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Abstract

The rheology of complex fluids involving diverse non-Newtonian fluids has motivated in-

vestigations in this area. This is due to the fact that in industrial applications, complex

fluids have become more and more important. On the other hand, swirling and/or ro-

tating flows have fascinated researchers for centuries owing to their great technical and

scientific importance. The research presented in this thesis is concerned with the swirling

flows of a complex fluid. Particularly, in this work the governing equations of Maxwell

fluid have been developed and explored numerically for a specific number of configura-

tions.

The aim of this thesis is to develop and investigate the swirling flows for convective heat

transport involving Maxwell fluids. The swirling and/or rotating systems are extensively

used to model the flow and heat transfer associated with the internal-air systems of gas

turbines, where disks rotate close to a rotating or a stationary surface. Further, these

systems are used in chemical reactors, rotating-disk cleaners, transport engineering (auto-

mobile brakes), electro-chemistry (rotating-disk electrodes), etc. In view of such practical

importance of these flows, in this thesis, we have focused on studying the numerical so-

lutions of such flow problems arising in three different configurations of the rotating disk

systems, viz. (i) flow over single stretchable rotating disk (under the influence of partial

slip), (ii) thin film flow over a stretchable rotating disk, and (iii) flow between two stretch-

able rotating disks. These mentioned configurations have been investigated numerically

for both steady and unsteady swirling flows along with heat transport phenomenon for

Maxwell fluid model characterizing the relaxation time features. As the governing equa-

tions corresponding to these flows are highly nonlinear, and fully coupled which offer a

significant level of complexity to get closed form analytic solutions. Thus, the popular and

promising numerical techniques namely, Runge-Kutta Fehlberg (RK45), midrich scheme,

and collation method bvp4c are adopted to acquire the numerical solutions of the consid-

ered problems.

xv



In our study the behavior of the several influential parameters is studied by examin-

ing the velocity, temperature and concentration fields for a number of swirling flows of

Maxwell fluid. Our study demonstrates that the impact of centrifugal force is perceived

strongly in the vicinity of disk. It is noted that with boosting the disk rotation which

in turn increase the radial and azimuthal velocity components result in a decrease in the

axial velocity component. Moreover, the momentum boundary layer develops thinner by

amplifying the Deborah number. Further, the rotation parameter plays a significant role

in enhancing the fluid film thickness.
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Chapter 1

Introduction

This chapter focuses on introduction of the thesis. Introduction comprises of a brief

background of the physical problems and literature survey. Some basic physical laws,

numerical methods and research objectives are also presented in this chapter.

1.1 Motivation

The classical Newton’s model is unable to explain the flow of various fluids, for instance,

large molecular weight polymers. Blood, lubricants, drilling mud, paints, slurries, nylon,

toothpaste and colloids reveal a non-Newtonian behavior. We come across such type

of fluids frequently in the plastics and chemical industry. Some effects, especially the

rod-climbing, die swell when exiting a tube, drag reduction and self-siphoning can pre-

cisely be exhibited by these fluid models. To be more specific, the characteristics of non-

Newtonian fluids are not categorized by the primitive theory of Navier-Stokes (NS). Usual

non-Newtonian flow features comprise thixotropic (whose viscosity diminishes subject to

the applied stress), pseudoplastic (whose viscosity is a reducing function of shear rate),

dilatant (whose viscosity is an increasing function of shear rate), viscoelastic, rheopectic

(whose viscosity rises subject to the applied stress) and visco-plastic. Some examples in-

clude clay, milk, some colloids, molten polystyrene, gelatin, rice/cornstarch suspensions,
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etc. In a broader sense, the non-Newtonian fluids in existing literature are categorized in

the subsequent kinds; the differential-type, the integral-type and the rate-type. In gen-

eral, resultant differential equations verifying the flow of such liquids have greater order

compared to the NS equations, and thus to get a unique solution, an additional condition

is required.

To determine the impression of inhomogeneous flows, i.e., fluids whose material char-

acteristics are a function of stress and shear rate, rate-type models are developed. The

rate type fluids are reduced into the classical Navier-Stokes fluids as a special case. Such

models are worthwhile in narrating the performance of geological fluids, biological fluids

and edible goods owing to their intrinsic inhomogeneity. Lately, these fluids have attained

extraordinary consideration. One of the simplest models was proposed by Maxwell [1] in

1867 due to its effectiveness for polymers allowing lower molecular weight. He addressed

viscoelastic fluids that can incorporate the energy dissipation and have the remarkable

capacity to save energy. Fluid stress relaxation features can be described by Maxwell

fluid model. For concentrated polymer liquids, the relaxation-time parameter is chosen

largely; otherwise, it is considered accordingly.

During last few years, the researchers have focused on the thermal features of Maxwell

fluid motion due to its effectiveness for polymers allowing lower molecular weight. Fetecau

and Fetecau [2] discussed the Maxwell fluid motion due to suddenly moved flat plate. They

obtained the exact solution of the govering problem by using Laplace tramsformation. Tan

and Xu [3] investigated the Maxwell fluid model to examine the viscoelastic property of the

fluid with no-slip condition. The discrete inverse transform method was adopted to find

the exact solution. Jamil and Fetecau [4] computed helical flows considering the Maxwell

liquid. Here the flow was caused by the applied shear stress at plate. The analysis of

heat transport in view of Cattaneo Christov model during the motion of Maxwell fluid

was reported by Han et al. [5] . Mustafa [6] addressed analytically the motion of Maxwell

fluid due to a rotating frame by utilizing the non-Fourier heat flux theory. Sui et al.

[7] addressed heat and mass transfer mechanisms of upper-convected Maxwell nanofluid
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over a stretched surface with Cattaneo-Christov double-diffusion and slip velocity. Afifya

and Elgazery [8] focused on the influence of chemical reaction in the MHD boundary

layer flow of Maxwell liquid over a stretched surface with nanoparticles. Liu and Guo [9]

discussed the generalized Maxwell fluid during unsteady motion with coupling model. Cao

et al. [10] studied the impression of heat source/sink on Maxwell nanoliquid during the

stretched flow. Hsiao [11] reported a numerical study on a combined electrical MHD heat

transfer thermal extrusion system in the radiative flow of Maxwell fluid with dissipation

effects. Jusoh et al. [12] numerically investigated the flow and heat transfer of MHD

three-dimensional Maxwell nanofluid over a permeable stretching/shrinking surface with

convective boundary conditions.

A well-fascinated research area in fluid mechanics is perhaps the rotating disk geom-

etry because of its evolving frequent applications in industry and engineering, including

turbine system, jet motors, centrifugal filtration, electric-power generation, hard disks

etc. For such a reason, the rotating disk liquid motion has been focused with enormous

attention and been broadly scrutinized by several scientists since the grounding breaking

study of Theodore Von Kármán [13] flow by virtue of the rotating disk. He studied the

fluid movement caused by a rotating disk while away from the surface, the assumption

of fluid at rest was considered. By adopting similarity transformations, the full system

of Navier- Stokes equations was reduced into a system of nonlinear ordinary differential

equations (ODEs). The mechanism by which flow field for von Kármán swirling flow

arises can be better understand in the way that the fluid is considered at rest initially

everywhere. When the disk starts rotating, then due to the no slip condition the develop-

ment of boundary layer happened adjacent to rotating disk. The influence of centrifugal

force produced due to rotation is to push the fluid radially outward inside the boundary

layer. To balance radial flow, the fluid flows axially towards the disk surface fulfilling

mass conservation law. Therefore inside the boundary layer, the velocity vector has the

radial, tangential and axial components. The von Kármán swirling flow due to a rotating

disk was investigated by many researchers with various perspectives considering different
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fluid models. Shevchuk [14] studied the flow involving the rotating disk systems with heat

and mass transfer charateristics. Turkyilmazoglu [15] discussed the MHD viscous fluid

flow on rotating as well as stretching disk and concluded that near disk velocities increase

dramatically with increasing rotation parameter. Ahmadpour and Sadeghy [16] obtained

the exact solution in rotating Bingham flow and showed that by increasing the fluid’s

yield stress, the wall shear stress and the volumetric flow rate are decreased. The thermal

features in flow caused by rotating disk of variable thickness were scrutinized by Xun et

al. [17]. The von Kármán’s transformation assisted to bring out the ordinary differential

equations which were then solved with Runge–Kutta method coupled with multishoot-

ing technique. Mustafa et al. [18] carried out a numerical investigation on stagnation

point in MHD three-dimensional flow induced by disk rotation in ferrofluid. Unsteady

heat and mass transfer due to a rotating disk with the uniform magnetic field in the

micropolar fluid flow of transient thermophoretic particle deposition were analyzed by

Doh and Muthtamilselvan [19]. They concluded that with an increase of the magnetic

parameter, micro-rotational tangential velocity decreases. The flow of second grade fluid

by a rotating disk with the heat and mass transfer analysis was discussed by Hayat et al.

[20]. The effects of homogeneous-heterogeneous reactions and heat generation/absorption

were taken into consideration. Their result revealed that growing viscoelastic parameter

causes to enhance the surface drag and rate of heat transport. In another paper, the same

author (Hayat et al. [21] ) drew attention towards the impact of entropy generation, heat

source/sink and thermal radiations in Sisko fluid flow resulting from a rotating disk. Ju-

naid et al. [22] considered the rotating disk configuration to explore the thermal features

in dissipative nanofluid flow. The Brownian motion and thermophoresis aspects were

studied by utilizing Buongiorno model. It was concluded that the magnetic field strength

opposes the flow field in the radial, azimuthal and axial directions, respectively. The ro-

tating disk flow in third grade nanofluid using Buongiorno model, chemical reaction and

heat generation was investigated by Hayat et al. [23]. Their outcomes showed that with

increasing Brownian motion, the temperature and concentration fields were increased.
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Tabbasum and Mustafa [24] modeled the rough rotating disk geometry for Reiner-Rivlin

fluid flow with partial slip and temperature jump conditions.

The process of developing a uniform liquid thin layer on a disk rotating horizontally

is known as spin coating. This procedure is widely applicable in spin coating industry

and has a lot of applications in various industry and technology sectors. To name a few;

magnetic disk coatings, head lubricants, photoresist for defining patterns in microcircuit

fabrication, flat screen display coatings, anti reflection coatings etc. The innovative idea on

thin film flow over a rotating disk was firstly reported by Emslie et al. [25]. By considering

the balance between viscous and centrifugal forces during the disk rotation process allow

them to simplify the governing equations. They concluded that the film uniformity retains

as it thin more and more continuously. In electronic industry, the applicability of the

spin coating process was explored through experimental interpretations and theoretical

investigations by Washo [26]. Jenekhe [27] and Flack et al. [28] extended the work of

Emslie et al. [25] by incorporating the mass transfer and non-Newtonian fluid models.

The resulted lubrication equations were tackled with finite difference scheme. Wang et

al. [29] studied numerically the problem of liquid thin film developed over an accelerating

rotating disk. The asymptotic solution in the case of values of accelerating, thin and

thick parameters was also obtained. Andersson et al. [30] acquired both the numerical as

well as asymptotic solution for rotating disk thin film flow with magnetic field properties.

Kumari and Nath [31] discussed the liquid thin film in an unsteady magnetohydrodynamic

flow occurs by disk rotation. The Navier–Stokes equations together with energy equation

were transformed and the solution was obtained numerically and asymptotically. Their

results showed that the film thickness and the surface shear stresses in the radial and

tangential directions increase with accelerating disk for a fixed value of magnetic field.

The phenomenon of non-uniform disk rotation with planar disk interface in two layers

thin film flow with uniform transverse magnetic field was attempted by Dandapat and

Singh [32].

Generally the system of disks rotating at different speeds is used to modeled the
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air systems for internal cooling, for example, co-rotating turbines, rotor-stator system,

contra-rotating disks etc. are the prominent applications. Therefore, with a view toward

the significance of such type of rotating flows between two disks, numerous scientists and

researchers are still involved in studying the rotating flow regimes features. The foremost

investigation to study the fluid motion between double rotating disk was described by

Batchelor [33] by revealing the extension of classical von Kármán classical flow problem

for dual rotating disks. The fluid flow by dual rotating disks was considered by Lance

and Rogers [34] with several conditions. Turkyilmazoglu [35] inquired the fluid motion

within double rotating disks at a constant distance apart. The von Kármán similarity

transformations assisted in bringing out the governing ODEs which are solved numerically.

The MHD flow of nanofluid consisting of magnetite-Fe3O4 nanoparticles between two

stretchable rotating disks was discussed by Hayat et al. [36]. The effects of temperature

jump and velocity slip were considered and concluded that slip parameter causes to reduce

the fluid tangential flow. In another article, Hayat et al. [37] studied the Jaffrey swirling

flow in the gap of doubly rotating disks with the impact of homogeneous-heterogeneous

reactions and thermal stratification. Recently, Das and Sahoo [38] focused their research

in second grade liquid motion occupied the region among dual rotating disks.

Nanoscience and nanotechnologies are widely seen as having huge potential to bring

benefits to many areas of research and applications like nanofluids and nanocomposites.

Nowadays, study of nanofluids has been a subject of widespread interest in view of its

improved thermal conductivity [39]. Nanofluids comprise of nanoparticles like Ag(silver),

Cu(copper), CuO(copper oxide), Al2O3(alumina oxide), Fe3O4(iron oxide), CNT(carbon

nanotube), TiO2(titanium oxide), having sizes of 1−100 nm suspended in the base fluids

such as water, alcohol, carboxymethyl cellulose(CMC) etc. Some applications of nanopar-

ticles were comprehensively reported by the several authors [40− 43]. It has been shown

through experiments that the addition of these ultrafine solid metal particles in base flu-

ids brings out a significant improvement in the thermal conductivity. A large amount of

research has been conducted to explore the nanofluids physical properties and has assisted
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to better enlighten the basic mechanism of nanofluids. For instance, the nanometer-size

particles suspension and their scattering and adhesion characteristics on the solid surfaces

can give the materials having required optical and structural properties [44]. Nanofluids

play a vital role in cooling process of inkjets and equipment [45, 46]. The usages of nanoflu-

ids are very wide in applications to the various fields such as, nuclear reactor cooling ,

electronics, aerospace, vehicles, cancer therapy power generation etc.

The term ”nanofluids” was first used by Choi [47] in 1995, who revealed that nanofluids

possess enhanced thermal conductivity and thermal transport features of common liquids

can be improved with the suspension of nanoparticles. Buongiorno [48] builded up a sig-

nificant two phase investigation regarding the heat transfer mechanism in nanofluids flow

by proposing the two-slip mechanisms, namely Brownian diffusion and thermophoresis.

A model that characterizes the impacts of particle size, viscosity, volume fraction and

thermal conductivity on heat transfer enhancement was proposed by Tiwari and Das [49].

A large number of problems related to nanofluids flow were studied by utilizing these

two models. Kuznetsov and Nield [50] solved the problem of two-dimensional nanoliquid

flow with natural convection past a vertical plate. Oztop and Nada [51] deliberated the

nanoparticles fluid motion inside a rectangular enclosure along with heat transfer analy-

sis. Lin and Jiang [52] explored numerically the effectiveness of nanofluids parameters in

a circular rotating groove geometry.

The occurrence of heat transfer is very common natural phenomenon and it happens

because of thermal difference between the objects or different parts of same body. Several

researchers have been inspired to investigate its occurrence and existence. The classical

law for heat conduction proposed by Fourier [53] is the basis to study the heat transfer

characteristics in different conditions. On the other hand, the major drawback of this

law is the contribution of parabolic energy equation which specifies that an initial distur-

bance is instantly affected by the system under consideration. In literature, this feature

is physically unrealistic and is called ”paradox of heat conduction”. This situation is

overwhelmed by numerous researchers by proposing the modifications in Fourier’s law.
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The revision in Fourier’s model by introducing relaxation time heat flux was proposed by

Cattaneo [54]. The hyperbolic energy equation is yielded through aforementioned mod-

ification which allows the heat transport via thermal waves propagation at finite speed.

Cattaneo’s modification was further improved by Christov [55] by introducing the thermal

relaxation time with Oldroyd’s upper-convected derivatives for the material-invariant for-

mulation. In literature, this amendment is known as Cattaneo–Christov heat flux model.

The uniqueness criterion for the solution of Cattaneo–Christov equation was evidenced by

Ciarletta and Straughan [56]. The Cattaneo-Christov heat flux model on thermal char-

acteristics in flow of viscoelastic fluid was studied by Han et al. [57]. A comprehensive

explanation regarding the involved parameters was deliberated on flow and thermal be-

haviors and comparison was made between Fourier’s law and the Cattaneo–Christov heat

flux theory. Mustafa [58] applied the model of Cattaneo-Christov pertaining to thermal

field to examine the flow of rotating Maxwell fluid. He concluded that relaxation time

parameter has an inverse relation with fluid temperature. Hayat et al. [59, 60] studied

the effectiveness of chemical reaction under various flow geometries. Nagendramma et

al. [61] showed the characteristics of heat generation/absorption in chemically reactive

flow of 3D Casson fluid by applying the Cattaneo-Christov heat flux theory. Some recent

investigations in this direction can be seen in Refs. [62− 67].

Chemical reactions are identified as homogeneous and heterogeneous processes relying

on whether they arise in bulk of fluid (homogeneous) or happen on some catalytic surfaces

(heterogeneous). Homogeneous and heterogeneous reactions occur in various chemical re-

acting systems including combustions, biochemical and catalysis. The boundary layer flow

involving these reactions were studied by Chaudhary and Merkin [68]. In another paper,

Merkin [69] used the idea of heterogeneous and homogeneous processes in flow of viscous

liquid over a stretched surface. He examined the homogeneous reaction through cubic au-

tocatalysis and considered first-order process for heterogeneous reaction. Khan and Pop

[70] assessed the flow behavior in two dimensional stagnation point due to a permeable

surface with homogeneous-heterogeneous reactions. Numerically equations were tackled
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and showed that the flow characteristics were affected by the mass transfer parameter.

Abbas et al. [71] studied the influence of homogeneous-heterogeneous reactions in the

viscous fluid flow over a stretching/shrinking sheet. Khan et al. [72] reported numerically

the three-dimensional Sisko fluid flow with the heterogeneous-homogeneous reactions and

Cattaneo-Christov heat flux model. Rauf et al. [73] studied the Powel-Eyring fluid for

chemically reactive flow with double diffusive Cattaneo-Christov heat and mass flux theo-

ries. Recently, Hashim et al. [74] made investigation on dual solutions on reactive Carreau

fluid.

1.2 Basic Conservation Laws

The foundational axioms of fluid dynamics based on classical mechnains are the conser-

vation laws, namely, conservation of mass, conservation of linear momentum and con-

servation of energy. They are expressed using the Reynolds transport theorem. The

conservation laws may be applied to a region of the flow called a control volume(CV).

These conservation laws are used to solve the fluid dynamics problems and may be written

in integral or differential form.

1.2.1 The Mass Conservation

This law dictates that the mass is conserved within the control volume for constant density

fluids. Thus the total mass leaving the system plus the mass accumulating within the

control volume (CV) must be equal to the total mass entering to the control volume(CV).

In mathematical form, we can write it as

�

Ω(t)



∂ρ

∂t
+∇ · (ρV)

�
dΩ = 0, (1.1)

with the relation hold for any Ω(t). If we place an infinitesimal Ω(t) at every point in

the flow, then the integrand must vanishes and results in the form of continuity equation

9



given by

∂ρ

∂t
+∇ · (ρV) = 0, (1.2)

which is embodiment of the mass conservation principle for fluid flow.

The steady flow version is

∇ · (ρV) = 0. (1.3)

The density is assumed to be constant for an incompressible flow and thus results in

∇ ·V = 0. (1.4)

1.2.2 The Momentum Conservation

The momentum conservation can be described by Newton’s second law which states that

time rate of change of momentum of a material volume is equal to sum of external forces

acting on the volume. Mathematically,

�

Ω(t)



∂ρVα
∂t
+ (ρVαVβ) ,β

�
dΩ =

�

Ω(t)

(ρB + ταβ,β ) dΩ. (1.5)

On simplification, we have

∂ρVα
∂t
+ (ρVαVβ) ,β = ρB+ ταβ,β . (1.6)

Expressing in more convenient form

ρ

�
∂V

∂t
+ (V · ∇)V


= divτ + ρB. (1.7)
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1.2.3 The Energy Conservation

The thermodynamics first law is the statement of this principle. Writing this mathemat-

ically as

ρcp
dT

dt
= τ · L− divq, (1.8)

where τ is the Cauchy stress tensor, cp the specific heat, L the velocity gradient, q the

energy flux and T the fluid temperature. Further, the left hand side of Eq. (1.8) depicts

the internal energy and τ · L represents the viscous dissipation.

The energy flux can be defined as

q = −k∇T, (1.9)

where k being the fluid thermal conductivity.

1.2.4 The Concentration Conservation

According to this law, the rise in the total mass of species C in CV is equal to the net

mass flow into CV plus the development rate of species in CV. In the presence of chemical

reaction, it can be represented as

∂C

∂t
+V · ∇C= −∇ · j+R, (1.10)

where j is the normal flux and R the source/sink for concentration.

Usually j can be represented in terms of Fick’s law given as

j = −D∇C, (1.11)

with D as mass diffusivity.
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1.2.5 The Energy Conservation for Nanofluid

The energy conservation in case of an incompressible nanofluid is given by

ρcp
dT

dt
= −hp∇ · jp − divqp. (1.12)

where the terms hp, jp andqp respectively, denote the specific enthalpy, diffusive mass flux

and thermal flux for nanofluids.

The mathematical expressions for jp and qp are given as

qp = −k∇T + hpjp, (1.13)

jp = ρpDB∇C − ρpDT
∇T
T∞
, (1.14)

where DB andDT , respectively, denote the Brownian motion and thermophoresis diffusion

coefficients and ρp the nanofluid density.

