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Abstract 

Flow behavior of several complex fluids is characterized by viscosity dependency on the 

rate of deformation. Such type of viscosity dependency is one of the basic category of 

non-Newtonian fluids rather than Newtonian fluids. Appropriate prediction ofrheological 

characteristics such as shear stress and shear strain are forcible in useful applications. For 

instance, protein formulations/injections, inkjet printing and food/beverage manufactur­

ing and so forth. Such engineering importance insured that the modeling and in-depth 

study of non-Newtonian fluids is one of the need of the day. The contributions in this 

thesis push further the mathematical modeling and analysis of generalized Newtonian 

Sisko fluid which is declared a subclass of non-Newtonian fluids . This thesis consists of 

two main parts: One presenting mathematical modeling of Sisko fluid and the other one 

describing and analyzing the results for flow , heat and mass transfer. In current t hesis, 

we present a contribution to the mathematical formulations for 2D as well as 3D steady 

and unsteady Sisko fluid flows with heat and mass transfer. The modeled governing PDEs 

are transformed through some dimensionless variables into ordinary differential equations 

(ODEs). The whole computational work is carried out with the help of well known numer­

ical approaches namely RKF with shooting technique, built in boundary value problem 

(BVP) solver bvp4c and Richardson extrapolation with built in command BVP traprich. 

A meaningful physical interpretation in the form of computational analysis is performed 

to characterize the behavior of velocity, pressure, temperature and concentration of Sisko 

fluid. 

The major observations associated to the flows of pseudo-plastic as well as dilatant fluids 

which are the sub cases of Sisko fluid are highlighted with the important enhancement be­

havior of the velocity and associated momentum boundary layer thiclmess(MBLT) with 

higher material and curvature parameters. This study is more important in the con­

text where the magnitude of pressure inside the boundary layer (BL) is observed in the 

growing conduct for weaker values of the curvature parameter and outside of the BL 

the magnitude becomes zero. However, this study reported a very significant decreas-

xv 



ing trend in the temperature and concentration as well as related thermal boundary layer 

thickness(TBLT) and concentration boundary layer thickness(CBLT) with enhancing ma­

terial and curvature parameters. Ultimately, the research work presented in this thesis 

will aid in the understanding and analyzing the diverse rheological characteristics of the 

generalized Newtonian Sisko fluid. 

xvi 
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Chapter 1 

Introduction 

The motivation for the present study is introduced in this chapter. Moreover, the scop of 

the study, basic physical laws, numerical methods and research objectives are introduced. 

Lastly, the contribution of the thesis is highlighted briefly. 

1.1 Motivation 

Fluid flow is one of the most important principle in the process of respiration. Because 

air and water are those flowing materials which are nominated as life charging materials. 

It is about the basics need for any living things which are further scientifically assumed 

as Newtonian fluids for useful calculations under usual circumstances. The Newtonian 

fluid was first introduced by a illustrious British scientist, Sir Isaac Newton in 1687, who 

first postulated the correlation between shear stress and shear strain rate for such fluids 

in the form of differential equation (DE). This research of Newton was published in the 

form of Newton's law of viscosity. These are the simplest mathematical models of liquids 

that justification for viscosity. In other words, the flow of those liquids which holds 

the Newton's law of viscosity are acknowledged as Newtonian liquids. Many attempts 

have been made to investigate the flow, mass and energy balance of Newtonian fluids 

in complicated flow geometries. Onward from 19th century, it is very clear that the 
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fluids like materials which having non-linear correspondence between rate of strain and 

shear stress cannot be categorized as Newtonian liquids. An increasing applications urges 

to expand this phenomenon to the flow of non-Newtonian fluids with energy and mass 

balances. Actually, there would be no amplification in maxim that non-Newtonian fluids 

conduct is so extensive in an atmosphere that the Newtonian fluid trend textures as 

an exclusion rather than the rule. A large number of examples of such fluids contain 

greases, foams, paints, emulsions, blood at low shear rate, dispersions and suspensions, 

certain oils, mud and polymer melt etc. Rapidly varying technologies are the features of 

the current century and this development is an encouragement toward the area of fluid 

flows. In current century systematic attention has been given to the philosophies of fluid 

mechanics and how to apply them to several applied problems. Biomedical , aeronautical, 

marine, civil and mechanical engineers as well as meteorologists, astrophysicist , space 

researchers, physicists, physical oceanographers, geophysicists and mathematicians have 

used this knowledge to hold an assembly of intricate flow phenomena. The usual complex 

flows confront by these researchers often comprise of two or more junctures in which the 

correspondence between them plays a principal role in monitoring transport process such 

as the exchange of heat and mass and reaction kinetics. A computable study concluded a 

proper theory is vital to realize the physics of the complex flow conduct and also to obtain 

priceless scale-up knowledge for industrial uses. In view of above applications, the analysis 

of non-Newtonian fluids flow gained extensive attention in the modern world. For better 

working, the empirically derived from the Newton's law of viscosity is a first step toward 

the variation of viscosity with shear stress (or with shear rate). In this regard, generalized 

Newtonian fluids(GNF) is the classification of non-Newtonian fluids and described by Bird 

et al. [1]. For GNF, the constitutive relation is 

(1.1) 
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A number of empirical relationships for 'rIh) have been available from raw data. It is more 

suitable and beneficial to make usage of analytical terms of'rlh) that have been establish 

to 'fit ' the experimental data with enough exactness. Thus GNF model is frequently used 

for particular fluids of significance in industry. It may be highlighted that it does have 

severe restrictions. This fluid model cannot provide justification for phenomena including 

visco-elastics unsteady effects, normal forces, or flows that are not controlled by steady 

shear. However , the development of the GNF was existing as an addition ofthe Newtonian 

fluids sustained by experimental data, a dispute based on continuum mechanics indicates 

that 'rIh) is a general first term expression for time-independent state for shear flows as 

presented in [1]. Where the normal stresses in such flows are the related details provided 

by higher order terms. Although the origin of GNF model is the empirical data and 

attained an appropriate basis from recent theories in continuum mechanics. The Sisko 

liquid model is one of the GNF model which overcomes the deficiencies in the power-law 

fluid and which describes the flow behavior in the power-law as well as in upper Newtonian 

regions. Firstly this model was used to demonstrate t he flow behavior of greases which 

indicates regions of higher shear rate. 

1.2 Context and Scope of the Study 

Fluid flow with the transfer of mass and heat analysis have been the subject of consider­

able interest, owing primarily to the applicability of this information to the field of science 

and technology. In particular, mathematical modeling and numerical simulation of non­

Newtonian fluids flow due to stretching surfaces have increased huge desirability because 

of their massive applications related to engineering and industries. For instance, oil re­

coveries, fuel slurries, glass blowing, feod processing melts, sheet processing, refrigeration 

equipment, design of heat-exchangers and turbo-machinery. Specially, this description is 

a motivation towards the enhancement of non-Newtonian fluids flow consideration with 

different moving surfaces and physical effects. However, due to special importance in this 
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direction some work related to non-Newtonian fluids and their mathematical modeling 

can be found in Bird et al. [1]. Major models related to fluid mechanics with non­

Newtonian properties like, Bingham plastic, Power-law, Cross, Ellis, Carreau and Sisko 

etc. Many of these models show a variation of viscosity with shear rate and also predict 

the pseudo-plastic (0 < n < 1) as well as dilatant (n> 1) properties of the fluids. Mean­

while, the simple power-law model for small shear rates has a zero-effective value of the 

apparent viscosity. From rheological point of view, the behavior of non-Newtonian fluids 

will be characterizing by stresses relations with rate of change of strain or strain rates 

by considering least number of functions. Moreover, a large number of fluids possess a 

finite region of viscosity, i.e. , where the velocity shear is very small and negligible away 

from the boundary layer flow(BLF). Hence, the behavior of a real fluid for which the 

viscosity model gives a constant or although small values of apparent viscosity for the 

shear rate near zero. Thus, the shear rate dependency of apparent viscosity classifies to 

the non-Newtonian fluids into numerous types. In this regard, Power-law model is the 

most simplest and a common GNF model but cannot predict the flow features in lower 

or upper Newtonian regions. However, an enough interest has not been compensated 

to model the flow of such GNF and which leads to overcome the gap corresponding to 

related applications of industry and chemical engineering. In a simple way there is no 

single model of non-Newtonian liquids which predict all behaviors of the liquids, whereas 

some attempts are made to discuss the development of some useful relationships amongst 

the types of non-Newtonian fluids. 

A three parameters liquid model namely Sisko liquid is one of the most considerable non­

linear material which possesses the imperious scope of shear rates. This experimental 

three parameters model is more applicable in the region of upper Newtonian and power­

law fluid flows. Enlightening about the results of this liquid model demonstrated in terms 

of pseudo-plastic (shear-thinning) and dilatant (shear-thickening) liquids characteristics. 

Particularly, the pseudo-plastic liquids are those for which the viscosity rises while reduc­

ing the shear rate. This remarkability guarantee about the stress of the study of rheology 
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and an attention towards the rheological conduct of many liquids, likely the ketchup, 

blood and whipped cream etc. Specifically, biorheology demonstrated about the analysis 

practiced by the flow and falsification of biological structures and ingredients got from ac­

tive life customs. To relate the rheological features of materials/frameworks to their cell , 

molecular and supporting properties is an indication towards the significance of biorhe­

ology. Blood rheology is strongly essential for both scholarly and miserable to practical 

determinations. The flow features of blood directly influenced human well-being from 

hemolysis or stenosis up to cardiovascular medical process. From the rheological outlook, 

blood is fundamentally an intricate liquid context, shape changeable particles (commonly 

red cells) deferred in plasma. The analysis of flow behavior of blood emphases princi­

pally on the existing joining between its micro physical fluctuations and rheology. During 

the blood flow and being a pseudo plastic (shear-thinning) fluid, the features of Sisko 

liquid model can be deliberated. For the cause of their admirable collective diminishing 

and scattering nature, Sisko [2] presented this liquid model in 1958 for the first time. 

The investigation of such liquids has increased enthusiasm among researchers in latest 

years as a result of their plenteous innovative and modern applications. Such liquids 

are as frequently assigned to as nonlinear materials (non-Newtonian liquids) . Classic 

non-Newtonian liquids characteristics incorporates pseudo-plastic as well as dilatant vis­

coelasticity etc. For the flow of nonlinear materials there is definitely not a lonely model 

that depicts most of their properties as is proficient for the Newtonian liquid. Thus, most 

of the properties of flow of such liquids can be described with by considering a power-law 

model. Although, Siddiqui et al. [3] demonstrated the problem firstly while using the 

integer values of power- index. In this study a free surface condition, i.e., at x = d is used 

by them, where d is assumed to be the film thickness . Asghar et al. [4] illustrated the 

analytically the same problem for the non-integer values with correct free surface con­

dition. Wang et al. [5] used the lubrication methodology, while studied the electrically 

conducting numerical elucidations. Abelman et al. [6] investigated the time dependent 

Sisko liquid flow with sudden moved plate. The transversely attached magnetic field in 
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the flow of one dimensional time dependent Sisko liquid was elucidated by Molati et al. 

[7]. Hayat et al. [8] elaborated the flow of Sisko liquid on the porous surface. The basic 

BLF equations produced by a velocity due stretching while considering this nonlinear 

materials in order to analyze different features. In this regard, Khan and Shahzad [9] was 

made a first attempt to formulate the flow such materials in Cartesian geometry. Munir 

et al. [10] investigated the impact of non-linear moving surface on forced convective heat 

energy balance in BLF of Sisko fluid. Same materials flows were later on characterized 

with non-linear moving sheet and convective boundary conditions(BCs) by Malik et al. 

[11]. Munir et al. [12] elucidated the features of the said materials in 3D geometry with 

convective heat transfer mechanism over a moving boundary. 

The study of combined heat and mass transfer is a widespread phenomenon and have 

received spectacular engrossment by the research community due to their considerably 

applications in metallurgy process, engineering and industry. Fourier's law of heat conduc­

tion and Fick's law of diffusion are utilized adequately for understanding the phenomena 

of heat and mass transfer. The phenomenon of heat exchange has, no matter how you look 

at it present day and biomedical uses, for example, electronic cooling contraptions, nuclear 

cooling of reactor , control period, heat conduction inside tissues and various others. The 

heat flux pattern anticipated by Fourier [13] has been the preeminent show for perception 

of the heat balance instrument in different conditions. One of the confinements of this rhe­

ological model is that it consistently stimulates to a descriptive imperativeness condition 

which shows that starting agitating impact is immediately experienced with the medium 

beneath idea. Both the scholar and innovative enthusiasm of heat exchange at the atomic 

stage is discerning. Really, a limited time is incorporated into transfer of heat through 

solids, which occurs through effects between essentials carrier 's [ree phonons, electrons, 

moreover, by scattering of these conveys at limits and material deformities. The limited 

speed of heat exchange was seen by many, containing Chester [14], Joseph and Preziosi 

[15] on heat waves are their fundamental work. The free electrons are overwhelming trans­

porters in metals, and where the phonons are preeminent heat bearers for separators and 

6 



semi-conductors as exhibited in [16] . The key downside of the Fourier's law is that it cre­

ates illustrative vitality condition which demonstrates that the entire medium is in a split 

second influenced by the underlying aggravation. To overwhelmed this complication, Cat­

taneo [17] proposed a non-fourier 's law by incorporating relaxation of thermal distinctive 

time duration to escape the absurdity of heat conduction. It is also anticipated that this 

amendment yields a hyperbolic energy balance and enables the exchange of heat due the 

dissemination of thermal waves with constrained speed. Moreover, these finite waves have 

various applications in areas such as nanofluids and skin burns. Christov [18J further intro­

duced the derivative with respect to time in the Maxwell-Cattaneo model in the presence 

of Oldroyd upper-convected derivative which successfully preserves the material-invariant 

formulation. The structural constancy and distinctiveness of the elucidations for heat 

flux equation of Cattaneo-Christov have been substantiated by Ciarletta and Straughan 

[19]. Hayat et al. [20] investigated the impacts of heterogeneous-homogeneous reactions 

on Oldroyd-B liquid in counting of Cattaneo- Christov heat flux model. They determined 

that the temperature field reduces for uplifting values for the time of t hermal relaxation. 

Khan and Khan [21] illustrated the effect of heat flux model namely Cattaneo-Christov 

for 3D flow of Burgers liquids over a bidirectional moving surface. They established that 

the temperature field is remarkably affected by the time of thermal relaxation variation. 

Waqas et al. [22] scrutinized the features of heat flux model, Cattaneo-Christov model 

in the flow of generalized Burgers liquid with the additional effect of inconstant thermal 

conductivity. Sui et al. [23] examined the impact of Cattaneo-Christov heat and mass 

flux models of upper-convected Maxwell nano-liquid flow over a moving boundary in the 

conjunction with slip velocity. The features of Cattaneo-Christov heat flux model on 

MHD viscoelastic flow and balance of heat past an erect moving boundary is explored by 

Liu et al. [24]. Newly, the effect of chemical practices on flow of 3D Burgers liquid with 

application of Cattaneo-Christov phenomenon has been studied by Khan et al. [25] . 

With the swift worldwide developments in science and technology such as elevated power 

outputs, high operating speeds, miniaturization of devices and enhancing the efficiency 
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of energy transfer and saving energy are posing new challenges and thus became as the 

top priority in numerous industrial applications. Nowadays, cooling technologies such 

as enhancing the surface area by fins, dual-phase heat transfer and micro-channel cool­

ing techniques have reached their technological limits due to the poor intrinsic thermal 

conductivity of common coolants. As a result, this has led researchers and engineers to 

search new innovative cooling liquids with superior thermo physical properties that will 

able to empty the substantial heat created to preserve the temperature of electrical ap­

paratuses less than a definite suggested level. Developments in nanotechnology has led to 

a new class of cooling liquids referred as nano-fluids which has become a hotly debated 

topic in the domain of heat transfer. Nano-fluids have unbounded thermal management 

advantages than their base fluids and are far more stable than millimeter or micrometer 

sized solid-liquid suspensions. In 1995, Choi [26] was the first name who introduced fluid 

with nano-particles. Much research work has been carried out with this new phenomenon. 

Additionally, balance of heat utilization due to nano-liquids as coolant medium and has 

appeared as one of the operating procedures in order to complete high heat degeneracy. 

This holds prospective uses in boundaries like squeezing heated exchanges and heat pipes 

etc. 

Buongiorno [27] revealed that the solo phase model creates clash with the experimental 

discernment and unalloyed liquid associations, (for instance, Dittus- Boelter's) to foresee 

the nano-liquid coefficient of heat exchange. At that point a replacement of model that 

streaks out the insufficiencies of the scattering or solo phase models (DPM models) was 

formed. He believed about seven slip apparatuses, at that point recognized that lim­

ited thermophoresis and Brownian diffusion are the prodigious slip appliances in nano­

liquids. With these outcomes as a foundation, he anticipated a non-homogeneous two 

phase model of equilibrium for convective exchange in nano-liquids. One of the key erec­

tions of this innovative model is that the influence of the comparative velocity amongst 

nano-particles and base liquid is illustrated more systematically than in the models of 

scattering. Kuznetsov and Nield [28] explored the impact of nanoparticles on natural 
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convective BLF over a vertical plate. They perceived that the reduced Nusselt number 

declines for each incremented value of the Nb and Nt. Turkyilmazoglu [29] described the 

impact of MHD slip flow for heat and mass balance utilizing the nano-particles. Nadeem 

et al. [30] illustrated the effects of nano-particle on the Oldroyd-B over a moving sur­

face. Kuznetsov and Nield [31] explored the characteristics of nano-particles for natural 

convective BLF past a moving sheet. Khan et al. [32] analytically framed the effect of 

generation/absorption on flow of 3D Oldroyd-B in the presence of nano-particles. How­

ever, many research works [33,34] are carried out to explain the nanofluid flow conducts. 

Rehman et al. [35] investigated the characteristics of entropy generation and new mass 

flux conditions for non-Newtonian fluid over a moving boundary. Hayat et al. [36] illus­

trated the impact of magneto nano-particles for the Burgers fluid with convective Bes. 

The process of synergies between two or more chemicals to produce one or more new 

chemical compound is known as a chemical reaction. An essential bit of development, of 

culture, and an unavoidable truth itself is the strong association with chemical reactions. 

Blasting fills, efining iron, stoneware and making glass, mixing blend, and manufacturing 

of wine are among various instances of activities solidifying chemical reactions and used for 

the next some year in many numbers as well. The modification in physical sense is totally 

recognized from compound response. Physical variations join change of state, for instance, 

ice liquefying to water and water disseminating to vapor. If a physical amendment occurs, 

the physical characteristics of a material will change, anyway its compound character will 

proceed as previously. As needs be, investigation and speculation, the two establishments 

of concoction science in the present world, laid back described the possibility of chemi­

cal reaction. The chemical reaction is additionally delegated heterogeneous-homogeneous 

reactions. Homogeneous reaction is one the chemical reaction, where the reactants and 

items are in a comparable stage, however, the heterogeneous reaction is one where the 

reactants are in no less than two phases. Reaction that happen on the surface of a stim­

ulus of a substitute stage are furthermore heterogeneous. The joint efforts between the 

heterogeneous-homogeneous reactions are incredibly, amazingly troublesome and have be-
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come expanded thought , yet it is as yet uncertain. 

Based on physical structure (i.e. length, weight, architectural pattern, color, temperature, 

size, shape, distribution, language, disease, appearance, radioactivity, income etc.) the 

objects in such a reaction are described through heterogeneous and homogeneous reac­

tions. Chemical reaction can appear on catalyst surface, i. e., (heterogeneous situation of 

reactions) as well as in bulk i.e. (homogeneous situation of reactions). Since reactant 

product relies merely on the type of reactant species therefore, homogeneous processes 

are more simple than heterogeneous processes. However, heterogeneous processes sustain 

practical significance as it communicates dependency of the product on type of distinct 

reactant species. Corrosion phenomenon, electrolytic cells and batteries involve such reac­

tions. The models regarding heterogeneous and homogeneous situation of reactions with 

same/unequal diffusivities are suggested by Chaudhary and Merkin [37, 38]. Pizza et al. 

[39, 40] demonstrated the capacity of .chemically covered dividers in directing trademark 

fire dangers of meso/littler scale channels. Wang et al. [41] revealed about the response 

power among synergist and non-reactant combustors . It has been demonstrated that 

these affiliations consolidate the progression of homogeneous reaction since of artificially 

impelled exothermicity and the controller of heterogeneous reaction on the homogeneous 

reaction generally realized by contention of empowers, in addition, oxidizers related to 

heterogeneous reaction against homogeneous reaction is outlined by Li et al. [42]. The 

results exhibited that the synergist combustor demonstrated a high security and feeble 

response power. Nandkeolyar et al. [43] reported the importance of heterogeneous and 

homogeneous situation of reactions in stretchable flow of convective viscous liquid subject 

to viscous dissipation. Impact of non-Fourier theory in Williamson liquid flow through 

heterogeneous and homogeneous situation of reactions is addressed by Ramzan et al. [44]. 

Qayyum et al. [45] explored melting heat and inclined MHD aspects in chemically react­

ing hyperbolic-tangent liquid towards nonlinear moving surface. 

Thermal radiation has an extensive role in high temperature practices. It has a large 

number of uses in different construct trades for the intention of nuclear power plants. 
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This concept is also prevalent in boilers, furnaces, cooling process of engine and many 

others. F\lrther , the thermal radiation depict has considerable role in aircraft, space ve­

hicles, gas turbines, nuclear plants and for satellites devices etc. Rahman et al. [46] 

examined the thermally radiative and effect of heat transport to modified second grade 

liquid. Kothandapani and Prakash [47] discussed the effects on MHD radiative flow of 

Williamson nanoliquid in a asymmetric channel. Seddeek and Abdel [48] reported ther­

mally radiative flow over a moving surface and variable heat flux transfer with impact 

of thermal diffusivity. Khan et al. [49] presented the radiative flow of magneto-Burgers 

nanofluid with gyrotactic microorganisms. Additionally, Khan et al. [50] reported the 

convective heating MHD 3D flow of Eyring-Powell nanofluid with nonlinear thermal ra­

diation. 

The consideration of BLF problem needs the Bes which are both specified at surface 

heat flux or specified at simple surfaces. But some of the fluid flow problems, where the 

t ransfer of heat is t reated in the form of surface dependent temperature are considered. 

The situation with Newtonian heating accruing and is acknowledged as conjugate convec­

tive flow. The formation of Newtonian heating arises in numerous significant engineering 

devices. The requirement of high temperature in the process of many chemical, engineer­

ing and so many other fields has broad applications. For example, gas turbine, storage 

of chemical energy and nuclear plants, etc. Further, it is justified that there are many 

applications of convective conditions like in the field of engineering and industries. For 

example, transpiration of cooling procedure, material aeration and so forth. This impor­

tance has convinced researchers to focus such types of heat transfer. No attempts were 

made to examine the nano-fluid flows with convective surfaces conditions. Recently BLF 

problems with the convective Bes was explored by Aziz [51]. Natural convective BLF 

over a convectively vertical heated surface is described by Aziz and Khan [52]. Hayat et 

al. [53] reported the heat exchange of an upper convected Maxwell liquid over a moving 

sheet with convective Bes. Moreover, the convective flow conditions on both transfer 

of mass and heat is utilized by Imtiaz et al. [54] in their recent work of flow of mixed 
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convection regarding Casson nano-liquid over a moving cylinder with convective BCs. Re­

cently, Khan et al. [55] discussed the flow of unsteady with convective surfaces condit ions 

and they concluded that whenever the values of Biot numbers increases both the profiles 

(temperature and concentration) show uplifting behavior. Additionally, Waqas et al. [56] 

addressed the convective heat transfer with micropolar liquid and mixed convection MHD 

flow because of the nonlinear stretching surface. 

The flow pattern appearing in the presence of time dependency is more effective as com­

pared with steady flow. A significant time-dependent BL problem was deliberated by 

Todd [57] for a constant velocity free stream passing through a fixed semi-infinite flat 

plate. The illustration reported by Ishak et al. [58] demonstrates the time dependent 

stretching sheet with given wall temperature. Analytical examination of unsteady with 

the heat exchange mechanism of an Oldroyd-B nanofluid over an unsteady stretching 

sheet was ended by Zhang et al. [59] . Recently the transient flow along with transfer 

of heat in power-law liquid is inspected by Ahmed et al. [60] where the flow is due to 

radially stretching surface. As of late Zhang et al. [61] displayed the time dependent flow 

and heat exchange of power-law nanoliquid film over an extending sheet with power-law 

speed slip and inconstant magnetic field impacts. 

Many mechanical processes are incomplete without the flow of liquids due to continuous 

moving boundaries. For instance, sustenance stuff preparing, wire and fiber covering, ex­

pulsion process, polymer handling, substance preparing hardware, outline of the transfer 

of heat and so on. In this context, Crane [62] was initiated this phenomenon of flow of 

liquids due to linear stretched surface. His work has stretched out from various point of 

views together with physical prominence of the balance of mass and heat along flat plate, 

influence of injection/suction, magnetic field etc. Gupta and Gupta [63] have incorporated 

the physical impact of suction/injection on the flow of liquids due to stretching boundary. 

