been derived for velocities, temperature and 

concentration. Optimal homotopy analysis technique (OHAM) is implemented for the solutions 

development. Further surface drag coefficients and heat and mass transfer rates are presented via 

plots. The contents of this chapter are published in International Journal of Numerical 

Methods for Heat and Fluid Flow 28 (2018) 2895-2915. 

Chapter three is the extension of chapter two for convective boundary conditions, heat 

generation/absorption, binary chemical reaction and activation energy. The nonlinear differential 

systems are numerically tackled by built-in shooting technique. Observations of this chapter are 

published in Journal of Thermal Analysis and Calorimetry 136 (2019) 1769-1779. Chapter 

four generalizes contents of chapter two for homogeneous-heterogeneous reactions. The results 

of this chapter are published in Physica Scripta 94 (2019) 115708. 



 

Chapter five addresses the Darcy-Forchheimer three dimensional flow of nanoliquid induced by 

an exponentially stretchable surface in rotating frame. Thermophoretic diffusion and random 

motion aspects are retained. Prescribed surface heat and mass fluxes are implemented at 

stretchable surface. The governing systems are solved numerically by built-in shooting 

technique. Moreover temperature, concentration, surface drag coefficients and local Nusselt and 

Sherwood numbers are graphically illustrated. The data of this chapter is published in Journal of 

Thermal Analysis and Calorimetry 136 (2019) 2087-2095. 

Chapter six illustrates the novel feature of entropy generation for three-dimensional rotating flow 

of nanoliquid with porous medium, velocity slip condition and activation energy. 

Thermophoretic dispersion and an irregular motion phenomena are also analyzed. Numerical 

solution is determined via efficient numerical method namely built-in shooting method. The 

obtained results for involved pertinent variables are examined through graphs for velocities, 

entropy generation, nano-concentration, temperature, skin-friction, local Nusselt number, Bejan 

number and local Sherwood numbers. Material of this chapter is submitted for publication in 

International Communications in Heat and Mass Transfer. Chapter seven extends the 

analysis of previous chapter for convective heat and mass conditions, magnetohydrodynamics 

(MHD), Joule heating and heat generation/absorption. Outcomes of this chapter are submitted for 

publication in Journal of Non-Equilibrium Thermodynamics. 

Chapter eight examines the impact of activation energy on three dimensional rotating flow of 

Maxwell nanoliquid with nonlinear radiative heat flux. Thermophoretic dispersion and irregular 

motion are investigated. Convective conditions of heat and mass are employed at the boundary. 



Shooting technique is implemented for solutions development. Influences of numerous emerging 

flow parameters on nano-concentration, temperature and mass and heat transfer rates are 

elaborated through graphs. The findings of this chapter have been submitted for publication in 

Journal of the Brazilian Society of Mechanical Sciences and Engineering. 

 Chapter nine describes three dimensional rotating flow of an Oldroyd-B nanoliquid due to 

linearly extendable surface. Brownian movement and thermophoresis are explored. Thermal 

convective condition and a condition associated with zero nanomaterials flux are implemented at 

the boundary. The nonlinear differential expressions are solved through optimal homotopy 

analysis method (OHAM). Moreover velocities, temperature, concentration and transfer of heat 

rate are discussed graphically. The observations of this chapter have been published in Journal 

of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019) 236. 

Chapter ten communicates three-dimensional rotating flow of Jeffrey nanoliquid in the presence 

of binary chemical reaction and activation energy. Impact of heat generation/absorption is also 

examined. Furthermore thermophoretic dispersion and irregular motion phenomena are 

investigated. Thermal convective and zero flux of nanoparticles conditions are accounted at the 

surface. Optimal homotopy analysis technique is utilized for solutions construction. Impacts of 

pertinent variables on velocities, nano-concentration, temperature and rate of heat transfer are 

interpreted through plots. The results of this research have been submitted for publication in 

Journal of Thermal Analysis and Calorimetry. 
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Chapter 1

Literature survey and some basic

definitions

1.1 Introduction

Here survey of existing literature about nanoliquid, Darcy-Forchheimer porous medium, homogeneous-

heterogeneous reactions, entropy generation, rotating flow, non-Newtonian fluids and binary

chemical mechanism and activation energy is presented. Some relevant fundamental laws are

included. Mathematical models of rate type non-Newtonian fluids are given. Further the fun-

damental concepts of optimal homotopy and built-in shooting techniques are also presented to

develop the series and numerical solutions respectively.

1.2 Background

The addition of nanosized (1− 100) metallic or any other particles in common fluids makes
nanofluids. Nanofluids have the capability to elevate the heat transfer rate through increasing

thermal efficiency of common liquids. For this purpose the nanoparticles are dispersed in com-

mon liquids to improve the efficiency of heat transport procedure. Nanofluids have numerous

applications in nanoscale technology, like in air-conditioners, combustors, melt spinning, medi-

cine manufacturing, microelectronics, computer processors and heat exchangers etc. Further

in cancer therapy, wound treatment, hyperthermia and resonance imaging are more support-
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able for the case of magneto nanofluids (MNFs). The fundamental investigations regarding

increment of thermal characteristics due to nanoparticles suspension into ordinary liquids was

performed by Choi [1]. Afterward Buongiorno [2] formulated the nanofluid model by consid-

ering the effects of Brownian dispersion and thermophoretic diffusion. Chamkha et al. [3]

developed similarity solution for time-dependent flow from a moving sheet with porous space

effect. Analytical methods for MHD nanofluids flow with heat and mass transport aspects are

reported by Turkyilmazoglu [4]. Rashidi et al. [5] computed homotopic solutions of nanoliquid

flow induced by a non-linearly stretching isothermal porous surface. Hayat et al. [6] examined

hydromagnetic properties in 3D non-Newtonian nanoliquid flow. Raju et al. [7] constructed

dual solutions for 3D nanomaterials hydromagnetic flow induced by a variable permeable accel-

erating sheet. Influence of hydromagnetic flow of nanoliquid by nonlinear convectively heated

stretching sheet is elaborated by Hayat et al. [8]. Impact of MHD on 3D radiative flow of

nanofluid over permeable linear actuating surface is deliberated by Nayak et al. [9]. Impact

of combined Fourier’s and Fick’s expressions in Burgers nanoliquid flow is due to Hayat et al.

[10]. Numerical treatment for magnetohydrodynamic three-dimensional radiative slip flow of

nanofluids caused by a nonlinear accelerating sheet is elaborated by Mahanthesh et al. [11].

An optimal study for non-Darcian 3D flow of Carreau nanoliquid is done by Hayat et al. [12].

Sheikholeslami [13] investigated the influence of MHD in Al2O3-water nanoliquid transportation

inside a porous space utilizing innovative computer technique. Heat and mass transfer features

of 3D Maxwell nanoliquid by an exponentially moving sheet is scrutinized by Ali et al. [14].

Recently numerical study for thermoelectro-hydrodynamic convection in a horizontal dielectric

nanoliquid layer using the power series method is done by Yadav et al. [15].

Chemical mechanisms are associated with abundant artificially responding structures like

catalysis, consuming and biochemical frameworks. These mechanisms respond distinctively in

the presence or nonappearance of an impetus. In homogeneous mechanism, both impetus and

substances work in the comparable stage (strong, fluid or gas) while for heterogeneous response,

both impetus and substances work in various stage. Examples in this direction may include

polymer creation, hydro-metallurgical devices, assembling of earthenware production, biochem-

ical structures, refining process, digestion of sustenance in body, blast of firecrackers and so

forth. Boundary layer stream of thick fluid subject to heterogeneous-homogeneous responses is
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examined by Merkin [16]. Chaudary and Merkin [17] researched heterogeneous-homogeneous

responses with comparable diffusivities. Kameswaran et al. [18] contemplated the nanoliquid

flow initiated due to a porous surface with heterogeneous-homogeneous responses. Imtiaz et

al. [19] examined homogeneous-heterogeneous impacts in magnetohydrodynamic flow by an

exponential sheet. Hayat et al. [20] inspected impact of Cattaneo-Christov fluxes in 3D sec-

ond grade liquid flow with heterogeneous-homogeneous responses. An adjusted homogeneous-

heterogeneous model for magnetohydrodynamic stagnation flow subject to dispersal and Ohmic

heating is elaborated by Khan et al. [21]. An optimization analysis for non-Darcian 3D nano-

liquid flow subject to convective effect and heterogeneous-homogeneous responses is reported

by Hayat et al. [22]. Heterogeneous-homogeneous model for blended convection in gravity-

driven film flow of nanofluids is due to Raees et al. [23]. Alzahrani [24] discussed non-Darcian

3D flow of carbon nanotubes with heterogeneous-homogeneous reactions. Numerical treatment

of liquefying exchange of warmth and heterogeneous-homogeneous model in flow with carbon

nanotubes is examined by Hayat et al. [25]. Recently Almutairi et al. [26] elaborated MHD

flow of nanoliquid with heterogeneous-homogeneous reactions and second order slip velocity

embedded in a porous space.

Rotating flow of nanoliquid over a stretching surface has become one of the most important

topics. It is because to its versatile utilizations in industrial and engineering mechanisms. Such

flows have a prominent role in rotor-systems, air-cleaning machines, thermal-power generation,

medical equipment, electronic devices and computer storage devices etc. Initially Wang [27]

explained stretching of surface in a rotating fluid. Local similar solution for swirling flow induced

by an exponentially movable continuous sheet is developed by Javed et al. [28]. Nanoliquid

swirling flow by an exponentially stretched permeable sheet is due to Rosali et al. [29]. Mustafa

et al. [30] employed generalized Fourier’s law for swirling Maxwell liquid flow. Maqsood et al.

[31] analyzed the influence of heterogeneous-homogeneous mechanisms in viscoelastic fluid flow

subject to rotating frame. Non-Darcian flow of nanoliquid in a rotating frame of reference is

explained by Hayat et al. [32]. Jusoh et al. [33] examined ferroliquid flow by an exponentially

squeezing/actuating surface in a rotating frame of reference. Numerical treatment for non-

Darcian 3D swirling flow subject to activation energy and binary chemically reactive mechanism

is discussed by Hayat et al. [34]. Characteristics of 3D swirling flow of hybrid carbon nanotube
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past an exponentially deformed sheet are elaborated by Hayat et al. [35]. Aziz et al. [36]

computed optimal solutions for 3D swirling flow of Oldroyd-B nanoliquid with convective effect.

Impact of activation energy on rotating Maxwell nanomaterial flow is illustrated by Rashid et

al. [37]. Numerical study for non-Darcian three-dimensional swirling flow of nanoliquid with

prescribed fluxes is done by Hayat et al. [38]. Impacts of ion slip and Hall on hydromagnetic

swirling flow of nanoliquid induced by an infinite vertical plate through permeable space are

examined by Krishna and Chamkha [39].

Entropy production has prominent role in the study of heat transfer mechanisms. Entropy is

a measure of the randomness or molecular disorder of a system. Entropy produces due to vari-

ous causes of forces like magnetic forces, viscous dissipation, porous medium, thermal gradient,

chemical and diffusion reactions. Entropy production refers to irreversible thermodynamical

deterioration of thermal systems. The performance of engineering equipment is depreciated

for higher rate of entropy production. Therefore, the minimization of entropy production is

the prime perception to elevate the fertility of the thermal systems in industrial sector. Bejan

[40 41] was the first who initiated the concept of entropy optimization. Noghrehabadi et al. [42]

analyzed entropy production for nanoliquid flow considering heat source/sink effect. Entropy

production optimization for non-Newtonian nanoliquid flow with passive control of nanoma-

terials at the moving sheet is elucidated by Rehman et al. [43]. Bhatti et al. [44] examined

entropy production optimisation for flow of non-Newtonian nanomaterial flow generated by a

porous moving surface employing Successive Linearization method. Entropy production in sec-

ond grade hydromagnetic radiative flow of nanoliquid induced by a convectively heated moving

sheet with viscous dissipation is explained by Sithole et al. [45]. Alharbi et al. [46] presented

entropy production in hydromagnetic Eyring-Powell liquid flow induced by a time-dependent

oscillatory moving sheet with thermal radiation. Seyyedi et al. [47] constructed computational

framework for free convective MHD flow in view of entropy generation. Rashid et al. [48] car-

ried out analysis for ferromagnetic liquid flow with nonlinear radiation and entropy production.

Irreversibility analysis for hydromagnetic flow of third order nanoliquid through a permeable

space is examined by Hayat et al. [49].

Mass transfer analysis involving chemically reactive mechanism with activation energy has

acheived much attention among the researchers. It is due to its various implications in met-

7



allurgy and chemical engineering processes. The occurrence of mass transfer is based on mass

species concentration difference. First of all, the analysis of binary chemically reactive mecha-

nism was investigated by Bestman [50]. Chemical reaction effect on binary mixture of convective

liquid induced by a permeable surface is reported by Makinde and Olanrewaju [51]. Effective-

ness of activation energy on hydrodynamic flow subject to viscous heating and heat source/sink

is scrutinized by Maleque [52]. Consequences of binary chemically reactive mechanism on CNTs

and buoyancy effects is presented by Lu et al. [53]. Zaib et al. [54] computed numerical solution

of second law of thermodynamics for hydromagnetic Casson nanoliquid with binary chemically

reactive mechanism. Anuradha and Sasikala [55] elaborated MHD impact on natural convective

flow of nanoliquid caused by a porous shrinking sheet with activation energy and binary chemi-

cally reactive mechanism. Effect of activation energy in MHD Maxwell nanoliquid is explained

by Ramesh et al. [56]. Impact of activation energy and binary chemically reactive mechanism

on non-Darcian 3D rotating nanofluid flow due to Hayat et al. [57]. Reddy et al. [58] discussed

impact of nonlinear radiative heat flux in 3D magneto slip flow of Eyring-Powell nanoliquid

flow induced by a stretch up surface with binary chemically reactive mechanism. Consequences

of magnetohydrodynamic flow of squeezed fluid with activation energy and binary chemically

reactive mechanism are discussed by Ahmad et al. [59].

The study of fluid flow and heat transport process in a porous media has received much

attention of the researchers. It is because of its ample utilizations in chemical, industrial and

technological manufacturing goods such as contaminant pollution control, hydrocarbon ex-

ploitation, nuclear waste document, ground water pollution, water resource management, weld-

ing and casting in manufacturing mechanisms, permeable bearings, sustainable urban drainage,

solar power systems and hazardous waste isolation etc. In 1856, Darcy developed a law which

states that there exists a direct relation between volumetric flux of fluid through medium and

pressure gradient. Basically Darcy expression [60] is used widely in the previous problems as-

sociated to modelling, simulation and study of flow saturating permeable space. Features of

weaker porosity and smaller velocity are elaborated through only traditional Darcy’s model.

Both boundary and inertia impacts are ignored by this model. Non-Darcian porous space is

modern form of classical Darcy’s model accomodates both boundary and inertia impacts. Hence

Forchheimer [61] analyzed inertia through the inclusion of a square velocity term in momentum
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expression. Muskat [62] titled such term as Forchheimer factor. Many researchers have done

incredible works on flow in non-Darcian porous space (see [63− 80]).
The investigations related to non-Newtonian materials have acquired immense importance

due to their widespread utilizations in industrial and engineering mechanisms. Those fluids

which do not follow the traditional Newton’s viscosity relation are non-Newtonian fluids. Ex-

amples of this kind of fluid may contain custard, blood, condensed milk, tomato paste, printing

ink, specific grease, sugar solution, cosmetic products, polymer melts and many more. Non-

Newtonain liquids are classified into three types i.e. (a) differential type (b) integral type and

(c) rate type. Only rate type non-Newtonian liquids have been discussed in this thesis. These

rate type non-Newtonian models exhibit the main features of stress retardation and relaxation.

Maxwell liquid model [81 82] is the most simplest category of rate type non-Newtonian liquid.

This model explores remarkable properties of relaxation time. Effect of retardation time cannot

be predicted by Maxwell model. In order to compensate this discrepensy offered by Maxwell

relation, the Oldroyd-B model [83 84] is proposed. The features of both retardation and relax-

ation times are generally not exhibited by most of the organic and polymeric structures. An

another adopted model (Jeffrey liquid [85 86]) falls in the category of such liquids which has

time derivative instead of convective derivative. This model shows the features of relaxation to

retardation time ratio and retardation time.