In view of Eqs. (1.13) and (1.14), Eq. (1.12) simplifies into the following form

ρcp
dT

dt
= k∇2T + ρpcpDB



DT
DBT∞

∇T · ∇T +∇C · ∇T
�
. (1.15)

1.2.6 The Concentration Conservation for Nanofluid

The nanofluid concentration equation is expressed in the following form

∂C

∂t
+V · ∇C= − 1

ρp
∇ · jp. (1.16)

Incorporating Eq. (1.14), we arrive at

∂C

∂t
+V · ∇C = DT

T∞
∇2T +DB∇2C. (1.17)
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1.3 The Rate Type Maxwell Fluid Model

Because of fluids diversity in nature, open literature contain numerous proposed fluid

models. Among these a special attention is received by the rate type fluid models. Par-

ticularly, the rate type Maxwell model [1] has been utilized for those problems which shows

the small dimensionless relaxation time. However, the relaxation time for concentrated

polymeric liquids can be larger. It is well recognized by the Maxwell that some fluids have

the capacity of storing energy and as a mean of dissipating energy. The stress relaxation

characteristics have been considered in this subclass of rate Maxwell fluid model. This

model is narrated with the following constitutive equation

τ + pI− S = 0, (1.18)

where I portrays the identity tensor, p the fluid pressure and S the Maxwell fluid extra

stress tensor defined by

µA1 =



1 + λ1

D

Dt

�
S, (1.19)

where λ1 is the fluid relaxation time, µ the dynamic viscosity, A1 = ∇V+(∇V)t1 with

t1 being transpose is the Rivlin-Ericksen tensor and
D
Dt
the upper convected derivative

defined by
DS

Dt
=
∂S

∂t
+ (V · ∇)S− (∇V)t1 · S− S · (∇V) . (1.20)

1.4 Solution Methodologies

1.4.1 Runge-Kutta-Fehlberg Method

Runge-Kutta Fehlberg (RK45-Fehlberg) method is the numerical algorithm to numerically

integrate the initial value problems (IVPs). The German mathematician Erwin Fehlberg

established this method being one of the large class of RK methods. However, RK45-

Fehlberg is a mathematical approach with an error estimator of order O(h4) and O(h5),
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respectively. In order to get the required accuracy during the computation of the results

of the problem, two step sizes are used. A comparison is made at each mesh point related

to large step size. If the required accuracy is not obtained then the step size h should be

kept smaller as compared to the previous size. The process shall be continued till up to the

desired accuracy. Once the results of two iterations are matched, then such approximation

shall be accepted. However, if the results are more accurate than the required accuracy,

then the step size shall be increased accordingly. Let an IVP is defined as

dy

dx
= F (x, y), y(x0) = y0. (1.21)

The function F (x, y) and the values x0 and y0 must be known in order to obtain the

approximate continuous solution of Eq. (1.21). Thus the following six functional values

are expressed as

W1 = hF (xj, yj) , (1.22)

W2 = hF



xj +

1

4
h, yj +

1

4
W1

�
, (1.23)

W3 = hF



xj +

3

8
h, yj +

3

32
W1 +

9

32
W2

�
, (1.24)

W4 = hF



xj +

12

13
h, yj +

1932

2197
W1 −

7200

2197
W2 +

7296

2197
W3

�
, (1.25)

W5 = hF



xj + h, yj +

439

216
W1 − 8W2 +

3680

513
W3 −

845

4104
W4

�
, (1.26)

W6 = hF



xj +

1

2
h, yj −

8

27
W1 + 2W2 −

3544

2565
W3 +

1859

4104
W4 −

11

40
W5

�
. (1.27)

An approximate solution of the initial value problem (IVP) is furnished by a Runge-Kutta

method of fourth order:

yj+1 = yj +
25

216
W1 +

1408

2565
W3 +

2197

4101
W4 −

1

5
W5, (1.28)
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where the value of functions W1, W3, W4, and W5 are used. It is noted here that W2 is

not utilized in expression (1.28). Runge-Kutta method of fifth order is used for the better

value of solution:

zj+1 = yj +
16

135
W1 +

6656

12825
W3 +

28561

56430
W4 −

9

50
W5 +

2

55
W6. (1.29)

The optimal step size sh can be determined by multiplying the scalar s times the current

step size h. The scalar s is

s =



tol h

2 |zj+1 − yj+1|

�1/4
≈ 0.84



tol h

|zj+1 − yj+1|

�1/4
, (1.30)

where tol is the specified error control tolerance. To apply RK45-Fehlberg method, the

higher order ODEs system is reduced into the first order ODEs system with the introduc-

tion of new variables defined by

F = x1, F
� = x�1 = x2, F

�� = x�2 = x3, F
��� = x�3, (1.31)

with conditions

x1 (0) = F (0) , x2 (0) = F
� (0) , x2 (∞) = F � (∞) . (1.32)

1.4.2 Bvp4c Matlab Builtin Scheme

An iteration-based technique bvp4c in Matlab is applied to solve the boundary value

problem. The technique practices the Lobatto IIIa collocation formula, which produces a

C1-continuous solution. The residuality of solutions controls the error and mesh selection.

It is safe to say that this is a residual-type technique, whose efficiency relies on the initial

guess provided as well as the boundary conditions. Shampine et al. [75] further discussed

this technique in detail in his book.

To apply this scheme, the higher order ODEs are converted into a system of first order
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ODEs. Bvp4c utilizes a collocation process for the solution of BVPs of the form

y�(x) = F (x, y, p1), a ≤ x ≤ b, (1.33)

subject to following general boundary conditions

g (y (a) , y (b) , p1) = 0, (1.34)

where the vector p1 is for the unknown parameters. It is well known that the S̃(x)

(approximate solution) is a continuous function comprising of polynomial of third degree

on the subinterval [xn, xn+1] of the mesh a = x0 < x1 < ... < xN = b satisfying the given

conditions

g
�
S̃ (a) , S̃ (b)

	
= 0, (1.35)

and it also satisfies the differential equations (collocates) at both ends and the midpoint

of each subinterval

S̃ � (xn) = f
�
xn, S̃ (xn)

	
, (1.36)

S̃ � ((xn + xn+1) /2) = f
�
(xn + xn+1) /2, S̃ ((xn + xn+1) /2)

	
, (1.37)

S̃ � (xn+1) = f
�
xn+1, S̃ (xn+1)

	
. (1.38)

The fundamental technique of bvp4c, which is called Simpson’s method, is famous and is

perceived in a number of codes. It can be revealed that an isolated solution y(x) will have

approximation S̃(x) of order four i.e,
���y(x)− S̃2(x)

��� ≤ C�h4, where the the maximum of

the step intervals hi = xi+1 − xn is denoted with h and constant with C�. With bvp4c

following the S̃(x) for computation on a mesh, it can be evaluated for any x, or set of x

values in [a, b] with the bvpval function. The error estimation and mesh selection in this
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routine are based on residual of S̃(x) given by

r(x) = S̃� (x)− f
�
x, S̃ (x)

	
. (1.39)

1.4.3 BVP Midrich Scheme (Midpoint Method)

The numerical solution of two point boundary value problem can also be computed on the

Maple software with very helpful and efficient methods like traprich, trapdefer, midrich

and middefer. The methods, traprich and trapdefer are based on trapezoid methods that

use Richardson extrapolation enhancement or deferred correction enhancement, respec-

tively. However the methods midrich and middefer are midpoint methods with the same

enhancement schemes. The numerical assessment is executed with the help of Maple soft-

ware. The mid point collocation method is described by the following general algorithm

y�(x) = F (x, y(x)), y(xo) = yo. (1.40)

The expression for explicit midpoint method (modified Euler method) is given by

yn+1 = yn + hF



xn +

h

2
, yn +

h

2
F (xn, yn)

�
, (1.41)

where h denotes the step size and xn = xo + nh. The implicit midpoint method strategy

is expressed as

yn+1 = yn + hF



xn +

h

2
, yn +

1

2
(yn, yn+1)

�
, n = 0, 1, 2, ... (1.42)

The mid point procedure has local error of order O(h3) and the global error is of O(h2) at

each step. The algorithm error decay faster as h→ 0 with more computational intensive

and the solution shall be more stable.
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1.5 Scope of Research

As mentioned earlier in this chapter, understanding of rotating-disk boundary-layer flow

is important from both scientific and industrial point of views. The overall objective of

the present thesis is to develop the mathematical formulation and investigation of the

behavior of a non-Newtonian Maxwell fluid in the laminar boundary layer created on a

stretchable rotating disk. The effects of the heat and mass transfer mechanisms in non-

Newtonian flows are of special interest. Further, the study gives more insights into the

various physical aspects of the rotating-disk geometry like thin film flow and flow between

two rotating disks. In order to demonstrate the outcomes physically, several numerical

procedures assist to carry out the numerical simulation of the flow problems. Thus, this

study embarks on the following objectives:

• Mathematical formulations of Maxwell fluid flow over a stretchable rotating disk,

thin film over a rotating disk as well as flow between two stretchable rotating disks

are carried out.

• The study further analyzes the heat and mass species transfer with the focus on the

various physical effects.

• The physical interpretation of governing rotating disk flow problems are assessed

graphically viz numerical computations.

1.6 Contribution in Thesis

The present work attempts to investigate the flow and heat transfer of non-Newtonian

Maxwell fluid caused by stretchable rotating disk. The diverse efforts have been devoted to

model and explore Maxwell fluid flow due to stretchable rotating disk, unsteady thin film

flow as well as the flow confined between the gaps of two stretchable rotating disks. Indeed,

prior to this work there had been no existing studies concerning the flow of Maxwell fluid

model in the regime of stretchable rotating disk. Gaining a better understanding of flow
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of Maxwell fluid in the presence of heat and mass transfer with various situations will

allow better control of such flow situation.

Thus, the development of mathematical models and their numerical simulations under

various physical aspects are the foremost contributions of this thesis. The substantial

contents of this thesis have already been published. The work in this thesis is organized

as follows:

Chapter 2: This chapter is devoted to the mathematical formulation of three dimen-

sional steady flow of Maxwell nanofluid caused by stretching as well as rotating disk. The

novel aspects of thermophoresis and Brownian motion features are examined by utilizing

Buongiorno’s model. Further, the impact of linear Rosseland radiation on heat transfer

characteristics is studied. The systems of partial differential equations for Maxwell fluid

flow are formulated by using the concept of boundary layer approximations. The problem

is non-dimensionalized by way of von Karaman hypothesis. Bvp midrich scheme is used to

numerically integrate the resultant nonlinear problem. The outcomes have been reported

in “Chines Journal of Physics, 62 (2019) 86-98 ”.

Chapter 3: This chapter investigates the efficiency of the Cattaneov-Christov model

during the steady motion of Maxwell fluid affected by stretchable rotating disk. Further,

the mechanism of heat transfer is controlled with the influence of temperature dependent

thermal conductivity. The mass transfer phenomenon is observed under the action of

first order chemical reaction. The governing nonlinear ODEs are solved numerically with

Runge-Kutta-Fehlberg (RKF45) procedure using Maple software. The validity of numer-

ical outcomes is also presented through comparison tables. The graphical discussion on

the profiles of temperature, velocity and concentration is demonstrated against arising

parameters. The findings of this chapter are published in “Journal of the Brazilian

Society of Mechanical Sciences and Engineering, 40 (2018) 573 ”.

Chapter 4: The objective of this chapter is to study the heat and mass transfer char-

acteristics of magnetohydrodynamic (MHD) Maxwell fluid flow exposed to convectively

heated rotating disk. The aspects of homogeneous-heterogeneous reactions and nonlin-
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ear radiations are also examined. Appropriate conversion variables assisted to bring out

the nonlinear system of ODEs. The numerically approach namely Runge-Kutta-Felberg

(RKF45) is implemented to solve the system of equations. The significant features of this

study are published in “Applied Mathematics and Mechanics (English Edition)

39(9) (2018) 1295-1310 ”.

Chapter 5: The inspiration of this chapter is to understand motion of Maxwell nano-

liquid near the stagnation-point region subject to shrinking/stretching rotating disk in-

spired with revised Buongiorno’s nanofluid model. A built-in numerical procedure bvp4c

is implemented for the numerical integration of the governing nonlinear problem. The

numerical data for the Nusselt number is displayed in table. The role of pertinent pa-

rameters on the flow, temperature and concentration fields have been portrayed in detail.

The contents pertaining to this chapter can be seen in “Journal of Molecular Liquids

287 (2019) 110853 ”.

Chapter 6: In this chapter, our main concern is the development of mathematical

model for unsteady thin film flow of Maxwell nanofluid by considering the magnetic field

and non-linear thermal radiation. The motion of thin film is produced due to both radial

stretching and rotating velocities of the disk. Further, the tabular and graphical analysis

are observed by solving the arising problem for film thickness, Nusselt and Sherwood

numbers, velocity, temperature and concentration distributions. The analysis done in

this chapter is published in “Physics Letters A, 383 (2019) 1300-1305 ”.

Chapter 7: The transient thin film motion of a Maxwell nanofluid influenced by mag-

netic field, nonlinear thermal radiations, Joule heating and Arrhenius chemical reaction

with activation energy is studied theoretically in this chapter. The resultant equations

have been tackled numerically with bvp4c scheme. The main observations are revealed in

“Applied Physics A: Materials Science and Processing, 125 (2019) 161 ”.

Chapter 8: The single rotating disk configuration is extended in this chapter to the

case where Maxwell fluid is flowing between the gap of two axially stretchable rotating

disks. Two disparate situations, such as, when the direction of rotation of both disks is
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same as well as opposite are addressed. A builtin numerical scheme bvp4c is executed

to obtain the solution of governing nonlinear problem. The graphical and tabular fea-

tures of the velocity, pressure, temperature and concentration fields are demonstrated

against influential parameters. The consequences presented in this chapter are published

in “Journal of the Brazilian Society of Mechanical Sciences and Engineering,

41 (2019) 97 ”.

Chapter 9: This chapter explores the effectiveness of homogenous-heterogeneous

chemical reactions in Maxwell fluid flow between two coaxially stretchable rotating disks.

Further, the thermal energy mechanism is carried out with Cattaneo-Christov model.

A finite difference algorithm based scheme, namely bvp4c is implemented for numerical

results. The effects of active parameters are portrayed graphically for the radial, axial

and azimuthal velocities as well as temperature and concentration fields. The highlights

of this chapter are published in “Journal of Thermal Analysis and Calorimetry,

139 (2020) 3185-3195 ”.

Chapter 10: The main findings of this thesis as well as suggestions for further work

are presented in this chapter.
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Chapter 2

Von Kármán Swirling Flow of

Maxwell Nanofluid over a Rotating

Disk

In this chapter, the classical von Kármán swirling flow problem due to a rotating disk is

modeled and studied for the rate type Maxwell nanofluid together with heat and mass

transfer mechanisms. The model under consideration predicts the relaxation time char-

acteristics. The novel aspects of thermophoresis and Brownian motion features are inves-

tigated by employing an innovative Buongiorno’s model. The analysis further explores

the impact of linear Rosseland radiation on heat transfer characteristics. The dimen-

sionless form of system of ODEs is derived through similarity approach adopted by von

Kármán. The system of equations is then integrated numerically in domain [0,∞) by using

bvp midrich scheme in Maple software. The obtained results intimate that a higher rotation

raises the radial and angular velocity components. Moreover, the nano-particles concentration

enhances with Brownian motion parameter. Further, the heat transfer rate at the disk surface

diminishes with thermophoresis parameter. The achieved numerical computations of velocity

profile, Nusselt number and surface drag coefficient are matched in limiting cases with previously

published literature and an outstanding agreement is observed.
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2.1 Rheological Development

Without body forces, the relations for mass conservation, linear momentum, energy and nano-

particles concentration are

∇ ·V = 0, (2.1)

ρ
dV

dt
= ∇ · S−∇p, (2.2)

dT

dt
= τ∗DB



DT
DBT∞

∇T · ∇T +∇C · ∇T
�
+ α∇2T, (2.3)

dC

dt
=
DT
T∞
∇2T +DB∇2C, (2.4)

where (C, T,V) denote the fluid concentration, fluid temperature and velocity vector, respec-

tively, p the liquid pressure, DT the thermophoretic diffusion coefficient, ρ the liquid density,

α the thermal diffusivity, τ∗ the ratio of effective heat capacities, DB the Brownian diffusion

coefficient and S the Maxwell fluid extra stress tensor expressed by

S+ λ1
DS

Dt
= µA1. (2.5)

For steady three dimensional axisymmetric flow, velocity, temperature, concentration and

the stress fields are assumed as

V = [u (r, z) , v (r, z) , w (r, z)] , T = T (r, z) , C = C (r, z) , S = S (r, z) , (2.6)

where (u, v, w) symbolize the velocity components in the radial, azimuthal and axial directions,

respectively. Having in mind the expressions (2.5) and (2.6), Eqs. (1.1) and (1.2) take the

following compact forms

∂

∂z
(w) +

1

r

∂

∂r
(ru) = 0, (2.7)

u
∂u

∂r
− v

2

r
+ w
∂u

∂z
= ν



∂2w

∂r∂z
+
2

r

∂u

∂r
− 2u
r2
+
∂2u

∂z2
+ 2
∂2u

∂r2

�
− 1
ρ

∂p

∂r

−λ1


u2
∂2u

∂r2
+ w2

∂2u

∂z2
+ 2uw

∂2u

∂r∂z
− 2uv
r

∂v

∂r
− 2vw
r

∂v

∂z
+
uv2

r2
+
v2

r

∂u

∂r

�
, (2.8)
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u
∂v

∂r
+ w
∂v

∂z
+
uv

r
= ν



∂2v

∂r2
− v
r2
+
1

r

∂v

∂r
+
∂2v

∂z2

�

−λ1


u2
∂2v

∂r2
+ w2

∂2v

∂z2
+ 2uw

∂2v

∂r∂z
+
2uv

r

∂u

∂r
+
2vw

r

∂u

∂z
− 2u

2v

r2
− v

3

r2
+
v2

r

∂v

∂r

�
, (2.9)

u
∂w

∂r
+ w
∂w

∂z
= −1
ρ

∂p

∂z
+ ν



∂2u

∂r∂z
+
∂2w

∂r2
+
1

r

∂u

∂z
+
1

r

∂w

∂r
+ 2
∂2w

∂z2

�

−λ1


u2
∂2w

∂r2
+ 2uw

∂2w

∂r∂z
+ w2

∂2w

∂z2
+
v2

r

∂w

∂r

�
. (2.10)

Presenting dimensionless variables

[u∗, v∗, w∗] =
� u
RΩ
,
v

RΩ
,
w

δΩ

�
, [ r∗, z∗, T ∗, p∗] =

�
r

R
,
z

δ
,
T − T∞
T∞

,
p

ρ (RΩ)2


. (2.11)

In view of these non-dimensional variables, we can write the continuity and momentum equations

as:

∂

∂z∗
(w∗) +

1

r∗
∂

∂r∗
(r∗u∗) = 0, (2.12)

u∗
∂u∗

∂r∗
− v

∗2

r∗
+ w∗

∂u∗

∂z∗
=
1

Re



2
∂2u∗

∂r∗2
+
∂2w∗

∂r∗∂z∗
+
2

r∗
∂u∗

∂r∗
− 2u

∗

r∗2

�
− ∂p

∗

∂r∗

+
1

Re



R

δ

�2 ∂2u∗
∂z∗2

− λ1Ω


u∗2
∂2u∗

∂r∗2
+ w∗2

∂2u∗

∂z∗2
+ 2u∗w∗

∂2u∗

∂r∗∂z∗

−2u
∗v∗

r∗
∂v∗

∂r∗
− 2v

∗w∗

r∗
∂v∗

∂z∗
+
u∗v∗2

r∗2
+
v∗2

r∗
∂u∗

∂r∗

�
, (2.13)

u∗
∂v∗

∂r∗
+ w∗

∂v∗

∂z∗
+
u∗v∗

r∗
=
1

Re



∂2v∗

∂r∗2
− v

∗

r∗2
+
1

r∗
∂v∗

∂r∗

�

+
1

Re



R

δ

�2
∂2v∗
∂z∗2

�
− λ1Ω



u∗2
∂2v∗

∂r∗2
+ w∗2

∂2v∗

∂z∗2
+ 2u∗w∗

∂2v∗

∂r∗∂z∗

+
2u∗v∗

r∗
∂u∗

∂r∗
+
2v∗w∗

r∗
∂u∗

∂z∗
− 2u

∗2v∗

r∗2
− v

∗3

r∗2
+
v∗2

r∗
∂v∗

∂r∗

�
, (2.14)

1

(R/δ)2



u∗
∂w∗

∂r∗
+ w∗

∂w∗

∂z∗

�
= −∂p

∗

∂z∗
+
1

Re

1

(R/δ)2



∂2w∗

∂r∗2
+
1

r∗
∂w∗

∂r∗

�

+
1

Re



1

r∗
∂u∗

∂z∗
+ 2
∂2w∗

∂z∗2
+
∂2u∗

∂r∗∂z∗

�
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−λ1Ω
1

(R/δ)2



2u∗w∗

∂2w∗

∂r∗∂z∗
+ w∗2

∂2w∗

∂z∗2
+
v∗2

r∗
∂w∗

∂r∗
+ u∗2

∂2w∗

∂r∗2

�
. (2.15)

Within the boundary layer, the inertial and viscous terms have the same order of magnitude

and these terms give us

1

Re



R

δ

�2
= O(1),



δ

R

�2
= O



1

Re

�
, λ1Ω = O(1). (2.16)

Here Re = R2Ω
ν is the Reynolds number. In limit Re→∞, Eqs. (2.12) to (2.15) asymptotically

become

∂

∂z∗
(w∗) +

1

r∗
∂

∂r∗
(r∗u∗) = 0, (2.17)

u∗
∂u∗

∂r∗
− v

∗2

r∗
+ w∗

∂u∗

∂z∗
= −λ1Ω



u∗2
∂2u∗

∂r∗2
+ w∗2

∂2u∗

∂z∗2

+2u∗w∗
∂2u∗

∂r∗∂z∗
− 2u

∗v∗

r∗
∂v∗

∂r∗
− 2v

∗w∗

r∗
∂v∗

∂z∗
+
u∗v∗2

r∗2
+
v∗2

r∗
∂u∗

∂r∗

�
− ∂p

∗

∂r∗
+
∂2u∗

∂z∗2
, (2.18)

u∗
∂v∗

∂r∗
+ w∗

∂v∗

∂z∗
+
u∗v∗

r∗
=
∂2v∗

∂z∗2
− λ1Ω



u∗2
∂2v∗

∂r∗2
+ w∗2

∂2v∗

∂z∗2

+2u∗w∗
∂2v∗

∂r∗∂z∗
+
2u∗v∗

r∗
∂u∗

∂r∗
+
2v∗w∗

r∗
∂u∗

∂z∗
− 2u

∗2v∗

r∗2
− v

∗3

r∗2
+
v∗2

r∗
∂v∗

∂r∗

�
, (2.19)

0 = −∂p
∗

∂z∗
. (2.20)

The above equations in dimensional form then can be written as

∂

∂z
(w) +

1

r

∂

∂r
(ru) = 0, (2.21)

u
∂u

∂r
+ w
∂u

∂z
− v

2

r
= −1
ρ

∂p

∂r
+ ν
∂2u

∂z2

−λ1


u2
∂2u

∂r2
+ w2

∂2u

∂z2
+ 2uw

∂2u

∂r∂z
− 2uv
r

∂v

∂r
− 2vw
r

∂v

∂z
+
uv2

r2
+
v2

r

∂u

∂r

�
, (2.22)

u
∂v

∂r
+ w
∂v

∂z
+
uv

r
= ν
∂2v

∂z2
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−λ1


u2
∂2v

∂r2
− v

3

r2
+
v2

r

∂v

∂r
+ w2

∂2v

∂z2
+ 2uw

∂2v

∂r∂z
+
2uv

r

∂u

∂r
+
2vw

r

∂u

∂z
− 2u

2v

r2

�
, (2.23)

0 = −∂p
∂z
, (2.24)

where ν = µρ denotes the kinematic viscosity.
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2.2 Model Sketch

Fig. 2.1: Schematic of the physical system.

