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Abstract

In this thesis, we consider the problem of boundedness of different Hausdorff operators

and their commutators on function spaces. However, from the point of view of applica-

tions and complexity, the major part of this thesis is devoted to prove the boundedness of

commutator operators generated by Hausdorff operator with locally integrable functions

on different function spaces. The function spaces include Lp function spaces, Morrey type

function spaces, Herz type function spaces and Triebel Lizorkin type function spaces with

the Euclidean space Rn or the Heisenberg group Hn as underlying spaces. We also con-

sider the weighted boundedness of Hausdorff operator and commutators on these function

spaces defined on Rn or Hn. Since Hardy integral operators are special cases of Hausdorff

operator, therefore, we also include some results regarding weighted boundedness of com-

mutators of Hardy operators on Morrey type spaces. Almost all work has been published

in well reputed mathematical science journals and is enlisted in the reference section of

this thesis.
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Preface

In this thesis, we will study integral operators including Hausdorff operator and Hardy-

type operators on function spaces. This study require the use of some basic concepts

of measure theory and integration like for example Lebesgue measure and Lebesgue

integrals. We only incidently considered these topics and we will assume in this thesis

that the reader is familiar with such basic concepts of measure theory and integration.

The first Chapter contains a brief history and recent development of Hausdorff

operators. In this Chapter, starting from one dimensional Hausdorff operator, we re-

call the definitions of high dimensional matrix Hausdorff operators, rough Hausdorff

operators and multilinear fractional Hausdorff operators. Several other integral oper-

ators which are special cases of Hausdorff operator are also come into discussion with

in the content of this chapter.

In the second chapter, we first give Lipschitz estimates for the commutators of

matrix Hausdorff operator on Lebesgue, Morrey, Herz and Triebel-Lizorkin space.

Then we give central BMO-estimates for the same commutators on Herz-type spaces.

Here, we give answer to an open question regarding Lebesgue space boundedness of

the commutators of Hausdorff operator. The results of this chapter has been published

in [71].

Keeping in view the importance of weighted theory of function spaces and the work

on Hausdorff operators in the past, we developed new results on the boundedness

of the matrix Hausdorff operator on weighted central Morrey space in Chapter 3.

Employing some special conditions on the norm of the matrix and weight functions,

sharp bounds for these results are also computed. Moreover, similar boundedness

results for the commutators of the matrix Hausdorff operator are established as well.

The results of this chapter has been published in [70].

In chapter four, our objective is to provide some weak type inequalities for frac-

tional Hausdorff operator and related commutators. Since Hardy operators are special

cases of fractional Hausdorff operators so, therefore, remaining of this chapter is de-

voted to obtain sufficient conditions for the boundedness of commutators of Hardy

iv



contents v

operator on weighted central Morrey spaces when the symbol functions belongs to

weighted Lipschitz space.

Chapter five is about the boundedness of Hausdorff operator and commutators

on weighted Herz space with the Heisenberg group as underlining space. The first

part is about the boundedness of Hausdorff operator on Herz-type spaces while in the

second part we established weighted CBMO estimates for the commutator operators.

The significance of our results lies in the fact that Herz-type spaces are used in the

characterization of multiplier on the Hardy spaces and in the study of certain kind of

partial differential equations (PDE’s). Some of the results of this chapter has been

published in [72].

Amna Ajaib

Islamabad, Pakistan

October 12, 2020
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Chapter 1

Introduction

There are several methods to check the convergence of a number series. Among them

the Cesàro and Hausdorff summability methods are of fundamental importance. A

review paper by Liflyand [85] reveals that the origin of Hausdorff summability method

can be traced back to Hurwitz and Silverman [68], who studied a family of methods

within the classical framework of number series. However, after the seminal work by

Hausdorff [60], who actually developed the summability methods by associating them

with the moment problem for a finite interval, the topic was retaken by several authors

including Garabedian [47], Hardy [59], Powell and Shah [108], Hille and Tamarkin [62]

and Ustina [124].

The historic development of the Hausdorff operator from Hausdorff summability

to its present forms is best described in the review articles [14, 87]. In summary,

modern theory of Hausdorff operators comprises of two settings, complex analysis

settings due to Siskakis [118, 119] and Fourier transform setting due to Georgakis [48]

and more specifically due to Liflyand and Móricz [49, 90]. In this chapter, we shall

briefly describe the theory of Hausdorff operators in the later settings starting from

one-dimensional Hausdorff operators to multi-dimensional one.

1.1 The One Dimensional Hausdorff Operators

To study the continuity properties of Hausdorff operators on function spaces, an

appropriate point for opening discussion is the one dimensional Hausdorff operator:

hΦf(x) =

∫ ∞
0

f(
x

t
)
Φ(t)

t
dt, x ∈ R, (1.1.1)

where Φ ∈ L1(R). Also, in the interest of convenience, it is usually assumed that

functions f are initially in Schwartz class S(R). The operator firstly appeared in [90]

1
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in a thoughtful manner, where the authors studied its boundedness on the real Hardy

spaces H1(R). Sharpness of the main result in [90] was shown in [32] which was then

negated by the authors of [17] by improving the main theorem in [90]. The exact

norm of hΦ on H1(R) was computed in [66]. Later works by authors in [80, 89, 96]

extended the results provided in [90] to the Hardy spaces Hp(R), 0 < p < 1. In

[92], it was shown that the Hausdorff operator has commuting relations with Hilbert

transforms. Finally, the boundedness of the bivariate and multivariate versions of

(1.1.1) on the product Hardy spaces were established in [91] and [67], respectively.

Recently, in [11], a novel idea of proving the boundedness of hΦ on the Hardy space

Hp(R) when 1 ≥ p > 0; was employed to extend some known boundedness results

regarding Hausdorff operator on Hardy spaces. A change of variables in (1.1.1) results

in an equivalent form of the Hausdorff operator [130]:

hΦf(x) =

∫ ∞
0

Φ(x
t
)

t
f(t)dt, x ∈ R, (1.1.2)

of which the weighted boundedness in Lebesgue space with constant exponent and

variable exponent is given in [1] and [5], respectively.

Recent interest in the study of Hausdorff operator is due to the fact that there are

many popular and important operators in analysis which become special cases of hΦ,

if the function Φ is suitably chosen. Like, for example, the one dimensional Hardy

operator:

hf(x) = x−1

∫ x

0

f(t)dt, x > 0, (1.1.3)

is obtained from hΦ if one chooses Φ(t) = t−1χ(1,∞)(t) in (1.1.2). Alternatively, if Φ(t)

is taken to be equal to χ(0,1)(t) in (1.1.2) then we obtain adjoint Hardy operator given

by:

h∗f(x) =

∫ ∞
x

t−1f(t)dt. (1.1.4)

Here it is worth mentioning that the Hardy-Littlewood-Pólya operator p which can

be defined as:

pf(x) = h∗f(x) + hf(x),

which implies that the operator p is also a special case of Hausdorff operator. Another

variant of Hausdorff operator is the weighted Hardy operator:

uψf(x) =

∫ 1

0

ψ(t)f(tx)dt, x ∈ R, (1.1.5)

which is obtained from (1.1.2) by selecting:

Φ(t) = t−1ψ(1/t)χ(1,∞)(t),
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where ψ : [0, 1]→ [0,∞], is a measurable function. Here, we remark that the Cesàro

operator is also a subcase of Hausdorff operator, see [80] for more details.

Kuang Jichang, in [82, 83], introduced a new generalization of Hausdorff operator

in the form:

HΦf(x) =

∫ ∞
0

Φ(t)

t
f(g(t)x)dt, (1.1.6)

where g : (0,∞) → (0,∞) is a monotonic function and Φ : (0,∞) → (0,∞) is a

locally integrable function. He obtained the condition on Φ which was necessary and

sufficient for the continuity of HΦ on power weighted Herz-type spaces. Also, he

showed that the operator (1.1.1) can be obtained from HΦ if one chooses g(t) = 1/t.

In case x ∈ R and g(t) = 1/t, some q-inequalities for Hausdorff operator were obtained

in [55]. Finally, our theory of one dimensional Hausdorff operator ends up with the

inclusion of the paper [25] in which Daher and Saadi defined and studied the Dunki-

Hausdorff operator on the real Hardy spaces H1
α(R).

1.2 The Matrix Hausdorff Operators

In [84], Lerner and Liflyand gave the following extension of hΦ to Euclidean space Rn

for n ≥ 2

HΦ,Af(x) =

∫
Rn
f(xA(y))Φ(y)dy, (1.2.1)

where A(y) is an n×n matrix satisfying non-singularity conditions almost everywhere

in the support of a fixed integrable function Φ. Taking into consideration the duality

of H1 and BMO, the authors in [84] showed that HΦ,A is bounded on Hardy spaces.

Subsequently, similar boundedness of HΦ,A was reconsidered in [86] using atomic de-

composition of Hardy spaces. Also, results of [84, 86] on the H1(Rn) boundedness

of the Hausdorff operators are generalized to the case of locally compact groups in

[102, 103]. Recently, Liflyand and Miyachi [88] extended these results on Hp(Rn)

spaces with 0 < p < 1. In [104], a spectral representation for multidimensional nor-

mal Hausdorff operator is given. Actually, before Lerner and Liflyand results, Brown

and Móricz defined the multivariate Hausdorff operator H(µ, c, A) acting on Borel

measurable functions f : Rn → C by setting

H(µ, c, A)f(x) =

∫
Rn
f(xA(y))c(x)dµ(y), (1.2.2)

where µ is a σ-finite complex measure defined on the Borel measurable subsets of

Rn, c : Rn → C is a Borel measurable function which is nonzero µ-a.e., and A := [aij]
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is a n × n matrix whose entries aij : Rn → C are Borel measurable functions and

such that A is nonsingular µ-a.e. By defining the operator in this way they obtained

the Lp(Rn) boundedness of H(µ, c, A). In fact, HΦ,Af(x) can be considered as a

special case of H(µ, c, A) when µ is absolutely continuous. It should be noted that,

unlike HΦ,Af(x), the boundedness of H(µ, c, A) on Hardy spaces cannot be obtained

by using the duality of H1 and BMO. However, when the matrix A is diagonal, the

boundedness of H(µ, c, A) on Hardy and BMO spaces was shown in [131]. Latterly,

Anderson [3] studied the boundedness properties of the operator:

Hµf(x) =

∫
R
f(xy)dµ(y), x ∈ Rn, (1.2.3)

and its formal adjoint operator:

H∗µf(x) =

∫
R
f(x/y)|t|−ndµ(y), x ∈ Rn, (1.2.4)

on Lp(Rn), H1(Rn) and BMO(Rn). These results were then extended to the Herz-

type spaces in [44] and rearrangement-invariant function spaces in [64]. The above

cited publications are important as their results are the first attempts to study the

high dimensional Hausdorff operators on function spaces.

In 2012, Chen et al. [12] modified the form of (1.2.1) by replacing the kernel

function Φ(y) with |y|−nΦ(y) :

HΦ,Af(x) =

∫
Rn
f(xA(y))

Φ(y)

|y|n
dy. (1.2.5)

As a subcase, when A(y) = diag[1/|y|, 1/|y|, ..., 1/|y|], they give another definition of

n-dimensional Hausdorff operator:

HΦf(x) =

∫
Rn
f(

x

|y|
)
Φ(y)

|y|n
dy. (1.2.6)

Their results include the boundedness of Hausdorff operators on Hardy spaces, local

Hardy spaces, Herz and Herz-type Hardy spaces with a conclusion that these op-

erators have better performance on Herz-type Hardy spaces than their performance

on Hardy spaces. In the same year, with different co-authors, Chen et al. [16] ex-

tended the problem of boundedness of HΦ,A to the product of Hardy type spaces.

The boundedness results regarding Hausdorff operators on H1(Rn) were improved in

[19]. The continuity of (1.2.5) on Morrey spaces [9, 10], Hardy-Morrey spaces [26],

rectangularly defined spaces [27], Block spaces [63], Triebel-Lizorkin-type spaces [93]

and Campanato spaces [115, 135] has also been discussed in the recent past. Similarly,

some results regarding the boundedness of HΦ can be found in [65, 73, 139, 140, 141].
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On the other hand, weighted norm inequalities for Hausdorff operators on function

spaces have recently been reported in the literature which include boundedness of

Hausdorff operator on on power weighted Hardy spaces [18, 112], weighted central

Morrey space [70], weighted Herz-type Hardy spaces [114], weighted central Morrey

and weighted Herz space on Heisenberg group [117, 116] and on weighted Lorentz

spaces [121]. The two weighted inequalities for HΦ,A on Herz-type Hardy spaces with

power weights have also been obtained in [21].

In the same way, the study of commutators to integral operators is important

as it has many applications in the theory of partial differential equations and in

characterizing function spaces. An attempt has been made in [71] to discuss the

continuity of commutator operator HΦ,A, defined by:

Hb
Φ,Af(x) =

∫
Rn

(b(x)− b(xA(y)))f(xA(y))
Φ(y)

|y|n
dy, (1.2.7)

on function spaces when the symbol function b are either from Lipschitz space or

central BMO space. However, when the matrix A(y) is diagonal, we get the com-

mutators of HΦ which were studied in [69, 74] and [132]. Finally, the weighted norm

inequalities for the operator defined in (1.2.7), when b belongs to weighted central

mean oscillation space, were recently reported in [70].

A nice contribution from Russian mathematician to the theory of Hausdorff oper-

ator is the p-adic analogs of matrix Hausdorff operator given in [125]:

Hϕ,Af(x) =

∫
Qnp
f(A(t)x)ϕ(t)dµ(t), (1.2.8)

where µ is the Haar measure on Qn
p . In the paper [125], the author gave a sufficient

condition on ϕ for the boundedness of Hϕ,A on p-adic Hardy and BMO spaces. The

BMO-type estimates on different p-adic function spaces were established in [126] for

the following Hausdorff operator:

Hϕf(x) =

∫
B0

ϕ(t)f(tx)dµ(t), x ∈ Qn
p , (1.2.9)

with B0 is the unit ball of Qn
p . The same author, in [127], obtained the sharp conditions

on the size of ϕ such that the operator Hϕ and it adjoint operator:

H∗ϕf(x) =

∫
B0

f(t−1x)|t|−1
p ϕ(t)dµ(t), x ∈ Qn

p , (1.2.10)

are bounded on Morrey and Herz spaces.



6 Introduction

The p-adic matrix Hausdorff operator was reconsidered in [128], where by imposing

conditions on both the determinant and the norm of the matrix, its boundedness

was shown on Hardy, BMO and Hölder spaces. Finally, by generalizing the result

presented in [126, 127], the author in [128] proved the two-sided sharp estimate for

the norm of Hausdorff operator on the Herz-type spaces. For Hausdorff operator of

general type defined on Qn
p , Bandaliyev and Volosivets [6] gave sufficient conditions

of its boundedness in weighted Lebesgue and grand Lebesgue spaces. Sharpness of

some of these conditions was also established in the same paper. The p-adic analogues

of (1.2.3) and (1.2.4) were discussed in [129]. In [75], the authors came up with the

continuity of the Hausdorff operator defined on Qn
p on the weighted p-adic Morrey and

Herz type spaces with power weights. Also, by imposing some specific restrictions on

the norm of the matrix A, they proved that these boundedness results are sharp.

The commutators of p-adic matrix Hausdorff operators were define and studied

in [76]. Perhaps the last article we found, before submission of this thesis, on the

boundedness of Hausdorff operator is [23] in which the authors studied the operator

on variable exponent Morrey-Herz spaces.

1.3 The Rough Hausdorff Operators

Another important development made in [12] was the introduction of rough Hausdorff

operator defined by

H̃Φ,Ωf(x) =

∫
Rn

Ω(y′)f(y)
Φ(x/|y|)
|y|n

dy, (1.3.1)

where Φ is a radial function defined on R+, and Ω(y′) is an integrable function defined

on the unit sphere Sn−1. Here and in the sequel, if Ω = 1, we denote H̃Φ,1 = H̃Φ.

Immediately after the appearance of [12], two different extensions of the operator H̃Φ

to the multilinear case were made in [15] and their bounds on Lebesgue spaces and

Herz spaces were established. Operator norm for the multilinear Hausdorff operator

were computed in [37]. Meanwhile, the sharp constants on the product of Lebesgue

spaces for the same operator were obtained in [134]. q-analysis of the results of [134]

was made in [31]. The sharp Strong and weak type (p, p) estimates for linear and

multilinear Hausdorff operator with the Heisenberg group as underlying spaces were

established in [54]. The authors, in [41], gave some conditions on Φ which were

sufficient for the continuity of three types of Hausdorff operators on the Lebesgue

spaces with power weights.
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In [113], the author studied the operator H̃Φ on power weighted Hardy spaces and

found that it is bounded on Hp
|.|α(Rn) if the kernal function Φ is the Poisson function

or the Guass function. The similar boundedness of H̃Φ on weighted Herz-type Hardy

spaces, using their atomic decomposition, was proved in [143].

Keeping in view the importance of commutator operator, Hussain and Ahmed [69]

defined the commutators of H̃Φ,Ω by

H̃b
Φ,Ωf(x) = b(x)H̃b

Φ,Ω(f)(x)− H̃Φ,Ω(bf)(x). (1.3.2)

Gao and Jia [39] studied the boundedness of H̃b
Φ = H̃b

Φ,1 in Lebesgue, Herz and

Morrey-Herz spaces taking the symbol functions b either from central-BMO or Lip-

schitz spaces. Moreover, central BMO estimates for H̃b
Φ were studied in [74]. Weak

type Lipschitz estimates for such commutators were established in [69]. In the same

paper, using Marcinkiewicz interpolation theorem, it was shown that strong type

Lipschitz estimates for H̃b
Φ,Ω also hold. The boundedness of the rough type Haus-

dorff operator on weighted function spaces was established in [120]. Chuong et al.,

in [24], provided the sufficient and necessary conditions for the boundedness of H̃Φ,Ω

on weighted Herz-type and Morrey-type spaces. Moreover, they also established the

weighted boundedness of H̃b
Φ,Ω on these spaces. The study, in [22], undertook the

weighted boundedness of multilinear p-adic rough-type Hausdorff operator on the

product spaces and also established the boundedness for the commutators of same

operators with symbols in central-BMO space.

1.4 The Fractional Hausdorff Operators

After the appearance of matrix and rough Hausdorff operator, it was natural to de-

fine and study the fractional type Hausdorff operator. The gap was filled in [96] by

studying strong and weak type boundedness for the fractional Hausdorff operator:

HΦ,γf(x) =

∫
Rn

f(y)

|y|n−γ
Φ(|x|/|y|)dy, 0 ≤ γ < n, (1.4.1)

in Lebesgue spaces. Note that the kernel function Φ is taken radial while proving

main results in [96], however, the case of general non-radial function Φ was subse-

quently considered in [30]. Necessary and sufficient conditions for the continuity of

HΦ,γ with non-radial function Φ on power weighted Lebesgue spaces were provided

in [40]. Roughness in the fractional Hausdorff was defined and studied in [38]. The

paper [43] establishes weak type estimates for fractional Hausdorff operator with a
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conclusion that it is bounded from Hardy spaces to weak Lebesgue spaces. Although,

multilinear fractional Hausdorff operators were defined in [30] but their sharp constant

on Lebesgue spaces were fixed in [133].

The problem of boundedness of fractional Hausdorff operator in Hardy spaces

Hp(Rn) was initiated by Chen et al. [13]. Wu and Fan [136] continued the work of

[13] in the setting of Homogenous groups and proved the continuity of the Hausdorff-

Gauss and the Hausdorff-Poisson operators in Hardy spaces. Also, in the setting of

Heisenberg group, characterization of some functions was made in [136] for which the

fractional Hausdorff operator is bounded on BMO space, power weighted Lp spaces

and Hardy spaces, respectively.

Similar to the definitions of commutators of matrix and rough Hausdorff operators,

the commutators of HΦ,γ cab be defined as:

Hb
Φ,γf(x) =

∫
Rn

Φ(|x|/|y|)
|y|n−γ

(b(x)− b(y))f(y)dy, 0 ≤ γ < n. (1.4.2)

Such commutators were defined and studied in [73, 110, 123].

1.5 Our Contribution to the Theory

We contributed to the theory of Hausdorff operators in many ways. Firstly, we defined

the commutators of matrix Hausdorff operator for the first time and obtained its

boundedness on Morrey, Herz and Triebel-Lizorkin spaces. Also, we gave answer

to an open question regarding Lebesgue space estimates for the commutators of the

matrix Hausdorff operators. Secondly, keeping in view the importance of weighted

theory of function spaces we developed new results on the continuity of the matrix

Hausdorff operators and their commutators on weighted central Morrey spaces. Also,

by employing some specific conditions on the weight functions and on the norm of the

matrix, sharp bounds for these results are also computed. Thirdly, we established some

weak type inequalities for fractional Hausdorff operator and related commutators.

Finally, we not only showed the boundedness of matrix operator on weighted type

Herz space with the Heisenberg group as underlining space but also obtain similar

results for its commutators.

1.5.1 References of Contribution

The contribution is cited in the reference list which include [70, 71, 72].



Chapter 2

Commutators of Matrix Hausdorff

Operator on Function Spaces

2.1 Introduction

The study of boundedness properties of commutators operators on function spaces

is considered an important problem in harmonic analysis. The study can be utilized

for characterizing the function spaces, in the well posedness problems of solution to

partial differential equations (PDEs) and in the regularity theory to special kind of

PDEs. Therefore, the study of boundedness results for the commutators of Hausdorff

operators is as important as the study of Hausdorff operators itself. In an exploratory

research, one can find very few papers discussing the boundedness of commutators

of various Hausdorff operators [39, 70, 73, 74, 132], except that of HΦ,A. Recently,

in [69], we defined the commutators of matrix Hausdorff operator HΦ,A and locally

integrable function g as:

Hg
Φ,A(f)(x) = g(x)HΦ,A(f)(x)−HΦ,A(gf)(x),

and constructed weighted estimates for it on central Morrey spaces, when g ∈ CṀO(Rn).

Also, we raised an open question regarding Lp(Rn) boundedness of Hg
Φ,A. Here, we

give partially positive answer to this question by establishing Lp(Rn)→ Lq(Rn) esti-

mates for the symbol functions belonging to the Lipschitz class of functions. However,

in the case g ∈ CṀO(Rn), the question of Lp(Rn) boundedness of Hg
Φ,A still remains

open.

In this chapter, our aim is to establish the Lipschitz estimates forHg
Φ,A on Lebesgue,

Morrey and Herz-type spaces and thus generalize some results presented in [43, 70].

In addition, when g ∈ Λ̇β(Rn), we obtain Lp → Ḟ β,∞
p boundedness for Hg

Φ,A, where

Ḟ β,∞
p is the homogeneous Triebel-Lizorkin space. Also, we estimate Hg

Φ,A on Herz-

9
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type spaces when g ∈ CṀO(Rn). The significance of our results lies in the fact that

Herz-type spaces are used in the characterization of multiplier on the Hardy spaces

[4] and in the study of certain kind of PDEs [100].

This chapter is organized as follows. The second section contains some basic

definitions and notations likewise some necessary lemmas which will be used in the

succeeding sections of this chapter. Lipschitz estimates for Hg
Φ,A are established in the

third section. While results regarding central-BMO estimates of Hg
Φ,A on Herz-type

spaces are stated and proved in the last section.

2.2 Some Definitions and Lemmas

In 1938, Morrey [105] studied second order parabolic and elliptic PDEs along with

their local behavior and introduced a function space what is called Morrey space.

