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Abstract 

In the proceeding climate change, drought stress has been identified as the major stress factor.  

To survive under such conditions, plants respond these changes by manipulating key 

physiological processes and modulation of expression of various Calmodulin (CaM) genes.  

The present study was aimed to investigate the effect of plant growth hormones, salicylic acid 

(SA), abscisic acid (ABA) and Rhizobium pisi (strain DSM 30132) applied singly and in 

combination, on pea (Pisum sativum L.) cv. Florida plants under control and drought stressed 

conditions. Prior to the sowing, seeds were soaked for 5h in broth culture (108 cfu/ml) of 

Rhizobium pisi and SA /ABA. The seeds soaked for 5h in distilled water served as control. 

Three weeks old (21d) seedling were subjected to drought stress by discontinuing water supply 

and the effects were examined at two different time points of drought i.e., 4d (TP1) and  8d 

(TP2) of induction of drought stress. The salient physiological parameters studied were; 

moisture content of rhizosphere soil, plant biomass, and relative water content (RWC), canopy 

temperature, stomatal index, stomatal conductance, chlorophyll content, chlorophyll 

fluorescence and nutrient content. The inoculation effects of Rhizobium pisi and priming of SA 

and ABA on the expression analysis of PsCaM1 was also evaluated. The expression level of 

PsCaM1 (Pisum sativum Calmodulin) gene was identified by qRT-PCR among the treatments. 

The actin gene was used as a reference gene.  

Results revealed a higher retention of soil moisture content in rhizosphere soil of abscisic acid 

treated plants at TP1 and TP2. Abscisic acid decreased the fresh and dry weight of plants under 

unstressed condition but increased the fresh weight as well as relative water content under 

drought stress.  Rhizobium and SA ameliorated the adverse effects of drought stress more 

effectively than ABA alone. The Rhizobium inoculation significantly increased stomatal 

conductance under drought stress at TP2. Under drought stress, at TP1 all the treatments alone 

and in combination increased the RWC significantly over drought stressed plants. The FV/FM 

ratio was higher in SA treatment followed by combined treatment with SA, Rhizobium and 

ABA. Under drought stress, both Na and K uptake was significantly increased in Rhizobium + 

SA + ABA and Rhizobium inoculation. ABA, Rhizobium + SA treatments enhanced the Mg 

uptake under drought stress. Whereas, ABA, Rhizobium + SA + ABA increased accumulation 

of Ca content. Fe was significantly higher in Rhizobium and combined treatment of Rhizobium 

+ SA + ABA. Similarly, Zn and Mn accumulation was also improved in Rhizobium treatment. 

Expression analysis demonstrated a significant upregulation of PsCaM1 gene under drought 

stress. ABA showed significantly higher (~1.5 folds ) expression under drought stress at TP2 



 

x 

 

followed by Rhizobium + ABA, Rhizobium + SA that divulged an increased expression of 0.8, 

0.5 and 0.4 folds respectively at long term drought stress (TP2). PsDREB2 gene is positively 

induced in Rhizobium, ABA and combined treatment of Rhizobium + ABA under long term 

drought stress (TP2).  

It is deduced from the data that Rhizobium alone or in association with SA may be used to 

mitigate drought induced inhibition on plant growth. Rhizobium, ABA and SA treatments 

exhibited better growth effect on pea plants at short term drought stress. Whereas, Rhizobium 

assisted SA and ABA to alleviate drought induced adverse effects over long term drought. The 

PsCaM and PsDREB2 gene is induced under long term drought stress. It is inferred that ABA, 

Rhizobium and consortium of ABA, SA and Rhizobium can be ideal candidate to enhance 

drought tolerance in pea plants by the upregulation of PsCaM gene.  

Keyword: Pisum sativum, Drought stress, ABA, SA, CaM, PsCaM, PsDREB 
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Differential expression analysis of Calmodulin-binding (CaM) gene in Pea plants under drought stress and the effects of PGPR 

and PGR        1 

 

 

INTRODUCTION 
 

Abiotic stresses include salinity, low and high temperatures, and drought. They are 

considered as the major abiotic stresses that occurred globally. Plants have established different 

mechanisms to withstand these extreme conditions (Salehi-Lisar and Bakhshayeshan-Agdam, 

2016). A better understanding of these mechanisms can aid in the improvement of stress 

tolerant crops.  

The world population is expanding rapidly and estimated to reach 9.4 billion by the end 

of year 2050 (Béné et al., 2015). To fulfil food demands of increased population significant 

increase in crop production is necessary, while keeping the renewable and ecological resources 

of our plant preserved (Hertel, 2015). Different abiotic (i.e., salinity, cold, drought, frost and 

waterlogging) and biotic (i.e., insects, weeds and pathogens) factors are restricting the 

agricultural production by reducing the quality and quantity of crop yield that results into 

limited plant growth (Waraich et al., 2011). Drought, a major stress contributor influences crop 

yield worldwide (Singh and Laxmi, 2015). Expected temperature rise will bring noteworthy 

change in annual global rainfall that will subsequently increase the drought frequency (OECD, 

2012). According to the European Union (EU), from 1991-2006 drought area has been doubled 

with a 25% estimated yield loss. In fact, the United Nations estimates two-thirds of the world 

population possibly will be under conditions of drought in 2025 and 1.8 billion people will be 

an inhabitant in countries/states with absolute water scarcity (FAO 2007; Chartres and Varma, 

2010). 

1.1. Role of secondary messenger 

Through signal transduction networks plants react to different environmental 

fluctuations and developmental cues that comprises non-protein or multiple protein elements. 

Environmental fluctuations mostly includes different transcription factors, receptors and 

enzymes, while the developmental cues includes some secondary messengers, such as active 

oxygen species, cyclic nucleotides, lipids, calcium (Ca2+) and hydrogen ions. Among them, 

Ca2+ is the significant secondary messenger (Liese and Romeis, 2013; Valmonte et al., 2014; 

Simeunovic et al., 2016). The Ca2+ is also essential in maintenance of cell wall and membrane 
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stability, root hair elongation, stomatal guard cell movement, pollen tube growth, and as an 

important plant nutrient (White and Broadley, 2003; Kim et al., 2009). Plants evoke specific 

spatiotemporal calcium signals in the form of transient changes in Ca2+ concentration in cells 

due to environmental and developmental stimuli. External factors (e.g., temperature salt, 

osmotic stress, light) can establish diverse Ca2+ changes which are recognized by specific 

calcium sensors/receptors to instigate further outcome of transcriptional and metabolic 

reactions (Batistič, and Kudla, 2012; Shi et al., 2018). The transient intensification of the 

cytosolic Ca+2 concentration is generated by salt, cold, drought, mechanical, oxidative and 

osmotic stress (Matthus et al., 2019). Sensor proteins perceive specific Ca+2 spike signatures in 

signalling cascade; namely, Ca2+ CDPK (Calcium Dependent Protein Kinase), CML (CAM- 

like proteins), CAMs (Calmodulins), CCaMK (Ca2+ or Ca2+/calmodulin dependent protein 

kinase), CBL (calcineurin B-like proteins), and their CIPK (Calcium interacting protein 

kinases), and CRT (calreticulin), that are controlled directly or indirectly by signature spike of 

Ca2+ (Ray et al., 2007; Magnan et al., 2008; Weinl and Kudla, 2009; Galon et al., 2010, 2008; 

Takahashi et al., 2011; Xu et al., 2011). Transcriptional factors transcribed transduced signal 

in differential gene expressions and regulate it by Ca2+ binding proteins, named as CAM 

binding transcription factor, CAMTA. Characterization of sensor protein include “sensor 

responders” and “sensor relays” (Hashimoto and Kudla, 2011). Calmodulins (CaM), 

calcineurin B-like proteins (CBL) and calmodulin-like protein (CML) are “sensor relays”. Due 

to lack of catalytic domain they transmit Ca2+ through protein-protein interactions. The CBLs 

link with a family of protein identified as CIPKs (i.e., CBL interacting protein kinases) and the 

“CBL-CIPK complex” is designated as bimolecular “sensor-responders”. Sensor-responders 

are CDPKs because protein is a combination of kinase domain and Ca+2 sensing calmodulin-

like domain (Monshausen, 2012). Structurally CDPKs and CCaMKs are alike they also have 

regulated kinase, which have a Ca2+-CaM binding domain overlapping with the auto inhibitory 

domain and visinin-like domain for Ca2+ binding (DeFalco et al., 2012).  

1.2. Plant responses to drought stress  

Plant roots have the ability to sense soil moisture deficiency rapidly, this environmental 

stress influence crop yield more severely (Peleg et al., 2011). Drought stress of plant has 

described in Figure (1.1), which represents modified molecular, morphological and 

physiological plants attributes under drought stress. The photosynthetic activity is badly 
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affected under drought stress, modification in carbon and nitrogen metabolism as well as plant 

water relation have been reported (Mejri et al., 2016). Plant growth inhibition minimizes water 

loss from leaves because of stomatal closure that is first response in plant. To derive water from 

the deep down surfaces of soil, augmented root length is an adaptive strategy. Cell hydration 

maintenance by osmotic adjustment and minimized water loss via transpiration may compose 

in another adaptive mechanism (Boughalleb et al., 2016). To cope with drought stress though 

plants have their own mechanisms, but different soil microorganisms role in drought tolerance 

induction is worth mentioning (Glick, 2012). 

The phenological stages of plants, length of exposure to stress and the severity are 

significant determinant for damage caused by stress (Figure 1.2). Salt/drought induce 

secondary stress which occurs as osmotic stress. Root growth attribute is extremely sensitive 

to osmotic stress as compared to leaf growth such as mild osmotic stress can inhibit leaves and 

stem growth (Ahanger et al., 2014). Under water deficit conditions, alleviated leaf size is 

evaluated more beneficial due to concomitant reduced transpiration rate, although 

photosynthetic rate is adversely affected. During moderately dry climates, the direct 

evaporation from soil persists relatively wet. This strategy is not as efficacious as anticipated 

(Tardieu, 2005; Forni et al., 2017).  

 

Figure 1.1: A diagram presenting plant responses against drought stress. 

Source: Akinci, (2013). 
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Figure 1.2: A schematic overview of drought stress responses in plants 

Source: Forni et al., 2017 
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1.3. Leguminous 

Legumes are thought to be the most important staple crops worldwide. They are the 

primary source of oil, fibre, minerals, micronutrients and vegetable proteins that are pertinent 

for human consumption and livestock feed (Xiao et al., 2017; Hummel et al., 2018). Because 

of symbiotic consortium with rhizobia, they have the specific to fix nitrogen as well. Due to 

frequent exposure to drought, salinity, pH and/or temperature stress climate specifically to 

drought their biological nitrogen fixation ability is impaired (BNF) (Furlan et al., 2019). 

Considering the expansion of semi-arid regions and projected expansion of global population 

(IPCC, 2014), the investigation prone to drought stress condition is of significant interest (Naya 

et al., 2007; Larrainzar et al., 2014; Larrainzar and Wienkoop, 2017).  

1.3.1. Pea (Pisum sativum L.)  

Pea is one of the leading legume used as a staple food in temperate cultivating systems 

all over Europe, North America and Asia, in East African highlands it is also known as a 

traditional protein crop (Zohary et al., 2012) which is cultivated as a source of forage, green 

seeds for processing and vegetable crop in addition e.g., snap pea (Stone et al., 2015). The 

concentration of genetic variation is much greater in the cultivated pea (P.sativum) species than 

the wild species P. fulvum (Zong et al., 2009). The word ‘pea’ has its origin to the Italian word: 

pisello (derived by the Latin: pisselo) that traced to ancient Greek word ‘pison’ (‘πίσον’). In 

Afghanistan and Abyssinia peas had probably originated, with areas in the Mediterranean area 

colonised later. Afterwards pea spread to other regions of Asia and Europe (Karkanis et al., 

2016). In Middle East with barley and wheat, pea was also domesticated simultaneously, not 

later than the sixth millennium B.C (Karkanis et al., 2016).  

Pisum sativum L. belongs to the Fabaceae (Leguminosae) family with a small genus. 

Pea is one of the well-recognized rabi season vegetable. It is an annual herbaceous self-

pollinated vegetable with a trailing, climbing or dwarf growth habit. However, it a cool season 

crop, but frost can influence its pod devotement and flowering (Rahman et al., 2020). The rise 

in temperature confer a great loss in seed yield and poor pod setting. In Pakistan, an area of 

56,200 hectares was under pea cultivation during 2011-12. The estimated total production was 

of 36,900 tonnes. Whereas, Khyber Pakhtunkhwa (KPK province) shared production of 800 

tons with an average of 667 kgha-1. It was considered as the least production of pea in 
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comparison to other provinces (Khan et al., 2013). Pea crop has inclusive adaptability under 

agro-ecological regimes of Pakistan. Therefore, it is being cultured in plains in winter, whereas 

the cultivation of pea on highlands in summer. There are various reasons for pea yield loss in 

Pakistan than the number of advanced countries. 

1.3.2. Adaptability of pea to abiotic stress  

 Pea is a well acclimatized and improved crop to a broad range of regimes/environments 

from temperate maritime to semiarid conditions. The optimum temperature for the base 

germination of seeds is around 20 ± 1.1 °C (Raveneau et al., 2011; Karkanis et al., 2016). 

Though, the chances of damage due to frost depends on the developmental phase of the plant. 

The chilling temperature of about -4.5 °C can kill 50% of seedlings (Sallam et al., 2015). 

Generally, legumes can easily be affected by the freezing temperatures, specifically at the 

formation of a pod, seed filling, and flowering stage (Maqbool et al., 2010). By the process of 

“cold acclimatization” pea can tolerate frost because during the process they are exposed to 

low temperatures (Balwin et al., 2014). The production of cysteine and methionine has been 

interrelated with tolerance to low temperatures in pea (Legrand et al., 2013). It has been 

observed that autumn sowing led to a greater yield of pea +56% than spring sowing in Italy 

(Annicchiarico and Filippi, 2007). The compact nature of soil with increased temperature or 

drought influences the growth and yield of pea crop during flowering and filling of grain. In 

addition, pea flower earlier in winter. Therefore, they are less susceptible to drought stress by 

the end of the cycle (Vocanson and Jeuffroy, 2008; Neugschwandtner et al., 2015; 

Neugschwandtner et al., 2019). Drought stress impact can be avoided in the semi-arid region 

through crop management practices such as early sowing of pea (Khan et al., 2010). Pea is very 

sensitive to salinity and a high rate of waterlogging that is why they should not be cultivated in 

soil having a low infiltration rate (Duhan et al., 2018). Lately, some more salt-tolerant 

interesting landraces have been derived from China and Greece. These salt-tolerant cultivars 

ameliorate the tolerance in field pea crop under salinity. Thus, they are considered to be used 

in the breeding programmes (Leonforte et al., 2013). 

The prime importance is to manage water resources through enhanced water use 

efficiency. The traditional breeding practices comprise the selection of stress tolerant varieties 

with appropriate agronomic attributes. By genetic engineering, the drought tolerant crops can 
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be developed. The method involves the recognition of fundamental genetic components 

significant for drought/stress tolerance in plants which enables them to introduce these stress-

responsive genes into crops. A number of physiological events in plants are triggered by 

drought that in turn influence the expression level of genes (Sahi et al., 2006). Several genes 

entailed in stress tolerance has initially been derived from Arabidopsis thaliana. With the 

introducing stress inducible genes an upsurge tolerance to cold, drought and salinity stresses in 

plants has been achieved by the process of genetic engineering (Shinozaki and Yamaguchi-

Shinozaki, 2007). 

The phytohormones including; cytokinins (CK), abscisic acid (ABA), salicylic acid 

(SA), and gibberellic acid (GA), antioxidants (e.g., hydrogen peroxide (H2O2)), ascorbic acid, 

and osmoprotectants have been employed as seed priming and foliar practices (Farooq et al., 

2009) in order to mitigate the consequences of drought stress in plants. The adverse impact of 

stresses can be alleviated as a result of an exogenous utilization of plant growth regulators 

(PGRs), for instance gibberellins (Afzal et al., 2005), cytokinins (Merewitz et al., 2011), auxins 

(Fahad et al., 2015). They can also improve seed germination, seed yields, and yield quality, 

development, and growth (Egamberdieva, 2017). Furthermore, the application of cytokinins 

under abiotic stress environments by scavenging free radicals can deferral leaf senescence 

directly (Sarafraz- Ali et al., 2011; Ardakani et al., 2014).  

1.4. Plant Growth Promoting Rhizobacteria (PGPRs) 

Soil is defined as the upper layer of the earth’s crust that is made up of air, water, 

minerals, and other living organisms, and supports numerous substantial functions. The 

rhizosphere is demarcated as a thin layer of soil adjoining to the plant roots augmented in 

beneficial bacteria. These bacteria perform an imperative role in the plant growth preferment. 

Rhizospheric bacteria are characterized as plant growth promoting rhizobacteria (PGPRs) 

which remarkably improved growth parameters along with the suppression of various crop 

plant diseases (Mehmood et al., 2018). PGPR triggers the growth of associated host plants 

(Bhattacharyya and Jha, 2012). Further, PGPR are categorized as biocontrol agents, 

biopesticides, and biofertilizers, subjected to their mode of activities. These PGPRs are 

potentially capable of establishing their community community in the soil as they have the 

tendancy to adapt diverse conditions. The rapid growth rate of these PGPRs along with their 
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biochemical adaptability helps them to digest an extensive variety of xenobiotic and natural 

compounds that played a significant role in their foundation (Narasimhan et al., 2003). 

