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ABSTRACT

The problem of finite population parameter estimation, in superpopulation settings, is
receiving considerable attention in the field of survey sampling. In this dissertation, we
develop a general framework of model-based approach for estimation of finite population
parameter τ (a linear combination of population values), assuming superpopulation setting
under basis function regression model. Bayesian version of the proposed general framework
is also studied by assuming the Gaussian distribution for the error term, for incorporating
prior information about the superpopulation parameters. Special cases of the proposed
general framework are deducted to observe its applicability. Expressions for prediction error
variance and model-bias of the proposed estimator τ̂ are derived. For statistical inference
about τ, estimation of prediction error variance under different model selection criteria
residual, generalized cross validation (GCV), unbiased estimated variance (UEV), final
prediction error (FPE) and Bayesian information criteria (BIC) methods, is also considered.
An index for increase in efficiency on using additional basis functions, named as increment
in efficiency (IE), is also devised under, simple, ridge and Bayesian regression. The index
provides a logical guideline for selecting a model with appropriate number of basis functions
or covariates. Non-response problem in the study variable is dealt based on sub-sampling
technique, known as Hansen and Hurwitz technique, under model-based approach with the
assumption that the responding and non-responding population have different models and
the occurrence of non-response is observable just like a stratification variable in stratified
sampling. Design-based efficiency comparisons are made based on real and simulated data
sets. Under linear population model (linear in parameter as well as in variables), the total
estimator with sub-sampling is model-unbiased and has smaller model-variance as compared
to predictive estimator based on sampled respondents only. We presents new version of
ranked set sampling for obtaining more dispersed units with title, the ranked set sampling
without replacement (RSSWOR), based on the assumption that the finite population is
coming from an infinite superpopulation via some stochastic process with finite mean and
variance. Both mathematical expressions and Monte-Carlo experiment support the superiority
of the total estimator under RSSWOR over the competitors under simple random sampling
without replacement (SRSWOR) for a special model, so called, gamma population model
(GPM). Estimation of sub-population total under a new version of ranked set sampling for
obtaining a without replacement sample with GPM (general form of proportional population
model) is also provided. Further, the model relationship between the study variable and the
auxiliary variable for whole population is used to predict the non-sampled values to establish
a domain specific estimator for total. The superiority of the domain specific total estimator
under RSSWOR over the total estimator under SRSWOR for specific cases are also shown
mathematically as well as through Monte-Carlo experiment.

Finally, we analyze the birth history data from Pakistan Demographic Health Survey
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(PDHS) 2017-18 using three separate models taking 1-year period births for first, 3-years
period birth for second and 5-years period births for third models as the responses and 24
regressors instead of basis function of single regressor. Mainly, the Poisson regression model
with log-link function is used for modeling purpose. To deal with responses having large
variance and many 0’s as well as a few very large values, we use negative binomial (NB),
zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models as extensions
of Poisson model. We also conduct the estimation of regression models under Bayesian
paradigm assuming normal priors for each coefficients including intercept. The posterior
means are obtained using rjags (R Just Another Gibbs Sampler) package in R Statistical
software. The posterior means for each coefficients are observed closer to classical estimates
for Poisson models. Some model diagnostics are applied to check the validity of estimation
procedure. The model-based fertility rates i.e. age specific fertility rate (ASFR), total fertility
rate (TFR), general fertility rate (GFR) and gross reproduction rate (GRR) are obtained using
predicted response under the estimated models. We provide an illustration of predictive
approach through bootstrap sampling from the PDHS 2017-18 individual recode data.
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Chapter 1

Introduction and Review of Literature

1.1 Background of the Study

The basic goal of survey sampling is to obtain the accurate estimates of totals, means,

ratios and proportions etc. for the characteristics of interest in a finite population. In

classical or design-based inference, the finite population is considered as fixed with known

values corresponding to each unit. For statistical inference, randomization is achieved from

random sampling mechanism used for collecting data. While the model-based approach

assumes that the finite population values are the realization of some stochastic process with

fixed but unknown parameters. The mechanism of randomness arise from these stochastic

variables and the variable follows some models known as superpopulation. In modern

era, we can relate the model-based approach with supervised learning for predicting the

values of non-sampled observation. The current research is a part of such effort which

explicitly introduced a generalize frame work for obtaining model-based for finite population

parameters with minimum prediction error. Before going in depth literature, we introduce the

basic terminologies being used in the study in upcoming section.

1.2 Definitions of Terminologies

This section gives definitions to some useful terminologies which are being used in the

dissertation.



1.2.1 Design-Based Estimation

Design-based method of estimation uses the randomization incurred during selection of

units from the population where the values for the units in the population are considered

to be fixed. It is assumed that the variation in the estimates arises from the fact that the

estimates are based on a random sample (probability sample) drawn rather than non-random

sample (non-probability sample) from a finite population. Design-based estimation include

construction of estimators without considering the underlying model relation ship between

the variables. The properties of estimators are than studied via sampling distribution resulted

from repeated sampling of same size under similar conditions. The estimate are usually

constructed for population quantities, such as totals, means, proportions, or ratios etc. of the

survey variable (usually known as study variable).

1.2.2 Model-Based Estimation

As name suggest, the model-based approach assumes values on population units are the

realization of stochastic variables with specified lower order moments (mean which is

typically unknown and variance assumed to be known). These stochastic variables depend on

the auxiliary data and random error terms. Model-based supporters believe that variation in

estimates is resulted by the noise in the model (error term). Hence properties of estimates in

model-based approach are studied using the distribution of error term rather than sampling

distribution. A model is typically constructed by expressing some dependent variables as

a function of some covariates (independent variables). This functional relationship is then

utilized for estimation of finite population quantities such as mean, total, proportion and ratio

etc. The model relationship is considered for estimation of missing values in the response

variable variables at unit level as well as at aggregated or cluster levels. More details about

model-based estimation and inference can be found from upcoming chapters.

1.2.3 Basis Functions

In many cases, we are left with a little information about the underlying nature of the

phenomenon being modeled. Then, we typically jump to a few models in machine-learning

that are broadly-used and much effective for many problems. These include basis function

regression (including polynomial, Radial, and Gaussian basis functions), Artificial Neural
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Networks (ANN), and k-Nearest Neighbors (KNN). In basis function regression, we need

to model our responses (say y) that depends on some underlying function (say φ(x)) of

independent variables (x) such that for some non-sampled values of the predictors we’ll be

able to accurately predict the future values of the responses. The function φ(x) is called

the basis function and the resulting model is known as basis function model. There are

several methods for constructing basis function models, all of which are based on particular

assumptions. Basis functions allow us to opt for an elastic model including different functions

of a single covariate or two covariates including their interactions. For example, in modeling

births we may use age of mother as covariate and basis functions can be generated as age

and squared age etc. The polynomial basis function based on covariate age is then used to

model the birth data and birth specific rates are computed using the developed model. Other

basis function such as Guassian basis function are widely used in Bayesian regression and

the radial basis function are used in collection of geographical samples. The basis functions

models allow us to use non-linear basis functions of predictors to obtain linear predicted

responses. In practice there are many other possible choices for basis functions, including

sinusoidal functions, polynomials, basis functions from different families, such as monomials

and radial basis functions (RBFs) etc. In general one ideally wants to choose a family of

basis functions in order to get a good fit to the responses with a small basis set. So that the

number of weights to be estimated is not too large. Polynomial and Gaussian basis functions

and their use in estimation theory will be demonstrated in Chapter 2.

1.2.4 Superpopulation Models

As we know, a finite population consists of units whose values are considered to be known

and fixed. Hence, the population quantities for finite population are fixed and known if a

census is conducted. However, there may exists another type of statistical object associated

to the values that constitute a less well defined finite population. This is the statistical model

for these values, often known as a superpopulation model. In this study, a statistical model

for the population is defined as a specification of the statistical properties of the population

values of the variables of interest. In some situations the model may be exactly specified,

in the sense that it identifies a stochastic process explicitly that generated the population

values. In general, such models are usually rather weakly specified, i.e. it specify only

first and second order moments of the population distribution of the survey variables and
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higher order moments are often unspecified. In all cases there will be some parameters

associated with the model specification (known as superpopulation parameters) whose values

are unknown. For example, let the values y1,y2, ...,yN be the N independent and identically

distributed (IID) realizations of a random variable with mean µ and variance σ2. In this case,

the mean and variance are hypothetical constructs that could never be obtained exactly even

if a census of the same population was carried out. Hence µ and σ2 are the parameters of this

superpopulation model. In model-based approach, one should first estimate superpopulation

parameters for estimating the model before going to estimate the quantity of interest which

is the finite population parameters, where the finite population is considered as a single

realization of superpopulation.

1.2.5 Non-Informative Sample

The basic assumption of model-based estimation that allows generalization of the estimated

statistical model from sampled population for prediction of non-sampled values of the

response variable is the non-informative sampling. More generally, a method of sampling is

said to be non-informative for inference about a superpopulation parameters for a variable if

the same superpopulation model also satisfies for the values of this variable in the sample, i.e.

we can make valid statistical inferences about the superpopulation parameters after fitting

the superpopulation model to the sample data. This is equivalent to say that the conditional

distributions for the study variable y given some covariates whose values are assumed to be

known for all population units are same for sample and non-sampled parts of the population.

1.2.6 Ranked Set Sampling

Ranked set sampling is a data collection mechanism based on random sampling from

an infinite or finite population after ranking observations via some inexpensive ranking

mechanism. The method works by selecting initial samples of relatively smaller size and

rank them within themselves according to certain ranking mechanism. Then smallest ranked

unit is observed from 1st set, second smallest from second set and so on. The process stops

after observing largest unit from last set. The whole process can be repeated a specified

number of cycles to obtain the required number of observations. The ranked set sampling

is preferred only when: (i) ranking small groups of unit are easy and economical and (ii)

taking measurement from larger samples are expensive and time consuming. Despite of
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these limitations, ranked set sampling is preferred over simple random sampling (when it is

applicable) due to attractive design-based properties. In this study, we cover application of

ranked set sampling to model-based approach as well as small area estimation. The details

about proposed modification and their application can be found in respective chapters.

1.2.7 Small Area Estimation

The term "small area", generally, refers to a small geographical area or domain such as a

county or state also called “small domain", i.e. a particular sub-part of an area. If a survey

is carried out for the whole population (for example, a state-wide or nation-wide survey),

the sample size within any particular area may be too small to provide accurate estimates

from the data at hand. Small area estimation is one of the statistical techniques involving the

estimation of parameters for such small sub-populations. The technique is used when the

sub-population of interest is included in a larger survey. Statistical models are widely used to

obtain small area level estimates. The detail discussion of small domain estimation under

different population models for single regressor will be provided in Chapter 6.

1.2.8 Bayesian Prediction

The controversy of using Bayesian and Frequentist frameworks in statistical analysis is one

of the most important academic discussion that Statisticians engaged in. Rather than blindly

jumping into one side, one should to learn both methods analysis and apply them where

seem appropriate. In this way, recently, Bayesian method of estimation and inference have

been extensively used. One of the areas to focus in applied Bayesian inference is Bayesian

linear modeling. The most important aspect of the Bayesian learning process is explaining

a relationship and generalizing it to others, and this study consists of an attempt to use the

Bayesian Linear Regression (BLR) for predicting the outcome for non-sampled set. What we

result from the frequentist linear regression is an estimate of the model parameters from only

the training data set (the sampled data set in our problem). Our model is informed completely

by the sampled data: in this way, everything that we need to recognize our model is available

in the sampled data. However, if the sample size is small, one might like to express the

estimate as a distribution of possible values of the parameter given the sample information.

This is the situation where Bayesian Linear Regression is needed.

5



1.2.9 Age-specific Fertility Rates (ASFR)

The ASFR is the number of births occurred during a given reference period per 1,000 women

expose to the risk of fertility, in single year, three-years or five-years age groups. ASFRs are

typically calculated by dividing the number of births in a period of three years preceding the

survey on the women-years of exposure to fertility in same reference period. It is usually

calculated for seven age groups of five years each (i.e. 15–19, 20–24, 25–29, 30–34, 35–39,

40–44, and 45–49). For any age group g, Bg denotes the number of births to women in age

group g during the reference period, and Eg denotes the number of women-years of exposure

in age group g during the same reference period (g = 1,2, ...,7 for 5-years grouping and

g = 15,16,2, ....49 for single year grouping). The ASFR in age group g can be expressed as

follows:

ASFRg =
Bg

Eg
×1000 (1.2.1)

where 1000 is multiplied to show the rate per 1000 women-years of exposure. The information

about the exact date of birth (DOB) of child from DHS data are utilized for directly calculating

the numerator Bg. For calculating the denominator Eg, the exact date of birth (DOB) of each

woman is used for summing up the number of women-years of exposure in age group g, by

considering the fact that a woman can participate into two or more age groups in a reference

period. For examples and further illustrations about the calculation of the women-years of

exposure, readers are referred to Masset (2016).

1.2.10 Total Fertility Rate (TFR)

The TFR measures the women’s fertility in a hypothetical way. It can be described as the

total number of children who would be born per 1000 woman if they were to pass through

their reproductive age according to a given schedule of ASFR subjected to no mortality. In

DHS surveys, the TFR is computed on the basis of ASFRg for g = 1,2, ...,7 as follows:

T FRg = 5×
7

∑
g=1

ASFRg (1.2.2)
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1.2.11 General Fertility Rate (GFR)

The GFR is the mean number of children that a woman gives during her whole reproductive

period, and obtained by dividing the total number of births during a specified period on

the total number of women expose to risk of fertility, during the same specific period. In

DHS.rates Package, the GFR is obtained by using following formula:

GFRg =
∑

7
g=1 Bg

∑
6
g=7 Eg

(1.2.3)

1.2.12 Gross Reproduction Rate (GRR)

It is the number of daughters a woman expected to have if she lived all of her childbearing

age, which is round about to the age of 49. It is computed on the basis of the ASFR and

sex ratio at birth during that period. Like TFR, GRR assumes that the hypothetical group

(cohort) of women pass from birth over their reproductive age with no mortality hence, not

studied here. This assumption is valid when one is interested in comparing levels of fertility

over time. Although Net Reproduction Rate (NRR) is a more realistic measure of women’s

reproduction it need data on women mortality.

T FRg = 5×
7

∑
g=1

ASFRg×Pg (1.2.4)

where Pg is the proportion of female births to the women in age group g

1.3 Literature Review

Researchers, in survey sampling, always favored random sampling for a valid statistical

inference due to its attractive long run properties such as unbiasedness and efficiency in

design-based sense. They have been ignoring the importance of underlying model relationship

between the survey variable and one or more covariate(s) (auxiliary variable(s)) at estimation

stage. Without exposing an appropriate model relationship between the survey variable

and the available covariates researchers in design-based paradigm have been constructing

estimators for the unknown population quantities such as total, mean, variance etc, relying

only on randomization mechanism proponed by sampling mechanism. They have been
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utilizing sample estimates and known population parameters of the auxiliary variable(s)

at estimation stage for efficiency improvement. Thousands of estimators for estimating

population parameters have been developed in regard with efficiency improvement and bias

reduction under design-based approach, such works can be found in Cochran (1940), Murthy

(1964), Upadhyaya and Singh (1999), Gupta and Shabbir (2008) and Diana et al. (2011).

On contrary, supporters of model-based paradigm emphasis that randomization is a

property of error term used in the model (superpopulation model already defined in introduction)

hence it is not necessary nor sufficient condition for a rigorous statistical inference (Valliant,

2000). In the model-based framework, initially, Godambe (1955) used a simple regression

model of the response on the covariates to predict the non-sampled values and their total

which is assumed as unknown and random quantity. Many varieties of model-based estimators

have been developed for efficiency improvement, bias reduction and maintaining robustness

to model failure in last two decades of 20th century. Dorfman et al. (1993) and Chambers et al.

(1993) have worked on estimating a smooth function and used for predicting the non-sampled

values in estimating finite population total. The asymptotic bias of this form of regression

estimator of population total does not account the division on the sampling density.

In similar direction, Breidt and Opsomer (2000) worked on a class of estimators based

on local polynomial regression models which are weighted linear combinations of the study

variables, where the weights were calibrated to control totals which are known. In general, the

estimator is robust to bandwidth changes, and provides exact unbiasedness as well as minimal

variance for a specific weighted balanced sample. They noticed that the total estimators for

population total from a nonparametric regression model provide approximate unbiasedness

without imposing restriction on balancing and result near minimal variance. However, Fan

(1996) uncovered a more appealing strategy than the kernel regression,e.g, the variable

bandwidth LLR approach. Chambers et al. (2003) observed that the calibration estimator

based on the columnar model performs slightly better than the best linear unbiased estimator

(BLUE) at higher bandwidth. Zheng and Little (2003) proposed a model-based estimator that

works with penalized spline regression, and extended the estimator to two-stage sampling

(Zheng and Little, 2004). Breidt and Opsomer (2000) used the classical local polynomial

regression (CLPR) estimator for estimating the regression function to obtain the model

assisted estimator of the total in finite populations. Several partial solutions for balanced

sampling are available in Ardilly (1991), Deville (1992), Hedayat and Majumdar (1995) and
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Valliant (2000). Chambers et al. (2003) proposed a general method, called the cube method,

which is appropriate for a set of quantitative or qualitative balancing variables and allows

unequal probabilities of inclusion. Deville and Tillé (2004) developed the cube method for the

selection of approximately balanced samples based on equal or unequal inclusion probabilities

with a number of auxiliary variables. Hazlett (2013) developed a method for balancing that

equalize the multivariate densities and reduce bias without searching specifications. Sánchez-

Borrego et al. (2014) estimated the regression function with mixed variable using a modified

form of local constant estimator. Luc (2016) derived properties of weighted nonparametric

regression estimator, using probabilities as weight, for complex surveys under combined

inference. Falorsi and Righi (2016) developed a balanced sampling strategy in multi-way

stratification settings for small area estimation and used it to obtain planned sample size for

domains belonging to different partitions of the population (small areas). The strategy lowers

the sampling errors of domain estimates than given threshold values. Kikechi et al. (2017)

employed model-based approach, using the local linear regression (LLR), to estimate the

unknown parameters of the study variable. They particularly derived the properties of the

proposed estimator and compared with Nadaraya-Watson regression estimator (Nadaraya

(1964), Watson (1964)) and shown that the two estimators are asymptotically equally efficient.

Clair (2017) considered the nonparametric estimation methods for data analysis in complex

surveys. Kikechi et al. (2018) used the LLR technique to asses the properties of the derived

estimator and compare its performance with the existing estimators.

Aside from use of the auxiliary information i.e. previous knowledge about the parameters

involved in density one can also be incorporated while predicting future values. This strategy

is known as Bayesian Prediction (BP). It has many applications in quality control, reliability

engineering and biological sciences. A wide range of literature is available regarding

predictive inference for future observations. Some of related works are cited as: Aitchison

and Dunsmore (1975), Särndal et al. (1978), Sinha (1990), Raqab and Madi (2002), and

A Alamm et al. (2007) etc. Fushiki (2011) worked on estimation of prediction error using

K-fold cross validation under Bayesian framework. Further, Jochems et al. (2016) developed

a predictive model using multiple hospitals data and provide a real life proof of the concept.

For a detailed survey on Bayesian predictive estimation readers are referred to Vehtari and

Ojanen (2012). Further, Wu et al. (2012) proposed a prediction model for cyber attacks that

rely on Bayesian network. Cai et al. (2014) constructed an effective algorithm to build the
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failure prediction Bayesian network (FPBN) model under data mining technology. They used

the conception of FPBN to describe the state of components and system and their cause-effect

relationships. Similarly, Nazerfard and Cook (2015) proposed an activity prediction model

using Bayesian networks together with a two-step inference process to predict both the next

activity features and labels. Minka (2000) derived the posterior and predictive density for

linear multivariate regression under Gaussian noise with zero-mean. He contributed to the

discussion by giving careful attention on demonstrating evidence based feature selection

and illustrating the predictive distribution. Basis function regression, which is the main

concern of our research, is also discussed in the note. Recently, Pettit (1986) considered the

importance of model diagnostic in choice of Bayesian model and conclude that diagnostics

can be justified by approximating the probability of a simple model as the true one. Smith

(1986) worked on Bayesian thoughts on modeling and choice of model in detail. More

related literature on Bayesian model fitting and their diagnostics using MCMC are provided

in Chapter 7.

In statistical investigations, once data collection is completed, one has to bear some,

perhaps a considerable amount of non–response. Although a significant resource are

employed to improve data collection process to avoid the non-response still about 20%

non–response rate is commonly accepted. Non-response has major two categories the item

non-response and the unit non-response. Item non-response occurs when one or more

questions in the questionnaire are left unanswered during the survey. While a unit non-

response occurs when one or more unit(s) do not response at all or are missing. In either

cases non–response in sample surveys always leads to non-sampling error in estimation

of the population parameters and yields biased estimates which ultimately spoils inference

about the population of interest. Such type of bias can not be vanished even for large sample

sizes. When non-response occurs completely at random then the best way to deal with is to

impute the projected values of the outcome variable corresponding to non-respondents (Yuan,

2000). On contrary, when non-response factor (e.g, age, sex or/and income status etc.) is

correlated with the outcome variable then the usual imputation methods fail to cope with the

situation. In such situations, the population parameters and the behavior of the population

(superpopulation model) may differ among the responding population (respondents) and the

responding populations (non-respondent).

There are several approaches for checking whether there is a difference between the
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behavior of populations of respondents and non-respondents and evaluating potential bias

due to non–response: (i) specific follow-up of non-respondents and (ii) analysis of the

characteristics of respondents and non-respondents which are known prior to survey. Barton

et al. (1980) used demographic information (education, age, employment status, state of

residence, field of employment etc.) to compare the respondents and the non-respondents.

Information regarding non-respondents may come from previous surveys of same population

(in the case of longitudinal surveys or with rotation groups) or by using some external data

sources (e.g. administrative data etc.). Wood et al. (2006) suggested a method for adjustment

of non-ignorable non-response in studies involving one or more additional attempts to contact

initial non-responders. Peytchev et al. (2009) worked on changing in survey estimates as a

function of additional calls under the similar protocol as well as under a different protocol.

Biemer et al. (2013) considered the use of level-of-effort para-data to model the mechanism

of non–response in surveys and for adjusting non–response bias, specially bias that is not

missing at random (NMAR) or non-ignorable. The approach was based on unconditional

maximum likelihood estimation model that adapted and extended the prior work to cope with

the complexities encountered in large-scale surveys.

For similar situation, Knudsen et al. (2010) examined whether non-participation in a census-

based health study was related with poorer health status, using the Hordaland Health Study

conducted in western Norway in 1997-1999. They aimed to determine whether health

problems were over–represented in nonparticipants and to explore the consequences of

participation bias on relation between outcomes and exposures. Statistical techniques for

dealing with non–ignorable non–response based on a propensity–to–respond score has been

developed by Copas and Farewell (1998) assuming both item as well as unit non–response.

Moreover, Moore (2014) proposed an approach of increasing blood supply by collecting

blood more frequently from the selected donors for studying the relationship between aging

the population and blood transfusion. The primary aim of their proposed "interval trial" was

to observe whether donation intervals can be acceptably and safely decreased to optimize

blood supply while maintaining the health status of donors. The health status of a cohort

of 1991 Gulf War veterans was periodically assessed by Huang and Tai-kang (2009). They

compared various health outcomes of veterans with those of their peers in military who were

not posted to the Gulf. Another example in which one can make utilization of sub-sampling

method can be found in White et al. (2011), where missing data and incomplete randomized
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interventions were common. These problems complicate the analysis as well as interpretation

of controlled randomized trials (CRT), and are rarely handled well in practice. Guan et al.

(2018) modeled the non-response probabilities as logistic functions of the survey variable

and related covariates in the survey with callback. They proposed maximum likelihood

semi-parametric estimators of the parameters in the response probabilities. They further

suggested, an efficient estimator for the mean of the study variable using the estimated

response probabilities. The method was employed to data taken from the Singapore Life

Panel Survey, a survey of health spending utilizing a census-based sample of individuals

50-70 years old, assuming that non-response was related to the health status.

In real surveys, as discussed in above cited works, non-response occurrence is not missing

at random (NMAR) or, in other word, it is non-ignorable. When the occurrence of non-

response in sample survey is related to the outcome of the survey, a valid statistical inference

about the target population is quiet difficult. Among the two possible solutions one prefers

to opt the sub-sampling method instead of call back due to resource and time constrain.

In this regard, Hansen and Hurwitz (1946) introduced a well known procedure for sub-

sampling (follow-up) the non-respondents. The method includes sub-sampling a portion

of non-respondents from the first sample with the assumption that some stronger mode of

interview is applied for the purpose of sub-sampling non-respondents, consequently, all

persons give full response on second call. On the basis of sub-sampling procedure introduced

by Hansen and Hurwitz (1946), many authors including Khare and Srivastava (1993, 1995),

Khare and Sinha (2009) and Singh and Kumar (2008) worked on mean estimation under

designed-based approach ignoring model relationship between the study variable and the

known covariates. Ericson (1967) suggested Hansen and Hurwitz Hansen and Hurwitz (1946)

type estimator under Bayesian paradigm using squared error loss function (SELF). Later on

Smouse (1982) considered Bayesian approach of estimation under a general model using

Hansen and Hurwitz (1946) technique. As we already discussed earlier that theory of survey

sampling usually focuses on design-based approach, which often based on the probability

mechanism that is used for selecting samples. In many occasions a design-based approach

does not perform well or at all. For example; (i)in administrative data from incomplete

registers or in internet surveys, we can’t use probability mechanism for selecting samples

as there no appropriate sampling frame exist, (ii) in situations, where the sample size is too

small to obtain the reliable estimates. This is particularly the case if the level of detail for
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which figures must be produced is high, such that the sample size is small in the various

sub-populations.

As we already discussed, there are several approaches for handling the problem of non-

response in sample literature. A suitable approach may be chosen according to the type of

non-response (full or partial), the accessibility of the auxiliary variable(s) and the validity of

the underlying response model for handling the problem. In general, re weighting is used

to deal with full (non-availability of units) non-response. Imputation is preferably applied

for dealing with partial non-response although it can be applied for full non-response if

appropriate auxiliary information is available. Re-weighting eliminates or at least reduces

total non-response bias (Särndal, 2007; Holt and Elliot, 1991). While the sub-sampling

method introduced by Hansen and Hurwitz (1946) provides a good adjustment for non-

response bias and yield unbiased estimator for the population mean when the non-response

variable R is significantly correlated with the survey outcome. In this study, we develop

a model-based estimator for population parameter τ by adjusting non-response using sub-

sampling procedure. The detailed discussion on how model-based approach works in finite

population parameter estimation in presence of non-ignorable non-response is included in

Chapter 4.

In same era, many survey sampling practitioners have worked on improved methods of

data collection. Among them Ranked Set Sampling (RSS) technique is a good alternative, in

terms of relative efficiency, to Simple Random Sampling (SRS) for obtaining experimental

data that are considered as true representative of the population under investigation. This is

true across all of the sciences including agricultural, biological, environmental, engineering,

physical, medical, and social sciences. Because in RSS, measurements are likely to be

more regularly spaced as compared to SRS. The RSS procedure creates stratification of

the entire population at the sampling stage i.e. we are randomly select samples from the

subpopulations of small, medium and large units without constructing the subpopulations

(strata) in advance. Ranked set sampling method, proposed originally by McIntyre (1952) to

estimate mean pasture yields, has recently been modified by many researchers to estimate the

population parameters with improved efficiency and applicability. Dell and Clutter (1972)

showed that the sample mean is an unbiased estimator of the population mean under RSS for

both perfect as well as imperfect ranking. To take advantage from the negative correlation

between the observations, Patil et al. (1995) extended the idea of ranked set sampling for finite
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population assuming sampling without replacement. Later on, Muttlak (2003) suggested

median ranked set sampling (MRSS) for the estimation of finite population mean. Al-Saleh

and Al-Omari (2002) used multistage ranked set sampling (MSRSS) to improve the efficiency

of an estimator of the population mean for certain values of the sample size. Although MSRSS

results improved estimators of the population parameter than RSS does, this sampling scheme

requires a huge number of population units to be ranked before actual quantifications which

questions on its applicability. Mahdizadeh and Zamanzade (2019) developed a new variation

on MRSS called multistage paired ranked set sampling (MSPRR) to reduce ranking burden in

MRSS and use it for estimation of body fat. Many other authors have worked on estimation

of parameters in RSS (see Samawi and Muttlak (1996), Bouza (2002), Ohyama et al. (2008)

and Al-Omari and Jaber (2008) among others). Ranked set sampling has been applied,

after modifications, for estimation of different population parameters such as mean, median,

distribution function etc. Moreover, Haq et al. (2014) proposed a mixture of simple random

sampling and ranked set sampling for estimation of population mean and median. Salehi

and Ahmadi (2015) worked on estimation of stress-strength reliability with the help of

record values obtained through ranked set sampling. Ahmed and Shabbir (2019a) suggested

extreme-cum-median ranked set sampling for estimation of population mean by sub-sampling

non-respondents. Similarly, Priya and Thomas (2016) developed a method for estimation of

common location and scale parameters using suitable ranked set sampling schemes. Barreto

and Barnett (1999) considered a form ranked set sampling for obtaining best linear unbiased

estimator for regression coefficients with replicated observations. The efficiency of estimators

are compared with traditional estimator obtained under SRSWR. Chen and Wang (2004)

developed sampling strategies with reduced cost and increase efficiency of the regression

analysis for a lung cancer study using the concept of RSS. In this study we are concerned

with estimation of finite population parameter τ (specially total) under a newly suggested

ranking mechanism, called, ranked set sampling without replacement (RSSWOR) by utilizing

model relationship. A single covariate model, known as gamma population model (GPM) in

model-based literature Chambers et al. (2003), between the study variable and the auxiliary

variable is assumed. We opt the single predictor case as the ranking mechanism is possible

for two correlated variables (outcome and regressor) only. The introduction to ranked set

sampling without replacement and related works are given in Chapter 5.

Another major concern in survey sampling lies in estimation of parameters for certain
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sub-populations, known as “domains". In many fields of research, the sampling frame for

domains or sub-populations are out of date so it is not possible to classify units prior to

sampling and domain membership can be observed only after survey is conducted. Example

of such situations can be found in clinical studies, where patients are classified according to

severity level. In public health surveys, researchers have interest in estimating well-being

status of children for certain racial or ethical groups separately. In agriculture surveys, farmers

are classified according to the size of forms harvested. Similarly, in industrial research firms

are classified according to their sizes i.e. large, medium and small. In all of these studies, we

can obtain separate estimate of the characteristics of interest for each domain after observing

the domain membership. Data gathered from sample surveys can be utilized to get reliable

direct estimates (based on data obtained only from the sample units in the area of interest)

for larger areas or domains, but in small areas sample sizes are rarely large to get direct

estimates with adequate precision for small areas. To overcome this deficiency, data from

related areas are utilized to find indirect estimators that increase sample size and increase

the precision in estimation of small area characteristics. Demographers have been using a

wide variety of methods for small area estimation of population characteristics of interests in

post-censal years. Fay and Herriot (1979) and Purcell and Kish (1980) suggested post-censal

estimates for local small domains. Drew et al. (1982) evaluated techniques for small area for

Canadian Labour Force Survey (CLFS). Pfeffermann et al. (1996) considered labour force

trend estimation for small areas. Later on, Brown et al. (2001) provided an evaluation of

small area estimation methods with application to the unemployment estimates from the UK

labour force survey. In same year, Ambler et al. (2001) obtained estimate of the International

Labour Organization (ILO) unemployment for small areas by combining unemployment

benefits data and LFS data. Works related to such methods can be found in (Rao, 1994, 2003)

and You (2008).

Currently, Whitworth et al. (2017) considered estimation of uncertainty in spatial micro-

simulation approaches for small area estimation. Similarly, indirect estimates for small area

mean or total incorporating information about membership are found in Chambers and Clark

(2012). They have also suggested model-based estimators for small area parameters. The

model-based small area estimators are obtained using some implicit or explicit models which

links related small areas via supplementary information such information might be previous

values of the variable of interest or some covariates highly related with the study variable. The
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utilization of the auxiliary information for efficiency improvement and weighting adjustment

in post-stratified sample has also been observed in many articles (Casady and Valliant, 1993;

Zhang, 2000; Breidt et al., 2008; Dever and Valliant, 2010, and reference there in).

Apart from using model relationship for enhancing efficiency of the small area estimators,

one can also look for some efficient sampling scheme. Ranked set sampling scheme, the

most accepted sampling scheme in term of efficiency, can be practiced for obtaining domain

specific estimates of finite population parameter (specially total). We consider the estimation

of domain specific total under single-covariate model using RSSWOR. Readers are referred

to Chapter 6 for a detailed explanation of the proposed technique for estimation of domain

specific parameters.

Finally, we turn the direction of our discussion to the application of the proposed

theoretical frameworks to the demographic health survey data sets. Demographic and

Health Surveys (DHS) are nationally representative household surveys which have been

conducting since 1984 in more than 85 countries. The DHS were basically designed to explore

demographic, family planning and fertility data collected in the Contraceptive Prevalence

Surveys (CPS) Chamratrithirong et al. (1986) and World Fertility Surveys (WFS) Lightbourne

et al. (1982), and to provide a necessary resources for the monitoring and evaluation of vital

statistics and health indicators in developing countries. The DHS collect data on a wide range

of objectives with a focus on fertility indicators, maternal and child health, reproductive

health, nutrition, mortality and health behavior in adults. The main advantages of the DHS

are high response rates, employment of qualified and trained interviewers, national coverage,

worldwide standardized data collection procedures and consistent material over time and

comparable across populations cross-sectionally as well as over time.

In last 35 years, the DHS Program has regulated more than 300 surveys in more than 90

countries in Asia, Africa and South America. These surveys were based on representative

samples at national level that allow for national and sub-national estimates. After 2012-13,

the DHS program conducted another demographic health survey in Pakistan for updating

detailed information on demographic characteristics of the population during the year 2017-

18. Following standard rules of DHS program PDHS 2017-18 is conducted on the basis of

stratified two-stage sampling design, where Enumeration Areas (EAs) obtained from Census

2017 are selected on first stage as Primary Sampling Units (PSUs). On the second stage, a

sample of 28 households was selected from each selected clusters or PSU. From the selected
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households, ever-married women of reproductive age (15–49) who stayed in the household

the last night before the survey, from the households selected, were considered eligible

to fill a questionnaire designed for women. Additionally, in a sub-sample of households,

all men of reproductive age are considered as eligible to complete the man-questionnaire.

The core questions asked to women in DHS surveys included questions about their birth

history, fertility preferences and use of family planning methods etc. To calculate key fertility

indicators, such as the general fertility rate (GFR), total fertility rate (TFR) and age-specific

fertility rates (ASFR), produced by the DHS surveys the data on birth history (total number

of live births) and age of woman at the time of the survey were utilized.

Measuring fertility indicators based on household surveys such as the DHS and Multiple

Indicator Cluster Surveys (MICS) is challenging especially in low- and middle-income

countries like Pakistan, where functional vital registration systems (VRS) are poor or do not

exist at all. Such indicators are needed to assess the progress toward the United Nations (UN)

Sustainable Development Goals (SDGs), which is especially to “Ensure healthy lives and

promote well-being for all at all ages” calls for improving the maternal, newborn, and child

health IGME (2018); Abel et al. (2016). To produce the fertility indicators, and other DHS

tables, the DHS Program mostly uses the Census and Survey Processing System (CSPro)(

CSPro is a public domain software package utilized by hundreds of organizations and millions

of individuals for entering, editing, tabulating, and analyzing census and survey data). To

replicate the rates produced by the DHS Program, common statistical packages such as

SAS, SPSS, STATA or R are widely used Schoumaker (2013); Masset (2016). Recently,

Elkasabi (2019) introduced the DHS.rates R package to calculate demographic indicators

from DHS datasets, such as fertility and childhood mortality indicators. Motivating from the

literature, in Chapter 7, we fit some non-linear regression models to birth data from Pakistan

Demographic Health Survey 2017-18. Model based fertility rates i.e. ASFR, TFR, GFR

and GRR are devised using predicted response obtained from the regression models after

partitioning data into sampled and non-sampled parts. Detail about model-based fertility

estimation is found in Chapter 7.
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1.4 Objectives of the Study

The aim of this research is to investigate different aspects of model–based estimation of

parameters. The basic purpose is to suggest methods which capture more information

from the underlying phenomenon and to predict behavior for non-sampled population and

consequently for overall population. The detailed objectives are:

(i). To provide a general framework for model-based estimation of finite population

parameters under basis functions regression for a more accurate modeling of response

and prediction of non-sampled part of the responses.

(ii). To extend the general framework to Bayesian paradigm for ensuring utilization of prior

knowledge about the model behavior.

(iii). To cope with problem of non-response for a special case of the suggested frame.

(iv). To study the model-based frame work under sampling without replacement and certain

models especially gamma population model a generalized model with single covariate.

(vi). To obtain spate estimates for small domain under a special case of proposed framework

under ranked set sampling without replacement.

(vii). To provide model-based rates for fertility in Pakistan based on Pakistan Demographic

Health Survey (PDHS) data collected during year 2017-18.

1.5 Outline of the Study

The formation of upcoming chapters are described in this section. Chapter 2 provides a

general framework for model-based estimation of finite population parameters under different

basis functions. The estimator of prediction error variance is also established using different

model selection criteria theoretically as well as through simulation studies. Chapter 3

extends the suggested general frame work to Bayesian approach and studies the properties of

estimators and estimated error variance via theoretical and simulated methods. Chapter 4

utilizes the model relationship between the study variable and some covariate(s) for handling

non-ignorable non-response and obtaining an unbiased estimator for the population total

under the sub-sampling technique. A model unbiased linear predictor for the population
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total in presence of non-ignorable non-response is proposed assuming unit non-response

and design-based properties of the estimator are studied. In Chapter 5, we study the model-

based framework under sampling without replacement and certain models especially gamma

population model (GPM) a generalized model with single covariate. The proposed framework

in Chapter 5 is used to obtain separate estimates for sup-population under ranked set sampling

in Chapter 6. Chapter 7 provides model-based fertility rate for Pakistan based on PDHS data

collected during year 2017-18. Chapter 8 covers an overall conclusion of the thesis along

with some future recommendations.
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Chapter 2

Model-Based Estimation of Population Parameters-
A General Framework

2.1 Outline

Modeling non-linear data is a common task in the fields of data science and machine learning.

It is very rare to obtain a natural process whose outcome varies linearly with the values of

input variable(s). Therefore a robust and easy methodology is needed for accurately and

quickly fitting a sample data set with a set of covariates assuming that the sample data could be

a complicated non-linear function. In this chapter, the model-based approach for estimation

of finite population parameter τ (a linear combination of the population values), assuming

superpopulation setting, under basis functions regression models is discussed. Apart from

the estimation of finite population parameter, we attempt to answer the question of: how

one decides the order of polynomial under single predictor for modeling? How variable

selection effects the finite population parameter estimation under multivariate regression

model? Is there any easy method to automate the process for estimation of finite population

parameters under basis function regression? How do we cope with ill-conditioning for

prediction problem? Estimation of prediction error variance, under widely used feature

selection criteria in machine learning (ML), are also considered. Finally the expected squared

prediction error (ESPE) of the proposed estimator and the expectation of estimated error

variance under bootstrapping as well as simulation study with different regularizers are

obtained. Section 2.2 delineates model-based estimation developed in literature with its usual

notations. Our proposed basis function approach with some special cases is described in

Section 2.3. Estimation of τ under regularized basis function regression is given in Section



2.4. Section 2.5 covers variance estimation and comparison of competting variance estimators.

Model selection and simulation studies are covered in Sections 2.6 and 2.7. Section 2.8

concludes the study with some future recommendations.

2.2 Model Based Estimation

Consider a finite population of size N indexed as U = {1,2,3, ....,N} with responses y

corresponding to a random variable Y . In matrix notation y = (yi, i ∈U) be the realized

stochastic vector of Y = (Y i, i ∈U). Suppose a sample s = {1,2,3, ...,n} of size n is drawn

from the finite population U using sampling design (SD) and s̄ = (1,2,3, ...,N−n) be the

set of index attached to the values of units that are not indexed in s. For a given sample s,

we can rearrange the population vector as y = (yT
s ,y

T
s̄ )

T , where ys and ys̄ be the vectors of n

sampled and N−n non-sampled values of the study variable respectively. The underlying

superpopulation model is expressed as:

Y = Xβ+ ε, (2.2.1)

where X is the known and non-stochastic data matrix containing p regressors including

intercept, β is the corresponding vector of coefficients and ε be the vector of random error

terms assumed to be distributed normally with mean vector 0 and variance-covariance matrix

Σ. Further the data matrix X and covariance matrix Σ can be partitioned as

X =

 X s

X s̄

 and Σs̄s =

 Σss Σss̄

Σs̄s Σss̄

 .
The quantity of interest, to be estimated, is a linear combination of the population values

τ(y) = γT y which is a realization of the random variable γTY , where γ = (γi, i ∈U) is the

vector of weights which can also be partitioned for sampled and non-sampled values as

γ = (γT
s ,γ

T
s̄ )

T . Valliant (2000) defined a linear estimator (known as the best linear unbiased

predictor (BLUP)) for τ(y) as τ̂(y) = gsY s, where gs = (gi, i ∈ s) is a vector of constants to

be optimized. Under Model (2.2.1), Royall (1976) has given the general prediction estimator
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for τ(y) as

τ̂(y) = γ
T
s Y s + γ

T
s̄

[
X s̄β̂+Σs̄sΣ

−1
ss
(
Y s−X s̄β̂

)]
, (2.2.2)

where β̂ =
(
X−1

s Σ
−1
ss X s

)−1XT
s Σ
−1
ss Y s is the weighted least square (WLS) estimator of the

vector β. The variance of τ̂(y), is given by

VM(τ̂(y)− τ(y)) =γ
T
s̄

(
Σss̄−Σs̄sΣ

−1
ss Σss̄

)
γs̄ + γ

T
s̄

(
X s̄−Σs̄sΣ

−1
ss X s

)(
XT

s Σ
−1
ss X s

)−1

(
X s̄−Σs̄sΣ

−1
ss X s

)T

γs̄. (2.2.3)

When sampled and non-sampled units are uncorrelated i.e. Σs̄s = 0 = Σss̄, the BLUP for τ(y)

reduces to

τ̂(y) = γ
T
s Y s + γ

T
s̄ X s̄β̂ (2.2.4)

with prediction error variance

VM(τ̂(y)− τ(y)) = γ
T
s̄

{
Σss̄ +X s̄

(
XT

s Σ
−1
ss X s

)−1

XT
s̄

}
γs̄. (2.2.5)

This assumption violates for multistage surveys where intra-cluster correlation exists among

units within clusters. Assuming independent and identically distributed (iid) error term i.e.