Definition 2.2.1 Suppose 1 ≤ p < ∞, 0 ≤ λ ≤ n. The Morrey space Lp,λ(Rn) is

defined as:

Lp,λ(Rn) =
{
g ∈ Lploc(R

n) : ‖g‖Lp,λ(Rn) <∞
}
,

satisfying

‖g‖Lp,λ(Rn) = sup
r>0,x0∈Rn

(
1

rλ

∫
Q(x0,r)

|g(x)|pdx
)1/p

,

where x0 is the center and r is the side length of the cube Q = Q(x0, r) along the

coordinate axes.

It is easy to see that Lp(Rn) = Lp,0(Rn) and Lp,n(Rn) = L∞(Rn). If n < λ, then we

have Lp,λ(Rn) = 0. Hence, we consider, in this paper, the case 0 < λ < n.

For k ∈ Z, we denote Ck = Bk/Bk−1 where Bk := {x ∈ Rn : |x| < 2k}. Then we

will consider the following definition of homogeneous Herz space.

Definition 2.2.2 ([138, 109, 51]) Suppose 0 < p, q < ∞, α ∈ R. The Herz space

K̇α,p
q (Rn) is the set:

K̇α,p
q (Rn) :=

{
g ∈ Lqloc(R

n/{0}) : ‖g‖K̇α,p
q (Rn) <∞

}
,

where

‖g‖K̇α,p
q (Rn) =

{
∞∑

k=−∞

2kαp‖g‖pLq(Ck)

}1/p

.
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It is not difficult to verify that Lp(Rn) = K̇0,p
p (Rn). Hence, Herz space is reduced to

Lebesgue space Lp(Rn) when the indices attain some specific values.

Similarly the definition of homogenous Herz-Morrey space MK̇α,λ
p,q (Rn) can be

stated as below.

Definition 2.2.3 Suppose 0 < p, q < ∞, α ∈ R, 0 ≤ λ. The Herz-Morrey space

MK̇α,λ
p,q (Rn) is the set:

MK̇α,λ
p,q (Rn) :=

{
g ∈ Lqloc(R

n/{0}) : ‖g‖MK̇α,λ
p,q (Rn) <∞

}
,

where

‖g‖MK̇α,λ
p,q (Rn) = sup

k0∈Z
2−k0λ

{
k0∑

k=−∞

2kαp‖g‖pLq(Ck)

}1/p

.

Obviously, MK̇α,0
p,q (Rn) = K̇α,p

q (Rn) and Lq,λ(Rn) ⊂MK̇0,λ
q,q (Rn).

For the continuity of commutator operators in function spaces having central na-

ture, one usually looks for a corresponding function class to which the symbol function

b belongs and which has BMO-type behavior at the origin. Having such a prop-

erty an appropriate function space is the homogeneous central mean oscillation space

CṀOq(Rn) defined below.

Definition 2.2.4 ([2]) Suppose ∞ > q > 1. A function g ∈ Lqloc(Rn) is said to

belongs to the central-BMO space CṀO
q
(Rn) if

‖g‖CṀO
q
(Rn) = sup

R>0

(
1

|B(0, R)|

∫
B(0,R)

|g(x)− gB(0,R)|qdx
)1/q

<∞,

where |B(0, R)| is the measure of B(0, R) and gB = 1
|B|

∫
B
g(x)dx is the average of g

over B.

For detailed study of CṀOq(Rn) space we refer the interested reader to [2, 99].

Obviously, BMO(Rn) ⊂ CṀOq(Rn) for 1 ≤ q < ∞. However, the two spaces

differ in their properties. For example CṀOq(Rn) depends on q and CṀOq(Rn) ⊂
CṀOp(Rn), 1 ≤ p < q < ∞. Therefore, there is no analogy of John-Nirenberg

inequality of BMO(Rn) for CṀOq(Rn). The function space BMO(Rn) is the mean

oscillation function space satisfying the following norm condition:

‖g‖BMO(Rn) = sup
B
|B|−1

∫
B

|g(x)− gB|dx.
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Definition 2.2.5 ([107]) Suppose β ∈ (0, 1). The space with the norm condition:

‖g‖Λ̇β(Rn) = sup
x,h∈Rn

|g(x+ h)− g(x)|
|h|β

<∞.

is called Lipschitz space Λ̇β(Rn).

Next, for a non-singular matrix E, we consider the following definition of norm

‖E‖ = sup
x∈Rn,x 6=0

|Ex|
|x|

, (2.2.1)

which implies that

‖E‖−n ≤ | det(E−1)| ≤ ‖E−1‖n. (2.2.2)

Finally, the fractional maximal function Mβ of order β with 0 ≤ β < n have the

form:

Mβg(x) = sup
Q3x
|Q|

β
n
−1

∫
Q

|g(y)|dy,

where the supremum is taken over all cubes Q containing x. Notice that when β = 0,

we obtain the usual Hardy Littlewood maximal function M = M0.

This finishes the streak of definitions concerning function spaces, norm of a matrix

and maximal function. We are now in position to state some lemmas which will be

helpful in proving main results.

Lemma 2.2.6 ([107]) Suppose 0 < β < 1 and f ∈ Λ̇β(Rn), and let Q be any cube in

Rn, then

sup
x∈Q
|fQ − f(x)| ≤ C|Q|

β
n‖f‖Λ̇β(Rn),

where |Q| denotes the measure of the cube Q and fQ = 1
|Q|

∫
Q
f(x)dx.

Lemma 2.2.7 Suppose 0 < β < 1 and the symbol function b is in Λ̇β(Rn), then

M(Hb
Φ,Af)(x)

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

max{1, | detA−1(y)|β/n}(1 + ‖A(y)‖β)Mβ(f)(A(y)x)dy.
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Proof: Let us consider a cube Q ⊂ Rn in such a way that x ∈ Q and

1

|Q|

∫
Q

|Hb
Φ,Af(z)|dz =

1

|Q|

∫
Q

∣∣∣∣∫
Rn

Φ(y)

|y|n
(b(z)− b(A(y)z))f(A(y)z)dy

∣∣∣∣ dz
≤ 1

|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q

|(b(z)− b(A(y)z))f(A(y)z)| dzdy

≤ 1

|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q

|(b(z)− bQ)f(A(y)z)| dzdy

+
1

|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q

∣∣(bQ − bA(y)Q)f(A(y)z)
∣∣ dzdy

+
1

|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q

∣∣(b(A(y)z)− bA(y)Q)f(A(y)z)
∣∣ dzdy

= I1 + I2 + I3.

In the approximation of I1, we use Lemma 2.2.6 to obtain

I1 ≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(
1

|Q|1−β/n

∫
Q

|f(A(y)z)|dz
)
dy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(
1

|A(y)Q|1−β/n

∫
A(y)Q

|f(z)|dz
)
| detA−1(y)|β/ndy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|β/nMβ(f)(A(y)x)dy.

In order to estimate I2, we have to approximate |bQ − bA(y)Q|. For 0 < β < 1, we

obtain

|bQ − bA(y)Q| ≤
1

|Q|

∫
Q

|b(z)− bA(y)Q|dz

≤ 1

|Q|
1

|A(y)Q|

∫
Q

∫
A(y)Q

|b(z)− b(t)|dtdz

≤ ‖b‖Λ̇β(Rn)

(
1

|Q|

∫
Q

|x|βdz +
1

|A(y)Q|

∫
A(y)Q

|t|βdt
)

≤ C|Q|β/n‖b‖Λ̇β(Rn)(1 + ‖A(y)‖β)

Therefore,

I2 ≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(1 + ‖A(y)‖β)

(
1

|Q|1−β/n

∫
Q

|f(xA(y))|dz
)
dy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(1 + ‖A(y)‖β)| detA−1(y)|β/nMβ(f)(A(y)x)dy.



14 Commutators of Matrix Hausdorff Operator on Function Spaces

It now turns to estimate I3. By virtue of Lemma 2.2.6, the estimation of I3 reduces

to

I3 =
1

|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q

∣∣(b(A(y)z)− bA(y)Q)f(A(y)z)
∣∣ dzdy

=
1

|Q|

∫
Rn

|Φ(y)|
|y|n

| detA(y)|−1

∫
A(y)Q

|b(z)− bA(y)Q||f(z)|dzdy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(
1

|A(y)Q|1−β/n

∫
A(y)Q

|f(z)|dz
)
dy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

Mβ(f)(A(y)x)dy.

We combine the estimates of Ii (i = 1, 2, 3), to have

1

|Q|

∫
Q

|Hb
Φ,Af(z)|dz

≤ C‖b‖Λ̇(Rn)

∫
Rn

Φ(y)

|y|n
max{1, | detA−1(y)|β/n}(1 + ‖A(y)‖β)Mβ(f)(A(y)x).

Finally, if one takes the supremum over cubes Q in such a way that x ∈ Q, then the

result become obvious.

Lemma 2.2.8 ([8]) Suppose β ∈ (0, 1), 1 < p < n/β, n − βp > λ > 0 and 1/p −
β/(n− λ) = 1/q. Then Mβ is bounded operator from Lp,λ(Rn) to Lq,λ(Rn).

Lemma 2.2.9 ([101]) Let 0 < p1 ≤ ∞, p1 ≤ p2 ≤ ∞, 1 < q1 < n/β and β/n =

1/q1 − 1/q2 with β ∈ (0, 1). If n− n/q1 > α > −n/q1 + β, then

‖Mβf‖K̇α,p2
q2

(Rn) ≤ C‖f‖K̇α,p1
q1

(Rn).

Lemma 2.2.10 ([53]) Let 0 < p1 ≤ ∞, p1 ≤ p2 ≤ ∞, 1 < q1 < n/β and β/n =

1/q1 − 1/q2 with β ∈ (0, 1). For λ > 0, if n− n/q1 > α− λ > −n/q1 + β, then

‖Mβf‖MK̇α,λ
p2,q2

(Rn) ≤ C‖f‖MK̇α,λ
p1,q1

(Rn).

Lemma 2.2.11 ([107]) Let ∞ > p > 1 > β > 0, then

‖g‖Fβ,∞p (Rn) ≈
∥∥∥∥sup
Q3x
|Q|−(1+β/n)

∫
Q

|g(z)− gQ|dz
∥∥∥∥
Lp(Rn)

.

2.3 Lipschitz Estimates for Hb
Φ,A on Function Spaces

As we stated in the introduction, this section is centered on obtaining estimates for

Hb
Φ,A on function spaces. In this regard, our main results are as below.
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2.3.1 Main Results

Theorem 2.3.1 Let β ∈ (0, 1), n−βp > λ > 0, n/β > p > 1, and 1/p−β/(n−λ) =

1/q. If b ∈ Λ̇β(Rn), then

‖Hb
Φ,Af‖Lq,λ(Rn) ≤ CK1‖b‖Λ̇β(Rn)‖f‖Lp,λ(Rn),

where K1 is∫
Rn

|Φ(y)|
|y|n

max{| detA−1(y)|1/q−λ/q, | detA−1(y)|β/n+1/q−λ/q}(1 + ‖A(y)‖β)dy.

Theorem 2.3.2 Let β ∈ (0, 1), n/β > p > 1, and 1/p − β/n = 1/q. If b ∈ Λ̇β(Rn),

then

‖Hb
Φ,Af‖Lq(Rn) ≤ CK2‖b‖Λ̇β(Rn)‖f‖Lp(Rn),

where K2 is∫
Rn

|Φ(y)|
|y|n

max{| detA−1(y)|1/q, | detA−1(y)|1/p}(1 + ‖A(y)‖β)dy,

Theorem 2.3.3 Suppose 0 < p1 ≤ ∞, p1 ≤ p2 ≤ ∞, 1 < q1 < n/β and β/n =

1/q1 − 1/q2 with β ∈ (0, 1). For λ > 0, if n − n/q1 > α − λ > −n/q1 + β, and

b ∈ Λ̇β(Rn), then

‖Hb
Φ,Af‖MK̇α,λ

p2,q2
(Rn) ≤ CK3‖b‖Λ̇β(Rn)‖f‖MK̇α,λ

p1,q1
(Rn),

where K3 is∫
Rn

|Φ(y)|
|y|n

max{| detA−1(y)|1/q2 , | detA−1(y)|1/q1}(1 + ‖A(y)‖β)Gα,λ(y)dy,

and

Gα,λ(y) =


1 + log2(‖A(y)‖‖A−1(y)‖), α = λ,

‖A−1(y)‖α−λ, α > λ,

‖A(y)‖λ−α, α < λ.

(2.3.1)

Theorem 2.3.4 Suppose 0 < p1 ≤ ∞, p1 ≤ p2 ≤ ∞, 1 < q1 < n/β and β/n =

1/q1 − 1/q2 with β ∈ (0, 1). If n− n/q1 > α > −n/q1 + β, and b ∈ Λ̇β(Rn), then

‖Hb
Φ,Af‖K̇α,p2

q2
(Rn) ≤ CK4‖b‖Λ̇β(Rn)‖f‖K̇α,p1

q1
(Rn),
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where K4 is∫
Rn

|Φ(y)|
|y|n

max{| detA−1(y)|1/q2 , | detA−1(y)|1/q1}(1 + ‖A(y)‖β)G̃α(y)dy,

and

G̃α(y) =


1 + log2(‖A(y)‖‖A−1(y)‖), α = 0,

‖A−1(y)‖α, α > 0,

‖A(y)‖−α, α < 0.

(2.3.2)

Theorem 2.3.5 Let β ∈ (0, 1), p ∈ (1,∞) and b ∈ Λ̇β(Rn), then

‖Hb
Φ,Af‖Fβ,∞p (Rn) ≤ CK5‖b‖Λ̇β(Rn)‖f‖Lp(Rn),

where K5 is∫
Rn

|Φ(y)|
|y|n

max{| detA(y)|−1/p, | detA(y)|1+β/n−1/p}(1 + ‖A(y)‖β)dy.

2.3.2 Proof of the Main Results

A frequent use of Lemma 2.2.7 in proving our main results for this section force

us to use the following notation

φ(y) =
|Φ(y)|
|y|n

max{1, | detA−1(y)|β/n}(1 + ‖A(y)‖β),

for our convenience.

Proof of Theorem 2.3.1: In view of Lemma 2.2.7 and the Minkowski inequality,

we have

‖M(Hb
Φ,Af)(·)‖Lq,λ(Rn) ≤ C‖b‖Λ̇β(Rn)

∫
Rn
φ(y)‖Mβ(f)(A(y)·)‖Lq,λ(Rn)dy.

Using the scaling argument and the fact that |Hb
Φ,Af(x)| ≤M(Hb

Φ,Af)(x) a.e., we

get

‖Hb
Φ,Af‖Lq,λ(Rn) ≤ C‖b‖Λ̇β(Rn)‖Mβf‖Lp,λ(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q−λ/qdy.

Lastly, an application of Lemma 2.2.8 leads to the desired result.
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Proof of Theorem 2.3.2: Following the similar procedure as followed in proving

Theorem 2.3.1, the proof of this Theorem can be easily obtained.

Proof of Theorem 2.3.3: Making use of Lemma 2.2.7 and the Minkowski inequal-

ity, one has

‖M(Hb
Φ,Af)(·)‖MK̇α,λ

p2,q2
(Rn)

≤ C‖b‖Λ̇β(Rn)

∫
Rn
φ(y)‖Mβf(A(y)·)‖MK̇α,λ

p2,q2
(Rn)dy

= C‖b‖Λ̇β(Rn)

∫
Rn
φ(y) sup

k0∈Z
2−k0λ

{
k0∑

k=−∞

2kαp‖Mβf(A(y)·)‖pLq(Ck)

}1/p

dy

= C‖b‖Λ̇β(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q2

× sup
k0∈Z

2−k0λ

{
k0∑

k=−∞

2kαp‖Mβf(·)‖pLq(A(y)Ck)

}1/p

dy. (2.3.3)

In order to estimate ‖Mβf(·)‖Lq(A(y)Ck), we follow the method used in [117]. Thus,

by definition of Ck and (5.4.15), we can write

A(y)Ck ⊂ {x : ‖A−1(y)‖−12k−1 < |x| < ‖A(y)‖2k}.

Next, for any y in the support of Φ there exist an integer l such that

2l < ‖A−1(y)‖−1 < 2l+1. (2.3.4)

Furthermore, the relation ‖A−1(y)‖−1 ≤ ‖A(y)‖ implies the existence of non-negative

integer m such that

2l+m < ‖A(y)‖ < 2l+m+1. (2.3.5)

Inequalities (5.4.18) and (5.4.19) define the bounds for m, that is

log2(‖A(y)‖‖A−1(y)‖/2) < m < log2(2‖A(y‖‖A−1(y))‖),

and lead us to have

A(y)Ck ⊂ {x : 2l+k−1 < |x| < 2k+l+m+1}.

Hence,

‖Mβf(·)‖Lq2 (A(y)Ck) ≤
l+m+1∑
j=l

‖Mβf(·)‖Lq2 (Ck+j). (2.3.6)
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Incorporating the inequality (5.4.20) into (2.3.3), we obtain

‖M(Hb
Φ,Af)(·)‖MK̇α,λ

p2,q2
(Rn)

≤ C‖b‖Λ̇β(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q2

× sup
k0∈Z

2−k0λ

{
k0∑

k=−∞

(
l+m+1∑
j=l

2kα‖Mβf(·)‖Lq2 (Ck+j)

)p}1/p

dy

≤ C‖b‖Λ̇β(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q2

× sup
k0∈Z

2−k0λ
l+m+1∑
j=l

2−jα

{
k0+j∑
k=−∞

2kαp‖Mβf(·)‖pLq2 (Ck)

}1/p

dy

≤ C‖b‖Λ̇β(Rn)‖Mβf‖MK̇α,λ
p2,q2

(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q2

l+m+1∑
j=l

2j(λ−α)dy. (2.3.7)

Now, for α = λ, we have

l+m+1∑
j=l

2j(λ−α) = m+ 2 ≤ C(1 + log2(‖A(y)‖‖A−1(y)‖)), (2.3.8)

and otherwise

l+m+1∑
j=l

2j(λ−α) = 2l(λ−α) 1− 2(λ−α)(m+2)

1− 2(λ−α)

≤ C

‖A−1(y)‖α−λ, α > λ,

‖A(y)‖λ−α, α < λ.
(2.3.9)

Hence, (2.3.7), (2.3.8) and (2.3.9) together yield

‖M(Hb
Φ,Af)(·)‖MK̇α,λ

p2,q2
(Rn)

≤ C‖b‖Λ̇β(Rn)‖Mβf‖MK̇α,λ
p2,q2

(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q2Gα,λ(y)dy.

Making use of the fact that |Hb
Φ,Af(x)| ≤ M(Hb

Φ,Af)(x) a.e. and Lemma 2.2.10 we

get the desired result.

Proof of Theorem 2.3.4: An argument similar to one used in proving Theorem

2.3.3, results in
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‖M(Hb
Φ,Af)(·)‖K̇α,p2

q2
(Rn)

≤ C‖b‖Λ̇β(Rn)‖Mβf‖K̇α,p2
q2

(Rn)

∫
Rn
φ(y)| detA−1(y)|1/q2G̃α(y)dy.

However, in contrast with Theorem 2.3.3, here we use Lemma 2.2.9 to fulfill the as-

sertion made in the statement of this Theorem.

Proof of Theorem 2.3.5: For x ∈ Q, we have

1

|Q|1+β/n

∫
Q

|Hb
Φ,Af(z)− (Hb

Φ,A)Q|dz

≤ 2

|Q|1+β/n

∫
Q

|Hb
Φ,Af(z)|dz

≤ 1

|Q|1+β/n

∫
Rn

|Φ(y)|
|y|n

∫
Q

|(b(z)− bQ)f(A(y)z)| dzdy

+
1

|Q|1+β/n

∫
Rn

|Φ(y)|
|y|n

∫
Q

∣∣(bQ − bA(y)Q)f(A(y)z)
∣∣ dzdy

+
1

|Q|1+β/n

∫
Rn

|Φ(y)|
|y|n

∫
Q

∣∣(b(A(y)z)− bA(y)Q)f(A(y)z)
∣∣ dzdy

=: J1 + J2 + J3. (2.3.10)

Comparing Ji (i = 1, 2, 3) with Ii (i = 1, 2, 3) estimated in proving Lemma 2.2.7,

one can easily estimate J1, J2 and J3 by adjusting the factor |Q|β/n. Hence, we have

J1 ≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

M(f)(A(y)x)dy.

J2 ≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(1 + ‖A(y)‖β)M(f)(A(y)x)dy.

J3 ≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

| detA(y)|1+β/nM(f)(A(y)x)dy.

In view of these estimates, inequality (2.3.10) assumes the following form

1

|Q|1+β/n

∫
Q

|Hb
Φ,Af(z)− (Hb

Φ,A)Q|dz

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|Φ(y)|
|y|n

(1 + ‖A(y)‖β) max{1, | detA(y)|1+β/n}M(f)(A(y)x)dy.
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Applying Lp(Rn) norm on both sides and using Lemma 2.2.11, we obtain

‖Hb
Φ,Af‖Ḟβ,∞p (Rn) ≤ C‖b‖Λ̇β(Rn)

×
∫
Rn

|Φ(y)|
|y|n

(1 + ‖A(y)‖β) max{1, | detA(y)|1+β/n}‖Mf(A(y)·)‖Lp(Rn)dy.

Finally by scaling argument and boundedness of M on Lp(Rn), (see [49]) we have

‖Hb
Φ,Af‖Fβ,∞p (Rn) ≤ CK5‖b‖Λ̇β(Rn)‖f‖Lp(Rn),

which is as required.

2.4 Central-BMO Estimates for Hb
Φ,A on Herz-type

Space

2.4.1 Main Results

Theorem 2.4.1 Let 1 < p, q1, q2 < ∞, 1/q2 = 1/q + 1/q1, λ > 0 and α2 ∈ R. If

α1 = n/q + α2 and b ∈ CṀOq(Rn), then

‖Hb
Φ,Af‖MK̇

α2,λ
p,q2

(Rn)
≤ CK6‖b‖CṀOq(Rn)‖f‖MK̇

α1,λ
p,q1

(Rn)
,

where

K6 =

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1Gα1,λ(y)

×

(
log

1

‖A(y‖
χ{‖A(y)‖<1} + log ‖A(y‖‖χ{‖A(y)‖≥1} +

‖A(y)‖n

| detA(y)|

)
dy,

and Gα1,λ(y) is the same function as given in (2.3.1) with α is replaced by α1.

Theorem 2.4.2 Let 1 < p, q1, q2 <∞, 1/q2 = 1/q+1/q1 and α2 ∈ R. If α1 = n/q+α2

and b ∈ CṀOq(Rn), then

‖Hb
Φ,Af‖K̇α2,p

q2
(Rn) ≤ CK7‖b‖CṀOq(Rn)‖f‖K̇α1,p

q1
(Rn),

where

K7 =

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1G̃α1(y)

×

(
log

1

‖A(y‖
χ{‖A(y)‖<1} + log ‖A(y‖‖χ{‖A(y)‖≥1} +

‖A(y)‖n

| detA(y)|

)
dy,

and G̃α1(y) is the same function as given in (2.3.2) with α is replaced by α1.
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2.4.2 Proof of Main Results

Proof of Theorem 2.4.1. Here, we decompose ‖Hb
Φ,Af‖Lq2 (Ck) as:

‖Hb
Φ,Af‖Lq2 (Ck) =

(∫
Ck

∣∣∣∣∫
Rn

Φ(y)

|y|n
(b(x)− b(A(y)x))f(A(y)x)dy

∣∣∣∣q2 dx)1/q2

≤
∫
Rn

|Φ(y)|
|y|n

(∫
Ck

|(b(x)− b(A(y)x))f(A(y)x)|q2 dx
)1/q2

dy

≤
∫
Rn

|Φ(y)|
|y|n

(∫
Ck

|(b(x)− bBk)f(A(y)x)|q2 dx
)1/q2

dy

+

∫
Rn

|Φ(y)|
|y|n

(∫
Ck

∣∣(bBk − bA(y)Bk)f(A(y)x)
∣∣q2 dx)1/q2

dy

+

∫
Rn

|Φ(y)|
|y|n

(∫
Ck

∣∣(b(A(y)x)− bA(y)Bk)f(A(y)x)
∣∣q2 dx)1/q2

dy

= L1 + L2 + L3,

By Hölder inequality and change of variables it is simple to have

L1 ≤
∫
Rn

|Φ(y)|
|y|n

(∫
Ck

|b(x)− bBk |
q dx

)1/q (∫
Ck

|f(A(y)x)|q1 dx
)1/q1

dy

≤ |Bk|1/q‖b‖CṀOq(Rn)

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)dy.

