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ABSTRACT

This thesis addresses the Bayesian Analysis of three Binary logistic regression models i.e.
binary logistic regression model without intercept, with intercept and with two
explanatory variables. One informative (Normal) and three noninformative priors are
assumed for the parameters of three models. All the analysis is carried out in SAS
package. We have selected the hyperparameters for informative prior on basis of expert
opinion and use for further analysis. We have used the data set of Erythrocyte
Sedimentation Rate (ESR) form Cengiz et al. (2001), that is binary in nature and coded
[0, 1] with two explanatory variables: Fibrinogen and Y-globulin that are blood plasma
proteins. We have used the logistic link for logistic regression analysis.

We proceed with Bayesian analysis for all the logistic regression models, the
noninformative priors are derived, then based on posterior distribution we have obtained
the posterior modes, posterior means, posterior standard deviation and Karl Pearson
Coefficient of Skewness to say about the shape of the distribution of parameters and the
results are further compared with classical results. To check the significance of
parameters we have developed programs in SAS package to find posterior probabilities.
the Bayesian approach to hypotheses testing has been carried out. The comparison of
Bayesian and Classical results is also presented. We have also suggested the appropriate

model. Proposed SAS package plays major role for completion of this dissertation.
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Chapter 1

1.1 Introduction to Statistics

Statistics is the science of making effective use of numerical data relating to groups
of individuals or experiments. It deals with all aspects of this, including not only the
collection, analysis and interpretation of such data, but also the planning of the collection of
data, in terms of the design of surveys and experiments.
There are two main philosophical approaches to statistics. The first is often referred as the
Frequentist or classical approach. Procedures are developed by looking at how they perform
over all possible random samples. The probabilities don’t relate to the particular random
sample that was obtained. In many ways this indirect method places the “cart before the

horse”. The alternative approach is Bayesian approach.

Bayesian statistics is a system for describing epistemological uncertainty using the
mathematical language of probability. In the 'Bayesian paradigm,' degrees of belief in states
of nature are specified; these are non-negative, and the total belief in all states of nature is
fixed to be one. Bayesian statistical methods start with existing 'prior' beliefs, and update
these using data to give 'posterior' beliefs, which may be used as the basis for inferential
decisions. Bayesian methods are gaining popularity in main areas such as medical,
marketing, cost effectiveness of medicines, terrestrial carbon dynamics, auditing,
radiocarbon dating, setting water quality standards, food production, food technology,
clinical trials and other fields where prediction and decision-making must follow for

statistical analysis.



1.2 Objectives
The main objectives of our study are:

e Bayesian analysis of binary logistic regression model

e Bayesian analysis of binary logistic regression model without intercept

e Bayesian analysis of binary logistic regression model with intercept

e Bayesian analysis of binary logistic regression model with two explanatory variables
e To compute the posterior estimates for the different model with different priors

¢ Testing the hypotheses related to the parameters through Bayesian approach

¢ Comparison of Bayesian and Frequentist results

To achieve the objectives we went through different stages of research, its explanation is

presented here: ‘

Chapter 2 is basically concerned with the basic elements of Bayesian statistics which
are considered to be the foundation of Bayesian analysis. The introduction of Bayesian
technique and the idea of Bayesian econometrics are given along with the different kinds of
prior distributions for the unknown parameters. The informative prior (Normal),
noninformative priors i.e. Jeffreys prior, Haldane prior and uniform prior are explained. We
have also discussed about likelihood function formulation and posterior distribution that is
based on prior distribution and likelihood function. Bayesian hypotheses testing its
similarities with the Frequentists testing and its advantages are presented. Advantages and

disadvantages of Bayesian statistics are also presented.

o



Chapter 3 provides the explanation about Bayesian analysis for logistic regression
model, the formulation of posterior distribution of parameters for these types of model. The
concept of odds ratio is explained. Detailed review of the existing literature on the Bayesian
logistic regression inferences is presented. FFew of them are Croweder & Sweeting (1989),
Zellner (1983), Munkin & Trivedi (2008), Poirier (1994), Chot et al., (2008), Tektas &

Gunay (2008), Roman & Richard (2009), Frank Rijman (2008) and Bermudez et. al., (2007).

In chapter 4, we present the Bayesian analysis of logistic regression model without
intercept under informative and noninformative priors. Data sets that we have used through
out our study are presented in Table 4.1 with one explanatory variable. The derivation and
introduction of noninformative priors are given and the complete steps for derivation of
posterior distribution and the differentiation of posterior distribution for posterior modes are
also given. Then for informative prior the range of hyperparameters is given and selected the
appropriate. The idea of selecting hyperparameters are taken from Bian (1997), they assume
the mean as zero for prior and check the posteriqr at different values of variance, as it is not
a good practice to assume mean for prior as zero when selecting Normal as prior so, we have
selected different values for both parameters mean and variance to check the posterior and
select the appropriate values for hyperparameters. The posterior results and testing for the
significance of these parameters are also presented. At the end, the classical results are

compared with Bayesian estimates.

In chapter 5, we present the Bayesian analysis of logistic regression model with
intercept under informative and noninformative priors using data sets given in chapter 4,

Table 4.1. The complete process for finding posterior distribution with informative and



noninformative priors is given. Along with the differentiation of these joint posteriors for
posterior modes is also derived. Then for the.informalive priors the range o.f values of
hyperparameters is given and selected the hyperparameters with minimum standard error.
The hypotheses testing for the significance of the parameters is also done. Classical results

and their comparison with Bayesian results are also given.

In chapter 6, we present the Bayesian analysis of logistic regression model with two
explanatory variables under informative and noninformative priors using the data set given
in Table 6.1. The complete process to find the posterior distribution for informative and
noninformative priors along with the differentiation of these joint posterior for posterior
modes is also presented. The range of hyperparameters is also given and selected the
hyperparameters with minimum standard error. Then we present the hypothesis testing for

the significance of parameters. The classical estimates and their comparison with Bayesian

estimates are also provided.

In chapter 7, we have interpreted the results obtained by analysis in the previous
chapters and the direction for further research is suggested. The programs executed for
different calculations are given in Appendix. Books and numerous journals consulted during

the research are listed in references.
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Chapter 2

2.1 Introduction

This chapter is basically concerned with the basic terminologies of Bayesian
Statistics which are considered to be the foundation of Bayesian analysis and we will also
discuss the use of Bayesian techniques in Econometrics.

Section 2: Bayesian statistics is briefly discussed, Section 3: why we study Bayesian
statistics. Section 4: describes the prior distribution such as Noninformative prior and
Informative prior. Section 5: we discuss about the likelihood function. Section 6: Posterior
distribution is defined. Sections 7, 8 & 9: Bayesian hypothesis testing, its similarities with
the Frequentist testing and its advantages are also presented. Section 11: In this section we
described the Advantages and Disadvantages of Bayesian Statistics and in Section 12: the
difference between Frequentist and Bayesian Statistical Methods is given.
2.2 The Bayesian Statistics

Science inquiry is an iterative process of integrating accumulating information.
Investigators assess the current state of knowledge regarding the issue of interest, gather
new data to address remaining questions, and then update and refine their understanding to
incorporate both new and old data. Bayesian inference provides a logical, quantitative
framework for this process. It has been applied in a multitude of scientific, technological,
and policy settings.
“Bayesian” refers to the Reverend Thomas Bayevs. The development of probability theory in
the early 18th century arose to answer questions in gambling, and to underpin the new and
related ideas of insurance. A problem arose, known as the question of inverse probability:

the mathematicians of the time knew how to find the probability that, say, 4 people aged 50



die in a given year out of a sample of 60 if the probability of any one of them dying was
known. But they did not know how to find the probability of one 50-year old dying based on
the observation that 4 had died out of 60. The answer was found by Thomas Bayes, and was
published in 1763 (the year after his death). L.ike many educated men of his time, Bayes was
both a clergyman and an amateur scientist/mathematician. His solution, known as Bayes
theorem, underlies, and gave its name as, the modern Bayesian approach to the analysis of
all kinds of data.
What we know as Bayesian statistics has not had a clear run since 1763. Although Bayes
method was enthusiastically taken up by Laplace and other leading probabilists of the days,
it fell into disrepute in the 19th century because they did not yet know how to handle prior
probabilities properly. The first half of the 20th century saw the development of a
completely different theory, now called Frequentist statistics. But the flame of Bayesian
thinking was kept alive by a few thinkers such as Bruno de Finetti in Italy and Harold
Jeffreys in England. The modern Bayesian movement began in the second half of the 20th
century, spearheaded by Jimmy Savage in U.SA and Dennis Lindley in England, but
Bayesian inference remained extremely difficult to implement until the late 1980s and early
1990s when powerful computers became widely accessible and new computational methods
were developed. The subsequent explosion of interest in Bayesian statistics has led not only
to extensive research in Bayesian methodology but also to the use of Bayesian methods to
address pressing questions in diverse application areas such as astrophysics, weather
forecasting, health care policy, and criminal justice.

Bayesian inference is an approach to a statistics in which all forms of uncertainty arc

expressed in terms of probability.



A Bayesian approach to problem starts with. the formulation of a model lhzlt we hope is
adequate to describe the situation of interest. We then formulated a prior distribution over
the unknown parameters of the model, which is meant to capture our beliefs about the
situation before seeing the data. After observing some data, we apply Bayes Rule to obtain a
Posterior distribution for these unknowns, which take account of both the prior and the data.
From this posterior distribution we can compute predictive distributions for future
observations.

This theoretically simple process can be justified as the proper approach to uncertain
inference by various arguments involving consistency with clear principles of rationality.
Despite this, many people are uncomfortable with the Bayesian approach, often because
they view the selection of a prior as being arbitrary and subjective. It is indeed subjective,
but for this very reason it is not arbitrary. There is (in theory) prior beliefs. In contrast, other
statistical methods are truly arbitrary, in that there are usually many methods that are equally
good according to non-Bayesian criteria of goodness, with no principled way of choosing
between them.

2.3 Why we study Bayesian?
There are certain reasons for which Bayesian approach is considered to be the better
approach then the Classical approach.
» Bayesian statistics is preferred over Classical (Frequentist) Statistics because it is
very useful in the situations where uncertainty is unavoidable. |
e Parameter estimates along with confidence intervals or highest density region

are calculated directly from the posterior distribution.



e Bayesian statistics is used for the prediction of future observations, which can be
easily determine on the conditional probability distribution of the next
observations given the sample data.

¢ Inference problems concerning parameter can easily be dealt with using Bayesian

analysis.
2.4 Bayesian Econometrics

Bayesian econometrics is a branch of econometrics which applies Bayesian
principles to economic modeling. The Bayesian principle is based on Bayes Theorem which
states that the probability of “B” conditional on “A” is the ratio of joint probability of “A”
and “B” divided by probability of “B”. Bayesian econometricians assume that coefficients in
the model have prior distributions. This approach was first propagated by Arnold Zellner
(1983). He is known for his pioneering work in the field of Bayesian analysis and
econometric modeling. In Bayesian analysis, he not only provided many applications of it
but also a new information theoretic derivation of Bayes' theorem and generalizations of it
that is 100% efficient information processing rules. As regards econometric modeling, he, in
association with Franz Palm, developed the structural econometric, time series analysis
approach for constructing new models and for checking the adequacy of old models that has
been widely applied. In addition, he has been involved in many important applied

econometric and statistical studies.
2.5 Prior Distributions

Scientific hypothesis typically are expressed through probability distributions for
observable scientific data. These probability distributions depend on unknoWn_ quantities
called parameters. In the Bayesian paradigm, current knowledge about the model -parameters
is expressed by placing a probability distribution on the parameters, called the “prior

distribution”. Often written as p(/3).



Also a “prior distribution” is a marginal probability, interpreted as a descriﬁtion of what
is known about a variable in the absence of some evidence.

In Bayesian statistical inference, a prior probability distribution, often simply the prior,
of an uncertain quantity p (i.e. suppose that p is the proportion of voters who will vote for
the politician named Smith in a future election) is the probability distribution that would
express one’s uncertainty about p before the “data” (e.g., an opinion poll) are taken into
account. It is meant to attribute uncertainty rather than randomness to the uncertain quantity.
There are two types of priors: informative and Noninformative (or “reference”). Box and
Tiao (1973) defined a Noninformative prior as one that provides little information relative to
the experiment in this case the stock assessment data. Informative prior distributions, on the
other hand, summarize the evidence about the parametérs concerned from many sources and
often have a considerable impact on the results.

2.5.1 Choice of Prior Distributions

A prior may be declared as an Achilles heel of Bayesian stalisticé, where the
parameters are assumed random. The priors carry certain prior information about the
unknown parameter(s) that is coherently incorporated into the inference via the Bayes
theorem. Choice of the prior distribution depends upon the nature and the range of the
parameter(s) being studied through the Bayesian analysis. If it varies from zero to one, we
usually use Beta (Dirichlet) prior; for the range from zero to infinity, we select gamma prior.,
for minus infinity to infinity we usually use normal prior, etc. In the prior distribution, we
quantify the uncertainty about the unknown parameter(s) in the form of a probability
distribution, usually denoted by p(y), and call it the prior distribution. In the Bayesian

statistical inference, a prior probability distribution of an uncertain quantity u is the



probability distribution that would express one's uncertainty about x, before the data set or
evidence is taken into account. Since, the specification of prior is purely a subjective
assessment of an expert; it makes the entire inference subjective in nature, which 1s the
fundamental objection of rabid IFrequentists to the Bayesian approach. Being subjective does
not mean being non-scientific, as critics of Bayesian statistic often insinuate. On the
contrary, vast amount of scientific information coming from theoretical and physical models
is guiding in the specification of priors. Lindley's (2004) view is that ‘objectivity is merely
subjectivity when nearly everyone agrees'. Such information is then merged with the data
sets for better inference.
2.5.2 Noninformative Priors

Sometimes, it happens that the prior elicitation becomes difficult, or a little prior
information is available, then it is conventional to choose priors which may reflect little
prior information. Such priors are termed as the noninformative priors, indifferent, ignorant,
and vague or reference priors. Berger (1985) argues that Bayesian analysis, using
noninformative priors, is the single most powerful method of statistical analysis in the sense
of being the ad hoc method most likely to y'ield a sensible answer. The topic has an
extensive literature, e.g., Jeffreys (1946, 1961), Bernardo (1979), Ghosh and Mukerjee
(1992), Kass & Wasserman (1996) and Tibshirani (1989), propose the Bayesian analysis of
unknown parameters using one of the most widely used noninformative priors, that is, a
uniform (possibly improper) prior that routinely used by Laplace (1812).
Some attempts have been made at finding probability distributions in some sense, logically
required by the nature of one’s state of uncertainty; these are a subject of philosophical

controversy. For example, (Jaynes 1968) has published an argument based on Lie groups
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that suggests that the prior for the proportion p of voters voting for a candidates, given no
other information, should be the Haldane prior p™'(1— p)™'. If one is so uncertain about the
value of the aforementioned proportion p that one knows only that at least oh_c voter will
vote for Smith and at least one will not, then the conditional probability distribution of p

given this information alone is the uniform distribution on the interval [0, 1], which is
obtained by applying Bayes theorem to the data set consisting of one vote for Smith and one
vote against, using the above prior. The Haldane prior has been criticized on:the grounds
that it yields an improper posterior distribution that puts 100% of the probability content at
either p= 0 orat p =1 if a [inite sample of voters all favor the same candidate, even
though mathematically the posterior probability' is simply not deﬁnedA and thus we cannot
even speak of a probability content.

A related idea, reference prior, was introduced by Bernardo (1979). Here, th'.e idea is to
maximize the expected Kullback-Leibler divergence of the posterior distribution relative to
the prior. This maximizes the expected posterior information about X when the prior density
is p(x). The reference prior is defined in the asymptotic limit, i.e., one considers the limit of
the priors so obtained as the number of data points goes to infinity. Reference priors are
often the objective prior of choice in multivm'iat.e problems, since other rules (e.g., Jeffreys
rule) may result in priors with problematic behavior.

The Jeffreys rule attempts to solve this problem by computing a prior which expresses the

same belief no matter which metric is used. The Jeffreys prior for an unknown proportion

1 1
pisp *(1-p) 2, which differs from Jayne’s recommendation.

11



Practical problems associated with Noninformative priors include the requirement that the
posterior distribution be proper. The usual Noninformative priors on continuous, unbounded
variables are improper. This need be a problem if the posterior distribution is proper.
Another issue of importance is that if a Noninformative prior is to be used routinely, i.e.,
with many different data sets, it should have good Frequentist properties.
2.5.3 Informative Priors

An informative prior expresses specific, definite information about a variable.
An example is a prior distribution for the temperature at noon tomorrow. A reasonable
approach is to make the prior a normal distribution with expected value equal to today’s
noontime temperature, with variance equal to the day-to-day variance of atmospheric
temperature.
This example has a property in common with many priors, namely, that the p-OStCI'iOI‘ from
one problem (today’s temperature) becomes the prior for another problem (tomorrow’s
temperature); pre-existing evidence which has already been taken into account is part of the
prior and as more evidence accumulates the prior is determined largely by the evidence
rather than any original assumption, provided that the original assumption admitted the
possibility of what the evidence is suggesting. The terms “prior” and “posterior” are
generally relative to a specific datum or observation.
The following two sections outline the two techniques used most frequently to develop
informative prior distributions and the final section provides some advice on default choices

for priors when applying typical methods of fisheries stock assessment.



(1) Expert Opinion

In principle, one of the most powerful methods for developing informative priors is to
synthesize the information from a group of experts. For example, international Whaling
Commission (1995) developed priors for the assessment of the Bering-Chukchi-Beaufort
seas stock of bowhead whales by consensus. Although the development of priors by
consensus risks all the problems related to the impact of the subjective biases of various
parties in the assessment process (arguably priors developed using expert opinion are
examples of “dreamt up” priors, to use an expression we used in the previous section), this
approach can be successful. The members of the assessment group were provided with the
values for other biological parameters (growth, natural mortality, etc.) for the entire
assessment group tended to be more pessimistic than those suggested by the industry
members; this was nevertheless generally regarded as a successful attempt at specifying a
prior.

A potentially major problem with the development of priors by cons.ensus is that
different “experts” will suggest different priors. It is far from a trivial exercise (theoretically)
to pool such priors to form a “consensus prior” (and it is impossible to include more than
one prior for each parameter in a Bayesian assessment). Unfortunately, relatively little work
has been directed recently at this pi’oblem. We recommend that the various priors be
multiplied together and than normalized because at least this procedure has the desirable
property that the assessment results are independent of whether the priors are pooled and
than the assessment conducted or whether assessments conducted using each alternative
prior in turn and the results then pooled. One very undesirable feature of this approach to

pooling, however, is that if one expert believes that some parameter value/model has zero



probability, the posterior is forced to be consistent with this opinion. Therefore, if this
approach is to be used, our earlier advice that n;) plausible value for a parameter should be
assigned zero probability should be followed.
(ii) Data Summaries/Meta-Analysis

If the parameters of the stock assessment model are chosen to be independent of the
parameter that scales the population, data for other species and stocks can be used to
construct priors for the species for which an assessment is needed. This approach to
conducting priors is known as meta-analysis. Methods for constructing priors using data for
other stocks and species range {rom éimply tabulating the estimates to hierarchical meta-
analysis. Simple tabulation methods can be extended by fitting a smooth functional form to
the data and by weighting each estimate by a measure of its uncertainty and comparability to
the stock and species for which an assessment is required. Hierarchical meta-analysis is a
more formal method for clev;loping a prior for a parameter from values for that parameter
for other stocks under the assumption that the stocks differ in that parameter.
“Selection bias” is a potential problem when developing a prior using data for similar stocks
and species. Assessments in the literature tend to be for large productive populations (small,
less productive populations in general receiving less research funding). If the stocks
considered are not representative of all similar stocks, an inappropriate prior may be
selected.
2.6  Likelihood Function

Maximum-likelihood estimation was recommended, analyzed and vastly popularized

by R. A. Fisher between 1912 and 1922 (although it had been used earlier F. Y. Edge

worth). Reviews of the development of maximum likelihood have been provided by a
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number of authors. Maximum likelihood estimation (MLE) is a popular statistical method
used for fitting a statistical model to data, and providing estimates for the model's
parameters. The method of maximum likelihood corresponds too many well-known
estimation methods in statistics. For example, suppose you are interested in the heights of
adult female giraffes. You have a sample of some number of adult female giraffes, but not
the entire population, and record their heights. Further, if we are willing to assume that
heights are normally distributed with some unknown mean and variance. The sample mean
is then the maximum likelihood estimator of the population mean, and the sample variance
is a close approximation to the maximum likelihood estimator of the population variance.
For a fixed set of data and underlying probability model, maximum likelihood picks the
values of the model parameters that make the data "more likely" than any other values of the
parameters would make them. Maximum likelihood estimation gives a unique and easy way
to find a solution in the case of the normal distribution and many other problems, although
in very complex problems this may not be the case. If a uniform prior distribution is
assumed over the parameters, the maximum likelihood estimate coincides V\{i[h the most
probable values.

Suppose there is a sample xj, x2, ..., x, of n i.i.d observations, coming from an unknown
distribution f; (*). It is however known that the function /o belongs to a certain family of
distributions {f (:|0), 8 € ®}, called the parametric model, so that fy = /'(*|6p). The value 0 is
unknown and is referred to as the “true value” of the parameter. It is desirable to find some #
(the estimator) which would be as close to the true value 8y as possible. Both the observed
variables x; and the parameter @ can be vectors. The variables x; may be non-iid, in which

case the formula below for joint density will not separate into individual terms; however the



general principles would still apply. To use the method of maximum likelihood, one first
specifies the joint density function for all observations. For iid sample this joint density
function will be

flay, zg, .oy, | 0) = fla]0) - flas|8) - f(x,]0) 2.1)
In basic statistics and in many other problems, we may extend the domain of the density
function so that the density is also a function of the parameter 6. Then, for a given sample of
data with observed values x|, x», ..., x,, the extended density can be considered a function of

the parameter 6. This extended density is the likelihood function of the parameter:

n

H f(a4]9).

4=l (2.2)

LE0| my o osp) = Jld Do, ... 25 | §)

However, in general, the likelihood function is not a probability density. In fact, it need not
be an additive function, so it is not a probability measure. In practice it is often more
convenient to work with the logarithm of the likelihood function, In L, called the log-

likelihood, or its scaled version, called the average log-likelihood:

| e _ .1
InL(O|xy,...,2,) = Z In f(x4]0), = - In L.
i=1 ’ (2.3)

The hat over ¢ indicates that it is akin to some estimator. Indeed, festimates the expected
log-likelihood of a single observation in the model. The method of maximum likelihood
estimates @y by finding a value of € that maximizesf(¢12). This method of estimation is a

maximum likelihood estimator (MLE) of 0:

Omie = argmax £(0] z, ..., x,).
Beo (2.4)
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A MLE estimate is the same regardless of whether we maximize the likelihood or the log-

likelihood function.

2.7 Posterior Distribution

The notion of a posterior distribution comes from Bayesian statistics. Under the
Bayesian approaches, prior beliefs about parameters are combined with sample information
to create updated or posterior beliefs about the parameters. In the case of empirical Bayes
estimators, the prior information comes from the sample data as well.
The posterior information is proporlidnal to the product of the prior information and the
sample information.
The posterior probability of a random event or an uncertain proposition is theT conditional
probability that is assigned after the relevant evidence is taken into account. The posterior
probability distribution of one random variable given the value of another can be calculated
with Bayes theorem by multiplying the prior probability distribution by the likelihood

function, and then dividing by the normalizing constant, as follows:

L(X/B)P(f3)
[Lex/pyppyap

p(plX)= (2.5)

Gives the posterior probability density function for a random variable /3 ( parameter) given
the data X" = x,
Where
P(p) is the prior density of S

L(X/p) is the'likelihood function as a function of x
g
'[L(X/ﬂ)P([)’)d/} is the normalizing constant, and
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p(B/X) is the posterior density of S given the data ¥ = x.
2.8 Bayesian Hypothesis Testing
A statistical hypothesis test is a method of making statistical decisions using

experimental data. In statistics, a result is called statistically significant if it 1s unlikely to
have occurred by chance. Hypothesis testing is sometimes called confirmatory data analysis,
in contrast to exploratory data analysis. In frequency probability, these decisions are almost
always made using null-hypothesis tests (i.e., tests that answer the question Assuming that
the null hypothesis is true, what is the probability of observing a value for the test statistic
that is at least as extreme as the value that was actually observed?). One use of hypothesis
testing is deciding whether experimental results contain enough information to cast doubt on
conventional wisdom. Bayesian hypothesis testing is less formal than .non-Bayesian
varieties. In fact, Bayesian researchers typically summarize the posterior distribution
without applying the rigid decision process. Since social scientists don’t actually make
important decisions based on their findings, posterior summaries are more than adequate. If
one wanted to apply a formal process, Bayesian decision theory is the way to go because it
is possible to get a probability distribution over the parameter space and one can make the
expected utility calculations based on the costs and benefits of different outcomes. Since in

Bayesian analysis, the task of deciding between [, and FH, is conceptually more
straightforward. One merely calculates the 'posterior probabilities ¢, = (O, |x)and
a,=P(0,] x) and decides between [/, and [, accordingly. The conceptual advantages are
that ¢, and ¢, are actual (subjective) probabilities of the hypothesis in light of the data and

prior opinions.
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2.9 Similarities between Bayesian and Frequentist Hypothesis Testing

(i) Maximum likelihood estimates of parameter means and standard errors and
Bayesian estimates with flat priors are equivalent.

