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Preface 

Many non-linear materials (polymers, blood, sauce, drilling muds, sugar solutions, colloidal 

suspensions, shampoos, lubricants etc) deviates Newtonian’s law of viscosity. The 

significance of topic can be perceived by its numerous industrial and engineering applications 

such as petroleum reservoirs, pharmaceutical industries, ceramics, polymer processing, 

metallurgy and many others. The fluids in all such applications are single type. Therefore 

viscous and non-Newtonian models like Sisko, Williamson and second grade materials are 

adopted here. Nanoliquid is further formed by adding nano-dimensions of tiny particles in 

traditional liquids. It remarkably intensifies low thermal efficiency of materials. It can be 

utilized in both non-Newtonian and viscous materials. Nanoparticles comprising of carbides, 

semiconductors, metals, oxides ceramics, CNTs and many other composites are submerged in 

traditional liquids like engine oil, water, kerosene oil and ethylene glycol to improve heat 

transport capability. Nanoliquids are extensively utilized in nanotechnologies such as atomic 

force microscope, conductive plastic, gas storing, nuclear power magnifying lens, 

electromechanical devices and industrial cooling applications. Hybrid nanoliquids consist of 

more than one type of nanoparticles. Novel concept of hybrid nanofluid greatly motivated the 

researchers due to its better thermal feature, excellent stability and physical strength. 

Therefore main emphasis here to given to inspect the flows of nano and hybrid nanoliquids 

by stretching boundaries. Phenomenon of heat transport is characterized via various 

mechanisms. Concept of thermodynamic second law is utilized for entropy production. 

Thus intension here is to develop mathematical modelling for flows of nano and hybrid 

nanomaterials using various nanoparticles. The problems are addressed by preserving natural 

aspects intact and then tackled via different techniques. The chapter wise arrangement of this 

thesis is as follows.  

Chapter one consists the expressions for fundamental laws and literature review. 

Mathematical development of Sisko, Williamson, second grade and Buongiorno models are 

addressed. Basic concept regarding the solution techniques is provided.  

Chapter two explores the consequences of nanoparticles on three-dimensional mixed 

convention flow of Sisko fluid over a stretched surface. Salient aspects of thermophoresis and 

Brownian motion are addressed. Convective conditions are imposed at the boundary. 

Boundary layer concept is utilized for mathematical modelling. Homotopic technique is 
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implemented for solutions convergence. Graphs of embedded variables on velocity, 

temperature and concentration are deliberated. Finally heat and mass transfer rates are also 

studied. Findings of this chapter are reported in International Journal of Mechanical 

Sciences, 133 (2017) 273-282.  

Chapter three communicates the chemical reaction and double stratification in MHD 

stagnation point flow of Williamson nanoliquid towards a stretched sheet. Flow is generated 

due to non-linear stretching sheet of variable thickness. Non-uniform magnetic filed is 

implemented in transverse direction. Aspects of Brownian motion, radiation, thermophoresis 

and viscous dissipation are addressed. Additionally chemical reaction is present. Relevant 

mathematical formulations are made through boundary layer concept. Homotopic technique 

is implemented for the solutions procedure. Rate of heat transfer is estimated. Research of 

this chapter is published in Radiation Physics and Chemistry, 152 (2018) 151–157. 

The aim of chapter four is in fourfolds. Firstly to formulate magnetized nanomaterials 

squeezed flow of viscoelastic (second grade) fluid between two parallel disks. Such 

consideration has relevance in industrial and biomedical utilizations like spintronic devices, 

catalysis and MEMS etc. Secondly to scrutinize nonlinear thermal radiation for heat transfer 

analysis. Flows through such consideration are useful in numerous processes like nuclear 

plants, combustion chambers and solar power technology. Thirdly, the novel chemical 

species model which elaborates activation energy impact. Activation energy describes least 

energy required through chemical shape with potential reactants to develop a chemical 

reaction. Fourth to compute solutions for nonlinear problems utilizing homotopic scheme. 

Graphical and tabular outcomes are portrayed and elaborated in detail for involved variables. 

The data of this research is publication in Journal of Heat Transfer, 142(2020) 082501.  

Chapter five addresses the comparative analysis for radiated flow of nano and hybrid 

nanomaterials by stretchable disk. Both thermal and velocity slips are considered. Water 

based liquid containing Aluminum alloy ( 7072 7075)AA A−  nanoparticles is considered. 

Further exponential heat source is present. Transformations are implemented for conversion 

of PDEs into ODEs. Non-linear problems are treated through NDSolve scheme. Features of 

sundry variables for both nano and hybrid nano phases are computed and discussed. Major 

outcomes are listed in conclusions. The contents of this research are published in Physica 

Scripta, 94 (2019) 125708. 



iii 
 

Chapter six discusses the nonlinear radiative flow of ethylene-glycol based CNTs suspended 

in Darcy-Forhheimer porous medium. Xue model is implemented for the transportation of 

nanomaterials. Ethylene-glycol (EG) is used as a base liquid. The characteristics of 

nanoparticles volume fraction have been considered. A concise depiction about the entropy of 

system is presented. Implementation of suitable variables yields dimensionless system. 

Numerical scheme is employed in order to solve the nonlinear systems. The behaviours of 

many regulatory flow variables are explained through plots. In addition, the variation of some 

valuable engineering quantities is interpreted via tabulated values. The results of this chapter 

are accepted in Journal of Non-Equilibrium Thermodynamics. 

Chapter seven is generalized version of chapter six in view of hybridization of CNTS. Thus 

this chapter explicitly provides the comparative analysis for two different types of nanofluids 

namely regular nanofluid (SWCNT/engine oil) and hybrid nanofluids (SWCNT-

MWCNT/engine oil) past a stretching cylinder. Xue model is modified for the modeling of 

hybrid nanofluid. Effects of melting, viscous dissipation and radiation are studied. To 

overcome the level of entropy production in a system and irreversibility arising due to 

pressure drop, mixing and heat transfer, an entropy number is utilized. Dimensionless 

variables convert the partial differential systems to ordinary one. The reduced systems are 

then solved numerically by means of NDSolve approach. Graphical analysis is made to 

visualize the physical characteristics of interesting variables. Moreover analysis of various 

parameters at surface in terms of skin friction and Nusselt number is also provided. Finding 

of this chapter is accepted in Modern Physics Letters B. 

Main emphasis in chapter eight is to differentiate the heat transportation rate in hybrid 

nanofluid (SWCNT-MWCNT/kerosene oil) and regular nanofluid (SWCNT/kerosene oil) 

suspended in Darcy-Forchheimer porous space. Whole system is in a rotating frame. Entropy 

analysis is incorporated. Energy equation is modelled via heat source, convective condition 

and dissipation. Obtained non-linear systems are tackled by employing numerical approach 

(NDSolve shooting technique). The physical features of various sundry variables for both 

types of nanomaterials are depicted graphically and via table. It is noteworthy to point out 

that analytical model of hybrid nanoliquid is novel achievement of available models based on 

single-nanoparticles. With great confidence this modified Xue model can be used to assess 

the heat transport and flow of hybrid nanomaterials in any configuration. The outcomes 

achieved in this study are important in industrial research, academics and discussion about 

entropy analysis for flow of two types of nanoliquids by keeping the regular fluid fixed. The 
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outcomes of current chapter are accepted for publication in Journal of Thermal Analysis 

and Calorimetry. 
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Chapter 1

Background and some basic laws

1.1 Introduction

Review of some basic studies related to entropy, nano‡uids, hybrid nano‡uids, non-Newtonian

‡uid, thermal radiation and Darcy’s law is incorporated in this chapter. Fundamental laws

important for modeling momentum, concentration and energy expressions are also addressed.

Mathematical modeling associated to viscous, Sisko, Williamson and second grade liquids are

described for better understanding of upcoming chapters. Final section describes the analyt-

ical and numerical techniques which are being implemented for solving the governing systems

considered here.

1.2 Background

Generally in any thermal process the amount of energy and quality are two main factors. The

quantity of energy during heat exchange process can be seen by a tool know as entropy which

was given by second law of thermodynamics. As stated by second law, amount of energy will

be lost during conversion of energy which consequently reduces the e¢ciency of any thermal

system. Such loss of energy enhances with the entropy production. In order to rise the capability

of the system, we have to lower the production of energy. Therefore minimization of entropy

production is important and is useful for the optimization of engineering tools to get high energy

capability [1-3]. Entropy generation explores the importance of irreversible factors concerned
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with friction, heat transfer and other non ideal processes inside a system. It is utilized to …nd

out the upper limits for conductance of several engineering systems like refrigerators, internal

combustion engines and chemical reactors. Few recent uses of entropy are solar energy collectors,

cooling of new electronic systems, nuclear fuel rods cooling, slurry systems, solar heat exchangers

in pseudo-optimization process, heat waste from steam pipes and nuclear swirl electromagnetic

propulsion etc. Keeping in perspective the consequence of entropy production, many theoretical

as well as experimental interrogation for entropy production are accomplished by numerous

researchers. The problem of entropy generation in a ‡uid ‡ow past a ‡at plate was investigated

by Reveillere and Baytas [4]. Rashidi et al. [5] studied entropy analysis in MHD ‡ow. They

used numerical scheme for the problem. Survey of Entropy production in hydromagnetic slip

‡ow with injection/suction was discussed by Ibanez [6]. He concluded that degradation of

entropy can be accomplished by proper physical and geometrical variables. Jian [7] explored

the entropy generation and hydromagnetic ‡ow for micro-parallel channel. Butt et al. [8]

explored the entropy generation in Blasius ‡ow subject to radiative heat ‡ux. Mustafa et al.

[9] disclosed the radiation impact on B¨odewadt ‡ow with entropy analysis. Hayat et al. [10]

disclosed entropy generation features in MHD dissipative ‡ow due to rotating disk. Khan et

al. [11] examined irreversibility analysis in Williamson nanomaterials ‡ow in presence of Joule

heating. Currently Ganesh et al. [12] numerically treated the problem of slip by considering

irreversibility analysis.

The traditional heat transport liquids such as ethylene glycol, water, propylene glycol and

oil are crucial for various kinds of industrial purposes which cover considerable zones of ‡uid

dynamics and heat transport. However the performance of these liquids are too much poor al-

though they are utilized in various applications. But the saving energy, management of energy

and obtaining higher e¢ciency are of very important. Advancements in electronics impor-

tantly the integration and miniaturization of latest electronic gadgets demand for long term

operation, reliability and improved e¢ciency. Therefore Choi [13] presented the concept of

nanoliquid. Here nanomaterials is formed by adding nano-dimensions of tiny particles in base

liquid. This commencing experimental work noticed thermal conductivity increment of nano-

liquid. Eastman et al. [14] indicated that a small quantity (volume fraction 1%) of carbon

nanotubes or Cu nanoparticles dispersed in ethylene glycol or oil peculiarly improved the ther-
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mal conductivity of regular liquid by (40%) and (50%) respectively. Impurities, corrosion and

pressure drop are signi…cantly reduced due to small size of nanoparticles. Furthermore stabil-

ity of nanomaterials is remarkably improved versus sedimentation [15 ¡ 16]. Thus nano‡uids

are confessed more e¤ectual in nano/micro heat exchangers, latest cooling systems, large scale

systems thermal management through evaporators, electromechanical gadgets and industrial

cooling uses. Nanomaterials are also used as a barrier to gasses. This avoid the foods from

dry out or spoiling. Few recent studies related to nanomaterials are [17 ¡ 27]. Materials of

nanoscal have attracted worldwide consideration in ongoing technology since the exploration of

carbon nanotubes by Iijima in (1991). CNTs are allotropes of atoms consists of pure carbon

that are thin, long and hexagonal nano-structure that have been shaped into cylinder. CNTs

can be put into two classes i.e SWCNTs and MWCNTs. For the nanomaterials shape of the

nanoparticles is very important. In view of heat transport, cylindrical shaped nanoparticles

(nanotubes) is very e¢cient than the other particles like blade, bricks, spherical etc. These ma-

terials have variety of uses in optics, atomic force microscope, gas storing, extra strong …bers,

basic composite materials, display of …eld emission, nuclear power magnifying lens, exhibition

of ‡at-panel, antifouling shade, conductive plastic and many more. CNTs are additionally uti-

lized as electrical contacts, warming source, high temperature refractories, biosensor in medical

gadgets. In daily life the CNTs can be used as antennas for radios and some other important

electromagnetic gadgets. Moreover CNTs don’t have any danger to the environment because

of carbon chain. In this regard Xue [28] presented the model for transportation of nanoma-

terials based on thermal conductivity. Wang et al. [29] examined aspect of pressure drop in

nanoliquid consisting CNTs. Hayat et al. [30] studied Newtonian heating impact in stagnation

point ‡ow by considering CNTs. MHD ‡ow of nanomaterials with CNTs dispersed in a salt

water mixture was discussed by Ellahi et al. [31]. Imtiaz et al. [32] analytically treated the

problem of convective and radiative ‡ow of nanoliquid by adding CNTs. Farooq et al. [33]

discussed the CNTs liquid model describing the peristalsis in a curved channel. Kumar et al.

[34] investigated water based CNTs nanoliquid ‡ow with quartic chemical reaction.

In all above mentioned studies, the researchers have discussed the features of nanomaterials

which consists of just single type of nanoparticles in base liquid. No doubt these nano‡uids

have better rheological features and thermal performance but they do not have all the intended
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properties that scientist needed. Some nanoparticles like silver, copper etc possess high thermal

conductivities but these particles are unstable and chemically reactive. Lately, growing analysis

has inaugurated the aspect of hybrid nano‡uids. Hybrid nanomaterials are basically the addi-

tion of more than one kind of nanoparticles to the regular liquid. Basic purpose of hybridizing

nanoparticles is to achieve higher heat transfer and thermos-physical features. They have good

thermal features or rheological characteristics in comparison with single particle nanoliquid.

These two useful features of hybrid nanomaterials make them highly desirable because it re-

duced the cost of heat exchange devices by enhancing its e¤ectiveness. Thereafter various

scientists studied ‡ow analysis by incorporating hybrid nanomaterials in order to achieved ex-

cellent stability as well as better thermal conductivity. Although larger size of nanoparticles

augments the density and viscosity compared to regular liquids. Furthermore it also forces

sedimentation of particle which cause undesired aggravate the homogeneity and pressure drops

[35]. Therefore it is very important to decide which type of based liquids and nanoparticles

to be used [36 ¡ 38]. There are several ingredients that are related to the properties of hy-

brid nanomaterials like viscosity, stability, liquid temperature, purity of nanoparticles, shape

and size of nanoparticles, compatibility, preparation method, dispersion techniques that corre-

spond to nano‡uid harmonious mixture. Numerous investigators have remarked a tremendous

improvement in density and viscosity by utilizing hybrid nanomaterials which are the major

factor related to thermal utilizations. Suresh et al. [39] explored the characteristics of pressure

drop and turbulent transportation of heat in Al2O3-Cu/water hybrid liquid. Harandi et al.

[40] developed hybrid nanoliquid by hybridizing Fe3O4 and FMWCNTs in ethylene glycol for

enhancing the thermal features of regular liquid. They concluded that thermal conductivity of

nanomaterials augmented by 30% comparative to base liquid by taking volume fraction of 23%.

Ghadikolaei et al. [41] discussed the behavior of hybrid nanoparticles (TiO2–Cu) suspended

in water base liquid. Rostamia et al. [42] …nd the dual solution for stagnation point ‡ow of

silica/alumina hybrid nanoliquid. They provided the comparative analysis of nano‡uid and

hybrid nano‡uid and concluded that hybrid nano‡uid has higher rate of transfer then ordinary

one.

Numerous liquids (biological, industrial) like lubricating greases, printer inks, fruit juices,

polymers, gypsum pastes, ceramics, blood, multi-grade oils and paints do not follow the tra-
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ditional Newton’s viscosity relation. Such liquids constantly alter their viscosities subject to

shear stress application are identi…ed as non-Newtonian materials. All such liquids have distinct

thermal and physical features. Hence, it is impossible to elaborate all such liquids employing a

solitary mathematical relation in comparison to Newtonian liquids [43 44]. Thus several mod-

els for non-Newtonian liquid have been addressed. The adopted model (second grade liquid)

falls in the category of di¤erential type liquids. This model comprises both elastic and viscous

properties [45]. It has signi…cant utilization in industrial, technological and chemical like die

swell, electronic devices, solar energy collectors, cooling of polymer …lms and many more. In

addition this model accompanied magnetic attribute is extensive in biomedical area i.e wound

treatment, heat removal processes, tumors elimination etc. Few researches reported recently

are given through [46 ¡ 49] and numerous studies therein. Sisko [50] liquid model is one the

most signi…cant non-Newtonian liquid. This model speci…es both dilatant and psedoplastic

liquids depending on their shear thickening and shear thinning features. It can be regard more

generalized form of power law model. It covers both power law and viscous models. Abelman

et al. [51] analyzed the ‡ow of Sisko liquid originated by a suddenly moved plate. The aspects

of suction/injection on Sisko liquid is discussed by Hayat et al. [52] Flow of Sisko liquid over a

stretched surface is explored by Munir et al. [53]. Khan and Malik [54] analyzed the Sisko nano-

materials ‡ow in the existence of variable aspects. Magnetizable Sisko nanoliquid is elaborated

by Hayat et al. [55]. The Williamson liquid model [56] is another important non-Newtonian

model capable to describes the feature of viscoelastic material. It also elaborates the attribute

of various pseu-doplastic materials. It has the liability to exhibits the behavior of various phys-

iological and biophysical materials having shear-thinning characteristics like polymer, blood,

melts, paints and gastro-intestinal [57]. In light of aforementioned applications, not much has

been discussed related to this liquid model. Some attempts of researchers are [58¡ 60].

