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Preface

Dynamics of boundary layer flows (BLF) is a topic of major interest both in sciences and
engineering. Suchhtuﬁtofthemnmtmsmcmagmedbecameuﬁmponmufﬂw in
polymer processing and electrochemistry. In particular, the flow caused by a continuous
stretching surface occurs in glass fiber and paper production, wire drawing, crystal growth,
drawing of plastic films, food processing, metal spinning process, cooling of metallic plate in a
cooling bath etc. Motivated by such applications, a rapidly increasing number of research papers
dealing with the flow over a stretching surface have been published to understand either the sole
effects of rotation, heat and mass transfer, chemical reaction, MHD, suction/blowing or their
various combinations. Much attention in the reported studies has been given to the two-
dimensional stretched flows of viscous fluids. Such flow analysis even in the non-Newtonian
fluid mechanics is searcely investigated. However, there is void in the literature for the three-
dimensional boundary layer flows of non-Newtonian fluids over a stretching surface. Main
purpose of this thesis is to fill such void through different possible combinations of heat and
mass transfer, MHD and suction/injection. For non-Newtonian fluids, the boundary theory is still
incomplete. Major obstacle in such completion is diversity of the rheological properties of non-
Newtonian fluids. Viscoelastic effects in these fluids give rise to additional nonlinearities which
offer formidable mathematical task that cannot be performed even through numerical
simulations. Having these challenges in mind, the present thesis is organized as follows:

Chapter one consists of the literature survey regarding the flows of nonlinear fluids. Boundary
layer equations for various non-Newtonian fluids are proposed in the three-dimensional flow
situations. Advantages of homotopy analysis method (HAM) are also pointed out.

Chapter two addresses the steady three-dimensional flow of an incompressible Maxwell fluid.
Boundary layer approach is adopted in the mathematical modeling. Constructed nonlincar
differential system is reduced into a system containing ordinary differential equations. Series
solutions are developed, Convergence of the derived series solutions is discussed in detail. Error
analysis is presented for the validity of the obtained solutions. Graphical results are displayed to
analyze the effects of Deborah number on the axisymmetric, two- and three-dimensional cases.



Main findings of this chapter are published in “International Journal for Numerical Methods
in Fluids, 66 (2011) 875-884".

Chapter three extends the flow analysis of chapter two for unsteady case. Comparison with the
limiting results of the steady case is shown. The results are accepted for publication in

“Meccanica”.

In chapter four, we have examined the mixed convection boundary layer flow of upper-
convected Maxwell (UCM) fluid. The flow is induced due to a bidirectional stretching plate.
Mainly the magnetic field, diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects are
addressed. The appropriate transformations are utilized to reduce the partial differential system
into the coupled system of nonlinear ordinary differential equations. The arising problems are
solved by homotopy analysis method. Results are obtained and discussed for velocity,
temperature, concentration, local Nusselt and local Sherwood numbers. The main points of this
chapter are published in “ASME: Journal of Heat Transfer, 134 (2012) 044503”.

Chapter five explores the three-dimensional flow of an Oldroyd-B fluid over a stretching surface.
Mathematical modeling is developed for the boundary layer equations in the three-dimensional
flow. Resulting boundary layer equations along with the subjected boundary conditions are
transformed into coupled system of ordinary differential equations. Computations for the series
solutions are made. Effects of Deborah number in the axisymmetric, two- and three-dimensional
flows are graphically presented and analyzed. Major observations are published in
“International Journal for Numerical Methods in Fluids, DOI: 10.1002/1d.2716”.

In chapters’ six to nine, the flows of Jeffery fluid are modeled. Here, the following four problems
are formulated and solved.

a) Three-dimensional boundary layer flow overa linear stretching surface.

b) Three-dimensional channel flow when lower wall exhibits stretching property.
¢) Three-dimensional magnetohydrodynamic shrinking flow in a rotating frame
d) Axisymmetric flow due to rotating disk.

Convergence intervals in the series solutions are determined. Impact of key parameters entering
into flow analysis is discussed in each problem. The results of chapters six, eight and nine are



already published in the journals “Communications in Nonlinear Science and Numerical
Simulations, 17 (2012) 699-707; ASME: Journal of Fluid Engineering, 133 (2011) 061201;
International Journal for Numerical Methods in Fluids, DOIL: 10.1002/11d.2714",
respectively whereas the contents of chapter seven are submitted for publication in “The
European Physical Journal Plus”.

Chapter ten presents the three-dimensional unsteady flow over a stretching surface. Constitutive
relationships for the second grade fluid model have been utilized in the problem formulation.
Nonlinear partial differential equations are reduced into a system of ordinary differential
equations using the similarity transformations. The homotopy analysis method (HAM) has been
implemented for the series solutions. Graphs are displayed for the effects of sundry parameters
on the velocity field. The findings of this chapter are published in “Zeitschrift Fur
Naturforchung A, 66 (2011) 635-642".

The problem of unsteady three-dimensional flow, which results due to stretching of a surface, is
studied in chapter eleven. Flow analysis is advanced in view of mass transfer and chemical
reaction effects. The corresponding boundary value problems are computed by HAM.
Conclusions for velocity and concentration fields are drawn. Comparison of present investigation
is found in an excellent agreement with the existing limited studies. The observations of this
chapter are published in “Nonlinear Analysis: Modeling and Control, 17 (2012) 47-59".

Influence of Soret and Dufour effects in three-dimensional boundary layer flow of viscoelastic
ﬂddbnuudedbyamnhingsuﬂmisexmniuedhchapwmlve.mm&gparﬁﬂ
differential system is converted into the ordinary differential systems, which are then computed
analytically using homotopic approach known as the homotopy analysis method. The flow
quantities of interest are significantly influenced by the sundry parameters in the computations.
The conclusions of this chapter are published in “International Journal of Heat and Mass
Transfer, 66 (2012) 2129-2136".
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Chapter 1

Introduction

TMachapwmnummemnwofummmmmmthatwmdthm&MWdﬂm
in steady and unsteady cases. Brief idea of methodology adopted and boundary layer equations
are also presented.

1.1 Literature survey

Rheological characteristics of non-Newtonian fluid differ a lot than the Newtonian fluids. No
doubt, the rheological properties of all the non-Newtonian fluids cannot be predicted by one
constitutive equation between shear rate and rate of strain. For non-Newtonian fluids, there
is always a nonlinear relationship between the stress and the rate of strain. The constitutive
equations in non-Newtonian fluids are much complicated, more nonlinear and higher order in
comparison to the Newtonian fluids. This is because of the elastic features in addition to the
viscosity. Despite all the challenges, several researchers are involved in the discussion of such
flows. For examples, Rajagopal et al. [1] presented the flow of viscoelastic fluid over a stretching
surface. They have considered an incompressible second order fluid and concluded that such
flow analyses are important for the applications involving polymer procession. Separation and
reattachment of non-Newtonian fluid flows in a sudden expansion pipe has been analyzed by
Pak et al. [2]. Rheological properties of the non-Newtonian fluids including shear-rate depen-
dent viscosity and the viscoelasticity have been discussed. Lockett et al. (3] investigated the
stability of the inelastic non-Newtonian fluid in Couette flow for concentric cylinders. Authors



have employed the finite element technique and presented the onset of toroidal vortices in the
flow. Flow induced by the stretching surface has been studied by Pontrelli [4]. The homo-
geneous and incompressible second grade fluid has been considered and the problem is solved
numerically. Hassanien et al. [5] presented the flow of power law fluid over a nonisothermal
stretching surface. The heat transfer equation has been also considered with the momentum
equation and outcomes of power law surface temperature and surface mass transfer rate have
been presented. The Rayleigh-Stokes problem for an edge in an Oldroyd-B fuid has been in-
vestigated by Fetecau [6]. He utilized double Fourier Sine transform to compute the solutions.
The well known solution for a Navier-Stokes Maxwell and second grade fluids appear as the
limiting cases of his investigation. Fetecau and Fetecau [7 , 8] presented the decay of potential
vortex in Maxwell and Oldroyd-B fluids. Solutions in both cases are constructed by employ-
ing the Hankel transform. Various graphical and numerical results are shown to analyze the
phenomena of the potential vortex. The decay of potential vortex in a generalized Oldroyd-B
fluid has been studied by Fetecau et al. [9]. The authors have established the exact solutions
for the velocity field and the shear stress relating to such motion in an Oldroyd-B fluid with
fractional derivatives. The solutions are presented as a sum of the Newtonian solutions and the
corresponding non-Newtonian contributions. They employed the Hankel and Laplace trans-
forms for the solutions. The results for generalized Maxwell fluids and classical Maxwell or
Oldroyd-B fluids can be obtained as the special cases. Effects of the fractional parameters on
the decay of the vortex are also analyzed by means of the graphical illustrations. Some exact
solutions for the rotating flows of a generalized Burgers’ fluid in cylindrical domains have been
found by Jamil and Fetecau [10]. Limiting results for the Burgers', Oldroyd-B, Maxwell, second
grade and Newtonian fluids can be deduced as the special cases. Various graphical results are
shown in order to reveal some relevant physical aspects of the obtained solutions. Jamil et al.
[11] analyzed the unsteady helical flows of Oldroyd-B fluid. The solution by Hankel transform
is presented in the form of Bessel functions. Unsteady flow of an Oldroyd-B fluid generated
by constantly accelerating plate between two side walls perpendicular to the plate has been
investigated by Fetecau et al. [12], Oldroyd-B fluid model has been studied by the authors in
view of the fact that it is adequate model for describing the response of polymeric liquids. The
authors have concluded that the side walls have a meaningful influence on the fiuid and is more



pronounced for the larger times. Tan et al. [13] presented unsteady flows of a viscoelastic fluid
with the fractional Maxwell model. Analysis has been performed in a domain for which the
fluid is bounded by two parallel plates. Authors have employed the fractional calculus approach
to obtain the solutions. They concluded that the fractional constitutive relationship model is
much handier as compared to the conventional model for describing the properties of viscoelastic
fluid. Stokes first problem for a second grade fluid in a porous half-space with heat boundary
has been computed by Tan and Masuoka [14]. Authors have utilized the modified Darcy’s
law for viscoelastic fluid and also studied the effects of viscous dissipation. Tan and Masucka
[15] presented the stability analysis of Maxwell fluid in a porous medium heated from below.
They have analyzed the critical Rayleigh number, wave number and frequency and concluded
that the critical Rayleigh number for over stability increases with an increase in the value of
the porous parameter. Wang and Tan [16] developed the stability analysis of the Soret-driven
double-diffusive convection of Maxwell fluid in a porous medium. Authors have presented the
onset of the double-diffusive convection with the modified Darcy Maxwell model. Soret effects
are also incorporated and analyzed by using the linear and nonlinear stability theories. Authors
have concluded that the increase in the value of relaxation time enhances the instability of the
system. Thermal convective instability of viscoelastic fluids in a rotating porous layer heated
from below has been analyzed by Kang et al. [17). Effects of Cariolis force are included in the
analysis so the rotation effects are analyzed. Here they observed that the critical Rayleigh-
Darcy number for over stability increases with increase in retardation time and Taylor-Darcy
number, while decreases with increase in relaxation. Vajravelu and Rollins [18] presented the
flow of non-Newtonian fluid over a stretching surface. An electrically conducting second grade
fluid is analyzed when uniform magnetic field is present. Helical flow of a power law fluid in
a thin annulus with permeable walls has been studied by Vajravelu et al. [19]. Influence of
heat transfer on the peristaltic transport of Jeffery fluid in a vertical porous stratum has been
investigated by Vajravelu et al. [20]. It is noted that the size of trapping bolus decreases with
an increase in permeability parameter and bolus disappears for the larger values of permeability
parameter. Peristaltic transport of Williamson fluid in asymmetric channels with permeable
walls has been also studied by Vajravelu et al (21]. The asymmetry of the channel is produced
by choosing a peristaltic wave train on the wall with different amplitudes and phases. The size
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parameter. Unsteady flow and heat transfer in a thin film of Ostwald-de-waele Liquid over a
stretching surface has been analyzed by Vajravelu et al. [22]. Analysis is carried out with
viscous dissipation and the temperature dependent thermal conduetivity. Similarity transforms
minmkadhrmnmumﬁmofpmﬁaldiﬁuanﬂdmmmmamnﬂummdimdjﬁw
ential equations and the Keller-Box method is employed to compute the solution. It is revealed
that the film thickness increases with an increase in the power-law index parameter as well as
the injection parameter. Analytic solution for magnetohydrodynamic flow of a viscoelastic fluid
in a channel with stretching walls has been investigated by Raftari and Vajravelu [23]. They
incorporated the heat transfer phenomenon and employed the homotopy analysis method to
compute the series solution. They made a comparison of results with the limiting numerical
results and found is an excellent agreement. Series solutions of unsteady magnetohydrodynamic
flows of non-Newtonian fluid caused by an impulsively stretching plate have been investigated
by Xu and Liso [24]. These researchers employed the homotopy analysis method to compute
the analytic solutions which are valid for the whole spatial domain of the problem. Effects of
magnetic field and suction/injection on the convection heat transfer of power law fluid past
a stretched sheet have been examined by Chen [25]. Surface heat flux with the power law
stretched boundary has been considered. Appropriate transforms are invoked for the conver-
sion of partial differential system into ordinary differential system which is finally solved by
the central difference approach. Hayat et al [26] presented the effects of an endoscope and
magnetic field on the peristalsis involving the Jeffery fluid. Exact solutions are constructed
for the velocity components and pressure gradient are established under long wavelength ap-
proximation. Simultaneous effects of heat and mass transfer on the time dependent flow over
a stretching surface has been analyzed by Hayat and Awais [27]. Second grade fluid in the
presence of thermal diffusion and diffusion thermo effects are considered. Analytic solution
for the nonlinear differential system is developed by the homotopy analysis method. Unsteady
flow of a third grade fluid over a stretching surface has been presented by Hayat et al. [28].
Authors have also incorporated the Soret and Dufours effects and concluded that such effects
could not be ignored for the materials having lower molecular weight. Newtonian heating and
the magnetohydrodynamic effects in a flow of a Jeffery fuid over a radially stretching surface



has been analyzed by Hayat et al. [29]. It is shown that Newtonian heating acts like a boosting
agent in order to increase the fluids’ temperature. Hayat et al. [30] presented the effects of
mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid. Here
corrections in the governing equations for the magnetohydrodynamic two-dimensional flow of
Maxwell fluid are made. They have also plotted the graphs of the residual errors to validate the
results. Important material regarding stability in second grade, third grade and temperature
dependent viscosity fluids has been presented elegantly in the refs. [31 — 37].

The boundary layer flows persuaded by a stretching surface have extensive applications in
engineering and several technological processes, For-instance production of sheeting material
(both metal and polymer sheets), continuous casting, fibers spinning, hot rolling and glass
blowing etc. Crane [38] presented pioneering research regarding two-dimensional flow over a
stretching sheet, He presented the exact similarity solution for the dimensionless differential
system. Afterwards various recent investigators have reconsidered the flow analysis of study
{38] and show immense interest to analyze the problem for the three-dimensional flow situation.
Such interest is stimulated due to the fact that in many physical situations, flow might not be
one- or two-dimensional. For example in paper production, glass formation, fiber sheet and
plastic manufacturing, food processing, wire drawing and coating ete. the flows are the three-
dimensional and cannot be properly analyzed by considering the one- or two-dimensional flow
situations. Wang [39] extended the work of Crane for the three-dimensional case. Devi et al. [40]
presented the unsteady three-dimensional flow of viscous fluid caused by a stretching surface.
They have also utilized the boundary layer approach in their investigation for simplification.
Ariel [41] employed homotopy perturbation method to investigate the three-dimensional flow of
an incompressible fluid over stretched surface. He compared the obtained results with those of
Wang [39]. He also concluded that exact solutions are not possible in closed form. However, a
nicely produced approximate solution requiring less effort with some decent amount of accuracy
is always useful for an engineer, scientist or an applied mathematician, who can obtain a
solution quickly, thereby gaining a valuable insight into the essentials of the problem. Hayat
and Javed [42| found an analytic solution for the generalized three-dimensional flow over a
porous stretching sheet. They also looked at the magnetohydrodynamic (MHD) effects. They
employed homotopy analysis method to solve the nonlinear problem and compared their results

10



with those of Ariel [41]. Singh [43] analyzed the three-dimensional flow of viscous fluid with
heat and mass transfer. Series solutions of unsteady free convection flow in the stagnation point
region of a three-dimensional body have been investigated by Xu et al. [44]. They introduced
the new similarity transform and reformulated the original momentum and energy equations.
This study also concluded that unsteady flow problems can be handled by homotopy analysis
method. Hayat et al. [45] examined the three-dimensional flow over a stretching surface in a
viscoelastic fluid. The results for the two-dimensional and axisymmetric cases can be obtained
as the limiting cases of the presented solution. Analytical solutions for the nonlinear problems
are obtained by employing HAM. Hayat et al. [49] analyzed the mass transfer effects in three-
dimensional flow of a viscoelastic fluid. Here the authors have analyzed the effects of generative
and destructive chemical reactions on the fow. Unsteady three-dimensional boundary layer flow
of micropolar fluid over a stretching surface is investigated by Ahmad et al. [47]. Hayat et al.
[48] computed the homotopy solution for the unsteady three-dimensional magnetohydrodynamic
flow in a porous space. They also considered the effects of mass transfer and chemical reaction.

Literature survey reveal that the investigations dealing with the three-dimensional flow
by moving surfaces are further narrowed down when channel flows (bounded domains) are
considered. Such flow analysis was initially considered by Borkakoti and Bharali [40]. Later
on Vajravelu and Kumar [50] presented the analytical and numerical solutions of coupled non-
linear system in a three-dimensional rotating flow. They employed a fourth-order Runge-Kutta
integration scheme for computation of non-linear differential system. It is also found that
the Coriolis force and the magnetic field acting against the pressure gradient for the larger
values of rotation parameter cause reverse flow, Three-dimensional rotating fow induced by
a shrinking sheet with suction has been presented by Hayat et al. [51]. Ahmer and Ali [52]
developed homeotopy solution for generalized three-dimensional channel flow due to uniform
stretching of plate. Cross differentiation has been invoked to eliminate the pressure gradient,
It is observed that the constant injection at the upper plate increases the fluid velocity and
this increase in velocity has the maximum value near the lower (stretching) plate. Domairry
and Aziz (53] found the approximate solution for MHD squeezing flow between two parallel
disks with suction or injection using homotopy perturbation method. Flow and heat transfer
of MHD viscoelastic fluid in a channel with stretching walls has been presented by Misra et
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al. [54]. Hayat et al. [55] investigated the shrinking flow of second grade fluid in a rotating
frame. Here the authors have computed the analytic solution by employing homotopy analysis
method, Various plots of residual errors are shown in order to validate the obtained results,
Mahmood and Ali [56] presented the heat transfer analysis of the three-dimensional flow in
a channel of lower stretching wall. Three-dimensional squeezing flow in a rotating channel of
lower stretching porous wall has been studied by Munawar et al. [57]. Authors have found the
numerical results and compared them with the analytic results by homotopy analysis method.
Various graphical results are presented to analyze the rheological aspects of the squeezing flows.
Unsteady squeezing flow of a Jeffery fluid between two parallel disks has been analyzed by
Qayyum et al. [58]. They have presented the numerical values of skin friction coefficients and a
comparison with the already published work is shown. Mustafa et al. [59] investigated the heat
and mass transfer phenomena in the unsteady squeezing flow between parallel plates. Physical
interpretation to various embedding parameters is made through graphical and tabular results,
Three-dimensional rotating flow between two porous walls with slip and heat transfer has been
studied by Hayat et al. [60]. Here the authors have analyzed the thermal and concentration
slip effects by using the homotopy analysis method [61 — 80].

1.2 Mathematical description of basic laws

1.2.1 Law of conservation of mass
The law of conservation of mass or the continuity equation is given by

%{- +V-(pV) =0, (1.1)

where p shows the density of the fluids and V as the velocity field. The above equation for

incompressible fluid is reduced as
For an incompressible flow Eq. 1.1 can be expressed as

V.V=0. (1.2)
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1.2.2 Law of conservation of linear momentum

This is expressed by the following relation

P%—:?-T-l'ﬂbi

(1.3)

in which 7 = —pI + 8 denotes the Cauchy stress tensor, p the pressure, I the identity tensor,
S the extra stress tensor, b the body force and d/d¢ the material time derivative, The Cauchy

stress tensor 7 and the velocity field V for the three-dimensional flow are

Ten Toy Tz

Tes Tai O
V =[u(z,y, 2), v(z,y, 2), w(z,y, z)].
Scalar forms of Eq. (1.3) are

0(0zz) Of7sy) 8(72:)

ke a?:’+ 5, Pbas
) , 2w, 2u) , o,
a;‘;m]+a{;.;y}+a{£;':'}+pb,,

il

af® ale ale
1}

(1.4)

(1.5)

(1.6)
(1.7)

(1.8)

In above equations by, by and b, are the components of body force b parallel to the e

and z— directions respectively.

1.2.3 Law of conservation of energy

According to the energy conservation equation one has

de
Py =7 L—divg+tpr,

(1.9)

where ¢ = ¢,T' is the internal energy, ¢p the specific heat, T' the temperature, L = WV the
velocity gradient, q = —kVr the heat flux vector, k the thermal conductivity and r the radiant
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heating, In absence of radiative effects, Eq. (1.9) becomes

pc,% — 1. WV + kT, (1.10)

1.2.4 Equation of mass transfer

If a fiuid contains species A* which are slightly soluble in it then there will be relative transport
of species. The species A* may be transported by advection (with the mean velocity of mix-
ture) and by diffusion (relative to the mean motion) in each of the coordinate directions. The
concentration Ca may also be affected by chemical reaction. Let N be the rate at which the
mass of species A* is generated per unit volume due to some reaction and D is the coefficient
of diffusing species.