PGPR triggers a number of processes in an ecosystem such as nutrient cycling, nutrient 

uptake, the establishment of seeds and stress tolerance in biological control (Bisen et al., 2015). 

They have the ability to resist the environmental stresses, for instance, low and high 

temperatures, extreme soil salinities, heavy metals, heat and drought (Liddycoat et al., 2009; 

Chakraborty et al., 2015; Hidri et al., 2016). The diverse and wide range of microorganisms 

have been reported so far in ameliorating plant growth and mitigating the detrimental influence 

of drought stress. 

1.4.1. Rhizobacterial response to drought stress 

Bacteria are directly coupled with the accessibility of water through cellular functioning 

because it confirms the functionality of essential proteins and the integrity of macromolecules 

(Ngumbi and Kloepper, 2016). Usually, bacteria cope with the unfavourable environmental 

condition by modulating morphological modifications in the form of cysts and spores. The 

abundance and colonization of bacterial communities present in rhizospheric soil are affected 

by the environmental traits such as physicochemical attributes accompanied by species and age 

of the plant (Verma et al., 2019; Saharan and Nehra, 2011). 

Several strategies have been used by bacteria to adjust to limited water conditions. The 

role of exopolysaccharides (EPS) in drought tolerance has been well demonstrated in bacterial 

cells (Tamaru et al., 2005). It acts as a binding agent in the soil which sequentially amended 

soil quality. A number of studies verified that EPS remarkably increases the resistance of both 

prokaryotes and eukaryotes dehydrated cells in terrestrial habitats. It also provides assistance 

to reclaim growth after desiccation (Naseem et al., 2018). 

The production of glutamate, trehalose, proline, glycine betaine and osmo-protectants 

through K assist bacteria to acclimatize to drought conditions (Glick, 2012). Secondary 

metabolites and volatile compounds stimulate bacteria to subsist with the drought stress besides 

influence the root colonization (Cho et al., 2008). Bacteria involves a multistage up regulation 

gene for stabilization in the gene expression of stress-responsive genes under drought stress 

(Valentine et al., 2018). Drought stress can be prevented by an augmented the intensity of H2O2 

resistance proteins to combat oxidative stress (Gulez et al., 2012). 



                                                                                                                                                    Chapter No.1                                                                                         

 

Differential expression analysis of Calmodulin-binding (CaM) gene in Pea plants under drought stress and the effects of PGPR 

and PGR        9 

 

1.4.2. Mechanism of PGPRs under drought stress 

At present, it has established that PGPR strains are just as effective for ameliorating 

legumes growth, vegetables and cereals cultivated under stress environments (Khan et al., 

2019a; Dubey et al., 2019; Lin et al., 2019; Debnath et al., 2019; Khan et al., 2020). Several 

researches have identified the strong influence of rhizobacteria in mitigating the antagonistic 

impact of salinity on crop growth in vivo along with in vitro conditions (Ansari and Ahmad, 

2019; Waghmode et al., 2019; Kaushal, 2019).  

PGPR demonstrated an alternative approach to alleviate the influence of drought stress 

in crop plants. A wide range of direct and indirect mechanisms can be utilized to escalate the 

WUE (water use efficiency) of plants that includes; production of PGRs, secondary metabolites 

and upregulation of stress-responsive genes in plants. They have the likelihood to modify plant 

health status which led to an increase in maize crop yield to a maximum level. A remarkable 

role of rhizobacterial communities has been discerned in the development and growth of maize 

plants i.e., with the inoculation of PGPR the proline, and sugar content in the leaves of maize 

plants increased to overcome the unfavourable conditions of drough stress (Sandhya et al., 

2010). 

Various mechanisms of action proposed that PGPR arbitrated tolerance to plants under 

drought stress condition. It comprises of modification in root morphology, the production of 

phytohormones, ACC deaminase activity, antioxidant defense and co-inoculations, volatile 

compounds, and accumulation of osmolytes, exopolysaccharide (EPS) production. In induced 

systemic tolerance (IST) the microbial communities instigate modifications in plants that led 

to an enhanced tolerance under biotic stresses (Yang et al., 2009; Atkinson and Urwin, 2012). 

Drought and salt stress tolerance is being occurred via elicitation of alleged ITS (induced 

systemic tolerance) mechanism induced by PGPR in plants (Figure 1.3) the process comprises 

of number of biochemical and physiological alterations (Yang et al., 2009). The rhizobacterial 

induced drought endurance and resilience (RIDER) mechanisms has been reviewed by number 

of researchers and demonstrated that PGPR enables plants to improve their growth under stress 

condition (Kaushal and Wani, 2016), it consist of inflection of phytohormonal levels (Kang et 

al., 2014a; Belimov et al., 2014; Glick, 2015; Cohen et al., 2015; Liu et al., 2016; 

Egamberdieva, 2017) (Figure 1.3), antioxidant defence (Wang et al., 2012; Armada et al., 
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2016), osmotic modification (Sarma and Saikia, 2014), stress-responsive genes(Kim et al., 

2014), bacterial exopolysaccharides (Vardharajula et al., 2011; Naylor and Coleman-Derr, 

2018) and volatile organic compounds (Zhang et al., 2008). PGPR not only stick to the root 

surface (rhizoplane) but also inhabit the rhizosphere along with root cortex as endophyte 

(Singh, 2018). Figure 1.3 recapitulates the events of PGPR on plants. 

 

 

Figure 1.3: Illustrative representation of mechanism of PGPR in enhancing plant growth 

against environmental stresses. Source: (Singh, 2018). 
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1.4.3. Role of PGPRs in relation to macro nutrients  

  Studies on PGPR strains delineated to be effectual when used in combination 

with other microbial populations. The repercussion of co-inoculation with Rhizobium tropici 

and Paenibacillus polymyxa on nodulation of common beans (Phaseolus vulgaris L.), nitrogen 

content, plant growth has been evaluated under drought environment in a greenhouse (Ferreira 

et al., 2018; Naseer et al., 2019; Khaitov et al., 2020). Previous studies were orchestrated at 

three levels of drought with two strains of P. polymyxa alone or in combination (Puri et al., 

2016).  

Pseudomonas fluorescens increased the antihypertension alkaloid (ajmalicine) content 

in Catharranthus roseus plants (Vimal et al., 2016; Pandey, 2017; Arivalagan and 

Somasundaram, 2017). In the same way, the inimical impacts of drought stress on pea plant 

growth can be alleviated by PGPR comprising ACC deaminase (Belimov et al., 2019; Sapre et 

al., 2019). The rhizobacteria have the potential to construct exopolysaccharides that can further 

be used efficaciously against drought stress for augmenting plant growth in sunflower plants 

(Naseem et al., 2018; Ojuederie et al., 2019; Meena et al., 2019). PGPRs have established 

various mechanisms for the growth promotion of plants in contaminated soils, the lowering of 

ethylene concentration is one of the mechanisms (Sarwar et al., 2017; Grobelak et al., 2018). 

The plausible reason for the enhancement of plant growth under heavy metal stress is attributed 

to the role of PGPR because they accumulate metals in their cells and mitigate their availability 

to plants. Another salient feature of PGPR is to enhance resistance against pathogens. They 

impart indemnity to plants against diseases. They have been shown as effective biocontrol 

agents against various plant pathogens (Ramadan et al., 2016; Liu et al., 2017; Sahu et al., 

2018; Altinok and Yildiz, 2019).  

Klebsiella oxytoca inoculated plants comprise of ACC-deaminase that improves the 

absorption of major nutrients for instance; N, P, K and Ca (Bhise and dandge, 2019; Syyed et 

al., 2019; Verma et al., 2019). Klebsiella stimulates plant growth by alleviating the negative 

impacts of stresses. However, Pseudomonas spp. inoculated seedlings intensify the growth of 

eggplant by depleting the uptake of Na+ and amplifying the activities of antioxidant enzymes 

under salinity stress (Etesami and Alikhani, 2019; Kaymak, 2019). Moreover, under drought 

stress, PGPRs are intricate in regulating plant nutrition by augmenting the K+ uptake over Na+ 

in plants (Singh et al., 2019a; Shinwari et al., 2019; Rezakhani et al., 2019). The uptake of 
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other major nutrients in plants also improves with the inoculation of PGPR besides the 

enhancement of water content in stressed plants (Bakhshandeh et al., 2019; Chiappero et al., 

2019; He et al., 2019). The PGPR strains are considered not only for mitigating plant growth 

under salinity stress but are also beneficial for ameliorating plant development under flooding, 

drought stress and heavy metals (Vivas-Peris et al., 2018; Kerchev et al., 2019; Singh et al., 

2019b; Manoj et al., 2020).  

1.5. Plant growth regulators (PGRs) 

1.5.1. Abscisic acid (ABA) 

Abscisic acid is a phytohormone which triggers a series of key processes intricately 

implied in plant adaptation and development to abiotic and biotic stress responses. ABA is an 

inhibitory phytohormone that aid plants to acclimate stresses. Plants synthesize ABA in a 

number of organs that instigate defense mechanisms under stress conditions. The fundamental 

mechanisms comprise of defense-related gene expression and regulation of stomatal aperture 

discussing resistance to the environmental stress conditions (Lim et al., 2015; Sah et al., 2016). 

The striking attribute to the pathogen defence and the control of water loss through the process 

of transpiration is the pronouncement of stomatal opening and closure. Likewise, it plays a 

significant role in bud development, seed dormancy, leaf senescence, closure of stomata, 

resistance and abscission (Daszkowska-Golec, 2016; Kuromori and Shinozaki, 2018). ABA is 

also recognised as a stress hormone for the reason that the production of the hormone is 

stimulated through waterlogging, drought and other severe environmental conditions 

(Vishwakarma et al., 2017; Islam et al., 2018). Abscisic acid is documented as dormin as well 

because it gives rise to dormancy in stems, seeds, and buds (Wang et al., 2016a). Other names 

to ABA is inhibitor-B and abscission II (Toungos, 2018).   
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1.5.1.1. Role of ABA in Plants 

Throughout plant cycles, the phyto-hormone ABA activates several physiological 

mechanisms. ABA stimulates stomatal closure and the expression of various stress-responsive 

genes in regard to drought or water deficient conditions (Nambara et al., 2010; Fujita et al., 

2011; Upadhyay et al., 2017). Plants persistently come across varied biotic and abiotic climatic 

stresses, together with high salinity, drought, and numerous pathogen because plants are sessile 

organisms. The effect of these environmental stresses on plant growth and development can 

adversely impede crop production (Sah et al., 2016). Under water stress, the elongation and 

growth of the roots is a consequence of low water prospect that is predominantly initiated by 

the accumulation of ABA (Kuromori et al., 2018). The accretion of ABA, biosynthesis, and 

stomatal closure as well have documented in plants under the water stress condition (Valluru 

et al., 2016; Manzi et al., 2017). A considerably significant concentration of ABA is a 

prerequisite to sustain lateral root development under osmotic stress (Zhang et al., 2018). 

Abscisic acid as a phytohormone plays its role as a chemical signal transducer in 

feedback to the ecological stresses. Plants sense these indicators and transform them to ABA. 

The instigation of series of plant physiological, and development mechanisms triggered 

through ABA thereby inducing acclimatization to the stress conditions (Raghavendra et al., 

2010; Lee and Luan, 2012; Huang et al., 2012; de Zelicourt et al., 2016). These stresses 

adversely influence plant growth and instigate drastic diminution in agricultural crop 

production. Primarily, plant drop water through stomata on their leaves by gaseous exchange. 

Regulation of water status and stomatal movement occurred through the key hormone ABA. 

Plants accumulate and produce an increased amount of ABA in guard cell that led to the 

stomatal closure to conserve water under drought stress condition. The cellular and molecular 

mechanism have been comprehensively studied that is underlying ABA induced stomatal 

closure (Hubbard et al., 2010; Lim and Luan, 2014). The catabolism and biosynthesis of ABA 

are familiar to be the leading determining factor of endogenous ABA levels in plant cells 

(Cutler et al., 2010; Seo and Koshiba, 2011; Yamaguchi et al., 2018). 

Abiotic and biotic stress have been comprehensively scrutinized in defense responses 

(Chinnusamy et al., 2008; Popko et al., 2010; Wilkinson and Davies, 2010; Sirichandra et al., 

2010). During seed development, abscisic acid triggers the agglomeration of seed storage 
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compounds. In addition, it is necessary for the preservation and induction of seed dormancy. 

Furthermore, it is intricated in plant pathogen responses (Kuromori et al., 2018).  

1.5.2. Salicylic acid (SA) 

Salicylic acid (SA) is a phenolic compound that is synthesized through the phenyl 

propanoid pathway in every plant kingdom. It has an imperative role in abiotic stress tolerance. 

SA has the potential to induce a protective effect under stresses (Martel and Qaderi, 2016).  

 

1.5.2.1. Role of SA in plants  

Plant growth regulators (PGRs) are chemical phytohormones phenolic in nature. They 

remarkably influence the growth and demarcation of tissues and cells (Gadzovska et al., 2013; 

Khanna et al., 2016). SA considerably alleviated growth inhibition by drought. It is further 

manifested through less decreased fresh and dry biomass, root length, plant height and many 

other physiological roles (Kang et al., 2014b). In addition to this, SA act as an intercellular 

communication messenger (Arteca, 2013). They have been linked with the upholding water 

conservation status in plants along with control of biotic and abiotic stresses (Sharma et al., 

2019). It is primarily concerned with the modulation of developemental mechanisms and 

growth of plants in feedback to drought stress (Miura and Tada, 2014). It is apparent that SA 

provide protection to plants contrary to abiotic stresses by stimulating important physiological 

mechanisms such as; proline metabolism, antioxidant defence approach, photosynthesis, and 

water associations (Khan et al., 2010; Nazar et al., 2011; Miura and Tada, 2014).  

The earlier studies have explained the role of SA in morphological, biochemical and 

physiological mechanisms of chickpea (War et al., 2011). A number of researches have 

validated the contribution of SA in the regulation of drought response in various other species 

SA (Salicylic acid) 
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(Bijanzadeh, et al., 2019; Kareem et al., 2019; Gupta et al., 2020; Sohaq et al., 2020). SA has 

beneficial effects on growth, production of flavonoids in ornamental and crop plants, and 

flowering (Pacheco et al., 2013). Under stress condition, SA functions as a signalling 

compound which induces gene as chaperones, heat shock proteins, antioxidant enzymes, in 

addition to the production of secondary metabolites (Jumali et al., 2011). The inducible 

pathogenesis-related (PR) gene are instigated by means of drought stress in plants such as PR1 

and PR2 (Miura and Tada, 2014). The generation of ROS induced by SA probably caused an 

escalation in endogenous hormone level which promotes closure of stomata (Lee et al., 2019). 

Likewise, it can occur due to the exogenous application of SA tends to H2O2, Ca2+ 

accumulation and ROS (Patni and Ansari, 2019; Chavoushi et al., 2019; Abbas et al., 2019). 

The naturally eventuating diamines and putrescine assumed to be the latent plant growth 

regulators in water conservation subsequently encourage root development (Khan et al., 2019; 

Irfan et al., 2019; Sujatha-Edupuganti and Anuradha, 2019). The major role of PGRs is in 

mediating plant defense responses against abiotic stress and pathogen attacks. Under stress, 

they intricate metabolic expression in plants. They are also intricate in the mechanisms of water 

conserving balance, stomatal closure and regulating stress-responsive genes. In addition to this, 

a number of other processes are involved like flowering, fruiting, ripening, senescence, plant 

development, and expression of secondary metabolites linked with the drought tolerance 

(Damalas, 2019; Canalis et al., 2019).  

1.6. Calmodulin binding proteins (CaM) 

Calmodulin (Calcium modulated protein) is a small calcium binding protein expressed 

in all eukaryotic cells that acts as secondary messenger in a variety of cellular responses. There 

is a structural and functional homology between plants, animals and yeast calmodulin, but 

multiple isoforms of the protein appear to be the distinguishing feature of higher plants 

(Villalobo et al., 2019). In response to extracellular calcium concentration calmodulin binds to 

the short peptide sequence of the target proteins and initiates the calcium dependent signalling 

pathways (Edel and Kudla, 2015). Calmodulin is the most eminent calcium transducer, 

regulating the activity of different proteins with wide range of cellular functions. Most of the 

functions of calmodulin and its downstream effectors are alike in eukaryotes and plants. On 

the other hand, the plants have a unique series of calmodulin linked and downstream target 

proteins (Bouch´e et al., 2005). 
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Calcium is a second messenger; it plays a key role in various cellular mechanisms like; 

development and growth in plants. Plant hormones, sunlight, abiotic stresses, mechanical 

disturbances, and pathogen elicitors acts as modulator for intracellular calcium level 

(Chakraborty et al., 2015; Chakraborty and Acharya, 2017; Sindhu and Sharma, 2019). There 

are different calcium sensors which alter the calcium signals into an inclusive range of cellular 

responses (McCormack et al., 2005; Pei and Gilroy, 2018). Calcium sensor responders and 

sensor relays are the types of calcium sensors which are involved in different signalling 

responses in plants. CDPKs (calcium dependent protein kinases) are the well characterized 

class of Calcium sensor responders in plants (Kudla et al., 2010; Valmonte et al., 2014). The 

CDPKs comprise four functional domains among which the C terminal CaM like Ca2+ -binding 

domain and a Calmodulin (CaM) binding domain are present. As calcium regulates the activity 

of CDPKs, therefore CDPKs are recognised to play key role in Calcium mediated cell 

signalling (Liese and Romeis, 2013). In addition to Calcium-dependent protein kinases, the 

CRKs have similarly been delineated in plants. However, on contrary the CDPKs the activity 

of CRKs (CDPK related protein kinases) is an independent of the Calcium levels (Rigó et al., 

2013; Wang et al., 2016; Badmi et al., 2018). The sensor relays and calcineurin-B-like proteins 

go through the calcium bring about conformational changes and then act together with their 

downstream target proteins (Reddy and Reddy, 2004; Chen et al., 2012; Boudsocq and Sheen, 

2013). 