2.3 Problem Formulation

We have investigated a non-Newtonian incompressible Maxwell nano-fluid model over a rotating

disk geometry. The transport phenomena for mass and heat with radiations are explored by

considering the nanoparticles. The disk has the stretching velocity u = cr as well as rotating

velocity v = Ωr in the radial and tangential directions, respectively. To better understand

the flow configuration, cylindrical coordinates system (r, ϕ, z) is considered as shown in Fig.

2.1. At disk surface, the nano-particles concentration Cw and temperature Tw are maintained

constants, while the ambient values are C∞ and T∞.

The above stated assumptions lead to a set of equations describing momentum, energy, and

concentration conservation for the Maxwell nano-fluid flow given by

∂

∂z
(w) +

1

r

∂

∂r
(ru) = 0, (2.25)
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u
∂u

∂r
− v

2

r
+ w
∂u

∂z
= ν
∂2u

∂z2
− λ1



 u
2 ∂2u
∂r2
+ w2 ∂

2u
∂z2
+ 2uw ∂

2u
∂r∂z −

2uv
r
∂v
∂r

−2vwr
∂v
∂z +

uv2

r2
+ v

2

r
∂u
∂r



 , (2.26)

u
∂v

∂r
+ w
∂v

∂z
+
uv

r
= ν
∂2v

∂z2
− λ1



 u
2 ∂2v
∂r2 + w

2 ∂2v
∂z2 + 2uw

∂2v
∂r∂z +

2uv
r
∂u
∂r

+2vwr
∂u
∂z −

2u2v
r2
− v3
r2
+ v

2

r
∂v
∂r



 , (2.27)

u
∂T

∂r
+ w
∂T

∂z
= DBτ

∗

�
DT
DBT∞



∂T

∂z

�2
+
∂T

∂z

∂C

∂z

�
+ α



∂2T

∂z2

�
− 1

ρcp

∂qrad
∂z
, (2.28)

u
∂C

∂r
+ w
∂C

∂z
=
DT
T∞



DB
T∞
DT

∂2C

∂z2
+
∂2T

∂z2

�
. (2.29)

Utilization of the Rosseland approximation leads to simplest form of radiative heat flux as

qrad = −
4σ∗

3k∗
∂T 4

∂z
, (2.30)

where k∗ and σ∗ are the mean absorption and Stephan-Boltzmann constants, respectively. Ex-

pressing T 4 in Taylor series about T∞ and omitting the terms for higher-order to obtain

qrad = −
16σ∗T 3∞
3k∗

∂T

∂z
. (2.31)

Using Eq. (2.31), Eq. (2.28) can be expressed as

u
∂T

∂r
+ w
∂T

∂z
= DBτ

∗

�
DT
DBT∞



∂T

∂z

�2
+
∂T

∂z

∂C

∂z

�
+



α+
16σ∗T 3∞
3ρcpk∗

�
∂2T

∂z2
. (2.32)

2.3.1 Boundary Conditions

The physical boundary conditions of the stated problem are:

(i) On the disk surface ( z = 0)

(u, v, w) = (cr,Ωr, 0) , (T,C) = (Tw, Cw) . (2.33)

(ii) Matching with quiescent free stream ( z →∞)

(u, v) = (0, 0) , (T,C) = (T∞,C∞) , (2.34)
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where c represents the stretching rate and Ω the swirling rate

2.3.2 Similarity Analysis

Introducing the following similarity transformations for conversion of governing continuity, mo-

mentum, energy and nano-particles concentration equations into ordinary differential equations

(u, v, w, η) =



crF (η), crG(η),

√
cvH(η),

�
c

v
z

�
, θ (η) =

T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.

(2.35)

Utilizing the above transformations, Eqs. (2.25 − 2.27), (2.29) and (2.32 − 2.34) can be

simplified as

H � + 2F = 0, (2.36)

F 2 −G2 +HF � = F �� − β1
�
H2F �� + 2FF �H − 2HGG�

�
, (2.37)

2FG +HG� = G�� − β1
�
H2G�� + 2FG�H + 2HGF �

�
, (2.38)

(1 +Rd) θ�� +Pr θ�
�
Nbφ� −H

�
+ PrNt φ�

2
= 0, (2.39)

φ�� +
Nt

Nb
θ�� − ScHφ� = 0, (2.40)

with conditions

[(F,G,H, θ, φ) = (1, ω,0, 1, 1) at η = 0] ,

[(F,G, θ, φ) = (0, 0, 0, 0) as η →∞] , (2.41)

where the rotation strength parameter is denoted by ω
�
= Ω
c

�
which measures the ratio of swirl

to stretch rates. Further, Pr the Prandtl number, Nt the thermophoresis parameter, β1 is the

Deborah number, Rd the radiation parameter, Sc the Schmidt number and Nb the Brownian

parameter. These dimensionless quantities are defined as

Pr =
v

α
, Nt =

τ∗DT (Tw − T∞)
T∞v

, β1 = λ1c, Rd =
16σ∗T 3∞
3kk∗

,

Sc =
v

DB
, Nb =

τ∗DB (Cw − C∞)
v

. (2.42)
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2.3.3 Physical Quantities

The engineering interest quantities are the Nusselt number Nur and the Sherwood number Shr.

Physically Nur is the surface heat transfer rate and Shr implies the mass transfer rate of the

nano-particles concentration. The mathematical expressions of these quantities are given as

Nur = −
�
1 +
16σ∗T 3∞
3ρcpk∗


R

(Tw − T∞)



∂T

∂z

�
|z=0, (2.43)

Shr = −
R

(Cw − C∞)



∂C

∂z

�
|z=0, (2.44)

Where R is the characteristic radius.

The dimensionless expressions are given by

Re−1/2 Nur = − (1 +Rd) θ�(0), Re−1/2 Shr = −φ�(0), (2.45)

where Re =
�
R2c
ν

	
is the Reynolds number.

2.4 Results and Discussion

The differential system in Eqs. (2.36) to (2.40) with conditions (2.41) are highly non-linear in

nature. Therefore, we employ the numerical technique called bvp midrich scheme which calls

midpoint collocation method. The validity of our numerical outcomes is proved by making a com-

parison in limiting cases with previously publish works. The numerical results of (G�(0), F �(0))

(radial and angular skin frictions ) and θ� (0) (Nusselt number) are shown in tables (2.1-2.5).

The values are compared with those reported by Turkyilmazoglu [15], Mustafa et al. [18] and

Shevchuk [14]. A tremendous similarity is perceived here with the consequences of the aforesaid

authors.

In this section, velocity components namely radial F (η), angular G (η) and axial H (η),

temperature θ(η) and concentration φ(η) fields are examined for the parameters governed from

the emerging mathematical formulation. The parameters include rotation parameter ω, Deb-

orah number β1, Prandlt number Pr, radiation parameter Rd, thermophoresis parameter Nt,

Brownian motion parameter Nband Schmidt number Sc. The influence of these parameters are
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graphically shown through Figs. (2.2-2.8). The quantities of physical interest include the skin

friction and Nusselt number and are computed in tables (1-5).

For fixed Deborah number β1 = 0.1, the curves of radial F (η), azimuthal G(η) and axial

velocity H(η) at various estimation of rotation parameter ω are sketched in Figs. 2.2(a-d).

The case ω = 0 implies pure stretching without rotation. The radial velocity component

in Fig. 2.2(a) is observed in an increasing manner with growing rotation velocity. As ω

enhances the stretching rate c becomes smaller than the rotation rate Ω, so near the disk surface

the radial velocity component excel its stretching rate. Physically boosting the rotation, the

centrifugal force becomes stronger which exert pressure on the fluid particles to move in radial

direction. The radial velocity is seen in a decreasing trend as we move away from the disk

surface which indicates that the influence of centrifugal force is limited at the neighborhood of

the disk. Therefore, within this argument growing rotation also increases the angular velocity

component G(η) which is shown in Fig. 2.2(b). The axial velocity component H(η) reveals a

diminishing trend with rotation parameter ω. The main reason behind is that stronger rotation

rate augments the pushing of fluid particles in radial direction and this deficiency is compensated

by the particles that are drawn towards the disk in the negative axial direction due to disk

stretching as portrayed in Fig. 2.2(c). Fig. 2.2(d) depicts that without dissipation and Joule

heating, θ(η) decreases with increasing rotation rate which leads to heat loss.

The effect of Deborah number β1 , at specific value of rotation ω, versus velocity components

is presented in Figs. 2.3(a-c). For the value β1 = 0, the Maxwell fluid model reduces to viscous

fluid. Physically, Deborah number β1 is defined as the ratio between material relaxation time

and material observation time. If β1 > 1.0, elastic effects are dominant while for β1 < 0.5,

viscous effects prevail. For any values other than these two extremes, the material would depict

viscoelastic behavior. So, an increasing value of Deborah number β1 indicates larger the stress

relaxation thus observation time become shorter. Hence solid like response is exhibited by

the fluid. Therefore the fluid motion is retarded by enhancing the Deborah number which

in turn decreases the radial F (η), axial H(η), and azimuthal G(η) velocity components. The

corresponding momentum boundary layer become thinner with Deborah number.

Fig. 2.4(a) summarizes the impact of Prandtl number Pr on temperature distribution

θ(η). Here the some typical Prandtl number Pr(= 0.71) is assumed for air, and Pr(= 6.1− 6.8)
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for water. For growing Prandtl number implies the reduction in temperature and the heat

penetration depth becomes thinner. By definition, Prandtl number Pr approximates the ratio

between momentum to thermal diffisivities. The reason can be attributed for rising value of

Prandtl number yields the enhancement in momentum diffusivity. The upshot of Rd for θ(η) is

inspected through Fig. 4(b). It reveals that the θ(η) rises due to increasing radiation parameter

Rd. Greater value of radiations implies more heat gained by the fluid which causes temperature

enhancement.

The immpression of parameters Nt and Nb on temperature θ(η) is scrutinized in Figs.

2.5(a,b). Here the liquid concentration and temperature boost up with flourishing the Nt.

In fact, thermal conductivity becomes more strengthen with larger thermophoresis parameter.

So the role of thermophoresis parameter is critical in placing the nano-particles over rotating

disk flow. The uplifting Brownian motion leads to boost temperature distribution. It is the

characteristic of the Brownian motion of fluid particles that they move in an unsystematic way

which produced more heat and thus causes an enhancement in liquid temperature.

Figs. 2.6(a,b) are drawn to visualize the strength of Nt and Nb on φ(η) field. It is

evident from Fig. 2.6(a) that when the value of thermophoretic parameter intensifies from

Nt = 0.0 to Nt = 0.9, the concentration boundary layer φ(η) raises. Fig. 2.6(b) illustrates the

characteristics of Bownian motion Nb for nano-particles concentration field. We observe that

the concentration profile decays with growing Brownian motion parameter. Physically, when

we boost the Brownian motion parameter then the nano-particles get more speed in various

directions, so an increase in random motion of liquid particles lead to a decrease in concentration

boundary layer thickness.

The impact of varying Schmidt number Sc on concentration profile φ(η) is visualized in Fig.

2.7. We observe a declination in nano-particles concentration φ(η) and associated boundary

layer thickness. Actually, Sc has inverse relationship with the Brownian parameter Nb. So

an increasing value of Sc leads to small diffusivity and thus the concentration asymptotically

decreases.

Fig. 2.8(a) depicts the variation in Nusselt number −θ� (0) versus Brownian motion pa-

rameter Nb for various values of Nt when Rd = 1.0 and 1.5. The heat transfer rate is found to

be decayed by gradual estimation of Nt. Further, the enhancing radiations promotes the heat
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transfer rate. Fig. 2.8(b) captured the mass transfer rate (Sherwood number) −φ� (0) againts

Nt for different Schmidt number Sc when Nb = 0.2 and 0.4. It reveals that the elevating Sc

yields the higher rate of mass transfer. It is remarkable that rising parameters Nb and Nb

encourage the mass transfer rate.
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Table 2.1: A comparison for F � (0) of several ω when Pr = 1 and Nb = β1 = Nt = 0 =

Rd = Sc.

Rotation Parameter F �(0)

ω Turkyilmazoglu [15] Mustafa et al. [18] Present results

0 −1.1737 −1.1737 −1.1739

1 −0.9483 −0.9483 −0.9485

2 −0.3262 −0.3263 −0.3264

5 3.1937 3.1937 3.1937

10 12.7209 12.7206 12.7209

20 40.9057 40.9056 40.9057

Table 2.2: A comparison for G� (0) of several ω when Pr = 1 and β1 = Nt = Nb = Rd =

Sc = 0.

Rotation parameter −G�(0)

ω Turkyilmazoglu [15] Mustafa et al. [18] Present results

0 0.0000 0.0000 0.0000

1 1.4870 1.4870 1.4870

2 3.1278 3.1278 3.11278

5 9.2535 9.2536 9.2536

10 22.9134 22.9139 22.9136

20 60.0129 59.6895 60.0127
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Table 2.3: A Comparison of −θ�(0) of several ω when Pr = 1 and β1 = Nt = Nb = Rd =

Sc = 0.

Rotation parameter −θ�(0)

ω Turkyilmazoglu [15] Mustafa et al. [18] Present results

0 0.8520 0.8520 0.8525

1 0.8785 0.8757 0.8759

2 0.9304 0.9304 0.9305

5 1.1291 1.1292 1.1291

10 1.4259 1.4260 1.4259

20 1.8944 1.8743 1.8944

Table 2.4: A comparison of F � (0) , −G (0) , and −H (∞) with table (5.6) in Ref. [14] for

ω = 1, and β1 = 0.

F � (0) −G� (0) −H (∞)

Ref. [14] Observe Ref. [14] Observe Ref. [14] Observe

0.5102 0.5102136 0.6159 0.6159096 0.8845 0.8842967
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Table 2.5: A comparison of −θ�(0) with table (8.1) in Ref. [41] for ω = 1, and β1 = Rd = 0.

−θ�(0)

n∗ = 0

Pr Ref. [14] Present Pr Ref. [14] Present

1.0 0.3963 0.3963237 9.0 1.0873 1.087272

1.05 0.4070 0.4069937 10.0 1.1341 1.13409

1.1 0.4173 0.4173379 11.0 1.1779 1.177838

1.5 0.4906 0.4905428 13.0 1.2579 1.257853

2.0 0.5653 0.5652200 15.0 1.3300 1.330212

2.28 0.6016 0.6015237 17.0 1.3958 1.396129

2.4 0.6162 0.6161445 19.0 1.4567 1.457005

2.5 0.6280 0.6279489 20.0 1.4855 1.485833

3.0 0.6826 0.682547 50 2.0909 2.090888

4.0 0.7753 0.7753006 100 2.6871 2.687124

5.0 0.8533 0.8532698 500 4.7351 4.732268

7.0 0.9818 0.9818099 1000 6.0162 5.985911
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Fig. 2.2: F, G, H and θ for ω .
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Fig. 2.3: F, G and H for β1 .
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Fig. 2.4: θ for Pr and Rd.
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Fig. 2.5: θ for Nt and Nb.
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Fig. 2.6: φ for Nt and Nb.
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Fig. 2.7: φ for Sc.
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Fig. 2.8: Nur for Nt and Shr for Sc.
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Chapter 3

Impact of Modified Fourier Law in

Chemically Reactive Maxwell Fluid

Flow

This chapter reports the influence of modified Fourier’s law of thermal conduction on Maxwell

fluid swirling triggered by a rotating disk. The application of the first-order chemical reaction

with temperature-dependent heat conductivity is employed in mass and heat transport analysis.

Moreover, a uniform rotation and stretching of disk disrupt the fluid motion. A numerical

scheme, specifically the Runge-Kutta-Fehlberg (RKF45) method on Maple is used to carry out

analysis of the problem. The impacts of the governing parameters are illustrated via graphs

and displayed as the velocity, temperature, and concentration profiles. The results obtained

infer that due to the Lorentz force the velocity components lessen; however, temperature of the

fluid is enhanced. Furthermore, for large values of the thermal-relaxation parameter, the fluid

temperature reduces significantly. The concentration field is also observed to be decreasing for

the chemical reaction parameters and Schmidt number.
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3.1 Problem Formulation

An incompressible steady Maxwell fluid flow due to a rotating stretchable disk is considered

with magnetic beam projected along z-axis. The flow configuration is modeled in cylindrical

coordinates. It is assumed that disk is rotating with velocity v = Ωr and stretching with velocity

u = cr along −ϕ and −r directions, respectively, and is depicted through Fig. 2.1. Features

of heat transfer configuration are modeled with the modified version of Fourier’s law of heat

conduction along with applications of temperature dependent thermal conductivity. In modified

Fourier’s law of heat conduction, a time factor has been introduced to replace the parabolic heat

distribution into hyperbolic heat distribution. Furthermore, the impact of homogeneous first

order chemical reaction is incorporated in the mass transfer phenomenon. With this effect, a

direct relation exists between the rate of chemical reaction and species concentration. The heat

flux q in case of modified Fourier law with variable thermal conductivity satisfies the following

relationship:

q+ δE



∂q

∂t
+V · ∇q− q · ∇V+(∇ ·V)q

�
= −k(T )∇T, (3.1)

where the thermal relaxation time is represented by δE and the variable thermal conductivity

by k(T ) = k∞
�
1 + ε T−T∞Tw−T∞

	
with ε the thermal conductivity. The above assumptions lead

to the following continuity, momentum, energy (Eliminating q from Eqs. (1.8) and (3.1)) and

concentration equations

∂

∂z
(w) +

1
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(ru) = 0, (3.2)
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u
∂C

∂r
+ w
∂C

∂z
= D



∂2C

∂z2

�
−Kr (C − C∞) , (3.6)

with conditions (2.33, 2.34) (cf. Chapter 2)

[(u, v, w, T,C) = (cr, ωr, 0, Tw, Cw) at z = 0] ,

[(u, v, T, C) = (0, 0, T∞, C∞) as z →∞] , (3.7)

where the velocity components in r−, ϕ− and z− directions are respectively, u, v, and w.

The swirl rate is denoted by Ω and the stretching rate by c. Using the transformations (2.35)

(cf. Chapter 2), Eqs. (3.2) to (3.7) reduce into following dimensionless forms

H � + 2F = 0, (3.8)

F �� −HF � +G2 − F 2 − β1
�
2FF �H − 2HGG� +H2F ��

�
−M

�
F + β1HF

�� = 0, (3.9)

G�� −HG� − 2FG − β1
�
2HGF � +H2G�� + 2FG�H

�
−M

�
G+ β1HG

�� = 0, (3.10)

(1 + εθ) θ�� + εθ�
2 − Pr λE

�
H2θ�� +H H �θ�

�
− PrH θ� = 0 (3.11)

1

Sc
φ�� −Hφ� − γφ = 0, (3.12)

F (0) = 1, G (0) = ω, H(0) = 0, θ(0) = 1, φ(0) = 1,

F (∞) = 0, G (∞) = 0, θ(∞) = 0, φ(∞) = 0, (3.13)

where β1 = λ1c is the Deborah number ( For β1 = 0, the Maxwell model reduces to case of

viscous fluid model), M =
σB20
cρ the magnetic field, Pr =

ν
α the Prandtl number, λE = c δE the

thermal relaxation parameter, γ = Kr
c the chemical reaction parameter, Sc =

v
DB
the Schmidt

number and ω = Ωc the rotation parameter.

3.1.1 Mass Transfer Rate

At the disk wall, the mass transfer rate can be evaluated by Sherwood number Shr. Sherwood

number can be defined physically by Fick’s law which can be expressed as
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Shr = −
R

(Cw − C∞)



∂C

∂z

�
|z=0, (3.14)

and dimensionless form is

Re−1/2 Shr = −φ�(0), (3.15)

3.2 Numerical Solution Procedure

Runge-Kutta Fehlberg method (RKF45) in Maple software is employed to obtain the numerical

solution of governing non-linear problem (3.8) to (3.13). A detail discussion can be seen in

section (1.4.1)

The stability analysis of RK method is one of the interesting part regarding the numerical

solution of ODEs. In error perspective, too much time for computation and round-off error

occur when too small step size is used. For the opposite case, one should also deliberate and

inquire about the step size upper bound. Such a bound encountered frequently and reaches

with the method grows unstable numerically, the qualitative correspondence between produce

numerical and exact solution no longer take place due to the happening of some bifurcation. The

customary criterion for confirming that a numerical method is stable is called absolute stability.