The relevant boundary layer equation for concentration field is
uﬂ'ﬂ_q +vﬂﬂ',.4 m 8Ca _ D&“C_.q

2wl miigy +la (1.11)

1.3 Three-dimensional boundary layer equations

1.3.1 Maxwell fluid model

Theuﬂanﬁmtmmmﬂinanuppu-mmtadhlaxweﬂ (UCM) fluid can be expressed as
follows:
D
(1 + Alﬁ) 8 =puA;, (1.12)

where ;t designates the kinematic viscosity, A1 the relaxation time, D /Dt the covariant differenti-
ation and A, the first Rivlin-Erickson tensor for three-dimensional velocity field V = [u(e, ¥, 2), (@ z), w(i,
is given by

Ay = gradV + (grad V)™M,

o BB OBE

o 2 Qe le | (1.13)
g B+l 2%

I
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andfnratwnmnktenmrﬂ.amtorbandaacdnréwemspecﬁveiyhnw

% - % + (V- W) S—(grad V) 8 — 8 (grad V)ronerese
Db

B o B+ (V- V)b (g V)b,

o &¢+(v V)6

(1.14)
(1.15)

(1.16)

Applying the operator (14 Ai%) on Eq. (1.8), we get the following equation in the absence

of body forces
D\ dV D
p(l-l-.’unt)d‘ (1+l; )?ﬂ+(1+ll )[ ).
Following Harris [84], we use
D D
5=v(5)

and Eq. (1.17) and Eq. (1.12) thus yield

D\ dV D D
p(1+11EE)-EE- = —(1+1;Et—)?p+?-(l+hﬁ)5,

D
= (1 +J’qE) Ve+pu(V-Ay)

In absence of pressure gradient, Eq. (1.20) takes the form

D\ dV
F(I'I‘Jl.r-—) e =p(V-Ap)
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(1.18)

(1.19)

(1.20)

(1.21)



Eq. (1.21) in component form is given by

ou_ Ou du du _ (Pu Ou &u
E+u—+u—+w— = ¥ H::’+ﬂyz 522

dz Oy dz
By + oufes + i + 20
—A1 -Hl!%! + v‘% + w’% . (1.22)
+2wf% + va%j'; + 2uw-§:1§';
E"'ﬂ*+tl—+1.?‘"—+w-" = v(a% -{-@-l—&)
o oz Oy Oz 227 " By 027
By + qufy + s + 2wl
-\ —{—u‘zg + v’% + WQE . (123)
+2uu£§i + Mﬁ; - Euwgg‘;

Furthermore wu, u,:randumnfurderlwharmwhmeuwandxmuimdwﬁ.‘fhmthe
third component of Eq. [1.21}mhhmsinmmytmninitisnfnrd&rifhrsmdyﬂawnne
has

Bu du du &u
u'ﬂ_s: +v§y- + wﬁ = y@
ulﬂﬂu i)
—}a.l o +Uz% +w2ﬁ* 1 (LM}
+2'w% + hw% T hw%;

du Bv B v
Bz +“3_IF + WE = Uﬁ

- ( u? Ly +9’%}+m’§§ ) | (1.25)

+2uuﬁ + 201:.'3%‘; + Zuwﬁ’;
1.3.2 Oldroyd-B fluid model

Here the extra stress tensor is given by

(1 + 11%) S=u (1 + Ag-bq;) A, (1.26)
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in which )z is the retardation time and conservation law of momentum in the absence of pressure

gives

(14 ny) Br=n 1+ Yy ) (7 A2). (1.27)
Eq. (1.27) in component form under the boundary layer approximation givens
311 31: + t‘l-j. ﬂi-g -+ t.l'2 + wgan"
53: ﬂy +2uu% + 2uw%§‘- + 2uw£-§';
it + vl + ol H
=y + As 4 (1.28)
["7"‘ ( g - B - i
2B B + A + Gy
Bz 33" +2uuﬁ% + Em& - Euwﬂ-
uglgty + g + Wi )]
-'1 + Ag ; (1.29)
[ ( Bl - R0 -5

Note that for Ay = 0, the above equations correspond to that of the Maxwell fluid,

1.3.3 Jeffery fluid model

Expression of extra stress tensor in Jeffery finid is

S=1% ;.1 (A.;+ ,m) (1.30)

where, ); is the ratio of relaxation to the retardation times. Moreover
dA a d d
b - (uaﬂawa)a.. (1.31)
B Py B+

 (Begerd)|aor k. Bag | om
By B+l W
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Further the extra stresses computed from Eqgs. (1.30) and (1.32) are given by

I .. L2 _"L)(.@“_)] 1.33
S, = 1+11{23x+h(uﬂz+ﬂay+waz 25 )| (1.33)

g B [(ou 0 a g)(a_ugg]m
S“ = Sy;—l_!_ll[(ay a)'i"lﬂ( — =] was -+ 1{- }

0z " By dy 0
Sos = Sﬂ=fg[ % aw)+lz( +u%+ a)(g: a‘:)] (1.35)
o e ()
(BB g ) (B o
S = 1f11[$+52( :+u%+wa) (ZE)] (1.38)

The law of conservation of momentum (in component form) for the steady flow case when body
forces and pressure are absent yields

ﬂu &u ﬂ ﬂ ﬁ
du v ﬂu ﬂ ﬂ H
dw  dw dw ﬂ i) B
P (HE +”E +W-—-—) = ES“.I- 5;3“_!_55". “-41]

Substituting the values of extra stresses Sez, Say Tuzs Syys Syz and S.. into Egs. (1.39) = (1.41)
and utilizing the order analysis one gets

'uf':',;ﬂ#1.£’“‘-—-i—tt.rE = :+A (?ﬁ#+?-§§-+?‘% )} (1.42)

dr Oy 8z 1+ M _ +“ﬂ!+“ﬁ;‘l _,_ng
W2 o v | e+ BE T R
Yo ﬂy+wﬁz T 140 ﬂ_ﬂi+lﬂ(+uﬁ%,+ﬂﬁ%u+w% A

1.3.4 Second grade fluid model

The extra stress tensor 8 for a second grade fluid model is
8 =uA; +ajAz + azAd, (1.44)
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in which the first Rivlin-Erickson tensor A, is defined in Eq. (1.13) and the second Rivlin-
Erickson tensor Ag can be computed through

Ap = iﬂﬁi 4 Ap—yL 4 LToMPeseq, . (1.45)

For thermodynamic second grade fluid, we have
p=0, ap 20, @y +ag=0 (1.46)

The extra stresses can be computed easily form Eq. (1.44) and substituting into Eq. (1.39) —
(1.41), one gets the three-dimensional boundary layer equations for the thermodynamic second
grade fluid which are given by

- (Bu du  du ﬂu) Pu

ot o Ty TVez) T MR

uglgty + vais + w3
o pEE BB fRE | 00
5158 - 1 da +

+ U— + w—

ilu_+ufv_ v ﬂv) &
P\at ™ "oz 8y 0z)

u;ﬁ};+uﬂ1+w$
vo | -pEy+ i+ G0 |- (4
+i i - el + v

1.3.5 Couple stress fluid model

For the couple stress fluid, the momentum equation (1.3) becomes
p% = Vp+ pVAV-§/' V'V, (1.49)

in which g’ represent the material constant characterizing the couple stresses. By employing
the operator V on the velocity field, the quantities V*V and W4V can be easily found which

19



are

i %+@+§%1
ViV = $+§l+§§ ; (1.50)
| S+ G+ 58 |
[ Ze g+ B2 b
ViV = $+§¥+§‘;‘} . (1.51)
| G+ 5+ 5E

From Eqgs. (1.51) — (1.49), we write

bty e T Y\oF T o o
fu Hu  Hu

""’(‘a?*ﬁ*'*ﬁ?)’ (152)
B v e = v Pu G
5t Tvaz T Vay T Ve "(aﬂ”'a?*aﬂ)
v v v

-J(EF+Q+5;), (153)

in which ¢/ = y'/p is the couple stress viscosity. After employing the order analysis for the
three-dimensional case we get

Ou Bu Ou Ou Fu Py
bt +u__32: +U-"‘&y +1ﬂ'—az = ¥ (&:3) - (a 24) 1 (1.54)
du v v du v v
2 rugl bvgtup = "('a?) -V(':g;)- (155)

1.4 Solution methodology

It is well established argument that physical mechanism in general is always subjected to non-
linearity, i.e. the governing equations are ponlinear even in the viscous fiuids. Traditional
perturbation method is quite attractive for the solution of such equations. But this tech-
nique requires small/large parameter in the mathematical system. Besides this, there are other
methods which are known now as homotopy analysis, homotopy perturbation, Adomian de-
composition etc. Amngthﬂathehmﬂop}mﬂyshmethod{ﬁm is preferred due to the

2



reasons mentioned below.
« HAM does not require any small/large parameter in the problem.
» The convergence region can be easily controlled.
o The rate of approximations series is adjustable.

o It provides freedom to choose different sets of base functions.

Having the above mentioned advantages in mind, we will use HAM for the solutions of
nonlinear mathematical models in this thesis.

21



Chapter 2

Flow of Maxwell fluid induced by

bidirectionally stretching surface

This chapter explores the steady flow of an incompressible Maxwell fluid. The three-dimensional
flow is induced due to the bidirectional stretching of a sheet. Conservation laws of mass and
linear momentum are used in the problem development. The corresponding non-linear differ-
ential system is solved by the homotopy analysis method (HAM). The graphs of residual errors
are plotted and the obtained results are compared with the published limiting work just to
validate the results. The graphs of Deborah number are prepared to analyze the axisymmetric,
two- and three-dimensional cases.

2.1 Mathematical analysis

Consider the three-dimensional flow of upper-convected Maxwell (UCM) fluid. The three
dimensional flow in the fluid is induced by the stretching wall at z = 0. An incompressible
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UCM fluid fills the region z > 0 (see Fig. 2.1).

it 1

‘ //fw/;“
] 0
! 4

/|

Fig. 2.1: Geometry of the problem.
The laws of conservation of mass and momentum for the present flow problem yields

Bu v  dw

'aE"'%""&'E:D‘ (2.1)
&L 4+ 8 + S
HE.!.‘JEE.I.UJ-EE:H?EE—JA % .EE ?* {22}
oz Yy Ve T a2 '
+ouv e + i + JuwiDs
w28y 4+ 2 88 + wiiy
u@-+u~a—“+w2”—=vﬂ-l % EE . (2.3)
dx Oy 8z 08 : .
+2w% -+ Ew%’; + Euw-gﬁ;

where u, v and w are the respective velocity components along the z—, y— and s—directions,
v denote the kinematic viscosity and Ay the relaxation time.
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The corresponding boundary conditions are

u = tuyl(z)=az, v=1y(y) =by, w=0 at z=10,

u — 0, v—=0 asz—00,

in which the constants a > 0 and b > 0.
Making use of the following dimensionless variables

n= \/gz. u = azf'(n), v=ayg(n), w=—vav {f(n) +g(n)}
in Egs. (2.1) — (2.4) one can get
R (S B 2+ -+ 9" =0,

§" -+ (f+9)d" +5 [2(f +9)dd" - (f +9)%d"] =0

fn) +9n) =0, fim=1 gm=c atn =0,
fn) =0, g(n)=0 as n— 0

(2.4)

(2.5)

(2.6)
(2.7)

(2.8)

where prime denotes the differentiation with respect to 1. Moreover, the Deborah number 8,

and the ratio of stretching rates c are

b= Mo, €= b/a.

(2.9)

It is interesting to point out that various limiting results can be deduced from the present

investigation which are mentioned as follows:



2.1.1 Three-dimensional flow of viscous fluid

Problem consisting of Eqs. (2.6) and (2.7) along with the boundary conditions (2.8) can be
reduced into the viscous fluid when 8; = 0. For such case we have

1"~ 124+ (f +9)f" =0, (2.10)
¢~ + ([ +9)d" =0, (2.1)

F(0)+9(0) =0, f(0)=1, d(0)=c atn=0,
f'(o0) =0, ¢'(cc) =0 as 5 — 00, (2.12)

2.1.2 Two-dimensional flow of Maxwell fluid

The two-dimensional case, i.e. (¢ = 0) for the flow of an upper-convected Maxwell (UCM) fluid
can be obtained by setting ¢ = 0 in the Egs. (2.6) and (2.7) ie.

" =P8 21 - 1) =0. (2.13)
The associated boundary conditions take the following form

f0)=0, f(0)=1 atn=0,
fl(00) =0 as n—o0. (2.14)

2.1.3 Axisymmetric flow of Maxwell fluid

The axisymmetric flow situation, i.e.(f = g) can be obtained by setting ¢ = 1.0 in the Eqs.
(2.6) and (2.7). Here we have

=[R2 1+ 4By [ - "] =0 (2.15)

with boundary conditions (2.14).



2.1.4 Two-dimensional flow of viscous fluid

The two-dimensional case, i.e. (g = 0) for the flow of viscous fiuid can be deduced by setting
¢=0= 4, in the Eqs. (2.6) and (2.7) . Hence we obtain

"= 124 f1" =0, (2.16)

with the boundary conditions (2.14).

2.2 Homotopy solution

2.2.1 Zeroth-order deformation problems

In order to proceed for the homotopic solutions of the nonlinear equations (2.6) and (2.7) with
the boundary conditions (2.8), the velocity distributions f(n) and g(n) are expressed by the set
of base functions

{n" exp(—nn) | k 2 0,n 2 0} (2.17)
in the following manner
J) = afo+ Y an.n" exp(—nn), (2.18)
n=1 k=1
gin) = Afe+Y ) An " exp(—nm), (2.19)
n=] k=]l

where of, ,, and A%, are coefficients. The initial guesses fo(n), go(n) and the linear operator
L for the problem under consideration are chosen as follows:

Jo(n) = 1 = exp(-n), (2.20)
90(n) = (1 — exp(—n)), (2.21)
Efy=M"-71, (2.22)
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with
L[Cy + Cexp(n) + Cyexp(—n)] =0, (2.23)

where C; — Cy are the constants.

The zeroth order problems are
(1 =p)L [f(n.p) ~ folm)] = phsNy[f(n.p),3(n.p)), (2.24)
(1=p)Lgn.p) ~go(n)] = pRNG[f(n,2),5(n, p)], (2.25)

f(0.p) + 3(0,p) =0, J'(0.p) =1, F(0.p) = ¢,
J'(o0,p) =0, §(00,p) =0. (2.26)

In Egs. (2.24) and (2.25), the nonlinear operators ANy and A} are defined by the following

expressions

3 _
Nylf(m,p), §(n,p)] = % = (%nf) + {f(n.p) +§{mp}}%

2{f(n.2) + a(n, 2)} V' (0, 2) /" (. )
+8, . @2)

~{f(n,p) + 3, 2)}* " (n,p)
- i -
N;(f(n.p), §(n,p)] = % == (gg-) + {f(mp) + ﬂ{mp}}gg

2{f(n,) + a(n, p)} (0, )" (0, )
+8; . (2.28)

={f(n.p) + 3(n, 2)Y*7" (0, p)

Hmﬁ;sndh,mthﬂnuﬁﬁmynmmmrmmdpeiﬂ.l]ismembeddingpumm.
When p=0 and p =1 then

fn,0) = folm), fm1)=f(n), (2.29)
gm0) = goln), flm,1) = g(n). (2.30)



When p varies from 0 to 1 then the initial guesses fo(n) and go(n) approach to the final solutions
f(n) and g{n) respectively and through Taylor's series expansion one has

Fnp) = foln) + Y fm(mp™, (2.31)
m=1
3(n.p) = go(n) + > gm(m)p™, (2.32)
m=]l
_ 1 o"f(n.p)
Jm(n) = m opm lm, (2.33)

_ 1 ™g(n,p)

o) = i |- (234)
It should be noted that the convergence of series (2.31) and (2.32) strongly depends upon the
auxiliary parameters fiy and ki;. The values of fiy and i, are selected in such a way that the
series (2.31) and (2.32) converge when p = 1. Hence Eqs. (2.31) and (2.32) become

f(n) = fom) + 3 fm(m)s (2.35)
m=1

9(n) = go(m) + > _ gm(n). (2.36)
=1

2.2.2 mth order deformation problems
The problems at this order satisfy the following definitions

Lfm(mP) = Xmfm-1(n)] = KRpm(n), (2.37)
L[gm(mP) = Xmm-1(1)] = AgRom(n), (2.38)
Jm(0) + 9m(0) = fra(0) = flu(00) = g} (0) = gl(00) =0, (2.39)
Om<1
Xom= { ; (2.40)
lm>1



m=—1

Rem(n) = frma + Z {(fn-1-k + gm-1-.)f& = frn-1-kSk}
k=D

i & 2 fon—1-k + 9m—-1-k) it S{

+81 3.3 (2.41)

e ~(fumr—kSiet + Gm-1-ke-t + 2fm-1-£Gk-1) f"
m-]
Rym(n) = gy + Z {(Fm-1-k + gm-1-k)gk — Gn—1-49% }
k=0

m-1 k 2(fm—1-k + ﬂm—l—i]ﬂ’;hﬂr

+6 3. (2.42)

k=0 1=0
~( fra—1-kSi—t + Om—-1-kGk—~1 + 2 fon—1-£Gk—1)5}"

Employing symbolic software MATHEMATICA, the corresponding system can be solved one
after the other in theorder m=1, 2, 3,...

2.3 Process of convergence

To find the adequate values of hiy and My, so that the Eqs. (2.31) and (2.32) converge, we
have prepared the curves shown in Fig. 2.2. It is seen that the suitable ranges here are
—16 < iy < —0.5 and —1.5 < fiy € —=0.3. In the Figs. 2.3 and 2.4 the graphs are presented
for an error analysis. It is anticipated that by choosing the values of fiy and h, from their
appropriate ranges, the convergent results can be obtained for 6th decimal place. Plots 2.5 and
2.6 show the residual error of f and g for different values of /iy and A,. We have examined that
hi = hy = —0.85 gives much useful results.
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Fig. 2.2 : A curves of f”(0) and g"(0) at the 15* order of approximation.
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Fig. 2.3 : h curve for residual error in f(n) at the 15 order of approximation.
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Fig. 24 : A curve for residual error in g(y) at the 15 order of approximation.
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Fig, 2.5 : Comparison of residual errors in f(n) for different values of A.
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Fig. 2.6 : Comparison of residual errors in g(n) for different values of h.
2.4 Results and discussion

The aim of this section is to analyze the influence of Deborah number 8, on f’ and ¢ in
two-dimensional, three-dimensional and axisymmetric flows. A comparative study between the
present HAM solutions and the previously obtained exact and perturbation solutions for the
viscous fluid case is made. The variation of Deborah number 8, on ! for two-dimensional flow
situations is portrayed in Fig. 2.7. It is observed that Deborah number 3, retards the flow
and causes a reduction in the boundary layer thickness. Figs. 2.8 and 2.9 show the effects of
Deborah number 8, on ' and ¢ for three-dimensional flow. It is observed that with an increase
in 8y both velocity components f' and g' decrease. It is also observed that in three-dimensional
flow situation the velocity decreases rapidly when compared with the two-dimensional flow
situation. Effects of 5, on f' for an axisymmetric flow case is presented in Fig. 2.10. It is noted
that the results obtained for axisymmetric flow case are quite similar to those obtained for the
two- and three-dimensional flows.

Table 2.1 is made just to decide that how much order of approximations are necessary for a
convergent solution. It is noted that 20th order approximations are sufficient for the convergent
problem, Table 2.2 is made in order to compare the present results obtained by HAM with
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the HPM and exact solutions given by Ariel [41). It is found that present solution in a limiting

sense has a good agreement with an exact solution
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Fig. 2.7 : Influence of 8, on [ for 2D flow.
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Fig. 2.8 : Influence of 8, on f' for 3D flow.
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Fig. 2.9 : Influence of #, on ¢’ for 3D flow.
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Fig. 2.10 : Infiuence of §; on f' for axisymmetric flow.

Table 2.1: Convergence of the HAM solutions for different order of approximations when
.ﬂ] =02 H.Ild e=05



order of approximation - f"(0) -g"(0)

1 1.153750 0.490625
2 1.182876 0.499378
5 1.181869 0.502042
10 1.182117 0.501999
156 1.182123 0.501996
20 1182124 0.501996
25 1.182124 0.501996
30 1.182124 0.501996
40 1.182124 0.501996
50 1.182124 0.501996

Table 2.2: Illustrating the variation of —f"(0) and —g"(0) with ¢ when 8, = 0, using
HAM, HPM (Ariel [41]) and exact solution (Ariel [41]).

c -£"(0) —g"'(0)
HAM HPM [41]  Exact [41] HAM HPM [41]  Exact [41]

0.0 1 1 1 0 0 0

02 1039495  1.034587 1039495  0.148736 0158231  0.148736
04 1075788 1070529 1075788 0349208  0.360599  0.349208
06 1109946 1106797 1109946  0.500528  0.600833  0.390528
0.8 1142488 1142879 1142488  0.866682  0.8745561  0.860682
1.0 1173720 1178511 1173720 1173720 1178511 1173720

2.5 Final outcomes

The generalized three-dimensional flow of an incompressible upper-convected Maxwell (UCM)
fluid over a linearly stretching surface is examined. The main observations are listed below.
e Deborah number 3, retards the flow.

e Results obtained for axisymmetric, two- and three-dimensional flows are qualitatively



e Effects of 3, on ' are qualitatively similar to those of ¢'.
e Plots of residual errors confirm the validity of the derived series solutions.

e For g =0 = ¢, the results for two-dimensional flow of Maxwell fluid are recovered.



Chapter 3

Unsteady flow of Maxwell fluid over
a stretching sheet

This chapter addresses the three-dimensional flow of Maxwell fluid bounded by a stretching
sheet. The mathematical modelling has been carried out and the computations are performed
by using the homotopy analysis method (HAM). The convergence of the derived series solution
is shown explicitly and the error analysis has been presented. Comparison with the previously
published data in steady case is shown. Various graphical results are shown in order to analyze
the features of the involved key parameters.

