
Computational Design of BCH-Codes and Their

Applications in the Data Security

ISLAMABAD

Muhammad Asif

Department of Mathematics

Quaid-i-Azam University

Islamabad, Pakistan

2020

Computational Design of BCH-Codes and Their

Applications in the Data Security

ISLAMABAD

By

Muhammad Asif

Supervised

By

Prof. Dr. Tariq Shah

Department of Mathematics

Quaid-i-Azam University

Islamabad, Pakistan

2020

Computational Design of BCH-Codes and Their

Applications in the Data Security

ISLAMABAD

A Thesis Submitted to the Department of Mathematics,

Quaid-i-Azam University, Islamabad, in the partial fulfillment of

the requirement for the degree of

Doctor of Philosophy

in

Mathematics

By

Muhammad Asif

Department of Mathematics

Quaid-i-Azam University

Islamabad, Pakistan

2020

Author's Declaration

I, Muhammad Asif, hereby state that my PhD thesis titled Computational

Design ofBCH-Codes and Their Applications in the Data Security is my own

work and has not been submitted previously by me for taking any degree from

the Quaid-I-Azam University Islamabad, Pakistan or anywhere else in the

country Iworld.

At any time if my statement is found to be incorrect even after my graduate the

university has the right to withdraw my PhD degree.

~
Name of Student: Muhammad Asif

Date: 08-09-2020

Plagiarism Undertaking

I solemnly declare that research work presented in the thesis titled

"Computational Design of BCH-Codes and Their Applications in the Data

Security" is solely my research work with no significant contribution from any

other person. Small contributionihelp wherever taken has been duly

acknowledged and that complete thesis has been written by me.

I understand the zero-tolerance policy of the HEC and Ouaid-i-Azam University

towards plagiarism. Therefore, I as an Author of the above titled thesis declare

that no portion of my thesis has been plagiarized and any material used as

reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even afterward of PhD degree, the University reserves the rights to

withdraw/revoke my PhD degree and that HEC and the University has the right

to publish my name on the HEClUniversity Website on which names of students

are placed who submitted plagiarized thesis.

Student/Author Signature: ,)~ * f(I' ====
Name: Muhammad Asif

Computational Design of BCH-Codes and Their
Applications in the Data Security

By

Muhammad Asif

CERTIFICATE

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF THE

DOCTOR OF PHILOSOPHY IN MATHEMATICS

We accept this thesis as conforming to the required standard

Prof. Dr. Soh ail Nadeem
(Chairman) j

3. -..--/1/#/ /f~1~·
----~----~~~---

Prof. Dr. Akbar Azam
(External Examiner)

Department of Mathematics, COMSA TS
University, Park Road, Chak Shahzad,
Islamabad.

Prof. Dr. Tariq Shah
(Supervisor)

4~ =d
(External Examiner)

Department of Mathematics & Statistics,
Faculty of Basics Applied Sciences,
International Islamic University, Islamabad.

Department of Mathematics
Quaid-I-Azam University

Islamabad, Pakistan
2020

Certificate of Approval

This is to certifY that the research work presented III this thesis entitled
Computational Design of BCH-Codes and Their Applications in the Data
Security was conducted by Mr. Muhammad Asif under the kind supervision of
Dr. Tariq Shah. No part of this thesis has been submitted anywhere else for any
other degree. This thesis is submitted to the Department of Mathematics, Quaid-i
Azam University, Islamabad in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in field of Mathematics from Department of Mathematics,

Quaid-i-Azam University Islamabad, Pakistan.. J t1.J. a
Student Name: Muhammad AsiC SIgnature: ~
External committee: J

a) External Examiner 1: Signature: ~~IA •

Name: Dr. Akbar Azam
Designation: Professor
Office Address: Department of Mathematics, COMSATS University, Park

Road, Chak Shahzad, Islamabad.

b) External Examiner 2:
Name: Dr. Tahir Mehmood

Signature: ~ "

Designation: Assistant Professor
Office Address: Department of Mathematics & Statistics, Faculty of Basics

Applied Sciences, International Islamic University, Islamabad.

c) Internal Examiner
Name: Dr. Tariq Shah
Designation: Professor

Signature~ MAaJ ~\.

Office Address: Department of Mathematics, QAU Islamabad.

Supervisor Name:
\\' , ~

Signature: ()vV.. ~

Prof. Dr. Tariq Shah

Name of Dean/ HOD

Prof. Dr. Sohail Nadeem

,..

DE\DICATIID

TO

PARKNJTS

Acknowledgement
All praise for Almighty Allah, the creator and the Merciful Lord, who guides me in darkness,

helps me in difficulties and enables me to reach the ultimate stage with courage. All of my

veneration and devotion goes to our beloved Prophet Hazrat Muhammad (S.A.W) the source

of humanity, kindness and guidance for the whole creatures and who declared it an obligatory

duty of every Muslim to seek acquire knowledge.

I express deepest gratitude to my respected supervisor Prof. Dr. Tariq Shah for his inteUectual

guidance, constant encouragement, valuable suggestions, and inexhaustible inspiration

throughout my research work. He was the backbone of this research work with constructive

criticism and extensive discussions. In short, his tireless work, unique way of research and

devotion to his profession cannot be expressed in words.

I wish to express my heartiest thanks and gratitude to my parents, my father Scp Muhammad

Rafique Shaheed who sacrifice himself for this country and got "SHAHADAT" during

service in Pak Army. My mother, the ones who can never ever be thanked enough for the

overwhelming love, kindness, and care they bestow upon me. She gave me love of father too,

and support me in every difficulty, without her proper guidance it would not been possible for

me to complete my higher education. I am also thankful to my younger brothers Muhammad

Rashid and Muhammad Nasir for their love and care in every moment of my PhD.

I would like to express my gratitude to all the respected teachers . Sir Tayyab, Sir Tasawar, Sir

Khalid, Sir Safdar, Sir Muzaffar, Sir Aslam, they are all those people who made me what I am

today, they polished me at different stages of my life and taught me whatever I am today.

I gratefully acknowledge my seniors, my friends (Dr. Yasir Naseer, Mr. Mubasher Umer,

Muhammad Tanveer, Dr Kashif Shafiq, Dr. Sajid, Dr. Zafar Saeed, Dawood Shah) and my

PhD fellows for their brilliant ideas and important contribution in refining my research work.

Their professional guidance has nourished and polished my intellectual skills and I will always

remain thankful to them.

I am also thankful to administrative staff of mathematics department and all faculty for their

suPPOtt at every time.

In the end, I would like to all my research fellows and to those people who directly and

indirectly helped me during my research work.

08-09-2020

Preface

Due to innovations in communication technologies, digital medium is extensively used across

the World. Large amount of information in digital form is stockpiled in digital libraries. The

error free transpOl1ation of digital data through untrustworthy channels is a great challenge.

Accordingly, in information theory, telecommunication, computer science and algebraic

coding theory, an error correction code or error correcting code is used for controlling errors in

data over unreliable or noisy communication chalmels. Because of error correcting codes, the

communication is made over the shol1 and long distances without any obstacle. Thus, it made

possible the gigabit data transmission over the wireless communication mediums. Indeed, it is

the fundamental part of the modern communication systems and essentially utilized in

hardware level implementations of intelligent and smart machines like telecom equipment,

highly sensitive video cameras, optical devices, and scanners.

Development of data transferring codes were started with the first article [3 J] of Claude

Shannon in 1948. He explained that, every communication channel has some capacity. If the

rate of data transmission is smaller than capacity, then design of communication system for the

channel is possible with the help of data transmission codes. This system has least probability

of output errors, but Shannon did not give the method for the construction of such type of

codes. In 1950, for this purpose Hamming [14] and Golay [9] introduced cyclic block codes

known as binary hamming and Golay codes respectively. These classes of codes have the

capability to detect up to two errors and correct one error. Furthermore, these codes have

fascinating features and can be easily encoded and decoded but are not suitable for multiple

errors. In 1953, Muller [18] introduced a mUltiple error correcting codes technique and Reed

[26] developed decoding technique of such type of codes. Yet, Shannon's hypothesis remained

ulU'esolved.

Cyclic codes are one of the dynamic class of error correcting codes. In 1957, Prange [33]

initiated an idea of cyclic codes in two symbols. In addition, Prange [24] used the coset

equivalence for decoding the group codes in 1959. After that, a big development in the theOlY

of cyclic codes was made to correct burst along with random errors initiated by various

researchers. The cyclic codes were initially developed over binary field ::l2 and into its Galois

field extension GF(Z7n). Though, it was further extended over the prime field ::lp and into its

Galois field extension GF(p7n). The remarkable development in coding theory began when

Hocquenghem [10], Bose and Chaudhuri [3] explained the large class of codes which correct

multiple errors known as BCH codes in 1960. They explained the BCH codes over Galois field.

These codes are generalization ofbinalY Hamming codes. The advantage ofBCH code is that,

Fundamentally the BCH codes are utilized for only data transmission, but not for data security.

In this study we have given the idea that, BCH codes can be used for data security . Accordingly,

by BCH codes over Galois field and Galois ring a couple of techniques are devised to modifY

AES algorithm. Accordingly, this modified AES algorithm tested on text and image data, the

results assured the appropriate level of security.

This thesis consists of seven chapters.

In Chapter one, some important notions of algebraic structures and error correcting codes are

explained which are necessary for understanding further chapters.

In Chapter two, initially we have given details on obtaining the maximal cyclic subgroup of

group of units of a Galois ring through computational method. Afterword the new

computational encoding scheme of BCH code over Galois ring is introduced. This novel

computational approach of encoding of BCH codes provides generator polynomial for any

length n corresponding to each designed distance d. Furthermore, the encoding ofBCH codes

over Galois field has also been explained with the help of reduction map. Another outcome of

this study is that one can find the dimensions of primitive BCH codes for any length and

designed distance.

In Chapter three, using C# computer language a computational decoding scheme for BCH

codes over Galois ring has been designed by which Barlekamp Massey decoding algorithm of

BCH codes over Galois field is employed to correct the errors. Indeed, this modified Barlekamp

Massey decoding algorithm is designed for large length BCH codes over Galois field. The

special feature of this study is the syndrome calculation with computational approach . Thus,

decoding of BCH and RS codes over Galois ring by using modified Barlekamp Massey

algorithm has been ensured.

In Chapter four, BCH codes have been utilized to improve the AES algorithm. BCH codes have

been utilized as a secret key in round key addition step of AES algorithm. ill addition, using

BCH codes, the maximum distance separable matrix has been constructed and applied in mixed

column matrix step in modified AES algorithm. Thus, this modified AES algorithm has been

applied in image encryption and different analyses on encrypted image have been performed.

The comparison of results of encrypted image by using original and modified AES algorithms

have been discussed.

In Chapter five, The AES algorithm is modified. Initially we use BCH codes and calculated

secret keys for each round in AES algorithm. In second step, mixed column matrices have been

computed by using BCH codes for each round. This modified AES algorithm has been used

for text encryption and then applied avalanche effect to cipher text. N1ST statistical test have

been applied on proposed text encryption scheme.

Contents

1 Algebraic Notions and Error Correcting Codes 4

1.1 Finite Rings and Finite Fields. 4

1.1.1 Polynomial Ring 5

1.1.2 Galois Field . 5

1.1.3 Galois Ring . 6

1.1.4 Linear Spaces 7

1.2 Fundamentals of Error Correcting Codes . 7

1.2. 1 Codes 7

1.2. 2 Linear Codes 9

1.2.3 Hamming Codes 11

1.2.4 Cyclic Codes 12

1.2.5 BCH Codes . 13

2 BCR-Codes over Galois Ring and Galois Field : Computational Encoding Ap-

proach

2.1 BCH Codes over Galois Ring: Encoding

15

16

2.1.1 Maximal Cyclic Subgroup over Galois Ring 17

2.1.2 Maximal Cyclic Subgroup with Computational Approach 19

2. 1.3 Generator Polynomial of BCH Codes using Maximal Cyclic Subgroup 20

2.2 Computationally Encoding of BCH Codes over Galois Ring .

2.2.1 Algorithm for Designing BCH Codes over Galois Ring

2.2.2 Explaination of Algorithm 1 with Example

1

35

36

44

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

Contrast.

Correlation

Ellergy.

HQmogeneity

Entropy

Histogram Analyses

82

82

83

83

83

85

5 Symmetric Block Cipher and BCH Codes: A Text Encryption Application 87

5.1 Construction of MDS Matrices using BCH Codes

5.2 Construction of Secret Keys using BCH Codes

5.3 Application of BCH Codes in Text Data

5.4 Text Encryption Analyses

5.4.1 Avalanche Effect .

5.4.2 NIST Statistical Test.

5.4.3 Ciphertext Attack ..

5.4.4 Known Plaintext Attack

88

91

95

97

97

· 100

· 101

· 101

6 A Nonlinear Component Design in Symmetric Block Cipher with Image En-

cryption Application 102

6.1 Construction of Nonlinear Component using Galois Ring and Galois Field . 102

6.1.1 Scheme for Nonlinear Component over the Galois Ring.

6.1.2 Scheme for Nonlinear Component over the Galois Field

6.2 Application of Nonlinear Component in Image Encryption

6.2.1 Encryption Procedure Explaination

6.2.2 Statistical Analysis .

6.2.3 Histogram Analysis .

6.2.4 Analyses Discussion

7 Conclusion

8 References

9 Appendix

3

· 103

· 108

· 114

· 127

· 129

· 130

· 132

133

135

139

Chapter 1

Algebraic Notions and Error

Correcting Codes

In this chapter, we present some basic notions necessary for t he understanding of thesis and

have two phases. In the first phase, we discuss some algebraic concepts of rings and fields. In

the second phase, we present some fundamentals of error-correcting codes .

1.1 Finite Rings and Finite Fields

Let a non empty set R with two operations addition '+' and multiplication ' .' is called ring if

it satisfies the following conditions.

i) R is the abelian group under addition '+'.

ii) R is semigroup under multiplication '.'.

iii) Multiplication '·' is distributive with respect to addition in R.

If T1, T2 E R , and T 1 ·7'2 = T2 . T 1 , then it is called a commutative ring. Let R be a ring, and a

non zero element T1 of R is said to be zero divisor from left if there exists a non zero element

T2 of R such t hat T1 T2 = 0 where 1'2 is right zero divisor. If R is commutative ring, then T 1 and

T2 are zero-divisors of each other. A ring R is called an integral domain if it does not contain

any zero divisor. Let R be a commutative ring with identity, and a non zero element T1 E R

is a unit element if there exists an element 7"2 E R such that 7"27"1 = Tl7"2 = 1. We denote a

set of units elements by U(R). Let l' be an element of ring R , then it is said to be nilpotent if

4

The order of GF (pm) is pm. The Galois field GF (pm) is denoted by K, and K * denotes the

group of non zero elements of Galois field. If q = pn where p is prime and n E Z+, f (x) is

primitive irreducible polynomial of degree m then ,

Example 1 If q = 2 and m = 3 then,

where x 3 + x + 1 is a primitive iT"reducible polynomial with primitive root a in Z2 [X],

GF (8) = {r + sa + ta2
: r, s, t E Z2 , 1 + a + a 3 = o}.

TheT(~fo re, elements of G F (8) are shown in Table 1.1 ,

I 0 I a I a 2 a 3 = a + 1 a 4 = a + a 2 a 5 = 1 + a + a 2 a 6 = 1 + a 2 a 7 = 1

Table 1.1 : Elements of Galois field GF(23
)

1.1. 3 Galois Ring

(1.5)

Let n, m be any positive integers and p be a prime number , where m be the degree of basic

irreducible polynomial f (x) then Galois ring be defined as,

Zpn [xl { 2 l1t - l 71 } GR (n) (f(x)) = PO+PI X+ P2 X +,,·+Pm-l X :PO,Pl,·",Pm-l EtL.pn ~ p,m . (1.6)

It is the Galois extension ring of Zpn having pnm elements. Galois ring G R (pn , m) is denoted

by R , and R * denotes the group of units of Galois ring.

6

are known as codewords. Trivial code contains an only a single element. If each element of the

code C can be written in the form vvv ... v for some v E V, then C is called repetition code.

The q-ary repetition code contains exactly q codewords. Let w, v E vn, W = WI W2W3 ... Wn and

v = VI V2V3 ... Vn then the Hamming distance d (w , v) between the vectors wand v is defined

as,

d (W, v) = 1 {i : Wi i- vd I· (1.7)

The least distance between any two different codewords in C is called minimum distance,

and it is denoted by d (C) ,

d(C) = min{d(w,v) : for all w,v E C and wi-v}. (1.8)

For example, the minimum distance of C = {ODD, 101, 100, Ill} is 1.

Theorem 2 [19]: Suppose that code C having minimum distance d (C). Let t = l d;1 J then

the errors detected in the received word are d - 1, and the erTOrs can be corrected in any rece'ived

word are t.

Every code C is denoted by (n, M, d (C)), where n is the length of code C and M indicates

the number of codewords in C and d (C) represents the minimum distance of C. The code C is

called good code if it satisfies following conditions:

i) The length n of the code is smaller.

ii) The size of M is very large.

iii) d (C) of the code is a lso large.

