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This thesis addresses the Bayesian Analysis of three binary logistic regress ion models i.e. 

binary logistic regression model without intercept, with intercept and with two 

explanatory variables. One informative (Normal) and three noninformative pnors are 

assumed for the parameters of three models. All the analysis is carried out in SAS 

package. We have sel ec ted , the hyperparameters for informative prior on basis of expe rt 

opinion and use for further analysis. We have used the data set of Erythrocyte 

Sedimentation Rate (ESR) form Cengiz et al. (200 I) , that is binary in nature and coded 

[0 , 1] with two explana tory variables: Fibrinogen and Y-globulin that are blood plasma 

proteins. We have used the logistic link for log istic regression analys is. 

We proceed with Bayesian analysis foi' all the logistic regress ion models, the 

noninformative priors are derived, then based on posterior di stribution we have obtained 

the posterior modes, posterior means, posterior standard deviation and Karl Pearson 

Coefficient of Skewness to say about the shape of the distribution of parameters and the 

results are further compared with classical results. To check the significance of 

parameters we have developed programs in SAS package to fi nd posterior probabiliti es. 

the Bayesian approach to hypothescs testing has been carried out. The comparison of 

Bayesian and Classical results is also presented. We have also sugges ted the appropri ate 

model. Proposed SAS package plays major role for completion of this dissertation. 
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Chapter 1 

1.1 Inh'oduction to Statistics 

Statistics is the science of making effective use of numerical data relating to groups 

of individuals or experiments . It dea ls with all aspects of this, including not only the 

co llection , analysis and interpre tation of such data, but also the planning of the collection of 

data, in terms of the design of surveys and experiments . 

There are two main philosophical approaches to statistics . The first is often referred as the 

Frequentist or classical approach. Procedures are developed by looking at how they perform 

over all possible random samples . The probabi'lities don't relate to the particular random 

sample that was obtained . In many vlays this indirect method places the "cart before the 

horse". The alternative approach is Bayesian approach. 

Bayesian statistics l S a sys tem for describing ep istemologica l uncertainty Ll sln g the 

mathematica l language of probability. In the 'Bayesian paradigm,' degrees of belief in states 

of nature are specified; t11 ese are non-nega tive, and the total belief in all states of nature is 

fixed to be one. Bayesian statisti cal methods start with existing 'prior' beliefs, and update 

these using clata to give 'posterio r' beli efs, which may be used as the bas is for inferential 

decisions. Bayesian methods are gaining popularity in main areas such as medical, 

marketing, cost effectiveness of i11ed icines, terrestrial carbon dynamics, auditing, 

radiocarbon elating, setting water quality s tandards, food production, food technology , 

clinical trials and other fields where prediction and decision-making must fo llow for 

stat istical analysis . 



1.2 Objectives 

The main objectives of our study are: 

• Bayesian analysis of binary logistic regression model 

• Bayesian analysis of binary logistic regression model without intercept 

• Bayesian analysis of binary logistic regression model with intercept 

• Bayesian analysis of binary logistic regression model with two explanatory variables 

• To compute the posterior estimates for the different model with different priors 

• Testing the hypotheses related to the parameters through Bayesian approach 

• Comparison of Bayesian and Frequentist results 

To achieve the objectives we went through different stages of research, its exp lanation IS 

presented here : 

Chapter 2 is basically concerned wilh the basic elements of Bayes ian sta ti stics which 

are cons idered to be the foundation of Bayesian analysis. The introduction of Bayesian 

teclmique and the idea of Bayesian econometrics are given along with the different kinds of 

prior distributions for the unlmown parameters. The informative prior (Normal) , 

noninformative priors i.e. Jeffreys prior, Haldane prior and uniform prior are exp lai ned. We 

have also discussed about likelihood function formulation and posterior distribution that is 

based on prior distribution and likelihood function. Bayesian hypotheses testing its 

similarities with the Frequentists testing and its advantages are presented. Advantages and 

disadvantages of Bayesian statistics are also presented. 
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Chapter 3 provides the explanation about Bayesian analysis for logistic regression 

model, the formulation of posterior distribution of parameters for these types of model. The 

concept of odds ratio is explained. Detailed review of the existing literature on the Bayesian 

logi,stic regression inferences is presented. Few of them are Croweder & Sweeting (1989), 

Zellner (1983), Munkin & Trivedi (2008), Poirier (1994), Choi et aI., (2008), Tektas & 

Gunay (2008), Roman & Richard (2009), Frank Rijman (2008) and Bermudez et. aI., (2007), 

In chapter 4, we present the Bayesian analysis, of logistic regression model without 

intercept under informative and noninformative priors. Data sets that we have used through 

out our study are presented in Table 4.1 with one explanatory variable . The derivation and 

introduction of noninformative priors are given and the complete steps for derivation of 

posterior distribution and the differentiation of posterior distribution for posterior modes are 

also given. Then for informative prior the range of hyperparameters is given and selected the 

appropriate. The idea of selecting hyperparameters are taken from Bian (1997), they assume 

the mean as zero for prior and check the posterior at different values of variance, as it is not 

a good practice to assume mean for prior as zero when selecting Normal as prior so , we have 

selected different values for both parameters mean and variance to check the posterior and 

select the appropriate values for hyperparameters. The posterior results and testing for the 

significance of these parameters are also presented. At the end, the classical results are 

compared with Bayesian estimates. 

In chapter 5, we present the Bayesian analysis of logistic regression model with 

intercept under informative anel noninformative priors using data se ts given in chapter 4, 

Table 4.1. The complete process for finding posterior distribution with informative and 
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noninformative priors is given. Along with the differentiation of these joint posteriors for 

posterior modes is also derived. Then for the informative priors the range of values of 

hyperparameters is given and se lected the hyperpararileters with minimum standard error. 

The hypotheses testing for the signifi cance of the parameters is also done. Classical res ults 

and their comparison with Bayesian results are also given. 

In chapter 6, we present the Bayesian analysis of logistic regression model with two 

explanatory variables under informative anc! noninforrnative priors using the data se t gi ven 

in Table 6.1. The complete process to find the posterior distribution for informati ve and 

noninformative priors along with the differentiation of these joint posterior for posterior 

modes is also presented. The range of hyperparameters is also given and selected the 

hyperparameters with minimurn standard error. Then we present the hypothesi s testing for 

the significance of parameters. The classical estimates and their comparison with Bayesian 

estimates are also provided. 

In chapter 7, we have interpreted the results obtained by analysis in the prevIous 

chapters and the direction for further research is suggested. The programs executed for 

different calculations are given in Appendix. Books and numerous journals consulted during 

the research are listed in references. 
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Chapter 2 

2. 1 Introduction 

This chapter is basicall y concerned with the basic terminologies of Bayes ian 

Statistics which are considered to be the foundation of Bayesian analysis and we will also 

di scuss the use of Bayesian techniques in Econometrics . 

Section 2: Bayesian statistics is bri efl y discussed, Section 3: why we study Bayesian 

stati stics. Section 4: describes the prior di stribution such as Noninfo rmati ve prior and 

Informative prior. Section 5: we discuss about the likelihood function. Section 6: Poste ri or 

di stribution is defined. Sections 7, 8 & 9: Bayesian hypothesis testing, its similariti es with 

the Frequentist testing and its advantages are also presented. Secti on 11 : In this section we 

described the Advantages and Disadvantages of Bayesian Stati sti cs and in Secti on 12: the 

diffe rence between Frequentist and Bayesian Stati sti cal Methods is given. 

2.2 The Bayesian Statistics 

Science inquiry is an iterative process of integrating accumulating information. 

Investigators assess the curren t state of knowledge regarding the issue of interes t, gather 

new data to address remaining questi ons, and then update and refi ne their understanding to 

incorporate both new and old data. Bayesian inference prov ides a logical, quantitati ve 

framework for thi s process. It has been app li ed in a multitude of sc ienti fi c, technological, 

and policy settings . 

"Bayesian" refers to the Reverend Thomas Bayes. The deve lopment of probabili ty theory in 

the early 18th century arose to answer questions in gambling, and to underpin the new and 

re lated ideas of insurance. A problem arose, kn own as the question of inverse probability : 

the mathematicians of the time knew how to fi nd the probability that, say, 4 people aged 50 
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die in a given year out of a sample of 60 if the probability of anyone of thern dying was 

known. But they did not know how to find the probability of one 50-year old dying based on 

the observation that 4 had died out of 60. The answer was found by Thomas Bayes, and was 

published in 1763 (the year after his death). Like many educated men of hi s time , Bayes was 

both a clergyman and an amateur scientist/mathematician. His solution, known as Bayes 

theorem, underlies, and gave its name as, the modern Bayesian approach to the analysis of 

all kinds of c1ata. 

What we know as Bayesian statistics has 110t had a clear nm since 1763 . Although Bayes 

method was enthll3iastically taken up by Laplace and other leading probabilists of the days , 

I 

it fell into di srepute in the 19th century because they did not yet know how to handl e prior 

probabilities properly. The first half of the 20th century saw the development of a 

completely different theory, now called Frequentist statistics. But the name of Bayesian 

thinking was kept alive by a few thinkers such as Bruno cle Finetti in Italy and Harold 

Jeffreys in England. The modern Bayesian movement began in the second half of the 20 th 

century, spearheaded by Jimmy Savage in USA and Delmis Lindley in England, but 

Bayesian inference remained extremely difficult to implement until the late 1980s and early 

1990s when powerful computers became widely accessible and new computational methods 

were developed. The subsequent explosion of interest 111 Bayesian statistics has led not only 

to extensive research in Bayesian methodology but also to the use of Bayesian methods to 

address pressing questions in diverse application areas such as astrophysics, weather 

forecasting, health care policy, and criminal justice. 

Bayesian inference is an approach to a statistics in which all forms of uncertainty arc 

ex.pressed in terms of probability . 
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A Bayes ian approach to problem starts with, the formulation of a model that we hope is 

adequate to describe the situation of interes t. We then formulated a prior di stribution ove r 

the unknown parameters of th e model, which is meant to capture our beli efs about the 

siLuation before seeing the data , After observing some data, we apply Bayes Rule to obtain a 

Pos terior di stribution for these unknowns, which take account of both the pri or and the data, 

From this pos terior di stribution we can compute predictive distributions fo r future 

observations, 

This theoretically simpl e process can be justified as the proper approach to uncertain 

inference by various arguments involving consistency with clear principles of rat ionality, 

Despite thi s, many people are uncomfortabl e with the Bayes ian approach, often because 

they view the selection of a prior as being arbitrary and subj ective. It is indeed subj ective, 

but for this very reason it is not arbitrary. There is (in theory) prior beli efs. In contrast, other 

stati stical methods are trul y arb itrary, in that there are lisll all y many methods that are equall y 

good according to non-Bayes ian crit eri a of goodness, with no principled way of choos in g 

between them. 

2.3 Why we study Bayes ian? 

There are certain reasons for which Bayes ian approach is considered to be the better 

approach then the Classica l approach . 

• Bayesian statistics is p referred over Class ica l (Frequentis t) Stati stics because iL is 

very useful in the situations where uncertainty is unavoidable. 

• Param eter estimates along with confi dence intervals or highest density region 

are calculated directly from the posterior distribution. 
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• Bayesian statistics is used for the pred iction of future observations , which can be 

easily determine on the conditional probab ility distribution of the next 

observations given the san--lple data. 

• Inference problems concerning parameter can easily be dealt with using Bayesian 

analysis . 

2.4 Bayesian Econometrics 

Bayesian econometrics is a branch of econometrics which applies Bayesian 

principles to economic modeling. The Bayesian principle is based on Bayes Theorem which 

states that the probability of "B" conditional on "A" is the ratio of joint probability of "A" 

and "B" divided by probability of "B". Bayesian econometricians assllme that coefficients in 

the model have prior distributions. This approach was first propagated by Arnold Zellner 

(1983). I-Ie is Imown for hi s pioneering work in the field of Bayesian analysis and 

econometric modeling. In Bayesian analysi s, he not only provided many applications of it 

but also a new information theoretic derivation of Bayes' theorem and generalizations of it 

that is 100% efficient information processing rules. As regards econometric modeling, he, in 

association with Franz Palm, developed the strllctural econometric, time seri es analysis 

approach for constructing new models and for checking the adequacy of old models that has 

been widely applied. In addition, he has been involved in many important applied 

econometric and statistical studies. 

2.5 Prior Distr'ibutions 

Scientific hypothesis typically are expressed through probability di stributions for 

observable scientific data . These probability distributions depend on unlmO\\in quantities 

called parameters. In the Bayesian paradigm, current lmowled ge about the model parameters 

is expressed by placing a probability distribution on the parameters , called the " prior 

di stribution" . Often written as p(j3). 
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Also a "prior distribution" is a mal~ginal probability, interpreted as a description of what 

is known about a variable in the absence of some evidence. 

In Bayesian statistica l inference, a prior probability distribution, often s imply the prior, 

of an uncertain quantity p (i.e. suppose that p is the proportion of voters who will vote for 

the politician named Smith in a future election) is the probability distribution that wou ld 

express one's uncertainty about p before the "data" (e.g., an opinion poll) are taken into 

account. It is meant to attribute uncertainty rather than randomness to the uncertain quantity . 

There are two types of priors : informative and Noninformative (or "reference"). Box and 

Tiao (1973) defined a Noninformative prior as one that provides little information re lative to 

the experiment in this case the stock assessment clata. Informative prior di stributions, on the 

other hand, summarize the evidence about the parameters concerned from many sources and 

often have a considerable impact on the results. 

2.S.1 Choice of Prior Distributions 

A prior may be declared as an Achilles heel of Bayesian statistics, where the 

parameters are assumed random . The priors carry ce rtain pnor information about the 

unknown parameter(s) that is coherently incorporated into the inference vIa the Bayes 

theorem. Choice of the pnor distribution depends upon the nature and the range of the 

parameter(s) being studied through the Bayesian analysis. If it varies from zero to one, we 

usually use Beta (Dirichlet) prior; for the ran ge from zero to infinity , we se lect gamma prior, 

for minus infinity to infinity we usually use normal prior, etc. In the prior distribution , we 

quantify the uncertainty about the unknown parameter(s) in the form of a probability 

distribu tion, usually denoted by pep), and call it the prior distribution . In the Bayesian 

statistical inference, a prior probability distribution of an uncertain quantity p is the 
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probability distribution that would express one's uncertainty about fl., before the data set or 

ev idence is taken into account. Since, the spec ificat ion of prior is purely a subjec ti ve 

assessment of an expert; it makes the entire inference subj ective in nature, w hich is the 

fundamental objection of rabid frequenti sts to the Bayes ian approach. Being subjective cloes 

not mean being non-scientific, as critics of Bayes ian statistic often insinuate. On the 

contrary, vast amount of scientifi c information coming from theoretical and physica l mode ls 

is guiding in the specification of priors . Lind ley's (2004) view is that 'objectiv ity is merely 

subjectivity when nearly everyone agrees '. Such information is tllen merged ·with the data 

sets for better inference. 

2.5.2 Noninformative Priors 

Sometimes, it happens that the pri or elicitation becomes difficu lt , or a li ttle prIor 

information is available, then it is conventional to choose priors which may re fl ect littl e 

prior information . Such priors are termed as the noninforrnative priors, indifferent, ignorant, 

and vague or reference priors. Berger (1985) argues that Bayesian analysis, using 

noninformative priors, is the single most powerful method of stati s ti cal analys is in the sense 

of being the ad hoc method most likely to y ield a sensible answer. The topic has an 

extens ive literature, e.g., Jeffreys (1946, 1961), Bernardo (1979), Ghosh and Mukeljee 

(1992) , Kass & Wasserman (1996) and Tibshirani (1989), propose the Bayesian analysis of 

unknown parameters using one of the mos t widely used noninformative priors , that is, a 

uniform (possibly improper) prior that routinely used by Laplace (181 2). 

Some attempts have been made at finding probabi lity distributions in some sense, logically 

required by the nature of one's state of uncerta inty; these are a subj ect of philosophica l 

controversy. For example, (Jaynes 1968 ) has published an argument based on Lie grollps 
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that suggests that the prior for the proporti on p of voters voting for a candidates, given no 

other information, should be the Haldane prior p -' (1 - prj . If one is so uncertain about the 

value of the aforementioned proportion p that one knows only that at leas t one voter will 

vote for Smith and at least one will not, then the conditional probability di stribution of p 

given this information alone is the uniform distribution on the interval [0 , 1], which is 

obtained by applying Bayes theorem to the c1 ata set consisting of one vote for Smith and one 

vote against, using the above prior. The Haldane prior has been criticized on' the grounds 

that it yields an improper posterior di stribution that puts 100% of the probability content at 

either p = 0 or at p = 1 if a finite sample of voters all favor the same candidate, even 

though mathematically the posterior probability is simply not defined and thus we cannot 

even speak of a probability content. 

A related idea, reference prior, was introduced by Bernardo (1979). Here, the idea is to 

maximize the expected Kullback-Leibler divergence of the posterior distribution relative to 

the prior. This maximizes the expected posterior information about X when the prior density 

is p(x) . The reference prior is defined in the asymptotic limit, i.e., one considers th e limit of 

the priors so obtained as the number of data points goes to infinity . Reference priors are 

often the objective prior of choice in multivariate problems, since other rules (e .g., Jeffreys 

rule) may result in priors with problematic behavior. 

The Jeffreys rule attempts to solve this problem by computing a prior which expresses the 

same belief no matter which metric is used. The Jeffreys prior for an unknown pi'oportion 

, I 

P is p 2 (1- p) 2 , which differs from Jayne's recommendation. 
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Practical problems associated with Noninformative priors include the requireinent that the 

posterior distribution be proper. The usual Noninformative priors on continuous, unbounded 

variah les are improper. This need be a prob lem if the posterio r distribution is proper. 

Another issue of importance is that if a Noninformative prior is to be used rou tinely, I. e. , 

with many different data sets, it should have good Frequentist properties. 

2.5.3 Informativ e Priot·s 

An informative prior expresses specific, definite information about a variable. 

An example is a prior distribution for the temperature at noon tomorrow. A reasonab le 

approach is to make the prior a normal distribution with expected value equal to today ' s 

noontime temperature, with variance equal to the day-to-day variance of atmospheric 

temperature. 

This example has a property in common with many priors, namely, that the posterior fro m 

one problem (today's temperature) becomes the prior for another problem (tomorrow ' s 

temperature); pre-existing ev idence wh ich has already been taken into account is part of the 

prior and as more ev idence accu mul ates the prior is determined large ly by the ev idence 

rather than any original assumption, provided that the original assumption admitted the 

possibility of what the evidence is suggesting. The terms "prior" and "posterior" are 

generally relative to a specific datum or observation. 

The foll owing two secti ons outline the two teclmiques used most freq uentl y to deve lop 

informative prior distributions and the final section provides some advice on default choices 

for priors when applying typical methods of fisheries stock assessment. 

12 



(i) Expert Opinion 

Tn principle, one of the most powerflll methods for developing info rmati ve' priors is to 

synthesize the information from a group of experts. For exampl e, international Wha li ng 

Commission (1995) developed priors for the assessment of the Bering-Chukchi-Beaufort 

seas stock of bowhead whales by consensus. AlLhough the deve lopment of pri ors by 

consensus ri sks all the problems related to the impac t of the subj ec tive bi ases of various 

parties in the assessment process (arguably priors developed using expeli opinion are 

examples of "dreamt up" priors, to use an expression we used in the previous section) , thi s 

approach can be successful. The members of the assessment group were provided with the 

va lues for o ther biological parameters (gro\\rth, natural mortality, etc. ) for the entire 

assessment group tended to be more pessimistic than those suggested by the industry 

members ; this was nevertheless generally regarded as a successful attempt at spec ify ing a 

Pl'lor. 

A potenti ally major problem with the deve lopment of priors by consensus IS that 

different "experts" will suggest different priors. It is far from a trivial exercise (theoretically) 

to pool such priors to form a "consensus prior" (and it is impossible to include more th an 

one prior for each parameter in a Bayes ian assessfn ent) . Unfortunately, relatively li tt le work 

has been directed recently at this problem. We recommend that the various priors be 

mUltiplied together and than normalized because at least this procedure has the desirable 

property that the assessment results are independent of whether the priors are pooled and 

than the assessment conducted or whether assess ments conducted using each alte rn ative 

prior in turn and the resu lts then pooled. One very undesirab le feature of this approach to 

poo ling, however, is that if one expert believes that some parameter value/model has zero 
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probability, the posterior IS forced to be consistent with thi s op11110n. Therefore, if thi s 

approach is to be used, our earlier adv ice that no plausible value for a parameter should be 

ass igned zero probability should be fo llowed. 

(ii) Data SummaricsIMcta-Analysis 

If the parameters of the stock assessment model are chosen to be independent of the 

parameter that scales the population, data for other species and stocks can be used to 

construct priors for the speci es for which an assessment is needed. This approach to 

conducting priors is known as meta-ana lysis. Methods for constructing priors using data for 

other stocks and species range from simply tabulating the estimates to hierarchical meta­

analysis. Simple tabulation methods can be extended by fitting a smooth functional form to 

the data and by weighting each estimate by a measure of its uncertainty and comparability to 

the stock and species for which an assessment is required. Hierarchical meta-analysis is a 

rnore formal method for developing a prior for a parameter from val ues for that parameter 

for other stocks under the assumption that the stocks differ in that parameter. 

"Selection bias" is a potential problem v"hen developing a prior using data for similar stocks 

and species. Assessments in the literature tend to be for large productive populations (small , 

less productive populations in general receiving less research funding) . If the stocks 

considered are not representative of all s imi lar stocks, an inappropriate prior may be 

selected. 

2.6 Likelihood Function 

Maximum-likelihood estimati on was recommended, analyzed and vast ly popularized 

by R. A. Fisher between 191 2 and 1922 (although it had been used earlier F. Y. Edge 

worth). Reviews of the development of maximum likelihood have been provided by a 
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number of authors. Maximum likelihood es timation (MLE) is a popular stati stical method 

llsed for fitting a statistical model to data, and providing es timates for the model' s 

parameters. The method of maXln1Um like lihood co rresponds too many well-known 

es timation methods in stntistics . For example, suppose you are interested in the heights of 

ad1.1lt female giraffes. You have a sample of some number of adult female giraffes , but not 

the entire population, and recorcl their heights. Further, if we are wi lling to assume lhal 

heights are normally distributed with some unknown mean and variance. The sample mean 

is then the maximum likelihood estimator of the population mean, and the sample variance 

is a close approximation to the maximum li kelihood es timator of the population vari ance. 

For a fixed set of data and underlying probability model, maximum likelihood pi cks the 

values of the model parameters that make the clata "more I ikely" than any other val ues of the 

parameters would make them. Ivfaximum likelihood estimation gives a unique and easy way 

to find a solution in the case of the normal distribution and many other problems, although 

in very complex problems this may not be the cast . If a uniform prior di stribution is 

assumed over the parameters, the maximum likelihood estimate coincides with the most 

probable values. 

Suppose there is a sample XI, X2 , ... , X II of n i.i.d observations, coming from an unknovm 

di stribution fn (-). It is however known that the function /0 belongs LO a certain fam il y of 

distributions {f Cle), e € El}, ca ll ed the parametric mode l, so that}o =fCleo). The va lue (-)0 is 

unlmown and is referred to as the "true value" of the parameter. It is desirable to find some fJ 

(the estimator) which would be as close to the true value eo as possible. Both the observed 

variables Xi and the parameter e can be vectors . The variables Xi may be non-iid , in which 

case the formula below for joint density wi ll not separate into individual terms; however the 
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general principles would still app ly. To use the method of max imum likelihood, one first 

specifies the joint density function for all observa ti ons. for iid sample thi s j o int dens ity 

function will be 

(2. J) 

In basic statistics and in many other problems, we may extend the domain of the density 

function so that the density is also a function of the parameter 8. Then, for a given sample of 

data with observed values X I, X2 , ... , XII, the extended density can be considered a function of 

the parameter e. This extended density is the likelihood fl.ll1ction of the parameter: 

n 

£( fJ I ~rl, . .. , :r:n.) f(Tl ) :T2) .. . ) :1:n I fJ) = IT f( :ti IB). 
·i=l (2 .2) 

However, in general, the likelihood function is not a probability density. In fact, it need not 

be an additive function, so it is not a probability measure. In practice it is often more 

convenient to work with the logarithm of the likelihood function , In L, called the log-

likelihood, or its scaled version, called the average log-likelihood: 

n 
" 1 
I) 1 " .(: = - nL. 

1"1, 
(2.3) 

In £ ( e 1 :1: 1, . . . ,a;n) = ~ In j ( ~Gi 1 fJ) ) 
'i= l 

The hat over -e indicates that it is akin to some estimator. Indeed, iestimates the expected 

log-likelihood of a single observation in the model. The method of maximum likelihood 

estimates eo by finding a value of e that maximizest(fJ'I:r), This method of estimation is a 

maximum likelihood estimator (MLE) of eo: 

- -t9rnle = a,rg ]na.x ,f'.' (t91 ::/;1, ... , :."C1J ' 
fJ t;: 8 (2.4 ) 
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A MLE estimate is the same regardless of whether we maximize the likelihood or the log-

like lihood function. 

2.7 Posterior Distribution 

The notion of a posterior distribution comes from Bayesian stati st ics. Under the 

Bayesian approaches, prior beliefs abontparameters are combined with sample informa tion 

to create updated or posterior beliefs about the parameters. In the case of empiri cal Bayes 

est imators, the prior information comes from the sample data as well. 

The posterior information is proportional to the product of the prior in fo rmation and the 

sample information. 

The posterior probability of a random event or an uncertain proposition is the concl itional 

probability that is assigned after the relevant ev idence is taken into acco unt. T he posterior 

probability distribution of one random variable given [he value of another can be calcul ated 

with Bayes theorem by mUltip lying the prior probabi lity di stributi on by the like lihood 

function, and then dividing by the normalizing constant, as fo llows: 

(fJ / X) = L(X / fJ)P(fJ) 
P f L( X / fJ)P(fJ)d fJ ' 

(2.5) 

Oi yes the posterior probability density function for a random variable fJ ( para~11eter) gi yen 

the data X = x, 

Where 

P(fJ) is the prior density of fJ 

L(X / fJ) is the' likelihood function as a function of x 
~ ;1 
~ 

f L(X/ fJ)P(fJ)dfJ is the normali zing constant, and 
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p(fJ / X) is the posteri or density of fJ given the data X ::: x . 

2.8 Bayesian Hypothesis Testing 

A statistica l hypothesis test is a m e thod of m aking sta ti s tical decis ions using 

experimental data. In stati stics, a result is ca lled stati stically significant if it is unlikely to 

have occurred by chance. Hypothesis testing is sometimes called confirmatory data ana lys is, 

in contrast to exploratory data analysis. In frequency probability, these deci sions are almos t 

always made using null-hypothes is tes ts (i. e. , tests that answer the question Assuming that 

the null hypothesis is true, what is the probability of observing a value for the test stutistic 

that is at least as extreme as the value that was actually observed?). One use of hypothesis 

testing is deciding whether experimental results contain enough informa tion to cast doubt on 

conventional wisdom. Bayesian hypothesis testing is less formal than .non-Bayesian 

varieties. In fact, Bayesian researchers typ ically summari ze the posterior· di stribution 

without applying the rigid decision process . Since social scientists don ' t actually make 

important decisions based on their findings, posterior summaries are more than adequate. If 

one wanted to apply a formal process, Bayesian decision theory is the way to go because it 

is possible to get a probability di stribution over the parameter space and one can make the 

expected utility calculati ons based on the costs and benefits of diffe rent outcomes. Since in 

Bayesian analysis, the task of deciding between Ho and HI is conceptually more 

straightforward . One merely calcul ates the posterior probabilities ao ::: r (8 0 I x) and 

al ::: P (G I Ix) and decides betv·/een H 0 and HI accord i ngly. The conceptual advantages are 

th at ao and a l are actual (subjective) probabilities of the hypothesis in light of the data ane! 

pnor opll1lOns. 
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2.9 Similarities between Bayesian and Frcquentist Hypothesis Testing 

(i) Maximum likelihood estimates of parameter means and standard errors and 

Bayesian estimates with fl al priors are equ ivalent. 

(ii) Asymptoticall y, the data will overwhelm the cho ice of prior, so if we had infinite 

clata sets, priors would be irrelevant and Bayesian and Frequentis l resullS wo ul d 

converge. 

(iii) Frequentist one-tailed tests are basically eqtlivalent to what a Bayesian wou ld get 

using credible intervals. 

The most important pragmatic difference between Bayesian and Frequentisl hypothes is 

testing is that Bayesian methods are poorly suited for two-tailed tests. Because the 

probability of zero in continuous distribution is zero. The best so lution proposed so far is 

to calculate the probability that, say a regression coefficient is in some range near zero , 

e.g. two sided p-value = pr(-e<B<e) . 

However, the choice of 'e' seems very aclhoc unless there is some deci sion theo retic 

basis. The other important difference is more philosophical. Frequentist p-values vio late 

the likelihood principle. 

2.1 0 Advantages of Bayesian Testing 

(i) A defaults formula exists for all situations: 

[ 

f ff(x ;B)fCx'; B)fCx'"; Bo)dX'dB](- ll 
PI' (Ho I data) = 1 -I- -"-"---::----------

f f(x;Bo)f(x'; B)dB 
(2.6) 

Where x· is independent (unobserved) data of the smallest size such that the above 

integral ex ists? 
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(ii) Posterior probabilities allow for incorporation of personal Op1l110n, if desired . 

Indeed, if the published default posterior probability of H o is p' , and the prior 

probability of I-fo is Po' then the posterior pro bability of I-fo is: 

[ J ]
( - 1) 

pr(H. Idala)~ 1+[;' -I (;. -I) (2.7) 

Example: In binomial say p' = 0.52. 

A "skeptic "has Po = O. I; hence pr(Ho I data) = 0.11. 

A "believer" has Po = 0.9; hence pr(Ho I data) = 0.91 . 

(iii) Posterior probabilities are not affe~ted by the reason for stopping 

experimentation, and hence do not require rigid experimental des igns (as do classical 

testing measures). 

(iv) Posterior probabilities can be used fo r mUltiple models or hypothes is . 

2.11 Advantages and Disadvantages of Bayesian S tatistics. 

Here we will first considered the advantages of Bayesian stati s ti cs due to which 

the branch of statistics has a valuable respect among the class of stati stician known as 

Bayesian statistician . Following are the advantages of Bayesian stat istics. 

(i) Exact inferences (e .g., confidence interval) which do not rely on large sampl e 

approximations, are available through Bayesian approach. 

(ii) Bayesian answers have simple interpretation: " let 95% Bayesian interval for () IS 

(0.25, 0.87)" mean " lhere is probability 0.95 that () is between 0.25 and 0.87". 

Interpretation of Frequentist interva l is hard , and most use rs tend to fa lse ly 

interpret them as in the above. 
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(iii) Interpretation of Bayesian interval depends on the data at hand , but not so for 

Frequentist interval s. This can cause logical (or coherency) problems. 

(iv) Elimination of nui sance parameters is conceptually straightforward, and is also 

easy due to advances in Bayesian computing. This convenience is a result of 

Bayesian analysis being a logically s imple and easy approach. 

(v) Stopping rules are irre levant in Bayesian analysis. This makes Bayesian ana lys is 

much easier to use in areas such as clinical trials. In clinical trails, experimenters 

would like to analyze the c1ata frequently, and make decision without having to 

adhere to a pre-specified design protocol. Bayesian analys is allows this. But, 

such f1exibility is very difficult to achieve ll sing Frequenlist methods . 

(vi) Bayesian approach allows f1exibility of models . Highly complex models (with 

many structures) can be fitted. This is making the Bayesian approach more 

appealing in many areas. 

(vii) Bayesian learning methods interpo late a ll the way to pure engineerIng. When 

faced with any learning problem, there is a choice of how much time and effort a 

human vs . a computer puts in. (For example, the mars rover path finding 

algorithms are almost entirely engineered.) When creating an engineered sys tem, 

you build a model of the world and then find a good controller in that model. 

Bayesian methods interpolate to thi s extreme because the Bayesian prior can be a 

delta function on one model of the world. What this m eans is that a recipe of 

"think harder" (about specifying a prior over world models) and "compute 

harder" (to calculate a posterior) will eventually succeed. Many other machine 

learning approaches don't have this guarantee. 
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(viii) Bayesian and near-Bayes ian methods have an associated language fo r spec ify ing 

priors and posteriors. This is significantly helpful when working on the "think 

harder" part of a so lutio n. 

(ix) Bayesian learning involves specify ing a pn or and integration, two acti viti es 

which seem to be universally useful. 

Now we consider the disadvantages of Bayes ian approach that remain a v ital cause for not 

being used extensively. 

(i) It requires us to specify a prior di stribution for all parameters. When there is 

concrete prior knowledge about the pararneters, it can be done, and should be 

done. But, in many cases, prior knowledge is either vague, or non-ex istent, and 

that makes it very difficult to specify a unique prior di stribution . Different 

opinion, may sugges t different priors,' and arrive at different answers. Question of 

"objectivity is concern here. 

• In practice, resea rcher often overcome thi s by using certain non-info rmati ve 

or default priors. These are priors th at are easy to specify and hold littl e or no 

prior information about the parameters. 

• When there is suffi cient data (large sampl e), prior do not affect the ansvver 

(likelihood will dominate), and so the answer w ill be the same, regardl ess of 

what prior is used . 

• "Reality" is there an objective answer? 

• Scientist often d isagrees on the conclusion and interpretati on of results that 

are different due to the di ffe rent prior info rmation used. 
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(ii) Bayesian methods typically involve high-dimensional integrals. If the stati stica l 

problem invo lves fO Llr parameters (e.g., comparing two normal means), then the 

inference invo lve 4-d imensiona l integration. No longer a serious concern after 

the advent of Markov Chain Monte Carlo (MCMC) methods. However, MCMC 

can be time consuming in compl ex problems. But, often it is worth the effort , as 

Bayesian methods all ows fittin g complex models \", ili1ou l reso rting to large 

sample approximation. 

(iii) It turns out that specifying a prior is ex tremely difficult. Roughly speaking, we 

must specify a real number for every setting of the wo rld model parameters. 

Many peopl e well-versed in Bayesian learnin g don't noti ce thi s diffi culty for two 

reasons: 

• They know languages allowing more compact specificat ion of pllors. 