Ahmad and Asghar [64] utilized the importance of hyperbolic stretching boundary and 

modeled the flow equations along with transfer of heat and then discussed the numerical 

solution in detail. Turkyilmazoglu [65] continued the same flow problem while considering 
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the deforming bodies in 2D and 3D geometries with magnetic field and then examined the 

exact solutions. Deforming body convinced by the flow and transfer of heat through two­

three dimensional surfaces was presented by Thrkyilmazoglu [66]. Thrkyilmazoglu [67] 

incorporated the significance of radiation and magnetic field while considering the flow of 

liquids due to moving boundary. In addition, Mat Yasin et al. [68] discussed the flow of 

two-phase dusty liquid with physical effect of MHD while incorporated the importance of 

modeler of heat on distorting isothermal surfaces. In a little while back, Turkyilmazoglu 

[69] examined the mathematical existence of the flow of micropolar liquid placed over a 

heated or cooled stretched surface in the presence of sink/source and magnetic field. 

Reporting about the curvature effect is carried out to examine the flow behavior over a 

curved geometry rather than the planner surface is one of the major interest of many ex­

aminers today. In this regard, a very less attention has been made to explain the features 

of liquids flow over moving bended surfaces and the flow spirit inside the BL is not more 

insignificant as on account of moving sheet. Sajid et al. [70] considered the flow of viscous 

liquid over a bended moving surface and discovered that MBLT raises in case of bended 

moving surface as compared to flat surface. Rosca and Pop [71] inspected the BLF over 

time-dependent permeable shrinking/ stretching sheet. Additionally, it is also intensely 

perceived that in case of curved surface as compared to flat boundary the drag force is 

minor. This phenomenon was then further elaborated by Sajid et al. [72]. Furthermore, 

Abbas et al. [73] demonstrated heat generation, slip effect and thermally radiated BLF 

on curved surface. 

1.3 Numerical Methods 

In this section, the methods that are followed for the solution of the entire flow, heat and 

mass problems in the thesis are presented with a brief explanation and basics procedures. 

All those methods that are considered in this thesis are illustrated as follows: 
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1.3.1 Runge-Kutta-Fehlberg Method 

In mathematics, one of the algorithm through which a numerical solution of initial 

value problems (IVPs) is approximated is known as RK45-Fehlberg method (or Fehlberg 

method). This method was established by the German mathematician Erwin Fehlberg 

which is constructed as one of the large class of RK methods. However, RK45-Fehlberg 

is an mathematical approach of order 0(h4) with an error estimator of order 0(h5 ). By 

accomplishment of one additional calculation, the error in the result can be assessed and 

controlled by using the higher-order embedded method that permits for an adaptive step 

size to be determined inevitably. Naturally, the main drawback of RK4 and RK5 is the 

evaluation of the number of functions at each step and which is the most important step 

for this approach. For instance, by considering a common approach which uses both 

fourth and fifth order RK methods instead of separate evaluations of functions. Since 

to avoid such difficulties of computational burden the RK-Fehlberg method is utilized in 

RK5 method that uses the function evaluations provided by its associated RK4 method. 

This will decrease the number of function evaluations per step from 10 to 6. 

Let an IVP be specified as follows 

dy 
dx = h(x, y) , y(xo) = Yo · (1.2) 

To find an approximate continuous solution of Eq. (1.2), the function h(x, y) and the 

values of .'1;0 and Yo must be known to us. Thus the subsequent six functional values are 

defined as follows: 

(1.3) 

(1.4) 

(1.5) 
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(1.6) 

(1.7) 

(1.8) 

Thus by using the above six functional values to approximate the solution we need to 

use Runge-Kutta fourth order method, i.e., 

(1.9) 

Furthermore, Runge-Kutta fifth order is implemented for a better value of the approx-

imation to the solution. This relation is given as follows: 

(1.10) 

The scalar ml can be multiplying with the original step size h to obtain the optimal 

step size mlh. Where the scalar can be defined as: 

(1.11) 

Since, in order to compute the approximate solution of higher order ODEs we will reduce 

it into ODEs in first order. Main procedures regarding the approximate solution of higher 

order ODEs are as follows. 

Let: 

(1.12) 

with associated transformed BCs are defined as: 

(1.13) 
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1.3.2 Bvp4c Built in Solver 

The bvp4c is a built in MATLAB function which comprises a finite difference technique 

that trappings the 3-stage Lobatto IlIa formula. This formula is usually known as the 

collocation formula where the collocation polynomial offers a Cl continuous elucidation 

that is the fourth order accurate consistently in the interval of integration. The residual of 

the continuous solution guaranteed the mesh selection and error control. Of the division 

of the interval of integration into sub-intervals the collocation techniques use the mesh 

points. The numerical solution of a global system of algebraic equations determined by 

this solver with the conjunction of imposing BCs as well as the collocation conditions on 

all the subintervals. For solving such system of algebraic equations, Newton's method 

is applied, which needs the knowledge of the partial derivatives. In the package these 

derivatives are demarcat ed approximately, by using the finite difference scheme. Error 

estimation is carried out of the numerical solution on each sub-intervals. The solver will 

adapt the mesh in case when the numerical solution does not fulfill the tolerance criteria 

and the process will continue until the tolerance criteria is satisfied. The points of first 

mesh as well as a first approximation of the solution will be mostly provided by the user. 

In this regard , Kierzenka and Shampine [74J developed the core software for the solution 

of large class of two-point BVPs of the form. 

and a set of BCs 

d
l
y 

= h(X,y,Pl ),a*::; x::; b*, 
e x 

0= g2(y(a*), y(b*), PI)' 

(1.14) 

(1.15) 

where h is continuous and Lipschitz function in y and PI represents an unknown param-

eters which arise naturally during the modeling of the physical problem which may be 

introduce as part of the procedure of elucidating a BVP. So S2(X) is a piecewise-smooth 

function which represents the approximate solution of a BVP. This is a third degree poly-

nomial over a respective sub-interval [xn' Xn*+lJ of a mesh a* = Xo < Xl '" < x~ = b* and 

16 



which also satisfies the corresponding Bes 

(1.16) 

At the end points and the midpoint of each subinterval, the same polynomial should have 

to satisfied the ODE's 

S;(Xi) = h(Xi, S2(Xi),PI), 

S;(xi+d2) = h(xi+d2, S2(Xi+d2),PI), 

S;(Xi+I) = h(Xi+I, S2(Xi+I),PI), 

S;(Xn+l) = h(Xn+b S2(Xn+1),PI). 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

As pointed out before, the collocation conditions at the end of the subinterval infer that 

S2(X) E GI[a, bJ. All together these conditions results in an arrangement of non-linear 

algebraic equations for the coefficients of the third degree polynomials that make up S2(X). 

At the point when the subt le elements are worked out , it is discovered that this function 

S2(X) is the normal consistent extension of the Simpson relation. In like manner, we 

can see this technique either as a collocation technique or as a finite difference technique 

with a perpetual augmentation. As S2(X) is declared a fourth order guess to a distinct 

solution y(x), i.e., Il y(x) - S2(x)11 ~ G*h4. Where h denotes the maximum of step sizes 

hi = Xi+l - Xn and G* represents a constant . We can estimate S2(X) with the help of 

bvp4c routine at each x or set of x in [a*, b*J. The error estimation regarding this routine 

is based on the mesh selection and residual of S2(X) and defined as: 

(1.21) 
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1.3.3 BVP Traprich Method (Richardson's Extrapolations) 

Through various numerical schemes, the solution of BVP is one of the most attraction as 

related to all physical phenomenon. The sub methods with built in commands for meth­

ods, like BVP midrich, BVP traprich and RK4 methods etc., are very helpful techniques 

while using Maple software. BVP traprich is one of these methods which uses Richardson 

extrapolation for the solution of BVP. Be that as it may, numerous estimation systems in 

which one first picks h and after that creates a guess E(h) to some coveted quantity E. 

Regularly the request of the error created by the system is known. As it were, 

(1.22) 

with K 1 , K~, K~ , . .. being some other (usually unknown) constants. For instance, E at 

some final time tf , E might be the value of y(tf ) for an IVP. 

dy 
dx = h (t, y) , y(to) = Yo· (1.23) 

Formerly E(h) might be the approximation to y(tf) formed by Euler 's method with h. In 

this case l = 1. If the upgraded Euler 's method is utilized with l = 2. If Runge-Kutta is 

utilized with l = 4. The notation O(hl+l) is predictably used to view for "a sum of terms 

of order hi+! and greater". So the beyond equation might be written 

(1.24) 

If we somehow happened to drop the, ideally modest, term O(hl+l) from this equation, 

we would have one linear equation, E = E(h) + K 1hl , in the two unknowns E and K 1. 

Yet, this is extremely a different condition for each unique estimation of h. We can get 

a second such equation just by using an alternate advance size. At that point the two 

equations might be tackled , yielding estimated estimations of E and K 1 . This estimated 

approximation of E comprises another enhanced approximation, E1(h), for the correct E. 
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We do this now. Taking 21 times 

(1.25) 

(note that, in equations (1.22) and (1.24), the notation "O(hl+l)" is incorporated to view 

for two dissimilar sums of terms of order hl+l and greater) and subtracting equation (1.22) 

provides 

(1.26) 

(1.27) 

Hence if we define 

(1.28) 

then 

(1.29) 

what 's more, we have delivered an approximation whose error is of order l+ 1 one superior 

to E(h)' s. One broadly utilized numerical reconciliation calculation, called Romberg 

integration, which relates this formula as often as possible to the trapezoidal rule. 

1.4 Basic Physical Laws 

The flow of fluid characteristics are generally anticipated without actually quantifying it 

while considering the theory of fluid mechanics. On the off chance that the underlying 

quantities of certain base number of amounts are known, at that point the qualities at 

some different areas can be obtained by utilizing certain principal connections. But, 

they are very considerably local in the sense that they cannot be used for different set 

of conditions. Such associations are called as exact laws/formulae and there are sure 
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connections which are for the most part suitable in a general flow distribution , falling 

under t he class of 'fundamental laws' . Regarding to the idea of fluid mechanics, there are 

three most noteworthy fundamental laws in particular. 

1.4.1 Conservation of Mass 

Basic fluid mechanic laws direct that mass is preserved inside a control volume (CV) for 

constant density liquids. In this way, the total mass entering the CV must be equivalent 

to the total mass leaving the CV in addition to the mass gathering inside the control 

volume. 

(
mass of flUid) ( flux of fluid ) (sources or ) 

in volume 6" V = in/ out of volume 6" V + sinks in 6" V . 

The general form of conservation of any thing is given by the following equation 

(1.30) 

This general relation in continuum mechanics demonstrates all the physical conservation 

laws. For <I> = PVi, F = 0 and with no sink or source, i.e., rl = O. The Eq. (1.30) can be 

converted in the subsequent form and is regularly known as continuity equation. 

(1.31) 

1.4.2 Conservation of Momentum 

Momentum conservation or force balance can be inferred in the very similar way, however 

the momentum relation is a vector distribution. Accordingly, the total of momentum per 

unit volume is <I> = PVi' Other than advection momentum, the other approach to variance 

the momentum in our representative volume element (RVE) is to apply powers on it . 

These powers come in two characters. In the first place, there is the pressure that follows 
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up on the outward of the volume with neighborhood constrain h = T ' dS. As stress is 

fundamentally force per unit area, the pressure can likewise be expected as a transition of 

force or F = -T (the negative sign guarantees that if the net power on the volume focuses 

on, the momentum rises). The second force impacts the volume, are any body forces , for 

example, gravity. The body constrain acts a reason for force, in this way rl = pg* where 

g* is the net speeding up. Exchanging into Eq. (1.30) characterized in past area which 

produces conservation of momentum. This is characterized as: 

(
Total momentum) ( Exchange of momentum ) 

in the CV + through the boundary of the CV 

(
Forces acting on) (BOdY forces) 

the boundary + on the CV ' 

( 1.32) 

This equation can likewise be determined (maybe more basically) in view of the continuous 

type of Newton's Law h = ma*. The most straightforward approach to know Eq. (1.32) 

is to think regarding everyone of the three Cartesian components of the linear which must 

be preserved exclusively. Utilizing index representation, Eq. (1.32) can be expressed for 

the 'i th segment of the momentum as 

(1.33) 

where i = 1,2,3 and summation is supposed over j = 1,2,3. By considering mass balance 

relation, Eq. (1.32) can also be given as below: 

av ( ) 1 * -+ V ·'\1 V=-'\1·T+g. at p 
(1.34) 

Note that (V · '\1)V is a non-linear advection momentum t erm and which clues to much 

of the considerable conduct in fluid mechanics. 
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1.4.3 Conservation of Energy 

The principle of first law of thermodynamics is the energy conservation statement. As 

indicated by this physical statement that any rate of change of energy in the CV must be 

produced by the rates of energy flow into or out of the volume. The heat balance and the 

work are as of now included and the main other contribution must be related with the 

mass flow in and out, which conveys energy with it. The desired nature of the condition 

will be presented as follows: 

(
rate of Change ) ( rate of heat) ( rate of ) 

of energy in ~ V = added to ~ V - work done ~ V 

+ (rate of energy) _ ( rate of energy flow) . 
flow into ~ V out of ~ V 

For a distinct phase material <I> = pCpT is the quantity of heat per unit volume. The flux 

of heat has two components owing to conduction and transport. The heat flux F = -k\lT 

is considered in the absence of transport. Moreover, \IT and heat flows are opposite in 

direction, i.e. , occurring of heat flow from hot cold. Where the transport flux is pCpTV. 

At the end, dissimilar mass, heat can be produced in a region owing to expressions like 

viscous dissipation or radioactive decay or shear and viscous heating. We will simply lump 

all the source terms into ri. Accordingly the least difficult protection of heat equation is 

can be obtained by putting these terms and relations into Eq. (1.30) 

(1.35) 

For the constant value of k and Cp, this equation can also be modified using Eq. (1.35) 

as: 
aT 2 rl - + v · . \IT = al\l T + -m t PCp' 

(1.36) 

DvT = aT + v . \IT. 
Dt at 

(1.37) 
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The left hand side is usually known as the material derivative while temperature is ob­

served in with some velocity in a moving frame. 

1.4.4 Conservation of Concentration 

According to law of conservation of concentration, the rise in the total mass of species 

i in CV is equal to the net mass flow into CV plus the development rate of species in 

CV. However, we can have a diffusion component to the continuity equation, if we are 

considering different chemical species that can interact . For an arbitrary volume of some 

chemical species i, the mass-balance is: 

(
mass of species i) = (flUX of species i in/out) ( mass produced) 
in volume b. V volume b. V + by reaction b. V ' 

which can be expressed as: 

(1.38) 

For a moving flow, however) the flux has a diffusion and a convection/ advection component 

(1.39) 

which would then allow Eq. (1.38) to be 

aCi - + V'. c·v = V'. (DV'c·) +rl at ~ ~, 
(1.40) 

which is a convection-diffusion equation. 
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1.4.5 Curvilinear Coordinates 

Let us suppose the rectangular Cartesian coordinates (Zl, Z2 , Z3 ) of point P2 in space and 

let (jl, j2, j3) will be the three scalar point functions such that 

(1.41) 

If the functions and their partial derivatives as mentioned above are continuous, then for 

transformation the Jacobian J can be defined as: 

!!iJ. !!iJ. !!iJ. 

J = 8(jl,j2,j3) = 
8zI 8Z2 8Z3 

!!h. !!h. !!h. 
8(Zl, Z2, Z3 ) 8z1 8Z2 DZ3 

(1.42) 

!til. !til. !til. 
8z1 DZ2 DZ3 

If this jacobian is not equal to zero, then we can defined one-to-one correspondence be-

tween the pairs (Zl, Z2, Z3 ) and (jl , j2, j3). So for the point P2 can be defined distinctively 

for the pairs (jl,j2,j3). Thus the curvilinear coordinates of a point P2 are commonly 

written in the form of (jl ,j2, j3). Let us consider jl, j2 and j3 be the curvilinear orthog­

onal coordinates which can derived from the Cartesian coordinates Zl, Z2 and Z3 in the 

subsequent form: 

or 

jl =jl((Z1, Z2, Z3)), 

j2 = h((z1, Z2, Z3 )), 

j3 = j3((Z1, Z2, Z3 )) , 

We assume that Eq. (1.43b) has a unique inverse 
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If hand j3 are kept constant , the vector z = z(jd represents the coordinate curve in 

space and a tangent vector to this curve is j1 " 88z " The growing of j1 is a result of a unit 
JI 

vector in that direction is 

and in the same way 

8z/8j1 
e1 = 18z/8j11" 

8z 
8j2 = e2 h2, 

8z 
-8" = e3 h3, 

)3 

(1.45) 

(1.46) 

(1.47) 

(1.48) 

with 18z/8j2 1 = h2 and 18z /8j3 1 = h3, where these hI , h2 and h3 are known as scale 

factors" 

Moreover, 

d 8z d" 8z d" 8z d" h d" h d" h d" z = -8" '01 + -8" '02 + -8" '03 = 1 'J1 e1 + 2 'J2e2 + 3 'J3e3" 
)1 )2 )3 

(1.49) 

If components VI, V2 and V3 of V in the direction of rising j1 , j2 and 33, then \1" V, \1 x V, 

\12 and \1 ¢ are specified curvilinear coordinates as: 

(1.50) 

(1.51) 

(1.52) 
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1 o¢ 1 o¢ 1 o¢ 
\1¢ = -h ~el + -h ~e2 + -, ~e3' 

1 UJI 2 UJ2 13 UJ3 
(1.53) 

1.4.6 Continuity Equation for Curved Surface 

From the general law of conservation as defined through Eq. (1.9) in section 1.3.1, the 

continuity equation with rl = 0 in curvilinear coordinates is defined as: 

opV at + \1 . pV = O. (1.54) 

Using Eq. (1.50), we get 

(1.55) 

1.4.7 Momentum Equation for Curved Surface 

The momentum equation in curvilinear coordinates can be defined through the follow­

ing equation while using the general Eq. (1.30) in section 1.3.1. The new established 

momentum equation is 

(1.56) 

where the components of V x (\1 x V) are defined below: 

( 1.58) 

(1.59) 
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The stress tensor in the form of divergence components are: 

+ 721 8h1 + 731 8h1 _ 722 8h2 _ 733 8h3 (1.60) 
h1h2 8j2 h1h3 8j3 h1h2 8j2 h1h3 8j1 ' 

(\7 . 7h = h ~ I [ 8~ (h2 h3712 ) + 8~ (h3 h1722 ) + 8~ (h1h2732)] 
1 2 ~3 J1 J2 J3 

732 8h2 712 8h2 733 8h3 711 8h1 +--+ -- - -- - -- (1.61) 
h2h3 8j3 h2h1 8j1 h2h3 8j2 h2h1 8j2 ' 

(\7 . 7h = h ~ h [ 8~ (h2 h3713) + 8~ (h3 h1723 ) + 8~ (h1h2733 )] 
1 2 3 J1 J2 J3 

713 8h3 723 8h3 711 8h1 722 8h2 +-- -- + ---- - ---- - ----. 
h3h1 8j1 h3h2 8j2 h3 h1 8j3 h3h2 8j3 

(1.62) 

The components of the stress of Cauchy-Poisson law in emblematic form is defined as 

follows: 
1 8V1 V2 8h1 V3 8h1 

e 11 = -- + ---- + ----
hI 8j1 h1h2 8j2 h3h1 8j3 ' 

(1.63) 

1 8V2 V3 8h2 VI 8h2 
e22 = -- + ---- + ----

h2 8j2 h2h3 8j3 h1h2 8jl ' 
(1.64) 

1 8V3 VI 8h3 V2 8h3 
e33 = -- + ---- + ----

h3 8iJ h3h1 8j1 h2h3 8j2 ' 
(1.65) 

(1.66) 

(1.67) 

(1.68) 

Therefore, the components of momentum equation are given below: 
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(1.70) 

(1.71) 

1.4.8 Boundary Layer Equations for Curved Surface 

The equation for moving curved sheet will be derived in detail in chapter 9 while using 

the following coiled circle with radius R, then the vector 

(1.72) 

Thus, the scale factors for the BLF equation can be defined as follows: 

(1.73) 
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1.4.9 Energy Equation for Curved Surface 

The energy equation defined in section 1.3.3 in curvilinear coordinates in conjunction of 

viscous dissipation rl = T . L can be defined while using Eqs. (1.52) and (1.53) as: 

(1.74) 

then 

k { a ( h2h3 aT ) a ( h3h1 aT ) a ( hlh2 aT ) } 
= hlh2h3 ajl h;- aj1 + aj2 h; aj2 + aj3 ----;:;; aj3 

+77 [2( e~l + e~2 + e~3) + e~3 + e~3 + e~2l (1. 75) 

1.4.10 Concentration Equation for Curved Surface 

The concentration equation defined in section 1.3.4 in curvilinear coordinates with r l = a 
can be defined while using Eqs. (1.52) and (1.53) as 

(1.76) 

1.5 The Sisko Rheological Model 

In this dissertation we study the energy and mass balance problems with a simple three­

parameters fluid model equation which was proposed by Sisko [2] in 1958 based on the 

concept of additive Newtonian and non-Newtonian stresses. The consideration of Sisko 

fluid is significant due to the shear-thinning /shear-thickening properties captured even in 

steady flows past rigid surfaces. Although it is the combination of viscous and power-law 

materials, but the properties of rate type fluids (relaxation/retardation times) cannot be 
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predicted. From the limitation point of view, this model is not explaining the suddenly 

increase phenomenon. However, the empirical relationship in Eq. (1.1) is modified for 

Sisko fluid model as and is given in the subsequent relation: 

T = -\1p + S, (1. 77) 

where S is denotes extra stress tensor, and is defined by the following equation 

(1. 78) 

where, b represents consistency, n is the Power-law index, which is a measure of non­

Newtonian nature of the fluid, a shear rate and 'Y is the shear rate consistency. However, 

the shear rate 'Y is further defined as follows: 

'Y = ~tr(An , (1.79) 

where Al is given as follows: 

Al = (gradV) + (gradV)T. (1.80) 

This model, which joins low and intermediary shear (power-law) with high shear New­

tonian restricting conduct, was found to give the best in the general portrayal of the 

flow bends for all shear-thinning slurries, at all strong loadings, over the whole estimated 

scope of shear rates. This outcome by Sisko is critical in the light of the fact that this 

model clearly works for most of non-Newtonian solid-fluid suspensions, and furthermore, 

it is pertinent over the scope of shear rate applications for pipeline transportation of the 

suspensions. Moreover, the pseudo-plasticity or shear-thinning behavior is illustrated as 

a reduction in the viscosity of the liquid with an enrichment in the shear rate. Some 

common materials that undergo the property of shear-thinning, for instance nail polish, 
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ketchup, silicone oil and whipped cream etc. The dilatant or shear-thickening trend is 

then demonstrated as being a reverse trend to shear-thinning. That means, an uplift in 

the liquid viscosity with a raise in the shear rate and are also called as thickening liquids. 

A common example of a thickening or dilatant liquid materials is the cornstarch solution 

in water. 

1.6 Research Objectives 

The research carried out in this dissertation is a contribution toward the recent develop­

ment in science and technology while considering the generalized Newtonian Sisko liquid 

flow over moving boundaries. Therefore, due to such importance the mathematical mod­

eling and numerical simulation of generalized Newtonian Sisko fluid flow over planner and 

curved stretching surfaces with heat and mass balances are the main target of this thesis. 

Thus, it could be a better way to demonstrate the outcomes of the proposed problem 

through different numerical schemes. However, the objective of this illustration provide 

important applications in the areas of science and technology. Thus this study embarks 

on the following objectives: 

• Mathematical modeling of Sisko fluid flow over planner as well as curved stretching 

sheet is provided. 

• The heat and mass transfer analysis is performed in the presence of different physical 

effects. 

• Numerical illustrations are carried out to demonstrate different characteristics of 

flow, heat and mass transfer phenomena. 

1.7 Contribution in Thesis 

The work in this thesis will investigate the mathematical modeling and numerical compu­

tations with flow physics of Sisko fluid occurring in specific types of stretching geometries. 
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Indeed, before this initiation there had been no existing studies concerning the BLF of 

the Sisko rheological model with different physical aspects. For instance, this model did 

not discuss yet properly with 3D time dependent flow with many other physical effects, 

like the impacts of chemical reaction, nano-fluid, thermal radiation, double diffusion etc. 

However, main contributions in this thesis include the mathematical modeling and nu­

merical simulations for the flow over stretching surfaces with different circumstances. The 

substantial contents of this thesis has already been published. The work in this thesis is 

organized as follows: 

Chapter 1: This chapter is an introductory chapter containing the historical background, 

research motivation, scope and objective of the current research work. 

Chapter 2: Regarding the aforementioned literature, the perseverance of this chapter 

is to deeply scrutinize the impact of generalized Fourier 's and Fick's laws for the flow 

of Sisko fluid in the existence of thermal conductivity which depends upon temperature. 

The physical problem is modeled utilizing a system of highly partially coupled non-linear 

PDEs and are then reduced into highly coupled non-linear ODEs by means of proper 

transformations. These equations along with the corresponding BCs are solved with the 

implementation of built-in routine bvp4c while coded in MATLAB. The key outputs of 

this portion are published in "J. Mol. Liq., 224, (2016) 1016-1021". 

Chapter 3: This chapter explores the characteristics of magneto nano-particles in the 

Sisko fluid flow over a bidirectional moving boundary accounting of non-linear radiation. 

