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Chapter 1 

INTRODUCTION 

Statistics is the SCIence of collecting, organizing and interpreting numerical 

facts, which we call data. Data bombards us In everyday life. Each month, for 

example, govemment statistical offices release the latest numerical informati on on 

unemployment and inflation. Economist and financia l advisors as well as policy 

makers in govemment and business study these data to make info1111ed decisions. 

Doctors must understand the origin and trustwOlthiness of the data appear in medical 

joumals if they are offer their patients the most effective treatment. Politicians rely on 

data from polls of public opinion. Market research data that reveal consumer tastes 

influence business decisions. Farmers study data from field trials of new crop 

varieties. Engineers gather data on the quality and reliabillty of manufactured 

products . Most areas of academic study make use of numbers, and therefore also 

make use of the method of statistics . Statistical methods not only describe important 

features of the data but also allow us to proceed beyond the collected data into the 

area of decision-making through generalization and predictions. Statistics assists in a 

sound and effective planning in any field of inquiry. Statistics teaches us how to 

gather, organize and analyze data, and then to infer the underlying reality from these 

data. Statistical tools are frequently applied for research purpose in almost all areas of 

study. Statistical teclmiques being powerful tools for analyzing numerical data; are 

used in almost every branch of leaming. Biological and Physical Sciences, Genetics, 

Agronomy, Astronomy, Physics, Geology, etc. are the main areas where sta ti stica l 

techniques have been developed and are increasingly used. 
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The app1ication of statistical tools in research work can be viewed in any 

research journal of any subject. If there is data, there must be statistical tool s to 

analyze and interpret this data for the significant use. 

H.G Wells anticipated that statistical thinking (numerical literacy) would one 

day be as necessary for efficient citizenship as the ability to read and write . 

In this study, we are mainly concern with the Bayesian Statistics, the modem 

branch of Statistics. Prior to the modem branch of the statistics, the fonn er is caned 

Classical Statistics. So we may say that there are two schools of thoughts, the f01l11 er 

is called Classical statistics and the lat1er is called Bayesian statistics. The approach to 

statistics that fonnally seeks to utilize prior information is called Bayesian statistics, 

names after Bayes (1763). In Bayesian statistics, we reflect on prior infonnation, 

arising from sources other than the statistical investigation. Prior infonnation about 

parameter generally comes from the past experience about similar situations involving 

similar parameter. Bayesian analyses are needed to solve real decision problem 

The role of Bayesian statistics in the updating of be1iefs about observables in 

the light of new infOlmation is of importance. This development, in combination with 

an operational approach to the basic concepts, has led us to view the problem of 

statistical modeling as that of identify ing or selecting particular forms of 

representation of beliefs about observables. 

In this study, we have presented an analysis for paired companson data 

through Bayesian approach. In the method of paired comparisons, objects are 

presented in pairs to one or more judges. Sometimes it may be difficult to a panelist to 

rank or compare more than two objects or treatments at the same time especially when 

differences between objects are tTivial. For this reason paired comparisons data is 

sometime regarded as more reliable. This method is broadly used in industry for 
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assessmg customer preference and designing products usmg tnined paneli sts. 

1(1 - \ ) 
Suppose we have 't' treatments or objects T.. ,T2"'~' There are 2 different 

comparisons are possible with a single judge. For t objects and n judges the number of 

paired comparisons will be n (~ ) . 

This method was indeed introduced in embryonic form by Fechner (1860) and 

after considerable extensions, made popular by Thurstone (1927) . Several extensive 

reviews are available in the research paper of Bock and Jones (1968), Coombs (1964), 

Kendall (1940), and Torgerson (1958). Davidson and Farquhar (1976) have presented 

an extensive bibliography on paired comparisons. David's mono graph (19 88) has a 

detailed survey of the literature and references concerning the method and models of 

paired comparisons. The detailed discussion on paired comparison is focused in 

chapter-3 . 

The Bayesian Ranking of the top Seven Clicket teams by using the Rao-

Kupper and Davidson models for paired comparison is presented in this study. 

Chapter#2, In this chapter introduction to Bayesian statistics is presented 

briefly. Its advantages and greater scope over classical statis tics is revealed . Basic 

tern1inologies of Bayesian statistics, prior di stribution, formation of posterior 

distribution, Bayesian hypotheses testing along with its advantages over cl ass ical 

hypotheses testing are enlightened. As Bayesian Statisticians need computational 

tools to calculate a vmiety of summaries from posterior dish'ibutions that are 

mathematically complex, so Gibbs sampling for complex and multidimensional 

integration is also clalified. 
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Chapter#3, detail discussion about paired comparison methods is presented. 

Its application in various fields is demonstrated. FOlmulation of linear model and 

modifications of basic model into other paired comparisons models are detailed. A 

brief review of the existing literature on the methods and models of paired 

comparisons is also included in this chapter. 

Chapter#4, compnses the Rao-Kupper and Davidson models with the 

notations and the likelihood for the parameters of the model. The ranking of Top 

Seven Cricket Teams (Australia, South Africa, Pakistan, India, New Zealand, Sri 

Lanka and England) using Posterior Mode and Posterior Mean of the parameters of 

these models is presented. 

The predictive probabilities that one team would be better to another team in a 

f-uture single comparison are included in this chapter. We use the technique of Gibbs 

sampling for obtaining the posterior means. We also detelmine the preference 

probabilities for the teams to verify the ranking of the teams. Preference probabilities 

are calculated by just calculating the probability of prefening team T; to team Tj . The 

posterior probabilities of the hypotheses for the comparison of two parameters are 

calculated. Appropliateness of the model is tested using chi-square goodness of fit 

test. Posterior (Marginal) densities for the parameters of the Rao-Kupper model are 

sketched. The Comparison of ICC Ranking and Bayesian Ranking also presented 

here. 

Chapter Appendix: In appendix, a set of programs designed in SAS package 

and C++ Language for the numerical solution is scheduled. 
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Chapter 2 

2.1 Introduction 

The section-wise scheme of this chapter is given below: 

In sections 2 and 3, the Bayesian statistics with its id eas and features has bel;n 

discussed while Section 4 deals with the Classical or Frequentist statistics. In sections 5 

and 6, the Bayes' theorem and posterior distribution, the concept of conditional 

probability and the likelihood function are described. In section 7, sUbj ective 

determination of prior density through different approaches and plior distribution is 

illustrated. The InfOlmative prior has been explained in section 8. Sections 9 and 10 cover 

the concept of the Non-infOlmative prior and the Uniform plior. The Prior Predictive and 

Posterior Predictive Distributions are defined in sections 11 and 12. Bayes ian hypothe~; i s 

testing is described in section 13. Section 14 covers Gibbs sampling with its mecbanif.!11 

and benefits. The last section 15 holds the historical overview and the scope of Bayesi an 

statistics. 

2.2 Bayesian Statistics 

The particular advantages offered by Bayesian Statistics make it very useful in 

situations where uncertainty is unavoidable - Bayesian methods provide a mechanism to 

model the unceliainty. Such methods can also be used where normal optimization and 

decision-making techniques are difficult to apply. Sometimes we want to formal 

quantitative coherence in the context of decision making in situations of unceliainty. In 

these situations, thc role of Bayes theorem in the updating of beliefs about observables in 

the light of new information is of impOliance. This development, in combination wi th an 

operational approach to the basic concepts, has led us to view the problem of statisti ,~al 
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modeling as that of identifying or selecting pmiicular forms of representation of belit:.fs 

about observables. 

This approach makes use of not only the sample information but also the prior 

infonnation. This is named so after Bayes (1763) who first introduced this approach. The 

Bolstad (2004) discusses the key features of this approach as: 

• The unknown parameter is considered as a random variable. 

• Prior infOlmation is the probability statement about parameter, which is 

interpreted as "degree of belief' or the relative weights that expeli, gives to every 

possible value of the parameter. It measures how "plausible" the expert considers 

each parameter value before observing the data. 

• We revise our beliefs about parameters using Bayes' theorem after getting the 

data. TIns is posterior distribution, which gives the relative weights to each 

parameter value after analyzing the data. The posterior distribution comprises tile 

prior distribution and the observed data. 

• Parameter estimates, along with confidence intervals (known as credibili ty 

intervals) or higher density region (HDR) , are calculated directly from tile 

posterior distribution. Credibility intervals are legitimate probability statements 

about the unknown parameters,since these parameters now are considered 

random, not fixed . 

• It makes a great deal of practical sense to use all the infOlmation available, o\d 

and/or new, objective or subjective, when making decisions under uncertainty. 

This is especially true when the consequences of the decisions can have a 

significant impact, financial or otherwise. 
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• The rules of probability are used directly to make inferences about the 

parameters. 

2.3 Features of Bayesian Statistics 

Berger (1985) and Bolstad (2004) discuss the following featmes of Bayesi;m 

statistics: 

• Classical approach cannot take into account the given prior infonnation. So, 111 

such situation where prior information is available, Bayesian viewpoint is more 

appropriate for statistical analysis. 

• In Statistical analysis, the Bayesian approach is the only way which consistently 

uses probability to directly address uncertainty as discussed by Jeffreys (1961), 

Edwards et. a1. (1963) and deFinetti (1972, 1974, 1975). On the other hand, 

Classical approach addresses the probability (which is the language I)f 

uncertainty), indirectly related to the probability of the hypothesis . 

• Berger and Wolpert (1984) argue that conditional analysis of the observed data, as 

opposed to Frequentist averaging over is potential data, supporting to use of the 

Bayesian analysis. 

• In decision theory it is natmal to consider the only admissible decision rule which 

reduce consideration to the class of Statistical procedures. In a simple versus 

simple hypothesis situation, it has been repeatedly shown that the class of 

acceptable (Classical) decision rules corresponds to the class of Bayes decision 

rules. 
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• In Bayesian analysis, realistic model can more easily be chosen for analysis sin ce 

there is less need to have models which allow special classical calculations 

following Rubin (1984). 

• Robustness (violation of usual assumption) can be dealt with more easily by using 

Bayesian analysis as compared to Classical analysis. 

• Berger and Wolpert (1984) define an irnpOliant advantage of Bayesian analy~ : i s 

that various kinds of censoring of data cause no essential problem, on the other 

hand serious problems can be seen for Classical analysis . 

• Bayesian analysis gives a final distribution for the unknown parameter (which is 

called posterior distribution) and from this a large number of questions can be 

answered simultaneously. 

• Bayesian procedures almost always equal to the Classical sample procedurl;s 

when sample size is very large and are relatively improved for moderated sl11,tll 

sample sizes cases. 

• Bayesian Statistics has a general way of dealing with a nuisance parameter. A 

nuisance parameter is one, which we don' t want to make inference about, but we 

don't want them to interfere with the inferences we are making about the main 

parameters. Frequentist statistics does not have a general procedure for dealing 

with them. 

• Bayesian Statistics is predictive, unlike conventional Frequentist Statistics . Th is 

means that we can easily find the conditional probability distribution of the next 

observation given the sample data . . 
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• Bayesian Statistics has a single tool, Bayes theorem, which is used in (til 

situations. This contrasts to Frequentist procedures, which require many different 

tools. 

• Bayesian methods often outperfonn Frequentist methods, even when judged by 

Frequentist criteria. 

• Bayesian approach can compare multiple hypotheses simultaneously unlike 

Classical approach. 

2.4 Classical or Frequentist Statistics 

It is the most commonly used Statistical approach. According to Bolstad (2004) it 

is based on the following ideas: 

• The use of sample information only in making inferences about the populatie.n 

parameter. 

• It considers the unknown parameters as fixed and its estimate as a random 

variable. 

• Here Statistical procedures are judged by how well they perform in the long nm 

over an infinite number of hypothetical repetitions of the experiment. 

• A confidence interval for an unknown parameter is really a frequency statement 

about the likelihood that numbers calculated from a sample capture the trll.e 

parameter. Stlictly speaking, one caml0t make probability statements about the 

true parameter since it is fixed, not random. Mostly, these inferences are made 

without regards to the use to which they are to be put. 

• Probabilities are always interpreted as long nm relative frequency. 
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2.5 Bayes' Theorem and Posterior Distribution 

An English clergyman Thomas Bayes (1702-1761) derives a rule based 0 11 

conditionally reduced sample space and first use in a paper that was publish ~d 

posthumously in 1763. After this, this Rule is known as Bayes' theorem. The typical 

phrasing of Bayes's theorem is in temlS of disjoint events AI' A2 , .. . , All' whose union has 

probability one. Prior probabilities P(A;), for the events, are assumed known. An event B 

occurs, for which p(BIAj ) (the conditional probability of B given that Aj) is known fo r 

each Ai' Bayes theorem then states that 

(2.1) 

It should be known that the original probabilities are known as the a priori 

probabilities and the conditional probabilities p(AjIB) are called the a posteriori 

probabilities, so probabilities are revised after some additional information has been 

obtained. It is also called the formula for probabilities of hypotheses on account of the 

reason that the events AI' ~, ... , All may be thought of as hypotheses to account for 

oCCUlTence of the event B. 

Now expressing the postelior density for unlmown parameter fJ, gIven x = 

(X"X2""'X,J, the observed data, in ternl of the parametric model for x givenfJ, and 

the plioI' density for fJ, the equation (2.1) may be written as: 

p(elx) = p(e)p(xle) , for continuous case 
fp(e)p(xle)de 

(2 .2) 
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Here pee) is a prior distribution fore; p(xle) is a likelihood function of the 

observed data. Fmihennore fp(e)p(xle)de = p(x) i.e. the marginal distribution ofx. It 
8 

can be observed from (2.2) that the posterior distlibution p(elx) can be written as 

Posterior distribution oc (Prior distribution) (Likelihood function), 

or 

p(elx) oc p(e)p(xle) (2.3 ) 

So the posterior distribution consists of two sources of information: the prior 

infOlmation through the prior distribution and the information via the likelihood function. 

We can say that the posterior distribution 'updates' the infonnation. All inferences and 

decisions about parameter are made through the posterior distribution. 

In equation (2.2) and (2.3), p(elx) is lmown as posterior distribution which is 

proportional to the product of prior information and likelihood function. It is noted 1 hat 

prior infonnation are acquired before the data is observed. 

There are situation in real life when important prior information is available then 

it is a wise decision to take into account of this availab le infom1ation in order to make 

reliable estimates. The posterior distribution is the combination of prior info1111ation and 

the sample information, so it reflects the updated beliefs about e after observing the 

sample x. In other words, the posterior distribution combines the prior beliefs about e 

with the infom1ation about e contained in the sample x, to give a composite picture of 

the final beliefs about e . 
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2.6 Likelihood Function 

The tem1 Likelihood may be defined as for a random sample X"X2 , ... ,X
II 

following a probability density function f(x, e) , the joint probability density function or 

the product of independent probability density functions is called the likelihood function, 

which is a function of e 

Symbolically, (2.4) 

The likelihood ftmction is used to find the set of parameter values that gives he 

highest possible likelihood, but in Bayesian statistics, the purpose is to obtain a comple:te 

probability distribution over all possible parameters values. The likelihood princip al 

makes explicit the natural conditional idea that only the actual observed x should ')e 

relevant to conclusions or evidence about e . 

The likelihood is developed as a separate principle by Bemard (1949), and 

become a focus of interest when Bimbaum (1962) shows that it followed from the widely 

accepted sufficiency and principle. The arguments of Bimbaum for the likelihood 

principle is a proof its equivalence with other almost universally accepted natural 

principles. Stein (1962) also presents some remark on likelihood principle. Edwards 

(1974) presents the history of likelihood. Berger and Wolpert (1 984) provide an extensive 

discussion on the likelihood principle. 

2.7 The Subjective Probability the Prior Distribution 

In equation (2.2), pee) is called prior disttibution. Prior di stribution is a 

convenient way to quantify prior infonnation in term of probability distribution on e . 
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According to Berger (1985), the main idea of subjective probability is to let the 

probability of an event reflects the personal belief in the "chance" of the occurrence of 

the event. For example, one may have a personal feeling as to the chance that () will be 

between 3% and 4% in some particular situation, even though no frequency probabil ity 

can be assigned to the event. The simplest way of detelmining subjective probabi lities is 

to compare events, determining relative likelihoods. For example, if it is desired to fi nd 

peA). Simply compare A with A C (the complement of A). If A is felt to be twice as likely 

to occur as AC 
, then clearly P (AJ will be. % according to sample space. French (1980) 

describes in detail updating of belief in the light of someone else's opinion. 

Subjective determination of the prior density can be made under any of the 

following approaches. 

I. Histogram Approach 

II. The Relative Likelihood Approach 

III. Matching a Given Functional Form 

IV. CDF Determination 

Among the four approaches described above for subjectively detennining a prior 

distribution, approaches I and II are most in use.[For Detail see Berger (1985)]. To ga.in 

the full benefits of the Bayesian approach, prior information should not be ignored. 

Fonnulating a prior distribution required expert judgment, which is lmown as elicitation. 

Lindley (1961) and Blum (1967) discuss the importance of prior info1111ation in 

statistical inference and decision-making. Dalal and Hall (1983) present approximati,lg 

priors by mixhlres of natural conjugate priors . Dickey (1980) presents a theory of 

stochastic assessment of subjective probabilities. 
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One of the main differences between Classical Statistics and Bayesian Statistics is 

that the latter can utilize prior infOlmation in a formal way. This infom1ation can be 

quantified in terms of a probability distlibution, which is known as the prior distribution, 

and this represents the knowledge about the parameter prior to observing the data. If th{:re 

is no relevant prior information available then there are ways to drive a non-infol111ati ve 

plior distribution. The prior distribution further depends on parameters, which are calhd 

hyper parameters. 

2.8 The Informative Prior 

An informative prior expresses specific, definite information about a variab Ie 

parameter. An example is a prior distribution for the temperature at noon tomonow. A 

reasonable approach is to make the prior a normal distribution with expected value equal 

to today's noontime temperature, with variance equal to the day-to-day variance of 

atmosphelic temperature. This example has a property in common with many priors, 

namely, that the postelior from one problem (today's temperature) becomes the prior f()[' 

the other problem (tomonow's temperature); pre-existing evidence which has already 

been taken into account is part of the prior and as more evidence accumulates the prior is 

determined largely by the evidence rather than any original assumption, provided that tIle 

original assumption admitted the possibility of what the evidence is suggesting. The ter!l1 

prior and posterior is generally relative to specific datum or observation. 

2.9 The Non - Informative Prior 

One of the advantages of Bayesian approach is that it can be applied even when 0 

plior information is available. What is needed in such situations is a noninjormatil Je 

prior, by which is meant a plioI' which contains no information aboutB. For example, in 
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throwing a die, the pnor who gIves probability 1/6 to each outcome IS clearly 

noninformative. 

Berger (1985) explains that due to the compelling reasons to perform a 

conditional analysis and the attractiveness of using Bayesian analysis to do so, there have 

been attempts to use the Bayesian approach even when no (or minimal) prior infonnati on 

is available. In such situation we require only a non-informative prior, by which mean a 

prior which contains no information about parameter f). For example, in testing between 

two hypotheses, the prior who gives probability ~ to each of the hypotheses is clearly 
2 

non-infonnative. Box and Tiao (1973) define a non-informative prior as a prior, which 

provides little infOlIDation relative to the experiment. Bernardo and Smith (1994) LIs e a 

similar definition; they say that non-informative priors have minimal effect relative to the 

data, on the final inference. They regard the non-informative prior as a mathematical tool; 

it is not a uniquely non-informative prior. 

2.10 The Uniform Prior 

The uniform density used by Bayes (1763) and Laplace (1812), and supported hy 

Geisser (1984). A Uniform distribution is used as a noninformative plior. Unifol1n priors 

are particularly easy to specify in the case of a parameter with bounded support. The 

simplest situation to consider is when f) is a finite, consisting of say n observation. Th ,; 

obvious plior is to give each f) probability Yn . It is noted that Uniform prior have been 

applied to many problems and mostly results are entirely satisfactory. 

A unifOlID prior for the probability parameter (say A) in a Bernoulli, binomial, or 

negative binomial model can be specified by: p (A) = 1, 0 ~ A ~ 1, or if there is some 
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reason to specify a non-normalized uniform: P (A) = 1, 0 ~ A ~ k. The second is non-

nonnalized because it does not integrate to one although it provides no problEm 

whatsoever in Bayesian analysis. Both of these fonns are refened to as proper since th ~y 

integrate to a finite quantity. Proper uniform priors can be specified for parameters 

defined over unbounded space if we are willing to impose prior restrictions. 

It is also possible to specify improper uniform priors that do not possess bound ~d 

integrals; these can results in fully proper posteriors under some circumstances. Consider 

the common case of a noninformative unifoilll plioI' for the mean of a normal 

distribution. 

2.11 The Prior Predictive Distribution 

If a random variable X has probability density f (XIA) and A has probability 

density P (A) , then the joint density of X and A is defined as: 

h(X,A) = f(xlA )p(A). (2 .5 ) 

The marginal p (x) density of X is defined as: 

{ 
J f (XIA) P (A) dA; for continuous case 

p(x)= 0 . 

Lf(xiA )p(A); for discrete case 
o 

(2.6) 

which is lmown as prior predictive distribution of X . 

2.12 The Posterior Predictive Distribution 

The joint posterior density for a random variable Y = X,, +1 and parameter A given 

data ex = Xl' X?' ... , X ) is defined as: 
- /I 

(2 .7) 
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Also we assume that x and yare independent. The margin a 1 density p (y jx) of 

Y = X"+I given data (x = XI' x2"'" x,,) is defined as: 

{
If (y jA) P (AjX )dA; for continuous case 

p(y jx)= 0 

If (y jA) P (AjX); for discrete case 
o 

(2.8) 

which is the posterior predictive distribution of Y = X"+I given data ex = XI"'" xJ . 

2.13 Bayesian Hypothesis Testing 

Directly probability statements about unceriainty essentially req Ll i re 

Bayesian analysis. The hypotheses are unceriain, and the result of a Bayesian analy:;is 

will be simply the statement of the believed probabilities of the hypothesis. Suppose we 

have two hypotheses, the null hypothesisHo that the unknown parameter B belongs to 

some interval 8 0 ; (B E 8 0 ), verses the alternative hypothesis that HI that f) belongs to 

the alternative set 8,; (B E 8,) providing that (80 !l 8,) = qJ (i-e there is no common 

points between the two sets). Then the task of deciding between the two hypotheses is 

conceptually more straightforward. Here we have to find posterior probabilities for both 

hypotheses. That is, 

P (H 0 )= P [( f) I x ) ~ Bo) ] = I P (B I x )d f) , (2.9) 
o 

Here the choice of deciding between Ho and HI is clear-cut than classical 

testing. The hypothesis with greater probability will be accepted. The decision rule Lls l'~d 

here, for accepting or rejecting the above hypotheses is; 

17 



let s =min (p(Ho),p(H,») , if p(Ho) is small then H, is accepted and if p(H,) is 

small, Hois accepted. And ifs>O.l, the decision is inconclusive (As lam 2002). 

2.14 Gibbs Sampling 

Gibbs sampling is well suited to coping with incomplete information and is oft.'::n 

suggested for such applications. However, generality comes at some computational c03t, 

and for many applications including those involving missing information there are often 

alternative methods that have been shown to be more efficient in practice. Geman alld 

Geman [1984J place the idea of Gibbs sampling in a general setting in which the 

collection of variables is structured in a graphical model and each variable has a 

neighborhood corresponding to a local region of the graphical structure. Geman and 

Geman use the Gibbs disttibution to define the joint distribution on this structured set of 

variables. In the case of Bayesian networks, the neighborhoods correspond to the Markov 

blanket of a variable and the joint disttibution is defined by the factorization of the 

network. Gibbs sampling is a general inference algorithm. Gibbs sampling can be used to 

learn Bayesian networks with missing data. The first step is to represent the learning 

problem itself as a Bayesian network. 

The Bayesian statistician needs computational tools to calculate a variety of 

summaries ii-om posterior distribution that are mathematically complex and also oft' ~n 

high dimensional. Geman and Geman (1984) introduce the Gibbs sampler via simulation 

from the high-dimensional distributions arising in image restoration. The method, 

actually, based on the work of Metropolis, Rosonbluth, Rosonbluth, Teller and Teller 

(1953) for studying Boltzmann distributions from statistical mechanics and fmiher 

18 



development by Hastings (1970). More development can be seen in Gelfand and Smith 

(1990). 

Aslam (2007) discusses in detail about the mechanism under Gibbs sampling. He 

shows that the Gibbs sampler is a method for sampling from a multivariate probabili ty 

density function. It operates by simulating a random vmiate from univariate distribution 

only. Let us consider a k-dimensional density function f(If/) = f(IfII' 1f12' ... , IfIk) and we 

are interested to draw a sample from it. The 'k' one-dimensional conditional densities 

f(lf/s 11fI1 's:;:. l,s =l, ... ,k) up to proportionality are required. We specify an arbitn!ry 

conditional distributionf(1fI1 11fI2(O) ,1f/3(O) ... ,IfI/O)), a random variable 1fI/1) from lhe 

f(1fI2 Ilf/I(I) ,1fI/O) ... ,lfIk(O)) using the simulated random vmiate 1fI1(1) and similarly If ,, (I) 

fr th d·t· 1 d· t ·b t· f( I (I ) (I) (I») Th· 1 t . 1 ·om e con IlOna IS n u IOn IfI k IfII ' 1f13 ... , IfI k-J . IS comp e es smg e 

iteration. After 'm' such iterations we have 1fI(1II) = f(IfII(III) ,1fI/") . .. ,If/ III ») and the Gibbs 

sequence of random variate is 1fI(1) , 1fI(2) , ... , 1fI(1II) . In this way, the distribution of sequence 

(which is a Markov chain of random variables simulated by the Gibbs sampler) 

converges to the distribution of interest. This sequence can be used to estimate some 

characteristics of distribution. He also presents two sampling methodologies, one !"Lin 

sequence and Parallel sequence. The ratio-of-uniforms method is illustrated. A program 

is designed in SAS package for the application of the Gibbs Sampler. [For more detail see 

Aslam (2007)] 
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The Gibbs sampling, one of the several MCMC method, is called Monte Ca".·lo 

because they involve drawing random numbers from specified distribution and Morkov 

chain because each sample depends upon the previous sample. 