1.3 Basic relations

1.3.1 Conservation of mass

Mathematical form of continuity expression for compressible liquid is

∇ ·
³

̂
V̄∗

´
+


̂


= 0 (1.1)

where velocity, density and time are symbolized by V̄∗, 
̂
and  respectively. For incompress-

ible liquid (
̂
= constant) and the above relation (11) reduces to

∇ · V̄∗ = 0 (1.2)
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1.3.2 Conservation of momentum

Equation of motion for non-rotating system is


̂

V̄∗


=∇ · τ+

̂
b̄∗ (1.3)

where 
̂
depicts density,  material time derivative, τ = −̄I∗+S̆∗ Cauchy stress tensor,

 pressure, S̆∗ extra stress tensor, Ī∗ identity tensor and b̄∗body force vector. Equation of

motion in rotating frame can be written as


̂

µ
V̄∗


+ 2(ω × V̄∗

) +ω × (ω × r)
¶
=∇ · τ+

̂
b̄∗ (1.4)

in which ω represents the angular velocity, ω × (ω × r) and 2(ω × V̄∗
) the centrifugal and

Coriolis forces respectively.

1.3.3 Conservation of energy

Nanoliquid energy expression is

()
̂

̃


= ∇ · j̃ −∇ · q̂ (1.5)

In above relation ()
̂
̃

, , q̂, j̃denote internal energy, nanoparticles specific enthalpy, heat

and mass fluxes for nanoparticles diffusion respectively. The expressions of j̃ and q̂ are

j̃ = −∇̃ − 
∇̃
̃∞

 (1.6)

q̂ = j̃ − ∇̃  (1.7)

By employing (16) and (17), the energy expression for nanoliquids satisfies

()
̂

̃


= ∇2̃ + ()

Ã

∇̃ ∇̃

̃∞
+∇̃∇̃

!
 (1.8)

10



1.3.4 Conservation of concentration

Concentration relation for nanoliquid can be expressed as

V̄∗∇̃ + ̃


= − 1


∇̃j (1.9)

After implementing Eq. (16), one obtains

V̄∗∇̃ + ̃


= 

∇2̃
̃∞

+∇2̃ (1.10)

1.4 Non-Newtonian liquids

1.4.1 Maxwell liquid model

Extra stress tensor (S̆∗) is

µ
1 + ∗1





¶
S̆∗ = ∗1

S̆∗


+ S̆∗ = Ā∗1  (1.11)

where ∗1 , ,  and Ā∗1 represent relaxation time, covariant differentiation, absolute vis-

cosity and first Rivlin-Erickson tensor respectively. Here Ā∗1 can be written as

Ā∗1 =
¡
grad V̄∗¢̄ + (grad V̄∗) (1.12)

in which ̄ expresses transpose of matrix and

(grad V̄∗) =

⎡⎢⎢⎢⎣



























⎤⎥⎥⎥⎦  ¡
grad V̄∗¢̄ =

⎡⎢⎢⎢⎣



























⎤⎥⎥⎥⎦  (1.13)

1.4.2 Oldroyd-B liquid model

Extra stress tensor (S̆∗) for this model can be defined as

µ
1 + ∗1





¶
S̆∗ = ∗1

S̆∗


+ S̆∗ = 

µ
1 + ∗2





¶
Ā∗1  (1.14)
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in which (∗2  ∗1 ) signify (retardation, relaxation) times respectively.

1.4.3 Jeffrey liquid model

Extra stress tensor (S̆) for Jeffrey liquid is

S̆∗ =


1 + ∗1

µ
∗2

Ā∗1


+ Ā∗1

¶
 (1.15)

where (∗2  ∗1 ) are (retardation, relaxation to retardation ratio) times respectively.

1.5 Solution methodologies

1.5.1 Optimal homotopic technique (OHAM)

The optimal homotopic scheme (OHAM) [87−93] is employed to develope approximate solutions
of highly nonlinear partial/ordinary system. The convergence of approximate series solution is

controlled and also adjusted by (OHAM) scheme. In order to perceive the preliminary concept

of (OHAM), we assume a strong nonlinear differential expression

N̆ [ ()] = 0 (1.16)

in which N̆ exhibits the non-linear operator and  () the unknown function of independent

variable .

Deformation at zeroth-order

The expression of zeroth-order deformation is

³
1− Þ̌∗

´
L̃
h
̂
³
; Þ̌

∗´− ̂0 ()
i
= Þ̌

∗
~̄N̆

h
̂
³
; Þ̌

∗´i
 (1.17)

in which ̂0 (), L̃, Þ̌∗ ∈ [0 1], ~̄ and ̂
³
; Þ̌

∗´
denote the initial guess, auxiliary linear

operator, embedding parameter, nonzero auxiliary parameter and unknown function of  and

Þ̌∗ respectively.

12



̊th-order deformation

For ̊th-order deformation, we differentiate Exp. (117) w.r.t Þ̌∗ then divide by ̊! and

finally putting Þ̌∗ = 0, one obtains

L̃ [̊ ()− ̊̊−1 ()] = ~̄R̊ ()  (1.18)

R̊ () =
1

(̊ − 1)!
̊

N̆
h
̂
³
; Þ̌

∗´i
Þ̌

∗

¯̄̄̄
¯̄
Þ̌
∗
=0

 (1.19)

where

̊ =

⎧⎨⎩ 0 ̊ ≤ 1
1 ̊  1

 (1.20)

Inserting Þ̌∗ and Þ̌∗ = 1, one has

̂ (; 0) = ̂0 () and ̂ (; 1) =  ()  (1.21)

Applying the concept of Taylor series, we obtain

̂
³
; Þ̌

∗´
= 0 () +

∞X
̊=1

̊ () Þ̌
∗̊

 ̊ () =
1

̊!

̊

̂
³
; Þ̌

∗´
Þ̌

∗̊

¯̄̄̄
¯̄
Þ̌
∗
=0

 (1.22)

For Þ̌∗ = 1 we get

 () = 0 () +

∞X
̊=1

̊ ()  (1.23)

Optimal convergence control parameter

Both convergence region and homotopic solution rate are regulated by non-zero auxiliary vari-

able (~). To acquire optimal value of convergence control variable (~) we have utilized the

concept of minimization by considering the average squared residual errors as recommended by

Liao [87] 

̃̊ =
1

 + 1

X
=0

⎡⎣N̆
⎛⎝ ̊X

̊=0

̊ ()

⎞⎠
=

⎤⎦2  (1.24)

where total squared residual error is symbolized by ̃̊ .
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1.5.2 Numerical approach

The numerical solutions of differential equations are presented in chapters 3 and 5 to 8. The

solutions have been constructed in MATHEMATICA by using built-in shooting technique [93−
100]. The differential systems can be directly solved by this technique.

14



Chapter 2

Darcy-Forchheimer flow of nanofluid

subject to rotating frame

This chapter focuses on non-Darcian three-dimensional rotating flow of nanoliquid with con-

stant thermal and mass fluxes. Buongiorno model is employed for thermophoresis and Brownian

diffusion. Ordinary differential systems are constructed by appropriate transformations. Re-

sulting mathematical systems are computed by optimal homotopic procedure. The velocity

components, temperature and nano-concentration are analyzed graphically. In addition surface

drag coefficients and local Nusselt and Sherwood numbers are sketched and analyzed. Our

observations indicate that an elevation in rotation parameter and Forchheimer number leads to

weaker velocity fields while an inverse trend is noticed for temperature and nano-concentration.

2.1 Statement

Here we intend to study three-dimensional rotating flow of nanoliquid due to a linearly stretch-

able surface. Darcy-Forchheimer porous medium is considered. Heat and mass flux conditions

are imposed. Impacts of thermophoresis and random motion are also studied. Cartesian frame-

work is employed. Let () =  be surface moving velocity. Furthermore fluid rotates along

15



−direction with uniform angular velocity  (see Fig. 21). Resulting relations satisfy

Fig. 21 : Flow configuration.




+




+




= 0 (2.1)





+ 




+




− 2 = 

2

2
− 


− 2 (2.2)





+ 




+ 




+ 2 = 

2

2
− 


 − 2 (2.3)





+ 




+ 




= 

2

2
+
()

()

Ã


∞

µ




¶2
+

µ








¶!
 (2.4)





+ 




+




=



∞

µ
2

2

¶
+

µ
2

2

¶
 (2.5)

with

 = () =   = 0  = 0 − 

µ




¶
=  −

µ




¶
=  at  = 0 (2.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (2.7)
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Note that   and  symbolize velocity components in − − and −directions while  ¡= 
¢
,

 and  denote kinematic viscosity, absolute viscosity and density of base liquid, 
 for per-

meability of porous space,  = 
12for inertia coefficient of porous space,  for drag

coefficient,  = () , , () and () for thermal diffusion, thermal efficiency, thermal

potential of liquid and effective thermal potential of nanomaterials,  for temperature,  the

Brownian diffusivity,  for nano-concentration,  for thermophoretic dispersion coefficient

and ∞ and ∞ the ambient fluid temperature and nano-concentration respectively. Selecting

 =  0()  = ()  = −()12()  = ¡


¢12


 = ∞ +
p





()  = ∞ +

p





()

⎫⎬⎭ (2.8)

equation (21) is justified while Eqs. (22)− (27) become

 000 +  00 −  0
2

+ 2Ω −  0 −  0
2

= 0 (2.9)

000 + 0 −  0 − 2Ω 0 −  − 2 = 0 (2.10)

00 +Pr
³
0 +

00 +
02
´
= 0 (2.11)

00 + 0 +




00 = 0 (2.12)

(0) = (0) = 0  0(0) = 1 0(0) = −1 0(0) = −1 (2.13)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (2.14)

Here rotation parameter, Prandtl number, porosity parameter, thermophoresis parameter,

Forchheimer number, Schmidt number and Brownian motion parameter are symbolized by

Ω, , , , ,  and  respectively. Nondimensional forms of these parameters are given

below:

 = 


   = 


12  Ω =



 Pr = 


  = 




 =
()(−∞)

()
  =

() (−∞)
()∞



⎫⎬⎭ (2.15)
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Dimensionless coefficients of skin friction and local Nusselt and Sherwood numbers are

(Re)
−12 =  00(0)

(Re)
−12 = 0(0)

(Re)
−12 =

1
(0)



(Re)
−12 = 1

(0)


⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Here (Re = ) represents local Reynolds number.

2.2 Initial guesses

The suitable initial guesses and operators are

0() = 1− −  0() = 0 0() = −  0() = −  (2.17)

...L
 =

3

3
− 



...L
 =

2

2
− 

...L
 =

2

2
− 

...L
 =

2

2
−  (2.18)

Operators in above expressions have properties

...L


h
̃∗
1 + ̃∗

2  + ̃∗
3 −

i
= 0

...L


h
̃∗
4  + ̃∗

5 −
i
= 0

...L


h
̃∗
6  + ̃∗

7 −
i
= 0

...L


h
̃∗
8  + ̃∗

9 −
i
= 0

⎫⎬⎭ (2.19)

in which ̃∗
1 ( = 1− 9) indicate arbitrary constants.

2.3 OHAM solutions

The non-zero auxiliary parameters ~  ~ ~ and ~ in solutions regulate the convergence

portion and also rate of homotopic solutions. For optimal data of ~  ~ ~ and ~, concept of

minimization via average squared residual errors suggested by Liao [87] is employed as follows:



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (2.20)
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

̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (2.21)

̊ =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (2.22)



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (2.23)

By Liao [87] :

̊ = 

̊ + 


̊ + ̊ + 


̊  (2.24)

Here ̊ expresses total squared residual error, ̆ = 20 and  = 05 At 2nd order of

approximations, the optimal values of convergence control variables are ~ = −0654264
~ = −134791 ~ = −15552 and ~ = −127278 and total averaged squared residual er-
ror is ̊ = 210×10−2. Figure 22 represents the plots of total residual error. Table 21 shows
individual average squared residual errors. Clearly averaged squared residual errors exhibit

decaying trend for higher order deformations.
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Figure 22 : Total residual error sketch.
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Table 2.1. Optimal convergence control variables and total average squared residual errors.

̊ 

̊ 


̊ ̊ 


̊

2 580× 10−4 320× 10−4 112× 10−2 891× 10−3

6 109× 10−4 404× 10−5 326× 10−3 284× 10−3

10 504× 10−5 134× 10−5 158× 10−3 172× 10−3

16 246× 10−5 432× 10−6 740× 10−4 106× 10−3

20 174× 10−5 242× 10−6 504× 10−4 831× 10−4

24 130× 10−5 146× 10−6 365× 10−4 676× 10−4

30 901× 10−6 766× 10−7 243× 10−4 521× 10−4

2.4 Discussion

This subsection consists of outcomes for interesting physical variables including porosity pa-

rameter (01 6  6 07), Brownian motion parameter (04 6  6 13), Forchheimer

number (00 6  6 12), Schmidt number (06 6  6 15), rotation parameter

Ω(00 6 Ω 6 045), Prandtl number Pr(07 6 Pr 6 16) and thermophoresis parameter

(00 6  6 06) on nondimensional velocities  0() and (), temperature  () and concen-

tration () fields. Figure 23 displays change in  0() for . Reduction is noted in velocity field

 0() against higher . Figure 24 is developed to examine the impact of  on velocity field

 0(). Higher  correspond to decay of  0(). Effect of Ω on  0() is presented via Figure 25.

Higher rotation parameter lead to lower velocity field. Physically the ratio of angular velocity to

stretching rate is termed as rotation parameter. Larger Ω yield higher rotational rate which give

rise to depreciate in  0() and momentum layer thickness. Figure 26 presents the outcome of 

for velocity (). Velocity field shows an increasing trend for higher . Figure 27 demonstrates

that velocity () reduces against . Figure 28 shows curves of velocity () against higher

Ω. Decaying behavior is seen by higher Ω. Figure 29 displays that how  varies  (). Temper-

ature  () is enhanced by higher values of . Figure 210 displays change in temperature  ()

for varying Forchheimer number . Here temperature is increased through . Figure 211

indicates that higher rotation parameter Ω yields stronger temperature field. Figure 212 shows

temperature field  () for varying Prandtl number . Temperature field  () is decreased
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for higher . Figure 213 elaborates outcome of thermophoresis parameter  on temperature

field  (). Here temperature field is enhanced for larger . Figure 214 indicates impact of

Brownian movement parameter  on temperature  (). One can easily observe increasing be-

havior of  () via higher . Figure 215 scrutinizes the variation in nano-concentration ()

for larger . It has been noted that higher estimation of  yields an increase in (). Figure

216 presents that nano-concentration () is higher for larger Forchheimer number . Fig.

217 shows an increase in nano-concentration () via higher Ω. Effect of Schmidt number 

on nano-concentration () is exhibited in Figure 218. In this Figure, we can analyze that

concentration field () exhibits decreasing trend via larger Schmidt number . Behavior of

 on () is presented in Figure 219. It is analyzed that larger  correspond to increasing

trend of concentration field (). Figure 220 is developed to deliberate the consequences of 

on (). An increment in  causes decay in nano-concentration field. Figure 221 displays the

behaviors of Ω and  on (Re)
−12 . It is noticed that (Re)

−12 enhances via  while

reverse trend is seen for Ω. Figure222 demonstrates the influences of  and Ω on (Re)
−12 

Apparently (Re)
−12 exhibits decaying trend against Ω while reverse situation is observed

for . Figure 223 depicts effects of  and Ω on (Re)
−12. Higher estimations of Ω and 

declare diminishing behavior for (Re)
−12. Figure 224 displays the influences of Ω and 

on (Re)
−12. From this Figure it is examined that (Re)

−12 presents increasing trend

for  while reverse trend is analyzed via Ω. Properties of Pr and  on (Re)
−12 (rate of

heat transfer)are disclosed through Figure 225. Interestingly (Re)
−12 reduces for both

Pr and . Figure 226 exhibits the behavior of  and  on (Re)
−12 (rate of mass

transfer). Here it is noticed that (Re)
−12 enhances through  and .
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Figure 23 : Sketch for  0() against .
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Figure 24 : Sketch for  0() against .
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Figure 25 : Sketch for  0() against Ω.
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Figure 26 : Sketch for () against .
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Figure 27 : Sketch for () against .
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Figure 28 : Sketch for () against Ω.
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Figure 29 : Sketch for () against .
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Figure 210 : Sketch for () against .
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Figure 211 : Sketch for () against Ω.
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Figure 212 : Sketch for () against Pr.
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Figure 213 : Sketch for () against .
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Figure 214 : Sketch for () against .
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Figure 215 : Sketch for () against .
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Figure 216 : Sketch for () against .
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Figure 217 : Sketch for () against Ω.