(ii) Asymptotically, the data will overwhelm the choice of prior, so if we had infinite
data sets, priors would be irrelevant and Bayesian and Frequentist ;‘CSLllls would
converge.

(iii)  Frequentist one-tailed tests are basically equivalent to what a Bayesian would get
using credible intervals.

The most important pragmatic difference between 'Bayesian and Frequentist hypothesis

testing is that Bayesian methods are poorly suited for two-tailed tests. Because the

probability of zero in continuous distribution is zero. The best solution proposed so far is
to calculate the probability that, say a regression coefficient is in some range near zero,

e.g. two sided p-value = pr(-e<B<e).

However, the choice of ‘e’ seems very adh.oc unless there is some decision theoretic

basis. The other important difference is more philosophical. Frequentist p-values violate

the likelihood principle.
2.10  Advantages of Bayesian Testihg

(i) A defaults formula exists for all situations:

l J‘J-f(x;Q)f(x‘;H)f(x"; ()O)cz',\“dﬁ o
.l.

]),-(1_10 I C]a[a) = J_/(YO ) f(\“{))(lg
i Tl Sl g

(2.6)

Where x'is independent (unobserved) data of the smallest size such that the above

integral exists?
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(ii) Posterior probabilities allow for incorporation of personal opinion, if desired.
Indeed, if the published default posterior probability of #7, isP", and the prior

probability of 7/, is I, then the posterior probability of //is:

(-n
pr(H, | data) = [H(Pio—lj[ [i. —lﬂ _ (2.2}

Example: In binomial say P’ =0.52.

A “skeptic “has £, =0.1; hence pr(H,|data)=0.11.
A “believer” has 7, = 0.9; hence ]57'(]:’0 | data) =0.91.
(iii) Posterior probabilities are not affected by the reason for stopping
experimentation, and hence do not require rigid experimental designs (as do classical
testing measures).
(iv)  Posterior probabilities can be used for multiple models or hypothesis.
2.11 Advantages and Disadvantages of Bayesian Statistics.

Here we will first considered the advantages of Bayesian statistics due to which
the branch of statistics has a valuable respect among the class of statistician known as
Bayesian statistician. Following are the advantages of Bayesian statistics.

(i) Exact inferences (e.g., confidence interval) which do not rely on large sample
approximations, are available through Bayesian approach.

(i)  Bayesian answers have simple interpretation: “let 95% Bayesian interval for 0 is
(0.25, 0.87)” mean “there is probability 0.95 that @ is between 0.25 and 0.87”.
Interpretation of Frequentist interval is hard, and most users tend to falsely

interpret them as in the above.
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(iii)

(iv)

v)

(vi)

(vii)

Interpretation of Bayesian interval depends on the data at hand, but not so for
Frequentist intervals. This can cause logical (or coherency) problems.
Elimination of nuisance parameters is conceptually straightforward, and is also
easy due to advances in Bayesian computing. This convenience is a result of
Bayesiqn analysis being a logically simple and easy approach.

Stopping rules are irrelevant in Bayesian analysis. This makes Bayesian analysis
much easier to use in areas such as clinical trials. In clinical trails, (;xperimenlers
would like to analyze the data frequently, and make decision without having to
adhere to a pre-specified design protocol. Bayesian analysis allows this. But,
such flexibility is very difficult to achieve using Frequentist methods.

Bayesian approach allows flexibility of models. Highly complex models (with
many structures) can be fitted. This is making the Bayesian approach more
appealing in many areas.

Bayesian learning methods interpolate all the way to pure engineering. When
faced with any learning problem, there is a choice of how much time and effort a
human vs. a computer puts in. (For example, the mars rover path finding
algorithms are almost entirely engineered.) When creating an engineered system,
you build a model of the world zmdlthen find a good controller in that model.
Bayesian methods interpolate to this extreme because the Bayesian prior can be a
delta function on one model of the world. What this means is that a recipe of
“think harder” (about specifying a prior over world models) and “compute
harder” (to calculate a posterior) will eventually succeed. Many other machine

learning approaches don’t have this guarantee.
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(viii) Bayesian and near-Bayesian methods have an associated language for specifying

(ix)

priors and posteriors. This is significantly helpful when working on the “think
harder” part of a solution.
Bayesian learning involves specifying a prior and integration, two activities

which seem to be universally useful. .

Now we consider the disadvantages of Bayesian approach that remain a vital cause for not

being used extensively.

(i)

It requires us to specify a prior distribution for all parameters. When there is

concrete prior knowledge about the parameters, it can be done, and should be

done. But, in many cases, prior knowledge is either vague, or non-existent, and
that makes it very difficult to specify a unique prior distribution. Different
opinion, may suggest different priors, and arrive at different answers. Question of

“objectivity is concern here.

e In practice, researcher often overcome this by using certain non-informative
or default priors. These are priors that are easy to specify and hold little or no
prior information about the parameters.

e  When there is sufficient data (large sample), prior do not affect the answer
(likelihood will dominate), and so the answer will be the same,‘regard]ess of
what prior is used.

e “Reality” is there an objective ans'wer?

e Scientist often disagrees on the conclusion and interpretation of results that

are different due to the different prior information used.
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(i)

(iii)

(iv)

v)

Bayesian methods typically involve high-dimensional integrals. If the statistical

problem involves four parameters (e.g., comparing two normal means), then the

inference involve 4-dimensional integration. No longer a serious concern after

the advent of Markov Chain Monte Carlo (MCMC) methods. However, MCMC

can be time consuming in complex problems. But, often it is worth the effort, as

Bayesian methods allows fitting complex models without resorting to large

sample approximation.

It turns out that specifying a prior is extremely difficult. Roughly speaking, we

must specify a real number for every setting of the world model parameters.

Many people well-versed in Bayesian learning don’t notice this difficulty for two

reasons:

e They know languages allowing more compact specification of priors.
Acquiring this knowledge takes some significartt effort.

e They lie. They don’t specify their actual prior, but rather one which is
convenient. (This shouldn’t be taken too badly, because it often works.)

Let’s suppose I could accurately specify a prior over every air molecule in a

room. Even then, computing a posterior may be extremely difficult. This

difficulty implies that computational approximation is required.

The “think harder” part of the Bayesian research program is (in some sense) a

“Bayesian employment” act. It guarantees that as long as new learning problems

exist, there will be a need for Bayesian engineers to solve them.
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Chapter 3
Bayesian Logistic Regression & Literature Review
3.1 Introduction
In this chapter we will discuss briefly the Bayesian logistic regression analysis,
their detail results will be presented in next chapters. We will discuss the basic technique
for analyzing binary logistic regression model with Bayesian approach in section 2. In
section 3 the literature review is given.
3.2 Logistic Regression
Logistic regression is used by practitioners and researchers in many fields, but is
undoubtedly used most [requently in medical and biomedical applications. Maximum
likelihood is generally the estimation method of choice. A check of the Science Citation
Index reveals that 2770 papers were published in 1999 in which “logistic regression™
appeared in either the title or among the key words (king & Ryan 2002). Since in many
fields of application, dichotomous qualitative models have been studied using non-Bayesian
techniques. For example: Amemiya (1981), Hausman and McFadden (1984) and McFadden
(1981). However, recently there has been great interest.in Bayesian analysis of dichotomous
and polychotomous response models. This can be seen in McCulloch et. al. (1999), Albert &
Chib (1993), Koop & Poirier (1993), Stukel (1I998), Basu & Mukhopadhayay (2000) and
Bazan et. al. (2006).
3.2.1 Logistic Regression Model
The logistic regression model is perhaps the most widely used among researchers
whose goal is to model binary dependent variables. The first type of discrete variable

addressed is probably the most common: a binary or dichotomous dependent variable. It is



unwise to use Ordinary Least Square (OLS) when confronted with a binary dependent
variable. So the alternative regression models are implemented to handle this difficulty.
Logistic regression is a form of statistical modeling that is often appropriate for categorical
outcome variables. It describes the relationship between a categorical response variable and
a set of explanatory variables. The response variable is usually Dichotomous, but it may be
polychotomous, that is, have more than two response levels. These multiple-level response
variables can be nominally or ordinally scaled. Here our research interest is Dichotomous
response; typically the two outcomes are yes and no 

Now let us suppose we are interested in explaining the distribution of some dependent
variable, yet it has only two possible outcomes. For example, this dependent variable might
measure whether or not respondents in a sample support the death penalty, whether or not
respondents graduated from college. In each of this examples, the variable is often coded as
[0, 1], with O indicating “no” and 1 indicating “yes”. The main difficulty for a regression
model occurs when the researcher wishes to use a binary variable as the dependent variable.
It should be clear that this variable does not and will not follow a normal or Gaussian
distribution. Rather, it is distributed as a binomial random variable. But if a researcher still
want to predict this variable within a regression-like context, then Logistic Regression
Model may be a suitable choice. The key to this model is that, rather than modeling the
dependent variable directly (i.e. estimating the expected value of the dependent variable “Y™
for some combination of independent variables), we estimate the probability that Y=1. Just
like in linear regression we assume that some set of “X” variables is useful for predicting the
Y values, but we are claiming that this set predicts the probability that Y=1 ( assuming we

have coded the dependent variable as [0, 1]. This transformation from directly modeling the



dependent variable to modeling some variation of it is only possible with the help of a link
function.

Sometimes the term “logistic regression” is restricted to analyses that include continuous
explanatory variables, and the term “logistic analysis” is used for those situations where all
the explanatory variables are categorical. Here we will focus on logistic regression only.

The basic formula for estimating Y=1 consists of transforming the regression equation as.

P(Y =1 X, X, .., X,) = L 3.1)

1 +exp(—p ~ X, ~ O X ;= — 8. X,)

Then

PY=0)=1-P¥=1)= 1 = : (3.2)
1+exp( B, + BX + X, +..+ 5, X, )

The part of the denominator in parentheses should remind us of the standard linear
regression model. But note that in this function it is transformed in what seems to be an
unusual way. This part is multiplied by —1, exponentiated, added to 1 and then inverted. The
whole function is called the Logistic Function (Hoffmann 2004). Another form of this

equation that is often used is:

exp( B, + BX, 0,55 .. B X, )

P¥Y =1 Xs. X5 s X)) = (3.3)
- 1+exp(fB, + B X, + B,X, +..+ B, X,)
The quantity £, is the intercept parameter; the X’s are the k explanatory variables and
p's are the regression parameters:
We can write above in odds form as.
P(Y=1|X,,X,...X,) , - )
o =exp(f, + B X, + B X, +...+ B X,) (3.4)

[-P(Y =1] X,, X, ..., X,)

By taking natural logarithms on both sides, you obtain a linear model for the Logit:
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PN X0 Xon ) \_ gy gt g, 4ot X (3.5)
og 2 = Bl 0 10 G N ol . U D
TU-P=1]X,X,.., X)) " T B
The Logit is the log of an odd. The log odds for kth group can be written as the sum of an

intercept and a linear combination of explanatory variable values multiplied by the

appropriate parameter values.

(Y =11 X, X, ... X, k
] ( I | ..; /\) :ﬂ”—}-zﬂ’_Xi (36)
lﬁp(Yzllel’/\"_),""Xk) i=]
This result allows you to obtained the model- predicted odds ratio for variation in the X’s by

exponentiating model parameter estimates for the f's.

Besides taking the familiar linear form, the logistic model has the useful property that all

k
possible values of f, »i-Zﬁ,.X, in (-w,00) map into (0,1)for p(¥Y =1). Thus, predicted

i=1

probabilities produced by this model are constrained to lie between 0 and I. This model
produces no negative predicted probabilities and no predicted probabilities greater than 1.
Maximum likelihood methods are generally used to estimate §'s .
Logistic regression has applications in the fields such as epidemiology, medical research,
banking, market research, and social research. One of its advantages is that model
interpretation is possible through odds ratio, which are functions of model parameters.
3.2.2  Odds Ratio

The odds ratio is a measure of effect size, describing the strength of association or
non-independence between two binary data values. It is used as a descriptive statistic, and
plays an important role in logistic regression. Unlike other measures of association f(or
paired binary data such as the relative risk, the odds ratio treats the two variables being

compared symmetrically, and can be estimated using some types of non-random samples.
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The definition of odds ratio in terms of group wise odds can be presented as: The odds ratio
is the ratio of the odds of an event occurring in one group to the odds of it occurring in
another group, or to a sample-based estimate of that ratio. These groups might be men and
women, an experimental group and a control gro'up, or any other dichotomous classification.
If the probabilities of the event in each of the groups are p; (first group) and p, (second

group), then the odds ratio is:

p/(L=p1) _p/a _ Py
pof/(L—p2)  pafta  poqi’ (3.7)

Where ¢ = 1 — p. An odds ratio of 1 indicates that the condition or event under study is

equally likely to occur in both groups. An odds ratio greater than 1 indicates that the
condition or event is more likely to occur in the first group, and an odds ratio less than |
indicates that the condition or event is less likely to occur in the first group. The odds ratio
must be greater than or equal to zero if it is defined. It is undefined if p,q, equals zero. The
odds ratio is used extensively in the healthcare literature. The odds ratio may be a
misleading approximation to relative risk if the event rate is high (Deeks (1996) and Davies
et al. (1998)). Since the odds ratio is difficult to interpret, why is it so widely used? First,
odds ratio can be calculated for case-control studies whilst relative risks are not available for
such studies. Second, if we use an analysis method that corrects for confounding factors,
such as logistic regression, this will report results as odds ratio.
3.2.3 Bayesian Logistic Regression Analysis -

Since we know that while using maximum likelithood method (MLE) for the
estimation of regression coefficients it may mislead when we have small sample data sets as
it happened in the field of medical science, because MLEs are usually based on asymptotic

theory. Griffiths et. al. (1987) found that MLEs have significant bias for small samples. But
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this problem can be handied by using Bayesian technique while estimating regression
parameters.

Let us considered here that the response variable y, is categorical in nature with binary
options coded as [0, 1]. It is obvious that y, follows a Bernoulli distribution where y, =1
with probability )2 and y,=0 with probability I — p, . Thus
E(y,)=pandVar(y,)=p,1-p,). Let y = (1, Pysess B S be a sample of

n < N observations. Then for a sample of n observations the likelihood function is:

n

L(B | data) = H{ p)ia- p,)l—'V’} (3.8)

i=l
. ! .
In the dichotomous response models p, = [ (x, ) , where x, =(x,,x,,....,x,) is a kx1

vector of covariates, and £ =(f,,,,..., ;)" is a kx 1 vector of regression coefficients. Then

the likelihood function can be written as:
L( | data) = H {J-I(x,’ B (= H(x gy (3.9)
i=l

Now the Bayesian analysis for the logistic model can follow the usual pattern for all
Bayesian analysis i.e.

(i) Write down the likelihood function of the data as given in equation (3.9).

(i1) Assume a prior distribution over all unknown parameters.

(iii)  Use Bayes theorem to find the Posterior distribution over all parameters.
Now for prior distribution in general, any prior distribution can be used, depending on the
available prior information. The choice can include informative prior distributions if

something is known about the likely values of the unknown parameters, or “diffuse” or
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“noninformative” priors if either little is known about the coefficient values or if one wishes
to see that the data themselves provide as inferences.
Now let us consider the prior for the unknown regression coefficients as p(/f) then the

posterior distribution for £ is given as:

p(Bldata)oc L(B|data)x p(p) (3.10)

Of course, the above expression has no closed form expression and even if it did, we would
have to perform multiple integration to obtain the marginal distribution for each regression
coefficient. So to solve the above function, SAS package help us a lot for the numerical

solution of above function. As was the for Frequentist inference, taking exp( £ ) provides the

odds ratio for a one unit change of that parameter.
3.3 Literature Review

Cengiz et al., (2001) illustrates how to model the binary logistic regression by using
Bayesian approach. Binary response data is modeled using Binomial Distribution while the
binary data have a Bernoulli distribution. The objecvlive is to improve the accuracy and
predictions and decision making by investigating logistic regression model in specific
context of assessing Erythrocyte Sedimentation Rate (ESR). So, for this purpose the Author
investigates by using and analyzing the five cases in which they present suitable priors
distribution. When there is little prior information available, in these circumstances a vague
prior is used. The standard choice is to use invariant prior proposed by Jeffrey’s. They also
use uniform and improper prior and then compare these results with classical inferences.
El-Sayyad (1973) concentrates upon a problem that the presences of any type of trend in the
means of Poisson distribution while it change exponentially. Since, in simple classical

method it is observed by testing the parameter ‘f° of the Poisson model. The Bayesian
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approach is introduced here and the exact Bayesian distribution of ‘3’ is derived and the
Bayesian approximation is suggested which prove to be very useful. Then by using three
method’s i.e. Classical, Bayesian and Bayesian approximation with the help of an example
the results are obtained and compared which concludes that Bayesian approach provide a
better approximation then Classical.

Croweder & Sweeting (1989) viewed in context of an investigation conducted in the
department of microbiology at Surrey University in whi.ch Fungal Spores are introduced into
the earth surrounding the root of a plant. But with concern to a particular Question “whether
the final alignment of the tube tip is random” a Bivariate case of Binomial distribution is
studied. The sample information about parameter ‘p’ comes from Marginal distribution
alone and the information about ‘q” comes from Conditional distribution alone which are
drive from Bivariate Binomial distribution. To study the behavior of the posterior parameter
the sample size is increased and as the sample size increases the posterior parameter is
approximately independent. This shows that Bayesian Conjugate Prior distribution arises
from prior independence.

Zellner (1983) illustrates the usefulness of Bayesian approach by considering the different
problems of Econometric models and shows that the Bayesian results are more appropriate
then the usual Classical technique. He consider the problem of hypothesis analysis in which
he point out the doubtful choice of significance level in which usually no attention is given
to power consideration, but it seems highly probable that Bayesian analysis of hypothesis
would yield more satisfactory results. He also consider the case of reference informative
prior (RIP) as it is difficult to asses the prior for regression coefficient especially in Logistic

Regression. He suggests that il we use Jeffrey or Jeffrey like prior i.e. RIP it will lead to a
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simple result. At the end he considers the prediction problem and concludes that prediction
with the inclusion of prior knowledge is satisfactory then the usual Classical approach.
Finally for complicated likelihood functions it is mention that numerical integration
techniques are very helpful in-analyzing posterior probability density functions and checking
the validity of asymptotic and other approximations techniques.

Munkin & Trivedi (2008) develop an-estimation procedure for the Ordered Probit Model
with endogenous covariates by using the Bayesian approach and name it as the Ordered
Probit Model with Endogenous Selection (OPES). They analyze the effect of endogenous
dependent variable i.e. strongly agree, agree, disagree, strongly disagree etc. they model the
endogeniety using a correlated latent variable structure. Then Markov Chain Monte Carlo
(MCMC) method is used to approximate the posterior distribution of the parameters and
treatment effect. This study is applied by analyzing the effects of different types of medical
assurance plans on the level of hospital care utilization by the USA adult population and in
their illustration they find the evidence that controlling for endogeniety is important.

Poirier (1994) uses the Jeffreys’ prior for Logit models with covariates. He compares the
properties of Jeffreys’ prior with other priors that are mostly used for Logit models. Like
natural conjugate priors, normal priors etc and he shows that Jeffreys’ prior is not
recommended in Conditional Logit models and it act like a neutral natural conjugate prior in
Multinomial Logit models. The case of Jeflreys’ prior with covariates has a substantial
impact on its interpretation and three of which are discussed. At the end it is illustrated that
Jeffreys’ prior in context of Logit models and in the case of simple multinomial Logit
models its properties with no covariates offers a little guidance for the cases involving

covariates.
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Albert & Chib (1993) illustrate that the categorical response regression model in Classical
approach is fit by maximum likelihood method (MLE), but this approach is questionable
when sample size is small as MLE is purely a large sample theory. So in this situation
satisfactory results can be obtained by using Bayesian approach as classical approach cannot
provide satisfactory results. They use Probit model for Binary outcomes as with the
inclusion of latent variable it follows the structure of normal distribution and the value of
latent variable is simulated by using truncated normal distribution. Then Gibbs sampling is
used for posterior parameter estimation. So the Probit model on the binary response is
connected with normal linear model on the continuous latent data response as we know that
Probit model use the Cumulative density function (cdf) of normal. The exact binary analysis
is performed and the result proves that it is better then usual MLE. At the end the case 1s
also extended for Multinomial Logistic regression.

Choi et al., (2008) take a study of Bernoulli trials and estimate the parameters of modeled
relationship between the covariates and the success probabilities that are based on Bayesian
perspective by using the Markov Chain Monte Carlo (MCMC) algorithm on the available
data. This study is also applied on real data. So a method is set with the help of above
technique to estimate the parameters of the Logistic regression model when individual
observations are missing but the aggregate information are available with covariate values.
While using MCMC technique the missing observations are also considered as additional
parameter to be estimated. At the end the results are compared with usual Classical
techniques that handle the missing values case like Expectation maximization algorithm and

Error-in-variables regression technique and the results proves that in this particular case of
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missing observations the Bayesian approach provide better results then the techmque
introduced by Classical.

Tektas & Gunay (2008) illustrate the basic objective of analyzing the Probit and Logit
models by using Bayesian techniques proposed by Albert and Chib. The results are
compared with usual Classical approach. It is shown in this article that Classical approach
does not provide satisfactory results when the sample size is small while the Bayesian
approach is best and suitable choice for this situation of small sample size. The parameters
are estimated by using Gibbs sampling and Data augmentation algorithm together. The data
is augmented by adding a set of latent variables (Z) into the model as latent variable is a
continuous variable so the Conditional distribution of parameters given latent variable is a
normal distribution whose mean is easy to compute. So Gibbs sampling is then use to
calculate the posterior distribution for the parameter 3 °. At the end Logit and Probit models
are estimated by using Bayesian approach. So the obtained results by using Bayesian
approach are compared with usual Classical methods like Ordinary least square (OLS) and
MLE. So the resulted table shows that Bayesian approach is better then Classical as the
Bayesian results are much improved.

Tanner & Wong (1987) present an iterative method for the computation of Posterior
distributions. This method is used when the data can be augmented in such a way that it
become easy to analyze the augmented data and it is easy to generate the augmented data
given the parameter. Augmentation is done by using the Latent variable i.e. ‘Z’ that is
unobserved. The Author presents the basic algorithm and illustration by giving example.
After that he also applied this method for Multivariate Normal distribution with missing

values. Then Dirichlet sampling procedure is used to approximate sampling for Posterior



distribution in complex Models and this procedure is applied to social survey data using
Log-Linear model, then at the end with help of same example Bayesian modeling is used
and the results are compared.

Rossi (1996) works on the existence of Bayes estimators for the Binomial Logit Model. As
it is known that on finite maximum of the likelihood may not exist for certain configuration
of the data. The importance is made on that, under what conditions the Posterior will be
proper and when Posterior moments exists before proceeding to make numerical
approximations to these moments, when we have Dichotomous dependent variable, it is
important to calculate Posterior means. The Posterior density is obtained by using the
Diffuse Prior. At the end the sufficient condition for integral convergence is compared with
the condition provided by Zellner & Rossi (1984).