The length of the code sm aller means that transmission of code is very fast, and the cost of the

code is very low. The large M means that we can send more variety of messages, and d (C)

of the code is large, which implies that we can correct greater number of errors. The main

task of the algebraic theorists is to find those codes whose size M and the minimum distance

is maximum for fixed-length n . Suppose C C vn is a code h aving minimum distance 2t + 1. If

for each w E vn, there exist v E vn such that d (w, v) ::; t, then C is known as perfect code.

For example, binary code {ODD, Ill } is a perfect code with minimum distance 3.

8

perpendicular to itself and perpendicular to each element of C, t hen a code C is called self

orthogonal , or if CJ.. ;2 C , then it is also self orthogonal. Let C be the [n, k] code, 7-{ is the

generator matrix having order (n - k) x n of CJ... The generator matrix of CJ.. is also known as

the parity check matrix of C.

Theorem 4 [19]: If C is a [n , k] code over the fi eld F and 7-{ is generator matrix of CJ.. then,

(1.12)

Theore m 5 [19]: If C is a [n, k] code, 9 is a generator matrix, and 7-{ is a parity check matrix

of the code C then,

(1.13)

Conversely, suppose that 9 is a k x n matrix, and 7-{ is (n - k) x n matrix s1lch that g7-{T = O.

The 7-{ is a parity check matrix of the code C ~f and only if 9 is the generator matrix of C,

where the rank of 9 is k, and rank of the 7-{ matrix is n - k.

Example 6 : If the code C = {OOO, 111} then CJ.. = {110, 000, 101 , all}. The generator matrix

of Cis,

9 = [1 1 1] , (1.14)

and parity check matrix of Cis,

7-{ = [1 1 0] .
101

(1.15)

Theorem 7 [19] : Suppose C is [n , k] code. If C has generator matrix as,

9 = [h :B] , (1.16)

where B is k x (n - k) matrix, then the parity check 7-{ is defined as

(1.17)

If parity check matrix 7-{ is defined as,

(1.18)

10

Therefore, Ham(2 , 2) is {lI1,000} repetition code.

Theorem 9 [19l: Ham(m, q) is a pe1ject code with minimum distance 3.

1. 2.4 Cyclic Codes

In error-correcting codes, properties of cyclic codes are very interesting than general linear

codes. There is a huge class of necessary codes that are related to cyclic codes. The mapping

(J : F" -> F" is defined by

(1.23)

is called a cyclic shift. If C is the subset of F 11 and for each element u of C which implies

(J (u) E C then it is called cyclic code. For example, the code C = {l00, 010 , 001 , OOO} is cyclic

code over F2. Suppose that

is the set consisting of all polynomials having degree smaller t han n over F.

The mapping p: F n -> F[Xln is defined as,

p (u) = u (x) for all u = (uo, U1,U2, . . . , un-d E P"

(1.24)

(1.25)

and this is an isomorphism. Let F [Xl be the polynomial ring over F and h (x) E F [Xl be an

irreducible element over the field F , the quotient ring,

(1.26)

is a field, such that t = x+ < h (x) >, h (t) = 0 and h (x) be the n degree polynomial. Let

h (x) = x" - 1, then the quotient ring is,

(1. 27)

12

equivalently C is the null space of H ,

H =

1 C
1 .;c+l

ec

e(c+l)

1 ~c+d-2 e(c+d-2)

.;(n-l)c

.;(n- l)(c+l)

~(n-l)(c+d-2)

where H is (d - 1) x n quasi parity check matrix over :Fqm.

(1.29)

Theorem 13 [1 9] : Let C be a BCH code with designed distance d then the minimum distance

d (C) is greater then or equal to designed distance, d (C) ~ d.

14

Chapter 2

BCH-Codes over Galois Ring and

Galois Field: Computational

Encoding Approach

In this chapter, the encoding of primitive BCH code over the Galois ring and Galois field with

the computational approach are explained. The novel approach is introduced to overcome the

problems in the construction of generator polynomial and determination the dimension of the

BCH code over the Galois ring and Galois field. A modern technique is developed in such a

way that the data can be encoded during transmission over the Galois field or Galois ring. The

selection of schemes is based on a better code rate and improved error correction capability

of the chosen code. Our computational method provides the luxury of sorting this problem

computationally to construct codes and dimension over Galois ring. This chapter consists

of three sections, initially, an introduction of encoding of BCH codes over Galois ring and

construction of maximal cyclic subgroups with the computational approach is determined. In

the second part, an algorithm for computing the generator polynomial of BCH codes over the

Galois ring is explained . In the last part , the encoding of BCH codes over the Galois field and

dimension of primitive BCH codes with the help of computer language is calculated .

15

Theorem 17 [15J : Let Rp (~) = ~ generates cyclic subgroup of order n in group of unit ele

ments of GF (pT). Then ~ generate the cyclic subgroup of R * of oTdeT n.d fOT d 2: 1 and the

maximal cyclic subgroup Gn is generated by ~d.

Lemma 18 [15J: Let ~ be the pTimitive element of Gn . Then the diffeTences enl
- ~m2 aTe

unit elements in the ring R if 0 :::; ml of=. m2 :::; n - 1.

Theorem 19 [15J: The min imum distance of the BCH code is greateT than 01' equal to 2t + 1.

Remark 20 : If a generates the elements of Galois field GF (pm) , then aP"-l generates the

elements of the maximal cyclic subgroup in corresponding Galois ring GR (pn, m) .

2 .1.1 Maximal Cyclic Subgroup over Galois Ring

The BCH codes over the Galois ring are calculated corresponding to each Galois field. For

Galois fields GF (pm) of order pm, there are many Galois rings GR (pn , m) of order pmn, where

n E Z+ and m is the degree of monic irreducible polynomial f (x). The polynomial f (x) is an

irreducible in the Galois ring, and f (x) = Rp (f (x)) is primitive irreducible polynomial in the

corresponding Galois field. The maximal cyclic subgroup is calculated by the following steps:

Step 1 : Select the monic irreducible polynomial over Zn, where n = pm.

Step 2: Find the order of root of an irreducible polynomial over Galois ring.

Step 3: Divide the order of root of an irreducible polynomial by order of the maximal cyclic

subgroup.

Step 4 : Take the output of Step 3 as a power of root of an irreducible polynomial.

Step 5: Select the output of Step 4 as a generator of t he maximal cyclic subgroup.

Step 6: Construct all the elements of the maximal cyclic subgroup from a generator of the

maximal cyclic subgroup.

Example 21 : Choose n = 7 in Gn over Z8, then consider Galois ring GR (8, 3) ~ <xf~~~l>'

where f (x) = x 3 + x + 1 is monic irreducible polynomial oveT Z8 . Let a be the root of the

polynomial f(x), then J(a) = O. Now find the order of a in Galois Ting GR(8,3), which

implies that a 3 = -a - 1 = 7a + 7, remaining powers of a aTe shown as,

17

degree 5 over 1£8, f(x) = X 5 + 5x2 + 5. Theref ore, G31 =< /3 = 0:4 > .

/3 = 0:4
/3

2
= 30:3+0:2+ 1 /33= 20:4 +30:3+0:2+30:

/34= 0:4+ 0:3+ 40:2+30: + 3 /35= 60:4 +70:3+50:2+40: + 2 /36= 70:4 +0:3+ 70:2 + 70: + 2

/3
7

= 50:4+ 20:3 +70:2 +50: + 4 /38= 20:4 +40:3+ 20:2 +50: + 4 /39= 40:3 +50:2+ 60: + 1

/310 = 50:4+ 70:3+ 60:2+ 70: + 2 /3
11

= 70:4+0:3+70:2+20: + 2 /3
12

= 50:4 +20:3+ 50: + 5

/313= 30:4 +70:3 +20:2+4 /314= 0:4 +70:3 + 60: + 3 /315= 30:3+ 3

/316= 40:4 +0:2 /3
17

= 70:3+ 40:2+30: + 4 /318= 0:4 +40:3+ 60:2+40: + 1

/319= 50:4 +50:3+0:2+20: + 5 /3 = 40:4 + 20:3+ 20:2+30: + 3 /3
21

= 0:4 +20:3+30:2+60: + 5

/3
22

= 30:4 +40:3+0:2+0: + 3 /323= 70:4 +40:3+20:2+ 30: + 6 /324= 20:4 + 30:3+ 40:2 +60:

/325= 0:4 +20:3+50:2+ 40: + 4 /326= 20:4 +20:3+30:2+ 70: + 5 /327= 30:4 + 70:3+ 50:2+0: + 7

/328= 40:4 +30:2+ 70: + 6 /329= 60:4 + 50:3+ 0:2+0: + 1 /330 = 50:3+ 30: + 1

/331= 1

Table 2.4 : Elem ents of G 31 over G R (8, 5)

2.1.2 Maximal Cyclic Subgroup with Computational Approach

Manually it is very t ime-consuming and difficult process to calculate the elements of t he maximal

cyclic subgroup of group of Galois ring units. So , it is essent ial t o develop an algorithm that

provides the maximal cyclic subgroup of any finite order wit hin few seconds. The algorit hm is

designed in C# computer language is as follows, and program of t his shown in appendix.

19

where mi (x) are minimal polynomials corresponding to each ~i for i = 1,2,3, ... , d . The parity

check matrix of the BCH code having generator polynomial 9 (x) is of the form ,

1 ~c+1 e(c+l) ~(n- l)(c+I)

1 ~c+2 e(c+2) ~(n-l)(c+2)

H= (2.2)

1 ~c+d e(c+d) ~(n-I)(c+d)

The following steps are performed to construct the generator polynomial for n length BCH

codes over the Galois ring ,

Step 1: Construct Maximal Cyclic Subgroup of order n.

Step 2: Find minimal polynomials corresponding to each designed distance.

Step 3: Take the least common multiple of all minimal polynomials.

Step 4: The output of the Step 3 is stated as generated polynomial g(x) of BCH code.

Example 24 : Let n = 15, by using GI5 as explained in Table 2.3 and equat'ion 2. 1 constTuct

genemtoT polynomials of BCH code for length 15 as,

designed distance genemtoT polynomial g(x)

5 x 8 + 5x 7 + 3x6 + 6x5 + 7 x4 + 6x3 + 2x2 + 4x + 1

6 x 10 + 6x9 + x 8 + 6x7 + 3x5 + 7x4 + 4x3 + 7x2 + 5x + 1

S x14 + x 13 + x12 + xll + x lO + x 9 + x 8 + x7 + x 6 + x 5 + x4 + x 3 + x 2 + X + 1

Table 2.5 : genemtoT polynomials for BCH code of length 15

Example 25 : Let the length of primitive BCH code over the Galois Ting G R(S , 5) is 31. Using

the elements of G31 as calculated in Table 2.4, compute the genemtor polynomials corresponding

to different designed distances as follows, fOT d = 5,

(2.3)

FOT d = 6,

21

For d = 10,

g(x) x 27 + 4x25 + 2x24 + 6x 23 + x 22 + 7x21 + 7x19 + 7x18 + 7x17 + 6x16 +

3x15 + 6x I4 + 4x I3 + 4x I2 + 2xll + 2xI0 + 4x9 + x8 + 4x7 + 6x6 +

4x5 + x4 + 6x2 + 5x + 7.

For d = 12,

g(x) x 33 + 7x 32 + 3x30 + x 29 + 5x28 + 5x27 + 5x26 + 6x 25 + 6x 24 + 3x 23 + x 22

+6x2I + 3x20 + 4x I9 + 6x I8 + 6x17 + 2x I6 + x I5 + xI4 + 3x I3 + 4x12 +

For d = 14,

g(x) x 39 + 5x38 + 7x37 + 3x 36 + 2x35 + 5x34 + x 33 + 4x32 + 7x31 + 2x 30 + 6x 29

+3x28 + x 27 + 2x 26 + 5x25 + 2x24 + 7x23 + 7x 22 + 4x21 + 6x 20 + 6x 19

+x17 + 6x 16 + 4xI5 + 6x I4 + 4x I2 + 5x ll + 4xl0 + 5x8 + 4x7 + 4x6

(2.11)

(2.12)

(2.13)

For d = 16

g(x) x 45 + 2x44 + 7x43 + x42 + x41 + x40 + 4x39 + 4x38 + 5x37 + 3x 36 + 4x35

+2x34 + 4x33 + 4x32 + 3x3I + 4x30 + 7x29 + 3x28 + 5x 26 + 2x25 + x24

+4x23 + 4x22 + 3x21 + 6x20 + 7x I9 + 2x 18 + 2xI7 + x I6 + 7x I5 + 3x 14

+5x 12 + 6xll + 6x IO + 3x9 + 7x8 + 7x7 + 3x G + 3x4 + 5x2

+6x +7.

23

(2.14)

FOT d = 32,

g(x) X
62 + X6I + X60 + X59 + X58 + X57 + X56 + X55 + X54 + X53 + X52 + X5I

+X50 + X49 + X48 + X47 + X46 + X45 + X44 + X43 + X42 + X4I + X40 + X39

+X38 + X37 + X36 + X35 + X34 + X33 + X32 + X3 I + X30 + X29 + X28 + X27

+X26 + X25 + X24 + X23 + X22 + X2 I + X20 + X I9 + XI8 + XI7 + XI6 + X I 5

+X14 + XI3 -I- X I 2 -I- X ll + XIO -I- X9 + X8 + X7 -I- X6 -I- X5 + X4 + X3

+X2 + X + 1 (2.18)

Example 27 : GenemtoT polynomials of BCH code fOT length 127 oveT GI27 corresponding to

a ll possible designed distance as follows, fOT d = 5 the generator polynomial is,

FOT d = 6,

g(X) x2I + 6x20 + 5xI9 + 6x I7 + 5xI6 + 6 x 14 + x 13 + x 12 + 4xlO + 4 x 9 + 2x8 + 2x7

+2x
6 + 7 x 4 + 5 x 3 + X + 7. (2.20)

FOT d = 8,

g(X) x28 + 7x27 + 6x25 + 2x24 + x23 + 4x22 + x2I + 4x20 + 6x19 + xI8 + 2x17 + 5x I6

-I-5x14 -I- 3x I3 + xI2 + 5 x ll + 2xIO + 4 x 9 -I- 3x8 -I- 6x 6 -I- 5x5 + 5x4 + 3x3

-I-5x
2 + x + 1. (2.21)

25

For d = 20,

g(x) x 63 + 5x62 + 7x61 + 5x60 + 5x58 + 4x57 + 2x56 + 3xsS + 2xS2 + 2x51 + 7xsO + 2x49

+6x48 + 6x47 + 5x46 + 5x44 + 4x43 + 7x42 + 6x41 + 3x40 + 2x39 + 4x38 + 2x37

+ 7x36 + 5x3S + 2x33 + 4x32 + 3x31 + 6x30 + 5x29 + 5x28 + 5x27 + 4x26 + x24

+4x23 + 3x22 + 2x21 + x 20 + 5x19 + 2x18 + 2x17 + 4x1S + 4x14 + 5x13 + 4.1:12

+xll + 6x10 + 5x9 + 6x8 + 4x7 + 4x6 + 2x S + 7x4 + 3x3 + 7x2 + 7x + 7. (2.26)

For d = 22 ,

g(x) x 70 + 4x68 + 6x67 + 2x66 + 2x 6S + x 64 + 5x63 + 3x62 + 6x61 + 3.1:60 + 3xS9

+4xS8 + x S7 + 4x56 + 5xS5 + 2x53 + 7x52 + 6xS1 + 2x 50 + 7x48 + x 47

+6x46 + 6x45 + 7x44 + 5x43 + 5x42 + 6x41 + 7x40 + 3x39 + 2x38 +

2x37 + x 36 + 5x35 + x 34 + 5x33 + 6x32 + 7x31 + 7x30 + 3x29 + 5x28 +

3x27 + 4x26 + x 2S + 7x24 + 2x23 + 3x21 + 3x20 + 4x19 + 7x18 + x 17 +

xIS + x 13 + 6x 12 + 2xll + 7x10 + 3x9 + 4x8 + x7 + 2x6 + 4xs + x4 +

7 x 3 + 6x2 + 4x + 1.

For d = 24,

g(x) x 77 + 6x76 + x 75 + 4x73 + 3x72 + 2x71 + 4x69 + 3x68 + 6x66 + 7x6S

+x64 + 4x63 + 4x62 + 3x60 + 5xS9 + 3x58 + 3xS7 + 3x56 + 4x55

+2x54 + 4x53 + 6x52 + x 51 + 2x 50 + 6x49 + x 48 + 7x47 + 4x46

+3x45 + 6x44 + 3x43 + 5x42 + 4x41 + 6x40 + 6x39 + 3x38 + 3x37

+7x36 + x 35 + x 33 + 4x32 + 6x29 + x 28 + 7x27 + 5x26 + 2x25

+2x24 + 2x23 + 6x22 + 4x21 + 2x20 + 2x19 + 5x18 + x 17 + 4x16

+7x15 + 3x14 + 7x 13 + 4x12 + xll + xlO + x 9 + 6x8 + 5x6

+5xs + 4x4 + x 3 + 5x2 + 3x + 7.