In order to estimate L2, we rewrite it as

L2 =

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q2‖f‖Lq2 (A(y)Ck)

∣∣bBk − bA(y)Bk

∣∣ dy
≤
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q2|A(y)Bk|1/q‖f‖Lq1 (A(y)Ck)

∣∣bBk − bA(y)Bk

∣∣ dy
= |Bk|1/q

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

∣∣bBk − bA(y)Bk

∣∣ dy
= |Bk|1/q

∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

∣∣bBk − bA(y)Bk

∣∣ dy
+ |Bk|1/q

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

∣∣bBk − bA(y)Bk

∣∣ dy
=: |Bk|1/q (L21 + L22) . (2.4.1)
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Thus, for ‖A(y)‖ < 1, we have

L21 =
∞∑
j=0

∫
2−j−1≤‖A(y)‖<2−j

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

×

{
j∑
i=1

|b2−iBk − b2−i+1Bk |+ |b2−jBk − bA(y)Bk |

}
dy.

A use of Hölder inequality yields

|b2−iBk − b2−i+1Bk | ≤
1

|2−iBk|

∫
2−iBk

|b(y)− b2−i+1Bk |dy

≤ |2
−jBk|
|2−iBk|

‖b‖CṀOq(Rn)

≤ C‖b‖CṀOq(Rn).

Similarly,

|b2−jBk − bA(y)Bk | ≤
1

|A(y)Bk|

∫
A(y)Bk

|b(y)− b2−jBk |dy

≤ 2−jn

| detA(y)||2−jBk|

∫
2−jBk

|b(y)− b2−jBk |dy

≤ C
‖A(y)‖n

| detA(y)|
‖b‖CṀOq(Rn).

Thus, we have

L21 ≤ C‖b‖CṀOq(Rn)

×
∞∑
j=0

∫
2−j−1≤‖A(y)‖<2−j

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

{
j +

‖A(y)‖n

| detA(y)|

}
dy

≤ C‖b‖CṀOq(Rn)

×
∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

(
log

1

‖A(y‖
+
‖A(y)‖n

| detA(y)|

)
dy.

Similar arguments result in the following estimation of L22.

L22 ≤ C‖b‖CṀOq(Rn)

×
∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

(
log ‖A(y‖+

‖A(y)‖n

| detA(y)|

)
dy.
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Having these estimates of L21 and L22, (4.4.2) assumes the following form

L2 ≤ C|Bk|1/q‖b‖CṀOq(Rn)

×

[∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

(
log

1

‖A(y‖
+
‖A(y)‖n

| detA(y)|

)
dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)

(
log ‖A(y‖+

‖A(y)‖n

| detA(y)|

)
dy

]
.

It remains to estimate L3. For this purpose we take advantage of Hölder inequality

to obtain

‖(b(A(y)·)− bA(y)Bk)f(A(y)·)‖Lq2 (Ck)

=

(∫
Ck

∣∣(b(A(y)x)− bA(y)Bk)f(A(y)x)
∣∣q2 dx)1/q2

= | detA−1(y)|1/q2
(∫

A(y)Ck

∣∣(b(x)− bA(y)Bk)f(x)
∣∣q2 dx)1/q2

≤ | detA−1(y)|1/q2‖b− bA(y)Bk‖Lq(A(y)Ck)‖f‖Lq1 (A(y)Ck)

≤ | detA−1(y)|1/q2|A(y)Bk|1/q‖b‖CṀOq(Rn)‖f‖Lq1 (A(y)Ck)

= |Bk|1/q| detA−1(y)|1/q1‖b‖CṀOq(Rn)‖f‖Lq1 (A(y)Ck).

Hence,

L3 ≤ |Bk|1/q‖b‖CṀOq(Rn)

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)dy.

Combining the estimates for L1, L2, and L3 we obtain

‖Hb
Φ,Af‖Lq2 (Ck) ≤ C|Bk|1/q‖b‖CṀOq(Rn)

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖f‖Lq1 (A(y)Ck)(
log

1

‖A(y‖
χ{‖A(y)‖<1} + log ‖A(y‖‖χ{‖A(y)‖≥1} +

‖A(y)‖n

| detA(y)|

)
dy.

Again, to make our calculation convenient, we use the following notation

ϕ(y) =
|Φ(y)|
|y|n

| detA−1(y)|1/q1

×

(
log

1

‖A(y‖
χ{‖A(y)‖<1} + log ‖A(y‖‖χ{‖A(y)‖≥1} +

‖A(y)‖n

| detA(y)|

)
.

Thus, we rewrite above inequality as

‖Hb
Φ,Af‖Lq2 (Ck) ≤ C|Bk|1/q‖b‖CṀOq(Rn)

∫
Rn
ϕ(y)‖f‖Lq1 (A(y)Ck)dy. (2.4.2)
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Still we have to approximate ‖f‖Lq1 (A(y)Ck). For this end we infer from (5.4.20)

that

‖f‖Lq1 (A(y)Ck) ≤
l+m+1∑
j=l

‖f‖Lq1 (Ck+j).

By this inequality, (2.4.2) becomes

‖Hb
Φ,Af‖Lq2 (Ck) ≤ C|Bk|1/q‖b‖CṀOq(Rn)

∫
Rn
ϕ(y)

l+m+1∑
j=l

‖f‖Lq1 (Ck+j)dy. (2.4.3)

Next by definition of Herz-Morrey spaces MK̇α2,λ
p,q2

(Rn), (3.3.7), Minkowski inequal-

ity and the condition α1 = α2 + n/q, we get

‖Hb
Φ,Af‖MK̇

α2,λ
p,q2

(Rn)

= sup
k0∈Z

2−k0λ

{
k0∑

k=−∞

2kα2p‖Hb
Φ,Af‖

p
Lq2 (Ck)

}1/p

≤ C‖b‖CṀOq(Rn)

∫
Rn
ϕ(y)

× sup
k0∈Z

2−k0λ

{
k0∑

k=−∞

(
l+m+1∑
j=l

2k(α2+n/q)‖f‖Lq1 (Ck+j)

)p}1/p

dy

≤ C‖b‖CṀOq(Rn)

∫
Rn
ϕ(y)

× sup
k0∈Z

2−k0λ
l+m+1∑
j=l

2−jα1

{
k0+j∑
k=−∞

2kα1p‖f‖pLq1 (Ck)

}1/p

dy

≤ C‖b‖CṀOq(Rn)‖f‖MK̇
α1,λ
p,q2

(Rn)

∫
Rn
ϕ(y)

l+m+1∑
j=l

2j(λ−α1)dy

≤ C‖b‖CṀOq(Rn)‖f‖MK̇
α1,λ
p,q2

(Rn)

∫
Rn
ϕ(y)Gα1,λ(y)dy,

where Gα1,λ(y) is the same function as given in (2.3.1) with α is replaced by α1. Thus,

we finish the proof.

Proof of Theorem 2.4.2. Since, the proofs of Theorem 2.4.1 and 2.4.2 are sym-

metrical. So, by definition of Herz space K̇α2,p
q2

(Rn), (3.3.7), Minkowski inequality and

the condition α1 = α2 + n/q, we get

‖Hb
Φ,Af‖K̇α2,p

q2
(Rn) ≤ C‖b‖CṀOq(Rn)‖f‖K̇α1,p

q1
(Rn)

∫
Rn
ϕ(y)G̃α1(y)dy,

where G̃α1(y) is the same function as given in (2.3.2) with α is replaced by α1. Thus

the proof is over.



Chapter 3

Estimates for Hausdorff Operator

and Commutators on Weighted

Central Morrey Space

3.1 Introduction

In recent years, the Hausdorff operator has gained much attention. This is mainly

because of seminal work done by Liflyand and Móricz in [89] and Lerner and Liflyand

in [84]. After the appearance of above cited monographs [84, 89], it was natural to

study, refine and extend the existing results on relevant function spaces. A number of

significant studies have been undertaken in this regard like for example boundedness

of one and multidimensional Hausdorff operators on Hardy, Lp and BMO spaces

[3, 13, 17, 66, ?, 89]. Besides, many authors have contributed a lot towards obtaining

new estimates on other function spaces. Among them we choose to refer to the papers

[12, 14, 43, 63, 64, 65, 66] and the references therein.

On the other hand weighted norm inequalities for Hausdorff operators on function

spaces have recently been reported in the literature which include continuity of Haus-

dorff operator in Hardy spaces [112, 113] with power weights, weighted Hardy spaces

associated with Herz spaces [114] and in Herz space with Muckenhoupt weights on

the Heisenberg group [117].

The purpose of this chapter is twofold. Firstly, motivated by works in [113, 117],

we give estimates for matrix Hausdorff operator on weighted central Morrey space.

In addition, under some assumption on A(y), we work out operator norm for HΦ,A

on power weighted central Morrey spaces. Secondly, we try to fill the gap to existing

theory of the commutator of Hausdorff operators by defining new type of commutators

in (1.2.7) and establishing the weighted estimates for such commutator operators.

25
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More precisely, under some assumptions on A(y), we give necessary and sufficient

condition on the function Φ such that Hb
Φ,A is bounded on power weighted central

Morrey spaces.

In the very next section, some notations and definitions will be introduced along

with some necessary lemmas to be used in the subsequent sections of this chapter.

Our main results regarding continuity of matrix operator in weighted-type central

Morrey spaces are stated and proved in the third section. Finally, the last section is

devoted to obtain weighted estimates of commutators of the same operator.

3.2 Notations and Definitions

Having in hand the definitions of Morrey space (Definition 2.2.1) and central-BMO

space (Definition 2.2.4), we now give the definition of central Morrey space. If we take

gB(0,R) = 0 in the Definition 2.2.4, then the residue space is known as central Morrey

space Ṁ q,λ introduced in [2] with norm condition:

‖g‖Ṁq,λ(Rn) = sup
R>0

(
|B(0, R)|−(1+λq)

∫
B(0,R)

|g(y)|qdy
)1/q

<∞.

Muckenhoupt [106] firstly introduced the theory of Ap weights while studying

Hardy-Littlewood maximal functions on weighted Lp spaces. Any nonnegative func-

tion w ∈ L1
loc(Rn) can be taken as a weight. The notation w(E) will serve to denote

weighted measure of a given subset E of Rn, that is w(E) =
∫
E
w(x)dx. Also, by p′

we mean to consider conjugate index of p, satisfying 1/p+ 1/p′ = 1.

Definition 3.2.1 ([46, 114]) A weight w is said to belong to the Muckenhoupt class

Ap, 1 < p <∞, if there exist a positive constant C such that for every ball B ⊂ Rn,(
|B|−1

∫
B

w(y)dy

)(
|B|−1

∫
B

w(y)−1/(p−1)dy

)p−1

≤ C.

Also, w ∈ A1 if there exists a positive constant C such that for every ball B ⊂ Rn,(
|B|−1

∫
B

w(y)dy

)
≤ C essinf

y∈B
w(y).

For p =∞, we define A∞ =
⋃

1≤p<∞Ap.

Definition 3.2.2 ([46]) A weight w is said to belong to the reverse Hölder class RHr

if there exist a fixed positive constant C and r > 1 such that for every ball B ⊂ Rn,(
|B|−1

∫
B

wr(y)dy

)1/r

≤ C|B|−1

∫
B

w(y)dy.
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It is also known for s > p that Ap ⊂ As and that if w is in Ap, then w is in Aq for

some 1 < q < p <∞. The infimum of all q’s such that w ∈ Aq is denoted by qw and

is known as the critical index for w. In addition, for r > 1, if w ∈ RHr, then for some

ε > 0 one has w ∈ RHr+ε. We therefore use the notation rw to denote the critical

index of w for the reverse Hölder condition i.e. rw ≡ sup{r > 1 : w ∈ RHr}.
A special class of Muckenhoupt Ap weights is |y|α, the power weighted function.

It is accepted that |y|α ∈ A1 if and only if −n < α ≤ 0. Moreover, for 0 < α < ∞,
|y|α ∈ ∩(n+α)/n<p<∞Ap, where n+α

n
is known as the critical index for |y|α.

Here we state some Propositions regarding Ap weights which will be helpful in

obtaining weighted estimates for Hausdorff operator and their commutators.

Proposition 3.2.3 ([46]) Suppose w ∈ Ap∩RHr, r > 1 and p ≥ 1. Then there exist

two nonzero positive constants C1 and C2 such that

C1

(
|D|
|B|

)p
≤ w(D)

w(B)
≤ C2

(
|D|
|B|

)(r−1)/r

,

for any measurable subset D of the ball B. In general, for a constant 1 < λ,

w(B(x0, λR) ≤ λnpw(B(x0, R)).

Proposition 3.2.4 ([114]) Suppose g ∈ L1(Rn) be a nonnegative function. If w ∈
Ap, 1 ≤ p, then

|B(x0, R)|−1

∫
B(x0,R)

g(y)dy ≤ C

(
1

w(B(x0, R))

∫
B(x0,R)

gp(y)w(y)dy

)1/p

.

Let w be a weight function on Rn, for any measurable set E ⊂ Rn, the Lebesgue space

with weights Lp(E;w) is the space of all functions satisfying

‖g‖Lp(E;w) =

(∫
E

|g(y)|pw(y)dy

)1/p

<∞.

Komori and Shirai [81], in 2009, introduced weighted Morrey space and studied the

properties of some classical operators in this space. Here, we only define the central

Morrey space with weights.

Definition 3.2.5 Let w be a weight function on Rn, λ ∈ R and ∞ > q ≥ 1. Then

the weighted central Morrey space Ṁ q,λ(Rn;w) can be defined as:

Ṁ q,λ(Rn;w) =
{
g ∈ Lqloc(R

n;w) : ‖g‖Ṁq,λ(Rn;w) <∞
}
,

where

‖g‖Ṁq,λ(Rn;w) = sup
R>0

(
w(B(0, R))−(1+λq)

∫
B(0,R)

|g(y)|qw(y)dy

)1/q

.
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Some recent work discussing these spaces include [56, 57, 58]. Next, the weighted

central mean oscillation space can be defined as follows:

Definition 3.2.6 Suppose w be a weight function and 1 < q <∞. Then, a function

g ∈ Lqloc(Rn;w) is in the weighted central mean oscillation space CṀOq(Rn;w) if

‖g‖CṀOq(Rn;w) = sup
R>0

(
w(B(0, R))−1

∫
B(0,R)

|g(y)− gB|qw(y)dy

)1/q

<∞.

In the sequel, the notation A � B shall imply the existence of a positive constant

C such that A ≤ CB and the notation A ' B shall imply the existence of two

positive constants C and c such that cB ≤ A ≤ CB. Moreover, we will denote a

weight from Muckenhoupt Ap class by w. However, when the weight is reduced to the

power function, we will denote it by v that is v(x) = |x|α.

Proposition 3.2.7 Let α be a real number, D is any nonsingular matrix and x ∈ Rn,

then we have the following results

(i)

v(Dx) �

‖D‖αv(x) if α > 0,

‖D−1‖−αv(x) if α ≤ 0;

(ii)

v(B(0, ‖D‖R)) = ‖D‖n+αv(B(0, R)).

Proof. The proof of this Lemma follows from the definition of v(x) and (2.2.1).

Henceforth, for the sake of convenience, we will denote B(0, R) by B.

3.3 Bounds for HΦ,A on Weighted Central Morrey

Space

Present section is reserved for the proofs of results on the boundedness of HΦ,A on

weighted central Morrey space.

3.3.1 Main Results

Here are the main results for the present section.
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Theorem 3.3.1 Suppose 1 ≤ q1, q2 < ∞, λ < 0. Suppose also that w belongs to A1

class of weights with rw as its critical index for the reverse Hölder condition and let

q1 > q2rw/(rw − 1).

Then for any 1 < δ < rw

‖HΦ,Af‖Ṁq2,λ(Rn;w) � K1‖f‖Ṁq1,λ(Rn,w),

where

K1 =

∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖nλ+n/q1dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖n/q1+nλ(δ−1)/δdy.

In case, if general weights are replaced by power function, then we obtain the following

theorem.

Theorem 3.3.2 Suppose that −1/q ≤ λ < 0, and 1 ≤ q <∞.
(i) If 0 < α <∞,

‖HΦ,Af‖Ṁq,λ(Rn;v) � K2‖f‖Ṁq,λ(Rn,v),

where

K2 =

∫
Rn

Φ(y)

|y|n
| detA−1(y)|1/q‖A(y)‖(n+α)(λ+1/q)‖A−1(y)‖α/qdy.

(ii) If −n < α ≤ 0, then

‖HΦ,Af‖Ṁq,λ(Rn;v) � K3‖f‖Ṁq,λ(Rn,v),

where

K3 =

∫
Rn

Φ(y)

|y|n
| detA−1(y)|1/q‖A(y)‖n(λ+1/q)+αλdy.

Especially, in case ‖A(y)‖−1 and ‖A−1(y)‖ are comparable, then the result can be

sharpened as below.

Theorem 3.3.3 Let 1 ≤ q < ∞, −1/q ≤ λ < 0, −n < α < ∞, and Φ be a non-

negative function. Suppose that there exists a constant C independent of all essential

variables such that ‖A−1(y)‖ ≤ C‖A(y)‖−1 for all y ∈ supp(Φ), then the necessary

and sufficient condition for HΦ,A to be bounded on Ṁ q,λ(Rn; v) is that

K4 =

∫
Rn

Φ(y)

|y|n
|‖A(y)‖(n+α)λdy <∞.



30Estimates for Hausdorff Operator and Commutators on Weighted Central Morrey Space

Remark Let A(x) = diag[1/µ1(x), ..., 1/µn(x)] for µi(x) 6= 0 (i = 1, 2, ..., n). Define

m(x) = min{|µ1(x)|, ..., |µn(x)|}, M(x) = max{|µ1(x)|, ..., |µn(x)|}.

For a constant C ≥ 1 independent of y if M(x) ≤ Cm(x), then it can be easily verified

that A(x) satisfies the assumptions of Theorem 3.3.3.

3.3.2 Proofs of the Main Results

Proof of Theorem 3.3.1. For a fixed ball B ⊂ Rn, by Minkowski inequality

‖HΦ,Af‖Lq2 (B;w) =

(∫
B

∣∣∣∣∫
Rn

Φ(y)

|y|n
f(A(y)x)dy

∣∣∣∣q2 w(x)dx

)1/q2

≤
∫
Rn

|Φ(y)|
|y|n

(∫
B

|f(A(y)x)|q2 w(x)dx

)1/q2

dy. (3.3.1)

In view of the condition q1 > q2rw/(rw − 1), there exist 1 < r < rw such that

q1 = q2r
′ = q2r/(r − 1). An application of Hölder inequality and reverse Hölder

condition yield

‖f(A(y)·)‖Lq2 (B;w) ≤
(∫

B

|f(A(y)x)|q1 dx
)1/q1 (∫

B

w(x)rdx

)1/(rq2)

� | detA−1(y)|1/q1|B|−1/q1w(B)1/q2

(∫
A(y)B

|f(x)|q1dx
)1/q1

.

By virtue of Proposition 3.2.4, one can have(∫
A(y)B

|f(x)|q1dx
)1/q1

� |B(0, ‖A(y)‖R)|1/q1
(

1

w(B(0, ‖A(y)‖R))

∫
B(0,‖A(y)‖R)

|f(x)|q1w(x)dx

)1/q1

� ‖A(y)‖n/q1|B(0, R)|1/q1w(B(0, ‖A(y)‖R))λ‖f‖Ṁq1,λ(Rn,w), (3.3.2)

which suggest that

‖f(A(y)·)‖Lq2 (B;w)

� | detA−1(y)|1/q1‖A(y)‖n/q1w(B)1/q2w(B(0, ‖A(y)‖R))λ‖f‖Ṁq1,λ(Rn,w). (3.3.3)



3.3 Bounds for HΦ,A on Weighted Central Morrey Space 31

We thus conclude from (5.4.1) and (5.4.2) that

‖HΦ,Af‖Ṁq2,λ(Rn;w)

� ‖f‖Ṁq1,λ(Rn,w)

∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖n/q1
(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
dy

� ‖f‖Ṁq1,λ(Rn,w)

×

(∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖n/q1
(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖n/q1
(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
dy

)
.

(3.3.4)

Since λ < 0, Proposition 5.2.3 implies that, if ‖A(y)‖ < 1,(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
�
(
|B(0, ‖A(y)‖R)|
|B(0, R)|

)λ
= ‖A(y)‖nλ, (3.3.5)

and if ‖A(y)‖ ≥ 1,(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
�
(
|B(0, ‖A(y)‖R)|
|B(0, R)|

)λ(δ−1)/δ

= ‖A(y)‖nλ(δ−1)/δ, (3.3.6)

for any 1 < δ < rw.

Therefore, from (5.4.3)-(5.4.5) it is easy to see that, for any 1 < δ < rw,

‖HΦ,Af‖Ṁq2,λ(Rn;w)

� ‖f‖Ṁq1,λ(Rn,w)

(∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖nλ+n/q1dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖n/q1+nλ(δ−1)/δdy

)
.

The proof is completed.



32Estimates for Hausdorff Operator and Commutators on Weighted Central Morrey Space

Proof of Theorem 3.3.2. In view of the Minkowski inequality, change of variables

and Proposition 3.2.7, we have(
1

v(B(0, R))1+λq

∫
B(0,R)

|HΦ,Af |qv(x)dx

)1/q

� v(B(0, R))−(λ+1/q)

∫
Rn

|Φ(y)|
|y|n

(∫
B

|f(A(y)x)|q v(x)dx

)1/q

dy

' v(B(0, R))−(λ+1/q)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q
(∫

A(y)B

|f(x)|q v(A−1(y)x)dx

)1/q

dy

� ‖f‖Ṁq,λ(Rn,v)

×


∫
Rn
|Φ(y)|
|y|n | detA−1(y)|1/q‖A(y)‖(n+α)(λ+1/q)‖A−1(y)‖α/qdy if α > 0,∫

Rn
|Φ(y)|
|y|n | detA−1(y)|1/q‖A(y)‖n(λ+1/q)+αλdy if α ≤ 0.

Therefore, we conclude that

‖HΦ,A‖Ṁq,λ(Rn,v)→Ṁq,λ(Rn,v) �

K2 if α > 0,

K3 if α ≤ 0.

Thus we finish the proof.

Proof of Theorem 3.3.3. If ‖A−1(y)‖ � ‖A(y)‖−1, we infer from (5.4.15) that

‖A(y)‖−n ' | detA−1(y)| ' ‖A−1(y)‖n. (3.3.7)

Here we will prove the necessary part of the Theorem 3.3.3 as the sufficient part can

easily be obtained from Theorem 3.3.2. We divide the proof into the below two cases.

