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Preface 

Due to innovations in communication technologies, digital medium is extensively used across 

the World. Large amount of information in digital form is stockpiled in digital libraries. The 

error free transpOl1ation of digital data through untrustworthy channels is a great challenge. 

Accordingly, in information theory, telecommunication, computer science and algebraic 

coding theory, an error correction code or error correcting code is used for controlling errors in 

data over unreliable or noisy communication chalmels. Because of error correcting codes, the 

communication is made over the shol1 and long distances without any obstacle. Thus, it made 

possible the gigabit data transmission over the wireless communication mediums. Indeed, it is 

the fundamental part of the modern communication systems and essentially utilized in 

hardware level implementations of intelligent and smart machines like telecom equipment, 

highly sensitive video cameras, optical devices, and scanners. 

Development of data transferring codes were started with the first article [3 J] of Claude 

Shannon in 1948. He explained that, every communication channel has some capacity. If the 

rate of data transmission is smaller than capacity, then design of communication system for the 

channel is possible with the help of data transmission codes. This system has least probability 

of output errors, but Shannon did not give the method for the construction of such type of 

codes. In 1950, for this purpose Hamming [14] and Golay [9] introduced cyclic block codes 

known as binary hamming and Golay codes respectively. These classes of codes have the 

capability to detect up to two errors and correct one error. Furthermore, these codes have 

fascinating features and can be easily encoded and decoded but are not suitable for multiple 

errors. In 1953, Muller [18] introduced a mUltiple error correcting codes technique and Reed 

[26] developed decoding technique of such type of codes. Yet, Shannon's hypothesis remained 

ulU'esolved. 

Cyclic codes are one of the dynamic class of error correcting codes. In 1957, Prange [33] 

initiated an idea of cyclic codes in two symbols. In addition, Prange [24] used the coset 

equivalence for decoding the group codes in 1959. After that, a big development in the theOlY 

of cyclic codes was made to correct burst along with random errors initiated by various 

researchers. The cyclic codes were initially developed over binary field ::l2 and into its Galois 

field extension GF(Z7n). Though, it was further extended over the prime field ::lp and into its 

Galois field extension GF(p7n). The remarkable development in coding theory began when 

Hocquenghem [10], Bose and Chaudhuri [3] explained the large class of codes which correct 

multiple errors known as BCH codes in 1960. They explained the BCH codes over Galois field. 

These codes are generalization ofbinalY Hamming codes. The advantage ofBCH code is that, 



Fundamentally the BCH codes are utilized for only data transmission, but not for data security. 

In this study we have given the idea that, BCH codes can be used for data security . Accordingly, 

by BCH codes over Galois field and Galois ring a couple of techniques are devised to modifY 

AES algorithm. Accordingly, this modified AES algorithm tested on text and image data, the 

results assured the appropriate level of security. 

This thesis consists of seven chapters. 

In Chapter one, some important notions of algebraic structures and error correcting codes are 

explained which are necessary for understanding further chapters. 

In Chapter two, initially we have given details on obtaining the maximal cyclic subgroup of 

group of units of a Galois ring through computational method. Afterword the new 

computational encoding scheme of BCH code over Galois ring is introduced. This novel 

computational approach of encoding of BCH codes provides generator polynomial for any 

length n corresponding to each designed distance d. Furthermore, the encoding ofBCH codes 

over Galois field has also been explained with the help of reduction map. Another outcome of 

this study is that one can find the dimensions of primitive BCH codes for any length and 

designed distance. 

In Chapter three, using C# computer language a computational decoding scheme for BCH 

codes over Galois ring has been designed by which Barlekamp Massey decoding algorithm of 

BCH codes over Galois field is employed to correct the errors. Indeed, this modified Barlekamp 

Massey decoding algorithm is designed for large length BCH codes over Galois field. The 

special feature of this study is the syndrome calculation with computational approach . Thus, 

decoding of BCH and RS codes over Galois ring by using modified Barlekamp Massey 

algorithm has been ensured. 

In Chapter four, BCH codes have been utilized to improve the AES algorithm. BCH codes have 

been utilized as a secret key in round key addition step of AES algorithm. ill addition, using 

BCH codes, the maximum distance separable matrix has been constructed and applied in mixed 

column matrix step in modified AES algorithm. Thus, this modified AES algorithm has been 

applied in image encryption and different analyses on encrypted image have been performed. 

The comparison of results of encrypted image by using original and modified AES algorithms 

have been discussed. 

In Chapter five, The AES algorithm is modified. Initially we use BCH codes and calculated 

secret keys for each round in AES algorithm. In second step, mixed column matrices have been 

computed by using BCH codes for each round. This modified AES algorithm has been used 

for text encryption and then applied avalanche effect to cipher text. N1ST statistical test have 

been applied on proposed text encryption scheme. 
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Chapter 1 

Algebraic Notions and Error 

Correcting Codes 

In this chapter, we present some basic notions necessary for t he understanding of thesis and 

have two phases. In the first phase, we discuss some algebraic concepts of rings and fields. In 

the second phase, we present some fundamentals of error-correcting codes . 

1.1 Finite Rings and Finite Fields 

Let a non empty set R with two operations addition '+' and multiplication ' .' is called ring if 

it satisfies the following conditions. 

i) R is the abelian group under addition '+'. 

ii) R is semigroup under multiplication '.'. 

iii) Multiplication '·' is distributive with respect to addition in R. 

If T1, T2 E R , and T 1 ·7'2 = T2 . T 1 , then it is called a commutative ring. Let R be a ring, and a 

non zero element T1 of R is said to be zero divisor from left if there exists a non zero element 

T2 of R such t hat T1 T2 = 0 where 1'2 is right zero divisor. If R is commutative ring, then T 1 and 

T2 are zero-divisors of each other. A ring R is called an integral domain if it does not contain 

any zero divisor. Let R be a commutative ring with identity, and a non zero element T1 E R 

is a unit element if there exists an element 7"2 E R such that 7"27"1 = Tl7"2 = 1. We denote a 

set of units elements by U(R). Let l' be an element of ring R , then it is said to be nilpotent if 

4 



The order of GF (pm) is pm. The Galois field GF (pm) is denoted by K, and K * denotes the 

group of non zero elements of Galois field. If q = pn where p is prime and n E Z+, f (x) is 

primitive irreducible polynomial of degree m then , 

Example 1 If q = 2 and m = 3 then, 

where x 3 + x + 1 is a primitive iT"reducible polynomial with primitive root a in Z2 [X], 

GF (8) = {r + sa + ta2
: r, s, t E Z2 , 1 + a + a 3 = o}. 

TheT(~fo re, elements of G F (8) are shown in Table 1.1 , 

I 0 I a I a 2 a 3 = a + 1 a 4 = a + a 2 a 5 = 1 + a + a 2 a 6 = 1 + a 2 a 7 = 1 

Table 1.1 : Elements of Galois field GF(23
) 

1.1. 3 Galois Ring 

(1.5) 

Let n, m be any positive integers and p be a prime number , where m be the degree of basic 

irreducible polynomial f (x) then Galois ring be defined as, 

Zpn [xl { 2 l1t - l 71 } GR ( n ) (f( x )) = PO+PI X+ P2 X +,,·+Pm-l X :PO,Pl,·",Pm-l EtL.pn ~ p,m . (1.6) 

It is the Galois extension ring of Zpn having pnm elements. Galois ring G R (pn , m) is denoted 

by R , and R * denotes the group of units of Galois ring. 

6 



are known as codewords. Trivial code contains an only a single element. If each element of the 

code C can be written in the form vvv ... v for some v E V, then C is called repetition code. 

The q-ary repetition code contains exactly q codewords. Let w, v E vn, W = WI W2W3 ... Wn and 

v = VI V2V3 ... Vn then the Hamming distance d (w , v) between the vectors wand v is defined 

as, 

d ( W, v) = 1 {i : Wi i- vd I· (1.7) 

The least distance between any two different codewords in C is called minimum distance, 

and it is denoted by d (C) , 

d(C) = min{d(w,v) : for all w,v E C and wi-v}. (1.8) 

For example, the minimum distance of C = {ODD, 101, 100, Ill} is 1. 

Theorem 2 [19]: Suppose that code C having minimum distance d (C). Let t = l d;1 J then 

the errors detected in the received word are d - 1, and the erTOrs can be corrected in any rece'ived 

word are t. 

Every code C is denoted by (n, M, d (C)), where n is the length of code C and M indicates 

the number of codewords in C and d (C) represents the minimum distance of C. The code C is 

called good code if it satisfies following conditions: 

i) The length n of the code is smaller. 

ii) The size of M is very large. 

iii) d (C) of the code is a lso large. 

The length of the code sm aller means that transmission of code is very fast, and the cost of the 

code is very low. The large M means that we can send more variety of messages, and d (C) 

of the code is large, which implies that we can correct greater number of errors. The main 

task of the algebraic theorists is to find those codes whose size M and the minimum distance 

is maximum for fixed-length n . Suppose C C vn is a code h aving minimum distance 2t + 1. If 

for each w E vn, there exist v E vn such that d (w, v) ::; t, then C is known as perfect code. 

For example, binary code {ODD, Ill } is a perfect code with minimum distance 3. 

8 



perpendicular to itself and perpendicular to each element of C, t hen a code C is called self 

orthogonal , or if CJ.. ;2 C , then it is also self orthogonal. Let C be the [n, k] code, 7-{ is the 

generator matrix having order (n - k) x n of CJ... The generator matrix of CJ.. is also known as 

the parity check matrix of C. 

Theorem 4 [19]: If C is a [n , k] code over the fi eld F and 7-{ is generator matrix of CJ.. then, 

(1.12) 

Theore m 5 [19]: If C is a [n, k] code, 9 is a generator matrix, and 7-{ is a parity check matrix 

of the code C then, 

(1.13) 

Conversely, suppose that 9 is a k x n matrix, and 7-{ is (n - k) x n matrix s1lch that g7-{T = O. 

The 7-{ is a parity check matrix of the code C ~f and only if 9 is the generator matrix of C, 

where the rank of 9 is k, and rank of the 7-{ matrix is n - k. 

Example 6 : If the code C = {OOO, 111} then CJ.. = {110, 000, 101 , all}. The generator matrix 

of Cis, 

9 = [1 1 1] , (1.14) 

and parity check matrix of Cis, 

7-{ = [1 1 0] . 
101 

(1.15) 

Theorem 7 [19] : Suppose C is [n , k] code. If C has generator matrix as, 

9 = [h :B] , (1.16) 

where B is k x (n - k) matrix, then the parity check 7-{ is defined as 

(1.17) 

If parity check matrix 7-{ is defined as, 

(1.18) 

10 



Therefore, Ham(2 , 2) is {lI1,000} repetition code. 

Theorem 9 [19l: Ham(m, q) is a pe1ject code with minimum distance 3. 

1. 2.4 Cyclic Codes 

In error-correcting codes, properties of cyclic codes are very interesting than general linear 

codes. There is a huge class of necessary codes that are related to cyclic codes. The mapping 

(J : F" -> F" is defined by 

(1.23) 

is called a cyclic shift. If C is the subset of F 11 and for each element u of C which implies 

(J (u) E C then it is called cyclic code. For example, the code C = {l00, 010 , 001 , OOO} is cyclic 

code over F2. Suppose that 

is the set consisting of all polynomials having degree smaller t han n over F. 

The mapping p: F n -> F[Xln is defined as, 

p (u) = u (x) for all u = (uo, U1,U2, . . . , un-d E P" 

(1.24) 

(1.25) 

and this is an isomorphism. Let F [Xl be the polynomial ring over F and h (x) E F [Xl be an 

irreducible element over the field F , the quotient ring, 

(1.26) 

is a field, such that t = x+ < h (x) >, h (t) = 0 and h (x) be the n degree polynomial. Let 

h (x) = x" - 1, then the quotient ring is, 

(1. 27) 

12 



equivalently C is the null space of H , 

H = 

1 C 
1 .;c+l 

ec 

e(c+l) 

1 ~c+d-2 e(c+d-2) 

.;(n-l)c 

.;(n- l)(c+l) 

~(n-l)(c+d-2) 

where H is (d - 1) x n quasi parity check matrix over :Fqm. 

(1.29) 

Theorem 13 [1 9] : Let C be a BCH code with designed distance d then the minimum distance 

d (C) is greater then or equal to designed distance, d (C) ~ d. 

14 



Chapter 2 

BCH-Codes over Galois Ring and 

Galois Field: Computational 

Encoding Approach 

In this chapter, the encoding of primitive BCH code over the Galois ring and Galois field with 

the computational approach are explained. The novel approach is introduced to overcome the 

problems in the construction of generator polynomial and determination the dimension of the 

BCH code over the Galois ring and Galois field. A modern technique is developed in such a 

way that the data can be encoded during transmission over the Galois field or Galois ring. The 

selection of schemes is based on a better code rate and improved error correction capability 

of the chosen code. Our computational method provides the luxury of sorting this problem 

computationally to construct codes and dimension over Galois ring. This chapter consists 

of three sections, initially, an introduction of encoding of BCH codes over Galois ring and 

construction of maximal cyclic subgroups with the computational approach is determined. In 

the second part, an algorithm for computing the generator polynomial of BCH codes over the 

Galois ring is explained . In the last part , the encoding of BCH codes over the Galois field and 

dimension of primitive BCH codes with the help of computer language is calculated . 

15 



Theorem 17 [15J : Let Rp (~) = ~ generates cyclic subgroup of order n in group of unit ele

ments of GF (pT). Then ~ generate the cyclic subgroup of R * of oTdeT n.d fOT d 2: 1 and the 

maximal cyclic subgroup Gn is generated by ~d. 

Lemma 18 [15J: Let ~ be the pTimitive element of Gn . Then the diffeTences enl 
- ~m2 aTe 

unit elements in the ring R if 0 :::; ml of=. m2 :::; n - 1. 

Theorem 19 [15J: The min imum distance of the BCH code is greateT than 01' equal to 2t + 1. 

Remark 20 : If a generates the elements of Galois field GF (pm) , then aP"-l generates the 

elements of the maximal cyclic subgroup in corresponding Galois ring GR (pn, m) . 

2 .1.1 Maximal Cyclic Subgroup over Galois Ring 

The BCH codes over the Galois ring are calculated corresponding to each Galois field. For 

Galois fields GF (pm) of order pm, there are many Galois rings GR (pn , m) of order pmn, where 

n E Z+ and m is the degree of monic irreducible polynomial f (x). The polynomial f (x) is an 

irreducible in the Galois ring, and f (x) = Rp (f (x)) is primitive irreducible polynomial in the 

corresponding Galois field. The maximal cyclic subgroup is calculated by the following steps: 

Step 1 : Select the monic irreducible polynomial over Zn, where n = pm. 

Step 2: Find the order of root of an irreducible polynomial over Galois ring. 

Step 3: Divide the order of root of an irreducible polynomial by order of the maximal cyclic 

subgroup. 

Step 4 : Take the output of Step 3 as a power of root of an irreducible polynomial. 

Step 5: Select the output of Step 4 as a generator of t he maximal cyclic subgroup. 

Step 6: Construct all the elements of the maximal cyclic subgroup from a generator of the 

maximal cyclic subgroup. 

Example 21 : Choose n = 7 in Gn over Z8, then consider Galois ring GR (8, 3) ~ <xf~~~l>' 

where f (x) = x 3 + x + 1 is monic irreducible polynomial oveT Z8 . Let a be the root of the 

polynomial f( x), then J(a) = O. Now find the order of a in Galois Ting GR(8,3), which 

implies that a 3 = -a - 1 = 7a + 7, remaining powers of a aTe shown as, 

17 



degree 5 over 1£8, f( x) = X 5 + 5x2 + 5. Theref ore, G31 =< /3 = 0:4 > . 