27

(2 .27)

(2.28)

For d = 32,

g(x) x 98 + 6x97 + 5x96 + 6x95 + 6x94 + 4x93 + 7x92 + 6x9I + 2x 90 +

2x89 + 6x88 + 6x87 + x 86 + x 85 + 5x83 + 3x82 + 2x8I + 3x80 + x 79

+6x78 + 3x77 + 2x77 + 2x76 + 7x75 + 7x74 + 5x73 + 4x72 + 6x7I

+2x70 + 6x69 + x 68 + x 66 + 3x65 + 7x64 + 3x63 + 6x
62 + 3x

61
+

For d = 44,

2x 60 + 2x59 + x 58 + 5x57 + 2x55 + 4x54 + 4x53 + 3x52 + x 5I + x 50

+7x49 + 4x48 + 2x47 + 3x46 + 3x44 + 6x43 + x41 + 6x37 + 2x36

+x35 + x 34 + 2x33 + 6x32 + 4x31 + x 30 + 7x29 + 4x28 + 4x27 +

2x26 + 2x25 + 4x23 + 3x22 + 3x21 + 5x 19 + 4x 18 + 3xI7 + 2x 16 +

6x 15 + x14 + 2x12 + x 11 + x 10 + 7x9 + 6x8 + 6x7 + 2x6 + 5x5 +

2x4 + 3x3 + 4x2 + 1.

g(x) x 105 + x104 + x103 + 6x I02 + 2x IOI + x IOO + 4x98 + x 97 + 4x96 + 4x95

+6x94 + 5x92 + 7x91 + 4x 90 + x 89 + x 88 + x 87 + 3x87 + 3x86 + x 84

+2x81 + 6x80 + 3x79 + 2x78 + 5x76 + 3x75 + 7x74 + 5x72 + 4x71 + x 70

+5x69 + 5x68 + 7x67 + 6x66 + 4x65 + 2x62 + 6x59 + 2x58 + 5x57 + 5x56

+ .,);54 + 3x53 + 3x52 + 5x51 + 4x50 + 7x49 + 4x47 + x46 + 3x44 + 5x4I

+5x40 + 3x39 + 3x38 + 3x37 + x 36 + 3x35 + 7x33 + 2x32 + 5x3I + 4x30

+2x29 + 4x28 + 5x27 + 2x26 + 6x25 + x24 + 5x23 + 4x22 + 5x2I + 3xI9

+7x
18 + 5x

I8 + 5x
I7 + 4x

16 + 5x
15 + x I3 + x 11 + 7x

IO + x 9 + 2x
8 + 2x

7

(2.31)

+5x5 + 2x4 + 3x3 + 6x2 + 5x + 7. (2.32)

29

FOT d = 64,

g(x) X I26 + X I25 + X I24 + X I23 + X I 22 + X I2I + X I20 + X 1l9 + X 1l8 + X1l7

+X116 + X 1l5 + Xll4 + X 113 + X 1l2 + X lll + X 110 + X I09 + X I08 + X I07

+XI06 + X I05 + X104 + X I03 + X102 + X IOI + X IOO + X99 + X98 + X97 + X96

+X95 + X94 + X93 + X92 + X9I + X 90 + X89 + X88 + X87 + X86 + X85 + X84

+X83 + X82 + X8I + X 80 + X 79 + X 78 + X77 + X 76 + X75 + X74 + X 73 + X72

+X71 + X 70 + X69 + X68 + X67 + X66 + X65 + X64 + X63 + X62 + X6 I + X 60

+X
59 + X 58 + X57 + X 56 + X55 + X54 + X 53 + X 52 + X 5I + X 50 + X 49 + X 48

+X47 + X 46 + X45 + X 43 + X42 + X 4I + X 40 + X39 + X38 + X37 + X36 + X35

+X34 + X33 + X32 + X3I + X 30 + X29 + X 28 + X 27 + X26 + X25 + X24 + X23

+X22 + X2I + X 20 + X I9 + XI8 + X I7 + XI6 + X I5 + X I4 + XI3 + XI2 + X ll

(2.35)

Example 28 : Compute the genemtoT polynomial of BCH code fOT length 255 oveT the Galois

Ting GR(8 , 8). By using the basic iTTeducible polynomial f(x) = x 8 + 5x4 + x3 + 3x2 + 3 and

G255 genemtoT polynomials fOT designed distance d = 111,

31

For designed distance d = 119,

g(x) x242 + 4x241 + 6x240 + x 239 + 5x238 + 6x237 + 3x236 + 6x234 + 4x
233 + 6x

232 + 7x
231

+7x
230 + 5x

229 + 5x
228 + 4x227 + 5x

226 + 7x
225 + 3x

223 + 6 x
222 + 6 x

221 + 6 x
220

+4x2I9 + 4x2I7 + 6x2I6 + x 2I5 + 6x2I4 + x 2I3 + 2x211 + 4x2I0 + 3x
209 + 5x

207

+4x
206 + 7x

205 + 2x
204 + x 203 + 4x

202 + x 20I + x 200 + 5x
I99 + x I 97 + 4x

I96

+6x
195 + x I94 + 6x

I93 + 7x
I92 + x I9 I + 4xI90 + 4x

I 89 + 5x
I88 + 4x

I87 + 4x
I86

+3x
185 + 5x

I8I + 5x
I79 + 5x

I78 + x I76 + 3 x
I74 + 5x

I73 + 5x
l72 + x

I7I + 6x
170

+3x
169 + 7 x

I68 + 5x
I67 + 7x

I66 + x I65 + 2x
I64 + 6x

I63 + x I 62 + 3x
I6I + 5x

I57

+ x I55 + 3x153 + 6x I49 + 6 x I48 + 6x I47 + 7x I46 + x I45 + 4xI44 + 5x
I43 + xI42

+4x14I + 6x
I40 + 6x

I38 + 2x
I37 + 4x

I36 + x I34 + 4x
I33 + 6x

I32 + 6x
I3I + x I30

+x
129 + 2x

128 + 3x
I27 + 3x

I26 + 6x
I25 + 6x

I23 + 3x
I22 + 3x

I 21 + 4xI20 + x 1l9

+3x
118 + x 1l7 + 3x

1l6 + x 1l5 + x 1l4 + 7x
1l3 + 6x

1l2 + 6x
I11 + x 110 + 4x

I09

+2x
108 + 3x

I07 + 6x
I06 + 5x

105 + 5x
104 + 2x

I03 + 6x
I02 + 7x

10I + 3x
lOO + 5x

99

+5x
98 + 3x

97 + 6 x
96 + x 95 + 3 x

93 + x 92 + 5x
9I + 2 x 90 + 2x

88 + x 87 + 5x
86

+ 4x
84 + 2x

82 + 6x
80 + 5x

79 + x 78 + 6 x
77 + 4x

76 + 7x
75 + 7x

74 + 7x
73 + x72

+3x
7I + 6x

69 + 7x
68 + x 67 + 4x

66 + 7x
65 + 3x

64 + 5x
63 + 3x

62 + x 6I + 7x
60

+6x
59 + 5x

58 + 2x
57 + 6x

56 + 2x
55 + 7x

54 + 6x
53 + 7x

52 + 5x
5I + x 50 + 2x

49

+3x48 + 5x47 + 3x46 + 5x45 + 4x43 + 4x42 + 2x4I + 5x40 + 4x
39 + x 38 + 7x

37

+4x
35 + 4x

34 + 3x
33 + 2x

32 + 3x
3I + 5x

30 + x 29 + 5x
26 + 2x24 + 7x

23 + 5x
22

+6x
20 + 6 x

I9 + 5x
17 + 4x

I6 + x I5 + 2x14 + 2x
I3 + 4x

I2 + 4xll + 6x
lO + 2x

9

+7x
8 + 6x

7 + x 6 + 5x
5 + 4x4 + x 2 + X + 1. (2.37)

Example 29 : The generator polynomial of BCH code for length 511 over Galois ring GR(8, 9)

with designed distance 73. By using the basic irreducible polyn07nial, we get generator polyno-

33

Example 30 : The generator polynomial of BCH code for length 1023 over Galois ring GR(8 , 10).

By using the basic irreducible polynomial f (x) = x lO + x 3 + 1 and designed distance d = 33,

ge1ieratoT polynomials as,

g(x) x
I 60 + x

I 59 + 5x
I 58 + 2x

I 57 + 4x
I56 + 3x

I55 + 2x
I54 + 2x

I52 + 4xI5I + 4x
I50 + 6 x

I 49

+5x148 + 2x I47 + 5x I46 + 7x I45 + 3x I44 + 5x I 42 + 2xI41 + 5x I38 + x I37 + 5x I35

+5x
134 + x

I 33 + 4xI3I + 7x
I30 + 5x

I29 + 3 x
I 28 + 7x

I27 + 4x
I 26 + 6 x

I 23 + 5x
I22

+2x12I + 6x I20 + x 1l9 + 2x1l8 + 6 x 1l7 + 3x1l6 + 2x1l4 + x 1l3 + 6x1l2 + 4xllI

+5x109 + x I08 + 5x I06 + x I05 + 3x104 + 7x 102 + 6x IOI + 2xIOO + 3x99 + 7x98

+5x97 + 5x96 + 4x95 + 3x94 + x 93 + 2x92 + 2x9I + 2 x 90 + x 89 + 7x88 + 4x86

+x85 + 3x
84 + x 83 + 6x

82 + x
8I + 6x80 + 3 x 79 + 3x78 + 3x77 + 6 x

74 + 4x73

+6x
72 + 4x7I + 4x

70 + 7x69 + 2x
68 + 6 x 67 + 4x65 + 3x64 + 5x63 + 4x

62 + 7x
6I

+5x
60 + x

59 + 6 x
58 + x

57 + 2x
56 + x

55 + x
54 + 4x

53 + 7x
52 + 5x

5I + 7x
50 + 5x

48

+2x47 + x42 + 7x39 + 3x38 + 2x37 + 2x36 + 6x35 + 4x34 + 6 x 33 + 2x32 + 3x3I

+2x
29 + 2x

28 + 4x
27 + 2x

26 + x 25 + 2x24 + 7 x 23 + x 22 + 7x2I + 7x20 + x I9 + x I 8

+4x
17 + 6x

I6 + 3x
I5 + xI4 + 4x I3 + 6x I2 + 6xll + 7x IO + 7x9 + 4x8 + 6 x 7 + 5 x 6

(2.39)

2.2 Computationally Encoding of BCH Codes over Galois Ring

In this section , novel computational approach is introduced to calculate generator polynomial.

The computational new scheme designed in computer language C#. The explanation of an

algorithm with a flow chart is given in Fig. 2. 1. Thus, this new scheme for BeH codes over

G R(pm, r) gives generator polynomial very fast.

35

the coeffi cient of xo. The computational procedure Add(polyl, poly2) adds two polynomials in

a Galois ring CR(pk, m) and gives the sum of these polynomials. All calculation is done in Zpk

where pk is used in the base of the variable in an algorithm. We have done t his computational

t echnique in computer language C#.

D escription of Algorithm 1

In this algorithm, 'poly' is the input of basic irreducible polynomial, and q is a power of some

prime p, d is designed distance, and n is the length of the code. Line 1 and line 2 compute

the exponents of the root of the basic irreducible polynomial. Line 3 to line 6 calculates all

exponents of the root of the basic irreducible polynomial until the output is 1. Line 7 computes

the generator of the maximal cyclic subgroup. Line 8 to 11 compute the list of elements of the

maximal cyclic subgroup. Line 12 computes all roots of minimal polynomials of BCH codes

over Galois r ing. Line 13 calculates all minimal polynomials over t he Galois ring, and line 14

calculates all minimal polynomial over corresponding Galois field. Line 15 calculates the gener

ator polynomial of BCH codes over the Galois ring by taking LCM of all minimal polynomials.

Line 16 calculates the generator polynomial of BCH codes over the Galois field.

Algorithm 1

ComputeGeneratorPoly(poly, q,p,d,n)

Begin

1. i:= poly .MaxDegree

2. listAlphaPoly '= GetPreviousAlphaPoly(i)

3. repeat:

4. poly := MulCpoly, II ")

5. listAlphaPoly.Add (SubstituteAndSimplyfy(poly, i»

6. until PolynomialIsConstant(poly)= false

7 . generatorOfMCSG:= listAlphaPoly.Count / n ;

8. for betaPower := 1 To n

9 . betaPoly := listAlphaPoly [generatorDfMCSG*betaPower - lJ

10. MCSG.Add(betaPoly)

11. end loop

37

9. end if

10. for coefflndex := 0 To poly.MaxDegree

11 . poly [coefflndex] := (poly[coefflndex] % base + base)% base;

12. end loop

13. listAlphaPoly.Add(poly)

End

Add(polyl,poly2)

Begin

1. for i = 0 To poly2.MaxDegree

2. if (i > = polyl . MaxDegree) then

3. if (polyl.Length > i) then

4. polyl[i]:= polyl[i] + poly2[i];

5. else

6. for j = polyl.MaxDegree+l To i

7. polyl[j]:= 0;

8. end loop

9. polyl[i] := poly2[i]

10. end if

11 . CONTINUE:

12. else

13. polyl[i]:= polyl[i] + poly2[i]

14. end if

15. end loop

16. return polyl

End

Sub(polyl ,poly2)

Begin

1. for i = 0 To poly2.MaxDegree

2. if (i >= polyl.MaxDegree) then

3. if (polyl.Length > i) then

39

5. end loop

6. if p [OJ = 1 then

7. return true

8. end if

9. return false

End

CalcRootsFor AllMinPoly(p,d,n)

Begin

1. for i := 1 To d

2. tempBetaPowers new List()

3. k:= 0

4. power:= 0

5. repeat:

6. power:= (Pow(p,k++) * i)%n)

7. iftempBetaPowers.Contains(power)then

8. break

9 . else

10 . tempBetaPowers.Add(power);

11 . end if

12 . until true

13. listRootsForAllMinPoly.Add(tempBetaPowers)

14. end loop

15. return listRootsForAllMinPoly

End

CalcAllMinPoly(listRootsFor AllMinPoly, betaPoly,p)

Begin

1. i:= 1

2. foreach MkRoots in listRootsForAllMinPoly

3 . tempMkPoly:= CalcMk(MkRoots,bPoly))

4. listMinPolys.Add(tempMkPoly)

41

8 . rowInd cordInd . y + row

9 . colInd·= (cordInd .x + col) % n;

10 . newCoef .= mvPolys[snJ [cordInd .yJ [cordInd .xJ * mvPolyResult[rowJ [colJ

11.tempResult[rowIndJ [colIndJ += newCoef

12. end if

13 . end loop

14. end loop

15. end loop

16. CopyAndCleanArray(tempResult, mvPolyResult)

17. end loop

18. constPoly:=-l

19. Mk:= ZeroPolynomial

20. for x := 0 To mvPolyResult.Length

21 . for beta := 1 To mvPolyResult[OJ . Length

22 . if mvPolyResult[xJ [betaJ != 0 then

23. constPoly[OJ := mvPolyResult[xJ [betaJ

24. testPoly

25. tempPoly

Mul(bPolys [beta - lJ , constPoly)

Add(tempPoly,testPoly)

26 . end if

27. end loop

28. if x > 0 then

29. constPoly[OJ := mvPolyResult[xJ [0]

30. tempPoly:= Add(tempPoly,constPoly)

31. end if

32. for coeff := 0 To tempPoly .MaxDegree

33. tempPoly[coeffJ (tempPoly[coeffJ % q + q) % q

34 . end loop

35. if tempPoly.MaxDegree - lAND x mvPolyResult.Length-l then

36. Mk Add(Mk,)

37. else

43

Step 1: GetPreviousAlphaPoly(degree OfPoly)

Here, the loop calculates all those powers 0: of which are less than the degree of the basic irre

ducible polynomial. For example, t he degree of the basic irreducible polynomial is 8. Therefore

ou tpu t is 1, 0:, 0:
2

, 0:3 , 0:
4

, 0:
5

, 0:
6

, 0:
7

.

Step 2 : SubstituteAndSimplify(poly, i, listAlphaPoly)

To solve input polynomial of degree m, take t he degree of a polynomial on the left side of an

equation , and the remaining terms shifted to the right side of an equation. Apply modulo q on

the right side of an equation, where q is the power of some prime number . After t hat , it calcu

lates the powers of 0:, while calculating the powers of 0:; this function substitutes t he previous

value of 0:. If the exponent of 0: is greater than or equal to the degree of a basic irreducible

polynomial, then simplify the polynomial with the help of modulo q operation. Here q is 8,

and the degree of the polynomial is also 8. The output will be 0:8 = _ 0:4 - 0:3 - 0:
2

- 1 (m od

8) = 7 0:
4 + 7 0:

3 + 7 0: + 7 , 0:
9 = 7 0:

5 + 70:
4 + 7 0:

3 + 70:
2 + 70: and continue t ill we get l.