Case 1. If ∞ > λ > −1/q.

In this situation, we select f0 ∈ Ṁp,λ(Rn; v) such that f0(x) = |x|(n+α)λ, then

‖f0‖Ṁp,λ(Rn;v) = |Sn−1|−λ(n+ α)λ(1 + λq)−1/q,

where |Sn−1| is the Lebesgue measure of unit sphere Sn−1.

On the other side, making use of the condition that 0 < (n+ α)λ, we obtain

HΦ,Af0(x) =

∫
Rn

Φ(y)

|y|n
|A(y)x|(n+α)λdy

� |x|(n+α)λ

∫
Rn

Φ(y)

|y|n
‖A(y)‖(n+α)λdy,
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this implies that

‖HΦ,A‖Ṁq,λ(Rn,v)→Ṁq,λ(Rn,v) �
∫
Rn

Φ(y)

|y|n
‖A(y)‖(n+α)λdy,

which is as required.

Case 2. If λ = −1/q, then for 0 < ε < 1, we take

fε(x) = |x|−(n+α)/q−εχ{|x|>1}

A simple computation yields ‖fε‖qLq(Rn;v) = |Sn−1|
εq

. Now, by definition

HΦ,A(fε)(x) =

∫
Rn

Φ(y)

|y|n
|A(y)x|−(n+α)/q−εχ{|A(y)x|>1}dy

�
(∫
‖A(y)‖�1/|x|

Φ(y)

|y|n
‖A(y)‖−(n+α)/q−ε

)
|x|−(n+α)/q−ε

Now,

‖HΦ,A(fε)‖qLq(Rn,v)

�
∫
|x|>1

(
|x|−(n+α)/q−ε

∫
‖A(y)‖�1/|x|

Φ(y)

|y|n
‖A(y)‖−(n+α)/q−ε

)q
v(x)dx

�
∫
|x|> 1

ε

|x|−n−εqdx
(∫
‖A(y)‖�ε

Φ(y)

|y|n
‖A(y)‖−(n+α)/q−εdy

)q
=

(∫
‖A(y)‖�ε

Φ(y)

|y|n
‖A(y)‖−(n+α)/q−εdy

)q
(εε)q‖fε‖qLq(Rn,v),

by letting ε→ 0, we have

‖HΦ‖Lq(Rn,v)→Lq(Rn,v) �
∫
Rn

Φ(y)

|y|n
‖A(y)‖−(n+α)/qdy.

With this we complete the proof.

3.4 Bounds for Hb
Φ,A on Weighted Central Morrey

Space

3.4.1 Main Results

Below are our main results for this section
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Theorem 3.4.1 Let ∞ > q ≥ 1, 1 ≤ s < q1 < ∞, 1/q1 + 1/q2 = 1/s, and 0 > λ.

Suppose also that w belongs to A1 class of weights with rw as its critical index for the

reverse Hölder condition and let s > qrw/(rw − 1).

Then for any 1 < δ < rw

‖Hb
Φ,Af‖Ṁq,λ(Rn;w) � K5‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w),

where∫
‖A(y)‖≥1

|Φ(y)|| detA−1(y)|1/q1
|y|n‖A(y)‖−n/q1−nλ(δ−1)/δ

(
1 +
| detA−1(y)|1/q2
‖A(y)‖−n/q2

)
max

{
log 2‖A(y‖, ‖A(y)‖n

| detA(y)|

}
dy

+

∫
‖A(y)‖<1

|Φ(y)|| detA−1(y)|1/q1
|y|n‖A(y)‖−nλ−n/q1

(
1 +
| detA−1(y)|1/q2
‖A(y)‖−n/q2

)
max

{
log

2

‖A(y‖
,
‖A(y)‖n

| detA(y)|

}
dy

= K5.

Instead of general weights, when dealing with power weights, we have the following

results.

Theorem 3.4.2 Suppose 1 ≤ q < q1 <∞, 1/q1 + 1/q2 = 1/q, 0 > λ > −1/q. Then

(i) If 0 < α <∞,

‖Hb
Φ,Af‖Ṁq,λ(Rn;v) � K6‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v),

where

K6 =

∫
Rn

|Φ(y)|| detA−1(y)|
1
q1 ‖A−1(y)‖

α
q1

|y|n‖A(y)‖−(n+α)(λ+ 1
q1

)

(
1 +
| detA−1(y)|

1
q2 ‖A−1(y)‖

α
q2

‖A(y)‖−
n+α
q2

)
(

max

{
log

2

‖A(y‖
,
‖A(y)‖n

| detA(y)|

}
χ{‖A(y)‖<1} + max

{
log 2‖A(y‖, ‖A(y)‖n

| detA(y)|

}
χ{‖A(y)‖≥1}

)
dy.

(ii) If −n < α ≤ 0, then

‖Hb
Φ,Af‖Ṁq,λ(Rn;v) � K7‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v),

where

K7 =

∫
Rn

|Φ(y)|| detA−1(y)|
1
q1

|y|n‖A(y)‖−n(λ+ 1
q1

)−αλ

(
1 +
| detA−1(y)|

1
q2

‖A(y)‖−
n
q2

)
(

max

{
log

2

‖A(y‖
,
‖A(y)‖n

| detA(y)|

}
χ{‖A(y)‖<1} + max

{
log 2‖A(y‖, ‖A(y)‖n

| detA(y)|

}
χ{‖A(y)‖≥1}

)
dy.
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More specially, in case ‖A(y)‖−1 and ‖A−1(y)‖ are comparable, then the result can

be sharpened by decomposing Hb
φ,A as follows

Hb,1
Φ,Af =

∫
‖A(y)‖<1

Φ(y)

|y|n
(b(x)− b(A(y)x))f(A(y)x)dy,

Hb,2
Φ,Af =

∫
‖A(y)‖≥1

Φ(y)

|y|n
(b(x)− b(A(y)x))f(A(y)x)dy.

Theorem 3.4.3 Suppose 1 < q < q1 < ∞, 1/q1 + 1/q2 = 1/q, 0 > λ > −1/q, and

Φ be a nonnegative function. If there exists a positive constant C independent of all

essential variables such that ‖A−1(y)‖ ≤ C‖A(y)‖−1 for all y ∈ supp(Φ). In addition,

if Φ(y)/|y|n is integrable then

(i) Hb,1
Φ,A is bounded from Ṁ q1,λ(Rn; v) to Ṁ q,λ(Rn; v) if and only if

K8 =

∫
‖A(y)‖<1

Φ(y)

|y|n
|‖A(y)‖(n+α)λ log

2

‖A(y)‖
dy <∞.

(ii) Hb,2
Φ,A is bounded from Ṁ q1,λ(Rn; v) to Ṁ q,λ(Rn; v) if and only if

K9 =

∫
‖A(y)‖≥1

Φ(y)

|y|n
|‖A(y)‖(n+α)λ log 2‖A(y)‖dy <∞.

Remark. Note that, from the preceding Theorem, one cannot deduce Lp(Rn; v)

boundedness for the commutator operator by taking λ = −1/p, just in the case of

Theorem 3.3.3. This raises an open question regarding Lp boundedness of Hb
Φ,A which

will be answered later.
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3.4.2 Proofs of the Main Results

Proof of Theorem 3.4.1. As before we fix a ball B ⊂ Rn. Using Minkowski

inequality, we obtain

‖Hb
Φ,Af‖Lq(B;w)

=

(∫
B

∣∣∣∣∫
Rn

Φ(y)

|y|n
(b(x)− b(A(y)x))f(A(y)x)dy

∣∣∣∣q w(x)dx

)1/q

≤
∫
Rn

|Φ(y)|
|y|n

(∫
B

|(b(x)− b(A(y)x))f(A(y)x)|q w(x)dx

)1/q

dy

≤
∫
Rn

|Φ(y)|
|y|n

(∫
B

|(b(x)− bB)f(A(y)x)|q w(x)dx

)1/q

dy

+

∫
Rn

|Φ(y)|
|y|n

(∫
B

∣∣(bB − bA(y)B)f(A(y)x)
∣∣q w(x)dx

)1/q

dy

+

∫
Rn

|Φ(y)|
|y|n

(∫
B

∣∣(b(A(y)x)− bA(y)B)f(A(y)x)
∣∣q w(x)dx

)1/q

dy

= I1 + I2 + I3.

Let us start estimating I1. For this purpose, we first compute the inner norm

‖(b(·) − bB)f(A(y)·)‖Lq(B;w). The condition s > qrw/(rw − 1) implies that there is

1 < r < rw such that s = qr′ = qr/(r − 1). By Hölder inequality and reverse Hölder

condition, we have

‖(bB − b(·))f(A(y)·)‖Lq(B;w)

≤
(∫

B

|(b(x)− bB)f(A(y)x)|s dx
)1/s(∫

B

w(x)rdx

)1/(rq)

� |B|−1/sw(B)1/q

(∫
B

|(b(x)− bB)f(A(y)x)|sdx
)1/s

.

In view of the condition 1/s = 1/q1 + 1/q2, we have

‖(b(·)− bB)f(A(y)·)‖Lq(B;w)

� |B|−1/sw(B)1/q

(∫
B

|b(x)− bB|q2dx
)1/q2 (∫

B

|f(A(y)x)|q1dx
)1/q1

� | detA−1(y)|1/q1 |B|−1/sw(B)1/q

×
(∫

B

|b(x)− bB|q2dx
)1/q2 (∫

A(y)B

|f(x)|q1dx
)1/q1

. (3.4.1)

By virtue of Proposition 3.2.4, it becomes simple to get that(∫
B

|b(y)− bB|q2dy
)1/q2

� |B|1/q2‖b‖CṀOq2 (Rn,w). (3.4.2)
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Substituting result from inequalities (3.3.2) and (3.4.2) into (3.4.1), one has

‖(b(·)− bB)f(A(y)·)‖Lq(B;w)

� w(B)1/q| detA−1(y)|1/q2‖A(y)‖n/q1w(A(y)B)λ‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w).

Therefore, we obtain

I1 � w(B)λ+1/q‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖n/q1
(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
dy. (3.4.3)

Making use of the inequalities (5.4.4) and (5.4.5) into (3.4.3), we get

I1 �w(B)λ+1/q‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w)(∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖nλ+n/q1dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖nλ(δ−1)/δ+n/q1dy

)
.

Now, it turns to estimate I2, which can be written as

I2 =

∫
Rn

|Φ(y)|
|y|n

‖f(A(y)·)‖Lq(B;w)

∣∣bB − bA(y)B

∣∣ dy. (3.4.4)

Here, the indices q and s bear the same relationship as observed between q1 and q2 of

Theorem 3.3.1. Therefore, we infer from (5.4.2) that

‖f(A(y)·)‖Lq(B;w)

� | detA−1(y)|1/s‖A(y)‖n/sw(B(0, R))1/qw(B(0, ‖A(y)‖R))λ‖f‖Ṁs,λ(Rn,w).

Applying the Hölder inequality to s/q1 and s/q2, we have

‖f(A(y)·)‖Lq(B;w)

� | detA−1(y)|1/s‖A(y)‖n/sw(B)1/qw(B(0, ‖A(y)‖R))λ‖f‖Ṁq1,λ(Rn,w). (3.4.5)

With the help of (3.4.5), inequality (3.4.4) assumes the following form

I2 � w(B)λ+1/q‖f‖Ṁq1,λ(Rn,w)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖n/sw(B(0, ‖A(y)‖R))λ

w(B(0, R))λ
∣∣bB − bA(y)B

∣∣ dy.
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For λ < 0, the inequalities (5.4.4) and (5.4.5) help us to obtain

I2 �w(B)λ+1/q‖f‖Ṁq1,λ(Rn,w)(∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖nλ+n/s
∣∣bB − bA(y)B

∣∣ dy
+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖nλ(δ−1)/δ+n/s
∣∣bB − bA(y)B

∣∣ dy)
=: w(B)λ+1/q‖f‖Ṁq1,λ(Rn,w) (I21 + I22) . (3.4.6)

For our convenience, we denote

‖A(y)‖n(λ+1/s)φ(y) = | detA−1(y)|1/s |Φ(y)|
|y|n

.

Moreover, for ‖A(y)‖ < 1, there exist j ∈ Z such that 2−j−1 ≤ ‖A(y)‖ < 2−j. Thus

I21 =

∫
‖A(y)‖<1

φ(y)

{
j∑
i=1

|b2−iB − b2−i+1B|+ |b2−jB − bA(y)B|

}
dy.

Since w ∈ A1, using Proportion 3.2.4, it becomes simple to get that

|b2−iB − b2−i+1B| ≤
1

|2−iB|

∫
2−iB

|b(y)− b2−i+1B|dy

≤ 2n

|2−i+1B|

∫
2−i+1B

|b(y)− b2−i+1B|dy

� ‖b‖CṀOq2 (Rn,w).

Similarly, Proposition 3.2.4 again helps us to have

|b2−jB − bA(y)B| ≤
1

|A(y)B|

∫
A(y)B

|b(y)− b2−jB|dy

≤ 2−jn

| detA(y)|2−jB|

∫
2−jB

|b(y)− b2−jB|dy

� ‖A(y)‖n

| detA(y)|
‖b‖CṀOq2 (Rn,w).

|b2−jB,w − bA(y)B| � ‖b‖CṀOq2 (Rn,w) and thus

I21 � ‖b‖CṀOq2 (Rn,w)

∞∑
j=0

∫
2−j−1≤‖A(y)‖<2−j

φ(y)

{
j +

‖A(y)‖n

| detA(y)|

}
dy

� ‖b‖CṀOq2 (Rn,w)

∞∑
j=0

∫
2−j−1≤‖A(y)‖<2−j

φ(y)

{
log 2j +

‖A(y)‖n

| detA(y)|

}
dy

� ‖b‖CṀOq2 (Rn,w)×∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖n(λ+1/s) max

{
log

2

‖A(y‖
,
‖A(y)‖n

| detA(y)|

}
dy.
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Following the same procedure as followed in bounding I21, we estimate I22 as

I22 � ‖b‖CṀOq2 (Rn,w)×∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖n(λ(δ−1)/δ+1/s) max

{
log 2‖A(y‖, ‖A(y)‖n

| detA(y)|

}
dy.

Incorporating the estimates of I21 and I22 into (3.4.6), we obtain

I2 �w(B)λ+1/q‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w)(∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖n(λ(δ−1)/δ+1/s) max

{
log 2‖A(y‖, ‖A(y)‖n

| detA(y)|

}
dy

+

∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖n(λ+1/s) max

{
log

2

‖A(y‖
,
‖A(y)‖n

| detA(y)|

}
dy

)
.

It remains to approximate I3. For this purpose, we infer from (3.4.1) that

‖(b(A(y)·)− bA(y)B)f(A(y)·)‖Lq(B;w)

� | detA−1(y)|1/q1 |B|−1/sw(B)1/q

×
(∫

B

|b(A(y)x)− bA(y)B|q2dx
)1/q2 (∫

A(y)B

|f(x)|q1dx
)1/q1

. (3.4.7)

Making use of the Proposition 3.2.4, one can obtain(∫
B

|b(A(y)x)− bA(y)B|q2dx
)1/q2

= | detA−1(y)|1/q2
(∫

A(y)B

|b(x)− bA(y)B|q2dx
)1/q2

= | detA−1(y)|1/q2‖A(y)‖n/q2|B(0, R)|1/q2‖b‖CṀOq2 (Rn,w). (3.4.8)

In view of (3.3.2), (3.4.7) and (3.4.8), it becomes simple to get that

‖(b(A(y)·)− bA(y)B)f(A(y)·)‖Lq(B;w)

� w(B)1/q| detA−1(y)|1/s‖A(y)‖n/sw(A(y)B)λ‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w).

We thus obtain

I3 � w(B)λ+1/q‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖n/s
(
w(B(0, ‖A(y)‖R))

w(B(0, R))

)λ
dy.
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Finally, inequalities (5.4.4) and (5.4.5) help us to have

I3 �w(B)λ+1/q‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w)(∫
‖A(y)‖<1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖nλ+n/sdy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|n

| detA−1(y)|1/s‖A(y)‖nλ(δ−1)/δ+n/sdy

)
,

for any 1 < δ < rw.

Incorporating the upper bounds for Ii (i = 1, 2, 3), we obtain

‖Hb
Φ,Af‖Ṁq,λ(Rn;w) � K5‖b‖CṀOq2 (Rn,w)‖f‖Ṁq1,λ(Rn,w).

This completes the proof.

Proof of Theorem 3.4.2. (i) As in the previous Theorem

‖Hb
Φ,Af‖Lq(B;v) ≤

3∑
i=1

Ji,

where Ji (i = 1, 2, 3), assume the form of I1, I2 and I3, respectively, but with w(·) is

replaced by v(·).
An application of Hölder inequality and change of variables yield

J1 ≤
∫
Rn

|Φ(y)|
|y|n

(∫
B

|b(x)− bB|q2 v(x)dx

)1/q2 (∫
B

|f(A(y)x)|q1 v(x)dx

)1/q1

dy

≤ v(B)1/q2‖b‖CṀOq2 (Rn,v)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1
(∫

A(y)B

|f(x)|q1 v(A−1(y)x)dx

)1/q1

dy.

In view of Proposition 3.2.7 it becomes simple to have that

J1 � v(B)λ+1/q‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q1‖A(y)‖(n+α)(λ+1/q1)‖A−1(y)‖α/q1dy.

The expression for J2 is written as

J2 =

∫
Rn

|Φ(y)|
|y|n

‖f(A(y)·)‖Lq(B;v)

∣∣bB − bA(y)B

∣∣ dy. (3.4.9)
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In order to estimate J2. We first compute ‖f(A(y)·)‖Lq(B;v). For this purpose a change

of variables following the Hölder inequality and Proposition 3.2.7 give us

‖f(A(y)·)‖Lq(B;v)

=

(∫
B

|f(A(y)x)|q v(x)dx

)1/q

= | detA−1(y)|1/q
(∫

A(y)B

|f(x)|q v(A−1(y)x)dx

)1/q

� | detA−1(y)|1/q‖A−1(y)‖α/q‖f‖Lq(A(y)B;v)

� | detA−1(y)|1/q‖A−1(y)‖α/q‖f‖Lq1 (A(y)B;v)v(A(y)B)1/q2

� v(B)λ+1/q| detA−1(y)|1/q‖A(y)‖(n+α)(λ+1/q)‖A−1(y)‖α/q‖f‖Ṁq1,λ(Rn,v).

So, therefore (3.4.9) becomes

J2 � v(B)λ+1/q‖f‖Ṁq1,λ(Rn,v)

×
∫
Rn

|Φ(y)|| detA−1(y)|1/q‖A−1(y)‖α/q

|y|n‖A(y)‖−(n+α)(λ+1/q)

∣∣bB − bA(y)B

∣∣ dy.
By denoting ψ(y) = |Φ(y)|| detA−1(y)|1/q‖A−1(y)‖α/q

|y|n‖A(y)‖−(n+α)(λ+1/q) , we decompose J2 as

J2 �v(B)λ+1/q‖f‖Ṁq1,λ(Rn,v)(∫
‖A(y)‖<1

ψ(y)
∣∣bB − bA(y)B

∣∣ dy +

∫
‖A(y)‖≥1

ψ(y)
∣∣bB − bA(y)B

∣∣ dy)
= v(B)λ+1/q‖f‖Ṁq1,λ(Rn)(J21 + J22).

Again, we arrive at the same point as reached in (3.4.6) with w(·) is replaced by v(·).
Therefore, performing in a way similar to that point forward we estimate J2 as

J2 �v(B)λ+1/q‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v)(∫
‖A(y)‖<1

|Φ(y)|| detA−1(y)|1/q‖A−1(y)‖α/q

|y|n‖A(y)‖−(n+α)(λ+1/q)

{
log

2

‖A(y‖
+
‖A(y)‖n

| detA(y)|

}
dy

+

∫
‖A(y)‖≥1

|Φ(y)|| detA−1(y)|1/q‖A−1(y)‖α/q

|y|n‖A(y)‖−(n+α)(λ+1/q)

{
log 2‖A(y‖+

‖A(y)‖n

| detA(y)|

}
dy

)
.
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It remains to estimate J3. For this purpose we proceed as follows

‖(b(A(y)·)− bA(y)B)f(A(y)·)‖Lq(B;v)

=

(∫
B

∣∣(b(A(y)x)− bA(y)B)f(A(y)x)
∣∣q v(x)dx

)1/q

= | detA−1(y)|1/q
(∫

A(y)B

∣∣(b(x)− bA(y)B)f(x)
∣∣q v(A−1(y)x)dx

)1/q

� | detA−1(y)|1/q‖A−1(y)‖α/q‖(b(·)− bA(y)B)f(·)‖Lq(A(y)B;v)

� | detA−1(y)|1/q‖A−1(y)‖α/q‖b− bA(y)B‖Lq2 (A(y)B;v)‖f‖Lq1 (A(y)B;v)

� v(B)λ+1/q‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v)

× | detA−1(y)|1/q‖A(y)‖(n+α)(λ+1/q)‖A−1(y)‖α/q.

Hence,

J3 � v(B)λ+1/q‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v)

×
∫
Rn

|Φ(y)|
|y|n

| detA−1(y)|1/q‖A(y)‖(n+α)(λ+1/q)‖A−1(y)‖α/qdy.

Coupling the estimates of Ji (i = 1, 2, 3), we obtain

‖Hb
Φ,Af‖Ṁq,λ(Rn;v) � K6‖b‖CṀOq2 (Rn,v)‖f‖Ṁq1,λ(Rn,v).

Thus assertion made in part (i) is fulfilled.

(ii) Using Proposition 3.2.7 along with an argument as given above, the proof of

this part becomes simpler. We thus finish the proof.

Proof of Theorem 3.4.3. (i) If ‖A−1(y)‖ � ‖A(y)‖−1, then (3.3.7) is valid. The

sufficient part of Theorem 3.4.3 can be easily obtained from Theorem 3.4.2. Next we

will show the necessary part.

For −1/q < λ < 0, choose f0(x) = |x|(n+α)λ. It is simple to get that f0 ∈
Ṁ q1,λ(Rn; v) and ‖f0‖Ṁq1,λ(Rn;v) = |Sn−1|−λ(n + α)λ(1 + λq1)−1/q1 . Assume that Hb,1

φ,A

is continuous from Ṁ q1,λ to Ṁ q,λ for all b ∈ ‖b‖CṀOq2 (Rn,v). Taking b0 = log |x|, then

by Lemma 2.3 in [20], b ∈ CṀOq2(Rn, v). Noting that (n+ α)λ < 0, we have

Hb0,1
Φ,Af0(x) =

∫
‖A(y)‖<1

Φ(y)

|y|n
|A(y)x|(n+α)λ log

(
|A(y)x|
|x|

)−1

dy

� f0(x)

∫
‖A(y)‖<1

Φ(y)

|y|n
‖A(y)‖(n+α)λ log

1

‖A(y)‖
dy.
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Hence,

‖Hb0,1
Φ,A‖Ṁq1,λ(Rn,v)→Ṁq,λ(Rn,v) �

∫
‖A(y)‖<1

Φ(y)

|y|n
‖A(y)‖(n+α)λ log

1

‖A(y)‖
dy.