1.6.1. Pathways involved in CaM  

There are numerous stimuli for the plant cells in response to which there is a rapid 

increase in the cytosolic calcium levels. The high calcium level transduces the different cellular 

signalling pathways via calmodulin and other calcium binding proteins (Steinhorst and Kudla, 

2013; Bergey et al., 2014). In the recent past, a massive range of calmodulin related proteins 

have been recognized which are specific to plant cells. Moreover, calmodulin proteins play 

novel role in plant cells signalling in response to environment signals (Aldon et al., 2018).  

The environmental stimuli include the biotic and abiotic stimuli which modulate the 

calcium levels in cytosol or other organelles such as nucleus. The rise in free calcium levels 

leads to the binding of free calcium with calcium modulated proteins, calmodulin and CRPs 

(Chen et al., 2015). The structural changes in these proteins help them to link up with variety 
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of cellular targets that control vital cellular functions, such as cellular metabolism, cytoskeleton 

and protein modifications. Moreover, the calcium and calmodulin signalling also modulate the 

gene expression of certain genes by either directly binding to the different transcription factors 

or initiating the signalling cascade. The binding of CaM or CRP can result in rapid cellular 

changes (within seconds or minutes). However, the steady responses need gene transcription 

and protein synthesis (it may take minutes to days). The calmodulin-mediated signalling, and 

its interplay with other signalling cascades, comprises the reaction of the plant to the external 

stimuli.  

 

Figure 1.4: Ca2+bound calmodulin arbitrated signal transduction pathways in plants under stress. Stress 

signals are discerned via receptors, in some cases triggering the transient changes in Ca2+ concentrations 

in organelles and/or cytosol. Dashed arrows indicate Ca2+ fluxes from intracellular or extracellular 

stores, and question mark denotes unidentified signal transduction intermediates.  

Source: (Seybold et al., 2014). 
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1.6.2. CaM and drought stress 

The main environmental stresses for plant cells are high salinity and drought which 

results in osmotic stress. The osmotic stress persuades the cellular and molecular level 

responses among which the primary response is the transient increase in the calcium level and 

ultimately calcium signal transduction pathways to alleviate the potential damages (Huang et 

al., 2012; Tripathy et al., 2019). Furthermore, the SOS (salt overly sensitive) signalling 

pathway the calmodulin and calmodulin related protein signalling is also known to play role as 

a response to osmotic stress in plants (Zhu, 2016; Saddhe et al., 2019; Ma et al., 2019). The 

increased expression of osmotic stress induced GmCaM4 genes in Arabidopsis, and calmodulin 

(CaM) genes from Soybean deliberates the osmotic stress tolerance by increasing the DNA-

binding activity of transcription factor MYB. Moreover, it has also been reported that MYB2 

interacts with calmodulin in calcium dependent way and thus regulate the osmotic and salt 

stress-responsive genes (Yoo et al., 2019; Kahraman et al., 2019). Another gene AtCML8, 

which is the ortholog of GmCaM4, was observed to be stimulated using salt treatment (Zhou 

et al., 2016). AtCML9, a protein like CML was also originate to be implicated in salt stress 

tolerance via ABA arbitrated signalling pathways (Dai et al., 2018). During the seed 

germination and seedling growth, the induction of ABA along with the abiotic stress the 

expression of AtCML9, and the knock-out mutants of actm19 exhibited an oversensitive 

response to ABA. In addition to this they showed increased tolerance to osmotic as well as salt 

stresses. Moreover, the expression of ABA-responsive genes comprising; RAB18, RD20 and 

RD29A and many osmotic stresses was dysregulated in atcml9. The CML gene in rice i.e., 

OsMSR2 was potentially intricated in ABA arbitrated salt and dehydration tolerance (Xu et al., 

2011). 

1.7. Association of PGPR to CaM proteins 

Numerous studies propose that Calcium levels, Calmodulin and CRPs are key players 

of plant response to different pathogens and symbionts attack. To supply nitrogen for plant 

growth, different legumes have a symbiotic relationship with nitrogen fixing bacteria which 

can convert nitrogen to ammonia (Mus et al., 2016). The signalling molecule, Nod factor 

produced by Rhizobium bacteria establish a symbiotic relationship between legume and 

Rhizobium (Tan et al., 2019). The Nod factor is recognized by the root hair cells of the host 

and it includes calcium responses which are separated spatiotemporally (de Bruijn, 2020). 
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Initially the calcium flux occurs at the tip of the root hairs then calcium spearing occurs in the 

surrounding of the nucleus. Mutation analysis of the root nodules of M. truncatula was found 

to be informative about the role of Calcium in the signalling of Nod factor (Ding et al., 2008). 

1.8. Molecular Characterization 

The diverse range of calmodulins and CMLs can be well explained by the tissue specific 

or subcellular localization of these proteins. The CaM is mostly found in cytosol however 

certain studies have reported the localization of calmodulin in nucleus (Cheval et al., 2013) 

(Fig. 1.6). The microarray analysis has shown that the most part of calmodulins and CMLs 

genes do not present unnecessary patterns in response to environmental stimuli or during plant 

development (McCormack et al., 2005). 

The key role of DREB (dehydration responsive element binding protein) also known 

as C-repeat binding factor protein in osmotic, and heat stress have found in Arabidopsis 

(Sakuma et al., 2006; Kim et al., 2012). There are two types of dehydration-responsive element 

binding (DREB) proteins; i.e., DREB2A and DREB2B. They have been known to perform a 

major function in ABA independent pathway under heat and osmotic stresses (Yoshida et al., 

2014). The expression of DREB2A is independent of ABA water stress. However, it is induced 

via greater salinity, heat, drought, and osmotic stresses. Sakuma et al. (2006) has explained the 

role of DREB2A under drought stress conditions. The DREB2A modulates the water stress-

responsive gene expression, as a result increasing the water stress tolerance. 
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Figure 1.5: Calcium signalling with CaMs and CMLs in response to environmental stress. 

Source: Ranty et al., 2006.  
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1.9. Aims of the study 

 Differential expression analysis of calmodulin-binding (CaM) gene in pea plants under 

drought stress and the effects of PGPR and PGR 

 To assess the role of PGPR (Rhizobium pisi) and PGRs (ABA and SA) on the growth 

of pea (Pisum stivum) under drought stress. 

 Scrutinize the expression level of calmodulin gene in pea (PsCaM1) by inducing 

different treatments of PGPR and PGRs under the influence of drought stress.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter No. 2 

Phenotypic and physiological effects of PGPR and PGRs on Pea 

plants under drought stress 
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INTRODUCTION 
 

The drastic change in climate leads to global food security which is being challenged 

and compromised because of a rapid increase in population (Swinnen, 2018). The utmost 

important limiting factors to crops productivity and ultimate food security have been 

demonstrated by earlier climate change outlooks, which are heat and drought stress. The 

frequent inception of drought around the world is triggering by the reduction in the 

precipitation and modifications in the rainfall pattern (Hsiang and Burke, 2014; Cook et al., 

2014; Lobell and Asseng, 2017). The extreme drought stress is the prime source of a significant 

decline in crop production by exerting negative impacts on the growth of plant (Fahad et al., 

2017; Wojtyla et al., 2020). A number of physiological (e.g., translocation of ions, ions uptake, 

carbohydrates, nutrient metabolism, hormones, respiration, and photosynthesis) and 

biochemical processes are inhibited through the mitigation of plant growth (Bita and Gerats, 

2013; Ahmad et al., 2019).   

Pea (Pisum sativum L.), is a food legume that is cultivated during the cool season. It 

has an extensive diversification of uses. It is cultivated worldwide as an economic source of 

protein. Pea contains a high concentration of lysine, tryptophan, and grain protein ranging from 

19 to 27%. Pea also comprises a high level of carbohydrates. It is low in fiber and contains 

total digestible nutrients of about 87% (Mevlüt and Albayrak, 2012; Venkidasamy et al., 2019; 

Senapati et al., 2019; FAOSTAT, http://faostat3.fao.org) and is consumed as green seeds (fresh, 

canned or frozen), dry seeds, or green pods. Field pea is also used for animal feed (Karkanis et 

al., 2016).  

2.1. Plant growth promoting rhizobacteria (PGPR) 

The group of microorganisms which inhabit in the root of many plants and are identified 

as plant growth promoting rhizobacteria (PGPR). They are generally recognized as 

rhizobacteria and involves bacteria occupying the rhizosphere. They confer beneficial effects 

to plants by enabling plant growth either through direct mechanisms (i.e., improved availability 

of nutrients, production of phytohormones) or by indirect mechanisms (i.e., induced systemic 

http://faostat3.fao.org/
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resistance (ISR), subduing the pathogens using antibiosis, and synthesize lytic enzymes) 

(Goswami et al, 2016; Flores-Gallegos and Nava-Reyna, 2019). Furthermore, these 

microorganisms are involved in the synthesis of antioxidant enzymes production to preserve 

plants from ecological stresses that result in the initiation of ROS (reactive-oxygen species). 

Later it gives rise to cell damage or the use of PGPR to interact with those crops (Olanrewaju 

et al., 2017). They play a remarkable role in enhanced crop yields under sub-optimal conditions 

together with drought and high salinity.  

2.1.2. Mechanism of PGPR induced drought tolerance 

2.1.2.1. Drought tolerance by Rhizobium  

Legumes have an association with the symbiotic root nodulating bacteria that fix N2 for 

them and they are extremely sensitive to the environmental stresses in particular to drought 

stress (Niste et al., 2013). The accumulation of N2 can be restricted due to the reduction in soil 

water content to gaseous exchange in leaves. The potential yield of legumes are subjected to 

the drying out of soil called drought ( Beebe et al., 2014; Ansari et al., 2019; Nadeem et al., 

2019). The delimitation of water is a major constraint in world agriculture. In general, the 

majority of the crop plants are extremely sensitive to even mild dehydration (Benešová et al., 

2012; Llorens et al., 2020). Drought lowers the water content in soil and resulting in the 

inhibition of cell expansion, cell division, and eventually dehydrating cells. As a result, ensuing 

osmotic stress (Figure 2.1). In addition to this, ROS produced during drought stress in plants 

gives rise to oxidative stress (Vurukonda et al., 2016). These beneficial microorganisms are the 

integral constituent of agricultural practices to augment crop yield in an eco-friendly 

environment and in a sustainable way under severe stress circumstances (Gill et al., 2015; Gillet 

et al., 2017). 

A number of studies have been delineated the activities of PGPRs under drought stress 

besides salinity stress in tomato (Mayak et al., 2004), maize (Bano and Fatima, 2009; 

Vardharajula et al., 2011), wheat (Tiwari et al., 2011), cucumber (Wang et al., 2012), Vigna 

radiata (Sarma and Saikia, 2014), pea (Barnawal et al., 2014), white clover (Han et al., 2014) 

and Cicer arietinum L. (Tiwari et al., 2016). Through the process of induced systemic 

resistance (ISR) (also termed as helicitation), PGPR induces salt and drought stress in plants 

https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib30
https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib29
https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib28
https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib28
https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib28
https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib22
https://www.sciencedirect.com/science/article/pii/S0929139308000802#bib22
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that consist of a number of biochemical and physiological alterations (Lucas et al., 2014). It 

take account of regulation of phytohormonal levels (Belimov et al., 2014; Glick, 2015; Cohen 

et al., 2015; Liu et al., 2016; Egamberdieva et al., 2017; Park et al., 2017), bacterial 

exopolysaccharides (Vardharajula et al., 2011; Timmusk et al., 2013), osmotic adaptation 

(Sarma and Saikia, 2014), stress responsive genes (Kim et al., 2014), antioxidant defense 

(Wang et al., 2012; Armada et al., 2014), and volatile organic compound (Gutiérrez-Luna et 

al., 2010; Bitas et al., 2013) which can enhance tolerance in plants under stress conditions. 

However, major constraints to agriculture such as salinity along with drought attributes of 

drylands can be alleviated through RIDER (rhizobacterial-induced drought endurance and 

resilience) processes (Kaushal, 2019).   

 

Figure 2.1. The PGPR (Plant Growth Promoting Rhizobacteria) in association to the particular 

processes in the course of drought stress. Solid arrows specify drought stress instigated effects on plants; 

the dotted arrows designate rhizobacterial components opposing stress consequences. Acronyms: ABA 

(abscisic acid); ROS (reactive oxygen species); MDA (malondialdehyde); ACC (1-aminocyclopropane-

1-carboxylate); IAA (indole-3-acetic acid); EPS (exopolysaccharides). 
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2.1.3. Salicylic Acid (SA) 

In natural environments, plants have to withstand against a number of abiotic and biotic 

stresses, generally employing in combination. That is the reason that they have developed 

distinctive stress signalling pathways that are arbitrated by phytohormones, reactive-oxygen 

species (ROS) additionally to some other signalling molecules. These signalling pathways 

concurrently curtail the damage and preserving substantial reservoir for the process of growth 

and reproduction (Cabello et al., 2014; Jayakannan et al., 2015; Verma et al., 2016). Recent 

studies have identified the combined effect of biotic and abiotic stresses impacting each other. 

There are a number of interesting points that occurred between the reactive-oxygen species 

(ROS) and the stress-responsive hormonal pathways. These pathways substentially could play 

an essential role in modulating plant response to various stresses (Sewelam et al., 2016; Shukla 

et al., 2019). Under stresses, salicylic acid (SA) together with the abscisic acid (ABA) accrue 

in plants and equally related to ROS. They act as a signal to stress responses (Rivas-San and 

Plasencia, 2011; Mittler and Blumwald, 2015; Suzuki et al., 2016). 

The role of SA is very diverse and the most established role is the production of 

signalling molecule in plants. The production of these signals occurred in both local and 

systemic plant defense primarily contrary to biotrophic and hemi-biotrophic pathogens (Rivas-

San-Vicente and Plasencia, 2011). In the salicylic acid induction deficient (SID) mutants in 

Arabidopsis do not accrue SA. They tend to be more prone to pathogens (Maruri-López et al., 

2019). The suggested model of SA mechanism of action is the suppression of catalase (CAT) 

which is an essential H2O2 scavenging enzyme that results in an elevated H2O2 level. ROS 

sequentially can trigger the synthesis of SA regulating the activity of benzoic acid-2-

hydroxylase. It transform benzoic acid into SA. Hence, both SA and ROS takes part in the 

regulatory loop. Where, ROS initiates the synthesis of SA. Whereas, SA promotes their 

accumulation that was claimed to prompt antioxidants. Ultimately, resulting in the reduction 

of ROS concentration (Khokon et al., 2011; Herrera-Vásquez et al., 2015; Khan et al., 2015; 

Silva et al., 2019). SA plays a dual role in plant feedback to abiotic stress. However, by the 

exogenous application of SA, the negative impacts of drought stress can be mitigated or 

undermine the plant response to stress. The reduction in plant responses against stresses 
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depends on the interval of the treatment, and the concentration of SA and plant species (Barba-

Espín et al., 2011; Khan et al., 2015).  

2.1.4. Abscisic acid (ABA) 

Abscisic acid (ABA) is a stress phytohormone. It plays an important role in plant 

response against drought stress, as a cellular signalling in the movement of water from root to 

leaf (Alves & Setter, 2004). Cellular signalling leads to the adaptation in the entire 

physiological and morphological mechanism of plants (Yin et al., 2004). Moreover, ABA is 

originated in root tissues, transported via xylem to shoot through the process of transpiration 

stream that results in the closure of stomata in order to minimize the water loss during drought 

(Seo & Koshiba, 2011).  

ABA has been used with different concentrations ranging from 1 to 1,000 μM 

depending on the part of plant tissues and to be able to influence protein synthesis and gene 

expression entailed in anti-oxidative defense (Guan et al., 2000). Drought stress remarkably 

reduced the concentration of IAA and GA in leaves than that of the control (Xie et al., 2003; 

Bano and Yasmeen, 2010). However, an exogenous application of ABA caused an 

intensification of IAA and GA content as compared to untreated control plants under stressed 

conditions (Farooq & Bano, 2006). ABA acts together with the signalling pathways of SA in 

an intricate manner. ABA can also stimulate the biosynthesis of SA. SA in response can 

increase the concentration of ABA (Seo and Park, 2010).  