Heat transportation via thermal radiation aspect has utilizations in numerous technological

activities comprising aircraft, satellites, glass production, gas turbines and numerous propulsion

mechanisms for space vehicles, aircraft, missiles and satellites. No doubt linear type of ther-

mal radiation is not e¤ective for higher temperature gap as the non-dimensional variable that

is utilized in linearized Rosseland estimation yields e¤ective Prandtl number [61] however in

nonlinear estimation, the modeled problem is managed through three factors like temperature
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ratio variable, Prandtl number and radiation variable. Pantokratoras [62] initially introduced

nonlinear radiative ‡ux concept for mixed convective viscous material ‡ow. Cortell [63] elabo-

rated thermal radiation impact in laminar viscous liquid ‡ow via moving surface. Analysis of

nonlinear radiated mixed convective Walter-B nanoliquid ‡ow by heated surface is modeled by

Khan et al. [64]. Irfan et al. [65] reported variable conductivity impact in chemically reactive

Carreau liquid ‡ow considering revised Fourier modeling.

Numerous environmental and industrial processes comprising …brous insulation, catalytic

reactors, geothermal energy systems, geophysics, crude oils production and design of heat ex-

changer involve ‡ows via porous space. Porous space in the area of biomechanical is very

signi…cant in the procedure for the small blood vessel movement, kidneys, gallbladder with

stones, lungs, tissues in the body like bone, cartilage, muscle etc. Darcy’s law is valid for

smaller velocity and low porosity conditions and becomes insu¢cient in engineering and in-

dustrial frameworks because larger velocity and non-uniform porosity occur in such systems.

Thus Darcy–Forchheimer model which include the boundary and inertia features can be used

to overcome the limitation of Darcy’s law. For such aspects in (1901) Forchheimer [66] added

the squared velocity term in equation of motion. Later on the factor Forchheimer is designated

by Muskat [67]. Signi…cance of Darcy–Forchheimer porous space in nanomaterials ‡ow in ver-

tical duct is explored by Umavathi et al. [68]. Further analysis regarding this feature can be

reviewed via [69¡ 73].

1.3 Basic relations

1.3.1 Mass conservation expression

Mass conservation expression elaborates that mass neither be formed nor destroyed. Its di¤er-

ential form can be expressed as



+r ¢
¡
V

¢
= 0 (1.1)

where  stands for the liquid density, r denotes the gradient operator and V signi…es the

velocity. For incompressible liquid

r ¢V = 0 (1.2)
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In cylindrical and Cartesian coordinates Eq. (12) yields

1






() +

1






() +




() = 0 (1.3)




+



+



= 0 (1.4)

1.3.2 Linear momentum conservation relation

This relation manifests that momentum persists conserved of whole system. Newton’s second

law is utilized to develop it. Generalized form of motion is


V


= div ¿ +  f  (1.5)

where f depicts the body force and ¿ (= ¡I+ S) represents Cauchy-stress tensor, S the extra

stress tensor , I identity tensor and  the pressure. Momentum relation in terms of rotation is

stated as



µ
V


+­£ (­£ r) + 2 (­£V)

¶

= div ¿+ f  (1.6)

where (2 (­£V)) and (­£ (­£ r)) show the respective Coriolis and centrifugal force.

1.3.3 Energy conservation relation

It expresses that sum of all energies of whole system under observation remains invariant. It is

obtained via thermodynamics …rst law. Mathematically

()



= ¡divq+ (1.7)

In Eq. (16), q (= ¡ grad ) designates Fourier’s heat conduction,  the ‡uid’s thermal

conductivity,  the temperature and  declares speci…c heat. The term
³
()




´
symbolizes

internal energy, on right side …rst and second term signify energy ‡ux and source term associated

to energy transport. Source term () is liable for alteration of heat transport features. It can

be implemented for consideration of radiative heat ‡ux, viscous dissipation and surface heating

cooling. Further it also stands for other physical aspects like Dufour and Joule heating. In the

11



presence of nanoparticles, Eq. (16) takes the form

()



= ¡divq+ r ¢ j (1.8)

where j and q are stated as

j = ¡rC¡
rT

1
 (1.9)

q = ¡rT+ j (1.10)

In view of above expression, Eq. (17) yields

()



= r2+()

µ

r¢r +
r ¢r

1

¶

 (1.11)

1.3.4 Concentration conservation relation

This relation is developed through Fick’s second law. It demonstrates that total concentration

of whole system remains unchanged. Let  denotes the liquid mass concentration per unit

volume then expression of mass can be addressed as:




= ¡r ¢ j (1.12)

with

j = ¡r (1.13)

Expression (1.12) yields



= r2 (1.14)

where j and  denote the characterizes mass ‡ux and mass di¤usivity respectively. In terms of

nanoliquids we have



+V ¢r = ¡

1


r ¢ j (1.15)
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The above Eq. in view of Eq. (18) becomes




+V ¢r = r

2 +
r2T

1
 (1.16)

1.4 Fluid models

1.4.1 Viscous liquid

The stress strain expression for incompressible viscous liquid is

¿ = ¡I+A1 (1.17)

A1 = L+ L
 L =rV =

2

6
6
6
4




























3

7
7
7
5
 (1.18)

where A1 symbolized the …rst Rivilin-Ericksen tensor. In cylindrical coordinates

L =rV =

2

6
6
6
4




1


 ¡










1


 +










1


 ¡







3

7
7
7
5
 (1.19)

1.4.2 Non-Newtonian liquids

The stress strain expression for incompressible non-Newtonian liquid is de…ned as

¿ = ¡I+ S (1.20)

where S denotes extra stress tensor varies for di¤erent materials.

Sisko liquid

The constitutive expressions for Sisko liquid model are:

S =

2

4+ 

¯
¯
¯
¯
¯

r
1

2


¡
A21
¢
¯
¯
¯
¯
¯

¡1
3

5A1 (1.21)
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where  and  are the Sisko materials variables and   0 describes the non-Newtonian aspects

of liquid.

Williamson liquid

The constitutive expressions for Williamson liquid model are:

¿ =

·

1 +

µ
0 ¡ 1
1¡ ¡ _

¶¸

A1 (1.22)

_ =
p
¦2 (1.23)

¦ =  (A1)
2  (1.24)

Here 0 zero shear viscosity, 1 in…nite shear rate viscosity, ¡ constant of time-dependent

material and _ rate of deformation. By considering ¡ _  1 and 1 = 0 Eq. (122) becomes

¿ =

·
0

(1¡ ¡ _)

¸

A1 (1.25)

Second grade liquid

For second grade liquid one write

¿ = ¡I+A1 + 
¤
1A2 + 

¤
2A

2
1 (1.26)

In above expression A1 and A2 characterize …rst and second Riliven-Ericksen tensors i.e.

A1 = L+ L


A2 =
A1


+A1L+ LA1 (1.27)

where 
 represents the material derivative. For liquid stability of thermodynamic survey, the

following criteria must be ful…lled:

 ¸0 ¤1 ¸ 0 
¤
1 + 

¤
2 = 0 (1.28)
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Therefore Eq. (126) yields

¿ = ¡I+A1 + 
¤
1(A2 ¡A

2
1) (1.29)

1.5 Solution techniques

This section aims to elaborate di¤erent techniques (ND-Solve scheme, HAM, OHAM and bvp4c)

which will be implemented to tackled the governing systems in upcoming chapters.

1.5.1 ND-Solve scheme

ND-Solve is built in command of Mathematica based on shooting scheme with 4 order R-

K integration technique. This technique is a numerical solver of di¤erential systems. With

the aid of NDSolve we can tackle di¤erent ODEs and PDEs system as well as di¤erential

algebraic equations that mix di¤erential equation with algebraic ones. General ODEs system

possess number of equations  (i.e. 1 2 3), independent variable  number of dependent

variable  (i.e. 1 2 3) and boundary conditions according to order of PDEs system. By

NDSolve technique this system can be computed as follows:

[f1 2 3  g f1 2 3g f min maxg (1.30)

This technique attains exceptional accuracy and is stable unconditionally. Furthermore it

provides us best outcomes in minimum CPU time and avoid the lengthy expressions.

1.5.2 Homotopy analysis method (HAM)

In 1992, Liao [120] …rstly given the idea of homotopy. This technique is utilized to compute

highly nonlinear problems. The continuous deformation of expression or a function is termed as

homotopy. This technique is utilized more e¤ectively for solutions of several non-linear problems

[74¡ 84] The detail methodology of this technique is utilized in chapter two.

1.5.3 Optimal homotopy analysis method

The concept of minimization is employed by addressing average squared residual errors [85]
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Mathematically

 =
1

 + 1

X

=0

2

4

Ã
X

=0

̂ ()

!

=

3

5

2

 (1.31)

where  is total squared residual error.

1.5.4 Bvp4c Matlab approach

The nonlinear ‡ow problem is executed as built-in scheme known as bvp4c in Matlab [86¡ 90].

Lobatto IIIA formula is utilized in present technique. To utilize this scheme it is important to

convert the nonlinear and higher order system into …rst order ODEs by setting new variables.

Considering

t0 = f( tD)  ·  ·  (1.32)

with

h(t() t()D) (1.33)

This technique attains exceptional accuracy and is stable unconditionally. It is used for

highly nonlinear coupled problems. This technique is utilized for the problem in chapter 6
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Chapter 2

Analysis of Sisko nanoliquid ‡ow

with convective conditions

This chapter deals with a model to examine mixed convection ‡ow of Sisko nano‡uid driven

by bidirectionally stretched surface. Features of thermophoresis and Brownian movement phe-

nomena are accounted. Convective conditions are employed for heat and mass transfer process.

Transformations yield ordinary di¤erential systems. Convergence of derived series solutions

for resulting problems is veri…ed. Behavior of sundry variables is explored by plotting graphs.

Computations for heat and mas transfer rates are declared and analyzed for the in‡uence of

emerging variables. It is inspected that higher mixed convection variable results to enhance

the velocity distribution whereas it decays ‡uid temperature and concentration. The Present

outcomes are compared with existing studies in particular cases and noticed in good agreement.

2.1 Model development

Here 3D mixed convection ‡ow of Sisko nano‡uid. The ‡uid movement is induced because of

the stretching property of sheet. We choose system with Cartesian coordinate. Let  =  and

 =  (where  and  are positive dimensional constants) indicate surface stretching velocities

in the ¡ and ¡ direction respectively (see Fig. 21). Heat and mass transfer characteristics are

explored when thermophoresis and Brownian di¤usion are present. Stretched surface possesses

the convective conditions. Convection from a hot liquid at temperature  leads to heat up the
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‡ow surface. The nanoparticles concentration at the wall is characterized by   coe¢cient of

mass transport  and 1 liquid ambient concentration. The resulting expressions are




+



+



= 0 (2.1)





+ 




+




=
1



µ


2

2
¡ 





µ

¡




¶

+ ( ¡1) +  ( ¡ 1)

¶

 (2.2)



µ





+ 




+





¶

= 
2

2
+ 





µ

¡




¶¡1 


 (2.3)





+ 




+




= 

2

2
+

µ
()
()

¶Ã









+


1

µ




¶2
!

 (2.4)





+ 




+




= 

2

2
+


1

2

2
 (2.5)

with

 =  =   =  =   = 0 ¡ 



=  ( ¡  ) ¡




= ( ¡) at  = 0

(2.6)

! 0  ! 0  ! 1  ! 1 when  !1 (2.7)

Here in ( , ) directions, the associated velocities are ( , ),  liquid density,  desig-

nates the coe¢cient of thermal expansion, 1 denotes liquid ambient temperature,  signi…es

acceleration due to gravity,  the temperature,  the coe¢cient of solutal expansion,  man-

ifests thermal di¤usivity, () the heat capacity of liquid, () the nano‡uid material e¤ective

heat capacity and ( ) denote the coe¢cients of thermophoresis and Brownian di¤usion.

Here  and  are the Sisko material variables and   0 describes the non-Newtonian aspects of

liquid. It is signi…cant to declare that for  = 1 and  = 0, the liquid is viscous. For   1 the

situation is dilatant and when 0    1 then case corresponds to pseudoplastic. Furthermore

for  = 0 the case of power law material is achieved (for detail [91¡95]). We use the following

transformations

 =  0()  = 0()  = ¡
³
¡2



´1(+1) ³
2
+1 +

1¡
+1

0 + 
´

¡1
+1 

() = ¡1
¡1

 () = ¡1
¡1

  = 
³
2¡



´1+1

1¡
1+ 

9
>=

>;
(2.8)
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Fig. 21 Flow con…guration and physical model.

Expression (21) is trivially veri…ed and Eqs. (22)¡ (27) become

 000 + (¡ 00)¡1 000 +

µ
2

+ 1

¶

 00 ¡ ( 0)2 +  00 + ( +) = 0 (2.9)

000 + (¡ 00)¡1000 ¡ (¡ 1)00 000
¡
¡ 00

¢¡2
+

µ
2

+ 1

¶

00 ¡ (0)2 + 00 = 0 (2.10)

00 +Pr

µ


00 +(

0)2 +

µ
2

+ 1

¶

0 + 0

¶

= 0 (2.11)

00 + Pr

µ

0 +

µ
2

+ 1

¶

0
¶

+

µ




¶

00 = 0 (2.12)

 = 0  = 0  0 = 1 0 =  0 = ¡(1¡ ) 0 = ¡1(1¡ ) at  = 0 (2.13)

 0 ! 0 0 ! 0  ! 0 ! 0 as  !1 (2.14)

Here  signi…es the material variable of Sisko liquid, Re and Re show the local Reynolds

numbers,  indicates the mixed convection parameter,  represents the buoyancy ratio pa-

rameter,  designates ratio parameter,  stands for Grashof number,  signi…es Brownian

motion variable, Pr denotes Prandtl number,  shows thermophoresis parameter,  desig-

nates Lewis number,  the temperature Biot number and 1 the concentration Biot number.
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The dimensionless variables are

 =
Re

2
+1

Re

  = 
(¡1)

   =

 Re

¡1
(+1)

  Re =

2¡

 

 =
(¡1)
 (¡1)

  = 
   =

 (¡1)
2

()22
 Pr =

 Re
¡2
+1


()


Re =


   =


  = 

 (¡1)
1  1 =



Re

¡1
(+1)

 

9
>>>>>=

>>>>>;

(2.15)

It is noted that ‡uid here is non-Newtonian i.e Sisko ‡uid. Hence we found that presence

of Sisko ‡uid and mixed convection terms in the momentum equations (29) and (210) and

convective conditions for heat and mass transfer in (213) do not allow the problems to have

self similar solutions. Consequently parameters    and 1 are functions of  when  6= 1

i.e. for Sisko ‡uid case. The only possibility for similarity solutions corresponds to  = 1 (for

viscous liquid) and no mixed convection i.e.  = 0. In this case the variables  = 0 and  and

1 do not rely upon  i.e.  and 1 are constant. In light of these points, our purpose now is

to establish local similar solutions [96¡ 100])

Skin frictions are given by

Re
1

(+1)

  = 
00(0) + ( 00(0))

Re
1

(+1)

  =


(00(0)(0) + (¡ 00(0))¡100(0))

9
=

;
(2.16)

Expressions for () and () can be written as

Re
¡1(+1)
  = ¡

0(0)

Re
¡1(+1)
  = ¡

0 (0) 

9
=

;
(2.17)

where Re =

2¡

 and Re =


 elucidate local Reynolds numbers

2.2 De…nitions and solutions

Homotopic scheme is employed for given ‡ow system. Therefore the initial approximations

(0() 0() 0() 0()) and linear operators
³
~L  ~L ~L ~L

´
are

0() = 1¡ 
¡ 0() = (1¡ 

¡) 0() =


1 + 
¡ 0() =

1
1 + 1

¡ (2.18)
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~L = 
000 ¡  0

~L = 
000 ¡ 0

~L = 
00 ¡ 

~L = 
00 ¡ 

9
>>>>>>=

>>>>>>;

(2.19)

~L [
¤¤
1 + 

¤¤
2 

 + ¤¤3 
¡] = 0

~L [
¤¤
4 + 

¤¤
5 

 + ¤¤6 
¡] = 0

~L [
¤¤
7 

 + ¤¤8 
¡] = 0

~L [
¤¤
9 

 + ¤¤10
¡] = 0

9
>>>>>>=

>>>>>>;

(2.20)

where ¤¤ ( = 1¡ 10) designates the constants. The general solutions are:

() = 
¤
() + 

¤¤
1 + 

¤¤
2 

 + ¤¤3 
¡ (2.21)

() = 
¤
() + 

¤¤
4 + 

¤¤
5 

 + ¤¤6 
¡ (2.22)

() = 
¤
() + 

¤¤
7 

 + ¤¤8 
¡ (2.23)

() = 
¤
() + 

¤¤
9 

 + ¤¤10
¡ (2.24)

Where special solutions are presented by ¤() 
¤
() 

¤
() and 

¤
() and the constants

¤¤ ( = 1¡ 10) are as follows.

¤¤2 = ¤¤5 = ¤¤7 = ¤¤9 = 0 ¤¤3 = ¤()
 j=0

¤¤1 = ¡¤¤3 ¡ 
¤
(0) 

¤¤
6 = ¤()

 j=0

¤¤4 = ¡¤¤6 ¡ 
¤
(0) 

¤¤
8 = 1

1+

³
¤()

 j=0 ¡
¤
(0)

´


¤¤10 =
1

1+1

³
¤()

 j=0 ¡1
¤
(0)

´


9
>>>>>>=

>>>>>>;

(2.25)

2.3 Convergence analysis

Homotopic technique warrants us about the solutions convergence. HAM incorporates an em-

bedding auxiliary variable ~ which provides ‡exibility to extend the convergence region. Here

-curves are interpreted in order to achieve acceptable ranges of these variables (see Figs.