Therefore, we obtain∫
‖A(y)‖<1

Φ(y)

|y|n
‖A(y)‖(n+α)λ log

1

‖A(y)‖
dy <∞. (3.4.10)

Contrarily, ∫
‖A(y)‖≤1/2

Φ(y)

|y|n
‖A(y)‖(n+α)λdy

≤
∫
‖A(y)‖≤1/2

Φ(y)

|y|n
‖A(y)‖(n+α)λ log

1

‖A(y)‖
dy. (3.4.11)

Since Φ(y)/|y|n is integrable and (n+ α)λ < 0, therefore∫
1/2≤‖A(y)‖≤1

Φ(y)

|y|n
‖A(y)‖(n+α)λdy ≤ ∞. (3.4.12)

From (3.4.11) and (3.4.12), we get∫
‖A(y)‖≤1

Φ(y)

|y|n
‖A(y)‖(n+α)λdy <∞. (3.4.13)

It is important to note that

K8 = log 2

∫
‖A(y)‖≤1

Φ(y)

|y|n
‖A(y)‖(n+α)λdy

+

∫
‖A(y)‖≤1

Φ(y)

|y|n
‖A(y)‖(n+α)λ log

1

‖A(y)‖
dy.

Then, combining (3.4.10) and (3.4.13), we have K8 <∞. This proves part (i) of The-

orem 3.4.3.

(ii) In this case we replace b0(x) by log 1
|x| , then by a similar argument as given

above the proof can be obtained easily.



Chapter 4

Weighted Estimates for Hardy

Type Operators and Commutators

4.1 Introduction

Suppose g be a Lebesgue measurable on Euclidean space Rn with g∗ be decreasing

rearrangement of g i.e.

g∗(s) = inf{γ > 0 : dg(γ) ≤ s}, s ∈ [0,∞),

where dg(γ) denotes the distribution function of g, given by:

dg(γ) = |{y ∈ Rn : |g(y)| > γ}|.

The Lorentz space Lp,q(Rn) is the set:

Lp,q(Rn) =
{
g : ‖g‖Lp,q(Rn) <∞

}
,

where for 0 < q, p ≤ ∞,

‖g‖Lp,q(Rn) =


(∫∞

0

(
s

1
p g∗(s)

)q
ds
s

) 1
q

if q <∞,

sup
s>0

s
1
p g∗(s) if q =∞.

In case q = ∞, it is obvious that Lp,∞(Rn) = weak Lp(Rn). Also, if p = q then the

space Lp,p(Rn) = Lp(Rn). It is important to note that, for 1 < p, q < ∞, the dual

space of Lp,q(Rn) is the space Lp
′,q′(Rn). See [50] for more details regarding the duals

of Lorentz spaces.

In recent years Morrey spaces found applications to many classes of PDE’s and

influence mathematical analysis in many ways. We defined these spaces in chapter 2,

Definition 2.2.1. The pre-dual of Morrey space is the block space Bp,µ(Rn) introduced

in [7]. In order to define Bp,µ(Rn) we first give the following definition:

44
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Definition 4.1.1 ( see, [7]) Let 1 ≤ p <∞ and n > µ ≥ 0. A measurable function b

is said to a (p, µ) block if supp(b) = B(x0, r), x0 ∈ Rn, r > 0, and

‖b‖Lp(Rn) ≤ r−
µ
p .

The space Bp,µ(Rn) can be defined as:

Bp,µ(Rn) =

{
∞∑
k=1

µkbk :
∞∑
k=1

|µk| <∞ and bk is a (p, µ) block

}
,

having norm

‖g‖Bp,µ(Rn) = inf

{
∞∑
k=1

|µk| : g =
∞∑
k=1

µkbk

}
,

where infimum is taken over all such decompositions of g.

The duality between block and Morrey spaces is further extending in [63], where

the Hölder’s inequality for Bp′,µ(Rn) and Mp,µ(Rn) is provided in the form of following

lemma:

Lemma 4.1.2 Suppose ∞ > p > 1 and n > µ ≥ 0, then∫
Rn
|h(y)g(y)|dy ≤ ‖h‖Mp,µ(Rn)‖g‖Bp′,µ(Rn).

In this chapter, we shall prove that fractional Hausdorff type operator is continuous

from Morrey space to the weak Lebesgue space with power weights and from Lorentz

space to the same without weights. Furthermore, these boundedness results can be

used to prove Lipschitz type estimates for Hb
Φ. Finally, in the last section, we shall

obtain weighted Lipschitz estimates for the Hardy operator’s commutators in weighted

central Morrey spaces.

4.2 Weak Type Inequalities for the Fractional Haus-

dorff Operator

Let t ∈ R\{0} and for any measurable function f on Rn, let Dt denotes the dilation

operator i.e.

(Dtf)(y) = f(y/t), x ∈ Rn,

then the following lemma is from [63].

Lemma 4.2.1 Let ∞ > p > 1 and n > µ ≥ 0. Then

‖Dtf‖Bp,µ(Rn) = |t|
n+µ
p ‖f‖Bp,µ(Rn).
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Above lemma is very useful in proving results of this chapter stated below.

Theorem 4.2.2 Suppose n > α ≥ 0 and

Ψα(y) = Φ

(
1

|y|

)
|y|α−n.

Assume that 1 < p, q <∞, 0 < µ < 1, n > (p−1)µ+αp and 1/p− (α+µ)/(n+µ) =

1/q. If Φ is a radial function then

‖HΦ,αf‖Lq,∞(|x|µ) ≤
(
|Sn−1|
n+ µ

)1/q

‖Ψα‖Bp′,µ(Rn)‖f‖Mp,µ(Rn).

Proof. Let

Ψα(y) =
Φ(1/|y|)
|y|n−α

.

then

Φ(|x|/|y|)|y|α−n = |x|−n+αΨα (y/|x|) .

Next, with the help of Lemma 4.1.2 and 4.2.1, one has

|HΦ,αf(x)| ≤
∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n−α

f(y)

∣∣∣∣ dy
= |x|−n+α

∫
Rn

∣∣∣∣Ψα

(
y

|x|

)
f(y)

∣∣∣∣ dy
≤ |x|−n+α

∥∥∥∥Ψα

(
·
|x|

)∥∥∥∥
Bp′,µ(Rn)

‖f‖Mp,µ(Rn)

= |x|(α+µ)−(n+µ)/p‖Ψα‖Bp′,µ(Rn)‖f‖Mp,µ(Rn)

= |x|−(n+µ)/q‖Ψα‖Bp′,µ(Rn)‖f‖Mp,µ(Rn),

where, in the last equation, we have used the condition 1/p− (α+ µ)/(n+ µ) = 1/q.

For convenience we use the following notation C = ‖Ψα‖Bp′,µ(Rn)‖f‖Mp,µ(Rn), then

we have

‖HΦ,αf‖Lq,∞(|x|µ) ≤ sup
γ>0

γ

(∫
Rn
χ
{C|x|−

n+µ
q >γ}

(x)|x|µdx
)1/q

≤ sup
γ>0

γ

|Sn−1|
∫ (Cγ−1)

q
n+µ

0

rn+µ−1dr

1/q

= C

(
|Sn−1|
n+ µ

)1/q

.
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Thus we conclude that

‖HΦ,αf‖Lq,∞(|x|µ) ≤
(
|Sn−1|
n+ µ

)1/q

‖Ψα‖Bp′,µ(Rn)‖f‖Mp,µ(Rn).

An obvious corollary of the above result can be stated as:

Corollary 4.2.3 Under same conditions as stated in Theorem 4.4.1 with the excep-

tion that now α = 0, then we have

‖H̃Φf‖Lq,∞(|x|µ) ≤
(
|Sn−1|
n+ µ

)1/q

‖Ψ0‖Bp′,µ(Rn)‖f‖Mp,µ(Rn).

In the proof of next theorem, we employ duality between Lorentz spaces Lp,q(Rn)

is the space Lp
′,q′(Rn).

Theorem 4.2.4 Let 0 ≤ α < n with

φα(x′) =
∥∥| · |α−nΦ(x′/| · |)

∥∥
Lp′,q′ (Rn)

.

Assume that 1 < r, q, p <∞, r > max{p, q}, n > αp and 1/p− α/n = 1/r. If Φ is a

radial function and φα(·) ∈ L∞(Sn−1), then

‖HΦ,αf‖Lr,∞(Rn) ≤
(
|Sn−1|
n

)1/r

‖φα‖L∞(Sn−1)‖f‖Lp,q(Rn).

Proof. Using duality, we obtain

|HΦ,αf(x)| ≤
∫
Rn

∣∣∣∣Φ(x/|y|)
|y|n−α

f(y)

∣∣∣∣ dy
≤ ‖hx(·)‖Lp′,q′ (Rn)‖f‖Lp,q(Rn),

where hx(y) = Φ(x/|y|)
|y|n−α . Now, it becomes simple to show that

‖hx(·)‖Lp′,q′ (Rn) =

∥∥∥∥Φ(x/| · |)
| · |n−α

∥∥∥∥
Lp′,q′ (Rn)

= |x|α−n
∥∥∥∥Φ

(
x′
|x|
| · |

)
|x|n−α

| · |n−α

∥∥∥∥
Lp′,q′ (Rn)

= |x|α−n/p
∥∥∥∥Φ(x′/| · |)
| · |n−α

∥∥∥∥
Lp′,q′ (Rn)

,

where we have used the dilation property of Lorentz spaces Lp
′,q′(Rn). Making use of

the condition 1/p− α/n = 1/r, we obtain

|HΦ,αf(x)| ≤ |x|−n/r‖φα(·)‖L∞(Sn−1)‖f‖Lp,q(Rn).
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For convenience we fix C1 = ‖φα(·)‖L∞(Sn−1)‖f‖Lp,q(Rn) and compute:

|{x ∈ Rn : |HΦ,αf(x)| > γ}| ≤ |{x ∈ Rn : C1|x|−
n
r > γ}|

≤
∣∣∣{x ∈ Rn : |x| <

(
C1γ

−1
) r
n

}∣∣∣
=
|Sn−1|
n

(
C1γ

−1
)r
.

We thus obtain

‖HΦ,αf‖Lr,∞(Rn) ≤
(
|Sn−1|
n

)1/r

‖φα‖L∞(Sn−1)‖f‖Lp,q(Rn).

When α = 0, we obtain the estimate for H̃Φ that can be stated in the form of

following corollary.

Corollary 4.2.5 Let

φ0(x′) =

∥∥∥∥Φ(x′/| · |)
| · |n

∥∥∥∥
Lp′,q′ (Rn)

.

Assume that 1 < p, q <∞, If Φ is a radial function and φ0(·) ∈ L∞(Sn−1), then

‖H̃Φf‖Lp,∞(Rn) ≤
(
|Sn−1|
n

)1/p

‖φ0‖L∞(Sn−1)‖f‖Lp,q(Rn).

Thus the Hausdorff operator H̃Φ maps Lp,q(Rn) to Lp,∞(Rn).

4.3 Lipschitz Estimates for the Commutators of

Hausdorff Operator H̃Φ

In this section we will show that H̃b
Φ posses similar boundedness results as followed

by fractional Hausdorff operator H̃Φ,α in Theorem 5.4.1 and 5.4.2, when b belongs to

homogeneous Lipschitz space µ̇β(Rn).

Theorem 4.3.1 Let 1 > β > 0 and

Ψ0(y) = |y|nΦ(1/|y|),Ψβ(y) = |y|n−βΦ(1/|y|).

Suppose 1 < p, q <∞, n− βp > (p− 1)µ and 1/q = 1/p− (β + µ)/(n+ µ). If Φ is a

radial function and b ∈ µ̇β(Rn) then

‖H̃b
Φf‖Lq,∞(|x|µ) ≤

(
|Sn−1|
n+ µ

)1/q

CΨ0,Ψβ‖b‖µ̇β(Rn)‖f‖Mp,µ(Rn)

where

CΨ0,Ψβ = max
{
‖Ψ0‖Bp′,µ(Rn), ‖Ψβ‖Bp′,µ(Rn)

}
.
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Proof. Consider

|H̃b
Φf(x)| ≤ ‖b‖µ̇β(Rn)|x|β

∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n

f(y)

∣∣∣∣ dy
+ ‖b‖µ̇β(Rn)

∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n−β

f(y)

∣∣∣∣ dy
=: ‖b‖µ̇β(Rn)(|x|βI1 + I2).

Next, using computation made in Theorem 4.4.1, we obtain

I2 ≤ |x|(β+µ)−(n+µ)/p‖Ψβ‖Bp′,µ(Rn)‖f‖Mp,µ(Rn).

Similarly, we estimate I1 as:

I1 ≤ |x|µ−(n+µ)/p‖Ψ0‖Bp′,µ(Rn)‖f‖Mp,µ(Rn).

Incorporating estimates of Ii (i = 1, 2), one can get

|H̃b
Φf(x)| ≤ ‖b‖µ̇β(Rn)|x|−(n+µ)/qCΨ0,Ψβ‖f‖Mp,µ(Rn).

We omit the remaining proof as it is the replica of the proof of Theorem 4.4.1.

Adopting the procedure followed in Theorem 5.4.2 and Theorem 4.3.1, the next

Theorem can be proved easily.

Theorem 4.3.2 Suppose 1 > β > 0 and

φ0(x′) =

∥∥∥∥Φ(x′/| · |)
| · |n

∥∥∥∥
Lp′,q′ (Rn)

, φβ(x′) =

∥∥∥∥Φ(x′/| · |)
| · |n−β

∥∥∥∥
Lp′,q′ (Rn)

.

Assume that 1 < r, q, p <∞, max{q, p} < r, βp < n and 1/r = 1/p− β/n. If Φ is a

radial function, φ0(·), φβ(·) ∈ L∞(Sn−1) and b ∈ Λ̇β(Rn) then

‖H̃b
Φf‖Lr,∞(Rn) ≤

(
|Sn−1|
n

)1/r

Cφ0,φβ‖b‖Λ̇β(Rn)‖f‖Lp,q(Rn),

where

Cφ0,φβ = max
{
‖φ0‖L∞(Sn−1), ‖φβ‖L∞(Sn−1)

}
.

4.4 Weighted Lipschitz Estimates for the Commu-

tators of Hardy Operator

For locally integrable function b we consider here the following two commutators of

high-dimensional Hardy operators:

Hbf = b(Hf)−H(bf),
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and

H∗b f = b(H∗f)−H∗(bf).

Fu et al [34] studied the continuity of these operators in Lebesgue spaces. Further-

more, it was proved in [35] and [122] that the commutators of Hardy operators can be

used to characterize some function spaces. Besides, Gao and Wang [42] established

weighted estimates for Hb and H∗b on weighted Lebesgue space. Further extension of

these weighted estimates for the commutators of rough Hardy operator (see [36] for

definition) was made in [111]. However, two weight inequalities for these commutator

operators were obtained in [94].

Here, our objective is to provide some sufficient conditions in support of the conti-

nuity of commutators of Hardy operator on weighted central Morrey spaces when the

symbol functions belongs to weighted Lipschitz space. Thus, one of the main results

can be stated as:

Theorem 4.4.1 Let w ∈ A1, b ∈ Lipβ,w, 0 < β < 1, 1 < q < ∞, −1
q
< µ < µ < 0

and µ = µ+ β
n
, then Hb and H∗b are bounded from Ṁ q,µ(w) to Ṁ q,µ(w1−q).

The function space of our interest, other than the spaces defined in previous chapters,

is the weighted Lipschitz space defined in [45] by the condition

sup
B∈Rn

w(B)−β/n
(
w(B)−1

∫
B

|g(y)− gB|qw(y)1−qdy

)1/q

≤ C <∞,

where 0 < β < 1 ≤ p ≤ ∞ and w ∈ A∞. The smallest constant C fulfilling the

condition above is considered as the norm of g in this space which is denoted by

‖g‖Lipqβ,w . When w = 1, the space Lipβ,w = Lip1
β,w reduces to the classical Lipschitz

space Lipβ. If w ∈ A1, then it was proved in [45] that for any 1 < q ≤ ∞, the norms

‖g‖Lipqβ,w are equivalent for various values of q, i,e. ‖g‖Lipqβ,w ∼ ‖g‖Lipβ,w . Here, we

need some useful lemmas to proceed further.

Lemma 4.4.2 ([95]) Suppose w ∈ A1, and b ∈ Lipβ,w, there exist a C > 0 in such a

way that for i, j ∈ Z with i > j,

|bBi − bBj | ≤ C(i− j)‖b‖Lipβ,ww(Bi)
β/nw(Bj)

|Bj|
.

Lemma 4.4.3 ([95]) Let w ∈ A1, then for any 1 ≤ p <∞,∫
B

w(y)1−p′dy ≤ C|B|p′w(B)1−p′ ,

where 1/p+ 1/p′ = 1.
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Proof of Theorem 4.4.1.

Suppose Bk = {x ∈ Rn : |x| ≤ 2k}, Ck = Bk\Bk−1. Assume B(0, R) = Bk0 for

k0 ∈ Z. Here, we want to establish following two inequalities:

 1

w(Bk0)
1+qµ

∫
Bk0

|Hbf(x)|qw(x)1−qdx


1/q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w), (4.4.1)

 1

w(Bk0)
1+qµ

∫
Bk0

|H∗b f(x)|qw(x)1−qdx


1/q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w). (4.4.2)

In order to construct (5.3.14), we consider

∫
Bk0

|Hbf(x)|qw(x)1−qdx =

∫
Bk0

∣∣∣∣∣∣∣
1

|x|n

∫
|y|<|x|

(b(x)− b(y)) f(y)dy

∣∣∣∣∣∣∣
q

w(x)1−qdx

≤
k0∑

k=−∞

∫
Ck

∣∣∣∣∣∣ 1

|x|n

∫
Bk

(b(x)− b(y)) f(y)dy

∣∣∣∣∣∣
q

w(x)1−qdx

≤ C

k0∑
k=−∞

∫
Ck

∣∣∣∣∣∣ 1

|x|n
k∑

i=−∞

∫
Ci

|b(x)− bBk | |f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

+ C

k0∑
k=−∞

∫
Ck

∣∣∣∣∣∣ 1

|x|n
k∑

i=−∞

∫
Ci

|b(y)− bBk | |f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

=: I1 + I2.

In view of the fact that A1 ⊂ Aq, Lemma 4.4.3 and the Hölder’s inequality, we get

∫
Ci

|f(y)|dy ≤

∫
Bi

|f(y)|qw(y)dy

1/q∫
Bi

w−1/(q−1)(y)dy

(q−1)/q

≤ Cw(Bi)
µ|Bi|‖f‖Ṁq,µ(w).

(4.4.3)
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So by Proposition 5.2.3 and the inequality (5.4.3), we estimate I1 as

I1 ≤ C

k0∑
k=−∞

2−knq
∫
Ck

|b(x)− bBk |
q w(x)1−qdx

∣∣∣∣∣∣
k∑

i=−∞

∫
Ci

|f(y)|dy

∣∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

w(Bk)
1+qβ/n

∣∣∣∣∣
k∑

i=−∞

2n(i−k)w(Bi)
µ

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

w(Bk)
1+qµ

∣∣∣∣∣
k∑

i=−∞

2n(i−k)(1+µ)

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ

k0∑
k=−∞

2nδ(k−k0)(1+µq)

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ,

where we have used the condition µ+ β/n = µ, and the fact that −1/q < µ < µ < 0.

Next, we approximate I2 by decomposing it as below

I2 ≤ C

k0∑
k=−∞

2−knq
∫
Ck

∣∣∣∣∣∣
k∑

i=−∞

∫
Ci

|b(y)− bBi | |f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

+ C

k0∑
k=−∞

2−knq
∫
Ck

∣∣∣∣∣∣
k∑

i=−∞

∫
Ci

|bBk − bBi | |f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

=: I21 + I22.

We shall deal with each of I21 and I22, seperatly. First we have to establish an

inequality similar to (5.4.3). By Hölder’s inequality∫
Ci

|b(y)− bBi ||f(y)|dy ≤ Cw(Bi)
1+µ‖b‖Lipβ,w‖f‖Ṁq,µ(w). (4.4.4)
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With the help of inequality (5.4.4) , Proposition 5.2.3 and Lemma 4.4.3, I21 reduces

to

I21 ≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

2−knq
∫
Ck

w(x)1−qdx

∣∣∣∣∣
k∑

i=−∞

w(Bi)
1+µ

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

w(Bk)
1−q

∣∣∣∣∣
k∑

i=−∞

w(Bi)
1+µ

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

w(Bk)
1+qµ

∣∣∣∣∣
k∑

i=−∞

2nδ(i−k)(1+µ)

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ

k0∑
k=−∞

2nδ(k−k0)(1+qµ)

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ,

where the convergence of above series is due to the fact that −1/q < µ < 0.

It remains to estimate I22. For this purpose we again get help from Lemmas 5.2.3-

4.4.3 and the inequality (5.4.3) to obtain

I22 ≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

w(Bk)
1−q+qβ/n

∣∣∣∣∣
k∑

i=−∞

(k − i)w(Bi)
1+µ

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)

k0∑
k=−∞

w(Bk)
1+qµ

∣∣∣∣∣
k∑

i=−∞

(k − i)2nδ(i−k)(1+µ)

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ

k0∑
k=−∞

2nδ(k−k0)(1+qµ)

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ.

Finally, we combine the estimates for I1, I21 and I22 to have the inequality (5.3.14).
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Now, we proceed to establish (5.4.2). For this purpose, we consider

∫
Bk0

|H∗b f(x)|qw(x)1−qdx =

∫
Bk0

∣∣∣∣∣∣∣
∫

|y|≥|x|

(b(x)− b(y))

|y|n
f(y)dy

∣∣∣∣∣∣∣
q

w(x)1−qdx

≤ C

∫
Bk0

∣∣∣∣∣∣∣
∫

2nk0≥|y|≥|x|

(b(x)− b(y))

|y|n
f(y)dy

∣∣∣∣∣∣∣
q

w(x)1−qdx

+ C

∫
Bk0

∣∣∣∣∣∣∣
∫

|y|>2nk0

(b(x)− b(y))

|y|n
f(y)dy

∣∣∣∣∣∣∣
q

w(x)1−qdx

=: J + J ′.

The computation of upper bounds for J is much similar to that for (5.3.14). However,

estimation of J ′ needs more computational work. Analysis similar to Hb indicates

J ≤ C

∫
Bk0

∣∣∣∣∣∣∣
1

|x|n

∫
|y|<2nk0

|(b(x)− b(y))f(y)|dy

∣∣∣∣∣∣∣
q

w(x)1−qdx

≤ C

k0∑
k=−∞

∫
Ck

∣∣∣∣∣∣ 1

|x|n
k∑

i=−∞

∫
Ci

|b(x)− b(y)f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ.

In computing upper bound for J ′, we proceed as below

J ′ ≤ C

∫
Bk0

∣∣∣∣∣∣
∞∑

k=k0

∫
Ck

|b(x)− bBk0 |
|y|n

|f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

+ C

∫
Bk0

∣∣∣∣∣∣
∞∑

k=k0

∫
Ck

|b(y)− bBk0 |
|y|n

|f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

=: J ′1 + J ′2.
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We use inequality (5.4.3) and Proposition 5.2.3 for the analysis of J ′1. So that we have

J ′1 ≤ C

∫
Bk0

|b(x)− bBk0 |
qw(x)1−qdx

∣∣∣∣∣∣
∞∑

k=k0

∫
Ck

|f(y|
|y|n

dy

∣∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qβ/n

∣∣∣∣∣
∞∑

k=k0

w(Bk)
µ

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ

∣∣∣∣∣
∞∑

k=k0

2nδ(k−k0)µ

∣∣∣∣∣
q

≤ C‖b‖qLipβ,w‖f‖
q

Ṁq,µ(w)
w(Bk0)

1+qµ.