Additionally, the convective surface and new mass flux constraints are imposed on the 

boundary. A tested suitable variables for conversion are employed to alter the PDEs into 

non-linear ODEs. These non-linear equations along with the appropriate BCs are then 

solved by utilizing the MATLAB function bvp4c and shooting technique with the RK 

Fehlberg method. The variation of pertinent flow appearing parameters on the profiles 

of velocities, temperature and concentration is demonstrated graphically and discussed in 

detail. Findings of this chapter are published in "J. Braz. Soc. Mech. Sci. Eng., 

39(11), (2017) 4475-4487". 
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Chapter 4: The incentive for considering into description Sisko liquid flow in t his chapter 

is that this model can precise much typical particularity of Newtonian and non-Newtonian 

liquids by selecting dissimilar physical parameters. In assessment of the argument in pre­

ceding works, the persistence of this chapter is to scrutinize the chemically-reactive flow 

of Sisko liquid. The problem is first modeled and then construction of non-dimensional 

foremost equations is accomplished. The time-independent 3D flow of Sisko liquid with 

non-Fouriers law (Cattaneo-Christove) heat flux is deliberated. The chemical reaction 

namely the heterogeneous-homogeneous is also employed to examine the recommended 

problem. The numerical approach is implemented to approximate the solution of the 

problem with relevant BCs. The results of this chapter are available in "J. Mol. Liq., 

238, (2017) 19-26". 

Chapter 5: The leading objective of this chapter is to incorporate the unsteady 3D 

BLF of Sisko fluid and heat transfer by imposing convective conditions over a stretch­

ing surface. The transformed problem is obtained using newly modeled transformations. 

The results obtained are the output of the shooting method along with RK-45 Fehlberg 

method. Meanwhile the solutions are portrayed in the form of the velocity and tempera­

ture profiles. Furthermore, the validity of the method is verified through MATLAB built 

in function namely bvp4c. The results of this part are published in "J. Braz. Soc. 

Mech. Sci. Eng., 40 (3), (2018) 166". 

Chapter 6: The work in this chapter is essentially inspired by the need to understand the 

heat transfer phenomenon involving the unsteady 3D flow of Sisko fluid by utilizing solid 

nanoparticles. The deliberation of Sisko fluid is substantial due to the shear-thinning 

/shear-thickening characteristics captured even in steady flows past rigid surfaces. Al­

though it is the combination of viscous and power law materials, but the properties of 

rate type fluids (relaxation/retardation times) cannot be anticipated. Moreover, a rigor­

ous analysis of accessible literature indicates that no effort has been made to the study of 

unsteady 3D flow of Sisko nanofluid. The governing mathematical system is complex and 

nonlinear in the frame of nonlinear forced convection effects and is inspected through the 
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implementation of the bvp4c function in MATLAB and shooting technique with Runge­

Kutta Fehlberg and Newton-Raphson methods. The numerical solutions for nonlinear 

systems are calculated. The velocity, thermal and nano-particles concentration fields are 

demonstrated graphically in view of various appeared parameters. The findings of this 

part are published in "Eur. Phys. J. Plus, 132, (2017) 373". 

Chapter 7: This chapter illustrates the unsteady 3D Sisko nano-liquid flow in the pres­

ence of temperature-dependent thermal conductivity, magnetic field , heat source/sink and 

convective surfaces conditions. The transformed nonlinear ODE's are considered for the 

solution through a numerical technique MATLAB package bvp4c. All the findings are 

explained by a pictorial representation of liquid velocity, concentration and temperature. 

The rate of mass and heat balance is discussed in the form of Local-Nusselt and local­

Sherwood number. Additionally, this illustration is validated in the limiting cases, where 

the comparison is performed with the earlier published figures. The subjects of this chap­

ter are published in "Res. Phys., 8, (2018) 1092-1103". 

Chapter 8: The previous studies regarding Sisko fluid model with different impacts in­

dicate that there is a huge gap which is not fill up until now. The perseverance of this 

chapter is to illustrate the 3D time-dependent flow of Sisko liquid due to bidirectional 

moving surface in the existence of a reaction known as heterogeneous-homogeneous, mag­

netic and nonlinear thermal radiation. The nonlinear coupled ODE's are then considered 

for the numerical solution while using bvp4c in MATLAB. The outcomes are displayed 

in the custom of velocity, temperature and concentration profile. Furthermore, all the 

physical quantities including skin-friction and local-Nusselt number are calculated in the 

tabular form. Moreover, present results are verified with the existing literature. The re­

markable results of this portion are available through "Pramana J. Phys., 91, (2018) 

13" . 

Chapter 9: Prime objective of this chapter is to highlight 2D flow of Sisko fluid owing 

to a curved moving boundary. The flow equations are modeled while using the curvilin­

ear coordinates system. The modeled momentum BL equations for Sisko fluid are then 
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transformed to non-linear ODEs. To the preeminent of our awareness, this formulation is 

an initial attempt towards the Sisko fluid model in curvilinear coordinates system. The 

numerical solutions are implemented by MATLAB package bvp4c is to approximate the 

flow of fluid and heat balance with help of the velocity and temperature profiles. The 

contents of this chapter are submitted in "Physica Scripta.". 

Chapter 10: In light of the existing literature, this chapter is a motivation towards the 

utilization and importance of practical effects like magnetic field and nano-particles in­

corporations in the BLF of Sisko liquid over bended surface along with mass and energy 

balance. The consideration of bended moving surface on which flow of Sisko liquid oc­

curred required curvilinear coordinate's geometry. However, this new formulated ODEs 

due introducing new geometry are prepared for approximate solution with the help of 

built-in routine based on collocation technique while taking help of MATLAB software. 

A number of novel outcomes in terms of flow pattern and velocity, temperature, pressure 

and concentration profiles are displayed. Important scenario about resistive forces and 

the rat of mass and heat are incorporated in tabular form. This new modeling is val­

idated through a good correlation with previous published data. An alternate method 

namely Richardson extrapolation technique used to justify the findings of the employed 

method and shows very good correlation. The findings of this part are published in 

"Microsystems Tech., 25(6), (2018) 2411-2428" . 

Chapter 11: Lastly, in this chapter the main conclusions of our research are summarized 

followed by several recommendations intended to identify future research directions. 
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Chapter 2 

Numerical Computations of 

Generalized Fourier's and Fick's 

Laws for Sisko Fluid Flow 

The principal highlighting of this chapter is to investigate the features of mass and heat 

flux models introduced by Cattaneo-Christov in combination with the time-independent 

flow of Sisko liquid over a non-linear stretching boundary. The generality of Fick's and 

Fourier's laws of mass and heat flux models is a novel modification by Cattaneo-Christov 

by introducing the time relaxation factors in both transfer of mass and heat, respectively. 

The heat transfer illustration is accomplished with thermal conductivity which varies 

with temperature. The non-linear ODEs are first established through the transformation 

procedure which are then elucidated numerically with a built in function command in 

MATLAB software and is usually known as the subclass of collocation methods. Every 

behavior of controlling parameter on the heat and mass balance is determined by the 

graphs. Results reveal that the temperature and the solute concentration profiles have 

converse relationship with the non-dimensional thermal and concentration relaxation time 

parameters. Moreover, it is also fascinating to note that the concentration profile is 

significantly influenced with the escalation in the power-law index when it escalates from 
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n < 1 to n > 1. 

2.1 Flow Geometry 

y 

x 

Fig. 2.1: Two dimensional flow geometry. 

2.2 Constitutive Equations and Mathematical For-

mulation 

We analyze the steady, 2D forced convective flow of Sisko fluid in the region y > 0 induced 

by a sheet stretching with the power-law velocity Uw = CXB1 , where c is a positive constant 

and 81 a non-linear stretching parameter as shown through Fig. 2.1. The modified 

Fourier's and Fick's laws are utilized to investigate the energy and mass balance analysis 

of the anticipated problem. Moreover, the energy balance is modeled in terms of a varying 

thermal conductivity with temperature. At boundary of the sheet, the temperature is Tw 

and concentration is Cw while far away from the sheet surface, the temperature is Too and 

concentration is Coo . The constitutive equations and conservation laws for flow, heat and 

mass transfer for Sisko fluid are as follows: 

\1. V = 0, (2.1) 
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PI (V · \7) V = -\7p + \7. S, 

(pc) I (V . \7) T = -\7 . q, 

(V . \7) C = - \7 . J , 

S ~ [a + b ~tr(Al) 2 n-lj AI. 

q+6E (~~+V. \7q + (\7 . V)q - q . \7V) = - k (T) \7T, 

J+6e ( ~~ +V · \7J + (\7 . V)J - J. \7V) = -D\7C, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2 .6) 

(2 .7) 

where V represents the velocity vector, p the pressure, (a, b, n) the physical constants 

of the Sisko liquid, (T, C) illustrates the temperature and solute concentration of the 

liquid, PI the fluid density, C I the specific heat of fluid at constant temperature, S the 

extra stress tensor, Al = (\7V) + (\7V)T the first Rivlin-Ericksen tensor, (J, q) normal 

mass and heat fluxes , respectively, (6e,6E) t he relaxation times of mass and heat fluxes , 

respectively, D the molecular diffusivity of the concentration species and k (T) the variable 

thermal conductivity given as 

k (T) = koo [1 + c (;: ~ £) ] , (2.8) 

where koo is the thermal conductivity of the ambient liquid and c a small scalar parameter. 

For the steady 2D flow in Cartesian coordinates, we pursue the velocity, temperature, 

concentration and stress fields is given as: 

V = [u(x , y) , v(x, y) , OJ , S = S(x, y), T = T(x, y), C = C(x, y). (2 .9) 

Now plugging Eq. (2.9) in Eqs. (2.1) to (2.4), having in mind Eqs. (2.5), (2.6) and 

(2.7) a long way to formulate such a flow model but simple formulation toward the desired 
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and novel assumed problem and is illustrated as follows 

(2.10) 

(2.11) 

8T 1 8 ( 8T) 8T u- =--- k(T) - - V- - OE 
8x (pc) f 8y 8y 8y J 

(2.12) 

u 8C = D (82C) _ v 8C - Oc 
8x 8y2 8y 

(2.13) 

The associated BCs for t he present problem are: 

(2.14) 

as y-+oo, u-+O, T-+T= and C-+C= . (2.15) 

The above leading equations are simplified by presenting the suitable transformations (cf. 

Munir et al. [10]) as follows: 

_ _ 1 1 
u = Uwf' (-17) , v = -UwReb n + 1 __ [{Sl (2n - 1) + 1} f ('I']) + {Sl (2 - n) - 1}'I']f' ('1'])] , 

n+1 

(2 .16) 

In perspective of Eq. (2.16) , we can obtain the following ODEs with respect to the 
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dimensionless variables 'T/ : 

(1 + d)) 8" + c8'2 + Pr (Sl (2: ~ ~) + 1) f8' _ Pr AE (Sl (~: ~ :;2+ 1) 

x [{2 + 71, + (71, - 2) sdf1'8' + {st(271, -1) + 1}f28"] = 0, (2 .18) 

cp" + Sc (Sl (271, - 1) + 1) fcp' _ SCAc (Sl (271, - 1) + 1) 
71,+1 (71,+1)2 

x [{2 + 71, + (71, - 2) Sl} f 1'CP' + {sd271, - 1) + I} f2cp"] = 0, (2.19) 

{

f = 0 
at 'T/ = 0, ' 

8 = 1, 

l' = 1, 
(2.20) 

¢ = 1, 

as 'T/ -+ 00, l' -+ 0, 8 -+ 0 , cp -+ O. (2.21) 

( 
Re

nh ) U ( nU2
-
n) where A = ~ is t he physical Sisko fluid, Rea (= eX

a w) and Reb = ex b W 

2 

demonstrates the local Reynolds numbers, Pr (= x~w Re~ n+l) the generalized Prandtl 

number, AE,c (= Ut5:,c) the relaxation times parameters of energy and mass balance, 

respectively and Se ( ~ xuwn;,;"'" ) the generalized Schmidt number. 

2.3 Numerical Method 

The transformed problem defined through Eqs. (2.14), (6.19) and (2.24) along with 

the Bes (2.15), (2.20) and (2.25) are considered for the numerical solution. The bvp4c 

MATLAB package is implemented to find the computational results with the tolerance 

10-6
. Rendering to the foremost requirements of this numerical technique, the key steps 
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of the method are given as follows: Let , 

r /.,' . = Yl , . = Yl = Y2, J"' d fill , = Y2 = Y3 an = Y3, 

e' , = Y4 = Y5 

,/.,' , 
'P = Y6 = Y7 

and 

and 

ell , 

= Y5 ' 

,/.,11 _ Y' 
'P - 7' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

, Pr AE ( 81~~~-1~~+1) [{2 + n + (n - 2)S1}Y1Y2Y5] - Pr ( 8d2:~:)+1) Y1Y5 - Eyg 
Y5= ----~------~~-------(,-------)--~----~------~-------

1 + EY4 - PrAE 81~:~~~+1 {s1(2n - 1) + l}Yf 

(2.26) 

(2.27) 

while the relevant BCs, then becomes 

Y1(0) = 0, Y2(0) = 1, Y4(0) = 1, Y6(0) = 1, (2.28) 

Y2(OO) -+ 0, Y4(OO) -+ 0, Y6(OO) -+ O. (2.29) 

2.4 Pictorial Interpretation and Discussion 

In this specific portion the features of modified laws of Fourier's and Fick's for mass and 

heat balance phenomena are utilized on the flow of GNF where the surface of the flow is 

being considered non-linear. Although, the temperature in this case is finalized in terms 

of thermal conductivity function. The numerical analysis is performed to demonstrate 

the behavior of the controlling parameters of flow phenomena. Moreover, the main theme 

of this study to demonstrates the impacts of different parameters such as A, S1, Pr, AE,G 
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and Se. The fluctuation in the temperature profiles corresponding to rise in the thermal 

conductivity paramet er E: and stretching parameter 81 is plotted through Figs. 2.2(a,b) . 

It is straightforward from these plots that the non-dimensional temperature field enhances 

with the increment in the variable thermal conductivity parameter while the opposite 

conduct is noticed for 81 , i.e., stretching parameter. For E = 0, the temperature of the 

flow problem can be presented with constant thermal conductivity while for E > 0 we 

get the case of variable thermal conductivity and for which the temperature of the fluid 

is observed to demonstrate a growing conduct. Figs. 2.3(a,b) portray the behavior of 

temperature of liquid for both pseudo-plastic as well as dilatant liquids. The impact of n 

shows a reduction in the liquids temperature as well as TBLT. However, for shear-thinning 

liquid this behavior is more meaningful as compared to the shear-thickening liquid. Fig. 

2.4(a) has been portrayed to show the impact of the Pr on the dimensionless temperature 

field. From this plot, it is seen that escalation in Pr results in a decay of the temperature 

distribution as well as associated TBLT. Physically, it is due to reason that an increase in 

Pr implies less rate of thermal diffusion. However, it can be noted from F ig. 2.4(b), that 

with increase in heat relaxation parameter, the temperature distribution declines. This 

trend is because of the nature that more time shall be required to transfer the heat to the 

neighboring liquid particle. Likewise, the parameter of thermal relaxation enhancement 

guaranteed non-conductivity feature of the liquid particle and thus the upshots in the 

lessening of temperature profile. 

Figs. 2.5(a,b) elucidate the non-constant behavior in the non-dimensional concen­

tration distribution for distinct variation in the index of power-law. From these figures, 

it is anticipated that the concentration profile as well as corresponding CBLT decays de­

cays with the enhancement in the power-law index for for both dilatant as well as pseudo 

plastic cases. Figs. 2.6(a,b) elucidate the non-constant in the non-dimensional concen­

tration for various values 81, Le.,the stretching parameter and A the material parameter 

of nonlinear materials, i.e., Sisko liquid. These figures show a declining conduct of concen­

tration profile and associated CBLT for growing values of the stretching parameter as well 
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as the material parameter of the Sisko fluid . The variation of the Schmidt number Se and 

concentration relaxation parameter AC on the concentration distribution is demonstrated 

through Figs. 2. 7(a,b) . It can be noticed that the Schmidt number and the parame­

ter of concentration relaxation results in decay of the concentration profile. Physically, 

Schmidt number is the function of molecular diffusivity and whenever this number raises, 

then molecular diffusivity diminished the concentration of non-linear materials. 

Figs. 2.8(a,b) are plotted to test the behavior of flow pattern for non-linear stretching 

surfaces while keeping n = 0.8, A = 0.5, R eb = 10 and e = 1. The speed of shear-thinning 

fluid plotted through Figs. 2.8(b) is noticed slightly high as compared to the plots as 

shown in Fig. 2.8(a) . This is why the flow pattern for higher values of stretching pa­

rameter is observed with uplifting conduct . For non-variant values of n = 0.5 , A = 0.5, 

8 1 = 1.2, AE = 0.2 and Pr = 2.0, a comparison between the two plots of isotherms is 

developed through Figs. 2.9 (a,b) . For Fig. 2.9 (a) values of E = 0 and Too = 0.0 are 

fixed. On the other hand, Fig. 2.9(b) is plotted for Too = 0.3 and E = 3.0, respectively. 

The hotness and related TBLT observed through Fig. 2.9(b) are larger than the hotness 

and related TBLT of Fig. 2.9(a). For non-variant values of n = 0.5 , A = 0.5, 81 = 1.2 

and AC = 0.2, the mass fluxes are plotted through Figs. 2.10(a,b) with uplifting order 

variation in Coo and Se. Thus, the mass flux and the associated BLT presented through 

Fig. 2.10(a) for Coo = 0 and Se = 1.0 are lower as compare to Fig. 2.10(b) for 

Coo = 0.3 and Se = 3.0. 
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Chapter 3 

Numerical Study of Non-linear 

Radiative Flow of Magneto 

N anoparticles for 3D Sisko Fluid 

A numerical investigation is carried out in this chapter to study the three dimensional 

Sisko fluid flow by taking into account the non-linear thermal radiation and convective Bes 

over a bidirectional moving boundary. Additionally, the impact of newly proposed model 

for nanofluid is invoked that implies nanoparticles volume fraction at the boundary to be 

passively rather than strongly controlled. The numerical computations are performed by 

utilizing two different techniques namely the bvp4c function in MATLAB and shooting 

method with RKF and Newton Raphson methods. It is perceived that the temperature 

profile declines as the power-law index enhances. Furthermore, it is revealed that the liquid 

concentration is the decays function of parameter due to larger Brownian motion while a 

converse conduct is shown by the thermophoresis parameter. Additionally, these upshots 

are more noticeable for shear-thinning fluids when compared with shear-thickening fluids. 

To see the validity of the numerical computations, we compare the results of the shooting 

technique with the bvp4c and achieved an excellent correlation. The numerical results 

obtained in the limiting cases have shown an admirable agreement with the existing 

47 



literature. 

3.1 Pictorial Interpretation of the Problem 

z 
Bo Nanopartlcles 

t 

Fig. 3.1: Bidirectional stretching flow geometry. 

3.2 Problem Formulation 

Assuming an incompressible flow due to bidirectional moving surface of Sisko fluid with 

additional impacts in the form of Buongiorno's model and nonlinear thermal radiation. 

Further the flow configuration shows that a vertical magnetic field is employed having 

strength Bo. The cause for bidirectional moving surface are the stretching velocity Uw = 

ex in x-direction and Vw = dy in y-direction. The flow deformation is detected in z­

direction as shown in Fig. 3.1. Configuration regarding the transfer of convective heat 

during the flow of Sisko liquid takes the way, i.e., the heat transport coefficient hJ causes 

heat transfer from the boundary of the sheet and for which a hot liquid of temperature Tf is 

placed where underneath. However, the temperature away from the surface is presenting 

with TrY;) which can be treated as less temperature matching with liquid temperature. 

Another concern about the concentration is taking in the way, where Cw is the wall 

concentration and a constant concentration Coo is the concentration observed for away 

from the boundary. For the steady 3D flow, Eq. (2.9) is now extended for the velocity of 

liquid, extra stress tensor, thermal analysis in terms of temperature of liquid, and solute 
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concentration are expressed in the following form: 

v = [u(x, y, z), v(x, y, z), w(x, y, z)] , S = S(:r, y, z), T = T(x , y, z), C = C(x, y, z). 
(3.1) 

The 3D flow of Sisko nanoliquid (d. Munir et al. [12]) together with continuity equation 

are obtained while using the equations defined through Eqs. (2.1)-(2.5) and keeping in 

view Eq. (3 .1) . So the formulated main problem takes the subsequent form: 

au = _ ( av + aw ) (3.2) 
ox ay oz' 

uau + ~~ ( _ au )n + (aB5)u = _(vau +wau) + ~ (02U) , (3.3) 
ax PI az az PI ay oz PI az2 

uav _ ~~ (_ au )n-l av + (aB5) v = _(w ov +vav ) + ~ ( a2v ) , (3.4) 
ax PI az oz az PI az ay PI az2 

uaT +_1 (aqr) _nl (a
2
T) =_ (waT +vaT) ax (pc ) I az OZ2 az oy 

• [ (OC) (aT) DT (aT) 2] +7 DB az az + Too az ' (3.5) 

(3.6) 

with the associated BCs 

as z -T 00, u -T 0, v -T 0, T -T Too and C -T Coo. (3.8) 
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The Rosseland approximation leads to the following expression 

(3 .9) 

The distinct classical case of non-linear thermal radiation is a well-known phenomenon 

and considered here. It is a simple rescaling of Prandtl number while having a radiation 

parameter and has usually appeared in the linearized form of Rosseland approximation 

and which leads to an important effect known as non-linear thermal radiation. This type 

of linearized approximation need not ·any further analytical and numerical struggles while 

considering the investigation of such problems. In view of strong non-linearity of energy 

balance equations, this physical effect making the energy equation more nonlinear with 

extra non-linear term appeared due to the ratio of wall and ambient temperature. 

Using Eq. (3.9) in Eq. (3 .5) we finally have 

* [D (8C) 8T DT (8T)2] 
+7 B 8z 8z + Too 8z . (3.10) 

We are interested in finding the local similar solution of the above stated problem, so we 

use the transformations introduced (cf. Munir et al. [12]) and is given below: 

u = ex!, (7]) , v = eyg'(7]) , w = -e ( e:
2

) n~ l [~f + 1 - n 7]!' + g] x~~~, (3.11a) 
b n+1 l+ n 

( 
2-n ) n~ l e J- n 

7] = Z :, x l + n • (3.11b) 

In view of transformations (3.11a) and (3.11b) , Eq. (3.2) is equal to zero, i.e., identically 

contended and Eqs. (3 .3-3.4), (3 .6-3.8) and (3.10) take the following form: 

A1'" + (n 2: 1) f 1" - (J,)2 + n (-f"r-1 1'" + g1" - M!, = 0, (3.12) 
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AglII + (n 2: 1) f g" + (- 1"t-1 gill - (n-1)g" 1'" (-1"t-2 - (g') 2 + gg" - M g' = 0, (3.13) 

[{ 1 + Rd(l + a(aw - 1))3} a'J' + Pr [ (n 2: 1) fa' + ga' + Nb (¢'f)') + Nt (a'2) ] = 0, 

(3.14) 

¢" + LePr [(n2
: 1) f¢' + g¢'] + ~:a" = 0, 

at 'T] = 0, 
{

f = 0, 9 = 0, 

a' = -, [1 - a], 

f' = 1, g' = a, 

as 'T] --t 00, l' --t 0, g' --t 0, e --t 0, ¢ --t 0. 

The governing flow parameters are formulated as: 

M= aB5 
(pc)/ 

d 
a = -, 

c 

The local Nusselt number, which of practical importance, is given by 

1 

Re;n+l Nux = - [1 + Rda~] a'(O). 

3.3 Graphical Results and Discussion 

(3 .15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

In this fragment, the graphical enlightenment about the results are displayed and elab­

orated. The non-linear ODE's defined through Eqs. (3.12) to (3.15) with imposed BCs 

(3.16) and (3.17) are presenting with non-exact solution approach in order to established 

the significance of parameters appeared in the flow consequences. However, these out­

comes are demonstrated with graphical illustrations in the form of velocity, temperature 

and concentration profiles. Moreover, the flow phenomenon is also explained in the form 
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of resistive forces and rate of heat and mass balance. In order to show the importance of 

BLF modeled equation of Sisko fluid , we utilized the growing magnetic parameter M as 

an additional effect on the flow velocities, i.e., f' ('T7) and g' ('T7) of fluid as shown through 

Figs. 3.2(a,b) and 3.3(a,b) , respectively, for pseudo-plastic as well as dilatant liquids. 

From these plots, it is noticed that the both velocities and the thickness of the BLF 

reduce due to increase in resistive forces with the enhancement of M. Another impor­

tant flow parameter n is tested and the respective temperature fields are plotted through 

Figs. 3.4(a,b) for pseudo-plastic, i.e., (0 < n < 1) and dilatant , i.e., (n> 1) conditions 

of liquids. It is visualized that with the upshot in the values of n for both cases, i.e. , 

(0 < n < 1) and n > 1, the fluid temperature and associated TBLT declined. But the 

result for the case (0 < n < 1) is more prominent. Figs. 3.5(a,b) demonstrate the 

depict of radiation parameter Rd on temperature profile for dilatant and pseudo-plastic 

liquids, respectively. It is manifested from the plots that the temperature distribution 

and associated TBLT enhance with the growth in the radiation parameter. This trend 

holds for both nonlinear and linearized radiation cases. Physically, with the enhancement 

in the radiation parameter results in penetration of more heat into the liquid and thus 

the TBLT is increased. Thus, the transfer rat of heat can be controlled by the radiation 

parameter . Figs. 3.6(a,b) delineate the depict of temperature ratio parameter ew on the 

temperature field . From these pictures it is perceived that the temperature distribution 

and associated TBLT enhance for the larger values of the temperature ratio parameter. 

In physical sense, whenever the values of ew , takes higher values, the upper temperature 

of the liquid enhances in comparison with temperature at surface of the liquid and thus 

this phenomenon results in the enhancement of the temperature and related TBLT. 