2.15 Foundation of Bayesian Statistics 

This branch of statistics comes into being after the Bayes's Rule (1763), which is 

developed by Thomas Bayes (1702-1761). The Bayesian school of thought is almost in 

dominating position since its beginning over classical or frequentist statistics. [ts 

application is present in almost all areas of research. The general outlook of Bayesian 

probability is promoted by Laplace (1812). Amster (1963) presents further modificatinn 

and calls it Bayes' stopping rule. Other well-known proponents of Bayesian probability 

have included Savage (1962) and Ramsey (1926). Sacks (1963) and Robbins (1964) al:,o 

present solutions in estimation problem under Bayesian approach. Tiao and Tan (1966) 

present Bayesian analysis of random effect models in the analysis of variance. A 

comprehensive review is presented by Lindley (1971). Smith (1973) modifies Bayt~s 

estimates in the one-way and two way models. Lord and Cressie (1975) make use of this 

approach in interval estimation. Akaike (1978) enlightens Bayes' procedure Witll a 

different look. Further conunents on Bayesian methods can also be viewed by Lindley 

(1980). Press (1982) presents compmison of Bayesian approach with Frequentis t 

approach in multivariate analysis. Susarla (1982) applies Bayes theory in Encyclopedia of 

Statistical Science. Smith (1983) also discusses Bayesian approaches to outliers ar:d 

robustness in specifying statistical models. Louis (1984) presents some comments 0 11 

estimating a population of parameter values using Bayes and empirical Bayes methods. 
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2.15.1 Scope of Bayesian Statistics 

Bayesian analysis is an essentially self-contained paradigm for statisti cs. 

Consider, for instance, when impOliant plior information is available then failure to take 

prior information into account can lead to conclusions ranging from merely inferior to 

illogical. Of course, most non-Bayesians would agree to the use of reliable and 

significant prior infonnation, so the impact of this consideration for general adoption of 

the Bayesian is unclear. So when significant prior information is available, the Bayesian 

approach shows how to sensibility utilize it, in contrast with the most non-Bayesian 

approaches . 

It is being used in Basic hypothesis testing and estimation, Design and sample­

SIze computations, Linear and non-linear regression, Non-parametric statistics, 

Econometrics, genetics and spatial. In statistical hypotheses testing, Bayesian analy~:is 

will be simply the statement of the believed probabilities of the hypothesis in the light of 

the data and the prior information. 

Bayesian methods are gaining popularity in many areas such as clinical trials, 

genomics, marketing, environmental science, and other fields when:; prediction alld 

decision making must follow fl:om statistical analysis. Since Bayesian methods are hi gh Iy 

computational, they are also gaining wider acceptance as teclmology makes analysl~ s 

possible that were not feasible in the recent past. 

Bayesian techniques have wide-ranging uses within the financial sector. By its 

intrinsic nature, Bayes' Theorem lends itself perfectly to use within risk management. It 

is therefore commonly exploited within hedging and within quality and group 

management. Banks and credit card companies are using Bayesian techniques. 
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Bayesian methods have also changed the face of computer network security and 

the detection of credit card fraud. Companies would monitor the spending on the card , 

and anomalous behaviour can be seen as a possible sign of fraud. Bayes'Theorel1l is 

crucial in assessing the likelihood of fraud given the spending pattems. The Bayesian 

process means that pattems of behaviour are sought rather than individual anomalies - the 

SOli that could lead to inconect results. 

An interesting example is related to American Telecommunication's (AT) 

detection of telephone fraud, a problem that costs the U.S. telephone industry around $4 

billion per year. AT's system can be represented by a graph showing a "fraud score" O\ 'er 

time, where a high score is recorded for unusual calls (calls to a previoLlsly uncall ed 

country, calls of unusually long duration). Bayesian teclmiques are utilized to calculate 

the probability of a call being fraudulent. A record is kept of the expected financial loss 

on the account. This was measured as the call value multiplied by the probability that it 

was fraudulent. Once the loss had exceeded a certain tlu'eshold, the account could be 

deemed fraudulent and action taken. 

TIllS system can linlit false almm cases, because the Bayes approach will consider 

all calls in the region of a particular call when determining that call's fraud probability. 

Thus, over several calls, only probable fraud cases can be shown to exceed the financial 

loss tlu·eshold. This example serves to highlight the increasing awareness of using 

Bayesian Statistics as an everyday inference method. 

Bayesian Statistics have been used in a diverse range of other software systems. 

The US Navy have developed real-time softwm'e for determining the perfom1ance 

of vmious ship self-defense weapon systems against varying types and ranges of 
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incoming attack weapons. Traditional teclmiques to solve the problem had been 

unsuccessful, but an approach that involved the use of Bayesian Networks led te, a 

solution that was both effective and efficient. 

The Vista system is a decision-theoretic system that has been used at NA~;A 

Mission Control Center in Houston for several years. The system llses Bayesian 

Networks to interpret live telemetry and provides advice on the likelihood of failures of 

the space shuttle's propulsion systems. It also considers time criticality and recommends 

actions of the highest expected utility. Intel is using Bayesian Networks for diagnosis of 

faults in processor chips. Given end-of-line tests on semi-conductor chips, their statistical 

process can be used to infer possible processing problems. 

Nokia Networks uses the Hugin Decision Engine (a commercial tool making use 

of Bayesian Networks) in a prototype tool for efficient diagnosis of mobile networks. By 

having an automated tool that reads network performance data and from that estimates 

and monitors network problems ranked by probability, the network operator gets :111 

efficient troubleshooting procedure saving both expensive expert resources and downtime 

of the network. Bayesian Networks have proven to be far better at expressing the belief of 

a set of potential problems than other teclmiques . 

Bayesian systems are also being used in the continuing fight against spam, the 

unsolicited marketing and other junk email that deluges most companies email systems. 

An open source anti-spam email filter, called POP File, can be downloaded from tile 

internet, which makes use of a simple Bayesian component that "learns" how to 

recognize spam and differentiate it from non-spam. This is achieved by training the 

software - telling it which of the emails you receive is acceptable, and which are spall1. 
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::s the words in the message, and builds up a model of lhe 

·ord. After training, the system can then accurately predict which 

to be spam. In practice this system has been found capable of 

am emails. 
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Chapter 3 

PAIRED COMPARISONS: METHOD AND MODEL 

3.1 Introduction 

This chapter covers the method of paired companson 111 detail. Basic units, 

mechanism and derivation for the models of paired comparisons are elaborated in section 

2. Applications of paired comparisons are detailed in section 3. Advantages of paired 

comparisons are highlighted in section 4. The existing inscription about paired 

comparison models is being considered in section 5. 

3.2 Paired Comparison Method 

The method of paired comparison is used basically in cases when the objects are 

compared SUbjectively. Paired comparison analysis helps us to set pliOlities where there 

are conflicting demands on resources. It has found increasingly used in applications . It is 

being used in epidemiology, food science, optics, spOlis and others . Paired comparisons 

are widely employed by psychometricians. Most frequent applications have been to 

sensory testing, especially taste testing, persOlmel rating and qui te generally to the stud y 

of preference and choice behavior. Paired comparison data provide a rich source Clf 

information about individual differences and similarity relationship in the item 

evaluations. 

Before gomg m other field of application of paired compansons, we fir:;t 

introduce the method of paired compansons, how it works and what are its major 

functions. In this method, objects are presented in pairs to one or more judges for the 

purpose of comparison. The "objects" may be "a person", "a treatment", "stimuli", and 

the like. The basic experimental unit is the comparison of two objects. The pl.llvose of 
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paired comparIson experiment is to test the null hypothesis that every preference is 

equally likely against an unclearly defined alternative of consistency. The paired 

comparisons method imposes minimal constraints on the response behavior of a judge; 

internal consistency checks are available which allow for the identification of judges who 

are systematically inconsistent in their judgments. 

Suppose we have two treatments TJ and T2, by a single judge, who must choose 

one of these treatments. It is the example of simplest sit'uation in paired compariso ns 

when no tie is allowed i.e. we shall say that the judge prefers tllis treatment although the 

choice will not necessarily represent a preference. 

Some extent to the above stated simplest situation is that the judge may be 

allowed to declare a tie, or asked to record a preference on some finer scale. Also number 

of judges may be more than one. Then all the judges will make the comparison between 

two treatments and result can be obtained in following three categories. 

l. T1 -;> T2 

2. T2 -;> Tl 

3. No preference 

(TJ is preferred on T2) 

(T2 is preferred on TI) 

(The judge is unable to decide between two treatments.) 

And the best treatment will be that contains maximum numbers of preference by 

the judges. It is also noted that these following situation also result in category of "No 

preference" 

(i) The Judge may be strongly in favor of both treatments . 

(ii) The Judge may be weakly in favor of both treatments. 

(iii) The Judge may found both treatments at the same moderate level of preference. 
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For more than two objects are under observation then it is still easy to anange that 

every judge performs every possible pair of these treatments. This situation may be called 

a "Balance paired comparisons expeliment". Suppose we have three treatments 'I I, T2 and 

T], and then the possible numbers of pairs will be 3. And suppose there are 4 judges, th en 

total number of paired comparisons will be 12. 

Generally, for t obj ects and n judges the total number of paired comparison wi 11 be 

(without regard of order and) (3.1 ) 

and 

(with regard of order) (3.2) 

The method of paired comparison has some advantages when a fine judgment is 

needed. It is sometimes the obvious experimental procedure. Sometimes, the judge may 

be able to compare several objects at the same time. Then a simple ranking of all objects 

may well be preferable. However, when differences between objects are small, it is 

desirable to make the comparison between two of them as free as possible from allY 

extraneous influence caused by the presence of other objects. Otherwise, process ,)f 

ranking requires in practice many repeated pair wise compmisons of tentative neighbo rs 

before a reasonable ordering becomes established. It is also possible to score a paired 

comparison on some point scale. Number of point on that scale will depend upon the 

differences among the treatments under comparison. For example, let take 5-point scale 
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Table 3.1 Preference Score 

Score 2 1 0 -1 -2 

Strong Slight No Slight Strong 
Preferences preference preference for Preferenc preference preference 

for TJ TJ e for T2 for T2 

The successfulness of this score depends on the existence of differences that 

should be clear enough. 

For pair wise comparisons of three objects A, Band C are to be judged in pairs . 

Since this simple situation brings out many of the essential features of paired 

comparisons experiments. Consider the case in which ties are not permitted. Each of 

three comparisons (AB), (A C), (BC) has two possible outcomes, so there are eigl1t 

distinguishable experiment results. Six of these are of the type 

(3.3) 

It is also noted that one object is preferred two times, another one time and the third non e. 

The two remaining results are 

(3 .4) 

(3.:;) 

Kendall and Babington Smith (1940) called them (3.4) & (3.5) circular triads. A 

circular triad denotes an inconsistency on the pmi of the judge and its simplest 

explanation is that the judge is at least paliially guessing when declaring preferences . 

But circularity can occur even with a well-defined preference criterion. For 

example, there are three cricket teams Pakistan, Australia and England and it is qui te 

possible that 
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(i) Australia wins England 

(ii) England wins Pakistan 

(iii) Pakistan wins Australia 

It is valuable feature of the method of paired comparisons that it allows such 

contradictions to show themselves. Every practical precaution must be taken to ensure 

that the individual comparisons are independent or nearly so. But in persOlmel rating, 

there is a real danger that, due to a good memory, the judge's paired comparisons will 

degenerate into a ranking unless the number of people to be compared is very large. Fo\' a 

single judge, one partial way out of this problem is to make only a fraction of all possible 

comparisons. If in a particular expeliment, approximate independence has not bel~n 

achieved, then the situation is intennediate between a straight ranking and independent 

paired comparisons. The analysis should therefore be made according to the both 

methods. Only when the result agrees can a conclusion be drawn with any comfort. 

The forgoing discussion may be fOlmalized in a number of possible models, 

which impose increasingly severe restriction on the preference probabilities. The method 

of paired comparisons has led to a surprising amount of model building to provide 

stochastic representation of the experimental process. 

Suppose there are t objects to be compared 111 paIrS by the judge. Let Xii 

i, j = 1, .. . , t is an indicator random variable which can take value 0 or 1 according as 

judge prefers Ti or 'Fj . We assume throughout that all comparisons are statistically 

independent except that Xi} + Xji =1, then the preference probabilities are 

Pr (Xi) =1) = 7ri} (Preference probability that Ti ~ 'Fj) 

Pr (Xji =1) = 7rji (i-e Preference probability that 'Fj ~ Ti) 
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More generally 

lii; = lii}kl (With replication and judge effect) 

That is, Ti is prefened on 1) at k'th Comparison from I'th judge. As liii and 

liji are probabilities so, 0< lii;' liji <1 

In case of three objects different :values of lii}' liji and lijk may cause Stochas"jc 

transitivity, strong stochastic transitivity and moderate stochastic transitivity. The lim'ar 

models for paired comparisons are of impOliance. Suppose that the obj ects have "meri t" 

V,- when judged on some charactelistic and may be represented by the continuous l.V 

1'; (-co < 1'; < +co). In a paired comparisons 1',. and 1) , 1',. will be preferred if 1'; > Yj and 

1) if Y; <1';. LetZi = Yi -V,-, i=l, 2, ... , n if every pair (2i,2) has the same bivariate 

disnibution then (Zi - Zj) must have the same distribution as (Z i - Z,.) ,Now 

Pr{(Zi - Z) < x} = H(x) ,.It follows that 

lii} = Pr{(Yi - y,.) > O} 

=Pr{(zi - z) > - cV,- - V)} 

=HeV,- - V) 

Whenever the preference probabilities can be expressed in terms of a symmetric31 

cdf, the Yi may be said to satisfy a linear model. This linear model is a generalization ()f 

the Thurstone-Mosteller model for which Yi are assumed to be normal N(T~, (}2) 

variates, equi-conelated with common con-elation co-efficient p. 

<Xl 

lii} = HCV,- - V) = f z(x)dx 
-Cv;-vj) 
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another special case is provided by the Bradley-TelTY model (Bradley, 1953) for which 

1 
H(V. - v.) = -

I J 4 
'" 
f 

-(ln Oi - ln Oj ) 

sec h2 (y / 2)dy (3 .9) 

Here (3.9) is known as the Bradley-Teny model. It is the fundamental model of 

paired comparisons. Various authors make several modifications of this model. We sLall 

discuss these extensions in section 4. 

3.3 Application of Paired Comparison Method 

Paired comparison is a practical technique for comparing items. These items may 

be ideas, options or criteria etc. Number of items may be "between" 10-15. The goal of 

paired comparison statistics is to deduce a ranking from an uneven matrix of observed 

results, from which the contestants can be sorted from best to worst. In the knowledge 

that cmshing all the complexities of the situation into just one number is a large 

simplification, one wishes to have the best one-dimensional explanation of the d:lta. 

Paired comparisons statistics are an open research area. 

What flavors of Ice Cream do you prefer? 

Flavors Comparison 

Chocolate 1 1 1 

2 3 4 

2. Vanilla 2 2 

3 4 

3. StawbelTY 3 

Black Walnut 4 
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This is an experiment of usmg the paired comp an son teclmique to deci de 

something simple like the flavor of ice cream we prefer. We start by writing down the 

flavors of ice cream: Chocolate, Vanilla, StawbelTY and Black Walnut. Then we com pare 

one flavor to the next and "bold" our preference. Here to the light of "Chocolate" we 

"bold" the first numerical one, 1, indicating that we prefer Chocolate (# 1) over Vani lla 

(#2). We then "bold" (#3) indicating that we prefer Stawbeny over (#1) Chocolate. In the 

last colunm we "bold" (#1), preferring Chocolate over (#4) Black Walnut. 

We continue this selection process until we have made a choice of each pair of 

flavors. Next, we count up the number of times we "bold" each number. The number 

"bold" the most frequently, reflects our ice flavor preference. In thi s experiment, we 

"bold" Chocolate (#1) two times, Vanilla (#2) one time, Stawberry (#3) three times, and 

Black Walnut (#4) is not "bold". Using the paired comparison technique, Stawberry is 

our favorite flavor of ice cream. 

Rosenberger et al (2002) discuss method of paired compansons to measure 

economic values for multiple goods sets. A method of paired comparison is adapted for 

use in estimating economic measures of value. The method elicits multiple binary choices 

for paired items in a choice set. The method is applied in an experimental context with a 

choice set composed of four private goods and several sums of money. Malcolm et III 

(2002) present a paper for policy search using paired comparisons. The pairecl­

comparisons method offers a more accurate and precise approach. 
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3.4 Advantages of Paired Comparison Method 

In paired-comparison designs the consumer IS asked to use two products and 

determine which product is better. The paired compmison is a wonderful design If 

presenting evidence to a jury, because of its "face value" or "face validity". It can be a 

very sensitive testing technique (i.e., it Cqn measure very small differences) between t\VO 

products. 

The paired-comparison test is often less expensive than other methods, becam,e 

sample sizes can be smaller in some instances. The repeated paired comparison test is 

another feature of paired comparisons. The purpose of the repeated paired-compariso n 

taste test is to identify non-discriminators. 

Paired-comparison testing, however, is limited in value for a senous, ongomg 

product-testing program. The paired-compmison test does not tell does and us when both 

products are bad not lend itself to the use of normative data. It is heavily influenced by 

the "interaction effect" (i. e., any variations in the control product will create 

corresponding variance in the test product's scores). 

3.5 Review of the Paired Comparison Models 

The basic model for paired comparisons has been discovered and rediscovered b y 

various authors. It is also said that it arises as one of the special simple reali zation of a 

generalized model developed from psychophysical approaches . 

Thurstone (1927) proposes a linear model for paired compan sons .He models 

paired comparisons through the concept 'Of a subjective scale, an inbuilt sensation scale 

on which order but not physical measurement could be distinguish. He assumes that eacb 

element involved in paired compmisons generates a sensation. The element with l arge~ t 
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sensation is the one that is chosen. It is an attempt to measure relative differences and to 

indicate one possible procedure in extending at least some of the ideas of psychophysic al 

measurement to social values. The experiment data consists in the observed proportion of 

judgments and from these data the best fitt ing scale values of the stimuli are detell11ined . 

Mosteller (1951) derives the same form when sensations are conelated with each other 

by a constant conelation coefficient. 

Zermelo (1929) seems to have proposed it first when dealing with the estimation 

of the strengths of chess players in an uncompleted Round Robin tournament. His mod el 

is independently rediscovered by Bradley~Terry (1952) who demonstrates its usefulne:;s 

in sensory testing. Ford (1957) also presents his research paper independently. 

Kendall & Smith (1940) examine the method of paired comparisons. They say 

that suppose we have number of objects A, B, C etc which possesses some common 

quality. According to them, quality may be measurable and it may not be measurable. If 

the quality is measurable then we assigned variable values to the objects. If the quality is 

not measurable then we use the method lmown as Ranking. They say that Ranking is th e 

arrangement of objects in order to possess certain quality. 

They observe that the raking method is not good when the quality considered is 

not lmown with certainty. For example, if an observer ranks a number of individuals i 11 

order of intelligence, it is not impossible that the observer may judge A as more 

intelligent than B, B than C and C than A; if the individual are presented for hi s 

consideration one pair at a time. The chance of this happening is obviollsly increased 

when we are dealing with tastes in mllsic, eatable or film stars; and in practice the even t 

is not uncommon. They claim that such "inconsistent" preferences can never appear in 
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ranking , if A is prefened to Band B to C, then A must automatically be shown as 

preferred to C .So the use of ranking thus destroys what may be valuable infonnatiol1 

about preferences. 

They explain that the method of offering for judgment objects two at a time is 

known as the method of paired comparisons. This method has interesting app lication in 

animal experimentation. 

Mosteller (1951) provides a detailed formulation and analysis of Thursto lle 

model. 

Glenn & David (1951) observe that in paired comparison experiments a judge is 

often enable to express any real preference in a number of the pair he judges. They 

examine that some of the methods in current use do not permit the judge to declare a ti ,:! . 

In other cases ties are pennitted, but are ignored in performing the analysis . In some other 

cases, ties are divided, equally or randomly, between the tied members of a pair. 

Using a model of the Thurstone-Mosteller (1951) type they develop a method 

which makes provisions for tied observations . 

Scheffe (1952) develops a method of paired comparisons which differs from the 

others in that it uses a scoring method and the analysis of variance. The method has the 

feature that the effect of order of presentation of paired samples to the judges is taken into 

account. This method seems wOlihily suited to consumer preference studies wherein a 

considerable time lag may occur between the testing of the two samples of a pair. 

Bradley (1952) by using the logistic density function providcs a model for paired 

comparisons. He considers a case with no tie and order effect. 
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Bradley (J 953) considers typical examples of statisti cal methods lIsed in ta:,te 

testing and procedures which are applicable in taste testing. The main emphasis is placed 

on the method of paired comparisons. The author is interested in the application of 

discriminate function techniques to the establishment of weights for the scores of varic,lIs 

attributes in grading. Two methods of paired comparisons are of interest. 

Bradley (1954) also develops a procedure for testing the appropriateness of the 

model for the method of paired comp31isons. The proposed test is applied to a variety of 

experiments involving taste, preference and appearance. The wliter presents two tests for 

treatment affects and one test for agreement among judges. A basic representation of 

paired comparisons experiment may be defined to be a set of incomplete blocks. The 

method of analysis for paired comparison depends on the fonn in which data are 

recorded. Writer's main consideration is to test of goodness of fit for the simple paired 

comparisons model. The writer shows enough data to provide some assurance that the 

model may be appropriate for experiments involving subjective judgments. 

Bradley (J 955) investigates large-sample properties of the test with equal 

numbers of selection decision. He obtains the asymptotic relative efficiency for balanl;ed 

paired comparisons with the analysis of variance for a comparable size. 

Bose (J 956) has used paired comparison designs for testing concordance between 

judges. The object of his paper is to obtain some paired comparisons designs which have 

a high degree of symmetry. Two special classes of these designs have been investigated 

and explicit designs for small values of number of objects to be compared. The method of 

analysis depend on what use the experimenter wants to malce of the design. He conc1u des 
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that for any solution of the symmetrical balanced incomplete block design, we can drivl~ a 

conesponding solution of the linked paired comparison designs. 

Ford (1957) proposes the model for paired comparisons independently. He 

concentrates on solution of normal equation for parameter estimation and proved und er 

stated conditions that the iterative procedure converged to a unique maximum for 

likelihood solution. 

David (1959) submits a paper "Tournaments and Paired comparisons ". In this 

paper, he feels convenient to use the language of toumaments rather than that of paired 

comparisons. The analogy between a paired comparison experiment and a Round Robin 

tournament, first pointed out by Kendall (1940) . Round Robin Tournaments have 

received considerable attention both from statisticians and Psychometricians . Bradley­

TelTY (1952) has proposed a model to represent the strength of the players. However this 

model does not provide an answer to such question as what constitutes a significant 

difference in the scores of two specified players. To deal with problems of this type, the 

joint probability distribution of the scores of any players in a simple round robin 

tournament is found. 

Gridgeman (1959) brings light the imp0l1ance of tied observations in the analysis 

by taking different experimental situations. He observes that when disclimination is the 

objective, admission of tied decisions theoretically increases the power the test of the nu II 

hypothesis. But he claims that in practice the admission of tied deci sions may be 

decreased the subject's efficiency of decision and in these circumstances it is better to 

prohibit ties. He examines that in preference shldies, ties should be admitted as they add 

information. 
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Thompson and Singh (1967) propose a Psychophysical model for paired 

compansons. 

Rao & Kupper (1967) states that the Bradley-Teny model for a paired­

comparison experiment with t treatment do not consider "ties" in the model. Rao-Kupper 

introduces an additional parameter, called tlu'eshold parameter, into the model. This 

pelmit "ties" in the model. They say that in paired-comparison experiment in which a 

panel of judges ranks pair of treatments on the basis of some quality, a judge may not lIe 

able to express any real preference in a number of pair he judges. The inability of a judge 

to express a preference in a particular case may be due to one or both of the followi ng 

reasons: 

(1) His sense of perception is not sharp enough to detect the existing treatment 

difference 

(2) The treatments do not differ in the quality judged. 

They observe that for detecting the treatment differences on the basis of ranks it is 

necessary to analyze the differences between "true" treatment ratings rather thaD 

panelists' abilities to detect these differences . They examine that most of the existin:5 

models do not allow for the probability of a judge declaring a ti e. In such cases, the usua 1 

practice is either to force the judge to express a definite preference, or, if this is not done, 

to treat these ties in one of the followings ways: 

(a) They are completely ignored; (b) they are dividing equally between the tied numbers ; 

or (c) they are dividing randomly between the tied numbers. 

They claim that any model, which does not allow for the possibility of ties is no t 

making full use of the information contained in the no-preference class. 
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Draper et al (1969) elaborate methods for analyzing data of three preferen ce 

categories. These methods take proper account of the "no-preference" results. Some of 

these treatments are listed by Odesky (1967). An exact solution is given, and some 

straightforward approximate methods are,de11ved and illustrated. Bayes' theorem is us ed 

to combine the sample infOlmation and available prior information. The concept of 

highest probability density (H.P.D) regions is used for posterior probabilities. H.P.D 

contours are plotted and illustrated through nume11cal example. 

Grizzle et al (1969) present a method for analyzing categorical data that relies I)n 

finding a transformation to produce a linear model of full rank in transfol1ned parameters 

with the resulting analysis following the method of weighted least squares . Robert. J 

Beaver (1977) present a paper in which the implementation of the Grizzle approach to the 

analysis of several univariate paired-and triple-comparison models derived from the 

Bradley-Terry model, is discussed. Paired and triple-comparison models are included. 

This method of analysis produces noniterative weighted least square estimates of 

preference ratings cOlTesponding to the treatment under test and allows for testing 

hypothesis relative to their values within the framework of general linear hypothesis . 

Examples with and without ties or order effect for paired comparisons experiments and 

an example of a triple comparison experiment are presented. A generalized chi-squclre 

computer program can be used to implement the computations. 

Davidson (1969) observes the rdationship between two representations of the 

Bradley-Terry model for paired comparisons. He examines that if the responses are pair 

wise independent and are distributed according to the extreme values distribution , a 
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member of a class of disttibutions proposed by Lehman, then the representation in terms 

of the logistic distribution is obtained. 

Davidson (1970) develops a model for a paired-comparison experiment wi til 

allowing ties. He uses the Maximum Likelihood method to estimate the parameters of the 

model. He observes that his results of ranking agree with the method of scoring system. 

His model also satisfies the criteria of the goodness of fit test. 

Davidson & Bradley (1971) present a model for multivariate paired compari~;on 

and a test of significance of the responses to specified attributes in estimating the 

responses to overall quality. They examine the problem of relating the response patt ~m 

on overall quality to that on a specified set of attributes . They derive a regression 

equation for a joint distribution of responses to dichotomous items and are applied to the 

multivariate-paired compmison model. 

Davidson & Solomon (1973) use 1\vo models namely Multinomial and the 

Bradley-Terry for paired comparison experiments. They apply natural conjugate family 

of priors to represent prior beliefs. They observe that the ranking results Llsing both 

estimators of the models are identical. 