To get the boundedness of J ′2, we need the following decomposition

J ′2 ≤ C

∫
Bk0

∣∣∣∣∣∣
∞∑

k=k0

∫
Ck

|b(y)− bBk |
|y|n

|f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

+ C

∫
Bk0

∣∣∣∣∣∣
∞∑

k=k0

∫
Ck

|bBk − bBk0 |
|y|n

|f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

=: J ′21 + J ′22.

We first compute J ′21. To do this, we use Proposition 5.2.3, Lemma 4.4.3 and the

inequality (5.4.4) to obtain

J ′21 ≤ C

∫
Bk0

∣∣∣∣∣∣
∞∑

k=k0

2−kn
∫
Ck

|b(y)− bBk ||f(y)|dy

∣∣∣∣∣∣
q

w(x)1−qdx

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)

∫
Bk0

w(x)1−qdx

∣∣∣∣∣
∞∑

k=k0

2−knw(Bk)
1+µ

∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)|Bk0|qw(Bk0)
1−q

∣∣∣∣∣
∞∑

k=k0

2−knw(Bk)
1+µ

∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)w(Bk0)
1+qµ

∣∣∣∣∣
∞∑

k=k0

2n(k−k0)µ

∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)w(Bk0)
1+qµ.
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The last objective is to analyze the integral J ′22. For this we use Lemmas 5.2.3-4.4.3

and the inequality (5.4.3) to have

J ′22 ≤ C

∫
Bk0

w(x)1−qdx

∣∣∣∣∣∣
∞∑

k=k0

2−kn|bBk − bBk0 |
∫
Ck

|f(y)|dy

∣∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)|Bk0|qw(Bk0)
1−q

∣∣∣∣∣
∞∑

k=k0

(k − k0)w(Bk)
µ+β/nw(Bk0)

|Bk0|

∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)w(Bk0)

∣∣∣∣∣
∞∑

k=k0

(k − k0)w(Bk)
µ

∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)w(Bk0)
1+qµ

∣∣∣∣∣
∞∑

k=k0

(k − k0)2nδ(k−k0)µ

∣∣∣∣∣
q

≤ C‖b‖Lipβ,w‖f‖Ṁq,µ(w)w(Bk0)
1+qµ.

By incorporating the estimates of J , J ′1, J
′
21 and J ′22, we get (5.4.2). With this we

finish the proof.



Chapter 5

Weighted Estimates for Hausdorff

Operators and Commutators on

Heisenberg Group

5.1 Introduction

Besides the Euclidean space Rn, the matrix Hausdorff operator can be defined on p-

adic linear space Qn
p , which is, under addition, a locally compact commutative group

(see, for instance, [125, 126]) and on the Heisenberg group Hn [103, 117, 137]. Since,

we are mainly concerned with the study of Hausdorff operators commutators defined

on the Heisenberg group Hn, therefore, it is mandatory to introduce this group briefly

and the definition of matrix Hausdorff operator on it first.

With underlying manifold R2n × R, the Heisenberg group Hn, under the law of

non-commutative multiplication

x · y = (x1, x2, ..., x2n+1) · (y1, y2, ..., y2n+1)

=

(
x1 + y1, ..., x2n + y2n, x2n+1 + y2n+1 + 2

n∑
j=1

(yjxn+j − xjyn+j)

)
.

is a Lie group. This definition suggests that for z ∈ Hn,

z · −z = 0 and z · 0 = z.

57
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Therefore, the identity and inverse elements of Hn are same as as that of R2n+1 space.

The vector fields

Zj =
∂

∂zj
+ 2zn+j

∂

∂z2n+1

, 1 ≤ j ≤ n,

Zn+j =
∂

∂zn+j

− 2zj
∂

∂z2n+1

, 1 ≤ j ≤ n,

Z2n+1 =
∂

∂z2n+1

.

form the basis for this Lie algebra. The only non-vanishing commutator relations

satisfied by these vector fields are

[Zj, Zn+j] = −4Z2n+1, 1 ≤ j ≤ n.

The dilation, on Hn, is defined as

δt(z1, z2, ..., z2n, z2n+1) = (tz1, tz2, tz2n, t
2z2n+1), t > 0.

Also, the Haar measure on Hn corresponds to the usual Lebesgue measure on R2n×R1.

Thus, for any measurable set E ⊂ Hn, its measure is denoted by |E|. Moreover,

|δt(E)| = tQ|E|, d(δtz) = tQdz,

where Q = 2n+ 2 is the so-called homogeneous dimension of Hn.

The group Hn is endowed with the norm:

|z|h =

( 2n∑
i=1

z2
i

)2

+ z2
2n+1

1/4

,

and the Heisenberg distance d, generated by this norm is:

d(s, t) = d(t−1s, 0) = |t−1s|h.

Notice that d satisfies triangular inequality and is left-invariant i.e.

d(r · s, r · t) = d(s, t), ∀ r, s, t ∈ Hn.

The ball and sphere on Hn, for t > 0 and x ∈ Hn, can be defined as

B(z, t) = {y ∈ Hn : d(z, y) < t},
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and

S(z, t) = {y ∈ Hn : d(z, y) = t},

respectively. To compute the measure of this ball on Hn, we proceed as below

|B(z, t)| = |B(0, t)| = ΩQt
Q,

where ΩQ = |B(0, 1)|, is a function of n only, is the volume of the unit ball . Also,

area of the unit sphere S(0, 1) in Hn is wQ = QΩQ. For further readings on Heisenberg

group, the book by Folland and Stein [33] and the works by authors in [52, 77, 78] are

standard references.

Now, we are in position to define the operator and relevant commutators on the

Heisenberg group Hn. Suppose Φ ∈ L1
loc(Hn). The Hausdorff operators on Hn assume

the following form (see [54] and [117]):

TΦg(x) =

∫
Hn

Φ(δ|z|−1
h
x)

|z|Qh
g(z)dz,

TΦ,Af(x) =

∫
Hn

Φ(z)

|z|Qh
g(A(z)x)dz,

where the function A(z) is a matrix-valued function, and we assume that detA(z) 6= 0

almost every where in the support of Φ. Also, we define the commutators T bΦ,A of TΦ,A

with locally integrable function b as

T bΦ,A(g) = bTΦ,A(g)− TΦ,A(bg). (5.1.1)

In this chapter, we study the boundedness of TΦ, TΦ,A and T bΦ,A on the Herz-

type spaces with both Muckenhoupt and power weights with the Heisenberg group

as underlying space. The next section contains some basic definitions and notations

likewise some necessary propositions which will be used in the succeeding sections. In

Section 3, we give weighted estimates for TΦ on Herz-type spaces. Finally, the last

section is reserved for the study of T bΦ,A on weighted Herz space.

5.2 Some Definitions and Notations

The Muckenhoupt weighted function theory introduced in [106] was well studied in

the later work by Garćıa-Cuerva et al. [46]. An extension of this theory, in the settings

of Heisenberg group Hn, was provided in [52] and studied in [77, 78]. A function w on

Hn can be given the role of a weight if w ∈ L1
loc(Hn) and is non-negative. The notation

w(E) will be reserved for weighted measure of E ⊂ Hn, that is w(E) =
∫
E
w(z)dz.

Also, if 1/p+ 1/p′ = 1, then p and p′ will be called mutually conjugate indices.
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Definition 5.2.1 It is said that w is in the Muckenhoupt class Ap(Hn), ∞ > p > 1,

if there exists a C > 0 in such a way that for every ball B ⊂ Hn,(
|B|−1

∫
B

w(z)dz

)(
|B|−1

∫
B

w(z)−p
′/pdz

)p/p′
≤ C.

Also, w ∈ A1 implies the existence of a constant C > 0 in such a way that for every

ball B ⊂ Hn, (
|B|−1

∫
B

w(z)dz

)
≤ C essinf

z∈B
w(z).

When p =∞, we define A∞ =
⋃

1≤p<∞Ap.

According to Proposition 2.2 in [117], we have Ap(Hn) ⊂ Aq(Hn), for ∞ > q >

p ≥ 1, and if w ∈ Ap(Hn),∞ > p > 1, then for ε > 0 there exist p− ε > 1 such that

w ∈ Ap−ε(Hn). Therefore, we may take qw := inf{q > 1 : w ∈ Aq} as the critical index

of w.

Definition 5.2.2 It is said that w is in reverse Hölder class RHr(Hn), if there exists

a fixed constant C > 0 and r > 1, such that(
|B|−1

∫
B

wr(z)dz

)1/r

≤ C|B|−1

∫
B

w(z)dz.

holds for every ball B ⊂ Hn. In [78], it was proved that w ∈ A∞(Hn) if and only if

there exist some 1 < r such that w ∈ RHr(Hn). In addition, if w ∈ RHr(Hn), r > 1,

then for some ε > 0 we have w ∈ RHr+ε(Hn). We therefore use rw := sup{r > 1 :

w ∈ RHr(Hn)} to denote the critical index of w for the reverse Hölder condition.

A particular case of Muckenhoupt Ap(Hn) weights is the power weight function

|x|αh . From Proposition 2.3 in [117], for x ∈ Hn, we have |x|αh ∈ A1(Hn) if and only if

−Q < α ≤ 0. Also, |z|h ∈ Ap(Hn) for ∞ > p > 1 if and only if −Q < α < Q(p− 1).

In view of these observation , it is easy to see that for 0 < α <∞,

|x|αh ∈
⋂

Q+α
Q

<p<∞

Ap(Hn),

where (Q+ α)/Q is known as the critical index of |x|αh .
The following two Propositions, proved in [117], concerning Ap(Hn) weights will

be useful in establishing weighted estimates for T bΦ,A on Herz-type spaces on Hn.
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Proposition 5.2.3 Suppose w ∈ RHr ∩ Ap(Hn), 1 ≤ p and 1 < r. Then there exist

constants C1, C2 > 0 such that

C1

(
|D|
|B|

)p
≤ w(D)

w(B)
≤ C2

(
|D|
|B|

)(r−1)/r

,

for any D ⊆ B, where D is measurable. In general, for any 1 < λ,

w(B(x0, λR) ≤ λQpw(B(x0, R)).

Proposition 5.2.4 If w ∈ Ap(Hn), 1 ≤ p < ∞, then for any f ∈ L1
loc(Hn) and any

ball B ⊂ Hn

|B|−1

∫
B

|f(z)|dz ≤ C

(
w(B)−1

∫
B

|f(z)|pw(z)dz

)1/p

.

Let E ⊆ Hn be measurable, then the weighted Lebesgue space Lp(E;w) contains

the functions f satisfying

‖g‖Lp(E;w) =

(∫
E

|g(z)|pw(z)dz

)1/p

<∞,

where ∞ > p ≥ 1 and w is a weight function on Hn. In case p = ∞, one has

L∞(Hn;w) = L∞(Hn) and ‖f‖L∞(Hn;w) = ‖f‖L∞(Hn).

Let Ek = Bk/Bk−1, where Bk := {z ∈ Hn : |z|h < 2k}, for k ∈ Z. Then the

homogeneous weighted Herz space in the setting of Heisenberg group can be defined

as below.

Definition 5.2.5 Let α ∈ R,∞ > p, q > 0, and w is a weight function on Hn. The

homogeneous weighted Herz space K̇α,p
q (Hn) is the set

K̇α,p
q (Hn;w) :=

{
g ∈ Lqloc(H

n/{0};w) : ‖g‖K̇α,p
q (Hn;w) <∞

}
,

where

‖g‖K̇α,p
q (Hn;w) =

{
∞∑

k=−∞

w(Bk)
αp/Q‖g‖pLp(Ek;w)

}1/p

.

When w = 1, we obtain K̇α,p
q (Hn) introduced in [97]. More details on Herz spaces

along with their application can be seen in [28, 29, 61, 98].

Definition 5.2.6 Suppose α ∈ R,∞ > p, q > 0, 0 ≤ λ and w is a weight function on

Hn. The homogeneous weighted Herz-Morrey space MK̇α,λ
p,q (Hn;w) is defined by

MK̇α,λ
p,q (Hn;w) :=

{
g ∈ Lqloc(H

n/{0};w) : ‖g‖MK̇α,λ
p,q (Hn;w) <∞

}
,
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where

‖g‖MK̇α,λ
p,q (Hn;w) = sup

k0∈Z
w(Bk0)

−λ/Q

{
k0∑

k=−∞

w(Bk)
αp/Q‖g‖pLq(Ck;w)

}1/p

.

Obviously, MK̇α,0
p,q (Hn;w) = K̇α,p

q (Hn;w).

Definition 5.2.7 Suppose 1 < q < ∞ and w be a weight function on Hn. Then,

it is said that a function g ∈ Lqloc(Hn;w) belongs to the weighted CBMO space

CṀOq(Hn;w) if

‖g‖CṀOq(Hn;w) = sup
R>0

(
w(B(0, R))−1

∫
B(0,R)

|g(z)− gB|qw(z)dz

)1/q

<∞,

where

gB = |B(0, r)|−1

∫
B(0,r)

g(z)dz. (5.2.1)

Recently, weighted boundedness of matrix Hausdorff operators and their commu-

tators defined on different underlying spaces are established in [18, 70, 75, 76, 112,

114, 116, 117, 121].

Lemma 5.2.8 ([117]) Suppose that the (2n + 1) × (2n + 1) matrix M is invertible.

Then

‖M‖−Q ≤ | detM−1| ≤ ‖M−1‖Q, (5.2.2)

where

‖M‖ = sup
x∈Hn,x 6=0

|Mx|h
|x|h

. (5.2.3)

Also, when Ap weights are reduced to the power function, we shall use the notation

v(·) instead of w(·), that is v(·) = | · |βh. In that case, an easy computation results in:

v(Bk) =

∫
|x|h≤2k

|x|βh dx = ωQ2k(Q+β)/(β +Q). (5.2.4)

Moreover, in case of boundedness of T bΦ,A on power weighted Herz space, we shall

frequently use the piecewise defined function G :

G(M, δβ) =

‖M‖δβ if β > 0,

‖M−1‖−δβ if β ≤ 0,

where M is any invertible matrix, α ∈ R and δ ∈ R+. Obviously, G satisfies:

G(M,β(1/q + 1/p)) =G(M,β/q)G(M,β/p), (5.2.5)

where p, q ∈ Z+.
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Proposition 5.2.9 Suppose that the (2n+ 1)× (2n+ 1) matrix M is invertible. Let

β > −n, v(x) = |x|βh and x ∈ Hn, then

v(Mx) ≤

‖M‖βv(x) if β > 0,

‖M−1‖−βv(x) if β ≤ 0,

= G(M,β)v(x).

From this point forward, we will use an obvious notation λB(0, R) = B(0, λR),

for λ > 0.

5.3 Estimates for TΦ on Herz-Morrey Space

As we stated in the introduction, this section is centered on obtaining estimates for

TΦ on weighted Herz-Morrey spaces MK̇α,λ
p,q (Hn;w). In this regard, our main results

are contained in the following subsection.

5.3.1 Main Results

Theorem 5.3.1 Let 1 ≤ q1, q2 < ∞, 1 ≤ p < ∞, λ > max{0, α1}, α2 ∈ R. Let Φ be

a radial function and 1/q1 + α1/Q = 1/q2 + α2/Q. Let q1 > q2srw/(rw − 1), where

w ∈ As(Hn), 1 ≤ s <∞, with the critical index rw for the reverse Hölder condition.

(i) If 1/q1 + α1/Q ≥ 0, then we have for any 1 < δ < rw,

‖TΦf‖MK̇
α2,λ
p,q2

(Hn;w)
� Kλ

1 ‖f‖MK̇
α1,λ
p,q1

(Hn;w)
,

where

Kλ
1 =

∫ 1

0

|Φ(t)|
t

t(α1+Q/q1)(δ−1)/δ−sλdt+

∫ ∞
1

|Φ(t)|
t

ts(α1+Q/q1)−λ(δ−1)/δdt.

(ii) If 1/q1 + α1/Q < 0, then we have for any 1 < δ < rw,

‖TΦf‖MK̇
α2,λ
p,q2

(Hn;w)
� Kλ

2 ‖f‖MK̇
α1,λ
p,q1

(Hn;w)
,

where

Kλ
2 =

∫ 1

0

|Φ(t)|
t

ts(α1−λ+Q/q1)dt+

∫ ∞
1

|Φ(t)|
t

t(α1−λ+Q/q1)(δ−1)/δdt.

When λ = 0, we obtain the following estimates for TΦ on K̇α,p
q (Hn;w).



64 Weighted Estimates

Theorem 5.3.2 Let 1 ≤ p < ∞, 1 ≤ q1, q2 < ∞, α1 < 0, α2 ∈ R. Let Φ be a

radial function and 1/q1 + α1/Q = 1/q2 + α2/Q. Let q1 > q2srw/(rw − 1), where

w ∈ As(Hn), 1 ≤ s <∞, with the critical index rw for the reverse Hölder condition.

(i) If 1/q1 + α1/Q ≥ 0, then we have for any 1 < δ < rw,

‖TΦf‖K̇α2,p
q2

(Hn;w) � K0
1‖f‖K̇α1,p

q1
(Hn;w).

(ii) If 1/q1 + α1/Q < 0, then we have for any 1 < δ < rw,

‖TΦf‖K̇α2,p
q2

(Hn;w) � K0
2‖f‖K̇α1,p

q1
(Hn;w).

By replacing Muckenhoupt weights with power weights, one can have sharp result as

below.

Theorem 5.3.3 Suppose α ∈ R, λ ≥ 0,∞ > p, q <≥ 1,−Q < β <∞ and suppose Φ

be a radial and non-negative function. If∫ ∞
0

Φ(t)

t
t(1+β/Q)(α−λ+Q/q)dt <∞, (5.3.1)

then TΦ is bounded on MK̇α,λ
p,q (Hn, | · |β).

Conversely, assume that TΦ is bounded on power weighted Herz-Morrey space

MK̇α,λ
p,q (Hn, | · |β). If λ = 0 or 0 < λ < α, then (5.3.1) is true. Moreover,

‖TΦ‖MK̇α,λ
p,q (Hn,|·|βh)→MK̇α,λ

p,q (Hn,|·|βh) '
∫ ∞

0

Φ(t)

t
t(1+β/Q)(α−λ+Q/q)dt. (5.3.2)

5.3.2 Proof of the Main Results

Since, proofs of Theorems 5.3.1 and 5.3.2 involves similar steps and arguments, there-

fore, we will prove Theorem 5.3.1 and Theorem 5.3.3, only.

Proof of Theorem 5.3.1: We need to compute ‖TΦf‖Lq2 (Ck;w) first. The condition

q1 > q2srw/(rw − 1) implies that there exists r ∈ (1, rw) such that q1 = q2sr
′. By

virtue of the Hölder inequality and the reverse Hölder condition, we obtain

‖TΦf(x)‖Lq2 (Ck;w) ≤
(∫

Ck

|TΦf(x)|q1/sdx
)s/q1 (∫

Ck

w(x)rdx

)1/(rq2)

� |Bk|−1/(q2r′)w(Bk)
1/q2

(∫
Ck

|TΦf(x)|q1/sdx
)s/q1

. (5.3.3)
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Following [54], we rewrite TΦ as

TΦf(x) =

∫ ∞
0

Φ(t)

t

∫
|y′|h=1

f(δt−1|x|hy
′)dy′dt. (5.3.4)

Using (5.3.4) and the Minkowski inequality, we have(∫
Ck

|TΦf(x)|q1/sdx
)s/q1

=

(∫
Ck

∣∣∣∣∫ ∞
0

Φ(t)

t

∫
|y′|h=1

f(δt−1|x|hy
′)dy′dt

∣∣∣∣q1/s dx
)s/q1

�
∫ ∞

0

|Φ(t)|
t

(∫
Ck

∣∣∣∣∫
|y′|h=1

f(δt−1|x|hy
′)dy′

∣∣∣∣q1/s dx
)s/q1

dt. (5.3.5)

Next, Hölder inequality, polar decomposition and change of variables, yield

∫ ∞
0

|Φ(t)|
t

(∫
Ck

∣∣∣∣∫
|y′|h=1

f(δt−1|x|hy
′)dy′

∣∣∣∣q1/s dx
)s/q1

dt

�
∫ ∞

0

|Φ(t)|
t

(∫
Ck

∫
|y′|h=1

|f(δt−1|x|hy
′)|q1/sdy′dx

)s/q1
dt

'
∫ ∞

0

|Φ(t)|
t

(∫ 2k

2k−1

∫
|y′|h=1

|f(δt−1τy
′)|q1/sdy′τQ−1dτ

)s/q1

dt

'
∫ ∞

0

|Φ(t)|
t

tQs/q1
(∫

t−1Ck

|f(y)|q1/sdy
)s/q1

dt, (5.3.6)

where t−1Ck denotes the set

{x : tx ∈ Ck}.

Making use of Proposition 5.2.4, it becomes simple to see that(∫
t−1Ck

|f(y)|q1/sdy
)s/q1

� |B(0, 2kt−1)|s/q1
w(B(0, 2kt−1))1/q1

‖f‖Lq1 (B(0,2kt−1);w). (5.3.7)

Therefore, we infer from (5.3.3–5.3.7) that

‖TΦ(f)‖Lq2 (Ck;w) �
∫ ∞

0

|Φ(t)|
t

w(B(0, 2k))1/q2

w(B(0, 2kt−1))1/q1
‖f‖Lq1 (B(0,2kt−1);w)dt.
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Now, by definition and the Minkowski inequality

‖TΦ(f)‖
MK̇

α2,λ
p,q2

(Hn;w)

= sup
k0∈Z

w(Bk0)
−λ/Q

{
k0∑

k=−∞

w(Bk)
α2p/Q ‖TΦf‖pLq(Ck;w)

}1/p

�
∫ ∞

0

|Φ(t)|
t

sup
k0∈Z

w(Bk0)
−λ/Q

×

{
k0∑

k=−∞

(
w(Bk)

1/q2+α2/Q

w(B(0, 2kt−1))1/q1
‖f‖Lq1 (B(0,2kt−1);w)

)p}1/p

dt

�
∞∑

j=−∞

∫ 2j+1

2j

|Φ(t)|
t

sup
k0∈Z

w(Bk0)
−λ/Q

×

{
k0∑

k=−∞

(
w(Bk)

1/q2+α2/Q

w(Bk−j)1/q1
‖f‖Lq1 (Bk−j ;w)

)p}1/p

dt

�
∞∑

j=−∞

∫ 2j+1

2j

|Φ(t)|
t

sup
k0∈Z

w(Bk0)
−λ/Q

{
k0∑

k=−∞

[(
w(Bk)

w(Bk−j)

)1/q1+α1/Q

×
∞∑
l=j

(
w(Bk−j)

w(Bk−l)

)α1/Q
(

k−l∑
i=−∞

w(Bi)
α1p/Q‖f‖pLq1 (Ci;w)

)1/p ]p}1/p

dt, (5.3.8)

where we have used the condition 1/q1 + α1/Q = 1/q2 + α2/Q.