Acquiring this knowledge takes some significalit effort. 

• They li e. They don'1 specify their actua l prior, but rather one which IS 

convenient. (This shouldn't be taken too badly, because it often works.) 

(iv) Let's suppose I could accurately spec ify a prior over every air JT~olecule In a 

room. Even then, computing a posterior may be extremely difficult. Thi s 

difficulty impli es that computational approx imation is required. 

(v) The " think harder" part of the Bayesian research program is (in some sense) a 

"Bayesian employment" act. It guarantees that as long as new learning problems 

exist, there will be a need for Bayesian engineers to solve them . 
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Chapter" 3 

Bayesian L ogistic Regression & Litcl'ature Rcvicw 

3,1 Introduction 

In this chapter we will di scuss ori efiy the Bayesian logis tic regress ion analys is, 

their detail results will be presented in nex t chapters. We will di scll ss the basic technique 

for analyzing binary logist ic regression model with Bayesian approach in section 2. In 

section 3 the literature review is given. 

3.2 Logistic Regression 

Logistic regress ion is used by practitioners and researchers in many' fie lds, but is 

undoubtedly used most frequently in medical and biomedical applications .. Maximum 

li ke lihood is generally the estimation method of choi ce. A check of the Science Citat ion 

Index reveals that 2770 papers were published in 1999 in which " logistic regress ion" 

appeared in either the title or among the key words (king & Ryan 2002). Since in many 

fi eld s of application, dichotomous qualitative models have been studied using non-Bayesian 

techniques. For example: Amem iya (1981), Hallsman and McFadden ( 1984) al)d McFadden 

(1981). However, recently there has been great interes t. in Bayes ian ana lys is of d icho tomous 

and polychotomous response models . This can be seen in McCulloch et. a l. (1999) , Albert & 

Chib (1 993), Koop & Poirier (1993), Stukel (1998), Basu & Mukhopadhayay (2000) and 

Bazan et. a1. (2006). 

3.2.1 Logistic Regression Model 

The logistic regression model is perhaps the most widely used among researchers 

whose goal is to model binary dependent variables. The first type of discrete variab le 

addressed is probably the most common: a binary or dichotomous dependent vari ab le . It is 
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unwise to use Ordinary Least Square (OLS) when confronted with a binary dependent 

variable. So the alternati ve regress ion models are imp lemented to handl e thi s di f fi cu lty. 

Lo gistic regression is a form of statistical modeling that is often appropriate fo r catego ri ca l 

outcome variables . It describes the re la ti onship between a categori cal response vari abl e and 

a set of explanatory variables. The response variable is usually Dichotomous, but it may be 

polychotomous, that is, have more than two response leve ls. These multiple- leve l response 

vari ables can be nominally or ordinally scaled. Here our research interest is Dichotomous 

response; typicall y the two outcomes are yes and no. 

Now let us suppose we are interested in explaining the di stribution of some dependent 

vari able, yet it has only two possibl e outcomes. For example, thi s dependent vari able mi ght 

measure whether or not respondents in a sample support the death penalty, whether or not 

respondents graduated fro m college. In each of thi s examples, the vari abl e is ofte n coded as 

[0 , 1] , with 0 indicating "no" and 1 indicating "yes". The main diffi culty fo r a regress ion 

model occurs when the researcher wishes to use a binary variable as the dependent vari able. 

It should be c lear that thi s vari able does not and will not fo llow a normal or Gaussian 

distribution. Rather, it is di strib uted as a binomial random variabl e. But if a researcher st ill 

want to predict this variable within a regression-like context, then Logistic Regress ion 

Model may be a suitable choice. The key to this model is that, rather than modeling the 

dependent variable direc tly (i.e. estimating the expected value of the dependent va ri able "Y" 

fo r some combination of independent variables), we estimate the probability that Y= l . Just 

li ke in linear regression we assume that some set of "X" vari ables is useful for predicting the 

Y values , but we are cl aiming that this set predicts the probabili ty that Y= 1 ( assuming we 

have coded the dependent variab le as [0, 1]. Thi s transformation fro m directly modeling the 
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dependent variable to modeling some variation of it is on ly possible \v ith the he lp of a link 

function . 

Sometimes the term " logistic regress ion" is restricted to analyses that include continuous 

explanatory variables, and the te rm " logisti c analys is" is used for those s itua ti o ns where a ll 

the exp lanatory variab les are categorical. He re we will focus on logist ic regress ion onl y . 

The basic formul a for estimating Y=I cons is ts of transfo rming the regression equation as. 

(3.1 ) 

Then 

(3.2) 

The pmt of the denominator in parentheses should remind us of the standard linear 

regression mode \. But note that in thi s function it is transformed in what seem s to be an 

unusual way . This part is multiplied by - 1, exponenti ated , added to ] and the n inve rted. The 

\,,'hole funct ion is call ed the Logisti c Function (Hoffmann 2004). Another form of this 

equation that is often used is: 

(3 .3 ) 

The quantity fJo is the inte rcept parameter; the X's are the k exp lanatory variables and 

jJ I S are the regression paramete rs : 

W e can write above in odds fonn as. 

P(Y = 11 X 1'X2 . .. ·' X k ) '", 
----..:..---=-'-----'-'--- = ex ]J(fJ + jJ X + jJ.x + -I- jJ.x ) 
1 _ P(Y = 11 l' ¥ l' ) " I I 2 1 .. , k k 

./ 1> ./ 2 ... ·' ./ k 

(3.4 ) 

By taking natural logarithms on both s ides, you obtain a linear model for the Logit: 
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(3 .5) 

The Logit is the log of an odd. The log odds for k th group can be written as the Sllm of an 

intercept and a linear combination of explanatory variable values multiplied by the 

appropriate parameter values. 

(3.6) 

This result a llows yo u to obtained the model- predic ted odds ratio fo r variati on in the X's by 

exponentiating model parame ter estimates fo r the fJ IS . 

Besides taking the familiar linear fo rm, the logistic model has the useful property that all 

k 

poss ible values of fJ,,-l-I fJ)(, in (- 00,00) maf) into (O,l)forp(Y = l) . Thus, predi cted 
j; ) 

probabilities produced by thi s model are constra ined to lie between 0 and I . Thi s model 

produces no negative predi cted pro babiliti es and no predicted probabiliti es greater than 1. 

Max imum likelihood m ethods are generally used to es ti mate fJ IS. 

Logistic regression has applications in the fie lds such as epidemiology, medica l research, 

banking, market research, and social research . One of its advantages is that model 

interpretation is possible tlu·ough odds ra ti o, which are fun ctions of model parameters. 

3.2.2 Odds Ratio 

The odds rati o is a measure of effect size, describing the s trength of assoc iation or 

non-independence between two binary data values . It is used as a descripti ve stati s tic, and 

plays an important role in logistic regression. Unlike other measures of associati on [or 

paired binary data such as the relative ri sk, the odds ratio treats the two variables be ing 

compared symmetri cally, and can be es timated using some types of non-random samples. 
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The definition of odds ratio in terms of group wise odds can be presented as: The odds ratio 

is the ratio of the odds of an event occurring in one group to the odds of it occurring in 

another group, or to a sample-based estimate of that ratio. These groups might be men and 

women, an experimental group and a control gro'up, or any other dichotomous classification. 

If the probabilities of the event in each of the groups are PI (first group) and P2 (second 

group), then the odds ratio is: 

171/(1 - pd Pl/ql 
]]2/(1 - ]h) - P2/Q; 

171Q2 

lh(jl (3.7) 
Where q = 1 - p . An odds ratio of 1 indicates that the condition or event under study is 

equally likely to occur in both groups . An odds ratio greater than 1 indicates that the 

condition or event is more likely to occur in the first group, and an odds ratio less than I 

indicates that the condition or event is less Likely to occur in the first group. The odds ratio 

must be greater than or equal to zero if it is defined. It is undefined if P2ql equals zero . The 

odds ratio is usecl extensively in the healthcare literature. The odds ratio may be a 

misleading approximation to relative risk if the event rate is hi gh (Deeks (1996) and Dav ies 

et al. (1998)). Since the odds ratio is difficult to interpret, why is it so widely used? First, 

odds ratio can be calculated for case-control studies whilst relative risks are not available for 

sllch studies. Second, if we use an analysis method that corrects for confounding factors, 

such as logistic regression, this wi ll report results as odds ratio . 

3.2.3 Bayesian Logistic Regression Analysis' 

Since we lmow that while using maximum likelihood method (MLE) for the 

estimation of regression coefficients it may mislead when we have small sample data sets as 

it happened in the field of medical science, because MLEs are usuall y based on asymptotic 

theory . Griffiths et. al. (1987) found that MLEs have significant bias for small samples. But 
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thi s problem can be handled by uSlI1 g Bayesian technique while estimating regressIO n 

parameters. 

Let us considered here that the response va riable Yi is categorical in nature with binary 

options coded as [0, 1]. It is obvious that Yi follows a Bernoulli distribution where Y, = 1 

with probability and with probability 1- P i .Thus 

Let be a sample of 

n ::; N observations. Then for a sample of n observations the likelihood function is: 

(3.8) 

In the dichotomous response models Pi = H(x/fJ) , where x, = (x il ,xi2 , ... ,Xik ) ' is a le x 1 

vector of covariates, and fJ = (fJ
1

, fJ2"'" fJk)' is a k x 1 vector of regression coefficients. Then 

the likelihood function can be written as: 

L(fJ I data) = D {H(X/ /l/i (1- H(x/ /l))l- Yi } (3 .9) 

Now the Bayesian analysis for the logistic model can follow the usual pattern for all 

Bayesian analysis i. e. 

(i) Write clown the likelihood function of the c.bta as given in equation (3.9). 

(ii) Assume a prior distribution over all unknown parameters. 

(iii) Use Bayes theorem to find the Poslerior distribution over all parameters. 

Now for prior distribution in general, any prior distribution can be used, depending on the 

ava ilable prior information. The choice can inclucle informative prior distributions if 

something is known about the likely values of the unlmown parameters, or "diffuse" or 
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"non informative" priors if either little is known about the coefficient values or if one wishes 

to see that the clata themselves provide as inferences. 

Now let us consider the prior [or the unknown regression coefficien ts as p(fJ) then the 

posterior distribution for jJ is given as: 

p(jJ I data) ex: L(fJ I data) x p(fJ) (3.10) 

Of course, the above expression has no closed form express ion and even if it did, we wou ld 

have to perform mUltiple integration to obtain the marginal distribution for each regression 

coefficient. So to solve the above function, SAS package help us a lot for the numerical 

solution of above function. As was the for Frequentist inference, taking exp( fJ) provides the 

odds ratio for a one unit change of that parameter. . 

3.3 Literature Review 

Cengiz et al. , (2001) illustrates how to model the binary logistic regression by using 

Bayesian approach. Binary response data is modeled using Binomial Distribution while the 

binary data have a Bernoull i distribution. The objective is to improve the accuracy and 

predictions and decision making by investigating logistic regress ion model in spec ifi c 

context of assessing Erythrocyte Sedimentation Rate (ESR). So, for this purpose the Author 

investigates by using and analyzing the five cases in which they present suitable priors 

distribution. When there is little prior information ava ilable, in these circumstances a vague 

prior is used. The standard choice is to use invariant prior proposed by Jeffrey 's. They also 

use uniform and improper prior and then compare these results with classical inferences. 

El-Sayyad (1973) concentrates upon a problem that the presences of any type of trend in the 

means of Poisson distribution while it change exponentially. Since, in simple classica l 

method it is observed by testing the parameter '~' of the Poisson model. The Bayesian 
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approach is introduced here and the exact Bayesian di stribution of ' f3 ' is derived and the 

Bayesian approximation is suggested which prove to be very usefu l. Then by using three 

method's i.e. Classical, Bayesian and Bayesian approximation with the help of an example 

the results are obtained and compared which co ncludes that Bayes ian approach provide a 

better approximation then Classical. 

Croweder & Sweeting (1989) viewed 111 context of an investigation conducted in the 

department of microbiology at Surrey University in which Fungal Spores are introduced into 

the earth surrounding the root of a plant. But with concern to a particular Question "whether 

the final alignment of the tube tip is random" a Bivariate case of Binomial di stributi on is 

studied. The sample information about parameter 'p' comes from Marginal distribution 

alone and the information about 'q' comes froin Conditional distribution alone which are 

drive from Bivariate Binomial distribution. To study the behavior of the posterior parameter 

the sample size is increased and as the sample size increases the posterior parameter is 

approxi mate ly independent. This shows that Bayesian Conj ugate Prior di stributi on arises 

from prior independence. 

Zellner (1983) illustrates the usefu lness of Bayes ian approach by considering the different 

problems of Econometric models and shovvs that the Bayesian results are more appropri ate 

then the usual Classical technique. He consider the problem of hypothes is analysis in which 

he point out the doubtful choice of significance level in which usually no attention is given 

to power consideration, but it seems highly probable that Bayesian analys is of hypothesi s 

would yield more satisfactory results. J-Ie also consider the case oC reference informative 

prior (RIP) as it is difficult to asses the prior for regress ion coefficient especially in Logistic 

Regression. He suggests that if we use Jeffrey or Jeffrey like prior i.e. RIP it will lead to a 
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simple result. At the end he cons iders the predi ction problem and concludes that predi cti on 

with the inclusion of prior knowledge is sa ti sfactory then the usual Class ical approach. 

Finally for complicated li kelihood functions it is mention that numerica l integration 

techniques are very helpful in analyzing posterior probabi lity density fun cti ons and checkin g 

the validity of asymptotic and o ther approximati ons techniques. 

Munkin & Trivedi (2008) develop an estimation procedure for the Ordered Probit Model 

with endogenous covariates by using the Bayes ian approach and name it as the Ordered 

Pro bit Model with Endogenous Selection (OPES) . They analyze the effect of endogenous 

dependent variable i.e. strongly agree, agree, di sagree, stron gly di sagree etc . they mode l the 

endogeniety using a correlated latent vari able structure. Then Markov Chain Monte Carlo 

CMCMC) method is used to app rox imate the posteri or distribution of the parameters and 

treatment effect. This study is applied by analyzing the effects of diffe rent types of medica l 

assurance plans on the level of hospital care utilization by the US A adult popul ation and in 

their illustration they find the evidence that controlling for endogeniety is important. 

Poirier (1994) uses the Jeffreys' prior for Logit models with covariates . He compares the 

properties of Jeffreys ' prior with other priors that are mostl y used for Logit models. Like 

natural conjugate priors, normal priors etc and he shows that Jeffreys' prio r is not 

recommended in Conditional Logit models and it act like a neutral natural conjugate prior in 

Multinomial Logit models. The case of Jeffreys ' prior with covariates has a substantial 

impact on its interpretation and three of whi ch are di scussed. At the end it is illustrated that 

Jeffreys' prior in contex t of Logit models and in the case of simp le multinomi al Logi t 

models its properties with no covariates offers a littl e guidance for the cases involving 

covariates. 
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Albert & Chib (1 993) illus trate that the ca tegorical response regress ion m odel in Class ical 

approach is fit by l1l.axinl.un1. likelihood method (MLE), but this approach is questionable 

when sample size is small as M LE is pu rely a large sample theo ry. So in this situation 

sa1isfactory results can be obtained by using Bayesian approach as class ical approach cannot 

provide satisfactory results. They use Pro bit model fo r Binary outco mes as with the 

inclusion of latent variable it fo llows the structure of normal distribution and the va lue o f 

latent variable is simulated by using truncated normal di stribution. Then Gibbs sampling is 

used for posterior parameter estimation. So the Pro bit model on the binary response is 

connected with normal linear m odel on the continuous latent data response as we know that 

Probit model use the Cumulative density flll1ction(cdf) of normal. The exact binary analys is 

is performed and the result proves that it is better then usual MLE. At the end the case is 

al so extended for Multinomial Logisti c regression. 

Choi et aI. , (2008) take a study of Bernoulli tri als and es timate the parameters of modeled 

relationship between the covari ates and the success probabilities that are based on Bayesian 

perspective by using the M arkov Chain Monte Carlo -(M CM C) a lgo rithm on the avail able 

I 

data. Thi s study is also appli ed on real data. So a method is se t with the help of above 

technique to estimate the parameters of the Logistic regress ion model when individual 

observations are missing but the aggregate information are avail able with covariate values. 

While using MCMC technique the mi ssing observations are also considered as additi onal 

parameter to be estimated . At the end the results are compared with usual Class ical 

techniques that handle the miss ing values case like Expectation max imizati on algorithm and 

Error-in-vari ables regression technique and the results proves that in thi s particul ar case of 
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mIssmg observations the Bayes ian approach provide better result s then the technique 

introduced by Classical. 

Tektas & Gunay (2008) illustrate the basic objective of analyzing the Probit and Logit 

models · by using Bayesian techniques proposed by Albert and Chib. The results are 

compared with usual Classical approach. It is shown in this article that C lass ical approach 

does not provide satisfactory results when the sample size is small while the Bayesian 

approach is best and suitable choice for this situation of small sample size . The parameters 

are estimated by using Gibbs samp ling and Data augmentation algorithm together. The data 

is augmented by adding a set of latent variables (Z) into the model as latent variabl e is a 

continuous variable so the Conditional di stribution of parameters given latent variable is a 

normal distribution whose mean is easy to compute. So Gibbs sampling is then use to 

calculate the posterior distribution for the parameter' 13'. At the end Logit and Probit models 

are est imated by using Bayesian approach . So the obtained results by using Bayesian 

approach are compared with usual Classical methods like Ordinary least square COLS) and 

MLE. So the resulted table shows that Bayesian approach is better then Classical as th e 

Bayesian results are much improved. 

Tanner & Wong (1987) present an iterative method for the computation of Posterior 

distributions. This method is used when the data can be augmented in such a way that it 

become easy to analyze the augmented data and it is easy to generate the augmented data 

given the parameter. Augmentation is clone by using the Latent variable i.e. 'Z' that is 

unobserved . The Author presents the basic algorithm and illustration by giving cxample. 

After that he also applied this method for rvlultivariate Normal di stribution with mi ss ing 

values. Then Dirichlet samplin g procedure is used td approximate sampling for Posterior 
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distribution in complex Models and thi s procedure is applied to socia l survey clata L1 Sll1g 

Log-Linear model, then at the end with help of same example Bayesian mode ling is used 

and the results are compared . 

Rossi (1996) works on the ex istence of Bayes estimators for the Binomial Logit Model. As 

it is known that on finite maximum of the likelihood may not exist fo r certain configuration 

of the data . The importance is made on that, under what conditions the Posterior wi II be 

proper and when Posterior moments ex ists before proceedin g to make numerical 

approximations to these moments, when we have Dichotomous dependent variable, it is 

important to calculate Posterior means. The Posterior density is obta ined by using the 

Diffuse Prior. At the end the sufficient condition for integral convergence is compared with 

the cond ition provided by Ze llner & Rossi ( 1984). 

S ilvapulle (1981) discusses and attempt to estimate maximum likelihood estimators fo r logi t 

models that were first arose in the analysis of relationship of Psychiatric "caseness" to 

scores on a Psychiatric screening questionnaire. General Health Questionnaire (GHQ) to 120 

pat ients attending a general practitioners surgery and also give each one a stand ardi zed 

Psychiatric interview by classifying as case/non-case i.e. 

Where x = GHQ score and Logit(Pi) = 10g(~) Logit( p,) = 10g(~) for the fu ll se t 
1 - P, 1- P, 

of data. So, the convex analyses are used for proper es timation of maximum likelihood 

estimators. 

Chen & Ibrahim (2003) propose a novel class of conjugate prIors for the family of 

generali zed linear model s they discuss the e licitation issues that may occur durin g the 
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application of different techniques available fo r the elici tation of hyperparameters. They 

developed theorems characterizi ng the proper ty and ex istence of moments of the pri ors 

under var ious setting, examine asymptoti c property and relati onship with normal, their 

approach is based on the ground of specifying a prior prediction Yo for the response vector 

of the current study and a scalar precision parameter Go whi ch quantifies ones prior belief in 

Yo' Then a conjugate prior is spec ifi ed fo r J3 regress ion coeffic ient with the he lp 

(Yo' Go ) along with explanatory vari ables . They also stud y the generalized linear models with 

di spersion parameter at its different values and check the effect on prior for fi xed Go and 

random Go . Also the results are illustrated with the help of an example and in numeri ca l 

results it was observed that as (fo increases the prior and posterior es timati on are close r to 

each other. 

Gelman et. aI. , (2008) Propose a new prior distributi on for classical logisti c regress ion 

models constructed by first sca ling all non binary vari ables to have mean zero and standard 

deviation 0. 5, then place independent t-prior distribution with Cauchy dis tribution as defau lt 

pri or that has mean zero and standard deviati on 2 .5, then a logistic regress ion model is fitted 

by using these priors and w ith the help of EM algorithm into the usual iteratively weighted 

least square. This default prior is recommended for further study as it has the advantage of 

giving results even in the case of complete separation in logisti c regress ion. This is useful 

for routine data analysis as we ll as chain equations fo r miss ing-data imputati on in which 

each variable is modeled with missing data. Then the logistic regression estimates are 

computed including prior di stribution by applying Gibbs samp ling and Metropoli s 

algorithms. These compu ta tions are made in ' R package by defining a new functi on 
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" bayesglm" where approximated posterior mode and variance are computed and used for 

further analysis. Since, the results are computed by using Cauchy prior, t-distribution as 

prior and normal prior and the results are compared with classical (generalized linea r model) 

glm results. It is observed the default prior that is independent Cauchy di stribution for all 

logistic regression coefficients each centered at zero and with scale parameter 10 for 

intercept and 2.5 for all other coefficients, with posterioi' modes as a point of estimate can be 

a usual approach to be adopted. 

Eaves & Chang (1992) proposed a posterior mode estimator, which an se from simply 

expressed prior opinion about expected outcomes, roughly as follows , a conjugate prior is 

used to obtain the posterior modes anel its covariance by using the conventional maximum 

likelihood computations. Then within the family of conjugate prior a reference prior is 

proposed to obtain the inferences about the regression vector for linear design of the 

canonical link. A set of subjective prior upper and lower percentage points for the expccted 

outcomes can be used to determine a conjugate family member. They use the Jeffreys prior 

obtained the posterior modes, reference prior is also used to obtained the posterior modes 

and variance function to obtained the esti mates and at the end the results are compared with 

usual classical approach. 

Groenwald & Mokgatlhe (2005) suggest a method for the simulation of samples from the 

exact posterior distribution of the parameters in logistic regression. This method is based on 

the principle of data augmentation ancl on the induction of latent variable. Since in Bayesian 

logistic regression all conditional distributions are intractable but with the introduction of 

latent variable all conditional distribution nre uniform and the Gibbs sampling is easily 

applicable then they extend this technique and applied with nonlinal or ordina l 
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polychotomous data . So, in sec ti on 3 of thi s paper they extend thi s technique fo r mul tipl e 

response categories and in secti on 4 study for ordinal response w ith thresholds or cut off 

points are presented . In section 5 the data augmenta ti on technique is applied to model 

selection v ia Bayes fac tors. T he marginal like lihood under a par ti cular mode l can be 

calculated by running additi onal Gibbs cycles, one for each parameter in the mode l. Then at 

the end thi s technique is illustratecl by analysis two rea l life examples. 

Bian (1 997) presents Bayesian inferences for location parameter of a family of loca tion­

scaled distributions i. e. s tudent-t and normal di stributi on. He deve lops Bayes ian estimators 

for the location parameter of a location-sca le d istribution fo r thi s purpose they use modified 

max imum likelihood estimator (MMLE). As the Bayes ian estimators are defined by modes 

of posterior densities and called HPD (hi ghest posterior density) es timators. They use 

diffe rent priors to obtain these estimators and it obse rved that the estimator obtained by 

using studenH distribution as pri or are superior then others as they auto mati ca ll y adjust to 

the sample dispersion and ignore inconsistent informati on . He also di scusses the po int that if 

the posterior density is bimodal then there is a clear confl ict between sample and pri or 

information. At the end results nre verifi ed by using the simulati on approach. It is co nc lud ed 

the heavy-tail ed distributions fo r sample or priors that are automati ca ll y adjust outli ers will 

prov ide the better inferences then that obtained by using conjugate priors . 

Bermudez e t. aI. , (2008) describe the behav ior of consumers when they faced with two 

choices. Since in classical logit model we stucl y the fec/ ture of symmetr ic link but thi s do not 

provide good fi ts fo r c1ata w hen one response is much more frequent then the other; so in thi s 

paper they use an asymmetric or skewed logit li nk, proposed by Chen et. al. , (1999) to fit a 

fraud c1 ata base fro m the Span ish insurance market. They use G ibbs samp li ng and data 
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augmentation for Bayesial1 analysis of this model. It is observed in results that the use of a 

skewed link notably im.proves the percentage of cases that are correctly class ifi ed after the 

model estimation. 

Liesenfeld & Richard (2009) propose a generic procedure known as efficient importance 

sampling (ErC) for the evaluation of likeli hood functions for the probit models with 

corre lated errors. Their EIS algori tbm covers the standard GHK (Geweke (1991) , 

Hajivassilious (1990), Keane (1994) simulation technique) probability simulator as a special 

case. They also perform a set of Monte-Carlo experiments in order to illustrate the relative 

performance of both procedures for the estimation of multinomial multi period prob it 

models . They provide results that are indicating substantial numerica l efficiency gR in oflvfT . 

estimators based on GHK-EIS relative to those obtained by using GHK. The evaluation of 

discrete choice probit models with correlated error terms was first introduced by Thurstone 

(1927) and applied by Hausman and Wise (1978) to transit choice problems. They use ML 

integration proposed by Geweke and Keane (2001) to study likelihood function of probit 

model with correlated error terms that are frequently high-dimensional truncated integral of 

multivariate normal distribution. They concluded that GHK-EIS provide a sign ificant 

numerical effic iency gain in ML estimator as compared to GJ-IK. 

Rijrnen (2008) proposed logistic regression techniques that can bc LI se to res trict the 

conditional probabilities of a Bayesian network for discrete variables, when all the main 

effects and interaction between the parent variables are incorporated as covariates. The 

conditional probabilities are estimated without restrictions as it is a traditional Bayes ian 

network. They also use the ordered . logistic regress ion with ordered categor ies of the 

variables, which resulted in more parsimonious model. Then the posterior parameters are 
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estimated by using the modified junction tree algorithm. The main focus of this paper is La 

learn the parameters of an inferred Bayesian networks for di screte variables, where 

dependence of relations are encoded tlu'ough direc t edges, more spec ifically they show hovv 

the number of effective parameters of the network can be reduced by adopting a logistic 

regression frame work for modeling the conditional dependence re lat ions. 

· , 1' 
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Chapter 4 

Bayesiau Infer'euce of Binary Logistic Regression Moclel w ithout Intercept 

4,1 Introduction 

In this chapter, we present the Bayesian analysis of logistic regression model without 

intercept under informative and noninformative priors. Section 2 gives the introduction to 

logistic regression model with its different forms. Sections 3, 4 & 5 deal with the derivation 

of diflerent priors that are used in our study. Section 6 provides the data set and explanation 

of variables that is used in our research given in Table 4.1. The derivation of posterior 

distributions using informative and non informative priors is given in section 7; these 

posteriors are for the logistic regression model without intercept. For informative prior we 

. set a range of hyperparameters and select the hyperparameters that have minimum standard 

error, which are given in section 8. Section 9 consists the Bayesian analysis with informative 

and noninformative priors, which includes the graphs of parameters, the estimated values of 

parameters and testing for the significance of parameters. Section 10 comprises the classical 

analysis of logistic regression model without intercept ane! also the hypothesis testing for the 

significance of regression coefficient. Section 11 presents the comparison of classical and 

Bayesian results and their interpretation with respect to the data set given. 

4.2 The Binary Logistic Rcgr'cssion Model 

Suppose that we have' n' binomial observations of the form Yi == ,1, 2, 3 .. . n where 

E(yJ == Pi and Pi is the success probability corresponding to the jtil observation. The linear 

Logistic model for the dependence p, on the values of the kth explanatory variab les XI I' X l i ' 

. . . , X" i associated with that observation without intercept is, 
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Logi/ (P,) = IOg( 1 ~~, J = fl.x" + /3,x" + ... + fl,x" (4.1 ) 

Ifwe have only one explanatory variable for the above logit model then the model become: 

If we take exponentiation on both side ofthe equation (4.1), we get: 

Sine on the L.H.S the log will be vanishing with exponential then we have: 

P, = exp(fJlxl.! + fJ2X2i + ... + fJkXk,) 

1 + exp(fJlxli + fJ2x2i + ... + fJkxiJ 

(4.2) 

If we assume that 

Then, 

]') = 1 
i 1 +exp( -()i) 

(4.3) 

Since Pi is the probability of success corresponding to the i'h observation, whi le 

coefficients. The shape of given model indicates that the value obtained after estimating the 

coefficients and for a particular value of exp lanatory variable it will remain within 0 and 1 

that meet the definition of probability theory. 
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4.3 Uniform Pdor 

In this section we discuss about the noninformative prior for Bayes ian analysis . 

For more general problems, various suggestions have been advanced for determining a 

noninformative prior. Noninformative prior, by which we mean a prior th at, contains no 

information about a parameter. For example, when tossing a coin, the probability of Y2 to 

each outcome is clearly noninformative. The simpl es t situation is to assign each element 

uniform probability . This is routinely done by Laplace (181 2). The uniform prior for the 

parameter fJ is given as : 

p(fJ) ex 1 -00 < fJ < 00 (4.4) 

4.4 Haldane Prior 

Some attempts have been made at finding a priori probabilities, i.e. probability 

distributions in some sense logically required by the' nature of one's state of uncertainty; 

these are a subj ect of philosophical controversy. For example (Jaynes 1968) has published 

an argument based on Lie gro ups that suggests that the prior for the proportion p of voters 

voting for a candidate, given no other information, should be the Haldane priOl·p- l(l - prl . 

Haldane prior is the improper when all [he parameters are zero. It was first suggested by 

Rubin (1981). So, it can be said that if Beta is used as a prior distribution with both the 

parameters equal to zero then the beta prior wi ll be Haldane prior. It can also be derived 

from Bernoulli distributi on if the response variable have only two categories as yes or no 

then it will be a Bernoulli tri al. So, the Haldane prior will be as: 

P fI (fJ) ex det { J (fJ) } (4.5) 

43 



Where'det' denotes the determinant and J (fJ) denotes the n x n risher information matri x 

which is the logaritlU11 of maximum likelihood function of parameter (J and partially 

differentiating twice with respect to the parameter is given below: 

(4.6) 

Where E stand for the expectation of data: 

The Haldane prior has been criticized on the grounds that it yields a posterior distribution 

that puts 100% of the probability content at either p = 0 or at p = I if a finite sampl e of 

voters all favor the same candidate, even though mathematically the posterior probability is 

simply not defined and thus we cannot even speak of a probability content. The Jeffreys 

. - 1/2(1 )-1/2. l.r .r d pnor p - P IS t 1ereiore preierre . 

4.5 Jeffreys prior 

Jeffreys (1946, 1961) proposes a nonin(ormative prior. Berger (1985) argues that 

Bayesian analysis using non informative prior is the single most powerful method of 

statistical analysis. The main feature of Jeffreys prior is that it is a uniform measure in 

information metric, which can be regarded as the natural metric for statistical inference. 

Jeffreys rule is defined as the density of the parameters proportional to the square root of the 

determinant of the Fisher information matrix, symbolically, let 

I 

fJ = CfJl' fJ2,· '" fJ,J is a vector of parameters fJl' fJ2" '" fJlI' The prior distribution from the 

Jeffreys rule is lmown as Jeffreys prior which is obtained as: 

P.I (fJ) ex )det { J (fJ)} (4 .7) 

44 



Where ' det' denotes the determinant and 1(13) denotes the n x 11 Fisher informa ti on matri x 

which is the logarithm of maximum likelihood function of parameter 13 and partially 

d ifferentiating twice with respect to the p aramete r fJ is given below: 

J(f3)= _E {8
2

In L(fJ)} 
8fJ2 

Where E stands for expectation on data: 

4.6 Data Set used in Bayesian Logistic Regression Analys is 

The data set for Bayesian anal ysis of Logistic Regression is taken fro m Cengiz eL a1. 

(200 1). The data set contains the sample observations of 32 individuals. This research was 

actually made by the Institute of Medical Research, Kuala Lumpur, Malaysia. They used 

E:rythrocyte Sedimentation Rate (ESR) related to two plasma prote ins, fibrinogen and Y-

globulin, both measured in gm 1 I , for a sample of thirty-two individuals. T he ESR is a non 

specific marker of illness. ESR is the rate at which the red blood cells sett le out of 

suspens ion in a blood plasm a, when measured under standard conditions. The original data 

were presented by Collett and Jemain (1 985) and were reproduced by Collett (1996), who 

classified the ESR as binary (0 or 1). Since the ESR for a healthy individual shou ld be less 

than 20 mm/h and the absolute value of ESR is relatively unimportant, a response o f zero 

signifi es a healthy indi vidual (ESR < 20) whil e a response of unity refers to an unhea lthy 

individual (ESR ~ 20). Here in this chapter we consider fibrinogen a single explanatory 

variable and check its individual eiTect on dependent variable (ESR). 

Yi = The Erythrocyte Sedimentation Rate (ESR) 

Xli = The amollnt of protein plasma fibrinogen 
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Table 4.1 : Da ta 
_. 

Serial ESR F ibrinogen Serial ESR Fibroinogen 
No. (mm/h) {gm/I} No .. ( 1I1111/h) (gmll} 

Yi Xli Yi x F 

1 0 2.52 17 1 3.53 
2 0 2 .5 6 18 0 2.68 
3 0 2. 19 19 0 2.60 
4 0 2. 18 20 0 2.23 
5 0 3.4 1 2] 0 2.88 
6 0 2.46 22 0 2.65 
7 0 3.22 23 I 2 .09 
8 0 2 .2 1 24 0 2.28 
9 0 30 15 25 0 2.67 
10 0 2.60 26 0 2.29 
11 0 2.29 27 0 2. 15 . 