21 & 22). Permissible ranges of ~  ~ ~ and ~ for  = 1 are [¡02 · ~ · ¡16]
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[¡02 · ~ · ¡15] [¡02 · ~ · ¡19] and [¡05 · ~ · ¡17] whereas for  = 2 we

have [¡02 · ~ · ¡06] [¡02 · ~ · ¡065] [¡01 · ~ · ¡09] and [¡02 · ~ · ¡09]

Noted that the convergence region at  = 1 is larger when compared to  = 2. Further homo-

topic solutions also converge when ~ = ¡09 = ~ and ~ = ¡10 = ~. Table 21 demonstrates

that 45 order of estimations are essential for the convergence scrutiny.
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f '' 0

g '' 0

 ' 0

 ' 0

n  1

2.0 1.5 1.0 0.5
 f , g, , 

2

1

1

2

f ''0, g''0, '0, '0

Fig.(22). The ~-curves for  ,   and  when  = 1.

f ''0

g ''0

 ' 0

 ' 0

n  2

1.5 1.0 0.5
 f , g, , 

1.5

1.0

0.5

0.5

1.0

1.5

2.0

f ''0, g''0, '0, '0

Fig.(23). The ~-curves for  ,   and  when  = 2.
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Table 2.1: Solutions convergence when Pr = 10  =  = 02 = 1  = 01 = 

 = 03 =  =  and  = 12

Order of estimations ¡ 00(0) ¡00(0) ¡0(0) ¡0(0)

 = 1  = 2  = 1  = 2  = 1  = 2  = 1  = 2

1 09404 09113 02235 02408 00884 00898 01486 01585

5 09431 09439 02228 02256 00870 00884 01434 01489

10 09432 09487 02229 02296 00871 00881 01435 01469

15 09432 09478 02229 02297 00870 00880 01435 01464

20 09432 09474 02229 02294 00870 00880 01435 01464

25 09432 09475 02229 02294 00870 00880 01435 01464

30 09432 09475 02229 02294 00870 00880 01435 01464

35 09432 09475 02229 02294 00870 00880 01435 01464

40 09432 09475 02229 02294 00870 00880 01435 01464

2.4 Result and discussion

Here outcomes of numerous variables are explored for  0() 0()  () and  (). Figs. (24)¡

(223) have been interpreted for such motivation. E¤ect of buoyancy ratio variable  on  0()

is shown in Fig. 24 It is declared that  0() enhances when  increased Buoyancy force due

to concentration is a cause of velocity enhancement. Features of  on  0() is depicted in Fig.

25 Here we found that  0() augments through larger  In fact buoyancy force rises for higher

 which augments  0(). Impacts of material parameter  on velocity distributions  0() and

0() are reported through in (Figs. 26 and 27) It is noticed that an increment in  enhances

 0() along the ¡ and ¡directions. Characteristics of  on  0() is demonstrated in Fig. 28

Here increment in  causes decay in the velocity distribution. Salient characteristics of  on

0() is displayed in Fig. 29 Comparative study with Fig. 28 explores that  0() reduces while

0() enhances when  has higher values. When  starts to rise from zero then sidewise surface

undergoes to move in ¡direction and hence the velocity 0() enhances while the velocity  0()

decays. Moreover these …gures indicate that there is no ‡ow and the ‡uid velocity is zero when

 = 0. Fig. 210 provides mixed convection parameter e¤ect on temperature …eld. Clearly
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‡uid temperature diminished by  In physical sense, buoyancy forces dominates the inertial

forces which enhance the heat transport. As a results  () decays. It is inferred from Fig.

211 that ‡uid temperature is reduced by higher  This feature  () is because of temperature

di¤erences. Fig. 212 depicts the contribution of  on  (). It is obvious that  () decays for

higher estimations of . In‡uence of  on  () is addressed in Fig. 213 Higher  cause  ()

enhancement (see Fig. 214) Here nanomaterials temperature upgraded for larger  This

feature is due to association of thermophoresis phenomenon which extracts heated particles

towards cold zone from heated one. Fig. 215 elucidates that liquid temperature rises against

higher . Higher  enhance the collision between ‡uid particles which create more heat and

consequently  () increases Fig. 216 exhibits feature of Pr on  (). Here  () is increasing

function of Pr  It is expected physically because small estimation of Pr ( 1) corresponds

to ‡uid materials having low viscosity and high thermal di¤usivity. High viscosity liquids

are demonstrated by Pr ( 1) An increment in  decays the concentration  () (see Fig.

217). Physically, buoyancy force acts as favorable pressure gradient thus stronger buoyancy

force assists in upward direction due to which concentration decreases. Fig. 218 illustrates

behavior of  on  (). Here larger  decays the concentration distribution In fact higher

concentration buoyancy force is associated with larger buoyancy ratio parameter which results

in lower concentration. Fig. 219 is drawn to see the characteristics of  on  ()  It is found

that concentration distribution diminishes via  Variation of 1 on concentration distribution

is depicted in Fig. 220 One can see that liquid concentration enhances with an increase of

1 Biot number due to concentration has a great dependence on mass transfer coe¢cient .

The coe¢cient of mass transfer  is increased for higher solutal Biot number 1 due to which

the temperature and thickness of concentration layer are enhanced. The consequences of 

on the concentration …eld is declared in Fig. 221 Here  () enhances via thermophoresis

parameter  Such circumstances is observed because of consistent development in percentage

of nanoparticles for . Feature of  on  () is depicted in Fig. 222 An improvement in

 enhances the concentration  (). Due to movement of nanoparticles in nanomaterials, the

Brownian movement occurs. Thus an enhancement greatly a¤ected the Brownian movement

and as a result  () decays. Fig. 223 clearly demonstrates that concentration decays when

 is enhanced. It is interesting to note from Figs. (24) ¡ (223) that all physical variables
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has similar behavior for  = 1 and  = 2. The numerical outcome of (¡ 00 (0)) (¡00 (0))

(¡0 (0)) and (¡0 (0)) is declared in Table 21 when  = 02 =   = 01 =  Pr = 10

 =  = 03 =   = 12 ~ = ¡09 = ~ and ~ = ¡10 = ~ It is reported that

45 order of estimations are quite appropriate for solutions convergence. The characteristics

of local Nusselt (12 Re
¡1(+1)
 ) and local Sherwood (

1
2 Re

¡1(+1)
 ) numbers via  

 Pr     1 and  are given in Tables 23() and 23() Here we revealed that

local Nusselt number enhances via    Pr and  and it diminishes via  and 1 Further

(12 Re
¡1(+1)
 ) enhances against    Pr and and it reduces via. Table 23 explores

the comparison of presented analysis with Ariel [101] and Munir et al. [102] for . A good

agreement is noticed.

n  1

n  2

N  0.0, 0.6, 1.4

1 2 3 4 5 6


0.2

0.4

0.6

0.8

1.0

f' 

Fig. 24 Variation of  0() via 
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Fig. 25 Variation of  0() via 

n  1

n  2

  0.0, 0.4, 0.8

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

f ' 

Fig. 26 Variation of  0() via 
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n  1

n  2

  0.0 , 0.4 , 0.8

1 2 3 4 5 6


0.1

0.2

0.3

0.4

0.5

g' 

Fig. 27 Variation of 0() via 

n  1

n  2

 =0.0, 0.4, 0.8

1 2 3 4 5 6


0.2

0.4

0.6

0.8

1.0

f' 

Fig. 28 Variation of  0() via 
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n  1

n  2

  0.2, 0.4, 0.6

1 2 3 4 5 6


0.1

0.2

0.3

0.4

0.5

0.6

g' 

Fig. 29 Variation of 0() via 

  0.0 , 0.6 , 1.2

n  1

n  2

1 2 3 4 5 6


0.00

0.05

0.10

0.15

0.20

 

Fig. 210 Variation of () via 
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n  1

n  2

N  0.0 , 0.6 , 1.4

1 2 3 4 5 6


0.1

0.2

0.3

0.4

 

Fig. 211 Variation of () via

  0.0, 0.4, 0.8

n  1

n  2

1 2 3 4 5 6


0.00

0.05

0.10

0.15

0.20

 

Fig. 212 Variation of () via 
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n  1

n  2

  0.0, 0.3, 0.6

1 2 3 4 5 6


0.1

0.2

0.3

0.4

 

Fig. 213 Variation of () via 

Nt  0.0, 0.6, 1.0

n  1

n  2

1 2 3 4 5 6


0.00

0.05

0.10

0.15

0.20

 

Fig. 214 Variation of () via 
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n  1

n  2

Nb  0.1, 0.6, 1.2

1 2 3 4 5 6


0.00

0.05

0.10

0.15

0.20

 

Fig. 215 Variation of () via 

Pr  0.7 , 1.0 , 1.3

n  1

n  2

1 2 3 4 5 6


0.00

0.05

0.10

0.15

0.20

0.25

 

Fig. 216 Variation of () via Pr 

32



  0.0, 0.6, 1.2

n  1

n  2

1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

 

Fig. 217 Variation of () via 

N  0.0, 0.6, 1.2

n  1
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Fig. 218 Variation of () via 
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  0.0, 0.3, 0.6

n  1

n  2

1 2 3 4 5 6
0.00
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 

Fig. 219 Variation of () via 
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
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 

Fig. 220 Variation of () via 1
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Nt  0.1, 0.2, 0.3
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 

Fig. 221 Variation of () via 
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Fig. 222 Variation of () via 
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Le  0.8, 1.2 , 1.6

n  1
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Fig. 223 Variation of () via 
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Table 2.2 (a): Numerical data of (¡0(0)) and (¡0 (0)) via     and Pr when

 = 02 = 1  = 01  = 03 and  = 12

    Pr ¡0(0) ¡0 (0)

 = 1  = 2  = 1  = 2

00 03 03 01 10 00868 00890 01421 01441

03 00873 00895 01447 01474

08 00877 00898 01463 01494

02 00 03 01 10 00870 00891 01433 01457

05 00871 00892 01437 01458

08 00872 00893 01440 01462

02 03 00 01 10 00852 00880 01368 01405

03 00871 00893 01436 01461

06 00883 00902 01481 01499

02 03 03 00 10 00871 00893 01435 01459

02 00871 00893 01436 01460

05 00871 00893 01438 01462

02 03 03 01 07 00844 00856 01322 01275

10 00871 00881 01436 01401

12 00888 00897 01507 01484
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Table 2.2 (b): Numerical data of (¡0(0)) and (¡0 (0)) via  1   and  when

Pr = 12  = 02   = 01 and  = 03 = 

   1  ¡0(0) ¡0 (0)

 = 1  = 2  = 1  = 2

01 03 01 02 12 00872 00894 01273 01292

03 00870 00892 01490 01516

05 00867 00889 01533 01560

02 00 01 02 12 00873 00895 01596 01625

03 00871 00893 01436 01460

06 00869 00891 01278 01296

02 03 00 02 12 0000 0000 01595 01625

04 02482 00892 01152 01140

06 03111 02667 01045 01141

02 03 01 00 12 0000 00895 00873 00000

03 00870 00892 01957 02002

05 00869 00891 02759 02851

02 03 01 02 07 00871 00893 01230 01326

10 00871 00893 01373 01461

14 00871 00893 01484 01561
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Table 2.3: A comparison of ( ) for di¤erent values of  when  = 10  =  =

 =  = 0 , 1 !1 and  !1.

  00(0) 00(0)

Ariel [101] 000 ¡100000 00

Munir et al. [102] 000 ¡100000 00

Present study 000 ¡100000 00

Ariel [101] 025 ¡1048813 ¡0194565

Munir et al. [102] 025 ¡1048818 ¡0194567

Present study 025 ¡1048825 ¡0194570

Ariel [101] 050 ¡193097 ¡0465206

Munir et al. [102] 050 ¡193098 ¡0465207

Present study 050 ¡193105 ¡0465210

Ariel [101] 075 ¡1134485 ¡0794619

Munir et al. [102] 075 ¡1134486 ¡0794619

Present study 075 ¡1134489 ¡0794622

Ariel [101] 100 ¡1173720 ¡1173721

Munir et al. [102] 100 ¡1173721 ¡1173721

Present study 100 ¡1173724 ¡1173723

2.5 Concluding remarks

Model for 3 mixed convection ‡ow of Sisko nanoliquid generated by stretched surface is

elaborated. The key outcomes are given below.

² In‡uences of  and  on the velocity  0() are quite similar.

² An increment in  results in decrease of temperature and concentration.

² Temperature is enhanced via  and .

² Impact of  on  () is qualitatively contrary to that of .

² E¤ect of  leads to decay in temperature and concentration.
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² Temperature is increased for larger 
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Chapter 3

Analysis of magnetized Williamson

nanoliquid subject to strati…cation

This chapter explores the strati…cation phenomenon in ‡ow ofWilliamson magnetized-nanoliquid.

Flow is stretched in a non-linear way. Aspects of viscous dissipation and radiation are ac-

counted. Chemical reaction having order one is also considered. Resultant problems are solved

via homotopic technique. Convergent solutions are obtained. Graphs and table are arranged to

disclose the behavior of distinct in‡uential variables. Present pointed out that strati…cation di-

minishes the temperature and concentration. Moreover skin friction decays for higher magnetic

parameter. Finally conclusion of current investigations are listed in the last section.

3.1 Modeling

Let us consider non-Newtonian (Williamson liquid) nanomaterials ‡ow by stretching sheet of

variable thickness. Stretching of sheet is taken in ¡direction. Let  = 0( + )
 be the

sheet stretching velocity. Also  = 1 leads to linear stretching. Flow geometry is assumed at

 = ( + )
1¡
2  where  being small constant which speci…es that sheet is adequately thin.

Magnetic …eld 0 is implemented. Strati…cation, thermophoresis and Brownian motion aspects

are accounted for modeling concentration and energy expressions. Dissipation and radiation

e¤ects are further included in energy expression. In addition concentration expression accounts

chemical reaction. Geometrical con…guration is captured in Fig. 31. Using boundary layer
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approach the governing expressions for present analysis are

v
v
v

Magnetic nanoparticles

Slot

T C =

Stagnation point

Fig. 31 Schematic diagram.
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(3.3)





+ 




= 

2

2
+


1

2

2
¡ 1( ¡0) (3.4)

 = (+ )
1¡
2   =  = 0(+ )

  = 0

 =  = 0 + 1(+ )  =  = 0 + 2(+ )

9
=

;
(3.5)

 !1 !  = 1(+ )
  ! 1 = 0 + 1(+ )

 ! 1 = 0 + 2(+ )

9
=

;
(3.6)

where (, ) stand for respective components of velocity parallel to ( ) directions, ¡ for

time constant,  for base liquid density,  for free stream velocity, 0 for dynamic viscosity,
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 = 0

for kinematic viscosity,  for constant (1 2 1 2) for non-dimensional constants,

 for electrical conductivity  for velocity power index,  = ()() for heat capacities

ratio, ( 0) for liquid and reference temperatures, 1 for chemical reaction rate, (0 ) for

liquid and reference concentrations,  for coe¢cient of thermophoresis di¤usion, (1, 1)

for ambient ‡uid temperature and concentration, 0 for reference velocity and  for di¤usion

coe¢cient. Radiated heat ‡ux  is

 = ¡
16¤ 31
3¤

2

2
 (3.7)

in which ¤ symbolized Stefan-Boltzman constant and ¤ indicates coe¢cient of mean absorp-

tion. Using Eq. (37) in Eq. (33) one obtains
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By considering the variables

 = 0 (+ )
  0 ()   = ¡
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2
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9
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;
(3.9)

continuity equation is trivially satis…ed while other Eqs. (32)¡ (38) become
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9
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(3.13)
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where prime designates derivative via  and  = 
q¡

+1
2

¢
0
 signi…es wall thickness variable

and  =  = 
q¡

+1
2

¢
0
 .

Now considering

 () = ( ¡ ) = ()

£() = ( ¡ ) = ()

©() = ( ¡ ) = ()

9
>>>=

>>>;

(3.14)

Eqs.(310)¡ (313) are reduced to the form
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Here  (= 2
(¡0)

) shows Eckert number, 2 (=
2

0
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) magnetic parameter, 

(=
()
()

(¡0)
 ) Brownian motion parameter,  (= ¡

q
(+1)30 (+)

3¡1

 ) Weissenberg

number, 1 (=
1
0
(+ )1¡) chemical reaction, (Pr = 


) Prandtl number,  (= 1

0
) ratio of

velocities,  (= 16¤ 31
3¤ )  (=

()
()

 (¡0)
1 ) thermophoresis parameter, 2 (=

2
2
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
) Schmidt number and 1 (=

1
1
) thermal strati…ed variable. Skin

friction and temperature and concentration gradients are
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In dimensionless form
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in which local Reynolds number is symbolized as Re = (+ ).

3.2 Analysis of homotopic solutions

We choose
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with characteristics
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(3.26)

where ¤¤ ( = 1¡ 7) symbolized arbitrary constants.

To obtain the solutions via homotopic technique it is mandatory to look-over the conver-

gence of required solutions. Such solutions comprise embedding variables (~  ~ and ~) For

convergence the -curves are declared through Figs. 32 & 33 Acceptable ranges of (~  ~ and

~) are [ ¡120 · ~ · ¡223] [¡050 · ~ · ¡152] and [¡042 · ~ · ¡135] Furthermore
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table 31 pointed out that homotopic solutions converge for ~ = ¡06 and ~ = ¡50 = ~ .