/3 = 0:4 
/3

2
= 30:3+0:2+ 1 /33= 20:4 +30:3+0:2+30: 

/34= 0:4+ 0:3+ 40:2+30: + 3 /35= 60:4 +70:3+50:2+40: + 2 /36= 70:4 +0:3+ 70:2 + 70: + 2 

/3
7 

= 50:4+ 20:3 +70:2 +50: + 4 /38= 20:4 +40:3+ 20:2 +50: + 4 /39= 40:3 +50:2+ 60: + 1 

/310 = 50:4+ 70:3+ 60:2+ 70: + 2 /3
11

= 70:4+0:3+70:2+20: + 2 /3
12

= 50:4 +20:3+ 50: + 5 

/313= 30:4 +70:3 +20:2+4 /314= 0:4 +70:3 + 60: + 3 /315= 30:3+ 3 

/316= 40:4 +0:2 /3
17 

= 70:3+ 40:2+30: + 4 /318= 0:4 +40:3+ 60:2+40: + 1 

/319= 50:4 +50:3+0:2+20: + 5 /3 = 40:4 + 20:3+ 20:2+30: + 3 /3
21

= 0:4 +20:3+30:2+60: + 5 

/3
22

= 30:4 +40:3+0:2+0: + 3 /323= 70:4 +40:3+20:2+ 30: + 6 /324= 20:4 + 30:3+ 40:2 +60: 

/325= 0:4 +20:3+50:2+ 40: + 4 /326= 20:4 +20:3+30:2+ 70: + 5 /327= 30:4 + 70:3+ 50:2+0: + 7 

/328= 40:4 +30:2+ 70: + 6 /329= 60:4 + 50:3+ 0:2+0: + 1 /330 = 50:3+ 30: + 1 

/331= 1 

Table 2.4 : Elem ents of G 31 over G R (8, 5) 

2.1.2 Maximal Cyclic Subgroup with Computational Approach 

Manually it is very t ime-consuming and difficult process to calculate the elements of t he maximal 

cyclic subgroup of group of Galois ring units. So , it is essent ial t o develop an algorithm that 

provides the maximal cyclic subgroup of any finite order wit hin few seconds. The algorit hm is 

designed in C# computer language is as follows, and program of t his shown in appendix. 
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where mi (x) are minimal polynomials corresponding to each ~i for i = 1,2,3, ... , d . The parity 

check matrix of the BCH code having generator polynomial 9 (x) is of the form , 

1 ~c+1 e(c+l) ~(n- l)(c+I) 

1 ~c+2 e(c+2) ~(n-l)(c+2) 

H= (2.2) 

1 ~c+d e(c+d) ~(n-I)(c+d) 

The following steps are performed to construct the generator polynomial for n length BCH 

codes over the Galois ring , 

Step 1: Construct Maximal Cyclic Subgroup of order n. 

Step 2: Find minimal polynomials corresponding to each designed distance. 

Step 3: Take the least common multiple of all minimal polynomials. 

Step 4: The output of the Step 3 is stated as generated polynomial g(x) of BCH code. 

Example 24 : Let n = 15, by using GI5 as explained in Table 2.3 and equat'ion 2. 1 constTuct 

genemtoT polynomials of BCH code for length 15 as, 

designed distance genemtoT polynomial g( x ) 

5 x 8 + 5x 7 + 3x6 + 6x5 + 7 x4 + 6x3 + 2x2 + 4x + 1 

6 x 10 + 6x9 + x 8 + 6x7 + 3x5 + 7x4 + 4x3 + 7x2 + 5x + 1 

S x14 + x 13 + x12 + xll + x lO + x 9 + x 8 + x7 + x 6 + x 5 + x4 + x 3 + x 2 + X + 1 

Table 2.5 : genemtoT polynomials for BCH code of length 15 

Example 25 : Let the length of primitive BCH code over the Galois Ting G R(S , 5) is 31. Using 

the elements of G31 as calculated in Table 2.4, compute the genemtor polynomials corresponding 

to different designed distances as follows, fOT d = 5, 

(2.3) 

FOT d = 6, 
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For d = 10, 

g(x) x 27 + 4x25 + 2x24 + 6x 23 + x 22 + 7x21 + 7x19 + 7x18 + 7x17 + 6x16 + 

3x15 + 6x I4 + 4x I3 + 4x I2 + 2xll + 2xI0 + 4x9 + x8 + 4x7 + 6x6 + 

4x5 + x4 + 6x2 + 5x + 7. 

For d = 12, 

g(x) x 33 + 7x 32 + 3x30 + x 29 + 5x28 + 5x27 + 5x26 + 6x 25 + 6x 24 + 3x 23 + x 22 

+6x2I + 3x20 + 4x I9 + 6x I8 + 6x17 + 2x I6 + x I5 + xI4 + 3x I3 + 4x12 + 

For d = 14, 

g(x) x 39 + 5x38 + 7x37 + 3x 36 + 2x35 + 5x34 + x 33 + 4x32 + 7x31 + 2x 30 + 6x 29 

+3x28 + x 27 + 2x 26 + 5x25 + 2x24 + 7x23 + 7x 22 + 4x21 + 6x 20 + 6x 19 

+x17 + 6x 16 + 4xI5 + 6x I4 + 4x I2 + 5x ll + 4xl0 + 5x8 + 4x7 + 4x6 

(2.11) 

(2.12) 

(2.13) 

For d = 16 

g( x) x 45 + 2x44 + 7x43 + x42 + x41 + x40 + 4x39 + 4x38 + 5x37 + 3x 36 + 4x35 

+2x34 + 4x33 + 4x32 + 3x3I + 4x30 + 7x29 + 3x28 + 5x 26 + 2x25 + x24 

+4x23 + 4x22 + 3x21 + 6x20 + 7x I9 + 2x 18 + 2xI7 + x I6 + 7x I5 + 3x 14 

+5x 12 + 6xll + 6x IO + 3x9 + 7x8 + 7x7 + 3x G + 3x4 + 5x2 

+6x +7. 
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FOT d = 32, 

g(x) X
62 + X6I + X60 + X59 + X58 + X57 + X56 + X55 + X54 + X53 + X52 + X5I 

+X50 + X49 + X48 + X47 + X46 + X45 + X44 + X43 + X42 + X4I + X40 + X39 

+X38 + X37 + X36 + X35 + X34 + X33 + X32 + X3 I + X30 + X29 + X28 + X27 

+X26 + X25 + X24 + X23 + X22 + X2 I + X20 + X I9 + XI8 + XI7 + XI6 + X I 5 

+X14 + XI3 -I- X I 2 -I- X ll + XIO -I- X9 + X8 + X7 -I- X6 -I- X5 + X4 + X3 

+X2 + X + 1 (2.18) 

Example 27 : GenemtoT polynomials of BCH code fOT length 127 oveT GI27 corresponding to 

a ll possible designed distance as follows, fOT d = 5 the generator polynomial is, 

FOT d = 6, 

g(X) x2I + 6x20 + 5xI9 + 6x I7 + 5xI6 + 6 x 14 + x 13 + x 12 + 4xlO + 4 x 9 + 2x8 + 2x7 

+2x
6 + 7 x 4 + 5 x 3 + X + 7. (2.20) 

FOT d = 8, 

g(X) x28 + 7x27 + 6x25 + 2x24 + x23 + 4x22 + x2I + 4x20 + 6x19 + xI8 + 2x17 + 5x I6 

-I-5x14 -I- 3x I3 + xI2 + 5 x ll + 2xIO + 4 x 9 -I- 3x8 -I- 6x 6 -I- 5x5 + 5x4 + 3x3 

-I-5x
2 + x + 1. (2.21) 
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For d = 20, 

g(x) x 63 + 5x62 + 7x61 + 5x60 + 5x58 + 4x57 + 2x56 + 3xsS + 2xS2 + 2x51 + 7xsO + 2x49 

+6x48 + 6x47 + 5x46 + 5x44 + 4x43 + 7x42 + 6x41 + 3x40 + 2x39 + 4x38 + 2x37 

+ 7x36 + 5x3S + 2x33 + 4x32 + 3x31 + 6x30 + 5x29 + 5x28 + 5x27 + 4x26 + x24 

+4x23 + 3x22 + 2x21 + x 20 + 5x19 + 2x18 + 2x17 + 4x1S + 4x14 + 5x13 + 4.1:12 

+xll + 6x10 + 5x9 + 6x8 + 4x7 + 4x6 + 2x S + 7x4 + 3x3 + 7x2 + 7x + 7. (2.26) 

For d = 22 , 

g( x) x 70 + 4x68 + 6x67 + 2x66 + 2x 6S + x 64 + 5x63 + 3x62 + 6x61 + 3.1:60 + 3xS9 

+4xS8 + x S7 + 4x56 + 5xS5 + 2x53 + 7x52 + 6xS1 + 2x 50 + 7x48 + x 47 

+6x46 + 6x45 + 7x44 + 5x43 + 5x42 + 6x41 + 7x40 + 3x39 + 2x38 + 

2x37 + x 36 + 5x35 + x 34 + 5x33 + 6x32 + 7x31 + 7x30 + 3x29 + 5x28 + 

3x27 + 4x26 + x 2S + 7x24 + 2x23 + 3x21 + 3x20 + 4x19 + 7x18 + x 17 + 

xIS + x 13 + 6x 12 + 2xll + 7x10 + 3x9 + 4x8 + x7 + 2x6 + 4xs + x4 + 

7 x 3 + 6x2 + 4x + 1. 

For d = 24, 

g(x) x 77 + 6x76 + x 75 + 4x73 + 3x72 + 2x71 + 4x69 + 3x68 + 6x66 + 7x6S 

+x64 + 4x63 + 4x62 + 3x60 + 5xS9 + 3x58 + 3xS7 + 3x56 + 4x55 

+2x54 + 4x53 + 6x52 + x 51 + 2x 50 + 6x49 + x 48 + 7x47 + 4x46 

+3x45 + 6x44 + 3x43 + 5x42 + 4x41 + 6x40 + 6x39 + 3x38 + 3x37 

+7x36 + x 35 + x 33 + 4x32 + 6x29 + x 28 + 7x27 + 5x26 + 2x25 

+2x24 + 2x23 + 6x22 + 4x21 + 2x20 + 2x19 + 5x18 + x 17 + 4x16 

+7x15 + 3x14 + 7x 13 + 4x12 + xll + xlO + x 9 + 6x8 + 5x6 

+5xs + 4x4 + x 3 + 5x2 + 3x + 7. 

27 
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For d = 32, 

g(x) x 98 + 6x97 + 5x96 + 6x95 + 6x94 + 4x93 + 7x92 + 6x9I + 2x 90 + 

2x89 + 6x88 + 6x87 + x 86 + x 85 + 5x83 + 3x82 + 2x8I + 3x80 + x 79 

+6x78 + 3x77 + 2x77 + 2x76 + 7x75 + 7x74 + 5x73 + 4x72 + 6x7I 

+2x70 + 6x69 + x 68 + x 66 + 3x65 + 7x64 + 3x63 + 6x
62 + 3x

61 
+ 

For d = 44, 

2x 60 + 2x59 + x 58 + 5x57 + 2x55 + 4x54 + 4x53 + 3x52 + x 5I + x 50 

+7x49 + 4x48 + 2x47 + 3x46 + 3x44 + 6x43 + x41 + 6x37 + 2x36 

+x35 + x 34 + 2x33 + 6x32 + 4x31 + x 30 + 7x29 + 4x28 + 4x27 + 

2x26 + 2x25 + 4x23 + 3x22 + 3x21 + 5x 19 + 4x 18 + 3xI7 + 2x 16 + 

6x 15 + x14 + 2x12 + x 11 + x 10 + 7x9 + 6x8 + 6x7 + 2x6 + 5x5 + 

2x4 + 3x3 + 4x2 + 1. 

g(x) x 105 + x104 + x103 + 6x I02 + 2x IOI + x IOO + 4x98 + x 97 + 4x96 + 4x95 

+6x94 + 5x92 + 7x91 + 4x 90 + x 89 + x 88 + x 87 + 3x87 + 3x86 + x 84 

+2x81 + 6x80 + 3x79 + 2x78 + 5x76 + 3x75 + 7x74 + 5x72 + 4x71 + x 70 

+5x69 + 5x68 + 7x67 + 6x66 + 4x65 + 2x62 + 6x59 + 2x58 + 5x57 + 5x56 

+ .,);54 + 3x53 + 3x52 + 5x51 + 4x50 + 7x49 + 4x47 + x46 + 3x44 + 5x4I 

+5x40 + 3x39 + 3x38 + 3x37 + x 36 + 3x35 + 7x33 + 2x32 + 5x3I + 4x30 

+2x29 + 4x28 + 5x27 + 2x26 + 6x25 + x24 + 5x23 + 4x22 + 5x2I + 3xI9 

+7x
18 + 5x

I8 + 5x
I7 + 4x

16 + 5x
15 + x I3 + x 11 + 7x

IO + x 9 + 2x
8 + 2x

7 

(2.31) 

+5x5 + 2x4 + 3x3 + 6x2 + 5x + 7. (2.32) 
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FOT d = 64, 

g( x) X I26 + X I25 + X I24 + X I23 + X I 22 + X I2I + X I20 + X 1l9 + X 1l8 + X1l7 

+X116 + X 1l5 + Xll4 + X 113 + X 1l2 + X lll + X 110 + X I09 + X I08 + X I07 

+XI06 + X I05 + X104 + X I03 + X102 + X IOI + X IOO + X99 + X98 + X97 + X96 

+X95 + X94 + X93 + X92 + X9I + X 90 + X89 + X88 + X87 + X86 + X85 + X84 

+X83 + X82 + X8I + X 80 + X 79 + X 78 + X77 + X 76 + X75 + X74 + X 73 + X72 

+X71 + X 70 + X69 + X68 + X67 + X66 + X65 + X64 + X63 + X62 + X6 I + X 60 

+X
59 + X 58 + X57 + X 56 + X55 + X54 + X 53 + X 52 + X 5I + X 50 + X 49 + X 48 

+X47 + X 46 + X45 + X 43 + X42 + X 4I + X 40 + X39 + X38 + X37 + X36 + X35 

+X34 + X33 + X32 + X3I + X 30 + X29 + X 28 + X 27 + X26 + X25 + X24 + X23 

+X22 + X2I + X 20 + X I9 + XI8 + X I7 + XI6 + X I5 + X I4 + XI3 + XI2 + X ll 

(2.35) 

Example 28 : Compute the genemtoT polynomial of BCH code fOT length 255 oveT the Galois 

Ting GR(8 , 8). By using the basic iTTeducible polynomial f(x) = x 8 + 5x4 + x3 + 3x2 + 3 and 

G255 genemtoT polynomials fOT designed distance d = 111, 
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For designed distance d = 119, 

g( x) x242 + 4x241 + 6x240 + x 239 + 5x238 + 6x237 + 3x236 + 6x234 + 4x
233 + 6x

232 + 7x
231 

+7x
230 + 5x

229 + 5x
228 + 4x227 + 5x

226 + 7x
225 + 3x

223 + 6 x
222 + 6 x

221 + 6 x
220 

+4x2I9 + 4x2I7 + 6x2I6 + x 2I5 + 6x2I4 + x 2I3 + 2x211 + 4x2I0 + 3x
209 + 5x

207 

+4x
206 + 7x

205 + 2x
204 + x 203 + 4x

202 + x 20I + x 200 + 5x
I99 + x I 97 + 4x

I96 

+6x
195 + x I94 + 6x

I93 + 7x
I92 + x I9 I + 4xI90 + 4x

I 89 + 5x
I88 + 4x

I87 + 4x
I86 

+3x
185 + 5x

I8I + 5x
I79 + 5x

I78 + x I76 + 3 x
I74 + 5x

I73 + 5x
l72 + x

I7I + 6x
170 

+3x
169 + 7 x

I68 + 5x
I67 + 7x

I66 + x I65 + 2x
I64 + 6x

I63 + x I 62 + 3x
I6I + 5x

I57 

+ x I55 + 3x153 + 6x I49 + 6 x I48 + 6x I47 + 7x I46 + x I45 + 4xI44 + 5x
I43 + xI42 

+4x14I + 6x
I40 + 6x

I38 + 2x
I37 + 4x

I36 + x I34 + 4x
I33 + 6x

I32 + 6x
I3I + x I30 

+x
129 + 2x

128 + 3x
I27 + 3x

I26 + 6x
I25 + 6x

I23 + 3x
I22 + 3x

I 21 + 4xI20 + x 1l9 

+3x
118 + x 1l7 + 3x

1l6 + x 1l5 + x 1l4 + 7x
1l3 + 6x

1l2 + 6x
I11 + x 110 + 4x

I09 

+2x
108 + 3x

I07 + 6x
I06 + 5x

105 + 5x
104 + 2x

I03 + 6x
I02 + 7x

10I + 3x
lOO + 5x

99 

+5x
98 + 3x

97 + 6 x
96 + x 95 + 3 x

93 + x 92 + 5x
9I + 2 x 90 + 2x

88 + x 87 + 5x
86 

+ 4x
84 + 2x

82 + 6x
80 + 5x

79 + x 78 + 6 x
77 + 4x

76 + 7x
75 + 7x

74 + 7x
73 + x72 

+3x
7I + 6x

69 + 7x
68 + x 67 + 4x

66 + 7x
65 + 3x

64 + 5x
63 + 3x

62 + x 6I + 7x
60 

+6x
59 + 5x

58 + 2x
57 + 6x

56 + 2x
55 + 7x

54 + 6x
53 + 7x

52 + 5x
5I + x 50 + 2x

49 

+3x48 + 5x47 + 3x46 + 5x45 + 4x43 + 4x42 + 2x4I + 5x40 + 4x
39 + x 38 + 7x

37 

+4x
35 + 4x

34 + 3x
33 + 2x

32 + 3x
3I + 5x

30 + x 29 + 5x
26 + 2x24 + 7x

23 + 5x
22 

+6x
20 + 6 x

I9 + 5x
17 + 4x

I6 + x I5 + 2x14 + 2x
I3 + 4x

I2 + 4xll + 6x
lO + 2x

9 

+7x
8 + 6x

7 + x 6 + 5x
5 + 4x4 + x 2 + X + 1. (2.37) 

Example 29 : The generator polynomial of BCH code for length 511 over Galois ring GR(8, 9) 

with designed distance 73. By using the basic irreducible polyn07nial, we get generator polyno-
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Example 30 : The generator polynomial of BCH code for length 1023 over Galois ring GR(8 , 10 ). 