2.1.4.1. Mechanism of action 

The mechanism of action initiated with the closure of stomata under a limited supply 

of water. Specifically, multiple sites of ABA biosynthesis have been suggested on plant water 

relations such as vascular cells and guard cells (Figure 2.2) (Nambara, et al., 2010; Cao et al., 

2011). It is evident from the earlier studies that the mechanism depends on the phenotypes 

where ABA is required in the signal transduction of defective mutant or the biosynthesis of 

ABA (Kaushal and Wani, 2016). It might possibly be transported from the areas of biosynthesis 

to the guard cells. Multiple trans-membrane ABA transporters specify the movement of ABA 

within a plant. They are actively modulated in an intercellular network. ABA modulates a 

number of molecular processes in various tissues, organs in addition to guard cells to withstand 
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water stress reliant on the environmental circumstances. Multiple classes of ABA transporters 

have been established and specifies that plants are equipped with an extremely refined system. 

This system enables plants to sense and retort to water availability under adversely changing 

environments (Kuromori et al., 2018). 

 

Figure 2.2. Abscisic Acid (ABA) regional functions and transport in plant drought Stress responses. 

The illustrative representation depicting three potential areas of ABA biosynthesis: root (vascular 

tissue), guard cells, and leaf vascular tissue. Tissues and cells articulating ABA transporters are shaded 

yellow. The blue arrows point out trans-membrane ABA transport facilitated through transporters. 

Purple arrows specifies the probable movement of ABA via xylem and phloem.  

Source: Kuromori et al., 2018 
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By the utilization of PGPR, crop yield can be preserved to a specific level (Sandhya et 

al., 2010; Glick 2012; Glick, 2014). There are many converging points where expression of the 

stress responsive gene and ROS interacts that led to biotic and abiotic stresses (Glombitza et 

al., 2004; Sewelam et al., 2016). The PGRs such as SA and ABA are considered as the elicitors 

which accumulate in plants under drought environments. The role of SA is well demonstrated 

under stress condition where it aids plants to tolerate against pathogenic attack. However, it is 

required for the activation of plant growth, flowering, development, ripening of fruits and 

abiotic stresses respectively (Miura and Tada, 2014). While ABA increases 55 fold of the 

original under drought stress. ABA interacts with SA signalling pathways in an intricate 

manner. The use of PGPR has been proven as a solution for the sustainability of the agro-

ecosystem under stress. These biological agents (PGPR) and elicitors (PGRs) are in control for 

alleviating plant growth from abiotic and biotic stress responses.  

Globally, preceding the climate change is projected to have a considerable repercussion 

on rainfall, intensifying the drought stress. There is a dire need to improve drought tolerance 

in crops so as to improve their growth and yield using a number of PGPRs and PGRs (Khan et 

al., 2019). Previous studies demonstrate the favourable effects of PGPRs and PGRs on wheat 

and maize crops to alleviate drought stress (Khan et al., 2018; Mega et al., 2019; Kumar et al., 

2019). However, literature is scanty on pea plants. Present study was aimed to assess the role 

of PGPR (Rhizobium pisi) and PGRs (SA and ABA) on the growth of pea under drought stress.  
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2.2 Materials and methods 

2.2.1. Plant material and growing conditions 

The seeds of pea (Pisum sativum var. Pea-Florida) were sown in pots (14×12 cm2) filled 

with sieved and autoclaved ED73 soil under in vitro conditions. Experiment was organized in 

completely randomize design, conducted in triplicates. Plants were grown in walk-in-chamber 

maintained at 16h photoperiod with temperature 24 ± 2 °C (day/night), 65% relative humidity 

and light intensity of 100 µmol m-2s-1 (LI-COR LI-250A, serial No. Q 101421). Pea seeds were 

surface sterilized with 95% (v/v) ethanol followed by shaking in 5% (v/v) sodium hypochlorite 

with slight modification (addition of 50 µl of Tween 100) and subsequently washed thrice with 

autoclaved distilled water (Lindsey et al., 2017). 

2.2.2. Exogenous application of SA and ABA 

SA and ABA were used as PGRs. A stock solution of 10−6 M was prepared to conduct 

the experiment (Hadi et al., 2010). The seeds were soaked in aqueous solution of SA and ABA 

for 6h prior to sowing (Safari et al., 2018).  

2.2.3. Preparation of Rhizobium inoculum 

Rhizobium pisi DSM 30132 strain was used as PGPR. Broth cultures of Rhizobium was 

prepared by growing the Rhizobium in yeast extract mannitol (YEM) media for 3 days (108 cfu 

/ml and O.D ~ 1 at 660 nm). 

2.2.4. Induction of drought stress 

 Drought stress was induced after three weeks of germination through 

withholding the supply of water followed by constant watering to maintain the moisture content 

of stressed plants at 40% (Pain et al., 2018). The experiment was performed with six replicates 

each for control and drought conditions. Treatment were: untreated control (C), inoculated with 

Rhizobium pisi (R), treated with salicylic acid (S), treated with abscisic acid (A), combined 

treatment of Rhizobium combined with salicylic acid (B), combined treatment of Rhizobium 

with abscisic acid (D) treated with both SA and ABA with PGPR (E). 
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2.2.5. Moisture content 

Soil samples were taken at a uniform depth of 6 inches from the soil surface and its 

moisture content was determined by applying given formula (Valarmathi et al., 2019): 

Soil moisture (%) = Weight of wet soil (g)-Weight of dry soil (g)/Weight of dry soil (g) × 100 

2.2.6. Plant fresh, dry biomass and plant height 

 Fresh weight of seedling were measured. The seedlings were dried in an oven at 90 °C 

till a constant weight was obtained. Plant height was measured from the base of the stem to the 

apex. Six biological replicates were made.  

2.2.7. Stomatal conductance 

Stomatal conductance evaluates the rate of gas exchange (carbon dioxide uptake) and 

transpiration (water loss) though the stomata of leaf. It is ascertained via degree of stomatal 

aperture. Measurements were taken at 11:00 am. Stomatal conductance of three different leaves 

from each plant with three biological replicates was measured by a Porometer (AP-4, Delta T-

Devices, Cambridge UK).  

2.2.8. Stomatal Index  

Leaves were randomly taken from the upper part of plant to remove the mesophyll. The 

adaxial surface of leaves were peeled off and stomata were observed under a light microscope 

(Leica DM1000, Meiji infinity 1, Canada) at 20x. The total number of stomata and other 

epidermal cells in the area of 1mm2 were counted. Stomatal Index (SI) was calculated (Ogaya 

et al., 2011). 

SI (%) = (No. of Stomata / No. of Stomata + No. of Epidermal cells) x 100 

2.2.9. Canopy temperature 

 To measure leaf temperature, an infrared thermal camera (calibrated) was used. Pots 

with plants were moved to the middle of the table, one day prior to the measurements. Infrared 

thermal snaps were taken such that plants were not moved from their position. Results 

regarding the change in temperature were calculated by FLIR Tools software, Version 5.2.  
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2.2.10. Relative water content (RWC) of leaves 

Relative water content of leaves was measured at two time points after the periods of 

induction of water stress, following the method of Garcı´a-Mata and Lamattina (2001). 

Relative water content was calculated by the formula: 

Relative Water Content (RWC %)=
Fresh weight (FW)– Dry weight (DW)

Turgid weight (TW)−Dry weight (DW)
× 100 

Fresh weight (FW) was measured for each time point of drought period. The dry weight (DW) 

was acquired after desiccating the samples at 90 °C for at least 72h. Turgor weight (TW) was 

find out by subjecting leaves to rehydration for 24h after drought treatments (Garcı´a-Mata and 

Lamattina, 2001). 

2.2.11. Chlorophyll Content  

Chlorophyll content of pea leaves were calculated using chlorophyll meter (SPAD, Minolta). 

The different areas of a single leaf was measured (Koshy et al., 2018), and the biological 

replicates were used to determine chlorophyll content. 

2.2.12. Chlorophyll fluorescence (PS II efficiency) 

Chlorophyll fluorescence was estimated using a portable Chlorophyll Fluorimeter 

(MINI-PAM, Portable Chlorophyll Flourometer, Walz-Germany) after 10 min of dark 

adaptation. Chlorophyll fluorescence was quantified by the Fv/Fm ratio, which represented the 

maximum quantum yield of photosystem II. It was calculated as Fv/Fm = (Fm – Fo) / Fm, 

where Fm and Fo are maximal and minimal fluorescence of dark adopted leaves respectively 

and Fv is variable fluorescence (Jifon and Syvertsen, 2003). 

2.2.13. Plant nutrient analysis 

For plant nutrient determination, acid digestion was carried out. For this purpose stock 

solution of HNO3:HClO4 in 3:1 ratio was prepared. Plant shoot (1g) material was ground and 

transferred in flask having 8 ml of digestion mixture which was kept for overnight in acid. 

Afterwards, the flasks were placed on the hot plat and the plant material was digested until 

brown fumes turned to white fumes. After few minutes, 40 ml distilled water was added. The 

samples were filtered through Whatman No. 42 filter paper and collected filtrates were used 

http://en.wikipedia.org/wiki/Chlorophyll_fluorescence#Chlorophyll_fluorometers
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for the determination of minerals (Na, Mg, Ca, Mn, Fe, Zn and K) using atomic absorption 

spectrophotometer (AAS, Varian, GTA 120-AA240FS).  

2.2.14. Statistical analysis 

The data was evaluated statistically using analysis of variance (ANOVA) technique for 

all performed attributes via completely randomized plots design. The comparison between the 

mean values of treatments were made by Least Significant Difference (LSD) to test significant 

differences at P ≤ 0.05 using Statistix 8.1 (Gomez and Gomez, 1984). The data were 

graphically represented on Microsoft excel 2013. 

2.3. Results 

2.3.1. Moisture content 

The drought was induced at 59% soil moisture even at  this stage, the rhizosphere soil 

of ABA treated plants retained higher moisture content at short term stress (TP1), but at long 

term stress (TP2) the ABA treatment (A) though having higher percentage of soil moisture than 

other treatments but the moisture content dropped down to 42%.  The indication of drought 

resulted in significance decrease in the moisture content of rhizosphere soil. The percent 

decrease was linear with the duration of drought stress (Table 2.1). A significant decrease in 

moisture content occurred in treatment S (SA), whereas a slight decrease was observed in 

treatment R (Rhizobium pisi) and treatment E (combined Rhizobium, ABA and SA) has no 

significant effects compared to control (C). Noteworthy, the least decrease was observed in 

treatment A (ABA) over C at TP1. However, at TP2 the decrease in moisture was non-

significantly higher over C.   
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Table 2.1. Soil moisture content (%) after sowing  

Treatments 0 d 5 d 10 d 15 d 20 d 

Induction of drought 

TP1 d 

(after 4 days) 

T.P2 d 

(after 8 days) 

C 65 ± 0 64.91 ± 0.66 61.5 ± 0.39 64.41 ± 0.47 59 ± 0.79  49.16 ± 1.71 40 ± 0 

R 65 ± 0 62.74 ± 0.58 62 ± 0.34 63.16 ± 0.69 59.16 ± 0.48 48.33 ± 1.72 40.1 ± 0.18 

S 65 ± 0 63.33 ± 0.63 60.67 ± 0.45 60 ± 0.45 59.5 ± 0.49 46.33 ± 1.87 40 ± 0 

A 65 ± 0 62 ± 0.51 61.83 ± 0.41 67.08 ± 0.6 65.16 ± 0.8 54.83 ± 1.24 42 ± 0.36 

B 65 ± 0 61.33 ± 0.66 59.5 ± 0.46 61.83 ± 0.56 59.33 ± 0.88 47.5 ± 1.12 40.2 ± 0.17 

D 65 ± 0 61.91 ± 0.5 60.5 ± 0.35 60 ± 0.59 59.92 ± 0.99 46.66 ± 1.42 39 ± 0.2 

E 65 ± 0 64.83 ± 0.66 60.5 ± 0.49 59.66 ± 0.7 57.16 ± 0.96 49.83 ± 1.19 39.6 ± 0.35 

 

Seedling moisture content under stressed condition. Effect of different treatments on plant moisture content (values are the mean from six 

biological replicates mean ± SE (n=6) in days (d), Control with stress (C); Rhizobium pisi with stress (R); salicylic acid (SA) with stress (S); 

abscisic acid (ABA) with stress (A); Rhizobium pisi along with salicylic acid under stress (B); Rhizobium pisi with abscisic acid under stress 

(D); Rhizobium pisi with both PGRs (SA and ABA) under stress (E). Irrigated data is not shown because the moisture content was maintained 

at 65% for both time points under unstressed condition.     
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2.3.2. Plant fresh and dry biomass 

Under unstressed condition fresh weight of the plant was not affected significantly at 

TP1 or TP2 except treatment B (inoculation of Rhizobium with SA), treatment A (ABA) and 

treatment E (Rhizobium combined with SA and ABA) which showed 43% significant increase 

in fresh biomass at TP1 and 20% decrease in fresh weight at TP2 whereas no significant effects 

were visible in treatments as compared to C (Figure 2.3). Under drought stress at TP1 except 

treatments D (Rhizobium with ABA) and E (combined treatment with Rhizobium, ABA and 

SA) which differ non-significantly, all the treatments showed increase over the C. The 

maximum increase was due to R > A > S > at TP1 and TP2. 

Under unstressed condition the dry weight of the plants at TP1 was significantly higher 

in R (Rhizobium alone), S (SA alone), B (Rhizobium combined with SA) treatments (Figure 

2.4). Whereas, treatments A (ABA alone), D (Rhizobium combined with ABA) and E 

(Rhizobium combined with SA and ABA) have no significant effect when compared with the 

C. Drought stress enhanced the dry biomass (15% to 16%) at TP1 in treatments R (Rhizobium 

alone), S (SA alone) and B (Rhizobium with SA). While, treatments A (ABA alone), D 

(Rhizobium combined with ABA) and E (Rhizobium combined with SA and ABA) showed 

significant reduction over C (control). Significant increases of dry biomass were depicted in 

treatments, R, S and B (Rhizobium with SA) over C. Though, significant decreases were 

observed in A, D and E treatments at TP2. 
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Figure 2.3. Effect of different treatments on seedling fresh biomass (values are the mean from six 

biological replicates (mean ± SE (n=6), a: Seedling fresh biomass under un-stressed condition; b: 

Seedling fresh biomass under drought stressed condition.  Untreated  drought stressed Control (C); 

Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic 

acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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Figure 2.4. Effects of different treatments on seedling dry biomass (values are the mean from six 

biological replicates (mean ± SE (n=6), a: Seedling dry biomass under un-stressed condition; b: 

Seedling dry biomass under drought stressed condition. Untreated  drought stressed Control (C); 

Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic 

acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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2.3.3. Plant Height 

 At TP1 under unstressed condition the height of the plants was not significantly 

affected in treatments R, S and B, whereas, treatments A and D showed decreases in 

comparison to C. At TP2, R showed significant increase whereas A and E showed decreases 

over C.  

Induction of drought stress indicated a significant increase in plant height in R > S 

treatments over control at TP1 (Figure 2.5). At TP2 maximum increase in height was observed 

in treatment R (Rhizobium). But, the treatments S, B, and D displayed no significant difference 

over control. Though, A, and E treatments showed decreases over C. 

2.3.4. Stomatal conductance (SC) 

Under unstressed condition the treatments showed significant increases in treatment B, 

A, S and D over C. Treatment R displayed decrease in stomatal conductance at TP1 and 

treatment E has no significant effect (Figure 2.6). At TP2 the treatments S, A, B and E showed 

significantly higher SC over C. whereas, treatment R showed decrease and D has no significant 

effect at TP2. 

Under drought stress R and S have no significant effect whereas, A, B, D and E showed 

increases over control at TP1. The maximum increase was due to A> D over C. At TP2 all the 

treatments showed significant increases whereas B had no significant effect. 

2.3.5. Stomatal Index (SI) 

Under unstressed condition at TP1 treatments showed significant decreases in stomatal 

index (Figure 2.7). At TP2 the SI was not effected significantly in treatments A, D and E all 

other treatments showed significant decreases over C.  Under drought stress there was no 

significant difference in SI in the treatments over C except treatment B but at TP2 the SI value 

was similar to C in all the treatments. 
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Figure 2.5. Effect of different treatments on Seedling height (values are the mean from six biological 

replicates (mean ± SE (n=6), a: Seedling height under un-stressed condition; b: Seedling height under 

drought stressed condition. Untreated  drought stressed Control  (C); Rhizobium pisi (R); salicylic 

acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic acid (B); Rhizobium pisi 

with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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Figure 2.6. Effect of different treatments on stomatal conductance (values are the mean from six 

biological replicates (mean ± SE (n=6), a: Stomatal conductance under un-stressed condition; b: 

Stomatal conductance under drought stressed condition. Untreated  drought stressed Control (C); 

Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic 

acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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Figure 2.7. Effect of different treatments on stomatal index (SI) (values are the mean from six biological 

replicates (mean ± SE (n=6), a: Stomatal index (SI) under un-stressed condition; b: Stomatal index (SI) 

under drought stressed condition. Untreated  drought stressed Control (C); Rhizobium pisi (R); 

salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic acid (B); 

Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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2.3.6. Canopy temperature 

Under unstressed condition, the results revealed a decrease in canopy temperature in 

treatments A, B, D and E over C at TP1 (Figure 2.8). At TP2 treatments E showed significant 

increase in canopy temperature over C (control), all other treatments showed no significant 

decreases over C (control). The maximum decrease in canopy temperature was in treatment A 

(ABA) at both TP1 and TP2 except treatment S which had no significant effect over C. 