Figs. 3.7 (a, b) illustrate the significance of n on the liquid concentration for pseudo­

plastic as well as dilatant liquids, respectively. It turns out from these plots that the 

concentration profile and related CBLT decline for both cases with an increase in n . 

Figs. 3.8 (a, b) are plotted to visualize the behavior of the concentration BL for the 

Sisko fluid for growing values of the magnetic parameter M . It is observed that the 
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concentration distribution enriches, when magnetic parameter is enhanced. Physically, 

this is due to increase in the Lorentz force . Moreover, it is observed that these results 

are more prominent for pseudo-plastic as compared to dilatant fluids. Figs. 3.9(a, b) 

deliberated the importance of measure of growing Brownian motion Nb on the field of 

concentration during the flow of Sisko fluid. It can be seeming from the plots that the 

distribution of concentration and associated CBLT decline for the parameter arise owing 

to Brownian motioin. Physically, with the increment in the total of the parameter of 

Brownian motion, the rate at which nano-particles move with not a same liquid velocities 

in altered/random direction also increases owing to the Brownian depict . The impact of 

the thermophoresis parameter Nt on concentration distribution is displayed through Figs. 

3.10(a,b). From these pictures, it is clear that the effect of thermophoresis parameter 

on the profile of concentration are quite the opposite to that of the Brownian motion 

parameter. Figs. 3.11(a,b) are prepared to envisaged the influence of the Lewis number 

Le on the profile of concentration. In fact the Lewis number is not with direct relation 

to the coefficient of Brownian diffusion. Here higher values of Lewis number parallel to 

small diffusivity and so liquid concentration declines. 

To substantiate the authenticity of the present numerical computations, a appraisal 

between the bvp4c and shooting methods is presented through Figs. 3.12(a,b) and 

3.13(a,b). A remarkable agreement between the two computational techniques is seen. 

This leads a confidence in our numerical computations. 

The heat transfer rate at the moving boundary is presented through table 3.1 for two 

cases of power-law fluids, i.e. , shear-thinning as well as shear-thickening. Forthrightly, 

it seems from this table that the amount the heat transfer rate uplifted with uplifting 

values of Pr and, whereas, it diminishes for escalating values of Rd , Ow , Nt and Le. 

However, the effect of Brownian motion parameter are found constant while calculating 

the rate of heat transfer as shown in table 3.1. Additionally, it is seen from table 3.2, 

there is an outstanding correlation between the present work and the existing literature. 

Furthermore, from Figs. 3.12(a, b) and 3.13(a, b) , it is flawless that the graphs plotted 
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of temperature and concentration distribution are in excellent agreement of the shooting 

technique with the MATLAB built-in function bvp4c. 
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Table 3.1: Influence of Le, Pr, Nb , Nt , Rd , Bw , and 'Y on the Nusselt number when 

M = 0.2, A = 0.1 and a = 0.1 are fixed. 

n = 0.50 n = 1.50 

0.5 1.0 0.5 0.2 1.0 1.1 0.1 0.157595 0.163958 

1.0 0.157546 0.163920 

1.5 0.157517 0.163899 

1.0 0.5 0.5 0.2 1.0 1.1 0.1 0.139765 0.144926 

1.0 0.157546 0.163920 

1.5 0.166046 0.172306 

1.0 1.0 0.5 0.2 1.0 1.1 0.1 0.157546 0.163920 

1.0 0.157546 0.163920 

1.5 0.157546 0.163920 

1.0 1.0 0.5 0.0 1.0 1.1 0.1 0.157707 0.164059 

0.5 0.157301 0.163709 

1.0 0.156882 0.163349 

1.0 1.0 0.5 0.2 0.5 1.1 0.1 0.121762 0.126646 

1.0 0.157546 0.163920 

1.5 0.191406 0.199035 

1.0 1.0 0.5 0.2 0.5 1.1 0.1 0.157546 0.163920 

1.3 0.167926 0.173244 

1.5 0.180267 0.184176 

1.0 1.0 0.5 0.2 1.0 1.1 0.1 0.157546 0.163920 

0.2 0.257884 0.275862 

0.3 0.326213 0.355923 
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Table 3.2: Comparison of Nusselt number with the previous existing results in lim­

iting case when Le = 0, ew = 1.1, Rd = 0, M = 0, , ~ 00, A = 1.5 and Pr = 1.0 are 

fixed. 

Munir et al. [12] Present outcomes Munir et al. [12] Present outcomes 

a n=0.50 n=0.50 n=1.50 n=1.50 

0.2 -0.62074 -0.6209775 -0.78919 -0.7891393 

0.4 -0.69468 -0.6948833 -0.84864 -0.8485694 

0.6 -0.75957 -0.7597433 -0.90287 -0.9027951 

0.8 -0.81827 -0.8184051 -0.95324 -0.9531557 

60 



Chapter 4 

A 3D Study of Sisko Liquid Flow 

with non-Fourier's Heat Flux Model 

and Heterogeneous-Homogeneous 

Reactions 

Considerations in this chapter are the correspondence between the two physical phenom­

ena and Sisko liquid flow due to bidirectional moving surface. Such physical phenom­

ena are presented in the form of Cattaneo-Christove heat flux model and heterogeneous­

homogeneous reaction. The flow problem is modeled in the form of nonlinear PDEs and 

are then transformed into corresponding ODEs by incorporating suitable dimensionless 

transformations. A numerical investigation is taken into account for the analysis of pro­

posed problem and a presentation of the significant outcomes is presented in the form of 

graphs which demonstrate the behavior of temperature and concentration with associated 

thickness of the BLs. According to the physical properties of this proposed model, the 

condition of pseudo plastic and dilatant fluids are tested to show both necessary proper­

ties while plotting the temperature and concentration fields. Temperature and relevant 

TBLT and temperature of the liquid observed an increasing function of time parameter 
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of relaxation. 

4.1 Problem Formulation 

Considering the influence of time relaxation of heat flux and heterogeneous-homogeneous 

chemical reactions in an incompressible 3D Sisko liquid flow due bidirectional moving 

surface. Moreover, an important physical property in the form of varying thermal con­

ductivity with temperature is also a part of this formulation. The stretching velocities 

Uw = ex and Vw = dy, are introduced to deform the fluid flow in the vertical z-direction, 

while x and y axes are taken perpendicular to z-axis. The surface temperature is replaced 

by the fluid temperature Tf and the fluid temperature at infinite distance is denoted by 

Too . To incorporate the chemical reaction namely heterogeneous-homogeneous in the flow 

problem, Chaudhary and Merkin [37, 38] introduced a simple correspondence between het­

erogeneous (surface reaction) homogeneous (bulk) and reactions evolving the two chemical 

classes Ai and B~ . This interaction is further defined as follows, respectively: 

(4.1) 

Thus the first order isothermal reaction on the surface of the catalyst is as: 

(4.2) 

The chemical reaction will possesses the constant temperature due to thermal equilibrium 

property of the heat flux (in and out of the transfer of heat). In the absence of auto 

catalyst B~, the uniform concentration ao of Ai will takes place instead of al. All the 

flow equations of Sisko liquid [12] with the usual implementation of BL approximation 

are demonstrated as below: 

OU = _ (ov + ow) 
ox oy oz' (4.3) 
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(4.4) 

(4.5) 

[ ( [)2T ) (a2T) ( [)2T ) (a2T) (a2T) ( a2T ) OE 2vw ayaz + U
2 aX2 + 2uw axaz + V

2 ay2 + W
2 aZ2 + 2uv axay 

+ u-+v-+w- --+ u-+v-+w- --+ u-+v-+w- -( au au au) aT (av [)v av) aT (aw [)w aw) aT] 
ax ay az ax ax ay az ay ax [)y az az 

=- u-+v-+w- +-- k(T)- , ( aT aT aT) 1 a ( aT) 
ax ay [)z PCp az az (4.6) 

(4.7) 

(4.8) 

The Bes associated to the above governing equations are 

(4.9) 

as z -+ 00, u -+ 0, v -+ 0, T -+ Tr~, al -+ ao and b1 -+ 0. (4.10) 

The emerging dimensionless variables are defined through the following equation: 

(4.12) 

Making use of transformations (3.11), (3.11) and (4.12), Eq. (4.3) is equal to zero, i.e., 

identically verified and Eqs. (4.4) to (4.10), having in mind Eq (2.8), lead to the following 

equations: 

AIIII + (n 2: 1) f 1" + n (-1"t-1 fill - (J,)2 + g1" = 0, (4.13) 
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Ag'" + (n2
: 1) fg" + (-1"t-1 g'" - (n -l)g"1'" (-1"t-2 - (gl) 2 + gg" = 0, (4.14) 

(1 + c8)(/' - Pr AE [ C?:J + g) (n
2:J' + gl) 8' ] + c(e' )2 + Pr (~) fB' + Pr ge' = 0, 

+ (n2:1f + g)2 e" n + 1 

¢" + Se (~f + g) ¢' - Sek1¢ (1- ¢)2 = 0, 
n+1 

f = 0, 9 = 0, l' = 1, g' = a, e = 1, ¢' = k2¢ at rJ = 0, 

f ' ----" 0, ' ----" 0 ---, 9 ---, , e -+ 0, ¢ -+ 1 as rJ -+ 00. 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Here in Eq. (4.16) we assumed that the diffusion coefficients of the chemical species 

Ai and B~ are of comparable size such that 

¢(rJ) + h(rJ) = l. 

The governing flow parameters are stated as follows: 

AE = Uw6E, 
X 

4 .2 Numerical Results and Discussion 

(4.19) 

(4.20) 

Numerical solutions to the non-linear DEs (4.13) to (4.16) with the BGs (4.17) to (4.18) 

are obtained by using the MATLAB routine bvp4c that uses collocation method. The 

profiles of temperature and concentration produced by the numerical illustration and 

which showing the important influence of physical parameters. These include the power-

law index n, Sisko fluid parameter A, thermal conductivity parameter c, relaxation time 

parameter AE, the parameters introduced by reaction namely, homogeneous-heterogeneous 

(kl ' k2 ), respectively. 

Impact of n on the temperature is plotted through Figs. 4.1(a) and 4.1(b) for dila­

tant (n > 1) as well as pseudo-plastic (0 < n < 1) liquids. The temperature and related 
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TBLT are diminishing functions of n as shown through these figures . But the temperature 

boost with the variation of n for pseudo plastic fluids is much remarkable as compared 

to the variation demonstrated for dilatant fluids. Meanwhile, with the enhancement of 

n , an increase is observed in the concentration field and the associated CBLT (see Figs. 

4 .2 (a,b )) . The outcome got for pseudo-plastic fluids is more conspicuous as contrast with 

dilat ant liquids. 

Figs. 4.3 (a, b) are presented in pictorial for to show the features of A on the profile of 

temperature (B('r/)). In these figures, the temperature field and TBLT exhibit a reducing 

behaviors for dilatant and pseudo-plastic properties of liquids. The results for pseudo 

plastic fluid displayed a prominent impact in comparison with dilatant property of the 

fluid. In physical sense, this conduct is due to the basic property of Sisko liquid param­

eter. The increase in this parameter causes reduction in viscosity of fluid while shear 

rate enhances and vise verse. This is why, the temperature field shows a reduction with 

the rising values of A. The impact of the parameter of Sisko liquid on the concentration 

profile is deliberated through Figs. 4 .4 ( a,b) . This graphical illustration presents an 

uplifting behavior of concentration ¢('r/) and the associated CBLT for higher values of A. 

Both fundamental properties, i.e., dilatant and pseudo-plastic properties of liquids are 

described but a very noticeable outcome is found for pseudo-plastic fluid in comparison 

with the dilatant fluid. 

Important growing behavior of temperature field e('r/) is noticed for the higher values of c 

and is described through the graphs for both dilatant and pseudo-plastic liquids presented 

in Figs. 4.5(a,b). This behavior of thermal conductivity on temperature field is a di­

rect influence with a scalar parameter c which arises by considering the variable thermal 

conductivity. In this regard, when the values of this parameter are higher then more 

temperature will be transferred from the wall of the sheet to the liquid. The impact of 

AE on the field of temperature B('r/) is plotted in Figs. 4.6(a,b). These graphs illustrate 

the importance of relaxation time for the transfer of heat from the hot boundary to the 

cold boundary. Without the parameter of relaxation, i.e. , AE = 0, an instantly greater 
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dispersion of t emperature throughout the domain will t ake place which is practically im­

possible. So with the addition of this parameter in the form of modified Fourier 's law 

stated that more time shall be required for the heat transfer from molecule to molecule of 

the fluid. Specifically, the temperature field e(T}) will be smaller for growing of AE' This 

trend is plotted for dilatant and pseudo-plastic liquids as well. 

Impact of kl in Figs. 4.7(a,b) displayed in the form ofreducing concentration ¢(T}) and 

the associated CBLT. This parameter may causes dissemination coefficients of reaction 

rates and as a result ¢(T}) reduces for 0 < n < 1 as well as n > 1. However, the same 

behavior is depicted for higher values of k2 in Figs. 4.8(a,b) , while considering both 

cases, i.e., 0 < n < 1 as well as n > 1. 
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Chapter 5 

Numerical Computations of 

Unsteady Generalized Newtonian 

Fluid Flow with Convective Heat 

Transfer 

In this chapter, the BLF and heat analysis are addressed for the unsteady 3D flow of Sisko 

liquid over a bidirectional time-dependent moving boundary. The governing PDEs involv­

ing momentum and temperature are transformed to non-linear ODEs by invoking suitable 

transformations. The modeled equations are then illustrated with numerical scheme viz 

shooting technique with RK-45 Fehlberg method. Additionally, in order to validate the 

exactness of the present results, we have provided a comparison between two different 

techniques namely the shooting technique and bvp4c in MATLAB. Moreover, a compar­

ative study with previous published work is also presented and perceived an excellent 

agreement. Significant conclusions are drawn while portraying the profiles of velocity and 

temperature. The results are illustrated for both cases, i.e. , shear-thinning (0 < n < 1) 

and shear-thickening (n > 1) liquids and it is perceived from the graphs that the ve­

locity and temperature profiles raise with the augmentation of unsteady parameter for 
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the shear-thinning liquid while the opposite conduct is observed for the shear-thickening 

liquid. It is obvious from the graphs that the profile of temperature decreases for both 

cases including dilatant (n > 1) and pseudo-plastic (0 < n < 1) liquids, while the heat 

transfer rate raises for both cases. 

5.1 Formulation of the Flow Problem 

Assuming the time-dependent 3D forced convective BLF over a bidirectional moving sur­

face of an inelastic non-Newtonian liquid that obeys the Sisko viscosity model. The 

stretching surface is located at z = 0 and stretched with velocity Uw = l~~t and Vw = l~~t 

along the x- and y - directions , respectively, where c, d and (3 are positive constants with 

dimension per. It is supposed that due to the convection by hot liquid, the lower surface 

of the moving sheet is heated to temperature Tf by convection from a hot liquid which 

results with a coefficient of heat t ransfer hf' The ambient fluid temperature takes con­

stant value Too. Without body forces and the said restriction as mentioned above which 

leads the development of mass, momentum and energy balance equations as below: 

\1. V = 0, (5.1) 

Pf( a;) = -\1p+ \1 . S, (5.2) 

(pc)f (~~) = -\1. q , (5.3) 

For a 3D unsteady flow in Cartesian system of coordinates, we can take the velocity, stress 

fields, temperature of the form 

V = [u(x , y , z, t), v(x, y , z, t), w(x, y , z, t)], S = S(x, y , z, t) , T = T(x, y , z, t). (5.4) 
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Plugging Eqs. (5.4) into Eqs. (5.1)-(5.3) and the use of BL approximation results in the 

following relations: 

au = _ (ov + ow) 
ax oy oz ' (5 .5) 

(5.6) 

ov ov b a ( Ou )n-l Ov (ov ov ) a ( 02V ) 
at + u ax - PIOZ - oz oz = - 'U oy + w OZ + PI OZ2 ' (5.7) 

aT aT k ( 02T ) ( aT aT ) at + u ax + (pc) I OZ2 = - v oy + w oz . (5.8) 

Eqs. (5 .6)-(5.9) are subjected to the following BCs: 

(5.9) 

as Z -+ 00, u -+ 0, 'U -+ ° and T -+ Too. (5.10) 

The governing Eqs. (5.5)-(5.8) subjected to BCs (5.9) and (5.10) can be stated with 

an easy way by presenting the subsequent transform variables: 

(5 .11) 

(5.12) 

T T 
( 

2-n ) n~l - 00 C n-l n-2 () (rJ) = ,rJ = Z -b- xn+l (1 - {3t)n+l . TI - Too -
PI 

(5.13) 

In view of Eqs. (5.11)-(5.13), we get the following set of non-linear ODEs: 

A1'" - S [1' + 2 - n rJ1"] + (~) f 1" + n (-1"t-1 f'" - (J,) 2 + g1" = 0, (5.14) 
l+n 71,+1 
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AglII 
- S [g' + 2 - n 'f]g"] + (~) fg" + (_ 1"t-1 gill 

l+n n+1 

-(n - l)g" 1'" (-1"t- 2 - (g,) 2 + gg" = 0, (5.15) 

e + PI' - -f + 9 ()' - PI'S --'f]()' = 0, /I ( 2n ) [2 -n ] 
n+1 l+n 

(5.16) 

where all the primes represent derivative of the function with independent variable 'f]. The 

imposed BCs are 

at 'f] = 0, 
{

f = 0, 

g' = a, 

9 = 0, f' = 1, , 
(5.17) 

()' = -I' [1 - ()], 

as 'f] -+ 00, l' -+ 0, g' -+ 0, () -+ O. (5.18) 

The non-dimensional controlling parameters that leading the problem are stated through 

Eqs. (5.14)-(5.18) are stated below 

d 
a= -, 

c 
S=~ 

c 
, 

h
f 

__ I_ 

I' = TxReb n + 1 . (5.19) 

The drag force and Nusselt number coefficients that declared the engineering extents are 

Cfx , Cfy and transfer rate of heat Nux and are stated as 

_1_ 

Re;;+! Cfx = A1"(O) - (-1"(O)t , (5.20) 

Reb~1 Cfy = ~: [( - 1"(o))(n-l)g"(O) + Ag"(O)] , (5.21) 

1 

Re;n+! Nux = -()'(O). (5.22) 
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5.2 Numerical Scheme 

The coupled ODEs (5.14)- (5.16) with boundary constraints (5.17) and (5.18) are abridged 

to a system of eight first order ODEs and six flow parameters along with boundary con­

straints. In order to compute the solution of simultaneous system of first order equations, 

we need two initial conditions for 1" and gil, while one for (). Once the initial guess is fixed 

with finite value of rJoo, then we can solve it by implementing RK-45 Fehlberg method. 

RK-45 Fehlberg method is a numerical technique to find the results while providing an 

appropriate step size h. At each step two altered approximations for the solutions are 

finished and matched. If two results have close agreement, then the computations are 

acceptable. If two answers are not agree with the desired accuracy, then the step size 

shall be reduced. If the approximation is strongly agree up to more significant digit, the 

step size shall be increased. Thus it will need the six functional values and other basics 

equations as defined through Eqs. (1.3)-(1.11). 

Since, for this specific anticipated problem, the values of J', g' and () at infinity are 

known and the values of 1", gil and () at the surface can be guessed. However, the general 

procedures followed to compute the numerical solution is shooting technique for which we 

have adopted the following procedures. 

Let 

(5.32) 

(5 .33) 

() ()" ()"' = X7, = x7 = XS, = Xs , (5.34) 

(5 .35) 

, S(xs + ~rJX6) - rf:ITXIX6 - X4X6 + xg + (n - 1)x6x;( -X3)n-2 
X6 = [A + (- X3 )n-l ] , (5.36) 

, (2 -n) ( 2n ) Xs = Pr S --rJXs - Pr --Xl + X4 Xs, 
n+1 n+l 

(5.37) 
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with the dimensionless BCs 

(5 .38) 

(5.39) 

The guessing conditions are given as follows: 

(5.40) 

5.3 Testing of Method 

To perceive the verification of the current numerical results evaluated with the help of 

shooting technique and another numerical scheme viz bvp4c built-in routine is used to 

justify the present scenario. An exceptional correlation is reported between two numerical 

techniques while plotting the liquid velocity and temperature through Figs. 5.1(a-d) 

and 5.2( a, b) , respectively. The variation of the skin-friction in the restraining cases is 

shown in the table 5.1 which shows an excellent correlation with the existing literature as 

provided by Ariel [75J . The tabular values of the Nusselt number through table 5.2 shows 

an exceptional treaty with the upshots reported by Ishak et al. [76J and Elbashbeshy [77J. 

5.4 Computational Results and Discussion 

The numerical computations of highly non-linear ODEs (5.14)-(5.16) subject to BCs (5.17) 

and (5.18) are performed. The graphical illustrations are provided to analyze the influence 

of the main parameters of flow which lead the anticipated problem namely the unsteadiness 

parameter (S), power-law parameter (n) , Sisko fluid parameter (A), Biot number (r) and 

stretching parameter (a) on the velocity and temperature distributions. A comparison 
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of two adopted numerical approaches namely the shooting technique along with RK-45 

Fehlberg method and bvp4c package has been done to check the accuracy of the numerical 

results. 

The computational results plotted through Figs. 5.3(a-d) present a significant trend 

of n on the fluid velocity components. These plots are representing a reduction in velocity 

components for both cases that is dilatant (n > 1) liquid and pseudo plastic (0 < n < 1) 

liquid. F\lrther it is depicted that the associated MBLT attained in this flow, is also 

reduced. However, from these pictures, it can be found that the MBLT is much higher 

in situation of pseudo-plastic liquid, when compared with dilatant fluid. Through Figs. 

5.4(a,b), the field of temperature shows a diminishing behavior while increasing the 

power law index with both pseudo-plastic and dilatant cases. Additionally, it is seen 

that the liquid temperature are more significant in situation of shear-thinning liquid in 

comparison with shear-thickening property. 

The velocity profiles as shown in Figs. 5.5(a-d) exhibit an escalating behavior by 

increasing the Sisko fluid parameter. In the aforementioned figures, for both dilatant and 

pseudo-plastic cases, the TBLT is enhanced. A decline in the temperature distribution 

is noticed for increasing Sisko fluid parameter and is portrayed through Figs. 5.6(a,b). 

Again, it is seen that the momentum as well as TBLT are greater in case of (0 < n < 1) 

fluid in comparison with (n > 1) liquid. The effects of the unsteadiness parameter on 

the velocity and temperature distributions are shown in Figs. 5.1(a-d) and 5.8(a,b), 

respectively. From these figures, it is noticed that the increasing values of S result in a 

slight decline in the velocity and temperature of the liquid and the corresponding TBLT 

in the case of shear-thickening fluid. However, a relatively reverse trend is revealed for 

the case of shear-thinning liquid. 

Fig. 5.9(a,b) exhibit a declining conduct while plotting of velocity component f'('T]) 

while keeping the stretching parameter in increasing order. It is revealed that the ve­

locity field and the associated BL structure decay for increasing values of a for the 

cases, i.e. , pseudo-plastic and dilatant liquids. The opposite behaviors are noticed during 
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the intrigues of other velocity component g'("7) as portrayed in Figs. 5.9 (c,d). Figs. 

5.10(a,b) describe t he impact of the increasing values of the Biot number on the temper­

ature distribution and the associated TBLT. Temperature and associated TBLT liquid 

show and uplifting conduct by the higher values of Biot number. This is owing of the 

enhancement in transfer of heat . 

The results presented in table 5.3 indicate that as the unsteadiness parameter in­

creases from S = 0.0 to 0.4, the skin-friction reveal an enhancing trend for pseudo-plastic 

liquids and the same trend is detected for dilatant liquids. It is further noted that the 

drag force is stronger in case of pseudo-plastic liquid for smaller values of the unsteadiness 

parameter. We further observed from the table 5.4 that the effect of unsteadiness pa­

rameter on Nusselt number shows an increasing conduct for dilatant and pseudo-plastic 

liquids as well. Additionally, the effect of Biot number on the Nusselt number is t ested 

which increases from , = 1.1 to 1.3 and which exhibit an uplifting behavior for two cases, 

Le., pseudo-plastic and dilatant liquids, respectively. It is concluded from the approximate 

values that the rate of heat t ansfer is more prominent in shear-thinning fluids. 
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Table 5.1: A matching with earlier results for growing values of Q when A = 0, S = 

0, n = 1, Pr = 1.2 and I ---+ 00. 

Q - 1"(0) -gl/ (O) 

Ariel [75] Present results Ariel [75] Present results 

Exact Approx Approx Exact Approx Approx 

0.0 1.00000000 1.00000000 1.000008 0.00000000 0.00000000 0.00000000 

0.1 1.02025978 1.01952736 1.020264 0.06684715 0.06796849 0.06684863 

0.2 1.03949519 1.03827716 1.039498 0.14873691 0.15018484 0.14873840 

Table 5.2: A matching with earlier results for growing values of Pr when A = 0, S = 

0, n = 1 and I ---+ 00. 

-(1'(0) 

Pr Ishak et al. [ 76 ] Elbashbeshy [77] Present results 

0.72 0.8086 0.8161 0.8088342 

1.0 1.0000 1.0000 1.0000080 

10 3.7202 3.7202 3.7206700 
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Table 5 .3: Influence of flow parameters on skin-friction, when Pr = 1.2 and 'Y = 1.2 

are fixed. 