  0.2    M , We  0.5, n  1.2

f '' 0

2.5 2.0 1.5 1.0 0.5 0.0 0.5

2.5

2.0

1.5

1.0

0.5

0.0

 f

f
''
0


Fig. 32 ~¡curve for 

' 0

 ' 0

M    1  1  2  Nt    0.2 , Rd  0.3
Ec  N b  We  0.5, Sc  Pr  1.0 , n  1.2

2.0 1.5 1.0 0.5 0.0

1.5

1.0

0.5

0.0

0.5

 , 


'
 0


,


'
 0


Fig. 33 : ~¡curves for  and 
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Table 3.1: HAM solution convergence when  =  = 2 =  = 1 =  = 1 =  = 02

 = = 05 =   = 03 and  = 10 = Pr 

Estimations order (¡ 00(0)) (¡0(0)) (¡0(0))

1 0.88576 0.73619 0.6937

5 1.0957 0.64235 0.5267

15 1.2885 0.59561 0.4498

25 1.3446 0.58512 0.4338

30 1.3470 0.58412 0.4328

35 1.3470 0.58412 0.4328

50 1.3470 0.58412 0.4328

3.3 Discussion

This portion reported the physical illustration of emerging variables i.e magnetic parameter

() Weissenberg number () Eckert number (), velocity ratio variable () Brownian

motion parameter (), Prandtl number (Pr) velocity power index (), radiation variable

() thermophoresis variable () chemical reaction (1), wall thickness variable () thermal

and solutal strati…ed variables (1 and 2) on (
0), (), (), (Re

-05
 ), (Re

-05
 ) and

(¡ (Re)05 ) Here Figs. (34)¡ (319) are organized for velocity, temperature, concentration,

local Sherwood and Nusselt numbers. Attributes of () against ( 0) are declared in Fig. 34.

Here velocity ( 0) increases with enhancement of (). Noted that momentum layer thickness

strengthens for () 1. It is due to fact that stretched velocity in‡uences the free stream

velocity. Behavior of () on ( 0) is presented in Fig. 35. Here () improves the liquid

thickness and thus ( 0) diminishes. Fig. 36 and 37 declared impact of () on velocity ( 0). It

is observed that ( 0) near surface decays for () 1 (see Fig. 36), where as reverse feature is

noted for () 1 (see Fig. 37). Fig. 38 depicts graphical illustration of ( 0) for (). Here

strengthen in magnetic …eld decays the nanoliquid velocity. Fig. 39 is designed to interpret

how the temperature () gets in‡uence by (). Clearly larger () correspond to improvement

in (). Physically nanoparticles are extracted towards the cold liquid from hot boundary layer.

That is why thermal …eld turns out to be thicker in the presence of (). Impact of () on
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() is displayed in Fig. 310. It is found that () is higher for against (). In fact coe¢cient

of mean absorption (¤) declines by higher () which is responsible for () augmentation.

Salient characteristics of () on () is depicted in Fig. 311. Here () increases when () is

enhanced. Physically larger () leads to frictional heating which ultimately increases thermal

…eld (). Aspect of (Pr) on () is displayed in Fig. 312. This Fig. declares that (Pr) has higher

nanoliquids temperature. Since the liquid di¤usivity arises in (Pr) which becomes weaker for

higher (Pr). Thus reduction in () is associated with such weaker di¤usivity. Characteristics

of (1) on () are displayed in Fig. 313. Obviously strati…cation variable (1) reduces the

temperature. It is due to a reason that di¤erence of temperature declines between the ambient

liquid and sheet. Figs. 314 and 315 interpret  and  impacts on (). Here an improvement

in () is seen when () is incriminated. However reverse trend is noticed for (). Contribution

of (2) versus () is exhibited in Fig. 316. It is found that () is decreasing function of (2).

It is because of small di¤erence of ambient and surface concentration. Variation of (1) on

() is designed through Fig. 317. Strengthen in (1) leads to decay () and corresponding

layer becomes thin. The reason behind this argument is that distractive chemical rate (1  1)

increases the mass transport rate and consequently () reduces. Curves for () and () on

(Re
-05
 ) is drawn in Fig. 318. Temperature gradient decays for () whereas it enhances

for () Higher estimation of () and () boost (Re
-05
 ). This behavior is noted in Fig.

319. Numerical estimations of (¡0 (0)) (¡ 00 (0)) and (¡0 (0)) for distinct order of estimations

are depicted in Table 31. It is identi…ed that 30-order of approximations are adequate for

solutions convergence. Numerical outcomes of skin friction for (), (), (), () and () are

illustrated in Table 32. This Table certi…es that skin friction is incriminated through (() and
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() while it diminishes for () and ().

  0.0

  0.4

  1.0

  1.2

  1.6

1 2 3 4 5 6


0.5

1.0

1.5

f ' 

Fig. 34 E¤ect for  0 through 

We  0.0, 0.5, 1.3, 1.6

1 2 3 4 5


0.4

0.6

0.8

1.0

f ' 

Fig. 35 E¤ect for  0 through 
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  0.0, 0.8, 2.3, 4.0

n  1

1 2 3 4 5


0.4

0.6

0.8

1.0

f ' 

Fig. 36  0 through  (  1)

  0.1, 1.0, 2.5, 3.9

n  1

1 2 3 4 5


0.4

0.6

0.8

1.0

f ' 

Fig. 37 E¤ect for  0 through  (  1)
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M  0.0, 0.7, 1.3, 1.8

1 2 3 4 5 6


0.4

0.6

0.8

1.0

f ' 

Fig. 38 E¤ect for  0 through 

Nt  0.11, 0.7, 1.3, 1.7

1 2 3 4 5


0.2

0.4

0.6

0.8



Fig. 39 E¤ect for  through 
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Rd  0.1, 0.5, 1.0, 1.4

1 2 3 4 5 6 7


0.2

0.4

0.6

0.8



Fig. 310 E¤ect for  through 

Ec  0.2, 1.3, 2.3, 3.4

1 2 3 4 5 6


0.2

0.4

0.6

0.8



Fig. 311 E¤ect for  through 
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Pr  0.9, 1.0, 1.3, 1.7

2 4 6 8


0.2

0.4

0.6

0.8



Fig. 312 E¤ect for  through Pr 

1  0.0, 0.3, 0.5, 0.7

1 2 3 4 5 6


0.2

0.4

0.6

0.8

1.0



Fig. 313  through 1
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Nt  0.11, 0.5, 0.7, 1.0

1 2 3 4 5 6


0.2

0.4

0.6

0.8



Fig. 314  through 

Nb  0.10, 0.4, 0.7, 1.1

1 2 3 4 5 6


0.2

0.4

0.6

0.8



Fig. 315  via 
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2  0.0, 0.3, 0.4, 0.7

1 2 3 4 5 6


0.2

0.4

0.6

0.8

1.0



Fig. 316  via 2

1  0.0, 0.9, 1.5, 1.9

1 2 3 4 5 6


0.2

0.4

0.6

0.8



Fig. 317 E¤ect for  through 1
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Nb  0.12, 0.3, 0.6, 1.3

0.2 0.4 0.6 0.8 1.0
Nt

0.05

0.10

0.15

0.20

0.25

0.30

NuxRex
0.5

Fig. 318 E¤ect for  through  on Re
¡1
2

 

n  0.5, 0.8, 1.3, 1.7

0.8 1.0 1.2 1.4
Sc

0.32

0.34

0.36

0.38

ShxRex
0.5

Fig. 319 E¤ect for  through  on Re
¡ 1
2

 
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Table 3.2: Numerical data of ¡ (Re)05 for various estimations of     and 

Fixed values of parameters Parameters ¡Re
1
2 

 =  =  = 2 = 1 = 1 =  = 02  00 0939939

 =  =  = 05,  = Pr = 1  = 03 04 0975113

07 0993821

 = =  = 2 = 1 = 1 =  = 02  05 0864361

 =  =  = 05,  = Pr = 1  = 03 11 100641

14 102899

 =  = = 2 = 1 = 1 =  = 02  02 0957556

 =  =  = 05,  = Pr = 1  = 03 05 0954224

08 0938785

 = =  = 2 = 1 = 1 =  = 02  00 0920663

 =  =  = 05,  = Pr = 1  = 03 04 0913273

09 0713070

3.4 Closing remarks

Here MHD impact in strati…ed radiated ‡ow of Williamson nanomaterials with chemical reac-

tion is investigated. Key outcomes of present study are given below:

² Higher () decays the nanoliquid velocity.

² Larger ( ) shows similar feature for both ( 0) and ()

² Higher estimations of () and () augment liquid temperature.

² Higher (1) and (2) decay () and ().

² Larger () and () show reverse trend for Nusselt number.

² Drag force is higher for () and 
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Chapter 4

Non-linear radiative squeezed ‡ow of

nanoliquid with chemical reaction

and activation energy

This chapter explores the ‡ow of magnetized nanomaterials between two parallel disks. Novel

aspects of activation energy and non-linear radiation are explored. Non-linear system of ODEs

is obtained via proper transformations. Homotopic scheme determines the convergence interval

for the solution . Plots have been interpreted against various physical variables. Further surface

drag forces and heat and mass transfer rates are numerically computed. Our computed analysis

depicts that in‡uence of squeezed and magnetic parameters have reverse e¤ects on temperature.

4.1 Formulation

Here we intend to discuss second grade nanomaterials squeezed ‡ow between two parallel

disks. The distance between the parallel disks is () =
q

(1¡)
  The upper disk is at

 = () =
q

(1¡)
 while the lower permeable disk at  = 0 ( see Fig. 41) Here  denotes

dimensional constant and  the kinematic viscosity. Lower disk is permeable and stretching

with velocity
³
 = 

2(1¡)

´
( stands for stretching rate) while upper disk is squeezed to-

wards the permeable moving lower disk with velocity  = ¡
2

q


(1¡) . An incompressible

liquid is electrically conducted. The generalized Ohm’s law [103] in term of Hall current and
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electric …eld is expressed as  = 
1+2

1

³
 +  £ ¡ 1


 £

´
 Here  signi…es magnetic

induction,  denotes electric …eld,  the electrical conductivity,  the electric current density,

1 the Hall current parameter and  the electron number density [104]. A magnetic …eld

() = 0(1 ¡ )
¡12 is utilized transverse to ‡ow. Electric …eld and Hall current aspects

are disregarded. Since the ‡ow presumes low velocity and uniform magnetic …eld, therefore

magnetic Reynolds number have lower values. Such less values of Reynolds number assists

assumption of negligible induced magnetic [105]. Brownian and thermophoresis di¤usion at-

tributes are retained in energy expression. Moreover chemical reaction and activation energy

aspects are incorporated. The relevant problems have following statements.

Fig. 41 Geometry of problem.




+



+



= 0 (4.1)
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 =  =


2(1¡)   = ¡0,  = ,  =  at  = 0,

 = 0  = 
 =

¡
2

q


(1¡) ,  = ,  =  at  =  () .

9
=

;
(4.6)

Here  and  denote respective velocities of liquid in ¡ and ¡ directions,  the electrical

conductivity,  the pressure,  kinematic viscosity,  density of base liquid, ¤1 the moduli

for normal stress,  the dynamic viscosity,  the temperature, () heat capacity of liquid,

() nanoparticles e¤ective heat capacity,  upper disk temperature,  the concentration,

¤ =  () the thermal di¤usivity,  the coe¢cient of Brownian di¤usion,  the ther-

mal conductivity and  the coe¢cient of thermophoretic di¤usion. In Eq. (45) the term
£
2 ()

 exp
¡
¡


¢¤
shows the modi…ed Arrhenius function, where ( = 861 £ 10 )
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is the Boltzmann constant,  (¡1    1) the constant of …tted rate and 2 rate of reaction.

The radiative heat ‡ux  is [84]:

 = ¡
4¤¤

3¤¤
( 4)


= ¡

16¤¤ 3

3¤¤



 (4.7)

where ¤¤ Stefan-Boltzman and ¤¤ coe¢cient of mean absorption. From Eqs. (47) and (45)

one has
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
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¢


9
>>>=
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(4.8)

The transformations can be expressed as

 = 
2(1¡)

0()  = ¡
q


1¡()  =


() 

 () = ¡
¡

 () = ¡
¡

.

9
=

;
(4.9)

Expressions (42)¡ (46) and (48) after elimination of pressure gradient lead to

  ¡  (
000 + 3 00 ¡ 2 000)

+
2

¡
 + 5  ¡ 2

¢
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9
=

;
(4.10)
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2 + 300) + 3( ¡ 1)
2(2

02
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+3( ¡ 1)(
02

+ 00) + Pr
¡
0 ¡ 0

¢
+Pr 

00 +Pr
02 = 0

9
=

;
(4.11)

00 +Pr
¡
0 ¡ 0

¢
+



00 ¡ Pr1(1 + )

 exp

µ
¡

1 + 

¶

= 0 (4.12)

(0) =   0(0) = 1 (0) = 1 (0) = 1 (4.13)

(1) =

2
,  0(1) = 0, (1) = 0 (1) = 0 (4.14)

In above expressions  denotes the temperature di¤erence parameter, 1 the dimensionless

reaction parameter  the radiation variable, Pr the Prandtl number,  the Brownian motion

variable,  the Lewis number,  the blowing/suction variable,  the thermophoresis variable,

 second grade variable,  the magnetic variable,  the activation energy variable and  the
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squeezing variable. The steady ‡ow between parallel plates can be recovered for  = 0. These

dimensionless quantities can be de…ned as follows:

Pr = 
¤   =

¤


  =


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
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>>>>=

>>>>;

(4.15)

Skin frictions (0 1) at both disks are

0 =
 j=0

12 ()
2  (4.16)

and

1 =
 j=()


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The dimensionless forms of skin frictions are

Re00 =
¡
1 + 3

2
¢
 00 (0) 

2

2
Re 1 =
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 00 (1) 
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=
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(4.19)

with

Re¡1 =
2

 (1¡ )12
 Re0 =

2

2 (1¡ )
 (4.20)

Expressions of (0 and 1) at both disks are

0 = ¡


( ¡ )


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¯
¯
¯
¯
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1 +
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(4.21)
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1 = ¡


( ¡ )
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Expressions of (0 and 1) at both disks are
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4.2 Series solutions and convergence analysis

The solution development require following initial guesses and linear operators
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Here ¤ ( = 1¡ 8) are the arbitrary constants. These constants have the following values
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(4.46)

The nonzero auxiliary variables ~  ~ and ~ have major role in the convergence of series

solutions. Convergence region is region parallel to ~-axis. To acquire the acceptable values of
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~  ~ and ~ the ~¡curves are depicted at 20th order of estimations. Fig. 42 elaborates

that convergence zone is inside the ranges ¡10 · ~ · ¡02 ¡134 · ~ · ¡013 and

¡130 · ~ · ¡035. Table 41 shows that 10th order of estimations are enough concerning

the convergence. Table 4.2. demonstrates total average squared residual errors computed via

OHAM.

Fig. 42 give ~-curves for  ,  and  at lower disk.
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Table 4.1. HAM convergence when 1 =  = 03  = =  = 02 =   = 05 = 

and  =  =  = 10 = Pr 

Deformations order (¡ 00 (0))
¡
¡0 (0)

¢ ¡
¡0 (0)

¢

1 2.4048 0.8108 1.1275

5 2.4669 0.7078 1.1146

10 2.4670 0.7070 1.1140

15 2.4670 0.7070 1.1140

20 2.4670 0.7070 1.1140

25 2.4670 0.7070 1.1140

Table 4.2: Numerical iteration for average squared residual errors.

b   

2 0.00100263 0.000144278 0.00235891

6 0.0000720172 0.00005336 0.00055329

10 0.0000315963 0.000029575 0.000263673

16 0.000019137 0.000015455 0.000116424

18 0.0000178315 0.0000128735 0.0000923398

20 0.000017134 0.0000108436 0.0000743351

4.3 Discussion

Our intention here is to predict the features of various sundry variables on temperature and

concentration. The ranges of physical parameters are 00 ·  · 11 01 ·  · 29 04 ·  ·

45 06 · Pr · 42 00 ·  · 35 01 ·  · 12 00 · · 15 06 ·  · 40 01 ·  ·

14 00 ·  · 24 00 ·  · 20 01 · 1 · 21 The behavior of temperature  () for

various estimations of thermophoresis parameter  magnetic variable  radiation variable

, Prandtl number Pr Brownian motion variable  Squeezing parameter  temperature

ratio parameter  is explained in Figs. (43)-(49). Variation of magnetic parameter on  ()

is depicted in Fig. 43 Temperature is enhanced for larger magnetic parameter  . Physically
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Lorentz force is direct contact with applications of magnetic …eld. More resistance is provided to

liquid particles and  () rises. Further  = 0 recovers the hydrodynamic situation. Outcome

of thermophoresis variable  on  () is declared in Fig. 44 Higher  pronounces  () for

movement of nanoparticles from hot regime to cold one. Fig. 45 highlights e¤ect of  versus

 ()  Clearly rise in  enhances  (). Since in radiation process the more heating to working

‡uid corresponds in an enhancement of temperature …eld  (). Behavior of temperature ratio

parameter  on thermal …eld () is exhibited in Fig. 46 Here an increment in  improves

thermal state of liquid which boosts (). Fig. 47 declares the impact of  on temperature

 (). Here () rises for . Since higher  has less viscous force and higher di¤usion due

to which more heat is produced. That is why higher  enhanced temperature. Fig. 48

manifests the variation in thermal …eld  () versus Pr  Since thermal di¤usivity decays versus

higher Pr so  () decreases Fig. 49 is designed to report impact of  on temperature  () 

Higher  augments  (). Curves of  () via  is displayed in Fig. 410 An enhancement

in  () is noticed for higher  In fact thermophoresis induces the migration of nanoparticles

in direction reverse to temperature gradient which provides non-constant concentration and

therefore  () enhances. Fig. 411 is captured to understand the change of  () against 

Concentration is reduced for larger Physically addition magnitude of increases the rate at

which nanoparticles proceed with various velocities in random movement because of Brownian

di¤usion. Fig. 412 presents that larger  lead to higher  (). It is interesting to visualize that

() narrates the plates movement, therefore (  0) represents that the plates moving apart,

where as 0 manifests that plates moving towards each other). Fig. 413 exhibits the feature

of  on concentration distribution. Here  () diminishes via , since  and  have inverse

link with each other. Higher  correspond to low Brownian di¤usivity. Such lower Brownain

di¤usivity decays concentration. Impact of  on  () is captured in Fig. 414 Higher  lead to

an enhancement in concentration …eld. It is due to high activation energy and low temperature

which decay the rate of reaction and ultimately slows down the process of chemical reaction.