3.1 Mathematical analysis

Let us consider the time-dependent three-dimensional boundary layer flow of a subclass of rate
type fluid. Constitutive expression of UCM fluid are utilized. The fluid is bounded by the
non-conducting surface situated at z = 0. The fluid occupies the region z > 0. The equations
for the considered flow are

dw

du v
E+F‘:+E—'ﬂ, (3.1)
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du Su du  Fu
EETE TR = V5

( §§+2u$ +2ﬂ£& +2w£ﬁ \
- +ut T + v 5 + wi ey o (32)

\ +2ur g + vw i + 2uw iy )
A I v
E+HE+‘H&—F+WE = PE
(Gt + 2l + 2o + 2wy )
-\ +2 %% + v 5 + vy o (33)

\ +2ur L + 2wl + 2uw i

and the subjected boundary conditions are

az
H = %(3}=m‘1ﬂ=ﬂm{v]= , w=0 at z=0,

1-at
4 = 0, v—0, as z— o0, (3.4)

where u, v and w denote the velocity components in z—, y— and z—directions respectively, v
the kinematic viscosity, A the relaxation time. Moreover at < 1 and the constants 2 > 0 and
b= 0.

The following variables [82 and 83)

n= IIIH_[J,_ETﬂ:’ u= %f’[q}, V=< fyatg’{q], w = —131%2-; {f(n) +9(m)}. (3.5)




satisfy the continuity equation (3.1) identically while Eqs. (3.2) — (3.4) take the following form

¢ (f+28) - 124 (f + )"
"_ Lo _ 2 ro T0opn TR oem
+ﬁ1(2(f+9}f’f (f+9)1" c(af+-.?f+4f))=& -
{202 +0f'f" = (f +9) (3f" +nf")}
7"-¢(9+39") —9*+ ([ +9)d"
_ 2 m _ 2 i U ol
+ﬁ1(2u+g}g*g" (f +9g" ‘?(29'+‘¢"9"+49"’))=u, i
~¢{20% +ng'g" - (f +9) (3¢" +ng")}

fm)+gm =0, ff(m=1, dn)=c at =0,
() =0, g'(n) =0, as n- o0, (3.8)

where prime denotes differentiation with respect to n. The Deborah number §;, the ratio
parameter ¢ and the time-dependent parameter  are defined as

Aa

ﬁl:l—ﬂtl

c=bfa, ( =ala, (3.9)
where ¢ = 0 yields the steady three-dimensional boundary layer flow of Maxwell fluid.

3.2 Series solutions

3.2.1 Zeroth-order deformation problems

The velocity distributions f(1) and g(n) can be presented by the set of base functions

{n* exp(=nn) | k > 0,n > 0} (3.10)
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in the definitions

fin) = afo+ . ah 0" exp(-nn), (3.11)
=] fe=]

an) = Bo+ Y, than*exp(-n), (8.12)
n=1 k=1

in which a¥, , and bf, ,, are the coefficients. The convenient initial guesses and linear operator
are selected as follows

fﬂ':‘?} =1- &:P{-lﬂ't (3 13:'
go(n) = (1 — exp(-n)), (3.14)
=~ r, (3.15)
with
L [Cy + Cy exp(n) + Cy exp(-n)] =0, (3.16)

and C; — Cj are the constants.
The zeroth order problems are defined by

(1 =p)L [fn,p) = fom)] = RN (F(n2), 3(m P (8.17)
(1—-p)LG(np) — go(m)] = PhgNG[F(m:p). 5(n,P)]; (3.18)

F(0,p) + §(0,p) =0, F(0.p) =1, T(O,p) =¢,
F(c0,p) =0, (c0,p) =0 (3.19)



where the nonlinear operators Ny and Aj in Eqs. (28) and (29) are

Nylfnp)amp) = Fmp) = ¢ (Flnp) + Ef’{w}) +{F(mp) +a(mp)}f" (np)
—F(n.p) - B¢ {Ef{n. p)+ Eff" (mp) + %f’"m.m}
B¢ { 2f%(n, ) +nf (n.p)f"(mp) }
~{Fn.p) + a(n,p)} {3F"(n.p) + nf"(n.p)}

_ Vs
+J31{ {F(n.p) + 3 2) ¥ F"(n.p) }

) & (3.20)
~2{ F(n,2) + §(n, )} (. 2) " (0, P)

Nylf(mn.g).3(mq)] = 7"(mp)—¢ (ﬁ’{u.ﬁ} + %ﬂ" (m:ﬂ) + {f(n,p) + 8(n,p)}&" (n.p)

=g (np) = Brg’* {Eﬁ* (m,p) + Tfff* (,p) + %3-5?’" {ﬂ.P)}

_ﬁlc{ 207 (n,8) + 79 (1P (0.) }
— {F(n.p) + 5(n,p)} 39" (n,p) + 17" (n.P)}

- { (Fna) + 31,0V () }

(3.01)
~2{f(n,q) +3(n,9)}7 0, 9)7" (n,9)

where the auxiliary non-zero parameters are iy and liy and p € [0, 1] is an embedding parameter.
For p = 0 and p= 1 we have

f(n,0) foln), fln.1)=7f(n), (3.22)
a(m0) = go(n), flm,1)=gln). (3.23)

When p varies from 0 to 1 then the initial guesses fo(n) and go(n) approach to the final solutions
f(n) and g(n) respectively. Through Taylor’s series expansion we write

Fnp) = foln) + 3 Sm(mp™, (3.24)
m=1

3(n,p) = go(n) + Y gm(m)P"™, (3.25)
me=]
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fm(n) = %amf (’?"’}l (3.26)
gm(n) = 'rhl'lmﬂ : (3.27)

Note that the convergence of Egs. (3.24) and (3.25) strongly depends upon the auxiliary
parameters iy and fig. The values of fiy and fiy ave selected in such a way that the Eqs. (3.24)
and (3.25) converge when p = 1. Thus we write

f(n) = foln) + > fm(n), (3.28)
m=]1
g(m) = go(n) + Y gm(n)- (3.29)

3.2.2 mth order deformation problems

The problems at the m™ order are given by

L[fm(n) = Xmfm=1(n)] = ‘&I'R'IJH-{‘?}'} (3.30)

L [gm(n) = Xmgm-1(m)] = AgRgm(n), (3.31)

F(0) + gm(0) = £1,(0) = f13(00) = g (0) = grn(00) =0, (3.32)
0, m=<1

Xew= { ; (3.33)
1, m>1

Rem(n) = faa- C{f —1+ﬂf:;— } Z {(Fm-1-1 + m-1-0)f = Frn-1-2fic}
Bl
-8 f:: {i_f' +E].f" f}i ¥ A 9 i i it
1 m-1+ 7 m-1F Flme1 1*7;{ fon—1-kie + Mm-1-1S%
m=1
=1¢ Y {fm-1-k + gm-1-x} {3 +nfi'}
k=0

m-1 k
B3y { Wfore1-4+ Im-1-2M L } R

k=0 1=0 | —(fm=1-kfi=t + Im-1-kGk~t + 2fm~1-kGe-1)S7"
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m—1
Romln) = s =C{Gns+50na} + 3 {morok + gnt-) — Gn-s-u0ic}
k=0

m—1

-8:¢* {Eﬂ"m-i + ?Qﬁ-—l + —’f—aﬂ_:} - B Z {211k + NGm—1-10k }
fe=0

m=1
=816 Y, {Fm-1-k + gm—1-} {39k + 16’}

=0

mel U frn-1-k + Gm-1-k)Gh_19] }
+8 . (8.35)
: u;u 2{ —(frnm1-k it + Gn—1-kGh~t + 2frn—1-k9k-1)91"

3.3 Convergence analysis

We note that the convergence of solutions (3.30) and (3.31) depends upon iy and h,. To
find the admissible values of iy and hg, the so called hi—curves are displayed for 15¢h order of
approximation in Fig. 3.1, This Fig. shows that the admissible values are 09 < hy < =05
and —0.9 < iy € =0.5. In order to validate the obtained analytic results we have plotted the
fi—curves for residual error of f and g in the Figs. 3.2 and 3.3. It is noted that the correct results
upto 6 decimal place can be obtained by choosing the values of A from the ranges mentioned
in the Figs. 3.2 and 3.3. Table 3.1 is prepared to show the convergence of the derived series
solutions. It is noted that the convergence is achieved at the 10th order of approximations.
Table 3.2 is constructed in order to make a comparison of present results with the published
results. It is noticed that obtained results are in an excellent agreement with the published
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results.

o {=05 P1=02¢=05
141463
141465
o
S.S; 14147
M
141473
141475}
141478

-1 -Q9 -8 Q47 -06 -a5 04

Fig. 3.1 : i curves of f”(0) at the 15" order of approximation.
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Fig. 3.2 : i curves of ¢"(0) at the 15" order of approximation.
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Fig. 3.3 : h curve for residual error in f(1) at the 15t* order of approximation.
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Fig. 3.4 : h curve for residual error in g(n) at the 15 order of approximation.

Table 3.1: Convergence of the HAM solutions for different order of approximations when
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By=02and {=05=c¢

order of approximation - *(0) -4"(0)

1 1.349513 0.597951
2 1.396291 0.616953
5 1.414430 0.622341
10 1.414737 0.622382
15 1.414737 0.622383
20 1.414737 0.622383
30 1414737 0.622383
50 1.414737 0.622383

3.4 Results and discussion

This section describes the influence of time-dependent parameter ¢, Deborah number §; and
the ratio parameter ¢ on f’ and ¢ for the case of three-dimensional flow situation. For this
purpose we have constructed Figs. 3.5 — 3.10. Figs. 3.5 and 3.6 portrayed the influence of ¢
on [’ and ¢'. It is observed that both f’ and ¢ and the associated boundary layer thickness
increases when ( is increases. The influence of Deborah parameter 3; on f’ and ¢’ is shown
in Figs. 3.7 and 3.8. From these Figs. it is analyzed that Deborah parameter 3, retards the
flow. Thus the momentum boundary layer for both components f' and ¢ becomes thinner
with an increase in Deborah number ;. Since the Deborah number #, defines the difference
between the solid and liquids (or fluids) therefore the material behaves like fluids for smaller
Deborah number whereas for large value of Deborah number the material behaves like solids.
This property of Deborah number is also seen in Figs. 3.7 and 3.8. Fig. 3.9 is plotted to see the
influence of ratio parameter ¢ on the velocity component f'. It is observed that an increase in ¢
indicates a decrease in the velocity f'. From Fig. 3.10 we observed that the influence of con ¢
is quite opposite to that of f'. It is because of the fact that the stretching occurs bidirectionally
(stretching along y — azis) for the positive values of ¢. Thus the velocity component along
y — axis ie. g’ show increasing behavior near the boundary.
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Fig. 3.9 : Influence of ¢ on f'.
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Fig. 3.10 : Influence of c on ¢'.
Table 3.2: Comparison of present results with the steady-state case [81] when { = 0.0.




order of approximation Present results Ref. [81]
—£"(0) —¢"(0) —f"(0) ~¢"(0)

1 1.153750 0.490625 1.153750 0.490625
2 1.182876 0.499378 1.182876 0.499378
5 1.181869 0.502042 1.181869 0.502042
10 1.182117 0.501999 1.182117 0.501999
15 1.182123 0.501996 1.182123 0.501996
20 1.182124 0.501996 1.182124 0.501996
25 1.182124 0.501996 1.182124 0.501996
30 1.182124 0.501996 1.182124 0.501996
40 1.182124 0.501996 1.182124 (.501996
50 1.182124 0.501996 1.182124 (0.501996

3.5 Conclusions

We have investigated the time-dependent three-dimensional flow of an upper convected Maxwell
(UCM) fluid over an unsteady stretching surface. The results for the steady-state, two-dimensional
and axisymmetric flows can be deduced as the limiting cases. Solutions for the problem are
obtained by using HAM. The convergence and graphical results are displayed. The influence
of time-dependent parameter and Deborah number is discussed. The main observations are
pointed out below.

o Velocity fields f' and ¢ are increasing functions of time-dependent parameter C.
¢ Deborah number 3, retards the flow.

o In both cases of unsteady/steady flows, f* decreases when c is increased.

¢ The variations of ¢ on velocities are qualitatively similar in viscous case when compared
with the case of Maxwell fluid.

 Dimensionless velocity ¢’ increases by increasing ¢ in both cases of steady and unsteady

flows,



L ] T]lﬂ i
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Chapter 4

Mixed convection three-dimensional
flow of Maxwell fluid with magnetic

field, thermal diffusion and diffusion

thermo effects

This chapter examines the mixed convection boundary layer flow of upper-convected Maxwell
(UCM) fluid. The flow is subjected toa bidirectional stretching vertical plate. Effects of applied
magnetic field, diffusion-thermo (Dufour) and thermal-diffusion (Soret) are addressed. With
appropriate transformations, the resulting boundary layer equations are reduced to nonlinear
ordinary differential equations. The arising ordinary differential systems are solved by homotopy
analysis method. Results are obtained and discussed for velocity, temperature, concentration,
local Nusselt and local Sherwood numbers.

4.1 Mathematical analysis

Here we consider the phenomena of heat and mass transfer in the steady three-dimensional
boundary layer flow of Maxwell fluid. The fluid is assumed to be electrically conducting in the
presence of an applied magnetic field of strength Bo. The electric and induced magnetic fields
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are neglected. In addition, the mixed convection phenomenon combined with thermal-diffusion
and diffusion-thermo effects is considered. The flow is induced by vertical surface stretching
bidirectionally. Physical model is shown in the Fig. 4.1

Fig. 4.1 : Geometry of the problem.

The continuity, momentum, concentration and energy equations for the present boundary layer

flow become
du v Ow
e ok i i | 4.1
&+W+ﬁ ' (4.1)
%} + Euﬁ -!—2'1:35% + Ew-g;ig;
du du du du L
5+t gy TP T sl 25+ v LY
+2w£3; - Ew%; + Euw%};
#u  oBj u <
=FE'——F' (‘ll-'l‘lltﬂa) +9 [ﬁT{T—Tm]'!'ﬁc{C“CﬂH. {42}
% +2ufs +2u§;;i +2wis
du v

-a-t-+u-é;+u~g—:+w%+h +u2%§+02$+u3§§
+2uu3% + Euwgg; + Zuwﬁ";gz

v  oB} v
= Uﬁﬁ — T (tF + A;'ll.iﬁ:) ' (4.3)
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8c 8Cc  ac dc Dby 8T
ot ke ay""” - D'E?'K’c""’r:@' (4.4)
ar a'r a'r . &T _ Dkr 8°C

where u, v and w are the velocities in the z, y and = directions, respectively, » the kinematic
viscasity, A; the relaxation time, p the density, o the electrical conductivity, C the concentration
of species, D the coefficient of diffusing species, K; the reaction rate, kr the thermal-diffusion, T
the temperature, Cp the specific heat at constant pressure, C; the concentration susceptibility,
@y, the thermal diffusity, Ty, the fluid mean temperature, ¢* the gravitational constant and
(B1: Be) the volumetric expansion coefficients for temperature and concentration

The boundary conditions can be written as

u = uy(z)=az, v=u(y)= by, w=0, T=Tu(z), C=Cyulz) at z=0,
4 = 0,v—=0,T =T C—=Cx as z— 00, (4.6)

where the wall temperature and concentration are prescribed as follows

in which Ca and The denote the ambient values of concentration and temperature.
Making use of the following similarity variables

n= ‘/gz, u= ﬂd:f(ﬂ:lf y= GFQ,{'?}I - "\I"’ﬂ_"{.ﬁﬂ] + 5"1’7]]' '

C—-Cx

T —Ta
B(n) = T d(n) = o BT, TR (4.8)
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Eq. (4.1) is satisfied automatically and Eqs. (4.2) — (4.6) yield

£ = MAf 4 (MPBy + 1) (f +9)f" = 17 + A [B(n) + Ne(n)]

+ 8, 2 +9) ' 1" = (S +9*f"] =0, (4.9)
& — M2+ (MPBy +1) (f +9)g" — o + By 20 +9)9d" = (£ +9)*¢"] =0,(4.10)
&" + Sc(f +g)¢ — Scf'd — Seyg + 8cS,8" =0, (4.11)
" +Pr(f +g)¢ = Pr '8+ PrDyg" =0, (4.12)

£(0) +g(0) =0, f1(0) = 1,4(0) =¢, ¢(0) =1, 8(0)=1,
f'(e0) = 0, ¢(e0) =0, (oc) = 0, #(c0) =0, (4.13)

mwhﬁ:hpdmhﬂimmthadiﬁmthﬁmwizhmpectwnmdthummmmu>umdb}ﬁ.
Furthermore the Deborah number 5,, the ratio ¢, Schmidt number S¢, mixed convection para-
meter A, Dufour number D;.Smmh&,m&mmmmm buoyancy
pmamemN,PmndﬂnumbarPr,EumnumbaMnndthﬂchmicdmionpnmmErq
are defined as

w _Tm G T
D = Dhr {C._"_Ggg} sr = Eb_r {Tw = Tnn]' N= ,ﬂa{c.. = Cnn]'
I = GO TaTw)v' " Tav (Ca—C)  PriTe—Te)’
NP o 1 o
pa a

whm{A}ﬂ}mmpmdswmhu;ingﬂuw,(A{u}mnupundswoppmingﬂwand{z=n}
mﬁmwmmmnww.

Thephydsﬂqmﬁﬁunfsmiﬂinﬁutmthahcﬂﬂumdtfﬁu,}mdhcd%muod
(Sh) numbers which can be written as

T _J Tjw
Nu= i -Ta)’ O D(Ca—Ca) e




with o -
gw = —k (E)Fa’ ju=-D (E)ﬁ . (4.16)

where g, and ji, respectively denote the heat and mass fluxes. Equation (4.15) in dimensionless

form becomes
Nug/Rel/* = —0(0), Sh/Re;/? =—¢/(0) (4.17)

4.2 Series solutions

lnnrdertop:men:thebﬂmutupymluﬁonu.mzmlmtthesetnfm functions

{n* exp(-nn) | k2 0,n > 0} (4.18)
and define
f) =afo+ > > ak an* exp(—nn), (4.19)
nm] k=]
gln) =80+ > bk exp(—nn), (4.20)
n=1k=]
ém) =33 & " exp(-nn), (4.21)
nie() k=0
om =3 3 bk, 1 exp(—nn), (4.22)
nr) k=D

where a¥ , and bf, ,, are the coefficients. The convenient initial guesses and linear operator are
selected as follows

Jo(n) = 1 - exp(-n), (4.23)
go(n) = ¢(1 — exp(-n)), (4.24)
Bo(n) = exp(-n), (4.25)
do(n) = exp(—n). (4.26)



Thanmdﬂuylinwmmfwtheﬁmﬂimf,g,ﬁamdﬂmnfthefurms

Ly = %-%*

- L8 _%
‘ci' f dﬂl
'c‘ = ﬁ‘¢t
L = g—s,

with the following properties

Ly [Cy + Caexp(n) + Cyexp(-n)] =0,
L, [Cy + Cs exp(n) + Co exp(—1)] =0,
L4 [Crexp(n) + Caexp(-n)] =0,

Lo [Croexp(n) + Croexp(=n)] =0,

where ¢;(i = 1 — 10) are the arbitrary constants.

4.2.1 Zeroth-order deformation problems
Thnmblmﬂthnmthmdudufmmﬂimmmmuedu

(1 = p)LsLF(n,2) — foln)] = pAyNy [F(m,2),3(m,p), &(n,p),B(n.P)] \
(1 - p)Ly[a(n,p) — folm) = phgNg [F(n,2), 3(n)] .