Σss = σ2In and Σss̄ = σ2IN−n, we can write the prediction error variance as follow

VM(τ̂(y)− τ(y)) = σ
2
[

γ
T
s̄ γs̄ + γ

T
s̄ X s̄

(
XT

s X s

)−1

XT
s̄ γs̄

]
. (2.2.6)

The general prediction estimator was constructed using a general linear regression model of

Y on a matrix of covariates X . It is noteworthy that for generalizing the result from sample

to population, the sampler should make at least one model explicit from the underlying

population. That would be possible when the sampler knows the functional form of underlying

population model. Thus if one is concerned with superpopulation sampling, it is inevitable

to account for the chance of deviation from the model, which is difficult to detect from the

data obtained through sample. In such situations, it is necessary to robustify the sampling

mechanism and/or estimator from model failure. One way to robustify is to measure the
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effects such as bias and variance that how these measures changes when the working model is

different from the underlying model. Royall and Herson (1973) emphasized on the balancing

of a sample to protect the inference against model misspecification. In early stage of modern

sampling, Valliant (2000) done an extensive work on balance sampling for reducing the

effect of bias introduced due to model failure. Instead of dealing these specific problems

we define a general estimation approach after predicting non-sampled data through basis

function regression models (Jekabsons and Zhang, 2010).

2.3 Model based Estimation Using Basis Functions

The general prediction approach does not provide any general guideline about sample

selection and use of appropriate model. Although a wide variety of restricted sampling

are available in Valliant (2000) where some of them are based on linear regression model,

some on polynomial models and some on proportional population model. Although the

literature covers a wide range of functions of the auxiliary variable, a general framework for

predicting responses from non-linear (in variable) functions of auxiliary data may provide

a general guideline for selecting a sample from the population. The non-linear function of

the auxiliary variable may be logarithm, some power, exponential of the auxiliary variable.

In current section, we use machine learning (ML) terminologies and techniques to assist

prediction of the values of the outcome corresponding to the non-sampled units for estimation

of the finite population total. In ML the regression approach is considered as supervised

learning, the study variable and the auxiliary variable(s) are named as output and input

variables respectively. The main aim is to divide sampled data into training and test sets to

check the predictive performance of the model. The problem of concern is then the prediction

of output variable for non-sampled set based on the relationship between the inputs and

outputs in sampled set and the known values of the input variable(s) in non-sampled set.

We start with a basic example of linear regression. For a single input variable X , the

corresponding vector basis function is defined as Φ(xi)=
(
Φ0(xi),Φ1(xi), ...ΦM(xi)

)
attached

to the ith population unit, where M is the number of basis in regression function g(x,β). The

matrix comprising the basis function is known as feature matrix in ML terminology, which is
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presented as

Φ =



Φ0(x1) Φ1(x1) Φ2(x1) ... ΦM−1(x1)

Φ0(x2) Φ1(x2) Φ2(x2) ... ΦM−1(x2)

. . . .

. . . .

. . . .

. . . .

Φ0(xN) Φ1(xN) Φ2(xN) ... ΦM−1(xN)


The population regression model can be expressed as

Y = Φβ+ ε (2.3.1)

where ε is the vector of random errors assumed to be distributed normally with mean vector 0

and variance-covariance matrix Σ. Further, f (x,β) = Φβ is the population regression function.

The basis function Φ j(X) usually found in non-linear functions of the input variable x which

allows the function EM(Y |Φ,β) = Φβ as a non-linear function of x. But the conditional mean

is still linear in parameters β. For prediction of the non-sampled values of the population

parameter τ(y) the feature matrix Φ can be partitioned as

Φ =

 Φs

Φs̄


where Φs and Φs̄ are the sub-matrices of features with order n×M and (N − n)×M

respectively.

Theorem 1: The quantity of interest τ(y) can be estimated using general linear estimator

proposed by Valliant (2000) with feature matrix Φ as:

τ̂(y) = γ
T
s Y s + γ

T
s̄

[
Φs̄β̂+Σs̄sΣ

−1
ss
(
ys−Φs̄β̂

)]
, (2.3.2)

where β̂ =
(
Φ

T
s Σ
−1
ss Φs

)−1
Φ

T
s Σ
−1
ss ys is the WLS estimator of β using basis functions rather

than linear regressors.
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The variance of prediction error of the proposed estimator (e(τ̂)) is given by

V
(
e(τ̂)

)
=γ

T
s̄

(
Σss̄−Σs̄sΣ

−1
ss Σss̄

)
γs̄ + γ

T
s̄

(
Φs̄−Σs̄sΣ

−1
ss Φs

)(
Φ

T
s Σ
−1
ss Φs

)−1

(
Φs̄−Σs̄sΣ

−1
ss Φs

)T

γs̄, (2.3.3)

where e(τ̂) = τ̂(y)− τ(y) is the prediction error.

Proof: Derivation of Equations (2.3.2) and (2.3.3) can be found after replacing the feature

matrix Φ by the data matrix X in general prediction theorem given in (Valliant, 2000, Chapter

2). For simplicity, we assume non-informative sampling conditional on values of the auxiliary

variables resulting Σs̄s = 0, the BLUP for τ(y) reduced to

τ̂(y) = γ
T
s Y s + γ

T
s̄ Φs̄β̂ (2.3.4)

with prediction variance

V
(
e(τ̂)

)
= γ

T
s̄

{
Σss̄ +Φs̄

(
Φ

T
s Σ
−1
ss Φs

)−1

Φ
T
s̄

}
γs̄. (2.3.5)

Assuming iid noise in the data, we have Σss = σ2In and Σs̄s̄ = σ2IN−n. The resulting

expression for variance of prediction error is

V
(
e(τ̂)

)
= σ

2
[

γ
T
s̄ γs̄ + γ

T
s̄ Φs̄

(
Φ

T
s Φs

)−1

Φ
T
s̄ γs̄

]
. (2.3.6)

For population total and mean, we set γi = 1 and γi =
1
N respectively for all i ∈U. We discuss

some special cases of the proposed basis function model in following subsection.

2.3.1 Special Cases

In this subsection, we discuss some members of basis function model and obtain estimators

of total output under specified models. Model mean squared error and bias are studied for the

selected cases.
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2.3.1.1 Expansion Estimator

Consider a single constant basis function for estimating finite population total i.e. taking Φ

as N dimensional vector of 1’s.

y = β0 + ε. (2.3.7)

The expansion estimator for ty = ∑i∈U yi (population total) under homogeneous population is

obtained as follows:

t̂E
y = ∑

i∈s
yi +∑

i∈s̄
β̂0, (2.3.8)

where β̂0 =
∑i∈s yi

n is the best linear unbiased predictor (BLUP) for β0 obtained under the

ordinary least square assumptions. The expansion estimator is unbiased when underlying

model is correct. The prediction error variance of the expansion estimator, is given by

VM(t̂ys− ty) = N2(1
n
− 1

N

)
σ

2 (2.3.9)

which is equivalent to the designed-based variance of total estimator under simple random

sampling without replacement (SRSWOR) (see Cochran, 1940).

2.3.1.2 Regression Estimator

Assuming single variable linear regression model with basis functions including intercept,

we have

t̂y(reg) = ∑
i∈s

yi +∑
i∈s̄

{
β̂0 +

M−1

∑
j=1

β̂ jΦ j(xi)
}
,

where β̂0 = ȳ−∑
M−1
j=1 β̂ jΦ̄ js, ȳ = 1

n ∑i∈s yi and Φ̄ js =
1
n ∑i∈s Φ j(xi). After some simplification,

we get

t̂y(reg) = N
[
ȳ+

M−1

∑
j=1

β̂ j
{

Φ̄ jU − Φ̄ js
}]
, (2.3.10)
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where Φ̄ jU = 1
N ∑i∈U Φ j(xi). It is easy to show that t̂y(reg) is unbiased when the working

model is true representation of the underlying population model. On contrary, if we use

incorrect model the estimator may suffers with some bias. Consider the model without using

any basis function i.e. M=1. The resulting estimator of population total is then ty = Nȳs with

prediction bias BM(ty) = N ∑
M−1
j=1 β j

(
Φ̄ jU − Φ̄ js

)
which is of order O(n−1). When sample

size increases it goes toward zero. If the chosen values of x’s provide larger mean values

of the basis functions then we get Φ̄ jU < Φ̄ js and the bias BM(t̂y(reg)) becomes negative.

The bias can be minimized by selecting a sample such that the difference on right side of

bias expression is minimum. Following Valliant (2000), we call such a sample as balanced

sample. Exact balanced sample is achieved by selecting a sample for which Φ̄ jU = Φ̄ js. The

prediction error variance for the estimator given in (2.3.10), is given by

VM(t̂y(reg)− ty) = N2
[M−1

∑
j=1

(
Φ̄ jU − Φ̄ js

)2VM(β̂ j)+
(1

n
− 1

N

)
σ

2
]
. (2.3.11)

Consider the case of single basis function with intercept i.e. M = 2, we have following

variance expression

VM(t̂y(reg)− ty) = N2
[ (

Φ̄1U − Φ̄1s
)2

∑i∈s
(
Φ1(xi)− Φ̄1s

)2 +
(1

n
− 1

N

)]
σ

2. (2.3.12)

This variance decreases when mean of the basis function for sampled and non-sampled unites

coincide and there is a high variation in sampled values of basis function.

2.3.1.3 Ratio Estimator

When the variance of the study variable depends on some function ψ(x) of input variable(s) the

least square estimator provides higher variance due to heteroscedasticity. In such situations,

weighted least square method is preferred for estimation of superpopulation parameters when

the variance structure is known. We consider following (M−1) degree polynomial model

with basis function contained single regressor with no intercept as:

y = f (x,β)+ψ(x)ε, (2.3.13)

where f (x,β) = ∑
M−1
j=1 β jΦ j(x). The gamma population model discussed by Chambers and

Clark (2012) is obtained by setting ψ(x) = xγ∗ and the well known ratio estimator is obtained
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by setting γ∗ = 1
2 . For γ∗ = 0, we get linear regression estimator with constant variance.

To obtain homoscedastic error term, we adopt following weighted least square method to

estimate (2.3.13).

y∗ =
M−1

∑
j=1

β jΦ
∗
j(x)+ ε, (2.3.14)

where y∗ = y
ψ(x) and Φ∗j(x) =

Φ j(x)
ψ(x) for M = 2

y∗ = β1Φ
∗
1(x)+ ε. (2.3.15)

The best linear unbiased estimator (BLUE) for β1 is then obtained as β̂1 =
∑i∈s Φ∗1(xi)y∗i
∑i∈s Φ∗21 (xi)

with

variance VM(β̂1) = σ2 ∑i∈s Φ2
1(xi)(

∑i∈s Φ∗21 (xi)
)2 .

The ratio estimator under single basis function is given by

t̂y(r) =∑
i∈s

yi +∑
i∈r

Φ
∗
1(xi)

∑i∈s Φ∗1(xi)y∗i
∑i∈s Φ∗21 (xi)

=∑
i∈s

[
1+λi ∑

i∈r
Φ
∗
1(xi)

]
yi, (2.3.16)

where λi =
Φ∗1(xi)

ψ(xi)∑i∈s Φ∗21 (xi)
.

t̂y(r)− ty = ∑
i∈s

λ
∗
i yi−∑

i∈r
yi,

where λ∗i = λi ∑i∈r Φ∗1(xi).

The model bias and variance, are given by

BM(t̂y(r)) = β1

[
∑
i∈s

λ
∗
i Φ1(xi)−∑

i∈r
Φ1(xi)

]
(2.3.17)

and

VM(t̂y(r)− τ(y)) =
[
∑
i∈s

λ
∗2
i ψ

2(xi)+∑
i∈s

ψ
2(xi)

]
σ

2. (2.3.18)
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The model mean squared is obtained as:

MSEM(t̂y(r)) =
[
∑
i∈s

λ
∗2
i ψ

2(xi)+∑
i∈r

ψ
2(xi)

]
σ

2 +β
2
1

[
∑
i∈s

λ
∗
i Φ1(xi)−∑

i∈r
Φ0(xi)

]2

. (2.3.19)

A balance sampling with ∑i∈s λ∗i Φ1(xi)−∑i∈r Φ1(xi) results t̂y(r) in unbiasedness. This is

same as the calibration estimator with single predictor given in Deville and Särndal (1992).

2.3.2 Some Special Basis Functions

The next problem is to choose a reasonable function of the predictor or set of predictors

for prediction. The world we are living is much complicated, and we can’t easily adopt a

linear models to capture the wide variety of so called basis functions that we might need in

prediction. To capture complex phenomenon with non-linear behavior data, scientists urged

on use of a wide variety of basis functions that make more precise prediction (Alpaydin,

2009). Some widely used basis functions that can be employed to parameter estimation in

finite population settings are as follow.

2.3.2.1 Polynomial Basis Functions

While applying polynomial regression for predicting non-sampled values it is essential to

decide the degree of the polynomial before going toward the prediction problem. The question

of how many degree of the polynomial can be answered through visual display of sample

data (when feature dimension is one or two). It is much tougher in case of three or higher

dimensions of the feature and it is complete wastage of time if there exists interaction terms

between the features which influence the outcome. For mutually-interacting high-dimensional

data set, we can reach to a wrong conclusion if we look at the output with one feature plot at

a time. There is no simple way to visualize two or more variables at a time. In this way, we

must move toward some machine learning technique to fit a high-dimensional dataset which

is an open area for new developments. Before going to the complex non-linear functions

for predicting non-sampled values, one should opt linear regression to look up. As we know

that the ‘linearity’ in linear regression model refers that the model is linear in coefficients,

and not necessarily in features (or independent variables). Features can be of any degree

or transcendental functions like logarithmic, exponential and sinusoidal etc. As a result a

surprisingly large number of natural phenomena can be modeled (through approximation)
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using the linear model with these transformations.

Consider polynomial basis function f (x,β) = ∑
M−1
l=0 βlxl , here the feature matrix is

Φ =



1 x1 x2
1 ... xM−1

1

1 x2 x2
2 ... xM−1

2

. . . .

. . . .

. . . .

. . . .

1 xN x2
N ... xM−1

N


The polynomial used in the feature matrix is of order M−1. The determination of degree

of polynomial depends on the nature of relationship between the study variable y and the

auxiliary variable x. For M = 1, we get the homogeneous population model, M = 2 linear

regression model with intercept and for M = 3, we get quadratic regression model. The

polynomial basis models provide global basis functions which effect the prediction over the

whole input range. The number of polynomials increases exponentially with increase in M.

While the local basis functions are considered as appropriate in prediction problems.

2.3.2.2 Basis Functions with two Regressors

Further, the polynomial curve fitting is applicable only for single input variable x. It is not

easy to generalized it for several input variables. The prediction problem for three input

variables for the case of M = 2 is considered here. We use separate index for each variable as

J = ( j1, j2, j3) such that ( j1 + j2 + j3)≤ (M−1).

y = ∑
j1, j2, j3

β jΦ j(x)+ ε

= β000 +β100x1 +β010x2 +β001x3 +β110x1x2 +β101x1x3

+β011x2x3 +β200x2
1 +β020x2

2 +β002x2
3 + ε (2.3.20)

where ε is random error term and the subscripts of the coefficients with values 1 show that the

corresponding regressor is present and 0 represent its absence. For p covariates the number

of quadratic terms is
[
1+ p+ p(p−1)

]
/(2+ p) in above example, we have p = 3, hence
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the number of terms is 10. For p inputs, a general case is the regression model with basis

functions Φ(x) =
{

∏
p
k=1 xmk

k : ∑
p
k=1 mk ≤ p

}
.

2.3.2.3 Radial Basis Functions (RBF)

Radial basis functions are the another type of real-valued basis functions whose values depend

only on the distance from the origin i.e. Φ(x) = Φ(||x||). Alternatively, it may based on the

distance from some other point, called a center, so that Φ(x,c) = Φ(||x− c||). In general, a

function Φ(x) is said to be radial basis function if it can be expressed as Φ(x) = Φ(||x||). The

concept of radial basis was initially introduced by Broomhead and Lowe (1988) stemmed

from Powell (1977).

Lowe and Broomhead (1988) discussed the relationship between “learning" in adaptive-

layered networks and fitting of data in high dimensional surfaces. RBFs are used as a kernel

in classification of support vector (Scholkopf et al., 1997). Buhmann (2003) provided theory

and implementation of RBF. Later Biancolini (2017) extended its application in different

fields of engineering and Physics. Radial basis functions are typically preferred for estimating

population parameters when the auxiliary data consist of latitudes and longitudes. In general,

we choose a family of basis functions in order to get a good fit to our training data with a

small basis set which consequently provides a moderate number of weights (coefficients) to

be estimated.

2.4 Estimation Under Regularized Regression

In regression analysis, over-fitting means the outcome of an analysis that corresponds exactly

or very close to a particular data set, and therefore failure to fit additional data points. Such

situations are termed as ill-conditioning in regression analysis. Initially, Tikhonov and

Arsenin (1977) worked on mathematical aspect of the ill-posed problems and discussed the

problem in their book. Aside from Tikhonov and Arsenin (1977), Hoerl and Kennard (1970)

suggested ridge regression method for solving ill-conditioned linear regression problem. Here

ill-conditioning refers to numerical difficulties in obtaining the inverse of the matrix which

is necessary in obtaining variance of estimators of the superpopulation parameters. Hoerl

and Kennard (1970) method was actually a crude form of the ridge regression now known as

zero order regularization (Press and Flannery, 1992). When neural network (NN) became
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famous, in 1980’s, the weight decay is invented to deal with prune network connections that

are considered to be unimportant. Weighted decay is soon recognized as alternate of ridge

regression in NN as it involves adding penalties to the cost function (sum-squared error). A

variety of regularization methods is available in literature and most of them are cited in Cartis

et al. (2019). In this section, we confined our discussion to the simple regularization method

introduced by Hoerl and Kennard (1970) although our prediction problem can be handled

by using more advanced regularization methods e.g Least Absolute Shrinkage and Selection

Operator (LASSO) (Tibshirani, 1996), elastic net regression (Zou and Hastie, 2005) and their

extensions. The selection of certain regularizer depends on bias and variance trade-off. As

regularization reduces variance on one side by increasing bias on the other side resulting an

adjustment in the mean squared error. If EM
(
β̂ridge

)
= β for all Φ, then the total estimator

will be unbiased. However an unbiased estimator may still have larger mean squared error if

the variance of the estimators of superpopulation parameters are higher. Such cases often

occur when the regression function is highly sensitive to the choice of sample selection and

noise of each training set. The sensitivity causes ill-conditioned regression estimates in the

sense of Tikhonov and Arsenin (1977). To reduce the high variation significantly Hoerl and

Kennard (1970) suggested to introduce small amount of bias so that net effect, shown in

(2.4.5), is a reduction in mean squared error. Under regularization, we have following cost

function (sum-squared error)

C =
(
ys−Φsβ

)T(ys−Φsβ
)
+ vβ

T
β (2.4.1)

where the positive constant v is called regularizer which creates bias in the estimate of β and

reduces variance on the other side. Optimizing the cost function given in (2.4.1), we have

following ridge regression estimator for the coefficient vector

β̂ridge = Q−1
s Φ

T
s ys, (2.4.2)

where Qs = Φ
T
s Φ

T
s + vIn. The matrix Qs is symmetric i.e. QT

s = Qs. An estimator of

population parameter τ(y) using ridge regression for model estimation is given by

τ̂Ridg(y) = γ
T
s ys + γ

T
s̄ Φs̄β̂ridge (2.4.3)
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which has model bias

EM
(
e(τ̂ridge)

)
= γ

T
s̄ Φs̄

[
EM
(
β̂ridge

)
−β
]
,

where e(τ̂ridge) = τ̂ridge(y)− τ(y). After some simplification (see Appendix A.5), we have

BM
(
τ̂ridge(y)

)
=−vγ

T
s̄ Φs̄Q−1

s β. (2.4.4)

This amount of bias depends on the regularizer v and we can infer that the bias tends to

reduces as v→ 0 depending on entries in Q−1
s (which also depend on v). Now we observe

the effect on the error variance of τ̂ridge(y). The variance expression is given by

VM
(
e(τ̂ridge)

)
= σ

2
[

γ
T
s̄ γs̄ + γ

T
s̄ Φs̄

(
Q−1

s −Q−2
s

)
Φ

T
s̄ γs̄

]
=VM

(
e(τ̂)

)
−σ

2
γ

T
s̄ Φs̄Q−2

s Φ
T
s̄ γs̄. (2.4.5)

This shows that regularization reduces variance by an amount of σ2γT
s̄ Φs̄Q−2

s Φ
T
s̄ γs̄. This

amount increases by increasing the parameter v which ultimately increases the efficiency

with larger amount of bias. The mean squared error of τ̂B(y)s̄idge is then obtained using bias

and variance relation as follow

MSEM
{

τ̂ridge(y)
}
= σ

2
[

γ
T
s̄ γs̄ + γ

T
s̄ Φs̄

(
Q−1

s −Q−2
s

)
Φ

T
s̄ γs̄

]
+ v2

γ
T
s̄ Φs̄Q−1

s ββ
T Q−1

s Φ
T
s̄ γs̄

= σ
2(

γ
T
s̄ γs̄
)
+ γ

T
s̄ Φs̄

[
σ

2
(

Q−1
s −Q−2

s

)
+ v2Q−1

s ββ
T Q−1

s

]
Φ

T
s̄ γs̄ (2.4.6)

The amount γT
s̄ Φs̄

[
v2Q−1

s ββ
T Q−1

s − σ2Q−2
s
]
Φ

T
s̄ γs̄ is the net effect in reduction of mean

squared error. The regularization parameter v provides a trade-off between over-fitting (which

causes higher variance) and avoiding penalty (which causes increase in bias). Since the first

derivative of the variance expression is non-linear in v so optimization of (2.4.5) with respect

to v is not straightforward. Alternatively, one can adopt model selection criteria to obtain an

optimum choice of v. Since all the criteria for model selection are also non-linear in v, we

have some non-linear optimization problem here. We can use any standard method for this

purpose, such as the Newton method. We leave the derivation of optimum choice of v for

future study.
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2.5 Variance Estimation and Comparison

After obtaining the prediction error, bias and variance of the error, the next step is to search

for an estimate of the error variance for further statistical analysis e.g. testing statistical

hypothesis about τ(y) and constructing confidence interval. Unlike to variance estimation

methods such as Jackknife technique (Shao et al., 1989), in model-based approach, we utilize

model selection criteria which indirectly provide estimate of error variance σ2 for obtaining

estimate for prediction error variance of τ̂(y). It can be seen that the variance of error term

given in (2.3.6) depends on error variance σ2 and the auxiliary data (data on basis functions)

from the whole population. When we have known sub-matrix of the basis function for the

non-sampled part as well, we need estimate for σ2 only for estimating prediction variance of

τ(y). Hence a sample estimate for the prediction error variances given in (2.3.6) and (2.4.4)

can be expressed as

V̂ (e(τ̂)
)
= σ̂

2
{

γ
T
s̄ γs̄ + γ

T
s̄ Φs̄

(
Φ

T
s Φs

)−1

Φ
T
s̄ γs̄

}
, (2.5.1)

and

V̂
(
e(τ̂ridge)

)
= V̂

(
e(τ̂ML)

)
− σ̂

2
γ

T
s̄ Φs̄Q−2

s Φ
T
s̄ γs̄. (2.5.2)

Estimation of σ2 based on residuals is a routine practice in survey sampling. The estimate

taken from the sampled observations or a part of observations (training set) provides a good

measure for average noise in the study variable. An estimator of prediction error variance of

the estimator τ̂(y) is obtained under residual method by replacing σ̂2
res by σ̂2 in (2.5.1) and

(2.5.2), where

σ̂
2
res =

1
n−M

yT
s P2ys, (2.5.3)

where P = IM −ΦsQ−1
s Φ

T
s is the projection matrix which is symmetric and idempotent.

The projection matrix defined in A.1 (see Appendix A) is idempotent i.e. P2 = P if no

regularization is used. Another most widely used model selection criteria is unbiased estimate

of variance (UEV) which is similar to residual variance obtained by replacing the number of

total parameter by the number of effective parameter in the denominator. The UEV estimator
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of σ2, is given by

σ̂
2
UEV =

1
n−M∗

yT
s P2ys, (2.5.4)

where M∗ = n− trace(P) is the effective number of parameters in the model. However the

residual method is not considered as an appropriate measure for predictive power of the

model (Zheng and Agresti, 2000). The predictive power of the model here refers to how well

the sampled data will perform in predicting unknown values of the output for non-sampled

part of the population. A model is considered to be best whose estimated prediction error is

minimum among all other alternative models. In following subsections, we provide some

alternative variance estimation methods. We extend these methods for estimating the error

variance in estimation of finite population parameter τ(y). The projection matrix, say P, plays

key role in obtaining the estimate for σ2 using above mentioned methods. For obtaining

estimates for σ2, we use following model selection criteria.

1- Cross Validation (CV)

2- Generalized Cross Validation (GCV)

3-Final Prediction Error or Akaike’s Information Criterion (AIC)

4-Bayesian Information Criterion (BIC).

We developed different estimators for the error variance of τ̂(y) using estimates for σ2

obtained under different model selection criteria in the following subsections.

2.5.1 Variance Estimation under Cross Validation (CV)

The simplest kind of cross validation is the holdout method in which the data set is divided

into two halves, i.e. the training set and the testing set. An appropriate method of estimation

is used to estimate the parameters of function (in ML language to trained the model) using

the training set. Then the estimated model is used to predict the outputs for the test data

(which is holdout during training). The prediction errors it makes are averaged to give the

mean absolute prediction error, which is considered as an alternate tool of model evaluation.

This method takes no longer time in computation. However, the estimate of variance may

have higher variance as it depends heavily on the separation mechanism of the data into test

and training. k-fold CV is an improved form of the holdout CV method in which the data set

is splitted into k subsets. The method of holdout is re-runed k times by considering one of
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the k subsets as the test set and training the model with the help of remaining (k−1) subsets

each time. Then the errors from all k trials are accumulated to compute the average error.

This k-fold CV method has smaller error than holdout method but consumes relatively more

time in computation. The variance of the estimate of prediction error variance is reduced as k

increases. A new variant of this method is to randomly split the data into a training and test

set k distinct times. The benefit of doing so is that one can independently choose the size of

each test set and number of trials for averaging. Leave-one-out (LOO) cross validation is a

special case of k-fold CV with its logical extreme i.e. taking k = n, the total number of data

points. It means that the model is trained n times including all the data except of one point

and predicting the outcome for that single point. The average prediction error is computed

and applied to evaluate the model as an estimated noise. The prediction error variance of the

estimator τ̂(y) under LOO is obtained by replacing σ̂2 by σ̂2
LOO in (2.5.1) and (2.5.2), where

σ̂
2
LOO =

1
n

yT
s P
{

diag(P)
}−2Pys (2.5.5)

The estimated variance obtained under LOO cross validation error is a good estimate of

model variance, but at first glance it seems more expensive and tiresome to compute. Luckily,

locally weighted regressions make it easy as they make regular predictions. It means that

computing the LOO-XVE consumes no more time than the residual error that’s why it is

preferred as model selection criteria.

2.5.2 Variance Estimation under Generalized Cross validation

The diagonal matrix diag(P) makes LOO mathematically inappropriate. Its alternate, GCV

introduced by Golub et al. (1979), is more convenient and is obtained by replacing the matrix

diag(P) by the average of the diagonal elements multiplied by the identity matrix of order

n i.e. trace(P/n)In. An estimator for the prediction error variance of τ̂(y) under GCV is

obtained by replacing σ̂2 by σ̂2
GCV in (2.5.1) and (2.5.2), where σ̂2

GCV is

σ̂
2
GCV =

nyT
s P2ys{

trace(P)
}2 . (2.5.6)

GCV is among one of the model selection criteria which includes an adjustment to the

average of mean squared prediction error over the training set. It is equivalent to standard
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residual method given in (2.5.5), when n{
trace(P)

}2 = 1
n−M∗ , where M∗ = n− sum(diag(P))

is the effective number of parameters in the model. GCV can also be expressed in term of the

effective number of parameters M∗ instead of trace(P) as

σ̂
2
GCV =

nyT
s P2ys(

n−M∗
)2 . (2.5.7)

2.5.3 Variance Estimation under Final Prediction Error (FPE)

Mallows’s Cp (Mallows, 1973), named after Colin Lingwood Mallows, is a statistic which

assess the fit of a regression model that is estimated via ordinary least squares (OLS). This

statistic is used in the context of model selection, when a number of predictors are available

for predicting the outcome, aiming to find the best subset of the available predictors. A

smaller value of Cp indicating relatively precise fit and vice versa. Under Gaussian linear

regression model Mallows’s Cp is equivalent to Aikake’s Information Criterion(AIC), a

most widely used model evaluation criterion (Boisbunon et al., 2013) and can be used as an

alternate of AIC. An estimator for prediction error variance of τ̂(y) under final prediction

error (FPE) method is obtained by replacing σ̂2 by σ̂2
FPE in Equation (2.5.1), where σ̂2

FPE , an

alternative version of Mallows’s Cp (James et al., 2013), and is given by

σ̂
2
FPE =

1
n

(
yT

s P2ys +2M∗σ̂2
res
)
=

n+M∗

n−M∗
yT

s P2ys

n
, (2.5.8)

where M∗ is the effective number of parameters. The σ̂2
FPE suffers from two limitations: 1.

the approximation is valid only for large enough sample size and 2. it can’t deal with complex

set of models as in the variable selection (feature selection in machine learning) problems

(Giraud, 2014).

2.5.4 Variance Estimation under Bayesian Information Criterion (BIC)

The BIC developed by (Schwarz et al., 1978), is a Bayesian argument on maximum likelihood

of the data. It is related to the Akaike information criterion (AIC) later Akaike also developed

his own Bayesian formalism impressing from the motive of Schwarz, now mostly referred as

the ABIC "Akaike’s Bayesian Information Criterion" instead of BIC "a Bayesian Information
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Criterion" (Akaike, 1977). An estimator of variance of prediction error for τ̂(y) based on BIC

is found by inserting σ̂2
BIC by σ̂2 in Equations (2.5.1) and (2.5.2), where σ̂2

BIC is

σ̂
2
BIC =

1
n

(
yT

s P2ys + ln(n)M∗σ̂2
res
)

=
n+M∗

(
ln(n)−1

)
n−M∗

yT
s P2ys

n
, (2.5.9)

where ln(n) is the natural logarithm of n. Here σ̂2
BIC measures the unexplained variation in

the output variable and the increased number of explanatory variables.

All the mentioned estimators of the variance of prediction error can be used for statistical

analysis about the finite population parameter τ(y). To compare above discussed competing

estimators of prediction variance, we write all the variance estimators in the form of σ2
abc =

ΓabcyT
s P2ys/n and have following natural ordering as

ΓUEV ≤ ΓFPE ≤ ΓGCV ≤ ΓBIC (2.5.10)

The factors Γs are approximated by using Taylor’s series as:

Γs̄es =
n

n−M∗
= 1+

M∗

n
+

M∗2

n
+

M∗3

n
+ ....

ΓFPE =
n+M∗

n−M∗
= 1+

2M∗

n
+

2M∗2

n2 +
2M∗3

n3 + ....

ΓGCV =
M∗2(

n−M∗
)2 = 1+

2M∗

n
+

3M∗2

n2 +
4M∗3

n3 + ....

ΓBIC =
n+
(
ln(n)−1

)
M∗

n−M∗
= 1+ ln(n)

(
M∗

n
+

M∗2

n
+

M∗3

n
+ ....

)

Hence the estimators of σ̂2 obtained through different model selection criteria can be ranked

according to the factor Γ. Hence variance estimators can also be ranked as

V̂ (e(τ̂)
)

UEV ≤ V̂ (e(τ̂)
)

FPE ≤ V̂ (e(τ̂)
)

GCV ≤ V̂ (e(τ̂)
)

BIC (2.5.11)

where the subscripts attached to the estimated variances show the model selection criteria

used for estimating σ2.
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2.6 Model Selection

We previously discussed ridge regression (Section 2.4 ) as a tool for controlling the trade-off

between the bias and variance (Section 2.5) of the estimators of superpopulation parameters

such as σ2. Alternatively, one can compare models with different subsets of basis functions

selected from a fixed set of candidate models, known as "subset selection" (Rawlings et al.,

2001). It is difficult to find the best set among the 2M− 1 alternative subsets each of size

M for the purpose of response prediction. To search an interesting small fraction of all

subset, we need heuristics. Forward selection and backward selection methods are two widely

used heuristics for model selection. Although backward selection is also widely used for

factor screening in multiple regression analysis our aim is to estimate the finite population

parameter(s) as a prediction problem. So it does not seem logical to start with a larger group

of covariates or with a higher order polynomials (in case of single covariate) and then come

to an effective smaller subset. On the other end, the forward selection method starts with a

null subset and goes by adding one basis function at a time. The process of forward selection

stops at the subset which provides minimum sum of squared prediction error. Although

forward selection is an algorithm of non-linear type, still it has the following plus points.

(i). The number of hidden units is not need to be fixed in advance.

(ii). It has a tractable criteria for model selection.

(iii). It needs relatively low computational effort.

In forward selection, the model grows at each step by one basis function. To see the effect

of increasing a new basis function, we introduce some incremental operators in Appendix

(see Appendix A). We see the effect of adding a new predictor on the bias and variance of the

total estimator in following subsections.

2.6.1 Model Selection Under Ordinary Least Square

The reduction in variance (increase in efficiency) on using additional basis function can be

computed as

IE =VM(τ̂)m−VM(τ̂)m+1

=σ
2
γ

T
s̄

[
Φs̄mA−1

sm Φ
T
s̄m−Φs̄(m+1)A

−1
s(m+1)Φ

T
s̄(m+1)

]
γs̄. (2.6.1)
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The subscripts m and (m+1) are used to denote that the quantities are obtained with M basis

functions, (M+1) basis functions, with s and s̄ for sampled and non-sampled populations

respectively. From (A.3) (see Appendix A) and (2.6.1), we get

IE =VM(τ̂)m−VM(τ̂)m+1

=σ
2
γ

T
s̄

[
Φs̄mA−1

sm Φ
T
s̄m−Φs̄(m+1)A

−1
s(m+1)Φ

T
s̄(m+1)

]
γs̄ (2.6.2)

IE =
1
4

σ
2
γ

T
s̄

[
φs̄(m+1)φ

T
s(m+1)ΦsmA−1

sm Φ
T
s̄m +Φ

T
s̄mA−1

sm Φ
T
smφs(m+1)φ

T
s̄(m+1)

−Φs̄mA−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmA−1

sm Φ
T
s̄m−φs̄(m+1)φ

T
s̄(m+1)

]
γs̄, (2.6.3)

where the vector φs̄(m+1) shows the (M+1)th column of the basis function matrix Φs(m+1).

The positive increase in efficiency i.e. IE > 0 means that using an additional basis function

decrease the variance of prediction error. This can also be converted to a ratio as

IER =
γT

s̄
[
φs̄(m+1)φ

T
s(m+1)ΦsmA−1

sm Φ
T
s̄m +Φ

T
s̄mA−1

sm Φ
T
smφs(m+1)φ

T
s̄(m+1)

]
γs̄

γT
s̄
[
Φs̄mA−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmA−1

sm Φ
T
s̄m +φs̄(m+1)φ

T
s̄(m+1)

]
γs̄

(2.6.4)

The index IER measures the relative increase in efficiency on using additional predictor to our

model. The IE can only be seen when we know the variance of the response in advance. In

many real applications, we don’t have a known value of the variance of response in advance.

Then different estimates obtained in previous section are applied. Since the estimates involve

the basis function matrix, the use of additional basis function also effects the estimated

variances. One option is to obtain an estimate of variance of e(τ̂) through re-estimation of the

regression which is a difficult task in model selection. Secondly, we can jointly compute the

estimated prediction variance of τ̂(y) instead of its population counterpart. Third option is

to use (2.6.4) and separately obtain the estimates of σ2 through incremental operators given

in Orr et al. (1996). The third option although provides a variance expression for the model

with (M+1) predictors without recomputing the regression, it does not provide a comparison

among two models (i.e. model with M basis functions and the model with (M + 1) basis

functions).
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2.6.2 Model Selection Under Regularized Regression

Under regularization, the absolute change in bias can be expressed as

|BM
(
τ̂ridge(y)

)
m−BM

(
τ̂ridge(y)

)
m+1|= vγ

T
s̄
[ 1
4

Φs̄mQ−1
sm Φsmφs(m+1)φs(m+1)ΦsmQ−1

sm βm

+φs̄(m+1)Q
−1
21 βm +Φs̄mQ−1

12 βm+1 +φs̄(m+1)Q
−1
22 βm+1

]
,

(2.6.5)

where βm+1 is the (M+1)th component of the vector βm+1 i.e. the effect of additional basis

function on the response. Q−1
12 , Q−1

21 and Q−1
22 are defined in Appendix A. A smaller amount

of increase in bias means that the additional variable is not effecting the bias of the estimator

for a particular value of the ridge parameter. When different amount of regularizations are

used for each superpopulation parameter then the amount of increase can not be computed

with this formula. Now the increase in efficiency of the ridge regression estimator on using

additional basis function can be expressed as follow

IEridge =VM
(
e(τ̂ridge)

)
−VM+1

(
e(τ̂ridge)

)
= IE−σ

2
γ

T
s̄
[
Φs̄mQ−2

sm Φ
T
s̄m−Φs̄(m+1)Q

−2
s(m+1)Φ

T
s̄(m+1)

]
γs̄, (2.6.6)

where

σ2γT
s̄
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Φs̄mQ−2

sm Φ
T
s̄m−Φs̄(m+1)Q

−2
s(m+1)Φ

T
s̄(m+1)

]
γs̄ =−

(
2Φs̄mQ−1

sm 4∗Φ
T
s̄m +Φs̄m4∗4∗T Φ

T
s̄m

+φs̄(m+1)Q
−2
21 Φ

T
s̄m +Φs̄mQ−1

12 φ
T
s̄(m+1)+φs̄(m+1)Q

−2
22 φ

T
s̄(m+1)

)
and4∗ =4−1Q−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmQ−1

sm . Q−2
21 , Q−2

12 and Q−2
22 are the elements of the

matrix Q−2
s(m+1) = Q−1

s(m+1)Q
−1
s(m+1). Computation of IEridge is not straight forward still some

algebraical treatment on matrices can provide a compact form that can be solved numerically.

A positive value of the index IEridge provides evidence of efficiency improvement by adding

additional basis function to the superpopulation model which is the main concern of our

study.

2.7 Simulations

Two simulation studies (one simulated and one bootstrapped) are conducted to evaluate

the error variance of the proposed estimator of τ̂(y) ( γi = 1 for all i ∈ U) and to find
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expected values of the estimated error variance of τ̂(y). For this purpose, first we provide a

simulation study using artificially generated population and fitting basis functions (we limit

our discussion to polynomial basis function to avoid complexity). Secondly, we take a real

data set and perform repeated sampling to obtain design-based properties of the estimator and

estimated error variance of the estimator e(τ̂) . The simulation steps are described as below:

(i). To constitute a population showing non-linear behavior, draw two independent vectors

u∗ and v∗ of length N = 1000 each with uniform (0,1). The variable x and e are obtained

as the quantile points corresponding to the cumulative probabilities u∗ and v∗ with

normal (10,10) and (0,10) respectively. We generate the vector of the study variable y

as y =sin(2πx)+ e. Note that for obtaining design-based properties, we generate these

variables only once and deal as a fixed finite population (after observing population

characteristics such as mean and variance) while for model-based properties we need to

generate the data repeatedly. We focus on design-bias and design-expected prediction

error to see the behavior of the proposed estimator τ̂(y).

(ii). For fixed n we split data d f (y,x,x2,x3, ...xM−1) (where M is the number of basis

functions and df denotes data frame) into sampled and non-sampled parts with sizes n

and N−n randomly. From sampled data, we estimate superpopulation parameters (β

and σ2). The estimated values of σ2 are obtained using different formula discussed in

Section 2.5.

(iii). Further we evaluate the the proposed estimator of τ(y) (with γi = 1 for all i ∈U) and

the estimated variance of τ̂(y) under different formula given in 2.5.

(iv). Repeat Steps (ii) and (iii), 30,000 times to obtain design-expected prediction error (i.e.

bias) and design-expected squared prediction error of the proposed estimator of τ(y)

and expected values of the estimated variance of τ̂(y) for different choices of n, M and

v (for ridge regression).

For bootstrapping, we consider first 203 hospitals from hospital data given in (Valliant, 2000,

Appendix B, Page 424) as our population. The number of beds (x) in each hospital is taken

as the predictor for the number of patients discharged (y). Repeated sampling, as early

mentioned for hypothetical population, is performed to study the properties of total estimator
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and estimated error variance. Expected Squared Prediction Error (ESPE) are obtained as:

ESPE =
1

30,000 ∑
sim

{
e(τ̂ridge)

}2
,

where the ∑sim is used to denote that summation is taken over all 30000 simulated samples.

The ESPE are obtained under regularization taking v = 0,1,5,10 with v = 0 representing no

regularizer. Further the design expectation of estimated variance of τ̂ are obtained through

respective formula after averaging over all selected samples. We use polynomial basis

functions of different orders with intercept and without intercept. Scatter plots between x

with observed values of y and fitted values y are shown in Figures 2.1–2.4. The scatter plots

give a quick picture about the relationships between the outcome and predictor which is

necessary in choosing appropriate model.

Figure 2.1: Scatter plot between x and y for sample selected from hypothetical population
with M = 6

Scatter plot between x and y for sample selected from hypothetical population, fitted line

for simple and penalized regression with polynomial of 5th order i.e M = 6 are displayed in

Figure 2.1. The residual values are displayed on same plot shown via triangles.
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Figure 2.2: Scatter plot between x and y for sample selected from hypothetical population
with M = 2

Scatter plot between x and y for sample selected from hypothetical population, fitted line

for simple and penalized regression with polynomial of 1st order i.e M = 2 are displayed in

Figure 2.2. The residual values are displayed on same plot shown via triangles
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Figure 2.3: Scatter plot between x and y for sample selected from population Hospitals with
M = 4

Figure 2.3 gives scatter plot between x and y for sample selected from population Hospitals

selected from Valliant (2000), fitted line for simple and penalized regression with polynomial

of 3rd order i.e M = 4 are displayed.
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Figure 2.4: Scatter plot between x and y for sample selected from population Hospitals with
M = 2

Figure 2.4 provides scatter plot between x and y for sample selected from population

Hospitals selected from Valliant (2000), fitted line for simple and penalized regression with

polynomial of 1st order i.e M = 2 are displayed.