Again, by definition of weighted Herz-Morrey space, the inequality (5.3.8) assumes

the following form

‖TΦ(f)‖
MK̇

α2,λ
p,q2

(Hn;w)

� ‖f‖
MK̇

α1,λ
p,q1

(Hn;w)

∞∑
j=−∞

∫ 2j+1

2j

|Φ(t)|
t

sup
k0∈Z

(
w(Bk0−j)

w(Bk0)

)λ/Q

×

{
k0∑

k=−∞

[(
w(Bk)

w(Bk−j)

)1/q1+α1/Q

×
(
w(Bk−j)

w(Bk0−j)

)λ/Q ∞∑
l=j

(
w(Bk−j)

w(Bk−l)

)(α1−λ)/Q
]p}1/p

dt. (5.3.9)

Since λ > max{0, α1}, j ≤ l and k ≤ k0, by Proposition 5.2.4, we have(
w(Bk−j)

w(Bk−l)

)(α1−λ)/Q

�
(
|Bk−j|
|Bk−l|

)(α1−λ)(δ−1)/(δQ)

= 2(l−j)(α1−λ)(δ−1)/δ, (5.3.10)
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and (
w(Bk−j)

w(Bk0−j)

)λ/Q
�
(
|Bk−j|
|Bk0−j|

)λ(δ−1)/(δQ)

= 2λ(k−k0)(δ−1)/δ, (5.3.11)

also, if j ≥ 0, (
w(Bk0−j)

w(Bk0)

)λ/Q
�
(
|Bk0−j|
|Bk0|

)λ(δ−1)/(δQ)

= 2−jλ(δ−1)/δ, (5.3.12)

and if j < 0, (
w(Bk0−j)

w(Bk0)

)λ/Q
�
(
|Bk0−j|
|Bk0 |

)sλ/Q
= 2−jsλ (5.3.13)

for any 1 < δ < rw.

When 1/q1 + α1/Q ≥ 0, then from Proposition 5.2.4, we have, if j < 0,(
w(Bk)

w(Bk−j)

)1/q1+α1/Q

�
(
|Bk|
|Bk−j|

)(1/q1+α1/Q)(δ−1)/δ

= 2j(Q/q1+α1)(δ−1)/δ, (5.3.14)

and if j ≥ 0,(
w(Bk)

w(Bk−j)

)1/q1+α1/Q

�
(
|Bk|
|Bk−j|

)s(1/q1+α1/Q)

= 2js(Q/q1+α1), (5.3.15)

for any 1 < δ < rw.

When 1/q1 +α1/Q < 0, then it is easy to see from Proposition 5.2.4 that, if j < 0,(
w(Bk)

w(Bk−j)

)1/q1+α1/Q

�
(
|Bk|
|Bk−j|

)s(1/q1+α1/Q)

= 2js(Q/q1+α1), (5.3.16)

and if j ≥ 0,(
w(Bk)

w(Bk−j)

)1/q1+α1/Q

�
(
|Bk|
|Bk−j|

)(1/q1+α1/Q)(δ−1)/δ

= 2j(Q/q1+α1)(δ−1)/δ, (5.3.17)

for any 1 < δ < rw.
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Therefore, if 1/q1 + α1/Q ≥ 0, then for any 1 < δ < rw, inequalities (5.3.9–5.3.15)

help us to obtain

‖TΦ(f)‖
MK̇

α2,λ
p,q2

(Hn;w)

� ‖f‖
MK̇

α1,λ
p,q1

(Hn;w)

(
−1∑

j=−∞

∫ 2j+1

2j

|Φ(t)|
t

2j(Q/q1+α1)(δ−1)/δ−jsλ

× sup
k0∈Z

{
k0∑

k=−∞

2pλ(k−k0)(δ−1)/δ

(
∞∑
l=j

2(l−j)(α1−λ)(δ−1)/δ

)p}1/p

dt

+
∞∑
j=0

∫ 2j+1

2j

|Φ(t)|
t

2js(Q/q1+α1)−jλ(δ−1)/δ

× sup
k0∈Z

{
k0∑

k=−∞

2pλ(k−k0)(δ−1)/δ

(
∞∑
l=j

2(l−j)(α1−λ)(δ−1)/δ

)p}1/p

dt

)
� Kλ

1 ‖f‖MK̇
α1,λ
p,q1

(Hn;w)
.

With this the proof of Theorem 5.4.1(i) is completed.

By a similar argument as above, when 1/q1 +α1/Q < 0, part (ii) of Theorem 5.4.1

can be proved using (5.3.9–5.3.13) and (5.3.16–5.3.17).

Proof of Theorem 5.3.3: Computing the norm of TΦ on the power weighted Herz-

Morrey space involves a similar first step as is taken in the proof of previous Theorem.

Therefore, by (5.3.4) and the Minkowski inequality we have

‖TΦf‖Lq(Ck,|·|βh) =

(∫
Ck

∣∣∣∣∫ ∞
0

Φ(t)

t

∫
|y′|h=1

f(δt−1|x|hy
′)dy′dt

∣∣∣∣q |x|βhdx)1/q

≤
∫ ∞

0

Φ(t)

t

(∫
Ck

∣∣∣∣∫
|y′|h=1

f(δt−1|x|hy
′)dy′

∣∣∣∣q |x|βhdx)1/q

dt.

By Hölder inequality, polar decomposition and change of variables, we obtain

‖TΦf‖Lq(Ck,|·|βh) �
∫ ∞

0

Φ(t)

t

(∫ 2k

2k−1

∫
|y′|h=1

|f(δt−1τy
′)|q dy′τQ+β−1dτ

)1/q

dt

�
∫ ∞

0

Φ(t)

t
t(Q+β)/q ‖f‖Lq(t−1Ck,|·|βh) dt.

Let j0 ∈ Z, be such that 2j0−1 < t−1 ≤ 2j0 . Then t−1Ck is contained in two adjacent

annulus Ck+j0−1 and Ck+j0 . Therefore,

‖TΦf‖Lq(Ck,|·|βh) �
∫ ∞

0

Φ(t)

t
t(Q+β)/q

j0∑
l=j0−1

‖f‖Lq(Ck+l,|·|βh) dt. (5.3.18)
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For 1 ≤ p <∞, the inequality (5.3.18) following the Minkowski inequality yields

‖TΦf‖MK̇α,λ
p,q (Hn,|·|βh)

' sup
k0∈Z

2−k0λ(1+β/Q)

{
k0∑

k=−∞

(
2kα(1+β/Q) ‖TΦf‖Lq(Ck;|·|βh)

)p}1/p

�
∫ ∞

0

Φ(t)

t
t(Q+β)/q sup

k0∈Z
2−k0λ(1+β/Q)

×

{
k0∑

k=−∞

(
j0+1∑
l=j0

2kα(1+β/Q) ‖f‖Lq(Ck+l,|·|βh)

)p}1/p

dt

�
∫ ∞

0

Φ(t)

t
t(Q+β)/q

j0+1∑
l=j0

2l(λ−α)(1+β/Q)dt

× sup
k0∈Z

2−λ(k0+l)(1+β/Q)

{
k0+l∑
k=−∞

2kαp(1+β/Q) ‖f‖p
Lq(Ck,|·|βh)

}1/p

� ‖f‖MK̇α,λ
p,q (Hn,|·|βh)

∫ ∞
0

Φ(t)

t
t(1+β/Q)(α−λ+Q/q)dt. (5.3.19)

To prove the converse, we assume that TΦ is bounded on MK̇α,λ
p,q (Hn, | · |βh). With

this we split our problem in two cases:

Case I: 0 < λ < α

In this case, we select f0 ∈ Lqloc(Hn, | · |βh), such that

f0(x) = |x|−(1+β/Q)(α−λ+Q/q)
h ,

then it is easy to see that

‖f0‖Lq(Ck,|·|βh) ' 2−k(α−λ)(1+β/Q)

(
2q(α−λ)(1+β/Q) − 1

q(α− λ)(1 + β/Q)

)1/q

.

Therefore,

‖f0‖MK̇α,λ
p,q (Hn,|·|βh)

' sup
k0∈Z

2−k0λ(1+β/Q)

{
k0∑

k=−∞

2kαp(1+β/Q)‖f0‖p
Lq(Ck,|·|βh)

}1/p

'
(

2q(α−λ)(1+β/Q) − 1

q(α− λ)(1 + β/Q)

)1/q

sup
k0∈Z

2−k0λ(1+β/Q)

{
k0∑

k=−∞

2pkλ(1+β/Q)

}1/p

=

(
2q(α−λ)(1+β/Q) − 1

q(α− λ)(1 + β/Q)

)1/q
2λ(1+β/Q)

(2λ(1+β/Q) − 1)1/p
<∞.



70 Weighted Estimates

On the other hand, a change of variables following the polar decomposition yields

TΦ(f0)(x) =

∫
Hn

Φ(δ|y|−1
h
x)

|y|Qh
|y|−(1+β/Q)(α−λ+Q/q)

h dy

'
∫ ∞

0

Φ(t−1|x|h)
t

t−(1+β/Q)(α−λ+Q/q)dt

= f0(x)

∫ ∞
0

Φ(t)

t
t(1+β/Q)(α−λ+Q/q)dt.

According to our assumption TΦ is bounded on MK̇α,λ
p,q (Hn, | · |βh), therefore,

‖TΦ‖MK̇α,λ
p,q (Hn,|·|βh)→MK̇α,λ

p,q (Hn,|·|βh) �
∫ ∞

0

Φ(t)

t
t(1+β/Q)(α−λ+Q/q)dt. (5.3.20)

Finally, inequalities (5.3.19) and (5.3.20) imply that

‖TΦ‖MK̇α,λ
p,q (Hn,|·|βh)→MK̇α,λ

p,q (Hn,|·|βh) '
∫ ∞

0

Φ(t)

t
t(1+β/Q)(α−λ+Q/q)dt.

Case II: λ = 0

In this case, our assumption reduces to the boundedness of TΦ on K̇α,p
q (Hn, | · |βh). To

prove the converse relation let us consider

fε(x) = |x|−(1+β/Q)(α+Q/q)−ε/q
h χ{|x|h>1}.

Then for k > 0, an easy computation leads to

‖fε‖Lq(Ck,|·|βh) ' 2−kα(1+β/Q)−kε/q
(

2qα(1+β/Q)+ε − 1

qα(1 + β/Q) + ε

)1/q

,

which gives that

‖fε‖K̇α,p
q (Hn,|·|βh) '

1

(2εp/q − 1)1/p

(
2qα(1+β/Q)+ε − 1

qα(1 + β/Q) + ε

)1/q

<∞. (5.3.21)

By decomposing TΦ into polar coordinates and changing variables, we obtain

TΦ(fε)(x) =

∫
Hn

Φ(δ|y|−1
h
x)

|y|Qh
|y|−(1+β/Q)(α+Q/q)−ε/q

h χ{|y|h>1}(y)dy

'
∫ ∞

1

Φ(t−1|x|h)
t

t−(1+β/Q)(α+Q/q)−ε/qdt

= |x|−(1+β/Q)(α+Q/q)−ε/q
∫ |x|h

0

Φ(t)

t
t(1+β/Q)(α+Q/q)+ε/qχ{|x|h>1}(x)dt.
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This suggests that (Tφfε)χCk = 0 for k ≤ 0. Thus, for k > 0, one has

‖TΦ(fε)‖Lq(Ck,|·|β) =

(∫
Ck

|TΦfε(x)|q|x|βdx
)1/q

'

(∫
Ck

|x|−(1+β/Q)(qα+Q)−ε+β

×
∫ |x|h

0

Φ(t)

t
t(1+β/Q)(α+Q/q)+ε/qdtdx

)1/q

.

For any ε > 0, there exist a m ∈ Z such that 2−m ≤ ε < 2−m+1. Therefore for

m ≤ k, we have

‖TΦ(fε)‖Lq(Ck,|·|β)

� 2−kα(1+β/Q)−kε/q
(

2qα(1+β/Q)+ε − 1

qα(1 + β/Q) + ε

)1/q ∫ 2m−1

0

Φ(t)

t
t(1+β/Q)(α+Q/q)+ε/qdt.(5.3.22)

Now, the definition of power weighted Herz space and the the inequality (5.3.22)

help us to have

‖TΦ(fε)‖K̇α,p
q (Hn,|·|β)

'

(
∞∑

k=−∞

2kαp(1+β/Q)‖TΦ(fε)‖pLq(Ck,|·|β)

)1/p

�
(

2qα(1+β/Q)+ε − 1

qα(1 + β/Q) + ε

)1/q
(
∞∑
k=m

2−kpε/q

)1/p ∫ 1/(2ε)

0

Φ(t)

t
t(1+β/Q)(α+Q/q)+ε/qdt

= ‖fε‖K̇α,p
q (Hn;|·|βh)ε

ε/q2ε/q
∫ 1/(2ε)

0

Φ(t)

t
t(1+β/Q)(α+Q/q)+ε/qdt,

where the last equality is by virtue of (5.3.21).

Letting ε→ 0, we obtain

‖TΦ‖K̇α,P
q (Hn;|·|βh)→K̇α,P

q (Hn;|·|βh) �
∫ ∞

0

Φ(t)

t
t(1+β/Q)(α+Q/q)dt. (5.3.23)

Finally, (5.3.19) and (5.3.23) mean that

‖TΦ‖K̇α,p
q (Hn;|·|βh)→K̇α,p

q (Hn;|·|βh) '
∫ ∞

0

Φ(t)

t
t(1+β/Q)(α+Q/q)dt.

Hence, we finish the proof of Theorem 5.3.3.
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5.4 Estimates for T bΦ,A on Weighted Herz Space

This section contains the main results of the boundedness of T bΦ,A and the relevant

proofs.

5.4.1 Main Results

Theorem 5.4.1 Suppose 1 ≤ p, q, q1, q2 ≤ ∞ and α1, α2 ∈ R with α1 < 0. Suppose

that 1/s = 1/q1 + 1/q and α1/Q + 1/q1 = α2/Q + 1/q2. In addition, let w ∈ A1 with

the critical index rw for the reverse Hölder condition and s > q2rw/(rw − 1).

(i) If 1/q1 + α1/Q ≥ 0, then for any 1 < δ < rw,∥∥T bΦ,Af∥∥K̇α2,p
q2

(Hn;w)
≤ K1 ‖b‖CṀOq(Hn;w) ‖f‖K̇α1,p

q1
(Hn;w) ,

where

K1 =

∫
‖A(y)‖<1

|Φ(y)|
|y|Qh

(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× | detA−1(y)|1/q1‖A(y)‖−α1 log

2

‖A(y)‖
dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|Qh

(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× | detA−1(y)|1/q1‖A(y)‖Q/q1−(α1+Q/q1)(δ−1)/δ log 2‖A(y)‖dy.

(ii) If α1/Q+ 1/q1 < 0, then for any 1 < δ < rw∥∥T bΦ,A∥∥K̇α2,p
q2

(Hn;w)
≤ K2 ‖b‖CṀOq(Hn;w) ‖f‖K̇α1,p

q1
(Hn;w) .

where

K2 =

∫
‖A(y)‖≥1

|Φ(y)|
|y|Qh

(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× | detA−1(y)|1/q1‖A(y)‖−α1 log 2‖A(y)‖dy

+

∫
‖A(y)‖<1

|Φ(y)|
|y|Qh

(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× | detA−1(y)|1/q1‖A(y)‖Q/q1−(α1+Q/q1)(δ−1)/δ log

2

‖A(y)‖
dy.

When general weights are reduced to power weights, then the next theorem is:

Theorem 5.4.2 Suppose 1 ≤ p < ∞, 1 < q, q1, q2 < ∞ and β > −n. If 1/q2 =

1/q + 1/q1 and 1/q + α2/Q = α1/Q, then we have
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‖T bΦ,A‖K̇α2,p
q2

(Hn;v) � K3‖b‖CṀOq(Hn;v)‖f‖K̇α1,p
q1

(Hn;v).

where K3 is

K3 =


∫
Hn Θ(y) (1 + log2 (‖A−1(y)‖‖A(y)‖)) dy, if α1 = 0,∫
Hn Θ(y)G

(
A−1(y), α1(Q+ β)/Q

)
dy, if α1 6= 0.

and

Θ(y) =
|Φ(y)|
|y|Qh

| detA−1(y)|1/q1
(

log
2

‖A(y)‖
χ{‖A(y)‖<1} + log 2‖A(y)‖χ{‖A(y)‖≥1}

)

×G
(
A−1(y), β/q1

)(
1 + | detA−1(y)|1/qG

(
A−1(y), β/q

)
‖A(y)‖(Q+β)/q

)
.

5.4.2 Proof of Theorem 5.4.1

Here, we have to show that{
∞∑

k=−∞

w(Bk)
α2p/Q

∥∥T bΦ,Af∥∥pLq2 (Ek,w)

}1/p

� ‖f‖K̇α2,p
q2

(Hn;w) .

By the Minkowski inequality and necessary splitting, an upper bound for the inner

norm ‖T bΦ,Af‖
p
Lq2 (Ek,w) can be obtained as:∥∥(T bΦ,Af)∥∥Lq2 (Ek;w)

=

∥∥∥∥∥
(∫

Hn

Φ(y)

|y|Qh
(b(x)− b(A(y)x))f(A(y)x)dy

)∥∥∥∥∥
Lq2 (Ek;w)

≤
∫
Hn

Φ(y)

|y|Qh
‖(b(x)− b(A(y)x))f(A(y)x)‖Lq2 (Ek;w)dy

≤
∫
Hn

Φ(y)

|y|Qh
‖(b(x)− bBk)f(A(y)x)‖Lq2 (Ek;w)dy

+

∫
Hn

Φ(y)

|y|Qh
‖(b(A(y)x)− b‖A(y)‖Bk)f(A(y)x)‖Lq2 (Ek;w)dy

+

∫
Hn

Φ(y)

|y|Qh
‖(bBk − b‖A(y)‖Bk)f(A(y)x)‖Lq2 (Ek;w)dy

= I1 + I2 + I3. (5.4.1)
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While targeting I1, we first compute ‖(b(x) − b(A(y)x))f(A(y)x)‖Lq2 (Ek;w). The con-

dition s > q2rw/(rw − 1) implies that there exist 1 < r < rw such that s = q2r
′.

Therefore, by the Hölder inequality and the reverse Hölder condition, we have

‖ (b(·)− bBk) f(A(y)·)‖Lq2 (Ek;w)

=

(∫
Ek

|(b(x)− bBk)f(A(y)x)|s dx
)1/s(∫

Ek

w(x)rdx

)1/rq2

� |Bk|−1/sw(Bk)
1/q2‖(b(·)− bBk)f(A(y)·)‖Ls(Ek). (5.4.2)

Next, using the condition 1/s = 1/q + 1/q1, we can have

‖(b(·)− bBk)f(A(y)·)‖Ls(Ek) ≤ ‖b(·)− bBk‖Lq(Bk)‖f(A(y)·)‖Lq1 (Bk). (5.4.3)

In second factor, on the right side of the inequality (5.4.3), a change of variables along

with Proposition 5.2.4 yields

‖f(A(y)·)‖Lq1 (Bk) = | detA−1(y)|1/q1
(∫

A(y)Bk

|f(x)|q1dx
)1/q1

� | detA−1(y)|1/q1|B(0, 2k‖A(y)‖)|1/q1

×
(

1

w(B(0, 2k‖A(y)‖))

∫
B(0,2k‖A(y)‖)

|f(x)|q1w(x)dx

)1/q1

�
(
| detA−1(y)|‖A(y)‖Q|Bk|

)1/q1

× w(‖A(y)‖Bk)
−1/q1‖f‖Lq1 (‖A(y)‖Bk;w). (5.4.4)

Similarly, the other factor on the right hand of the inequality (5.4.3), in view of

Proposition 5.2.4, gives

‖b(·)− bBk‖Lq(Bk) � |Bk|1/q‖b‖CṀOq(Hn;w). (5.4.5)

Inequalities (5.4.2–5.4.5) together yield

‖(b(·)− bBk)f(A(y)·)‖Lq2 (Ek;w)

� ‖b‖CṀOq(Hn;w)‖f‖Lq1 (‖A(y)‖Bk;w)

×
(
| detA−1(y)|‖A(y)‖Q

)1/q1 w(Bk)
1/q2

w(‖A(y)‖Bk)1/q1
.

Hence, we obtain the following estimate for I1 :

I1 � ‖b‖CṀOq(Hn;w)

∫
Hn

|Φ(y)|
|y|Qh

(
| detA−1(y)|‖A(y)‖Q

)1/q1

× w(Bk)
1/q2

w(‖A(y)‖Bk)1/q1
‖f‖Lq1 (‖A(y)‖Bk;w)dy
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Next, we fix to estimate I2, which is given by

I2 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥(b(A(y)·)− b‖A(y)‖Bk)f(A(y)·)
∥∥
Lq2 (Ek;w)

dy

Since s = q2r
′, therefore we infer from (5.4.2) that∥∥(b(A(y)·)− b‖A(y)‖Bk

)
f(A(y)·)

∥∥
Lq2 (Ek;w)

� |Bk|−1/sw(Bk)
1/q2‖(b(A(y)·)− b‖A(y)‖Bk)f(A(y)·)‖Ls(Ek). (5.4.6)

Applying the change of variables formula, Proposition 5.2.4 and Hölder’s inequality,

we have∥∥(b(A(y).)− b‖A(y)‖Bk)f(A(y).)
∥∥
Ls(Ek)

= | detA−1(y)|1/s
(∫

A(y)Bk

|(b(x)− b‖A(y)‖Bk)f(x)|sdx
)1/s

� | detA−1(y)|1/s|‖A(y)‖Bk|1/s

×
(

1

w(‖A(y)‖Bk)

∫
‖A(y)‖Bk

|(b(x)− b‖A(y)‖Bk)f(x)|sw(x)dx

)1/s

� | detA−1(y)|1/s|Bk|1/s‖A(y)‖Q1/sw(‖A(y)‖Bk)
−1/s

×
(∫
‖A(y)‖Bk

|b(x)− b‖A(y)‖Bk |
qw(x)dx

)1/q (∫
‖A(y)‖Bk

|f(x)|q1w(x)dx

)1/q1

� | detA−1(y)|1/s|Bk|1/s‖A(y)‖Q1/sw(‖A(y)‖Bk)
−1/q1

× ‖f‖Lq1 (‖A(y)‖Bk;w)‖b‖CṀOq(Hn;w). (5.4.7)

By virtue of (5.4.6) and (5.4.7), the expression for I2 assumes the following form:

I2 � ‖b‖CṀOq(Hn,w)

∫
Hn

|Φ(y)|
|y|Qh

(
| detA−1(y)|‖A(y)‖Q

)1/s

× w(Bk)
1/q2

w(‖A(y)‖Bk)1/q1
‖f‖Lq1 (‖A(y)‖Bk;w)dy.

Now, the estimation of I3, given by

I3 =

∫
Hn

|Φ(y)|
|y|Qh

‖f(A(y)·)‖Lq2 (Ek)|bBk − b‖A(y)‖Bk |dy,

requires the bounds for ‖f(A(y)·)‖Lq2 (Ek) and |bBk − b‖A(y)‖Bk |. First we consider

‖f(A(y)·)‖Lq2 (Ek,w). In view of the condition s = q2r
′, we use the Hölder’s inequality
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and the reverse Hölder condition to obtain

‖f(A(y)·)‖Lq2 (Ek,w) ≤
(∫

Bk

|f(A(y)x)|q2w(x)dx

)1/q2

≤
(∫

Bk

|f(A(y)x)|sdx
)1/s(∫

Bk

w(x)rdx

)1/rq2

� |Bk|−1/sw(Bk)
1/q2‖f(A(y)·)‖Ls(Bk). (5.4.8)

Furthermore, the condition 1/s = 1/q + 1/q1 and the inequality (5.4.4) help us to

write

‖f(A(y)·)‖Ls(Bk) = |Bk|1/q‖f(A(y)·)‖Lq1 (Bk)

� |Bk|1/s
(
| detA−1(y)|‖A(y)‖Q

)1/q1

× w(‖A(y)‖Bk)
−1/q1‖f‖Lq1 (‖A(y)‖Bk;w). (5.4.9)

We combine the inequalities (5.4.8) and (5.4.9) to substitute the result in the expres-

sion for I3, which now becomes

I3 �
∫
Hn

|Φ(y)|
|y|Qh

(
| detA−1(y)|‖A(y)‖Q

)1/q1

× w(B(0, 2k))1/q2

w(‖A(y)‖Bk))1/q1
‖f‖Lq1 (w(‖A(y)‖Bk),w) |bBk − b‖A(y)‖Bk |dy.