That is why  () increases. Variation in () with variation of 1 is captured in Fig. 415 It is

found that increase in 1 corresponds to destructive chemical reaction due to which () rises.

Tables (43)-(45) are framed to visualize the feature of sundry variables on physical quantities.

Skin frictions at both disks are declared in Table 43. Here (0 and 1) at both disks are
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enhanced via  and magnetic parameter  while reverse trend is noted for . Since  and

viscosity vary inversely, thus larger  yield low viscosity which rises the nanoliquid velocity.

Therefore skin friction enhances. It is crucial to remind that ( = 0) gives viscous liquid.

Table 44 is designed to elaborate the numerical outcomes of (0 and 1) at the lower and

upper disks via       and Pr. Clearly (0 and 1) decreases via  and

 while it rises for Pr and  . Table 45 is constructed for (0 and 1) at the lower and

upper disks for distinct embedding variables. Concentration gradient shows reverse behavior by

strengthening values of suction/injection, Brownian motion and thermophoresis at lower and

upper disk. Moreover it enhances for higher estimations of squeezing parameter and Lewis and

Prandtl numbers.

Fig. 43 Behavior of  on ()
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Fig. 44 Behavior of  on ()

Fig. 45 Behavior for  on ()
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Fig. 46 Behavior of  on ()

Fig. 47 Behavior of  on ()
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Fig. 48 Behavior of Pr on ()

Fig. 49 Behavior of  on ()
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Fig. 410 Behavior of  on ()

Fig. 411 Behavior of  on ()
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Fig. 412 Behavior of  on ()

Fig. 413 Behavior of  on ()
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Fig. 414 Behavior of  on ()

Fig. 415 Behavior of 1 on ()
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Table 4.3. Skin friction (0 and 1) via    and 

    0 1

01 02 02 10 2192644 2087126

02 2426313 2343562

03 2659187 2604499

03 00 02 10 2657925 2603901

05 2665798 2607639

09 2683339 2616023

03 02 00 10 4498153 4414397

03 1759886 1721182

05 08736101 08528635

03 02 02 06 2596938 2606282

10 2659187 2604499

15 2736807 2603390
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Table 4.4. Nusselt numbers (0 and 1) via         and Pr.

       Pr  0 (0) 0 (1)

00 03 02 10 02 05 10 10 05 077444 121516

06 061257 129577

11 050356 135632

02 01 02 10 02 05 10 10 05 063707 128291

05 063707 128291

12 063707 128291

08 03 00 10 02 05 10 10 05 056634 132075

06 056636 132075

12 056640 132074

02 03 02 00 02 05 10 10 05 069050 139050

10 063707 128291

20 058798 118403

02 03 02 10 02 05 10 10 05 063707 128291

06 050761 152494

10 035291 179063

02 03 02 10 02 04 10 10 05 067273 122579

09 050888 152875

14 037849 187469

02 03 02 10 02 05 06 10 05 063610 128133

09 063687 128250

14 063794 128465

02 03 02 10 02 05 10 06 05 076580 116552

10 063707 128291

16 048055 147280

02 03 02 10 02 05 10 10 00 021314 123568

05 028249 135975

09 032458 149867
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Table 4.5. Sherwood numbers (0 and 1) via       and Pr when

 = 05 and  = 03

       Pr 0 (0) 0 (1)

00 03 02 10 02 05 10 10 099833 110367

06 128577 101903

11 154546 095317

02 01 10 02 05 10 10 123601 103275

05 123601 103275

12 123601 103275

08 03 00 02 05 10 10 138749 099212

06 138746 099212

12 138737 099213

02 03 02 00 05 10 10 112380 084379

10 123601 103275

20 133266 119929

05 02 10 02 10 10 123601 103275

06 172340 058836

12 279345 026742

02 03 02 10 02 04 10 125507 102590

09 119987 105856

14 118165 108931

02 03 02 10 02 05 06 119159 097583

09 122724 101864

14 127042 108837

02 03 02 10 02 05 10 06 114657 116552

10 123601 109275

16 135846 103665
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4.4 Conclusions

The key attributes associated with this analysis are:

² Higher  rise the liquid temperature.

² Temperature is improved for higher thermophoresis and Brownian motion parameters.

² Behavior of squeezing variable on  () and  () is quite contrary.

² Concentration is reduced for 

² 0 and 1 are higher for  and  whereas reverse is noticed for 

² Viscous ‡uid outcomes can be recovered for  = 0

² Magnitude of temperature gradient enhances via  and  for lower disk while opposite

trend is observed for upper disk. Further it reduces for higher thermophoresis parameter


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Chapter 5

Dissipative ‡ow of hybrid nanoliquid

(2¡aluminum alloy nanoparticles)

with thermal radiation

An improvement in heat transfer ‡uid is one of the important tasks which can be achieved

through implementation of hybrid nanoparticles. Hence the aim of this chapter is to commu-

nicate ‡ow of hybrid nanoliquid by stretchable rotating in…nite disk. The considered hybrid

nanoliquid is a combination of and nanoparticles and water. Law of energy incorporates the

nonlinear radiation, dissipation and irregular heat source terms. Von Karman variables lead to

dimensionless problem under consideration. Reduced system is tackled numerically via NDSolve

based Shooting scheme. Graphical descriptions are made against various physical variables of

interest. Moreover rate of heat transfer at disk is estimated. Present work pointed out that local

heat transfer rate accelerates for higher thermal radiation and thermal slip parameters whereas

decaying trend is seen for higher estimations of Eckert number and (ESHS) parameter. It is

noted that ‡uid velocity reduces for higher volumetric fraction. Furthermore hybrid nanomate-

rials have great in‡uence throughout our analysis when compared with regular nanomaterials.

The peculiar outcomes achieved in this study are important in industrial research, academics

and discussion about heat transfer analysis in ‡ow of two types of nanoliquids by keeping the

regular ‡uid …xed. Finally key points of present analysis are included.
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5.1 Problem description

5.1.1 Formulation

We consider ‡ow of nanoliquid comprising of hybrid nanoparticles (7072, 7075) by an

in…nite disk. Two-dimensional steady ‡ow of viscous liquid is considered. Physical interpre-

tation of considered problem is presented in Fig. 51 Non-linear thermal radiation and space

dependent heat source are addressed. No relative motion exists between nanoparticles and base

liquid. Furthermore it is assumed that nanoparticles have uniform shape and size and uniformly

distributed in the base liquid. Problem statement with dissipation e¤ect has following equations

[106]:

+

Fig. 51 Flow con…guration.

5.1.2 Governing equations

Continuity equation:



+



+



= 0 (5.1)

Momentum equation:



µ





¡
2


+





¶

= 

µ
1






+
2

2
¡


2
+
2

2

¶

 (5.2)
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

µ





+



+





¶

= 

µ
1






+
2

2
¡


2
+
2

2

¶

 (5.3)



µ





¡





¶

= 

µ
2

2
+
1






+
2

2

¶

 (5.4)

where  denotes the hybrid nanoliquid density, ( ) being the velocity components in (

©) directions and  hybrid nanoliquid. Relevant conditions are:

 = 1 + 



¯
¯
=0

  = ­+  


¯
¯
=0

 j=0 = 0

j¡!1 = 0

9
=

;
(5.5)

5.1.3 Thermal energy

The energy expression is given by:

()
¡


 +



¢
= 

2
2

+0( ¡ 1) exp(¡
q

­

)

+
¡
16¤

3¤ 
3
1




¢
+ 

³¡



¢2
+
¡



¢2´


9
=

;
(5.6)

with

 j=0 = 1 +1



  j¡!1 = 1 (5.7)

where  depicts the exponential index, () the hybrid nanoliquid heat capacitance, 

the thermal conductivity of hybrid nanoliquid,  the temperature, ¤ the mean absorption

coe¢cient, 0 heat generation/absorption variable, 
¤ Stefan-Boltzmann constant and (,

1) the wall and ambient liquid temperatures.
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Table 5.1: Thermo-physical features of nano‡uid (70752) and hybrid nanoliquid

7072¡70752.

Properties Nano‡uid Hybrid nano‡uid

Density  = 

³
(1¡ ) + 

³



´´
 =  (1¡ 2)

³
(1¡ 1) + 1

³
1


´´

+2

³
2


´

Viscosity  =


(1¡)25
 =


(1¡1)

25(1¡2)
25

Heat capacity () = ()

³
(1¡ ) + 

()
()

´
() = 2

³
()2
()

´

+() (1¡ 2)
³
(1¡ 1) + 1

()1
()

´

Thermal conductivity


=

+(¡1)¡(¡1)(¡)
+(¡1)+(¡)




=
2(¡1)¡(¡1)2(¡2)
2+(¡1)+2(¡2)

where



=

1(¡1)¡(¡1)1(¡1)
1+(¡1)+1(¡1)

5.1.4 Dimensionless systems

Following Karman similarity variables:

 = ­ 0 ()   = ­ ()   = ¡
p
2­()  = 1 + ( ¡ 1)()  = 

s
­


, (5.8)

Eqs. (51)¡ (57) become

1

12
2 000 + 2 00 ¡  02 + 2 = 0 (5.9)

1

12
200 + 20 ¡ 2 0 = 0 (5.10)

1

Pr

µ
4

+
4

3


¶

00 +
1

1
( 002 + 02) +  exp(¡)¡ 23

0 = 0 (5.11)

 0()j=0 = 
0(0) +  

00()j=0 

()j=0 = 1+  ()j=0 

()j=0 = 1 +  
0()
¯
¯
=0



 0()j=1 = 0 ()j=1 = 0

9
>>>>>>=

>>>>>>;

(5.12)
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where

1 = (1¡ 1)
25(1¡ 2)

25 (5.13)

2 = (1¡ 2)

µ

(1¡ 1) + 1

µ
1


¶¶

+ 2

µ
2


¶

 (5.14)

1

3 = (1¡ 2)

µ

(1¡ 1) + 1
()1
()

¶

+ 2

µ
()2

()

¶

 (5.15)

4 =
2(¡ 1) ¡ (¡ 1)2( ¡ 2)

2 + (¡ 1) + 2( ¡ 2)

1(¡ 1) ¡ (¡ 1)1( ¡ 1)

1 + (¡ 1) + 1( ¡ 1)
 (5.16)

Here  denotes the velocity slip parameter,  stretching variable,  radiation parameter, 

the Eckert number, Pr Prandtl number,  thermal slip parameter and  (ESHS) variable.

We set

 = 
q

2­

  = 2­2

() (¡1)
  =

0
­()



Pr =
()


  = 4¤ 31

¤ ()
  = 1

q
2­

  = 1

­ 

9
>=

>;
(5.17)

5.1.5 Physical quantities

For practical and engineering purposes we are concerned with the exploration of physical quan-

tity i.e. temperature gradient () which gives rate of heat transfer at disk and is expressed

by:

 =


 ( ¡ 1)
 (5.18)

where

 = ¡

µ




¯
¯
¯
¯
=0

¡ j=0

¶

 (5.19)

The above expression yield

Re¡05 = ¡



·

1 +
4

3


¸

0 (0)  (5.20)

where local Reynolds number is Re =
2­

.
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Table 5.2: Physical and thermal features of 7072 and 7075 nanoparticles and water

(2) [107 108].

Constituents (3) () ()

7072 2720 893 222

7075 2810 960 173

2 997.1 4179 0.613

5.2 Numerical technique and discussion

The reduced problem de…ned in Eqs. (59)¡(512) has been solved numerically by NDsolve tech-

nique. The simulation of non-linear problems has been performed through employing computer

software Mathematica. Thermo-physical characteristics of water and hybrid nanomaterials are

depicted in Tables 51 and 52 Temperature () and velocity  0 () are disclosed in graphi-

cal form for various estimations of sundry variables i.e radiation parameter (), velocity slip

parameter (), thermal slip parameter ( ), Prandtl number (Pr), Eckert number () and

(ESHS) parameter ( ) (see Figs. 52 ¡ 58). In these Figs. solid lines show the behavior of

7072 ¡ 70752 hybrid nanoliquid and dashed lines present features of 70752

nano‡uid. Further engineering quantity of curiosity namely heat transfer rate is also estimated

and discussed. The values used for involved variables are  = 37  =  =  = 01, Pr = 62

 = 03 =  1 = 03 2 = 05 and  = 02

Consequences of  (i.e. velocity slip parameter) on 
0 () are pointed out in Fig. 52 From

this Fig. it is identi…ed that larger  partially shifted the stretching velocity. As a result the

velocity is diminished. Further in case of 7072¡70752 hybrid nanoliquid the velocity

is more then 70752 nano‡uid. Characteristics of 12 on  () is declared in Fig. 53 It

is scrutinized that  0 () gives less layer thickness for hybrid nanoliquid (7072¡70752)

when compared to nanoliquid (70752). An enhancement in 2 leads to decay of velocity

 0 ().

In‡uences of embedded ‡ow variables on temperature of hybrid nanoliquid (7072 ¡

70752) and nanoliquid (70752) are depicted in Figs. 54 ¡ 58 E¤ect of  on

 () is shown in Fig. 54 Higher  increases the frictional heating which generates more heat.
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That is why the temperature increases. Moreover hybrid nanoliquid (7072 ¡70752)

has higher temperature then nanoliquid (70752). Fig. 55 declared the importance of

 on  (). Temperature is higher for higher  . Fig. 56 is disclosed to understand the feature

of (ESHS) parameter  on  (). Here increasing estimations of  augment the temperature

 (). In fact strength of heat source process increases which generates more heat into ‡uid and

thus  () rises. For hybrid nanoliquid (7072¡ 70752) an increment in thermal …eld

is rapid when compared with nanoliquid (70752). An enlacement in 2 corresponds to

rise of temperature. This behavior is depicted in Fig. 57 Moreover immediate improvement in

 () is due to (7072¡70752) hybrid nano‡uid. Changes in  () via  are portrayed

in Fig. 58 Clearly  () increases for larger  Physically higher  supplies more heat in

liquid and consequently rise  (). A sudden improvement in  () is due to hybrid nanoliquid

(7072 ¡ 70752). Aspect of various embedding variables on local Nusselt number of

nano‡uid (7075¡2) and hybrid nano‡uid (7072¡7075¡2) is reported in Table

53. Heat transfer rate () is increasing function of  and  . However it indicates reverse

behavior via  and . Further it is noteworthy to mention that for hybrid nanomaterials

(7072¡7075) the heat transfer rate is more than nanoparticles (7075).

Solid line    AA7072-AA7075-H2 O

Dashed line     AA7075-H2 O

s  0.0, 0.4, 0.8, 1.2

2 4 6 8 10


0.05

0.10

0.15

0.20

0.25

f '

Fig. 52 Variation of  0 () via 
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AA7072 AA7075  H2 O 1  0.2 , 2  0.2 

AA7072 AA7075  H2 O 1  0.2 , 2  0.1 

AA7072  H2 O 1  0.2 , 2  0.0 

H2 O 1  0.00 , 2  0.0 

2 4 6 8 10


0.05

0.10

0.15

f '

Fig. 53 Variation of  0 () via 12

Solid line    AA7072-AA7075-H2 O

Dashed line     AA7075-H2 O

Ec  0.0, 1.0, 2.0, 3.0, 4.0
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
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Fig. 54 Variation of  () via 
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Solid line    AA7072-AA7075-H2 O

Dashed line     AA7075-H2 O
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Fig. 55 Variation of  () via  

Solid line    AA7072-AA7075-H2 O

Dashed line     AA7075-H2 O
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Fig. 56 Variation of  () via  
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AA7072 AA7075  H2 O 1  0.2 , 2  0.2 

AA7072 AA7075  H2 O 1  0.2 , 2  0.1 

AA7072  H2 O 1  0.2 , 2  0.0 

H2 O 1  0.0 , 2  0.0 
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Fig. 57 Variation of  () via 12

Solid line    AA7072-AA7075-H2 O

Dashed line     AA7075-H2 O
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Fig. 58 Variation of  () via 
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Table 5.3: Nusselt number for nano (7075 ¡ 2) and hybrid nano‡uid (7072 ¡

7075¡2).

7075¡2 7072¡7075¡2

     

00 03 01 01 0.293774 0.720721

0.3 0.374094 0.852325

0.6 0.524971 1.09989

0.3 0.0 01 0.044318 0.327675

0.3 0.67296 1.22708

0.6 2.46616 3.47558

03 03 0.0 01 0.394669 0.879845

0.2 0.374094 0.852325

0.4 0.353518 0.824806

03 03 01 0.0 2.07149 2.59573

0.01 1.90175 2.42139

0.1 0.374094 0.852325

5.3 Concluding remarks

Radiated ‡ow of nanoliquid comprising of hybrid nanoparticles (7072, 7075) by an in…nite

disk is addressed numerically. Salient aspects of various emerging variables like velocity and

thermal slip parameters, nano‡uid volumetric fraction, thermal radiation and Eckert number

on Nusselt number, velocity and temperature are studied. Following key points are important.:

² Outcomes of slip parameter and nanoparticles volume fraction on radial velocity are op-

posite.