Results computed from hypothetical population are given in Tables 2.1. and 2.2. for the

regression models with and without intercepts respectively. Tables 2.1. and 2.2. provide

the design-based behavior of the prediction error of τ̂(y) for the hypothetically generated

population for the models of certain orders with and without intercept respectively. For

simulated data, results are obtained under homogeneous population model (M = 1), linear

population model (M = 2), the quadratic model (M = 3) and the higher order polynomial

model (M = 6). The values of ESPE and expected estimated variances in Tables 2.1. and

2.2. are presented after dividing on 103. While Tables 2.3. and 2.4. provide the design-based

behavior of the prediction error of τ̂(y) for the real population (hospitals data) for the models

of certain orders with and without intercept.
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Table 2.1.: Simulated results for linear basis function model

Expected estimated variances

n v ESPE RES UEV FPE GCV BIC

M = 1

0 353.488 231.447 233.785 236.123 236.146 242.213
1 347.545 227.343 229.616 231.890 231.912 237.812

100 5 325.365 212.085 214.125 216.164 216.184 221.477
10 300.810 195.310 197.102 198.894 198.910 203.562

0 53.696 103.360 103.879 104.399 104.401 106.112
1 53.327 102.539 103.052 103.565 103.567 105.256

200 5 51.899 99.376 99.863 100.350 100.353 101.957
10 50.215 95.673 96.131 96.589 96.591 98.099

M = 2

0 491.880 231.843 236.574 241.306 241.402 253.632
1 493.513 227.703 232.301 236.898 236.991 248.876

100 5 499.478 213.512 217.656 221.800 221.880 232.595
10 505.863 199.860 203.575 207.290 207.359 216.968

0 59.773 103.477 104.522 105.568 105.578 109.015
1 59.830 102.653 103.684 104.715 104.726 108.117

200 5 60.045 99.600 100.580 101.561 101.571 104.795
10 60.291 96.267 97.193 98.119 98.128 101.172

M = 3

0 408.216 232.991 240.197 247.403 247.626 266.176
1 408.907 228.750 235.772 242.793 243.009 261.086

100 5 411.410 214.308 220.708 227.108 227.299 243.781
10 414.043 200.553 206.368 212.183 212.352 227.332

0 50.033 103.639 105.217 106.795 106.820 112.001
1 50.009 102.806 104.366 105.926 105.950 111.071

200 5 49.917 99.728 101.220 102.712 102.735 107.634
10 49.809 96.375 97.794 99.213 99.234 103.894

M = 6

0 324.940 290.500 309.043 327.586 328.769 375.892
1 327.414 287.212 305.406 323.600 324.753 370.999

100 5 335.748 277.340 294.468 311.596 312.653 356.217
10 343.560 269.538 285.789 302.039 303.019 344.375

0 90.969 107.627 110.955 114.284 114.387 125.263
1 103.270 101.953 105.017 108.080 108.172 118.184

200 5 97.617 104.423 107.603 110.783 110.880 121.271
10 103.270 101.953 105.017 108.080 108.172 118.184

47



Table 2.2.: Simulated results for proportional basis function model

Expected estimated variances

n v ESPE RES UEV FPE GCV BIC

M = 2

0 269.879 125.303 126.568 127.834 127.847 131.131
1 269.855 125.292 126.558 127.823 127.836 131.120

100 5 269.757 125.250 126.515 127.780 127.793 131.075
10 269.635 125.198 126.462 127.726 127.738 131.019

0 9.988 61.071 61.378 61.685 61.687 62.697
1 9.987 61.069 61.376 61.683 61.684 62.695

200 5 9.985 61.061 61.368 61.675 61.676 62.687
10 9.982 61.051 61.358 61.664 61.666 62.676

M = 4

0 268.060 127.606 130.210 132.814 132.868 139.599
1 268.021 127.597 130.201 132.805 132.858 139.588

100 5 267.866 127.562 130.164 132.766 132.819 139.544
10 267.673 127.519 130.118 132.718 132.771 139.489

0 8.180 61.481 62.102 62.723 62.729 64.772
1 8.179 61.479 62.100 62.721 62.728 64.770

200 5 8.177 61.473 62.093 62.714 62.720 64.762
10 8.175 61.464 62.085 62.705 62.711 64.752

M = 6

0 403.569 161.764 166.767 171.770 171.925 184.804
1 403.568 161.757 166.759 171.762 171.916 184.793

100 5 403.565 161.729 166.728 171.727 171.882 184.751
10 403.561 161.693 166.689 171.684 171.839 184.699

29.688 74.447 75.581 76.714 76.732 80.454
0 29.687 74.446 75.579 76.713 76.730 80.452

200 1 29.685 74.440 75.574 76.707 76.724 80.445
5 29.681 74.434 75.567 76.700 76.717 80.437
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Table 2.3.: Bootstrapped results for proportional basis function model

Expected estimated variances

n v ESPE RES UEV FPE GCV BIC

M = 1

0 6.6755 1115.0647 1137.8211 1160.5775 1161.0419 1204.0883
1 38.3376 1082.7802 1104.4359 1126.0915 1126.5246 1167.4975

50 5 372.9478 975.9444 994.0174 1012.0905 1012.4252 1046.6466
10 1105.6943 878.3235 893.2103 908.0971 908.3495 936.5611

0 265.7557 374.5753 378.3589 382.1425 382.1807 391.9994
1 304.8374 370.8607 374.5693 378.2779 378.3150 387.9395

100 5 478.2710 357.5779 361.0162 364.4544 364.4875 373.4117
10 725.2613 343.9352 347.0905 350.2459 350.2749 358.4662

M = 2

0 7.6058 829.4559 864.0166 898.5772 900.0173 964.6580
1 7.0821 804.7302 836.9398 869.1494 870.4387 930.7350

50 5 5.7066 746.2935 772.7304 799.1672 800.1040 849.7151
10 4.7894 713.4974 736.3547 759.2121 759.9447 802.9160

0 42.9819 279.5041 285.2083 290.9124 291.0289 305.7728
1 42.0453 276.6408 282.1757 287.7106 287.8213 302.1299

100 5 38.9960 267.9593 272.9638 277.9684 278.0618 291.0060
10 36.2653 261.0667 265.6210 270.1754 270.2548 282.0402

M = 3

0 9.1234 832.4586 885.5943 938.7299 942.1215 1040.3265
1 8.5644 802.2694 850.1327 897.9959 900.8518 989.5114
5 7.5052 767.7585 807.7119 847.6652 849.7452 924.0570

50 10 7.0038 759.5841 796.4001 833.2161 835.0011 903.6091

0 34.8717 279.6398 288.2884 296.9371 297.2046 319.4683
1 35.0648 276.3260 284.5826 292.8392 293.0859 314.3490
5 35.5802 269.7184 277.0528 284.3872 284.5867 303.4946

100 10 35.9369 266.7718 273.5537 280.3356 280.5081 298.0036

M = 4

0 13.3928 854.9230 929.2641 1003.6053 1010.0697 1145.7472
1 13.9070 827.1330 891.7295 956.3260 961.3725 1079.8360

50 5 14.4792 816.0691 872.8424 929.6156 933.5662 1038.1674
10 14.6302 814.8074 869.4893 924.1712 927.8413 1028.7242

0 43.6831 282.4436 294.2121 305.9805 306.4709 336.6394
1 44.0972 279.0332 289.9848 300.9363 301.3661 329.4668

100 5 44.7919 275.7103 285.4503 295.1903 295.5344 320.5647
10 45.0972 275.0052 284.2723 293.5394 293.8517 317.6817
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Table 2.4.: Bootstrapped results for proportional basis function model

Expected estimated variances

n v ESPE RES UEV FPE GCV BIC

M = 2

0 38865.250 271.521 277.062 282.603 282.716 293.198
1 38865.250 271.609 277.042 282.474 282.582 292.860

50 5 38865.250 273.426 278.489 283.553 283.647 293.234
10 38865.250 277.924 282.635 287.346 287.425 296.352

0 17746.841 184.520 186.384 188.248 188.266 193.103
1 17746.841 184.535 186.380 188.226 188.244 193.033

100 5 17746.841 184.867 186.645 188.423 188.440 193.053
10 17746.841 185.786 187.491 189.195 189.211 193.636

M = 3

0 1989.648 915.590 953.740 991.889 993.479 1064.832
1 1845.946 887.065 923.259 959.452 960.929 1028.655

50 5 1405.980 803.258 833.744 864.230 865.387 922.520
10 1051.156 739.901 766.057 792.214 793.139 842.226

0 2260.617 298.282 304.369 310.456 310.581 326.315
1 2211.905 295.136 301.097 307.059 307.179 322.590

100 5 2039.615 284.476 290.007 295.538 295.646 309.948
10 1864.813 274.447 279.564 284.680 284.776 298.011

M = 4

0 1011.154 1934.051 2057.501 2180.951 2188.831 2416.991
1 905.878 1749.106 1857.814 1966.522 1973.278 2174.374

50 5 629.460 1305.618 1380.619 1455.619 1459.928 1599.022
10 448.607 1050.837 1107.537 1164.237 1167.297 1272.648

0 962.666 531.844 548.293 564.742 565.251 607.594
1 924.836 510.483 526.069 541.655 542.130 582.258

100 5 802.672 445.061 458.060 471.060 471.439 504.926
10 694.960 392.290 403.265 414.239 414.546 442.830

The values of ESPE and expected estimated variances in Tables 2.3. and 2.4. are reported

after dividing 105 for the sake of space. For real data, results are obtained for homogeneous

population model (M = 1), linear population model (M = 2), the quadratic model (M = 3)

and the higher order polynomial (cubic) model (M = 4). The estimated error variances of

τ̂(y) are obtained from (2.5.2) after incorporating different estimators of σ2. Note that all

results given in Tables 2.1.–2.4. are provided for ridge regression estimator with certain

choices of v as the variance estimator given (2.5.1) is a special case of variance estimator in

50



(2.5.2) with v = 0. The ESPE for different combinations of M, v and n is enlisted in third

column of Tables 2.1.–2.2.. For simulated data in Table 2.1., smallest ESPE is observed at

M = 6 when sample size is taken 100. It turns smallest at M = 3 when sample size is fixed

at 200. ESPE for simulated data also tends to decrease with increase in v. For example, for

n = 200 and M = 1, the ESPE for v = 0 is 53.696 while it is 50.215 for v = 10. Similarly,

for simulated data in Table 2.2. (i.e. for the models without intercept), smallest ESPE is

observed at M = 6 when sample size is taken 100. It turns smallest at M = 4 for both choices

of sample size (i.e. n = 100,200). Further, ESPE for simulated data also tends to decrease

with increase in v. At n = 200 and M = 2 the ESPE for v = 0 is 9.988 while it is 9.982 for

v = 10. In real data, the ESPE values are increasing with increase in v for some choices of M

while it is decreasing with increase in v for other choices. This is because of the fact that v at

one side decreases variance and increases bias on the other side. When increase in bias is

dominated the ESPE tends to increase with increase in v and Vice versa. From all tables one

can distill that the ESPE goes down as n increases.

The estimated variance of prediction error of τ̂(y) is obtained in columns 4-8 under

residual, UEV, FPE, GCV and BIC in ascending order (according to their values) from left

to right of each table. For numerical study with M = 4, n = 50 and v = 0, the estimated

variances are 1934.051, 2057.501, 2188.831 and 2416.991 which satisfy the inequality given

in (2.5.11). Additionally, one can infer the following relation from our empirical evidences

V̂ (e(τ̂)
)

RES≤ V̂ (e(τ̂)
)

UEV ≤ V̂ (e(τ̂)
)

FPE ≤ V̂ (e(τ̂)
)

GCV ≤ V̂ (e(τ̂)
)

BIC. Tables 2.1.–2.4. also

provide the evidence that estimated variances decrease by increasing amount of regularization.

Similar statement can be made for the relation between estimated variances and sample size.

Among alternative variance estimators we must choose the one which is nearer to the true

variance in prediction error. The unbiasedness and consistency of the variance estimators are

good measures in this regard. However, these properties are not discussed in this study as

our goal was basically the construction of estimator for τ and discussing problems associated

with its estimation and inference about the finite population in model-based setting.

2.8 Conclusion

A general framework of model-based approach for estimation of finite population parameter

τ (a linear combination of population values), assuming superpopulation setting, is discussed.
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Some special cases of the proposed general framework are deducted to observe its applicability.

Expressions for prediction error variance and model-bias of the proposed estimator are derived.

For statistical inference about τ, estimation of prediction error variance under residual, GCV,

UEV, FPE and BIC methods (the widely used feature selection criteria in ML) are also

considered. The variance introduced under UEV provides minimum variance estimates

than all other competting estimators with maximum at BIC which can also be observed

from simulation study. Model selection for finite population parameter under the proposed

general framework is also discussed using incremental operators under matrix approach. The

model selection is based on a measure, named as increment in efficiency, IE, which provide

guideline for selecting a model with appropriate number of basis function. Positive value of

IE shows increase in efficiency while adding additional basis functions to the feature matrix.

Further ill-conditioning of the regression estimation is also coped with typical regularization

method which introduce slight bias in estimates of β’s but provide smaller estimate of the

variance of the error term and, consequently, smaller estimated variance of prediction error of

τ̂. The current study can be used in estimation of any linear combination of population values,

hence many finite population parameters can be estimated using this general framework.

The proposed model-based framework can be extended to multi-level models and small area

estimation.
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Chapter 3

Model Based Estimation of Parameters under

Bayesian Approach

3.1 Outline

The controversy of using Bayesian and Frequentist frameworks in statistical analysis is one

of the most important academic discussion that statisticians engaged in. Rather than blindly

jumping into one side, one should learn both methods of analysis and apply them where

seem appropriate. In this way, recently, Bayesian method of estimation and inference have

been extensively used. As we already discussed in previous chapters that the utilization

of the superpopulation models for estimation of population parameters is an advantageous

practice, when it is easy to recognize the relationship between the study variable and one

or more auxiliary variable(s). In certain situations, one may also have prior information

about the distribution of the parameters involved in the parent density during estimation

of parameters such as mean, variance etc. In such situations, non-sampled values of the

population units can easily be predicted using Bayesian regression approach. In this chapter,

Bayesian basis function regression model is employed for predicting the values of the

non-sampled units for developing Bayesian predictive estimator for the finite population

parameter τ(y)(a linear combination of the population values), assuming superpopulation

setting. The expected squared prediction error (ESPE) of the proposed estimator and the

expectation of estimated error variance under bootstrapping as well as simulation study with

different regularizers are obtained in classical sense. Section 3.2 delineates the proposed

basis function regression model and estimator of τ(y) under Bayesian framework. Section 3.3
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covers variance estimation and comparison of competting variance estimators. Simulation

studies are covered in Sections 3.4. Section 3.5 concludes the study with some future

recommendations.

3.2 Model Based Estimation Under Bayesian Framework

The general prediction approach given in Chapter 2 was constructed using a general linear

regression model of Y on a matrix of basis functions φ rather than just on regressors. Although

the basis function method is flexible and generalizable to different special cases it does not

utilize the prior information about the superpopulation parameter β while estimating finite

population parameter τ(y). The Bayesian practitioners think that without including prior

knowledge about the parameter estimation just based on sample information is not a fruitful

process. One of the areas to focus in applied Bayesian inference is Bayesian linear modeling.

The most important aspect of the Bayesian learning process is explaining a relationship and

generalizing it to others, and this study is our attempt to use the Bayesian Linear Regression

(BLR) for predicting the outcome for non-sampled set. What we result from the frequentist

linear regression is an estimate of the model parameters from only the training data set(the

sampled data set in our problem). Our model is informed completely by the sampled data: in

this way, everything that we need to recognize our model is available in the sampled data.

However, if the sample size is small, one might like to express the estimate as a distribution

of possible values of the parameter given the sample information. This is the situation where

Bayesian Linear Regression is needed. Again consider the notation used in Chapter 2 the

population basis function regression model can be written as

y = g(x,β)+ ε, (3.2.1)

where g(x,β) = ∑
M−1
j=0 β jΦ j(x) = Φβ. The basis function matrix Φ and the vector of

parameter β are already defined in Section 2.2. In Bayesian paradigm, we introduce linear

regression with the help of probability distributions rather than just finding estimates based

on sampled data with un-specified distribution. The output variable, y, is assumed to be the

outcome of random sample drawn from a probability distribution conditioning on the known

covariates. Let the conditional distribution of the sampled data y with the conditional mean
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g(x,β) and the constant variance σ2 is

P(y|g(x,β),σ2) = N
(
y|g(x,β),σ2). (3.2.2)

Following Baye’s Rule" the posterior distribution of the parameter β given the data vector ys

is

P(β|ys) =
P(ys|g(x,β),σ2)×P(β)

P(ys)
, (3.2.3)

where P(β) and P(ys) are the prior distribution of the parameter β and the marginal distribution

of the sampled data ys respectively. Before going to our prediction problem, we look for a

Gaussian prior for parameter β with mean vector µ0 and variance covariance matrix Σ0. The

likelihood function P(ys|g(x,β),σ2) is a product of Gaussian noise model. It is easy to derive

the posterior distribution of β for given data using (3.2.3) which is also Gaussian, i.e.

P(β|ys) = N
(
β|µn,Σn

)
, (3.2.4)

where µn = σ2Σn
(
σ2Σ0µ0 +Φ

T ys
)

and Σn = σ2(Σ−1
0 +Φ

T
Φ
)−1

= σ2Q∗−1
sm . It is important

to note that the Baye’s estimator of the parameter β is the posterior mean under squared

error loss function (SELF) (Zellner, 1986). Which is equivalent to the value of β for which

posterior probability is maximum i.e. mode of the posterior distribution. With smaller

values of the variance and covariance matrix of prior Σ0 the Baye’s estimate β reduce to

maximum likelihood estimate. On the other side, for zero observation (i.e.n = 0) posterior

mean reduces to prior mean. Further, if the sample observations arrive sequentially then

posterior distribution at a point works as prior distribution for subsequent observations. Before

generalizing the Gaussian prior, we derive predictive distribution to predict the outcome at

non-sample data points. Following notations from Section 2.2, we can write the posterior

predictive distribution for non-sampled values of the output ys̄ given sampled output ys as

P(ys̄|ys,Φ) =
∫

P(ys̄|β,Φs̄)×P(β|ys,Φs)dβ
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with explicit dependence on prior parameter Σ0, noise parameter σ2 and target variable in

sampled data ys.

P(ys̄|ys,Φ,Σ0,σ
2) =

∫
P(ys̄|β,Φs̄,σ

2)×P(β|ys,Φs)dβ, (3.2.5)

where P(ys̄|β,Φs̄,σ
2) =N(ys̄|Φs̄β,σ

2I s̄) and I s̄ is an identity matrix of order r =N−n. Using

convolution theorem on two Gaussian distributions of the right hand side of (3.2.5), we get

Gaussian predictive distribution.

P(ys̄|ys,Φs̄,Σ0,σ
2) = N

(
ys̄|µnΦs̄,Σn(x)

)
, (3.2.6)

where Σn(x) = σ2 +ΦT
s ΣnΦs. The first term in Σn(x) is noise in data and the second term

is uncertainty attached with parameter β. It can be seen that as sample points increases

Σn(x) become smaller, mathematically Σn+1(x)≤ Σn(x). In other word, as n→ 0 variance

goes to zero and the variance of the posterior predictive distribution depends only on

the noise term σ2. The posterior predictive estimator for ys̄ under SELF is the mean

of posterior predictive distribution i.e. EM(ys̄|ys,Φs̄,Σ0,σ
2) = Φs̄µn (see Ahmad et al.

(2007)), where µn = Σn
(
Σ
−1
0 µ0 +

Φ
T
s ys
σ2

)
. It is interesting to note that at point j ∈ s̄ the

mean of predictive distribution can be expressed as linear combination of observed output

i.e. EM(ys̄|ys,Φs̄,Σ0,σ
2) = Φs̄ΣnΣ

−1
0 µ0 +Φs̄ΣnΦsys. This property gives birth to Kernel

regression, a non-parametric regression approach (Bierens, 1988) which is not included in

this study.

Consider the estimation of a linear function of output variables from a finite population

chosen from a superpopulation as τ(y) = γT y = γT
s ys + γT

s̄ ys̄. The problem is to estimate the

non-sampled part of τ(y) using the Bayesian learning method i.e. ŷs̄ =EM(ys̄|ys,Φs̄,Σ0,σ
2) =

Φs̄µn. Consequently, we get following Bayesian predictive estimator for total output of the

finite population

τ̂B(y) = γ
T
s ys + γ

T
s̄mΦs̄Q∗−1

sm
(
Φ

T
smys +µ∗0

)
(3.2.7)

with prediction error τ̂B(y)− τ(y) = γT
s̄mΦs̄Q∗−1

sm
(
Φ

T
smys +µ∗0

)
− γT

s̄ ys̄. The model bias is

EM
(
e(τ̂B)

)
= γ

T
s̄ Φs̄

{(
Q∗−1

sm Asm− IM
)
β+Q∗−1

sm µ∗0
}

(3.2.8)
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The model variance for prediction error is given by

VM
(
τ̂B(y)− τ(y)

)
= σ

2[
γ

T
s̄ γs̄ + γ

T
s̄ Φs̄Q∗−1

sm AsmQ∗−1
sm Φ

T
s̄ γs̄
]
, (3.2.9)

where Q∗−1
sm = Φ

T
s Φs+σ2

0IM is the Hessian matrix (Böhning, 1992) based on Φs with M basis

functions. The model MSE of τ̂B(y) can be obtain by using the relation MSEM
(
τ̂B(y)

)
=

MSEM
(
τ̂B(y)

)
+
{

BM
(
τ̂B(y)

)}2. Assuming same prior variance for all superpopulation model

parameters as Σ0 = σ2
0IM, where IM is an identity matirx of order M. We can see that σ2

0→ 0

results BM
(
τ̂B(y)

)
→ 0 and VM

(
τ̂B(y)

)
→ σ2[N−n+ γT

s̄ Φs̄
(
Φ

T
s Φs

)−1
Φ

T
s̄ γs̄
]
. We generalize

the results obtain in Equations (3.2.7)-(3.2.9) by writing the

τ̂B(y) =γ
T
s ys + γ

T
s̄ Φs̄

[
(IM−Λsm)β̂ml +Λsmµ0

]
(3.2.10)

with prediction error e(τ̂B) = τ̂B(y)− τ(y) = γT
s̄
[
Φs̄
{
(IM−Λsm)β̂ml +Λsmµ0

}
− ys̄

]
, where

Λsm = σ2Q∗−1
sm Σ

−1
0 is the matrix of weights which depends on noise in data, prior variance

and available auxiliary data. The model bias for the general form τ̂B(y) can be expressed as

EM
(
e(τ̂B)

)
= γ

T
s̄ Φs̄Λsm

[
µ0−β

]
(3.2.11)

and the model variance of prediction error, is given by

VM
(
e(τ̂B)

)
= σ

2[
γ

T
s̄ γs̄ + γ

T
s̄ Φs̄

(
IM−Λsm

)
A−1

sm
(
IM−Λsm

)T
Φ

T
s̄ γs̄
]
. (3.2.12)

For Σ0 = σ2
0IM it can be observed that σ2

0 → 0 and µ0 → β result B0
(
τ̂B(y)

)
→ 0 and

VM
(
τ̂B(y)− τ(y)

)
→ σ2[γT

s̄ γs̄ + γT
s̄ Φs̄

(
Φ

T
s Φs

)−1
Φ

T
s̄ γs̄
]
. In applications, however, we are

forced to take a decision about how to act, i.e. we require an optimal point-like prediction.

For this, we need a loss function, l(ŷ,y), which measures the loss incurred by predicting

the value ŷ when the actual value is y. To this end, decision theorists have defined many

loss functions see (Zellner, 1994). The loss function may be equal to the absolute deviation

between the predicted and the true value, called absolute loss function. Symmetric loss

functions such as squared error and quadratic loss function (James and Stein, 1992) and

their extensions. Asymmetric loss functions such as linear exponential LINEX and modified

LINEX loss functions are widely used loss functions Zellner (1986) and their followers.

Note that we computed the predictive distribution without reference to the loss function.
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In non-Bayesian framework, typically, the model is trained by minimizing the empirical

loss(or risk). On contrary, in the Bayesian paradigm there is a clear difference between

the loss function and the likelihood function (which is used for training) . The likelihood

function portrays how the noisy observations are deviated from the underlying noise free

model. For predictive Gaussian distribution, the mean and the median coincide, hence for

any symmetric loss function and predictive Gaussian distribution, we always get ŷ as the

mean of the posterior predictive distribution. However, in most of the practical problems the

loss functions may be asymmetric, and point predictions ŷ may be obtained directly from the

posterior predictive distribution. Readers can found detailed notes on treatment of decision

theory in Berger (2013).

3.3 Variance Estimation and Comparison

After obtaining the prediction error, bias and variance of the error, the next step is to

search for an estimate of the error variance for further statistical analysis e.g. testing

statistical hypothesis about τ(y) and constructing confidence interval. The detail about

variance estimation has already been discussed in Section 2.5. We utilize model selection

criteria which indirectly provide estimate of error variance σ2 for obtaining estimate for

mean squared prediction error of τ̂B(y). It can be seen that the variance of error term given

in (3.2.12) depends on error variance σ2 and the auxiliary data from the whole population

and the prior parameters. When we have known sub-matrix of the basis function for the non-

sampled part as well and the prior parameters, we need estimate for σ2 only for estimating

prediction variance of τ̂B(y). Hence a sample estimate for the prediction error variances given

in (3.2.12) can be expressed as:

V̂M
(
e(τ̂B)

)
= σ̂

2[
γ

T
s̄ γs̄ + γ

T
s̄ Φs̄

(
IM−Λsm

)
A−1

sm
(
IM−Λsm

)T
Φ

T
s̄ γs̄
]
. (3.3.1)

Estimation of σ2 based on residuals is a routine practice in literature of statistical inference.

The estimate is taken from the sampled observations or a part of observations (training set)

provide a good measure for average noise in the study variable. The residuals under Bayesian

framework is different from that of the residuals obtained under frequentist approach.
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Consider the residual sum of square as cost function

C∗ =
(
ys− ŷs

)T(ys− ŷs
)

=yT
s P∗ys−σ

2
ΦsQ∗−1

s Σ
−1
0 µ0,

where P∗= IM−ΦsQ∗−1
s Φ

T
s is the projection matrix which is symmetric and idempotent. This

expression contains the hyper parameters and the unknown parameter σ2 when appropriate

prior information is available then it is logical to proceed with an iterative method by selecting

some initial value of σ2. When prior is generated from Gaussian with mean vector zero then

the last term in C∗ vanishes. An estimator of prediction error variance of the estimator τ̂B(y)

is obtained under residual method by replacing σ̂2
res by σ̂2 in (3.3.1), where

σ̂
2
res =

1
n−M

yT
s P∗2ys. (3.3.2)

Another most widely used model selection criteria is unbiased estimate of variance (UEV)

which is similar to residual variance obtained by replacing the number of total parameter by

the number of effective parameter in the denominator. The UEV estimator of σ2, is given by

σ̂
2
UEV =

1
n−M∗∗

yT
s P∗2ys, (3.3.3)

where M∗∗ = n− trace(P∗) is the effective number of parameters in the model. However

the residual method is not considered as an appropriate measure for predictive power of the

model (Zheng and Agresti, 2000) as discussed early. In following subsections, we provide

some alternative variance estimation methods. We extend these methods for estimating the

error variance in estimation of finite population parameter τ(y) under Bayesian approach.

The projection matrix, say P∗, plays a key role in obtaining the estimate for σ2 using above

mentioned methods. For obtaining estimates for σ2, we use following model selection criteria.

1. Cross Validation (CV)

2. Generalized Cross Validation (GCV)

3. Final Prediction Error or Akaike’s Information Criterion (AIC)

4. Bayesian Information Criterion (BIC).
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3.3.1 Estimate based on Cross Validation

The LOO and k-fold cross validation methods are already discussed in Section 2.5. The

prediction error variance of the estimator τ̂(y) in LOO is obtained by replacing σ̂2 by σ̂∗2loo in

(3.3.1).

σ̂
∗2
loo =

1
n

yT
s P∗
{

diag(P∗)
}−2P∗ys. (3.3.4)

The LOO cross validation is time consuming a tiresome task. To avoid this lengthy process

the GCV method is alternative way which also provides a more compact variance estimator

as follow.

3.3.2 Estimate based on Generalized Cross validation

The diagonal matrix diag(P∗) makes LOO mathematically inappropriate. Its alternate, GCV

introduced by Golub et al. (1979), is more convenient and is obtained by replacing the matrix

diag(P∗) by the average of the diagonal elements multiplied by the identity matrix In of order

n i.e. trace(P∗/n)In. An estimator for the prediction error variance of τ̂(y) under GCV is

obtained by replacing σ̂2 by σ̂∗2GCV in (3.3.1), where σ̂∗2GCV is

σ̂
∗2
GCV =

nyT
s P∗2ys{

trace(P∗)
}2 (3.3.5)

GCV is the one of widely used model selection criteria which includes an adjustment to the

average of expected squared prediction error (ESPE) over the training set. It is equivalent to

standard residual method given in (3.3.2), when

n{
trace(P∗)

}2 =
1

n−M∗∗
,

where M∗∗ = n− sum(diag(P∗)) is the effective number of parameters in the model. GCV

can also be expressed in term of the effective number of parameters M∗∗ instead of trace(P∗)

as

σ̂
2
GCV =

nyT
s P∗2ys(

n−M∗∗
)2 . (3.3.6)
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3.3.3 Estimate based on Final Prediction Error (FPE)

Mallows’s Cp (Mallows, 1973) is a statistic which assess the fit of a regression model that is

estimated via ordinary least squares. We extended this method for estimating error variance

under Bayesian approach. A brief discussion on FPE is discussed in Section 2.5. An estimator

for prediction error variance of τ̂B(y) under FPE is obtained by replacing σ̂2 by σ̂∗2FPE in

(3.3.1), where σ̂∗2FPE , an alternative version of Mallows’s Cp (James et al., 2013), and is

defined as:

σ̂
∗2
FPE =

1
n

(
yT

s P∗2ys +2M∗∗σ̂∗2res
)
=

n+M∗∗

n−M∗∗
yT

s P∗2ys

n
, (3.3.7)

where M∗∗ is the effective number of parameters.

3.3.4 Estimate Based on Bayesian Information Criterion (BIC)

The BIC developed by (Schwarz et al., 1978), is a Bayesian argument on maximum likelihood

of the data. An estimator of variance of prediction error for τ̂B(y) based on BIC is obtained

by substituting σ̂∗2BIC by σ̂2 in (3.3.1), where σ̂∗2BIC is defined as:

σ
∗2
BIC =

1
n

(
yT

s P∗2ys + ln(n)M∗∗σ̂2
res
)

=
n+M∗∗

(
ln(n)−1

)
n−M∗∗

yT
s P∗2ys

n
, (3.3.8)

where ln(n) is the natural logarithm of n. σ̂∗2BIC measures the unexplained variation in the

output variable and the increased number of explanatory variables.

All the mentioned estimators of the variance of prediction error can be used for statistical

analysis about the finite population parameter τ(y). To compare above discussed competing

estimators of prediction variance, we write all the variance estimators in the form of σ2
abc =

ΓabcyT
s P∗2ys/n and have following natural ordering

ΓUEV ≤ ΓFPE ≤ ΓGCV ≤ ΓBIC (3.3.9)

The factors Γs are approximated by using Taylor’s series as already mentioned in Chapter 2.

ΓUEV =
n

n−M∗∗
= 1+

M∗∗

n
+

M∗2

n
+

M∗3

n
+ ....
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ΓFPE =
n+M∗∗

n−M∗∗
= 1+

2M∗∗

n
+

2M∗2

n2 +
2M∗3

n3 + ....

ΓGCV =
M∗2(

n−M∗∗
)2 = 1+

2M∗∗

n
+

3M∗2

n2 +
4M∗∗3

n3 + ....

ΓBIC =
n+
(
ln(n)−1

)
M∗∗

n−M∗∗
= 1+ ln(n)

(
M∗∗

n
+

M∗2

n
+

M∗∗3

n
+ ....

)

Hence the estimators of σ̂2 obtained through different model selection criteria and can be

ranked according to the factor Γ as:

V̂ (e(τ̂B)
)

UEV ≤ V̂ (e(τ̂B)
)

FPE ≤ V̂ (e(τ̂B)
)

GCV ≤ V̂ (e(τ̂B)
)

BIC, (3.3.10)

where the subscripts attached to the estimated variances show the model selection criteria

used for estimating σ2.

3.4 Model Selection

Although forward selection is an algorithm of non-linear type, still it has many advantages

and listed in Section 2.6. In forward selection, at each step the model grows by one basis

function. To see the effect of increase in model with a new basis function, we introduce the

incremental operations (see Appendix B). We see the effect of adding a new predictor on

the bias and prediction error variance of τ̂B(y) in this section. The model-bias of Bayesian

estimator τ̂B(y) with (M+1) basis functions can be written as:

BM[τ̂B(y)]m+1 =σ
2
Φs̄mQ∗−1

sm Σ
−1
0m

(
µ0m−βm

)
+

σ2

41

[{
Φs̄mQ∗−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmQ∗−1

sm

+
{

Φs̄mφ
T
s(m+1)ΦsmQ∗−1

sm +φs̄(m+1)
}

σ
−2
0(m+1)

(
µ0(m+1)−βm+1

)]
.

The absolute change in bias of estimator τ̂B(y) when an additional basis function is added to

the model∣∣∣∣BM
[
τ̂B(y)

]
m−BM

[
τ̂B(y)

]
m+1

∣∣∣∣= σ2

41
γ

T
s̄
[{

Φs̄mQ∗−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmQ∗−1

sm

−φs̄(m+1)Q
∗−1
sm Φ

T
smφs(m+1)

}
Σ
−1
0m

(
µ0m−βm

)
−
{

Φs̄mφ
T
s(m+1)ΦsmQ∗−1

sm −φs̄(m+1)
}

σ
−2
0(m+1)

(
µ0(m+1)

−βm+1
)]
.
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The variance of the prediction error of τ̂B(y) after adding a new basis function is as follow:

VM
(
e(τ̂B)

)
m+1 = σ

2[
γ

T
s̄ γs̄ + γ

T
s̄

(
Φs̄mΛ

∗∗
11Φ

T
s̄m +φs̄(m+1)Λ

∗∗
21Φ

T
s̄m +Φs̄mΛ

∗∗
12φ

T
s̄(m+1)

+φs̄(m+1)Λ
∗∗
21φ

T
s̄(m+1)

)
γs̄
]
, (3.4.1)

where Λs(m+1) is already defined in (B.2) (see Appendix B). The decrement in variance or

increment in efficiency IEB is defined by

IEB =VM
(
e(τ̂B)

)
m−VM

(
e(τ̂B)

)
m+1

=−σ
2
γ

T
s̄

[
Φs̄m

(
Λ
−1
11 4

−1 A−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmA−1

sm Λ
−1
11

+Λ
−1
12 A−1

21 Λ
−1
11 +

(
Λ
−1
11 A−1

12 +Λ
−1
12 A−1

22
)
Λ
−1
12

)
Φ

T
s̄m +φs̄(m+1)Λ

∗∗
21Φ

T
s̄m

+Φs̄mΛ
∗∗
12φ

T
s̄(m+1)+φs̄(m+1)Λ

∗∗
21φ

T
s̄(m+1)

]
γs̄

The detail description of the expression IEB and its derivation are available in (B.1), (B.3)

and (B.4) (see Appendix B). A positive value of IEB provides the evidence of increase in

efficiency on using an additional basis function. In this way, for reaching to a suitable model

for predicting non-sampled value in finite populations one can take advantage from the value

of IEB. The incremental operators helps in computing the inverse of matrices more quickly

which leads to quick decision in choosing models. In next section, we see the empirical

evidences and effect of changing prior parameters and design parameters on efficiency.

3.5 Simulations

Two simulation studies are conducted to evaluate the error variance of the proposed estimator

of τ(y) ( γi = 1 for all i ∈U) and to find expected values of the estimated error variance of

τ̂B(y). For this purpose, firstly, we provide a simulation study using artificially generated

population and fitting basis functions. Secondly, we perform repeated sampling to obtain

design-based properties of the estimator and estimated error variance of the estimator e(τ̂B)

using the Hospitals data from Valliant (2000). The simulation study is performed using

following algorithm.

(i). To constitute a population showing non-linear behavior, draw two independent vectors
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u∗ and v∗ of length N = 1000 each with uniform U(0,1). The variable x and e are

obtained as the quantile points corresponding to the cumulative probabilities u∗ and v∗

with normal N(10,10) and N(0,5) respectively. We generate the vector of the study

variable y as a unique function y =sin(2πx)+ e . Note that for obtaining design-based

properties, we generate these variables only once and deal as a fixed finite population

(after observing population characteristics such as mean and variance) while for model-

based properties we need to generate the data repeatedly. We focus on frequentist

design-bias and design-expected prediction error to see the behavior of the proposed

estimator τ̂B(y).

(ii). For fixed n, we divide the generated data d f (y,x,x2,x3, ...xM−1) (where M is the

number of basis function including intercept and df denotes data frame) into sampled

and non-sampled parts with sizes n and (N− n) randomly. From sampled data, we

estimate superpopulation parameters (β and σ2) under Bayesian approach. For known

variance structure, the prior for parameters β is considered Gaussian with hyper

parameters µ0 = (0 0 0)T and variance Σ0 = σ2
0IM (σ2

0 is taken as different proportions

of σ2 obtained from population). After estimating β and fitting Bayesian regression, the

estimated values of σ2 are obtained under different model selection criteria discussed

in Section 3.5.

(iii). Further, we evaluate the the proposed estimator τ̂B(y) (with γi = 1 for all i ∈U) and

the estimated variance of τ̂B(y) under different formula.

(iv). Repeat Steps (ii) and (iii), 20,000 time to design-expected prediction error (i.e. bias)

and design-expected squared prediction error of τ̂B(y) (γi = 1 for all i ∈ U) and

expected values of the estimated variance of τ̂B(y) for different combinations of M, n

and variance ratio σ2
0/σ2 = vr (say).