(1 - ) Lo [ (1,P) = G0 ()] = PheNs [F(n,p), 3(n,p), (n.2),B(n,P)]

(1 — p)ColB(n, p) — Bo(n)] = pheNa [F(n,p), 5(n, 2), #(n, ), B(n,P)] »
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(4.30)

(4.31)
(4.32)
(4.33)
(4.34)

(4.35)
(4.36)
(4.37)
(4.38)



where the nonlinear operators Ny, Ny, N and N in Egs. (4.35 — 4.38) are

Ny = J"(np) - M*f(n.p) - P2(n,p) + MO(n,p) + N(n, )}
+ (M?8y + 1) {f(m.p) + §(n. 2)}F" (n,P)

+B, { {f(n.p) + gln,p) 27" (n,p) } ’

(4.39)
—2{f(n,p) + 3(n, P} F (n.2) J" (n,p)

N, = 3"(mp) - M*F(n,p) - 7*(n,P)
+ (M2, +1) {F(m,p) + 3(m.2)}F" (m,P)

T
+ﬁ1{ {F(n,q) + 3, @) }*7"(n.9) ‘ (.40)
~2{f(n,q) + 3(n,9)}7 (0, 9)7"(n.q)

Ny = 3 (n,p) + 8¢ ( ) f{mi)& (n,p) +_ a(n,p)o (mp) ) (4.41)
—F(n,p)8(n, ) = 78(n,p) + S8 (n,p)
- aﬂ{fj.ﬂ +Pr f(’irpla’{ffd?] + gl Fli'{ﬂmp} ) (4.42}
—f(n,p)é(n,2) + Dyd" (1,p)

and the auxiliary non-zero parameters are fig, fig, iy and fig. Moreover p € [0, 1] is an embedding
parameter. For p =0 and p =1 we have

fn,0) = folm), Fln1)=fn) (4.43)
#(m0) = go(n), f(n.1)=g(n), (4.44)
é(m,0) = go(n), 8(n,1)=2e(n), (4.45)
B(n,0) = 6o(n), A(n,1)=0(n). (4.46)



When p varies from 0 to 1 then the initial guesses fo(n), go(n), ¢o(n) and fo(n) approach to the
final solutions f(n), g(n), @(n) and 6(n) respectively. By Taylor's series expansions we write

F(n,p) = fo(n) + gfm{frhf“. (4.47)
g(n,p) = goln) + “i gm(m)p™, (4.48)
@(n,p) = do(n) + g:l ) (4.49)
B(n,p) = bo(n) + g Bm(n)P™, (4.50)
fml) = 5“5’?&3? ) " (a51)
gm(n) = Elig-n%’,’:—”- - (4.52)
buln) = —Ton) " (4.53)
ont) = T (@54

Note that the convergence of equations (4.51) and (4.54) strongly depends upon the auxiliary
parameters fif, fig, fig and he. The values of Ay, ﬁ,,&aﬂdﬁ.mselmtedinmhawaythat
the equations (4.51) and (4.54) converge when p = 1. Thus we write

f(n) = fo(n) + ";E: fm(m), (4.55)
g(n) = go(n) + gstmlnh (4.56)
é(n) = ¢o(n) + gl Gm(1)- (4.57)
8(n) = bo(n) + ";Z.::l Bm(n)- (4.58)
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m=1 m=1

Rom(n) = &y +8¢Y (Fne1k+ Im-1-£)0k = 5¢ ) frn1-40s
k=0 =)

—S¢YPm-1 + 5€5:05, (4.67)
m—1 m=1

Ron(n) = 0oy +Pr 3 (fntok + gmo1—)0 = Pr D frno1-40k +PrDsd . (4.68)
k=0 k=0

4.3 Convergence

It is seen that the convergence of solutions (4.55) —(4.58) depends upon fig, fig, iy and fig. These
parameters play a vital role in controlling the convergence of the obtained series solutions. To
find the admissible values of fiy, lig, lig and hig, we have constructed the fi—curves for 15th order
of approximation as shown in Figs. 4.2 —4.5. These Figs. clearly show that the admissible
values are —1.2 < (Miy, fig, fig, ig) < —0.4. Table 4.1 is presented to show the convergence of
the obtained series solutions. It is noted that the obtained solutions are convergent up to 6
decimal place.

f1=02=8=Dy=) c=05=M Sc=10= Pr=y=N

-1025
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o

=115
-115

-14 -12 -1 -08 -06 -04 -02 O
T

Fig. 4.2 : i curves of f7(0) at the 15" order of approximation.
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Fig. 4.3 : h curves of ¢"(0) at the 15** order of approximation.
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Fig. 4.4 : i curves of ¢/(0) at the 15*" order of approximation.
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Fig. 4.5 : hi curves of #'(0) at the 15'" order of approximation.
Table 4.1: Convergence of the HAM solutions for different order of approximations when
c=05=M, B, =02=D;=5,=)Pr=10=Se=7=N.

approximation order —f"(0)  -¢"(0)  -#(n)  —0(n)

1 1.075833 0.540833 1.338333 0.988333
2 1.111655 0.562161 1.407796 0.937823
b 1.115011 0.573595 1.434085 0.873785
10 1.113760 0.574067 1.438251 0.868215
15 1.113771 0.574061 1,438206 0.868217
20 1.113772 0.574061 1.438295 0.868218
25 1.113772 0.574061 1.438295 0.868218
30 1.113772 0.574061 1.438295 (0.868218
40 1.113772 0.574061 1.438295 0.868218
50 1.113772 0.574061 1.438295 0.868218




4.4 Discussion

Our interest in this section is to explain the behavior of various physical variables on the
velocity, concentration and temperature fields. These parameters include the Deborah namber
f,, the ratio ¢, the Schmidt number Se, the chemical reaction parameter -, Prandt] number
Pr, mixed convection parameter A, Hartman number M, Dufour number Dy, Soret number
S. and concentration buoyancy parameter N. Since our main focus here is related to mixed
convection phenomenon when both thermal-diffusion and diffusion thermo effects are present.
Therefore, we kept the other quantities fixed and analyze the effects of M, N, A, Sy, Dy, 7,
Se and Pr. Thus Figs. 4.6 — 4.17 have been plotted. The variations of M, A and N on f'
for three-dimensional flow are shown in the Figs. 4.6 —4.9. From Fig. 4.6 it is noted that
magnetic field M opposes the flow. Physically when magnetic field is applied to fluid then its
apparent viscosity increases to the point of becoming a viscoelastic solid. Tmportantly, the yield
stress of the fluid can be controlled very accurately by varying the magnetic field intensity. The
outcome of which is that the fluid’s ability to transmit force can be controlled with the help
of an electromagnet which gives rise to its many possible control-based applications including
MHD power generation, electromagnetic casting of metals, MHD ion propulsion ete. Fig. 4.7
elucidates the effects of concentration buoyancy parameter N on f'. Physically buoyancy is a
force exerted by a fluid that increases the up thrust. Since the pressure at the depth of fluid
in any domain is greater when compared to the pressure at the upper portion inducing a force
that try to move an object upward. Magnitude of this force is equal to the difference in the
pressure between the top and thﬂhnttumufthumhlmnandisnhuequivalemmthe weight
of the fluid that would otherwise occupy the region. Thus an increase in buoyancy increases
the up thrust force causing an increase in fluid velocity. As noted in Fig. 4.7 that the effects
of buoyaney force is found to be more pronounced for a fluid with a small Prandtl number Pr.
Since fiuid with smaller Pr is more susceptible to the effects of buoyancy force. Fig. 4.8 plots
the effects of (A < 0) on f' for the case of opposing flow. From this Fig. it is obvious that
(A < 0) retards the flow. The influence of A on  for the case of assisting flow is plotted in Fig.
4.9. Since for assisting fow (A > 0) means positive value of gravitational force which acts as a
quantity which speed up the flow. Thus the fluid velocity increases for the positive values of A.

Fig. 4.10 shows the simultaneous effects of S, and Dy (when S, increases and Dy decreases
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by keeping their product constant) on . It is observed that concentration field ¢ and concen-
tration boundary layer increase. From Fig. 4.11, opposite results are found when S, decreases
and Dy increases by keeping their product constant. The effects of v on ¢ in the destructive
and generative chemical reactions are shown in the Figs. 4.12 and 4.13. It is noted that the
effects of generative and destructive chemical reactions on ¢ are quite opposite. Moreover it is
also noted that the magnitude for 4 > 0 is smaller than v < 0. Fig. 4.14 presents the effects of
Schmidt number Sc on the concentration field ¢. It is noted that concentration field ¢ decreases
rapidly with an increase in Se¢. Figs. 4.15 and 4.16 show the simultaneous effects of S, and
Dy {when S, increases and Dy decreases by keeping their product constant) on 8. It is noted
that the obtained results are quite opposite to those observed for concentration field. Fig. 4.17
elucidates the variation of Prandtl number Pr on the temperature profile. It is observed that
Pr causes a reduction in the temperature profile and a thermal boundary layer. This is in view
of the fact that larger Prandtl number yields weaker thermal diffusivity and thinner boundary
layer.

Table 4.2 explains the local Sherwood number Re;'/? Sh and the local Nusselt number
Re;'® Nug for M, Dy, Sy, A and N. Tt is noted that magnitude of local Sherwood number
increases for large values of A, N and D; whereas it decreases for large values of M and 5.
Also local Nusselt number increases for large values of A, N and S,. Such magnitude decreases
when M and Dj are increased
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Fig. 4.7 : Influence of N on f'.
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Fig. 4.9 : Influence of A > 0 on f'.
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Fig. 413 : Influence of v < 0 on ¢.
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Table 4.2: Values of local Sherwood number Re; /2 Sh and the local Nusselt number
Rez™* Nu, for some values of M, A, N, Dy and S, when ¢ = 0.5, §, = 0.2 and Se¢ = 1.0 =

Pr=w.

M A N S Dy —¢(n) ~&'(n)
00 02 10 02 02 1.44935 0.89620
0.5 1.43829 0.86821
1.0 1.41122 0.79528
05 02 1.43829 0.86821
0.4 1.45102 0.89943
0.6 1.46252 0.92544
0.2 02 1.43400 0.85773
0.6 1.43616 0.86304
1.0 1.43829 0.86821
1.5 1.43829 0.86821
1.0 01 02 1.47501 0.86163
0.2 01 1.42332 0.96740
0.3 007 137276 1.00012

02 01 1.42332 0.96740
01 02 1.47501 0.86163
0.07 03 1.49176 0.75679

4.5 Conclusions

Mixed convection three dimensional flow of an upper-convected Maxwell (UCM) fluid with mag-
netic field, thermal-diffusion and diffusion-thermo effects is explored. The concluding remarks
of the presented study are given below.

* It is noted that the magnetic field M opposes the flow.
e An upthrust can be generated by buoyancy which results an increase in fluid velocity.

e Opposite results are obtained in the cases of opposing (A < 0) and assisting (A > 0) Aows.
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e Generative (y < 0) and destructive (y > 0) chemical reactions has opposite results.

e Schmidt number Sc and Prandt! number Pr show a decrease in concentration and tem-
perature profiles.

e Simultaneous effects of Soret S, and Dufour Dy numbers on the temperature and con-

centration are quite opposite,
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Chapter 5

Similar solutions for
three-dimensional flow of an
Oldroyd-B fluid over a stretching

surface

This chapter deals with the three-dimensional stretched flow of an Oldroyd-B fuid. The gov-
erning equations for the three-dimensional flow are modelled and simplified by order analysis.
Similarity transforms are invoked to convert the nonlinear partial differential system into cou-
pled system of ordinary differential equations. Computations for the analytic solutions are made
through implementation of the homotopy analysis method (HAM). Main emphasis is given to
the Deborah number effects in the axisymmetric, two- and three-dimensional flow situations,

5.1 Mathematical analysis

We investigate the three-dimensional flow of an Oldroyd-B fluid. The fiuid occupies the region
2 > 0 and bounded be a flat surface situated at z = 0 which is stretching linearly to generate

T4



the motion. The governing boundary layer equations for the current analysis are given by

du & Hw
du Bv Ow _ 5.1
i i (5.1)

e «I~1'.=ﬁ +m&
Yoz dy Jz

2% | 28% . .2
uau-i-tl?z-l-w%'l‘h( u%}+ %"HHEE )

0z " "8y +2uuﬁ; + iuw;‘;agﬁ + Euwﬁﬁ;
& u%'kﬂ 2 +w%;?
o A - | B
or % z =7
u = ty(z)=az, v=vu(y)=by, w=0 at 2=0,
u — 0, v—=0 asz— oo, (5.4)

where u,v and w represent the velocity components, v the kinematic viscosity, (A1, Ag) the
relaxation and retardation times respectively and the constants a > 0 and b > 0.
We write the following similarity transforms

w2 w=aa ), v=auf(n), w =~V {S0)+9(n). (53)

where f and g are the dimensionless velocity components. Using these variables, continuity
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equation (5.1) is satisfied automatically and Eqs. (5.2) ~ (5.4) take the following forms

- (R (f+ )+ B 2+ 7 = (F + 9P "]

+B, (" +9) f" = (F+9) "] =0, (5.6)
&' =g+ ([ +9)g" + By [Uf +9)d9" — (F +9)°d"]
+B: [[(f" + ) g = (f +9)9"]] =0, (5.7)

f(n)+g(n) =0, f(n)=19M) =c atn=0,
f'(n) =0, g'(n) =0, asn — oo (5.8)

In the aforementioned equations, prime presents the differentiation with respect to 7. Moreover
B8y andﬁ,mtheﬂebomhmhmhmﬂfrdnnthnmimudﬂhnﬁmmrmpmﬁm]y
and ¢ is the ratio parameter. These are given by

,ﬂ1=}‘1ﬂ1 ﬁﬂ'_'hﬂf c=b.|'lllﬂs Eﬁ'g}
It iamtdthatc:ﬂ=gyieldathefolbwingtwo—diﬂmsiﬂnaimgimby

[ = [ 1B AP - A 4 B [P - 1] =0, (5.10)

fm =0, film)=1 at n=0,
f(n)=0 as p—oo (5.11)

and the axisymmetric flow i.e. (f = g) is deduced when ¢ = 1. Hence we have
f = PR 2f f 4B, [F11" = A" + 2B [ = ") =0 (5.12)

with the boundary conditions 5.11.
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5.2 Analytic solutions

5.2.1 Zeroth-order deformation problems

Our aim is to solve the nonlinear equations (5.6) and (5.7) subject to the boundary conditions
(5.8). Thus we have selected the following base functions

{ exp(—nn) | k > 00 2 o} (5.13)

and the velocity distributions f(n) and g(n) are

f) = Qo+ ahan" exp(—nn), (5.14)
el ]

gln) = Ao+ 3> Ak exp(—n), (5.15)
nml km]

where a¥, ,, and A%, ,, are the coefficients. The initial guesses fo(17), go(n) and the linear operator
L are selected as

fo(n) =1 —exp(-n), (5.16)
go(n) = e(1 = exp(—n)), (5.17)
efy=1"-1, (5.18)
with the following property
L [Cy + Cyexp(n) + Cyexp(~n)] =0, (5.19)

where C; — Cj are the constants.
The problems at the zeroth order are

(1= p)C [F(n.p) - Jo(n)] = pRyN;LF(m,p).2(m P (5.20)
(1 -p)La(n,p) — wn)] = phgNyf(n, 2), 3(n. 2)} (5.21)
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f(0,p) + 3(0,p) =0,F(0,p) =1, ¥(0,p) =<,
f'(00,p) =0, §(c0,p) =0, (5.22)

where the nonlinear operators Ny and Nj are defined as

Nilf(n.p), 5(np)] = g% (EI-) + {f(n,p) + (n, F]} aq‘i

o f(n,p) + 3(n, )} () " (0, ) ]
| ~{F(n,p) + aln,p) Y F"(n,p)

'meﬂmm+rmwﬁmm] o
|~ np) + 3} (2)

2
Aol (m.) 3(”’3’]]' = (-%) +{H'T=P}+§{n,p}}as——-g
+8 [ 2{f(n,p) + 300, p)}7 (. 2)3" (1, 2) ]
1

+ 8

+ fy

~{f(n,p) + 3(n,p)Y*7"(n,p)

i Pmmrmm+¢mm¢mm] G
~{f(n,p) + §(n,»)}3" (n, p)

and (fig, fig) are the auxiliary non-zero parameters which are useful in controlling the conver-
gence of the series solutions. Moreover p € [0,1] is an embedding parameter. It is noted that
when p=0and p=1 then

Fn,0) = folm), Fm1)=f(n) (5.25)
§(n0) = goln), flm1)=g(n). (5.26)

Furthermore when p varies from 0 to 1 then the initial guesses fo(n) and go(n) approach to final
solutions f(n) and g(n) respectively and through Taylor's series expansion we write

Fonp) = folm) + D fm(m)p™, (5.27)
Ml

g(n,p) = goln) + 3 am(mp™, (5.28)
=]



Jmln) = ml[%’—ﬂﬂ, (5.29)

ln) ifggﬂ’ g (5.30)

m!

Note that the convergence of series (5.27) and (5.28) depends upon the auxiliary parameters
hy and %;. The values of /iy and A, are selected in such a way that the equations (5.27) and
(5.28) converge at p= 1. Hence we write

fn) = folm) + 3, fmlm), (5.31)
m=1

9(m) = go(n) + D_ gm()- (5.32)
m=1

5.2.2 mth order deformation problems
The problems at this order satisfy the following definitions

L fw(nP) = Xmfm-1(0)] = ByRpm(n), (5.33)
L[gm(mp) = XmIm-1(0)] = ARgm(n), (5.34)
fm(0) + 9m(0) = £14(0) = fra(00) = g1(0) = gf.(00) =0, (5.35)
{ 0m<i
Xom= . (5.36)
im>1



m—1
Rymn) = Foa+ Y, {Um-r-b+ gm-r-0)fk = Fnor-afic}
k=0

e { 2 fmer + Ims Vi }

+3
g J;u g ~(frme1—k St + Gm-1-kGh—t + 2fm-1-kge-1) "

m=—]
48, S {(Fhoron + Tor ) = Fmrte+ Gm-1-0) "} (5.37)
keol)

m=1

Rom() = day+ Y {(fm-r-k+gm-1-4)0k = -1k}
k=0
+8, E i { 2 frmr—k + Gm-1k) G191 }

i =0 | —(fmm1—t Skt + Gm-1-kGk—t + 2fm—1-18k-1)9]"

m=]
+82 3 {(Ft 1ok + Omr i)k — (et + Gm-1-k)E" } - (5.38)
k=0

5.3 Convergence of the HAM solution

To find the suitable values of iy and A, so that the Egs. (5.31) and (5.32) converge, the so
called fi—curves are displayed in Fig. 5.1. This Fig. shows that the proper ranges here are
—1.6 < hiy < ~0.5 and —1.5 < kg £ ~0.3. In Figs. 5.2 and 5.3 the fi-curves for error analysis
are sketched. It is seen that hy = hiy = —0.85 give better approximation when compared with
the others.
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Fig. 5.2 : h curve for residual error in f(r) at the 15" order of approximation.
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Table 5.1: Convergence of the HAM solutions for different order of approximations when
ﬁ1=u.2=ﬁiﬂ.ﬂdﬂ=ﬂ-5

Order of approximation -f"(0) -g"(0)

1 1.01666 0.43166
2 1.03522 0.43385
5 1.03448 0.43779
10 1.03474 0.43747
15 1.03473 0.43743
20 1.03473 0.43742
25 1.03473 0.43742
30 1.03473 0.43742
40 1.03473 0.43742
50 1.03473 0.43742
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5.4 Results and discussion

In this section we have plotted the graphs for different values of f; on f' and g’ for two-
dimensional, three-dimensional and axisymmetric flow situations whereas the graphs for 3, in
such situations are not presented here because it is already mentioned in chapter 1. Fig. 54
presents the effects of Deborah number f, on f'. It is noted that velocity profile increases with
an increase in f§,. Since B, is proportional to retardation time Ag. Physically an increase in
retardation time of any material enhances the flow. It is also observed that the effects of (g
on f' are quite opposite to the effects of 5, on [’ (as shown in chapter 1). The effects of
on f' and g for the case of three-dimensional flow situations are portrayed in Figs. 5.5 and
5.6. The obtained results are qualitatively similar to the case of two-dimensional flow. Fig. 5.7
elucidates the effects of 8, on f' for an axisymmetric flow. It is observed that the obtained results
in this case are similar to those obtained for the two- and three-dimensional flow situations, It
is because of the fact that axisymmetry will only makes the flow symmetric about axes and
will not disturb the flow behavior. Table 5.2 presents a comparative study of present results
with those given in [81]. It is observed that obtained results are in a good agreement with the
published results [81].
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Fig. 5.4 : Influence of 3, on f' for 2D flow.
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Table 5.2: Comparison of values of —f”(0) and —g"(0) for UCM fiuid case (8, = 0) with
those of Hayat and Awais [81] when 8, = 0.2 and ¢ = 0.5.

Order of approximation Present results Hayat and Awais [81]
—f(0) -¢"(0) -7"(0) ~¢"(0)

1 1.153750 0.490625 1.153750 0.490625
3 1.181869 0.502042 1.181869 0.502042
10 1.182117 0.501999 1.182117 0.501999
15 1.182123 0.501996 1.182123 0.501996
20 1.182124 0.501996 1.182124 0.501996
30 1.182124 0.501996 1.182124 0.501996
a0 1.182124 0.501996 1.182124 0.501996

5.5 Final remarks

The three-dimensional flow of an Oldroyd-B fluid over a stretching sheet is examined. Limiting
results for the two dimensional and axisymmetric flows can be deduced for the cases of upper
convected Maxwell (UCM) and viscous fluids,
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e Deborah number 8, enhances the flow.
o The effects of 3; on f’ are quite opposite to those of 3,.
e Residual errors have been plotted to show the validity.

e Results for the flow of Maxwell fluid can be reduced by setting 4, = 0.
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Chapter 6

Three-dimensional flow of Jeffery

fluid over a linearly stretching sheet

This chapter models the three-dimensional fiow of Jeffery Auid over a linearly stretching surface.
Transformation method has been utilized for the reduction of partial differential equations into
the coupled nenlinear system of ordinary differential equations. The solutions of the nonlinear
system is presented by homotopy analysis method. The reported graphical results are analyzed
and a comparative study is made to validate the present results.

6.1 Mathematical formulation

Here we studied an incompressible flow of a Jeffery fluid over a flat surface located at z = ().
The fluid fills the space z > () and the motion of the fluid is caused by stretching of a surface.
The continuity and momentum equations subject to boundary layer approximations give

du Ov Buw

E-I-E-P'ﬁ;:ﬂ, (6.1)
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ﬂ ﬂ v 4 (ﬁ'&""?ﬂ'{'%%) . (62)
(Ol L W Mkl
31" ﬁ‘ 1+J‘i +uﬁ;;+u$‘,+w%}

&u
Yoz T
&u
Yoz

and the associated boundary conditions are

4 = uy(z)=az, v=u(y)=by, w=0 at =0,

# — 0, v—=0 asz— o0 (6.4)

where u, v and w are the velocities in the z, y and z directions respectively, ¥ denote the
kinematic viscosity, A; the ratio of relaxation and retardation times, A2 the retardation time
and the constants a > 0 and b > 0.

If prime denotes the differentiation with respect to 7 then setting

g ﬁ u=azf'(n), v=ayd(n), w=—vaw {f(n)-+9(m)} (65)
Eq. (6.1) is satisfied automatically and Eqs. (6.2) - (6.4) yield

1"+ 042 [(F+af = (1] + 8 [ - G+ 9" -] = 0. (66)
¢+ W0 [ +0)e" = (@)] + 8 [0 - P+ 0" ~ £ = 0, (67)

=

f{q}+f{ﬂ}=ﬂi J"(!L":L .9’{‘-‘?}=¢ at =0,
f() =0, g(n)=0 as n— oo, (6.8)

where the Deborah number 5, and the ratio parameter ¢ are
By = Ma, c=b/a. (6.9)

It is worthmentioning to note that the resulting problems for three-dimensional flow of viscous
fluid can be deduced when 8, =0 = A, [41]. These problems corresponds to two-dimensional
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flow of Jeffery fluid when g = 0 = ¢. For ¢ = 1.0, we recover the axisymmetric flow (ie. f=g)
of a Jeffery fluid. Two-dimensional flow in viscous fluid is obtained whene=0=g=08;=A.