Silvapulle (1981) discusses and attempt to estimate maximum likelihood estimators for logit
models that were first arose in the analysis of relationship of Psychiatric “caseness” to
scores on a Psychiatric screening questionnaire. General Health Questionnaire (GHQ) to 120
patients attending a general practitioners surgery and also give each one a standardized
Psychiatric interview by classifying as case/non-case i.e.

Logit[ p,(case)| = B, + Bix
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Where x = GHQ score and Logit (p,) = log L Logit(p,) =log for the full set

1—p. =5
of data. So, the convex analyses are used for proper estimation of maximum likelihood
estimators.
Chen & Ibrahim (2003) propose a novel class of conjugate priors for the family of

generalized linear models they discuss the elicitation issues that may occur during the



application of different techniques available for the elicitation of hyperparameters. They
developed theorems characterizing the property and existence of moments of the priors
under various setting, examine asymptotic property and relationship with normal, their
approach is based on the ground of specifying a prior prediction y, for the response vector
of the current study and a scalar precision parameter a, which quantifies ones prior belief in
¥,- Then a conjugate prior is specified for f regression coefficient with the help
(vy,4a,) along with explanatory variables. They also study the generalized linear models with
dispersion parameter at its different values and check the effect on prior for fixed a,and
randoma,. Also the results are illustrated with the help of an example and in numerical
results it was observed that as «, increases the prior and posterior estimation are closer to

each other.

Gelman et. al., (2008) Propose a new prior distribution for classical logistic regression
models constructed by first scaling all non binary variables to have mean zero and standard
deviation 0.5, then place independent t-prior distribution with Cauchy distribution as default
prior that has mean zero and standard deviation 2.5, then a logistic regression model is fitted
by using these priors and with the help of EM algorithm into the usual iteratively weighted
least square. This default prior is recommended for further study as it has the advantage of
giving results even in the case of complete separation in logistic regression. This is useful
for routine data analysis as well as chain equations for missing-data imputation in which
each variable is modeled with missing data. Then the logistic regression estimates are
computed including prior disiribution by applying Gibbs sampling and Metropolis

algorithms. These computations are made in R package by defining a new function



“bayesglm” where approximated posterior mode and variance are computed and used for
further analysis. Since, the results are computed by using Cauchy prior, t-distribution as
prior and normal prior and the results are compared with classical (generalized linear model)
glm results. It is observed the default prior that is independent Cauchy distribution for all
logistic regression coefficients each centered at zero and with scale parameter 10 for
intercept and 2.5 for all other coefficients, with posterior modes as a point of estimate can be
a usual approach to be adopted.

Eaves & Chang (1992) proposed a posterior mode estimator, which arise from simply
expressed prior opinion about expected outcomes, roughly as follows, a conjugate prior is
used to obtain the posterior modes and its covaﬂance by using the conventional maximum
likelihood computations. Then within the family of conjugate prior a reference prior is
proposed to obtain the inferences about the regression vector for linear design of the
canonical link. A set of subjective prior upper and lower percentage points for the expected
outcomes can be used to determine a conjugate family member. They use the Jeffreys prior
obtained the posterior modes, reference prior is also used to obtained the posterior modes
and variance function to obtained the estimates and at the end the results are compared with
usual classical approach.

Groenwald & Mokgatlhe (2005) suggest a method for the simulation of samples from the
exact posterior distribution of the parameters in logistic regression. This method is based on
the principle of data augmentation and on the induction of latent variable. Since in Bayesian
logistic regression all conditional distributions are intractable but with the introduction of
latent variable all conditional distribution are uniform and the Gibbs sampling is easily

applicable then they extend this technique and applied with nominal or ordinal
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polychotomous data. So, in section 3 of this paper they extend this technique for multiple
response categories and in section 4 study for ordinal response with thresholds or cut off
points are presented. In section 5 the data augmentation technique is applied to model
selection via Bayes factors. The marginal likelihood under a particular model can be
calculated by running additional Gibbs cycles, one for each parameter in the model. Then at
the end this technique is illustrated by analysis two real life examples.

Bian (1997) presents Bayesian inferences for location parameter of a family of location-
scaled distributions i.e. student-t and normal distribution. He develops Bayesian estimators
for the location parameter of a location-scale distribution for this purpose they use modified
maximum likelihood estimator (MMLE). As the Bayesian estimators are defined by modes
of posterior densities and called HPD (highest posterior density) estimators. They use
different priors to obtain these estimators and it observed that the estimator obtained by
using student-t distribution as-prior are superior then others as they automatically adjust to
the sample dispersion and ignbrc inconsistent information. He also discusses the point that if
the posterior density is bimodal then there is a clear conflict between sample and prior
information. At the end results are verified by using the simulation approach. It is concluded
the heavy-tailed distributions for sample or priors that are automatically adjust outliers will
provide the better inferences then that obtained by using conjugate priors.

Bermudez et. al., (2008) describe the behavior of consumers when they faced with two
choices. Since in classical logit model we study the fedture of symmetric link bﬁl this do not
provide good fits for data when one response is much more frequent then the other; so in this
paper they use an asymmetric or skewed logit link, proposed by Chen et. al., (1999) to fit a

fraud data base from the Spanish insurance market. They use Gibbs sampling and data



augmentation for Bayesian analysis of this model. It is observed in results that the use of a
skewed link notably improves the percentage of cases that are correctly classified after the
model estimation.

Liesenfeld & Rickard (2009) propose a generic procedure known as efficient importance
sampling (EIC) for the evaluation of likelihood functions for the probit models with
correlated errors. Their EIS algorithm covers the standard GHK (Geweke (1991),
Hajivassilious (1990), Keane (1994) simulation feclmique) probability simulator as a special
case. They also perform a set of Monte-Carlo experiments in order to illustrate the relative
performance of both procedures for the estimation of multinomial multi period probit
models. They provide results that are indicating substantial numerical efficiency gain of MI.
estimators based on GHK-EIS relative to those obtained by using GHK. The evaluation of
discrete choice probit models with correlated error terms was first introduced by Thurstone
(1927) and applied by Hausman and Wise (1978) to transit choice problems. They use ML
integration proposed by Geweke and Keane (2001) to study likelihood function of probit
model with correlated error terms that are frequénlly high-dimensional truncated integral of
multivariate normal distribution. They concluded that GHK-EIS provide a significant
numerical efficiency gain in ML estimator as compared to GHK.

Rijmen (2008) proposed logistic regression techniques that can be use to restrict the
conditional probabilities of a Bayesian network for discrete variables, when all the main
effects and interaction between the parent variables are incorporated as covariates. The
conditional probabilities are estimated without restrictions as it is a traditional Bayesian
network. They also use the ordered logistic regression with ordered categories of the

variables, which resulted in more parsimonious model. Then the posterior parameters are
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estimated by using the modified junction tree algorithm. The main focus of this paper is to
learn the parameters of an inferred Bayesian networks for discrete variables, where
dependence of relations are encoded through direct edges, more specifically they show how
the number of effective parameters of the network .can be reduced by adopting a logistic

regression frame work for modeling the conditional dependence relations.
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Chapter 4

Bayesian Inference of Binary Logistic Regression Model without Intercept
4.1 Introduction

In this chapter, we present the Bayesian analysis of logistic regression model without
intercept under informative and noninformative priors. Section 2 gives the introduction to
logistic regression model with its different forms. Sections 3, 4 & S deal with the derivation
of different priors that are used in our study. Section 6 provides the data set and explanation
of variables that is used in our research given in Table 4.1. The derivation of posterior
distributions using informative and noninformative priors is given in section 7; these
posteriors are for the logistic regression model without intercept. For informative prior we
" set a range of hyperparameters and select the hyperparameters that have minimum standard
error, which are given in section 8. Section 9 consists the Bayesian analysis with informative
and noninformative priors, which includes the graphs of parameters, the estimated values of
parameters and testing for the significance of parameters. Section 10 comprises the classical
analysis of logistic regression model without intercept and also the hypothesis testing for the
significance of regression coefficient. Section 11 presents the comparison of classical and
Bayesian results and their interpretation with respect to the data set given.
4.2 The Binary Logistic Regression Model

Suppose that we have ' n' binomial observations of the form y, = .1, 2, 3... n where
E(y,)=p, and p, is the success probability corresponding to the i"™ observation. The linear

Logistic model for the dependence p, on the values of the kth explanatory variables x,,, x,, ,

..., x, associated with that observation without intercept is,



Iogzl(p)—log(1 J Bx. 4% o t-PX, (4.1)

I

If we have only one explanatory variable for the above logit model then the model become:
Logit(p,) = log(1 } B
b

If we take exponentiation on both side of the equation (4.1), we get:

exp(log(l "p D = exp(fyx,, + foy, +oot Bixy)

i

Sine on the L.H.S the log will be vanishing with exponential then we have:

P, . ) i
= expl B %, ¥ Py ¥t iy

I-p,
_ exp(Bx,, + PyXy + -+ Bixy,)
L+exp( B, + Doy, + ot B %y
- : (4.2)
L+exp(=px, = fy%y; —.. = Bixy,)
If we assume that G = B+ By %y + ot By
Then,
5 1
P~ Trexp(—0) )

Since p, is the probability of success corresponding to the it

observation, while
X5 Xy, X550, X, are the explanatory Variables with S, 3,, f,,.... B, their respective slope

coefficients. The shape of given model indicates that the value obtained after estimating the
coefficients and for a particular value of explanatory variable it will remain within 0 and 1

that meet the definition of probability theory.



4.3 Uniform Prior
In this section we discuss about the noninformative prior for Bayesian analysis.
For more general problems, various suggestions have beén advanced for determining a
noninformative prior. Noninformative prior, by which we mean a prior that, contains no
information about a parameter. For example, when tossing a coin, the probability of ' to
each outcome is clearly noninformative. The simplest situation is to assign each element
uniform probability. This is routinely done by Laplace (1812). The uniform prior for the
parameter 4 is given as:
p(p)ecl —0 < fi<w (4.4)
4.4 Haldane Prior
Some attempts have been made at finding a priori probabilities, i.e. probability
distributions in some sensc logically required by the nature of one's state of uncertainty;
these are a subject of philosophical controversy. For example (Jaynes 1968) has published
an argument based on Lie groups that suggests that the prior for the proportion p of voters
voting for a candidate, given no other information, should be the Haldane prior p~'(1 = p)™".
Haldane prior is the improper when all the paramelers are zero. It was first suggested by
Rubin (1981). So, it can be said that if Beta is used as a prior distribution with both the
parameters equal to zero then the beta prior will be Haldane prior. It can also be derived
from Bernoulli distribution if the response variable have only two categories as yes or no

then it will be a Bernoulli trial. So, the Haldane prior will be as:

Py () o< det { [(/j)} (4.5)



Where ‘det’ denotes the determinant and 7(f)denotes the nxn Fisher information matrix
which is the logarithm of maximum likelihood function of parameter f and partially

differentiating twice with respect to the parameter is given below:

_ L] InL(p) w
1(B) = E{-——aﬂ2 } (4.6)

Where E stand for the expectation of data:
The Haldane prior has been criticized on the grounds that it yields a posterior distribution
that puts 100% of the probability content at either p = 0 or at p = 1 if a [inite sample of
voters all favor the same candidate, even though mathematically the posterior probability is
simply not defined and thus we cannot even speak of a probability content. The Jeffreys
prior p"]/z(l — p)_” ? is therefore preferred.
4.5  Jeffreys prior

Jeffreys (1946, 1961) proposes a noninformative prior. Berger (1985) argues that
Bayesian analysis using noninformative prior is the single most powerful method of
statistical analysis. The main feature of Jeffreys prior is that it is a uniform measure in
information metric, which can be regarded as the natural metric for statistical inference.
Jeffreys rule is defined as the density of the parameters proportional to the square root of the

determinant of the Fisher information matrix, symbolically, let

! . ~ . . . .
B=(B,p,,....,) is a vector of parameters 3, f,,...,5,. The prior distribution from the
Jeffreys rule is known as Jeffreys prior which is obtained as:

Py (B) o Jdet {1(3)} (4.7)



Where ‘det’ denotes the determinant and /(f)denotes the nxn Fisher information matrix
which is the logarithm of maximum likelihood function of parameter /S and partially

differentiating twice with respect to the parameter £ is given below:

](ﬂ)z_E{c’illnL(/})}

op’
Where E stands for expectation on data:
4.6 Data Set used in Bayesian Logistic Regression Analysis

The data set for Bayesian analysis of Logistic Regression is taken from Cengiz et al.
(2001). The data set contains the sample observations of 32 individuals. This research was
actually made by the Institute of Medical Research, Kuala Lumpur, Malaysia. They used
f‘frythrocyte Sedimentation Rate (ESR) related to two plasma proteins, fibrinogen and Y-
globulin, both measured in gm/[, for a sample of th.irty-two individuals. The ESR is a non
specific marker of illness. ESR is the rate at which the red blood cells settle out of
suspension in a blood plasma, when measured under standard conditions. The original data
were presented by Collett and Jemain (1985) and were reproduced by Collett (1996), who
classified the ESR as binary (0 or 1). Since the ESR for a healthy individual should be less
than 20 mm/h and the absolute value of ESR is relatively unimportant, a response of zero
signifies a healthy individual (ESR < 20) while a response of unity refers to an unhealthy
individual (ESR > 20). Here in this chapter we consider fibrinogen a single explanatory
Qariable and check its individual eﬁ‘é'ct on dependent variable (ESR).

v, = The Erythrocyte Sedimentation Rate (ESR)

x, = The amount of protein plasma fibrinogen



Table 4.1: Data

Serial | ESR | Fibrinogen | Serial | ESR | Fibrinogen
No. (mm/h) (gm/l) No.. (mm/h) (gm/l)
yi x'/i yi x_/i

1 0 2.52 17 1 3,93
2 0 2.56 18 0 2.68
3 0 2.19 19 0 2.60
4 0 2.18 20 0 2.23
3 0 3.41 21 0 2.88
6 0 2.46 22 0 2.65
7 0 3.22 23 1 2.09
8 0 2.21 24 0 2.28
9 0 3.15 25 0 2,61
10 0 2.60 26 0 2.29
11 0 2.29 27 0 2:15°
12 0 2.35 28 0 2.54
13 1 5.06 29 1 3.93
14 ] 3.34 30 0 3.34
15 1 2.38 31 0 2.99
16 1 3.15 32 0 3.32

4.7 Posterior Distribution for the Parameter of the Logistic Regression Without
Intercept

Here we consider the simple case of Logistic Regression Model without intercept as:

. 2
Logit(p,) = log(l j}f) ]: px, (4.8)

Here p, is the probability of success for response variable for i" observation. Where the
response variable y, follows Bernoulli distribution:

So we can also represent the Logit model as.

1
. ) :1 == L e e 49
p.(yi=1)=p e (4.9)
Then the Posterior distribution of the parameter £ is defined as:
p(B | data) oc I( B | data)x p(f) (4.10)
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Where [(f|data)=log L(f|data)
Now we need to determine the likelihood function and decide upon p(f3)for the above

model.
4.7.1 The Likelihood Function
The likelihood of the /™ observation is its probability density function as a function

of the parameter /3, where (y,, x, ) are fixed at the observed values. The observations are all

independent, now for the given case we precede as follows.

Let y, be the response variable that is binary in nature i.e. it takes only two values 0 and |

for ‘n” observations. Since the analysis of binary response variable in classical approach the
Maximum Likelihood Method (MLE) is used o estimate the unknown parameters of the
Binary Logistic Regression Model. However the estimates based on the classical approach
are not accurate when the sample size is small. In this situation Bayesian approach provide

better and most accurate results. Then if y, is the response variable and x , ’s the explanatory
variables that can be either qualitative or quantitative in nature while p, is the probability of

success corresponding to the i observation then the probability function is as follows.

SO =pa-p) 4.11)

So the likelihood of whole sample of all observations is the product of the likelihood:
n ) 1— X
Wpldaa) =T T{p"a-p) "} (@12
i=l :

We know that while modeling the binary data, the outcome y, has a Bernoulli distribution
with probability of success p, that depend upon a set of explanatory variables for a specific

«l - . oy . . 9 .
i observation. The probability p, is regressed on the covariates through a link function that
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preserves the properties of probability. So, p, = H(fx,) where x, the vector of covariates is
associated with the i" observation, since0< H(-)<1, and H(-) is a continuous non-
decreasing function (Groenewald 2005), it can also be seen in Cox (1971) or Maddala

(1983). So the above likelihood function could be written as:
L(B| data) = ﬁ{H( Bx) (1= H( [fx,))l;y’ (4.13)
=1
Now taking log on both sides of equation (4.16) we get the Log likelihood function as:
I(B|data) = Z{ y,log H(fx,)+ (1= y)log(1- H(px,))}

Since we know that p, = H(fx,) then the above log likelihood function becomes:

[(f|data) = Z’:{y, log(p,)+({1—=y,)log(l- p, )~} (4.14)
i=1

While p, is the probability of success for i* observation in data set. Here we use the Log-

likelihood function instead to simple likelihood function because the simple likelihood
function is too difficult to handle for further manipulation so to make the further
manipulation simple we use the log likelihood function. This is routinely used by the
Bayesian Econometrician i.e. Chen & Ibrahim (2003), Cengiz et. al., (2001), King & Ryan
(2002), Denis Conniffe (1997), Crowder & Sweeting (1989) etc. used log-likelihood
function for Bayesian inferences.. So as for as the posterior modes are concern we will use
the log likelihood function to constrﬁcl a posterior distribution for different informative and

noninformative priors:



4.7.2 The Prior Distribution

We consider Noninformative and Informative Priors of £ in the following sections:

4.7.2.1 The Informative (Normal) Prior

Now we consider the Informative Prior of £ as Normal distribution having

parameters mean = a,variance =b , S0

p(ﬂ)ocexp{—al—g(/)LQY} —0 < ff<on, —0<a<w
b>0

4.7.2.2 The Noninformative (Haldane) prior

The noninformative Prior of / using Haldane Prior can be derived as:

Let us consider the log likelihood function given in equation (4.14).

I(B|data) ="y {y,log(p,)+(1-y)log(1-p,)}

i=|

Differentiating the above given form with respect to p,

ol(fldata) 0 -
o o EI {y,log(p)+(1-y)log(l-p,)}

{1’, (&)+a-0(5 ) 1)}

Again differentiating with respect to p,:

OB\ data) _ 0 51(1)) (1—];,)}

op/’

As
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oS5y |
op.’

1

106) =—E{

Then

- M__, (=2 [
E[ o, }_ E|:I=I {(plzj ((I_P,)JH (4.16)

](ﬂ):{]_gl—-*- l—lp,}

As p(f) o I(f) then
p(B)ec p (1=p)”" (4.17)
Where

1
 Texp(-fx,)

D

The above equation (4.17) can be written as:

p(B) e H(fx,)" (1- H(Px,))" (4.18)
4.7.2.3 The Noninformative (Jeffreys) Prior

The Noninformative Prior using Jeffreys Prior can be derived as:

Let us again consider the Log likelihood function given in equation (4.14):

1B\ data) =S {y, log(p,) +(1- y,) log(1 = p,)}

i=l

Since we know that

p,(B) o Jdet {1(B)}

Then

p(BY< p 2 (1-p)? (4.19)
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Where

T
L+exp(=fx,)

The above equation (4.19) can also be written as:

p(B)ee H(Px,) A~ H(Px, )T (420)
4.7.2.4 The Noninformative (Uniform) Prior

We consider noninformative prior of £ as Uniform Prior as; see section (4.4)
equation (4.4):

p(p) el P € (=0, 0) (4.21)
4.7.3 The Posterior Distribution

The Posterior distributions of £ using noninformative and informative priors are

given in the following sections:
4.7.3.1 The Posterior Distribution Using Normal Prior

The posterior distribution of £ using the Normal prior distribution, for this we

consider Log likelihood function (4.14) and Normal Prior (4.15):

p(B|data) Z {y,log(p,)+(1-y)log(1- p,)} CXP{—ZLZ)(/} = a)z}

i=l

"[ N 1 - _L»_,z
p(fB | data) « ;1);’ bb[l—p ]+loz,(l p,)}cxp{ % (p—a) } (4.22)

!

Since we know that the simple Logistic Regression Model without intercept and having only

one explanatory variable is as follows; see section (4.7):

i

Logit(p,) = log(l—p"*) =fx,
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1

While p, =———
1+ exp(—,Bxﬁ)

L (4.23)

Or e
1+exp(Bx,)

Taking log on both sides of (4.23) we get:
log(1-p,) =~log(l+exp(fx,)) (4.24)

Now replace equation (4.8) and (4.24) in equation (4.22) we get:

p(B | datay e’ |y, Bx, ~log(l+ exp(fx, )} exp {—;—b(ﬂ - )}

i=]

PUB data) = 3", ~ fagll+ exp(Bx, )} exp { - (8- a)Z}

i=l

Let us suppose that ¢ = (S —a)’

p(f|data) = ]l i{y,ﬁxﬁ —log(1+ exp(ﬂxﬁ))} exp {—%} (4.25)
—0 < ff<w

This is the posterior distribution of /, where k is the normalizing constant. Here our main
objective is to estimate . Then for this purpose if we partially differentiate the above
equation (4.25) with respect to fand equﬁe it to zero. So this numerical solution will
provide us the Posterior Mode, so for this we proceed as follows.

Differentiate (4.25) with respect to 8 we get:

op(B|datay 0 : [
__d;’_f_ aﬂz )ﬂxﬁ—log(l-I-exp(ﬁx_/;))}CXP{'EE(/}—[’) }



n ) - xpexp(—0x,)
=D jexp = v ‘ ) -
' (1+exp(-fx,))’ [1 _m(___/jﬁj

{)’,ﬂx,// & log(l *mj}exp {—%}%(/" = f’)}
op(Bldata) & A _ X, 3
PY. ,2:{“13{ 2/)}{(”’" l+exp(—/)’x/,)J

_[l;(ﬁ —-a) {)’,ﬁxﬁ + lOg(l ~m)}}}

Now put Lt 0 while A= l(ﬂ =)
Y b

; a2 . B IS PN N S 4
;{exp{ 2b} {[y”‘-” 1+exp<~ﬂxﬁ>j A{J % ”Og[Hexp(ﬁx/,-)j}H ’

(4.26)
By solving this numerically, the posterior mode of £ can be obtained.
4.7.3.2 The Posterior Distribution Using Haldane Prior
The posterior distribution of A using the Haldane prior distribution, we consider

Log likelihood function (4.14) and Haldane Prior (4.17) then

p(B | dataye S {y,log(p)+ (1~ y)log(l~ p)}p.” (1 p,)”

=]

p(B|data) o Z{yi log[ll_)ij +log(l - ])i)}j)i—l (1-p)" (4.27)

i=1 i

1
I+exp(=pfx,)

As we know that p, =
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Then p, ' =1+ exp(—fx,) and (1-p)' =1+ exp(fx,) (4.28)

Now after replacing (4.8), (4.24) and (4.28) in equation (4.27) we obtain:

n

p(B | data) < Y {y, fx, ~log(l+exp(fx, )1+ exp(~fx,))(1 +exp(fx,))

i=l

n

p(B | data) = %Z [{ v, ~log(1+exp(fx N} {2+ exp(-fx ) + exp(Sx, )}] (4.29)

i=l
-0 < ff<w

This is the posterior distribution of , where k is the normalizing constant. We will use the
above posterior distribution to obtain the estimated value of parameter f. Then for this
purpose if we partially differentiate the above equatiqn (4.29) with respect to f and equate it
to zero. So this numerical solution will provide us the Posterior Mode, so for this we
proceed as follows.