For bootstrapping, we take first 203 hospitals from hospital data given in (Valliant, 2000,

Appendix B Page 424) as the study population. The number of beds (x) in each hospital is

considered as the predictor for the number of patients discharged (y). Repeated sampling,

as early mentioned for hypothetical population, is performed to study the design-based

properties of total estimator and estimated error variance. Expected squared prediction error
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ESPE are obtained as:

ESPEB =
1

20,000 ∑
sim

{
e(τ̂B)

}2

respectively for vr = 0,0.1,0.3,0.5 (the choice 0 represents classical estimator), where the

∑sim is used to denote that summation is taken over all 20,000 simulated samples. Further

the design expectation of estimated prediction error variance of τ̂B(y) are obtained through

respective formula after averaging over all selected samples. We use polynomial basis

functions of different orders with intercept and without intercept.
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Table 3.1.: Simulated results for linear basis function model under Bayesian approach

Expected estimated variances

n vr ESPE RES UEV FPE GCV BIC

M = 1

0 33400.39 225969 228251.52 230534.03 230557.09 236480.37
100 0.1 31738.1 22616.37 22839.12 23061.86 23064.06 23642.15

0.3 28761.16 22615.5 22827.65 23039.79 23041.78 23592.47
0.5 26179.46 22615.55 22818.07 23020.58 23022.39 23548.17

0 28629.98 100934.55 101441.76 101948.97 101951.52 103621.91
200 0.1 28141.07 20188.89 20289.07 20389.24 20389.74 20719.66

0.3 27210.92 20188.89 20286.61 20384.33 20384.8 20706.63
0.5 26339.65 20188.98 20284.36 20379.74 20380.19 20694.33

M = 2

0 15400.784 224291.06 228868.43 233445.8 233539.21 245370.62
100 0.1 9879.433 22242.37 22685.19 23128 23136.82 24281.61

0.3 3149.375 22240.55 22664.07 23087.58 23095.65 24190.92
0.5 378.7548 22242.83 22650.27 23057.7 23065.17 24119.14

0 16730.15 100153.4 101165.08 102176.73 102186.95 105513.47
200 0.1 18394.1 19934 20132.88 20331.76 20333.74 20987.72

0.3 21693.64 19934.4 20128.67 20322.95 20324.84 20963.73
0.5 24929.27 19935.41 20125.49 20315.58 20317.4 20942.55

M = 3

0 14537.493 225482.17 232455.85 239429.52 239645.2 257597.13
100 0.1 8776.893 22052.92 22723.25 23393.57 23413.95 25139.89

0.3 2192.927 22050.6 22700.61 23350.62 23369.78 25044.01
0.5 54.50894 22052.69 22685.86 23319.03 23337.21 24968.54

0 18371.14 100359.67 101887.99 103416.31 103439.58 108457.19
200 0.1 20138.01 19856.06 20155.88 20455.71 20460.24 21444.62

0.3 23633.48 19856.45 20151.54 20446.62 20451.01 21419.9
0.5 27052.27 19857.46 20148.24 20439.02 20443.27 21398.09

M = 4

0 31220.73 228790.27 238323.19 247856.12 248253.3 272691.02
100 0.1 11316.72 21870.02 22765.19 23660.36 23697 25992.42

0.3 16630.67 21865.76 22734.32 23602.89 23637.39 25865.64
0.5 12156.44 21868.72 22716.55 23564.37 23597.24 25773.09

0 17187.2 100787.16 102844.04 104900.92 104942.9 111685.16
200 0.1 18518.49 19779.89 20180.07 20580.24 20588.34 21900.15

0.3 21062.11 19780.53 20174.39 20568.24 20576.09 21867.31
0.5 23446.66 19782.14 20170.45 20558.75 20566.37 21839.51
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Table 3.2.: Simulated results for proportional basis function model under Bayesian approach

Expected estimated variances

n vr ESPE RES UEV FPE GCV BIC

M = 2

0 182127 122370.54 123606.61 124842.68 124855.16 128062.84
100 0.1 182076.6 22515.85 22743.25 22970.65 22972.95 23563.08

0.3 181975.7 22515.85 22743.19 22970.53 22972.83 23562.79
0.5 181875 22515.85 22743.13 22970.41 22972.7 23562.51

0 145846.8 59467.49 59766.33 60065.16 60066.66 61050.8
200 0.1 145831.5 20106.51 20207.54 20308.57 20309.08 20641.8

0.3 145801 20106.51 20207.52 20308.54 20309.05 20641.73
0.5 145770.5 20106.51 20207.51 20308.51 20309.02 20641.66

M = 3

0 211862.6 124781.42 127328 129874.54 129926.51 136508.76
100 0.1 211714.9 22318.67 22774 23229.33 23238.62 24415.55

0.3 211420.5 22318.67 22773.7 23228.73 23238 24414.15
0.5 211127.2 22318.67 22773.4 23228.12 23237.39 24412.75

0 153348.4 59927.89 60533.23 61138.56 61144.67 63135.14
200 0.1 153316.5 20025.28 20227.52 20429.76 20431.81 21096.83

0.3 153252.8 20025.28 20227.46 20429.64 20431.68 21096.49
0.5 153189.3 20025.28 20227.39 20429.51 20431.55 21096.16

M = 4

0 113100.2 157002.21 161857.95 166713.69 166863.87 179363.7
100 0.1 113130.7 22113.28 22796.99 23480.71 23501.85 25261.9

0.3 113191.4 22113.28 22796.59 23479.9 23501.02 25260.05
0.5 113251.8 22113.28 22796.2 23479.11 23500.2 25258.21

0 80991.21 71881.62 72976.27 74070.91 74087.58 77681.4
200 0.1 80969.58 19939.16 20242.77 20546.38 20551 21547.77

0.3 80926.37 19939.17 20242.7 20546.24 20550.86 21547.39
0.5 80883.23 19939.17 20242.63 20546.09 20550.71 21547.02
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Table 3.3.: Bootstrapped results for linear basis function model under Bayesian approach

Expected estimated variances

n vr ESPE RES UEV FPE GCV BIC

M = 1

0 6.675544 1115.06466 1137.82108 1160.5775 1161.04192 1204.08831
50 0.1 34627.4285 504.38388 504.41178 504.43968 504.43968 504.49302

0.3 34753.6887 505.23336 505.24269 505.25202 505.25202 505.26987
0.5 34779.02438 505.40382 505.40943 505.41503 505.41503 505.42574

0 197.1884 375.17234 378.96196 382.75158 382.78986 392.62419
0.1 17279.87453 336.4681 336.48666 336.50522 336.50522 336.55357

100 0.3 17393.99011 337.58962 337.59585 337.60208 337.60208 337.61831
0.5 17416.95969 337.81542 337.81916 337.8229 337.8229 337.83265

M = 2

0 379.38659 842.41857 877.51935 912.62012 914.08265 979.73361
50 0.1 648.78412 203.74991 207.81552 211.88113 211.96225 219.65466

0.3 979.69691 204.85014 208.75659 212.66304 212.73754 220.13226
0.5 1348.43147 206.79044 210.56796 214.34549 214.4145 221.5682

0 633.51469 280.12628 285.84314 291.56 291.67667 306.4534
0.1 720.06036 136.72265 138.08985 139.45705 139.47073 143.01885

100 0.3 838.58638 136.918 138.25534 139.59267 139.60574 143.07666
0.5 960.89769 137.28418 138.59557 139.90695 139.91948 143.32333

M = 3

0 275.66837 845.48914 899.45653 953.42392 956.86865 1056.61082
50 0.1 794.55001 202.24116 209.70549 217.16982 217.44534 231.4418

0.3 1719.64414 207.99479 214.61123 221.22766 221.43819 233.87844
0.5 2345.03606 212.70029 218.89488 225.08947 225.26993 236.93367

0 627.25487 280.21823 288.88477 297.55131 297.81935 320.12913
0.1 794.37098 136.06582 138.67091 141.27599 141.32587 148.06268

100 0.3 1100.72528 137.68441 140.0744 142.46439 142.50588 148.69073
0.5 1337.53684 139.52428 141.77933 144.03439 144.07084 149.90919

M = 4

0 289.43681 868.14337 943.6341 1019.12483 1025.68924 1163.46484
50 0.1 641.80331 199.46403 209.36151 219.25899 219.75016 238.1832

0.3 782.94262 200.50475 209.5589 218.61305 219.02192 235.92479
0.5 825.38163 200.85444 209.67224 218.49005 218.87717 235.34988

0 622.21693 283.01128 294.80342 306.59556 307.08689 337.31608
0.1 799.03316 135.48904 139.02182 142.55461 142.64672 151.75811

100 0.3 905.32574 136.14561 139.32538 142.50515 142.57942 150.789
0.5 944.41637 136.44744 139.50386 142.56028 142.62875 150.52278
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Table 3.4.: Bootstrapped results for proportional basis function model under Bayesian
approach

Expected estimated variances

n vr ESPE RES UEV FPE GCV BIC

M = 2

0 501.5782 676.1110 689.9092 703.7074 703.9890 730.0899
50 0.1 649.0696 203.7508 207.8135 211.8762 211.9572 219.6442

0.3 979.9622 204.8507 208.7562 212.6617 212.7361 220.1290
0.5 1348.7263 206.7911 210.5680 214.3449 214.4139 221.5665

0 662.6404 242.9413 245.3952 247.8492 247.8740 254.2421
0.1 720.2201 136.7232 138.0884 139.4537 139.4673 143.0105

100 0.3 838.7315 136.9183 138.2550 139.5917 139.6047 143.0740
0.5 961.0491 137.2845 138.5955 139.9065 139.9190 143.3218

M = 3

0 246.1663 768.1118 800.1164 832.1211 833.4546 893.3147
50 0.1 794.7564 202.2413 209.7043 217.1673 217.4427 231.4368

0.3 1720.0348 207.9963 214.6120 221.2278 221.4383 233.8773
0.5 2345.4660 212.7025 218.8966 225.0907 225.2711 236.9339

0 609.6638 264.5690 269.9684 275.3678 275.4780 289.4340
0.1 794.4958 136.0658 138.6701 141.2744 141.3242 148.0591

100 0.3 1100.9179 137.6847 140.0743 142.4640 142.5055 148.6895
0.5 1337.7592 139.5251 141.7799 144.0347 144.0711 149.9089

M = 4

0 290.9959 827.6359 880.4637 933.2915 936.6635 1034.2995
50 0.1 641.9711 199.4649 209.3609 219.2570 219.7480 238.1784

0.3 783.0522 200.5055 209.5589 218.6123 219.0211 235.9227
0.5 825.4590 200.8550 209.6723 218.4896 218.8767 235.3485

0 627.0282 275.2336 283.7459 292.2583 292.5216 314.4345
100 0.1 799.1815 135.4894 139.0215 142.5537 142.6458 151.7555

0.3 905.4390 136.1462 139.3256 142.5049 142.5792 150.7878
0.5 944.5021 136.4479 139.5041 142.5602 142.6287 150.5220

Tables 3.1. and 3.2. provide the efficiency comparison for the hypothetically generated

data while Tables 3.3. and 3.3. present the same comparison for the hospital data obtained

from Valliant (2000). First and second columns of each table give the choices of sample

size n and the variance ratio vr. The behavior of ESPE differs for different choices of the

number of basis functions M in Table 3.1.. For example, for M = 1 (Table 3.1.) the ESPE

tends to decrease with increase in vr when n = 100. While for M = 2,3,4, the ESPE for
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similar combination the ESPE drastically decreases with increase in vr when n = 100 and

increases with increase in vr for n = 200. For fixed choice of vr one can distill from Table

3.1. that ESPE tends to decline when sample size rises. This is because the fact that the

design bias of the estimator τ̂B(y) and/or variance become smaller with increase in sample

size. Which leads to the property of consistency of the estimator. Although the biases of

the proposed estimator is computed but not reported here for the sake of space. Table 3.2.

presents the results for the proportional basis function models (models without intercept) in

similar manner as discussed above. For example, with M = 4, n = 100, the ESPE values are

161857.9 for the classical estimator (i.e. for vr = 0) . While ESPE values are 22797, 22796.6

and 22796.2 for vr = 0.1, vr = 0.3 and vr = 0.5 respectively. This implies change in prior

variance even by a large amount does not alter the ESPE value. Same interpretation can be

made for other choices of M. The values of ESPE are observed almost stable for all choices

of the variance ratio vr. On the other hand, ESPE tends to inclined with increase in sample

size n. For bootstrapped results (see Tables 3.3. and 3.4.), on can observe that ESPE rises

with increase in vr for all choices of M and n. However for smaller n the increase in ESPE is

higher than the increment with larger n. For example for M = 4 in Table 3.3., ESPE goes

from 275.66 to 794.55 for n = 50, while it goes from 627 to 794.36 for n = 100. The ESPEs

are observed higher for n = 100 as compared to n = 50 this contradicts the result given in

simulation study.

The expected values of estimated error variance of τ̂B(y) under different model selection

criteria are observed from left to right, in ascending order, of each table. The residual method

dispense smaller values of the expected estimates as compared to other estimators. The

highest expected variance is observed for BIC. For numerical study with M = 2, n = 50 and

vr = 0 the estimated variances are 676.11, 689.9, 703.7, 703.99 and 730.1 which satisfies

the inequality given in (3.3.10). Additionally, we can infer the following relation from

our empirical evidences V̂ (e(τ̂B)
)

RES ≤ V̂ (e(τ̂B)
)

UEV ≤ V̂ (e(τ̂B)
)

FPE ≤ V̂ (e(τ̂B)
)

GCV ≤

V̂ (e(τ̂B)
)

BIC. Tables 3.1.–3.4. also provide the evidence that estimated variances decrease

with increase in vr. Similar statement can be made for the relation between estimated

variances and sample size. Among alternative variance estimators one must choose the one

which is nearer to the true variance in prediction error. The unbiasedness and consistency

of the variance estimators are good tools in this regard. However, these properties are not

discussed in this study as our goal was basically construction of estimator τ and discussing
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problems associated with its estimation and inference about the finite population in model-

based setting.

3.6 Conclusion

Unlike to classical school of thought, practitioners in Bayesian statistics emphasizes on

utilization of prior information about the parameter in estimating their posterior parameters.

This chapter extended the basis function approach for estimating finite population parameter

τ under Bayesian point of view. Results (ESPE and Expected estimated error variance) under

Bayesian approach is then compared with results obtained without using prior information

(σ2 = 0 versus σ2
0 = 0.1σ2, 0.3σ2 and 0.5σ2 ). The result in all tables depicts the superiority

of estimators under Bayesian paradigm. Increase in σ2
0 results in decrease in variance

but introduce bias in the estimator and makes a trade-off in expected squared prediction

error (ESPE). Different variance estimators were established for estimating prediction error

variance. We also established an ordering between the expected values of estimated variance

which is also proved in simulation studies V̂ (e(τ̂)
)

RES ≤ V̂ (e(τ̂)
)

UEV ≤ V̂ (e(τ̂)
)

FPE ≤

V̂ (e(τ̂)
)

GCV ≤ V̂ (e(τ̂)
)

BIC. Tables 3.1.–3.4. also provide the evidence that estimated

variances decrease with increase in vr. Similar statement can be made for the relation

between estimated variances and sample size (except for M = 4 in Table 3.4.).
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Chapter 4

Model-Based Estimation of Parameters Sub-

Sampling Non-respondents

4.1 Outline

The problem of handling non-ignorable non-response has been typically addressed under the

design-based approach using the well-known sub-sampling technique introduced by Hansen

and Hurwitz (1946). Alternatively, the model-based paradigm emphasizes on utilizing the

underlying model relationship between the outcome variable and one or more covariate(s)

whose population values are known prior to the survey. This chapter utilizes the model

relationship between the study variable and covariate(s) for handling non-ignorable non-

response and obtaining an unbiased estimator for the population total under the sub-sampling

technique. In this chapter, a model unbiased linear predictor for the population total in

presence of non-ignorable non-response is proposed assuming unit non-response. The sub-

sampling technique introduced by Hansen and Hurwitz (1946) is used to obtain samples

under a fixed sampling design. We provide a revision of model-based approach for estimation

of finite population total in Section 4.2. Our proposed estimator and its properties under

assumed model are given in Section 4.3. Some shortcomings of the proposed estimation

technique and their possible solutions are discussed in Section 4.4. A numerical study with

real data set and a Monte Carlo simulation are respectively provided in Sections 4.5 and 4.6.

A discussion with concluding remarks is given in Section 4.7.
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4.2 Model-based Estimation of Population Total

Again consider a finite population of N distinct units U =
{

1,2, ..i..,N
}

. Let y =
(
yi, i ∈U

)
be the vector of the realized values of a stochastic vector Y =

(
Yi, i ∈U

)
of order (N× 1)

and x =
(
xi j, i ∈U, j = 0,1,2, ..., p

)
be a matrix of (p+1) auxiliary variables whose values

are assumed to be known for every unit in U . We start with multiple linear regression

model Y = xβ + ε, where β =
(
β0,β1, ....,βp

)T and ε =
(
ε1,ε2, ....,εN

)T be the vectors

of regression coefficients and the random error terms respectively. Let s =
{

1,2,3, ...,n
}

be a member of S of all possible samples of size n that can be drawn from U using some

sampling design (SD). Further, the random vector of the study variable Y , the known auxiliary

matrix x and the random error vector ε are splitted into sampled (s) and non-sampled (s̄) as:

Y =
(
Y s;Y s̄

)T , x=
(
xs;xs̄

)T and ε=
(
εs;εs̄

)T , where s̄=U−s. The population total ty (which

is assumed to be random under model-based approach) is expressed as ty = γT
s Y s + γT

s̄ Y s̄,

where γ = (γi, i ∈U) is the vector containing 1’s for every units in population. For obtaining

population mean γ are taken as vector of 1/N for all units. For further statistical inference

about the estimated parameter assumption of normally distributed error term is also necessary

specially in case of small sample sizes. After observing ys as the realized values of Y s,

the problem is to predict sub-vector Y s̄ using the information contained in the sample and

the auxiliary information through model relationship between the study variable and the

auxiliary variable(s). Under linear population model, a predictor for Y s̄ is xs̄β̂, where the

vector β̂ =
(
β̂0, β̂2, ...., β̂p

)T is the solution of the normal equations xT
s xsβ̂ = xT

s ys which is

obtained by minimizing the sum of squared residuals. The model-based estimator given in

Mukhopadhyay (1993) is

t̂y = γ
T
s ys + γ

T
s̄ xs̄β̂. (4.2.1)

Note that the total estimator given in (4.2.1) works only when error terms are iid with zero

mean and constant variance Bellhouse (1987). t̂y posses all the properties with respect to the

model as the predictor of ys̄ does Royall and Cumberland (1981). When all OLS assumptions

fulfill the estimator t̂y is model unbiased with the model-variance after averaging over all

possible sample of same SD.

ED
{

VM(t̂y)
}
= σ

2ED
[
γs̄
{

xs̄
(
xT

s xs
)−1xT

s̄ + IN−n
}

γ
T
s̄
]
, (4.2.2)
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where the subscript D is used to show that the expectation is applied with respect to SD

and IN−n is the identity matrix of order (N− n)× (N− n). It is noteworthy that model-

variance of t̂y itself is assessed instead of computing prediction error variance like in other

chapters. Setting p = 0, the linear regression model reduces to homogeneous population

model i.e. Y = x0β0 + ε, where x0 is vectors of 1’s. Care should be taken while selecting a

suitable set of predictors which comes under the domain of variable selection (inclusion and

exclusion) Rawlings et al. (2001). Moreover, when variance of the error term depends on

some function of the auxiliary variable(s), weighted least square (WLS) estimator is preferred

for estimating β as alternative to OLS. Moreover, if the number of regressors exceeds the

number of observations in the sample then ridge regression is preferred (Draper and Smith,

2014; Bellhouse, 1987, pp 313-323). We discuss these problems for our proposal later in

Section 4.4.

4.3 Model-based Estimation of Population Total in Presence

of Non-response

In voluntary surveys, a common threat to the validity of the survey estimates is the problem

of non–response. Different surveys possess different response rates, the surveys that ask

questions which seem interesting and relevant to the respondents are tend to achieve the

highest response rates. In recent years, response rates have been declined even in popular

surveys, and, as a consequence, worries about non-response bias have been increased. As we

discussed in introduction section that non-response is considered as problematic only if the

population of non-respondents is an informative sample of the total sample. Unfortunately,

this appears almost in majority of practical applications. In household surveys, for instance,

there is a lot of evidence that non-respondents are often younger than respondents, and that

women are more likely to persuade to take part than men. Similarly, response rates are also

tend to be lower in deprived areas than the areas with abundance of facilities. All of these

examples show that the pattern of achieved samples for surveys mostly do not reflect the

population that is meant to represent very well. These surveys typically may over-represent

women, and the persons elder than certain age. And often under-represent those living in

less developed cities and deprived areas. When values of such demographic variable(s)

are known for whole target population, we can stratify the population as the respondents
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and the non-respondents. The problem is then to choose a variable which more accurately

stratifies the population as respondents and non-respondents. Suppose that R is a stratification

vector defined as R =
(
Ri, i ∈U

)
, where Ri = 1(0) according to the ith unit belongs to the

population of respondents (non-respondents). In case of missing completely at random

(MCAR), non-response factor R and the study variable Y are uncorrelated and one can ignore

the non-response or just apply different imputation techniques Holt and Elliot (1991). When

the stratification variable R is related to the study variable Y , the model for the respondents

differs from that of the non-respondents such as in above example the population models

may differ among men and women, youngers and elders and deprived and settled areas. To

capture this difference, we specify the model of respondents and non-respondents in the

population separately according to the values of R such that

Y 1 = x1β1 + ε1 for Ri = 1 (4.3.1)

Y 2 = x2β2 + ε2 for Ri = 0 for i ∈U, (4.3.2)

where β1 and β2 are the vectors of regression coefficients corresponding to the respondents

and the non-respondents respectively. Consequently, we get sub-populations U1 and U2 such

that U =U1∪U2, where U1 and U2 are the subsets of U denoting populations of respondents

and non-respondents with sizes N1 and N2 respectively. It is assumed that the error terms are

independently and identically distributed (IID) with means EM(ε1) = EM(ε2) = 0 with model

variances VM(ε1) = σ2
1IN1, and VM(ε2) = σ2

2IN2, where IN1 and IN2 are the identity matrix of

order N1 and N2 respectively. Separation of model is straight forward when we have exact

knowledge about the occurrence of non-response and a related stratification variable which is

almost impossible in real world problem. As it is not possible to have such information that

separates the underlying model exactly into the respondents and the non-respondents. One

way to overcome this problem may be to use two phase sampling for obtaining information

on stratification variable. Under two-phase sampling, we select a larger sample on first phase

and observe the stratification variable (i.e. respondents are marked as respondents according

to their behavior to respond the first phase survey are observe such factor which cause non-

response) and estimate the proportions of units fall in sub-populations i.e. λ1 = N1/N and

λ2 = N2/N. These information then can be used at second phase for estimating population

parameters of the study variable. Before going toward our proposal, we discuss the estimation
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of population total without sub-sampling non-respondents which help us in knowing how the

non-response creates biasedness in estimation of total.

4.3.1 Estimation of Total Without Sub-sampling

For a sample s of size n assume that only n1 units respond while remaining n2 units don’t

respond. The prediction problem given in Section 4.2 becomes ty = γT
s1

Y s1 + γT
s̄1

Y s̄1 + γT
2 Y 2,

where γT
s1

, γT
s̄1

, and γT
2 , are vectors of weights associated with n1 respondents, N1−n1 non-

sampled units from responding population, and N2 units from non-responding population

respectively. Further γT
s̄1

Y s̄1 + γT
2 Y 2 is unknown and can be predicted using sample at hand

and the auxiliary information for the non-responded and non-sampled values. A predictive

estimator for population total based on respondents only, can be found as follow:

t̂y1 = γ
T
s1

ys1
+ γ

T
s̄1

xs̄1 β̂1 + γ
T
2 x2β̂1, (4.3.3)

where β̂1 is the vector of OLS estimates of β1 based on n1 respondents. The model bias of t̂y1

is

BM(t̂y1) = γ
T
s1

x2
(
β1−β2

)
. (4.3.4)

See Appendix C for proof. t̂y1 is unbiased estimate of ty if the vectors of coefficients for the

responding and non-responding sub-populations are same i.e. β1 = β2, this is equivalent

to regression imputation. This situation occurs when behavior of the responding and the

non-responding populations are same allowing us to ignore the non-response just as reduced

sample size. We obtain model mean squared error (M-MSE) of the total estimator t̂y1 as:

MSEM(t̂y1) =
{

BM(t̂y1)
}2

+VM(t̂y1)

=
{

BM(t̂y1)
}2

+σ
2
1
(
n1 + γ

T
s̄1

xs̄1

(
Hs1

)−1xT
s̄1

γs̄1

)
+σ

2
2
(
γ

T
2 x2
(
Hs1

)−1xT
2 γ2
)
. (4.3.5)

The subscript M shows that expectation is applied over model. The model-mean squared

error (M-MSE) given in (4.3.5) depends on random sample under designed-based point of

view. Consequently, it varies with sampling fluctuations. To obtain a fix value, we apply

expectation with respect to SD.
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4.3.2 Estimation of Total With Sub-sampling

As we already discussed, there are several approaches for handling the problem of non-

response in sample literature. A suitable approach may be chosen according to the type of

non-response (full or partial), the accessibility of the auxiliary variable(s) and the validity of

the underlying response model for handling the problem. In general, re-weighting is used

to deal with full (non-availability of units) non-response. Imputation is preferably applied

for dealing with partial non-response although it can be applied for full non-response if

appropriate auxiliary information is available. Re-weighting eliminates or at least reduces

total non-response bias (Särndal, 2007; Holt and Elliot, 1991). While the sub-sampling

method introduced by Hansen and Hurwitz (1946) provides a good adjustment for non-

response bias and yield unbiased estimator for the population mean when the non-response

variable R is significantly correlated with the survey outcome.

In this study, we develop a model-based estimator for population total by adjusting

non-response using sub-sampling procedure. As the models described in (4.3.1) and (4.3.2)

have different parameters it is inevitable to obtain information about both sub-populations.

The sample information obtained from respondents alone leads to biased estimate for the

population total of the whole population. For estimating the relationship between the study

and the auxiliary variables for the population of non-respondents and estimating total, we

need some information from non-respondents as well. The sampling mechanism in Section

4.3 is based on the respondents from first sample which don’t provide any information about

the population model of non-respondents. The sub-sampling introduced by Hansen and

Hurwitz (1946) is the best alternative to handle such situation of non-response which assumes

the mode of data collection on first round was inexpensive and then a more stronger mode

of interview is employed for sub-sampling non-respondents. The rationale behind taking a

sub-sample instead of following all non-respondent is the fact that taking information from

all non-respondents by using stronger mode of interview increases survey cost. Sometime

randomized response techniques (more expensive and complex method) are applied to

gather information on second call Ahmed et al. (2017) . The method assumes sub-sampling

ń2 = n2
k (k > 1) units from n2 units selected and not respond on first round, using some

stronger mode of interview (face to face survey, telephonic survey etc). The estimation

process covers two prediction problems (i) predicting N1−n1 non-sampled units from the
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sample taken from the first round using model given in (4.3.1) and (ii) predicting N2−n2

(non-sampled)+n2− ń2 (non-responded) units on the basis of sample obtained on second

round using the model relationship given in (4.3.2). Let ś2 be the sub-sample of size

ń2 selected from s2 and ´̄s2 = U2− ś2 be the set representing non-sampled values from

the population of non-respondents. Now the outcome vector for respondents is further

partitioned as Y 1 =
(
Y s1 : Y s̄1

)T and for non-respondents Y 2 =
(
Y ś2 : Y ´̄s2

)T . The matrix

x, the vector γ and the random error vector ε are also partitioned into sampled and non-

sampled parts in same way. The population total of the study character is now expressed as

ty = γT
s1

Y s1 + γT
s̄1

Y s̄1 + γT
ś2

Y ś2 + γT
´̄s2

Y ´̄s2
after replacing known values of the response units, we

have ty = γT
s1

ys1
+ γT

s̄1
Y s̄1 + γT

ś2
yś2

+ γT
´̄s2

Y ´̄s2
. The problem is to predict γT

s̄1
Y s̄1 + γT

´̄s2
Y ´̄s2

. The first

part is predicted on the basis of sample obtained on first round along with model given in

(4.3.1) and the second part is predicted on the basis of sample obtained on second round and

the model given in (4.3.2). Under the sub-sampling technique a linear unbiased predictor for

ty is

t̂∗y = γ
T
s1

ys1
+ γ

T
s̄1

xs̄1br + γ
T
ś2

yś2
+ γ

T
´̄s2

x ´̄s2
β̂2, (4.3.6)

where γT
s1

, γT
s̄1

,γT
ś2

and γT
´̄s2

are the vectors of known weights for the values corresponding

to the groups mentioned in subscripts. The estimates of model parameters β1 and β2 are

obtained by solving the normal equations
(
Hs1

)
β̂1 = xT

s1
ys1

and
(
H ś2

)
β̂2 = xT

ś2
yś2

= H ś2

respectively, where Hs1 = xT
s1

xs1 and H ś2 = xT
ś2

xś2 are the Hessian matrix for the first round

sample and sub-sample respectively. The well-known GMT provides the evidence that the

OLS estimators are the best linear unbiased estimators (BLUE) of the parameters β1 and

β2 when the observations obtained on first round sample s1 and the second round sample

ś2 follows two different population models with independently and identically distributed

error terms. From design-based point of view, the selection of sub-sample ś2 depends on

the selection of s1, hence the assumption of independence is no more valid. To proceed we

need the assumption of independence of model only. The separation of population as the

respondents and the non-respondent is based on the values of R which is already discussed

in previous sections. The role of the variable R is same as the role of stratification variable

in stratified sampling which is merely used to separate populations into respondents and

non-respondents. Hence more correlation between the non-response factor (R) and the study

variable is a requirement for using the sub-sampling approach. The case of low correlation
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between the study variable and the non-response variable can be handled through weighting

adjustment and imputation techniques discussed in literature. However the literature of sub-

sampling technique reveals that the efficiency of the sub-sampling estimator is not affected

by this correlation. But in case of presence of significant correlation proceeding with just

respondents on first call may produce invalid and inconsistent statistical inference.

Note that respondents on first sample always represent the responding population U1.

While the non-respondents on first sample may or may not represent the population of the

non-respondent U2 as it depends on the degree of relationship between R and Y and the nature

of occurrence of non-response (whether it is ignorable or not). The model bias of t̂∗y is derived

in Appendix C, and given by

BM(t̂∗y ) =γ
T
s̄1

[
xs̄1β1− xs̄1β1

]
+ γ

T
´̄s2

[
x ´̄s2

β2− x ´̄s2
β2
]
= 0. (4.3.7)

t̂∗y is model unbiased if all of the OLS assumptions are satisfied for the populations of

the respondents and non-respondents. Assuming unbiasedness model variance of the total

estimator under non-response is obtained as

VM(t̂∗y ) =n1σ
2
1 + ń2σ

2
2 +σ

2
1γ

T
s̄1

xs̄1

(
Hs1

)−1xT
s̄1

Ws̄1 +σ
2
2γ

T
´̄s2

x ´̄s2

(
H ś2

)−1xT
´̄s2

W ´̄s2
(4.3.8)

Taking expectation with respect to SD we get

ED
{

VM(t̂∗y )
}
=N1σ

2
1 +N2σ

2
2 +ED1

[
σ

2
1γ

T
s̄1

xs̄1

(
Hs1

)−1xT
s̄1

Ws̄1

+σ
2
2ED2

(
γ

T
´̄s2

x ´̄s2

(
H ś2

)−1xT
´̄s2

W ´̄s2

)]
, (4.3.9)

where ED1 and ED2 are expectations with respect to SD used for selecting first sample and

sub-sample respectively. The first component of the expected model-variance depends on

the error variances while the second component depends on the inverse of the matrix for

the first sample and the sub-sample. Hence, for smaller variance the population units with

larger sampled values of all included covariates should be prefer. Chambers and Clark (2012)

provided a detail discussion on optimum selection of units under different population models.
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4.4 Estimation of Total Under Ill-Conditioned Regression

While applying linear regression model for predicting the non-sampled values from the

population of non-respondents the number of input variables (regressors) may greatly exceeds

the number of observations i.e. ń2 < (p+1) as we are sub-sampling a relatively small portion

of non-respondents. In such situations, fitting the full model to the non-respondents without

penalization will result in wider prediction intervals, and the normal equations may not have

trivial solution as the matrix H ś2 does not possess the full rank property. It is not possible

to estimate the parameters of the model when H ś2 is singular i.e. not of full rank. This

situation is called super-collinearity or ill-conditioning. The problem of super-collinearity

can be solved using ridge regression which is already discussed in Chapters 2 and 3. To get

an estimate for β2, when there is super-collinearity in x2, we use ad-hoc fix method proposed

by Hoerl and Kennard (1970) for resolving singularity of H ś2 . We simply replace H = H ś2

by H(v) = H ś2 + vIp+1 with v ∈ [0,∞]. The scalar v is called tuning parameter or penalty

parameter. A clearly defined estimator for β2 obtained even for high-dimensional data matrix

(ń2 ≤ p) for a strictly positive v is β̂2(v) = H(v)−1xT
ś2

yś2
. Using β̂2(v) in (4.3.6), we obtain

a partially ridge regression (PRR) estimator (as the concept of ridge regression is used for

non-responding part only) for population total which is given by

t̂∗y = γ
T
s1

ys1
+ γ

T
s̄1

xs̄1 β̂1 + γ
T
ś2

yś2
+ γ

T
´̄s2

x ´̄s2
β̂2(v). (4.4.1)

The expressions for model-bias and expected model-MSE of the PRR estimator of the total

in presence of non-response are obtained by replacing H(v) by H in (4.3.8) and (4.3.9).

Following Vinod and Ullah (1981) a range for v in which the model-MSE of x ´̄s2
β̂2(v) is

smaller than the model-variance of x ´̄s2
β̂2 is

0 < v <
2

[−min(0,ψ2)]
, (4.4.2)

where ψ2 is the minimum eigen-value of the matrix
(
H ś2

)−1− β2β
T
2

σ2
2

. PRR is also applicable

for predicting non-sampled respondents when n1 < (p+1) leading to super-collinearity in

the respondents.

Another major problem that arises in estimation of so called superpopulation parameters
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is the violation of assumption of homoscedasticity. In presence of heteroscedasticity, we can

write

VM
(
Y 1|x1

)
= σ

2
1V 1 for R = 1 (4.4.3)

VM
(
Y 2|x2

)
= σ

2
2V 2 for R = 0, (4.4.4)

where V 1 = diag(V1ii, i∈U1) and V 2 = diag(V2ii, i∈U2) units specific variances for respondents

and non-respondents respectively. Here V1ii =VM(Y1i|x1i) = υ(x1i) and V2ii =VM(Y2i|x2i) =

υ(x2i), where x1i and x2i are the vectors of the auxiliary variables corresponding to the ith

unit in respondents and non-respondents respectively. In such situations, OLS estimators

for the regression coefficients may have higher variances. If we have information about

the variance structure for the populations of respondents and non-respondents (assuming

zero correlation between the units), we can adopt weighted least square (WLS) method

of estimation. The WLS estimators of β1 and β2 are β̂1wls =
(
xT

s1
V−1

s1
xs1

)−1xT
s1

V−1
s1

ys1
and

β̂2wls =
(
xT

ś2
V−1

ś2
xś2

)
xT

ś2
V−1

ś2
yś2

respectively, where

V 1 =

 V s1 0

0 V s̄1

 and V 2 =

 V ś2 0

0 V ´̄s2

 .
The sub-matrices are also diagonal assuming zero correlation between the error terms

corresponding to the respobndents and the non-respondents. A WLS estimator for ty in

presence of non-response is obtained by replacing β̂1wls and β̂2wls by β̂1 and β̂2 respectively

in (4.3.6). It is assumed that the variance structures of the responding and non-responding

population are known and depend on covariates whose values are known for each population

unit. In practice, for many types of data set, the structure of weights (inverse of variance) is

usually unknown, so one has to perform an ordinary least squares (OLS) regression first to

estimate the variance structure and obtain estimates for the population regression coefficients

after performing an iterative process which is commonly known as generalized least square

(GLS).
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4.5 Numerical Study

A real data set taken from Yeh et al. (2009) is applied to investigate the behavior of our

proposed model-based estimator. The data consist of N = 748 blood donors on following

variables:

y=Monetary total blood donated in c.c., x1=Time (months since first donation),

x2=Recency (months since last donation) and x3=Frequency (total number of donation).

Considering the above 748 blood donors as our population of interest, we select a sample of

size n = 100 using SRSWOR. The scatter plot matrix between the variables in the sample

selected on first call and the sub-sample collected on the second call represents the relationship

between the variables in the population of respondents and non-respondents for response

rates λ2 = 0.4 (Figures 4.1 and 4.2) and λ2 = 0.4 (see Figures 4.3 and 4.4). Figure 1 shows

the relation between the study variable y and the predictors x1, x2, and x3 for the sampled

respondents which shows that the study variable y, is highly related to x3 and moderately

related to x1 but weakly related to x2. Figure 4.2 portrays the relationship between variables

for the sub-sampled non-respondents which is different from the relationship in Figure 4.1

which shows the relevancy of the data to our proposed sampling mechanism. One can observe

the similar relationship between the variables for λ = 0.2 from upper triangle of Figures

4.3 and 4.4. Hence our proposal works here as the relationship between the total monetary

blood donated and its three determinants have different relationship for the population of the

respondents and the sub-population of the non-respondents which is the main assumption of

our data collection mechanism. We select half (k = 2) of the non-respondent selected on first

call for sub-sampling on second call.
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Figure 4.1: Behavior of non-respondents with λ2 = 0.4

Figure 4.2: Behavior of respondents with λ2 = 0.4

Figure 4.3: Behavior of non-respondents with λ2 = 0.2
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Figure 4.4: Behavior of respondents with λ2 = 0.2

Further to see the magnitude of the prediction error, we provide a bootstrap sampling

procedure taking different non-response rate (say λ2) in the population. We generate a new

variable R associated with each 748 cases which posses value 1 if the ith unit has an outcome

greater than the λ2th percentile of all the y values in the data set otherwise zero.

(i). A sample of size n (i.e. n=100, 200) is taken from the data using simple random

sampling without replacement and divide them into the respondents and the non-

respondents according to the value of R and observe n1 and n2.

(ii). Select a sub-sample of size ń2 =
n2
k (taking k=2,4) from n2 non-respondents again using

SRWOR and compute the estimator using information obtain from first and second

samples. We take p = 2 to avoid the problem of super-collinearity in our situation.

(iii). Repeat Step ii, 2000 times to get expected value from the sub-sampling. The sub-

sampling does not alter results of T̂1 as it is based on sample from respondents only.

(iv). Repeat Steps (i)-(iii), 10,000 times to obtain a stable value of prediction variance and

bias for both estimators.

The relative design-based bias and variances are computed as follows:

RB(t̂y1) =ED1ED2

[
t̂y1− ty

ty

]
(4.5.1)

RMSE(t̂y1) =ED1ED2

[
t̂y1− ty

ty

]2

(4.5.2)
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The RB and RMSE for the Hansen and Hurwitz (1946)-type estimator for the population total

are obtained by replacing t̂y1 by t̂∗y in Equations (4.5.1) and (4.5.2) respectively. Table 4.1.

provides relative bias (RB) and relative mean squared error (RMSE) of the total estimator

based on the sample on first call for different combinations of n, λ2 and k.

Table 4.1.: Relative bias and MSE of t̂y1 and t̂∗y for different combinations of n, k and λ2

n k RB(t̂y1) RB(t̂∗y ) RMSE(t̂y1) RMSE(t̂∗y )
λ2 = 0.5

100 2 -0.56463 0.03325 0.32017 0.01014
4 0.01626 0.02009

200 2 -0.56646 0.04592 0.32130 0.00575
4 0.03085 0.00996

λ2 = 0.25
100 2 -0.36311 0.01615 0.13352 0.00766

4 -0.00332 0.02661
200 2 -0.36719 0.02492 0.13554 0.00371

4 0.01449 0.00732
λ2 = 0.10

100 2 -0.19545 -0.00931 0.04023 0.42009
4 -0.02266 0.47775

200 2 -0.19806 -0.00607 0.04005 0.03924
4 -0.00239 0.04046

The results in Table 4.1. are reported assuming non-response rate λ2 at 50%, 25%, and

10%. RB of both estimators go to zero as non-response rate falls toward zero which assures

that for full response it vanishes while the sub-sampling method produce ignorable bias as

compared to direct method which is the attractive feature of this method. Further from Table

4.1., one can observe that RMSE is smaller in case of sub-sampling non-respondents, i.e.

taking interview of additional non-respondents through some stronger mode of interview,

for every choices of λ2. RB and RMSE of t̂∗y tend to increase with decrease in non-response

rate in the population which shows that our proposed technique works well for higher non-

response rates as compared to smaller ones. RB and RMSE of the model-based total estimator

go down while increasing sub-sample size ń2 (decreasing k) as expected. Further, this error

decreases when population has smaller non-response rate λ2. In next section, we provide a

simulation study to provide a detailed picture of the performance of estimators in terms of

design bias and mean squared error.
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4.6 Simulation Study

To see the long run behavior of the proposed estimators in terms of bias and efficiency, a

simulation study, generating a hypothetical population, is conducted. Following Najarian

et al. (2013), a matrix z = (zi j, i = 1,2,3, ...,N, j = 1,2, ..., p) with p variate each generated

from N(100,1), has been constructed with N=10,000 observations. The i jth element of the

auxiliary matrix x is computed as xi j = (1−ρ)0.5× zi j +ρ× zi j, where ρ is the degree of

linear relationship between x and z to be fixed in advance. The vector of the study variable

(y) is then obtained by using the relationship y = xω+ε, where ω is the vector of coefficients

which are computed as the averaged eigen vectors corresponding to the eigen values of

H = xT x that are greater than unity and ε ∼ N(0,σ2IN) is randomly generated error term.

It is assumed that the variance is of homoscedastic nature with constant diagonal σ2. We

fix σ2 at 0.01, 0.1 and 1. The data consist of (y,1N ,x,Ri), where 1N is the vector of 1’s. Ri

takes value 1 if the ith value of variable y falls in a threshold lower than (1−λ2)th quantile

in the population, where λ2 is non-response rate in the population. In real life, we suggest to

choose R in form of some observable covariates or latent variables. The simulation study is

conducted in following three steps.

(i). Take a random sample of size n from the population generated through the mechanism

described above and split it into n1 respondents and n2 non-respondents according to

the values of Ri.

(ii). Select a sub-sample of size ń2 from n2 non-respondents for fix k.

(iii). Estimate the population total (ty) using estimated models from samples obtained on

Steps 1 and 2.

(iv) Simulate Steps (ii)–(iii), 500 times and average the values of estimates.

(v). Repeat Steps (i)–(iv), 2000 times to obtain prediction errors to obtain 2000 estimated

values.

The relative bias and mean squared error of the proposed total estimators are computed

using the formula given in Equations (4.5.1) and (4.5.2) respectively after removing the

denominators as the generated values are already standardized. The subscript v is used for

the results where prediction is performed using PRR.
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Tables C.1-C.3 (see Appendix C) provide the bias of the PPR estimator and MSE of

both estimators for different combinations of σ2, λ2, ρ, n and k in nested order. We obtain

results for p = 5 and p = 8 but the result for p = 5 is not reported here for the sake of space.

Tables C.1, C.2 and C.3 provide the prediction error measures (B and MSE) for σ2 = 0.01,

σ2 = 0.1 and σ2 = 1 respectively. From Tables C.1–C.3 (see Appendix C), one can see

that the bias of the PRR total estimator tends to increase with increase in k . This implies

selecting a smaller sub-sample increases the bias in estimation due to sampling error although

this bias depends on the magnitude of the tuning parameter v. MSE of the total estimator

under multiple regression and PRR both increase with increase in k which shows that MSE

of the estimators grows with smaller sub-samples from non-respondents. The PRR total

estimator is more sensitive to the change in k, in terms of MSE, as the optimum value of the

tuning parameter v is estimated from sub–sample. In practice v might be computed using

data available from previous surveys of the same population or through expert judgment.

The estimation methods of v by minimization of prediction error are available in Najarian

et al. (2013). Moreover, whatever model we use for prediction, the MSE values of the total

estimators depend on the sample size of respondents and sub-sample of non-respondents.

The simulated results are provided for sample size 100, 150 and 250 with sub-sample size

inversely proportional to k = 1.5, k = 2 and k = 3. It can be noticed that the MSE values are

increasing with increase in k. Comparing two portions of Tables C.1–C.3, we observe that

the MSE of proposed estimators fall when non-response rate increases which conflicts the

efficiency property of the Hansen and Hurwitz (1946) estimator. The reason is the use of

separate models and increasing λ2 from 0.2 to 0.4 implies (i.e. we are using Model (2) for 40

% of the data) which is the main contribution of our proposal in terms of increased precision.

Apart from the design parameters, the data generating process also effects the efficiency of

the total estimator which can be seen from three different column-panels (for three different

choices of the parameter ρ) assuming that the correlation between the variables X and Z are

same for all choices of j of Tables C.1–C.3.

4.7 Conclusion

This chapter is concerned with utilization of model relationship between the outcome variable

and one or more covariate(s) for efficient estimation of population total of the outcome
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variable in surveys with non-ignorable non-response. A model-based version of Hansen and

Hurwitz (1946) sub-sampling technique is suggested which assumes that the responding and

non-responding population have different models. This assumption may hold for majority of

real world situations where the occurrence of non-response is observable like a stratification

variable. In public health surveys, the non-response occurrence is based on the gender,

ethical affiliation, age and other demographic factors of the respondents. In such situations,

respondents and non-respondents may have different models. The method assumes that

a stratification variable is available to divide the population into respondents and non-

respondents which is difficult to obtain in most of real surveys although a two phase sampling

method can provide a better stratification variable to divide the population into respondents

and non-respondents. It is shown that under linear population model (linear in parameter

as well as in variables), the total estimator with sub-sampling is model-unbiased and has

smaller model-variance as compared to predictive estimator based on sampled respondents

only. The linearity assumption emphasizes on linear in parameters but not restricted to the

linearity in variable. Polynomial regression models are also useful for handling non-response

in demographic surveys using age as the predictor. The problem of non-response can be well

handled using polynomial regression models which is not included in this dissertation. While

sub-sampling non-respondents the number of observations may become smaller than the

number of regressors included in the model leading to problem of super-collinearity. To cope

with super-collinearity problem, we suggest a version of ridge regression named, called PRR,

for predicting the non-sampled non-respondents. WLS and GLS are suggested for obtaining

estimates of the regression coefficients for respondents and non-respondents when error terms

for at least one model is of heteroscedastic nature. To confirm mathematical expressions a

numerical study with blood transfusion data has been carried out with a simulated study. The

suggested method is applicable to telephonic or web household surveys where households

are first contacted with email or telephone call and then non-respondents are followed via

face to face surveys where it seems logical to select a sub-sample of non-respondents through

more expensive mode (face to face).
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Chapter 5

Model Based Estimation of Parameters Under

Ranked Set Sampling

5.1 Outline

As we already discussed in previous chapters that the utilization of superpopulation models

for estimation of finite population parameters is an advantageous practice, when it is easy to

recognize the relationship between the study variable and one or more auxiliary variables.

This chapter is concerned with estimation of finite population total under ranked set sampling

without replacement (RSSWOR), a modified version of RSS, by utilizing model relationship,

specially gamma population model (GPM) between the study variable and the auxiliary

variable. We opt the single predictor case as the ranking mechanism is possible for two

correlated variables (outcome and regressor). The RSSWOR sampling procedure, especially,

aids in collecting data from a continuous production process. This chapter presents a

discussion on Gamma Population Model (GPM) for estimation of finite population total in

simple random sampling in Section 5.2. RSSWOR is employed under model-based approach

for estimation of total in Section 5.3. Comparison of the proposed estimators are made with

existing ones using Monte Carlo (MC) experiment in Section 5.4. Section 5.5 concludes the

chapter.
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5.2 Model-Based Estimation Under SRSWOR

Remind that Y and X be the study and the auxiliary variables respectively corresponding to

the units in population U = {Ui; i = 1,2, ...,N}. Further U consists of two mutually exclusive

sets s (set of sampled elements) and s̄ (set of non-sampled elements) having n and (N−n)

elements respectively. We assume following population models for prediction:

• yi = µ+ εi (Homogeneous population model, HPM)

• yi = βxi + εix
γ∗

i (Gamma population model, GPM),

where yi, xi and εi are the ith population values corresponding to the study variable Y ,

auxiliary variable X and the random error term ε respectively. The random error term εi is

identically independently distributed with zero mean and constant variance. Further µ and β

are unknown constant to be estimated using sample data. Here, γ∗ is the rate parameter as

variation in Y varies with this rate, it may also be unknown but it is chosen in advance using

expert judgment or from pilot surveys with cross validation. A lot of works on prediction

under linear population model is available in literature of model-based estimation. In this

chapter, we first briefly discuss the estimation of population total under HPM and GPM.