Runge-Kutta and other numerical methods’ Absolute-stability analysis is explained by a linear

model problem

y� = λy, (3.16)

y(a) = α, a ≤ x, (3.17)

where λ is complex. The analytical solution is

y(x) = αeλ(x−a). (3.18)

At y = 0 for Real(λ) < 0, the problem has a stable fixed point. The problem is generalized as

for the system of ODEs
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y� = Ay, (3.19)

y(a) = α, α ≤ x, (3.20)

where A is a matrix with distinct eigenvalues all lying in the negative half plane so that again

we have a stable fixed point at y = 0.

The region of absolute stability shown in Fig. 3.1 is indicated by the values (non-negative

and real) of step size for a method and λ (complex) for which yn → 0 as n→∞, i.e., for which

the fixed point at the origin is stable. For |S| ≤ 1, the step size h and λ values set should

be appropriate. Where S is the stability function for the Jacobian eigenvalue of the RK map

evaluated at the fixed point. The modulus of the stability function is an alternative for the

system of ODEs which is given by spectral radius of the Jacobian of the RK map at the fixed

point.

Fig. 3.1: Stability region of RK method.
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3.3 Physical Interpretation

Numerical consequences to this exploration are affirmed in terms of profiles for the velocity,

temperature and concentration for numerous pertinent parameters. Physical parameters for

present investigation comprise of the rotation parameter ω, Deborah number β1, magnetic num-

ber M , chemical reaction parameter γ, Prandtl number Pr, thermal relaxation time parameter

λE , thermal conductivity parameter ε and Schmidt number Sc,. The influence of these di-

mensionless numbers on the radial F (η), axial H(η), and azimuthal G(η) velocity components,

temperature θ(η), concentration distributions φ(η) and Sherwood number −φ�(0) are graphically

plotted through graphs 3.2(a-d) to 3.6(a,b).

The effect of magnetic parameter M on the velocity components in radial F (η), axial H(η),

azimuthal G(η) directions and temperature θ(η) contours are captured with numeric algorithm

through Figs. 3.2(a-d). The implementation of magnetic flux can perform a significant part in

regulating the fluid motion and thermal transport mechanism in many conducting fluids. Figs

3.2(a,b) manifest the deviation of velocity field in radial and azimuthal directions for the growth

in M with fixed β1 = 0.1 and considering two cases of rotation parameter ω = 2.0 and 4.0. It

is remarkable to mention here that strengthen magnetic field effects have a strong tendency to

slow down the fluid motion, which in turn reduces the thickness of momentum boundary layer.

Physically, this phenomenon is realistic since M is the proportion of electromagnetic force to the

viscous force, in this fashion, enhancement in values of M yields depreciating the viscous force

which in turns reduces the velocity. Fig. 3.2(c) reveals that the decreasing value of magnetic

field M leads to magnify the H(η) which means that boosting value of magnetic field M is to

slow down the fluid motion in the negative axial direction. It is noteworthy that the velocity

components have higher value in case of rotation parameter ω = 4.0 as compared to ω = 2.0.

Physically, rotation parameter ω is the ratio of swirl Ω to stretch c rates. So higher value of

rotation parameter ω implies stronger the rotation rate Ω which as a consequence produces the

strong centrifugal force. The ability of this force is to push the fluid particles in radial direction.

Therefore, the radial F (η) as well as the azimuthal G(η) components grow due to enhancing the

rotation ω. To compensate this, a downward fluid flow towards the disk surface occurs which

is depicted in Fig. 3.2(c). Fig. 3.2(d) demonstrates the variation in temperature profile
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θ(η) with magnetic parameter M for rotation ω = 2.0 and 4.0. It is apparent from this figure,

that an upsurge is viewed in fluid temperature θ(η) for increasing M . Further, we noticed that

fluid temperature reduces for the lower estimation of parameter ω = 2.0.

Figs. 3.3(a,b) represent the influence of β1 on radial and circumferential motion. As

β1 upsurges, the velocity components in radial as well azimuthal directions move towards the

stretching wall. This indicates that boundary layer develops narrow by enlarging β1. It is obvious

to remark here that the achievement of temperature for fluid is higher with boosting the rotation

parameter ω. Fig. 3.3(c) plots the velocity profile component H(η) in axial direction for various

values of Deborah number β1. Here the values of azimuthal velocity are moving from negative

to zero by enlarging the Deborah number β1which implies that fluid flowing towards negative

z−direction due to the rotation and stretching are slow down by uplifting the value of Deborah

number. The temperature field increases with boosting the Deborah number which is shown

in Fig. 3.3(d). Further, the velocity components have lower value for rotation ω = 2.0 as

compared to ω = 4.0 while a reverse mode is examined in case of temperature field θ(η).

The Pr impact on θ(η) is visualized in Fig. 3.4(a) for constant thermal conductivity

(ε = 0) and variable thermal conductivity (ε = 0.5). It is clear that all physically possible values

for Prandtl number can be tackled by current numerical scheme. Prandtl number Pr compares

the hydrodynamic thickness and thermal boundary layers. Air and other gases have low Prandtl

number attributed to their low viscosity while viscoelastic fluids and water generally possess a

high value of Prandtl number. An escalation in Pr suggests a decline in thermal diffusivity.

Consequently, the boundary layer concerning temperature becomes thin with the augmentation

in Pr. Apparently at the surface, the temperature slope elevates by raising the Prandtl number

Pr. Actually, larger value of Prandtl number implies that liquids have more effective transfer

of convective heat than conductive heat and therefore, more heat transfer rate occurs. It is

noteworthy here that a significant improvement in fluid temperature is observed when (ε = 0.5)

as compared to (ε = 0) which is quite realistic physically.

The heat flux relation by Cattaneo–Christov is the generalization of Fourier’s law where

the constitutive expressions of the heat flux and liquid temperature contain the velocity vector.

This specifies that heat flux not only is associated with temperature gradient but also with

fluid velocity. Fig. 3.5(b) displays the relationship between relaxation time parameter λE and
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temperature distribution θ(η) subject to constant thermal conductivity (ε = 0) and variable

thermal conductivity (ε = 0.5). The value λE = 0 signifies that the heat flux model is reduced

to classical Fourier’s law. Obviously shown from this figure that θ(η) has the inverse relationship

with the thermal relaxation time λE . This conclusion confirms the result with that of Han et al.

[57]. Physically, flourishing the thermal relaxation parameter, more time is required to material

particles for transferring of heat to its neighboring particles. In simple words, material reveals

a non conducting property for higher value of thermal relaxation parameter, thus reducing the

fluid temperature. So, it can be established that profile for θ(η) is higher in Fourier’s law

in comparison with Cattaneo-Christov expression. Furthermore, the influence (ε = 0.5) is to

elevate the fluid temperature.

Fig. 3.5(a) predicts the characteristics of concentration field φ(η) with gradual increment

in chemical reaction parameter γ. Obviously, it can be observed that curves for species concen-

tration φ(η) decay for escalating values of γ. This is coupled with a minor shrinkage in fluid

concentration. In fact, the chemical reaction parameter γ having larger values yield a reduction

in the chemical molecular diffusivity. The characteristics of Schmidt number Sc on concentration

profile φ(η) with distinct values are sketched in Fig. 3.5(b). We observe a significant reduction

in species concentration by pushing the values of Schmidt number Sc while other parameters

are kept fixed. Physically, larger values of Sc will lead to a decline in molecular diffusivity

of the fluid resulting a reduction in the species diffusion rate. While reverse influence can be

observed in case of lesser values of Sc since they associate to greater molecular diffusivities.

Consequently, with the development of Schmidt number Sc the concentration boundary layer

thickness remarkably contracts.
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Table. 3.1: A comparison of F � (0) with various values of ω when Pr = 1 and β1 = 0.

M = 0 ω 0 1 2 5

Turkyimazoglu [15] F �(0) −1.173720738 −0.948313756 −0.326243978 3.193732989

Present results −1.173721815 −0.948314491 −0.326244272 3.193732981

M = 2 ω 0 1 2 5

Turkyimazoglu [15] F �(0) −1.830489674 −1.663452548 −1.175347018 1.8929454707

Present results −1.830489679 −1.663452553 −1.175347021 1.892945470

Table. 3.2: A comparison of −G�(0) with various values of ω when Pr = 1 and β1 = 0.

M = 0 ω 0 1 2 5

Turkyimazoglu [15] −G�(0) 0.000000000 1.486952682 3.127828177 9.253541181

Present results 0.000000000 1.486952819 3.127828198 9.253541178

M = 2 ω 0 1 2 5

Turkyimazoglu [15] −G�(0) 0.000000000 2.023944904 4.113493830 11.140599491

Present results 0.000000000 2.023944903 4.113493827 11.140599489

Table. 3.3: A comparison of −H(∞) with various values of ω when Pr = 1 and β1 = 0.

M = 0 ω 0 1 2 5

Turkyimazoglu [15] −H(∞) 1.502994055 1.573076556 1.728826487 2.252086899

Present results 1.502952500 1.573049479 1.728816732 2.252086675

M = 2 ω 0 1 2 5

Turkyimazoglu [15] −H(∞) 1.038474418 1.074894633 1.173952491 1.640958245

Present results 1.038474351 1.074894568 1.173952446 1.640958240
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Table. 3.4: A comparison of −θ�(0) with various values of ω when Pr = 1 and β1 = λE =

ε = 0.

M = 0 ω 0 1 2 5

Turkyimazoglu [15] −θ�(0) 0.851991421 0.875662139 0.930411191 1.129140492

Present results 0.851993748 0.875663350 0.9304115178 1.129140496

M = 2 ω 0 1 2 5

Turkyimazoglu [15] −θ�(0) 0.726086562 0.742212295 0.785365438 0.980285183

Present results 0.726188988 0.742289416 0.785400968 0.980286049
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Chapter 4

Radiative Heat Transfer in Reactive

Maxwell Fluid Flow

The transportation of heat and mass in magnetohydrodynamic (MHD) Maxwell fluid flow over

a convectively heated stretchable rotating disk is scrutinized here. To regulate the fluid tem-

perature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is

employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is

studied. The transformed nonlinear system of ODEs are solved numerically with efficient method

namely Runge-Kutta-Felberg (RKF45) integration scheme using Maple software. Achieved re-

sults are validated with previous studies in excellent way. Major outcomes reveal that magnetic

flux reduces the flow components while enhance the fluid temperature. Also, the presence of

radiative heat flux is to raise the temperature of fluid. Further the strength of homogeneous-

heterogeneous reactions is very useful to diminish the concentration of reaction.

4.1 Physical Model and Governing Equations

A three dimensional Maxwell fluid flow due to a rotating stretchable disk subject to uniform

magnetic field B0 applied in the axial direction is studied. The supposition of small magnetic

Reynolds number leads to ignore the induced magnetic field. Moreover, the heat transfer features

are characterized through non-linear radiative heat flux. Here we assume cylindrical coordinates
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system to understand the flow description as indicated in Fig. 2.1.

The disk surface temperature is because of convective heating process characterized by

the coefficient of heat transport hf and temperature of the hot fluid Tf . The homogeneous-

heterogeneous reactions and catalyst surface are taken as inspired by Chaudhary and Merkin

[68]. Homogeneous reaction for cubic autocatalysis is

A+ 2B → 3B, rate = kcab2, (4.1)

and for isothermal first-order reaction of the form, we have

A→ B, rate = ksa, (4.2)

where A and B denote chemical species, a and b be their concentrations and kc and ks are

the rate constants. We further presume that the process of these reactions is isothermal. In

the absence of viscous dissipation and Joule heating, the governing equations for steady three

dimensional flow of a Maxwell fluid with magnetic field are

∂
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(w) +
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u
∂T

∂r
+ w
∂T

∂z
= − 1
ρcp

∂qrad
∂z
+ α



∂2T

∂z2

�
, (4.6)

u
∂a

∂r
+ w
∂a

∂z
= dA



∂2a

∂z2

�
− kcab2, (4.7)

u
∂b

∂r
+ w
∂b

∂z
= dB



∂2b

∂z2

�
+ kcab

2, (4.8)
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where dA and dB are diffusion coefficients. The relevant conditions are

u = Uw = cr, v = Ωr, w = 0,−k
∂T

∂z
= hf (Tf − T ) , dA

∂a

∂z
= ksa, dB

∂b

∂z
= −ksa at z = 0,

u = 0, v = 0, T → T∞, a→ a◦, b→ 0 as z →∞, (4.9)

where c is the stretching rate, Ω the swirl rate and a◦ the positive dimensional constant.

4.1.1 Non-Dimenzionalization and Parameterization

Introducing the following similarity variables

a

a◦
= g(η),

b

a◦
= h(η). (4.10)

where dimensionless concentration of homogeneous bulk fluid is g(η) and dimensionless concen-

tration of heterogeneous catalyst at the surface is h(η). By using the above similarity transfor-

mations and along with Eq. (2.35) (cf. Chapter 2), Eqs. (4.3) to (4.5), (4.7), (4.8), (4.11) and

(4.12) reduce into following dimensionless forms

H � + 2F = 0, (4.11)

F �� − F 2 +G2 −HF � − β1
�
H2F �� + 2FF �H − 2HGG�

�
−M

�
F + β1HF

�� = 0, (4.12)

G�� − 2FG−HG� − β1
�
H2G�� + 2FG�H + 2HGF �

�
−M

�
G+ β1HG

�� = 0, (4.13)



1 +
4

3
Rd

�
θ�� +

4

3
Rd
�
(θw − 1)3

�
3θ2θ�

2
+ θ3θ��

	
+ 3 (θw − 1)2

�
2θθ�

2
+ θ2θ��

	

+3 (θw − 1)
�
θ�
2
+ θθ��

	�
− Pr θ�H = 0, (4.14)

1

Sc
φ�� −Hφ� − k1φψ2 = 0, (4.15)

δ1
Sc
ψ�� −Hψ� + k1φψ2 = 0, (4.16)

F = 0, G = ω, H = 0, θ� = −γ1 [1− θ] , φ� = k2φ, δ1ψ� = −k2φ, at η = 0,

F → 0, G→ 0, θ → 0, g → 1, h→ 0 as η →∞, (4.17)
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where ω = Ωc denotes the rotation parameter. Further, M is the magnetic field, β1 the Deborah

number, Rd the radiation parameter, θw the temperature ratio parameter, Pr the Prandtl

number, γ1 the Biot number, k1 the homogenous reaction, Sc the Schmidt number and k2 the

heterogeneous reaction. These dimensionless quantities are, respectively, defined as

M =
σB20
cρ
, β1 = λ1c, Rd =

4σ∗T 3∞
3kk∗

, θw =
Tf
T∞
, Pr =

ν

α
,

γ1 =
hf
k

�
ν

c
, k1 =

kca
2
◦
c
, Sc =

v

DA
, k2 =

ks
DA

�
ν

c
. (4.18)

We assumed that the diffusion coefficients of chemical species A and B are of the same magnitude.

This hypothesis leads to explore the study where the diffusion coefficients dA and dB are equal

i.e. δ1 = 1 (see [58]). Actually, this assumption gives the relation

φ(η) + ψ(η) = 1. (4.19)

Thus Eqs. (4.15) and (4.16) turn into

1

Sc
φ�� − k1φ (1− φ)2 −Hφ� = 0, (4.20)

with conditions

k2φ(0) = φ
�(0), φ (∞)→ 1. (4.21)

4.1.2 Heat Transfer Performance

The efficiency of heat transport over the disk surface can be estimated by Nusselt number Nur.

Physically, Fourier’s law is utilized to define Nusselt number Nur. The mathematical expression

of this quantity is given as

Nur =
Rqw

k (Tf − T∞)
, (4.22)

with

qw = −k
�
1 +
16σ∗T 3

3kk∗



∂T

∂z

�
|z=0 . (4.23)
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In non-dimensional form, we can write

Re−1/2 Nur = −


1 +
4

3
Rd {1 + (θw − 1) θ(0)}3

�
θ�(0), (4.24)

4.2 Physical Interpretation

To compute the numerical solution of proposed problem (4.11) to (4.14), (4.17), (4.20) and (4.21),

Runge-Kutta-Fehlberg (RKF45) integration scheme is implemented. This section is focused on

physical explanation of involved parameters in flow, heat and mass transfer distributions. The

above stated numerical computation is carried out for magneto Maxwell fluid due to stretchable

rotating disk. The heat transfer characteristics are investigated with non-linear thermal radiation

effects. Homogeneous-heterogeneous reactions are considered on the fluid volume concentration.

The impact of parameters like rotation 0.0 ≤ ω ≤ 6.0, magnetic field 0.0 ≤ M ≤ 3.0 are

examined on F (η) , G (η) , H (η) velocity components and temperature field θ(η). Effects of

radiation parameter 0.0 ≤ Rd ≤ 0.6, Biot number 0.0 ≤ γ1 ≤ 2.0, on temperature distribution

θ (η) are inspected. Homogeneous reaction strength 0.2 ≤ k1 ≤ 0.8, heterogeneous (surface)

reaction strength parameter 0.1 ≤ k2 ≤ 0.7, magnetic field 0.0 ≤ M ≤ 3.0 and Schmidt

number 1.0 ≤ Sc ≤ 2.5 are studied on volume concentration g(η).

Figs. 4.1(a-d) are displayed to investigate the role of ω on the velocity components and

temperature field. Figs. 4.1(a,b) show that the radial and azimuthal velocity components

represented by F (η) and G (η) , respectively, increase with varying value of rotation parameter

ω. The rotation parameter ω is ratio of swirl rate Ω to stretch rate c. Thus, it gives us measure of

swirl rate to stretch rate. When rotation ω starts flourishing, this means the swirl rate becomes

larger compared to stretch rate. The case ω = 0 implies the stretching without rotation. For

the special choice of magnetic parameter (M = 1.0) and Deborah number (β1 = 0.1), radial

and azimuthal velocity components represented by F (η) and G(η), respectively, grow up. The

main reason behind it is that an increase in ω strengthen the centrifugal force which pumps the

fluid radially outward. It is further observed that the change in radial and azimuthal velocities

due to rotation diminishes gradually when moves away from the disk. Physically this trend

was expected because the influence of centrifugal force is limited at the disk vicinity. The
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usual enhancement in the angular component of velocity with flourishing rotation near the disk

surface can be visualized in Fig. 4.1(b). Fig. 4.1(c) depicts a decreasing trend in the axial

velocity component H (η) with stronger rotation rate. This happens because with accelerated

rotation rate, the fluid particles are forced to move in radial direction and this is compensated

by the particles which are drawn towards the disk surface in the negative axial direction. It

is appeared from Fig. 4.1(d) that the fluid temperature decreases as the rotation parameter

becomes strengthen without Joule heating and dissipation effects.

The influence ofM on the flow and thermal curves at a prescribed rotation parameter ω and

Deborah number β1 are sketched in Fig. 4.2(a-d). It is obvious that as the magnetic field M

turns into powerful, the velocity curves reduce considerably in all directions. Contrary to velocity

profile, the temperature field θ(η) rises, which is because of the fact of growth in skin-friction

which offers obstruct to fluid particles. Thus, heat is generated in the fluid by the occurrence

of magnetic field in vertical direction. Physically, a resistive force called the Lorentz force is

developed due to presence of the applied magnetic field in the electrically conducting fluid. The

feature of this force is to retard the flow over the disk at the expense of enhancing its temperature.

This is portrayed by the decline in the radial, tangential and axial velocity components and uplift

in the temperature field as M develops which is depicted in Fig. 4.2(a-d).

Fig. 4.3(a) elaborates the curves of thermal field θ(η) for various values of radiative pa-

rameter Rd. The thermal field θ(η) and their associated thickness of boundary layer are risen

for enhancement in the values of Rd. As expected, the existence of radiative parameter im-

plies to absorb more heat by the fluid that corresponds to higher temperature. The features of

local Biot number γ1 with various values on fluid temperature are displayed in Fig. 4.3(b).

Physically, a gradual increment in the Biot number γ1 effects in the larger convection at disk

surface which elevates the fluid temperature. Furthermore, thermal boundary layer thickness

significantly pronounced by the stronger Biot number γ1.

Fig. 4.4(a) reveals the actions of parameter k1, denoting homogeneous reaction strength,

on fluid concentration g(η). Concentration profile reduces while consequent boundary layer de-

velops thicker as the homogeneous reaction k1 strengthens. Fig. 4.4(b) shows the variation

of concentration profile for numerous values of heterogeneous (surface) reaction strength pa-

rameter k2, the magnitude of concentration profile φ(η) reduces with uplifting the strength of
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heterogeneous reaction k2. This happens from the reason that augmentation in either k1 or k2

suggests the consumption of reactants in the flow field which corresponds a reduction in fluid

volume concentration g(η).

Ratio between viscosity and mass diffusivity is called Schmidt number Sc. Fig. 4.5(a)

elaborates the plots of concentration profile with growing rating of Sc. It is observed that larger

Schmidt number leads to fall in concentration profile. As expected, an escalate in Sc agrees

to diminish the mass diffusivity and as a result fluid concentration reduces. The impression

of parameter M on g(η) is observed in Fig. 4.5(b). The increasing values for magnetic field

reduces the concentration profile due to the resistive force which is developed in the walk of

magnetic force.

Tables 1 and 2 are organized for the authentication of present numerical computations.