Sc = 0.8, 1.0, 1.2, 1.4

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

z

f
z

W = l = 0.2, Fr = Nt = 0.1, Nb = 0.3, Pr = 1.0

Figure 218 : Sketch for () against .
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Figure 219 : Sketch for () against .
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Figure 220 : Sketch for () against .
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Figure 221 : Sketch for  Re
12
 against Ω and .
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Figure 222 : Sketch for  Re
12
 against Ω and .
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Figure 223 : Sketch for  Re
12
 against Ω and .
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Figure 224 : Sketch for  Re
12
 against Ω and .
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Figure 225 : Sketch for Re
−12
  and Pr.
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Figure 226 : Sketch for Re
−12
 against  and .
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2.5 Major observations

Non-Darcian three-dimensional rotating flow of nanoliquid with constant thermal and mass

fluxes is discussed. Main findings are summarized below:

• Larger porosity parameter  show opposite behavior for both velocity profiles  0() and
() while similar trend is noticed for temperature () and nano-concentration ().

• Both velocities  0() and () have decreasing behavior for higher Forchheimer number

 while increasing impact is found for temperature () and nano-concentration ().

• An enhancement in rotation parameter Ω yields low velocity components while opposite
holds for temperature and nano-concentration.

• Nano-concentration and temperature are increasing function of thermophoresis parameter
.

• An enhancement in Prandtl number  and Schmidt number  corresponds to low

temperature and nano-concentration.

• Higher Brownian motion parameter  depict stronger temperature () while opposite

holds for nano-concentration ().
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Chapter 3

Influences of heat

generation/absorption and

activation energy in

Darcy-Forchheimer

three-dimensional rotating flow of

nanofluid

Non-Darcian three-dimensional rotating flow of nanoliquid in presence of activation energy and

heat sink/source is examined in this chapter. Heat and mass transport via convective process is

investigated. Buongiorno model is adopted to illustrate thermophoresis and Brownian diffusion.

An efficient numerical technique namely NDSolve is employed for computations of nonlinear

system. The graphical illustrations examine outcomes of various flow parameters. Local Nusselt

and Sherwood numbers are computed and examined. It is noticed that temperature and nano-

concentration are enhanced for Forchheimer number and porosity parameter.
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3.1 Statement

Here non-Darcian three dimensional rotating flow of nanoliquid through binary chemical mech-

anism, Arrhenius activation energy and heat generation/absorption is addressed. Heat and

mass transfer by convective conditions are examined. Nanoliquid has characteristics of Brown-

ian movement and thermophoresis. It is further assume that the surface is heated by hot liquid

with temperature  and concentration  (that provides heat and mass transport coefficients

1 and 2 respectively). Surface in Cartesian coordinate system is aligned with −plane and
fluid occupies  ≥ 0. Rate of stretching is . Whole system rotates with constant angular

velocity . Relevant problems for 3D flow satisfy




+




+




= 0 (3.1)





+ 




+




− 2 = 

2

2
− 

∗
− 2 (3.2)





+ 




+ 




+ 2 = 

2

2
− 

∗
 − 2 (3.3)





+




+




= ∗

2

2
+



()
(−∞)+ ()

()

Ã


∞

µ




¶2
+

µ








¶!
 (3.4)





+ 




+




= 

µ
2

2

¶
− 2 ( −∞)

µ


∞

¶

exp

µ
−



¶
+


∞

µ
2

2

¶
 (3.5)

 =  = ()  = 0  = 0 −  

= 1( −  )

−


= 2( − ) at  = 0

⎫⎬⎭ (3.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (3.7)

In which permeability of porous space, variable inertial coefficient of permeable space, drag

coefficient, thermal diffusivity, thermal potential of the liquid, specific thermal potential of

the nanomaterials, heat generation/absorption coefficient, Brownian movement, thermophoretic

dispersion coefficient, reaction rate, fitted rate constant, activation energy, Boltzmann constant,

coefficients of mass and heat transfer are symbolized by ∗,  = 
∗12 , , 

∗ = () ,

() , (), , ,  , , , , , 2 and 1 respectively. Setting
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 =  0()  = ()  = −()12()
 =

¡



¢12
 () = −∞

−∞  () = −∞
−∞ 

⎫⎬⎭ (3.8)

expression (31) is automatically verified and Eqs. (32)− (37) are reduced to

 000 +  00 −  0
2

+ 2Ω −  0 −  0
2

= 0 (3.9)

00 + 0 −  0 − 2Ω 0 −  − 2 = 0 (3.10)

00 +Pr
³
0 +

00 +
02 + 1

´
= 0 (3.11)

1


00 + 0 +

1







00 −  (1 + )  exp

µ
− 

1 + 

¶
= 0 (3.12)

(0) = (0) = 0  0(0) = 1 0(0) = −1(1− (0)) 0(0) = −2(1− (0)) (3.13)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (3.14)

Here porosity parameter, Forchheimer number, rotation parameter, heat generation/absorption

parameter, Prandtl number, Schmidt number, Brownian movement parameter, thermal Biot

number, thermophoresis parameter, chemical reaction parameter, concentration Biot number,

temperature difference parameter and nondimensional activation energy are denoted by , ,

Ω, 1, Pr, , , 1, , , 2,  and  respectively. We set these definitions as follows:

 = 
∗    =
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 =
()(−∞)

()
  =

2

 1 =

1


p


  = 

∞ 

 =
() (−∞)

()∞
 2 =

2


p


  =

−∞
∞ 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.15)

The physical quantities like skin friction coefficients and local Nusselt and Sherwood numbers

are

(Re)
−12 =  00(0)

(Re)
−12 = 0(0)

(Re)
−12 = −0(0)

(Re)
−12 = −0(0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.16)
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Here the local Reynolds number is given by Re = .

3.2 Discussion

This portion contains contribution of interesting physical variables including porosity parameter

, Forchheimer number , rotational parameter Ω, Prandtl parameter , Schmidt parameter

, heat generation (1  0) or absorption (1  0) parameter , Brownian movement parame-

ter , fitted rate constant , thermophoresis number , nondimensional activation energy ,

thermal Biot parameter 1, nondimensional reaction rate , temperature difference parameter

 and concentration Biot parameter 2 on temperature  () and nano-concentration () fields.

Figure 31 depicts that how porosity parameter  affects temperature  (). Temperature  ()

is elevated by porosity parameter . Figure 32 is interpreted for impact of  on  (). Higher

estimations of  correspond to stronger  (). Figure 33 indicates that higher rotation para-

meter Ω yield stronger  (). Figure 34 exhibits effect of 1 on  (). Here an increment in 1

generates more temperature. Figures 35 and 36 are sketched to analyze the impacts of heat

generation parameter (when 1  0) and heat absorption parameter (when 1  0). From these

Figures, it is observed that temperature and related thermal layer thickness show increasing

behavior while considering heat generation but in the case of heat absorption it has opposite

trend. Figure 37 presents estimations  () with respect to . Higher estimation of  yield

weaker temperature  () and less associated layer thickness. Figure 38 elaborates influence of

thermophoresis parameter  on temperature  (). Clearly temperature is enhanced via larger

. Figure 39 shows how temperature field  () gets affected with Brownian motion parameter

. For higher , the temperature field  () shows increasing trend. Figure 310 portrays 

variation on nano-concentration (). Higher  give rise to more (). An increment in Forch-

heimer number  shows elevation of () (see Figure 311). Figure 312 exhibits variation

in () for varying Ω. Here () elevates via higher Ω. Figure 313 exhibits the influence of

2 on nano-concentration (). Nano-concentration () increases via higher 2. Figure 314

elaborates influence of  on nano-concentration (). An increment in  decays modified Ar-

rhenius function
³


∞

´
exp

¡−


¢
. This finally develops the productive chemical mechanism

due to which () enhances. Figure 315 presents that an enhancement in chemical reaction
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parameter  exhibits a decay in nano-concentration () and its associated layer. Figure 316

elucidates influence of temperature difference parameter  on (). Here () is noted decreas-

ing function of . Figure 317 presents nano-concentration () for changing . Clearly ()

decreases for higher estimation of . Nano-concentration () against Schmidt number  is

shown in Figure 318. By higher , weaker nano-concentration () field is observed. Figure

319 exhibits nano-concentration () for particular values of . Clearly larger  give rise to

more nano-concentration (). Figure 320 elucidates that nano-concentration () reduces for

. Table 31 analyzed surface drag coefficients −(Re)−12and −(Re)−12 for several

estimations of Forchheimer number , porosity parameter  and rotation parameter Ω. Both

−(Re)−12and −(Re)−12 depict increasing trend for higher Ω while reverse behavior

is observed for larger  and . Table 32 computed local Nusselt (heat transfer rate) via  

Ω  1  and Pr. Rate of heat transfer decays via   Ω 1  and . Effects of 1

and Pr on local Nusselt (heat transfer rate) are quite similar. Table 33 exhibits numerical data

of rate of solutal transfer (local Sherwood number) (Re)
−12 via       

and 2. Clearly the mass transfer rate has lower and higher values for increasing ( ) and

(     2) respectively.

W = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

l = 0.0, 0.2, 0.4, 0.6

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

q
z

Figure 31 : Sketch for  () against .
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W = l = 0.2, Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

Fr = 0.0, 0.4, 0.8, 1.2

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

q
z

Figure 32 : Sketch for  () against .

l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

W = 0.0, 0.25, 0.45, 0.65

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

q
z

Figure 33 : Sketch for  () against Ω.
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W = l = 0.2, Fr = Nt = S1 = 0.1 , Pr = Sc = 1.0, n = E = 0.5,

s = d = Nb = 0.3, g2 = 0.4

g1 = 0.1, 0.5, 0.9 , 1.3

0 2 4 6 8 10

0.0

0.2

0.4

0.6

z

q
z

Figure 34 : Sketch for  () against 1.

W = l = 0.2, Fr = Nt = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

S1 = 0.0, 0.1, 0.2, 0.3

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

z

q
z

Figure 35 : Sketch for  () against 1( 0).
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W = l = 0.2, Fr = Nt = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

S1 = 0.0, -0.1, -0.2, -0.3

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

q
z

Figure 36 : Sketch for  () against 1( 0).

W = l = 0.2, Fr = Nt = S1 = 0.1, Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

Pr = 0.7, 1.0, 1.3, 1.6

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

z

q
z

Figure 37 : Sketch for  () against Pr.
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W = l = 0.2, Fr = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

Nt = 0.1, 0.7, 1.3, 1.9

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

z

q
z

Figure 38 : Sketch for  () against .

W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = 0.3, g1 = g2 = 0.4

Nb = 0.4, 0.7, 1.0, 1.3

0 2 4 6 8

0.0

0.1

0.2

0.3

0.4

0.5

z

q
z

Figure 39 : Sketch for  () against .
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W = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

l = 0.0, 0.2 , 0.4 , 0.6

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

f
z

Figure 310 : Sketch for  () against .

W = l = 0.2, Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

Fr = 0.0, 0.4, 0.8, 1.2

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

f
z

Figure 311 : Sketch for  () against .
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l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,

s = d = Nb = 0.3, g1 = g2 = 0.4

W = 0.0, 0.25, 0.45, 0.65

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

f
z

Figure 312 : Sketch for  () against Ω.

W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,

s = d = Nb = 0.3, g1 = 0.4

g2 = 0.1, 0.5, 0.9, 1.3

0 2 4 6 8 10

0.0

0.1
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z
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Figure 313 : Sketch for  () against 2.
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W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = 0.5,

s = d = Nb = 0.3, g1 = g2 = 0.4

E = 0.3, 0.8, 1.3, 1.8

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

z

f
z

Figure 314 : Sketch for  () against .

W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
d = Nb = 0.3, g1 = g2 = 0.4

s = 0.6, 1.1, 1.5, 2.0

0 2 4 6 8
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z

Figure 315 : Sketch for  () against .
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W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,

s = Nb = 0.3, g1 = g2 = 0.4

d = 1.0, 3.0 , 7.0 , 10.0

0 2 4 6 8

0.0

0.1

0.2

0.3

z

f
z

Figure 316 : Sketch for  () against .

W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = Sc = 1.0, E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

n = 0.0, 1.0, 2.0, 3.0

0 2 4 6 8

0.0

0.1

0.2

0.3

0.4

z

f
z

Figure 317 : Sketch for  () against .
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W = l = 0.2, Fr = Nt = S1 = 0.1, Pr = 1.0, n = E = 0.5,

s = d = Nb = 0.3, g1 = g2 = 0.4

Sc = 0.9, 1.2, 1.5, 1.8
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z
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z

Figure 318 : Sketch for  () against .

W = l = 0.2, Fr = S1 = 0.1, Pr = Sc = 1.0, n = E = 0.5,
s = d = Nb = 0.3, g1 = g2 = 0.4

Nt = 0.1, 0.3, 0.5, 0.7
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z

Figure 319 : Sketch for  () against .
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W = l = 0.2, Fr = Nt = S1 = 0.1 , Pr = Sc = 1.0, n = E = 0.5,
s = d = 0.3 , g1 = g2 = 0.4

Nb = 0.4, 0.7 , 1.0, 1.3

0 2 4 6 8

0.0

0.1

0.2

0.3

z

f
z

Figure 320 : Sketch for  () against .

Table 3.1: Numerical data for coefficients of skin friction −(Re)−12 and −(Re)−12

through various estimations of  Ω and 

  Ω −(Re)−12 −(Re)−12

00 01 02 106329 023769

01 110532 022319

02 114675 021087

02 01 02 114675 021087

02 117424 020994

03 120121 020905

02 01 005 112589 005425

01 113024 010786

02 114675 021087
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Table 3.2: Numerical data of local Nusselt number (Re)
−12 for various estimations of

  Ω 1  1  and Pr 

  1 Ω  1  Pr (Re)
−12

00 01 01 02 01 04 03 10 020049

01 019793

02 019516

02 01 01 02 01 04 03 10 019516

02 019395

03 019274

02 01 00 02 01 04 03 10 022327

01 019516

02 010988

02 01 01 00 01 04 03 10 019988

01 019867

02 019516

02 01 01 02 01 04 03 10 019516

07 017634

1 3 015554

02 01 01 02 01 015 03 10 010803

030 016816

045 020616

02 01 01 02 01 04 01 10 020031

02 019775

03 019516

02 01 01 02 01 04 03 10 019516

15 022758

20 024673
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Table 3.3: Numerical data of local Sherwood number (rate of mass transfer) for several

estimations of        and 2

       2 (Re)
−12

06 10 01 05 03 03 05 04 026683

14 029359

22 030795

03 05 01 05 03 03 05 04 024795

10 027188

15 028709

03 10 01 05 03 03 05 04 024795

03 023063

05 021648

03 10 01 015 03 03 05 04 025606

030 025247

045 024905

03 10 01 05 01 03 05 04 024649

03 024795

05 024932

03 10 01 05 03 01 05 04 022599

02 024244

03 024795

03 10 01 05 03 03 00 04 024679

05 024795

10 024915

03 10 01 05 03 03 05 03 020394

07 034320

10 040553
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3.3 Major observations

Final points of this chapter are listed below:

• Qualitatively the effects of  and  on temperature () and nano-concentration ()

are similar.

• Both temperature () and nano-concentration () represent increasing behavior for

higher rotational parameter Ω.