5.2.1 Homogeneous Population Model (HPM)

Under HPM, we have the relationship yi = µ+ εi, which assumes that there is no auxiliary

variable at design stage or/and estimation stage. We can express population total as:

ty = ∑
i∈s

yi +∑
i∈s̄

yi. (5.2.1)

The notations ∑i∈s and ∑i∈s̄ show that the summation is applied over the sample s and s̄

respectively. The expansion estimator t̂E
y suggested by Chambers and Clark (2012), is given

by

t̂E
y = ∑

i∈s
yi +E(t̂ys̄|yi, i ∈ s) = nȳs +(N−n)ȳs

= Nȳs, (5.2.2)
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where t̂ys̄ = ∑i∈s̄ yi. The prediction variance of t̂y, is given by

VM(t̂E
y − ty) = σ

2(N−n
)(N

n

)
, (5.2.3)

where σ2 = 1
N ∑i∈U(yi−µ)2. Proof of Equation (5.2.3) can be found in Chambers and Clark

(2012).

5.2.2 Gamma Population Model (GPM)

When population under study is heterogeneous then the estimator given in Equation (5.2.2)

may not work well. One possible way to overcome this deficiency is stratification but in some

occasions it is difficult to stratify the population according to certain stratification variable(s)

e.g stratifying units in production process may cause destruction of units. In such situation, a

best way to handle the problem of heterogeneity is to search for an auxiliary variable which

has some correlation with the study variable. GPM deals with such problems by controlling

for variance in the study variate Y , when there is a proportional relationship between the

study variable with some auxiliary variable whose values for all population units are available

in advance. Another condition that must holds in such model is that the marginal distribution

of sampled and non-sampled values of Y for a given value of the auxiliary variable should be

same. In other words by conditioning on X , we obtain a non-informative sample Chambers

and Clark (2012). Under GPM, we have a relationship yi = βxi + εix
γ∗

i between Y and X . A

BLUP for ty is given by

t̂g
y = t̂ys +EM

(
t̂ys̄|yi, i ∈ s;xi, i ∈U

)
= t̂ys +btxs̄, (5.2.4)

where b = ∑i∈s ciyi and ci =
x1−2γ∗

i

∑i∈s x2−2γ∗
i

for i = 1,2, ...,n. The conditional expectation of t̂g
y for

given sample information is

EM(t̂g
y |xi, i ∈ s) = βxi = µ (say). (5.2.5)
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This reveals that for fixed values of X , t̂y is unbiased conditioning on values of X with

conditional variance

VM(t̂g
y |xi, i ∈U) =VM(t̂ys)+ t2

xs̄VM(∑
i∈s

ciyi)

= σ
2
∑
i∈s

(
1+λ

2x2−4γ∗

i
)
, (5.2.6)

where λ =
t̂ys̄

∑i∈s x2−2γ∗
i

. The variance goes down when larger values of X are selected in the

sample. Comparing Equations (5.2.6) with (5.2.3), we see that VM(t̂g
y |xi, i ∈U)<VM(t̂y) if

n+λ∑
i∈s

x1−2γ∗

i <
(
N−n

)(N
n

)
. (5.2.7)

The unbiasedness and efficiency properties are computed with respect to model although the

total estimator with gamma population under design-based approach is biased.

5.3 Model-Based Estimation Under RSSWOR

To obtain a more accurate data set, McIntyre (1952) proposed ranked set sampling assuming

that ranking a small sets of units is economical while taking actual measurement from a

large sample is costly. This section provides an application of ranked set sampling scheme

to model-based approach after making some modification and discussion on estimation

of population total in RSS by assuming HPM and GPM. Consider a finite population U

generated from a superpopulation with mean µ(i) and variance σ2
(i) for the ith ordered random

variable y(i) for i ∈U . For any given underlying superpopulation model:

(i) We take sub-populations of size N j for j = 1,2, ...t from a superpopulation such that

N = ∑
t
j=1 N j, where t is the number of cycles or time frame. It is also assume that

every sub-population are large enough to select m2 units from them i.e. N j > m2. The

concept of so called sub-populations are defined just for taking larger sets to ensure

that sampling is without replacement. For a valid statistical inference this division must

be at random and independent with the survey variable.

(ii) Select m2 units from each sub-populations i.e. units produced at same time are on same

day can be taken as sub-population in production process.
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Figure 5.1: Sampling Mechanism of RSSWOR

(iii) Divide each m2 units in m sets each of size m and rank each set within itself according

to some ranking mechanism.

(iv) Select the ith ranked unit from the ith set for i = 1,2,3, ...,m, and j = 1,2, .., t. In this

way a ranked set sample without replacement of size tm is obtained. An illustration of

RSSWOR scheme is provided in Figure 5.1.

Figure 5.1 explains our sampling scheme assuming that a finite population of size N is coming

from a large superpopulation with specified mean and variance. Top stream of Figure 5.1

shows the continuous population. From the finite population of size N units, we consider t

different cycles with sizes N1, N2, ...,Nt randomly, leaving N−∑
t
j=1 N j as non-sampled. For

example, in a production process (for quality control) one might considered units produced

in 20 days as a finite population, then, we take t = 8 randomly selected days as cycles. In

this way, we are left with t so called sub-populations. From each sub-populations, we then

select m2 units for ranking leaving (N j−m2) units from each sub-population as non-sampled.

Finally, applying ranked set sampling for selecting m units from each cycle by returning

remaining m2−m non-sampled units. The total non-sampled units are found from three

different stages which can be seen from Figure 5.1.

Non-sampled = Non-sampled at Stage-1+Non-sampled at Stage-2

+Non-sampled at Stage-3
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= N−
t

∑
j=1

N j +
t

∑
j=1

(N j−m2)

+
t

∑
j=1

(m2−m) = N− tm.

Let s be the set of tm units selected using the above mechanism and s̄ be the set of units

which are not in s. A ranked set sample s can be defined as

s =
{

y1(1)1, ...,ym(m)1, ...y1(1)2, ...,ym(m)2, .......y1(1)t , ...ym(m)t
}

. When a finite population is

partitioned into t mutually exclusive random sets, we have N = ∑
t
j=1 N j. Further when

ranking is done with respect to some covariate, we use square brackets in the subscripts

of ordered values to denote judgment ranked units. We assume judgment ranking in our

proposal.

5.3.1 RSSWOR under HPM

For the ith population value of the study variable Y , we have y(i) = µ[i]+ ε[i] for i ∈U , where

ε[i] for all i ∈U are i.i.d with zero mean and variance σ2
[i]. Hence EM(y[i]) = 0, VM(y[i]) = σ2

[i]

and Cov(y[i],y[ j]) = 0 for i 6= j, when y[i] and y[ j] are taken from different ranked sets. The

condition of zero mean for error term is true only as ranking is performed on some variable

other than the study variable. Hence the ranking is supposed as judgment ranking rather than

perfect ranking. Consider a predictor for population total given in (5.2.1)

t̂E
y[rss] = t̂y[rss]s + t̂ys̄, (5.3.1)

where t̂y[rss]s = ∑
t
j=1 ∑i∈s yi[i] j and t̂ys̄ = ∑i∈U yi−∑

t
j=1 ∑i∈s yi[i] j. The problem is to predict

t̂ys̄ using information at hand such that (i) EM(t̂E
y[rss]− ty) = 0, the prediction error, and (ii)

EM(t̂E
y[rss]− ty)2, the squared prediction error, is minimum. t̂E

y[rss] can be expressed as a linear

combination of ranked data as:

t̂E
y[rss] = ∑

i∈s
w[i]yi[i]. (5.3.2)

For easy of computation, we take t = 1, i.e. only one cycle is performed.

t̂E
y[rss]− ty = ∑

i∈s
w[i]yi[i]+∑

i∈s
yi[i]−∑

i∈s
yi[i]− ty
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= ∑
i∈s

(
w[i]−1

)
yi[i]− t̂ys̄, (5.3.3)

where (w[i]− 1) = u[i] (say) is the prediction weight for the ith non-sampled unit. Taking

expectation of Equation (5.3.3), we have

EM(t̂E
y[rss]− ty) = ∑

i∈s
u[i]µ[i]− (N−m)µ, (5.3.4)

t̂E
y[rss] will be unbiased when ∑i∈s u[i]µ[i] = (N−m)µ. Similarly, variance of t̂E

y[rss]− ty can be

found as

VM(t̂E
y[rss]− ty) =VM(∑

i∈s
u[i]yi[i]− t̂ys̄)

=VM(∑
i∈s

u[i]yi[i])+VM(t̂ys̄)

VM(t̂E
y[rss]− ty) = ∑

i∈s
u2
[i]σ

2
[i]+(N−m)σ2. (5.3.5)

As the sampled and non-sampled values are independent so the covariance term on the right

side of Equation (5.3.5) is zero. The value of ui that provide unbiased estimate of t̂E
y[rss]

is u[i] =
N−m

m . Moreover, the second term in variance expression is (N−m)σ2 as there is

no-ranking on non-sampled data. Inserting the value of u[i] in variance expression, we get

VM(t̂E
y[rss]− ty) = ∑

i∈s

(N−m
m

)2
σ

2
[i]+(N−m)σ2

=
N
m
(N−m)σ2−

(N−m
m

)2
∑
i∈s

δ
2
[i]

=VM(t̂y− ty)−
(N−m

m

)2
∑
i∈s

δ
2
[i], (5.3.6)

where δ[i] = (µ[i]−µ) and (mσ2−∑i∈s δ2
[i]) = ∑i∈s σ2

[i]. From (5.2.3) and (5.3.6), it is clear

that t̂E
y[rss] is always more efficient than t̂y.

5.3.2 RSSWOR under GPM

Under GPM, the ith population value of the study variable Y is expressed as y[i] = x[i]β+xγ∗

[i]ε[i]

for i ∈U , where EM(y[i]) = x[i]β, VM(y[i]) = x2γ∗

[i] σ2
[i] and Cov(y[i],y[ j]) = 0 for i 6= j, when y[i]

and y[ j] are taken from different ranked sets. It is also assumed that ranking is performed
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on the study variable itself (based on personal judgment or some other mechanism). A best

predictor for t̂ys̄ is EM
(
t̂ys̄|y[i], i ∈ s;x[i], i ∈U

)
(see Chambers and Clark, 2012) for detail.

t̂g
y[rss] =t̂y[rss]s +EM

(
t̂ys̄|y[i], i ∈ s;x[i], i ∈U

)
t̂g
y[rss] =t̂y[rss]s +∑

i∈s̄
x[i]β. (5.3.7)

In (5.3.7), β is assumed to be unknown. The value x[i] for i ∈ s̄ denotes the ranking of

non-sampled values of the auxiliary variable x. However such ranking is difficult in practical

situations. One can proceed by replacing xi by x[i] for i ∈ s. A best linear unbiased predictor

(BLUP) β̂ for β is obtained by minimizing following sum of squared error for sample data

with respect to β.

∑
i∈s

e2
i[i] = ∑

i∈s
x−2γ∗

i[i]

(
yi[i]− xi[i]β

)
. (5.3.8)

which is given by β̂[rss] = ∑i∈s q[i]yi[i], where q[i] =
x1−2γ∗

i[i]

∑i∈s x2−2γ∗
i[i]

and the resulting estimator is

t̂g
y[rss] = t̂y[rss]s +∑

i∈s̄
x[i]β̂[rss].

Inserting the value of β̂[rss] and after some simplification, we get

t̂g
y[rss] = ∑

i∈s

(
1+ϑx1−2γ∗

i[i]

)
y[i], (5.3.9)

where ϑ = txs̄

∑i∈s x2−2γ∗
i[i]

. It is easy to show that t̂g
y[rss] is unbiased and its variance, is given by

VM(t̂g
y[rss]|x[i], i ∈U) =Var

(
∑
i∈s

ϑ
∗
[i]y[i]

)
= ∑

i∈s
ϑ
∗2
[i] σ

2
[i]

= σ
2
∑
i∈s

ϑ
∗2
[i] −∑

i∈s
ϑ
∗2
[i] δ

2
[i], (5.3.10)

where ϑ∗[i] = 1+ϑx1−2γ∗

i[i] . We can also express (5.3.10) as

VM(t̂g
y[rss]|x[i], i ∈U) =VM(t̂g

y |x[i], i ∈U)−∑
i∈s

ϑ
∗2
[i] δ

2
[i],
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where δ[i] = µ[i]−µ. This provides that t̂g
y[rss] is more efficient than its counterpart in simple

random sampling.

GPM considered in this section is a general population model for the situations where

the values of the study variable generated from a stochastic process is proportional to the

corresponding values of the auxiliary variable. Further the variation in Y depends on the

value of X γ∗ , where γ∗ is the rate parameter which controls how much the variation in Y

depends on X . Chambers and Clark (2012) suggested to choose the value of gamma between

0 and 1. Ratio population model is a special case of the GPM for γ∗ = 1
2 . We can derive

BLUP in RSSWOR for ratio population model by inserting γ∗ = 1
2 . In practical situations,

the value of γ∗ can be guessed by observing on scatter plot or through the value of correlation

coefficient between X and Y . Similarly, setting γ∗ = 0 and adding intercept term the GPM

reduces to LPM. In subsequent section, we use real life data set for checking efficiency of the

proposed estimators for population total.

5.4 Monte Carlo (MC) Study

For the purpose of efficiency comparison, we use MC experiment by generating hypothetical

data on variable X and obtaining Y using the relationship Y = ρ2X+X γ∗e for γ∗= 0.3,0.5,0.8,

where e is an i.i.d error term, normally distributed with zero mean and variance σ2 with

ρ= 0.7. The data on X is generated from gamma distribution assuming different combinations

of parameters a and b. Figure 5.2 provides different shapes of gamma distribution for the

given combinations of parameters. A ranked set sampling without replacement procedure

is obtained by using steps given in Section 3. The estimators for sample total under ranked

set sampling with replacement for HPM and GPM models are obtained. For efficiency

comparison, we also obtain a SRSWOR of size n = tm. Repeat the sampling process

10,000 times to obtain bias and relative of the total estimators. The absolute biases of the

total estimators are obtained under designed-based point of view as the unbiasedness is

conditioned on X . The relative efficiency of of the suggested estimators, are given by

REr =
VM(t̂y)

MSE
(
t̂g
y
) , RErss =

Var
(
t̂y
)

MSE
(
t̂E
y[rss]

)
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and

RER.rss =
Var
(
t̂E
y[rss]

)
MSE

(
t̂g
y[rss]

) .
Tables D.1–D.5 (see Appendix D) provide the relative efficiency (RE) and absolute bias (AB)

of the proposed estimators. Different sections of Tables D.1–D.5 are constructed for gamma

distribution G(a,b) for different combinations of a and b.

Figure 5.2: Effect of distribution parameters on efficiency

We can interpret the result in following ways

(i). It is obvious that the relative efficiency of t̂g
y[rss] and t̂g

y both are high when γ∗ = 1/2

as compared to the RE for other choices of gamma. It suggest to use the proposed

estimator in case of proportional relationship between the two variables with γ∗ = 1/2.

(ii). The relative efficiency of the estimator depends on the shape of population from which

X is generated. If the ratio a/b increases then the performance of the proportional

model increases as compared to homogeneous population model.
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(iii). It can be seen from different sections of Tables D.1–D.5 i.e. G(2,6) has lowest

efficiency and G(4,2) has highest efficiency relative to their competitors with other

combinations. In other words, it can be inferred that relative performance of GPM

model is high for skewed populations as compared to homogeneous population models.

(iv) In case of fat tail distribution, the predictors under GPM even perform worst than its

counterparts under HPM for both SRSWOR and RSSWOR.

• It can also be noticed that relative efficiencies (REs) i.e. RER , RErss and RErss are all

increasing functions of the set size (m) and the number of cycles (t).

(v). The last two columns of Tables D.1–D.5 (see Appendix D) provide absolute biases of

the total estimators under gamma population in SRSWOR and RSSWOR. Absolute

bias of the total estimator decreases with increase in set sizes m and number of cycle t

under RSSWOR scheme.

(vi). Absolute biases are relatively smaller in case of γ∗ = 1/2 under ratio population model.

5.5 Concluding Remarks

A new version of ranked set sampling for obtaining a without replacement sample under

gamma population model (general form of proportional population model) has been introduced.

Figure 5.1 presented a picture of the RSSWOR which assumes that the finite population

coming from an infinite superpopulation via some stochastic process with finite mean and

variance. It is also assumed that the population can be generated from different points i.e.

cycles and the m sets taken from one cycle is totally different from the m in other cycles

for insuring without replacement. After selecting a sample using RSSWOR, the model

relationship between the study variable and the auxiliary variable used to predict the non-

sampled values while obtaining a point predictor for the population total. The mathematical

expressions and Monte-Carlo experiment both support the superiority of the predictor under

RSSWOR over the total predictor under SRSWOR for GPM as well as HPM. Hence, the

suggested predictors may perform well for process controls for constructing control charts

as in such situations, where we have high dimensional data in the sense of number of

observations. It is also applicable in social surveys which we conduct on social media, where

one deals with a large population with unending size.
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Chapter 6

Model Based Estimation of Parameters in

Domains

6.1 Outline

In studies of subpopulations (domains) under post-stratified sampling, it is not easy to obtain

an acceptable precision for domain specific estimates due to insufficient sample sizes within

certain domains. Indirect estimation using available auxiliary data from whole population

under model-based approach is a common practice known as small area estimation and has

been practiced for last few decades. To get more reliable results in domains with smaller

sample sizes, in this chapter, we use ranked set sampling without replacement (RSSWOR)

assuming that ranking smaller sets is easy and cheap. On the basis of RSSWOR, we can either

increase precision for fixed sample size or get same level of precision as of the simple random

sampling for smaller sample size. We establish domain specific direct estimators under

homogeneous and gamma population models. A detailed Monte Carlo (MC) experiment

is carried out to observe the design-based efficiency of the estimators. In this chapter, we

incorporate the auxiliary information from whole population to obtain efficient estimates

for small area total following Chambers and Clark (2012). We then extend the proposed

estimators to ranked set sampling frame work for further improvement in efficiency following

Ahmed and Shabbir (2019b). In Section 6.2, we provide statistical basis for our proposal from

the existing literature and cover estimation of domain total under simple random sampling

without replacement (SRSWOR). Extensions of the proposed estimators to RSSWOR are

given in Section 6.3. Sections 6.4 and 6.5 are devoted with efficiency comparison and
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concluding remarks respectively.

6.2 Domain Estimation Under Simple Random Sampling

Let U =
{

1,2,3, ...N
}

be the set of serial numbers attached to the units in a finite population

of size N. Further Y and X be the study variable and the auxiliary variable with values yi

and xi corresponding to the ith population unit for all i ∈U . The population consists of

mutually exhaustive domains whose membership are assumed to be unknown prior to the

survey. Such as in demographic studies information regarding age groups, ethical affiliation

or women having specific behavior toward having child might be domains of concern. The

domain membership variable for the kth domain can be defined as dki which possess values 1

if ith unit belongs to kth domain, 0 otherwise. The domain size is defined as Nk = ∑i∈U dki,

where ∑i∈U denotes summation over population U . In typical situations, domain membership

is observable for sample only. However, the distribution of units among domain for non-

sampled part of the population is unknown. Even, we don’t have information about Nk (the

number of units falling in domain k). We consider the homogeneous population model (HPM)

and gamma population model (GPM) for the study variable in the kth domain. It is also

assumed that the domain membership variable follows Bernoulli distribution with parameter

θk = Nk/N.

6.2.1 Domain Estimation Under HPM

The population values of y are assumed to be independently distributed in domain k. The

homogeneous model for domain k can be written as

yi = µk + εki for i = 1,2, ...,N and k = 1,2, ...h, (6.2.1)

where µk is domain specific mean for domain k, εki random error term independently

distributed with zero mean and variance σ2
k for kth domain and h is the number of domains.

The distribution of yi is conditional on dki. The domain membership variables dki’s are

already defined as independently distributed Bernoulli random variables. Now the mean and
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variance of dkiyi can be obtained as

EM(dkiyi) = EM(yi|dki = 1)p(dki = 1) = µkθk (6.2.2)

and

VM(dkiyi) = θkσ
2
k +θk(1−θk)µ2

k = σ
∗2
k (say). (6.2.3)

The covariance between dkiyi and dkiyi for i 6= j ∀ i, j ∈U is zero as yi (conditionally) and

dki both are independent random variables. Let s be a simple random sample taken with out

replacement from the population U with size n. Following Chambers and Clark (2012) the

expansion estimator for tyk, is given by

t̂E
yk =

N
n ∑

i∈s
dkiyi = Nθ̂kȳk, (6.2.4)

where ȳk =
∑i∈s dkiyi

n is the sample mean for the kth domain and θ̂k =
nk
n is estimate of θk. The

derivation of t̂E
yk, is given in next subsection.

6.2.2 Derivation of Model Expectation and Variance of the Product DY

EM(dkiyi) = ∑
y

∑
dk

dkiyi p(yi,dki) = ∑
y

∑
dk

dkiyi p(yi|dki = 1)p(dki = 1)

= p(dki = 1)∑
y

yi p(yi|dki = 1)

= p(dki = 1)EM(yi|dki = 1)

= θkµk.

Similarly for variance, we need

EM(d2
kiy

2
i ) = ∑

y
∑
dk

d2
kiy

2
i p(yi,dki) = ∑

y
∑
dk

d2
ki p(yi|dki = 1)p(dki = 1)

= p(dki = 1)∑
y

yi p(yi|dki = 1)

= p(dki = 1)EM(y2
i |dki = 1)
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= θk
[
µ2

k +σ
2
k
]
.

Substituting EM(dkiy2
i ) in variance formula, we get

VM(dkiyi) = EM(d2
kiy

2
i )−

{
EM(dkiyi)

}2

= θkσ
2
k +θk(1−θk)µ2

k . (6.2.5)

Theorem 1:

The expansion estimator t̂E
yk is unbiased, in model-based sense, for domain total tyk with

prediction error variance

VM(t̂E
yk− tyk) =

N(N−n)
n

(
θkσ

2
k +θk(1−θk)µ2

k

)
. (6.2.6)

Proof of bias and variance of t̂E
yk

To obtain a best linear unbiased estimator for population total say tyk, we write the expansion

estimator as the linear combination dkiyi i.e. t̂E
yk = ∑i∈s widkiyi, where wi are the weights

assigned to ith sampled unit. Further

t̂E
yk =∑

i∈s
dkiyi +∑

i∈s

(
wi−1

)
dkiyi

= tyks +∑
i∈s

w∗i dkiyi,

where w∗i = (wi−1) is the prediction weight corresponding to ith sampled unit for predicting

non-sampled part of the population and tyks = ∑i∈s dkiyi. The corresponding domain specific

population total tyk = tyks + tykr, where tyks and tykr are the domain total for sampled and

non-sampled units respectively.

The prediction error for t̂E
yk is obtained as: t̂E

yk− tyk = ∑i∈s w∗i dkiyi− tykr.

The model bias of the t̂E
yk is

EM(t̂E
yk− tyk) = ∑

i∈s
w∗i EM(dkiyi)−∑

i∈s̄
EM(dkiyi)

Bias(t̂E
yk) = θkµk

[
∑
i∈s

w∗i − (N−n)
]
.
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The bias vanishes only if

∑
i∈s

w∗i = (N−n). (6.2.7)

The model variance of prediction error can be obtained as:

VM(t̂E
yk− tyk) = ∑

i∈s
w∗2i VM(dkiyi)+∑

i∈s̄
VM(dkiyi)−2Cov(∑

i∈s
w∗i (dkiyi),∑

i∈s̄
(dkiyi))

VM(t̂E
yk) = σ

∗2
k
[
∑
i∈s

w∗2i +(N−n)
]
.

The covariance term in variance expression vanishes as the covariance between dkiyi and

dkiyi for all i 6= j is zero. The problem is to minimize VM(t̂E
yk− tyk) with respect to w∗i subject

to constrain given in (6.2.7). The Lagrangian function L can be written as

L = ∑
i∈s

w∗2i −2λ
[
∑
i∈s

w∗i − (N−n)
]

(6.2.8)

By minimizing (6.2.8), we get w∗i = N−n
n and wi =

N
n . The expansion estimator t̂E

yk =

N
n ∑i∈s dkiyi with variance

VM(t̂E
yk− tyk) = σ

∗2
k
[(N−n)2

n
+(N−n)

]
=

N(N−n)
n

σ
∗2
k .

The expansion estimator t̂E
yk has two attractive features one is BLUP property with respect to

model and the other is the compensation for unknown domain size.

6.2.3 Domain Estimation Under GPM

The HPM only uses sample information about the study variable itself for predicting non-

sampled values of the study variable. While GPM, on the other hand, assumes that both the

mean and variance of the study variable depend on some covariate who’s values are known

for every unit in the population. Typically, in design-based estimation, we assume that the

information about some parameter of that covariate is available. The gamma population
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model for domain k is defined as

yi = βkxi + xγ∗

i εki for i = 1,2, ...,N and k = 1,2, ...h, (6.2.9)

where γ∗ is a real constant assumed to be known or guessed in advance and βk is the domain

specific coefficient corresponding to the covariate x. The generalized prediction estimator

given in Valliant (2000) for gamma population model can be written as

t̂g
yk = ∑

i∈s
dkiyi +∑

s̄

(
β̂kxi

)
, (6.2.10)

where β̂k is the BLUE of βk and derived in next subsection.

6.2.4 Derivation of β̂k

For assuring linearity, we can write β̂k as a linear combination of the domain specific

responses dkiyi as β̂k = ∑i∈s cidkiyi, where ci are the weights associated to ith sampled unit

which is obtained as the function of known auxiliary data. The expectation and variance of

β̂k can be obtained as

EM(β̂k) = ∑
i∈s

ciEM(dkiyi) = βk ∑
i∈s

cixi (6.2.11)

For unbiasedness, we must have

∑
i∈s

cixi = 1 (6.2.12)

and

VM(β̂k) = ∑
i∈s

c2
i VM(dkiyi) = σ

∗2
k ∑

i∈s
c2

i x2γ∗

i (6.2.13)

The problem is, then, to minimize VM(β̂k), specially ∑i∈s c2
i , subject to the constrain given in

(6.2.12). The Lagrangian function is again defined as

L = ∑
i∈s

c2
i x2γ∗

i −2λ
[
∑
i∈s

cixi−1
]

(6.2.14)
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Differentiating (6.2.14) with respect to ci and equating to zero results ci = λx1−2γ∗

i . Further

differentiating (6.2.14) with respect to λ and equating to zero, we get ∑i∈s cixi = 1.

Solving the two equation results λ = 1
∑i∈s x2−2γ∗

i

and ci =
x1−2γ∗

i

∑i∈s x2−2γ∗
i

. Substituting the value of

ci in β̂k, we get

β̂k =
∑i∈s dkix

1−2γ∗

i yi

∑i∈s x2−2γ∗

i

. (6.2.15)

The BLUP for domain total is then obtained as

t̂g
yk = ∑

i∈s
dkiyi +

∑i∈s dkix
1−2γ∗

i yi

∑i∈s x2−2γ∗

i
∑
s̄

xi = ∑
i∈s

(1+u∗i )dkiyi, (6.2.16)

where u∗i =
x1−2γ∗

i

∑i∈s x2−2γ∗
i

∑s̄ xi. The prediction error for t̂g
yk, is given by

t̂g
yk− tyk = ∑

i∈s
u∗i dkiyi− tykr, (6.2.17)

It is straight forward to show that the estimator given in (6.2.16) is unbiased with prediction

error variance given by

VM(t̂g
yk− tyk) = θk(1−θk)β

2
kκ1(x)+θkσ

2
kκ2(x) (6.2.18)

where κ1(x) = ∑i∈s u∗2i x2
i +∑i∈s̄ x2

i and κ2(x) = ∑i∈s u∗2i x2γ∗

i +∑i∈s̄ x2γ∗

i .

6.2.5 Derivation of Prediction Error Variance of t̂g
yk

The model variance of prediction error of t̂g
yk can be obtained as

VM(t̂g
yk− tyk) = ∑

i∈s
u∗2i VM(dkiyi)+∑

i∈s̄
VM(dkiyi)−2Cov

(
∑
i∈s

u∗i (dkiyi),∑
i∈s̄

(dkiyi)
)

(6.2.19)

The covariance term in variance expression vanishes as the the covariance between dkiyi and

dkiyi for all i ∈ s and j ∈ s̄ is zero. We know under gamma population model EM(dkiyi) =

θkβkxi. Further, we have

VM(dkiyi) =EM(dkiyi)
2−
{

EM(dkiyi)
}2
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=p(dki = 1)EM
(
y2

i |dki = 1
)
−
{

p(dki = 1)EM
(
yi|dki = 1

)}2

=θk
(
β

2
kx2

i + x2γ∗

i σ
2)− (θkβkxi

)2
.

Substituting expression of VM(dkiyi) in (6.2.19) and simplifying, we get

VM(t̂g
yk− tyk) = θk(1−θk)β

2
kκ1(x)+θkσ

2
kκ2(x). (6.2.20)

Note that the expectation and variance are applied after conditioning on the auxiliary data

which is not shown mathematically. GPM for domain estimation provides a rationale of

utilizing the auxiliary data from whole population to certain sub-populations. The idea

of domain estimation using different population under matrix approach has been dealt in

Chambers and Clark (2012). In this study, we revise the domain estimation problem for

single auxiliary variable when ranked set sampling within finite population is performed. The

GPM is preferred, when values of the study variable (y) generated from a stochastic process

is proportional to the corresponding values of the auxiliary variable (x) which is assumed

to be known for whole population prior to the survey or obtained during the survey (under

two-phase sampling scheme). For GPM, it is also assumed that the variation in y depends on

the value of xγ∗ , where γ∗ is the rate which controls how much the variation in Y depends on

x.

6.3 Domain Estimation Estimation Under RSSWOR

The well known ranked set sampling, introduced by McIntyre (1952), is preferred when it is

economical to rank small sets of units while taking actual measurement from a larger sample

is expensive. In Chapter 5, ranked set sampling without replacement (RSSWOR) is used

under model-based approach after making some modification for estimation of the population

total. In this section, we provide RSSWOR for estimation of domain specific totals. Consider

a finite population U generated from a superpopulation with mean µ[i] and variance σ2
[i] for

ith judgment ordered random variable y[i] for i ∈U . For judgment ranked unit the respective

parameters are subscripted in square brackets. To obtain a RSSWOR from a finite population

generated from the superpopulation, we introduce following algorithm.

(i). Divide the finite population into t sub-populations at random with sizes Nl for l =
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1,2, ...t such that N = ∑
t
l=1 Nl , where t is the number of cycles or sampling interval.

Further, it is assumed that every sub-population is large enough to select m2 units from

them i.e. for all l, Nl > m2. The concept of, so called, sub-populations is defined just

for obtaining larger sets to ensure that sampling is without replacement. For a valid

inference this division must be independent with the study variable. Note that this

division of population into t sub-populations is haphazard and is totally different from

the concept of domain. The division is merely made for sample selection purpose.

(ii). Select m2 units from each sub-populations and divide each m2 units in m sets each of

size m.

(iii) Rank each set within itself according to some ranking mechanism different ranking

mechanisms are discussed in Ahmed et al. (2017).

(iii). Select the ith ranked unit from the ith set for i = 1,2,3, ...,m, and l = 1,2, .., t to obtain

a ranked set sample without replacement of size tm after retaining t(m2−m) units

from the ranked sets.

(iv). Observe yi[i]l , xi[i]l and di[i])l from the final RSSWOR to obtain domain specific

estimates. An illustration of RSSWOR for domain estimation is provided in Figure 6.1.

Figure 6.1 explains RSSWOR for domain estimation assuming that a finite population of

size N is coming from a large superpopulation with specified mean and variance which

is generating via some stochastic process. From the finite population of size N units, we

consider t different cycles with sizes N1, N2, ...,Nt randomly, leaving (N−∑
t
l=1 Nl) as non-

sampled. In this way, we are left with t so called sub-populations. From each sub-populations,

we then select m2 units for ranking leaving (Nl −m2) units from each sub-population as

non-sampled, where mis taken three for pictorial presentation. Finally, applying ranked set

sampling for selecting m units from each cycle by returning remaining (m2−m) non-sampled

units. The total non-sampled units are found from two stages which is illustrated in Figure

6.1.

Non-sampled = Non-sampled at Stage-1+Non-sampled at Stage-2

=
t

∑
j=1

(Nl−m2)
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+
t

∑
j=1

(m2−m) = N− tm.

Let s be the ranked set sample of size tm selected using the above mechanism and s̄ be the

set of units which are not in s. The RSSWOR s can be written as s =
{

yi[i] j,xi[i] j,di[i] j; i =

1,2, ...,m, j = 1,2, ..., t
}

.
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Figure 6.1: Flow chart of selection process of a RSSWOR with t cycles and m = 3 for
domain specific estimation

6.3.1 Domain Estimation Under HPM Using RSSWOR

Let y[i] be the value of the study variable corresponding to the ith judgmental ranked unit from

population N. The values y[i] (for i = 1,2, ...,m) are assumed to be independently distributed

in domain k as samples are drawn from independent sub-populations and independent sets.

Under HPM the ordered population values can be modeled as:

y[i] = µk[i]+ εk[i] for i = 1,2, ...,N and k = 1,2, ...h, (6.3.1)
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where µk[i] is domain specific mean of the ith ordered realizations for domain k, εk[i] random

error term independently normally distributed with zero mean and variance σ2
k[i] for the kth

domain and h is the number of domains. The condition of zero mean and independence

of error term is true only if ranking is performed on some variable other than the study

variable. Hence, the ranking is assumed to be judgmental rather than perfect. The domain

membership variables denoted as dk[i]’s will not be much affected by ranking as it is binary

and independently distributed Bernoulli random variables. Now the mean and variance of

dk[i]y[i] can be obtained as

EM(dk[i]y[i]) = EM(y[i]|dk[i] = 1)p(dki = 1) = µk[i]θk (6.3.2)

and

VM(dk[i]y[i]) = θkσ
2
k[i]+θk(1−θk)µ2

k[i] = σ
∗2
k[i](say). (6.3.3)

The covariance between dk[i]y[i] and dk[ j]y[ j] for i 6= j is zero for all i, j∈U as y[i] (conditionally)

and dk[i] both are independent random variables as units are selected from different sets.

Following Chambers and Clark (2012) the expansion estimator for t̂E
yk[rss] under RSSWOR is

obtained as:

t̂E
yk[rss] =

N
tm ∑

l∈c
∑
i∈s

dki[i]lyi[i]l =
N
tm ∑

l∈c
∑
i∈sk

yi[i]l = Nθ̂kȳk[rss], (6.3.4)

where the notation ∑l∈c represents that summation is taken over cycles. Further, ȳk[rss] =

1
tm ∑c ∑i∈s dki[i]lyi[i]l is the RSSWOR mean for the kth domain and θ̂k is estimate of θk

obtained through RSSWOR. To obtain a best linear unbiased estimator for population total

tyk under RSSWOR, we write the expansion estimator as the linear combinations dki[i]yi[i] i.e.

t̂E
yk[rss] = ∑i∈s w[i]dki[i]yi[i], where w[i] are the weights associated with the ith ranked unit from

the ith set for predicting non-sampled units. Further

t̂E
yk[rss] =∑

i∈s
dki[i]yi[i]+∑

i∈s

(
w[i]−1

)
dki[i]yi[i]

= tyk[rss]+∑
i∈s

w∗[i]dki[i]yi[i],
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where w∗[i] = w[i]− 1 is the prediction weight corresponding to the ith sampled unit for

predicting non-sampled part of the population and tyk[rss] = ∑i∈s dki[i]yi. The corresponding

domain specific population total is tyk = tyk[rss]+ tykr, where tykr is the domain total for non-

sampled units. The prediction error for t̂E
yk[rss] is obtained as t̂E

yk[rss]−tyk =∑i∈s w∗[i]dkiyi[i]−tykr

The model bias of the t̂E
yk[rss] is

EM(t̂E
yk[rss]− tyk) = ∑

i∈s
w∗[i]EM(dki[i]yi[i])−∑

i∈s̄
EM(dki[i]yi[i])

BM(t̂E
yk) = θk

[
∑
i∈s

w∗[i]µk[i]− (N−m)µk
]
.

The bias vanishes only if

∑
i∈s

w∗[i]µk[i] = (N−n)µk. (6.3.5)

The model variance of prediction error can be obtained as

VM(t̂E
yk[rss]− tyk) = ∑

i∈s
w∗2[i]VM(dki[i]yi[i])+∑

i∈s̄
VM(dkiyi)−2Cov(∑

i∈s
w∗[i](dki[i]yi[i]),∑

i∈s̄
(dkiyi))

=
[
∑
i∈s

w∗2[i] σ
∗2
k[i]+(N−n)σ∗2k

]
.

The covariance term in variance expression vanishes as the the covariance between dki[i]yi

and dk j[ j]y j[ j] for i 6= j is zero. The problem is to minimize VM(t̂E
yk[rss]− tyk) with respect to

w∗[i] subject to restriction given in (6.3.5). The Lagrangian function L contains σ∗2k[i] and µk[i],

hence the optimum value involves these unknown parameters which make the estimation

complex. One possible solution is to carry with w∗[i] = N/tm and w[i] = 1−N/tm. For single

cycle i.e. t = 1 w∗[i] = N/m and w[i] = 1−N/m. The expansion estimator can be written as

t̂E
yk[rss] =

N
m ∑i∈s dki[i]yi[i] with variance

VM(t̂E
yk[rss]− tyk) =

[(N−n)2

n ∑
i∈s

σ
∗2
k[i]+(N−n)∑

i∈s
σ
∗2
k[i]

]
=

N(N−n)
n

σ
∗2
k −

(N−n)2

n ∑
i∈s

δ
∗2
k[i],

where δ∗2k[i] = θkµk[i]−θkµk.
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6.3.2 Domain Estimation Under GPM Using RSSWOR

Assuming that there exists a covariate whose values are known for all population so we

perform the RSSWOR in same way as performed early by adding the judgmental ranked

values on x if ranking is performed based on some other variable or the ranked values of x if

ranking is performed on x. The GPM for ranked data in the kth domain k can be defined as

y[i] = βkx[i]+ xγ∗

[i]εk[i] for i = 1,2, ...,N and k = 1,2, ...h, (6.3.6)

where γ∗ is a real constant assumed to be known or guessed in advance and βk is the domain

specific coefficient corresponding to the covariate x. The general prediction estimator given

in Valliant (2000) for GPM can be written under RSSWOR as

t̂g
yk[rss] = ∑

i∈s
dki[i]yi[i]+∑

s̄

(
β̂k[rss]xi

)
, (6.3.7)

where β̂k[rss] is the BLUE of βk under RSSWOR which is estimated as follow. For assuring

linearity, we can write β̂k[rss] as a linear combination of the domain specific responses dki[i]yi[i]

as β̂k[rss] = ∑i∈s ci[i]dki[i]yi[i], where ci[i] is the weight associated to the ith judgment ranked

unit in ith set to be obtained as a function of known auxiliary data from sampled as well as

non-sampled parts of the population. The model expectation (EM) and variance (VM) of β̂k

can be obtained as

EM(β̂k[rss]) = ∑
i∈s

ci[i]EM(dki[i]yi[i]) = βk ∑
i∈s

ci[i]xi[i]. (6.3.8)

Unbiasedness is obtained only if

∑
i∈s

ci[i]xi[i] = 1 (6.3.9)

and

VM(β̂k[rss]) = ∑
i∈s

c2
[i]VM(dki[i]yi[i]) = ∑

i∈s
σ
∗2
k[i]c

2
[i]x

2γ∗

i[i] (6.3.10)

The problem is to minimize VM(β̂k) subject to the constrain given in (6.3.9). The Lagrangian

function is again a function which involves unknown population parameters σ2
k[i], hence we
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can’t proceed with Lagrangian’s method to obtain BLUE of β. However directly minimizing

the sum of squared residuals under OLS method gives β̂k[rss] =
∑i∈s dki[i]x

1−2γ∗
i[i] yi[i]

∑i∈s x2−2γ∗
i[i]

. The BLUP

for domain total is then obtained as

t̂g
yk = ∑

i∈s
dki[i]yi[i]+

∑i∈s dki[i]x
1−2γ∗

i[i] yi[i]

∑i∈s x2−2γ∗

i[i]
∑
s̄

xi = ∑
i∈s

(1+u∗[i])dki[i]yi[i], (6.3.11)

where u∗[i] =
x1−2γ∗

i[i]

∑i∈s x2−2γ∗
i[i]

∑s̄ xi. The prediction error for t̂g
yk is given by

t̂g
yk[rss]− tyk = ∑

i∈s
u∗[i]dki[i]yi[i]− tykr. (6.3.12)

It is straight forward to show that (6.3.12) is unbiased with prediction error variance, given

by

VM(tg
yk[rss]− tyk) = ∑

i∈s
u∗2i[i]VM(dki[i]y[i]i)+∑

i∈s̄
VM(dkiyi)−2Cov

(
∑
i∈s

u∗i[i](dki[i]yi[i]),∑
i∈s̄

(dkiyi)
)
.

(6.3.13)

The covariance term in (6.3.13) vanishes as the the covariance between dki[i]yi[i] and dk jy j for

i 6= j is zero, where i ∈ s and j ∈ s̄. We know under GPM, EM(dki[i]yi[i]) = θkβkxi[i]. Further

VM(dki[i]yi[i]) =EM(dki[i]yi[i])
2−
{

EM(dki[i]yi[i])
}2

=p(dki[i] = 1)EM
(
y2

i[i]|dki[i] = 1
)
−
{

p(dki[i] = 1)EM
(
yi[i]|dki[i] = 1

)}2

=θk
(
β

2
kx2

[i]+ x2
[i]σ

2
k[i]

)
−
(
θkβkx[i]

)2

=θkβ
2
kx2

[i]+θkx2γ∗

[i]

(
σ

2
k−δ

2
k[i]

)
.

Substituting VM(dki[i]yi[i]) in (6.3.13) and simplifying, we get

VM(tg
yk[rss]− tyk) = θk(1−θk)β

2
kκ[1](x)+θkσ

2
kκ[2](x)−θk ∑

s̄
x2γ∗

[i] δ
2
k[i] (6.3.14)

=VM(t̂g
yk− tyk)−θk ∑

s̄
x2γ∗

[i] δ
2
k[i], (6.3.15)

where κ[1](x) = ∑i∈s u∗2i[i]x
2
i[i]+∑i∈s̄ x2

i and κ[2](x) = ∑i∈s u∗2i[i]x
2γ∗

i[i] +∑i∈s̄ x2γ∗

i Equation (6.3.14)

shows the superiority of the domain estimator under ranked set sampling over simple random
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sampling when units are taken without replacement. The rational behind using GPM as

working model is already debated in previous section.