By using the basic irreducible polynomial f (x) = x lO + x 3 + 1 and designed distance d = 33, 

ge1ieratoT polynomials as, 

g( x) x
I 60 + x

I 59 + 5x
I 58 + 2x

I 57 + 4x
I56 + 3x

I55 + 2x
I54 + 2x

I52 + 4xI5I + 4x
I50 + 6 x

I 49 

+5x148 + 2x I47 + 5x I46 + 7x I45 + 3x I44 + 5x I 42 + 2xI41 + 5x I38 + x I37 + 5x I35 

+5x
134 + x

I 33 + 4xI3I + 7x
I30 + 5x

I29 + 3 x
I 28 + 7x

I27 + 4x
I 26 + 6 x

I 23 + 5x
I22 

+2x12I + 6x I20 + x 1l9 + 2x1l8 + 6 x 1l7 + 3x1l6 + 2x1l4 + x 1l3 + 6x1l2 + 4xllI 

+5x109 + x I08 + 5x I06 + x I05 + 3x104 + 7x 102 + 6x IOI + 2xIOO + 3x99 + 7x98 

+5x97 + 5x96 + 4x95 + 3x94 + x 93 + 2x92 + 2x9I + 2 x 90 + x 89 + 7x88 + 4x86 

+x85 + 3x
84 + x 83 + 6x

82 + x
8I + 6x80 + 3 x 79 + 3x78 + 3x77 + 6 x

74 + 4x73 

+6x
72 + 4x7I + 4x

70 + 7x69 + 2x
68 + 6 x 67 + 4x65 + 3x64 + 5x63 + 4x

62 + 7x
6I 

+5x
60 + x

59 + 6 x
58 + x

57 + 2x
56 + x

55 + x
54 + 4x

53 + 7x
52 + 5x

5I + 7x
50 + 5x

48 

+2x47 + x42 + 7x39 + 3x38 + 2x37 + 2x36 + 6x35 + 4x34 + 6 x 33 + 2x32 + 3x3I 

+2x
29 + 2x

28 + 4x
27 + 2x

26 + x 25 + 2x24 + 7 x 23 + x 22 + 7x2I + 7x20 + x I9 + x I 8 

+4x
17 + 6x

I6 + 3x
I5 + xI4 + 4x I3 + 6x I2 + 6xll + 7x IO + 7x9 + 4x8 + 6 x 7 + 5 x 6 

(2.39) 

2.2 Computationally Encoding of BCH Codes over Galois Ring 

In this section , novel computational approach is introduced to calculate generator polynomial. 

The computational new scheme designed in computer language C#. The explanation of an 

algorithm with a flow chart is given in Fig. 2. 1. Thus, this new scheme for BeH codes over 

G R(pm, r) gives generator polynomial very fast. 
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the coeffi cient of xo. The computational procedure Add(polyl, poly2) adds two polynomials in 

a Galois ring CR(pk, m) and gives the sum of these polynomials. All calculation is done in Zpk 

where pk is used in the base of the variable in an algorithm. We have done t his computational 

t echnique in computer language C#. 

D escription of Algorithm 1 

In this algorithm, 'poly' is the input of basic irreducible polynomial, and q is a power of some 

prime p, d is designed distance, and n is the length of the code. Line 1 and line 2 compute 

the exponents of the root of the basic irreducible polynomial. Line 3 to line 6 calculates all 

exponents of the root of the basic irreducible polynomial until the output is 1. Line 7 computes 

the generator of the maximal cyclic subgroup. Line 8 to 11 compute the list of elements of the 

maximal cyclic subgroup. Line 12 computes all roots of minimal polynomials of BCH codes 

over Galois r ing. Line 13 calculates all minimal polynomials over t he Galois ring, and line 14 

calculates all minimal polynomial over corresponding Galois field. Line 15 calculates the gener

ator polynomial of BCH codes over the Galois ring by taking LCM of all minimal polynomials. 

Line 16 calculates the generator polynomial of BCH codes over the Galois field. 

Algorithm 1 

ComputeGeneratorPoly(poly, q,p,d,n) 

Begin 

1. i:= poly .MaxDegree 

2. listAlphaPoly '= GetPreviousAlphaPoly(i) 

3. repeat: 

4. poly := MulCpoly, II ") 

5. listAlphaPoly.Add (SubstituteAndSimplyfy(poly, i» 

6. until PolynomialIsConstant(poly)= false 

7 . generatorOfMCSG:= listAlphaPoly.Count / n ; 

8. for betaPower := 1 To n 

9 . betaPoly := listAlphaPoly [generatorDfMCSG*betaPower - lJ 

10. MCSG.Add(betaPoly) 

11. end loop 
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9. end if 

10. for coefflndex := 0 To poly.MaxDegree 

11 . poly [coefflndex] := (poly[coefflndex] % base + base)% base; 

12. end loop 

13. listAlphaPoly.Add(poly) 

End 

Add(polyl,poly2) 

Begin 

1. for i = 0 To poly2.MaxDegree 

2. if (i > = polyl . MaxDegree) then 

3. if (polyl.Length > i) then 

4. polyl[i]:= polyl[i] + poly2[i]; 

5. else 

6. for j = polyl.MaxDegree+l To i 

7. polyl[j]:= 0; 

8. end loop 

9. polyl[i] := poly2[i] 

10. end if 

11 . CONTINUE: 

12. else 

13. polyl[i]:= polyl[i] + poly2[i] 

14. end if 

15. end loop 

16. return polyl 

End 

Sub(polyl ,poly2) 

Begin 

1. for i = 0 To poly2.MaxDegree 

2. if (i >= polyl.MaxDegree) then 

3. if (polyl.Length > i) then 
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5. end loop 

6. if p [OJ = 1 then 

7. return true 

8. end if 

9. return false 

End 

CalcRootsFor AllMinPoly(p,d,n) 

Begin 

1. for i := 1 To d 

2. tempBetaPowers new List() 

3. k:= 0 

4. power:= 0 

5. repeat: 

6. power:= (Pow(p,k++) * i)%n) 

7. iftempBetaPowers.Contains(power)then 

8. break 

9 . else 

10 . tempBetaPowers.Add(power); 

11 . end if 

12 . until true 

13. listRootsForAllMinPoly.Add(tempBetaPowers) 

14. end loop 

15. return listRootsForAllMinPoly 

End 

CalcAllMinPoly(listRootsFor AllMinPoly, betaPoly,p) 

Begin 

1. i:= 1 

2. foreach MkRoots in listRootsForAllMinPoly 

3 . tempMkPoly:= CalcMk(MkRoots,bPoly)) 

4. listMinPolys.Add(tempMkPoly) 
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8 . rowInd cordInd . y + row 

9 . colInd·= (cordInd .x + col) % n; 

10 . newCoef .= mvPolys[snJ [cordInd .yJ [cordInd .xJ * mvPolyResult[rowJ [colJ 

11.tempResult[rowIndJ [colIndJ += newCoef 

12. end if 

13 . end loop 

14. end loop 

15. end loop 

16. CopyAndCleanArray(tempResult, mvPolyResult) 

17. end loop 

18. constPoly:=-l 

19. Mk:= ZeroPolynomial 

20. for x := 0 To mvPolyResult.Length 

21 . for beta := 1 To mvPolyResult[OJ . Length 

22 . if mvPolyResult[xJ [betaJ != 0 then 

23. constPoly[OJ := mvPolyResult[xJ [betaJ 

24. testPoly 

25. tempPoly 

Mul(bPolys [beta - lJ , constPoly) 

Add(tempPoly,testPoly) 

26 . end if 

27. end loop 

28. if x > 0 then 

29. constPoly[OJ := mvPolyResult[xJ [0] 

30. tempPoly:= Add(tempPoly,constPoly) 

31. end if 

32. for coeff := 0 To tempPoly .MaxDegree 

33. tempPoly[coeffJ (tempPoly[coeffJ % q + q) % q 

34 . end loop 

35. if tempPoly.MaxDegree - lAND x mvPolyResult.Length-l then 

36. Mk Add(Mk,) 

37. else 
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Step 1: GetPreviousAlphaPoly( degree OfPoly) 

Here, the loop calculates all those powers 0: of which are less than the degree of the basic irre

ducible polynomial. For example, t he degree of the basic irreducible polynomial is 8. Therefore 

ou tpu t is 1, 0:, 0:
2

, 0:3 , 0:
4

, 0:
5

, 0:
6

, 0:
7

. 

Step 2 : SubstituteAndSimplify(poly, i, listAlphaPoly) 

To solve input polynomial of degree m, take t he degree of a polynomial on the left side of an 

equation , and the remaining terms shifted to the right side of an equation. Apply modulo q on 

the right side of an equation, where q is the power of some prime number . After t hat , it calcu

lates the powers of 0:, while calculating the powers of 0:; this function substitutes t he previous 

value of 0:. If the exponent of 0: is greater than or equal to the degree of a basic irreducible 

polynomial, then simplify the polynomial with the help of modulo q operation. Here q is 8, 

and the degree of the polynomial is also 8. The output will be 0:8 = _ 0:4 - 0:3 - 0:
2 

- 1 (m od 

8) = 7 0:
4 + 7 0:

3 + 7 0: + 7 , 0:
9 = 7 0:

5 + 70:
4 + 7 0:

3 + 70:
2 + 70: and continue t ill we get l. 

Step 3 : Add(polyl,poly2) 

Here the addition of two polynomials 'poly1' and 'poly2' is performed. For loop, add the coef

ficients of same exponents and save the output in the new array then compute the final result. 

For example, while calculating t he power of 0: and simplifying this procedure, add two polyno

mials. 

Step 4: Sub(polyl,poly2) 

This function returns the subtraction of two polynomials 'poly1' and ' poly2'. For loop , perform 

the subt raction of polynomials having the same powers. Subtract the coeffi cients and take 

modulo q, t hen save the result in the new array, is added to t he negative coefficients of unt il we 

get the positive answer. For example, 0:8 = -0:4 - 0:3 - 0:2 - 1, then take modulo q = 8. The 

output will be 0:
8 = 7 0:

4 + 7 0:
3 + 7 0: + 7 . 

Ste p 5: Mul(polyl,poly2) 

We multiply two polynomials, as the coeffi cients of 0:<;"+7 , where <; = 0, 1,2, .. . , nand T = 

0, 1,2, ... , m . The addition of the product of coefficients of the corresponding elements with 

power addit ion <; + T. The product of t he coefficients is then added into the output polynomial. 

For example, multiplication is performed during the calculation of minimal polynomials . 

Step 6: Polynomia lIsCons tant(poly) 
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calculation of minimal p olynomials, and it a lso used in the calculation of t he maximal cyclic 

subgroup. 

Step 13 : LCMOfMinPoly(listOfGeneratorPoly) 

Calculate t he lcm of all minimal polynomials, which is the multiplication of all distinct minimal 

p olynomials. Therefore the output for generator polynomial of BCH codes over Galois ring and 

corresponding Galois field are displayed . 

2.3 Encoding of BCH Codes over Galois Field 

The encoding of message is the process to add redundant bits in a m essage such that k length 

m essage is embedded in 11, length message. If during transmission 11, length message contains 

errors, then we can determine those errors and correct them. The encoding process helps us in 

the transmission of da ta securely. 

How to encode a message 

Any m essage u of k bits can be encoded by following st eps : 

i) Write a m essage u into the form of polynomial u (x). 

ii) Find the generating polynomial g (x). 

iii) Encoded message c (x) = u (x ) g (x ), where c (x ) is 11, length code polynomia l. 

Example 31 : To en code the m essage w = 11010 thmugh the en codeT [1 5, 5] and designed dis

tance d = 7, heTe 11, = 15 and k = 5. 

Step 1: M essage u into the fOTm of a polyn omial is u (x ) = 1 + x + x 3 . 

Step 2: To find gen emtoT polynomial g (x ), fiTstly, constntct the elem ents of Galois .fi eld 

GF (16) , which is gen emted by pTim itive polynomial f (x ) = x4 + X + 1. A ssume that ~ 'is 

the pTim itive mot of h (x ) then ~4 + ~ + 1 = 0 and ~4 = ~ + 1, 
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Hence the 9 (x) of the BCH code is, 

9 (x) lcm{mi (x) : i = 1,2,3, '" 6}, 

ml (x) m2 (x) m3 (x), 

(x4 + x + 1) (1 + x + x 2 + x 3 + x4) (1 + x + x 2
) , 

1 + x + x 2 + x4 + x 5 + x 8 + x lO 

Step 3: Encoded message is c (x) = u (x) 9 (x), 

c (x) = (1 + x + x 3
) (1 + x + x 2 + x4 + x 5 + x 8 + X l 0) 

= 1 + x 5 + x 6 + x7 + x 9 + x lo + x 13
. 

C = 100001110110010 is desired encoded message of 15 length. 

(2.43) 

Remark 32 Code rate and error-correcting capability remains the same for codes in Galois 

rings G R (pn , m) and in corresponding Galois fields G F (pm). But the advantage of Galois ring 

is the number of codewoTds 'is gTeater than the codewords in the Galois .field. 

2.3.1 Construction of Generator Polynomial of BCH Codes over Galois Field 

If we h ave a generator polynomial of BCH codes over the Galois ring, then there is no need to 

construct a generator polynomial of BCH codes over the Galois field , separately. Take modulo 

p operation to the coefficients of a generator polynomial of BCH codes over the Galois ring. 