For this we have calculated the numerical values for radial F �(0), angular skin friction −G�(0),

vertical velocity −H(∞) and Nusselt number −θ�(0) in limiting cases for different values of

rotation parameter ω with magnetic field (M = 0,M = 2). The attained outcomes match

in outstanding way with those of Turkyimazoglu [15] which confirms the accuracy of applied

numerical scheme. The numerical computations of local Nussetl number Nur is included in

Table 3. It appears that heat transport −
�
1 +Rd{1 + (θw − 1) θ(0)}3

	
θ�(0) enhances with an

increase in physical parameters like rotation 0.0 ≤ M ≤ 6.0, thermal radiation 0.1 ≤ Rd ≤ 0.4,

Biot number 0.5 ≤ γ1 ≤ 2.0 and temperature ratio 1.2 ≤ θw ≤ 1.8. A decreasing trend is

observed for Prandtl number (1.0 ≤ Pr ≤ 7.0).
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Table 4.1: A comparison of F � (0) and −G�(0) with various values of ω for M = 0 and

M = 2 when β1 = 0.

F �(0) −G�(0)

M ω Turkyimazoglu [15] Present results Turkyimazoglu [15] Present results

0 0 −1.173720738 −1.173721815 0.000000000 0.000000000

1 −0.948313756 −0.948314491 1.486952682 1.486952819

2 −0.326243978 −0.326244272 3.127828177 3.127828198

5 3.193732989 3.193732981 9.253541181 9.253541178

2 0 −1.830489674 −1.830489679 0.000000000 0.000000000

1 −1.663452548 −1.663452553 2.023944904 2.023944903

2 −1.175347018 −1.175347021 4.113493830 4.113493827

5 1.8929454707 1.892945470 11.140599491 11.140599489

Table 4.2: A comparison of −H(∞) and −θ�(0) with various values of ω for M = 0 and

M = 2 when Pr = 1 and β1 = Rd = γ1 = θw = Sc = k1 = k2 = 0.

−H(∞) −θ�(0)

M ω Turkyimazoglu [15] Present results Turkyimazoglu [15] Present results

0 0 1.502994055 1.502952500 0.851991421 0.851993748

1 1.573076556 1.573049479 0.875662139 0.875663350

2 1.728826487 1.728816732 0.930411191 0.9304115178

5 2.252086899 2.252086675 1.129140492 1.129140496

2 0 1.038474418 1.038474351 0.726086562 0.726188988

1 1.074894633 1.074894568 0.742212295 0.742289416

2 1.173952491 1.173952446 0.785365438 0.785400968

5 1.640958245 1.640958240 0.980285183 0.980286049
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Table 4.3: The data for Re−1/2 Nur against M , Rd, γ1, θw, and Pr by keeping ω =

6.0, β1 = 0.1, Sc = 5.0, k1 = 0.5 = k2 .

M Rd γ1 θw Pr Re−1/2 Nur

0.0 0.1 2.0 1.5 7.0 1.715876272

2.0 1.663501612

4.0 1.612027607

6.0 1.563631490

1.0 0.1 1.689795665

0.2 2.081612049

0.3 2.422306755

0.4 2.716546067

0.1 0.5 0.599964479

1.0 1.052505870

1.5 1.406015906

2.0 1.689795665

1.0 1.2 0.893105670

1.4 0.991436334

1.6 1.122285799

1.8 1.290299610

1.2 1.0 0.500598705

3.0 0.750051509

5.0 0.841728890

7.0 0.893105670
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Fig. 4.1: F, G, H and θ for ω .
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Fig. 4.2: F, G, H and θ for M.
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Chapter 5

Stagnation Point Flow of Maxwell

Nanofluid

The concern here is to investigate the stagnation-point flow of Maxwell nanofluid over a porous

radially stretching/shrinking rotating disk. An innovative revised Buongiorno’s nanofluid model

is used to track the thermophoresis and Brownian movement of the nanoparticles. The influences

of variable thermal conductivity and heat source/sink are deliberated on nanofluid heat transfer

features. Von Kármán similarity variables have been utilized to obtain the system of nonlinear

ODEs comprising of continuity, momentum, energy and concentration equations. A built-in nu-

merical procedure bvp4c is implemented for the numerical integration of the governing nonlinear

problem. The results for the flow problem have been executed for the several physical parame-

ters like rotation parameter, stretching/shrinking parameter, velocity ratio parameter, thermal

conductivity parameter, suction/injection parameter, thermophoresis and Brownian motion pa-

rameters, heat source/sink parameter, Prandtl and Schmidt numbers. Based on the obtained

results, it is evident that the radial velocity becomes higher with increasing value of velocity ra-

tio parameter while reverse conduct is noticed for azimuthal velocity. Further, the heat transfer

rate increases with decreasing value of thermophoresis parameter.
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5.1 Problem Formulation

The schematic view of the porous rotating disk geometry is shown in Fig. 2.1. We consider the

axisymmetric stagnation-point motion of Maxwell nanofluid develops from shrinking/stretching

disk besides rotating. All the physical quantities are assumed to be independent of θ since the

flow is axisymmetric about z−axis. The stagnation line is at z = 0 and the flow domain consists

of the upper half plane filled with nanofluid. The disk is assumed to be stretching/shrinking

radially in accordance with the velocity u(r, 0) = λuw, where uw = cr and λ > 0 stands for

disk stretching while λ < 0 for disk shrinking. Additionally, the disk is rotating in the anti-

clockwise direction with velocity v(r, 0) = vw = Ωr, where Ω(≥ 0) is the rotation rate. The

nanoparticles volume fraction for the ambient fluid is C∞. The Buongiorno’s nanofluid model

is treated to study the thermophoresis and Brownian motion. The assumptions of variable

thermal conductivity and heat source/sink are taken. At the disk face with thermophoresis, the

nanoparticles normal flux is considered to be zero. Within the framework of these axioms, the

governing flow problem is given by

∂

∂z
(w) +

1

r

∂
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with following conditions

u = λuw, v = vw, w = w0, T = Tw,
∂C

∂z
DB +

∂T

∂z

DT
T∞
= 0 at z = 0,

u = ue = c1r, v = ve → 0, w = we = −2c1z, T = T∞, C = C∞ as z →∞. (5.6)

Taking into account the following similarity variables (cf. Chapter 2)

u = crF, v = ΩrG, w =
√
cvH, η =

�
c

v
z,

θ (η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
C∞

. (5.7)

By applying the similarity variables, Eqs. (5.1) to (5.6) reduce to the subsequent non-dimensional

forms

H � + 2F = 0, (5.8)

F 2 −G2 +HF � = F �� − β1
�
H2F �� + 2FF �H − 2HGG�

�
, (5.9)

2FG +HG� = G�� − β1
�
H2G�� + 2FG�H + 2HGF �

�
+ A2, (5.10)

(1 + ε) θ�� + εθ�
2
+ Pr θ�

�
Nbφ� −H

�
+ PrNt θ�

2
+ Pr δ2θ = 0, (5.11)

φ�� +
Nt

Nb
θ�� − ScHφ� = 0, (5.12)

F (0) = λ, G (0) = ω, H(0) = Sw, θ(0) = 1, φ
�(0) + θ�(0)

Nt

Nb
= 0,

G (∞) = 0, F (∞) = A, θ(∞) = 0, φ(∞) = 0, (5.13)

where primes indicate the ordinary derivative with respect to η. The non-dimensional controlling

parameters are the Deborah number β1 (= λ1Ω), the velocity ratio parameter
�
A = c1c

�
, the heat

source/sink δ2

�
= Q
cρcp

	
, the Prandtl number Pr

�
= v
α

�
, the Schmidt number Sc

�
= ν
DB

	
, the

rotation parameter ω
�
= Ω
c

�
, the thermophoretic parameter Nt

�
= τ

∗DB(Tw−T∞)
vT∞

	
, the Brownian

motion parameter Nb
�
= τ

∗DBC∞
v

	
, the suction/injection parameter Sw

�
= w0√

cv

	
. The local
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Nusselt number Nur is defined as

Nur =
Rqw

k (Tw − T∞)
, (5.14)

where

qw = −k


∂T

∂z

�
|z=0, (5.15)

and dimensionless expression is

Re−1/2 Nur = −θ�(0), (5.16)

5.2 Solution Approach

This numerical integration of the nonlinear flow problem in Eqs. (5.8 − 5.13) is accomplished

through built-in scheme called bvp4c in Matlab with tolerance level of 10−3 and the consequences

are exhibited through tables and graphs. In current bvp4c collacation method, Lobatto IIIA

formula is employed. To obtain the numerical solution of Eqs. (5.8− 5.13), an appropriate set

of guesses satisfying the boundary conditions are required. Once the initial guesses are provided

then further iterations are performed by modifying these guesses with finite-difference scheme.

To implement this method it is necessary to reduce the higher order ODEs into first order ODEs

by familiarizing new variables. For conversion, we assume the following steps

H = ξ1, F = ξ2, F
� = ξ3, G = ξ4, G

� = ξ5, θ = ξ6, θ
� = ξ7, φ = ξ8, φ

� = ξ9, (5.17)

ξ�1 = ξξ1, ξξ1 = −2ξ2, (5.18)

ξ�2 = ξ3, ξ
�
3 = ξξ2, (5.19)

ξξ2 =
ξ22 − ξ24 + ξ1ξ3 + β1

�
(2ξ1ξ2ξ3 − 2ξ1ξ4ξ5)− λ2

�

1− β1ξ21
, (5.20)

ξ
�
4 = ξ5, ξ

�
5 = ξξ3, (5.21)

X
�
5 =
2ξ2ξ4 + ξ1ξ5 + β1 [2ξ1ξ2ξ3 + 2ξ1ξ2ξ5]

1− β1ξ21
, (5.22)
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ξ
�
6 = ξ7, ξ

�
7 = ξξ4, (5.23)

ξξ4 =
−εξ27 − Pr

�
Nbξ7ξ9 +Ntξ

2
7 − ξ1ξ7 + δξ6

�

1 + εξ6
, (5.24)

ξ
�
8 = ξ9, ξ

�
9 = ξξ5, (5.25)

ξξ5 = Scξ1ξ9 −
Nt

Nb
ξξ4, (5.26)

with conditions

ξ1(0) = Sw, ξ2(0) = λ, ξ4(0) = ω, ξ6(0) = 1, ξ9(0) +
Nt

Nb
ξ7(0) = 0,

ξ2(∞) = A, ξ4(∞) = 0, ξ6(∞) = 0, ξ8(∞) = 0. (5.28)

5.3 Results and Discussion

The flow around stagnation region in Maxwell nanofluid influenced by permeable rotating disk

has been studied numerically in the presence of heat source/sink and variable thermal conduc-

tivity. The present study involves the dimensionless parameters namely; ω, λ, Nt, A, Nb, Sw, ε,

Pr, δ, and Sc. This section illustrates the numerical and pictorial outputs for Nusselt number,

concentration, temperature and velocity fields against the physical involved parameters.

Fig. 5.1(a) is displayed to visualize the impact of velocity ratio parameter A on radial

velocity F (η) when the disk is stretching (λ = 0.2) and shrinking (λ = −0.2). It is observed

that radial flow amplifies with an intensification in A for both stretching/shrinking phenomena.

As the parameter A is the ratio of velocities ar(free stream) to cr(stretching). It can be perceived

physically that when the values of A < 1, the velocity cr will be dominant than the velocity ar

which as a result enhances the flow in the radial flow. These curves also reveal that the value of

radial velocity field is higher in case of shrinking disk (λ = −0.2) as compared to disk stretching

(λ = 0.2). The outcomes of radial velocity F (η) against the velocity ratio parameter A for the

case of injection (Sw = −0.5) and suction (Sw = 0.5) are portrayed in Fig. 5.1(b). Here again

the radial velocity is an increasing function of velocity ratio parameter A in both wall suction

and injection parameters. We observe that the influence of suction parameter is to enhance the
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radial flow as compared to the case of injection.

At a specified value of A, the effects of the rotation parameter ω , stretching/shrinking

parameter λ and suction/ injection parameter Sw on the radial flow F (η) are shown in Figs.

5.2(a,b). It is revealed from Fig. 5.2(a) that radial velocity upsurges as rotation parameter

ω rises. This is mainly due to the reason that the rotation parameter is the ratio of swirl Ω to

stretch c rates. By boosting ω, the rotating effects becomes stronger as compared to stretching

effects and as a result the centrifugal force becomes stronger. The impact of this force is to push

the fluid in the radial direction which causes to enhance the radial velocity. Further, shrinking

the disk have higher value of radial velocity field for away from the disk surface as compared to

stretching effects . In Fig. 5.2(b), it is observed that the impact of injection parameter is to

reduce the radial velocity field as compared to suction parameter.

The curves of azimuthal velocity G(η) for different values of velocity ratio parameter A are

included in Fig. 5.3(a). The numerical data is displayed for the disk stretching (λ = 0.2) and

shrinking (λ = −0.2) cases. It can be noticed that the azimuthal velocity diminishes when

the value of velocity ratio parameter becomes enlarge for both disk stretching and shrinking

situations. However, the azimuthal velocity field appears to be greater marginally when the disk

is operated at shrinking velocity than the stretching velocity. In Fig. 5.3(b), the azimuthal

velocity is sketched as a decreasing function of A for two different cases of injection (Sw = −0.5)

and suction (Sw = 0.5) parameters. Here it is observed that the azimuthal velocity is lower for

injection parameter as compared to suction parameter.

The impact of rotation parameter ω on stagnation pint flow for two different cases, that

is, when the disk is stretching and shrinking is displayed in Fig. 5.4(a). Since the rotation

parameter is directly proportional to swirl rate. Therefore, enhancing the rotation parameter

boosts up the disk rotation forcefully which as a result produces a fast fluid motion in the

azimuthal direction. It is also obvious from these curves that impact of shrinking causes to

increase the azimuthal flow when we compared with disk stretching. The impact of rotation

parameter and suction and injection on azimuthal flow is disclosed on Fig. 5.4(b). It is

concluded that the influence of suction parameter (Sw = 0.5) is to intensify the azimuthal

velocity component in comparison with injection parameter (Sw = −0.5).

In current analysis, the nanofluids properties are introduced by the parameters Nt and Nb.
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The variation of Nt on temperature profile θ(η) curves is shown in Fig. 5.5(a). The effect

of temperature gradient have to tendency to accelerate the nanoparticles from warm to cold

region. As the value of Nt increases, the θ(η) develops larger signifying an enhancement in

the thermal field. Further, it is apparent from this figure that temperature profile is higher

in case of disk shrinking (λ = −0.2) with respect to disk stretching (λ = 0.2). Fig. 5.5(b)

exhibits the impact of Pr on the θ(η) with constant and variable variable thermal conductivity

conditions. Temperature field θ(η) is observed to be a reducing function of Prandtl number Pr.

This means that the flow with greater value of Prandtl number diminishes the heat distribution

in the fluid. Physically, growing values of Prandtl number indicates weaker thermal diffusivity

which results in thinning the penetration depth of temperature. It can also be inferred that the

assuming thermal conductivity as a function of temperature has higher value in heat transfer

mechanism. The heat generation/absorption parameter δ plays a useful role in changing the

fluid temperature. The value (δ > 0) depicts the situation when there is a heat source and

the case (δ < 0) represents the condition of heat sink. It is apparent from Fig. 5.5(c) that

increasing values of heat source rise the fluid temperature and thermal boundary layer thickness.

On the other hand, growing values of heat sink parameter causes to reduce the fluid temperature

in boundary layer flow of Maxwell fluid.

Fig. 5.6(a) exposes the nanoparticle concentration φ(η) for cumulative values of ther-

mophoresis parameter Nt. Nanoparticles concentration φ(η) shows a progressing trend with

variation in Nt. It is also indicated that by enlarging the Brownian motion parameter Nb from

0.5 to 0.7, a considerable reduction in concentration profile is observed. The features of Sc

with various values on φ(η) is sketched in Fig. 5.6(b). An inverse relation exists between the

Schmidt number Sc and Brownian diffusion coefficient DB. Therefore, concentration profile φ(η)

and related boundary layer thickness decay with escalating values of Schmidt number Sc.

Figs. 5.7(a,b) are exposed to show the isotherms for disk shrinking (λ = −0.2) and

stretching (λ = 0.2) cases, respectively. In Figs. 5.8(a,b) the isotherms are drawn for the

thermal conductivity parameter ε = 0.0 and ε = 1.0.

Table 5.1 is organized to study the impact of physical parameters on the surface heat flux

−θ�(0). It is seen that heat transfer rate −θ�(0) boosts up significantly with escalating values

of rotation parameter ω, stretching/shrinking parameter λ, velocity ratio parameter A, and
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suction parameter Sw. However, the roles of thermal conductivity parameter ε, thermophoresis

parameter Nt, and heat source parameter δ are quite beneficial in reducing the heat transfer

rate.
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Table 5.1: The Nusselt number −θ�(0) values when β1 = 0.1, Pr = 3.0, Nb = 0.5, and

Sc = 1.5.

λ A ω Sw ε Nt δ

1.0 0.1 5.0 0.4 0.2 0.6 0.5 −θ�(0)

−1.5 0.4268873

−1.3 0.3166374

−1.0 0.1528901

1.0 0.7644015

1.3 0.8538346

1.5 0.9823639

0.0 0.8433533

0.1 0.8538346

0.2 0.8667719

1.0 0.3065634

2.0 0.4520842

3.0 0.5991248

0.0 1.289064

0.2 1.062991

0.4 0.8538346

0.3 0.8165573

0.6 0.7273971

0.9 0.6607102

0.1 0.937258

0.4 0.8898072

0.7 0.8343712

0.0 1.244686

0.2 1.098932

0.5 0.8538346
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Chapter 6

Transient Thin Film Flow of

Nonlinear Radiative Maxwell

Nanofluid over a Rotating Disk

In this chapter, a mathematical model for transient nature thin film flow of Maxwell nanofluid

over a rotating disk is studied in the presence of a uniform magnetic field and non-linear thermal

radiation. The Brownian motion and thermophoresis features due to nanofluid are captured by

adopting the Buongiorno model. The prime emphasize is to explore the temperature field and

nanoparticles volume fraction in nanofluid thin film flow. The numerical outcomes regarding

film thickness, Nusselt number, Sherwood number, flow, thermal and solutal profiles are revealed

for varying estimation of involved physical parameters. It is shown that the film thickness

minimizes with augmenting magnetic number. Further, the impacts of thermophoresis and

thermal radiation parameters are worthwhile in enhancing the fluid temperature. The solute

concentration is found to decrease with Brownian motion and Schmidt number.
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6.1 Flow Configuration

Fig. 6.1: Schematic of the physical system.

6.2 Mathematical Description

The Maxwell nanofluid with thin layer rotating caused by time dependent revolution of disk

with angular velocity Ω is focused. The system (r, ϕ, z) of cylindrical coordinates is adopted

for the mathematical description of the problem as shown in Fig. 6.1.

The liquid film with uniform thickness h1 is lying horizontally on the rotating disk surface.

The stretching velocity of disk is taken to be u = cr
1−ζt , where c is the stretching rate and ζ a

constant. The disk rotating velocity is assumed to be v = Ωr
1−ζt , . The surface temperature of

the disk Ts is defined by

Ts = T0 − Tref
Ωr2

ν (1− ζt)3/2
, (6.1)

where the temperature at the origin is denoted by T0 and constant reference temperature is

assumed as Tref . Along vertical direction, a magnetic beam B(t) = B0/
√
1− ζt is projected on

liquid thin film motion. Moreover, the concentration at the disk surface Cs is given by

Cs = C0 − Cref
Ωr2

ν (1− ζt)3/2
, (6.2)
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where the concentrations at location (0, 0, 0) is C0 and at reference is Cref . The heat transfer

analysis is performed in the presence of nonlinear thermal radiations. The Brownian motion

and thermophoresis features are incorporated due to nanoparticles using Buongiorno model.

The above hypotheses yield the subsequent equations

1

r

∂

∂r
(ru) +

∂

∂z
(w) + 0, (6.3)

∂u

∂t
− v

2

r
+ w
∂u

∂z
+ u
∂u

∂r
+ λ1



∂2u

∂t2
+ u2

∂2u

∂r2
+ 2u

∂2u

∂r∂t
− 2v
r

∂v

∂t
+ 2w

∂2u

∂z∂t
− 2uv
r

∂v

∂r
+
uv2

r2

+2uw
∂2u

∂r∂z
− 2vw
r

∂v

∂z
+ w2

∂2u

∂z2
+
v2

r

∂u

∂r

�
= ν



∂2u

∂z2

�
− σB20
ρ(1− ζt)



u+ λ1



∂u

∂t
+ w
∂u

∂z

��
,

(6.4)

∂v

∂t
+
uv

r
+ w
∂v

∂z
+ u
∂v

∂r
+ λ1



∂2v

∂t2
+ 2u

∂2v

∂r∂t
+ 2
v

r

∂u

∂t
+ 2w

∂2v

∂z∂t
+ u2

∂2v

∂r2
− 2u

2v

r2
+
2uv

r

∂u

∂r

+2uw
∂2v

∂r∂z
− v

3

r2
+
2vw

r

∂u

∂z
+
v2

r

∂v

∂r
+ w2

∂2v

∂z2

�
= ν



∂2v

∂z2

�
− σB20
ρ(1− ζt)



v + λ1



∂v

∂t
+ w
∂v

∂z

��
,

(6.5)

∂T

∂t
+w
∂T

∂z
+u
∂T

∂r
= α



∂2T

∂z2

�
+τ∗

�
DB
∂T

∂z

∂C

∂z
+
DT
T0



∂T

∂z

�2�
+
16σ∗

3ρcpk∗
∂

∂z



T 3
∂T

∂z

�
, (6.6)

∂C

∂t
+ w
∂C

∂z
+ u
∂C

∂r
=
DT
T0



DB
T0
DT

∂2C

∂z2
+
∂2T

∂z2

�
, (6.7)

where λ1 is the relaxation time parameter, T the fluid temperature, C the fluid concentration,

τ∗ the heat capacities ratio, DB the Brownian diffusion coefficient, and DT the thermophoresis

diffusion coefficient. Expressing the boundary conditions

(u, v, w, T,C) =



cr

1− ζt ,
rΩ

1− ζt , 0, Ts, Cs
�
at z = 0,

w =
∂h1
∂t
+ u
∂h1
∂r
,
∂u

∂z
=
∂v

∂z
= 0,

∂T

∂z
=
∂C

∂z
= 0 at z = h1. (6.8)

Defining the similarity quantities

u = f � (η)
rΩ

1− ζt , v = g (η)
rΩ

1− ζt , w = −2f (η)


νΩ

1− ζt

�1/2
, η =



Ω

ν (1− ζt)

�1/2
z,
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h1(t) =
� ν
Ω

	1/2
(1− ζt)1/2 β, T = T0 − Tref

Ωr2

ν (1− ζt)3/2
θ (η) , C = C0 − Cref

Ωr2

ν (1− ζt)3/2
φ (η) .