Beaver and Gokhale (1975) propose an additive order effect in Bradley-Teny­

Luce Model. Davidson and Beaver (1976) present a multiplicative order effect. 

While comparing a set of stimuli, the final rankings of the stimuli are affected by 

the order effect. This effect is usually eliminated by an appropriate design for balancing 

the order effect of the stimuli in a pair. Beaver and Gokhale (1975) modified the Bradley­

Terry model to incorporate within pair order effect. Scheffe (1952) developed an 
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ANOV A for scored differences from pairs that allows for order of presentation of items 

within a pair. 

Leonard (1977) explains that new Bayesian approaches have been developed fl)r 

the estimation of parameters like conjugate prior distributions are replaced by logistic 

transfonnations and employing multivariate nomlal distlibutions for the tranSf0ll11 f: c1 

parameters. He observes that logistic transfonnation is more flex ible teclmique for prior 

relationship between the parameters. He says that posterior estimates enable the 

statistician to combine infonnation from various sources and to cope with zero cell 

frequencies in a fonnal manner. The Bradley-TelTY model uses the same teclmique for 

treatment parameters. He provides alternative teclmique to the procedure proposed by 

Davidson and Solomon. He observes that when the parameters are priori exchangeable, 

the maximum likelihood estimates are constrained towards a common value. He uses 

biological example to investigate the distribution of genital display in a colony of squind 

monkeys by using the Bayes Estimates. He includes also incomplete contingency table 

with several zero entries. 

Buchanan & Morrison (1985) explain that when companng altemate product 

fonnulations, or evaluating competitors" formulations, researcher often conduct blind, 

forced choice product tests. In this study, the authors present an approach to designing 

these tests and evaluating their results. Two types of tests are considered: repeat paired 

comparisons fonnats, and fonnats consisting of several triangle tests and a single paired 

comparison. The approach consists of psychophysical assumptions, discrimination and 

preference constructs, and a set of analytical technique. Using this approach, a researcher 
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can compare product test fOlmat to see which one most efficiently estimates a giv(~n 

construct of interest. 

Joe (1990) says that linear paired comparisons models are studied when ties or 

draws are allowed, where the probability of a win plus half the probability of a draw is 

modeled as a symmetric function evaluated at the difference of strength parameters. He 

observes that these models are extended to make use of covariate infOlmation and used 

for ranking 64 top chess players since 1800 with infol111ation on career periods. He 

examines that the Davidson model, which allows for draws does not fit chess data well 

because of the large variability in draw percentages from p layer to player. He al~o 

presents an appropliate goodness-of-fit test for this extended use of linear model. 

Stern (1990) also scrutinizes the claim of previous authors (Jackson and 

Fleckenstein, 1957; Mosteller, 1958; No ether, 1960) that different model of paired 

comp31isons data lead to similar result by means of a set of paired comparisons model:>, 

based on gamma random v31-iables, that includes the frequently applied Bradley­

TelTY and Thurstone-Mosteller models. He also analyzes several sports data sets and 

concludes that all the paired comparisons models in the famil y provide adequate and 

almost identical fits to the data. 

Groeneveld (1990) uses the numbers of wins 311d losses in games between eac h 

pair of team in a League, discussed and ~ompared several method ofranking. The writer 

considers three nonparametric ranking methods . He also considers ranking based on the 

classic Bradley-Terry parametric procedure. The properties of the four ranking methods 

in the competitive sih13tion described, examined and contrasted. The nonparametric 

ranking methods appeared very simple in explanations. The empirical evidence from th e 
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National league data suggests that the Bradley-Terry model fits reasonably well. Tllis 

method may have value for ranking teams in this type of competitive situations. 

Hennery (1992) describes a simple extension to the Thurstone-Mosteller model 

that allows for widely differing properties of ties . The corresponding modification to the 

Bradley-Teny model would also be possible but would give very similar results for 

Keene-Divinsky data. They Keene-Divinsky idea of including only the top players in 

deciding the best players of all times results in dilelllina and it is suggested that large 

number of top players should be included. Other source of bias may also reduce by 

including more games. 

Smith & Roberts (1993) present the use of the Gibbs sampler for Bayesicl11 

computation. They describe other Markov chain Monte Carlo simulation methods and 

comment on the advantages of sample-based approaches for Bayesian Inference. 

Kuk (1995) purposes a linear model that allows a large number of draws and lart~e 

variability of draw percentages among the players as is the case for chess and socc(~r 

matches. The model can also be extended to allow home ground advantages. When only 

sUlllinary results are available, ML Estimation is not feasible. So a method is 

recommended based on matching the numbers of home wins, home draws, away wir.s 

and away draws for each team with their expected values . Problem of obtaining estimated 

standard error is also discussed. Mostly underlying variable models can be reduced to th e 

linear paired comparison model. If the underlying variables are independently 

exponentially distributed with different scale parameter then we have the Bradley-Teny 

model. It is suggested that to avoid confounding, it is desirable to introduce draw 

parameters that must be separated ii-om the strength parameters. To achieve this, the 
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writer generalizes the Thurstone- Mosteller model along the lines suggested by Glenn and 

David (1960) and Hennery (1992). The resulting model allows large numbers of draws 

and large variability of draw percentages among teams as well as the possibility of home 

ground advantage. 

Glickman and Stern (J 998) develop predictive models for National Football 

League game scores using data from the period 1988-1993. The parameters of primary 

interest "measure of team strength" are expected to vary over time. The purposed model 

accounts for this source of variability by modeling football outcomes using a state-spnce 

model that assumes team strength parameters follow a first order autoregressive process. 

Two source of variation are addressed in model. 

The aim ofthe analysis is to obtain plausible inferences concerning team strengths 

and other model parameters, and to predict future game outcomes. Iterative simulation is 

used to obtain samples from the joint posterior distribution of all model parameters. 

Gliclanen (1999) says that a likelihood-based analysis is computationa lly 

cumbersome when the population of objects being compared is large. He examines that 

this problem is overcome through a computationally simple non-iterative algorithm for 

fitting a particular dynamic paired comparison model. The method is evaluated on 

simulated data and is applied to ranking the best chess players of all time, and to ranking 

the top current tennis-players. 

Yao & Bockenholt (1999) present a Gibbs sampler for the estimation of 

Thurstonian ranking models. This approach is useful for the analysis of ranking data with 

a large number of options. They discuss the goodness-of-fit based on posterior predictive 

distributions. 
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Martin (1999) presents an analysis of the effect of various baseball play-off 

configurations on the probability of World Series. Play-off games are assumed to be 

independent. He considers several paired comparisons models for modeling Cle 

probability of a home team winning a single game as a function of the wilming 

percentages of the contestants over the course of the season. He examines that the 

uniform and the logistic regression models are both adequate, whereas the Bradley-Terry 

model is not. He uses the single-game probabilities to compute the probability of winnillg 

the play-offs under various stmcture 

Conner & Grant (2000) give an extension of Zermelo's model for ranking by 

paired comparison. Zelmelo (1929) proposed a probabilistic model for ranking by paired 

comparison and showed that his model produces a unique ranking of the objects und er 

consideration when the outcomes matrix is irreducible. When the matrix is reducible, the 

model may yield only a partial ordering of the objects. In this paper, they analyze a 

natural extension of Zermelo's model resulting fr om a singular pertubaration . They show 

that this extension produces a ranking for arbitrary (nonnegative) outcome matrices and 

retains several of the desirable properties of the original model. In addition, they discu:,s 

computational techniques and provide examples of their use. 

Aslam (2002) presents method for testing of hypotheses in paired comparison 

experiments . He uses the Rao-Kuper model with allowing ties. He applies the nOll­

infonuative prior for the parameters of the model .He finds posterior means of tbe 

parameters and include predictive probabilities in the analysis .He also examines the 

goodness of fit criteria to Rao-Kupper model and presents the graphs of the posterior 

distributions of the individual parameters. 
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Aslam (2003) says that the Posterior distribution is the workbench in Bayesian 

analysis. He derives the Posterior distribution for the parameters of the Rao-Kupp er 

model for paired comparison data using the (informative) Dirichlet-gama prior 

disttibution. In this study, he tries to find analytical expression for the posterior 

(marginal) distributions of the parameters of the model. I-Ie presents five approxim8te 

analytical expressions for the marginal posterior distlibutions of the threshold parameters 

and tlu'ee analytical expressions for the postelior distribution of the treatment parameter:,. 

Annis & Craig (2005) observe that the existing paired comparison models us( ~d 

for ranking football teams basically focus on either wins and losses or points scored. 

They say that each approach fails to produce satisfactory rankings in frequently arisillg 

situations due to its ignorance of additional data. They propose a new hybrid mod el 

incorporating both wins and constituent scores and show that it outperforms its 

competitors and is robust against model misspecifications based on a series of simulation 

studies. 

Aslam (2005) says that sometime it may be difficult for a panelist to rank or 

compare more than two objects or treatment at the same time. For this reason paired 

comparison method is used. He compares the Rao-Kupper model (1967) with Davicls(J I1 

model (1970) for paired comparisons allowing ties. For this purpose, he compares tIle 

posterior means, the posterior probabilities of the hypotheses for the comparison of two 

treatment parameters and predictive probabilities. He also presents the graphs of tI le 

parameters of both models. 

Kim (2005) proposes a Bayesian Method for finding an optimal ranking in scabr 

functions of k population parameters. The writer presents a completely oriented graph 
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that is closely related to the paired comparison ranking which can be used to make .:111 

optimal ranking. The writer also constmcts a graphical model designed pmiicularly for 

the paired compmison ranking in parameter functions of several probability models. 

Allsopp (2005) explain the role of home ground advantage in Test, ODr and 

domestic cricket. He proposes a method to estimate a proj ected score for team batting 

second in ODr cricket. He uses linear and logistic modeling technique to explain the 

factors, which effect team perfOlmance such as home advantage. He also finds team 

rating by using linear model that account for the size of a victory in ODr cricket and the 

magnitude of the first innings lead in Test and domestic cricket. He reconunends that new 

methods be investigated to officially rate and rank teams in international crick et 

competitions because ills rating provides a robust measure of team quality. 

Ovens & Bukiet (2006) present a mathematical modeling approach to ONE-DA Y 

cricket batting orders. By using this model, they give expected perfonnance (runs 

distribution) of a cricket batting order in an ilmings. They prove that their model enables 

one to solve for the probability of one team beating another or to find the optimal batting 

order for a set of 11 players. They use the same Markov Chain approach to study the 

progress of mns for a batting order of non-identical players as Bukiet et al. (1997) use in 

baseball modeling. They show that batting order does effect the expected runs 

distribution in ONE-DAY clicket. 

Aslam (2007) says that the computation problems of the complicated, complex 

and intractable multiple integrands become very much easier tlu'ough implementation I)f 

the Gibbs sampler. He explains that the Bayesian Statistician needs computational tools 

to calculate a variety of summaries from posterior distributions that are mathematical 
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complex and also often high dimensional. Geman and Geman (1984) introduced the 

Gibbs sampler via simulation from the high-dimensional distributions arising in image 

restoration. In this study, he presents a program in the SAS (Statistical Analysis System) 

package for the application of the Gibbs Sampler. 
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Chapter 4 

RANKING OF TOP SEVEN CRICKET TEAMS 

4.1 Introduction 

In this chapter, we present the Bayesian analysis of the Rao-Kupper and Davidson 

models for top seven cricket teams (Australia, South Africa, Pakistan, India, New 

Zealand, Sri Lanka and England) using collected data sets from the websit(~s 

(www.cricmania.com & www.cricinfo .com) . In section 2, the origin of cricket is 

discussed. In sections 3 and 4, the Rao-Kupper and Davidson models for paired 

comparisons are defined with basic notations and likelihood function for the parameters 

of the models. In section 5, the Ranking of top seven Cricket Teams Llsing Posterior 

Modes and Posterior Means of the parameter of the Rao-Kupper: model are presented .. In 

sections 6 and 7, the Predictive Probabilities and the Preference Probabilities are shown 

in the tables. In section 8, the Bayesian hypothesis testing is presented for overall ODI 

and Test matches . In section 9, the graphs of posterior marginal distributions for the 

parameters of the Rao-Kupper Model are shown. Appropliateness of the model is tested 

in section 10. In section 11, Latest ICC Rankings are presented with Formula for 

calculating points. In the last section 12, the comparisons of ICC Ranking and Bayesinn 

Ranking are presented. 

4.2 Origin of Cricket 

Most probably cricket has originated in the dark ages . It has probably originated 

after the Roman Empire and surely before the invasion of Norman's in England . This 

game has originated some where in Northern Europe. The conclusion of the research is 
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that this game is derived from an old pastime by which one pl ayer throw a small piece of 

wood or a ball and another hit it with a heavy and thick stick named as club. 

It is unknown that when and how this club-ball game developed into one where 

the hitter defended a target against the thrower. It is also not ]mown that when points 

were awarded dependent upon how far the hitter was able to dispatch the ball. It is also a 

mystery that when helpers joined the two-player contest, and this contest changed into a 

team game. 

All researchers are agreed on it that by Tudor times cricket was developed enough 

from club-ball to be recognizable as the game played today. It was well estab li shed in 

many pm1s of Kent, Sussex and Surry; that within a few years it has become a feature of 

leisure time at a significant number of schools. 

We present here important events of Clicket in different era. 

(a) Cricket in 16th Century 

1550 (approx) Evidence of cricket being played 111 Guildford, SUlTey 1598 Cricket 

mentioned in Florio's Italian- English dictionary. 

(b) Cricket in 17th Century 

1610 Reference to "cricketing" between Weald and Upland near Chevening, Kent. 1611 

Randle Cotgrave's French- English dictionary translates the French word "crosse" as a 

cricket staff. Two youths fined for playing cIicket at Sidlesham, Sussex. 

1624 Jasper Vinall becomes first man known to be killed playing cricket: hit by a bat 

while trying to catch the ball - at Horsted Green, Sussex. 1676 First reference to cricket 

being played abroad, by British residents 111 Aleppo, Syria. 

1694 Two shillings and sixpence paid for a "wagger" (wager) abo ut a cricket match at 
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Lewes. 1697 First reference to "a great match" with 11 players :l side for fifty guineas, in 

Sussex. 

(c) Cricket in 18th Century 

1700 Cricket match announced on Clapham Common. 1709 First recorded inter-county 

match: Kent v Suney. 1710 First reference to cricket at Cambridge University. 

1727 Aliicles of Agreement written governing the conduct of matches between the teams 

of the Duke of Richmond and Mr Brodrick of Peperharow, Suney. 1729 Date of earliest 

surviving bat, belonging to John Chitt, now in the pavilion at The Oval. 1730 First 

recorded match at the Artillery Ground, off City Road, central London, still the cricketi ng 

home of the Honourable Artillery Company. 1744 Kent beat All England by one wicket 

at the Artillery GrOlmd. First known version of the Laws of Cricket, issued by the 

London Club, formalising the pitch as 22 yards long. 1767 (approx) Foundation of the 

Hambledon Club in Hampshire, the leading club in England for the next 30 years. 

1769 First recorded century, by John Minshull for Duke of Dorset's XI v Wrotham. 

1771 Width of bat limited to 4 1/4 inches, where it has remained ever sincl~ . 

1774 LBW law devised. 1776 Earliest known scorecards, at the Vine Club, Sevenoak::;, 

Kent. 1780 The first six-seamed cricket ball, manufactured by Dukes of Penshurst, Kent. 

1787 First match at Thomas Lord's first ground, Dorset Square, Marylebone - White 

Conduit Club v Middlesex. Formation of Marylebone Cricket Club by members of tbe 

White Conduit Club. 1788 First revision of the Laws of Cricket by MCC. 

1794 First recorded inter-schools match: Ch31ierhouse v Westminster. 179S Fin:;t 

recorded case of a dismissal "leg before wicket". 

Sl 



(d) Cricket in 19th Century 

1806 First Gentlemen v Players match at Lord's . 1807 First mention of "slTaight-am1ed'" 

(i .e. round-ann) bowling: by John Willes of Kent. 1809 Thomas Lord's second ground 

opened at North Bank, St John's Wood. 1811 First recorded women's county match: 

Suney v Hampshire at Ball's Pond, London. 1814 Lord's third ground opened on its 

present site, also in St Jolm's Wood. 1827 First Oxford v Cambridge match, at Lord's. J\ 

draw. 1828 MCC authorised the bowler to raise his hand level with the elbow. 1833 Joh'{l 

Nyren published his classic Young Cricketer's Tutor and the Cricketers of My Time. 

1836 First North v South match, for many years regarded as the principal fixture of the 

season. 1836 (approx) Batting pads invented. 1841 General Lord Hill, commander-in­

chief of the British Almy, orders that a cricket ground be made an adjunct of every 

military banacks. 1844 First official intemational match: Canada v United State~;, 

1845 First match played at The Oval. 1846 The All-England XI, organized by William 

Clarke, begins playing matches, often against odds, throughout the country. 1849 Firf;t 

Yorkshire v Lancashire match. 1850 Wicket-keeping gloves first used, 

1850 John Wisden bowls all ten batsmen in an innings for NOlth v South. 1853 Fir~it 

mention of a champion county: Nottinghamshire. 1858 First recorded instance of a hat 

being awarded to a bowler taking three wickets with consecutive balls.1859 First touring 

team to leave England, captained by George Pan, draws enthusiastic crowds in the US 

and Canada. 1864 "Overhand bowling" authOlised by MCC. John Wisden's The 

Cricketer's Almanack first published. 1868 Team of Australian aborigines tour England . 

1873 WG Grace becomes the first player to record 1,000 runs and 100 wickets in a 

season. First regulations restricting county qualifications, often regarded as the official 
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stmi of the COlmty Championship. 1877 First Test match: Australia beat England by 45 

runs in Melbourne. 1880 First Test in England: a five-wicket win against Australia at Tile 

Oval. 1882 Following England's first defeat by Australia in England, an "obituary 

notice" to English cricket in the SpOliing Times leads to the tradition of The Ashes. 18t:9 

South AfTica's first Test match. Declarations first authorised, but only on the third day, or 

111 a one-day match. 1890 County Championship officially constituted. 

Present Lord's pavilion opened. 1895 WG Grace scores 1,000 nms in May, and reaches 

his 100th hundred. 1899 AEJ Collins scores 628 not out in a junior house match at 

Clifton College, the highest individual score in any match. Selectors choose England 

team for home Tests, instead of host club issuing invitations. 

(e) Cricket in 20th Century 

1900 Six-ball over becomes the norm, instead of five. 1909 Imperial Cricket Conference 

(ICC - now the International Cricket Council) set up, with England, Australia and South 

AfTica the Oliginal members. 1910 Six runs given for any hit over the boundary, inste2,d 

of only for a hit out of the grolmd. 1912 First and only triangulm' Test series played in 

England, involving England, Australia and South Africa. 1915 WG Grace dies, aged 6'7. 

1926 Victoria score 1,107 v New South Wales at Melbourne, the record total for a first­

class innings. 1928 West Indies' first Test match. AP "Tich" Freeman of Kent ard 

England becomes the only player to take more than 300 first-class wickets in a seasoll: 

304. 1930 New Zealand's first Test match. Donald Bradman's first tour of England: he 

scores 974 nms in the five Ashes Tests, still a record for any Test series. 1931 Stumps 

made higher (28 inches not 27) and wider (nine inches not eight - this was optional unti J 

1947). 1932 India's first Test match. Hedley Verity of Yorkshire takes ten wickets for ten 
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runs v Nottinghamshire, the best ll1l1lngs analysis 111 first-class cricke.t. 

1932-33 The Bodyline tour of Australia in which England bowl at batsmen' s bodies wi[h 

packed leg-side field to neutralise Bradman's scoring. 1934 Jack Hobbs retires, with 197 

centmies and 61,237 runs, both records. First women's Test: Australia v England at 

Brisbane. 1935 MCC condemn and outlaw Bodyline. 1947 Denis Compton of Middlesex 

and England scores a record 3,816 nms in an English season. 1948 First five-day Tests in 

England. Bradman concludes Test career with a second-ball duck at The Oval and a 

batting average of 99.94 - four nms short of 100. 1952 Pakistan's first Test match. 

1953 England regain the Ashes after a 19-year gap, the longest ever. 1956 Jim Laker of 

England takes 19 wickets for 90 v Australia at Manchester, the best match analysis in 

first-class cricket. 1957 Declarations authorised at any time. 1960 First ti ed Te~:t, 

Australia v West Indies at Brisbane. 1963 Distinction between amateur and professional 

clicketers abolished in English cricket. The first major one-day tournament begins i.n 

England: the Gillette Cup . 1969 Limited-over Sunday league inaugurated for first -c1aGs 

counties. 1970 Proposed South African tour of England cancelled : South Africa excluded 

from international cricket because of their goverrunent's apartheid policies. 

1971 First one-day international: Aush-alia v England at Melbourne. 1975 First Wod d 

Cup: West Indies beat Australia in final at Lord's. 1976 First women's match at Lord's, 

England v Australia. 1977 Centenary Test at Melbourne, with identical result to the fir st 

match: Australia beat England by 45 runs . Australian media tycoon Kerry Packer, signs 

51 of the world's leading players in defiance of the cricketing authOlities_ 1978 Graham 

Yallop of Australia wears a protective helmet to bat in a Test match, the first player to do 

so. 1979 Packer and official cricket agree peace deal. 1980 Eight-ball over abolished in 
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Australia, making the six-ball over universal. 1981 England beat Australia in Leeds Te!;t, 

after following on with bookmakers offering odds of 500 to 1 against them winnin g. 

1982 Sri Lanka's first Test match. 1991 South Africa return, with a one-day internation al 

in India. 1992 Zimbabwe's first Test match. Durham becomes the first county since 

Glamorgan in 1921 to attain first-class status. 1993 The ICC ceases to be administered by 

MCC, becoming an independent organization with its own chief executive. 1994 Brinn 

Lara of Warwickshire becomes the only player to pass 500 in a first-class innings: 501 

not out v Durham. 

(f) Cricket in 21 til Century 

2000 South Africa's captain Hansie Cronje banned from cricket for life after admitting 

receiving bribes from bookmakers in match-fixing scandal. Bangladesh's first Test 

match. County Championship split into two divisions, with promotion and relegation. 

The Laws of Cricket revised and rewritten. 2001 Sir Donald Bradman dies, aged 9:2. 

2003 Twenty20 Cup, a 20-over-per-side evening toumament, inaugurated in England. 

2004 Lara becomes the first man to score 400 in a Test innings, against England. Highest 

Score at batting position no 2 in Test l11atch: 380 by Mathew Hayden (Australia v 

Zimbabwe). 2005 Fastest Test fifty in Balls: Jaquas Kallis in 24 balls (South Africa v 

Zimbabwe). Shane Wame becomes the first bowler to take 600 Test wickets. 

2006 Highest score in ODI: Sri Lanka 443-9 vs Netherlands. Pakistan's Wasim Raja, 5,t, 

dies on the c11cket field after a heart attack. 

2007 Australia won the Cricket World Cup consecutive third time. 
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4.3 THE RAO-KUPPER MODEL . 

Rao and Kupper (1967) propose a modification of the Bradley-Teny (19s:n 

model to allow the tied observations. They introduce a threshold parameter 5 =lnA and 

suppose that if the observed difference (Xj-Xj ) is less than 5 then the panelist is unable to 

distinguish between the treatment Ti and Tj and will declare a tie. Now the probabililY 

P {(Xi - Xi) > 81 th, e j} that the treatment T j is preferred to the treatment Tj (i "* j) when 

the treatment Ti and Tj are compared is denoted by If/iij l.e., 

1 
Vli.ij= 4' 

o:J 

J 
-( ln Bi - In Bj)+o 

ei 
(4.1) 

The probability that treatment Tj is preferred to treatment Ti is denoted by VI j.ij 

and may be obtained by swapping i withj in above equation. The probability that 

treatment Tj and Tj have no preference is denoted by I/f .. ' It is given by 
0 .1) 

1 -(ln Bi-InBj)+o 

I/fo .ij = 4' J sech2(y/2)dy 
- (InBi-InBj)-o 

(4.2) 

The Rao-Kupper model is given by (4.1) and (4.2). IfA= 1 then the Rao- Kuppe r 

model yields the Bradley-Teny model. 
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4.3.1 Notations for the Model 

The following notations are defined for the Rao- Kupper model: 

17i.ijk = 1 or 0 according as treatment Ti is prefened to treatment Tj or not in the 

k'th repetition of comparison. 

11o.ijk = 1 or 0 according as treatment Ti is tied with treatment Tj or not. 

We note that 11o.ijk + 11i.ijk + 11j.ijk = 1 and ni.ijk = ni,jik 

m.ij = L 11i.ijk = the number of times treatment Ti is preferred to treatment Tj . 

k 

110ij = LnOijk = the number of times treatments Ti and Tj are tied. 
k 

rij = the number of times treatments Ti is computed with treatment Tj and 

rij = 11o.ij + ni.ij + 11j.ij = ni . 

The following notation is useful for further simplification of the likelihood 

function. 

11ijk = no.ijk + ni.ijk. 11jik = 11o.ijk + llj.ijk = rij - 11i.ijk. 

nii = L nijk = the number of times treatment Ti is prefened to treatment Tj and 
k 

the number of times treatments Ti and Tj are tied. 

11/ 

n; = L nij = the total number of times treatment Ti is prefened to any other 
j,.i 

treatment, and the number of times treatm.ents Ti and Tj are tied. 

11/ 

110 = L no·ii = the total number oftimes treatments Ti and Tj are tied. 
i<j 
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Through the use of(1), (2) and the constraint If/i .ij+ If/ o ii + If/lij = l, he proposes the 

following model: 

h=i,j and i 7' j (4 .8) 

V.jBiBj 
(4 .9) 

which is the Davidson model for paired comparison with ties . If V=O then the mode l 

yields the Bradley-Terry model. Davidson uses the method of maximum likelihood to 

estimate the parameters and likelihood ratio statistic for testing the equality of 

parameters . 

4.4.1 Notations for the Model 

The notation to describe the data and the likelihood [-unction for the model ae 

presented in this Section. We use the san1e notation as for the Rao-Kupper model except 

for the following. 

Sij = 11i.(j + 11o.ij /2, where ni.(j and no.ij have been defined above, 

III 

Si = LSij = the total number of times treatment Ti is preferred to any other 
j~ l 

treatment plus half of the total number of times treatment Ti and treatment Tj are tied. 