Example 33 : Suppose that the generator polynomial of BCH code of length 15 with designed 

distance d = 5 over Galois ring G R(8 , 4) is, 

To calculate the generator polynomial of BCH code over corresponding Galois field GF(24) 

with designed distance d = 5, take modulo 2 operation to the coefficients of g(x). Therefore, 

g(x) = x 8 + x 7 + x 6 + x4 + 1. 
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Table 2.7 shows that the dimension of some primitive BCH code can be chosen corresponding 

to different designed distances. Similarly, we can find the dimension of primitive BCH using a 

computational approach corresponding to any length . 
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Chapter 3 

BCH-Codes over Galois Ring and 

Galois Field: Computational 

Decoding Approach 

In Coding theory, generally, codes are designed for the reliable transmission of data through 

noisy channels by using classical and more efficient algebraic techniques . There are many coding 

t heory applications in different fields for example, in magnetic and optical recording, wireless 

and network communication systems. Error detection and error correction are primary goals 

in coding theory because, during data transmission, there is possible in most cases error must 

occur due to distortion , noise, interference. The main aim of coding theory is to design error 

control codes. To achieve the aim of coding theory, many mathematicians and engineers use 

different algebraic techniques to develop good codes as much as possible. In this chapter, the 

decoding of BCH codes over the Galois ring and the Galois field using the Barlekamp Massey 

algorithm with the computational approach are explained. It is very challenging to correct 

errors if encoded messages have large lengths. To deal with this problem , we have designed 

computational technique which corrects multiple errors for each length of the BCH code. 

52 



81 (,1) + (,2) + ... + (,v), 

82 (,1)2 + (,2)2 + ... + (,v)2, 

83 (,1)3 + (,2)3 + ... + (,v)3 , 

(3 .6) 

Vve define error locator polynomial as, 

a (x) (3.7) 

here the coefficients of x are elementary symmetric functions, and defined as, 

ao 1 

al 1 1+ 12+"'+'v 

a2 1112 + 1213 + ... + Iv-I1v 

(3.8) 

Remark 34 : The inverses of roots of a (x) are error location numbers. 

We connect elementary symmetric functions with the syndromes by using the newton identities 

as follows , 
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polynomial. 

Step 1: If d/-L = 0, then 

(3.9) 

Step 2: If d/-L i=- 0, then find m < f1, such t hat dm i=- 0, and m - lm has largest value in last 

column of the t able, such that 

(3.10) 

(3.11) 

Step 3: To find discrepancy use this formula, 

(3.12) 

The polynomial a2t (x) in the last row of the table is required error locator polynomial. Next , 

calculate roots of this polynomial and then take inverses of these roots, t hese inverses of roots 

are known as error location numbers. The powers of the error location numbers show error 

positions in received code. To correct these errors, subtract the error vector from the received 

vector. If we have to find the message word, then divide the corrected message polynomial by 

the generator polynomial g (x) . 

Example 35 : Let 1lS consideT [15 ,5,7] BCH code genemted by g (x) = 1 + x + x 2 + x4 + x 5 + 
x 8 + x10 and codewoTd c = 100001110110010 is sent through channel. The erTOr may occur 

during tmnsmission and received vector is r = 110101110110011. 

Now find the eTTOT in the received vectoT. Choose n = 15, k = 5, d = 7 so t = l d; l J = 3. 

(3.13) 

Where x4 + x + 1 is primitive polynomial, and let ~ be the primitive TOot of this polyn01nial, 

therefore, 1 + ~ + ~4 = O. Th e Teceived vectoT in the fonn of a polynomial is , 

r(x) = 1 + x + x 3 + x 5 + x 6 + x 7 + x 9 + x lO + x 13 + x 14 
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max{O, I} = l. 

For dl, put {t = 0 in formula (3.16) we get, dl = S2 + 0-~1) Sl = e + e . ~4 = 0, heTe 0-~1) is 

coefficient of x in 0-
1 (x). 

Since dl = 0, therefore 0-2 (x) = 0-1 (x) and l2 = ll ' which implies that 0-2 (x) = 1 +~4x and 

12 = l. 

To calculate d2, put J-L = 1 in formula (3.16) then, d2 = S3 + 0-~2) S2 + 0-~2) Sl = (1 + e + 

e) + ~4. ~8 + O · ~4 = 1 + e + e + e 2, here 0-~2) is coefficient of x in 0-(2) (x) and 0-~2 ) is 

coefficient of x 2 in 0-(2) (x) , from the table of Galois field e 2 = 1 + ~ + e + e, therefore, 

d2 = 1 + e + e + 1 + ~ + e + e = ~ i- O. 

Since cl2 i- 0, we .find 0-3 (x) by using the formula given by (3.15) , put J-L = 2 and m = 0 because 

do i- 0 and 0 - La = 0 is laryest in last column of the table. 

Therefore, 0-3(x) = 0-2 (x) + d2dolx2-00-0(x) = (1+~4x) + (0 (~4) -lx2( 1) = 1 + ~4x + 

(~) (~ll) = 1 + ~4x + e 2x. 

Also put J-L = 2 in formula given by (3.17) we get l3 = max{ l2, lo + 2 - O} = max{l, 2} = 2 and 

J-L - l3 = 3 - 13 = 3 - 2 = l. 

To compute d3, put J-L = 2 in formula 3.16 then cl3 = S4 + o-P) S3 + 0-~3) S2 = ~+ ~4.e3 + e2.~8, 

which implies that, d3 = 0 (by using the table of Galois field) . Since d3 = 0 so 0-4 (x) = 0-3 (x) 

and 14 = 13 = 2 so J-L - l~, = 4 - l4 = 4 - 2 = 2. 

0-4 (x) = 1 + ex + e 2x 

For d4, substitute J-L = 3 in formula given by (3.15) . Therefore , cl4 = Ss + 0-~4) S4 + 0-~4) S3 = 

o + ~4.~ + e 2 . e 3 = e + ~10 = l. Since d4 i- 0, therefore we calculate o-s (x) , 

put J-L = 4, and m = 2 in fOTTlwla given by (3.15), 

o-s (x) = 0-4 (x) + cl4cl2' l x(4-2)0-2 (x) = 1 + ~4x + e 2x + (1) (~)-l x 2 (1 + ~4x) = 1 + ~4x + e 2x + 

e 4x2 (1 + ~4x), which implies that, o-s (x) = 1+~4x+ex2+ex3 and ls = max{l4, l2+4-2} = 

max{2,1 + 4 - 2} = 3. 

To find cls , put J-L = 4 in formlda given by (3.15), then cls = S6 + o-~Ss + 0-~S4 + 0-~S3 = 

~ll + e ·0 + ~s . ~ + e . e 3 = O. Since ds = 0, therefore 0-6 (x) = o-s (x) which implies that 

0-6 (x) = 1 + ~4x + ex2 + ex3. 
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3.1.2 Decoding of BCH Codes over Binary F ie ld 

To decode binary BCH codes by using the Barlekamp Massey algorithm , we start the algorit hm 

by initial conditions explained in Table 3.3. There are total t steps required to find error locator 

polynomial. 

J.1- (Jf1. (x) df1. lf1. 2J.1- - lf1. 

-1 1 1 0 - 1 "2 

0 1 S1 0 0 

Table 3.3 : Initial conditions for Z2 

Barlekamp Massey Algorithm for Binary BCH Codes 

For decoding of the binary BCH codes, following steps are required, 

Step 1: Start with J.1- = - 1/2. 

Step 2 : If dJ.L = 0 then (J(ft+ 1) (x) = (J(f1.) (x). 

Step 3 : If df1. f=. 0, then find m < J.1- such that 2m - l m is large as possible in last column of the 

table and elm f=. 0, such that 

(J(f1.+1) (x) (J(f1.) (x) + elf1.el;;,1 X 2(ft- m ) (J(m) (x), 

S (f1.+1)S (J.L+1) (f1.+1)S 
2f1.+3 + (J 1 2ft+2 + (J 2 S2f1.+1 + .. . + (Jl,,+ l 2f1.+3- l/.L+ l' 

deg ((J (f1.+1) (x)) . 

The polynomial (Jl (x) in last row of the table is required error locator polynomial. 

(3.19) 

(3.20) 

(3.21) 

Example 36 : If apply this algorithm to example 35 then error locator polynomial is computed 

after 3 steps as follows, 

Step 1: Calculate the syndrome. 

Step 2: Apply Barlekamp Massey algorithm with initial conditions, substitute J.1- = 0, m = -,} 

in the formula given by (3 .19), 
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If we compare Table 3.2 and Table 3.4, we get 0-3 (x) , and 0-
6 (x) are same error locator poly

nomial. By using this algorithm, half steps are required to find error locator polynomial. 

Remark 37 : ff the degree of error locator polynomial is greater than t , then there are more 

then t error occurs. 

Remark 38 : The computation required for binary BCH code is one ha4f of the calwlation 

required for non-binary BCH code. 

Remark 39 : ff the number of errors in the received vector is less then t, then 'it is unnecessary 

to find t steps for error locator polynomial. 

3.2 Decoding of BCH over Galois Field: Computational Ap

proach 

It is very time-consuming to decode large length BCH code manually over a higher-order field . 

To sort out this time-consuming effort , we developed the program in computer language which 

help to decode the message very efficiently. Following algorithms gives output for decoding of 

BCH codes very fast and program of this algorithm is shown in appendix. 
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3.2.2 Algorithm 2 for Decoding of BCH Codes 

Algorithm2 

4·png 

Algorithm 2: Decoding of BCH C·:>des ove r Galois Fie ld 

Input : 
Bar lekC'.mp-~1as3ey Table barlekampMasseyTable 
List of F.lpha ?olynomi",ls alphaPolyLi st 
Len '~rth of Coele n 
V,,.._ue p 

Recieve Vectt:)r recVec 

Output : 
Error Vector errVec 
Cor re.cted ,:,,:Ida. cOl:Code 

1. 
2 . 

3 . 
q . 

5 . 
6 . 
7 . 
8 . 
9 . 
1t) . 
ll. 
12 . 
1 " 
14. 
15. 
16 . 
17 . 
l B. 
19 . 
20 . 
21 . 
22 . 
23 . 

tempPol~l barlekamp~~asseyTablE:. ~axS i gma 
errVe.c 0 

for i _I to alph",?o l yList.Count 
foreach term in temp?oly 

if t:.6l.".ffi . alp haDe ';ree = i then 
Substitute term with ", phaPo _yList[i) 
term .... term. Degree (mod n) 
term .... te r m . Coefficient (mod 10) 

end if 
end loop 
errorPoly .Cc,e fficient (0 ) .... tempPoly . Coefficient [ 0 

for indax t- 1 to tempPoly.C.oeff':'cient . l:;oun-c. 
if ternpPo ly. Coefficient [ inciex ] != 0 then 
I erro r Poly .... errorPol y . Add(alph",PolyList·index 
end if 

end loop 
arrorPo_y +-- errVec.Co efficio::.nts (mod p) 

if errorPoly is 3ero then 
I E<rrVec +-- E<rrVec . .1l.cld("x'''' + ( - i + n) . 'Io3tr ing () 
end if 

end loop 
cor Code recVe c . Subtract{errVec) 
corCo ~ - cor Coda . Coafficiants (m cl p) 
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Algorithm to calculate all syndromes 

Calculation 
Algoritlun: CalCllation of Syndromes 

Input : 

L':'st o f .Alpha Polynomi,~ls alphaPo lyList 

Output : 
List cli Syndr o m syndromList. 

1. £or syndro rnCount +- 1 to 2 ·'-t 
2 . for i +- 1 to re.cVec . length 
3 . polyIndel< i- ':' ·'syndr omC,:Junt (mod n) 
4 . if degree ! = 0 then 
5 0 syndre·mP Ct _ y ,- alphaPo_yList p o l ylncie:>:] 
6 . syndr o mPoly - syndr.:1mPoly. Cc.effic':'en'C.s (mod p) 
7 . synclrc·msL':'at .. !l.cld (syncL:: o mPo ly) 
8 . end if 
S . end loop 
10 . end loop 

6-png 

3.3 Decoding of RS and BCH-Codes over Galois Ring 

RS codes are non-binary cyclic codes. Recently, RS codes have too many applications in disk 

drives, satellite communication, compact disk player, DVDs , and two-dimensional bar codes. 

3 .3.1 Reed-Solomon Codes over Zpm 

The parameters of RS codes over Zpm are (p - l,p - d, d). If m = 1 and d = 2t + 1 where 

t ::::: l n 21 J ' then Reed Solomon code correct t errors. Let ( E Zpm be a primitive element. 

Suppose that 17, = p - 1 and 'IT/, E Z+ such that (17" m) = 1. Then according to Blake [2] the 

parity check matrix H is defined as: 

1 (m (2m ((n-1)m 

1 ('n+1 (2(m+1) ((n- 1)(m+1) 

H= (3.25) 

1 (m+d-2 (2(m+d-2) ((n-l)(m+d-2) 

Theorem 40 [2]: The null space of the parity check matrix Ho ver Zpm is p - 1 length code C 

with dimension p - d and minimum distance d. 
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Where T represents number of errors which are occurred by the channel. 

To find iT1 , iT2, . . . , iTT , we solve the following equations over ring R . 

(3.28) 

where Sl, S2, S3, S4, ... , S2t are syndromes. Equations given by (3.28) can be solved by using 

t he modified Barlekamp Massey algorithm. If error magnitudes are unit elements in the ring 

R, then the solution is unique. It is an iterative algorithm because at /-lth step. 

Find lJ1- values iT~J1-) such that, f.l - lJ1- equations holds with lJ1- possibly small and iTt) = 1. 

o 

o 

o. (3 .29) 

The output at final step is: 

(3.30) 

The nth discrepancy, 

(3.31 ) 

Step 3: There is one extra step to find error location number over ring rather than over field 

because in the ring R the solution of the equation given by (3.28) is not unique. The reciprocal 

of polynomial iT2t (x) (output of Barlekamp Massey algorithm) is p (x), which mayor may not 

be the correct error locator polynomial. To compute error location numbers , we initially find 

t he roots Xl, X2, ... , X v of p (x) , then select Z D = aD , Z l = aI , Z2 = a 2, .. . Zn - 1 = an - 1 such that , 
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equations of (3. 29) and discTepancy satisfy following condition, 

d,.,. + a· drn = 0 (3.38) 

and 

(3.39) 

Theorem 44 [15) : L et a("") (x) be a solution at J.Lth step and a(m) (x ) be the e.'Eisting minimal 

solutions, fOT J-L > m ~ 1, such that m - lm is the greatest value in last column of the table and 

d,.,. - y.dm = 0 have solutions in y. Further, suppose that a("") (x ) is mod~fied by the following 

method. fr d,.,. = 0, then 

(3.40) 

If d,.,. =I- 0, then 

a(,.,.+l) (x ) = a("") (x ) - y. (x ),.,.- rn .a(rn) (x ) (3.41) 

and 

(3.42) 

If there does not exist any solution D(,.,.+l) (x) with degree less than ma.x{l,.,. , lm - m + J-L}, and 

the coefficient of smallest exponent of x in D(,.,.+l) (x) - a("") (x ) is zeTa divisor in the 1''ing R , 

then at (J-L + 1 )th stage a(,.,.+l) (x ) is the minimal polynomial solution. 

3.3.3 Modified Barlekamp Massey Algorithm 

Modified Barlekamp Massey Algorithm is designed to decode BCH or RS codes over G R (pm , r) 

or Zpm , respectively. We take syndromes as an input and get elementary symmetric functions 

as an output that satisfies equations given by (3 .29) for minimum v. We start this algorithm 

by following initial conditions as in [15], are as follows, 

a( - l) (x ) = 1, L1 = 0, d_ 1 = 1, a(O) (x) = 1, lo = 0, and do = 51. Here , 51 is first non-zero 

syndrome. Further steps of the algorithm is as follows , 

Step 1: 0 ---t J-L. 

Step 2 : If d,.,. = 0, then a("") (x ) ---t a(,.,.+l) (x ), l,.,. ---t l,.,.+l and then go to Step 5. 