12 0 2.35 28 0 2 .54 
13 1 5.06 29 1 3.93 
14 1 3.34 30 0 3.34 
15 1 2.38 3 1 0 2.99 
16 1 3. 15 32 0 3.32 

4.7 Posterior Distribution for the l)a ramcter of the Logistic Regression 'Without 

Intercept 

I-Iere we consider the s imple case of Logistic Regression Model wi thout intercept as: 

(4.8) 

Here Pi is the probability of success for response variable for ith observat ion. Where th e 

response variable Yi follows Bernoulli distribution : 

So we can also represent the Logit model as. 

1 
P"(Yi =1) = Pi = - --- -­

l + exp(-jJx/J 

Then the Posterior distribution of the parameter f3 is defined as : 

p(jJ I data) ex 1 (jJ I data) x p(jJ) 
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Where 1(/31 data) = log L(/31 dafa) 

Now we need to determine the likelihood function and decide upon p(fJ) for the above 

model. 

4.7.1 The Likelihood Function 

The likelihood of the /h observation is its probability density function as a function 

of the parameter/3, where (Yi'X/i ) are fix ed at the observed values. The observations are all 

independent, now for the given case we precede as follows. 

Let Yi be the response variable that is binary in nature i.e. it takes only two values 0 and 1 

for ' n' observations. Sinc.e the analysis of binary response variable in classical approach the 

Maximum Likelihood Method (MLE) is used to estimate the unlmown parameters of the 

Binary Logistic Regression Model. However the estimates based on the classical approach 

are not accurate when the sample size is small. In this situation Bayesian approach provide 

better and most accurate results. Then if Yi is the response variable and X / I ' s the explanatory 

variables that can be either qualitative or quantitative in nature while Pi is the probability of 

sllccess corresponding to the ilh observation then the probability function is as follows. 

(4.11 ) 

So the likelihood of whole sample of all observations is the product of the likelihood: 

(4 .12) 

We lmow that while modeling the binary data, the outcome Yi has a Bernoulli distribution 

with probability of success PI that depend upon a set of explanatory variables for a specific 

ilh observation. The probability Pi is regressed on the covariates through a link function that 
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preserves the properties of probability. So, p, = H(jJx,) where x, the vector of covariates is 

assoc iated with the ilh obscrvation, since 0 ~ He) ~ 1, and He) is a continuous nOIl-

decreas ing function (Groenewald 2005), it can also be seen 111 Cox (1971) or Maddala 

(1983). So the above likelihood function could be written as: 

11 { 1- } L([31 data) = D H([3xJ Y' (1 - H([3xJ) Yt (4.13) 

Now taking log on both sides of equation (4.16) we get the Log likelihood function as: 

/I 

1([31 data) = I {YI log H(jJ_\) + (1- yJ 10g(1- H([3xJ)} 
1=1 

Since we know that PI = H([3xJ then the above log likelihood function becomes: 

n 

1([31 data) = L {YI log(p,) -I- (1- yJ log(l- p,)} (4 .1 4) 
1=1 

While PI is the probability of success for ilh ob~ervation in data set. Here we use the Log-

likelihood function instead to simple likelihood function because the simple likelihood 

function is too difficult to handle for further manipulation so to make the further 

manipulation simple we usc the log likelihood function. This is routinely used by the 

Bayesian Econometrician i.e. Chen & Ibrahim (2003) , Cengiz et. a!., (2001), King & Ryall 

(2002), Denis Conniffe (1 997), Crowder & Sweeting (1989) etc. used log-likelihood 

function for Bayesian inferences .. So as for as the posterior modes are concern we vvi ll use 

the log likelihood function to construct a posterior distribution for different informative and 

noninformative priors: 
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4.7.2 The Prior Distribution 

We consider Noninformative and Informat ive Priors of fJ in the following sections: 

4.7.2.1 The Informative (Normal) Prior 

Now we consider the Informative Prior of fJ as Normal distribution having 

parameters mean = a, variance = b , so 

p(fJ) ex: exp { - 2
I
b (fJ - a /} -00 < fJ < 00, -00 < a < 00 

b > O 

4.7.2.2 The Noninformative (Haldane) prior 

The noninfonnative Prior of fJ using Haldane Prior can be derived as: 

Let us consider the log likelihood function given in equation (4.14). 

" l(fJl data) = I {Yi 10g(pJ -I- (1- yJ 10g(1 - pJ} 
i=1 

Differentiating the above given form with respect to P, 

81(fJl data) 0" . 
~-'---~ = - . L {Yi 10g(Pi) -I- (1-- Yi) 10g(1 - Pi)} 

0Pi 0Pi i=1 

Again differentiating with respect to Pi: 

As 
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Then 

_E[8
2

1(fJl ~ata)] = -E[t{(-~i )-( /~Yi 2 )}] 
8Pi i=1 P, (P,) 

(4 .16) 

J (fJ) = {~- + _l_} 
Pi I-pi 

As p(fJ) oc J(fJ) then 

(4.17) 

Where 

1 
Pi=-----

1 + exp( -fJxl;) 

The above equation (4.17) can be written as : 

p(fJ) ex H (fJx /i r l (1 - fl (fJx IJrl 

. . 
( 4.18) 

4.7.2.3 The Noninformative (Jeffreys) Prior 

The Noninformative Prior using Jeffreys Prior can be derived as: 

Let us again consider the Log likelihood funct ion given in equation (4.14): 

II 

l(fJl data) = L {Yi log(pJ -\- (1 - yJ log(l-:- pJ} 
i= 1 

Since we know that 

PI (fJ) oc J del { J (fJ)} 

Then 

1 1 

p(fJ) oc Pi - "2 (1- P,) -"2 ( 4.19) 
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Where 

1 
P = 

I 1 +exp(-fJXji) 

The above equation (4 .19) can also be written as: 

I I 

p(fJ) oc H (fJxjJ -2 (1 - H (fJXji )fi 

4.7.2.4 The Noninformativc (Uniform) Prior 

(4.20) 

We consider noninformative prior of fJ as Uniform Prior as; see section (4.4) 

equation (4.4): 

p(fJ) oc 1 (4 .2 1 ) 

4.7.3 The Posterior Distri bution 

The Posterior distributions of fJ using noninformative and informative priors are 

given in the followin g secti ons: 

4.7.3.1 The llostcrior Distribution Using Normal Prior 

The posterior di stributi on of fJ using the Normal prior distribution, for thi s we 

consider Log likelihood function (4 .1 4) and Normal Prior (4.15): 

p(fJ I data) oc I {Yi lo g(pJ + (1- Y') log(1- pJ} exp --(fJ - a)2 /I {I } 
~ I 2b 

p(fJ I data) oc f J Yi !Og( ~i J + log(1 - Pi)}exp { __ I (fJ - a/} 
i~1 L 1 P, 2b 

(4 .22) 

Since we know that the simple Logistic Regress ion Model without intercept and having only 

one explanatory variable is as follows; see section (4.7): 

Logil (Pi) = log(~J = fJx!; 
I-pi . 
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1 
While p; = -----

1 + exp(-fJx/J 

Or 
1 

I-p= - ----
I 1 + exp(fJx /J 

Taking log on both sides of (4.23) we get: 

10g(1- p;) = -log(l -1- exp(f3x/i)) 

Now replace equation (4 .8) and (4.24) in equation (4.22) we get: 

/I {I} p(f3l data) oc L {y;f3X/i -log(1 -I- exp(f3xfi))} exp --(fJ - 0)2 
;=1 . 2b 

1 " .:. {I} 
p(f3l data) = - L {y;f3 X /i - i'Qg(1 + exp(f3xf;))} exp --(fJ - a)2 

Ie ;= 1 2b 

Let us suppose that ¢ = (13 - C/)2 

1 /I { ¢ 1 
p(fJ I data) = - L {yJ3x/i -log(1 -I- exp(f3xfi))} exp --f 

Ie ;= 1 2b 

-00 < 13 < 00 

(4.23) 

(4 .24) 

(4 .25) 

This is the posterior distribution of 13 , where k is the normalizing constant. Here our main 

objective is to estimate fJ. Then for thi s purpose if we partially differentiate the above 

equation (4.25) with respect to 13 and equate it to zero. So this numerical so lution wi ll 

provide us the Posterior Mode, so for this we proceed as follows. 

Differentiate (4.25) with respect to 13 we get: 

ap(f3 l data) a '0{ } {l ?} 
afJ = ajj-f( y;f3x /i- log(1 -I-exp(f3x /i )) exp - 2b (fJ-a)-
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~ {rj;} =L ex}) --. 
i ~ 1 2b 

~Xp- . . 

. (l -I- exPC- p'x/;))2(1-1 r l-fJ )) 
+ex p X li 

X Ii exp( - P'x Ii) 

x + 10 1 - ex - - - (J - a { ( I)} {¢ } 1 P } Y;/]' ·ji g l+exp( -p'xIJ P 2b b ( ) 

8p(fJ l data) - ~,{ {¢ }{( r Xli 1 -.L. exp - - yx . - -
8fJ , ~ I 2b I I' l+ exp(- p'xIJ 

JCfJ - a){YfJx +IOg(l- 1 J}}} b i Ii l+exp( - fJxp) 

Now put 8p(fJ I data) =0 while /l,= ~(fJ-a) 
8fJ b 

ex -- x - .II - /l, X + 10 I = 0 
/I { {¢ } {( x . 1 { ( )}}} ~ P 2b Yi ' Ji l+exp(-fJx/J yifJ' j; g l+exp(fJxjJ 

(4.26) 

By solving this numerically, the posterior mode of P' can be obtained. 

4.7.3.2 The Postel'ior Distriuution Using Haldane Prior 

The posterior distribution of P' using the Haldane prior distribution, v,Ie consider 

Log likelihood function (4.14) and Haldane Prior (4 .17) then . 

/I 

pcP' I data) oc L {Yi 10g( pJ -I- (1 - yJ 10g(1- Pi) }Pi- I (1 - pJ-1 
,~ I 

p(P'1 data) IX. t{Yi !Og( ~i J + 10g(1- Pi)}Pi-1 
(1- P,t l 

, ~ I 1 Pi 
(4.27) 

As we lmow that p,= 
1 + exp( - P'Xli ) 
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Then p;-I = l +exp(-,8xfJ and (1- pJ-1 =l+exp(,8xp) (4.28) 

Now after replacing (4.8), (4.24) and (4.28) in equation (4.27) we obtain: 

p(fJl data) ex:. t {y;fJ Xji - log(1 + exp(fJxfJ)}(l + exp( - fJx,J)(l + exp(fJx ,J) 
;=1 

1 II 

p(fJl data) = Ie ~[{Y;fJxfi - log(1 + exp(fJx,J)}{ 2 + exp( - fJx,J -1- exp(,8xfJ}] (4 .29) 

-00 < fJ < 00 

Thi s is the posterior distribution of,8 , where k is the normalizing constant. We will use the 

above posterior distribution to obtain the estimated value of parameter fJ. Then for thi s 

purpose if we partially differentiate the above equation (4 .29) wi th respect to fJ and equate it 

to zero. So this numerical so lution will provide us the Posterior Mode, so for this we 

proceed as follows. 

Differentiate (4 .29) with respect to ,8 we get: 

8p(fJl data) 8 ~ [{ }. { }] 8fJ = 8,8 f::: y;fJXfi - log(1-I-exp(,8x,J) 2 + exp( - fJ X,i) + exp(,8xfi ) 

/I 

= I (1 + exp( - fJ Xj J)(1-I-exp(,Bxji)) 
;=1 

Y;Xji - [ . 1 + 
(l -I-exp(-,Bx,J)2 1- 1 

1-1-exp( - ,Bxji ) 

exp(,8xfJ(l + exp( - ,8X,;))X'1 lI y1f3x/1 - log (1- 1 J}-
1 + exp( - f3x ,J 

(1 +eXP(,8Xfi )) eXP(- ,8Xfl )X/i{YIf3Xfi- lOg(l - 1 J}} 
1 -I- exp( - f3x Ii) 
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= L (1 + exp( - (JX/i ))(1 -1- exp((Jx/;)) Yi'X/i - ji + 11 { {X } 
i=1 1-1- exp( - (Jx I;) 

{ ( 
exp(- fJx /i ) ]} 

exp((Jx/J(1 -I-ex p(- (Jx/J)x/i Y, (Jx/i- log . . -
. . . I + ex p( - fJ x /J 

{ ( 
exp(-fJx/i) J}} (1 + exp(fJx /J) exp( - fJx /Jx /i y,fJx /i - log . 

. ... 1 + exp( - fJXjJ 

= t {(1 + exp( - f3x /i ))(1 -I- exp(fJx /i)) {Y; X1i _ Xli } -I-
;=1 . .. 1 + exp(fJx/i ) 

= ~ {(1 -I- exp( - fJx /i ))(1 -I- exp(fJx /i)) ~ y,x Ii _ XI; }-I-fi . . l . l -l- exp(- fJx/J 

{exp(fJx/;)(1 -I-exp( - fJx ji)) - exp( - fJ X/J (1 -I-exp(fJxjJ)} 

8p(fJ I data) ~ [ { Xfi } 
--=--:'--'-_-0.-= L (2 -I- exp(-fJx/J -I-exp(fJx/J) Y, x/i - " _ -I-

8fJ ;=1 l l-1-exp(-fJxfi ) 

Now put 8p(fJ I data) = 0 
8fJ 

t {(2 -I- exp( - fJx /i) -I- exp(fJx /i )) { Y;X /i _ Xli } -I-
;=1 . . . 1 + exp( - fJX/i) 
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(4.30) 

Solving numerically the above equation, the posterior mode of fJ can be obtained. 

4.7.3.3 The Posterior Distribution Using Jeffreys Prior 

The posterior di stribut ion of fJ using the Jeffreys prior di stribution, we consider Log 

likelihood function (4.14) and the Jeffreys Prior (4.19): 

" 1 1 

p(fJl data) 0: L {Yi log(Pi) + (1 - Yi) 10g(1- Pi) }Pi-2 (1 - Pi) -2 
i=1 

(4.31) 

As we know that 
1 

Pi = 
1 + exp( -fJx/J 

1 1 

Then Pi-2 = ~l + exp( - fJx/;) and (1- p,) -2 == ~l + exp(fJx,i ) (4.3 2) 

Now after replacing equations (4.8), (4.24) and (4 .32) in (4.31) we get: 

p(fJ I data) 0: t {YifJ X /; - log(l + exp(fJx/J)}~l + exp( -fJx/J~l + exp(fJx ,,) 
i= 1 

1 /I [ J p(fJ I data) = k ~ .J 2 -I- exp( -fJxfi ) -1- exp(fJx,J {Yi fJ X!; - log(l + exp(fJx,,))} _ (4 .33) 

- 00 < fJ < 00 

This is the posterior distribution of fJ , where Jc is the normalizing constant. J-Iere our main 

objective is to estimate fJ. For this purpose, we partially differentiate the above equation 

(4 .33) with respect to fJ and equate it to zero. So this numerical solution will provide us the 

posterior mode, so for this we proceed as follows : 
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Differentiate (4.33) with respect to fJ we get: 

op(fJ I data) 0 I" [J { }] ~'----'---'-- = - 2 + exp( -fJX li ) + exp(fJx Ii) y,fJx II - log(J + exp(fJx Ii )) 
8[J 8[J i= 1 . .. . 

II 

= I ~1 + exp( - fJ Xli) ~1 + exp(fJ xfJ 
Xli exp ( - fJXl i ) 

i= 1 

xp expefix" ))] -eexpe -fix),) { y,fiX " + IOg( I- I+exrl-fixp
) )} 

2~1 + exp(fJxli) 

xp expe -fix,,))] + exrefix),) {y,fiX), .; IOg( 1- l+exp! - fix,,) )} 

2~1 -I- exp( -: fJ Xli) 

Xli exp([Jx/JJ1 -1- exp( -[Jxl;) {Yi[JXli - log(1 -I- exp(j3xl;))} 

2)1 + exp(fJxli) 

Xji exp( - fJx/)Jl -I- exp(fJx/J {YifJXji - log log(l + eXP(fJx/J)}} 

2~1 -1- exp( -fJx/J . 

11 { { • x } = I )2 + exp( - [JXli ) -I- exp([Jxli ) Yixli _ , J j~ + 
i= 1 1 + exp( [Jx I;) 

{ 

exp(fJxli ))1 -\- exp( - fJxli) _ exp( - fJX!i ))1 + exp(fJxli) } 

2j1+ exp(fJxli ) 2~1 -\- exp( - fJXli ) 

Xli {YifJxli - log(1 + exp( - fJXji))}} 
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8p(jJ l data) L" {) {x 'i } 
---"----"----'-----'-= 2+exp(-jJx J -I-exp(jJx J Y,X,i - . + 

8jJ;-;:( J I . l +exp(-jJx,J 

{ }{ 
exp(jJx,i)-exp(- jJx,i) }) 

xli y;jJx/i- log(l -I-exp(--jJx,J) ) , ' ., " 
2 2 -I- exp( - jJx /i) -I- exp(jJx /i) 

Now put 8p(jJ l data) = 0 
8jJ 

" { {x. } I )2-1-exp(-jJx/J -I-exp(jJxp ) Y;Xfi - /1 ' -1-
-J . . 1 -I- eXl)(- fJx ) ;=1 . j-J '/i 

{ 
' }{ exp(jJX,i)-exp(-jJx,i) }} 

Xli y;jJXfi - log(1 -I- exp( -jJXfi)) h, ·. , . _ = 0 (4.34) 
2..,; 2 -I- exp( - jJx/i ) -I- exp(jJxli ) 

The posterior mode can be obta ined by solving the above equation (4.34) numerically. 

4.7.3.4 The Posterior distribution Us in g Uniform Prior 

Now using the Log likelihood f1.1I1clion (4.14) and the Uniform prior distribution 

(4.21), the Posterior distribution of jJ is found to be: 

11 

p(jJ I data) ex:: L {Y; log(pJ -I- (1- yJ log(1- pJ} 1 
1= 1 

p(jJ 1datO)ex::I{Y; IOg( ~; ]-I-IOg(1-P;)} 
;=1 IIp; 

Replacing equations (4.8) and (4.24) in (4.35) we get: 

/I 

p(jJ l data) ex:: L {y;jJx /i - log(1 -I- exp( -jJx /i))} 
1= 1 

1 /I • 

p(jJ l data) = - I {y;jJX'i - log(1 -I- exp( - jJx,J)} 
Ie ;=1 
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-co < jJ < co (4.36) 



This is the posterior distribution offJ, with normalizing constant k. We proceed further to 

obtain the estimate of parameter fJ . Then partially differentiate the above equation (4.36) 

with respect to fJ and equate it to zero. That can be further solved numerically to obtain the 

posterior mode, so for this we proceed as follows. 

Differentiate (4.36) with respect to fJ we get: 

op(fJl data) 0 ~ { } 
ofJ = ofJ f( YifJX/i - log(1 -I- exp( - fJ x /;) 

II { ( 1 .0 J} = I YiX Ii - (1 + exp(fJXji» 
;=1 . 1 + exp(fJx/J 8fJ 

- I" { , (eXP(fJX/i) J., } - yx . - X . 
i=1 I } I 1 + exp(fJx/i) }I 

op(fJl data) _ '\.~ { .' _ xli } 
- ~ YiX/i 

ofJ ;=1 . 1-1-exp( - fJxfi) 

Now 8p(fJ I data) = 0 
8fJ 

/I { X
ji } L YiX/j - = 0 

;=1 . l+exp(-j3x}j) 

The numerical solution of above equation provides us the posterior mode. 

4.8 Selection of HyperparametCl"s 

(4.37) 

Since we know that the prior distribution of parameter fJ is Normal (a ,h) and Ollr 

main objective here is to fine! the values of these hyperparameters while' a' is the mean of 

prior distribution and 'b' is the variance of the prior distribution. The idea of selecting 

hyperparameters is taken from Bian (1997), they assume Normal & Student-t priors with 

mean zero and decide about the posterior distribution at different values of variance for logit 
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model, they also take the log it model w ithout intercept and with intercept. But we have 

suggest rang of values for both parameters and select the values with minimum standard 

error. Since the next observation only depend on the parameter fJ tlu'ough the 

function log (~J = fJx /i' We have suggested a range of values of hyperparameters by 
1- Pi . 

observin g the variation in regression coefficient and also the variable of interest. The va lues 

are given as follows : 

Table 4.2 

Poster"jor Estimates at Different Values of Hyper"parameters 

Hyperpa ra meters Posterior Mode Posterior Mean Standard Error 

Mean Variance fJl fJl fJl 
al bl 
0 I -0.356785 -0.4042 1 0.149078 

8.50 2.50 -0.724716 -4 .52556 2.50413 
7.50 2 -0.698402 - 4.46906 2.4592 1 
6.50 1.50 -0.668756 -4.43835 2.30297 
5.50 I -0.664757 - 4.17370 2.14357 
4.50 0.90 - 0.594808 - 3.03357 J .27286 --
3.50 0.80 -0.546194 -2.02769 0.95781 
2.50 0.70 - 0.483658 - I. 1 8625 0.87247 

2 0.60 - 0.443846 -0.85877 0.75325 
1.90 0.50 -0.434886 - 0.83030 0.70124 
1.80 0.40 -0.425520 - 0.79985 065941 
1.70 0.30 - 0.415706 -0.76746 0.57294 

- -- ---
1.60 0.20 - 0.405397 -0.73318 0.504 5 1 ---_ .. --
1.50 0.20 -: 0.394 535 -0.66310 0.43129 
1.40 0.20 -0.383055 -0.59655 0.35547 
1.30 0.20 -0.370875 - 0. 53354 0.29579 
1.20 0.20 -0.357898 -0.47407 0.23480 
1.10 0.20 -0.344005 -0.4 18 14 0.18542 

J 0.20 -0.325645 -0.34024 0.13872 
-

Where mean = a and variance = b for the prior distribution. We suggest different values for 

the hyperparameters and find the values of posterior estimates. So finally we decided to 

select the values of hyperparameters as mean = J and variance = 0.20 and used these values 

for further Bayesian analysis because thi s set (1 , 0.20) has the smallest standard error. 
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4.9 Bayesian Analysis with Informative and Noninfol'mativc Priors 

In thi s section we will present the Bayes ian analysis with informative and 

noninforn\ative priors. The ana lysis is based on the posterior distributions that are derived in 

previous sections: 

4.9.1 Bayesian Analysis Using Normal Prior 

In this section we wi ll present the Bayesian analysis of logistic regress ion model 

without intercept by llsing informative prior as Normal. Then the Posterior distribution for 

the parameter fJ derived in sect ion (4.7.3.1) see equation (4 .25): 

p(fJ I data) = - ~'{YJJx /i - log(l -I- ex p(fJx Ii ))} exp --1 /I { ¢} 
k ~J · . 2b 

-00 < fJ < 00 

where k is the normalizing constant: 

The graph of the posterior dens ity of the parameter fJ is shown using the data set given in 

Table 4.1 . 

The Graph of Posterior Density Using Informative .Prior 

p(}'~ I data) 
1 .0 
0.9 
0.8 -
0.7 
0.1) 
0.5 
0.4 
0.3 -
0.2 
0.1 
0.0-

- 1 .0 - 0 . 5l~ 0.0 0 . 5 

figure 1 

The graph of the posterior density of fJ under informative prior shows that it is the 

Cumulative Density Function of logistic distribution: 
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4.9.1.1 Posterior Estimates 

W e have des igned programs in SAS package; program is given in appendi x 1· and 

also a similar program given in appendix IV to obtain the value of standard error of the 

parameter, while using the clata set given in Table 4 .1 to obtain posterior mode and the 

posterior mean and standard error which are g iven in Ta ble 4.3: 

Ta ble 4.3 

Posterior Estimates Us in g Informative Normal Prior 

Regression Posterior Posterior Standard Odds SKI' 
Estimate Mean Mode Errol' Ratio 

fJ -0.3402 -0.3256 0. 1387 0.722 1 - 0. 105] 

Here we observe that the posterior mean is less then the posterior mode vvhich ind icates that 

the distribution of fJ is not symmetrical as the graph also indicates see fi gure 1. The Karl 

Pearson coefficient of skewness (SKI') is also computed which indicates the leve l of 

asymmetry of the posterior d istribution of fJ . We can see in Table 4.3 that the odds ratio is 

less then 1 which indicates tha t the var iab le fibrino gen is less li kely to occur. So it can be 

sa id that everyone unit increase in the leve l of. protein plasma (fibrinogen) approximately 

increases ESR by 0.722 l. This is very low for a healthy individual with ESR less than 20 

mm\h to become an unhealthy or abnormal case with ESR greater than or equal to 20 111m/h. 

So it can be concluded that here fibrinogen is not p lay ing any signifi cant ro le to increase the 

level of ESR in any healthy individual. 

4.9.1.2 Bayesian Hypothesis Testin g 

Hypothes is testing in Bayesian IS very simple; here we on ly find the posteri or 

probability by integrating the posterior dis tribution upon the parameter i. e. 
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We test the following hypotheses : 

Ho :fJ 2 0 Versus 1-1
1 
:fJ < O 

The posterior probability for 1-/0 is : 

'" 
p(fJ 2 0) = f p(fJ I data)d fJ 

o 

Now the posterior probability Llsing informative prior is: 

I 1 " { 1 } Po = f- 2..: {YifJXji - log(l+exp(fJx j i))}exp - - (fJ-0.20)2 dfJ 
ok i=1 2 

A program is designed SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program we find the posterior probability as : 

Po=0.0031186 

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.312% 

chance to accept Ho and we conclude that for this model fibrinogen is not playing any 

signiticant role to increase the level of ESR for healthy individual if the level of thi s protein 

plasma is increases. 

4.9.2 Bayesian Analysis Ul:iing Haldane PI"iot" 

In this section we will present the Bayesian analysis of logistic regression model 

without intercept by using noninformative: Haldane prior. The Posterior distribution for the 

parameterfJ derived in section (4.7.3.2) see equation (4.29) is: 

1 " [ . 
p(fJ I data) = Ie {; {y,fJXji - log(1 + exp(fJx j;))}{ 2 + exp( - fJx j;) -1- exp(fJx j;)} ] 

-00 < j3 < 00 

where k is the normalizing constant: 
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The graph of posterior density of the parameter f3 is shown in figure 2 using the data set 

given in Tab le 4. 1 . 

The Crap!l of Posterior Density lJsing Haldane PI'iol' 

pC8 1 data) 
1 . 0 
0 , ~l 
O. B 
0.7 
O. 1)-

0.5 
0. 4 
0.3 
0 . 2 -
O. 1 
0.0 

-1.0 -O.S fJ 0.0 

Figure 2 

0.5 

The posterior distribution of f3 is logistic type as its graph indicates. 

4.9.2.1 Posterior Estimates 

We have designed programs in SAS package, similar program is given in appendix 1 

while using the data set given in Table 4.1 to obtain posterior mode and the posterior mean 

anel standard error which are given in Table 4.3: 

Table 4.4 

Posterior Estimates Using Noninformative Haldane Pdor 

Regression Posterior Posterior Standard Odds SJ(,) 
Estimate Mean Mode En'or Ratio 

f3 - 0.3463 - 0.33 12 0. 1410 0.7181 -0. 107 1 

Here we also observe the same resu lts with a slight difference in the va lues of posterior 

estimates. The Karl Pearson coefficient of skewness (SK,; ) is also indicates almost same 

level of asymmetry of the posterior distribution of f3 . We can see in Table 4.4 that the odds 
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ratio is again less then 1 which indicates that the variable fibrinogen is less likely to occur. 

This is very low for a hea llhy individual with ESR less than 20 111111\h to become an 

unhea lthy or abnormal case with ESR grea ter than or equal to 20 mm/h. 

4.9.2.2 Bayesian Hypothesis Testing 

Hypothesis testing in Bayes ian IS very simple; here we only find the posterior 

probability by integrating the posterior di stribution upon the parameter: 

Now the posterior probability using Haldane prior is: 

11/1 
Po = J Ie :s: [{ y/Jx/i -log(1 + exp(jJx/i ))} {2 + exp( - jJx/i ) -/- exp(jJx/i )}} jJ 

A program is designed SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program we find the posterior probability as: 

Po = 0.0031571 

The posterior probability indicates that under Bayesian hypothesi s criterion there is 0.316% 

chance to accept Ho and we conclude that for this model fibrinogen is not playing any 

significant role to increase the level of ESR for ' healthy individual to become an unhealthy 

individual if the level of thi s protein plasma is increases. 

4.9.3 Bayesian Analysis Using Jeffreys Prior ' 

In this section we will present the Bayesian analysis of logistic regression model 

without intercept by using non informative Jeffreys prior. Then the Posterior di stribution for 

the parameter jJ derived in section (4.7.3.3) see equati on (4.33): 

1 1/ 

p(jJ I data) = Ie ~[ Ji-I- exp( - jJx/;) + exp( jJx/J {YijJX/i - log(1 + exp(jJx1i ))} ] 

where k is the normalizi ng constant: -00 < fJ < 00 
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The graph of posterior densit y of the parameter f3 is shown in figure 3 using the data se t 

given in Table 4.1. 

The Gmph of Posterior Density using Jeffreys Prior 

pCB/ data) 

1 .0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0 . 3 
0.2 
0.1 
0.0 

- 1 .0 - 0 .5 0 0 . 0 0 . 5 
p 

figure 3 

The graph of the posterior distribution of f3 shows that it is a logi stic type and we have llsed 

the logistic link. This graph is very much similar to the graphs which are presented in the 

previous sections. 

4.9.3.1 Posterior Estimates 

We have designed programs in SAS package; simi lar program is given III 

appendix 1 and for standard error similar program is given in append ix IV , while llsing the. 

data set given in Table 4.1 to obtain posterior mode and the poste rior mean and standard 

error which are given in Table 4.5: 

Table 4.5 

Posterior Estimates Using Nonint'onnative Jeffreys Priol' 

. osterior Regression P 
Estimate lViean 

f3 - 0.3 68 1 

Posterior 
Mode 

- 0. 3525 
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Standard Odds SKI' 
En'or Ratio 
0.1430 0. 7029 -0. 1091 



The results given in Table 5.4 are also same as in previous section ,,vith s li ght difference in 

the values of posterior estimates . The Karl Pearson coefficient of skewness (SKI') is also 

indicates almost same level of asym m etry of the posterior distribution o1'fJ . W e can see in 

Table 4.5 that the odds ratio is also less then 1 which gives the same indication as in the 

previous sections. So it can be said that everyone unit increase in the leve l of protein plasma 

(fibrinogen) approximately 0.7029 increases in the level of ESR. This is very low for a 

healthy individual with ESR less than 20 mm\h to become an unhealthy or abnormal case 

with ESR greater than or equal to 20 mm/h. So it can be concluded that here again 

fibrinogen is not playing any significant role to increase the level of ESR in any hea lthy 

individual. 

4.9.3.2 Bayesian Hypothesis Testing 

Hypothesis testing in Bayesian IS very simple; here we only find the posterior 

probability by integrating the posterior di s tribution upon the parameter: 

Now the posterior probability using Jeffreys prior is : 

I 1 /I -

Po = f k ~ [J2 + exp( -/JXfi ) + exp(fJxfi) {yJ3Xfi - log(1 + exp(fJxfi))} Jel jJ 

A program is designed in SAS package, similar program is given in appendix IV to lind th e 

posterior probability and after being run the program 'Ne find the posterior probability as: 

Po = 0.0031749 

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.317% 

chance to accept flo and we conclude that for thisparticular model fibrinogen is no t playing 

any significant role to effect the ESR if thi s protein is rise in the blood plasma. 
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4.9.4 Bayesian Analysis Us ing Uniform Pdol' 

In this section we wi ll describe the Bayesian analysis of logistic regression model 

without intercept by using noninformati ve Unifo rm prior. Then the Posterior di stribution for 

the parameter fJ derived in section (4.7 .3.4) see equati on (4. 36) : 

11/ ' 
p(fJ I data) = - L {Yi fJ X/i - log(1 -I- exp(fJx/i) )} 

k ;= 1 

Where k is the normalizing constant : 

-00 < fJ < 00 

The graph of posterior density of the parameter fJ is shown using the data set in Table 4.1 

and design a program in SAS package: 

The G raph of Posterior Density using Uniform Prior 

p(,8 1 data) 
1.0 
0.9 
0.0 
0.7 
0.6 
0.5 -
0.4 
0.3 
0.2 -
O. 1 
O . O -~ __ ~ _____ ~ __ ~ 

- 1.0 - 0.5 0.0 0.5 
,8 

Figure 4 

The graph of the posteri or di stributi on of fJ shows that it is a logistic type as we have used 

the logistic link. This graph is very much similar to the graphs whi ch are presented in the 

previous sections. 
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4.9.4.1 Posterior Estimates 

We have designed programs in SAS package, similar program is given in appendix I 

while using the data set given in Table 4.1 to obtain posterior mode and the posterior mean 

and standard error which are given in Table 4.6: 

T~lble 4.6 

Posterior Estimates Using Nonillfonnative Un iform Prior 

Regression Posterior Posterior Standard Odds SK,> 
Estimate Mean Mode Error Ratio 

fJ -0.3726 -0.3569 0.1434 0.6998 -0. 1095 

The results given in Table 5.6 are also same as in previous section with sli ght difference in 

the values of posterior estimates. The Karl Pearson coefficient of skewness (SKI') also 

indicates almost same level of asymmetry of the posterior distribution of fJ. We can see in 

Table 4.6 that the odds ratio is also less then 1 which gives the same indication as in the 

previous sections that the variable (Fibrinogen) is less likely to occur. So it can be sa id that 

everyone unit increase in the level of protein plasma (fibrinogen) approximately 0.6998 

increases in the level of ESR. This is very low for a healthy individual with ESR less than 20 

mm\h to become an unhealthy or abnormal case with ESR greater than or equal to 20 mm/h. 

So it can be concluded that here again fibrinogen is not playing any significant role to 

increase the level of ESR in any healthy individual. 

4.9.4.2 Bayesian Hypothesis Testing 

Hypothesis testing in Bayesian is very simple; here we only find the posterior 

probability by integrating the posterior distribution upon the parameter: 

Now the posterior probability for Ho using Uniform prior is: 

69 



11/1 
Po = -- J:L {y,/3Xli - log(1 -I- exp(,Bx li ))}d,B 

Ie 0 ;=1 

A program is designed in SAS package, sim ilar program is given in append ix IV to find th e 

posterior probability and after being run the program we find the posterior probability as' 

Po = 0.0032583 

The posterior probability indi cates that under Bayesian hypothesi s crite ri on there is 0.326% 

chance to accept Ho and we conclud~ that for this particular model fibrinogen is not playing 

any significant role to effect til e ESR to increase its level for any hea lthy individual from 20 

mm/h to an unhea lthy individual with ESR greater equal than 20 mm/h, if the level of this 

protein is increases in the blood plasma: 

4.10 Classical Regression Analysis 

For the comparison purpose now we take the classica l estimate and test the 

hypothesis. For this we have s imply rLm the logistic regression without intercept model. 