4.4.2 Likelihood Function for the Parameters of the Model 

Now the probability of the observed result in the K'th repetition of the pair (Ti, lj) 

according to the Davidson model can be presented as: 
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P ( v~ ]"",ijk ( 8i J" ljk ( 8j J"ji! 
Uk = 8i+8j+v.)8;8j 8i+8j+v.J8i8j 8i+8j+v.)8i8j 

III 

where 0 ~ 8i ~ 1 (i= 1, 2, .. . , m), L8; = 1, v > O. 
;; 1 

I-Ience the likelihood function of the observed outcome x [where x represents the 

data {n;.u, l1j ·U , 110.U } ] of the experiment is 

III rij 

l(x;81, ... ,8111, v) = I1 IT PUk 
i«j);1 k;1 

(4.10) 

111 

where 0 ~ 8i ~ 1 (i= 1,2, ... , m), L8i = 1, v > 0 is the tied parameter, 81, ... , 8111 are the 
;;1 

treatment parameters, Si is defined above, ru is mentioned in Section 2 and 

K " -1'''/(1· "'1· ' "'11"") I) - I) .0.1) •• 1.1). j ,l) • • 

4.4.3 The Posterior Distribution for the Parameters of the Model 

The Goint) posterior distribution of the parameters 8]> 82 , .... .... 81/1 and A, USl1g 

likelihood function (4.10) and prior distlibution (4.4) is: 

l'ij m 

p(81'82 ,· .... 8111 ;A,lx)= nITpijk 
k; 1 i<j; 1 

I II" //I Ku ITIII Si 

p(81,8" .... ,8;A, x )ocv IT ..;e;e; " 8i, 
- III (8 8 88 )'1) i«jH i+ j+V i - j i;1 

(4.11 ) 

4.5 RANKING OF TOP CRICKET TEAMS 

We have considered the following top seven cricket teams for ranking through tbe 

paired comparison models using Bayesiari approach: 
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1. Australia 2. South Africa 3. Pakistan 4. India 

5. New Zealand 6. Sri Lanka 7. England 

Here for convenience we suppose the following parameters for teams: 

Australia (AU) = Fh , South Afiica (SA) = fh, Pakistan (P A) = (h , India (IN) = 84 

New Zealand (NZ) = 85, Sri Lanka (SL) = 86, England (EN) = 87 

The posterior modes and means of the parameters are considered for the ranking of 

the teams. The ranking for ODI and test matches are presented separately for different 

time period. These ranking are also compared with the ICC ranking. 

4.5.1 RANKING USING POSTERIOR MODES 

The following equations are derived to find the postelior modes of the 

parameters for the Rao-Kupper model: 

Now the Posterior distribution for seven teams Llsing unifOlm prior is: 

21 7 

p(81,82 .... 87\X) = I1I1Pijk 
k=1 i<j=1 

TIn (,1,2 _l)"" ijk ( 8i )"ijk ( 8; ) "11k 

k= 1 i<j= l 8i+,1,8j 8j+,1,8i 

i<; =1 i=1 

7 

I1 (8i+A8j)"ij 
i;<j 

Now taking natural log on both sides 

7 

Logp(.Jx) = 10g(,1,2-1)"" + ~logKij+ ~10g8i"i- 'L)ogC8i+,1,8;)"" 
j =1 i= 1 

Now partially differentiating W.r.t 81, ,87,,1, and putting equal to zero, we get 
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7 An;' L } =0, for i = 1,2, ... 7 
;*j (e;+A(1 j ) 

(4.12) 

(4.13) 

The following equations are dellved to find the posterior modes of the 

parameters for the Davidson model: 

The Posterior distribution for seven teams using uniform prior is: 

21 7 

p(81.82 ... . 87ix) = TITIPijk 

k=1 i<j=1 

taking natural log on both sides 

7 

Logp(·lx)=n)ogv+ LlogKij+ Lsdogei- Lrij((1i+(1j+V~ei(1j) 
j =1 i=1 

Now partially differentiating W.r.t el ..... e7. v and putting equal to zero , we get 

for i=1,2, .. . 7 

( 4.15) 

The results obtained from the .Rao-Kupper model and Davidson model are 

presented in the following Tables. The postellor modes obtained from both the models 

using data at given in Tables 4(a), 4(b) ,4(c) and 4(d) are presented in Tables 4.1, L]·.2, 

4.3, and 4.4 respectively. A program is designed in SAS package given in (Appendix A) 

to obtain the posterior mode from both the models . 
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It is to be noted that: 

are tied. 

1U.ij = L 1U.ijk = the number of times team' i' beats to team 'j' . 
k 

noij = L no.ijk = the number of times the matches between team ' i' and team 'j' 
k 

rij = total number of matches played between team 'i' and team 'j' . 

nij = Lnijk = the number oftimes team ' i' beats to team 'j' and the number of 
k 

times the matches between team 'i' and team 'j ' are tied. 

Table 4(a) Data for One Day Internationals (1971 to December2006) of Top 

Seven Cricket Teams 

Pairs nUj nj .ij no .ij nij nji rij 

(8\,82) 37 28 3 40 31 68 

(8\,8 3) 43 27 4 47 31 74 

(8[ , 84) 50 27 4 54 31 81 

(8 I, 8s) 70 27 3 73 30 100 

(8[,86) 41 19 2 43 21 62 

(8[,87) 47 34 4 51 38 85 

C8 2, 83) 30 13 1 31 14 44 

(82,84) 30 18 2 32 20 50 

(82,8s) 27 14 4 31 18 45 

(82, 86) 20 21 2 22 23 43 

(82,87) 21 11 2 23 13 34 
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(83,84) 64 40 4 68 44 108 

(8 3,8s) 47 28 2 49 30 77 

(83,86) 64 38 4 68 42 106 

(83,87) 24 33 1 25 34 58 

(8 4,8s) 36 35 4 40 39 75 

(84,86) 47 35 7 54 42 89 

(84,87) 29 26 2 31 28 57 

(8 s, 86) 32 25 3 35 28 60 

(8 s, 87) 25 25 4 29 29 54 

(86,87) 18 19 0 18 19 37 

Total 802 543 62 864 605 1407 

Table 4.1 Posterior Mode for Overall One Day Intern ationals Matches 

Using Models 

Team-
Parameters Rao-Kupper Davidson 

Ranking 

Bl=AU 0.220 0.223 1 

B2= SA 0.184 0.187 2 

Eh=PA 0.146 0.145 3 

B4=IN 0.115 0.114 5 

B5=NZ 0.105 0.103 6 

B6= SL 0.100 0.099 7 

B7= EN 0.131 0.130 4 
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V,t.. l.096 0.094 

Table 4(b) Data for Overall Test Matches (from beginning to December 2006) of 

Top Seven Cricket Teams 

Pairs nUj nj.ij no.ij nij nji rij 

(8 1. 82) 45 15 18 63 33 78 

C8 1,83) 24 11 17 41 28 52 

C8 1,84) 32 15 21 53 36 68 

eel, e5) 22 7 17 39 24 46 

eel, e6) 11 1 6 17 7 18 

C8], 87) 126 97 88 214 185 311 

C82, 83) 5 2 4 9 6 11 

ce2,84) 7 3 6 13 9 16 

C82, 85) 18 4 11 29 15 33 

C8 2• 8G) 8 4 5 13 9 17 

C8 2, 87) 26 54 50 76 104 130 

ce3, e4) 12 8 36 48 44 63 

C83, 85) 21 6 18 39 24 45 

C8 3, 8G) 15 7 10 25 17 32 

C8 3,87) 12 18 36 48 54 66 

C84, 85) 14 9 21 35 30 44 

C8 4,86) 10 3 13 23 16 26 
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(84,87) 17 34 43 60 77 94 

C8s,86) 8 4 10 18 14 22 

(8 5,87) 7 41 40 47 81 88 

(86, 87) 5 8 5 10 13 18 

Total 445 351 475 920 826 1271 

Table 4.2 Posterior Mode for Overall Test Matches 

Using Models 

Team-
Parameters Rao-Kupper Davidson 

Ranking 

B\=AU 0.254 0.301 1 

B2=SA 0.129 0.120 4 

B3=PA 0.146 0.141 3 

B4=IN 0.1 22 0.110 5 

Bs=NZ 0.082 0.060 6 

B6=SL 0.072 0.053 7 

B7=EN 0.195 0.216 2 

Y,}.. 2.320 1.283 -
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Table 4(c) Data for One Day Internationals of Top Seven Cricket Teams from 1999 

to 2003 

Pairs n i .ij nj.i} n o.ij 71ij nji r ij 

C8 1. 82) 11 5 3 14 8 19 

(8\ , 83) 12 5 1 13 6 18 

(8\ , 84) 15 4 0 15 4 19 

(8\,8 s) 10 5 1 11 6 16 

(8\,86) 11 4 0 11 4 15 

(8\,87) 15 2 0 15 2 17 

(82, 83) 14 6 0 14 6 20 

C8 2, 84) 10 8 1 11 9 19 

(82,8s) 15 4 3 18 7 22 

(82. 86) 10 8 1 11 9 19 

(82,87) 6 4 0 6 4 10 

(8 3, 84) 10 5 0 10 5 15 

(8 3, 8s) 17 6 0 17 6 23 

(83, 86) 14 13 1 15 14 28 

(83,87) 7 5 0 7 5 12 

(84, 8s) 10 14 2 12 16 26 

(84,86) 10 7 2 12 9 19 

(84.87) 10 4 1 11 5 15 

C8s. 86) 4 11 0 4 11 15 
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(85,87) 3 2 0 3 2 5 

(86,87) 8 9 0 8 9 17 

Total 222 131 16 238 147 369 

Table 4.3 Posterior Mode for One Day Internationals Matches 

from 1999 to 2003 

Using Models 

Parameters 
Rao-

Davidson 
Team-

Kupper Ranldng 
BI=AU 0.314 0.325 1 

B2=SA 0.178 . 0.178 2 

B3=PA 0.137 0.134 3 

B4=IN 0.101 0.099 5 

B5=NZ 0.082 0.078 6 

B6=SL 0.113 0.111 4 

B7=EN 0.075 0.074 7 

V,J... 1.101' 0.096 -

Table 4(d) Data for Test Matches of top Seven Cricket Teams from 1999 to 2003 

Pairs nUj nj.ij no.ij nij nji rij 

(8 1. 82) 5 1 0 5 1 6 

(8 1,83) 6 0 0 6 0 6 
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(8[,84) 5 3 1 6 4 9 

(8[,8 5) 3 0 3 6 3 6 

(8[,8 6) 0 1 2 2 ") ., 
.) .) 

(8[,87) 9 2 0 9 2 11 

(82, 83) 2 1 1 3 2 4 

(82, 84) 3 0 1 4 1 4 

(82,85) 3 0 3 6 3 6 

(82,86) 5 1 2 7 3 8 

(82,87) 4 3 3 7 6 10 

(83,84) 2 1 0 2 1 3 

(83,85) 3 1 2 5 3 6 

(83 , 86) 6 3 2 8 5 11 

(83,87) 1 2 2 3 4 5 

(84,85) 1 2 5 6 7 8 

(84, 86) 1 2 1 2 3 4 

(84,87) 2 1 4 6 5 7 

(85,86) 0 0 2 2 2 2 

(85,87) 3 2 2 5 4 7 

(8 6,87) 2 4 3 5 7 9 

Total 66 30 39 105 69 135 
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Table 4.4 Posterior Mode for Test Matches 

From 1999 to 2003 

Using Models 

Parameters 
Rao-

Davidson 
Team-

Kupper Ranking 
BI=AU 0.457 0.383 1 

82=SA 0.182 0.174 2 

B3=PA 0.085 0.101 3 

84=IN 0.067 0.082 6 

Bs=NZ 0.068 0.090 5 

86=SL 0.061 0.078 7 

B7=EN 0.801 0.093 4 

V,A 0.919 1.980 -

We use posterior mode of the Rao-Kupper and Davidson Models for ranking of 

top Seven Cricket Teams. Both the models give us the same ranking of the Teams. So we 

conclude here that either of the models can be used for ranking. 

According to the results of overall one day international matches Australia, SOli th 

Aiiica and Pakistan are in 1st ,2nd and 3rd positions respectively .Also England, Indi a, 

New Zealand and Sri Lanka are in 4r1h ,5 th 
, 61h and i h positions respecti vel y. 

Furthermore, we examine the data from 1999 to 2003 for these Teams. We observe from 

the results that ranking remains the same for first three, fifth and six positions. Here 

changes occur between seventh and fourth positions, England loses its fourth position and 

Sri Lanka gets fourth position. 
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The results of overall Test Matches results for these Top Seven Teams show that 

Australia, England and Pakistan are in first three positions respectively. The results from 

1999 to 2003 show that Australia and Pakistan maintains its 15t and 3rd positions whereas 

England loses its second position. Now England is in fOUlih position . The Ranking of 

India and New Zealand also Changes. But Sri Lanka can't change its seventh position . 

According to these findings, we can conclude that Australia, South Africa and 

Pakistan are best three Cricket Teams of the world. 

4.5.2 RANKING USING POSTERIOR MEANS 

The results obtained :fi:om the Rao-Kupper model are presented in the following 

Tables. The posterior means obtained from the model using a unifonn prior and the data 

given in Tables 4(a), 4(b), 4(c), and 4(d) are presented in Tables 4.5, 4.6, 4.7 and 4.8 

respectively. Programs are designed in C++ Language given in (Appendix B) and in SAS 

package given in (Appendix E) to obtain the Posterior means. 

Table 4.5 Posterior Mean For Overall ODI M atches 

Posterior Means by Posterior Means Team 
Parameters 

Quadrature Method using Gibbs Sampling Ranking 
8 , =AU 0.226856 0.190196 1 

82=SA 0.189690 0.161496 2 

83 = PA 0.144115 0.1 28744 3 

8 4= IN 0.115069 0.100846 5 

8s = NZ 0.100144 0.093684 6 

86 =SL 0.098432 0.091340 7 

87=EN 0.125694 0.116375 4 

72 



v 1.101190 1.105587 

Table 4.6 Posterior Mean For Overall Test Matches 

Parameters 
Posterior Means by Posterior Means using Team 
Quadrature Method Gibbs Sampling Ranking 

el=AU 0.248978 0.207223 1 

e2=SA 0.125480 0.103009 5 

e3= PA 0.146775 0.125368 3 

e4=IN 0.126399 0.106285 4 

e s= NZ 0.087150 0.075044 6 

e6=SL 0.077496 0.072286 7 

e7= EN 0.187722 0.155463 2 

V 2.405050 2.386849 

Here we initially use Gibbs Sampling teclm ique to find the Posterior means fo r 

the parameters of the Rao-Kupper Model. We examine that both the techniques give LIS 

the same ranking result, therefore for fUliher estimation work we use Quadrature method. 
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Table 4.7 Posterior Mean For aDI Matches From 1999 To 2003 

Parameters 
Posterior Means by 

Team Ranking 
Quadrature Method 

BI=AU 0.306130 1 

B2=SA 0.l74978 2 

B3=PA 0.139658 3 

B4=IN 0.098267 5 

Bs=NZ 0.073943 6 

B6=SL 0.112875 4 

B7=EN 0.073573 7 

V 1.107490 

Table 4.8 Posterior Mean for Test Matches from 1999 To 2003 

Parameters 
Posterior Means by Team Ranking 
Quadrature Method 

BI=AU 0.344366 1 

B2=SA 0.177096 2 

B3=PA 0.107871 3 

B4=IN 0.089531 6 

Bs=NZ 0.096660 5 

B6=SL 0.085972 7 

B7=EN 0.098503 4 

V 2.018240 
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We use posterior mean of Rao-Kupper Model for ranlcing of top Seven Cricket 

Teams. We have observed that posterior mean using both Quadrature Method and Gibbs 

Sampling give the same ranking results . According to the results of overall one day 

international matches Australia, South Africa and Pakistan are in 1st
, 2nd and 3rd positions 

respectively Also England, India, New Zealand and Sri Lanka are in 4th
, 5th

, 6th and ill 

positions respectively. Furthermore, we examine the data from 1999 to 2003 for these 

Teams. We observe fTOm the results that ranking remains the same for first three, fifth 

and six positions. Here changes occur between seventh and fourth positions, England 

loses its fourth position and Sri Lanka gets fourth position. 

The results of overall Test Matches results for these Top Seven Teams show that 

Australia, England and Pakistan are in first tlu'ee positions respectively. The results from 

1999 to 2003 show that Australia and Pakistan maintains its 1st and 3rd positions vvhereas 

England loses its second position. Now England is in fOUlih position. The Ranking of 

India and New Zealand also Changes. But SIi Lanka does not change its seventh position. 

According to these findings, we can conclude that Australia, South Africa and 

Pakistan are best three Cricket Teams of the world. 

4.6 PREDICTIVE PROBABILITIES 

Suppose we are trying to predict a random variable Zu pez I e) .The idea I)f 

Bayesian predictive inference is that, since pee I x) is the believed posterior distribution 

of e, then p(z I e) pee I x) is the joint distribution of z and e given x, and integrating 

out over e will give the believed distribution of z given x. So the predictive density of Z 

. . 
gIven x IS 
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p(z I x) = Jp(z I B)p(B I x)dB, ( 4.16) 
o 

and the predictive probability that Zj exceeds Zj is given as 

p(Zj > Z)x) = Jp(Zj > z)e)p(elx)dG ( 4.17) 
o 

[See Geisser (1971,1980) formoi'e detail] 

4.6.1 PREDICTIVE PROBABILITIES OF OVERALL ODI MATCHES 

The Predictive Probabilities P(ij) (i<j= 1, . .. ,m) that team i would be preferred to team j in 

One-Day Internationals Matches in a future single comparison of these teams is shown in Table 

4.9 below. The Predictive probability P(1 2) that team TJ would be preferred to team T2 111 

a future single comparison is obtained 

from the following expression: 

1 I 1-0, 1-0,-0, 1-0 ,-0,- 03 1-0 ,-0,- 03 -0. 1-0 ,-02-0, -0,-0, U) 

P(12) = K J J J J J J J p(elx)d'Ade6desde"de3d(hdf)1 
0'.00,. , 0, . , 04.' 0, . , 0(, . , A; I 

where 

(A 2 _ 1)"0 el(lI+1 f),'" e3'" e/" es'" e6"6 (1- el - e, - e3 - e4 - f)) - (6)'17 
P( elx) = - 7 -

(el+'Ath) IT (ei+ 'Ae;)"'i (Aei+ e; )"i; 
i{<j);1 

6 

I-lere e7 = 1- Lej 

; ; ! 

A program is designed in C++ Language given in (Appendix C) to so lve above 

integral. Similarly the expressions for the predictive probabilities p(l3), P( !4) and so on 
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P(67) can be derived. We also calculate the predictive probabil ities P(O I 2) that in a future 

match played between team ~ and team ~ will be tie and so on up to P<067) . Tbe 

Predictive Probabilities are shown in Table 4.9 below: 

Table 4.9 Predictive Probabilities For Overall ODI Matches 

Predictive probabilities PUj) p(oij) 

P (12) 0.522437 0.042832 

P(1 3) 0.587283 0.029801 

P (14) 0.640968 0 .. 07 8909 

P(l 5) 0.67 1236 0.07806 I 

P(l 6) 0.674700 0.074988 

P (17) 0.62 1097 0.053795 

P (23 ) 0.54 1635 0.03 1835 

P(24) 0.597008 0.085485 

P(25 ) 0.628488 0.085040 

P (26) 0.632207 0.08 1817 

P(27 ) 0.65764 1 0.02 150 1 

P (34 ) 0.533597 0.039986 

P (35 ) 0.566079 0 .039132 

P (36) 0.569976 0039 140 

P(37) 0.5 12173 0.04 111 8 

P(45) 0.509022 0.042325 

P (46 ) 0.5 12883 0.042365 

P( 47 ) 0.455386 0.04060 1 

P(56 ) 0.480228 0.043228 

P (57 ) 0.423085 0.040956 

P(67 ) 0.41928 1 0.040950 

This Table shows e.g., P(l 2) =0.522437 that in future matches 52.2% chance that 

Australia will win against South Africa in any ODr match. Also P(O.12) =0.042832 shows 
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that in future matches played between Australia and South Africa, there will be 4. 28% 

chance of being tie. 

4.6.2 REDICTIVE PROBABILITIES OF OVERALL TE T MATCHES 

The Predictive Probabilities PCij ) (i<j=1, ... ,m) that team i would be preferred to team j in 

Overall Test Matches in a future single comparison of these teams are shown in Table 4.10 

below. 

Table 4.10 Predictive Probabilities For Overall Test Matches 

Predictive probabilities P(ij) P(oiil 

PCI 2) 0.482727 0.347462 

PCI3) 0.418248 0.372 104 

P(l4) 0 .. 4582 10 0.364550 

P(l5) 0.5 16183 0.3 51734 

PCI6 ) 0.5376 17 0.323290 

PCI 7) 0.3661 15 0.394360 

P(23) 0.257304 0.376921 

P(24) 0.299705 0.380791 

P(25 ) 0.3569 17 0.390477 

p(26 ) 0.348490 0.388927 

P(27) 0.2 13697 0.377357 

P(34) 0.332878 0.382858 

P(35) 0.42 11 36 0.374863 
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P(36) 0.460508 0.375593 

P(37 ) 0.249179 0.39 1538 

P(4S) 0.387585 0.388 156 

P(46) 0.427008 0.386908 

P(47) 0.22292 1 0.379983 

P(S6) 0.342540 OAO 1854 

P(S7) 0.165719 0.361894 

P(67) 0.149600 0.364344 

This Table shows e.g., P(1 2) =0.482727 that in future matches 48 .3% chance that 

Australia will win against South Africa in any Test match. Also P(OI 2 ) =0.347462 shows 

that in future matches played between Australia and South Africa, there will be 34.75% 

chance of being tie. 

4.7 Preference Probabilities 

As we know that the preference probabilities are calculated by just calculating the 

probability of preferring team Ti to team 1) using the values of parameters, the preference 

probabilities for the Overall ODr Matches by using the data given in Table 4(a) and 

preference probabilities for the Overall Test M atches using the data in Table 4(b) are 

given below in Tables 4 .11 & 4.12 respectively. 
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Table 4.11 Preference Probabilities of Overall ODI Matches 

Preference probabilities Ijfiij Ijfjij IfI D.ij 

1jf1.l2 0.5207 0.4328 0.0454 

Ijf 1.13 0.5885 0.3771 0.0439 

Ijf 1.14 0.6416 0.3229 0.0413 

Ijf 1.15 0.6730 0.3034 0.0401 

'1/1.1 6 0.6768 0.2932 0.0394 

Ijfl.l 7 0.6211 0.3520 0.0429 

Ijf 2.23 0.5445 0.4199 0.0452 

Ijf 2.24 0.5995 0.3632 0.0434 

Ijf 2.25 0.6325 0.3424 0.0424 

Ijf 2.26 0.6365 0.3315 0.0418 

Ijf 2.27 0.5781 0.3938 0.0445 

Ijf 3.34 0.5320 0.4182 0.0452 

Ijf 3.35 0.5666 0.3962 0.0446 

Ijf 3.36 0:5708 0.3846 0.0442 

Ijf 3.37 0.5101 0.4501 0.0457 

Ijf 4.45 0.5108 0.4545 0.0457 

1f14.46 0.5151 0.4424 0.0456 

'//4.47 0.4540 0.5096 0.0456 

1f15 .56 
0.4802 0.4649 0.0458 

Ijf 5.5 7 0.4197 0.5323 0.0452 
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If/ 6.67 0.4156 0.5445 0.0450 

From the above table it is observ'ed that the preference scheme is like as AU-" 

SA- PA- EN-.. IN- NZ-" SL. That is Australia possesses maximum preference and ~;ri 

Lanka holds minimum preference. 

Table 4.12 Preference Probabilities of Overall Test Matches 

Preference probabilities If/i ij W jij W o.ij 

1f/1.I 2 
0.4591 0.1796 0.3613 

'f/1.I 3 0.4285 0.1986 0.3729 

1f/1.I4 
0.4730 0.1715 0.3555 

1f/1.I5 
0.5718 0.1222 0.3061 

If/ 1.16 
0.6033 0.1089 0.2879 

1f/1.I7 
0.3596 0.2486 0.3918 

If/ 2.23 
0.2758 0.3279 0.3963 

If/ 2.24 
0.3131 0.2896 0.3973 

If 2.25 0.4041 0.2151 0.3809 

If/ 2.26 
0.4358 0.1939 0.3703 

If/ 2.27 
0.2219 0.3945 0.3836 

If/ 3.34 
0.3403 0.2648 0.3949 

If 3.35 0.4342 0.1949 0.3709 

W3.36 
0.4664 0.1753 0.3583 

If 3.37 
0.2440 0.3654 0.3907 

If/ 4.45 
0.3907 0.2246 0.3846 
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If 4.46 0.4221 0.2029 0.3751 

If/ 4.47 
0.2124 0.4079 0.3797 

If/ 5.56 
0.3293 0.2746 0.3962 

1//5.57 
0.1534 0.5062 0.3404 

If/ 6.67 
0.1373 0.53 86 0.3241 

From the above table it is observed that the scheme is like as AU-i> 

EN---i> PA- SA.--;. IN---i> NZ.--;. SL. That is Australia possesses maximum preference and Sri 

Lanka holds minimum preference. 

4.8 Bayesian Hypothesis Testing 

The following two hypotheses Hii and Hi} (i<j=l, 2, 3, 4, 5, 6, 7) are compared: 

and 

The posterior probability p;; for Hi} is Pi} = p( B; > Bj ), and q i} = 1- Pii IS the 

posterior probability for Hi} 

The decision m1e used here, for accepting or rejecting the above hypothesis is; let 

s =min(pi),qi) , if Pi) is small(s<O.1) then Hi} is accepted and if qij is small(s<O. 1), 

Hi} is accepted. And if s>O.1, the decision is inconclusive (Aslam 2002) 

The posterior probability P'2 for H'2 is obtained as: 
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A program is designed in C++ Language given in (Appendix D) to find the 

posterior probabilities for the several pair of parameters using the data given in tabl e 4(,: ), 

table 4(b) for the overall ODr and Test matches respectively. 

Table 4.13 Posterior Probabilities of Overall ODI Matches 

Posterior probabilities Pi} qij 

pl2 0,6417 0.3583 

p13 0.8698 0.1302 

pl4 0.9697 0.0303 

pl5 0.9914 0.0005 

PiG 0.9906 0.0094 

pl7 0.8745 0.1255 

p 23 0,5356 0.4644 

p24 0.8730 0.1270 

p25 0.9251 0.0749 

p 26 0.928 1 0.0719 

p27 0.9893 0.0170 

p34 0.5890 0.4110 

P35 0,6430 0.3570 

p 36 0.6527 0.3473 

p37 0.6322 0.3678 

p45 0.1253 0.8747 
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p 46 0.1409 0.8591 

p47 0.1264 0.8736 

p S6 0.0671 0.9329 

pS7 0.0443 0.9557 

p 67 0.0376 0.9624 

For the data set given in Table 4(a), it is found that Pl 2 =0.6417 and ql2 =0.3583, 

the decision is inconclusive. Similarly we obtain, Pl 4 = 0.9697 and ql4 =0.0303, so HI " is 

accepted, it means that Australia is bette~ than India. Now P 67 =0.0376 and q 67 =0.9624, 

so we accept the hypotheses fi67 with high probability that England is better than ~; ri 

Lanka in Overall ODI matches. 