(6.9)

Substituting Eqs. (6.9) into Eqs. (6.3− 6.8), we obtain

f ��� − S
�
f � +

η

2
f ��
	
−
�
f �
2 − g2 − 2ff ��

	
− β1



S2


2f � +

7

4
ηf �� +

1

4
η2f ���

�
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S
�
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�
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2
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��
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�
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�
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�

−M
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Sg +

1

2
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��
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1 +
4

3
Rd

�
θ�� +

4

3
Rd
�
(θw − 1)3

�
3θ2θ�

2
+ θ3θ��

	
+ 3 (θw − 1)2

�
2θθ�

2
+ θ2θ��

	

+3 (θw − 1)
�
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+ θθ��

	�
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�
fθ� − f �θ
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Pr S

�
ηθ� + 3θ

�
+ Pr

�
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(6.12)

φ�� − 1
2
Sc
�
3φ+ ηφ�

�
S − 2Sc

�
f �φ− fφ�

�
+ θ��

Nt

Nb
= 0, (6.13)

with conditions

f �(0) = ω, g(0) = 1, f (0) = 0, θ(0) = 1, φ(0) = 1,

f (β) =
Sβ

4
, f ��(β) = 0, g�(β) = 0, θ�(β) = 0, φ�(β) = 0. (6.14)

where the dimensionless parameter S = a
Ω is the measure of unsteadiness,M =

σB20
ρΩ the magnetic

parameter, β1 =
λ1Ω
1−ζt the Deborah number, Nb =

τ∗DB(C0−Cs)
v the Brownian motion parameter,

Pr = v
α the Prandtl number, θw =

Ts
T0
the temperature ratio parameter, Rd =

4σ∗T 30
kk∗ the radiation

parameter, Nt =
τ∗DT (T0−Ts)

T0v
the thermophoresis parameter, Sc = ν

DB
the Schmidt number and

ω = c
Ω the rotation parameter. Further, β denotes the value of the similarity variable η at the
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free surface. Thus Eq. (6.9) gives

β =



Ω

ν (1− ζt)

�1/2
h1. (6.15)

The Nusselt numbers Nur and Sherwood number Shr are defined as

Nur = −


1 +
16σ∗T 3

3kk∗

�
R
�
∂T
∂z

�
|z=0

(Tw − T∞)
, Shr = −

R
�
∂C
∂z

�
|z=0

(Cw − C∞)
, (6.16)

and dimensionless expressions of these quantities are

Re−1/2 Nur = −


1 +
4

3
Rd{1 + (θw − 1) θ(0)}3

�
θ�(0), Re−1/2 Shr = −φ�(0), (6.17)

where Re = R2Ω
v(1−ζt) is the Reynolds number.

6.3 Results and Discussion

The dimensionless nonlinear momentum, temperature and concentration Eqs. (6.10 − 6.13)

with conditions in Eq. (6.14) are considered for the numerical computations. The numerical

scheme bvp4c with tolerance level of 10−3 is followed to characterize the flow, temperature and

concentration profiles in the form of graphs. The graphical significance of the active parameters

on velocity components (radial f �(η), azimuthal g(η) and axial f(η)), temperature θ(η) and

nanoparticles volume fraction φ(η), Nusselt Nur
Re0.5

and Sherwood Shr
Re0.5

numbers for some selected

values is demonstrated through Figs. (2-6).

In Figs. 6.2(a,b), we showed the radial, and azimuthal velocities for diverse estimations

of β1. For small β1, the shorter will be the recovery duration and material acts like a purely

viscous fluid. However, a material having higher Deborah number will have larger relaxation time

and solid like response is shown by the material. The radial and azimuthal velocities decrease

gradually against increasing values of η. It is obvious as the Deborah number enlarges, that is,

the fluid relaxation time parameter increases, profiles related with f �(η) and g(η) diminish.

The thermophoresis parameterNt affect with varying values on θ(η) is shown inFig. 6.3(a).

In nanofluid the ratio between nanoparticle diffusion and thermophoretic force to the momentum
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diffusion is referred to thermophoresis number Nt. By enlarging the thermophoresis parameter,

the temperature distribution increases in thin film nanofluid flow. The characteristics of pa-

rameter corresponding to radiation Rd are sketched in Fig. 6.3(b) for θ(η). It is evident from

the sketches that an enhancement occurs in fluid temperature under an escalating values of Rd.

This trend is legitimate for linear as well as for nonlinear thermal radiations. In fact, more heat

is provided to the liquid by flourishing the thermal radiation effects which leads to promote the

profile of θ(η) in thin film flow. The role of thermal radiation is quite significant in boosting up

heat transfer rate.

Figs. 6.4(a,b) represent the isotherms patterns for the values Rd = 0.0 and Rd = 1.0,

respectively, by taking T0 = 0.01. It is observed that by moving in the radial and azimuthal

directions, simultaneously the temperature starts increasing. It is clear that the value of the

temperature is maximum at r = z = 1. The same behavior is depicted for Rd = 1.0 in Fig.

6.4(b). Closely observed that at r = z = 1, the hotter region is greater for Rd = 1.0 than that

of Rd = 0.0.

Fig. 6.5(a) depicts that an intensifying values of Sc reduces the concentration field and as-

sociated boundary layer thickness. Schmidt number Sc can be defined as the ratio of momentum

diffusivity to the Brownian diffusion coefficient DB. When the values of Sc become larger, the

coefficient of Brownian diffusion diminishes which results in a reduction in nanoparticles volume

fraction φ(η). The plots of nanoparticles volume fraction φ(η) with Brownian motion parameter

Nb are revealed in Fig. 6.5(b). These curves show a decreasing trend when the value of Nb

increases.

The expression of heat transport NurRe
−1/2 is sketched in Fig. 6.6(a) with different ef-

fective parameters like the radiation and temperature ratio parameters. The impact of radiation

and thermophoresis parameters is to increase the Nusselt number. Fig. 6.6(b) is displayed to

speculate the influence of M and S on film thickness β. It is noticed that β decreases with

increasing value of M and S. Table 6.1 demonstrates the numerical data regarding the film

thickness parameter β with a variation in S, M and β1. It is observed that the film thickness

decreases with S, M and β1.
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Table 6.1: Variations of film thickness β for different values of S, M, and β1 when ω = 1.0.

S M β1 β

1.2 1.0 0.1 1.832088

1.4 1.552972

1.6 1.335090

1.0 1.0 2.225809

2.0 1.907348

3.0 1.696364

1.0 0.0 2.473066

0.1 2.225809

0.2 2.042126

88



f’(
)

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 = 0.0, = 2.233707
1 = 0.1, = 2.061145
1 = 0.15, = 1.987878
1 = 2.0, = 1.921636

= 5.0, S = 0.7, = 1.0, Pr = 1.5, w = 1.2,
Rd = 0.5, Sc = 2.0, Nt = 0.5, Nb = 0.8

(a)

g
(

)

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 = 0.0, = 2.233707
1 = 0.1, = 2.061145
1 = 0.15, = 1.987878
1 = 2.0, = 1.921636

= 5.0, S = 0.7, = 1.0, Pr = 1.5, w = 1.2,
Rd = 0.5, Sc = 2.0, Nt = 0.5, Nb = 0.8

(b)

Fig. 6.2: f � and g for β1.

(
)

0 0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S = 0.7, 1 = 0.2, M = 2.0, = 1.0, Pr = 1.5,

w = 1.2, Sc = 2.0, Rd = 0.5, Nb = 0.8

Nt = 0.3, = 2.553683
Nt = 0.6, = 2.553683
Nt = 0.9, = 2.553683
Nt = 1.2, = 2.553683

(a)

(
)

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S = 0.7, 1 = 0.2, M = 2.0, = 1.0, Pr = 1.5,

w = 1.2, Sc = 2.0, Nt = 0.5, Nb = 0.8

Rd = 0.5, = 2.553683
Rd = 1.0, = 2.553683
Rd = 1.5, = 2.553683
Rd = 2.0, = 2.553683

(b)

Fig. 6.3: θ for Nt and Rd.

89



Fig. 6.4: Isotherms for (a) Rd = 0.0 and (b) Rd = 1.0, when S = 0.7,M = 1.0,
β1 = 0.1, ω = 1.0, Pr = 1.5, θw = 1.2, Sc = 3.0, Nt = 0.5, Nb = 1.0 and β = 3.223446.
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Chapter 7

Impact of Activation Energy in Thin

Film Flow of Maxwell Nanofluid

The current chapter aims to study the unsteady finite thin film flow of upper convected Maxwell

(UCM) fluid due to horizontal rotating disk in the presence of nanoparticles. The development

of thin conducting liquid film is investigated under the impacts of non-linear thermal radiations,

variable magnetic field, and Joule heating. A significant perspective of this attempt is to in-

corporate the features of exothermic chemical reaction with activation energy for Buongiorno’s

model of nanofluid owing to their improved heat transfer. The non-dimensional analysis is per-

formed to acquire the ordinary differential equations. A finite difference base numerical scheme

namely bv4c is implemented for the numerical simulation of the nonlinear problem. The physical

consequence of the active parameters, that influenced the model, are argued through graphs.

The obtained results intimate that nanofluid film thickness decays with the growing values of

magnetic field, unsteadiness parameter and Deborah number. It is noted that the nanoparticles

volume fraction increases with incremented values of activation energy parameter. Moreover,

the nanofluid temperature shows a remarkable enhancement with the thermophoresis parameter.
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7.1 Problem Formulation

Consider the magnetohydrodynamic (MHD) time dependent electrically conducting thin film

flow of upper convected Maxwell nanofluid over a stretchable rotating disk. The motion of fluid

is due to stretching as well as rotating phenomena as display in flow setup (Fig. 6.1).

A uniform liquid film of thickness h1(r, t) is formed horizontally on the surface of rotating

disk. The disk stretching and rotating velocities, temperature and concentration vary with space

and time.

The vertical flow is impacted with the magnetic beam B(t) = B0/
√
1− ζt. The process of

heat transfer is carried out in the presence of nonlinear thermal radiations and Joule heating.

The Buongiorno model is used to study the features of nanoparticles described by Brownian

motion and thermophoresis quantities. The above assumptions together with species chemical

reaction and Arrhenius activation energy lead the following system of governing equations

∂

∂z
(w) +

1

r

∂

∂r
(ru) = 0, (7.1)
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where Ea is the activation energy and kr the reaction rate. Expressing the conditions

(u, v, w, T,C) =



cr

1− ζt ,
rΩ

1− ζt , 0, Ts, Cs
�
at z = 0,

w =
∂h1
∂t
+ u
∂h1
∂r
,
∂u

∂z
=
∂v

∂z
= 0,

∂T

∂z
=
∂C

∂z
= 0 at z = h1. (7.6)

Substituting the transformations (Eq. (6.9) Cf. Chapter 6) into Eqs. (7.1) − (7.5), and (7.6),

we have

f ��� − S
�
f � +

η

2
f ��
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�
f �
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�
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�
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�
+
Nt

Nb
θ��−Scγ (1 + δ3θ)n φ exp



− E

1 + δθ

�
= 0, (7.10)

with conditions

f �(0) = ω, G(0) = 1, f (0) = 0, θ(0) = 1, φ(0) = 1,

f (β) =
Sβ

4
, g�(β) = 0, f ��(β) = 0, θ�(β) = 0, φ�(β) = 0. (7.11)

In the above equations, the dimensionless parameters S, M, β1, Pr, θw, Ec, Rd, Nt, Nb, Sc, ω,

γ, δ3 and E are the measure of unsteadiness, magnetic parameter, Deborah number, Prandtl
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number, temperature ratio parameter, Eckert number, radiation parameter, thermophoresis pa-

rameter, Brownian motion parameter, Schmidt number, rotation parameter, reaction rate, temperature

difference parameter and activation energy parameter. In dimensionless forms, we can write

these parameters as

S =
a

Ω
, M =

σB20
ρΩ
, β1 =

λ1Ω

1− ζt , Pr =
v

α
, θw =

Ts

T0
,

Ec =
v2

cp (Ts − T0)
, Rd =

4σ∗T 30
kk∗
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T0v
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τ∗DB (C0 − Cs)
v

,
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DB
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c

Ω
, γ =

k2r (1− ζt)
Ω

, δ3 =
(Ts − T0)
T0

, E =
Ea
k1T0

. (7.12)

Further, β denotes the value of the similarity variable η at the free surface and can be written

(Eq. (6.9) Cf. Chapter 6)

β =

�
ν

Ω (1− ζt)h1. (7.13)

The Nusselt number Nur and Sherwood number Shr are defined as

Nur =
Rqw

k (Ts − T0)
, Shr =

R jw
k (Cs − C0)

, (7.14)

where

qw = −k
�
1 +
16σ∗T 3

3kk∗



∂T

∂z

�
|z=0, jw = −k



∂C

∂z

�
|z=0, (7.15)

and dimensionless expressions of these quantities are

Re−1/2 Nur = −


1 +
4

3
Rd {1 + (θw − 1) θ(0)}3

�
θ�(0), (7.16)

Re−1/2 Shr = −φ�(0), (7.17)

where Re is the Reynolds number defined in Chapter 6.
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7.2 Solution Approach

The dimensionless nonlinear momentum, temperature and concentration Eqs (7.8− 7.11) with

conditions (7.12) are considered for the numerical computations. However, the numerical scheme

bvp4c is followed to characterize the flow, temperature and concentration profiles in the form of

graphs. The bvp4c is one of the collacation method which uses Lobatto IIIA formula. In order to

approximate solution of Eqs. (7.8− 7.11) together with conditions (7.12), it will need the initial

guesses which satisfy the boundary conditions. To implement this numerical builtin method the

higher order system of ODEs are converted into a system of first ODEs by introducing some

new variables. The steps for the conversion are given below. Let

f = z1, f
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z
�
8 = z9, (7.25)

z
�
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Sc (3z8 + ηz9)S + 2Sc (z2z8 − z1z9)−

Nt

Nb
z
�
7 + Scγ (1 + δ3θ)

n φe
− E
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with conditions

z1(0) = 0, z2(0) = ω, z4(0) = 1, z6(0) = 1, z8(0) = 1,

z1(β) =
S

4
β, z3(β) = 0, z5(β) = 0, z7(β) = 0, z9(β) = 0. (7.28)

Here in total ten boundary conditions are reduced into nine by finding the relationship between

film thickness β and unsteadiness parameter S. This relationship can be obtained by solving

first Eqs. (7.19) to (7.28) and the initial guess for the film thickness β is provided to the bvp4c

numerical scheme. The value of guess for β is settled in such a manner so that the condition

Z1(β) =
S
4 β holds. This procedure is based on trial and error basis. Then, Eqs. (7.19) to (7.28)

are solved numerically with bvp4c method for known estimation of β and S.

7.3 Results and Discussion

The current work focuses on the transient heat and mass transfer properties in liquid thin film

flow over a horizontal rotating disk with the impact of magnetic field, nonlinear thermal radia-

tion, Joule heating, and Arrhenius chemical reaction with activation energy. Numerical compu-

tations have been accomplished with numerous estimation of emerging quantities in appropriate

ranges like unsteadiness parameter S (1.0− 1.9), magnetic field parameter M (1.0− 2.5), rota-

tion parameter ω (1.0 − 1.6), Deborah number β1 (0.0 − 0.2), Prandtl number Pr (1.0 − 2.5),

temperature ratio parameter θw (1.3 − 2.2), radiation parameter Rd (1.0 − 2.2), Eckert num-

ber Ec (0.0 − 1.5), thermophoresis parameter Nt (0.5 − 2.0), Brownian motion parameter Nb

(0.4−1.2), reaction rate parameter γ (0.0−3.0), temperature difference parameter δ (0.0−3.0),

activation energy parameter E (0.0− 1.5), and fitted rate constant n (0.0− 3.0). The obtained
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numerical results are plotted through Figs. 7.1(a-d) to 7.12(a,b).

Figs. 7.1(a-c) describe the consequences of unsteadiness parameter S on the velocity

components represented by f � (η), g (η), and f (η) in radial, axial and azimuthal directions,

respectively. A significant increase is noted with the intensifying variation in the unsteadiness

parameter S. These figures also exhibit that an increasing unsteadiness parameter S (1.0− 1.9)

results in a reduction the film thickness β from 2.213683 to 1.094566. Fig. 7.1(d) illustrates the

temperature field θ(η) with the growing values of unsteadiness parameter. It is observed from

these curves that the fluid temperature increases with the unsteadiness parameter at the expense

of reduction in the non-dimensional film thickness of nanofluid. The fluid velocity and frictional

forces enhance due to an increase in the unsteady stretching rate of the disk. The area of the

surface stretching inclines, and the heat produced as a result of frictional forces on the surface is

shifted towards the flow as soon as the frictional forces increase, causing the reduction in heat-

flux. The fundamental parameter of the physical problem specified by the rotation parameter ω

affect the thermal and flow fields which is sketched in Figs. 7.2(a-d). Fig. 7.2(a) depicts that

the radial flow augmented with boosting the rotation parameter. Actually, when the rotation

is enhanced, the centrifugal force develops forceful exerting pressure on the particles of fluid to

travel in the radial direction. By moving away from the disk surface, a decreasing trend is seen in

radial velocity component due to the reason that the impact of centrifugal force is influenced at

disk nearby area. Also in view of this argument, the azimuthal velocity component also increases

with increasing rotation as observed in Fig. 7.2(c). A diminishing movement is shown by the

axial velocity with ω. As the ω increases, the effect of centrifugal force becomes stronger. The

impact of this force is to push the fluid particles in radial direction which are balanced by the

particles move in the negative axial direction towards the wall due to wall stretching. Fig.

7.2(d) portrays that without Joule heating and dissipation, the fluid temperature drops down

with growing rotation rate which leads to heat loss.

The parameter M properties on the velocities and thermal fields are demonstrated in Figs.

7.3(a-d). We observe a noteworthy reduction in flow curves in r−, ϕ− and z−directions

as shown in Figs. 7.3(a-c). The fluid temperature is seen in an increasing manner which

is displayed in Fig. 7.3(d). It is also prominent that these graphs that the film thickness

β decreases with the magnetic field parameter M . The motion of electrically conducting fluid
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faces an opposing force in response to magnetic field. Due to an increment in M , inertial force

is dominated by the Lorentz force. This force is generated as an outcome of the transverse

magnetic field and overcomes convection. Ultimately, minimizing the heat transfer rate. The

effect of Deborah number β1, which is associated with the fluid relaxation time characteristics,

on vertical, radial, circumferential and thermal fields is depicted in Figs. 7.4(a-d). By fixing

the values of other parameters, fluid motion is revealed as a diminishing function of β1 while an

enhancement occurs in the temperature field. The value β1 = 0 corresponds to the viscous fluid

model while the curves for β1 
= 0 are shown for the Maxwell fluid model. The Deborah number

is the ratio of fluid relaxation time to observation time. The lesser values of Deborah number

correspond to the smaller recovery interval and the material behave like a purely viscous fluid.

On the other hand, material depicts a solid like response for the larger value of Deborah number.

Thus, an enhancement in Deborah number leads to increase the Deborah number and therefore

the fluid velocity decreases. Consequently, the field θ(η) upsurges with the β1 as depicted in

Fig. 7.4(d). It is also perceived that the liquid thickness β reduces with higher rating of β1.

Further, the nano liquid film thickness decreases from 2.4565061 to 2.033285 as the Deborah

number increases from 0.0 to 2.0.

The temperature field θ(η) variation with Eckert number Ec is shown in Fig. 7.5(a). It is

remarked that the θ(η) upsurges with the enhancement of Ec. When Ec is augmented from

0.0 to 1.5 then due to molecules internal friction the fluid mechanical energy is transformed to

thermal energy. Therefore the fluid temperature increases. The Prandtl number Pr impact on

temperature field is described in Fig. 7.5(b). A significant decline in fluid temperature occurs

with higher value of Prandtl number. Physically, Prandtl number has an inverse relation with

thermal diffusivity. Therefore, the fluid having higher Pr slowly diffuses as compared to fluid

having lower values of Pr. This argument results in a reduction in the fluid temperature within

the thin film flow.

Fig. 7.6(a) shows the characteristics of radiation parameter Rd on temperature field θ(η). It

is obvious from the curves that with the rising values of Rd, a significant development happens in

fluid temperature. This observation is seen for linear as well as for nonlinear thermal radiations.

Physically, more heat is provided to the liquid by flourishing the thermal radiation effects which

as a result upsurges θ(η). The role of temperature ratio parameter θw on θ(η) is visualized in
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Fig. 7.6(b). The value θw = 1 corresponds to linear thermal radiation phenomenon. The

temperature field is directly proportional to the temperature ratio parameter θw. It is due to

the reason that improving temperature ratio parameter, the wall temperature value is superior

than the ambient temperature.

The impact of nanofluid parameters Nt and Nb on θ(η) is elucidated in Figs. 7.7(a,b).

As shown by these plots, the temperature field magnifies and the film thickness β decreases

with rising values of Nt and Nb. Physically, the Brownian motion signify the disorderly motion

of the fluid particles and the increase in Brownian motion indicates the improvement in par-

ticles disorder motion which formed much heat. The temperature profile rise with increasing

thermophoretic effects. The force that diffuses nanoparticles into the ambient fluid due to tem-

perature gradient is known as thermophoresis force. The role of thermophoretic force is such

that the nanoparticles near the hot boundary are being pushed towards the cold fluid at the

ambient.