Now the classical estimate and Hypothesis testing is given in followin g section: 

4.10.1 Classical Estimate 

Using the data set given 111 Table 4.1 and having run the logistic regreSSIO n we 

obtain: 

Table 4.7 

. Output of Logistic Regression Using Classical Approach 

--
Coefficient Classical Standard Z-Statistic p-Value Odds 

Estimate Error Ratio 

,B 
-0.3569 0. 1434 - 2.4894 0.01 28 0.6998 
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4.10.2 Classical way of Hypothesis Testing 

We have the logistic regression model as: 

LOgit(Pi ) = 10g(~J = j3X(i 
I -Pi . 

Hypothesis 

flo~ OVersus H , < O 

Since J3 = - 0.3569 and standard error of J3 is 0.1434 then the va lue of Wald 

t-stati stic is, t = -2.4894 

Since the p-value from this regression is 0.0128, it indicates that we accept Ho at 1 ~~) level 

of significance and do not accept flo at any other level of significance. So it can be 

concluded that fibrinogen is p lay ing signi fican t role at 5% level of s ignificance and it effect 

the ESR if this protein (Fibrinogen) increases in the blood plasma: 

4.11 Comparison of Bayesian and Classical Logistic Regression Analysis 

We compare the results obtained by using Bayesian and Classical techniques. The 

results are presented in Table 4.8 using different priors these, results can be 

compared with the results given in table 4.7: 

Table 4.8 

Posterior Estimates for W ithout Intercept Logistic Regression Model 

Coefficien t j3 Noninformative Prior Informative 
Uniform Prior J effr eys Prior Haldane Prior Prior 

Posterior - 0.3569 - 0.3525 - 0.33 12 -0.3256 
Mode 
Posterior -0.3726 - 0.368 1· -0.3463 - 0.3402 
Mean 
Odds Ratio 0.6998 0.7029 0.7181 0.722 1 

Standani 0.1434 0.1430 0.1410 0.138 7 
Err or 

SJ(fI 
- 0.1095 -0. 109 1 - 0.1071 -0. 1053 

--
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The results found by using Classical logistic regression and in Bayesian logistic regression 

with Uniform prior are looks like same i.e. the coefficients, p-value and odds ratio. Here 

odds ratio interpreted as the approximated change in the risk of di sease for everyone unit 

increase in the amount of fibrinogen. We observe here one thing that with thi s type of 

logistic model the results by using Bayesian approach with all prior say nothing about the 

significance of the parameter so is indi cated by interpretat ion of odds ratio but classical 

results are giving evidence in favor of the regression coefficient in term of p-value if we 

se lect 5% as level of significance although which is too high with these type of experiments, 

contradict with the value of odds ratio which is not the case in Bayesian. So it can be sa id 

that results are much accurate by Llsing Bayesian approach, while the results are much 

improved with Haldane and informative (Normal) prior as compared to uniform and 

Jeffreys. 
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Chapter 5 

Bayesian Inference of Logistic Regression Model with Intercept 

5.1 Introduction 

In this chapter, we deal with the Bayesian analysis of logistic regression model with 

intercept using one explanatory variable for response binary variable, under informative and 

noninformative priors. Section 2 consists the introduction to logistic regression model with 

its different forms. Section 3 presents the joint posterior model and joint likelihood function 

also the derivation of different joint priors that are llsed in our study. The derivation of 

posterior distribution using informative and noninformative prior are also given, we use the 

log likelihood function to obtain the posterior distribution. For informative prior we set a 

range of hyperparameters and se lect the hyperparameters that have minimum standard errors 

for parameters, these are present in section 4. Section 5 comprises the Bayesian analysis 

with informative and noninformative priors, which' includes the graphs and posterior 

estimates and hypotheses testing for the significance of parameter. Section 6 discusses the 

classical analysis of logistic regress ion model with intercept and also the hypothesi s testing 

for the significance of regression coeffici ent. Sections 7 contain the comparison of classical 

and Bayesian results and their interpretation with respett to the data set given . 

5.2 Binary Logistic Regression ModcI (BLR) with Intercept 

Here we will consider the binary logistic regression model with intercept that IS 

given as follows: 

(5.1 ) 

I-Jere flo is the intercept and fll is the slope coefficient for the explanatory variable 

fibrinogen . The above logistic regression model can also be represented as: 
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1 
Pi = Pr(Yi = 1) =-----,----

1 + exp {-(/30 + /31 XI; )} 

(5.2) 

5.3 Joint Posterior Distribution of Binary Logistic Regression (BLR) Model 

with Intercept 

Then the joint Posterior distribution of the parameter fJo and /31 is defined as: 

p(fJo, fJl I datp) oc f (/30 ' /31 I data) x p(fJo' fJl) (5.3) 

I-Jere P(fJO,/31 I data) is the joint posterior distribution while l(fJo,fJl I data) is the joint log 

likelihood function and p(/3o' /31) is the j oint prior distribution for fJo and fJl' The prior 

distributions are considered to be independent, as the independent priors are extensively 

used in literature, this idea can also be seen in Bian (1997) , Dreze (1977) , Bian (1989), 

Bedrick et. al. (1996) etc. So "ve need to decide upon the joint prior distribution and the joint 

log likelihood function. 

5.3.1 Joint Likelihood Function 

The joint likelihood of the /h observation is its probability density funct ion as a 

function of the two parameters fJo and fJl where (Yi , x
f
;) are fixed at the observed values. The 

observations are all independent, now for the given case we precede as follows. 

Let Yi be the response variable that is binary in nature i.e. it takes only two values 0 and 

for' n' observations. Since the analysis of binary response variable in classical approach, the 

Maximum Likelihood Method (MLE) is used to est imate the unknown parameters of the 

Binary Logistic Regression Model. However the est imates based on the class ical approach 

are not accurate when the sample s ize is small. In this situation Bayesian approach provides 

better and accurate results. Then if Yi is the response variable and Xli'S the explanatory 
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variables that can be either qu::ditative or quantitative in nature while PI is the probability or 

sLlccess corresponding to the i(1l observation then the joint likelihood function can be 

presented as: 

(S.4 ) 

Now if Pi = H(fJI Xi ) whi le fJl = (fJO,fJl) then the likelihood function becomes as: 

(5 .5) 

Taking log on both sides of above function we get the Log likelihood function as: 

II 

log L(fJo,/J( I data) = L {Yi 10g(H(fJlxJ) -I- (1 - yJ 10g(1- H(fJIXi ))} 
i = ( 

Sine we lmow that Pi = H(fJ\) then for [miher consideration we can write the above log 

likelihood function as: 

II 

l(fJo, fJ( I data) = I {YI 10g(Pi) -I- (J - Yi) 10g(1- PI)} (5.6) 
i = ( 

Where PI is the probability of sLlccess for i(h observation in data set and be represented in 

the logistic regression model as: 

1 
Pi = ----,-------,-

1 -I- exp{ -(fJo -I- fJ( x,J } 
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5.3.2 Joint Prior DistTibution 

V.,1e consider the joint noninformative and informative priors of flo and fl, in the 

following sections: 

5.3.2.1 Joint Informative (Normal) Prior 

Here we consider the independent norma l prior for each parameter. The joint 

Informative prior of the two parameters is the product of the two individual priors: 

variances. Therefore 

-00 < flo < 00, -00 < fl, < 00 (5.7) 

5.3.2.2 Joint Noninf'onnative (Haldane) prior 

The joint noninformative (Haldane) prior by using the log li ke lihood function given 

in (5.6) is derived as: 

(5.8) 

1 
where p = -----,----

I l+exp{ - (flo+ !i,x/i ) } 

The above equation (5.7) can also be written as: 

(5.9) 
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5.3.2.3 Joint Noninformativc (Jeffreys) Prior 

The joint noninfonnat ive (Jeffreys) prior by using the log likelihood functi on give n in (5.6) 

is derived as: 

Since we know that 

(5. 10) 

1 
where Pi = -----;-------,-

1 -\- exp {-(f30 -\- f3l x ji )} 

The above equation (S.9) can also be written as: 

1 1 

p(f3o ,f3J oc J-J (f3' xJ -2 (1- H (f3 ' xJ f"'i (S. 1 I) 

5.3.2.4 Joint Noninformativ e (Uniform) Prior ' 

We consider the joint noninformative Prior of f30 and f31 as Uniform Prior: 

-00 < f30 < 00, -00 < f31 < 00 (5 .12) 

5.3.3 Joint Posterior Distribution 

Now the joint posterior distributions for joint noninformative and informative 

Priors are given in the following sections: 

5.3.3.1 Joint Posterior DistrilJution Using Normal Prior 

Now for the joint posterior distribution of f30 and f31 , we consider the joint Log 

Likelihood function (S .6) and the joint Normal prior (S.7), then the joint posterior 

di stribution of f30 anel f31 is: 
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p(fJo, fJl I data) ex ~ Y; log -.1..L- -I- 10g(1- p,) exp - 1 0 o . 0 1 I 
II { (') J } {b (/3, - a )2 + b (fJ - a )2 } 

;= 1 1 - p; 2bobl 

(5.13 ) 

By using log istic regress ion model with intercept and havi ng only one explanatory variable 

given in equation (5.1) see sec tion (5.2) we can derive the express ion : 

(5.14) 

Then after replacing equation (5.1) and (5.14) the above posterior distribution (5.13) 

becomes: 

p(fJo,fJ1 I data) cc t[Y;(fJo -I- fJ1X/i) - log{ 1 -I- exp(fJo -I- fJIX/i)} ] 
,= 1 

Let us suppose here tha t (); = fJo -I- fJl X/i for further s implification also suppose that: 

Then the joint posterior distribution for fJo and fJ1 will be as: 

Let us again suppose that : 

p(fJo, 131 I data) = ~ t[exp(-_I_. (¢o' -I- ¢I')){y,B, - log {I -I- eXP(BJ}}] 
k ;=1 2b 
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p(fJo ,/31 I data) = ~ t[exp ( - rp*, J {y;B; -log {1 -1-exP(tJ;)}}] 
k ;= 1 2b 

(5 .15) 

-('jJ < fJo < 00 , -00 < fJI < 00 

This is the joint posterior distribution of fJo and fJI , where k is the normalizing constant. Here 

our main objective is to estimate the unknown parameters. Then for this purpose if we 

partially differentiate the above posterior equation (5 .15) with respect to fJo and fJI then 

equating to zero. So thi s numerical solution will provide us the posterior estimates (modes) , 

now for this we precede as follows: 

Differentiate (5.15) with respect to fJo we obtain: 

= t exp( - rp' , J C... exp(-e,) 

;= 1 2b 1 (1 -1- exp(- tJ;» 2(1 - --
l--J 

1 + exp(- tJ,) 

Let 

op(fJo,fJl I data) = t[exp(-.!f.J{(y; - 1 J - It {y;B; - log {l -I-exP(tJ,)}}}] 
ofJo ;=1 2b 1 -I- exp( - BJ 

N r. ... op(fJo, /J1 I data) 0 
ow put ior maX1l111Zll1g = 

o/Jo 
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t[exp(-§.){(y, - . 1 )- It{y,tJ,-IOg{l+eX P(B,)}}}]=O (S.16) 
,=1 2b I -I- exp(--B,) 

Now again differentiate (S.1S) with respect to jJl we obtain: 

8p([Jo,(J, ldata) =~ t[exp(- rjJ',]{y,B;-IOg{l+eXPCBJ}}] 8jJ, 8[J, ;= 1 2b 

y,X/i - . ( J 
. (1 -1- exp(-B,)) 2 1 _ 1 

1 + exp( -B,) 

X /i exp( -B; ) 

{ JI B -I- IOg( l - I )}exp(-L)(~([J -a ))} 
I , I -I- exp( - B;) . 2b' b, I I 

Let us suppose that It' = i (jJl -al ) 

1 

8p(jJo,jJ, I dala) = t [exp ( - rjJ', ]{(Yi - J J-It' {YiB, - log{J -I-eXP(B,)}}}] 
8jJo i=1 2b 1 -I- exp( ~Bi) 

Now put for maximizing 8p(jJn, jJl I data) = 0 8jJ, 

t[exp(-l:.-){(y, - 1 J - It' {y,B, - log {I -I-eXP(BJ}}}] = 0 (S.17) 
i=1 2b 1 -I- exp( -Bi ) 

Posterior modes can be obtained by solving above equations (S.16) and (S.17) numerically. 
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5.3.3.2 Joint Posterior Distribution Using Haldane PriOl' 

Now for the joint posterior distribution of fJo and fJl we cons ider the joint Log 

Likelihood function (5.6).ancl the joint Haldane prior (5.8), then the joint posterior 

distribution of fJo and fJl is found to be: 

11 

p(fJo, fJl I data) ex: L {y, log(p,) + (\ - y,) 10g(1 - p,) }PiC" 1 (1 - p,)- I 
i~ 1 

p(fJo, fJl I data) ex: t {Yi IOg( ~i -J + log(1- Pi )}Pi-
I 
(1- pJ-1 

,~I 1 Pi 
(5.18) 

Rep lace equation (5.1) see section (5.2) in above expression (5.18) we get: 

1/ 

p(fJo,fJ1 I data) ex: L {Yi (13o + fJIX/J -\- 10g(1 - p,) }p, -I (1- p; r l 

i~1 

Since we know from equation (5.14) log(l - Pi) = -log {I -\- exp(fJo + fJIX/i)} that is derived 

from equation (5.1), now we can derive the expression form equation (5. \ ) as: 

(5 .19) 

Now replace (5.14) and (5.19) in (5.18) the joint posterior distribution becomes: 

11 ,-

p(fJo,fJ1 I data) ex: LL {I -\- exp {-(fJo -/- fJX/i)}}{ 1 -/- exp(fJo -\- j3x/J} 
i ~ 1 

Yi (fJo -\- fJIX/i) -log {I -/- exp(fJo -/- fJIX/i)} ] 

Let us suppose here that: 

Then the joint posterior distribution for fJo and 131 will be as: 

1/ 

P(fJO,fJl I data) ex: :L[ {2 -\- exp( -8;) -\- exp(8i )} Y/), -log {I -\- exp(8i )} ] 

i;1 
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1 II 

p(fJo,/JI I data) = k ~ [{ 2 + exp( - BJ + exp(BJ} )l;B, - log {I -I- exp(B, )} ] (5.20) 

-co < fJo < co, -co < fJl < co 

This is the joint posterior di s tribution of fJo and fJl ' where k is the normalizing constant. 

Now to obtain the posterior estimates (modes) of the parameters fJo and fJl we proceed wilh 

partially differentiate the above equation (5.20) with respect to fJo and fJl simultaneously and 

then equating to zero. The numerical solution will provide us the Posterior estimates 

(modes), for this we precede as follows: 

Differentiate (5.20) with respect to fJo we obtain: 

op( j3, fJ I data) 0 "_ 
0' 1 = -.L:[{2 + exp( - B;) + exp(B;)} y;B; - log {I + exp(B;)} ] 

ofJo ofJo ; = 1 

II 

= I {2-1-exp(- BJ -I-exp(B,)} 
exp(- B) 

;=1 

eXP(B;){l+eXP(-B;)}{y;B;-I- IOg (l - 1 ]} _ 
1 -I-exp(-B,) 

{l -l-eXp(BJ}eXp(-B;){y,B, -I-IOg(l- 1 ]}} 
l 1 + exp( -B, ) 

= t{{2+eXP(-B;)+eXP(B;)}{y; _ 1 }+ 
;=1 1 + exp( - f); ) 

exp(BJ {I -I- exp( -BJ} {y,B, - Jog {I -I- exp(B,)}} -

exp( - B,) {I -I- exp(B, )} {y;Br - Jog {I + exp(B;)}}} 
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= t{{2+eXP(-B;)+exPCB;)}lfy, _ 1 }+ . 
_ 1 -I- eX J)(-B ) 1- 1 I 

{ exp( B, )(1 -I- ex pC - B, )) - exp( - B, )(1 + exp( B; )) } 

ap(fJo ,fJI I data) = t[{ 2 + exp( - B,) -I- exp(B,)} {Y; _ 1 }-I 
afJo ;= 1 1 + exp(-B;) 

{YA - log {I -I- exp( B;)} } {exp( B;) - exp( - B,)} ] 

N 
c .. . ap(fJo, fJl I do/a) 0 

ow lor max ll11lZlI1g put = 
afJo 

1/ [ I { . I} I {2'-I-exp(-B;)+exp(B;)} Y; - _ + 
;=1 1 -I- exp( -B;) 

{y;B; - log {I -I- exp(BJ}} {exp(BJ - exp( -BJ} ] = 0 (5 .2 1 ) 

Again differentiate (5 .20) with respect to fJl we obtain : 

ap«(J ,fJ I data) a f- [ ] 
o I = - L.. {2 -I· exp( - B,) -I- exp(B,)} y,B, - log {I -I- exp(B,)} 

afJl afJl ;=1 

1/ 

= I {2 + exp( - B;) + exp(B;)} 
;=1 

exp(B;) {I + exp(-B;)} XI; { y;B; + !Og( l - 1 ]}-
. l +exp(- B,) 

{l +eXP(B,)} eX P(-B,)X/i{YA+ IOg( l --. 1 . ]}} 
. l +exp(- B,) 
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= t {{ 2 + exp(-B;) -I- exp(B;)} 1) Y;Xji - Xfl }-/-
_ 1 -I- ex])(-B ) I-I I 

{ ( 
exp( -B) )} exp(BJ {l -I- exp( -BJ} Xli )I;B; -I- log ,-

1 -I- exp(-B;) 

{ ( 
exp(-B) )}} {I -/- exp( B;)} exp( -B; ) Xli yA -I- log , 

. . 1 -I- exp( -B; ) 

II { ) X. } =L {2-1-exp(-B;) -I-exp(BJ}1 Y;Xli - /I _ -I-
;=1 L 1 + exp( -B; ) 

8p(f3 f3 I data) ~[ } { XI;} 
0' 1 = L., {2 + exp( - B; ) -/- exp( B, ) y;Xli - . _ -I-

8f31 ;= 1 . I -/- exp( -B,) 

Xli {YA - log {I -/- exp( B;)} } {exp( B;) - exp( -B;)} ] 

Now for maximizing put 8p(f3o,f31 I data) = 0 
8f31 

II [ {X . } L {2 -I- exp(-BJ + exp( BJ} y;x/i - I' _ -I-
;=1 1 -I- exp( -fJ; ) 

To obtain the Posterior modes solve the equation (5.21) and (5.22) numerically . 
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5.3.3.3 Joint Posterior Distribution Using Jeffreys Prior 

Now for the joint posterior di stribution of fJo and fJ
1 

we consider the joint Log 

Likelihood function (S.6) .ancl t.he joint Jeffreys prior (5.10), then the joint posterior 

di stribution of fJo and fJ
1 

is found to be : 

1/ 1 1 

P(fJO,fJl I data) ex L {Y, log(p,) -I- (1 - y,) log(l - p,)}p; -2" (1 - P, f 2 
;= 1 

P([Jo,/31 I data)CC I {Y;IOg( _~i )-I-IO~(1-PJ}p;-t(1-PI)-t 
, =1 1 Pi 

(5.23) 

Replace equation (5.1) in above expression (5 .23) we get: 

n il 

p(fJo, fJl I data) ex L {y, ([Jo + fJI X/J + 10g(1 - pJ }p;-"2 (1- Pi fi (5.24) 
i=1 

Since we know from equation (5.14) log(l -- p,) = -log {I -I- exp(fJo -I- fJ1 X,;)} that is deri ved 

from equation (5.1), now we can derive the expression form equation (5.1) as: 

1 1 

Pi-"2 = )l -1-exp(-[Jo-fJX/i) & (l-p,)-"2 =)l-1-exp([Jo-l-[JIXji) (5.25) 

Now replace (5.14) and (5.25) in (5.24) the joint posterior distribution becomes: 

n 

p(fJo,/31 I data) ex L {Yi([JO -I- [JIXji) - log(1 -I- exp([Jo -I- [JIX/i))} 
;=1 

Let us suppose here that, (); = fJo -I- fJIX/i 

Then the joint posterior distribution for [Jo and /31 wi ll be as: 

1 1/ 

p([Jo, /31 I data) = k L {y/J, - Iog(l -I- exp( (J,)) }JI -I- exp(-t9, ) JI -I- exp( 19, ) 
,=1 . . . 

(5.26) 

-00 < /30 < 00, -00 < [JI < 00 
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This is the joint posterior distribution of /30 and /31' where k is the normalizing constant. Here 

our main objective is to estimate the unknown parameters . Then for this purpose if we 

partially differentiate the above equation (5 .26) with respect to flo ancl fJl then equating tc 

zero . So this numerical solution will provic1e us the Posterior estimates (modes), for this we 

precede as follows. 

Differentiate (5 .26) with respect to /30 we obtain: 

ap(/3o~oldata) = a~o t{y,B, - IOg(1 -I- eXP(B,))} ,)I +eXP(-B,) ,)l -l-exPCBJ 

/J 

= LJI + exp(- Bj) ,)1 + exp( B;)-
exp( -B; ) 

j=1 

exp( (1; )Jl + exp( -(),) {YA + log (1 - I J} 
1 + exp(-Bj) 

2,)1 -I- exp( Bj ) 

exp( -(J; )Jl -I- exp((J,) ~ y;B; -I- IOg(1 - 1 J} 
l I+ exp(- B,) 

2JI -I- exp( - B,) 

=t{Ji -l-exP(-(Jj) J1-1- eXP(B;){Yj- __ 1 _ _ }+ 
;= 1 1 1 exp( B;) 

exp( (Jj ),)1 -I- exp( -(J,) {YA - log(l + exp( B,))} 

2,)1-1-exp( B
j

) 

exp( -BJFe;q;(Jjj {)I,B, - log(l + eXP(B,))}} 

2,)1 + exp( -B; ) 
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= t{)2+ exp(- B;) +exp(B;) {Y; _ ,1 } + 
,=1 I + exp( - f), ) 

{

exp(()J.J1 -I- exp( -OJ _ exp( -()J.Jl -I- eXP(()J} 

2.J1 -I- exp( (); ) . 2)1 + exp( -f); ) 

8p(fJo, fJl I data) = :t {)2 + exp( - ()J -I- exp( ()J {Y; _ 1 } -I-
8fJo ; = 1 1 -I- exp( - ();) 

{y,(); - IOg{l-l-eXp(();)}}{ )eXP(BJ-expc-(),) }} 
2 2 + exp( - ();) -I- exp( (),) 

Now for maximizing put 8p(fJo,fJl I data) = 0 
8fJo 

{y;B; - log(1 + exp(f)J)} { exp(- (),) - exp( - ();) 1} = 0 
2.J 2 + exp( - ();) -I- exp( ();) f 

Again differentiate (5.26) with respect to fJl we obtain: 

II 

== L .J1+exp(- f)J)I-l-exp(f)j 
X Ii exp( - f); ) 

;= 1 
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X Ii exp((); ))1 -I- exp( - (),) {y,(), -/- IOg( 1- 1 ]} 
. 1 -/- exp( -(), ) 

2)1 -1-exp(();) 

Xli exp( - (};))1 -I- exp(B;) {YA -I- log (1- 1 J} 
'. 1-1- exp(-(),) 

2Jl -I- exp( - (),) 

=:L )1 -I- exp( -B;) )1 -I- exp( BJ y;xli - ./, -I-/I { { X' } 
;=1 1 -I- exp( -B; ) 

Xli exp( BJ)l -I- exp( - B,) {y,B, - log {I -I- exp( B, )}} 

2J1 -I- exp( B; ) 

Xli exp( - B; ))1 -1- exp(BJ {YiB; - Iog{l -I- eXP(BJ}}} 

. 2)1 -I- exp(-B;) 

= t {)2 -1- exp( -();) -1-exp(()J f Y,x./i _ X Ii _ } -1-
i =1 l 1 -I- exp( -(),) 

{ 
exp( B; }Jl -I- exp( -B;) _ exp( -()i ))1 -\- exp( B, ) } 

2~l-\- exp( Bi ) 2~1 -\- exp( -(}i) 

0' 1 = :LJ2 -\- exp( -BJ -1- exp( BJ y;xli - ./, -\-
op(fJ fJ I data) /I { {X . } 

ofJ1 ;=1 1 -\- exp(-();) 

{ 
. } { exp(B;) - exp( -();) }} 

xfi y/); - log{ l-l- exp(()J} ) 
. 2 2 -\- exp( -8,) -\- exp((}; ) 

Now put for maximizing op(fJO,fJl I data) = 0 
ofJ1 
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II { {x . 1 I J2+exp(- fJi )+exp(fJ,) y,X/i - /, - J+ 
i = ) 1 + exp( -f), ) 

f .f) . - 1 (1 .. (f). ))} f exp( fJ;) - exp( -fJ;) }} = 0 
X/I lY" og I- exp I 1 J . 

2 2 -1- exp( -f)J + exp(f)J 
(5.28) 

The numerical so lution of above equations (5.27) & (5.28) will provide the posterior modes . 

5.3.3.4 Joint Posterior distribution Using Uniform Prior 

Now using the joint Log likelihood function (5 .6) .and the joint uniform prior 

distribution (5.12), then the joint posterior distribution of ,Bo and,B) is found to be: 

II 

p(,Bo , j3) I data) ex I {Yi 10g(Pi) + (1 - Yi) 10g(1- Pi)}l 
i= ) 

p(,Bo,,B) I data) ex t{YIIOg( ~i J+ Io g(1 - Pi)} 
1= ) 1 Pi 

(5 .29) 

Now replace equation (5.1) in above express ion (5.29) we have: 

11 

p(,Bo,,B) I data) ex L {Yi (,Bo + ,B) X/i) + log(l- Pi)} (5.30) 
i = ) 

Now put equation (5.14) in above equation (5 .30) we get: 

/I 

p(,Bo,,B) I data) ex I {Y, (,Bo -I- j3)x /i) - log {I -I- exp(,Bo + ,B) x /i )}} 
1=) 

(5.3 J) 

-co < ,Bo < co, -00 < ,B) < 00 

This is the joint posterior di s tribution of,Bo and,B) , where k is the norma li z ing constanl. 

Here our main objective is to estimate the parameters. Then for this purpose if we partially 
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differentiate the above equation (5 .3 1) with respect to flo and fl, s imultaneo ll sly and equate it 

to zero. So this numerical so lution wi ll provide us the Posterior estimates (modes), so fo r 

this we proceed as follows. 

Differentiate (5.31) with respect to flo we obtain: 

1/ 

=I 
;=1 

=I Yi ------II { 1 } 
;=1 1 -I- exp( - flo - fl,X /i ) 

Now as we know that (); = flo + fl, X/i 

N p . . . °p(flu , fl,ldaLa) 0 
ow put lor maXlmlZll1g = 

oflo 

II { I} Y - = 0 "B I 1 + exp( -(); ) 
(5 .32) 

Now differentiate (5.31) with respect to fl, we obtain: 
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II 

=2: 
,=1 

Now put for maximizing 8p( fJo,/JI I data) = 0 
8fJo 

'" ' Ii 11 { x 1 
L....; y, X Ii - . = 0 
,=1 . 1 + exp( -(),) J 

(5.33) 

To obtain the posterior modes, solve the above equations (5.32) and (5.33) numerically. 

5.4 Selection of Hypcrpannneters 

Since we know that the prior di stribution of parameters fJo & fJl are as follows: 

hyperparameters while 0 0 & a l are the means of prior distributions and bo & bl are the 

variances of the prior distributi ons. We have suggested a range of values of hyperparameters 

by observing the variation in regression coefficients and also the variable of interest and 

select the values with minimum standard error, the values are given as follows: 
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Table 5.1 

Posterior Estimates Using Different Va lues of Hyperparameters 

I-Iyperpara meters Posterior Mode Posterior Mean Sta nd ard Error I 
I 

Mean Var iance Mean Varian ce flo fll flo fll flo (Ji 
bo b ao al I 

0 I 0 I - 7.0703 2.0535 -8.02 13 2.339 1 2.7645 0.922'1 
15 5.5 10.5 2.5 - 13.9789 5.8436 - 50.8567 14 .70 11 17.9522 4.8567 I 

14 5 9.5 2 - 12.724 9 4.31 2 1 - 47 .0578 13 .6067 15 .6859 4.5366 
13 4.5 8.5 1.5 - 11.1 78 4 3.6599 - 43.3829 12.5478 14 .4 0 10 4.1 859 .-
12 4 8 I - 10. 1870 2.67 10 - 39.7078 I 1.4888 13.9660 3.8295 ---
II 3. 5 7.5 0.90 - 9.2572 2. 17 10 -36. 194 1 10.476 1 12.8647 3L1923 
10 3 6.5 0.80 - 7.9225 2.0893 -32.94 11 9.538 1 10.9812 3. 159,1 

9 2.90 6.25 0.70 -7.5597 .2.0 194 - 29.6960 8.6023 9.8987 2.84 74 
8.5 2.80 6. 10 0.65 -7.4635 1.9581 -26. 14 16 8. 1540 8.7 11 4 2.7189 

8.25 2.70 5.95 0.60 -7.3427 1.8923 -23.3924 7. 7993 7.7975 2.6077 
8.1 0 2.60 5.75 0.55 -7.2664 1. 8583 -21.9642 7. 1843 7.32 14 2.3948 
7.95 2.50 5.50 0.50 -7.0985 1.8295 - 18.5474 6.6932 6. 1825 2.23 II 
7.75 2.25 5.40 OLl5 -6.937 1 1. 8023 - 15.9575 5.5238 5.3090 1.84 13 
7.60 2. 10 5.30 0.'10 - 6.8525 1.7898 - 13 .2650 4.3238 4.4217 1.44 13 

~.50 2 5 0.38 - 6.7569 1.7724 - 11 .5244 3.9387 3.84 16 1.3529 
7.40 1.95 4.90 0.36 - 6.6391 1.7699 - 9.9825 3.2423 3.2395 1.0509 
7.30 1.90 4.80 0.35 - 6.5237 1. 7618 -8.70 12 2.67 11 2.9506 0.9305 
7.20 1. 85 4.75 0.34 - 6.4522 1.7598 -7.9436 2.3788 2.6579 0.8669 
7. 10 1.80 4.70 0.33 - 6.4286 1.7513 -7.5020 20996 2.5 115 0.8293 

These are the values for hyperparameters fo r informative priors w hich are Normal priors for 

each parameter that is considered independent. 'Where mean = ao and variance = bo for the 

prior distribution of flo whi le mean = a l and variance = bl for the prior distribution of (JI . 

We suggest different values for the hyperparameters and find the val ues of parameters. So 

fina lly we decided to select the values of hyperparameters as mean = 7. 10 and variance == 

1.80 for the prior distribution of flo and mean = 4.70 and variance = 0.33 they have the 

minimum standard error. 

5.5 Bayesian Analysis with Informative and Noninfonnative P.-iors 

In this section "ve will carry out the Bayesian analysis with informative priors and 

noninformative priors . The analysis is based on the posterior distributions that are derived in 

previo lls sections : 
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5.5.1 Bayesian Analysis Using Joint Normal Pdor 

In this section we deal with the Bayesian analys is of logist ic regression model with 

intercept and one explanatory variable by using informative (Joint Normal) prior. We use 

the following joint posterior distribution for the parameters fJo & fJl derived in section 

(5 .3.3.1), see equation (5.15): 

p(fJo,/JII data) =~ t[exp( - L.] {y/? -IOg{l+eXp(tJJ}}] 
k j~ 1 2b 

-00 < fJo < 00, -00 < fJl < 00 

where k is the normalizing constant: 

Programs in SAS package have been designed to' show the graph of marginal densities of the 

parameters fJo & fJl by using the data set given in Table 4.1. Similar program is given in 

Appendix IV. 

Graph of Postcdor M'arginal Densities using Normal Prior 

"'Po I data) 
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Figure I (a) 
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5.5.1.1 Postel"iol' Estimates 

For further analysis we have designed programs in SAS package, simil ar 

program is given in Appendix II and also a similar program for is given in appendi x IV to 

obtain the value of standard error whi le using the data set given in Table 4. 1 and 

hyperparameters that are obtain in section (5.4.2). We have used Marquart method to obtain 

the posterior modes while Quadrature method is used to obtain posterior mean and standard 

error. 

T able 5.2 

Posterior Estimates Us ing Joint Normal Prior 

Regression Posterior Posterior Standard Odds SI(" 
Estimate Mean Mode En'or Ratio 

/30 
-7.5010 -6.5485 2.5 11 5 - 0.3797 

/3, 2.0996 1.8093 0.8293 6. 1062 0.3500 

Here we have observed that the posterior mode for /30 is greater then the posterior mean of 

/30 which indicates that the di stribution of this parameter is negatively skewed. Thi s is also 

indica ted in graph see figure 1 (a). How much it is skewed we have ca lculated the coefficient 

of skewness. We have also observed that the posterior mean of /31 is greater the II th e 

posterior mode of /31 which shows that the di stribution of parameter is pos itively skewed, 

that is also indicated in figure 1 (b), which can also be seen by the coefficient of skewness 

given in Table 5.2 . It is observed that the odds ratio is greater then 1 which indica tes that the 

variable fibrinogen is more likely to occur, so the acids ratio is high for a hea lthy individual 

with ESR less than 20 mm\h to become an unhealthy or abnormal case with ESR greatel 

than or equal to 20 mm/h. So it can be said that everyone unit increase in the leve l of 
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protein plasma (fibrinogen) approximately 6. 1062 unit increases in the level of ESR. That is 

too high as compared to the results given in previous chapter. So it can be conclucled that the 

strength of relationship between the probability of an ESR reading greater than 20 mm/h and 

the level of protein plasma (fibrinogen) is high. 

5.5.1.2 Bayesian Hypothesis Testing 

Hypothesis testing in Bayesian IS very simple; here we only find the posterior 

probability by integrating the joint posterior distl'ibution upon the parameter i.e. 