Table 4.14 Posterior Probabilities of Overall Test Matches 

Posterior probabilities Pij qij 

pI2 0.9283 0.0717 

p13 0.8512 0.1489 

PI 4 0.9282 0.0718 

pI S 0.9897 0.0103 

p I6 0.9776 0.0224 

pl7 0.4034 0.5967 

p23 0.2146 0.7854 

p24 0.2853 0.7147 

P2S 0.6126 0.3874 
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p 26 0.6899 0.3101 

p27 0.9896 0.0103 

p34 0.4366 0.5634 

p35 0.7420 0.2580 

p36 0.7965 0.2035 

p37 0.0755 0.9245 

p45 0.6321 0.3679 

p46 0.7l05 0.2895 

p47 0.0267 0.9733 

p56 0.3482 0.6518 

pS7 0.0018 0.9982 

p67 0.0095 0.9905 

For the data set given in Table 4(b), it is found that PI 2 =0.9283 and ql 2 =0.0717, 

so HI2 is accepted. Similarly we obtain, Pl4 = 0.9282 and ql4 =0 .07l8, so H I .I is 

accepted. Now P67=0.0095 and q67 =0.9905, so we accept the hypotheses H C,7 with high 

probability that England is better than Sri Lanka in Overall Test matches. 

4.9 Graphs of Marginal Distributions 

The graphs of the marginal posterior densities of the Top Seven Teams for 

Overall ODr and Test matches are shown in Figures 4.1, 4.2 using the data of Table 4(a) , 

4(b) respectively. A program is designed in C++ Language to obtain the ordinates of 

respective marginal densities. 
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Marginal Distribution for th e 
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Figure 4.1 
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Marginal Distribution for the Pakistan 
Cricket Team in Test Matches 
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Marginal Distribution for the England 
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Figure 4.2 

4.10 Appropriateness of the Model . 

For testing the appropriateness of the model or the good of fit of the model fo r 

paired comparisons, the observed numbers of preferences are compared with the expected 

number of preferences. If the discrepancies are small we consider the solution to be 

internally consistent. We employ the X2 statistic for testing the hypothesis that the model 

is true for some value of eo (the vector of parameter values). This is equivalent to the 

assertion that the observed and expected number of preferences are 'in agreement'. Gleim 

and David (1960), Rao and Kupper (1976) and Davidson (1970) employ the X2 statistic 

for testing the hypothesis that the observed and expected number of preferences are in 

agreement. Let the expected number of preferences be denoted by 

Fli.i} = the expected number of times treatment Ti is prefelTed to treatment Tj . 

Fl o i} = the expected number oftimes treatments Ti and Tj are ti ed. 

The X2 statistic has the following fonn: 
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(4.1 :3) 

with {m(m-2)} degrees of freedom. 

Consider the following two hypotheses for the testing of Goodness of fit 

of Overall ODr Internationals Matches for the data given in Table 4.1 (a). 

Ho: The model is true for some values 0 = 0
0 

HI : The model is not true for any value of 0 

For testing the above hypotheses for possible rejection, we compare the observed 

number of preference with the expected number of preference and if differences are small 

then, model is considered consistent. 

The observed and expected numbers of preference presented in Table 4.13 

Table 4.13 Observed and Expected Number of Preference of overall ODI 

matches 

Pairs ni.ij 
~ 

nj.ij nj.ij no·1i no.ij ni.ij 

(0 1, e2) 37 35.48 28 29.43 3 3.09 

(e l , e3) 43 42.84 27 27.91 4 3.25 

(e l , e4) 50 51.50 27 26.16 4 3.45 

(e l , es) 70 65 .66 27 30.34 3 4.01 

(e), e6) 41 41.38 19 18.18 2 2.44 

ce), e7) 47 51.43 34 29.92 4 3.64 

(e2, e3) 30 23.53 13 18.48 1 1.99 

(e 2, e4) 30 29.67 18 18.16 2 2.17 
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(8 2,85) 27 27.68 14 15.41 4 1.91 

(82, 86) 20 26.94 21 14.25 2 1.80 

(82,87) 21 19.10 11 13.39 2 1.51 

(83, 84) 64 57.96 40 45 .16 4 4.88 

(8 3, 85) 47 43 .06 28 30.51 2 3.43 

C8 3,86) 64 60.55 38 40.77 4 4.69 

(83,87) 24 29.24 33 26 .11 1 2.65 

(8 4,85) 36 37.49 35 34.09 4 3.43 

(84,86) 47 45 .57 · 35 39.37 7 4.06 

(84,87) 29 25 .35 26 29.05 2 2.60 

(8 5, 86) 32 29.36 25 27.90 3 2.75 

(8 5,87) 25 22.81 25 28.7 5 4 2.44 

(86,87) 18 15.19 19 20.15 0 1.66 

It is to be noted that: 

iii.ii = the expected number of times team Ti is better to team Tj. 

il0.ij = the expected number of times matches played between team Ti and Tj are 

tied. 

We calculate the value of Chi-square with 35 degree of freedom by using the 

fOlmula given in (4.9). The value of X2 =29.8 123 5 with p-value=0.716616, so there is r,o 

evidence that the model does not fit the data. 

Now we apply the same test for Overall Test Matches. 
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Table 4.14 Observed and Expected Number of Preference of overall Test 

matches 

Pairs m .ij 
h 

ni.ij nj.ij nj.ij l1 o. ij no.ij 

(8\,82) 45 35 .80 15 14.01 18 28.18 

(8\, 83) 24 22.28 11 10.33 17 19.39 

C8\,84) 32 32.16 15 11.66 2 1 24.18 

C8\,8s) 22 26.30 7 5.62 17 14.18 

C8 1,86) 11 10.86 1 1.96 6 5.1 8 

(8 1,87) 126 120.63 97 87 .33 88 95.03 

(82,83) 5 3.03 2 3.61 4 4.36 

(82,84) 7 5.01 . 3 4.63 6 6.36 

(82, 8s) 18 13.33 4 7.10 11 12.57 

C82, 86) 8 7.41 4 3.30 5 6.30 

C82, 87) 26 28.84 54 51.29 50 49.87 

C8J , 84) 12 14.14 8 10.85 36 28.53 

(8 3,8s) 21 19.54 6 8.77 18 16.69 

(8J ,86) 15 14.92 7 5.61 10 11.47 

C8 3,87) 12 16.10 18 24.11 36 29.36 

(84,85) 14 17.19 . 9 9.88 21 16.92 

(84,86) 10 10.97 3 5.27 13 9.75 

(84,87) 17 19.97 34 38.34 43 36.69 

C8 5,86) 8 7.24 4 6.04 10 8.72 

C8 5,87) 7 10.52 41 44.54 40 35.53 
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5 3.42 8 9.70 5 5.83 

We calculate the value of Chi-square with 35 degree of freedom by llsing the 

fOlmula given in (4.9). The value of X2 =38.20681 p-value=0.3 2586 1, so there is no 

evidence that the model does not fit the data. 

4.11 Latest ICC Team Rankings 

The International Clicket Council (ICC) has developed an innovative method for 

Test and One-day International (ODI) rankings of 10 Test Playing countries and Kenya, 

which has only the ODr status. The ranking of other teams with ODr status aren't 

included, as the critelia of a minimum number of matches to be played within a certain 

time limit, is not met by them. The ODI rankings of teams were stmied by the ICC Cln 

August 01, 2003, and are based on results of all ODI's played since then. 

The current cricket ratings of teams will be based on three years of results, and ~:o 

all ODI's played until August 2006 will be taken into account for team rankings . In 

August 2006, the first year of results will be dropped from the table, so it will then cowr 

the most recent two years results. With this, the ODr rankings of teams would change 

overnight, even without any new ODr being played. 

The rating of each team is obtained by dividing total points scored and total 

matches played up to a particular time period, and the nearest whole number is 

considered the rating of the team that decides its ranking. The points eamed by teams are 

calculated by a mathematical formula, which depends on two factors, the result and tbe 

rating of the opponent against whom the result was achieved. Higher rating teams beatin g 
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lower rating teams get less points and vice-versa. Currently Australia is leading in bo th 

ODr and Test rankings. 

4.11.1 Principles Underpinning the Rankings for ODI Matches 

~ Based on individual matches 

~ All ODrs treated equally 

~ No account taken of venue 

~ No account taken of margin of victory 

~ Recent results carry more weight 

~ Account taken of strength of opposition 

~ Transparency 

4.11.2 Formula For Calculating Points 

Case 1- Gap in rating less than 40 points 

~ If team wins, it scores 50 points more than its opponent' s rating. 

~ If team loses, it scores 50 points less than its opponent's rating. 

~ Ifteam tie, it scores its opponent's rating. 

Case 2- Gap in ratings 40 points or more 

If the stronger team wins, it scores 10 points more than its own rating whi Ie the 

weaker team scores 10 points less than its own rating. If the weaker team wins, it scores 

90 points more than its own rating while the stronger team scores 90 points less than its 

own rating. If the match is tied, the stronger team scores 40 points less than its own 

rating and the weaker team scores 40 points more than its own rating. To work out the 

'rating' divide the points scored by matches played. 
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Example 

The first ODI in November 2002 was between India and West Indies. Their 

launch positions were as follows: 

Team 
Matches 

Points Rating Played 

India 31 3301 106 

West 
22 2074 94 

Indies 

The difference between their ratings was only 12, so Case 1 applies. Also the sum 

of their ratings was 106+94=200, so there 200 rating points available from the match 

whatever the result. If India had won, they would have scored 94+50=144 points and the 

West Indies would have scored 106-50=56. 

The updated table would have then shown India with 3301 + 144=3 445 points from 

32 matches, giving them a new rating of 3445/32=108 to the nearest who le number. The 

West Indies would have 2074+56=2130 points from 23 matches and a new rating of93. 

As the West Indies won, they scored 106+50=156 points and India scored 9L ~-

50=44 points . The new table then showeq India with 3345 points from 32 matches and a 

rating of 105 with West Indies moving to 2230 from 23 matches and a rating of97. 

{See also the Principles Underpinning the Rankings for Test Matches In 

Appendix F} 

4.12 ICC Ranking VS Bayesian Ranking 

Here we give below in Table 4.14 & 4.15, the Latest ICC Team Ranking in 

December (2006) of ODr and Test Matches. 
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Table 4.15 ICC ODI Ranking T able 4.16 ICC Test Ranking 

Team Matches Points Rating Team Matches Points Rating 

AU 33 4335 131 AU 37 4793 130 

SA 32 4047 126 SA 41 4864 119 

NZ 22 2477 113 NZ 34 3800 112 

PA 30 3373 112 PA 34 3780 111 

--
SL 37 4011 108 SL 36 3686 102 

IN 41 4355 106 IN 34 3182 94 

EN 26 2573 99 EN 28 2602 93 

Now for comparison purposes, we. collect recent two years data for ODI and 

recent three years data for Test Matches. 

Table 4(e) Data for One Day Internationals of top Seven Cricket Teams of recent 

two years 

Pairs nUj nj ,ij no .i} nij nji rij 

(8 1,82) 5 4 0 5 4 9 

(8], 83) 4 1 0 4 1 5 

(8], 84) 2 0 1 3 1 3 

(8 1,85) 8 1 0 8 1 9 

(8], 86) 5 2 0 5 2 7 

(8], 87) 4 2 2 6 4 10 

(82, 83) 1 0 0 1 0 1 
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(82,84) 6 2 0 6 2 8 

(82,85) 4 1 1 5 2 6 

(8 2,86) 3 2 0 3 2 5 

(82,87) 4 1 2 6 3 7 

(83,84) 6 6 0 6 6 12 

(8 3,85) 0 1 0 0 1 1 

(83, 86) 3 0 1 4 1 4 

(83,87) 5 4 1 6 5 10 

(84,85) 1 2 0 1 2 3 

(84,86) 6 4 1 7 5 11 

(84,87) 6 1 0 6 1 7 

(8 5,86) 4 3 0 4 3 7 

(8 5, 87) 0 0 0 0 0 0 

(86,87) 5 0 0 5 0 5 

Total 82 36 9 91 46 127 

Table 4(f) Data for Test Matches of top Seven Cricket Teams of recent three years 

Pairs ni.ij nj.ij no.ij nij nji rij 

(8 1,82) 5 0 1 5 1 6 

(8 1,83) 3 0 0 3 0 3 
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(8 1,84) 2 1 2 3 3 5 

(8], 85) 4 0 1 4 1 5 

(8], 86) 4 0 1 4 1 5 

(8 1,87) 5 2 2 7 4 9 

(82,83) 0 0 0 0 0 0 

(82,84) 1 2 1 '1 3 4 .J 

(82,85) 3 1 2 4 3 6 

(82.86) 0 3 1 3 4 4 

(82,87) 1 2 2 3 4 5 

(8 3,84) 3 3 3 6 6 9 

(83,85) 0 0 0 0 0 0 

(83,86) 2 1 1 3 2 4 

(83,87) 2 3 2 5 5 7 

(84,85) 0 0 0 0 0 0 

(84,86) 2 0 1 2 1 3 

(84.87) 1 1 1 2 2 3 

(8 5. 86) 2 1 1 3 2 4 

(85,87) 0 3 0 3 3 3 

(86,87) 1 1 1 2 2 3 

Total 40 24 23 65 47 87 
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Table 4.17 Bayesian aDI Ranking Table 4.18 Bayesian Test Ranking 

-
Team Posterior Postelior Ranking Team Posterior Posterior Ranking 

Mean Mode Mean Mode 

81=AU 0.2717 0.2875 1 81=AU 0.3 404 0.3775 1 

82= SA 0.2220 0.2296 2 82=SA 0.0902 0.0841 6 

(h=PA 0.1098 0.1021 4 83=PA 0.1190 0.1l1 8 4 

84=IN 0.1226 0.1182 3 84= IN 0.1472 0.1417 2 

85=NZ 0.1040 0.0993 6 85=NZ 0.095 1 0.0864 5 

86 =SL 0.1047 0.0995 5 86= SL 0.0838 0.0776 7 

87=EN 0.0652 0.0638 7 B7=EN 0.1 243 0.1208 3 

The above comparison shows that the Bayesian Ranking almost equal to ICC 

Ranking for ODI Matches. But on the other hand the Bayesian Ranking is differing from 

ICC Ranking for Test Matches. The reason is that we take the data of top seven teams 

only. Ifwe take all the teams, the Bayesian Ranking may be equal to ICC Ranking. 
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Chapter 5 

CONCLUSION AND FURTHER RESEARCH 

The present study comprises the ranking of top seven cricket teams (Austral ia, 

South Africa, Pakistan, India, New Zealand, Sri Lanka and England) using the Rao­

Kupper (1967) and Davidson (1970) models for paired comparisons. Aslam (2005) 

presents Bayesian analysis of paired comparison data tlu-ough these two models . He 

observes that both models give very similar results in application. We use these two 

models initially, as the results are similar of both models and also observe that the 

ranking of seven teams under these models are same, so further study we use only the 

Rao-Kupper model. The complete discussion on these models is detailed in chapter#4. 

Aslam (2005) presents Bayesian analysis on these two models by using thr,;e 

parameters. Here, we ensue to perfonn Bayesian analysis using seven parameters (top 

seven cricket teams). We use only Uniform prior for the parameters of the models to 

obtain our desired results. 

We consider Bayesian estimation and Bayesian testing of hypothesis about the 

comparison of the parameters. The postelior probabilities of the hypotheses for the 

comparison of two parameters have been calculated and decisions have been made about 

the hypotheses according to these probabilities. The posterior estimates in tenDS of 

posterior means and joint modes are detennined. The predictive probabilities that one 

treatment would be prefelTed to another treatment when two treatments are being 

compared are also computed. The results are computed using collected data from t: e 

popular websites (www.cricmania. www.cLicinfo) for these seven teams. We compute the 

posterior estimates (posterior means and joint mode), posterior probabilities, preference 
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probabilities and predictive probabilities. and then the results are compared . Posteri or 

(marginal) densities for the parameters of the Rao-Kupper model are sketched for these 

seven teams using both ODI and Test matches data in Figures 4.1, 4.2 respectively. 

The appropriateness of the model is also assessed using the chi-square goodness 

of fit test and it is observed that model fits with data of ODI matches but it does not fit 

with data of Test matches. 

The results are calculated through Quadrature method as well as Gibbs samp ling up to 

seven dimensional integration problems. It is found that the results are similar in both the 

models. Results of posterior means are compared in Tables 4.5 . Hence, it is suggested 

that Gibbs sampler can be used for numerical solution especially for solving hi gh 

dimensional integration. [For more detail see Aslam (2007)]. Since both Quadrature al1d 

Gibbs sampling technique give similar results therefore we use Quadrature method in 

major part of our study. In the last two sections, we explain the ICC teams ranking 

criteria and present the comparison of Bayesian ranking with ICC ranking. Here, we 

observe that the Bayesian Ranking almost same with the ICC Ranking for ODI Matches 

but on the other hand the Bayesian Ranking is differing from ICC Ranking for Test 

Matches. The reason is that we take the ' data of only top seven teams and find out the 

ranking, if we take all the teams then ranking result may be improved. 

For further research, this work can be extended towards many course of 

action to the Bayesian analysis of paired comparisons data. One may increase the number 

of teams (i.e. more than 7). We can add the home team ground advantage criteria in tl;.is 

study. We can also obtain the cricket player's ranking. Efforts can be made for the team 

ranking of any game. Our Bayesian analysis is based upon non-inf0l1l1ative pri or 
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(UnifOlm), further analysis (ranking) can be done usmg informative pnor for the 

parameter of the models. 
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APPENDIX-A 

* POSTERIOR MODE FOR PARAMETERS OF RK MODEL 

(FOR Overall 001 MATCHES); 

DATA DO; 
INPUT Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 N1 N2 N3 N4 N5 N6 N7 N12 N1 3 N14 N15 N16 N17 
N23 N24 N25 N26 N27 N34 N35 N36 N37 N45 N46 N47 N56 N57 
N67 N21 N31 N41 N51 N61 N71 N32 N42 N52 N62 N7 2 N43 N53 N63 N7 3 N5 4 N64 N74 N65 
N75 N76 N; 
CARDS; 
o 0 0 0 0 0 0 0 0 308 170 255 220 181 174 161 40 47 54 73 43 51 31 32 31 22 23 
68 49 68 25 40 54 31 35 29 18 31 31 31 30 21 38 14 20 18 
23 13 44 30 42 34 39 42 28 28 29 19 62 
, 
PROC SYSNLIN DATA=DD METHOD=MARQUARDT; 
Y1=(N1/T1)-N12/(T1+V*T2)-(N21*V/(T2+V*T1)) - N13/(T1+V*T3)-(N 31*V/(T3+v*T1)) ­
N14/(T1+V*T4)-(N41*V/(T4+V*T1)) -
N15/(T1+V*T5)-(N51*V/(T5+V*T1))-N16/(T1+V*T6) - (N61*V/(T6+v*T1)) - N17/(T1+V*T7) -
(N71*V/(T7+V*T1)); . 
Y2=(N2/T2)-(N12 *V/(T1+V*T2)) - N21/(T2+V*T1)-(N32 *V/ (T3+V*T2))-N2 3/(T2+v*T3)­
(N42*V/(T4+V*T2))-N24/(T2+V*T4) 
- (N52 *V/(T5+V*T2))-N25/(T2+V*T5)-(N62 *V/(T6+V*T2 )) - N26/(T2+v*T6) ­
(N72 *V/(T7+V*T2)) - N27/(T2+V*T7); 
Y3=(N3/T3) - (V*N13/(T1+V*T3))-N31/(T3+V*T1) -(V*N23/(T2+V*T3)) - N32/(T3+v*T2)­
(V*N43/(T4+V*T3))-N34/(T3+V*T4) 
-(V*N53/(T5+V*T3))-N35/(T3+V*T5)-(V*N63/(T6+V*T3))-N36/ (T3+V*T6)­
(V*N73/(T7+V*T3)) - N37/(T3+V*T7); 
Y4=(N4/T4) - (V"'N14/ (Tl+V*T4)) - N41/ (T4+V"'Tl) - (V"'N24/ (T2+v"'T4)) - N4 2/ (T4+V"'T2) ­
(V*N34/(T3+v*T4))-N43/(T4+V*T3) 
- (V *N54/(T5+V*T4))-N45/(T4+V*T5) - (V*N64/(T6+V*T4)) -N46/(T4+V*T6)­
(V*N74/(T7+V*T4)) - N47/(T4+V*T7); 
Y5=(N5/T5)-(V*N15/(T1+V*T5))-N51/(T5+V*T1)-(V*N25/(T2+V*T5))-N52/(T5+V*T2)­
(V*N35/(T3+V*T5))-N53/(T5+V*T3) 
-(V*N45/(T4+V*T5)) - N54/(T5+V*T4) -(V*N65 /(T6+V*T5)) - N56 /(T5+V*T6)­
(V*N75/(T7+V*T5))-N57/(T5+V*T7); 
Y6=(N6/T6)-(V*N16/(T1+V*T6))-N61/(T6+V*T1)-(V*N26/(T2 +V*T6))- N62/(T6+v*T2 ) ­
(V*N36/(T3+V*T6))-N63/(T6+V*T3) 
-(V*N46/(T4+V*T6))-N64/(T6+V*T4)-(V*N56/(T5+V*T6))-N65 /(T6+V*T5)­
(V*N76/(T7+V*T6))-N67/(T6+V*T7); 
Y7=(N7/T7)-(V*N17/(T1+V*T7))-N71/(T7+V*T1) -(V*N27/(T2+V*T7))- N72/(T7+V*T2)­
(V*N37/(T3+v*T7)) - N73/(T7+V*T3) 
-(V*N47/(T4+V*T7)) - N74/(T7+V*T4)-(V*N57/(T5+V*T7)) -N75 /(T7+V*T5)­
(V*N67/(T6+V*T7))-N76/(T7+V*T6); 
Y8=1-T1-T2-T3 -T4-T5-T6-T7; 
Y9=(2*N *V/(V**2 -1))-(T2 *N12/(T1+V*T2)) - (T1*N21/(T2+V*T1))- (T3*N 13 /(T1+v*T3))­
(Tl ~' N31/ (T3+Vf'Tl)) - (T4 #N14/ (Tl+V"'T4)) - (Tl~' N41/ (T4+V "'Tl)) 
-(T5 *N15/(T1+V#TS)) - (T1*NS1/(TS+V#T1))-(T6#N16/ (T1+V*T6)) - (T1#N61/(T6+v#T1 ))­
(T7 *N17/(T1+V#T7))-(T1#N71/(T7+V#T1)) 
-(T3*N23/(T2+V#T3))-(T2#N32/(T3+V*T2))-(T4#N24/(T2+V#T4))-(T2*N42/(T4+V*T2))­
(T5 '~ N2 S/ (T2+V f' TS)) - (T2 f' NS2/ (TS+Vf'T2)) 
-(T6#N26/(T2+V*T6))-(T2*N62/(T6+V#T2))-(T7#N27/(T2+V#T7)) -(T2* N72 /(T7+V*T2))­
(T4*N34/(T3+V#T4))-(T3#N43/(T4+V#T3)) 
-(TS*N3S/(T3+V*TS))-(T3*NS3/(TS+V*T3)) - (T6#N36/(T3+V*T6)) -(T3* N63/(T6+v*T3))­
(T7 *N37/(T3+V*T7))-(T3#N73/(T7+V*T3)) 
-(TS*N45/(T4+V*T5))-(T4#NS4/(TS+V*T4))-(T6*N46/(T4+V*T6))-(T4*N64 / (T6+V*T4))­
(T7 *N47/(T4+V#T7)) - (T4 #N74/(T7+V#T4)) 
-(T6*NS6/(T5+V*T6))-(TS*N6S/(T6+V*T5)) -(T7*N57/(TS+V*T7)) - (T5* N75/(T7+V*T5))­
(T7 *N67/(T6+V*T7))-(T6*N76/(T7+V#T6)) ; 
ENDO Y1 Y2 Y3 Y4 YS Y6 Y7 Y8 Y9; 
EXO N1 N2 N3 N4 NS N6 N7 N12 N13 N14 N1S N16 N17 N23 N24 N2S N26 N27 N34 N35 
N36 N37 N45 N46 N47 N56 N57 N67 N21 N31 N41 NS1 N61 N71 N32 
N42 NS2 N62 N72 N43 NS3 N63 N73 N54 N64 N74 N65 N75 N76 N; 
PARMS T1 0.2195 T2 0.1842 T3 0.145S T4 0.1151 TS 0 . 104S T6 0.1004 T7 0.1308 v 
1.096; 
RUN; 
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APPENDIX-B 