Parameters _1 ( Ren~l ) G 2 b f x -~ ( Reb~l Gfy I) 
A S a n = 0.50 n = 1.50 n = 0.50 n = 1.50 

0.3 0.2 1.5 1.492243 1.493997 2.449393 2.444652 

0.6 1.671741 1.642484 2.749315 2.686316 

0.9 1.827711 1.78218 3.009472 2.913729 

0.3 0.0 1.5 1.454925 1.419253 2.397469 2.338542 

0.2 1.492243 1.493997 2.449393 2.444652 

0.4 1.531868 1.567131 2.503422 2.548762 

0.3 0.2 1.3 1.468945 1.457906 2.024574 2.004631 

1.5 1.492243 1.493997 2.449393 2.444652 

1.7 1.51497 1.529287 2.89628 2.913510 
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Table 5.4: Effect of various flow parameters on N usselt number. 

Parameters -(Re~ n~ l ) Nux 

A S a Pr 'Y n = 0.50 n = 1.50 

0.3 0.2 1.5 1.2 1.2 0.6449692 0.6752807 

0.6 0.6523803 0.680455 

0.9 0.6574618 0.6843759 

0.3 0.0 1.5 1.2 1.2 0.6400963 0.6622351 

0.2 0.6449692 0.6752807 

0.4 0.6501400 0.6873459 

0.3 0.2 1.3 1.2 1.2 0.6378863 0.6688928 

1.5 0.6449692 0.6752807 

1.7 0.6516804 0.6813764 

0.3 0.2 1.5 1.0 1.2 0.6122373 0.6422419 

1.2 0.6449692 0.6752807 

1.4 0.6720866 0.7023523 

0.3 0.2 1.5 1.2 1.1 0.6149232 0.6424162 

1.2 0.6449692 0.6752807 

1.3 0.6727849 0.7058343 
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Chapter 6 

Thermophoresis and Brownian 

Motion Applications to the Flow of 

Unsteady 3D Magneto-Sisko Liquid: 

A Numerical Study 

In · this chapter, the impact of Buongiorno's model in 3D flow of unsteady Sisko liquid 

is discussed in the occurrence of zero nanoparticles mass flux constraint. The 3D time­

dependent Sisko liquid equations are first formulated through classical BL approximations 

and then non-dimensionalized by incorporating the suitable variables. The approximate 

illustration for ensuing flow, and transfer of heat and mass are computed by utilizing the 

two different numerical techniques namely bvp4c built-in code in MATLAB and shoot­

ing technique with RK45 Fehlberg and Newton-Raphson methods. Numerical results are 

demonstrated by presenting a pictorial view of the liquid temperature and concentration. 

The distinct behaviors of the nano-liquid distributions of velocity, temperature and con­

centration for shear-thinning (0 < n < 1) and shear-thickening (n > 1) cases are reported. 

In the revised nature condition, the change in temperature owing by Brownian motion is 

detected in a very minor behavior and has been ignored. To see the authentication of the 
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numerical computations, we compare the finding of the numerical techniques bvp4c with 

an efficient numerical method namely the shooting technique and RK45 Fehlberg method 

and an excellent correlation between these methods is seen. 

6.1 Mathematical Construction of the Model 

Consider the 3D unsteady flow with ,constant density of Sisko nano-fluid past a bidirec­

tional stretched surface. The uniform transverse nature of a magnetic field E = [0,0, Eo] 

is imposed in the main problem and due a very less impact of the magnetic Reynolds 

number which is ignorable in this proposed physical problem. The moving surface, which 

physically characterizes a nano-polymer is prompted by applying four equal and opposed 

forces simultaneously along the x- and y- axes with velocities Uw = l~/Jt and Vw = l~~t 

, respectively, with both (c, d) > 0 are the moving rates. The x- and y- axes are fixed 

along the continuous moving sheet and the z axis is dignified normal to the x- and 

y- axes. The boundary temperature (Tw) is anticipated to be higher than that of the 

temperature of the of the nanoliquid at Too which are far-off from the moving boundary. 

Furthermore, transfer of heat and mass phenomena are carried out by employing Buon­

giorno's relation. The aforementioned assumptions goes to formulate the said problem in 

the subsequent way of relations 

8u = _ ( 8V + 8W) (6.1) 
8x 8y 8z' 

8u + U 8u + ~~ (_ 8U)n + (O'E5)u = _ (v 8U + w 8U) + ~ (8
2

u ) , (6.2) 
8t 8x PI 8z 8z PI 8y 8z PI 8z2 

8v + U 8v _ ~~ ( _ 8U ) n-l 8v + ( O'B5 ) v = _ ( v 8V + w 8V ) + ~ ( 8
2
v ) , (6.3) 

8t 8x PI 8z 8z 8z PI 8y 8z PI 8z 2 
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(6.5) 

The subsequent appropriate BCs are imposed at the moving surface and in the free stream 

(6.6) 

as z--)-oo, U--)-O, V--)-O, T--)-Too and C--)-Coo ' (6.7) 

The analysis is further proceed by presenting the following suitable transformation: 

(6.8) 

where Tw = Too + le~tJt' In perspective of Eqs. (5.11), (5 .12), (5.13) and (6.8), we can 

obtain the subsequent ODEs with respect to the dimensionless variable rt: 

Af'" - S [1' + (~) f f" + 2 - n rtf"] + n (-1"t-1 fIll - 1'2 + g1" - M l' = 0, (6.9) 
n+1 l+n 

Ag'" - S [g' + (n2
: 1) f g" + ~ ~ ~ rtg"] + (-1"t-1 gIll 

-(n - l)g" fIll (-1"t-2 - gl2 + gg" - M g' = 0, 

/I ( 2n) [2 -n ] (Nt) /I ¢ + Le Pr n + 1 f + 9 ¢' - Le Pr S 1 + n rt¢' + Nb e = 0, 

{

f= 0, 
at rt = 0, 

e = 1, 

9 = 0, f' = 1, g' = a , , 

as rt --)- 00, l' --)- 0, g' --)- 0, e --)- 0, ¢ --)- 0. 
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(6.12) 

(6.13) 

(6.14) 



The flow parameters are st ated below: 

d 
a= -, 

c 
s = ~ , 

c 

6.2 Engineering Quantities 

(6.15) 

From the physical opinion, the interest in leading extents are the local skin-friction and 

Nusselt number. Physically skin-friction represents the resistive force oppose to the flow 

of liquids and local Nusselt number specifies the heat transfer rate of nanoliquid. These 

extents of physical curiosity can be deliberated by the consequent expressions as: 

(6.16) 

x (aT) I 
N ux = (Too - Tf ) az z==o· 

(6.17) 

The above expressions in dimensionless variables take the form: 

~Reb~l Gfx = Af"(O) - (- f"(O)t, (6.18) 

~Reb~l Gfy = ~: [Ag"(O) + g"(O)( - f"(o))(n- l)] , (6.19) 

(6 .20) 

6.3 Authentication of Numerical Outcomes 

To authenticate the correctness of the numerical outcomes achieved through the bvp4c 

function in MATLAB scheme, an assessment of the transfer rate of heat is made with re­

sults obtained through the shooting method along with RKF and Newton-Raphson meth-
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ods. A comparison between the two numerical approaches namely the shooting technique 

and built-in package bvp4c in MATLAB are illustrated through Figs. 6.1(a,b),6.2(a,b) 

and 6.3(a,b) for the velocity, temperature and nanoparticle concentration distributions, 

respectively. From these plots, one can found an outstanding agreement between these 

two methods. It is important to mention that in the nonexistence of unsteadiness parame­

ter, magnetic parameter, Lewis number , Brownian motion and thermophoresis parameter, 

the results are matching with the recent illustrat ed work [12] (see tables 6 .3 and 6.4). 

Furthermore, in the nonexistence of Sisko liquid parameter, magnetic parameter, Lewis 

number, Brownian motion and thermophoresis parameter, then the reduced problem for 

this investigation reduces to the problem which was analyzed by Ishak et al. [76] and EI­

bashbeshy et al. [77]. The comparison is listed in table 6.5 presenting a good correlation 

regarded this work with those presented by the previously cited authors. 

6.4 Description of the Results 

To inspect the significance of newly proposed more realistic relation for the Sisko nano­

liquid over a moving surface is the main theme and to be presented here. Important 

numerical scrutiny have been exemplified to explore the features and parameters diverse 

depicts of the flow of Sisko nano-liquid. 

The tabular values of drag forces are illustrated in table 6.1. Here an enhancement is 

noticed by increasing the unst eadiness parameter S for (0 < n < 1) as well as (n > 1). The 

effect is more noticeable for the case of shear-thickening liquid. In the aforementioned 

t able, a significance increment is reported by taking the values in increasing order of 

parameter M. It is because due to strong resistance with the existence of the magnetic 

field. The numerical values of the local-Nusselt number is presented in table 6.2, while 

different flow parameters are taken in an increasing order. An escalation in transfer rate 

of heat is reported with the uplifting values of the unsteadiness parameter S for dilatant 

as well as pseudo-plastic liquids. Moreover, in the tabular values, for the incrementation 
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in the Brownian motion paramet er Nb, no effect is seen on the heat transfer rate. On the 

other hand, a decrease in the heat transfer rate is observed by varying the thermophoresis 

parameter Nt .. 

The features of nano-liquid component of velocity g'(rJ) for raising values of magnetic 

parameter M is illustrated through Figs. 6.4 (a, b ) . Here a reduction determination 

about nano-liquid velocity and relatable MBLT is noticed in the preceding pictorial pre­

sentation by larger values of magnetic parameter. Physically, this arises owing to the fact 

that an escalation in Lorentz force yields much opposition to the nanoliquid flow and thus 

the nanoliquid velocity declines. Consequently, collision between the nano-particles en­

hances and this mechanism declines the associated MBLT. Parameter of stretching rates 

a influenced remarkably the nano-liquid velocity and related MBLT and is noticed such 

velocity with enrichment conduct for fixed values of pseudo-plastic and dilatant liquids 

conditions. These plots are presented through Figs. 6.5(a,b). It is estimated by these 

sketches that the velocity of the nano-liquid and associated MBLT enriches as the ra­

tio of stretching rates parameter rises . In physical sense, it is owing to the fact that 

whenever stretching rat es are increased, then velocity of nano-liquid becomes dominant 

in y-direction in matching with the velocity in x-direction. Consequently, the velocity 

of the nano-liquid boosts. 

Figs. 6.6(a-d) are figured to exemplified the behavior of temperature and solute 

concentration of nano-liquid and the relevant TBLT and CBLT. It can be professed from 

these sketches that the temperature and concentration distributions decay for an escala­

tion in the power law index n. However, the characteristics of the power-law index on 

the temperature and concentration fields are more outstanding for (0 < n < 1) as com­

pared to the case (n > 1). Figs. 6.7(a-d) are designed to envisage the development of 

the nanofluid temperature field as well as concentration distribution for increasing values 

of Sisko liquid parameter A. It can be perceived from these graphs that for escalating 

values of the Sisko liquid parameter a deterioration in the nano-fluid temperature and 

concentration profiles is found. F\.uthermore, it can be visualize from these graphs that 
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the relevant TBLT and CBLT are diminishing functions of A. The flow results of this 

plotting for (0 < n < 1) is more significant in comparison with (n > 1) property. This 

is due to the fact that whenever, A is taken into higher order values, the said viscosity 

of the fluid reduces due to increase in shear rates and this causes a decline in nano-liquid 

temperature field as well as concentration profile. Thus, the same trend is noticed for the 

associated TBLT and CBLT. Another important effect in the form of higher temperature 

as well as concentration fields for the intensifying values of S are detected through Figs. 

6.8(a-d). In these graphs more prominent outcome for (0 < n < 1) is detected in compar­

ison with (n > 1) property. Figs. 6.9(a-d) are devoted to present the fluctuations in the 

fields of temperature and solute concentration for altered values of the ratio of stretching 

rates parameter a. We detected a deterioration in the nano-liquid profiles of tempera­

ture and concentration for rising values of the ratio of stretching rates parameter. Figs. 

6.10(a-d) disclose the disparity of the temperature and concentration disseminations in 

reply to a change in the Prandtl Pr. As the values of Pr increases the temperature and 

concentration distributions along with the TBLT reduce. When the values of the Pr are 

taken in growing order, the rate of thermal diffusion slows down. Moreover, if the Prandtl 

number increases the concentration profile inclines at the surface. Additionally, for the 

greater values of Prandtl number, the liquid reduce more slowly as compared to the flu­

ids with higher values of Prandtl number. Figs. 6.11(a-d) are sketched to investigate 

the features of the thermophoresis parameter Nt on the nanoliquid temperature as well 

as concentration distributions. Physically, escalating the values of Nt implies that the 

small nanomaterials are taken away from the warm boundary to the cold boundary and 

thus the liquid temperature raises due to the reason that greater number of nanoparticles 

are dragged away from the surface. Figs. 6.12 (a, b) are captured to measure the 

changes in the distribution of nanoliquid concentration with the impact of Lewis num­

ber Le. In fact, Lewis number is indirectly proportional to the coefficient of Brownian 

diffusion. Here uplifting values of Lewis number correspond to small diffusivity and so 

concentration distribution declines. Through Figs. 6.13 (a, b), a reduction is observed in 
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the concentration of the nanoparticles and relatable CBLT due to the enhancing values 

of the Brownian motion parameter Nb. 
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Table 6.1: Local skin-friction for several values of the flow parameters. 

( ) ~ ( ) ~ n + l n + 1 

A S M 
-~ Reb Cfx -~ Reb Cfy 

a 

n = 0.50 n = 1.50 n = 0.50 n = 1.50 

0.0 0.2 0.2 1.5 1.439957 1.351255 2.093931 2.209080 

0.3 1.508605 1.511288 2.470231 2.469150 

0.6 1.690839 1.661289 2.774023 2.712863 

0.9 1.849082 1.802409 3.037372 2.942205 

1.436997 2.363599 

0.1 1.489841 1.474345 2.444239 2.416626 

0.2 1.508605 1.511288 2.470231 2.469150 

0.3 1.527902 1.547834 2.496714 2.521178 

0.2 0.0 1.5 1.492240 1.493998 2.449389 2.444653 

0.2 1.508605 1.511288 2.470231 2.469150 

0.4 1.555917 1.562471 2.531117 2.541787 

0.6 1.629652 1.645604 2.627655 2.660135 

1.475515 2.026689 

1 2.470231 12.469150 

1 2.918229 1 2.940334 

13.386686 1 3.438981 
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Table 6.2: Local-Nusselt number for the incremented values of t he flow parameters. 

A S M Nb Nt a 
- R eb Nux ( ) - n+l 

n = 0.50 n = 1.50 

1 0.0 0.2 0.2 0.5 0.2 1.5 1.312273 1.478652 

I 0.3 1.370060 1.516477 

I 0.6 1.405775 1.544084 

I 0.3 0.0 0.2 0.5 0.2 1.5 1.344122 1.447659 

0.2 1.356920 1.482358 

0.4 1.370060 1.516477 

0.3 0.2 0.0 0.5 0.2 1.5 1.374596 1.518531 

0.2 1.370060 1.516477 

0.4 1 1.356849 1.510416 

0.3 0.2 0.2 0.3 0.2 1.5 1.370060 1.516477 

0.5 1.370060 1.516477 

1 0.7 1.370060 1.516477 

0.3 0.2 0. 2 0.5 0.2 1.5 1.370060 1.516477 

0.4 1.350504 1.490996 

0.6 1.331269 1.465869 

0.3 0.2 0.2 0.5 0.2 1.3 1.338812 1.484755 

1.5 1.370060 1.516477 

1.7 1.400434 1.547492 
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Table 6.3: A comparison of the local skin-friction for various values of a, when S = 0, 

A = 1.5, M = 0.0 , Pr = 1.0, Le = 0.0 , Nb = 0.000002 and Nt = 0.0 are fixed. 

~ (Reb) nil GJx (~) ~ ( Reb) ntl G Jy (~ ) 
a n = 0.50 n = 0.50 

Current results Munir et al. [12] Current results Munir et al. [12] 

1 0.21 -1.7450571-1.74610 1-0.24473051-0.24536 

1 0.41-1.7972031-1.79819 1-0.5776021 1-0.57842 

1 0.61-1.8464281-1.84739 1-0.9776739 1-0.97856 

Table 6.4: A comparison of the local skin-friction for various values of a, when S = 0, 

A = 1.5, M = 0.0, Pr = 1.0, Le = 0.0, Nb = 0.000002 and Nt = 0.0 are fixed. 

~ (Reb) ,;tl GJx (~ ) ~ (Reb) n+ l Gfy (~) 
a n = 1.50 n = 1.50 

Current results Munir et al. [12] Current results Munir et al. [12] 

1 0.2 1-1.6021681-1.60218 1-0.2354871 1-0.23549 

1 0.41 -1.6604951-1.66050 1-0.54628591-0.55234 

1 0.61 -1.715682 1-1.71569 1-0.918764 1-0.93386 
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Table 6. 5: A comparison of the Nusselt number for various values of Pr, when S = 0, 

A = 0.0 , M = 0.0, n = 1, a = 0, L e = 0.0, Nb = 0.000001 and Nt = 0.0 are fixed. 

Ishak et al. [76] Elbashbeshy et al. [77] Present result 

I 0.72 1 0.8086 1 0.8086 1 0.8088342 

11.0 11.0000 11.0000 11.0000080 

110.0 1 3.7202 1 3.7204 1 3.7206360 
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Chapter 7 

Unsteady 3D Sisko N ano-magnetic 

Liquid Flow with Heat Absorption 

and Temperature Dependent 

Thermal Conductivity 

The influence of temperature functional thermal conductivity and time-dependent flow 

of 3D Sisko liquid with convective surface constraints is incorporate. In addition, nano­

materials are used in conjunction with magnetic and heat source/sink depicts. However, 

a theoretical and mathematical scenario has been presented to show the features of the 

novel parameters that are seemed in the flow problem. Moreover, the Biot number and 

heat source/sink parameter introduce a phenomenal prominence in the liquid flow tem­

perature and concentration by presenting the pictorial characteristics. These parameters 

are showing guarantee for the enhancement of temperature and concentration of liquid 

while testing pseudo-plastic and dilatant cases of liquids. Meanwhile, the Biot number "'/1 

illustrated a very novel significance during the rate transfer of mass and heat, where the 

rate transfer of heat uplifted and rate transfer of mass is found in reduction for pseudo­

plastic and dilatant liquids. The second Biot number "'/2 demonstrated a reverse scenario 
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for the same physical features. In order to certify the entire novel work, we presented 

matching phenomenon and reached at the point once again that the results are matching 

in limiting conditions. 

7.1 Flow Analysis 

We assume an electrically conducted and incompressible 3D Sisko nanofluid flow over 

a bidirectional moving boundary with time and space dependent stretching velocities 

Uw = l~t and Vw = l~~t' Where the velocity Uw is along x-axis with stretching rate 

c > 0 and the velocity Vw is along y-axis with stretching rate d > O. The disturbance in 

the fluid is restrained in the z -axis which vertical to the boundary of moving surface. It 

is also considered that the temperature and nano-particle fraction of the fluid adjacent to 

the wall of the sheet is larger than the temperature and nano-particle fraction at infinite 

distance. No slip between suspended nano-particles and base fluid is assumed due to the 

thermal equilibrium. Some more detail about the t emperature differences which arises 

between the wall and away from the wall can be characterized with the help of heat gener­

ation/absorption and temperature dependent thermal conductivity. Specifically, surface 

conditions for transfer of heat and mass are imposed to elaborate the flow phenomenon. 

Foremost equations of the current unsteady flow under these aforesaid assumptions de­

liberated above are given by 

(7.1) 

-+u-+-- -- + -- u-- v-+w- +- -au au b a (au)1l (OB5) ( au au ) a (a2u) 
at ax PI az az PI - ay az PI az2 ' 

(7.2) 

(7.3) 

aT aT a ( aT) ( aT aT ) (a2T) -+u--- k(T)- =- v-+w- +al -at ax az az ay az az2 
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Qo * [ 8C (8T) Dr (8T ) 2] 
(PCp)f (T - Tf ) + T DB 8z 8z + Too 8z ' (7.4) 

(7.5) 

The imposed boundary constraints are employed as follows: 

as Z -+ 00, U -+ 0, v -+ 0, T -+ Too and C -+ Coo. (7.7) 

By plugging these set of (5.11), (5.12), (5 .13) and (6.8) and the variable thermal 

conductivity defined through Eq. (2.8), the above model can then be transformed into 

non-linear ODEs as below: 

Af'" - S [1' + 2 - n ryf"] + n (-f")n-l fIll l+n 

+ (n2
: 1) ff" - 1'2 + gf" - M1' = 0, 

Ag'" - S [g' + 2 - n rygll] + (~) f gil + ( _ f"t-1 gIll l+n n+1 
-(n - l)g" fIll (- f"t - 2 - g'2 + gg" - M g' = 0, 

II ( 2n ) [2 -n ] 2 (1 + d)) () + Pr n + 1 f + 9 ()' + Pr ,\() - Pr S 1 + n ry()' + c( ()') 

II ( 2n ) (2 -n) ( Nt) II ¢ + Le Pr n + 1 f + 9 ¢' - Le Pr S 1 + n ry¢' + Nb () = 0, 
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(7.8) 

(7.9) 

(7.10) 

(7.11) 



at TJ = 0, 
{

J = O, g = O, 

()' = -,1 [t;:()] , 
I' = 1, g' = a, 

¢' = -,2 [1 - ¢J , 

as TJ -+ 00, l' -+ 0, g' -+ 0, () -+ 0, ¢ -+ O. 

where the non-dimensional governing parameters are defined: 

7.2 Physical Quantities 

(7.12) 

(7.13) 

(7.14) 

Physical perspective of the Sisko nano-fluid flow shows the importance of many physical 

quantities namely skin-friction which represents resistance to the flow, local-Nusselt de­

notes the transfer rate of heat and the transfer of mass declared as Sherwood number. 

Representation of drag forces and transfer rate of mass and heat are the physical quanti­

ties to show a very significant role on the surface where the flow occurred. Such quantities 

of interest can be formulated in the subsequent form: 

(7.15) 

(7.16) 

(7.17) 

The aforementioned relations in the form of non-dimensional variables are 

~ Reb~l GJx = Af"(O) - (- f"(O)t, (7.18) 

~ Reb~l GJy = ~: [AglI(O) + (- f"(o))(n - l)g"(O)] , (7.19) 
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1 
Re-n+I Nux = - 8' (0) , (7.20) 

(7.21) 

7.3 Validation of Code 

A comparison for verifications of the contemporary numerical solution with the exiting 

literature is accomplished by presenting the approximate values of skin-friction, local 

Nusselt number and local Sherwood number as shown in table 7.4. These computations 

are carried out in the absence of unsteadiness parameter, magnetic parameter, Lewis 

number, parameters of Brownian motion and thermophoresis parameter, respectively, 

and variable thermal conductivity. The generalized Biot numbers are taken very large as 

approaches to infinity. The other parameters are being considered as fixed. All the values 

in tables listed are near equal to the tabular values listed by Khan et al. [78]. 

7.4 Results Descript ion 

The unsteady numerical simulations of MHD 3D Sisko nano-fluid flow with temperature 

dependent thermal conductivity, convective BCs and heat source/ sink are illustrated. The 

transformed nonlinear Eqs. (7.8) to (7.11) subject to the constraints (7.12) and (7.13) are 

considered to analyze the flow characteristics of the fluid. All the numerical consequences 

are revealed in the form of flow velocity, temperature and nano-particle volume fraction 

plots. The effect of all physical parameters are thoroughly examined which govern the flow 

namely the Sisko fluid parameter (A), index of power-law (n), stretching ratio parameter 

(a), Lewis number (£e), unsteadiness parameter (3) , thermophoresis parameter (Nt) , 

Brownian motion parameter (Nb), Prandtl number (Pr), magnetic parameter (M), vari­

able thermal conductivity (c), heat generation/absorption parameter ().) and generalized 

Biot numbers ('Yl, 'Y2)' 

The tabular outcomes of the skin-friction, local Nusselt and Sherwood numbers for 
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both cases, i. e., (0 < n < 1) and (n > 1) characteristics of fluids are determined to 

visualize the resistive forces , heat and mass transfer rates respectively, and presented in 

tables 7.1 , 7.2 and 7.3. The resistive forces to the flow of the fluid are noticed in the 

increasing order when the unsteadiness parameter is increased as shown in table 7.1. In 

table 7.2, the diminishing behavior is observed whenever testing the impact of the heat 

sink/source parameter on the transfer rate. Effect of the parameter owing to Brownian 

motion and Biot numbers lIon the transfer rate of heat is found in the decreasing and 

enhancing conduct, respectively. The transfer rate of mass is growing by Brownian motion 

parameter and Biot number 12 varying in an increasing order as shown in table 7.3. 

7.5 Velocity Profiles 

The impact of M on the profile of the fluid velocity is shown in Figs. 7.1 (a,b). An 

uplifting in M resulted in a decay of velocity field while taking both cases of dilatant 

(n < 1) and pseudo-plastic (0 < n < 1) liquids. The the Lorentz forces are increasing by 

taking the strong magnetic field effect and this is why the velocity of the fluid is decreased. 

This trend is more remarkable in the case of shear-thinning fluids. 