6.2 Solution methodology

6.2.1 Zeroth-order deformation problems

In order to proceed for the series solution, let us consider the base functions of the form

{n*exp(~nn) | k 2 0,n > 0} (6-10)

where the velocity distributions f(n) and g(n) are expressed as

fn) = afo+ Y Y am " exp(—nn), (6.11)
n=1 k=1

glm) = Afo+> D An " exp(—nn), (6.12)
n=1 k=l

in which -:1{‘,,1,, and A:m are coefficients. The initial guesses fo(n), go(n) and the linear operator
L for the considered problem are selected as follows:

fo(n) =1 = exp(-—n), (6.13)
go(n) = e(1 — exp(—n)), (6.14)
Lf)=5"-f, (6.15)
with
L[Cy + Cyexp(n) + C3 exp(-n)] = 0, (6.16)

where C) — Cjy are the constants,



The zeroth order deformation problems are

(1 =p)L [f(n,p) = foln)] = phyN¢[Fn,p), 3(n,p)], (6.17)
(1 —p)L@n.p) - go(n)] = phgNGIf(n,p), 3(n.p)], (6.18)

F(0,p) + §(0,p) =0, F(0,p) =1, 7(0,p) =¢,
F(o0,p) =0, §(c0,p) =0. (6.19)

In Egs. (6.17) and (6.18), the nonlinear operators Ny and A are defined as

Nilf(n.p).a(n,p)] = g +(1+M) [{j’m, p)+d(n, p}}% = (%)‘]

p Frn,p) " (n,0) — & (n, ) J" (n,p) ‘ . (6.20)
—{F(n,p) + 3(n.2)} " (n,p)
= 2
Nlfop o) = S3+a+x) [{f{m p+ a0 es - () ]
15, | ¥ P8~ P00 (0.0) ] | dail
—{f(n,p) + §(n.p)}3" (. p)

In Eqs. (6.17) and (6.18), the /iy and h, are the auxiliary non-zero parameters whereas p € [0, 1]
is an embedding parameter. It is noted that when p =10 and p=1 then

fm0) = folm), Fn,1)=f(n), (6.22)
an.0) = goln), f(m,1) = gln). (6.23)

]

The initial guesses fo(n) and go(n) approach to final solutions f(n) and g(n) respectively when
p varies from 0 to 1 and through Taylor's series expansion we write

f{’?ip} = fD{ﬂ} + Z fm{ﬂ}Pml {5'24}
m=1

a(n,p) = go(n) + Y gm(m)p™, (6.25)
m=]
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Jm(n) = nt[ ﬂmg;i:‘ 8 o 1

gm(n) = l—ﬂﬂ-i

(6.26)

(6.27)

The convergence of series (6.24) and (6.25) strongly depends upon the auxiliary parameters fi
and Hy. The values of iy and Ky are chosen in such a way that the series (6.24) and (6.25)

converge when p = 1. Thus Eqs. (6.24) and (6.25) are reduced as follows
Fm) = fotn) + Y fm(),
m=1
a(n) = go(m) + Y, gm(n).
m=1

6.2.2 mith order deformation problems

The mth order problems are given by

L [fm(n:P) = XmSra—1(n)) hifR g (),

ner.m{ﬂ}u

Ll

L [gm(1,P) — XemGm—1(n))

fm(n) +§m{ﬂ] e Fm{m m{m} .U;n[ﬂ'} gﬁn[m} =0,

{ bm<1
Xm= 3
1lm>1
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(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)



m=1

Rim@) = S+ +M) Y {(Fmo1-k+ 9m-1-6)Jk = Fnrfic}
k=0

m=1
+f3, 2 {Fm-1-eft = s —afE = Jmr-n+ Gm-1-kME }o  (6.34)
k=0
m—1

Rom(®) = Gy +(14A) Y {(fo-tk + Im-1-k)0k = G145k}
=0

m=1

+82 Y {F-rrdh = Fino1-ndh = -1k + gm-1-1)o"} . (6.35)
k=0

6.3 Convergence procedure

In order to find the convergent solutions for the velocity components f and g we have plotted
the fiy and lig—curves at the 15" order of appraximation (see Fig. 6.1). These curves give the
admissible ranges of the auxiliary parameters fiy and fi,. It is noted that the admissible values
are —1.5 < (Af, hy) < —0.4. In order to validate the obtained results we have plotted the
h~curves for the residual errors in f and g (see Figs. 6.2 and 6.3). It is noticed the obtained
solutions are convergent upto 6 decimal place (see Table 6.1).

Be=02=A1,c=05
04| o,
s
> | — o) #
s | don
L. -1 .
12 [

-15 -1 -05 0

i, g

Fig. 6.1 : K curves of f"(0) and g"(0) at the 15" order of approximation.
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Fig. 6.2 : h curve for residual error in f(n) at the 15" order of approximation,
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Fig. 6.3 : K curve for residual error in g(n) at the 15% order of approximation.



Table 6.1: Convergence of the series solutions for different order of appraximations when
=02=X and c=0.5

order of approximation e )] -g"(0)

1 1.058333 (.495833
2 1.084270 (.495468
] 1.101755 0.497607
10 1.102571 0.498116
15 1.102582 0.498118
20 1.102582 0.498118
25 1.102582 0.498118
30 1.102582 0.498118
40 1.102582 0.498118
50 1.102582 0.498118

6.4 Results and discussion

Here Figs. 6.4 — 6.11 have been prepared to predict the effects of physical parameters such as
Deborah number 8, and ratio of relaxation and retardation times A; on f'and ¢ for axisymmet-
ric, two-and three-dimensional flows respectively. The variation of 5, on f' for two-dimensional
flow is shown in the Fig. 6.4. This Fig. illustrates that f' and associated boundary layer
are increasing functions of ;. Since 8, is dependent on Ag (retardation time) and the fluid
velocity increases with an increase in retardation time. This fact is quite obvious from Fig.
6.4. On the other hand it is noted from Fig. 6.5 that the velocity field f’ and boundary layer
thickness decrease with an increase in A; for two-dimensional flow. It is because of the fact
that A, being the viscoelastic parameter exhibit both viscous and elastic characteristics. Thus
the fluid will always retard whenever viscosity or elasticity will increase. Figs. 6.6 — 6.9 show
the effects of 8, and Ay on f' and ¢’ for the case of three-dimensional flow. It is observed that
the results obtained in three-dimensional case are quite similar to the two-dimensional case.
Since the surface is stretched uniformly in the z— and y—directions so the behaviors of 5,
and A\; on ¢ (second component of velocity) are also qualitatively similar to that of f' (first
component of velocity). Figs. 6.10 and 6.11 give the effects of 8, and Ay on f' for the case of
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axisymmetric flow. The obtained results are qualitatively similar to those obtained for two- and
three-dimensional flows. Table 6.2 is made in order to compare the present results obtained by
HAM with HPM and exact solution given by Ariel [41]. It is found that present solution has a
good agreement with an exact solution in the limiting situations

f'm)
1‘
08¢
Cc=00A1=02
06 \&  $2=00030610
04|
az L
i 2 3 4 5 6"
Fig. 6.4 : Influence of #, on [ for 2D flow.
f)
1
08
C=0Q B2=02
06 A1=000306 1.0
04
02
n

1 2 3 4 5 6
Fig. 6.5 : Influence of Ay on f' for 2D flow.
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Fig. 6.6 : Influence of §3 on f’ for 3D flow.
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Fig. 6.7 : Influence of A, on ¢’ for 3D flow.
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Fig. 6.9 : Influence of A; on g for 3D flow.
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Fig. 6.10 : Influence of 85 on f' for axisymmetric flow,
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Fig. 6.11 : Influence of Ay on f' for axisymmetric fow.



Table 6.2: Illustrating the variation of — f*(0) and —g"(0) with ¢ when ffp = 0 = Ay, using
HAM, HPM (Ariel [41]) and exact solution (Ariel [41]).

c —£"(0) -¢(0)
HAM HPM [41]  Exact [41] HAM HPM [41]  Exact [41]

0.0 1 1 1 0 0 0

0.2  1.030495  1.034587  1.039495  0.148736  0.158231  0.148736
0.4 1075788  1.070529 1075788  0.349208  0.360599  0.349208
06 1100046 1106797  1.109946  0.590528  0.600833  0.590528
0.8 1142488 1142879 1142488  0.866682  0.874551  0.860682
1.0 1173720 1178511  1.173720  LI73720 1178511  L1T3720

6.5 Conclusions

The three-dimensional flow of a Jeffery fluid over a stretching surface is analyzed. The final

outcomes are mentioned below.

o It is noted that the velocity field increases by increasing 5;.

o Effects of 3, and ), are quite opposite on velocity components.

» Results obtained are qualitatively similar for axisymmetric, two- and three-dimensional

flows.

o Obtained solutions are convergent upto 6th decimal place.

e Two-dimensional case (g = 0) can be deduced by setting ¢ = 0.

o 8, =0=) gives the results of viscous fluid.



Chapter 7

Three-dimensional channel flow of a
Jeffery fluid with stretched wall

Three-dimensional channel flow of an incompressible Jeffery fluid is investigated in this chapter.
The flow is induced due to a stretching property of lower wall. Mathematical modelling is
performed and the resulting problems are computed by homotopy analysis method, Graphical
results for various pertinent parameters are plotted and analyzed. Tables are constructed to
show the convergence of the obtained solutions and to validate the present solutions through
comparison with the published limiting results.

7.1 Mathematical formulation

Consider the three-dimensional channel flow of an incompressible Jeffery fluid. The fuid is
bounded by two parallel plates distant H apart. The lower plate at z = 0 whereas the upper
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plate subjecting uniform injection in the channel is at z = H (see Fig. 7.1).

Fig. 7.1 : Geometry of the problem.

The motion in the fluid is generated due to the bidirectional stretching of plate in the z— and

y— directions. The laws of conservation of mass and momentum for the present flow problem

give
du v Odw
H—I+§+-§;—ﬂ, (7.1)
s, 0x 0 1%, v [fu Ou Ou
dr Oy dz  pdzr  1+X |82 8P 02°

[ (ue+ofy + o) (Bt + Bt + )
v +ofedy +ofe o 250 )
1+ M +(ﬁﬁ;+$%+%§;%(%—g§)

(R RARE) BB
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dv v 18p v [8% v B’u]
u—+v
Oz a

*UE = oy TTam (05 ot o _
(o o o) (B3 63+ )
e | +(REEE+EE) (B+8)

i
By

TN g epgenggs |
 +(REREEE)(B+S) |
dw  Gw Hw _ 1dp v [0fw #w Pw
Ha-i'ﬂ*é;-‘rwﬁ; = _;E_!_l‘-l-_)q F'F-ﬁﬁ*-ﬁ"&?]
(ue+vd+ud) (55 + 5+ 25) |
o | +(ER AR @R | .,
Bhl (g + 55+ 52) (R %)
pofedie yode e 4 0%e Ty
and the boundary conditions are
u = az, v=by, w=0 at z=0,
u = 0, v=0, w = -V, as z=H, (7.5)

in which u,v and w denote the velocities in the z, y and 2 directions, respectively, a > 0 and
b > 0 are the constants and Vj is the constant injection velocity at the upper plate. Introducing

e §= u=azf'(n), v=ayg(n), w=—aH (f(n) +9(n)) (7.6)
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continuity equation (7.1) is satisfied automatically and by eliminating pressure after cross dif-

ferentiation Eqs. (7.2) — (7.5) become

S =Re(L+ M) [(f/ =) " = (f +9) F"]

+ 8 [ ) 1" - (2 + 1) 1" = (F +9) "] =0, (7.7)
g" =Re(1+ M) [(¢ = F) &" = (f +9) 4"]

+8;[(20" - ) g" - 2f + ) d" = (F+9)d™] =0, (7.8)

.f!:l! 9’=ﬂ, f+g=0 at 7=0,
f=0, 4¢=0, f+9=¢& at n=1, (7-9)

where prime denotes differentiation with respect to 7. Moreover the Deborah number 5, the
Reynolds number Re, the dimensionless injection parameter £ and the stretching ratio ¢ are

defined as
B %
v ! - oH’

Note that for 8, = 0 = A; one can obtain the results for viscous flow i.e.

b
fy = Aaa, = e=-. (7.10)

" —Re[(f'~d) f' = (f+9) f"] =0, (7.12)
9" ~Re[(d - f)d" - (S +9)9"] =0, (7.12)

with the similar boundary conditions (7.9). When ¢ = 0.0 the system reduces to two-dimensional
case (g = 0) which is given below

£ = Re(1+ M) [f'7" = ££") + B 28" " = £'7™ = "] =0 (7.13)

and for ¢ = 1.0, we have axisymmetric flow i.e. (f = g). In such situation, Eqs. (7.7) and (7.8)
are reduced to

f™ —Re(l + Ny) [2F f"] + By [£" 1" = 3f' 7" = 2£F™] =0, (7.14)
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7.2 Series solutions

7.2.1 Zeroth-order deformation problems

Let the initial approximations for f and g are

w = n+(§-2)+a-o7 (7.15)
wi) = o+ (F-2) P +e- 0 (7.16)
and the corresponding linear operator is
L= g‘-. (7.17)
with the following property
L [C + Can+ Car® +Car’] =0, (7.18)
in which Gy — Cy are the constants. The zeroth order problems are
A =p)L [Fmp) - folm)] = phyNylF(n.p),3(n.P)): (7.19)
(1 "P]'E [g(nlp] = yﬂ'(ﬂ)] - Pﬁ%g{ﬂrp]igtnf Fﬂ: {T*EUJ
F0,p)=0, 7(0,p)=0, Jf0.p)+ 3(0,p)=0,
P(lrp} =0, #(1,p)=0 f{lsP} + g(l,p) =0 (7.21)

and the nonlinear operators Ny and N are

NyFmo)amm) = F"=Re(+ M) [(F-9)F'= (7 +9) i

w8y [P+ - g + )" - (F+a) /"], (72D
Nyl ame)] = " —Re(l+X) (@ -7)7" - (T+9)7"]

+6, (28" + ") 8" - @F +9) 7" - (F+a)g™],  (12)
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where iy and fig are the auxiliary non-zero parameters and p € [0,1] is an embedding parameter.
When p=0 and p=1 then

fn,0) = folm), Fn,1)=f(n) (7.24)
in,0) = go(n), f(n,1)=g(n)- (7.25)

When p varies from 0 to 1 then fo(n) tends to f(n) and gg(n) tends g(n) respectively. Moreover
the Taylor's series expansion gives

Fn.p) = folm) + 3, fmlmp™, (7.26)
masl
g(n,p) = go(m) + 3, gm(m)P™: (7.27)
mm]l
_ 18 f(np)
fmln) = i~ I (7.28)
_ 1 8™g(n,p)
9m(0) = i g L=n' (7.29)

It is noted that the convergence of Eqs. (7.26) and (7.27) depends strongly upon the auxiliary
parameters iy and hiy. The values of fiy and hy are selected in such a way that the Eqgs. (7.26)
and (7.27) converge when p = 1. Thus we write

) = folm) + 3 FmlM): (7.30)
me=1

g(n) = go(m) + Y, gm(n)- (7.31)
ms=1

7.2.2 mth order deformation problems

The mth order deformation problems can be written as

EIIM(“IP]-mem—-I{ﬂH . ﬁ‘fﬂf.m(‘ﬂ’ (7.32)
L gm0, P) = XenIm-1(0)] = AgRgm(n), (7.33)
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Im(0) = gn(0) = fim(0) + gm(0) =0,
fa(l) = gu(l) = fm(1) + 9m(1) =0, (7.34)
x,..={ e (7.35)
IL,m>1

m=1

Rym(m) = Sy —Re(l+ M) Y {(ferk = In-1-#)fk = Um-1-k+ gn-1-k) Sk}
k=0

k=0 ~(finmt=k + Gm-1-k)fE"

S { (@11 = s = s+ Fincr ) S } . (736)

m-1
Romln) = ¢y —Re(l+21) D {(Fhn-1-k = fn-1-#)9k = (fm-1-ie + Gm—1-k)0K' }
o)

s { (28 = Fores Y = s Tr )5 } _—
—(fm-1-k + gm-1-k)G0

=0

Employing symbolic software MATHEMATICA, the corresponding system can be solved one
after the other in the order m =1, 2, 3, ...

7.3 Convergence of the solutions

It is noted that the convergence of solutions (7.30) and (7.31) depends upon fiy and ;. In
order to find the meaningful values of fiy and Mg, the so called i— curves are displayed for 15th
order of approximation in the Figs. 7.2 and 7.3. These Figs. show that the admissible values
are —0.7 < (s, hig) < —0.2. Table 7.1 shows that 25th order approximations are sufficient
in the present problem for a convergent solution. Table 7.2 presents a comparative study of
present results with those obtained in Ref. [52). It is observed that obtained results are in a
nice agreement with the already published results.
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Fig. 7.2 : h curve of f7(0) at the 15 order of approximation.
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Fig. 7.3 : h curve of ¢"(0) at the 15** order of approximation.
Table 7.1: Convergence of the HAM solutions for different order of approximations when
Re=50,8,=05 M =01,¢c=05 and £ = 0.5.
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order of approximation -f"(0) —g"(0)

1 3.346830 1.300491
5 3.544026 1.410712
10 3.597077 1.442177
15 3.601718 1.446013
20 3.601715 1.446499
25 3.601711 1.446511
30 3.601711 1.446512
40 3.601711 1.446512
al 3.601711 1.446512

7.4 Results and discussion

Impact of different emerging parameters including ratio ¢, Deborah number 3, and ratio para-
meter A; on the velocity components f' and ¢ are explored in this section. Three-dimensional
plots of velocity components are also presented. We have plotted Figs. 7.4 — 7.14. Figs. 74
and 7.5 portray the influence of ratio parameter ¢ on the dimensionless velocity components
#' and ¢. It is shown that velocity components increase near the stretching wall by increasing
ratio parameter c. However the velocity components decrease near the porous wall. In principle,
this is due to the fact that the flow over stretched surfaces can be controlled by an increase
or decrease in the stretching velocity of the boundaries. Figs. 7.6 and 7.7 plot the influence
of Deborah number 8, on the velocity components f' and ¢'. These Figs. elucidate that ve-
locity components show increasing behavior near the stretching wall but obviously to satisfy
mass conservation constraint an increase in fluld velocity in the vicinity of stretching sheet is
compensated by a decrease in fluid velocity in the upper half of channel. Influence of Ay on the
velocity components f' and ¢ are plotted in the Figs. 7.8 and 7.9. It is noticed from these Figs.
that A, retards the flow near the stretching surface whereas the velocity components increase
near the porous wall. This is because of the fact that A; being the viscoelastic parameter ex-
hibits both viscous and elastic characteristics. Thus the fluid always retard whenever viscosity
or elasticity increases. It is also noted that injection has dominant behavior near the porous
wall. Thus the velocity components finally increases near the porous wall due to injection. Figs.
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7.10 and 7.11 present the effects of injection parameter § on the velocity components f" and
¢, It is observed that both components of velocity increase rapidly with an increase in £. The
three-dimensional plot of velocity components u, v and w are shown in the Figs. 7.12-7.14. 1t
is found that velocity components u and v are increasing near the stretching wall but there is a
decrease towards the porous wall. This is quite obvious from the no slip condition that induced
motion is maximum near the stretched boundaries and vanishes far away from the stretched
surface (as shown in Figs. 7.12 and 7.13). Fig. 7.14 shows the three-dimensional plot of velocity
component w with 1 and H. It is noticed that with an increase in channel width H the velocity

decreases,

)
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Fig. 7.4 : Influence of c on f'.
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Fig. 7.8 : Influence of A; on f'.
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Fig. 7.10 : Influence of £ on f'.
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Fig. 7.12: 3D plot of u with = and 5.
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3D plot of v with y and 7.

Fig. 7.13

Fig. 7.14 : 3D plot of w with n and H.
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Table 7.2: Comparison of values of —f”(0) and —g"(0) for viscous fluid (8, = 0= ;) [52]
when Re = 5.0, c=0.5 and £ = 0.5.

Order of approximation Present results Ahmer and Asif [52]
—f"0)  ~4"(0) -1"(0) —4"(0)

5 2.987025 0.5037159 2.98703 0.503716

10 2.990508 0.5037637 299051 0.503764

15 2.990524 0.5037629 2.99052 0.503763

20 2.9905256 0.5037629 2.99053 0.503763

25 2.990525 0.5037629 2.99053 0.503763

7.5 Conclusions

Three-dimensional channel flow of Jeffery fluid between two walls is analyzed. The presented
solutions lead to the following main points.

o Effects of 85 and Ay are quite opposite.

¢ Velocity decreases with an increase in channel width

e Injection enhances the velocity.

¢ Increase in channel width cause a reduction in the velocity.

e A, =0= A gives the results of viscous fluid.
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Chapter 8

Magnetohydrodynamic
three-dimensional rotating flow of

Jeffery fluid between two porous

walls

Three-dimensional shrinking flow of Jeffery fluid in a rotating system is modeled here. The
fluid is electrically conducting in the presence of a uniform applied magnetic field and the
induced magnetic field is neglected. The similarity transformations reduce the non-linear partial
differential equations into the ordinary differential equations. Series solutions are derived.
Convergence of the obtained solutions is checked. Graphs are plotted and discussed for various
parameters of interest.