Under drought stress, at TP1 all the treatments showed increases over C (Figure 6). The 

maximum increase 3% over C was due to treatment D. At TP2, except treatment A and 

treatment D which showed no significant affects in canopy temperature. There were slight 

decreases in canopy temperature maximum decrease in canopy temperature was noticed in 

treatment R.  

2.3.7. Relative water content (RWC) 

Under unstressed condition, treatments A, D and S showed decrease in RWC, other 

treatments have no significant effect compared to C at TP1 (Figure 2.9). At TP2 reassesses 

occurred in all the treatments, maximum was due to treatment E.  

 On induction of drought stress at TP1, the RWC was decreased in all the treatments S, 

R, A, B, D compared to C (Figure 7). The maximum decrease 30 % was due to treatment E 

over C. At T.P2 all the treatments increased the RWC significantly over control, 91 % was in 

treatments S > B. 

2.3.8. Chlorophyll content 

The results showed no significant effects of treatments on chlorophyll content either at 

TP1 or TP2 over C (Figure 2.10). Under drought stress also treatments have no significant effect 

over C at TP1 and at TP2 (Figure 8). The chlorophyll content decreased under drought stress. 
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Figure 2.8. Effect of different treatments on canopy temperature (values are the mean from six 

biological replicates (mean ± SE (n=6), a: Canopy temperature under un-stressed condition; b: Canopy 

temperature under drought stressed condition. Untreated  drought stressed Control (C); Rhizobium 

pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic acid (B); 

Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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Figure 2.9. Effect of different treatments on relative water content (RWC) (values are the mean from 

six biological replicates (mean ± SE (n=6), a: Relative water content under un-stressed condition; b: 

Relative water content under drought stressed condition. Untreated  drought stressed Control (C); 

Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic 

acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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Figure 2.10. Effect of different treatments on chlorophyll content (values are the mean from six 

biological replicates (mean ± SE (n=6), a: Chlorophyll content under un-stressed condition; b: 

Chlorophyll content under drought stressed condition. Untreated  drought stressed Control (C); 

Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic 

acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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2.3.9. Chlorophyll fluorescence (PS II efficiency) 

Under unstressed condition, no significant increase was recorded in treatments R, A 

and E over control at TP1 (Figure 2.11). But, at TP2 the treatments A, and B effectively 

increased Fv/Fm over C.   

On induction of drought stress at TP1 no significant effect of treatments was observed 

in the Fv/Fm over C but, treatments S, B, D and E showed significant increases in Fv/Fm over 

C. The maximum increase was due to treatment E. 

2.3.11. Nutrient content of seedlings 

 Table 2 revealed that, under unstressed condition, the sodium (Na) content was 

increased due to Rhizobium inoculation and salicylic acid (SA) treatment. The maximum 

increase (605%) was due to SA treatment. ABA has no significant effect. The combined 

treatments of Rhizobium with SA or ABA or SA+ABA decreased the Na content as compared 

to control (C). Drought stress exhibited significant increase in the Na content. The maximum 

(1620%) increase was due to the combined treatment of the PGR (SA+ABA) with Rhizobium.  

 Under unstressed condition the potassium (K) content was observed higher in SA, 

ABA, Rhizobium + SA and Rhizobium + SA + ABA treatments. The maximum increase 

(205%) in the uptake of K was in SA over control. Drought stress demonstrated significant 

increase in the K uptake in all treatments. The maximum (184%) was in Rhizobium + SA + 

ABA treatment.   

All the treatments demonstrated increase in Mg uptake. The maximum increase 

(24278%) was due to ABA treatment over control. The drought stress had significant increase 

in Rhizobium + SA (1406%) while the least increase in uptake (27%) was observed in 

Rhizobium inoculation over unstressed condition.  

Calcium (Ca2+) content was found maximum in all of Rhizobium, PGRs (ABA, SA) 

alone and combined treatments (B, D and E). The maximum increase (268%) was observed in 

treatment of Rhizobium inoculation with SA +ABA. Despite the fact, Rhizobium + SA 

treatment had no effect in the nutrient uptake. When compared with the drought, results 
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divulged significant increase of 283% in the Ca2+ content uptake in ABA treatment but the 

decrease of 1% was noticed in the Rhizobium treatment.   

 

 

Figure 2.11. Effect of different treatments on photosynthetic efficiency (PSII) (values are the mean 

from six biological replicates (mean ± SE (n=6), a: Photosynthetic efficiency (PS II) under un-stressed 

condition; b: Photosynthetic efficiency (PS II) under drought stressed condition. Untreated  drought 

stressed Control (C); Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium 

pisi along with salicylic acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs 

(SA and ABA) (E)  

Uppercase alphabetic letters heading the bars exhibited significant differences within treatments, LSD 

significance difference test at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time 

point 2= induction of 8 days of drought stress (T.P2).  
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Iron (Fe) exhibited significant increase in uptake in SA alone treatment. Where, 

Rhizobium inoculation, Rhizobium + SA and ABA alone had least Fe uptake content.  

Zinc (Zn) was increased under unstressed condition in SA (38%) and ABA (26%) 

treatments while the combined treatment Rhizobium + SA showed 3% increase in Zn content 

uptake over control. under unstressed condition Mn accumulation was increased by all the 

treatments SA > ABA > B > E > D > R over control. The maximum was (633%) with minimum 

uptake of (55%). 

In comparison to unstressed condition, the drought stressed seedlings demonstrated a 

significant decrease of Zn content in all the treatments of Rhizobium, ABA and combine 

treatments; Rhizobium + ABA, and Rhizobium + SA + ABA. Though, exception to the SA and 

combine treatment of Rhizobium + SA where the content was significantly increase (84 and 

33%) over unstressed condition. Drought induced increase in Mn accumulation in Rhizobium, 

ABA alone, Rhizobium + ABA and Rhizobium + SA + ABA treatment. Moreover, the 

minimum increase in uptake was recorded in combined Rhizobium + SA treatment that was 

23% over the unstressed condition.  
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Table 2.2. Effects of macro and micro nutrients (mg/L) of seedlings under drought stress 

 Macronutrients Micronutrients 

Na (mg/L) K (mg/L) Mg (mg/L) Ca (mg/L) Fe (mg/L) Zn (mg/L) Mn (mg/L) 

U
n

-s
tr

e
ss

e
d

 

C 0.619 b ± 0.05 0.365 b ± 0.05 0.0014 d ± 0.000 18.34 e ± 0.58 0.226 b ± 0.056 0.069 b ± 0.000 0.009 c ± 0.000 

R 0.751 b ± 0.05 0.475 ab ± 0.05 0.0303 cd ± 0.006 22.46 c ± 0.62 0.205 b ± 0.054 0.035 c ± 0.004 0.014 c ± 0.003 

S 4.366 a ± 0.6  1.114 a ± 0.57 0.1475 bc ± 0.049 20.89 cd ± 0.56 0.469 a ± 0.051 0.095 a ± 0.020 0.066 a ± 0.004 

A 0.658 b ± 0.06 0.789 ab ± 0.05 0.3413 a ± 0.051 19.56 de ± 0.62 0.188 b ± 0.057 0.087 ab ± 0.005 0.044 b ± 0.003 

B 0.525 b ± 0.04 0.841 ab ± 0.05 0.1579 b ± 0.057 18.66 e ± 0.55 0.205 b ± 0.054 0.071 ab ± 0.005 0.04 b ± 0.004 

D 0.359 b ± 0.06 0.355 b ± 0.05 0.0479 bcd ± 0.029 24.83 b ± 0.08 0.243 b ± 0.026 0.067 b ± 0.004 0.021 c ± 0.004 

E 0.492 b ± 0.2 0.761 ab ± 0.05 0.0909 bcd ± 0.051 67.56 a ± 0.57 0.284 b ± 0.008 0.012 c ± 0.009 0.033 b ± 0.003 

D
ro

u
g

h
t 

st
re

ss
 

C 0.4204 c ± 0.05 0.3809 d ± 0.03   0.0215 d ± 0.00 14.493 e ± 0.37 0.209 c ± 0.02 0.033 b ± 0.002 0.013 b ± 0.003 

R 1.2023 b ± 0.12 0.6927 bc ± 0.05 0.0274 d ± 0.00 14.259 e ± 0.72 2.183 a ± 0.12 0.027 b ± 0.003 0.156 a ± 0.026 

S 0.6494 bc ± 0.05 0.7789 b ± 0.06 0.1195 c ± 0.05 15.419 de ± 0.63 0.245 c ± 0.05 0.061 b ± 0.005 0.025 b ± 0.002 

A 0.8914 bc ± 0.05 0.8195 b ± 0.05 0.2162 b ± 0.01 55.526 b ± 0.28 0.105 c ± 0.03 0.03 b ± 0.001 0.03 b ± 0.005 

B 0.5223 c ± 0.05 0.8095 b ± 0.06 0.324 a ± 0.02 16.615 d ± 0.31 0.073 c ± 0.01 0.044 b ± 0.002 0.016 b ± 0.002 

D 0.6623 bc ± 0.04 0.5608 c ± 0.06 0.0592 cd ± 0.00 19.524 c ± 0.27 0.332 c ± 0.05 0.032 b ± 0.001 0.044 b ± 0.004 

E 7.1531 a ± 0.55 1.0827 a ± 0.05 0.1016 c ± 0.00 66.552 a ± 0.60 1.465 b ± 0.31 0.231 a ± 0.028 0.03 b ± 0.001 

 

Seedling nutrient content under stressed and unstressed condition. Effect of different treatments on seedling nutrient content (values are the mean from three 

biological replicates mean (n=3), Control (C); Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic acid 

(B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E). Lowercase alphabetic letters presented significant differences 

within treatments, LSD significance difference test at P ≤ 0.05). The treatment means are with ±S.E of three replicates.  
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2.4. Discussion 

The result revealed a distinct role of Rhizobium under drought stress which supercedes 

ABA in maintaining the water budget of the plant as evidenced by the RWC and fresh weight 

of the seedlings greater than the drought stressed treatment. Even under unstressed condition 

15 days after sowing, the ABA treatment and Rhizobium inoculation maintained higher soil 

moisture content which demonstrates their ability in minimizing water loss in ABA treatment 

and hence the turgidly was better than the drought stress C (Yang et al., 2016; Staudinger et 

al., 2016; Ruggiero et al., 2017; Hussain et al., 2018). The maximum retention of soil moisture 

in ABA (A) treatment at TP1 may be attributed to the ABA enhanced WUE (water use 

efficiency) of the plant which reduces the rate of transpiration by closing the stomata 

(Saradadevi et al., 2017). Earlier studies validated the similar role of ABA (Aroca et al., 2006; 

Ngumbi and Kloepper, 2016) and Rhizobium (Figueiredo et al., 2008; Grover et al., 2011) on 

retention of soil moisture and water use efficiency. Noteworthy, the Rhizobium assistance to 

ABA at TP2 for improving RWC of leaves is demonstrated. 

2.4.1. Fresh and dry weight and height of seedlings 

Results demonstrated that Rhizobium is responsible for maintaining the turgidity of the 

plant in a much better way than ABA alone (Figure 1). On the imposition of drought stress 

ABA not only attenuated the inhibitory effect of drought stress but also significantly increased 

the fresh weight over the C at TP2.  ABA acts as an inhibitory hormone under unstressed 

condition, but induce tolerance to drought stress by minimizing water loss. The maximum 

increase in the fresh weight of seedlings under drought stress was due to Rhizobium 

inoculation; SA, when used in combination with Rhizobium further, augmented the fresh 

weight over the C under drought stress.  Rhizobium with ABA (D) or Rhizobium with ABA 

and SA (E) showed significant decreases in fresh weight under drought stress at both time 

points. Fresh weight is associated with water and nutrient uptake. This suggests that R action 

was suppressed by the ABA and the SA was unable to alleviate this inhibition (Miura and Tada 

2014). 

Notably, ABA showed maximum inhibition in dry weight at both time points which 

may be attributed to ABA inhibition of cell division and cell differentiation. Previous studies 
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revealed similar role of ABA (Aroca et al., 2006; Ngumbi and Kloepper, 2016) and Rhizobium 

(Figueiredo et al., 2008; Grover et al., 2011) on  fresh biomass of seedlings which may be 

attributed to ABA-induced inhibition in the cell division and cell elongation (Melcher et al., 

2010; Takatsuka and Umeda, 2014). Furthermore, the dry weight was significantly decreased 

in ABA treatments under stress even at TP1 (Duan et al., 2007; Dhashnamurthi et al., 2013). 

The reduction in dry biomass demonstrates the growth inhibitory role of ABA. But under long 

term stress for 8d at TP2, ABA assisted the seedlings to withstand stress. The D and E 

treatments i.e. combined treatment of Rhizobium and Rhizobium, SA and ABA showed dry 

weight higher than ABA demonstrating the Rhizobium ability in the production of biomass, by 

augmenting cell division (Cohen et al., 2009).  

The observed higher increase in the plant height in Rhizobium (R) or SA (S) treatment 

could be ascribed to Rhizobium-induced phytohormone production (Nagata and Suzuki, 2014; 

Fahad et al., 2015; Subramanium et al., 2015). ABA induced decrease in cell division may 

result in the observed reduction in plant height (Melcher et al., 2010; Ferguson and Mathesius, 

2014).  

2.4.2. Stomatal conductance and stomatal index 

It was observed that water supply lead to considerably higher transpiration rate, 

stomatal conductance, and net-photosynthesis, (deSouza et al., 2005; Mafakheri et al., 2010). 

The ABA alone (A) and with Rhizobium (D) increased stomatal conductance at short term 

drought (TP1). But, the value did not significantly differ at longer-term (TP2) compared with 

Rhizobium treatment. The maintenance of higher RWC (%) of R treatment relative to ABA 

having similar stomatal index suggests the efficiency of treatment R at TP2 for maintaining the 

water budget of plant under drought stress. 

The studies evaluated canopy temperature emulation as a function of soil water status 

(Webber et al., 2015). The canopy temperature is a useful character utilized by breeders to 

choose lines tolerant to environmental stresses (Pino et al., 2010; Pinto and Reynolds, 2015). 

The canopy cooling appears to be associated with deeper roots in dry soils and substantial root 

biomass (Pino et al., 2010; Pinto and Reynolds, 2015). Rhizobium decreased the canopy 

temperature, possibly due to higher stomatal conductance and a hence higher rate of 
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transpiration. The combination of ABA with R was unable to decrease the canopy temperature. 

This is evidenced by the observed decrease in RWC of the leaves of ABA treatment compared 

with S > R > B treatments under drought stress. Nevertheless, the combined treatments of R 

with ABA and SA or R with ABA have resulted in maximum Fv/Fm photosynthetic efficiency 

compared with other treatments. 

2.4.3. Relative water content (RWC) 

Leaf relative water content (RWC) is a significant criterion of water status in plants. It 

intends the equilibrium between water supply to the leaf tissue and transpiration rate (Lugojan 

and Ciulca, 2011). ABA treatment experiencing drought stress exhibited significantly higher 

RWC at TP2. ABA has stomatal conductance much higher than the C facilitating the gaseous 

exchange. A significant increase (70%) in RWC was noticed in Rhizobium pisi treatment. 

Exogenous application of SA significantly improved the relative water content of the leaves 

under drought-stressed conditions (Hayat et al., 2010; Verma et al., 2017; Ahmad et al., 2017). 

The role of rhizobia is pronounced in maintaining water balance in leaves, nutrient balance and 

hormonal adjustment under drought stress (Naveed et al., 2015). The exogenous application of 

SA significantly increased the RWC under drought stress, hence maintained the turgidity of 

leaves (Shan and Wang, 2017; Sharma et al., 2018).  Results depict that Rhizobium was more 

efficient in reducing the rate of transpiration as compared to ABA (Govindasamy et al., 2017; 

Fahad et al., 2017).  

As the stomatal conductance at TP2 under drought stress was reduced the dry weight of 

ABA treated plants were also reduced and the value was even lower than the C (Duan et al., 

2007; Dhashnamurthi et al., 2013). Different strategies were adapted by Rhizobium which 

showed a significant increase in stomatal conductance over C at TP2. However, it also showed 

higher RWC concomitant with the significant increase in fresh and dry weight at TP2.  Similar 

pattern of response was exhibited by SA. 