Differentiate (4.29) with respect to f we get:

0 1 0 & '
P <5 [y —tog rexp(e, ) (2 exp(-pix) exp(, )

i . (]+ex1)(_/)."\,/l_))(l _{_exp(ﬂxﬁ)) = X, CXD(_,B.\‘/:‘) +
2 : Wl
(I+exp(=fx,)) [1 1+exp(—/fx ;)J
1
X1+ exp( ), {y’ﬂ ”’[‘TW]}

. ey & L —__—1—
(1-+exp(fBx ;) exp(—px;)x {yuB“\ﬁ 1og[1 1+ eXp(—ﬂx/i)}}}
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n i x ’
= - {(1 o+ (:Xp(—/)’,\‘ﬁ))(] I exp(/)’xﬁ)) {y’,\‘ﬁ - T exp(_m} L
exp(~fx )
exp(Bx ;)1 +exp(=px,))x, {y,,[)’x/,. - l()g(m]} —

' exp(=fx,)
(+exp(fx ;) exp(=Px;)x ;4 v.fx, —log T+exp(=fx,)
= o ,l

1+exp(fx,)

- I’ {(1 *F exp("ﬂ-\‘ﬁ))(l 2 CXP(ﬂxﬁ 2 {ylx.ﬁ _ _—L—} +

exp(Bx,)(1+exp(=x,))x, { v, Bx , +log(1+exp(Bx )} -

exp(=Bx )1+ exp(Bx, ), {,8x, + log(L+exp(Bx )}

n X‘ i
=3 {(1 +exp(- B, )1+ exp(fx,) {u = m;ﬂ—)} +
{exp(/}.\tﬁ)(l i exp(-/}xﬁ ) - exp(“ﬂxﬁ A+ exp(/))x_/i ))}

x {38, +log(1+exp(Bx,))}}

p(Bldata) S| o a N .. U
T“ ;{(2 I-C.\p( ﬂ,\ﬁ) t exp(/}xﬁ)){y,,\ﬂ 1+exp(—[3xﬁ)}4

Xi {ylﬂx‘/i +log(1+ exp(ﬂxﬁ ))} (eXp(ﬂxﬁ Jrs exl)(_ﬂx_/i ))}

op(p | data) -0
op

Now put

n

Xy
{(2 +exp(—pfx ;) +exp(fx,)) {)v’,xﬁ - W} +
-3

i=|
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Xy {y,ﬂxﬁ + log(l + exp(,[fxﬁ ))} (exl,)([)’x_',,)—exl,)(—/)’x/, ))} ={) (4.30)

Solving numerically the above equation, the posterior mode of £ can be obtained.

4.7.3.3 The Posterior Distribution Using Jeffreys Prior

The posterior distribution of f using the Jeffreys prior distribution, we consider Log
likelihood function (4.14) and the Jeffreys Prior (4.19):

n

p(Bldatay=y {y log(p)+(1-y)log(-p)}p, >(1=p,)
i=l

o

I f—

n K .
p(ﬂldata)OCZ{y,- log(l 5 )+ log(l—-p,)}p, *A=p,)
)

(4.31)
i=1 — Vi
1
As we know that p=——
1+exp(-fx,)
1 S N
Then p, * = ([I+exp(~fx,) and (1-p,) * = [l+exp(fx,) (4.32)

Now after replacing equations (4.8), (4.24) and (4.32) in (4.31) we get:

n

p(B | data) ey {y,fx, ~log(l +exp(Bx, N} +exp(=fx,) I+ exp(Bx,,)

i=1

i=l

(B | data) = }—CZNz +exp(—px,) +exp(Bx,) {y,Bx, —log(1+exp(fx, ))}] (4.33)

—00 < <0
This is the posterior distribution of 8, where k is the normalizing constant. Here our main
objective is to estimate . For this purpose, we partially differentiate the above equation
(4.33) with respect to f and equale it to zero. So this numerical solution will provide us the

posterior mode, so for this we proceed as follows:

56



Differentiate (4.33) with respect to S we get:

op(p | data) _a_

op op [\/2+ex1)( Bx,)+exp(Bx, ){yﬁ\f —log(l +exp(fx, ))}]
=l

X, exp(—ﬂxﬁ)

= 4 e exp (A, T+ exp(x,) | v, -
- (I+exp(fx,))’ (1 -

_l_

l _
I+exp(—/}’,\’/,)]

X exp(fe, )|l +exp(=x;) {y 4 x"ﬂog( Trexp(~%,) j}
2, fl+exp(Bx,)

x, exp(—fx, )W{yﬁ‘ 'IOg( l+e>\p( Bx, )]}

n

{\/T—F exp(—,ﬁ’xﬁ ) \/I + exp([)’xﬁ ) {y/x_n - ‘—‘x“/‘“_‘—‘—} +

1+ exp(—,[)’xv,,)

i=|

X exp(/}xﬁ)\/l + eXP(—ﬂxﬁ) {J’/ﬂxﬁ ~log(1+ exp(/Jx_,,-))} B

2.1+ exp(fx,)

X exp(—/)’xﬁ )-\/ 14 exP(ﬂx./i) {yiﬂxﬁ —log log(l + eXp(ﬂxﬁ ))} }

21+ exp(—=fx,)

n

L+exp(=fx,)

i=|

{exp(ﬂx/,‘),/l rexp(=fx,)  exp(=x,)\[I+exp(Bx,) }

2, [1+exp(fx,) 2,[1+exp(-px,)

X, {y,ﬂxﬁ —log(1+exp(-px, ))}}
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op(f|data) ' » '. L
Ty Z{J R et

., exp(fx,) —exp(~fx,)
x-’i{y’/)'r’i_l()g(l " exl)("ﬁx"’))}{’)\/2+exp(»/—/3r )+exD(iB\’ )H
. i i
op(p | data) _0
op

Now put

n

X
{\/2 +exp(=fx;)+exp(fx,;) {y’x-/" N EXP(/——[)’XS} '
2,

i=|

exp(fr,) ~exp(-fis) Ho

X X, —_l +e T :
\/’ {ylﬁ\ﬁ Og(l + LXD( /j,‘f_/, ))} {2\/2 4 exp(_ﬂxﬁ)-l— eXp(ﬁ.\‘ﬁ)

The posterior mode can be obtained by solving the above equation (4.34) numerically.
4.7.3.4 The Posterior distribution Using Uniform Prior
Now using the Log likelihood function (4.14) and the Uniform prior distribution

(4.21), the Posterior distribution of £ is found to be:

n

p(Bldatayey {y log(p,)+(1-y)logl— p)H}I

=]

p(fB|data) o i{y, log[1 f)lp )-I— log(1— pl)} (4.35)

Replacing equations (4.8) and (4.24) in (4.35) we get:

n

p(B|datay <y {y,x, —log(1+exp(—px,))}

=1
n

PP | data) =Y {y,, ~log(+exp(-px, )}~ < fes (4.36)

1=l
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This is the posterior distribution of /7, with normalizing constant k. We proceed further to
obtain the estimate of parameter . Then partially differentiate the above equation (4.36)
with respect to £ and equate it to zero. That can be further solved numerically to obtain the
posterior mode, so for this we proceed as follows.

Differentiate (4.36) with respect to f we get:

op(pldata) 0 <
L{# = —8—/}; {y,ﬂx‘/’ —log(1+ exp(—/]xﬁ))}

n ] a
=Y {x,—| ———————(+exp(Bx,))
|7 \1+exp(Bx,) 0 !

o Cexnpr) )
= yi’\ Ji - —_—————)— x/i
|

I[+exp(fx,

op(fB|data) & . X,
op i=1 4 1+exp(=fx;)
Now PWPldata) .
op
X, S/ S . 0 - . (4.37)
il " T+exp(=px,)

The numerical solution of above equation provides us the posterior mode.
4.8 Selection of Hyperparameters

Since we know that the prior distribution of parameter # is Normal (a,b) and our
main objective here is to find the values of these hyperparameters while @’ is the mean of
prior distribution and ‘b’ is the variance of the prior distribution. The idea of selecting
hyperparameters is taken from Bian (1997), they assume Normal & Student-t priors with

mean zero and decide about the posterior distribution at different values of variance for logit
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model, they also take the logit model without intercept and with intercept. But we have
suggest rang of values for both parameters and select the values with minimum standard

error. Since the next observation only depend on the parameter £ through the

Pi

function log( J: PBx,;. We have suggested a range of values of hyperparameters by

i
observing the variation in regression coefficient and also the variable of interest. The values

are given as follows:

Table 4.2

Posterior Estimates at Different Values of Hyperparameters

Hyperparameters Posterior Mode | Posterior Mean | Standard Error
Mean Variance ,Bl ﬂ] ﬂl

a, b,

0 1 —0.356785 —0.40421 0.149078
8.50 2.50 —0.724716 —4.52556 2.50413
7.50 2 —0.698402 —4.46906 2.45921
6.50 1.50 —0.668756 —4.43835 2.30297
5.50 1 —0.664757 —4.17370 2.14357
4.50 0.90 —0.594808 —3.03357 1.27286
3.50 0.80 —0.546194 —2.02769 0.95781
2.50 0.70 —0.483658 —1.18625 0.87247

2 0.60 —0.443846 —0.85877 0.75325
1.90 0.50 —0.434886 —0.83030 0.70124
1.80 0.40 —0.425520 —0.79985 0.6594 1
1.70 0.30 —0.415706 —0.76746 ~0.57294
1.60 0.20 —0.405397 —0.73318 ~0.50451
1.50 0.20 —0.394535 —0.66310 0.43129
1.40 0.20 —0.383055 —0.59655 0.35547
1.30 0.20 —0.370875 —0.53354 0.29579
1.20 0.20 —0.357898 —0.47407 0.23480
1.10 0.20 —0.344005 —0.41814 0.18542

| 0.20 —0.325645 —0.34024 0.13872

Where mean = a and variance = b for the prior distribution. We suggest different values for
the hyperparameters and find the values of posterior estimates. So finally we decided to
select the values of hyperparameters as mean = I and variance = (.20 and used these values

for further Bayesian analysis because this set (1, 0.20) has the smallest standard error.
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4.9 Bayesian Analysis with Informative and Noninformative Priors
In this section we will present the Bayesian analysis with informative and
noninformative priors. The analysis is based on the posterior distributions that are derived in
previous sections:
4.9.1 Bayesian Analysis Using Normal Prior
In this section we will present the Bayesian analysis of logistic regression model
without intercept by using informative prior as Normal. Then the Posterior distribution for

the parameter £ derived in section (4.7.3.1) see equation (4.25):

¢} —0 < fl <0

)

1 & 5
p(p|data) = 'l; }_, {Y;/)x_/i —log(l+ Cxp(ﬂxﬁ))} exP{
i=| s
where k is the normalizing constant:
The graph of the posterior density of the parameter £ is shown using the data set given in
Table 4.1.
The Graph of Posterior Density Using Informative Prior
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Figure 1
The graph of the posterior density of f under informative prior shows that it is the

Cumulative Density Function of logistic distribution:
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4.9.1.1 Posterior Estimates

We have designed programs in SAS package; program is given in appendix I-and
also a similar program given in appendix IV to obtain the value of standard error of the
parameter, while using the data set given in Table 4.1 to obtain posterior mode and the
posterior mean and standard error which are given in Table 4.3:

Table 4.3

Posterior Estimates Using Informative Normal Prior

Regression | Posterior | Posterior | Standard | Odds | SK )
Estimate Mean Mode Error Ratio
/;; —0.3402 —0.3256 0.1387 0.7221 | —0.1053

Here we observe that the posterior mean is less then the posterior mode which indicates that

the distribution of /£ is not symmetrical as the graph also indicates see figure 1. The Karl
Pearson coefficient of skewness (SK,) is also computed which indicates the level of

asymmetry of the posterior distribution of #. We can see in Table 4.3 that the odds ratio is
less then 1 which indicates that the variable fibrinogen is less likely to occur. So it can be
said that every one unit increase in the level of protein plasma (fibrinogen) approximately
increases ESR by 0.7221. This is very low for a healthy individual with ESR less than 20
mm\h to become an unhealthy or abnormal case with. ESR greater than or equal to 20 mm/h.
So it can be concluded that here fibrinogen is not playing any significant role to increase the
level of ESR in any healthy individual.
4.9.1.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simple; here we only find the posterior

probability by integrating the posterior distribution upon the parameter i.e.
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We test the following hypotheses:
H,:p20 Versus I, : <0

The posterior probability for /7 is:

p(B20)= [p(B|datayd s
0
Now the posterior probability using informative prior is:

| L 1 ,
Do = J%Zl‘{y,ﬁxﬁ —log(1+cxp(ﬂxﬁ))} exp {—E(ﬁ—OQO) }d,[)’

A program is designed SAS package, similar program is given in appendix [V to find the
posterior probability and after being run the program we find the posterior probability as:

P, =0.0031186 |
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.312%
chance to accept /7, and we conclude that for this model fibrinogen is not playing any
significant role to increase the level of ESR for healthy individual if the level of this protein
plasma is increases.
4.9.2 Bayesian Analysis Using Haldane Prior

In this section we will present the Bayesian analysis of logistic regression model

without intercept by using noninformative: Haldane prior. The Posterior distribution for the
parameter S derived in section (4.7.3.2) see equation (4.29) is:

n

p(B| data) = %Z [ {23, —log(1+ exp(Bx, )} {2+ exp(~Bx,,) + exp(Bx, )}

i=l
-0 < ff<o

where k is the normalizing constant:
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The graph of posterior density of the parameter /S is shown in figure 2 using the data set
given in Table 4.1.

The Graph of Posterior Density Using Haldane Prior
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Figure 2

The posterior distribution of /' is logistic type as its graph indicates.
4.9.2.1 Posterior Estimates

We have designed programs in SAS package, similar program is given in appendix |
while using the data set given in Table 4.1 to obtain posterior mode and the posterior mean
and standard error which are given in Table 4.3:

Table 4.4

Posterior Estimates Using Noninformative Haldane Prior

Regression | Posterior | Posterior | Standard Odds SK,
Fstimate Mean Mode Error Ratio
/3 —0.3463 =332 0.1410 0.7181 =0.1071

Here we also observe the same results with a slight difference in the values of posterior

estimates. The Karl Pearson coefficient of skewness (SK,) is also indicates almost same

level of asymmetry of the posterior distribution of #. We can see in Table 4.4 that the odds
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ratio is again less then 1 which indicates that the variable fibrinogen is less likely to occur.
This is very low for a healthy individual with ESR less than 20 mm\h to become an
unhealthy or abnormal case with ESR greater than or equal to 20 mm/h.
4.9.2.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simple; here we only find the posterior
probability by integrating the posterior distribution upon the parameter:

Now the posterior probability using Haldane priar is:
|
l n
P = J'z Z[{y,.[)’xﬁ —log(1+ exp(/)’xﬁ))} {2 +exp(—fx,)+exp(fx, )}]d/)’
0 i=|

A program is designed SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as:

p, =0.0031571
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.316%
chance to accept H, and we conclude that for this model fibrinogen is not playing any

significant role to increase the level of ESR for healthy individual to become an unhealthy
individual if the level of this protein plasma is increases.
4.9.3 Bayesian Analysis Using Jeffreys Prior

In this section we will present the Bayesian analysis of logistic regression model
without intercept by using noninformative Jeffreys prior. Then the Posterior distribution for

the parameter f derived in section (4.7.3.3) see equation (4.33):

| o }
p(p|data) = —k—Z[\/Q + exp(—,B.\'/i )+ exp(/}xﬁ) {y,/)’xﬁ —log(1+ exp(/)’x_/,. ))}J

i=|

where k is the normalizing constant: ' —0 < ff <o
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The graph of posterior density of the parameter £ is shown in figure 3 using the data set
given in Table 4.1.

The Grapl of Posterior Density using Jeffreys Prior

(8l data)
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Figure 3
The graph of the posterior distribution of S shows that it is a logistic type and we have used
the logistic link. This graph is very much similar to the graphs which are presented in the
previous sections.

4.9.3.1 Posterior Estimates

We have designed programs in SAS package; similar program is given in
appendix 1 and for standard error similar program is given in appendix [V, while using the
data set given in Table 4.1 to obtain posterior mode and the posterior mean and standard
error which are given in Table 4.5:

Table 4.5

Posterior [stimates Using Noninformative Jeffreys Prior

Regression | Posterior | Posterior | Standard | Odds | SK
Estimate Mean Mode Error Ratio
/)3 —0.3681 —0.3525 0.1430 0.7029 | —0.1091

r
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The results given in Table 5.4 are also same as in previous section with slight difference in
the values of posterior estimates. The Karl Pearson coefficient of skewness (SK ) is also

indicates almost same level of asymmetry of the posterior distribution of . We can see in
Table 4.5 that the odds ratio is also less then 1. which gives the same indication as in the
previous sections. So it can be said that every one unit increase in the level of protein plasma
(fibrinogen) approximately 0.7029 increases in the level of ESR. This is very low for a
healthy individual with ESR less than 20 mm\h to become an unhealthy or abnormal case
with ESR greater than or equal to 20 mm/h. So it can be concluded that here again
fibrinogen is not playing any significant role to increase the level of ESR in any healthy
individual.
4.9.3.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simple; here we only find the posterior
probability by integrating the posterior distribution upon the parameter:

Now the posterior probability using Jeffreys prior is:

1
=

po= [ X[ V2 exp(-Bx,) - exp(n,) {3, ~log(l+exp(Bx, )} i

A program is designed in SAS package, similar program is given in appendix [V to find the
posterior probability and after being run the program we find the posterior probability as:

p, =0.0031749
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.317%
chance to accept //, and we conclude that for this particular model fibrinogen is not playing

any significant role to effect the ESR if this protein is rise in the blood plasma.
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4.9.4 Bayesian Analysis Using Uniform Prior
In this section we will describe the Bayesian analysis of logistic regression model
without intercept by using noninformative Uniform prior. Then the Posterior distribution for

the parameter £ derived in section (4.7.3.4) see equation (4.36):

p(p|data) = %}:{y,/)’xﬁ —log(1+ exp(ﬂxﬁ ))} —0< fl<m
i=1

Where k is the normalizing constant:
.The graph of posterior density of the parameter S 1s shown using the data set in Table 4.1
and design a program in SAS package:

The Graph of Posterior Density using Uniform Prior
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The graph of the posterior distribution of f shows that it is a logistic type as we have used
the logistic link. This graph is very much similar to the graphs which are presented in the

previous sections.



4.9.4.1 Posterior Fstimates

We have designed programs in SAS package, similar program is given in appendix |
while using the data set given in Table 4.1 to obtain posterior mode and the posterior mean
and standard error which are given in Table 4.6:

Table 4.6

Posterior Estimates Using Noninformative Uniform Prior

Regression | Posterier | Posterior | Standard Odds SK
g 3

Estimate Mean Mode Error Ratio
B —0.3726 —0.3569 _ 0.1434 0.6998 —0.1095

The results given in Table 5.6 are also same as in previous section with slight difference in

the values of posterior estimates. The Karl Pearson coefficient of skewness (SK,) also

indicates almost same level of asymmetry of the posterior distribution of #. We can see in

Table 4.6 that the odds ratio is also less then 1 which gives the same indication as in the
previous sections that the variable (Fibrinogen) is less likely to occur. So it can be said that
every one unit increase in the level of protein plasma (fibrinogen) approximately 0.6998
increases in the level of ESR. This is very low for a healthy individual with ESR less than 20
mm\h to become an unhealthy or abnormal case Witll ESR greater than or equal to 20 mm/h.
So 1t can be concluded that here again fibrinogen is not playing any significant role to
increase the level of ESR in any healthy individual.
4.9.4.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simple; here we only find the posterior
probability by integrating the posterior distribution upon the parameter:

Now the posterior probability for /,, using Uniform prior is:
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| —

Py =

Ii {)’, Bx, —log(1+exp(Bx, ))}(1,3

i=1

>

e
A program is designed in SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as

P, =0.0032583

The posterior probability indicates that under Bayesian hypothesis criterion there 1s 0.326%

chance to accept //, and we conclude that for this particular model fibrinogen is not playing

any significant role to effect the ESR to increase its level for any healthy individual from 20
mm/h to an unhealthy individual with ESR greater equal than 20 mm/h, if the level of this
protein is increases in the blood plasma:
4.10  Classical Regression Analysis

For the comparison purpose now we take the classical estimate and test the
hypothesis. For this we have simply run the logistic regression without intercept model.
Now the classical estimate and Hypothesis testing is given in following section:
4.10.1 Classical Estimate

Using the data set given in Table 4.1 and having run the logistic regression we

obtain:

Table 4.7

‘Output of Logistic Regression Using Classical Approach

Coefficient | Classical Standard Z-Statistic | P-Value Odds
Estimate Error Ratio
[} —0.3569 0.1434 —2.4894 0.0128 0.6998
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4.10.2 Classical way of Hypothesis Testing

We have the logistic regression model as:

Logﬂ(p,)=log(]—i)-j=/3xﬁ

Hypothesis

H, >0 Versus H, <0

Since f =-0.3569 and standard error of f is 0.1434 then the value of Wald
(-statistic 1s, ¢ =-2.4894
Since the p-value from this regression is 0.0128, it indicates that we accept H, at 1% level
of significance and do not accept 7/, at any other level of significance. So it can be

concluded that fibrinogen is playing significant role at 5% level of significance and it effect
the ESR if this protein (Fibrinogen) increases in the blood plasma:
4.11 Comparison of Bayesian and Classical Logistic Regression Analysis
We compare the results obtained by using Bayesian and Classical techniques. The
results are presented in Table 4.8 using different priors these, results can be
compared with the results given in table 4.7:
Table 4.8

Posterior Estimates for Without Intercept Logistic Regression Model

Coefficient ,BA ' : Noninf'()_rmativ? Prior ; lllf()l‘lflﬂﬁ\’e
Uniform Prior | Jeffreys Prior | Haldane Prior Prior

Posterior —-0.3569 —0.3525 —-0.3312 —0.3256

Mode

Posterior —0.3726 —0.3681 —0.3463 —0.3402

Mean

Odds Ratio 0.6998 0.7029 0.7181 0.7221

Standard 0.1434 0.1430 0.1410 0.1387

Error —

SK, —0.1095 —0.1091 —0.1071 —0.1053
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The results found by using Classical logistic regression and in Bayesian logistic regression
with Uniform prior are looks like same i.e. the coefficients, p-value and odds ratio. Here
odds ratio interpreted as the approximated change in the risk of disease for every one unit
increase in the amount of fibrinogen. We observe here one thing that with this type of
logistic model the results by using Bayesian approach with all prior say nothing about the
significance of the parameter so is indicated by interpretation of odds ratio but classical
results are giving evidence in favor of the regression coefficient in term of p-value if we
select 5% as level of significance although which is too high with these type of experiments,
contradict with the value of odds ratio which is not the case in Bayesian. So it can be said
that results are much accurate by using Bayesian approach, while the results are much
improved with Haldane and informative (Normal) prior as compared to uniform and

Jeffreys.