² Temperature has increasing e¤ect for larger values Eckert number and ESHS parameter.

² Temperature is qualitatively similar for nanoparticles volumetric fraction and radiation

parameter.
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² Heat transmission rate is enhanced by thermal slip and radiation parameter whereas

reverse holds for higher Eckert number and ESHS parameter.

² For 7072¡7075 nanoparticles, the heat transfer rate is lower when compared with

7075 nanoparticles.

² Hybrid nanomaterials have great in‡uence throughout the analysis when compared with

regular nanomaterials.
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Chapter 6

Numerical simulation for

irreversibility analysis of ethylene

glycol (C2H6O2) based carbon

nanotubes ‡ow in

Darcy-Forchheimer porous medium

Here Darcy-Forchheimer stretched ‡ow of CNTs in a rotating frame. Two types of CNTs

known as multiple wall (MWCNT) and single wall (SWCNT) carbon nanotubes are accounted.

Ethylene glycol (EG) is treated as base liquid. Xue’s model is utilized for the physical features

of density, thermal conductivity and speci…c heat. Entropy analysis is the main focus of this

study. Heat transfer is modeled through non-linear thermal radiation, viscous dissipation and

convective condition. The governing ‡ow problems have been computed via numerical approach.

Obtained solutions are presented for various estimations of embedded variables. Outcomes for

single-walled and multi-walled CNTs are arranged and compared. Our …ndings depict that

entropy generation has increasing trend for Brinkman number and temperature ratio parameter.

Thermal …eld boosts up with an enhancement of radiative and convective variables. Moreover

temperature gradient has marginally higher values in case of SWCNT when compared with
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MWCNT.

6.1 Modeling

Here entropy generation in 3D rotating ethylene glycol CNTs nanoliquid ‡ow by stretching

surface is scrutinized. Darcy-Forchheimer model is implemented to explain the ‡ow in porous

space. The system rotates with angular velocity  (see Fig. 61). Here  =  (with constant

  0) denotes the stretching velocity. Temperature at the surface is controlled by means of

convection which is portrayed by hot liquid at temperature  below the sheet and heat transfer

coe¢cient  . In addition irreversibility of viscous dissipation and non-linear thermal radiation

are addressed. The governing expressions in view of aforementioned considerations are:

Stretching sheet

Fig. 61 Flow con…guration..




+



+



= 0 (6.1)





+ 




+




¡ 2 = 

µ
2

2

¶

¡


¡ 2 (6.2)





+ 




+




+ 2 = 

µ
2

2

¶

¡


 ¡ 2 (6.3)
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
 + 


 +


 = 

2
2 +


()

(2 + 2) + 1
()




¡
16¤

3¤  3



¢

+

()

h¡



¢2
+
¡



¢2i


9
=

;
(6.4)

where (  ) show velocity components along (  ),  = 

p


the porous medium non-

uniform inertia coe¢cient,  the nano‡uid kinematic viscosity,  the porous space perme-

ability,  the drag coe¢cient,  the thermal di¤usivity of nano‡uid, ( 1) the liquid

and ambient temperatures, ¤ manifests coe¢cient of mean absorption and ¤ the Stefan-

Boltzmann constant.

6.1.1 Thermo-physical features of carbon nanotubes and ethylene glycol

Model for nano‡uid accorded by Xue [16] is



=

1¡+2


¡
ln
+

2

1¡+2


¡
ln
+

2

  =  (1¡ ) +   =




 =


()
  =


(1¡)2510

 () = ()(1¡ ) + ()

9
>>=

>>;
(6.5)

where  manifests nano‡uid,  the solid volume friction of CNTs, (     ) the base

‡uid, nano‡uid and carbon nanotubes densities, (   ) the nano‡uid e¤ective and base liq-

uids dynamic viscosity, () the nanoliquid e¤ective heat capacity and (   ) the thermal

conductivities of carbon nanotubes and base liquid.

Table 6.1: Physical and thermal features of carbon nanotubes (SWCNT and MWCNT)

and ethylene glycol (262) [109 110].

Constituents (3) () ()

 2600 425 6600

 1600 796 3000

262 1115 2430 0.253
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6.1.2 Boundary conditions

The related conditions are

 = () =   = 0  = 0 ¡ 

 =  ( ¡  ) at  = 0

 ¡! 0  ¡! 0  ¡! 1 as  ¡!1

9
=

;
(6.7)

6.1.3 Transformations

The non-dimensional variables for considered problem are expressed by

 =  0()  = ¡()  = ¡( )
12()

() = ( ¡ 1)( ¡ 1)  = (


)12

9
=

;
(6.8)

Insertion of  =  0()  = ¡() and  = ¡( )
12() ful…lls expression (61) auto-

matically.

6.1.4 Transformed systems

Now using Eq. (68) in Eqs. (62)¡ (63) one obtains

1

(1¡ )25
³
1¡ + 



´( 000 ¡  0) +  00 + 2­ ¡ (1 + )

02 = 0 (6.9)

1

(1¡ )25
³
1¡ + 



´(000 ¡ ) + 0 ¡  0 ¡ 2­ 0 ¡ 

2 = 0 (6.10)

1
Pr

³



´
00 + 

Pr (( ¡ 1))
2 ¡302( ¡ 1) + (( ¡ 1) + 1)

00
¢

+
³
1¡ + 



´
( + )0 + 

Re(
02 + 2) = 0

9
=

;
(6.11)

(0) = 0  0(0) = 1 (0) = 0 0(0) =


(0)

 0(0)! 0  0(0)! 0 (0)! 0

9
=

;
(6.12)

where prime symbolizes di¤erentiation via   =



q

 the Biot number,  =



12


the inertia

coe¢cient,  =



the porosity parameter,  = 16¤ 31
3¤

the radiation variable, Pr =
()


the Prandtl number, ­ = 
 refers to rotation variable and  =


1

the temperature ratio
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variable.

6.1.5 Physical quantities

For engineering curiosity, we are concerned for drag force () and temperature gradient ()

given by

 =
2


2



 =


(¡1)


9
=

;
(6.13)

in which () and () are

 = 
¡



¢¯
¯
=0



 = ¡



¡



¢¯¯
¯
=0

+ 4¤

3¤
4



¯
¯
¯
=0



9
=

;
(6.14)

Invoking Eq. (614) in Eq. (613) we have

Re05  = 
1

(1¡)2510
 00 (0) 

 = ¡
³



+( (0) ( ¡ 1) + 1)
3
´
0 (0) 

9
=

;
(6.15)

where local Reynolds number is symbolized as Re =


. It is important to highlight that

conventional liquid situation is recovered when  = 0

6.2 Entropy analysis

Analysis of entropy production is very important about irreversibility of thermal energy of a

certain system. Following Bejan the volumetric rate of entropy production satis…es

 =

 21

·



+
16¤

3¤

¸µ




¶2
+

1

ª+

1

(2 + 2) (6.16)

where ª represents viscous dissipation as

ª =

µ




¶2
+

µ




¶2
 (6.17)

Using Eq. (617) in Eq. (616) one has
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 =

µ

 21

¶·



+
16¤

3¤

¸µ




¶2
+

µ

1

¶"µ




¶2
+

µ




¶2
#

+

µ

1

¶

(2 + 2)

(6.18)

Let us de…ne entropy generation number () which is equal to generation rate of volumetric

entropy () to generation rate of characteristic entropy (0 =
 (¡1)

12 ) ratio. Mathemat-

ically this relation

 =


0
 (6.19)

On utilizing transformation (68) Eqs. (618) and (619) take the form

 =

·



+(( ¡ 1) + 1)
3

¸

021+ 
1

(1¡ )2510
( 02+ 2) +



(1¡ )2510
(

002+ 02)

(6.20)

For the sake of relative signi…cance of entropy generation by heat transfer, we de…ne another

essential parameter known as Bejan number i.e

 =
       

  
 (6.21)

or

 =

h


+(( ¡ 1) + 1)3

i
021

h


+(( ¡ 1) + 1)3

i
021 + 

1
(1¡)2510

( 02 + 2) + 
(1¡)2510

(
002 + 02)



(6.22)

where  =
2
¢ denotes the Brinkman number and 1 =

(¡1)
1

the temperature ratio

variable due to entropy generation.

It is important to highlight that for  = 1 the heat transfer irreversibility e¤ects become

dominant whereas for case  = 0, the entropy due to liquid friction dominates. Furthermore

 = 05 represents that production of entropy because of liquid friction and heat transfer are

similar.
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6.3 Computational procedure

Numerical solutions to the proposed non-linear coupled problems (69) ¡ (611) and (612)

are obtained by employing bvp4c technique (based on FDM). For this objective we reduced

Eqs. (69 ¡ 612) to …rst ODEs. The mesh and error control selection is developed on the

residual of progressive computations. The boundary layer region is attained for each collection

of parametric values. The iterative error is set 10¡6. The main algorithm are given as follows:

1 =  2 = 
0 3 = 

00 4 =  5 = 
0 6 =  7 = 

0 (6.23)
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(6.24)

with initial conditions 2
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3
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7
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(6.25)

6.4 Discussion

This portion is dedicated to interpret physical feature of embedding variables on ‡ow quanti-

ties namely velocities ( 0() and 0 ()), temperature  ()  entropy production  and Bejan
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number  against SWCNTs and MWCNTs. These outcomes are well explained and pre-

sented graphically (see Figs. 62¡ 617). In these graphs the dotted lines present the feature

of SWCNTs and the solid lines show the behavior of MWCNTs. Skin frictions ((Re05 ) and

(Re05 )) and Nusselt numbers (Re
¡05[MWCNTs] and Re

¡05[SWCNTs]) are also

computed and analyzed (see Tables 62 and 63). Further physical and thermal features of car-

bon nanotubes (SWCNT and MWCNT) and ethylene glycol (262) are shown in Table 61.

The assigned values to the physical variables in our whole analysis are  =  =  =  = 01

­ = 03 Pr = 4036  = 50,  = 25 and 1 = 05.

6.4.1 Velocity

Figs. (62¡69) disclosed the variations of interesting physical variables on velocity distributions

( 0 () and 0 ()). E¤ect of  in the range of 01 ·  · 05 for both SWCNTs and MWCNTs on

velocity distributions ( 0 () and 0 ()) are shown in Figs. (62 and 63). It is found that larger

estimations of nanoparticles volume fraction led to enhance ( 0 () and 0 ()) in both cases of

CNTs. Figs. (64 and 65) enlighten the behavior of  on ( 0 () and 0 ()) Here higher 

decay the ‡uid velocities ( 0 () and 0 ()). Physically for higher  the internal force enhances

and thus velocity decays. Plots of  for ( 0 () and 0 ()) are depicted in Figs. (66 and 67). It

is clear from these Figs. that velocities ( 0 () and 0 ()) increase for higher . In fact resistive

force increases in the nanoliquid motion due to porous medium. Thus velocities ( 0 () and

0 ()) are reduced. Figs. (68 and 69) portray the aspect of rotation parameter ­ on velocities

( 0 () and 0 ()) These Figs. pointed out that ­ decayed the velocity distribution in both

directions. Higher estimations of ­ make more rotation rate when compared with stretching

rate. Therefore in‡uence of higher rotation gives a decay in liquid velocity. Further Figs.

(62 and 69) also indicate that SWCNTs have lower velocity when compared with MWCNTs.

Physically SWCNTs has higher density than MWCNTs.

6.4.2 Variation in temperature

To investigate the behavior of dimensionless temperature verses    and  the Figs.

(610¡ 614) are interpreted. Feature of  on thermal …eld is displayed in Fig. 610. Here tem-

perature signi…cantly decays for higher  Also thermal …eld  () is more in case of MWCNTs
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when compared with SWCNTs. Behavior of thermal …eld  () for larger  is disclosed in Fig.

611. Here thermal …eld and layer thickness are increased for both CNTs. Here  () is less in

case of SWCNTs than MWCNTs. Fig. 612 is designed to examine how thermal …eld is e¤ected

by . An increment in temperature for  is perceived. In physical sense this phenomenon is

anticipated, since temperature rises as radiation variable supplies more heat to the nanoliquid.

Fig. 613 displayed variation of  on  (). Temperature increases abruptly by Biot number 

This behavior is due to higher convection which enhanced the surface temperature.

6.4.3 Entropy generation and Bejan numbers

Figs. (614 ¡ 621) describe the aspects of various embedding variables (   and ) in

the range of 0 ·  · 50 on  and  for both MWCNTs and SWCNTs. Consequences of

 on  and  are declared in Figs. 614 and 615. Higher Brinkman number signi…cantly

enhance thermal energy irreversibility. This behavior is seen in Fig. 614. From Fig. 615 it is

noted that entropy generation rate  shows crossover point at  = 35. Before this variation,

the entropy is increased and then it starts to fall. Characteristics of temperature ratio variable

due to entropy 1 on  and  are reported in Figs. 616 and 617. Here we observed that

entropy and Bejan number are intensi…ed for both (SWCNTs) and (MWCNTs). Further 

is higher in case of (MWCNTs) than (SWCNTs). Figs. 618 and 619 are depicted to see

how  e¤ects the  and  Here we see that both  and  are increasing functions of

 Physically higher  rise the internal heat generation in moving liquid which consequently

enhance  and  Fig. 620 and 621 show outcomes for  and  in response to  It is

found that larger estimations of  insist an increment in both  and  In physical sense,

an enhancement in  corresponds to rise the stretching surface thermal energy irreversibility.

This fact declared the decaying features of  and .

6.4.4 Variations of non-dimensional drag forces and Nusselt number

Tables 62 and 63 are organized numerically to examined the behavior of physical quantities

(skin frictions and Nusselt number) for both SWCNTs and MWCNTs. Table 62 declared

that skin friction is increased via   and ­ Also higher estimations of  increases pri-

mary skin friction (¡Re05 ) whereas slowly reduction is occurs in secondary skin friction
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(¡Re05 ). Table 63 manifests that Nusselt number enhances for higher    and .

Furthermore Nusselt number has marginally higher values in case of SWCNTs when compared

with MWCNTs.

Fig. 62  0 () vs 

Fig. 63  () vs 
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Fig. 64  0 () vs 

Fig. 65  () vs 
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Fig. 66  0 () vs 

Fig. 67  () vs 
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Fig. 68  0 () vs ­

Fig. 69  () vs ­
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Fig. 610  () vs 

Fig. 611  () via 
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Fig. 612  () via 

Fig. 613  () via 
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Fig. 614  via 

Fig. 615  via 
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Fig. 616  via 

Fig. 617  via 
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Fig. 618  via 

Fig. 619  via 
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Fig. 620  via 

Fig. 621  via 
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Table 6.2: Computation of (Re05 ) and (Re
05
 ) via    and ­ for both MW-

CNTs and SWCNTs.

4036 MWCNTs SWCNTs

Parameters (…xed values) Variables

µ

¡Re
1
2
 

¶ µ

¡Re
1
2
 

¶ µ

¡Re
1
2
 

¶ µ

¡Re
1
2
 

 =  =  =  = 01  =0.1 2.3676 0.1888 2.3557 0.2050

Pr = 4036 ­ = 03 0.2 3.0515 0.2092 3.0670 0.2423

 = 25 1 = 05  = 50, 0.3 4.1012 0.2361 4.1334 0.2870

 =  =  = 01 ­ = 03  =0.1 1.9827 0.1888 2.0179 0.2050

Pr = 4036  = 50 0.2 2.0012 0.1884 2.0380 0.2046

 = 25  = 01, 1 = 05 0.3 2.0195 0.1881 2.0580 0.2042

 =  =  = 01 1 = 05  =0.1 2.1267 0.1888 2.1756 0.2050

Pr = 4036  = 50, ­ = 03 0.2 2.1576 0.2204 2.2062 0.2364

 = 25  = 01 0.3 2.1882 0.2518 2.2365 0.2675

 =  =  =  = 01 ­ =0.1 1.9743 0.0846 2.0077 0.0899

Pr = 4036 1 = 05 0.2 1.9754 0.1367 2.0091 0.1475

 = 25  = 01  = 50, 0.3 1.9772 0.1888 2.0113 0.2050
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Table 6.3: Variation of Re¡05[MWCNTs] and Re
¡05[SWCNTs] via   

and ­.

MWCNTs SWCNTs

Parameters (…xed values) Variables Re¡05 Re¡05

 =  =  =  = 01 ­ = 03  0.1 0.9061 0.9126

Pr = 4036  = 50,  = 25 1 = 05 0.2 2.8954 2.9213

0.3 7.1033 7.1730

 =  =  =  = 01 ­ = 03 1 = 05  0.1 0.9061 0.9126

Pr = 4036  = 25  = 01 0.2 1.7678 1.7799

0.3 2.5881 2.6051

 =  =  = 01 ­ = 03 1 = 05  0.1 0.9061 0.9126

Pr = 4036  = 50,  = 25  = 01 0.2 0.9064 0.9128

0.3 0.9066 0.9130

 =  =  =  = 01 1 = 05  0.1 0.9061 0.9126

Pr = 4036  = 50  = 01 ­ = 03 0.2 0.9975 1.0045

0.3 1.0947 1.1025

6.5 Final outcomes

Here thermodynamic second law is utilized to calculate the total entropy production. The

governing expressions are modeled including the Darcy-Forchheimer model, viscous dissipation,

ethylene glycol CNTs and nonlinear thermal radiation. Main …ndings are summed below.

² Higher ­  and  lead to decay the liquid velocities for both CNTs.

² Higher ,  and  strengthen thermal …eld

² ­  and  decay the skin frictions for both CNTs.