8.1 Mathematical formulation

Consider the magnetohydrodynamic (MHD) steady flow of a Jeffery fluid between two porous
plates distant 2H apart. The lower and upper plates correspond to suction and blowing respec-
tively. The fluid is rotating under the action of Coriolis and centrifugal forces with constant
angular velocity £2 about the y-axis (see Fig. 8.1).
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¥y=H

y=-H

The laws of conservation of mass and momentum for the present flow situation are given by

du v Ow

L I AT o 8.

3z+6y+az u'r { r}
du  Bu 18, v [(Pu é’j)_aBﬁu
Uty A = T T (ﬂr**ayﬂ p

ey 1 quly + vl + 251
vz
+

T | el vl vl + 5 |0 G2
+ﬂ$+%%+%%+uﬂu&:

v Gv _ 18p" v (v v
"oz TVay T “pa*m(@*?ﬁ)
T
viAa

| Rl bl |0
+2%ﬂ; +2u;§?§g +2%$ +2u%§
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dw  dw v (0w  Pw aﬂw
“5”5_%!“'_”&1(&:5"'0;#)_ p

+ﬂ( iy +uly + R + ol ) (8.4)
1+ M +g&+uﬂ,+ﬂ$+u%’f

with the appropriate boundary conditions

u = —az, v=-¥, w=0 aty=-—H,

u = 0, v="Vp, w=10, at y=H, (8.5)

where u, v and w are the velocity components along z—,y— and z— directions, v is the kine-
matic viscosity, p* the modified pressure which includes the centrifugal force effects, a > 0 the
dimensional constant, A; the ratio of relaxation to retardation time, Az the retardation time,
p the density, o the electrical conduetivity, Bp the constant magnetic field and Vj the uniform
suction/injection velocity.
The Eqs. (8.1) = (8.4) can be written in a simpler form by defining the following transfor-
mations
n=%  u=-af(s), v=chfln), w=azg(n) (8.6)

Now continuity equation (8.1) is clearly satisfied and Eqs. (8.2) — (8.3) after eliminating the

pressure yield

" = (1+X) [M2f" — 2K = Re (f'f" = £1")] + Ba (SS™ + £/ 1™ - 2" ") =@7)
g'=(1+ M) [M*g +2K*f' ~Re (f'g— f¢)] +B: (fg" = 'd) =0, (8.8)

.f = él f’:um _ﬂ=u1. at n=1, {Eﬂ]

in which prime shows the differentiation with respect to n. The suction/ blowing parameter £,
the Reynolds number Re, the Hartman number M, the rotation parameter K and the Deborah
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number §; are defined as follows

2
E=MJ =2 , M2 = ﬁ— Ka"'—— fy = Aga.

aH’
8.2 Solution by homotopy analysis method
Let the initial approximations for f and g and auxiliary linear operators are

yﬂ{'ﬂ [ 1 qz'l

with the following auxiliary linear operator

dt
E‘r = _I;’

d*q
£,=F.

The above operators satisfy

LrlCin® + Can® + Can+ Cy) = 0,
Ly[Csn+ Cg) = 0,

where C; (i = 1 — 6) are the constants.
We construct the zeroth order problems as follows:

(1=p) Ly [f(mp) = fo(m)] = phigNy [f(m:p), 8(mp)] ,
(1 —2) L5 [3(mp) — g0 (n)] = phgN; [2(msp), flmp)].

F(-p) = & F(-Lip=1 Ffip=¢ F(up=

g(-Lp) = 0, F(Lp) =0,
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(8.11)
(8.12)

(8.13)

(8.14)

(8.15)
(8.16)

(8.17)
(8.18)

(8.19)



: ; af (m
N}[f[n:p}*ﬁlﬂ;lﬂ}]=i‘-’;§—;ﬂwﬂ’{1+,\l}%w+mz“+m fé':pl

+Re(1+ ) (&fg;;p] 32.2;:?) g Yo %—p_])
N [0 (p) .S ()] = az—ga,,@z;ﬂ — M* (14 M) (mp) — 2K (1+ X) E%?}iﬁl
+Re(1+A) (‘?f—g,f—*":'y{mm = F(mp) @%@)

+ By (}r{mp} 33%2‘;;?) + aﬁgﬁp} 83.’;:::;;?}) . (8.21)

where fiy and Ay are the auxiliary non-zero parameters and p € [0, 1] is an embedding parameter.
For p=0and p=1 we have

fn,0) = foln), Fln,1)=f(n), (8.22)
3(n.0) = goln), 3(n,1) = g(n). (8.23)

Note that when p varies from 0 to 1 then the initial guesses fo(n) and go(n) approach f(n)
and g(n) respectively and by Taylor's series expansion we have

Fmp) = folm) + Y fm(m)e™, (8.24)
me=]

g(mp) = go(n) + Y gm(mp™, (8.25)

]

fui) = g (820

1 9"5(n.p)

g(n,p)
e L_n, (8.27)

gm(n) =

where the convergence of series (8.24) and (8.25) strongly depends upon the auxiliary parameters
iy and hy. These parameters are selected through such a procedure that the series (8.24) and
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(8.25) converge for p = 1. Therefore we have

Fm) = folm) + Y, Sn(m), (8.28)
m=]

a(n) = go(n) + Y _ gm(n). (8.29)
m=]

8.2.1 mth order deformation problems

Here the problems are of the following types

Ly [fen(n) = XmSm-1(0)] = B Rym(®), (8.30)

Ly [9m (1) = Xmm-1(n)] = BgRgm(n), (8.31)

fm(=1) = fra(=1) = fin(1) = fra(1) =0,

gm(—1) = gm (1) =0, (8.32)
Om=<1

Xm= { / (8.33)
Im>1

m=1

Rim(n) = foly = Moy + 2K+ R Y [fcrcidd = fmea kSt
o

m—1

+8 Z [fns-aff™ + frnern i = 2H iy -4TE] » (8.34)
k=0
m=1
Rom(n) = s = Mgmy =2K*fp 1 + R [gm-r—ft = G4 i)
=0
m=—1
+4 E [fm—l—kﬂf = y’.,,_l_*f;f] ' (8.35)
=0
0, mgl,
Xm = (8.36)
1, m>1l
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We notice that the above systems can be solved by means of the symbolic computation software
MATHEMATICA.

8.3 Convergence of the homotopy solutions

The auxiliary parameters fiy and M, in the series solutions (8.28) and (8.29) are important in
controlling the convergence. For the allowed values of k; and Ky, the /iy and li,—curves are
plotted at the center of the channel for 15th-order of approximations in Fig. 2. Here the range
for the admissible values of iy and My is —1.0 < (fig, fig) < =0.2. In Figs. 3 and 4 we have
plotted the fiy and fig—curves for residual errors of f and g in order to get the admissible range
for My and h;. We have analyzed that by choosing the values of fiy and hiy from this range we will
get the correct result up to 6th decimal place. Our computations also indicate that the series
given by Egs. (8.28) and (8.29) converge in the whole region of 5 when hiy = —0.6 = fig. Table
8.1 is prepared to show the convergence of series solutions. It is found that the convergence is
achieved at 20th- order of approximations

E=05=K p=021=01M=10=Re

$3
&3

12 -1 08 06 -04 02 0 Q2

e, %g

Fig. 8.2 : ki curve of f7(0) at the 15 order of approximation.
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£=05=K =02 :+=01 M=10=Re

-08 07 -06 -05 -04
fiy

Fig. 8.3 : i curve for residual error in f(n) at the 15" order of approximation.

=05=K p,=021=01, M=10=R
p '3 K B=021=01, /E

2x10°° j
0

-2x10°°

~4x 10°

08 -07 -06 -05 -04 -03

hg

Fig. 8.4 : h curve for residual error in g(n) at the 15 order of approximation.
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Table 8.1: Convergence of the HAM solutions for different order of approximations when
Re=50, 83=05,A =01,e=0.5and £ =0.5.

Order of approximations  —f"(0) 7(0)

1 0.4791666  0.0041666
5 04625018  0.0313111
10 04623650  0.0376506
20 0.4623255  0.0378602
40 0.4623255  0.0378602

8.4 Results and discussion

In this section we have prepared Figs. (8.5 — 8.10) in order to assess the effects of suc-
tion/injection parameter £, magnetic parameter M and rotation parameter K on the dimen-
sionless velocity components f' and g. The effects of £ on f' and g are shown in the Figs. 8.5
and 8.6. These Figs. depict that the magnitudes of f' and g increase with an increase in £. It is
because of the fact that for the shrinking sheet the vorticity of the sheet is not confined within
a boundary layer and the flow is unlikely to exist unless adequate suction is imposed on the
sheet. Thus suction occurs when the fluid condenses on the surface. Therefore we can say that
physically the suction plays very important role to flow the fluid smoothly in case of shrinking
sheet. Figs. 8.7 and 8.8 show the effects of M on f’ and g. It is observed from these Figs. that
the magnitude of velocity components f' and g decreases with an increase in M. Physically
when any fluid is subjected to a magnetic field then its apparent viscosity increases to the point
of becoming a viscoelastic solid. Importantly, the yield stress of the fluid can be controlled very
accurately by varying the magnetic field intensity, The outcome of which is that the fuid’s
ability to transmit force can be controlled with the help of an electromagnet, which gives rise to
its many possible control-based applications including MHD power generation, electromagnetic
casting of metals, MHD ion propulsion etc. The effects of rotation parameter K on f* and g
are shown in the Figs. 8.9 and 8.10. These Figs. elucidate that velocity components [ and g
show oscillating behavior with an increase in rotation parameter K. This physically predicts
that oscillatory motion can also be engendered by increasing rotation.
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ars
flp Q5
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Fig. 8.5 : Influence of £ on f'.
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Fig. 8.6 : Influence of £ on g.
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£=05=K p,=02\y=01 Re=10

-1 -5 0 Qa5 1
n

Fig. 8.7 : Influence of M on f'.

§=08 =02 1y=01,Re=15K=10

Fig. 8.8 : Influence of M on g.
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Fig. 8.9 : Influence of K on f'.
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Fig. 8.10 : Influence of K on g.

8.5 Concluding remarks

Here analytic technique is employed to compute the rotating flow of a Jeffery fluid between the
two porous plates. Mathematical calculations give rise to 2 non-linear differential system whose
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series solution is computed by homotopy analysis method. Graphs are plotted to analyze the
effects of various physical parameters. Main points are presented below.

e The magnitude of velocity components increases with an increase in suction/injection
parameter £.

o It is observed that the applied magnetic field M retards the flow near the shrinking sheet.

e Oscillatory effects can be obtained by increasing rotation parameter K.

o The case of viscous fluid can be deduced by taking #; = 0.
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Chapter 9

MHD axisymmetric flow of Jeffrey
fluid over a rotating disk

This chapter examines the MHD boundary layer flow of Jeffrey fluid due to a rotating disk.
Governing partial differential equations are first transformed into the coupled system of ordinary
differential equations and then solved by using the homotopy analysis Method (HAM). Influence
of various involved physical parameters on the dimensionless radial and azimuthal velocities is
sketched and analyzed. Variation of skin friction coefficients in radial and azimuthal directions
is examined for various values of pertinent parameters.

9.1 Mathematical analysis

We consider steady and axisymmetric boundary layer flow of an electrically conducting Jeffrey
fluid bounded by a non-conducting infinite disk at 2 = 0 rotating with constant angular velocity
{2 about the z—axis. A uniform magnetic field of strength B, is applied perpendicular (parallel
to z—axis) to the plane of disk. Induced magnetic field is neglected under the assumption of
small magnetic Reynolds number,

The boundary layer equations that govern the flow are

du u Ow
ot T+ =0, (9.1)
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O 8z r 14N 022 | 9z0rdz ' Ordz 0z 022
vAn wg’i_l @ ___Ez'u r:rE2
1+ | 628 7 rozt|

v v wy v [8% du v By fw v

Vg TY T T+n [@"“ ’{Ea‘r&z Yoro 0z 02
vha 3313 1&9&+58*u __J_BEU
1+ Ez-‘ r0z0z 1ozt g

j

(9.2)

f

(9.3)

where u, v and w are the velocity components in the r, 8 and 2 directions respectively, p is the
density and o is the electrical conductivity of fluid. The appropriate boundary conditions are

u(r,0) = 0, v(r,0) =r), w(r,0) at =0,

u(r,z) = 0, v(r,z)=0 as 2z — oo,

Using the following suitable transforms

u(r,z) = rQf'(n), v(r,z) =rg(n),
w(r,z) = —vMWwf(y), n= @z,

Egs. (9.2) and (9.3) become

f"’-—~M{1+1 }r+(1+11} [277" - % + ¢°]

+ By [f’“—.f’f"—E.ff”"—s'”*yy "] =0,
g = 3MA+M)g+ 1+ M) [fd - f']

+B8; [21"d - f'g" - 2f4" + f"g] =0,

with the transformed boundary conditions

9(0) = 1, g(oo) =0,
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where the dimensionless parameters

o B2
M':P—n, ,B-zu_-n—)lz,

(9.9)

respectively denotes the Hartman number and the Deborah number. Moreover prime denotes

derivative with respect to 1.

The skin friction coefficients Cy and Cy in radial and azimuthal directions at the disk are

o Py Trz !
J p(rlzrlg
_ Tia
G = Jant

where r.. and Ty, are defined as

i dudu _Ovdv viv

Tra = m $+h{3ﬁa+2§§;*;a+aa

o = B[00 5 [Oudy Wi Judv
= Tex |0z T Gzar oz rozf|

Eqs. (9.12) and (9.13) in dimensionless form become

1
6 = () sl o+

1/2
c, (%-) o [0 -8r0),

where Re, = 0r* /v is the local rotational Reynolds number.

9.2 Solutions of the problems

Solutions f (n) and g(n) in the form of base functions

{‘?mﬁp{—“ﬂju m 2 Dr n2 n}l
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i

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)
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can be expressed as

fm = Z Zm«ﬂ“ﬁp{—nﬂi ' (9.17)
m=l n=1

gl) = Y3 bman™exp(-nn), (9.18)
m=l n=l

Note that @ngm #nd by m are coefficients to be determined. The appropriate initial guesses
fo(n), go(n) and linear operators Ly, £, can be chosen in the following forms

folm) = 0, (9.19)
go(n) = exp(-n), (9.20)
o) = §5-2L 0.21)
Lolg(n)] = %’} -9, (9.22)
such that
Lg[C1 + Carexp (n) + Caexp (-n)] =0, (9.23)
Ly [Cyexp(n) + Csexp(-n)] = 0. (9.24)
The zeroth order deformation problems are
(1= p)Ls [Flnp) — foln)] = phyNg [f (i) 3 (mp)] (9.25)
(1 =)L, [G(mp) — 9o(m)] = phgAG [ (1), 3 (m:9)] (9.26)
- af(m:p)
.f :I]I == ﬂ, . R - ui ¥ = ﬂ1
(0;p) B oo Fm:p)], s
§(0;p) = 1, gloo;p) = 0. (9.27)
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In above expressions p € [0,1] and i # 0 (i = f, g) are respectively the embedding and auxiliary
parameters and [(1;0) = fo (1), #(7;0) = go (n) and F(m;1) = f(n), §(5;1) = g (n). When p
varies from 0 to 1, then f{n;p) varies from the initial guess fo () to f(n) and §(n;p) varies
from the initial guess gy (1) to g(n) varies from the initial guess. We further led to define the

following nonlinear operators Ny and N}

¥ [T atoip) = 2202 a4 x,) L)

{H)‘l] [ﬁﬁ i }S’I(TP) (&fg;.?]) +(§{mp}]i]

B, [(B“f[mp}) _ Of(mp) & f(n; p) — 27 (m:p }E"f{n p)

an? o o

~f [(%1)2+§[mp]az—i{ﬂ;ﬁﬂ} )

ap

Ny [f(mip), 8(mp)] = ;%% - ';'M (1+ M) G(mp)
+{1+M) [f (m P}—'-LM&T; L E{mp}a——”g*p ]
+8, [22L(np) Ba(mp) _ 8w p) Pa(r; P}]

ot an o oy

—By |2f(mp) a“gag;;; B_ 83‘;5;“ ﬁ}ﬁfu: P}] .

With the help of Taylors theorem, one can get

) = foln)+ Y fon (m)p™,
m=]

9(ma) = go(m)+ Y gm(m)p™,
m=]1
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where

o) = mTan| 0:3)
gm() = ﬁ*—iﬁ_”—"”ﬁ. (0.33)
Writing
fmm) = {foln), fi(n), fa(n), falm)---Sm(m)}, (9.34)
ga(m) = {go(m), ;:(m), 92(n), gs(m)---gm(m)} (9.35)

the deformation problems at the mth order are

Ls m(n) = XmFm-1(n)] = ByRE, (Fn1(0). Gm1(n) (9.36)
Ly [9m(n) = Xmm-1(n)] = AgR3; (9m-1(n)) . (9.37)

fm(0) = 0, f5,(0) =0, f(c0)=0

Xom = { T (9.39)
1,m>1,

m—1
AL 3 2 ) s ()]
n=0

Rb = faa(n)=gMA+X) fa(n) +
m=1
~CE2) S [0 fpnener () = G gm—n-s ()]
n=(
m-1
+8Y " [£7(0) fnenas (1) = Srlm) frmena () = 2fn (1) fornms ()]
n={}

m—1
8 [0t (1) + g0 (D) (W] (0.40)
n=(0
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ri—1
RE, = gaa(n) = 3M(1+0) gmosm) + (14 2) T [falm)n-n-s(0)]
|

m—1

m=1
~(1+2) Y [Fa@)gmenaa(m)] +8 Y RFagnan-1(1) = Fa(0)dmn1 ()]
n=[ rie=l)
m—1
-8 [2fn(mgm—n-1() = (M) gm-n-1(m)] - (9.41)
n=0
The general solutions of problems (9.30) and (9.31) are

f(m) = I (n)+CP+Cq exp(n) + Cy' exp (—0), (9.42)
g(n) = g" () +CTexp(n)+C5 exp(-n), (9.43)

where [* (1), and g* (n) are particular solutions.

9.3 Convergence of the series solutions

The convergence of the series solutions given by Eqs. (9.30) and (9.31) depends upon the
values of auxiliary parameters iy and fy. For this purpose the hi—curves of " (0) and g'(0)
are plotted for 15 order of approximations in order to get the admissible ranges of fi;. Figs. 1
and 2 show that the ranges for these auxiliary parameters are ~1.0 < (#ig, hy) < —0.2. Table 9.1
is constructed in order to ensure the convergence of HAM solutions. Convergence is achieved

up to 20" order of approximations.
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Fig. 9.1 : i curves of f"(0) at the 15** order of approximation.
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Fig. 9.2 : & curves of ¢'(0) at the 15" order of approximation.
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Table 9.1:. The convergence of HAM solutions f”(0) and ¢’ (0) for different order of
Pade-approximations when M = 2.0, A; = 1.0 and #; = 0.25.

Pade approximations [m,m] f"(0) —d (0)

(1,1] 0100  1.43902
[5, 5] 0.0396 1.42205
[10, 10] 0011  1.41458
[15, 15] 0.004 1.41443
[20, 20] 0.0020 1.41443
[21,21] 0.0020 1.41443

9.4 Results and discussion

Here Figs. (9.3) — (9.5) are plotted to see the influence of Hartman number M, Deborah
number 5, and A; (the ratio of relaxation time to retardation time) on the dimensionless radial
velocity f'(n) and Figs. 9.6 — 9.8 are sketched to study the influence of M, A; and §, on
dimensionless azimuthal velocity g (n). Fig. 9.3 shows that dimensionless radial velocity f' (1)
decreases with an increase of Hartman number M. This shows that magnetic field decelerates
the motion of fluid in radial direction. This Fig. also shows that boundary layer thickness
decreases with the increase of Hartman number M. Fig. 9.4 illustrates that the dimensionless
radial velocity f'(n) has decreasing trend when Deborah number 3, is increased. From this
Fig. one can conclude that the boundary layer thickness decreases by increasing f,. It is
noted from Fig. 9.5 that radial velocity f'(n) in an increasing function of A;. This Fig. also
depicts that boundary layer thickness increases when A is increased. Fig. 9.6 indicates that
the dimensionless azimuthal velocity g(n) decreases with an increase in Hartman number M,
It means that magnetic field retards the motion of fluid particles in axial direction. Fig. 9.7
depicts that the dimensionless axial velocity g (1) and the boundary layer thickness increase
with the increase of Deborah number j3,. Fig. 9.8 illustrates that the dimensionless axial velocity
g (n) decreases when A, increases and the boundary layer thickness also decreases. Table 9.2 is
constructed for the variation of skin friction coefficients in radial and azimuthal directions for
various values of physical parameters. From this table it can be concluded that (%) W
decreasing function of M and f, but it increases with an increase in A;. However (&),

Cy is
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is increasing function of M and A, whereas it decreases by increasing 3.

f(n)

015

M=0Q 0§ 10 15
Po=0214=05

0125

1 2 3 4 5 6 7

Fig. 9.3. Variation of radial velocity f’ (1) for different values of M.
fn)
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o1
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Bo=00 Q15 0305
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"1 2 3 4 5 6 71"

Fig. 9.4. Variation of radial velocity f'(n) for different values of 5,.
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1 2 3 4 5 6 7 1
Fig. 9.5. Variation of radial velocity f (1) for different values of A
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Fig. 9.6. Variation of azimuthal velocity g(n) for different values of M.
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Fig. 9.8. Variation of azimuthal velocity g () for different values of A;.
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Table 9.2: Numerical values of skin friction coefficients for different values of physical

parameter.

M A B _(ff_}lfﬂ Cy (5?}”2 c,
0.0 1.0 025 1.01735 —1.27135
1.0 —0.01336  —1.00247
2.0 =0.72170  —1.00951
25 -0.98025 —-0.99714
20 00 -1.06066  —1.41421
0.7 —-0.78815  —1.09225

1.5 —0.64475  -0.90213

1.0 0.0 0.41359 —0.99478
0.25 —-0.72123  —0.78113

0.5 -1.89795  -0.56231

9.5 Final remarks

The study of MHD flow of Jeffery fluid due to rotating disk is presented. The governing
problems are solved analytically using HAM. The main points are given below.