Chapter 5
Bayesian Inference of Logistic Regression Model with Intercept

5.1 Introduction

In this chapter, we deal with the Bayesian analysis of logistic regression model with
intercept using one explanatory variable for response binary variable, under informative and
noninformative priors. Section 2 consists the introduction to logistic regression model with
its different forms. Section 3 presenlé the joint posterior model and joint likelihood function
also the derivation of different joint priors that are used in our study. The derivation of
posterior distribution using informative and noninformative prior are also given, we use the
log likelihood function to obtain the posterior distribution. For informative prior we set a
range of hyperparameters and select the hyperparameters that have minimum standard errors
for parameters, these are present in section 4. Section 5 comprises the Bayesian analysis
with informative and noninformative priors, which includes the graphs and posterior
estimates and hypotheses testing for the significance of parameter. Section 6 discusses the
classical analysis of logistic regression model with intercept and also the hypothesis testing
for the significance of regression coefficient. Sections 7 contain the comparison of classical
and Bayesian results and their interpretation with respett to the data set given.
5.2  Binary Logistic Regression Model (BLR) with Intercept

Here we will consider the binary logistic regression model with intercept that is

given as follows:
— P, :
Logit(p,) =log -y =P+ ﬁlxﬁ (5.1)

Here f,is the intercept and f, is the slope coefficient for the explanatory variable

fibrinogen. The above logistic regression model can also be represented as:



1

p=ply=h= 1+exp{—(/)’0 + [J’Ixﬁ.)} (5-2)
53 Joint Posterior Distribution of Binary Logistic Regression (BLR) Model
with Intercept
Then the joint Posterior distribution oflhle parameter f;and f, is defined as:
(B, | data) oc 1(f,, | data) < p(f,, ) (5.3)

Here p(f,. B, | data) is the joint posterior distribution while /(f,, S, | data) is the joint log
likelihood function and p(f,, A,)is the joint prior distribution for f; and f,. The prior
distributions are considered to be independent, as the independent priors are extensively
used in literature, this idea can also be seen in Bian (1997), Dreze (1977), Bian (1989),
Bedrick et. al. (1996) etc. So we need to decide upon the joint prior distribution and the joint
log likelihood function.
5.3.1 Joint Likelihood Function

The joint likelihood of the i™ observation is its probability density function as a
function of the two parameters 3, and 3, where ( y,, X, ) are fixed at the observed values. The
observations are all independent, now for the given case we precede as follows.
Let y, be the response variable that is binary in nature i.e. it takes only two values 0 and 1
for ‘n” observations. Since the analysis of binary response variable in classical approach, the
Maximum Likelihood Method (MLE) is used to estimate the unknown parameters of the

Binary Logistic Regression Model. However the estimates based on the classical approach

are not accurate when the sample size is small. In this situation Bayesian approach provides

better and accurate results. Then if y, is the response variable and x,,’s the explanatory
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variables that can be either qualitative or quantitative in nature while p, is the probability of

h

success corresponding to the i" observation then the joint likelihood function can be

presented as:

n

Lu%Aum@sz”prfﬂﬂ (5.4)

1=

Now if p, = H(f'x,) while f'=(/f,,/,) then the likelihood function becomes as:

L(fy. B, | data) = H{H(/)"x,-)y' a-Hpx) } (5.5)
i=1
Taking log on both sides of above function we get the Log likelihood function as:
log L(3y, B, | data) =3 {y, log(H (f'x)) + (1= y)log(1— H(f'x,))}
i=l

Sine we know that p, = H(/'x,) then for further consideration we can write the above log

likelihood function as:
1By, B, | data) =y {y,log(p,) + (1 - y,) log(1- p,)} (5.6)
i=1

Where p, is the probability of success for i observation in data set and be represented in

the logistic regression model as:

I
l”ﬁ+mﬂ4m+@%ﬁ
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5.3.2 Joint Prior Distribution

We consider the joint noninformative and informative priors of f;and £, in the

following sections:
5.3.2.1 Joint Informative (Normal) Prior
Here we consider the independent normal prior for each parameter. The joint

Informative prior of the two parameters is the product of the two individual priors:
p(ﬂo > ﬂl) = P(/jo)p(,[}n)
Where f,~N(a,,b,)and f,~N(a,,b,) here a,and @, are means while b, and b, are the

variances. Therefore
P(,Bo ) ,B|) o exp {——" (B —ay) }e\p {—— (/}: a) }

ao) +by (B —a) l
2byb,

-0 < By <o, —0 < ff, <o (5.7)

b(p, -
Py ) < exp {_ X0

5.3.2.2 Joint Noninformative (Haldane) prior
The joint noninformative (Haldane) prior by using the log likelihood function given

in (5.6) is derived as:

Py (ﬂoaﬁn)c‘:p,-_l(l_[),)_l ' (5.8)

1
1+exp {—(/30 + X, )}

where p, =

The above equation (5.7) can also be written as:

p(Bys B) e H(B'x)" (1—H('x,))" (3.9)
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5.3.2.3 Joint Noninformative (Jeffreys) Prior
The joint noninformative (Jeffreys) prior by using the log likelihood function given in (5.6)
is derived as:

Since we know that

D2, (By, By) < \/detll(ﬁoa IBI)I

Then p(fy, B) o p, (1= p,) (5.10)

1
1+exp {—(/)’(, +Bx, )}

where p, =

The above equation (5.9) can also be written as:

19—
—~
N
—
~

1 B
P(By. ) c H(B'x,) 2(1- H(S'x,))
5.3.2.4 Joint Noninformative (Uniform) Prior

We consider the joint noninformative Prior of f;and S as Uniform Prior:

p(By, B) <1 —00 < f§) <0,—0 < ff, <0 (3.12)
5.3.3 Joint Posterior Distribution

Now the joint posterior distributions for joint noninformative and informative
Priors are given in the following sections:
5.3.3.1 Joint Posterior Distribution Using Normal Prior

Now for the joint posterior distribution of B, and S, we consider the joint Log
Likelihood function (5.6) and the joint Normal prior (5.7), then the joint posterior
distribution of £,and f, is:

n

p(ﬂmﬁt | data) o« Z {yi log(p;) + (1 - )’,) l()g(l - p/)} exp{‘z_l)_(ﬂo - a())2 }exp {_i(l[jl -, )2 }

i=l

¢



p(By, B, | data) o i{yl log[l_pL_J-l- log(1— p,)}exp{_ b(B, - (’0)7:/+bbo (f—a) } (5.13)
i=1 - 200,

i
By using logistic regression model with intercept and having only one explanatory variable

given in equation (5.1) see section (5.2) we can derive the expression:
log(1- p,) = —log {1-+exp(B, + Bx )} (5.14)
Then after replacing equation (5.1) and (5.14) the above posterior distribution (5.13)

becomes:

n

p(By, By | data) e ZI:J’,-(,BO +Bix,) - log{l +exp(f, + Bx, }:|

exp{_ b(fy—a) +b,(B—a) }
2b,b

Let us suppose here that ¢, = /3, + f,x; for further simplification also suppose that:

(/)0 - (ﬁo _a0)2’¢1 = (:81 _al)z

Then the joint posterior distribution for f;and S, will be as:

n - b [
B(Fos | dato) :%Z[J",Hi ~log {1+ CXP(Q,)}] exp {—_'%;:b)l”_(/)'}

i=|
Let us again suppose that:

b= byby s ¢0, =bd,, ¢|I =by,

1"

p(By. f, | data) = /lz[exp[—gz—.m' v ¢.’>]{y,0, ~log {1+ exp(@)}}}

i=|

Let " =¢, +¢
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+

(S, B, | data) =%i[exp(— 7‘/; j{yiO[ ~log {1+ exp(Q)}}} (5.15)

*
i=1 20

—0 < i <0, —0 < ff <
This is the joint posterior distribution of £, and f,, where k is the normalizing constant. Here
our main objective is to estimate the unknown parameters. Then for this purpose if we
partially differentiate the above poétcrior equation (5.15) with respect to 4 and 3, then
equating to zero. So this numerical solution will provide us the posterior estimates (modes),
now for this we precede as follows:

Differentiate (5.15) with respect to £, we obtain:

+

op(py, fy | data) 0 ¢ 3 —leo {1
o8, ‘aﬂog{ex‘( 21)‘J{)'0’ log{”expw’)}}}

_ 2 exp(— ¢"j{ exp(—6,) B

Yi—
= I S
1 (I+exp(=6))) (1 1+exp(—9,)]

{)/’0,- +]og(1 —m;ll)mj} CXP[*%](%(% —a, )}

Let A= L(ﬁ’o —~ )
b()

op(fy. | data) _ 'Z'[exp(_.

¢‘
op, = b

1
5 ,H(y,—m]—ﬂ{yﬂ,—log{l-FGXP(H,)}}H
op(fy, B, | data) 0
B

Now put for maximizing
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S8 - 1 - - _
L{exp( 21),}{(), l-i-cxp(—(),)) l{yl(), log{]+exp(0,)}}H 0 (5.16)

i=]

Whiled, = B, + Bx,

Now again differentiate (5.15) with respect to /3, we obtain:

al)(ﬂo’ﬂllflfllcz)~£_'l ’ —¢. o
B "aﬁ,;{e“’( 2b“j{),0,- lOE,{IFeAp(HI.)}}}

i x, exp(—0,)

o1
(1+exp(=0,)) (] 1+exp(—9,)j

{)110’. i 1()g(1 —mj} exp[—;;b,j(zll‘ (ﬁ] —q, )j}

Let us suppose that A* = bi(ﬂ, -a)
|

op(By, Byl data) < “(/,‘ }_; e . 7
0B, —%{ehp ( 2/)‘J{[-" 1+ exp( —,0,)] A {v6 loz,{“exp(a)}}H

op(p,. B, | data) -0
op,

n' —¢°- }—-—-—_1—.——— ‘ . N )
glexl{ 2b‘]{('}’ l+e_xp(—0,)] o ‘Og{“ewﬁ,)}}H—O (5.17)

While 6, = g, + Bx,,

Now put for maximizing

Posterior modes can be obtained by solving above equations (5.16) and (5.17) numerically.

80



5.3.3.2 Joint Posterior Distribution Using Haldane Prior
Now for the joint posterior distribution of S and S, we consider the joint Log
Likelihood function (5.6).and the joint Haldane prior (5.8), then the joint posterior

distribution of fB,and £, is found to be:

n

p(By, By datay < > { y, log(p,)+ (1= y)log(l= p)}p, " (1= p,)"

i=|

p(By, By | data) e« Z {y, log (r_p—} +log(1-p, )}pf' d-p)" (5.18)

i=1 Jj

Replace equation (5.1) see section (5.2) in above expression (5.18) we get:

n

p(By. By data)y = " { y, (B, + Bx,)+log(1 = p)}p, " (1= p,)"

i
Since we know from equation (5.14) log(1-p,) = —log{l +exp(f3, + ﬁ,xﬁ)} that is derived
from equation (5.1), now we can derive the expression form equation (5.1) as:

pt =lrexp{=(f, + fxp)} & (1-p)" =1+exp(fy+fix, (5.19)

Now replace (5.14) and (5.19) in (5.18) the joint posterior distribution becomes:
2oy
p(By, B, | data) o LHI +Hexp {"(/Bo + /}x_/i)}} {1 +exp(f, + /3-V/;)}
i=|

Yi(By + px,)—log {1 +exp(f, + fix, )}:I
Let us suppose here that:
0, =B, + :le_/)

Then the joint posterior distribution for /3 and ﬂ, will be as:

p(By, By | data) e« i[{2 +exp(=0,) + exp((),)} »,0, —log {1 +exp(0, )}J
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p(By, B | data) = /lz [{2-+exp(-0,) +exp(6))} y,0,—log {1 +exp(6,)} | (5.20)
C izl

—0 < ffy <0, —0 < ff; <w
This is the joint posterior distribution of f;and f,, where k is the normalizing constant.
Now to obtain the posterior estimates (modes) of the parameters f;and f, we proceed with

partially differentiate the above equation (5.20) with respect to 4, and S, simultaneously and

then equating to zero. The numerical solution will provide us the Posterior estimates
(modes), for this we precede as follows:

Differentiate (5.20) with respect to /3, we obtain:

p(By, By ldata) 0 s T —0)+ 7.0, — -
o L2 oxp(-0)+exp(6)} 3 ~log 1+ exp(6)}]

=Y {2+exp(=0,)+exp(0)}{ v, - ERpl-0) ‘ +

i=l o | _ l_‘¥
(I+exp(-0,)) (l ]+<:XP(‘91))J

exp(0,) {1 +exp(—6, )} {)’.9, +log (1 - _I_J} _

1+exp(-0,)

1+exp(=0)

{] +exp(6, )} exp(—0,) {yﬂ‘ + log(l — ___1___J}}

4

1
=7 {{2 +exp(—0,) +exp(6),)} {y, —m} +

exp(6,) {1 + exp(—H,)} {yﬁ, ~log {1 e exp(@l)}} -

exp(=0,) {1+exp(0,)} {0~ log {1-+exp(d,)} }}
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n

J ]
=2 {{2+ exp(=0,) +exp(6),)} [)’ 1+ exp(—a)} |

i=

{exp(6))(1+exp(=0,)) —exp(—0,)(1 +exp(6,))}

{3,6, - 1og(1+exp(6,)}}

op(fy, By | data) <& T o 1 )
o —;{{2+exp( 0,)+exp(0,)} {}, Ee— exp(—Q)} |

{)’,-0, —log {1+ exp(é),)}} {exp(6) - exp(~0,)}]

op(Py, By | data) 0
op,

Now for maximizing put

n

Z[{‘z‘«-exp(—a.>+exp(0,>} {y -—‘—}+

=1 ET exp(—6,)
{yﬁ, —log {1+ exp(@)}} {exp(6,) - exp(—Q)}] =) (5.21)
While 6, = 5, + Bx,

Again differentiate (5.20) with respect to f, we obtain:

op(By, Bl data) 0
aﬂl 1na _ a_ﬂl ;[{2 e CXP(‘“Q) + exp(@l )} .)’:01 — log {1 + CXP(Q )}:I

n

= 1{2+exp(-6) +exp(9)} yix, -

1

x; exp(-0)) N
( +exp<—0,->)2[1—*~—‘~——j

i=1

I+exp(=0)

1
exp(@l) {1 + CXP(—HI )} X4 {)/,0, 4 10g(1 “m]} =

‘ 1
1+exp(0,){exp(=0,)x,{y,0, +log| 1 ———
{1+exp(6)} exp(-6,)x, {y, i og,[ l-rexla(—t‘),)]}}
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n

X
= 2+exp(—6,) +exp(d, SO -
2 {{ exp(=0,) +exp(d)}1 y,x, 1+exp(—0,)}

[ exp(—6)
; ( n(—0)x . IR
{1+exp(0)} exp(-0,)x, {y'&' ! lol’(l+c><p(—0,))}}

=

1

= {{2 +exp(-6,) +exp(0, )} {yix_/i

X,

.. S
i=1 l + exp(—a)

exp(6)) {1 +exp(-0,)} x,, {y,O, —log {1+ exp(O,)}} =

{1 +exp(0, )} exp(—6,)x, {yﬁ,. —log {1 +exp(6, )} }}

op(By, B, | data) _ i

) 2 l:{Q +exp(—0,) +exp(0, )} {%/,x_/, -

I S
1+exp(-6)

x, {26, ~log {1+ exp(6)}} {exp(6) ~ exp(-6)} |

op(B,, B, | data) _0
op,

Now for maximizing put

n

Z{{Q +exp(—0,) +exp(6,)} {y,xﬁ - __L__} "

e 1+exp(=0,)
x,{,0,~log {1+exp()}} {exp(6,) —exp(-0), )}] =0 (5.22)
while 0 = B, + Bx,

To obtain the Posterior modes solve the equation (5.21) and (5.22) numerically.
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5.3.3.3 Joint Posterior Distribution Using Jeffreys Prior
Now for the joint posterior distribution of f;and £, we consider the joint Log
Likelihood function (5.6).and the joint Jeffreys prior (5.10), then the joint posterior

distribution of S and g, is found to be:

n

p(fy, B | data) o Z{y, log(p,)+(1—y)log(l- p,)}pl—i(l -p,)

i=l

Al
2

n ' 1 1
p(fy, B | data) oc Z{y, log[T—p’?]-k log(1 —pi)}p, 2(1-p) ? (5.23)
fe=] —Fi

Replace equation (5.1) in above expression (5.23) we get:

Py B data) e 3, (B + B ) +log(1 = p)}p, 2 (1= p)) 2 (5.24)

i=1
Since we know from equation (5.14) log(1—-p,) = —log{l +exp(f, + p’,x/,)} that is derived

from equation (5.1), now we can derive the expression form equation (5.1) as:

Pt = Trexp( o= fxg) & (-p) T = fTvexp(h, + fix,) (5:2)

Now replace (5.14) and (5.25) in (5.24) the joint posterior distribution becomes:

n

PPy, By | data) o« Z{y, (B + /))xx,/i —log(1+exp(f, + Bx, ))}

i=1

\/1 +exp(—f, - /Bx_/i)\/l +exp(f, + B, X;)
Let us suppose here that, 0, = /3, + fx,

Then the joint posterior distribution for £, and S, will be as:

n

p(fy, B, | data) = % Z {_y,(), —log(1+exp(6, ))}\/1 +exp(-0) \/1 +exp(6) (5.26)

=l

~0 < fly <0, —0 < ff <o
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This is the joint posterior distribution of /3, and f,, where k is the normalizing constant. Here
our main objective is to estimate the unknown parameters. Then for this purpose if we
partially differentiate the above eq'uation (5.26) with respect to f,and A, then equating tc
zero. So this numerical solution will provide us the Posterior estimates (modes), for this we
precede as follows.

Differentiate (5.26) with respect to S, we obtain:

op(fy, B | data) 0 > (2,0, ~log(1 +exp(6)} /1 +exp(=0,) /1 +-exp(6))
aﬁo aﬂo =1

exp(=6,)

2 1 ]
(I+exp(=6,)) (1"mj

..|_

= .\/l +exp(—0,.)\/l +exp(8) 3y, —
i=l

1
exp(0,)\/1+exp(-0,) {yﬂ, +log (1 - mj}
2 /1+exp(8)

1
exp(—0,)/1+exp(6) {yﬁ, +log [] — m__g_)j}
2/l +exp(-8)

n

= {\/l + exp(—é’i)\/l +exp(6,) {J’, —_1_} i

i= 1-+exp(=0)

exp(6,)\/1+exp(=0,) {y,6, —log(1+exp(6,))}
2/1+exp(0,)

exp(=0,)\JT+exp(6,) { 3,0, - log(1+exp(6,))} }

2/1+exp(-6,)
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"

= {\/2 +exp(—0,) +exp(0)) {y, = ———1——} +

pc 1+exp(-0)

{exp(@,). /1+exp(—0,) B exp(—0,)/1+exp(6)) }

2,/1+exp(6,) - 2\/1+exp(-6)

{yﬂ, —log {1+ exp((),)}}}

op(By. B | data) < e I T
o0, _;{\/2+exp( 0) cxp(O,){y, = exp(—@,)} +

exp(0,) —exp(-0,) }}

6, —log {1 +exp(é,
{J’, | —log {1 +exp( ,)}}{2\/2+6Xp(_9,)+exp((),)

61)(ﬂ0’ﬂl | data) -0
op, B

Now for maximizing put

n

Z {\/2 +exp(—6,) +exp(6)) [ —————1——} +

" Trexp(-0)

exp(—0,) —exp(-0.) 1
0 —log(l+exn(d I i =( 5.27
{0, ~log(1+exp( ’))}{2J2+exp(—9,)+exl)(‘9:)J} o

While 6, = §, + fx,

Again differentiate (5.26) with respect to /3, we obtain:

p(fy aﬁ[; | data) _ ;ﬂ i{yﬂ, ~log(1+exp(6,)}/1+exp(=6,) /1 + exp(6),)

x, exp(-6,)

=3 Jlrexp(=0) \J1+exp(6) { y,x, — .
= . 1
TS G ) ) [ S—
(I +exp( ,»[ Froe. )‘]
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1
x , exp(0,)\/1+exp(-0)) {J’,(), + log[l S C\J—ES]}

2\/1 +exp(0,)

X, exp(~ O)W{yﬁ'“()g( 1+e>\119( 9))}
2/l exp(-6)

n

{\/1 +exp(=6,) \/1 +exp(0,) {yix,/i - —Xﬁ—} +

I+exp(~6))

i=]

x, exp(6,)\/1+exp(~0,) { y,6, —log{ 1+exp(())}

2 /1+exp(8)

X exp(ﬁQ,)\/l +exp(d,) {yﬁ: —log{l+ exp(()i)}}
- 2 /l+exp(-0)

n

X
{\/z +exp(=0,) +exp(b,) ‘{% i~ m} !

i=1

{exp(@)w [1+exp(=0,) - exp(—0,)\J1+exp(d) }

2\1+exp(8,) 21 +exp(—6.)

B {y,[), ~log {1+ exp(@)}}}

By, fyldata) -] 5 i
— E 2 +exp(—-6)+exp(0. By = ' 4
op, p V2 EXDE-0) exD(0) | 3%y I+exp(=06,)

exp(0,) —exp(=0,)
X {yﬂ, = 10}_3, {1 + EXP((),)}} {2\/2 + (;\])(”0 )+ exp(@ ) }}

op(Sy, B | data)
op,

Now put for maximizing =0
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n

P l+exp

{\/2 +exp(=0,) +exp(0,) {ylxﬁ - __%5} v

0.) —exp(—0.
X, 1,0, —log(1+exp(6),))} { 5 \/2e ?)e(xll))(—;?:-(ex;))(a) H = (5.28)

while 6, = B, + pix,
The numerical solution of above equations (5.27) & (5.28) will provide the posterior modes.
5.3.3.4 Joint Posterior distribution Using Uniform Prior

Now using the joint Log likelihood function (5.6).and the joint uniform prior

distribution (5.12), then the joint posterior distribution of f;and £, is found to be:

n

p(By. B | data) o< 3" {y, log(p,)+ (1= y,) log(1- p)}1

i=1

p(By, B, | data) < i{y, log(l P )Jrlog(l—p,)} (5.29)
i=1 P

Now replace equation (5.1) in above expression (5.29) we have:
P(By. By | data)y oy { y, (B, + Bix,) +log(1- p,)} (5.30)
i=1
Now put equation (5.14) in above equation (5.30) we get:
17(/))0 > ﬂl | data) o Z{y, (/30 + /)’r"/, )—log {1 e exl)(ﬂo + ﬂlx/, )}}
1=1
1 n
PP, B data) =3 Ay, By + ) ~og{L+ exp(fy + A} (531

i=l

—0 < fy €0, —0< B, <o
This is the joint posterior distribution of 4 and 4, , where k is the normalizing constant.

Here our main objective is to estimate the parameters. Then for this purpose if we partially
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differentiate the above equation (5.31) with respect to S, and S, simultaneously and equate it

to zero. So this numerical solution will provide us the Posterior estimates (modes), so for

this we proceed as follows.

Differentiate (5.31) with respect to 3, we obtain:

op(By, B, | data) = 0 i{y/(/))o + [)’lxb,,)—log{l +exp(f, + jlx/i)}}

aﬂo aIBO i=l

! exp(=(f + Ax,))

= Yi—

1

= (1+exp(=f3, = Bx ;) [1 _

L

l
- {yi P exp(=4, _/))'xﬁ)}

op( By, P, | data) _ i L 1
op, o |7 1exp(=f, - B, Xp)

Now as we know that 6, = , + fx,,

op(p,. B, | data) _0
Py

. I
g{y’—wew(ﬁ)}—o

Now differentiate (5.31) with respect to S, we obtain:

Now put for maximizing

1+exp(—=f, — Bix;)

a n
2y, 1| dater) :"Q‘Z{y,-(ﬂu +px, —log{l Fexplfy + Ay

aﬂl aﬂl i=l
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n x; exp(=(f, + px,)

N . 1 -
A _Re W21
(Lrexpl=fy =A%) L] 1+ exp(—(f, -»-ﬂ.»v_,i))JJ

n x/‘
!
YViXy = »
£ 1+exp(=f, - Bixy)

op(B,, B, | data) Z B Xy
op, e Lexp(=/f, - Bix ;)

op(B,, B, | data)
op, )

Now put for maximizing

[ 1 hon
Z{)’:xﬁ 1+e\p( 9)[ (5.33)

=l
while 6, = B, + Bx,,

To obtain the posterior modes, solve the above equations (5.32) and (5.33) numerically.
5.4 Selection of Hyperparameters

Since we know that the prior distribution of parameters /3, & f, are as follows:
By~N(ay,by)and f,~N(a,,b,), our main objective here is to find the values of these
hyperparameters while a, & @, are the means of prior distributions and b, &b, are the
variances of the prior distributions. We have suggested a range of values of hyperparameters

by observing the variation in regression coefficients and also the variable of interest and

select the values with minimum standard error, the values are given as follows:
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Table 5.1

Posterior Fstimates Using Different Values of Hyperparameters

Hyperparameters Posterior Mode Posterior Mean Standard Error i
Ao e y ot ~ ~ ~ ~ ~ ~
Mean | Variance Mean | ] ‘auunce ﬂ() ﬂl ﬂo :Bl ,Bo /),'
a, b, a, b,

0 1 0 1 —7.0703 2.0535 —8.0213 2.3391 2.7645 0.9224
15 3.9 10.5 2.5 —13.9789 5.8436 —50.8567 14.7011 17.9522 | 4.8567
14 5 9.5 2 —12.7249 4.3121 —47.0578 13.6067 15.6859 | 4.53606
13 4.5 8.5 1.5 —11.1784 3.6599 —43.3829 12.5478 144010 | 4.1859
12 4 8 | —10.1870 2.6710 —39.7078 11.4888 13.9660 | 3.8295
11 3.5 75 0.90 —9:2572 2.1710 —36.1941 10.4761 12.8647 | 3.4923
10 3 6.5 0.80 — 79225 2.0893 —32.9411 9.5381 109812 | 3.1594
9 2.90 6.25 0.70 —7.5597 2.0194 —29.6960 8.6023 9.8987 2.8474
8.5 2.80 6.10 0.65 —7.4635 1.9581 —26.1416 8.1540 8.7114 2.7189
8.25 2.70 5.95 0.60 ~1.3427 1.8923 —23.3924 7.7993 7.7975 2.6077
8.10 2.60 5.75 0.55 —7.2664 1.8583 —21.9642 7.1843 7.3214 | 2.3948
1.95 2.50 5.50 0.50 —7.0985 1.8295 —18.5474 6.6932 6.1825 2.2311
] 2.25 5.40 0.45 —6.9371 1.8023 — 159575 5.5238 5.3090 1.8413
7.60 2.10 5.30 0.40 —6.8525 1.7898 —13.2650 4.3238 4.4217 1.4413
7.50 2 5 0.38 —6.7569 1.7724 —11.5244 3.9387 3.8416 1.3529
7.40 1.95 4.90 0.36 —6.6391 1.7699 —9.9825 3.2423 3.2395 1.0509
7.30 1.90 4.80 0.35 —i6,9237 1.7618 —8.7012 2.6711 2.9506 0.9305
7.20 1.85 4.75 0.34 —6.4522 1.7598 —7.9436 2.3788 2.6579 0.8669
7.10 1.80 4.70 0.33 —6.4286 1.7513 —7.5020 2.0996 2.5115 0.8293

These are the values for hyperparameters for informative priors which are Normal priors for
each parameter that is considered independent. Where mean = a, and variance = b, for the
prior distribution of 3, while mean = a, and variance = b, for the prior distribution of f3,.
We suggest different values for the hyperparameters and find the values of parameters. So
finally we decided to select the values of hyperparameters as mean = 7.1@ and variance =
1.80 for the prior distribution of f, and mean = 4.70 and variance = (.33 they have the
minimum standard error.
3.5 Bayesian Analysis with Informative and Noninformative Priors

In this section we will carry out the Bayesian analysis with informative priors and
noninformative priors. The analysis is based on the posterior distributions that are derived in

previous sections:



5.5.1 Bayesian Analysis Using Joint Normal Prior
In this section we deal with the Bayesian analysis of logistic regression model with
intercept and one explanatory variable by using informative (Joint Normal) prior. We use

the following joint posterior distribution for the parameters 8, & B, derived in section

(5.3.3.1), see equation (5.15):

p(ﬁoaﬁl | d(lf(l) =%i[exp{— ;[j }{yﬁ, —lOg{l +CXP(‘9,‘)}}

i=1 2b°
-0 < ffy <0, —0 < ff <o

where k is the normalizing constant:

Programs in SAS package have been designed to show the graph of marginal densities of the
parameters /3, & £, by using the data set given in Table 4.1. Similar program is given in
Appendix [V.