2.4.4. Photosynthetic efficiency and chlorophyll content 

The photosynthetic efficiency was significantly higher at TP2 in treatments E > D > B 

> S demonstrating the synergistic role of Rhizobium with ABA and ABA and SA in augmenting 

photosynthetic efficiency under long term (TP2) drought stress. 
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2.4.5. Nutrient content  

The availability of nutrients are primary factor for plant growth and productivity. Plants 

deficient in micronutrients may become prone to abiotic stresses and diseases (Ashraf et al., 

2012). In the present study, R, SA, and ABA in various combinations were found more 

effective to reduce the Na accumulation under unstressed conditions while augmenting K 

accumulation. Drought stress though decreased the Na more than the K but the treatments with 

R, SA and ABA increased both Na + K. Notable increase was recorded in the combined 

treatment of R with ABA and SA. The R appears to assist both ABA and SA to augment Na + 

K accumulation (Grover et al., 2014; Sahin et al., 2015). K is a macronutrient intricate in the 

cellular turgor maintenance, movement of numerous enzymes (Locascio et al., 2019), 

regulation of opening and closing of stomata (Schroeder, 2003; Hurst et al., 2004) facilitates 

protein and starch synthesis and neutralizes organic and inorganic anions and macromolecules 

(Nieves-Cordones et al., 2016). Whereas, Na participates in the carbon cycle, chlorophyll 

synthesis and photosystem II activity (Quintero et al., 2011). R being more effective under 

drought stress to increase Na accumulation while SA was effective both under unstressed and 

drought stressed conditions to enhance K accumulation.  

Calcium (Ca2+) is the fifth most abundant element by mass in the earth’s crust. Ca2+ is 

the secondary messenger (Bender and Snedden, 2013). Unstressed condition, Ca2+ 

accumulation was maximum in the combined treatment of Rhizobium + SA + ABA (Vivas et 

al., 2003; Han and Lee, 2005). Same was true under the drought stress the role of Rhizobium 

and ABA being more pronounced (Bano and Fatima, 2009; Mouradi et al., 2016). The 

increased uptake of Na, K, Mg, and Ca2+ were previously studied in tomato (Solanum 

lycopersicum L.) and lettuce using PGPR under unstressed well-watered condition (Yang et 

al., 2009; Ullah et al., 2016). Drought significantly decreased plant growth and biomass 

(Rodriguez et al., 2004).  

Magnesium (Mg) is a divalent cation (da Silva et al., 2011). The key function of Mg is 

a central atom of the chlorophyll molecule. Also involved in conversion and conservation of 

energy (Amtmann and Blatt 2009), phosphorylation, de-phosphorylation, hydrolysis of a 

compound, structural stabilizer for nucleotide and protein synthesis (Merhaut, 2007). The 

drought increased the Mg accumulation over unstressed plants.  ABA was again more effective 
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both alone as well as under drought stress with Rhizobium to augment Mg accumulation over 

control. It was found that increased level of Ca2+ uptake by the foliar spray of ABA on banana 

plantlets, the drought stress induced remarkably increased concentration of Mg uptake in the 

plant leaf   (Mahouachi, 2009).  

Zinc (Zn) is the most deficient micronutrient in the soil (Imtiaz et al., 2010). It’s 

application either as a soil amendment or foliar is recommended. The Zn, Mn, Ca2+, and Na 

increased under well-watered normal seedlings due to Rhizobium and Rhizobium + SA + ABA 

treatment. However, drought stress reduces the nutrient content in all treatment with exemption 

to Rhizobium + SA + ABA treatment. Where the content was significantly high. The Rhizobium 

+ SA + ABA treatment not only overcome the drought induced decrease in Zn, Mn and Fe but 

also enhanced the accumulation in leaves. Magnesium not only play an important role in plant 

development but also have a key function in human body. The biodegradable Mg and its alloys 

have acquired much consideration in regard to metabolic functions and especially in bone 

tissues (Chen et al., 2019). Magnesium has the maximum capacity of maintaining leaf nutrients 

under drought stress in chickpea as compared to pea, barely and oat (Neugschwandtner et al., 

2015). Several studies on peanut, mung beans, chickpea and other legumes supported the 

evidence (O’Rourke et al., 2007; Imtiaz et al., 2010). SA was more effective for Zn and Mn 

accumulation whereas Rhizobium was more stimulatory for Fe accumulation.    

Iron (Fe) is an pivotal micronutrient for several key processes; electron carrier, 

nitrogenase complex in legume plants (Rashid, 2005), haem synthesis, and nodule formation. 

The present study revealed SA and combined treatment of R with SA and ABA are more 

effective to enhance the uptake of Fe (Zhao et al., 2019; Movahhedi-Dehnavi et al., 2019; 

Barickman et al., 2019).   

Manganese (Mn) aids in enzymatic activities. SA, ABA, PGPR and combined 

treatments of R with ABA and SA effectively enhanced Mn uptake under un-stressed and 

drought stress conditions as were discussed in earlier studies in sustainable agriculture 

(Khosdgoftarmanesh et al., 2007; Khosdgoftarmanesh et al., 2010). Conversely, R treatment 

significantly improves the accumulation under drought stress. The increased nutrient uptake 

for K, Mg, Ca2+, and Mn2+ was observed in seedlings under drought conditions (Hu et al., 

2008). The results demonstrated R alone or in combination with PGRs under drought stress 

conditions could attenuate the inhibition of plant growth. 
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Conclusion. It is inferred that Rhizobium inoculation may be more effective than that 

of ABA. The role of Rhizobium to mitigate drought stress supercedes that of SA and ABA but 

the combined treatment of Rhizobium, SA and R was found most efficient at TP2 to ameliorate 

the inhibitory effects of drought stress on plant water status and photosynthetic efficiency. 

Rhizobium assisted ABA and SA in the induction of drought tolerance. 
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INTRODUCTION 

 

3. Introduction to calmodulin (CaM) in plants 

Plants are subjected to several environmental stresses which negatively affected the 

developmental processes by demarcating their genetic potential. To cope with such 

circumstances plants have gradually develop multiple processes to adapt to these 

environmental stresses (Zou et al., 2010; Wang et al., 2011). The calcium ion (Ca2+) is 

considered as a well-established universal second messenger and is among one of the most 

primitive mechanisms that respond to abiotic and biotic stresses (Yang and Poovaiah, 2003; 

Hetherington and Brownlee, 2004; Ali et al., 2017). A number of extracellular stimuli elicit 

modifications in the cellular concentration of Ca2+ in plants (Reddy, 2001; Reddy et al., 2002a; 

Kudla et al., 2010). In higher plants, there are three major families of Ca2+ sensor and have 

been recognized that comprises; calmodulin (CaMs), CaM-like proteins (CMLs), Ca2+-

dependent protein kinases (CDPKs) and the Calcineurin B-like proteins (CBLs) (Luan et al., 

2002; Reddy et al., 2002b; Bouche et al., 2005; Galon et al., 2010).  

3.1. Structure of calmodulin (CaM) 

The calmodulin (CaM) is a small acidic and extremely conserved protein in eukaryotes. 

It binds Ca2+ ions and acronym of calcium-modulated protein. It is contemplated as one of the 

best studied Ca2+ sensors (Popescu et al., 2007; Du et al., 2011; Reddy et al., 2011b). It binds 

to its target through the CaM binding domain (CBD). In the majority of the CBPs (CaM binding 

proteins) the prime protein sequence is not preserved (Defalco et al., 2010). The CaM and the 

prototype of CaM structure have 149 amino acids and having two globular domains in 

eukaryotes. Each domain comprised of two EF-hand motifs chain through a long flexible helix 

(Gifford et al., 2012; Villalobo et al., 2018). These proteins, in general, mechanisms one or 

more orthodox helix loop helix EF-hand motifs. The deciphering of stimulus-response coupled 

with a series of Ca2+ sensor proteins or calcium-binding proteins (CBPs) during the course of 

Ca2+ signalling (Ranty et al., 2006; Kudla et al., 2010). The calcium-binding proteins (CBP) 

have distinct structural composition, a large population and the diverse target proteins 
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modulated through the Ca2+ elicitors reveal the intricacy of Ca2+ signalling that aid plants to 

acclimatize to the changing environ. 

As, gradually many genomes have been sequences, it is explicit that CaM be associated 

with a small gene family. There are seven CaM genes encrypt for four highly conserved 

isoforms that is CaM1/4, CaM2/3/5, CaM6, and CaM7, reported in Arabidopsis thaliana 

(Landoni et al., 2010). These genes mainly varies in one to five amino acid residues. The 

expression of six CaM (SlCaM1, SlCaM2, SlCaM3, SlCaM4, SlCaM5 and SlCaM6) genes 

have reported in tomato (Solanum lycopersicum) (Peng et al., 2014).   

3.1.1. Strategies to identify CaM proteins 

The activity of CaM gives consideration to regulate the function of the target protein 

by relating to them, as they do not have any implicit catalytic activity (Hoeflich and Ikura, 

2002). The CaMBD (CaM binding domain)/motif is not conserved in the target protein.  But, 

the basic amphipathic α-helix generated by the target peptides holds hydrophobic residues on 

one side whereas basic residues on the other side. The hydrophobic section of the target peptide 

is generally held on to the hydrophobic pocket to anchor the target peptide. This in turn results 

in the interaction of basic section of the target peptide with the acidic groups of CaM protein.  

The exceptional adaptable trait of an extensive methionine residue and linker protein confers 

the conformational plasticity of CaM to adapt to various target peptides (Ikura and Ames, 

2006). Despite that, the dectection of CaM target which is only based on the amino acid 

sequence of target proteins is unclear due to the disparity in the primary structure of CaMBDs 

(CaM binding domains). Several strategies has been proposed to identify the CaM proteins in 

plants such as yeast hybrid system (Perochon et al., 2010; Rodriguez-Caban et al., 2011), 

screening of cDNA libraries for CBPs (i.e., CaM binding proteins) in plants (Popescu et al., 

2007; Ali et al., 2003), mRNA display approach (Shen et al., 2005; Lin et al., 2010). 

3.1.2 CaM binding proteins in Pea (Pisum sativum L.) 

Calcium (Ca2+) is defined as a variable signalling molecule among all recognized 

molecules of its active member for cellular mechanisms. In plants, Ca2+ transduces signals by 

means of a neural network/system (Trewavas, 1999). It enables plants to respond to the abiotic 

and biotic stimulant (Knight and Knight, 2001). Various studies illustrated the inclusion of 
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Ca2+ fluxes in germination. The expression of PsCaM1 and the Ca2+ flux level in pea (Pisum 

sativum L.) seeds demonstrated a lower level of expression in dry seeds, cotyledons and 

embryonic axis. The PsCaM1 is thought to be comprise of three isoforms (PsCaM11, 

PsCaM12, and PsCaM13) that differ in single substitution of first helix. Furthermore, these 

isoforms are trimethylated (Duval et al., 2002). Out of these three isoforms; PsCaM11, and 

PsCaM12 are the major transcript that are linked with the quiescent and immature seeds in pea. 

Whereas, PsCaM13 nearly invisible till the later germination stage where the expression of 

PsCaM13 begin to upregulate. The expression of CaM/isoforms of CaM have commonly 

delineated with the specificity of tissues in Vicia faba (Ling and Assmann, 1992), Zea mays 

(Faichardet et al., 1996), Triticum aestivum (Yanget et al., 1998), radish (Negrini et al., 1995) 

and Pisum sativum (Allan and Trewaves, 1985). It is also hypothesised that the Ca2+ bind 

proteins not only work as sequester to stabilize the concentration of these proteins within the 

cell but also act as a signal transducer (Chin and Means, 2000). The distinctive trait of CaM 

within the single species of higher plants is the expression of multiple isoforms (Snedden and 

Fromm, 2001). Like, CaM is ciphered by 5 genes in Soybeans (Lee et al., 1995), 8 in Solanum 

tuberosum (Takezawa et al., 1995), and 9 genes in Arabidopsis thaliana (Zielinski, 2002). 

Initially, it was believed that the CaM isoform were inferred from cDNA that were deposited 

in the databases. However, these databases do not provide any clue of their actual expression. 

3.1.3 Role of CaM in plant-microbe interactions 

Calcium spiking occurred almost immediately after the perspicacity of symbionts by 

the host plants which is one of the initial cellular response of symbiosis. This particular process 

takes place in the perinuclear region of root hair and within the nucleus (Kosuta et al., 2008). 

Previous researches conferred a generalized symbiotic pathway, which comprised of 8 

components containing; POLLUX/DMI1, SYMRK/DMI2, NENA, NUP 85, NUP133, 

CASTOR, CYCLOPS/IPD3, and CCaMK. All these components are essential for the 

development of arbuscular mycorrhizal symbiosis (AMS) and root nodulation symbiosis 

(RNS) (Oldroyd 2013; Singh and Parniske, 2012). The calcium-calmodulin kinase (CCaMK) 

carries a structural attribute facilitating it to link Ca2+/CaM with ca2+. It act as a decoder of the 

encoded signal of calcium (Levy et al., 2004; Mitra et al., 2004). So, its kinase activity is 

modulated through the both Ca2+ and Ca2+/CaM (Poovaiah et al., 2013). 
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3.1.4 Function of CaM in plant development under abiotic stress 

 A number of techniques aimed at assimilating CML function, comprising genetic 

analysis, identification of downstream targets, protein biochemistry, and global expression 

profiling. These approaches are introducing to divulge the distinctive traits among the members 

of this wide protein family. The member of this family revealed their roles in plant development 

as well as in response to biotic and abiotic stress conditions (Bender and Snedden, 2013).   

Various abiotic stress responses are arbitrated by Ca2+ signalling. As a result, the CML 

is not intricated in the allied signal transduction pathways. The modification in the expression 

level of several CMLs has been identified in the response to abiotic stress stimulants. The 

CML37 and CML38 promoter activities are receptive to various different treatments such as; 

drought, mechanical wounding, oxidative stress and salinity (Vanderbeld and Snedden, 2007). 

The CML multi-stress responsive gene2 (OsMSR2) originated from rice (Oryza sativa) is 

instigated by a number of abiotic stress stimulants. The overexpression of OsMSR2 gene in 

Arbidopsis intensified the drought sensitivity to the exogenous application of ABA and 

tolerance to the salinity stress (Xu et al., 2011). The OsMSR2 gene is an ortholog of Arabidopsis 

thaliana that includes; CML37, CML38, and CML39, conferring sustenance to the postulation 

that CMLs function in Arabidopsis respond under stress conditions. The transcript analysis, 

and promoter of CML24 unveiled an upregulation of expression levels in response to oxidative 

stress, exposure to ABA, as well as high/or low temperature (Delk et al., 2005). Comparably, 

the CML9 transcript levels altered in cold, dehydration, and NaCl responses. The salt 

responsive expression of CML9 gene is reliant on both; ABA signalling and synthesis (Magnan 

et al., 2008). It suggests that this CML takes part in the ABA dependent stress responsive 

pathway. Overall, the gene expression analysis suggested that various CMLs genes are stress 

responsive. Henceforth, these CMLs genes will be significant to ascertain transcription factor 

regulatory gene expression. Furthermore, they will enable to evaluate the degree of extent to 

which transcriptional activity linked to alters the CMLs protein level. Irrespective of this, the 

expression profiling has been verified as beneficial in conducting queries marked at cognizance 

the roles of stress induced CMLs. 

Plant growth and survival are seriously intimidating due to the drought stress that is 

assessed as ubiquitous abiotic stress. The plant has the potential to adjust to drought conditions 
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by enhancing their physiological process such as; retaining water within the cell, alleviating 

water uptake efficacy, and modulating water loss by means of transpiration (Yang et al., 

2010a). Molecular studies conferred that numerous genes respond to the drought stresses in a 

spatial and temporal expression pattern (Yamaguchi-shinozaki and Shinozaki, 2006). Drought 

stress triggers signalling cascade implying TFs (i.e., AREBs and DREBs) and protein kinase 

phosphatases (such as; RPK1, SRK2C, CDPKs, and ABI1) which upregulates the production 

of molecules and chaperones. ABA is a phytohormone that acts a significant role in abiotic 

stresses particularly in drought and salinity. Drought stress stimulates the synthesis of ABA. 

Under drought, the level of ABA increased that lead to the closure of stomata in the guard cells 

and instigate expression of drought. A number of ABA responsive gene promoters comprise 

of cis-acting elements termed as ABRE (ABA-responsive elements) (Uno et al., 2000). The 

transcription of ABA entails more than two ABREs coupling elements in the promoter region 

for appropriate execution. Several Ca2+ regulated genes having such elements, signifying the 

fact that ABA regulates these particular responsive genes by changes in the cellular Ca2+ (Khan 

et al., 2015). In addition to this, different sites mediate ABA signalling for stress inducible 

genes (Shinozaki and Yamaguchi-Shinozaki, 2007). The drought responses can also be 

mediated through ABA-dependent pathways. These pathways are arbitrated through 

dehydration responsive element binding proteins (DREBs) (Agarwal et al., 2006; Seki et al., 

2007). 