Step 3: If d,.,. =I- 0, then find am < J-L, such that d,.,. - ydm = 0 has solution in y, m - lm has 
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Step 1: To calculate syndrome we use, 

S = r . H T = (17 20 4 107). (3. 48) 

Step 2: Calwlation of erTOr locator polynomial which satisfy equation given by (3.28) by using, 

Mod~fied Barlekamp Massey algorithm, a 2t (x ) is calculated as follows, 

Jl aJ.L (x) dJ.L lJ.L J.l - lJ.L 

-1 1 1 0 -1 

0 1 17 0 0 

1 1 + 104x 94 1 0 

2 1 + 70x 73 1 1 

3 1 + x + 84x2 97 2 1 

4 1 + 61x + 49x 2 - - -

Table 3.5 : ErTOr locator polynomial 

FTOm Table 3.5 required error locator polynomial is a 4 (x) = 49x2 + 61 x + l. 
Step 3: The recipTOcal of a 4 (x ) is P (x ) = x 2+61x +49. By substituting x E {O, 1,2,3,4, ... , 120} , we 

have Xl = 32 and X2 = 28 are TOots of p (x). Next select those Zi E {,80 ,,81,,82,,83,,84,,85,,86, ,87,,88 , ,89 } 

such that Zi - Xi are zero-divisors in 2 121 . Therefore, Zl = ,85 and Z2 = ,89 are correct error 

location numbers, and powers of ,8 represent error positions in the received vector. H ence error 

occurs in the received vector at 5th and 9th position. 

Step 4: Firstly, calculate correct elementary symmetric fun ction as, 

(x - Zl) (x - Z2 ) = (x - 32) (x - 28) = x 2 + 61 x + 49, which implies that a l = 61 and a2 = 49. 

Apply Forney 's pTOcedure to calclLlate error magnitudes, 

(3 .49) 
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If r . }It = 0 then there is no error occurs in received vector. 

Step 1: Calculation of Syndrome as, 

S = r . }It = (3 3x 3 3) . (3.54) 

Step 2: Calculate the error locator polynomial which satisfy the equation given by (3 .28), using 

the Mod~fied Barlekamp Massey algorithm, 

p, a f ' (Z) df' If' p, - If' 

-1 1 1 0 - 1 

0 1 3 0 0 

1 1 +6Z 3x 1 0 

2 1 + (6 + 8x)Z 3x 1 1 

3 1+(5+8x)Z+3Z2 6x 2 1 

4 1 + (3 + 8x)Z + (2x)Z2 - - -

Table 3.6: Error locator polynomial of BCH codes 

Therefore, the error locator polynomial from the last row of Table 3.6, 

a 4 (Z) = 1 + (3 + 8x)Z + (2x)Z2. 

Step 3: For Calculation of correct error location number, the reciprocal of a 4 (Z) is p (Z), 

which is correct error locator polynomial, p (Z) = Z2 + (3 + 8x) Z + 2x. The roots of p (Z) in 

Galois ring GR (9, 2) are Zl = 5 + 8x and Z2 = 1 + 2x. Select those elements x.i of Gs which 

satisfy, Xi - Zi are zero-divisors in the ring GR (9 , 2). Th erefore, Xl = (31 = 2 + 8x and X 2 = 

(36 = 7 + 5x. Hence, (31 and (36 are correct error location numbers and powers of (3 shows eTror 

positions. Therefo re, the error occurs at 1st and 6th position. To .find elementary symmetric 

function, compute (Z - Xl) (Z - X2) = (Z - (2 + 8x)) (Z - (7 + 5x)) = Z2 + (5x) Z + (6 + 8x) 

which implies that al = 5x and a2 = 6 + 8x. 

Step 4: To calculate eTroT magnitudes, apply FOTney's procedure to syndrome and elementary 

symmetTic function . TheTefore, we get en'or magnitude Yl = 3 and Y2 = 6. Hence the error 

vector e = (0 3 0 0 0 0 6 0) and the corrected codeword v = r - e = (0 0 0 0 0 0 0 0) . 
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Chapter 4 

Symmetric Block Cipher and BCH 

Codes: An Image Encryption 

Application 

In the modern world, the security of the digital image is vital due to the occurrence of com

munication digital products over open networks frequently. Accelerated advancement of digital 

data exchange, the importance of information security in the transmission of data through the 

communication channel, and its storage has emerged. Multiple usages of the images in the 

security agencies and the industries, the security of the confidential image data from unautho

rized access is emergent and vital. In this chapter, Error-Correcting Codes, particularly Bose 

Chaudhuri Hocquenghem codes over the Galois field , have been used in image encryption using 

a modified Advanced Encryption Standard algorithm. The BCH codes over the Galois field are 

used in the mixed column operation and round key addition steps of the AES algorithm. The 

detailed analyses of the proposed scheme and its comparison to the original AES algorithm are 

given in this chapter. We designed a novel technique for the construction of components of the 

block cipher. 
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cations. On the bases of the AES key expansion image encryption scheme is explained in [28]. 

Error-correcting codes, particularly BCH codes, are helpful in reducing the rate of a decryption 

failure. In [39], the decoding algorithm of the BCH code and design a constant-time version 

of the BCH decoding algorithm is analyzed. The modified AES algori thm for image and text 

encryption , which is based on bit permutation instead of mixed column operation , is presented 

in [8]. But we used BCH codes in mixed column operation and round key addition in the AES 

algorithm for image encryption. 

4.2 Advanced Encryption Standard Algorithm 

Advanced Encryption Standard is a symmetric block cipher system t hat uses exchange or 

replaces network. According to the required key length and block length of AES can be varied. 

For an iteration of 10, 12, and 14 rounds, three different key length schedules 128, 192, and 

256 are used respectively. Key size determines t he level of security. AES consist of the round 

function that's composed four different byte-oriented transformation. Key expand turns, and 

round change are the three main aspects of the AES algorithm. The collection of three layers 

add-round key layer, non-linear layer, and the linear mixture layer is the transformation of each 

round. 

4.2.1 Substitute Byte Transformation 

It is a non-linear byte substitution that applies independently on each byte of state using S-Box. 

This operation explains how each byte of the state matrix substitutes with another byte of the 

Substitution-Box. S-Box contains 256 elements. There are different techniques to construct 

S-Box. 

4.2.2 Shift Rows Transformation 

In this Transformation, the bytes of the rows of the current state matrix is left-shifted cyclically. 

Row 0 is unchanged, and the first row is shifted one byte to the left. In the second row, there 

are two bytes left shift are performed. Similarly, apply to the remaining rows. 
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BCH codes. The modulo multiplication is performed over the Galois field GF(28
). 

Step 6: Take the analysis of encrypted image and compare it with the original image. 

4.3.2 Construction of Round Keys using BCH Codes 

The construction technique of round keys followed by the binary representation of the generator 

polynomials of BCH codes over GF(27 ) for different designed distances. Convert each generator 

polynomial to its binary representation form of length 128-bits. If it is not 128-bits, add check 

bits on the left-hand side to make 128-bits long. Then convert the BCH of length 128 into 

16-bytes. These 16 bytes string serves as a round key. Key 1 is derived from the generator 

polynomial of BCH code [n = 127, k = 1] with the designed distance 65. By using the proposed 

technique, we get key 1 as follows, 

Key 1: 127 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255, 

We shall construct next key by using BCH code of length 127 over Galois field GF(27 ) with 

the designed distance 60. Then convert the coefficients of generator polynomial which are in 

descending order into the block of 8 bits, 

00000000 10101011 00110001 00010110 10011100 10000100 10100100 11011011 

10001111 01000001 10101000 11001011 10110000 11101011 11001111 10111111. 

Convert each byte into decimal form so hence key 2 as, 

Key 2: 0 171 49 22 156 132 164 219 143 65 168 203 176 235 207 19l. 

Similarly, construct all keys by using BCH codes over Galois field by changing the designed 

distance. 

Key 3: 01 101 123 192 163 7 249 56 40 16 229 154 109 22 187 

Key 4: 0031462720815712031228325013717417443 

Key 5: 00051610917423166308212961067841 

Key 6: 0 0 0 0 13 83 6 214 191 219 200 87 71 25 231 13 

Key 7 : 0 0 0 0 0 25 161 99 10 46 46 13 22 111 12 93 

Key 8: 0 0 0 0 0 0 41 19 31 9 172 122 28 6 238 111 

Key 9: 00000006521814515715825154166153 

Key 10: 0 0 0 0 0 0 0 0 244 132 85 24 185 88 42 31 
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form. The matrix is as follows, 

233 68 73 57 

21 97 9 161 
A= (4.3) 

244 112 4 116 

164 207 49 35 

This is the required matrix which is used in the AES algorithm in mixed column transformation 

step for the security of data. 

4.3.4 Application of BCH Codes in Security of Image Data 

Digital images are vulnerable to unauthorized access while in transmission over a communication 

channel. Streaming digital images also require high network bandwidth for transmission. For 

effective image transmission over the internet, security issues must be considered. Recently. 

We apply the proposed scheme in image encryption of size 256 x 256. 

The encrypted image of Lena using the proposed scheme is given in Fig. 4.2 and statistical 

analyses of an encrypted image with the original AES algorithm and a modified AES algorithm 

is shown in Table 4.1. 

Fig. 4.1: Lena original Image Fig. 4.2: Lena encrypted image 
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4.4.3 Energy 

This analysis computes the energy of the encrypted images by applying S-Boxes. It gives the 

sum of squared elements in the grey level co-occurrence matrix, 

(4.6) 

where p(l, m) is the number of gray-level co-occurrence matrices. 

4.4.4 Homogeneity 

In homogeneity, the gray level co-occurrence matrix explains the proficiency of arrangements 

of pixel brightness results in tabular form. The closeness of the distribution in the Gray level 

co-occurrence matrix to its diagonal is measured through the homogeneity analysis. If the ho

mogeneity is small as much possible, then encryption is better. The following formula measures 

the homogeneity, 

H = L n(l,m) 
1 + Il - mi' 

I ,m 

(4.7) 

4.4.5 Entropy 

Information entropy measures the disorder, which is created by the encryption process. Entropy 

measures the strength of the encryption technique. An encryption technique is good if it has 

more disorder and randomness. Entropy is defined as, 

n 

e = - LP(Xi) logbP(xi), (4.8) 
i=l 

where P(Xi) contains the histogram counts. Entropy must be close to the 8 for better image 

quality. 
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of BCH code corrects the error. It means that if there is an error in encrypted data during 

transmission, then there is no secure decryption. So, we apply the decoder of BCH codes, which 

correct the errors in encrypted data and then decrypt the data and attain the original message. 

4.4.6 Histogram Analyses 

Histogram analysis is used to see how much encryption procedure changes test image compared 

to the encrypted image. For good encryption, the histogram of the ciphered image should have 

a uniform distribution indicating that the anticipated scheme can resist statistical attacks. The 

histograms of the ciphered images are appreciably uniform and are quite dissimilar from the 

test images. The suggested encryption technique has fulfilled all the test image features and 

has convoluted the statistical bond between the test image and its cipher image. 

1000 1000 

7SO 7SO 

500 500 

2SO 250 

50 100 ISO 200 250 SO 100 ISO 200 250 SO 100 ISO 200 250 

(.) (b) (e) (d) 

1000 "1000 

7SO 7SO 7SO 

500 500 500 

250 

50 100 ISO 200 2SO SO 100 ISO 200 250 SO l lX) 150 200 2SO 

(eJ (f) (9 ) (hI 

Fig. 4.3: Histogram analysis of original and encrypted mage 

Fig. 4.3 shows that the histogram analyses of the original and encrypted images by the 

proposed encryption algorithm through different channels (Red, Green, Blue). The histogram 
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Chapter 5 

Symmetric Block Cipher and BCH 

Codes: A Text Encryption 

Application 

Accelerated adventures in computer science and technology has made digital technology, a need 

of the day. Academicians, researchers, and technologists are anxious to share their secret data 

through the communication channel along with its security. vVith the fast advancement of 

digital data exchange, security information becomes much important in transmission and data 

storage. Due to the extreme use of texts in security agencies and industry, it is essential to 

keep the confidential text data from unauthorized access. In chapter 4, we have utilized BCH 

codes in image encryption and used one mixed column matrix in each round of modified AES 

algorithm, but in this chapter , BCH codes are used for the security of text data by utilizing 

ten different mixed column matrices for each round in modified AES algorithm. The proposed 

scheme improves the mixed column operation by using MDS matrices and round key addition 

steps of the modified AES algorithm using BCH codes over the Galois field for better encryption 

performance and security of data. Using the avalanche effect for text encryption and the most 

popular test NIST, it is ensuring that the proposed scheme for ciphertext is more beneficial, 

and results of security analyses are given in this chapter. 
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g( x) X242 + X 239 + X 238 + X 236 + X 23 I + X 230 + X 229 + X 228 + X 226 + X225 + X223 + X2 I 5 

+X2I3 + X209 + X207 + X205 + X203 + X20 I + X200 + X I99 + XI97 + X I94 + X I92 + XI9I 

+X188 + XI85 + X I 8I + X I79 + X I78 + X I76 + XI74 + X I73 + X I 72 + XI71 + XI69 + XI68 

+X167 + XI66 + X I6 5 + XI62 + XI6I + XI57 + XI55 + X I53 + X I46 + XI45 + X 143 + XI42 

+X134 + X I30 + X I29 + X I27 + X I26 + X I 22 + X I2 I + X1I9 + X1l8 + X 1I7 + X1I6 + X1l5 

+X1l4 + 7X 1l3 + X 110 + X I07 + X I05 + X I04 + X IOI + X IOO + X99 + X98 + X97 + X96 

+X95 + X93 + X92 + X91 + X87 + X86 + X 79 + X 78 + X75 + X 74 + X73 + X 72 + X 71 

+X68 + X67 + X65 + X64 + X63 + X62 + X6I + X 60 + X 58 + X54 + X 52 + X 51 + X 50 

+X48 + X47 + X 46 + X45 + X 40 + X38 + X37 + X33 + X3 1 + X 30 + X29 + X26 + X23 

(5.3) 

Divide (xn - k+i - I ) for i = 1 by g(x) and obtain a remainder polynomial then split to the 

coefficients of remainder polynomial into the block of 8 bits and write these blocks into 4 x 4 

matrix after converting it into decimal form. Dividing the polynomial (x255- I3) by g(x) we get 

matrix as, 

A= 

233 68 73 57 

21 97 9 161 

244 112 4 116 

164 207 49 35 

If we divide the polynomial (x 243 ) by g(x) then we get, 

221 104 182 89 

110 180 91 44 

234 50 155 207 

168 113 251 190 
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If we divide t he polynomial (x248 ) by g(x) then we obtain, 

246 119 96 56 

123 59 176 28 
A6 = 

203 234 184 54 

101 245 92 27 

If we divide the polynomial (x249 ) by g(x) t hen we get, 

153 101 108 223 

76 178 182 III 
A7 = 

38 89 91 55 

19 45 173 155 

If we divide the polynomial (x250 ) by g(x) t hen we get, 

248 84 26 157 

132 126 23 83 
A8 = 

66 63 11 233 

33 31 133 244 

If we divide the polynomial (x251 ) by g( x ) then we get matrix as, 

A9 = 

136 52 201 200 

68 26 100 228 

34 13 50 114 

153 50 80 241 

5.2 Construction of Secret Keys using BCH Codes 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

The construction technique of round keys followed by the binary representation of the generator 

polynomials of BCH codes over the Galois field G F(2m) for different designed distances. Convert 

each generator polynomial to its binary representation form for 128 length key. 
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FaT Key 3, ConstTuct the genemtoT polynomial faT designed distance d = 44, 

g(x) x
I05 + x 104 + x 103 + x lOO + x 97 + x 92 + x 9I + x 89 + x 88 + x 87 + x 87 + x 86 

+x
84 + x 79 + x

76 + x 75 + x 74 + x72 + x 70 + x 69 + x 68 + x 67 + x 57 + x 56 

+x54 + x 53 + x 52 + x 5I + x 49 + x
46 + x44 + x4 I + x 40 + x 39 + x 38 + x 37 

+ x
36 + x 35 + x 33 + x 3I + x 27 + x24 + x 23 + x 2I + x I 9 + x I 8 + x I 8 + x I7 

+ x
15 + x I 3 + x ll + x lO + x 9 + x 5 + x 3 + X + 1. (5.16) 

TheTefoTe, Key 3: 0 0 0 5 16 109 174 23 166 30 82 12 96 106 78 41. 