• Temperature () and associated thermal layer thickness are enhanced via (1  0) while
an opposite behavior is noted for (1  0).

• Temperature and nano-concentration have increasing trend against higher 1 and 2.

• Higher  give stronger nano-concentration field ().

• An enhancement in  and Pr yields low temperature and nano-concentration.

• Nano-concentration () shows decaying trend for higher  and .

• Both Temperature and nano-concentration have similar behavior for .

• Larger Brownian motion parameter  exhibit stronger temperature () while opposite

behavior holds for nano-concentration ().
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Chapter 4

Influence of

homogeneous-heterogeneous

reactions in three-dimensional

rotating flow of nanofluid subject to

Darcy-Forchheimer porous medium:

An optimal analysis

Non-Darcian three dimensional rotating flow of viscous fluid is analyzed in presence of heterogeneous-

homogeneous reactions. A deformable surface generates flow. Surface has constant mass and

thermal flux conditions. Novel characteristics of Brownian dispersion and thermophoresis are

retained. Optimal homotopic strategy is used to construct the solutions. Roles of influential

variables on physical quantities are graphically examined. Our findings reveal that an en-

hancement in thermophoresis parameter yields stronger thermal and concentration fields while

opposite holds via higher Brownian motion parameter.
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4.1 Statement

Here impact of homogeneous-heterogeneous reactions in 3D rotating flow of nanoliquid is dis-

cussed. Non-Darcian relation characterized permeable space. Constant heat and mass flux

conditions are also considered. Buongiorno relation of nanoliquid is employed in mathematical

development. Surface in Cartesian coordinate framework is considered. Liquid occupies the

space  ≥ 0. We denote  as the stretching rate. Homogeneous response for cubic catalysis is

+ 2 → 3  = 
2 (4.1)

At surface the heterogeneous response is

→   =  (4.2)

Here rate constants are symbolized by  and  and the substance species  and  have

concentrations  and  individually. Resulting expressions are




+




+




= 0 (4.3)





+ 




+




− 2 = 

2

2
− 

∗
− 2 (4.4)





+ 




+ 




+ 2 = 

2

2
− 

∗
 − 2 (4.5)





+ 




+ 




= 

2

2
+
()

()

Ã


∞

µ




¶2
+

µ








¶!
 (4.6)





+ 




+




=



∞

µ
2

2

¶
+∗

µ
2

2

¶
 (4.7)





+ 




+ 




= −2 +

µ
2

2

¶
 (4.8)





+ 




+ 




= 

2 +

µ
2

2

¶
 (4.9)
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subject to conditions

 =  = ()  = 0  = 0 − 
¡



¢
=  −

¡



¢
= 




=  



= − at  = 0

⎫⎬⎭ (4.10)

→ 0  → 0  → ∞  → ∞ → 0 → 0 as  →∞ (4.11)

Here   and  represent velocities in − − and −directions,  the absolute viscosity, ∗ the
porousness of permeable medium,  = 

∗12the variable inertial coefficient of permeable

space,  the drag coefficient,  =  the kinematic viscosity, 
∗ = () the warm

diffusivity, () the warmth capability of the fluid, () the viable warmth capability of the

nanomaterials,  the temperature, ∗ the Brownian development,  the concentration and

 thermophoretic dispersion coefficient. Letting

 =  0()  = ()  = −()12()  = ¡ 


¢12
  = ∞ +

p




()

 = ∞ +
p






()  = 0()  = 0()

⎫⎬⎭ (4.12)

expression (43) is automatically verified and Eqs. (44)− (411) are reduced to

 000 +  00 −  0
2

+ 2Ω −  0 −  0
2

= 0 (4.13)

00 + 0 −  0 − 2Ω 0 −  − 2 = 0 (4.14)

00 +Pr
³
0 +

00 +
02
´
= 0 (4.15)

00 + 
0 +





00 = 0 (4.16)

1


00 + 0 − 1

2 = 0 (4.17)




00 + 0 + 1

2 = 0 (4.18)

(0) = (0) = 0  0(0) = 1 0(0) = −1 0(0) = −1
0(0) = 2(0) 

0(0) = −2(0)

⎫⎬⎭ (4.19)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 1 (∞)→ 0 (4.20)
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Here porosity parameter, Forchheimer number, swirling parameter, Prandtl parameter, Brown-

ian movement parameter, Schmidt number, strength of homogeneous response, ratio of mass dis-

semination coefficients, thermophoresis parameter, Schmidt number (for heterogeneous-homogeneous

responses) and strength of heterogeneous response are symbolized by , , Ω, Pr, , , 1,

, ,  and 2 separately. These parameters are characterized by:

 = 
∗   =



∗12
 Ω = 


 Pr = 

∗   =
()

∗
(−∞)
()

  =

∗



1 =


2
0


  = 


  =

() (−∞)
()∞

  = 


 2 =



p




⎫⎬⎭ (4.21)

Assuming that  =  we have  = 1 and thus

() + () = 1 (4.22)

Now Eqs. (417) and (418) yield

1


00 + 0 − 1(1− )2 = 0 (4.23)

with the boundary conditions

0(0) = 2(0) (∞)→ 1 (4.24)

The physical quantities are given by

(Re)
−12 =  00(0)

(Re)
−12 = 0(0)

(Re)
−12 =

1
(0)



(Re)
−12 = 1

(0)


⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.25)

In above mentioned expressions, local Reynolds number is (Re = ) .
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4.2 Initial guesses

For OHAM solutions construction, the operators and initial guesses satisfy

0() = 1− −  0() = 0 0() = − 

0() = −  0() = 1− 1
2
−2  (4.26)

...L∗ =
3

3
− 



...L∗ =

2

2
− 

...L∗ =
2

2
− 

...L∗ =
2

2
− 

...L∗ =
2

2
−  (4.27)

We have following properties

...L


h
̃∗
1 + ̃∗

2  + ̃∗
3 −

i
= 0

...L


h
̃∗
4  + ̃∗

5 −
i
= 0

...L


h
̃∗
6  + ̃∗

7 −
i
= 0

...L


h
̃∗
8  + ̃∗

9 −
i
= 0

...L


h
̃∗
10  + ̃∗

11 −
i
= 0 (4.28)

in which ̃∗
 ( = 1− 11) indicate arbitrary constants.

4.3 OHAM solutions

The non-zero parameters ~  ~ ~ ~ and ~ in arrangements direct the combination partition

and furthermore rate of homotopic arrangements. For optimal information of ~  ~ ~ ~

and ~, idea of minimization through average squared errors proposed by Liao [87] is utilized

as follows.



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (4.29)



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (4.30)
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̊ =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (4.31)



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (4.32)

̊ =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (4.33)

By Liao [87] :

̊ = 

̊ + 


̊ + ̊ + 


̊ + ̊  (4.34)

where ̊ denotes total residual squared error,  = 05 and  = 20. Optimal data for con-

vergence control parameters at 2nd order of approximations is ~ = −057714 ~ = −135539
~ = −153886 ~ = −134514 ~ = −147433 and ̊ = 284× 10−2. Figure 41 displays the
plot of total residual error. Table 41 demonstrates individual normal squared residual errors.

It is examined that individual normal squared residual errors decays through order.
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Figure 41 : Total residual error sketch.
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Table 4.1. Optimal convergence control variables and total average squared residual errors.

̊ 

̊ 


̊ ̊ 


̊ ̊

2 501× 10−4 819× 10−5 116× 10−2 161× 10−2 978× 10−5

6 571× 10−5 110× 10−5 360× 10−3 678× 10−3 536× 10−5

10 207× 10−5 395× 10−6 180× 10−3 452× 10−3 411× 10−5

16 850× 10−6 143× 10−6 862× 10−4 302× 10−3 310× 10−5

20 563× 10−6 866× 10−7 588× 10−4 247× 10−3 268× 10−5

24 403× 10−6 568× 10−7 423× 10−4 208× 10−3 235× 10−5

30 268× 10−6 334× 10−7 279× 10−4 168× 10−3 199× 10−5

4.4 Discussion

This part shows outcomes of physical flow variables like porosity parameter (01 6  6

07), Forchheimer number (00 6  6 09), rotational parameter Ω(000 6 Ω 6 006),

Prandtl parameter Pr(07 6 Pr 6 16), Schmidt parameter (08 6  6 14), Brownian

movement parameter (01 6  6 04), thermophoresis number (000 6  6 045),

Schmidt number (01 6  6 15) (for homogeneous-heterogeneous reactions), homogeneous

reaction parameter 1(000 6 1 6 075) and heterogeneous reaction parameter 2(022 6 2 6

055) on nondimensional temperature  (), concentration () and concentration rate ().

Effect of Forchheimer number  on  () appeared in Figure 42. Both  () and thermal

layer are enhanced for . Physically an enhancement in  yields generation of higher drag

forces (resistive forces) and consequently due to these forces the temperature of fluid enhances.

Figure 43 explains impact of  on temperature  (). It is examined that by elevating ,  ()

raises. Figure 44 presents the curves of  () via Ω. Higher Ω improves  () and thickness of

thermal layer. Figure 45 demonstrates that  () is diminished via greater . Figure 46 shows

that how thermophoresis variable  influences temperature field. Higher  comprise more

temperature field. Figure 47 is developed to see the variation in  () via greater Brownian

movement parameter . More  offers an improvement in  (). Figure 48 presents varieties

in nano-concentration () for various estimations of . Here () becomes less for greater

. Figure 49 exhibits role of  on (). Here  enhanced () and related layer thickness.
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Curves of () against various estimations of Ω are shown in Figure 410. An increase in Ω

corresponds to more (). Figure 411 is developed to analyze the variation of () against

higher Schmidt number . This Figure demonstrates that higher  yields reduction in ().

Figure 412 displays nano-concentration () via greater estimations of . Greater  present

more (). Figure 413 clarifies that nano-concentraton () decreases for . Figure 414

outlines that concentration rate () elevates against higher Forchheimer number . Figure

415 is plotted to notice that how porosity  changes (). By expanding , () exhibits

increasing pattern. Impact of Ω on () is depicted in Figure 416. Here () is higher by

means of Ω. Figure 417 portrays that Schmidt number  relate to more (). From Figure

418 we see that higher homogeneous response parameter 1 demonstrates a decrease in ().

Figure 419 shows that more heterogeneous response parameter 2 gives higher concentration

rate (). Figure 420 introduces the effects of Ω and  on  Re
12
 . It is seen that  Re

12


upgrades for both Ω and . Figure 421 indicates effects of Ω and  on  Re
12
 . Obviously

 Re
12
 demonstrates elevating behavior for Ω and . Figure 422 elucidates outcome of Ω

and  on  Re
12
 . Clearly  Re

12
 elevates against stronger Ω while reduction is observed

via higher . Figure 423 displays the impacts of Ω and  on  Re
12
 . Obviously Re

12


shows similar pattern against higher  and Ω. Highlights of  and  on Re
−12
 are

revealed by means of Figure 424. Strikingly Re
−12
 decays for both  and . Figure

425 outlines the effects of  and  on Re
−12
 . From this Figure it is examined that

Re
−12
 decays via higher  while inverse outcomes are noticed for . Table 42 validates

the present results with the previous published results in a limiting sense. Here we noticed that

the present OHAM solutions have good agreement with the previous solutions by Wang [27].
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Figure 42 : Sketch for () against .
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Figure 43 : Sketch for () against .
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W = 0.0 , 0.02 , 0.04 , 0.06
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Figure 44 : Sketch for () against Ω.
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Figure 45 : Sketch for () against Pr.
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Figure 46 : Sketch for () against .
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Figure 47 : Sketch for () against .
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Figure 48 : Sketch for () against .
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Figure 49 : Sketch for () against .
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W = 0.0, 0.02 , 0.04 , 0.06
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Figure 410 : Sketch for () against Ω.
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Figure 411 : Sketch for () against .
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Figure 412 : Sketch for () against .
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Figure 413 : Sketch for () against .
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Fr = 0.0, 0.3 , 0.6 , 0.9
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Figure 414 : Sketch for () against .
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Figure 415 : Sketch for () against .
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Figure 416 : Sketch for () against Ω.
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Figure 417 : Sketch for () against .
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Figure 418 : Sketch for () against 1.
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Figure 419 : Sketch for () against 2.
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Figure 420 : Sketch for  Re
12
 against Ω and .

l = 0.1 , 0.3 , 0.5 , 0.7

0.09 0.10 0.11 0.12 0.13 0.14 0.15

-1.2

-1.1

-1.0

-0.9

W

C
fR
e x
12

Fr = Nt = 0.1, k1 = Nb = 0.3, k2 = 0.5, Sc = Pr = 1.0, Scb = 0.7

Figure 421 : Sketch for  Re
12
 against Ω and .
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Figure 422 : Sketch for  Re
12
 against Ω and .
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Figure 423 : Sketch for  Re
12
 against Ω and .
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Figure 424 : Sketch for Re
−12
 against Pr and .
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Figure 425 : Sketch for Re
12
 against  and .
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Table 4.2. Comparative values of − 00 (0) and −0 (0) against Ω when  =  = 0

Ω − 00(0) −0(0)
OHAM Wang [27] OHAM Wang [27]

0 1 1 0 0

0.5 1.13844 1.1384 0.51284 0.5128

1 1.32502 1.3250 0.83713 0.8371

2 1.65234 1.6523 1.28732 1.2873
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4.5 Major observations

Presented analysis lead to following major results:

• Both temperature () and nano-concentration () have comparable impacts for  and

 while inverse circumstance is seen for concentration rate ().

• An addition inΩ demonstrates comparable pattern for temperature (), nano-concentration
() and concentration rate ().

• Larger Schmidt  and Prandtl  numbers have lower temperature and nano-concentration.

• Temperature and concentration through  have similar pattern.

•  for temperature and concentration exhibits reverse impacts.

• An augmentation in thermal Biot parameter 1 and concentration Biot parameter 2
leads to higher () and ().

• Higher Schmidt number  (for homogeneous and heterogeneous responses) display more
concentration rate ().

• An improvement in 1 relates to reduction of concentration rate while for 2 the outcomes
are reverse.
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Chapter 5

Numerical treatment for

non-Darcian 3D rotating flow of

nanoliquid with prescribed heat and

mass fluxes

Non-Darcian three dimensional rotating nanoliquid flow with prescribed mass and thermal

fluxes is addressed in this chapter. Flow is developed by an exponentially deformed surface.

Thermophoretic dispersion and irregular motion phenomenas are employed. An efficient nu-

merical solver namely NDSolve is used to develop solutions for resulting nonlinear problems.

Plots have been displayed in order to scrutinize impact of various sundry variables involved in

the solutions. Moreover the coefficients of surface drag, local Nusselt (rate of heat transfer) and

Sherwood (rate of mass transfer) numbers are also elaborated graphically.