Figs. 7.8(a,b) represent the isotherms with variations in Eckert number Ec = 0.5 and

Ec = 1.5, respectively, when T0 = 0.1. By moving in the radial and azimuthal directions, the

temperature values increase in both cases. The same behavior is depicted in Figs. 7.8(c,d) for

the Ec = 0.5 and Ec = 1.5, respectively, when T0 = 0.0. However, the difference between the

Figs. 7.8(a,b) and Figs. 7.8(c,d) is that hotter region is little bit greater in the case when

T0 = 0.1. Further, on the surface of the disk when z = 0, the temperature value 0.3 is achieved

around the radial distance r = 0.8 in the case T0 = 0.1 while in case of T0 = 0.0 it is achieved

at r = 1.0. The behavior of thermophoresis parameter Nt = 0.0 and Nt = 0.6 on the isotherms

is graphed in Figs. 7.9(a,b) when T0 = 0.0. Here temperature increases in the increasing r−

and z− directions. Also, we observe that moving along the disk surface, value of temperature

0.3 is achieved at the radial distance after r = 0.8 in case of Nt = 0.0 while it is meet before

r = 0.8 in case of Nt = 0.6.

In Figs. 7.10(a), it is revealed that the nanoparticles volume fraction φ(η) shows a decreas-

ing behavior with the increasing value of Brownian motion parameter Nb. The thermophoresis

parameter Nt action on nanoparticles concentration is explained in Fig. 7.10(b). The cumu-

lative action of thermophoresis parameter has been shown an increasing trend in nanoparticles

fluid concentration. This is because of the thermophoresis larger impact act to transport the
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nanoparticles near to the hot disk on the way to cold fluid at the ambient and hence larger

penetration depth is delivered. Figs. 7.11(a,b) are sketched to show the influence of reaction

rate γ and fitted rate n constant on solutal concentration φ(η). It can be detected that an

enhancement in either reaction rate or fitted rate constant implies an increment in the factor

Scγ (1 + δ3θ)
n φ exp

�
− E
1+δ3θ

	
. This ultimately favors the destructive chemical reaction and

thus rises the concentration field φ(η). The non-dimensional activation energy parameter E as

a function of concentration profile φ(η) has been plotted in Fig. 7.12(a). The patterns of the

curves indicate the thickening of the boundary layer for concentration with developing value of

E. This occurs because the high activation energy and low temperature results in a smaller

rate constant and thus decelerate the chemical reaction which boosts the nanoliquid concentra-

tion. The temperature difference parameter δ3 impact on concentration field is shown in Fig.

7.12(b). A decreasing trend in solute concentration is noted with the variation in temperature

difference parameter. This indicates that when the wall and ambient temperature difference

enlarges, the φ(η) increases.

The fluctuation of β against the parameters S, M , β1 and ω is computed in table 7.1.

It can be observed that the effect of S, M and β1 is to reduce the nanofluid film thickness

whereas it is raised with the increasing impact of ω. Table 7.2 is organized to see the impact

of parameters S, β1,M, ω, θw, Rd, Ec and Nt on heat transfer rate Re
−1/2Nur at the surface

of disk. It is revealed from this table that Re−1/2Nur intensified with S, ω, θw, and Rd

whereas it decreases with β1, M, Ec and Nt. The rate of mass transfer Re
−1/2Shr against

the parameters Nt, Nb, Sc, E, γ and δ3 is shown in table 7.3. The mass transfer rate for

the parameters Nb, Sc, γ, and δ3 have the increasing tendency while the conflicting trend is

observed for parameters Nt and E.

101



Table 7.1: Variations of film thickness β against several of S, M and β1 when ω = 1.0.

S β1 M ω β

1.3 0.1 1.0 1.0 1.681955

1.6 1.335091

1.9 1.086706

1.3 0.0 1.879473

0.1 1.681955

0.2 1.532196

0.1 1.0 1.681955

1.5 1.551951

2.0 1.448023

1.0 1.0 1.681955

1.3 1.961108

1.6 2.197069
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Table 7.2: The Nusselt number NurRe
−1/2 values when Pr = 1.7, Sc = 2.0, n = 2.0,

E = 1.0, γ = 1.0 and δ3 = 1.0.

S β1 M ω θw Rd Ec Nt Nb NurRe
−1/2

1.3 0.1 1.0 1.0 1.5 1.0 1.0 0.5 0.5 3.423540

1.6 3.612822

1.9 3.740212

1.3 0.0 3.487298

0.1 3.423540

0.2 3.352658

0.1 1.0 3.423540

1.5 3.054844

2.0 2.706676

1.0 1.0 3.423540

1.2 3.547793

1.4 3.629120

1.0 1.3 2.936015

1.6 3.667414

1.9 4.359568

1.5 0.5 2.558688

1.5 4.009196

2.5 4.730688

1.0 0.5 3.739274

1.0 3.42354

1.5 3.106948

1.0 0.6 3.398035

1.2 3.254594

1.8 3.125744
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Table 7.3: The Sherwood number ShrRe
−1/2 values when S = 1.3, β1 = 0.1,M = 1.0, Pr =

1.7, ω = 1.0, θw = 1.5, Rd = 1.0, Ec = 1.0 and n = 2.0.

Nt Nb Sc E ω δ3 ShrRe
−1/2

0.6 0.5 2.0 1.0 1.0 1.0 3.408211

1.2 3.336393

1.8 3.280286

0.6 0.4 3.372096

0.8 3.462955

1.2 3.494176

0.5 1.5 2.874149

2.5 3.872146

3.5 4.668066

2.0 0.0 3.860343

1.0 3.408211

2.0 3.106957

1.0 0.0 2.617261

1.0 3.408211

2.0 4.048394

1.0 0.0 2.776979

1.0 3.408211

2.0 4.382524
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Fig. 7.6: θ for Rd and θw.
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Fig. 7.7: θ for Nt and Nb.

Fig. 7.8: Isotherms for Ec when (a,b) T0 = 0.1 and (c,d) T0 = 0.0.
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Fig. 7.9: Isotherms for Nt when T0 = 0.1 .
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Chapter 8

Flow of Maxwell Nanofluid Between

Two Coaxially Rotating Disks with

Variable Thermal Conductivity

The main concern of this chapter is to study the Maxwell nanofluid flow between two coaxially

parallel stretchable rotating disks subject to axial magnetic field. The heat transfer process is

studied with the characteristics of temperature dependent thermal conductivity. The upper and

lower disks, rotating with different velocities, are discussed for the case of same as well as opposite

directions of rotation. The von Kármán transformations procedure is implemented to obtain the

set of nonlinear ODEs involving the momentum, energy and concentration equations. A builtin

numerical scheme bvp4c is executed to accomplish the solution of governing nonlinear problem.

The graphical and tabular features of the concentration, temperature, velocity and pressure fields

are demonstrated against the influential parameters including the thermophoresis parameter,

magnetic number, stretching parameters, Deborah number, Reynolds number, Prandtl number

and Brownian motion parameter. The significant outcomes reveal that stretching action causes

to reverse the flow behavior. It is further noted that the effect of Deborah number is to reduce

the velocity and pressure fields. Further, the impact of thermophoresis and thermal conductivity

parameters is to increase the temperature profile. Moreover, the fluid concentration is reduced

with the stronger action of Schmidt number.
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8.1 Flow Configuration

Fig. 8.1: Flow geometry and coordinates system.

8.2 Mathematical Presentation

Consider the steady motion of Maxwell nanofluid between the gap of two stretchable coaxially

rotating disks. The lower disk is kept at z = 0 while upper disk is positioned at constant distance

apart z = d. The strength B0 of magnetic flux is projected in vertical upward direction. The

rotating velocity and stretching rate of lower disks are (Ω1, s1) while the upper disk is rotating

and stretching with (Ω2, s2) . Let (T1, T2) denote the prescribed constant temperature at lower

and upper disks, where T1 > T2. The concentration at the lower and upper disks are represented

with (C1, C2) . The development of mathematical model is assisted with cylindrical coordinated

system (r, ϕ, z) as seen in Fig. 8.1.

In components form, the continuity, momentum, energy and concentration equations take
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the following forms (Eqs. (1.4), (1.7), (1.15), (1.17) Cf. Chapter 1)
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The modeled conditions are

(T, C, u, v, w) = (T1, C1, s1r, Ω1r, 0) at z = 0,

(T, C, u, v, w) = (T2, C2, s2r, Ω2r, 0) at z = d. (8.7)

The similarity variables are defined as
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Adopting the above transformations, we can write the dimensionless form of Eqs. (8.1) to (8.7)

as
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with conditions
�
f �, f, g, θ, φ, P

�
= (S1, 0, 1, 1, 1, 0) at η = 0,

�
f �, f, g, θ, φ

�
= (S2, 0, ω1, 1, 1) at η = 1, (8.14)

where Λ is the unknown pressure gradient parameter that has to be determined by the bound-

ary conditions. The dimensionless parameters β1 = λ1Ω1 is the Deborah number, S1 =
s1
Ω1

the stretching parameter of the lower disk, S2 =
s2
Ω2
the stretching parameter of the upper

disk, M =
σB20
ρΩ1
the magnetic parameter, Pr = v

α the Prandtl number, ω1 =
Ω2
Ω1 the rotation

number, Nb =
(ρcp)pDB(C1−C2)
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the Brownian motion parameter, Nt =

(ρcp)pDB(T1−T2)
(ρcp)fvT2

the ther-

mophoresis parameter , Sc = v
DB
the Schmidt number and Re = Ω1d

2

ν the Reynolds number.

8.2.1 Nusselt Number

The heat transfer rate at the lower and upper disks can be defined as

Nu1 = −
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In dimensionless form, Nusselt numbers can be written as

Nu1 = −θ�(0), Nu2 = −θ�(1). (8.16)

8.2.2 Sherwood Number

The mass transfer rate at the lower and upper disks can be defined as

Sh1 = −
h

k (C1 − C2)
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�
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�
|z=d . (8.17)

In dimensionless form, Sherwood numbers can be written as

Sh1 = −φ�(0), Sh2 = −φ�(1). (8.18)

8.3 Solution Procedures

8.3.1 Collacation Method

The simulation of system of Eqs. (8.9 − 8.13) with conditions (8.14) is accomplished with the

technique based on finite difference namely bvp4c in Matlab. The scheme bvp4c is a collacation

method for solving system of first order which implements the three-stage Lobatto IIIa formula.

An initial guess that fulfills the boundary conditions is required to approximate the solution of

the governing problem. The initial guess is modified for further iterations by builtin method

namely finite difference. To carry out this numerical scheme, the first order ODEs system is

obtained by reducing the higher order ODEs. To convert this, introducing the following new

variables:

f = χ1, f
� = χ2, f

�� = χ3, g = χ4, g
� = χ5, P = χ6, θ = χ7, θ

� = χ8, φ = χ9, φ
� = χ10, (8.19)

χ�1 = χ2, χ
�
2 = χ3, (8.20)
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χ
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�
9 = χ10, (8.27)

χ
�
10 = −2ReScχ1χ10 −

Nt

Nb
χ
�
8, (8.28)

with conditions

χ1(0) = 0, χ2(0) = S1, χ4(0) = 1, χ6(0) = 1, χ7(0) = 1, χ9(0) = 1,

χ1(1) = 0, χ2(1) = S2, χ4(1) = ω1, χ7(1) = 0, χ9(1) = 0, (8.29)

8.3.2 Runge-Kutta-Fehlberg (RKF45) Method

The system of Eqs. (8.9− 8.13) with conditions (8.14) is also solved with the numerical scheme

(RKF45) with intention to validate the outcomes obtained by the bvp4c.

8.3.3 Results Validation

The validation of numerical code is reported for the case by neglecting the stretching effects in

both disks. Table 8.1 is displayed for the comparison of our numerical results with those of

Lance and Rogers [34] and Turkyilmazoglu [35] for multiple variation of Ω = −0.5, 0.0, 0.5 at

Reynolds number Re = 0, 10. Table 8.2 also describes the numerical values of radial f ��(0) and

axial skin frictions with various values of rotation number Ω = −0.5, 0.0, 0.5 at Reynolds

number Re = 0, 10. It is seen that our results match in an excellent way with aforementioned

references. Table 8.3 is computed to validate the present bvp4c scheme with Runge-Kutta-

Fehlberg method (RKF45) in Maple. From this table it is clear that the present results have
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excellent match with the results obtained with RKF45.

8.4 Results and Discussion

In this section, the numerical results are plotted and tabulated in order to visualize the effects

of different parameters like the stretching parameters (S1, S2), rotation parameter ω1, mag-

netic number M , Reynolds number Re, Deborah number β1, thermal conductivity parameter ε,

Schmidt number Sc, thermophoresis Nt, and Brownian motion Nb parameters on the velocity

(radial f � (η), axial g(η) and azimuthal f (η)), temperature θ(η), concentration φ(η) and pressure

P (η) profiles. The entire computational analysis is performed by fixing the values of parameters

as S1 = S2 = 0.5, Nt = 0.2, Re = 5.0, β1 = 0.1, M = 0.2, Pr = 1.0, ε = 0.2, Sc = 2.0 and

Nb = 0.2.

In Figs. 8.2(a-d) and 8.3(a-d), the impact of rotation parameter ω1 and stretching pa-

rameters (S1, S2) on thermal and flow fields with the fixed value of Re = 5.0 is shown. It is

mentioned here that the value ω1 < 0 portrays the case when directions of rotation of both

disks are opposite to each other, ω1 = 0 implies the upper disk stationary situation and ω1 > 0

represents the case of where both disks are rotating in the same directions. It is notable here

that |ω1| < 1, as reported in this study, depicts the condition where lower disk is rotating with

higher speed than the upper disk.

Figs. 8.2(a-d) represent the development of stretching parameter S2 on flow and thermal

distribution curves in the situation when (S1 = 0). When stretching rate of upper disk is

zero (S2 = 0), the sign of f(η) denoting axial velocity component is positive for both same and

opposite rotation directions. Thus, the fluid motion happens from slower rate towards faster rate

rotating disk. Consequently, at the vicinity of lower disk the radial velocity f � (η) is perceived

positive and negative near the upper disk. It is detected that the radial velocity changes its

sign at the midway that is η � 0.5, exhibiting the inflexional property about that point. As

a consequence, the fluid drawn radially inwards over a slow rotating disk is radially thrown

outwards over the fast rotating disk. The tangential velocity varies linearly as revealed in Fig.

8.2(b).

When the upper disk is activated with the stretching rate (S2 = 0.5, 1.0), the vertical flow
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direction alters from lower to upper disk as shown in Fig. 8.2(a). This is happening on account

of the stronger centrifugal forces caused by flourishing stretching rates. Thus the inward fluid

drawn over the faster rotating disk is finally thrown away over the slower speed rotating disk.

It is also noticed that the stronger rate of S2 causes the shifting of inflection point towards

the fast rotating disk in the radial velocity as revealed by Fig. 8.2(c). It is observed that

direction of radial flow changes at η � 0.7 due to stretching and rotation phenomena showing

that the radial flow magnitude speed up at the lower disk and at the upper disk radial velocity

increase. Also, a maximum increase in the azimuthal velocity is observed with boosting up the

upper disk stretching rate S2 as depicted through Fig. 8.2(b). In Fig. 8.2(d), a decrease in

temperature is observed as a result of decrease in stretching rate S2. The impact of same and

opposite disks rotation on radial and axial velocity components and temperature field is very

slight while azimuthal velocity g(η) has more prominent effect.

Figs. 8.3(a-d) reveal the thermal and momentum fields in the situation where the lower

disk is functional at stretching rate S1 = 0.5. Here the azimuthal velocity and heat transfer

enhance with augmenting the upper disk stretching rate. Further, rising upper disk stretching

rate , an axial push in the fluid motion is observed from the lower disk and fluid is thrown

radially outwards from the faster rotating to slower rotating disk which can be visualized from

the curves through Figs. 8.3(a) and (c). It is revealed from Fig. 8.3(c) that the radial flow

changes its direction at η � 0.7 due to stretching and rotation phenomena. Here the magnitude

of the radial velocity enhances at the lower disk and near the upper disk radial velocity increase.

The flow and temperature profiles with varying values of magnetic parameter M and ω1 =

−0.5 and 0.5 are sketched in Figs. 8.4(a-d). It is evident that the axial velocity at lower disk

vicinity is a declining function of M while near the upper disk the magnitude of axial velocity

decreases. A decrease in radial flow field is viewed near the lower and upper disks regions with

higher magnetic field strength. The azimuthal velocity component is decreased throughout the

flow region with increasing magnetic field. Physically, a drag like force is formed that resists the

fluid movement on applying magnetic field which delivers a hindrance in velocity components

and augmentation in fluid temperature as viewed in Fig. 8.4(d).

Figs. 8.5(a-d) give the variation of velocity and temperature fields with the improvement

in Reynolds number Re for the same rotation cases and both the disks stretch radially with
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the same rates (S1 = S2 = 0.5). The axial flow rises with increasing Reynolds number Re.

The radial velocity component intensifies near the lower disk and after the value η � 0.6, an

opposite behavior is watched. In Fig. 8.5(b), the azimuthal velocity component increases but

the temperature profile diminishes as the effects of Reynolds number grow as can be depicted

in Fig. 8.5(d).

The results of flow and temperature fields with the variation in Deborah number β1 when

both disks rotate in the same direction (ω1 = 0.5) and in the absence of upper disk stretching

are demonstrated in Figs. 8.6(a-d). The radial and azimuthal components of velocity decay

with Deborah number β1 as depicted in Figs. 8.6(a,b). The flow behavior in axial direction

falls at the lower disk whereas the magnitude of axial velocity declines at the upper disk surface.

As expected, the fluids that possess the low value of Deborah number, the viscous properties are

predominant in comparison with elastic features. On the other hand, higher Deborah number

fluids have to characteristics of elastic solid material. The fluid temperature rises as the Deborah

number increases as shown in Fig. 8.6(d).

Figs. 8.7(a,b) show the influence of thermal conductivity parameter ε and Prandtl number

Pr on temperature field θ(η). Temperature profile escalates with increasing the values of ε. As

fluid thermal conductivity has direct relation with ε and as a result larger mount of heat occur

which is transferred to the fluid by the disk surface due to which the fluid temperature rises.

A fall in the temperature profile is observed through Fig. 8.7(b) with accelerating Pr in the

absence of upper disk stretching S2 = 0. Physically, thermal diffusivity is reduced with higher

value of Prandtl number.

The nanofluid active parameters namely, Nt and Nb play a significant role on mass and

heat transport features. The prominence of Nt on θ(η) is depicted in Fig. 8.8(a). There is a

significant increase in temperature with higher values of Nt. Actually, escalating value of Nt

implies the strengthening the thermophoresis forces which have the tendency to transport the

nanoparticles from hotter towards the cooler at the cost of increasing the fluid temperature.

Fig. 8.8(b) represents the temperature profile against the impact of Nb. The consequence of

Nb is to upsurges the θ(η). As the value of Nb is incremented, the random motion of the fluid

particles develops which causes to increase the temperature distribution.

Figs. 8.9(a,b) emphasis on the efficiency of thermophoresis Nt and Schmidt number Sc
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on the concentration profile φ(η). The effect of Nt is to decrease the concentration profile. The

outcomes of Sc on curves of concentration are shown in Fig. 8.9(b). The action of Sc is to

reduce the profile of concentration. Since Schmidt number and Brownian diffusion coefficient

are inversely related which causes the reduction in concentration distribution.

In Figs. 8.10(a,b), the impact of Reynolds number Re and Deborah number β1 on pressure

field P (η) is portrayed. The pressure profile near the lower disk surface decreases while at the

upper disk an opposite development is observed. The influence of Deborah number β1 is to

diminish the pressure profile.

In Fig. 8.11(a), the pressure gradient parameter Λ is plotted against Deborah number

β1 with various Re = 1.0, 2.0, 3.0, 4.0, by considering the stretching rate of upper disk to be

zero (S2 = 0.0) while the lower disk is operated at stretching as S1 = 0.5. The sway of β1 is

to diminishes the pressure gradient parameter Λ whereas increasing Reynolds number increases

the pressure gradient parameter Λ. For Re = 1.0, by increasing Deborah number a very slight

decrease in Λ is observed. However, increasing Reynolds number makes this reduction more

significant. In Fig. 8.11(b), the pressure gradient Λ is sketched for S2 and varying magnetic

field parameter values. Increasing the upper disk stretching rate, upsurges the pressure gradient

parameter Λ whereas the growing magnetic filed effects decreases Λ.

The heat transfer rates −θ� (0) and −θ� (1) at the lower and the upper disks, respectively,

with various values of M , Re, Pr, S2, ε and Nt are numerically computed through table

8.4. Here the −θ� (0) reduces at the lower disk with upgrading estimations of S2, M ε and Nt

while a reverse conduct is detected at the upper disk. The impact of Reynolds number Re is to

boosts up the heat transfer rate at the lower and decrease at the upper disk. The heat transfer

rates at the lower and the upper disks are increasing function of Prandtl number.
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Table 8.1: A comparison of F �� (0) , −G�(0) and Λ against numerous ω1 in non-stretching

case S1 = S2 = 0 when Re = 1 and M = 0 = β1.

ω1 −1.0 −0.8 −0.3 0.0 0.50

F �� (0) Ref. [34] 0.06666000 0.08394000 0.10395000 0.09997000 0.06663000

Ref. [35] 0.06666313 0.08394206 0.10395088 0.09997221 0.06663419

Observe 0.06666258 0.08394164 0.10395000 0.09997146 0.06663400

−G�(0) Ref. [34] 2.00095000 1.80259000 1.30442000 1.00428000 0.50261000

Ref. [35] 2.00095215 1.80258847 1.30442355 1.00427756 0.50261351

Observe 2.00095200 1.80258800 1.30442300 1.00427700 0.50261350

Λ Ref. [34] 0.19992000 0.17185000 0.20636000 0.29924000 0.57458000

Ref. [35] 0.19991538 0.17184642 0.20635721 0.29923645 0.57457342

Observe 0.19991651 0.17184728 0.20635898 0.29923784 0.57457377

Table 8.2: A comparison of f �� (0) and −g� (0) , against numerous Re and ω1 when S1 =

0.5 = S2 and M = 0 = β1.

f �� (0) −g� (0)

Re ω1 Ref. [35] Observe Ref. [35] Observe

0 −0.5 −2.00000007 −2.0000000 1.50000000 1.50000000

10 −1.60562889 −1.6056320 3.40116128 3.40119500

0 0.0 −2.00000007 −2.0000000 1.00000000 1.0000000

10 −1.44561724 −1.4456070 2.56217438 2.5621880

0 0.5 −2.00000007 −2.0000000 0.50000000 0.5000000

10 −1.89459839 −1.8945800 1.50020105 1.5002260
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Table 8.3. Comparison values between bvp4c and RK Fehlberg methods for Nusselt number

Nu1 and Sherwood number Sh1 at the lower disk when S1 = S2 = ω1 = 0.5, β1 = 0.1, M =

1.0, Re = 5.0, Pr = 2.0, Nt = Nb = 0.2, and Sc = 2.0.