FaT K ey 4, calculate the genemtoT polynomial faT designed distance d = 32, 

g( x ) x
98 + x 96 + x 92 + x 86 + x 85 + x 83 + x 82 + x 80 + x 79 + x 77 + x 75 + x 74 + x 73 

+x
68 + x 66 + x 65 + x 64 + x 63 + x 6I + x 58 + x 57 + x 52 + x 5I + x 50 + x 49 

+x46 + x44 + +x4I + x 35 + x 34 + x 30 + x 29 + x 22 + x 21 + x I 9 + x 17 

+x14 + x ll + x lO + x 9 + x 5 + x 3 + 1. 

TheTefoTe, Key 4 : 0 0 0 0 13 83 6 214 191 219 200 87 71 25 231 13. 

FaT Key 5, .find the generator polynomial for designed distance d = 30, 

(5.17) 

g(x) x
91 + x 90 + x 88 + x 86 + x 84 + x 8I + x 80 + x 74 + x 73 + x71 + x 70 + x 68 + x 66 

+x
65 + x 63 + x 6I + x 60 + x 59 + x 58 + x 57 + x 56 + x 55 + x 54 + x 52 + x 5I 

+x49 + x 48 + x 47 + x 46 + x 43 + x 38 + 5x
36 + x 34 + x 33 + x 32 + x 30 + x 26 

+x25 + x24 + x 20 + x I 9 + x I6 + x I 5 + x I4 + x I3 + x lO + x 9 + x 8 

+x
3 + x 2 + 1, (5. 18) 

which implies that, Key 5: 0 0 0 0 0 25 161 99 10 46 46 13 22 111 12 93 . 
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FOT K ey 10, calculate the genemtoT polynomial fOT designed distan ce d = 16, 

g(x) x 56 + x 53 + x 51 + x 49 + x 48 + x 46 + x 45 + x44 + x 43 + x42 + x41 + x 40 

+x39 + x 35 + x 32 + x 28 + x 25 + x24 + x 23 + x 20 + x 17 + x 16 + x 13 + xll 

H ence, Key 10: 0000000002146 19522238162115. 

5.3 Application of BCH Codes in Text Data 

(5.23) 

BCH codes are utilized in text encryption application. First-time BCH codes can be used as a 

secret key in any encryption scheme. BCH codes are also used in mixed column matrices . 

Encryption Scheme 

AES algorithm is modified for text encryption using the BCH codes as follows, 

Step 1 : Convert 128 bits plain text data into 16 data bytes and write these 16 bytes in a 4 x 4 

state matrix . 

Step 2: Construct keys by using the BCH codes of length 128 by taking different designed 

distances over the Galois field, which are used as round keys. Key 0 is used in round 0, and 

key 1 is used in round 1, apply all 10 different keys in 10 rounds. 

Step 3: Now, the entries of the current stat e m atrix are substituted wit h the AES S-Box 

entries. 

Step 4: Now perform the circular shift on each row of the current st ate matrix . Row 0 is 

shifted 0 bytes left, row 1 is shifted 1 byte left , row 2 is shifted 2 bytes left , and row 3 shifted 

3 bytes left. 

Step 5: Now, the current state matrix is multiplied in each round with the different mix column 

MDS matrix constructed by using BCH codes. The multiplication is modulo multiplication over 

the Galois field GF(28 ) . 

Step 6: Apply t he analysis on ciphered text and compare it with the original AES algorithm. 

Example 54 : Suppose that we want to encTypt plain text ONE TWO NINE ONE by 
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Round 7 

Plain Text: b9 68 05 7b 52 7b 66 53 7e d5 16 36 I e 05 88 6a 

Cipher Text: ea 09 88 ac 87 a5 42 da 43 e7 5d d9 3d 5f 90 2d 

Round 8 

Plain Text: ea 09 88 ac 87 a5 42 da 43 e7 5d d9 3d 5f 90 2d 

Cipher Text: e5 64 5e 14 5b 3b 55 a8 2d d3 55 20 3e 63 2el a8 

Round 9 

Plain Text: e5 64 5e 14 5b 3b 55 a8 2el el3 55 20 3e 63 2el a8 

Cipher Text: 15 35 97 5c ba e2 71 5f 04 44 71 el8 80 6d 53 62 

Round 10 

Plain Text: 15 35 97 5c ba e2 71 5f 04 44 71 el8 80 6el 53 62 

CipherText: 59 98 a6 aa f4 Ib eel 4a f2 3e la Oc elb 78 01 12 

5.4 Text Encryption Analyses 

Vie encrypt text data by using the proposed scheme, which is based on BeH codes. Proposed 

scheme is analyzed by standard analyses. These analyses are avalanche effect, ciphertext attack , 

known-plaintext attack and NIST test . 

5.4.1 Avalanche Effect 

Every encryption method has its strong and weak arguments. To apply the appropriate method 

in a specific application, we must require identifying the weakness and strengths. Therefore, the 

analyses of these methods are critically compulsory. Every encryption algorithm has ensured 

the property, a little bit change in either the plaintext or the key, should produce a huge change 

in the ciphertext. The Avalanche Effect is defined, if we single bit change in the key or in the 

plain text then it gives us several bits change in the ciphertext. The strength of the proposed 

algorithm is estimated using Avalanche Effect due to single-bit variation in plaintext keeping 
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We test ciphertext by changing in a single bit in original Key and compute all 10 rounds 

then compare the output with cipher text constructed with the original key. 

Round Cipher Texts with Original Key and with Single Bit Change Bits % 

0 
4f 4e 65 20 54 77 6f 20 4e 69 6e 65 20 4f 4e 65 

1 
4f 4e 65 20 54 77 6f 20 4e 69 6e 65 20 4f 4e 65 

7e 00 f4 04 7 f ef 3e e8 f7 d5 fd 8a 8e e7 9d df 
1 69 53.91 

9b 27 8f 51 7 f ef 3e e8 f7 d5 fd 8a 8e e7 9d df 

26 b5 54 e4 71 3e 5b 4b 77 d8 ee bf a8 45 01 f7 
2 63 49.22 

a5 77 39 4e 90 Of 54 5f 80 b8 bO 44 77 51 84 d9 

56 49 9d 94 e6 8e 39 f e 6d 17 f1 b5 3b 10 f271 
3 61 47.66 

Of Od bf 74 5e 5e 96 3f 9f 01 f6 92 fd ee bf f e 

04 36 e3 00 3d 75 34 dO 51 f3 e2 23 ef 86 4a 62 
4 74 57.81 

2d 4a 37 54 2a ee be b9 ee 83 19 f8 1a 98 b3 14 

6d d6 19 77 23 a6 e1 d8 6a 7e 43 01 7e 3057 11 
5 65 50.78 

04 a9 64 f2 e7 2e cO 39 45 07 Od 00 a1 67 2544 

b9 68 05 7b 52 7b 66 53 7e d5 16 36 I e 05 886a 
6 65 50.78 

e1 f7 de e7 7d 51 15 5d e3 65 09 3f ee 5e 30 4e 

ea 09 88 ae 87 a5 42 da 43 e7 5d d9 3d 5f 902d 
7 66 51.56 

e1 f7 de e7 7d 51 3e Of 26 fd 38 db 29 6e 78 b8 

e5 64 5e 14 5b 3b 55 a8 2d d3 55 20 3e 63 2d a8 
8 67 52.34 

b6 ge eb 5a 4e 14 e2 fa 18 be 35 6f ee 7b Ie 7e 

15 35 97 5e ba e2 71 5f 04 44 71 d8 80 6d 53 62 
9 58 45.31 

85 33 82 5f 61 2b 68 9b ab 15 39 68 7a ee e7 d5 

59 98 a6 aa f4 1b ed 4a f2 3e 1a Oe db 78 01 12 
10 61 47.66 

97 f1 12 03 e f 59 94 ef 62 2a 81 d7 ee 2d e7 36 

Table 5 .2: Avalanche effect by changing one bit in secret key 

In Table 5.1, we apply the avalanche effect by altering a single bit in plain text keeping 

unchanged in secret key, and then performing all the rounds of the proposed AES algorithm. 
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comparison to limited numbers for the random sequence. The excursion of this random walk 

should be close to zero. The excursion of this random walk for non-random sequences will be 

far from zero. The purpose of the cumulative sums test is to decide whether the sum of the 

partial sequences happening in the tested sequence is too small or too large. 

Statistical Test D ecision 

The Discrete Fourier Transform (spectral) test Passed 

The Non-overlapping template matching test Passed 

The approximate entropy test Passed 

The Cumulative Sums (forward) test Passed 

The Cumulative Sums (reverse) test Passed 

Table 5.3: NIST statistical test passed for text encryption 

5.4.3 Ciphertext Attack 

If the cryptanalyst knows the ciphertext and the encryption techniques, but does not have the 

private key to decrypt the ciphertext. If the brute force attack is applied to cipher text, it will 

not be helpful to attain plain text . If the key size is too large it will take many years to decrypt 

the ciphered message. Therefore, even if the analyst attains the original message, then the 

data's will be insufficient at that t ime. 

5.4.4 Known Plaintext Attack 

Given that the cryptanalyst knows the encryption algorithm, ciphertext , and one or more 

ciphertext-plaintext pairs designed by the private key. Since the implementation generates a 

different ciphertext for a similar message due to the different designed distance of BCH codes, 

known-plaintext attack cannot harm. 
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Chapter 6 

A Nonlinear Component Design in 

Symmetric Block Cipher with Image 

Encryption Application 

In chapter 4, we encrypt the image using the BCH codes and the modified AES algorithm, but 

the security layer was missing in that algorithm. In this chapter, we constructed a nonlinear 

component (S-Boxes) in symmetric block cipher using the Galois ring and the Galois field 

and apply those S-Boxes in data security. An S-Box is based on Boolean functions, which 

are essential in the foundation of symmetric cryptographic systems. The Boolean functions 

are used for S-Box designing in the block cipher. Boolean functions with optimal nonlinearity 

and upright cryptographic stuff playa significant role in block ciphers' design. To analyze the 

security of the image encryption, some standard analyses are performed. 

6.1 Construction of Nonlinear Component using Galois Ring 

and Galois Field 

The S-Box is the crucial component used in several cryptosystems. It works in the way of 

substituting several blocks of bits for a completely unlike set of output bits. So the substitution 

shows a confused association among input and output bits of the substitution box. When used 
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Exp Polynomial Exp Polynomial Exp Polynomial Exp Polynomial 

1 00010000 30 40573013 59 51443017 88 16545373 

2 00037505 31 74436313 60 26541144 89 4502214 

3 75065707 32 30444347 61 71717214 90 26431410 

4 27625706 33 50777444 62 46055235 91 74133547 

5 32516562 34 67225333 63 10127701 92 2635357 

6 70227715 35 72026522 64 26060252 93 51543167 

7 40213222 36 34321402 65 62124406 94 27536114 

8 76435525 37 25414672 66 64751452 95 44330217 

9 20304547 38 23025645 67 32464531 96 42210377 

10 23741070 39 35320102 68 50415046 97 45725725 

11 77341334 40 15364372 69 43154545 98 12655332 

12 61006774 41 71026776 70 2024051 99 00056361 

13 04416500 42 33111702 71 46316402 100 63603101 

14 61033145 43 25733455 72 22702375 101 54524760 

15 56133407 44 11702037 73 7405230 102 36250612 

16 21653557 45 52450530 74 57074340 103 15054721 

17 16053661 46 76650341 75 33602603 104 75210201 

18 67560701 47 56304761 76 34645760 105 52434625 

19 26611116 48 34240670 77 60321064 106 37542147 

20 71717365 49 17065024 78 32573272 107 33314714 

21 47565235 50 04017106 79 45341513 108 55635475 

22 13757116 51 75457105 80 50157574 109 46514067 

23 21053031 52 41212241 81 60321151 110 06334315 

24 11455601 53 61575225 82 33443272 111 45414577 

25 00014641 54 77620013 83 40717344 112 00277645 
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Exp Polynomial Exp Polynomial Exp Polynomial Exp Polynomial 

138 34776723 167 32516775 196 05035614 225 32521205 

139 70253733 168 72357715 197 55465007 226 25406412 

140 00400121 169 46335371 198 42067746 227 41276140 

141 01654040 170 11650577 199 31626006 228 20507023 

142 43561661 171 37556661 200 70033762 229 56363010 

143 53657516 172 70563411 201 00130707 230 25552476 

144 61162061 173 05366616 202 07372757 231 01316211 

145 45675356 174 65561776 203 24740673 232 65166275 

233 3375756 239 45006041 245 11547715 251 26254350 

234 50370273 240 23324100 246 21412114 252 23737721 

235 75151373 241 20027172 247 2605245 253 56622637 

236 63023251 242 57100202 248 50416260 254 13055062 

237 55064102 243 72546350 249 55374545 255 00000001 

238 33453706 244 32510614 250 37101473 

Table 6.1: Elements of maximal cyclic subgroup G255 

Step 2: Define a mapping for a = f35 E G255 , P: G255 U {O} --> G255 U {O} by 

Step 3: Select any fixed element b from G255 , for instance, b = f340 = o? +506 + 305 + 604 + 

403 + 302 + 70 + 2 then apply mapping, 

a: G255 U {O} --> G255 U {O} 

a(a) (a) (f340) for all a E G255 (6.5) 

Step 4: Find the elements of S-Box using the mapping p o a: G255 U {O} --> G255 U {O} by 

po a(a) = (af340) - 1 for all a E G255. (6.6) 
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47314104 33314714 37506535 71717214 11702037 47565235 56622637 25552476 

01044440 37542147 40717344 26541144 25733455 71717365 23737721 56363010 

04400504 52434625 33443272 51443017 33111702 26611116 26254350 20507023 

05153450 75210201 60321151 15532357 71026776 67560701 37101473 41276140 

64106742 15054721 50157574 04131167 67225333 16053661 55374545 25406412 

41422521 36250612 45341513 62636436 50777444 21653557 50416260 32521205 

14251651 54524760 32573272 56767562 30444347 56133407 02605245 21015142 

51152672 63603101 60321064 77620013 74436313 61033145 21412114 73425740 

14322676 00056361 34645760 61575225 40573013 04416500 11547715 53400727 

50362113 02635357 33602603 41212241 51575262 61006774 32510614 50236051 

06575620 74133547 57074340 75457105 50626627 32516562 72546350 63153546 

76203323 26431410 07405230 04017106 33234244 27625706 57100202 13463330 

00277645 04502214 22702375 17065024 46447505 75065707 20027172 07701662 

45414577 16545373 46316402 34240670 00014641 00037505 23324100 14625444 

06334315 10376772 02024051 56304761 11455601 00010000 45006041 10446552 

46514067 51322227 10127701 76650341 21053031 00000001 33453706 77124254 

55635475 77230310 46055235 52450530 13757116 13055062 01316211 00000000 

Table 6.2: Elements of S-Box using G255 

If we take another element b from G255 and apply the scheme for construction of S-Box, we 

get another S-Box over the Galois ring GR(8,8). We get 255 different S-Boxes corresponding 

to each element b of G255 . 