6.4 Simulation Study

For the purpose of efficiency comparison, we conduct a Monte Carlo (MC) experiment

by generating a hypothetical population of size N = 1000. We generate the cumulative

probabilities p∗i from Uniform (0,1). The values of Xi =qgamma(p∗i ,a,b) and

di =qbinom(p∗i ,1,θk). The values of yi are obtained using the relationship yi = ρ2
kX +X γ∗

i ek

for γ∗ = 0.3,0.5,0.8 i = 1,2, ..,N, where e is an i.i.d error term, normally distributed with

zero mean and variance σ2
k i.e. ei =qnorm(p∗i ,0,σ

2
k). Further, qgamma, qbinom, qnorm are

used to denote the quantile points corresponding to the cumulative probabilities in Gamma,

Binomial and Normal distribution respectively. Note that the term Gamma distribution is

quiet different from that of the term used in the GPM. The GPM is named only because a

constant γ∗ is used in the power of x with error terms. While the Gamma distribution is a

widely used parametric distribution used for modeling the continuous random variables with

specific nature. The parameters ρk and σ2
k are assumed to be fixed at 0.8 and 5 respectively

for the domain of interest. A RSSWOR procedure is applied according to the algorithm given

in Section 6.3, the ranking is performed on the study variable itself for simplicity. The domain

specific estimators for population total under RSSWOR are obtained for HPM and GPM with

different choices of γ∗, t and m. A SRSWOR of size n = tm is also selected and obtained

the corresponding estimators for the purpose of comparison. Repeat both sampling process

5,000 times and obtain the expected squared prediction error (ESPE) of each estimator as a

measure of variation. The ESPE is defined as:

ESPE(t̂yk) =
1

sim ∑
sim

(t̂yk− tyk)
2, (6.4.1)

where sim denotes number of repeated samples selected from the population. The ESPE for

other estimators can be obtained after replacing t̂yk by the relevant estimators in (6.4.1). The

results are given in Tables 6.1. and 6.2.
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Table 6.1.: ESPE and relative efficiency of the proposed estimators

θk = 0.4 θk = 0.6

g t m ESPE(h) ESPE(g) RE(h) RE(g) ESPE(h) ESPE(g) RE(h) RE(g)

G(2,2)

6 331693.8 353110.8 1.2381 1.1630 309143.9 322310.4 1.6145 1.5486
5 8 253265.5 269743.2 1.2776 1.1995 232167.5 241735.7 1.6592 1.5936

0.3 10 209379.2 224181.2 1.2950 1.2095 178806.9 183985 1.7168 1.6685

6 224578.1 237778.4 1.2529 1.1833 212300.6 216776.5 1.5316 1.5000
8 8 190889.5 201099.5 1.2082 1.1469 157310.8 159819.4 1.6177 1.5924

10 163210.3 171288.9 1.2096 1.1525 128920.7 127291.5 1.5613 1.5813

6 356422.4 360932.6 1.2268 1.2114 332074.7 337501.1 1.5653 1.5401
5 8 268326.9 269879.3 1.2777 1.2704 241639.6 244941.5 1.6546 1.6323

0.5 10 218210.7 220666.8 1.2949 1.2805 184164.6 186341.9 1.7134 1.6934

6 240028.1 240455.1 1.2303 1.2281 220281.8 223504.3 1.5186 1.4967
8 8 195031.5 195487 1.2346 1.2317 163503.3 164515.8 1.5931 1.5833

10 166873 167336.3 1.2217 1.2183 130675.5 131120.2 1.5655 1.5602

6 441477.4 338738 1.2190 1.5888 416659.2 344536.7 1.5049 1.8200
5 8 333367.9 250583.3 1.2550 1.6696 302033.8 245398.5 1.5860 1.9521

0.8 10 263395.9 203821.3 1.2719 1.6437 226452.7 186784.6 1.6486 1.9987

6 291361.7 222221 1.2176 1.5965 270741.3 223717.6 1.4616 1.7689
8 8 232180 176981.3 1.2285 1.6116 197273.7 158817.1 1.5460 1.9204

10 191866.4 148635.7 1.2362 1.5958 152526.9 124921.4 1.5558 1.8995

G(2,4)

6 150863.75 151060.2 1.2261 1.2245 185436.58 195195.5 1.6690 1.5855
5 8 112879.93 114920.5 1.2422 1.2201 133153.72 142912.5 1.7567 1.6367

0.3 10 89289.22 88224.8 1.2886 1.3042 99837.92 104674.2 1.8231 1.7389

6 81425.81 80551.97 1.1710 1.1838 119466.76 123532.5 1.6211 1.5678
8 8 59923.2 58262.28 1.2109 1.2454 86093.94 89846.6 1.7230 1.6510

10 49741.05 49076.52 1.1676 1.1834 66437.85 67725.47 1.7078 1.6754

6 126872.3 128743.95 1.1811 1.1640 155029.78 157980.33 1.6096 1.5796
5 8 94889.47 96906.3 1.2116 1.1864 111830.99 114188.98 1.6924 1.6574

0.5 10 75021.07 75749.28 1.2509 1.2389 83646.08 85065.56 1.7567 1.7274

6 78302.49 78947.91 1.2492 1.2390 99659.11 101310.61 1.5679 1.5424
8 8 60718.05 61363.78 1.2185 1.2057 72496.54 73060.64 1.6542 1.6415

10 50506.57 50733.44 1.1769 1.1717 55729.97 55941.56 1.6514 1.6452

6 108138.26 91769.56 1.1499 1.3550 134541.45 110531 1.5188 1.8487
5 8 80863.53 69788.35 1.1985 1.3887 97534.7 78939.87 1.5931 1.9683

0.8 10 63011.9 54015.68 1.2442 1.4515 72582.65 59100.69 1.6595 2.0381

6 67933.38 57567.62 1.2042 1.4211 86363.87 70807.01 1.4796 1.8047
8 8 52140.77 45164.05 1.1949 1.3795 62949.22 50473.72 1.5576 1.9425

10 43881.83 38471.23 1.1347 1.2943 48314.63 38886.16 1.5665 1.9464

115



Table 6.2.: ESPE and RE of the proposed estimators (continued)

θk = 0.4 θk = 0.6

g t m ESPE(h) ESPE(g) RE(h) RE(g) ESPE(h) ESPE(g) RE(h) RE(g)

G(4,2)

6 779609.6 772909.2 1.1080 1.1176 617420.7 624585.5 1.4924 1.4753
5 8 689467.6 682327 1.0949 1.1063 501409.9 506820.1 1.4829 1.4671

0.3 10 627567.4 618805.8 1.1196 1.1354 416386.4 417869.9 1.4980 1.4927

6 630602.1 623380.5 1.1395 1.1527 469790.1 471951.5 1.3895 1.3832
8 8 580623.1 570195.1 1.0858 1.1057 375296.4 374426.6 1.4333 1.4366

10 561304.2 552892.1 1.0418 1.0577 335271.5 333066.9 1.3502 1.3592

6 835957.1 837672.8 1.1314 1.1290 750443.8 755013.2 1.5296 1.5203
5 8 722852.9 725950.9 1.1113 1.1065 583482.4 586896.2 1.5565 1.5474

0.5 10 637584.8 637964.3 1.1413 1.1406 465411.7 467497.9 1.5968 1.5897

6 642117.6 643071.4 1.1662 1.1644 539337.2 542087.4 1.4506 1.4432
8 8 566984.4 567459.8 1.1215 1.1206 421467.2 421697.4 1.4966 1.4958

10 543438.1 543437.5 1.0569 1.0569 360967.6 360358.4 1.4306 1.4331

6 1073696.6 1000057.1 1.1410 1.2250 1146190 1029564 1.5512 1.7269
5 8 861808.7 812074.1 1.1522 1.2228 854952.2 771923.9 1.6055 1.7782

0.8 10 720264.6 676716.1 1.1826 1.2587 649367 587369.6 1.6736 1.8502

6 734504.4 691629.7 1.2044 1.2791 643511.8 580876.2 1.4562 1.6132
8 8 612651.2 582162.6 1.1574 1.2180 495917.8 453378.1 1.4561 1.5928

10 554142.3 529417.6 1.0916 1.1426 396054.2 362250.9 1.4413 1.5758

The ESPE and RE for three different varieties of Gamma distribution G(a,b), two choices

of t, three choices of m, three values of the constant γ∗ and two values of θk are presented

in Tables 6.1. and 6.2.. One can also observe that the behavior of the domain specific total

estimators for all choices of mentioned parameters and constants. Apart from these constants,

the efficiency of domain specific estimates also depends on the homogeneity of the domain

and the relationship between the study variable and the auxiliary variable within domain.

The domain specific correlation can only be observed once a sample is selected. Although

the correlation between the study variable and the auxiliary variable for whole population

is fixed in advance. The ESPE for both models (HPM and GPM) decreases with increase

in the set sizes m keeping other things constant. For fixed set size m, the ESPE for HPM

increases with increase in γ∗. For example, in domain with θk = 0.4 and t = 5, when m = 10

MSE(h)= 20.93× 104 for γ∗ = 0.3, 21.82× 104 for γ∗ = 0.5 and 26.34× 104. While for

m = 6 the ESPE(h) values are 33.17× 104, 35.64× 104 and 44.14× 104 respectively for

m = 6. For GPM, the ESPE is slightly higher for γ∗= 0.5 as compared to other two choices of
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γ∗. The relative efficiency of the domain specific total estimator also increases with increase

in set size m for fix choices of other constants. The relative efficiency for both HPM and

GPM are higher for larger domains as compared to smaller ones. For G(2,4), m = 6, t = 5

and γ∗ = 0.3 the RE(h)= 1.23 and RE(g)= 1.22 when θk = 0.4. While RE(h)= 1.67 and

RE(g)= 1.58 respectively for θk = 0.6. Finally, comparing the ESPE and RE for different

data generating distributions, it is found that the efficiency of domain specific RSSWOR

estimators decreases with decrease in variance of the auxiliary variable x i.e. a/b2.

6.5 Conclusion

The estimation of sub-population total under a new version of ranked set sampling for

obtaining a without replacement sample with GPM (general form of proportional population

model) has been dealt in this chapter. Figure 6.1 presented a picture of the RSSWOR sampling

layout which assumes that the finite population is coming from an infinite superpopulation

via some stochastic process with finite mean and variance. Domain membership variable

was observed from selected ranked set sample. The model relationship between the study

variable and the auxiliary variable for whole population was used to predict the non-sampled

values to establish a domain specific estimator for total. The mathematical expressions and

Monte-Carlo experiment both support the superiority of the domain specific predictor under

RSSWOR over the total predictor under SRSWOR for GPM as well as HPM. The domain

specific estimators are widely used in epidemiology and public health where one need to

find total exposure to certain event for different sub-populations. For example, the patients

suffering certain disease can be ranked according to their age and total number of infections

are recorded from the patients belonging to a certain suburb. More sophisticated small domain

estimators can be constructed using multi-level fixed effect and random effect models.
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Chapter 7

Application on Pakistan Demographic and Health

Survey Data 2017-18

7.1 Outline

Demographic Health Surveys (DHS) contain very useful and detailed information about the

demographic characteristics and the factors affecting them. The DHS data can be utilized to

predict the average rates of occurrence of vital events for non-sampled part of the country’s

population using information about appropriate available covariates. In this study, we first

see the effect of various socio-demographic factors on births by fitting regression models

using Pakistan Demographic Health Survey (PDHS) 2017-18 data. Poisson regression and its

extensions (Negative Binomial (NB), Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative

Binomial (ZINB)) are used to model the birth data. The births occurred during the time

periods of 1 year, 3-years and 5-years are taken as the responses for each model. Both

classical and Bayesian estimations are performed for drawing statistical inference about

the fertility models. We then show how the model-based approach works in efficiency

improvement for estimation of birth rates (Age specific fertility rates (ASFR), total fertility

rate (TFR), general fertility rate (GFR) and gross reproduction rate (GRR) ) for ever-married

women after converting birth data into person-years data. The performance of model-based

rates are examined using a boot strapped sampling algorithm. The country and regional

level predictive estimates for fertility rates (i.e. TFR, GFR and GRR) are found appropriate.

While the ASFR are over-estimated for some age groups and under-estimated for others. In

Section 7.2, we give a brief introduction of the application. Section 7.3 provides a review
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on estimation of fertility indicators from DHS data sets using already developed packages.

Section 7.4 delineates some available regression models for number of births. Sections

7.5 and 7.6 give model estimation and results under frequentist and Bayesian frameworks

respectively. Section 7.7 applies model-based techniques for estimating birth rates. A short

conclusion is given in Section 7.7.

7.2 Introduction

DHS are nationally representative household surveys which have been conducting since

1984 in more than 85 countries. The DHS were basically designed to explore demographic,

family planning and fertility data collected in the Contraceptive Prevalence Surveys (CPS)

Chamratrithirong et al. (1986) and World Fertility Surveys (WFS) Lightbourne et al. (1982),

and to provide a necessary resources for the monitoring and evaluation of vital statistics

and health indicators in developing countries. The DHS collect data on a wide range

of objectives with a focus on fertility indicators, maternal and child health, reproductive

health, nutrition, mortality and health behavior in adults. The main advantages of the

DHS are high response rates, employment of qualified and trained interviewers, national

coverage, worldwide standardized data collection procedures and consistent material over

time, comparable across populations cross-sectionally as well as over time.

7.3 Estimation of Fertility Indicators from Survey Data

The direct estimation methods are widely used to estimate fertility indicators from household

surveys. These methods were initially used by the World Fertility Survey (WFS), which

conducted from 1972 to 1984, and afterwards by the DHS Program. The approaches utilized

by WFS/DHS have been well documented in several articles like Croft et al. (2018); Moultrie

et al. (2013); Hill (2013). The approaches have later been used by other household surveys

(HS) programs, such as the multiple indicator cluster surveys (MICS). In the direct estimation

methods, data about the 3 or 5 years birth history are gathered and used for the calculation of

fertility indicators UN (2011).

In DHS surveys, the data on birth histories (month and year of birth of each child), sex

of each child and age of each surviving child are used for calculating fertility rates. All
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the indicators are calculated as occurrences/exposure rates because the rates are calculated

from birth histories collected in the survey, where the numerator is the number of births in

certain time period usually 3 or 5 years and the denominator is the population exposed to

risk of the birth within the reference period. In this section, we discuss the results obtained

through DHS.rates package in R for PDHS 2017-18 data. The detail definitions and formula

for age-specific fertility rates (ASFR) are given in introduction section (see Chapter 1).

The definitions of the fertility indicators given in introduction section and methods of their

calculation can be found in the Guide to DHS Statistics Croft et al. (2018). In Table E.1

(see Appendix E), the widely used birth indicator, ASFR per thousand women, is given

in Column 3 corresponding to seven standard age groups. In addition to the estimates of

ASFR for the seven age groups, the table also provides standard errors (SE), number of

exposures (N), weighted number of exposures (WN), design effect (DEFT), relative standard

error (RSE) and lower and upper bounds of confidence interval. The results are obtained

with the reference period of length 3 years (36 months), the end date of the interview for

Islamabad Capital Territory (ICT) was 22 November 2017 and the average reference period

was 7 May 2016 in century month code (CMC). Table E.2 (see Appendix E) provides ASFRs

for 6 different regions (four provinces, ICT and FATA) excluding Gilgit-Baltistan and Azad

Jammu and Kashmir (AJK)1. From Table E.2, we see that ASFR corresponding to 15-19

age group is highest for FATA as compared to other regions i.e. 229 births per 1000 women.

While ICT has second highest ASFR in age group 15-19 with 219 birth per 1000 women.

The lowest early age (15-19) reproductivity is observed in Khayber Pakhtun Khwah (KPK)

which is 184 births. For detail visual comparison, readers are referred to stat.compiler page

of DHS program website. After computing ASFR the computation of TFR. GFR and GRR

is straightforward and the detailed description about the computation of these measures are

given in introduction section. Regional level estimates of TFR, their standard error (SE),

cell frequencies and 95 % confidence interval for the true TFR’s are given in order from

left to right columns of Table E.4. We can observe highest total fertility rate in federally

administered tribal areas (FATA) (about 6.35 births per women) and lowest in ICT (4.9 births

per women). The last row of Table E.4 shows the total fertility at national level. From

PDHS 2017-18 dataset, using DHS.rates package, we obtain GFR at sub-national level.

Sub-national level estimates of GFR, their standard errors (SE), cell frequencies and 95 %

1The results in PDHS report PDHS (2019) are presented by excluding Azad Jammu and Kashmir and Gilgit
Baltistan when it refers to Pakistan.
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confidence intervals for the true GFR’s are given in order from left to right columns of Table

E.5 (see Appendix E). We can observe highest fertility rate in FATA (about 226 births per

1000 women) and lowest in ICT (about 163 births per 1000 women). The widest confidence

interval for estimated GFR is observed for FATA with around 55 births and the narrowest one

for Punjab with around 20 births. The general fertility at national level is given in last row

of Table E.5. The GRR are not included in PDHS report as its calculation is not included in

DHS.rates package.

7.4 Regression Models for Number of Births

After completing the hectic work on collecting data related to fertility, DHS reports only

provide tabulation of cell frequency and visual display of the relationship between the fertility

indicators (number of birth during a specified period per women) and other demographic

and socio-economic factors (Region, Sex, Marital Status, Age, Education etc). Apart from

reaching to a valid statistical inference, estimation of parameters and constructing confidence

intervals on the basis of estimated rates, one can also develop regression models for number

of births and estimate them to observe the relationship between number of births and its

candidate determinants. Birth histories during specific period constitute the primary source

for the majority of research on fertility in developing countries like Pakistan. Methods for

analyzing births data differ substantially depending on the type of the study (descriptive or

explanatory). The ASFRs and TFR found in survey reports and fertility trend estimates are

calculated on classical demographic analysis methods. Explanatory studies utilize regression

models: logistic regression model Angeles et al. (1998), Poisson regression model Mencarini

(1999) and event history methods Raftery et al. (1995). Although the principle has rarely been

described in demographic analysis manuals, regression methods, specially Poisson regression,

can still be practiced to calculate classical demographic measures such as TFR and other

fertility rates Powers and Xie (2008). The main reason of practicing regression models, in

fact, makes possible to include variables effecting fertility measures Zeileis et al. (2008).

Schoumaker and Hayford (2004) used the 1998–99 Burkina Faso DHS data to explain the

estimation of TFR and ASFRs using individual data with Poisson regression. The number of

births over 5-years period preceding the interview (variable predefined in the DHS WOMEN

recode files PKIR71) is taken as the outcome variable and the 5 years age groups (as dummy
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variables) in the model controlling for the length of exposure (5-years corresponding to each

woman) using a term (offset). Average number of births is obtained by exponentiating the

coefficients for each of the seven age groups without introducing intercept, and computing the

TFR as the sum of the rates multiplied by five. Fitting an appropriate statistical model gives a

clear picture of factors effecting births and prediction of births for non-sampled geographical

units. One of the important assumptions of linear regression model is that the model residual

error follows a normal distribution. This assumption is often met through transformation of

the response variable when a continuous response variable is skewed. However, when the

response variable is categorical or discrete but not continuous a simple transformation can’t

produce normally distributed residual error Gardner et al. (1995); Long (1997). Generalized

Linear Models (GLMs) are the models in which outcome variables have a distribution instead

of normal which contradict to the Linear regression models, where response variables are

assumed to follow normal distribution. Because GLMs have categorical variables of interest

such as “Yes’ /“No" responses; or belonging to Groups A, B and, therefore, do not have

full range i.e. −∞ to +∞. Hence, the relationship between response variable and predictor

variable may not be linear.

Let y be the observed response corresponding to a random variable Y whose values

are unknown for a finite population of size N indexed as U = {1,2,3, ....,N}. In matrix

notation y = (yi, i∈U) be the realized stochastic vector of Y = (Y i, i∈U) under model-based

approach. Suppose a sample s = {1,2,3, ...,n} of size n is drawn from the finite population

U using a sampling design(SD) and s̄ = (1,2,3, ...,N− n) be the set of index attached to

the values of units that are not indexed in s. For a given sample s, we can rearrange the

population vector as y = (yT
s ,y

T
s̄ )

T , where ys and ys̄ be the vectors of n sampled and (N−n)

non-sampled values of the study variable respectively. The underlying superpopulation model

is expressed as:

Y = Xβ+ ε (7.4.1)

where X is the data matrix containing p regressors including intercept and ε be the vector of

random error assumed to be distributed normally with mean vector 0 and variance-covariance

matrix Σ. Following sub-sections cover some generalized linear regression models which we

use as working model for births per women during 1, 3 and 5-years periods prior to interview.
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7.4.1 Poisson Regression Model

When the response variable is the number of occurrences of an event, the distribution of

counts is discrete and is bound to non-negative integered values. Researchers might face

one of the two problems while applying an ordinary linear regression model to such type of

data. First, often such count data has positively skewed distribution with many observations

having value 0. With a large number of 0’s in the data set, one can’t transform such skewed

distributions into normal. Second, it is quite possible that the regression model produces

negative predicted values which contradicts with the theory Cameron and Trivedi (2013).

Another alternative method is to use a Poisson regression model or its extensions. The poisson

model and its alternates have a number of advantages over an ordinary linear regression

model. Poisson regression handles responses with skewed, discrete choice and non-negative

values. A Poisson regression model works similar to ordinary linear regression model, with

two exceptions. Firstly, it assumes that the error term has Poisson distribution instead of

a normal distribution. Secondly, a Poisson regression models the natural logarithm of the

response variable as a linear function of the coefficients rather than simply modeling the

response variable as a linear function of the regression coefficients. A Poisson Regression

model (PRM) is a GLM which is used to model data with response variable as counts. To

proceed, it is assumed that the logarithm of mean values (rates) can be modeled into a linear

form with some unknown parameters. In Poisson regression, the non-linear relationship is

transformed into linear by using the log link function. This is why a Poisson Regression

model is called the generalized log-linear model. The mathematical form of PRM is

log
(
y
)
= Xβ (7.4.2)

which is equivalent to

y = exp
(
Xβ
)
. (7.4.3)

The coefficients vector β is calculated using Maximum Likelihood Estimation (MLE) or

maximum quasi-likelihood estimation. Let µ be the rate parameter which is also the dispersion
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parameter of Poisson distribution then we can write

log
(
µ
)
= Xβ (7.4.4)

The exponent of the coefficient β j ( jth component of β for j = 0,1,2, ..., p) for explanatory

variables (X j) thus shows the relationship between the number of births per women for which

the explanatory variable has a specified value and the number of birth per women for which

the variable has the specified value minus one, all other things remain constant.

7.4.2 Negative Binomial (NB) regression model

The Poisson regression model assumes that the error term (consequently responses for fixed

covariate values) has same mean and variance which is not usually true in practice. In many

cases, the mean of the error is smaller than its variance. There are two modified versions of

the Poisson model that work well for the case of data with over-dispersed error term. In over-

dispersed Poisson models, an extra parameter is included which tells how much the variance

is larger than the mean. An alternative method for modeling the data with over-dispersed error

term is to fit a negative binomial model Ver H. and Boveng (2007). The Negative binomial

distribution is a version of the Poisson distribution where the distribution’s parameter is

considered as a random variable. The variation in this parameter can be considered for

a variance of the data that is larger than the mean. In NB distribution, we require more

parameterization to get a form which is appropriate to our regression. Following the notation

given in Jackman (2000), we parameterize the NB density for ith observation with probability

pi and r. The former is known as the success parameter, and for ith observation it is defined

as pi =
r

r+µi
, where µi satisfies the relation given in Equation (7.4.4) as in the Poisson model.

The later is the over-dispersion parameter (≥ 0), it is equal to 1 in the Poisson distribution

(i.e. there is no over-dispersion). The maximum likelihood estimates of the coefficients

are obtained using MASS package in R. The detail about parameter estimation, model

assumptions and validity of estimates can be found in (Cameron and Trivedi, 2013, page 326)

and Hilbe (2011).
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7.4.3 Zero-Inflated Poisson Model

As we already discussed that the count variables often follow a Poisson or one of distributions

related to it. The Poisson distribution is based on the assumption that each count is the

outcome of the same Poisson process i.e. a random process where events are equally likely

and independent. If such count variable is used as the responses of a regression model,

one can opt for Poisson regression to estimate the effect of predictors on the number of

occurrence of events. But the Poisson regression model has very severe assumptions. One

mostly violated assumption is the equality of mean and variance. The cases with responses

having large variance and many 0’s as well as a few very large values, the negative binomial

model as an extension of Poisson handles the extra variance. But sometimes there may exist

too many zeros than a Poisson would expect to predict. In such cases, a better option is to

use Zero-Inflated Poisson (ZIP) model Atkins et al. (2013). In ZIP models, we assume that

some zeros occurred by a Poisson process and some were not even able to have the event

occur. Hence two processes work in ZIP: one determines whether the individual is eligible

for a non-zero response and the second finds the count of that response for individuals who

are eligible. The ZIP model runs two regression models simultaneously. A logistic (or probit)

model is used to determine the probability of being eligible for a positive count and a Poisson

model is used to model the size of the counts for eligible individuals with positive value.

Both models utilize the same predictors, but with separate estimates for their coefficients. In

this way, the predictor variables can have quite different effects on the processes. While a

ZIP model needs it to be theoretically reasonable that some individuals are not eligible for a

count. Zero-Inflation Poisson (ZIP) for response y is defined as:

P(y) =

θ+(1−θ)Pois(0|µ), if y = 0;

(1−θ)Pois(y|µ), if y≥ 0

where θ is the probability of occurring false values (zeros). Hence there are two models

coupled together (a mixture model) to give an overall probability:

(i)-when a response is zero (i.e. yi = 0), it is the probability of getting a zero plus the

probability of a true value times probability of choosing a value of zero from a Poisson

distribution with parameter µ and

(ii)-when a response is greater than 0, it is the probability of a true value times the probability
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of drawing that value from a Poisson distribution with parameter µ.

This definition indicates that the Poisson parameter µ is same for both the zeros and non-zeros

components. The model of zero values are used for essentially investigating whether the

likelihood of false zeros is related to the linear predictors. The greater than zero model,

then, investigates whether the counts (non-zero responses) are related to the linear predictors.

However, typically, we are less interested in modeling determinants of false ‘0’. It is better

that the likelihood of false ‘0’ be unrelated to the linear predictors. For example, if inflated

(false ‘0’) are due to issues of detectability (i.e. individuals are present, just not detected),

then the detectability is not related to experimental treatments is considered as better. Any

detectability issues same across all treatment levels is the most favorite situation. The expected

value and the variance of the response y for a ZIP model are given by: EM(yi) = µ(1−θ)

and VM(yi) = µ(1−θ)× (1+θµ2). The model fitting requires an iterative process which is

performed using MASS package in R. The detail about derivation and application of ZIP

model is available in Cameron and Trivedi (2013).

7.5 Model Estimation Under Frequentist Framework

The birth data file (PKBR71FL.DTA) from PDHS 2017-18 is taken for data analysis. The

detail about data collection mechanism, field work, training of staff and pretest has been

discussed in PDHS (2019). We include key variables including demographic characteristics,

socio-economic status and variables related to family planning as regressors. Before applying

the different models to DHS data, we describe variables which we use in the model in Tables

7.1. and 7.2.. The visual display of number of birth for three time periods 1, 3 and 5 years.

Panels (a), (b) and (c) of Figure 7.1 provides histogram for births occurred during 1-year,

3-years and 5-years period prior to the survey. Hence all three responses depict highly

departure from normality so ordinary linear regression is not possible. One can observe that

the number of births during 1-year period includes highest number of zeros than other two

counts. The number of births during 5-year period more tends to follow a Poisson distribution

without access of zeros.
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Figure 7.1: Histograms for number of births during different periods

Figure 7.2 provides scatter plot reflecting the relationship between age of women and

number of birth during 1, 3 and 5-years periods prior to interview on Panels (a), (b) and (c)

respectively. The X-axis consists of responses and Y-axis corresponding frequencies. This

relation is also checked for urban and rural areas with different representations (defined on

most top-right corners of each diagram). One can infer the behavior of the plot of births

versus age is almost same for urban and rural areas.
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Figure 7.2: Relationship between Age and Births

Ordinary linear regression models usually use ordinary least squares (OLS) technique

for the purpose of parameter estimation. For data with count responses, the regression

model utilizes maximum likelihood method for estimation of the parameters. It seeks

for the values of the regression coefficients with the highest probability (i.e. maximum

likelihood ) of observing the data at hand. Beaujean and Morgan (2016) provided a

particularly understandable introduction of maximum likelihood estimation. The estimates

of all coefficients are obtained by using an iterative set of procedures for reaching to the

parameter estimates. All the maximum likelihood estimation results are converged and found

a unique set of values for each coefficient (parameter). After going through literature and

getting evidence from histogram we developed a Poisson regression model for three different

periods and results are reported in 3rd column of Tables 7.3. and 7.4..

The results provide sufficient evidence that the estimated coefficients for all variable except

of R_Sindh, Prof_tech and Prof_Agr have significant effect on number of 1-year births. The

variable Res_Age, Residence_new and Age_husbund shows negative estimated coefficients

for Poisson model which supports the argument that the number of births during 1-year

period to a woman decreases with the age of couple and also higher for rural areas. The
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number of births for urban area are exp(−0.1021) = 0.903 times the number of birth in rural

areas keeping other factors constant.
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Table 7.1.: Variable Description

Variables ID Variable Name Variable Description
v020 EMS Dummy variable: 0=Never married 1=Ever married sample
v001 CL_num Cluster number (1:528)
v002 HH_num Household number (1:28)
v003 RL_num Respondent’s line number
v012 Res_Age Respondent’s age at he time of interview 15:49
v024 Region Region: 1=Punjab, 2=Sindh, 3=KPK, 4=Balochistan,

5=GB, 6=ICT, 7=AJK, 8=FATA
R_Sindh Dummy variable: 0=Other Regions, 1=Sindh
R_KPK Dummy variable: 0=Other Regions, 1=KPK
R_Blch Dummy variable: 0=Other Regions, 1=Balochistan
R_ICT Dummy variable: 0=Other Regions, 1=ICT
R_FATA Dummy variable: 0=Other Regions, 1=FATA

v025 Residence Dummy variable: 0=Rural, 1=Urban
_new

v106 Edu Highest educational: 0=No education, 1=Primary,
2=Secondary, 3=Higher

v191 WI Dummy variable: 0=-ve Wealth Index, 1=+ve Wealth Index
i.e. 1 v191>0,0 otherwise

v201 Num_mem Total children ever born 0:20
v203 Num_daughter Number of Daughters at home 0:20
v221 Mar_First_int Marriage to first birth interval (months) 0:350

0=when v221=996
and Negative interval (i.e. birth before marriage)

v312 contraceptive Current contraceptive method
_method 0=Not using, 1=Pill, 2=IUD, 3=Injections,

4=Diaphragm, 5=Male condom,
6=Female sterilization, 7=Male sterilization,
8=Periodic abstinence, 9=Withdrawal, 10=Other traditional,
11=Implants/Norplant, 12=Prolonged abstinence,
13=Lactational amenorrhea (LAM), 14=Female condom,
15=Foam or jelly, 16=Emergency contraception,
17=Other modern method, 18=Standard days method (SDM),
19=Specific method 1, 20=Specific method 2, (m) 99=Missing

Cont_Pill Dummy Variable: 1=Pill, 0=otherwise
Cont_IUD Dummy Variable: 1=IUD, 0=otherwise
Cont_Inj Dummy Variable: 1=Injections, 0=otherwise
Cont_Female Dummy Variable: 1=Female sterilization, 0=otherwise
Cont_Male Dummy Variable: 1=Male sterilization and Male condom,

0=otherwise
Cont_with Dummy Variable: 1=Withdrawal,
_draw

0=otherwise
Cont_other Dummy Corresponding to remaining categories Leaving

“Not Using" as base category
v239 Preg_term Pregnancies terminated before calendar beginning

Content 2 0=No 1=Yes (m) 9=Missing
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Table 7.2.: Variable Description (Continued )

Variables ID Variable Name Variable Description
v717 Prof_res Respondent’s Occupation (grouped): 0=Not working,

1=Professional/technical/managerial, 2=Clerical, 3=Sales,
4=Agricultural - self employed, 5=Agricultural - employee,
6=Household and domestic, 7=Services, 8=Skilled manual,
9=Unskilled manual, 98=Don’t know (m) 99=Missing

Prof_tech Dummy Variable: 1=Professional/technical/managerial
or Clerical, 0=otherwise

Prof_Agr Dummy Variable: 1=Agricultural - self employed,
0=otherwise

Prof_Other Dummy corresponding to remaining categories taking
“Not working as base"

v730 Age_husbnd 3 Husband/partner’s age 15:94
v209 Birth_1y Births in past year (1:4 with 0 for no birth)
v238 Birth_3y Births in last three years (1:4 with 0 for no birth)
v208 Birth_5y Births in last five years (1:6 with 0 for no birth)

The R-out put returned estimates of parameters (Est), standard errors (Std), and significance

indication. The likelihood value, or its transformations (like AIC or BIC) are then used for

comparison of the fitting power of competing models Cameron and Trivedi (2013). The

variable on region of the respondent is reconstructed into 5 dummies leaving Punjab as the

base category. For interpreting the dummies, we follow recommendations given in Atkins

and Gallop (2007). The dummy variable corresponding to the province Khyber Pakhtunkhwa

(KPK coded as R_KPK) has negative estimated coefficient (−0.0926) with a standard error of

0.035 indicating lower birth exposure in KPK (R_KPK=1) as compared to Punjab (R_KPK=0)

setting all other regressors to zero. While this coefficient is −0.088 and −0.05 with standard

errors 0.021 and 0.015 for 3 and 5-years periods respectively for Poisson model. Similarly,

one can distill from Tables 7.3., 7.5. and 7.7. that after adjusting for other variables the average

numbers of births during 1, 3 and 5-year period are respectively exp(−0.0926) = 0.9115,

exp(−0.088) = 0.92 and exp(-0.05) = 0.96 times of the birth in Punjab. The 95 % confidence

interval for the true effects are (−0.0926± 1.96× 0.035, (−0.088± 1.96× 0.021 and

(−0.05±1.96×0.015, i.e.(−0.1612,−0.024), (−0.12916,−0.04684) and (-0.079, -0.021) .

The 95% confidence interval for the relative rates (exponentiated estimates) are (0.851,0.976),

2The values of Preg_term are reported after imputing 0 missing cases within 1:13123 and 1 in remaining
37373 cases. Note that this division is made by dividing the data in ratio 4676× (50495)/(13317+4676) and
13317× (50495)/(13317+4676)

3Missing entries Age_husbnd is imputed by median age of the observed responses
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(0.879,0.954) and (0.924,0.98).

The regression coefficient associated with wealth index (WI) is approximately -0.13 for

all models. As WI is dummy coded, the negative sign shows that the average number of

births for those who have positive WI is smaller than for those who have negative WI. Since

exp(-0.13)=0.88, i.e. the number of births during 1,3 and 5-years periods for those who have

positive WI is 88% of those who have negative WI. Similarly, for all dependent variables,

the coefficients for all dummies corresponding to different groups of the contraceptive

methods turn negative values denoting the number of births for those who use any one of

the contraceptive method has smaller number of birth than those who don’t use any of the

contraceptive method at all. For example, the average number of births to the women who

use Cont_Pill is exp(−0.358) = 0.70 of the births to the women in base category i.e. that

the number of births during the 1-year period for those women using Contraceptive pill is

70% of the number of births to the women who don’t use any method at all. Further, the

ratio of births during 1-year period between those who use male contraceptive and those

who use female contraceptive is 0.2383 with exp(−0.102+0.77885) = 1.97 showing that

the number of births during 1-year period for those who use male contraceptive method

have more birth than those who use female contraceptive method. Same interpretation for

the coefficients corresponding to contraceptive methods can be done with slight change in

the estimated values and standard errors. Further, the average number of 1, 3 and 5-year

births (exponentiated coefficients) to the women belonging to agriculture background are

respectively 1.07 , 1.06 and 1.123 times higher than those who don’t work.

The regression coefficient for dummy corresponding to pregnancy termination

(Preg_term_new) is insignificant, hence no interpretation is made. The (1-α)% confidence

interval corresponding to each exponentiated coefficient can be constructed after obtaining

confidence interval for the coefficients with given standard error in Tables 7.3.-7.8.. The

method introduced in Atkins and Gallop (2007) of interpreting dummy variables can’t be

extended for interpretation of the coefficients corresponding to continuous predictors. For

the education level variable, the regression coefficient is 0.095. To see one level change,

we put4= 1 into the formula of percentage i.e. 100× [0.095×1−1] = 10 indicating that

there is a 10% (7.6%, for 3-years births 5.6% for 5-years) increase in the expected number

of 1-year births for a unit increase in education level (see Atkins and Gallop, 2007). For the

number children already living the same household, the regression coefficient is 0.025 with
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100× [exp(0.025× 1)− 1] = 25.3 showing that there is a 25.3% increase in the expected

number of 1-year birth for each additional family child. The percentage change in births

during 3-year and 5-years periods prior to interview have not been reported here for the sake

of space. Similarly, the percentage change in the expected births during 1-year period with

change in one unit in the variable Res_age, Age_husbnd, Num_daughter, Mar_First_int

are 9.7%, 1.64%, 2.5%, 26.905% and 0.5%. The percentage change in the expected

births during 3-years period with change in one unit in the variable Res_age, Age_husbnd,

Num_daughter, Mar_First_int are 8.9%, 1.41% 2.14%, 23% and 0.5% respectively. The

percentage change in the expected births during 5-years period with change in one unit in the

variable Res_age, Age_husbnd, Num_daughter and Mar_First_int are 7.9% , 1.14%, 1.78%

and 22.4% respectively.
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Figure 7.3: Display of exponentiated coefficients for Poisson model

Figure 7.3 displays a picture of the effect of factors, used in this study, on births occurred

during 1, 3 and 5-years periods. The bar centers are shown as circles, rectangle and rhombus

for representing models with births during 1, 3 and 5-years periods respectively. The length

of bars show the variation in estimates while the centers show the exponentiated average

change in births. The vertical line on center divides the variables with negative and positive
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coefficients. The variables with insignificant effects are very close to the vertical line. The

bars corresponding to 1-year births for Con_IUD and Con_Female show a highly significant

decrement in birth while using these contraceptive methods.
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Table 7.3.: Regression model for number of births during 1-year

Poisson NB ZIP-Poisson ZIP-Inflation

(Intercept) Est 1.68026 1.70258 0.96482 -18.47578
Std 0.05967 0.06106 0.06771 1.25260
Sig *** *** *** ***

Res_Age Est -0.10208 -0.10253 -0.07634 0.46323
Std 0.00267 0.00272 0.00299 0.02889
Sig *** *** *** ***

Residence_new Est -0.10463 -0.10624 -0.06093 0.81639
Std 0.02421 0.02470 0.02555 0.22871
Sig *** *** * ***

Age_husbnd Est -0.01655 -0.01682 -0.01034 0.13715
Std 0.00212 0.00216 0.00222 0.01671
Sig *** *** *** ***

R_Sindh Est 0.00368 0.00292 -0.04083 -0.61598
Std 0.03086 0.03151 0.03289 0.28808
Sig *

R_KPK Est -0.09266 -0.09318 -0.04247 1.24354
Std 0.03516 0.03585 0.03735 0.28222
Sig ** ** ***

R_Blch Est -0.12340 -0.12235 -0.22139 -3.97459
Std 0.03538 0.03608 0.03633 0.63189
Sig *** *** *** ***

R_ICT Est 0.10053 0.10079 0.13389 0.32867
Std 0.04818 0.04915 0.05374 0.38977
Sig * * *

R_FATA Est -0.12388 -0.12399 -0.13611 -0.40298
Std 0.04110 0.04194 0.04245 0.48062
Sig ** ** **

Edu Est 0.09503 0.09517 0.08517 0.01055
Std 0.01258 0.01285 0.01336 0.10755
Sig *** *** ***

WI Est -0.12886 -0.13133 -0.06595 0.91400
Std 0.02777 0.02833 0.02998 0.27589
Sig *** *** * ***

Num_mem Est 0.02464 0.02504 0.01403 -1.12920
Std 0.00194 0.00199 0.00209 0.09376
Sig *** *** *** ***

Num_daughter Est 0.23826 0.23924 0.18919 0.14621
Std 0.00745 0.00761 0.00798 0.08146
Sig *** *** *** .

Mar_First_int Est 0.00495 0.00497 0.00402 -0.01250
Std 0.00048 0.00049 0.00050 0.00330
Sig *** *** *** ***
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Table 7.4.: Regression model for number of births during 1-years (Continued )

Poisson NB ZIP-Poisson ZIP-Inflation

Cont_Pill Est -0.35825 -0.36173 -0.36029 1.33779
Std 0.07083 0.07189 0.07396 0.52684
Sig *** *** *** *

Cont_IUD Est -1.09660 -1.10041 -1.02717 2.15735
Std 0.10017 0.10099 0.11326 0.75784
Sig *** *** *** **

Cont_Inj Est -0.38966 -0.39511 -0.41490 0.84010
Std 0.05762 0.05860 0.06078 0.58848
Sig *** *** ***

Cont_Female Est -0.77885 -0.77895 -0.78210 0.27866
Std 0.06053 0.06100 0.06723 0.35717
Sig *** *** ***

Cont_Male Est -0.10172 -0.10503 -0.10136 0.90520
Std 0.03565 0.03641 0.03961 0.35397
Sig ** ** * *

Cont_with_draw Est -0.34289 -0.34544 -0.28322 1.70085
Std 0.04365 0.04432 0.04842 0.32949
Sig *** *** *** ***

Cont_other Est -0.28613 -0.29183 -0.12993 3.33044
Std 0.07645 0.07784 0.08551 0.49409
Sig *** *** ***

Preg_term_new Est -0.03035 -0.03125 0.00400 0.40885
Std 0.02704 0.02760 0.02835 0.23123
Sig .

Prof_tech Est -0.07622 -0.07565 -0.19775 -2.82322
Std 0.07984 0.08113 0.08993 1.03821
Sig * **

Prof_Agr Est 0.06870 0.06478 0.11203 0.94149
Std 0.05354 0.05474 0.05868 0.51905
Sig . .

Prof_Other Est -0.29959 -0.30308 -0.14562 2.28478
Std 0.04332 0.04403 0.04737 0.32065
Sig *** *** ** ***
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Table 7.5.: Regression model for number of births during 3-years

Poisson NB ZIP-Poisson ZIP-Inflation

(Intercept) Est 2.3982 2.4188 1.7563 -17.2259
Std 0.0360 0.0368 0.0417 0.6531
Sig *** *** *** ***

Res_Age Est -0.0939 -0.0945 -0.0674 0.4514
Std 0.0016 0.0016 0.0018 0.0170
Sig *** *** *** ***

Residence_new Est -0.0877 -0.0889 -0.0499 0.6580
Std 0.0145 0.0148 0.0153 0.1418
Sig *** *** ** ***

Age_husbnd Est -0.0142 -0.0143 -0.0112 0.0652
Std 0.0013 0.0013 0.0013 0.0092
Sig *** *** *** ***

R_Sindh Est -0.0039 -0.0034 -0.0352 -0.3242
Std 0.0185 0.0189 0.0196 0.1608
Sig . *

R_KPK Est -0.0879 -0.0886 -0.0804 0.3360
Std 0.0210 0.0214 0.0223 0.1834
Sig *** *** *** .