Nu1 Sh1

Pr bvp4c RK Fehlberg Sc bvp4c RK Fehlberg

1.0 0.7607183 0.7607184 1.0 1.446996 1.446996

2.0 0.6888794 0.6888793 1.5 1.520110 1.520110

3.0 0.6190098 0.6190093 2.0 1.595939 1.595940

4.0 0.5521271 0.5521260 2.5 1.674528 1.674529
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Table 8.4. Nusselt numbers Nu1 at the lower disk and Nu2 at the upper disk when S1 =

ω1 = 0.5, β1 = 0.1, Nb = 0.2, and Sc = 2.0.

S2 M Re Pr ε Nt Nu1 Nu2

0.0 1.0 5.0 2.0 0.5 0.2 0.859295 1.333642

0.4 0.719970 1.805687

0.8 0.604426 2.308052

0.0 0.0 0.885851 1.282024

0.5 0.871460 1.311182

1.0 0.859295 1.333642

1.0 0.0 0.611654 1.717482

3.0 0.756705 1.475842

6.0 0.911463 1.268939

5.0 1.0 0.846418 1.291801

3.0 0.871950 1.375445

5.0 0.896550 1.458619

2.0 0.0 1.039902 1.058778

0.3 0.915346 1.224307

0.6 0.836450 1.387988

0.5 0.2 0.859295 1.333642

0.4 0.737464 1.571611

0.6 0.628838 1.827171
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Fig. 8.6: f, g, f � and θ for β1.
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Fig. 8.8: θ for Nt and Nb.
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Fig. 8.10: P for Re and β1.
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Chapter 9

Homogeneous-Heterogeneous

Reactions in Maxwell Fluid Flow

Between Two Spiraling Disks

This chapter deals with the role of Cattaneo-Christov heat flux conduction model in rotating

axisymmetic flow of Maxwell fluid between two coaxially spiraling disks. This model predicts

the thermal relaxation characteristics. Two disparate situations, such as, when the direction

of rotation of both disks is same and opposite are addressed. The system of nonlinear ODEs

narrating the physical setup is obtained with the transformations executed by von Kármán. A

finite difference algorithm based scheme, namely bvp4c, is implemented for numerical solution.

The graphical and tabular trends for the radial, azimuthal, and axial flows as well as concentra-

tion and temperature fields are displayed against various pertinent quantities. The significant

outcomes reveal that the impact of Deborah number is to decelerate the liquid motion all compo-

nents. Additionally, the temperature field decays with the thermal relaxation time. Moreover, a

decrease in fluid concentration is observed with increasing homogenous-heterogeneous reactions

parameters.
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9.1 Model Development

Here we consider an incompressible Maxwell fluid flow confined between two coaxially disks

that are stretching and rotating at different rates. The mathematical modelling of the physical

problem is described by choosing the cylindrical coordinated system (r, ϕ, z). The rotating and

stretching velocities of lower disk positioned at z = 0 are, respectively, Ω1 and s1 while for upper

disk positioned at z = d are Ω2 and s2 as depicted in Fig. 8.1. The strength B0 of magnetic

flux is projected in vertical upward direction. Further, T1 and T2 represent the temperatures of

the lower and upper disks, respectively.

The heat transfer analysis is considered with the imposition of convective conditions at the

surfaces. Moreover, the homogeneous-heterogeneous reactions are considered. The above stated

assumptions leads into following problem (Eqs. (8.1-8.3) Cf. Chapter 8, Eqs. (4.1,4.2) Cf.

Chapter 4), Eqs. (3.1) Cf. Chapter 3))

∂
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with conditions

u = s1r, v = Ω1r, w = 0, T = T1, dA
∂a

∂z
= ksa, dB

∂b

∂z
= −ksa at z = 0,

u = s2r, v = Ω2r, T = T2, a→ a0, b→ 0 at z = d, (9.8)

where the velocity components (u, v, w) are in (r, ϕ, z) directions, respectively, ν the kinematic

viscosity, λ1 the relaxation time parameter, p the liquid pressure, cp the specific heat, ρ the

liquid density, (dA, dB) the diffusion coefficients, hi(i = 1, 2) the heat transfer coefficients, where

Ωi (i = 1, 2) are the swirling rates, and si (i = 1, 2) the stretching rates.

Defining the transformations

u = f � (η)Ω1r, v = g (η) Ω1r, w = −2f (η)hΩ1, p = ρΩ1ν
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In dimensionless structure, Eqs. (9.1− 9.7), and (9.8) are stated as

f ��� −Re
�
f �
2 − g2 − 2ff ��

	
+Reβ1

�
4ff �f �� − 4f2f ��� − 4fgg �

�

−MRe
�
f � − 2β1ff ��

�
+ Λ = 0, (9.10)

g�� + 2Re
�
fg� − f �g

�
+ Reβ1

�
4ff �g� − 4f2g�� + 4ff ��g

�
−MRe

�
g − 2β1fg�

�
= 0, (8.11)

P � = −2f �� −Re
�
4ff � − 8β1f2f ��

�
, (9.12)
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θ�� + 2RePr fθ� − 4PrReλE
�
f2θ�� + ff �θ�

�
= 0, (9.13)

1

Sc
φ�� +Re

�
2fφ� − k1φψ2

�
= 0, (9.14)

δ1
Sc
ψ�� +Re

�
2fψ� + k1φψ

2
�
= 0, (9.15)

with conditions

f (0) = 0, f �(0) = S1, g(0) = 1, P (0) = 1, θ(0) = 1, φ
�(0) = k2φ(0), δ1ψ

�(0) = −k2φ(0),

f (1) = 0, f �(1) = S2, g(1) = ω1, θ(1) = 0, φ(1) = 1, ψ(1) = 0, (9.16)

where Λ is pressure gradient parameter which is unknown. The dimensionless parameter

Re
�
= Ω1d2

ν

	
is the Reynolds number, β1 (= λ1Ω1) the Deborah number, M

�
=
σB20
ρΩ1

	
the mag-

netic parameter, Pr
�
= v
α

�
the Prandtl number, Si

�
= si
Ωi

	
(i = 1, 2) the scaled stretching pa-

rameters, ω1
�
= Ω2
Ω1

�
the rotation number, λE (= δEΩ1) the thermal relaxation time, k1

�
=
kca20
Ω1

	
the

homogeneous reaction parameter, k2

�
= ksd
DA

	
the heterogeneous reaction parameter, Sc

�
= ν
DA

	
the

Schmidt number and δ
�
= DB
DA

	
the diffusion coefficient ratio.

Here the coefficients (dA, dB) for diffusion are assumed having same magnitude. This postu-

late results in to investigate the chemical reaction analysis such that dA and dB are equal i.e.

δ1 = 1. This assumption leads to the following relationship

φ(η) + ψ(η) = 1. (9.17)

Thus, Eqs. (9.14) and (9.15) turn into

1

Sc
φ�� + 2Refφ� − Rek1φ (1− φ)2 = 0, (9.18)

with conditions

φ�(0) = k2φ(0), φ (1) = 1. (9.19)
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9.2 Solution Approach

The coupled system of Eqs. (9.10 − 9.13) and (9.18) representing the momentum, energy,

pressure, temperature and concentration with conditions in Eqs. (9.16, 9.19) is integrated nu-

merically with the bvp4c solver in Matlab. The basic theme of bvp4c solver is the utilization of

Lobatto IIIA formula. To estimate the solution the initial iterations that fulfill the boundary

conditions are needed. Once the initial guesses are given, then iteration process is continued by

modifying the initial guess with another method called finite difference method. This built-in

method can be implemented by altering the partially coupled differential equations into set of

first order differential equations. For this purpose, we define the following new variables. Let,

f = x1, f
� = x2, f

�� = x3, g = x4, g
� = x5, P = x6, θ = x7, θ

� = x8, φ = x9, φ
� = x10, (9.20)

x�1 = x2, x
�
2 = x3,

x�3 =
Re
��
x22 − x4 − 2x1x3

�
− β1 (4x1x2x3 − 4x1x4x5) +M (x2 − 2β1x1x3)

�
− Λ�

1− 4Reβ1x21
� , (9.21)

x
�
4 = x5,

x
�
5 =
Re{2 (x2x4 − x1x5)− β1 (4x1x2x5 + 4x1x3x4) +M (x4 − 2β1x1x5)}�

1− 4Reβ1x21
� , (9.22)

x
�
6 = Re

�
−4x1x2 + 8β1x21x3

�
− 2x3, (9.23)

x
�
7 = x8,

x
�
8 =
−2RePr x1x8 + 4RePr λEx1x2x8�

1− 4RePr λEx21
� , (9.24)

x
�
9 = x10,

x
�
10 = −2ReScx1x10 +ReSck1x9 (1− x9)

2 (9.25)

with conditions

x1(0) = 0, x2(0) = S1, x4(0) = 1, x6(0) = 1, x7(0) = 1, x10 = k2x9(0),

x1(1) = 0, x2(1) = S2, x4(1) = ω1, x7(1) = 0, x9(1) = 1. (9.26)
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9.3 Discussion of Results

This segment reveals the physical description of the various pertinent parameters, namely, ro-

tation parameter Ω, Deborah number β1, Reynolds number Re, stretching parameters (S1, S2),

magnetic numberM , thermal relaxation time λE , Prandtl number Pr, homogenous-hetrogeneous

parameters (k1, k2) and Schmidt number Sc on the radial f
�(η), azimuthal g(η), and axial f(η)

velocities, temperature θ(η) and concentration φ(η) profiles.

For fixed value of Re = 5.0, Figs. 9.1(a-d) & 9.2(a-d) represent the upshot of the thermal

and flow fields against S2 for ω1 = −0.5 and 0.5. The case is assumed ω1 < 0 when the lower

disk is rotating in the opposite direction to upper one. The situation ω1 > 0 indicates the same

direction of rotation of both disks. The value ω1 = 0 implies that the rotation rate of upper disk

is zero. In this study we assume that |ω1| < 1, which depicts the situation where rotating speed

of upper disk is less than the lower disk.

The variation in fluid flow and temperature distribution with the various values of upper disk

stretching rate S2 while considering the lower disk stretching rate S1 to be zero is shown in Figs.

9.1(a-d). It is viewed that when S2 = 0, the values of axial velocity are positive for the rotation

directions. Therefore, the fluid movement caused by slower to faster rate rotating disks. Thus,

in the vicinity of lower rotating disk, a positive sign for radial velocity component is gained

and it shows a negative sign in the vicinity of upper rotating disk. Carefully observing that

the change of sign happens at the value η � 0.5, depicting the inflexional behavior about that

value. Thus, at the faster rotating disk, the fluid is thrown outwards direction drawn radially

inwards at the slower moving disk. The azimuthal velocity is seen in a linear trend as revealed

in Fig. 9.1(b). By operating the stretching rate (S2 = 0.4, 1.0), a change in the vertical flow

direction from lower to upper disk is noted due to the development of centrifugal force caused

by augmenting the stretching rates. Consequently, inward fluid drawn over faster rotating disk

is ultimately pushed away at the slow rotating disk vicinity. Enhancing the stretching rate S2

causes the shifting of inflection point towards the faster rotating disk. An increasing trend is

observed in the azimuthal velocity component g(η) with an increasing the upper disk stretching

rate S2. Furthermore, the impact of strengthening the upper disk stretching rate boosts up the

fluid temperature as depicted in Fig. 9.1(d). A slight influence on the radial and axial velocities
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and temperature is observed by changing the direction of rotations. The effect of changing the

direction of rotation is prominent on the azimuthal velocity g(η).

Fig. 9.2(a) reveals the axial velocity f(η) in the situation when the lower disk is kept at

a stretching rate S1 = 0.5. The axial velocity magnitude increases, thus more fluid is pushed

by the upper disk. Furthermore, enhancing the upper stretching rate, more amount of fluid is

moved axially from the upper disk and is thrown outward in the radial direction from the faster

towards the slower rotating disks. A slight escalation in liquid temperature is observed with

strengthening the stretching rate S2.

Figs. 9.3(a-d) are sketched to visualize the influence of magnetic parameter M on flow and

temperature field for opposite rotation direction (ω1 = −0.5) as well as for the same direction

of rotations (Ω = 0.5) and stretching both the disks (S1 = S2 = 0.5). The axial velocity near

the lower disk surface decreases while at the upper disk surface, the magnitude of axial flow

component diminishes. Near the lower and upper disks regions, the flow in the radial direction

is found to decrease with improving magnetic field parameter M . The reason can be narrated

that on applying magnetic field to fluid motion, a resistive force is created which hinder the

motion of fluid in respective directions and because of that the fluid temperature boosts up as

displayed in Fig. 9.3(d).

Fig. 9.4(a-d) are plotted to inspect the influence of Re on the thermal and momentum fields

for the case when (ω1 = 0.5) and keeping both of them at a fixed stretching rates (S1 = S2 = 0.5).

An increase in vertical flow is perceived with enhancing Re. The radial velocity is observed in

an increasing way with Re around the lower disk; however, an opposite movement is noticed

after the point of inflection (η � 0.6). It is anticipated through Fig. 9.4(b), that motion in the

azimuthal direction enlarges with the effect of Re. The temperature profile shows a decreasing

performance with rising Re by reason of increase in viscosity as seen in Fig. 9.4(d).

The effect of Deborah number β1 on the velocity components in r−, ϕ− and z− directions

as well as on temperature fields in the same direction (ω1 = 0.5) with S2 = 0.0 is displayed in

Figs. 9.5(a-d). The flows in r− and ϕ− directions reduce as revealed by Figs. 9.5(a,b). Over

the lower disk, the velocity in axial direction falls while it decays in magnitude near the upper

disk. The evidence can be presented with the physical justification that the liquids possessing

small value of β1, there is dominancy of viscous influence in respect of elastic effects. However,
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fluids with higher value of β1 tends to serve as an elastically solid material. On account of

this justification, the fluid temperature rises marginally between the rotating disks which is

delineated in Fig. 9.5(d).

In Fig. 9.6(a), there is a reduction noted in the fluid temperature θ(η) for increasing value

of the Prandtl number Pr. Larger amount of Pr physically reduce the thermal diffusivity. The

contours of temperature field with several estimation of λE are depicted in Fig. 9.6(b). Here the

behavior of liquid temperature decelerates with stronger rate of λE . The growing value of λE is

linked to the greater heat flux relaxation time and larger time is required by the fluid particles

in exchanging heat to their nearby particles which creates a reduction in the fluid temperature.

The upshots of the parameters k1 and k2 representing homogeneous and heterogeneous reac-

tions on the concentration distribution φ(η) are manefisted in Figs. 9.7(a,b). In Fig. 9.7(a),

the concentration field depreciates with a continuous increase in the homogeneous reaction pa-

rameter k1. This is due to the reason that the diffusion coefficients are overwhelmed by the

response rates. In Fig. 9.7(b), the upshot of k2 is to reduce the species concentration. The up-

shots of Sc on concentration distribution can be depicted in Fig. 9.7(c). Obviously, enhancing

influence of Sc causes to intensify the fluid concentration. By considering S2 = 0.0 and S1 = 0.5,

the pressure gradient parameter Λ versus Deborah number β1 with numerous values of Re is

sketched in Fig. 9.8(a). The effect of β1 is to lessen Λ while promoting Reynolds effects improve

the value of Λ. An insignificant decline in Λ is seen with increasing β1 for Re = 1.0. However,

more significant effects in reduction of Λ are observed with greater values of Re. In Fig. 9.8(b)

the pressure gradient Λ against S2 is plotted with different values of M . By enhancing the value

of S2, an escalation in Λ is observed whereas the stronger magnetic field influence causes to

decline Λ.
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Chapter 10

Conclusion and Future Work

Over the past few years, there is a remarkable upsurge in the interest to scrutinize the fluid flow

and heat transfer of non-Newtonian fluids over a rotating disk. In this thesis, we have formulated

the swirling flows of non-Newtonian Maxwell fluid for several various rotating configurations like

flow over a single stretchable rotating disk, unsteady thin film flow over a stretchable rotating

disk and flow between the regions of two stretchable rotating disks. A special attention has been

paid to develop mathematical modelling and numerical solution for Maxwell fluid flow in view

of these configurations. Further, the mechanisms of heat and mass transport under numerous

physical aspects were also considered. The governing continuity, momentum, temperature and

concentrations partial differential equations (PDEs) were reduced into to a set of ordinary dif-

ferential equations (ODEs) in the framework of suitable similarity transformations. The detail

numerical solution procedures to solve the system of nonlinear ordinary differential equations

are based on bvp midrich, Runge-Kutta-Felberg (RKF45) and bvp4c schemes in Maple and

Matlab. The validity of the obtained results is also assessed by comparing against the results

from published literature.

10.1 Concluding Remark

In this chapter, we summarize some of the results obtained in the preceding chapters as follow

• It was noted that with the stronger disk rotation, both the radial and circumferential flows
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were experienced a dramatic increase due to centrifugal force and as a result the ambient

fluid was pumped towards the disk.

• Both the radially outward and tangential flows were decelerated significantly with stronger

effects of Deborah number causing to suppress the vertically downward fluid velocity.

• Thermal boundary layer thickness was thinned as the rotation parameter occurred with

more intensification.

• The fluid temperature was enhanced with the strengthening of radiation, thermophoresis

and Brownian motion parameters.

• The concentration field was boosted with higher effects of thermophoresis parameter while

contrary trend was noticed in case of Brownian motion parameter.

• It was observed that the effect of unsteady parameter and Deborah number was to re-

duce the fluid film thickness whereas it was raised with the increasing impact of rotation

parameter.

• By operating the upper disk stretching, the axial flow was observed to change its pattern

from lower to upper disk.

• When both the disks were stretched in the same direction of rotation, the pressure profile

near the lower disk surface was diminished while at the upper disk an opposite development

was observed.

10.2 Future Work

In this work, we have focused on the numerical solution of Maxwell fluid flows over a radially

stretching and rotating disk geometries. Although this thesis covers a wide range of aspects

of mathematical modeling of Maxwell fluid for rotating disk; however, several area of interest

remains unanswered. In the future, the following areas of study to a variety of non-Newtonian

fluids may be of interest.
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• It could be interesting to develop the mathematical modelling for Maxwell fluid flow over

a rotating sphere.

• The Maxwell fluid model can be studied between the gap of a rotating cone and a rotating

disk.

• The transient thin flow of Maxwell fluid flow over the rotating cylinder may also be focused

in future work.

• Further work could also be done on discovering ways to extend this work to a number

of non-Newtonian fluids. For instance, generalized second grade fluid model, Cross fluid

model, rate type generalized Burgers fluid model.

• Regarding the solution of the considered problems it may be attractive to study these prob-

lems with robust numerical techniques like finite element method, finite volume method

and lattice Boltzmann method etc.

151



Bibliography

[1] J.C. Maxwell, On the dynamical theory of gases, Phil. Trans. Roy. Soc. London, A157

(1867) 49-88.

[2] C. Fetecau and C. Fetecau, A new exact solution for the flow of a Maxwell fluid past an

infinite plate, Int. J. Non-Linear Mech., 38 (2003) 423-427.

[3] W. Tan, W. Pan, M. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional

Maxwell model between two parallel plates, Int. J. Non-Linear Mech., 38 (2003) 645-650.

[4] M. Jamil and C. Fetecau, Helical flows of Maxwell fluid between coaxial cylinders with

given shear stresses on the boundary, Nonlin. Anal. Real World Appl., 5 (2010) 4302–4311.

[5] S. Han, L. Zheng, C. Li and X. Zhang, Coupled flow and heat transfer in viscoelastic fluid

with Cattaneo–Christov heat flux model, App. Math. Lett., 38 (2014) 87-93.

[6] M. Mustafa, Cattaneo–Christov heat flux model for rotating flow and heat transfer of

upper-convected Maxwell fluid, AIP Adv., 5 (2015) 047109.

[7] J. Sui, L. Zheng and X. Zhang, Boundary layer heat and mass transfer with Cattaneoe

Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet

with slip velocity, Int. J. Therm. Sci., 104 (2016) 461-468.

[8] A.A. Afify and N.S. Elgazery, Effect of a chemical reaction on magnetohydrodynamic

boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles, Par-

ticuology, 29 (2016) 154-161.

[9] Y. Liu, and B. Guo, Coupling model for unsteady MHD flow of generalized Maxwell fluid

with radiation thermal transform, Appl. Math. Mech. -Eng. Edi., 37(2) (2016) 137-150.

152



[10] L. Cao, X. Si, and L. Zheng, Convection of Maxwell fluid over stretching porous surface

with heat source/sink in presence of nanoparticles: Lie group analysis, Appl. Math. Mech.

-Eng. Edi., 37(4) (2016) 433-442

[11] K.L. Hsiao, Combined electrical MHD heat transfer thermal extrusion system using Maxwell

fluid with radiative and viscous dissipation effects, Appl. Therm. Eng., 112 (2017) 1281-

1288.

[12] R. Jusoh, R. Nazar and I. Pop, Flow and heat transfer of magnetohydrodynamic three-

dimensional Maxwell nanofluid over a permeable stretching/shrinking surface with convec-

tive boundary conditions, Int. J. Mech. Sci., 124–125 (2017) 166-173.
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