7.6 Temperature Profiles 

The temperature of the fluid is portrayed in Figs. 7.2 (a, b), where the increasing values 

of both the Sisko fluid and unsteadiness parameter are tested. In the preceding plots the 

profiles of the fluid temperature is described for increasing values of A is growing and 

a reverse conduct is depicted when the values of S are increasing. Both the situations 

of (0 < n < 1) and (n > 1) properties of fluids are considered, where the results are 

very clear in the shear-thinning fluid. Physically, the dependency of the fluid flow for the 

higher values of S shows that the rate of cooling is much slower and will take minimum 

time during the steady flows as illustrated in Fig. 7.2(b). 
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The decreases in B(r;) t hrough Fig. 7.3 (a) due to increasing of stretching ratio pa­

rameter and this reduction can be indorsed to the increased evaporation in the liquid. The 

enhancement in the stretching ratio parameter attains the evaporation of ambient liquid 

and increased toward the isothermal stretched surface. As a result the local fluid temper­

ature decreases. In Fig. 7.3(b) , the effect of the growing values of Pr is presented and 

the temperature of the fluid flow reducing along with the TBLT reduces while considering 

both cases of pseudo-plastic and dilatant liquids. In both figures the results are very much 

appropriate in case of pseudo plastic as compared to dilatant fluids. In physical sense, the 

higher values of Pr causes a reduction in conduction due to low thermal conductivity the 

related TBLT. Moreover, an increase in Pr at the surface of the nanofluids which causes 

a rise in heat transfer rate and due to enhancement of the temperature gradient. 

Fig. 7.4(a) shows the t emperature profiles for growing values of Lewis number Le 

where the noticeable diminishing behavior is observed by temperature fields. The depict 

of Biot number 11 on the field of temperature and is presented in Fig. 7.4(b), in which a 

critical enhancement is reported for both cases of (0 < n < 1) and (n > 1) and the related 

TBLT is also augmented. Physically, it is because of the measure of the ratio of conduction 

resistance to convection resistance inside of the body. Whenever 11 increases, the plate 

thermal resistance decreases and the non-dimensional surface temperature rises in both 

cases. In the restrictive case, when 11 declared a very large quantity, the dimensionless 

surface temperature reaches at its maximum value (isothermal condition) . 

A minor declining effect of Biot number 12 in plots of B(r;) is demonstrated in Fig. 

7 .5(a), where the relevant TBLT is also reduced with the applications of both conditions 

of pseudo-plastic and dilatant liquids. A very significant behavior is observed in pseudo­

plastic fluid as compared to dilatant fluid. On the other hand the effect of ), on B(r;) 

is shown in Fig. 7.5(b) and an increasing trend adjacent to the sheet is noticed for 

(0 < n < 1) and (n > 1) along with the allied TBLT. In physical view, the attribution 

of the fact that whenever the values of ), increases, the production of a hot layer of fluid 

is appeared near the surface and therefore the temperature is increases and this is while 
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reductions occurs in the transfer rate of heat from the boundary. 

Fig. 7.6(a) depicts the influence of thermal conductivity on e('f}) for pseudo-plastic 

fluid and dilatant liquid. In case of pseudo-plastic fluid the outcomes are more manifest. 

The temperature field as well as the related TBLT are also increased. The impact of Nt on 

e('f}) and the associated TBLT is noticed in the escalating order as shown in Fig. 7.6 (b). 

Basically, this is due to the reason that by rising Nt, the dissimilarity between the surface 

temperature and location temperature increases which causes growth in e('f}). Through 

Fig. 7.7(a) an enhancement conduct is noticed when the values of Nb are increased and 

the TBLT is reported to boost for both cases (0 < n < 1) and (n > 1). Examining 

the physical aspects of Nb on e('f}), we detect that when the parameter Nb enhances, 

the random motion of the nano-particles escalating. This is why the temperature profile 

of the nanoparticles is enhanced. The magnetic effect on e('f}) and associated TBLT is 

observed in the escalating behavior where both cases (0 < n < 1) and (n > 1) are tested 

as depicted in Fig. 7.7(b). MMeanwhile the influence of magnetic parameter on an 

electrically conducting liquid upshots in a esistive sort of forces called as Lorentz force, 

which has propensity to rise the temperature profile. Because of this, the magnetic field 

impact has numerous probable control-based uses like the resembling electromagnetic 

forming of metals in MHD power generation, MHD ion population etc. 

7.7 Concentration Profiles 

Fig. 7.8(a) demonstrates the impact of A on the nano-materials concentration ¢('f}) and 

related CBLT, very small decrement is found in concentration profiles. The pseudo-plastic 

(0 < n < 1) liquid and dilatant (n > 1) liquid conditions are applied. Influence of S is 

illustrated through Fig. 7.8(b) and the graphical results and the relevant CBLT shows 

boosting conduct. It is owing to the situation that S is inversely proportional to the 

stretching coefficient c. Therefore a rise in S reduces the stretching rate. As the velocity 

declines significantly which enhances ¢('f}) as well as the associated CBLT. 
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The growing trends is noticeable by the concentration profiles ¢('T}) in Fig. 7.9(a) 

while testing different values of a and this effect also escalates the associated CBLT. Fig. 

7.9 (b) is indication towards the effect of Pr on ¢('T}) and associated CBLT, respectively, 

increases. Physically, inverse relation between thermal conductivity and Pr demonstrates 

heat diffusion rate from the surface. The higher the values of Pr implies to low heat 

diffusion rate from the sheet. 

Figs. 7.10(a) and 7.10(b) exhibit the impact of Le and '/'1 on ¢('T}) and found in 

significant conduct . For a base fluid of assured kinematic viscosity 1/, a higher Le implies 

an inferior Brownian diffusion coefficient DB which leads to shorter penetration deepness 

for CBLT as we perceived in the plot. If the convective heat of the sheet is growing 

alternatively, the thermal penetration deepness rises. Therefore, the concentration is 

obsessed by the temperature field, one expects that a higher '/'1 would stimulate a more 

depth penetration of the concentration. This eagerness is actually realized in the preceding 

figure and which implies higher concentrations at increasing values of '/'1 . 

Through Fig. 7.11(a ) the enhancing effect is displayed by ¢('T}) for growing values of 

'/'2· The CBLT of concentration profile rises with the increase of Biot number. Physical 

significance of this effect is explained above in detail. Furthermore, the influence of .A is 

shown in Fig. 7.11 (b). To interpret the physical aspects of the concentration of the 

fluid flow, a growing situation is perceived while plotting ¢('T}) and its relevant CBLT is 

also raised. 

The impacts of Nt and Nb on ¢('T}) are tested through graphs plotted in Figs. 7.12 (a) 

and 7.12(b). The behavior of ¢('T}) is higher, when we varying the values of Nt in in­

creasing order and a same trend is observed while using the increasing values of Nb during 

the portraying of ¢('T}) as shown in Fig. 7.12(b) . Physically, the random motion of the 

nanofluid increases with the increase in Nb, whereas Nb is kept in enrichment order. The 

influence tested causes decrease in ¢( 'T}). 
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Table 7 .1: Testing of resistive forces with variation of controlling parameters. 

( )-L _~ ( Reb) n{l Gfy (~) n+l 

A S M 
-~ Reb Gfx 

a 

n = 0.5 1.5 n= 0.5 n = 1.5 

1 1.0 0.2 0.2 1.5 1.87188611.611681 3.068527 3.489146 

1 1.3 2.009747 1 1.061501 3.294339 3.770665 

11.6 2.138669 1.929547 3.505221 3.977659 

1 1.9 2.260406 2.134144 3.704064 5.064756 

11.2 0.0 0.2 1.5 1.900203 1.674699 3.130234 3.934534 

1 0.2 1.964892 1.899536 3.220902 3.074173 

1 
0.4 2.029973 2.065704 3.311985 3.277913 

1 
0.6 2.095227 2.207032 3.403229 3.492805 

11.2 0.2 0.0 1.5 1.942754 1.864645 3.190721 3.025719 

1 0.3 1.992238 1.941608 3.258258 3.127344 

1 0.6 2.134084 2.167892 3.453254 3.425954 

0.9 2.351597 2.313938 1 3.75588 3.746374 

1.2 0.2 0.2 1.2 1.907677 1.842199 2.382011 2.218939 

1.4 1.946051 1.880279 2.93258 2.778990 

1.6 1.983515 1.918143 3.517553 3.376522 

1.8 2.020143 1.95661 4.134894 4.011131 
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Table 7.2: Heat transfer rate for distinct leading parameter. 

( ) -~ n+ l 

S 
- Reb Nux 

Nb Nt c A ')'1 ')'2 

n = 0.8 n = 1.8 

0.0 0.5 0.2 0.2 0.2 0.8 0.8 0.419915 0.4056838 

0.2 0.4040555 0.4506852 

0.4 0.3833639 0.4451075 

0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.4209792 0.4643934 

0.4 0.409745 0.4552936 

0.6 0.398321 0.4460394 

0.2 0.5 0.1 0.2 0.2 0.8 0.8 0.4100231 0.4555609 

0.3 0.3980188 0.44576051 

0.5 I 0.3857454 0.4357718 1 

0.2 0.5 0.2 0.0 0.2 0.8 0.8 0.3974259 0.4441975 

0.2 0.4040555 0.4506852 

I 0.4 0.4112208 0.4575416 

I 0.2 0.5 0.2 0.2 0.0 0.8 0.8 0.4313932 0.4671937 

I 0.2 0.4040555 0.4506852 

I 0.4 0.3673692 0.4312704 

I 0.2 0.5 0.2 0.2 0.2 0.4 0.8 0.2692334 0.2890302 

I 0.6 0.3463764 0.3799939 

I 0.8 0.4040555 0.4506852 

I 0.2 0.5 0.2 0.2 0.2 0.8 0.4 0.413592 0.4588244 

I 0.6 0.4082851 0.4543484 

I 0.8 0.4040555 0.4506852 
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Table 7.3: Mass transfer rate for distinct leading parameters. 

( ) -~ n+l 

S 
- Reb Shx 

Nb Nt Le c I I 12 
n= 0.8 n = 1.8 

0.0 0.5 0.2 1.0 0.2 0.8 0.8 0.437383 0.4220338 

0.2 0.4257258 0.4572825 

0.4 0.4112959 0.4524949 

0.2 0.2 0.2 1.0 0.2 0.8 0.8 0.3648144 0.3985029 

0.4 0.4155686 0.4474801 

0.6 0.4325002 0.4638209 

0.2 0.5 0.1 1.0 0.2 0.8 0.8 0.4427412 0.4741172 

0.3 0.4097782 0.4413584 

0.5 I 0.3810772 0.412242 

0.2 0.5 0.2 1.0 0.2 0.8 0.8 0.4257258 0.4572825 

1.3 0.4622709 0.4915485 

1.6 0.4892774 0.5167112 

0.2 0.5 0.2 1.0 0.0 0.8 0.8 0.4251665 0.4566129 

0.2 0.4257258 0.4572825 

0.4 0.4263165 0.4579819 

0.2 0.5 0.2 1.0 0.2 0.4 0.8 0.4369348 0.4693267 

I 0.6 0.430457 0.4625035 

I 0.8 0.4257258 0.4572825/ 

I 0.2 0.5 0.2 1.0 0.2 0.8 0.4 0.2689472 0.28229361 

I 0.6 0.3564601 0.37900331 

I 0.8 0.4257258 0.45728251 
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Table 7.4: A comparison of the transfer rate of heat and mass for various values of 

n, when S = M = A = E: = a = 0, Le = 1.5, Nb = 0.1, Pr = 1.0, A = 0.5 and Nt = 0.1 

are fixed. 

1 1 

_Re;n+l Nux -Re;n+lShx 
n 

Khan et al. {78} Present results Khan et al. {78} Present results 

0.085352 11 0.08537674 0.752096 11 0.7515991 II 
0.086843 11 0.08689009 0.864615 11 0.8657731 II 
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Fig. 7.1: Behavior of the components of velocity for M. 
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Chapter 8 

Chemically reactive Flow of MHD 

Transient 3D Sisko Liquid with 

Thermal Radiation 

In this chapter, significant considerations are given to the 3D flow of Sisko liquid in view 

of chemical reaction in the form of homogeneous-heterogeneous and nonlinear thermal 

radiation effects. Here the flow is considered time-dependent with an external applied 

magnetic field. This flow is initiated by an external agents namely the bidirectional 

stretching velocities. The anticipated problem is initially formulated in the form of PDEs 

and then converted to ODEs by utilizing some dimensionless variables. These resulting 

ODEs are highly nonlinear in nature and are tackled with numerical scheme. It is noted 

from the field of temperature which raise by taking the higher values of Rd and Ow with 

both constraints of power-law liquids, i.e., dilatant (n > 1) and pseudo-plastic (0 < n < 

1). In the same way, the concentration profile is detected in the diminishing trend for 

the growing values of homogeneous-heterogeneous parameters (kl' k2)' Additionally, the 

problem further expressed by examining in custom of resistive forces and transfer rate of 

heat. This phenomenon will explore the flow resistance and transfer rate of heat. The 

tabular values of resistive forces demonstrate a declining conduct for the uplifting values 
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of a and similarly the local-Nusselt number exhibits an uplifting trend with the variation 

in Rd and ew ' These trends are confirmed by using a comparison between two methods 

namely, bvp4c and shooting with RKF. Moreover, a comparison with the previous data 

presents more validation of the proposed problem. 

8 .1 Problem Description 

Consider the unsteady 3D generalized Newtonian fluid flow with thermally radiative heat 

and chemically reacting mass transfer with the application of magnetic field. The liquid 

flow is owing to the time-dependent stretching velocities at z = 0 as Uw = l:C{:Jt and 

Vw = l~l~t, having same magnitude but in opposed direction. The magnetic field applied 

in a parallel direction, Le., along z-axis and is considered with uniform magnitude. The 

moving boundary temperature is Tw = Too + l~Pt and the concentration of the liquid at the 

stretching boundary kept constant. The liquid temperature and solute concentration of 

material away from the boundary are taken as Too and Coo, respectively. Chaudhary and 

Merkin [37, 38J introduced a simple interaction of chemical reaction namely heterogeneous­

homogeneous in this flow problem as discussed in earlier chapter (cf. chapter 4). By using 

the approximation of BLF and the aforementioned assumption the mass, force, energy 

and concentration balance equations are reduced in the following relations: (cf. chapter 6) 

au (avow ) ax = - ay + az ' (8.1) 

au + u au + ~ ~ ( _ au ) n + ( aB5) u = _ (v au + w au) + .!:. (a2u) , 
at ax PI az az PI ay az PI az2 

(8.2) 

(8.3) 

(8.4) 
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(8.5) 

abl abl * 2 ( abl abl ) ( a
2
bl ) 

at + U ax - kl albl = - v ay + W az + DB az2 . (8.6) 

Eqs. (8.2)-(8 .6) are subjected to the subsequent BCs: 

(8.7) 

as z -+ 00, U -+ 0, v -+ 0, T -+ Too, al -+ ao and bl -+ O. (8.8) 

Again, by making use of the set of non-dimensional variables (4.12) and (5.11-5.13), in 

view of Eq. (3.9), the above Eqs. (8.2)-(8.6) and the BCs (8.7) and (8.8) reduce in the 

following way: 

Aflll - S [1' + 2 - n'T}f"] + (~) f f" - (j')2 - M l' +n (-f"t- l fill + gf" = 0, (8.9) 
l+n n+1 

AglII 
- S [g' + 2 - n'T}gll] + (~) fg" + (_ f"t- l gill 

l+n n+1 

-M g' - (n - l)g" f'" (- f"t - 2 
- (g')2 + gg" = 0, (8.10) 

- Pr S e + --'T}e' - Pr l' e = 0, [ 
2 - n ] 
l+n 

(8.11) 

¢" + S c (n 2: 1 f + g) ¢' - S cS (~ ~ ~ 'T}¢') - S ck1 (1 - ¢) 
2 

¢ = 0, (8. 12) 
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at 'T/ = 0, {f = 0, 

g' = a, 

9 = 0, f' = 1, 
(8. 13) 

0 = 1, 

as 'T/ -T 00, f' -T 0, g' -T 0, () -T 0, ¢ -T 1. (8 .14) 

In the overhead equations, prime designates the differentiation with admiration to 'T/. 

The Ai and B; are assumed to be analogous in size, then the subsequent relation will be 

obtained as follows: 

The above relation is further a necessary condition to get Eq. (8.12). 

The dimensionless flow parameters are illustrated as below: 

8.2 Physical Quantit ies 

(8.15) 

Physical quantities appearing in the chemically reactive and nonlinear thermally radiative 

3D flow of magneto-Sisko fluid are the resistive forces namely skin-friction(resistive forces) 

and transfer rate of heat (local-Nusselt number). These physical quantities are computed 

in the tabular form for both (0 < 71, < 1) and (71, > 1). 

The aforesaid dimensionless relations are defined as: 

~Reb~l Gf x = Af"(O) - (- f"(o))n, (8.18) 

~Reb~l Gfy = ~: [( - f"(o))(n-l) gl/(O) + Agl/(O)] , (8.19) 

1 

Re;~ Nux = - [1 + RdO!] 0'(0). (8.20) 

127 



8.3 Validation of Scheme 

The computations presented in this study are validated viz tabular values of the resistive 

forces and transfer rate of heat as shown through tables 8.1 and 8.2. This comparison 

incorporates the effect of a on the resistive forces by keeping the other parameters fixed. 

These tabular values show an excellent agreement between bvp4c routine and shooting 

technique with RK-45 Fehlberg method. Another comparison of the current analysis is 

performed with the earlier published work by Malik et al. [11] and reveals a very good 

correlation with each other and is presented in table 8.3. 

8.4 Computational Results and Discussion 

A numerical technique is employed to solve the governing equations (8.9) to (8.12) with as­

sociated BCs (8.13) and (8.14). The present investigation is about the effect of heterogeneous­

homogeneous reaction together with nonlinear thermal radiation on the 3D unsteady 

magneto-Sisko fluid flow. Various dimensionless quantities are tested and their effects 

on the profiles of velocity, temperature and concentration and is graphically presented 

and the approximated values of drag forces and transfer rate of heat are also computed. 

These governing parameters are: the material parameter (A), unsteadiness parameter 

(S), magnetic parameter (M), power law-index (n), Prandtl number (Pr), stretching ra­

tio parameter (a) , thermal radiation parameter (Rd ) , temperature ratio parameter (Bw ), 

Schmidt number (Se), homogeneous parameter (k1) and heterogeneous parameter (k2) ' 

8.4.1 Drag Forces and Heat Transfer Rate 

Impact of M and S on drag force 

The drag force coefficients are illustrated in tables 8.4 and 8.5. The local skin-friction 

in both cases of power-law fluids with the properties of pseudo-plastic fluid and dilatant 

fluid is found to be in increasing order with the enrichment values of M and S. The 
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physical perspective in this regard indicates that the flow resistance is due to Lorentz 

forces created by magnetic field . 

Impact of Rd and Bw on heat transfer rate 

The depict of Rd and Bw on the Nusselt number in case of pseudo-plastic fluid and dila­

tant fluid is presented in the form of tabular values and is displayed through table 8.6. 

The transfer rate of heat enhances in favor of these parameters. Physical significance 

concerning this effect shows that when the radiation is applied, the liquid temperature 

escalates. Impact of temperature ratio parameter on the transfer rate of heat is because 

of the higher fluid temperature as compared to ambient temperature. 

8.4.2 Velocity Profiles 

Influence of M on f'('f]) and g'('f]) 

Influence of enhancing values of M on velocity components f'('f]) and g'('f]) for both 

pseudo-plastic fluid and dilatant liquid causes a decay in velocity field as presented in 

Figs. 8.1 (a, b). Associated MBLT is also reduced. Physically, growth in Lorentz forces 

is due to the larger values of M and this is why the velocity of the fluid is declined. 

8.4.3 Temperature Profiles 

Influence of A and Bw on B('f]) 

Through Fig. 8.2(a) , a declining conduct in profile of temperature is reported for the 

rising values of A for dilatant liquid and pseudo-plastic liquid as well. fluid . The TBLT 

is also found in the reducing order. Results obtained while portraying this figure are 

more noticeable in the pseudo plastic fluid condition. From physical point of view the 

diminishing effect in the consistency index, Le., viscosity of fluid is due to the higher values 

of A. Another very effective plot in Fig. 8.2(b) is illustrated to show the impact of the 

increasing values of Bw on B('f]) showing enhancement conduct . The associated TBLT is 
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found in the escalating order. Both cases of this fluid model, Le. , shear-thickening and 

shear-thickening are tested but a remarkable result is noticed in the shear-thinning case. 

The enhancement in temperature of such type of fluid model is due to the temperature 

ratio parameter and it is because of the larger value of the fluid temperature. 

Influence of Pr and Rd on B(-TJ) 

By utilizing both restrictions of dilatant and pseudo-plastic, temperature and the associ­

ated TBLT are continuously decreasing inside the BL for the growing values of Pr and 

is demonstrated in Fig. 8.3(a). This is identified that with the higher values of Pr 

and which causes fast rate of cooling, while diminishing of temperature occurs during 

this variation. The significance growing effect of the augmented values of Rd on B('TJ) is 

sketched in Fig. 8.3(b). Physically, this effect indicates that radiation supplied to the 

fluid flow will enhance the transfer rate of heat and as a result the fluid temperature 

increases. 

Influence of M and a on B('TJ) 

Fig. 8.4(a) elucidates the impact of M on B('TJ) for both pseudo-plastic and dilatant 

liquids as well and a remarkable enhancement in the temperature of fluid is seen. The 

relevant TBLT is also enhanced for rising values function of M . This increasing agent of 

the fluid temperature is accountable for the enrichment of Lorentz forces. Other important 

behavior of the growing values of a on B('TJ) is portrayed in Fig. 8.4(b) , where the 

temperature of the fluid is increasing. This effect is because of the distance increasing 

amongst the fluid particles and as a result the heat transfer rate shall be slowly down. 
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8.4.4 Concentration Profiles 

Influence of a and Se on rjJ(TJ) 

In Figs. 8.5(a,b), the concentration rjJ(TJ) of the fluid flow is recorded in escalating 

conduct while testing both the conditions, i.e., pseudo plastic fluid and dilatant fluid with 

variation of a and Se. This effect is observed with in the BL and the associated CBLT is 

also increased. Fig. 8.6(a) displays the increasing conduct in the concentration species 

of the fluid and this is because of the higher values of stretching ratio parameter. More 

stretching of the surface will increase mass transfer rate. Fig. 8.6(b) shows the impact 

of S e on rjJ( TJ) and therefore this effect is because of the ratio of viscous diffusion rate and 

molecular diffusion rate. Thus more amount of Se will enhance concentration species. 

Influence of S and M on rjJ(TJ) 

Impact of Son rjJ(TJ) is demonstrated through Fig. 8.7(a), an uplift in rjJ(TJ) is visualized 

for increasing values of S. This effect is observed for both cases, Le. , pseudo-plastic 

and dilatant liquids. In both cases the concentration and corresponding CBLT increases. 

Effect of M on <p(TJ) is illustrated in Fig. 8. 7(b). The concentration of the species and 

the associated CBLT diminishe for increasing values of M. The Lorentz forces introduced 

with the help of M while plotting the concentration distribution causing a resistive drag 

force and as a result less mass will be transfer. 

Influence of kl and k2 on <p(TJ) 

The impact of kl and k2 on <p(TJ) is shown through Figs. 8.8(a,b). From these figures, 

a declining behavior is observed. The graphs displayed are further tested for both con­

straints, Le., (0 < n < 1) and (n > 1) properties of fluids. Whereas the associated CBLT 

of reactants is reported in the increasing order as the concentration of the liquid is carried 

away from the wall. Depreciation of <p( TJ) in case of both reactant parameters kl and k2 

is because of the fact that the reaction rates dominate diffusion coefficients. 
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Table 8.1: Comparison of bvp4c and shooting technique, while fixing A = 0.2, S = 

0.2, M = 0.2, Rd = 1.0, Pr = 1.2, ew = 1.2, kl = 0.2, k2 = 0.6 and Sc = 1.0. 

( ,) n+l - ~ Reb Cfx 

Parameter bvp4c shooting method 

ex n = 0.8 n = 1.8 n = 0.8 n = 1.8 

0.2 1.245485 1.210381 1.245485 1.21038 

0.4 1.27748 1.254568 1.27748 1.254567 

0.6 1.308056 1.29697 1.308056 1.29697 

_ ~ ( Reb) nil Cfv (~) 
Parameter bvp4c shooting method 

ex n = 0.8 n = 1.8 n = 0.8 n = 1.8 

0.2 0.1874347 0.1885341 0.1874348 0.1885339 

0.4 0.4257742 0.4257988 0.4257743 0.4257985 

0.6 0.7052276 0.7056185 0.7052277 0.7056181 

Table 8.2: Comparison of bvp4c and shooting technique, while fixing A = 0.2 , S = 

0.2, M = 0.2, ex = 0.5 , Pr = 1.2, ew = 1.2, kl = 0.2, k2 = 0.6 and Sc = 1.0. 

_ Reb n + l Nux ( ,) -~ 

Parameter bvp4c shooting method 

Rd n = 0.8 n = 1.8 n = 0.8 n = 1.8 

1.0 1.815448 1.919434 1.815448 1.919434 

1.2 1.891554 1.992434 1.891554 1.992434 

1.4 1.961893 2.059251 1.961893 2.059251 
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Table 8.3: Comparison of present work with previous results, while fixing S = a = 0.0. 

1 

_.!Ren+l C
J 2 b 

n Present results Malik et al. [11] 

1.0 2.000008 2.00000 

2.0 1.914495 1.914495 

3.0 1.875080 1.875081 

Table 8.4: The local-skin-friction Coefficient variation with A, S, M and a, when Pr = 

1.2 , Rd = 1.0, Bw = 1.2, kl = 0.2, k2 = 0.6 and Se = 1.0. 