Salicylic acid (SA) has usually recognized as a defense hormone. It regulates the plant 

defense system against the pathogen (Fu and Dong, 2013; Nimchuk et al., 2003). The SA 

activation pathway is under substantial regulation through Ca2+/CaM-binding transcription 

factors (TFs) (Wang et al., 2009; Zhang et al., 2010; Wang et al., 2011). The TFs provides a 

location for the Ca2+ signal to establish the production of SA. The transcription of EDS1 and 

NDR1 which are considered as two critical genes are required for the stimulation of both C-

terminal genes (i.e., CC-NB-LRR and TIR-NB-LRR) and R gene activated immunities. They 

are adversely controlled via. CaM regulated AtSR1/CAMTA3 genes. These genes facilitates a 

solid control above the coalescence of SA that provides an operational method to evade mis-

activation of PTI along with ETI, So SA is crucial for both (Nimchuk et al. 2003; Fu and Dong 

2013). Moreover, Ca2+/CaM may possibly be responsible for both positive and negative control 

through WRKY7, 11, 17, and 53 (Park et al., 2005; Journot-Catalino et al. 2006; Kim et al., 
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2006; Murray et al., 2007; Popescu et al., 2007). Though, their regulation and the direct 

downstream target genes activation by CaM persistently undetermined. 

 After the accrumulation of SA, the defense-related gene expression also appears to be 

regulated via. Ca2+/CaM-mediated signalling. The interaction of CaM-binding to TGA3 

develops with a target promoter (Szymanski et al., 1996). In addition, NPR1 interact with the 

TGA3, which is a critical transcription co-cofactor that intricate in the perception of SA and 

expression of a wide-ranging defense linked genes (Fu and Dong, 2013). They provide a 

potential alternative to modulate the productivity of defensive responses. Moreover, it might 

possibly inhibit the expression of the PR gene by the action of CBNAC transcription factor 

(Kim et al., 2012). It is quite entrancing to understand that the Ca2+/CaM gene could employ a 

well-coordinated regulator even at the ultimate stage of defense reactions than the later stage 

of induced accumulation of SA (Poovaivah et al., 2013). 

Aim of the study 

The aim of the study was to investigate the expression level of PsCaM1 genes in pea by 

inducing different treatments of PGPR (Rhizobium pisi) and PGRs (ABA, and SA) under the 

influence of drought stress and to determine whether the gene could specifically expressed at 

the early vegetative phase.  
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3.2. Materials and Methods 

 The methods for growth conditions, sterilization of seeds, preparation of Rhizobium 

inocula subsequent to seed inoculation, seed inoculation with salicylic acid (SA) and abscisic 

acid (ABA), and the induction of drought stress was similar as described in chapter 2 (materials 

and methods section) at page 29. 

3.2.1. RNA extraction 

 Unstressed and drought stressed plants for each time point were harvested in morning 

by 11:00 am. Seedlings leaf samples for each treatment were taken in replicates (approximately 

6 biological replicates). Leaf sample of 0.5g (500mg) was harvested and immediately frozen 

in liquid N2 for RNA extraction. RNA was extracted according to the AXYGEN manual 

(AXYGEN RNA extraction kit). The concentration of RNA was quantified via. NanoDrop-

ND1000 spectrophotometer (Thermo Fisher Scientific Inc.) at a 1:10 (v/v) dilution. 

3.2.2. cDNA synthesis for qRT-PCR 

 The cDNA libraries were prepared from the extracted purified RNA samples according 

to the manual using Thermo Scientific kit. One microgram of RNA was used for cDNA 

synthesis. PCR microtubes were sterilized and used. A total volume of reaction mixture for 

cDNA synthesis was of 20µL.The reaction mixture for cDNA synthesis comprised of mili-Q 

H20 (11 µL), 1 μg RNA sample, Oligo (dT) primer (1µL), 5X reaction buffer (4µL), dNTP 

(10mM each) 2µL, Ribolock (1µL) and 1µL of RevertAid-Reverse Transcriptase polymerase 

(200U/µl) followed by quickly flicking and spinning the microtube. The reaction mixture was 

prepared on ice. Samples were first incubated at 65°C for 10 min and then were placed on ice 

for 2 min immediately. The later incubation was at 37°C for 60 min and 70°C for 15 min 

respectively. The synthesized cDNA samples were stored at -20° C.  

3.2.3. qRT-PCR 

 The expression of PsCaM1 genes under drought stress was investigated using qPCR 

reaction which was done with 96 well plates (MicroAmp; Applied Biosystems) covered with 

optical adhesive covers (Applied Biosystems). The amplification of cDNA for qRT-PCR was 

performed via ABsoluteTM Blue QPCR low ROX-Mix (ThermoFisher Scientific) in an AriaMx 
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Real-Time qRT-PCR system (Agilent technologies, New South Wales, Australia) following 

the standard protocol. The reaction mix consisted of 4 µL (0.25 µM) each of primer (Eurofin, 

Thermo Scientific) and 1µL of diluted cDNA (30 ng), 5 µL of ABsolute Blue mix. The template 

for the Real-time PCR was 1:20 dilution of the cDNA synthesized and 1µl volume of the 

diluted template was used in 10 µl reaction volume. A control without the cDNA template was 

run as a negative control. Reaction conditions were as follows: one step at 95 °C for 10 min, 

and 40 cycles of 95 °C for 15s denaturation and 60 °C for 1 min annealing and extension. The 

data was analysed via. Agilent Aria-software. The expression of genes for each of the 

treatments i.e., PsAB13 for ABA (A) treatment, PsPR1for SA (S) treatment and PsNIN gene 

for Rhizobium (R) was normalize to the expression of housekeeping control gene actin (Table 

3.1). Primers utilized for the expression analysis of PsCaM1 gene are listed below: 

Table 3.1. List of genes along with the primers, primer sequences, target organism and 

expected size of the product. 

Genes Gene 

name 

Primer sequence (5'-3') Target 

organism 

Product 

size 

PsCaM1-F CaM AAGGACACCGACTCTGAGGA Pisum sativum 753 

PsCaM1-R AGCAGCAGAGATGAATCCGT 

Actin-F Actin TCAGCACCTTCCAGCAGATG Pisum sativum  

Actin-R TCTGTGGACAATGGATGGGC 

PsDREB2A-F DREB GTTGTTCTTCGGTGGCAACA Pisum sativum 200 

PsDREB2A-R AGGCTCATCCATTGGCTCTT 

PsABI3-F ABI3 GGACTCCAAGAGGGTGATTTC Pisum sativum 192 

PsABI3-R ATCCACCGCATCATTTCCAG 

PsPR1-F PR1 GCTGCTGGTTATCAGTGTGG Pisum sativum 189 

PsPR1-R TGGTTGAAGCTCAACGGAAC 

PsNin-F Nin AGAAGCCACGAGTATCCGC Pisum sativum 159 

PsNin-R ATGATCGAGTTGTGGTCGGT 
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3.3. Results 

3.3.1 Relative Expression of PsCaM1 genes under drought stress 

The expression analysis of PsCaM1 genes were analysed through drought DREB gene 

in Pisum sativum under different moisture regimes of 65% (for un-stressed control), 45% 

(drought stressed TP1) and 40% (drought stressed TP2) relative humidities using real-time qRT-

PCR. The expression analysis of CaM gene was identified in Pisum sativum via specific 

PsCaM1 markers designed from Pisum sativum var. Alaska available sequence in NCBI. The 

imposition of drought were assessed after 4d (TP1 45%) and 8d (TP2 40%) respectively under 

low and high moisture content to instigate the expression of PsCaM1 at drought and un-stressed 

conditions. The amplification of housekeeping gene Actin was used as an internal control in 

qPCR reactions which had been consistently expressed in Pisum sativum.  

Calmodulin genes (PsCaM1)  

 Figure 3.1 illustrated the relative expression of calmodulin gene in Pisum sativum under 

the influence of PGPR (Rhizobium) and PGRs (SA, ABA) alone and in combine treatments by 

inducing drought stress. It was discerned that Rhizobium (R) treatment exhibited a significant 

increase in the expression of PsCaM1 gene under drought stress in comparison to the un-

stressed control condition. Under un-stressed condition, no significant increase was observed 

at both time points; TP1 and TP2 in the respective treatment. At long term drought stress 40% 

MC (TP2), significant increase of ~1.5 folds in the relative expression was noticed. Whereas, 

at short term (TP1) drought stress the increase in relative expression was of ~1 fold when 

compared with control treatment.  

 Similarly, the relative expression of PSCaM1 gene in treatment ABA (A) showed an 

increase of ~0.8 folds at TP2 under un-stressed condition over control. However, no effect was 

recorded in the expression level at TP1. Moreover, under drought stress condition a significant 

increase of ~1.5 and ~0.8 folds were observed at TP1 and TP2 respectively when compared 

with control.   

 It was also found that SA (S) treatment alone represented an enhanced level of 

expression of ~ 1 fold at TP2 under un-stressed condition. While, a decrease in the expression 

level was examined at TP1 (un-stressed condition ~0.1 folds), TP1 (short term drought ~0.2 

folds) and TP2 (long term drought ~0.1 folds) over control. 
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 Conversely to the sole treatments, the combine treatments of Rhizobium with ABA (D), 

Rhizobium with SA (B) and Rhizobium in combination with SA and ABA (E) showed a 

decrease (~0.2 folds) in the relative expression of gene at both time points; TP1 and TP2 under 

un-stressed and stressed condition in comparison to control. Though, ~0.8, ~0.5 and ~0.4 fold 

increase was observed in treatment B, D (short term drought TP1) and E (long term drought 

TP2) over control.  

 

Figure 3.1. Relative expressions of Calmodulin (PsCaM1) gene of Pisum sativum under the effect of 

different treatments (values are the mean from six biological replicates (mean ± SE (n=6), Untreated  

drought stressed Control (C); Rhizobium pisi (R); salicylic acid (SA) (S); abscisic acid (ABA) (A); 

Rhizobium pisi along with salicylic acid (B); Rhizobium pisi with abscisic acid (D); Rhizobium pisi with 

both PGRs (SA and ABA) (E). LSD significance difference test at P ≤ 0.05). Time point 1= induction 

of 4 days of drought (TP1), Time point 2= induction of 8 days of drought stress (T.P2).  

3.3.2 Expression of PsDREB2 genes 

To specifically investigate the relative expression of Dehydration-responsive element 

binding protein 2 (DREB2) gene in Pisum sativum 28d old seedlings, specific primers for the 

respective gene were designed from NCBI. Results represented the highest expression level of 

PsDREB2 gene under the un-stressed and its expression was slightly drops down in treatments; 

B, E and S (60, 28, and 25% respectively) by higher/long term drought stress (Figure 3.2). 

Under the un-stressed condition, the expression pattern was downregulated in S, A, D and E 

treatments (25, 68, 75, and 81% respectively) over control at TP1. While, Rhizobium treatment 

revealed a significant increase in the expression level of 37% and treatment B with 100% when 

compared with control. However, a significant decrease of 80% was observed in treatment B 
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as compared to TP1. All other treatments exhibited an enhanced expression pattern over control. 

The SA treatment under unstressed condition, slightly augmented the expression level at TP2 

but it was unable to sustain an increase in the expression under drought stress. 

Furthermore, under stressed condition the expression level was equivalent to the 

expression pattern observed under un-stressed (well-watered seedlings) condition at TP1. The 

significant least expression level was noticed in Rhizobium treatment which was 11% to that 

of control. On the other hand, the PsDREB2 expression level was evidently increased at long 

term drought stress (40% TP2) than control. The intensification in the expression level was of 

100% under all stress treatments, Rhizobium (R), ABA (A), and Rhizobium with ABA (D) (e.g., 

the approximation of 5fold increase was recorded at TP2) with exception to SA (S) treatment 

which was increase about ~1.3 fold in comparison to control. Meanwhile, the expression 

pattern for the respective gene was significantly decrease under the drought stress condition in 

E and B treatments i.e., 25 and 60% respectively when compared with control.  

The results demonstrated that PsDREB2 plays a pivotal role in long term drought (i.e., 

40% moisture content), the expression level was ~6 folds higher in Rhizobium, ABA and D 

treatment than in control, well-watered plants and under drought stressed response of pea.  
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Figure 3.2. Relative expressions of Dehydration-responsive element binding protein 2 (PsDREB2) 

gene of Pisum sativum under the effect of different treatments (values are the mean from six biological 

replicates (mean ± SE (n=6), Untreated  drought stressed Control (C); Rhizobium pisi (R); salicylic acid 

(SA) (S); abscisic acid (ABA) (A); Rhizobium pisi along with salicylic acid (B); Rhizobium pisi with 

abscisic acid (D); Rhizobium pisi with both PGRs (SA and ABA) (E). LSD significance difference test 

at P ≤ 0.05). Time point 1= induction of 4 days of drought (TP1), Time point 2= induction of 8 days of 

drought stress (TP2).  
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3.4. Discussion 

Plant possess various types of calmodulin-related proteins that are unique from the 

other organisms. The notion of calmodulin related proteins and its isoforms are not clearly 

explicated so far (Reddy et al., 2011). The plant calmodulin related proteins family consists of 

members with varied numbers of projected EF-hand (ranges from three to six), and a few 

extend far off the standard length of calmodulin (Munir et al., 2016). The gene expression of 

Ca2+ sensors like the CaMs and CMLs is often instigated in response to a various abiotic 

stresses (Snedden and Fromm, 2001), as has been remarked for other Ca2+ sensors, such as 

CDPKs (Ludwig et al., 2004). Calcium (Ca2+) has emanated as a noteworthy secondary 

messenger that controls the processes of hormonal and environmental indicators which are 

correlated with the abiotic and biotic stresses. In this study, the expression of gene encoding 

calmodulin (CaM) proteins in Pisum sativum were assessed under drought stress. 

In the present study, the drought stress was induced on the different treatment of PGPR 

and PGRs in a way that seedlings were grown for 21 days. Later, drought stress was imposed 

by means of withholding the water supply. Pea seedlings were harvested for short term (TP1 

with 45% MC) and long term drought stress (TP2 with 40% MC) at the same time of the day 

i.e., 11:00 AM. The reason to harvest all the samples at the same time of the day for two-time 

points was to avoid the potential impact of circadian clock. In accordance with the present 

experimental conditions, a number of researches were conducted to relate the changes that 

occurred in the gene expression during a period which reflects a close possible connection with 

the time frame. It was divulged from the studies that the time frame for the duration of stress 

have a visible effect on gene expression (Choi et al., 2004; Latini et al., 2007).   

3.4.1 Expression of PsCaM1 in Pea seedlings 

The purpose of the present work was to characterize the expression of PsCaM1 protein 

gene under drought stress as this Ca2+ sensor plays a fundamental role in the developmental 

and stress phenomenon possibly to be come across by plants. Most of the research work was 

done at PsCaM1 transcript levels which revealed that the expression of PsCaM1 is very minute 

in the dry seeds, amplified strikingly for the duration of early imbibition, in both axes and 

cotyledons (Holdsworth et al., 1999). To investigate whether PsCaM1 gene in pea perhaps 

implies in mediating the response to drought stress. So, the expression of the respective gene 
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was evaluated after applying different treatments under drought stress by qRT-PCR. Results 

obtained from the qRT-PCR revealed that seeds inoculated with Rhizobium pisi have a 

noteworthy up-regulation in the relative expression of calmodulin (PsCaM1) gene at long term 

drought stress conditions (i.e., TP2 with 40% moisture content (MC)). It was discerned that 

Rhizobium (R) treatment exhibited a significant increase of ~1.5 fold in the expression of 

PsCaM1 gene under drought stress in comparison to the un-stressed control well-watered 

condition. The up-regulation of a gene is possibly due to the PsCaM-mediated signaling 

activity which allows it to interact with the other transcription factor and modulate rehydration 

responsive genes (Abe et al., 2003; Yoo et al., 2005; Pandey et al., 2013). In the same way, it 

was found that ABA treatment up-regulated the relative expression pattern to ~0.8 and ~ 1.5 

folds under short term (TP1) and long term drought (TP2) conditions singly over control and 

un-stressed control. Previous studies validated the present results by unfolding the potential 

role of ABA that is induced by abiotic stresses. Furthermore, it was stated that up-regulation 

of CaM gene in Arabidopsis thaliana (AtCML9) divulged a hypersensitive response to ABA in 

the course of germination, seedling growth phases and illustrated an alleviated tolerance to 

dehydration stresses (Yang and Poovaiah, 2002; Galon et al., 2010; Xu et al., 2011; Wang et 

al., 2015). Also, expression of various ABA-responsive gene were altered and transformed in 

rice to mitigate drought tolerance (Zeng et al., 2015).  

The expression of CaM gene in SA (S) treatment was down-regulated in the stressed 

condition on both phases of drought (TP1 and TP2). While an enhanced expression level (~1 

fold) was observed in un-stressed condition at TP2 in comparison to control. The results of the 

study are not supported by the previous studies which ensued salicylic acid (SA) as an induced-

defense compound and responsible for positive up-regulation of CaM (AtCBP60g CaM-

binding TFs) gene in Arabidopsis thaliana in response to drought stress (Wang et al., 2009; 

Zhang et al., 2010; Wan et al., 2012). Despite the fact, recent researches reported that the down-

regulation of CaM gene expression in SA is due to the failure of SA interaction with the CGCG 

box motif in the promoter region of EDS1 which suppresses the transcription factor and results 

in the negative regulation of SA-mediated defense plant immunity. Hence, SA has a negative 

influence on induced and basal biosynthesis of hormone regulated response in plants (Du et al., 

2009; Ni et al., 2012; Qui et al., 2012).  
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The significant finding of the study was the upregulation of CaM gene in Rhizobium 

and ABA treatments under drought stress whereas down-regulation of expression in SA 

treatment alone. Whereas, the relative expression was positively up-regulated in B, D (TP1), 

and treatment E (TP2) under drought stress over control. The up-regulation of CaM pattern in 

the combined treatment is because of the synergistic effect of Rhizobium with plant growth 

regulators. It is determined from the present work that Rhizobium pisi has the potential to show 

variation in the PsCaM1 and PsDREB2 expression levels in Pisum sativum under drought 

stress. The PsCaM1 gene was induced in few treatments, while other treatments repressed in 

response to drought, signifying that members of the same gene families might execute different 

functions. Though, the expression level of PsCaM1 was slightly higher than the PsDREB2 

gene. But, the entire data suggested the existence of fine regulation of the PsCaM11 gene in all 

treatments under long term drought stress and between the expression of the PsDREB2 gene 

and its downstream stress-response.  