We test the following hypotheses : 

The posterior probability for No is: 

o '" 
Po UJI s: 0) = f f p(/Jo ,Ill I data)d /Jod fJl 

-00 -C/l 

Now the posterior probability llsing informative prior is: 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program v,te find the posterior probability as: 

Po = 0.001873 

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.19% 

chance to accept flo so accept HI with high probability and we conclude that fJl is positive 

and playing a significant role to effeet the ESR if this protein rises in the blood plasma. That 

is also indicated in the result of odds ratio. 
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5.5.2 Bayesian Analysis Using J oin t Haldane Prior 

In this section we \,vill present the Bayesian analys is o f binary logisti c regress ion 

mode l with intercept and one explana tory va ri able by lI sing noninforma tive (Jo int Ha ldane) 

prior. We use the following joint posterior distriblltion fo r the paramete rs /30 & /31 deri ved in 

section (5. 3.3 .2) see equation (5.20): 

1 /I 

p(fJo, fJl I data) = Ie ~ [{ 2 + exp( -B,) + exp(B,)} )l,B, - log {1 -I- ex p(BJ} ] 

-00 < fJo < 00, - 00 < fJl < 00 

where k is the normali z ing constant: 

Programs in SAS package have been designed; similar program is given in appendi x IV to 

show the graphs of m arginal densities of the parameters fJo & fJ1 by using the data set gi ven 

in Table 4.1. 

Graph Posterior Marginal Densities using Haldane Prior 
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5.5.2.1 Posteriol' Estimates 

For further analysis we have designed program in SAS package, similar 

program IS given in appendix II and use the data set given in Table 4 . 1. We have L1sed 

Marquart method to obtain the posterior modes 'while Quadrature method is used to obtain 

posterior mean and standcu'd error. 

Table 5.3 

Poste.-iol' Estimates Using Joint Haldane Pl'ior 

Regression Posterior Posterior Standard Odds SKp 
Estimate Mean Mode Error Ratio 

/30 
-7.6910 - 6.6925 2 .6015 - 0.3838 

/3, 2.1872 1.8885 0.8 5 15 6.6094 03508 

Here we have observed that the posterior mode.for /30 is greater then the posterior mean of 

/30 which indicates that the distribution of parameter is negatively skewed, as indicated in 

graph figure 2(a), which can also be checked by coefficient of skewness given in Table 5.3. 

"Ve have also observed that the posterior mean of /31 is greater then the posterior mode of /31 

which shows that the distribution of this parameter is ' positively skewed, this is also shown 

in graph figure 2(b), how much it is skewed can be seen by the coefficient of skewness. It is 

also observed that the odds ratio is greater then 1 which indicates that the variable fibrinogen 

is more likely to occur, So it can be said that everyone unit increase in the leve l of protein 

plasma (fibrinogen) approximately 6.6094 unit increases in the level of ESR. So there is no 

difference in the value of odds ratio as given in the pi'evious model. So it can be concluded 

that the strength of relationship between the probability of an ESR reading greater than 20 

mm/h and the level of protein plasma (fibrinogen) is also high for this model. 
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5.5.2.2 Bayesian Hypothesis Testing 

The posterior probability of hypothesis given 111 section (5.5.1.2) usi ng Haldane 

pnor IS: 

o 16 /I 

Po = f f L[ {2 + exp( - t9J + exp(t9J} y/); - log {I + exp(t9;)}}t /3od /31 
- 5 - 16 ;=1 

A program is designed in SAS package, similar program is given in appendix IV to finc! the 

posterior probability and after being run the program we find the posterior probability as: 

Po = 0.002014 

The posterior probability indicates Lhat under Bayesian hypothesis criterion there is 0.20% 

chance to accept Ho so we accept HI with high probability and conclude that /31 is positive 

and playing a significant role to effect the ESR if this ' protein rises in the blood plasma. This 

result also gives the evidence in favor of oclds ratio that also indicate the same results. 

5.5.3 Bayesian Analysis Using Joint Jeffreys Prior 

In this section we will present the Bayesian analysis of binary logistic regression 

model with intercept and one explanatory variable by using noninformative (Joint Jeffreys) 

prior. We use the following joint posterior distribution for the parameters /30 & /31 derived in 

section (5.3.3.3) see equation (5.26): 

1 /I 

p(/3o, /31 I data) = - L {y;e; - log(l + exp(t9J) }JI + exp( -61,) Jl + exp(tJ,) 
Ie ; =1 . 

-00 < /30 < 00, -00 < /31 < 00 

Where Ie is the normalizing constant: 



Programs in SAS package have been designed; simi lar program is given in appendi x IV to 

show the graph of marginal densities of the parameters fJo & fJ) by using the data set in 

Table 4.1. 

Graph of Posterior Marginal Densities using Jeffreys Prior 

J-\po I data) 

0.10 
0.09 -
0.08 

0.07 

0.06 

0.05 
0.04 

0.03 

0.02 

0.01 

0.00 

-30 

/ 

- 20 -10 4, 0 

Figure 3(a) 

5.5.3.1 Posterior Estimates 
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For further analysis we have designed programs in SAS package, gIven Il1 

appendix II and use the data set given in Table 4.1. We have llsed Marquart method to 

obtain the posterior modes, while Quadratme method is used to obtain posterior mean and 

standard error. 

Table 5.4 

Posteriol' Estimates Using Joint Jeffreys Prior 

Regression Posterior Posterior Standard Odds SJ(p 

Estimate Mean Mode Error Ratio 

fJo 
-7.9124 - 6.8575 2.7284 - 0.3866 

fJ, 2 .25 19 1.9236 0.9115 6.8456 0.3602 
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We can observed that posterior mode for fio is greater then the posterior mean of fJo which 

indicates that the distribution of this parameter is negatively skewed which is also observed 

through the presentation of graph in figure 3(a) and also the coefficient of skewness given in 

Table 5.3. We have also observed that the posterior mean of fJl is greater then the posteri or 

mode of fJl which shows that the distribution of this parameter is positively skewed how 

much it is skewed can be seen by the coefficient of skewness given in Table 5.3 and the 

graph in figure 3(b) also indicates the same skewness. It is also observed that the oclds ratio 

is greater then 1 which indicates that the variable fibrinogen is more likely to occur, So the 

strength of relationship between the probability of an ESR reading greater than 20 mm/h and 

the level of protein plasma (fibrinogen) is also high for this moclel, as one unit increase in 

the level of protein plasma (fibrinogen) increases the ESR by 6.8456 units. That is also same 

as for the other models but with slight difference. 

5.5.3.2 Bayesian Hypothesis Testing 

The posterior probability of hypotheses given 111 section (5.5.1.2) USll1g Jeffreys 

pnor IS : 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program we find the posterior probability as: 

Po = 0.002157 

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.22% 

chance to accept Ho so we accept HI w ith high probability and we conclude that fJl is 
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positive and playing a s ign ificant role to effec t the ESR if thi s protein is ri se in the blood 

plasma. This evidence also fav ors the results given in Table 5.4. 

5.5.4 Bayesian Analysis Using Joint Uniform Prior 

In this section we will present the Bayesian analysis of binary logisti c regress ion 

model with intercept and one ex planatory variable by us ing noninfonnative (Joint Un iform) 

prior. We use the followin g joint posterior distribution for the parameters fJo & fJl cieri ved in 

section (5.3 .3 .4) see equation (5.31). 

-00 < fJo < 00, - 00 < fJl < 00 

Where k is the normalizing constant: 

Programs in SAS package has been designed, similar program is given in appendix IV to 

show the graph of marginal densiti es or the parameters fJo & fJ1 by using the data set 111 

Table 4.1. 

Graph of Posterior Marginal Densities using Uniform Prior 
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5.5.4.1 Posterior Estimates 

For further ana lys is we have designed program in SAS package, simil ar 

program IS given in appendi x II and lise the data set given in Table 4.1 . We have used 

Marquart method to obtain the posterior mode while Quadrature method is used to obtain 

posterior mean and standard error by using the Posterior distribution: 

Table 5.5 

Posterior Estimates Using Joint Uniform Prior 

Regression Posterior Posterior Standa.-d Odds SKI' 
Estimate Mean Mode Error Ratio --

flo 
- 8.0574 - 6.9638 2.7770 - 0.39]8 

fl, 
2.2882 1.9499 0.9 169 7.0280 OJ690 

Here we have seen that the posterior mode for flo is greater then the posterior mean of 

fJo which indicates that the distribution of this parameter is negatively skewed how much it 

is skewed we have calcu lated the coefficieilt of skewness. The graph of thi s parameter given 

in figure 4(a) also indicates the same pattern of skewness. We have also observed that the 

posterior mean of fll is greater then the posterior mode of fl, which shows that the 

distribution of parameter is positively skewed how much it is skewed we have calcul ated the 

coefficient of skewness given in Table 5.5 and the graph of thi s parameter given in figure 

4(b) shows a positively skewed shape . Here the odds ratio is also greater then 1 which 

indicates that the variable fibrinogen is more likely to occur, So the strength of relationship 

between the probability of an ESR reading greater than 20 mm/h and the level of protein 

plasma (fibrinogen) is also hi gh for this model, as one unit increase in the level of protein 

plasma (fibrinogen) increases the ESR by 7.0280 units . The results are different but with 

102 



slight change, that does not effect the interpretation of odds ratio that we did for previous 

models. 

5.5.4.2 Bayesian Hypothesis T esting 

Now to test the hypothesis that whether fibrinogen level in the blood play any 

significance role to increase ESR as if the level of certain proteins in the blood plasma ri se. 

The posterior probability for !Io using Joint Uniform prior is calculated as: 

The posterior probability of hypotheses given in section (5 .5.1.2) using (Joint Uniform) 

prior IS : 

A program has been designed in SAS package, similar program is given in appendix IV to 

find the posterior probabili ty and after being run the program we find the posterior 

probability as: 

Po = 0.0024 17 

The posterior probability indicates that under Bayesian hypothes is cri terion there is 0.24% 

chance to accept fIo so we accept HI with high probability but littl e low as for the prev ious 

models and we conclude that fit is positive and playing a significant role to effec t the ESR if 

this protein is rise in the blood plasma. That is also the case in the results given in Table 5.5 

5.6 Classical Regression Analysis 

For the comparison purpose now we take the classical estimates and tes t the 

hypotheses. For this we have simply run the logistic regression without intercept mode l. 

Now the classica l estimate and hypo thes is testing is given in followin g secti on: 
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5.6.1 Classical Estimates 

Using the data given in Table 4.1 and having rLin the logistic regress ion we obtain: 

Table 5.6 

Output of L ogistic Regression Using Classical Approach 

Coefficient Classical Standanl Z-Statistic P-Value Odds 
Estimate Error natio ---

fJo 
-6.9640 2.7770 -2.5 100 0.0120 

A 1.9499 0.9 169 2. 1300 0.0330 7.0300 
fJ, 

5.6.2 Classical way of Hypothesis Testing 

We have the logistic regress ion model as : 

Hypothesis 

Since fJI = 1.9499 and standard error of fJ is 0.9199 then the value ofWalcl 

t-statistic is: 

t =2.13 00 

Since the p-value from thi s regress ion is 0.0300, it indicates that we accept 1-10 up to 3D;;) 

level of significance and do not accept Ho at any other level of significance. So it can be 

concluded that fibrinogen is playing significant role at 5% level of significance and it effect 

the ESR if this protein rises in the blood plasma. 
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5.7 Comparison of Bayesian and Classical Logistic Regression Analysis 

Now as a summery we present the resu lts of Logistic regression model with intercept 

having one explanatory variab le, we have obtained by using Bayesian and Classica l 

techniques and make comparison between these two, the resu lts are presented in table (5.7) 

are the Bayesian results obtained by usin g different priors these results can be compared 

with the resu lts given in table (5.6): 

Table 5.7 

Posterior Estimates for 'With Intercept Logistic Regression Model 

Cocfficien t Poster ior Estima tes Noninformative Prior Informative 
Uniform Jeffreys Ha lda ne prior 

Prior prior prior ___ 
- --------_ .. _--

fJo Posterior Mode -6.9638 - 6.8575 -6.6925 - 6.5485 

Posterior Mean - 8.0574 -7.9 124 -7.69 10 -7.50 10 

Standard Error 2.7770 2 .7284 2.601 5 2.5 11 5 

SK - 0.3938 - 0.3866 -0.3838 - 0.3797 
p 

-.---.-

fJl 
Pos terior Mode 1.9499 1.9236 1.8885 1.8093 

Posterior Mean 2.2882 2.25 19 2. 1872 2.0996 

Odds Ratio 7.0280 6.8456 6.6094 6. 1062 

Standard Error 0.9169 0.9115 0.85 15 0.8293 

SKI' 0.3690 0.3602 0.3508 0.3500 
._---

The results found by using Classical logistic regress ion and in Bayesian logisti c regression 

with Uniform prior are approximately same in all respects i. e. the coefficients, p-value and 

odds ratio. Here odds ratio interpreted as the approxirnated change in the risk of disease for 

everyone unit increase in the amount of fibrinogen. So the results are much improved wi th 

Haldane and informative prior as compared to uni form and Jeffreys. 
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Chapter 6 

Bayesian Inference of Logistic Regression Model with Two Explanatory Val"iables 

6.1 Introduction 

In this chapter, we present the Bayesian analysis of logistic regression model with 

two explanatory variables for response binary variable, uncler informative and 

noninformative priors . Section 2 consist the data set used for the analysis of binary logistic 

regression model with two explanatory variables . The derivation of posterior distribution 

using informative and noninformative prior is given in section 3.In section 4 for informative 

prior, we set a range of hyperparameters and select the hyperparameters with minimum 

standard error. The idea of selecting hyperparameters is taken from Bian (1997); they 

assume Normal & Student-t priors for regression coefficients with mean zero and decide 

about the posterior distribution at di fferent values of variances. But we have suggested a 

range of values for all hyperparameters. Section 5 provides the Bayesian analysis with 

informative and noninformative priors, which include the graphs , posterior estimates (modes 

& means), standard errors and testing the hypotheses concerning parameters. Section 6 

presents the classical analysis of logistic regression model with two exp lanatory variables 

and also the hypothesis testing for the significance of regression coefficients. In the last 

section 7 the comparison of classical and Bayesian results and their interpretation are 

discussed . 

6.2 Data set to be used in Bayesian Logistic Regression Analysis 

The data set for Bayesian analysis of Binary Logistic Regress ion IS taken from 

Cengiz et a!. (2001). The clata set contains the sample observations of 32 individuals . This 

research was actually made by the Institute of Medical Research, Kuala Lumpur, Malaysia. 
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They used Erytlu'ocyte Sedimentati on Rate ([SR) related to two pl asma proteins, fibrinogen 

and Y-globulin, both measured in grn/ l, for a sa mple of thirty-two individuals. The data set 

of 32 observations is given as follows: 

Yi = The ErythTocyte Sedimentation Rate (ESR) 

X Ii = The amount of protein plasma: fibrinogen 

Xgi = The amount of protein plasma Y-globu lin 

Table 6.1: Data 

Serial ESR Fibrinogen Y-globulin Serial ESR Fibrinogen V-globulin ~ 
No. (nll11/h) (gm/l) (gill /I) No. (111m /h) (gm/I} J.g m/ I) _ __ 

Yi Xli Xgi Yi Xli X~I 

1 0 2.52 38 ]7 1 3.53 46 
2 0 2.56 31 .18 0 2.68 34 
3 0 2.19 33 19 0 2. 60 38 
4 0 2.18 31 20 0 2.23 37 j 5 0 3.41 37 21 0 2 .8 8 30 
6 0 2.46 36 22 0 2.65 -I (; 

7 0 3.22 38 23 1 2. 09 44 
8 0 2.21 37 24 0 2.28 36 
9 0 3.15 39 25 0 2.67 39 
]0 0 2.60 4 1 26 0 2.29 3 1 
11 0 2.29 36 27 0 2. 15 3] 

12 0 2.35 29 28 0 2 .54 28 
13 1 5.06 37 29 ] 3.93 32 
14 1 3.34 32 30 0 3.34 30 
15 1 2.38 37 31 0 2 .99 36 
16 1 3.15 36 32 0 3.32 3S ._-_.,-
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6.3 Joint Posterior Distribution for tJH! Parameters of the Logistic Regression 

Model 

Here we will consider the binary logistic regress ion model with two explanatory 

variables as: 

(6 .1 ) 

Here /30 is the intercept while /3, and /32 are the slope coefficients for the explanatory 

variables fibrinogen and Y -globulin respectively. The above logistic regression model can 

also be represented as: 

(6.2) 

Then the joint Posterior distribution of the parameters/3o ,/3, and /32 are defined as: 

(6.3) 

J-Jere p(/30,/3,,/321 data) is the joint posterior distribution while 1(/30,/3,,/321 data) is the 

joint log likelihood function and p(/3o, /3" /32) is the joint prior distribution for /30' /31 and /32 . 

I-Jere we considered that the explanatory variables are independent of each other. Now we 

need to decide upon the joint prior distribution and the log likelihood function, we also 

considered here Log likelihood instead of simple likelihood function just for the ease in 

calculation. 

6.3.1 Joint Likelihood Function 

The joint likelihood of the /h observation is its probability density function as a 

function of the two parameters /30' fJ, and fJ2 where (Yi' xji ' xgi ) are fixed at the observed 

values. The observations are all independent, now for the given case we precede as follows. 
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Let y; be the response variab le Ihat is binary in nature i.e. it takes only two values 0 and I 

for ' n' observations. Since the analysis of binary response variable in classical approach, the 

'tvfaximum Likelihood },;fethod (MLE) is used to estimate the unknown parameters of the 

Binary Logistic Regression (BLR) Model. However the estimates basecl on the classical 

approach are not accurate when the sample size is sma ll. In this situation Bayesian approach 

provides better and accurate results . Then if y, is the response variable while x/, and x g, are 

the explanatory variables that can be either qualitative or quantitative in nature while p; is 

the probability of success corresponding to the illl observation then the joint likelihood 

function can be presented as: 

(6.4) 

Now if p; =: H(fJ'x;) while fJ' = (fJo,fJ1,fJJ then the joint likelihood function could be 

written as: 

L(fJ'l data) = If {H( fJ'X;/; (l-H(fJ'X;)l-
y

,} (6.5) 

As we know that in logistic regression p; = H(fJ'X) while fJ' is the vector of regression 

coefficients and X the set of explanatory variables. While H is the link function that is 

logistic in our case and we will use this link tlU'ougb out our study to obtain the posterior 

estimates. 

Taking log on both sides of above equation (6 .5) we get the Joint Log likelihood function 

becomes: 

1/ 

[(fJ'l data) = I {y; log H(fJ' x;) + (1 - y,) log(l- H(fJ'x,))} (6 .6) 
;=1 

109 



Sine we know that Pi = H(fJ'xi) then for further consideration we can write the above log 

likelihood function as: 

1/ 

1([3o,fJJ> [32 I data) = L {Y, 10g(pJ + (1- yJ 10g(1 - pJ} (6.7) 
i = 1 

where Pi is the probability of success for illl observatioil in data set and be represented in the 

logistic regress ion model as: 

1 
p - ------------

i - 1 + exp {-([30 + [31 Xli + [32Xgi )} 

6.3.2 Joint Prior Distribution 

We consider the joint noninformative and informative priors of [30) [31 and [32 

in the following sections: 

6.3.2.1 Joint Informative (Normal) Prior 

Here we consider the independent normal priors for each parameter. The joint 

Informative prior of three parameters is the product of the three individual priors: 

bl and b2 are the variances. Therefore 

{ 1 2} {1 2} {1 2} p(fJO) [3J> [32) ex exp - 2b
o 

([30 - ao) exp - 2b
l 

([31 - a l) exp - 2b
2 

([32 - a2 ) 

(6.8) 

- -00 < [3 < 00 - 00 < [3 < 00 -00 < [3 < co 0) I) 2 
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6.3.2 .2 Joint Noninformative (Haldane) prior 

The joint noninforlTl.ative (Haldane) prior by using the log likelihood function given 

in (6 .7) is derived as: 

(6.9) 

T he above equation (6 .9) can also be written as: 

(6 .10) 

6.3.2.3 Joint Noninformative (Jeffreys) Prior 

The joint noninformative (Jeffreys) prior by using the log likelihood function given 

in (6 .7) is derived as: 

(6.1 I) 

The above equation (6.11) can also be written as: 

1 1 

P.I (/30,/3
1
,132) ex: H(f3'xJ -2 (1- H(f3' XJ)-2 (6.12) 

6.3.2.4 Joint Noninformativc (Uniform) Prior 

We consider the joint noninformative Prior of/3o, /31 and /32 as Uniform Prior which 

can be represented as: 

-OJ < 130 < OJ, -OJ < 131 < OJ, -OJ < 132 < 00 (6.13) 
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6.3.3 Joint Posterior D istribution · 

Now the j o int posterior di stributions for joint inform a Li ve and noninfo rm ati ve 

Priors are given in the following sections: 

6.3.3.1 Joint Posterior Distribution Us in g Normal Prior 

Now for the joint posterior di s tribution of flo , fl, and fl2 we consider the joint Log 

Likelihood function given in equation (6 .7) and the joint Normal prior g iven in eq uatio n 

(6 .8) , then the joint pos terior distribution of flo, fl, andfl2 is found to be: 

p(flo,fl"j32i data) oc I {Y; log(p;)+ (l - y;)log(l- p;)}exp --(flo -ao)2 /I {I} 
; ~ , 2bo 

~ f (p J } p(flo, fl" fl2 I data) oc I "1 Yi log ~ + log(l - Pi) 
i~ ' L 1 Pi 

(6.14) 

by using logistic regression model with two explanatory given in equation (6.1) see section 

(6.3) we can de rive the expression: 

(6.15) 

Then after replacing eq uation (6 .1) and (6.15) the above pos terior di s tribution (6.14) 

becomes: 

p(flo, fl" fl2 I data) oc f {Yi (flo + fl,xji -I- fl2 XgJ - log{l -I- exp(flo -I- fl,x/i -I- fl2XgJ}} 
, ~ ' 
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ror further simplification let us also consider that [Ji = /30 + /3J X/i + /32Xgi and suppose that: 

Now the simplified joint posterior di stribution offJo, fJ
J 

and fJ2 can be rewritten as: 

Let us also suppose that: 

1!!.-.[ ( rj/ 1 ] p(/3o, /3J ' /32 I data) = - L exp - -. {y,Bi - log {I + exp( [Ji)}} 
k i=J 26 

(6 .1 6) 

-00 < /30 < 00, -00 < fJ
J 

< 00 , -00 < fJ2 < 00 

This is the joint posterior distribution of fJo, /31 and fJ2 , where k is the normalizing constant. 

Here our main objective is to estimate the unknown parameters. Then for this purpose if we 

partially differentiate the above posterior equation (6 .16) with respect to fJo' fJl and fJ2 then 

equating to zero. So this numerical so lution wi ll provide us the posterior est imates (modes), 

now for this we precede as follows: 
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Differentiate (6 .16) with respect to fJo we obtain: . 

op(fJo,fJl ,fJ2 Idata) - 0 ~[ ( rj/ J{ 8 1 {I (8)}1] --, L.... exp --. Yi, -:- og +exp , f 
, 3fJo 3po i=1 2b 

Now for maximizing put op(fJo,fJ"fJ2 1 data) == 0 
ofJo 

exp(-8) 

t[exP(-l:.J(Yi- 1 ) -r {Yi8i-IOg(l-I-eXP(8J)}]==O (6 .17) i=1 2b 1 -/- exp( -8i) 

While r == -t (fJo -. ao) 

° 
Again differentiate (6.16) with respect to fJl we obtain: 

3p(fJo,fJ
"

fJ2 1 data) _ 3 ~[ , ( rp'){ 8 I {I (8 )}}] 
3fJ - 3fJ- L.J exp - 2b' Yi i - og +exp i 

I I 1=1 

YiX/i - (1 +exp(-8J)2 (1-__ 1 __ ) 
1 +exp(- 8,) 
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8p(f3o,/31,/32 I data) - {l. { ( ¢.) ( . - Xli 1 
- L., exp - -, Y,-X Ii - -

8fJI ;=1 26 . 1 -I- exp( - ();) 

N 
+' .. . 8p(Ao,fJl ,fJ2 1 data) 0 ow lor maxm11zmg put = 

8fJI 

t[exp(- ¢"](YiXli- ~/i _ ]-y,{y,8,-tog(l-l-exPC8,))}] = o (6.18) 
;= 1 2b 1 -I- exp( - 8;) 

where y' = i (/31 - al ) 
1 

Again differentiate (6.16) with respecl lo /32 we obtain: 

11 

;=1 y ;X g; - (1 -1-exp( -8, ))2 (1- 1 ] -
1 -I- expl-f:);) J 

=2:: 

i2 (/32 -a2){y,B, - log(1+ exp(B,))} } 
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Now for maximizing put 
ap(fJo,/JI,/32 I data) = 0 

afJ2 

t[exp( - ¢',](Y;Xg;- X!! I ) -r"{.Y;l9;- lOg(l+exPC6l;))}]- = 0 
;=1 2b 1 + exp( - ();) 

while y" = t- (fJ2 - O2) 
2 

(6.19) 

now solving numerically the above equations (6 .17), (6.18) and (6 .19) the posterior modes 

of fJo ,fJl and fJ2 can be obtain. 

6.3.3.2 Joint Posterior Distribution Using Haldane Prior 

Now for the joint posterior distribution of fJo' fJl and fJ2 we consider the joint 

Log Likelihood function (6 .7) .and the joint Haldane prior (6.9) , then the joint posterior 

di stribution offJo, fJl and /32 is founel to be: 

/I 

p(fJo , fJl ' fJ2 I data) ex L {Y, log(p,) + (1- y , ) 10g(1 - p; )}p;-I (1 - P, r l 

;=1 

p(fJo , fJl , fJ21 data ) cc t{y; 10g ( ~; )+ 10g(1 - Pi)}p;-I(1- p ,r
l 

1=1 1 Pi 
(6 .20) 

By using logistic regression model with two explanatory given in equation (6 .1) see section 

(6 .3) and the expression derived from (6 .1 ) that is equation (6 .15): 

Then after replacing equation (6.1) ancl (6 .15) the above posterior distribution (6.20) 

becomes: 

/I 

p(fJo, fJi' fJ2 I data) ex L {Y; (fJo -I- fJl x l ; -I- fJ2X!: ,.) - log {I -I- exp(fJo + fJlX Ii + fJ2Xg; )} }p;-I (1 - p,.) - I 
i= 1 

Now we will also use equation (6.1) to deri ve express ions given as : 

(6. 2 1) 
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As we know we have already suppose that ()j = fJo -/- fJlX ji -1- fJ2 X~, then the joint Posterior 

distribution for fJo' fJl and fJ2 wi ll become as: 

n 

p(fJo, fJl' fJ2 I data) cc L {Y;(); - log {I -/- exp(tJ;)}} {I -I- exp( -();)} {I -/- exp( ();)} 
;=1 

I!'!' 
p(fJo,fJ

1
, fJ2 I data) = k ~i' [ {2 -/- exp( - (),) -/- exp((),)} {y,(), -log(1 -/- exp((),)}] (6.22) 

-00 < fJo < 00, -00 < fJl < 00 , -00 < fJ2 < 00 

The equation (6.22) is the joint posterior distribution of fJo ' fJl and fJ2' where k is the 

normalizing constant. Now to estimate the known parameters fJo, fJ1 and fJ2 , partially 

differentiate the above equation (6.22) with respect to fJo' fJ, and fJ2 simultaneously and 

then equating to zero. So this numerical solution will provide us the Posterior est imates 

(modes), for this we precede as follows: 

Differentiate (6.22) with respect to fJo we obtain: 

8p(!3 fJ j3 I data) 8 ~ . 
0' ~fto2 = 8fJo ~ l {2-/-exp(-(),)-I-exp(()JHY,(), - log(1 -I-exp((),)} ] 

( 

11 1 exp(- tJ) = I (1 -/-exp(-tJ;))(1-/-exp(tJJ) y; - ' ( ; ) -!-
.=1 n ? 1 . (1 -!-exp(-oJ) - 1-----

I +exp(- tJj ) 

exp(();)(1 -I- cxp( -();)) J y;(); -/- log (1- I )}-
l 1 -/- exp( - ()J 

O-l- exp(();))exP(- ();){Y;();-I-IOg (l - 1 )}} 
1 -I- exp( - (), ) 
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= t {(I + exp( -fJ, »(1 -I- exp(fJ,» {Y; _ 1 _ } + 
;=1 1 -I- exp( -fJ, ) 

exp(fJ;)(l -I-exp( - 8;) {y;fJ; - log(l -I- exp(8,»} -

(1 + exp(Bj) exp( - B,) (Y;B; - log(1 -I- exp(fJ;))}} 

op(fJo ,fJI, fJ2 I dala) = t {(2 -I- exp( -fJ,) + exp(fJ;» { Y; _ 1 } -I-
8fJo ;=1 1-1- exp( -fJ, ) 

(y;fJ; - 10 g(l + exp( fJ;) } (exp( fJ; ) - exp( -fJ;» } 

Now for maximizing put op(fJo,fJl'fJ2 1 data) = 0 
8fJo 

t{(2+eXP(-Bj)+eXP(fJj»{Yj _ _ ,1 _ } + 
j=1 1 -j exp( fJj) 

Aga in di fferenti ate (6.22) with respect to fJl we obtain : 

ap(~ fJ fJ I data) a 1/ 

0' I' 2 = -:L[ {2 +exp( -()j) -I- exp(Bj)} LyjBj -log(1 -I- exp(()j)} ] 
afJl 8fJI ;=1 

/I 

(6.23) 

= I (J+ ex p(-fJ,» (1 -I-exp(fJ,» 
X /i cxp( - 0, ) 

yx- ' + 
,}, (1 +exPC- fJ,)2( 1- I J' i=l 

I +exp(-fJ,) 

exp(8j )(1 -I- exp( -fJj » X Ii {Y;fJ; + log (1 - 1 J}-
. 1 -I- exp( -8,) 

(1 -I- exp(fJ,» exp( -8Jx /i {y,(); -I- tog( l - 1 J}} 
. 1 -I- exp( -(); ) 
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"{ { X" } = L (1 + exp( -()i ))(1 + exp(()i)) YiX i - . Ii -/-
i=1 / 1 + exp( -(),) 

exp(OJ(l -I- ex p(- O;))X li {YiO, - log(1 +exp(OJ)}-

(1 + exp(()J) exp( - OJ Xli {YA - log(1 + exp((),))}} 

" { {x } =L (l -I-exp(-()J)( l +exp(()i)) Y,Xli - :/i __ + 
i=' 1 + exp( (),) 

{ exp( ()j )(1 -I- exp( - ()j )) - (1 -I- exp( ej)) exp( - e, ) } 

Xli {YA - log(1+ exp(OJ)}} . 

op(jJo ,tJ, ,/32 I data) ~ {(? ( ()) (() )) { X Ii } =L... _-I- exp - -, +exp, Y,x l , - + 
ojJ, j=, . 1 -I- exp( -ej ) 

c .. . op(fJo,jJ"jJ2 1 data) 0 
Now lOr maXlmlZll1g put = 

ojJ, . 

I{(2+eXp(-ei)+eXp(()i))~YiXli- ,Xli }+ 
j = , L 1 -I- exp( -ej ) 

Xli {YA - log(1-I- exp(eJ)} (exp(e,) - exp( - eJ)} = 0 (6 .24) 

Again differentiate (6 .22) with respect to fJ2 we obtain: 

op(f} fJ fJ I data) 0 I/_ 0' ~fi2 2 = ofJ
2 
~ [{2 -I- exp( -OJ) -I- exp( ()j) }{yjej - logO + exp( e,)}] 

X'i exp( -Bi) /I 

= I (l +exp(-BJ)(l -I- exp(Bj )) 

i= ' 
YjXgi - I. ( ) -I-

(I -1- exp( -BJi 1 - 1 
1 -I- exp( -Bi ) 
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exp( (); )(1 -I- exp( -(); ))x .; {Y;(); -I- log (1 - 1 J} -
~ ] + exp( - ()J 

(1-1-exp(();))exp(-();)x., {y,(), -I- IOg(l- 1 ]}} 
.~ 1 + exp( -(),) 

= L (1 + exp( -(); ))(1 -I- exp(()J) y;x~; - g' + II { {X . } 
;= 1 1 -I- exp( - ()J 

exp( (),)(1 + exp( -();))xg, {y,(), - Iog(l + exp((),))} -

= t{(l +exp(-();))(l + exp(();)) {Y/Xg/ _ Xg; }+ 
;=1 ] + exp( - (),) 

{ exp( (); )(1 -I- exp( -(),)) - (1 + exp( ();)) exp( -(),) } 

op(/3o, /31' /321 data) = t{o + exp( -();))(l -I- exp(();)) {y, x
g

; _ Xg
, }-I-

0/3] ;= 1 1 -I- exp( - ();) 

Now for maximizing put OP(/30,/31 ,/321 data) := 0 
ofJ2 

II { {X . } I (1 + exp( -();))(1 + exp( ();)) y;Xg; - );' _ + 
;= 1 1 + exp( - ();) 

120 

(6.25) 



now the numerical solution of the above equations (6.23), (6.24) and (6.25) provide us the 

posterior modes of fJo ,fJl and fJ2 . 

6.3.3.3 Joint Posterior Distribution Using Jeffreys Priol' 

Now for the joint posterior di stribution of (30' (31 and (32 we consider the joint 

Log Likelihood function (6.7).and the joint Jeffreys prior (6.11), then the joint posterior 

distribution of(3o, (31 and (32 is found to be : 

" 1 1 

p((3o, (31' (32 I data) ex; I {Y; log(pJ -I- (1_. yJ log(1- P,) }p;-"2 (1- p,) -2 
;=1 

p((3o , (3p (32 I data) ex I { YI log( ~; J -I- log(1 - PI)}PI -t (1- PI)-t 
;=1 LIp; 

(6 .26) 

By using logistic regression model with two explanatory given in equation (6.1) see section 

(6.3) and the expression derived from (6.1) that is equation (6.15): 

Then after replacing equation (6.1) and (6.15) the above posterior distribution (6.26) 

becomes: 

" 1 1 

P((30,(3I' (32 I data) ex; I {y;((3o -I- (3I X/; + (32 X~J - Iog{l + exp((3o + (3I X/i + (32Xgl )} }p;-i (1- PI) -~ 
1= 1 

Now we will also use equation (6. 1) to derive express ions given as : 

(6.27) 

As we know we have already suppose that e; = (30 + (3IX/i + (32Xgl then the joint Posterior 

distribution for fJo' fJl and fJ2 will become as: 

p(fJo, fJl ,fJ2 I data) ex; :t {y;B; - log{ l+ exp(BJ}}~l+ exp( -BJ ~l + exp(eJ 
;= 1 
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1 1/ 

p(fJo,fJl>fJ21 data) = - ~ {)2 + exp( - 19,) + exp(eJ{yJ1, - log(1 + exp(e,))}} (6.28) 
k '=1 

-O"J < fJo < co, -co < fJ1 < co , -co < fJ1 < co 

This is the joint posterior distribution of fJo, fJl and fJ2 ) where k is the normalizing constant. 