( ) n{l 

A S M 
-~ Reb C/x 

a 

n = 0.8 n = 1.8 

0.1 0.2 0.2 0.5 1.235467 1.229421 

0.3 1.34679 1.321894 

0.5 1.448259 1.411706 

0.1 0.0 0.2 0.5 1.180555 1.142934 

0.1 1.20795 1.186503 

0.2 1.235467 1.229421 

0.1 0.2 0.0 0.5 1.217823 1.211355 

0.2 1.235467 1.229421 

0.4 1.286565 1.282907 

0.1 0.2 0.2 0.2 1.190714 1.164741 

0.4 1.220898 1.208323 

0.6 1.249739 1.250132 
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Table 8.5: The local-skin-friction Coefficient variation with A, S, M and a ,when 

Pr = 1.2, Rd = 1.0, Bw = 1.2, kl = 0.2, k2 = 0.6 and Se = 1.0. 

A S M a 
_~ ( Reb) nil eJy (~) 

n =0.8 n = 1.8 

0.1 0. 2 0.2 0.5 0.5362644 0.5399272 

0.3 0.5841034 0.5811563 

0.5 0.6277770 0.6211994 

0.1 0.0 0.2 0.5 0.5257358 0.4933554 

0.1 0.5283926 0.5168608 

0.2 0.5362644 0.5399272 

0.1 0.2 0.0 0.5 0.5257358 0.5302135 

0.2 0.5362644 0.5399272 

0.4 0.5663981 0.5603459 

0.1 0.2 0.2 0.2 0.1794329 0.1812007 

0.4 0.4072864 0.4098021 

0.6 0.6741979 0.6798624 
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Table 8.6: The local-Nusselt number variation with A, S, M, a, Pr, Rd and Ow, 

when kl = 0.2, k2 = 0.6 and Se = 1.0. 

A S M a Pr Rd Ow 
( ) -ntl - Reb Nux 

n = 0.8 n = 1.8 

0.1 0.2 0.2 0.5 1.2 1.0 1.2 1.791724 1.823125 

0.3 1.835962 1.868718 

0.5 1.871799 1.906778 

0.1 0.0 0.2 0.5 1.2 1.0 1.2 1.690877 1.638012 

0.1 1.740617 1.735306 

0.2 1.791724 1.823125 

0.1 0.2 0.0 0.5 1.2 1.0 1.2 1.80152 1.827276 

0.2 1.791724 1.823125 

0.4 1.763769 1.811025 

0.1 0.2 0.2 0.2 1.2 1.0 1.2 1.720181 1.751024 

0.4 1.768489 1.799538 

0.6 1.814445 1.846328 

0. 1 0.2 0.2 0.5 0.8 1.0 1.2 1.376801 1.38432 

1.0 1.592817 1.612378 

1.2 1.791724 1.823125 

0.1 0.2 0.2 0.5 1.2 1.0 1.2 1.791724 1.823125 

1.2 1.865334 1.886941 

1.4 1.933073 1.945582 

0.1 0.2 0.2 0.5 1.2 1.0 1.2 1.791724 1.892808 

1.4 1.943122 2.038512 

1.6 2.102364 2.187498 
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Chapter 9 

Modeling and Computations of Sisko 

Liquid Flow with Transfer of Heat 

over a Curved Boundary 

This chapter focuses on newly modeled flow of 2D Sisko liquid and transfer of heat mech­

anism over a curved moving boundary. The flow equations of Sisko fluid are formulated 

in the curvilinear coordinates system. By utilizing the curved system coordinates, the 

modeled PDEs are customized to non-linear ODEs while incorporating dimensionless 

variables. The numerical solutions of flow and transfer of heat balances are obtained 

through coding in MATLAB built in function bvp4c. An impact of increasing values of 

parameters due curved nature on the velocity causes an uprise for pseudo-plastic liquids. 

The diminishing trend of temperature field is the effective outcome of important radius of 

curvature parameter with enhancing values. Magnitude of the pressure inside the BL is 

observed in the form of reduction for pseudo-plastic liquids. Curvature parameter shows 

dominance trends in terms of the reducing depict while calculating transfer rate of heat 

and resistive forces. The current study is validated in case of infinite curvature parameter 

value for planner sheet case and tabular values demonstrate an excellent agreement with 

the existing literature. 
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9.1 Governing Equations 

Keeping in mind the BL mathematical assumptions, the force balance equation is a con­

straining type of equation under the high Reynolds number (Re) due zero kinematic 

viscosity v . An answer of these restricting conditions may consequently sensibly be re-

quired to depict approximately the laminar BLF for which Reynolds number is higher but 

not exactly infinite. For fluid flow with incompressible fluid condition, the conservation 

of mass, linear momentum as well as energy without body forces, are expressed in the 

vector notations as follows: 

divV =0, (9.1) 

(9 .2) 

(9 .3) 

For an incompressible 2D flow in curvilinear coordinates, we pursue the velocity and 

temperature fields as: 

v = [v(r, s), u(r, s), 0] , T = T(r, s), (9.4) 

where v and u are the velocity names responsible for the moments along r- and s- axes, 

respectively. By substituting Eq. (9.4) having in mind Eqs. (1.78) to (1.80)(cf. Chapter 

1) and reference [70] , the shear rate of Sisko fluid is given by 

n- l 

'--1 --In-l [ 2 (aV)2 + (au + R av 11 )2]-2 
t (A2) = ar ar r+R as - r+R 2 r 1 

+2 (r:R ~~ + r~R ) 2 

(9 .5) 

By plugging Eq. (9.5) into Eq. (1.78), we obtained the momentum equation. Thus 
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the governing equations for balance of mass and linear momentum as follows: 

au a 
Ras + or {(R+r)v} = 0, (9 .6) 

p v-+------ =--+--- (R+r) -[ 
av Ru av u

2
] ap 2a a [ ( av ) ] 

or R + r as R + r or R + r or or 

[ 

n-1 ] 2 8v 2 8u ~8v _ ~ 2 -2 +~~ (R + r ) { (ar ) + ( ar + R+r 8.9 R+r )} aV 
R + r or +2 (~8u + _V_)2 or 

R+r as R+r 

Ra a [( au R av u) ] 2a ( R au v ) 
+ R + r as or + R + r as - R + r - R + r R + r or + R + r 

+~~ [{ 2 ( ~~ ) 2 + ( ~~ + R~r ~~ - R~r ) 2 } ";-1 ( au + ~ av _ _ U_ )] 
R+ras +2 (~au+_V_) 2 or R+ras R+r 

R+r 8s R+r 

n- 1 

_~ [ 2 (~~)2 + (~~ + R~r ~~ - R~r)2l -2 (~au + _v_) , (9.7) 
R+r +2 (~au+_V_) 2 R+rar R+r 

R+r as R+r 

[
aU Ru au uv ] R ap 

p v or + r + R as + r + R = - r + R as 

a a [ R 2 (au R av u ) ] 2Ra a [ ( R au v ) ] 
+(r+R)2ar (r+ ) or + r+Ras - r+R + r+Ras r+Ras + r+R 

+ 2Rb ~ [{ 2 ( ~~ ) 2 + ( ~~ + r:R~~ - r~R ) 2 }"21 (~au + _V_)]. (9.8) 
r+Ras +2(~a1L+_v_)2 r+ R as r+R 

r+R as r+R 

To make the above equations non-dimensional while using t he standard approach, we 

take L as the typical length, U the reference speed and 0 the BLT. Thus, we present the 
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subsequent dimensionless variables: 

* s 
s = L ' 

* r 
r = 8' * u 

u = U' 
* v L 

v = U8' 
* p 

p = pU2' (9.9) 

In view of the above variables, we ob~erve that balance Eqs. (9 .7) and (9.8) go over in 

the non-dimensional form 

- +---+v- -€--=-€-+- --- (R+r) -1 [ Ru av av ] u
2 

ap 1 [ 2 a { ( av ) }] 
Re R + r as ar R + r ar Re R + r ar ar 

+_2_~~ [(R + r) { 2 ( ~~)2 + (%~ + R~r ~~ - R~J2 } n

2
1 av ] 

R + r Re ar +2 (....Jl..au + _V_ ) 2 ar 
R+r as R+r 

R 1 a [ ( au R av u) ] 1 2 ( R au v ) 
+ R + r Re as ar + R + r as - R + r - R e R + r R + r ar + R + r 

+~~~ [{ 2 (~~ )2 + (%~ + R~1' ~~ - R~r)2 } n

2
1 (au + ~ av _ _ U_)] 

R +r R eas +2 (....Jl..au +_v_ )2 ar R+ras R+r 
R+r as R+r 

n - l 

_~_2_ [ 2 ( ~~ ) 2 + ( %~ + R~r~~ - R~r) 2 l -2 (~au + _v_) (9 .10) 
ReR+r +2(....Jl..au+_V_)2 R + rar R + r' 

H+r as R+r 

[
au Ru au uv] 1 R ap 

v ar + R + r as + R + r = -p R + r as 

2R 1 a [ ( R au v ) ] 
+ R + r Re as R + r as + R + r 

1 a [ v(R + r)2 ( au ) 1 + ~ 
(R + r)2 ar +(R + r)2.1.......Jl.. 8v _ v(R + r)2~ Re R+r 8s R+r 
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n - l 

v(R + r)2 ar a,· R+r as - R+r ~~ 
{ 

2 (aV) 2 + (au + R av U)2}-2 

+2 (R~r ~~ + R:r)2 

1 a +----:0-
(R+r)2ar 

R a 
[( 

R a 
) { 

(au + R av U)2 
2 1 u v ar R+r as - R+r 

+R+rReas R+ras + R+r +2(av+.....!Lau+_V_)2 
ar R+r as R+r 

(9.11) 

where asterisks have been omitted for simplicity. As in the usual boundary layer 

assumption, s, u and p having order.1 while r and v having order o. Additionally, the 

parameter € is also of order 1 and is defined as: 

(9.12) 

With the above assumptions and keeping terms of order 1 or higher, we finally obtain the 

governing ELF equations in the form 

(9.13) 

u2 1 ap _ 0 
R+r - par- , (9.14) 

au Ru (au) uv 1 R ap 
v ar + R + r as + R + r = -p R + r as 

+ aj p ~ [ R + r 2 (au _ _ u )] + b j p a [R + r 2 (au _ _ u ) n] 
(R+r)2ar ( ) ar R+r (R+r)2ar ( ) ar R+r . 

(9.15) 

Additionally, in view of the conventional ELF approach, we obtain the energy equation 

in the form 
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p [V 8T + uR (8T)] = k [8
2
T + _1_8T] 

Cp 8r R + r 8s 8r2 R + r 8r . 
(9.16) 

9.2 Model Development 

An incompressible steady flow of Sisko liquid over a moving curved boundary is considered. 

The flow geometry is sketched for this fluid while using curvilinear coordinate system. The 

flow structure is further shown through Fig. 9.1. The assumption related to the flow of 

liquid over this boundary allow to define the stretching velocity Uw = cs along s- axis with 

stretching rate c > 0 and as a result the flow takes place in domain r > O. The distance 

of the curved boundary from origin R concludes the shape of the bended boundary. 

Additionally, the analysis of transfer of heat is carried out with Tw as the temperature of 

the moving surface. The mass, force and energy balance governing equations of steady 

2D Sisko liquid flow over the curved moving surface are expressed below: 

(r,v) 

Fig. 9.1: Problem schematic representation 

8u 8 
R- + - {(R+r)v} = 0, 

8s 8r 
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OU uR ( OU ) uv 1 R op 
v or + R + r os + R + r = - P R + r os 

a 0 [(R )2(OU U)] b 0 [R 2(OU U )n] 
+ p(R+r)2or +r or - R+r + p(R +r)2or ( +r) or - R+r ' 

(9.19) 

(9.20) 

where Ql (=~) is declared as thermal diffusivity regarding this liquid with p as the 
pCp 

density of the base liquid, the specific heat and thermal conductivity of liquid are (ep , k), 

respectively. The associated BCs are of the form: 

{

UW(S) = CS, v = 0, 
at r = 0, 

T = Tw , 

(9.21) 

as r -+ 00, U -+ 0, 
OU 
or -+ ° and T -+ Too· (9.22) 

The force and energy balance equations can be reduced into the coupled non-linear 

ODEs by using the subsequent suitable variables 

U=U f" ( ) V= -UwRRe-T1~l [~j'() 1 - 11, I·'()] 
w "1 , R+r b 11,+1 "1 + 1 +11,"1 "1 , 

() () T - Too 2 2 ( ) r n~l 
"1 = T. _ T ' P = pa S P "1 , "1 = -Reb . 
wooS 

(9.23) 

By substituting the dimensionless variables (9 .23), Eq. (9.17) is verified identically 

and Eqs. (9.18) to (9 .22) render into the form 

oP f'2 

0"1 K+"1' 
(9.24) 

~P = ~ (~) (If" + -. I- II') + _2_ (f" __ 1_1') 1t 
K+"1 K+"1 11,+1 K+"1 K+"1 K+"1 
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-~ f' 2 + A [fill + _1_1" _ 1 f' ] 
K+17 K+17 (I<+17)2 

+n (f" - _ I _ f') n - l (fill _ _ 1_ 1" + 1 f') . (9.25) 
K+17 K+17 (K+17) 2 

Eliminating the pressure term between Eqs. (9.24) and (9 .25), we get the subsequent 

governing problem 

A [f"" + _2 -I'" - 1 I" + 1 f'] -~ f' I" _ 2K f'2 
K+ 17 (K + 17)2 (K+17)3 K+17 (K+17)2 

( 
2n ) [ i~'7 (f fill + f'f") + 1 

+ n + 1 K (ff" + f'2) - K ff' 
(K +'7)2 . (K +'7)3 

+n (I" - _ I _ f') n-l (f"" + _2 -I'" _ 1 I" + 1 f') 
K+17 . K+17 (K + 17) 2 (K + 17)3 

+n(n - 1) (I" __ I _ f') n-2 (fill _ _ 1_ 1" + 1 f') 2 

K + 17 K + 17 (K + 17)2 

+2n (I" -_I_ f') n-l ( _1_1"" _ 1 I" + 1 f') = 0, (9.26) 
K + 17 K + 17 (K + 17)2 (K + 17)3 

e" + Pr K (~) fe' + _ 1_ e' = 0, (9.27) 
K+17 n+l K+17 

{

f = 0 
at 17 = 0, , 

e = I , 

f ' - 1 - , 
(9.28) 

f ' 0 f" ----' 0, e ----' o. as 17 -+ 00 , -+, -r ---r (9 .28) 

The leading quantities arising in modeling of the anticipated problem are given as: 

2 

Ren+l 
A - b 
--R ' ea 

R 
_ Uwsp 

ea - --, 
a 

R _1 

K = -Reb' +!, 
s 
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The drag forces in the form of local skin-friction and the transfer rat e of heat in the form 

of local-Nusselt number are defined as follows: 

(9.31) 

where 

With the help of Eq. (9.32) in Eq. (9.31) , we obtained the following relations for local 

skin-friction and local Nusselt number 

(9.33) 

1 

Re~n-l-! Nus = - 8'(0) . (9.34) 

9.3 Testing of Code 

The relation for pressure in Eq. (9.25) and DE's (9.26) and (9.27) along with the Bes 

(9.28) and (9 .29) are considered for the numerical computations with the help of MATLAB 

function bvp4c. The major outcomes are validated in the form of resistive forces as 

shown in table 9.3. Meanwhile, these results are matched with the existing literature as 

presented by Abbas et al. [79] and Sanni et al. [80]. The present outcomes are originated 

in excellent settlement with these published work. 
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9.4 Numerical Outcomes and Discussion 

A numerical technique is applied to demonstrate the problem through Eqs. (9.25) to (9.27) 

along with BCs (9.28) and (9.29). A well-known function bvp4c in MATLAB is utilized to 

approximate the numeriC-a! solution. This built in function is based on collocation three 

steps Lobatto lIlA formula. Generally, Lobatto lIlA methods of fourth order accuracy 

have been utilized for BVPs and another positive property in terms of stability in the 

whole interval is also the main theme of this approach. In this methodology the higher 

order ODEs are first converted to first order system of ODEs with BCs viz some new 

variables. The accuracy in the foremost method is kept up to the tolerance level 10-6
. 

Furthermore, depict of the different parameters of flow like the material parameter (A), 

Prandtl number (Pr), curvature parameter (K) is demonstrated through the velocity, 

temperature and pressure graphs. 

Fig. 9.2(a) is portrayed to present the effect of material parameter A on the distri­

bution of the liquid velocity. It is noted that the liquid velocity is enhancing with the 

increment in material parameter. This increase in the velocity and the MBLT is because 

of the higher viscosities occur at less rate of shear and higher rate of shear causes low 

viscosity. The graphical behavior of the velocity and associated MBLT with the variation 

in the dimensionless radius of curvature is shown through Fig. 9.2(b). Again, this figure 

reveals an enhancing trend for 0 < n < 1. Physically, this exposes that the velocity and 

MBLT enhance with the diminishing values of the curvature radius and the flow sheet 

turns out to be more bended (arch increments). It can be elucidated on the foundation 

that curvature of the boundary provides upsurge to a tributary flow owing to the curvi­

linear trend of the liquid flow under the accomplishment of centrifugal force as liquid 

particles traverse the curved path along the boundary of the flat. The auxiliary flow is 

subsequently overlaid on the essential flow to upgrade the speed field. The effect of the 

arch is little along the surface (s-direction) and is larger in the r-direction because of the 

centrifugal force on the direction to origin. 

A decreasing impact on the temperature distribution for rising values of material 
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parameter is presented in Fig. 9.3(a). The relevant TBLT is also reduced for shear­

thinning fluids. Fig. 9.3(b) shows a reducing behavior of the temperature for increasing 

radius of curvature for shear-thinning fluids. 

Fig. 9.4(a) displays the discrepancy in the pressure for altered values of curvature 

parameter. It is found that a decrease in radius of curvature causes a rise in the magnitude 

of the pressure profile inside the BL. Moreover, the magnitude of the pressure away from 

the wall goes to zero whenever the dimensionless radius of curvature extends to infinity. 

This is because of the flat surface, where the pressure is negligible. An enhancement trend 

of the magnitude of pressure is noticed during plotting of the pressure profile correspond­

ing to material parameter A as shown in Fig. 9.4(b). The magnitude of the pressure 

uplifts due to the reduction in values of the material parameter. The enhancement in 

the magnitude of the pressure is due to the higher viscosities causing low shear rate and 

higher shear rate causing low viscosity. 

Flow pattern plotted through Figs. 9.5(a,b) for fixed values of n = 0.8 A = 2.0 R eb = 10 

and c = 1 while taking two increasing values of K. F ig. 9.5(a) is noticed with low speed 

of the liquid for K = 1 as compared to the speed of the Sisko liquid and related MBLT 

presented through Fig. 9.5(b) for K = 10. Similar output is noticed through Figs. 

9.6(a,b) for the case of Newtonian liquid, i.e. , for n = 1 and A = O. For fixed values of 

n = 0.8, A = 2.0 and Pr = 1.2, the isotherms are plotted through Figs. 9.7(a,b) for 

two different values of J( and Too. Thus the hotness of Sisko fluid for K = 1 and Too = 0 

is slightly less than the isotherms plotted for K = 10 and Too = 0.3 and is shown through 

Figs. 9.7(a,b). 

The effect of material parameter on the local skin-friction through table 9.1 is found 

in the enhancement for both constraints of pseudo-plastic and dilatant liquids. The results 

are tabulated for simple power-law fluid as well as Sisko fluid and the effect of the radius of 

curvature caused a decline in skin-friction coefficient. In the absence of material parameter 

(n = 1) the variation with respect to curvature parameter for Newtonian fluid shows a 

decreasing local skin-friction. The depict of Pr, K and A on the transfer rate of heat 
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is illustrated through table 9.2. Here the transfer rate of heat exhibited an increasing 

behavior for rise in A and Pro Additionally, in the same table, a reverse trend is noted 

for larger values of curved nature parameter for both restriction, i.e. , pseudo-plastic and 

dilatant liquids. A similar behavior is observed while computing the local-Nusselt number. 
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(a) K =1 (b) K = 10 

s s 

Fig. 9.5: Streamlines for (a) f{ = 1 and (b) f{ = 10. 

(a) K = 1 (b) K = 10 

s s 

Fig. 9.6: Streamlines for Newtonian fluid (a) f{ = 1 and (b) f{ = 10. 

s s 

Fig. 9.7: Isotherms for (a) f{ = 1 and (b) f{ = 10. 
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Fig. 9.8: Isotherms for (a) Pr = 1 and (b) Pr = 4. 
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Table 9.1: The variations in the drag forces for different values of A and J(. 

A K 
( ) "~, - ~ Reb Cf 

n = 0.6 n = 1.2 n=1 

2.0 5 2.015136 2.174674 2.348902 

3.0 2.619319 2.72183 2.905463 

4.0 3.202379 3.288387 3.457279 

0.0 5 0.242255 0.8584477 1.157641 

10 0.2111138 0.7927129 1.073495 

15 0.1937494 0.7623595 1.047958 

2.0 5 2.015136 2.174674 2.348902 

10 1.678795 1.870389 2.010173 

15 1.573729 1.789958 1.912810 
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Table 9.2: The variations in the transfer rate of heat for distinct growing values of 

A, Pr and K . 

I 

A Pr K 
( Reb) -n+ J Nus 

n = 0.6 n = 1.2 n=1 

1.0 1.2 5 0.6139801 0.7981227 0.7552627 

2.0 0.6464552 0.8168537 0.7765525 

3.0 0.6632442 0.8287568 0.7877522 

2.0 1.2 5 0.6464552 0.8168537 0.7765525 

1.4 0.7063354 0.890762 0.8474486 

1.6 0.7625116 0.959461 0.9133882 

2.0 1.2 5 0.6464552 0.8168537 0.7765525 

10 0.6358174 0.7999638 0.763569 

15 0.6333700 0.793773 0.7581987 
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Table 9.3: A matching with the previous data for distinct growing values of J( when 

A = 0 and n = 1. 

Parameter ( ) n~J -~ _ Reb_ Cf 

K Present results Abbas et al. [79] Sanni et al. [80] 

5 1.157641 1.1576 1.1576 

10 1.073495 1.0735 1.0734 

20 1.035613 1.0356 1.0355 

30 1.023533 1.0235 1.0235 

40 1.017588 1.0176 1.0176 

50 1.014050 1.0141 1.0140 

100 1.007039 1.0070 1.0070 

200 1.003564 1.0036 1.0036 

1000 1.000799 1.0008 1.0008 

ex> 1.000000 1.0000 1.0000 
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Chapter 10 

Numerical Computations for MHD 

Flow of Sisko-nanoliquid over a 

Moving Curved ' Boundary 

In this chapter, an analysis regarding diverse features of Sisko liquid flow over a curved 

moving boundary by taking into account magneto-nanoparticles is presented. Parameter 

of curvature with higher values for which the curved surface is going to be reduced into 

the planner sheet. The governing equations are modeled in curvilinear coordinate system 

and transformed into system of non-linear ODEs. The obtained equations are solved 

numerically by employing the built in solver (bvp4c) in MATLAB as well as BVP traprich 

in Maple. From the obtained results, we observed a decline in the magnitude of velocity 

field as well as pressure inside the BL for increasing values of magnetic parameter. On the 

other hand, the temperature of liquid exhibited an enhancing trend with growing values 

of Brownian motion as well as thermophoresis parameters. Moreover, concentration is 

also found to be growing with augmented values of the Schmidt number. A comparison 

for validation of the present outputs is displayed between one of the collocated coding 

in MATLAB and the extrapolation method introduced by Richardson while using Maple 

software and the findings are matched with previous data in restrictive condition. 
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10.1 Configuration of the Problem 

The parameters of Brownian motion along with thermophoresity introduced in the incom­

pressible steady flow of Sisko liquid due to curved moving sheet with the use of magnetic 

field is considered. Flow configuration presented is modeled in curvilinear coordinated 

and is shown in Fig. 9.1 (cf. Chapter 9). The curved boundary coiled in a circle 

with radius R and formulated while using curvilinear coordinates (r, s) and is stretched 

kinematically along the axial direction s with velocity Uw = cs. The structured of the 

problem indicates that the bended boundary formed by determining the distance between 

the origin and the surface. So that larger values of R goes to slightly curved sheet. The 

liquid temperature Tw and concentration Gw at boundary are defined, while the ambient 

liquid temperature T CX) and concentration GCX) denotes for away temperature and solute 

concentration from boundary. Under the aforementioned assumptions, the basic equations 

for the Sisko nanofluid flow in the form of continuity, momentum along with Boussinesq 

approximation, heat and concentration are developed as follows (cf. Chapter 9) : 

OU 0 
Ros + or {(R +r)v} = 0, (10.1) 

U 2 lop 
-----= 0 
R +r por ' 

(10.2) 

v Ou + ~(Ou) + ~ __ ~~ op + a 0 [(R +r)2 ( OU _ _ U_)] 
or R+r os R+r - pR+ros p(R+r)20r or R+r 

b o[(R )2(OU U )n] 
+ p(R +r)20r +r or - R+r (10.3) 

* [D (OT OG) Dr (OT) 2] 
+7 B or or + T CX) or ' (10.4) 

voG + ~(OC) = DB (02G + _1_0G) + Dr (02T + _1_0T) 
or R + r os or2 R + r or T CX) or2 R + r or . 

(10.5) 
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The associated BCs are as follows: 

{

UW(S) = CS, v = 0, 
at r = 0, 

T=Tw, C = Cw, 

(10.6) 

as r -+ 00, U -+ 0, 
OU or -+ 0, T -+ Too and C -+ Coo· (10.7) 

The subsequent dimensionless variables are incorporated to convert the balance equa­

tions of force , energy and concentration in terms of non-linear ODE's. 