Step 3 : Add(polyl,poly2)

Here the addition of two polynomials 'poly1' and 'poly2' is performed. For loop, add the coef

ficients of same exponents and save the output in the new array then compute the final result.

For example, while calculating t he power of 0: and simplifying this procedure, add two polyno

mials.

Step 4: Sub(polyl,poly2)

This function returns the subtraction of two polynomials 'poly1' and ' poly2'. For loop , perform

the subt raction of polynomials having the same powers. Subtract the coeffi cients and take

modulo q, t hen save the result in the new array, is added to t he negative coefficients of unt il we

get the positive answer. For example, 0:8 = -0:4 - 0:3 - 0:2 - 1, then take modulo q = 8. The

output will be 0:
8 = 7 0:

4 + 7 0:
3 + 7 0: + 7 .

Ste p 5: Mul(polyl,poly2)

We multiply two polynomials, as the coeffi cients of 0:<;"+7 , where <; = 0, 1,2, .. . , nand T =

0, 1,2, ... , m . The addition of the product of coefficients of the corresponding elements with

power addit ion <; + T. The product of t he coefficients is then added into the output polynomial.

For example, multiplication is performed during the calculation of minimal polynomials .

Step 6: Polynomia lIsCons tant(poly)

45

calculation of minimal p olynomials, and it a lso used in the calculation of t he maximal cyclic

subgroup.

Step 13 : LCMOfMinPoly(listOfGeneratorPoly)

Calculate t he lcm of all minimal polynomials, which is the multiplication of all distinct minimal

p olynomials. Therefore the output for generator polynomial of BCH codes over Galois ring and

corresponding Galois field are displayed .

2.3 Encoding of BCH Codes over Galois Field

The encoding of message is the process to add redundant bits in a m essage such that k length

m essage is embedded in 11, length message. If during transmission 11, length message contains

errors, then we can determine those errors and correct them. The encoding process helps us in

the transmission of da ta securely.

How to encode a message

Any m essage u of k bits can be encoded by following st eps :

i) Write a m essage u into the form of polynomial u (x).

ii) Find the generating polynomial g (x).

iii) Encoded message c (x) = u (x) g (x), where c (x) is 11, length code polynomia l.

Example 31 : To en code the m essage w = 11010 thmugh the en codeT [1 5, 5] and designed dis

tance d = 7, heTe 11, = 15 and k = 5.

Step 1: M essage u into the fOTm of a polyn omial is u (x) = 1 + x + x 3 .

Step 2: To find gen emtoT polynomial g (x), fiTstly, constntct the elem ents of Galois .fi eld

GF (16) , which is gen emted by pTim itive polynomial f (x) = x4 + X + 1. A ssume that ~ 'is

the pTim itive mot of h (x) then ~4 + ~ + 1 = 0 and ~4 = ~ + 1,

47

Hence the 9 (x) of the BCH code is,

9 (x) lcm{mi (x) : i = 1,2,3, '" 6},

ml (x) m2 (x) m3 (x),

(x4 + x + 1) (1 + x + x 2 + x 3 + x4) (1 + x + x 2
) ,

1 + x + x 2 + x4 + x 5 + x 8 + x lO

Step 3: Encoded message is c (x) = u (x) 9 (x),

c (x) = (1 + x + x 3
) (1 + x + x 2 + x4 + x 5 + x 8 + X l 0)

= 1 + x 5 + x 6 + x7 + x 9 + x lo + x 13
.

C = 100001110110010 is desired encoded message of 15 length.

(2.43)

Remark 32 Code rate and error-correcting capability remains the same for codes in Galois

rings G R (pn , m) and in corresponding Galois fields G F (pm). But the advantage of Galois ring

is the number of codewoTds 'is gTeater than the codewords in the Galois .field.

2.3.1 Construction of Generator Polynomial of BCH Codes over Galois Field

If we h ave a generator polynomial of BCH codes over the Galois ring, then there is no need to

construct a generator polynomial of BCH codes over the Galois field , separately. Take modulo

p operation to the coefficients of a generator polynomial of BCH codes over the Galois ring.

Example 33 : Suppose that the generator polynomial of BCH code of length 15 with designed

distance d = 5 over Galois ring G R(8 , 4) is,

To calculate the generator polynomial of BCH code over corresponding Galois field GF(24)

with designed distance d = 5, take modulo 2 operation to the coefficients of g(x). Therefore,

g(x) = x 8 + x 7 + x 6 + x4 + 1.

49

Table 2.7 shows that the dimension of some primitive BCH code can be chosen corresponding

to different designed distances. Similarly, we can find the dimension of primitive BCH using a

computational approach corresponding to any length .

51

Chapter 3

BCH-Codes over Galois Ring and

Galois Field: Computational

Decoding Approach

In Coding theory, generally, codes are designed for the reliable transmission of data through

noisy channels by using classical and more efficient algebraic techniques . There are many coding

t heory applications in different fields for example, in magnetic and optical recording, wireless

and network communication systems. Error detection and error correction are primary goals

in coding theory because, during data transmission, there is possible in most cases error must

occur due to distortion , noise, interference. The main aim of coding theory is to design error

control codes. To achieve the aim of coding theory, many mathematicians and engineers use

different algebraic techniques to develop good codes as much as possible. In this chapter, the

decoding of BCH codes over the Galois ring and the Galois field using the Barlekamp Massey

algorithm with the computational approach are explained. It is very challenging to correct

errors if encoded messages have large lengths. To deal with this problem , we have designed

computational technique which corrects multiple errors for each length of the BCH code.

52

81 (,1) + (,2) + ... + (,v),

82 (,1)2 + (,2)2 + ... + (,v)2,

83 (,1)3 + (,2)3 + ... + (,v)3 ,

(3 .6)

Vve define error locator polynomial as,

a (x) (3.7)

here the coefficients of x are elementary symmetric functions, and defined as,

ao 1

al 1 1+ 12+"'+'v

a2 1112 + 1213 + ... + Iv-I1v

(3.8)

Remark 34 : The inverses of roots of a (x) are error location numbers.

We connect elementary symmetric functions with the syndromes by using the newton identities

as follows ,

54

polynomial.

Step 1: If d/-L = 0, then

(3.9)

Step 2: If d/-L i=- 0, then find m < f1, such t hat dm i=- 0, and m - lm has largest value in last

column of the t able, such that

(3.10)

(3.11)

Step 3: To find discrepancy use this formula,

(3.12)

The polynomial a2t (x) in the last row of the table is required error locator polynomial. Next ,

calculate roots of this polynomial and then take inverses of these roots, t hese inverses of roots

are known as error location numbers. The powers of the error location numbers show error

positions in received code. To correct these errors, subtract the error vector from the received

vector. If we have to find the message word, then divide the corrected message polynomial by

the generator polynomial g (x) .

Example 35 : Let 1lS consideT [15 ,5,7] BCH code genemted by g (x) = 1 + x + x 2 + x4 + x 5 +
x 8 + x10 and codewoTd c = 100001110110010 is sent through channel. The erTOr may occur

during tmnsmission and received vector is r = 110101110110011.

Now find the eTTOT in the received vectoT. Choose n = 15, k = 5, d = 7 so t = l d; l J = 3.

(3.13)

Where x4 + x + 1 is primitive polynomial, and let ~ be the primitive TOot of this polyn01nial,

therefore, 1 + ~ + ~4 = O. Th e Teceived vectoT in the fonn of a polynomial is ,

r(x) = 1 + x + x 3 + x 5 + x 6 + x 7 + x 9 + x lO + x 13 + x 14

56

max{O, I} = l.

For dl, put {t = 0 in formula (3.16) we get, dl = S2 + 0-~1) Sl = e + e . ~4 = 0, heTe 0-~1) is

coefficient of x in 0-
1 (x).

Since dl = 0, therefore 0-2 (x) = 0-1 (x) and l2 = ll ' which implies that 0-2 (x) = 1 +~4x and

12 = l.

To calculate d2, put J-L = 1 in formula (3.16) then, d2 = S3 + 0-~2) S2 + 0-~2) Sl = (1 + e +

e) + ~4. ~8 + O · ~4 = 1 + e + e + e 2, here 0-~2) is coefficient of x in 0-(2) (x) and 0-~2) is

coefficient of x 2 in 0-(2) (x) , from the table of Galois field e 2 = 1 + ~ + e + e, therefore,

d2 = 1 + e + e + 1 + ~ + e + e = ~ i- O.

Since cl2 i- 0, we .find 0-3 (x) by using the formula given by (3.15) , put J-L = 2 and m = 0 because

do i- 0 and 0 - La = 0 is laryest in last column of the table.

Therefore, 0-3(x) = 0-2 (x) + d2dolx2-00-0(x) = (1+~4x) + (0 (~4) -lx2(1) = 1 + ~4x +

(~) (~ll) = 1 + ~4x + e 2x.

Also put J-L = 2 in formula given by (3.17) we get l3 = max{ l2, lo + 2 - O} = max{l, 2} = 2 and

J-L - l3 = 3 - 13 = 3 - 2 = l.

To compute d3, put J-L = 2 in formula 3.16 then cl3 = S4 + o-P) S3 + 0-~3) S2 = ~+ ~4.e3 + e2.~8,

which implies that, d3 = 0 (by using the table of Galois field) . Since d3 = 0 so 0-4 (x) = 0-3 (x)

and 14 = 13 = 2 so J-L - l~, = 4 - l4 = 4 - 2 = 2.

0-4 (x) = 1 + ex + e 2x

For d4, substitute J-L = 3 in formula given by (3.15) . Therefore , cl4 = Ss + 0-~4) S4 + 0-~4) S3 =

o + ~4.~ + e 2 . e 3 = e + ~10 = l. Since d4 i- 0, therefore we calculate o-s (x) ,

put J-L = 4, and m = 2 in fOTTlwla given by (3.15),

o-s (x) = 0-4 (x) + cl4cl2' l x(4-2)0-2 (x) = 1 + ~4x + e 2x + (1) (~)-l x 2 (1 + ~4x) = 1 + ~4x + e 2x +

e 4x2 (1 + ~4x), which implies that, o-s (x) = 1+~4x+ex2+ex3 and ls = max{l4, l2+4-2} =

max{2,1 + 4 - 2} = 3.

To find cls , put J-L = 4 in formlda given by (3.15), then cls = S6 + o-~Ss + 0-~S4 + 0-~S3 =

~ll + e ·0 + ~s . ~ + e . e 3 = O. Since ds = 0, therefore 0-6 (x) = o-s (x) which implies that

0-6 (x) = 1 + ~4x + ex2 + ex3.

58

3.1.2 Decoding of BCH Codes over Binary F ie ld

To decode binary BCH codes by using the Barlekamp Massey algorithm , we start the algorit hm

by initial conditions explained in Table 3.3. There are total t steps required to find error locator

polynomial.

J.1- (Jf1. (x) df1. lf1. 2J.1- - lf1.

-1 1 1 0 - 1 "2

0 1 S1 0 0

Table 3.3 : Initial conditions for Z2

Barlekamp Massey Algorithm for Binary BCH Codes

For decoding of the binary BCH codes, following steps are required,

Step 1: Start with J.1- = - 1/2.

Step 2 : If dJ.L = 0 then (J(ft+ 1) (x) = (J(f1.) (x).

Step 3 : If df1. f=. 0, then find m < J.1- such that 2m - l m is large as possible in last column of the

table and elm f=. 0, such that

(J(f1.+1) (x) (J(f1.) (x) + elf1.el;;,1 X 2(ft- m) (J(m) (x),

S (f1.+1)S (J.L+1) (f1.+1)S
2f1.+3 + (J 1 2ft+2 + (J 2 S2f1.+1 + .. . + (Jl,,+ l 2f1.+3- l/.L+ l'

deg ((J (f1.+1) (x)) .

The polynomial (Jl (x) in last row of the table is required error locator polynomial.

(3.19)

(3.20)

(3.21)

Example 36 : If apply this algorithm to example 35 then error locator polynomial is computed

after 3 steps as follows,

Step 1: Calculate the syndrome.

Step 2: Apply Barlekamp Massey algorithm with initial conditions, substitute J.1- = 0, m = -,}

in the formula given by (3 .19),

60

If we compare Table 3.2 and Table 3.4, we get 0-3 (x) , and 0-
6 (x) are same error locator poly

nomial. By using this algorithm, half steps are required to find error locator polynomial.

Remark 37 : ff the degree of error locator polynomial is greater than t , then there are more

then t error occurs.

Remark 38 : The computation required for binary BCH code is one ha4f of the calwlation

required for non-binary BCH code.

Remark 39 : ff the number of errors in the received vector is less then t, then 'it is unnecessary

to find t steps for error locator polynomial.

3.2 Decoding of BCH over Galois Field: Computational Ap

proach

It is very time-consuming to decode large length BCH code manually over a higher-order field .

To sort out this time-consuming effort , we developed the program in computer language which

help to decode the message very efficiently. Following algorithms gives output for decoding of

BCH codes very fast and program of this algorithm is shown in appendix.

62

3.2.2 Algorithm 2 for Decoding of BCH Codes

Algorithm2

4·png

Algorithm 2: Decoding of BCH C·:>des ove r Galois Fie ld

Input :
Bar lekC'.mp-~1as3ey Table barlekampMasseyTable
List of F.lpha ?olynomi",ls alphaPolyLi st
Len '~rth of Coele n
V,,.._ue p

Recieve Vectt:)r recVec

Output :
Error Vector errVec
Cor re.cted ,:,,:Ida. cOl:Code

1.
2 .

3 .
q .

5 .
6 .
7 .
8 .
9 .
1t) .
ll.
12 .
1 "
14.
15.
16 .
17 .
l B.
19 .
20 .
21 .
22 .
23 .

tempPol~l barlekamp~~asseyTablE:. ~axS i gma
errVe.c 0

for i _I to alph",?o l yList.Count
foreach term in temp?oly

if t:.6l.".ffi . alp haDe ';ree = i then
Substitute term with ", phaPo _yList[i)
term term. Degree (mod n)
term te r m . Coefficient (mod 10)

end if
end loop
errorPoly .Cc,e fficient (0) tempPoly . Coefficient [0

for indax t- 1 to tempPoly.C.oeff':'cient . l:;oun-c.
if ternpPo ly. Coefficient [inciex] != 0 then
I erro r Poly errorPol y . Add(alph",PolyList·index
end if

end loop
arrorPo_y +-- errVec.Co efficio::.nts (mod p)

if errorPoly is 3ero then
I E<rrVec +-- E<rrVec . .1l.cld("x'''' + (- i + n) . 'Io3tr ing ()
end if

end loop
cor Code recVe c . Subtract{errVec)
corCo ~ - cor Coda . Coafficiants (m cl p)

64

Algorithm to calculate all syndromes

Calculation
Algoritlun: CalCllation of Syndromes

Input :

L':'st o f .Alpha Polynomi,~ls alphaPo lyList

Output :
List cli Syndr o m syndromList.

1. £or syndro rnCount +- 1 to 2 ·'-t
2 . for i +- 1 to re.cVec . length
3 . polyIndel< i- ':' ·'syndr omC,:Junt (mod n)
4 . if degree ! = 0 then
5 0 syndre·mP Ct _ y ,- alphaPo_yList p o l ylncie:>:]
6 . syndr o mPoly - syndr.:1mPoly. Cc.effic':'en'C.s (mod p)
7 . synclrc·msL':'at .. !l.cld (syncL:: o mPo ly)
8 . end if
S . end loop
10 . end loop

6-png

3.3 Decoding of RS and BCH-Codes over Galois Ring

RS codes are non-binary cyclic codes. Recently, RS codes have too many applications in disk

drives, satellite communication, compact disk player, DVDs , and two-dimensional bar codes.

3 .3.1 Reed-Solomon Codes over Zpm

The parameters of RS codes over Zpm are (p - l,p - d, d). If m = 1 and d = 2t + 1 where

t ::::: l n 21 J ' then Reed Solomon code correct t errors. Let (E Zpm be a primitive element.

Suppose that 17, = p - 1 and 'IT/, E Z+ such that (17" m) = 1. Then according to Blake [2] the

parity check matrix H is defined as:

1 (m (2m ((n-1)m

1 ('n+1 (2(m+1) ((n- 1)(m+1)

H= (3.25)

1 (m+d-2 (2(m+d-2) ((n-l)(m+d-2)

Theorem 40 [2]: The null space of the parity check matrix Ho ver Zpm is p - 1 length code C

with dimension p - d and minimum distance d.

66

Where T represents number of errors which are occurred by the channel.

To find iT1 , iT2, . . . , iTT , we solve the following equations over ring R .

(3.28)

where Sl, S2, S3, S4, ... , S2t are syndromes. Equations given by (3.28) can be solved by using

t he modified Barlekamp Massey algorithm. If error magnitudes are unit elements in the ring

R, then the solution is unique. It is an iterative algorithm because at /-lth step.