Now to estimate the ull)mown parameters parti~t11y differentiate the above equation (6.28) 

\-vith respect to fJo, fJl and fJ2 then equating to zero . So this numerical solution will provide 

us the Posterior estimates (modes), for thi s we precede as follows: 

Differentiate (6.28) with respect to fJo we obtain: 

op(fJ fJ fJ I data) 0 1/ { } 

0' ~fi 2 = OR ~ )2 + exp(-e,)+ exp(e,){y,e, - log(1+exp(e,))} 
o Fa ,=1 

1/ 

= L )1 -t-exp(-e,)JI +exp(e,) 
'=1 

exp( -e) 
y - ' + 

I (1+exp(-e,))2 ( 1- I ] 
1+ exp(-e,) 

exp(e,))l+ exp(--e,) {y,e, -I-10g(1- 1 ]} 
1 -I- exp(-e;) 

2)1 -I-exp(e,) 

exp( -19, ))1 + exp( 19,) {y,e; + log (1- 1 ]} 
1 + exp(-e,) 

2)1 -I- exp( -19, ) 

= t{)2-1-eXP(-e,)+ exp(e,) {Y' _ 1 _ _ }+ 
;=1 1 + exp( 19;) 

{ 
exp( 19, ))1 -I- exp( - 19,) _ exp(-e, ))1 + exp( 19,) } 

2 Fexp( 19,) 2)1 -I- exp( -19,) 
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{ 
exp( ();) - exp( -(),) }} 

{Y;(); - log(1 + exp( ();»} 2)2 + exp( - ()J -I- exp( (),) 

. . . ap(/3o,/J,,/321 data) _ 0 
Now for maXll111Zll1g put an -

jJo . 

t. { ~2 +exp( -0, ) +ex p( IJ, ) {y, -1 +ex~( _0, ) } + 

{ 
exp(();)-exp(-();) }}=o (6.29) 

{Y;(); - log(l + exp(()J)} "2)2 + exp( -()J + exp(()J 

Again differentiate (6.28) with respect to /3, we obtain: 

/I ~ __ _ 

= I )1 -I- exp( -(); )JI -I- exp( ();) 
;~ , 

Xfi exp( -(); ) 

y,Xfi-(1+eXP(_()J)2 (1 _ 1 I( ()J 
+exp - - I 

x l' exp( 0)$+ exp( --OJ {y,O, + log ( 1 - 1 +ex ~( - e,) J} __ 
2J1-,-exp( ();) 
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Xli exp( - ()i)-J1 -I- exp(()i) {YA -I- IOg(l- 1 J} 
. 1 -I- exp(-()J 

2-Jl -I- exp( -();) 

II { {X } = L )2 -1- exp(-(),) -1- exp( ();) Y;x /i - ' P -I-
_ . 1 -I- exp(-() ) I-I I 

Xji exp(()JFt-exp( - ();) {Yi()i - log(1 + exp(()J)} 

2)1 -I- exp( (); ) 

Xli exp( - ()i )-Jl -I- exp( ()i) {Yi()i - log(1 -I- exp( ()i))} } 

2-J1 -/- exp( -()i ) 

o,fJpfJ2 = L -J2 +exp(-BJ -I-exp(()J y;xP - j ' + ap(fj n n I data) /I { {X . } 
afJ, ;=, . 1 -/- exp( -Bi) 

, . ~ {exp( ()i) - exp( -B,) }} 
Xli {)l,B; -log(l -/- exp(()J)} h 
. 2" 2 + exp( -()J -/- exp( ()J 

N r.: .. . ap(fJo, fJ" fJ2 Ida/a) 0 ow ior maxll1l1zmg put = 
afJ, 

1/ { {X } L )2-I-exp(-{);)-I-exp(()J )l;xp ~ _" p _ -/-
;=, . 1 I exp( ();) 

{ 
exp( B;) - exp( - (); ) }} 

Xli {YA-Iog(l-/-exp(()i ))} ) = 0 (6 .30) 
. 2 2 -/- exp( -();) -/- exp(();) 

Again differentiate (6.28) with respect to fJ2 we obtain: 

8p(fJo ,fJ~t2 I data) = a ~2 t { -J2 -/- exp( -0; ) -I- exp( ()J {)l;B; - 10 g(1 -I- exp( (),)) } } 
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/I 

= L .)1 + exp( - B,) .)1 + exp(tn 
;=1 

X" ex pC 0,).)1 +exp(- B, ) {y, e, + log ( 1 - 1 +ex ~( -8,) ) } 

2Jl -I- exp( ();) 

2J1+ exp( - B; ) 

Xg; exp((); )Jl + exp( -f);) {YA - log(1 -I- exp(f);))} 

2.J l + exp( (); ) 

Xg; exp( -f)JJl + exp(f)J {y;f)i - log(l -I- eXP(f)J)}} 

2Jl + exp( -(); ) 

Dp(/3o , /31 , /32 I data) ~ { '2 ( 'f)) (() ) { X.~; } ~::..-"..:.-'-'-'-.:....-=-'---~ = ~ '\j -1- exp - , + exp - )IX . - + 
Df32 ;=1 '" .~, 1 + exp( - f),) 

Now for maximizing put 

{ 
exp(f))-exp(-()) }} 

xgi {y,f); - log(1 -I-exp( f)i))} J " 
. 2 2 + exp( - f);) + exp(f),) 

Dp(f3o' /31 ' /32 I data) = 0 

DfJ2 

I J 2 -1- exp( -f)J + exp(f)J Y;Xg; - g' + /I { {X , } 
i=1 1 + exp( - f), ) 
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X
g

; {Y/1; - log(l -\- exp(8;))} { ) exp(8J - exp( -8J )} = 0 
2 2 -\- exp( -8J -\- exp(BJ 

(6.3 1 ) 

6.3 .3.4 Joint Posterior distribution Us ing Uniform PriOl' 

Now using the joint Log likelihood function (6 .7).and the j oint uni fo rm prior 

distribution (6.13), then the j oin t posterior d istribution of fJo' fJ1 and fJ2 is fo und to be: 

II 

p(fJo, fJl' fJ2 I data) ex; 'L {y; log(p,) -I- (1 - y;) log(l - p;)} 1 
;~ I 

(6.32) 

By using logistic regress ion model with two exp lanatory given in equation (6.1) see section 

(6 .3) and the expression derived from (6.1) that is equation (6 . 15): 

Then after replacing equation (6. 1) and (6 .1 5) the above posterior di str ibution (6.32) 

becomes: 

p(fJo, fJp fJ2 I data) ex; f {y;(fJo -I- fJlX ji -I- fJ2Xg;) - log{1 -I-exp(fJo -I- fJlX/i -I- fJ2XgJ}} 
; ~ I 

As we know we have already suppose that 8; = fJo -I- fJlX/i -I- fJ2Xg, then the joint Posterior 

distribution for fJo, fJ
1 

and fJ2 will become as: 

1 II 

p(fJa, fJl' fJ2 I data) = - :2= [y;8, - log{1 -I- exp(8,)}] 
k , ~ I 

(6 .33) 

-00 < fJo < 00, -00 < fJ1 < 00 , - 00 < fJ2 < 00 

This is the joint posterior distribution of fJo, fJl and fJ2 ' where k is the normalizing constant. 

Here our main objective is to estimate these unknown parameters. Then for this purpose if 

we partially differentiate the above equation (6.33) with respect to fJo, fJ1 and fJ2 
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simultaneous ly and equale it to zero . So lhi s numerical solution wil l provide LI S the Posterior 

modes, so for thi s we proceed as follows. 

Differentiate (6.33) with respect to flo we obtain: 

op(fJo,/3,,fJ2 1 data) _ 0 ~[ 8 I . ·{1 (8 )}] 
-'--""--"----'----'-'-"-'--~ - -~ y ; ; - og +exp , 

ofJo 8fJo ;; , 

( 

11 1 exp(--B) =2.: Y,- ' 
;;, ( ( B) J ( . 1 1 l+exp - ;)- 1----

1 +exp(-B;) 

11 { I} 
= ~ Y; - 1 +exp(-B;) 

N 
r .. . 8p(fJo,fJ"fJ2 I da l a) 

ow lOr maxll11lzll1g put = 0 
8fJo 

(6 .34) 

Now differentiate (6.33) with respect [0 fJ, we obtain: 

= f xli exp(-B;) 

;; , Y;X/i - (1 -I- exp( - 8J)! (1- I J 
I -I-exp(-B;) 

11 \ { Xli} 
= ~J Y iX/i - 1 + exp( - Bi) 
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Now for maximizing put 8p(fJO,fJ),fJ2 1 data) := 0 

8fJ) 

Now again differentiate (6 .33) with respect to fJ2 we obtain: 

= I Xg; exp( -BJ 

; = ) Y;Xg; - (1 + exp(-BJ)2 (1- 1 J 

~{ Xg;} = L.., y,X~;-
;= ) 1 + exp( - B;) 

Now for maximizing put 
8p(fJO,fJ»fJ2 1 data) = 0 

8fJ2 

6.4 Selection of Hyperparametcrs 

1 + exp(-B;) 

(6.35) 

(6.36) 

Since we know that the prior distributions of parameters fJo, fJ) & fJ2 are as follows 

of these hyperparameters as aO,a) &02 are the means of prior di stributions and bO,b)&b2 
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are the vanances of the prIor di slributions. We have suggested a range of va lues or 

hyperparameters and suggest the va lues with minimum stand ard e rror. 

Table 6.2 
Posterior Estimates at Different Values of Hyper-parameter's 

Hyperpan1meters Posterior Mode 

Mean Val' !vlean Va,. Mean Va/' 
fJo fJl fJ2 bo a l bl a2 b ao 2 

0 I 0 I 0 I - 12.5058 2.032 1 0. 1474 
38 12.50 10.50 7.50 8.50 3.50 - 30.il570 6.6342 1.7525 
35 10.25 9.50 6.50 7.50 2.75 -26.9784 5.72 13 1.2549 

32.50 8.75 8.25 5.25 . 6.50 2.25 - 24.2398 4.1282 1.0979 
29.75 7.25 7.75 4.25 5.25 1.90 - 21.8572 3.4575 0.9258 
25.75 6.50 6.50 3.75 4.50 1.45 - 16.2976 2.8974 0.7549 
2 1.50 5.75 5.25 3.25 3.75 1. 10 - 12.9747 2.2974 0.5940 
19.25 5.25 4.90 3. 10 3.50 0.95 - 10.532 1 1.8878 ~:~~~~-18.95 5. 15 4.75 3.05 3.25 0.75 - 9.9371 1. 6378 

These are the values for hyperparameters fo r informative priors which are Normal priors for 

each parameter that is considered independent. Where mean = ao and variance = bo for the 

prior distribution offJo while mean = a l and variance = bl for the prior di stribution of fJl 

and mean = [{2 and variance = b2 for the prior distribution of fJ2 . We suggest diffe rellt values 

for the hyperparameters and fin d the values of posterior modes. So fina lly we dec ided (0 

select the val ues of hyperparameters as mean = 18. 95 and variance = 5.15 for the prior 

distribution of fJo' mean = 4. 75 and variance = 3.05 for the prior distribution of fJl and 

mean = 3.25 and variance = 0. 75 for the prior distribution of fJ2 and used these values for 

further Bayesian analysis. 

6.5 Bayesian Analysis with Informative and Noninformative l)riors 

In thi s section we will present the Bayesian ana lysis with informative al1d 

noninfonnative priors. The analysis is based on the posterior distributions that are derived in 

previous sections: 
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6.5.1 Bayesian Analysis Using Joint Normal Prior ' 

In this section we \,vill present the Bayesian ana lys is of binary logisti c regress ion 

model with two explanatory variables by using informative (Joint Normal) prior. Then the 

j oint posterior distribution for the parameters,8o,fll &,82 derived in section (6.4.3.1) see 

equation (6.16): 

-co < ,80 < co, -co < ,81 < co , -co <,82 < co 

where k is the normalizing constant: 

Programs in SAS package have been des igned simi lar program is given in appendi x IV to 

show the graph of marginal densities of the parameters ,80,,81 &,82 by using th e data se t 

given in Table 6,1. 

Graph of Posterior Marginal Densities using Normal PdoI' 

;\,(10 I data) 

0,16 -

0.14 .: 

0.1 (1 -

0.03 -

0.06 .: 

0.04 -: 

0.02 -

0 . 00 

- 30 - 20 - 10 0 ill 

Figure l(a) 

130 

/-\,'1 I data) 

0 . 16 -

0.14 -

0.12 

0.10 

0.08 : 

0_06 

r-\ 

/ \ 

I \ 
/ \ 
l \ 
l \ 
I \ 

.I \ 
0.04 / \ 

0.02 - // \" 

o. 00 ~./ ---~-
r 

- 1 o 345 

Figure J (b) 



;ljl2 I chla) 

0 . 40 

0 . 35 f\ 
0.30 

0. 2 5 / \ 
0 . 20 / 
0 . 15 

I 

I 
0 . 10 / 
0.05 ) 1 

\ 

0 . 00 - - ' ''"'--

- 0 . 4 - 0. 2 0.0 0.2 0.4 0.6 
,IlJ 

Figure t(c) 

6.5.1.1 Posterio r Estimates 

For further analysis we have designed a program in SAS package, program is 

given in appendix III and use the data set given in Table 6.1 and use the hyperparameters 

obtained in section (6.4. 2). We have ll sed Marquart method to obtain the posterior modes; 

while Quadrature method is used to obtain posterior means and standard errors. 

Table 6.3 

Posterio r Es timates Us in g Joint Normal Prior 

Regression Posterior Posterior Standard Odds SKI' 
Estimate Mean Mode E rror Ratio 

/30 
-1 2.255 7 -9 .937\ 5. 1479 -0.4504 

/3, 2 .0 125 1.6378 0.8245 5. 1438 0.4545 

/32 0.1 582 0.1336 0. 11 09 1.1 429 0.22 18 

Here we have observed that the posterior mode for /30 is greater then the posterior mean of 

fJo which indicates that the dis lributi on of this parameter is nega ti vely skewed how much it 

is skewed we have calculated the coefficient of skewness given in Table 6.3. Thi s can also 

be observed in figure 1 (a) . We have also observed th~ t the posterior mean of /31 is greater 
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then the posterior mode of fJl which shows that the distribution of parameter is positively 

skewed how much it is skewed we have calculated the coefficient of skewness, that is given 

in Table 6.3 , and the graph in figure 1 (b) . We have a lso observed for /31 that a lso shows a 

positively skewed but coefficient of skewness is much smaller than fJl ' so it can said that the 

parameter (32 has less skewed distribution than the di stribution in parameter (31' It is observe 

1hat the odds ratio is greater then 1 for both parameters which indicate that both the variables 

are more likely to occur, so the odds ratio is high for a healthy individual with ESR less than 

20 mm\h to become an unhealthy or abnormal case with ESR greater than or equal to 20 

mm/h. So it can be said that everyone unit increase in the level of protein plasma 

(fibrinogen) approximately 5.1438 unit increases in the level of ESR and everyone unit 

increase in the level of protein plasma (Y-globulin) approximate ly 1.1429 unit increase ill 

the level of ESR, which is very low as compared to the other variable. So it can be 

concluded that the strength of relationship between the probability of an ESR reading greater 

than 20 11U11/h and the level of protein plasma (fibrinogen) is high but for Y -globulin is very 

low. So it can be concluded that fibrinogen is very important variable to check any effect on 

the ESR as the level of this protein is rises but this is not the case with other variab le that is 

Y-globu lin, as its odds ratio is very low almost equal to one, which is not significant as far 

as the normal cases are concern. 

6.5.1.2 Bayesian Hypothesis Testing 

Hypotheses testing in Bayesian are very simple; here we only find the posterior 

probability by integrating the joint posteri or di stribution upon the param eters i.e . 

We test the hypotheses: 

Ho : (31 ::::: 0 Versus HI : fJl > 0 
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and 

The posterior probability for No while tes ting /3, IS : 

o <Xl '" 

Po = p((J, ~ 0) = f f f p ((Jo, /3" (J2 I dafa)d (Ju d (J2d (J, 
-l'() -00 -co 

Now the posterior probability using informative prior while testing (J1 is: 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program we find the posterior probability as: 

Po = 0.001368 

The posterior probability indicates that under Bayes ian hypothesis criterion there is 0.14% 

chance to accept Ho so we accept H, with high probability and we conclude that /3, is 

positive and playing a significant role to effect the ESR if this protein is ri se in the blood 

plasma, this result provide the same conclusion as given with odds ratio . 

The posterior probability for H~ whi le tes ting /32 IS: 

o '" a) 

p, = P((J2 ~ 0) = f f f p(/3o, /3, ' /32 I data)d (Jod /3, d /32 
-CfJ -00 -00 

Now the posterior probability using informative prior while testing /32 1S: 
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A program is designed in SAS package to ftnd the posterior probability and after being run 

the prograln we find the poster io r probability as: 

PI = 0.030028 

The posterior probability indi cates that under Bayesian hypothes is criterion there is YYo 

chance to accept Ho and conclude that /31 is pos itive but not as significant as /3, is; so it can 

be said that Y -globulin IS does not signi (icantly affect the ESR as it nses in the blood 

plasma. 

6.5.2 Bayesian Analysis Using Joint Haldane Prior 

In this section we will present the Bayesian analysis of binary logis tic regress ion 

model with two explanatory variables by using non informative (Joint Haldane) prior. Then 

the joint posterior distribution for the parameters /30' /3, & /32 derived in section (6.4.3.2) see 

equation (6 .22): 

1 /I 

p(/3o,/3, , /32 I data) = - 2] {2 -I- exp( -(),) -I- exp((),)} {y,(); - log( l -I- exp((),)}] 
Ie ;=, 

- 00 < /30 < 00, -00 < /3, < 00 , -00 < /32 < 00 

where k is the normalizing constant: 

Program in SAS package has been designed; similar program IS given in appendi x TV to 

show the graph of marginal densities of the parameters /30' /3, & fJ2 by using the data se t 

given in Table 6.1. 
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Graph of Posterior Marginal Densities using Haldane PriOlo 
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F igure 2(b) 

6.5.2.1 Posterior Estimates 

For flllther analysis we have designed programs in SAS package, similar 

program is given in appendix III and also a similar program is given in appendi x IV fo r 

standard error, while using the c1 ata set given in table 6. 1. We have used Marquart method to 
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obtain the posterior modes, while Quudrature method is used to obtain posterior means and 

standard errors by using the Posterior distribution : 

Table 6.4 

Posterior Estimates Using Joint Haldane Priot" 

Regl"Cssion Posterior Posterior Standard Odds SKI' 
Estimate Mean Mode Error Ratio 

fJo 
- 12.8678 - 10.4508 5.2374 - 0.4615 

fJJ 
2.264 1 1.8505 0.8759 6.3630 0.4722 

fJ2 
0.1625 0.1371 0.1116 1.1469 0.2276 

We have similar results as we obtain in prevIOus section fJo has negatively skewed 

distribution how much it is skewed we have calculated the coefficient of skewness given in 

Table 6.4. Same can also be seen in figure 2 (a)'. same is the case with parameter fJl as its 

mean is greater than the posterior mode of fJ1 which shows that the distribution of parameter 

is positively skewed how much it is skewed we have ca lculated the coeffic ient of skewness , 

that is given in Table 6.4, and figure 2(b) provide us with same results. We have also 

observed for fJ2 that is also positively skewed but coefficient of skewness is much smaller 

than fJ1, so it can sa id that the parameter fJ2 has less skewed di stribution than the di strihution 

in parameter fJl' The odds ratio for this model is slightly different from the prev ious model 

but the significance is not changed. So that everyone unit increase in the level of protein 

plasma (fibrinogen) approximately 6.3630 unit increases in the level of ESR and everyone 

unit increase in the level of protein plasma (Y-globulin) approximately 1.1469 units increase 

in the level of ESR, which is very low. The conclusion is almost same as in previous sect ion . 
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6.5.2.2 Bayesian Hypothesis Testing 

Hypothesis testing in Bayesian is very simpl e; here we only find the posteriol 

probability by integrating the joint posterior distribution upon the parameters i. e . 

We test the hypothesis : 

Now the posterior probability of the hypotheses given 111 section (6.5. 1.2) uSll1 g 

noninformative (Joint Haldane) prior while testirig fJl is: 

o I 26 1 /I 

Po = J J J k~ [{2+exp(-tJ,) .I. exp(tJ,)}{y,tJ; - log(1 .I. exp(tJ,)}]clfJodfJ2 dfJl 
- 6 _ I -26 ,_ I 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program we find the posterior probability as: 

Po = 0.001424 

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.14% 

chance to accept Ho so we accept HI with high probability and conclude that fJl is positive 

and playing a significant role to effect the ESR if this protein is rise in the blood plasma: 

Now the posterior probability of the hypotheses given in section (6 .5.1.2) using 

noninformative (Haldane) prior is: 

o 6 26 1 11 

PI = f J f -2]{2 -I-exp(- tJ,)+exp(BJ}{y,B, - log(l+exp(tJ,)})dfJodfJl d fJ2 
_ I -6 -26 k ; = 1 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after be ing run the program we find the posterior probability as: 

PI = 0.030274 
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The posterior probability indi cates that under Bayesian hypothesis criterion there is 3(% 

chance to accept Ho and conclude that (32 is positive but not as significant (31 is; so it can be 

said that Y-globulin is does not significantly effect the ESR as its ri se in the blood plasma: 

6.5.3 Bayesian Analysis Using Joint Jeffreys Priol' 

In this section we will present the Bayesian analysis of binary logistic regress iun 

model with two explanatory variables by using noninformative (Joint Jeffreys) pri or. Then 

the joint posterior distribution for the parameters (30,fJl &fJ2 derived in section (6.4.3.3) see 

equation (6 .28): 

1 II 

p(fJo, fJl' fJ2 I data) = - I {~2 -I- exp( - f);) + exp( f);) {y;B; -log(1 + exp( f),))}} 
k ;= 1 

-if.) < fJo < 00, -00 < (31 < 00 , -00 < fJ2 < 00 

Where k is the normalizing constant, Programs in SAS package have been designed; similar 

program is given in appendix IV to show the graph of marginal densities of the parameters 

fJo, fJl & fJ2 by using the c1ata set given in Table 6.1. 

Graph of Posterior Marginal Densities using Jeffreys Pr'ior 
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6.5.3.1 Posterior Estimates 

For further analysis we have designed program in SAS package, simil ar 

program IS given in appendix III and lise the data set given in table 6. 1. We have used 

Marquart method to obtain the posterior modes ; while Quadrature method is used to obtain 

posterior means and standard errors . 

Table 6.5 

Posterior Estimates Using Joint Jeffreys Pdor 

Regression Posterior Posterior Standard Odds Sf( 
fI 

Estimate Mean Mode EITor Ratio 
A - 14.9810 - 12.2 886 5.5627 - 0.tl840 

fJo 

fJ, 
2.4675 1.9506 0.9657 7.0329 0.5352 

fJ2 
0.169 8 0.1428 0. 1135 1. 1535 0.2378 

We have very similar results as we obtain in previous sections; fJo has negatively skewed 

distribution how much it is skewed we have calculated the coefficient of skewness given in 

Table 6.4. Same is shown in figure 3(a). Same is the case with parameter fJ, as its mean is 

greater than the posterior mode of fJ, which shows lhat the di s lribution of para mete r is 
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positively skewed how much it is skewed we have calculated the coefficient of skewness, 

that is given in Table 6.4, and the graph in figure 3(b) provide us with same results. We have 

also observed for /32 that also shows a positively skewed see Figure 3(c) but coefficient of 

skewness is much smaller than /31' so it can sa id that the parameter /32 has less skewed 

distribution than the distribution in parameter /31' The odds ratio for this model is s li ghtly 

different from the previous moclel but the significance is not changed. So that everyone unit 

increase in the level of protein plasma (fibrinogen) approximately 7.0329 unit increases in 

the level of ESR and everyone unit increase in the leve l of protein plasma (Y-globulin) 

approximately 1.1535 units increase in the level of ESR, which is very low. The conclusion 

is almost same as in previous section with a slight difference is results. 

6.5.3.2 Bayesian Hypothesis Testing 

Hypothesis testing in Bayesian 1S very simple; here we only find the posterior 

probability by integrating the j oint posterior dis tribution upon the parameters i. e. 

The posterior probability of the hypotheses given in section (6.5.1 .2) using noninformative 

(Jeffreys) prior while testing fJI is: 

o I - 'I I 1 /I 

Po = f f f k ~ {)2 + exp(-BJ -1- exp(Bj{y,Bj - log(l + exp(B,))}}d /3od /32d /31 
-8 - 1-41 ,- I 

A program has been designed in SAS package, similar program is given in appendix IV to 

find the posterior probability and after being run the program we find the posterior 

probability as: 

Po = 0.001473 
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The posterior probability indicates that under Bayesian hypothesis criteri on there is 0.15% 

chance to accept Ho so accept HI with hi gh probab ili ty and we co nclude that PI is positive 

and playing a significant role to effect the ESR if this prote in is rise in the blood plasma: 

Now the posterior probability of hypotheses given in section (6 .5. 1.2) using noninfo rmative 

(Jeffreys) prior while testing fJ2 is: 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program we find the posterior probability as: 

PI = 0.031249 

The posterior probability indi ca tes that under Bayesian hypothes is criterion there is 3<10 

chance to accept!-Io and we conclude that fJ2 is positive but not as signi fica nt fJl is; so it 

can be said that Y-globul in is cloes not significantly effect the ESR as its ri se in the blood 

plasma: 

6.5.4 Bayes ian Analysis Using Joint Uniform Prior 

In this section we \:vill present the Bayesian analysis of binary logisti c regress ion 

model with two explanatory variables by Llsing noninformative (Joint Uniform) prior. Then 

the joint posterior distribution for the parameters fJo, fJl & fJ2 derived in section (6.4.3.4) see 

equation (6 .33): 
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Where k is the normalizing constant: 

Programs in SAS package has been des igned to .show the graph of marginal densities of the 

parameters fJo, fJt & fJ2 by using the data se t given in Table 6.1. 

Graph of Postcl'ior Marginal Dcnsities llsing Uniform Prior 
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6.5.4.1 Posterior Estim ates 

For further analysis we have designed a program in SAS package, similar 

program is given in appendix TV and use the data set given in table 6.1. We have used 

Marquart method to obtain the posterior modes; while Quadrature method is used to obtain 

posterior means and standard errors: 

Table 6.6 

Posterior Estimates Using Joint Uniform Prior 

Regression Postedor Posterior Standard Odds SJ(I' 

Estimate Mean Mode En-or Ratio 

fJo 
-15 .2452 -- 12.5060 5.6480 - 0.4850 

fJ, 2.5658 2.0363 0.9811 7.6622 0.5397 

fJ2 
0. 1727 0 .1452 0. 11 5 1 1.1563 0.2389 

We have slightly different results as vve obtained in prevIOus section, but with same 

conclusions, as fJo has negatively skewed distribution how much it is skewed we have 

calculated the coefficient of skewness given in Table 6.4 . Same is showing fi gure 4(a). same 

is the case with parameter fJl as its mean is greater than the posterior mode of fJ1 which 

shows that the distribution of parameter is positively skewed how much it is skewed we 

have calculated the coefficient of skewness, that is given in Table 6.4 , and also figure 4(b) 

provide us with same results . We have also observed for fJ2 that al so shows a positively 

skewed but coefficient of skew ness is much smaller than fJ1 ' so it can said that the parameter 

fJ2 has less skewed distribution than the distribution in parameter fJl' this can be seen in 

fi gure 4(c). The odds ratio for this model is s lightly different from the previous model but 

the significance is not changed. So that everyone unit increase in the level of protein plasma 
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· (fibrinogen) approx imate ly 7.6622 unit Increases 111 the level of ESR and everyone unit 

increase in the level of protein p lasma (Y-globulin) approx imately 1.1 563 units increase in 

the level ofESR, which is very low. The conclusion is almost same as in previous section 

6.5.4.2 Bayesian Hypothesis Testing 

Hypothesi s testin g in Bayes ian IS very simpl e; here \ve on ly find the posterior 

probability by integrating the joint posterior distribution upon the parameters i.e. 

We test the hypothesis: 

The posterior probability of hypotheses given 111 section (6 .5.1.2) USll1g noninformative 

(Uniform) prior while testing /31 IS: 

o I '10 1 11 

Po = f f f k ~ {yJ1; -log(l + exp(fJJ)}d /3od /32d /31 

-7 - I -40 I - I 

A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after being run the program \-ve find the posterior probability as: 

Po =0.001543 

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.15% 

chance to accept Ho and we conclude that /31 is positive and playing a significant role to 

effect the ESR if this protein is rise in the blood plasma: 

Now the posterior probability of hypotheses using informative prior while testing /32 IS: 
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A program is designed in SAS package, similar program is given in appendix IV to find the 

posterior probability and after be ing run th e program we tind the pos te ri o r pro babilit y :IS: 

PI = 0.031569 

The posterior probability indicates that under Bayesian hypothesi s criterion there is 3% 

chance to accept No and we conclude that fl2 is positive but not as significant fl, is; so it 

can be said that Y-globulin is does not s ignificantly effect the ESR as its rise in the blood 

plasma: 

6.6 Classical Regression Analysis 

For the comparison purpose now we take the classical estimates and test the 

hypothesis . For this we have simply run the logistic regression without intercept model. 

Now the classical estimates and hypothesis testing is given in following section: 

6.6.1 Classical Estimate 

Using the data given in Table 6.1 and having run the logistic regression we obtain: 

Table 6.7 

Output of Logistic Regression Using Classical Approach 

Coefficient Classical Standard 
I 

Z-Statistic P-Value Odds 
Estimate Errol' Ratio 

flo 
- 12.5060 5.64 80 - 2.2100 0.0270 

h 2.0323 - 0.9811 2.0800 0.0380 7.6600 
fl1 

fl2 0.1452 0.1 151 1.2600 0.2070 1.1600 

6.6.2 Classical way of Hypotheses Testing 

We have the logistic regression model as: 

145 



Hypotheses 

Ho : /31 ~ 0 Versus HI : /31 > 0 

and 

Since the p-value for /31 is 0.0380 , it indicates that we accept Ho at 3.8% level of 

significance. So it can be concluded that fibrinogen is playing significant role at 5% level of 

significance and it effect the ESR if this protein rises in the blood pl asma. Whil e the p-va lue 

for /32 is 0.2070, it indicates that Y-globulin is not a significant variable at any leve l of 

significance, as its p-vallie is too large to s llpport in favor of H~ so il can be sa id lhal il cloes 

not effect ESR significantly if this protein rises in the blood plasma. 

6.7 Comparison of Bayes ian and Classical Logistic Regression Analysis 

Now as a summery we present the results of logist ic regress ion model with two 

explanatory variables we have obtained by us ing Bayesian and Classical techniques and 

make comparison between these two , the results are presented in table (6.8) are the Bayesian 

results obtained by using different priors these results can be compared with the results 

given in tabl e (6.7). 
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Table 6.8 

Posterior Estimates for Logistic Regression Model With Two Explanatory Variables 

Coeffici ent No ninformative Prior Informative 
Uniform Jcfl'locys Haldane prior 

pl'ior prio r prior 
Posteri o r Mode - I ::!.S060 - 1::!.::!886 - 10';,10 8 . <) ()~7 1 

fJo 
Posterior Mean - 15.2452 - 14.98 10 - 12 .8678 - 12.2557 ·1 

Standard Erro r 5.6480 5.5627 5.2374 5. 1479 

SKI' -·0.48)0 - 0.4840 -0.46 15 - 0.4504 

fJl Posterior Mode 2 .0363 1.9506 1. 8505 1.6378 

--
Posterior Mean 2.5658 2.4675 2 .264 1 2.0 125 

Odds Ratio '1.6622 7.0329 6.3630 5. 1438 

Standard E rror 0.98 11 0 .9657 0.8759 0 .8245 

SKI' 0.5397 0.5352 0.'1722 0.4545 

fJ2 
Posterior Mode 0 .1 452 0.1428 0 . 1371 0. 1336 

0 - - - --_._------_ . . --. . -... _-. _ . - _. . . 
Posterior Mean 0. 1727 0 . 1698 0 . 1625 0. 1582 

-
Odds Ratio 1.1 563 1.1 535 1. 1469 I.I LI29 

Standard Erro r 0. 11 5 1 0 . 11 35 0 .1 116 0. 11 09 

SKI' 0.2389 0.2378 0.2276 0.22 18 

The resu lts fo und by using CIClss ica l logistic regression Cl nd in Bayesian logistic regress ion 

with Uniform prior are approxi mately same in all respects i .e. the coefficients, p-values and 

odds ratio. Here odds ratio are interpreted as the approximated change in the risk of di sease 

for everyone unit increase in the amount of fibrinogen and V-globulin . So the results are 

much improved 'vvith Haldane and informative prior as compared to uni form and Jeffreys. At 

the end it can be said that Haldane prior performs better than Jeffrey's priors in binary 

logistic regression models, w hen we have skewed data sets , as the case for this particul ar 

clata sets of ESR. While the bes t model we may suggest is the binary logist ic regress ion 
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model with intercept having only one explanatory variable that is fibrinogen which indicate 

a significant effect on ESR in all type logistic model used iIi our research as V-globulin does 

not show any significant effect on ESR with informative and noninformative priors. 
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C hapter 7 

Conclusion and Further Rescanh 

The present study compri ses the Bayesian analysis of the binary logisti c regress ion mode l 

taken from Cengiz et al. (2001). In Cengiz et al. (2001) linear regression model with two 

explanatory variables is given and they use approximation approach for the completion or 

their study and only consider noninformative priors for posterior analys is, but we have 

consider the model without in tercept, with intercept and logistic regression model with two 

explanatory variables . We have considered the entire posterior di stribution for Bayesian 

analysis i.e. no approximation is used. We have also obtained results by using info rmati ve 

prior. We have presented the Bayes ian analysis of binary logisti c regress ion model in 

different style . This analysis has been elone llsing three noninformative (Uni form , Jeffreys 

and Haldane) priors anel an informative (Normal) prior. The derivation of Haldane ancl 

Jeffreys prior is also provided. We have considered Bayes ian testing of hypotheses about the 

parameters. The posterior probabilities for the hypotheses concerning to the parameters have 

been calculated. Then the decisions have been made about the hypotheses according to these 

posterior probabilities . 