3.4.2. Expression of PsDREB2 gene in Pea seedlings 

Plants have the capacity to respond to external stimuli to attain optimal plant growth 

and yield by discerning the external change and stabilizing the internal processes. Further, the 

expression of the right gene at the right time in the right tissue or cell is not the only cue to 

plant development and growth but as well as to the environmental responses (Reddy et al., 

2011). Likewise, it was stipulated that signals sensed by cells are imparted through secondary 

messengers, for instance, Ca2+ ions, inositol polyphosphates, nitric oxide, cyclic nucleotide 

monophosphates, and other small molecules (Mazars et al., 2010).  

The dehydration responsive element binding protein 2s (DREB2s) are the transcription 

factors. They act together with a cis-acting DRE (dehydration responsive element) sequence. 

They trigger the expression of downstream genes involve in heat shock, well-water stress 

reciprocation, and tolerance in Arabidopsis thaliana (Matsukura et al., 2009). The finding of 

DREB proteins and their role in abiotic stresses lead to the innovation of other homologue 

genes in other plants containing crops and legumes (Nayak et al., 2009). A comprehend 

information on the DREB1 class of transcription factor is accessible but the information on 

DREB2 class is confined. In the present study, the isolation of the DREB-related gene family 

named PsDREB2 was identified in pea (P. sativum). Although pea is the member of Viceae 
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tribe and M. trunculata be a member of Trifoliae tribe (Choi et al., 2004), the most apposite 

reported sequence of DREB2 in the model plant Medicago trnculata was used to design primer 

for the amplification of DREB2 gene in P. sativum. 

The expression analysis of PsDREB2 results demonstrated that PsDREB2 plays a 

fundamental part in long term drought (i.e., 40% moisture content), the expression level was 

~6 folds higher in Rhizobium, ABA and D treatment than in control, well-watered plants and 

under drought stressed response of pea. The present finding is supported by previous researches 

that at specific phase of dehydration/drought such as 40% MC, the expression level for 

PsDREB2 was 2 folds increased than in control, well-watered, un-stressed plants (Latini et al., 

2007; Bieniawska et al., 2008; Saha and Vandemark, 2012). It was found that PGPRs have an 

impact on the expression of the stress responsive genes. As a result, they can regulate plant 

responses to stress conditions (Barnawal et al., 2017). However, the dehydration responsive 

element/C repeat (DRE/CT), work in conjunction with a chain of transcription factors 

recognized as DREBs proteins (DRE binding factor/C repeat binding factor; DREB/CBF). The 

DREBs protein induces a series of downstream dehydration responsive genes that enhance 

dehydration tolerance in plants (Yamaguchi-Shinozaki and Shinozaki, 2005; Jia et al., 2012; 

Gachomo et al., 2014).  

Though the stress was applied at 21 days old pea seedlings and the period of drought 

was of 8 days. These conditions perhaps impeded the evaluation of expression patterns at this 

level to stress response. It was also observed that the expression of PsDREB2 slightly prompted 

when drought is applied, proposing that expression pattern changes with the drought stress 

periods (Liu et al., 2008). The expression of this specific gene reached a maximum of 40% 

MC. However, a reduced expression level was recorded at the early or short term drought stress 

which was at 45% MC. The down-regulation in the expression at early stages of the drought 

was evident in several studies, suggesting transcription factor might have a maximum role in 

roots at early stages that result in the reduction of expression (Agarwal et al., 2010; Lata and 

Prasad, 2011; Mizoi et al., 2012). ABA treatment induced a higher expression of the PsDREB2 

gene. Previous studies exhibited that DREB2A is involved in the plant stress responses and a 

specific concentration of 100 µM ABA might induce the significant up-regulation of DREB2A 

gene expression (Jovanović et al., 2013). It seems like drought alone cannot lead to the up-
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regulation of PsDREB2 in un-stress treatments until a specific drought period attained. In the 

meantime, the expression of PsDREB2 greatly enhanced in the treatment where seeds were 

inoculated with Rhizobium, primed with ABA, SA or in a combined effect.    

Conclusion 

The inoculation of Rhizobium pisi and priming of ABA and SA on the expression 

analysis of PsCaM11 under drought PsDREB2 had a positive upregulation of genes. The effect 

of Rhizobium was at par with ABA and showed an up-regulation of PsDREB2 under long term.  

The increased expression of the PsCaM11 gene in the treatments marks them as a potential 

candidate for stress tolerance to pea. However, the expression analysis of PsDREB2 exhibits 

that the gene is strikingly induced under long term drought. The combined treatments has 

further augmented the PsDREB2 gene. Thus, PsDREB2 could be a significant transcription 

factor that can be utilized for enhancing abiotic stress tolerance and for evaluating the disparity 

between genotypes.    
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CONCLUDING CHAPTER 

 

Plant growth promoting rhizobacteria (PGPR) are potentially active biological agents 

that enable plants to withstand in the extreme environment. PGPRs are considered to be 

effectual when applied in combination with other microorganisms or plant growth elicitors 

(PGRs). The results obtained during the present investigation divulged Rhizobium pisi, abscisic 

acid (ABA) and the combined treatment of Rhizobium with salicylic acid (SA) improved 

seedling biomass to mitigate drought-induced inhibition under the short period of drought.   

Rhizobium pisi is the root nodulating bacteria and has a symbiotic association with the 

legumes. However, its association with Pisum sativum has not been investigated yet. Results 

from Pearson correlation revealed a strong correlation (p < 0.05) of the physiological as well 

as expression analysis of PsCaM1 and Ps DREB2 gene in pea seedlings induced by Rhizobium 

pisi. The best studied physiological parameters with enhanced growth were biomass and 

relative water content (RWC) for shorter and longer periods of drought. These results were 

further verified through biplots using the principle component analysis (PCA). The eigenvalues 

obtained from the varimax rotation loading factors (VFs) varies from ≥ 0.4-0.5 for a moderately 

strong correlation between the parameters.  

Comparably to Rhizobium, ABA treatment has the potential role in tolerance against 

short term drought stress and was more pronounced. The treatment greatly improved the 

stomatal conductance (SC) by stomatal closure to reduce the water loss during drought and 

caused a significant reduction in the relative water content (RWC) and biomass of the 

seedlings. Pearson correlation delineated the strong correlation of the aforementioned 

physiological attributes under drought stress. The R measure strength and correlation for ABA 

treatment in Pearson correlation were + 0.92 which depicted a very strong positive correlation 

at the significance level of p < 0.0001. PCA analysis further validated the correlation results 

by having the eigenvalues of VFs 0.875 which is greater than the standard value for VFs 

(>0.75). However, the treatment is moderately correlated with the expression of PsCaM1 and 

PsDREB2 gene at short term and long term drought respectively.  

The effect of combined treatments signified in Rhizobium + SA treatment where an 

ameliorated biomass, SC and RWC was higher but they were unable to sustain such effects in 
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a longer run. However, the genes were upregulated at TP2. Likewise, Rhizobium + ABA 

treatment exhibited the significant effects at par to Rhizobium. The expression of PsDREB2 

augmented at long term drought (TP2). From PCA analysis, under unstressed condition 

treatment D represented a high value of PsCaM1 value at TP1. PC1 explains 29.06% of the 

total variance and PC2 25.50% explaining a lesser amount of variance, making it a 

reasonable summary measure. In addition to this, under stressed condition, principle 

component 1 (PC1) accounted for 39.7% of the variation, while PC2 contained 24.27% of 

the variation. Therefore, the plot of the PC scores (63.9%) of PC1 vs. PC2, making it a fairly 

good summary measure. Active observation “A” indicate a high value for PC2 and also 

identified a high value for SI TP1 and CF TP1. Strong association formed between “R” (FW 

TP1 & TP2). While “B” and “S” have low value with respect to PC2.  

But, the remarkable finding of the study was the incredible enhancement of stomatal 

conductance (SC), chlorophyll fluorescence (CF) and stomatal index (SI) for the longer 

duration of drought. Furthermore, the expression of PsCaM1 and the stress responsive gene 

(PsDREB2) was upregulated greatly at TP2. The correlation with the VFs was of > 0.789 and 

the R measures strength was 0.84 (p < 0.0001). In corroboration with the previous studies it 

was found that PGPR in combination with PGRs can formulate a consortium to maintain plant 

turgidity under drought stress (Seo and Park, 2010; Mittler and Blumwald, 2015; Suzuki et al., 

2016; Tabassum et al., 2017; Khan et al., 2018).  

Among the parameters, Pearson correlation results divulged an improved growth of 

seedlings, enhanced biomass production with significantly increased (p <0.05) stomatal 

conductance under drought stress. The inoculation of seedlings with Rhizobium alleviated 

drought stress by exerting beneficial effects on plant growth and achieving nutrient availability 

and assimilation (Barnawal et al., 2019).  The nutrient analysis depicted the augmented uptake 

of macro and micronutrients. Under drought stress, both Na and K were significantly increased 

in Rhizobium, Rhizobium + SA + ABA. The Mg content was alleviated in ABA, R + SA + 

ABA treatment and subsequently increased the Ca2+ content. Fe was significantly higher in 

Rhizobium and combined treatment R + SA + ABA. Similarly, Zn and Mn accumulation was 

also improved in Rhizobium treatment. The bacterial strain alone or in the consortium is 

responsible for the physiological, biochemical event in crop plants that led to ameliorate uptake 

of nutrients, and yield (Rêgo et al., 2014; Zhang et al., 2014; Jha and Subramanian, 2015). The 
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stomatal conductance, stomatal index, RWC are positively correlated variables while 

chlorophyll content, fresh and dry biomass were somehow negatively correlated (Appendix 1). 

Results from Pearson correlation for unstressed condition depicted a strong 

correlation between PsDREB2 to fresh weight (FW), relative water content (RWC) to plant 

height (PH), canopy temperature (CT) to PH, magnesium to stomatal conductance (SC) at 

TP1, chlorophyll content (CC) TP2 to CC at TP1, CT to RWC at TP1, PsCaM1 at TP1 to 

stomatal index (SI) at TP2,  PH to FW, RWC to FW, calcium (Ca) to sodium (Na), zinc (Zn) 

to Na, manganese (Mn) to iron (Fe) and PsDREB2 to PsCaM1 at TP2 (Table 4.1). However, 

a strong negative correlation was observed in; RWC to CF, SI to DW at TP1, CC to FW, 

potassium (K) and Ca to FW, Ca to PH, Fe to SC, Zn to SC, RWC to CC and Na to RWC at 

TP2 respectively. All the values were different from 0 with a significant level alpha (α = 

0.05) (Appendix 2).    

Under stressed condition, Pearson correlation results delineated a strong correlation 

between; CC to DW, Ca to CF and SC, Fe to Na, Mn to K at TP2, FW (TP2) to FW (TP1), DW 

(TP2) to DW (TP1), PH (TP2) to PH (TP1), SI (TP2) to CF (TP1), Ca (TP2) to SI (TP1), and PH 

(TP1 and TP2) to DW (TP2) (Table 4.2). While, a negative correlation was recorded in CC to 

FW, SC to DW, PsDREB2 to SC at short term drought stress (TP1), Mg to PH, Mg to CC, 

PsCaM1 to CC, Zn to Ca at long term drought stress (TP2), SC (TP1) to DW (TP2), RWC (TP1) 

to CF (TP2), PsDREB2 (TP1) to SC (TP2), SC (TP2) to DW (TP1) and Zn (TP2) to SI (TP1) 

respectively (Appendix 3). The results from PCA analysis along with Pearson correlation 

revealed that Rhizobium at par to SA and ABA treatments have positive impact on the seedling 

at short term drought stress but with the combined treatments of Rhizobium + SA and 

Rhizobium + SA + ABA had significantly higher effects on growth under long term drought.    

Rhizobium showed maximum upregulation of the PsCaM1 gene under stress. Though, 

ABA is more effective than Rhizobium at TP1 but unable to sustain the upregulation of gene at 

long term stress. The upregulation of the PsDREB2 gene was maximum in Rhizobium + ABA 

followed by Rhizobium and ABA treatment alone under long term drought stress. Under the 

unstressed condition, SA slightly augmented PsDREB2 gene expression at TP2 but SA was 

unable to withstand the expression level of the respective gene under drought stress at any of 

the time points.  
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It is concluded from the data that Rhizobium alone or in association with SA used to 

mitigate drought induced inhibition on plant growth, biomass chlorophyll content, stomatal 

conductance, RWC, and expression level of PsCaM1. At short term drought stress, the 

individual treatments of Rhizobium and SA exhibited better growth in relation to stress 

responsive gene effects on pea seedlings. While at long term drought stress, Rhizobium assisted 

SA and ABA mitigate drought induced adverse effects. It is inferred that combined treatments 

of Rhizobium + SA + ABA serve to mitigate drought stress in pea (Pisum sativum L.) in an 

effective manner that the sole treatments for a longer period of stress.  

Future prospects 

 The study needs to be extended to have an insight into the synergistic role of AB, SA 

also polyamines and a range of plant growth promoting rhizobacteria (PGPR) in 

consortium with Rhizobium to elucidate the role under drought and other stresses. 

 The mechanism of action for PGPR with other PGR e.g. polyamine need to be studied 

in detail for the sustainable crop production under drought stress.        
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APPENDIX 1 

 

 

Figure 4.1. Pearson correlation between fresh weight (FW), dry weight (DW), stomatal conductance 

(SC), stomatal index (SI), chlorophyll fluorescence (CF) and PsCaM1 gene expression determined by 

principal component analysis (PCA). (A): The biplot among axes, F1 and F2, 54.57% for unstressed; 

(B): the biplot axes F1 and F2 was 64.01% for stressed variations respectively. The positively correlated 

variables are in the same quadrates. Active variables are denoted with red lines whereas active 

observation are the treatments and explicated with blue dots.   

FW TP1

FW TP2

DW TP1

DW TP2

CF TP1

CF TP2
SC TP1

SC TP2
RWC TP1

RWC TP2

SI TP1

SI TP2

PsCaM1 TP1

PsCaM1 TP2

C

R

S

A

B

D

E

-5

-4

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3 4

F
2

 (
2
5
.5

0
 %

)

F1 (29.06 %)

Biplot (axes F1 and F2: 54.57 %)

Active variables Active observationsA

FW TP1FW TP2

DW TP1

DW TP2

CF TP1

CF TP2

SC TP1

SC TP2
RWC TP1

RWC TP2

SI TP1

SI TP2

PsCaM1 TP1

PsCaM1 TP2

C

R

S

A

B

D
E

-3

-2

-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4 5

F
2

 (
2
4
.2

7
 %

)

F1 (39.74 %)

Biplot (axes F1 and F2: 64.01 %)

Active variables Active observations
B



                                                                                                                                                                                                                                                    Appendices                                                       

 

Differential expression analysis of Calmodulin-binding (CaM) gene in Pea plants under drought stress and the effects of PGPR and PGR                    124 

 

Table 1. Pearson correlation matrix for physiological, nutrients and molecular attributes under unstressed condition. 

 

The bold values are different from the 0 value and are significant at α = 0.05. Fresh weight (FW), dry weight (DW), plant Height (PH), chlorophyll 

fluorescence (CF), stomatal conductance (SC), chlorophyll content (CC), relative water content (RWC), stomatal index (SI), canopy temperature 

(CT), Pisum sativum calcium-modulating gene (PsCaM1), Pisum sativum dehydration-responsive element binding gene (PsDREB2) with time 

point 1 (TP1) and time point 2 (TP2). 
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Table 2. Pearson correlation matrix for physiological, nutrients and molecular attributes under stressed condition. 

 
The bold values are different from the 0 value and are significant at α = 0.05. Fresh weight (FW), dry weight (DW), plant Height (PH), chlorophyll 

fluorescence (CF), stomatal conductance (SC), chlorophyll content (CC), relative water content (RWC), stomatal index (SI), canopy temperature 

(CT), Pisum sativum calcium-modulating gene (PsCaM1), Pisum sativum dehydration-responsive element binding gene (PsDREB2). Whereas 

time point 1 is TP1 and time point 2 as TP2. 
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Annex 2. Growth phases from germination to vegetative stage in walk-in-chamber with control 

conditions 
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Annex 3. Plants before harvesting 

 

       

Annex 4. Assessment of canopy temperature for all treatments under unstressed and stressed 

condition. Where; C: control; R: rhizobia; S: salicylic acid (SA)
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