6.1.2 Scheme for Nonlinear Component over the Galois Field 

S-Boxes are constructed over Galois field G F(28 ) is the same as S-Boxes over the Galois ring 

GR(8 , 8). By using the following method, 

Step 1: Find the elements of Galois field GF(28 ). 
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Exp Polynomial Exp Polynomial Exp Polynomial Exp Polynomial 

1 00000010 30 00111101 59 11011111 88 11001010 

2 00000100 31 01111010 60 11011101 89 11110111 

3 00001000 32 11110100 61 11011001 90 10001101 

4 00010000 33 10001011 62 11010001 91 01111001 

5 00100000 34 01110101 63 11000001 92 11110010 

6 01000000 35 11101010 64 11100001 93 10000111 

7 10000000 36 10110111 65 10100001 94 01101101 

8 01100011 37 00001101 66 00100001 95 11011010 

9 11000110 38 00011010 67 01000010 96 11010111 

10 11101111 39 00110100 68 10000100 97 11001101 

11 10111101 40 01101000 69 01101011 98 11111001 

12 00011001 41 11010000 70 11010110 99 10010001 

13 00110010 42 11000011 71 11001111 100 01000001 

14 01100100 43 11100101 72 11111101 101 10000010 

15 11001000 44 10101001 73 10011001 102 01100111 

16 11110011 45 00110001 74 01010001 103 11001110 

17 10000101 46 1100010 75 10100010 104 11111111 

18 01101001 47 11000100 76 00100111 105 10011101 

19 11010010 48 11101011 77 01001110 106 01011001 

20 11000111 49 10110101 78 10011100 107 10110010 

21 11101101 50 00001001 79 01011011 108 00000111 

22 10111001 51 00010010 80 10110110 109 00001110 

23 00010001 52 00100100 81 00001111 110 00011100 

24 00100010 53 01001000 82 00011110 111 111000 

25 01000100 54 10010000 83 00111100 112 01110000 
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Exp Polynomial E xp Polynomial E xp P olynomial Exp Polynomial 

205 10100101 218 1010100 231 10011111 244 00101111 

206 00101001 219 10101000 232 01011101 245 01011110 

207 01010010 220 00110011 233 10111010 246 10111100 

208 10100100 221 01100110 234 00010111 247 00011011 

209 00101011 222 11001100 235 00101110 248 00110110 

210 01010110 223 11111011 236 1011100 249 01101100 

211 10101100 224 10010101 237 10111000 250 11011000 

212 00111011 225 01001001 238 00010011 251 11010011 

213 01110110 226 10010010 239 00100110 252 11000101 

214 11101100 227 01000111 240 01001100 253 11101001 

215 10111011 228 10001110 241 10011000 254 10110001 

216 00010101 229 1111111 242 01010011 255 00000001 

217 00101010 230 11111110 243 10100110 00000000 

Tabl e 6.3: Elements of Galois field G F(28
) 

Step 2: Define a mapping p: GF(28 ) -t GF(28 ) by 

Step 3: Select an element b = a 8 = x 6 + x 5 + X + 1 then apply mapping a: GF(28 ) -t GF(28 ) 

defined by 

Step 4: Find the elements of S-Box using the composition of two mapping 

p oa: GF(28 ) -t GF(28 ) defined by 
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6.2 Application of Nonlinear Component in Image Encryption 

In chapters 4 and 5, we encrypt the image and text by using the BCH codes and the modified 

AES algori thm, but the security layer was missing in that algorithm. We computed in this 

chapter S-Boxes using the Galois ring and t he Galois field and apply those S-Boxes in data 

security. S-Boxes to apply in a distinctive type of cryptosystems for the securi ty of the data is 

need of the day. We encrypt t he image by using the following algorithm, and this algori thm 

has 10 rounds, each round consist of following steps, 

Step 1: Construct the secret key of 128 bit by using BCH codes over the Galois ring or the 

Galois field . 

Step 2: Divide t he pixels of the image into a block of 128 bits and perform the XOR operation 

with a secret key. 

Step 3 : Construct t he S-Box by using the elements of the Galois ring or t he Galois field. 

Step 4: Apply the S-Box to the pixels of the image after secret key addition. 

Step 5: Construct maximum distance separable m atrix using the BCH codes over the Galois 

ring or Galois field. 

Step 6: Multiply the MDS matrix with pixels of the image after applying S-Box. 

Step 7: Repeat Step 1 to Step 6 and construct different keys by using BCH code, different 

S-Boxes, different MDS matrices for each round. 

Example 57 : Suppose that we want to encTypt an image by using the above scheme, then we 

peTfonn the following steps, 

Step 1 : Construction of Secret keys for each round 

To .find the secTet keys by using B CH codes of length 255 over Galois .fi eld GF(28 ) , find the 

genemtor polynomial fo r designed distance d = 119, 
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For designed distance d = 87, 

Key 5 = 97 83 84 35 104 195 56 41 224 158 27 124 162 63 115 89. 

For designed distance d = 85, 

Key 6 = 123 198 170 165 96 163 64 9 147 101 184 77 233 179 201 224. 

For designed distance d = 63 , 

Key 7 = 143 119 118 176 72 226 45 130 246 214 24 86 99 161 193 88. 

For designed distance d = 60, 

Key 8 = 193 198 10 119 189 248 86 75 235 73 108 15 56 254 238 81. 

For designed distance d = 58, 

Key 9 = 29 140 71 26 253 86 30 42 146 133 230 100 83 162 135 109. 

For designed distance d = 55, 

Key 10 = 237 196 133 181 159 220 90 131 200 124 234 29 34 135 112. 

Step 2: Construction of S-Boxes over the Galois field GF(28 ) 

Compute S-Boxes for each round by using mapping defined in equation 6.9. 
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0 E9 FA 7D BO F8 2C 16 B 8B CB EB FB F3 F7 F5 

F4 7A 3D 90 48 24 12 9 8A 45 AC 56 2B 9B C3 EF 

F9 F2 79 B2 59 A2 51 A6 53 A7 DD EO 70 38 lC E 

7 8D C8 64 32 19 82 41 AE 57 A5 DC 6E 37 95 C4 

62 31 96 4B AB DB E3 FF Fl F6 7B B3 D7 E5 FC 7E 

3F 91 C6 63 BF Dl E6 73 B7 D5 E4 72 39 92 49 AA 

55 A4 52 29 9A 4D A8 54 2A 15 84 42 21 9E 4F A9 

DA 6D B8 5C 2E 17 85 CC 66 33 97 C5 EC 76 3B 93 

C7 ED F8 7C 3E IF 81 CE 67 BD DO 68 34 lA D 88 

44 22 11 86 43 AF D9 E2 71 B6 5B A3 DF El FE 7F 

Bl D6 6B BB D3 E7 FD FO 78 3C IE F 89 CA 65 BC 

5E 2F 99 C2 61 BE 5F Al DE 6F B9 D2 69 BA 5D AO 

50 28 14 A 5 8C 46 23 9F Cl EE 77 B5 D4 6A 35 

94 4A 25 9C 4E 27 9D CO 60 30 18 C 6 3 8F C9 

EA 75 B4 5A 2D 98 4C 26 13 87 CD E8 74 3A ID 80 

40 20 10 8 4 2 1 8E 47 AD D8 6C 36 IB 83 CF 

Table 6.6: Elements of S-Box 2 over GF(28
) 
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0 7D BO 58 2C 16 B 8B CB EB FB F3 F7 F5 F4 7A 

3D 90 48 24 12 9 8A 45 AC 56 2B 9B C3 EF F9 F2 

79 B2 59 A2 51 A6 53 A7 DD EO 70 38 lC E 7 8D 

C8 64 32 19 82 41 AE 57 A5 DC 6E 37 95 C4 62 31 

96 4B AB DB E3 FF Fl F6 7B B3 D7 E5 FC 7E EF 91 

C6 63 BF Dl E6 73 B7 D5 E4 72 39 92 49 AA 55 A4 

52 29 9A 4D A8 54 2A 15 84 42 21 9E 4F A9 DA 6D 

B8 5C 2E 17 85 CC 66 33 97 C5 EC 76 3B 93 C7 ED 

F8 7C 3E IF 81 CE 67 BD DO 68 34 lA D 88 44 22 

11 86 43 AF D9 E2 71 B6 5B A3 DF El FE 7F Bl D6 

6B BB D3 E7 FD FO 78 3C IE F 89 CA 65 BC 5E 2F 

99 C2 61 BE 5F Al DE 6F B9 D2 69 BA 5D AO 50 28 

14 A 5 8C 46 23 9F Cl EE 77 B5 D4 6A 35 94 4A 

25 9C 4E 27 9D CO 60 30 18 C 6 3 8F C9 EA 75 

B4 5A 2D 98 4C 26 13 87 CD E8 74 3A ID 80 40 20 

10 8 4 2 1 8E 47 AD D8 6C 36 IB 83 CF E9 FA 

Table 6.8: Elements of S-Box 4 over GF(28 ) 
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0 CB EB FB F3 F7 F5 F4 7A 3D 90 48 24 12 9 8A 

45 AC 56 2B 9B C3 EF F9 F2 79 B2 59 A2 51 A6 53 

A7 DD EO 70 38 1C E 7 8D C8 64 32 19 82 41 AE 

57 A5 DC 6E 37 95 C4 62 31 96 4B AB DB E3 FF F1 

F6 7B B3 D7 E5 FC 7E 3F 91 C6 63 BF D1 E6 73 B7 

D5 E4 72 39 92 49 AA 55 A4 52 29 9A 4D A8 54 2A 

15 84 42 21 9E 4F A9 DA 6D B8 5C 2E 17 85 CC 66 

33 97 65 EC 76 3B 93 C7 ED F8 7C 3E IF 81 CE 67 

BD DO 68 34 1A D 88 44 22 11 86 43 AF D9 E2 71 

B6 5B A3 DF E 1 FE 7F B1 D6 6B BB D3 E7 FD FO 78 

3C IE F 89 CA 65 BC 5E 2F 99 C2 61 BE 5F A l DE 

6F B9 B2 69 BA FD AO 50 28 14 A 5 8C 46 23 9F 

C1 EE 77 B5 D4 6A 35 94 4A 25 9C 4E 27 9D CO 60 

30 18 C 6 3 8F C9 EA 75 B4 5A 2D 98 4C 26 13 

87 CD E8 74 3A 1D 80 40 20 10 8 4 2 1 8E 47 

AD D8 6C 36 1B 83 CF E9 FA 7D BO 58 2C 16 B 8B 

Table 6.10 : Elements of S-Box 6 over G F(28
) 
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0 90 48 24 12 9 8A 45 AC 56 2B 9B C3 EF F9 F2 

79 B2 59 A2 51 A6 53 A7 DD EO 70 38 lC E 7 8D 

C8 64 32 19 82 41 AE 57 A5 DC 6E 37 95 C4 62 31 

96 4B AB DB E3 FF Fl F6 7B B3 D7 E5 FC 7E 3F 91 

C6 63 BF Dl E6 73 B7 D5 E4 72 39 92 49 AA 55 A4 

52 29 9A 4D A8 54 2A 15 84 42 21 9E 4F A9 DA 6D 

B8 5C 2E 17 85 CC 66 33 97 C5 EC 76 3B 93 C7 ED 

F8 7C 3E IF 81 CE 67 BD DO 68 34 lA D 88 44 22 

11 86 43 AF D9 E2 71 B6 5B A3 DF El FE 7F Bl D6 

6B BB D3 E7 FD FO 78 3C IE F 89 CA 65 BC 5E 2F 

99 C2 61 BE 5F Al DE 6F B9 D2 69 BA 5D AO 50 28 

14 A 5 8C 46 23 9F Cl EE 77 B5 D4 6A 35 94 4A 

25 9C 4E 27 9D CO 60 30 18 C 6 3 8F C9 EA 75 

B4 5A 2D 98 4C 26 13 87 CD E8 74 3A ID 80 40 20 

10 8 4 2 1 8E 47 AD D8 6C 36 IB 83 CF E9 FA 

7D BO 58 2C 16 B 8B CB EB FB F3 F7 F5 F4 7A 3D 

Table 6.12: Elements of S-Box 8 over G F(28
) 
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0 51 A6 53 A7 DD EO 70 38 lC E 7 8D C8 64 

19 82 41 AE 57 A5 DC 6E 37 95 C4 62 31 96 4B 

DB E3 FF Fl F6 7B B3 D7 E5 FC 7E 3F 91 C6 63 

Dl E6 73 B7 D5 E4 72 39 92 49 AA 55 A4 52 29 

4D A8 54 2A 15 84 42 21 9E 4F A9 DA 6D B8 5C 

17 85 CC 66 33 97 C5 EC 76 3B 93 C7 ED F8 7C 

IF 81 CE 67 BD DO 68 34 lA D 88 44 22 11 86 

AF D9 E2 71 B6 5B A3 DF El FE 7F Bl D6 6B BB 

E7 FD FO 78 3C IE F 89 CA 65 BC 5E 2F 99 C2 

BE 5F Al DE 6F B9 D2 69 BA 5D AO 50 28 14 A 

8C 46 23 9F Cl EE 77 B5 D4 6A 35 94 4A 25 9C 

27 9D CO 60 30 18 C 6 3 8F C9 EA 75 B4 5A 

98 4C 26 13 87 CD E8 74 3A ID 80 40 20 10 8 

2 1 8E 47 AD D8 6C 36 IB 83 CF E9 FA 7D BO 

2C 16 B 8B CB EB FB F3 F7 F5 F4 7A 3D 90 48 

12 9 8A 45 AC 56 2B 9B C3 EF F9 F2 79 B2 59 

Table 6.14 : Elements of S-Box 10 over G F(28 ) 

Step 3 : Construction of different MDS matrices for each round 

The scheme of construction of maximum distance separable matrices is already explained in 

chapter 5, section 5.2. By using the BCH codes over the Galois field , different MDS matrices 

for each round are calculated as, 

E9 44 49 39 

15 61 09 Al 

F4 70 04 74 

A4 CF 31 23 

DD 68 B6 59 D4 75 75 91 

6E B4 5B 2C BE 4F CF 59 

EA 32 9B CF 

A8 71 FB BE 
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BF 
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58 

24 
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Fig. 6.3: Plain Image Fig. 6.4: Cipher Image 

Fig. 6.5: Plain Image Fig. 6.6: Cipher Image 

Fig. 6.1: Plain Image Fig. 6.8: Cipher Image 
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The Statistical analysis of encrypted image of Lena ,mandrill , pepper and deblur through blue 

channel are shown in Table 6.17, 

Image Contrast Correlation Energy Homogeneity Entropy 

Deblur 10.5257 - 0.0026 0.0156 0.3890 7.9969 

Len a 10.5075 0.0000199 0.0156 0.3899 7.9973 

l'vIandrill 10.5321 - 0.0043 0.0156 0.3893 7.9971 

Pepper 10.5075 0.0000199 0.0156 0.3899 7.9973 

Table 6 .17: Statistical analysis through blue channel 

6.2.3 Histogram Analysis 

The uniformi ty of the image's histogram of an encrypted image is the finest aspect for assessing 

image encrypt ion systems' security. We analyze here the color Deblur , Lena, Mandrill , and 

Pepper image of dimension 256 x 256 , which have different contents , and its histogram is 

considered . Histogram of the encrypted image under the proposed algori thm is likewise identical 

and different from plain image, which makes statistical att acks hard . ' Ve have drawn three

dimensional 3D histograms for plain and encrypted images to study the uniformity in encrypted 

image. The histogram trickle holds the data distribution of pixel respects in a picture. A 

fl awl ess encrypted picture should have a uniform histogram spreading to preserve the rival 

from separating any supportive data from the unstable histogram. The 3D histograms of t he 

original and encrypted im age of Deblur, Lena , Mandrill , and P epper are shown in Fig. 6.9 to 

6. 16. 
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Fig. 6.15: Pepper original Fig. 6.16: Pepper encrypted 

6.2.4 Analyses Discussion 

Initially, statistical analyses are performed. Information entropy and correlation determine the 

security strength of the algorithm. Our entropy is approaching 8, and correlation is very closed 

to zero. These outcomes indicate that the encryption scheme has highly disordered, and the 

relationship between pixels is handsomely break. On the other hand, the quality of encryption 

is determined through contrast, energy, and homogeneity. The outcomes from Tables 6.15,6.16, 

and 6.17 indicates that the encryption scheme is highly secure and has outstanding encryption 

quality. 

The histogram analyses also determine security strength. From figures , Fig. 6.10, 6.12 , 6.14, 

6.16, the encrypted image has a uniform distribution, which provides justification that the 

anticipated scheme has outstanding resistance capability against histogram attacks. 
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Chapter 7 

Conclusion 

In this thesis , we have presented two types of BCH codes one is over Galois ring, and the 

second is over the Galois field. The relation between these two types of codes is developed 

computationally so that data can be transmitted t hrough any of the BCH codes over t he Galois 

ring or Galois field. The selection of code is based on the choice of better code rate or error 

correction capability of t he chosen code or consistency in transmission. Since the number of 

code words in the BCH code over the Galois ring is greater than t he BCH code over the Galois 

field , therefore, we can transfer maximum information per unit time in BCH codes in the 

Galois ring. One can transmit data easily from the Galois ring to the Galois field by using t he 

proposed computational approach. We can choose better error correction capabilities of BCH 

codes computationally by changing the input algorithm 's designed distance. A computational 

method is designed to construct the BCH codes over the Galois ring for encoding our messages . 