Find lJ1- values iT~J1-) such that, f.l - lJ1- equations holds with lJ1- possibly small and iTt) = 1.

o

o

o. (3 .29)

The output at final step is:

(3.30)

The nth discrepancy,

(3.31)

Step 3: There is one extra step to find error location number over ring rather than over field

because in the ring R the solution of the equation given by (3.28) is not unique. The reciprocal

of polynomial iT2t (x) (output of Barlekamp Massey algorithm) is p (x), which mayor may not

be the correct error locator polynomial. To compute error location numbers , we initially find

t he roots Xl, X2, ... , X v of p (x) , then select Z D = aD , Z l = aI , Z2 = a 2, .. . Zn - 1 = an - 1 such that ,

68

equations of (3. 29) and discTepancy satisfy following condition,

d,.,. + a· drn = 0 (3.38)

and

(3.39)

Theorem 44 [15) : L et a("") (x) be a solution at J.Lth step and a(m) (x) be the e.'Eisting minimal

solutions, fOT J-L > m ~ 1, such that m - lm is the greatest value in last column of the table and

d,.,. - y.dm = 0 have solutions in y. Further, suppose that a("") (x) is mod~fied by the following

method. fr d,.,. = 0, then

(3.40)

If d,.,. =I- 0, then

a(,.,.+l) (x) = a("") (x) - y. (x),.,.- rn .a(rn) (x) (3.41)

and

(3.42)

If there does not exist any solution D(,.,.+l) (x) with degree less than ma.x{l,.,. , lm - m + J-L}, and

the coefficient of smallest exponent of x in D(,.,.+l) (x) - a("") (x) is zeTa divisor in the 1''ing R ,

then at (J-L + 1)th stage a(,.,.+l) (x) is the minimal polynomial solution.

3.3.3 Modified Barlekamp Massey Algorithm

Modified Barlekamp Massey Algorithm is designed to decode BCH or RS codes over G R (pm , r)

or Zpm , respectively. We take syndromes as an input and get elementary symmetric functions

as an output that satisfies equations given by (3 .29) for minimum v. We start this algorithm

by following initial conditions as in [15], are as follows,

a(- l) (x) = 1, L1 = 0, d_ 1 = 1, a(O) (x) = 1, lo = 0, and do = 51. Here , 51 is first non-zero

syndrome. Further steps of the algorithm is as follows ,

Step 1: 0 ---t J-L.

Step 2 : If d,.,. = 0, then a("") (x) ---t a(,.,.+l) (x), l,.,. ---t l,.,.+l and then go to Step 5.

Step 3: If d,.,. =I- 0, then find am < J-L, such that d,.,. - ydm = 0 has solution in y, m - lm has

70

Step 1: To calculate syndrome we use,

S = r . H T = (17 20 4 107). (3. 48)

Step 2: Calwlation of erTOr locator polynomial which satisfy equation given by (3.28) by using,

Mod~fied Barlekamp Massey algorithm, a 2t (x) is calculated as follows,

Jl aJ.L (x) dJ.L lJ.L J.l - lJ.L

-1 1 1 0 -1

0 1 17 0 0

1 1 + 104x 94 1 0

2 1 + 70x 73 1 1

3 1 + x + 84x2 97 2 1

4 1 + 61x + 49x 2 - - -

Table 3.5 : ErTOr locator polynomial

FTOm Table 3.5 required error locator polynomial is a 4 (x) = 49x2 + 61 x + l.
Step 3: The recipTOcal of a 4 (x) is P (x) = x 2+61x +49. By substituting x E {O, 1,2,3,4, ... , 120} , we

have Xl = 32 and X2 = 28 are TOots of p (x). Next select those Zi E {,80 ,,81,,82,,83,,84,,85,,86, ,87,,88 , ,89 }

such that Zi - Xi are zero-divisors in 2 121 . Therefore, Zl = ,85 and Z2 = ,89 are correct error

location numbers, and powers of ,8 represent error positions in the received vector. H ence error

occurs in the received vector at 5th and 9th position.

Step 4: Firstly, calculate correct elementary symmetric fun ction as,

(x - Zl) (x - Z2) = (x - 32) (x - 28) = x 2 + 61 x + 49, which implies that a l = 61 and a2 = 49.

Apply Forney 's pTOcedure to calclLlate error magnitudes,

(3 .49)

72

If r . }It = 0 then there is no error occurs in received vector.

Step 1: Calculation of Syndrome as,

S = r . }It = (3 3x 3 3) . (3.54)

Step 2: Calculate the error locator polynomial which satisfy the equation given by (3 .28), using

the Mod~fied Barlekamp Massey algorithm,

p, a f ' (Z) df' If' p, - If'

-1 1 1 0 - 1

0 1 3 0 0

1 1 +6Z 3x 1 0

2 1 + (6 + 8x)Z 3x 1 1

3 1+(5+8x)Z+3Z2 6x 2 1

4 1 + (3 + 8x)Z + (2x)Z2 - - -

Table 3.6: Error locator polynomial of BCH codes

Therefore, the error locator polynomial from the last row of Table 3.6,

a 4 (Z) = 1 + (3 + 8x)Z + (2x)Z2.

Step 3: For Calculation of correct error location number, the reciprocal of a 4 (Z) is p (Z),

which is correct error locator polynomial, p (Z) = Z2 + (3 + 8x) Z + 2x. The roots of p (Z) in

Galois ring GR (9, 2) are Zl = 5 + 8x and Z2 = 1 + 2x. Select those elements x.i of Gs which

satisfy, Xi - Zi are zero-divisors in the ring GR (9 , 2). Th erefore, Xl = (31 = 2 + 8x and X 2 =

(36 = 7 + 5x. Hence, (31 and (36 are correct error location numbers and powers of (3 shows eTror

positions. Therefo re, the error occurs at 1st and 6th position. To .find elementary symmetric

function, compute (Z - Xl) (Z - X2) = (Z - (2 + 8x)) (Z - (7 + 5x)) = Z2 + (5x) Z + (6 + 8x)

which implies that al = 5x and a2 = 6 + 8x.

Step 4: To calculate eTroT magnitudes, apply FOTney's procedure to syndrome and elementary

symmetTic function . TheTefore, we get en'or magnitude Yl = 3 and Y2 = 6. Hence the error

vector e = (0 3 0 0 0 0 6 0) and the corrected codeword v = r - e = (0 0 0 0 0 0 0 0) .

74

Chapter 4

Symmetric Block Cipher and BCH

Codes: An Image Encryption

Application

In the modern world, the security of the digital image is vital due to the occurrence of com

munication digital products over open networks frequently. Accelerated advancement of digital

data exchange, the importance of information security in the transmission of data through the

communication channel, and its storage has emerged. Multiple usages of the images in the

security agencies and the industries, the security of the confidential image data from unautho

rized access is emergent and vital. In this chapter, Error-Correcting Codes, particularly Bose

Chaudhuri Hocquenghem codes over the Galois field , have been used in image encryption using

a modified Advanced Encryption Standard algorithm. The BCH codes over the Galois field are

used in the mixed column operation and round key addition steps of the AES algorithm. The

detailed analyses of the proposed scheme and its comparison to the original AES algorithm are

given in this chapter. We designed a novel technique for the construction of components of the

block cipher.

75

cations. On the bases of the AES key expansion image encryption scheme is explained in [28].

Error-correcting codes, particularly BCH codes, are helpful in reducing the rate of a decryption

failure. In [39], the decoding algorithm of the BCH code and design a constant-time version

of the BCH decoding algorithm is analyzed. The modified AES algori thm for image and text

encryption , which is based on bit permutation instead of mixed column operation , is presented

in [8]. But we used BCH codes in mixed column operation and round key addition in the AES

algorithm for image encryption.

4.2 Advanced Encryption Standard Algorithm

Advanced Encryption Standard is a symmetric block cipher system t hat uses exchange or

replaces network. According to the required key length and block length of AES can be varied.

For an iteration of 10, 12, and 14 rounds, three different key length schedules 128, 192, and

256 are used respectively. Key size determines t he level of security. AES consist of the round

function that's composed four different byte-oriented transformation. Key expand turns, and

round change are the three main aspects of the AES algorithm. The collection of three layers

add-round key layer, non-linear layer, and the linear mixture layer is the transformation of each

round.

4.2.1 Substitute Byte Transformation

It is a non-linear byte substitution that applies independently on each byte of state using S-Box.

This operation explains how each byte of the state matrix substitutes with another byte of the

Substitution-Box. S-Box contains 256 elements. There are different techniques to construct

S-Box.

4.2.2 Shift Rows Transformation

In this Transformation, the bytes of the rows of the current state matrix is left-shifted cyclically.

Row 0 is unchanged, and the first row is shifted one byte to the left. In the second row, there

are two bytes left shift are performed. Similarly, apply to the remaining rows.

77

BCH codes. The modulo multiplication is performed over the Galois field GF(28
).

Step 6: Take the analysis of encrypted image and compare it with the original image.

4.3.2 Construction of Round Keys using BCH Codes

The construction technique of round keys followed by the binary representation of the generator

polynomials of BCH codes over GF(27) for different designed distances. Convert each generator

polynomial to its binary representation form of length 128-bits. If it is not 128-bits, add check

bits on the left-hand side to make 128-bits long. Then convert the BCH of length 128 into

16-bytes. These 16 bytes string serves as a round key. Key 1 is derived from the generator

polynomial of BCH code [n = 127, k = 1] with the designed distance 65. By using the proposed

technique, we get key 1 as follows,

Key 1: 127 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255,

We shall construct next key by using BCH code of length 127 over Galois field GF(27) with

the designed distance 60. Then convert the coefficients of generator polynomial which are in

descending order into the block of 8 bits,

00000000 10101011 00110001 00010110 10011100 10000100 10100100 11011011

10001111 01000001 10101000 11001011 10110000 11101011 11001111 10111111.

Convert each byte into decimal form so hence key 2 as,

Key 2: 0 171 49 22 156 132 164 219 143 65 168 203 176 235 207 19l.

Similarly, construct all keys by using BCH codes over Galois field by changing the designed

distance.

Key 3: 01 101 123 192 163 7 249 56 40 16 229 154 109 22 187

Key 4: 0031462720815712031228325013717417443

Key 5: 00051610917423166308212961067841

Key 6: 0 0 0 0 13 83 6 214 191 219 200 87 71 25 231 13

Key 7 : 0 0 0 0 0 25 161 99 10 46 46 13 22 111 12 93

Key 8: 0 0 0 0 0 0 41 19 31 9 172 122 28 6 238 111

Key 9: 00000006521814515715825154166153

Key 10: 0 0 0 0 0 0 0 0 244 132 85 24 185 88 42 31

79

form. The matrix is as follows,

233 68 73 57

21 97 9 161
A= (4.3)

244 112 4 116

164 207 49 35

This is the required matrix which is used in the AES algorithm in mixed column transformation

step for the security of data.

4.3.4 Application of BCH Codes in Security of Image Data

Digital images are vulnerable to unauthorized access while in transmission over a communication

channel. Streaming digital images also require high network bandwidth for transmission. For

effective image transmission over the internet, security issues must be considered. Recently.

We apply the proposed scheme in image encryption of size 256 x 256.

The encrypted image of Lena using the proposed scheme is given in Fig. 4.2 and statistical

analyses of an encrypted image with the original AES algorithm and a modified AES algorithm

is shown in Table 4.1.

Fig. 4.1: Lena original Image Fig. 4.2: Lena encrypted image

81

4.4.3 Energy

This analysis computes the energy of the encrypted images by applying S-Boxes. It gives the

sum of squared elements in the grey level co-occurrence matrix,

(4.6)

where p(l, m) is the number of gray-level co-occurrence matrices.

4.4.4 Homogeneity

In homogeneity, the gray level co-occurrence matrix explains the proficiency of arrangements

of pixel brightness results in tabular form. The closeness of the distribution in the Gray level

co-occurrence matrix to its diagonal is measured through the homogeneity analysis. If the ho

mogeneity is small as much possible, then encryption is better. The following formula measures

the homogeneity,

H = L n(l,m)
1 + Il - mi'

I ,m

(4.7)

4.4.5 Entropy

Information entropy measures the disorder, which is created by the encryption process. Entropy

measures the strength of the encryption technique. An encryption technique is good if it has

more disorder and randomness. Entropy is defined as,

n

e = - LP(Xi) logbP(xi), (4.8)
i=l

where P(Xi) contains the histogram counts. Entropy must be close to the 8 for better image

quality.

83

of BCH code corrects the error. It means that if there is an error in encrypted data during

transmission, then there is no secure decryption. So, we apply the decoder of BCH codes, which

correct the errors in encrypted data and then decrypt the data and attain the original message.

4.4.6 Histogram Analyses

Histogram analysis is used to see how much encryption procedure changes test image compared

to the encrypted image. For good encryption, the histogram of the ciphered image should have

a uniform distribution indicating that the anticipated scheme can resist statistical attacks. The

histograms of the ciphered images are appreciably uniform and are quite dissimilar from the

test images. The suggested encryption technique has fulfilled all the test image features and

has convoluted the statistical bond between the test image and its cipher image.

1000 1000

7SO 7SO

500 500

2SO 250

50 100 ISO 200 250 SO 100 ISO 200 250 SO 100 ISO 200 250

(.) (b) (e) (d)

1000 "1000

7SO 7SO 7SO

500 500 500

250

50 100 ISO 200 2SO SO 100 ISO 200 250 SO l lX) 150 200 2SO

(eJ (f) (9) (hI

Fig. 4.3: Histogram analysis of original and encrypted mage

Fig. 4.3 shows that the histogram analyses of the original and encrypted images by the

proposed encryption algorithm through different channels (Red, Green, Blue). The histogram

85

Chapter 5

Symmetric Block Cipher and BCH

Codes: A Text Encryption

Application

Accelerated adventures in computer science and technology has made digital technology, a need

of the day. Academicians, researchers, and technologists are anxious to share their secret data

through the communication channel along with its security. vVith the fast advancement of

digital data exchange, security information becomes much important in transmission and data

storage. Due to the extreme use of texts in security agencies and industry, it is essential to

keep the confidential text data from unauthorized access. In chapter 4, we have utilized BCH

codes in image encryption and used one mixed column matrix in each round of modified AES

algorithm, but in this chapter , BCH codes are used for the security of text data by utilizing

ten different mixed column matrices for each round in modified AES algorithm. The proposed

scheme improves the mixed column operation by using MDS matrices and round key addition

steps of the modified AES algorithm using BCH codes over the Galois field for better encryption

performance and security of data. Using the avalanche effect for text encryption and the most

popular test NIST, it is ensuring that the proposed scheme for ciphertext is more beneficial,

and results of security analyses are given in this chapter.

87

g(x) X242 + X 239 + X 238 + X 236 + X 23 I + X 230 + X 229 + X 228 + X 226 + X225 + X223 + X2 I 5

+X2I3 + X209 + X207 + X205 + X203 + X20 I + X200 + X I99 + XI97 + X I94 + X I92 + XI9I

+X188 + XI85 + X I 8I + X I79 + X I78 + X I76 + XI74 + X I73 + X I 72 + XI71 + XI69 + XI68

+X167 + XI66 + X I6 5 + XI62 + XI6I + XI57 + XI55 + X I53 + X I46 + XI45 + X 143 + XI42

+X134 + X I30 + X I29 + X I27 + X I26 + X I 22 + X I2 I + X1I9 + X1l8 + X 1I7 + X1I6 + X1l5

+X1l4 + 7X 1l3 + X 110 + X I07 + X I05 + X I04 + X IOI + X IOO + X99 + X98 + X97 + X96

+X95 + X93 + X92 + X91 + X87 + X86 + X 79 + X 78 + X75 + X 74 + X73 + X 72 + X 71

+X68 + X67 + X65 + X64 + X63 + X62 + X6I + X 60 + X 58 + X54 + X 52 + X 51 + X 50

+X48 + X47 + X 46 + X45 + X 40 + X38 + X37 + X33 + X3 1 + X 30 + X29 + X26 + X23

(5.3)

Divide (xn - k+i - I) for i = 1 by g(x) and obtain a remainder polynomial then split to the

coefficients of remainder polynomial into the block of 8 bits and write these blocks into 4 x 4

matrix after converting it into decimal form. Dividing the polynomial (x255- I3) by g(x) we get

matrix as,

A=

233 68 73 57

21 97 9 161

244 112 4 116

164 207 49 35

If we divide the polynomial (x 243) by g(x) then we get,

221 104 182 89

110 180 91 44

234 50 155 207

168 113 251 190

89

(5.4)

(5 .5)

If we divide t he polynomial (x248) by g(x) then we obtain,

246 119 96 56

123 59 176 28
A6 =

203 234 184 54

101 245 92 27

If we divide the polynomial (x249) by g(x) t hen we get,

153 101 108 223

76 178 182 III
A7 =

38 89 91 55

19 45 173 155

If we divide the polynomial (x250) by g(x) t hen we get,

248 84 26 157

132 126 23 83
A8 =

66 63 11 233

33 31 133 244

If we divide the polynomial (x251) by g(x) then we get matrix as,

A9 =

136 52 201 200

68 26 100 228

34 13 50 114

153 50 80 241

5.2 Construction of Secret Keys using BCH Codes

(5.10)

(5.11)

(5.12)

(5.13)

The construction technique of round keys followed by the binary representation of the generator

polynomials of BCH codes over the Galois field G F(2m) for different designed distances. Convert

each generator polynomial to its binary representation form for 128 length key.