R_Blch Est -0.1010 -0.0985 -0.1754 -1.7996
Std 0.0214 0.0218 0.0224 0.3302
Sig *** *** *** ***

R_ICT Est 0.0519 0.0517 0.0395 -0.3946
Std 0.0290 0.0296 0.0313 0.2046
Sig . . .

R_FATA Est -0.0649 -0.0640 -0.0646 0.2322
Std 0.0246 0.0251 0.0255 0.2480
Sig ** * *

Edu Est 0.0731 0.0737 0.0547 -0.1968
Std 0.0076 0.0077 0.0079 0.0627
Sig *** *** *** **

WI Est -0.1249 -0.1279 -0.0374 1.5051
Std 0.0166 0.0169 0.0178 0.1555
Sig *** *** * ***

Num_mem Est 0.0211 0.0215 0.0127 -0.7039
Std 0.0012 0.0012 0.0013 0.0423
Sig *** *** *** ***

Num_daughter Est 0.2070 0.2079 0.1567 -0.1655
Std 0.0045 0.0046 0.0050 0.0504
Sig *** *** *** **

Mar_First_int Est 0.0046 0.0046 0.0033 -0.0166
Std 0.0003 0.0003 0.0003 0.0023
Sig *** *** *** ***
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Table 7.6.: Regression model for number of births during 3-years (Continued )

Poisson NB ZIP-Poisson ZIP-Inflation

Cont_Pill Est -0.0417 -0.0419 -0.0580 1.0315
Std 0.0379 0.0386 0.0399 0.2950
Sig ***

Cont_IUD Est -0.2801 -0.2819 -0.3399 -0.2630
Std 0.0422 0.0428 0.0454 0.4289
Sig *** *** ***

Cont_Inj Est 0.0624 0.0635 -0.0163 -1.7268
Std 0.0293 0.0299 0.0304 0.6230
Sig * * **

Cont_Female Est -0.5299 -0.5290 -0.4572 0.8415
Std 0.0330 0.0333 0.0381 0.1868
Sig *** *** *** ***

Cont_Male Est 0.0370 0.0368 0.0103 0.3884
Std 0.0211 0.0216 0.0225 0.1881
Sig . . *

Cont_with_draw Est -0.1376 -0.1380 -0.1762 0.0787
Std 0.0248 0.0252 0.0265 0.1945
Sig *** *** ***

Cont_other Est 0.0465 0.0459 0.0623 1.1738
Std 0.0411 0.0419 0.0438 0.2797
Sig ***

Preg_term_new Est -0.0485 -0.0489 -0.0193 0.4537
Std 0.0162 0.0165 0.0169 0.1465
Sig ** ** **

Prof_tech Est 0.0923 0.0962 0.0179 -1.5429
Std 0.0442 0.0449 0.0471 0.3359
Sig * * ***

Prof_Agr Est 0.0596 0.0587 0.1091 1.0635
Std 0.0325 0.0331 0.0349 0.2628
Sig . . ** ***

Prof_Other Est -0.1290 -0.1294 -0.0838 0.6009
Std 0.0242 0.0246 0.0261 0.1837
Sig *** *** ** **
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Table 7.7.: Regression model for number of births during 5-years

Poisson NB ZIP-Poisson ZIP-Inflation

(Intercept) Est 2.5448 2.5637 2.0000 -16.3950
Std 0.0269 0.0275 0.0303 0.4825
Sig *** *** *** ***

Res_Age Est -0.0822 -0.0828 -0.0585 0.4309
Std 0.0012 0.0012 0.0013 0.0129
Sig *** *** *** ***

Residence_new Est -0.0947 -0.0959 -0.0505 0.9489
Std 0.0108 0.0110 0.0113 0.1055
Sig *** *** *** ***

Age_husbnd Est -0.0114 -0.0115 -0.0089 0.0607
Std 0.0009 0.0009 0.0010 0.0071
Sig *** *** *** ***

R_Sindh Est -0.0035 -0.0031 -0.0294 -0.1791
Std 0.0138 0.0140 0.0145 0.1161
Sig *

R_KPK Est -0.0502 -0.0505 -0.0598 -0.0199
Std 0.0156 0.0158 0.0162 0.1294
Sig ** ** ***

R_Blch Est -0.0450 -0.0427 -0.1130 -1.2969
Std 0.0158 0.0161 0.0164 0.2068
Sig ** ** *** ***

R_ICT Est 0.0293 0.0294 0.0319 -0.0638
Std 0.0219 0.0222 0.0233 0.1503
Sig

R_FATA Est -0.0579 -0.0565 -0.0864 -1.0513
Std 0.0184 0.0188 0.0190 0.2640
Sig ** ** *** ***

Edu Est 0.0542 0.0548 0.0345 -0.3233
Std 0.0057 0.0058 0.0059 0.0489
Sig *** *** *** ***

WI Est -0.1343 -0.1368 -0.0707 1.0432
Std 0.0124 0.0126 0.0130 0.1105
Sig *** *** *** ***

Num_mem Est 0.0176 0.0179 0.0105 -0.6432
Std 0.0009 0.0009 0.0010 0.0340
Sig *** *** *** ***

Num_daughter Est 0.2022 0.2032 0.1525 -0.2735
Std 0.0033 0.0033 0.0036 0.0372
Sig *** *** *** ***

Mar_First_int Est 0.0043 0.0044 0.0030 -0.0182
Std 0.0002 0.0002 0.0002 0.0016
Sig *** *** *** ***
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Table 7.8.: Regression model for number of births during 5-years (Continued )

Poisson NB ZIP-Poisson ZIP-Inflation

Cont_Pill Est -0.0079 -0.0090 -0.0206 1.2046
Std 0.0281 0.0286 0.0293 0.2220
Sig ***

Cont_IUD Est -0.0401 -0.0417 -0.1076 -0.5326
Std 0.0284 0.0289 0.0298 0.2853
Sig *** .

Cont_Inj Est 0.1331 0.1346 0.0423 -4.6319
Std 0.0213 0.0218 0.0216 0.8425
Sig *** *** . ***

Cont_Female Est -0.2751 -0.2747 -0.1903 0.9573
Std 0.0215 0.0218 0.0243 0.1215
Sig *** *** *** ***

Cont_Male Est 0.0401 0.0409 -0.0090 -0.1549
Std 0.0161 0.0164 0.0168 0.1532
Sig * *

Cont_with_draw Est -0.0075 -0.0066 -0.0850 -0.8900
Std 0.0176 0.0179 0.0187 0.1704
Sig *** ***

Cont_other Est 0.0971 0.0979 0.0746 0.5380
Std 0.0302 0.0308 0.0316 0.2223
Sig ** ** * *

Preg_term_new Est -0.0409 -0.0416 -0.0265 0.1889
Std 0.0121 0.0124 0.0125 0.1082
Sig *** *** * .

Prof_tech Est 0.0545 0.0570 -0.0239 -1.6005
Std 0.0334 0.0339 0.0352 0.2942
Sig . ***

Prof_Agr Est 0.1163 0.1160 0.1614 0.9730
Std 0.0232 0.0237 0.0246 0.1795
Sig *** *** *** ***

Prof_Other Est -0.0771 -0.0772 -0.0381 0.4939
Std 0.0173 0.0176 0.0185 0.1270
Sig *** *** * ***

Note: In Tables 7.3.–7.8., Est stands for estimated coefficients, Std for standard error
and Sig for significance, where "***" , "**", "*", "." significance at 0.1%, 1%, 5% and 10%
respectively.
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Table 7.9.: Comparison of Models

Poiss NB ZIP

1-year

Min. -1 -1 -1.0731
Mean -0.122 -0.121 0.0000
Max. 51.125 51.793 2.5155
2logLikelihood -42984.63 -43307.25 -42011.64

AIC 43035 43359 42036.64

3-years

Min. -1 -1 -1.7707
Mean -0.0978 -0.0969 0.0001
Max. 14.8876 15.0487 3.0787
2logLikelihood -77067.93 -77564.3600 -75013.42

AIC 77118 77616 75038.42

5-years

Min. -1 -1 -2.6435
Mean -0.0754 -0.0747 0.0001
Max. 9.4748 9.5761 4.1984
2logLikelihood -106392.9 -106877.2 -102943.6

AIC 106443 106929 102964.4016

A comparison of three competing models Poisson, NB and ZIP are provided in Table

7.9. for three different responses. The minimum, maximum and mean residuals for each

model are reported. The minimum residual is observed at extreme (i.e. -1.0731, -1.7707

and -2.6435) for ZIP model. While maximum residual is observed at extreme (i.e. 51.793,

15.0487 and 9.5761) for NB. Further to see the model performance -2logliklihood and AIC

values are also reported. The AIC values are observed smaller for ZIP as compared to other

models considered in this study.

7.6 Model Estimation Under Bayesian Framework

In Bayesian inference, one can directly obtain the probability of values of the parameters

by finding the area of the posterior distribution to a region on the right of that value, which

is equal to the proportion of the values of the parameter in the posterior sample which are

larger than that value. We can utilize that information to file the results of Bayesian statistical

analysis as means with, so-called, Bayesian credible intervals for estimated parameters. In
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this way, recently, Bayesian method of estimation and inference have been extensively used.

Table 7.10.: Posterior mean, standard deviation and effective size for regression coefficients

Variables
1-year 3-years 5-years

Mean STD ESS Mean STD ESS Mean STD ESS

(Intercept) 1.6775 0.0611 38.7081 1.677 0.0611 50.5251 2.5457 0.024 51.1951

Res_Age -0.1017 0.0021 36.3485 -0.1017 0.0021 24.1892 -0.0819 0.0008 41.7633

Residence -0.1048 0.0228 1534.81 -0.1048 0.0228 571.98 -0.0942 0.0103 639.54
_new

Age_husbnd -0.0168 0.0016 32.75 -0.0168 0.0016 27.51 -0.0116 0.0006 53.72

R_Sindh 0.0037 0.0301 696.8 0.0037 0.0301 805.95 -0.0037 0.0138 634.94

R_KPK -0.0934 0.0355 488.83 -0.0934 0.0355 501.22 -0.0508 0.0159 437.95

R_Blch -0.1249 0.0358 653.91 -0.1249 0.0358 615.68 -0.0453 0.0161 518.26

R_ICT 0.0998 0.0476 1390.18 0.0998 0.0476 1074.85 0.029 0.0217 1318.52

R_FATA -0.1242 0.0409 708.39 -0.1242 0.0409 792.49 -0.0582 0.0186 702.03

Edu 0.0942 0.0126 485.61 0.0942 0.0126 529.95 0.0544 0.0058 486.34

WI -0.129 0.0266 470.94 -0.129 0.0266 449.55 -0.1351 0.0122 512

Num_mem 0.0248 0.002 279.92 0.0248 0.002 318.58 0.0176 0.0009 232.89

Num 0.2379 0.0081 288.75 0.2379 0.0081 318.44 0.2021 0.0032 333.04
_daughter

Mar_First 0.0049 0.0005 639.47 0.0049 0.0005 464.98 0.0043 0.0002 559.27

Cont_Pill -0.3625 0.0715 1505.22 -0.3625 0.0715 1603.4 -0.0081 0.0286 1524.9

Cont_IUD -1.1026 0.1011 1855.87 -1.1026 0.1011 1382.57 -0.041 0.0278 1611.72

Cont_Inj -0.3891 0.0581 1673.25 -0.3891 0.0581 1374.7 0.133 0.0215 1926.15

Cont_Female -0.7811 0.0619 1465.15 -0.7811 0.0619 1665.05 -0.2768 0.0219 1393.43

Cont_Male -0.104 0.0353 1280.29 -0.104 0.0353 1327.15 0.0409 0.016 1231.12

Cont_with -0.3441 0.0437 1499.29 -0.3441 0.0437 1252.7 -0.0081 0.0178 1417.29
\_draw

Cont_Other -0.2888 0.0767 685.28 -0.2888 0.0767 1626.67 0.0964 0.0309 1388.1

Preg_term -0.0304 0.0281 248.15 -0.0304 0.0281 278.01 -0.0412 0.0127 228.99

Prof_tech -0.0785 0.0785 1641.41 -0.0785 0.0785 1560.07 0.0538 0.0331 1374.54

Prof_Agr 0.0689 0.0537 1394.11 0.0689 0.0537 1204.17 0.1156 0.0232 1375.04

Prof_Other -0.3014 0.0422 1585.41 -0.3014 0.0422 1434.15 -0.0773 0.0172 1398.44
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Table 7.11.: Model Comparison

1-years 3-years 5-years

RES-mean 0.00061 0.33003 0.00107
Res-SD 0.13137 0.34963 0.58909

Mean Deviance 43015 77117 106448
penalty 24.08 25.26 25.56
Penalized deviance 43039 77142 106474

One of the areas to focus in applied Bayesian inference is Bayesian regression models.

The most important aspect of the Bayesian learning process is explaining a relationship and

generalizing it to others, and this section is our attempt to use the Bayesian Linear Regression

(BLR) for predicting the outcome for non-sampled set. What we result from the frequentist

linear regression is an estimate of the model parameters from only the training data set (the

sampled data set in our problem). Our model is informed completely by the sample: in this

way, everything that we need to recognize our model is available in the sample data. However,

if the sample size is small, one might like to express the estimate as a distribution of possible

values of the parameter given the sample information. This is the situation where BLR is

needed. As we already discussed when the response variable (consequently residuals) don’t

follow a Gaussian distribution it is not possible to continue with ordinary linear regression.

The argument for using Poison model for the data with count responses has already discussed

in previous sections.

In Bayesian model fitting involving Markov Chain Monte Carlo MCMC, the researcher

must be worried about the programming errors and the problems occur in estimation routines

Hamra et al. (2013). The trade-off to this extra task is that there is huge flexibility in model

construction, statistical inference, and assessment of model fit than a frequentist. Aside from

these basic programming errors that can make an MCMC algorithm inadequate, there are

two main concerns with the employment of the MCMC algorithms: mixing and convergence.

Researchers must confirm that the algorithm results a Markov chain that “converges” to

the appropriate posterior density and “mixes” well throughout the values of the density

Lynch (2007). In this section, we analyze the birth history data using Poisson regression

model, previously run under frequentist’s point of view in a Bayesian framework, by adding

a normal prior on the coefficients of the linear log-mean function as given in (7.4.2) i.e.

β j ∼ N(0,1×10−3) for all j = 0,1,2, ...,24. The analysis is done in R-library (rjags) Just
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Another Gibbs Sampler (JAGS) taking three chains. We initialize the model, run the burn

in period and the model is updated 100 times. The number of iterations is taken 1000. we

take relatively fewer iterations as the number of nodes are 50495 which leads to take a longer

duration in running the complete model . After deciding the burn-in period, we run the

simulation for the samples that will keep. We re-run the model for checking the convergence

and to see the auto-correlation. The deviance information criterion is also obtained for each

model.

First we look at the interpretation of posterior means of the coefficients corresponding to

each model. The 2nd, 5th and and 8th columns of Table 7.10. give the posterior means of

each coefficients, 3rd, 6th and 9th columns provide their standard deviation and 4th, 7th and

10th columns give effective sample sizes (ESS) for models with 1, 3 and 5-years number of

births as the response variables. One can notice that the posterior means almost match with

the estimated coefficients corresponding to each variable with a slight reduction in standard

error. The standard error for the residence (Residence_new) variable with Poisson model

with 1-year period births as the response under maximum likelihood estimation is 0.02421

while the corresponding posterior standard deviation for the same coefficient under MCMC

is 0.0228. After running MCMC, we need to check whether the estimated coefficients are

valid or not. We need to confirm that whether the MCMC sampler covers the parameter

space efficiently, i.e. it doesn’t accept or reject too many proposals. A detail discussion

of MCMC diagnostics can be found in Mengersen et al. (1999), Boone et al. (2014) and

Vats et al. (2019) etc. If the MCMC rejects too many proposals, we need a large number

of simulations to generate a considerable number of parameter samples. On the other end

if a large number of proposals are accepted, we can’t found much information about the

parent distribution. Trace plots provide an important tool for assessing mixing of a chain.

Density plots are smoothed histograms of the samples, i.e. they show the function that we

are trying to explore. Figures E.6-E.12 (see Appendix E) show the trace plots corresponding

to each coefficients which provide the evidence of presence of randomness (lack of pattern)

in data. The trace plots corresponding to intercept β0, and two coefficients β1 and β3 reflect

slight lack of randomness while the trace plot corresponding to all other coefficients provide

enough evidence of randomness. We provide the trace plot corresponding to the model for

the births during 1-year period. The trace plot corresponding to other two models are not

reported for the sake of space. Observing Figures E.6-E.12, one can also see the behavior
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of posterior densities for each coefficient. An alternative way to check for convergence of

the estimates is to look at the auto-correlations among the samples obtained from MCMC.

The lag-l auto-correlation is the correlation between every sample and the sample l steps

before which become smaller as l increases, i.e. considering samples as independent. On

the other hand, if this auto-correlation remains constant (high) for higher values of l too,

then the situation depicts a higher correlation between every sample and the sample l steps

before. The auto correlation plots corresponding to each coefficient for the three models

are obtained from MCMC sampling. The plots for the model with 1-year period births as

response variable is reported in Appendix.

After looking at the auto-correlation plots given in Figures E.1-E.5 (see Appendix E), we

can notice that the auto-correlation goes down for all coefficients with increase in l (“lag",

i.e. the x-axis in the plot) which is a good sign. The auto-correlation plot corresponding to

intercept and the coefficient corresponding to age indicates presence of auto-correlation. This

auto-correlation can be reduced by thinning the MCMC chains, i.e. we discard n samples for

every sample that we keep. The thinning of MCMC chain is actually not much useful, unless

we want to reduce the memory and storage space in long chains. With this argument one

should keep only one out of ten samples instead of thinning the chain, because this is more

efficient (with respect to the effective sample size) to run only one chain 10 times as long, it

will take 10 times more storage space. A more reliable estimate for burn-in cut-off is through

the effective sample size (ESS). An ESS is the number of independent samples with same

estimation power as the number of autocorrelated samples. The burn-in contains samples that

are not much informative, and if the period of burn-in is estimated to be short enough this will

lead to reduction in the ESS. On contrary, if the period of burn-in is estimated to much longer,

again cause in reduction of the ESS as informative samples are being isolated. An increase in

ESS should be with the optimal estimate of the burn-in are highly recommended in practical

estimation procedures. We can assess the burn-in samples by a glance at the trace plots and

effective sample sizes. Table 7.10. show that the ESS for each coefficient is enough for all

coefficients, except of β0, β1 and β3 which are 38.7, 36.3 and 32.75 respectively, are large

enough to continue. The ESS for the coefficient of Cont_Inj is maximum with 1855. Finally,

we see the predictive power of our models by checking at deviances. The most widely used

tool for checking the predictive power of a model is deviance information criterion (DIC).

It is an estimate of the expected predictive error of the models. Table 7.11. gives the mean
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deviances for the three models. The DIC value is least (i.e. 43015) for the model with number

of birth during 1-year period as the response. The penalized deviance for the same model

with penalty of 24.08 is 43039 which is slightly larger than the deviance without penalty.

7.7 Model-Based Estimates of Fertility Rates

In PDHS final report PDHS (2019), ASFRs are obtained according to the formula given

in Equation (1.2.1) for each age group. Before going into more detail about model-based

construction of rates, we remind the data need for construction of rates from PDHS report.

In computing ASFR, numerator is obtained by tabulating births according to period of birth

(3-years period is taken here according to DHS standard) and the mother age at the time of the

birth. The age of child is obtained as the difference between the date of interview and the date

of birth, both are taken in century-month code (CMC) format. Counting the births occurred

during 1-36 months before the survey (v008 - b3 in DHS format, see variable description in

Table 7.1.). Age of mothers are computed, in CMC format, by taking the difference of the

date of interview and the date of birth of the mother. Births are then tabulated by age group

after converting the ages in years. Similarly, the denominator in ASFR are women-years of

exposure, calculated as the sum of the counts of months exposed in the five-year age group

during the 3-years time period divided by 12. A woman can expose in several age groups

in the given period, with varying length of the period. For a 3-years period a woman will

contribute to at most two five-year age groups during the 36-months period. For further

details related to allocation of women to the higher age group and lower age group readers

are referred to PDHS (2019).
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Figure 7.4: Illustration of birth history data on a Lexis diagram

Illustration of birth history data on a Lexis diagram (each birth can fall in either of

the categories are given in Figure 7.4, then person-years are calculated according to these

categories). Years spent by respondents before interview is shown on X-axis for periods of 3

years. While age of respondents are shown on Y-axis the first arrow begins from 15 age and

end at 20 inferring that birth falling in this category, i.e. area between first and second arrows

before the first vertical line corresponding to 3, are counted as exposure for group 15-19.

Instead of using DHS.rates Package already given by IGME (2018), we developed R codes for

estimating ASFR after converting the individual (IR) data to person-year data. The R-codes

may be provided as supplementary material to this thesis. For tabulation of person-years

data, each woman is tallied twice, once in the lower age group aggregating lower age group

exposure and once according to the higher age group summing the exposure she contributes

to the higher age group. In computing fertility rates, we use only ever-married samples

without taking “all-women factor” (awfactt in DHS code) under model-based approach.

Hence interpretation of the rates are done on the basis of birth per ever-married women only.
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The total exposure in years in each age group is then the sum of the exposure in each age

group tallying from the first and second. After obtaining ASFR it is straightforward to obtain

TFR, GFR and GRR using formulae given in Equations (1.2.2), (1.2.3) and (1.2.4).

In this section, we obtain fertility measures i.e. ASFR, TFR, GFR and GRR using predicted

response obtained from the regression models after partitioning data into sampled and non-

sampled parts. A bootstrap sampling procedure to study the design-based properties of the

estimated fertility rates PDHS 2017-18 women re-coded data is given as follow:

(i). Select a simple random sample of size 10,000 from PDHS 2017-18 women re-coded

data and partition the data into sampled and non-sampled parts.

(ii). Fit the Poisson, NB, ZIP and ZINB models to the sampled data and obtain the

coefficients and residuals.

(iii). Predict the non-sampled part of the response variable by using the fitted models from

Step (ii).

(iv). Convert the individual re-code (PKIR71) data into person-year data and obtain fertility

rates under the working models.

(v). Repeat Steps (i)–(iv), 10,000 times to obtain expected rates and the corresponding

root mean squared errors (RMSEs). Root mean squared error for estimated rate say R̂

against the true rate R is given by

RMSE(R̂) =

√
∑sim

(
R̂−R

)2

10000
, (7.7.1)

where R̂ is the predictive estimate of fertility rate obtained from repeated samples and R is

the corresponding rate obtained from full data without use of weights (weights corresponding

to ever-married sample) the notation ∑sim denotes the summation is taken over all 10,000

repeated samples. Model-based ASFRs for Pakistan at national and sub-national level

for ever-married sample with their RMSE are given in Table 7.12., and Tables 7.13.-7.15.

respectively under four different working models. The expected ASFR with smallest RMSE

among four (obtained under four alternative models) is bolded corresponding to each age

group for sub-national and national level. In majority of cases ZIP model gives relatively

smaller RMSE at sub-national and national levels. Comparing the estimated ASFR with the

148



ASFR obtained from full data in last column of Tables 7.12.-7.15., we can noticed that the

ASFR for age groups 1, 2, 6 and 7 are upward biased for all models. The expected ASFR

with smallest difference (bias) with the ASFR obtained from full data among four (obtained

under four alternative models) is underlined corresponding to each age group for sub-national

and national level. From ASFR based on full PDHS data, one can observe that for age group

15-19 that the highest birth is observed for FATA and lowest in KPK. Similarly, ASFR can be

compared for different regions based on full data. While individual estimates are obtained

under model-based approach using four alternative models.

Table 7.12.: Model-based ASFR for ever-married women in Pakistan

AGE Poisson NB ZIP ZINB Full Data

PAKISTAN

1 MEAN 222.7225 223.7919 203.6582 202.6054 178.6971
RMSE 4.8895 7.0937 3.1837 3.6582

2 MEAN 275.0806 266.0772 258.5447 258.7548 271.7718
RMSE 2.7795 4.1703 2.2707 2.1496

3 MEAN 244.4803 244.8132 250.2329 247.9442 254.2912
RMSE 2.5342 3.4166 2.0359 2.1655

4 MEAN 191.6947 191.7994 204.7832 203.1567 202.2433
RMSE 2.1752 2.8781 1.4647 2.2746

5 MEAN 114.4192 114.3627 131.7197 130.7572 115.6562
RMSE 2.5423 2.9110 2.2248 1.2844

6 MEAN 54.6209 54.415 72.1514 71.4900 46.4946
RMSE 2.1848 3.1478 2.9820 1.8025

7 MEAN 23.7134 23.4652 39.6013 37.6739 14.7247
RMSE 1.1865 1.2567 2.6903 1.9403
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Table 7.13.: Model-based ASFR for ever-married women by region

AGE Poisson NB ZIP ZINB Full Data

Punjab

1 MEAN 211.3012 212.0825 189.9279 193.1613 249.1946
RMSE 10.1419 9.9172 6.8784 10.1949

2 MEAN 269.3565 269.8071 263.3218 263.9245 231.7774
RMSE 5.0639 6.6696 5.3568 4.7155

3 MEAN 250.4719 250.5010 254.3172 257.0261 198.0558
RMSE 5.4656 5.1818 5.1457 5.1563

4 MEAN 192.0939 191.9749 204.7935 206.7177 186.5237
RMSE 4.2740 6.6887 5.5483 4.3205

5 MEAN 101.8989 101.6711 118.7083 120.3670 127.9033
RMSE 6.0881 4.7710 3.5397 5.6747

6 MEAN 44.7504 44.4477 63.5791 63.1820 76.0920
RMSE 5.6576 3.1458 4.6625 3.0235

7 MEAN 18.9567 18.6261 34.1430 35.4604 39.3004
RMSE 2.1963 1.8623 3.0579 3.7498

SINDH

1 MEAN 229.4928 230.7073 212.4477 210.0833 228.2823
RMSE 19.5323 13.7867 9.9588 7.7385

2 MEAN 268.9236 260.0987 250.9072 253.5122 265.9237
RMSE 11.2111 5.1890 3.0585 5.9418

3 MEAN 239.7884 240.3403 246.1280 245.5123 230.0445
RMSE 15.2525 5.8365 4.9307 6.4958

4 MEAN 187.7445 187.9909 204.9746 200.4824 189.7307
RMSE 4.7523 4.7700 6.7566 4.9784

5 MEAN 109.7143 109.5498 130.3497 126.9330 111.7718
RMSE 8.3903 7.6144 4.5765 6.2280

6 MEAN 56.3930 56.2313 75.8477 72.9101 61.2671
RMSE 9.1977 4.4619 5.1601 6.1154

7 MEAN 24.6972 24.4979 40.3120 40.2554 27.8576
RMSE 3.7597 2.2051 8.5818 3.4375
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Table 7.14.: Model-based ASFR for ever-married women by region (Continued)

AGE Poisson NB ZIP ZINB Full Data

KPK

1 MEAN 196.3699 196.9613 182.8862 180.3818 207.4155
RMSE 7.4761 8.9657 6.6572 5.8342

2 MEAN 273.8359 274.3997 266.2204 266.6967 270.6913
RMSE 5.6553 5.3221 7.8679 9.9190

3 MEAN 263.2431 263.4433 267.2585 269.0296 246.0604
RMSE 5.6614 8.4516 3.5384 9.7035

4 MEAN 186.1139 186.2141 201.3701 199.6779 191.6476
RMSE 5.4555 6.2886 5.1218 4.8980

5 MEAN 115.2574 115.1831 133.5651 132.0458 101.7487
RMSE 4.4904 4.9616 4.1421 4.2693

6 MEAN 45.6254 45.3674 62.7137 63.4028 44.1182
RMSE 5.6872 3.0984 4.3727 4.1459

7 MEAN 22.0920 21.7557 36.7238 37.9287 19.6460
RMSE 3.6424 5.8643 7.6976 3.5424

BALOCHISTAN

1 Mean 250.9692 252.7714 227.3190 228.3367 252.4604
RMSE 9.9384 10.2157 6.0973 8.9911

2 Mean 239.4906 240.6887 228.4109 229.5668 248.7213
RMSE 9.9295 6.7784 7.5310 13.6000

3 Mean 213.5977 214.6399 212.7518 214.7551 225.0510
RMSE 16.6663 9.2602 5.9430 7.4345

4 Mean 188.6344 189.4245 194.9166 195.9774 188.5075
RMSE 6.9316 10.7594 5.4797 7.5575

5 MEAN 126.1279 126.4127 138.1701 138.6163 119.9730
RMSE 5.8020 13.6353 6.1309 6.5612

6 Mean 82.2158 82.3038 97.3578 95.8696 76.1724
RMSE 8.3163 5.6318 8.5431 5.6471

7 Mean 40.8662 40.7404 54.4509 54.7438 44.1215
RMSE 5.3392 5.1060 5.7093 5.1905

151



Table 7.15.: Model-based ASFR for ever-married women by region (Continued)

AGE Poisson NB ZIP ZINB Full Data

ICT

1 MEAN 266.4663 267.6229 238.3424 240.7646 211.9564
RMSE 18.8398 18.5211 4.2664 15.3548

2 MEAN 273.4660 265.5485 254.1284 253.1415 258.9262
RMSE 9.6579 7.6228 7.0958 13.6507

3 MEAN 257.7272 258.4283 262.2330 256.3389 225.4344
RMSE 7.6095 7.0926 4.9718 7.0901

4 MEAN 236.7798 237.5580 241.5292 243.5958 186.5302
RMSE 8.9159 10.3614 7.5267 8.8469

5 MEAN 128.4957 128.5902 139.6517 144.3909 102.2706
RMSE 14.1416 6.6153 4.0699 6.7723

6 MEAN 66.6295 66.5571 84.6699 82.0437 48.0665
RMSE 7.5488 6.6754 7.5503 9.2615

7 MEAN 22.5053 22.3162 36.0057 34.6945 21.6777
RMSE 7.3344 3.8912 9.5149 3.6871

FATA

1 MEAN 231.6374 232.2293 218.1838 215.8759 257.9901
RMSE 17.4629 21.7423 7.9326 13.8303

2 MEAN 289.0122 282.2671 285.6814 278.5234 278.9904
RMSE 9.0171 8.3427 5.5339 7.9979

3 MEAN 243.3209 243.0650 258.9386 251.4702 254.7245
RMSE 13.1805 9.7643 4.9383 12.3537

4 MEAN 187.9857 187.6520 202.9574 199.8495 239.7390
RMSE 8.1129 9.2729 0.9261 6.3040

5 MEAN 87.3725 87.0357 104.0907 106.042 141.0778
RMSE 5.2186 5.8885 1.8045 8.5333

6 MEAN 48.7856 48.3721 66.2820 66.9248 71.1328
RMSE 8.0002 4.5553 4.2805 5.8337

7 MEAN 18.2021 17.8044 33.8488 35.2680 16.1374
RMSE 4.6030 3.3961 4.6296 7.8904

The TFR, GFR and GRR for ever-married women are provided at sub-national and nation

levels in Tables 7.16., 7.17. and 7.18. respectively. The TFR for ever-married sample is

observed highest in ICT with 6.26 and lowest in Punjab with 5.44 per 1000 ever-married

women. While the TFR for all women given in PDHS 2017-18 report is observed highest for

FATA. The TFR obtained for all women using DHS.rates package are given in Appendix E.

The estimates obtained under NB, ZIP and ZINB are more accurate than the ones observed
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for Poisson which can be noticed from RMSE in Table 7.16. corresponding to each region.

The smallest RMSE is observed at national level when ZIP is used to model births i.e. 0.0617.

Similarly, predictive estimate for GFR at sub-national and national level are observed highest

for ever-married women in KPK which is 174.95.6 (NB as it is more precise than other three

estimates) births per 1000 married women. The lowest GFR is observed for Punjab with

162 children per 1000 ever-married women. The RMSE are observed highest when Poisson

regression model is used for modeling births for KPK. While for other regions continuing

with Poisson, ZIP and NB give almost similar RMSE for estimating GFR at sub-national and

national levels. The GFR for full data without model fitting are obtained in last column of

Table 7.17.. The GRR is computed using proportion of female births (PF) from all age groups

using sex ratio of male to female from full data (PF from census or from administrative

records can be used for obtaining sex ratio). The GRR is observed higher in Bolachistan,

Punjab and KPK as compared to other regions replacement of 2 or more daughters per women

before the death of their mother. RMSE are smaller for Punjab, Sindh and KPK when NB

model is used for prediction. While it is smaller for remaining regions when ZIP model is

employed.

Table 7.16.: Model-based TFR at regional level

REGION Poisson NB ZIP ZINB Full Data

PUNJAB
MEAN 5.4441 5.4456 5.6440 5.6992 4.4317
RMSE 1.0153 0.1107 0.5165 0.5705

SINDH
MEAN 5.5838 5.5471 5.8048 5.7484 4.4317
RMSE 1.1555 0.1313 0.4532 0.4015

KPK
MEAN 5.5127 5.5166 5.7537 5.7458 4.4317
RMSE 1.0844 0.0878 0.4440 0.4359

BOLACHISTAN
MEAN 5.7095 5.7349 5.7669 5.7893 4.4317
RMSE 1.2829 0.2292 0.2282 0.2556

ICT
MEAN 6.2603 6.2331 6.2828 6.2749 4.4317
RMSE 1.8331 0.6443 0.4199 0.4108

FATA
MEAN 5.5316 5.4921 5.8499 5.7698 4.4317
RMSE 1.1092 0.7648 0.5838 0.5306

PAKISTAN
MEAN 5.6337 5.5936 5.8035 5.7619 4.4317
RMSE 1.2025 0.1914 0.0617 0.3910
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Table 7.17.: Model-based GFR at regional level

REGION Poisson NB ZIP ZINB Full Data

PUNJAB
MEAN 161.797 161.755 170.618 172.124 160.784
RMSE 2.191 2.195 10.128 11.512

SINDH
MEAN 164.991 164.327 174.105 172.506 164.967
RMSE 2.460 2.476 10.200 8.753

KPK
MEAN 225.582 174.952 182.789 182.689 174.797
RMSE 50.894 2.644 8.331 8.369

BOLACHISTAN
MEAN 168.603 169.313 171.639 172.448 168.600
RMSE 3.284 3.455 4.391 5.342

ICT
MEAN 181.956 181.466 186.118 185.669 179.435
RMSE 4.095 4.383 8.044 7.659

FATA
MEAN 153.197 152.487 166.547 164.103 153.163
RMSE 3.635 3.660 13.856 12.113

PAKISTAN
MEAN 168.187 167.459 176.005 174.751 168.165
RMSE 1.064 1.075 8.821 7.523

Table 7.18.: Model-Based GRR at Regional Level

REGION Poisson NB ZIP ZINB Full Data

PUNJAB
MEAN 2.161824 2.46518 2.528332 2.55295 2.704505
RMSE 0.542681 0.052107 0.212113 0.236151

SINDH
MEAN 1.970801 2.51457 2.591036 2.566196 2.469386
RMSE 0.504035 0.057286 0.184696 0.161956

KPK
MEAN 2.161824 2.506772 2.562835 2.557729 2.637384
RMSE 0.475561 0.041888 0.173325 0.168304

BOLACHISTAN
MEAN 2.161824 2.617896 2.426287 2.435872 2.817091
RMSE 0.655267 0.109318 0.086432 0.09822

ICT
MEAN 1.970801 2.799685 2.81312 2.810767 2.310812
RMSE 0.368522 0.302086 0.167947 0.165813

FATA
MEAN 1.970801 2.496049 2.423849 2.388887 2.798262
RMSE 0.83461 0.342369 0.219095 0.195004

PAKISTAN
MEAN 1.970801 2.540 2.610421 2.546088 2.415219
RMSE 0.444418 0.078 0.026216 0.152864
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7.8 Conclusion

In this chapter, we analyzed the birth history data using three separate models taking 1-year

period births for first, 3-years period birth for second and 5-years period births for third

models as the responses with 24 regressors. Although Poisson regression model is considered

useful for the data with count responses the assumption of equality of mean and variance

spoils the inference. To deal with responses having large variance and many 0’s as well as a

few very large values, we used NB, ZIP and ZINB models as extensions of Poisson model.

Comparison of the three methods were made using AIC. The ZIP model gives smaller AIC

as it deals with inflated zeros. The ZIP and ZINB model produce approximately same result

so we did not report results obtained under ZINB model for inference purpose. We also

conducted the estimation of regression models under Bayesian paradigm assuming normal

priors for each coefficients including intercept under Poisson regression model. The posterior

means were obtained using rjags package in R. The posterior means for each coefficients are

closer to classical estimates for Poisson models. Some model diagnostics were used to check

the validity of estimation procedure. The model diagnostics indicated positive report of the

estimation procedure. Predictive ASFR, TFR, GFR and TRR were obtained using predicted

response under above estimated models. Illustration of predictive approach taking bootstrap

samples from the PDHS 2017-18 individual recode data was provided. The predictive rates

provide efficient results when relevant auxiliary data are available from census at unit level

or at cluster level. It is important to mention that the data about majority of regressors

considered for prediction in this study is not easy in practical situations at individual level.

However, data might be available for clusters through Civil Registration of vital events or

from previously conducted surveys. The predictive approach suggested here in constructing

rates in case of missing responses on birth and for small area estimation.
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Chapter 8

Conclusion of the Study

8.1 Outline

This chapter provides a comprehensive concluding remarks of the study. Based on theoretical

and practical research works related to model-based estimation, we provide some theoretical

frame work related to parameter estimation, specially population total, in finite population

setting under model-based approach. Extensions and possible application were followed

by the theoretical framework. An application is provided based on the birth data from

PDHS 2017-18. In Section 8.2, we describe main findings of our study via theoretical and

applied point of view followed by brief discussion of related works. Section 8.3 gives some

recommendation for future work. While Section 8.4 delineates limitations of the study.

8.2 Concluding Remarks

A general framework of model-based approach for estimation of finite population parameter τ

(a linear combination of population values), assuming superpopulation setting, was discussed.

Some special cases of the proposed general framework were deducted to observe its applicability.

Expressions for prediction error variance and model-bias of the proposed estimator τ̂ were

derived. For statistical inference about τ, estimation of prediction error variance under

different model section criteria i.e. residual, GCV, UEV, FPE and BIC methods (the widely

used feature selection criteria in ML) was also studied. Among all competing variance

estimators, the estimator obtained under UEV provides minimum variance estimates and

the variance estimator under BIC is highest which was shown theoretically as well as via
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simulation. For the purpose of simulation study and further modifications, we deducted the

case of estimation of population total i.e. γi = 1 for all i ∈U . The study also provides a

guideline for model selection in finite population parameter estimation through incremental

operators. The model selection is based on a measure, named as increment in efficiency, (IE)

which provides a guideline for selecting a model with appropriate number of basis function.

Positive value of IE shows increase in efficiency on adding additional basis functions to the

feature matrix.

In Chapter 3, prior information about the superpopulation parameters had been incorporated

for estimating the finite population parameter with maximum efficiency. The simulated results

depict the superiority of estimators of the population total with prior information. Increase in

σ2
0 results in decrease in variance but introduces bias in the estimator and makes a trade-off

in expected squared prediction error (ESPE). Estimators for prediction error variance of the

Bayesian estimator of τ were also obtained using model selection criteria with the help of

projection matrix. We established an ordering of the expected values of estimated variance

as V̂ (e(τ̂)
)

RES ≤ V̂ (e(τ̂)
)

UEV ≤ V̂ (e(τ̂)
)

FPE ≤ V̂ (e(τ̂)
)

GCV ≤ V̂ (e(τ̂)
)

BIC. This ordering

was verified through simulated and bootstrapped sampling. Tables 3.1.–3.4. provided the

comparison and behavior of estimated variances. It is concluded that all variance estimators

are increasing function of the variance ratio vr on the average. Same statement is justified

for the relation between the estimated variances and sample size (except for M = 4 in Table

3.4.). Further, ill-conditioning of the regression estimation was also coped with typical

regularization method which introduces slight bias in estimates of β’s but provides smaller

estimate of the variance of the error term and, consequently, smaller estimated variance of

the prediction error of τ̂.

Chapter 4 covered a model-based version of Hansen and Hurwitz (1946) sub-sampling

technique technique for handling non-ignorable non-response in estimation of finite population

parameters (specially total). The method works under the assumption that the responding

and non-responding population have different models and the occurrence of non-response

is observable like a stratification variable. The sub-sampling technique is suggested for

application in the field of public health where the non-response occurrence is often found with

respect to gender, ethical affiliation, age and other demographic factors of the respondents.

Consequently, respondents and non-respondents might have different models. From Chapter

4, we also conclude that under linear population model (linear in parameter as well as in
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variables) the total estimator with sub-sampling is model-unbiased and has smaller model-

variance as compared to predictive estimator based on sampled respondents only. The

linearity assumption emphasizes on linear in parameters but not restricted to the linearity in

variable. To cope with ill-conditioning, we adapt a version of ridge regression, called partial

ridge regression, for predicting the non-sampled non-respondents. Mathematical expressions

are verified via a numerical study with blood transfusion data and an extensive Monte Carlo

experiment.

Application of a new ranked set sampling mechanism for the estimation of finite population

parameter (specially total) under GPM is another major contribution of this dissertation. In

Chapter 5, Figure 5.1 presented a picture of the RSSWOR which assumes that the finite

population is coming from an infinite superpopulation via some stochastic process with finite

mean and variance. It is also assumed that the population can be generated from different

points i.e. cycles and the m sets taken from one cycle is totally different from the m in other

cycles for insuring without replacement. The mathematical expressions and Monte-Carlo

experiment both supported the superiority of the total estimator under RSSWOR over the

competitor under SRSWOR for GPM as well as HPM. The suggested estimators can be

recommended for process controls by constructing control charts.

Estimation of sub-population total under a new version of ranked set sampling for

obtaining a without replacement sample with GPM (general form of proportional population

model) was also dealt in Chapter 6. Figure 6.1 illustrated the RSSWOR sampling algorithm

which assumes that the finite population is coming from an infinite superpopulation via some

stochastic process with finite mean and variance. Domain membership variable was observed

from selected ranked set sample. The model relationship between the study variable and

the auxiliary variable for whole population was used to predict the non-sampled values to

establish a domain specific estimator for total. The superiority of the domain specific total

estimator under RSSWOR over the total estimator under SRSWOR for GPM as well as HPM

was shown mathematically as well as through Monte-Carlo experiment. The domain specific

estimators is highly recommended to use in epidemiology and public health research where

one need to find total exposure to certain event for different sub-populations.