1* IC' Codes to fmd The Posterior Means for ODI from 1999 to 2003 
by Quadrature Method *1 
# include <stdio.h> 
# include <math.h> 
# include <conio.h> 
void mainO 
{ 
double 
V,T1,T2,T3,T4,T5,T6,T7,fun,integ=0.0,integc=0.0,Vp=0.0,Tp1 =0.0,Tp2=0.0,Tp3=0.0,T 
p4=0.0, 
Tp5=0.0,Tp6=0.0,Tp7,dl=0.045; II all variables separated by commas 
IlclrscrO; 
IlgetchO; 
printf("Start of Program ... \nil); 
II Finding the Normalizing Constant 
for (T1=dl;T1 <=1.0-dl;T1 +=dl) 
for (T2=dl;T2<= 1.0-Tl-dl;T2+=dl) 
for (T3=dl;T3<=1.0-Tl-T2-dl;T3+=dl) 
for (T4=dl;T4<=1.0-TI-T2-T3-dl;T4+=dl) 
for (T5=dl;T5<=1.0-Tl-T2-T3-T4-dl;T5+=dl) 
for (T6=dl;T6<=1.0-Tl-T2-T3-T4-T5-dl;T6+=dl) 
for(V=1.0+dl;V<=1 O.O-dl; V+=dl) 
{ 
T7=1.0-T1-T2-T3-T4-T5-T6; 
if( T7<= 0.0) continue; 

fun=pow( (V*V-
1),16)*(pow(Tl ,79))*pow(T2,68)*pow(T3,61)*pow(T4,53)*pow(TS ,42)*pow(T6,55)*p 
ow(T7,27) 
I( 
(pow((Tl +V*T2),14))*(pow((Tl +V*T3),13))~(pow((Tl +V*T4),15))*(pow((Tl +V*TS), 
11))*(pow((Tl +V*T6), 11))*(pow((Tl +V*T7),15))*(pow((T2+V*T3), 14))* 
(pow((T2+V*T4),1 1))*(pow((T2+V*T5),18))*(pow((T2+V*T6),1 1 ))*(pow((T2+V*T7), 
6))* (pow((T3+V*T4), 1 0))*(pow((T3+V*T5), 17))*(pow((T3+V*T6), 15))*(pow((T3+V* 
T7), 7))*(pow((T4+V*TS), 12))*(pow((T4+V*T6), 12))*(pow((T4+ V*T7), 11 ))* 
(pow((TS+V*T6),4))*(pow((TS+V*T7),3))*(pow((T6+V*T7),8))*(pow((T2+V*Tl) ,8))* 
(pow((T3+V*Tl),6))*(pow((T4+V*Tl),4))* 
(pow((TS+V*Tl),6))*(pow((T6+V*Tl),4))*(pow((T7+V*Tl),2))*(pow((T3+V*T2),6))* 
(pow((T4+V*T2),9))*(pow((T5+V*T2),7))*(pow((T6+V*T2),9))* 
(pow((T7+V*T2),4))*(pow((T4+V*T3),5))*(pow((T5+V*T3),6))*(pow((T6+V*T3),14)) 
*(pow((T7+V*T3),5))*(pow((T5+V*T4),16))* 
(pow((T6+V*T4),9))*(pow((T7+V*T4),S))*(pow((T6+V*TS),11))*(pow((T7+V*TS),2)) 
*(pow((T7+V*T6),9))); 
integ+=fun*pow( dl, 7); 
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Ilprintf("\nNC: \t%g" ,integ); 
} 
printf("\nN C: \t% g" ,integ);I I getchO; 
for (T1 =dl;T1 <=1.0-dl;T1 +=dl) 
for (T2=dl;T2<=1.0-T1-dl;T2+=dl) 
for (T3=dl;T3<=1.0-T1-T2-dl;T3+=dl) 
for (T4=dl;T4<=l.O-T1-T2-T3-dl;T4+=dl) 
for (T5=dl;T5<=1.0-T1-T2-T3-T4-dl;T5+=dl) 
for (T6=dl;T6<=1 .0-T1-T2-T3-T4-T5-dl;T6+=dl) 
forcY = 1. O+dl; V <= 10. O-dl; V +=dl) 
{ 
T7=1.0-T1-T2-T3-T4-T5-T6; 
if( T7<=O.O) continue; 
:fun=(1.0linteg)*pow((V*V-
1), 16)*(pow(T1, 79»*pow(T2,68)*pow(T3,61 )*pow(T4,53)*pow(T5 ,42)*pow(T6,5 5)*p 
ow(T7,27) 
I( 
(pow((T1 +V*T2),14»*(pow((Tl +V*T3),13»*(pow((Tl +V*T4), 15»*(pow((Tl +V*T5), 
11»*(pow((T1 +V*T6),11»*(pow((T1 +V*T7),15»*(pow((T2+V*T3), 14»* 
(pow((T2+V*T4),11»*(pow((T2+V*T5),18»*(pow((T2+V*T6),11»*(pow((T2+V*T7), 
6»*(pow((T3+ V*T4), 1 O»*(pow((T3+V*T5), 17» *(pow((T3+V*T6), 15»*(pow((T3+V* 
T7),7»*(pow((T4+V*T5), 12»*(pow((T4+V*T6), 12» *(pow((T4+ V*T7),11»* 
(pow((T5+V*T6),4»*(pow((T5+V*T7),3»*(pow((T6+V*T7),8»*(pow((T2+V*Tl),8»* 
(pow((T3+V*T1),6»*(pow((T4+V*Tl),4»* 
(pow((T5+V*Tl),6»*(pow((T6+V*Tl),4»*(pow((T7+V*Tl),2» *(pow((T3+V*T2),6» * 
(pow((T4+V*T2),9»*(pow((T5+V*T2),7»*(pow((T6+V*T2),9»* 
(pow((T7+V*T2),4»*(pow((T4+V*T3),5»*(pow((T5+V*T3),6»*(pow((T6+V*T3),14» 
*(pow((T7+ V*T3),5»*(pow((T5+V*T4), 16»* 
(pow((T6+ V*T4 ),9»*(pow((T7+ V*T4 ),5» *(pow((T6+ V*T5), 11) )*(pow( (T7+ V*T5) ,2» 
*(pow((T7+V*T6),9»); 
integc+=fun*dl *dl*dl*dl *dl*dl*dl; 
fun=(1.0/integ)*Tl *pow((V*V-
1), 16)*(pow(Tl, 79»*pow(T2,68)*pow(T3,61 )*pow(T4,53)*pow(T5 ,42)*pow(T6,5 5)*p 
ow(T7,27) 
I( 
(pow((TI +V*T2),14»*(pow((Tl +V*T3),13»*(pow((TI +V*T4),15»*(pow((Tl +V*T5), 
11»*(pow((T1 +V*T6),11»*(pow((Tl +V*T7),lS» *(pow((T2+V*T3), 14»* 
(pow((T2+V*T4),11»*(pow((T2+V*T5),18»*(pow((T2+V*T6),11»*(pow((T2+V*T7), 
6»*(pow((T3+V*T4),1 O»*(pow((T3+V*T5), 17»*(pow((T3+V*T6), 1S»*(pow((T3+V* 
T7),7»*(pow((T4+V*TS),12»*(pow((T4+V*T6),12»*(pow((T4+V*T7),11»* 
(pow((TS+V*T6),4»*(pow((TS+V*T7),3»*(pow((T6+V*T7),8» *(pow((T2+V*Tl),8» * 
(pow((T3+V*T1),6»*(pow((T4+V*Tl),4»* 
(pow((T5+V*Tl),6»*(pow((T6+V*T1),4»*(pow((T7+V*T1),2))*(pow((T3+V*T2),6»* 
(pow((T4+V*T2),9»*(pow((T5+V*T2),7»*(pow((T6+V*T2),9» * 
(pow((T7+ V*T2),4 »*(pow((T4+ V*T3),S»*(pow((T5+ V*T3 ),6) )*(pow((T6+ V*T3), 14» 
*(pow((T7+V*T3),5»*(pow((T5+V*T4),16»* 
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(pow((T6+ V*T4 ),9»*(pow((T7+ V*T4 ),5) )*(pow((T6+ V*TS), 11» * (pow( (T7+ V*TS »)) 
*(pow((T7+V*T6),9»); 
Tpl +=fun*dl*dl*dl*dl*dl*dl*dl; 
fun=(1.O/integ)*T2*pow((V*V-
1), 16)*(pow(Tl, 79»*pow(T2,68)*pow(T3,61 )*pow(T4,53 )*pow(TS,42)*pow(T6,55)*p 
ow(T7,27) 
I( 
(pow((Tl +V*T2), 14»*(pow((TI +V*T3),13»)*(pow((TI +V*T4),1 5»*(pow((Tl +V*TS), 
11»*(pow((TI +V*T6),II»*(pow((TI +V*T7),IS» *(pow((T2+V*T3), 14»* 
(pow((T2+V*T4),II»*(pow((T2+V*T5),18»*(pow((T2+V*T6),11»*(pow((T2+V*T7), 
6»*(pow((T3+V*T4), 10»*(pow((T3+V*T5),17»*(pow((T3+V*T6),15»*(pow((T3+V* 
T7), 7»*(pow((T4+V*TS), 12»*(pow((T4+V*T6), 12»*(pow((T4+ V*T7), 11»* 
(pow((T5+V*T6),4»*(pow((TS+V*T7),3»*(pow((T6+V*T7),8))*(pow((T2+V*Tl),8»* 
(pow((T3+V*Tl),6»*(pow((T4+V*Tl),4»* 
(pow((TS+V*Tl),6»*(pow((T6+V*Tl),4»*(pow((T7+V*Tl),2» *(pow((T3+V*T2),6»* 
(pow((T4+V*T2),9»*(pow((TS+V*T2),7»*(pow((T6+V*T2),9» * 
(pow((T7+V*T2),4»*(pow((T4+V*T3),S»*(pow((TS+V*T3),6» *(pow((T6+V*T3), 14» 
*(pow((T7+V*T3),S»*(pow((TS+V*T4),16»* 
(pow((T6+ V*T4),9»*(pow((T7+ V*T4),5»*(pow((T6+ V*TS), 11» * (pow((T7+ V*T5) ,2» 
*(pow((T7+V*T6),9»); 
Tp2+=fun*dl *dl *dl *dl *dl *dl *dl; 
fun=(1.0linteg)*T3*pow((V*V -
1), 16)*(pow(Tl, 79»*pow(T2,68)*pow(T3 ,61 )*pow(T4,S3)*pow(TS ,42)*pow(T6,S S)*p 
ow(T7,27) 
I( 
(pow((TI +V*T2), 14»*(pow((TI +V*T3),13»*(pow((TI +V*T4),1S»*(pow((TI +V*T5), 
11»*(pow((TI +V*T6), 11»*(pow((TI +V*T7),15»*(pow((T2+V*T3), 14»* 
(pow((T2+V*T4), 11 »)*(pow((T2+V*T5), 18) *(pow((T2+ V*T6), 11 »*(pow((T2+V*T7), 
6»)*(pow((T3+V*T4),10)*(pow((T3+V*T5),17»*(pow((T3+V*T6),15»*(pow((T3+V* 
T7),7»*(pow((T4+V*T5), 12)*(pow((T4+V*T6), 12»*(pow((T4+V*T7), 11 »* 
(pow((T5+V*T6),4»*(pow((T5+V*T7),3»*(pow((T6+V*T7),8» *(pow((T2+V*T1),8»* 
(pow((T3+V*Tl),6»*(pow((T4+V*Tl),4»* 
(pow((T5+ V*Tl ),6»*(pow((T6+ V*Tl ),4) )*(pow((T7+ V*T1 ),2»* (pow( (T3+ V*T2) ,6»* 
(pow((T4+V*T2),9»*(pow((T5+V*T2),7»*(pow((T6+V*T2),9»* 
(pow((T7+ V*T2),4 »)*(pow((T4+ V*T3),5»*(pow((T5+ V*T3 ),6» *(pow((T6+ V*T3), 14» 
*(pow((T7+V*T3),5»*(pow((T5+V*T4),16»* 
(pow((T6+ V*T4),9»*(pow((T7+ V*T4),S»*(pow((T6+ V*TS), 11) )*(pow((T7+ V*TS),2» 
*(pow((T7+V*T6),9»); 
Tp3+=fun*dl *dl*dl *dl *dl *dl *dl; 
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APPENDIX-C 

1* IC' Codes to find The Posterior Predictive Probabilities for the RK Model for all ODI 
by Quadrature Method *1 
# include <stdio.h> 
# include <math.h> 
# include <conio.h> 
void mainO 
{ 
double 
V,TI,T2,T3,T4,T5,T6,T7,fun,integ=O.O,integc=O.O,PPDI2=O.O,PPD13=O.O,PPDI4=O.O,P 
PD15=O.O,PPD16=0.O,PPDI7=0.0, 
PPD23=0.0,PPD24=O.0,PPD25=0.0,PPD26=9.0,PPD27=0.0,PPD34=0.0,PPD35=0.0,PP 
D36=0.0,PPD37=0.0,PPD45=0.O, 
PPD46=0.0,PPD47=O.O,PPD56=0.O,PPD57=O.0,PPD67=0.0,dl=0.083; II all variables 
separated by commas 
IlclrscrO; 
IlgetchO; 
plintf("Start ofProgram ... \n"); 
II Finding the Normalizing Constant 
for (TI =dl;TI <=l.O-dl;TI +=dl) 
for (T2=dl;T2<=1.0-Tl-dl;T2+=dl) 
for (T3=dl;T3<=1.O-Tl-T2-dl;T3+=dl) 
for (T4=dl;T4<=1.0-Tl-T2-T3-dl;T4+=dl) 
for (T5=dl;T5<=1.0-Tl-T2-T3-T4-dl;T5+=dl) 
for (T6=dl;T6<=1 .0-Tl-T2-T3-T4-T5-dl;T6+=dl) 
for(V=l.O+dl;V<=lO.O-dl;V+=dl) 
{ 
T7=1 .O-Tl-T2-T3-T4-T5-T6; 
if( T7<= 0.0) continue; 

fun=pow( (V*V -
1),12)*(pow(Tl,62))*pow(T2,34)*pow(T3,51)*pow(T4,44)*pow(T5,36)*pow(T6,35)*p 
ow(T7,32) 
I( 
(pow((Tl +V*T2),8»)*(pow((Tl +V*T3),9))*(pow((Tl +V*T4), 11»)*(pow((T1 +V*T5), 15 
»*(pow((TI +V*T6),9») 
*(pow((T1 +V*T7), 1 O»)*(pow((T2+V*T3),6)* 
(pow((T2+V*T4),6»*(pow((T2+V*T5),6» *(pow((T2+V*T6),4»*(pow((T2+V*T7),5))* 
(pow((T3+V*T4),14))* 
(pow((T3+V*T5),10))*(pow((T3+V*T6),14))*(pow((T3+V*T7),5))*(pow((T4+V*T5) ,8 
))*(pow((T4+V*T6),11))*(pow((T4+V*T7),6))* 
(pow((T5+V*T6),7»*(pow((T5+V*T7),6))*(pow((T6+V*T7),4))*(pow((T2+V*Tl) ,6»)* 
(pow((T3+V*Tl),6)*(pow((T4+V*Tl),6)* 
(pow((TS+V*Tl),6»*(pow((T6+V*Tl),4»*(pow((T7+V*Tl),8)*(pow((T3+V*T2),3»)* 
(pow((T4+V*T2),4»* 
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(pow((TS+V*T2),4))*(pow((T6+V*T2),S))* 
(pow((T7+V*T2),3))*(pow((T4+V*T3),9))*(pow((TS+V*T3),6))*(pow((T6+V*T3),9))* 
(pow((T7+ V*T3), 7))* 

(pow((TS+V*T4),8))*(pow((T6+V*T4),8))*(pow((T7+V*T4),6))*(pow((T6+V*TS),6))* 
(pow((T7+V*TS),6))* 
(pow( (T7 + V*T6),4))); 
integ+=fun *pow( dl, 7); 
Ilprintf("\nNC:\t%g",integ); 
} 
printf("\nNC:\t%g" ,integ);l1 getchO; 
for (Tl =dl;Tl <=1.0-dl;Tl +=dl) 
for (T2=dl;T2<=1.0-Tl-dl;T2+=dl) 
for (T3=dl;T3<=1.O-TI-T2-dl;T3+=dl) 
for (T4=dl;T4<=1.0-TI-T2-T3-dl;T4+=dl) 
for (TS=dl;TS<=1.0-Tl-T2-T3-T4-dl;TS+=dl) 
for (T6=dl;T6<=1.O-Tl-T2-T3-T4-TS-dl;T6+=dl) 
for(V = 1. O+dl; V <= 10. O-dl; V +=dl) 
{ 

T7=1.0-Tl-T2-T3-T4-TS-T6; 
if( T7<=O.O) continue; 
fun=(1.0/integ)*pow((V*V -
1),12)*(pow(T1,62))*pow(T2,34)*pow(T3,Sl)*pow(T4,44)*pow(TS,36)*pow(T6,3S)*p 
ow(T7,32) 
I( 

(pow((Tl +V*T2),8))*(pow((Tl +V*T3),9))*(pow((Tl +V*T4), 11))*(pow((Tl +V*TS),lS 
))*(pow((Tl +V*T6),9)) 
*(pow((Tl +V*T7), 1 O))*(pow((T2+V*T3),6))* 
(pow((T2+V*T4),6))*(pow((T2+V*TS),6))*(pow((T2+V*T6),4))*(pow((T2+V*T7),S))* 
(pow((T3+V*T4),14))* 
(pow((T3+V*TS),lO))*(pow((T3+V*T6),14))*(pow((T3+V*T7),S))*(pow((T4+V*TS),8 
))*(pow((T4+V*T6),11))*(pow((T4+V*T7),6))* 
(pow((TS+V*T6),7))*(pow((TS+V*T7),6))*(pow((T6+V*T7),4))*(pow((T2+V*Tl) ,6))* 
(pow((T3+V*Tl),6))*(pow((T4+V*Tl),6))* 
(pow((TS+ V*Tl ),6»)*(pow((T6+ V*Tl),4 ))*(pow((T7+ V*Tl ),8))* (pow((T3+ V*T2),3 ))* 
(pow((T4+V*T2),4))* 
(pow((TS+V*T2),4»)*(pow((T6+V*T2),S))* 
(pow((T7+V*T2),3))*(pow((T4+V*T3),9))*(pow((TS+V*T3),6))*(pow((T6+V*T3),9))* 
(pow((T7+V*T3),7))* 
(pow((TS+V*T4),8))*(pow((T6+V*T4),8))*(pow((T7+V*T4),6))*(pow((T6+V*TS),6))* 
(pow((T7+V*TS),6))* 
(pow((T7+V*T6),4))); 
integc+=fun*dl*dl *dl *dl *dl *dl *dl; 

fun=(1.0Iinteg)*TlI(Tl +V*T2)*pow((V*V-
1), 12)*(pow(Tl ,62))*pow(T2,34 )*pow(T3,Sl )*pow(T4,44 )*pow(T5,36)*pow(T6,3 S)*p 
ow(T7,32) 
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I( 

(pow((Tl +V*T2),8))*(pow((Tl +V*T3),9))*(pow((Tl +V*T4), 11 )) *(pow((Tl +V*T5), 15 
))*(pow((Tl +V*T6),9)) 
*(pow((Tl +V*T¥), 10))*(pow((T2+V*T3),6))* 
(pow((T2+V*T4),6))*(pow((T2+V*TS),6))*(pow((T2+V*T6),4))*(pow((T2+V*T7),S))* 
(pow((T3+V*T4),14)* 
(pow((T3+V*T5),1 O»)*(pow((T3+V*T6),14)*(pow((T3+V*T7),S))*(pow((T4+V*TS) ,8 
))*(pow((T4+V*T6),II))*(pow((T4+V*T7),6))* 
(pow((TS+V*T6),7))*(pow((TS+V*T7),6))*(pow((T6+V*T7),4))*(pow((T2+V*Tl),6))* 
(pow((T3+V*Tl),6))*(pow((T4+V*Tl),6))* 
(pow((TS+V*Tl),6))*(pow((T6+V*Tl),4))*(pow((T7+V*Tl),8))*(pow((T3+V*T2),3))* 
(pow((T4+V*T2),4))* 
(pow((TS+V*T2),4))*(pow((T6+V*T2),5))* 
(pow((T7+V*T2),3))*(pow((T4+V*T3),9))*(pow((T5+V*T3),6))*(pow((T6+V*T3),9))* 
(pow((T7+V*T3),7))* 
(pow((T5+V*T4),8))*(pow((T6+V*T4),8))*(pow((T7+V*T4),6))*(pow((T6+V*T5),6))* 
(pow((T7+ V*T5),6))* 
(pow((T7+V*T6),4))); 
PPD 12+=fun*dl *dl*dl*dl *dl *ell *ell; 

f1111=(l .Olinteg)*TlI(Tl +V*T3)*pow((V*V-
1),12)*(pow(T1,62))*pow(T2,34)*pow(T3,Sl)*pow(T4,44)*pow(TS,36)*pow(T6,3S)*p 
ow(T7,32) 
I( 

(pow((TI +V*T2),8))*(pow((Tl +V*T3),9))*(pow((TI +V*T4),11))*(pow((TI +V*T5), 15 
))*(pow((Tl +V*T6),9)) 
*(pow((TI +V*T7),lO))*(pow((T2+V*T3),6))* 
(pow((T2+V*T4),6))*(pow((T2+V*T5),6))*(pow((T2+V*T6),4))*(pow((T2+V*T7),5))* 
(pow((T3+V*T4),14))* 
(pow((T3+V*T5),1 O))*(pow((T3+V*T6),14))*(pow((T3+V*T7),5))*(pow((T4+V*T5),8 
))*(pow((T4+V*T6),11))*(pow((T4+V*T7),6))* 
(pow((T5+V*T6),7))*(pow((TS+V*T7),6))*(pow((T6+V*T7),4))*(pow((T2+V*Tl),6))* 
(pow((T3+V*Tl),6))*(pow((T4+V*Tl),6))* 
(pow((T5+ V*T1 ),6))*(pow((T6+ V*Tl),4) )*(pow((T7+ V*Tl ),8))* (pow((T3+ V*T2 ),3))* 
(pow((T4+V*T2),4))* 
(pow((T5+V*T2),4))*(pow((T6+V*T2),5))* 
(pow((T7+V*T2),3))*(pow((T4+V*T3),9))*(pow((T5+V*T3),6))*(pow((T6+V*T3),9))* 
(pow((T7+V*T3),7))* 
(pow((T5+V*T4),8))*(pow((T6+V*T4),8))*(pow((T7+V*T4),6))*(pow((T6+V*T5) ,6))* 
(pow((T7+V*T5),6))* 
(pow((T7+V*T6),4))); 
PPDI3+=fun*dl*dl*dl*dl*dl*ell*dl; 
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APPENDIX-D 

1* 'e Codes to find The Posterior probability P 12 ofRK model for Overall ODr matches 
by Quadrature Method *1 
# include <stdio.h> 
# include <math.h> 
# include <conio.h> 
void mainO 
{ 
double 
S,P,V,Tl,T2,T3,T4,T5,T6,T7,fun,integ=O.O,pho=O.O,dl=O.O875; II all variables separated 
by commas 
IlclrscrO; 
IlgetchO; 
pIintf("\nStart of Program ... "); 
II Finding the Normalizing Constant 
for (P=dl;P<=l.O-dl;P+=dl) 
for (S=P+dl;S<=(1 .O+P)/2.0-dl;S+=dl) 
for (T3=dl;T3<=l.O-2 .0*S+P-dl;T3+=dl) 
for (T4=dl;T4<=1.O-2.0*S+P-T3-dl;T4+=dl) 
for (T5=dl;T5<=1.O-2.0*S+P-T3-T4-dl;T5+=dl) 
for (T6=dl;T6<=1.0-2.0*S+P-T3-T4-T5-dl;T6+=dl) 
for(V = 1. O+dl; V <=5. O-dl; V +=dl) 
{ 
T7=1.0-2.0*S+P-T3-T4-T5-T6; 
if( T7<= 0.0) continue; 
T1=S; T2=S-P; 
fun= 
pow«V*V-
1.0), 12)*(pow(Tl ,62) )*pow(T2,34)*pow(T3,51 )*pow(T4,44)*pow(T5,36)*pow(T6,3 5)* 
pow(T7,32)/( 
(pow«Tl +V*T2),8))*(pow«Tl +V*T3),9))*(pow«Tl +V*T4), 11))*(pow«Tl +V*T5), 15 
))*(pow«Tl + V*T6),9))* 
(pow«Tl +V*T7),10))*(pow«T2+V*T3),6))*(pow«T2+V*T4),6))*(pow«T2+V*T5),6)) 
*(pow«T2+V*T6),4))* 
(pow«T2+V*T7),5))*(pow«T3+V*T4),14))*(pow«T3+V*TS),10))*(pow«T3+V*T6),1 
4))*(pow«T3+V*T7),5))* 
(pow«T4+ V*T5),8) )*(pow«T4+ V*T6), 11) )*(pow«T4+ V*T7),6) )*(pow( (T5+ V*T6), 7)) 
*(pow«T5+V*T7),6))* 
(pow«T6+ V*T7),4))*(pow«T2+ V*T1 ),6))*(pow«T3+ V*Tl ),6))* (pow«T4+ V*Tl ),6))* 
(pow«T5+V*Tl),6))*(pow«T6+V*T1),4))* 
(pow«T7+V*T1),8))*(pow«T3+V*T2),3))*(pow«T4+V*T2),4))*(pow«T5+V*T2),4))* 
(pow«T6+V*T2),5))* 
(pow«T7+V*T2),3))*(pow«T4+V*T3),9))*(pow«T5+V*T3),6))*(pow«T6+V*T3),9))* 
(pow«T7+V*T3),7))* 
(pow«T5+V*T4),8))*(pow«T6+V*T4),8))*(pow«T7+V*T4),6))*(pow«T6+V*T5),6))* 
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(pow((T7+V*TS),6))*(pow((T7+V*T6),4))) ; 
integ+=f1.m *pow( dl, 7); 
} 

for (P=dl;P<=1.0-dl;P+=dl) 
for (S=P+dl;S<=(1 .0+P)/2.0-dl;S+=dl) 
for (T3=dl;T3<=1.0-2.0*S+P-dl;T3+=dl) 
for (T4=dl;T4<=1.0-2.0*S+P-T3-dl;T4+=dl) 
for (TS=dl;T5<=1.0-2.0*S+P-T3-T4-dl;TS+=dl) 
for (T6=dl;T6<=1.0-2.0*S+P-T3-T4-TS-dl;T6+=dl) 
for(V= I.0+dl;V<=S.0-dl;V+=dl) 
{ 
T7=1.0-2.0*S+P-T3-T4-TS -T6; 
if( T7<= 0.0) continue; 
Tl =S; T2=S-P; 
fun= 1. Olinteg* 
pow((V*V-
1.0), 12)*(pow(TI ,62))*pow(T2,34)*pow(T3,Sl )*pow(T4,44)*pow(TS ,36)*pow(T6,3S)* 
pow(T7,32)/( 
(pow((Tl +V*T2),8))*(pow((Tl +V*T3),9))*(pow((Tl +V*T4),11))*(pow((TI +V*TS), IS 
))*(pow((Tl +V*T6),9))* 
(pow((TI + V*T7),1 0))*(pow((T2+ V*T3 ),6))*(pow((T2+ V*T4),6) )*(pow( (T2+V*TS),6)) 
*(pow((T2+V*T6),4))* 
(pow((T2+V*T7),S))*(pow((T3+V*T4),14))*(pow((T3+V*TS),10))*(pow((T3+V*T6),1 
4))*(pow((T3+V*T7),S))* 
(pow((T4+V*TS),8))*(pow((T4+V*T6),ll))*(pow((T4+V*T7),6))*(pow((TS+V*T6) ,7)) 
*(pow((TS+V*T7),6))* 
(pow((T6+ V*T7),4))*(pow((T2+ V*Tl ),6) )*(pow((T3+ V*Tl ),6) )*(pow( (T 4+ V*Tl ),6))* 
(pow((TS+V*Tl),6))*(pow((T6+V*Tl),4))* 
(pow((T7+V*Tl),8))*(pow((T3+V*T2),3))*(pow((T4+V*T2),4))*(pow((TS+V*T2),4))* 
(pow((T6+V*T2),S))* 
(pow((T7+V*T2),3))*(pow((T4+V*T3),9))*(pow((TS+V*T3),6))*(pow((T6+V*T3),9))* 
(pow((T7+V*T3),7))* 
(pow((TS+V*T4),8))*(pow((T6+V*T4),8))*(pow((T7+V*T4),6))*(pow((T6+V*TS),6))* 
(pow((T7+V*TS),6))*(pow((T7+V*T6),4))); . 
pho+=fun *pow( dl, 7); 
} 
printf("\nInteg:%g",integ); 
printf("\nIncremenyt:\t %g, P(Ho):\t%g, P(El):\t %g"dl,pho,l.O-pho); 
printf("\nProgram ended, Press Enter to exit... "); 
getch(); 
} 
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APPENDIX-E 