Graph of Posterior Marginal Densities using Normal Prior
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5.5.1.1 Posterior Estimates

For further analysis we have designed programs in SAS package, similar
program is given in Appendix Il and also a similar program for is given in appendix IV to
obtain the value of standard error while using the data set given in Table 4.1 and
hyperparameters that are obtain in section (5.4.2). We have used Marquart method to obtain
the posterior modes while Quadrature method is used to obtain posterior mean and standard
error.

Table 5.2

Posterior Estimates Using Joint Normal Prior

Regression | Posterior | Posterior | Standard | Odds SK,
Estimate Mean Mode Error Ratio
A —7.5010 —6.5485 2.5115 —0.3797
Be
/3;1 2.0996 1.8093 0.8293 6.1062 0.3500

Here we have observed that the posterior mode for /i is greater then the posterior mean of
[, which indicates that the distribution of this parameter is negatively skewed. This is also
indicated in graph see figure 1(a). How much it is skewed we have calculated the coefficient
of skewness. We have also observed that the posterior mean of f, is greater then the
posterior mode of /3, which shows that the distribution of parameter is positively skewed,

that 1s also indicated in figure 1(b), which can also be seen by the coefficient of skewness
given in Table 5.2. It is observed that the odds ratio is greater then 1 which indicates that the
variable fibrinogen is more likely to occur, so the odds ratio is high for a healthy individual
with ESR less than 20 mm\h to become an unhealthy or abnormal case with ESR greatel

than or equal to 20 mm/h. So it can be said that every one unit increase in the level of
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protein plasma (fibrinogen) approximately 6.1062 unit increases in the level of ESR. That is
too high as compared to the results given in previous chapter. So it can be concluded that the
strength of relationship between the probability of an ESR reading greater than 20 mm/h and
the level of protein plasma (fibrinogen) is high.
5.5.1.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simple; here we only find the posterior
probability by integrating the joint posterior distribution upon the parameter i.e.
We test the following hypotheses:

H,:p <0 Versus H,: >0

The posterior probability for 7/, is:

p(B<0)= | uj p(B,, B, | data)d B,d B

- -0

Now the posterior probability using informative prior is:

po= | | %i{exl (—%j{ 9, —log{1+.exp(0ﬂ)}}}1/)’0dﬂl

515t =l
While 6, = B, + px,
A program is designed in SAS package, similar program is given in appendix [V to find the
posterior probability and after being run the program we find the posterior probability as:
p, =0.001873
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.19%
chance to accept /{so accept 1, with high probability and we conclude that f, is positive

and playing a significant role to effect the ESR if this protein rises in the blood plasma. That

1s also indicated in the result of odds ratio.



5.5.2 Bayesian Analysis Using Joint Haldane Prior

In this section we will present the Bayesian analysis of binary logistic regression
model with intercept and one explanatory variable by using noninformative (Joint Haldane)
prior. We use the following joint posterior distribution for the parameters f, & f, derived in

section (5.3.3.2) see equation (5.20):

p( By, B, | data) = /li [{2 +exp(—=0)+exp(d, )} »,0 —log {l +exp(6, )}J
C izl

—0 < ff <o, —0 < ff <o
where k is the normalizing constant:
Programs in SAS package have been designed; similar program is given in appendix [V to
show the graphs of marginal densities of the parameters f, & f, by using the data set given
in Table 4.1.

Graph Posterior Marginal Densities using Haldane Prior
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5.5.2.1 Posterior Estimates
For further analysis we have designed program in SAS package, similar
program 1s given in appendix [I and use the data set given in Table 4.1. We have used
Marquart method to obtain the posterior modes while Quadrature method is used to obtain
posterior mean and standard error.
Table 5.3

Posterior Estimates Using Joint Haldane Prior

Regression | Posterior | Posterior | Standard | Odds | SK )
Estimate Mean Mode Error Ratio
A —7.6910 —6.6925 2.6015 —0.3838
Po
/}1 2.1872 1.8885 0.8515 6.6094 0.3508

Here we have observed that the posterior mode for f;is greater then the posterior mean of
[, which indicates that the distribution of parameter is negatively skewed, as indicated in

graph figure 2(a), which can also be checked by coefficient of skewness given in Table 5.3.

We have also observed that the posterior mean of f, is greater then the posterior mode of f3,

which shows that the distribution of this parameter is positively skewed, this is also shown
in graph figure 2(b), how much it is skewed can be seen by the coefficient of skewness. It is
also observed that the odds ratio is greater then 1 which indicates that the variable fibrinogen
is more likely to occur, So it can be said that every one unit increase in the level of protein
plasma (fibrinogen) approximately 6.6094 unit i.ncreases in the level of ESR. So there is no
difference in the value of odds ratio as given in the previous model. So it can be concluded
that the strength of relationship between the probability of an ESR reading greater than 20

mm/h and the level of protein plasma (fibrinogen) is also high for this model.
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5.5.2.2 Bayesian Hypothesis Testing
The posterior probability of hypothesis given in section (5.5.1.2) using Haldane
prior is:
016
Dy = J. IZ[{21 exp(—(),)+exp(0,)} »,0, —log{l + exp(@l)}}//3’0(1’,[)’l
A E

While 6, = f, + Ax,

A program is designed in SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as:

o =0.002014

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.20%
chance to accept /4, so we accept /7, with high probability and conclude that £, is positive
and playing a significant role to effect the ESR if this protein rises in the blood plasma. This
result also gives the evidence in favor of odds ratio that also indicate the same results.
5.5.3 Bayesian Analysis Using Joint Jeffreys‘Prior

In this section we will present the Bayesian analysis of binary logistic regression
model with intercept and one explanatory variable by using noninformative (Joint Jeffreys)
prior. We use the following joint posterior distribution for the parameters 3, & /3, derived in

section (5.3.3.3) see equation (5.26):

n

p(By., B, | data) = /lz {,0,~log(1+ exp(0, )} 1 +exp(=6,) 1 +exp(8)

i=1

—00 < ff, <00, =00 < ff; <o

Where k is the normalizing constant:
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Programs in SAS package have been designed; similar program is given in appendix IV to
show the graph of marginal densities of the parameters f, & £, by using the data set in
Table 4.1.

Graph of Posterior Marginal Densities using Jeffreys Prior
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5.5.3.1 Posterior Estimates
For further analysis we have designed programs in SAS package, given in
appendix II and use the data set given in Table 4.1. We have used Marquart method to
obtain the posterior modes, while Quadrature m'ethod is used to obtain posterior mean and
standard error.
Table 5.4

Posterior Estimates Using Joint Jeffreys Prior

Regression | Posterior | Posterior | Standard | Odds SK,
Estimate Mean Mode Error Ratio
0 —7.9124 —6.8575 2.7284 —0.3866
By
} 22519 1.9236 09115 6.8456 0.3602
B
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We can observed that posterior mode for fis greater then the posterior mean of £, which
indicates that the distribution of this parameter is negatively skewed which is also observed
through the presentation of graph in figure 3(a) and also the coefficient of skewness given in

Table 5.3. We have also observed that the posterior mean of £, is greater then the posterior
mode of f, which shows that the distribution of this parameter is positively skewed how

much it is skewed can be seen by the coefficient of skewness given in Table 5.3 and the
graph in figure 3(b) also indicates the same skewness. It is also observed that the odds ratio
is greater then 1 which indicates that the variable fibrinogen is more likely to occur, So the
strength of relationship between the probability of an ESR reading greater than 20 mm/h and
the level of protein plasma (fibrinogen) is also high for this model, as one unit increase in
the level of protein plasma (fibrinogen) increases the ESR by 6.8456 units. That is also same
as for the other models but with slight difference.
5.5.3.2 Bayesian Hypothesis Testing

The posterior probability of hypotheses given in section (5.5.1.2) using Jeffreys

prior is:

0 20
-] /l (3,0, —og(1 +exp(0,) T+ exp(=0,) 1+ exp(0,)d Byd
~5-20

While 6, = B, + fx,
A program is designed in SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as:
P, =0.002157
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.22%

chance to accept /1, so we accept [, with high probability and we conclude that g, is
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positive and playing a significant role to effect the ESR if this protein is rise in the blood
plasma. This evidence also favors the results given in Table 5.4.
5.5.4 Bayesian Analysis Using Joint Uniform Prior

In this section we will present the Bayesian analysis of binary logistic regression
model with intercept and one explanatory variable by using noninformative (Joint Uniform)
prior. We use the following joint posterior distribution for the parameters 3, & f, derived in

section (5.3.3.4) see equation (5.31).

n

r(By» ﬂl | data) = _]l_z {)’, (B, + 181*\”_/; —log {1 +exp(f, + ﬂlx_/i )}}

i=1

—0 < ff, <o, —0< ff <o
Where k is the normalizing constant:
Programs in SAS package has been designed, similar program is given in appendix [V to
show the graph of marginal densities of the parameters £, & p, by using the data set in
Table 4.1.

Graph of Posterior Marginal Densities using Uniform Prior
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5.5.4.1 Posterior Estimates
For further analysis we have designed program in SAS package, similar
program is given in appendix I and use the data set given in Table 4.1. We have used
Marquart method to obtain the posterior mode while Quadrature method is used to obtain
posterior mean and standard error by using the Posterior distribution:
Table 5.5

Posterior Estimates Using Joint Uniform Prior

Regression | Posterior | Posterior | Standard | Odds | SK )
Estimate Mean Mode Error Ratio
A —8.0574 —6.9638 2.7770 —0.3938
B,
IB‘ 2.2882 1.9499 0.9169 7.0280 0.3690
/

Here we have seen that the posterior mode for £ is greater then the posterior mean of

/3, which indicates that the distribution of this parameter is negatively skewed how much it

is skewed we have calculated the coeflficient of skewness. The graph of this parameter given

in figure 4(a) also indicates the same pattern of skewness. We have also observed that the

posterior mean of f, is greater then the posterior mode of f, which shows that the

distribution of parameter is positively skewed how much it is skewed we have calculated the
coefficient of skewness given in Table 5.5 and the graph of this parameter given in figure
4(b) shows a positively skewed shape. Here the odds ratio is also greater then 1 which
indicates that the variable fibrinogen is more likely to occur, So the strength of relationship
between the probability of an ESR reading greater thlan 20 mm/h and the level of protein

plasma (fibrinogen) is also high for this model, as one unit increase in the level of protein

plasma (fibrinogen) increases the ESR by 7.0280 units. The results are different but with
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slight change, that does not effect the interpretation of odds ratio that we did for previous
models.
5.5.4.2 Bayesian Hypothesis Testing

Now to test the hypothesis that whether fibrinogen level in the blood play any
significance role to increase ESR as if the level of certain proteins in the blood plasma rise.
The posterior probability for /7, using Joint Uniform prior is calculated as:
The posterior probability of hypotheses given in section (5.5.1.2) using (Joint Uniform)
prior is:

0 20 i

Do = J J'%Z{y’,([;’o +fx,)—log {I +exp(fy + fix, }}dﬁodﬁl
i=l

While 6, = B, + Bx,
A program has been designed in SAS package, similar program is given in appendix IV to
find the posterior probability and after being run the program we find the posterior
probability as:

P, =0.002417
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.24%

chance to accept H, so we accept £, with high probability but little low as for the previous
models and we conclude that /£, is positive and playing a significant role to effect the ESR if

this protein is rise in the blood plasma. That is alsQ th; case in the results given in Table 5.5
5.6 Classical Regression Analysis

For the comparison purpose now we take the classical estimates and test the
hypotheses. For this we have simply run the logistic regression without intercept model.

Now the classical estimate and hypothesis testing is given in following section:
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5.6.1 Classical Estimates
Using the data given in Table 4.1 and having run the logistic regression we obtain:
Table 5.6

Output of Logistic Regression Using Classical Approach

Coefficient | Classical Standard Z-Statistic | P-Value Odds
Estimate Error Ratio
N —6.9640 2.7770 —2.5100 0.0120
By
ﬁ/ 1.9499 0.9169 2.1300 0.0330 7.0300

5.6.2 Classical way of Hypothesis Testing

We have the logistic regression model as:

1

Logit(p,) :1og(1_1'_—"] =B+,

Hypothesis

H,:p, 20 Versus H,:f, <0

Since f =1.9499 and standard error of £ is 0.9199 then the value of Wald
t-statistic is:

t=2.1300
Since the p-value from this regression is 0.0300, it indicates that we accept H, up to 3%
level of significance and do not accépt H, at a‘ny other level of significance. So it can be

concluded that fibrinogen is playing significant role at 5% level of significance and it effect

the ESR if this protein rises in the blood plasma.
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5.7 Comparison of Bayesian and Classical Logistic Regression Analysis
Now as a summery we present the results éf L.ogistic regression model with intercept
having one explanatory variable, we have obtained by using Bayesian and Classical
techniques and make comparison between these two, the results are presented in table (5.7)
are the Bayesian results obtained by using different priors these results can be compared
with the results given in table (5.6):
Table 5.7

Posterior Istimates for With Intercept Logistic Regression Model

Coefficient | Posterior Estimates Noninformative Prior | Informative
Uniform Jeffreys Haldane prior
Prior prior prior | o

/} Posterior Mode —6.9638 —6.8575 —6.6925 —06.5485
0

Posterior Mean —8.0574 —7.9124 —7.6910 —7.5010

Standard Error 2.7770 2.7284 2.6015 2.5115

SK —0.3938 - —0.3866 —0.3838 ={.3797

P
B Posterior Mode 1.9499 1.9236 1.8885 1.8093

1

Posterior Mean 2.2882 2.2519 2.1872 2.0996

Odds Ratio 7.0280 6.8456 6.6094 6.1062

Standard Error 0.9169 0.9115 0.8515 0.8293

SK 0.3690 0.3602 0.3508 0.3500

The results found by using Classical logistic regression and in Bayesian logistic regression
with Unifdrm prior are approximately same in all respects i.e. the coefficients, p-value and
odds ratio. Here odds ratio interpreted as the approximated change in the risk of disease for
every one unit increase in the amount of fibrinogen. So the results are much improved with

Haldane and informative prior as compared to uniform and Jeffreys.
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Chapter 6
Bayesian Inference of Logistic Regression Model with Two Explanatory Variables

6.1 Introduction

In this chapter, we present the Bayesian analysis of logistic regression model with
two explanatory variables for response binary variable, under informative and
noninformative priors. Section 2 consist the data set used for the analysis of binary logistic
regression model with two explanatory variables. The derivation of posterior distribution
using informative and noninformative prior is given in section 3.In section 4 for informative
prior, we set a range of hyperparameters and select the hyperparameters with minimum
standard error. The idea of selecting hyperparameters is taken from Bian (1997); they
assume Normal & Student-t priors for regression coefficients with mean zero and decide
about the posterior distribution at different values of variances. But we have suggested a
range of values for all hyperparameters. Section 5 provides the Bayesian analysis with
informative and noninformative priors, which include the graphs, posterior estimates (modes
& means), standard errors and testing the hypotheses concerning parameters. Section 6
presents the classical analysis of logistic regres.sion model with two explanatory variables
and also the hypothesis testing for the significance of regression coefficients. In the last
section 7 the comparison of classical and Bayesian results and their interpretation are
discussed.
6.2 Data set to be used in Bayesian Logistic Regression Analysis

The data set for Bayesian analysis of Binary Logistic Regression is taken from
Cengiz et al. (2001). The data set contains the sample observations of 32 individuals. This

research was actually made by the Institute of Medical Research, Kuala Lumpur, Malaysia.
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They used Erythrocyte Sedimentation Rate (ESR) related to two plasma proteins, fibrinogen

and Y-globulin, both measured in gn/l, for a sample of thirty-two individuals. The data set

of 32 observations is given as follows:

v, = The Erythrocyte Sedimentation Rate (ESR)

x, = The amount of protein plasma fibrinogen

x,, = The amount of protein plasma Y-globulin

Table 6.1: Data

Serial ESR Fibrinogen | Y-globulin | Serial | ESR | Fibrinogen | Y-globulin

No. (mm/h) (gm/1) (gm/l) No. (mm/h) (gm/l) (gm/l)
Vi Xi Xgi Vi Xy X

1 0 2.52 38 17 1 3.53 46

2 0 2,56 31 18 0 2.68 34

3 0 2.19 33 12 0 2.60 38

4 0 2.18 31 20 0 2.23 35

5 0 3.41 37 21 0 2.88 30

6 0 2.46 36 22 0 2.65 46

7 0 3.22 38 23 1 2.09 44

8 0 221 37 24 0 2.28 36

9 0 3.15 39 25 0 2.67 39

10 0 2.60 41 26 0 2.29 1]

11 0 2.29 36 24 0 2.15 31

12 0 2.35 29 28 0 2.54 28

13 1 5.06 37 29 1 3.9% 32

14 1 3.34 32 30 0 3.34 30

i3 1 2.38 37 31 0 2.99 36

16 1 3.15 36 A 0 3.32 ]
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6.3 Joint Posterior Distribution for the Parameters of the Logistic Regression
Model
Here we will consider the binary logistic regression model with two explanatory

variables as:
; P,
Logit(p,) = log(l—_l—)’j =By + Bix; + Box, (6.1)

Here f,is the intercept while f, and f, are the slope coefficients for the explanatory

variables fibrinogen and Y-globulin respectively. The above logistic regression model can
also be represented as:

1
g=py=1= : (6.2)
1+exp{—(5, + ﬂlx,/i + /))2xgi )}

Then the joint Posterior distribution of the parameters /3, 4, and /3, are defined as:

p(Bo: By By | data) c 1By, 3, B, | data) x p(f3y, B, ) (6.3)
Here p(f,, /.0, |data) is the joint posterior distribution while I(f,, 8, 3, | data) is the
joint log likelihood function and p(/f3,, f3,, ,) is the joint prior distribution for 3, , f, and f3, .
Here we considered that the explanatory variables are independent of each other. Now we
need to decide upon the joint prior distribution and the log likelihood function, we also
considered here Log likelihood instead of simple likelihood function just for the ease in
calculation.
6.3.1 Joint Likelihood Function

The joint likelihood of the "' observation is its probability density function as a

function of the two parameters /3, f, and S, where (y,,x

4>, ) are fixed at the observed

values. The observations are all independent, now for the given case we precede as follows.
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Let y, be the response variable that is binary in nature i.e. it takes only two values 0 and |

for ‘n” observations. Since the analysis of binary response variable in classical approach, the
Maximum Likelihood Method (MLE) is used to estimate the unknown parameters of the
Binary Logistic Regression (BLR) Model. However the estimates based on the classical

approach are not accurate when the sample size is small. In this situation Bayesian approach

provides better and accurate results. Then if y, is the response variable whilex,, and x, are

the explanatory variables that can be either qualitative or quantitative in nature while p, is

the probability of success corresponding to the i™ observation then the joint likelihood

function can be presented as:
, n y~ 1—)’
L(p'|data)y =] [{p;"(A=p) (6.4)
i=l
Now if p, = H(f'x,) while p'=(f,,/,,/,) then the joint likelihood function could be
written as:

L(B'| data) = H {H(/)”x,)y’ (A=-H(px) (6.5)
i=] ‘

As we know that in logistic regression p, = H(f'X) while ' is the vector of regression
coefficients and X the set of explanatory variables. While H is the link function that is
logistic in our case and we will use this link through out our study to obtain the posterior
estimates.