Now, it turns to bound |bBk − b‖A(y)‖Bk |. For this purpose, we split the integral as

below:

I3 �
∫
‖A(y)‖<1

|bBk − b‖A(y)‖Bk |Ψ(y)dy +

∫
‖A(y)‖≥1

|bBk − b‖A(y)‖Bk |Ψ(y)dy

= I31 + I32,

where, for the convenience’s sake, we used the following notation:

Ψ(y) =
|Φ(y)|
|y|Qh

(
| detA−1(y)|‖A(y)‖Q

)1/q1 w(B(0, 2k))1/q2

w(‖A(y)‖Bk))1/q1
‖f‖Lq1 (‖A(y)‖Bk;w).

Further decomposition of integral for I31 results in:

I31 =
∞∑
j=0

∫
2−j−1≤‖A(y)‖<2−j

Ψ(y)

{ j∑
i=1

|b2−iBk − b2−i+1Bk |+ |b2−jBk − b‖A(y)‖Bk |
}
dy.
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The first term inside the curly brackets can be approximated using Proposition 5.2.4,

that is

|b2−iBk − b2−i+1Bk |

≤ 1

|2−iBk|

∫
2−iBk

|b(y)− b2−i+1Bk |dy

≤ 1

w(2−iBk)

∫
2−iBk

|b(y)− b2−i+1Bk |w(y)dy

≤ 1

w(2−iBk)

(∫
2−i+1Bk

|b(y)− b2−i+1Bk |
qw(y)dy

) 1
q
(∫

2−i+1Bk

w(y)dy

)1/q′

≤ w(2−i+1Bk)

w(2−iBk)

(
1

w(2−i+1Bk)

∫
2−i+1Bk

|b(y)− b2−i+1Bk |
qw(y)dy

) 1
q

� ‖b‖CṀOq(Hn;w) .

Similarly, for second term inside the curly brackets in the expression of I31, we

have

|b2−jBk − b‖A(y)‖Bk | � ‖b‖CṀOq(Hn;w).

Therefore, we finish the estimation of I31 by writing

I31 � ‖b‖CṀOq(Hn;w)

∞∑
j=0

∫
2−j−1≤‖A(y)‖<2−j

Ψ(y)(j + 1)dy

� ‖b‖CṀOq(Hn;w)

∫
‖A(y)‖<1

Ψ(y)log
2

‖A(y)‖
dy.

In a similar fashion, the integral I32 gives us

I32 =

∫
‖A(y)‖≥1

Ψ(y)|bBk − b‖A(y)‖Bk |dy.

=
∞∑
j=0

∫
2j≤‖A(y)‖<2j+1

Ψ(y)
{ j∑

i=1

|b2iBk − b2i+1Bk |+ |b2j+1Bk − b‖A(y)‖Bk |
}
dy

� ‖b‖CṀOq(Hn;w)

∫
‖A(y)‖≥1

Ψ(y) log 2‖A(y)‖dy.

A combination of expressions for I1, I2, I31 and I32, gives∥∥T bΦ,Af∥∥Lq2 (Ek;w)

� ‖b‖CṀOq(Hn;w)

×
∫
Hn

|Φ(y)|
|y|Qh

(
| detA−1(y)|‖A(y)‖Q

)1/q1 (
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× w(B(0, 2k))1/q2

w(‖A(y)‖Bk))1/q1
‖f‖Lq1 (‖A(y)‖Bk;w) max

{
log

2

‖A(y)‖
, log(2‖A(y)‖)

}
dy.
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Keeping in view the definition of the Herz space, factors containing the index k

in the expression of Ψ(y) are important. Therefore, to proceed further and to avoid

repetition of unimportant factors relative to the Herz space, we have to modify and

rename the expression for Ψ. Hence, in the remaining of this paper we shall use the

following notation:

Ψ̃(y) =
|Φ(y)|
|y|Qh

(
| detA−1(y)|‖A(y)‖Q

)1/q1

×
(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
max

{
log

2

‖A(y)‖
, log 2‖A(y)‖

}
.

Then, ∥∥T bΦ,Af∥∥Lq2 (Ek;w)

≤ ‖b‖CṀOq(Hn;w)

∫
Hn

Ψ̃(y)
w(Bk)

1/q2

w(‖A(y)‖Bk)1/q1
‖f‖Lq1 (‖A(y)‖Bk;w)dy.

Finally, we take into consideration the definition of Herz space and employ the

Minkowski inequality to have

∥∥T bΦ,Af∥∥K̇α2,p
q2

(Hn;w)
=

{
∞∑

k=−∞

w(Bk)
α2p
Q

∥∥T bΦ,Af∥∥pLq2 (Ek;w)

}1/p

� ‖b‖CṀOq(Hn;w)

∫
Hn

Ψ̃(y)

×

{(
∞∑

k=−∞

w(Bk)
α2/Q+1/q2

w(‖A(y)‖Bk)1/q1
‖f‖Lq1 (‖A(y)‖Bk;w)

)p}1/p

dy.(5.4.10)

Comparing inequality (5.4.10) with the inequality (3.9) in [117], we found that the

term inside the curly brackets is same in both of these inequalities, the only differ-

ence lies in the integrands outside the curly brackets along with a constant multiple

‖b‖CṀOq(Hn;w) outside the integral. Therefore, the inequality (5.4.10) can be written

as: ∥∥T bΦ,Af∥∥K̇α2,p
q2

(Hn;w)

� ‖b‖CṀOq(Hn;w)

∞∑
j=−∞

∫
2j−1<‖A(y)‖≤2j

Ψ̃(y)

×

{
∞∑

k=−∞

[(
w(Bk)

w(Bk+j)

)α1/Q+1/q1

×
j∑

l=−∞

(w(Bk+j)

w(Bk+l)

)α1/Q

w(Bk+l)
α1/Q‖f‖Lq1 (Ek+l;w)

]p}1/p

dy, (5.4.11)
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where the condition α1/Q + 1/q1 = α2/Q + 1/q2 is utilized in obtaining the last

inequality.

Under the stated condition that α1 < 0 and l ≤ j, we use Proposition 5.2.3 to

have (w(Bk+j)

w(Bk+l)

)α1/Q

�
( |Bk+j|
|Bk+l|

)α1(δ−1)/(Qδ)

= 2(j−l)α1(δ−1)/δ. (5.4.12)

for any 1 < δ < rw.

In view of Proposition 5.2.3, if α1/Q+ 1/q1 ≥ 0, then

(
w(Bk)

w(Bk+j)

)α1/Q+1/q1

�

2−jQ(α1/Q+1/q1), if j ≤ 0,

2−jQ(α1/Q+1/q1)(δ−1)/δ, if j > 0,
(5.4.13)

and if α1/Q+ 1/q1 < 0, then

(
w(Bk)

w(Bk+j)

)α1/Q+1/q1

�

2jQ(α1/Q+1/q1)(δ−1)/δ, if j ≤ 0,

2jQ(α1/Q+1/q1), if j > 0,
(5.4.14)

for any 1 < δ < rw.

Thus, for α1/Q + 1/q1 ≥ 0, from inequalities (5.4.11–5.4.13), for any 1 < δ < rw,

we have∥∥T bΦ,Af∥∥K̇α2,p
q2

(Hn;w)

� ‖b‖CṀOq(Hn;w)

0∑
j=−∞

∫
2j−1<‖A(y)‖≤2j

Ψ̃(y)‖A(y)‖−α1−Q/q1

×
j∑

l=−∞

2α1(j−l)(δ−1)/δ

{
∞∑

k=−∞

w(Bk+l)
α1p/Q‖f‖pLq1 (Ek+l;w)

}1/p

dy

+ ‖b‖CṀOq(Hn;w)

∞∑
j=1

∫
2j−1<‖A(y)‖≤2j

Ψ̃(y)‖A(y)‖(α1+Q/q1)(δ−1)/δ

×
j∑

l=−∞

2α1(j−l)(δ−1)/δ

{
∞∑

k=−∞

w(Bk+l)
α1p/Q‖f‖pLq1 (Ek+l;w)

}1/p

dy.
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Replacing Ψ̃(y) with its value in the above inequality, we get∥∥T bΦ,Af∥∥K̇α2,p
q2

(Hn;w)

� ‖b‖CṀOq(Hn;w)‖f‖K̇α1,p
q1

(Hn;w)

×

{∫
‖A(y)‖<1

|Φ(y)|
|y|Qh

(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× | detA−1(y)|1/q1‖A(y)‖−α1 log

2

‖A(y)‖
dy

+

∫
‖A(y)‖≥1

|Φ(y)|
|y|Qh

(
1 + | detA−1(y)|1/q‖A(y)‖Q/q

)
× | detA−1(y)|1/q1‖A(y)‖Q/q1−(α1+Q/q1)(δ−1)/δ log(2‖A(y)‖)dy

}
.

This completes the proof of Theorem 5.4.1(i).

Similarly, when α1/Q + 1/q1 < 0, by using inequalities (5.4.11), (5.4.12) and

(5.4.14), the second part of Theorem 5.4.1 can be proved easily. Hence, we complete

the proof of Theorem 5.4.1.

5.4.3 Proof of Theorem 5.4.2

Following the proof of Theorem 5.4.1, we write:∥∥T bΦ,A∥∥Lq2 (Ek;v)
≤ J1 + J2 + J3,

where J1, J2, and J3 are as I1, I2, and I3 in the previous theorem with w(·) is replaced

by v(·) = | · |αh . Then by using the Hölder inequality and change of variables, we obtain

J1 ≤
∫
Hn

|Φ(y)|
|y|Qh

(∫
Ek

|b(x)− bBk |qv(x)dx
)1/q(∫

Ek

|f(A(y)x)|q1v(x)dx
)1/q1

dy

≤ v(Bk)
1/q‖b‖CṀOq(Hn;v)

×
∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q1
(∫

A(y)Ek

|f(z)|q1v(A−1(y)z)dz
)1/q1

dy.
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Using Proposition 5.2.9, we get

J1 ≤ v(Bk)
1/q‖b‖CṀOq(Hn;v)

∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q1

×

(∫
A(y)Ek

|f(x)|q1G
(
A−1(y), β/q1

)
v(x)dx

)1/q1

dy

≤ v(Bk)
1/q‖b‖CṀOq(Hn;v)

×
∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q1G
(
A−1(y), β/q1

)
‖f‖Lq1 (‖A(y)‖Ek;v)dy.

Next, the expression for J2 can be written as:

J2 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥(b(A(y)·)− b‖A(y)‖Bk)f(A(y)·)
∥∥
Lq2 (Ek;v)

dy. (5.4.15)

Changing variables and using the condition q2/q + q2/q1 = 1, we get∥∥∥(b(A(y)x)− b‖A(y)‖Bk)(f(A(y).))
∥∥∥
Lq2 (Ek;v)

=

(∫
Ek

∣∣(b(A(y)x)− b‖A(y)‖Bk)f(A(y)x)
∣∣q2 v(x)dx

)1/q2

= | detA−1(y)|1/q2G
(
A−1(y), β/q2

)
×

(∫
A(y)Ek

∣∣(b(x)− b‖A(y)‖Bk)f(x)
∣∣q2 v(x)dx

)1/q2

≤ | detA−1(y)|1/q2G
(
A−1(y), β/q2

)
×

(∫
‖A(y)‖Bk

∣∣b(x)− b‖A(y)‖Bk
∣∣q v(x)dx

)1/q(∫
A(y)Ek

|f(x)|q1 v(x)dx

)1/q1

= | detA−1(y)|1/q2G
(
A−1(y), β/q2

)
× v(‖A(y)‖Bk)

1/q‖b‖CṀOq(Hn;v)‖f‖Lq1 (A(y)Ek;v). (5.4.16)

It is easy to see that v(‖A(y)‖Bk) = ‖A(y)‖Q+βv(Bk). Using property (5.2.5) and

(5.4.16), the inequality (5.4.15) becomes:

J2 = v(Bk)
1/q‖b‖CṀOq(Hn;v)

∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q2

×G
(
A−1(y), β/q

)
G
(
A−1(y), β/q1

)
‖A(y)‖(Q+β)/q‖f‖Lq1 (A(y)Ek;v)dy.
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It remains to estimates J3. A change of variables following the Hölder inequality

and Proposition 5.2.9 gives us

J3 =

∫
Hn

|Φ(y)|
|y|Qh

∥∥∥(bBk − b‖A(y)‖Bk)f(A(y)·)
∥∥∥
Lq2 (Ek;v)

dy

=

∫
Hn

|Φ(y)|
|y|Qh

‖f(A(y)x)‖Lq2 (Ek;v)

∣∣bBk − b‖A(y)‖Bk
∣∣ dy

≤
∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q2G
(
A−1(y), β/q2

)
× v(‖A(y)‖Bk)

1/q‖f‖Lq1 (A(y)Ek;v)

∣∣bBk − b‖A(y)‖Bk
∣∣ dy

Next, if ‖A(y)‖ < 1, then there exists an integer j ≥ 0, such that

2−j−1 ≤ ‖A(y)‖ < 2−j.

Therefore,

∣∣bBk − b‖A(y)‖Bk
∣∣ ≤ j∑

i=1

|b2−iBk − b2−i+1Bk |+ |b2−jBk − bA(y)Bk |

≤ ‖b‖CṀOq(Hn;v) log
2

‖A(y)‖
.

Similarly, for ‖A(y)‖ ≥ 1, we have∣∣bBk − b‖A(y)‖Bk
∣∣ ≤ ‖b‖CṀOq(Hn;v) log 2‖A(y)‖.

Hence

J3 � v(Bk)
1/q‖b‖CṀOq(Hn;v)

×
∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q1G
(
A−1(y), β/q2

)
G
(
A−1(y), β/q

)
‖A(y)‖(Q+β)/q

×

(
log

2

‖A(y)‖
χ{‖A(y)‖<1} + log 2‖A(y)‖χ{‖A(y)‖≥1}

)
‖f‖Lq1 (A(y)Ek;v)dy.

Thus combining J1, J2 and J3, we get

‖T bΦ,A‖Lq2 (Ek;v)

� v(Bk)
1/q‖b‖CṀOq(Hn;v)

∫
Hn

|Φ(y)|
|y|Qh

| detA−1(y)|1/q1

×G
(
A−1(y), β/q1

)(
1 + | detA−1(y)|1/qG

(
A−1(y), β/q

)
‖A(y)‖(Q+β)/q

)
×

(
log

2

‖A(y)‖
χ{‖A(y)‖<1} + log 2‖A(y)‖χ{‖A(y)‖≥1}

)
‖f‖Lq1 (A(y)Ek;v)dy.(5.4.17)
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For the approximation of ‖f(·)‖Lq(A(y)Ck), we consider the method used in [117].

Hence, the definition of Ek and (5.2.2) implies that

A(y)Ek ⊂ {x : ‖A−1(y)‖−12k−1 < |x|h < ‖A(y)‖2k}.

Now, there exists an integer l such that for any y ∈ supp(Φ), we have

2l < ‖A−1(y)‖−1 < 2l+1. (5.4.18)

Finally, the inequality ‖A−1(y)‖−1 ≤ ‖A(y)‖ implies that there exists a non-negative

integer m satisfying:

2l+m < ‖A(y)‖ < 2l+m+1. (5.4.19)

We infer from (5.4.18) and (5.4.19) that:

log2(‖A(y)‖‖A−1(y)‖/2) < m < log2(2‖A(y‖‖A−1(y))‖).

Therefore,

A(y)Ek ⊂ {x : 2l+k−1 < |x|h < 2k+l+m+1}.

Hence,

‖f‖Lq1 (A(y)Ek;v) ≤
l+m+1∑
j=l

‖f‖Lq1 (Ek+j ;v). (5.4.20)

Incorporating the inequality (5.4.20) into (5.4.17), we obtain

‖T bΦ,A‖Lq2 (Ek;v) ≤ v(Bk)
1/q‖b‖CṀOq(Hn;v)

∫
Hn

Θ(y)
l+m+1∑
j=l

‖f‖Lq1 (Ek+j ;v)dy, (5.4.21)

where

Θ(y) =
|Φ(y)|
|y|Qh

| detA−1(y)|1/q1
(

log
2

‖A(y)‖
χ{‖A(y)‖<1} + log 2‖A(y)‖χ{‖A(y)‖≥1}

)

×G
(
A−1(y), β/q1

)(
1 + | detA−1(y)|1/qG

(
A−1(y), β/q

)
‖A(y)‖(Q+β)/q

)
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Using the Minkowski inequality and the condition 1/q + α2/Q = α1/Q, yield∥∥T bΦ,A∥∥K̇α2,p
q2

(Hn;v)

� ‖b‖CṀOq(Hn;v)

×

{
∞∑

k=−∞

(
v(Bk)

1/q+α2/Q

∫
Hn

Θ(y)
l+m+1∑
j=l

‖f‖Lq1 (Ek+j ;v)dy

)p}1/p

� ‖b‖CṀOq(Hn;v)

×
∫
Hn

Θ(y)
l+m+1∑
j=l

v(B−j)
α1/Q

{
∞∑

k=−∞

(
v(Bk+j)

α1/Q‖f‖Lq1 (Ek+j ;v)

)p}1/p

dy

� ‖b‖CṀOq(Hn;v)‖f‖K̇α1,p
q1

(Hn;v)

∫
Hn

Θ(y)
l+m+1∑
j=l

v(B−j)
α1/Qdy.

It is easy to see that

l+m+1∑
j=l

v(B−j)
α1/Q '

l+m+1∑
j=l

2−jα1(Q+β)/Q.

Next, for α1 = 0,

l+m+1∑
j=l

2−jα1(Q+β)/Q = m+ 2 � 1 + log2

(
‖A−1(y)‖‖A(y)‖

)
,

and for α1 6= 0,

l+m+1∑
j=l

2−jα1(Q+β)/Q ' 2−lα1(Q+β)/Q

�

‖A−1(y)‖α1(Q+β)/Q, if α1 > 0,

‖A(y)‖−α1(Q+β)/Q, if α1 < 0,

= G
(
A−1(y), α1(Q+ β)/Q

)
.

Therefore,

‖T bΦ,A‖K̇α2,p
q2

(Hn;v)

� ‖b‖CṀOq(Hn;v)‖f‖K̇α1,p
q1

(Hn;v)

×


∫
Hn Θ(y) (1 + log2 (‖A−1(y)‖‖A(y)‖)) dy, if α1 = 0,∫
Hn Θ(y)G

(
A−1(y), α1(Q+ β)/Q

)
dy, if α1 6= 0.

= K3‖b‖CṀOq(Hn;v)‖f‖K̇α1,p
q1

(Hn;v).
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Thus we complete the proof of Theorem 5.4.2.
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[92] E. Liflyand and F. Mórecz, Commuting relations for Hausdorff operators and

Hilbert tranforms on real Hardy spaces, Acta Math. Hungar. 97 (2002), 133-143.

[93] J. Li and M. Wang, Boundedness of Hausdorff operators on Triebel-Lizorkin-type

spaces, Appl. Math. J. Chinese Uni. (Ser. A) 27 (2012), 465-471.

[94] W. Li, T. Zhang and L. Xue, Two-weight inequalities for the Hardy operator

and commutators, J. Math. Inequal. 9 (2015), 653-664.



bibliography 93

[95] Y. Lin, Z. Liu and M. Song, Lipschitz estimates for commutators of singular

integral operators on weighted Herz spaces, Jordan J. Math. Stat. 3 (2010) 53-

64.

[96] X. Lin and L. Sun, Some estimates on the Hausdorff operator, Acta Sci.

Math.(Szeged) 78 (2012), 669-681.

[97] M.J. Liu and S.Z. Lu, The continuity of some operators on Herz-type Hardy

spaces on the Heisenberg group, Taiwanese J. Math. 16 (2012), 151-164.

[98] S. Lu, D. Yang, Multiplier theorems for Herz type Hardy spaces, Proc. Amer.

Math. Soc., 126 (1998), 3337-3346.

[99] S. Lu and D. Yang, The central BMO space and Littlewood operators, Approx.

theory Appl. 11 (1995), 72-94.

[100] S. Lu and D. Yang, Herz-type Sobolev and Bessel potential spaces and their

applications, Sci. China Ser. A 40 (1997), 113-129.

[101] S. Lu, D. Yang and G. Hu, Herz Type Spaces and Their Application, Science

Press-Beijing, China, 2008.

[102] A.R. Mirotin, Boundedness of Hausdorff operators on real Hardy spaces H1 over

locally compact groups, J. Inequal. Appl., 2019, 473, 519-533.

[103] A. R. Mirotin, Addendum to ”Boundedness of Hausdorff operators on real Hardy

spaces H1 over locally compact groups” [J. Math. Anal. Appl. 473 (2019), 519-

533], J. Math. Anal. Appl. 479 (2019), 872-874.

[104] A.R. Mirotin, On the description of multidimensional normal Hausdorff opera-

tors on Lebesgue spaces, Forum Math. 2019; aop, doi.org/10.1515/forum-2019-

0097.

[105] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations,

Trans. Amer. Math. Soc. 43 (1938), 126-166.

[106] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,

Trans. Amer. Math. soc. 165 (1972), 207-226.

[107] M. Paluszynski, Characterization of Besov spaces via the commutator operator

of Coifman, Rochberg and Weiss, Ind. Univ. Math. J. 44 (1995), 1-18.



94 Weighted Estimates

[108] R.E. Powell, S.M. Shah, Summability theory and its applications, Van Nostrand

Reinhold Co. , London, (1972).

[109] M.A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal.,

71 (2009), e1909-e1914.

[110] Z.X. Ren and S.P Tao, Boundedness of higher order commutators of n-

dimensional fractional Hausdorff operators, J. Jilin Uni. (ScienceEdition) 51,

2013, 1-8.

[111] Z.X. Ren and S.P. Tao, Weighted estimates for commutators of n−dimensional

rough Hardy operators, J. Function Spaces Appl. 2013 Article ID 568202, 13

pages.

[112] J. Ruan and D. Fan, Hausdorff operators on the power weighted Hardy spaces,

J. Math. Anal. Appl. 433 (2016), 31-48.

[113] J. Ruan and D. Fan, Hausdorff type operators on the power weighted Hardy

spaces Hp
|.|α(Rn), Math. Nachr. 290 (2017), 2388-2400.

[114] J. Ruan and D. Fan, Hausdorff operators on the weighted Herz-type Hardy

spaces, Math. Inequal. Appl. 19 (2016), 565-587.

[115] J. Ruan, D. Fan and H. Li, Hausdorff operators on Morrey spaces and Cam-

panato spaces, Czech. Math. J. (2019)

[116] J. Ruan, D. Fan and Q.Y. Wu, Weighted Morrey estimates for Hausdorff oper-

ator and its commutator on the Heisenberg group, Math. Inequal. Appl. (2019),

22, 307-329.

[117] J. Ruan and D. Fan and Q.Y. Wu, Weighted Herz space estimates for the Haus-

dorff operators on the Heisenberg group, Banach J. Math. Anal. 11 (2017), 513-

535.

[118] A. G. Siskakis, Composition operators and Cesàro operator on Hp, J. London
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