* Dimensionless radial velocity f (1) decreases when M and $, are increased but it increases

with the increase of ;.

* Boundary layer thickness associated with dimensionless radial velocity f'(n) decreases
when M and 8 increase but it increases by increasing );.

* Dimensionless azimuthal velocity g(n) decreases with an increase in M and A; whereas it

increases with an increase in 3.

* Boundary layer thickness for an azimuthal velocity g(n) decreases with an increase in M
and A; whereas it increases for positive values of 3,.

* Skin friction coefficient Cy in the radial direction is a decreasing function of M and 8,
but it increases by increasing A;.
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o Skin friction coefficient C, in azimuthal direction increases when M, A; and 3, are in-
creased.
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Chapter 10

Unsteady three-dimensional flow of
second grade fluid over a stretching

surface

The three-dimensional unsteady flow of stretching surface is investigated. Constitutive relation-
ships of second grade fluid are utilized in the problem formulation. Nonlinear partial differential
equations are reduced into a system of ordinary differential equations by using the similarity
transformations. The homotopy analysis method (HAM) has been implemented for the series
solutions. Graphs are displayed for the effects of different parameters on the velocity field.

10.1 Mathematical analysis

Let us consider the unsteady three-dimensional flow of a second grade fluid over a stretching
surface. The fluid is bounded by the non-conducting surface situated at z = (. An incom-
pressible fluid occupies the region z > 0. The equations governing the boundary layer fow

are
Gu v  Ow

E.i.&_yq.-a?:ﬂ, (10.1)
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[ gty + v +
p(Geudtendiendt) = uiiea| -BEy-pfy - Fig | 00
\ 85 - B+
“ ([ uglits +vofln +w s
= upgto| PPy R [ (103)

\ +8a - B + v

dv dv Qv du
P (ﬁ *HIE-H?E-{- WE)

The subjected boundary conditions are given by

ar ba .
u=1um,u=1_m,w—ﬂ at z=0,
u—rﬂ,u—rﬂ,ﬁ—rﬂ,@—rﬂ as z — 00, (10.4)

dz Oz

where u, v and w as the velocities parallel to the z, y and z directions respectively, p indicates
the fluid density, p the dynamic viscosity, a; the second grade parameter and the constants
a>0,5>0and ot < 1. We now define

a a.r ay
n = 1fm3= u= I_—Mflﬂ)- v=g—d ()
w o= =y )+ 9} (1035)

All the quantities appearing in Eqgs. (10.2) — (10.3) have been computed using Chain rule
through Eq. (10.5). It is noticed that Eq. (10.1) is identically satisfied and Eqs. (10.2) and
(10.3) become

22 " —(f +9)f*

f%fﬂ+u+gu"-—c(f*+gfﬁ+u*[ } =0, (106)

+@2f" +31)
=8 - n | 9%+ 29" = (f +9)g" i
"=+ (o) - +30") +a [ (25" + 36 ] (10.7)
Now the boundary conditions through Eqs. (10.4) and (10.5) give
£(0) + g(0) =0, f'(0) =1, f(e0) =0, g'(0) = ¢, ¢'(c0) =0, (10.8)
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where { is the time dependent parameter, a® is the dimensionless second grade parameter and

¢ is the ratio parameter. These are given by

10.2 Series solutions

10.2.1 Zeroth-order deformation problems
The velocity distributions f(n) and g(n) in the set of base functions

{n* ep(=nn) | k20,n 2 0},

-are given by
oa 0o
fn) = afo+ 3.3 ak i exp(—nn),
n=] k=]
o0 DD
gln) = AQe+Y Y Ak 0" exp(—n),
n=] k=]
where as the initial guesses are

fo(n) = 1 = exp(-n),
go(n) = e(1 = exp(=n)).

The linear operators and their associated properties are

- &f 4
£I ] ;Ia d?'r
L ..
b =&

Ly [Cy + Caexp(n) + Cy exp(-n)] =0,
Ly [Cy + Cs exp(n) + Cy exp(—n)] =0,
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(10.11)

(10.12)

(10.13)
(10.14)

(10.15)

(10.16)
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where Cy — Cg are the constants and af, , and A%, . are the coefficients.
The problems corresponding to the zeroth order deformation can be written as

(1= p)L [F(m ) — fo(n)] = phgN7IF(n. ), 3(n,p)], (10.19)
(1= p)L [5(n,p) — go(n)] = phgNG[f(n, ), 3(n,p)), (10.20)

f(0,p) =0, £'(0,p) = 1, §(0,p) =0, (0,p) =p,

F'(e0,p) =0,, §(c0,p) =0, (10.21)
2
Nelf(m,p), 3(n,p)) = % = (g%) +{f(n.p) +§(mp}}g§
F2(n,p) + 2F (0,0) " (n,p)
—¢{Top) + 3 mp} 0" | - (Fonp) + 300} Fonp) |- (1022
+A{27"(n,p) + 3/ (n.p)}
= 2
Nolf(m,p), 3(n, )] = g%ﬂ- (g—i) + {I(M}H{mp}}-g—:,g
3" %(n,p) + 28 (n,p)3" (n.p)
~¢{gnp) + 38" mp)} +a* | = {Fom.p)+30,0)} 5 mp) |- (20.23)
+A{27"(n,p) + 35" (n,p)}

Here hy and hy show the auxiliary non-zero parameters and p € [0,1] indicates an embedding
parameter. For p=0 and p = 1 we have

fm0) = folm),  f(n,1)=fn),
9m0) = golm),  §(n 1) =a(n), (10.24)

and the initial guesses fy(n) and go(n) approach to the final solutions f(n) and g(n) when p
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varies from 0 to 1. In view of Taylor's expression

Fnp) = folm) + 3 Fm(mp™, (10.25)
m=]
3(n,p) = go(n) + Y, gm(m)p™, (10.26)
m=1
fonl) = liﬂ'“f[w}| - iﬂ"‘ﬂw} * (10.27)

and the convergence of series (10.25) and (10.26) depends upon fiy and fiy. The fiy and A, are
chosen in such a way that the series (10.25) and (10.26) converge for p = 1. Hence

f) = foln) + Y Fmlm)s (10.28)
me=]

g(n) = go(n) + 3 9m(®), (10.29)
m=1

10.2.2 wmth order deformation problems

The problems corresponding to the mth order deformations are

Ly [fr() = XemSm=1(0)] = By Rsm(n), (10.30)
Ly [9m(n) = XmIm-1(n)] = AgRgm(n), (10.31)
fm(0) + gm(0) = f1a(0) = fra(00) = Ghu(0) = g1 (e0) =0, (10.32)
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m-—]

‘R:jur;{ﬂ) = fm-1+ Z [{fm—l—k + 9m-1-k) fi = ﬁnq-k.ﬂ] = C{fpas + gf" 1)
k=0

m—1
A A 2 kS = etk + Gme1-2) i)
O k=e
+C(2fm + 3 )

4 (10.33)

m—1
Rin(1) = Gt + 3 (-t + Gme14) 9 = Gon149h] = (G-t + 500-1)
k=0

m=1

N D {420 = (fne1—k + Gm-1-2) 91}
@ | ko

+ (10.34)
+ (2901 + §9in-1)
0b m<1
xm={ : (10.35)
1, m>1

Using MATHEMATICA the resulting problems for m = 1,2, 3, ... have been solved successfully.

It is worth mentioning to point out that present problem for { = 0 = a" reduces to the
problem of a viscous fluid. Exact numerical solution for this viscous fluid problem is computed
by Ariel [41]. The present attempt extends the analysis of Ariel [41] from viscous to second
grade fluid. The considered fluid model has preference in the sense that it can easily describes
the normal stress effects. This consideration hikes the order of differential system. Further
the governing equations are more complicated and nonlinear. Such complexities appear due to
viscoelastic properties of second grade fluid. Another difference oceurs in the boundary con-
ditions. Ariel [41] considered the steady case of stretching surface whereas unsteady stretched
flow is taken into account in the present analysis.

10.3 Convergence of the series solutions

It is noted that the convergence of solution depends on Ay and Ay. Figs. 10.1 and 10.2 help for
the allowed values of fiy and fiy in the convergent solutions. This Fig. shows that admissible
values are —1.0 < (fiy, iy) < —0.25. Table 10.1 is presented to access that how much order of
approximation is necessary for a convergent solution. It is noticed that 20th order approxima-
tions are sufficient. Table 10.2 presents the comparison of the present HAM results with the
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results found by Ariel [41] for the case of viscous fluid. An excellent agreement is found between
the results.

=05a"=02¢c=05
0661 £ ﬁa_ 2

-09615

-Q9a2

— -09825

-Q963

-09635

-1 -08 -06 -04 -Q2 0
hif

Fig. 10.1: fi curves of f”(0) at the 15" order of approximation.

04 1{=aﬁ'a =q20=lﬂ5

s@-aﬁ
=) ]
-0458| [ \

-12 -1 -08 —06 -04 -02 0

Fig. 10.2 : & curves of g"(0) at the 15** order of approximation.
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Table 10.1: Convergence of the HAM solutions for different order of approximations when
e=05a"=02and {=0.5.

arder of approximation - 1"(0) —g"(0)
1 0953333  0.453333
2 0.965036  0.455542
5 0455542  0.455301
10 0455301  0.455231
15 0.962630  0.455227
20 0.962639  0.455226
25 0.962630  0.455226
30 0.962639  0.455226
40 0.962639  0.455226
50 0962630  0.455226

10.4 Results and discussion

In this section behavior of certain parameters of interest on the velocity components f' and
¢ has been analyzed. Figs. (10.3) — (10.8) are plotted for this interest. The variations of
¢ on f' and ¢’ are shown in the Figs. 10.3 and 10.4. These Figs. show that f’, ¢ and the
associated boundary layer thickness are increasing function of ¢. It is also noted that the results
furthnm—djmenﬁunﬂcmmsimﬂummmﬁ}rmdimmﬂummmmtmmu
qualitative sense whereas the magnitude for three-dimensional case is larger. It is because of the
fact that an extra agent has been introduced in such case in terms of bidirectional stretching,
The effects of second grade parameter a* on f’ and ¢’ are displayed in the Figs. 10.5 and 10.6.
Fig. 10.5 elucidates that f' and associate boundary layer is increasing function of a* and similar
results are obtained for the second component of the velocity i.e. ¢ as shown in Fig. 10.6. Fig.
10.7 illustrates the variation of the ratio parameter ¢ on f', This Fig. indicates that velocity
field f' and boundary layer thickness decreases with an increase in c. Fig. 10.8 analyzes the
effects of c on ¢'. This Fig. shows that velocity component ¢ increases with an increase in e.
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Fig. 10.3 : Influence of  on f’.
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Fig. 10.4 : Influence of ¢ on g’
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Fig. 10.5 : Influence of a* on f'.
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Fig. 10.6 : Influence of a* on ¢'.
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Table 10.2: lllustrating the variation of — f(0) and —g"(0) with ¢ when a® = 0 = , using
HAM, HPM (Ariel [41]) and exact solution (Ariel [41]).

¢ —f"(0) -g"(0)
HAM HPM [41]  Exact [41] HAM HPM [41]  Exact [41]

0.0 1 1 1 ] 0 0

02 1039495  1.034587  1.039495  0.148736  0.158231  0.148736
0.5 1093095 1.088662 1.093005 0.465204 0.476290 0.465204
0.8 1142488  1.142879  1.142488  (0.866682  0.874551  0.866682
1.0 1173720  1.178511 1173720 1173720  1.178511  1.173720

10.5 Conclusions

Unsteady three-dimensional flow of a second grade fluid has been analyzed. The main outcomes
are listed below,

e Velocity fields /' and ¢ are increasing functions of time-dependent parameter C.

e Second grade parameter o* enhances the flow.

¢ Velocity field f’' decreases when c is increased.

¢ Velocity component g increases rapidly near the stretching wall.

¢ The magnitude of velocities for unsteady case (¢ > 0) is larger when compared with the
steady-state case ({ = 0).
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Chapter 11

Mass transfer effects in an unsteady
three-dimensional flow of couple

stress fluid

The unsteady three-dimensional flow of couple stress fluid over a stretched surface is investigated
in this chapter. Analysis has been performed in the presence of mass transfer and chemical
reaction. Nonlinear flow analysis is computed by a homotopic approach. Plots are presented
and analyzed for the various parameters of interest. A comparative study with the existing

solutions in a limiting sense is made.

11.1 Mathematical analysis

Consider the three-dimensional unsteady flow of an incompressible couple stress fluid over a
surface at z = 0. The motion in fluid is created by stretching of a surface. In usual notations,

the continuity, momentum and concentration equations for the boundary layer flow can be

expressed as
du v Ow
o i Ul
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8*u

£
R
¢

%;H%H%WE-VE-J@. (11.2)
%+u%+u%+w%¢v%ﬂlf%, (11.3)
% +u§ +u%': +w;—‘f =D% - K(t)C, (11.4)
subject to the boundary conditions
u = 121:’”:1?{,1'“:'}'6:0“ at z=0,
u — u,u-.u,%—-n,g";—»u,c—-cm as I — 00. (11.5)

Here u, v and w are the velocities in the z, y and z directions, respectively, v = u/p
the kinematic viscosity, v/ = n/p the couple stress viscosity, p the density of fluid, C the
concentration of species, D the coefficients of diffusing species, K(t) = K;/(1 —at) the reaction
rate, C,, the concentration at the surface, C, the concentration far away from the sheet, T},
the surface temperature and Ti, the temperature far away from the surface.

The following transformations

rr=,g'p—-ufnﬂz, u=1_'itf'(nj. u=%g’{q}. = lf"ﬂt {(f() + 9(n)},

C-C
#) = g—gr Cu=Coo = 7 (11.6)

identically satisfy the continuity equation (11.1). However Eqs. (11.2)—(11.6) take the following

forms

"= 1R (f+ 0" = + 3" - Kf* =0, (11.7)
7"~ +(f +9)d" - (¢ + 3¢") - Kg" =0, (11.8)
9"+ 8e(f +9)¢' = Se¢(6+ 5¢) — Serd - Sepf =0, (11.9)

f(0) +9(0) =0, f'(0)=1,4(0) =¢, ¢(0)=1,
f'(00) =0, g'(00) =0, ¢(cc) — 0, (11.10)
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in which ( = a/a is the time dependent parameter, K = /a/v*(1 — at) the couple stress
parameter, prime for the differentiation with respect to 5 and the constants a > 0 and b > 0.
The stretching ratio ¢, Schmidt number S¢, chemical reaction parameter 4 are as follows:

c=b/a, Sc_ﬁ =K‘ (11.11)

We point out that the two-dimensional (g = 0) case has been recovered for ¢ = 0. Forc = 1,
we obtain axisymmetric case i.e. (f = g) and for (( = 0) the system of Eqs. (11.7) - (11.9)
reduce to the steady situation.

11.2 Series solutions

11.2.1 Zeroth-order deformation problems
For the development of the homotopy solutions, the functions f(n), g(n) and é(n) in the set of

base functions

{n“ exp(—nn) | k> 0,n > 0} (11.12)
can be introduced as follows:

f) = ado+ 3% b n* exp(—ny), (11.13)

n=]1 k=]
9) = Ao+ N Ak 0" exp(—nn), (11.14)

n=] k=]
om) = 33"k " exp(~n), (11.15)

n=0 k=0

with the following initial guesses and auxiliary linear operators

Jo(m) =1 = exp(~n), go(n) = c(1 — exp(~n)), o(n) = exp(~n), (11.16)
_df df _dg dy :Fdl
Ly= e e = b s " an C - . (11.17)
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Obviously the linear operators have the following properties

Ly [C1 + Cexp(n) + Cyexp(—n)] =0, (11.18)
L, [Cs + Cy exp(n) + Cgexp(—n)] =0, (11.19)
Ly [Crexp(n) + Cy exp(—n)] = 0, (11.20)

where ) — Cg are the constants and ay, ., A% = and cf, , are the coefficients. The problems
at the zeroth order can be expressed as

(1—p)Ly [F(n,p) — foln)] = pheNF[F(m, p). (0, P)), (11.21)
(1= p)Ly [3(n,2) — go(n)] = phgNG[f(m, p), 3(n, p)); (11.22)
(1=p)Ls [¢(n,0) — do ()] = PheNG [f(n,2),3(n.2), @ (n.p)] , (11.23)

f{DTp) + g{ﬂ'rp} i ﬂ'l .F(u: F] =1, ?{ﬂmp) =g
_F{W..P} =ﬂ,f"{m.r] ='ﬂ, f(mrp} =ut f{mtpj =0

@(0;p) = 1, ¢(o0;p) =0 (11.24)
2
Nyl r.0).300.9)) = 55 - (&) +tran + a0 55 - K70
*-f.'{ﬂ'f "aﬁf (11.25)
Nl r.p), 319 = 52 - (g—g) o) + 30919
~C{8a “%) - K" (n,p), (11.26)

N [ f(m:p), 3(n. ), ¢(n; p]] = %ﬂ'ﬂ + Sc¢ {f (m:p) + 3(n.p)) &#;;; b)
~ 5eC(B(mp) + 38 (mp)) — Serdlm;p) — Seb(mp)f'(n,p),  (11.27)
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where hy, By and Ay are the auxiliary non-zero parameters and p € [0,1] is an embedding
parameter. When p = 0 and p = 1, we obtain

fm0) = folm),  Fin1) = fn), (11.28)
§m0) = golm),  @§n1)=gn), (11.29)
$(m0) = do(n), dm1)=én) (11.30)

Through Taylor series expansion one obtains

F(mp) = foln) + "i fn(m)p™, (11.31)
3(m.2) = go(n) + gym(n]p“" (11.32)
(m;p) = do(n) +g¢m(ﬂ}£’m: (11.33)
with
famlm) = %%w o (11.34)
gml(n) = %% Lo (11.35)
bmln) = %"’—”’%&—”’ - (11.36)

The convergence of series (11.31) — (11.33) depends upon the auxiliary parameters fiz, fiy and
hs. The values of iy, Ay and iy have been selected in the manner that the series (11.31)—(11.33)
converge at p = 1. Hence

Fmy = foln) + Y fm(m), (11.37)
]

9(m) = go(n) + 3 gm(n), (11.38)
me=]

é(n) = do(n) + 3 Smm)- (11.39)
=]
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11.2.2 mth order deformation problems

Here the problems are given by

Ly [fn(n) = XmSm—1(0)] = BsRpm(n),
Ly [9m(n) = XemIm—1 ()] = AfRgm(n),
Ly [d’m (1) = Xm®Pm-1 [’?}] = ﬁqﬁR: (m)

Fm(0) + gm(0) = £1(0) = fra(00) = Gin(0) = gin(20) =0;

¢m(0) =0, Pm(00) =0,

RLM) = fitoy = (U + 3 fer) = KL

m—1
+ 3 [((Fmmtb + gmet ) = Frner-rfi]
k=0

RI(D) = gher = C(hner + 3nt) =~ Ko +

m=1

Y (o1t + Im-1-4)9K — Giny -] +

k=0
RE(M) = Ot = Serbms — SG(bm-1 + 5¢n1) +

m—1
Se Z [(finet—k + Gm-1-k) Bk = Bn1-icfi] »
k=0

{I‘J, m=<1
Xm= .
1, m>1

(11.40)
(11.41)
(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)

The equations (11.40) — (11.42) have been solved one after the other in the order m = 1, 2,

3,...by employing Mathematica.
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11.3 Convergence of the HAM solution

In this section our aim is to ensure the convergence of the obtained series solutions. Thus Figs.
(11.1) and (11.2) have been plotted for the admissible values of liy, fi; and hy regarding conver-
gence of the solutions (11.37) — (11.39). Ultimate the admissible values have been noticed in the
ranges —1.25 < (fiy, ig) < —0.25 and —1.0 < lig < —0.5. Further fif = —0.7= hy = hy one has
the better solution. Table 11.1 is presented to find that how much order of approximations are
necessary for a convergent solution. It is noticed that 15th order approximations are sufficient
for the velocity fields whereas 25th order of approximation are required for the concentration
field. Table 11.2 provides a comparative study for viscous flow. It is found that HAM solution
in a limiting case of present study has a good agreement with the exact and HPM solutions
provided in ref. [41].