5.1 Statement

Here we elaborate steady 3D rotating nanoliquid flow induced by an exponentially actuating

surface. Non-Darcian permeable space is considered. Random movement and thermophoretic

diffusion processes are examined. Cartesian coordinates are taken. Let () = 0
 be sur-
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face moving velocity. Further, fluid rotates about −direction with consistent angular velocity
. Relevant equations and boundary conditions have following forms:




+




+




= 0 (5.1)





+ 




+




− 2 = 

2

2
− 


− 2 (5.2)


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+ 


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+ 




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2

2
− 


 − 2 (5.3)
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2
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+
()

()
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µ
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µ
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
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+
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2

2

¶
 (5.5)

 = () = 0
  = 0  = 0 − 

¡



¢

= 0

(+1)

2 

−

¡



¢

= 0

(+1)

2 at  = 0

⎫⎬⎭ (5.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (5.7)

Note that   and  represent the velocity components in − − and −directions while

¡
= 

¢
,  and  stands for kinematic viscosity, dynamic viscosity and density of base

liquid,  for permeability of porous medium,  = 
12 for variable inertia coefficient of

permeable space,  for Brownian diffusivity,  for drag coefficient, 
 = () , (), ,

() for thermal diffusivity, effective thermal potential of nanomaterials, thermal efficiency and

thermal potential of liquid respectively,  for thermophoretic dispersion coefficient, , , ∞,

, ∞for temperature exponent, far away temperature of liquid, concentration exponent and

far away concentration of liquid respectively. Considering

 = 0
 0()  = 0

()  = − ¡0
2

¢12
2 (() +  0()) 

 = ∞ + 0


q
2
0

2()  = ∞ + 0


q
2
0

2()  =
¡
0
2

¢12
2

⎫⎬⎭
(5.8)

equation (51) is trivially justified while Eqs. (52)− (57) are reduced to

 000 +  00 − 2 02 + 4Ω − 2 0 − 2 02 = 0 (5.9)
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00 + 0 − 2 0 − 4Ω 0 − 2 − 22 = 0 (5.10)

00 +Pr
³
0 − 0 +

00 +
02
´
= 0 (5.11)

00 + 
¡
0 − 0

¢
+





00 = 0 (5.12)

(0) = (0) = 0  0(0) = 1 0(0) = −1 0(0) = −1 (5.13)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (5.14)

Here rotation number, porosity parameter, Forchheimer number, Prandtl number, thermophore-

sis parameter, Schmidt number and Brownian motion parameter are symbolized by Ω, , ,

, ,  and  respectively. Nondimensional forms of these parameters are given below:

 = 
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

⎫⎬⎭ (5.15)

Coefficients of skin friction and local Nusselt and Sherwood numbers satisfy
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1
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

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.16)

5.2 Discussion

This section elaborates the outcomes of Brownian motion parameter , local porosity parame-

ter , Forchheimer number , Schmidt number , temperature exponent , local rotational

parameter Ω, Prandtl number Pr, thermophoresis parameter  and concentration exponent 

on nondimensional temperature  () and nano-concentration (). Figure 51 displays varia-

tion of temperature field () for higher . An elevation in  yields stronger temperature ()

and related layer thickness. Figure 52 is displayed to observe influence of  on (). Higher

 exhibit an increasing trend in (). Figure 53 shows impact of Ω on (). Higher Ω leads to

stronger (). Figure 54 elucidates that temperature field () exhibits decreasing behavior for
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greater . Figure 55 elucidates  () against Prandtl number .  () decayed for higher .

Figure 56 is scrutinized to analyze the influence of  on  (). By increasing ,  () shows

increasing trend. Figure 57 demonstrates the variation of temperature  () against higher

. Temperature  () is elevated against larger . Figure 58 depicts that how temperature

 () is get influenced by higher . For higher , temperature  () elevates. Impact of  on

() is presented in Figure 59. An increasing impact of () is noted for higher . Figure

510 is displayed to visualize the behavior of Ω on dimensionless nano-concentration field ().

Non-dimensional nano-concentration field escalates against higher values of Ω. Effect of  on

nano-concentration () is exhibited in Figure 511. Larger concentration exponent yield lower

concentration field () and related layer thickness. Nano-concentration field () curves for

higher  are illustrated in Figure 512. Here concentration field () exhibits decreasing trend

via larger Schmidt number . Figure 513 studied  variations on (). An increment in

 shows reduction in (). Figure 514 presents the outcome of thermophoresis parameter

 for concentration field (). Larger thermophoresis parameter  lead to an escalation in

(). Table 51 investigates numerical computations of coefficients of surface drag − 00(0) and
−0(0) for several estimations of porosity parameter , Forchheimer number  and rotation
parameter Ω. Surface drag coefficients are increasing functions of Ω while reverse behavior is

noticed for larger  and . Table 52 shows numerical computations of local Nusselt number

1
(0)

and local Sherwood number 1
(0)

for   Ω  Pr  and  when  =  = 05. Local

Nusselt (rate of heat transfer) decays against   Ω  and . Effects of  and Pr on

rate of heat transfer are quite similar. Further mass transfer rate (local Sherwood number) has

lower and higher values for larger (  Ω Pr  ) and () respectively.
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Figure 51 : Sketch for  () against .
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Figure 52 : Sketch for  () against .
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Figure 53 : Sketch for  () against Ω.

l = 0.2, W = Fr = Nt = 0.1, Nb = 0.3, Sc = Pr = 1.0, B = 0.5

A = 0.0, 0.5, 1.0 , 1.5
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Figure 54 : Sketch for  () against .
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l = 0.2, W = Fr = Nt = 0.1, Nb = 0.3, Sc = 1.0, A = B = 0.5

Pr = 0.75 , 1.0 , 1.25 , 1.50
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Figure 55 : Sketch for  () against Pr.

l = 0.2, W = Fr = Nt = 0.1, Sc = Pr = 1.0, A = B = 0.5

Nb = 0.1, 0.3, 0.5, 0.7
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Figure 56 : Sketch for  () against .
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l = 0.2, W = Fr = 0.1, Nb = 0.3, Sc = Pr = 1.0, A = B = 0.5

Nt = 0.0, 0.2, 0.4, 0.6
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Figure 57 : Sketch for  () against .

W = Fr = Nt = 0.1, Nb = 0.3, Sc = Pr = 1.0, A = B = 0.5

l = 0.0, 0.15, 0.30, 0.45
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Figure 58 : Sketch for () against .
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W = 0.1, l = 0.2, Nt = 0.1, Nb = 0.3, Sc = Pr = 1.0,
A = B = 0.5

Fr = 0.0, 0.3, 0.6, 0.9
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Figure 59 : Sketch for () against .

l = 0.2, Fr = Nt = 0.1, Nb = 0.3, Sc = Pr = 1.0, A = B = 0.5

W = 0.0, 0.1, 0.2, 0.3
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Figure 510 : Sketch for () against Ω.
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l = 0.2, W = Fr = Nt = 0.1, Nb = 0.3, Sc = Pr = 1.0, A = 0.5

B = 0.0, 0.5, 1.0, 1.5
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Figure 511 : Sketch for () against .

l = 0.2, W = Fr = Nt = 0.1, Nb = 0.3, Pr = 1.0, A = B = 0.5

Sc = 0.9, 1.2, 1.5, 1.8
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Figure 512 : Sketch for () against .
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l = 0.2, W = Fr = Nt = 0.1, Sc = Pr = 1.0, A = B = 0.5

Nb = 0.1 , 0.3 , 0.5 , 0.7
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Figure 513 : Sketch for () against .

l = 0.2 , W = Fr = 0.1 , Nb = 0.3 , Sc = Pr = 1.0, A = B = 0.5

Nt = 0.0, 0.2, 0.4 , 0.6
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Figure 514 : Sketch for () against .
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Table 5.1: Numeric data of surface drag coefficients − 00(0) and− 0(0) for distinct estimations

of   and Ω

  Ω − 00(0) − 0(0)

00 01 02 1351292 0197898

01 1420528 0179629

02 1487723 0165819

02 01 02 1487723 0165819

02 1531017 0164732

03 1573174 0163694

02 01 005 1479441 0083713

01 1487723 0165819

02 1517052 0320662
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Table 5.2: Numerical data of local Sherwood (rate of mass transfer) and local Nusselt (rate of

heat transfer) numbers for distinct estimation of   Ω    and  when  =  = 05

  Ω     1
(0)

1
(0)

00 01 01 01 10 03 10 0588588 0611136

01 0574766 0597735

02 0560822 0584156

02 01 01 01 10 03 10 0560822 0584156

02 0555576 0579322

03 0550526 0564681

02 01 00 01 10 03 10 0567862 0591813

01 0560822 0584156

02 0542852 0565183

02 01 01 01 10 03 10 0560822 0584156

03 0190363 0294592

05 0013188 0013188

02 01 01 01 05 03 10 0540982 0350973

10 0560822 0584156

15 0572558 0785375

02 01 01 01 10 01 10 0628977 0584156

02 0593994 0533559

03 0560822 0423571

02 01 01 01 10 03 07 0454659 0588643

10 0560822 0584156

13 0648453 0582013

5.3 Major observations

Darcy-Forchheimer three dimensional (3D) rotating flow of nanoliquid due to a linearly stretch-

able surface with constant heat and mass flux conditions is discussed. The preeminent findings

of current analysis are structured as below:
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• Greater values of  and  exhibit similar behavior for both temperature () and nano-

concentration () fields.

• Both temperature () and nano-concentration () fields represent increasing behavior

for higher local rotational parameter Ω.

• An increment in temperature  and concentration  exponents corresponds to diminish-

ment in temperature () and nano-concentration () fields.

• Higher estimations of Schmidt  and Prandtl  numbers yields lower temperature and
nano-concentration fields.

• Brownian movement parameter  for temperature and nano-concentration have quite

reverse impacts.

• Both temperature and concentration profiles are increased via thermophoresis parameter
.
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Chapter 6

Entropy generation optimization for

3D rotating flow of nanoliquid

subject to activation energy, porous

medium and slip condition

This chapter addresses entropy generation in radiative flow of nanoliquid by considering acti-

vation energy and rotating frame. Impacts of viscous dissipation, porous medium and velocity

slip condition are considered. Total rate of entropy production is also computed. Buongiorno’s

model is implemented for nanoliquid transport. Nonlinear ODE’s are developed through ap-

posite transformations. The reduced nonlinear ODE’s have been handled with the assistance

of BVP4c. Graphs are made to predict the influences of several sundry variables on veloci-

ties, nano-concentration, entropy generation, temperature, skin-friction, local Nusselt number,

Bejan number and local Sherwood number.

6.1 Statement

Here irreversibility analysis in steady radiative swirling flow of nanoliquid is studied. Effects

of velocity slip, viscous dissipation, activation energy and porous medium are also discussed.
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Transport mechanism for nanofluid has been addressed by Buongiorno model. Stretched surface

in Cartesian coordinate variables is chosen at  = 0 while fluid occupies  ≥ 0. The extending
velocity in the existence of slip condition is taken as

¡
 = + 1




¢
. Rate of stretching is

. The plate and fluid are in a state of rigid body rotation through angular velocity . Using

the above mentioned assumptions, the resulting problems can be finally reduced into the forms


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+


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+


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= 0 (6.1)
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



+ 




+




= 

µ
2

2

¶
− 2 ( −∞)

µ


∞

¶

exp

µ
−



¶
+


∞

µ
2

2

¶
 (6.5)

with

 =   = 0  = 0  =   =  at  = 0 (6.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (6.7)

in which (  ) denote velocities in (  ) directions respectively, absolute viscosity (),

kinematic viscosity (), ( ) density, (
) permeability of permeable space, thermal diffusiv-

ity (), thermal efficiency (), heat capacitance of the liquid () , radiative heat flux (),

Brownian coefficient (), effective heat capacitance of nanoparticles (), temperature ( ),

concentration (), thermophoretic coefficient ( ), activation energy (), fitted rate constant

(), reaction rate (), Boltzmann constant () and (1) velocity slip coefficient. Rosseland’s

approximation is utilized to develop radiative heat flux () which can be manifested as:

 = − 41
31

( 4)


 (6.8)
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where (1) stands for Stefan-Boltzmann constant and (1) for coefficient of mean absorption.

We consider that temperature difference inside the flow is such that  4 can be expanded as a

linear combination of temperature. By utilizing Taylor’s series and omitting higher order values

we get:

 4 = −3 4∞ + 4 3∞ (6.9)

From Eqs. (68) and (69) one arrives at
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Substitution of Eq. (610) into Eq. (64) yields
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Considering

 =  0()  = ()  = −()12()
 =

¡


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−∞  () = −∞
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⎫⎬⎭ (6.12)

Equation (61) is fully satisfied and Eqs. (62)− (67) and (611) are reduced to

 000 +  00 −  0
2

+ 2Ω −  0 = 0 (6.13)

00 + 0 −  0 − 2Ω 0 −  = 0 (6.14)

1
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(6.15)
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µ
− 
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¶
= 0 (6.16)

(0) = (0) = 0  0(0) = 1 +  00(0) (0) = 1 (0) = 1 (6.17)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (6.18)
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where () denotes porosity parameter, (Ω) rotation parameter, () thermal radiation pa-

rameter, () Brownian movement parameter, () Prandtl number, () chemical reaction

parameter, () Schmidt parameter, () nondimensional activation energy, () velocity slip

parameter, thermophoresis diffusion parameter () and temperature difference parameter ().

We define
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Non-dimensional forms of coefficients of surface drag, local Sherwood and Nusselt (rates of mass

and heat transfer) numbers are
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Here local Reynolds number is (Re = 2).

6.2 Entropy analysis

Entropy generation equation for the current flow situation can be described as:
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After transformations (612) in Eq. (621), one obtains
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where

0 =
( − ∞)
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 (6.23)
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Eq. (622) represents the dimensionless form of entropy generation equation. Here , ,

1 and 2 stand for nondimensional Brinkman number, diffusive number, temperature ratio

number and concentration ratio number respectively. These variables are defined by

 =
22

( − ∞)
,  =

( − ∞)


, 1 =
 − ∞

∞
, 2 =

 − ∞
∞

 (6.24)

Mathematical expression for the Bejan number is

 =
Entropy via heat transfer

Total entropy
 (6.25)
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2

1(1 + )02 +( 002 + 02) + ( 02 + 2) + 00 + 2
1
02

 (6.26)

6.3 Discussion

In this portion Figures (61− 638) are plotted for the examination of velocity, Bejan number,
temperature, entropy production and nano-concentration through involved physical variables.

Figure 61 depicts the curves of velocity field 
0
() against different values of porosity parameter

. One an easily see the reduction of 
0
() for higher values of . Physically an inverse relation

exists between the porosity parameter and permeability. Higher porosity parameter yields lower

permeability which decays the fluid motion. Due to this reason the velocity 
0
() decreases.

Figure 62 delineates the influence of Ω on 
0
(). Basically angular velocity to actuating rate

ratio is known as rotation parameter. Higher Ω correspond to stronger rotational rate. It causes

a decrease in velocity 
0
(). Figure 63 represents the impact of  on 

0
(). Depreciating

behavior of 
0
() has been noted via stronger . Physically by enhancing , less adhesive

strength is developed between the surface and the liquid particles which yields more resistance

(opposing force) for migration of moving velocity to the liquid. Figure 64 displays impact of

porosity parameter on velocity (). Reduction occurred in velocity () via higher . Figure

65 examines effect of Ω on velocity (). An increasing trend is observed against higher Ω.

Physical argument behind this mechanism is that Ω plays a prime role to boost up the flow along

−direction. By enhancing Ω, an oscillatory behavior is noticed in the velocity (). Figure

66 shows how temperature  () is influenced by higher . It is noticed that by increasing ,
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temperature  () elevates. Physically presence of permeable medium developes resistance in

liquid movement and consequently it shows reduction in liquid velocity. Therefore an elevation

is observed in  (). Figure 67 depicts a change in  () for larger Ω. Temperature  () is

elevated via higher Ω. Figure 68 has been drawn to visualize the behavior of  on  ().

 () upsurged for growing estimations of . Physically coefficient of mean absorption has

an inverse association with radiation parameter. Thus when radiation parameter has larger

values then mean absorption coefficient reduces which developes more heat and consequently

fluid temperature is enhanced. Temperature  () through higher  is presented in Figure

69. Eckert number is based on dissipation of heat because of its relation between enthalpy

and enthalpy difference so  () enhances. Influence of  on  () is illustrated in Figure 610.

Decaying impact of temperature  () is noticed for higher . By definition, momentum to

thermal diffusivity ratio is known as Prandtl number. An increment in  yields weaker thermal

diffusivity. Such minute thermal diffusivity yields lower  (). Behavior of on  () is shown in

Figure 611. Fluid temperature in boundary layer region boosted up for higher . Basically an

escalation in  means more force exerts on fluid particles and consequently more fluid transfers

from the hotter space to the colder space. Therefore an enhancement in  leads to boost up

the fluid temperature in boundary layer region. Impact of  on  () is highlighted in Figure

612.  () is increased by higher . An escalation in  leads to rise the random motion

of nanoparticles inside the flow zone. This intensified irregular motion increases the kinetic

energy of the particles due to which temperature  () is enhanced. Figure 613 is constructed

to see outcome of  on nano-concentration (). Nano-concentration is enhanced via higher .