91

FaT Key 3, ConstTuct the genemtoT polynomial faT designed distance d = 44,

g(x) x
I05 + x 104 + x 103 + x lOO + x 97 + x 92 + x 9I + x 89 + x 88 + x 87 + x 87 + x 86

+x
84 + x 79 + x

76 + x 75 + x 74 + x72 + x 70 + x 69 + x 68 + x 67 + x 57 + x 56

+x54 + x 53 + x 52 + x 5I + x 49 + x
46 + x44 + x4 I + x 40 + x 39 + x 38 + x 37

+ x
36 + x 35 + x 33 + x 3I + x 27 + x24 + x 23 + x 2I + x I 9 + x I 8 + x I 8 + x I7

+ x
15 + x I 3 + x ll + x lO + x 9 + x 5 + x 3 + X + 1. (5.16)

TheTefoTe, Key 3: 0 0 0 5 16 109 174 23 166 30 82 12 96 106 78 41.

FaT K ey 4, calculate the genemtoT polynomial faT designed distance d = 32,

g(x) x
98 + x 96 + x 92 + x 86 + x 85 + x 83 + x 82 + x 80 + x 79 + x 77 + x 75 + x 74 + x 73

+x
68 + x 66 + x 65 + x 64 + x 63 + x 6I + x 58 + x 57 + x 52 + x 5I + x 50 + x 49

+x46 + x44 + +x4I + x 35 + x 34 + x 30 + x 29 + x 22 + x 21 + x I 9 + x 17

+x14 + x ll + x lO + x 9 + x 5 + x 3 + 1.

TheTefoTe, Key 4 : 0 0 0 0 13 83 6 214 191 219 200 87 71 25 231 13.

FaT Key 5, .find the generator polynomial for designed distance d = 30,

(5.17)

g(x) x
91 + x 90 + x 88 + x 86 + x 84 + x 8I + x 80 + x 74 + x 73 + x71 + x 70 + x 68 + x 66

+x
65 + x 63 + x 6I + x 60 + x 59 + x 58 + x 57 + x 56 + x 55 + x 54 + x 52 + x 5I

+x49 + x 48 + x 47 + x 46 + x 43 + x 38 + 5x
36 + x 34 + x 33 + x 32 + x 30 + x 26

+x25 + x24 + x 20 + x I 9 + x I6 + x I 5 + x I4 + x I3 + x lO + x 9 + x 8

+x
3 + x 2 + 1, (5. 18)

which implies that, Key 5: 0 0 0 0 0 25 161 99 10 46 46 13 22 111 12 93 .

93

FOT K ey 10, calculate the genemtoT polynomial fOT designed distan ce d = 16,

g(x) x 56 + x 53 + x 51 + x 49 + x 48 + x 46 + x 45 + x44 + x 43 + x42 + x41 + x 40

+x39 + x 35 + x 32 + x 28 + x 25 + x24 + x 23 + x 20 + x 17 + x 16 + x 13 + xll

H ence, Key 10: 0000000002146 19522238162115.

5.3 Application of BCH Codes in Text Data

(5.23)

BCH codes are utilized in text encryption application. First-time BCH codes can be used as a

secret key in any encryption scheme. BCH codes are also used in mixed column matrices .

Encryption Scheme

AES algorithm is modified for text encryption using the BCH codes as follows,

Step 1 : Convert 128 bits plain text data into 16 data bytes and write these 16 bytes in a 4 x 4

state matrix .

Step 2: Construct keys by using the BCH codes of length 128 by taking different designed

distances over the Galois field, which are used as round keys. Key 0 is used in round 0, and

key 1 is used in round 1, apply all 10 different keys in 10 rounds.

Step 3: Now, the entries of the current stat e m atrix are substituted wit h the AES S-Box

entries.

Step 4: Now perform the circular shift on each row of the current st ate matrix . Row 0 is

shifted 0 bytes left, row 1 is shifted 1 byte left , row 2 is shifted 2 bytes left , and row 3 shifted

3 bytes left.

Step 5: Now, the current state matrix is multiplied in each round with the different mix column

MDS matrix constructed by using BCH codes. The multiplication is modulo multiplication over

the Galois field GF(28) .

Step 6: Apply t he analysis on ciphered text and compare it with the original AES algorithm.

Example 54 : Suppose that we want to encTypt plain text ONE TWO NINE ONE by

95

Round 7

Plain Text: b9 68 05 7b 52 7b 66 53 7e d5 16 36 I e 05 88 6a

Cipher Text: ea 09 88 ac 87 a5 42 da 43 e7 5d d9 3d 5f 90 2d

Round 8

Plain Text: ea 09 88 ac 87 a5 42 da 43 e7 5d d9 3d 5f 90 2d

Cipher Text: e5 64 5e 14 5b 3b 55 a8 2d d3 55 20 3e 63 2el a8

Round 9

Plain Text: e5 64 5e 14 5b 3b 55 a8 2el el3 55 20 3e 63 2el a8

Cipher Text: 15 35 97 5c ba e2 71 5f 04 44 71 el8 80 6d 53 62

Round 10

Plain Text: 15 35 97 5c ba e2 71 5f 04 44 71 el8 80 6el 53 62

CipherText: 59 98 a6 aa f4 Ib eel 4a f2 3e la Oc elb 78 01 12

5.4 Text Encryption Analyses

Vie encrypt text data by using the proposed scheme, which is based on BeH codes. Proposed

scheme is analyzed by standard analyses. These analyses are avalanche effect, ciphertext attack ,

known-plaintext attack and NIST test .

5.4.1 Avalanche Effect

Every encryption method has its strong and weak arguments. To apply the appropriate method

in a specific application, we must require identifying the weakness and strengths. Therefore, the

analyses of these methods are critically compulsory. Every encryption algorithm has ensured

the property, a little bit change in either the plaintext or the key, should produce a huge change

in the ciphertext. The Avalanche Effect is defined, if we single bit change in the key or in the

plain text then it gives us several bits change in the ciphertext. The strength of the proposed

algorithm is estimated using Avalanche Effect due to single-bit variation in plaintext keeping

97

We test ciphertext by changing in a single bit in original Key and compute all 10 rounds

then compare the output with cipher text constructed with the original key.

Round Cipher Texts with Original Key and with Single Bit Change Bits %

0
4f 4e 65 20 54 77 6f 20 4e 69 6e 65 20 4f 4e 65

1
4f 4e 65 20 54 77 6f 20 4e 69 6e 65 20 4f 4e 65

7e 00 f4 04 7 f ef 3e e8 f7 d5 fd 8a 8e e7 9d df
1 69 53.91

9b 27 8f 51 7 f ef 3e e8 f7 d5 fd 8a 8e e7 9d df

26 b5 54 e4 71 3e 5b 4b 77 d8 ee bf a8 45 01 f7
2 63 49.22

a5 77 39 4e 90 Of 54 5f 80 b8 bO 44 77 51 84 d9

56 49 9d 94 e6 8e 39 f e 6d 17 f1 b5 3b 10 f271
3 61 47.66

Of Od bf 74 5e 5e 96 3f 9f 01 f6 92 fd ee bf f e

04 36 e3 00 3d 75 34 dO 51 f3 e2 23 ef 86 4a 62
4 74 57.81

2d 4a 37 54 2a ee be b9 ee 83 19 f8 1a 98 b3 14

6d d6 19 77 23 a6 e1 d8 6a 7e 43 01 7e 3057 11
5 65 50.78

04 a9 64 f2 e7 2e cO 39 45 07 Od 00 a1 67 2544

b9 68 05 7b 52 7b 66 53 7e d5 16 36 I e 05 886a
6 65 50.78

e1 f7 de e7 7d 51 15 5d e3 65 09 3f ee 5e 30 4e

ea 09 88 ae 87 a5 42 da 43 e7 5d d9 3d 5f 902d
7 66 51.56

e1 f7 de e7 7d 51 3e Of 26 fd 38 db 29 6e 78 b8

e5 64 5e 14 5b 3b 55 a8 2d d3 55 20 3e 63 2d a8
8 67 52.34

b6 ge eb 5a 4e 14 e2 fa 18 be 35 6f ee 7b Ie 7e

15 35 97 5e ba e2 71 5f 04 44 71 d8 80 6d 53 62
9 58 45.31

85 33 82 5f 61 2b 68 9b ab 15 39 68 7a ee e7 d5

59 98 a6 aa f4 1b ed 4a f2 3e 1a Oe db 78 01 12
10 61 47.66

97 f1 12 03 e f 59 94 ef 62 2a 81 d7 ee 2d e7 36

Table 5 .2: Avalanche effect by changing one bit in secret key

In Table 5.1, we apply the avalanche effect by altering a single bit in plain text keeping

unchanged in secret key, and then performing all the rounds of the proposed AES algorithm.

99

comparison to limited numbers for the random sequence. The excursion of this random walk

should be close to zero. The excursion of this random walk for non-random sequences will be

far from zero. The purpose of the cumulative sums test is to decide whether the sum of the

partial sequences happening in the tested sequence is too small or too large.

Statistical Test D ecision

The Discrete Fourier Transform (spectral) test Passed

The Non-overlapping template matching test Passed

The approximate entropy test Passed

The Cumulative Sums (forward) test Passed

The Cumulative Sums (reverse) test Passed

Table 5.3: NIST statistical test passed for text encryption

5.4.3 Ciphertext Attack

If the cryptanalyst knows the ciphertext and the encryption techniques, but does not have the

private key to decrypt the ciphertext. If the brute force attack is applied to cipher text, it will

not be helpful to attain plain text . If the key size is too large it will take many years to decrypt

the ciphered message. Therefore, even if the analyst attains the original message, then the

data's will be insufficient at that t ime.

5.4.4 Known Plaintext Attack

Given that the cryptanalyst knows the encryption algorithm, ciphertext , and one or more

ciphertext-plaintext pairs designed by the private key. Since the implementation generates a

different ciphertext for a similar message due to the different designed distance of BCH codes,

known-plaintext attack cannot harm.

101

Chapter 6

A Nonlinear Component Design in

Symmetric Block Cipher with Image

Encryption Application

In chapter 4, we encrypt the image using the BCH codes and the modified AES algorithm, but

the security layer was missing in that algorithm. In this chapter, we constructed a nonlinear

component (S-Boxes) in symmetric block cipher using the Galois ring and the Galois field

and apply those S-Boxes in data security. An S-Box is based on Boolean functions, which

are essential in the foundation of symmetric cryptographic systems. The Boolean functions

are used for S-Box designing in the block cipher. Boolean functions with optimal nonlinearity

and upright cryptographic stuff playa significant role in block ciphers' design. To analyze the

security of the image encryption, some standard analyses are performed.

6.1 Construction of Nonlinear Component using Galois Ring

and Galois Field

The S-Box is the crucial component used in several cryptosystems. It works in the way of

substituting several blocks of bits for a completely unlike set of output bits. So the substitution

shows a confused association among input and output bits of the substitution box. When used

102

Exp Polynomial Exp Polynomial Exp Polynomial Exp Polynomial

1 00010000 30 40573013 59 51443017 88 16545373

2 00037505 31 74436313 60 26541144 89 4502214

3 75065707 32 30444347 61 71717214 90 26431410

4 27625706 33 50777444 62 46055235 91 74133547

5 32516562 34 67225333 63 10127701 92 2635357

6 70227715 35 72026522 64 26060252 93 51543167

7 40213222 36 34321402 65 62124406 94 27536114

8 76435525 37 25414672 66 64751452 95 44330217

9 20304547 38 23025645 67 32464531 96 42210377

10 23741070 39 35320102 68 50415046 97 45725725

11 77341334 40 15364372 69 43154545 98 12655332

12 61006774 41 71026776 70 2024051 99 00056361

13 04416500 42 33111702 71 46316402 100 63603101

14 61033145 43 25733455 72 22702375 101 54524760

15 56133407 44 11702037 73 7405230 102 36250612

16 21653557 45 52450530 74 57074340 103 15054721

17 16053661 46 76650341 75 33602603 104 75210201

18 67560701 47 56304761 76 34645760 105 52434625

19 26611116 48 34240670 77 60321064 106 37542147

20 71717365 49 17065024 78 32573272 107 33314714

21 47565235 50 04017106 79 45341513 108 55635475

22 13757116 51 75457105 80 50157574 109 46514067

23 21053031 52 41212241 81 60321151 110 06334315

24 11455601 53 61575225 82 33443272 111 45414577

25 00014641 54 77620013 83 40717344 112 00277645

104

Exp Polynomial Exp Polynomial Exp Polynomial Exp Polynomial

138 34776723 167 32516775 196 05035614 225 32521205

139 70253733 168 72357715 197 55465007 226 25406412

140 00400121 169 46335371 198 42067746 227 41276140

141 01654040 170 11650577 199 31626006 228 20507023

142 43561661 171 37556661 200 70033762 229 56363010

143 53657516 172 70563411 201 00130707 230 25552476

144 61162061 173 05366616 202 07372757 231 01316211

145 45675356 174 65561776 203 24740673 232 65166275

233 3375756 239 45006041 245 11547715 251 26254350

234 50370273 240 23324100 246 21412114 252 23737721

235 75151373 241 20027172 247 2605245 253 56622637

236 63023251 242 57100202 248 50416260 254 13055062

237 55064102 243 72546350 249 55374545 255 00000001

238 33453706 244 32510614 250 37101473

Table 6.1: Elements of maximal cyclic subgroup G255

Step 2: Define a mapping for a = f35 E G255 , P: G255 U {O} --> G255 U {O} by

Step 3: Select any fixed element b from G255 , for instance, b = f340 = o? +506 + 305 + 604 +

403 + 302 + 70 + 2 then apply mapping,

a: G255 U {O} --> G255 U {O}

a(a) (a) (f340) for all a E G255 (6.5)

Step 4: Find the elements of S-Box using the mapping p o a: G255 U {O} --> G255 U {O} by

po a(a) = (af340) - 1 for all a E G255. (6.6)

106

47314104 33314714 37506535 71717214 11702037 47565235 56622637 25552476

01044440 37542147 40717344 26541144 25733455 71717365 23737721 56363010

04400504 52434625 33443272 51443017 33111702 26611116 26254350 20507023

05153450 75210201 60321151 15532357 71026776 67560701 37101473 41276140

64106742 15054721 50157574 04131167 67225333 16053661 55374545 25406412

41422521 36250612 45341513 62636436 50777444 21653557 50416260 32521205

14251651 54524760 32573272 56767562 30444347 56133407 02605245 21015142

51152672 63603101 60321064 77620013 74436313 61033145 21412114 73425740

14322676 00056361 34645760 61575225 40573013 04416500 11547715 53400727

50362113 02635357 33602603 41212241 51575262 61006774 32510614 50236051

06575620 74133547 57074340 75457105 50626627 32516562 72546350 63153546

76203323 26431410 07405230 04017106 33234244 27625706 57100202 13463330

00277645 04502214 22702375 17065024 46447505 75065707 20027172 07701662

45414577 16545373 46316402 34240670 00014641 00037505 23324100 14625444

06334315 10376772 02024051 56304761 11455601 00010000 45006041 10446552

46514067 51322227 10127701 76650341 21053031 00000001 33453706 77124254

55635475 77230310 46055235 52450530 13757116 13055062 01316211 00000000

Table 6.2: Elements of S-Box using G255

If we take another element b from G255 and apply the scheme for construction of S-Box, we

get another S-Box over the Galois ring GR(8,8). We get 255 different S-Boxes corresponding

to each element b of G255 .

6.1.2 Scheme for Nonlinear Component over the Galois Field

S-Boxes are constructed over Galois field G F(28) is the same as S-Boxes over the Galois ring

GR(8 , 8). By using the following method,

Step 1: Find the elements of Galois field GF(28).