We have constructed a computationally maximal cyclic subgroup of any order as desired , which 

helps us to construct S-box over Galois ring in the field of Cryptography and decoding of BCH 

codes. We have also found the dimension of the primitive BCH code computationally for any 

fixed length with the degree of the generator polynomial. The problem of t he dimensions of 

primitive BCH codes over the Galois field is resolved. This novel approach provides us the 

generator polynomial for BCH codes of each length over the Galois ring and Galois field. 

If t he data can be encoded either by the BCH codes over the Galois ring or BCH codes over t he 

Galois field then transmitted data can also be decoded using the computational approach of 

the Barlekamp Massey algorithm for the Galois field-based BCH code. The luxury of encoding 
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Appendix 
This section consist of computer programs which are very helpful to understand this t hesis. 

{ 

public partial class frmEncoding Form 

{ 

string alpha = II $\ alpha$ II ; 

string beta = 1I$\ beta$lI; 

Color _coeffColor = Color .Green; 

Color variableColor = Color.Blue; 

Color _degreeColor = Color .Red; 

Color _modulusColor = Color.Magenta; 

int -q O· , 

int _n O· , 

int d O· , 

int -p 0; 

int _blinkerCount = 1; 

Polynomial currentPolynomial new Polynomial() ; 

int startingAlphaDegree = 4; 

int currentAlphaDegree = 4; 

List < Polynomial > alphaPolynomials new List < Polynomial> 0 ; 

List < Polynomial > betaPolynomials = new List < Polynomial > 0 ; 

List < Polynomial > MiPolynomials = new List < Polynomial > 0 ; 

List < Polynomial> DistinctMiPolynomialsModeP = new List < Polynomial> (); 

List < Polynomial > DistinctMiPolynomials = new List < Polynomial > 0 ; 

Polynomial GeneratorPolynomialRing = new Polynomial(); 

Polynomial GeneratorPolynomialField = new Polynomial(); 

public frmEncoding() 
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private void btnAdd_Click(object sender, EventArgs e) 

{ 

_q int.Parse(txtQ.Text.Trim()); 

n = int.Parse(txtN.Text.Trim()); 

d int.Parse(txtD.Text.Trim()); 

_p int.Parse(txtP.Text.Trim()); 

startingAlphaDegree = int.Parse(txtAlphaDegree .Text); 

btnAdd.Enabled = txtD.Enabled = txtP.Enabled = txtQ.Enabled 

false; 

btnSolve .Enabled = true; 

List < double > alphaEq = new List < double > 0 ; 

txtN.Enabled 

for (int alphaPoly = 1; alphaPoly < startingAlphaDegree; alphaPoly++) 

{ 

alphaEq .Clear(); 

for (int poly = 0; poly < alphaPoly; poly++) 

alphaEq.Add(O); 

al phaEq . Add (1) ; 

alphaPolynomials.Add(new Polynomial(alphaEq .ToArray< double > ())); 

} 

II for last polynomial and adding it to rTxtExpression 

alphaEq[alphaEq.Count - 1J = 0; 

al phaEq . Add (1) ; 

Ilfor (int i = 0; i < startingAlphaDegree; i++) 

II alphaEq .Add(O); 

//alphaEq .Add(l); 

AddToRichTextBoxExpression(rTxtPolynomialExpression, alphaEq.ToArray(), 

false, 11$ \ alpha$I1); 

rTxtPolynomialExpression.AppendText(" = II); 

cur rentPolynomial .AddA(new Polynomial(txtPolynomial.Text.Trim())); 
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IlmvNextPoly.AddTerm(ld"); 

IlmvNextPoly. SetlndeterminateValue("X", 4.0); 

IIMessageBox .Show(mvPoly .ToString(»; 

IIMessageBox.Show(mvNextPoly.ToString(»; 

IlllPolynomial mulPolynomial = mvPoly . * mvNextPoly; 

IIIIMessageBox.Show(mulPolynomial.ToString(»; 

1***************************1 

#endregion 

currentAlphaDegree 

bool findAlphaFlag 

do 

{ 

startingAlphaDegree; 

true; 

findAlphaFlag = MultiplyEquationWithAlpha(currentPolynomial); 

if (rBtnFindAlpha.Checked==true && chkAlpha.Checked == true && 

findAlphaFlag == false) 

{ 

break; 

} 

} while (PolynomialIsConstant(currentPolynomial) 

int initialPowerOfAlphaForBeta; 

II condition for finding only alpha 

if (rBtnFindAlpha.Checked == false) 

{ 

if (chkBeta.Checked 

{ 

true) 

false); 

initialPowerOfAlphaForBeta = (alphaPolynomials.Count) I _n; 

for (int betaPower = 1; betaPower < = _n; betaPower++) 

{ 

Polynomial pForBeta new Polynomial(alphaPolynomials 
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rTxtGeneratorPolynomial.AppendText("g(x) = "); 

rTxtGeneratorPolynomialWithModeP.AppendText("g(x) "); 

AddToRichTextBoxExpression(rTxtGeneratorPolynomial, GeneratorPolynomialRing.ToArray(), 

false, "X") ; 

AddToRichTextBoxExpression(rTxtGeneratorPolynomialWithModeP, GeneratorPolynomialField.l 

false, "X"); 

timerBlinker .Enabled 

} 

} 

true; 

else II finding alpha only 

{ 

if (alphaPolynomials.Count % _n 0) 

{ 

MessageBox.Show("Found polynomial"); 

} 

else 

{ 

MessageBox.Show("Polynomial does not qualify"); 

} 

} 

btnTestEncodeDecod.Enabled 

int dummy = 0; 

true; 

if (betaPolynomials.Count > 0) 

{ 

MCSG result = MCSG.GetMcsg; 

result.BetaPolynomials = betaPolynomials; 

result .Q 

result .N n' - , 

result.P 
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} 

else 

{ 

foreach (Polynomial p in pList) 

{ 

Poly PolynomialModX(Poly.Mul(p),modeValue); 

} 

} 

return Poly; 

} 

private void AddPolynomialListToRichTextBox(List < Polynomial > listP) 

{ 

int i 1· , 

foreach (Polynomial p in listP) 

{ 

rTxtMiModeP . AppendText(IM(" + (i++) .ToStringO + ") = "); 

AddToRichTextBoxExpression (rTxtMiModeP, p . ToArray 0, true, "x "); 

} 

} 

private List < Polynomial> CalculateAllMiModeP (List < Polynomial> allMi) 

{ 

List < Polynomial> MiModeP = new List < Polynomial > (); 

foreach (Polynomial p in allMi) 

{ 

MiModeP.Add(PolynomialModX(p,_p)); 

} 

return MiModeP; 

} 
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AddToRichTextBoxExpression (rTxtMx, tempMkPolynomial. ToArray 0 , true, "x") ; 

MiPolynomials.Add(tempMkPolynomial); 

} 

} 

private Polynomial CalculateMk(List < int > MkBetaPowers, List < Polynomial > bPolynamials 

{ 

int rows = MkBetaPowers.Count + 1; // assumption: 

power of x would not increase than the number of polynomials in a set 

int cols = betaPolynomials.Count + 1; 

int totalPolynomialSets = rows-1; // e.g. (x-B) (x-B-2) (x-B - 4) (x-B-8) 

have 4 polynomial sets 

///////////////// creating matrix for result /////// 

int[] [] multivariatePalynomialResult = Create2DlntArray(rows, cols); 

//int[] [] multivariatePolynomialResult = new int[rows] []; 

//for (int i = 0; i < rows; i++) 

//{ 

// multivariatePolynomialResult[i] = new int[cols]; 

/1} 

/////////////////////////////////////////////////// 

//////////// Creating matrices for all polynomial sets in Mk ///////////// 

int[] [] [] multivariatePolynomials = new int[totalPolynomialSets] [] []; 

for (int i = 0; i < totalPolynomialSets; i++) 

{ 

multivariatePolynomials[i] Create2DlntArray(rows, cals); 

} 

///////////////////////////////////////////////////////////////////////// 

List < Polynomial > Mi = new List < Polynomial> 0 ; 
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} 

} 

} 

indexesNoZeroValues.Add(tempSetlndexes); 

} 

CopyArray(multivariatePolynomials[O] , multivariatePolynomialResult); 

for (int setNo = 1 ; setNo < indexesNoZeroValues.Count ; setNo++) 

{ 

foreach(KeyValuePair < int,int > cordlndexes in indexesNoZeroValues[setNo]) 

{ 

for(int row 

for(int col 

{ 

o 

o 

row < multivariatePolynomialResult.Length ; row++) 

col < multivariatePolynomialResult[O] . Length ; col++) 

if (multivariatePolynomialResult [row] [col] != 0 ) 

{ 

int newRowlndex; 

int newCollndex; 

newRowlndex = cordlndexes.Key + row; 

II taken mode with n to reduce power of Beta 

newCollndex = (cordlndexes.Value + col) % _n; 

int newCoefficient; 

newCoefficient = multivariatePolynomials[setNo] [cordlndexes . Key] 

[cordlndexes.Value] * multivariatePolynomialResult[row] [col]; 

IltempResult[newRowlndex] [newCollndex] = multivariatePolynomialResult[newRowlndex] 

[newCollndex] + newCoefficient; 

tempResult[newRowlndex] [newCollndex] 

[newCollndex] + newCoefficient; 

} 

} 
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the 

II this will happend only in the form when taking common, overall constant of 

polynomial will be added later 

II x = 0 and beta = 0 is the overall polynomial constant 

if (x > 0) 

{ 

constantPoly[OJ = mult i variatePolynomialResult[xJ [OJ; 

tempPolynomial.AddA(constantPoly); 

} 

for (int coeff = 0; coeff < = tempPolynomial.Maxlndex; coeff++) 

tempPolynomial[coeffJ = (tempPolynomial[coeffJ % _q + _q) % _q; 

if (tempPolynomial.Maxlndex == - 1 && x == multivariatePolynomialResult.Length 

- 1) 

Mk.AddA(new Polynomial("x-" + x.ToStringO) ); 

else 

Mk .AddA(new Polynomial(tempPolynomial.Mul(new Polynomial 

("X-" + x.ToStringO)) .ToArrayO)); 

} 

Mk[OJ += (multivariatePolynomialResult[OJ [OJ % _q + _q) % _q; 

return Mk; 

} 

private void InitializeMultivariatePolynomials(int[J [J [J 

MVPolynomials, List < int > betaPowers) 

{ 

for (int MVPolylndex 

{ 

0; MVPolylndex < MVPolynomials.Length 

II represents X-1 in matrix 

MVPolynomials[MVPolylndexJ [lJ [OJ 1; 
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} 

return a; 

} 

#endregion 

private void ShowPolynomialMatrix(int[] [] polynomilaMatrix) 

{ 

string msg 1111 . . 
for (int t 0; t < polynomilaMatrix.Length; t++) 

{ 

for (int x = 0; x < polynomilaMatrix[O] . Length; x++) 

msg += polynomilaMatrix[t] [x] . ToStringO + " "; 

msg += "\n"; 

} 

MessageBox.Show(msg); 

} 

#region " Incorrect Implimentation using first substitution they multiplication 

private void CalculateAllMiPolynomials (List < List < int » MiAndBetaPowers) 

{ 

List < int > MkBetaPowers MiAndBetaPowers[O] ; 

Polynomial Mk; 

for (int k = 0; k < MiAndBetaPowers.Count; k++) 

{ 

Mk = new Polynomial(CalculateMkPolynomial(MiAndBetaPowers[k]).ToArray()); 

MiPolynomials.Add(new Polynomial(Mk)); 

rTxtMx. AppendText ("M" + (k+1). ToString 0 + "(x) = "); 

AddToRichTextBoxExpression(rTxtMx. Mk. ToArrayO. true. "x '') ; 

rTxtMx.AppendText("\n\n"); 

} 
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'1 ' 

Ilpower 

Ilk++; 

(i * P * k) % n; 

if (power > (alphaPolynomials.Count - 1)) 

{ 

MessageBox.Show(II$\beta$~1I + power.ToStringO + II 

does not exist in polynomial list ... \nSomething has gone wrong"); 

throw new Exception(II$\beta$~1I + power. ToStringO + II 

does not exist in polynomial list ... \ nSomething has gone wrong"); 

} 

if (tempBetaPowers.Contains(power)) 

break; 

else 

tempBetaPowers.Add(power); 

} while (true); 

tempBetaPowers.Sort(); 

return tempBetaPowers; 

} 

private bool PolynomiallsConstant(Polynomial p) 

{ 

for (int coefflndex 

{ 

1; coefflndex <= p.Maxlndex; coefflndex++) 

if (p [coeffIndex] ! = 0) 

return false; 

} 

II special condition that the polynomial should not only be a constant but also 

if ( p [0] == 1 ) 

return true; 

return false; 

} 
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{ 

if (temp == " - ") 

temp += (-polyCoeff[index]).ToString(); 

else 

temp += polyCoeff[index] .ToString(); 

} 

} 

previous Index = rtxt.Text .Length - 1; 

rtxt.AppendText(temp); 

startIndex = rtxt .Text.IndexOf(temp, previousIndex, 

StringComparison . InvariantCultureIgnoreCase) ; 

rtxt .Select(startIndex, temp.Length); 

rtxt.SelectionColor = _coeffColor; 

II last constant in polynomial, therefore no need to print variable 

if (index ! = 0) 

{ 

temp = variable; 

previous Index = rtxt.Text . Length - 1; 

rtxt.AppendText(temp); 

startIndex = rtxt.Text.IndexOf(temp, previousIndex, 

StringComparison.InvariantCultureIgnoreCase); 

rtxt.Select(startIndex, temp .Length); 

rtxt.SelectionColor = _variableColor; 

} 

II no need to print degree when it is 1 

if (index != 1 && index != 0) 

{ 

temp index.ToString(); 
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rtxt.AppendText(1I ("+ b i nary + II )"); 

if ( nevlLine) 

rtxt.AppendText(l \ n"); 

} 

private bool MultiplyEquationWithAlpha(Polynomial current) 

{ 

Polynomial p = new Polynomial("x"); 

current.MulA(p); 

rTxtAlpha.AppendText(II$ \ alpha$-1I + (++currentAlphaDegree) .ToStringO + II "); 

//AddToRichTextBoxExpression(rTxtAlpha, current.ToArray(), true) ; 

SubstitutecurrentPolynomial(current); 

if (alphaPolynomials.Count > _n) 

return false; 

r eturn true; 

} 

private void SubstitutecurrentPolynomial(Polynomial current) 

{ 

double[] coefficients = current.ToArray(); 

if (coefficients . Length > = startingAlphaDegree+l && coefficients[startingAlphaDegree] 

!= 0) 

{ 

string tempCoeff = 1111; 

if (currentPolynomial[startingAlphaDegree] < 0) 

tempCoeff += "_" + current [startingAlphaDegree] . ToStringO; 

else 

tempCoef f += current [startingAlphaDegree] .ToString(); 
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} 

private void rBtnFindAlpha_CheckedChanged(object sender, EventArgs e) 

{ 

grpBoxCompute.Enabled rBtnCompute.Checked; 

} 

private void chkBoxes_CheckedChanged(object sender, EventArgs e) 

{ 

CheckBox chkBox = (CheckBox) sender; 

//MessageBox.Show(chkBox.Checked.ToString()); 

if (chkBox .Name .Equals("chkAlpha")) 

{ 

if (chkBox.Checked 

{ 

false) 

chkBeta.Checked = false; 

chkMinimal.Checked = false; 

chkGenerator.Checked = false; 

} 

chkBox.Checked 

} 

true; 

else if (chkBox.Name.Equals("chkBeta")) 

{ 

if (chkBeta.Checked 

{ 

false) 

chkMinimal.Checked false; 

chkGenerator.Checked = false; 

} 

else 

{ 

chkAlpha .Checked 

} 

true; 
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