-UwR __ I [ 2n 1 - n] __ 1 

u=Uwf'(ry) , v= R+rRebn+l n+1 f (ry)+1+nryf'(ry) ,'l/J=sUwRebn+lf(ry) , 

( ) Too - T () Coo - C 2 2 ) e ry = Too _ Tw' ¢ ry = Coo _ C
w

' p = pa S P(ry , 
r _1 

ry = -Re;-H. 
S 

(10.8) 

Inserting transformations (10.8), Eq. (10.1) is becoming zero, i.e. , identically con­

tended and Eqs. (10.2) and (10.3) are reduced in the subsequent form 

(10.9) 

~P = ~ (~) (fI" + _l-ff') - ~f'2 
J(+ry J(+ry n+1 K+ry J(+ry 

+A [fill + _I_I" - 1 f'] + _2_ (I" _ _ l_f')n - Mf' 
J(+ry (J(+ry)2 J(+ry J(+ry 

+n (I" - _I_f') n-l (f'" _ _ I_I" + 1 f') 
J(+ry J(+ry (J(+ry)2 

(10.10) 

Abolishing the pressure relation between Eqs. (10.9) and (10.10) in combination with 

Eq. (10.8), Eqs. (10.4) to (10.7) results in 
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A [f"" + _2 -fill - 1 I" + 1 f'] - 2K f'2 -~ f' I" 
K+ry (K+ry)2 (K+ry)3 (K+ry)2 K+ry 

+ (~) [~(J 1'" + f'I") + K (J I" + f'2) - K f f'] 
n + 1 K + ry (K + ry)2 (K + ry)3 

+n(I" - _ I _ f') n-l (f"" + _2 -fill _ 1 I" + 1 f') 
K + ry K+ry (K+ry)2 (K+ry)3 

+n(n - 1) (I" - _ 1_f') n-2 (fill __ 1_1" + 1 f')2 - M (I" _ _ I _f') 
K+ry K + ry (K+ry)2 K + ry 

+2n (I" - _ I _f') n-l ( _ I _I"" _ 1 I" + 1 f') = 0, 
K+ry K+ry (K+ry) 2 (K+ry) 3 

e" + Pr K (~) fe' + _l_e' + Pr (N e'A-.' + N (e')2) = 0 K+ ry n + 1 K+ ry b <p t , 

¢" + ScK (~) f ¢' + _ 1_¢, + Nt (e" + _ 1_¢,) = 0, 
K + ry n + 1 K + ry Nb K + ry 

{

f =O, f'=1, 
at ry = 0, 

e = 1, ¢ = 1, 

as ry -+ 00 , f' -+ 0, g' -+ 0, e -+ 0, ¢ -+ O. 

where all the physical parameters which govern the flow are listed below: 

k 
al=-, 

PCp 

M = oB~, 
pc 

Nb = _ T * DB (Coo - Cw) , Nt = _ T * DT (Too - Tw) . 
al alToo 

(10.11) 

(10.12) 

(10.13) 

(10.14) 

(10.15) 

(10.16) 

The substantial physical extents of interest specifically the drag force coefficient, Nus-
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selt and Sherwood numbers are illustrated by 

(10.17) 

where 

(10.18) 

qw = -k (~T) and qm = -DB (~C) . 
r r==O r r==O 

(10.19) 

Using the transformations defined through Eq. (10.8) , significant physical quantities 

are in terms of drag force (skin-friction) , transfer rate of heat and mass (Nusselt and 

Sherwood numbers), respectively, formulated for further physical interpretation regarding 

this analysis and is illustrated as below. 

(10.20) 

1 

Re;n+l Nus = - 8'(0) , (10.21) 

1 

R e;n+1 Shs = -1>'(0). (10.22) 

10.2 Results Validation 

The governing nonlinear ODEs (10.11)-(10.13) subjected to BCs (10.14)-(10.15) are con-

sidered for the numerical solution. The results obtained with the implementation of bvp4c 

method are given through table 10.1 and are compared with BVP traprich in Maple 

which uses Richardson extrapolation method. A tremendous agreement is established be­

tween these two numerical methods. Numerical outcomes produced in the limiting cases 

are also compared with published works by Mabood and Das [81J and Imtiaz et al. [82J. 

The results found in present study are in excellent correlation with the earlier works (see 

table 10.2). 
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10.3 P hysical Interpretation of R esu lts 

The numerical computation of the Sisko magneto-nanofluid flow due to curved stretching 

surface is performed. The Buongiorno nano-liquid model is incorporated to study transfer 

of heat and mass phenomena in flow of Sisko liquid. Highly nonlinear Eqs.(10.11) to 

(10.13) with the Bes (10.14) and (10.15) are modeled in curvilinear coordinates. All 

governing parameters like material parameter (A), magnetic parameter (M), power-law 

parameter (n), radius of curvature (K), Brownian motion (Nb), thermophoresis (Nt), 

Prandtl number (Pr), and Schmidt number (Se) are used to demonstrate the flow, transfer 

of heat and mass characteristics of Sisko nanofluid. 

10.3.1 Flow Pattern 

To visualize the flow pattern for fixed values of Reb = 1000, e = 1 and M = 2.0, 

the streamlines are plotted for distinct values of material parameter A and power-law 

parameter n. F ig. lO.l(a ) are plotted for t he Newtonian fluid , (n = 1 and A = 0). 

The flow pattern subject to this case exhibits a non-symmetric reduction behavior near 

the curved surface, while on the other hand (see Fig. lO.l(b)), the behavior of the flow 

near the stretching surface is prominent for shear-thinning fluid and the flow in this case 

reduces symmetrically about the horizontal axis. In both figures, the effects of A and n 

cause the flow being drag into the center and this is due to the equal forces of buoyant 

flow. The flow pattern of Sisko fluid plotted through Fig. lO.2(a) , where the fluid flow is 

stretched toward the curved surface is symmetrically about the horizontal axis and flow of 

Sisko fluid is reduced near the curved stretching surface for n > 1. Another flow pattern 

is plotted through Fig. lO.2(b) for A = 2.5 and n = 1. A symmetric conduct about 

the horizontal axis away from the curved stretching surface is observed and fluid flow is 

reduced near the stretching curved surface, where the fluid flow is found in non-uniform 

pattern. The flow pattern produced for shear-thinning and shear-thickening fluids in Figs. 

lO.3(a,b), where the fluid flow is stretched near the curved stretching surface for both 
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restrictions, i.e., (0 < n < 1) and (n > 1) . 

10.3.2 Velocity Profiles 

A considerable growing effect is displayed by the velocity profile and related MBLT of 

Sisko liquid flow over a bended moving boundary for uplifting values of A as shown in 

Figs. 10.4(a,b) . The result for the case (0 < n < 1) is more effective as compared to the 

case (n > 1). This physical enhancement conduct with the variation of material parameter 

causes low shear rate with higher viscosity and high shear rate for low viscosity regarding 

Sisko nanoliquid flow. The influence of uplifting values of K on velocity profile for pseudo­

plastic as well as dilatant liquids is found in uplifting order along with associated MBLT 

as demonstrated through Figs. 10.5(a,b). Here the result is more acceptable in the 

case of pseudo-plastic liquid. It has been examined that the radius of curved surface 

increases for augmented values of curvature parameter K due to which motion of the 

fluid rises. A very significant reduction behavior is observed through Figs . 10.6(a,b) 

for growing values of M , for both (0 < n < 1) and (n > 1) and relevant MBLT is 

perceived in reduction conduct. The physical reason concerning this conduct is owing to 

the enrichment in Lorentz forces which declines the velocity of the liquid. 

10.3.3 Pressure Profiles 

Fig. 10.7 ( a) establishes an escalating trend in the magnitude of the pressure for decreas­

ing order values of n. On other hand, the effect of reducing values of material parameter 

on the pressure magnitude inside BL is observed in the form of uplifting behavior and is 

shown through Fig. 10. 7(b ) . In both cases the associated pressure BLT is detected in 

enrichment demeanor. Furthermore, the decreasing values of curvature parameter cause 

an escalating behavior in the magnitude of pressure profile within the BL and is shown 

in Fig. 10.8(a). Wherein a curved surface is reduced in the planner surface for higher 

value of K and the pressure profile becomes zero. For smaller values of K, the curved 

surface will be more curved. It can be enlightened on the basis that the curvature of the 
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surface give rises to a secondary flow due to the curved nature of the liquid flow under 

the accomplishment of centrifugal force as the liquid particles navigate the bended track 

along the boundary of the sheet . The secondary flow is therefore dominant on the pri­

mary flow due to augmentation the velocity of liquid. Though, in the situation of a curved 

surface the variation of pressure is significant inside the BL and therefore the pressure 

discrepancy cannot be neglected as is frequently done for a flat stretching sheet . Fig. 

lO.8(b) exhibits a growing trend in the pressure magnitude profile inside the boundary 

and associated pressure BLT for the reducing values of magnetic parameter. 

10.3.4 Temperature Profiles 

Figs. lO.9(a,b) demonstrate a diminishing trend from the profile of temperature with 

increasing values of A. Whereas the relevant TBLT also reduces for (0 < n < 1) and 

(n > 1) fluids . Physically, the reality behind this scene demonstrates the uplifting nature 

of shear rate is the result by incorporating higher values of A and this trend goes to 

reduces the viscosity in the said configuration of transfer of heat . The impact of the 

several uplifting values of K reduces the liquid temperature and the TBLT in both cases, 

i.e., (0 < n < 1) and (n > 1) and this behavior is presented in Figs. lO.lO(a,b) . Through 

Figs. lO.ll(a,b), an enhancement behavior is perceived while plotting the temperature 

profile of the liquid flow corresponding to growing values of M. Figs. lO.12(a,b) are 

showing a diminishing conduct of temperature profiles with increasing values of Pr for 

(0 < n < 1) as well as (n > 1) of power-law liquids. The associated TBLT is also 

reduced in this case. Enhancement of Brownian motion parameter results in growing the 

temperature field and related TBLT for (0 < n < 1) and (n > 1) restrictions of liquids as 

shown through Figs. lO.13(a,b). From Fig. lO.14(a,b), it is concluded t hat whenever 

the thermophoresis parameter is considered in the increasing order the temperature profile 

and the associated TBLT will be enhanced while testing both restrictions, i.e. , (0 < n < 1) 

and (n > 1) properties of liquids. 
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10.3.5 Concentration P rofiles 

In Figs. 10.15(a,b) we have investigated the variation of A while plotting the nanoparti­

des concentration profile. Wherein a reduction is found for both pseudo-plastic and dila­

tant liquids. The associated CBLT is also diminished. A remarkable increasing nanopar­

tide concentration with the several values of M is plotted through Figs. 10.16(a,b) , 

where both cases are considered namely pseudo-plastic and dilatant liquids. The result 

is very significant in case of pseudo-plastic. Figs. 10.17(a,b) illustrate the influence of 

K on the nanopartide concentration. It is noticed that for the growing values of K the 

concentration profile and the associated CBLT are diminishing for both situations, i.e., 

(0 < n < 1) as well as (n > 1) properties of liquids. From Figs. 10.18(a,b) it is seen 

that by varying Nb, a deteriorating behavior is demonstrated while plotting the nanopar­

tides concentration for dilatant as well as pseudo-plastic liquids cases. In this regard the 

CBLT is also reduced. In Figs. 10.19(a,b) the increasing values of Nt cause a reduction 

in the profile of nanopartides concentration and associated CBLT. Shear-thinning and 

shear-thickening liquids properties are also utilized but the result are more acceptable 

in case of shear-thinning liquids. Figs. 10.20(a,b) depict a diminishing behavior of 

nanopartides concentration for growing values of Se and related CBLT is also reduced in 

both pseudo-plastic as well as dilatant liquids. 

10.3.6 Drag Forces, Heat and Mass Transfer Rates 

Influence of A on the local-skin-friction is observed in the uplifting for both (0 < n < 1) 

and (n > 1) and is shown in Figs. 10.21(a,b). Diminishing behavior is illustrated during 

plotting of local-Nusselt number in both situations of power-law fluids and is presented 

in Figs. 10.22(a,b) . Through Figs. 10.23(a,b) , the impact of rising values of Se 

on the local-Sherwood number is found in the augmented conduct for pseudo-plastic and 

dilatant liquids. The effect of A, M and K are utilized to demonstrate the impact of 

resistive forces. In this regard the tabular values as shown in table 10.3 are computed to 
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depict the effect of frictional forces during fluid flow. The local skin-friction is depicted 

with increasing trend for higher values for the parameter arises due to magnetic field 

and on the other hand enhancing values of curvature parameter causes a reduction. In 

preceding table three constraints are imposed on the power-law index n, i.e. , for n = 1 

(Newtonian fluid) , n = 0.5 (shear-thinning fluid) and n = 1.5 (shear-thickening fluid) . 

The impacts of different governing flow parameters on the transfer rate of heat is depicted 

in table 10.4. Larger parameter M introduced owing to magnetic field is incorporated 

while calculating the transfer rate of heat and found in decreasing manner. However, the 

behavior of the same phenomenon detected in terms of intensifying function of curvature 

K for all conditions. A decreasing behavior is noticed for the transfer rate of heat when 

the parameters of Brownian motion and thermophoresity are tested for various uplifting 

values . table 10.5 is presented to show the transfer rate of mass with the influence 

of different flow parameters like A, M, K, Pr, Nb, Nt and Sc. The mass transfer rate 

is diminishing whenever the curvature parameter J( increases for the same restrictions 

on the power-law index n as presented in the previous table. Enhancement in transfer 

rate of mass is perceived for numerous values of the parameter of Nb(Brownian motion) 

and reverse trend is depicted for different growing values of therrmophoresis parameter 

Nt· Rate of mass transfer also increases when the Schmidt number rises for all three 

restrictions on the power-law index n. 
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Fig. 10.1: Streamlines pattern for A=O, (a) n=l.O and (b) n=O.5. 

Fig. 10.2: Streamlines pattern for A=2.5, (a) n=1.5 and (b) n=l.O. 

Fig. 10.3: Streamlines pattern for A= O, (a) n=O.5 and (b) n=1.5. 
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Fig. 10.7: Effect of n and A on pressure P(rJ). 
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Fig. 10.9: Effect of A on temperature B("l), 
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Fig. 10.10: Effect of K on temperature B("l) . 
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Fig. 10.12: Effect of Pr on temperature 0(".,). 

n - O.8 0-1 .8 

Sc. 0.6, K. 5.0, M • 2.0, So. 0.5, K. 5.0. M • 2.0, 

A - 3.B, Pr - 1.2, N,-1.2. A. 3.8, Pr-1 .2, N,-1.2. 

'? 
as' 

0.' 

0.2 

0 
10 12.6 0 2.6 7.6 10 12.6 

'1 

Fig. 10.13: Effect of Nb on temperature (}(".,). 
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Table 10.1: A comparison of bvp4c with Richardson extrapolation method, when 

n = 3, A = 3.5 and K = l. 

Parameter ( 7) n+l -~ Reb Cf 

M bvp4c outcomes Richardson extrapolation outcomes 

1 12.25384 12.25449348 

2 13.4114 13.47354718 

3 14.56970 14.52145277 

4 15.41951 15.43107230 

Table 10.2: Comparison of the present work with previous results when n = 1, A = 

o and K -+ 00. 

Parameter ( I) n+l -~ Reb Cf 

M Present results Mabood and Das [81] Imtiaz et al. [82] 

1 l.414323 l.4142135 l.4142 

5 2.449627 2.4494897 2.4494 

10 3.316768 3.3166200 3.3166 

50 7.141577 7.1414284 7.1414 
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Table 10 .3: The variation in the local-skin-friction for varying values of A , M and 

K. 

Parameters ( 1) ntl -~ R eb CJ 

A M K n=l n = 0.5 n = l.5 

l.0 0.5 5.00 2.184967 1.271161 1.092852 

2.0 2.824880 2.091291 2.033590 

3.0 3.418372 2.771860 2.762832 

4.0 3.986743 3.392510 3.396965 

2.5 0.0 5.00 2.572119 2.090984 1.998892 

0.3 2.927944 2.293858 2.261481 

0.6 3.216605 2.509374 2.475155 

0.9 3.465605 2.706815 2.662586 

2.5 0.5 1.00 7.859173 6.723026 5.365357 

5.00 3.125707 2.440097 2.404286 

10.0 2.676065 2.075501 2.142240 

10000 2.293271 1.762268 l.888027 
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Table 10.4: The variation in the transfer rate of hear for varying values of A, M , 

K, Pr, Nb and Nt. 

Parameters Reb Nus ( ,) -n+l 

A M K Pr Nb Nt n= l n = 0.5 n = 1.5 

1.0 0.5 5.00 1.2 0.5 0.2 0.5428404 0.3904329 0.6062883 

2.0 0.5680547 0.4250426 0.6180089 

3.0 0.5819859 0.4482958 0.6344736 

2.5 0.0 5.00 1.2 0.5 0.2 0.6010958 0.4906416 0.6535533 

0. 3 0.5851487 0.4512341 0.6367576 

0.6 0.5715394 0.4314192 0.6229344 

2.5 0.5 1.00 1.2 0.5 0.2 0.5681793 0.392331 0.6446413 

2.00 0.5762132 0.4604958 0.6451662 

3.00 0.5783584 0.4443001 0.6348335 

2.5 0.5 5 1.0 0.5 0.2 0.5318680 0.4011869 0.5780918 

1.2 0.5758907 0.4368973 0.6273031 

1.4 0.6136945 0.4691347 0.6696514 

2.5 0.5 5 1.2 0.2 0.2 0.6583165 0.5010048 0.7155884 

0.4 0.6026236 0.4579071 0.6559572 

0.6 0.5498898 0.417402 0.5994468 

2.5 0.5 5 1.2 0.5 0.2 0.5758907 0.4368973 0.6273031 

0.5 0.5271755 0.3974202 0.5760875 

0.8 0.4826844 0.3601035 0.5293191 
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Table 10.5: The variation in transfer rate of mass for varying values of A , M , 

K , Pr, Nb, Nt and Se. 

(- J) -~ n+l 

Parameters Reb Shs 

A M K Pr Nb Nt Sc n=l n = 0.5 n = 1.5 

1.0 0.5 5.00 1.2 0.5 0.2 0.5 0.2639435 0.2136013 0.2869661 

2.0 0.2901100 0.2277653 0.3013438 

3.0 0.3080178 0.2419765 0.3261540 

2.5 0.0 5.00 1.2 0.5 0.2 0.5 0.3387689 0.2801454 0.358471 

0.3 0.3130858 0.2444946 0.3293312 

0.6 0.2940983 0.2308953 0.3089076 

2.5 0.5 1.00 1.2 0.5 0.2 0.5 0.4844747 0.4653732 0.5061337 

2. 00 0.3574861 0.3518147 0.3864713 

3.00 0.3224309 0.2833551 0.340895 

2.5 0.5 5 1.0 0.5 0.2 0.5 0.3138149 0.2471073 0.3305256 

1.2 0.2998606 0.2341961 0.3149727 

1.4 0.2878966 0.2236126 0.3015996 

2.5 0.5 5 1.2 0.2 0.2 0.5 0.00468151 0.01129199 -0.0111103 

0.4 0.2510269 0.1975569 0.2610270 

0.6 0.3321572 0.2591847 0.3506789 

2.5 0.5 5 1.2 0.5 0.2 0.5 0.2998606 0.2341961 0.3149727 

0.4 0.1749665 0.144632 0.1739438 

0.6 0.0706546 0.07289905 0.05445231 

2.5 0.5 5 1.2 0.5 0.2 0.5 0.2998606 0.2341961 0.3149727 

0.9 0.5259361 0.3936558 0.5648702 

1.3 0.7033079 0.531955 0.7598461 

178 



Chapter 11 

Conclusions and Further Research 

The ambition of the research work illustrated in this thesis is to provide the mathematical 

modeling and numerical computations of the Sisko fluid flow under various flow conditions 

and geometries. The research emphasizes on the study of flow, transfer of heat and mass 

of a generalized Newtonian fluid . For the purpose of this study, the Sisko rheological 

model is investigated to incorporate the planner and curved st ret ching geomet ries under 

various flow circumstances. Thus, major purpose of the current research work is to rally 

the current understanding of the mathematical modeling and numerical computations of 

the Sisko fluid. Thus, this chapter summarizes all the remarkable outcomes of the research 

work presented in this thesis. Moreover, this chapter indicates about the future research 

directions. Section 11.1 provides an overview of the research that has been followed. In 

section 11.2 conclusions captured from the previous chapters are summarized. In last 

section 11.3, possible direction for future research are listed. 

11.1 General Overview 

This study is a step toward the exploration of the Sisko liquid flows which is a subclass 

of non-Newtonian liquids. Such fluids are characterized by shear dependent viscosity. 

Mathematical modeling of this model is presented in the form of PDEs. The numerical 
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computations captures the various characteristics of the generalized Sisko fluid flow over 

planner and curved stretching surfaces. The obtained upshots are displayed in the form 

of velocity, pressure, temperature and concentration profiles. To that end, the numerical 

procedures of RK45-Fehlberg scheme was adopted to achieve this goal. Moreover, the built 

in function bvp4c which implement a finite difference three stages IlIA Lobato formula 

was incorporated for the numerical computations. 

11.2 Conclusions 

In this thesis, an important rheological study of generalized Newtonian Sisko fluid flows 

with different physical aspects was performed. The approximation of BL was considered 

for the modeling of proposed problem in terms of PDEs and was then converted into 

ODEs by using some suitable transformations. The acquiring system of ODEs was then 

solved with numerical approach by using RK45-Fehlberg along with shooting technique 

and bvp4c built in solver in MATLAB. Import ant obtained results are presented in the 

pictorial and numerical forms for the fluid distribution of velocity, pressure, temperature 

and concentration. 

The leading conclusions of the research are listed as follows: 

11.3 Flow Analysis 

• The effect of material parameter and power-law index on the liquid velocity and the 

related MBLT were noticed in an increasing conduct. 

• The reduction was observed in both components of velocity and related MBLT for 

the increasing variation in magnetic parameter. 

• With uplifting values of the transient parameter, increase in velocity and MBLT 

were noticed for shear-thinning liquid and a decreasing behavior is observed for 

shear-thickening liquid. 
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• The velocity and related MBLT were noticed in higher trend for higher values of 

radius of curvature K. 

• A reduction in the local-skin friction was observed for increasing values of curvature 

parameter for three cases, i.e., shear-thinning liquid, shear-thickening fluids and 

Newtonian liquid. 

11.4 Heat Transfer Analysis 

• A diminishing trend of temperature and associated TBLT were noted for growing 

values of material parameter and power-law index while considering pseudo-plastic 

as well as dilatant liquids. 

• An uprise in the parameter of thermal relaxation displayed a decline in the liquid 

temperature and associated TBLT. However, an opposite trend was detected with 

enrichment values of thermal conductivity parameter. 

• Effect of the generalized Biot number 'Yl on temperature distribution was noticed 

in escalating behavior while decreasing trend was seen in temperature distribution 

for various values of generalized Biot number 12 for both cases, i.e., shear-thinning 

and shear-thinning liquids, respectively. 

• It was affirmed from the above analysis that the nonlinear thermal radiative param­

eter Rd enhanced the temperature of the fluid. 

• The impact of the radius of curvature on the temperature and related TBLT was 

noted in reducing character for dilatant as well as pseudo-plastic liquids. 

• From the tabular values of the local-Nusselt number, an enhancement and reduction, 

respectively, were confirmed for higher values of radiation and curvature parameters. 
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11.5 Mass Transfer Analysis 

• The concentration and associated CBLT were declined for the augmented values of 

the relative parameter of Sisko liquid and relaxation parameter of concentration as 

well. 

• The profile of concentration was declined with heightening of the homogeneous/heterogeneous 

reactions strength parameters by using of both shear-thinning and shear-thickening 

fluids cases. 

• The higher values of Brownian motion parameter resulted in reduction nanoparticles 

concentration while the concentration was uplifted by boosting the thermophoresis 

parameter. 

• The concentration and CBLT were reduced with various enrichment values of cur­

vature parameter for pseudo-plastic and dilatant liquids. 

• The escalation in unsteadiness parameter was reduced the transfer rate of mass for 

pseudo plastic liquids and enhanced for dilatant liquids. 

11.6 Pressure Analysis 

• The magnitude of the pressure inside the BL was observed in declined order while 

the radius of curvature and material parameter were incremented. 

• With diminishing values of the curved nature parameter, the magnitude of pressure 

profile exhibited an increasing order inside BL. However, outside BL it became zero. 

• The magnitude of the pressure inside the BL was presented an increasing function 

of reducing values of magnetic parameter. 
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11.7 Future Research 

With this study, the development of mathematical formulation and numerical computa­

tions of Sisko fluid flow, transfer of heat and mass over planner and curved moving surfaces 

were established. The characteristics and advantages of the current analysis have been 

evidently exemplified by its applications to altered practical circumstances. Moreover, 

this numerical study of generalized Newtonian Sisko fluid flows explored the prominence 

of many physical phenomena in the form of graphical representations. However, a lot of 

improvements can be made to the Sisko fluid flow to extend its applications and make it 

further useful. In this regard, further work in this direction can be suggested as follows: 

• The present mathematical model can be extended to thin film Sisko liquid flow over 

a bidirectional moving boundary. 

• Mathematical modeling for Sisko liquid flow over a rotating cone could be one of 

the important consideration in future. 

• The stagnation point flow over a curved moving boundary is an open problem for 

future. 

• The time dependent mathematical modeling of flows over curved surface may also 

be considered in future work. 

• Thin film flow over curved surface can also be one of the main consideration for 

future research work. 
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