Taking log on both sides of above equation (6.5) we get the Joint Log likelihood function

becomes:

I(B'| data) = Z {y,log H(B'x)+ (1= y)log(l= H(f'x,))} (6.6)
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Sine we know that p, = H(f'x,) then for further consideration we can write the above log

likelihood function as:
[(By. By, By | data) =) { y, log(p,) + (1= y,) log(1 - p,)} (6.7)
i=l

where p, is the probability of success for i" observation in data set and be represented in the

logistic regression model as:

1
p =
1 . CXp{—(ﬂ(, + ﬂ| Y/I + ﬁz'\jgl )}

6.3.2 Joint Prior Distribution
We consider the joint noninformative and informative priors of f,, f, and f,
in the following sections:
6.3.2.1 Joint Informative (Normal) Prior
Here we consider the independent normal priors for each parameter. The joint
Informative prior of three parameters is the product of the three individual priors:
P(Bys B o) = p(Bo) p(B) p(B,)

While g,~N(a,,b,), B~N(q,,b)and f,~N(a,,b,) here a,,aand a, are means whileb,,

byand b, are the variances. Therefore

P(Bos Brs P) o< CXP{_E})—(/}O _[’o)z}eXp {“?lb‘(ﬁ “01)2}exp {‘5%)—(,82 "02)2}

p(By, By B,) < exp {_ bb,(Sy —ay)” +byb, (B —ay) +b9bl(ﬁz ~@,) 1 (6.8)

2b,b,b,

-~OO</}O<0’), _OO<[))| <o, —-(D<ﬂ2 <@
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6.3.2.2 Joint Noninformative (Haldane) prior

The joint noninformative (Haldane) prior by u‘sing the log likelihood function given
in (6.7) 1s derived as:

Pu(Bo: BBy ec p (1= p)”! | (6.9)

1
1+ exp{—(B, + Bx, + f,x,)}

Where p, =

The above equation (6.9) can also be written as:

Pu(Bys By By) = H(P'x) (1= H(f'x)" (6.10)
6.3.2.3 Joint Noninformative (Jeffreys) Prior

The joint noninformative (Jefﬁ‘eys) prior by using the log likelihood function given

in (6.7) 1s derived as:

P, Bos By By) < Jdet| 1By, 3, 1)

Then p, (B ) e p, 2 (1= p)) 2 6.11)

1
L+exp{—(B, + Bix; + [rx,)}

Where p, =

The above equation (6.11) can also be wrilten as:

" | L ‘
Py (Bos By, By) o« H(B'x,) *(1—H(f'x,)) (6.12)
6.3.2.4 Joint Noninformative (Uniform) Prior

We consider the joint noninformative Prior of and as Uniform Prior which
0> | 2

can be represented as:

(B, By, ) <1 ~0 < f) <00,~00 < f3, <00,~0 < fB, <0 (6.13)

i



6.3.3 Joint Posterior Distribution
Now the joint posterior distributions for joint informative and noninformative
Priors are given in the following sections:
6.3.3.1 Joint Posterior Distribution Using Normal Prior
Now for the joint posterior distribution of A, A, and £, we consider the joint Log
Likelihood function given in equation (6.7) and the joint Normal prior given in equation

(6.8), then the joint posterior distribution of £, S, and f, is found to be:

PUos oy data) 3"y, log(p,) +(1 - ) log(1— p)} exp {—i}—(ﬁo - )}

! AT
ehl){‘i(/))l_a|) }CXP{ 2, (4 (’2)}

L ]+ Ioga—p,)}
l=Ip:

i=l i

p(Sy, By, By | data) o i{y,' l(‘)g(

expl— W02y —ay)’ +bby (B —a) +bb (B, —a,) (6.14)
2byhb,

by using logistic regression model with two explanatory given in equation (6.1) see section

(6.3) we can derive the expression:
log(1—- p;) = —log{l+exp(S, + ﬂlxj/‘ + /Bzxgi)} (6.15)
Then after replacing equation (6.1) and (6.15) the above posterior distribution (6.14)

becomes:

(B, By, P, | data) o Z'L:{,yi(/}() +fix,; + Byx,,) —log{l+exp(f, + Bix, + ﬁZx_ui)}}

1=l

—_ bb,(p, —ao)2 +b,b, (3, _"1)2 +b,b, (/5 —az)2
2b,b,b,
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For further simplification let us also consider that 6, = 3, + f,x, + f8,x,, and suppose that:

(/)o = ([}o —00)2 > ¢1 = (/B| —a])z and ¢z = (ﬂg —da, )2

Now the simplified joint posterior distribution of ,, f, and /3, can be rewritten as:

p(By, P, B, | data) o Z {yﬁ, —log{l + exp(Q)}} exp {— by +2b1:bquf, *bbid, }
0010,

i=l

(B, By, By | data) =/li{exp{——{é"— -I-%_I_il/)}*)}{y’a —log{l -|—exp(0,)}}}

i=l b O D
Let us also suppose that:

b = b0b|b27¢o, =bb,, Ul, = byb,¢ and ¢2’ =b,b,¢,

n

PUos s B, | data) = ‘};Z[CXI7{—£5:(‘/’0’ +o +,/,;)}{y,9, ~log(l +exp<e,>}}}

i=|

Let ¢" =¢ + +,

n

p(By, B, B, | data) =%Z[exp(— ;/; - j{yl.@, —log{l +exp(0,)}}} (6.16)
)

i=1 £

~00 < f3) <00, —0 < ff <00,~0 < ff, <o
This is the joint posterior distribution of 3, /3, énd /3, , where k is the normalizing constant.
Here our main objective is to estimate the unknown parameters. Then for this purpose if we
partially differentiate the above posterior equation (6.16) with respect to f,, f, and 3, then
equating to zero. So this numerical solution will provide us the posterior estimates (modes),

now for this we precede as follows:
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Differentiate (6.16) with respect to £, we obtain:

ISy, Py, B | data) _ 0 i{exp(——fb—:){yiﬁl —log{l +€Xp((9,)}}:l

B, op, =
! 1 1 1 ' exp(—6
=Y expi-=—th = 4~ =) -
= 2b, 2b, 2b, g 1
(1+exp(=8)) | 1= o
1+exp(=0)

Lo NN SN | SN IR SN SR S (I
{J’/QI"log[l 1+Cxp(—0,.)J} hp{ 2b0¢0 2b]¢| 2[)2(/)2}([)0(,60 ao)j}

op(By, B, B, | data) Z{eXp( ¢ j(y»_ 1 ]_

Py I+exp(=0,)

L -a {y,e,_log{1+exp<g,)}}}

op( By, B, B, | data) 0
Py

" A o | )
;[exp( 25)[;, l—i-exp(—(),)) y {6, —log(1 4 exp((),))}} 0 (6.17)

While y :bi(p’o “dly)
0

Now for maximizing put

Again differentiate (6.16) with respect to /3, we obtain:

By BByl data) 0 4N
2 = Z{ w( 2b.]{),t9, log{lleXp(H,)}}}

n

1 1 x/i CXP(“—Q)

1
= exXps———dy —— @ ———¢, 14 y.x, - : _
= I{ TR TS ¢*} Vi j |
(I+exp(-G )| 1-

1+exp(-0)
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= LA S N
{yﬂfﬂog(l l-l-exp(—('),)j}exp { TRLECTRANTS (/)2}(17. A a'))}

a/’(ﬁo’ﬂnﬂz |data) _ - , . ¢' T X .
op, _%{ew( 2b‘J(J""’ l-i-exp(—f),)]

?)L B—a) {.)’,0, —log(l 4.'exl)(gl ))}}

oy by | data) _
op,

n ¢+ xﬁ I
- X, ———2 | =y {3,0,~ log(1 +exp(6,)} | = 0 6.18
i {exp( 2b'j[y'x"' l+eX[)(—0,)] ¥t —logfl+expl ,))}} (6.18)

where y' = Zl—(ﬁ' —-a)
1

Now for maximizing put

Again differentiate (6.16) with respect to /3, we obtain:

a[)(ﬂo,ﬂuf)’zldara)_ 0 & ¢‘ B
o, _%;[exl{ 2% ]{Y' l°g{‘+exp<9>}}}

n 1 1 | x,, exp(—0,
EXpy— ¢ — & ———1, ViXas — i P
: 26,70 25, 2, [T . 1
(} -+ exp(—g, )) |- m J
€2 —U,

[ .. L, (L . j
1)’,9,'”0?3] ]FU([)( 0)[ 2b|¢l 2b2¢2 b, (B, —a,)

0p(Po. B, P, | data) Z{ex [ ](
l) - yl l‘—
| M B exp( 0)

==

ap,

(/3> {)10 —log(1+exp(0.)) }
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ap(ﬁ()’ﬂl’/]2 I data) -0
o5,

Now for maximizing put

n

¢ ¥, ., L
] QN | S . S— )0, —log(1+exp(0, =0 6.19
[e p[ il RGT eRp(E) 7" {» g(1+exp(0,))} (6.19)

i=

while y" = bl (B, —a,)

now solving numerically the above equations (6.17), (6.18) and (6.19) the posterior modes

of B,, B, and S, can be obtain.

6.3.3.2 Joint Posterior Distribution Using Haldane Prior

Now for the joint posterior distribution of A, f, and S, we consider the joint

Log Likelihood function (6.7).and the joint Haldane prior (6.9), then the joint posterior
distribution of A;, A, and f, is found to be:

PBos B By | data) o= 3 {y, log(p,) + (1~ y)log(1~ p)}p, (1= p,)™

i=1

(B, B, B, | data) o< ﬁ:{y, log(l_&_] +log(l - p,)}pl_—' (1- p,)*' (6.20)
-n

i=l i

By using logistic regression model with two explanatory given in equation (6.1) see section
(6.3) and the expression derived from (6.1) that is equation (6.15):

Then after replacing equation (6.1) and (6.15) the above posterior distribution (6.20)
becomes:

n

P(ﬁo’ﬁx . B, | data) « Z{.yi (B, + /))lx,/i + ﬂzxw)_ log{1+exp(f, + IBlX/i + ﬂ?_xg/ )}}P/“I (I-p, )‘l

i=1

Now we will also use equation (6.1) to derive expressions given as:

. =1+exp{~(B, + Bix;+Bx,)} & (1- )" =1+exp(fy + fix; + Brx,,) (6.21)



As we know we have already suppose that 6, = 3, + fx, + B,x,, then the joint Posterior

distribution for f,, A, and S, will become as:

n

P(Bos By By | data) o< 3 {y,6, ~log{L+exp(8)}} {1 +exp(=6,)} {1 +exp(6,)}

i=l

n

p(By, B, B, | data) = % 2. [(2+exp(=0) +exp(8)} {»,6, ~log(1-+exp(6)}]  (6.22

=l
—0< ff; <o, —0< ff <0,—0< f, <0
The equation (6.22) is the joint posterior distribution of £,, f, and £,, where k is the
normalizing constant. Now to estimate the kpown parameters f,, f, and f3,, partially
differentiate the above equation (6.22) with respect to f,, f, and f, simultaneously and

then equating to zero. So this numerical solution will provide us the Posterior estimates

(modes), for this we precede as follows:

Differentiate (6.22) with respect to /3, we obtain:

’) n o
P Por o B | 4AI) _ O 11y 4 exn(-6) +exp(6)} 1,6, ~ log(1 + exp(6))]
aﬂu a/[),o 1=1

(

= S 1+ exp(-0))01 +exp(O) v, - A
(1+ exl)(_gl )’ [l - mj

_{.

exp(6)(1+ exp<~9,>>{y,0,» + log(l‘ TTEQ:)T% j}_

1
(1+exp(6) exp(—@){y@ + IOg(l"m]}}



n

1
= 1+ exp(—=6,))(1 +ex D —
2 {( +exp(—60))( lcxp(ﬁl)){), l+exp(—0,)}+
exp(0,)(1+exp(~0,)) { 1,0, - log(1 + exp(0))}
(1+exp(8)) exp(~6,) { 1,0, ~ log(1 +exp(6))}

ap(ﬂo’ﬂnﬂz | data) _ 4
op, - Z

1
{(2 +exp(=0,) +exp(0,)) {V’ N m} '

{7,6, — log(1+exp(6))} (exp(0,) —exp(-0,))}

Now for maximizing put ap(ﬁo’ﬂé’ Paldan) 0

Po

n

ol -1 |
Z, {(2 +exp(=6,) +exp(0,)) {), [+ oxp(0) | b

{6, —log(1+exp(6,))} (exp(6,) - exp(~0))} = 0 (6.23)
While 6, = g, + Bx, + B,x,,
Again differentiate (6.22) with respect to /3, we obtain:

op(By, B, By | data) & & ol e :
) o ;[{2 +exp(=06,) +exp(6)} {6, —log(1+exp(6,)}]

n X 5 €X 0
= (I+exp(=0))(1 +exp(6)) WXy~ vy exp(-6) & pepe

= o [y A ] o
. I S (' L+exp(—0)) J

1
exp(0,)(1+exp(-0,))x, {yIO, log (l - m]} )

!
1-+exp(6,))exp(=6))%, | %6, +1og| 1 - ————=
(I+exp(6))) exp(-0)x; {y" Og( 1+exp(—9,~)]}}
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R o PO e ]
—};{a Fexp(=0,))(1 exp(f),»{),x,,. T 0)}*

exp(0,)(1+exp(—0,))x, { y,6, —log(1 +exp(6,))} -

(1+exp(6)) exp(=0,)x , { »,0, —log(1 +exp(, ))}}

n

- {(1 +exp(~0))(1+ exp“%)){-”f"ﬁ 'ﬂﬁ%—e—)} '

{exp(0))(1+exp(=6,)) ~ (1 +exp(6))) exp(-0,)}

x, {3,0, ~log(1+exp(0,)}}

op(By, B, B, | data) _ i

(2 +exp(—0)+exp(6)) {y X, - *_*.)EL.__l
aﬁl i=l l ' ks

1+exp(—0,) f "
x,,{,0,—log(1+exp(6,))} (exp(6,) — exp(-0,))}

op(fy, B, B, | data) ~0

Now for maximizing put
op,

n

{(2 +exp(=0) +exp(6))) {yix_,,» B :C:;i(—9< ) } '

i=1
%, {,0, —log(1 +exp(6,))} (exp(6,) ~ exp(~0,))} = 0 (6.24)
Again differentiate (6.22) with respect to /3, we obtain:

ap( Sy, By, B, | data) _ 0 &

op, 55, 22 +exp(-0)-+exp(@)} 0, ~logl-+exp(8)}]

n

Xgi exp(_gl)
=3 (1+exp(=0)) (1 +exp(@))] v, ~ :
=l

(1+exp(=0))* [ - l ]

+

i

I+exp(-0)
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‘ 1

I
(1+exp(6))) exp(-0)x,, {3’19' log [1 _mj}}

n

Vi :
= , {(1 +exp(—=6.))(1+exp(6)) {y,xm _m} 1

i=

exp(6,)(1+exp(-0,))x,, {1,0,~log(1+exp(6,))} -

(1+exp(6)) exp(~0))x,, { »,6, - log(1-+exp(6)))}}

n

xg,
= 2 {(] + CX])(—Q N(1 -+ CX[)((‘)I )) {y',\‘w - m} +

i=|

{exp(0)(1+exp(=6,)) ~ (1 +exp(0,)) exp(-0))}

x,, {3,0, —log(1+exp(6, ))}}

By, B, B, | data) _ 'Z’

ap, 4 {(1 +exp(=0,)(1+ CXD(QI)){)C-&, _\—k} N

1+exp(-0,)

x,, {0, ~log(1+exp(6,))} exp(6,) —exp(=0,))}

ap(ﬁo,ﬂl,ﬂz | data) =0
op,

Now for maximizing put

n

X
{(1 +exp(—0,))(1 +exp(0))) {y o TCXP(——@,—)} '

i=|

X {0, ~log(1+exp(6)))} (exp(6,) - exp(~6,))} = 0

while 6, = f, + pix, + B,x,,

(6.25)



now the numerical solution of the above equations (6.23), (6.24) and (6.25) provide us the

posterior modes of 3, 5, and /3, .
6.3.3.3 Joint Posterior Distribution Using Jeffreys Prior

Now for the joint posterior distribution of 4,, f, and S, we consider the joint

Log Likelihood function (6.7).and the joint Jeffreys prior (6.11), then the joint posterior

distribution of ,, A, and /£, is found to be:

n

p(Bo. B, By | data) o< Y {y, log(p,) + (1= y)log(l-p)}p, *(1-p,) *

PPy, By Py | data) Z{) log(%] +log(1- m}p,‘?(l -p) (6.26)

By using logistic regression model with two explanatory given in equation (6.1) see section

1 f—

(6.3) and the expression derived from (6.1) that is equation (6.15):

Then after replacing equation (6.1) and (6.15) the above posterior distribution (6.26)

becomes:

n

PPy, B, By | data) o z {.y,‘(/}o + /))Ix/i + /32'\__1:1) —log{l+exp(, + ﬂrx/, + /)’2_‘&,, )}}l)i“ 5 (1-p, )—2

Now we will also use equation (6.1) to derive expressions given as:

p,_% = \/l +exp(—(f, + Bx,; + Byx,)) & (1- p,.)._% = \/1 +exp(f, + Bix,; + Brx,, (6.27)

As we know we have already suppose that 0, = B + fx, + f,x, then the joint Posterior

distribution for £,, A, and S, will become as:

=

(B B By | data) o<y {y,0, —log {1 +exp(6,) 1}/ +exp(=0,) /1 +exp(6),)



p(By, B, 8, | data) :}E{Jz +exp(=0,) +exp(0){y,0, ~log(1 +exp(0)}}  (6.28)
C izl '

~0 < ffy <o, —0< ff <w,—0< ff, <o
This is the joint posterior distribution of 3, f, and f,, where k is the normalizing constant.
Now to estimate the unknown parameters partially differentiate the above equation (6.28)
with respect to 3, S, and £, then equating to zero. Sb this numerical solution will provide
us the Posterior estimates (modes), for this we precede as follows:

Differentiate (6.28) with respect to S, we obtain:

Py, B, B, | data) 0 Z{\/2+€Xp(—(9,)+ D (@) (0, ~log(l + exp(@,))}}
b, op, =

= ” '\/] + eXP(—(),)-Jl +exp(0,) 3y, — exp(—6,)
" (1+exp(-0, ))? [1 I j

1+ exp(—@j

.’A

I
exp(6)\/1+exp(-0,) {y,O, + log(l T+ exp(-0) J}
2f1+exp(6)

I+exp(-0,)

exp(—6,)/1+exp(6) {y,@, +log [1 - ——l—]}

21+exp(—6)

1

n

= {\/2 +exp(—0,)+exp(0,) {)’,- ——1———} +

i=l 1+exp(—6,)

exp(0,)4/1+exp(-0,) B exp(—0,)\/1 +exp(b,)
2 /1+exp(6) 2/l +exp(-6)

_
)
2



{1,0, —log(1+exp()}}

op(By, B, B, | data) _ i

aﬂ(} =1

| ]
{\/2 +exp(=6,) +exp(d) {)" _m} i

{70, —log(1+exp(6),))} { exp(6,) —exp(—0,) }}

2\/2 +exp(—60)+exp(6)

op( By, By, B, | data) 0
op,

Now for maximizing put

n

. 1
{\/2 +exp(—0,) +exp(0) {y,- B TXP(:O,—)} !

i=|

e " exp(6,) —exp(-0) -0 6.29
{y/ i Og(l * CXp( I))} {2\/2 + CXP(—Q,-) + CXP(Q) ( )

While 6, = B, + B,x, + B,x,,

Again differentiate (6.28) with respect to /5, we obtain:

aP(ﬂo»ﬁé:B,]Bz | data) - 0‘21 ;Z’l{.\/2+exp(~0,)+ exp(@,){yﬂ, —log(1+exp(6, ))}}

X exp(—()i)

2 _;
(1+exp(-0),)) (1 1+ eXP(*Hl)j

= \/l + exp(—é?,)\/l +exp(6,) 4 yx, — +
i=l

x, exp(0,)1+ exp(~6)) {y,@,- ¥ log[l — J}

1+exp(-0,)
2\/1-+exp(6)
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x ; exp(—0,) /1 +exp(0,) {y,@, + log(l ——;wj}

_ 1+exp(=06,)
2\/1 +exp(—0,)

1"

- {\/2 +exp(=0,) +exp(b,) {y,x_,, -

i=1

X

N S
1+exp(—0)

x, exp(6,]y/1+exp(~0,) { 3,6, - log(1 + exp(6),))}
2\/ 1+exp(6)

x, exp(~0)\J1+exp(6,) { 1,0, — log(1 + exp(0)))} }

21 +exp(-6)

ap(By, B, B, | data) _ C — AN, o ____L_
o5 _;{\/2 Fexp(—6,) exp(@,){) X 1+exp(—9,.)}+

o0} — (-8
o)

ap(/}03ﬁ|:ﬂ2 | ([(l[(l) _ 0
P,

Now for maximizing put

n ,Y
L 2rexp(=0)+exp(@)lyx, —— L Ly
;.{J p(-0),) ‘('){W,1446)(1)(_@,)}

i

0)—exp(—0
X, {0, —log(1+exp(6)))} { 2sze(x;))(-2§li(exi>)(9 ) }} i) (6.30)

Again differentiate (6.28) with respect to /, we obtain:

op(fy, B, By | data) 0 & e e
op, ) ;{\/“CXP( 0,)+exp(6,){y,0, —log(1+ exp(ﬁ,))}}




n

= \/l+exp(—9,)\/1 +exp(b,) YiXgi —
j=]

!

xgi exp(_el )

2|y _—'-l*"*" 3
(I+exp(-0))) [] [ +exp(-0, )j

1
xp(0,)/1+exp(=6,) 1 y,6, +log| 1- T
X, exp( ,)m{y,, 05[ ]+exp(—0,)j}
2/1+exp(8))

x,,; exp(—0,) [1+exp(6,) {y,é), + log(l - —1—]}

1+exp(=0,)
2 J1+exp(-0)

n

= \/2+exp(—0,.)+exp(9,) {y,,xw __xk"_}Jr
' (-0)

P l+exp

x,, exp(6))\J1+exp(=0) { 0, — log(1+exp(6))}

21 +exp(6)

X, exp(=0,)\/1+exp(6,) { v,0, — log(1 +exp(6)))}
2\1+exp(-6,)

p(By, Bs py | data) < ' Xyi
” 2 +exp(-0) +exp(8) yx, ———5 Ly
28, Z 2+ exp(=0) +exp(6,) | %, Fy—ary

exp(6,) —exp(=0,)
2\/2 +exp(—0,) +exp(b,)

Xgi {.V/{)i —log(1-+exp(, ))} {

op(By, By, By | data)
op, .

0

Now for maximizing put

n

{\/2 +exp(—6,) +exp(6,) {y,xg, - - _0—)} '

1 +exp(

i=l



8,)—exp(—8
x, {16, ~log(1-+exp(@ ))}{2 \/ip;x}'))(_;’;'_’fex;jw ; }} —0 (631

6.3.3.4 Joint Posterior distribution Using Uniform Prior
Now using the joint Log likelihood function (6.7).and the joint uniform prior
distribution (6.13), then the joint posterior distribution of f,, £, and £, is found to be:

P(By, B, By | data) < " { y, log(p,) + (1~ y)log(1- p)}1

i=1

p(By, B> B, | data) o Z{y log[lf’p—)‘r log(1 —p,-)} (6.32)

By using logistic regression model with two explanatory given in equation (6.1) see section
(6.3) and the expression derived from (6.1) that is equation (6.15):
Then after replacing equation (6.1) and (6.15) the above posterior distribution (6.32)

becomes:

n

P(Bo. By By | data) o " {y, (B + Bix, + Byx,) ~log{l+exp(B, + Bx, + Byx, )}

i=|

As we know we have already suppose that ¢, = B, + f,x, + B,x,, then the joint Posterior

distribution for 4, f, and £, will become as:

n

p(Bos B, B, | data) = %Z[y,(), —log{l+ CXp(Q)}] (6.33)

1=1

—0 < ff <0, —0< f <0,—0<f, <o
This is the joint posterior distribution of /3,, f, and f,, where k is the normalizing constant.

Here our main objective is to estimate these unknown parameters. Then for this purpose if

we partially differentiate the above equation (6.33) with respect tof,, A, and f,



simultaneously and equate it to zero. So this numerical solution will provide us the Posterior
modes, so for this we proceed as follows.

Differentiate (6.33) with respect to /3, we obtain:

By By data) 0 vy
¥ —aﬂog[)ﬁ, log{1+exp(6,)}]

(
: l exp(-6),)
=2 A=

2 _'—1—‘
(I+exp(=0,)) [1 1+exp(‘9:')J

n 1
- i=1 {Y,' B 14 GXP(_Q,')}

op(Py, B, By | data) {y‘ _ 1 }

op, "S5 1rexp(-0)

a])(/jO)ﬁl,[))Q | d(lf(l) . O
op,

n 1
PR TS 6.34
; {y, 1+exp(—0, )} . (6.34)

Now differentiate (6.33) with respect (o /3, we obtain:

Now for maximizing put

5[7(/f0,ﬂ|,,32|dﬂm)_ 0 < vO —loo{l
0 - o5 ;[},6{ log {1+ exp(@l)}]

- X, exp(=6,)
= VX —

i=1 PO 1
(I+exp(-0)) (1 1»|-exp(—9:)]

. X,
= D e
o e 1+exp(—0,)
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Py, Brs Py | data) _ i — X
op, =17 14exp(=0))

op(f3,, By, 3, | data) -0
o8,

Now for maximizing put

n x/l
yx, ———-=a——-ou1>=0 6.35
Z{ g exp(—-o,)} oty

Now again differentiate (6.33) with respect to f, we obtain:

P foBrldala) _ 0 Sy 5 togivexp(8)]

op, B, 5
. xg: CXp(—OI)
= YiXei — 1
i=l .
1+exp(—0 ; RO e
( P(-6)) [ 1+ exp(—é?,.)]
B n ) _——xé/——
iZ:I: {) lx},'l 1 _}_ exp(_ﬁl ) }
al)(ﬂo,/jpﬁz | data) _ 1 Iy.x | _____fc_fi'____
op, =1 1 T 1texp(=0)
Now for maximizing put 5[3(/5)0,/1;,/52 [ dafa) -0
O 2
ViX i ——L =0 (6.36)
il 1+exp(-0)

6.4  Selection of Hyperparameters

Since we know that the prior distributions of parameters £, B, & f, are as follows
By~N(ay,by), pB,~N(a,b)and B,~N(a,,b,). Our main objective here is to find the values

of these hyperparameters as «a,,a, & a, are the means of prior distributions and b,,b, &b,
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are the variances of the prior distributions. We have suggested a range of values of

hyperparameters and suggest the values with minimum standard error.