For informative prior, the hyperparameters are selected on the bas is of ex pert opinion idea 

taken from Bian (1997) . So for this purpose a range of values of hyperparameters are 

decided and selected the hyperparameters with minimum standard errors. The beha vior of 

posterior estimates (modes & means) are also observed through graphical representation of 

marginal posteriors of parameters which shows some how a skewed pattern with different 

noninformative and informati ve priors . 
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The posterior means, the posterior modes, the standard errors, the odds ratio and the 

coefficient of skewness are obtained by designing the program in SAS package. These 

results are computed using data set provided by Cheng et al. (200 I). The data set is used for 

Bayesian analysis of the models using Uniform, Jeffreys, I-Ialdane and informative (Normal) 

priors. The results are also obtained by using Classical approach and are compared with the 

results obtained by Bayesian approach. We observe that the result s that are obtained by 

Bayesian approach are more or less similar to that obtained by Classical approach . It is also 

observed that the results by using Uniform and Jeffreys prior are close to the results obtained 

by Classical approach but the results obtained by llsing Haldane and informative priors are 

slightly different. It is also observed that the variable Y-globulin is not effecting 

significantly to response variable (ESR) . So the suggested model for further study IS the 

model with intercept and \-vith one explanatory variable that is Fibrinogen . 

We have also presented the Bayesian hypotheses testing of binary logistic regression model 

for the data set given in Table 4.1 and Table 6.1 using informative (Normal) and 

noninformative (Uniform, Jeffreys and Haldane) priors and we have observe that the 

posterior probabilities suggest the same conclusion as provided by Classical results but in 

more significant way. 

For further research, this work can be extended to many directions for the Bayesian analysis 

of logistic regression model. One may increase the number of independent variables; one 

may use Prabit or Tobit method to handle these types of model s that will provide same 

results as with logistic with slight differences . One may also consider the ordered or 

multinomial categories for response variable by using ordered Logit, orderecl Prabit or 

ordered Tobit model to handle this and multinomial Logit, llluitinomial Probit or 
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multinomial Tobit model to handle multinomial responses. This work can also be extended 

for different informative priors that may be Conjugate. Different techniques for the 

elicitation of hyperparameters can also be llsed for informative prior. 
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Appendix I 

*TO FIND THE POSTERIOR },,10DE USING INFORMATIVE PRIOR WITHOUT 
INTERCEPT; 

DATA DD; 
INPUTNN YI Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 YIO YII YI2 YI3 Yl4 Yl5 YI6 YI7 YI8 
Yl9 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y3I Y32 XII X I2 X l 3 X I4 
Xl5 Xl6 X 17 Xl8 X l9 X IIO X III X 1l 2 X Il3 Xl14 XII5 X Il6 XI I7 XI 18 X ll 9 
Xl20 Xl21 Xl22 X123 Xl24 XI25 X 126 X 127 XI28 X129 X130 X I31 
X l32 a l bl Cl; 
CARDS; 
32 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 
2.52 2.56 2.19 2.18 3.41 2.46 3.22 2.2 1 3.15 2.60 2.29 2.35 5.06 3.34 2.38 3.15 3.5] 
2.682.602.232.882.652.092.282.672.292.152.543.93 3.342.993.32 1 0.200 

PROC PRINT DATA=DD; RUN; 
PROC SYSNLIN DATA=DD; 
NPl1=EXP(-BI *XII); NPI2=EXP(-BI *X 12); NP13=EXP(-BI *X I3) ; 
NPI4=EXP(-Bl *X14); NP15=EXP(-B 1 *X I5); NP 1 6=EXP(-B 1 *X16); 
NPI7=EXP(-B 1 *XI7); NPI8=EXP(-I31 *X I8) ; NPI9=EXP(-Bl *X19); 
NPll O=EXP(-B 1 *X l1 0); NPl 1 1 =EXP(-B 1 *X II I) ; NPI 1 2=EXP(-B 1 *X I 12); 
NPl13=EXP(-B 1 *Xl13); NPI14=EXP(-B I *XI14); NPI15=EXP(-B 1 *X l15); 
NPl16=EXP(-B l *Xl16); NPl17=EXP(-Bl *Xl17); NPl18=EXP(-Bl *X lI8); 
NP1l9=EXP(-B I *X I19) ; NP120=EXP(-B 1 *X I20) ; NP121 =EXP(-B 1 *X I2 1); 
NPI22=EXP(-B 1 *X122); NP I2J=EXP(-B 1 *X I 23); NP124=EXP( -B I *XI24); 
NP 125=EXP(-B 1 *XI25); NPI26=EXP(-B 1 *XI26); NPI27=EXP(-B 1 *XI27); 
NPl28=EXP(-B I *X128); NPl29=EXP(-B I *XI29); NPI30=EXP(-B 1 *X130); 
NP131 =EXP(-B 1 *X13 1); NP132=EXP(-B 1 *X132); PPll =EXP(B 1 *X l1) ; 
PPI2=EXP(BI *XI2); PPI3=EXP(BI *X13); PPI4=EXP(Bl *X14); 
PP15=EXP(B 1 *XI5); PPI6=EXP(B 1 *X I6); PP17=EXP(B 1 *X I 7); 
PP18=EXP(B 1 *X I8); PP19=EXP(B 1 *XI9); PPl! O=EXP(B 1 *X ll 0); 
PP111=EXP(Bl *X 111); PPl12=EXP(BI *XI 12); PPI13 =EXP(BI *XI I]); 
PP 114=EXP(B 1 *X 114); PP I 15=EXP(B 1 *X 115); PP 116=EXP(B 1 *X 116); 
PP117=EXP(B I *XI17); PPI18=EXP(I31 *X1 18); PP 119=EXP(B 1 *XI 19); 
PP120=EXP(Bl *X120); PP121=EXP(BI *X I2 1); PPI22=EXP(BI *XI22); 
PPI23=EXP(B 1 *XI23); PP I 24=EXP(B 1 *x i 24); PPI25=EXP(B 1 *XI25); 
PP126=EXP(B 1 *XI26); PPI27=EXP(B 1 *XI27); PPI28=EXP(B I *XI28); 
PPI29=EXP(B 1 *X I29); PP130=EXP(B 1 *X130); PP131 =EXP(B I *X131) ; 
PP 132=EXP(B 1 *XI32); K =EXP( -112* lib 1 **2*(B l-a1 )**2); 
Cl =(K*(Xl 1 *Yl-11l +NP 11)-(B I-a l)!b 1* *2*(Y1 *(B I *X l1 » +LOO(111 +PP 11)+ 

(X12*Y2-1I1 +NP 12)-(B l-al)!b I **2*(Y2*(B I *X I2»+LOO(I/1 +PP 12)+ 
(X13 *Y]-Ill +NP 13)-(B I-a1)!bl * *2*(Y3*(B 1 *X13»+LOG(1I1 +PP 1 ])+ 
(X14*Y4-11l +NP 14)-(B l-al)!bl * *2* (Y 4*(B 1 *XI4»+LOG(1/1 +PP 14)+ 
(XI5*Y5 - ll1 +NP I5)-(B I -a l )!b 1 **2 *(Y5 *(B 1 *X 15»+LOG( 111 +PP 15)+ 
(XI6*Y6-11l +NP 16)-(B I-al)!b 1 **2* (Y6*(B 1 *X I6» +LOG( Jll+PP 16)+ 
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(X17*Y7-11l +NP 17)-(D I-al )/b 1 **2* (Y7*(B 1 *X17»+LOG(l /I +PPI7)+ 
(XlS*Y8-11l +NP lS)-(B I-al )/b 1 * *2*(YS*(B 1 *X lS»+LOG( III +PPIS)+ 
(X19*Y9-11l +NP 19)-(D i-a 1 )/bl * *2*(Y9*(B 1 *XI9»+LOG( III +PP 19)+ 
(XII 0*Y1 0-111 +NP11 O)-(B I -a 1 )/b 1 **2*(Y I O*(B 1 *X 11 O)+LOG(l I I +PP 11 0)+ 
(Xlli *YIl-lI1+NP 111 )-(B I-a1)/b 1 **2*(Y1I *(B 1 *X I11 »+LOG( 111 +PP 111)+ 
(X1I2*Y12-11l +NP 112)-(B I-a 1 )/b I **2*(Y 12*(13 1 *X 11 2»+LOG( III +PP 11 2)+ 
(XI13*Y13-1/1 +NP 113)-(B I-a 1 )/b 1 **2*(Y13 *(B 1 *XI13»+LOG(111 +PP 113)+ 
(X114*Y14-11l +NP II 4)-(B 1-a1)/b I **2*(Y14*(13 1 *XI 14» +LOG(l1l +PP 114)+ 
(Xl15*Y15-1 I I +NP 11 5)-(13 I-a 1 )/b 1 **2*(Y15*(13 1 *X 11 5»+LOG(111 +PP 11 5)+ 
(Xl16*YI6-11l +NP lI 6)-(13 1-al)/bi **2*(YI6 *(13 1 *X I16)+LOG( 111 +PP 116)+ 
(XI17*Y17-111 +NPl17)-(B I -a 1 )/bl **2*(Y17 *(13 1 *X117» +LOG( 1 /1 +PP 117)+ 
(X118*YI8-11l +NPlI8)-(B l-a1 )/b 1 **2*(YIS*(13 1 *Xl 18» +LOG(l1l +PP 11S)+ 
(X119*Y19-11l +NPI19)-(B 1-a l )/bl **2*(Y 19*(B 1 *X 119»+LOG( I 11 +PP 119)+ 
(X120*Y20-11l +NP120)-(B l -a l )/b1 **2*(Y20*(B 1 *X I20» +LOG(11l +PP 120)+ 
(X121 *Y2 1-11l +NP 121 )-(13 I-a 1 )/b 1 **2 *(Y21 *(13 1 *XI2I »+LOG(ll1 +PP 121)+ 
(X 122*Y22- 111 +NP 122)-(B 1-a l )/b 1 **2*(Y22 *(B 1 *X 122» +LOG(111 +PP 122)+ 
(X123*Y23-11l +NPl23)-(B I -a 1 )/b 1 **2*(Y23*(B 1 *X123»+LOG(l11 +PP 123)+ 
(X124*Y24-111 +NP124)-(13 I-a 1 )/b 1 **2 *(Y24*(13 1 *X 124» +LOG( 111 +PP 124)+ 
(XI25*Y25-111 +NP 125)-(B l -a 1 )/b 1 **2 *(Y25*(13 1 *X 125» +LOG(1/ 1 +PP 125)+ 
(XI26*Y26-11l +NPI26)-(B I-a 1 )/b 1 **2*(Y26*(13 1 *X126»+LOG(111 +PP 126)+ 
(X127*Y27-111 +NP 127)-(13 l -a l)/b 1 **2 *(Y27*(13 1 *XI27»+LOG( 11l -IPP 127) I 
(XI28*Y28-11l +NP 12S)-(13 I -a I )/b 1 **2*(Y28*(13 1 *XI28»+LOG(1/1 +PP 128)+ 
(XI29*Y29-111 +NP 129)-(13 l-al )/b I **2*(Y29*(13 1 *XI29»+LOG(111 +PP 129)+ 
(XI30*Y30-111 +NPI30)-(13 1-a1 )/bl **2*(Y30*(13 1 *X 130» +LOG(111 +PP 130)+ 
(X131 *Y3 1-IIl+NP I 31)-(13I-a l)/b l **2* (Y31 *(131 *X 131» +LOG( 11l+PP I31)+ 
(X132*Y32-11l +NPI32)-(B I-a l) /b 1 **2*(Y32*(B 1 *X132»+LOG(1I 1 +PP 132»); 

ENDO CI; 
EXO NN YI Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 YIO Y11 YI2 YI3 Y14 Y lS Y16 Y17 Y I8 
Yl9 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 XI I X 12 Xl3 X 14 
XIS XI6 Xl7 XIS X19 X ll0 XII I X II 2 XI13 Xl14 XllS X l16 XI17 X 118 Xl19 
X120 X121 XI22 X123 X124 X125 X 126 X 127 X128 X129 X130 X131 
X132; 
PARMS 131 1; RUN; 
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Appendix II 

* TO FIND THE POSTERIOR MODES USING JEFFREYS PRIOR WITT-I 
INTERCEPT MODEL; 

DATADD; 
INPUT NN YI Y2 Y3 Y 4 YS Y6 Y7 Y8 Y9 Y lO Y II Y 12 Y13 Y I 4 Y IS Y 1 G Y 1 7 Y 18 
Yl9 Y20 Y2 1 Y22 Y23 Y24 Y2S Y26 Y27 Y28 Y29 Y30 Y31 Y32 X II X l 2 X l3 XI4 
X IS Xl6 Xl7 Xl8 X 19 X 110 X UI X l1 2 XII3 Xl14 Xl1S X l16 XII7 X 118 X l1 9 
X 120 X121 X122 X123 X 124 X12S X126 X l27 X I28 X129 X 130 XI31 X I3 2 CO C l ; 
CARDS; 
3200000000000011 II 1000001000001000 
2.S2 2.S6 2. 19 2 .183.412.463.222.2 1 3.IS 2.60 2.29 2.3S S.06 3.342.38 3. IS 3.S3 
2.682.602.232.88 2.6S 2.092.282.672.29 2.1S 2.S4 3.933 .342.993 .3200 

PROC PRINT DATA=DD; RUN ; 
PROC SYSNLIN DATA=DD; 
NPli =EXP(-BO-B I *Xll);NP12=EXP(-BO-B I *X12);NP13 =EXP(-BO-B 1 *XI3); 
NPI4=EXP(-BO-B 1 *X I4) ;NPl S=EXP(-BO-B 1 *XI'S);NP 16=EXP(-BO-B I *X I6) ; 
NP17=EXP(-BO-Bl *X17);NP 18=EXP(-BO-B I *X I8) ;NP 19=EXP(-BO-B I *X 19) ; 
NP 11 O=EXP(-B O-B I *X II 0) ;NP1l1 =EXP(-BO-B I *Xl l1 );NP I 12=EXP(-BO-B 1 *X 11 2); 
NP113=EXP(-BO-B 1 *X11 3);NP114=EXP(-BO-B I *Xl14);NPIIS=EXP(-BO-B I *X II S); 
NPI16=EXP(-BO-B I *X l1 6);NP117=EXP(-BO-B 1 *X I17) ;NP 118=EXP(-BO-BI *X 11 8); 
NP119=EXP(-BO-Bl *XlI9);NP120=EXP(-BO-B 1 *X120);NP1 2 1 =EXP(-BO-B 1 *X I2 1); 
NPI22=EXP(-BO-B I *X I22);NP1 23=EXP(-BO-B I *X I23);NP 124=EXP(-BO-B 1 *X124); 
NP125=EXP(-BO-Bl *X I25);NPI 26=EXP(-BO-B 1 *X126);NPI 27=EXP(-BO-B I *X I27); 
NP 128=EXP(-BO-BI *X I28);NPI 29=EXP(-BO-B 1 *XI 29);NP1 30=EXP(-BO-B 1 *X I30); 
NPI31 =EXP(-BO-B] *X I3 ] );NP132=EXP(-BO-B I *X132) ;PPI] =EXP(BO I-B ] *X II) ; 
PP 12=EXP(BO+B I *X12);P PI 3=EXP(DO+Bl *X I3);PP 14=EXP(DO+B 1 *X 14) ; 
PPIS=EXP(BO+B 1 *Xl S);PP I6=EXP(BO+B 1 *X16);PP 17=EXP(B O+B I *X 17); 
PP 18=EXP(BO+B 1 *X18);PP19=EXP(BO+B J *X I 9);PP l1 O=EXP(BO+B 1 *X 11 0) ; 
PPIIl =EXP(BO+B 1 *Xlll );PPI1 2=EXP(BO+Bl *X1 12);PP I13=EXP(BO+B 1 *XI13); 
PPl14=EXP(BO+Bl *X l1 4);PP llS=EXP(BO+B 1 *Xl1S) ;PPI16=EXP(BO+B 1 *X1 16); 
PPl17=EXP(BO+Bl *X117);PPI18=EXP(BO+Bl *X I18) ;PPII9=EXP(BO+B I *X I19) ; 
PPI 20=EXP(BO+B 1 *X I 20);PPl 2 1 =EXP(BO+B I *X I2 1);PPI 22=EXP(BO+B 1 *X I22); 
PP123=EXP(BO+B 1 *XI 23);PP124=EXP(BO+B 1 *X124);PP1 2S=EXP(BO+B 1 *X I2S); 
PPI26=EXP(BO+B 1 *X I 26) ;PPI27=EXP(BO+B 1 *X I27) ;PP1 28=EXP(BO+B 1 *X I28); 
PPI29=EXP(BO+BI *X I 29);PPI 30=EXP(BO+B I *X I30);PPI 31 =EXP(BO+B 1 *X 13 1); 
PPI32=EXP(BO+BI *X132) ;PPPll =SQRT(2+NPII+PPI1);PPPI2=SQRT(2+NP12+PP 
12);PPPI3=SQRT(2+NP I 3+PP I 3);PPP14=SQRT(2+NP14+PPI4);PPP lS=SQRT(2+NP 
lS+PP15);PPPI6=SQRT(2+NP1 6+PP1 6);PPP I7=SQRT(2+NP I7+PPl7) ;PPP I8=SQRT 
(2+NPI8+PPI8);PPP19=SQRT(2+NP19+PP I9) ;PPPII 0=SQRT(2+NPII O+PP 11 0) ; 
PPPl11 =SQRT(2+NP l11 +PP lll );PPP I1 2=SQRT(2+NPI12+PPI12);PPPI13=SQRT(2 
+NPI13 +PPI13) ;PPPI14=SQRT(2+NP lI 4+PP I1 4).;PPPII S=SQRT(2+NP ll S-IPP II S) ; 
PPPl16=SQRT(2+NP 116+PPI16) ;PPP I1 7=SQRT(2+NP 11 7+PP 117);PPP 11 8=SQRT(2 
+NP 118+PP I 18);PPP 1 19=5QRT(2+NP 1 19+PP 11 9);PPP 120=SQRT(2+NP 120+PP J 20) ; 

IS4 



PPP 121 =SQRT(2+NP 121 +PP 121);PPP 122=SQRT(2+NP 122+PP 122);PPP 123=SQRT(2 
+NP123+PP123);PPP 124=SQRT(2+NP 124+PP124);PPP I 25=SQRT(2+NP 125+ PP 125); 
PPP126=SQRT(2+NPI26+PP126);PPPl27=SQRT(2+NP l 27+PP 127);PP P128=SQRT(2 
+NP 128+PP 128);PPP 129=SQRT(2+NP129+PP129);PPP130=SQRT(2+NPI30+PP 130); 
PPP131=SQRT(2+NP 131+PP131 );PPP 132=SQRT(2+NP132+PP 132); 

CO=((PPP 11 *(Y l -l/(l +NP ll » + (YI * (BO-I-B I *X 11)+LOG( I/(l +PP II »))*(PP I I-NP I 1)12* 
PPP 11)+(PPP12*(Y2- 11(1 +NP 12)+(Y2*(130+B 1 *X12)+LOG( 1I(1 +PP 12)))*(PP1 2-
NP 12)/2*PPP 12)+(PPP l 3 *(Y3-1/(l +NP 13»+(Y3 *(BO+B 1 *X13)+LOG(1I(l +PP 1 3»)* 
(PPI 3-NP13)/2*PPP13)+(PPP14*(Y4- 11(1 +NP 14»+(Y4*(BO+B 1 *X14)+LOG( I /( 1 + 
PPI4»)*(PPI4-NP14)12*PPPI 4)+(PPP 15*(Y5- 1/(1 +NP l S»+(YS*(BO+B 1 *X15)+LOG 
(1/(1 +PP 15))*(PP 15-NP lS)/2 *PPP 15)+(PPP 16*(Y6-1/(1 +NP 16)+(Y6*(BO+B 1 *X 16) 
+LOG( 11(1 +PP 16»)*(PP 16-NP 16)/2*PPP 16)+(PPP 17*(Y7-lI(l +NP 17»+(Y7*(80+ 
B 1 *X17)+LOG(1/( 1 +PP 17»)*(PP 17-NP 17)/2*PPP 17)+(PPP 18*(Y8-1/( J +NP 18))+(Y8* 
(BO+B 1 *X18)+LOG(1/( I +PP18»)*(PP 18-NPI8)/2*PPP 18)+(PPP I 9*(Y9-1I(l +NP19» 
+(Y9*(BO+B 1 *X19)+LOG( lie 1 +PP 19»)*(PP19-NP 19)/2*PPP19)+(PPP 11 O*(Y I 0-11(1 + 
NPll O»+(YI O*(BO+B 1 *Xll O)+LOG (1 1(1 +PP 11 0»)*(PP11 ONP II 0)/2*PPP 11 O)+(PPP III 
*(Y ll -1/(1 +NPI 11) +(Y 1 1 *(BO+B 1 *X1 11 )+LOG(1/(1 +PP I11»)*(PPIII-NP III )/2* 
PPPI 1 l)+(PPPl 12*(Y I2-I/(1+NPI 12»+(YI2*(BO+B l *X I1 2)+LOG(1/(I+PP I1 2»)* 
(PP lI2-NP 11 2)/2*PPP II 2)+(PPP I13 *(Y 131/(1 +NPI13»+(Y13 *(BO+B 1 *XI IJ)+LOG( II 
(1 +PP I 13»)*(PPl13-NPI 13)/2*PPP I13)+(PPP~ 14*(Y14-I/(1 +NPII4»+(YI4*(BO-I-B 1* 
XII4)+LOG(1/(1 +PP l1 4»)*(PP II 4-NPI14)/2*PPP l14)+(PPP I1 5*(Y l S-1I( 1 +NP 11 S»+ 
(YlS*(BO+B 1 *XllS)+LOG(I /( l +PPl1S»)*(PP II S-NP 11 S)/2*PPP 11 S)+(PPP 1 16*(Y 16-
I /(1+NP I16» +(Y16*(BO+B I *XI 16):rLOG(l/(1+PP I1 6»)*(PP II 6-NP I1 6)/2*PPP lI 6)+ 
(PPPI17*(Y17-1I(l +NP I17» +(Y17*(BO-l-B 1 *XI 17)+LOG(1I(1 +PPl17»)*(PP117-
NPl17)/2*PPPl17)+(PPP 1 I 8*(Y18-1I( I +NP I18» +(Y I8 *(B O+B 1 *X l18)+LOG(1I( 1-1-
PP lI8»)*(PPII8-NP 118)/2 *PPP 1I8)+(PPP 119*(Y 19-11(1 +NP 1 19»+(Y 19*(BO+B 1 * 
X I 19)+LOG(1/(1 +PPII9»)*(PP I1 9-NP I1 9)I2*PPPl19)+(PPP I 20*(Y20-11(1 +NP 120))+ 
(Y20*(BO+B 1 *X120)+LOG(1 /(1 +PP 120»)*(PP120-NP120)I2*PPP 120)+(PPP 12 1 *(Y2 1-
1/(1 +NP121»+(Y21 *(BO+B 1 *XI2 1)-I-LOG(1/(I +PP 121 »)*(PP 121-NP 12 1 )/2*PPP121)+ 
(PPP 122*(Y22-1/(1 +NP 122»+(Y22*(BO+B I *X 122)+LOG(1/(1 +PP 122»))*(PP 122-
NP 122)12*PPP 122)+(PPP l 23 *(Y23-1/(1 +NP 123» +(Y23 *(BO+B I *X 123)+LOG( J I( 1-1-
PP 123»)*(PP 123-NPI23)/2*PPP123)+(PPPI24*(Y24- 1/(1 +NP 124»+(Y24*(BO+ 
13 1 *X124)+LOG(1/(1 +PP I 24»)*(PP 124-NP124)/2*PPP 124)+(PPP I 2S*(Y2S-lI(l + 
NP 125»)+(Y25*(BO-I-B I *X I 2S)+LOG(1I( 1 +PP 125»)*(PP 125-NP 125)/2*PPP 125)+ 
(PPP 126*(Y26-1I(l +NP 126»+(Y26*(BO+ 13 J *X126)+LOG(1I(1 +PP126»)*(PP 126-
NP126)/2*PPP126)+(PPP127*(Y27- 1/( 1 +NP l 27»+(Y27*(BO+B 1 *X127)+LOG( 1/( I 
+PP 127»)*(PP 127-NP 127)/2*PPP 127)+(PPP 128*(Y28-1/(1 +NP128»+(Y28*(BO+ 
B 1 *X128)+LOG(1/(l +PP 128»)*(PP128-NP 128)/2*PPP 128)+(PPP129*(Y29-1/( I 
+NP129»+(Y29*(BO+B 1 *X129)+LOG(1/(1 +PP 129»)*(PP J 29-NP 129)/2 *PPP 129)+ 
(PPP130*(Y30-1/(1 +NP 130» +(Y30*(BO+B 1 *X130)+LOG(1I(1 +PP 130»)*(PP 130-
NP130)/2*PPP 130)+(PPP131 *(Y3 1-1/(1 +NP 13 1» +(Y3 1 *(BO+B I *X13 1)+LOG( 11 
( 1 +PP 13 I »)*(PP 13 1-NP ] 3 1)l2*PPP 13 1 )+(PPP132*(Y32-11( 1 +NPI32)+(Y32*(BO+B 1 * 
X I32)+LOG(1/(1 +PPI32»)*(PP 132-NP 132)/2*PPP 132»; 
C 1 =((PPP 11 *X11 *(Yl-lI(l +NP 11»+X 11 *(YI *(BO+B 1 *X ll )+LOG( 11(1 +PP 11 »)*(PP 1 1 
-NP 11)/2*PPP l1)+(PPP1 2*X12*(Y2-lI(l +NP 12»+XI2*(Y2*(BO+B 1 *X I2)+LOG( 1/(1 
+PP 12»)*(PP 12-NP 12)/2*PPP 12)+(PPPI3 *X 13 *(YJ-l /( 1 +NP 13))+ X 13 *(Y3 *(80+8 1 * 
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X 13)+LOG(1 /(1 +PP 13»)*(PP 13-NP 1 3 )/2 ~'PPP lJ)+(PPP 14*X 14*(Y4- 1/( 1 +NP 14» +X 14 
*(Y4*(BO+B 1 *X I4)+LOG(1/(l +PP14»))*(PP 14-NP 14)/2*PPP 14)+(PPP 15*X I5*(Y5- II( 
1 +NP15»+X15 *(Y5*(BO+B 1 *X15)+LOG(1/(1 +PP 15»)*(PP 15-NP 15)/2*PPP 15)+(PPP 16 
*X16*(Y6- 11(1 +NP 16»)+X 16*(Y6*(BO+B 1 *X 16)+LOG( 1 /( I+PP 16»))*(PP 16-NP 16)/2* 
PPP 16)+(PPP 17*X 17*(Y7-1I(1 +NP 17)+X 17*(Y7*(BO+B I *X 17)+LOG( 1/( 1 +PP 17»)) * 
(PP 17-NP 17)/2 *PPP 17)+(PPPI 8*X 18*(Y8-11( 1 +NP 18))+X 18*(Y8*(BO+B 1 *X 18)+LOG 
(1 I( I+PP 18»)*(PP 18-NP 18)/2 *PPP 18)+(PPP 19*X 19*(Y9-l/( 1 +NP 19)+ X 19*(Y9*(BO+ 
B 1 *X 19)+LOG(1/(1+PP 19»)*(PP 19-NP 19)/2 *PPP 19)+(PPP 11 O*X 11 O*(Y 10-1 I( 1 + 
NP 110»+X110*(Y10*(BO+Bl*XIIO)+LOG(1I(1+PP 110»)*(PP 110-NP I10)/2*PPP I 10) 
+(PPPlll *Xlll *(Yll - lI(1 +NP 111» +Xl1 1 *(Yl l *(BO+B I *X l11)+ LOG(1/(1 +PPl11 ») 
*CPPI11-NPl11)/2*PPP111)+(PPPI1 2*XI 12*(YI2-1/(1+NPI12»+X112*(Y1 2*(BO+ 
B 1 *Xl1 2)+LOG(1/(1 +PP 11 2»)*(PP 11 2-NP 11 2)/2*PPP l1 2)+(PPP I1 3 *X113 *(Y 13-
11(1 +NPl13» :f-X 11 3*(YI3 *(BO+B 1 *Xl 13)+LOG(1I(1 +PP 11 3»)*(PP 11 3-NP 11 3)/2 
*PPPlI3)+(PPP114*X114*(Y14-1/(1 +NP1 14»+X I1 4*(Y14*(BO+B 1 *X l1 4)+LOG 
(11(1 +PP 11 4 »)*(PP 114-NP 11 4)/2 *PPP 114)+(PPP 11 5 *X 11 5 *(Y15- 1/(1+NP 115))+X 11 5 
*(Y15*(BO+B l *Xl15)+LOG(II(1 +PP l1 5»))*(PP l1 5-NP I1 5)/2*PPP I15)+(PPPl1 6 * 
X 116*(Y16-1/(1 +NP I 16» +X 116*(YI6*(BO+B 1 *X I 16)+LOG(1 1(1 +PP 11 6»)*(PP 11 6-
NP I16)/2*PPP I1 6)+(PPP 117* X lI7 *(Y 17- 11(1 +NP 117» + X 117*(Y 17*(BO+B 1 *X I17) 
+LOG(1/(1 +PP I17))*(PPI 17-NP II7)/2*PPP I17)+(PPPI 18*XII8 *(YI8- I 1(1 +NP II g 
»)+ X II8 *(Y I8*(BO+B 1 *XI 18)+LOG(1/(1 +PPI18»)*(PP 1I8-NP 1 18)/2*PPP 118)+ 
(PPP 119*X 119* (YI9-1/(1 +NP 1I9» +X I1 9* (Y19*(BO+B 1 *X I19)+ LOG( I I( 1 + 
PP I19»)*(PP 1 19-NP I1 9)/2*PPP l1 9)+(PPP 120*X120*(Y20-1I(1 +NP I20»+X120* 
(Y20*(BO+B 1 *X120)+LOG(1 /(1 +PP 120»)*(PP 120-NP 120)/2*PP P1 20)+(PPP 121 *X 12 1 * 
(Y2 I -1/(1 +NP12 1 »+X121 *(Y2 1 *(BO+B 1 "'X12 1 )+LOG( 1 1(1 +PP1 2 1 ))*(PP 121-NP 12 1) 
/2* PPP121 )+(PPP1 22*X122*(Y22-1 1(1 +NP 122»)+ XI22*(Y22 *(BO+B 1 *X I22)+LOG 
(1/( 1 +PPI22»))*(PP 122-NP I 22)/2*PPP1 22)+(PPP 123 *X123 *(Y23- 1I(1 +NP123» + Xl23 * 
(Y23 *(BO-I-B 1 *X I 23)+LOG(l/(1 +PP 123))* CPP 123-NP 123)/2 *PPP I 23)+(PPP 124* 
X 124*(Y24-1/(1 +NP I24»+ XI24*(Y24*(BO+B 1 *X124)+LOG(1/(1 +PPI24»))*(PP 124-
NP124)/2*PPP 124)+(PPP 125 *XI 25*(Y25-1/(l +NPI 25) +X 125*(Y25*(BO+B 1 *X 125)+ 
LOG(l/(1 +PP I25))* (PPI25-NPI 25)/2*PPP I 25)+(PPP1 26*X I26*(Y26-1 /( 1 +NPI 26))+ 
X I26*(Y26 *(BO+B 1 *X126)+LOG(I /(1 +PP 126»)*(PP 126-NP 126)/2 *PPP I 26)+(PPP 127* 
x i 27*(Y27-1I(1 +NPI27)+X1 27*(Y27*(BO+B 1 *X I2'7)+LOG(1 1(1 +PP I 27»))*(PP 127-
NP 127)/2* PPPI 27)+(PPP 128*X I 28* (Y28-1/( 1 +NP I 28» +X 128*(Y28*(BO+B I *X I 28)+ 
LOG(1 /(1 +PP I 28»))*(PP 128-NP I 28)/2*PPP 128)+(PPP I 29*XI29*(Y29-1 /(1 +NP I 29» + 
X 129*(Y29*(BO+D 1 *X129)+LOG(1I(1 +PPI29»)*(PP 129-NPI29)/2* PPP129)+(PPP 130* 
X I 30*(Y30-1/(1 +NP130»+ Xl JO*(Y30*(BO+B 1 *X130)+LOG(1 /(l +PP 130))*(PP I30-
NP 130)/2*PPP 130)+(PPP131 *X13 I *(Y31 - 1/(1 +NP 13 1 »+ X 131 *(Y31 *(BO+B 1 *X I 31)+ 
LOG(1/(l +PP 131 »)*(PP 13 1-NP 131)/2 *PPP 13 1)+(PPP 132*X 132*(Y32- 1 1(1 +NP 132)) 
+X 132*(Y32*(BO+B 1 *X132)+LOG( I /( 1 +PP 13 2)))*(PP 132-NP 132)/2 *PPP 132)) ; 

ENDO CO C1; , 
EXO NN Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Yio Y l1 Y1 2 Y13 Y 14 Y15 Y 16 Y I7 YI 8 
Y 19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y3 0 Y31 Y32 X II X 12 X l 3 X l4 
XI5 Xl6 Xl7 X l8 X l9 X II0 X lII X 1l 2 X 11 3 Xl 14 Xl15 X l16 X 117 X l18 X lt9 
X 120 X 12 1 X122 X123 X 124 X 125 X 126 X 127 X 128 X 129 X I30 X I3 1 X 132; 
PARMS DO -1 B 1 1; RUN; 
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Appendix III 

* TO FIND THE POSTERIOR MODES USING INFORMATIVE PRIOR OF 
LOGISTIC REGRESSION MODEL WITH TWO EXPLANATORY VARIABLES; 