108

Exp Polynomial Exp Polynomial Exp Polynomial Exp Polynomial

1 00000010 30 00111101 59 11011111 88 11001010

2 00000100 31 01111010 60 11011101 89 11110111

3 00001000 32 11110100 61 11011001 90 10001101

4 00010000 33 10001011 62 11010001 91 01111001

5 00100000 34 01110101 63 11000001 92 11110010

6 01000000 35 11101010 64 11100001 93 10000111

7 10000000 36 10110111 65 10100001 94 01101101

8 01100011 37 00001101 66 00100001 95 11011010

9 11000110 38 00011010 67 01000010 96 11010111

10 11101111 39 00110100 68 10000100 97 11001101

11 10111101 40 01101000 69 01101011 98 11111001

12 00011001 41 11010000 70 11010110 99 10010001

13 00110010 42 11000011 71 11001111 100 01000001

14 01100100 43 11100101 72 11111101 101 10000010

15 11001000 44 10101001 73 10011001 102 01100111

16 11110011 45 00110001 74 01010001 103 11001110

17 10000101 46 1100010 75 10100010 104 11111111

18 01101001 47 11000100 76 00100111 105 10011101

19 11010010 48 11101011 77 01001110 106 01011001

20 11000111 49 10110101 78 10011100 107 10110010

21 11101101 50 00001001 79 01011011 108 00000111

22 10111001 51 00010010 80 10110110 109 00001110

23 00010001 52 00100100 81 00001111 110 00011100

24 00100010 53 01001000 82 00011110 111 111000

25 01000100 54 10010000 83 00111100 112 01110000

110

Exp Polynomial E xp Polynomial E xp P olynomial Exp Polynomial

205 10100101 218 1010100 231 10011111 244 00101111

206 00101001 219 10101000 232 01011101 245 01011110

207 01010010 220 00110011 233 10111010 246 10111100

208 10100100 221 01100110 234 00010111 247 00011011

209 00101011 222 11001100 235 00101110 248 00110110

210 01010110 223 11111011 236 1011100 249 01101100

211 10101100 224 10010101 237 10111000 250 11011000

212 00111011 225 01001001 238 00010011 251 11010011

213 01110110 226 10010010 239 00100110 252 11000101

214 11101100 227 01000111 240 01001100 253 11101001

215 10111011 228 10001110 241 10011000 254 10110001

216 00010101 229 1111111 242 01010011 255 00000001

217 00101010 230 11111110 243 10100110 00000000

Tabl e 6.3: Elements of Galois field G F(28
)

Step 2: Define a mapping p: GF(28) -t GF(28) by

Step 3: Select an element b = a 8 = x 6 + x 5 + X + 1 then apply mapping a: GF(28) -t GF(28)

defined by

Step 4: Find the elements of S-Box using the composition of two mapping

p oa: GF(28) -t GF(28) defined by

112

(6.11)

(6.12)

6.2 Application of Nonlinear Component in Image Encryption

In chapters 4 and 5, we encrypt the image and text by using the BCH codes and the modified

AES algori thm, but the security layer was missing in that algorithm. We computed in this

chapter S-Boxes using the Galois ring and t he Galois field and apply those S-Boxes in data

security. S-Boxes to apply in a distinctive type of cryptosystems for the securi ty of the data is

need of the day. We encrypt t he image by using the following algorithm, and this algori thm

has 10 rounds, each round consist of following steps,

Step 1: Construct the secret key of 128 bit by using BCH codes over the Galois ring or the

Galois field .

Step 2: Divide t he pixels of the image into a block of 128 bits and perform the XOR operation

with a secret key.

Step 3 : Construct t he S-Box by using the elements of the Galois ring or t he Galois field.

Step 4: Apply the S-Box to the pixels of the image after secret key addition.

Step 5: Construct maximum distance separable m atrix using the BCH codes over the Galois

ring or Galois field.

Step 6: Multiply the MDS matrix with pixels of the image after applying S-Box.

Step 7: Repeat Step 1 to Step 6 and construct different keys by using BCH code, different

S-Boxes, different MDS matrices for each round.

Example 57 : Suppose that we want to encTypt an image by using the above scheme, then we

peTfonn the following steps,

Step 1 : Construction of Secret keys for each round

To .find the secTet keys by using B CH codes of length 255 over Galois .fi eld GF(28) , find the

genemtor polynomial fo r designed distance d = 119,

114

For designed distance d = 87,

Key 5 = 97 83 84 35 104 195 56 41 224 158 27 124 162 63 115 89.

For designed distance d = 85,

Key 6 = 123 198 170 165 96 163 64 9 147 101 184 77 233 179 201 224.

For designed distance d = 63 ,

Key 7 = 143 119 118 176 72 226 45 130 246 214 24 86 99 161 193 88.

For designed distance d = 60,

Key 8 = 193 198 10 119 189 248 86 75 235 73 108 15 56 254 238 81.

For designed distance d = 58,

Key 9 = 29 140 71 26 253 86 30 42 146 133 230 100 83 162 135 109.

For designed distance d = 55,

Key 10 = 237 196 133 181 159 220 90 131 200 124 234 29 34 135 112.

Step 2: Construction of S-Boxes over the Galois field GF(28)

Compute S-Boxes for each round by using mapping defined in equation 6.9.

116

0 E9 FA 7D BO F8 2C 16 B 8B CB EB FB F3 F7 F5

F4 7A 3D 90 48 24 12 9 8A 45 AC 56 2B 9B C3 EF

F9 F2 79 B2 59 A2 51 A6 53 A7 DD EO 70 38 lC E

7 8D C8 64 32 19 82 41 AE 57 A5 DC 6E 37 95 C4

62 31 96 4B AB DB E3 FF Fl F6 7B B3 D7 E5 FC 7E

3F 91 C6 63 BF Dl E6 73 B7 D5 E4 72 39 92 49 AA

55 A4 52 29 9A 4D A8 54 2A 15 84 42 21 9E 4F A9

DA 6D B8 5C 2E 17 85 CC 66 33 97 C5 EC 76 3B 93

C7 ED F8 7C 3E IF 81 CE 67 BD DO 68 34 lA D 88

44 22 11 86 43 AF D9 E2 71 B6 5B A3 DF El FE 7F

Bl D6 6B BB D3 E7 FD FO 78 3C IE F 89 CA 65 BC

5E 2F 99 C2 61 BE 5F Al DE 6F B9 D2 69 BA 5D AO

50 28 14 A 5 8C 46 23 9F Cl EE 77 B5 D4 6A 35

94 4A 25 9C 4E 27 9D CO 60 30 18 C 6 3 8F C9

EA 75 B4 5A 2D 98 4C 26 13 87 CD E8 74 3A ID 80

40 20 10 8 4 2 1 8E 47 AD D8 6C 36 IB 83 CF

Table 6.6: Elements of S-Box 2 over GF(28
)

118

0 7D BO 58 2C 16 B 8B CB EB FB F3 F7 F5 F4 7A

3D 90 48 24 12 9 8A 45 AC 56 2B 9B C3 EF F9 F2

79 B2 59 A2 51 A6 53 A7 DD EO 70 38 lC E 7 8D

C8 64 32 19 82 41 AE 57 A5 DC 6E 37 95 C4 62 31

96 4B AB DB E3 FF Fl F6 7B B3 D7 E5 FC 7E EF 91

C6 63 BF Dl E6 73 B7 D5 E4 72 39 92 49 AA 55 A4

52 29 9A 4D A8 54 2A 15 84 42 21 9E 4F A9 DA 6D

B8 5C 2E 17 85 CC 66 33 97 C5 EC 76 3B 93 C7 ED

F8 7C 3E IF 81 CE 67 BD DO 68 34 lA D 88 44 22

11 86 43 AF D9 E2 71 B6 5B A3 DF El FE 7F Bl D6

6B BB D3 E7 FD FO 78 3C IE F 89 CA 65 BC 5E 2F

99 C2 61 BE 5F Al DE 6F B9 D2 69 BA 5D AO 50 28

14 A 5 8C 46 23 9F Cl EE 77 B5 D4 6A 35 94 4A

25 9C 4E 27 9D CO 60 30 18 C 6 3 8F C9 EA 75

B4 5A 2D 98 4C 26 13 87 CD E8 74 3A ID 80 40 20

10 8 4 2 1 8E 47 AD D8 6C 36 IB 83 CF E9 FA

Table 6.8: Elements of S-Box 4 over GF(28)

120

0 CB EB FB F3 F7 F5 F4 7A 3D 90 48 24 12 9 8A

45 AC 56 2B 9B C3 EF F9 F2 79 B2 59 A2 51 A6 53

A7 DD EO 70 38 1C E 7 8D C8 64 32 19 82 41 AE

57 A5 DC 6E 37 95 C4 62 31 96 4B AB DB E3 FF F1

F6 7B B3 D7 E5 FC 7E 3F 91 C6 63 BF D1 E6 73 B7

D5 E4 72 39 92 49 AA 55 A4 52 29 9A 4D A8 54 2A

15 84 42 21 9E 4F A9 DA 6D B8 5C 2E 17 85 CC 66

33 97 65 EC 76 3B 93 C7 ED F8 7C 3E IF 81 CE 67

BD DO 68 34 1A D 88 44 22 11 86 43 AF D9 E2 71

B6 5B A3 DF E 1 FE 7F B1 D6 6B BB D3 E7 FD FO 78

3C IE F 89 CA 65 BC 5E 2F 99 C2 61 BE 5F A l DE

6F B9 B2 69 BA FD AO 50 28 14 A 5 8C 46 23 9F

C1 EE 77 B5 D4 6A 35 94 4A 25 9C 4E 27 9D CO 60

30 18 C 6 3 8F C9 EA 75 B4 5A 2D 98 4C 26 13

87 CD E8 74 3A 1D 80 40 20 10 8 4 2 1 8E 47

AD D8 6C 36 1B 83 CF E9 FA 7D BO 58 2C 16 B 8B

Table 6.10 : Elements of S-Box 6 over G F(28
)

122

0 90 48 24 12 9 8A 45 AC 56 2B 9B C3 EF F9 F2

79 B2 59 A2 51 A6 53 A7 DD EO 70 38 lC E 7 8D

C8 64 32 19 82 41 AE 57 A5 DC 6E 37 95 C4 62 31

96 4B AB DB E3 FF Fl F6 7B B3 D7 E5 FC 7E 3F 91

C6 63 BF Dl E6 73 B7 D5 E4 72 39 92 49 AA 55 A4

52 29 9A 4D A8 54 2A 15 84 42 21 9E 4F A9 DA 6D

B8 5C 2E 17 85 CC 66 33 97 C5 EC 76 3B 93 C7 ED

F8 7C 3E IF 81 CE 67 BD DO 68 34 lA D 88 44 22

11 86 43 AF D9 E2 71 B6 5B A3 DF El FE 7F Bl D6

6B BB D3 E7 FD FO 78 3C IE F 89 CA 65 BC 5E 2F

99 C2 61 BE 5F Al DE 6F B9 D2 69 BA 5D AO 50 28

14 A 5 8C 46 23 9F Cl EE 77 B5 D4 6A 35 94 4A

25 9C 4E 27 9D CO 60 30 18 C 6 3 8F C9 EA 75

B4 5A 2D 98 4C 26 13 87 CD E8 74 3A ID 80 40 20

10 8 4 2 1 8E 47 AD D8 6C 36 IB 83 CF E9 FA

7D BO 58 2C 16 B 8B CB EB FB F3 F7 F5 F4 7A 3D

Table 6.12: Elements of S-Box 8 over G F(28
)

124

0 51 A6 53 A7 DD EO 70 38 lC E 7 8D C8 64

19 82 41 AE 57 A5 DC 6E 37 95 C4 62 31 96 4B

DB E3 FF Fl F6 7B B3 D7 E5 FC 7E 3F 91 C6 63

Dl E6 73 B7 D5 E4 72 39 92 49 AA 55 A4 52 29

4D A8 54 2A 15 84 42 21 9E 4F A9 DA 6D B8 5C

17 85 CC 66 33 97 C5 EC 76 3B 93 C7 ED F8 7C

IF 81 CE 67 BD DO 68 34 lA D 88 44 22 11 86

AF D9 E2 71 B6 5B A3 DF El FE 7F Bl D6 6B BB

E7 FD FO 78 3C IE F 89 CA 65 BC 5E 2F 99 C2

BE 5F Al DE 6F B9 D2 69 BA 5D AO 50 28 14 A

8C 46 23 9F Cl EE 77 B5 D4 6A 35 94 4A 25 9C

27 9D CO 60 30 18 C 6 3 8F C9 EA 75 B4 5A

98 4C 26 13 87 CD E8 74 3A ID 80 40 20 10 8

2 1 8E 47 AD D8 6C 36 IB 83 CF E9 FA 7D BO

2C 16 B 8B CB EB FB F3 F7 F5 F4 7A 3D 90 48

12 9 8A 45 AC 56 2B 9B C3 EF F9 F2 79 B2 59

Table 6.14 : Elements of S-Box 10 over G F(28)

Step 3 : Construction of different MDS matrices for each round

The scheme of construction of maximum distance separable matrices is already explained in

chapter 5, section 5.2. By using the BCH codes over the Galois field , different MDS matrices

for each round are calculated as,

E9 44 49 39

15 61 09 Al

F4 70 04 74

A4 CF 31 23

DD 68 B6 59 D4 75 75 91

6E B4 5B 2C BE 4F CF 59

EA 32 9B CF

A8 71 FB BE

126

5F 27 E7 AC

FB E6 86 47

32

AB

BF

9A

2E

3E

43

D3

61

5

4E

2D

4

58

24

A2

Fig. 6.3: Plain Image Fig. 6.4: Cipher Image

Fig. 6.5: Plain Image Fig. 6.6: Cipher Image

Fig. 6.1: Plain Image Fig. 6.8: Cipher Image

128

The Statistical analysis of encrypted image of Lena ,mandrill , pepper and deblur through blue

channel are shown in Table 6.17,

Image Contrast Correlation Energy Homogeneity Entropy

Deblur 10.5257 - 0.0026 0.0156 0.3890 7.9969

Len a 10.5075 0.0000199 0.0156 0.3899 7.9973

l'vIandrill 10.5321 - 0.0043 0.0156 0.3893 7.9971

Pepper 10.5075 0.0000199 0.0156 0.3899 7.9973

Table 6 .17: Statistical analysis through blue channel

6.2.3 Histogram Analysis

The uniformi ty of the image's histogram of an encrypted image is the finest aspect for assessing

image encrypt ion systems' security. We analyze here the color Deblur , Lena, Mandrill , and

Pepper image of dimension 256 x 256 , which have different contents , and its histogram is

considered . Histogram of the encrypted image under the proposed algori thm is likewise identical

and different from plain image, which makes statistical att acks hard . ' Ve have drawn three

dimensional 3D histograms for plain and encrypted images to study the uniformity in encrypted

image. The histogram trickle holds the data distribution of pixel respects in a picture. A

fl awl ess encrypted picture should have a uniform histogram spreading to preserve the rival

from separating any supportive data from the unstable histogram. The 3D histograms of t he

original and encrypted im age of Deblur, Lena , Mandrill , and P epper are shown in Fig. 6.9 to

6. 16.

130

•
-. e .

. e .•. • • ; .
150 • ••

m .: ••• ei. .. /,~,. : ·" 1. ~ I~" o~"'. f" 5O,~~ G
200 2~ I>

Fig. 6.15: Pepper original Fig. 6.16: Pepper encrypted

6.2.4 Analyses Discussion

Initially, statistical analyses are performed. Information entropy and correlation determine the

security strength of the algorithm. Our entropy is approaching 8, and correlation is very closed

to zero. These outcomes indicate that the encryption scheme has highly disordered, and the

relationship between pixels is handsomely break. On the other hand, the quality of encryption

is determined through contrast, energy, and homogeneity. The outcomes from Tables 6.15,6.16,

and 6.17 indicates that the encryption scheme is highly secure and has outstanding encryption

quality.

The histogram analyses also determine security strength. From figures , Fig. 6.10, 6.12 , 6.14,

6.16, the encrypted image has a uniform distribution, which provides justification that the

anticipated scheme has outstanding resistance capability against histogram attacks.

132

Chapter 7

Conclusion

In this thesis , we have presented two types of BCH codes one is over Galois ring, and the

second is over the Galois field. The relation between these two types of codes is developed

computationally so that data can be transmitted t hrough any of the BCH codes over t he Galois

ring or Galois field. The selection of code is based on the choice of better code rate or error

correction capability of t he chosen code or consistency in transmission. Since the number of

code words in the BCH code over the Galois ring is greater than t he BCH code over the Galois

field , therefore, we can transfer maximum information per unit time in BCH codes in the

Galois ring. One can transmit data easily from the Galois ring to the Galois field by using t he

proposed computational approach. We can choose better error correction capabilities of BCH

codes computationally by changing the input algorithm 's designed distance. A computational

method is designed to construct the BCH codes over the Galois ring for encoding our messages .

We have constructed a computationally maximal cyclic subgroup of any order as desired , which

helps us to construct S-box over Galois ring in the field of Cryptography and decoding of BCH

codes. We have also found the dimension of the primitive BCH code computationally for any

fixed length with the degree of the generator polynomial. The problem of t he dimensions of

primitive BCH codes over the Galois field is resolved. This novel approach provides us the

generator polynomial for BCH codes of each length over the Galois ring and Galois field.

If t he data can be encoded either by the BCH codes over the Galois ring or BCH codes over t he

Galois field then transmitted data can also be decoded using the computational approach of

the Barlekamp Massey algorithm for the Galois field-based BCH code. The luxury of encoding

133

References

[1] Blake, Ian F . IICodes over certain rings." Information and Gontrol 20, no. 4 (1972): 396-

404.

[2] Blake, Ian F. "Codes over integer residue rings." Information and Control 29, no . 4 (1975) :

295-300.

[3] Bose, Raj Chandra, and Dwijendra K. Ray-Chaudhuri. "On a class of error correcting

binary group codes." Information and control 3, no. 1 (1960): 68-79.

[4] Ding, Cunsheng, Cuiling Fan, and Zhengchun Zhou. "The dimension and minimum dis

. tance of two classes of primitive BCH codes. 11 Finite Fields and Their Applications 45

(2017): 237-263.