OPTION NONOTE S ; 
*GIBBS SAMPLING FOR POSTERIOR MEAN OF RAO-KUPP ER MODEL m=7; 

DATA DD; 
INPUT N1 NZ N3 N4 N5 N6 N7 N1Z N13 N14 N15 N16 N17 NZ3 N24 NZ5 N2 6 N27 N34 N35 N36 N3 7 
N45 N46 N47 
N56 N57 N67 NZ1 N31 N41 N51 N61 N71 N3Z N4Z N52 N62 N72 N4 3 N53 N6 3 N73 N54 N64 N74 N6 5 
N75 N76 N DA; 
CARDS; 

61 . 6 34.0 51.0 44.0 36.Z 34.8 32 . Z 8 .0 9 .4 10. 8 14.6 8 . 6 10.Z 6.Z 6.4 6.Z 4.4 4 .6 
13.6 9.8 13.6 S.O 8.0 10.8 6.Z 7 .0 5 .8 3.6 

6.Z 6.Z 6 .Z 6.0 4.Z 7.6 Z.8 4.0 3.6 4.6 2.6 8 . 8 6.0 8 . 4 6 . 8 7 .8 8.4 S.6 5 . 6 S .8 
3.8 1Z .4 0.01 

"PROC PRINT DATA=DD; RUN; 

DATA DT1; SET DD; TZ=0.3; T3=0.2; T4=0.15; T5 =0.1; T6=0 . 1; T7=0.1; V=1 . Z3 ; DA=O.Ol; 
QQ=l; 
DO T1=DA TO 1 - TZ-T3-T4-T5 - T6-T7-DA BY 0.01; 
PTH=(((V** Z-1) ** N) * (T1** N1) *(TZ* * NZ)*(T3**N3) * (T4 ** N4) *(TS ** N5) * (T6** N6)*(T7**N7»/ 
(( (T1+V" TZ) 'd'N1Z) " ((Tl+V"T3) 'd'N13) 1, ((Tl+V"T4) 1d'N14 )t, ((Tl+V"T5) 1, " N15) t, ((Tl+V1'T6) H N16) i, ((T 
1+V" T7) 'd'Nl7) " 
((TZ+V" T3) 1d'NZ3) i' ( (T2+V1'T4) 1d'NZ4)" ((T2+v" T5) ldtN2 5) " ((T2+V" T6) 'd'N26)" ((T2+v"T7) ''''' N2 7) ,', 
((T3+V"T4) idtN34)" ((T3+V" TS) 1d'N3S)" ((T3+V" T6) 'd' N36) ,', ((T3+V"T7) "" N3 7) i, 
((T4+V1'TS) t'""N4S)" ((T4+V" T6) 1d' N46) 1, ((T4+V"T7) 1d'N4 7) " ((TS+Vt'T6) 'd' N 56) " ((T5+V "'T7) '';'N57)'' ((T6 
+V"'T7) "t'N67)" ((TZ+V*T1) 'd' NZ1) * 
((T3+V"Tl) 'd' N31) t, ((T4+V" T1) 'd' N41) " ((TS+V"Tl) 1d'N51) " ((T6+v" Tl) 'd'N61)" ((T7+V"Tl) 'd'N71 )" 
((T3+V*TZ)"*N3Z)*((T4+V*TZ)**N4Z)*((TS+V*T2)**N52)*((T6+V*T2)**N62) *((T7+V*T2)**N72)* 
((T4+V" T3) 'd' N4 3) " ((TS+V*T3) "*N5 3) " ((T6+V"T3) '''' N63) '' ((T7+vt'T3) i"'N73)" 
((T5+V"T4) 'd' N54)" ((T6+V"T4) 1d'N64) " ((T7+vt'T4) 'd' N7 4)" 
((T6+V*TS) **N6S)*((T7+V*TS)**N7S) * ((T7+V*T6) ** N76»; 
DFT1=PTH"DA; AFTl=DFT1"'O(Z/3); 
OUTPUT; END; " KEEP TZ T3 T4 TS T6 T7 V DFT1 AFTl QQ; 
"'RUN; 
PROC MEANS DATA=DT1 MAX NOPRINT; VAR AFT1; OUTPUT OUT=DDM MAX=MDT1; 
DATA DD1; SET DDM (KEEP=MDT1); QQ=l; 
DATA DDZ; MERGE DD1 DT1; BY QQ; 
ZZ=MDTl-AFT1 ; 
IF ZZ=O; MT1=T1; *KE EP MT1 QQ; 
DATA DD3; MERGE DT1 DDZ; BY QQ; 
YY=T1- MT1; FBB=DFT1** (1/3); 
DGM=YY*FBB; 'OKEEP DGM; 
" PROC PRINT DATA=DD3; "RUN; 
PROC MEANS DATA=DD3 MIN NOPRINT; VAR DGM; OUTPUT OUT=BBN MIN=MINB; 
PROC MEANS DATA=DD3 MAX NOPRINT; VAR DGM; OUTPUT OUT=BB P MAX=MAXB; 
DATA DDR; MERGE BBN BBP DD2; 
DO UNTIL(0<T1<1-TZ-T3-T4-TS-T6-T7); 
DO UNTIL(UUU<FRT1); 
R1=RANUNI(0); RZ=RANUNI(O); 
UU=MDT1" R1; W=MINB+(MAXB - MINB) " RZ; 
UUU =UU 'd' (3/Z); T1=W/SQRT(UU)+MTl; 
FRTl= ( ((Vid'Z -l) idr N) " (T11dr N1) " (TZ'd' NZ) " (T3 'd' N3) " (T4'd' N4) " (T5 1dt NS)" (T6 H N6) " (T7t"'N7) / 
(( (Tl+V" TZ) id' N1Z) " ((Tl+V"T3) 1d'N13) " ((Tl+V"T4) 'd'N14 )" ((Tl+V"T5) 'd N1S) ,', ((Tl+V"T6) ''''' N16) .,', ((T 
1+v"T7) 'dt Nl7) " 
((T2+v" T3) '''''NZ 3)" ((TZ+V"T4) 1dr N24) " ((TZ+V"TS) 'd' N2 5) " ( (T2+v"T6) "d' N2 6)" ((T2+v"'T7) id'NZ 7) i, 
((T3+V" T4) "t' N34) " ((T3+V"TS) '''''' N3 5) " ((T3+V" T6) 'd'N36) i, ((T3+V"T7) '''''N3 7)" 
((T4+V1'T5) 'd' N4 5) 1, ((T4+V"T6) H N46) t, ((T4+V"T7) HN4 7)" ((TS +V1'T6) >'d' N 56)" ((T5+V"T7) i""N 5 7) .,', ((T6 
+V*T7) ** N67) * ((TZ+V*T1)* * NZ1)* 
((T3+V1'Tl) 1"'N31) ',( (T4+V" T1) ''''' N41) '' ((T5+v"Tl) 'd' NS1)" ((T6+v"Tl) '''''N61) '' ((T7+v1'Tl) "" N71) i, 
((T3+V1'T2) H N3 Z)" ((T4+V1'TZ) 1dr N4Z) * ((T5+V 1'TZ) 'd'NSZ)" ((T6+V" TZ) 1n" N6Z) i, ((T7+v"TZ) 'n"N72) i, 
((T4+V*T3) **N43)*((TS+V'O T3)'O 'O NS3) * ((T6+V'OT3) **N63)*((T7+V*T3 ) ** N73)* 
((T5+V*T4) **N54)*((T6+V*T4) ** N64) * ((T7+V*T4) ** N74) * 
((T6+V" TS) 1d'N6 5)" ((T7+V'OT5) *" N75) " ((T7+V"T6) HN76» ; 
END; END; KEEP T1; 
" PROC PRINT DATA=DDR; RUN; 