Figure 614 elucidates that nano-concentration field is enhanced via greater values of Ω. ()

behavior for  is exhibited in Figure 615. One can apparently see that () depreciates for

greater . Figure 616 is developed to see the influence of  on the nano-concentration field

(). It is perceived that the nano-concentration field is an increasing function of . Figure

617 explores effect of  on (). We noticed that higher  lead to reduction of (). Figure

618 is drawn to analyze the behavior of  on (). Here an elevation in  depreciates modified

Arrhenius function
³


∞

´
exp

¡−


¢
. This finally develops the productive chemical reaction

which results in nano-concentration () enhancement. Figure 619 describes the variation of

() for higher chemical reaction parameter  on nano-concentration (). This Figure depicts
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that an increase in  yields an enhancement in the relation (1 + )  exp
³
− 
1+

´
. This

ultimately supports the destructive chemical mechanism due to which concentration elevates.

Depreciation in  is occurred with a higher nano-concentration gradient at the surface. Impact

of  on () has been exhibited in Figure 620. Decaying trend of () is seen via higher .

Figure 621 explores that nano-concentration field () is a decaying function of . Figure 622

presents the effect of  on entropy production . With increase in values of , the viscosity of

liquid elevates which developes more resistance (opposing force) within the liquid particles due

to which disturbance in the system decreases and hence entropy production also decays. 

also decreases via increasing  (see Figure 623). Figures 624 and 625 are plotted to evaluate

the influence of  on () and . From these Figures it is also observed that entropy of

the system elevates against  while  indicates same behavior. Figure 626 is developed

to investigate the influence of  on (). From this Figure it is analyzed that entropy

elevates via stronger . Since  is based on viscous dissipation so viscous effects become less

prominent for greater  which yields an entropy enhancement. An opposite impact of  is

seen for greater estimations of  (See Figure 627). Figures 628 and 629 explain the behavior

of diffusive variable  on  and . We examined that disorderness in system accelerates via

greater  while  exhibit a decaying behavior. Figures 630 to 632 describe the variations of

(Re)
12 via higher  Ω and . From these Figures it can be observed that (Re)

12

elevates against higher  and Ω while reverse situation is observed for higher . Figures 633

and 634 are developed to explore the main impacts of Ω and  on (Re)
12. These graphs

exhibit that (Re)
12 depreciates against stronger  while increasing behavior is noticed

against higher Ω. Influences of  and  on rate of heat transfer are disclosed through Figures

635 and 636. From these Figures it can be analyzed that (Re)
−12 decreases via larger

estimations of  and . Figures 637 and 638 indicate that impacts of  and  on mass

transfer rate (local Sherwood number) (Re)
−12 respectively. From these Figures one can

easily analyze that (Re)
−12 displays opposite role for higher  and .
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Figure 61 : Sketch for  0() against .

Figure 62 : Sketch for  0() against Ω.
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Figure 63 : Sketch for  0() against .

Figure 64 : Sketch for () against .
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Figure 65 : Sketch for () against Ω.

Figure 66 : Sketch for () against .
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Figure 67 : Sketch for () against Ω.

Figure 68 : Sketch for () against .
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Figure 69 : Sketch for () against .

Figure 610 : Sketch for () against Pr.
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Figure 611 : Sketch for () against .

Figure 612 : Sketch for () against .
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Figure 613 : Sketch for () against .

Figure 614 : Sketch for () against Ω.

102



Figure 615 : Sketch for () against .

Figure 616 : Sketch for () against .
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Figure 617 : Sketch for () against .

Figure 618 : Sketch for () against .
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Figure 619 : Sketch for () against .

Figure 620 : Sketch for () against .
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Figure 621 : Sketch for () against .

Figure 622 : Sketch for () against .
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Figure 623 : Sketch for  against .

Figure 624 : Sketch for () against .
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Figure 625 : Sketch for  against .

Figure 626 : Sketch for () against .
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Figure 627 : Sketch for  against .

Figure 628 : Sketch for () against .
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Figure 629 : Sketch for  against .

Figure 630 : Sketch for (Re)
12 against 
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Figure 631 : Sketch for (Re)
12 against Ω

Figure 632 : Sketch for (Re)
12 against 
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Figure 633 : Sketch for (Re)
12 against 

Figure 634 : Sketch for (Re)
12 against Ω
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Figure 635 : Sketch for (Re)
−12 against .

Figure 636 : Sketch for (Re)
−12 against .
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Figure 637 : Sketch for (Re)
−12 against 

Figure 638 : Sketch for (Re)
−12 against .

114



6.4 Major observations

Major observations of the problem considered in this chapter are given below:

• Higher porosity parameter  exhibit similar behavior for both velocities  0() and ()

while reverse situation is observed against Ω.

• Both () and () depict increasing trend against stronger  and Ω.

• Temperature enhances for larger radiation parameter , Brownian movement parameter
, Eckert number  and thermophoresis parameter 

• Prandtl  and Schmidt  numbers for () and () have similar effects.

• Higher  and  correspond to stronger nano-concentration field () while inverse trend

is seen for higher , ,  and .

• Entropy production () is maximum for greater ,  and .

• Bejan number enhances for  while it decays for higher ,  and .

• Coefficients of surface drag (Re)12 and (Re)
12 have similar trend for higher

porosity parameter .

• Higher  and  give rise to reduction of heat transfer rate.

• Mass transfer rate reduces for higher  while reverse pattern is noticed for .
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Chapter 7

Analysis of entropy production and

activation energy in hydromagnetic

rotating flow of nanoliquid with

velocity slip and convective

conditions

This chapter investigates entropy production in three dimensional hydromagnetic swirling flow

of nanoliquid with binary chemical mechanism and activation energy. Entropy production and

Bejan number have been demonstrated through the existence of porous medium, viscous dissi-

pation, magnetic field, thermal radiation and heat source/sink. Velocity slip, convective heat

and mass conditions are imposed at the surface. The nonlinear equations are developed through

transformation scheme. Shooting method is employed for solutions of resulting nonlinear ex-

pressions. Salient behaviors of several pertinent variables on velocities, nano-concentration,

entropy production, Bejan number and temperature distributions are examined graphically.

Further rates of mass transfer and coefficients of surface drag and rate of heat transfer are

graphically analyzed via different variables.
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7.1 Statement

Here steady 3D hydromagnetic flow of nanoliquid subject to radiative heat transfer is under

consideration. Both fluid and stretched surface are in a rotating frame. The total rate of entropy

production is computed. A uniform magnetic field of strength 0 is imposed perpendicular

to stretched surface. Effect of activation energy and binary chemical mechanism is studied.

Thermophoresis and Brownian motion impacts are also taken for current analysis. Velocity slip

and convective conditions are also implemented at surface. The viscous fluid filling space  ≥ 0
rotates uniformly with constant rate . The considered surface is assumed to have velocity

() = + 1


. 1 being slip coefficient. Resulting boundary-layer expressions under the

above mentioned assumptions are




+




+




= 0 (7.1)


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2

2
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with

 = () = + 1


  = 0  = 0 −  


= 1( −  )

−


= 2( − ) at  = 0

(7.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (7.7)

in which (  ) express velocities in (  ) directions respectively, absolute viscosity

(), () electrical conductivity, (0) strength of uniform magnetic field, () permeability of

porous medium, thermal diffusivity (), thermal efficiency (), heat capacitance of the liquid

() , Stefan-Boltzmann constant (1), mean absorption coefficient (1), Brownian coefficient
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(), effective heat capacitance of nanoparticles (), temperature ( ), (0) heat genera-

tion/absorption coefficient, concentration (), thermophoretic coefficient ( ), activation en-

ergy (), fitted rate constant (), reaction rate (), Boltzmann constant (), (1) velocity

slip coefficient and coefficients of mass and heat transfer (2) and (1) respectively.

Writing

 =  0()  = ()  = −()12()
 =

¡



¢12
 () = −∞

−∞  () = −∞
−∞ 

⎫⎬⎭ (7.8)

Equation (71) is fully satisfied and Eqs. (72)− (77) are reduced to

 000 +  00 −  0
2

+ 2Ω − ()2 0 −  0 = 0 (7.9)

00 + 0 −  0 − 2Ω 0 − ()2 −  = 0 (7.10)
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(0) = (0) = 0  0(0) = 1 +  00(0) 0(0) = −1(1− (0)) 0(0) = −2(1− (0)) (7.13)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (7.14)

Where () denotes porosity parameter, () Hartman parameter, () Schmidt number, (Ω)

rotation parameter, () thermal radiation parameter, () Prandtl number, () chemical

reaction parameter, () Brownian movement parameter, () Eckert number, (1) heat

source/sink parameter, () velocity slip parameter, () nondimensional activation energy, ther-

mal Biot number 1, thermophoresis diffusion parameter (), temperature difference parame-

ter () and concentration Biot number 1. We define
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Skin friction coefficients and heat and mass transfer rates are

(Re)
12 =  00(0)

(Re)
12 = 0(0)

(Re)
12 = −(1 + )0(0)

(Re)
12 = −0(0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.16)

where (Re = 2) depicts local Reynolds number.

7.2 Entropy analysis

The entropy production in hydromagnetic rotating flow of nanofluid can be expressed as:
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Eq. (717) exhibits fours factors by which entropy is generated. The 1st, 2nd, 3rd , 4th, 5th

and 6th terms on right hand side of Eq. (717) indicate heat transfer, fluid friction, permeable

space, Joule heating, heat source/sink and mass transfer or diffusion irreversibilities respectively.

After employing transformations (78) on Eq. (717), one obtains
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where

0 =
( − ∞)

∞
 (7.19)

Eq. (718) represents the dimensionless form of entropy generation equation. Where ,

, 1 and 2 stand for nondimensional Brinkman number, diffusive number, temperature ratio

number and concentration ratio number respectively. These variables are defined as:

 =
22

( − ∞)
,  =

( − ∞)


, 1 =
 − ∞

∞
, 2 =

 −∞
∞

 (7.20)
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Mathematical expression for the Bejan number is

 =
Entropy via heat transfer

Total entropy
 (7.21)

 =
1(1 + )0

2

1(1 + )0
2

+( 00
2
+ 0

2
) + ( 0

2
+ 2)

+()2( 0
2
+ 2) + Pr1 + 00 + 2

1
0
2



 (7.22)

7.3 Discussion

In this section Figures (71 − 744) are plotted for the inspection of velocity, Bejan number,
temperature, entropy production and concentration against different emerging flow variables.

Figure 71 describes influence of porosity parameter  on velocity 
0
(). Velocity decays against

greater estimations of . Figure 72 exhibits the curves of velocity field 
0
() against different

values of rotation parameter Ω. One can easily notice the reduction in 
0
() via higher values

of Ω. Figure 73 delineates the influence of Hartman number  on velocity 
0
(). For higher

, the velocity 
0
() decays. Figure 74 exhibits the impact of  on 

0
(). Depreciating

behavior of 
0
() is noted via higher estimations of . Figure 75 depicts influential impact

of  on (). Reduction is noticed in velocity () via higher . Influence of Ω on () is

delineated in Figure 76. An increasing behavior is seen against higher Ω. Figure 77 shows

how velocity () varied by Hartman number . An elevation is observed in the velocity ()

against stronger . Figure 78 demonstrates the variation in temperature  () for higher

porosity parameter . Temperature  () is elevated via higher . Figure 79 depicts how

temperature  () varied by higher Ω. It is noticed that by increasing Ω, temperature  ()

enhanced. Figure 710 is drawn to visualize impact of Hartman number  on dimensionless

temperature  (). Clearly  () upsurged for growing estimations of . Physically when 

elevates then Lorentz force (opposing force) developes more friction between liquid particles.

On the basis of this frictional force,  () elevates. Figure 711 analyzed the behavior of Biot

number 1 on  (). An enhancement is observed in temperature via higher estimations of 1.

Influence of  on  () is presented in Figure 712. An elevating impact of  () is analyzed via

higher . Temperature  () for variation of  is presented in Figure 713. An increment in
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 leads to an elevation of  (). Figures 714 and 715 are developed to analyze the behaviors of

heat generation (1  0) and absorption (1  0) parameters. It is examined that temperature

shows opposite trend while considering (1  0) and (1  0). Impact of  on  () is displayed

in Figure 716. Clearly temperature  () is elevated via higher . Curves of  () via  are

developed in Figure 717. Here temperature for higher  is enhanced. Concentration field

() behavior for porosity parameter  is depicted in Figure 718. One can apparently observe

that () elevates for larger . Figure 719 shows Ω effect on (). Nano-concentration field

and corresponding layer thickness are enhanced via higher Ω. Figure 720 explains the impact

of  on Nano-concentration field (). Nano-concentration field () enhances against higher

values of . Figure 721 elucidates that nano-concentration field is enhanced via greater

values of 2. Influence of  on () is displayed in Figure 722. One can apparently notice

that () depreciates for greater . Figure 723 is developed to see the influence of  on the

nano-concentration field (). It is perceived that the nano-concentration field is an increasing

function of . Figure 724 displayed outcome of  on (). We noticed that higher values of

 cause a depreciation in (). Figure 725 explores that () is a depreciating function of

. Figure 726 is developed to analyze the behavior of  on (). Here an elevation in 

corresponds to stronger (). Influence of  on nano-concentration field () is exhibited in

Figure 727. Decaying trend of () is seen via higher . Figure 728 presents the behavior

of Brinkman number  on entropy generation . It is observed that entropy elevates when

 augmented. This elevation is due to more intensification of kinetic energy of fluid particles

in the boundary layer area. Bejan number also depreciates for incrementing values of  (See

Figure 729). Figure 730 is portrayed to analyze impact of  on entropy generation ().

From this Figure it can be seen that entropy of the system enhances for larger . This

happens because an increment of strength of magnetic field induces resistance of flow and as

a result fluid friction significantly increases then entropy production rate enhances. Decaying

trend is seen in Bejan number via higher estimations of  (See Figure 731). To visualize

the behavior of thermal radiation parameter  on entropy production (), Fig. 732 is

plotted. An elevation in  corresponds to higher entropy generation rate. Physically more

heat is generated due to thermal radiation process for which entropy is significantly enhanced.

An opposite impact of Bejan number is noted for growing estimations of  (See Figure 733).
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Figures 734 and 735 elucidate the effect of diffusive variable  on  and . From these

Figures, We can see that entropy increases for larger  while Bejan number exhibits reversing

trend. Figures 736, 737 and 738 displayed the variations in (Re)
12 via higher   and

. From these Figures it can be observed that (Re)
12 elevates against higher  and 

while an opposite situation is observed for higher . Figures 739 and 740 are developed to

explore the main impacts of  and  on (Re)
12. These graphs exhibit that (Re)

12

decreases for greater estimations of  and . Influences of 1 and  on rate of heat transfer

are disclosed via Figures 741 and 742. These Figures exhibit reversing trend in (Re)
−12

via growing estimations of 1 and . Figures 743 and 744 demonstrate the impact of 2 and

 on rate of mass transfer respectively. It is recognized that (Re)
−12 displays opposite

role for higher 2 and .

Figure 71 : Sketch for  0() against .
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Figure 72 : Sketch for  0() against Ω.

Figure 73 : Sketch for  0() against .
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Figure 74 : Sketch for  0() against .

Figure 75 : Sketch for () against .
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Figure 76 : Sketch for () against Ω.

Figure 77 : Sketch for () against .
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Figure 78 : Sketch for () against .

Figure 79 : Sketch for () against Ω.
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Figure 710 : Sketch for () against .

Figure 711 : Sketch for () against 1.
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Figure 712 : Sketch for () against .

Figure 713 : Sketch for () against .
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Figure 714 : Sketch for () against (1  0).

Figure 715 : Sketch for () against (1  0).
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Figure 716 : Sketch for () against .

Figure 717 : Sketch for () against .
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Figure 718 : Sketch for () against .

Figure 719 : Sketch for () against Ω.
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Figure 720 : Sketch for () against .

Figure 721 : Sketch for () against 2.

132



Figure 722 : Sketch for () against .

Figure 723 : Sketch for () against .
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Figure 724 : Sketch for () against .

Figure 725 : Sketch for () against .
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Figure 726 : Sketch for () against .

Figure 727 : Sketch for () against .
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Figure 728 : Sketch for () against .