² Temperature gradient is enhanced via ,   and .

² Higher  and  boost up the Bejan number 

² Generation rate of entropy shows increasing impact for   and 
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Chapter 7

Numerical treatment of melting heat

transfer and entropy generation in

stagnation point ‡ow of hybrid

nanomaterials

(SWCNT-MWCNT/engine oil)

Present chapter addresses the entropy analysis and melting e¤ect in ‡ow of hybrid nanomaterials

consisting of CNTs nanoparticles and engine oil mixture. Flow is by a stretching cylinder.

Formulation accounting the viscous dissipation, velocity slip and thermal radiation impacts is

made. In order to estimate the disorder within the thermo-physical frame, second order analysis

has been used. The governing system with the imposed boundary condition is dimensionless

via proper variables and then tackled through numerical scheme. Numerical outcomes are

expressed graphically and analyzed. Comparison of hybrid nanomaterials, nanomaterials and

regular liquid are expressed graphically. Outcomes indicate that hybrid nanomaterials have

great impact throughout the inspection than common nanomaterials.
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7.1 Formulation

Fig. 71 presents the ‡ow con…guration. Consider stagnation point ‡ow of hybrid nanomate-

rials (dispersion of SWCNT and MWCNT in engine oil) past a stretching cylinder. Nanopar-

ticles SWCNT and MWCNT are treated as …rst and second particles respectively. Cylindrical

coordinates ( ) are used for the development of relevant expressions. The laminar and in-

compressible nanomaterials are assumed to be in thermal equilibrium. A single phase concept

is employed for nano‡uid modeling. Further no relative motion exists between liquid and

nanoparticles. Irreversibility analysis in porous space is considered. In addition velocity slip

and melting e¤ects are accounted. Governing ‡ow problems are:

Stagnation point 

Hybrid CNTs

Fig. 71 Flow model.




() +




() = 0 (7.1)


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with boundary conditions:

 = 0  = () + 1

   =  at  = 

 ¡! () =
1
   ¡! 1 as  ¡!1

9
=

;
(7.5)



µ




¶

=

=  [1 + ( ¡ 0)]() (7.6)

Slip condition is prescribed at cylinder i.e. velocity of adjacent liquid particles and cylinder

are not same due to low adhesive forces. The conditions (75) are imposed at  =  and

 ! 1. Here  =
0
 denotes the stretching velocity, 1


 represents the e¤ect of velocity

slip, () =
1
 the free stream velocity, ( = 0) means no injection/suction and (0,  1)

denote the respective surface, melting and ambient temperatures. Condition (76) physically

manifests that heat conducted to the surface is equal to heat of melting and sensible heat need

to ascent surface temperature (0) to its melting temperature (). Furthermore  surface

heat capacity and 1 the ‡uid latent heat.

7.1.1 Thermo-physical features for nanomaterials

Researchers proposed di¤erent nano‡uid models but these models are solely valid for elliptical

rotational and share particles with low axial ratio. Furthermore these models do not predict fea-

tures of space distribution of CNTs on thermal conductivity. However CNTs can be considered

as elliptical rotational particles along with higher axial ratio. In order to overcome these is-

sues, Xue recommended a theoretical model depending upon Maxwell theory which con…dently

describes impact of space distributions on CNTs and elliptical rotational nanotubes with large

axial ratio. The e¤ective characteristics of CNTs and hybrid CNTs may be presented in terms

of regular liquid (engine oil) as follows:

 =  (1¡ ) +  () = () (1¡ ) + ()

 =


(1¡1)
2510 



=

1¡+2


¡
ln
+

2

1¡+2


¡
ln
+

2



9
>>=

>>;
(7.7)
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and

 =  (1¡ 2)
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

9
>>>>>>>>>>>=
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(7.8)

In Eqs. (77) and (78), (1 2) denote the solid volume fractions of CNTs and hybrid CNTs,

(     ) the base ‡uid, nano‡uid and carbon nanotubes densities, ( ) exhibit

nano‡uid and hybrid nano‡uid, (     ) the base liquids, e¤ective nano‡uid and hybrid

nano‡uid dynamic viscosity, (     ) the thermal conductivities of CNTs and hybrid

CNTs and base liquid and (()  () ) the nanoliquid and hybrid nanoliquid e¤ective

heat capacities.

Table 7.1: Thermo-physical characteristics of carbon nanotubes (SWCNT and MWCNT)

and engine oil.

Constituents (3) () ()

 2600 425 6600

 1600 796 3000

Engine oil 884 1910 0.144

7.1.2 Dimensionless variables and transformed systems

Transformations are expressed as follows:

 =
p
()  =

0
 

0()  = ¡
q

0



 ()

() = ( ¡ )(1 ¡ )  =
q

0

(

2¡2

2 )

9
=

;
(7.9)
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After implementing the above transformations Eq. (7.1) is veri…ed and other Eqs. become

1

(1¡1)
25(1¡2)

25(1¡2)



(1¡1)+1







+2






 [(1 + 2)
000 + 2

00]

+ 00 +2 ¡  0
2
= 0

9
>>=

>>;
(7.10)

1
Pr

0

@



+

(1¡2)



(1¡1)+1
()

()



+2


()

()



1

A [(1 + 2)
00 + 2

0]

¡Pr 0 + 1

(1¡1)
25(1¡2)

25(1¡2)



(1¡1)+1
()

()



+2


()

()

 Pr(1 + 2)
002 = 0

9
>>>>>=

>>>>>;

(7.11)

 0(0) = 1 +  
00(0) (0) = 0

 0(1)!  (1)! 1

Pr
³
(1¡ 2)

³
(1¡ 1) + 1

()
()

´
+ 2

³
()

()

´´
(0) +



0(0) = 0

9
>>>=

>>>;

(7.12)

where Pr
³
=

()


´
signi…es the Prandtl number, 

µ

=
q


02

¶

manifests curvature variable,

 =
³
1
0

´
the ratio of velocities,  = (1¡)

1+(¡0)
the melting variable,  = 16¤ 31

¤
the

radiation parameter,  =

q
0

 the slip parameter,  = 2
() (¡1)

the Eckert number

and prime symbolizes di¤erentiation via . It is important to disclose that for 1 = 2 = 0, the

conventional liquid (engine oil) situation is recovered. When 1 6= 0 and 2 = 0 then engine oil

based CNTs nanomaterials has been achieved. The relation 2 6= 1 6= 0 must be satis…ed for

SWCNT-MWCNT/engine oil hybrid nano‡uid. Furthermore (1¡) and 1+(¡0)

denote the Stefan numbers of solid and liquid phases respectively.

7.1.3 Physical quantities

Physical quantities such as drag force () and temperature gradient () are given by:

 =
2


2



 =


 (1¡)


9
=

;
(7.13)
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where () and () are the wall shear stress and heat ‡ux i.e.,

 = 
¡



¢¯
¯
=



 = ¡ 
¡



¢
+ 

¯
¯
=



9
=

;
(7.14)

Dimensionless versions of () and () are

Re05  =
1

(1¡1)
2510(1¡2)

2510 
00 (0) 

Re¡05  = ¡
³



+
´
0 (0) 

9
=

;
(7.15)

in which local Reynolds number is symbolized as Re =


.

7.2 Entropy production (N) and Bejan number (Be)

Following Bejan the volumetric rate of entropy production for ‡ow of nano and hybrid nano‡uid

past a stretching cylinder is communicated. In present study the generation of entropy is due to

two factors i.e. irreversibility due to liquid friction and irreversibility due to heat transport. All

other factors of irreversibility like di¤usive, porosity, permeability and magnetic irreversibil-

ity are neglected. Additionally the system is considered in a state of local thermodynamic

equilibrium. The volumetric rate of entropy is

 =

1

µ




¶2
+

µ

 21

¶"µ



¶µ




¶2
+
16¤ 21
3¤

µ




¶2
#

 (7.16)

Entropy generation quantity () can be stated as

 =
    

    
 (7.17)

or

 =


0
 (7.18)

where generation rate of characteristic entropy is 0 =
 (1¡)

2

 212 ).
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On utilizing variables (79), Eqs. (716) and (718) take the form

 =
Re


µ



+

¶

(1 + 2)
02 +

Re






(1 + 2)

(1¡ 1)
2510(1¡ 2)

2510

002 (7.19)

where  = ,  = (1¡)
1

the non-dimensional temperature di¤erence,  = Pr

the Brinkman number and Re =



the Reynolds number. Let us de…ne another essential

dimensionless variable known as Bejan number which is employed to check whether entropy

generation due to heat dominates over liquid friction or vice versa. It is de…ned as

 =
    

  
 (7.20)

or

 =

Re


³



+
´
(1 + 2)

02

Re


³



+
´
(1 + 2)

02 + Re





(1+2)

(1¡1)
2510(1¡2)

2510 
002
 (7.21)

The values of  more or less than 1
2 elucidates that the contribution of irreversibility due to

heat transfer to a total entropy generation is higher/less when compared with irreversibility

due to liquid friction. Both e¤ects are same when  = 1
2  Besides that for  = 0 the entropy

production due to liquid friction dominates while for  = 1 the heat transfer irreversibility

e¤ects become predominates.

7.3 Computational scheme and discussion

After utilization of transformations the governing systems are solved through NDSolve tech-

nique. Numerical approximations are performed to obtain the outcomes by considering di¤erent

values of physical variables i.e.  =  =  =  = 02 , = 03 and 2 = 1 = 004. These

values remain unchanged throughout analysis except some variations in respective …gures. Figs.

(72)¡ (717) show the entropy generation (), Nusselt number (), temperature ( ())

skin friction () and velocity (
0 ()) of hybrid nano‡uid and nano‡uid for distinct variables

of interest. We select Pr = 6450 (for engine oil) in present work. Thermo-physical attributes

of both types of CNTs and engine oil are displayed in Tables (71). Additionally it is presumed

that nano and hybrid nano‡uids have same concentration. Fig. (72) explores that how veloc-
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ity of ‡uid is e¤ected by  for both hybrid nanomaterials (SWCNT-MWCNT/engine oil) and

nanomaterials (SWCNT/engine oil). Here velocity curves enhance for higher  Velocity 
0 ()

is less in case of SWCNT/engine oil) situation. Physically an increment in  means liquid

gains partially stretching velocity which decays the ‡uid velocity. In‡uence of  on  0 () is

expressed in Fig. 73. Velocity enhances for both nano and hybrid phases by increasing 

In fact temperature gap between ambient and melting surface increases due to enhancement of

sensible heat. Therefore velocity  0 () increases. Furthermore the impact of hybrid nano‡uid

dominates over nano‡uid. Fig. (7.4) elucidates variation in  0 () against  It is noted that

velocity near the surface reduces whereas it enhances far away from stretching cylinder. The

outcomes of volumetric fraction on  0 () is arranged in Fig. (7.5). Velocity  0 () grows up for

larger volumetric fraction for both cases due to higher convective ‡ow. This Fig. also explores

that velocity curves are remarkably more for hybrid nanomaterials rather than nanomaterials.

Fig. (7.6) presents the feature of temperature  () with variation of  One can see that

 () enhances for both nano and hybrid phases. In fact rise in strength of thermal layer is

because of transport of radiant energy to liquid particles by higher  Thermal …eld  ()

improves for higher  in both nano and hybrid phases (see Fig. 7.7). Physically higher 

contribute more dissipative energy to nanomaterials which causes to augment the thermal …eld

 (). Furthermore this Fig. also declared that hybrid nano‡uid provided more dissipative

energy than nanoliquid. Fig. (7.8) exhibits the outcomes of  on  (). Intensi…cation in 

signi…cantly enhances  () in both cases. It is also found that hybrid nanomaterials show best

performance in comparison with nanomaterials. Higher  leads to decay the cylinder surface

due to which less nanomaterials are stick to surface. Since conduction process is more near the

surface, therefore  () enhances. E¤ect of  on  () is illustrated in Fig. (7.9). From this

Fig. initially the temperature decays because temperature di¤erence between melting surface

and ambient liquid enhances. After that  () starts to enhance. Fig. (7.10) exhibits that how

 () of ‡uid is e¤ected by nanoparticles volumetric fraction (2). Temperature enhances for

higher 2. Furthermore this Fig. provides the comparative study of nanomaterials, hybrid non-

material and base liquid. Clearly it is found that hybrid nanomaterials have more contribution

to increase  () than nanomaterials.

The concept of (()) in liquid is included because of viscosity and thermal di¤usion. Thus
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it is important to explore the disorderedness in system to compute its capability. Fig. (710)¡

(712) are displayed to study the behaviors of  1 and 12 on (). Fig. (7.10) depicts

the variation in () due to 1. Since entropy is directly linked with temperature. Therefore

an increase in 1 corresponds to more temperature (which causes entropy to enhance). Moreover

reasonable performance is displayed by hybrid nanomaterials followed by nanomaterials and

regular liquid. Fig. (7.11) reveals that an increment  decays the entropy () for both

cases of nanomaterials. Fig. (712) provides the comparative study of engine oil (1 = 2 = 0),

nano‡uid (1 6= 2 = 0) and hybrid nanoliquid (1 6= 2 6= 0). This Fig. witnesses that hybrid

nanomaterials greatly e¤ect the entropy () when compared with common nanomaterials

and based liquid. An intensi…cation in volumetric fraction (2) reduces the skin friction 

This behavior is shown via Fig. (7.13). Further this Fig. re‡ects that reduction in skin friction

is more in case of hybrid nanomaterials than nanomaterials and base liquid. It is observed from

Figs. (7.14) and (7.15) that  shows a reverse tendency towards  and  The values of

skin friction  are higher for (SWCNT-MWCNT/engine oil) than (SWCNT/engine oil). Fig.

(7.16) is drawn to explore the feature of volumetric fraction 2 on . It is found that 

decays for 2  is also higher for hybrid nanoliquid when compared with common nano‡uid

and base liquid.

Dashed line : SWCNT-MWCNT/ Engine oil

Solid line : SWCNT/Engine oil 
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Fig. 72  0 () vs .

119



Dashed line : SWCNT-MWCNT/ Engine oil

Solid line : SWCNT/Engine oil 
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Fig. 73  0 () vs .

Dashed line : SWCNT-MWCNT/ Engine oil

Solid line : SWCNT/Engine oil 
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Fig. 74  0 () vs .
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1  0.04 , 2  0.04  hybrid nanofluid 

1  0.04 , 2  0.0  nanofluid 

1  0.04 , 2  0.03  hybrid nanofluid 

1  0.0 , 2  0.0   base fluid 
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Fig. 75  0 () vs 12.

Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 76  () vs .
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Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 77  () vs .

Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 78  () vs .
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Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 79  () vs .

1  0.04 , 2  0.04  : hybrid nanofluid

1  0.04 , 2  0.0  : nanofluid
1  0.0 , 2  0.0  : base fluid

1  0.04 , 2  0.02  : hybrid nanofluid
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Fig. 710  () vs 12
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Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 711  () vs 1.

Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 712  () vs .
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1  0.04 , 2  0.04  : hybrid nanofluid

1  0.0 , 2  0.0  : base fluid

1  0.04 , 2  0.0  : nanofluid
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Fig. 713  () vs 12.

1  0.04 , 2  0.04  : hybrid nanofluid

1  0.04 , 2  0.02  : hybrid nanofluid

1  0.0 , 2  0.0  : base fluid

1  0.04 , 2  0.0  : nanofluid
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Fig. 714  vs. 12
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Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 715  vs. 

Dashed line : SWCNT MWCNT  Engine oil

Solid line : SWCNT Engine oil
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Fig. 716  vs. 
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1  0.03 , 2  0.03  : hybrid nanofluid

1  0.02 , 2  0.03  : hybrid nanofluid

1  0.01 , 2  0.0  : nanofluid

1  0.0 , 2  0.0  : base fluid
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Fig. 717  vs. 12

7.4 Final remarks

² The key outcomes of current chapter are:

² Velocity has decaying behavior for larger curvature and slip variables.

² Intensi…cation in (()) is observed for larger    2 and 1

² Decay in entropy production rate () is noted for larger  whereas opposite trend is

seen for higher 1 and 1

² Skin friction manifests reverse tendency towards  and 

² Nusselt number () inversely varies with 2

² As expected hybrid nanomaterials impact is more in whole analysis than nanomaterials

and base liquid.
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Chapter 8

Optimization of entropy production

in ‡ow of hybrid nanomaterials via

porous space

Irreversibility analysis in Darcy-Forchheimer ‡ow of nanomaterials with (SWCNT) and (MW-

CNT) hybrid nanoparticles/kerosene oil mixture is presented. Xue’s and newly modi…ed Xue’s

models are implemented for physical feature of empirical relations (thermal conductivity, den-

sity and speci…c heat). Analysis of entropy is performed to estimate the disorder within the

thermo-physical frame. The governing ‡ow expressions have been computed through numerical

scheme. Graphical illustrations and tables are made to investigate the e¤ects of noteworthy em-

bedding variables on various physical distributions. Moreover, detailed analysis for temperature

and velocity gradients against pertinent parameters are provided. Our …ndings re‡ect that tem-

perature upgraded for both nanoliquid and hybrid nanoliquid by higher Eckert number and heat

source parameter while a contrary trend is seen for temperature gradient. Skin friction escalates

for inertia coe¢cient, rotation parameter and porosity parameter. There is remarkable increase

for SWCNT-MWCNT/kerosene oil hybrid nano‡uid when compared with SWCNT/kerosene

oil nanoliquid. As a whole hybrid nanomaterials have great in‡uence throughout our analysis

when compared with regular nanomaterials.