Table 6.2
Posterior Estimates at Different Values of Hyperparameters

Hyperpara[netcrs Posterior Mode

¥ . > 7 ? Var ~ ~ ~
Mean Var Mean Var Mean Var [}0 ﬂ| /jz
a, b, a, b, a, b,

0 1 0 | 0 | —12.5058 2.0321 0.1474
38 12.50 10.50 | 7.50 8.50 3.50 —30.4570 6.6342 1.7525
35 10.25 9.50 6.50 7.50 2.75 —26.9784 5.7213 1.2549
32.50 8.75 8.25 525 1 6.50 2.25 —24.2398 4.1282 1.0979
29.75 7.25 775 4.25 5.25 1.90 —21.8572 3.4575 0.9258
25.75 6.50 6.50 3.75 4.50 1.45 —16.2976 2.8974 0.7549
21.50 5.75 5.25 3.25 3.75 1.10 —12.9747 2.2974 0.5940
19.25 5.25 4.90 3.10 3.50 0.95 —10.5321 1.8878 0.3972
18.95 5.15 4.75 3.05 3.25 0.75 =0.9371 1.6378 0.1336

These are the values for hyperparameters for informative priors which are Normal priors for

each parameter that is considered independent. Where mean = a, and variance = b, for the
prior distribution of £, while mean = a, and variance = b, for the prior distribution of /3,
and mean = «a, and variance = b, for the prior distribution of £, . We suggest different values
for the hyperparameters and find the values of posteﬁor modes. So finally we decided to

select the values of hyperparameters as mean = 18.95 and variance = 5.15 for the prior

distribution of A, mean = 4.75 and variance = 3.05 for the prior distribution of f, and
mean = 3.25 and variance = (.75 for the prior distribution of /3, and used these values for

further Bayesian analysis.
6.5  Bayesian Analysis with Informative and Noninformative Priors

In this section we will present the Bayesian analysis with informative and
noninformative priors. The analysis is based on the posterior distributions that are derived in

previous sections:



6.5.1 Bayesian Analysis Using Joint Normal Prior
In this section we will present the Bayesian analysis of binary logistic regression
model with two explanatory variables by using informative (Joint Normal) prior. Then the

joint posterior distribution for the parameters £, B, & 8, derived in section (6.4.3.1) see

equation (6.16):

Py, By, P, | data) = /l }i{ew (—-2(/3“ j{y,f),- —log{l+ eXp(f),-)}}J
i )

i=1
—0 < ff; <0, =0 < ff <0,—00 < ff, <0
where k is the normalizing constant:
Programs in SAS package have been designed similar program is given in appendix IV to
show the graph of marginal densities of the parameters S, 3, & £, by using the data set

given in Table 6.1.

Graph of Posterior Marginal Densities using Normal Prior
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0.5.1.1 Posterior Estimates
For further analysis we have designed a program in SAS package, program is
given in appendix III and use the data set given in Table 6.1 and use the hyperparameters
obtained in section (6.4.2). We have used Marquart method to obtain the posterior modes;
while Quadrature method is used to obtain posterior means and standard errors.
Table 6.3

Posterior Estimates Using Joint Normal Prior

Regression | Posterior | Posterior | Standard | Odds SK,
Estimate Mean Mode Error Ratio

/} —12.2557 =9.9371 5.1479 —0.4504
0

[} 2.0125 1.6378 0.8245 5.1438 0.4545
!

3; 0.1582 0.1336 0.1109 1.1429 0.2218

s,

Here we have observed that the posterior mode for £ is greater then the posterior mean of
/3, which indicates that the distribution of this parameter is negatively skewed how much it
is skewed we have calculated the coefficient of skewness given in Table 6.3. This can also

be observed in figure 1(a). We have also observed that the posterior mean of f, is greater
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then the posterior mode of £, which shows that the distribution of parameter is positively

skewed how much it is skewed we have calculated the coefficient of skewness, that is given

in Table 6.3, and the graph in figure 1(b). We have also observed for £, that also shows a
positively skewed but coefficient of skewness is much smaller than 3, so it can said that the

parameter /3, has less skewed distribution than the distribution in parameter /3. It is observe

that the odds ratio is greater then 1 for both parameters which indicate that both the variables
are more likely to occur, so the odds ratio is high for a healthy individual with ESR less than
20 mm\h to become an unhealthy or abnormal case with ESR greater than or equal to 20
mm/h. So it can be said that every one unit increase in the level of protein plasma
(fibrinogen) approximately 5.1438 unit increases in the level of ESR and every one unit
increase in the level of protein plasma (Y-globulin) a.pproximalely 1.1429 unit increase in
the level of ESR, which is very low as compared to the other variable. So it can be
concluded that the strength of relationship between the probability of an ESR reading greater
than 20 mm/h and the level of protein plasma (fibrinogen) is high but for Y-globulin is very
low. So it can be concluded that fibrinogen is very important variable to check any effect on
the ESR as the level of this protein is rises but this is not the case with other variable that is
Y-globulin, as its odds ratio is very low almost equal to one, which is not significant as far
as the normal cases are concern.
6.5.1.2 Bayesian Hypothesis Testing

Hypotheses testing in Bayesian are very simple; here we only find the posterior
probability by integrating the joint posterior distribution upon the parameters i.e.
We test the hypotheses:

H,:p <0 Versus H,:f, >0



and
H,:p,<0 Versus H/:f3,>0

The posterior probability for 7/, while testing f, is:
0

po=p(B<0)= [ [ [p(By. B, B, | data)d B,d Brd

=0 =0 —w

Now the posterior probability using informative prior while testing f, is:

%i{exp(— 2¢b j{yﬂ, —log{l+ exp(@l)}}}dﬂodﬁzdﬁ,
While 6, = B, + B,x, + B,x,,
A program is designed in SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as:

P, =0.001368
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.14%

chance to accept H, so we accept H, with high probability and we conclude that f, is

positive and playing a significant role to effect the ESR if this protein is rise in the blood
plasma, this result provide the same conclusion as given with odds ratio.

The posterior probability for 77; while testing /3, is:

p=pB,<0)= [ [ [ p(B,. B, B, | data)d Byd d p,

Now the posterior probability using informative prior while testing /£, is:

%i'rexl)(— 2¢b' J{y,ﬂ, ~log{l+exp(6, )}}}dﬂot:[[)’lcl/jz

While (9, = ,80 + ﬂlx_/i + IBzxxi



A program is designed in SAS package to find the posterior probability and after being run
the program we find the posterior probability as:

p, =0.030028
The posterior probability indicates that under Bayesian hypothesis criterion there is 3%
chance to accept I/, and conclude that /3, is positive but not as significant as /3, is: so it can
be said that Y-globulin is does not significantly affect the ESR as it rises in the blood
plasma. |
6.5.2 Bayesian Analysis Using Joint Haldane Prior

In this section we will present the Bayesian analysis of binary logistic regression

model with two explanatory variables by using noninformative (Joint Haldane) prior. Then
the joint posterior distribution for the parameters S, 5, & /3, derived in section (6.4.3.2) see

equation (6.22):

n

l E ¥
p(Bo, By Py | data) = 7 2. {2+ exp(=0,) +exp(6)} {30, ~log(1 +exp(0,)}]

i=1
'—oo<[J’O <<;o, —0 < ff <w,—0< ff, <o
where k is the normalizing constant:
Program in SAS package has been designed; similar program is given in appendix IV to
show the graph of marginal densities of the parameters f,, S, & f, by using the data set

given in Table 6.1.
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Graph of Posterior Marginal Densities using Haldane Prior
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6.5.2.1 Posterior Estimates
For further analysis we have designed programs in SAS package, similar
program is given in appendix III and also a similar program is given in appendix IV for

standard error, while using the data set given in table 6.1. We have used Marquart method to



obtain the posterior modes, while Quadrature method is used to obtain posterior means and
standard errors by using the Posterior distribution:
Table 6.4

Posterior Estimates Using Joint Haldane Prior

Regression | Posterior | Posterior | Standard | Odds SK,
Estimate Mean Mode Error Ratio
0 —12.8678 —10.4508 5.2374 —0.4615
Po
B/ 2.2641 1.8505 0.8759 6.3630 0.4722
Bg 0.1625 0.1371 0.1116 1.1469 0.2276

We have similar results as we obtain in previous section /3, has negatively skewed
distribution how much it is skewed we have calculated the coefficient of skewness given in
Table 6.4. Same can also be seen in figure 2(a). same is the case with parameter f3, as its
mean is greater than the posterior mode of /3, which shows that the distribution of parameter

is positively skewed how much it is skewed we have calculated the coefficient of skewness,
that is given in Table 6.4, and figure 2(b) provide us with same results. We have also

observed for £, that is also positively skewed but coefficient of skewness is much smaller
than 3, so it can said that the parameter /£, has less skewed distribution than the distribution
in parameter 3. The odds ratio for this model is slightly different from the previous model

but the significance is not changed. So that every one unit increase in the level of protein
plasma (fibrinogen) approximately 6.3630 unit increases in the level of ESR and every one
unit increase in the level of protein plasma (Y-globulin) approximately 1.1469 units increase

in the level of ESR, which is very low. The conclusion is almost same as in previous section.
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6.5.2.2 Bayesian Hypothesis Testing
Hypothesis testing in Bayesian is very simple; here we only find the posterior
prob;ﬁ)ility by integrating the joint posterior distribution upon the parameters i.e.
We test the hypothesis:
Now the posterior probability of the hypotheses given in section (6.5.1.2) using

noninformative (Joint Haldane) prior while testing £, is:
-]l
-6 -1

While 6, = 8, + f,x, + Byx,,

n

j% [(2+exp(=0)) +exp(60)} {6, ~log(1 +exp(6,)}  fud B,d

26 " =l

A program is designed in SAS package, similar program is given in appendix 1V to find the
posterior probability and after being run the program we find the posterior probability as:

p, =0.001424

The posterior probability indicates that under Bayesian hypothesis criterion there is 0.14%

chance to accept H, so we accept /. with high probability and conclude that f, is positive

and playing a significant role to effect the ESR if this protein is rise in the blood plasma:
Now the posterior probability of the hypotheses given in section (6.5.1.2) using

noninformative (Haldane) prior is:
06 26 5
=111 Z (2+exp(=0) +exp(6)} {1,6, ~ log(1 +exp(6,)}}d B,d fid
-1-6 26 i=l
While 6, = B, + Bx, + ByX,,
A program is designed in SAS package, similar program is given in appendix IV to find the

posterior probability and after being run the program we find the posterior probability as:

p, =0.030274



The posterior probability indicates that under Bayesian hypothesis criterion there is 3%
chance to accept /7, and conclude that f, is positive but not as significant /3, is; so it can be
said that Y-globulin is does not significantly effect the ESR as its rise in the blood plasma:
6.5.3 Bayesian Analysis Using Joint Jeffreys Prior

In this section we will present the Bayesian analysis of binary logistic regression
model with two explanatory variableé by using noninformative (Joint Jeffreys) prior. Then
the joint posterior distribution for the parameters 3, 5, & f, derived in section (6.4.3.3) see

equation (6.28):

n

p(Bys B B, | data) =%2{Jz +exp(=0,) +exp(6,){y,6, ~log(1+exp(9))}

i=1

-0 < ffy <0, —0 < ff; <0,—00 < f, <o
Where k is the normalizing constant, Programs in SAS package have been designed; similar
program is given in appendix IV to show the graph of marginal densities of the parameters
By, B, & B, by using the data set given in Table 6.1.

Graph of Posterior Marginal Densities using Jeffreys Prior
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6.5.3.1 Posterior Estimates
For further analysis we have designed program in SAS package, similar
program is given in appendix III and use the Aata set given in table 6.1. We have used
Marquart method to obtain the posterior modes; while Quadrature method is used to obtain
posterior means and standard errors.
Table 6.5

Posterior Estimates Using Joint Jeffreys Prior

Regression | Posterior | Posterior | Standard | Odds | SK,
Estimate Mean Mode Error Ratio
2 —14.9810 —12.2886 5.5627 —0.4840
Bo
/é/ 2.4675 1.9506 0.9657 7.0329 0.5352
,Bz 0.1698 0.1428 - 0.1135 1.1535 0.2378

We have very similar results as we obtain in previous sections; S, has negatively skewed

distribution how much it is skewed we have calculated the coefficient of skewness given in

Table 6.4. Same is shown in figure 3(a). Same is the case with parameter S, as its mean is

greater than the posterior mode of S which shows that the distribution of parameter is

139



positively skewed how much it is skewed we have calculated the coefficient of skewness,
that is given in Table 6.4, and the graph in figure 3(b) provide us with same results. We have
also observed for A, that also shows a positively skewed see Figure 3(c) but coefficient of
skewness is much smaller than /3, so it can said that the parameter f, has less skewed
distribution than the distribution in parameter f,. The odds ratio for this model is slightly

different from the previous model but the significance is not changed. So that every one unit
increase in the level of protein plasma (fibrinogen) approximately 7.0329 unit increases in
the level of ESR and every one unit increase in the level of protein plasma (Y-globulin)
approximately 1.1535 units increase in the level of ESR, which is very low. The conclusion
is almost same as in previous section with a slight difference 1s results.
6.5.3.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simplle; here we only find the posterior
probability by integrating the joint posterior distr'ibution upon the parameters i.e.
The posterior probability of the hypotheses given in section (6.5.1.2) using noninformative
(Jeffreys) prior while testing /3 is:

0 |

po= ]I

= n
-8-1-41 " i=l

{\/2 +exp(=0,) +exp(6,){y,0 —log(l+exp(0, ))}}dﬁ(,dﬂ’:d/)’l

oY

While 6, = f, + B,x, + By,

A program has been designed in SAS package, similar program is given in appendix IV to
find the posterior probability and after being run the program we find the posterior
probability as:

po =0.001473
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The posterior probability indicates that under Bayesian hypothesis criterion there is 0.15%
chance to accept /1, so accept 7, with high probability and we conclude that f, is positive
and playing a significant role to effect the SR if this protein is rise in the blood plasma:
Now the posterior probability of hypotheses given in section (6.5.1.2) using noninformative
(Jeffreys) prior while testing f, is:

41

p= jl { /i . {2+ exp(=0,)+ exp(0) 3,0, ~log(1+ exp(6,)} }d fd Bd

_4|Ci

While 6, = B, + B,x, + B,x,,
A program is designed in SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as:
p, =0.031249

The posterior probability indicates that under Bayesian hypothesis criterion there is 3%
chance to accept /1, and we conclude that /3, is positive but not as significant f is; so it
can be said that Y-globulin is does not significantly effect the ESR as its rise in the blood
plasma:
6.5.4 Bayesian Analysis Using Joint Uniform Prior

In this section we will present the Bayesian analysis of binary logistic regression
model with two explanatory variables by using noninformative (Joint Uniform) prior. Then
the joint posterior distribution for the parameters f3,, f, & f, derived in section (6.4.3.4) see

equation (6.33):

n

p(fo. B, | data) = }Z (5,0, ~og(1 +exp(6,)}
A

i=1

—w<[}0<éo, -0 < ff; <00,—00 < f3, <0
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Where k is the normalizing constant:
Programs in SAS package has been designed to show the graph of marginal densities of the
parameters [, B, & £, by using the data set given in Table 6.1.

Graph of Posterior Marginal Densities using Uniform Prior
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6.5.4.1 Posterior Estimates
For further analysis we have designed a program in SAS package, similar
program is given in appendix IV and use the data set given in table 6.1. We have used
Marquart method to obtain the posterior modes; while Quadrature method is used to obtain
posterior means and standard errors:
Table 6.6

Posterior Estimates Using Joint Uniform Prior

Regression | Posterior | Posterior | Standard | Odds | SK,
Estimate Mean Mode Error Ratio

IB" —15.2452 - 12.5060 5.6480 —0.4850
0

B 2.5658 2.0363 0.9811 7.6622 0.5397
7

B 0.1727 0.1452 0.1151 1.1563 0.2389
2

We have slightly different results as we obtained in previous section, but with same

conclusions, as 3 has negatively skewed distribution how much it is skewed we have

calculated the coefficient of skewness given in Table 6.4. Same is showing figure 4(a). same

is the case with parameter [ as its mean is greater than the posterior mode of /3, which

shows that the distribution of parameter is positively skewed how much it is skewed we

have calculated the coefficient of skewness, that is given in Table 6.4, and also figure 4(b)

provide us with same results. We have also observed for f, that also shows a positively
skewed but coefficient of skewness is much smaller than £, so it can said that the parameter
B, has less skewed distribution than the distribution in parameter f,, this can be seen in

figure 4(c). The odds ratio for this model is slightly different from the previous model but

the significance is not changed. So that every one unit increase in the level of protein plasma
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(fibrinogen) approximately 7.6622 unit increases in the level of ESR and every one unit
increase in the level of protein plasma (Y-globulin) approximately 1.1563 units increase in
the level of ESR, which is very low. The conclusion is almost same as in previous section
6.5.4.2 Bayesian Hypothesis Testing

Hypothesis testing in Bayesian is very simple; here we only find the posterior
probability by integrating the joint posterior distribution upon the parameters i.e.
We test the hypothesis:
The posterior probability of hypotheses given in section (6.5.1.2) using noninformative

(Uniform) prior while testing /, is:

0 1 40 1 n
p=]]] ;Z{y,@, ~log(1+exp(9,))}d fyd frd
-7 -1-40 " i=l

While 0, = B, + p,x, + B,x,,
A program is designed in SAS package, similar program is given in appendix 1V to find the
posterior probability and after being run the program we find the posterior probability as:

P, =0.001543
The posterior probability indicates that under Bayesian hypothesis criterion there is 0.15%
chance to accept /7, and we conclude that S, is positive and playing a significant role to
effect the ESR if this protein is rise in the blood plasma:

Now the posterior probability of hypotheses using informative prior while testing /3, is:
07 1 &
=] [ [ 2400~ los( +expO)}d pud fid
7 sl

While 6, = B, + px,, + p,x

Xgi
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A program is designed in SAS package, similar program is given in appendix IV to find the
posterior probability and after being run the program we find the posterior probability as:

p, =0.031569
The posterior probability indicates that under Bayesian hypothesis criterion there is 3%
chance to accept /7, and we conclude that f, is positive but not as significant f is; so it
can be said that Y-globulin is does not significantly effect the ESR as its rise in the blood
plasma:
6.6 Classical Regression Analysis

For the comparison purpose now we 'take the classical estimates and test the
hypothesis. For this we have simply run the logistic regression without intercept model.
Now the classical estimates and hypothesis testing is given in following section:
6.6.1 Classical Estimate

Using the data given in Table 6.1 and having run the logistic regression we obtain:

Table 6.7

Output of Logistic Regression Using Classical Approach

Coefficient | Classical Standard Z-Statistic | P-Value Odds
Estimate Error ‘ Ratio
0 —12.5060 5.6480 —2.2100 0.0270
B,
/}1 2.0323 0.9811 2.0800 0.0380 7.6600
Bz 0.1452 0.1151 1.2600 0.2070 1.1600

6.6.2 Classical way of Hypotheses Testing

We have the logistic regression model as:

Logit( B)= log(iﬁ"—] =+ Bx,+x,

1
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Hypotheses

Hy:p <0 Versus H,: 3, >0

and

Hy:p,<0 Versus H|: f3,>0
Since the p-value forf, is 0.0380, it indicateé th‘ut we accept I, at 3.8% level of
significance. So it can be concluded that {ibrinogen is playing significant role at 5% level of
significance and it effect the ESR if this protein rises in the blood plasma. While the p-value
for B, is 0.2070, it indicates that Y-globulin is not a significant variable at any level of
significance, as its p-value is (oo large to support in favor of F so it can be said that it does
not effect ESR significantly if this protein rises in the blood plasma.
6.7 Comparison of Bayesian and Classical Ldgistic Regression Analysis

Now as a summery we present the results of logistic regression model with two

explanatory variables we have obtained by using Bayesian and Classical techniques and
make comparison between these two, the results are presented in table (6.8) are the Bayesian
results obtained by using different priors these results can be compared with the results

given in table (6.7).
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Table 6.8

Posterior Estimates for Logistic Regression Model With Two Explanatory Variables

Coefficient Noninformative Prior Informative
Uniform Jeftreys Haldane prior
prior prior prior

Posterior Mode —12.5060 —12.2886 —10.5408 00371

'80 Posterior Mean —15.2452 —14.9810 —12.8678 =12.2557
Standard Error 5.6480 5.5627 5.2374 5.1479

SK/' —0.4850 —0.4840 —0.4615 —0.4504

ﬂ"l Posterior Mode 2.0363 1.9506 1.8505 1.6378
Posterior Mean 2.5658 2.4675 2.2641 2.0125

Odds Ratio 7.6622 7.0329 6.3630 5.1438

Standard Error 0.9811 0.9657 0.8759 0.8245

SK/: 0.5397 0.5352 0.4722 0.4545

[92 Posterior Mode 0.1452 0.1428 0.1371 0.1336
Posterior Mean 0.1727 0.1698 | 0.1625 |  0.1582

Odds Ratio 1.1563 1.1535 1.1469 1.1429

Standard Error 0.1151 0.1135 0.1116 0.1109

SK/? 0.2389 0.2378 0.2276 0.2218

The results found by using Classical logistic regression and in Bayesian logistic regression

with Uniform prior are approximately same in all respects i.e. the coefficients, p-values and

odds ratio. Here odds ratio are interpreted as the approximated change in the risk of disease

for every one unit increase in the amount of fibrinogen and Y-globulin. So the results are

much improved with Haldane and informative prior as compared to uniform and Jeffreys. At

the end it can be said that Haldane prior performs better than Jeffrey’s priors in binary

logistic regression models, when we have skewed data sets, as the case for this particular

data sets of ESR. While the best model we may suggest is the binary logistic regression
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model with intercept having only one explanatory variable that is fibrinogen which indicate
a significant effect on ESR in all type logistic model used in our research as Y-globulin does

not show any significant effect on ESR with informative and noninformative priors.
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Chapter 7
Conclusion and Further Research

The present study comprises the Bayesian anal}./sis of the binary logistic regression model
taken from Cengiz et al. (2001). In Cengiz et al. (2901) linear regression model with two
explanatory variables is given and they use approximation approach for the completion of
their study and only consider noninformative priors for posterior analysis, but we have
consider the model without intercept, with intercept and logistic regression model with two
explanatory variables. We have considered the entire posterior distribution for Bayesian
analysis i.e. no approximation is used. We have also obtained results by using informative
prior. We have presented the Bayesian analysis of binary logistic regression model in
different style. This analysis has been done usiﬁg three noninformative (Uniform, Jeffreys
and Haldane) priors and an informative (Normal) prior. The derivation of Haldane and
Jeffreys prior is also provided. We l‘m.ve considered Bayesian testing of hypotheses about the
parameters. The posterior probabilities for the hypotheses concerning to the parameters have
been calculated. Then the decisions have been made about the hypotheses according to these
posterior probabilities.

For informative prior, the hyperparameters are selected on the basis of expert opinion idea
taken from Bian (1997). So for this purpose a range of values of hyperparameters are
decided and selected the hyperparameters with minimum standard errors. The behavior of
posterior estimates (modes & means) are also observed through graphical representation of
marginal posteriors of parameters which shows some how a skewed pattern with different

noninformative and informative priors.



The posterior means, the posterior modes, the standard errors, the odds ratio and the
coefficient of skewness are obtained by designing the program in SAS package. These
results are computed using data set provided by Cheng et al. (2001). The data set is used for
Bayesian analysis of the models using Uniform, Jeffreys, Haldane and informative (Normal)
priors. The results are also obtained by using Classical approach and are compared with the
results obtained by Bayesian approach. We ob'serve that the results that are obtained by
Bayesian approach are more or less similar (o that obtained by Classical approach. It is also
observed that the results by using Uniform and Jeffreys prior are close to the results obtained
by Classical approach but the results obtained by using Haldane and informative priors are
slightly different. It is also observed that the variable Y-globulin is not effecting
significantly to response variable (ESR). So the suggested model for further study is the
model with intercept and with one explanatory variable that is Fibrinogen.

We have also presented the Bayesian hypotheses testing of binary logistic regression model
for the data set given in Table 4.1 and Table 6.1 using informative (Normal) and
noninformative (Uniform, Jeffreys and Haldane) priors and we have observe that the
posterior probabilities suggest the same conclusion as provided by Classical results but in
more significant way.

For further research, this work can be extended to many directions for the Bayesian analysi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>