[5] De Andrade, Antonio Aparecido, and Reginaldo Palazzo Jr. "Construction and decoding

orBCH codes over finite commutative rings ." Linear Algebra and Its Applications 286, no.

1-3 (1999): 69-85.

[6] Daemen, Joan, and Vincent Rijmen. "AES proposal: Rijndael. lI (1999).

[7] Forney, George. 11 On decoding BCH codes. 11 IEEE Transactions on information theory 11 ,

no. 4 (1965) : 549-557.

[8] Gamido, Heidilyn V., Ariel M. Sison, and Ruji P. Medina. IIImplementation of Modified

AES as Image Encryption Scheme. 11 Indonesian Journal of Electrical Engineering and In

formatics (IJEEI) 6, no. 3 (2018) : 301-308.

[9J Golay, Nlarcel JE. "Notes on digital coding." Proc. IEEE 37 (1949) : 657.

135

[21] Preishuber, Mario, Thomas Hutter, Stefan Katzenbeisser, and Andreas UhI. "Depreciating

motivation and empirical security analysis of chaos-based image and video encryption."

IEEE Transactions on Information Forensics and Security 13, no. 9 (2018): 2137-2150.

[22] Patel, Komal D., and Sonal Belani. "Image encryption using different techniques: A re

view. " International J ournal of Emerging Technology and Advanced Engineering 1, no. 1

(2011): 30-34.

[23] Prange, Eugene. Cyclic Error-Correcting codes in two symbols. Air force Cambridge re

search center, 1957.

[24] Prange, Eugene. The Use of Coset Equivalene in the Analysis and Decoding of Group

Codes. No. AFCRC-TR-59-164. Air Force Cambridge Research Labs Hanscom AFB MA,

1959.

[25] Peterson , Wesley. "Encoding and error-correction procedures for the Bose-Chaudhuri

codes. " IRE Transactions on Information Theory 6, no. 4 (1960) : 459-470.

[26] Reed , Irving S. A class of multiple-error-correcting codes and the decoding scheme. No.

TR-44. Massachusetts Inst. of Tech. Lexington Lincoln Lab. , 1953.

[27] Rijmen, Vincent, Joan Daemen , Bart Preneel, Antoon Bosselaers, and Erik De Win. "The

cipher SHARK." In International Workshop on Fast Software Encryption, pp. 99-111.

Springer, Berlin , Heidelberg, 1996.

[28] Subramanyan, B. , Vivek M. Chhabria, and TG Sankar Babu. "Image encryption based on

AES key expansion ." In 2011 Second International Conference on Emerging Applications

of Information Technology, pp. 217-220. IEEE, 2011.

[29] Schneier , Bruce, John Kelsey, Doug Whiting, David Wagner , Chris Hall , and Niels Fergu

son. "Twofish: A 128-bit block cipher." NIST AES Proposal 15, no. 1 (1998): 23-91.

[30] Schneier, Bruce, J ohn Kelsey, Doug Whiting, David Wagner, Chris Hall , Niels Ferguson ,

Tadayoshi Kohno, and Mike Stay. "The Twofish team's final comments on AES Selection."

AES round 2, no. 1 (2000): 1-13.

137

Appendix
This section consist of computer programs which are very helpful to understand this t hesis.

{

public partial class frmEncoding Form

{

string alpha = II $\ alpha$ II ;

string beta = 1I$\ beta$lI;

Color _coeffColor = Color .Green;

Color variableColor = Color.Blue;

Color _degreeColor = Color .Red;

Color _modulusColor = Color.Magenta;

int -q O· ,

int _n O· ,

int d O· ,

int -p 0;

int _blinkerCount = 1;

Polynomial currentPolynomial new Polynomial() ;

int startingAlphaDegree = 4;

int currentAlphaDegree = 4;

List < Polynomial > alphaPolynomials new List < Polynomial> 0 ;

List < Polynomial > betaPolynomials = new List < Polynomial > 0 ;

List < Polynomial > MiPolynomials = new List < Polynomial > 0 ;

List < Polynomial> DistinctMiPolynomialsModeP = new List < Polynomial> ();

List < Polynomial > DistinctMiPolynomials = new List < Polynomial > 0 ;

Polynomial GeneratorPolynomialRing = new Polynomial();

Polynomial GeneratorPolynomialField = new Polynomial();

public frmEncoding()

139

private void btnAdd_Click(object sender, EventArgs e)

{

_q int.Parse(txtQ.Text.Trim());

n = int.Parse(txtN.Text.Trim());

d int.Parse(txtD.Text.Trim());

_p int.Parse(txtP.Text.Trim());

startingAlphaDegree = int.Parse(txtAlphaDegree .Text);

btnAdd.Enabled = txtD.Enabled = txtP.Enabled = txtQ.Enabled

false;

btnSolve .Enabled = true;

List < double > alphaEq = new List < double > 0 ;

txtN.Enabled

for (int alphaPoly = 1; alphaPoly < startingAlphaDegree; alphaPoly++)

{

alphaEq .Clear();

for (int poly = 0; poly < alphaPoly; poly++)

alphaEq.Add(O);

al phaEq . Add (1) ;

alphaPolynomials.Add(new Polynomial(alphaEq .ToArray< double > ()));

}

II for last polynomial and adding it to rTxtExpression

alphaEq[alphaEq.Count - 1J = 0;

al phaEq . Add (1) ;

Ilfor (int i = 0; i < startingAlphaDegree; i++)

II alphaEq .Add(O);

//alphaEq .Add(l);

AddToRichTextBoxExpression(rTxtPolynomialExpression, alphaEq.ToArray(),

false, 11$ \ alpha$I1);

rTxtPolynomialExpression.AppendText(" = II);

cur rentPolynomial .AddA(new Polynomial(txtPolynomial.Text.Trim()));

141

IlmvNextPoly.AddTerm(ld");

IlmvNextPoly. SetlndeterminateValue("X", 4.0);

IIMessageBox .Show(mvPoly .ToString(»;

IIMessageBox.Show(mvNextPoly.ToString(»;

IlllPolynomial mulPolynomial = mvPoly . * mvNextPoly;

IIIIMessageBox.Show(mulPolynomial.ToString(»;

1***************************1

#endregion

currentAlphaDegree

bool findAlphaFlag

do

{

startingAlphaDegree;

true;

findAlphaFlag = MultiplyEquationWithAlpha(currentPolynomial);

if (rBtnFindAlpha.Checked==true && chkAlpha.Checked == true &&

findAlphaFlag == false)

{

break;

}

} while (PolynomialIsConstant(currentPolynomial)

int initialPowerOfAlphaForBeta;

II condition for finding only alpha

if (rBtnFindAlpha.Checked == false)

{

if (chkBeta.Checked

{

true)

false);

initialPowerOfAlphaForBeta = (alphaPolynomials.Count) I _n;

for (int betaPower = 1; betaPower < = _n; betaPower++)

{

Polynomial pForBeta new Polynomial(alphaPolynomials

143

rTxtGeneratorPolynomial.AppendText("g(x) = ");

rTxtGeneratorPolynomialWithModeP.AppendText("g(x) ");

AddToRichTextBoxExpression(rTxtGeneratorPolynomial, GeneratorPolynomialRing.ToArray(),

false, "X") ;

AddToRichTextBoxExpression(rTxtGeneratorPolynomialWithModeP, GeneratorPolynomialField.l

false, "X");

timerBlinker .Enabled

}

}

true;

else II finding alpha only

{

if (alphaPolynomials.Count % _n 0)

{

MessageBox.Show("Found polynomial");

}

else

{

MessageBox.Show("Polynomial does not qualify");

}

}

btnTestEncodeDecod.Enabled

int dummy = 0;

true;

if (betaPolynomials.Count > 0)

{

MCSG result = MCSG.GetMcsg;

result.BetaPolynomials = betaPolynomials;

result .Q

result .N n' - ,

result.P

145

}

else

{

foreach (Polynomial p in pList)

{

Poly PolynomialModX(Poly.Mul(p),modeValue);

}

}

return Poly;

}

private void AddPolynomialListToRichTextBox(List < Polynomial > listP)

{

int i 1· ,

foreach (Polynomial p in listP)

{

rTxtMiModeP . AppendText(IM(" + (i++) .ToStringO + ") = ");

AddToRichTextBoxExpression (rTxtMiModeP, p . ToArray 0, true, "x ");

}

}

private List < Polynomial> CalculateAllMiModeP (List < Polynomial> allMi)

{

List < Polynomial> MiModeP = new List < Polynomial > ();

foreach (Polynomial p in allMi)

{

MiModeP.Add(PolynomialModX(p,_p));

}

return MiModeP;

}

147

AddToRichTextBoxExpression (rTxtMx, tempMkPolynomial. ToArray 0 , true, "x") ;

MiPolynomials.Add(tempMkPolynomial);

}

}

private Polynomial CalculateMk(List < int > MkBetaPowers, List < Polynomial > bPolynamials

{

int rows = MkBetaPowers.Count + 1; // assumption:

power of x would not increase than the number of polynomials in a set

int cols = betaPolynomials.Count + 1;

int totalPolynomialSets = rows-1; // e.g. (x-B) (x-B-2) (x-B - 4) (x-B-8)

have 4 polynomial sets

///////////////// creating matrix for result ///////

int[] [] multivariatePalynomialResult = Create2DlntArray(rows, cols);

//int[] [] multivariatePolynomialResult = new int[rows] [];

//for (int i = 0; i < rows; i++)

//{

// multivariatePolynomialResult[i] = new int[cols];

/1}

///

//////////// Creating matrices for all polynomial sets in Mk /////////////

int[] [] [] multivariatePolynomials = new int[totalPolynomialSets] [] [];

for (int i = 0; i < totalPolynomialSets; i++)

{

multivariatePolynomials[i] Create2DlntArray(rows, cals);

}

///

List < Polynomial > Mi = new List < Polynomial> 0 ;

149

}

}

}

indexesNoZeroValues.Add(tempSetlndexes);

}

CopyArray(multivariatePolynomials[O] , multivariatePolynomialResult);

for (int setNo = 1 ; setNo < indexesNoZeroValues.Count ; setNo++)

{

foreach(KeyValuePair < int,int > cordlndexes in indexesNoZeroValues[setNo])

{

for(int row

for(int col

{

o

o

row < multivariatePolynomialResult.Length ; row++)

col < multivariatePolynomialResult[O] . Length ; col++)

if (multivariatePolynomialResult [row] [col] != 0)

{

int newRowlndex;

int newCollndex;

newRowlndex = cordlndexes.Key + row;

II taken mode with n to reduce power of Beta

newCollndex = (cordlndexes.Value + col) % _n;

int newCoefficient;

newCoefficient = multivariatePolynomials[setNo] [cordlndexes . Key]

[cordlndexes.Value] * multivariatePolynomialResult[row] [col];

IltempResult[newRowlndex] [newCollndex] = multivariatePolynomialResult[newRowlndex]

[newCollndex] + newCoefficient;

tempResult[newRowlndex] [newCollndex]

[newCollndex] + newCoefficient;

}

}

151

tempResult[newRowlndex]

the

II this will happend only in the form when taking common, overall constant of

polynomial will be added later

II x = 0 and beta = 0 is the overall polynomial constant

if (x > 0)

{

constantPoly[OJ = mult i variatePolynomialResult[xJ [OJ;

tempPolynomial.AddA(constantPoly);

}

for (int coeff = 0; coeff < = tempPolynomial.Maxlndex; coeff++)

tempPolynomial[coeffJ = (tempPolynomial[coeffJ % _q + _q) % _q;

if (tempPolynomial.Maxlndex == - 1 && x == multivariatePolynomialResult.Length

- 1)

Mk.AddA(new Polynomial("x-" + x.ToStringO));

else

Mk .AddA(new Polynomial(tempPolynomial.Mul(new Polynomial

("X-" + x.ToStringO)) .ToArrayO));

}

Mk[OJ += (multivariatePolynomialResult[OJ [OJ % _q + _q) % _q;

return Mk;

}

private void InitializeMultivariatePolynomials(int[J [J [J

MVPolynomials, List < int > betaPowers)

{

for (int MVPolylndex

{

0; MVPolylndex < MVPolynomials.Length

II represents X-1 in matrix

MVPolynomials[MVPolylndexJ [lJ [OJ 1;

153

MVPolylndex++)

}

return a;

}

#endregion

private void ShowPolynomialMatrix(int[] [] polynomilaMatrix)

{

string msg 1111 . .
for (int t 0; t < polynomilaMatrix.Length; t++)

{

for (int x = 0; x < polynomilaMatrix[O] . Length; x++)

msg += polynomilaMatrix[t] [x] . ToStringO + " ";

msg += "\n";

}

MessageBox.Show(msg);

}

#region " Incorrect Implimentation using first substitution they multiplication

private void CalculateAllMiPolynomials (List < List < int » MiAndBetaPowers)

{

List < int > MkBetaPowers MiAndBetaPowers[O] ;

Polynomial Mk;

for (int k = 0; k < MiAndBetaPowers.Count; k++)

{

Mk = new Polynomial(CalculateMkPolynomial(MiAndBetaPowers[k]).ToArray());

MiPolynomials.Add(new Polynomial(Mk));

rTxtMx. AppendText ("M" + (k+1). ToString 0 + "(x) = ");

AddToRichTextBoxExpression(rTxtMx. Mk. ToArrayO. true. "x '') ;

rTxtMx.AppendText("\n\n");

}

155

'1 '

Ilpower

Ilk++;

(i * P * k) % n;

if (power > (alphaPolynomials.Count - 1))

{

MessageBox.Show(IIβ~1I + power.ToStringO + II

does not exist in polynomial list ... \nSomething has gone wrong");

throw new Exception(IIβ~1I + power. ToStringO + II

does not exist in polynomial list ... \ nSomething has gone wrong");

}

if (tempBetaPowers.Contains(power))

break;

else

tempBetaPowers.Add(power);

} while (true);

tempBetaPowers.Sort();

return tempBetaPowers;

}

private bool PolynomiallsConstant(Polynomial p)

{

for (int coefflndex

{

1; coefflndex <= p.Maxlndex; coefflndex++)

if (p [coeffIndex] ! = 0)

return false;

}

II special condition that the polynomial should not only be a constant but also

if (p [0] == 1)

return true;

return false;

}

157

{

if (temp == " - ")

temp += (-polyCoeff[index]).ToString();

else

temp += polyCoeff[index] .ToString();

}

}

previous Index = rtxt.Text .Length - 1;

rtxt.AppendText(temp);

startIndex = rtxt .Text.IndexOf(temp, previousIndex,

StringComparison . InvariantCultureIgnoreCase) ;

rtxt .Select(startIndex, temp.Length);

rtxt.SelectionColor = _coeffColor;

II last constant in polynomial, therefore no need to print variable

if (index ! = 0)

{

temp = variable;

previous Index = rtxt.Text . Length - 1;

rtxt.AppendText(temp);

startIndex = rtxt.Text.IndexOf(temp, previousIndex,

StringComparison.InvariantCultureIgnoreCase);

rtxt.Select(startIndex, temp .Length);

rtxt.SelectionColor = _variableColor;

}

II no need to print degree when it is 1

if (index != 1 && index != 0)

{

temp index.ToString();

159

rtxt.AppendText(1I ("+ b i nary + II)");

if (nevlLine)

rtxt.AppendText(l \ n");

}

private bool MultiplyEquationWithAlpha(Polynomial current)

{

Polynomial p = new Polynomial("x");

current.MulA(p);

rTxtAlpha.AppendText(II$ \ alpha$-1I + (++currentAlphaDegree) .ToStringO + II ");

//AddToRichTextBoxExpression(rTxtAlpha, current.ToArray(), true) ;

SubstitutecurrentPolynomial(current);

if (alphaPolynomials.Count > _n)

return false;

r eturn true;

}

private void SubstitutecurrentPolynomial(Polynomial current)

{

double[] coefficients = current.ToArray();

if (coefficients . Length > = startingAlphaDegree+l && coefficients[startingAlphaDegree]

!= 0)

{

string tempCoeff = 1111;

if (currentPolynomial[startingAlphaDegree] < 0)

tempCoeff += "_" + current [startingAlphaDegree] . ToStringO;

else

tempCoef f += current [startingAlphaDegree] .ToString();

161

}

private void rBtnFindAlpha_CheckedChanged(object sender, EventArgs e)

{

grpBoxCompute.Enabled rBtnCompute.Checked;

}

private void chkBoxes_CheckedChanged(object sender, EventArgs e)

{

CheckBox chkBox = (CheckBox) sender;

//MessageBox.Show(chkBox.Checked.ToString());

if (chkBox .Name .Equals("chkAlpha"))

{

if (chkBox.Checked

{

false)

chkBeta.Checked = false;

chkMinimal.Checked = false;

chkGenerator.Checked = false;

}

chkBox.Checked

}

true;

else if (chkBox.Name.Equals("chkBeta"))

{

if (chkBeta.Checked

{

false)

chkMinimal.Checked false;

chkGenerator.Checked = false;

}

else

{

chkAlpha .Checked

}

true;

163