DATADD; 
INPUTNN Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Yl1 Y12 Y13 Y14 Y15 Y16 Y17 YI8 
Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 XII X 12 X 13 X 14 
X15 X16 X 17 X 18 X 19 X 110 X III X l1 2 X 113 X 114 X115 X 11 6 X 117 X l18 X I1 9 
X120 X121 X122 X123 X I24 X125 X 126 X 127 X 128 XI29 X I30 X 13 ] X I32 X2 1 
X22 X23 X24 X25 X26 X27 X28 X29 X2 10 X2 11 X2 12 X213 X2 14 X215 X2 16 X2 17 
X218 X219 X220 X221 X222 X223 X224 X225 X226 X227 X228 X229 X230 X23 1 
X232 aO a1 a2 bO bl b2 CO Cl C2; 
CARDS; 
32 0 0 0 0 0 0 0 0 0 0 0 0 I I 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 
2.522.562.192.18 3.41 2.46 3.22 2.21 3.15 2.60 2.29 2.35 5.06 3.34 2.38 3.1 5 3.53 
2.68 2.602.23 2.88 2.65 2 .09 2.28 2.G7 2.29 2.15 2.543.93 3.342.99 3.32 38 31 33 31 
37 36 38 37 39 41 36 39 37 32 37 36 46 34 38 37 304644 36 39 31 31 28 32 30 36 35 
18.95 4.75 3.25 5.15 3.05 0.75 000 
, 
PROC PRINT DATA=DD; RUN; 
PROC SYSNLIN DATA=DD; 
NP11 =EXP(-BO-B 1 *X11-B2*X21 );NP 12=EXP(-BO-B 1 *X 12-B2*X22);NP 13=EXP(­
BO-B 1 *X13-B2*X23);NP14=EXP(-BO-B1 *X14-B2*X24);NPI5=EXP(-BO-B 1 *X l S­
B2*X2S);NPI6=EXP(-BO-B 1 *X16-B2*X26);NP 17=EXP(-RO-B 1 *X 17-B1*xn): 
NP18=EXP(-BO-B 1 *X 18-B2*X28);NP19=EXP(-BO-B 1 *X 19-B2*X29);NP 11 O=EXP(­
BO-B1 *X110-B2*X2 10);NP l11 =EXP(-BO-B1 *X I11 -B2*X211);NPI12=EXP(-BO-
BI *X l1 2-B2*X212);NP113=EXP(-BO-Bl *XI13 -B2*X213);NPl14=EXP(-BO-
B 1 *XI14-B2*X214);NP 11 5=EXP(-BO·-B 1 *Xl1S-B2*X2 1S);NP 116=EXP(-BO-
Bl *XI16-B2*X216);NPI17=EXP(-BO-Bl *X I17-B2*X2 17);NPl18=EXP(-BO-
B 1 *X118-B2*X218);NPl19=EXP(-BO-B 1 *X lI9-B2*X2 19);NP 120=EXP(-BO-
Bl *X120-B2*X220);NP1 2 1 =EXP(-BO-B 1 *X12 1-B2*X22 1);NP 122=EXP( -80-
B 1 *X122-B2*X222);NPI23=EXP(-BO-B 1 *X 123-B2 *X223);NP 124=EXP(-BO-
B 1 *X124-B2*X224);NP 12S=EXP( -BO-B 1 *X 12S-B2*X225);NP126=EXP( -BO-
B 1 *X I 26-B2*X226);NP 127=EXP(-BO-B 1 *X I27-B2*X227);NP128=EXP(-BO-
B 1 *X128-B2*X228);NP 129=EXP(-BO-B 1 *X 129-B2*X229);NP130=EXP(-BO-
B 1 *X130-B2*X230);NP13] =EXP(-BO-B 1 *X13 1-B2*X23 1);NPI32=EXP(-BO-
B 1 *X132-B2*X232);PP ll =EXP(BO+B 1 *Xl 1 +B2*X21);PP12=EXP(BO+B 1 
*XI2+B2*X22);PPI3=EXP(BO+Bl *X I3+B2*X23);PPI4=EXP(BO+B 1 *X14+B2*X24) 
;PP15=EXP(BO+B 1 *XI5+B2*X25);PP 16=EXP(BO+B 1 *XI6+B2*X26);PPI7=EXP(BO 
+B 1 *XI7+B2*X27);PP18=EXP(BO+B 1 *X I8 -1132*X28);PP19--: [XP(130 ! 131 *X I C) i n~ * 

X29);PP 11 O=EXP(BO+B 1 *X 110+B2*X2 1 0);PPl11 =EXP(BO+B 1 *X 111+B2*X21 1 );PP 
11 2=EXP(BO+Bl *XI 12+B2*X212);PP 11 3=EXP(BO+B 1 *X113+82*X213); 
PPl14=EXP(BO+B 1 *X1 1<1+B2*X2 14);PP 11 5=EXP(BO+B 1 *X1 15+B2*X21S);PP 11 6= 
EXP(BO+B 1 *X 116+B2*X216);PP lI 7=EXP(BO+B 1 *X I17+B2*X2 17);PP 118=EXP(BO 
+B 1 *XI18+B2*X218);PP 119=EXP(BO-I-B 1 *Xl19+B2*X219);PP120=EXP(BO+B 1 *X l 
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20+B2*X220) ;PP121 =EXP(BO+B I *X 121 +B2*X22 1 );PP122=EXP(BO+B 1 *X 122+B2* 
X222);PP 123=EXP(BO+B 1 *X I2J-I-B2*X223);PP124=EXP(BO-I-D 1 *X I24+B2*X224);P 
PI25=EXP(BO+B 1 *XI25+B2*X225);PP126=EXP(BO+B 1 *X126+B2*X226); 
PP 127=EXP(BO+B 1 *X127+B2*X227);PP 128=EXP(BO+B 1 *X128+B2*X228);PP 129= 
EXP(BO+B 1 *X129+B2*X229);PP 130=EXP(BO+B 1 *X l JO+B2 *X230);PPIJ 1 =EXP(BO 
+B l *X13l +B2*X23 1);PP132=EXP(BO+B1 *X132+B2*X232); 

K=EXP( - 1/2 * 1 /bO * *2 *(BO-aO) * *2- 1 /2 * lib 1**2 * (B l -a 1)** 2- 1 /2 * I /b2 * *2 * (B2-a2) ** 2); 
CO=(K*(Y 1- 111 +NPl1)-(BO-aO)/bO* *2*(Yl *(BO+B 1 *X 11 +B2*X21 ))+LOG(111 +PP 11 )+ 

(Y2-11l +NP 12)-(BO-aO)/bO**2*(Y2*(BO+B 1 *X 12+B2*X22»+LOG( 111 +PP 12)+ 
(Y3-111 +NP 13)-(BO-aO)/bO* *2*(Y3 *(BO+B 1 *X I 3+B2*X23)+LOG( 111 +PP13)+ 
(Y4-11l +NP I4)-(BO-aO)/bO**2*(Y4*(BO+B l *X14+B2*X24»+LOG(l/ 1 +PP 14)+ 
(YS-l/l +NPlS)-(BO-aO)/bO**2*(Y5 *(BO+Bl *X l S+B2*X2S»+LOG(l1l +PP 15)+ 
(Y6-11l+NP 16)-(BO-aO)/bO**2*(Y6*(BO+B 1 *X I6+B2*X26)+LOG( 111 +PP 16)+ 
(Y7-11l +NP 17)-(BO-aO)/bO* *2*(Y7* (BO+B 1 *X17+B2*X27» +LOG(lIl+PP I7)+ 
(Y8-11l+NP 1 8)-(BO-aO)/bO* *2 *(YR *(80+B 1 *X l R+82 *X2 R))+T .OG( 1/ 1+PP 1 R)+ 
(Y9-11l +NP 19)-(BO-aO)/bO * *2 *(Y9*(BO+B 1 *X 19+B2*X29))+LOG( II I + PP 19)+ 

(Yl 0-111 +NP 11 O)-(BO-aO)/bO * *2*(Yi O*(BO+B 1 *X II 0+B2*X21 O))+LOG( 1 /I +PP I 10)+ 
(Yll-lil +NP III )-(BO-aO)/bO * *2*(Yl l *(BO+B 1 *X llI+B2*X21 1 » +LOG( III +PP 111 )+ 
(YI2-1/1+NP 112)-(BO-aO)/bO * *2*(Y12 *(BO+B 1 *X11 2+B2 *X212»+LOG(1/1 +PP 11 2)+ 
(Y 13-1/1+NPl13)-(BO-aO)/bO* *2*(Y13 *(BO+B 1 *X l13 +B2*X2 13» +LOG(11l +PP 113)+ 
(Y 14-1/1 +NP 114)-(BO-aO)/bO * *2 *(Y14 *(BO+B 1 *XI14+B2 *X2 14 »+LOG(1/1 +PP 114)+ 
(YlS -1 /l+NPllS)-(BO-aO)/bO * *2*(YlS*(BO+B 1 *X 11S+B2 *X2 1S))+LOG(111 +PP 115)+ 
(Y 16-1I1+NP 116)-(BO-aO)/bO**2*(Y 16*(BO+B 1 *X116+B2*X2 16))+LOG(111 +PP 116)+ 
(Y 17- 111 +NP117)-(BO-aO)/bO**2*(Y17* (BO+B 1 *X I17+B2*X2 17» +LOG(l11 +PP 117)+ 
(YI8-11l +NPI18)-(BO-aO)/ bO * *2*(YI8*(BO+B 1 *X I18+B2*X2 18»+LOG(l/l +PP I 18)+ 
(Y 19-111 +NP 119)-(BO-aO)/bO **2*(Y19*(BO+B 1 *X l19+B2 *X2 19»)+LOG( 111 +PP 11 9)+ 
(Y20-111 +NP1 20)-(BO-aO)/bO**2*(Y20*(BO+B 1 *X120+B2*X220»+LOG(111 +PPI20)+ 

(Y21-111 +NPI21)-(BO-aO)/bO* *2*(Y21 *(BO+B 1 *X121 +B2*X22 1 ))+LOG(111 +PP I21)+ 
(Y22-111 +NPI22)-(BO-aO)/bO**2*(Y22*(BO+B 1 *X I22+B2*X222»+LOG( 111 +PP122)+ 
(Y23- 111 +NP123)-(BO-aO)/bO* *2* (Y23*(BO-I-B 1 *X123+B2*X223»)-I-LOG(111 +PP 123)+ 
(Y24-lIl +NP 124)-(BO-aO)/bO**2*(Y24*(BO+B 1 *X 124+B2*X224)) IL OG( 1 / 1 I pr 12<1) I 
(Y2S-1I1 +NP1 2S)-(BO-aO)/bO* *2 *(Y2S*(BO+B 1 *X I2S+B2*X22S»+LOG( 111 +PP1 2S)+ 
(Y26-1/ I+NP 126)-(BO-aO)/bO* *2*(Y26*(BO+B 1 *X I26+B2 *X226» +LOG( 1/ 1 +PP 126)+ 
(Y27-111 +NP127)-(BO-aO)/bO* *2*(Y27*(BO+B 1 *XI27+B2 *X227» +LOG( 1I1 -I-PP 127)+ 
(Y28-11l +NP128)-(BO-aO)/bO* *2*(Y28*(BO+B 1 *X128+B2*X228»+LOG(111 +PP 128)+ 
(Y29-1I1 +NP129)-(BO-aO)lbO* *2*(Y29*(80+B 1 *X129+B2*X229»+LOG(111 +PPI 29)+ 
(Y30-111 +NPI30)-(BO-aO)/bO* *2* (Y30*(BO+B 1 *X I 30+B2*X230»+LOG( II 1 +PP 130)+ 
(Y31-1I1+NP 131 )-(BO-aO)/bO* *2 *(Y31 *(BO+B 1 *X131 +B2 *X23 1 »+LOG(II1+PP 131)+ 
(Y32-111 +NP 132)-(BO-aO)/bO **2*(Y32*(BO-I-B 1 *X I 32+B2*X232))+LOG(1I1 +PPI 32)); 
C 1 =(K *(X ll *Y1-111 +NP 11 )-(8 l-al )/b 1 * *2 *(Yl * (BO-I-B 1 *Xl l +B2 *X2 1 »)+ 
LOG( 111 +PPl1)+(X 12*Y2- 111 +NPI 2)-(B I-a 1)/b 1 **2*(Y2*(BO-I-B 1 *X I2+B2*X22))+ 
LOG( 1 /l +PP 12)+(X 13 * Y3-1I1 +NP 13 )-(8 1-a l )1b 1 * *2 *(Y3 *(BO+B 1 *X 13+B2 *X23 ))+ 
LOG( I I I +PP 13)+(X I4* Y 4-111 +NP 14)-(B 1-a l )/b 1 * *2 *(Y 4*(B O+B 1 *X 14+B2*X24»+ 
LOG(l/}+PP 14)+(Xl S * YS-lll+NP I S)-(B I-a 1 )/b 1 * *2 *(YS *(BO+8 1 *XlS+B2*X2S»+ 
LOG(1/l +PP l S)+(X I6*Y6- 111 +NP 16)-(B l -a l)/b 1 **2 *(Y6 *(BO+B 1 *X 16+B2*X26» + 
LOG(1Il+PP16)+(X17*Y7-111 +NP17)-(B l -a l)/b 1 **2 *(Y7*(BO-I-B 1 *X 17+B2*X27»+ 
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LOG(lll +PP 17)+XI8*Y8-11l +NP18)-(13 l -a l)/b l **2*(Y8 *(130+13 I *X18+132 *X28»+ 
LOG(l/l +PPI8)+ (XI9*Y9-111 +NP 19)-(D I-a l)/b I **2*(Y9*(130+13 I *X I9+132*X29»+ 
LOG(111 +PP 19)+ (XII O*Yl 0-111 +NP 11 0)-(13 I-a I )/b 1 * *2 *(Y I 0*(80+13 1 *X I 10+ 
82 *X2 1 O»+LOG( 111 + PP 11 O)+(X 111 * Y I I - Ill +NP 11 I )-(8 I-a I )/b 1* *2 *(Y II * 
(80+13 1 *X l11 +132*X2 11 »+LOG(l1l +PP j I j )+(X 11 2* Y 12-111 +NP 11 2)-(13 1-al )/b 1 * *2 
*(Y12*(130-I-13 1 *X112+132*X2 12»+LOG( I 11 +PP 11 2)+(X I13 *Y I3-] II +NP 113)-(13 I ­
al)/bl **2*(Y13*(130+131 *XII3 +132*X213»+LOG(1/1 +PP I13)+(X 114*Y I4-111+NPI14)­
(131-al)/b1 **2*(Y 14*(130+13 1 *Xl14+132*X2 14»+LOG( 11l +PP 114)+(X l1 S*Y 1S- 111 
+NPl1S)-(13 1-a1 )/bl **2*(Y l S*(130+13 1 *X11S+132*X21S»+LOG(l1l +PP 11S)+ 
(XI16*YI6-11l +NP 116)-(13 I-a I )/bl * *2 *(Y I6*(130+13 1 *X I16+132 *X2 16»+ 
LOG(111 +PP 116)+(X I1 7*Y17-II1 +NPlI7)-(13 I-a 1) /b l * *2*(Y I7 *(BO+B I *X 117+ 
132*X217»+LOG(111 +PP 117)+(XI18*YI8- 11] +NPl18)-(13 I-a 1)/b 1 * *2*(Y 18*(80+ 
13 1 *X118+132*X218»+LOG(111 +PP 118)+(Xl19*YI9-11l + NP 119)-(13 1 a1 )/b 1* *2 
*(Y19*(130+13 1 *X119+132*X219»+LOG(111 +PP 119)+(X I20*Y20-11l +NP 120)-(13 1-
a 1 )/b 1 * *2*(Y20*(130+13 1 *X120+132*X220»+LOG( 111 +PPI20)+(X12 1 * Y21-11l +NP I2 1)­
(13 I-a 1 )/b 1 * *2*(Y21 *(130+13 1 *X121 +132*X221 »+LOG(1 II +PP I21)+ 
(X122*Y22-1I1 +NP 122)-(13 I -a 1 )/b 1 * *2*(Y22*(130+13 1 *X 122+132*X222»+LOG(l II + 
PP122 +(X123*Y23-1I1 +NP l23)-(13 I-a 1 )/b 1 **2 *(Y23 *(130+13 1 *XI23+132*X223»+ 
LOG(111 +PP 123)+(X124*Y24- 111 +NP 124)-(13 I -a 1 )/b'l **2*(Y24*(130+13 I *X 124+82* 
X224»+LOG(l11 +PP 124)+(X 12S*Y2S- 11l +NP 12S)-(13 1-a1 )/b 1**2 *(Y2S*(130+B I *X 12S 
+82*X22S»+LOG(1/1 +PP 12S)+(X 126*Y26- 1/ 1 +NP 126)-(13 1-al )/b 1* *2 *(Y26* (130+8 1* 
X 126+132 *X226»+LOG(111 +PP 126)+(X127*Y27-1I1 +NP 127)-(13 I- a l)/b 1 * *2*(Y27* 
(130+13 1 *XI27+132*X227»+LOG(1I1 +PPI27)+(X I28*Y28-1I1 +NP 128)-(13 I -a I )/b 1 * *2 
*(Y28*(130+13 1 *X128+132*X228»+LOG(11l +PPI28)+(X129*Y29- 111 +NP 129)-(13 1-
a1)/b 1 **2*(Y29*(130+13 1 *X129+132*X229»+LOG(111 +PP I29)+(X130*Y30-111 + NP130 
)-(13 1-al )/b 1 **2*(Y30*(130+13 1 *X130+132*X230»+LOG(1I1 +PP 130)+(X131 *Y31- ] IJ+ 
NP131)-(13 l-a1 )/b**2*(Y31 *(130+13 1 *X131+132*X23] »+LOG(l11 +PP 131 )+(XI32*Y32-
111 +NP 132)-(13 I-cd) Ib 1 **2*(Y32 *(130+13 1 *X132+132 *X232» +LOG( 111 +PP ]32» ; 
C2=(K*(X2 1 *Y1-111 +NP 11)-(B2-a2)/b2* *2*(Yl *(130+13 1 *X11 +132 *X21 »+ 
LOG(lI1+PPl1)+ 
(X22*Y2-11l +NP 12)-(132-a2)/b2**2*(Y2*(130+13 1 *X12+132*X22»+LOG(l1l +PP 12)+ 
(X23 *Y3-111 +NPI3)-(132-a2)/b2**2*(Y3*(130+13 1 *XI3+132*X23»+LOG(l11 +PP I 3)+ 
(X24*Y4-IIl +NP 14)-(132-a2)/b2**2*(Y4 *(130+13 1 *X 14+132*X24»+LOG(l1l +PP14)+ 
(X2S*YS-11l +NP1S)-(132-a2)/b2**2*(YS*(130+13 1 *X1S+132*X2S»+LOG(l1l +PP 1S)+ 
(X26*Y6-11l +NP 16)-(132-a2)/b2**2*(Y6*(80+13 1 *X I6+132*X26»+LOG( 1/1 +PP 16)+ 
(X27*Y7-111 +NP 17)-(132-a2)/b2**2*(Y7*(130+13 1 *X 17+132*X27»+LOG( 1 / I +PP 17)+ 
(X28*Y8-111 +NP 18)-(132-a2)/b2* *2*(Y8*(130+13 I *X 18+132*X28»)+ LOG( 111 +PP 18)+ 
(X29*Y9-11l +NP19)-(13l-a2)/b2**2*(Y9*(130+13 1 *X19+132*X29»+LOG(111 +PP 19)+ 
(XlI 0*Y1 0-1/1 +NP 11 0)-(B2-a2)/b2* *2*(Y l 0*(130+13 1 *X ll 0+13l*X21 O»+LOG(111 + 
PPI10)+(X211 *Yll-lIl +NP l11)-(132-a2)/b2**i*(Yn *(130+131 *X1 11 +132*X2 11»+LOG 
(1/1 +PPl11)+(X212*Y12-1/1 +NP 112)-(132-a2)/b2**2*(Y12*(130+13 1 *X112+132*X2 12»+ 
LOG(lIl +PP112)+(X213 *Y13-11l +NPl13)-(132-a2)/b2**2*(Y13 *(130+13 1 *XI13+132* 
X213» +LOG(111 +PP113)+(X214*Y 14-1/1 +NP 114)-(132-a2)/b2* *2 *(Y 14*(80+ 81 *X I 14 
+132*X2 14» +LOG(111 +PP 1I 4)+(X21S*Y IS - 1I1 +NP 11S)-(132-a2)/b2 * *2*(Y IS*(80+8 I * 
X llS+132*X2IS»+LOG(1/1 +PP I1 5)+(X2 16*Y16-111 +NP 116)-(B2-a2)/b2 * *2*(Y I6* 
(130+81 *XI16+132*X2 16»+LOG(l I I +PPl16)+(X217*Y17-1 / 1+NP 117)-(132-a2)/b2* *2* 
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(Y17*(BO+B 1 *Xl17+B2 *X217))+LOG(1 I I +PP117)+(X218*Y 18-J 11 +NP 118)-(B2-a2) 
Ib2**2*(Y18*(BO+B 1 *XI18+B2*X218))+LOG(111 +PP 1I8)+(X2 19*Y19- 111 +NP 119)­
(B2-a2)/b2* *2*(Y19*(BO+B 1 *X l1 9+B2*X2 19))+LOG(1I 1 +PP 1 19)+(X220* Y20-
III +NP 120)-(B2-a2)/b2**2*(Y20*(BO+D 1 *X120+B2*X220))+LOG(l1i +PP 120)+ 
(X221 *Y21-111 +NP 12 1)-(B2-a2)/b2**2* (Y21 *(BO+B I *X121 +B2*X221 ))-I-LOG(111 + 
PP 121 )+(X222*Y22-1/1 +NP 122)-(B2-a2)/b2* *2 *(Y22*(BO+B 1 *XI22+B2*X222))+ 
LOG(1/1 +PP I22)+(X223*Y23-111 +NPI 2J)-(B2-a2)/b2**2*(Y23 *(BO+B 1 *X123+ 
B2*X223))+LOG(111 +pp 123)+(X224*Y24- 111 +NP124)-(B2-a2)/b2**2*(Y24*(BO+ 
B 1 *X 124+B2*X224))+LOG(1 II +PP I 24)+(X225*Y25- 1 11 +NP 125)-(B2-a2)1b2**2* 
(Y25*(BO+B 1 *X125+B2*X225))+LOG(111 +PP12S)+(X226*Y26-111 +NP 126)-(B2-
a2)/b2**2*(Y26*(BO+B 1 *X1 26+B2*X226))+LOG(1 11 +PP I 26)+(X227* Y27-111 +NP 127)­
(B2-a2)/b2**2*(Y27*(BO+B I "'X 127+B2*X227))+LOG(1/ 1 +PP127)+(X228*Y28-11l + 
NP128)-(B2-a2)/b2**2*(Y28*(BO+B 1 *X I 28+B2* X228))+LOG(1I1 +PP 128)+(X229*Y29-
111 +NP 129)-(B2-a2)/b2* *2*(Y29*(BO+ B 1 *X129+B2*X229))+LOG(1I1 +PPI29)+(X230* 
Y30-1/I +NP130)-(B2-a2)/b2* *2*(Y30*(BO+B 1 *X130+B2*X230))+LOG( III +PP 130)+ 
(X231 *Y31-1I1 +NP131 )-(B2-<l2)/b2* *2*(Y31 ~'(BO+B 1 *X13 1 +B2*X23 1 ))+LOG(J 11 + 
PP 131 )+(X232*Y32-11l +NPI 32)-(B2-a2)/b2* *2*(Y32*(BO+B 1 *X132+B2*X232))+LOG 
(111 +PPI32)); 

ENDO CO Cl C2; 
EXO NN YI Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 YI4 Y1S Y16 YI7 YIS 
Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 X II X 12 XI3 X l4 
XIS X16 X17 XI8 X19 X 110 Xl 11 Xl12 X113'X I14 X11S XI 16 Xl17 X118 XI19 
X120 X121 X122 X 123 X 124 X125 X126 X 127 X 128 X l 29 X130 X l 3 1 XI32 X21 
X22 X23 X24 X25 X26 X27 X28 X29 X2 10 X211 X212 X2I3 X214 X215 X2I6 X2 17 
X218 X219 X220 X221 X222 X22J X224 X22S X226 X227 X228 X229 X230 X23 1 
X232; 
PARMS BO - 1 B1 1 B2 I ; RUN; 

160 



Appendix IV 

* TO FIND THE POSTERIOR MEAN USING "UNIFORM PRIOR OF LOGISTIC 
REGRESSION MODEL WITH TWO EXPLANATORY VARIABLES; 

Data DD; 
aa=0.001 ; 
IN PUTNN YI Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 YI0 Y I1 Y 12 YI3 Y l 4 Yl5 Y I6 Y I 7 Y I 8 
YI9 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32 X II X 12 X13 X 14 
Xl5 X16 X17 X18 X I9 X 110 X III X II 2 XII3 X I14 XII5 X I16 X lI7 X lI8 X l1 9 
X 120 X I 21 X l 22 X I 23 X l 24 X 125 X 126 X l 27 X 128 X 129 X 130 X l31 X l 32 X2 1 
X22 X23 X24 X25 X26 X27 X28 X29 X210 X2 1I X2 I2 X213 X2 I4 X2 15 X2 16 X2 I 7 
X2 18 X2I9 X220 X22 1 X222 X 223 X224 X225 X226 X227 X228 X229 X230 X23 1 
X232; 
CARDS; 
32 0 0 0 0 0 0 0 0 0 0 0 0 III I 1 0 0 0 0 0 I 0 0 0 0 0 1 0 0 0 
2 .522.562.192.18 3.41 2.463.22 2.2 1 3. 152.602.292.35 5.06 3.342.38 3 .15 3.53 
2.68 2.60 2.23 2.88 2.65 2.09 2.28 2.67 2.29 2 .1 5 2.54 3.93 3.34 2.99 3.32 38 31 33 3 1 
373638373941 36393732373646343837304644363931 31 2832303635 

run; 
Data DDD; set DD; 
Do 130= -40 to 40-aa by an; 
Do 13 1 = -7 to 7 -aa by an ; 
Do 132= -1 to 1-aa by an; 
NPIl =EXP(-130-131 *X 11 -132*X2 I) ;NP I 2=EXP(-130-13 1 *X12-132*X22);NPI3=EXP(-
130-13 1 *X13-132*X23);NPI4=EXP(-130-13 1 *X I4-132*X24);NPI 5=EXP(-BO-B 1 *X15-
B2*X25) ;NP16=EXP(-BO-B 1 *XI6-B2*X26);NP17=EXP( -130-B 1 *X 17-132 *X27); 
NP I8=EXP(-BO-B 1 *X18-132*X28);NP 19=oEXP(-BO-13 1 *X I9-132*X29);NP 11 O=EXP(-
130-131 *XII0-B2*X210);NP lI1 =EXP(-130-13 l *XI II-132*X2 11);NP II 2= EXP(-BO-
13 1 *X 11 2-132*X2 I 2);NP I 1 3=EX P(-130-13 1 *X l 13-132*X213);NP II4=EXP(-BO-
13 1 *XlI4-132*X214);NPl 15=EXP(-130-13 1 *Xl1 5-132*X2 15) ;NPI I6=EXP(-130-
13 1 *X116-132*X2 16);NPl17=EXP(-130-13 1 *X117-132*X2 17);NP lI8=EXP(-130-
B1 *Xl18-B2*X2 18);NP 119=EXP(-BO-13 1 *X119-B2*X2 19);NP120=EXP(-130-
13 1 *X120-B2*X220);NP1 2 1 =EXP(-130-13 1 *X 121-132*X22 1);NPI 22=EXP(-13 0-
13 1 *X122-132*X222);NPI 23=EXP(-130-13 1 *X 123-132*X223);NP1 24=EXP(-130-
13 1 *X124-B2*X224);NPI 25=EXP(-130-13 1 *X125-132*X225);NP I 26=EXP(-130-
131 *X126-132*X226);NP1 27=EXP( -130-13 1 *X 127-132*X227);NP I 2 8=EXP (-13 0-
13 1 *X128-132*X228);NP I 29=EXP(-BO-13 1 *X 129-132*X229);NP I30=EXP(-BO-
131 *X130-132*X230);NPlJ I =EXPCBO-13 1 *X13 1-132*X231 );NPI 32=EXP(-BO-
13 I *X132-B2*X232);PP ll =EXP(130+B 1 *Xll+132*X21) ;PP 12=EXP(130+13 1 *X I 2 
+132*X22);PP1 3=EXP(130+B 1 *X13+B2*X23);PP 14=EXP(130+B 1 *X14+B2*X24); 
PP 15=EXP(BO+B 1 *X 15+B2*X2S);PP 16=EXP(BO+B 1 *X16+B2*X26);PP17=EXP(BO 
+131 *X17+B2*X27);PP1 8=EXP(BO+B 1 *X18+B2*X28);PP1 9=EXP(BO+B 1 *X 19+B2* 
X29) ;PPll O=EXP(BO+13] *Xll O+B2*X2 1 O);PP 111 =EXP(130+13 1 *X III +132 *X2 1I );PP 
11 2=EXP(BO+B 1 *XlI 2+B2*X2 I 2);PPI13 =EXP(130+B 1 *Xl l 3+132 *X2 1 3) ;PP 11 4=[X 
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P(BO+B 1 *X l14+B2*X214) ;PP 11 S=EXP(BO+B 1 *X lIS+B2*X2 1S);PP 11 6=EXP(BO+l:3 
1 *X l16+B2*X2 16);PP117=EXP(BO+D 1 *X lI7+B2*X2 17);PP 118=EXP(BO+B 1 *X 118 
+B2*X2 18);PP l19=EXP(BO+B 1 *Xl 19+B2*X2 19);PP120=EXP(BO+B 1 *X120+B2*X2 
20);PPI21 =EXP(BO+B 1 *X 12 1 +B2*X221);PP 122=EXP(BO+B 1 *X 122+B2*X222);PP 1 
23=EXP(BO+B 1 *XI23+B2*X22J) ;PP124=EXP(BO+B 1 *X I24+B2*X224); 
PP125=EXP(BO+B 1 *X12S+B2*X225);PP I26=EXP(BO+B 1 *XI26+B2*X226);PP l27= 
EXP(BO+B 1 *X127+B2*X227);PP 1 28=EXP(BO+B 1 *X I28+B2*X228);PP 129=EXP(BO 
+Bl *X I29+B2*X229);PPI30=EXP(BO+B 1 *X130+B2*X230);PP 131 =EXP(BO+B I *X 1 
31 +B2*X231);PP132=EXP(BO+B 1 *X132+B2*X232); 

Fun=( 110.0000034970)*(((1/( J+NP 11 ))* *YI *(11(1 +PP 11 ))* *(1- Y 1 ))*(( 1/(1 +NP 12))* *Y2 
*( 11(1 +PP 12))* *(1-Y2)) *((1 I( 1 +NP 13))* *Y3 *( 11(1 +PP 13))* *(1-Y3 ))*((11(1 +NP 14 ))* * Y 4 

*( 1/(1 +PPI4))**( I-Y 4 ))*((1/(1 +NP 15))* *YS *(1/(1 +PPlS))* *( 1-YS))* (( 1/( 1 +NP 16)) 
* *Y6*( 1/(1 +PP 16))* *(1-Y6))*((1 1(1 +NP 17))* *Y7*(1 1(1 +PP 17))* *(1-Y7))*(( 11(1 + 
NP 18))* *Y8* (1/( 1 +PP 18))* *(1-Y8))*(( 1 /( 1 +NP 19))* *Y9* (1/( 1 +PP 19))* *( 1 Y9))* 
((1/(1+NPI10))**YI0*(1/(1+PPII0))**(1-YI0))* ((1/(I+NPl J 1))**Y l1 *( I/(I+PP lll 
))* *(1-Yl1 ))*((1 /(1 +NP 11 2))* *y 12 *(11(1 +PP 11 2))* *(1-Y12))* (( 11(1 +NP 1 13 ))* *y 13 
*(1/(1 +PP 113))**(1 -Y13))*((1/(l +NP I1 4))**Y I4*(1 /( 1 +PPI14))**(1-Y 14))*(( 1/( 1 + 
NP 11S))* *Y lS * (I/(1 +PP 11S))* *(1- YlS))*((I/(1 +NP 116))* * Y 16*(1/(1 +PP 116))* ~'( 1-
YI6))*((1I(1 +NP 117))* *Y17*(I/(1 +PP 117))* *( 1-Y17))*((1/(1 +NP 118))* *y 18* (1/( I-! 
PPI18))* *(1 -YI8))*((1I( 1 +NP 119))* *Y19*(1 /(1 +PP 119))* *(1- Y 19))* ((1 I( 1 +NP 120)) 
* *Y20*(1 /(1 +PP 120))* * (1 -Y20))* ((11(1 +NP 12 1 ))* *Y2 1 *(11(1 +PP 12 1 ))* *( 1-Y21 ))* 
((1/(1 +NP 122))* *Y22 *(1 /( 1 +PP 122))* *( 1-Y22) )*(( 1 1(1 +NP 123 ))* *Y23 *( I I( 1 +PP 123 
))* *(1-Y23 ))*(( 1 /(1 +NP 124))* *Y24*ClI(1 +PP 124 ))* *(1-Y24 ))*((1/(1 +NP 125))*" Y25 
*(1/(1 +PPI2S))**(1-Y2S))*((1I( 1 +NP 126))**Y26*(11(1 +PP 126))* *( 1-Y26))*(( lI( 1-1-
NP 127))* *Y27*(I/(l +PP 127))* *(1-Y27))*((1/(1 +NP 128))* *Y28 *(1 /(1 +PP 128))* *( 1-
Y28))*((l/(1 +NPI29))**Y29*(1/(1 +PPI29))**(l-Y29))*((l/(l +NP 130))* * Y30* 
(1/(1 +PP 130))* *(1-Y30))*((1/(1 +NP 131))* *Y31 *(1/(1 +PP 131 ))* *(1-Y31 ))* 
((11(1 +NP 132))**Y32*(1/(l +PP132))**(1-Y32))); 
fun2=aa**3*fun; integ+fun2; 
end;end;end; 
proc print data=DDD; val' aa integ; 
run; 
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