Figure 729 : Sketch for  against .
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Figure 730 : Sketch for () against .

Figure 731 : Sketch for  against .
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Figure 732 : Sketch for () against .

Figure 733 : Sketch for  against .
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Figure 734 : Sketch for () against .

Figure 735 : Sketch for  against .
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Figure 736 : Sketch for (Re)
12 against .

Figure 737 : Sketch for (Re)
12 against .
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Figure 738 : Sketch for (Re)
12 against .

Figure 739 : Sketch for (Re)
12 against .
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Figure 740 : Sketch for (Re)
12 against .

Figure 741 : Sketch for (Re)
−12 against 1.
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Figure 742 :Sketch for (Re)
−12 against .

Figure 743 : Sketch for (Re)
−12 against 2.
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Figure 744 : Sketch for (Re)
−12 against .

7.4 Major observations

Major findings of the current analysis are described as under:

• Both velocities  0() and () depict decaying trend against stronger porosity parameter

 and Hartman number  while reverse situation is noticed for rotation parameter Ω.

• An increment in porosity parameter , Hartman number , rotation parameter Ω, ther-

mal radiation parameter  and Eckert number  corresponds to stronger temperature

().

• Temperature enhances via (1  0) while decaying trend is observed against (1  0).

• 1 and 2 have similar effects for temperature and nano-concentration.

• Higher thermophoresis  for () and () has similar trends while reverse situation is

noticed against Brownian diffusion parameter .
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• Higher  corresponds to stronger nano-concentration field () while decaying trend is

noted via higher ,  and .

• Entropy generation () is maximum for higher , ,  and  while Bejan number

decays.

• (Re)12 and (Re)
12 exhibit opposite trend via higher  and .

• Heat transfer rate elevates for higher 1 while it reduces via .

• Mass transfer rate shows similar pattern against 2 and .
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Chapter 8

Impacts of nonlinear radiative heat

flux and activation energy on 3D

rotating flow of Maxwell nanoliquid

with convective conditions: A

numerical study

Activation energy impact on 3D Maxwell nanoliquid flow with heat source/sink is discussed.

A system consisting of surface and fluid are in solid body rotation. Mathematical modelling is

developed through nonlinear thermal radiation. An irregular motion and thermophoretic diffu-

sion aspects are also retained. Convective boundary conditions for heat and mass transfer are

adopted. Nonlinear partial differential equations (PDEs) are transformed into ordinary ones by

utilizing appropriate relations. Shooting method is used to generate the solutions for resulting

nonlinear expressions. Plots have been constructed to scrutinize impact of physical flow para-

meters on temperature and nano-concentration. Further rates of mass and heat transfer are

graphically examined.
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8.1 Statement

Here we illustrate 3D rotating thermally radiative flow of Maxwell nanoliquid under the impact

of binary chemical mechanism with activation energy. Brownian motion and thermophoresis

impacts are taken in this nanofluid model. Convective boundary conditions for heat and mass

transfer are considered. Let () =  denotes the sheet stretching velocity. Further liquid

rotates about −axis with velocity . Resulting relations are
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with

 = () =   = 0  = 0 −  

= 1 ( −  ) 

−


= 2( − ) at  = 0

(8.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (8.7)

in which (  ) express velocities in (  ) directions respectively, dynamic viscosity (),

kinematic viscosity (), ( ) density of fluid, liquid relaxation time (1), thermal efficiency

(), heat capacitance of the liquid () , Brownian coefficient (), effective heat capacitance

of nanoparticles (), temperature ( ), (0) heat generation/absorption coefficient, concen-

tration (), thermophoretic coefficient ( ), activation energy (), fitted rate constant (),
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reaction rate (), Boltzmann constant () and coefficients of heat and mass transfer (1) and

(2). The nonlinear radiation flux term () by Rosseland’s approximation is expressed as

 = − 41
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where Stefan-Boltzmann constant and coefficient of mean absorption are symbolized by (1)

and (1). Energy expression yields
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We write
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with  = ∞(1 + ( − 1)) and  =  (temperature ratio parameter). Equation (81) is

trivially fulfilled and Eqs. (82)− (87) and (89) take the following forms
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(0) = (0) = 0  0(0) = 1 0(0) = −1(1− (0)) 0(0) = −2(1− (0)) (8.15)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (8.16)

Here Ω depicts rotation parameter,  Deborah number, Pr Prandtl number, 1 thermal Biot

number, 2 concentrated Biot number,  thermal radiation parameter,  Brownian motion

parameter,  thermophoresis parameter,  Schmidt number,  nondimensional activation

energy,  chemical reaction parameter, 1 heat source/sink parameter and  temperature dif-
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ference parameter. We can write these definitions as:

Ω = 

  = 1 Pr =



 1 =

1


p


 2 =

2


p




 =
161

3∞
31

  =
() (−∞)

()∞
  = 

∞   =
2



 =
()(−∞)

()
  = 


 1 =

0
()

  =
−∞
∞ 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8.17)

Non-dimensional forms of local Nusselt (heat transfer rate)  and Sherwood (mass transfer

rate)  numbers are

(Re)
−12 = −(1 + 3)

0 (0) 

(Re)
−12 = −0(0)

⎫⎬⎭ (8.18)

in which local Reynolds number is symbolized by Re = .

8.2 Discussion

Here effects of emerging flow parameters viz Deborah number , rotation parameter Ω, thermal

Biot parameter 1, Prandtl parameter , concentration Biot number 2, heat source/sink para-

meter 1, thermal radiation parameter , thermophoretic diffusion parameter , temperature

difference parameter , random movement parameter , Schmidt number , nondimensional

activation energy , chemical reaction parameter  and temperature difference parameter  on

nondimensional temperature () and nano-concentration (). Figure 81 presents the out-

come of Deborah number  for temperature (). Temperature field shows elevating trend for

higher . Figure 82 scrutinizes the change of temperature () for varying Ω. It is analyzed

that growing estimation of Ω yields an elevation of temperature (). Figure 83 delineates the

role of 1 on (). Here () elevates against greater 1. Figure 84 indicates the influence of

() against distinct estimations of . One can easily notice the elevation of () via higher

. Figure 85 is portrayed to characterize the consequences of  on (). An elevating impact

of temperature () is noted via greater . Figures 86 and 87 depict the behaviors of heat

production (1  0) and absorption (1  0) parameters on temperature (). Here tempera-

ture depicts reversing trend while considering (1  0) and (1  0). Temperature () against

higher Pr is depicted in Figure 88. Greater Pr indicates decay of (). Figure 89 demonstrates
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the variation of temperature  () for higher . Temperature  () is elevated via higher .

Figure 810 displayed the behavior of  on  (). An enhancement is observed in temperature

via higher estimations of . Figure 811 explains the impact of  on nano-concentration field

(). Nano-concentration field () enhance via larger . Figure 812 exhibits the effect of Ω

on nano-concentration field (). An elevating impact of () is seen for higher Ω. Effect of

2 on nano-concentration field () is displayed in Figure 813. Clearly () is increased via

greater 2. Figure 814 portrayed the impact of  on dimensionless nano-concentration field

(). Dimensionless nano-concentration field () is depreciated for larger . Figure 815 is

constructed to illustrate the role of  on (). Here () is enhanced via higher . Figure

816 explains the effect of  on nano-concentration field (). Nano-concentration field ()

decreases against higher values of . Nano-concentration field () behavior for  is expressed

in Figure 817. One can conveniently see that () depreciates via growing . Figure 818 is

developed to deliberate the impact of Brownian movement  on (). We noticed that growing

values of  causes a depreciation in (). Figure 819 is displayed to examine the role of 

on (). Nano-concentration field and corresponding layer thickness are enhanced via higher

. Figures 820 and 821 displayed the variations in (Re)
−12 via higher  and .

From these sketches. it can be observed that (Re)
−12 elevates against larger  while an

opposite situation is observed for higher . Figures 822 and 823 are developed to explore the

main impacts of  and  on (Re)
−12. Clearly (Re)−12 displays opposite role for

higher  and .
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Figure 81 : Sketch for () against .

Figure 82 : Sketch for () against Ω.
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Figure 83 : Sketch for () agianst 1.

Figure 84 : Sketch for () against .
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Figure 85 : Sketch for () against .

Figure 86 : Sketch for () against (1  0).
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Figure 87 : Sketch for () against (1  0).

Figure 88 : Sketch for () against Pr.
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Figure 89 : Sketch for () against .

Figure 810 : Sketch for () against .
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Figure 811 : Sketch for () against .

Figure 812 : Sketch for () against Ω.

156



Figure 813 : Sketch for () against 2.

Figure 814 : Sketch for () against .
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Figure 815 : Sketch for () against .

Figure 816 : Sketch for () against .
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Figure 817 : Sketch for () against .

Figure 818 : Sketch for () against .
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Figure 819 : Sketch for () against .

Figure 820 : Sketch for (Re)
−12 against .
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Figure 821 : Sketch for (Re)
−12 against .

Figure 822 : Sketch for (Re)
−12 against .
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Figure 823 : Sketch for (Re)
−12 against .

8.3 Major observations

Main findings of present communication are as follows.

• Both temperature () and nano-concentration () depict similar trend against Deborah
number  and rotation parameter Ω.

• An increment in thermal Biot number 1 and concentration Biot number 2 corresponds
to stronger temperature () and nano-concentration () fields respectively.

• Temperature enhances for (1  0) while it reduces against (1  0).

• Temperature () is enhanced against larger estimations of temperature ratio parameter
 and thermal radiation parameter .

• Higher  and  correspond to weaker temperature () and nano-concentration ().

• An enhancement in depicts identical trend for temperature () and nano-concentration

() while reverse behavior is noted via higher .

• Nano-concentration () field enhances for  while it reduces against  and .
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• Heat transfer rate elevates via higher  while it decays against .

• Mass transfer rate depreciates against higher  while opposite holds for 
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Chapter 9

Three-dimensional rotating flow of

Oldroyd-B nanoliquid with

convective effect: OHAM analysis

This chapter addresses (3D) rotating flow of an Oldroyd-B fluid flow in the presence of nano-

materials. Thermophoresis and Brownian motion are studied. Convective condition for heat

transfer is considered. Ordinary differential systems are obtained by reduction process from

partial differential expressions. Optimal homotopy analysis method (OHAM) yields solutions

development. Impact of emerging variables on flow quantities of interest like velocities, nano-

concentration, temperature and rate of heat transfer are examined graphically and in tabular

form, and salient features are comprehensively elaborated.

9.1 Statement

We intend to examine steady 3D rotating flow of Oldroyd-B nanoliquid caused by stretched

sheet. Thermal convective condition and newly developed constraint about zero nanomaterials

flux at sheet are imposed. Besides this sheet is heated by hot liquid with temperature  which

provides heat transport coefficient  . An incompressible Oldroyd-B liquid occupies a space

 ≥ 0. Let ( = ) be surface moving velocity and liquid rotates along −axis with constant
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angular velocity . The governing problems are defined by
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
+




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 =  =   = 0  = 0 − 



=  ( −  ) 



∞



+




= 0 at  = 0 (9.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (9.7)

where () represents the absolute viscosity, 
¡
= 

¢
the kinematic viscosity which is the ratio

of absolute viscosity to density of liquid,  the thermal efficiency,  the density, 
 = ()

the thermal diffusivity, 1 the liquid relaxation time, () the thermal capacity of liquid, 2

the liquid retardation time, () the specific thermal potential of nanomaterials, , ∞, 

and ∞ the Brownian movement, concentration of liquid far away from surface, thermophoretic
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dispersion coefficient and temperature of liquid far away from surface respectively. Selecting

 =  0()  = − ()12  ()   = ()
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¡



¢12
 () = −∞

∞ 

⎫⎬⎭ (9.8)

Equation (91) is is fully justified and Exps. (92)− (97) are reduced to
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

00 = 0 (9.12)

(0) = (0) = 0  0(0) = 1 0(0) = −(1− (0)) 
0(0) +

0(0) = 0 (9.13)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (9.14)

Here rotation parameter, fluid relaxation time number, fluid retardation time number, thermal

Biot parameter, Prandtl parameter, Brownian movement parameter, Schmidt parameter and

thermophoresis parameter are denoted by Ω, 1, 2, , Pr, ,  and . We have following

definitions

Ω = 

 1 = 1 2 = 2 Pr =
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

⎫⎬⎭ (9.15)

Non-dimensional form of local Nusselt (rate of heat transfer) number  is

Re−12  = −0 (0)  (9.16)

Here mass flux exhibited through Sherwood number (rate of mass transfer) disappears and

(Re = ) depicts local Reynolds number.
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9.2 Initial guesses

The apposite primary assumptions and linear operators are

0() = 1− −  0() = 0 0() =


1 + 
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

1 + 
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−  (9.17)
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in which ̃∗
 ( = 1− 9) exhibits the arbitrary constants.

9.3 OHAM solutions

It is examined that Eqs. (99− 912) represent system of nonlinear expressions. Series arrange-

ment of the system is obtained by employing optimal homotopic algorithm. These arrangements

contain ~  ~ ~ and ~ which have prime role in homotopic solutions. The optimal data of

~  ~ ~ and ~ can be acquired by taking small error. In order to save CPU time, average

residual errors at mth-order of approximation i.e.
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

̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (9.23)

By Liao [87]:

̊ = 

̊ + 


̊ + ̊ + 


̊  (9.24)

in which ̊ illustrates total squared residual error,  = 05 and  = 20 At 2nd order

of approximations, the optimal data of convergence control variables is ~ = −118623 ~ =
−107468 ~ = −146495, ~ = −103994 and total averaged squared residual error is ̊ =

925 × 10−4. Figure 91 represents plot of total residual error. Table 91 expresses individual
average residual error at ̊ = 2. It can be seen that average residual errors decay via higher

order deformations.
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Figure 91 : Total residual error sketch.
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Table 9.1. Optimal convergence control variables and total average squared residual errors.

̊ 

̊ 


̊ ̊ 


̊

2 479× 10−5 753× 10−4 691× 10−5 551× 10−5

6 258× 10−5 129× 10−4 606× 10−6 206× 10−5

10 170× 10−5 509× 10−5 184× 10−6 125× 10−5

16 108× 10−5 199× 10−5 669× 10−7 704× 10−6

20 850× 10−6 123× 10−5 429× 10−7 519× 10−6

9.4 Discussion

This portion displays influences of physical flow variables like fluid relaxation time number

1 Schmidt parameter  fluid retardation time number 2 rotation parameter Ω Brownian

movement parameter  Biot parameter  Prandtl parameter Pr and thermophoresis parame-

ter  on nondimensional velocities 
0 () and  ()  temperature  () and nano-concentration

 () fields. Figures 92 and 93 depict that how fluid relaxation 1 and retardation 2 time

numbers affect the velocity distribution  0 (). From these Figures it is examined that  0 ()

shows opposite behavior against 1 and 2. Physically 1 and 2 are directly proportional to

relaxation and retardation times respectively. Both relaxation and retardation times enhance

for higher 1 and 2. In fact an increment in relaxation time reduces the fluid velocity while

velocity of fluid elevates for greater retardation time. Due to this reason, a decreasing behavior

is noticed in velocity  0 () via 1 while an increasing trend is noted when 2 enhances. Figure

94 is portrayed to illustrate the influence of Ω on  0 (). Greater values of rotation parameter

lead to lower velocity distribution. Physically rotation parameter is the ratio of rotation to

extending rates. Higher values of rotation parameter Ω yield more rotational rate which yields

reduction in velocity distribution  0 (). Figures 95 and 96 display variations of 1 and 2 on

velocity distribution (). From these Figures we analyzed that magnitude of velocity distrib-

ution () is negative which shows that flow is only in negative −direction. It is interesting to
observe that both 1 and 2 have different effects near and away from the stretching surface.