DATA DTZ; MERGE DT1 DDR;T3=0.Z; T4=O.15; T5=0.1; T6=O.1; T7=0.05; V=1 .2 3; QQ=l ; 
DO T2=DA TO 1-T1-T3 - T4-T5-T6-T7- 0.01 BY 0 . 01; 
PTH=(((V'O*Z -1) ** N) 'O (T1*'O N1) *(T2 ** NZ)* (T3 'O* N3) *(T4** N4) *(T5 ** N5) *(T6 ** N6) *(T7**N7»/ 
(( (Tl+V'OTZ) *"' N12) " ((T1+V" T3) 1d'N13) " ((Tl+V"'T4) >'d' N14) " ((Tl+V" T5) "t'N1S)" ((Tl+v" T6) "'," N16) ,', ((T 
1+V'OT7) *'O N17) 'O . 
((T2+v*T3) 'd' NZ3) 1, ((TZ+V1'T4) 'd'NZ 4) 1, ((TZ+V1'TS) '''-' NZ 5) " ((TZ+V"T6) idt NZ6 )" (CTZ+V"'T7) HN27) 1, 
((T3+V1'T4) ''''' N34) 1, ((T3+v"TS) 'O"N35) 'OC (T3+v"T6) 'n" N36)" ((T3+V1'T7) H N3 7) i, 
(CT4+V"TS) ''''N4S)'' ((T4+V"T6) H N46) " ((T4+V"T7) '''' N4 7)" ((T5+V"T6) H N5 6)" ((TS+V" T7) 'd'N 57)" ((T6 
+V 'OT7) "*N67) * ((T2+V"T1) 'O" N21) * 
((T3+V" Tl) 'd'N31) * C (T4+V*T1) '';'N41) * ((T5+V"Tl) ''''N S1) '' ((T6+v" Tl) idtN61) ,', ((T7+V"Tl) H N71) " 
((T3+v" T2) 'O" N32) " ((T4+V"T2) 'd' N42) * ((T5+V" T2) 'n" N52) " ((T6+v"TZ) idtN62)" ((T7+V"T2) "" N72)" 
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((T4+V"T3) ""N43)" ((TS+V;'T3) ;"' N S 3) ;' ((T6+v;'T3) ;';'N6 3);' ((T7+v*T3) ;d' N73 ) ,', 
((TS+V;'T4) *;' NS4) ;' ((T6+v*T4) *;'N64) ;' ((T7+V;'T4) ;';'N74);' 
((T6+V*TS) ** N6S) * ((T7+V*TS) **N7S) * ((T7+V*T6)**N76»; 
DFT2=PTH;'DA; AFT2=DFT2;'" (2/3) ; 
OUTPUT; END; ;' KEEP T2 T3 T4 TS T6 T7 V DFT2 AFT2 QQ; 
;'RUN' 
PROC'MEANS DATA=DT2 MAX NOPRINT; VAR AFT2; OUTPUT OUT=OOM MAX=MOT 2 ; 
DATA 001; SET ODM (KEEP=MOT2); QQ=l; 
DATA 002; MERGE 001 OT2; BY QQ; 
ZZ=MOT2-AFT2; 
IF ZZ=O; MT2=T2; ;'KEEP MT2 QQ; 
OATA 003; MERGE oT2 002; BY QQ; 
YY=T2-MT2; FBB=DFT2;,;' (1/3) ; 
DGM=YY* FBB; *KEEP DGM; 
;' PROC PRINT OATA=OD3; ;'RUN; 
PROC MEANS DATA=DD3 MIN NOPRINT; VAR DGM; OUTPUT OUT=BBN MIN =MINB; 
PROC MEANS DATA=D03 MAX NOPRINT; VAR DGM; OUTPUT OUT=BBP MAX=MAXB; 
DATA DOR1; MERGE BBN BBP 002 ODR; 
DO UNTIL(0<T2<1-Tl-T3 - T4-TS - T6-T7); 
DO UNTIL(UUU <FRT2); 
Rl=RANUNI (0) ; R2=RANUNI (0) ; 
UU=MDT2 "'Rl ; W=MINB+(MAXB-MINB) ;' R2; 
UUU=UU;';' (3/2); T2=w /SQRT(UU)+MT2; 
FRT2=(((V**2-l) **N) *(Tl **Nl) " (T2**N2)*(T3**N3)*(T4* *N4) * (TS ** NS) *(T6** N6) *(T7* *N7»/ 
(( (Tl+V;'T2) ;';' N12) ;' ((Tl+v*T3) ;d' N13) " ((Tl+v;'T4) ;d' N14);' ((Tl+V" TS) ;';' N1S );' ((T1+V;'T6) ;d' N1 6) * ((T 
l+V*T7) ;';' N17) ;' 
((T2+V"'T3) *;' N23) " ((T2+V"T4) 1d'N24) " ((T2+V;'TS) ''''N2 S)" ((T2+V ;'T6) '';' N26) ;' ((T2+v;'T7) ;d'N2 7) ;' 
((T3+V;'T4) ;d'N34) ;' ((T3+V;'TS) 1d'N3S);' ((T3+V;'T6) ;';'N36) ;' ((T3+V;'T7) '';' N37) ;' 
((T4+V;'TS) ""N4S);' ((T4+V;'T6) ;';' N46) " ((T4+V;'T7) ;'* N4 7);' ((TS+V;'T6) ;d'NS6) " ((TS+V" T7) ""'NS7) ;' ((T6 
+V;'T7) ;';' N67);' ((T2+v;'Tl) ;';' N2l) ;, 
((T3+V" TI) ;"' N3I) ;' ((T4+v*Tl) ;';'N4l) ;' ((TS+V;'Tl) ;"'N S1)" ((T6+V"Tl) ""N6I) -I, ((T7+V"TI) ;';' N7l) ;' 
((T3+v;'T2) ''''N32)'' ((T4+V*T2) 'd'N42) " ((TS+V"T2) '';'NS2)'' ((T6+v;'T2) ;"' N62) ;' ( (T7+V "'T2) ''''N72) ,', 
((T4+v"T3) ;"'N43) ;' ((TS+v;'T3) ""NS3) * ((T6+V;'T3) ;';'N63)" ((T7+V"T3) ;d'N73) ;' 
((TS+V;'T4) ;d'NS4);' ((T6+V;'T4) ''''N64);' ((T7+V"T4) ;d' N74) " 
((T6+V;'TS) ;"'N6S) ;' ((T7+V;'TS) ''''N7 S);' ((T7+V"T6) ;';' N76» ; 
END; END; KEEP T2; 
;'PROC PRINT DATA=DDR1; RUN; 
DATA DT3; MERGE DTl DDR DDR1; T4=0.lS; TS=O.l; T6=0.1; T7=0.OS; V=1 .23 ; QQ=l; 
DO T3=DA TO l-Tl-T2-T4-TS-T6-T7-0.0l BY 0.01; 
PTH= (( (V ;d, 2 -1) ;';'N);' (Tl ;"'Nl);' (T2 "';' N2);' (T3 ;"'N3) ;' (T4 ;';' N4);' (TS ;d' N S)" (T6 '''''N 6) ;' (T7" " N7) / 
(( (Tl+v;'T2) ;';'N12);' ((Tl+v;'T3) ;"' N13);' ((Tl+V"T4) ;d' N14) " ((Tl+V"TS) '''''NIS)'' ((Tl+V;'T6) ;"' N16) .,', ((T 
1+V;'T7) ;';'Nl7);' 
((T2+V*T3) ;d'N23)" ((T2+V;'T4) ',;'N24);' ((T2+V;'TS) ;"'N2 S) " ((T2+v;'T6) ''''N26) ;' ( (T2+V;'T7) ;"' N2 7);' 
((T3+V"T4) ;';' N34) ;' ((T3+V"TS) ;"'N3S) * ((T3+V;'T6) ''''N36) ;' ((T3+v"T7) ;d'N37) ,', 
((T4+V*TS)**N4S)"((T4+V*T6)"*N46)*((T4+V*T7) ** N47) *( (TS+V"T6)" " NS6)*((TS+V"T7)* " NS7) *( (T6 
+V*T7) ;';'N67);' ((T2+v;'Tl) ;d' N2l) ;' 
((T3+V*Tl) *;'N3l) ;' ((T4+V;'Tl) ;"'N4l);' ((TS+V;'Tl) ;"'NS1) ;' ((T6+V;'Tl) ;d' N6l) ;' ( (T7+V;'Tl) '';' N7l) ;' 
((T3+V*T2) ;d' N32) ;' ((T4+V;'T2) ;';'N42);' ((TS+V*T2) ;"'NS2);' ((T6+V;'T2) ;';'N62) ,', ((T7+v"'T2) ;d' N72) ;' 
((T4+V;'T3) ";'N43);' ((TS+v*T3) ;'''NS3);' ((T6+V;'T3) ;"'N63);' ((T7+V"T3) ;d'N7 3)" 
((TS+V;'T4) ;';'NS4) ;' ((T6+V;'T4) ;d' N64) ;' ((T7+V;'T4) ',i'N74)" 
((T6+V"TS) '';'N6S);' ((T7+V;'TS) ""N7 5) ;' ((T7+V;'T6) ;"'N76» ; 
DFT3=PTH;'DA; AFT3=DFT3 ;,;' (2/3) ; 
OUTPUT; END; ;'KEEP T2 T3 T4 TS T6 T7 V DFT3 AFT3 QQ; 
"RUN; 
PROC MEANS DATA=DT3 MAX NOPRINT; VAR AFT3; OUTPUT OUT=DDM MAX=MDT3; 
DATA 001; SET DDM (KEEP=MDT3); QQ=l; 
DATA 002; MERGE Dol DT3; BY QQ; 
ZZ=MDT3-AFT3 j 
IF ZZ=O j MT3=T3; ;'KEEP MT3 QQ; 
DATA 003; MERGE DT3 002; BY QQ; 
YY=T3-MT3; FBB =DFT3 ;'" Cl/3) ; 
DGM=YY"FBB; "KEEP DGM; 
" PROC PRINT DATA=DD3; ;'RUN; 
PROC MEANS DATA=DD3 MIN NOPRINT; VAR DGM; OUTPUT OUT=B BN MIN=MINBj 
PROC MEANS DATA=DD3 MAX NOPRINT; VAR DGM; OUTPUT OUT=BBP MAX=MAXB; 
DATA DDR2; MERGE BBN BBP 002 DDR DDR1; 
DO UNTIL(0<T3<1-Tl-T2 -T4-T S-T6-T7); 
DO UNTIL(UUU<FRT3) j 
Rl=RANUNI(O); R2=RANUNI(0); 
UU=M DT3 ;' Rl; W=MINB+(MAXB-MINB) "' R2; 
UUU=UU;'" (3/2) ; T3=w /SQRT (UU)+MT3 ; 
FRT3=( ((V;,;'2-l) 'd' N) ;' (Tl;';'Nl) ;' (T2;' ;'N2);' (T3 ;';' N3) ;' (T4 ;';' N4) ;' (T S;';'NS) " (T6''''N6) * (T7 ;';'N7) / 
(( (Tl+V" T2) ;';'N12);' ((Tl+V" T3) ;"'N13);' ((Tl+V ;'T4) ;';' N14) ,', ((Tl+V;'TS) ;"' N1S) ,', ((Tl+V "'T6) ;';' N16) ;' ((T 
l+V" T7) * "Nl7) " 
((T2+v;'T3) ;"'N23)" ((T2+v"T4) ;';'N24);' ((T2+V;'TS) ;';' N2 S) ;' ((T2+V;'T6) ;';' N26) ;' ((T2+V*T7) '''''N27);' 
((T3+V;'T4) *;'N34);' ((T3+V;' TS) ''''N3 S) ;' ((T3+v"T6) ;d'N36) ;' ((T3+V"T7) ;d'N37)" 
((T4+V*TS) *;'N4S) ;' ((T4+V;'T6) *;'N46) * ((T4+V;'T7) ,d' N4 7) ;, ((TS+V"'T6) ;d'NS6)" ((TS+V"T7) ;"' NS7) " ((T6 
+V*T7) ;"'N67) " ((T2+v;'TI) ;d'N2I)'" 
((T3+V" Tl) ;d'N3l) ;' ((T4+v;'Tl) "';' N4l) ;,( (TS+v" Tl) ;';' NSI) ;' ((T6+v" Tl) "';' N6l) ;' ((T7+V ;'Tl) 'd'N7l) ;' 
((T3+v;'T2) ;' '''N32) ;' ((T4+V;'T2) ;';'N42) * ((TS+V*T2) "d'NS 2) ;' ((T6+v ;'T2) ;';'N62);' ((T7+V;'T2) ;d' N72) ;' 
((T4+V;'T3) ;"' N43);' ((TS+V;'T3) ;d'NS3) ;,( (T6+V;'T3) *;'N63);' ((T7+V;'T3 ) ;d' N73) ;' 
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((TS+Y*T4)* * NS4) *( (TG+Y*T4) ** NG4) *((T7+Y*T4 ) **N74) * 
((TG+Y*TS)**NGS)*((T7+Y*TS)**N7S)*((T7+Y*TG) * *N7G»; 
END; END; KEEP T3 ; 
"PROe PRINT DATA=DDR2; RUN; 
DATA DT4; MERGE DTI DDR DDRI DDR2; TS=O.l; TG~O . l; T7=0.OS; Y=1.23; QQ=l; 
DO T4=DA TO l-Tl-T2-T3-TS - TG-T7-0.0l BY 0.01; 
PTH= (((Y** 2-l) **N)*(Tl**Nl) * (T2** N2)*(T3 **N3) *(T4**N4) *(TS **NS)*(TG * *NG) *(T7**N7»/ 
(( (Tl+Y;'T2) ;d'N12);' ((Tl+Y;'T3) ;d' N13) ;' ((Tl+Y;'T4) idc N14) ;' ((Tl+Y"TS) id'NlS) ;' ((Tl+V;'TG) 'd'NlG ) ;' ((T 
1+Y;'T7) ;d' N17) ;' 
((T2+Y;'T3) ;';'N23);' ((T2+Y;'T4) ;d'N24) ', ( (T2+Y*TS) H N2 5) * ( (T2+Y"TG) '';'N26);' ((T2+Y" T7) ;"'N2 7);' 
((T3+Y"T4) ""N34)" ((T3+Y" T5) ""N3S) ',( (T3+Y"T6) '';'N3 6) ;' ((T3+Y;'T7) ;';' N37);' 
((T4+Y*TS) 'd' N4S)" ((T4+Y"TG) ;d'N4 G) ;, ( (T4+Y"T7) ;"'N4?);' ((T5+Y;'TG) ;d' N 56) ;' ((TS+y "'T7) ;d'N S 7) -I, ((TG 
+Y;'T7) ;d'N6?);' ((T2+Y*Tl) -Id'N2l);' 
((T3+Y;'Tl) ;"'N31) " ((T4+Y;'Tl) ;';' N4l) ;,( (T5+Y;'Tl) ;"'NSl);' ((TG+Y;'Tl) ;d' NGl)" ((T7+Y;'Tl) ;"'N71) " 
((T3+V;'T2) idcN32);' ((T4+Y"T2) ** N42) " ((T5+V;'T2) ;"'N52) ;' ((TG+Y;'T2) ;d' NG2 )" ((T7+Y"' T2 ) ;"' N72) ;' 
((T4+Y;'T3) 'd'N43)" ((T5+Y;'T3) ;d' N 53) ;' ((T6+Y"T3) ''''N63) '' ((T7+Y"T3) ''''N73)'' 
((TS+Y"T4)"*N54)"((TG+Y*T4)**NG4)*((T7+Y*T4)"*N74)* 
((TG+Y"T5)**N65)"((T7+Y*T5)**N75)*((T7+Y*T6)"*N7G»; 
DFT4=PTH;' DA; AFT4=DFT4 'd' (2/3); 
OUTPUT; END; "K EEP T2 T3 T4 T5 T6 T7 Y DFT4 AFT4 QQ; 
;' RUN; 
PROe MEANS DATA=DT4 MAX NOPRINT; YAR AFT4; OUTPUT OUT=DDM MAX=MDT4; 
DATA DDl; SET DDM (KEEP=MDT4); QQ=l ; 
DATA DD2; MERGE DDI DT4; BY QQ; 
ZZ=MDT4-AFT4; 
IF ZZ=O; MT4=T4; " KEEP MT4 QQ; 
DATA DD3; MERGE DT4 DD2; BY QQ; 
YY=T4-MT4; FBB =DFT4 ;d, (1/3) ; 
DGM=YY* FBB ' *KEEP DGM' 
;' PRoe PRINT DATA=DD3; , ;' RUN; 
PRoe MEANS DATA=DD3 MIN NOPRINT; YAR DGM; OUTPUT OUT=BBN MIN=MINB; 
PRoe MEANS DATA=DD3 MAX NOPRINT; YAR DGM; OUTPUT OUT=BBP MAX=MAXB; 
DATA DDR3; MERGE BBN BBP DD2 DDR DDRI DDR2; 
DO UNTIL(0 <T4 <1-Tl-T2-T3-TS-T6-T7); 
DO UNTIL(UUU <FRT4); 
Rl=RANUNI(O) ; R2=RANUNI(0); 
UU=MDT4 * Rl; W =MINB+(MAXB-MINB) " R2; 
UUU=UU;,;' (3/2); T4=W /SQRT(UU)+MT4; 
FRT4=( ((y;d'2-l) ''''N) ;' (Tl ;'*Nl);' (T2 ;d' N2) * (T3 *;' N3) ;' (T4 ;';' N4) ;' (T5;d'N5);' (TG '''' NG);' (T7'dcN7) / 
(( (T1+Y" T2) 'd'N12) ;' ((Tl+Y*T3) *;' N13)" ((Tl+Y;'T4) ;';' N14);' ((Tl+Y"T5) ;d' N15);' ((Tl+Y"T6) '';'N16) ;' ((T 
l+Y" T7) *;'N17);' 
((T2+V;'T3) ;d'N23) " ((T2+Y"T4) ''''N24) * ((T2+Y"T5) * ;' N25);' ((T2+Y" T6) ''''N2G );' ((T2+Y;'T7) ""N27) ;' 
((T3+V*T4) *" N34) * ((T3+Y"T5) ''*N35)'' ((T3+V;'T6) *;' N3G) * ((T3+Y"T?) '';'N37);' 
((T4+Y;'T5) ;"'N4S)" ((T4+Y*T6) ;'*N4G);' ((T4+Y*T7) ;';' N4 7) ;' ((T5+Y;'T6) -Id' N 56)" ((TS +Y;'T7) ;d' NS ?);' ((T6 
+Y;'T7) "" N6 7);' ((T2+Y;'Tl) ""N2l);' 
((T3+V*Tl) '';'N3l);' ((T4+V;'Tl) ;d' N4l) * ((TS+Y"Tl) ;';' NSI) ;' ((T6+Y;'Tl) idc N6l) " ((T7+Y" Tl) ''''' N71) ,', 
((T3+Y;'T2) ""' N32) ;' ((T4+V;'T2) 'd' N42) ;' ((T5+V;'T2) ;';'N52);' ((T6·,v;'T2) ;d'N62) ,', ((T7+V" T2) '''''N7 2) ,', 
((T4+Y;'T3) ;d' N43) " ((TS+Y;'T3) ;d'N 53);' ((T6+Y;'T3) ''''N63 ) ,', ((T7+Y"T3) 'd'N7 3) .:, 
((TS+Y*T4)"*NS4)*((T6+Y*T4)**N64)*((T7+Y*T4)**N74)* 
((T6+Y"TS) ;d' N6S) ;' ((T7+Y" TS) 'd' N7S) " ((T7+Y"T6) ;';' N7G » ; 
END; END; KEEP T4; 
" PRoe PRINT DATA=DDR3; RUN; 
DATA DTS; MERGE DTl DDR DDRI DDR2 DDR3; T6=0.1; T7=0.05; Y=1.23; QQ=l ; 
DO TS=DA TO l-Tl-T2-T3-T4-T6-T7-0.0l BY 0.01; 
PTH=(((Y**2- l) "* N) * (Tl**Nl) * (T2 **N2)"(T3**N3) *(T4 "*N4)"(T5 **N S) * (TG** NG) * (T7 ** N7» / 
(( (Tl+Y;'T2) "" NI2) " ((Tl+Y"T3) ''''N13) '' ((Tl+Y*T4) ;';'N14);' ((Tl+Y"'T5) "d' NlS ) .:, ((Tl+V*T6) '''' NIG) ,', ((T 
l+Y"T7) '';'N17);' 
((T2+Y"T3) ;"" N23) ;' ((T2+Y" T4) ;d' N24);' ((T2+Y;'T5) ;,;'N2 5);' ((T2+V;'T6) ""' N2G )" ((T2+Y"'T7) ':d'N2 7)" 
((T3+V;'T4) ;';' N34)" ((T3+V;'T5) ;d' N35);' ((T3+Y;'TG) ;'* N36)" ((T3+Y;'T?) ;d' N 37) ,', 
((T4+Y;'T5) ;d'N45) ;' ((T4+Y*T6) ;d'N46)" ((T4+Y;'T7) '''' N47)'' ((T5+V;'TG) ;"' N5 6) ,', ((T5+V;'T7) ;""N 5 7)" ((TG 
+Y*T7) ;'* N67) ;' ((T2+Y*Tl) ''''N21);' 
((T3+V;'Tl) **N3l) ;' ((T4+Y;'Tl) ;d' N4l) " ((T5+Y;'Tl) ""N5l);' ( (T6+V" Tl) ;';'NGl);' ((T7+y"'Tl) ""N7l)" 
((T3+Y;'T2) ;d' N32) ;' ((T4+V;'T2) ''''N42);' ((TS+Y*T2) 'd' NS2) ;' ( (T6+V;'T2) '''' N6 2);' ((T7+Y;'T2) 'd' N72);' 
((T4+Y;'T3) ;';' N43) ;' ((TS+v;'T3) '''' N53) ;' ((T6+Y;'T3) 'd'N63);' ((T7+Y"T3) 'd' N7 3)" 
((T5+Y*T4)* *N54) * ((T6+Y*T4) "*N64)*((T7+Y*T4) **~74) * 
((TG+Y"TS) *;' N65) * ((T7+Y"T5) '';'N75);' ((T7+Y;'TG) ''''N76» ; 
DFT5=PTH ;'DA; AFT5=DFT5 M , (2/3) ; 
OUTPUT; END; "K EEP T2 T3 T4 T5 T6 T7 Y DFT5 AFTS QQ; 
*RUN' 
PRoe'MEANS DATA=DT5 MAX NOPRINT; YAR AFT5; OUTPUT OUT=DDM MAX=MDT5; 
DATA DDl; SET DDM (KEEP=MDT5); QQ=l; 
DATA DD2; MERGE DDI DT5; BY QQ; 
ZZ=MDT5 -AFTS ; 
IF Zz=O; MT5=T5; ;'K EEP MTS QQ; 
DATA DD3; MERGE DTS DD2; BY QQ; 
YY=T5 - MTS; FBB =DFTS ** (1/3 ); 
DGM=YY* FBB; * KEEP DGM ; 
" PRoe PRINT DATA=DD3; " RUN; 
PRoe MEANS DATA=DD3 MIN NOPRINT; VAR DGM; OUTPUT OUT=BBN MIN=MINB; 
PRoe MEANS DATA=DD3 MAX NOPRINT; VAR DGM; OUTPUT OUT=BBP MAX=MAXB ; 
DATA DDR4; MERGE BBN BBP DD2 DDR DDRI DDR2 DDR3; 
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DO UNTIL(0<~S<1-T1-T2 -T3-T4 -T6-T7); 
DO UNTIL(UUU <FRTS); 
R1=RANUNI(0); R2 =RANUNI(0); 
UU=MOTS " R1; W=MINB+(MAXB-MINB) "R2; 
UUU=UU"*(3/2); TS=W/SQRT(UU)+MTS; 
FRTS=( ((V''''2 -1) ''''N)'' (T1 ''''' N1) '' (T2''''N2)~' (T3 H N3) " (T4 " " N4)" (T S '''''N S) " (T6 "" N6) " (T7 ''''N 7) ) / 
(( (Tl+V"T2) '''' N12)'' ((Tl+V" T3) '''' N13)'' ((Tl+V"T4) ''''N14)'' ( (Tl+V"TS) ' '''Nl S) .:, ( (Tl+V" T6) "d'N16) " ( (T 
l+V" T7) ''''N17)'' 
((T2+v"T3) '''''N23)'' ((T2+V"T4) ""N24) ', ( (T2+v" TS) ' ''' N2 5)" ( (T2+v"T6) ' ';' N26) '' ( (T2+v" T7) "" N27) ,', 
((T3+V"T4) ""N34) ',( (T3+V"T5) '''' N3 S) " ((T3+V"T6) ''''N36) '' ( (T3+V" T7) ""'N37) " 
((T4+V"TS) " " N4S)" ((T4+V"T6) *" N46) ',( (T4+V"T7) " " N47)" ((TS+V" T6) " "NS6) ;' ((TS+V;'T7) ;"' NS 7) ,', ( (T6 
+V;'T7) ";'N67) ,', ((T2+v" T1) *" N2l)" 
((T3+V"T1) ""N31)" ((T4+V"Tl) ""N41)" ((TS+V"Tl) "" NS1) " ((T6+V"Tl) "':' N6l) " ((T7+V" Tl) ""'N7l) " 
((T3+V"T2) " " N 3 2)" ((T4+V"T2) '''' N42) ' ' ((TS+V" T2)" " N S2) " ((T6+V" T2) ''''N62) '' ((T7 +V" T2) ''''N72) '' 
((T4+V"T3) " " N43)" ((TS+V"T3) ''''N S 3)" ((T6+V"T3) ''''N63) ' ' ((T7 +V" T3) ''''N 7 3) " 
((TS+V"T4) " " NS4)" ((T6+V"T4) "*N64)" ((T7+V"T4) '';' N74)'' 
((T6+V" TS) ''''N6S);' ((T7+V"TS) " ;' N75) " ((T7+V"T6) ""N76)) ; 
END; END; KEEP TS; 
;' PROe PRINT DATA=DDR4; RUN; 
DATA DT6; MERGE DT1 DDR DDR1 DDR2 DDR3 DDR4; T7=0.OS; V=1.23; QQ=l; 
DO T6=DA TO 1-T1-T2-T3-T4-TS-T7-0.01 BY 0.01; 
PTH=(((V""2-1)" *N)*(T1*"N1)*(T2 **N2)*(T3"*N3)"(T4*"N4) * (TS ** NS) * (T6**N6)*(T7 "*N7))/ 
(( (Tl+V"T2) ''''' N12) ' ' ((Tl+V"T3) '''' N13)'' ((Tl+V"T4) ''''N14) '' ((Tl+V" TS) ''''NlS) ,', ((Tl+V"T6) '''' N16) '' ((T 
1+V;'T7) ''''N17) * 
((T2+V"T3) ''''N2 3)" ((T2+v"T4) ''''N24)'' ((T2+V"TS) ""N2S)" ((T2+v"'T6) ' '''N26) ,', ((T2+v"T7) ;"'N2 7) " 
((T3+V"T4) "*N34)" ((T3+V"TS) '''' N3S)'' ((T3+V"T6) * " N36)" ((T3+v"T7) ' ''' N37) '' 
((T4+V"TS) '''''N4S)'' ((T4+V"T6) '''' N46)'' ((T4+V"T7) ''''N4 7)" ((TS+V"T6) ""NS6)" ((TS-I-Y"' T7) ' ''''NS 7) ,', ((T6 
+V*T7)**N67)*((T2+V*Tl)**N21)* 
((T3+V"Tl)" *N31)"((T4+V"T1) * *N41) * ((T5+V"T1) **NS1)"((T6+V*Tl) *"N61) * ((T7+V*T1)* *N7l)* 
((T3+V*T2) ""N32)" ((T4+V"T2) ";' N42)" ((TS+V"T2) ""NS2);' ((T6+V" T2) ''''N62)'' ((T7+V"T2) ''''' N72);' 
((T4+v"T3) ;" ' N43)" ((TS+v"T3) '''' NS 3) " ((T6+V"T3) '''' N63)'' ((T7+v" T3) '''''' N7 3) ,', 
((T5+V*T4)** N54)*((T6+V*T4)" *N64)*((T7+V*T4)**N74) * 
((T6+V*TS)**N6S)*((T7+V*T5)**N7S)*((T7+V*T6)" " N76)); 
DFT6=PTH " DA; AFT6=DFT6'''' (2/3) ; 
OUTPUT; END; "KEEP T2 T3 T4 T5 T6 T7 V DFT6 AFT6 QQ ; 
;' RUN' 
PROe'MEANS DATA=DT6 MAX NOPRINT; VAR AFT6; OUTPUT OUT=DDM MAX=MDT6; 
DATA 001; SET DDM (KEEP=MDT6); QQ=l; 
DATA DD2; MERGE DD1 DT6; BY QQ; 
ZZ=MDT6-AFT6; 
IF ZZ=O; MT6=T6; "KEEP MT6 QQ; 
DATA 003; MERGE DT6 DD2; BY QQ; 
YY=T6-MT6; FBB=DFT6* " (1/3) ; 
DGM=YY"FBB; "KEEP DGM; 
"PROe PRINT DATA=DD3; "RUN; 
PROe MEANS DATA=DD3 MIN NOPRINT; VAR DGM; OUTPUT OUT=BBN MIN=MINB; 
PROe MEANS DATA=DD3 MAX NOPRINT; VAR DGM; OUTPUT OUT=BBP MAX=MAXB; 
DATA DDRS; MERGE BBN BBP DD2 DDR DDR1 DDR2 DDR3 DDR4; 
DO UNTIL(0<T6<1-T1-T2 - T3-T4-TS-T7); 
DO UNTIL(UUU<FRT6); 
R1=RANUNI(0); R2=RANUNI(0); 
UU=MDT6"Rl; W=MINB+(MAXB-MINB) "R2; 
UUU=UU'''' (3/2); T6=w /SQRT( UU)+MT6; 
FRT6=( ((v"" ' 2-1) '''' N)'' (T1 ;"'N1)" (T2'';' N2) '' (T3'''' N3) '' (T4 ''''' N4)'' (TS '';' NS)'' (T6 ' '''' N6)'' (T7 ''''' N7)) / 
(((T1+V"T2) ** N12) * ((T1+V*T3)"*N13)*((Tl+V*T4) "* N14) * ((T1+V*TS)"*NlS) " ((Tl+V*T6) ** N16) * ((T 
l+v" T7) '';'Nl7)'' 
((T2+v*T3) "d'N2 3)" ((T2+V"T4) ''''N24) '' ((T2+V" TS) 'd< N2 S) " ((T2+V"T6) ""'N26) ,', ((T2 +v " T7) ' '''' N27)'' 
((T3+V"T4) '''' N34)'' ((T3+V"TS) *"N3 S)" ((T3+v" T6) '''' N36)'' ((T3+V" T7) ''''N37) ' ' 
((T4+V" TS) ''''N4 5)" ((T4+V"T6) '''' N46) '' ((T4+V"T7) ''''N4 7) " ((TS +V" T6) '''''NS6) '' ((T5+V" T7) '''''NS 7) ,', ((T6 
+V" T7) *"N67)" ((T2+v"Tl) " " N21) " 
((T3+V"Tl) " " N31)" ((T4+V"T1) ''''N41)'' ((TS+V"Tl) "" NS1)" ((T6+V"Tl) ;';'N61) " ((T7 +V"Tl) " ':'N7l) " 
((T3+v"T2) ""'N32)" ((T4+V"T2) ''''N42) '' ((TS+V"T2) " *NS2) " ((T6+V"T2) '''' N62 ) ,', ((T7+V;'T2) '''' N72)'' 
((T4+V"T3)**N43)*((TS+V*T3)**NS3)*((T6+V*T3)"*N63)*((T7+V*T3) *"N73 )* 
((TS+V*T4)**NS4)*((T6+V*T4)"*N64)*((T7+V"T4) * *N74)* 
((T6+V*TS)**N6S)*((T7+V*T5)"*N7S) * ((T7+V*T6) **N76)); 
END; END; KEEP T6; 
* PROe PRINT DATA=DDRS; RUN; 
DATA DT7; MERGE DTI DDR DDRI DDR2 DDR3 DDR4 DQRS; V=1.23; QQ=l; 
DO T7=DA TO I-T1-T2-T3-T4-TS-T6-0.01 BY 0.01; 
PTH=(((V**2-1)**N) * (T1**N1) * (T2**N2)*(T3**N3)*(T4**N4) * (TS ** N5) * (T6 **N6) * (T7 **N7))/ 
(( (Tl+v"T2) ''''N12) '' ((Tl+V*T3) ''''N13)'' ((T1+v*T4) ''''' N14) '' ((T1+V" TS) ''''N1S) '' ((Tl+V"T6) """N16) " ((T 
l+v"T7) ''''N17)'' 
((T2+v"T3) ''''N23)'' ((T2+V*T4) ' ''' N24) ,, ( (T2+v"TS) ' '''N2 5) " ((T2+v;'T6) ""'N26) ;' ((T2+V"'T7) ""'N 2 7) " 
((T3+V"'T4) ' '''N34) ,, ( (T3+v*TS) ''''N35) * ( (T3+V"T6) '''' N36) ' ' ((T3+V"T7) '''' N37) ;' 
((T4+V"TS) ;d 'N45)" ((T4+V"T6) H N46) * ((T4+V"T7) ' '''N4 7) ,', ((TS+V" T6) "" 'NS6) ,', ((TS+V"'T7) '''' NS 7) " ((T6 
+V"T7) ""N67)" ((T2+v"T1) ''''N21) '' 
((T3+v*Tl) " "N31) " ((T4+V"T1) H N41) ,, ( (T5+V"Tl) " " NSl)" ((T6+V"Tl) "N6l)~' ((T7+V"Tl) idr N7l) " 
((T3+V*T2) ''''N32)'' ((T4+V"T2) H N42)" ((T5+V" T2) ;"' NS2)" ((T6+V"T2) "N62) " ((T7+V" T2) '''' N72) '' 
((T4+V"T3) " " N43)" ((T5+V"T3) ' '''NS3);' ((T6+V;'T3) ;d' N63) " ((T7+V"T3) " N73) " 
((TS+V" T4) ''''NS4)'' ((T6+V"T4) ;';'N64)" ((T7+v" T4) 'd N74)" 
((T6+V" TS) ,H' N65)" ((T7+V*TS) '';' N7S) '' ((T7+V"T6) ''''N76)) ; 
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DFT7=PTH ~' DA; AFT7=DFT7 ~d' (2/3) ; 
OUTPUT; END; ~' KEEP TZ T3 T4 TS T6 T7 V DFT7 AFT7 QQ; 
"'RUN; 
PROC MEANS DATA=DT7 MAX NOPRINT; VAR AFT7; OUTPUT OUT=DDM MAX=MDT7; 
DATA 001; SET DDM (KEEP=MDT7); QQ=l; 
DATA 002; MERGE 001 DT7; BY QQ; 
ZZ=MDT7 - AFT? ; 
IF ZZ=O ; MT7=T7; "'KE EP MT7 QQ; 
DATA DD3; MERGE DT7 DD2; BY QQ; 
YY=T?-MT7; FBB=DFT7** (1/3); 
DGM=YY*FBB; *KEEP DGM; 
~' PROC PRINT DATA-DD3' ~' RUN' 
PROC MEANS DATA=DD3 MIN NOPRINT; VAR DG M; OUTPUT OUT=BBN MIN=MINB ; 
PROC MEANS DATA=DD3 MAX NOPRINT; VAR DGM ; OUTPUT OUT=BBP MAX=MAXB; 
DATA DDR6; MERGE BBN BBP 002 DDR DDR1 DDRZ DDR3 DDR4 DDRS; 
DO UNTIL(0 <T7<1-T1-TZ-T3-T4-TS - T6); 
DO UNTIL(UUU <FRT7); 
R1=RANUNI (0) ; R2=RANUNI (0) ; 
UU=MDTlf' R1; W=MINB+(MAXB - MINB) ~' RZ; 
UUU=UU ~d' (3/Z); T7=VV/SQRT(UU)+MT7; 
FRT7=( ((V"d' 2-1) ~d' N) ~' (T1~d' N1)~' (T2 ~d' N2)" (T3~d' N3) ,', (T4~d<N4)~' (TS ~d' NS) ;' (T6 ;d' NG) ;' (T7 ";'N7)) / 
(( (T1+V"T2) 'd'N12) * ((T1+V*T3) ;d' N13)" ((T1+V" T4) 'd' N14) " ((T1+V;'TS) 'd' NIS ) ,', ((T1+V"TG) id< N1G);' ((T 
l+v;'T7) '''''Nl7)'' 
((T2+V"T3) 'd' N23) " ((T2+V"T4) 'd' NZ4) " ((T2+V"TS) '<1' N2 5) " ((T2+V" T6) "d'N2G) ,', ((T2+V" T7) ''''' N2 7) " 
((T3+V"T4) 'd'N34) * ((T3+V"T5) 'd'N3 5)" ((T3+V"TG) ''''N3G)'' ((T3+V"T7) 'd'N37);' 
((T4+V"T5) *" N4 5) * ( (T4+V*TG) 'd'N4G) ;' ((T4+V"T7) 'd' N4 7) ;' ((T5+V"T6) 'd' N56) " ((T5+V"T7) ;"' N5 7)" ((T6 
+V"T7) 'd' N67)" ((TZ+V;'TI) ;d' NZ1)" 
((T3+V"T1) HN31) " ((T4+V*T1) " "N41)" ((TS+V*T1) ;"'N51) ;' ((T6+V" T1) ""'N61) ,', ((T7+v"'T1) "" N71) " 
((T3+v;'TZ) 'd' N3Z) i, ((T4+V"TZ) *"N4Z)" ((TS+V"T2) 'd'N5Z ) "e (T6+v"TZ) ;d'N6Z ) i, ((T7+v"'T2) 'd' N7 Z) " 
((T4+v*T3) 'd'N43) * ((TS+V*T3) id'NS3) i, ((T6+V"T3) H N63) " ((T7+V"T3) H N73) i, 
((TS+V*T4)* *NS4) * ((T6+V*T4)**NG4)*((T7+V*T4) ** N74) * 
((T6+V"T5) ;d'N65)" ((T7+V" T5) 'd'N75) i, ((T7+V" T6) ;d' N76)) ; 
END; END; KEEP T7; 
* PROC PRINT DATA=DDR6; RUN; 
DATA DTB; MERGE DT1 DDR DDR1 DDR2 DDR3 DDR4 DDRS DDR6; QQ=I; 
DO V=I-O.OI TO 4-0.01 BY 0.01; 
PTH=(((V** 2-1)* *N) * (T1**N1) * (TZ ** NZ) * (T3 **N3)*(T4**N4 ) * (TS ** NS) * (T6**N6) *(T7 ** N7)) / 
(( (T1+V" T2) 'd'NI2)" ((T1+V"T3) ;"'N13)" ((T1+V"T4) ;d' NI4)" ((T1+v"T5 ) ':"'N15) ;' ((T1+v ;'T6) ;"' N16) ,', ((T 
l+V"T7) ""' NI7) " 
((T2+V*T 3)**N23)*((T2+V*T4)**N24)*((TZ+V*T5 )**N25)*((T2+V*T6)**N26) *((T2+V* T7)* * N27)* 
((T3+V;'T4) ""N34) * ((T3+V" T5) H N3 5) " ((T3+V"T6) 'd' N36);' ( (T3+V" T7) 'd' N3 7) ,', 
((T4+V;'T5) 1<i< N45) ;' ((T4+V" T6) 'd' N46) ;' ((T4+V"T7) '''' N4 7)" ((T5 +V" T6) 'd'NS6) ,', ((T 5+V;'T7) ;"" N5 7) " ((T6 
+V*T7) "*N67)" ((T2+V" T1) ""N21)" 
((T3+v" T1) *"N31)" ((T4+V;'T1) 'd' N41) * ((TS+V"T1) "" NS1);' ((T6+v"T1) "*N61)" e (T7+V"T1) ''''N71) '' 
((T3+V*T2) 'd'N32)" ((T4+V"T2) *"N42)" ((TS+V"T2) 'd'NS2)" ((T6+V" T2) '''' N6 2)'' ((T7+V" T2) '''' N7 2)'' 
((T4+V"T3) "d' N43)" ((TS+V*T3) "* N53) " ((T6+v"T3) ''''N63)'' ((T7+V;'T3) ''''N73)'' 
((T5+V"T4) ''''N54)'' ((T6+V" T4) 'd' N64) * ((T7+V" T4) 'd' N74) " 
((T6+V*TS) ** N6S) * ((T7+V*TS) ** N7S) * ((T7+V*T6) ** N7G)); 
DFTB=PTH"DA; AFTB=DFTB '''' (2/3); 
OUTPUT; END; " KEEP T1 T2 T3 T4 T5 T6 T7 V DFTB AFTB QQ; 
* RUN' , 
PROC'MEANS DATA=DTB MAX NOPRINT; VAR AFTB; OUTPUT OUT=DDM MAX=MDTB; 
DATA DD1; SET DDM (KEEP=MDTB); QQ=l; 
DATA DDZ; MERGE DOl DTB; BY QQ; 
ZZ=MDTB-AFTB; 
IF Zz=O; MTB=v; ;'KEE P MTB QQ; 
DATA DD3; MERGE DT8 002; BY QQ; 
YY=V-MT8; FBB=DFT8 'd, (1/3) ; 
DGM=YY*FB B; *KEEP DGM; 
" PROC PRINT DATA=DD3; "RUN; 
PROC MEANS DATA=DD3 MIN NOPRINT; VAR DGM; OUTPUT OUT=BBN MIN=MINB; 
PROC MEANS DATA=DD3 MAX NOPRINT; VAR DGM; OUTPUT OUT=BBP MAX=MAXB; 
DATA DDR7; MERGE BBN BBP DDZ DDR DDR1 DDRZ DDR3 DDR4 DDRS DDR6; 
DO UNTIL(1<V<4); 
DO UNTIL(UUU<FRT8); 
RI=RANUNI(O); R2=RANUNI(0); 
UU=MDTB"R1; W=MINB+(MAXB-MINB) ;' R2; 
UUU=UU '''' (3/2); V=W/SQRT( UU)+MTB; 
FRT8=(((V** 2 - 1)**N) * (T1**NI) * (T2** N2) * (T3** N3) *(T4 **N4) *(T S**NS ) *(T6** N6) * (T7 ** N7))/ 
(( (T1+V" TZ) *"N12);' ((T1+V"T3) 'd' N13) " ((T1+V"T4) ''''' N14) '' ((T1+V"TS) '''' N1S )'' ((Tl+V" T6) ";' N16)" ((T 
I+V" T7) ""Nl7) " 
((T2+v"T3) ;d' N23) * ((T2+V"T4) *" N24) " ((T2+v"T5) ' ''' NZ 5) " e (TZ+V" T6) i"' NZ 6)" ((TZ+V~'T7) '''' NZ 7) ~' 
((T3+v"T4) H N34) " ((T3+V~'TS) *" N35) ~' ((T3+V~'T6) ~'*N36)" ((T3+v" T7) 'd' N3 7);' 
((T4+V ~'T5) ''''N4S) * ((T4+V*T6) ~'* N46) ~' ((T4+V~'T7) H N4 7) " ((T5+V;'T6) H NS 6);' ((T5+v"T7) '''' NS 7)" ((T6 
+V"T7) ~d' N67) * ((T2+V" T1) 'd'N21)~' 
((T3+V;'TI) *"N31)" ((T4+V"T1) ~d' N41)~' ((TS+V" Tl) ~" ' N51)" ((T6+v"T1) "~'N61) " ((T7+Vi'Tl) ~"' N71) " 
((T3+V*T2) '''' N32) ',( (T4+V" T2) ""N42) " ((TS+V" T2) ~d'N52)" ((T6+V~' T2) ;d'N62) ~' ((T7+V;'T2) '''' N72)'' 
((T4+v"T3) ~d' N43) ~' ((TS+V"T3) "" NS3) ;' ((T6+V;'T3) "*N63)" ((T7+v"T3) 1<i< N7 3)~' 
((T5+V"T4) *;'N54) * ((T6+v;'T4) M' N64) ;' ((T7+V" T4) 'd'N74)" 
((T6+V*TS) ·" N6 5) · ((T7+V"TS) 'd'N7 S)~' ((T7+V"T6) 'd'N76)) ; 
END; END; KEEP V; " PROC PRINT DATA=DDR7; RUN; 
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