128



8.1 Mathematical formulation andmodeling of hybrid nano‡uid

Present problem comprises a mixture of hybrid nanomaterials SWCNT and MWCNT which

are dispersed in kerosene oil as a regular liquid. Thermo-physical features of hybrid liquid are

considered to rely on volumetric fraction of nanoparticles (1 2). Flow is considered in porous

space by utilizing Darcy-Forchheimer model. The wall velocity is expressed as  =  (with

constant   0) along x-axis while stretching along y-axis is ignored ( = 0). Additionally whole

system rotates with angular velocity (). The surface temperature is controlled via convection.

Irreversibility analysis in porous space is considered. The graphical view of current problem has

been disclosed in Fig. 81. Expressions that model present problem in view of above mentioned

considerations are:

Stretching sheet

Hybrid CNTs

Fig. 81 Flow con…guration.




+



+



= 0 (8.1)





+ 




+




¡ 2 = 

µ
2

2

¶

¡



¡ 2 (8.2)





+ 




+




+ 2 = 

µ
2

2

¶

¡



 ¡ 2 (8.3)
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
 + 


 +


 =


()

2
2 +


()

(2 + 2) + (¡1)
()

+


()

h¡



¢2
+
¡



¢2i


9
=

;
(8.4)

where ( ) designate the respective velocity components in (  ) directions,  the

hybrid nano‡uid kinematic viscosity,  = 

p


the porous medium non-uniform inertia co-

e¢cient,  the permeability of porous space,  the drag coe¢cient( 1) the liquid and

ambient temperatures and  heat absorption/generation.

8.1.1 Empirical relations and thermo-physical features for nanomaterials

Table 8.1: Empirical relations for thermo-physical features of nano‡uid ( ¡ kerosene

oil) and hybrid nanoliquid ( ¡ -kerosene oil).

Properties Nano‡uid Hybrid nano‡uid

Density  =  (1¡ ) +   =  (1¡ 2)
³
(1¡ 1) + 1

³




+2

³




´

Viscosity  =


(1¡1)
2510  =


(1¡1)

25(1¡2)
25

Heat capacity () = () (1¡ ) + () () = 2

³
()

()

´

+() (1¡ 2)
³
(1¡ 1) + 1

()
()

Thermal conductivity


=

1¡+2


¡
ln
+

2

1¡+2


¡
ln
+

2




=
1¡2+22


¡

ln
+

2

1¡2+22


¡
ln
+

2

where



=

1¡1+21


¡
ln
+

2

1¡1+21


¡
ln
+

2

In above table ( ) manifest nano‡uid and hybrid nano‡uid, (1 2) the solid volume

frictions of CNTs and hybrid CNTs, (     ) the base ‡uid, nano‡uid and carbon

nanotubes densities, (     ) the base liquids, e¤ective nano‡uid and hybrid nano‡uid

dynamic viscosity, (()  () ) the nanoliquid and hybrid nanoliquid e¤ective heat ca-

pacity and (     ) the thermal conductivities of CNTs and hybrid CNTs and base

liquid.
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Table 8.2: Thermal and physical features of carbon nanotubes (SWCNT and MWCNT)

and kerosene oil [110 111]

Constituents (3) () ()

 2600 425 6600

 1600 796 3000

Kerosene oil 783 2090 0.15

8.1.2 Boundary conditions

We have

 = 0  = () =   = 0 -

 =  ( ¡  ) at  = 0

 ¡! 0  ¡! 0  ¡! 1 as  ¡!1

9
=

;
(8.5)

In physical sense, the convective condition elaborates that a uniform temperature is utilized

from below the surface which relates the heat ‡ux linearly to the di¤erence between  (hot

liquid temperature below the surface) and  (liquid temperature above the surface).

8.1.3 Dimensionless variables

The transformations are taken as

 =  0()  = ()  = ¡( )
12()

() = ( ¡ 1)( ¡ 1)  = (


)12

9
=

;
(8.6)

Expression (1) is ful…lled identically by invoking  =  0()  = ¡() and  = ¡( )
12().

8.1.4 Transformed systems

With the aid of Eq. (8.6), Eqs. (8.2)-(8.3) are reduced to the following forms:

1

12
( 000 ¡  0) +  00 + 2­ ¡ (1 + )

02 = 0 (8.7)

1

12
(00 ¡ ) + 0 ¡  0 ¡ 2­ 0 ¡ 

2 = 0 (8.8)
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1

Pr

µ
43


¶

00 +13(
002 + 02)¡ 0 +13(

02 + 2) +3 = 0 (8.9)

(0) = 0  0(0) = 1 (0) = 0 0(0) = ¡



(1¡ (0))

 0(1)! 0 (1)! 0 (1)! 0

9
=

;
(8.10)

where ­ = 
 refers to rotation parameter,  =




12


the inertia coe¢cient,  =



the

porosity parameter,  = 2
() (¡1)

the Eckert number, Pr =
()


the Prandtl number,

 = 
()

the heat absorption/generation,  =



q

 the Biot number, prime symbolizes

di¤erentiation via  and (1)¡ (4) are expressed by

1 = (1¡ 1)
25(1¡ 2)

25 (8.11)

2 = (1¡ 2)

µ

(1¡ 1) + 1

µ




¶¶

+ 2

µ




¶

 (8.12)

3 = (1¡ 2)

µ

(1¡ 1) + 1
()

()

¶

+ 2

µ
()

()

¶

 (8.13)

4 =

0

@
1¡ 2 + 22


¡

ln
+

2

1¡ 2 + 22


¡
ln

+
2

1

A

0

@
1¡ 1 + 21


¡

ln
+

2

1¡ 1 + 21


¡
ln

+
2

1

A 

(8.14)

8.1.5 Physical quantities

Physical quantities such as drag force () and temperature gradient () satisfy

 =
2


2



 =


 (¡1)


9
=

;
(8.15)

in which () the wall shear stress and () heat ‡ux are respectively equal to

 = 
¡



¢¯
¯
=0



 = ¡ 
¡



¢¯
¯
=0



9
=

;
(8.16)
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Employing Eq. (8.14) in Eq. (8.15) we have

Re05  =
1

(1¡1)
2510(1¡2)

2510 
00 (0) 

Re¡05  = ¡
³



´
0 (0) 

9
=

;
(8.17)

where local Reynolds number is symbolized as Re =


. It is important to mention that

for 2 = 1 = 0, the conventional liquid (kerosene oil) situation is recovered. When 1 6= 0

and 2 = 0 then kerosene oil based CNTs nanomaterials has been achieved. The relation

2 6= 1 6= 0 must be satis…ed for SWCNT-MWCNT-kerosene oil hybrid nano‡uid.

8.2 Second law analysis

Production of entropy demolish the present energy in the system of di¤erent industrial and

engineering processes. Therefore it is signi…cant to estimate the production rate of entropy in

a system. For our considered study, it is assumed that generation of entropy occurs as a result

of liquid friction, porous medium and irreversibility due to heat transport. Additionally the

system is considered in a state of local thermodynamic equilibrium. The volumetric rate of

entropy production can be written as

 =

 21

µ




¶2
+

1

ª+

1

(2 + 2) (8.18)

where ª denotes viscous dissipation

ª =

µ




¶2
+

µ




¶2
 (8.19)

Using Eq. (8.19) in Eq. (8.17) one has

 =

 21

¡



¢2
+


1

h¡



¢2
+
¡



¢2i

+
³


1

´
(2 + 2)

9
=

;
(8.20)

Now we de…ne the dimensionless entropy generation () which is equal to generation rate of

volumetric entropy () to generation rate of characteristic entropy (0 =
 (¡1)

12
) ratio.
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Mathematically we have

 =


0
 (8.21)

On utilizing variables (8.6), Eqs. (8.20) and (8.21) can be converted to the form

 =


021+

1

(1¡ 1)
2510(1¡ 2)

2510
Pr( 02+2)+

Pr

(1¡ 1)
2510(1¡ 2)

2510
(

002+02)

(8.22)

Bejan number is

 =
    

  
 (8.23)

or

 =

h



i
021

h



i
021 + Pr

1
(1¡1)

2510(1¡2)
2510 (

02 + 2) + Pr
(1¡1)

2510(1¡2)
2510 (

002 + 02)


(8.24)

where 1 =
(¡1)

1
manifests the temperature ratio variable due to entropy generation. For

 = 0 the entropy due to liquid friction dominates while for  = 1 the heat transfer irre-

versibility e¤ects become predominates rate. Besides that for  = 1
2 the production of entropy

due to liquid friction and heat transfer are similar.

8.3 Computational scheme

The modeled problems (87)¡ (89) and (822) subject to boundary conditions (810) are com-

puted using NDSolve technique. This technique attains exceptional accuracy and is stable un-

conditionally. For this computation we assign experimental values to Prandtl number (Pr = 21)

and other values are listed in Table (82). Boundary conditions  0 ()   () and  () for

 ¡!1 is converted to …nite range ( = 40).

8.4 Outcomes and discussion

In this section our emphasis is to visualize the obtained outcomes from non-linear systems af-

ter computations. In fact aim of these tables and …gures is to analyze the feature of nano-

materials compared to hybrid nanomaterials. Here the combination of SWCNT/kerosene
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oil as nanoliquid and SWCNT-MWCNT/kerosene oil as hybrid nanoliquid is used. In all

these graphical illustrations (see Figs. (8.2)-(8.17)) the dotted and solid lines show the as-

pect of nanoliquid and hybrid nanoliquid respectively. The empirical relations and thermo-

physical attributes of both types of CNTs and kerosene oil are highlighted in Tables (8.1)

and (8.2). Further skin frictions ((Re05 ) for both cases of CNTs nano‡uids is computed

and discussed (see Table 8.3). Additionally the ranges of pertinent variables for entropy

generation (), temperature ( ()) and velocities (
0 () and  ()) are 00 ·  · 13

00 · ­ · 04 00 ·  · 06 00 ·  · 10 01 · 1 · 06 01 ·  · 04 01 ·  · 09

001 · 1 · 003 and 01 · 2 · 003

8.4.1 Velocity

The behaviors of velocity distributions ( 0 () and  ()) against distinct physical variables are

captured in Figs. (8.2)-(8.6). Role of  on ( 0 () and  ()) is declared in Figs. (8.2) and

(8.3). From Fig. (8.2) it is clear that rising estimations of  decay  0 () in both nano and

hybrid phases. Physically an increment in  enhances the inertial force which is responsi-

ble for the reduction of velocity  0 ()  In Fig. (8.3) reverse feature is noticed for  () as a

result of enhancing  Figs. (8.4) and (8.5) present the behavior of ( 0 () and  ()) with

the variation in rotation parameter ­ It depicts that velocity  0 () grows when angular ve-

locity is enhanced (see Fig.(8.4) for both cases of nano‡uid (SWCNT/kerosene oil) and hybrid

nano‡uid (SWCNT-MWCNT/kerosene oil). In Fig. (8.5) the pro…le shows a decaying trend

of  ()  The negative values of  () indicate that ‡ow is merely in the negative ¡direction.

Behavior of  0 () for  is disclosed in Fig. (8.6). Here velocity is diminished for both phases

of nano‡uid (SWCNT/kerosene oil) and hybrid nano‡uid (SWCNT-MWCNT/kerosene oil).

Further it is noteworthy to mention that throughout from …gures (8.2)-(8.6), hybrid nano‡uid

(SWCNT-MWCNT/kerosene oil) has dominant features when compared with nano‡uid (SW-

CNT/kerosene oil).

8.4.2 Temperature

Figs. (8.7)-(8.10) exhibit the in‡uences of   12 and  on dimensionless temperature  ()

for both nano‡uid (SWCNT/kerosene oil) and hybrid nano‡uid (SWCNT-MWCNT/kerosene
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oil). Impact of temperature  () against Eckert number  is portrayed in Fig. (8.7). An

enhancement in thermal …eld  () is observed for higher  In physical sense it is credited to

the argument that higher  provides more dissipative energy to liquid which intensi…es the

nanomaterials temperature. In addition it is remarkable to point out that hybrid nano‡uid

(SWCNT-MWCNT/kerosene oil) produces more dissipative energy in the ‡uid than tradi-

tional nano‡uid (SWCNT/kerosene oil). Characteristics of  on thermal …eld is illustrated in

Fig. (8.8). It is found that  () and thermal layer are increased for both nano‡uid (SW-

CNT/kerosene oil) and hybrid nano‡uid (SWCNT-MWCNT/kerosene oil). Further  () is

higher in case of hybrid nano‡uid (SWCNT-MWCNT/kerosene oil) comparative to nano‡uid

(SWCNT/kerosene oil). Curves in Fig. (8.9) are designed to disclose how ‡uid temperature

is a¤ected by the addition of nanoparticles and hybrid nanoparticles. From this …gure three

di¤erent types of variation can be seen i.e. pink line represents regular ‡uid, red line indicates

nano phase and blue line shows hybrid phase. Comparative study of these lines depicted that

hybrid phase has more contribution to intensify  () than nano phase. Fig. (8.10) illustrates

outcome for  () in response to Biot number  Higher convection enhances the surface hot-

ness which consequently rises the thermal …eld abruptly. Therefore selecting these two cases

of nano‡uid, thermal conductivity enhances more in hybrid phase when compared with nano

phase.

8.4.3 Entropy generation

Variations in  versus di¤erent physical variables namely porosity parameter, temperature ra-

tio parameter, Eckert number and Biot number for both hybrid phase (SWCNT-MWCNT/kerosene

oil) and nano phase (SWCNT/kerosene oil) in the range of 0 ·  · 30 are declared in Figs.

(8.11)-(8.14). Here  enhances for an increase of porosity parameter, temperature ratio pa-

rameter, Eckert number and Biot number in both cases of nano‡uids. These Figs. re‡ect that

porosity parameter, temperature ratio parameter, Eckert number and Biot number contribute

in intensifying strength of disorder within the system. Further it is noted that initially the

behavior of hybrid phase dominates the nano phase but for higher values of parameters, nano

phase behavior marginally dominates when compared with hybrid phase.
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8.4.4 Variations in physical quantities of interest (, )

In this subsection aspects of physical quantities of interest i.e skin friction /() and tempera-

ture gradient () for both cases of nano‡uid and hybrid nano‡uid are illustrated via table and

plots. First in Figs. (8.15) and (8.16), an increment of  and  leads to decay the temperature

gradient for both phases of nanomaterials. Reverse behavior is seen in Fig. (8.17) for higher

estimations of Biot number  Additionally we clearly see the di¤erence between Nusselt num-

ber of nano‡uid (SWCNT/kerosene oil) and hybrid nano‡uid (SWCNT-MWCNT/kerosene oil).

Table 8.1 is computed numerically to disclose the impact of skin friction against in‡uential vari-

ables (­  and ). Form this table it is scrutinized that for both nano‡uid (SWCNT/kerosene

oil) and hybrid nano‡uid (SWCNT-MWCNT/kerosene oil), the variables ­  and  have di-

rect link with  Each variation in parameter also anticipates comparison between nano‡uid

(SWCNT/kerosene oil) and hybrid nano‡uid (SWCNT-MWCNT/kerosene oil). Clearly  is

higher for hybrid nano‡uid (SWCNT-MWCNT/kerosene oil).
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dased line SWCNT & Kerosene oil
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Fig. 82 Feature of  on  0 ().
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solid line SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 83 Feature of  on  ().

solid line SWCNT  MWCNT & Kerosene oil

dased line SWCNT & Kerosene oil
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Fig. 84 Feature of ­ on  0 ().
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solid line SWCNT MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 85 Feature of ­ vs  ().

solid line SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 86 Feature of  0 () via ..

139



solid line SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 87 Feature of  () vs .

solid line SWCNT  MWCNT & Kerosene oil

dased line SWCNT & Kerosene oil
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Fig. 88 Feature of  () vs  .
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HybridnanofluidSWCNT  MWCNT &

Kerosene oil

Nanoflui SWCNT & Kerosene oil

Base flui Kerosene oil

1  0.01 , 2  0.03
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Fig. 89 Feature of  () vs 1 and 2.

solid line SWCNT MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 810 Feature of  () vs .
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solidline SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 811 Feature of 1 on  ().

solid line SWCNT MWCNT & Kerosene oil

dased line SWCNT & Kerosene oil
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Fig. 812 Feature of  on  ().
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solid line SWCNT MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 813 Feature of  on  ().

solid line SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 814 Feature of  on  ().
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solid line SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 815 Feature of  on .

solid line SWCNT  MWCNT & Kerosene oil

dased line SWCNT & Kerosene oil
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Fig. 816 Feature of  on .
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solid line SWCNT  MWCNT & Kerosene oil

dasedline SWCNT & Kerosene oil
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Fig. 817 Feature of  via .
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Table 8.3: Variations of (Re05 ) through    and ­ for both MWCNTs-kerosene

oil and SWCNTs-MWCNTs-kerosene oil.

SWCNTs-kerosene oil SWCNTs-MWCNTs-kerosene oil

Parameters (…xed values) Variables ¡Re05  ¡Re05 

 =  =  = 02 ­ 0.0 1.13786 1.15881

 = 1 = 2 = 01 0.2 1.16024 1.18142

0.4 1.21787 1.23983

 =  = 02  = 01  0.0 1.08368 1.10366

­ = 1 = 2 = 01 0.3 1.17255 1.19404

0.5 1.22864 1.25108

 =  =  = 02  0.0 1.09794 1.11745

­ = 1 = 2 = 01 0.3 1.23053 1.25432

0.6 1.35141 1.37893

8.5 Final outcomes

Key points of presented analysis are listed below:

² Velocities show opposite response against  and ­

² Higher  and  lead to improve the thermal …led for both phases of nanomaterials.

² Skin friction enhances for   and ­

² Implementing hybrid nanomaterials rather than traditional nanomaterials is much more

e¤ective.

² The magnitude of  for nanoliquid is also smaller than  for hybrid nanoliquid.
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