Finally, in Chapter 7, we analyzed the birth history data using three separate models

taking 1-year period births for first, 3-years period birth for second and 5-years period

births for third models as the responses and 24 regressors. The histograms for the outcomes
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given in Figure 7.1 recommended to use Poisson regression model with log-link function.

Although, Poisson regression model is considered useful for the data with count responses

the assumption of equality of mean and variance spoils the inference. To deal with responses

having large variance and many 0’s as well as a few very large values, we used NB, ZIP

and ZINB models as extensions of Poisson model. Comparison of the three methods was

made on the basis of AIC values. The ZIP model gives smaller AIC as it deals with inflated

zeros. The ZIP and ZINB model produce approximately same result. We also conducted

the estimation of regression models under Bayesian paradigm assuming normal priors for

each coefficients including intercept. The posterior means were obtained using MCMC via

rjags package in R. The posterior means for each coefficients are observed closer to classical

estimates for Poisson models. Some model diagnostics were used to check the validity of

estimation procedure. The model diagnostics indicated positive report of the estimation

procedure. Model based fertility rates including ASFR, TFR, GFR and GRR were obtained

using predicted response under the estimated models. We provided illustration of predictive

approach through bootstrap sampling from the PDHS 2017-18 individual recode data. The

model-based rates provide efficient results when relevant auxiliary data are available from

census at unit level or at cluster level. It is important to mention that the data about majority

of regressors considered for prediction in this study is not easy in practical situations at

individual level. However, data might be available for clusters through civil registration of

vital events or from previously conducted surveys. The predictive approach suggested here

for constructing rates are helpful in case of missing responses on birth and providing separate

estimates to the domains with insufficient sample sizes.

8.3 Recommendations for Future Research

The current study can be used in estimation of any linear combination of population values,

hence many finite population parameters can be estimated using this general framework.

The proposed model-based framework can be extended to multi-level models and small area

estimation. Researchers who have interest to work in the same areas are recommended to

extend the following topics

1. Estimation of finite population quantities in multi-level models.

2. Incorporation of weights in estimation stage which is a widely accepted strategy for
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obtaining reliable estimates in survey sampling domain.

3. Utilization of more advanced machine learning (ML) algorithm for prediction purpose

such as random forest model, radial basis function.

4. Further extension of the proposed work to other sampling designs such as stratified and

cluster sampling.

5. Application of the model-based framework to the data from other surveys and fields of

research.

6. Obtaining more sophisticated small area estimators using fixed effect and random effect

models.

8.4 Limitations of the Study

The model-based frame work is used here for the non-linear model in the sense that the

response variable depends on some non-linear function of x denoted by φ(x). Hence the

proposed study is not applicable to the regression models with non-linear in parameter.

The GLMs used to model the birth data in application section which are converted to

linear functions via some link functions and estimated birth rates are obtained through back

transformation. A major concern with practicability of the model-based approach is the

assumption about error terms. In certain situations, specially for RSSWOR, it is not possible

to obtain an IID error term in practical situations. Another limitation can be found in the

observability of the non-response factor for splitting the respondents in non-respondents for

tackling the situation of non-response under model-based framework. Finally in application

section, model-based fertility rates are obtained without incorporating survey weights which

leads to biased results. Incorporating survey weights for fertility rates estimation under

model-based framework is an open area to work and recommended above.
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Appendix A

Model Selection in Basis Function Regression

The Projection Matrix

The projection matrix P based on M covariates is defined by

Pm = IM−ΦsQ−1
sm Φ

T
s (A.1)

where Q−1
sm = Φ

T
s Φs+vIM is the Hessian Matrix (Lütkepohl, 1996) based on Φs with M basis

functions. Before applying the incremental operator to Pm, we find A−1
s(m+1) using A−1

sm . We

use following two useful lemmas from Horn and Johnson (1985) for the purpose of matrix

inversion

Lemma 1 For a any partitioned square matrix B defined as:

B =

 B11 B12

B21 B22

 ,

B−1 =

 B−1
11 +B−1

11 B124−1 B21B−1
11 −B−1

11 B124−1

−4−1 A21B−1
11 4−1

 ,
where4= B22−B21B−1

11 B12.

Lemma 2

Let the inverse of matrix B−1
0 ∈ R m×m, X , Y T ∈ R m×r and R ∈ R r×r all are known. For
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computing the inverse of a new matrix B1 such that

B1 = B0 +XRY .

To compute the inverse of new matrix B1, we have following relation

B−1
1 = B−1

0 −B−1
0 X

(
Y B−1

0 X +R−1)−1Y B−1
0

This relation between the inverse of the original matrix and the appended matrix saves

computation time.

Decrement in Variance

The Hessian matrix after adding an additional basis function

Qm+1 = Φ
T
s(m+1)Φs(m+1)+ vIm+1 =

 Qsm Φ
T
smφs(m+1)

φ
T
s(m+1)Φsm φ

T
s(m+1)φs(m+1)+ v

 (A.2)

where Φ
T
s(m+1) =

[
Φsm φs(m+1)

]
and Qsm = Φ

T
smΦsm + vIm. To obtain inverse of the

Hessian matrix given in (A.2), we use Lemma 1 with

Q−1
s(m+1) =

 Q−1
sm 0

0T 0

+4−1

 Q−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmQ−1

sm −Q−1
sm Φ

T
smφs(m+1)

−φ
T
s(m+1)ΦsmQ−1

sm 1

 ,
(A.3)

where 0 is an m×1 null vector. Further

φs̄(m+1)Q
−1
s̄(m+1)φ

T
s(m+1) =

[
Φs̄m φs̄(m+1)

]
×

 Q−1
11 Q−1

12

Q−1
21 Q−1

22

 Φ
T
s̄m

φ
T
s̄(m+1)


=
[

Φs̄mQ−1
11 +φs̄(m+1)Q

−1
21 Φs̄mQ−1

12 +φs̄(m+1)Q
−1
22

]
×

 Φ
T
s̄m

φ
T
s̄(m+1)


=Φs̄mQ−1

11 Φ
T
s̄m +φs̄(m+1)Q

−1
21 Φ

T
s̄m +Φs̄mQ−1

12 φ
T
s̄(m+1)
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+φs̄(m+1)Q
−1
22 φ

T
s̄(m+1), (A.4)

where

Q−1
11 = Q−1

sm +4−1Q−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmQ−1

sm , Q−1
12 = −4−1 Q−1

sm Φ
T
smφs(m+1) , Q−1

21 =

−4−1 φ
T
s(m+1)ΦsmQ−1

sm and Q−1
22 =4−1. We first see the effect on the variance VM(τ̂(y)−

τ(y)) =VM(τ̂) (say) when there is no regularization on parameters i.e. v = 1 and Q−1
sm = A−1

sm

for m = 1,2, ...M.

For prediction models with no regularization, we have the variance of VM(τ̂) with M

regressors

VM(τ̂)m =
(
N−n

)
σ

2 +σ
2
[

γ
T
s̄ Φs̄mA−1

sm Φ
T
s̄mγs̄

]
.

and the variance of VM(τ̂) with (M+1) regressors

VM(τ̂)m+1 =
(
N−n

)
σ

2 +σ
2
[

γ
T
s̄ Φs̄(m+1)A

−1
s(m+1)Φ

T
s̄(m+1)γs̄

]
.

The bias of ridge regression estimator with M basis functions is given by

BM
(
τ̂ridge(y)

)
m =−vγ

T
s̄ Φs̄mQ−1

sm βm. (A.5)

and for (M+1) basis function after some matrix multiplication the bias becomes

BM
(
τ̂ridge(y)

)
m+1 =−vγ

T
s̄
[
Φs̄mQ−1

sm βm +
1
4

Φs̄mQ−1
sm Φsmφs(m+1)φs(m+1)ΦsmQ−1

sm βm

+φs̄(m+1)Q
−1
21 βm +Φs̄mQ−1

12 βm+1 +φs̄(m+1)Q
−1
22 βm+1

]
. (A.6)
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Appendix B

Bayesian Model Selection

The inverse matrix for (M + 1) basis functions under Bayesian setting can be written as

Q∗−1
s(m+1)

Q∗−1
s(m+1) =

 Q∗−1
11 Q∗−1

12

Q∗−1
21 Q∗−1

22

 , (B.1)

where

Q∗−1
11 = Q∗−1

sm +
1
41

Q∗−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmQ∗−1

sm ,

Q∗−1
12 =

1
41

φ
T
s(m+1)ΦsmQ∗−1

sm

Q∗−1
21 =

1
41

Q∗−1
sm Φ

T
smφs(m+1)

Q∗−1
22 =

1
41

.

Further41 =
σ2

σ2
0(m+1)

+φ
T
s(m+1)

[
In−Φ

T
smQ∗−1

sm Φ
T
sm
]
φs(m+1). For a model with (M+1) regressors

we can write the bias as follow

BM[τ̂B(y)]m+1 =γ
T
s̄ Φ

T
s̄(m+1)Λs(m+1)

(
µ0(m+1)−βm+1

)
,

where

Λs(m+1) = σ
2Q∗−1

s(m+1)Σ
−1
0(m+1) = σ

2×

 Q∗−1
11 Σ

−1
0m Q∗−1

12 σ
−2
0(m+1)

Q∗−1
21 Σ

−1
0m Q∗−1

22 σ
−2
0(m+1)

 (B.2)

177



BM[τ̂B(y)]m+1 =σ
2
γs̄Φs̄(m+1)×

 Q∗−1
11 Σ

−1
0m Q∗−1

12 σ
−2
0(m+1)

Q∗−1
21 Σ

−1
0m Q∗−1

22 σ
−2
0(m+1)

× (µ0(m+1)−βm+1
)

=σ
2[(

Φs̄mQ∗−1
11 +φs̄(m+1)Q

∗−1
21
)
Σ
−1
0m

(
µ0m−βm

)
+
(
Φs̄mQ∗−1

12

+φs̄(m+1)Q
∗−1
22
)
σ
−2
0(m+1)

(
µ0(m+1)−βm+1

)]
=σ

2
Φs̄mQ∗−1

sm Σ
−1
0m

(
µ0m−βm

)
+

σ2

41

[{
Φs̄mQ∗−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmQ∗−1

sm

+
{

Φs̄mφ
T
s(m+1)ΦsmQ∗−1

sm +φs̄(m+1)
}

σ
−2
0(m+1)

(
µ0(m+1)−βm+1

)]
.

The absolute change in bias of estimator τ̂B(y) when an additional basis function is added to

the model

ADB =

∣∣∣∣BM
[
τ̂B(y)

]
m−BM

[
τ̂B(y)

]
m+1

∣∣∣∣
=

σ2

41
γ

T
s̄
[{

Φs̄mQ∗−1
sm Φ

T
smφs(m+1)φ

T
s(m+1)ΦsmQ∗−1

sm −φs̄(m+1)Q
∗−1
sm Φ

T
smφs(m+1)

}
Σ
−1
0m

(
µ0m

−βm
)
−
{

Φs̄mφ
T
s(m+1)ΦsmQ∗−1

sm −φs̄(m+1)
}

σ
−2
0(m+1)

(
µ0(m+1)

−βm+1
)]
.

Now for variance of the prediction error, we have

VM
(
e(τ̂B)

)
m+1 = σ

2[
γ

T
s̄ γs̄ + γ

T
s̄ Φs̄(m+1)

(
IM+1−Λs(m+1)

)
A−1

s(m+1)

(
IM

−Λs(m+1)
)T

Φ
T
(rm+1)γs̄

]
.

After some simplification and using theorem of matrix inversion, we get

VM
(
e(τ̂B)

)
m+1 = σ

2[
γ

T
s̄ γs̄ + γ

T
s̄

(
Φs̄mΛ

∗∗
11Φ

T
s̄m +φs̄(m+1)Λ

∗∗
21Φ

T
s̄m

+Φs̄mΛ
∗∗
12φ

T
s̄(m+1)+φs̄(m+1)Λ

∗∗
21φ

T
s̄(m+1)

)
γs̄
]
, (B.3)

where Λs(m+1) is already defined in (B.2) and the inverse of matrix As(m+1) is obtained by

setting v = 1 in equation (A.3).

The product
(
IM+1 −Λs(m+1)

)
A−1

s(m+1)

(
IM+1 −Λs(m+1)

)T
= Λ

∗∗ (say) is expressed as a
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symmetric matrix defined by

Λ
∗∗ =

 Λ
∗∗
11 Λ

∗∗
12

Λ
∗∗
21 Λ

∗∗
22

 , (B.4)

where

Λ
∗∗
11 =

(
Λ
−1
11 A−1

11 +Λ
−1
12 A−1

21
)
Λ
−1
11 +

(
Λ
−1
11 A−1

12 +Λ
−1
12 A−1

22
)
Λ
−1
12 ,

Λ
∗∗
12 =

(
Λ
−1
11 A−1

11 +Λ
−1
12 A−1

21
)
Λ
−1
21 +

(
Λ
−1
11 A−1

12 +Λ
−1
12 A−1

22
)
Λ
−1
22

Λ
∗∗
21 =

(
Λ
−1
21 A−1

11 +Λ
−1
22 A−1

21
)
Λ
−1
11 +

(
Λ
−1
21 A−1

12 +Λ
−1
22 A−1

22
)
Λ
−1
12

Λ
∗∗
22 =

(
Λ
−1
21 A−1

11 +Λ
−1
22 A−1

21
)
Λ
−1
21 +

(
Λ
−1
21 A−1

12 +Λ
−1
22 A−1

22
)
Λ
−1
22

Λ
∗∗
22 =

(
Λ
−1
21 A−1

11 +Λ
−1
22 A−1

21
)
Λ
−1
21 +

(
Λ
−1
21 A−1

12 +Λ
−1
22 A−1

22
)
Λ
−1
22

with

Λ
−1
11 = IM−ΛsmΛ

−1
12 =−σ

2Q∗−1
sm σ

−2
0(m+1)

Λ
−1
21 =−σ

2Q∗−1
21 Σ

−1
0m,

Λ
−1
22 =−σ

2Q∗−1
22 σ

−2
0(m+1)

and Λ
−1
pq for p,q = 1,2 are the entries of the inverse of matrix A−1

s(m+1). Further, the sub-matrix

Λ
∗∗
11 can be simplified as

Λ
∗∗
11 = Λ

−1
11 A−1

sm Λ
−1
11 +Λ

−1
11 4

−1
1 A−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmA−1

sm Λ
−1
11

+Λ
−1
12 A−1

21 Λ
−1
11 +

(
Λ
−1
11 A−1

12 +Λ
−1
12 A−1

22
)
Λ
−1
12

= Λ
−1
11 A−1

sm Λ
−1
11 +Λ

−1
11 4

−1
1 A−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmA−1

sm Λ
−1
11 +Λ

−1
12 A−1

21 Λ
−1
11

+
(
Λ
−1
11 A−1

12 +Λ
−1
12 A−1

22
)
Λ
−1
12

The decrement in error variance is expressed as a new index IEB

IEB =VM
(
e(τ̂B)

)
m−VM

(
e(τ̂B)

)
m+1

=−σ
2
γ

T
s̄

[
Φs̄m

(
Λ
−1
11 4

−1
1 A−1

sm Φ
T
smφs(m+1)φ

T
s(m+1)ΦsmA−1

sm Λ
−1
11
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+Λ
−1
12 A−1

21 Λ
−1
11 +

(
Λ
−1
11 A−1

12 +Λ
−1
12 A−1

22
)
Λ
−1
12

)
Φ

T
s̄m +φs̄(m+1)Λ

∗∗
21Φ

T
s̄m

+Φs̄mΛ
∗∗
12φ

T
s̄(m+1)+φs̄(m+1)Λ

∗∗
21φ

T
s̄(m+1)

]
γs̄
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Appendix C

Model based Estimation in Presence of

Non-response

Derivation of Bias and MSE t̂y1 without sub-sampling

BM(t̂y1) =EM
(
t̂y1− ty

)
= EM

(
W T

s1
ys1

+W T
s̄1

xs̄1 β̂1 +W T
2 x2β̂1− ty

)
=EM

(
W T

s1
ys1

+W T
s̄1

xs̄1 β̂1 +W T
2 x2β̂1− ty

)
=EM

(
W T

s̄1
xs̄1 β̂1 +W T

2 x2β̂1−W T
s̄1

Y s̄1−W T
2 Y 2

)
=EM

(
Aβ̂1−W T

s̄1
Y s̄1−W T

2 Y 2
)

=EM
[
A
(
Hs1

)−1xT
s1

ys1
−W T

s̄1
Y s̄1−W T

2 Y 2
]

=A
(
Hs1

)−1xT
s1

EM(ys1
|xs1)−W T

s̄1
EM(Y s̄1|xs̄1)−W T

2 EM(Y 2|x2)

=A
(
Hs1

)−1Hs1β1−W T
s̄1

xT
s̄1

β1−W T
2 xT

2 β2

=A
(
Hs1

)−1Hs1β1−W T
s̄1

xT
s̄1

β1−W T
2 xT

2 β2

BM(t̂y1) =W T
2 x2
(
β1−β2

)
where A =W T

s̄1
xs̄1 +W T

2 x2. The model variance of t̂y1 is derived as

VM(t̂y1) =VM
(
W T

s1
ys1

+W T
s̄1

xs̄1 β̂1 +W T
2 x2β̂1

)
.

Under OLS assumptions, we have VM(β̂1) = σ2
1
(
Hs1

)−1. Inserting this result, we get

VM(t̂y1) =σ
2
1
(
n1 +W T

s̄1
xs̄1

(
Hs1

)−1xT
s̄1

Ws̄1

)
+σ

2
2
(
W T

2 x2
(
Hs1

)−1xT
2 W2

)
.
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The MSE of t̂y1, is given by

MSEM(t̂y1) =
{

BM(t̂y1)
}2

+VM(t̂y1)

=
{

BM(t̂y1)
}2

+σ
2
1
(
n1 +W T

s̄1
xs̄1

(
Hs1

)−1xT
s̄1

Ws̄1

)
+σ

2
2
(
W T

2 x2
(
Hs1

)−1xT
2 W2

)
.

Derivation of Bias and MSE of t̂y1 with Sub-sampling

BM(t̂∗y ) =EM
(
W T

s1
ys1

+W T
s̄1

xs̄1br +W T
ś2

yś2
+W T

´̄s2
x ´̄s2

ˆbeta2−W T
s1

ys1
−W T

s̄1
Y s̄1−W T

ś2
yś2

−W T
´̄s2

Y ´̄s2

)
=EM

(
W T

s̄1
xs̄1 β̂1 +W T

´̄s2
x ´̄s2

ˆbeta2−W T
s̄1

Y s̄1−W T
´̄s2

Y ´̄s2

)
=W T

s̄1

[
xs̄1EM

(
β̂1
)
−EM

(
Y s̄1

)]
+W T

´̄s2

[
x ´̄s2

EM
( ˆbeta2

)
−EM

(
Y ´̄s2

)]
=W T

s̄1

[
xs̄1β1− xs̄1β1

]
+W T

´̄s2

[
x ´̄s2

β2− x ´̄s2
β2
]
= 0.

The variance of the estimator, is given by

VM(t̂∗y ) =VM

[
W T

s1
xs1β1 +W T

s1
εs1 +W T

s̄1
xs̄1

(
Hs1

)−1Hs1β1 +W T
s̄1

xs̄1

(
Hs1

)−1xT
s1

εs1

+W T
ś2

xś2β2 +W T
ś2

εś2 +W T
´̄s2

x ´̄s2

(
H ś2

)−1H ś2β2 +W T
´̄s2

x ´̄s2

(
H ś2

)−1xT
ś2

εś2

]

VM(t̂∗y ) =σ
2
1
[
n1 +W T

s̄1
xs̄1

(
Hs1

)−1xT
s̄1

Ws̄1

]
+σ

2
2
[
ń2 +W T

´̄s2
x ´̄s2

(
H ś2

)−1xT
´̄s2

W ´̄s2

]
.

Rearranging terms, we get

VM(t̂∗y ) =n1σ
2
1 + ń2σ

2
2 +σ

2
1W T

s̄1
xs̄1

(
Hs1

)−1xT
s̄1

Ws̄1 +σ
2
2W T

´̄s2
x ´̄s2

(
H ś2

)−1xT
´̄s2

W ´̄s2
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Table C.1: Bias and MSEs with σ2 = 0.01 and p = 8

ρ = 0.5 ρ = 0.7 ρ = 0.9

λ2 n k Bias(T̂ ∗yv) MSE(t̂∗y ) MSE(T̂ ∗yv) Bias(T̂ ∗yv MSE(t̂∗y ) MSE(T̂ ∗yv) Bias(T̂ ∗yv) MSE(t̂∗y ) MSE(T̂ ∗yv)

0.2

100

1.5 -1.9045 2632.5429 3410.3629 0.1861 2501.6722 3101.5096 -3.5464 3615.4525 4146.0974
2 -3.0774 15332.5627 18264.6392 -0.9490 14016.4277 16670.444 0.8504 22387.5100 24270.7100
3 -4.7323 63897.550 67396.2853 -6.8877 17623.5750 18316.748 -6.1958 102069.3970 105702.5531

150

1.5 -0.1320 182.0770 181.8869 -0.0860 177.5572 177.5734 -0.0015 0.0115 0.0004
2 -0.1403 237.1414 238.3950 -0.2664 233.9038 233.6031 0.8081 200.9532 283.5728
3 0.1429 998.3503 1041.6369 -4.7654 11861.0556 15667.4757 -4.5923 12698.1924 14579.8670

200

1.5 -0.2404 124.6444 124.7199 0.0072 0.0472 0.1311 -0.0021 0.0776 0.0007
2 -0.2501 141.0534 140.9511 0.0491 13.0456 30.5921 -0.0023 0.0682 0.0006
3 -0.2724 225.3042 230.9373 -2.1225 756.4574 1453.1401 -1.2813 556.3236 888.3302

0.2

100

1.5 -0.0017 0.1004 0.0005 -0.5134 309.4638 309.6424 -0.0082 285.7515 286.0365
2 -0.1018 2.0960 16.3657 -0.5683 399.1314 399.0764 -0.3330 368.5770 369.1162
3 -1.3227 1081.2742 5169.5272 -0.1887 703.9439 703.9108 -0.3322 681.8513 686.7257

150

1.5 -0.0010 0.0189 0.0002 -0.3027 176.2154 176.2077 -0.3701 169.2124 169.2489
2 -0.0015 0.0676 0.0003 -0.2734 222.5153 222.6088 -0.1682 203.0450 203.0715
3 -0.0023 0.4645 0.0010 -0.5970 336.7227 337.0286 -0.7045 315.0578 314.8267

200

1.5 -0.0003 0.0057 0.0001 -0.0077 136.3723 136.3636 -0.1989 124.4898 124.5128
2 -0.0010 0.0167 0.0002 0.0665 166.4728 166.5163 -0.1507 151.5523 151.5717
3 -0.0016 0.1027 0.0004 0.3372 237.1700 237.1535 -0.0540 217.1780 217.2875
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Table C.2: Bias and MSEs with σ2 = 0.1 and p = 8

ρ = 0.5 ρ = 0.7 ρ = 0.9

λ2 n k Bias(T̂ ∗yv) MSE(t̂∗y ) MSE(T̂ ∗yv) Bias(T̂ ∗yv MSE(t̂∗y ) MSE(T̂ ∗yv) Bias(T̂ ∗yv) MSE(t̂∗y ) MSE(T̂ ∗yv)

0.2

100

1.5 0.0527 761.5122 6.0175 -0.1304 712.9594 32.4517 0.1087 779.5891 101.4044
2 0.3897 3072.4058 597.1933 -0.1384 2957.2573 884.0712 0.3682 3096.5782 960.3027
3 -4.1239 18395.7554 12510.7762 -2.1398 18856.2093 13943.7068 0.4578 17867.0923 16000.5730

150

1.5 -0.0018 102.4919 0.0004 -0.0013 93.5663 0.0004 -0.0018 98.2044 0.0004
2 -0.0031 320.7221 0.0007 -0.0021 307.4636 0.0007 -0.0031 312.4716 0.0007
3 -0.0853 2119.3799 393.5367 -0.1952 1936.9254 120.3755 0.2440 2012.8939 584.2767

200

1.5 -0.0010 31.2990 0.0002 -0.0007 27.9423 0.0003 -0.0006 30.3235 0.0003
2 -0.0019 103.3161 0.0003 -0.0014 83.5846 0.0003 -0.0012 96.0962 0.0003
3 -0.0032 501.3613 0.0008 -0.0027 543.5329 0.0007 -0.0024 486.4563 0.0008

0.4

100

1.5 -0.0012 34782.8600 0.0002 -0.0024 35656.4700 0.0002 -0.0013 36537.1700 0.0002
2 -0.0022 76289.3900 0.0003 -0.0031 73245.7900 0.0003 -0.0032 335.3555 0.0008
3 -0.0042 202559.5000 0.0012 -0.0052 184955.9000 0.0009 -0.0069 1811.6840 0.0031

150

1.5 -0.0055 272320.5567 0.0016 -0.0064 247252.1500 0.0012 -0.0094 -21830.7495 0.0043
2 -0.0070 356208.8767 0.0021 -0.0078 321901.8650 0.0015 -0.0122 -39193.4925 0.0058
3 -0.0085 440097.1967 0.0027 -0.0092 396551.5800 0.0019 -0.0150 -56556.2355 0.0073

200

1.5 -0.0100 523985.5167 0.0032 -0.0106 471201.2950 0.0022 -0.0178 -73918.9785 0.0087
2 -0.0115 607873.8367 0.0037 -0.0120 545851.0100 0.0026 -0.0207 -91281.7215 0.0102
3 -0.0130 691762.1567 0.0043 -0.0134 620500.7250 0.0029 -0.0235 -108644.4645 0.0117
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Table C.3: Bias and MSEs with σ2 = 1 and p = 8

λ2 n k Bias(T̂ ∗yv) MSE(t̂∗y ) MSE(T̂ ∗yv) Bias(T̂ ∗yv MSE(t̂∗y ) MSE(T̂ ∗yv) Bias(T̂ ∗yv) MSE(t̂∗y ) MSE(T̂ ∗yv)

0.2

1.5 -0.92480 61377.38088 2732.37605 -1.18547 64137.80092 2116.32394 -1.18547 64137.80092 2116.32394
100 2 -2.94078 98309.64742 27170.99000 -8.24624 98661.25065 25524.12997 -8.24624 98661.25065 25524.12991

3 -27.35530 167858.93049 198667.30000 -23.36264 156272.98600 200505.09000 -23.36264 156272.98600 200505.09930
1.5 -0.00095 32731.19000 0.00010 -0.00101 31548.83000 0.00007 -0.00101 31548.83000 0.00007

150 2 -0.00206 53798.86000 0.00057 0.66527 50745.12235 273.95232 0.66527 50745.12235 273.95232
3 -5.45773 98828.28093 18837.24500 -5.31764 95632.41642 20115.99933 -5.31764 95632.41642 20115.99933

1.5 -0.00050 17985.20000 0.00003 -0.00086 18345.49000 0.00003 -0.00086 18345.49000 0.00003
200 2 -0.00073 30170.24000 0.00007 -0.00107 32707.66000 0.00007 -0.00107 32707.66000 0.00007

3 -0.87860 62423.15344 236.95346 -0.58426 63258.35576 189.24416 -0.58426 63258.35576 189.24416

0.4

100

1.5 -0.00054 74174.77000 0.00005 -0.00054 73609.55000 0.00008 -0.26906 296990.10000 186.24990
2 -0.00123 137269.40000 0.00018 -0.00114 136571.00000 0.00019 -0.00118 142043.00000 0.00012
3 0.21696 304271.30000 1655.51200 -0.93803 292194.00000 877.38890 -0.26906 296990.10000 186.24990

150

1.5 -0.00016 27143.28000 0.00002 -0.00049 27164.02000 0.00002 -0.00094 133416.30000 0.00011
2 -0.00034 54688.47000 0.00004 -0.00062 57434.25000 0.00004 -0.00060 55799.30000 0.00004
3 -0.00097 138008.00000 0.00014 -0.00116 144321.40000 0.00014 -0.00094 133416.30000 0.00011

200

1.5 -0.00019 13010.95000 0.00001 -0.00030 12975.12000 0.00001 -0.00070 72677.00000 0.00005
2 -0.00021 27447.29000 0.00002 -0.00040 27325.85000 0.00002 -0.00039 27794.85000 0.00002
3 -0.00058 73274.17000 0.00005 -0.00077 75598.08000 0.00006 -0.00070 72677.00000 0.00005
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Appendix D

Model-based estimation under RSSWOR

Table D.1: Bias and RE for γ∗ = 0.3

t m REr RErss RER.rss AB.srs AB.rss

G(2, 2)

2 2.7477 1.0162 2.4882 60.4370 74.3182
5 5 8.4049 1.0416 7.8941 13.3828 28.1902

8 14.2844 1.0674 12.5380 3.6897 15.7625

2 6.4891 1.0371 6.0193 16.6093 37.0989
10 5 18.7730 1.0968 15.9923 14.8950 12.1114

8 28.1957 1.1624 25.2679 40.2373 8.4270

G(2, 3)

2 1.9541 1.0162 1.7817 39.3351 49.5385
5 5 5.9852 1.0416 5.5614 9.2946 19.1030

8 10.0640 1.0673 8.7772 1.7740 10.4089

2 4.5732 1.0371 4.2278 10.4029 24.9263
10 5 13.3438 1.0967 11.1148 9.1333 8.4639

8 20.4853 1.1623 17.5920 25.9294 6.0248

G(2, 6)

2 0.7002 1.0162 0.6532 18.2332 24.7587
5 5 2.1652 1.0416 1.9770 5.2064 10.0158

8 3.5829 1.0665 3.1030 0.1417 5.0553

2 1.6207 1.0370 1.5014 4.1965 12.7538
10 5 4.7780 1.0962 3.8859 3.3716 4.8163

8 7.6737 1.1615 6.1247 11.6216 3.6227
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Table D.2: Bias and RE for γ∗ = 0.3 (Continued )

t m REr RErss RER.rss AB.srs AB.rss

G(4, 2)

2 6.6740 1.0162 6.5199 70.2027 71.4624
5 5 18.6256 1.0414 17.5572 3.7536 26.4852

8 30.0509 1.0678 28.2431 32.0967 20.8870

2 14.6985 1.0371 13.7490 14.6898 36.9738
10 5 37.2922 1.0969 34.4925 50.2069 13.9068

8 52.2661 1.1625 54.6377 96.6559 8.0505

G(4, 3)

2 5.4981 1.0162 5.3625 46.4492 47.4090
5 5 15.4862 1.0413 14.5785 2.2278 16.6957

8 24.8446 1.0677 23.5442 22.2571 13.2721

2 12.2151 1.0371 11.3978 9.7364 24.3884
10 5 31.2106 1.0969 28.5025 33.9727 8.7211

8 45.2124 1.1624 44.7444 64.8684 4.4050

G(4, 6)

2 2.8007 1.0162 2.7367 22.6957 23.3556
5 5 8.0255 1.0412 7.5142 0.7021 6.9062

8 12.8020 1.0676 12.1435 12.4175 5.6571

10 2 6.3329 1.0371 5.8753 4.7830 11.8029
5 16.5931 1.0968 14.5284 17.7384 3.5353
8 26.1513 1.1619 22.3871 33.0809 0.7596
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Table D.3: Bias and RE for γ∗ = 0.5

t m REr RErss RER.rss B.srs B.rss

G(2, 2)

2 4.1635 1.0162 3.8755 26.3349 38.4283
5 5 11.7600 1.0416 10.8376 0.2269 14.6806

8 19.0647 1.0674 16.6432 12.6135 7.0302

2 9.0123 1.0371 8.3368 0.3577 19.2577
10 5 24.6040 1.0968 20.8750 22.0938 5.2963

8 34.8054 1.1624 32.5903 45.1165 3.7419

G(2,3)

2 2.4424 1.0162 2.2918 16.6708 25.5938
5 5 6.9412 1.0416 6.3435 0.4148 9.9228

8 11.2630 1.0673 9.7110 8.0589 4.2787

2 5.2569 1.0371 4.8709 0.7021 12.7774
10 5 14.6075 1.0967 12.1113 14.1533 3.5794

8 21.8860 1.1623 19.0112 29.5143 2.5279

G(2,6)

2 0.6876 1.0162 0.6540 7.0068 12.7592
5 5 1.9717 1.0416 1.7872 0.6028 5.1650

8 3.2106 1.0665 2.7341 3.5042 1.5272

2 1.4733 1.0370 1.3731 1.7620 6.2971
10 5 4.1606 1.0962 3.3897 6.2128 1.8626

8 6.6925 1.1615 5.3228 13.9122 1.3139

G(4,2)

2 11.6353 1.0162 11.3209 30.6179 36.0369
5 5 30.9743 1.0414 29.1134 10.1908 12.5094

8 47.6155 1.0678 46.2887 39.1973 11.9721

2 24.7812 1.0371 23.0511 3.4527 20.0803
10 5 57.9638 1.0969 55.5549 56.0029 7.7684

8 72.2816 1.1625 85.5164 98.7919 4.2145

188



Table D.4: Bias and RE for γ∗ = 0.5 (Continued )

t m REr RErss RER.rss B.srs B.rss

G(4, 3)

2 8.2487 1.0162 8.0154 20.4934 24.2274
5 5 22.1472 1.0413 20.7583 6.4045 7.8630

8 34.1948 1.0677 33.1922 26.5797 8.0502

2 17.6948 1.0371 16.4005 1.6694 13.8710
10 5 42.7483 1.0969 39.5368 37.2152 5.1830

8 57.7674 1.1624 60.4255 65.7651 2.3580

G(4,6)

2 3.2104 1.0162 3.1190 10.3689 12.4179
5 5 8.7104 1.0412 8.1194 2.6182 3.2166

8 13.6275 1.0676 13.0141 13.9622 4.1283

2 6.9433 1.0371 6.4016 0.1139 7.6617
10 5 17.7594 1.0968 15.3926 18.4274 2.5975

8 27.7148 1.1619 23.3248 32.7382 0.5016
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Table D.5: Bias and RE for γ∗ = 0.8

t m REr RErss RER.rss B.srs B.rss

G(2, 2)

2 2.9772 1.0162 2.9319 0.7295 11.7680
5 5 7.8813 1.0416 7.3193 6.4027 6.8744

8 13.0466 1.0674 11.2503 17.6501 2.4392

2 6.1334 1.0371 5.7045 9.8893 6.0968
10 5 16.3307 1.0968 13.8569 25.1742 3.3341

8 24.7321 1.1624 22.0765 46.4994 2.8797

G(2, 3)

2 1.3124 1.0162 1.2942 0.7727 9.2188
5 5 3.4763 1.0416 3.2281 2.4282 5.9425

8 5.8088 1.0673 4.9801 10.6486 1.9791

2 2.7028 1.0371 2.5220 6.4683 4.7646
10 5 7.3178 1.0967 6.1311 15.0885 3.1778

8 11.7379 1.1623 9.8098 29.6435 2.7129

G(2, 6)

2 0.2952 1.0162 0.2914 0.8158 6.6696
5 5 0.7815 1.0416 0.7259 1.5462 5.0106

8 1.3146 1.0665 1.1239 3.6471 1.5191

2 0.6073 1.0370 0.5688 3.0473 3.4325
10 5 1.6602 1.0962 1.3828 5.0029 3.0215

8 2.7646 1.1615 2.2174 12.7877 2.5461

G(4, 2)

2 19.0692 1.0162 18.5281 7.1291 4.0326
5 5 48.3596 1.0414 45.5339 24.8539 2.3440

8 70.4115 1.0678 72.8449 48.5345 1.7598

2 38.7544 1.0371 36.2560 21.4485 4.0871
10 5 83.1682 1.0969 85.3838 63.7828 0.5404

8 90.1236 1.1625 127.4162 103.5377 2.0718
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Table D.6: Bias and RE for γ∗ = 0.8 (Continued )

t m REr RErss RER.rss B.srs B.rss

G(4, 3)

2 9.4384 1.0162 9.1597 5.7765 2.1612
5 5 24.1982 1.0413 22.6224 16.4848 2.9508

8 36.5374 1.0677 36.3521 33.6606 0.9746

2 19.2451 1.0371 17.9593 14.0669 3.0742
10 5 45.4154 1.0969 42.6479 42.8306 0.9760

8 59.2750 1.1624 64.0248 69.4480 2.4260

G(4, 6)

2 2.5469 1.0162 2.4673 4.4240 0.2897
5 5 6.5779 1.0412 6.1133 8.1157 3.5577

8 10.2535 1.0676 9.8319 18.7867 0.1893

2 5.1960 1.0371 4.8419 6.6852 2.0612
10 5 13.2630 1.0967 11.5543 21.8784 1.4116

8 20.9691 1.1619 17.4367 35.3583 2.7801
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Appendix E

Application to PDHS 2017-18 Data

The results for fertility measure obtained using DHS.rates Package are provided. This
appendix further provides auto-correlation and trace plots for posterior estimates under
MCMC given in Chapter 7. Fertility rate obtained using DHS.rate package for PDHS
2017-18 data are given by Masset (2016).

Table E.1: ASFR for Pakistan using DHS.rates package

Group AGE ASFR SE N WN DEFT RSE LCI UCI

0 15-19 190.258 9.084 3317 3083 1.341 0.048 172.454 208.062
1 20-24 282.748 7.752 6584 6652 1.499 0.027 267.556 297.941
2 25-29 255.235 6.746 7731 7784 1.432 0.026 242.012 268.457
3 30-34 171.735 6.714 6818 7011 1.491 0.039 158.576 184.894
4 35-39 82.322 5.371 5836 5680 1.467 0.065 71.796 92.848
5 40-44 28.854 4.198 4215 4135 1.513 0.145 20.626 37.083
6 45-49 12.226 3.173 2370 2562 1.287 0.26 6.007 18.445
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Table E.2: Regional ASFR for Pakistan using DHS.rates package

AGE ASFR SE N WN DEFT RSE LCI UCI

ASFR for Punjab

0 15-19 189.538 15.602 660 1323 1.045 0.082 158.959 220.118
1 20-24 282.972 12.621 1807 3643 1.239 0.045 258.234 307.709
2 25-29 258.421 10.29 2137 4251 1.125 0.04 238.254 278.588
3 30-34 170.164 10.32 1980 3817 1.204 0.061 149.937 190.391
4 35-39 69.976 7.843 1553 2985 1.191 0.112 54.604 85.347
5 40-44 16.717 5.294 1253 2337 1.468 0.317 6.341 27.093
6 45-49 6.874 3.96 778 1478 1.349 0.576 0 14.635

ASFR for Sindh

0 15-19 184.087 15.823 735 739 1.117 0.086 153.074 215.101
1 20-24 278.917 11.171 1438 1523 1.052 0.04 257.021 300.812
2 25-29 239.543 12.888 1664 1740 1.326 0.054 214.283 264.803
3 30-34 170.189 12.627 1565 1681 1.395 0.074 145.441 194.938
4 35-39 87.859 11.179 1269 1293 1.392 0.127 65.949 109.769
5 40-44 47.36 10.644 888 900 1.316 0.225 26.498 68.222
6 45-49 17.753 6.75 613 632 1.281 0.38 4.522 30.983

ASFR for KPK

0 15-19 183.969 17.233 806 701 1.3 0.094 150.194 217.744
1 20-24 292.882 14.141 1271 989 1.186 0.048 265.166 320.599
2 25-29 273.131 14.255 1484 1184 1.337 0.052 245.191 301.07
3 30-34 175.322 13.484 1244 1000 1.284 0.077 148.893 201.751
4 35-39 95.224 12.975 1135 889 1.476 0.136 69.793 120.655
5 40-44 37.885 11.343 791 599 1.542 0.299 15.652 60.118
6 45-49 11.137 8.133 351 291 1.155 0.73 0 27.076

ASFR for Balocahistan

0 15-19 217.982 37.111 545 211 2.181 0.17 145.245 290.72
1 20-24 250.993 22.41 914 306 1.754 0.089 207.069 294.916
2 25-29 222.037 13.206 1126 400 1.079 0.059 196.153 247.921
3 30-34 187.286 14.884 818 318 1.114 0.079 158.113 216.458
4 35-39 119.357 13.9 929 367 1.3 0.116 92.114 146.601
5 40-44 46.102 12.511 496 180 1.349 0.271 21.581 70.623
6 45-49 51.247 25.528 300 118 1.448 0.498 1.212 101.281

ASFR ICT

0 15-19 219.308 36.448 171 15 1.106 0.166 147.871 290.745
1 20-24 236.892 16.109 527 50 0.971 0.068 205.318 268.465
2 25-29 285.973 20.229 698 69 1.314 0.071 246.326 325.621
3 30-34 140.04 12.252 656 62 0.96 0.087 116.026 164.055
4 35-39 71.55 10.199 563 54 0.921 0.143 51.562 91.539
5 40-44 22.499 8.245 499 50 1.266 0.366 6.339 38.659
6 45-49 9.365 9.374 208 20 1.426 1.001 0 27.738
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Table E.3: Regional ASFR for Pakistan using DHS.rates Package (Continued )

AGE ASFR SE N WN DEFT RSE LCI UCI

ASFR for FATA

0 15-19 228.822 22.686 400 95 1.194 0.099 184.358 273.286
1 20-24 332.567 25.344 625 141 1.634 0.076 282.893 382.24
2 25-29 281.624 21.473 622 141 1.292 0.076 239.538 323.71
3 30-34 187.078 26.03 555 132 1.581 0.139 136.06 238.097
4 35-39 138.735 32.019 387 93 1.691 0.231 75.978 201.491
5 40-44 79.84 28.944 289 69 1.634 0.363 23.112 136.569
6 45-49 20.916 13.263 120 23 1.024 0.634 0 46.911

Table E.4: TFR at regional level

TFR N WN

Punjab 4.973 10169 19834
Sindh 5.129 8171 8507
KPK 5.348 7082 5653
Balochistan 5.475 5127 1899
ICT 4.928 3323 321
FATA 6.348 2999 693

Pakistan: 5.117 36871 36907

Table E.5: Regional level GFR for Pakistan using DHS.rates package

GFR SE N LCI UCI

Punjab 179.112 5.206 9391 168.908 189.317
Sindh 181.711 6.74 7558 168.501 194.921
KPK 191.7 7.325 6731 177.343 206.057
Balochistan 184.783 9.966 4826 165.249 204.317
ICT 162.631 6.485 3115 149.92 175.341
FATA 226.402 14.097 2878 198.772 254.033

Pakistan: 182.745 3.43 34500 176.023 189.467
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Figure E.1: Auto correlation plot 1
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Figure E.2: Auto correlation plot 2
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Figure E.3: Auto correlation plot 3

197



Figure E.4: Auto correlation plot 4
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Figure E.5: Auto correlation plot 5
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Figure E.6: Trace plot 1-A
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Figure E.7: Trace plot 1-B
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Figure E.8: Trace plot 1-C
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Figure E.9: Trace plot 1-D
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Figure E.10: Trace plot 1-E
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Figure E.11: Trace plot 1-F

Figure E.12: Trace plot 1-G
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