;=06 K=01.c=05

&
©-08 — 0 *
S

-15 <125 -1 -Q7%5 -05 025 0
t, g

Fig. 11.1: A curves of f”(0) and g”(0) at the 15 order of approximation.
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Fig. 11.2 : h curves of ¢/(0) at the 15 order of approximation.
Table 11.1: Convergence of the HAM solutions for different order of approximations when
e=05 A=06 K=05 Se=vy=1

order of approximation —f"(0) -¢"(0) ~¢/(0)

1 1.21933333 0.55133333 1.5658333
2 1.26218363 0.56192793 1.6216753
5 1.27716191 0.56371964 1.6491773
10 1.27749261 0.56359020 1.6496750
15 127749261 0.56358705 1.6496764
20 127749258 0.56358694 1.6496764
25 127749257 0.56358692 1.6496764
30 1.27749267 0.56358692 1.6496764
40 127749257 0.56358692 1.6496764
50 1.27749257 0.56358692 1.6496764
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11.4 Results and discussion

Computations for the effects of different parameters on velocity and concentration fields have
been carried out and Figs (11.3) — (11.8) have been displayed. The variations of K on f’ and ¢'
are presented in the Figs. (11.3) and (11.4). It is observed the f' and ¢’ are decreasing functions
of the couple stress parameter K. It is noted that couple stress parameter is dependent upon
the couple stress viscosity n and this couple stress viscosity acts as a retarding agent which
makes the fluid more denser resulting into a decrease in the velocity of the fluid. The variations
of K, # and Se on the concentration field ¢ are portrayed in the Figs. (11.5) — (11.8). Effect
of K on ¢ has been shown in Fig. 11.5. This Fig. shows that ¢ is an increasing function of
K. The concentration boundary layer also increases with an inerease in K. Fig. 11.6 predicts
the effects of destructive (v > 0) chemical reactions on ¢. It is noticed that ¢ decreases in
case of destructive (v > 0) chemical reaction. Fig. 11.7 explains the variation of generative
(4 < 0) chemical reaction on the concentration field ¢. It is noted that generative (v < 0)
chemical reaction causes an increase in the concentration. It is also noted that the magnitude
of ¢ is larger in case of generative chemical reaction (v < 0) in comparison to the case of
destructive chemical reaction (v > 0). Physically for generative case, chemical reaction v takes
place without creating much disturbance whereas disorder in the case of destructive chemical
reaction is much larger. Due to this fact molecular motion in the case of (y > 0) is quite larger
which finally results into an increase in the mass transport phenomenon. Finally Fig. 11.8
plots the effects of Schmidt number Se on the concentration field. This Fig. elucidates that
concentration field ¢ decreases with an increase in Se. From the definition of Schmidt number
given in Eq. (11.11), it is clearly observed that Sec is inversely proportional to the diffusion
coefficient D. Therefore larger values of Se correspond to a decrease in the concentration field.
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Table 11.2: Variation of —f”(0) and —g”(0) with ¢ when A = 0 = K using HAM, HPM
(Ariel [41]) and exact solutions (Ariel [41])

€ - "(0) —g"(0)
HAM HPM [41]  Exact [41] HAM HPM [41]  Exact [41]

0.0 1 1 1 0 0 0
0.2 1.039495 1.034587 1.0394956 0.148736 {.158231 0. 148736
0.4 1.075788 1.070529 1.075788 0.349208 0.360599 0.349208
0.6 1109946 1106797 1109946  0.500528  0.600833  0.500528
0.8 1.142488 1.142879 1.142488 0.866682 0.874551 (1.866682
1.0 1.173720 1.178511 1.173720 1.173720 1.178511 1.173720

)

1
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Fig. 11.3 : Influence of K on f'.
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Fig. 11.5 : Influence of K on ¢.
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Fig. 11.7 : Influence of v < 0 on ¢.
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Fig. 11.8 : Influence of Sc on ¢.

11.5 Concluding remarks

Effects of mass transfer on the unsteady three-dimensional flow of couple stress fluid over a

stretching sheet is investigated. Analysis is performed in the presence of chemical reaction.
The main observations are listed below.

e Velocity field and boundary layer thickness are decreasing functions of K.

e Variations of K on the velocity field for the axisymmetric, two- and three-dimensional
flow cases are qualitatively similar.

e The effects of K on f' and ¢’ are similar.
e Influence of K on the velocity and concentration fields are opposite,
¢ Concentration field ¢ is a decreasing function of Schmidt number Se.

e The concentration field ¢ has opposite results for destructive (v > 0) and generative
(7 < 0) chemical reactions.
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Chapter 12

Soret and Dufours effects in
three-dimensional flow of

viscoelastic fluid

This chapter presents the Soret and Dufour effects on three-dimensional boundary layer flow
of viscoelastic fluid over a stretching surface. The governing partial differential equations are
transformed into a dimensionless coupled system of non-linear ordinary differential equations
and then solved by the homotopy analysis method (HAM). Graphs are plotted to analyze the
variation of different parameters of interest for the velocity, concentration and temperature
fields.

12.1 Mathematical analysis

We consider the three-dimensional flow of an incompressible viscoelastic fluid over a stretching
surface at z = 0. The motion in fluid is created by a non-conducting stretching surface.
The heat and mass transfer characteristics are considered when both Soret and Dufour effects
are present. The continuity, momentum, concentration and energy equations for the present
houndary layer flow are reduced to the following equations:
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&uﬂnaw

31" - =10, (12.1)
du du fhu d*u [ “FE‘:’ T w%a;*
2 PP .. —k (12.2
Yoz TVay T Va: T Yo | (Geg+ 20y +2gﬂ+2§f$)] T
oy Bv o | vylpts + w
v = -k (12,3
0T 0| (s iy o +2w)} .
ac  ac ac &cC Dky 8T
B +ﬂg+wa— = D&? - K,C+ T—maf, (12.4)
WL u% +ull = a2l 4 E‘g’ 2 (12:5)

in which u, v and w are the velocities in the z, y and z directions, respectively, v the kinematic
viscosity, k the material fluid parameter, C' the concentration of species, D the coefficients of
diffusing species, K the reaction rate, kr the thermal-diffusion, T the temperature, Cp the
specific heat, C; the concentration susceptibility, o, the thermal diffusity and T, the fluid
mean temperature.

The boundary conditions for the present situation can be written as

4 = uy(z)=ax, v=vuy(y)=by, w=0,T=T, C=Cy at z=0,

u—rﬂ,ﬂ—rﬂau ﬂaﬂ

5% ' B2 =0, T=T,, C—=Cx as z— 00 (12.6)

where C,, denotes the concentration at the surface, C is the concentration far away from the
sheet, T, is the surface temperature and T is the temperature far away from the surface.
Using

n= \Ez u=azf'(n), v=ayg'(n), w=—vVav {f(n)+a(n)}.

8(n) = T Tm ﬂ}hc—cc?: (12.7)

the continuity equation (12.1) is identically satisfied and Eqs. (12.2) — (12.6) take the following
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forms

=P s(f+af' +K[(f+af*+ (" =" -2 +d) "] =0, (128)

"=+ (F+0)d" + Ko [(f+9)g" + (/"= g")g" =2(f' + 99" =0, (129)

¢+ Sc(f +9)¢ — Sevé+ SeS, 0" =0, (12.10)

g +Pr(f+9)¢ +PrDyd" =0, (12.11)

F(0)+9(0) =0, f(0) = 1,¢(0) =¢, ¢(0) =1, 6(0) =1,
f'(e0) =0, g'(c0) =0, ¢(co)— 0, B(o0) —0, (12.12)

where Ky = ka/v is the dimensionless viscoelastic parameter, prime is the differentiation with
respect to 1 and the constants a > () and b > (). Furthermore the ratio ¢, Schmidt number Se,
chemical reaction parameter v, Prandtl number Pr, Dufour number Dy and Soret number S,
are defined by

¢ = bla, Se=5, y=—, Pr=v/am,
_ Dkr (Co—Co) . _ Dhr (Tu—Tx)
Pr = GG —Toe ° ™ T (O —Cu) CAR

Note that the two-dimensional (g = () case is obtained when ¢ = (. For ¢ = 1, one finds an
axisymmetric case Le. (f =g).
The local Nusselt (Nu;) and local Sherwood (Sh) numbers can be written as

i one
M= -1 %"= DG - Ow) (12.14)
with
ar : ac
Gw = =k («—az )m, Ju==D (ﬂz )m, (12.15)
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where gy, and j,, respectively denote the heat and mass fluxes.
Equation (12.14) in dimensionless form becomes

Nug/Rel/? = —0'(0), Sh/Rel/? = —~¢(0)

where Re; = u,z/v is the local Reynolds number,

12.2 Series solutions

12.2.1 Zeroth-order deformation problems
In order to obtain the HAM solution, the velocity distributions f(1), 9(n), ¢(n) and 8(x) in the

set of base functions

{n"* exp(-nn) | k 2 0,n> 0}

can be expressed as
fin) =
9n) =
dlm) =
0(n) =

subject to following initial guesses

B+ 3 T o i,

n=l k=1

Ao+ iiﬂﬁmﬂ*ﬂp{—m}.

n=] k=]

ok, " exp(—nn),

b:'l-.n’?h Bﬂ'{"ﬁﬂ}

I8 LMe
L ngL¥ (ygl:

Jo(n) =1~ exp(—n),
go(n) = e(1 — exp(—n)),
#a(n) = exp(-n),

fo(n) = exp(=-n),

17

(12.16)

(12.17)

(12.18)

(12.19)

(12.20)

(12.21)

(12.29)
(12.23)
(12.24)
(12.25)



and the linear operators

G =4
I'7 @ "
[ - Po_d
¢ dpd dn’
d?
£¢’=F¢—¢1
all
&:H-a,

with

L1 1Cy + Cyexp(n) + Cs exp(—n)] =0,
L5 [Cs + Cs exp(n) + Cg exp(—n)] = 0,
L4 [Cr exp(n) + Cy exp(—n)] =0,
Lo [Co exp(n) + Cro exp(—n)] = 0,

where Cy — Cyo are the constants and af, ,, A%, ,, ¢k, and b, . are the coefficients.
The problems at the zeroth order are

(1=p)L [f(n,2) = fo(m)] = phsNF[F(n, p), 3(n, )],

(1 =p)L[5(n,p) = 90(m)] = PheNGIF(m, ), 5, P)),
(1=p) Ly [@(mp) = ¢ (n)] = PAaNG [F(n,), 8 (n,9)] .
(1= )Lo[0(n. p) — 80(n)) = pheNe [F(n,p).B(n.p)] ,

£(0,p) +3(0,p) =0,7(0,p) =1, 7(0,p) =,
F(NIF} = ul f{mvp} =ﬂ:l
5[[};?} =1, E{W;P] =1, E{D;P] =1, a{miF} =0,
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(12.27)
(12.28)

(12.29)

(12.30)
(12.81)
(12.32)
(12.33)

(12.34)
(12.35)
(12.36)
(12.37)

(12.38)



_ L, )
Nylf(n.p), 3(n,p)] = % =~ (%) +{f(n.p) +§[mpl}%

{£(n.p) + §(n, )} (1, p)
+Ko | +{F'(np) =" (mp} " (n.p) | (12.39)
=2{(F'(n,p) + 7 (n.2))J" (n.2))
&g

2 -k
Nolf(n,p), 8(n, p)] = P (g) + {f(mp) + a(n, P}}%

{F(n,p) +8(n,p)}3™(n,p)
+ Ko | +{["(np) - 7" (n.0)}7"(n,2) | (12.40)
—2{(f'(m.p) + & (n.2))7" (n,0)}

- - “ g § 3 :
N [70ri9).901,9)90052), 3017 = 582 — Sexdop) + 5, 52

+8¢ (o) + ) 2L, (12.41)
No [£(m:), 3(n.9), d(n; p), b(m; p)] = %ﬁ;’;ﬂ- +Pr Drﬁ'ﬁ;’ﬂ
+Pr (f(n,p) + 3(n,p)) aié,':’u’l_ (12.42)

In above equations fiy, fiy, hg and fig are the auxiliary non-zero parameters and p € [0,1] is an
embedding parameter. For p = () and p = 1, we have

fn0) = foln),  Fm1) = f(m), (12.43)
m0) = ).,  F(n1)=gln) (12.44)
Bm0) = dolm),  Bm1) = ¢(n), (12.45)
Om0) = 6o(m),  Blm1) =6(n), (12.46)
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Expanding f(n,0), §(n,0), ¢(n;0) and 8(n;0) in Taylor's theorem with respect to p we have

f(n.p) = foln) + gj} Fe(m)P™, (12.47)
(. p) = go(n) + g Im(m)P™, (12.48)
o(m:p) =¢n{ﬂ}+g S (M)P™, (12.49)
8(n; p) = bo(n) + g Om(m)E™, (12.50)
where
fm(n) = %%Lﬂ- gm(n) = %ﬂmgii'm IM, (12.51)

1 ™é(m:p) _ 1 &(mp)
bnll) = mpa| o Gal)=ganB| . a2
Note that the convergence of series (12.47) — (12.50) depends upon the auxiliary parameters
kg, hg, hy and hg. The values of kg, Ay, hs and Mg are chosen in such a way that the series
(12.47) — (12.50) converge at p = 1. Therefore, Eqs. (12.47) — (12.50) take the form

10 =100+ 3 1) (1259)
9(m) = goln) + g,: 9m(n), (12.54)
#(n) = do(n) +§,1 Pn(M)s (12.55)
0(n) = 6o(n) + i B (1)- (12.56)
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12.2.2 mth order deformation problems

The mth order deformation problems

are

L [fm(n) = XnSm-1(n)] = R Rogm(n),
Ly [9m(n) = Xengm—-1(1)] = hgRgm(m),
L [#m (1) = Xinbm—1 ()] = BeRE, (m)
Ls [Bun (1) — XmBm—1 (n)] = heRE, () »

Fm(0) = fiu(0) = fa(00) = fri(00) = gm(0) = g1 (0) = gim(00) = gu(00) =0,

&m(0) =0, @p(o0) =0, me] =0, Em[m} =0,

m—=1

REm) =+ Y
fe=0

m—1
Rﬁ;{ﬂ} = fmﬂ-l + Z
k()

+ Iy

(fm—1-k + Gm-1-k) f*

+Ky +I:f:,:_1_|, - g —1-k3f£

~2(fon-1—k + Gy )i’ ) |
(Ffn—1-k + Im-1-k)0k — EL.-t-kﬂi: -

(frne1-k + Gm—1-4)95"
F{fn1—k = Bn—1-1) 9%

I- (fm—1-k + Im—1-6) T = Frn_1-1Tk |

S

e

Utk + G119 ) |

#

(12.57)
(12.58)
(12.59)
(12.60)

(12.61)

(12.62)

(12.63)

m=1
RE(n) = ¥y + 8¢ Y [fin-1-k + gm-1-4] 6k = Sc¥@py + ScS,07,_;, (12.64)
k=0

m—1

an (n) = ﬂ"m-l +Pr Z [fm—-l—h Qm—:—k]ﬂ + Pr .D;fﬁ" i
k=0

Xm=
1,

m=<1

m>1 .

(12.65)

(12.66)

Using MATHEMATICA, it is easy to solve the Eqs. (12.57) — (12.60) one after the other in the

orderm=1,223,..
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12.3 Convergence of the developed solution

The aim of this section is to find the convergent solution. Thus Figs. (12.1) and (12.2) are
prepared in order to obtain the admissible values of Ay, Ay, hy and fig for the convergence
of the solutions (12.53) — (12.56). The admissible values are —1.8 < (fis,hy) < —0.4 and
~1.2 € (g, hg) < —0.3. In Figs. (12.3 - 12.6) the hi-curves for the residual errors of f, g, ¢ and
8 are plotted in order to get the meaning ranges for iy, fig, fig and fig. We analyzed that through
roper choice of the values of auxiliary parameters fiy, fig, fig and fig from this range we will get
the correct result upto 6th decimal place. It is observed that liy = N, = kg = lig = —1.0 give
the better solution. Table 12.1 is presented to find that how much order of approximations are
necessary for a convergent solution. It is noticed that 15th order approximations are sufficient
for the velocity fields whereas 25th order of approximation are required for the concentration
and temperature fields, Table 12.2 provides a comparative study for viscous flow. 1t is found
that HAM solution in a limiting case of present study has a good agreement with the exact
and HPM solutions provided in ref. [41].

Ko=02 =05

— 10
g fg

15 -1 -85 0
h g

Fig. 12.1: h curves of f(0) and g”(0) at the 15" order of approximation.
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Fig. 12.2: i curves of ¢”(0) and 6”(0) at the 15** order of approximation.
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Fig. 12.3: h curve for residual error in f(n) at the 15 order of appraximation.
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Fig. 12.4 : K curve for residual error in g(n) at the 15** order of approximation.
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Fig. 12.5: h curve for residual error in ¢(n) at the 15 order of approximation.
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Fig. 12.6 : i curve for residual error in 6(n) at the 15" order of approximation.

Table 12.1: Convergence of the HAM solutions for different order of approximations when
c=05 Kog=01,D;=8=02,Pr=1=8e=1.

order of approximation —-"(0) -g"(0) —¢'(0) -&'(0)

1 1.191667 0.512500 1.150000 0.650000
2 1.220035 0.510017 1.222639 0.580972
5 1.222892 0.505508 1.226159 0.527799
10 1.222923 0.505349 1.225311 0.524501
15 1.222923 0.505349 1.225473 0.524381
20 1222023 0.505349 1.225456 0.524388
25 1.222923 0.505349 1.225458 0.524384
30 1.222923 0,505349 1.225458 0.524384
40 1.222923 0.505349 1.225458 0.524384
50 1.222023 0.505349 1.225458 0.524384
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Table 12.2: Ilustrating the variation of —f"(0) and —g"(0) with ¢ when Ky = 0 using
HAM, HPM (Ariel [41]) and exact solutions (Ariel [41])

e -1"(0) -g"(0)
HAM HPM [41]  Exact [41] HAM HPM [41]  Exact [41]

0.0 1 1 1 0 0 0

0.2 1.039495 1034587 1.039495 0.148736 0.158231 0.148736
0.4 1075788 1070529 1075788 0.349208 0.360599 0.349208
0.6 1.109946 1.106797 1.109946 0.590528 0.600833 0.590528
0.8 1.142488 1.142879 1.142488 (.866682 0.874551 0.866682
1.0 1.173720 1.178511 1.173720 1.173720 1.178511 1173720

12.4 Results and discussion

In this section the effect of different parameters on velocity, concentration and temperature
fields is analyzed. For this purpose Figs 12,7 — 12.16 have been plotted. The variations of
Ky on ' and g’ are portrayed in the Figs. 12.7 and 12.8. These Figs. depict that f', ¢ and
their associated boundary layer are decreasing function of Ko. The variations of Ky, Sc, v, Dy
and S, on the concentration field ¢ are shown in the Figs. 12.9 — 12.13. Fig. 12.9 describes
the influence of Ky on the concentration field ¢. It is seen that ¢ is an increasing function
of Ko. Fig. 12.10 gives the variation of Schmidt number Sc on ¢. The concentration feld
¢ and concentration boundary layer are decreasing functions of Se. Figs. 12.11 and 12.12
explain the variations of generative (y < 0) and destructive (v > 0) chemical reactions on ¢.
It is noticed that ¢ is an increasing function of generative (v < 0) chemical reaction whereas
¢ decreases in case of destructive (v > 0) chemical reaction. The magnitude of ¢ is larger
in case of generative chemical reaction (v < 0) when compared with the case of destructive
chemical reaction (v > 0). Fig. 12.13 discusses the effects of Dy and S, on ¢. This Fig. reports
that the concentration field increases by increasing the Soret number S, and decreasing the
Dufours number Dy in such a way that their product remains constant. The variations of Pr,
Ko, Dy and S, on the temperature field § are shown in the Figs. 12.14 — 12.16. Fig. 12.14
elucidates the variation of Prandtl number Pr on the temperature field 8. Here 8 decreases
when Pr is increased. It is quite obvious that increasing the Prandtl number Pr corresponds
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to the weaker thermal diffusivity and hence the boundary layer decreases. Fig. 12.15 depicts
that temperature increases due to increase in Kj. Since the velocity field decreases due to an
increase in viscoelastic parameter which represents that this parameters reduces the molecular
movement. Thus due to decrease in molecular movement, the temperature profile decreases.
Simultaneous effects of S, and Dy are portrayed in Fig. 12.16. It is noticed that temperature
profile decreases by increasing the Soret number S, and decreasing the Dufours number D ¢ by
keeping their product constant.

Table 12.3 shows the values of the local Sherwood number Re;/* Sh and the local Nusselt
number Rez/? Nu, for ¢, Ko, Dy, Sy, Pr, Sc and . Here magnitude of local Sherwood number
increases for large values of ¢, Dy, Se and v whereas it decreases with an increase in Kj, S,
and Pr. The magnitude of local Nusselt number increases for large values of ¢, S, and Pr. Such
magnitude decreases for large values of K, Dy, Se and 7.
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Fig. 12.7 : Influence of Kj on I
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Fig. 12.9 : Influence of Kp on é.
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Fig. 12.11 : Influence of v < 0 on ¢.
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Fig. 12.12 : Influence of v > 0 on ¢.
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Fig. 12.13 : Influence of S, and Dy on ¢.
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Fig. 12.15 : Influence of Ky on 6.
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Table 12.3: Values of local Sherwood number Re;m Sh and the local Nusselt number
;1,"2 Nu, for some values of ¢, Dy, Sy, Pr, Sc and 7.

e Ky Pr S v Dy 8§ =¢0) —#(0)
0.0 0.1 1.0 1.0 1.0 02 0.2 1164161 0.388584
0.5 1.225458 0.524384
1.0 1.275686 0.61880G6
05 01 1.231664 0.551137
0.1 1.225458 0.524384
0.2 1.217281 0.488017
0.1 0.1 1.250315 0.144251
0.7 1.235753  0.413403
1.5 1.208899  0.674969
1o 0} 0.350485 0.664485
0.7 1.006065 0.561584
15 1.474819 0.479377
1.0 0.0 0.626315 0.626315
0.7 1.083542 0.549192
1.5 1.429336 0.488321
1.0 01 0.2 1211815 0.619107
0.2 0.1 1.238280 0.522684
0.3 0.07 1.246881 0.426519
0.2 0.1 1.238280 0.522684
0.1 0.2 1211815 0.619107
007 0.3 1186135 0.648117

12.5 Concluding remarks

The present study describes the Soret and Dufour effects in three-dimensional boundary layer
flow of viscoelastic fluid over a stretching surface. The presented analysis shows that solution
upto 10th order of approximations is enough for velocity fields whereas solution for concentration
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and temperature fields are convergent at 20th order of approximation (Table 12.1). The main
observations are listed below.

o Influence of Ky on velocity fields is qualitatively similar in two-dimensional, three-dimensional
and axisymmetric flow cases,

¢ Influence of Ky on velocity field is quite opposite to that of concentration field.

¢ Soret number Sr and Dufour number Dy show opposite behavior for temperature and
concentration field

e Variations of Prandtl number Pr on # and Schmidt number Sc on ¢ are similar

e The concentration field ¢ is opposite for destructive (y > 0) and generative (v < 0) chemical

reactions,
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