Figure 97 is displayed to examine the variation of () via higher Ω. Reduction is noted in ()

against higher Ω. Figure 98 illustrates impact of 1 on  (). Here  () is escalated via higher
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1. Figure 99 depicts that an improvement in 2 shows decrease of  (). Further under discus-

sion analysis reduces to Maxwell model when (2 = 0). Figure 910 is portrayed to characterize

the consequences of  on  (). It is analyzed that distinct estimations of  yields an increase

of  (). Figure 911 demonstrates the variation of temperature  () for higher . Temperature

 () is incremented via higher . Figure 912 sketched influential impact of Pr on  (). Clearly

growing estimations of Pr causes a depreciation in  (). Figure 913 demonstrates the change

in () for varying . It has been analyzed that growing estimation of Ω yields an elevation

in (). Figure 914 presents that bigger 1 creates an improvement in nano-concentration

(). Figure 915 depicts variations of nano-concentration () via greater 2. It is apparently

observed that an expansion in 2 exhibits decay of nano-concentration (). Figure 916 ex-

amined impact of  on (). Nano-concentration field is accelerated via higher . Figure

917 explains the impact of  on nano-concentration field (). Nano-concentration field ()

decays via stronger . Influence of  on nano-concentration () is appeared in Figure 918.

Decaying trend in () is noted via higher . Figure 919 explained nano-concentration ()

against . An increment is analyzed in () via greater .Table 92 constructed variation in

rate of heat transfer (local Nusselt number) Re
−12
  via  1 2     and .

Local Nusselt (rate of heat transfer) number has been decayed via larger  1 and  while

reverse behavior is noticed for higher 2  and . Furthermore, the contribution of  and

 on heat transfer rate is quite comparable.
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Figure 92 : Sketch for  0() against 1.
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Figure 93 : Sketch for  0() against 2.
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Figure 94 : Sketch for  0() against Ω.
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Figure 95 : Sketch for () against 1.
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Figure 96 : Sketch for () against 2.
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Figure 97 : Sketch for () against .
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Figure 98 : Sketch for () against 1.

b2 = 0.0, 0.2, 0.4, 0.6

0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

z

q
z

b1 = 0.25, W = 0.2, g = Nb = 0.3, Nt = 0.1, Sc = Pr = 1.0

Figure 99 : Sketch for () against 2.
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Figure 910 : Sketch for () against Ω.
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Figure 911 : Sketch for () against .
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Figure 912 : Sketch for () against Pr.
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Figure 913 : Sketch for () against .
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Figure 914 : Sketch for () against 1.
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Figure 915 : Sketch for () against 2.
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Figure 916 : Sketch for () against Ω.
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Figure 917 : Sketch for () against .
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Figure 918 : Sketch for () against .
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Figure 919 : Sketch for () against .
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Table 9.2: Numerical data of local Nusselt (rate of heat transfer ) number via  1 2 

   and .

 1 2      Re
−12
 

01 025 025 03 01 10 03 10 01977

02 01964

03 01951

01 00 025 03 01 10 03 10 01988

03 01961

06 01932

01 025 00 03 01 10 03 10 01930

02 01958

04 01979

01 025 025 01 01 10 03 10 00851

07 03134

13 03943

01 025 025 03 00 10 03 10 01968

05 01952

10 01935

01 025 025 03 01 05 03 10 01964

10 01964

15 01964

01 025 025 03 01 10 03 10 01964

07 01964

10 01964

01 025 025 03 01 10 03 05 01605

10 01964

15 02143
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9.5 Major observations

Key results of this chapter includes:

• Higher fluid relaxation time number 1 show opposite behavior for both velocities  0()
and () while similar trend is noticed for temperature () and nano-concentration  ()

profiles.

• Both velocities  0() and () have reverse behavior for higher fluid retardation time

number 2 while decreasing trend is observed for temperature () and nano-concentration

 ().

• Temperature () and nano-concentration  () are augmented for higher rotation para-

meter  while reverse behavior is noticed for velocities  0() and ().

• Higher Biot parameter  shows stronger temperature () field.

• When  enlarges, both nano-concentration  () and temperature () are increased.

• Both  and  serve to reduce  () and ().

• Nano-concentration  () is decreased against .

• Heat transfer rate decays for higher  while it behaves constant for .
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Chapter 10

Three-dimensional rotating flow of

Jeffrey nanofluid with heat

generation/absorption and

Arrhenius activation energy: OHAM

solutions

Influence of activation energy in three dimensional rotating flow of Jeffrey nanoliquid is ad-

dressed. Mathematical modelling is developed by considering heat generation/absorption.

Brownian motion and thermophoretic diffusion are considered. Convergent series solutions

of the involved nonlinear problems are obtained. Optimal homotopy analysis method (OHAM)

is employed for the construction of series solutions. Salient behaviors of several pertinent vari-

ables on velocities, nano-concentration and temperature are examined graphically. Further local

Nusselt number (heat transfer rate) is graphically described via different flow variables.
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10.1 Statement

Here we examine steady 3D rotating flow of Jeffrey nanofluid with heat source/sink. An irreg-

ular motion and thermophoretic diffusion impacts are considered for present analysis. Effect

of activation energy is also studied. Convective heat and zero mass flux conditions are im-

plemented. Here liquid occupies the domain  ≥ 0 and the actuating surface is aligned in

−direction. Assuming the considered surface is extended in longitudinal direction with ve-
locity () = . In addition, fluid rotates about −axis with constant angular velocity .

Resulting boundary-layer problems are




+




+
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= 0 (10.1)





+ 




+ 




− 2 = 

1 + 1

⎛⎝2

2
+ 2

⎛⎝  3
2

+  3
2

+  3
3

+


2


+ 


2


+ 


2
2

⎞⎠⎞⎠  (10.2)





+ 




+ 




+ 2 =



1 + 1

⎛⎝2

2
+ 2

⎛⎝  3
2

+  3
2

+  3
3

+


2


+ 


2


+ 


2
2

⎞⎠⎞⎠  (10.3)



+  


+  


=  

2
2

+ 0
()

( − ∞)

+
()
()

³


¡






¢
+ 

∞

¡



¢2´


(10.4)





+




+




= 

µ
2

2

¶
−2

µ


∞

¶

( − ∞) exp
µ
−



¶
+


∞

µ
2

2

¶
 (10.5)

 = () =   = 0  = 0 −  

=  ( −  ) 




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∞


= 0 at  = 0

(10.6)

→ 0  → 0  → ∞  → ∞ when  →∞ (10.7)

in which (  ) express velocities in (  ) directions respectively, absolute viscosity (),

kinematic viscosity (), ( ) density of fluid, ratio of relaxation and retardation times (1), (2)

retardation time, () thermal diffusivity, thermal efficiency (), heat capacitance of the liquid

() , Brownian coefficient (), temperature ( ), effective heat capacitance of nanoparticles

(), (0) heat generation/absorption coefficient, concentration (), thermophoretic coefficient
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( ), activation energy (), fitted rate constant (), reaction rate (), Boltzmann constant

() and coefficient of heat transfer ( ).

Letting

 =  0()  = ()  = −()12()
() = −∞

∞  () = −∞
−∞   =

¡



¢12


⎫⎬⎭ (10.8)

Equation (101) is trivially justified and Eqs. (102)− (107) are reduced to

 000 + (1 + 1)
³
 00 −  0

2

+ 2Ω
´
+ 

¡
 002 −  

¢
= 0 (10.9)

00 + (1 + 1)
¡
0 −  0 − 2Ω 0¢+ 

¡
 000 − 000

¢
= 0 (10.10)

1

Pr
00 +

02 + 0 ++1 +
00 = 0 (10.11)

1


00 + 0 +

1







00 −  (1 + )  exp

µ
− 

1 + 

¶
= 0 (10.12)

(0) = (0) = 0  0(0) = 1 0(0) = −(1− (0)) 
0(0) +

0(0) = 0 (10.13)

 0(∞)→ 0 (∞)→ 0 (∞)→ 0 (∞)→ 0 (10.14)

In above expressions Ω, , , , , , Pr, , ,  and 1 stand for rotation parameter,

temperature difference parameter, Biot number, thermophoresis parameter, Deborah number,

Brownian movement parameter, Prandtl parameter, Schmidt number, chemical reaction para-

meter, nondimensional activation energy and heat generation/absorption parameter. We define

Ω = 

  = 2 Pr =



  =




p


  =

()∞
()

  = 




 =
() (−∞)

()∞
  = 

∞   =
2

 1 =

0
()

  = −∞
∞ 

⎫⎪⎬⎪⎭ (10.15)

Non-dimensional form of heat transfer rate is

(Re)
−12 = −0 (0)  (10.16)

Here local Reynolds number is Re = . Note that dimensionless mass flux exhibited by

Sherwood number  is now identically zero.
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10.2 Initial guesses

The suitable initial assumptions and auxiliary linear operators for OHAM solutions are selected

as

0() = 1− −  0() = 0 0() =


1 + 
−  0() = −



1 + 





−  (10.17)

...L
 =

3

3
− 



...L
 =

2

2
− 

...L
 =

2

2
− 

...L
 =

2

2
−  (10.18)

The above operators have characteristics

...L


h
̃∗
1 + ̃∗

2  + ̃∗
3 −

i
= 0

...L


h
̃∗
4  + ̃∗

5 −
i
= 0

...L


h
̃∗
6  + ̃∗

7 −
i
= 0

...L


h
̃∗
8  + ̃∗

9 −
i
= 0

⎫⎬⎭ (10.19)

in which ̃∗
 ( = 1− 9) illustrate the arbitrary constants.

10.3 OHAM solutions

The momentum, energy and nano-concentration expressions are tackled by BVPh2.0. These

expressions contain non-zero convergence control variables ~  ~ ~ and ~ which perform a

key role of homotopic solutions. We can figure out the optimal values of ~  ~ ~ and ~ by

taking minimum error. In order to save CPU time, average minimal errors are employed at

mth-order of deformation which was suggested by Liao [87] as follows:



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (10.20)



̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (10.21)

̊ =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (10.22)
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

̊ =

1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ ̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ () 

̊X
̊=0

̃ ()

⎞⎠
=

⎤⎦2  (10.23)

By Liao [87] :

̊ = 

̊ + 


̊ + ̊ + 


̊  (10.24)

in which ̊ expresses total squared residual error,  = 20 and  = 05. At 2nd order of

approximations, the optimal data of convergence control variables is ~ = −142072 ~ =
−129840 ~ = −152891 and ~ = −0930447 and total averaged squared residual error is
̊ = 822× 10−4. Figure 101 is sketched to characterize the total residual error. Individual
average squared residual error at ̊ = 2 are presented in Table 101. It is interpreted that

average residual errors depreciates via higher order deformations.
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Figure 101 : Sketch for total residual error.
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Table 10.1. Optimal convergence control variables and total average squared residual errors.

̊ 

̊ 


̊ ̊ 


̊

2 983× 10−5 487× 10−4 161× 10−4 758× 10−5

6 329× 10−5 634× 10−5 309× 10−5 271× 10−5

10 182× 10−5 213× 10−5 142× 10−5 162× 10−5

16 987× 10−6 683× 10−6 707× 10−6 934× 10−6

20 721× 10−6 375× 10−6 511× 10−6 705× 10−6

10.4 Discussion

Here we intend to predict the outcomes of rotation parameter Ω, Biot number , Prandtl num-

ber , ratio of relaxation to retardation times 1, heat source/sink parameter 1, Deborah

number , thermophoresis parameter , Brownian movement parameter , Schmidt number

, nondimensional activation energy , chemical reaction parameter  and temperature dif-

ference parameter  on velocities, temperature and nano-concentration. Figure 102 presents

the outcome of 1 for 
0
(). Velocity has decreasing trend for higher 1. Physically an in-

verse relation exists between 1 and retardation time. Higher 1 yields lower retardation time.

Such lower retardation time corresponds to reduction of velocity field. Figure 103 scrutinizes

the change of velocity 
0
() for varying . Higher estimation of  yield higher velocity field.

Basically Deborah number is directly related with retardation time. An increment in Debo-

rah number yields stronger retardation time. Such stronger retardation time correspond to

more velocity field. Figure 104 analyzes curves of velocity field 
0
() against different values

of rotation parameter Ω. One can easily notice the reduction of 
0
() via higher values of Ω.

Figure 105 delineates the influence of 1 on velocity (). It is examined that by enhancing

1, the velocity () decays. Figure 106 portrayed the consequences of  on velocity (). It is

analyzed that larger  yields an escalation of (). Figure 107 depicts effect of Ω on velocity

(). An increasing trend is observed against higher Ω. Figure 108 shows how () varied for

1. Here () enhances against stronger 1. Basically an increment of 1 corresponds to lower

retardation and higher relaxation times. Due to this argument, an enhancement is observed

in temperature via 1. Temperature () against higher  is shown in Figure 109. Larger 
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indicates decay of temperature (). Figure 1010 demonstrates the variation of temperature

 () for higher Ω. Temperature  () is elevated via higher Ω. Figure 1011 depicts how tem-

perature  () varied . It is noticed that by increasing , temperature  () elevates. Figures

1012 and 1013 are developed to analyze the behaviors of the heat generation (1  0) and

absorption (1  0) parameters. From these Figures it is examined that temperature shows

opposite trend while considering (1  0) and (1  0). Figure 1014 is developed to visualize

the behavior of Pr on  (). Here  () decayed for higher Pr. Figure 1015 displayed behavior of

 on  (). An enhancement is observed for temperature via higher estimations of . Impact

of 1 on () is presented in Figure 1016. An elevating impact of () is noted for higher 1.

Figure 1017 explains the impact of  on nano-concentration field (). Nano-concentration

field () depreciates against growing . Change in () against stronger Ω is displayed in

Figure 1018. Clearly () is elevated via greater Ω. Nano-concentration field () behavior

via  is depicted through Figure 1019. One can conveniently see that () depreciates via

stronger . Figure 1020 is displayed to analyze the role of  on  (). In the boundary layer

area, it can be explored that the fluid temperature is boosted up for rising values of . Figure

1021 is constructed to see the influence of  on (). () is elevated through stronger .

Figure 1022 is developed to see the influence of  on the nano-concentration field (). It

is clearly observed from this figure that () is an increasing function of . Figure 1023 is

displayed to deliberate the influence of  on (). Higher  cause a depreciation in (). Figure

1024 explores that () is a depreciating function of . Figure 1025 displayed the variations of

(Re)
−12 via higher  and . From this Figure it can be observed that (Re)

−12

reduces against higher  while constant behavior is observed via higher .
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Figure 102 : Sketch for  0() against 1.
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Figure 103 : Sketch for  0() against .
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Figure 104 : Sketch for  0() against Ω.
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Figure 105 : Sketch for () against 1.
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Figure 106 : Sketch for () against .
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Figure 107 : Sketch for () against Ω.
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Figure 108 : Sketch for () against 1.
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Figure 109 : Sketch for () against .
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Figure 1010 : Sketch for () against Ω.
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Figure 1011 : Sketch for () against .
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Figure 1012 : Sketch for () against (1  0).
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Figure 1013 : Sketch for () against (1  0).
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Figure 1014 : Sketch for () against Pr.
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Figure 1015 : Sketch for () against .
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Figure 1016 : Sketch for () against 1.
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Figure 1017 : Sketch for () against .
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Figure 1018 : Sketch for () against Ω.
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Figure 1019 : Sketch for () against .
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Figure 1020 : Sketch for () against .
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Figure 1021 : Sketch for () against .
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Figure 1022 : Sketch for () against .
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Figure 1023 : Sketch for () against .
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Figure 1024 : Sketch for () against .
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Figure 25 : Sketch for Re
−12 against  and .

10.5 Major observations

Key observations of present research are given below:
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• Both velocities  0() and () depict similar trend against stronger  and 1 while reverse
situation is noticed against rotation parameter Ω.

• An increment in 1 andΩ corresponds to stronger temperature () and nano-concentration
() profiles while weaker trend is noted via higher .

• Temperature enhances via (1  0) while decaying trend is observed against (1  0).

• An enhancement of temperature () is observed against .

• Temperature () and nano-concentration () have decaying trend via  and .

• Higher thermophoresis parameter  for temperature () and nano-concentration ()

has similar trends while nano-concentration () decreases for higher Brownian diffusion

parameter .

• Higher  yield stronger () while decaying situation is seen for  and .

• Heat transfer rate decays via higher  while constant behavior is noted for .
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